

La périostine, un nouveau biomarqueur des métastases osseuses : développement d'un immunodosage et évaluation préclinique

Sylvain Contié

► To cite this version:

Sylvain Contié. La périostine, un nouveau biomarqueur des métastases osseuses : développement d'un immunodosage et évaluation préclinique. Médecine humaine et pathologie. Université Claude Bernard - Lyon I, 2010. Français. NNT : 2010LYO10253 . tel-00824383

HAL Id: tel-00824383 https://theses.hal.science/tel-00824383

Submitted on 21 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE

Présentée devant l'UNIVERSITÉ CLAUDE BERNARD - LYON 1, pour l'obtention du

DIPLÔME DE DOCTORAT EN SCIENCES DE LA VIE (arrêté du 7 août 2006)

Soutenue publiquement le 16 Novembre 2010, par

Sylvain CONTIÉ

LA PÉRIOSTINE, UN NOUVEAU BIOMARQUEUR DES MÉTASTASES OSSEUSES : DÉVELOPPEMENT D'UN IMMUNODOSAGE ET ÉVALUATION PRÉCLINIQUE

INSERM UMR 664 : « Mécanismes et Traitements des Métastases Osseuses des Tumeurs Solides »

École Doctorale de Biologie Moléculaire Intégrée et Cognitive

Directeur de thèse : Dr Patrick GARNERO Co-Directeur de thèse : Dr Philippe CLÉZARDIN

Membres du jury :

Monsieur le Professeur Roland CHAPURLAT Monsieur le Professeur Jean-Jacques BODY Monsieur le Professeur Saïd KAMEL Monsieur le Docteur Patrick GARNERO Monsieur le Docteur Philippe CLÉZARDIN Président du Jury Rapporteur Rapporteur Examinateur Examinateur

Les travaux présentés dans ce manuscrit ont été réalisés en collaboration avec la société Synarc Biochemical Markers dans le cadre d'une Convention Industrielle de Formation par la Recherche (CIFRE) instruite par l'Association Nationale de la Recherche et de la Technologie (ANRT)

REMERCIEMENTS

La thèse est une expérience individuelle mais pas solitaire. C'est pourquoi je tiens à exprimer ma profonde gratitude à toutes celles et ceux qui, professionnellement ou personnellement, m'ont accompagné au cours de ces années.

Je remercie tout d'abord mon directeur de thèse et tuteur industriel, Patrick Garnero, ainsi que mon tuteur académique, Philippe Clézardin, pour la confiance qu'ils m'ont témoignée en m'accueillant au sein de leur structure respective et en me confiant ce projet de Recherche & Développement.

Je remercie également Jean-Jacques Body et Saïd Kamel pour avoir accepté de juger ce travail de thèse en qualité de rapporteur, ainsi que Roland Chapurlat pour avoir accepté de présider le Jury.

*

Merci à tous les gens du laboratoire pour la gentillesse sans faille que vous m'avez témoignée depuis notre première rencontre ... mémorable ... Depuis, j'ai bien rattrapé le fuseau horaire Lyonnais. Mention spéciale à Vincent, complice de toutes les bonnes blagues ; à Marie-Claude, victime de (presque) toutes ces blagues ; à Marion, Blandine et Anaïs, les trois mousquetaires, mais avec plus de glamour et moins de moustache. Les thésards, bientôt ce sera à votre tour de terminer cette aventure mais je vous souhaite d'avance de réussir tous ce que vous entreprendrez par la suite. Aux anciennes, Céline et Flo, avec qui on a tant partagé (notamment des clopes, Flo...). Céline, rancunière, tu es partie en Australie au lieu d'assister à ma thèse car j'étais aux Etats-Unis quand tu soutenais la tienne. A Olivier « definitively » Peyruchaud et Edith « tabernacle » Bonnelye, merci pour les moments « rock & roll » et les débats d'idées partagés. Et enfin à Delphine, Claire-Marie et Ismahène, pour vos conseils, et votre participation à la bonne humeur de ce petit village de chercheurs.

Merci à tous les gens de SYNARC pour ces trois années d'expérience dans le monde de la R&D. A Elise, Fabrice, Pascaline, Aurélie et Emeric, pour les franches rigolades même dans les moments difficiles. A Nathalie pour tes conseils et le temps consacré à mes manuscrits. A Karine pour ton aide sur les dosages radioactifs, grâce à toi je n'aurais pas une deuxième tête qui pousse dans le dos. A Nadine et Samia, toujours là pour nous conseiller sur les petits trucs de la vie. Sans oublier la bonne humeur d'Ingrid et de la « Tea-Time Team » aussi, qui se reconnaîtra !

Je tiens aussi à exprimer mes pensées pour ceux qui étaient là dès mes premiers pas dans le monde de la recherche : Anne, Xavier, Stéphanie, Valérie, Alexandre et Luc. Merci pour vos premiers enseignements, vos conseils et votre enthousiasme. Si je n'étais pas passé chez vous, je ne serais pas ici aujourd'hui. Merci tout particulièrement à Steph' et Xav' qui m'ont permis de croquer Big Apple deux ans de suite ! A tous mes vieux amis du Sud-Ouest qui, même s'ils n'étaient pas géographiquement proches, étaient toujours avec moi.

A ma maman, qui a toujours cru en moi, m'a toujours laissé faire mes choix, et ainsi permis d'avoir de solides convictions dans ce que je réalisais. Merci pour ta patience et ta bienveillance. A mon grand frère et ma petite sœur, maintenant que cette thèse s'achève je pourrai être un peu plus présent pour vous. A mon père, qui m'a permis de faire ces études tellement longues et arriver à mes fins. A ma mamie qui m'a transmis l'amour de la cuisine, et à mon papi qui m'a transmis l'amour de ce que je cuisine, et un peu de son caractère aussi... Et enfin, merci à ma petite Elise, plus personnellement cette fois, pour m'avoir patiemment supporté et soutenu de tout son amour pendant ces longues années ; une nouvelle vie commence !

★

TABLE DES MATIÈRES

TABLE DES MATIÈRES		
TABLE DE	S ILLUSTRATIONS	6
LISTE DES	ABRÉVIATIONS	7
RÉSUMÉ		8
PARTIE I :	AVANT-PROPOS	9
PARTIE II	: INTRODUCTION BIBLIOGRAPHIQUE	11
1.	LE TISSU OSSEUX HUMAIN	12
1.1	Organisation macroscopique du tissu osseux	13
1.1.1	L'os cortical	14
1.1.2	L'os trabéculaire	15
1.2	Organisation microscopique et cellulaire du tissu osseux	16
1.2.1	La matrice extracellulaire osseuse	16
1.2.1.1	Matrice organique	16
1.2.1.1.1	Le collagène	16
1.2.1.1.2	Les protéines non collagéniques	17
1.2.1.2	Matrice inorganique	19
1.2.2	Les cellules osseuses	20
1.2.2.1	Les ostéoclastes	20
1.2.2.1.1	L'ostéoclastogenèse	20
1.2.2.1.2	La résorption osseuse	22
1.2.2.2	Les ostéoblastes	23
1.2.2.2.1	L'ostéoblastogenèse	23
1.2.2.2.2	La synthèse de matrice osseuse	24
1.2.2.3	Les cellules bordantes	24
1.2.2.4	Les ostéocytes	24
1.3	Remodelage osseux	25
1.3.1	Le remodelage osseux : maintien de l'intégrité du tissu osseux	26
132	L'ostéocyte · chef d'orchestre du remodelage osseux	27
2.	PHYSIOPATHOLOGIE DES MÉTASTASES OSSEUSES DES TUMEURS SOLIDES	
21	Asnect clinique des métastases osseuses	30
211	Contexte énidémiologique	30
212	Tumorigenèse et métastases	30
213	Les métastases osseuses	30
2.1.5	Mácanismas associás à l'ostáonhilia das cancars	31
2.2	l'ostéotronisme	31
2.2.1	Mécanismes impliqués dans la migration des cellules métastatiques vers l'os	31
2.2.1.1	Les chimiokines	31
2.2.1.1.1		
2,2,1,1,2	Attachement des cellules à l'endothélium (extravasation)	
2,2,1,2	Invasion / Migration	2/
2,2,1,5	l es intégrines	2/
2,2,1,3,1	Les integrines	
2.2.1.3.2	Los proceasos	35
2.2.2 2 3	Mácanismes de formation des métactases octéolutiques	
2.3 7 2 1	stimulatours de la récorntion occouse	
2.3.1 2.2.1.1	Jannulateurs de la resul plicifi ossedse	
2.3.1.1	La proteine apparentee à la parathormone (PTHP)	3b
2.3.1.2	Les cytokines	

2.5.1.5	Les prostaglandines	38
2.3.2	Inhibiteurs de la formation osseuse	38
2.3.2.1	Dickkopf-1	38
2.3.2.2	Noggin	39
2.3.3	Contribution du tissu osseux dans la progression locale de la métastase	39
2.3.3.1	Le TGF-β	39
2.3.3.2	L'IGF-1	40
2.3.3.3	Le calcium	40
2.3.3.4	La réaction stromale	41
2.4	Mécanismes de formation des métastases ostéocondensantes	42
2.4.1	Stimulateurs de la formation osseuse	42
2.4.1.1	L'endothéline ET-1	42
2.4.1.2	Le fragment PTHrP [1-23]	43
2.4.1.3	Les BMPs	
2.4.1.4	Autres facteurs	
2.4.2	Inhibiteurs de la résorption osseuse	
243	Contribution du tissu osseux dans l'ostéocondensation	44
2 5	Le cercle vicieux des métastases osseuses	44
3	OUTILS D'INVESTIGATION CLINIQUE DES MÉTASTASES OSSELISES	46
3.1	Diagnostic clinique conventionnel	47
3.1	Circonstances de découverte, signes cliniques et démarche diagnostique	
3.1.1	Baces techniques des méthodes d'imagerie des métastases osseuses	/12
2.1.2	Marquours biochimiquos circulants dos métastacos ossousos	50
2.2 2.2.1	Itilité diagnostique des marqueurs du métabolisme esseux	50
2.2.1	Utilité proportique des marqueurs du métabolisme osseux	5/
2.2.2	Suivi du traitoment	
5.2.5 2 7 1	Dertinance des marqueurs hiechimiques et évolutions probables	
3.2.4 4		
4.		
4.1 4 1 1	Caracterisation	
4.1.1	Structure du gène et de le pretéine	
4.1.2	Structure du gene et de la proteine	60
4.1.2.1	Le gene et son promoteur	60
4.1.2.2	Dégulateurs de l'europeasien de la réfrication	61
4.2	Regulateurs de l'expression de la periostine	62
4.3	Interactions moleculaires	64
4.3.1	La periostine et les integrines	b /I
4.3.1.1	Fac 1 de devecive foundieux al de la véricative	04 C 4
1212	Fas-1, le domaine fonctionnel de la périostine	64
4.3.1.2	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule	64
4.3.1.2 4.3.2	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles	64 64 65
4.3.1.2 4.3.2 4.4	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ?	64 64 65 65
4.3.1.2 4.3.2 4.4 4.4.1	 Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires 	64 64 65 65 65
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2	 Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire 	64 64 65 65 65 67
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-}	64 64 65 65 65 67 67
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions	64 64 65 65 65 67 67 68
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène	64 65 65 65 67 67 67 68 69
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux	64 65 65 65 67 67 67 68 69 70
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5.1	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Rôle de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse	64 65 65 65 67 67 67 67 68 69 70
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5 4.5.1 4.5.1.1	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique	64 65 65 65 67 67 67 67 67 67 69 70 70
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5 4.5.1 4.5.1.1 4.5.1.2	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique Immortalisation	64 65 65 65 67 67 67 67 67 67 67 70 70 71
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.1.3	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique Prolifération cellulaire	64 64 65 65 67 67 67 67 67 67 67 67 67 70 70 71 71
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.1.3 4.5.1.4	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique Immortalisation Prolifération cellulaire	64 64 65 65 65 67 67 67 67 67 67 67 67 67 67 67 67 67
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.1.3 4.5.1.4 4.5.1.5	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique Immortalisation Prolifération cellulaire	64 64 65 65 67 67 67 67 67 70 70 71 71 71 72 72
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.1.3 4.5.1.4 4.5.1.5 4.5.1.6	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique Immortalisation Prolifération cellulaire Survie cellulaire Nagiogenèse Invasion du tissu et métastase Néter dans de metageneeue	64 64 65 65 67 67 67 67 67 67 67 67 67 70 71 71 71 72 73
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5 1.1 4.5.1.2 4.5.1.3 4.5.1.4 4.5.1.5 4.5.1.6 4.5.1.7	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles	64 64 65 65 67 67 67 68 67 70 70 71 71 71 72 73 73
4.3.1.2 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5 4.5.1.1 4.5.1.2 4.5.1.3 4.5.1.4 4.5.1.5 4.5.1.6 4.5.1.7 4.5.2	Fas-1, le domaine fonctionnel de la périostine Les intégrines : une interface entre la périostine et la cellule Interactions avec les protéines matricielles Rôle physiologique de la périostine : une protéine matricellulaire ? La matrice extracellulaire et les protéines matricellulaires La périostine : une nouvelle protéine matricellulaire Le phénotype de la souris POSTN ^{-/-} Réparation des lésions Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène Implication de la périostine dans les processus cancéreux Rôle de la périostine dans les étapes clés de la tumorigenèse Déstabilisation génomique Immortalisation Prolifération cellulaire Survie cellulaire Survie cellulaire Réaction stromale Invasion du tissu et métastase Réaction stromale Investigation clinique de l'expression de la périostine	64 64 65 65 65 67 67 67 67 67 67 67 67 67 67 67 67 70 71 71 71 72 73 75

PARTIE III	: TRAVAIL EXPÉRIMENTAL		
1.	OBJECTIF DES TRAVAUX DE RECHERCHE		
2.	DÉVELOPPEMENT D'UN NOUVEAU DOSAGE ELISA DE LA PÉRIOSTINE CIRCULANTE : VARIATIONS LIÉES		
	À L'ÂGE ET EFFETS DES BISPHOSPHONATES CHEZ LA SOURIS		
2.1	Synthèse de l'article		
2.2	Article		
2.3	Données supplémentaires		
3.	ÉVALUATION DE LA PÉRIOSTINE EN TANT QUE MARQUEUR CIRCULANT DE LA RÉACTION STROMALE		
	LIÉE AUX METASTASES OSSEUSES DU CANCER DU SEIN		
3.1	Synthèse de l'article		
3.2	Article		
3.3	Données supplémentaires		
4.	MÉTA-ANALYSE GÉNOMIQUE DE L'EXPRESSION DE LA PÉRIOSTINE ET DES PROTÉINES APPARENTÉES		
	DANS LE CANCER		
4.1	Synthèse de l'article		
4.2	Article		
PARTIE IV	2 : CONCLUSION GÉNÉRALE ET PERSPECTIVES136		
PARTIE V	: RÉFÉRENCES BIBLIOGRAPHIQUES		
PARTIE V	: LISTE DES COMMUNICATIONS SCIENTIFIQUES		

TABLE DES ILLUSTRATIONS

FIGURES :

Figure 1. Représentation schématique des compartiments d'un os long.	13
Figure 2. Architecture représentative de l'os cortical	14
Figure 3. Comparaison du périoste d'un enfant (à gauche) et d'un adulte (à droite)	15
Figure 4. Architecture osseuse au niveau de l'os trabéculaire	15
Figure 5. Maturation et agencement des molécules de collagène de type I	17
Figure 6. Structure du cristal d'hydroxyapatite.	20
Figure 7. Illustration des facteurs régulant la différenciation et l'activité des ostéoclastes et les ostéoblastes	21
Figure 8. Progression et résorption de la dentine par les ostéoclastes	22
Figure 9. Morphologie des osteocytes.	25
Figure 10. Représentation du processus de remodelage osseux et de son contrôle par les ostéocytes	26
Figure 11. Attachement des cellules tumorales aux micro-domaines vasculaires SDF-1+ et E-sélectine+	34
Figure 12. Bibliométrie des articles liés au microenvironnement tumoral, de 1978 à 2009	42
Figure 13. Le cercle vicieux dans les métastases de type ostéolytique et ostéoblastique	45
Figure 14: Algorithmes d'analyses en imagerie pour la détection des métastases osseuses	48
Figure 15. Les techniques d'imagerie utilisées en oncologie pour le diagnostic des métastases osseuses	49
Figure 16. Représentation schématique des épitopes de CTX, NTX et ICTP	53
Figure 17. Bibliométrie des articles liés à la périostine	59
Figure 18. Schématisation du niveau d'expression de la périostine au cours de la différenciation de l'ostéoblaste	e. 60
Figure 19. Schéma représentatif de la séquence protéique de la périostine	61
Figure 20. Phénotype osseux et dentaire des souris POSTN ^{-/-}	67
Figure 21. Représentation hypothétique du rôle de la périostine dans la tumorigenèse.	70

<u>TABLEAUX :</u>

Tableau 1. Fonctions des principales protéines non collagéniques de l'os.	18
Tableau 2: Marqueurs circulants du remodelage osseux	51
Tableau 3. Les isoformes de la périostine dans l'espèce murine et humaine.	62
Tableau 4. Facteurs pouvant réguler l'expression de la périostine.	63
Tableau 5. Liste de molécules de la matrice extracellulaire interagissant avec la périostine	65
Tableau 6. Protéines matricellulaires majeures et leurs effets connus sur la physiologie cellulaire.	66
Tableau 7. Littérature rapportant l'expression de la périostine dans la réaction stromale.	74
Tableau 8. Cancers présentant une altération de l'expression de la périostine	75

DONNÉES SUPPLÉMENTAIRES :

Supplément 1. Détermination des concentrations de coating et d'anticorps primaire utilisées dans l'ELISA	92
Supplément 2. Comparaison des biomarqueurs osseux entre souris Balb/c sauvage (WT) et Balb/c nude (NU)	92
Supplément 3. Comparaison des index de découplage (Uncoupling Index) entre souris WT et NU	93
Supplément 4. Mesure de l'expression de la vimentine humaine dans les pattes métastatiques de souris	.105
Supplément 5. Mesure des taux sériques de périostine chez les souris métastatiques	.105
Supplément 6. Analyse immunohistochimique de la périostine dans le périoste de pattes métastatiques	.106
Supplément 7. Valeur diagnostique de la périostine sérique dans le contexte des métastases osseuses (MO)	.107

LISTE DES ABRÉVIATIONS

AAPS	American Association of Pharmaceutical	M-CSF	Macrophage Colony Stimulating Factor
	Scientists	MAPK	Mitogen Activated Protein Kinase
BGP	Bone Gla-Protein, ou ostéocalcine	MEC	Matrice Extracellulaire
BMP	Bone Morphogenic Protein	MGP	Matrix Gla-Protein
BMU	Unité Multicellulaire de Base	MGUS	Monoclonal Gammopathy of Undetermined
BP	Bisphosphonate		Significance
BSP	Bone Sialoprotein	MMP	Matrix Metalloprotease
CAII	Anhydrase Carbonique II	MSCs	Mesenchymal Stem Cells
CAM	Cell Adhesion Molecule	ΝϜκΒ	Nuclear Factor κΒ
CaSR	Calcium Sensing Receptor	NSCLC	Non-Small Cell Lung Cancer
CCN	Cystein rich Connective proteins	NTX-I	N-terminal cross-linked telopeptide of type I
CCN2	Cystein rich connective protein 2, ou CTGF		collagen
CDH11	Cadherin-11	OC	ostéocalcine, ou BGP
CFU-GM	Granulocyte Macrophage Colony Forming	OPG	Ostéoprotégérine
	Unit	OPN	Ostéopontine
сох	cvclooxygénase	Osf-1	Osteoblast Stimulating Factor-1 /HB-
CTGE	Connective Tissue Growth Factor, ou CCN2	00	GAM/PTN
CTR	Calcitonin Receptor	ΡΔΙ	Phosphatase alcaline
CTX-I	C-terminal cross-linked telopentide of type L	ΡΔΤ	Phosphatase alcaline totale
CIAT	collagen	PDGE	Platelet Derived Growth Factor
CXCI 12	SDE-1a (Stromal-Derived Factor-1a)	PG	Prostaglandine
Dkk-1	Dickkonf homolog 1		PC/N-terminal propentide of type I
	déoxypyridipoline		nrocollagen
FGE	Enidermal Growth Factor	ΡΟςτη	Periostin
FLISA	Enzyme-Linked ImmunoSorbent Assay	PSA	Prostate Specific Antigen
FMT	Enithelial-Mesenchymal Transition	PTH	Parathyroïd hormone
FT	Endothéline	PTHrP	PTH related Protein
FTA/FTR	Récenteurs de type A ou B des endothélines	PTN	nléiotrophine ou HB-GAM ou Osf-1
FAK	Focal Adhesion Kinase	PYD	Pyridinoline
FDΔ	Food and Drug Administration	RANK	Recentor Activator of NEKB
FGF	Fibrohlast Growth Factor	RANKI	RANK ligand
Flk-1	Fetal liver kinase-1 ou KDR ou VEGE-R2	RCPG	récenteur membranaire counlé aux protéines
Flt_1	Ems-like tyrosine kinase 1 ou VEGE-R1	Nel G	G
Gla	v-carboxyglutamate	RGD	Séquence Arginine-Glycine-Acide Aspartique
Glu	Glutamate	SDF-1a	Stromal-Derived Factor-1a ou CXCL12
GM-CSE	Granulocyte-Macrophage Colony-Stimulating	SIRNA	Small interfering RNA
	Factor	SIRP	Small Leucine-Rich Proteoglycan
GSK-3B	Glycogen Synthase Kinase-38	SMCs	Smooth Muscle Cells
HB-GAM	Henarin Binding Growth Associated	SPARC	Secreted Protein Acidic and Rich in Cystein
	Molecule ou Osf1	JIANC	ou Ostéonectine
ІСТР	C-terminal cross-linked telopentide of type L	TCF	T-Cell Factor ou LEE
	collagen	TGE-R	Transforming Growth Factor-B
IGE	Insulin-like Growth Factor		Tumor Necrosis Eactor
	Interleukine		Tartrate Resistant Acid Phosphatase
	Kinase Domain containing Recentor, ou Elk 1		Urokinase type Plasminogen Activator
	Knase Domain containing Receptor, ou FIK-1		Cascular Coll Adhasian Malacula 1
	Lymphoid Enhancer Eactor, ou TCE		Vascular Endothelial Growth Easter
	Lympholu Emidicer Factor, ou TCF	VEGF	
	Protein 5/6		

7

RÉSUMÉ

Les atteintes osseuses telles que l'ostéoporose et les métastases osseuses, qui sont la conséquence d'altération du remodelage osseux, sont fréquentes et constituent un problème majeur de santé publique. Les marqueurs biochimiques du remodelage osseux sont utilisés dans le diagnostic, le pronostic et le suivi thérapeutique de ces pathologies, en association avec les techniques d'imagerie. Cependant, la sensibilité des marqueurs existant est limitée notamment pour la détection précoce des métastases osseuses. La périostine (*POSTN*) est une Gla-protéine matricellulaire préférentiellement exprimée aux sites de contraintes mécaniques tels que le périoste, et dans de nombreux types de tumeurs. L'objectif de cette thèse a été d'évaluer la pertinence de la périostine en tant que biomarqueur du métabolisme osseux et de la physiopathologie des métastases osseuses.

Dans un premier temps, nous avons développé un dosage ELISA de la périostine circulante. La validation analytique (selon les recommandations de la FDA et de l'AAPS) a montré de bonnes performances en termes de reproductibilité et de précision. Les taux de périostine sérique sont étroitement corrélés à l'expression du gène de la périostine dans un modèle de souris déficiente pour ce gène.

Dans un second temps, nous avons étudié l'implication de la périostine dans l'ontogenèse et le remodelage osseux. Nous avons montré chez les souris que la périostine est localisée aux sites d'ossification endochondrale et intramembranaire et que son expression diminue au cours de la croissance, conjointement aux marqueurs conventionnels du remodelage osseux. Toutefois un traitement antirésorptif (bisphosphonate) ne modifie pas les taux sériques de périostine, contrairement aux marqueurs du remodelage. Ces données suggèrent que la périostine est une composante de l'ontogenèse osseuse plutôt que du remodelage.

Dans un troisième temps, nous avons étudié les modifications de l'expression de la périostine dans les métastases osseuses d'origine mammaire. Nous avons montré que les cellules cancéreuses n'exprimaient pas la périostine *in vitro*, mais qu'elles induisaient une surexpression de la périostine d'origine stromale dans un modèle expérimental de métastases osseuses. Ainsi, la mesure de l'expression de la périostine ou d'autres protéines stromales (à identifier), pourrait être un indice précoce de la colonisation de l'os par les cellules de cancer du sein, avant même qu'elles n'induisent des changements détectables du remodelage osseux.

Enfin, nous avons souhaité identifier les protéines appartenant au même groupe fonctionnel (*i.e.* stromal) que la périostine par une étude bioinformatique exhaustive de 266 études de criblage ARN (12 sortes de cancer, 19156 patients). Nous avons montré que l'expression de la périostine dans ces tissus est principalement associée à celle de protéines matricielles et matricellulaires, dont certaines sont caractéristiques du tissu osseux. Cette métaanalyse a confirmé le caractère stromal de la périostine et nous a permis de proposer de nouveaux marqueurs potentiels de cette composante du cancer.

En conclusion, nos résultats *in vitro, in vivo* et cliniques confirment l'implication de la périostine d'origine stromale dans l'ontogenèse osseuse et dans la progression tumorale. Cette protéine et ses homologues fonctionnels pourraient être utilisés comme marqueurs précoces des métastases osseuses mais pourraient aussi constituer de nouvelles cibles thérapeutiques.

PARTIE I :

AVANT-PROPOS

Aujourd'hui en France, le cancer est la première cause de mortalité chez les hommes, et la deuxième cause chez les femmes. Les études épidémiologiques montrent qu'environ 70% des cancers mammaires et prostatiques (prédominant chez la femme et l'homme) métastasent à l'os. Ces métastases modifient l'équilibre entre formation et résorption osseuse. Elles sont le plus souvent de nature ostéolytique (hyper-résorption), et parfois ostéocondensantes (formation aberrante d'os) ou mixtes. La progression de ces métastases repose sur l'existence de stimulations mutuelles entre cellules tumorales et cellules de l'environnement osseux. La prévalence et la forte morbidité de cette pathologie en font un problème de Santé Publique. Il est donc nécessaire de mieux comprendre les mécanismes sous-jacents à la formation et la progression des métastases osseuses afin de mieux les prévenir, les détecter et les soigner.

L'ostéoporose est une maladie métabolique qui présente également une forte prévalence : environ un tiers des femmes ménopausées et 8 % des hommes âgés. L'ostéoporose est caractérisée par un déséquilibre du remodelage osseux en faveur de la résorption. Sur le plan clinique, cela se traduit par une densité minérale et une microarchitecture osseuse altérées, et un risque accru de fractures à forte morbidité (*i.e.* col du fémur, vertèbres). Les traitements conventionnels visent à limiter la résorption ou à stimuler l'anabolisme osseux.

Dans la pratique clinique, le diagnostic de ces pathologies osseuses est réalisé par le biais de techniques d'imagerie. Les métastases osseuses sont généralement détectées par une analyse scintigraphique et l'ostéoporose est diagnostiquée par l'absorptiométrie à rayons-X double énergie. Ces techniques comportent cependant certaines limites. La scintigraphie peut ne pas détecter des lésions osseuses trop précoces (faux négatifs), ou bien peut refléter une activité de formation liée au traitement et non à une métastase active (faux positifs). L'absorptiométrie quant à elle ne permet ni d'expliciter l'ostéoporose avant que la densité osseuse ait suffisamment diminué (T-score < -1), ni d'évaluer les variations métaboliques au niveau de surfaces osseuses spécifiques telles que le périoste.

Les marqueurs biochimiques du métabolisme osseux sont fréquemment utilisés dans les études cliniques pour le diagnostic, le pronostic et le suivi thérapeutique de ces pathologies, le plus souvent en association avec les techniques d'imagerie. Ces outils sont avantageux car non invasifs, d'utilisation aisée et relativement peu coûteux. Ils peuvent également indiquer des variations du remodelage avant que celles-ci soient détectables par imagerie médicale. Toutefois le bénéfice clinique résultant de leur utilisation n'a pas encore été validé pour la prise en charge individuelle des patients souffrant d'ostéoporose ou de métastases osseuses.

Pour ces pathologies, on pourrait définir les besoins suivants :

• en oncologie, des biomarqueurs reflétant la réaction stromale, un mécanisme précoce de la tumorigenèse au site primaire et au site métastatique

• dans l'ostéoporose, des biomarqueurs capables de refléter spécifiquement les variations métaboliques du périoste avec l'âge et par les traitements.

La périostine est une Gla-protéine matricellulaire préférentiellement exprimée aux sites de contraintes mécaniques tels que le périoste, et dans le stroma de diverses tumeurs. Ainsi, dans le cadre de la recherche diagnostique sur les atteintes osseuses, l'objectif de cette thèse fut d'étudier la pertinence de la périostine en tant que biomarqueur du métabolisme osseux et de la physiopathologie des métastases osseuses.

PARTIE II :

INTRODUCTION BIBLIOGRAPHIQUE

1. LE TISSU OSSEUX HUMAIN

1.1	Organisation macroscopique du tissu osseux	13
1.1.1	L'os cortical	14
1.1.2	L'os trabéculaire	15
1.2	Organisation microscopique et cellulaire du tissu osseux	16
1.2.1	La matrice extracellulaire osseuse	16
1.2.1.1	Matrice organique	16
1.2.1.1.1	Le collagène	16
1.2.1.1.2	Les protéines non collagéniques	17
1.2.1.2	Matrice inorganique	19
1.2.2	Les cellules osseuses	20
1.2.2.1	Les ostéoclastes	20
1.2.2.1.1	L'ostéoclastogenèse	20
1.2.2.1.2	La résorption osseuse	22
1.2.2.2	Les ostéoblastes	23
1.2.2.2.1	L'ostéoblastogenèse	23
1.2.2.2.2	La synthèse de matrice osseuse	24
1.2.2.3	Les cellules bordantes	24
1.2.2.4	Les ostéocytes	24
1.3	Remodelage osseux	25
1.3.1	Le remodelage osseux : maintien de l'intégrité du tissu osseux	26
1.3.2	L'ostéocyte : chef d'orchestre du remodelage osseux	27

L'organisme comporte 350 os chez l'enfant en bas-âge. Au cours de la croissance, un certain nombre vont se souder pour n'en former que 206 chez l'adulte « typique ». Le tissu osseux, bien qu'il soit un tissu conjonctif minéralisé, est en fait un tissu vivant qui assure de nombreuses fonctions spécifiques.

D'un point de vue statique, les os assurent le soutien du corps et la protection des organes internes. D'un point de vue dynamique, ils représentent les éléments de transmission des forces musculaires au cours du mouvement. Enfin, d'un point de vue physiologique, les os sont un réservoir de sels minéraux (phosphore, calcium, magnésium) que l'organisme peut mobiliser par résorption selon ses besoins ; ils permettent la détoxification de l'organisme en retenant les métaux lourds (plomb, arsenic) ; ils renferment la moelle qui produit les cellules sanguines.

1.1 Organisation macroscopique du tissu osseux

Les os peuvent être classés en fonction de leur forme, qui dépend de leur fonction et de leur situation dans le corps (Cabrol 1995). On distingue quatre types d'os :

• les os longs (radius, tibia, fémur) présentent une diaphyse (le corps de l'os) et deux épiphyses (les extrémités) contenant de l'os spongieux (Figure 1),

• les os courts, tels que les os du carpe, les os du tarse, les phalanges de la main et du pied et le calcanéum, plus petits et comportant de nombreuses surfaces articulaires,

• les os plats, tels que l'omoplate, le sternum et les os du crâne, de faible épaisseur,

• les os intermédiaires présentent des particularités qui les excluent des groupes précédents. On trouve ici des os allongés (métacarpiens, métatarsiens), rayonnées (vertèbres), arqués (côtes, mandibule), pneumatiques (sinus), et les os sésamoïdes (petits os situés dans l'épaisseur des ligaments).

Figure 1. Représentation schématique des compartiments d'un os long.

Globalement, les os présentent deux architectures distinctes : l'os spongieux, dit trabéculaire, et l'os compact, dit cortical. Ce dernier est recouvert d'une membrane appelée périoste sur sa face externe et de l'endoste sur sa face interne. Ces os peuvent être générés par deux processus ontogéniques différents. Les os plats sont créés par une ossification endoconjonctive (ou membranaire), qui ne requiert par d'ébauche cartilagineuse préalable. Les os longs et la plupart des os intermédiaires résultent d'une ossification endochondrale, qui s'appuie sur une ébauche cartilagineuse préexistante. Après transformation de l'ébauche cartilagineuse en tissu osseux, les os continuent toutefois de subir une croissance longitudinale et radiale jusqu'à la fin de la puberté. La croissance longitudinale se fait également par un processus d'ossification endochondrale mais dans une région particulière des épiphyses : les métaphyses, délimitées au niveau distal par la plaque de croissance. La croissance radiale quant à elle résulte d'un processus d'ossification intramembranaire.

1.1.1 L'os cortical

L'os cortical constitue l'enveloppe des os courts, des os plats, ainsi que des os longs au niveau de la métaphyse et de la diaphyse (Figure 2). Ce type d'os constitue 90% du poids du squelette. Sa structure est presque totalement calcifiée et très dense. Il est composé d'ostéons cylindriques de 200 à 300 μ m de diamètre alignés dans l'axe de la diaphyse. Ces unités structurales sont faites de couches concentriques dans lesquelles les fibres de collagène s'orientent alternativement dans des sens opposés. Cela lui confère une résistance optimale face aux contraintes mécaniques. Chaque ostéon est parcouru d'un canal central, dit « de Havers », de 50 μ m de diamètre. Les canaux de Havers sont reliés entre eux par des canaux transversaux, dits « de Volkmann ». Ces canaux permettent la jonction nerveuse et vasculaire entre le périoste à l'extérieur de l'os et la moelle osseuse.

Figure 2. Architecture représentative de l'os cortical.

Le périoste joue un rôle fondamental dans la croissance circonférentielle et les propriétés biomécaniques des os (Orwoll 2003). Chez l'enfant il est constitué de deux couches. Une couche superficielle fibreuse et d'une couche profonde contenant des cellules souches et des préostéoblastes. Dans cette couche profonde ou couche cambiale on note d'épais faisceaux de fibres de collagène arciformes qui pénètrent profondément dans le tissu osseux (fibres de Sharpey). Au contact de l'os on trouve des ostéoblastes matures cuboïdes et de rares ostéoclastes et préostéoclastes. L'ensemble du périoste est richement vascularisé. Chez l'adulte il est considéré comme quiescent à l'état physiologique. La couche fibreuse est peu différenciable de la couche profonde (Figure 3). Néanmoins, quelques cellules allongées ressemblant à des fibroblastes constituent des cellules souches susceptibles de se différencier sous l'influence de différents stimuli (stress mécanique, parathormone, fracture).

Figure 3. Comparaison du périoste d'un enfant (à gauche) et d'un adulte (à droite).

OC : os cortical. CPO : couche profonde ostéogène. CF : couche fibreuse. TA : tissu adipeux.

1.1.2 L'os trabéculaire

On retrouve l'os trabéculaire dans les épiphyses et les métaphyses des os longs ainsi qu'à l'intérieur des os plats ou courts (Figure 4). Il ne représente que 10% du poids du squelette. Sa structure est moins dense et plus friable que celle de l'os cortical. Son organisation alvéolaire est en fait un agencement de travées osseuses (« trabécules ») anastomosées, et laisse une large place (80%) à la moelle osseuse hématogène. Malgré une organisation apparemment erratique, l'orientation des travées dépend des lignes de forces mécaniques auxquelles l'os est soumis. Chez une personne jeune, ces travées sont nombreuses, en forme de plaque et fortement anastomosées. Avec le vieillissement, leur nombre diminue, elles prennent une forme cylindrique et voient leur connectivité diminuer. Ces différents paramètres conditionnent la résistance mécanique de l'os trabéculaire, qui est donc compromise chez les personnes âgées.

Figure 4. Architecture osseuse au niveau de l'os trabéculaire.

(A et B) Visualisation de l'orientation globale des travées osseuses dans l'épiphyse proximale d'un fémur et représentation des lignes de forces mécaniques s'exerçant dans cette même région. (C – F) Image de microscopie électronique à balayage de l'os trabéculaire chez une femme de 30 ans (C et D) et de 89 ans (E et F). Au cours du vieillissement, les trabécules prennent une forme cylindrique, s'affinent, se raréfient, et subissent une forte érosion. Source : site internet de la *Bone Research Society* (http://www.brsoc.org.uk).

Ainsi, nous pouvons percevoir que l'os cortical et trabéculaire sont fondamentalement différents. En effet l'os cortical assure un rôle mécanique et protecteur alors que l'os trabéculaire présente une grande surface d'échange avec la moelle osseuse qui lui permet d'assurer ses fonctions métaboliques.

1.2 Organisation microscopique et cellulaire du tissu osseux

1.2.1 La matrice extracellulaire osseuse

La matrice osseuse, qu'elle constitue l'os compact ou spongieux, est essentiellement un assemblage de protéines collagéniques minéralisées. On y trouve aussi des protéines non collagéniques, peu représentées, mais qui ont un rôle important dans la physiologie du tissu osseux. Alors que les protéines collagéniques sont produites localement, certaines des protéines non collagéniques sont synthétisées dans d'autres organes et captées par le tissu osseux grâce à leur affinité pour la phase minérale. Chez l'adulte, la phase organique de cette matrice constitue environ 25% de la masse osseuse sèche, la phase minérale constituant le reste.

1.2.1.1 Matrice organique

1.2.1.1.1 Le collagène

Il existe 37 gènes distincts de collagène dont les produits peuvent s'assembler en 28 types différents, mais le collagène de type I représente 90% du collagène de l'organisme. Le collagène se caractérise par la présence répétée du triplet d'acides aminés Gly-X-Y dans leur séquence. La proline et l'hydroxyproline sont les plus fréquemment observées aux emplacements X et Y respectivement, conférant à cette macromolécule une structure en hélice avec un pas à droite. Le collagène de type I est d'abord synthétisé sous la forme de procollagène, une triple hélice composée de deux chaînes α1 codées par le gène COL1A1 et d'une chaîne α 2 codée par le gène *COL1A2*, mais de structure identique à la chaîne α 1 (Figure 5). Ces chaînes subissent plusieurs modifications post-traductionnelles telles que l'élimination de la séquence signal, l'hydroxylation de certaines prolines et lysines, et la glycosylation de quelques hydroxylysines. Le procollagène est stabilisé par la protéine chaperonne Hsp47 (Heat shock protein 47) puis sécrété dans l'espace extracellulaire où des peptidases clivent les propeptides N- et C-terminaux générant ainsi le tropocollagène. Le tropocollagène a un poids moléculaire de 95 kDa et mesure 294 nm de long pour un diamètre de 5 nm. La triple hélice commence et se termine par des régions linéaires appelés télopeptides. La polymérisation spontanée des unités de tropocollagène forme des microfibrilles de collagène, qui se regrouperont elles-mêmes en fibres de collagène. La structure des microfibrilles est stabilisée par des pontages covalents intra- ou intermoléculaires appelés crosslinks, et impliquant des résidus de pyridinoline (PYD) ou de déoxypyridinoline (DPD) des télopeptides. Chaque fibrille est constituée d'une répétition d'un patron de cinq tropocollagènes alignés et séparés entre eux par un espace d'environ 45 nm et décalées d'environ un quart de leur longueur (67 nm) par rapport à leurs voisins latéraux. Cette alternance de chevauchements et d'espacements le long des fibrilles explique la striation observée en microscopie électronique. Sur le plan ultrastructural, ces fibres de collagènes peuvent être agencées de deux façons différentes. Dans l'os embryonnaire et au cours du développement, la disposition des fibres ressemble à un tissage peu organisé. Cet os est appelé os réticulé. Grâce à un phénomène de remodelage, cet os jeune sera progressivement remplacé par un os lamellaire, où l'agencement des fibres de

collagène y est régulier et orienté. Toutefois, l'os réticulé peut être à nouveau observé dans certaines conditions physiologiques (cal osseux lors de la guérison de fractures) et pathologiques (maladie de Paget).

Figure 5. Maturation et agencement des molécules de collagène de type I.

Le procollagène de type I est un assemblage de deux chaînes $\alpha 1$ et d'une chaîne $\alpha 2$ associées en triple hélice. Après sécrétion par la cellule, les propeptides N et C-terminaux sont clivées par des enzymes spécifiques qui génèrent ainsi le tropocollagène de type I. Un assemblage répété de cinq tropocollagènes forme une microfibrille. Celles-ci se regroupent finalement afin de former la fibre de collagène. L'alternance de chevauchements et d'espacements des molécules de tropocollagène peut-être visualisé en microscopie électronique sous la forme d'une alternance de bandes sombres et claires. Schéma modifié à partir de Garnero et coll. 2000.

1.2.1.1.2 Les protéines non collagéniques

Environ 75% des protéines non collagéniques sont synthétisées localement, par les ostéoblastes. On peut les répartir en 3 groupes distincts : les glycoprotéines, les protéoglycanes et les Gla-protéines (Robey et Boskey 2008) (Tableau 1).

Les glycoprotéines du tissu osseux

L'ostéonectine, ou SPARC (Secreted Protein Acidic and Rich in Cystein), est associée à la croissance et à la prolifération des ostéoblastes. Son rôle dans le remodelage et la minéralisation de l'os est déterminant pour le maintien de la masse osseuse. En effet, la délétion de ce gène chez la souris entraîne un phénotype ostéopénique (Delany et coll. 2000). Certaines glycoprotéines contiennent une séquence particulière d'acides aminés, le tripeptide « arginine-glycine-acide aspartique » (RGD). Cette séquence est reconnue par les récepteurs de la famille des intégrines (Ruoslahti 1996). Ces récepteurs sont présents à la surface membranaire des ostéoclastes et des ostéoblastes et ont un rôle déterminant dans la transduction des signaux extracellulaires qu'ils soient biochimiques ou mécaniques. Parmi les glycoprotéines contenant une séquence RGD, les molécules classées comme « SIBLINGs » (Small Integrin-Binding Ligands) ont un impact particulièrement important sur le métabolisme des cellules osseuses. En effet, l'ostéopontine (OPN) et la sialoprotéine osseuse (Bone Sialoprotein ; BSP) régulent l'attachement des ostéoclastes à la matrice osseuse. Ces protéines auraient par ailleurs un rôle potentiel dans la maturation des ostéoblastes. Lorsque ces gènes sont supprimés, la minéralisation de la matrice diminue (Robey et Boskey 2008).

	Fonctions dans le tissu osseux	Références
GLYCOPROTEINES SANS RGD	-	
Ostéonectine (SPARC)	 peut réguler le dépôt d'hydroxyapatite se lie aux facteurs de croissance, au calcium peut influencer le cycle cellulaire des OBLs régulateur positif de la formation osseuse 	Gokhale et coll. 2001 Brekken et coll. 2001 Delany et coll. 2000
Phosphatase Alcaline	 transporteur de calcium potentiel hydrolyse les inhibiteurs de minéralisation (<i>i.e.</i> pyrophosphates) 	Hentorn et coll. 1996
Tétranectine	 se lie au plasminogène peut réguler la minéralisation de la matrice 	Robey et Boskey, 2008
GLYCOPROTEINES AVEC RGD		
Siblings (small-integrin-binding ligand	d)	
Ostéopontine (OPN)	- se lie aux cellules de l'os (OBL et OCL) et au calcium - peut réguler négativement la minéralisation - pourrait réguler la prolifération des cellules de l'os (OBL et OCL) - inhibe la production d'oxyde nitrique par les macrophages	Noda et Denhardt, 2002
Sialoprotéine osseuse (BSP)	- se lie aux cellules de l'os (OBL et OCL) et au calcium - peut initier la minéralisation	Hunter et Goldberg, 1993
Autres glycoprotéines RGD		
Thrombospondines	 se lient aux OCLs se lient à l'héparine, aux collagènes de type I et V, à la décorine, à l'ostéonectine, au TGFβ, au fibrinogène, à la laminine, au plasminogène et aux glycoprotéines riches en histidine 	Lawler, 2000
Fibronectine	- se lie aux cellules - se lie aux héparines, gélatines, collagènes	Romberger, 1997
Vitronectine	 se lie aux cellules se lie au collagène, plasminogène, aux activateurs et inhibiteurs du plasminogène et à l'héparine 	Schvartz et coll. 1999
PROTEOGLYCANES		
Biglycane	- peut se lier au collagène et au TGFβ - constituant de l'environnement péricellulaire - peut être impliqué dans la différenciation cellulaire	Beresford et coll. 1987 Bianco et coll. 1990
Décorine	- se lie au collagène et peut réguler le diamètre des fibres - se lie au TGFβ et peut réguler son activité - inhibe l'attachement des cellules à la fibronectine - se lie à la thrombospondine	Vogel et coll. 1984 Schmidt et coll. 1987 Yamaguchi et coll. 1990 Merle et coll. 1997
GLA-PROTEINES		
Ostéocalcine	 peut réguler l'activité des OCLs et de leurs précurseurs pourrait servir de signal pour l'initiation de la résorption osseuse régule le remodelage osseux 	Mundy et Poser, 1983 Ducy et coll. 1996 Lee et coll. 2007
Gla-protéine matricielle	- régulateur négatif de la minéralisation	Luo et coll. 1997
Périostine	 permet l'adhésion et le recrutement des OBLs détermine les propriétés structurales et biomécaniques du collagène se lie à plusieurs hétérodimères d'intégrines 	Litvin et coll. 2004 Kudo et coll. 2006 Rios et coll. 2005
OBL : ostéoblaste ; OCL : ostéoclaste		

Tableau 1. Fonctions des principales protéines non collagéniques de l'os.

Les protéoglycanes du tissu osseux

Ils sont également appelés « Small Leucine-Rich Proteoglycans » (SLRPs) car riches en leucines et portant une ou plusieurs chaînes de glycosaminoglycanes (GAGs). Les GAGs sont des polymères d'unités disaccharidiques plus ou moins sulfatés. Les SLRPs interagissent avec les

facteurs de croissance TGF- β (Transforming Growth Factor- β) ce qui module leur disponibilité et leur activité. Outre cette similarité, la décorine est distribuée uniformément dans la matrice osseuse et serait impliquée dans la formation des fibres de collagènes, alors que le biglycane a une localisation péricellulaire et régulerait positivement la formation osseuse. En effet, la délétion de ce gène chez la souris provoque un phénotype ostéoporotique (Robey et Boskey 2008).

Les Gla-protéines

A ce jour, on ne connait que 16 protéines carboxylable ou « Gla-protéines ». Celles-ci contiennent une séquence reconnue par la γ -glutamyl carboxylase qui transforme le glutamate (Glu) en γ -carboxyglutamate (Gla). La plupart de ces macromolécules sont des facteurs de coagulation mais quelques unes sont plus spécifiques du tissu osseux : l'ostéocalcine, la Gla-protéine matricielle (Matrix Gla-Protein ; MGP) et plus récemment la périostine. Leur rôle physiologique n'est pas encore clairement défini mais les modèles transgéniques générés ont mis en évidence leur importance dans le métabolisme osseux. Elles auraient ainsi un rôle régulateur dans la formation et la calcification de la matrice osseuse.

Par exemple, l'absence de la Gla-protéine matricielle et de l'ostéocalcine chez la souris provoque respectivement l'apparition de calcifications ectopiques (*i.e.* aorte) et une augmentation de la densité minérale osseuse (Ducy et coll. 1996; Luo et coll. 1997). L'ostéocalcine favorise également la sécrétion et la sensibilité à l'insuline, sa délétion entraînant donc un phénotype diabétique (Lee et coll. 2007). Ces récentes observations ont permis de mettre en avant une étroite relation entre les métabolismes énergétique et osseux : la leptine, une hormone du tissu adipeux, peut en contrepartie réguler la masse osseuse *via* l'hypothalamus et le système nerveux sympathique (diminue la masse osseuse) ou le « Cocaine and Amphetamine Related Transcript » (augmente la masse osseuse) (Lieben et coll. 2009). Enfin, la délétion de la périostine chez la souris provoque entre autre un phénotype ostéoporotique ainsi que des anomalies dans l'éruption dentaire et l'amélogenèse.

Il est à noter que dans le tissu osseux le contenu total de Gla est très supérieur à celui constitué par les « Gla-protéines » décrites à ce jour, indiquant que de nombreuses autres protéines de cette famille restent à être identifiées.

De nombreuses autres protéines sont également synthétisées localement et coexistent avec celles citées ci-dessus, notamment des facteurs de croissance et des cytokines (IGFs, TGF- β , IL-1, IL-6) ainsi que des enzymes (MMPs) et leurs inhibiteurs (TIMPs; Tissue Inhibitors of Metalloproteinases) (Robey et Boskey 2008). De nouvelles protéines telles que l'asporine, une SLRP, sont encore peu étudiées mais laissent entrevoir un rôle fondamental dans la biologie du tissu osseux (Kalamajski et coll. 2009).

Aux côtés de ces protéines endogènes, une part mineure (25%) des protéines non collagéniques présentes dans l'os sont synthétisées dans des organes distants, acheminées jusqu'au tissu osseux par la circulation sanguine ou lymphatique, puis y sont adsorbées grâce à leur affinité pour la phase minérale. Ce sont principalement l'albumine et la transferrine, des protéines à caractère acide. Elles agissent sur le taux de minéralisation de la matrice. La transferrine peut également réguler la prolifération des cellules de l'os (Robey et Boskey 2008).

1.2.1.2 Matrice inorganique

Ce compartiment biochimique représente jusqu'à 70% de la masse osseuse chez l'adulte. Il est essentiellement composé de cristaux de phosphate de calcium ou « hydroxyapatite », de formule $[Ca_{10}(PO_4)_6(OH)_2]$ (Figure 6). Le phénomène d'initiation de formation de ces cristaux est appelée nucléation, et prend place dans le réseau de fibres de collagène, plus exactement au niveau des espaces qui séparent les molécules de tropocollagène (Robey et Boskey 2008). Dans son ensemble, ce réseau hautement organisé de collagène minéralisé fournit à la fois solidité, élasticité et flexibilité à l'os.

Figure 6. Structure du cristal d'hydroxyapatite.

En plus de son rôle structural, chaque cristal d'hydroxyapatite représente une unité fonctionnelle pour les échanges ioniques. Ces échanges se produisent en surface du cristal et sont très rapides. De plus, la surface totale des cristaux d'hydroxyapatite du squelette adulte représente 500 000 m². Ces propriétés font de l'os une réserve d'ions particulièrement mobilisables.

Ainsi, le tissu osseux détient respectivement 99% et 90% de réserves calciques et phosphoriques de l'organisme. On y trouve aussi d'autres sels de calcium, et quelques sels de magnésium et de strontium. Une partie du phosphate de calcium existe cependant sous forme amorphe au lieu d'hydroxyapatite. Cette fraction est plus abondante chez le sujet jeune que chez le sujet âgé et joue un rôle important dans la physiologie osseuse.

1.2.2 Les cellules osseuses

Le tissu osseux abrite de nombreux types de cellules, communes à d'autres organes ou spécifiques de l'os. Ces dernières sont issues de deux lignages distincts. Le lignage hématopoïétique monocytaire génère les ostéoclastes, dont la fonction est de dégrader la matrice osseuse. Le lignage mésenchymateux quant à lui génère des ostéoblastes, responsables de la formation de la matrice osseuse et qui ont la possibilité de se transformer en cellules dites bordantes ou en ostéocytes. Ces dernières constituent la majorité des cellules de l'os.

1.2.2.1 Les ostéoclastes

Ces cellules volumineuses (20 à 100 μ m) et multinucléées (2 à 50 noyaux) ont pour fonction de dégrader la matrice osseuse. Elles sont polarisées : le pôle basal, en contact avec l'os, présente une bordure plissée (« *ruffled border* ») et les noyaux sont ségrégés dans la partie apicale de la cellule. Entre les deux, on observe un nombre exceptionnel d'organelles. La région fonctionnelle de l'ostéoclaste est sa bordure plissée qui permet de nombreux échanges métaboliques avec la matrice sous-jacente (Ross 2008).

1.2.2.1.1 L'ostéoclastogenèse

Les ostéoclastes sont issus de la lignée monocytaire. Leur différenciation, qui commence dès le stade CFU-GM (Colony Forming Unit - Granulocyte Macrophage) (Roodman 2006), est initiée et contrôlée par les ostéoblastes et les cellules stromales grâce à des facteurs sécrétés et membranaires. Il s'agit du M-CSF (Macrophage Colony Stimulating Factor), du RANKL (RANK Ligand), et de l'OPG (Ostéoprotégérine) (Ross 2008) (Figure 7).

Les ostéoclastes sont issus de précurseurs monocytaires dont la différenciation est contrôlée par le M-CSF, le RANKL et l'OPG, d'origine stromale et ostéoblastique. Plusieurs cytokines (TNF α , ILs, interféron- γ : INF γ) jouent également un rôle dans ce processus. L'ancrage des ostéocytes aux protéines de la matrice osseuse par le système intégrines/c-Src forme une zone de scellement et fonctionnalise ces cellules. La sécrétion d'enzymes et de protons dans la lacune permet la dégradation de la matrice et les produits sont évacués au pôle apical par transcytose. La fin de la résorption est déclenchée par la calcitonine ainsi que d'autres facteurs. Les ostéoblastes sont issus de précurseurs mésenchymateux dont la différenciation est contrôlée par la BMP-2, la PTH, Wnt ainsi que d'autres facteurs. La phase de synthèse de matrice osseuse est marquée par l'expression de la BSP, l'OC et l'OPN.

<u>Le M-CSF</u>

Ce facteur, de forme soluble ou membranaire, se lie au récepteur c-Fms. Il stimule la prolifération et la survie des précurseurs ostéoclastiques exprimant les facteurs de transcription PU-1 et MiTF. Il induit par ailleurs la synthèse du récepteur RANK (Receptor Activator of NFκB).

Expérimentalement, la fonction du M-CSF peut être également assurée par le VEGF (Vascular Endothelial Growth Factor) (Niida et coll. 1999).

Le RANKL et l'OPG

Le RANKL est un membre de la famille des TNF (Tumor Necrosis Factor). Comme le M-CSF, il existe sous forme soluble ou membranaire. Il permet la fusion des précurseurs en un ostéoclaste plurinucléé. Il va ensuite induire la synthèse de protéines essentielles à la résorption osseuse (*i.e.*, intégrine αvβ3, récepteur de la calcitonine, cathepsine K) et qui caractérisent ainsi l'ostéoclaste mature (Lacey et coll. 1998; Kong et coll. 1999). L'OPG a la particularité d'interagir avec le RANKL. En fait, l'OPG est un homologue soluble du récepteur membranaire RANK et permet donc de moduler l'ostéoclastogenèse en piégeant le RANKL (Simonet et coll. 1997; Bucay et coll. 1998).

1.2.2.1.2 La résorption osseuse

Une fois activé par le RANKL, l'ostéoclaste mature exprime des récepteurs intégrines ($\alpha\nu\beta3$, $\alpha\nu\beta5$, $\alpha2\beta1$) lui permettant de se lier aux tripeptides RGD présents dans l'OPN et la BSP. L'ancrage à la matrice par ces intégrines induit la formation d'un anneau d'actine qui délimite une zone scellée. L'ostéoclaste acidifie l'espace ainsi défini grâce à des pompes à protons ATPdépendantes. Cela entraîne la solubilisation des cristaux d'hydroxyapatite, donc la déminéralisation de l'os (Ross 2008). L'ostéoclaste sécrète par ailleurs de nombreuses enzymes protéolytiques. La cathepsine K, la phosphatase acide tartrate-résistante (TRACP; fonctionnement optimal à pH acide) et les métalloprotéases (MMPs; activité optimale à pH neutre) vont dégrader la fraction organique de la matrice (Ross 2008). Les déchets générés sont ensuite évacués par transcytose dans la zone basolatérale. Cette zone osseuse ainsi dégradée est appelée « lacune de Howship ».

La fin d'une phase de résorption pourrait être déclenchée par la calcitonine. En effet, l'expression du récepteur de la calcitonine est un marqueur tardif de la différenciation ostéoclastique et l'activation de celui-ci induit le détachement de l'ostéoclaste de sa lacune de résorption (Bruzzaniti et Baron 2006) (Figure 7). Chaque phase de résorption est alternée avec une phase de migration le long de la surface osseuse (Figure 8). Après un nombre probablement déterminé de cycles, l'ostéoclaste entre en apoptose. Cette mort cellulaire serait positivement régulée par les estrogènes *via* l'activation du TGF- β . Ceci expliquerait l'augmentation de la population ostéoclastique et donc de la résorption osseuse chez la femme ménopausée (Ross 2008).

Figure 8. Progression et résorption de la dentine par les ostéoclastes. La trainée de résorption laissée par les ostéoclastes montre bien l'alternance des phases de résorption et de migration. Photo de gauche : microphotographie d'un marquage de la TRACP5b. Photo de droite : microscopie électronique.

1.2.2.2 Les ostéoblastes

A leur stade mature, ces cellules de taille moyenne (20 à 30 μ m) et de forme cuboïde sont responsables de la synthèse de la matrice organique. Comme les ostéoclastes, elles montrent une polarisation mais ici le pôle apical est celui en contact avec l'os et les échanges avec le stroma se font par le pôle basal (Ilvesaro et coll. 1999). Les ostéoblastes possèdent eux aussi un nombre très important d'organelles, caractéristiques d'une forte activité métabolique et sécrétoire. Ces cellules sont disposées en couche unicellulaire à la surface des matrices organiques non minéralisées (ostéoïde) qu'elles synthétisent. Elles communiquent entre elles par des jonctions de type « gap ».

1.2.2.2.1 L'ostéoblastogenèse

Le lignage ostéoblastique dérive des cellules souches mésenchymateuses présentes dans le stroma médullaire. Ces cellules peuvent également générer des chondrocytes, des myocytes, des fibroblastes ou des adipocytes. Quel que soit le devenir de ces cellules pluripotentes, la différenciation est précédée d'une phase de prolifération puis de condensation du mésenchyme. L'aiguillage des cellules souches vers le lignage osseux se fait grâce à des ligands extracellulaires, principalement Bone Morphogenetic Protein-2 (BMP-2) et Wnt, qui vont activer les facteurs de transcription *ad hoc* (Figure 7). Enfin, ces facteurs de transcription vont simultanément entraîner l'acquisition de fonctions ostéoblastiques et la perte de leur pluripotence.

La voie de signalisation des BMPs : activation des facteurs de transcription Runx2 et Osterix

Les BMPs appartiennent à la superfamille du TGF- β . Les différentes BMPs agissent à plusieurs niveaux de la différenciation ostéoblastique (Yamaguchi et coll. 2000, cité pour revue). La fixation des BMPs sur le récepteur BMP-R2 induit sa phosphorylation. BMP-R2 phosphoryle alors le récepteur BMP-R1 et l'ensemble des deux récepteurs phosphorylés permet enfin la phosphorylation des protéines Smad1 et Smad5. Il en résulte l'expression de Runx2/Cbfa1/Osf2 et d'Osterix (Krause et coll. 2008).

Runx2 est le facteur de transcription le plus précoce et le plus spécifique de l'ostéoblastogenèse. Il induit simultanément la différenciation des cellules mésenchymateuses en préostéoblastes et la perte de leur potentialité adipocytaire et chondrocytaire (Ducy et coll. 1997; Komori et coll. 1997; Otto et coll. 1997).

Runx2 est nécessaire mais insuffisant pour induire l'ostéoblastogenèse (Komori 2006). En effet, son action doit être soutenue par l'expression du facteur de transcription Osterix afin que les préostéoblastes se différencient en ostéoblastes et ne puissent plus se transdifférencier en chondrocytes (Nakashima et coll. 2002). L'utilisation de souris Runx2^{-/-} et Osterix^{-/-} a permis d'étudier les interactions entre ces deux facteurs de transcription et de démontrer la précocité de l'expression de Runx2 par rapport à celle d'Osterix (Nakashima et coll. 2002).

La voie de signalisation de Wnt : activation du facteur de transcription 6-caténine

Plus récemment, l'implication de la voie de signalisation de Wnt dans l'ostéogenèse été mise en évidence. La fixation de Wnt sur son récepteur Fzd (Frizzled) et son corécepteur LRP5/6 (Low density Lipoprotein Receptor related Protein 5/6) inhibe la kinase GSK-3 β (Glycogen Synthase Kinase-3 β). Ainsi, la β -caténine non phosphorylée n'est plus ubiquitinylée et s'accumule dans le cytosol. Elle est ensuite transloquée dans le noyau où, en association avec le TCF/LEF (T-Cell Factor ; Lymphoid Enhancer Factor), elle va agir comme facteur de transcription (Krause et coll. 2008). L'invalidation du gène de la β -caténine a démontré la nécessité de ce facteur de

transcription pour la différenciation ostéoblastique (Hill et coll. 2005; Hu et coll. 2005). De plus, ce modèle a permis de mieux cerner la chronologie d'expression des facteurs de transcription de l'ostéoblastogenèse : la β -caténine se place en aval de Runx2 et en amont d'Osterix. Elle intervient donc de façon précoce dans ce processus.

L'ensemble de ces travaux donne une vision plus claire de l'initiation de l'ostéoblastogenèse : Runx2 contrôle le passage des progéniteurs vers le stade préostéoblaste en empêchant leur différenciation chondrocytaire et adipocytaire, puis Osterix et la β -caténine contrôlent le passage au stade ostéoblaste en éliminant tout potentiel de transdifférenciation des préostéoblastes en chondrocytes.

1.2.2.2.2 La synthèse de matrice osseuse

L'ostéogenèse se fait en deux temps. D'abord, les ostéoblastes sécrètent la matrice organique, appelée ostéoïde. Dans un second temps, ils contrôlent la minéralisation de cette matrice par l'hydroxyapatite en régulant les concentrations locales de calcium et de phosphate. Cette séquence fonctionnelle est reflétée au niveau des marqueurs exprimés par l'ostéoblaste au cours de sa maturation : d'abord les protéines nécessaires à la synthèse de la matrice osseuse (phosphatase alcaline osseuse ou « PAL osseuse », Collagène I), puis celles nécessaires à sa minéralisation (OC, OPN, BSP) (Stein et coll. 2004) (Figure 7). Au terme de sa maturation, l'ostéoblaste peut subir trois types de transformation : 1) il rentre en apoptose, 2) il se différencie en cellule bordante ou 3) il se laisse emprisonner dans la matrice qu'il synthétise et se différencie en ostéocyte. La distribution entre ces différentes voies est variable selon l'espèce et l'âge. Franz-Odendaal et coll. rapportent que 10 à 30% des ostéoblastes deviennent des ostéocytes, une majeure partie rentre en apoptose et le reste devient des cellules bordantes (Franz-Odendaal et coll. 2006).

1.2.2.3 Les cellules bordantes

A l'issue de leur maturation, les ostéoblastes peuvent se transformer en cellules bordantes. Ces cellules quiescentes, de forme aplatie et allongée, sont alignées à la surface de l'os nouvellement formé. Elles sont en étroite communication entre elles et avec les ostéocytes *via* des jonctions de type « gap ». Ce nouveau phénotype est réversible et elles peuvent se retransformer en ostéoblastes. Les cellules bordantes jouent un rôle dans la régulation de la formation et de la résorption osseuse : leur présence à la surface de la matrice empêche l'accès des ostéoclastes à l'os. La levée de ce « bouclier » peut être provoquée par des signaux d'origine ostéocytaire grâce aux jonctions *gap* évoquées (Martin 2000). Par ailleurs, il a été supposé que les cellules bordantes (et/ou les préostéoblastes) migrent dans la lacune de Howship après le passage des ostéoclastes. Là ils nettoieraient les restes organiques issues de la résorption puis formeraient de nouveaux ostéoblastes aptes à reconstruire l'os résorbé (Everts et coll. 2002; Mulari et coll. 2004; Parikka et coll. 2005).

1.2.2.4 Les ostéocytes

Outre la différenciation en cellules bordantes ou l'apoptose, les ostéoblastes peuvent suivre une troisième voie, non réversible, la différenciation en ostéocyte. Cela se produit pour une partie des ostéoblastes lorsqu'ils se laissent emmurer dans la matrice qu'ils synthétisent (Figure 9). Bien que chaque ostéocyte semble isolé dans sa lacune, il existe en fait un réseau très développé de canalicules qui leur permettent de communiquer entre eux et avec les cellules en surface de l'os (ostéoblastes et cellules bordantes) par de longs prolongements cellulaires et des jonctions *gap*. L'orientation de ce réseau est principalement radiale. La morphologie des ostéocytes permet de caractériser leur âge et leur activité fonctionnelle. Les plus jeunes ont une composition similaire à celle des ostéoblastes, avec moins d'organelles cependant. Les plus anciens sont plus petits et de forme allongée. Les ostéocytes peuvent rester jusqu'à plusieurs années dans leur lacune, cette longévité leur permettant de représenter jusqu'à 95% des cellules de l'os. Ils peuvent également disparaître par apoptose (Noble 2008) ou au moment de la résorption de l'os environnant.

Figure 9. Morphologie des osteocytes.

(Panneau A) Vue en coupe d'un ostéon. Autour du canal de Havers, les lamelles concentriques renferment les ostéocytes qui restent en communication entre eux et avec l'endoste grâce à un réseau très développé de canalicules. (Panneau B) Microphotographie d'un ostéocyte logé dans son ostéoplaste : (N) noyau, (Cy) cytoplasme, (M) matrice osseuse, (L) lacune périostéocytaire, (C) canalicule, (Ex) extensions cytoplasmiques. Correspond à l'encart rouge en A. Sources : (A) site internet de la *Bone Research Society* (http://www.brsoc.org.uk) et (B) http://visualhistology.com.

Moins actifs que les cellules présentes en surface de l'os, il a toutefois été suggéré que les ostéocytes peuvent remanier leur matrice environnante par une simili formation et résorption osseuse. Ce phénomène, qui reste controversé (Teti et Zallone 2009), participerait au maintien de la qualité de l'os environnant. En revanche, il est convenu que les ostéocytes peuvent « détecter » les microfissures environnantes et initier un remodelage ciblé de la zone osseuse concernée. Plus exactement, ces microfissures engendrent l'apoptose des ostéocytes, ce qui a pour effet une modification des flux de signalisation que les ostéocytes entretiennent avec les cellules situées à la surface de l'os environnant. Ces facteurs, tels que la sclérostine, seront décrits plus loin (Cf. § 1.3.2).

1.3 Remodelage osseux

L'ossification se déroule en trois étapes majeures :

• L'ossification primaire est une métaplasie d'un tissu conjonctif (ossification intramembranaire) ou d'une ébauche cartilagineuse (ossification endochondrale) en tissu osseux réticulé. L'ossification intramembranaire donne naissance aux os plats et permet la croissance radiale des os longs. L'ossification endochondrale donne naissance aux os longs et permet leur croissance axiale.

• L'ossification secondaire est un remaniement du tissu osseux primaire qui lui confère sa structure et sa forme adulte (os lamellaire « haversien », de nature compacte ou trabéculaire).

• L'ossification tertiaire correspondant chez l'adulte au remodelage osseux. Il permet le maintien de l'intégrité de l'os et de l'homéostasie phosphocalcique.

Au contraire de l'ossification primaire, les ossifications secondaire et tertiaire débutent toujours par une destruction du tissu osseux par les ostéoclastes. L'ensemble de ces mécanismes complexes est sous la dépendance de très nombreux facteurs de régulation, qui vont être altérés au cours des pathologies osseuses malignes ou métaboliques.

1.3.1 Le remodelage osseux : maintien de l'intégrité du tissu osseux

Une fois la croissance du squelette terminée, celui-ci continue toutefois à être remodelé. Ainsi, 10% du squelette adulte est renouvelé chaque année. Il permet de garantir des propriétés biomécaniques optimales, de maintenir l'homéostasie phosphocalcique, et de réparer les lésions subies par l'os. Le remodelage est réalisé par des « unité multicellulaire de base » (BMU). Une BMU est une unité fonctionnelle d'ostéoblastes et d'ostéoclastes qui agissent de façon concertée et finement régulée dans l'espace et le temps. A chaque instant chez l'adulte, il existe approximativement un million de BMUs en activité sur 5 % des surfaces intracorticales et 20 % des surfaces trabéculaires. Ces BMUs travaillent par cycles dont la durée peut aller jusqu'à 4 mois, avec une phase de résorption rapide (2 à 3 semaines) suivie d'une phase de formation plus longue (2 à 3 mois) (Figure 10) (Sommerfeldt et Rubin 2001). Plus précisément, le cycle de remodelage osseux s'échelonne en 5 étapes : initiation, résorption, inversion, formation, quiescence.

Figure 10. Représentation du processus de remodelage osseux et de son contrôle par les ostéocytes.

La dégradation de la matrice par les ostéoclastes (OCLs) est suivie par la formation d'un nouveau tissu minéralisé par les ostéoblastes (OBLs). Les ostéocytes exercent un contrôle général de ce processus. Le remodelage serait initié par des changements de contraintes mécaniques entraînant l'apoptose de certains ostéocytes. Les cellules bordantes n'étant plus maintenues, elles laisseraient les OCLs accéder à la matrice. Plus tard, d'autres ostéocytes libèrent le facteur Osf1/HB-GAM/PTN qui permet le recrutement des préostéoblastes (pOB) dans la lacune et leur différenciation. Enfin, les OBLs nouvellement emmurés dans la matrice sécréteraient de la sclérostine (Sost), responsable de l'arrêt du processus. pOC : préostéoclaste.

Initiation du remodelage

Elle débute en un point d'une surface osseuse quiescente recouverte par les cellules bordantes. Celles-ci perçoivent des signaux systémiques et locaux, probablement d'origine ostéocytaire, et permettent alors le recrutement des précurseurs ostéoclastiques par des chimiokines (MCP-1, CXCL-12) ainsi que leur accès à la matrice osseuse en se détachant de celle-ci.

Ostéoclastogenèse et résorption osseuse

La différenciation, l'attachement à la matrice osseuse et l'activité des ostéoclastes sont modulées par de nombreux facteurs locaux et systémiques dont les plus importants ont été décrits plus haut. Une fois que l'ostéoclaste a dégradé la matrice, il rentre en apoptose et la lacune est préparée pour recevoir les ostéoblastes : c'est la phase d'inversion.

Inversion

C'est durant cette phase de transition qu'intervient le couplage entre résorption et formation. La lacune est d'abord nettoyée de ses déchets organiques par des macrophages, formant une ligne cémentante qui délimitera l'os nouveau de l'os ancien sous-jacent. Cette matrice contient des protéines telles que l'OPN et la BSP que les préostéoblastes utilisent pour s'arrimer au fond de la lacune. La résorption osseuse effectuée par les ostéoclastes libère aussi plusieurs facteurs de croissance piégés jusqu'alors dans la matrice. Il s'agit des Insulin-Like Growth Factors (IGFs), des Fibroblast Growth Factors (FGFs), du TGF- β , des BMPs et du Platelet-Derived Growth Factor (PDGF), qui vont activer la différenciation et la fonctionnalisation des ostéoblastes.

Ostéoblastogenèse et formation osseuse

Après que les progéniteurs aient proliféré et se soient différenciés, les ostéoblastes fonctionnels vont synthétiser les constituants organiques de la matrice osseuse, il s'agit de l'ostéoïde, et inhiber la différenciation ostéoclastique en produisant de l'OPG. La vitesse d'apposition de la matrice par les ostéoblastes est de 2 à 3 μ m/j. Dans un second temps, ils vont contrôler la minéralisation de cette matrice.

<u>Quiescence</u>

Certains ostéoblastes s'emmurent dans leur propre matrice et deviennent des ostéocytes (Noble 2008). Ces jeunes ostéocytes produisent la sclérostine qui met fin à la formation de l'os en induisant l'apoptose de certains ostéoblastes (Sutherland et coll. 2004; Poole et coll. 2005). Une moindre part de ces ostéoblastes se maintient également à la surface de l'os sous forme de cellules bordantes et demeurent quiescentes jusqu'à une prochaine activation focale des ostéoclastes.

1.3.2 L'ostéocyte : chef d'orchestre du remodelage osseux

Les ostéocytes sont des cellules mécanosensibles : elles perçoivent les variations de contraintes mécaniques subies par l'os et y répondent en transmettant des signaux appropriés aux cellules situées en surface (ostéoblastes et ostéoclastes). L'os est alors remodelé pour s'adapter à ces nouvelles conditions. Par exemple, l'application de pressions sur des os de rat provoque l'apoptose des ostéocytes et l'activation du remodelage osseux à proximité (Noble et coll. 2003).

Plusieurs équipes ont étudié les mécanismes sous-jacents de cette régulation. Certaines suggèrent que les ostéocytes peuvent stimuler la différenciation ostéoblastique localement en exprimant le facteur Osf1/HB-GAM/PTN (Osteoblast Stimulating Factor 1 ; Heparin Binding-

Growth Associated Molecule ; pleiotrophin) (Imai et coll. 1998). Ce facteur s'accumulerait à la surface de l'os et permettrait le recrutement d'ostéoblastes pour fabriquer une nouvelle matrice osseuse (Figure 10). Des travaux plus récents ont montré que les jeunes ostéocytes emmurés sécrètent la sclérostine lorsque la matrice environnante commence à se minéraliser (Poole et coll. 2005). La sclérostine est désormais bien connue pour son rôle inhibiteur dans le processus de différenciation des ostéoblastes en antagonisant la voie des Wnt (Rios et coll. 2005). Elle serait responsable de l'apoptose des ostéoblastes et de la formation et du maintien des cellules bordantes (Figure 10) (Sutherland et coll. 2004; Poole et coll. 2005). Ainsi, les ostéocytes peuvent maintenir l'intégrité du tissu osseux en réponse aux contraintes mécaniques s'exerçant sur l'os.

2. PHYSIOPATHOLOGIE DES MÉTASTASES OSSEUSES DES TUMEURS SOLIDES

		_
2.1	Aspect clinique des métastases osseuses	30
2.1.1	Contexte épidémiologique	30
2.1.2	Tumorigenèse et métastases	.30
2.1.3	Les métastases osseuses	30
2.2	Mécanismes associés à l'ostéophilie des cancers	31
2.2.1	L'ostéotropisme	31
2.2.1.1	Mécanismes impliqués dans la migration des cellules métastatiques vers l'os	31
2.2.1.1.1	Les chimiokines	31
2.2.1.1.2	Le RANKL	32
2.2.1.2	Attachement des cellules à l'endothélium (extravasation)	33
2.2.1.3	Invasion / Migration	34
2.2.1.3.1	Les intégrines	34
2.2.1.3.2	Les protéases	35
2.2.2	L'ostéomimétisme	36
2.3	Mécanismes de formation des métastases ostéolytiques	36
2.3.1	Stimulateurs de la résorption osseuse	36
2.3.1.1	La protéine apparentée à la parathormone (PTHrP)	.36
2.3.1.2	Les cytokines	.37
2.3.1.3	Les prostaglandines	.38
2.3.2	Inhibiteurs de la formation osseuse	.38
2.3.2.1	Dickkopf-1	.38
2.3.2.2	Noggin	.39
2.3.3	Contribution du tissu osseux dans la progression locale de la métastase	.39
2.3.3.1	Le TGF-B	39
2.3.3.2	L'IGF-1	40
2.3.3.3	Le calcium	40
2.3.3.4	La réaction stromale	.41
2.4	Mécanismes de formation des métastases ostéocondensantes	42
241	Stimulateurs de la formation osseuse	42
2411	l'endothéline FT-1	42
2412	Le fragment PTHrP [1-23]	43
2.4.1.2		43
2.4.1.3	Autres facteurs	13
2.4.2	Inhibiteurs de la résonntion osseuse	12
2.4.2	Contribution du tissu osseux dans l'ostáocondensation	11
2.4.5	Le carde vicieux des métactases esseuses	 11
2.5		-+4

2.1 Aspect clinique des métastases osseuses

2.1.1 Contexte épidémiologique

Aujourd'hui en France, pour l'ensemble de la population, le cancer est la deuxième cause de mortalité (27%) après les maladies cardio-vasculaires (32%). Il est même la première cause de mortalité chez les 35-64 ans ainsi que chez les hommes. L'incidence des différents cancers varie selon le sexe. Le cancer de la prostate et le cancer du sein sont les plus fréquents chez l'homme et la femme, respectivement. Sur l'ensemble de la population, ces deux types de cancers ainsi que ceux du poumon et du côlon-rectum représentaient plus de 75% des nouveaux cas de cancer en 2002 (Source : Institut de Cancérologie Gustave Roussy, www.igr.fr). En 2001, 60% des personnes décédées du cancer appartenait à l'un de ces 4 groupes.

2.1.2 Tumorigenèse et métastases

Les tumeurs se développent dans des limites histologiques précises : on parle de cancer *in situ*, dont le risque de métastase est faible. Toutefois, la croissance tumorale est telle qu'elle ne peut se contenter d'une diffusion à partir d'un stroma non permissif mais nécessite des apports importants et dédiés. Pour y parvenir, la tumeur va devoir mettre en place une circulation sanguine stable et efficace : c'est la néoangiogenèse. Simultanément, la croissance tumorale continue et la membrane basale se rompt. La tumeur devient invasive : les cellules cancéreuses ont alors de grandes facilités à atteindre la circulation lymphatique (pour les tumeurs épithéliales, ou « carcinomes ») et veineuse (pour les tumeurs conjonctives, ou « sarcomes »). L'accès à ces voies systémiques permet aux cellules cancéreuses de métastaser (du grec *metastasis* : déplacement) du site primaire vers un ou plusieurs sites secondaires et d'y créer un nouveau foyer tumoral. Ce processus est composé d'une longue série d'étapes séquentielles et interdépendantes que l'on nomme cascade métastatique.

D'un point de vue clinique, le développement de ces métastases représente l'aspect le plus grave de la maladie cancéreuse. En effet, malgré des améliorations considérables au niveau du diagnostic, des techniques chirurgicales et des traitements adjuvants locaux et systémiques, la majorité des décès consécutifs à un cancer est due aux métastases, qui sont le plus souvent résistantes aux thérapies conventionnelles.

2.1.3 Les métastases osseuses

Les métastases se développent préférentiellement dans certains organes : les poumons, le foie et le squelette. Ces tissus ont une vascularisation très importante ou bien permissive, ainsi que des analogies biochimiques (Cf. § 2.2.1.1.1). Le choix de ce site distant dépend du type du cancer primaire. Les études épidémiologiques montrent qu'environ 70% des cancers mammaires et prostatiques, et 35 à 45% des cancers du rein, du poumon et de la thyroïde engendrent des métastases osseuses (Coleman 2006). Ces cancers sont dits ostéophiles ou ostéotropiques. Les patients atteints du cancer du sein ou de la prostate et qui développent des métastases osseuses ont une survie médiane d'environ 24 mois.

Les métastases osseuses ont pour particularité de modifier l'équilibre existant entre formation et résorption osseuse. Elles sont le plus fréquemment de nature ostéolytique (excès de résorption) et parfois ostéocondensantes (excès de formation) ou mixtes. La morbidité de ce type de métastases est très forte : fractures pathologiques, compressions médullaires, hypercalcémie et douleurs osseuses. Par conséquent elles réduisent fortement la qualité de vie des patients et défavorisent leur pronostic vital. Pour ces aspects épidémiologiques et cliniques, les métastases osseuses sont un problème de Santé Publique. Il est donc nécessaire de mieux comprendre les mécanismes sous-jacents à la formation et la progression des métastases osseuses afin de mieux les prévenir, mieux les détecter, mieux les soigner.

2.2 Mécanismes associés à l'ostéophilie des cancers

La dissémination métastatique repose sur des mécanismes complexes qui diffèrent selon le cancer primaire et le site distant, qui doit constituer un terrain compatible avec la nature des cellules tumorales circulantes pour que celles-ci puissent s'implanter. Ce concept du « *seed and soil* », énoncé à la fin du XIX^e par le chirurgien Stephen Paget, est conforté aujourd'hui par de nombreuses études (Fidler 2003). La thématique de ce projet de thèse étant le tissu osseux, seuls les mécanismes associés à la formation des métastases osseuses seront traités.

2.2.1 L'ostéotropisme

Après avoir quitté la tumeur primaire, les cellules cancéreuses disséminent dans l'organisme grâce aux circulations sanguines et lymphatiques. Dans le cas des métastases osseuses, il va y avoir un adressage (ou « *homing* ») spécifique de ces cellules vers le tissu osseux, grâce à un phénomène de chimiotactisme. Arrivé au niveau de l'endothélium médullaire, les cellules passent de la circulation sanguine vers le stroma médullaire : c'est l'extravasation, phénomène complexe composé de plusieurs étapes séquentielles. Enfin, les cellules vont migrer dans le tissu cible et s'y développer.

2.2.1.1 Mécanismes impliqués dans la migration des cellules métastatiques vers l'os

2.2.1.1.1 Les chimiokines

Certaines cytokines ont des propriétés chimiotactiques. On les nomme « chimiokines ». Ces petites protéines solubles (8 à 14 kDa) possèdent au moins 2 cystéines conservés qui forment des ponts disulfures avec d'autres cystéines, déterminant la structure tertiaire caractéristique des chimiokines. Elles sont au nombre de 47 et sont classées en 4 sous-groupes selon le nombre d'acides aminés séparant les deux premières cystéines (en N-terminal). Le groupe « C » n'a qu'une cystéine en N-terminal et une autre plus loin dans la séquence. Dans le groupe « CC », les deux premières cystéines sont adjacentes. Dans le groupe « CXC », un seul acide aminé est intercalé entre les deux premières cystéines. Enfin, dans le groupe « CX3C », les deux premières cystéines sont séparées par trois acides aminés. Les chimiokines sont principalement du groupe CC ou CXC (Laing et Secombes 2004). Ces chimiokines jouent le rôle de ligand vis-à-vis de récepteurs membranaires spécifiques couplés à des protéines G (RCPG), qui sont au nombre de 18 (Horuk 2001). Ainsi, la nomenclature les désigne respectivement par les lettres L et R.

L'étude de la chimiokine CXCL12, ou « SDF-1 α » (Stromal-Derived Factor-1 α), a montré d'importantes concentrations au niveau des poumons, du foie et de la moelle osseuse (Muller et coll. 2001). CXCL12 stimule la migration des cellules qui expriment le récepteur *ad hoc* CXCR4 (Clines et Guise 2005). Par voie de conséquence, la neutralisation de CXCR4 permet de limiter la formation de métastases vers les organes qui expriment abondamment CXCL12. Ainsi, la diminution de métastases pulmonaires de carcinome mammaire peut être observée *in vivo* par

l'utilisation d'anticorps (Muller et coll. 2001), de siRNA (Liang et coll. 2004) ou de peptides antagonistes (Liang et coll. 2005). Egalement, la formation de métastases osseuses du cancer prostatique chez la souris est bloquée par l'utilisation d'anticorps anti-CXCR4 (Sun et coll. 2005). Ces données ont été confirmées au niveau clinique par l'analyse immunohistochimique de l'expression de CXCR4 dans des biopsies tumorales. Par exemple, la présence de CXCR4 dans les tumeurs prostatiques de patients présentant un taux de PSA (Prostate Specific Antigen) supérieur à 20 ng/ml est associée à la présence de métastases osseuses (Mochizuki et coll. 2004). Egalement, Cabioglu et coll. ont montré que CXCR4 était préférentiellement exprimé dans les tumeurs mammaires primaires de patients développant des métastases osseuses comparé à ceux développant des métastases viscérales (Cabioglu et coll. 2009).

Toujours dans la pathogénie des métastases osseuses, on peut suspecter les chimiokines CCL22 et CX3CL1 de jouer un rôle dans le tropisme osseux. En effet, CCL22 est produite par les ostéoclastes et stimule la migration *in vitro* des cellules de carcinome pulmonaire SBC-5 (Nakamura et coll. 2006). Ces cellules expriment le récepteur *ad hoc* CCR4 et forment des métastases osseuses chez l'animal. Egalement, CX3CL1 (fractalkine) est produite par les ostéoblastes et stimule la migration *in vitro* des cellules de carcinome prostatique LNCaP, PC3-ML et MDA-PCa-2b (Shulby et coll. 2004). Ces cellules expriment le récepteur *ad hoc* CXCR1 et forment également des métastases osseuses chez l'animal.

2.2.1.1.2 Le RANKL

A l'instar des chimiokines, RANKL pourrait aussi être impliqué dans le tropisme osseux. Cette cytokine membranaire exprimée par les ostéoblastes peut être produite sous forme soluble après clivage par la métalloprotéase MMP-7 d'origine ostéoclastique (Lynch et coll. 2005). Le récepteur RANK n'est pas exprimé uniquement par les ostéoclastes. Plusieurs lignées de cellules tumorales d'origine mammaire, prostatique et rénale montrent également une expression du récepteur RANK (Dougall et Chaisson 2006; Jones et coll. 2006).

Des études *in vitro* ont montré que le traitement des lignées MDA-MB-231 et PC-3 avec du RANKL engendre la même activité biologique que son homologue membranaire, c'est-à-dire la translocation nucléaire de NFKB (Tometsko et coll. 2004). De plus, Jones et coll. ont montré *in vitro* que RANKL stimule la migration et l'invasion des cellules MDA-MB-231 et d'autres lignées de cancer mammaire et prostatique, et que ce processus est inhibé par l'OPG (Jones et coll. 2006).

In vivo, le rôle de RANKL dans le tropisme osseux est plus difficile à évaluer de par sa duplicité fonctionnelle : chimiotactisme et différenciation ostéoclastique. Ce problème peut être contourné par l'utilisation de la lignée murine de mélanome B16F10 qui métastase vers l'os mais n'induit pas d'ostéolyse. Ainsi, ce modèle peut servir à étudier le rôle de RANK/RANKL dans la dissémination des cellules cancéreuses au niveau de l'os, indépendamment de leur rôle dans la stimulation de la différenciation ostéoclastique. De ce fait, Jones et coll. ont pu montrer que le blocage de RANKL par l'OPG inhibe la formation des métastases osseuses des B16F10 sans affecter la croissance tumorale dans d'autres organes (ovaires, surrénales) (Jones et coll. 2006). Cependant, ces résultats sont sujets à controverses, une étude antérieure ayant montré que les cellules B16F10 peuvent induire une ostéolyse chez les animaux (Bakewell et coll. 2003). Ainsi, l'action de l'OPG dans le modèle expérimental de Jones et coll. pourrait porter sur des facteurs chimiotactiques différents de RANKL et libérés par la matrice osseuse lors de la résorption.

Enfin sur le plan clinique, le rôle de RANK/RANKL dans le chimiotactisme des cellules cancéreuses vers le site métastatique reste quand même envisageable. En effet, il a été rapporté que des biopsies de tumeur prostatique (Chen et coll. 2006) montrent une expression du récepteur RANK. Egalement, RANKL est présent dans la circulation sanguine de patients atteints de cancer métastatique (Terpos et coll. 2004).

Outre un effet chimiotactique, RANKL pourrait intervenir plus en amont en augmentant le potentiel métastatique des cellules de la tumeur primaire. En effet, les tumeurs primaires provoquent souvent des réactions inflammatoires et sont ainsi infiltrées par des lymphocytes T et des macrophages qui peuvent produire localement du RANKL. Dans un modèle murin d'adénocarcinome prostatique, Luo et coll. ont montré que RANKL, via NFKB, peut induire l'activation d'IKK α . Il s'agit d'un répresseur de la transcription de la maspine, un inhibiteur de sérines protéases de la famille des serpines. Dans ce modèle, la répression de la maspine par siRNA favorise la formation des métastases (Luo et coll. 2007). Ils ont également observé qu'au stade métastatique les carcinomes prostatiques murins et humains expriment de grandes quantités d'IKK α et très peu de maspine. Ils suggèrent ainsi que le RANKL issu du processus inflammatoire pourrait augmenter le potentiel métastatique des cellules tumorales, en amont de la fonction chimiotactique du RANKL circulant.

2.2.1.2 Attachement des cellules à l'endothélium (extravasation)

L'extravasation est le mécanisme par lequel les cellules tumorales métastatiques sortent de la circulation sanguine, au niveau de la moelle dans le cas des métastases osseuses. Ce processus se déroule en trois étapes séquentielles : le roulement (*rolling*), l'adhésion (*sticking*) et la transmigration ou « diapédèse ». A l'approche du site d'extravasation, les cellules sont freinées (*rolling*) par des molécules de la famille des sélectines présentes en surface de l'endothélium, puis entrent en contact avec des chimiokines qui vont induire l'activation de leurs intégrines. Celles-ci interagissent avec des molécules de la super famille des immunoglobulines (CAMs; Cell Adhesion Molecules) qui permettent une forte adhésion (*sticking*) des cellules tumorales à l'endothélium. Le processus se conclu par le passage au travers de l'endothélium (transmigration ; diapédèse) vers le stroma médullaire.

Une récente étude *in vivo* sur les métastases osseuses a montré que les sites d'extravasation sont en fait des domaines très localisés, appelés micro-domaines vasculaires, qui présentent des caractéristiques nécessaires à l'attachement des cellules tumorales (Sipkins et coll. 2005). Un procédé d'imagerie confocale dynamique sur crâne de souris a donc permis de montrer que des cellules de lignage leucémique exprimant CXCR4 opèrent leur extravasation au niveau de micro-domaines qui expriment à la fois la E-sélectine (Endothelial-selectin) et SDF-1 (CXCL12 ; récepteur de CXCR4) (Figure 11). La spécificité de ces interactions est démontrée par l'utilisation de souris KO pour la E-sélectine ou par l'inhibition de l'axe CXCR4/SDF-1, les deux entraînant une nette diminution de l'extravasation. Enfin, ces auteurs ont montré que le mécanisme mis en évidence est également celui utilisé par les lymphocytes T et les cellules souches hématopoïétiques. Par ailleurs, il a été observé que les cellules de métastases osseuses associées au cancer de la prostate expriment un ligand de la E-sélectine, le PSGL-1 (P-Selectin Glycoprotéine Ligand-1) (Dimitroff et coll. 2005).

Outre les sélectines, on trouve aussi des molécules d'adhésion telles qu'ICAM-1 (Intercellular Adhesion Molecule-1), VCAM-1 (Vascular Cell Adhesion Molecule-1) et PECAM-1 (Platelet Endothelial Cell Adhesion Molecule-1), qui sont exprimées dans le système vasculaire

de la moelle osseuse, notamment au niveau des micro-domaines décrits par Sipkins et coll. Ces molécules permettent l'adhésion franche des cellules tumorales à l'endothélium vasculaire, préalable à la transmigration finale. De plus, il a été observé dans une autre étude que les cellules endothéliales expriment CX3CL1 qui peut favoriser l'adhésion *in vitro* des cellules tumorales exprimant CX3CR1 (Shulby et coll. 2004). Ces résultats suggèrent que l'extravasation des cellules cancéreuses repose sur de multiples mécanismes.

Figure 11. Attachement des cellules tumorales aux micro-domaines vasculaires SDF-1+ et E-sélectine+. (A) La E-sélectine (vert/jaune) et (B) SDF-1 (vert/jaune) sont exprimées un niveau de site spécifiques, ou microdomaines, du réseau vasculaire (rouge) de la moelle osseuse. (C, D) Les cellules tumorales (rouge/jaune) s'arrêtent au niveau de ces micro-domaines qui expriment à la fois (C) la E-sélectine (vert) et (D) SDF-1 (vert). Echelle : 100 μm. Source : Sipkins et coll., 2005 ; analyse par immunofluorescence dans un modèle *in vivo*.

2.2.1.3 Invasion / Migration

A l'issue de l'extravasation, les cellules tumorales se nichent dans la moelle. Ce processus repose sur l'ancrage aux cellules stromales *via* les intégrines et l'activation de protéases. Il s'agit là de la phase préalable et nécessaire à leur croissance dans le tissu osseux.

2.2.1.3.1 Les intégrines

Les intégrines sont des récepteurs membranaires hétérodimériques. Chez les mammifères, 18 sous-unités α et 8 sous-unités β peuvent ainsi s'associer en 24 combinaisons différentes (Guo et Giancotti 2004). Les intégrines impliquées varient selon le type de cancer. Quelques études sur certains hétérodimères sont rapportées ci-dessous.

<u>L'hétérodimère α4β1 et VCAM-1</u>

Les cellules tumorales de myélome qui expriment $\alpha 4\beta 1$ interagissent *in vitro* avec les cellules stromales de la moelle osseuse *via* VCAM-1. Il en résulte une stimulation de l'activité ostéoclastique (Michigami et coll. 2000). Dans un modèle murin de myélome, la neutralisation de la sous-unité $\alpha 4$ par des anticorps spécifiques peut réduire la colonisation de l'os par les cellules tumorales et l'ostéolyse associée (Mori et coll. 2004). Dans un modèle murin de cancer ovarien, la transfection des cellules CHO (cancer ovarien de hamster) par l'intégrine $\alpha 4\beta 1$ entraîne la métastase vers l'os, ce processus faisant intervenir VCAM-1 (Matsuura et coll. 1996).

<u>L'hétérodimère α2β1 et le collagène de type l</u>

L'intégrine $\alpha 2\beta 1$ interviendrait dans la formation des métastases osseuses associées au cancer de la prostate. En effet dans un modèle d'inoculation *in situ*, la surexpression de $\alpha 2\beta 1$ dans un sous-clone la lignée LNCaP peut favoriser le développement des métastases osseuses grâce à son interaction avec le collagène de type I (Hall et coll. 2006). Par ailleurs, des expériences *in vitro* ont montré que l'interaction entre $\alpha 2\beta 1$ et le collagène de type I est facilitée par le TGF- β (Cooper et coll. 2002).

L'hétérodimère αvβ3 et les protéines non collagéniques

Grâce aux intégrines, les cellules tumorales peuvent également adhérer à certaines protéines non collagéniques de la matrice osseuse. Ceci va leur assurer un ancrage à l'environnement matriciel mais également stimuler leur activité invasive *via* l'activation des MMPs.

En effet, une étude a montré dans des lignées cellulaires de cancer mammaire, prostatique, thyroïdien et pulmonaire qu'une complexation entre l'intégrine $\alpha\nu\beta3$, la BSP et la MMP-2 active cette dernière qui facile alors l'invasion tumorale (Karadag et coll. 2004). Il a également été observé que les intégrines $\alpha\nu\beta3$ et $\alpha\nu\beta5$ se fixent à SPARC/ostéonectine (De et coll. 2003). Cette interaction augmente l'activité de MMP-2 exprimée par les cellules de cancer du sein (MDA-MB-231) et de la prostate (DU-145, PC-3) (Jacob et coll. 1999). Par ailleurs la chimiokine CXCL12, en plus de promouvoir l'ostéotropisme des cellules exprimant le récepteur *ad hoc*, stimule l'expression de l'intégrine $\alpha\nu\beta3$ et accroît ainsi leur pouvoir invasif (Sun et coll. 2007).

Notre laboratoire a isolé une sous-population de la lignée MDA-MB-231 (cancer mammaire) à partir des métastases osseuses générées par celle-ci. Cette nouvelle lignée, appelée MDA-MB-231/B02 ou plus simplement « B02 », montre une surexpression spontanée de l'intégrine $\alpha\nu\beta3$, spécifiquement, et une augmentation substantielle de leur adhésion et de l'invasion à l'os (Pécheur et coll. 2002). Nous avons également montré que l'expression d' $\alpha\nu\beta3$ dans les cellules CHO favorise l'apparition de métastases osseuses chez les souris *nude* (Pécheur et coll. 2002). Plus récemment, nous avons observé qu'un inhibiteur non peptidique de l'intégrine $\alpha\nu\beta3$ bloque l'invasion tumorale *in vitro* et la formation des métastases osseuses *in vivo* en entravant le *homing* des cellules tumorales vers la moelle osseuse (Zhao et coll. 2007). Enfin, plusieurs études ont montré que l'intégrine $\alpha\nu\beta3$ est impliquée dans l'activité biologique de la protéine osseuse non collagénique d'intérêt dans ce projet, la périostine (Cf. § 4.3.1).

2.2.1.3.2 Les protéases

Au site osseux, les cellules tumorales peuvent sécréter différentes protéases. Les MMPs (dont MMP-2) et les sérines protéases telles que l'hepsine et l'uPA (Urokinase type Plasminogen Activator) leur permettent de dégrader localement la matrice extracellulaire et d'envahir la moelle osseuse (Clines et Guise 2005).

Par exemple, une étude transcriptomique a permis de mettre en évidence que des sousclones ostéophile de la lignée MDA-MB-231 surexpriment la MMP-1 (Kang et coll. 2003). Réciproquement, la surexpression de MMP-1 dans ces cellules MDA-MB-231 augmente la formation des métastases osseuses *in vivo* (Kang et coll. 2003). La MMP-1 ainsi que l'ADAMTS-1 (« A Disintegrin And Metalloproteinase with Thrombospondin motifs) produites par ces cellules métastatiques vont permettent la libération de facteurs EGF-*like* qui vont à la fois augmenter l'expression de RANKL et inhiber la production d'OPG dans les ostéoblastes, permettant ainsi une stimulation de l'ostéolyse (Lu et coll. 2009).

Une autre étude a montré que le blocage de la maspine, un inhibiteur des sérines protéases, augmente le pouvoir invasif des cellules tumorales *in vivo* (Luo et coll. 2007). De façon plus directe, la surexpression des sérines protéases hepsine ou uPA favorise l'invasion tumorale dans des modèles animaux de cancer prostatique (Guise et Mundy 1998; Klezovitch et coll. 2004). L'uPA, par fixation sur son récepteur uPAR, catalyse la transformation du plasminogène en plasmine. Cette protéase participe à la dégradation de protéines matricielles (laminine, fibronectine, collagène), mais aussi à l'activation de la majorité des pro-MMPs et du TGF- β . Le récepteur uPAR peut également interagir avec les intégrines et ainsi favoriser l'invasion tumorale (Guo et Giancotti 2004). Ainsi, l'inhibition de l'interaction intégrine β 1 /
uPAR dans les cellules MDA-MB-231 diminue la progression tumorale osseuse (van der Pluijm et coll. 2001).

D'autres protéases ont été identifiées dans le sécrétome des cellules tumorales mais leur rôle dans l'activité biologique de ces cellules reste inconnu à ce jour. On pourrait citer par exemple la cathepsine K, une cystéine protéase que l'on croyait spécifique des ostéoclastes mais qui a été identifiée dans les tumeurs primitives du sein et de la prostate (Brubaker et coll. 2003; Le Gall et coll. 2007).

2.2.2 L'ostéomimétisme

Lorsque les cellules tumorales sont nichées dans la moelle, elles peuvent acquérir un phénotype ostéoblastique en exprimant des gènes normalement exprimés par les ostéoblastes : il s'agit de l' « ostéomimétisme ».

Certaines lignées de carcinome prostatique (PC-3, DU-145, C4-2B) expriment par exemple le facteur de transcription Runx2 qui leur permet de synthétiser les protéines osseuses OPN, OC et BSP, à l'instar des ostéoblastes (Lin et coll. 2001; Yeung et coll. 2002; Zayzafoon et coll. 2004). De plus, Zayzafoon et coll. ont montré par une approche immunohistochimique que les cellules des métastases osseuses du cancer prostatique expriment le récepteur membranaire Notch-1, dont le ligand, Dll1 (Delta-like 1), est présent à la surface des cellules stromales osseuses et des ostéoblastes. L'interaction des deux conduits à l'expression des gènes sous contrôle du facteur Runx2. Ainsi, un traitement par Dll1 sur les cellules C4-2B exprimant Notch-1 induit leur différenciation en cellules ostéoblastiques et la formation de nodules de minéralisation (Zayzafoon et coll. 2004). De façon similaire, une étude transcriptomique et immunohistochimique de métastases osseuses d'origine mammaire nous a permis d'identifier plusieurs gènes connus pour leur rôle dans l'ostéoblastogenèse, comme la cadhérine-11 (CDH11), la connexine-43, l'ostéonectine/SPARC, S100A4, Runx2, etc. (Bellahcene et coll. 2007). Bien que le rôle de l'ostéomimétisme dans le développement des métastases ne soit pas encore très clair, il semblerait que ce mécanisme adaptatif favorise la survie/prolifération des cellules tumorales dans l'environnement osseux. En effet, le blocage de l'activité de Runx2 dans les cellules de cancer du sein MDA-MB-231 empêche celles-ci de développer des métastases ostéolytiques (Javed et coll. 2005).

2.3 Mécanismes de formation des métastases ostéolytiques

Le maintien de l'intégrité de la matrice osseuse est assuré par un couplage finement régulé entre les ostéoblastes et des ostéoclastes. Dans la métastase osseuse de type ostéolytique, les cellules cancéreuses présentes dans le tissu osseux découplent le remodelage grâce à des facteurs qui stimulent l'activité des ostéoclastes et inhibent celle des ostéoblastes.

2.3.1 Stimulateurs de la résorption osseuse

2.3.1.1 La protéine apparentée à la parathormone (PTHrP)

La PTHrP (PTH related Protein) est un homologue de la partie N-terminale de la parathormone (PTH), ce qui lui permet d'être reconnue par le même récepteur et d'induire les mêmes effets biologiques (Guise et Mundy 1998).

Les effets de la PTHrP d'origine tumorale ont d'abord été identifiés dans l'os et le rein. Elle provoque une hypercalcémie en augmentant la résorption osseuse ostéoclastique et la réabsorption tubulaire rénale du calcium. Ces observations sont confirmées au niveau expérimental dans une souche murine modifiée pour surexprimer la PTHrP spécifiquement dans les glandes mammaires, où l'induction de tumeurs entraîne in fine une hypercalcémie (Wysolmerski et coll. 2002). Toutefois, l'activité biologique de la PTHrP n'interviendrait pas dans la progression de la tumeur primitive. Une étude clinique prospective réalisée sur 526 patientes a même montré que l'expression de PTHrP dans les adénocarcinomes mammaires était un facteur pronostique favorable : la survie à 10 ans est de 78% pour les tumeurs PTHrP+ contre 51% dans les cas de tumeur PTHrP- (Henderson et coll. 2001; Henderson et coll. 2006). Différentes études cliniques rétrospectives montrent que la PTHrP peut être produite par les cellules métastatiques au site osseux (Bundred et coll. 1992; Kohno et coll. 1994; Bouizar et coll. 1999; Yoshida et coll. 2000). Cela suggère que la PTHrP interviendrait plutôt dans la progression des métastases osseuses. Guise et coll. ont confirmé cette hypothèse en montrant que l'administration préventive ou curative d'anticorps anti-PTHrP diminue significativement la progression de l'ostéolyse induite par les cellules MDA-MB-231 (Guise et coll. 1996). Réciproquement, les cellules MCF-7 transfectées pour surexprimer la PTHrP induisent une destruction osseuse deux fois plus importante que celle observée chez les souris ayant reçu les cellules parentales (Thomas et coll. 1999).

L'activité biologique de la PTHrP se fait au niveau des ostéoblastes. L'activation du récepteur à la PTH induit simultanément l'expression du RANKL et la répression de l'OPG, favorisant ainsi l'activation des ostéoclastes (Thomas et coll. 1999). La PTHrP stimule également la production des cytokines IL-6 et LIF (Leukemia Inhibitory Factor) *in vivo* (Pollock et coll. 1996), ce qui favorise le recrutement de précurseurs ostéoclastiques (Manolagas et Jilka 1995). Par ailleurs, la PTHrP sécrétée par les cellules MDA-MB-231 peut induire par voie autocrine la production de CCN2/CTGF (Connective Tissue Growth Factor) (Shimo et coll. 2006). Ce facteur de la famille des protéines riches en cystéine (Cystein rich Connective proteins; CCN) est capable de stimuler l'ostéoclastogenèse (Shimo et coll. 2006) et la migration des cellules MDA-MB-231 (Chen et coll. 2007) *in vitro*. L'administration d'anticorps anti-CTGF bloque la formation des métastases ostéolytiques chez les souris ayant reçu des cellules MDA-MB-231 par voie intracardiaque (Shimo et coll. 2006).

2.3.1.2 Les cytokines

La PTHrP peut activer la production d'autres cytokines de façon moins directe. En effet, le RANKL ostéoblastique sécrété en réponse à la PTHrP peut induire l'expression de différentes interleukines au niveau des cellules tumorales (Tometsko et coll. 2004). Nous retiendrons ici l'IL-8 (CXCL8) et l'IL-11, qui peuvent directement agir sur les ostéoclastes.

Une analyse transcriptomique des cellules MDA-MB-231 et de leurs dérivées ostéophiles MDA-MET a révélé une surexpression d'IL-8 (Bendre et coll. 2002). *In vitro*, l'IL-8 active de façon indirecte les ostéoclastes en induisant la production de RANKL par les ostéoblastes (Bendre et coll. 2003b), et de façon directe en stimulant la différenciation des préostéoclastes en ostéoclastes matures. Les ostéoclastes et leurs précurseurs expriment effectivement CXCR1, le récepteur de l'IL-8 (Bendre et coll. 2003a).

L'IL-11 est une cytokine d'origine stromale/ostéoblastique connue pour son rôle dans la stimulation de l'ostéoclastogenèse (Girasole et coll. 1994). Une étude a montré que l'IL-11 est également exprimée dans les tumeurs mammaires et que son niveau d'expression est associé à la survenue ultérieure de métastases osseuses (Sotiriou et coll. 2001). D'ailleurs la

surexpression de l'IL-11 dans les cellules de carcinome mammaire MCF-7 et MDA-MB-231 augmente l'incidence des métastases osseuses chez les animaux (Singh et coll. 2006a).

Une autre cytokine, le GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor), est aussi impliquée dans l'initiation de l'ostéolyse maligne (Park et coll. 2007). Le GM-CSF est un facteur pro-inflammatoire qui stimule la différenciation des cellules souches de la moelle osseuse en macrophages, granulocytes et ostéoclastes. Une étude récente a montré que les cellules MDA-MB-231 peuvent induire l'ostéoclastogenèse *in vitro* par le biais du GM-CSF (Park et coll. 2007). Dans ces cellules, l'invalidation génétique du GM-CSF diminue la formation des métastases ostéolytiques chez les animaux (Park et coll. 2007). Ces observations sont corroborées au niveau clinique par la présence de GM-CSF dans les métastases osseuses des patientes du cancer du sein (Park et coll. 2007).

2.3.1.3 Les prostaglandines

Les cellules de carcinome mammaire produisent d'autres molécules pro-ostéoclastiques comme les prostaglandines. La synthèse de ces hormones lipidiques est contrôlée par les cyclooxygénases (COX). Un des métabolites de la COX-2, la prostaglandine E2 (PG-E2), peut accroître la résorption osseuse en stimulant l'expression du RANKL et en réprimant l'expression de l'OPG par les ostéoblastes (Liu et coll. 2006). Or, les métastases osseuses liées à différents cancers (sein, poumon, rein) expriment elles-mêmes la COX-2 (Hiraga et coll. 2006). Des modèles animaux de métastases osseuses ont permis de montrer que la COX-2 est exprimée par les cellules MDA-MB-231 lorsqu'elles métastasent à l'os après inoculation intracardiaque mais pas orthotopique (Hiraga et coll. 2006). Par ailleurs, la surexpression de la COX-2 dans les cellules de cancer du sein MDA-MB-435S favorise la formation de métastases osseuses chez les animaux (Singh et coll. 2007). Enfin, le traitement des animaux inoculés par des cellules MDA-MB-231 ou les MDA-MB-435S avec des inhibiteurs de la COX-2 bloque la formation des métastases osseuses (Hiraga et coll. 2006; Singh et coll. 2007). D'autres études montrent que les effets autocrine de la COX-2 sur les cellules tumorales métastasées dans l'os incluent également la stimulation de l'IL-8 et de l'IL-11, dont l'effet est précisé plus haut (Singh et coll. 2006a; Singh et coll. 2006b).

2.3.2 Inhibiteurs de la formation osseuse

2.3.2.1 Dickkopf-1

La protéine Dickkopf-1 (Dkk-1) antagonise la voie de signalisation des Wnt (détaillée plus haut) en se fixant sur leur corécepteur LRP5/6 (Westendorf et coll. 2004). Elle inhibe donc la différenciation ostéoblastique. De façon concordante, Dkk-1 a été initialement observé comme étant produit par les plasmocytes tumoraux dans le myélome multiple dont les lésions sont purement ostéolytiques (Tian et coll. 2003). Il a été ensuite identifié dans les lignées cellulaires d'adénocarcinomes mammaires et prostatiques de nature ostéolytique chez l'animal (MDA-MB-231, B02, MCF-7 et PC-3) mais pas dans celles de nature ostéoblastique (ZR-75.1, T-47D, LNCaP, C4-2 et C4-2B) (Schwaninger et coll. 2007; Voorzanger-Rousselot et coll. 2007). Par ailleurs, les cellules C4-2B transfectées avec Dkk-1 ne produisent plus de lésions mixtes/ostéoblastique *in vivo*, mais au contraire induisent des lésions ostéolytiques (Hall et coll. 2005). Finalement, les patients atteints de myélome multiple ou métastases osseuses du cancer du sein présentent des taux sériques de Dkk-1 plus importants que les personnes sans atteintes osseuses (Tian et coll. 2003; Voorzanger-Rousselot et coll. 2007).

2.3.2.2 Noggin

La protéine Noggin antagonise la voie de signalisation des BMPs (détaillée plus haut) en interagissant avec les BMPs eux-mêmes (Zimmerman et coll. 1996) ou avec leur récepteurs BMP-R1 et BMP-R2 (Groppe et coll. 2002). A l'instar de Dkk-1, Noggin est exprimé dans les lignées d'adénocarcinomes mammaires et prostatiques de nature ostéolytique chez l'animal (MDA-MB-231 et PC-3) mais pas dans celles de nature ostéoblastique (ZR-75.1, T-47D, LNCaP, C4-2 et C4-2B) (Schwaninger et coll. 2007). D'ailleurs, la transfection de Noggin dans les cellules C4-2B supprime l'effet pro-ostéoblastique de ces cellules dans les métastases osseuses *in vivo* (Schwaninger et coll. 2007).

2.3.3 Contribution du tissu osseux dans la progression locale de la métastase

La matrice osseuse séquestre de nombreux facteurs de croissances dont le TGF- β et une majeure partie d'IGFs. De ce fait, la résorption de la matrice osseuse par les ostéoclastes va entraîner la libération de ces facteurs dans le microenvironnement osseux, ce qui va avoir un effet aggravant sur la progression des métastases.

2.3.3.1 Le TGF-β

Le TGF- β est libéré et activé par les MMPs et la plasmine au cours de la résorption osseuse (Dallas et coll. 2002). Le TGF- β agit sur les cellules tumorales en se fixant sur le récepteur homodimérique T β RII qui phosphoryle alors le récepteur homodimérique T β RI. La complexation de ces 3 éléments entraîne l'activation d'une voie de signalisation dépendante des protéines Smad2, Smad3 et Smad4 qui, après translocation dans le noyau, active la transcription de différents gènes (Krause et coll. 2008). Le TGF- β peut également activer d'autres voies de signalisation (MAPK, COX-2).

La transfection d'un récepteur T β RII dominant négatif dans les cellules MDA-MB-231 inhibe le développement de métastases osseuses *in vivo* (Yin et coll. 1999). Inversement, la transfection d'un récepteur T β RI constitutivement actif rétablit la formation des métastases osseuses dans le modèle animal (Yin et coll. 1999). De plus, l'inhibition pharmacologique du récepteur T β RI empêche la formation des métastases osseuses induites par les cellules MDA-MB-435 et MDA-MB-231 inoculées chez les animaux (Bandyopadhyay et coll. 2006; Guise et coll. 2006). Enfin, il a été montré que l'implication de la voie de signalisation du TGF- β dans la croissance tumorale pourrait être spécifique au tissu osseux. En effet, la transfection d'un récepteur T β RII dominant négatif dans les cellules de cancer du sein (RBM) inhibe leur croissance lorsqu'elles sont injectées dans l'os mais pas en sous-cutané (Kominsky et coll. 2007). L'ensemble de ces résultats indique que le TGF- β libéré de la matrice osseuse lors de l'ostéolyse agit directement sur les cellules tumorales pour stimuler leur prolifération *via* la voie des Smads. Cette voie et d'autres (MAPK, COX-2) permettent également au TGF- β d'induire la sécrétion de facteurs pro-ostéoclastiques.

Le TGF- β stimule la production de PTHrP et d'IL-11 dans les cellules MDA-MB-231 par la voie des Smads et des MAPK (Kakonen et coll. 2002; Kang et coll. 2003). Aussi, l'invalidation de Smad4 ou la surexpression de Smad7 (un inhibiteur de Smad 2/3) dans ces mêmes cellules bloque l'expression de PTHrP et d'IL-11 ainsi que la formation des métastases osseuses *in vivo* (Kang et coll. 2005; Deckers et coll. 2006; Javelaud et coll. 2007). De façon similaire, la transfection d'un récepteur T β RII dominant négatif dans ces cellules inhibe l'induction

d'expression de PTHrP par le TGF- β *in vitro* et le développement de métastases osseuses *in vivo* (Yin et coll. 1999).

Le TGF- β stimule aussi la production de PG-E2 dans les cellules MDA-MB-231 par une voie dépendante de la COX-2. Comme rapporté plus haut, l'inhibition pharmacologique de la COX-2 bloque la formation des métastases osseuses induites par ces cellules (Hiraga et coll. 2006).

Enfin, le TGF- β peut aussi augmenter la transcription de la collagénase-3 et de la MMP-13 via Smad3 (Selvamurugan et coll. 2004). Or, ces gènes sont régulés par Runx2, qui a été caractérisé comme étant important dans le développement des métastases ostéolytiques. En effet, le blocage de Runx2 dans les cellules de cancer du sein MDA-MB-231 empêche celles-ci de développer des métastases ostéolytiques (Javed et coll. 2005).

2.3.3.2 L'IGF-1

L'IGF-1 et l'IGF-2 ont pour récepteur spécifique IGF-1R et IGF-2R. La biodisponibilité des IGFs est régulée par 6 protéines de liaison IGFBPs (Guise et Mundy 1998). L'utilisation d'anticorps anti-IGF-1R sur des cellules de carcinome mammaire cultivées en présence de surnageants de calvaria de souriceaux, dont l'activité osseuse est de nature résorptive, a permis de montrer que l'IGF-1 libéré au cours de la lyse osseuse stimule la prolifération de ces cellules (Yoneda et coll. 1995). Des tests de phénotype in vitro ont également montré que l'IGF-1 agit aussi sur le chimiotactisme des cellules cancéreuses mammaires (Yoneda et coll. 1995; Doerr et Jones 1996). Par ailleurs, la surexpression de IGF-1R dans des cellules de neuroblastoma promeut la croissance tumorale et l'ostéolyse lorsque ces cellules sont inoculées dans le tibia des souris (van Golen et coll. 2006). Inversement, la transfection du récepteur IGF-1R dominant négatif dans des cellules MDA-MB-231 réduit la masse tumorale aux sites métastatiques osseux (Hiraga et coll. 2001). Plus récemment, un modèle de cellules prostatiques PCa2b inoculées dans des explants d'os humain eux-mêmes implantés dans les ganglions mammaires de souris immunodéficientes a permis de montrer que le blocage de l'IGF-2 par un anticorps réduit la croissance tumorale dans un environnement osseux humain (Kimura et coll. 2010). Ces données indiquent que l'habileté des cellules à répondre aux IGFs favorise la formation des métastases osseuses.

2.3.3.3 Le calcium

La résorption osseuse libère les ions calciums qui constituent les cristaux d'hydroxyapatite. Il existe un récepteur « CaSR » appartenant à la famille des RCPG et pouvant répondre à de faibles variations de la concentration extracellulaire du calcium. Ce récepteur est exprimé par les cellules de carcinome mammaire (MCF-7, MDA-MB-231) et prostatique (PC3) et régule la sécrétion de PTHrP par ces cellules. En effet, l'augmentation de la concentration extracellulaire de calcium ainsi que les agonistes de CaSR, néomycine et spermine, stimulent la sécrétion de PTHrP de façon dose-dépendante (Sanders et coll. 2000; Sanders et coll. 2001). Il a également été démontré que le calcium stimule la prolifération des lignées d'adénocarcinome prostatique PC-3 (ostéolytique) et C4-2B (ostéoblastique) *via* un récepteur CaSR (Liao et coll. 2006). Aussi, lorsque l'expression de ce récepteur dans ces cellules est bloquée par SiRNA, il y a diminution de leur progression métastatique *in vivo*.

2.3.3.4 La réaction stromale

Au niveau médullaire, les premières cellules souches mésenchymateuses non hématopoïétiques (MSCs) ont été décrites par Friedenstein (Friedenstein et coll. 1987). Ce sont des cellules clonales à prolifération rapide et adhérentes au plastique, obtenues à partir de la moelle osseuse. Elles sont capables de se différencier en ostéoblastes, myocytes, adipocytes et chondrocytes (Pereira et coll. 1995; Harada et Rodan 2003). Les MSCs fournissent des composants de la matrice extracellulaire, des cytokines et des facteurs de croissance (Allen et coll. 1984; Dexter et coll. 1984). Au cours des années, la distinction entre MSCs et fibroblastes est devenue de moins en moins évidente, jusqu'à constater actuellement que ces cellules pourraient n'être qu'une seule et même entité. En effet, ils partagent les mêmes marqueurs de membrane et ont le même potentiel de croissance et de différenciation (Haniffa et coll. 2009, cité pour revue). L'ensemble des MSCs/fibroblastes, de la matrice extracellulaire et des facteurs de croissance qu'elle contient constitue le microenvironnement stromal, ou plus simplement « stroma ». Dans un contexte physiologique, ces MSCs interviennent dans le homing, la différenciation, la prolifération et la survie des cellules hématopoïétiques. Cependant, elles peuvent également tenir ces fonctions vis-à-vis des cellules cancéreuses qui métastasent dans la moelle osseuse.

Un microenvironnement pro-tumoral est essentiel pour la prolifération, la survie, la vascularisation, l'invasion et la dissémination de la tumeur. Il fournit des facteurs de croissance, de survie, des facteurs pro-angiogéniques et différentes molécules d'adhésion (Ribatti et coll. 2006). Les tumeurs sont composées de plusieurs types cellulaires distincts : cellules cancéreuses, immunitaires, endothéliales et fibroblastiques/stromales. Pour évoluer, les tumeurs vont donc dépendre des interactions qu'elles mettent en place avec ces cellules environnantes (Hanahan et Weinberg 2000; Bhowmick et coll. 2004).

Au niveau osseux, des travaux récents utilisant des modèles de co-culture ont permis de démontrer que la présence de cellules stromales médullaires influence l'expression de cytokines par les cellules cancéreuses mammaires et facilite ainsi leur intégration au niveau de la moelle osseuse (Oh et coll. 2004). Une autre étude a montré que ces cellules stromales secrètent l'OPG, qui peut se lier à la molécule pro-apoptotique TRAIL (TNF-Related Apoptosis Inducing Ligand) et donc protéger les cellules cancéreuses prostatiques (Nyambo et coll. 2004) et mammaires (Neville-Webbe et coll. 2004) des effets de cette molécule. Des protéines de la matrice extracellulaire telles que l'ostéopontine et l'ostéonectine/SPARC ont également montré des propriétés tumorigéniques (Shi et coll. 2004; Chakraborty et coll. 2006; Song et coll. 2008).

Des interactions de type cellule-cellule ont aussi été démontrées entre les cellules cancéreuses de myélome multiple et les cellules stromales médullaires faisant intervenir l'intégrine $\alpha 4\beta 1$ et VCAM-1, avec pour conséquence l'induction de l'expression de cytokines stimulatrices de la résorption osseuse (Michigami et coll. 2000). D'ailleurs, l'inhibition de cette interaction avec des anticorps dirigés contre la sous-unité $\alpha 4$ est capable de réduire significativement la colonisation osseuse par les cellules de myélome multiple et l'ostéolyse associée (Mori et coll. 2004). Egalement, des interactions homotypiques entre cellules stromales et cellules cancéreuses mammaires *via* la CDH11 favorisent le *homing* des cellules tumorales vers la moelle osseuse et induisent l'ostéoclastogenèse (Tamura et coll. 2004). L'expression de la CDH11 par les cellules cancéreuses mammaires a par ailleurs été associée à l'acquisition d'un phénotype agressif et métastatique (Feltes et coll. 2002).

L'altération de la physiologie du stroma et du phénotype des cellules qui le constituent est une réponse à de multiples signaux d'origine tumorale. Cette « réaction stromale » peut être un indicateur de l'activité néoplasique et peut également favoriser ou limiter la progression de la tumeur (Zalatnai 2006). Par exemple, il a été montré que la signature génétique de cette « réaction stromale » peut servir d'outil pronostique dans le cancer du sein (Finak et coll. 2008). L'analyse spécifique du stroma donne ici un pronostic clinique plus fiable que les analyses réalisées habituellement à partir du tissu entier. L'intérêt d'une analyse du stroma par rapport à la tumeur dans son ensemble a également été mis en évidence dans des cas de mélanome (Paulitschke et coll. 2009), de cancer du poumon (Soltermann et coll. 2008), de cancer colorectal (Smith et coll. 2009) et d'adénocarcinome œsophagien (Hao et coll. 2006). Ce type d'étude permet de réaliser combien il est important de discerner le tissu tumoral du tissu stromal lors des prélèvements destinés à la recherche clinique.

Rétrospectivement, il semble que l'étude des interactions entre cellules cancéreuses et cellules du stroma médullaire va devenir un aspect important de la recherche sur les métastases osseuses (Figure 12). D'une part, parce que l'établissement des cellules métastatiques dans le stroma médullaire est une étape très précoce du processus métastatique osseux, avec les implications diagnostiques que l'on peut imaginer. D'autre part, parce que le contrôle de ces interactions représente de nouvelles stratégies thérapeutiques.

Figure 12. Bibliométrie des articles liés au microenvironnement tumoral, de 1978 à 2009.

"Total publications" montre la dynamique globale de publication et sert de tracé de référence. "Vimentin" illustre la dynamique de publication d'un sujet bien documenté (ayant passé sa phase exponentielle de publication) : depuis 20 ans, ce sujet montre une dynamique de publication linéaire, comme la dynamique globale. "Tumor stroma" [requête correspondante = (tumor OR tumour) AND (stroma OR stromal) AND (microenvironment)] montre une dynamique exponentielle des publications sur le microenvironnement tumoral.

2.4 Mécanismes de formation des métastases ostéocondensantes

Dans la métastase osseuse de type ostéocondensante, les cellules cancéreuses présentes dans le tissu osseux découplent le remodelage grâce à des facteurs qui stimulent l'activité des ostéoblastes et inhibent celle des ostéoclastes. Ces métastases sont le plus souvent d'origine prostatique.

2.4.1 Stimulateurs de la formation osseuse

2.4.1.1 L'endothéline ET-1

Les endothélines exercent leur effet en se liant aux RCPG ETA et ETB. Outre leurs fonctions dans la physiologie cardiovasculaire elles sont impliquées dans de nombreux processus inhérents au cancer, et notamment dans les métastases osseuses ostéocondensantes (Nelson et coll. 2003).

Les patients atteints de cancer prostatique avec métastases osseuses présentent des taux sériques élevés d'ET-1, dont l'origine est vraisemblablement les cellules tumorales ellesmêmes (Nelson et coll. 2003). *In vivo*, l'expression d'ET-1 par les cellules tumorales favorise la prolifération ostéoblastique et la synthèse d'os nouveau en agissant sur le récepteur ET_A (Guise et coll. 2003; Yin et coll. 2003). Par ailleurs, l'ET-1 produite par les cellules de carcinomes prostatiques (*i.e.*, DU-145, PC-3) bloque la fonction ostéoclastique *in vitro* (Chiao et coll. 2000) en agissant probablement sur le récepteur ET_B, ET_A n'étant pas exprimé dans les ostéoclastes. Enfin, il a été montré que l'ET-1 peut avoir une action mitogène sur les cellules de carcinome prostatique PC-3 (Chiao et coll. 2000).

2.4.1.2 Le fragment PTHrP [1-23]

De nombreuses cellules tumorales d'origine prostatique et à propension ostéocondensante expriment la PTHrP, paradoxalement (Clines et Guise 2005). Mais elles sécrètent également le PSA (sérine protéase), qui clive la PTHrP pour générer un fragment PTHrP [1-23] (Cramer et coll. 1996; Iwamura et coll. 1996). Ce fragment a une toute autre fonction que la PTHrP : il se fixe spécifiquement au récepteur ET_A des ostéoblastes et stimule ainsi la formation nouvelle d'os dans des calvaria en culture (Clines et Guise 2005; Guise et coll. 2006).

2.4.1.3 Les BMPs

Les cellules humaines de carcinome prostatique (*i.e.* LAPC-4, LAPC-9, LuCaP 23.1) expriment certaines BMPs et leurs récepteurs (Dai et coll. 2005; Feeley et coll. 2005). Ainsi, le blocage des ligands ou des récepteurs de cette voie empêche ces cellules de former des lésions ostéocondensantes *in vivo* (Dai et coll. 2005; Feeley et coll. 2005). Les BMPs peuvent également avoir un effet sur l'invasion ou la migration *in vitro* de ces cellules (Dai et coll. 2005; Feeley et coll. 2005). Les BMPs d'origine tumorales et les BMPs matricielles libérées lors de la résorption vont donc amplifier la progression de la métastase osseuse ostéocondensante.

2.4.1.4 Autres facteurs

D'autres facteurs d'origine tumorale peuvent participer à la réaction ostéoblastique. Le VEGF par exemple, en plus de son effet pro-angiogénique, peut activer les ostéoblastes *in vitro* (Logothetis et Lin 2005). De plus, l'inhibition *in vivo* de l'activité tyrosine-kinase du récepteur Flt-1 (VEGF-R1) empêche la formation des lésions ostéocondensantes par les cellules C4-2B (Kitagawa et coll. 2005). Les dimères de PDGF (-aa, -bb ou -ab) pourraient aussi participer à la progression des métastases osseuses. Ainsi, la surexpression du PDGF-bb dans les MDA-MB-231 induit la formation de métastases osseuses mixtes *in vivo*, sous la dépendance de l'oncogène Neu/HER2/ErbB2 (Yi et coll. 2002). Enfin, on sait que l'adrénoméduline exerce une action anabolique sur les ostéoblastes *in vitro* (Cornish et coll. 2004), et pourrait ainsi intervenir dans la réaction ostéoblastique des métastases ostéocondensantes. En effet, il a été rapporté une corrélation entre l'expression de ce peptide et la gravité du cancer prostatique (Rocchi et coll. 2001).

2.4.2 Inhibiteurs de la résorption osseuse

Certains des mécanismes pro-ostéoblastiques rapportés ci-dessus vont également avoir un effet anti-ostéoclastique et donc aggraver le processus de formation des métastases ostéocondensantes. Par exemple, en clivant la PTHrP, le PSA stoppe son action proostéoclastique (Clines et Guise 2005), qui s'appuie notamment sur la répression de l'OPG. D'ailleurs, les patients atteints de cancer prostatique métastatique à l'os présentent des taux élevés d'OPG circulante. Egalement, l'ET-1 peut bloquer la fonction ostéoclastique *in vitro* (Chiao et coll. 2000).

2.4.3 Contribution du tissu osseux dans l'ostéocondensation

A l'instar des métastases ostéolytiques, les métastases ostéocondensantes présentent également une réaction ostéoclastique. En effet, un taux élevé de marqueurs de résorption (ICTP) a été observé chez les patients atteints de métastases osseuses du cancer prostatique bien qu'elles soient de nature purement sclérotique (Kylmala et coll. 1995). Cette résorption, moins importante que dans l'ostéolyse maligne, libère malgré tout les facteurs piégés dans matrice et contribue à l'aggravation des métastases ostéocondensantes. On citera principalement les IGFs, les BMPs, le TGF- β et le calcium, dont l'implication sur l'activité des cellules tumorales et des ostéoblastes est rapportée ci-dessus.

2.5 Le cercle vicieux des métastases osseuses

En considérant les deux types de métastases osseuses dans leur ensemble, on se rend compte que les populations cellulaires locales (ostéoblastes, ostéoclastes, cellules stromales) et exogènes (cellules tumorales) entretiennent mutuellement leur activité, créant ainsi un cercle vicieux. Ces interactions cellulaires sont à la base de la progression des métastases osseuses.

Dans le cas des métastases ostéolytiques, les cellules métastatiques produisent des facteurs qui stimulent l'ostéoclastogenèse (PTHrP) avec la participation des préostéoblastes et des cellules stromales (RANKL). Elles exercent également un blocage de la différenciation ostéoblastique par la sécrétion de facteurs tels que Dkk-1 ou Noggin. En retour, les protéines libérées de la matrice osseuse (TGF- β , IGF-1) stimulent la prolifération des cellules métastatiques et leur sécrétion de PTHrP. Il s'en suit ainsi le cercle vicieux évoqué ci-dessus (Figure 13). D'ailleurs, l'implication directe d'un remodelage exacerbé sur la progression des métastases osseuses a été montrée par différentes approches : carence nutritive en calcium (Zheng et coll. 2007), ovariectomie (Zhao et coll. 2007), remodelage lié à la croissance (observations du laboratoire). Enfin, il est important de noter que dans ce cas de figure, l'activité pro-ostéolytique de la métastase permet de libérer un espace facilitant sa croissance.

Dans le cas des métastases ostéocondensantes, le processus est moins documenté. Toutefois, il semble que les cellules tumorales produisent des facteurs capables d'activer les ostéoblastes (ET-1, PTHrP [1-23]) et d'inhiber les ostéoclastes. En retour, les ostéoblastes produisent des facteurs qui stimulent la prolifération tumorale (IGFs, BMPs) et donc la production d'ET-1 et de PTHrP [1-23] par ces cellules (Figure 13). Egalement, il a été montré qu'un remodelage exacerbé facilite l'ostéotropisme des cellules cancéreuses (Schneider et coll. 2005).

A gauche : les interactions moléculaires impliquées dans le développement d'une métastase ostéolytique. Les cellules tumorales (CT) colonisant la moelle osseuse sécrètent des facteurs solubles qui stimulent l'ostéoclastogenèse (PTHrP, IL-6, IL-8, IL-11, prostaglandine E2 (PG-E2), CTGF, GM-CSF) et inhibent la maturation des ostéoblastes (Dkk-1, Noggin). L'activation des ostéoclastes (OC) par la PTHrP se fait en stimulant l'expression de RANKL par les cellules stromales / préostéoblastes (MSC / pOB). L'interaction RANK / RANKL induit la différenciation des préostéoclastes (pOC) en ostéoclastes. L'ostéolyse libère ensuite différents facteurs de croissance (IGFs, TGF- β) et du calcium (Ca). Les IGFs exercent une action mitogène sur les cellules tumorales. Le TGF- β stimule la production de PTHrP, d'interleukines (IL-8, IL-11) et de PG-E2 par les cellules tumorales. Le calcium stimule également la sécrétion de PTHrP. En conséquence, les phénomènes d'ostéolyse et de prolifération tumorale s'entretiennent mutuellement. A droite : les interactions moléculaires impliquées dans le développement d'une métastase ostéocondensante. Les cellules tumorales colonisant la moelle osseuse sécrètent des facteurs solubles qui stimulent l'ostéoblastogenèse (ET-1, BMP-6, VEGF, AM : adrénoméduline, PDGF et le PTHrP [1-23] issu du clivage de la PTH par le PSA) et inhibent l'ostéoclastogenèse (ET-1). L'action antiostéoclastique passe également par l'augmentation de l'expression de l'OPG dans les ostéoblastes. Par ailleurs, différents facteurs de croissance (TGF-β, BMPs, IGFs) sécrétés par les ostéoblastes (OB) exercent une action mitogène sur les cellules tumorales.

3. OUTILS D'INVESTIGATION CLINIQUE DES MÉTASTASES OSSEUSES

3.1	Diagnostic clinique conventionnel	47
3.1.1	Circonstances de découverte, signes cliniques et démarche diagnostique	47
3.1.2	Bases techniques des méthodes d'imagerie des métastases osseuses	48
3.2	Marqueurs biochimiques circulants des métastases osseuses	50
3.2.1	Utilité diagnostique des marqueurs du métabolisme osseux	50
3.2.2	Utilité pronostique des marqueurs du métabolisme osseux	54
3.2.3	Suivi du traitement	55
3.2.4	Pertinence des marqueurs biochimiques et évolutions probables	56

3.1 Diagnostic clinique conventionnel

3.1.1 Circonstances de découverte, signes cliniques et démarche diagnostique

Les métastases osseuses peuvent être diagnostiquées dans trois circonstances particulières. La plus commune est celle d'un patient régulièrement suivi pour une atteinte néoplasique (connue et généralement traitée) qui se présente pour des douleurs du squelette, une image radiologique osseuse suspecte ou une fracture pathologique. Il s'agit le plus souvent de patientes atteintes du cancer du sein. Dans d'autres cas, le diagnostic de métastase osseuse est effectué dans le cadre du bilan d'extension de la tumeur primitive et particulièrement à la suite de la réalisation d'une scintigraphie osseuse. Enfin, une métastase osseuse inaugurale, chez un patient indemne d'antécédent cancéreux connu, peut représenter le dernier mode de révélation de la pathologie néoplasique. Les tumeurs primitives identifiées les plus fréquentes à l'origine de ces métastases inaugurales sont respectivement la prostate, le poumon, le rein. Outre l'aspect diagnostique, la détection de ces métastases sera un élément essentiel à la prise de décisions thérapeutiques telles que la chirurgie, la radiothérapie ou la chimiothérapie.

La douleur reste l'indice de présence de métastases osseuses le plus fréquemment rapporté par les patients. Son installation est insidieuse et progresse lentement en intensité tout en restant précisément localisable. Toutefois elle peut être absente alors que les approches par imagerie (IRM, scintigraphie) révèlent la pathologie. Ces douleurs peuvent résulter d'une propagation intra-osseuse, médullaire ou d'une fracture pathologique. Pour des raisons biomécaniques, ces fractures concernent plus fréquemment le col du fémur, l'humérus et les vertèbres et sont plus généralement liées aux métastases de type ostéolytique. Outre les douleurs on peut également observer une asthénie, un amaigrissement ainsi que les signes d'une hypercalcémie (troubles psychiques, nausées).

Tout patient aux antécédents de néoplasie, même très anciens, doit être suspect de lésions métastatiques en cas d'apparition de douleurs du squelette ou de fractures non liées à un traumatisme significatif. La région suspecte est alors analysée par radiographie. En cas de doute radiologique sur les clichés, un scanner est souhaitable. Cet examen de sensibilité supérieure permet d'individualiser des métastases osseuses précoces peu évidentes sur les clichés standards. Par ailleurs, le scanner peut apporter des éléments d'orientation en faveur d'une tumeur osseuse primitive. En l'absence de lésions radiologiques, la persistance des douleurs implique de compléter l'analyse par un examen scintigraphique. Enfin, une biopsie osseuse peut être envisagée si le diagnostic de métastase osseuse est incertain, voire systématique en cas d'acte chirurgical pour une fracture pathologique.

Dans le cas des métastases osseuses inaugurales, un examen clinique complet et des examens biologiques simples peuvent donner des éléments d'orientation sur l'origine de la lésion tumorale primitive. Si aucun élément d'orientation n'est obtenu à ce stade, le patient doit bénéficier d'une part d'un scanner sur la lésion tumorale et d'autre part d'un scanner thoracique abdominal et pelvien. Si malgré l'ensemble de ce bilan seule la lésion osseuse est retrouvée, une tumeur maligne osseuse primitive doit être suspectée et une biopsie tumorale doit être effectuée.

Ces différentes situations ont emmené les cliniciens à mettre en place des démarches diagnostiques hiérarchisées sous forme d'algorigrammes (algorithmes graphiques). Par exemple, Costelloe et coll. ont récemment proposé des algorithmes d'analyses en imagerie pour le diagnostic de pathologies osseuses (Costelloe et coll. 2009). Ces recommandations

découlent des spécifications et limites techniques ainsi que des performances diagnostiques de chaque méthode d'imagerie. Un algorithme ainsi suggéré pour la détection des métastases osseuses est présenté dans la Figure 14.

Figure 14: Algorithmes d'analyses en imagerie pour la détection des métastases osseuses.

* Les lésions focales typiques peuvent être diagnostiquées en tant que métastases. Toutefois, une radiographie de référence peut être réalisée pour une évaluation ultérieure et pour mesurer le risque de complications telles que les fractures pathologiques. † Les lésions atypiques peuvent résulter de maladies métaboliques (ostéoporose, syndrome de Cushing, ostéomalacie), traumatismes, arthrite, maladies inflammatoires telle que l'ostéomyélite, maladie de Paget ou infarctus. ‡ Une biopsie osseuse peut être requise pour confirmer l'atteinte métastatique. CT : Computed Tomography. MRI : Magnetic Resonance Imaging. PET : Positron Emission Tomography. D'après Costelloe et coll. 2009.

3.1.2 Bases techniques des méthodes d'imagerie des métastases osseuses

Bien que le sujet de ce manuscrit ne concerne pas directement l'imagerie médicale, un aperçu technique de ces méthodes peut améliorer la compréhension globale de la démarche diagnostique présentée ci-dessus.

La scintigraphie

La scintigraphie reste la méthode de choix pour explorer l'ensemble du squelette et dépister des métastases osseuses (Figure 15). La scintigraphie repose sur l'administration de bisphosphonates radiomarqués qui ont une affinité particulière pour les sites de formation osseuse. Elle nécessite, pour être positive, une réaction ostéoblastique. C'est une méthode sensible car positive avant que la trame osseuse ne soit détruite, mais peu spécifique. En outre, elle peut être faussement négative en cas d'absence de réaction ostéoblastique.

Les rayons X et les technologies dérivées

Les clichés simples et la tomodensitométrie utilisent les rayonnements X. La formation de l'image dépend de l'absorption du rayonnement lors de la traversée tissulaire. La métastase ostéolytique, en raison de la disparition de la trame osseuse calcifiée, n'absorbe plus le

rayonnement et donne un aspect de lacune. La métastase ostéocondensante, qui présente une hyper-calcification, absorbe d'autant plus le rayonnement et génère une opacité. Certaines régions comme le rachis dorsal sont plus difficiles à analyser en raison des superpositions anatomiques. S'il n'y a pas d'origine spécifique pour les métastases lytiques, les atteintes sclérotiques proviennent le plus fréquemment des tumeurs prostatiques ou gastriques.

(www.wikipedia.org)

Radiographie et scanner (<u>http://cofer.univ-lille2.fr</u>)

Imagerie par résonance magnétique nucléaire (IRM) (<u>www.igr.fr</u>)

Fomographie à émission de positon (TEP) (<u>www.wikipedia.org</u>)

La radiographie conventionnelle

La sensibilité des radiographies standards est faible car 30 à 50 % de la trame osseuse doivent être détruits pour que des signes radiologiques apparaissent. Guidée par la scintigraphie, elle reste cependant un moyen d'exploration simple pour surveiller l'évolution de la métastase sous traitement médical.

La tomodensitométrie (Computed Tomography ; CT ; scan)

La résolution permise par la tomodensitométrie est très nettement supérieure à celle de la radiographie conventionnelle. Cependant, l'exploitation en coupes limite l'exploration osseuse à des segments prédéfinis qui posent des problèmes diagnostiques ou sur lesquels il est nécessaire de préciser l'extension de la métastase. Ce n'est pas une méthode de dépistage mais il est possible d'analyser le squelette médian avec des fenêtres adaptées à la recherche de métastases osseuses. En fait, la tomodensitométrie est surtout employée pour affiner le bilan d'une métastase osseuse avant une décision ou un complément thérapeutique. Au niveau du rachis, sa grande spécificité permet de contribuer au diagnostic et de différencier les tassements bénins et malins.

L'imagerie par résonance magnétique nucléaire (IRM)

Au niveau du rachis, de par l'existence d'une symptomatologie clinique, l'IRM est devenue un examen incontournable. C'est une imagerie chimique basée sur l'analyse de la richesse en eau ou en graisse des composants tissulaires et permet ainsi une analyse de la moelle osseuse plutôt que de la trame osseuse. Elle est donc plus sensible que les rayons X et la scintigraphie, qui ne donnent un signal que lorsque surviennent les modifications ou les réponses osseuses liées à l'envahissement tumoral. En revanche, elle manque de spécificité car d'autres pathologies inflammatoires ou infectieuses peuvent présenter des anomalies similaires. Récemment cette technique a évolué pour permettre un examen complet de l'organisme (« whole-body MRI »).

La tomographie par émission de positons (TEP)

La TEP est un examen radio-isotopique de nouvelle génération utilisant un traceur à vie courte émetteur de positons, le Fluor 18 couplé à du glucose (fluodeoxyglucose ¹⁸F, ou ¹⁸F-FDG). Cette approche s'appuie sur la relative avidité des cellules tumorales malignes pour le glucose. Cet examen est pratiqué dans le cadre de bilans d'extension ou de récidive de différents cancers, notamment pulmonaires et colorectaux, au cours desquels peuvent être effectivement mises en évidence des localisations osseuses secondaires. Un couplage avec le scan tomodensitométrique permet de localiser plus précisément les sites de capture du radiotraceur.

3.2 Marqueurs biochimiques circulants des métastases osseuses

Les examens en imagerie peuvent ne pas détecter les lésions osseuses dont la formation ou la résorption sont trop subtiles, comme dans le cancer du rein, le mélanome ou le myélome multiple ; cela génère des faux négatifs. De plus, au cours du suivi des lésions sous traitement, le radiotraceur ne reflète pas toujours une zone métastatique active mais peut correspondre à une activité normale de réparation osseuse liée au traitement. Il s'agira de faux positifs. Les métastases osseuses se caractérisent par un déséquilibre entre formation et résorption osseuse. Les années 90 ont vu apparaître de nombreux immunodosages pour les protéines osseuses collagéniques et non collagéniques (Tableau 2). Ce panel de marqueurs est un outil supplémentaire pour l'évaluation des métastases osseuses en complément des examens conventionnels (Voorzanger-Rousselot et Garnero 2007; Seibel 2008). Ces marqueurs présentent de nombreux avantages : leur évaluation n'est pas invasive, leur utilisation aisée et leur coût relativement faible. Cependant, ces marqueurs et leurs dosages sont pour l'instant à un stade d'évaluation et de validation en recherche clinique.

3.2.1 Utilité diagnostique des marqueurs du métabolisme osseux

La plupart des études ont comparé les marqueurs biochimiques du remodelage osseux entre des patients présentant ou pas des métastases osseuses. Bien que la démarche soit sensée et directe, sa validité dépend d'un diagnostic correct du groupe contrôle, celui sans métastases. Etant donné les limitations des techniques conventionnelles de diagnostique, en particulier dans les stades précoces d'atteinte osseuse, l'assignation des patients dans le groupe « négatif » peut être incorrecte. De plus, les études sont souvent réalisées sur des groupes très hétérogènes de patients et avec peu ou pas d'informations sur la charge tumorale. De ce fait, les données concernant l'utilité des marqueurs osseux dans le diagnostic des métastases osseuses sont assez variables, parfois même contradictoires. En revanche, les données deviennent plus cohérentes lorsque les comparaisons sont faites entre marqueurs et imagerie, ou marqueur et pronostic chirurgical, dans des groupes bien définis de patients (Fukumitsu et coll. 2002; Meijer et coll. 2003; Springer et coll. 2003; Ebert et coll. 2004).

La phosphatase alcaline (formation)

Parmi les marqueurs de formation disponibles (Tableau 2), la phosphatase alcaline totale (PAT) et osseuse (PAL osseuse) montrent habituellement les changements les plus marqués en réponse à l'atteinte osseuse. Dans la plupart des cas de métastases osseuses avancées, les niveaux sériques de PAT et de PAL osseuse sont augmentés, suscitant soit une réaction ostéoblastique (métastases ostéocondensantes) soit une réparation active du tissu osseux (métastases ostéolytiques) (Berruti et coll. 1999; Oremek et coll. 2003; Kanakis et coll. 2004).

Tableau 2: Marqueurs circulants du remodelage osseux.

PAL osseuse: phosphatase alcaline osseuse; PICP/PINP: C/N-terminal propeptide of type I procollagen; HyP: hydroxyproline (totale et dialysable); ICTP: C-terminal cross-linked telopeptide of type I collagen; CTX-I/NTX-I: C/N-terminal cross-linked telopeptide of type I collagen; HELP: collagen I alpha 1 helicoidal peptide; ufOC, U-Mid-OC, U-Long-OC: différents fragments d'ostéocalcine; 1,25OH-D3 : 1,25 dihydroxy-vitamine D3; TRACP: tartrate-resistant acid phosphatase; Coll I: collagène de type I. D'après Seibel 2008.

	Tissu concerné	Echantillon	Remarques					
MARQUEURS DE FORMATION								
PAL osseuse	Os	sérum	- source: OBLs. Peut croiser avec la PAL hépatique					
Ostéocalcine	Os, plaquettes	sérum	- source: OBLs. Plusieurs formes présentes dans le sang					
PICP	Os, tissu mou, peau	sérum	- source: OBLs et fibroblastes en prolifération					
PINP	Os, tissu mou, peau	sérum	 source: OBLs et fibroblastes en prolifération Partiellement incorporé à la matrice osseuse 					
MARQUEURS DE RESORPTION								
Marqueurs liés aux collagène								
НуР	Os, cartilage, tissus mous, peau	urine	 source: tout collagène fibrillaire (jeunes et matures) et protéines partiellementcollagéniques (i.e. élastine) l'HyP urinaire provient de la synthèse <u>et</u> de la dégradation 					
Hydroxylysine-glycosides	Os, tissus mous, peau	urine, sérum	- plusieurs formes selon les tissus - dans l'os, la forme C1q; galactosyl-OHLys prédomine					
Pyridinoline (PYD)	Os, cartilage, tendon, vaisseaux	urine, sérum	 en grande quantité dans les collagènes matures de l'os et du cartilage 					
Déoxypyridinoline (DPD)	Os, dentine	urine, sérum	 en grande quantité dans les collagènes matures de l'os uniquement 					
ICTP, ou "CTX-MMP"	Os, peau	sérum	 source: Coll I, principalement osseux pourrait provenir du collagène nouvellement synthétisé 					
CTX-I	Tout tissu contenant du Coll I	urine (α/β) sérum (αα/ββ)	- source: Coll I, principalement osseux - l'isomérisation du résidu aspartyle en β-aspartyle se produit lors du vieillissement du collagène					
NTX-I	Tout tissu contenant du Coll I	urine, sérum	- source: Coll I, principalement osseux					
HELP	Tout tissu contenant du Coll I	urine	- fragment issu de l'hélice du Coll I-α1 (AA 620-633) - corrèle avec d'autres marqueurs de dégradation du Coll I, sans différence concernant la valeur pronostique					
Protéines non collagéniques								
Sialoprotéine osseuse	Os, dentine, cartilage hypertrophique	sérum	 déposée dans la matrice osseuse par les OBLs associée à la fonction des OCLs 					
ufOC, U-Mid-OC, U-Long-OC	Os	urine	 certain fragments d'OC modifiés par le vieillissement sont libérés par la résorption. Possible index de résorption 					
Ostéopontine	Os, rein, muscle, dentine, cartilage	sérum	- origine multiple. 1,25OH-D3 stimule sa synthèse dans l'os					
Enzymes ostéoclastiques								
TRACP	Os, sang	Plasma, sérum	 - 6 isoformes présents dans: OCLs, plaquettes, érythrocytes - l'isoforme 5b prédomine dans les OCLs 					
Cathepsine K and L	K: ostéoclastes; L: macrophages et ostéoclastes	Plasma, sérum	 la cathepsine K clive l'hélice et les télopeptides du Coll I les cathepsines K et L clivent et activent la TRACP des dosages sériques de ces cathepsines sont en évaluation 					

Toutefois, certains auteurs n'ont pas trouvé de variation de la PAL osseuse et de la PAT entre les patients présentant ou pas des métastases osseuses (Jung et coll. 2006). Chez les patients atteints de cancer prostatique, la mesure conjointe du PSA et de la PAL osseuse semble améliorer la sensibilité du diagnostic des métastases osseuses en comparaison de patients sains ou atteints d'hyperplasie bénigne de la prostate (Lorente et coll. 1999; Wymenga et coll. 2001; Ramankulov et coll. 2007). Cette observation est corroborée par les résultats de Mochizuki et

coll. qui ont montré que l'expression de CXCR4 dans la tumeur prostatique primitive est associée à la présence de métastases osseuses lorsque les taux sériques de PSA sont supérieurs à 20 ng/ml (Mochizuki et coll. 2004).

L'ostéocalcine (formation)

Généralement, les niveaux sériques d'ostéocalcine sont plus variables comparés aux autres marqueurs de formation et, dans les métastases osseuses avancées et non traitées, peuvent même être bas alors que les niveaux de PAL osseuse sont élevés (Wada et coll. 1993). Les raisons de cette divergence ne sont pas claires mais des hypothèses évoquent un clivage protéolytique de l'ostéocalcine, une perturbation de l'expression génétique ou encore un problème de maturation de l'ostéoïde lié à la présence des cellules tumorales. Chez les patients atteints de myélome multiple, plusieurs études ont également rapporté des niveaux faibles d'ostéocalcine contrastant avec des niveaux élevés de marqueurs de résorption. Ces taux anormalement faibles reflètent supposément une altération de l'activité ostéoblastique et ont été associés à un faible taux de survie (Bataille et coll. 1990). Cela est lié à l'action inhibitrice du Dkk-1, sécrété par les cellules de myélome (Tian et coll. 2003).

Les propeptides du collagène de type I (formation)

La concentration sérique des propeptides C-terminal (PICP) et N-terminal du procollagène de type I (PINP) a été rapportée comme élevée chez les patients atteints de cancer mammaire, prostatique ou pulmonaire avec des métastases osseuses (Jukkola et coll. 1997; Koizumi et coll. 2003; Oremek et coll. 2007). Chez les patientes atteintes de cancer mammaire, il semblerait qu'un faible ratio PICP/PINP reflète un phénotype agressif de la tumeur et une plus forte propension à métastaser à l'os (Jukkola et coll. 1997).

Les molécules de pontage collagéniques (résorption)

De par leur nature ostéolytique, le plus souvent, les marqueurs de résorption représentent un outil de mesure indirect de l'activité de ces métastases. La majorité des patients atteints de métastases osseuses du cancer mammaire, prostatique, pulmonaire ou laryngopharyngien présentent des taux urinaires anormalement élevés de DPD (Paterson et coll. 1991; Pecherstorfer et coll. 1995; Alatas et coll. 2002; Behrens et coll. 2003; Springer et coll. 2003). Dans certaines études, une part non négligeable de patients sans atteinte osseuse évidente ont également des taux urinaires élevés de PYD et DPD (Pecherstorfer et coll. 1995). Cette observation pourrait être imputable à la présence de métastases osseuses non diagnostiquées et pourrait indiquer un problème inhérent à la constitution des groupes de l'étude, comme évoqué plus haut. Toutefois, cela pourrait également refléter une accélération du remodelage osseux par des cytokines circulantes (Motellon et coll. 2000). Dans le myélome multiple, les taux urinaires de DPD sont significativement supérieurs à ceux des adultes sains, des patients atteints de gammapathie monoclonale de signification indéterminée (MGUS) et des patientes présentant une ostéoporose post-ménopausale (Pecherstorfer et coll. 1997). Bien que la DPD ait permis d'identifier correctement les patients avec un myélome multiple avancé (stage III), le dosage n'a pas pu discriminer les groupes « MGUS », « myélome multiple débutant » (stage I) et « ostéoporose ». Ce résultat, bien que décevant d'un point de vue clinique, n'est pas surprenant pour autant. En fait, il rappelle que les marqueurs osseux reflètent le remodelage osseux et non les pathologies sous-jacentes. Etant donné que les taux de résorption sont similaires chez les « MGUS » et chez les « myélome multiple débutant », les marqueurs osseux ne permettent pas de discriminer ces deux groupes.

Les télopeptides du collagène de type I (résorption)

Les marqueurs peptidiques de dégradation du collagène de type I (télopeptides ICTP, CTX-I et NTX-I) (Tableau 2; Figure 16) ont aussi été utilisés dans l'évaluation des métastases osseuses avec toutefois des résultats variables. Par exemple, une étude a comparé les taux de NTX-I urinaire, de ICTP sérique et de PAL osseuse sérique chez 106 patientes atteintes de cancer du sein avec ou sans métastases osseuses. Avec une spécificité clinique de 91%, le ICTP se révéla le marqueur le plus sensible des métastases osseuses (Ulrich et coll. 2001). Des résultats similaires ont été rapportés dans une comparaison entre le ICTP sérique, la TRACP, le NTX-I urinaire et la PAL osseuse sérique de 156 patientes atteintes de cancer mammaire (Wada et coll. 2001). D'autres études indiquent que le NTX urinaire a une meilleure valeur diagnostique de la progression des métastases osseuses que le ICTP et la PAL osseuse sériques (Costa et coll. 2002). Bien qu'il n'y ait pas de consensus sur la prévalence des marqueurs télopeptidiques, la plupart des études montrent que ces peptides sont des marqueurs sensibles chez les patients présentant des lésions osseuses liées aux cancers mammaires (Kiuchi et coll. 2002; Oremek et coll. 2003; Cloos et coll. 2004) et prostatiques (Noguchi et Noda 2001; Koizumi et coll. 2002; de la Piedra et coll. 2003; Lein et coll. 2007).

La séquence CTX du télopeptide C-terminal existe sous deux isoformes : α -CTX-I et β -CTX-I. la forme α est présente dans le collagène nouvellement synthétisé et la forme β prépondérante dans le collagène mature. Un dosage pour l' α -CTX-I sérique (« α CTX ») et son utilisation chez les patients atteints du cancer a été récemment décrit (Leeming et coll. 2006). Il a été suggéré que la mesure distincte des formes α et β et du ratio α/β permettrait d'identifier les patients avec des pathologies osseuses malignes et bénignes (Cloos et coll. 2004). Bien que cette approche soit intéressante, sa pertinence clinique doit être éclaircie par des études supplémentaires avant de pouvoir la recommander dans le domaine diagnostique.

Figure 16. Représentation schématique des épitopes de CTX, NTX et ICTP.

Le CTX et le NTX sont libérés par la cathepsine K mais pas par les MMPs. Le ICTP est libéré par les MMPs et dégradé par la cathepsine K. D'après Garnero et coll. 2003.

La TRACP5b (résorption)

Les niveaux sériques de TRACP5b sont élevés chez les patients présentant des métastases osseuses diagnostiquées (Capeller et coll. 2003; Chao et coll. 2004; Korpela et coll. 2006). Une étude comparant la TRACP sérique, le calcium, la PYD et la DPD urinaires a révélé que la PYD urinaire à la plus haute valeur diagnostique pour la distinction des patients avec et sans métastases osseuses (Pecherstorfer et coll. 1995). Toutefois, le dosage utilisé dans cette étude mesure la TRACP totale au lieu de l'isoenzyme 5b qui est spécifique des ostéoclastes. Des études plus récentes basées sur un dosage spécifique de la TRACP5b rapportent que ce marqueur est très sensible à la présence de métastases osseuses (Capeller et coll. 2003; Chao et coll. 2004; Korpela et coll. 2006; Voorzanger-Rousselot et coll. 2006). En revanche, une autre étude sur des patients atteints de cancer rénal n'a pas pu mettre en avant le pouvoir discriminant de ce marqueur entre les sujets présentant des métastases osseuses ou non.

La BSP (résorption)

Récemment, la sialoprotéine osseuse (BSP) s'est révélée être un marqueur potentiel de la résorption osseuse dans les atteintes métastatiques, bien que des études confirmatoires manquent encore. L'expression de la BSP dans ces tumeurs a été suspectée de jouer un rôle dans le *homing* des cellules tumorales vers l'os et sur la survie de ces cellules dans le microenvironnement osseux (Jain et coll. 2002). Les taux sériques de BSP corrèlent avec les marqueurs de la résorption dans les atteintes osseuses métaboliques et malignes et sont souvent élevés chez les patients présentant des métastases osseuses (Seibel et coll. 1996). Les niveaux les plus importants sont observés chez les patients dont les métastases osseuses proviennent de tumeurs décrites pour leur expression ectopique de BSP (sein, prostate, thyroïde) (Bellahcene et coll. 1996). Dans une autre étude, les taux sériques de BSP sont étroitement corrélés aux niveaux sériques de PSA (Fedarko et coll. 2001). Des taux élevés de BSP ont aussi été observés chez les patients de myélome multiple non traités, avec également une discrimination entre ces patients et des sujets ostéoporotiques (Woitge et coll. 2001). Globalement pour ce marqueur, les patients présentant des lésions ostéolytiques ont souvent des taux sériques supérieurs à ceux des sujets atteints de pathologie osseuse non lytique.

3.2.2 Utilité pronostique des marqueurs du métabolisme osseux

L'utilité des marqueurs osseux dans la prédiction des métastases osseuses chez les patients du cancer est un point de controverse. Toutefois, les résultats d'études récentes semblent encourager leur utilisation pronostique.

Cancer de la prostate

Brown et coll. ont décrit une association entre les taux sériques basaux de PAL osseuse et de NTX et les évènements osseux se produisant ultérieurement chez 203 patients de cancer prostatique (Brown et coll. 2005). Dans cette étude, des taux élevés pour l'un ou l'autre des deux marqueurs sont associés à une incidence plus forte des atteintes osseuses et à une moindre survie. L'observation de taux élevés de NTX chez les sujets atteints de cancer devrait donc inciter à un traitement plus drastique pour la prévention des métastases osseuses. Chez d'autres patients atteints de ce type de cancer, les taux élevés de ICTP (Kylmala et coll. 1995) et de DPD et PYD (Berruti et coll. 2002) sont également associés à l'incidence des atteintes osseuses et à une moindre survie (Lein et coll. 2007). D'autres études n'ont pu confirmer ces observations (Seibel et coll. 2002b; Petrioli et coll. 2004) mais la forte variabilité des marqueurs osseux utilisés (Seibel et coll. 2002a) et l'effectif limité de patient ayant développé des métastases osseuses pourraient être en cause. Enfin, une étude plus récente suggère que la mesure plasmatique de l'ostéopontine, seule ou combinée avec d'autres marqueurs osseux, pourrait être un indice diagnostique (métastases osseuses) et pronostique (survie) utile chez les patients atteints de ce cancer (Ramankulov et coll. 2007).

<u>Cancer du sein</u>

D'autres équipes ont démontré qu'une augmentation de 150% du NTX urinaire chez les patientes atteintes de cancer mammaire était un indicateur fiable de la progression métastatique (Vinholes et coll. 1999). Des études plus récentes chez ce type de patientes indiquent que les taux sériques post-chirurgicaux de PINP (Jukkola et coll. 2001; Thurairaja et coll. 2006) et de NTX (Vinholes et coll. 1999; Ali et coll. 2004; Johansen et coll. 2007) sont prédictifs d'une progression plus rapide de la maladie et d'une moindre survie. Coleman et coll. ont également montré chez ce type de patientes que des taux élevés de NTX urinaire en début d'étude ou à la dernière mesure disponible, sont associés à une augmentation du risque de

progression de la maladie et de complications squelettiques (facteur 2), ainsi qu'à une hausse de la mortalité au cours de l'étude (facteur 4 à 6) (Coleman et coll. 2005). Enfin, dans une étude prospective sur le cancer du sein, les taux sériques de BSP chez les femmes nouvellement diagnostiquées ont un caractère hautement prédictif de l'apparition de métastases osseuses (Diel et coll. 1999).

Myélome multiple

On peut aussi considérer les médiateurs de l'ostéoclastogenèse comme marqueur pronostique des métastases osseuses. En effet, le ratio RANKL/OPG a été décrit comme un facteur pronostique indépendant dans le myélome multiple (Terpos et coll. 2003). Egalement, des taux bas d'ostéocalcine sérique semblent être associés à une progression rapide de la maladie et à une faible survie (Bataille et coll. 1990). Toutefois, cette observation n'a pas été confirmée dans d'autres études (Mejjad et coll. 1996; Carlson et coll. 1999) et des rapports plus récents indiquent d'ailleurs que pour cette pathologie le ICTP sérique est un meilleur marqueur pronostique que les autres indices biochimiques (Abildgaard et coll. 1998; Fonseca et coll. 2000). Enfin les taux sériques de BSP chez les patients atteints de myélome multiple progressent avec la progression de la maladie et des taux élevés sont associés à une moindre survie (Woitge et coll. 2001).

3.2.3 Suivi du traitement

En plus des nouvelles thérapies antinéoplasiques, les bisphosphonates (BP) sont devenus des médicaments de premier ordre dans le traitement des métastases osseuses. Ces molécules antirésorptives se sont montrés efficaces dans la réduction des douleurs et des fractures osseuses liées aux métastases (Berenson et coll. 2001; Jagdev et coll. 2001). On les donne également pour limiter les effets délétères osseux des antinéoplasiques tels que glucocorticoïdes, modulateurs de la réponse aux estrogènes non spécifiques, anti-aromatases et agents chimiothérapeutiques (Winter et Coleman 2009). Aussi, l'utilisation prépondérante des bisphosphonates dans ces différentes situations cliniques a renforcé le besoin de méthodes valides, économiques et faciles à mettre en œuvre pour suivre la réponse thérapeutique des patients. C'est dans cette application que les marqueurs du remodelage osseux sont aujourd'hui les plus utiles.

En général, les marqueurs osseux répondent aux BPs par une chute rapide et importante de leurs taux sériques et urinaires. Puisque les BPs ciblent les ostéoclastes, les marqueurs de résorption réagissent dans les jours qui suivent le traitement, alors que les marqueurs de formation sont modulés plusieurs semaines/mois après, par effet de couplage (Seibel et coll. 1996; Abildgaard et coll. 1998; Lipton et coll. 1998; Terpos et coll. 2000; Jagdev et coll. 2001; Martinetti et coll. 2002; de la Piedra et coll. 2003; Santini et coll. 2006). Blomqvist et coll. ont été les premiers à démontrer qu'après 6 mois de thérapie le taux de variation des marqueurs osseux par rapport au niveau basal était un indice pronostique favorable de l'issue clinique (Blomqvist et coll. 1987). Des études ultérieures indiquent que les taux de résorption avant traitement prédisent la réponse aux BPs. Dans une étude des effets de l'acide pamidronique sur le remodelage osseux et les douleurs osseuses, Vinholes et coll. ont observé que les patients présentant des taux de NTX-I urinaires élevés avant le traitement ou qui ne parviennent pas à se normaliser au cours du traitement, ne bénéficient peu ou pas des améliorations symptomatiques par rapport aux patients ayant des taux plus faibles avant traitement ou qui se normalisent par la suite (Vinholes et coll. 1997). Lüftner et coll. ont rapporté des résultats similaires pour la PAL osseuse et le PINP sériques (Lüftner et coll. 2003). Dans une autre étude sur les effets de l'acide pamidronique, Lipton et coll. ont montré que le NTX-I urinaire est un marqueur sensible pour le monitorage des thérapies antirésorptives. Une diminution des taux urinaires de NTX-I est associée à une réduction de la douleur, à une moindre incidence de fractures et à une progression tumorale plus lente (Lipton et coll. 1998). La mesure des variations post-traitement des marqueurs télopeptidiques et du calcium urinaire donne les meilleurs résultats dans le suivi des patients traités à l'acide zolédronique (Chen et coll. 2002). Chez les patients du cancer du sein, les taux sériques de TRACP5b chutent significativement en réponse aux BPs mais raugmentent avec la progression de la maladie (Capeller et coll. 2003). Dans une analyse exploratoire *post hoc* de trois grandes études cliniques, Coleman et coll. ont confirmé que les marqueurs du remodelage osseux pouvaient être de précieux outils pronostiques chez les patients atteints de métastases osseuses et traités aux BPs (Coleman et coll. 2005). Plus précisément, les patients avec des taux élevés de NTX (et de PAL osseuse dans une moindre mesure) ont un risque accru de complications osseuses et de progression de la maladie, par rapport aux sujets avec un remodelage normal.

Globalement, on considère une réponse thérapeutique significative lorsque la variation d'un signal (ici, le marqueur) est plus grande que l'imprécision de la mesure. Selon les données disponibles pour les biomarqueurs osseux, un changement n'est susceptible d'être effectif que pour des variations de plus de 40% dans les marqueurs de formation ou de 60-80% dans les marqueurs de résorption. En deçà, les modulations peuvent être non spécifiques mais n'impliquent pas nécessaire un échec thérapeutique.

3.2.4 Pertinence des marqueurs biochimiques et évolutions probables

La plupart des marqueurs osseux présentent des niveaux anormaux dans les situations de métastases osseuses diagnostiquées. Chez ces sujets, la validité diagnostique des marqueurs osseux est proche de celle de l'imagerie médicale. De plus amples études sont toutefois requises pour déterminer la précision diagnostique et la validité de ces marqueurs dans des phases précoces des métastases osseuses.

Bien que les études pronostiques réalisées soient prometteuses, des études plus longues et sur plus de sujets seront nécessaires pour confirmer l'association entre les taux élevés de marqueurs du remodelage et les atteintes osseuses ultérieures et/ou la moindre survie chez ces patients. Il sera alors intéressant de voir si ces associations sont généralisable ou alors spécifiques de certaines tumeurs.

Finalement, les marqueurs du remodelage seront de plus en plus utilisés dans le suivi des thérapies anti-tumorales. Il semble d'ores et déjà que des taux qui restent élevées après le traitement soit un indicateur d'échec/réponse thérapeutique et de diagnostic défavorable. Inversement, une diminution de ces marqueurs après un traitement antirésorptif est souvent associée à une réduction de la douleur, à moins de fractures et à une progression tumorale plus lente. Ici encore, des études prospectives de plus long terme seront nécessaires pour confirmer ces observations. Quoi qu'il en soit, la normalisation du remodelage osseux pourrait à l'avenir être une procédure standard pour évaluer l'efficacité osseuse des traitements.

En résumé, les données disponibles indiquent que les marqueurs osseux sont utiles dans les métastases osseuses actives et diagnostiquées, mais ne permettent aucune conclusion définitive quant à la précision et la validité de ces indices dans le diagnostic précoce des métastases osseuses. Plus clairement, les marqueurs osseux actuels n'ont pas une valeur diagnostique ou pronostique suffisante pour être utilisés seuls. En revanche, la combinaison de ces marqueurs entre eux et avec d'autres techniques diagnostiques pourrait permettre une évaluation clinique efficace des patients atteints de cancer à propension ostéophile. Cette stratégie devra en outre s'appuyer sur la découverte de marqueurs très précoces des métastases osseuses, par exemple des protéines de la réaction stromale. C'est dans cette perspective que ce projet de thèse sur la périostine, une protéine matricellulaire, a été réalisé.

Alors qu'on pourrait s'interroger sur la spécificité tissulaire des marqueurs du stroma, des travaux comme ceux de Studebaker et coll. montrent qu'il existe non pas « le stroma » mais « des stromas ». Par exemple, les fibroblastes d'origine mammaire, osseuse et pulmonaire secrètent de l'IL-6 alors que ceux d'origine dermique n'en produisent pas (Studebaker et coll. 2008). Ainsi, une utilisation combinée de ce type de biomarqueur pourrait permettre d'objectiver une réaction stromale spécifiquement localisée.

4. PÉRIOSTINE : PHYSIOLOGIE ET PHYSIOPATHOLOGIE

4.4		50
4.1		
4.1.1	Identification et localisation de la periostine	
4.1.2	Structure du gene et de la proteine	
4.1.2.1	Le gene et son promoteur	60
4.1.2.2	Isoformes et polymorphismes	61
4.2	Régulateurs de l'expression de la périostine	62
4.3	Interactions moléculaires	64
4.3.1	La périostine et les intégrines	64
4.3.1.1	Fas-1, le domaine fonctionnel de la périostine	64
4.3.1.2	Les intégrines : une interface entre la périostine et la cellule	64
4.3.2	Interactions avec les protéines matricielles	65
4.4	Rôle physiologique de la périostine : une protéine matricellulaire ?	65
4.4.1	La matrice extracellulaire et les protéines matricellulaires	65
4.4.2	La périostine : une nouvelle protéine matricellulaire	67
4.4.3	Le phénotype de la souris POSTN ^{-/-}	67
4.4.4	Réparation des lésions	68
4.4.5	Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène	69
4.5	Implication de la périostine dans les processus cancéreux	70
4.5.1	Rôle de la périostine dans les étapes clés de la tumorigenèse	70
4.5.1.1	Déstabilisation génomique	71
4.5.1.2	Immortalisation	71
4.5.1.3	Prolifération cellulaire	71
4.5.1.4	Survie cellulaire	72
4.5.1.5	Angiogenèse	72
4.5.1.6	Invasion du tissu et métastase	73
4.5.1.7	Réaction stromale	73
4.5.2	Investigation clinique de l'expression de la périostine	
4.5.3	Conclusion	77

4.1 Caractérisation

4.1.1 Identification et localisation de la périostine

La périostine est une protéine non collagénique initialement isolée par une approche de criblage différentiel entre deux banques d'ADNc issues des lignées préostéoblastique MC3T3-E1 et fibroblastique NIH3T3 (Takeshita et coll. 1993). Le gène, présent en une seule copie au locus 13q13.3 chez l'homme et 3C chez la souris, fut d'abord dénommé *Osteoblast Specific Factor 2* (OSF-2). Une autre équipe montra ultérieurement une forte immunoréactivité au niveau du périoste et renomma ainsi OSF-2 en Périostine (*POSTN*), levant par ailleurs l'ambiguïté avec le facteur de transcription Runx2/cbfa1, lui aussi appelé OSF-2 (Horiuchi et coll. 1999). Depuis lors, le nombre de travaux consacrés à ou relatant cette protéine augmente régulièrement, avec comme abord principaux l'oncologie, la physiologie cardiaque et l'odontologie (Figure 17).

Figure 17. Bibliométrie des articles liés à la périostine.

Le comptage a été effectué pour l'ensemble des articles ("total") et pour chacun des 4 champs d'étude principaux de la périostine (certains articles peuvent concerner plusieurs champs d'étude). L'analyse montre une dynamique de publication en phase exponentielle. Le concept "periostin/stroma" émergé plus а récemment, en 2007.

Les premiers travaux sur la périostine ont donné une vision globale de son expression spatio-temporelle dans l'organisme. Son expression au cours du développement prévaut sur celle dans l'organisme adulte. Chez l'embryon de souris, la périostine est exprimée dans de nombreux organes en cours de formation, notamment au niveau du cœur et du système ostéoarticulaire (Litvin et coll. 2004; Rios et coll. 2005; Zhu et coll. 2008; Kashima et coll. 2009). Chez la souris et l'humain adulte, cette expression se restreint à des zones très spécifiques comme le ligament parodontal (Horiuchi et coll. 1999; Kruzynska-Frejtag et coll. 2004; Rios et coll. 2005), les valves atrio-ventriculaires (Kruzynska-Frejtag et coll. 2001; Lindsley et coll. 2005; Rios et coll. 2005), et le périoste (Horiuchi et coll. 1999; Hirose et coll. 2003; Zhu et coll. 2008). Gillan et coll. ont illustré cette réduction globale d'expression par une analyse en western blot de sérums de veau fœtal et nouveau-né : le marquage observé dans le premier type d'échantillon disparait totalement dans le second (Gillan et coll. 2002). Enfin, il est important de noter que ces tissus adultes où la périostine persiste ont la particularité d'être soumis à des contraintes mécaniques constantes, et les cellules résidentes doivent les percevoir afin de continuellement s'y adapter. L'implication de la périostine dans ces mécanismes sera détaillée plus bas.

De façon plus spécifique au lignage ostéoblastique, un ensemble d'études montre que la périostine est exprimée dès le stade mésenchymateux (Dormady et coll. 2001; Coutu et coll. 2008). Cette protéine semble d'ailleurs importante pour l'ostéoblastogenèse. En effet, lorsque

la lignée MC3T3-E1 est cultivée en présence d'antisens ou d'anticorps dirigés contre la périostine, cela abroge l'expression des marqueurs ostéoblastiques tels que Collagène I, PAL osseuse, OC et Runx2, et dans une moindre mesure l'OPN (Litvin et coll. 2004). Le dépôt de calcium dans le milieu est également significativement réduit. Cette équipe a par ailleurs observé que l'expression de la périostine diminuait au cours de la différenciation des ostéoblastes en culture primaire.

En 2001, Kato et coll. ont mis au point une série de lignées ostéoblastiques dont les phénotypes (aspect, expression des marqueurs) s'échelonnent de l'ostéoblaste à l'ostéocyte mature. La lignée dénommée MLO-A5 est un préostéocyte, c'est-à-dire qu'elle correspondrait dans un contexte in vivo aux ostéoblastes nouvellement enfouis dans la matrice osseuse non minéralisée (ostéoïde), juste avant la phase de minéralisation. Au stade défini par les MLO-A5, la périostine est encore exprimée (Kato et coll. 2001). En revanche, une autre de leurs lignées (MLO-Y4) possède un phénotype ostéocytaire beaucoup plus avancé et n'exprime plus la périostine (Kato et coll. 2001), en accord avec d'autres observations in vivo (Horiuchi et coll. 1999; Kashima et coll. 2009). Egalement, par le biais de plusieurs lignées d'ostéosarcome et d'ostéoblastes fœtaux humains, Fortunati et coll. ont montré que l'expression de la périostine est inversement associée à l'aptitude des cellules à minéraliser (Fortunati et coll. 2010). Réciproquement, Conrads et coll. ont montré que le phosphate inorganique inhibait l'expression de plusieurs gènes ostéoblastiques dont la périostine (Conrads et coll. 2005). Ainsi, le phosphate inorganique est un facteur potentiel de l'extinction de la périostine dans les ostéocytes matures. Enfin, il a été rapporté que l'autre voie de différenciation des ostéoblastes, les cellules bordantes, perdent également l'expression de la périostine (Kashima et coll. 2009).

En résumé, ces données suggèrent que la périostine assure ses fonctions dans les phases précoces de l'ostéoblastogenèse, probablement dans le recrutement (propriétés adhésives) et l'engagement des précurseurs dans la voie de l'ostéoblastogenèse (Figure 18). L'expression de la périostine cesse lorsque l'ostéoblaste est devenu un ostéocyte mature ou bien une cellule bordante.

Figure 18. Schématisation du niveau d'expression de la périostine au cours de la différenciation de l'ostéoblaste. ¹Coutu et coll. 2008; ²Litvin et coll. 2004; ³Kato et coll. 2001; ⁴Rani 2009; ⁵Dormady et coll. 2001; ⁶Horiuchi et coll. 1999; ⁷Fortunati et coll. 2010. MSCs : mesenchymal Stem Cells ; OB : ostéoblastes : Ocy : ostéocytes.

4.1.2 Structure du gène et de la protéine

4.1.2.1 Le gène et son promoteur

Le cadre de lecture ouverte du gène contient 23 exons dont 2 (chez la souris) ou 3 (chez l'humain) peuvent disparaître ou subsister au cours d'un épissage alternatif. De nombreuses séquences de régulation potentielles ont été identifiées à ce jour dans la séquence promotrice chez la souris, notamment des séquences relatives à AP-1, Gata, Smad, Yin Yang-1, une TATA

box et une E-box (Oshima et coll. 2002; Lindsley et coll. 2007). Certaines de ces séquences ont pu être étudiées afin de valider leur fonctionnalité. Elles ont pour intérêt d'être impliquées dans des mécanismes tumoraux. La E-box (Oshima et coll. 2002) est une séquence reconnue par les facteurs trans de type bHLH tels que Twist, qui est associé à la transition épithélio-mésenchymateuse (EMT) se produisant lors de la progression tumorale (Yang et coll. 2004). Le facteur Yin Yang-1 (Lindsley et coll. 2007) est aussi connu comme initiateur de la tumorigenèse et inhibiteur de gènes critiques de la progression du cycle cellulaire (Wang et coll. 2006).

4.1.2.2 Isoformes et polymorphismes

A partir de l'extrémité N-terminale, la protéine est constituée d'une séquence signal éliminée après sécrétion par la cellule, une séquence EMI (Emilin-like, riche en cystéines), 4 domaines FAS-1 (Fasciclin1-like), un site de N-glycosylation et un domaine variable en C-terminal (Takeshita et coll. 1993) (Figure 19). La longueur totale du précurseur non épissé est de 836 ou 838 acides aminés chez l'humain ou la souris, respectivement, soit une masse moléculaire d'environ 93 kDa. Le domaines FAS-1 de la périostine et des autres protéines de la famille « Fasciclin-like » : Big-h3, qui en possède également 4, et Stabilin-1 et 2, qui en possèdent 7. La première région est une séquence reconnue par la γ -glutamyl carboxylase (Coutu et coll. 2008). Ainsi, la périostine est récemment entrée dans la famille des Glaprotéines. La seconde région, d'après sa forte homologie avec Big-h3, permettrait des interactions avec diverses intégrines (Kim et coll. 2000; Kim et coll. 2002; Nam et coll. 2003).

Figure 19. Schéma représentatif de la séquence protéique de la périostine.

L'épissage alternatif de la séquence précurseur de l'ARNm permet de générer plusieurs isoformes chez la souris (5) ainsi que chez l'homme (8), avec quelques polymorphismes nucléotidiques (SNPs) possibles (Tableau 3). On notera aussi que le choix des exons au cours de l'épissage n'est pas exactement le même d'une espèce à l'autre. Enfin, l'absence de la cassette E chez la souris entraîne l'apparition d'une séquence de localisation nucléaire potentielle à la jonction des cassettes D et F, mais aucune étude n'a tenté de vérifier sa fonctionnalité (Litvin et coll. 2004).

Les fonctions spécifiques des différentes isoformes ne sont pas encore connues mais des premières études chez la souris montrent une expression différentielle des isoformes au cours du développement (Kruzynska-Frejtag et coll. 2004; Litvin et coll. 2004; Zhu et coll. 2008) ou à la suite d'un stress biologique tel que l'infarctus du myocarde (Shimazaki et coll. 2008). Egalement, Kim et coll. rapportent que les biopsies de patients atteints de cancer de la vessie n'expriment plus la forme native (complète) de la périostine mais uniquement les autres isoformes (Kim et coll. 2008). Par ailleurs, ils ont montré des différences significatives dans l'invasion ou le potentiel métastatique de cellules transfectées avec les différentes isoformes. Ces résultats illustrent une littérature déjà abondante concernant l'importance des épissages alternatifs dans la tumorigenèse. De ce fait, on peut envisager le spliceosome comme cible thérapeutique (van Alphen et coll. 2009) et la détection d'isoformes spécifiques comme approche diagnostique.

Espèce	Code NCBI (protéine)	Disposition C-term	134	267	290	346	359	SNPs 385	421	541	658	670	672	Longueur	Masse mol. *
souris	46576895	ABCDEF	Y	R		К	v	т		D	v		т	838	93.0 kDa
	148703310 7657429	A_CDEF	Y	R		к	V	т		D	v		R	811	90.1 kDa
	148703314 26326757 49036571	ABCD_F	Y Y Y	R R G		K R K	V V V	T T A		D N D	V V A		T T T	810	89.9 kDa
	148703313 74180343 21618671	A_CD_F	Y Y C	R R R		K K K	V A V	T T T		D D D	V V V		R R R	783	87.0 kDa
	148703311	A_CF	Y	R		К	V	Т		D	V		R	757	84.3 kDa
homme	393317 209862907 93138709 119628999 119628998 55661657 55666241	ABCDEF			F 				V D D D D D D			T T T T T T		836	92.7 kDa
	166343765 55661655 55666243	A_CDEF							V D D			R R R		809	90.4 kDa
	55661656 55666244	ABCD_F			I I				D D			T T		808	90.2 kDa
	166343769 209863011 119628997	A_CD_F			F I I				V D D			R R R		781	87.3 kDa
	393319 209862911 76826930 76825050 119628996 119628995 55661654 55666242	A_/DEF			F 				V D D D D D D D			К К К К К К		779	86.4 kDa
	62824474 209863034	A_/D_F			F				V D			K K		751	83.9 kDa
	166343767	ADEF			F				V			S		749	83.6 kDa
	166343771	AD_F			F				V			S		721	80.4 kDa
X (casse	tte présente), _ (cassette abs	ente), / (début de la casse	ette C I	tronq	uée)		_								

Tableau 3. Les isoformes de la périostine dans l'espèce murine et humaine.

* Masse théorique, calculée à partir de l'outil http://www.protocol-online.org/tools/sms2/protein_mw.html

4.2 Régulateurs de l'expression de la périostine

Au cours des 10 dernières années, les travaux sur la périostine ont mis en évidence plusieurs facteurs capables d'altérer l'expression de cette protéine. Ces différents facteurs, regroupés en 3 groupes, sont présentés dans le Tableau 4. Sont présentés ici les facteurs qui laissent déjà entrevoir les mécanismes physiologiques et physiopathologiques dans lesquels la périostine est impliquée (§ 4.4 et 4.5).

De nombreuses études ont montré que le TGF- β stimule l'expression de la périostine (Horiuchi et coll. 1999). Etant donné que le TGF- β a été décrit comme favorisant l'EMT et la dissémination métastatique, il est possible que la périostine agisse en tant que médiateur de l'activité pro-métastatique du TGF- β dans certains cancers. Le PDGF-aa, le PDGF-bb, le FGF-1 et le FGF-2 sont aussi des sécrétagogues potentiels pour la périostine dans les cellules stellaires pancréatiques (Erkan et coll. 2007). Egalement, la périostine peut être régulée par Wnt-3 dans les cellules épithéliales mammaires (Haertel-Wiesmann et coll. 2000) ou par IL-4 et IL-13 dans les fibroblastes pulmonaires (Takayama et coll. 2006). L'hypoxie, *via* les facteurs de réponse FGF-1 et Angiotensine II, augmente l'expression de la périostine dans les cellules musculaires lisses des artères pulmonaires en activant différentes voies de MAPK (Li et coll. 2004; Gao et coll. 2008). Des résultats similaires ont été observés dans les cellules de cancer pulmonaire non à petites cellules (Non-Small Cell Lung Cancer ; NSCLC) (Ouyang et coll. 2009).

Dans la physiologie du tissu osseux, le TGF- β empêche la minéralisation de la matrice collagénique par les ostéoblastes. De la même façon, l'activine A stimule l'expression de la périostine et inhibe le processus de minéralisation de l'os (Eijken et coll. 2007). D'autres facteurs importants pour la maturation des ostéoblastes peuvent également induire l'expression de la périostine. Cela a été montré pour la BMP-2 (Ji et coll. 2000) ainsi que pour la PTH mais de façon particulièrement transitoire (pic à T+3H sur une cinétique horaire) (Fortunati et coll. 2010). Il a aussi été rapporté que la périostine est régulée par le facteur de transcription Twist, qui est impliqué dans la prolifération cellulaire, la migration et la différenciation dans les cellules progénitrices embryonnaires et les cellules tumorales immortalisées. L'altération génétique de ce facteur de transcription est responsable du syndrome de Saethre-Chotzen (fermeture précoce des sutures coronales, ou « craniosynostose »). Comme évoqué plus haut, Twist peut se lier au promoteur de la périostine dans les préostéoblastes indifférenciés et induire sa surexpression (Oshima et coll. 2002; Stock et coll. 2004). Par ailleurs, la leptine inhibe l'expression de la périostine dans les ostéoblastes (Gordeladze et coll. 2002). Dans ces cellules, la leptine induit la différenciation terminale des ostéoblastes en ostéocyte ou en cellule bordante. Enfin, le CTGF induit l'expression de la périostine et d'autres marqueurs ostéoblastiques précoces (i.e. PAL osseuse, Collagène I) mais pas tardifs (i.e. ostéopontine, ostéocalcine) dans les cellules de ligament parodontal (Asano et coll. 2005). D'un point de vue fonctionnel, le CTGF promeut la prolifération et la différenciation de ces cellules.

	positive	négative	références						
	TGF-β BMP-2 PDGF-aa PDGF-bb		Horiuchi 1999 Ji 2000 Erkan 2007 Erkan 2007	Takeshita 1993 Erkan 2007 Li 2006	Erkan 2007 Lindner 2005	Oku 2008	Li 2006	Tai 2005	
	FGF-1		Erkan 2007	Li 2004	Li 2006				
	FGF-2		Erkan 2007	Li 2006	Ouyang 2009				
facteurs de	TGF-α		0 2004 0 1 2004	LI 2006	Ga0 2008				
croissance,	PTH		Fortunati 2010						
hormones,	POSTN		Erkan 2007						
cytokines	CTGF		Asano 2005						
	activine A		Eijken 2007						
	IL-4		Takayama 2006						
	IL-13	14/mt 2	Takayama 2006	- 2000					
		FGE	Takeshita 1993	in 2000					
		leptine	Gordeladze 2002						
factours	hypoxie		Li 2004	Ouyang 2009					
physico-	stress mécanique		Afanador 2005	Wilde 2003	Bonnet 2009	Ma 2009			
chimiques		microgravité	Capelli 2008						
		phosphateinorganique	Conrads 2005						
frataura da	YY1		Lindsley 2007	Stark 2004					
jucteurs ae	twist		Ushima 2002	Stock 2004					
aansenpuoli	acide reunoique	brca1	Quaresima 2008						

Tableau 4. Facteurs pouvant réguler l'expression de la périostine.

Enfin, plusieurs travaux ont montré que le stress mécanique induit l'expression de la périostine dans le ligament parodontal (Wilde et coll. 2003; Afanador et coll. 2005) mais aussi dans les cellules de cancer pulmonaire *in vitro* (Ma et coll. 2009). D'autres travaux en cours montrent également une relation étroite entre contraintes mécaniques et périostine. En effet,

63

les ostéoblastes de calvaria de souris soumis à une microgravité présentent une diminution d'expression de la périostine (Capelli et coll. 2008) alors que la compression axiale du tibia des souris entraîne une surexpression de la périostine (Bonnet et coll. 2009).

4.3 Interactions moléculaires

4.3.1 La périostine et les intégrines

4.3.1.1 Fas-1, le domaine fonctionnel de la périostine

L'étude de l'homologue de la périostine, Big-h3, a apporté les premiers indices sur le rôle de la périostine dans le développement et la tumorigenèse. Outre l'homologie structurale définie par la présence de 4 domaines FAS-1, ces deux macromolécules sont des protéines extracellulaires induites par le TGF-β (Skonier et coll. 1992; Takeshita et coll. 1993). Big-h3 contient en plus une séquence RGD dans sa partie C-terminale (Skonier et coll. 1992) mais celleci peut être supprimée sans affecter les propriétés d'adhésion cellulaire (Ohno et coll. 1999). D'ailleurs, plusieurs équipes ont rapporté que les séquences conservées du deuxième et du quatrième domaine FAS-1 de Big-h3 étaient responsables de l'interaction avec les récepteurs intégrine α 3 β 1 (Kim et coll. 2000) ainsi que α v β 3 et α v β 5 (Kim et coll. 2002; Nam et coll. 2003). Plus récemment, Nam et coll. ont montré que des polypeptides recombinants correspondant aux 2^{ème} et 4^{ème} domaines FAS-1 de Big-h3 et aux 3^{ème} et 7^{ème} domaines de Stabilin-1 et Stabilin-2 avaient tous un effet sur l'angiogenèse et la tumorigenèse (Nam et coll. 2005). De par l'homologie entre la périostine et Big-h3, on peut s'attendre aux mêmes observations concernant notre protéine d'intérêt. En effet, plusieurs publications sur la périostine suggèrent que son interaction avec les intégrines se fait au sein des domaines FAS-1 et non pas de la portion variable située en C-terminal (Yoshioka et coll. 2002; Kim et coll. 2005; Kuhn et coll. 2007; Kim et coll. 2008; Wallace et coll. 2008).

Toutefois, des différences structurales persistent entre ces deux protéines suggérant des fonctions spécifiques à chacune au cours du développement et de la tumorigenèse. En effet, Big-h3 semble promouvoir la dissémination métastatique du cancer du côlon en augmentant l'extravasation (Ma et coll. 2008). Ce mécanisme permet aux cellules tumorales circulantes de sortir du système vasculaire pour aller métastaser dans un nouveau tissu. Il s'appuie sur l'activation de la voie $\alpha\nu\beta5$ /Src qui entraîne la dissociation des jonctions VE-cadhérine assurant la cohésion des cellules endothéliales. En revanche, la périostine semble promouvoir la dissémination métastatique du cancer du côlon en activant la voie $\alpha\nu\beta3$ /Akt qui permet la survie cellulaire (Bao et coll. 2004). Ainsi, les différences entre les domaines C-terminaux de la périostine et de Big-h3 pourraient contribuer à leur affinité différentielle pour les intégrines, et donc à des effets spécifiques sur la progression tumorale (Bao et coll. 2004; Ma et coll. 2008).

4.3.1.2 Les intégrines : une interface entre la périostine et la cellule

La littérature rapporte que la périostine est surexprimée dans différentes tumeurs et augmente la prolifération, la survie, l'angiogenèse et la métastase. Les intégrines interagissant avec la périostine et jouant un rôle dans la tumorigenèse comprennent $\alpha\nu\beta3$, $\alpha\nu\beta5$, and $\alpha\beta4$. Les deux premiers hétérodimères sont supposés réguler l'adhésion et la migration des cellules de tumeur ovarienne, mammaire, colorectale et orale (Gillan et coll. 2002; Bao et coll. 2004). Gillan et coll. ont observé que la périostine fonctionne comme ligand de $\alpha\nu\beta3$ et $\alpha\nu\beta5$ et supporte l'adhésion et la migration des cellules épithéliales ovariennes. Aussi, les intégrines $\alpha\nu\beta3$ colocalisent avec les points focaux d'adhésion formés par les cellules ensemencées sur un *coating* de périostine. Enfin, ces cellules forment moins de fibres de stress et sont plus motiles que celles ensemencées sur la fibronectine (Gillan et coll. 2002). Bao et coll. ont montré que l'activation de la voie Akt/PKB par la périostine se fait par le biais de $\alpha\nu\beta3$ (Bao et coll. 2004). De plus, l'activité pro-angiogénique de la périostine sur les cellules endothéliales a été associée à une expression accrue du récepteur au VEGF « Flk-1/KDR » dépendante de l'activation de la voie $\alpha\nu\beta3$ /FAK (*Focal Adhesion Kinase*) (Shao et coll. 2004). Une étude plus récente montre que la périostine se lie à l'hétérodimère $\alpha\nu\beta5$, ce qui promeut l'EMT au travers d'interactions entre les intégrines et le récepteur EGFR/HER1/ErbB1, et *in fine* l'invasion et la métastase *in vivo* (Yan et Shao 2006). Finalement, Baril et coll. ont montré que l'hétérodimère $\alpha\beta4$ agit comme récepteur de la périostine dans les cellules de cancer pancréatique (Baril et coll. 2007).

En fait, il n'est pas surprenant de constater des interactions fonctionnelles entre les intégrines et les protéines matricellulaires telles que la périostine. Nombre de revues rappellent que ces interactions sont d'une importance majeure pour la survie, la croissance et la progression des cellules tumorales dans le processus oncogénique (Liotta et Kohn 2001; Jacks et Weinberg 2002).

4.3.2 Interactions avec les protéines matricielles

Les études précédentes ont montré que plusieurs molécules de la matrice extracellulaire pouvaient se lier à la périostine (Tableau 5). Généralement, l'impact de ces interactions dans la physiologie et l'organisation de la matrice n'est pas encore expliqué. Toutefois, l'analyse du tissu conjonctif chez les souris POSTN ^{-/-} a montré un défaut dans l'ultra-structure et la fibrillogenèse du collagène, en particulier une diminution du nombre de *crosslinks* (Norris et coll. 2007; Shimazaki et coll. 2008). Cet aspect particulier de la périostine sera développé plus bas.

molécule	références				
Périostine (interaction en dimère)	Gillan et coll. 2002, Takayama et coll. 2006				
Collagène de type I	Norris et coll. 2007				
Hydroxyapatite	Coutu et coll. 2008				
Héparine	Sugiura et coll. 1995				
Fibronectine	Takayama et coll. 2006				
Ténascine-C	Takayama et coll. 2006				
Collagène de type V	Takayama et coll. 2006				
S-Laminine	Horiuchi et coll. 1999				

Tableau 5. Liste de molécules de la matrice extracellulaire interagissant avec la périostine.

4.4 Rôle physiologique de la périostine : une protéine matricellulaire ?

4.4.1 La matrice extracellulaire et les protéines matricellulaires

La matrice extracellulaire (MEC) est un régulateur clé du comportement cellulaire car elle pourvoit de nombreux signaux aux cellules qui y résident, signaux essentiels pour le maintien de la structure et de la fonction du tissu conjonctif (Lukashev et Werb 1998; Culav et coll. 1999; Stamenkovic 2003; Berrier et Yamada 2007). La MEC est composée de nombreuses protéines, incluant des protéines structurales telles que la fibronectine, les collagènes, les laminines, la vitronectine, ainsi que des protéines spécialisées telles que les protéoglycanes, les glycoprotéines, les facteurs de croissance et les métalloprotéases (Stamenkovic 2003; Tayebjee et coll. 2003). Chaque type de tissu conjonctif a des propriétés uniques déterminées par la quantité, le type et la composition de la MEC (Lukashev et Werb 1998; Culav et coll. 1999). La MEC est une structure dynamique, continuellement remodelée en réponse à des stimuli mécaniques, à la signalisation par les intégrines et à certaines pathologies (Hinz et Gabbiani 2003; Larsen et coll. 2006; Berk et coll. 2007; Gallagher et coll. 2007). Avec l'avancée des techniques moléculaires, il a été possible d'en savoir plus sur le remodelage de la MEC et les fonctions de chaque sous-type de protéines composant la MEC. Plus particulièrement, les souris génétiquement modifiées ont prouvé être un excellent modèle pour l'étude des molécules la MEC (Muller 1999). De tels modèles ont permis de montrer qu'au cours du développement et de la réparation des lésions, la synthèse de composants de la matrice peut être très transitoire. Ces composants constituent des signaux organisationnels finement contrôlés et programmés dans le temps, et destinés à des populations cellulaires spécifiques. L'adhésion des cellules à la MEC par le biais des récepteurs intégrines régule leur forme, leur prolifération, leur signalisation intracellulaire et leur différenciation, et contribue ainsi à une fonction normale du tissu (Humphries et coll. 2004; Zelenka 2004; Lock et coll. 2008).

Au cours de la réparation des lésions et dans certaines pathologies, des changements se produisent dans la composition de la MEC, pourvoyant ainsi des signaux aux cellules qui assurent la réparation du tissu lésé ou, lorsqu'il existe une mauvaise régulation de ces signaux, entraînant le développement de diverses pathologies (Raines 2000; Grzesik et Narayanan 2002; Midwood et coll. 2004; Berk et coll. 2007; Darby et Hewitson 2007). En 2000, Bornstein proposa l'existence d'une famille de protéines de la MEC présentant une fonction commune (Bornstein 2000). Il les baptisa « protéines matricellulaires » afin de souligner leur influence sur les interactions cellule-matrice. Les protéines matricellulaires sont particulièrement importantes au cours du développement mais sont typiquement restreintes au remodelage tissulaire et à la réparation des lésions chez l'adulte. Les protéines matricellulaires interagissent avec les récepteurs membranaires tels que les intégrines et sont capables de se lier à des facteurs de croissance ainsi qu'à des composants structurels (i.e. le collagène), comme il l'a été évoqué plus haut pour la périostine (Gillan et coll. 2002; Baril et coll. 2007; Butcher et coll. 2007; Shimazaki et coll. 2008). Selon cette définition, plusieurs protéines ont maintenant été identifiées comme protéines matricellulaires (Bornstein 2000), notamment les facteurs de croissance du tissu conjonctif (CTGFs) (Leask et Abraham 2006), les thrombospondines (Bornstein et coll. 2000; Chen et coll. 2000) et les galectines (Li et coll. 2006; Elola et coll. 2007). Les protéines matricellulaires connues et leurs fonctions sont présentés dans le Tableau 6.

Protéines matricellulaires	Effets connus des protéines matricellulaires sur la physiologie cellulaire						
CCN1 (Cyr61) CCN2 (CTGF) CCN3 (Nov) CCN4, 5 et 6 (WISP-1, -2 et -3) Galectine 1, 2, 3, 4, 8 et 9 ostéonectine (SPARC) ostéopontine Périostine Sialoprotéine osseuse Ténascine-C	Adhésion et désadhésion Synthèse de matrice extracellulaire, fibrillogenèse du collagène Prolifération et apoptose Différentiation et dédifférentiation Migration Morphologie Production de facteurs de croissance Biominéralisation						
Inrombospondine-1 et 2							

Tableau 6. Protéines matricellulaires majeures et leurs effets connus sur la physiologie cellulaire	e.
---	----

4.4.2 La périostine : une nouvelle protéine matricellulaire

La périostine est un ajout récent à la famille des protéines matricellulaires. De par ses fonctions biologiques observées dans le développement du système cardiaque murin, Norris et coll. proposèrent en 2008 qu'elle soit classée comme protéine matricellulaire, (Norris et coll. 2008a). Pa ailleurs, la périostine montre une forte expression dans des conditions fibrotiques comme la fibrose sous-épithéliale de l'asthme bronchique (Takayama et coll. 2006) et la fibrose de la moelle osseuse (Oku et coll. 2008). La plupart des premiers travaux sur la périostine étaient de nature descriptifs, confirmant l'expression de cette protéine dans différents tissus et certaines pathologies. Cependant, avec la génération d'un modèle de souris knockout pour le gène de la périostine, les fonctions de cette protéine dans le développement, la réparation des lésions et différentes pathologies commencent à être révélées (Rios et coll. 2005).

4.4.3 Le phénotype de la souris POSTN -/-

La première description du *knockout* de la périostine (POSTN ^{-/-}) chez la souris a été réalisée par Rios en 2005. Le phénotype de la souris POSTN ^{-/-} est d'un grand intérêt à cause du nombre de tissus affectés. Comme pour d'autres protéines matricellulaires, la déficience pour la périostine n'entraîne pas de mortalité fœtale bien qu'environ 14% des nouveau-nés meurent avant le sevrage. L'expression de la périostine est plus marquée dans les tissus conjonctifs riches en collagène. La délétion de la périostine entraîne un sévère retard de croissance, suggérant que cette protéine est essentielle pour le développement postnatal. L'analyse histologique de ce modèle de souris a démontré un déficit d'os trabéculaire, de graves défauts de l'émail au niveau des incisives, un phénotype de maladie parodontale ainsi que des défauts au niveau du cartilage et des valves cardiaques (Figure 20). Toutefois, lorsque la souris est soumise à une diète molle, le retard de croissance est atténué suggérant qu'une partie du phénotype est lié aux lésions parodontales et en conséquence à des difficultés de mastication (Rios et coll. 2005).

Figure 20. Phénotype osseux et dentaire des souris POSTN^{-/-}.

Les souris POSTN ^{-/-} présentent entre autres un défaut d'éruption des incisives avec un phénotype de maladie parodontale et une ostéopénie très marquée. D'après Kii et coll. 2006 (à gauche) et Rios et coll. 2005 (à droite).

Hormis le modèle CCN2-KO généré par Kuiper en 2007, les effets du *knock-out* d'une protéine matricellulaire ne sont perceptibles que dans des conditions de blessure ou de maladie (Bornstein et Sage 2002; Kuiper et coll. 2007). Chez ces animaux, la délétion de protéines matricellulaires comme TSP-1 et TSP-2, SPARC, les galectines ou la ténascine-C affecte de nombreux types tissulaires, mais plus généralement altère la réponse aux lésions tissulaires (Yan et Sage 1999; Bornstein et coll. 2000; Yang et coll. 2000; Bornstein et coll. 2004; Gruber et coll. 2005; Elola et coll. 2007). Cependant la délétion de la périostine semble avoir des

répercutions biologiques plus sévères, avec des altérations significatives qui se produisent au niveau des tissus conjonctifs pendant le développement postnatal. De fait, toutes les protéines matricellulaires sont connues pour jouer un rôle clé dans la réparation des lésions. Le rôle de la périostine doit cependant être éclairci.

4.4.4 Réparation des lésions

La réparation d'une lésion se fait par une suite d'événements imbriqués qui vont de la phase d'accumulation plaquettaire jusqu'à ce que la contraction matricielle aboutisse à la reconstitution du tissu lésé (Midwood et coll. 2004). Tandis que la fibrine, le collagène et la fibronectine constituent le support structurel de la matrice pendant la réparation de la lésion, les protéines matricellulaires agissent en tant que signaux spécifiques pour les cellules résidentes du tissu, modulant ainsi leur phénotype (Kyriakides et Bornstein 2003; Alford et Hankenson 2006). Chaque protéine est exprimée à des étapes spécifiques de la réparation, certains patrons d'expression étant plus transitoires que d'autres. A ce jour cependant, le profil d'expression de la périostine au cours du processus de réparation tissulaire reste à définir. Jusqu'à présent, l'expression de la périostine dans ces processus a été principalement examinée au niveau des systèmes vasculaires et cardiagues (Lindner et coll. 2005; Dorn 2007; Kuhn et coll. 2007; Litvin et coll. 2007; Norris et coll. 2008a; Shimazaki et coll. 2008) et dans une moindre mesure au niveau des lésions dermiques chroniques (Roy et coll. 2007), musculaires (Goetsch et coll. 2003) et osseuses (Nakazawa et coll. 2004; Zhu et coll. 2009). De façon intéressante, les processus régulateurs tels que l'expression de protéines matricellulaires sont à la fois responsables du développement normal de l'os, du cartilage et du tissu cardiaque, mais jouent aussi un rôle majeur dans la pathogénie de ces tissus chez l'adulte.

A l'origine, la périostine a été identifiée au niveau du périoste et du ligament parodontal (Takeshita et coll. 1993; Horiuchi et coll. 1999). Dans les fractures osseuses, on constate une surexpression de la périostine au niveau des préostéoblastes du périoste ainsi que dans les cellules mésenchymateuses indifférenciées situées à proximité du site de fracture (Nakazawa et coll. 2004; Zhu et coll. 2009). Le niveau d'expression de la périostine atteint alors un pic à J7 et baisse significativement à J14. Ainsi, il est probable que la périostine joue un rôle dans le recrutement des préostéoblastes au niveau du cal osseux provisoirement formé lors de la guérison des fractures (Nakazawa et coll. 2004; Kojima et coll. 2007; Zhu et coll. 2009). Cependant, l'implication de la périostine dans la physiologie des cellules mésenchymateuses n'est pas limitée à l'os et au périoste.

Chez les souris POSTN ^{-/-}, un grand nombre de cellules mésenchymateuses indifférenciées restent dans le tissu cardiaque après son développement (Butcher et coll. 2007; Norris et coll. 2008b), suggérant que la périostine est peut-être nécessaire à la différenciation de ces progéniteurs en cardiomyocytes. Par ailleurs, Kuhn et coll. ont observé chez le rat soumis à un infarctus expérimental que la périostine accroît le nombre de cardiomyocytes qui répliquent leur ADN (Kuhn et coll. 2007). Plus précisément, Shimazaki et coll. ont observé que la périostine est exprimée par les fibroblastes cardiaques et interagit avec l'intégrine αv des cellules environnantes, ce qui semble moduler leur comportement au cours du processus de remodelage succédant l'infarctus (Shimazaki et coll. 2008). Cependant, il n'est toujours pas établi que la périostine agisse sur les cardiomyocytes directement ou indirectement, par le biais des fibroblastes cardiaques (Dorn 2007).

Dans le remodelage vasculaire, qui peut être induit par l'utilisation traumatique d'un ballonnet, le niveau d'expression de la périostine est fortement augmenté, conjointement à différentes protéines de la matrice (divers collagènes et CCN, ostéopontine, ostéonectine) (Lindner et coll. 2005). L'expression de la périostine après ce type de blessure a été localisée au niveau des cellules musculaires lisses (smooth muscle cells ; SMCs) de la néointima et de l'adventice. Ces observations sont similaires aux patrons d'expression d'autres protéines matricellulaires dans le même type de modèle expérimental (*i.e.* ténascine-C) (Majesky 1994; Wallner et coll. 2002), suggérant que la périostine peut assurer des fonctions semblables dans cette situation. Aussi, il a été clairement établi que la surexpression de la périostine promeut la migration des SMCs in vitro (Li et coll. 2006), probablement par une action antiadhésive semblable à celle de la ténascine-C ou d'autres protéines matricellulaires (Murphy-Ullrich 2001). Ces données suggèrent que les protéines matricellulaires ont un rôle important dans le remodelage artériel.

Ainsi, il apparaît que la périostine, au même titre que les autres protéines matricellulaires, peut être considérée comme fondamentale dans le remodelage tissulaire pathologique. A présent, il est largement rapporté que la périostine interagit avec les intégrines et module les interactions cellule-matrice, l'adhésion, la prolifération et les processus de différenciation (Kudo et coll. 2007).

4.4.5 Interactions entre périostine et MEC : influence sur la fibrillogenèse du collagène

Les fibrilles de collagène sont les composants de la MEC permettant aux tissus conjonctifs de résister aux tensions mécaniques et d'en assurer l'élasticité. Les tissus tels que les ligaments, les tendons, l'os, le cartilage et la peau contiennent un grand nombre de fibrilles de collagène, qui permettent ainsi la dispersion de ces contraintes (Culav et coll. 1999; Canty et Kadler 2005). La fibrillogenèse du collagène est un processus multi-étapes complexe qui reste peu compris (Canty et Kadler 2005). Bien qu'il ait été initialement supposé que le collagène sécrété pouvait s'auto-assembler, des travaux plus récents ont montré que d'autres protéines de la MEC sont requises dans ce processus, en particulier les protéines matricellulaires (Bornstein et coll. 2000; Yang et coll. 2000; Bornstein et coll. 2004). Par exemple, la délétion du gène de la thrombospondine-2 a montré une perturbation dans la fibrillogenèse du collagène (Bornstein et coll. 2000), et une inactivation du gène SPARC a été caractérisée par une réduction significative des fibrilles de collagène (Martinek et coll. 2007).

L'expression de la périostine est commune aux tissus riches en collagène, suggérant qu'elle pourrait être liée à la fibrillogenèse du collagène (Borg et Markwald 2007). De façon intéressante, la périostine est systématiquement présente chez l'animal adulte dans des tissus tels que le ligament parodontal (Horiuchi et coll. 1999; Wilde et coll. 2003; Tomokiyo et coll. 2008), contrairement à beaucoup d'autres protéines matricellulaires, suggérant un rôle clé dans les tissus adultes. Norris et coll. ont examiné le rôle de la périostine dans la fibrillogenèse du collagène de type I au niveau de tissus conjonctifs murins tels que le ligament parodontal, le tendon, la peau et les valves atrio-ventriculaires (Norris et coll. 2007). Par des techniques de co-immunoprécipitation, ils ont montré que la périostine se lie directement au collagène de type I, et que chez les souris POSTN ^{-/-} le diamètre des fibres de collagène et la concentration de *crosslinks* sont significativement réduits dans les tissus testés (peau, tendons). En outre, l'évaluation biomécanique d'échantillons de peau de ces souris démontre une réduction de l'élasticité et du point de rupture par rapport aux échantillons de souris normales. Les auteurs concluent que la périostine semble influencer la maturation et l'assemblage des fibrilles de

collagène de type I. Cette assertion est également soutenue par des travaux montrant chez ces souris une incapacité à assurer un remodelage valvulaire normal et une maturation du squelette fibreux cardiaque (Butcher et coll. 2007; Norris et coll. 2008b; Snider et coll. 2008). L'hypothèse du rôle de la périostine dans la fibrillogenèse du collagène a donc des implications importantes dans les maladies du tissu conjonctif, où les anomalies de production du collagène et de l'élastine aboutissent à une fibrose chronique (Uitto et Lichtenstein 1976; Uitto 1979; Abraham et coll. 1982; Leask et coll. 2004). On ne sait pas encore si la périostine affecte directement ou indirectement la synthèse et l'assemblage du collagène, mais de nouvelles études sur la souris POSTN^{-/-} pourraient fournir des informations importantes sur les maladies du tissu conjonctif, en particulier celles où il existe un défaut de synthèse et d'assemblage du collagène.

4.5 Implication de la périostine dans les processus cancéreux

4.5.1 Rôle de la périostine dans les étapes clés de la tumorigenèse

Le développement du cancer implique une série de plusieurs processus génétiques et cellulaires complexes. Au cours de la tumorigenèse, les cellules tumorales peuvent acquérir des aptitudes particulières comme surmonter les contraintes environnementales, s'auto-suffire pour les signaux mitogènes, déréguler leur cycle cellulaire, éviter l'apoptose et se répliquer sans limites (Hanahan et Weinberg 2000; Elliott et Blobe 2005). Dans la tumeur en cours de croissance, les altérations génétiques et épigénétiques permettent également aux cellules tumorales d'acquérir les compétences nécessaires pour induire l'angiogenèse, envahir le tissu environnant et métastaser vers des sites secondaires (Bao et coll. 2004). Les études publiées ont montré que la périostine joue un rôle critique dans ces étapes clés de la tumorigenèse (Figure 21).

Figure 21. Représentation hypothétique du rôle de la périostine dans la tumorigenèse.

Ce modèle décrit le rôle potentiel de la périostine dans la régulation du processus de transformation des cellules normales en cellules tumorales et de leur progression vers la métastase. La périostine est fortement exprimée dans différents cancers, souvent au niveau du stroma tumoral. Elle interagit avec les intégrines pour induire divers évènements cellulaires. Les données publiées révèlent que la périostine contribue à la tumorigenèse principalement en prévenant les cellules de l'apoptose et en promouvant l'angiogenèse, l'invasion et la métastase. L'étude du rôle de la périostine dans la déstabilisation génomique, l'immortalisation, la prolifération et l'évitement immunitaire requiert de plus amples études.

4.5.1.1 Déstabilisation génomique

Il est crucial pour les cellules de maintenir leur intégrité et leur stabilité génomique à cause du stress et des dommages constants que subit l'ADN (Aguilera et Gomez-Gonzalez 2008). On sait que l'instabilité génomique, une des étapes clés de la tumorigenèse, est responsable des changements cellulaires qui permettent aux cellules normales leur transformation en cellules tumorales (Hanahan et Weinberg 2000). Les défauts liés aux mécanismes de réparation de l'ADN et de contrôle du cycle cellulaire confèrent une plus grande instabilité génétique et une prédisposition au cancer (Elledge 1996).

Récemment, il a été montré que l'expression de la périostine est augmentée dans les cellules transfectées avec la séquence mutante « 5083del19 » de Brca1, et totalement inhibée lorsqu'il s'agit d'une séquence sauvage de Brca1 (Quaresima et coll. 2008). Brca1 est un suppresseur de tumeur. Il agit sur le contrôle du cycle, la recombinaison homologue et la réparation de l'ADN (Venkitaraman 2002). Les mutations familiales de Brca1 sont peu fréquentes (10%) mais prédisposent les femmes aux cancers du sein (risque moyen de 54%) et de l'ovaire (risque moyen de 30%) (Easton et coll. 1995). De plus, Quaresima et coll. ont confirmé leurs données par un immunomarquage de la périostine à la fois dans des tumeurs mammaires portant la mutation 5083del19 et dans le sérum des porteurs de la mutation, qu'ils aient déclaré un cancer ou non (Quaresima et coll. 2008).

4.5.1.2 Immortalisation

La sénescence est un mécanisme suppresseur de tumeur important car il permet d'entraver la progression des tumeurs bénignes tant qu'il n'y a pas de mutations qui jouent contre lui. Il a été démontré que plusieurs gènes peuvent déclencher la sénescence *in vitro* et *in vivo* (Courtois-Cox et coll. 2008).

La périostine est fortement exprimée dans les cellules immortalisées HMVEC (*human microvascular endothelial cells*) (Shao et Guo 2004) et TesPDL (ligament parodontal) (Ibi et coll. 2007), qui sont transfectées avec l'oncogène hTERT (*human TElomerase Reverse Transcriptase*) afin d'empêcher leur sénescence. Toutefois, il n'y a aucune étude sur le rôle direct de la périostine dans la prévention de la sénescence. Egalement, on ne sait pas si la surexpression de la périostine est suffisante pour induire la sénescence *in vitro* et *in vivo*.

4.5.1.3 Prolifération cellulaire

La prolifération cellulaire est finement régulée par l'action concertée de signaux mitogènes et de signaux antiprolifératifs qui convergent vers des régulateurs spécifiques du cycle cellulaire (Hanahan et Weinberg 2000; Elliott et Blobe 2005). Comme évoqué précédemment, la périostine peut induire le retour des cardiomyocytes différenciés dans le cycle cellulaire en activant la voie des PI3-K (Kuhn et coll. 2007).

Dans les cellules MIP101 (tumeur colorectale), la périostine stimule également la prolifération cellulaire (Tai et coll. 2005). Kudo et coll. n'ont pas confirmé cet effet dans les cellules HSC2 et HSC3 (laryngopharynx) mais rapportent qu'une surexpression stable de la périostine augmente leur pouvoir invasif et adhésif *in vitro* et leur croissance en xénogreffe sous-cutanée (Kudo et coll. 2006). Similairement, Shao et coll. rapportent que la surexpression de la périostine dans les cellules tumorale 293T (rein), B16F1 (mélanome) et MDA-MB-231 a tendance à réduire le potentiel prolifératif de ces cellules *in vitro* et provoque pourtant une amplification de la croissance et de l'angiogenèse en xénogreffe sous-cutanée (Shao et coll. 2004).
Ces données montrent que le rôle des protéines matricellulaires telles que la périostine dans les processus de la tumorigenèse peut impliquer un environnement biologique plus complexe que les conditions de culture *in vitro*. Ainsi, l'évaluation des fonctions tumorigènes de la périostine dans des modèles *in vivo* devrait être plus pertinente.

4.5.1.4 Survie cellulaire

Les tumeurs sont caractérisées par une croissance incontrôlée, qui résulte en un déséquilibre entre la prolifération et la mort cellulaire (Hanahan et Weinberg 2000). A l'inverse des cellules normales, les cellules tumorales peuvent rompre l'équilibre entre les facteurs proet anti-apoptotiques et ainsi promouvoir la survie cellulaire (Bao et coll. 2004).

Des études récentes montrent que l'expression de protéines matricellulaires telles que la périostine et l'ostéopontine dans les cellules tumorales empêche l'apoptose de ces cellules (Bao et coll. 2004; Song et coll. 2005; Song et coll. 2008). La périostine amplifie également la progression métastatique du cancer du colon en promouvant la survie des cellules tumorales et endothéliales en condition de stress (*i.e.* hypoxie, manque de nutriments, perte d'adhésion) (Bao et coll. 2004). Elle prévient aussi l'apoptose des cellules MIP101 sous 5-fluorouracile (Tai et coll. 2005) et promeut la survie des cellules stellaires pancréatiques sous hypoxie (Baril et coll. 2007). Ces cellules pancréatiques peuvent également entretenir leur activité fibrogénique par une stimulation autocrine de périostine et soutenir la croissance des cellules tumorales en conditions de stress hypoxique et nutritif (Erkan et coll. 2007).

En conséquence de cette action anti-apoptotique, la pression de sélection pour générer des colonies métastatiques devient plus permissive. Cette fonction de la périostine pourrait constituer un des mécanismes clés de son action tumorigène.

4.5.1.5 Angiogenèse

Il est connu que la croissance tumorale nécessite, à partir d'un certain point, la mise en place d'une vascularisation adaptée à ses besoins (Hanahan et Weinberg 2000). Beaucoup de molécules peuvent activer les voies de signalisation angiogéniques des cellules endothéliales (Yancopoulos et coll. 2000). Le VEGF, qui agit par le biais des récepteurs membranaires couplés à la tyrosine-kinase Flt-1 (VEGF-R1) et Flk-1/KDR (VEGF-R2), est l'une des molécules angiogéniques les plus puissantes.

La périostine a également été identifiée comme facteur angiogénique (Shao et coll. 2004; Shao et Guo 2004). En effet, la périostine stimule la progression métastatique du cancer du colon en s'appuyant notamment sur sa capacité à promouvoir la survie des cellules endothéliales humaines (Bao et coll. 2004). De même, la surexpression de la périostine dans les cellules humaines de cancer mammaire conduit à une augmentation significative de l'angiogenèse, qui se ferait par une régulation positive de Flk-1/KDR dans les cellules endothéliales en activant la voie de transduction $\alpha\nu\beta$ 3/FAK (Shao et coll. 2004). Dans les cancers laryngopharyngiens et pulmonaires également, la périostine est fréquemment surexprimée et augmente l'angiogenèse et l'invasion tumorale (Siriwardena et coll. 2006; Takanami et coll. 2008).

Ainsi, les cellules tumorales pourraient acquérir la capacité d'améliorer la vascularisation locale en exprimant des facteurs typiquement mésenchymateux tels que la périostine, et en conséquence, progresser vers le stade « dissémination » de la progression tumorale.

4.5.1.6 Invasion du tissu et métastase

L'invasion tumorale et la métastase sont des processus complexes, régis par de multiples facteurs, caractéristiques des phases finales du développement tumoral. Ces processus incluent l'intravasation, la survie dans le système circulatoire, le ciblage et l'extravasation dans un tissu distant, l'initiation et le maintien de la prolifération et la réactivation de l'angiogenèse. L'accomplissement de ces nombreuses étapes requiert de mettre en place de nombreuses stratégies et permet *in fine* d'établir de nouvelles colonies métastatiques (Yilmaz et coll. 2007). Ces stratégies reposent sur les interactions que les cellules tumorales vont mettre en place avec la matrice et les cellules du stroma (Zalatnai 2006).

La littérature indique que la périostine est associée à la progression métastatique dans différents cancers. Dans les tissus de mélanomes non métastatiques, l'expression de la périostine ne diffère pas des tissus sains. En revanche, une surexpression est détectée dans 60% des cas avec métastases hépatiques ou lymphatiques (Tilman et coll. 2007). Dans le cancer gastrique et ses métastases lymphatiques, la périostine est également surexprimée (Li et coll. 2007). Dans les cancers laryngopharyngiens, la périostine est suspectée de favoriser l'angiogenèse, l'invasion et la métastase (Kudo et coll. 2006; Siriwardena et coll. 2006). Dans le neuroblastome, le niveau d'expression (ARNm) de la périostine corrèle avec la progression et le pronostic clinique (Sasaki et coll. 2002). Enfin, les niveaux sériques de périostine chez les patients de thymome ne diffèrent pas des patients sains, sauf si l'analyse se focalise sur les patients de stade IV, ce qui suggère un rapport entre la périostine et l'invasion et la progression de ce type de cancer (Sasaki et coll. 2001b). Parmi les nombreuses études sur les tumeurs, seules quelques études sur le cancer de la vessie rapportent des informations contraires. Dans ces études, la périostine est décrite comme un suppresseur de l'invasion et de la métastase tumorale (Kim et coll. 2005; Kim et coll. 2008).

Enfin, comme rapporté plus haut, la périostine est associée à l'EMT qui est un processus-clé du développement (Kruzynska-Frejtag et coll. 2004; Litvin et coll. 2005; Butcher et coll. 2007; Lindsley et coll. 2007). Mais l'EMT est également une étape critique de la progression métastatique. Elle permet en effet aux cellules épithéliales d'acquérir un potentiel invasif et métastatique (Thiery 2002; Thiery et Sleeman 2006). Par exemple il a été montré que l'expression stable de la périostine dans les cellules 293T, qui sont tumorigènes mais non métastatiques, induit leur EMT et promeut leur migration, invasion et adhésion (Yan et Shao 2006). En situation clinique également, une expression élevée de périostine a été observée au cours de l'EMT des cellules tumorales dans le NSCLC (Soltermann et coll. 2008).

4.5.1.7 Réaction stromale

Ce processus intervient tout au long de la tumorigenèse. Il constitue vis-à-vis de la tumeur un environnement favorable à la prolifération, la survie, la vascularisation, l'invasion et la dissémination de ses cellules. Pour cela, il fournit des facteurs de croissance, de survie et proangiogéniques (Ribatti et coll. 2006). La réaction stromale est également caractérisée par un changement de la composition de la matrice extracellulaire, plus propice à supporter la croissance tumorale (Bissell et Radisky 2001; Bissell et Labarge 2005; Baril et coll. 2007).

De nombreux travaux rapportent l'expression de la périostine et autres protéines de la MEC dans le stroma réactif de la tumeur (Tableau 7). Toutefois, on ne sait pas encore exactement comment les cellules tumorales manipulent les protéines matricielles afin de coopérer avec les autres types cellulaires et ainsi garantir leur propre survie et prolifération. Une récente étude démontre que lorsque les cellules stellaires pancréatiques sont stimulées par les cellules tumorales pancréatiques, les premières restent activent *via* une stimulation

autocrine médiée par la périostine. Egalement, ce processus est exacerbé par la radiothérapie et résulte en la production d'un excès de protéines matricielles, créant ainsi un microenvironnement pro-tumoral. En résumé, les cellules stellaires peuvent sécréter abondamment de la périostine, du collagène de type I et de la fibronectine, qui favorisent la croissance tumorale en condition de privation nutritive, d'hypoxie ou de stress chimiothérapeutique (Erkan et coll. 2007). Le groupe fonctionnel des protéines matricellulaires (SPARC, ostéopontine, thrombospondine, ténascine-C) intervient dans la régulation du développement, la réparation tissulaire et la tumorigenèse en promouvant l'adhésion, la migration et la survie des cellules tumorales (Bornstein et Sage 2002; Shi et coll. 2004; Alford et Hankenson 2006; Baril et coll. 2007). A l'inverse de nombreux oncogènes, la fonction physiologique de ce type de protéines est rarement associée à la prolifération cellulaire. En fait, ces protéines pourraient exercer leur influence sur la tumorigenèse en changeant le microenvironnement, c'est-à-dire favoriser ou altérer l'adhésion cellulaire, la composition de la matrice et l'activité des cellules stromales placées à l'intérieur et autour de la tumeur (Shao et coll. 2004). En tant que protéine d'adhérence, la périostine est fortement exprimée dans les tissus embryonnaires, présente dans certains tissus chez l'adulte et positivement régulée après blessure (Rios et coll. 2005; Kuhn et coll. 2007). De plus, il a été rapporté que la périostine favorise fortement l'adhésion dans le stroma desmoplasique et la progression métastatique de plusieurs cancers. Ainsi, l'expression accrue de la périostine pourrait conférer aux cellules tumorales un avantage sélectif au cours de la tumorigenèse et refléter un phénotype tumoral plus agressif.

Référence	Cancer	Méthodologie	Observations supplémentaires
Ben et coll. 2009	colorectal	IHC + ELISA	
Kikuchi et coll. 2008	colorectal	IHC + in vitro	postn -> CT
Smith et coll. 2009	colorectal	μ-dissection + FACS	
Paulitschke et coll. 2009	mélanome	LCMS	
Tilman et coll. 2007	mélanome	Q-PCR	
Hao et coll. 2006	œsophage de Barrett	µarray	
Saadi et coll. 2010	œsophage de Barrett	μ-dissection + μarray	
Choi et coll. 2010	ovaires	IHC	CT -> SC
Baril et coll. 2007	pancréas	IHC + in vitro	postn -> CT
Erkan et coll. 2007	pancréas	IHC + in vitro	postn -> CT, CT -> SC
Kanno et coll. 2008	pancréas	IHC + in vitro + in vivo	postn -> CT, CT -> SC
Fukushima et coll. 2008	pancréas	IHC	
Sasaki et coll. 2001a	poumon (NSCLC)	ISH	
Soltermann et coll. 2008	poumon (NSCLC)	IHC	
Tsunoda et coll. 2009	prostate	IHC	
Furusato et coll. 2010	prostate	μ-dissection + μarray	
Tischler et coll. 2010	prostate	IHC	
Castronovo et coll. 2006	rénal	IHC	
Sasaki et coll. 2003	sein	ISH	
Puglisi et coll. 2008	sein	IHC	
Ma et coll. 2009	sein	μ -dissection + μ array	

Tableau 7. Littérature rapportant l'expression de la périostine dans la réaction stromale.

IHC: immunohistochimie. LCMS: chromatographie liquide couplée à la spectrométrie de masse. FACS: flurorescence-activated cell sorting. ISH: in situ hybridization. Postn -> CT: les auteurs ont également montré des effets de la périostine sur les cellules tumorales. CT -> SC: les auteurs ont également montré que les cellules tumorales stimulent la production de périostine dans les cellules stromales.

4.5.2 Investigation clinique de l'expression de la périostine

La surexpression de la périostine a été rapportée dans de nombreux cas cliniques de cancer (Tableau 8). La revue des données se concentrera ici sur la signification clinique de la périostine dans les cancers qui présentent la plus forte mortalité chez l'humain : sein, prostate, poumon, colon, pancréas et ovaires.

Cancer	Expression / pertinence clinique	Références
Vessie	↓ (tissu) supresseur de l'invasion et de la métastase	Kim 2005, Kim 2008
Laryngopharynx	↑ (tissu) corrèle avec l'expression de TGF-β invasion, angiogenèse et métastases	Chang 2005, Siriwardena 2006, Kudo 2006, Gonzalez 2003, Choi 2008
Poumon (NSCLC)	个 (tissu, sérum) corrèle avec le stade clinique et la survie	Sasaki 2001a, Takanami 2008, Soltermann 2008, Hong 2010
Foie	↑ (tissu) corrèle avec le stade clinique expression épithéliale corrèle avec la survie	Riener 2010
Ovaire	↑ (tissu, ascites) associée aux stades avancées corrèle avec la survie et la récurrence tumorale	Ismail 2000, Gillan 2002, Choi 2010, Zhu 2010
Sein	↑ (tissu, sérum) corrèle avec les métastases osseuses et la survie prolifération et angiogenèse in vivo associée aux tumeurs invasives / stades avancés	Puglisi 2008, Shao 2004, Sasaki 2003, Zhang 2010, Sutton 2010
Colon	↑ (tissu, sérum) survie, prolifération, angiogenèse associée à l'agressivité de la tumeur et aux métastases associée à un pronostic défavorable	Bao 2004, Tai 2005, Kikuchi 2008, Ben 2009
Thyroïde	↑ (tissu) corrèle avec l'agressivité de la tumeur perte de la polarité des cellules du front invasif	Fluge 2006, Puppin 2008, Bai 2009
Pancréas	↑ (tissu) promeut la survie cellulaire et l'invasion suppression de la mort cellulaire liée à l'hypoxie	Baril 2007, Kanno 2008, Erkan 2007, Fukushima 2008
Prostate	↑ (tissu) expression épithéliale associée au stade clinique précoce expression stromale associée aux stades cliniques avancés expression stromale associée aux métastases osseuses expression stromale associée aux grades cliniques avancés	Tsunoda 2009, Tischler 2010
Estomac	个 (tissu) associée à la métastase lymphatique	Li 2007
Œsophage	↑ (tissu) corrèle avec le stade clinique corrèle avec la survie	Hao 2006, Saadi 2010
Mélanome	↑ (tissu) si métastases promeut la métastase hépatique et lymphatique associée à la progression métastatique	Tilman 2007, Soikkeli 2010
Thymus	个 (tissu, sérum) corrèle avec le stade clinique	Sasaki 2001b
Neuroblastome	↑ (tissu) corrèle avec le stade clinique	Sasaki 2002

Tableau 8. Cancers présentant une altération de l'expression de la périostine.

<u>Cancer du sein</u>

La périostine est quasiment indétectable dans le sein et dans les lignées immortalisées dérivées de l'épithélium mammaire normal. Au contraire, une expression élevée de la périostine a été associée au cancer mammaire chez l'humain (Shao et coll. 2004; Puglisi et coll. 2008; Sutton et coll. 2010). Puglisi et coll. rapportent également que 12% des cas présentent un immunomarquage nucléaire. La présence de la périostine au niveau nucléaire corrèle avec le volume tumoral et l'expression du VEGF et de plusieurs récepteurs (estrogène, progestérone, VEGF-R1, VEGF-R2) (Puglisi et coll. 2008). Une seule étude rapporte une augmentation des taux sériques de périostine chez les patientes présentant un cancer du sein avec métastases osseuses par rapport aux patientes sans métastases mais ne discrimine pas les patientes malades sans métastases des femmes saines (Sasaki et coll. 2003). Enfin, les niveaux d'expression de la périostine ont été associés aux stades cliniques avancés (Zhang et coll. 2010).

Cancer de la prostate

Dans le cancer prostatique, il a été rapporté que l'expression parenchymateuse de la périostine est associée aux stades précoces (Gleason 6-7) mais pas avancés (Gleason 8-10) de la maladie. Inversement, l'expression mésenchymateuse (stromale) de la périostine est associée aux stades avancés mais pas précoces. (Tsunoda et coll. 2009). Dans cette étude l'expression stromale de la périostine est également associée à la progression métastatique osseuse. Ces observations ont également été confirmées par une étude plus récente (Tischler et coll. 2010).

Cancer pulmonaire

Une récente étude montre que la périostine est exprimée dans 42% des patients atteints de NSCLC et que son expression est corrélée avec le volume tumoral et associé aux stades cliniques avancés ainsi qu'à l'envahissement ganglionnaire (Takanami et coll. 2008). Une autre étude rapporte qu'une expression élevée de la périostine est associée à un stade clinique avancé et un volume tumoral supérieur. De plus, l'expression stromale de la périostine est associée avec la reprise tumorale (Soltermann et coll. 2008). Ce caractère pronostique a également été observé dans une étude antérieure basée sur le dosage sérique de la périostine (Sasaki et coll. 2001a). Une dernière étude a également mis en évidence des taux sériques de périostine augmentés chez ce type de patients (Hong et coll. 2010).

<u>Cancer du colon</u>

La périostine est surexprimée dans plus de 80% des patients atteints de cancer du colon (Bao et coll. 2004). L'analyse quantitative de la périostine montre un rapport d'expression tumeur/sain supérieur de 5 dans 2 tiers des cas, et de 10 dans un tiers des cas. De plus, la périostine est surexprimée dans la totalité des cas de cancer du colon métastatique au foie, et dans les métastases hépatiques également. Une autre étude a démontré que la périostine est surexprimée dans les échantillons de tumeurs colorectales et de leurs métastases hépatiques (Tai et coll. 2005). La surexpression de la périostine et son association aux critères cliniques défavorables ont également été observés par le biais d'un dosage de la protéine sérique (Ben et coll. 2009).

Cancer du pancréas

Les taux sériques de périostine sont significativement augmentés chez les patients atteints de cancer pancréatique par rapport aux sujets sains. De plus, la périostine promeut l'invasion des cellules tumorales et améliore la survie de ces cellules en condition hypoxique (Baril et coll. 2007). Plusieurs études sur ce type de cancer montrent que la périostine est sécrétée

préférentiellement par les cellules stromales, plutôt que par les cellules tumorales (Erkan et coll. 2007; Fukushima et coll. 2008; Kanno et coll. 2008).

<u>Cancer ovarien</u>

La périostine n'est pas présente dans les tissus ovariens sains. En revanche, son expression est augmentée dans les tumeurs ovariennes épithéliales (Ismail et coll. 2000). La protéine s'accumule abondamment dans les ascites de ces tumeurs, mais n'est pas retrouvée dans le sérum des patientes (Ismail et coll. 2000; Gillan et coll. 2002). Les niveaux d'expression de la périostine sont associés à la progression de la maladie, à une faible survie et à la récurrence tumorale (Choi et coll. 2010; Zhu et coll. 2010).

4.5.3 Conclusion

La métastase du cancer vers le site osseux représente une étape ultime de la progression tumorale. Plusieurs marqueurs sont utilisés par les histopathologistes pour expliciter la présence de cellules tumorales dans un tissu. Aussi la surexpression de la périostine a été décrite dans de nombreux cas de cancer. Cependant, aucune donnée expérimentale ou clinique n'a été rapportée concernant l'expression de la périostine dans les métastases osseuses. Sasaki et coll. montre une élévation des taux circulants de périostine chez les patientes atteintes de cancer mammaire avec métastases osseuses par rapport aux patientes sans métastases, mais l'étude ne permet pas de définir la source de cette augmentation (Sasaki et coll. 2003). D'ailleurs, Tsunoda et coll. rapportent une forte expression de la périostine dans le stroma de la tumeur prostatique lorsque les patients ont des métastases osseuses (Tsunoda et coll. 2009). De plus, les travaux rapportés dans la littérature ne présentent pas de méthode de dosage suffisamment développée et fiable.

Les marqueurs disponibles pour évaluer les métastases osseuses sont liés au processus de formation et de résorption osseuse. De ce fait, on ne peut pas détecter de variation de ces marqueurs avant que la métastase osseuse ait suffisamment proliféré et provoqué la rupture de l'équilibre entre formation et résorption. Par conséquent, un marqueur reflétant plutôt le changement du stroma médullaire sous l'influence de la métastase en cours d'implantation pourrait être un indice diagnostique plus précoce, permettant la mise en place d'un traitement préventif donc plus efficace.

PARTIE III :

TRAVAIL EXPÉRIMENTAL

1.	OBJECTIF DES TRAVAUX DE RECHERCHE7	9
2.	DÉVELOPPEMENT D'UN NOUVEAU DOSAGE ELISA DE LA PÉRIOSTINE CIRCULANTE : VARIATIONS LIÉES	À
	L'ÂGE ET EFFETS DES BISPHOSPHONATES CHEZ LA SOURIS8	1
2.1	Synthèse de l'article	1
2.2	Article	1
2.3	Données supplémentaires9	2
3.	ÉVALUATION DE LA PÉRIOSTINE EN TANT QUE MARQUEUR CIRCULANT DE LA RÉACTION STROMALE LIÉ	Е
	AUX METASTASES OSSEUSES DU CANCER DU SEIN9	4
3.1	Synthèse de l'article9	4
3.2	Article9	5
3.3	Données supplémentaires10	5
4.	MÉTA-ANALYSE GÉNOMIQUE DE L'EXPRESSION DE LA PÉRIOSTINE ET DES PROTÉINES APPARENTÉE	S
	DANS LE CANCER	8
4.1	Synthèse de l'article	8
4.2	Article	9

1. OBJECTIF DES TRAVAUX DE RECHERCHE

Comme nous l'avons vu, les marqueurs biochimiques circulants du métabolisme osseux ont un fort potentiel pour le diagnostic, le pronostic et le suivi thérapeutique des pathologies osseuses. Ces outils sont avantageux car non invasifs, d'utilisation aisée et relativement peu coûteux. Ils peuvent également indiquer des variations du remodelage avant que celles-ci soient détectables par imagerie médicale. Toutefois, à cause de certaines limitations portant sur la sensibilité, la variabilité ou la spécificité tissulaire, le bénéfice clinique résultant de leur utilisation n'a pas encore été validé pour la prise en charge individuelle des patients souffrant d'ostéoporose ou de métastases osseuses. Aussi, les connaissances de la physiologie et de la physiopathologie osseuse acquises récemment ou prochainement devraient mettre au jour de nouveaux biomarqueurs permettant de compenser ou contourner ces limitations. Pour le développement et l'application de ces prochains biomarqueurs, on pourrait définir les besoins suivants :

• En oncologie, des biomarqueurs reflétant la réaction stromale, un mécanisme précoce de la tumorigenèse au site primaire et au site métastatique.

• Dans l'ostéoporose, des biomarqueurs capables de refléter spécifiquement les variations métaboliques du périoste avec l'âge et par les traitements car cette enveloppe osseuse a un rôle particulièrement important dans la solidité des os longs.

La périostine (*POSTN*) est une protéine matricellulaire exprimée à la fois aux sites de contraintes mécaniques tels que le périoste et dans le stroma de nombreux types de tumeurs. En conséquence, l'objectif de ces travaux fut d'évaluer l'intérêt de la périostine en tant que biomarqueur dans ces deux contextes biologiques. Puisque ce travail s'inscrit dans le cadre

d'une thèse CIFRE, c'est-à-dire en collaboration entre un laboratoire académique et une structure privée, il a dû comporter un aspect de recherche fondamentale mais aussi proposer à moyen terme une application industrielle (ici, l'aspect diagnostique). Ainsi, ce travail comprend quatre sous-projets qui abordent ces aspects fondamentaux et applicatifs :

• Dans un premier temps, nous avons développé un dosage ELISA de la périostine circulante. Ce dosage nous a servi de base de travail aux deux projets précliniques suivants et a donc été validé selon une procédure analytique basée sur les recommandations de la FDA (*Food and Drug Administration*) et de l'AAPS (*American Association of Pharmaceutical Scientists*). De plus, la spécificité de ce dosage a pu être testée avec des souris déficientes pour le gène de la périostine.

• Dans un second temps, nous avons étudié l'implication de la périostine dans l'ontogenèse et le remodelage osseux. La périostine est connu pour être fortement exprimée dans le périoste, une enveloppe qui présente un rôle important dans la perception des contraintes mécaniques et la croissance radiale des os longs. Nous avons donc analysé l'expression de la périostine dans les tibias de souris par immunohistochimie ainsi que les taux sériques de périostine et de quatre marqueurs conventionnels du remodelage osseux 1) chez des souris en cours de croissance et 2) chez des souris traitées à l'acide zolédronique, un bisphosphonate qui bloque le remodelage osseux par son action inhibitrice sur la résorption trabéculaire et endostéale. Les corrélations entre les taux sériques de périostine et ceux des marqueurs de formation et de résorption ont été systématiquement étudiées.

• Dans un troisième temps, nous avons étudié l'implication de la périostine dans les métastases osseuses du carcinome mammaire. L'expression de la périostine dans les cancers est bien documentée mais n'a jamais fait l'objet d'étude dans les métastases osseuses. Nous avons donc étudié l'expression *in vitro* de la périostine dans plusieurs lignées de carcinome prostatique ou mammaire, puis chez des souris ayant développé des métastases osseuses après injection systémique de cellules de carcinome mammaire humain MDA-B02. L'expression de la périostine chez la souris a été évaluée au niveau circulant (ELISA) et osseux (par IHC et Q-PCR). Nous avons également utilisé une approche expérimentale nous permettant de distinguer la contribution du tissu osseux, du tissu stromal et des cellules cancéreuses aux modulations de la périostine sérique observée. Les taux sériques de périostine ont également été comparés à ceux obtenus avec des marqueurs conventionnels de formation et de résorption osseuse. Cette étude aborde la notion de réaction stromale et l'intérêt potentiel de disposer d'une palette de biomarqueurs pouvant mettre en évidence ce phénomène plus précocement que les altérations du remodelage osseux associées à la présence de métastases osseuses.

• Enfin, nous avons souhaité identifier les protéines dont l'expression est associée à celle de la périostine dans le cancer au travers d'une analyse bioinformatique exhaustive de 266 études de criblage ARN (12 types de cancer, 19156 patients) afin de confirmer le caractère stromal de la périostine et d'identifier de nouveaux marqueurs potentiels de la réaction stromale.

2. DÉVELOPPEMENT D'UN NOUVEAU DOSAGE ELISA DE LA PÉRIOSTINE CIRCULANTE : VARIATIONS LIÉES À L'ÂGE ET EFFETS DES BISPHOSPHONATES CHEZ LA SOURIS

Contié S, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clézardin P, Garnero P (2010). **Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice**. Calcif Tissue Int (*in press*), DOI: 10.1007/s00223-010-9391-y, PubMed ID: 20567965

2.1 Synthèse de l'article

Du fait de son expression dans les progéniteurs ostéoblastiques et les jeunes ostéoblastes, nous avons souhaité évaluer la périostine en tant que marqueur biochimique du métabolisme osseux en condition physiologique ou pathologique.

Jusqu'alors, il n'existait pas de méthode non invasive permettant d'explorer les variations d'expression de la périostine dans les modèles animaux. Nous avons donc développé une méthode de mesure de la périostine circulante utilisant un anticorps polyclonal immunopurifié dirigé contre la séquence C-terminale de la protéine murine. Enfin, nous avons mené une validation analytique selon les recommandations de la FDA et de l'AAPS. Notre dosage s'est avéré précis, sensible et spécifique.

Nous avons ensuite mesuré les variations des taux sériques de périostine et de marqueurs conventionnels de résorption et de formation osseuse au cours de la croissance de la souris. Nous avons montré que les taux sériques de périostine et des marqueurs du remodelage osseux diminuent au cours de la croissance puis se stabilisent après l'âge de 8 semaines. L'analyse immunohistochimique de la périostine dans le tibia de ces souris a montré un immunomarquage au niveau des sites d'ossification intramembranaire et endochondrale qui, à l'instar des taux sériques, régresse au cours de la croissance et disparaît chez la souris adulte. Exceptionnellement, la zone hypertrophique du cartilage de croissance des souris, qui contrairement à l'humain persiste chez l'adulte, conserve son immunomarquage après la fin de la croissance. Ces données mises en perspectives avec la littérature suggèrent qu'au niveau du tissu osseux la périostine pourrait être une composante de l'ossification ontogénique (endochondrale et intramembraneuse) plutôt qu'un indice direct du remodelage osseux. En effet, l'inhibition du remodelage osseux par l'acide zolédronique chez des souris, qui a induit une chute des marqueurs conventionnels du remodelage osseux ainsi que divers changements morphométriques au niveau endostéal, n'a montré aucun effet sur la morphométrie périostéale ni sur les taux sériques et l'expression locale de la périostine.

Ce nouveau dosage ELISA spécifique et sensible pourrait donc être utile pour évaluer le potentiel de la périostine sérique en tant que mesure non invasive du métabolisme périostéal. Des études complémentaires basées sur des modèles de réponse anabolique avec implication périostéale seront d'un grand intérêt pour évaluer la pertinence de la périostine sérique dans ce contexte, comme cela a déjà été suggéré par des approches immunohistochimiques.

2.2 Article

Cf. manuscrit publié ci-après.

Development of a New ELISA for Serum Periostin: Evaluation of Growth-Related Changes and Bisphosphonate Treatment in Mice

Sylvain Contié · Nathalie Voorzanger-Rousselot · Judith Litvin · Nicolas Bonnet · Serge Ferrari · Philippe Clézardin · Patrick Garnero

Received: 25 November 2009/Accepted: 3 June 2010 © Springer Science+Business Media, LLC 2010

Abstract Periostin is a gamma-carboxyglutamic acid protein preferentially expressed in periosteum and bone mesenchymal stem cells. Lack of a precise assay for measuring circulating levels impairs the investigation of its biological significance. We developed a new ELISA and studied changes of periostin levels both locally at the bone site and systemically in circulating blood during growth and after bisphosphonate-induced inhibition of bone remodeling in the mouse. The ELISA we developed is

The authors have stated that they have no conflict of interest.

S. Contié · P. Clézardin · P. Garnero (⊠) Research Unit 664, Institut National de la Santé et de la Recherche Médicale, Lyon 69372, France e-mail: pgarnero@cisbio.com

S. Contié · N. Voorzanger-Rousselot Biochemical Markers, CCBR-Synarc, Lyon 69416, France

J. Litvin

Department of Anatomy and Cell Biology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA

J. Litvin

Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA

N. Bonnet · S. Ferrari

Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva 1211, Switzerland

P. Clézardin Université Claude Bernard Lyon 1, Villeurbanne 69622, France

P. Garnero CisBio Bioassays, Bagnols/Cèze, France

Published online: 22 June 2010

based on an affinity-purified polyclonal antibody that was raised against the C-terminal sequence of mouse periostin. Reproducibility, repeatability, precision, and accuracy tests met standards of acceptance. Serum periostin and levels of the bone turnover markers osteocalcin, PINP, CTX-I, and TRAP5b were measured in (1) 4-, 6-, 8-, 10-, and 12-weekold wild-type female Balb/c mice and (2) adult ovariectomized female Balb/c mice treated with zoledronic acid or vehicle. Serum periostin decreased during growth and stabilized from 8 weeks and older, its levels correlating with bone turnover markers. Immunohistochemistry in bones from different growth stages showed that periostin localized specifically at the sites of endochondral and intramembranous ossification, especially at the periosteal envelopes. Zoledronic acid induced a marked decrease in bone remodeling markers but did not alter serum periostin levels or periostin immunostaining pattern. The novel ELISA is highly specific and allows accurate and precise measurements of serum periostin levels in mice.

Keywords Periostin · Periosteum · ELISA · Bone marker · Ontogenetic ossification

Periostin is an 811–amino acid protein comprising an *N*-terminal secretory signal peptide, followed by a cysteinrich domain, four internal homologous repeats, and a *C*-terminal hydrophilic domain [1, 2]. The four internal repeat regions of periostin share homology with the axon guidance protein Fasciclin I [1]. Initially reported as osteoblast-specific factor-2 (OSF-2), it was renamed "periostin" due to its preferential location in the periosteum and the periodontal ligaments [2]. In mice the periostin gene is located on chromosomal locus 3C. Mouse and human periostin share 90.1% amino acid identity in their mature forms. Several mechanistic studies have highlighted the importance of the FAS1 domains in the functionality of periostin. FAS1 sequences were shown to interact with integrins (mainly $\alpha_v\beta_3$ and $\alpha_v\beta_5$) in ovarian [3], breast [4], colon [5], and oral [6] cancer cells, leading to various intracellular events. The involvement of these sequences in the differentiation and functions of bone-forming (osteoblasts) [7, 8] or bone-resorbing (osteoclasts) [9, 10] cells was also documented, especially through their interactions with integrins $\alpha_v\beta_3$ and $\alpha_v\beta_5$ [11].

Several studies have shown that periostin is expressed in different tissues and that its expression varies in different pathological conditions. In the mouse, periostin has been localized in bone [2, 12–15], cartilage [13, 15, 16], skin [17, 18], and periodontal ligaments [2, 19–21]. It was suggested that periostin may have a role in bone remodeling and strength through osteoblast cell adhesion and regulation of collagen fibrillogenesis [17, 22]. The expression of periostin is altered during bone fracture repair [14, 23], muscle and vascular injury [24–26], myocardial infarction [22, 27–29], epithelial ovarian cancer [3], colorectal cancer [30, 31], and pulmonary vascular remodeling [32, 33]. Furthermore, periostin expression was prominent in fibrosis, including subepithelial fibrosis in bronchial asthma and in bone marrow fibrosis [34, 35].

Deletion of the periostin gene in mice resulted in severe growth retardation, suggesting that periostin is essential for postnatal development [16]. Histological analysis of periostin knockout mice demonstrated a reduction of trabecular bone, disturbed collagen fibril arrangement, severe incisor enamel defects, periodontal disease, and cartilage and cardiac valve defects [16, 17, 22]. More recently, Fuchs and colleagues [36] showed that adult homozygous periostin-deficient mice exhibited significantly reduced bone mineral density, cortical bone area, resistance to strain, and breaking strength compared to wild-type (WT) mice. Other studies have also demonstrated a blunted response to physical exercise, loading, and intermittent PTH in these animals [37, 38].

To assess the potential role of periostin as a biochemical marker of bone metabolism in physiological and pathological conditions including cancer, it is important to develop accurate and precise assays for measurement in circulating blood. To date, there is no noninvasive method to explore changes of periostin expression in animal models. Therefore, the aim of this in vivo study was (1) to characterize the expression of periostin during ontogenic ossification using a new validated ELISA along with immunohistochemical investigations and (2) to analyze the effects of bisphosphonate, a potent inhibitor of bone resorption and bone remodeling, on periostin expression in mice. Changes of periostin were compared to those of conventional biochemical markers of bone turnover.

Materials and Methods

ELISA for Periostin

The periostin antibody was kindly provided by Dr. Judith Litvin, and its specificity has been extensively investigated [15, 39]. It was raised against the *C*-terminal peptide (KKIPANKRVQGPRRRSREGRSQ) of mouse periostin, which is present in all known periostin isoforms and shares 73% homology with the human periostin sequence. Unmodified, biotinylated, and keyhole limpet hemocyanine (KLH)–coupled *C*-terminal peptide were purchased as pure analytic-grade, freeze-dried products (NeoMPS, Strasbourg, France). This polyclonal antibody was produced in rabbits immunized with the KLH-coupled *C*-terminal peptide and affinity-purified using the unmodified *C*-terminal peptide.

Streptavidin-coated plates (Nunc Immobilizer; Dutscher, Issy-Les-Moulineaux, France) were incubated with the biotinylated C-terminal peptide diluted in Tris-buffered saline (TBS) at pH 7.5 (Euromedex, Souffelweyersheim, France) containing 0.5% bovine serum albumin (BSA, Euromedex) for 2 h at room temperature. Plates were washed five times with TBS-BSA and 0.05% Tween20 (Euromedex). Calibrators consisted of serial dilutions of the unmodified C-terminal peptide in TBS-BSA buffer. Fifty microliters of zero calibrator (buffer), calibrators, quality control (QC), and unknown samples were incubated overnight with 50 µl of primary antiperiostin antibody (AbI) at 4°C. After washing, 100 µl of horseradish peroxidase-conjugated secondary antibody (HRP-AbII; Beckman-Coulter, Roissy, France) diluted 1/8,000 in TBS-BSA-Tween was added for 1 h at room temperature. After final washes, 100 μ l of substrate solution (3,3',5,5',-tetramethylbenzidine [TMB], Euromedex) was added for 30 min and the reaction was stopped by the addition of 100 μ l of 0.2 M H₂SO₄. Optical density (OD), inversely proportional to the concentration of periostin, was measured at a wavelength of 450 nm, corrected for absorbance at 650 nm. Unknown values were calculated using a five-parameter curve-fitting procedure (Gen5; BioTek Instruments, Colmar, France). All measurements were performed in duplicate. Duplicate measurements with coefficients of variation (CV) at or above 15% were systematically reassayed.

We studied the main analytical features recommended by the Food and Drug Administration (FDA) and the American Association of Pharmaceutical Scientists (AAPS). The limit of detection (LOD) of the assay was defined as the concentration corresponding to two SD above the mean of 20 replicates of the zero calibrator. Intra- and interassay precision profiles were established upon the CV and relative errors (REs) of the calibrators' back-calculated values from six replicates (intra) or 12

different assays (inter). The working range was defined by the range of calibrators presenting CVs below 15% and REs below 10%, except at the lower (LLOQ) and upper (ULOQ) limits of quantification, where CV acceptance was below 20%. The following analytical tests were performed using four QC (pools of mouse serum) presenting different levels of periostin. Preliminary dilution tests determined the minimal required dilution (MRD) at 1/10. The MRD allows the minimization of interference from the biological matrix. Dilution linearity was then assessed on the four QC diluted 1/10 to 1/160. Further validation tests were processed with OC diluted 1/40. The intra-assay CV (reproducibility) was assessed following 14 measurements of the four QC samples in the same assay and the interassay CV (repeatability) was determined by measurement of the four QC samples in eight different assays. Finally, nonspecific binding, selectivity, and accuracy were assessed through the assay of various known concentrations of recombinant mouse periostin (R&D Systems, Lille, France) spiked into dilution buffer or in serum from homozygous periostin knockout mouse. For convenience, serum periostin values in validation tests were reported as measured values (dilution factor not integrated) and serum periostin values in animal studies were reported as real values (dilution factor integrated).

Western Blot Analysis for Periostin

Recombinant human periostin (R&D Systems) and 10-fold concentrated (Amicon 30 kDa; Millipore, Saint-Quentinen-Yvelines, France) mouse osteoblastic MC3T3-E1 cell supernatant were heat-denatured using the NuPAGE kit (Invitrogen, Cergy Pontoise, France). Ten microliters of denatured samples were separated on a 4–12% gradient Bis-Tris NuPAGE gel. After overnight electrotransfer to polyvinylidene fluoride (PVDF; Amersham Biosciences, Saclay, France), membranes were blocked for 2 h in TBS (pH 7.2), 3% milk, and 0.1% Tween-20 at room temperature. Membranes were then incubated for 1 hour with the antiperiostin antibody diluted 1/1,000, washed, and incubated with HRP-AbII diluted 1/10,000. The reaction was revealed using the luminol-based enhanced chemiluminescence (ECL) detection system (Amersham Biosciences).

Animal Models

All procedures involving animals, including housing and care, methods of killing, and experimental protocols, were conducted in accordance with a code of practice established by the regional ethical committee (CREEA, Lyon, France). These studies were monitored on a routine basis by the attending veterinarian to ensure continued compliance with the proposed protocols.

Periostin Knockout Mice

Periostin-deficient homozygous, heterozygous, and WT 4-month-old C57Bl6/J female mice were bred at the Bone Diseases Division of the Department of Rehabilitation and Geriatrics (Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland). Knockout mice were formerly engineered and provided by the group of Dr. Simon J. Conway (Cardiovascular Development Group of Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN) [16]. Blood was sampled in fasting mice and centrifuged and the serum was immediately frozen at -70° C until assayed for periostin and biochemical markers of bone turnover.

Growth-Related Changes of Periostin

Female Balb/c mice were obtained from Charles River (St. Germain sur l'Arbresles, France). Fasting morning sera were sampled from mice aged 4, 6, 8, 10, and 12 weeks, while hindlimbs were harvested and immediately fixed in 4°C paraformaldehyde.

Effects of Bisphosphonate on Serum Periostin Levels

Eight-week-old ovariectomized (OVX) female Balb/c mice were obtained from Charles River. From 9 to 15 weeks of age, mice received a daily subcutaneous injection of zoledronic acid (ZOL, 150 μ g/kg) or vehicle (PBS). At 15 weeks of age, fasting sera were sampled, right tibiae were harvested and fixed in 50% ethanol and 0.9% sodium chloride solution, left tibiae were harvested and immediately fixed in 4°C paraformaldehyde, and uteri were removed and weighed. Atrophied uteri documented the success of OVX-induced silencing of estrogen secretion.

Bone Tissue Analyses

Sample Processing

Paraformaldehyde-fixed bone specimens were decalcified in Osteosoft (Merck, Val de Fontenay, France) before being dehydrated and embedded in paraffin.

Immunohistochemical Staining for Periostin

Paraffin-embedded tissue sections (5 µm) were used for immunohistochemistry. The presence of periostin in bone tissue sections was immunodetected using the rabbit antimouse periostin antibody described above (diluted 1/100, 4°C overnight), followed by immunoperoxidase staining (HRP-AbII diluted 1/100, DAB+; Dako, Trappes, France). The use and specificity of the primary antibody in

immunohistochemistry have been described previously [15, 39]. Omission of primary antibody was used as a negative control.

High-Resolution Micro-CT

Ethanol-fixed tibiae were scanned with a high-resolution micro-computer tomography (micro-CT) system (Viva CT40; Scanco Medical, Bassersdorf, Switzerland) at INSERM Research Unit 890 (Saint-Etienne, France). Data were acquired at 55 keV, 142 μ A, with a 10- μ m cubic resolution. Three-dimensional (3D) reconstructions of tibiae were generated using the following parameters: sigma 1.3, support 3, threshold 300 (low) and 10,000 (high). After reorientation, virtual transverse sections were performed on 3D tibial reconstructions. The cortical bone mineral density, width, and porosity, as well as the cortical and total cross-sectional areas, were measured at the mid-diaphysis.

Biochemical Markers of Bone Turnover

Serum tartrate-resistant acid phosphatase isoenzyme 5b (s-TRAP5b), an osteoclast-specific enzyme, was measured by ELISA using a capture antibody raised against recombinant mouse TRAP5b (SBA Sciences; IDS, Paris, France) [40]. The LOD was 0.1 U/l. The intra-assay CVs at the lower and higher tested QC were 5.8% (at 1.19 U/l) and 3.9% (at 10.32 U/l), respectively. The inter-assay CVs at the lower and higher tested QC were 5.2% (at 1.24 U/l) and 3.9% (at 5.99 U/l), respectively.

Serum *C*-terminal cross-linked telopeptide of type I collagen (s-CTX-I), a biochemical marker of bone resorption, was measured by a competitive ELISA using an antibody raised against an eight–amino acid sequence of type I collagen *C*-telopeptide (IDS). The LOD was 2 ng/ml. The intra-assay CVs at the lower and higher tested QC were 9.2% (at 13.0 ng/ml) and 5.8% (at 143.0 ng/ml), respectively. The inter-assay CVs at the lower and higher tested QC were 9.2% (at 13.5 ng/ml) and 5.8% (at 140.1 ng/ml), respectively.

Serum type I collagen *N*-propeptide (s-PINP), a biochemical marker of bone formation, was measured by a competitive ELISA using an antibody raised against an eight-amino acid sequence of mouse PINP (IDS) [41]. The LOD was 0.7 ng/ml. The intra-assay CVs at the lower and higher tested QC were 6.4% (at 40 ng/ml) and 5% (at 550 ng/ml), respectively. The interassay CVs at the lower and higher tested QC were 9.2% (at 37 ng/ml) and 8.2% (at 577 ng/ml), respectively.

Serum osteocalcin (s-OC), a marker of osteoblastic activity, was measured by a two-site immunoradiometric assay using antibodies raised against the mid-region and the *N*-terminal fragment of osteocalcin (Immunotopics, San

Clemente, CA). The LOD was 0.1 ng/ml. The intra-assay CVs at the lower and higher tested QC were 4.6% (at 15.3 ng/ml) and 2.8% (at 50.1 ng/ml), respectively. The inter-assay CVs at the lower and higher tested QC were 3.7% (at 16.4 ng/ml) and 5.2% (at 50.4 ng/ml), respectively.

Statistical Analysis

All data were analyzed using StatView software (version 5.0; SAS Institute, Cary, NC). Comparisons were carried out by performing the nonparametric Mann–Whitney U test. Correlations were evaluated by the nonparametric Spearman rank test. P < 0.05 was considered statistically significant. All statistical tests were two-sided.

Results

Mouse Periostin ELISA Analytical Performances and Specificity

Western blot analysis showed that the primary antibody used in the assay recognized recombinant periostin and the different periostin isoforms secreted by mouse osteoblastic MC3T3-E1 cells at their expected molecular weights (Fig. 1, inset). As previously reported, there are theoretically four isoforms but two of them have the same size and may appear as one single band [2].

The LOD of the ELISA was determined to be 0.4 ng/ml (Fig. 1). The precision profile determined the working range as 4-400 ng/ml (Fig. 1). Dilution tests showed acceptable recoveries from 1/10 (MRD) up to 1/160 (Table 1, Fig. 1). The reproducibility and repeatability of serum measurements were both below the 15% limit of acceptance (Table 2). Serum periostin values in periostindeficient homozygous mice were below LLOQ and were twofold lower in heterozygous periostin knockout mice compared to WT animals (Table 3, column 2). Spiking various concentrations of recombinant mouse periostin in either buffer or periostin-deficient homozygous mouse serum did not show a difference (mean recovery 94.4%; Table 3, columns 3–5) and gave accurate absolute levels when expressed in molar concentration (mean recovery 107.0%; Table 3, columns 6-8).

Growth-Related Changes in Serum Levels of Bone Turnover Markers and Periostin in Mice

Established bone formation (OC and PINP) and resorption (CTX-I and TRAP5b) marker levels were measured in Balb/c female mice of 4, 6, 8, 10, and 12 weeks of age to describe the bone turnover variation during growth and in the early adult period (8–12 weeks old), which was

Fig. 1 Typical calibration curve, precision profile, and dilution linearity in the periostin ELISA. The x-axis corresponds to serial dilutions of known concentrations of the C-terminal periostin peptide used as calibrator. The left y-axis shows the optical density (OD) obtained for each concentration of the calibrators. The right y-axis shows the coefficient of variations (CVs) and relative error (%RE) of calibrators observed within and between runs. Dashed line at 10% depicts the limit of acceptance for the RE. Dashed lines at 15 and 20% depict the limits of acceptance for the CVs. The analytical limit of detection was calculated at 0.4 ng/ml. The working range to ensure the reproducibility and then the comparison between successive experiments was defined as being between 4 and 400 ng/ml. The dilution linearity of four pools of mouse serum is reported along the calibration curve. Inset: Western blot analysis showing that the polyclonal antibody used in the ELISA recognized recombinant human periostin (rhPN) and the periostin isoforms secreted from mouse MC3T3-E1 osteoblastic cells

reflected by a stabilization in body weight (Fig. 2). OC and PINP decreased with age and stabilized after 8 weeks of age, concomitant with body weight (Fig. 2). Consistent with bone formation marker data, serum levels of the bone resorption markers (CTX-I and TRAP5b) also decreased up to 8 weeks of age, though with a lower magnitude of change. Serum periostin levels decreased from 4 to 8 weeks of age and then remained stable from 8 to 12 weeks of age (Fig. 2). In 12-week-old mice, mean periostin values were 45% lower than in younger animals. Serum periostin levels were positively correlated with all bone turnover markers (P < 0.0001) (Fig. 3).

Periostin is a Feature of Intramembranous Ossification Rather than Bone Remodeling in Mice

Immunohistochemical analysis showed strong periostin staining at the sites of periosteal intramembranous ossification in growing mice (Fig. 4). We also observed strong periostin staining of the cuboid osteoblasts covering the

Sample	Dilution	Theoretical value (ng/ml)	Measured value (ng/ml)	Recovery (%)
Mouse 1	1:10	_	124.5	_
	1:20	62.2	59.1	94.9
	1:40	31.1	33.0	105.9
	1:80	15.6	16.7	107.1
	1:160	7.8	7.5	97.0
Mouse 2	1:10	_	105.1	-
	1:20	52.6	46.7	88.9
	1:40	26.3	25.8	98.0
	1:80	13.1	14.3	109.2
	1:160	6.6	6.8	103.7
Mouse 3	1:10	-	98.3	_
	1:20	49.2	53.9	109.6
	1:40	24.6	24.8	101.0
	1:80	12.3	14.0	114.1
	1:160	6.1	5.8	94.2
Mouse 4	1:10	-	80.1	_
	1:20	40.0	44.1	110.2
	1:40	20.0	21.8	108.9
	1:80	10.0	10.1	100.9
	1:160	5.0	5.2	103.3

Table 1 Dilution recovery of serum periostin

Table 2 Intra- and interassay CV of serum periostin ELISA

Sample	Dilution	Mean \pm SD (ng/ml)	CV (%)
Intra-assay pr	ecision ($n = 14$)	
Mouse 1	1:40	37.6 ± 2.3	9.3
Mouse 2	1:40	30.2 ± 2.3	11.3
Mouse 3	1:40	26.7 ± 1.5	8.3
Mouse 4	1:40	21.5 ± 1.5	10.7
Inter-assay pro	ecision $(n = 8)$		
Mouse 1	1:40	32.1 ± 4.1	12.8
Mouse 2	1:40	30.8 ± 4.2	13.6
Mouse 3	1:40	26.0 ± 3.6	13.9
Mouse 4	1:40	23.7 ± 3.3	13.8

endosteal side of cortical bone as well as the osteocytes embedded therein. The immunostaining intensity at these sites decreased with age, which was consistent with periostin serum levels measured in those mice (Fig. 4). The chondrocytes of the articular cartilage, the subchondral endosteum, and the trabecular endosteum were immunoreactive for periostin in young growing animals and the intensity of staining decreased with age (Fig. 5, left and right panels). The chondrocytes located in the hypertrophic cartilage of the epiphyseal plate and in the primary

Table 3 Assessment of nonspecific binding, selectivity, and accuracy							
	Blank 0 ng/ml	Spiked periostin (ng/ml)		Spiked periostin (nmol/l)			
		8,000	4,000	2,000	91.2	45.6	22.8
Measured levels in dilution buffer	<lod< td=""><td>287</td><td>141</td><td>67</td><td>-</td><td>-</td><td>-</td></lod<>	287	141	67	-	-	-
Measured levels in KO serum (1/40) ^a	<lloq< td=""><td>300</td><td>126</td><td>59</td><td>105.4</td><td>44.2</td><td>20.7</td></lloq<>	300	126	59	105.4	44.2	20.7
Measured levels in HET serum (1/40)	15.1 ± 4.7	-	-	-	-	-	-
Measured levels in WT serum (1/40)	30.3 ± 4.3	-	-	-	-	-	-
Serum/buffer recovery ^b	_	104.7%	89.6%	88.8%	-	-	-
Measured/true recovery ^c	_	-	-	-	115.5%	97.0%	91.0%

S. Contié et al.: In Vivo Evaluation of a New Periostin ELISA

Column 2: dosage of periostin-deficient homozygous (*KO*) and heterozygous (*HET*) mouse sera compared to wild-type (*WT*) littermate animals. *Columns 3–5*: spiking of various concentrations of recombinant mouse periostin in either buffer or periostin-deficient homozygous mouse serum. *Columns 6–8*: comparison of spiked and actually measured periostin after molar unit conversion

^a Nonspecific binding, ^b Selectivity, ^c Accuracy

.

.

Fig. 2 Growth-related changes in the serum levels of standard bone turnover markers and periostin. Body weight and bone turnover marker and periostin levels were evaluated in 4-(n = 10), 6-(n = 10), 8-(n = 10), 10-(n = 10), and 12-(n = 3) week-old Balb/c female mice. Bars are the mean relative changes compared to the 4-week-old group \pm SD. Absolutes values are reported at the *bottom*. Weights are expressed as grams. Serum OC, PINP, CTX-I, and POSTN levels are expressed as units per liter. **P* < 0.05 vs. 4 or 6 weeks; *NS*, not significant versus 8 weeks

spongiosa were also immunoreactive for periostin, and the intensity of staining remained stable with age (Fig. 5, central panels).

To analyze whether periostin is modulated by pharmacologically induced changes of bone turnover, we treated OVX mice with ZOL, a strong inhibitor of bone resorption and bone remodeling. As expected, micro-CT of the tibial midshaft showed a statistically significant increase in cortical bone mineral density (+4%) and width (+19%) and a marked decrease of cortical porosity (+26%) compared to vehicle-treated animals (Fig. 6a). There was also a marked increase in the cortical cross-sectional area (+9%) without effect on the total cross-sectional area (i.e., a decreased endosteal resorption). ZOL induced a substantial reduction of s-OC (-49%), PINP (-43%), and TRAP5b (-27%), which contrasted with the unchanged serum periostin levels (Fig. 6b). The pattern and intensity of periostin immunostaining in the tibiae from mice treated with ZOL did not differ from those of untreated animals (data not shown), a finding which is consistent with the absence of change in periostin circulating levels.

Discussion

In this study we report our findings on the expression and localization of periostin in bone during skeletal growth and compare serum periostin levels to conventional bone turnover markers to understand further its role in the bone biology in mice.

This work is based on a new and analytically validated periostin immunoassay, using an affinity-purified polyclonal antibody raised against a synthetic peptide from the C-terminal sequence of mouse protein. This antibody has been extensively characterized in immunohistochemical mouse studies [15, 39]. Previous studies using ELISA for circulating periostin were based on antibodies raised against the whole protein sequence [31, 35, 42, 43], and they did not report analytical performance data that are critical for ensuring reliability of the results. We studied the major analytical features recommended by the FDA and the AAPS. We found that this assay was highly reproducible and sensitive enough to detect age-related changes in circulating periostin levels in mice. Despite the limitations inherent to the use of antibodies and standards based on the same synthetic peptide, the results of the recovery of recombinant mouse periostin and of dilution of serum mouse samples strongly suggest that the ELISA recognizes with a similar affinity the whole circulating protein and the standard. We also found that the serum assay we developed accurately reflected periostin expression.

Fig. 3 Correlations between serum periostin and established bone marker levels during growth in mouse

Fig. 4 Immunolocalization of periostin in the tibial midshaft from 3-,8-, or 12-week-old Balb/c mice. *EO* cortical endosteum, *Ocy* osteocyte, *PO* periosteum. Scale bar = 100 μ m

S. Contié et al.: In Vivo Evaluation of a New Periostin ELISA

Fig. 5 Immunolocalization of periostin in different regions of the proximal tibia from 3-, 8-, or 12-week-old Balb/c mice. *Left column*: subchondral bone and articular cartilage. *Central column*: growth plate (*GP*), hypertrophic cartilage (*HC*), and primary spongiosa (*PS*).

Fig. 6 Effect of 6-week bisphosphonate treatment on cortical micro-CT parameters, serum bone turnover markers, and periostin levels. In vehicle-treated (n = 10) and ZOL-treated (n = 9) OVX mice **a** micro-CT parameters were evaluated (*Ct.BMD* cortical bone mineral density, *Ct.Wi* cortical width, *Ct.Po* cortical porosity, *Ct.Ar* cortical cross-sectional area, *T.Ar* total cross-sectional area) and **b** serum levels for OC, PINP, TRAP5b, and periostin were assayed. Bars are the mean relative changes compared to the untreated group \pm SD. Bone markers' absolutes values are reported at the bottom. Serum OC, PINP, and POSTN levels are expressed as nanograms per milliliter. Serum TRAP5b levels are expressed as units per liter. * P < 0.05; *NS*, not significant

To explore the relevance of circulating periostin as a marker of bone metabolism, we measured the growth-related changes in serum periostin levels. We also compared

Right column: Trabecular bone. *EO* subchondral or trabecular endosteum, *Ocy* osteocyte, *Ch* chondrocyte. Typical cells are emphasized in *red squares*. Scale bars = $200 \mu m$ (epiphysis and growth plate), $50 \mu m$ (trabecula)

serum periostin levels with that of standard bone resorption and bone formation markers including PINP, for which very limited data have been previously reported in mice [44, 45]. We found that all bone turnover markers decreased from 4 to 8 weeks of age and then stabilized. The magnitude of the age-related decrease was the largest for serum PINP, suggesting that this marker is very sensitive in detecting changes in bone formation in mice. Correlatively with bone formation and resorption markers, serum periostin levels in mice decreased with skeletal growth and stabilized at 8 weeks of age.

The age-related changes of serum periostin levels were consistent with the decline of periostin immunostaining at several anatomical sites of ossification during the course of skeletal growth. In fact, periosteal and endosteal layer immunostaining decreased until the end of growth, whereas hypertrophic cartilage and primary spongiosa remained immunostained afterward. Some of these observations are also supported by previous immunohistochemical studies [23, 46–48] and the established sustained activity of growth plate in rodents. Because periostin was described as a mesenchymal protein [49], our data suggest that in bone tissue periostin may be a feature of the mesenchymal activity associated with ontogenetic ossification (endochondral and intramembranous) rather than a direct index of bone remodeling. This hypothesis was also supported by

the observation that there was no significant change of serum periostin levels and local periostin expression following inhibition of bone remodeling with ZOL. This model was characterized by inhibition of bone turnover and morphometric modifications at endosteal and cortical, but not periosteal, sites. Because of limited sample volume, we could not measure a marker of matrix resorption, such as CTX-I. Further studies using models of anabolic response with periosteal involvement will be of particular relevance to assess the value of serum periostin as suggested by recent immunohistochemistry investigations [50].

In summary, we showed that periostin appears to be a mesenchymal feature of endochondral and intramembranous bone modeling. The new ELISA we have developed is highly specific and sensitive, and it should be useful to investigate the potential value of serum periostin as a noninvasive test of periosteal metabolism in mice.

Acknowledgements S. C. is the recipient of a CIFRE fellowship. The authors thank Dr. Laurence Vico's research group (INSERM, Research Unit 890, Saint-Etienne, France), especially Mr. Norbert Laroche and Dr. Luc Malaval for their help in micro-CT analyses and Ms. Karine Bori (Synarc) for s-OC measurements.

References

- Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblastspecific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278
- Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249
- Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha_vbeta₃ and alpha_vbeta₅ integrins and promotes cell motility. Cancer Res 62:5358–5364
- 4. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339
- Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T, Gishizky ML, Marks JR, Wang XF (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24:3992–4003
- Kudo Y, Ogawa I, Kitajima S, Kitagawa M, Kawai H, Gaffney PM, Miyauchi M, Takata T (2006) Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer. Cancer Res 66:6928–6935
- Bennett JH, Moffatt S, Horton M (2001) Cell adhesion molecules in human osteoblasts: structure and function. Histol Histopathol 16:603–611
- Damsky CH (1999) Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone 25:95–96
- 9. Del Fattore A, Teti A, Rucci N (2008) Osteoclast receptors and signaling. Arch Biochem Biophys 473:147–160

- Rodan SB, Rodan GA (1997) Integrin function in osteoclasts. J Endocrinol 154(Suppl):S47–S56
- Schaffner P, Dard MM (2003) Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci 60:119–132
- 12. Oshima A, Tanabe H, Yan T, Lowe GN, Glackin CA, Kudo A (2002) A novel mechanism for the regulation of osteoblast differentiation: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist. J Cell Biochem 86:792–804
- Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF (2004) Expression and function of periostin-isoforms in bone. J Cell Biochem 92:1044–1061
- 14. Nakazawa T, Nakajima A, Seki N, Okawa A, Kato M, Moriya H, Amizuka N, Einhorn TA, Yamazaki M (2004) Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res 22:520–525
- Zhu S, Barbe MF, Amin N, Rani S, Popoff SN, Safadi FF, Litvin J (2008) Immunolocalization of periostin-like factor and periostin during embryogenesis. J Histochem Cytochem 56:329–345
- Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, Feng JQ, Conway SJ (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25:11131–11144
- Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711
- Jackson-Boeters L, Wen W, Hamilton DW (2009) Periostin localizes to cells in normal skin, but is associated with the extracellular matrix during wound repair. J Cell Commun Signal 3:125–133
- Kruzynska-Frejtag A, Wang J, Maeda M, Rogers R, Krug E, Hoffman S, Markwald RR, Conway SJ (2004) Periostin is expressed within the developing teeth at the sites of epithelial– mesenchymal interaction. Dev Dyn 229:857–868
- 20. Suzuki H, Amizuka N, Kii I, Kawano Y, Nozawa-Inoue K, Suzuki A, Yoshie H, Kudo A, Maeda T (2004) Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development. Anat Rec A Discov Mol Cell Evol Biol 281:1264–1275
- 21. Kii I, Kudo A (2007) Periostin function in the periodontal ligament and the periosteum. Clin Calcium 17:202–208
- 22. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295– 303
- Zhu S, Barbe MF, Liu C, Hadjiargyrou M, Popoff SN, Rani S, Safadi FF, Litvin J (2009) Periostin-like-factor in osteogenesis. J Cell Physiol 218:584–592
- Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271
- 25. Kudo H, Amizuka N, Araki K, Inohaya K, Kudo A (2004) Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers. Dev Biol 267:473–487
- 26. Lindner V, Wang Q, Conley BA, Friesel RE, Vary CP (2005) Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol 25:77–83

- 27. Dorn GW 2nd (2007) Periostin and myocardial repair, regeneration, and recovery. N Engl J Med 357:1552–1554
- 28. Iekushi K, Taniyama Y, Azuma J, Katsuragi N, Dosaka N, Sanada F, Koibuchi N, Nagao K, Ogihara T, Morishita R (2007) Novel mechanisms of valsartan on the treatment of acute myocardial infarction through inhibition of the antiadhesion molecule periostin. Hypertension 49:1409–1414
- 29. Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW II, Conway SJ, Aronow BJ, Robbins J, Molkentin JD (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101:313–321
- Tai IT, Dai M, Chen LB (2005) Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by antiperiostin antibodies. Carcinogenesis 26:908–915
- Ben QW, Zhao Z, Ge SF, Zhou J, Yuan F, Yuan YZ (2009) Circulating levels of periostin may help identify patients with more aggressive colorectal cancer. Int J Oncol 34:821– 828
- 32. Li P, Oparil S, Feng W, Chen YF (2004) Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol 97:1550–1558 discussion 1549
- 33. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV (2007) Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA 104:15858–15863
- 34. Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104
- 35. Oku E, Kanaji T, Takata Y, Oshima K, Seki R, Morishige S, Imamura R, Ohtsubo K, Hashiguchi M, Osaki K, Yakushiji K, Yoshimoto K, Ogata H, Hamada H, Izuhara K, Sata M, Okamura T (2008) Periostin and bone marrow fibrosis. Int J Hematol 88:57–63
- Fuchs RK, Galley M, Doyle J, Klene F, Conway SJ, Warden SJ, Burr DB (2008) The extracellular matrix protein periostin regulates periosteal. J Bone Min Res 23:S51–S51
- Bonnet N, Conway S, Ferrari S (2008) Inhibition of bone biomechanical response to physical activity and loading in mice lacking periostin. J Bone Min Res 23:S41–S41
- 38. Bonnet N, Rizzoli R, Ferrari S (2009) Blunted response to intermittent PTH in absence of periostin in the cortical bone compartment. In: 15th annual SBMS & SVGO/ASCO meeting. Swiss Bone and Mineral Society, Bern, Switzerland

- Rani S, Barbe MF, Barr AE, Litvin J (2009) Periostin-like-factor and periostin in an animal model of work-related musculoskeletal disorder. Bone 44:502–512
- 40. Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 82:108–115
- 41. Hale LV, Galvin RJ, Risteli J, Ma YL, Harvey AK, Yang X, Cain RL, Zeng Q, Frolik CA, Sato M, Schmidt AL, Geiser AG (2007) PINP: a serum biomarker of bone formation in the rat. Bone 40:1103–1109
- 42. Sasaki H, Dai M, Auclair D, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y, Chen LB (2001) Serum level of the periostin, a homologue of an insect cell adhesion molecule, as a prognostic marker in nonsmall cell lung carcinomas. Cancer 92:843–848
- 43. Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T, Zhu M, Kalthoff H, Crnogorac-Jurcevic T, Lemoine NR (2007) Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 26:2082–2094
- 44. Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN, Vuopala KS, Harris KW, Selander KS (2009) Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 69:652–661
- 45. Wang ZP, Hua YM, Zhang X, Wang YB, Shi XQ, Li MY (2009) Effect of resveratrol on myocardial fibrosis in mice with chronic viral myocarditis. Zhongguo Dang Dai Er Ke Za Zhi 11:291–295 (in Chinese)
- 46. Hirose Y, Suzuki H, Amizuka N, Shimomura J, Kawano Y, Nozawa-Inoue K, Kudo A, Maeda T (2003) Immunohistochemical localization of periostin in developing long bones of mice. Biomed Res (Tokyo) 24:31–37
- 47. Blumer MJ, Schwarzer C, Perez MT, Konakci KZ, Fritsch H (2006) Identification and location of bone-forming cells within cartilage canals on their course into the secondary ossification centre. J Anat 208:695–707
- 48. Emans PJ, Spaapen F, Surtel DA, Reilly KM, Cremers A, van Rhijn LW, Bulstra SK, Voncken JW, Kuijer R (2007) A novel in vivo model to study endochondral bone formation; HIF-1alpha activation and BMP expression. Bone 40:409–418
- 49. Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD, Galipeau J (2008) Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 283:17991–18001
- Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284:35939–35950

2.3 Données supplémentaires

Supplément 1. Détermination des concentrations de coating et d'anticorps primaire utilisées dans l'ELISA.

Après que les plaques traitées à la streptavidine aient été incubées avec le peptide biotinylé (0, 1, 2, 5, 10 ou 20 ng/ml), l'antisérum de lapin a été titré dans ces différentes conditions. Pour chaque concentration de coating, la dilution d'anticorps à l'IC50 de la courbe a été déterminée et reportée sur un graphe semi-Log (l'axe des ordonnés représente le taux de dilution de l'antisérum). Pour les étapes suivantes du développement, nous avons sélectionné le coating situé en début de plateau de saturation, c'est-à-dire 5

ng/ml. Le titre correspondant (1/60.000) a été ajusté à 1/45.000 afin de gagner en sensibilité. Ces paramètres permettent d'avoir un système de détection potentiellement plus sensible et moins exposé aux interférences.

Supplément 2. Comparaison des biomarqueurs osseux entre souris Balb/c sauvage (WT) et Balb/c nude (NU). Les souris NU présentent une masse osseuse et un poids corporel inférieurs par rapport aux souris WT (The Jackson Laboratory's Mouse Phenome Database ; <u>http://phenome.jax.org</u>). Les taux sériques de marqueurs de formation (A) et de résorption (B) osseuse ainsi que de périostine (C) ont été mesurés chez ces souris NU en cours de croissance (à 4, 8 et 12 semaines ; environ 10 par groupe) et comparés à ceux des souris WT. Nous ne présentons ici que le PINP et le CTX-I qui, contrairement à l'OC et la TRACP5b, reflètent directement l'activité de synthèse et de dégradation du collagène de type I, respectivement. Nos données montrent que les souris NU présentent une activité de synthèse du collagène plus faible et une activité de résorption plus importante que les souris WT, ce qui peut en partie jouer dans les différences morphologiques observées entre ces deux souches. Enfin, nous avons observé que les taux de périostine sérique sont également plus élevés chez les souris NU. Plusieurs raisons pourraient expliquer ces différences, notamment une libération plus importante de facteurs de croissance contenus dans la matrice osseuse des souris NU, tels que le TGF- β ou la BMP-2 qui sont connus pour stimuler l'expression de la périostine, ou encore une stimulation plus importante du périoste chez les souris NU par les contraintes mécaniques, la morphologie osseuse de ces souris étant différentes.

Supplément 3. Comparaison des index de découplage (Uncoupling Index) entre souris WT et NU.

A partir des marqueurs de formation (PINP) et de dégradation (CTX-I) du collagène, nous avons calculé l'UI chez les souris WT et NU (Eastell et coll. 1993). Brièvement, le z-score du PINP et du CTX-I a été calculé pour chaque souris selon :

<u>valeur souris – moyenne du groupe référence</u> SD du groupe de référence L'UI est ensuite obtenu par la soustraction :

z-score PINP – z-score CTX-I

Un UI positif, par exemple, indiquera un remodelage osseux découplé en faveur de la formation osseuse, par rapport au groupe de référence. (A) Chez chaque souche murine, L'UI des souris à 4 et 8 semaines a été établi par rapport aux souris les plus âgées (12 semaines). On observe une faible dynamique de l'UI chez les souris NU au cours de la croissance alors que les

souris WT présentent une forte formation de tissu osseux lors de la croissance. **(B)** La comparaison âge par âge des UI des souris NU avec les souris WT pour référence montre également une infériorité des NU en terme de formation osseuse.

3. ÉVALUATION DE LA PÉRIOSTINE EN TANT QUE MARQUEUR CIRCULANT DE LA RÉACTION STROMALE LIÉE AUX METASTASES OSSEUSES DU CANCER DU SEIN

Contié S, Voorzanger-Rousselot N, Litvin J, Clézardin P, Garnero P (2010). Increased expression and serum levels of the stromal cell-secreted protein periostin in breast cancer bone metastases. Int J Cancer (*in press*), DOI: 10.1002/ijc.25591, PubMed ID: 20715172

3.1 Synthèse de l'article

La surexpression de la périostine ayant été décrite dans plusieurs types de tumeur primaire, nous avons souhaité déterminer son association avec les métastases osseuses du cancer du sein et le cas échéant identifier l'origine de la surexpression.

Pour cela, nous avons utilisé un modèle murin dans lequel l'inoculation intra-artérielle de cellules de cancer mammaire humain MDA-B02 bioluminescentes entraîne des métastases ostéolytiques. *In vitro*, nous avons montré que ces cellules n'expriment pas la périostine, comme cela avait été rapporté pour plusieurs autres lignées tumorales (Ismail et coll. 2000; Gillan et coll. 2002; Gonzalez et coll. 2003; Tai et coll. 2005; Baril et coll. 2007). Dans le modèle animal utilisé, la métastase osseuse est caractérisée par trois composants intimement liés (matrice osseuse, cellules tumorales, cellules du tissu-hôte) qui interagissent sous forme d'un cercle vicieux, et qui peuvent potentiellement participer à une variation des taux sériques de périostine. Afin d'évaluer leur contribution respective, nous avons donc utilisé des amorces de PCR espèce-spécifique qui permettent de distinguer l'expression de la périostine humaine (tumorale) et murine (stromale, c'est-à-dire les cellules présentent nativement dans l'os), ainsi qu'une approche pharmacologique réduisant spécifiquement la résorption de la matrice osseuse sans effet notable sur la masse tumorale.

Chez les souris métastatiques, nous avons observé une augmentation des taux sériques de périostine et des marqueurs conventionnels du remodelage osseux. Au niveau local, l'analyse par Q-PCR des ARNm totaux obtenus à partir des tibias des souris montre clairement que les cellules tumorales (humaines) n'expriment pas la périostine, contrairement aux cellules osseuses (murines). Ces observations sont cohérentes avec les études montrant une surexpression de la périostine dans l'environnement stromal d'autres types de tumeur au site primaire. Les analyses immunohistochimiques de ces os ont montré un fort marquage de la périostine au niveau des métastases, notamment dans certaines cellules tumorales. Cette divergence avec les données de Q-PCR pourrait résulter d'une endocytose de la périostine stromale environnante, ce que nous avons pu reproduire in vitro (cellules MDA-B02 cultivées en présence de périostine exogène). De plus, nous avons confirmé l'absence de périostine humaine dans le sérum par le biais d'un ELISA humain-spécifique développé en parallèle de cette étude. Enfin, le traitement de ces souris avec une dose d'acide zolédronique sélectionnée pour inhiber la résorption osseuse sans altérer de manière significative la masse tumorale, a comme attendu limité la lyse osseuse les lésions ostéolytiques et l'augmentation des marqueurs sériques du remodelage sans affecter la charge tumorale. En revanche, le traitement a eu un effet modeste mais significatif sur les taux circulants et l'expression locale de périostine. Ceci pourrait résulter d'un effet indirect de l'acide zolédronique qui, par son action antirésorptive, limite la libération de facteurs de croissance présent en quantité importante dans la matrice osseuse, comme le TGF- β et la BMP-2, connus pour stimuler l'expression de la périostine (Horiuchi et coll. 1999; Ji et coll. 2000; Erkan et coll. 2007; Oku et coll. 2008). De plus, aucune corrélation n'a été observée entre les taux de périostine et des autres marqueurs ou l'étendue des lésions osseuses.

En résumé, nous avons montré que la périostine est surexprimée par les cellules stromales des métastases osseuses du cancer du sein, ceci étant détectable au niveau circulant par notre dosage ELISA. Actuellement, il n'existe pas de biomarqueur circulant qui reflète la présence de cellules tumorales en cours de colonisation de la moelle osseuse. La périostine ainsi que d'autres facteurs d'origine stromale (à identifier et/ou valider) pourrait être un indicateur précoce de cette atteinte osseuse, avant-même que les variations du remodelage osseux soient détectables. Ces marqueurs devront alors être mesurés dans des études cliniques longitudinales, parallèlement aux marqueurs conventionnels du remodelage osseux afin d'évaluer la précocité de leur modulation.

3.2 Article

Cf. manuscrit accepté ci-après.

Increased expression and serum levels of the stromal cellsecreted protein periostin in breast cancer bone metastases

Sylvain Contié^{1,2}, Nathalie Voorzanger-Rousselot², Judith Litvin^{3,4}, Philippe Clézardin^{1,5} and Patrick Garnero^{1,6}

¹ Research Unit 664, Institut National de la Santé et de la Recherche Médicale, Lyon, France

² Biochemical Markers, CCBR-Synarc, Lyon, France

³ Department of Anatomy and Cell Biology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA

⁴ Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA

⁵ Université Claude Bernard Lyon 1, Villeurbanne, France

⁶ CisBio Bioassays, Bagnols/Cèze, France

Periostin, a matricellular protein, is overexpressed in the stroma of several cancers. The aim of our study was to investigate more specifically whether periostin expression is associated with bone metastases from breast cancer and to determine its source in the affected bone. Nude mice were inoculated with human MDA-B02 breast cancer cells. Bone metastases-bearing mice were treated with zoledronic acid—an antiresorptive drug—or vehicle. Bone metastases were examined for tumor- and stroma-derived periostin expression by quantitative polymerase chain reaction with human- and mouse-specific primers and immunohistochemistry. Serum periostin and conventional bone turnover markers were also measured. MDA-B02 cells did not express periostin both *in vitro* and *in vivo*. However, mouse-derived periostin was markedly overexpressed (eightfold) in metastatic legs compared to noninoculated mice. Serum periostin levels were also markedly increased in metastatic mice and correlated with *in situ* expression levels. Immunostaining showed that periostin derived from the environing stromal cells of bone metastases. Bone turnover blockade by zoledronic acid markedly decreased osteolytic lesions but only slightly modulated serum periostin levels. Bone metastases from breast cancer induce overexpression of periostin by surrounding stromal cells. Periostin could be a biochemical marker of the early stromal response associated to breast cancer bone metastasis formation.

Periostin is an adhesion protein originally identified in the MC3T3-E1 mouse osteoblastic cell line.¹ Its precursor is a 836 or 838 amino acid protein in human or mouse, respectively, with a molecular weight of 93 kDa.² Periostin relevant domains comprise a signal peptide, a cysteine-rich domain, four Fasciclin1-like (FAS-1) domains and a variable C-terminal region. Each FAS-1 domain contains one gamma-carboxylase recognition site and several putative carboxylable glutamine residues.³ Alternative splicing at the C-terminal end yields four different isoforms in mouse and human (as referenced in National Center for Biotechnology Information

Key words: periostin, breast cancer, bone metastasis, stromal reaction, zoledronic acid

Abbreviations: BLI: bioluminescence intensity; CTR: control group; IHC: immunohistochemical; s-TRACP5b: serum tartrate-resistant acid phosphatase isoenzyme 5b; s-CTX-I: serum C-terminal crosslinked telopeptide of type I collagen; s-PINP: serum type I collagen *N*-propeptide; s-OC: serum osteocalcin; UNT: untreated; ZOL: zoledronic acid

DOI: 10.1002/ijc.25591

History: Received 23 Nov 2009; Accepted 29 Jul 2010; Online 00 Month 2010

Correspondence to: Patrick Garnero, INSERM, Research Unit 664, Lyon, F-69372 France, Tel.: +33478778773, Fax: +33478778772, E-mail: patrick.garnero@free.fr

database). However, the function(s) and tissue localization of these isoforms remain unknown. $^{\rm 4-7}$

Periostin is mainly secreted in the periosteum and periodontal ligaments,^{1,2,8–10} suggesting a role in bone formation. Periostin knockout mice exhibit dwarfism with enamel and periodontal defects.¹¹ Periostin is also involved in the adhesion and recruitment of the mouse MC3T3-E1 preosteoblastic cell line,² an essential event for osteoblastic differentiation. The blockage of periostin activity in MC3T3-E1 cells induces a strong decrease in the expression osteoblast differentiation markers, including Runx2/Cbfa1.⁴ Periostin is also involved in various developmental processes (developing teeth and heart) and pathological pathways such as cancer.^{8,12,13}

The phenotype and activity of cancer cells are strongly regulated by integrin receptors through the binding to RGD peptide-containing matrix proteins.¹⁴ Although periostin does not have an RGD sequence, it can interact with integrins through its FAS-1 domains¹⁵⁻¹⁷ and thus regulates cell adhesion and migration. Gillan *et al.*¹⁸ have shown that periostin promotes epithelial ovarian carcinoma cell adhesion and migration by binding to $\alpha\nu\beta3$ and $\alpha\nu\beta5$ integrins. In colon cancer, the interaction of periostin with $\alpha\nu\beta3$ facilitates angiogenesis and metastasis.¹³ Other studies report the interaction of the Akt/PKB pathway.¹⁹⁻²¹ In addition, periostin involvement in epithelial–mesenchymal transition, an important process of

Periostin and stromal reaction in bone metastases

		Common to all isoforms	Isoform-dependant length	L32
Human	Forward	TTCTGACGCCTCAAAACTGA	AGCAGACACACCTGTTGGAA	CAAGGAGCTGGAAGTGCTGC
	Reverse	ACATTCACGTTGCTCTCCAA	GAACGACCTTCCCTTAATCGT	CAGCTCTTTCCACGATGGC
	Parameters	$T_{\rm m}$ 58°C, $n =$ 35 cycles	$T_{\rm m}$ 58°C, $n = 35$ cycles	$T_{\rm m}$ 59°C, $n=$ 30 cycles
	Amplicon size	129 bp	465, 540, 615 bp	101 bp
Mouse	Forward	TGGTCACTTCACGCTCTTTG	CAAATGGTGTCATCCACGTC	CAAGGAGCTGGAGGTGCTGC
	Reverse	TGGAGATACTGTCCCCTTCG	TCTAGGCCCTTGAACCCTTT	CTGCTCTTTCTACAACGGC
	Parameters	$T_{\rm m}$ 59°C, $n =$ 30 cycles	$T_{\rm m}$ 59°C, $n=$ 30 cycles	$T_{\rm m}$ 59°C, $n =$ 30 cycles
	Amplicon size	221 bp	482, 557, 632 bp	101 bp

Table 1. •••

metastasis, was highlighted by transfecting periostin in non-metastatic 293T tumor cells. $^{\rm 22}$

Periostin was overexpressed in various human tumor samples (colon, ovaries and breast) as assessed through immunohistochemical (IHC) and polymerase chain reaction (PCR) analyses.^{13,18,19} In non-small cell lung cancer, periostin mRNA was highly expressed only at the periphery of the tumor but not within the tumor itself.²³ An association between enhanced periostin expression and tumor invasion and progression was also described in thymoma²⁴ and neuroblastoma.²⁵ One study reported increased periostin serum levels in breast cancer patients with bone metastases.²⁶ Its role in bone metastases is however unclear. The aim of our study was to investigate whether periostin expression is associated with breast cancer bone metastases and to determine which cells produce periostin within skeletal lesions.

Material and Methods Cell lines and culture conditions

Human breast cancer (MDA-MB-231, BT-474, MCF-7, T47D and ZR-75), prostate cancer (DU-145 and PC3) and osteosarcoma (HOS) cell lines, as well as a mouse osteoblastic cell line (MC3T3-E1), were obtained from the American Type Culture Collection. MDA-MB-231/B02, also named MDA-B02, is a subclone of the primary tumor cell line MDA-MB-231, which was selected for its unique predilection to metastasize to bone when injected into the tail ventral artery of nude mice, as previously described.²⁷ All cancer cells were grown in complete Dulbecco's Modified Eagle Medium (Invitrogen) [supplemented with 10% (v/v) fetal calf serum (FCS) (Bio-Media, Boussens, France), 1% (v/v) penicillin/streptomycin (Invitrogen) and 1% (v/v) fungizone (Invitrogen)], except for MC3T3-E1 cells, which were grown in complete alphamodified minimum essential medium (Invitrogen) [supplemented with 10% (v/v) FCS (Bio-Media), 0.5% (v/v) penicillin/streptomycin (Invitrogen) and 0.5 % (v/v) fungizone (Invitrogen)] at 37°C in a 5% CO₂ incubator until confluent. Cells were then cultured for 48 hours in their respective medium in the absence of FCS. Supernatants were collected, cells were lysed and both were stored at -70° C for further use.

ELISA for periostin measurement

Periostin was measured using a novel enzyme-linked immunosorbent assay (ELISA) based on a rabbit polyclonal antibodies raised against the KKIPANKRVQGPRRRSREGRSQ synthetic peptide derived from the C-terminal sequence of mouse periostin, which is common to all known periostin isoforms.²⁸ This antibody has been previously described in details and used in several IHC studies.^{4,5} The intra- and interassay coefficient of variation (CV) for cell culture supernatant and serum measurements are below 15%, and the detection limit is 0.4 ng/ml.²⁸

Reverse transcription PCR analysis for periostin mRNA expression

Total RNA from breast cancer cell lines was extracted using the RNeasy Mini Kit (Qiagen, Courtabœuf, France) according to the supplier's instructions. Complementary DNA was then generated using the Moloney murine leukemia virus-1 (MLV-1) reverse transcriptase (Promega, Charbonnières, France). The following primers (F: forward; R: reverse) and PCR conditions were used (Table 1).

Initial denaturing: 2 minutes at 95°C, *n* cycles with denaturing at 94°C for 30 sec, annealing at $T_{\rm m}$ for 45 sec and extension at 72°C for 1 minute. Because C-terminal part of periostin may be truncated in some cancers,²⁹ a couple of primers hybridizing in the N-terminal part were used to identify both the regular and truncated forms, and another couple hybridizing in the C-terminal part was used to identify the naturally occurring isoforms. This last set of primers flanks the cassette containing the C-terminal region. L32, a housekeeping gene coding for a ribosomal protein, was used to assert the presence of mRNA in each sample. Products from RT-PCR were separated by electrophoresis on a 2% agarose gel and then visualized with ethidium bromide under ultraviolet light.

Quantitative PCR analysis of periostin

Periostin mRNA was quantified by real-time PCR using the QuantiFast SYBR Green PCR kit (Qiagen). Fluorescence was monitored and analyzed in a Light Cycler (Roche Diagnostics, Meylan, France). L32 mRNA expression was analyzed in parallel to ensure that the amount of cDNAs was similar in Contié et al.

3

each reaction and to normalize results, as previously described. $^{\rm 30}$

Animal model of bone metastasis

Animals. All procedures involving animals, including housing and care, method of euthanasia and experimental protocols, were conducted in accordance with a code of practice established by the regional ethical committee (CREEA, Lyon, France). These studies were monitored on a routine basis by the attending veterinarian to ensure continued compliance with the submitted protocols. Four-week-old female Balb/c homozygous (nu/nu) athymic mice were obtained from Charles River (St. Germain sur l'Arbresles, France).

Experimental bone metastases. On day 0, luciferase-expressing MDA-B02 cells (5 \times 10⁵ cells in 100 μ l of phosphate buffered saline) were inoculated into the tail ventral artery of anesthetized mice. At day 18, radiographs of MDA-B02 tumor-bearing mice were taken and the area of osteolytic lesions was measured as previously described.³¹ Tumor-bearing animals were then distributed among the untreated and bisphosphonate-treated groups to balance these two groups for the extent of bone destruction at baseline (i.e., day 18 after tumor cell inoculation). Then, the bisphosphonate-treated group received a single dose (100 µg/kg body weight) of zoledronic acid (ZOL) administered by subcutaneous injection in 100 µl phosphate buffered saline (vehicle). This dose was chosen because of its inhibitory effect on cancer-induced bone destruction, while having no effect on tumor progression.³¹ The untreated (UNT) group received vehicle only. In addition, age-matched animals received neither tumor cells nor ZOL treatment and were used as a control group (CTR). On day 32 after tumor cell inoculation, fasting mice were anesthetized, and the extent of bone destruction and tumor burden was assessed by whole body radiography and bioluminescence intensity, respectively, as previously described.³¹ Blood was collected, centrifuged and the serum immediately stored at -70°C for further use. Animals were then euthanized and hind limbs' bones from each mouse were dissected, fixed in paraformaldehyde and processed for IHC. Alternatively, femurs and tibias were snap frozen in liquid nitrogen for RNA extraction.

Bone histology

Sample processing. Paraformaldehyde-fixed bone specimens were decalcified in Osteosoft (Merck, VWR, Val de Fontenay, France), dehydrated and then paraffin embedded.

IHC staining for periostin. Five micrometer paraffin-embedded tissue sections were used for IHC. The presence of periostin in bone tissue sections of tibias from control and tumor-bearing animals was immunodetected using the rabbit anti-mouse periostin antibody cited above and diluted 1/100, followed by immunoperoxidase staining (HRP-conjugated donkey anti-rabbit diluted 1/100, Amersham Biosciences; DAB+, Dako, Trappes, France). Omission of primary antibody was used as a negative control.

RNA extraction. Frozen metastatic and nonmetastatic bones were crushed and processed for RNA extraction using the RNeasy Fibrous Tissue Mini Kit (Qiagen), according to the supplier's instructions. Complementary DNA was then obtained using MLV-1 reverse transcriptase (Qiagen).

Biochemical markers of bone turnover

Serum tartrate-resistant acid phosphatase isoenzyme 5b (s-TRACP5b), an osteoclast specific enzyme, was measured by ELISA using a capture antibody raised against recombinant mouse TRACP5b (SBA Sciences, IDS, Paris, France).32 The intra-assay and interassay CVs were lower than 6.5 and 8%, respectively. Serum C-terminal cross-linked telopeptide of type I collagen (s-CTX-I), a biochemical marker of bone matrix degradation, was measured by a competitive ELISA using an antibody raised against an 8 amino acid sequence of type I collagen C-telopeptide (Nordic Bioscience, IDS). Intraassay and interassay CVs were less than 9.5%. Serum type I collagen N-propeptide (s-PINP), a biochemical marker of bone formation, was measured by a competitive ELISA using an antibody raised against an 8 amino acid sequence of PINP (IDS).³³ The intra-assay and interassay CVs were lower than 7.5 and 9.5%, respectively. Serum osteocalcin (s-OC), a marker of osteoblastic activity, was measured by a two-site immunoradiometric assay using antibodies raised against the mid region C-terminal portion and the N-terminal fragment of osteocalcin (Immunotopics, IDS). The intra-assay and interassay CV were less than 5 and 5.5%, respectively.

Statistical analyses

All data were analyzed with the use of StatView software (version 5.0; SAS Institute Inc., Cary, NC). Comparisons were carried out by performing a nonparametric Mann-Whitney *U* test. Correlations were evaluated by performing a nonparametric Spearman test. *p* values <0.05 were considered statistically significant. All statistical tests were two sided.

RESULTS

In vitro expression and secretion of periostin by human breast and prostate cancer cell lines

The expression of periostin mRNA in human breast and prostate cancer cell lines was analyzed by RT-PCR. Agarose gel electrophoresis of RT-PCR products from human (HOS) and mouse (MC3T3-E1) osteoblasts showed the same pattern with a single band corresponding to the common domain and three correctly sized bands corresponding to periostin isoforms (Fig. 1*a*). Periostin mRNA was not detected in any of the human breast and prostate cancer cell lines (Fig. 1*a*).

The presence of periostin protein in the cell lysate or in the supernatant of cultured human breast and prostate cancer cell lines was assessed by ELISA. Periostin was not detected in any of the cell lines, except for MC3T3-E1 cells, which were used here as a positive control (Fig. 1*b*). Western blot

Periostin and stromal reaction in bone metastases

Figure 1. (*a*) RT-PCR analysis of periostin transcripts in human breast cancer cell lines (MDA-MB-231, MDA-B02, MCF-7, BT-474, T47D and ZR-75), human prostate cancer cell lines (PC3 and DU-145), human osteosarcoma cell line (HOS) and mouse preosteoblastic cell line (MC3T3-E1). Upper panel: C-terminal amplification revealed the several isoforms. Middle panel: N-terminal amplification. Lower panel: L32 used as a control was present and confirmed the presence of mRNA. Right panel: N-terminal and C-terminal amplicons. (*b*) Measurement by ELISA of periostin levels in the cell culture supernatants and cellular extracts of the cell lines listed above. Inset: Western blot showing that the polyclonal antibody used in the ELISA recognized recombinant human periostin (rhPN) and the mouse periostin isoforms secreted in the cell culture supernatant from MC3T3-E1 cells. WM, weight markers (RNA: bp; protein: kDa).

analysis of these samples with the anti-periostin antibody confirmed ELISA data; only MC3T3-E1 expressed periostin [Fig. 1b (inset); cancer cell lines were all negative and not shown].

Association between periostin expression and bone metastasis formation

All the animals inoculated with MDA-B02 cells had bone metastases in the hind limbs as judged by radiography and bioluminescence imaging, when compared to control mice that did not receive tumor cells (Fig. 2). Radiographic analysis of metastatic animals treated with ZOL, using a single dose of 100 μ g/kg, revealed that these mice had osteolytic lesions that were 60% smaller than those of tumor-bearing animals treated with the vehicle (Figs. 2*a* and 2*c*). ZOL, at this dosing regimen, did not however inhibit skeletal tumor burden, defined as bioluminescence intensity (Figs. 2*b* and 2*d*), as previously reported.³¹

The levels of bone turnover markers in the serum of vehicle-treated animals bearing osteolytic lesions were substantially higher than those measured in the serum of control animals (Fig. 3), which mirrors bone destruction occurring in metastatic animals (Figs. 2a and 2c). Moreover, there was a return of circulating levels of bone turnover markers to normal during ZOL treatment of metastatic mice (Fig. 3), which was associated with a significant decrease in the rate of bone metastasis progression in these animals (Fig. 2c). Moreover, compared to control animals, serum periostin levels were significantly increased in mice bearing osteolytic lesions (Fig. 4a). However, ZOL treatment of metastatic mice only modestly decreased circulating periostin levels (Fig. 4a), despite a marked reduction of bone turnover markers (Fig. 3). The bone marrow in healthy bone (Fig. 4d) or unaffected parts of metastatic bones (Fig. 4e) showed scattered periostin immunostaining around marrow cells, mainly leukocytes. In contrast, metastases (Fig. 4f) consisted in a dense mesh of fibroblastic and cancer cells. Most—but not all—of these cells were immunoreactive for periostin.

Quantitative-PCR measurement of the expression levels of human periostin transcripts in metastatic bone tissue showed that human MDA-B02 cells did not express periostin in situ (Fig. 5a). By contrast, Q-PCR analysis using mouse-specific primers showed basal expression of periostin mRNA in the bone marrow of control mice and a marked increase of mouse periostin mRNA levels in bone metastases (Fig. 5a). Mouse periostin mRNA expression levels in metastatic animals treated with ZOL were modestly decreased compared to vehicle-treated metastatic animals but remained 3.9-fold higher than those observed in control mice. There was also a significant correlation (p < 0.05) between in situ mRNA expression in the bone marrow and circulating levels of periostin (Fig. 5b). Because some of the MDA-B02 cells were immunoreactive for periostin in IHC, although they did not express periostin mRNA using Q-PCR, we analyzed whether cancer cells could capture surrounding periostin. To test that hypothesis, MDA-B02 cells were incubated in vitro with recombinant mouse periostin. Immunofluorescent labeling showed that there was an uptake of recombinant periostin within MDA-B02 cells (Fig. 6).

DISCUSSION

In our study, we showed that bone metastases from breast cancer were associated with a marked overexpression of the stroma-derived periostin in a well-established animal model. Importantly, such increase could be detectable by the measurement of periostin in the peripheral circulation. Contié et al.

Figure 2. (*a*, *c*) Radiographic analysis of hind limbs from control animals (CTR) and metastatic mice treated with zoledronic acid (ZOL) or vehicle only (UNT). Osteolytic lesions are indicated by arrows. The area of osteolytic lesions was measured and the extent of bone destruction per animal was expressed in square millimeters. (*b*, *d*) Bioluminescence imaging of control animals and metastatic mice treated with ZOL or vehicle. Bioluminescence mirrors skeletal tumor burden. The extent of tumor burden per animal was expressed in photons/second. All images from metastatic animals were obtained on day 32 after tumor cell inoculation. Age-matched animals that did not receive cancer cells were used as controls. There were 7–8 mice per group. Values are expressed as the mean \pm SD. **p* < 0.05 *vs*. CTR; #*p* < 0.05 *vs*. UNT. NS, nonsignificant.

Periostin is known to be involved both in osteogenic processes and in cancer-related events. These properties result in part from its ability to bind to integrins that leads to various cellular responses including commitment of mesenchymal progenitors towards osteoblastic differentiation, angiogenesis and cancer cell adhesion, migration and survival.2,4,13,19 In our study, we investigated the association between periostin and bone metastasis, a common complication of several solid cancers, including breast cancer.³⁴ First, we showed that periostin was not expressed in vitro by breast and prostate cancer cell lines (Fig. 1) including MDA-B02 breast cancer cells that have a high propensity to metastasize to bone.³⁵ These data are in agreement with previous studies showing little or no expression of periostin in most immortalized cancer cell lines, although this is the first time that a lack of expression is reported for MDA-MB-231, BT-474, T47D and ZR-75 human breast cancer cell lines.^{18,20,36-38} We also investigated whether periostin expression could be overexpressed in a mouse model of human breast cancer-induced bone metastases. In this model, tumor cells settle in the bone marrow and interact with stromal and bone cells that support the growth

Figure 3. Relative changes of serum bone turnover markers in vehicle-treated (UNT; n = 8) and zoledronic acid-treated (ZOL; n = 8) mice bearing bone metastases compared to age-matched control animals (CTR; n = 7). Serum was collected on day 32 after tumor cell inoculation. Values are the mean (\pm SD) relative change compared to control group. *p < 0.05 vs. CTR; #p < 0.05 vs. UNT.

Periostin and stromal reaction in bone metastases

Figure 4. Modulation of periostin expression levels in control animals (CTR), vehicle- (UNT) and zoledronic acid (ZOL)-treated metastatic mice on day 32 after tumor cell inoculation. (*a*) Relative changes of serum periostin levels in control mice (n = 7), vehicle- (n = 8) and zoledronic acid-treated (n = 8) metastatic mice. Values are the mean (\pm SD) relative change compared to control group. *p < 0.05 vs. CTR; #p < 0.05 vs. UNT. (*b*) Representative immunostaining of periostin in hind limbs from control mice and (*c*) mice bearing bone metastases (asterisks). (*d*) Higher magnification of the marrow immunostaining image depicted in (*b*). (*e*) Higher magnification of a field containing marrow not affected by metastatic tissue shown in (*c*). (*f*) Higher magnification of metastatic tissue depicted in (*c*).

of metastasis both directly and indirectly through secreted and bone-derived factors, respectively. These closely related events generate a vicious cycle in which the tumor growth and the bone resorption stimulate each other.³⁹ Some of the matrix-, tumor- and stroma-derived proteins this process generates are released in the blood circulation as well. To evaluate the contribution of each of these three partners to the circulating periostin, we used (*i*) a pharmacological intervention that specifically decreases bone matrix resorption with limited effect on tumor burden³¹ and (*ii*) mouse- and human-specific PCR primers to segregate the cancerous and the stromal contribution to the periostin modulation.

In this experimental model, mice inoculated with MDA-B02 cells presented with osteolytic lesions and increased bone turnover, as documented by radiography (Figs. 2a and 2c) and bone turnover markers (Fig. 3), respectively. In addition, there was a marked increase in circulating periostin levels

(Fig. 4a). As expected,³¹ the selected dose of ZOL reduced significantly the progression of osteolytic lesions (Figs. 2a and 2c) and the circulating levels of bone turnover markers (Fig. 3), while having no detectable effect on skeletal tumor burden (Figs. 2b and 2d). In contrast, ZOL only modestly modulated serum periostin levels (Fig. 4a). Furthermore, there was a lack of correlation (data not shown) between periostin levels and both the biochemical markers and the extent of radiographic bone lesions. These data suggest that the resorbing bone matrix is unlikely to be the major source of the increased serum periostin levels. The slight decrease in serum (Fig. 4a) and mouse bone mRNA (Fig. 5a) periostin levels with ZOL could result from the decrease in the release of stimulating factors embedded in bone matrix such as TGF- β and BMP-2,^{2,15,40,41} as a consequence of the inhibition of bone resorption. However, because we could not analyze the expression and serum levels of these growth factors,

6

Contié et al.

Figure 5. (*a*) Relative changes in the expression of human and mouse periostin mRNA levels by Q-PCR in hind limbs from control mice (n = 7) and from metastatic animals treated with the vehicle (n = 8) or zoledronic acid (n = 8). Values are the mean (\pm SD) relative change compared to control group. *p < 0.05 vs. CTR; #p < 0.05 vs. UNT. (*b*) Correlation between serum periostin and bone periostin mRNA levels. Correlation includes periostin data from control mice, untreated and zoledronic acid-treated MDA-B02 cells-injected mice.

further investigation will be necessary to confirm that hypothesis. IHC analyses provided some evidences that the metastatic tissue is likely to be responsible for the increased serum periostin levels (Figs. 4b-4f). Bone metastases encompassed MDA-B02 cells and stromal cells, which both were positive for periostin immunostaining. However, the speciesspecific Q-PCR analysis of bone extracts indicated that host (mouse) stromal cells, but not cancer cells (human), are likely to be the major contributors to increased periostin expression in this animal model (Fig. 5a). The lack of human periostin expression in the bone extract of MDA-B02-inoculated mice cannot result from poor human RNA extraction or quality because we could readily detect and quantify other human transcripts such as L32 and Vimentin (data not shown). No detectable level of periostin could be measured by a human periostin-specific ELISA in the serum samples from these mice (data not shown), confirming that only mouse periostin is modulated in this model of breast cancer-induced bone metastases. Endocytosis is a common feature of eukaryote cells, and the discrepancy between the positive staining of

Figure 6. Periostin immunofluorescence staining of cultured MDA-B02 cells incubated overnight with or without recombinant mouse periostin. Left column: FITC labeling of periostin. Central column: rhodamine labeling of actin. Right column: merge. Top row: MC3T3-E1 preosteoblastic cells were incubated alone and served as positive control. Middle row: MDA-B02 cells were incubated alone and served as negative control. Bottom row: MDA-B02 cells were incubated overnight with 10 µg of recombinant mouse periostin.

Periostin and stromal reaction in bone metastases

some of the MDA-B02 by IHC and the absence of expression of human periostin mRNA in bones by Q-PCR could result from the uptake of stroma-derived periostin by MDA-B02 cells as suggested by the *in vitro* analyses (Fig. 6). Whether periostin uptake by cancer cells is occurring *in vivo* and has biological effects remains to be investigated. Overall, our observations are consistent with previous studies showing overexpression of periostin within the stromal tissue of various primary tumors types,^{15,20,21,23,26,42–49} although this is the first to report a stroma-derived periostin overexpression in the context of bone metastases from breast cancer.

In summary, we showed that periostin is overexpressed by stromal cells in breast cancer bone metastases. This increased

References

- Takeshita S, Kikuno R, Tezuka K, Amann E. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. *Biochem J* 1993;294(Pt 1):271–8.
- Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. *J Bone Miner Res* 1999;14:1239–49.
- Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD, Galipeau J. Periostin, a member of a novel family of vitamin Kdependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 2008;283:17991–8001.
- Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF. Expression and function of periostin-isoforms in bone. *J Cell Biochem* 2004;92:1044–61.
- Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S, Margulies K. Periostin and periostin-like factor in the human heart: possible therapeutic targets. *Cardiovasc Pathol* 2006; 15:24–32.
- Litvin J, Chen X, Keleman S, Zhu S, Autieri M. Expression and function of periostin-like factor in vascular smooth muscle cells. *Am J Physiol* 2007;292: C1672–C1680.
- Zhu S, Barbe MF, Amin N, Rani S, Popoff SN, Safadi FF, Litvin J. Immunolocalization of Periostin-like factor and Periostin during embryogenesis. J Histochem Cytochem 2008;56:329–45.
- Kruzynska-Frejtag A, Wang J, Maeda M, Rogers R, Krug E, Hoffman S, Markwald RR, Conway SJ. Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. *Dev Dyn* 2004;229:857–68.

- Suzuki H, Amizuka N, Kii I, Kawano Y, Nozawa-Inoue K, Suzuki A, Yoshie H, Kudo A, Maeda T. Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development. *Anat Rec ADiscov Mol Cell Evol Biol* 2004;281:1264–75.
- Emans PJ, Spaapen F, Surtel DA, Reilly KM, Cremers A, van Rhijn LW, Bulstra SK, Voncken JW, Kuijer R. A novel in vivo model to study endochondral bone formation; HIF-1alpha activation and BMP expression. *Bone* 2007;40:409–18.
- 11. Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, Feng JQ, Conway SJ. Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. *Mol Cell Biol* 2005;25:11131–44.
- 12. Kruzynska-Frejtag A, Machnicki M, Rogers R, Markwald RR, Conway SJ. Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. *Mech Dev* 2001;103:183–8.
- 13. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. *Cancer Cell* 2004;5:329–39.
- Ruoslahti E. Integrins as signaling molecules and targets for tumor therapy. *Kidney Int* 1997;51:1413–7.
- Erkan M, Kleeff J, Gorbachevski A, Reiser C, Mitkus T, Esposito I, Giese T, Buchler MW, Giese NA, Friess H. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. *Gastroenterology* 2007; 132:1447–64.
- Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. *Nat Med* 2007;13: 962–9.

expression was detected by the measurement of the protein in circulating blood using ELISA. Currently, there is no measurable circulating marker that can reflect the presence of tumor cells seeded in the bone marrow. The measurement of periostin, and other yet unidentified stromal factors, could be an early indicator of bone involvement by breast cancer cells, possibly before they induce detectable changes of systemic bone turnover markers.

Acknowledgements

The authors thank Karine Bori (Synarc) for serum osteocalcin measurements and Marjorie Thomas and Jean-Charles Rousseau (INSERM, Research Unit 831, Lyon, France) for ELISA measurements of human periostin. S.C. is a recipient of a CIFRE fellowship.

- 17. Kim JE, Jeong HW, Nam JO, Lee BH, Choi JY, Park RW, Park JY, Kim IS. Identification of motifs in the fasciclin domains of the transforming growth factor-beta-induced matrix protein betaigh3 that interact with the alphavbeta5 integrin. J Biol Chem 2002;277:46159–65.
- Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. *Cancer Res* 2002;62:5358–64.
- 19. Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T, Gishizky ML, Marks JR, Wang XF. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through upregulation of vascular endothelial growth factor receptor 2 expression. *Mol Cell Biol* 2004;24:3992–4003.
- Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T, Zhu M, Kalthoff H, Crnogorac-Jurcevic T, Lemoine NR. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 2007;26:2082–94.
- 21. Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M, Shimosegawa T. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. *Int J Cancer* 2008; 122:2707–18.
- Yan W, Shao R. Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem 2006;281: 19700–8.
- Sasaki H, Dai M, Auclair D, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y, Chen LB. Serum level of the periostin, a

Contié et al.

homologue of an insect cell adhesion molecule, as a prognostic marker in nonsmall cell lung carcinomas. *Cancer* 2001;92:843–8.

- 24. Sasaki H, Dai M, Auclair D, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y, Chen LB. Serum level of the periostin, a homologue of an insect cell adhesion molecule, in thymoma patients. *Cancer Lett* 2001;172:37–42.
- Sasaki H, Sato Y, Kondo S, Fukai I, Kiriyama M, Yamakawa Y, Fuji Y. Expression of the periostin mRNA level in neuroblastoma. *J Pediatr Surg* 2002;37: 1293–7.
- 26. Sasaki H, Yu CY, Dai M, Tam C, Loda M, Auclair D, Chen LB, Elias A. Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer. *Breast Cancer Res Treat* 2003;77: 245–52.
- 27. Peyruchaud O, Winding B, Pecheur I, Serre CM, Delmas P, Clezardin P. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. *J Bone Miner Res* 2001;16:2027–34.
- Contié S, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clézardin P, Garnero P. Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice. *Calcif Tissue Int*, in press.
- Yoshioka N, Fuji S, Shimakage M, Kodama K, Hakura A, Yutsudo M, Inoue H, Nojima H. Suppression of anchorageindependent growth of human cancer cell lines by the TRIF52/periostin/OSF-2 gene. *Exp Cell Res* 2002;279:91–9.
- 30. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. *Cell* 2004;117: 927–39.
- Daubiné F, Le Gall C, Gasser J, Green J, Clézardin P. Antitumor effects of clinical dosing regimens of bisphosphonates in

experimental breast cancer bone metastasis. J Natl Cancer Inst 2007;99:322-30.

- 32. Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted tartrate-resistant acid phosphatase 5b is a Marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. *Calcif Tissue Int* 2008;82:108–15.
- 33. Hale LV, Galvin RJ, Risteli J, Ma YL, Harvey AK, Yang X, Cain RL, Zeng Q, Frolik CA, Sato M, Schmidt AL, Geiser AG. PINP: a serum biomarker of bone formation in the rat. *Bone* 2007;40:1103–9.
- Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. *Clin Cancer Res* 2006;12:6243s–6249s.
- Peyruchaud O, Serre CM, NicAmhlaoibh R, Fournier P, Clézardin P. Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J Biol Chem 2003;278:45826–32.
- 36. Ismail RS, Baldwin RL, Fang J, Browning D, Karlan BY, Gasson JC, Chang DD. Differential gene expression between normal and tumor-derived ovarian epithelial cells. *Cancer Res* 2000;60:6744–9.
- 37. Gonzalez HE, Gujrati M, Frederick M, Henderson Y, Arumugam J, Spring PW, Mitsudo K, Kim HW, Clayman GL. Identification of 9 genes differentially expressed in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2003;129:754–9.
- Tai IT, Dai M, Chen LB. Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by antiperiostin antibodies. *Carcinogenesis* 2005; 26:908–15.
- Clezardin P, Teti A. Bone metastasis: pathogenesis and therapeutic implications. *Clin Exp Metastasis* 2007;24:599–608.
- 40. Ji X, Chen D, Xu C, Harris SE, Mundy GR, Yoneda T. Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. *J Bone Miner Metab* 2000;18:132–9.
- Oku E, Kanaji T, Takata Y, Oshima K, Seki R, Morishige S, Imamura R, Ohtsubo K, Hashiguchi M, Osaki K, Yakushiji K, Yoshimoto K, et al. Periostin and bone

marrow fibrosis. *Int J Hematol* 2008;88: 57–63.

- Fukushima N, Kikuchi Y, Nishiyama T, Kudo A, Fukayama M. Periostin deposition in the stroma of invasive and intraductal neoplasms of the pancreas. *Mod Pathol* 2008;21:1044–53.
- Puglisi F, Puppin C, Pegolo E, Andreetta C, Pascoletti G, D'Aurizio F, Pandolfi M, Fasola G, Piga A, Damante G, Di Loreto C. Expression of periostin in human breast cancer. J Clin Pathol 2008;61:494–8.
- 44. Tilman G, Mattiussi M, Brasseur F, van Baren N, Decottignies A. Human periostin gene expression in normal tissues, tumors and melanoma: evidences for periostin production by both stromal and melanoma cells. *Mol Cancer* 2007;6:80.
- 45. Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A, Fukayama M. Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem Cytochem 2008; 56:753–64.
- Ben QW, Zhao Z, Ge SF, Zhou J, Yuan F, Yuan YZ. Circulating levels of periostin may help identify patients with more aggressive colorectal cancer. *Int J Oncol* 2009;34:821–8.
- 47. Paulitschke V, Kunstfeld R, Mohr T, Slany A, Micksche M, Drach J, Zielinski C, Pehamberger H, Gerner C. Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells. J Proteome Res 2009;8:2501–10.
- 48. Smith MJ, Culhane AC, Donovan M, Coffey JC, Barry BD, Kelly MA, Higgins DG, Wang JH, Kirwan WO, Cotter TG, Redmond HP. Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification. *Br J Cancer* 2009;100:1452–64.
- 49. Tsunoda T, Furusato B, Takashima Y, Ravulapalli S, Dobi A, Srivastava S, McLeod DG, Sesterhenn IA, Ornstein DK, Shirasawa S. The increased expression of periostin during early stages of prostate cancer and advanced stages of cancer stroma. *Prostate* 2009;69:1398–403.

9

3.3 Données supplémentaires

Supplément 4. Mesure de l'expression de la vimentine humaine dans les pattes métastatiques de souris.

De la même façon que pour la périostine, nous avons mesuré le niveau d'expression de la vimentine humaine par rapport à celui du L32 humain. Contrairement à la périostine, la vimentine est exprimée par les cellules tumorales (humaines) implantées dans l'os. Cette mesure montre donc que l'extraction des ARN messagers d'origine tumorale a bien été efficace. Egalement, elle corrobore l'absence d'effet de l'acide zolédronique sur la charge tumorale comme nous l'avons observé en bioluminescence.

Supplément 5. Mesure des taux sériques de périostine chez les souris métastatiques.

A la demande des correcteurs de l'article, nous avons contrôlé au niveau protéique l'absence d'expression de périostine par les cellules tumorales implantées dans l'os telle que nous l'avons observée par la Q-PCR. Pour ce faire, nous avons développé un ELISA

	sample only	sample + 50 ng/ml rhPN
buffer	ND	50
CTR mouse serum (n=4)	ND	47.5
MET mouse serum (n=3)	ND	-
human serum (n=2)	12.15	-

ND: not detectable

sandwich spécifique de la périostine humaine. Ainsi, nous avons mesuré des sérums de souris naïves (CTR) et métastatiques (MET) et des sérums humains. Les sérums de souris CTR ont également été mesurés après avoir été supplémentés avec de la périostine humain recombinante. Dans cette expérience, la périostine n'a été détectée que dans les sérums humains et les sérums de souris CTR supplémentés avec la périostine humaine, confirmant l'absence de périostine humaine dans le sérum des souris métastatiques.

Supplément 6. Analyse immunohistochimique de la périostine dans le périoste de pattes métastatiques. Outre le développement de métastases observé à l'intérieur des tibias (os trabéculaire et moelle), nous avons également remarqué d'importantes altérations morphologiques du périoste chez les souris métastatiques. Alors que les souris naïves (CTR) présentent un périoste bien structuré, avec une couche interne ostéogénique exprimant la périostine et une couche externe fibroblastique ne l'exprimant quasiment pas, le périoste des souris métastatiques (MET) perd totalement cette organisation par endroits. On remarque une prolifération cellulaire anarchique à l'intérieur-même de l'os cortical. Toutefois nous n'avons pas déterminé si cette zone de prolifération prend place à l'intérieur-même de l'os cortical ou s'il s'agit de la couche interne du périoste. Dans ce deuxième cas, il y aurait donc une apposition périostée aberrante d'un côté et une forte résorption de l'autre, la matrice semblant subir de multiples lyses. Cette possibilité est soutenue par l'existence d'une « réaction périostée » décrite chez les patients atteints de métastases osseuses (http://www.med.univ-rennes1.fr/cerf/edicerf/OSTEO-ARTICULAIRE/08OSTEO.html). Quoi qu'il en soit, l'affinité que les cellules MDA-B02 semblent avoir pour cette région de l'os corrobore des observations (non publiées) de notre laboratoire selon lesquelles la colonisation précoce de l'os par les cellules tumorales commencerait par une progression le long du périoste métaphysaire. De plus amples expériences permettraient de dire si la périostine, fortement exprimée au sein de cette structure, joue un rôle dans ces phases précoces du développement des métastases osseuses.

Supplément 7. Valeur diagnostique de la périostine sérique dans le contexte des métastases osseuses (MO). Afin d'apprécier la valeur diagnostique de la périostine sérique pour les métastases osseuses, nous avions développé un premier dosage ELISA de la périostine humaine et testé différentes populations de patients atteints de cette pathologie. Cet ELISA fut par la suite abandonné en raison de performances analytiques inférieures à celles requises pour une utilisation clinique fiable. Cependant ces résultats préliminaires sont intéressants et méritent d'être rapportés en tant que tels. Nous avons mesuré les taux sériques de périostine chez 15 patientes atteintes de cancer du sein avec ou sans MO, 36 patients atteints de cancer prostatique sans MO et 40 patients atteints de cancer prostatique avec MO. Dans les deux types de cancer, les patients présentant des MO ont des taux sériques de périostine significativement supérieurs à ceux des patients sans MO. Une analyse de type courbe ROC (Receiver Operating Characteristic) a ensuite permis d'évaluer la valeur diagnostique de la périostine dans les deux pathologies. (A) Dans le cancer du sein, la courbe ROC montre une forte sensibilité du biomarqueur dans la discrimination des patientes avec ou sans MO mais une spécificité moins haute, la précision diagnostique globale étant de 67%. (B) Dans le cancer prostatique, la courbe ROC montre une forte spécificité du biomarqueur dans la discrimination des patientes avec ou sans MO mais une mauvaise sensibilité, la précision diagnostique globale étant de 41% seulement. Ces données préliminaires devront être réévaluées à l'aide d'un nouveau dosage ELISA répondant aux spécifications analytiques propres à une utilisation clinique.
4. MÉTA-ANALYSE GÉNOMIQUE DE L'EXPRESSION DE LA PÉRIOSTINE ET DES PROTÉINES APPARENTÉES DANS LE CANCER

Contié S, Clézardin P, Garnero P (2010). Genomic meta-analysis of the expression of periostin and related proteins in cancer. PLoS ONE (*submitted*)

4.1 Synthèse de l'article

Les études récentes rapportant une surexpression de la périostine (*POSTN*) dans le cancer, nous avons souhaité caractériser l'implication clinique et biologique de cette protéine de la matrice extracellulaire (MEC) et des protéines de la même famille dans différentes tumeurs par une approche intégrative basée sur l'utilisation de deux outils bioinformatiques récents. Oncomine (Compendia Bioscience) est un dépositoire de données brutes issues d'études transcriptomiques et propose différents outils de méta-analyse. DAVID (« Database for Annotation, Visualization and Integrated Discovery ») est une plateforme mise en place par le National Institute of Health (NIH, Etats-Unis d'Amérique) et permet d'analyser d'importantes listes de gènes enfin d'en extraire une signification biologique.

Les analyses par clusters de co-expression nous ont d'abord permis d'identifier les gènes dont l'expression est étroitement corrélée à celle de la périostine dans chacun des 12 types de tumeur évalués. Ces 12 clusters de co-expression ont ensuite été utilisés pour des analyses d'expression différentielle entre tumeurs et tissus sains ou entre sous-types histologiques de tumeurs. Dans plusieurs variétés de tumeur, nous avons ainsi mis en évidence des signatures permettant une discrimination efficace entre les stades avancés et ceux moins évolués ou le tissu sain. Aux côtés de POSTN, plusieurs gènes récurrents incluaient différents types de collagène, VCAN, FN1, LUM, SULF1, SPARC, CDH11, THY1, FAP, THBS2 et INHBA. Ces signatures comportent une proportion exceptionnellement élevée de protéines qui, tout comme la périostine, appartiennent à la MEC et sont liées au métabolisme du TGF- β , donc des composantes de la stromagenèse rencontrée dans les phases avancées de la progression tumorale. Finalement, ces 12 clusters de co-expression ont été analysés avec la plateforme DAVID, qui a identifié à chaque fois un ensemble de processus biologiques dans lesquels la périostine est potentiellement impliquée, du fait de son étroite corrélation avec le contenu des clusters. Principalement et de façon consistante, nous avons observé des fonctions telles que l'organisation et le remodelage de la MEC, la vascularisation, la perception des signaux extracellulaires, mais également des programmes génétiques qui peuvent devenir pertinent lors de la dissémination métastatique des cellules tumorales (par exemple, le processus biologique « métabolisme osseux »).

En conclusion, cette nouvelle approche d'analyse nous a permis de confirmer les données de la littérature et d'apporter de nouvelles observations sur les modulations de l'expression de la périostine dans différents types de tumeurs. Nous avons également démontré la relation étroite qui existe entre la périostine et les autres protéines de la MEC au cours de l'oncogenèse. Enfin nous avons montré dans chaque cancer que le cluster de co-expression de la périostine correspond à des fonctions-clé des stades avancés de la progression tumorale. La mesure de ces protéines sécrétées par des méthodes non invasives pourrait constituer de nouveaux biomarqueurs liés à la stromagenèse. Ceux-ci pourraient donc être d'un grand intérêt dans l'évaluation de la progression tumorale ou le suivi des traitements et pourraient même représenter de nouvelles cibles thérapeutiques pour limiter la progression de la maladie.

4.2 Article

Cf. manuscrit soumis ci-après.

Title

Genomic meta-analysis of the expression of periostin and related proteins in cancer

Authors' names (in order), and affiliations

Sylvain Contié¹, Philippe Clézardin^{1,2}, Patrick Garnero^{1,3}

¹ Research Unit 664, Institut National de la Santé et de la Recherche Médicale, Lyon, F-69372 France; ² Université Claude Bernard Lyon 1, Villeurbanne, F-69622, France; ³ CisBio Bioassays, Bagnols/Cèze, France

Corresponding author

Sylvain Contié INSERM, Research Unit 664, Lyon, F-69372 France Phone: +33478778773 sylvain.contie@free.fr

Conflicts of interest:

All authors have no conflicts of interest

Abstract

Periostin (POSTN) is a TGF β -inducible extracellular matrix (ECM) protein originally identified in the MC3T3-E1 mouse preosteoblastic cell line. Recent works reported the involvement of POSTN and other ECM proteins in various cancers. Here we aimed to further characterize the biological and clinical role of POSTN and POSTN-co-expressed genes in cancers by an integrative bioinformatic approach. In the Oncomine online database, co-expression analyses generated a POSTN-related gene cluster in each of the 12 cancer types evaluated. Differential expression analysis showed that a subset of these genes efficiently discriminate between higher and lower stages of cancer or between pathological and normal tissues. These genes included POSTN, several types of collagen, VCAN, FN1, LUM, SULF1, SPARC, CDH11, THY1, *FAP, THBS2* and *INHBA*. Most of them encode for TGF- β -regulated ECM proteins. A functional clustering of POSTN-co-expressed genes identified using the DAVID online database supported several experimentally established biological processes related to POSTN such as ECM organization and remodeling, vascularization and sensing of extracellular factors, but also genetic programs that may be relevant in the context of bone metastasis (e.g. bone metabolism). These findings were highly consistent across the evaluated cancer types. In conclusion, these gene database analyses confirmed the important role of POSTN in several biological processes of oncogenesis including metastases and suggested that other POSTNrelated stromal proteins may have similar functions, which need to be confirmed by experimental data.

Key words

Periostin; cancer progression; stromal reaction; biomarkers; database meta-analysis

Background

Recently there have been several attempts of data-mine published microarrays, using software that can meta-analyze thousands of microarrays. One such program named Oncomine

(http://www.oncomine.org) stores a collection of individual microarray data from large number of patient samples [1]. These "multi-arrays" usually use either normal or tumor biopsy samples from various tissue sources. Two kinds of analysis may be used through the Oncomine database. First, the comparison of a gene expression level between groups defined by clinical or histological characteristics (example in figure 1B). A meta-analytic approach is made possible by the normalization of microarray data which allows a large scale-evaluation of the diagnostic or prognostic relevance of the studied genes. However, the analysis of relative mRNA expression levels can be limited by the fact that relatively small changes in mRNA expression may not be detectable although they could induce large changes at the protein level. A second analysis method known as Gene Set Enrichment Analysis generates a distinct type of output. For a given gene, it actually identifies a cluster of co-expressed genes in each dataset rather than an up- or down-regulation between distinct groups [2]. When enrichment analysis is led among several clusters from the same type of cancer and with appropriate stringency cutoffs (Odds Ratio, p-value, overlapping), the computed gene network is even more reliably associated to the studied gene (example in figure 1C). Correlations like this show that the clustered proteins may belong to the same pathway (e.g. both co-regulated together, or one directly affecting the other).

Finally, this gene network can be analyzed and organized in <u>functional clusters</u> with other bioinformatic tools such as the Database for Annotation, Visualization and Integrated Discovery (DAVID) [3, 4]. Hence the function of the studied gene in a specific condition may be further characterized according to the functional clusters defined by the associated gene network.

Periostin (POSTN) is a TGFβ-inducible extracellular matrix (ECM) protein originally identified in the MC3T3-E1 mouse preosteoblastic cell line [5, 6]. In physiological conditions, it is mainly secreted in the periosteum during growth and in periodontal ligaments [5, 7-9], suggesting a role in bone formation. Furthermore POSTN-knockout mice exhibit dwarfism with enamel and periodontal defects [10]. *In vitro* experiments have also shown that POSTN is involved in the adhesion and recruitment of stroma-derived osteogenic progenitors [11]. Finally, recent works reported its role in organization of the extracellular meshwork architecture [12-14].

In pathological conditions, POSTN was shown to promote epithelial ovarian carcinoma cell adhesion and migration by binding to $\alpha\nu\beta3$ and $\alpha\nu\beta5$ integrins [15]. In colon cancer, the interaction of POSTN with $\alpha\nu\beta3$ facilitated angiogenesis and metastasis [16]. Other studies reported the interaction of POSTN with integrins and the downstream activation of the Akt/PKB pathway [17-19]. Additionally POSTN involvement in epithelial-mesenchymal transition –an important process of metastasis– was reported in several studies [8, 19-22]. Clinically, POSTN was overexpressed in a large panel of human tumor samples, including lung [23, 24], ovary [15, 25], breast [26, 27], colon [28, 29], pancreas [19, 30], prostate [31, 32] and esophagus [33, 34]. More recently we demonstrated that POSTN was overexpressed in a mouse model of breast cancer bone metastases [35]. In these studies, increased POSTN expression was frequently associated with higher clinical stage or grade, poor survival, tumor recurrence or metastatic outcomes. POSTN expression in these tumor samples was reported to occur mainly in the surrounding stroma or at the epithelial-mesenchymal front. Several studies suggested that POSTN and other ECM proteins can modulate cancer cells activity that may lead to enhance tumor progression [19, 25, 30].

In this study, we aimed 1) to compare the data on POSTN expression in cancers stored in online databases with previously published experimental data using a meta-analysis approach,

2) study the relevance of POSTN and other related ECM molecules as biomarkers in various cancers, and 3) to further clarify the role of POSTN in the oncogenic processes through the associated functional clusters.

Methods

This study is based on two different online databases: the Oncomine v4.3 Research Edition (Compendia Bioscience; <u>http://www.oncomine.org</u>) and the "Database for Annotation, Visualization and Integrated Discovery" (DAVID) v6.7 (National Institute of Allergy and Infectious Diseases, NIH; <u>http://david.abcc.ncifcrf.gov</u>). The first one compiles normalized data [1] from public high-throughput gene screening studies in which POSTN expression data are available. We evaluated a large variety of cancer encompassing 266 datasets or 19156 samples (**figure 1A**). The second database consists of an integrated biological knowledgebase and analytic tools aimed at extracting biological meaning from gene/protein lists [2].

Oncomine differential expression analyses

In this set of analyses, POSTN differential expression between cancerous and normal tissues or between histological groups was examined as exemplified in **figure 1B**. Comparisons were considered as significant when p-value < 0.05. Non significant and significant up- or downregulation were counted. Groups with only 1 or 2 samples were discarded from analyses.

Oncomine co-expression clustering analyses

In this set of analyses, correlations between POSTN expression and that of any other genes were searched in each available dataset. In each type of cancer, the available co-expression clusters (green square-made columns in **figure 1C**) were statistically compared and determined as associated when Odds Ratio > 10 and p-value < 10E-8. Occurrence of POSTN-co-expressed genes was calculated and those with overlapping \geq 50% were selected (**figure 1C**). This series of stringencies yielded a more representative gene list than those individually presented in each clusters. This analysis was repeated for each type of cancer (**figure 1A**). The output genes were then 1) characterized for their cellular localization, 2) evaluated in differential expression analyses and finally 3) processed through functional clustering. These 3 analyses are described below.

<u>Cellular localization of POSTN-co-expressed genes</u>

Each gene list was uploaded to the DAVID database and converted in DAVID format, the species was set on "human", and we selected the GOCC_FAT filter (Gene Ontology Cellular Component; FAT subset) and built an "annotation table". Uncertain annotations were verified at <u>http://www.uniprot.org</u>. Genes were identified as non-secreted, non-ECM or ECM secreted products.

Evaluation of POSTN-co-expressed genes as tumor or progression markers

POSTN-co-expressed genes were tested in differential expression analyses allowing an evaluation as high-stage or progression markers. Procedure was the same that described before.

DAVID functional clustering analyses

Finally, a functional clustering based on biological processes terms from the Gene Ontology project was done in each type of cancer with the corresponding list of POSTN-coexpressed genes. Basically, this analysis transforms a list of genes into a list of relevant biological processes. Briefly, each list was uploaded to the DAVID database and converted in DAVID format, we set the species on "human" and the gene population background as "whole genome", selected the GOBP_FAT filter (Gene Ontology Biological Process; FAT subset) and run a functional clustering with stringency set on "highest". The complete procedure is further detailed in the literature [4].

Statistical analyses

Oncomine differential expression analyses are based on Log2 transformed median centered values and are tested with a Student's t-test. The significance was established at p<0.05. We did not apply further thresholds such as fold-change or gene rank.

In each Oncomine datasets, a co-expression cluster was generated when at least 10 genes are correlated to POSTN with a r-value \geq 0.5. Then, in each type of cancer, a statistical association between clusters from distinct datasets was established when Odds Ratio > 10 and p-value < 10E-8 (the more stringent cutoffs available). High Odds Ratio means the association did not occur by chance alone and the p-value is the significance of this association.

In DAVID functional clustering analyses, we basically used the highest classification stringency, which limits fuzzy clustering and identifies the functional clusters more specifically [4]. DAVID also proposes statistical tests such as Enrichment Scoring though they were not relevant regarding the purpose of this work.

Results

Differential expression analyses for POSTN

Analysis of POSTN differential expression in the Oncomine database revealed frequent modulations of this gene in a large set of cancers (**Table 1**):

In bladder, POSTN was significantly overexpressed in infiltrating cancer vs. normal tissue (4 out of 4 studies) whereas it was significantly underexpressed in superficial cancer vs. normal tissue (3/4 studies). POSTN was also overexpressed in infiltrating vs. superficial bladder cancer (7/8 studies).

In brain, the ratio of studies showing an increased POSTN expression in cancer vs. normal tissue tended to increase along with WHO staging up to 100% in glioblastoma (4/4 studies). Additionally, POSTN expression was significantly higher in glioblastoma compared to other gliomas in almost all studies (7/8).

In breast, the ratio of studies with overexpressed POSTN compared to normal tissue also increased with the disease severity: 0/2 in non cancerous breast conditions, 6/9 in non-invasive cancer and 8/8 in the invasive form. However, POSTN expression was not systematically higher in invasive *vs.* non-invasive cancer (2/3 studies). Additionally, POSTN expression tended to be higher in lobular than in ductal cancer (5/13 studies).

In colon, POSTN was significantly overexpressed in colorectal adenocarcinoma vs. normal tissue (8/9 studies) whereas it was significantly underexpressed in adenoma –a non-cancerous condition– vs. normal tissue (3/3 studies).

In esophagus, both the premalignant Barrett's disease (3 studies) and the adenocarcinoma (3 studies) always presented an increase of POSTN expression compared to normal tissue.

In head and neck carcinomas, POSTN expression was increased compared to normal tissue in almost all studies (11/13).

In kidney, clear cell renal carcinoma presented an overexpression of POSTN compared to normal tissue (4/6 studies) or other renal cell carcinomas (5/5 studies). However the POSTN

expression in non-clear cell renal carcinomas did not differ from normal tissue in 4/6 studies and was even significantly lower in 2/6 studies.

In lung, non-small cell carcinomas (NSCLC, *i.e.* adenocarcinoma, squamous cell carcinoma and large cell carcinoma) presented an overexpression of POSTN compared to normal tissue in almost all studies (11/13) whereas small cell carcinoma did not differ from normal tissue (2/2 studies).

In lymphoma, the aggressive forms such as diffuse large B-cell, centroblastic and Burkitt's lymphomas presented a POSTN overexpression compared to normal tissue in all studies (9/9) and to follicular lymphoma –an indolent form– in almost all studies (7/8). However the comparison between follicular lymphoma and normal tissue resulted in mitigated observations: 2/4 studies showed an overexpression and 2/4 studies showed an underexpression.

In ovary, adenocarcinomas globally showed a POSTN overexpression compared to normal tissue (8/10 studies). Additionally, POSTN expression was higher in the serous form *vs.* other forms of ovarian adenocarcinoma (4/7 studies). Finally, POSTN expression in ovarian carcinomas *vs.* borderline adenocarcinoma was significantly higher (3/4 studies).

In pancreas, 5/6 studies presented a POSTN overexpression in carcinoma and adenocarcinoma vs. normal tissue.

In prostate, POSTN was significantly overexpressed in carcinoma vs. normal tissue (8/11 studies). POSTN expression was also increased in prostate carcinoma vs. precursor (2/2 studies).

In cervical and gastric cancer, leukemia, liver cancer, melanoma, myeloma and sarcoma, the set of available analyses did not bring striking results, notably because of the low number of studies. These data were not reported in **Table 1** but are still available in **Supplement 1**.

<u>Co-expression clustering analyses for POSTN and cellular localization of gene products</u>

Co-expression clustering analyses were led in each of the 12 cancer types. It resulted in one small cluster per cancer type, constituting a total of 70 unique genes, which the expression was closely correlated to that of POSTN (**Table 2**). Gene products names are available in **Supplement 2**. Among the 70 POSTN-co-expressed gene products, 51 proteins (73%) are secreted and 34 of them (49% of the whole list) are ECM components. These 12 clusters were then evaluated through differential expression analyses and processed through functional clustering.

Evaluation of POSTN-co-expressed genes in differential expression analyses

POSTN-co-expressed genes were tested in differential expression analyses allowing an evaluation as high-stage or progression markers (**Table 3**). Only POSTN and POSTN-co-expressed genes presenting a significant (p<0.05) upregulation in $\geq 80\%$ of studies/comparisons were reported. In each comparison, small-sized gene signatures mainly related to ECM were obtained, except in ovarian and prostatic cancer where POSTN-associated genes did not reach the 80% threshold. In head and neck, pancreas, colorectum, lymphoma, kidney and lung conditions, the signatures generated allowed a highly efficient discrimination between cancer and normal tissue. In bladder and brain cancers, the signatures generated allowed a highly efficient discrimination between highest stage and lower stages. Finally, in breast and esophagus, the available datasets allowed a comparison between signatures from low- and high-stages conditions. Globally, these comparisons yielded a list of early markers and progression markers. Notably in breast cancer, *FAP*, *COL11A1*, *FN1*, *LRRC15*, *INHBA* and *THY1* upregulation began from the non-invasive stage and was maintained throughout the invasive stage. Also in esophageal conditions, *POSTN*, *COL3A1*, *CHD11*, *VCAN*, *LUM*, *THBS1* and *PECAM1*

upregulation began from the premalignant Barrett's disease and was maintained in adenocarcinoma.

Functional clustering analyses of POSTN-co-expressed genes

Clustering analysis of POSTN-co-expressed genes was led in each cancer type, where it resulted in small groups of biological processes (**Figure 2**). These processes mainly concerned ECM organization or remodeling, vascularization and sensing of extracellular factors, which were highly recurrent across the various types of cancer (boldened in **Figure 2**). We also found some biological processes related to organ development.

Discussion

The past few years have seen a tremendous development of high-throughput experiments and subsequent databases-based analytic tools, which may be of great interest for large-scale studies of gene/protein clusters. POSTN is a TGF β -inducible ECM protein known to be overexpressed in a large number of human tumor samples [36]. Hence we aimed to expend the knowledge about POSTN in the cancer field using two recent bioinformatics tools: Oncomine [1, 2] and DAVID [4].

Through Oncomine differential expression analyses, we confirmed that POSTN is overexpressed in breast, colorectal, esophageal, lung, ovarian, pancreatic and prostatic cancers. The only discrepancy we observed between our data and the literature concerned bladder cancer. Actually, Kim *et al.* reported a decrease of POSTN expression in high grades cancers [37]. In this study we actually showed a decrease of POSTN expression in superficial bladder cancer *vs.* normal tissue yet we also reported an overexpression in the infiltrating form *vs.* normal tissue. This discrepancy may originate from the different classification used in the Oncomine database compared to that used in the previous works by Kim *et al.* We also showed for the first time that POSTN is a tumor marker in clear cell renal carcinoma, in glioblastoma, in head and neck carcinomas, as well as in aggressive lymphomas (*i.e.* diffuse large B-cell, centroblastic and Burkitt's lymphomas).

In this analysis we also have been able to analyze POSTN expression with cancer progression. Actually, the ratio of studies reporting an increased POSTN expression in cancer *vs.* normal tissue increased with disease progression in breast cancer and glioma, suggesting that the expression of this ECM protein is associated with the most aggressive stages of these diseases. Tissue expression analyses also highlighted differences between histological subtypes in several cancers. For example, POSTN expression tended to be higher in lobular *vs.* ductal breast cancer (5/13 studies). Lobular tumors have more frequently loss of E-cadherin [38] which is a hallmark of the mesenchymal transformation, as was reported for POSTN [8, 19-22]. Clear cell renal carcinoma, a low survival rate renal carcinoma [39], presented a higher POSTN expression in ovary was higher in serous adenocarcinoma *vs.* other adenocarcinomas (*i.e.* endometrioid-, clear cell- and mucinous adenocarcinoma) and in carcinomas *vs.* borderline adenocarcinoma, consistently with the lower survival rates commonly reported in serous adenocarcinoma (compared to others) and carcinomas (compared to borderline adenocarcinoma) [40].

These data taken together with the published experimental data [15, 19, 23-33] support the relevance of POSTN as a progression marker in this set of cancers. Nevertheless these analyses also highlighted the early modulation of POSTN expression levels in a few premalignant, precursory or benign conditions. An early POSTN overexpression was previously documented in Barrett's Esophagus [33, 34]. Interestingly, we also found a consistent downregulation of POSTN in superficial bladder cancer and colorectal adenoma, in which POSTN may serve as a suppressor of invasion, as reported by Kim *et al.* [37].

Through Oncomine co-expression analyses in 12 types of cancer, we showed that POSTN expression is closely correlated with that of specific genes. Basically these 12 gene clusters served as a basis for the further analyses yet it highlighted a few points. These clusters were particularly enriched in secreted molecules (73%) whereas human secretome represents only 20-25% of the genome. Also, the prominent representation of ECM-related gene products (49%) is consistent with studies reporting that POSTN expression occurred mainly in the stroma surrounding the tumor cells [15, 19, 23-33]. Additionally, we observed that COL3A1 was co-expressed with POSTN in 100% of cancer types, which is interesting given that both COL3A1 and POSTN genetic shutdown produce similar phenotypes (Ehlers-Danlos syndrome type IV) [41].

Because all of these genes were closely correlated with POSTN, we aimed to evaluate them in differential expression analyses allowing an evaluation as high-stage or progression markers. In each comparison, a subset of genes presented a consistent significant upregulation, including *POSTN*, several collagens, *VCAN*, *FN1*, *LUM*, *SULF1*, *SPARC*, *CDH11*, *THY1*, *FAP*, *THBS2* and *INHBA*. Some of them were previously reported as upregulated in cancers [24, 27, 30, 33, 34, 42-45]. These subsets may constitute efficient signatures to discriminate between higher and lower stages of cancer or between pathological and normal tissues. As suggested by Kim *et al.*, the coordinated overexpression of these specific genes in cancer may indicate that a threshold of invasion has been reached, allowing for metastatic progression [46].

Interestingly, these genes were prominently related to ECM. The aberrant expression of ECM proteins in cancer, named stromagenesis, is well described and plays a key role in tumor progression [47]. Such a disease progression is triggered by the epithelial-mesenchymal transition, in which POSTN and other ECM proteins are involved. Furthermore, the role of POSTN in tumor progression was previously described in pancreatic and ovarian cancer [19, 25, 30]. This demonstrated the reliability of co-expression clustering in Oncomine and highlighted the relevance of these ECM-related gene products as tumor-related stromagenesis biomarkers.

We also noticed that these signatures encompassed several TGF β -related genes (ADAM12, ASPN, COL1A1, COL1A2, COL3A1, COL4A1, COL5A2, COL6A1, COL6A3, FN1, INHBA, LRRC15, LUM, POSTN, THBS1, THBS2, TIMP1 and VCAN, as reviewed by Xu *et al.* [48]). TGF β is known to act as a tumor suppressor in normal cells and early tumors but as a promoter of malignancy in advanced stages of the disease, which may explain the overexpression of multiple TGF β -related genes in these late stage-signatures. Moreover, POSTN is known to be strongly upregulated by activin-A (INHBA homodimère), a TGF β signaling-inducer [49], and both was frequently co-expressed in these signatures.

Finally we processed these POSTN-co-expressed genes through DAVID functional clustering analyses. Because co-expression suggests that gene products may belong to the same biological processes than POSTN (*e.g.* same pathway, co-regulated together, or one directly affecting the other), co-expression clusters can be analyzed and organized in functional clusters. This can help to better characterize the biological involvements of POSTN in tissues undergoing a malignant transformation. Through this approach we confirmed the involvement of POSTN in biological processes such as ECM organization or remodeling, vascularization and perception of extracellular signals, which is consistent with previous works [14, 17, 41, 50]. These processes are typically related to advanced stage of cancers, when tumor cells have entered the invasive/mesenchymal phase. We also showed the recurrent presence of a bone-related functional cluster, which was expected given the primary identity of POSTN. This kind of

organ-related functional cluster does not seem to have a role in the primary tumor (except in cases where calcification occurs) but may be relevant in the context of skeletal metastasis. Indeed bone metastases frequently occur in breast, prostate, lung and kidney cancer, and we previously showed that POSTN is overexpressed in an animal model of bone metastases from breast cancer [35].

In conclusion, our results revealed that, not only does this integrative bioinformatics approach corroborate previously published data on POSTN, but it also generated novel data on the modulation of POSTN and POSTN-co-expressed genes in human tumor samples. We demonstrated the close relationship between POSTN and other ECM proteins in the oncogenic process as well as the relevance of these molecules as high stage or progression biomarkers. We also specified further the biological involvements of POSTN in tissues undergoing malignant transformations. Because secreted molecules by me detected in biological fluids including serum, these new sets of biomarkers could be of interest in evaluating the cancer progression and monitoring treatment efficacy.

Limitations

DNA chip-based studies do not take into account some genetic alterations such as single nucleotide polymorphism (SNP) or posttranscriptional modifications such as alternative splicing and glycosylation. Gene and gene products subjected to those alterations, like POSTN [45, 51-54], may necessitate further nucleotide sequencing or proteomic investigation, especially before immunohistochemical or ELISA assays. Additionally, high stringency cutoffs used at each steps of this study yielded highly reliable data but some interesting genes or functions may have been not detected in such analysis.

References

- 1. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM: **Mining for regulatory programs in the cancer transcriptome.** *Nat Genet* 2005, **37:**579-583.
- 2. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* 2005, **102:**15545-15550.
- 3. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. *Genome Biol* 2003, 4:P3.
- 4. Huang da W, Sherman BT, Lempicki RA: **Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.** *Nat Protoc* 2009, **4**:44-57.
- 5. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A: Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. *J Bone Miner Res* 1999, **14**:1239-1249.
- 6. Takeshita S, Kikuno R, Tezuka K, Amann E: Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. *Biochem J* 1993, 294 (Pt 1):271-278.
- 7. Contié S, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clézardin P, Garnero P: Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice. *Calcif Tissue Int* 2010, in press, DOI: 10.1007/s00223-010-9391-y.

- 8. Kruzynska-Frejtag A, Wang J, Maeda M, Rogers R, Krug E, Hoffman S, Markwald RR, Conway SJ: Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. *Dev Dyn* 2004, **229:**857-868.
- 9. Emans PJ, Spaapen F, Surtel DA, Reilly KM, Cremers A, van Rhijn LW, Bulstra SK, Voncken JW, Kuijer R: A novel in vivo model to study endochondral bone formation; HIF-1alpha activation and BMP expression. *Bone* 2007, **40**:409-418.
- 10. Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, et al: periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. *Mol Cell Biol* 2005, **25**:11131-11144.
- 11. Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF: **Expression and function of periostin-isoforms in bone.** *J Cell Biochem* 2004, **92:**1044-1061.
- 12. Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, et al: **Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues.** *J Cell Biochem* 2007, **101**:695-711.
- 13. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, et al: **Periostin is essential for cardiac healing after acute myocardial infarction.** *J Exp Med* 2008, **205:**295-303.
- 14. Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A: **Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture.** *J Biol Chem* 2010, **285:**2028-2039.
- 15. Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD: **Periostin secreted by epithelial** ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. *Cancer Res* 2002, **62**:5358-5364.
- 16. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF: Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. *Cancer Cell* 2004, **5**:329-339.
- 17. Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T, Gishizky ML, Marks JR, Wang XF: Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. *Mol Cell Biol* 2004, **24**:3992-4003.
- 18. Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T, Zhu M, Kalthoff H, Crnogorac-Jurcevic T, Lemoine NR: **Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway.** *Oncogene* 2007, **26**:2082-2094.
- 19. Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, et al: **Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells.** *Int J Cancer* 2008, **122**:2707-2718.
- 20. Yan W, Shao R: Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem 2006, 281:19700-19708.
- 21. Stevens MV, Broka DM, Parker P, Rogowitz E, Vaillancourt RR, Camenisch TD: **MEKK3 Initiates Transforming Growth Factor {beta}2-Dependent Epithelial-to-Mesenchymal Transformation During Endocardial Cushion Morphogenesis.** *Circ Res* 2008.
- 22. Schramm A, Opitz I, Thies S, Seifert B, Moch H, Weder W, Soltermann A: **Prognostic significance** of epithelial-mesenchymal transition in malignant pleural mesothelioma. *Eur J Cardiothorac Surg* 2010, **37:**566-572.
- 23. Sasaki H, Dai M, Auclair D, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y, Chen LB: Serum level of the periostin, a homologue of an insect cell adhesion molecule, as a prognostic marker in nonsmall cell lung carcinomas. *Cancer* 2001, **92**:843-848.
- 24. Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W, Moch H, Kristiansen G: Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. *Clin Cancer Res* 2008, **14**:7430-7437.

- 25. Choi KU, Yun JS, Lee IH, Heo SC, Shin SH, Jeon ES, Choi YJ, Suh DS, Yoon MS, Kim JH: Lysophosphatidic acid-induced expression of periostin in stromal cells: Prognoistic relevance of periostin expression in epithelial ovarian cancer. *Int J Cancer* 2010.
- Puglisi F, Puppin C, Pegolo E, Andreetta C, Pascoletti G, D'Aurizio F, Pandolfi M, Fasola G, Piga A, Damante G, Di Loreto C: Expression of periostin in human breast cancer. J Clin Pathol 2008, 61:494-498.
- 27. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC: Gene expression profiling of the tumor microenvironment during breast cancer progression. *Breast Cancer Res* 2009, **11:**R7.
- 28. Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A, Fukayama M: **Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon.** *J Histochem Cytochem* 2008, **56**:753-764.
- 29. Ben QW, Zhao Z, Ge SF, Zhou J, Yuan F, Yuan YZ: **Circulating levels of periostin may help identify patients with more aggressive colorectal cancer.** *Int J Oncol* 2009, **34:**821-828.
- 30. Erkan M, Kleeff J, Gorbachevski A, Reiser C, Mitkus T, Esposito I, Giese T, Buchler MW, Giese NA, Friess H: **Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity.** *Gastroenterology* 2007, **132**:1447-1464.
- 31. Tsunoda T, Furusato B, Takashima Y, Ravulapalli S, Dobi A, Srivastava S, McLeod DG, Sesterhenn IA, Ornstein DK, Shirasawa S: The increased expression of periostin during early stages of prostate cancer and advanced stages of cancer stroma. *Prostate* 2009, **69:**1398-1403.
- 32. Tischler V, Fritzsche FR, Wild PJ, Stefan C, Seifert HH, Riener MO, Hermanns T, Mortezavi A, Gerhardt J, Schraml P, et al: **Periostin is up-regulated in high grade and high stage prostate cancer.** *BMC Cancer* 2010, **10**:273.
- 33. Saadi A, Shannon NB, Lao-Sirieix P, O'Donovan M, Walker E, Clemons NJ, Hardwick JS, Zhang C, Das M, Save V, et al: **Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers.** *Proc Natl Acad Sci U S A* 2010, **107**:2177-2182.
- 34. Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW: **Gene expression profiling** reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma. *Gastroenterology* 2006, **131:**925-933.
- 35. Contié S, Voorzanger-Rousselot N, Litvin J, Clézardin P, Garnero P: Increased expression and serum levels of the stromal cell-secreted protein periostin in breast cancer bone metastases. *Int J Cancer* 2010, in press, DOI: 10.1002/ijc.25591.
- 36. Ruan K, Bao S, Ouyang G: **The multifaceted role of periostin in tumorigenesis.** *Cell Mol Life Sci* 2009.
- 37. Kim CJ, Yoshioka N, Tambe Y, Kushima R, Okada Y, Inoue H: **Periostin is down-regulated in high** grade human bladder cancers and suppresses in vitro cell invasiveness and in vivo metastasis of cancer cells. *Int J Cancer* 2005, **117:**51-58.
- 38. Moll R, Mitze M, Frixen UH, Birchmeier W: Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. *Am J Pathol* 1993, **143**:1731-1742.
- 39. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML: **Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma.** *Am J Surg Pathol* 2003, **27:**612-624.
- 40. Kosary CL: **Cancers of the Ovary.** In *Cancer Survival Among Adults: US SEER Program, 1988-*2001, Patient and Tumor Characteristics. Edited by Ries L, Young J, Keel G, Eisner M, Lin Y, Horner M-J. Bethesda, MD: National Cancer Institute, SEER Program, NIH Pub. No. 07-6215; 2007: 133-144
- 41. Hamilton DW: Functional role of periostin in development and wound repair: implications for connective tissue disease. *J Cell Commun Signal* 2008, **2**:9-17.
- 42. Yu YH, Kuo HK, Chang KW: The evolving transcriptome of head and neck squamous cell carcinoma: a systematic review. *PLoS ONE* 2008, **3**:e3215.
- 43. Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR, Lucia S, Wilson RS, Jr., Schedin P: Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. *Breast Cancer Res* 2009, **11:**R5.

- 44. Smith MJ, Culhane AC, Donovan M, Coffey JC, Barry BD, Kelly MA, Higgins DG, Wang JH, Kirwan WO, Cotter TG, Redmond HP: **Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification.** *Br J Cancer* 2009, **100**:1452-1464.
- 45. Soikkeli J, Podlasz P, Yin M, Nummela P, Jahkola T, Virolainen S, Krogerus L, Heikkila P, von Smitten K, Saksela O, Holtta E: **Metastatic Outgrowth Encompasses COL-I, FN1, and POSTN Up-Regulation and Assembly to Fibrillar Networks Regulating Cell Adhesion, Migration, and Growth.** *Am J Pathol* 2010.
- 46. Kim H, Watkinson J, Varadan V, Anastassiou D: Multi-Cancer Computational Analysis Reveals Metastasis-Associated Variant of Desmoplastic Reaction Involving INHBA and THBS2. Available from Nature Precedings 2010, http://hdl.handle.net/10101/npre.2010.4503.1
- 47. Beacham DA, Cukierman E: Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. *Semin Cancer Biol* 2005, **15**:329-341.
- 48. Xu XL, Kapoun AM: Heterogeneous activation of the TGFbeta pathway in glioblastomas identified by gene expression-based classification using TGFbeta-responsive genes. J Transl Med 2009, 7:12.
- 49. Eijken M, Swagemakers S, Koedam M, Steenbergen C, Derkx P, Uitterlinden AG, van der Spek PJ, Visser JA, de Jong FH, Pols HA, van Leeuwen JP: **The activin A-follistatin system: potent regulator of human extracellular matrix mineralization.** *Faseb J* 2007, **21**:2949-2960.
- 50. Ma D, Lu H, Xu L, Xu X, Xiao W: Mechanical loading promotes Lewis lung cancer cell growth through periostin. *In Vitro Cell Dev Biol Anim* 2009.
- 51. Forsti A, Jin Q, Altieri A, Johansson R, Wagner K, Enquist K, Grzybowska E, Pamula J, Pekala W, Hallmans G, et al: **Polymorphisms in the KDR and POSTN genes: association with breast cancer susceptibility and prognosis.** *Breast Cancer Res Treat* 2007, **101**:83-93.
- 52. Abbott KL, Aoki K, Lim JM, Porterfield M, Johnson R, O'Regan RM, Wells L, Tiemeyer M, Pierce M: Targeted glycoproteomic identification of biomarkers for human breast carcinoma. *J Proteome Res* 2008, **7:**1470-1480.
- 53. Kim CJ, Isono T, Tambe Y, Chano T, Okabe H, Okada Y, Inoue H: **Role of alternative splicing of periostin in human bladder carcinogenesis.** *Int J Oncol* 2008, **32:**161-169.
- 54. Soltermann A, Ossola R, Kilgus-Hawelski S, von Eckardstein A, Suter T, Aebersold R, Moch H: **N**glycoprotein profiling of lung adenocarcinoma pleural effusions by shotgun proteomics. *Cancer* 2008, **114**:124-133.

cano	er ty	pe			data	sets	5	sam	nple	s	clu	ste	rs	as	soci	abl	e clu	sters	_		В			
Bladder C	ance	r			1	4		13	387			11					9					🔀 selected	12 datasets (1129 samp	les)
Brain and	CNS	Can	cer		2	7		13	369			14					9					K Gener POS	TNI	•
Breast Ca	ncer				5	9		54	413			52				4	18					X Analysis Ty	voe: Differential Analysis	
Colorecta	Can	cer			2	4		17	707			19				1	.8				->	🗶 Cancer Ty	pe: Colorectal Cancer	
Esophage	ıl Ca	ncer				6		1	.05			6					5					🗶 Data Type	mrna	
Head and	Neck	Car	icer		1	7		5	67			20				1	.7					🗶 Sample Typ	e: Clinical Specimen	
Kidney Ca	ncer				1	6		11	123			10					8							
Lung Cano	er				2	5		20	034			20				1	.9					Bittner C	olon (373)	Ļ
Lymphom	1				2	5		19	984			21				1	.9							-
Ovarian C	ance	r			2	1		18	844			6					5					Colorectal Ca	fold change = 2,252	157
Pancreati	: Car	ncer			1	9		1	.50			9					7					p - 0,000	Told change - 2,252	157
Prostate C	ance	er			2	3		14	473			6					5		_			Alon Colo	n (62)	
																			- ¥			Colon Adenoc	arcinoma vs. Normal	
gene		РО	STN	-cor	rela	ted	(ye	s/n	o);	n = :	18 s	tud	ly-d	eriv	ed	clus	ters		occurrence	overlay (%)		p = 0.030	fold change = 1.525	254 🗖
POSTN																			18	100		Notterma	n Colon (24)	
COL1A2																			16	89		notterine		
VCAN																			15	83		Colon Adenoc	arcinoma vs. Normal	450
THBS2																			14	78		p = 0.008	told change = 1.682	453 🗆
FBN1																			14	78		Kaiser Co	lon (105)	Ŧ
FN1																			14	78		Colon Adenoc	arcinoma Type: Colon Mu	cinous
COL3A1																			14	78		Adenocarcino	ma	
SULF1																			13	72		p = 0.018	fold change = 1.839	1785 🗖
COL11A1																			13	72		Colon Mucino	us Adenocarcinoma vs. No	ormal
FAP																			13	72		p = 4.9/E-4	fold change = 3,906	3137 🗖
SPARC																			12	67		Rectosigmoid	Adenocarcinoma vs. Nor fold obango = 1.257	mai 5524 F
COL6A3																			12	67		p = 0.010	Tolu change = 1,257	5530 L
AEBP1																			12	67		n = 0.035	fold change = 1.951	6016
COL1A1																			12	67		Colon Adenoc	arcinoma vs. Normal	
COL5A2																			11	61		p = 0.008	fold change = 2.167	6140 🗆
COL6A1																			11	61		Rectal Mucine	ous Adenocarcinoma vs. N	lormal
LUM																			11	61		p = 0.042	fold change = 2,464	7064 🗖
COL4A1																			10	56		Vi Calan	1001	
MXRA5																Γ			10	56		KI COION	(123)	
CDH11																Τ			10	56		Colon Adenoc	arcinoma vs. Normal	_
INHBA																			10	56		p = 6.20E-4	fold change = 1.638	1878 🗖
COL5A1																T	1		10	56		Bittner M	ulti-cancer (1,911)	
RAB31													1	Γ		T	1		9	50		Concer Trees	Colorectal Capoor	
				-		-						1	1	1	+	-						cancer type:	Colorectal Cancer	

Figure 1. Examples of a differential expression analysis and co-expression clustering as available in Oncomine.

(A) Summary of datasets and clusters available in 12 types of cancer. Almost all clusters are statistically associable (*i.e.* Odds Ratio > 10; p-value < 10E-8). Two kinds of analysis are exemplified with colorectal cancer in **B** and **C**. (**B**) Differential expression analyses between colorectal cancer and normal tissue. Each comparison is characterized by p-value, fold-change and gene rank. (**C**) Cluster association in colorectal cancer and identification of overlapping genes. In each column, green squares denote a significant correlation between POSTN expression and a given gene. The calculation of overlapping across all 18 clusters/columns yielded a reliable list of genes recurrently co-expressed with POSTN (*i.e.* overlapping \geq 50%) in colorectal cancer.

cancer types	cancer vs. normal and histological comparisons	total	up	down	NS
BLADDER	superficial bladder cancer vs. normal	4	1	3	
	infiltrating bladder cancer vs. normal	4	4		
	infiltrating vs. superficial bladder cancer	8	7		1
BRAIN	Meningioma vs. normal	1			1
	Primitive Neuroectodermal Tumor vs. normal	3			3
	glioma (WHO stage I) vs. normal	1	1		
	glioma (WHO stage II) vs. normal	4			4
	glioma (WHO stage III) vs. normal	7	2		5
	glioblastoma (WHO stage IV) vs. normal	4	4		
	glioblastoma vs. other gliomas	8	7		1
BREAST	non cancerous breast conditions vs. normal	2			2
	breast cancer vs. normal	9	6		3
	invasive breast cancer vs. normal	8	8		
	invasive vs. in situ breast cancer	3	2		1
	lobular vs. ductal breast cancer	13	5		8
COLORECTAL	colorectal adenoma vs. normal	3		3	
	colorectal adenocarcinoma vs. normal	9	8		1
ESOPHAGEAL	Barrett's Esophagus vs. normal	3	3		
	esophageal adenocarcinoma vs. normal	3	3		
HEAD & NECK	head and neck carcinomas vs. normal	13	11		2
KIDNEY	clear cell renal cell carcinoma vs. normal	6	4		2
	non clear cell renal cell carcinoma vs. normal	6		2	4
	clear cell vs. other renal cell carcinomas	5	5		
LUNG	lung adenocarcinoma vs. normal	7	6		1
	squamous cell lung carcinoma vs. normal	4	4		
	large cell lung carcinoma vs. normal	2	1		1
	small cell lung carcinoma vs. normal	2			2
LYMPHOMA	diffuse large B-cell lymphoma vs. normal	7	7		
	Burkitt's lymphoma vs. normal	1	1		
	centroblastic lymphoma vs. normal	1	1		
	follicular lymphoma vs. normal	4	2	2	
	diffuse large B-cell vs. follicular lymphoma	8	7		1
OVARY	ovarian adenocarcinomas vs. normal	10	8		2
	serous vs. other ovarian adenocarcinomas	7	4		3
	ovarian carcinomas vs. borderline adenocarcinoma	4	3		1
PANCREAS	pancreatic carcinoma and adenocarcinoma vs. normal	6	5		1
PROSTATE	prostatic carcinoma vs. normal	11	8		3
	prostate carcinoma vs. precursor	2	2		

Table 1. Differential expression of POSTN in studies comparing cancer and normal tissues or histological subtypes. For each type of comparison the total number of studies and the number of studies with significant (p<0.05) overexpression ("up"), underexpression ("down") or without significant change ("NS") is reported. For a detailed table with sample sizes, fold-changes, p-values and studies references, Cf. **Supplement 1**. WHO: World Health Organization.

Table 2. POSTN-co-expressed genes in 12 types of cancers. The count of significantly associated clusters is specified below the cancer type. For each type of cancer, the genes significantly correlated with POSTN expression in at least half of associated clusters are reported (OL: overlapping ratio across the associated clusters). Non-secreted gene products are highlighted in light green. Non-ECM and ECM secreted gene products are highlighted in light orange and light red, respectively. Gene products names are available in **Supplement 2**.

interacting w superficial cancer superficial cancer Normal Point W Superficial cancer ONT W All clock LADDER interacting w COLLA Mol (100), starcetel = 13 COLLA Mol (100), starcetel = 14 COLLA Mol (100), starcetel = 14	cancer types	comparisons	genes	studies with	cancer types	comparisons	genes	studies with	cancer types	comparisons	genes	studies with
BLADER Inflitzing, superficial cancer PROF (7) (20%) BRAST breat cancer one one one second of a lancer PROF (7) (20%) Concert one second of a lancer PROF (7) (20%) PROF (7) (20%) PROF				signif. change				signif. change				signif. change
superficial cancer ORA SPR 1000 vs. normal CAL SPR 1000 CAL SPR 1000 tool = Z UM 77 (1006) cool = Z SPR 1000 cool = Z UM SPR 1000 CCM = Z COM 77 (1006) cool = Z SPR 1000 cool = Z UM SPR 1000 CCM = Z COM SPR 1000 cool = Z UM SPR 1000 cool = Z UM SPR 1000 CCM = Z COM SPR 1000 cool = Z SPR 1000	BLADDER	infiltrating vs.	POSTN	7/8 (87%)	BREAST	breast carcinoma	POSTN	6/9 (66%)	ESOPHAGUS	Barrett's Esophagus	POSTN	3/3 (100%)
kndi 67 67 67 67<		superficial cancer	COL6A3	8/8 (100%)		vs.normal	FAP	9/9 (100%)		vs.normal	COL3A1	3/3 (100%)
bool + 2 LUM 7/7 (100%) rotal + 7 PR1 99 (100%) cond + 7 V/RW 2/7 (100%) ECM = 15 OLAL 7/7 (100%) secreted - 4 (RCL 99 (100%) secreted - 10 V/RU 2/7 (100%) PR20 OLAL 7/7 (100%) secreted - 10 V/RU 4/7 (100%) secreted - 10 0/10 (100%) secreted - 10 0/10 (100%) PR20 OLAL 7/7 (100%) secreted - 10 0/10 (100%) 4/7 (100%) 0/10 (100%) 1/7 (100%) 0/10 (100%) <th< td=""><td></td><td></td><td>FN1</td><td>6/7 (85%)</td><td></td><td></td><td>COL11A1</td><td>9/9 (100%)</td><td></td><td></td><td>CDH11</td><td>3/3 (100%)</td></th<>			FN1	6/7 (85%)			COL11A1	9/9 (100%)			CDH11	3/3 (100%)
secreted = 3B COL3AL $7/7$ (107%) secreted = 4 <i>LRRLS</i> $9/9$ (100%) $ECM = 37$ $ECM $		total = 25	LUM	7/7 (100%)		total = 7	FN1	9/9 (100%)		total = 7	VCAN	2/2 (100%)
ECM = 15 VCM 67 (25%) 998.00 ECM = 15 VCM 67 (25%) 978.00% ECM = 15 778 (27%) 978.100% ECM = 15 778 (27%) 978.100% 778 (27%) 978.100% 778 (27%) 9		secreted = 18	COL3A1	7/7 (100%)		secreted = 4	LRRC15	9/9 (100%)		secreted = 5	LUM	3/3 (100%)
PRC P78 (27%) P78 (27%) P77 (27%) P71		ECM = 15	VCAN	6/7 (85%)		ECM = 3	INHBA	9/9 (100%)		ECM = 5	THBS1	2/2 (100%)
PACLEC 6 (6 (100%) BEAST invasise breast cancer POSTN 8 (8 (100%) BEOMTALIS POSTN 9 (711 9 (8 (100%) momal COLA34 3 /3 (100%) 00L2A2 5 (5 (100%) 5 (6 (100%) incola - 12 CAN 9 (8 (100%) incola - 12 CAL34 3 /3 (100%) NAME2 6 (6 (100%) secreted - 14 COLA2 5 /5 (100%) incola - 12 COLA2 5 /5 (100%) secreted - 17 COLA2 7 /3 (100%) SUEF1 5 /6 (100%) SUEF1 COLA2 8 /8 (100%) EVM - 14 COLA2 7 /3 (100%) SUEF1 4 /4 (100%) 1 /7 (100%) EVM - 14 COLA2 8 /8 (100%) EVM - 14 COLA2 7 /3 (100%) GL3A 5 /5 (100%) EVM - 14 COLA2 7 /1 (100%) E			SPARC	7/8 (87%)			THY1	9/9 (100%)			PECAM1	3/3 (100%)
RANN S/S (100%) V:normal CM121 R/R100%) normal C0L3A2 3/2 (100%) NMR2 G/G (100%) S/G (100%)			PCOLCE	6/6 (100%)	BREAST	invasive breast cancer	POSTN	8/8 (100%)	ESOPHAGUS	adenocarcinoma vs.	POSTN	3/3 (100%)
CRLA2 S/6 (130%) CRLA2 S/6 (100%) cocial - 12 CRLA3 3/2 (100%) RARRES2 C/6 (100%) secreted - 14 CRLA3 S/5 (100%) secreted - 17 CRLA3 2/2 (100%) FAP C/6 (100%) FCM C/142 S/6 (100%) secreted - 17 CRLA3 3/3 (100%) FAP C/6 (100%) FCM C/142 S/6 (100%) Secreted - 17 CRLA3 3/3 (100%) SULF1 S/6 (100%) FCM C/142 S/6 (100%) Secreted - 17 CRLA3 3/3 (100%) SULF1 S/6 (100%) FCM C/142 S/6 (100%) Secreted - 17 CRLA3 3/3 (100%) SULF1 S/7 (100%) CRLA3 S/8 (100%) Secreted - 17 CRLA3 3/3 (100%) SULF1 T/7 (100%) CRLA3 S/8 (100%) Secreted - 17 CRLA3 3/3 (100%) SULF1 T/7 (100%) CRLA3 S/8 (100%) Secreted - 17 CRLA3 3/3 (100%) SULF1 T/7 (100%) CRLA3 T/7 (100%)<			COL5A2	5/5 (100%)		vs.normal	CDH11	8/8 (100%)		normal	COL3A1	3/3 (100%)
NARES2 6/6 (100%) total = 19 AEEP1 0C12A 5/5 (100%) total = 20 CD11A 3/7 (100%) FAP 6/6 (100%) ECM = 11 CD13A 3/7 (100%) ECM = 13 CD13A 3/7 (100%) FRM 5/6 (130%) ECM = 11 CD13A 3/7 (100%) ECM = 14 CD13A 3/7 (100%) AEEP1 4/4 (100%) CD13A 3/7 (100%) CD13A 3/7 (100%) ECM = 14 CD13A 3/7 (100%) C13A 5/5 (100%) CD13A 3/7 (100%) CD13A <td></td> <td></td> <td>COL1A2</td> <td>5/6 (83%)</td> <td></td> <td></td> <td>VCAN</td> <td>8/8 (100%)</td> <td></td> <td></td> <td>COL6A3</td> <td>3/3 (100%)</td>			COL1A2	5/6 (83%)			VCAN	8/8 (100%)			COL6A3	3/3 (100%)
k FARKR026/6 (100%) FARsecreted = 14 CHA2COLA38/5 (100%) Secreted = 12secreted = 12 CHA2COLA328/5 (100%) Secreted = 12 CHA2COLA328/5 (100%) Secreted = 12 CHA2Secreted = 12 CHA2COLA328/5 (100%) Secreted = 12COLA328/5 (100%) Secreted =			RARRES2	6/6 (100%)		total = 19	AEBP1	5/5 (100%)		total = 22	CDH11	3/3 (100%)
FAP $6/6$ $6/6$ $5/6$ $5/6$ $5/6$ FAP $6/6$ $5/6$ $5/6$ $CCM = 12$ $COLSA2$ $COLSA2$ $6/8$ $6/8$ $6/8$ $6/100%$ $ECM = 14$ $COLSA2$ $6/100%$ $6/20$ $COLSA26/86/206/100%COLSA26/86/100%COLSA26/86/100%COLSA26/86/100%COLSA26/86/100%COLSA26/86/100%COLSA26/86/100%COLSA26/86/100%COLSA26/86/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA26/100%COLSA27/100%COLSA2$			NID2	6/6 (100%)		secreted = 14	COL1A2	5/5 (100%)		secreted = 17	COL1A2	2/2 (100%)
FN1 $5/10^{-1}$ $6/10^{-1}$ <			FAP	6/6 (100%)		ECM = 11	COL3A1	8/8 (100%)		ECM = 14	COL5A1	3/3 (100%)
SILE1SILE1 $4/4 (100\%)$ $COLDA<$			FBN1	5/6 (83%)			COL5A2	8/8 (100%)			COL5A2	3/3 (100%)
REPLREPL77/100%CDLAI8/8 (100%)SULF1 $2/2 (100%)CLS57 (100%)CDLAI8/8 (100%)CDLAI8/8 (100%)UIM3/2 (100%)CDLS477/100%)CDLS477/100%)RRCS58/8 (100%)UIM3/2 (100%)CDLS46/7 (85%)CDLS48/7 (100%)RRCS58/8 (100%)UIM3/2 (100%)CDLS46/7 (85%)CDLS48/8 (100%)CDLS48/8 (100%)CDLS43/2 (100%)TRMCOLS44/4 (100%)CDLRCTL a denocarcinomaRRCS58/8 (100%)CDLS43/2 (100%)Stages gliomasCOLS47/8 (87%)VRRCS58/8 (100%)CDLRCTL a denocarcinomaRRCS58/8 (100%)RRCM3/3 (100%)total = 8COLS48/8 (100%)VnormalCDLRCTL a denocarcinomaRRCM3/3 (100%)RRCM3/3 (100%)ECM = 6COLS48/8 (100%)sccreted = 10SULF17/7 (100%)RRCM3/3 (100%)RRCM3/3 (100%)RRCM3/3 (100%)FLAD & NCCCCarcinoma vs. normalCOLS48/8 (100%)sccreted = 10SULF17/7 (100%)RRCM3/3 (100%)RRCM3/3 (100%)RRCM3/3 (100%)RCM3/3 (100%)RCM3/3$			SULF1	4/4 (100%)			COL11A1	8/8 (100%)			MMP2	3/3 (100%)
Image L <b< td=""><td></td><td></td><td>AEBP1</td><td>7/7 (100%)</td><td></td><td></td><td>FN1</td><td>8/8 (100%)</td><td></td><td></td><td>SULF1</td><td>2/2 (100%)</td></b<>			AEBP1	7/7 (100%)			FN1	8/8 (100%)			SULF1	2/2 (100%)
FillCIS FillS/5 (100%) FIRCEDCIG6A3 FIRCED $7/6 (87%)$ LUM FIRCED $3/3 (100%)$ FIRCEDCOL25A1 COL25A1 COL26A1			THBS2	7/8 (87%)			COL1A1	8/8 (100%)			VCAN	2/2 (100%)
FullPill FullPill 7/7 (100%) RRC15 8/8 (100%) ASPN 7/8 (37%) ASPN 2/2 (100%) GAS1 6/7 (155%) F/7 (150%) GOLSA1 4/5 (100%) GOLSA1 7/2 (100%) F/8 (37%) F/8 (37%) F/2 (100%) F/2 (100%) <t< td=""><td></td><td></td><td>C1S</td><td>5/5 (100%)</td><td></td><td></td><td>COL6A3</td><td>7/8 (87%)</td><td></td><td></td><td>LUM</td><td>3/3 (100%)</td></t<>			C1S	5/5 (100%)			COL6A3	7/8 (87%)			LUM	3/3 (100%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			FILIP1L	7/7 (100%)			LRRC15	8/8 (100%)			ASPN	2/2 (100%)
GA21 $67/(85\%)$ MRA5 $78(87\%)$ $PCOLE3/3(100\%)C15414/5(80\%)C1544/5(80\%)C1544/5(80\%)C1544/5(80\%)C1544/5(80\%)C1544/5(80\%)C16417/8(87\%)C16412/2(100\%)2/2(100\%)BRAINglioblastoma v.lowerC051A27/7(87\%)TH17/8(87\%)TH27/8(87\%)TH27/8(87\%)TH23/3(100\%)total = 8C0L247/7(87\%)C0L247/8(87\%)V1178/9(88\%)8/9(88\%)8/9(88\%)RDPY8/9(88\%)RDPY3/3(100\%)total = 6C0L528/8(100\%)Sccreted = 10SULF17/7(100\%)Sracreta = 103/3(100\%)LEM = 6C0L528/8(100\%)Sccreted = 10SULF17/7(100\%)Carcinoma v.nomalC0L25/6(83\%)normalC0L321/13(184\%)Sccreted = 10SULF17/7(100\%)Carcinoma v.nomalC0L434/5(80\%)LEM = 6C0L5421/13(184\%)CDH = 9C0L3417/8(87\%)C0L5414/5(80\%)normalC0L3411/13(184\%)CDH = 3A/8(100\%)COL5424/5(80\%)LEM = 6C0L3421/13(184\%)CDH = 3A/8(100\%)COL5414/5(80\%)LOLA21/13(184\%)CDH = 3A/8(100\%)COL5415/5(100\%)COL5415/5(100\%)Lotal = 5R/1<$			COL15A1	7/7 (100%)			ASPN	7/8 (87%)			INHBA	2/2 (100%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			GAS1	6/7 (85%)			MXRA5	7/8 (87%)			PCOLCE	3/3 (100%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			THY1	5/5 (100%)			COL5A1	8/8 (100%)			COL1A1	2/2 (100%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			COL5A1	4/5 (80%)			ITGBL1	7/8 (87%)			PXDN	3/3 (100%)
COLEAT 8/8 (100%) INHBA 7/8 (87%) I/678/7 3/3 (100%) stages gliomas COLIA1 7/8 (87%) COLRECTAL adenocarionoma POSTN 7/8 (87%) MMPB 3/3 (100%) total = 8 COLGA1 7/8 (87%) vs. normal COLIA2 9/9 (100%) SPARC 3/3 (100%) secreted = 8 FN1 7/8 (87%) vs. normal COLIA1 8/9 (188%) SPARC 3/3 (100%) Secreted = 8 FN1 7/8 (87%) sccreted = 10 SULF1 T/17 (107%) SPARC 3/3 (100%) MXRAS 6/6 (100%) sccreted = 10 SULF1 T/13 (14%) SFARC 9/9 (100%) sccreted = 12 COLIA1 8/9 (18%) normal COLA2 1/13 (14%) COLA1 7/8 (87%) ECM = 9 COLIA1 7/8 (87%) sccreted = 12 COLA1 4/5 (80%) total = 15 COLA2 1/13 (44%) COLA2 1/13 (44%) COLA2 4/5 (80%) sccreted = 11 COLA2 1/13 (44%) COLA1 7/8 (87%) SCM = 12			CTSK	4/4 (100%)			OLFML2B	7/8 (87%)			THBS1	2/2 (100%)
BRAIN glioblastoma vs. lower POSTN 7/8 (87%) TH*1 7/8 (87%) MMP9 3/3 (100%) stages gliomas COLIA2 7/8 (87%) vs. normal COLIA2 9/9 (100%) FAP S/9 (88%) FAP 3/3 (100%) SPARC SPARC <td></td> <td></td> <td>COL6A1</td> <td>8/8 (100%)</td> <td></td> <td></td> <td>INHBA</td> <td>7/8 (87%)</td> <td></td> <td></td> <td>IGFBP7</td> <td>3/3 (100%)</td>			COL6A1	8/8 (100%)			INHBA	7/8 (87%)			IGFBP7	3/3 (100%)
stages gliomas COLJA1 7/7 (100%) COLORECTAL adenocarinoma POSTN 8/9 (100%) PECAMI 3/3 (100%) total = 8 COLGA1 8/8 (100%) vs. normal COLA 7/8 (87%) vcAN 8/8 (100%) THY1 3/3 (100%) secreted = 8 FN1 7/8 (87%) total = 14 TH82 8/9 (88%) KIDNEY clear cell renal cell POSTN 4/6 (6%) ECM = 6 COL5A2 8/6 (100%) secreted = 10 SULF1 7/7 (100%) carcinoma s.on COL3A1 5/6 (83%) MEAD & NECK carcinomas vs. POSTN 11/13 (84%) ECM = 9 COL1A1 7/8 (87%) carcinoma s.on COL3A1 5/6 (83%) normal COL3A1 11/13 (84%) COL1A1 7/8 (87%) secreted = 12 COL5A2 8/5 (80%) secreted = 11 COL3A2 12/13 (28%) COH1A1 7/8 (87%) SULF1 4/5 (80%) LUM 12/13 (28%) VLPH degressive lymphomas POSTN 9/9 (100%) SULF1 4/5 (80%) <td< td=""><td>BRAIN</td><td>glioblastoma vs.lower</td><td>POSTN</td><td>7/8 (87%)</td><td></td><td></td><td>THY1</td><td>7/8 (87%)</td><td></td><td></td><td>MMP9</td><td>3/3 (100%)</td></td<>	BRAIN	glioblastoma vs.lower	POSTN	7/8 (87%)			THY1	7/8 (87%)			MMP9	3/3 (100%)
COL3AI 7/8 (87%) vs. normal COLAZ 9/9 (100%) SPARC 3/3 (100%) secreted = 8 FNL 7/8 (87%) total = 14 TH852 8/9 (88%) KIDNEY clear cell renal cell POSTN 4/6 (66%) ECM = 6 COL5A2 8/8 (100%) secreted = 10 SULF1 7/7 (100%) carcinoma vs. normal COL1A2 5/6 (83%) MRARA 6/6 (100%) ECM = 9 COL11A1 8/9 (88%) Col1A3 5/6 (83%) MRARA 6/6 (100%) ECM = 9 COL11A1 8/9 (80%) secreted = 12 COL1A1 4/5 (80%) MRARA COL1A2 11/13 (84%) COL1A2 7/7 (100%) secreted = 12 COL1A1 4/5 (80%) normal COL3A1 11/13 (84%) COL1A2 17/3 (87%) ECM = 12 COL3A2 4/5 (80%) secreted = 11 COL5A2 12/13 (92%) INHBA 7/8 (87%) FN1 4/5 (80%) ECM = 10 SULF1 11/13 (84%) COL5A1 6/6 (100%) FN1 5/5 (100%) COL5A1<		stages gliomas	COL1A2	7/7 (100%)	COLORECTAL	adenocarcinoma	POSTN	8/9 (88%)			PECAM1	3/3 (100%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			COL3A1	7/8 (87%)		vs.normal	COL1A2	9/9 (100%)			SPARC	3/3 (100%)
secreted = 3 FN1 7/8 (87%) total = 14 THBS2 8/9 (88%) KDNEY clar cell POSTN 4/6 (66%) ECM = 6 COLSA2 8/9 (100%) secreted = 10 SULF1 7/7 (100%) carcinoma vs. normal COLSA1 5/6 (83%) HEAD & NECK carcinoma vs. POSTN 11/13 (84%) ECM = 9 COL1A1 8/9 (88%) total = 15 COL6A2 4/5 (80%) normal COL1A1 11/13 (84%) COL1A1 7/7 (100%) secreted = 12 COL5A2 7/7 (100%) FEM = 2 COL5A2 4/5 (80%) total = 15 COL3A1 11/13 (84%) COL5A1 COL5A2 7/7 (100%) FRN 4/5 (80%) secreted = 11 COL5A1 11/13 (84%) COL5A1 6/6 (100%) SULF1 4/5 (80%) ECM = 10 SULF1 11/13 (84%) rs. normal COL5A1 6/6 (100%) SULF1 K/1 (87%) SULF1 K/1 (87%) SULF1 K/1 (80%) SULF1 K/1 (80%) SULF1 K/1 (80%) SULF1 K/2 (80%) SULF1		total = 8	COL6A1	8/8 (100%)			VCAN	8/8 (100%)			THY1	3/3 (100%)
ECM = 6 COLSA2 8/8 (100%) Secreted = 10 SULF1 /// / (100%) Carcinoma v. normal CUL1A1 5/6 (83%) HEAD & NECK carcinomas vs. POSTN 11/13 (84%) FAP 8/8 (100%) total = 15 COLSA2 4/5 (80%) normal COLSA2 11/13 (84%) COLLA1 5/6 (83%) SPARC 5/9 (100%) secreted = 12 CDH11 4/5 (80%) normal COLSA2 11/13 (84%) COLSA2 7/7 (100%) ECM = 12 COLSA2 4/5 (80%) secreted = 11 COLSA2 11/13 (84%) COLSA1 5/6 (100%) SULF1 4/5 (80%) ECM = 10 SULF1 11/13 (84%) COLSA1 5/6 (100%) SULF1 4/5 (80%) ECM = 10 SULF1 11/13 (84%) COLSA1 6/6 (100%) SULF1 4/5 (80%) LUM 12/13 (92%) LVMPHOMA aggressive lymphomes POSTN 9/9 (100%) COLSA1 5/5 (100%) COLSA1 9/9 (100%) secreted = 12 COL1A1 9/9 (100%) COLSA1 5/5 (100%)		secreted = 8	FN1	7/8 (87%)		total = 14	THBS2	8/9 (88%)	KIDNEY	clear cell renal cell	POSTN	4/6 (66%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ECM = 6	COL5A2	8/8 (100%)		secreted = 10	SULF1	7/7 (100%)		carcinoma vs. normal	COL1A2	5/6 (83%)
LORZ 6/7 (85%) FAP 8/8 (100%) total = 15 COLA3 4/5 (80%) normal COL1A2 11/13 (84%) SPARC 9/9 (100%) sccreted = 12 COL1A3 4/5 (80%) normal COL1A2 11/13 (84%) COL1A1 7/8 (87%) ECM = 12 COL5A2 4/5 (80%) total = 15 COL3A1 11/13 (84%) COL5A2 7/7 (100%) Sccreted = 12 COL5A2 4/5 (80%) sccreted = 11 COL5A2 11/13 (84%) COL5A1 6/6 (100%) SUL1 4/5 (80%) sccreted = 10 SULF1 11/13 (84%) COL5A1 6/6 (100%) SPARC 6/7 (85%) SPARC 6/6 (100%) ECM = 10 SULF1 11/13 (84%) total = 13 FAP 9/9 (100%) COL5A1 5/5 (100%) COL4A1 5/5 (100%) COLA1 9/9 (100%) COLA1 9/9 (100%) total = 13 FAP 9/9 (100%) COL4A1 5/5 (100%) COLA1 9/9 (100%) COLA1 9/9 (100%) sccreted = 12 COL3A1 <			MXRA5	6/6 (100%)		ECM = 9	COLIIAI	8/9 (88%)			COL3A1	5/6 (83%)
HEAD & NELK Carcinoma sv. POSIN 11/13 (84%) SPARC 9/9 (100%) Secreted = 12 CDH11 4/3 (80%) normal COLLAL 11/13 (84%) COLLAL 7/8 (87%) ECM = 12 CDLSAL 7/5 (80%) total = 15 COLAL 11/13 (84%) COLLAL 7/7 (100%) FBN1 4/5 (80%) secreted = 11 COLSAL 11/13 (84%) COLLAL 7/7 (8 (87%) FL 4/5 (80%) ECM = 10 SULF1 11/13 (84%) COLSAL 6/6 (100%) FN 4/5 (80%) ECM = 10 SULF1 11/13 (84%) COLSAL 6/6 (100%) FN 4/5 (80%) LUM 12/13 (92%) VMPHOMA aggressive lymphomas POSTN 9/9 (100%) COLSAL 5/5 (100%) COL1AL 9/9 (100%) col1AL 5/5 (100%) COLSAL 4/5 (80%) COL1AL 9/9 (100%) secreted = 12 COLAL 5/5 (100%) COLSAL 4/5 (80%) COL3AL 9/9 (100%) secreted = 12 COL1AL 5/5 (100%) COLSAL <td></td> <td>, .</td> <td>LOXL2</td> <td>6/7 (85%)</td> <td></td> <td></td> <td>FAP</td> <td>8/8 (100%)</td> <td></td> <td>total = 15</td> <td>COL6A3</td> <td>4/5 (80%)</td>		, .	LOXL2	6/7 (85%)			FAP	8/8 (100%)		total = 15	COL6A3	4/5 (80%)
normal COLLA2 11/13 (84%) COLLA1 17/8 (87%) ECM = 12 COLSA2 4/3 (80%) total = 15 COL3A1 11/13 (84%) CDLA1 17/8 (87%) ECM = 12 COLSA2 4/3 (80%) secreted = 11 COL5A2 12/13 (92%) INHBA 7/8 (87%) FN1 4/5 (80%) ECM = 10 SULF1 11/13 (84%) CDL5A1 6/6 (100%) VCAN 4/5 (80%) SPARC 13/13 (100%) FN1 2/13 (92%) VMPHOMA aggressive lymphomas POSIN 9/9 (100%) SPARC 6/6 (100%) UM 12/13 (92%) VMPHOMA aggressive lymphomas POSIN 9/9 (100%) SPARC 6/6 (100%) COL5A1 9/9 (100%) vs. normal FN1 9/9 (100%) COL5A1 5/5 (100%) COL5A1 9/9 (100%) secreted = 12 COL3A1 5/5 (100%) COL1A1 5/5 (100%) COL5A1 9/9 (100%) secreted = 12 COL3A1 5/5 (100%) COL1A1 11/13 (84%) COL5A1 9/9 (100%) secreted = 12	HEAD & NECH	carcinomas vs.	POSIN	11/13 (84%)			SPARC	9/9 (100%)		secreted = 12	CDH11	4/5 (80%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		normal	COLIAZ	11/13 (84%)			COLIAI	7/8 (87%)		ECM = 12	COLSA2	4/5 (80%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		h-h-l 15	VCAN COL 24.1	11/13 (84%)			COLSAZ	7/7 (100%)			FBINI	4/5 (80%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		lolui = 15	COLEAR	12/12 (02%)				0/0 (100%) 7/9 (97%)			SULF1	4/3 (60%)
ELM = 10 SDLF1 11/13 (34%) COLSA1 6/0 (100%) VCAN 4/3 (00%) SPARC 13/13 (100%) RAB31 6/7 (85%) SPARC 6/6 (100%) LUM 12/13 (92%) LYMPHOMA aggressive lymphomas POSTN 9/9 (100%) COLA1 5/5 (100%) COLA1 9/9 (100%) COLA1 5/5 (100%) COLA1 5/5 (100%) ADAM12 11/13 (84%) total = 13 FAP 9/9 (100%) COLIA1 5/5 (100%) COLA1 9/9 (100%) secreted = 12 COLIA2 4/4 (100%) LUNG NSCLC vs. normal POSTN 11/13 (84%) ECM = 12 MMP2 6/6 (100%) COLIA1 12/13 (92%) TH1 12/13 (92%) SPARC 9/9 (100%) total = 8 TH852 13/13 (100%) TH852 13/13 (100%) TH852 13/13 (100%) COLIA1 12/13 (92%) SPARC 9/9 (100%) total = 8 TH852 13/13 (100%) TH852 13/13 (100%) TH852 13/13 (100%) ECM = 6 COLIA1 11/13 (84%) 11/13 (84%)		Secreteu = 11	CULSAZ	12/13 (92%)				7/6 (67%) 6/6 (100%)			VCAN	0/0 (100%)
JARC 15/15 (100%) (JVMPHOMA aggressive lymphomas 0// 105%) SPARC 0% (100%) LUM 12/13 (92%) VYMPHOMA aggressive lymphomas FNI 9/9 (100%) COL3A1 5/5 (100%) FNI 12/13 (92%) vs. normal FNI 9/9 (100%) COL3A1 5/5 (100%) COL3A1 9/9 (100%) COL3A1 5/5 (100%) COL5A1 5/5 (100%) COL5A1 9/9 (100%) secreted = 12 COL1A2 4/5 (80%) COL1A1 1/13 (84%) CALD1 11/13 (84%) ECM = 12 MMP2 6/6 (100%) LUNG NSCLC vs. normal POSTN 11/13 (84%) TH71 12/3 (92%) SPARC 9/9 (100%) total = 8 TH852 13/3 (100%) TH71 11/13 (84%) ECM = 12 MMP2 6/6 (100%) Secreted = 6 COL1A1 11/13 (84%) PANCREAS carcinoma and adenocarcinoma vs. normal COL42 1/1 (100%) ECM = 6 COL3A1 8/10 (100%) secreted = 5 VCAN 6/6 (100%) COL6A1 5/5 (100%) <td></td> <td>ECIVI = 10</td> <td>SDARC</td> <td>12/12 (04%)</td> <td></td> <td></td> <td>DAD21</td> <td>6/6 (100%)</td> <td></td> <td></td> <td>CDADC</td> <td>4/3 (60%)</td>		ECIVI = 10	SDARC	12/12 (04%)			DAD21	6/6 (100%)			CDADC	4/3 (60%)
FNI 1/12 (12.%) V:nm rolwid viggestrict (nim)rolwid viggest			JIIM	12/13 (100%)		aggressive lymphomas	POSTN	9/9 (100%)			COLAAI	5/5 (100%)
C011A1 9/9 (100%) C013A1 5/5 (100%) C013A1 5/5 (100%) ADAM12 11/13 (84%) total = 13 FAP 9/9 (100%) C0113A1 5/5 (100%) C015A1 9/9 (100%) c013A1 5/5 (100%) C0113A1 5/5 (100%) C015A1 9/9 (100%) secreted = 12 C01A2 4/4 (100%) LUNG NSCLC vs. normal POSTN 11/13 (84%) CALD1 11/13 (84%) ECM = 12 MMP2 6/6 (100%) C011A1 12/13 (92%) THY1 12/13 (92%) SPARC 9/9 (100%) total = 8 THB52 13/13 (100%) PANCREAS carcinoma and POSTN 5/6 (83%) C012A1 4/4 (100%) secreted = 6 C01A2 11/13 (84%) total = 5 FN1 5/6 (83%) C012A1 1/1 (100%) FCM = 6 C03A1 8/10 (80%) total = 5 FN1 5/6 (83%) C012A1 11/10(100%) FCM = 6 C013A1 1/10(100%) secreted = 5 VCAN 6/6 (100%) C012A3 4/4 (100%) SULF1 7/7 (100%) secreted = 5 VCAN 5/6 (610%) VCAN 4/4 (100%) SULF1 7/7 (100%)			EN1	12/13 (92%)	Envirtionia	vs normal	EN1	9/9 (100%)			RETN1	5/6 (83%)
Colori Colori <thcolori< th=""> <thcolori< th=""> <thcolori< td="" th<=""><td></td><td></td><td>COL1A1</td><td>9/9 (100%)</td><td></td><td>vs. norman</td><td>CO1341</td><td>5/5 (100%)</td><td></td><td></td><td>COL541</td><td>4/5 (80%)</td></thcolori<></thcolori<></thcolori<>			COL1A1	9/9 (100%)		vs. norman	CO1341	5/5 (100%)			COL541	4/5 (80%)
PANCREAS carcinoma and adenocarcinoma vs. normal COLIA2 5/6 (100%) secreted = 12 COLIA2 COLIA1 1/1/3 (84%) COLIA1 1/1/3 (84%) V THY1 12/3 (92%) FM1 5/9 (100%) COLIA2 6/6 (100%) LUNG NSCL vs. normal POSTN 11/13 (84%) PANCREAS carcinoma and adenocarcinoma vs. normal POSTN 11/13 (84%) ECM = 12 MMP2 6/6 (100%) total = 8 THBS2 13/13 (100%) total = 5 FN1 5/6 (83%) COLIA1 4/4 (100%) secreted = 6 COLIA1 1/10 (80%) total = 5 FN1 5/6 (83%) COLIA1 1/1 (100%) FAM SULP1 7/7 (100%) total = 5 FN1 5/6 (83%) COLIA1 1/1 (100%) ECM = 6 COLIA1 1/10 (100%) secreted = 5 VCAN 6/6 (100%) COLEA1 5/5 (100%) SULP1 7/7 (100%) FCM = 5 COLIA5 5/6 (83%) VCAN 4/4 (100%) COLIA1 9/10 (90%)			ADAM12	11/12 (9/%)		total - 12	EAD	9/9 (100%)			COLIEAT	5/5 (100%)
CALD1 1/1/18/4%) ECM = 12 MMP2 6/6 (100%) COLLA1 2/1/13 (92%) THY1 12/13 (92%) FM 5/9 (100%) 5/9 (100%) total = 8 THS2 13/13 (92%) PANCREAS carcinoma and adenocarcinoma vs. normal POSTN 5/6 (83%) COLSA2 4/4 (100%) secreted = 6 COL1A1 12/13 (84%) total = 5 FN1 5/6 (83%) COLSA2 4/4 (100%) ECM = 6 COL3A1 8/10 (80%) total = 5 FN1 5/6 (83%) COL6A1 5/5 (100%) SULF1 7/7 (100%) secreted = 5 VCAN 6/6 (100%) COL6A1 5/5 (100%) COLSA2 9/10 (90%) fCM = 5 COLA2 5/6 (83%) COL6A1 5/5 (100%) COLSA2 9/10 (90%)			COI 541	9/9 (100%)		secreted = 12	COL142	J/J (100%)	LUNG	NSCI Cvs. normal	POSTN	11/13 (8/%)
PANCREAS carcinoma and adenocarcinoma vs. normal 55 COLA 11/13 (84%) COLA 11 (100%) COLA 14 (100%) COLA 14 (100%)<			CALD1	11/13 (8/%)		FCM = 12	MMAD2	6/6 (100%)	LONG	Nocee vs. norman	COL11A1	12/13 (92%)
TPM1 11/13 (84%) L/IM 4/4 (100%) secreted = 6 COL1A2 11/13 (84%) PANCREAS carcinoma and adenocarcinoma vs. normal total = 5 POSTN 5/6 (83%) COL3A2 4/4 (100%) ECM = 6 COL3A2 8/10 (80%) total = 5 FN1 5/6 (83%) COL6A1 1/11 (100%) FAP 10/10 (100%) secreted = 5 VCAN 6/6 (100%) COL6A3 4/4 (100%) SULF1 7/7 (100%) FCM 5 C016A1 5/5 (100%) COL5A2 9/10 (90%)			THY1	12/13 (92%)		L CIVI - 12	SPARC	9/9 (100%)		total = 8	THBS2	13/13 (100%)
PANCREAS carcinoma and adenocarcinoma vs. normal POSTV 21/20/07/1 total = 5 FNI 5/6 (83%) COLSA1 4/4 (100%) ECM = 6 COLSA1 8/10 (80%) secreted = 5 VCAN 6/6 (100%) COLSA2 4/4 (100%) SULF1 7/7 (100%) FCM = 5 COLSA1 5/6 (83%) COLSA1 4/4 (100%) COLSA2 9/10 (90%)			TPM1	11/13 (84%)			IUM	4/4 (100%)		secreted = 6	COL 1A2	11/13 (84%)
adenocarcinoma vs. normal C011A2 5/6 (83%) C01A1 1/1 (100%) FAP 10/10 (100%) total = 5 FN1 5/6 (83%) C01A1 5/5 (100%) SULF1 7/7 (100%) secreted = 5 VCAN 6/6 (100%) C0L6A3 4/4 (100%) C0L5A2 9/10 (90%) FCM = 5 C0(633%) VCAN 4/4 (100%) C0L5A2 9/10 (90%)	PANCREAS	carcinoma and	POSTN	5/6 (83%)			COL5A2	4/4 (100%)		FCM = 6	COL3A1	8/10 (80%)
total = 5 FN1 5/6 (83%) COL6A1 5/5 (100%) SULF1 7/7 (100%) secreted = 5 VCAN 6/6 (100%) COL6A3 4/4 (100%) COL5A2 9/10 (90%) FCM = 5 COL6A1 5/6 (83%) VCAN 4/4 (100%) COL5A2 9/10 (90%)		adenocarcinoma vs. normal	COL 1A2	5/6 (83%)			COLIAI	1/1 (100%)		2000 0	FAP	10/10 (100%)
secreted = 5 VCAN 6/6 (100%) COL6A3 4/4 (100%) COL5A2 9/10 (90%) FCM = 5 COL6A1 5/6 (83%) VCAN 4/4 (100%) COL5A2 9/10 (90%)		total = 5	EN1	5/6 (83%)			COL6A1	5/5 (100%)			SULF1	7/7 (100%)
FCM = 5 $CO(64) = 5 (2000)$ $VCN 4/4(1006)$		secreted = 5	VCAN	6/6 (100%)			COL6A3	4/4 (100%)			COL5A2	9/10 (90%)
		ECM = 5	COL6A1	5/6 (83%)			VCAN	4/4 (100%)			2020/12	5, 10 (50/0)

Table 3. Evaluation of POSTN-co-expressed genes in differential expression analyses. POSTN-co-expressed genes were tested in differential expression analyses allowing an evaluation as high-stage or progression markers. Only POSTN and POSTN-co-expressed genes presenting a significant (p<0.05) modulation in \geq 80% of studies were reported. All modulations observed were an overexpression. Non-secreted gene products are highlighted in light green. Non-ECM and ECM secreted gene products are highlighted in light orange and light red, respectively. For each comparison, the size of gene set as well as the number of secreted and ECM-related gene products was specified.

Figure 2. Processing of POSTN-co-expressed genes (Table 2) through functional clustering analyses. For each type of cancer, the list of POSTN-co-expressed genes was processed through functional clustering. Functional clusters identified in a given cancer are depicted by green cells. Functional clusters identified in at least half of studies are boldened.

	Supplement 1. Differentia	l expression analyses for POSTN.
study reference	http://www.ncbi.nlm.nih.gov/pubmed/15930339 http://www.ncbi.nlm.nih.gov/pubmed/15161696 http://www.ncbi.nlm.nih.gov/pubmed/15173019 http://www.ncbi.nlm.nih.gov/pubmed/15161696 http://www.ncbi.nlm.nih.gov/pubmed/15930339 http://www.ncbi.nlm.nih.gov/pubmed/15930339 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/15133019 http://www.ncbi.nlm.nih.gov/pubmed/151696 http://www.ncbi.nlm.nih.gov/pubmed/151696 http://www.ncbi.nlm.nih.gov/pubmed/151696 http://www.ncbi.nlm.nih.gov/pubmed/151696 http://www.ncbi.nlm.nih.gov/pubmed/151696	http://www.ncbi.nlm.nih.gov/pubmed/12163391 http://www.ncbi.nlm.nih.gov/pubmed/11807556 http://www.ncbi.nlm.nih.gov/pubmed/11807556 http://www.ncbi.nlm.nih.gov/pubmed/11807556 http://www.ncbi.nlm.nih.gov/pubmed/11929829 http://www.ncbi.nlm.nih.gov/pubmed/16204036
p value	p = 3.11E-7 p = 0.004 p = 0.004 p = 3.99E-8 p = 3.99E-8 p = 0.018 p = 0.018 p = 0.16E-7 p = 3.74E-6 p = 3.74E-6 p = 3.74E-1 p = 1.34E-13 p = 1.34E-13 p = 4.24E-7 p = 1.11E-4 p = 2.74E-13 p = 2.74E-13 p = 2.74E-13 p = 2.74E-13 p = 0.309	p=0.119 p=0.068 p=0.424 p=0.424 p=0.424 p=0.127 p=0.127 p=0.109 p=0.109 p=0.269 p=0.065 p=0.065 p=0.004 p=0.005 p=0.005 p=1.306-5 p=7.116-11
fold change	-3.499 2.111 2.111 -4.273 -1.794 -1.794 1.943 2.661 2.191 4.536 4.536 1.771 11.171 8.471 11.171 8.471 10.969 33.999 9.363 6.976 1.086	1.53 9.78 9.78 1.145 -1.478 1.2.948 1.426 1.426 1.426 1.426 1.338 1.338 1.338 1.426 1.474 1.474 1.474 1.791 1.791 1.791 1.791 1.791 1.791 1.791 1.791 1.791 1.791 1.791
reference groups (n)	Bladder (3) Bladder (4) Bladder (4) Bladder (4) Bladder (4) Bladder (4) Bladder (3) Bladder (3) Bladder (3) Superficial Bladder Cancer (705) Superficial Bladder Cancer (705) Superficial Bladder Cancer (26) Superficial Bladder Cancer (30) Superficial Bladder Cancer (31) Superficial Bladder Cancer (33)	Meninges (3) Cerebellum (4) Cerebellum (4) Cerebellum (4) White Matter (3) Brain (23) White Matter (7) Brain (4) Brain (4) Brain (4) Brain (6) Brain (6) Brain (6) Brain (23) Brain (23) Brain (23) Brain (23) Brain (23) Brain (23) Brain (23) Brain (23)
comparison type evaluated group (n)	BLADDDER superficial bladder cancer vs. normal Superficial Bladder Cancer (25) Superficial Bladder Cancer (22) Superficial Bladder Cancer (28) Superficial Bladder Cancer (28) infiltrating Bladder Urothelial Carcinoma (53) Infiltrating Bladder Urothelial Carcinoma (53) Infiltrating Bladder Urothelial Carcinoma (81) Infiltrating Bladder Urothelial Carcinoma (13) infiltrating Bladder Urothelial Carcinoma (13) Infiltrating Bladder Urothelial Carcinoma (13) Infiltrating Bladder Urothelial Carcinoma (28) Infiltrating Bladder Urothelial Carcinoma (28) Infiltrating Bladder Urothelial Carcinoma (29) Infiltrating Bladder Urothelial Carcinoma (20) Infiltrating Bladder Urothelial Carcinoma (20) Infiltrating Bladder Urothelial Carcinoma (10) Infiltrating Bladder Urothelial Carcinoma (6)	Meningioma (15) Meningioma (15) Primitive Neuroectodermal Tumor vs. normal Atypical Teratoid/Rhabdoid Tumor (5) Classic Medulloblastoma (46) Desmoplastic Medulloblastoma (14) glioma (WHO stage I) vs. normal Pilocytic Astrocytoma (8) Oligodendroglioma (50) Oligodendroglioma (5) Oligodendroglioma (5) Oligodendroglioma (5) Gligodendroglioma (5) Anaplastic Oligostrocytoma (4) Anaplastic Oligodendroglioma (23) Astrocytoma (4) Anaplastic Oligodendroglioma (23) Astrocytoma (4) Anaplastic Oligodendroglioma (23) Astrocytoma (4) Anaplastic Oligodendroglioma (23) Astrocytoma (4) Glioblastoma (21) Glioblastoma (22) Glioblastoma (22) Glioblastoma (22)

And follower And follower<	comparison type evaluated group (n)	reference groups (n)	fold change	p value	study reference
Intelligence Constrained Constained <	ថា glioblastoma vs. other gliomas ២ Glioblastoma (30)	Mixed Glioma (3)	3.876	p = 1.22E-7	http://www.ncbi.nlm.nih.gov/pubmed/1582712
Interface Interface <t< td=""><td>Glioblastoma (81)</td><td>Astrocytoma (26) Olirodendrodial Tumor (50)</td><td>5.705</td><td>p = 8.97E-11</td><td>http://www.ncbi.nlm.nih.gov/pubmed/16616334</td></t<>	Glioblastoma (81)	Astrocytoma (26) Olirodendrodial Tumor (50)	5.705	p = 8.97E-11	http://www.ncbi.nlm.nih.gov/pubmed/16616334
Addition (b) (c) (c) <t< td=""><td>G Glioblastoma (31)</td><td>Ongodenial ognari annor (20) Mixed Gioma (6) Olisodandroalia Tumor (8)</td><td>3.243</td><td>p = 0.03</td><td>http://www.ncbi.nlm.nih.gov/pubmed/16204036</td></t<>	G Glioblastoma (31)	Ongodenial ognari annor (20) Mixed Gioma (6) Olisodandroalia Tumor (8)	3.243	p = 0.03	http://www.ncbi.nlm.nih.gov/pubmed/16204036
Biology Constrained (a) Co	民 Glioblastoma (59)	Astrocytoma (8) Mixed Glioma (7) Mixed Glioma (7)	3.77	p = 1.31E-4	http://www.ncbi.nlm.nih.gov/pubmed/15374961
Clobalstron (s) G.G.D. Intro. (march of minit ges/optimed/1563312) Clobalstron (s) Acrosytom (s) Acrosytom (s) Control (s) <thcontrol (s)<="" th=""> <thcontro< th=""> <thc< td=""><td>Glioblastoma (28) Glioblastoma (27)</td><td>Origodendroglial Tumor (11) Oligodendroglial Tumor (22) Astrocytoma (5) Oligodendroglial Tumor (3)</td><td>2.157 1.752</td><td>p = 0.023 p = 0.023</td><td>http://www.ncbi.nlm.nih.gov/pubmed/12670911 http://www.ncbi.nlm.nih.gov/pubmed/12894235</td></thc<></thcontro<></thcontrol>	Glioblastoma (28) Glioblastoma (27)	Origodendroglial Tumor (11) Oligodendroglial Tumor (22) Astrocytoma (5) Oligodendroglial Tumor (3)	2.157 1.752	p = 0.023 p = 0.023	http://www.ncbi.nlm.nih.gov/pubmed/12670911 http://www.ncbi.nlm.nih.gov/pubmed/12894235
Desite Carcinoma is Success sorrent Desite Carcinoma is Success sorrent Ductal Breast Carcinoma is Success (a) 5.11 p = 0.004 Http://www.rcbi min.htg.//www.rcbi min.htg.//www.rcbi min.htg.//www.rcbi min.htg.//bbmed/15093802 Ductal Breast Carcinoma is Success (a) 5.11 p = 0.004 Http://www.rcbi min.htg.//bbmed/15093802 Ductal Breast Carcinoma (a) Breast (a) 5.11 p = 0.006 Http://www.rcbi min.htg.//bbmed/15093802 Ductal Breast Carcinoma (a) Breast (a) 2.33 p = 0.007 Http://www.rcbi min.htg.//bbmed/15093802 Ductal Breast Carcinoma (a) Breast (a) 2.33 p = 0.007 Http://www.rcbi min.htg.//bbmed/15093802 Ductal Breast Carcinoma (b) Breast (a) Breast (a) 2.33 p = 0.017 Http://www.rcbi min.htg.//bbmed/15093802 Ductal Breast Carcinoma (c)	Glioblastoma (4) Glioblastoma (22)	Astrocytoma (8) Astrocytoma (4)	6.167 -1.001	p = 0.042 p = 0.503	http://www.ncbi.nlm.nih.gov/pubmed/12937144 http://www.ncbi.nlm.nih.gov/pubmed/16652150
And burdly flowest Carcinoma in Siu (3)Breast	55 breast cancer vs. normal				
Detail Breast Carcinome (6)Breast (3)5.11p = 0.036Mittp://www.ncbi.nlm.nlh.gev/pubmed/1155390Ductal Breast Carcinome (6)Breast (3)5.11p = 0.036Mittp://www.ncbi.nlm.nlh.gev/pubmed/1155390Ductal Breast Carcinome (6)Breast (3)2.337p = 6.006Mittp://www.ncbi.nlm.nlh.gev/pubmed/1155390Ductal Breast Carcinome (1)Ductal Breast Carcinome (2)2.337p = 0.036Mittp://www.ncbi.nlm.nlh.gev/pubmed/1155390Ductal Breast Carcinome (2)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)2.337p = 0.038Mittp://www.ncbi.nlm.nlh.gev/pubmed/1155391Dublar Breast Carcinome (2)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)2.331p = 0.038Mittp://www.ncbi.nlm.nlh.gev/pubmed/11532391Dublar N. Anton (2)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)2.331p = 1.31EMittp.//www.ncbi.nlm.nlh.gev/pubmed/11532391Dublar N. Anton (2)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)2.331p = 1.31EMittp.//www.ncbi.nlm.nlh.gev/pubmed/11232391Dublar Breast Carcinome (3)Ductal Breast Carcinome (3)Dublar Breast Carcinome (3)Ductal Breast Carcinome (3)Dublar Breast Carcinome (3)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)Ductal Breast Carcinome (3)Du	🔂 Ductal Breast Carcinoma in Situ (3)	Breast (8)	2.132	p = 0.004	http://www.ncbi.nlm.nih.gov/pubmed/16043716
Ductal Breast Garcinoma (a) Breast (a)	📙 Ductal Breast Carcinoma (36)	Breast (3)	5.11	p = 0.048	http://www.ncbi.nlm.nih.gov/pubmed/10963602
Ductal Breast Carcinoma (93) Breast (1) Caracter Carcinoma (93) Breast (1) Ductal Breast Carcinoma (94) Breast (1) 2.33 p = 0.006 http://www.ncbi.nlm.nh.gov/pabmed/15573350 Ductal Breast Carcinoma (1) Breast (2) 2.33 p = 0.013 http://www.ncbi.nlm.nh.gov/pabmed/1557351 Ductal Breast Carcinoma (2) Breast (3) 1.732 p = 0.013 http://www.ncbi.nlm.nh.gov/pabmed/155331 Dublar Breast Carcinoma (1) Breast (3) 1.772 p = 0.013 http://www.ncbi.nlm.nh.gov/pabmed/1593323 Dublar Breast Carcinoma (2) Breast (3) 1.772 p = 0.013 http://www.ncbi.nlm.nh.gov/pabmed/1593323 Dublar Breast Carcinoma (3) Ductal Breast Carcinoma (3) 1.772 p = 0.013 http://www.ncbi.nlm.nh.gov/pabmed/1593323 Dublar Breast Carcinoma (3) Ductal Breast Carcinoma (3) Ductal Breast Carcinoma (3) 1.772 p = 0.013 http://www.ncbi.nlm.nh.gov/pabmed/1593313 Dublar Breast Carcinoma (3) Ductal Breast Ca	Ductal Breast Carcinoma (64)	Breast (4)	3.684	p = 0.077	http://www.ncbi.nlm.nih.gov/pubmed/11553815
Ducial Breast Carcinoma (a) Breast (b) Breast (c)	Ductal Breast Carcinoma (93)	Breast (4)	4.168	p = 0.060	http://www.ncbi.nlm.nih.gov/pubmed/12829800
Oblid Prest Carcinoma (a) Breast (b) Breast (c) Dural Prest Carcinoma (c) Breast (c) Oblid Prest Carcinoma (c) Breast (c) 1.742 p=0.004 Http://www.ncbi.nlm.nh.gov/pubmed/1953323 Oblid Prest Carcinoma (c) Breast (c) 1.742 p=0.013 Http://www.ncbi.nlm.nh.gov/pubmed/195332 Oblid Prest Carcinoma (c) Breast (c) Breast (c) Breast (c) Breast (c) Oblid Prest Carcinoma (c) Breast (c) Breast (c) Breast (c) Breast (c) Oblid Prest Carcinoma (c) Dural Breast Carcinoma (c) Dural Breast Carcinoma (c) Dural Breast Carcinoma (c) Dural Breast Carcinoma (c) Oblid Presst Carcinoma (c) Dural Breast Carcin	Ductal Breast Carcinoma (40)	Breast (7)	2.337	p = 8.43E-4	http://www.ncbi.nlm.nih.gov/pubmed/1647327
Louluar Prest Carcinoma (a)Frest (a)Total Rest (a)Frest (a)Total Rest (a)Frest (a)Louluar Prest Carcinoma (b)Reast (a)1.742p= 0.003fttp://www.rcbi.nim.nih.gov/pubmed/13034135Louluar Prest Carcinoma (c)Reast (a)1.742p= 0.003fttp://www.rcbi.nim.nih.gov/pubmed/13034135Louluar Prest Carcinoma (c)Ductal Breast Carcinoma (c)2.391p= 1.21E5http://www.rcbi.nim.nih.gov/pubmed/13232395Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)2.356p= 1.44E4http://www.rcbi.nim.nih.gov/pubmed/13233253Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)2.351p= 0.003http://www.rcbi.nim.nih.gov/pubmed/13233253Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)2.064p= 0.025http://www.rcbi.nim.nih.gov/pubmed/13233633Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)Ductal Breast Carcinoma (c)2.054p= 0.025http://www.rcbi.nim.nih.gov/pubmed/1329363Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.104p= 0.025http://www.rcbi.nim.nih.gov/pubmed/1329363Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.106p= 0.025http://www.rcbi.nim.nih.gov/pubmed/1329363Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.106p= 0.025http://www.rcbi.nim.nih.gov/pubmed/1329363Louluar Breast Carcinoma (c)Ductal Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.106p= 0.025<	Lobular Breast Carcinoma (4)	Breast (4)	4.229	p = 0.074	http://www.ncbi.nlm.nih.gov/pubmed/11553815
Unduit Reast Carcinoma (7)Breast (a)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(c)	Lobular Breast Carcinoma (4)	Breast (3)	10.58	p = 0.018	http://www.ncbi.nlm.nih.gov/pubmed/10963602
Meast (3) Freast (3) I.1.42 p = 0.017 Intp://www.ncbi.nlm.nh.gov/pubmed/13993113 Obular Breast Carcinoma (5) Ductal Breast Carcinoma (5) 2.331 p = 1.21E.5 http://www.ncbi.nlm.nh.gov/pubmed/131939312 Obular Breast Carcinoma (3) Ductal Breast Carcinoma (5) 2.331 p = 1.21E.5 http://www.ncbi.nlm.nh.gov/pubmed/131939312 Obular Breast Carcinoma (3) Ductal Breast Carcinoma (5) 2.334 p = 0.035 http://www.ncbi.nlm.nh.gov/pubmed/131939312 Obular Breast Carcinoma (3) Ductal Breast Carcinoma (5) 2.035 p = 0.035 http://wwm.ncbi.nlm.nh.gov/pubmed/131932331 Obular Breast Carcinoma (3) Ductal Breast Carcinoma (5) Ductal Breast Carcinoma (5) 1.194 p = 0.035 http://wwm.ncbi.nlm.nh.gov/pubmed/1359381 Obular Breast Carcinoma (7) Ductal Breast Carcinoma (5) Ductal Breast Carcinoma (5) 1.194 p = 0.035 http://wwm.ncbi.nlm.nh.gov/pubmed/1359381 Obular Breast Carcinoma (7) Ductal Breast Carcinoma (5) Ductal Breast Carcinoma (5) 1.136 p = 0.035 http://wwm.ncbi.nlm.nh.gov/pubmed/13503431 Obular Breast Carcinoma (5) Ductal Breast Carcinoma (5) Ductal Breast Carcinoma (5) 1.137 p = 0.035 http://wwm.ncbi.nlm.nh.gov/pubmed/13503431	Lobular Breast Carcinoma (7)	Breast (4)	4.671	p = 0.049	http://www.ncbi.nlm.nih.gov/pubmed/12829800
Obliar Nest Carcinoma (3)2.391p = 1.21E-5http://www.ncbi.nlm.nih.gov/jubmed/1399431Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (3)2.526p = 1.44E-4http://www.ncbi.nlm.nih.gov/jubmed/13237396Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (3)2.535p = 0.025http://www.ncbi.nlm.nih.gov/jubmed/13293603Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (3)2.634p = 0.023http://www.ncbi.nlm.nih.gov/jubmed/13293630Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (5)2.034p = 0.023http://www.ncbi.nlm.nih.gov/jubmed/13293630Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (5)1.156p = 0.023http://www.ncbi.nlm.nih.gov/jubmed/13293630Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (5)1.156p = 0.023http://www.ncbi.nlm.nih.gov/jubmed/13293031Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (5)1.156p = 0.023http://www.ncbi.nlm.nih.gov/jubmed/13293031Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (5)1.1121.113p = 0.035http://www.ncbi.nlm.nih.gov/jubmed/13293031Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (3)Ductal Breast Carcinoma (3)2.062p = 0.062http://www.ncbi.nlm.nih.gov/jubmed/13293031Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (3)Ductal Breast Carcinoma (3)1.113p = 0.035http://www.ncbi.nlm.nih.gov/jubmed/13293031Obliar Breast Carcinoma (3)Ductal Breast Carcinoma (3)Ductal Breast Carcinoma (3)1.113p = 0.035Ductal Breast C	Lobular Breast Carcinoma (21)	Breast (3)	1.742	p = 0.017	http://www.ncbi.nlm.nih.gov/pubmed/15034139
Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (3)2.331p = 1.121-55http://www.ncbi.nlm.nlh.gov/pubmed/1319323Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (32)2.555p = 0.015http://www.ncbi.nlm.nlh.gov/pubmed/13193283Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (33)2.085p = 0.024http://www.ncbi.nlm.nlh.gov/pubmed/13193283Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (33)2.085p = 0.024http://www.ncbi.nlm.nlh.gov/pubmed/13193283Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (35)2.085p = 0.024http://www.ncbi.nlm.nlh.gov/pubmed/13193283Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (51)1.084p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/1353812Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.101p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/1353832Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.101p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/1353832Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.101p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/1353832Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.115p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/1353832Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (3)Lobular Breast Carcinoma (3)http://www.ncbi.nlm.nlh.gov/pubmed/1353832Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (3)Ductal Breast Carcinoma (3)http://www.ncbi.nlm.nlh.gov/pubmed/1353832Lobular Breast Carcinoma (3)	lobular vs. ductal breast cancer			1	
Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (5)2.526p = 1.44f-4http://www.ncbi.nlm.nl.gov/pubmed/1393253Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (32)4.593p = 0.015http://www.ncbi.nlm.nl.gov/pubmed/15133263Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (32)2.054p = 0.025http://www.ncbi.nlm.nl.gov/pubmed/15133263Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (31)2.054p = 0.025http://www.ncbi.nlm.nl.gov/pubmed/15133263Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (51)1.188p = 0.635http://www.ncbi.nlm.nl.gov/pubmed/15339303Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (51)1.1156p = 0.325http://www.ncbi.nlm.nl.gov/pubmed/15339303Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (51)1.1156p = 0.325http://www.ncbi.nlm.nl.gov/pubmed/15339303Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (51)1.118p = 0.053http://www.ncbi.nlm.nl.gov/pubmed/15339037Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (31)1.118p = 0.053http://www.ncbi.nlm.nl.gov/pubmed/153393037Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Lobular Breast Carcinoma (31)Ductal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Lobular Breast Carcinoma (33)Ductal Breast Carcinoma (33)Luctal Breast Carcinoma (33)Luctal Breast Carcinoma (33) <td>Lobular Breast Carcinoma (5)</td> <td>Ductal Breast Carcinoma (43)</td> <td>2.391</td> <td>p = 1.21E-5</td> <td>http://www.ncbi.nlm.nih.gov/pubmed/17999412</td>	Lobular Breast Carcinoma (5)	Ductal Breast Carcinoma (43)	2.391	p = 1.21E-5	http://www.ncbi.nlm.nih.gov/pubmed/17999412
Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (32)Lobular Breast Carcinoma (33)Lobular Breast Carcinoma (34)Lobular Breast Carcinoma (35)Lobular Breast Carcinoma (31)Lobular Breast Carcinoma (32)Lobular Breast Carcinoma (31)Lobular Breast Carcinoma (31)Lobular Breast Carcinoma (32)Lobular Breast Carcinoma (31)Lobular Breast Carcinoma (32)Lobular Breast Carcinoma (31)Lobular Breast Carcinoma (31)Lobular Breast Carcinoma (31)Lips/Mww.ncbi.nlm.nih.gov/pubmed/1353815Lobular Breast Carcinoma (31)Lips/Mww.ncbi.nlm.nih.gov/pubmed/1353815Lobular Breast Carcinoma (32)Lips/Mww.ncbi.nlm.nih.gov/pubmed/1353815Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302Lips/Mww.ncbi.nlm.nih.gov/pubmed/13379302 <thlips 13379302<="" mww.ncbi.nlm.nih.gov="" pubmed="" th="">Lips/Mww.n</thlips>	Lobular Breast Carcinoma (19)	Ductal Breast Carcinoma (95)	2.526	p = 1.44E-4	http://www.ncbi.nlm.nih.gov/pubmed/18297396
Lobular Breast Carcinoma (a)Ductal Breast Carcinoma (a)2.085p = 0.024http://www.ncbi.nlm.nih.gov/pubmed/1153332Lobular Breast Carcinoma (b)Ductal Breast Carcinoma (c)1.084p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/1153333Lobular Breast Carcinoma (a)Ductal Breast Carcinoma (c)1.191p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/1153333Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.156p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/11533330Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.156p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/11533330Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.1175p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/11533330Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.1175p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/11533313Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.118p = 0.065http://www.ncbi.nlm.nih.gov/pubmed/115295311Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.118p = 0.085http://www.ncbi.nlm.nih.gov/pubmed/115233115Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.118p = 0.086http://www.ncbi.nlm.nih.gov/pubmed/11523915Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.118p = 0.085http://www.ncbi.nlm.nih.gov/pubmed/15297511Lobular Breast Carcinoma (c)Ductal Breast Carcinoma (c)Ductal Breast Carcinoma (c)1.118p = 0.085Ibroadenoma (c)Ductal Breast Carcinoma (c) </td <td>Lobular Breast Carcinoma (3)</td> <td>Ductal Breast Carcinoma (32)</td> <td>4.593</td> <td>p = 0.015</td> <td>http://www.ncbi.nlm.nih.gov/pubmed/15193263</td>	Lobular Breast Carcinoma (3)	Ductal Breast Carcinoma (32)	4.593	p = 0.015	http://www.ncbi.nlm.nih.gov/pubmed/15193263
Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (51)2.054p = 0.255http://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?Lobular Breast Carcinoma (36)Ductal Breast Carcinoma (57)1.084p = 0.453http://www.ncbi.nlm.nih.gov/gubmed/1553815Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (67)1.181p = 0.325http://www.ncbi.nlm.nih.gov/gubmed/12538303Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (56)1.175p = 0.052http://www.ncbi.nlm.nih.gov/gubmed/12389031Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.175p = 0.052http://www.ncbi.nlm.nih.gov/gubmed/12389031Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.175p = 0.052http://www.ncbi.nlm.nih.gov/gubmed/12389031Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (3)1.021p = 0.062http://www.ncbi.nlm.nih.gov/gubmed/12397311Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (3)1.175p = 0.063http://www.ncbi.nlm.nih.gov/gubmed/12397311Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (3)1.118p = 0.289http://www.ncbi.nlm.nih.gov/gubmed/1539815Lobular Breast Carcinoma (3)Breast (4)1.021p = 0.062http://www.ncbi.nlm.nih.gov/gubmed/1539815Lobular Breast Carcinoma (3)Breast (4)p = 0.058http://www.ncbi.nlm.nih.gov/gubmed/1539815Lobular Breast Carcinoma (3)Breast (4)p = 0.058http://www.ncbi.nlm.nih.gov/gubmed/1539815Ino adenoma (3)Breast (4)p = 0.058http://www.ncbi.nlm.nih.gov/gubmed/1539815<	Lobular Breast Carcinoma (4)	Ductal Breast Carcinoma (38)	2.085	p = 0.024	http://www.ncbi.nlm.nih.gov/pubmed/10963602
Lobular Breast Carcinoma (36)Ductal Breast Carcinoma (21)1.084p = 0.453http://www.ncbi.nlm.nlh.gov/pubmed/1553815Lobular Breast Carcinoma (7)Ductal Breast Carcinoma (67)1.156p = 0.325http://www.ncbi.nlm.nlh.gov/pubmed/13829300Lobular Breast Carcinoma (7)Ductal Breast Carcinoma (5)1.156p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/13829305Lobular Breast Carcinoma (7)Ductal Breast Carcinoma (5)1.175p = 0.035http://www.ncbi.nlm.nlh.gov/pubmed/13829321Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (12)1.021p = 0.065http://www.ncbi.nlm.nlh.gov/pubmed/13829321Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (14)1.021p = 0.051http://www.ncbi.nlm.nlh.gov/pubmed/15934139Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (3)Lobular Breast Carcinoma (3)1.021p = 0.053http://www.ncbi.nlm.nlh.gov/pubmed/15934139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (3)Lobular Breast Carcinoma (3)1.021p = 0.053http://www.ncbi.nlm.nlh.gov/pubmed/15934139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (34)LO211.021p = 0.053http://www.ncbi.nlm.nlh.gov/pubmed/15934139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)LO21p = 0.053http://www.ncbi.nlm.nlh.gov/pubmed/15934139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)Ductal Breast Carcinoma (35)http://www.ncbi.nlm.nlh.gov/pubmed/15934139Lobular Breast Carcinoma (19)Buctal Breast Carcinoma (35)LO21p = 0.057	Lobular Breast Carcinoma (3)	Ductal Breast Carcinoma (51)	2.054	p = 0.025	http://www.ncbi.nlm.nih.gov/pubmed/15193263
Lobular Breast Carcinoma (4)Ductal Breast Carcinoma (67)1.191p = 0.378http://www.ncbi.nlm.nih.gov/pubmed/13829301Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.156p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/13820301Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.157p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/138024716Lobular Breast Carcinoma (6)Ductal Breast Carcinoma (12)1.021p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/16043716Lobular Breast Carcinoma (6)Ductal Breast Carcinoma (14)1.021p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/15034139Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (3)Lobular Breast Carcinoma (3)1.021p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/15034139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (3)Lobular Breast Carcinoma (3)Lo21p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/15034139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)Lo121p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/15034139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)Lo121p = 0.035http://www.ncbi.nlm.nih.gov/pubmed/1553815Sibroadenoma (3)Breast Carcinoma (35)Lotal Breast Carcinoma (35)Lotal Breast Carcinoma (35)http://www.ncbi.nlm.nih.gov/pubmed/1553815Sibroadenoma (3)Breast Carcinoma (3)Breast Carcinoma (35)Lotal Breast Carcinoma (35)http://www.ncbi.nlm.nih.gov/pubmed/1553815Sibroadenoma (3)Breast (4)F.526p = 0.057http://www.n	Lobular Breast Carcinoma (36)	Ductal Breast Carcinoma (261)	1.084	p = 0.453	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
Lobular Breast Carcinoma (7)Ductal Breast Carcinoma (96)1.156p = 0.325http://www.ncbi.nlm.nih.gov/pubmed/138393037Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)1.175p = 0.062http://www.ncbi.nlm.nih.gov/pubmed/13839037Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (112)1.175p = 0.085http://www.ncbi.nlm.nih.gov/pubmed/1297621Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (14)1.021p = 0.065http://www.ncbi.nlm.nih.gov/pubmed/1297621Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (34)1.118p = 0.061http://www.ncbi.nlm.nih.gov/pubmed/1297621Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.088http://www.ncbi.nlm.nih.gov/pubmed/1297621Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.088http://www.ncbi.nlm.nih.gov/pubmed/1297621Incodenoma (3)Breast (4)8.reast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)Breast (4)1.784p = 0.067http://www.ncbi.nlm.nih.gov/pubmed/12829800Incosire vs. in situ breast carcinoma (3)Ductal Breast Carcinoma in Situ (5)1.784p = 0.007Invasive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (7)1.784p = 0.007Invasive Ductal Breast Carcinoma (7)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004Invasive Ductal Breast Carcinoma (7)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004	Lobular Breast Carcinoma (4)	Ductal Breast Carcinoma (67)	1.191	p = 0.378	http://www.ncbi.nlm.nih.gov/pubmed/11553815
Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (5)Lobular Breast Carcinoma (5)Luctal Breast Carcinoma (12)Lobular Breast Carcinoma (6)Ductal Breast Carcinoma (12)1.175p = 0.062http://www.ncbi.nlm.nih.gov/pubmed/13832312Lobular Breast Carcinoma (5)Ductal Breast Carcinoma (14)1.034p = 0.051http://www.ncbi.nlm.nih.gov/pubmed/138324211Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (14)1.021p = 0.051http://www.ncbi.nlm.nih.gov/pubmed/13832431Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (34)1.118p = 0.0289http://www.ncbi.nlm.nih.gov/pubmed/12334331Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.0289http://www.ncbi.nlm.nih.gov/pubmed/1263813Ichular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.0289http://www.ncbi.nlm.nih.gov/pubmed/1263813Fibroadenoma (3)Breast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)Breast (4)4.572p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)Invasive Ductal Breast Carcinoma in Situ (5)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/15707453Invasive Ductal Breast Carcinoma (7)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/156707453	Lobular Breast Carcinoma (7)	Ductal Breast Carcinoma (96)	1.156	p = 0.325	http://www.ncbi.nlm.nih.gov/pubmed/12829800
Lobular Breast Carcinoma (6)Ductal Breast Carcinoma (12)1.175p = 0.085http://www.ncbi.nlm.nih.gov/pubmed/18024211Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (14)1.934p = 0.051http://www.ncbi.nlm.nih.gov/pubmed/180243145Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (34)1.021p = 0.051http://www.ncbi.nlm.nih.gov/pubmed/12024313Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (34)1.011p = 0.051http://www.ncbi.nlm.nih.gov/pubmed/12034339Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.0289http://www.ncbi.nlm.nih.gov/pubmed/12034339Ibular Breast Carcinoma (13)Breast (4)84.526p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Ibroadenoma (3)Breast (4)4.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Invasive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (5)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invasive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	Lobular Breast Carcinoma (5)	Ductal Breast Carcinoma (5)	2.062	p = 0.062	http://www.ncbi.nlm.nih.gov/pubmed/17389037
Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (14)1.934p = 0.051http://www.ncbi.nlm.nih.gov/pubmed/16043716Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (34)1.021p = 0.488http://www.ncbi.nlm.nih.gov/pubmed/120362313Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (34)1.021p = 0.488http://www.ncbi.nlm.nih.gov/pubmed/15034139Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.289http://www.ncbi.nlm.nih.gov/pubmed/1553815 <i>non cancerous breast conditions vs. normal</i> Breast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/1553815Fibroadenoma (3)Breast (4)4.972p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/1553815Fibroadenoma (3)Breast (4)2.354p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/1553815Invosive Vs. in situ breast cancerDuctal Breast Carcinoma in Situ (5)1.784p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invosive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	Lobular Breast Carcinoma (6)	Ductal Breast Carcinoma (112)	1.175	p = 0.085	http://www.ncbi.nlm.nih.gov/pubmed/18024211
Lobular Breast Carcinoma (3)Ductal Breast Carcinoma (34)1.021p = 0.488http://www.ncbi.nlm.nih.gov/pubmed/12297621Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.289http://www.ncbi.nlm.nih.gov/pubmed/1553815Icoular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.289http://www.ncbi.nlm.nih.gov/pubmed/1553815non cancerous breast conditions vs. normalBreast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/1553815Fibroadenoma (3)Breast (4)4.372p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12528980CInvosive vs. in situ breast cancerDuctal Breast Carcinoma in Situ (5)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invosive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	Lobular Breast Carcinoma (3)	Ductal Breast Carcinoma (14)	1.934	p = 0.051	http://www.ncbi.nlm.nih.gov/pubmed/16043716
Lobular Breast Carcinoma (19)Ductal Breast Carcinoma (35)1.118p = 0.289http://www.ncbi.nlm.nih.gov/pubmed/15034135non cancerous breast conditions vs. normalBreast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/11553815Fibroadenoma (3)Breast (4)4.972p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/11553815Fibroadenoma (3)Breast (4)4.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/1282980CInvosive vs. in situ breast cancerDuctal Breast Carcinoma in Situ (5)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invasive Ductal Breast Carcinoma (7)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	Lobular Breast Carcinoma (3)	Ductal Breast Carcinoma (34)	1.021	p = 0.488	http://www.ncbi.nlm.nih.gov/pubmed/12297621
non cancerous breast conditions vs. normalBreast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/11553815Fibroadenoma (3)8.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)8.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)8.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)0uctal Breast (4)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invasive Ductal Breast Carcinoma (5)0uctal Breast Carcinoma in Situ (5)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	Lobular Breast Carcinoma (19)	Ductal Breast Carcinoma (35)	1.118	p = 0.289	http://www.ncbi.nlm.nih.gov/pubmed/15034139
Fibroadenoma (3)Breast (4)Breast (4)4.526p = 0.068http://www.ncbi.nlm.nih.gov/pubmed/11553815Fibroadenoma (3)Breast (4)4.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Fibroadenoma (3)Breast (4)4.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800Invasive vs. in situ breast cancerDuctal Breast Carcinoma in Situ (5)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invasive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	non cancerous breast conditions vs. normal				
Fibroadenoma (3)Breast (4)Breast (4)Fibroadenoma (3)4.972p = 0.057http://www.ncbi.nlm.nih.gov/pubmed/12829800 <i>invasive vs. in situ breast cancer</i> Ductal Breast Carcinoma in Situ (5)2.364p = 0.007http://www.ncbi.nlm.nih.gov/pubmed/16707453Invasive Ductal Breast Carcinoma (5)Ductal Breast Carcinoma in Situ (5)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453Invasive Ductal Breast Carcinoma (7)Ductal Breast Carcinoma in Situ (7)1.784p = 0.004http://www.ncbi.nlm.nih.gov/pubmed/16707453	Fibroadenoma (3)	Breast (4)	4.526	p = 0.068	http://www.ncbi.nlm.nih.gov/pubmed/11553815
<i>invasive vs. in situ breast cancer</i> Invasive Ductal Breast Carcinoma in Situ (5) 2.364 p = 0.007 http://www.ncbi.nlm.nih.gov/pubmed/16707453 Invasive Ductal Breast Carcinoma in Situ (7) 1.784 p = 0.004 http://www.ncbi.nlm.nih.gov/pubmed/16707453	Fibroadenoma (3)	Breast (4)	4.972	p = 0.057	http://www.ncbi.nlm.nih.gov/pubmed/12829800
Invasive Ductal Breast Carcinoma (2) 2.364 p = 0.007 http://www.ncbi.nlm.nih.gov/pubmed/16/07453 17/34 p = 0.004 http://www.ncbi.nlm.nih.gov/pubmed/16/07453 1.784 p = 0.004 http://www.ncbi.nlm.nih.gov/pubmed/16/07453	invasive vs. in situ breast cancer				
Invasive Ductal Breast Carcinoma (7) Ductal Breast Carcinoma in Situ (7) 1.784 p = 0.004 http://www.ncbi.nlm.nih.gov/pubmed/16/07453	Invasive Ductal Breast Carcinoma (c)	Ductal Breast Carcinoma in Situ (5)	2.364	p = 0.007	http://www.ncbi.nlm.nln.gov/pubmed/16/0/453
	Invasive Ductal Breast Carcinoma (7)	Ductal Breast Carcinoma in Situ (7)	1.784	p = 0.004	http://www.ncbi.nlm.nih.gov/pubmed/16/0/453

<i>comparison type</i> evaluated group (n)		reference groups (n)	fold change	p value	study reference
🕤 invasive breast cancer vs. n	srmal				
B Invasive Ductal Breast Carci	10ma (27)	Breast (6)	3.221	p = 1.22E-5	http://www.ncbi.nlm.nih.gov/pubmed/16043716
: Invasive Ductal Breast Carci	noma (5)	Ductal Breast Cell (10)	3.277	p = 9.95E-5	http://www.ncbi.nlm.nih.gov/pubmed/17389037
E Invasive Ductal Breast Carci	noma stroma (7)	Breast (15)	12.291	p = 2.42E-5	http://www.ncbi.nlm.nih.gov/pubmed/17914389
L Invasive Ductal Breast Carci	10ma (38)	Breast (3)	1.941	p = 0.005	http://www.ncbi.nlm.nih.gov/pubmed/15034139
A Invasive Mixed Breast Carci	10ma (3)	Breast (6)	7.279	p = 2.66E-6	http://www.ncbi.nlm.nih.gov/pubmed/16043716
K Invasive Breast Carcinoma S	troma (53)	Breast (6)	2.053	p = 0.016	http://www.ncbi.nlm.nih.gov/pubmed/18438415
B Invasive Lobular Breast Caro	inoma (7)	Breast (6)	3.405	n = 0.002	http://www.nchi.nlm.nih.gov/pubmed/16043716
Invasive Lobular Breast Caro	inoma (5)	Lobular Breast Cell (10)	7.292	p = 7.96E-5	http://www.ncbi.nlm.nih.gov/pubmed/17389037
X cervical cancer vs. normal					
Cervical Cancer (20)		Cervix Uteri (8)	1.162	p = 0.387	http://www.ncbi.nlm.nih.gov/pubmed/17510386
1					
➡ colorectal adenocarcinoma	vs. normal				
Colon Adenocarcinoma (39)		Colon (22)	1.525	p = 0.030	http://www.ncbi.nlm.nih.gov/pubmed/10359783
Colon Adenocarcinoma (18)		Colon (18)	1.682	p = 0.008	http://www.ncbi.nlm.nih.gov/pubmed/11306497
Colon Adenocarcinoma (50)		Colon (28)	1.638	p = 6.20E-4	http://www.ncbi.nlm.nih.gov/pubmed/17640062
Colon Adenocarcinoma (41)		Colon (5)	2.167	p = 0.008	http://www.ncbi.nlm.nih.gov/pubmed/17615082
Colon Mucinous Adenocarci	noma (13)	Colon (5)	3.906	p = 4.97E-4	http://www.ncbi.nlm.nih.gov/pubmed/17615082
Rectosigmoid Adenocarcino	ma (10)	Colon (5)	1.257	n = 0.016	http://www.nchi.nlm.nih.gov/pubmed/17615082
Rectal Adenocarcinoma (8)			1 951	n = 0.035	http://www.nchi.nlm.nib.gov/nihmed/17615082
					<u>11(tp.// w ww.itcbi.initi.gov/ publica/ 1/01002</u>
	1101114 (4)		2.404	p = 0.042	Urrth://w.ww.ucptrull!!!!!!!!????????????????????????????
Cecum Adenocarcinoma (1/		(c) uoion	1.666	p = 0.072	http://www.ncbi.nim.nin.gov/pubmed/1/615082
colorectal adenoma vs. nor	nal				
Rectal Adenoma (7)		Rectum (7)	-7.878	p = 3.47E-6	http://www.ncbi.nlm.nih.gov/pubmed/18171984
Colon Adenoma (25)		Colon (24)	-2.586	p = 4.61E-10	http://www.ncbi.nlm.nih.gov/pubmed/18171984
Colorectal Adenoma Epithel	ia (56)	Intestinal Mucosa (22)	-2.086	p = 1.69E-4	http://www.ncbi.nlm.nih.gov/pubmed/18403596
colorectal carcinoma vs. ad	enoma				
Colorectal Carcinoma (313)		Colorectal Adenoma (17)	2.252	p = 0.003	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
Barrett's Esophagus vs. nor.	nal				
Barrett's Fsonhagus (14)		Fsonhagus (12)	17 577	n = 3 87F-9	httn://www.nchi.nlm.nih.gov/ni.hmed/16952561
H Barrett's Econhagus (19)			1 887	$n = 3.00E_{-4}$	http://www.pchi.plm.pih.gov/pihmed/16/19976
Barratt's Econhague (2)			7 684	p - 3.205 - 4	http://www.rcommun.gov/pagmed/1522244
E esophageal cancer vs. norm	al		100.7	p = 0.020	
Esonhagaal Adanocarcinom	161	Econhamic (1.1)	19727	n – 0 001	httm://www.nchi alm nib gov/auhmad/16952561
Esophageal Adenocal cillolii			2110T	р – 0.001 л – 0 70Е Л	http://www.itcbi.iiiii.gov/publica/10002001
Esophageal Adenocateinom	(2)	Econhagus (24) Econhagus (8)	7 11 A	p = 0.006	http://www.ircbi.iiii.iiii.60v/pubiiicd/107100
			+	p - 0000	11cb-1/ w w w 11cb11111111111111111111111111111
G gastric adenocarcinoma vs.	normal				
Gastric Mixed Adenocarcinc	ma (7)	Gastric Mucosa (23)	2.161	p = 0.008	http://www.ncbi.nlm.nih.gov/pubmed/12925757
Gastric Intestinal Type Ader	ocarcinoma (64)	Gastric Mucosa (23)	1.468	p = 0.005	http://www.ncbi.nlm.nih.gov/pubmed/12925757
Diffuse Gastric Adenocarcin	oma (13)	Gastric Mucosa (23)	1.308	p = 0.105	http://www.ncbi.nlm.nih.gov/pubmed/12925757

	comparison type evaluated group (n)	reference groups (n)	fold change	p value	study reference
CK	Head & Neck carcinomas vs. normal				
1N ,	Head and Neck Squamous Cell Carcinoma (41)	Buccal Mucosa (13)	21.076	p = 9.55E-18	http://www.ncbi.nlm.nlh.gov/pubmed/14/29608
۷U	 Tead and Neck Squarmous Cell Carcinoma (34) Tongue Squarmous Cell Carcinoma (31) 	UVUIB (4) Tongija (76)	11.092 A 575	p = 1./3E-4 n = 1 24E-9	http://www.ncbi.nim.nin.gov/pubmeg/146/6630
Δ٦	Tongue oquanious cen carcinonia (JI)	Tongue (20) Tongue (12)	300 5	p - 1.24C-J	http://www.iicbl.iiiii.iiii.60v/pubiiicd/1003000
н	Tongue Squaminus Cell Carcinoma (20) Tongue Squamous Cell Carcinoma (3)	Nuisue (12) Muicosa (72)	3.149	p = 0.004	http://www.ncbi.nnn.ngov/pubined/151203
	Oral Cavity Squamous Cell Carcinoma (16)		4 215	n = 0.037	http://www.nchi.nlm.nih.gov/pubmed/15381369
	Hundharungeal Squamous Cell Carcinoma (4)		53 433	n = 0.001	http://www.nchi.nlm.nih.gov/nlhmed/16205657
	Tonglie Carcinoma (15)		4 271	n = 0.001	http://www.nchinlm.nchinl.gov/publica/1252000
	Dral Cavity Carcinoma (1)	Oral Cavity (9)	10 943	10000 = d	http://www.itcbl.inii.ini.gov/pubmed/1/210300
	Oronbaryngeal Carcinoma (6)	Oral Cavity (9)	15 877	p = 4.79F-4	http://www.nchi.nlm.nih.gov/nihmed/17510386
	Eloor of the Mouth Carcinoma (5)	Oral Cavity (9)	6.641	p = 0.007	http://www.ncbi.nlm.nih.gov/pubmed/17510386
	Tonsillar Carcinoma (6)	Tonsil (4)	1.115	p = 0.206	http://www.ncbi.nlm.nih.gov/pubmed/17510386
	Salivary Gland Adenoid Cystic Carcinoma (16)	Salivary Gland (6)	2.519	p = 0.006	http://www.ncbi.nlm.nih.gov/pubmed/12368205
٨:	clear cell renal cell sarcoma vs. normal				
	Clear Cell Sarcoma of the Kidney (14)	Fetal Kidney (3)	11.187	p = 1.32E-4	http://www.ncbi.nlm.nih.gov/pubmed/16299227
KIL	clear cell renal cell carcinoma vs. normal				
	Clear Cell Renal Cell Carcinoma (26)	Kidney (3)	2.873	p = 0.048	http://www.ncbi.nlm.nih.gov/pubmed/12598325
	Clear Cell Renal Cell Carcinoma (26)	Kidney (3)	1.144	p = 0.340	http://www.ncbi.nlm.nih.gov/pubmed/19445733
	Clear Cell Renal Cell Carcinoma (10)	Kidney (10)	3.531	p = 3.94E-4	http://www.ncbi.nlm.nih.gov/pubmed/17699851
	Clear Cell Renal Cell Carcinoma (9)	Kidney (9)	2.599	p = 0.026	http://www.ncbi.nlm.nih.gov/pubmed/14641932
	Hereditary Clear Cell Renal Carcinoma (32)	Renal Cortex (10)	2.142	p = 0.039	http://www.ncbi.nlm.nih.gov/pubmed/19470766
	Non-Hereditary Clear Cell Renal Carcinoma (27)	Renal Cortex (10)	1.037	p = 0.174	http://www.ncbi.nlm.nih.gov/pubmed/19470766
	non-clear cell renal cell carcinoma vs. normal				
	Granular Renal Cell Carcinoma (3)	Kidney (3)	1.112	p = 0.448	http://www.ncbi.nlm.nih.gov/pubmed/12598325
	Papillary Renal Cell Carcinoma (4)	Kidney (3)	-1.437	p = 0.743	http://www.ncbi.nlm.nih.gov/pubmed/12598325
	Papillary Renal Cell Carcinoma (19)	Kidney (3)	-1.123	p = 0.630	http://www.ncbi.nlm.nih.gov/pubmed/19445733
	Chromophobe Renal Cell Carcinoma (4)	Kidney (3)	-39.785	p = 0.014	http://www.ncbi.nlm.nih.gov/pubmed/19445733
	Renal Wilms Tumor (18)	Fetal Kidney (3)	-4.34	p = 6.67E-5	http://www.ncbi.nlm.nih.gov/pubmed/16299227
	Renal Wilms Tumor (4)	Kidney (3)	-1.148	p = 0.644	http://www.ncbi.nlm.nih.gov/pubmed/19445733
	clear cell vs. other renal cell carcinomas				
	Clear Cell Renal Cell Carcinoma (51)	Papillary Renal Cell Carcinoma (6)	1.152	p = 0.005	http://www.ncbi.nlm.nih.gov/pubmed/12777628
	Clear Cell Renal Cell Carcinoma (184)	Chromophobe Renal Cell Carcinoma (16) Granular Renal Cell Carcinoma (5)	2.781	p = 6.02E-8	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
		Papillary Renal Cell Carcinoma (21)			
	Clear Cell Renal Cell Carcinoma (26)	Granular Renal Cell Carcinoma (3)	4.168	p = 3.14E-4	http://www.ncbi.nlm.nih.gov/pubmed/12598325
	Clear Cell Renal Cell Carcinoma (26)	r aprirar y veriar ceri carcinoria (*) Chromophobe Renal Cell Carcinoma (4) Davidant Panal Cell Carcinoma (4)	7.687	p = 1.46E-5	http://www.ncbi.nlm.nih.gov/pubmed/1945733
	Clear Cell Renal Cell Carcinoma (14)	rapinary vena cercurona 120 Renal Wilms Tumor (18)	11.167	p = 2.24E-7	http://www.ncbi.nlm.nih.gov/pubmed/16299227

	comparison type evaluated group (n)	reference groups (n)	fold change	p value	study reference
ΑI	chronic leukemia vs. normal				
Ш	Chronic Lymphocytic Leukemia (3)	Various Cell Types	1.652	p = 0.245	http://www.ncbi.nlm.nih.gov/pubmed/12075054
NKI	Chronic Lymphocytic Leukemia (39)	Various Cell Types	-1.354	p = 2.32E-4	http://www.ncbi.nlm.nih.gov/pubmed/11733578
31	Chronic Lymphocytic Leukemia (34)	Various Cell Types	1.246	p = 0.196	http://www.ncbi.nlm.nih.gov/pubmed/15778709
	Chronic Lymphocytic Leukemia (12)	Various Cell Types	-1.36	p = 0.010	http://www.ncbi.nlm.nih.gov/pubmed/10676951
	Chronic Lymphocytic Leukemia (100)	B-Lymphocyte (11)	1.845	p = 0.381	http://www.ncbi.nlm.nih.gov/pubmed/15459216
	Chronic Adult T-Cell Leukemia (19)	CD4-Positive T-Lymphocyte (6)	1.33	p = 0.182	http://www.ncbi.nlm.nih.gov/pubmed/16909099
	acute leukemia vs. normal				
	T-Cell Acute Lymphoblastic Leukemia (4)	Bone Marrow (5)	-1.889	p = 0.005	http://www.ncbi.nlm.nih.gov/pubmed/17410184
	B-Cell Acute Lymphoblastic Leukemia (87)	Bone Marrow (5)	1.22	p = 0.451	http://www.ncbi.nlm.nih.gov/pubmed/17410184
	Acute Myeloid Leukemia (23)	Bone Marrow (6)	1.462	p = 0.033	http://www.ncbi.nlm.nih.gov/pubmed/17410184
	Acute Myeloid Leukemia (285)	Bone Marrow (5)	1.251	p = 0.184	http://www.ncbi.nlm.nih.gov/pubmed/15084694
	Acute Myeloid Leukemia (9)	Various Cell Types	1.97	p = 0.154	http://www.ncbi.nlm.nih.gov/pubmed/14770183
	Acute Adult T-Cell Leukemia (22)	CD4-Positive T-Lymphocyte (6)	1.243	p = 0.196	http://www.ncbi.nlm.nih.gov/pubmed/16909099
	myeloid vs. lymphoblastic acute leukemia				
	Acute Myeloid Leukemia (19)	Acute Lymphoblastic Leukemia (73)	1.942	p = 3.21E-4	http://www.ncbi.nlm.nih.gov/pubmed/17410184
	Acute Myeloid Leukemia (28)	Acute Lymphoblastic Leukemia (24)	2.131	p = 0.005	http://www.ncbi.nlm.nih.gov/pubmed/11731795
	Acute Myeloid Leukemia (25)	Acute Lymphoblastic Leukemia (47)	1.111	p = 0.400	http://www.ncbi.nlm.nih.gov/pubmed/10521349
	Acute Myeloid Leukemia (10)	Acute Lymphoblastic Leukemia (20)	1.06	p = 0.463	http://www.ncbi.nlm.nih.gov/pubmed/11742071
2					
43V	nepatocenular carcinoma vs. normai Henatocellular Carcinoma (102)	iver (76)	-1 011	n = 0 531	httn://www.nchi.nlm.nih.gov/nuhmed/12058060
п	Henstocellular Carcinoma (25)	Liver (10)	1 052		http://www.ncbinnin.cov/pubmed/17202000
	nepacucentalar calcinonia (33) non concernis finer conditions us normal		CCU.T	nenin - d	Operative for the second for the second provided the second secon
	Food Modular Eventsions of the Liver (A)	[juor [76]	-1 640	0.0.0.0.0.0	httm://www.achi alm aib acu/auhmod/12059060
	rucai ivudular nyperpiasia oli tire river (4) Hasstassellistas Adamana (2)		0101-	0000 - d	<u>11(tup.//www.11cb1.11111.11111.gov/publiteu/_1205666666666666666666666666666666666666</u>
	Hepatocellular Agenoma (3)	LIVET (/0)	1.219 2.245	p = 0.424	<u>nttp://www.ncpi.nim.nin.gov/pupmea/12038060</u>
	Liver Cell Uysplasia (1/)	Liver (10)	-3.245	p = 0.003	http://www.ncbi.nim.nin.gov/pubmed/1/393520
	Cirrhosis (13)	Liver (10)	-1.26	p = 0.708	http://www.ncbi.nlm.nih.gov/pubmed/17393520
9	lung adenocarcinoma vs. normal				
NU	Lung Adenocarcinoma (9)	Lung (3)	6.546	p = 3.12E-4	http://www.ncbi.nlm.nih.gov/pubmed/14581339
٦	Lung Adenocarcinoma (132)	Lung (17)	1.193	p = 0.289	http://www.ncbi.nlm.nih.gov/pubmed/11707567
	Lung Adenocarcinoma (20)	Lung (19)	3.313	p = 1.36E-6	http://www.ncbi.nlm.nih.gov/pubmed/16314486
	Lung Adenocarcinoma (58)	Lung (49)	2.499	p = 2.83E-12	http://www.ncbi.nlm.nih.gov/pubmed/18297132
	Lung Adenocarcinoma (27)	Lung (30)	2.017	p = 1.21E-4	http://www.ncbi.nlm.nih.gov/pubmed/17540040
	Lung Adenocarcinoma (86)	Lung (10)	1.587	p = 0.018	http://www.ncbi.nlm.nih.gov/pubmed/12118244
	Lung Adenocarcinoma (40)	Lung (5)	2.63	p = 0.023	http://www.ncbi.nlm.nih.gov/pubmed/11707590
	squamous cell lung carcinoma vs. normal				
	Squamous Cell Lung Carcinoma (10)	Lung (3)	7.14	p = 1.54E-4	http://www.ncbi.nlm.nih.gov/pubmed/14581339
	Squamous Cell Lung Carcinoma (5)	Lung (5)	3.18	p = 0.008	http://www.ncbi.nlm.nih.gov/pubmed/16188928
	Squamous Cell Lung Carcinoma (13)	Lung (5)	3.011	p = 0.014	http://www.ncbi.nlm.nih.gov/pubmed/11707590
	Squamous Cell Lung Carcinoma (21)	Lung (17)	5.158	p = 1.10E-4	http://www.ncbi.nlm.nih.gov/pubmed/11707567
	large cell lung carcinoma vs. normal				
	Large Cell Lung Carcinoma (3)	Lung (3)	6.157	p = 0.023	http://www.ncbi.nlm.nih.gov/pubmed/14581339
	Large Cell Lung Carcinoma (4)	Lung (5)	1.786	p = 0.124	http://www.ncbi.nlm.nih.gov/pubmed/11707590

value study reference	.751 http://www.ncbi.nlm.nih.gov/pubmed/11707567 315 http://www.ncbi.nlm.nih.gov/pubmed/11707590	 D43 http://www.ncbi.nlm.nih.gov/pubmed/10576951 44E-11 http://www.ncbi.nlm.nih.gov/pubmed/12778705 55E-5 http://www.ncbi.nlm.nih.gov/pubmed/12778705 55E-7 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-7 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-7 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-7 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-8 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-9 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-7 http://www.ncbi.nlm.nih.gov/pubmed/15778705 55E-8 http://www.ncbi.nlm.nih.gov/pubmed/1773357 613 http://www.ncbi.nlm.nih.gov/pubmed/1773354 614 http://www.ncbi.nlm.nih.gov/pubmed/1773354 615 http://www.ncbi.nlm.nih.gov/pubmed/12713354 618 http://www.ncbi.nlm.nih.gov/pubmed/12713594 619 http://www.ncbi.nlm.nih.gov/pubmed/12778709 618 http://www.ncbi.nlm.nih.gov/pubmed/12778709 619 http://www.ncbi.nlm.nih.gov/pubmed/12778709 619 http://www.ncbi.nlm.nih.gov/pubmed/12778709 611 http://www.ncbi.nlm.nih.gov/pubmed/12778709 612 http://www.ncbi.nlm.nih.gov/pubmed/12778509 613 http://www.ncbi.nlm.nih.gov/pubmed/12773354 614 http://www.ncbi.nlm.nih.gov/pubmed/12773354 614 http://www.ncbi.nlm.nih.gov/pubmed/12773354 614 http://www.ncbi.nlm.nih.gov/pubmed/12773300 614 http://www.ncbi.nlm.nih.gov/pubmed/12773300 615 http://www.ncbi.nlm.nih.gov/pubmed/12773300 614 http://www.ncbi.nlm.nih.gov/pubmed/12773354 615 http://www.ncbi.nlm.nih.gov/pubmed/12773300 614 http://www.ncbi.nlm.nih.gov/pubmed/12773300 615 http://www.ncbi.nlm.nih.gov/pubmed/12773300 616 http://www.ncbi.nlm.nih.gov/pubmed/12773300 617 http://www.ncbi.nlm.nih.gov/pubmed/12773300 618 http://www.ncbi.nlm.nih.gov/pubmed/12773300 619 http://www.ncbi.nlm.nih.gov/pubmed/12773300 610 http://www.ncbi.nlm.	044 http://www.ncbi.nlm.nih.gov/pubmed/16243793 acc http://www.ncbi.nlm.nih.gov/pubmed/18.112402
change p	1.422 p = 0. .428 p = 0.	 .457 p=0. .457 p=0. .336 p=1. .4.11 p=2. .306 p=6. .5.7 p=6. .5.7 p=6. .144 p=4. .144 p=0. .148 p=0. .152 p=0. .152 p=0. 	977 p=0.
reference groups (n)	Lung (17) Lung (5)	 B-Lymphocyte (16) B-Lymphocyte (5) B-Lymphocyte (5) B-Lymphocyte (5) B-Lymphocyte (16) B-Lymphocyte (16) B-Lymphocyte (5) Centroblast (5) B-Lymphocyte (16) B-Lymphocyte (16) B-Lymphocyte (5) Small Cleaved Follicle Center Cell (5) Tonsil (3) B-Lymphocyte (5) Small Cleaved Follicle Center Cell (5) Tonsil (3) B-Lymphoma (13) Follicular Lymphoma (11) Follicular Lymphoma (12) Activated B-Cell-Like Diffuse Large B-Cell Lymphoma (74) Activated B-Cell-Like Diffuse Large B-Cell Lymphoma 	Skin (7) Skin (4)
nparison type luated group (n)	i <i>all cell lung carcinoma vs. normal</i> hall Cell Lung Carcinoma (6) hall Cell Lung Carcinoma (4)	fuse large B-cell lymphoma vs. normal fuse Large B-cell Lymphoma (35) fuse Large B-cell Lymphoma (32) fuse Large B-cell Lymphoma (32) fuse Large B-cell Lymphoma (32) fuse Large B-cell Lymphoma (29) trivated B-cell-Like Diffuse Large B-cell Lymphoma (29) tritollart Lymphoma vs. normal httoblastic Lymphoma (28) ficular Lymphoma (28) ficular Lymphoma (28) ficular Lymphoma (28) ficular Lymphoma (20) ficular Lymphoma (30) ficular Lymphoma (30) ficular Lymphoma (30) ficular Lymphoma (30) ficular Lymphoma (30) ficus Large B-cell Lymphoma (30) ficus Large B	e <i>lanoma vs. normal</i> taneous Melanoma (45) taneous Melanoma (14)

l					
	comparison type evaluated group (n)	reference groups (n)	fold change	p value	study reference
(.tnoɔ) AMOI	non cancerous skin conditions vs. normal Benign Melanocytic Skin Nevus (18) Non-Neoplastic Nevus (9) melanoma vs. precursor	Skin (7) Skin (3)	1.649 1.608	p = 0.015 p = 0.238	http://www.ncbi.nlm.nih.gov/pubmed/16243793 http://www.ncbi.nlm.nih.gov/pubmed/15833814
MELAN	Cutaneous Melanoma (45)	Melanoma Precursor (18)	-1.68	p = 5.92E-4	http://www.ncbi.nlm.nih.gov/pubmed/16243793
AMOJAY	MGUS vs. normal Monoclonal Gammopathy of Undetermined Significance (5) Monoclonal Gammopathy of Undetermined Significance (44)	Plasma Cell (37) Bone Marrow (22)	1.126 -2.053	p = 0.645 p = 1.93E-5	http://www.ncbi.nlm.nih.gov/pubmed/11861292 http://www.ncbi.nlm.nih.gov/pubmed/17023574
M	<i>myeloma vs. normal</i> Multiple Myeloma (74) Smoldering Myeloma (12)	Plasma Cell (37) Bone Marrow (22)	-1.221 -2.345	p = 0.078 p = 5.60E-4	http://www.ncbi.nlm.nih.gov/pubmed/11861292 http://www.ncbi.nlm.nih.gov/pubmed/17023574
	Monoclonal Gammopathy of Undetermined Significance (7) Monoclonal Gammopathy of Undetermined Significance (44) Monoclonal Gammopathy of Undetermined Significance (5)	Multiple Myeloma (39) Multiple Myeloma (12) Multiple Myeloma (74)	1.805 1.512 1.375	p = 5.81E-5 p = 0.046 p = 0.171	http://www.ncbi.nlm.nih.gov/pubmed/15735737 http://www.ncbi.nlm.nih.gov/pubmed/17023574 http://www.ncbi.nlm.nih.gov/pubmed/11861292
ҮЯАVO	ovarian adenocarcinoma vs. normal Ovarian Adenocarcinoma (28) Ovarian Serous Adenocarcinoma (20) Ovarian Serous Adenocarcinoma (6)	Ovary (4) Ovarian Surface Epithelium (5) Ovarv (4)	3.531 2.265 2.082	p = 6.84E-5 p = 0.002 n = 0.122	http://www.ncbi.nlm.nih.gov/pubmed/11158614 http://www.ncbi.nlm.nih.gov/pubmed/15161682 http://www.ncbi.nlm.nih.gov/nuhmed/14760385
	Ovarian Serous Adenocarcinoma (41) Ovarian Mucinous Adenocarcinoma (41) Ovarian Mucinous Adenocarcinoma (9) Ovarian Mucinous Adenocarcinoma (13)	Ovary (4) Ovary (4) Ovarian Surface Epithelium (5) Ovarv (4)	1.341 2.991 1.192	p = 0.003 p = 0.018 n = 0.030	http://www.ncbi.nlm.nih.gov/pubmed/16452189 http://www.ncbi.nlm.nih.gov/pubmed/15161682 http://www.ncbi.nlm.nih.gov/pubmed/16452189
	Ovarian Clear Cell Adenocarcinoma (7) Ovarian Clear Cell Adenocarcinoma (8) Ovarian Endometrioid Adenocarcinoma (9) Ovarian Endometrioid Adenocarcinoma (37)	Over in Surface Epithelium (5) Ovary (4) Ovarian Surface Epithelium (5) Ovary (4)	3.756 3.756 1.161 1.906 1.116	p = 0.026 p = 0.047 p = 0.010 p = 0.091	http://www.ncbi.nlm.nih.gov/pubmed/15161882 http://www.ncbi.nlm.nih.gov/pubmed/16452189 http://www.ncbi.nlm.nih.gov/pubmed/15161682 http://www.ncbi.nlm.nih.gov/pubmed/16452189
	Ovarian Serous Cystadenocarcinoma vs. normal Ovarian Serous Cystadenocarcinoma (38)	Ovary (10)	-4.044	p = 4.98E-5	http://cancergenome.nih.gov/dataportal/data/about/
	Ovarian Serous Adenocarcinoma (154) Ovarian Serous Adenocarcinoma (114)	Ovarian Endometrioid Adenocarcinoma (16) Ovarian Clear Cell Adenocarcinoma (8) Ovarian Endometrioid Adenocarcinoma (37)	1.179 1.335	p = 5.52E-6 p = 2.08E-4	http://www.ncbi.nlm.nih.gov/pubmed/18698038 http://www.ncbi.nlm.nih.gov/pubmed/16452189
	Ovarian Serous Adenocarcinoma (79)	Ovarian Mucinous Adenocarcinoma (13) Ovarian Endometrioid Adenocarcinoma (25) Ovarian Mucinous Adenocarcinoma (7)	2.082	p = 0.006	http://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?acc=GSE2109
	Ovarian Serous Adenocarcinoma (53) Ovarian Serous Adenocarcinoma (34)	Ovarian Mucinous Adenocarcinonia (7) Ovarian Clear Cell Adenocarcinoma (10) Ovarian Clear Cell Adenocarcinoma (3)	1.706 -1.009	p = 0.010 p = 0.526	http://www.ncbi.nlm.nih.gov/pubmed/12183431 http://www.ncbi.nlm.nih.gov/pubmed/12096084
	Ovarian Serous Adenocarcinoma (31) Ovarian Serous Adenocarcinoma (20)	Ovarian Clear Cell Adenocarcinoma (c) Ovarian Clear Cell Adenocarcinoma (6) Ovarian Endometrioid Adenocarcinoma (7) Ovarian Mucinous Adenocarcinoma (9) Ovarian Mucinous Adenocarcinoma (9)	1.345 -1.197	p = 0.169 p = 0.715	http://www.ncbi.nlm.nih.gov/pubmed/12960427 http://www.ncbi.nlm.nih.gov/pubmed/15161682

	comparison type evaluated group (n)	reference groups (n)	fold change	p value	study reference
(.fnoo) YAAVO	<i>ovarian carcinoma vs. borderline ovarian carcinoma</i> Ovarian Carcinoma (171) Ovarian Carcinoma (13) Ovarian Carcinoma (146) Ovarian Carcinoma (25)	Borderline Ovarian Surface Epithelial-Stromal Tumor (18) Borderline Ovarian Surface Epithelial-Stromal Tumor (10) Borderline Ovarian Surface Epithelial-Stromal Tumor (10) Borderline Ovarian Surface Epithelial-Stromal Tumor (14)	3.178 1.845 1.574 -1.031	p = 1.15E-8 p = 0.006 p = 0.033 p = 0.528	http://www.ncbi.nlm.nih.gov/pubmed/18698038 http://www.ncbi.nlm.nih.gov/pubmed/15721412 http://www.ncbi.nlm.nih.gov/geo/guer/acc.cgi?acc=GSE2109 http://www.ncbi.nlm.nih.gov/pubmed/16087957
PANCREAS	<i>pancreatic cancer vs. normal</i> Pancreatic Carcinoma (11) Pancreatic Adenocarcinoma (12) Pancreatic Adenocarcinoma (10) Pancreatic Ductal Adenocarcinoma (11) Pancreatic Ductal Adenocarcinoma (8) Pancreatic Ductal Adenocarcinoma (8) Pancreatic buctal Adenocarcinoma (24) pancreatic thraepithelial Neoplasia (24) Pancreatic Carcinoma (8) Pancreatic Carcinoma (8)	Pancreas (6) Pancreas (5) Pancreas (5) Pancreatic Duct (11) Pancreatic Duct (6) Pancreatic Duct (25) Pancreatic Duct (6) Pancreatic Duct (6) Pancreatic Cancer Precursor (24) Pancreatic Cancer Precursor (5)	41.519 19.678 59.081 3.371 1.611 1.153 36.414 1.092 1.475 1.622	p = 3.72E-8 p = 3.95E-5 p = 5.64E-4 p = 6.004 p = 0.001 p = 0.249 p = 0.001 p = 0.003 p = 0.237	http://www.ncbi.nlm.nih.gov/pubmed/15867264 http://www.ncbi.nlm.nih.gov/pubmed/12651607 http://www.ncbi.nlm.nih.gov/pubmed/12750293 http://www.ncbi.nlm.nih.gov/pubmed/15548371 http://www.ncbi.nlm.nih.gov/pubmed/16103885 http://www.ncbi.nlm.nih.gov/pubmed/16103885 http://www.ncbi.nlm.nih.gov/pubmed/16103885 http://www.ncbi.nlm.nih.gov/pubmed/16103885 http://www.ncbi.nlm.nih.gov/pubmed/16103885 http://www.ncbi.nlm.nih.gov/pubmed/12750293
ЭТАТ2ОЯЧ	prostate carcinoma vs. normal Prostate Carcinoma (40) Prostate Carcinoma (23) Prostate Carcinoma (52) Prostate Carcinoma (55) Prostate Carcinoma (55) Prostate Carcinoma (15) Prostate Carcinoma (13) Prostate Carcinoma (13) Prostate Carcinoma (14) Prostate Carcinoma (14) Prostate Carcinoma (14) Prostate Carcinoma (14) Prostate Carcinoma (14) Prostate Carcinoma (14) Prostate Adenocarcinoma (17) Prostate Adenocarcinoma (17) Prostate Adenocarcinoma (17) Prostate Adenocarcinoma (11) Prostate Carcinoma (11) Prostate Carcinoma (16) Prostate Carcinoma (11) Prostate Carcinoma (16)	Prostate Gland (4) Prostate Gland (3) Prostate Gland (50) Prostate Gland (13) Prostate Gland (13) Prostate Gland (4) Prostate Gland (4) Prostate Gland (6) Prostate Gland (9) Prostate Gland (19) Prostate Gland (19) Prostate Gland (19) Prostate Gland (19) Prostate Gland (19) Prostate Cancer Precursor (15) Prostate Cancer Precursor (15)	1.831 2.269 1.908 1.619 1.619 1.415 1.415 1.415 1.415 1.415 1.415 1.415 1.662 2.662 2.662 2.662 1.554 1.003 1.554 1.003 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.663 2.663 2.663 2.663 2.663 2.663 2.663 2.663 2.663 2.663 2.663 2.734 1.613 2.734 2.734 2.334 1.613 2.735 2.663 2.734 2.6322 2.632 2.632 2.632 2.6322 2.6322 2.6322 2.6322 2.6322 2.6322 2.6322 2.6322 2.6322 2.	p=0.012 p=0.001 p=1.1964 p=0.002 p=0.006 p=0.065 p=0.065 p=0.065 p=0.065 p=0.036 p=0.036 p=0.036 p=0.036 p=0.036 p=0.036 p=0.036 p=0.036 p=0.036 p=0.037 p=0.037 p=0.037	http://www.ncbi.nlm.nih.gov/pubmed/14695335 http://www.ncbi.nlm.nih.gov/pubmed/12154061 http://www.ncbi.nlm.nih.gov/pubmed/12086878 http://www.ncbi.nlm.nih.gov/pubmed/14711987 http://www.ncbi.nlm.nih.gov/pubmed/14711987 http://www.ncbi.nlm.nih.gov/pubmed/14711987 http://www.ncbi.nlm.nih.gov/pubmed/14711987 http://www.ncbi.nlm.nih.gov/pubmed/114701095 http://www.ncbi.nlm.nih.gov/pubmed/114701095 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048 http://www.ncbi.nlm.nih.gov/pubmed/17173048

gene	gene product
ACTA2	actin, alpha 2, smooth muscle, aorta
ADAM12	ADAM metallopeptidase domain 12
AEBP1	AE binding protein 1
ASPN	asporin
BGN	biglycan
C1S	complement component 1, s subcomponent
CALD1	caldesmon 1
CCD C80	coiled-coil domain containing 80
CDH11	cadherin 11, type 2, OB-cadherin (osteoblast)
COL11A1	collagen, type XI, alpha 1
COL12A1	collagen, type XII, alpha 1
COL15A1	collagen, type XV, alpha 1
COL1A1	collagen, type I, alpha 1
COL1A2	collagen, type I, alpha 2
COL3A1	collagen, type III, alpha 1
COL4A1	collagen, type IV, alpha 1
COL5A1	collagen, type V, alpha 1
COL5A2	collagen, type V, alpha 2
COL6A1	collagen, type VI, alpha 1
COL6A2	collagen, type VI, alpha 2
COL6A3	collagen, type VI, alpha 3
CRISPLD2	cysteine-rich secretory protein LCCL domain containing 2
CISK	catnepsin K
DCN	decorin
EMILINI	elastin microfibril interfacer 1
	fibriorias cactivation protein alpha (seprase)
FBLN2	TIBUIN 2
FBNI	TIDRILLA A Laterative preter 1 like
	Hamma A meracing protein 1-like
	Informetun 1
GAS1	insolite current expectite 1
IGERP4	insulin-like growth factor hinding protein 4
IGFBP7	insulin-like growth factor binding protein 7
	incluin heta A
ITGBI 1	integrin beta-like 1 (with EGE-like repeat domains)
LOXL2	lysyl oxidase-like 2
LRRC15	Leucine rich repeat containing 15
LUM	lumican
MFAP5	microfibrillar associated protein 5
MMP11	matrix metallopeptidase 11 (stromelysin 3)
MMP2	matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)
MMP9	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)
MXRA5	matrix-remodelling associated 5
NID2	nidogen 2 (osteonidogen)
NNMT	nicotinamide N-methyltransferase
OLFML2B	olfactomedin-like 2B
PCOLCE	procollagen C-endopeptidase enhancer
PDGFRL	platelet-derived growth factor receptor-like
PECAM1	platelet/endothelial cell adhesion molecule
PRSS23	protease, serine, 23
PXDN	peroxidasin homolog (Drosophila)
KAB31	KAB31, member KAS oncogene family
KARRES2	retinoic acid receptor responder (tazarotene induced) 2
	raium, inpiù fatt linker 1 comin pontidaco inhibitor, elado E (alpha 2 antiplacmin, niement exittatium devived fortex), succitar 4
SERVINEI	serpin peptuase inhibitor, clade F (alpha-2 anuplasmin, pigment epitnellum derived factor), member 1
SERDA	service provides a minimum of a de a (communication), member of a service of friender a service of the service
SMOC2	SPARC related modular calcium hinding 2
SPARC	secreted protein acidic cysteine-rich (osteonectin)
SPON1	spondin 1. extracellular matrix protein
SULF1	sulfatase 1
THBS1	thrombospondin 1
THBS2	thrombospondin 2
THY1	Thy-1 cell surface antigen
TI MP3	TIMP metallopeptidase inhibitor 3
TPM1	tropomyosin 1 (alpha)
TPM2	tropomyosin 2 (beta)
VCAN	versican

Supplement 2. Complete POSTN-co-expressed gene products' names.

PARTIE IV :

CONCLUSION GÉNÉRALE ET PERSPECTIVES

<u>Bilan des travaux</u>

Ces dernières années ont vu un intérêt croissant pour les biomarqueurs circulants de différentes pathologies, notamment des pathologies osseuses d'origine maligne ou métabolique. Certains biomarqueurs peuvent indiquer des variations du remodelage osseux avant que celles-ci soient détectables par imagerie médicale. D'autres peuvent également renseigner sur le niveau d'activité de certains processus tumoraux, par exemple l'angiogenèse. Dans ce projet de recherche, nous nous sommes intéressés à la périostine, une protéine matricellulaire qui a la particularité d'être exprimée aux sites osseux soumis à des contraintes mécaniques mais également dans le stroma de nombreux types de tumeurs. En conséquence, l'objectif de ces travaux fut d'évaluer l'intérêt de la périostine en tant que biomarqueur dans ces deux contextes biologiques.

Le dosage ELISA que nous avons développé et validé selon les recommandations de la FDA et de l'AAPS nous a permis de préciser l'implication de la périostine dans le métabolisme osseux et les métastases osseuses. Nos travaux sur des modèles précliniques mis en perspectives avec la littérature ont suggéré que la périostine n'est pas directement liée au remodelage osseux mais qu'elle est une composante de l'ossification primaire. Egalement nous avons montré dans les métastases osseuses que la périostine est exprimée par les cellules stromales, à l'instar de ce qui a pu être observé au niveau des tumeurs primaires. Dans ce contexte physiopathologique, l'expression aberrante de protéines stromales pourrait bien être un phénomène précoce qu'il serait intéressant de pouvoir détecter par un panel plus complexe de biomarqueurs adéquats. Enfin, nous avons confirmé cette relation entre périostine et réaction stromale, également appelée réaction desmoplasique ou stromagenèse, par une approche bioinformatique dans un large éventail de tumeurs primaires humaines. Dans ce type de tumeurs en revanche, la réaction desmoplasique est un indice de progression avancée de la maladie. Ainsi, la périostine et plusieurs autres protéines dont l'expression est étroitement corrélée pourrait constituer un panel de biomarqueurs qui pourrait avoir un grand intérêt dans le suivi de la progression du cancer, voire représenter des cibles thérapeutiques dans le traitement du cancer. Ces biomarqueurs devront alors être évalués dans des études cliniques longitudinales chez des patients atteints de pathologies malignes, notamment le cancer du sein ou de la prostate pour prédire la survenue de métastases osseuses.

Perspectives

Un certain nombre de pistes de réflexion se sont dessinées à l'issue de ces travaux. En effet, nous avons dû à plusieurs reprises concentrer nos investigations sur les aspects les plus applicatifs du projet mais des éléments plus fondamentaux mériteraient à présent d'être explorés.

Par exemple, il serait intéressant d'étudier le rôle biologique de la périostine dans notre modèle murin de métastases osseuses du cancer du sein, notamment par des tests fonctionnels sur les cellules MDA-B02 et sur des cultures primaires d'ostéoblastes ou d'ostéoclastes. Ce type d'étude pourrait même être étendu aux différentes formes post-transcriptionnelles connues pour cette protéine (épissages alternatifs, carboxylation, N-glycosylation). Egalement, il a été remarqué une affinité particulière des cellules MDA-B02 pour le périoste au cours de sa colonisation précoce de l'os et, du fait de la forte expression de la périostine dans ce compartiment osseux, l'utilisation d'une souche murine déficiente pour la périostine comme modèle d'étude pourrait être d'un grand apport dans la compréhension du tropisme osseux qui caractérise ces cellules.

Egalement, l'effet d'une stimulation anabolique telle que la PTH sur l'expression de la périostine mérite d'être investiguée de façon plus approfondie. Des travaux dans ce sens sont actuellement menés en collaboration avec l'équipe du Dr Ferrari à Genève. Actuellement, les données disponibles sont parfois contradictoires mais sont en faveur d'un effet stimulant de la PTH continue (exemple : hyperparathyroïdisme) sur l'expression de la périostine (Reppe et coll. 2006). Il serait donc intéressant d'identifier les sites osseux où cette stimulation opère mais également de caractériser l'effet de la PTH intermittente sur l'expression de la périostine.

Par ailleurs, la mesure de la périostine pourrait se révéler intéressante dans plusieurs pathologies osseuses non explorées dans ce projet, notamment la maladie de Paget, l'ostéogenèse imparfaite, les mécanismes de réparation osseuse après fracture ou la dysplasie fibreuse (Kashima et coll. 2009). Ici également, la distinction des différentes formes posttranscriptionnelles ne devrait pas être négligée.

Enfin, un projet plus ambitieux par sa durée serait de développer et valider un panel de marqueurs de la réaction stromale mesuré par méthode multiplexée, ou encore évaluer ces protéines comme cible thérapeutique dans les métastases osseuses.

PARTIE V :

RÉFÉRENCES BIBLIOGRAPHIQUES

- Abildgaard, N., J. Rungby, H. Glerup, K. Brixen, M. Kassem, H. Brincker, L. Heickendorff, E. F. Eriksen and J. L. Nielsen (1998). "Long-term oral pamidronate treatment inhibits osteoclastic bone resorption and bone turnover without affecting osteoblastic function in multiple myeloma." <u>Eur J Haematol</u> 61(2): 128-34.
- Abraham, P. A., A. J. Perejda, W. H. Carnes and J. Uitto (1982). "Marfan syndrome. Demonstration of abnormal elastin in aorta." J Clin Invest **70**(6): 1245-52.
- Afanador, E., M. Yokozeki, Y. Oba, Y. Kitase, T. Takahashi, A. Kudo and K. Moriyama (2005). "Messenger RNA expression of periostin and Twist transiently decrease by occlusal hypofunction in mouse periodontal ligament." <u>Arch Oral Biol</u> **50**(12): 1023-31.
- Aguilera, A. and B. Gomez-Gonzalez (2008). "Genome instability: a mechanistic view of its causes and consequences." <u>Nat Rev Genet</u> **9**(3): 204-17.
- Alatas, F., O. Alatas, M. Metintas, O. Colak, S. Erginel and E. Harmanci (2002). "Usefulness of bone markers for detection of bone metastases in lung cancer patients." <u>Clin Biochem</u> **35**(4): 293-6.
- Alford, A. I. and K. D. Hankenson (2006). "Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration." <u>Bone</u> **38**(6): 749-57.
- Ali, S. M., L. M. Demers, K. Leitzel, H. A. Harvey, D. Clemens, N. Mallinak, L. Engle, V. Chinchilli, L. Costa, C. Brady, J. Seaman and A. Lipton (2004). "Baseline serum NTx levels are prognostic in metastatic breast cancer patients with bone-only metastasis." <u>Ann Oncol</u> 15(3): 455-9.
- Allen, T. D., P. J. Simons and T. M. Dexter (1984). "Haemopoietic microenvironments in vitro--which cells are involved?" <u>Blood Cells</u> **10**(2-3): 467-71.
- Asano, M., S. Kubota, T. Nakanishi, T. Nishida, T. Yamaai, G. Yosimichi, K. Ohyama, T. Sugimoto, Y. Murayama and M. Takigawa (2005). "Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells." <u>Cell Commun Signal</u> 3: 11.
- Bai, Y., K. Kakudo, M. Nakamura, T. Ozaki, Y. Li, Z. Liu, I. Mori, A. Miyauchi and G. Zhou (2009). "Loss of cellular polarity/cohesiveness in the invasive front of papillary thyroid carcinoma and periostin expression." <u>Cancer Lett</u> 281(2): 188-95.
- Bakewell, S. J., P. Nestor, S. Prasad, M. H. Tomasson, N. Dowland, M. Mehrotra, R. Scarborough, J. Kanter, K. Abe,
 D. Phillips and K. N. Weilbaecher (2003). "Platelet and osteoclast beta3 integrins are critical for bone metastasis." <u>Proc Natl Acad Sci U S A</u> 100(24): 14205-10.
- Bandyopadhyay, A., J. K. Agyin, L. Wang, Y. Tang, X. Lei, B. M. Story, J. E. Cornell, B. H. Pollock, G. R. Mundy and L.
 Z. Sun (2006). "Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor." <u>Cancer Res</u> 66(13): 6714-21.
- Bao, S., G. Ouyang, X. Bai, Z. Huang, C. Ma, M. Liu, R. Shao, R. M. Anderson, J. N. Rich and X. F. Wang (2004). "Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway." <u>Cancer Cell</u> 5(4): 329-39.
- Baril, P., R. Gangeswaran, P. C. Mahon, K. Caulee, H. M. Kocher, T. Harada, M. Zhu, H. Kalthoff, T. Crnogorac-Jurcevic and N. R. Lemoine (2007). "Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway." <u>Oncogene</u> 26(14): 2082-94.
- Bataille, R., P. D. Delmas, D. Chappard and J. Sany (1990). "Abnormal serum bone Gla protein levels in multiple myeloma. Crucial role of bone formation and prognostic implications." <u>Cancer</u> **66**(1): 167-72.
- Behrens, P., J. Bruns, K. P. Ullrich, Y. Acil and J. Gille (2003). "Pyridinoline cross-links as markers for primary and secondary bone tumors." <u>Scand J Clin Lab Invest</u> **63**(1): 37-44.
- Bellahcene, A., R. Bachelier, C. Detry, R. Lidereau, P. Clezardin and V. Castronovo (2007). "Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells." <u>Breast Cancer Res Treat</u> **101**(2): 135-48.
- Bellahcene, A., S. Menard, R. Bufalino, L. Moreau and V. Castronovo (1996). "Expression of bone sialoprotein in primary human breast cancer is associated with poor survival." <u>Int J Cancer</u> **69**(4): 350-3.
- Ben, Q. W., Z. Zhao, S. F. Ge, J. Zhou, F. Yuan and Y. Z. Yuan (2009). "Circulating levels of periostin may help identify patients with more aggressive colorectal cancer." Int J Oncol **34**(3): 821-8.
- Bendre, M., D. Gaddy, R. W. Nicholas and L. J. Suva (2003a). "Breast cancer metastasis to bone It is not all about PTHrP." <u>Clinical Orthopaedics and Related Research</u>(415): S39-S45.
- Bendre, M. S., D. Gaddy-Kurten, T. Mon-Foote, N. S. Akel, R. A. Skinner, R. W. Nicholas and L. J. Suva (2002). "Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo." <u>Cancer Res</u> 62(19): 5571-9.
- Bendre, M. S., D. C. Montague, T. Peery, N. S. Akel, D. Gaddy and L. J. Suva (2003b). "Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease." <u>Bone</u> 33(1): 28-37.

- Berenson, J. R., R. A. Vescio, L. S. Rosen, J. M. VonTeichert, M. Woo, R. Swift, A. Savage, E. Givant, M. Hupkes, H. Harvey and A. Lipton (2001). "A phase I dose-ranging trial of monthly infusions of zoledronic acid for the treatment of osteolytic bone metastases." <u>Clin Cancer Res</u> 7(3): 478-85.
- Beresford, J. N., N. S. Fedarko, L. W. Fisher, R. J. Midura, M. Yanagishita, J. D. Termine and P. G. Robey (1987). "Analysis of the proteoglycans synthesized by human bone cells in vitro." <u>J Biol Chem</u> **262**(35): 17164-72.
- Berk, B. C., K. Fujiwara and S. Lehoux (2007). "ECM remodeling in hypertensive heart disease." <u>J Clin Invest</u> **117**(3): 568-75.
- Berrier, A. L. and K. M. Yamada (2007). "Cell-matrix adhesion." J Cell Physiol 213(3): 565-73.
- Berruti, A., L. Dogliotti, G. Gorzegno, M. Torta, M. Tampellini, M. Tucci, S. Cerutti, M. M. Frezet, M. Stivanello, G. Sacchetto and A. Angeli (1999). "Differential patterns of bone turnover in relation to bone pain and disease extent in bone in cancer patients with skeletal metastases." <u>Clin Chem</u> **45**(8 Pt 1): 1240-7.
- Berruti, A., L. Dogliotti, M. Tucci, R. Tarabuzzi, S. Guercio, M. Torta, M. Tampellini, A. Dovio, M. Poggio, R. M. Scarpa and A. Angeli (2002). "Metabolic effects of single-dose pamidronate administration in prostate cancer patients with bone metastases." <u>Int J Biol Markers</u> 17(4): 244-52.
- Bhowmick, N. A., E. G. Neilson and H. L. Moses (2004). "Stromal fibroblasts in cancer initiation and progression." <u>Nature</u> **432**(7015): 332-7.
- Bianco, P., L. W. Fisher, M. F. Young, J. D. Termine and P. G. Robey (1990). "Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues." J <u>Histochem Cytochem</u> 38(11): 1549-63.
- Bissell, M. J. and M. A. Labarge (2005). "Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?" <u>Cancer Cell</u> **7**(1): 17-23.
- Bissell, M. J. and D. Radisky (2001). "Putting tumours in context." <u>Nat Rev Cancer</u> 1(1): 46-54.
- Blomqvist, C., I. Elomaa, P. Virkkunen, L. Porkka, S. L. Karonen, L. Risteli and J. Risteli (1987). "The response evaluation of bone metastases in mammary carcinoma. The value of radiology, scintigraphy, and biochemical markers of bone metabolism." <u>Cancer</u> **60**(12): 2907-12.
- Bonnet, N., K. N. Standley, E. N. Bianchi, V. Stadelmann, M. Foti, S. J. Conway and S. L. Ferrari (2009). "The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity." J Biol Chem 284(51): 35939-50.
- Borg, T. K. and R. Markwald (2007). "Periostin: more than just an adhesion molecule." <u>Circ Res</u> **101**(3): 230-1.
- Bornstein, P. (2000). "Matricellular proteins: an overview." Matrix Biol 19(7): 555-6.
- Bornstein, P., A. Agah and T. R. Kyriakides (2004). "The role of thrombospondins 1 and 2 in the regulation of cellmatrix interactions, collagen fibril formation, and the response to injury." Int J Biochem Cell Biol **36**(6): 1115-25.
- Bornstein, P., T. R. Kyriakides, Z. Yang, L. C. Armstrong and D. E. Birk (2000). "Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis." J Investig Dermatol Symp Proc 5(1): 61-6.
- Bornstein, P. and E. H. Sage (2002). "Matricellular proteins: extracellular modulators of cell function." <u>Curr Opin</u> <u>Cell Biol</u> **14**(5): 608-16.
- Bouizar, Z., F. Spyratos and M. C. De vernejoul (1999). "The parathyroid hormone-related protein (PTHrP) gene: use of downstream TATA promotor and PTHrP 1-139 coding pathways in primary breast cancers vary with the occurrence of bone metastasis." J Bone Miner Res **14**(3): 406-14.
- Brekken, R. A. and E. H. Sage (2001). "SPARC, a matricellular protein: at the crossroads of cell-matrix communication." <u>Matrix Biol</u> **19**(8): 816-27.
- Brown, J. E., R. J. Cook, P. Major, A. Lipton, F. Saad, M. Smith, K. A. Lee, M. Zheng, Y. J. Hei and R. E. Coleman (2005). "Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors." <u>J Natl Cancer Inst</u> 97(1): 59-69.
- Brubaker, K. D., R. L. Vessella, L. D. True, R. Thomas and E. Corey (2003). "Cathepsin K mRNA and protein expression in prostate cancer progression." <u>J Bone Miner Res</u> **18**(2): 222-30.
- Bruzzaniti, A. and R. Baron (2006). "Molecular regulation of osteoclast activity." <u>Rev Endocr Metab Disord</u> 7(1-2): 123-39.
- Bucay, N., I. Sarosi, C. R. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H. L. Tan, W. Xu, D. L. Lacey, W. J. Boyle and W. S. Simonet (1998). "osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification." <u>Genes Dev</u> 12(9): 1260-8.
- Bundred, N. J., R. A. Walker, W. A. Ratcliffe, J. Warwick, J. M. Morrison and J. G. Ratcliffe (1992). "Parathyroid hormone related protein and skeletal morbidity in breast cancer." <u>Eur J Cancer</u> **28**(2-3): 690-2.
- Butcher, J. T., R. A. Norris, S. Hoffman, C. H. Mjaatvedt and R. R. Markwald (2007). "Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase." <u>Dev Biol</u> **302**(1): 256-66.
- Cabioglu, N., A. A. Sahin, P. Morandi, F. Meric-Bernstam, R. Islam, H. Y. Lin, C. D. Bucana, A. M. Gonzalez-Angulo, G. N. Hortobagyi and M. Cristofanilli (2009). "Chemokine receptors in advanced breast cancer: differential

expression in metastatic disease sites with diagnostic and therapeutic implications." <u>Ann Oncol</u> **20**(6): 1013-9.

Cabrol, C. (1995). Anatomie 1: Appareil locomoteur. Paris, France, P Flammarion.

- Canty, E. G. and K. E. Kadler (2005). "Procollagen trafficking, processing and fibrillogenesis." <u>J Cell Sci</u> **118**(Pt 7): 1341-53.
- Capeller, B., H. Caffier, M. W. Sutterlin and J. Dietl (2003). "Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as serum marker of bone metastases in human breast cancer." <u>Anticancer Res</u> **23**(2A): 1011-5.
- Capelli, M., A. Rufo, A. Teti and N. Rucci (2008). Gene microarray analysis in mouse osteoblasts reveals sets of relevants mRNAs regulated under modeled microgravity. <u>Forum in Bone and Mineral Research 5th</u> <u>Meeting</u>. Saint Vincent, Italy, Calcified Tissue International. **82:** 327-333.
- Carlson, K., A. Larsson, B. Simonsson, I. Turesson, J. Westin and S. Ljunghall (1999). "Evaluation of bone disease in multiple myeloma: a comparison between the resorption markers urinary deoxypyridinoline/creatinine (DPD) and serum ICTP, and an evaluation of the DPD/osteocalcin and ICTP/osteocalcin ratios." <u>Eur J Haematol</u> 62(5): 300-6.
- Castronovo, V., D. Waltregny, P. Kischel, C. Roesli, G. Elia, J. N. Rybak and D. Neri (2006). "A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer." <u>Mol Cell</u> <u>Proteomics</u> 5(11): 2083-91.
- Chakraborty, G., S. Jain, R. Behera, M. Ahmed, P. Sharma, V. Kumar and G. C. Kundu (2006). "The multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis." <u>Curr Mol Med</u> **6**(8): 819-30.
- Chang, Y., T. C. Lee, J. C. Li, T. L. Lai, H. H. Chua, C. L. Chen, S. L. Doong, C. K. Chou, T. S. Sheen and C. H. Tsai (2005).
 "Differential expression of osteoblast-specific factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma." <u>Head Neck</u> 27(10): 873-82.
- Chao, T. Y., C. L. Ho, S. H. Lee, M. M. Chen, A. Janckila and L. T. Yam (2004). "Tartrate-resistant acid phosphatase 5b as a serum marker of bone metastasis in breast cancer patients." J Biomed Sci **11**(4): 511-6.
- Chen, G., K. Sircar, A. Aprikian, A. Potti, D. Goltzman and S. A. Rabbani (2006). "Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation." <u>Cancer</u> 107(2): 289-98.
- Chen, H., M. E. Herndon and J. Lawler (2000). "The cell biology of thrombospondin-1." Matrix Biol 19(7): 597-614.
- Chen, P. S., M. Y. Wang, S. N. Wu, J. L. Su, C. C. Hong, S. E. Chuang, M. W. Chen, K. T. Hua, Y. L. Wu, S. T. Cha, M. S. Babu, C. N. Chen, P. H. Lee, K. J. Chang and M. L. Kuo (2007). "CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway." J Cell Sci 120(Pt 12): 2053-65.
- Chen, T., J. Berenson, R. Vescio, R. Swift, A. Gilchick, S. Goodin, P. LoRusso, P. Ma, C. Ravera, F. Deckert, H. Schran, J. Seaman and A. Skerjanec (2002). "Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases." J Clin Pharmacol 42(11): 1228-36.
- Chiao, J. W., B. S. Moonga, Y. M. Yang, R. Kancherla, A. Mittelman, J. R. Wu-Wong and T. Ahmed (2000). "Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption." <u>Br J Cancer</u> **83**(3): 360-5.
- Choi, K. U., J. S. Yun, I. H. Lee, S. C. Heo, S. H. Shin, E. S. Jeon, Y. J. Choi, D. S. Suh, M. S. Yoon and J. H. Kim (2010). "Lysophosphatidic acid-induced expression of periostin in stromal cells: Prognoistic relevance of periostin expression in epithelial ovarian cancer." Int J Cancer.
- Choi, P., C. D. Jordan, E. Mendez, J. Houck, B. Yueh, D. G. Farwell, N. Futran and C. Chen (2008). "Examination of oral cancer biomarkers by tissue microarray analysis." <u>Arch Otolaryngol Head Neck Surg</u> **134**(5): 539-46.
- Clines, G. A. and T. A. Guise (2005). "Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone." <u>Endocr Relat Cancer</u> **12**(3): 549-83.
- Cloos, P. A., N. Lyubimova, H. Solberg, P. Qvist, C. Christiansen, I. Byrjalsen and S. Christgau (2004). "An immunoassay for measuring fragments of newly synthesized collagen type I produced during metastatic invasion of bone." <u>Clin Lab</u> 50(5-6): 279-89.
- Coleman, R. E. (2006). "Clinical features of metastatic bone disease and risk of skeletal morbidity." <u>Clin Cancer Res</u> 12(20 Pt 2): 6243s-6249s.
- Coleman, R. E., P. Major, A. Lipton, J. E. Brown, K. A. Lee, M. Smith, F. Saad, M. Zheng, Y. J. Hei, J. Seaman and R. Cook (2005). "Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid." J Clin Oncol **23**(22): 4925-35.
- Conrads, K. A., M. Yi, K. A. Simpson, D. A. Lucas, C. E. Camalier, L. R. Yu, T. D. Veenstra, R. M. Stephens, T. P. Conrads and G. R. Beck, Jr. (2005). "A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells." <u>Mol Cell Proteomics</u> **4**(9): 1284-96.
- Cooper, C. R., J. K. Bhatia, H. J. Muenchen, L. McLean, S. Hayasaka, J. Taylor, P. J. Poncza and K. J. Pienta (2002). "The regulation of prostate cancer cell adhesion to human bone marrow endothelial cell monolayers by androgen dihydrotestosterone and cytokines." <u>Clin Exp Metastasis</u> **19**(1): 25-33.

- Cornish, J., A. Grey, K. E. Callon, D. Naot, B. L. Hill, C. Q. Lin, L. M. Balchin and I. R. Reid (2004). "Shared pathways of osteoblast mitogenesis induced by amylin, adrenomedullin, and IGF-1." <u>Biochem Biophys Res Commun</u> **318**(1): 240-6.
- Costa, L., L. M. Demers, A. Gouveia-Oliveira, J. Schaller, E. B. Costa, M. C. de Moura and A. Lipton (2002). "Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status." J Clin Oncol **20**(3): 850-6.
- Costelloe, C. M., E. M. Rohren, J. E. Madewell, T. Hamaoka, R. L. Theriault, T. K. Yu, V. O. Lewis, J. Ma, R. J. Stafford,
 A. M. Tari, G. N. Hortobagyi and N. T. Ueno (2009). "Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis." <u>Lancet Oncol</u> 10(6): 606-14.
- Courtois-Cox, S., S. L. Jones and K. Cichowski (2008). "Many roads lead to oncogene-induced senescence." <u>Oncogene</u> **27**(20): 2801-9.
- Coutu, D. L., J. H. Wu, A. Monette, G. E. Rivard, M. D. Blostein and J. Galipeau (2008). "Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells." <u>J Biol Chem</u> 283(26): 17991-8001.
- Cramer, S. D., Z. Chen and D. M. Peehl (1996). "Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts." J Urol **156**(2 Pt 1): 526-31.
- Culav, E. M., C. H. Clark and M. J. Merrilees (1999). "Connective tissues: matrix composition and its relevance to physical therapy." <u>Phys Ther</u> **79**(3): 308-19.
- Dai, J., J. Keller, J. Zhang, Y. Lu, Z. Yao and E. T. Keller (2005). "Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism." <u>Cancer Res</u> **65**(18): 8274-85.
- Dallas, S. L., J. L. Rosser, G. R. Mundy and L. F. Bonewald (2002). "Proteolysis of latent transforming growth factorbeta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix." J Biol Chem 277(24): 21352-60.
- Darby, I. A. and T. D. Hewitson (2007). "Fibroblast differentiation in wound healing and fibrosis." Int Rev Cytol **257**: 143-79.
- de la Piedra, C., N. A. Castro-Errecaborde, M. L. Traba, C. Mendez-Davila, C. Garcia-Moreno, L. Rodriguez de Acuna and J. Rodriguez-Molina (2003). "Bone remodeling markers in the detection of bone metastases in prostate cancer." <u>Clin Chim Acta</u> **331**(1-2): 45-53.
- De, S., J. Chen, N. V. Narizhneva, W. Heston, J. Brainard, E. H. Sage and T. V. Byzova (2003). "Molecular pathway for cancer metastasis to bone." <u>J Biol Chem</u> **278**(40): 39044-50.
- Deckers, M., M. van Dinther, J. Buijs, I. Que, C. Lowik, G. van der Pluijm and P. ten Dijke (2006). "The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells." <u>Cancer Res</u> **66**(4): 2202-9.
- Delany, A. M., M. Amling, M. Priemel, C. Howe, R. Baron and E. Canalis (2000). "Osteopenia and decreased bone formation in osteonectin-deficient mice." J Clin Invest **105**(7): 915-23.
- Dexter, T. M., E. Spooncer, R. Schofield, B. I. Lord and P. Simmons (1984). "Haemopoietic stem cells and the problem of self-renewal." <u>Blood Cells</u> **10**(2-3): 315-39.
- Diel, I. J., E. F. Solomayer, M. J. Seibel, J. Pfeilschifter, H. Maisenbacher, C. Gollan, M. Pecherstorfer, R. Conradi, G. Kehr, E. Boehm, F. P. Armbruster and G. Bastert (1999). "Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis." <u>Clin Cancer Res</u> 5(12): 3914-9.
- Dimitroff, C. J., L. Descheny, N. Trujillo, R. Kim, V. Nguyen, W. Huang, K. J. Pienta, J. L. Kutok and M. A. Rubin (2005). "Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells." <u>Cancer Res</u> 65(13): 5750-60.
- Doerr, M. E. and J. I. Jones (1996). "The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells." <u>J Biol Chem</u> **271**(5): 2443-7.
- Dormady, S. P., O. Bashayan, R. Dougherty, X. M. Zhang and R. S. Basch (2001). "Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment." J Hematother Stem Cell Res **10**(1): 125-40.
- Dorn, G. W., 2nd (2007). "Periostin and myocardial repair, regeneration, and recovery." <u>N Engl J Med</u> **357**(15): 1552-4.
- Dougall, W. C. and M. Chaisson (2006). "The RANK/RANKL/OPG triad in cancer-induced bone diseases." <u>Cancer</u> <u>Metastasis Rev</u> **25**(4): 541-9.
- Ducy, P., C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley and G. Karsenty (1996). "Increased bone formation in osteocalcin-deficient mice." <u>Nature</u> 382(6590): 448-52.
- Ducy, P., R. Zhang, V. Geoffroy, A. L. Ridall and G. Karsenty (1997). "Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation." <u>Cell</u> 89(5): 747-54.
- Eastell, R., S. P. Robins, T. Colwell, A. M. Assiri, B. L. Riggs and R. G. Russell (1993). "Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption." Osteoporos Int **3**(5): 255-60.
- Easton, D. F., D. Ford and D. T. Bishop (1995). "Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium." <u>Am J Hum Genet</u> **56**(1): 265-71.
- Ebert, W., T. Muley, K. P. Herb and H. Schmidt-Gayk (2004). "Comparison of bone scintigraphy with bone markers in the diagnosis of bone metastasis in lung carcinoma patients." <u>Anticancer Res</u> **24**(5B): 3193-201.
- Eijken, M., S. Swagemakers, M. Koedam, C. Steenbergen, P. Derkx, A. G. Uitterlinden, P. J. van der Spek, J. A. Visser,
 F. H. de Jong, H. A. Pols and J. P. van Leeuwen (2007). "The activin A-follistatin system: potent regulator of human extracellular matrix mineralization." <u>Faseb J</u> 21(11): 2949-60.
- Elledge, S. J. (1996). "Cell cycle checkpoints: preventing an identity crisis." <u>Science</u> **274**(5293): 1664-72.
- Elliott, R. L. and G. C. Blobe (2005). "Role of transforming growth factor Beta in human cancer." J Clin Oncol **23**(9): 2078-93.
- Elola, M. T., C. Wolfenstein-Todel, M. F. Troncoso, G. R. Vasta and G. A. Rabinovich (2007). "Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival." <u>Cell Mol Life Sci</u> **64**(13): 1679-700.
- Erkan, M., J. Kleeff, A. Gorbachevski, C. Reiser, T. Mitkus, I. Esposito, T. Giese, M. W. Buchler, N. A. Giese and H. Friess (2007). "Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity." <u>Gastroenterology</u> **132**(4): 1447-64.
- Everts, V., J. M. Delaisse, W. Korper, D. C. Jansen, W. Tigchelaar-Gutter, P. Saftig and W. Beertsen (2002). "The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation." <u>J Bone Miner Res</u> **17**(1): 77-90.
- Fedarko, N. S., A. Jain, A. Karadag, M. R. Van Eman and L. W. Fisher (2001). "Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer." <u>Clin Cancer Res</u> **7**(12): 4060-6.
- Feeley, B. T., S. C. Gamradt, W. K. Hsu, N. Liu, L. Krenek, P. Robbins, J. Huard and J. R. Lieberman (2005). "Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer." <u>J Bone Miner Res</u> 20(12): 2189-99.
- Feltes, C. M., A. Kudo, O. Blaschuk and S. W. Byers (2002). "An alternatively spliced cadherin-11 enhances human breast cancer cell invasion." <u>Cancer Res</u> **62**(22): 6688-97.
- Fidler, I. J. (2003). "The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited." <u>Nat Rev Cancer</u> **3**(6): 453-8.
- Finak, G., N. Bertos, F. Pepin, S. Sadekova, M. Souleimanova, H. Zhao, H. Chen, G. Omeroglu, S. Meterissian, A. Omeroglu, M. Hallett and M. Park (2008). "Stromal gene expression predicts clinical outcome in breast cancer." <u>Nat Med</u> 14(5): 518-27.
- Fluge, O., O. Bruland, L. A. Akslen, J. R. Lillehaug and J. E. Varhaug (2006). "Gene expression in poorly differentiated papillary thyroid carcinomas." <u>Thyroid</u> **16**(2): 161-75.
- Fonseca, R., M. C. Trendle, T. Leong, R. A. Kyle, M. M. Oken, N. E. Kay, B. Van Ness and P. R. Greipp (2000). "Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients." <u>Br J</u> <u>Haematol</u> **109**(1): 24-9.
- Fortunati, D., S. Reppe, A. K. Fjeldheim, M. Nielsen, V. T. Gautvik and K. M. Gautvik (2010). "Periostin is a collagen associated bone matrix protein regulated by parathyroid hormone." <u>Matrix Biol</u>.
- Franz-Odendaal, T. A., B. K. Hall and P. E. Witten (2006). "Buried alive: how osteoblasts become osteocytes." <u>Dev</u> Dyn **235**(1): 176-90.
- Friedenstein, A. J., R. K. Chailakhyan and U. V. Gerasimov (1987). "Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers." <u>Cell Tissue Kinet</u> **20**(3): 263-72.
- Fukumitsu, N., M. Uchiyama, Y. Mori, S. Yanada, T. Hatano, H. Igarashi, K. Kishimoto, J. Nakada, A. Yoshihiro and J. Harada (2002). "Correlation of urine type I collagen-cross-linked N telopeptide levels with bone scintigraphic results in prostate cancer patients." <u>Metabolism</u> 51(7): 814-8.
- Fukushima, N., Y. Kikuchi, T. Nishiyama, A. Kudo and M. Fukayama (2008). "Periostin deposition in the stroma of invasive and intraductal neoplasms of the pancreas." <u>Mod Pathol</u> 21(8): 1044-53.
- Furusato, B., T. Tsunoda, S. Shaheduzzaman, M. E. Nau, M. Vahey, G. Petrovics, D. G. McLeod, S. Naito, S. Shirasawa, S. Srivastava and I. A. Sesterhenn (2010). "Osteoblast-specific factor 2 expression in prostate cancer-associated stroma: identification through microarray technology." <u>Urology</u> 75(4): 768-72.
- Gallagher, G. L., C. J. Jackson and S. N. Hunyor (2007). "Myocardial extracellular matrix remodeling in ischemic heart failure." <u>Front Biosci</u> **12**: 1410-9.
- Gao, B. B., L. Stuart and E. P. Feener (2008). "Label-free quantitative analysis of 1D-PAGE LC/MS/MS proteome: Application on angiotensin II stimulated smooth muscle cells secretome." <u>Mol Cell Proteomics</u>.
- Garnero, P., F. Bianchi, M. C. Carlier, V. Genty, N. Jacob, S. Kamel, C. Kindermans, E. Plouvier, M. Pressac and J. C. Souberbielle (2000). "[Biochemical markers of bone remodeling: pre-analytical variations and guidelines

for their use. SFBC (Societe Francaise de Biologie Clinique) Work Group. Biochemical markers of bone remodeling]." <u>Ann Biol Clin (Paris)</u> **58**(6): 683-704.

- Garnero, P., M. Ferreras, M. A. Karsdal, R. Nicamhlaoibh, J. Risteli, O. Borel, P. Qvist, P. D. Delmas, N. T. Foged and J. M. Delaisse (2003). "The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation." J Bone Miner Res 18(5): 859-67.
- Gillan, L., D. Matei, D. A. Fishman, C. S. Gerbin, B. Y. Karlan and D. D. Chang (2002). "Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility." <u>Cancer Res</u> **62**(18): 5358-64.
- Girasole, G., G. Passeri, R. L. Jilka and S. C. Manolagas (1994). "Interleukin-11: a new cytokine critical for osteoclast development." <u>J Clin Invest</u> **93**(4): 1516-24.
- Goetsch, S. C., T. J. Hawke, T. D. Gallardo, J. A. Richardson and D. J. Garry (2003). "Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration." <u>Physiol Genomics</u> **14**(3): 261-71.
- Gokhale, J. A., P. G. Robey and A. L. Boskey (2001). The biochemistry of bone. In: <u>Osteoporosis</u>. Eds.: R. Marcus, D. Feldman and A. Kelsey. Academic Press, San Diego, CA, USA. **Vol 1:** 107-188.
- Gonzalez, H. E., M. Gujrati, M. Frederick, Y. Henderson, J. Arumugam, P. W. Spring, K. Mitsudo, H. W. Kim and G. L. Clayman (2003). "Identification of 9 genes differentially expressed in head and neck squamous cell carcinoma." Arch Otolaryngol Head Neck Surg **129**(7): 754-9.
- Gordeladze, J. O., C. A. Drevon, U. Syversen and J. E. Reseland (2002). "Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling." J Cell Biochem **85**(4): 825-36.
- Groppe, J., J. Greenwald, E. Wiater, J. Rodriguez-Leon, A. N. Economides, W. Kwiatkowski, M. Affolter, W. W. Vale, J. C. Belmonte and S. Choe (2002). "Structural basis of BMP signalling inhibition by the cystine knot protein Noggin." <u>Nature</u> 420(6916): 636-42.
- Gruber, H. E., E. H. Sage, H. J. Norton, S. Funk, J. Ingram and E. N. Hanley, Jr. (2005). "Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse." J Histochem Cytochem **53**(9): 1131-8.
- Grzesik, W. J. and A. S. Narayanan (2002). "Cementum and periodontal wound healing and regeneration." <u>Crit Rev</u> <u>Oral Biol Med</u> **13**(6): 474-84.
- Guise, T. A., K. S. Mohammad, G. Clines, E. G. Stebbins, D. H. Wong, L. S. Higgins, R. Vessella, E. Corey, S. Padalecki,
 L. Suva and J. M. Chirgwin (2006). "Basic mechanisms responsible for osteolytic and osteoblastic bone metastases." <u>Clin Cancer Res</u> 12(20 Pt 2): 6213s-6216s.
- Guise, T. A. and G. R. Mundy (1998). "Cancer and bone." Endocr Rev 19(1): 18-54.
- Guise, T. A., J. J. Yin and K. S. Mohammad (2003). "Role of endothelin-1 in osteoblastic bone metastases." <u>Cancer</u> **97**(3 Suppl): 779-84.
- Guise, T. A., J. J. Yin, S. D. Taylor, Y. Kumagai, M. Dallas, B. F. Boyce, T. Yoneda and G. R. Mundy (1996). "Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancermediated osteolysis." J Clin Invest 98(7): 1544-9.
- Guo, W. and F. G. Giancotti (2004). "Integrin signalling during tumour progression." <u>Nat Rev Mol Cell Biol</u> **5**(10): 816-26.
- Haertel-Wiesmann, M., Y. Liang, W. J. Fantl and L. T. Williams (2000). "Regulation of cyclooxygenase-2 and periostin by Wnt-3 in mouse mammary epithelial cells." J Biol Chem **275**(41): 32046-51.
- Hall, C. L., A. Bafico, J. Dai, S. A. Aaronson and E. T. Keller (2005). "Prostate cancer cells promote osteoblastic bone metastases through Wnts." <u>Cancer Res</u> **65**(17): 7554-60.
- Hall, C. L., J. Dai, K. L. van Golen, E. T. Keller and M. W. Long (2006). "Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone." <u>Cancer Res</u> **66**(17): 8648-54.
- Hanahan, D. and R. A. Weinberg (2000). "The hallmarks of cancer." <u>Cell</u> **100**(1): 57-70.
- Haniffa, M. A., M. P. Collin, C. D. Buckley and F. Dazzi (2009). "Mesenchymal stem cells: the fibroblasts' new clothes?" <u>Haematologica</u> **94**(2): 258-63.
- Hao, Y., G. Triadafilopoulos, P. Sahbaie, H. S. Young, M. B. Omary and A. W. Lowe (2006). "Gene expression profiling reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma." <u>Gastroenterology</u> 131(3): 925-33.
- Harada, S. and G. A. Rodan (2003). "Control of osteoblast function and regulation of bone mass." <u>Nature</u> **423**(6937): 349-55.
- Henderson, M., J. Danks, J. Moseley, J. Slavin, T. Harris, M. McKinlay, J. Hopper and T. Martin (2001). "Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases." J Natl Cancer Inst 93(3): 234-7.
- Henderson, M. A., J. A. Danks, J. L. Slavin, G. B. Byrnes, P. F. Choong, J. B. Spillane, J. L. Hopper and T. J. Martin (2006). "Parathyroid hormone-related protein localization in breast cancers predict improved prognosis." <u>Cancer Res</u> 66(4): 2250-6.

- Henthorn, P. S. (1996). Alkaline Phosphatase. In: <u>Principles of Bone Biology</u>. Eds.: J. P. Bilezikian, R. L.A. and G. A. Rodan. Academic Press, San Diego, CA, USA. 197-216.
- Hill, T. P., D. Spater, M. M. Taketo, W. Birchmeier and C. Hartmann (2005). "Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes." <u>Dev Cell</u> **8**(5): 727-38.
- Hinz, B. and G. Gabbiani (2003). "Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling." <u>Thromb Haemost</u> **90**(6): 993-1002.
- Hiraga, T., A. Myoui, M. E. Choi, H. Yoshikawa and T. Yoneda (2006). "Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-beta enhances bone metastases in breast cancer." <u>Cancer</u> <u>Res</u> 66(4): 2067-73.
- Hiraga, T., A. Myoui, P. J. Williams, G. R. Mundy and T. Oneda (2001). "Suppression of IGF signaling propagation and NF-kappa B activation reduces bone metastases in breast cancer." <u>Journal of Bone and Mineral</u> <u>Research</u> **16**: S200-S200.
- Hirose, Y., H. Suzuki, N. Amizuka, J. Shimomura, Y. Kawano, K. Nozawa-Inoue, A. Kudo and T. Maeda (2003). "Immunohistochemical localization of periostin in developing long bones of mice." <u>Biomedical Research-Tokyo</u> **24**(1): 31-37.
- Hong, L., H. Sun, X. Lv, D. Yang, J. Zhang and Y. Shi (2010). "Expression of periostin in the serum of NSCLC and its function on proliferation and migration of human lung adenocarcinoma cell line (A549) in vitro." <u>Mol Biol</u> <u>Rep</u> 37(5): 2285-93.
- Horiuchi, K., N. Amizuka, S. Takeshita, H. Takamatsu, M. Katsuura, H. Ozawa, Y. Toyama, L. F. Bonewald and A. Kudo (1999). "Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta." J Bone Miner Res 14(7): 1239-49.
- Horuk, R. (2001). "Chemokine receptors." Cytokine Growth Factor Rev 12(4): 313-35.
- Hu, H., M. J. Hilton, X. Tu, K. Yu, D. M. Ornitz and F. Long (2005). "Sequential roles of Hedgehog and Wnt signaling in osteoblast development." <u>Development</u> **132**(1): 49-60.
- Humphries, M. J., M. A. Travis, K. Clark and A. P. Mould (2004). "Mechanisms of integration of cells and extracellular matrices by integrins." <u>Biochem Soc Trans</u> **32**(Pt 5): 822-5.
- Hunter, G. K. and H. A. Goldberg (1993). "Nucleation of hydroxyapatite by bone sialoprotein." <u>Proc Natl Acad Sci U</u> <u>S A</u> **90**(18): 8562-5.
- Ibi, M., A. Ishisaki, M. Yamamoto, S. Wada, T. Kozakai, A. Nakashima, J. Iida, S. Takao, Y. Izumi, A. Yokoyama and M. Tamura (2007). "Establishment of cell lines that exhibit pluripotency from miniature swine periodontal ligaments." <u>Arch Oral Biol</u> 52(10): 1002-8.
- Ilvesaro, J., K. Metsikko, K. Vaananen and J. Tuukkanen (1999). "Polarity of osteoblasts and osteoblast-like UMR-108 cells." J Bone Miner Res **14**(8): 1338-44.
- Imai, S., M. Kaksonen, E. Raulo, T. Kinnunen, C. Fages, X. Meng, M. Lakso and H. Rauvala (1998). "Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM)." J Cell Biol 143(4): 1113-28.
- Ismail, R. S., R. L. Baldwin, J. Fang, D. Browning, B. Y. Karlan, J. C. Gasson and D. D. Chang (2000). "Differential gene expression between normal and tumor-derived ovarian epithelial cells." <u>Cancer Res</u> **60**(23): 6744-9.
- Iwamura, M., J. Hellman, A. T. Cockett, H. Lilja and S. Gershagen (1996). "Alteration of the hormonal bioactivity of parathyroid hormone-related protein (PTHrP) as a result of limited proteolysis by prostate-specific antigen." <u>Urology</u> 48(2): 317-25.
- Jacks, T. and R. A. Weinberg (2002). "Taking the study of cancer cell survival to a new dimension." <u>Cell</u> **111**(7): 923-5.
- Jacob, K., M. Webber, D. Benayahu and H. K. Kleinman (1999). "Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone." <u>Cancer Res</u> **59**(17): 4453-7.
- Jagdev, S. P., P. Purohit, S. Heatley, C. Herling and R. E. Coleman (2001). "Comparison of the effects of intravenous pamidronate and oral clodronate on symptoms and bone resorption in patients with metastatic bone disease." <u>Ann Oncol</u> **12**(10): 1433-8.
- Jain, A., A. Karadag, B. Fohr, L. W. Fisher and N. S. Fedarko (2002). "Three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) enhance factor H's cofactor activity enabling MCP-like cellular evasion of complement-mediated attack." J Biol Chem 277(16): 13700-8.
- Javed, A., G. L. Barnes, J. Pratap, T. Antkowiak, L. C. Gerstenfeld, A. J. van Wijnen, J. L. Stein, J. B. Lian and G. S. Stein (2005). "Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo." <u>Proc Natl Acad Sci U S A</u> 102(5): 1454-9.
- Javelaud, D., K. S. Mohammad, C. R. McKenna, P. Fournier, F. Luciani, M. Niewolna, J. Andre, V. Delmas, L. Larue, T. A. Guise and A. Mauviel (2007). "Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis." <u>Cancer Res</u> 67(5): 2317-24.

- Ji, X., D. Chen, C. Xu, S. E. Harris, G. R. Mundy and T. Yoneda (2000). "Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A." J Bone Miner Metab **18**(3): 132-9.
- Johansen, J. S., K. Brasso, P. Iversen, B. Teisner, P. Garnero, P. A. Price and I. J. Christensen (2007). "Changes of biochemical markers of bone turnover and YKL-40 following hormonal treatment for metastatic prostate cancer are related to survival." <u>Clin Cancer Res</u> **13**(11): 3244-9.
- Jones, D. H., T. Nakashima, O. H. Sanchez, I. Kozieradzki, S. V. Komarova, I. Sarosi, S. Morony, E. Rubin, R. Sarao, C. V. Hojilla, V. Komnenovic, Y. Y. Kong, M. Schreiber, S. J. Dixon, S. M. Sims, R. Khokha, T. Wada and J. M. Penninger (2006). "Regulation of cancer cell migration and bone metastasis by RANKL." <u>Nature</u> 440(7084): 692-6.
- Jukkola, A., R. Bloigu, K. Holli, H. Joensuu, R. Valavaara, J. Risteli and G. Blanco (2001). "Postoperative PINP in serum reflects metastatic potential and poor survival in node-positive breast cancer." <u>Anticancer Res</u> 21(4B): 2873-6.
- Jukkola, A., R. Tahtela, E. Tholix, K. Vuorinen, G. Blanco, L. Risteli and J. Risteli (1997). "Aggressive breast cancer leads to discrepant serum levels of the type I procollagen propeptides PINP and PICP." <u>Cancer Res</u> 57(24): 5517-20.
- Jung, K., M. Lein, M. Ringsdorf, J. Roigas, D. Schnorr, S. A. Loening and A. Staack (2006). "Diagnostic and prognostic validity of serum bone turnover markers in metastatic renal cell carcinoma." J Urol **176**(4 Pt 1): 1326-31.
- Kakonen, S. M., K. S. Selander, J. M. Chirgwin, J. J. Yin, S. Burns, W. A. Rankin, B. G. Grubbs, M. Dallas, Y. Cui and T. A. Guise (2002). "Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways." J Biol Chem 277(27): 24571-8.
- Kalamajski, S., A. Aspberg, K. Lindblom, D. Heinegard and A. Oldberg (2009). "Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization." <u>Biochem J</u> **423**(1): 53-9.
- Kanakis, I., M. Nikolaou, D. Pectasides, C. Kiamouris and N. K. Karamanos (2004). "Determination and biological relevance of serum cross-linked type I collagen N-telopeptide and bone-specific alkaline phosphatase in breast metastatic cancer." J Pharm Biomed Anal 34(4): 827-32.
- Kang, Y., W. He, S. Tulley, G. P. Gupta, I. Serganova, C. R. Chen, K. Manova-Todorova, R. Blasberg, W. L. Gerald and J. Massague (2005). "Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway." <u>Proc Natl Acad Sci U S A</u> **102**(39): 13909-14.
- Kang, Y., P. M. Siegel, W. Shu, M. Drobnjak, S. M. Kakonen, C. Cordon-Cardo, T. A. Guise and J. Massague (2003). "A multigenic program mediating breast cancer metastasis to bone." <u>Cancer Cell</u> **3**(6): 537-49.
- Kanno, A., K. Satoh, A. Masamune, M. Hirota, K. Kimura, J. Umino, S. Hamada, A. Satoh, S. Egawa, F. Motoi, M. Unno and T. Shimosegawa (2008). "Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells." Int J Cancer 122(12): 2707-18.
- Karadag, A., K. U. Ogbureke, N. S. Fedarko and L. W. Fisher (2004). "Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion." <u>J Natl Cancer Inst</u> **96**(12): 956-65.
- Kashima, T. G., T. Nishiyama, K. Shimazu, M. Shimazaki, I. Kii, A. E. Grigoriadis, M. Fukayama and A. Kudo (2009).
 "Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions." <u>Hum Pathol</u> 40(2): 226-37.
- Kato, Y., A. Boskey, L. Spevak, M. Dallas, M. Hori and L. F. Bonewald (2001). "Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture." <u>J Bone Miner Res</u> 16(9): 1622-33.
- Kii, I., N. Amizuka, L. Minqi, S. Kitajima, Y. Saga and A. Kudo (2006). "Periostin is an extracellular matrix protein required for eruption of incisors in mice." <u>Biochem Biophys Res Commun</u> **342**(3): 766-72.
- Kikuchi, Y., T. G. Kashima, T. Nishiyama, K. Shimazu, Y. Morishita, M. Shimazaki, I. Kii, H. Horie, H. Nagai, A. Kudo and M. Fukayama (2008). "Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon." <u>J Histochem Cytochem</u> 56(8): 753-64.
- Kim, C. J., T. Isono, Y. Tambe, T. Chano, H. Okabe, Y. Okada and H. Inoue (2008). "Role of alternative splicing of periostin in human bladder carcinogenesis." Int J Oncol **32**(1): 161-9.
- Kim, C. J., N. Yoshioka, Y. Tambe, R. Kushima, Y. Okada and H. Inoue (2005). "Periostin is down-regulated in high grade human bladder cancers and suppresses in vitro cell invasiveness and in vivo metastasis of cancer cells." <u>Int J Cancer</u> **117**(1): 51-8.
- Kim, J. E., H. W. Jeong, J. O. Nam, B. H. Lee, J. Y. Choi, R. W. Park, J. Y. Park and I. S. Kim (2002). "Identification of motifs in the fasciclin domains of the transforming growth factor-beta-induced matrix protein betaig-h3 that interact with the alphavbeta5 integrin." J Biol Chem 277(48): 46159-65.

- Kim, J. E., S. J. Kim, B. H. Lee, R. W. Park, K. S. Kim and I. S. Kim (2000). "Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3." J Biol Chem 275(40): 30907-15.
- Kimura, T., T. Kuwata, S. Ashimine, M. Yamazaki, C. Yamauchi, K. Nagai, A. Ikehara, Y. Feng, D. S. Dimitrov, S. Saito and A. Ochiai (2010). "Targeting of bone-derived insulin-like growth factor-II by a human neutralizing antibody suppresses the growth of prostate cancer cells in a human bone environment." <u>Clin Cancer Res</u> 16(1): 121-9.
- Kitagawa, Y., J. Dai, J. Zhang, J. M. Keller, J. Nor, Z. Yao and E. T. Keller (2005). "Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity." <u>Cancer Res</u> **65**(23): 10921-9.
- Kiuchi, K., T. Ishikawa, Y. Hamaguchi, N. Momiyama, S. Hasegawa, A. Ishiyama, T. Kono, T. Doi, T. Chishima and H. Shimada (2002). "Cross-linked collagen C- and N-telopeptides for an early diagnosis of bone metastasis from breast cancer." <u>Oncol Rep</u> 9(3): 595-8.
- Klezovitch, O., J. Chevillet, J. Mirosevich, R. L. Roberts, R. J. Matusik and V. Vasioukhin (2004). "Hepsin promotes prostate cancer progression and metastasis." <u>Cancer Cell</u> **6**(2): 185-95.
- Kohno, N., S. Kitazawa, M. Fukase, Y. Sakoda, Y. Kanbara, Y. Furuya, O. Ohashi, Y. Ishikawa and Y. Saitoh (1994).
 "The expression of parathyroid hormone-related protein in human breast cancer with skeletal metastases." <u>Surg Today</u> 24(3): 215-20.
- Koizumi, M., S. Takahashi and E. Ogata (2003). "Comparison of serum bone resorption markers in the diagnosis of skeletal metastasis." <u>Anticancer Res</u> 23(5b): 4095-9.
- Koizumi, M., J. Yonese, I. Fukui and E. Ogata (2002). "Metabolic gaps in bone formation may be a novel marker to monitor the osseous metastasis of prostate cancer." J Urol **167**(4): 1863-6.
- Kojima, T., P. H. Freitas, S. Ubaidus, A. Suzuki, M. Li, M. Yoshizawa, K. Oda, T. Maeda, A. Kudo, C. Saito and N. Amizuka (2007). "Histochemical examinations on cortical bone regeneration induced by thermoplastic bioresorbable plates applied to bone defects of rat calvariae." <u>Biomed Res</u> 28(4): 219-29.
- Kominsky, S. L., M. Doucet, K. Brady and K. L. Weber (2007). "TGF-beta promotes the establishment of renal cell carcinoma bone metastasis." J Bone Miner Res **22**(1): 37-44.
- Komori, T. (2006). "Regulation of osteoblast differentiation by transcription factors." <u>J Cell Biochem</u> **99**(5): 1233-9.
- Komori, T., H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R. T. Bronson, Y. H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki and T. Kishimoto (1997). "Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts." <u>Cell</u> 89(5): 755-64.
- Kong, Y. Y., H. Yoshida, I. Sarosi, H. L. Tan, E. Timms, C. Capparelli, S. Morony, A. J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C. R. Dunstan, D. L. Lacey, T. W. Mak, W. J. Boyle and J. M. Penninger (1999).
 "OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis." <u>Nature</u> 397(6717): 315-23.
- Korpela, J., S. L. Tiitinen, H. Hiekkanen, J. M. Halleen, K. S. Selander, H. K. Vaananen, P. Suominen, H. Helenius and E. Salminen (2006). "Serum TRACP 5b and ICTP as markers of bone metastases in breast cancer." <u>Anticancer Res</u> 26(4B): 3127-32.
- Krause, C., D. J. J. de Gorter, M. Karperien and P. ten Dijke (2008). Chapter 2. Signal Transduction Cascades Controlling Osteoblast Differentiation. In: <u>Primer on the Metabolic Bone Diseases and Disorders of</u> <u>Mineral Metabolism 5th ed</u>. Eds.: V. Rosen. ASBMR Publications, Durham, NC, USA. **7:** 10-16.
- Kruzynska-Frejtag, A., M. Machnicki, R. Rogers, R. R. Markwald and S. J. Conway (2001). "Periostin (an osteoblastspecific factor) is expressed within the embryonic mouse heart during valve formation." <u>Mech Dev</u> 103(1-2): 183-8.
- Kruzynska-Frejtag, A., J. Wang, M. Maeda, R. Rogers, E. Krug, S. Hoffman, R. R. Markwald and S. J. Conway (2004). "Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction." <u>Dev Dyn</u> 229(4): 857-68.
- Kudo, Y., I. Ogawa, S. Kitajima, M. Kitagawa, H. Kawai, P. M. Gaffney, M. Miyauchi and T. Takata (2006). "Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer." <u>Cancer Res</u> 66(14): 6928-35.
- Kudo, Y., B. S. Siriwardena, H. Hatano, I. Ogawa and T. Takata (2007). "Periostin: novel diagnostic and therapeutic target for cancer." <u>Histol Histopathol</u> **22**(10): 1167-74.
- Kuhn, B., F. del Monte, R. J. Hajjar, Y. S. Chang, D. Lebeche, S. Arab and M. T. Keating (2007). "Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair." <u>Nat Med</u> **13**(8): 962-9.
- Kuiper, E. J., P. Roestenberg, C. Ehlken, V. Lambert, H. B. van Treslong-de Groot, K. M. Lyons, H. J. Agostini, J. M. Rakic, I. Klaassen, C. J. Van Noorden, R. Goldschmeding and R. O. Schlingemann (2007). "Angiogenesis is not impaired in connective tissue growth factor (CTGF) knock-out mice." <u>J Histochem Cytochem</u> 55(11): 1139-47.

- Kylmala, T., T. L. Tammela, L. Risteli, J. Risteli, M. Kontturi and I. Elomaa (1995). "Type I collagen degradation product (ICTP) gives information about the nature of bone metastases and has prognostic value in prostate cancer." <u>Br J Cancer</u> 71(5): 1061-4.
- Kyriakides, T. R. and P. Bornstein (2003). "Matricellular proteins as modulators of wound healing and the foreign body response." <u>Thromb Haemost</u> **90**(6): 986-92.
- Lacey, D. L., E. Timms, H. L. Tan, M. J. Kelley, C. R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y. X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney and W. J. Boyle (1998). "Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation." <u>Cell</u> 93(2): 165-76.
- Laing, K. J. and C. J. Secombes (2004). "Chemokines." Dev Comp Immunol 28(5): 443-60.
- Larsen, M., V. V. Artym, J. A. Green and K. M. Yamada (2006). "The matrix reorganized: extracellular matrix remodeling and integrin signaling." <u>Curr Opin Cell Biol</u> **18**(5): 463-71.
- Lawler, J. (2000). "The functions of thrombospondin-1 and-2." Curr Opin Cell Biol **12**(5): 634-40.
- Le Gall, C., A. Bellahcène, E. Bonnelye, J. A. Gasser, V. Castronovo, J. Green, J. Zimmermann and P. Clézardin (2007). "A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden." <u>Cancer Res</u> **67**(20): 9894-902.
- Leask, A. and D. J. Abraham (2006). "All in the CCN family: essential matricellular signaling modulators emerge from the bunker." J Cell Sci **119**(Pt 23): 4803-10.
- Leask, A., C. P. Denton and D. J. Abraham (2004). "Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma." J Invest Dermatol **122**(1): 1-6.
- Lee, N. K., H. Sowa, E. Hinoi, M. Ferron, J. D. Ahn, C. Confavreux, R. Dacquin, P. J. Mee, M. D. McKee, D. Y. Jung, Z. Zhang, J. K. Kim, F. Mauvais-Jarvis, P. Ducy and G. Karsenty (2007). "Endocrine regulation of energy metabolism by the skeleton." <u>Cell</u> **130**(3): 456-69.
- Leeming, D. J., M. Koizumi, I. Byrjalsen, B. Li, P. Qvist and L. B. Tanko (2006). "The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastases in breast, prostate, or lung cancer patients." <u>Cancer Epidemiol Biomarkers Prev</u> **15**(1): 32-8.
- Lein, M., M. Wirth, K. Miller, H. U. Eickenberg, L. Weissbach, K. Schmidt, U. Haus, C. Stephan, S. Meissner, S. A. Loening and K. Jung (2007). "Serial markers of bone turnover in men with metastatic prostate cancer treated with zoledronic Acid for detection of bone metastases progression." <u>Eur Urol</u> 52(5): 1381-7.
- Li, G., S. Oparil, J. M. Sanders, L. Zhang, M. Dai, L. B. Chen, S. J. Conway, C. A. McNamara and I. J. Sarembock (2006). "Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro." <u>Atherosclerosis</u> 188(2): 292-300.
- Li, J. S., G. W. Sun, X. Y. Wei and W. H. Tang (2007). "Expression of periostin and its clinicopathological relevance in gastric cancer." <u>World J Gastroenterol</u> **13**(39): 5261-6.
- Li, P., S. Oparil, W. Feng and Y. F. Chen (2004). "Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells." J <u>Appl Physiol</u> **97**(4): 1550-8; discussion 1549.
- Liang, Z., T. Wu, H. Lou, X. Yu, R. S. Taichman, S. K. Lau, S. Nie, J. Umbreit and H. Shim (2004). "Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4." <u>Cancer Res</u> **64**(12): 4302-8.
- Liang, Z., Y. Yoon, J. Votaw, M. M. Goodman, L. Williams and H. Shim (2005). "Silencing of CXCR4 blocks breast cancer metastasis." <u>Cancer Res</u> 65(3): 967-71.
- Liao, J., A. Schneider, N. S. Datta and L. K. McCauley (2006). "Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis." <u>Cancer Res</u> **66**(18): 9065-73.
- Lieben, L., F. Callewaert and R. Bouillon (2009). "Bone and metabolism: a complex crosstalk." Horm Res **71 Suppl 1**: 134-8.
- Lin, D. L., C. P. Tarnowski, J. Zhang, J. Dai, E. Rohn, A. H. Patel, M. D. Morris and E. T. Keller (2001). "Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro." <u>Prostate</u> **47**(3): 212-21.
- Lindner, V., Q. Wang, B. A. Conley, R. E. Friesel and C. P. Vary (2005). "Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration." <u>Arterioscler Thromb Vasc Biol</u> **25**(1): 77-83.
- Lindsley, A., W. Li, J. Wang, N. Maeda, R. Rogers and S. J. Conway (2005). "Comparison of the four mouse fasciclincontaining genes expression patterns during valvuloseptal morphogenesis." <u>Gene Expr Patterns</u> 5(5): 593-600.
- Lindsley, A., P. Snider, H. Zhou, R. Rogers, J. Wang, M. Olaopa, A. Kruzynska-Frejtag, S. V. Koushik, B. Lilly, J. B. Burch, A. B. Firulli and S. J. Conway (2007). "Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer." <u>Dev Biol</u> **307**(2): 340-55.
- Liotta, L. A. and E. C. Kohn (2001). "The microenvironment of the tumour-host interface." <u>Nature</u> **411**(6835): 375-9.

- Lipton, A., L. Demers, E. Curley, V. Chinchilli, L. Gaydos, G. Hortobagyi, R. Theriault, D. Clemens, L. Costa, J. Seaman and R. Knight (1998). "Markers of bone resorption in patients treated with pamidronate." <u>Eur J Cancer</u> **34**(13): 2021-6.
- Litvin, J., X. Chen, S. Keleman, S. Zhu and M. Autieri (2007). "Expression and function of periostin-like factor in vascular smooth muscle cells." <u>Am J Physiol Cell Physiol</u> **292**(5): C1672-80.
- Litvin, J., A. H. Selim, M. O. Montgomery, K. Lehmann, M. C. Rico, H. Devlin, D. P. Bednarik and F. F. Safadi (2004). "Expression and function of periostin-isoforms in bone." <u>J Cell Biochem</u> **92**(5): 1044-61.
- Litvin, J., S. Zhu, R. Norris and R. Markwald (2005). "Periostin family of proteins: therapeutic targets for heart disease." <u>Anat Rec A Discov Mol Cell Evol Biol</u> **287**(2): 1205-12.
- Liu, X. H., A. Kirschenbaum, S. Yao and A. C. Levine (2006). "Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system." <u>Ann N Y Acad Sci</u> **1068**: 225-33.
- Lock, J. G., B. Wehrle-Haller and S. Stromblad (2008). "Cell-matrix adhesion complexes: master control machinery of cell migration." <u>Semin Cancer Biol</u> **18**(1): 65-76.
- Logothetis, C. J. and S. H. Lin (2005). "Osteoblasts in prostate cancer metastasis to bone." <u>Nat Rev Cancer</u> 5(1): 21-8.
- Lorente, J. A., H. Valenzuela, J. Morote and A. Gelabert (1999). "Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients." <u>Eur J Nucl Med</u> **26**(6): 625-32.
- Lu, X., Q. Wang, G. Hu, C. Van Poznak, M. Fleisher, M. Reiss, J. Massague and Y. Kang (2009). "ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis." <u>Genes Dev</u> 23(16): 1882-94.
- Lüftner, D., A. Richter, R. Geppert, K. D. Wernecke and K. Possinger (2003). "Normalisation of biochemical markers of bone formation correlates with clinical benefit from therapy in metastatic breast cancer." <u>Anticancer</u> <u>Res</u> **23**(2A): 1017-26.
- Lukashev, M. E. and Z. Werb (1998). "ECM signalling: orchestrating cell behaviour and misbehaviour." <u>Trends Cell</u> <u>Biol</u> **8**(11): 437-41.
- Luo, G., P. Ducy, M. D. McKee, G. J. Pinero, E. Loyer, R. R. Behringer and G. Karsenty (1997). "Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein." <u>Nature</u> **386**(6620): 78-81.
- Luo, J. L., W. Tan, J. M. Ricono, O. Korchynskyi, M. Zhang, S. L. Gonias, D. A. Cheresh and M. Karin (2007). "Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin." <u>Nature</u> 446(7136): 690-4.
- Lynch, C. C., A. Hikosaka, H. B. Acuff, M. D. Martin, N. Kawai, R. K. Singh, T. C. Vargo-Gogola, J. L. Begtrup, T. E. Peterson, B. Fingleton, T. Shirai, L. M. Matrisian and M. Futakuchi (2005). "MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL." <u>Cancer Cell</u> 7(5): 485-96.
- Ma, C., Y. Rong, D. R. Radiloff, M. B. Datto, B. Centeno, S. Bao, A. W. Cheng, F. Lin, S. Jiang, T. J. Yeatman and X. F. Wang (2008). "Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation." <u>Genes Dev</u> 22(3): 308-21.
- Ma, D., H. Lu, L. Xu, X. Xu and W. Xiao (2009). "Mechanical loading promotes Lewis lung cancer cell growth through periostin." <u>In Vitro Cell Dev Biol Anim</u>.
- Majesky, M. W. (1994). "Neointima formation after acute vascular injury. Role of counteradhesive extracellular matrix proteins." <u>Tex Heart Inst J</u> **21**(1): 78-85.
- Manolagas, S. C. and R. L. Jilka (1995). "Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis." <u>N Engl J Med</u> **332**(5): 305-11.
- Martin, R. B. (2000). "Toward a unifying theory of bone remodeling." Bone 26(1): 1-6.
- Martinek, N., J. Shahab, J. Sodek and M. Ringuette (2007). "Is SPARC an evolutionarily conserved collagen chaperone?" <u>J Dent Res</u> **86**(4): 296-305.
- Martinetti, A., E. Seregni, C. Ripamonti, L. Ferrari, F. De Conno, R. Miceli, F. Pallotti, A. Coliva, D. Biancolini and E. Bombardieri (2002). "Serum levels of tartrate-resistant acid phosphatase-5b in breast cancer patients treated with pamidronate." Int J Biol Markers **17**(4): 253-8.
- Matsuura, N., W. Puzon-McLaughlin, A. Irie, Y. Morikawa, K. Kakudo and Y. Takada (1996). "Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells." <u>Am J</u> <u>Pathol</u> **148**(1): 55-61.
- Meijer, W. G., E. van der Veer, P. L. Jager, E. J. van der Jagt, B. A. Piers, I. P. Kema, E. G. de Vries and P. H. Willemse (2003). "Bone metastases in carcinoid tumors: clinical features, imaging characteristics, and markers of bone metabolism." J Nucl Med 44(2): 184-91.
- Mejjad, O., X. Le Loet, J. P. Basuyau, J. F. Menard, P. Jego, C. Grisot, A. Daragon, B. Grosbois, L. Euller-Ziegler and M. Monconduit (1996). "Osteocalcin is not a marker of progress in multiple myeloma. Le Groupe d'Etude et de Recherche sur le Myelome (GERM)." <u>Eur J Haematol</u> 56(1-2): 30-4.

- Merle, B., L. Malaval, J. Lawler, P. Delmas and P. Clezardin (1997). "Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1." J Cell Biochem **67**(1): 75-83.
- Michigami, T., N. Shimizu, P. J. Williams, M. Niewolna, S. L. Dallas, G. R. Mundy and T. Yoneda (2000). "Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity." <u>Blood</u> **96**(5): 1953-60.
- Midwood, K. S., L. V. Williams and J. E. Schwarzbauer (2004). "Tissue repair and the dynamics of the extracellular matrix." Int J Biochem Cell Biol **36**(6): 1031-7.
- Mochizuki, H., A. Matsubara, J. Teishima, K. Mutaguchi, H. Yasumoto, R. Dahiya, T. Usui and K. Kamiya (2004). "Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis." <u>Biochem Biophys Res Commun</u> **320**(3): 656-63.
- Mori, Y., N. Shimizu, M. Dallas, M. Niewolna, B. Story, P. J. Williams, G. R. Mundy and T. Yoneda (2004). "Antialpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis." <u>Blood</u> 104(7): 2149-54.
- Motellon, J. L., F. J. Jimenez, F. de Miguel, M. J. Jaras, A. Diaz, J. Hurtado and P. Esbrit (2000). "Relationship of plasma bone cytokines with hypercalcemia in cancer patients." <u>Clin Chim Acta</u> **302**(1-2): 59-68.
- Mulari, M. T., Q. Qu, P. L. Harkonen and H. K. Vaananen (2004). "Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro." <u>Calcif Tissue Int</u> **75**(3): 253-61.
- Muller, A., B. Homey, H. Soto, N. Ge, D. Catron, M. E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S. N. Wagner, J. L. Barrera, A. Mohar, E. Verastegui and A. Zlotnik (2001). "Involvement of chemokine receptors in breast cancer metastasis." <u>Nature</u> 410(6824): 50-6.
- Muller, U. (1999). "Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis." <u>Mech Dev</u> 82(1-2): 3-21.
- Mundy, G. R. and J. W. Poser (1983). "Chemotactic activity of the gamma-carboxyglutamic acid containing protein in bone." <u>Calcif Tissue Int</u> **35**(2): 164-8.
- Murphy-Ullrich, J. E. (2001). "The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?" <u>J Clin Invest</u> **107**(7): 785-90.
- Nakamura, E. S., K. Koizumi, M. Kobayashi, Y. Saitoh, Y. Arita, T. Nakayama, H. Sakurai, O. Yoshie and I. Saiki (2006).
 "RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4." <u>Clin Exp Metastasis</u> 23(1): 9-18.
- Nakashima, K., X. Zhou, G. Kunkel, Z. Zhang, J. M. Deng, R. R. Behringer and B. de Crombrugghe (2002). "The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation." <u>Cell</u> **108**(1): 17-29.
- Nakazawa, T., A. Nakajima, N. Seki, A. Okawa, M. Kato, H. Moriya, N. Amizuka, T. A. Einhorn and M. Yamazaki (2004). "Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis." J Orthop Res **22**(3): 520-5.
- Nam, J. O., H. W. Jeong, B. H. Lee, R. W. Park and I. S. Kim (2005). "Regulation of tumor angiogenesis by fastatin, the fourth FAS1 domain of betaig-h3, via alphavbeta3 integrin." <u>Cancer Res</u> **65**(10): 4153-61.
- Nam, J. O., J. E. Kim, H. W. Jeong, S. J. Lee, B. H. Lee, J. Y. Choi, R. W. Park, J. Y. Park and I. S. Kim (2003). "Identification of the alphavbeta3 integrin-interacting motif of betaig-h3 and its anti-angiogenic effect." J <u>Biol Chem</u> 278(28): 25902-9.
- Nelson, J., A. Bagnato, B. Battistini and P. Nisen (2003). "The endothelin axis: emerging role in cancer." <u>Nat Rev</u> <u>Cancer</u> **3**(2): 110-6.
- Neville-Webbe, H. L., N. A. Cross, C. L. Eaton, R. Nyambo, C. A. Evans, R. E. Coleman and I. Holen (2004). "Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAILinduced apoptosis." <u>Breast Cancer Res Treat</u> 86(3): 269-79.
- Niida, S., M. Kaku, H. Amano, H. Yoshida, H. Kataoka, S. Nishikawa, K. Tanne, N. Maeda, S. Nishikawa and H. Kodama (1999). "Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption." J Exp Med 190(2): 293-8.
- Noble, B. S. (2008). "The osteocyte lineage." <u>Arch Biochem Biophys</u> **473**(2): 106-11.
- Noble, B. S., N. Peet, H. Y. Stevens, A. Brabbs, J. R. Mosley, G. C. Reilly, J. Reeve, T. M. Skerry and L. E. Lanyon (2003). "Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone." <u>Am J Physiol Cell Physiol</u> 284(4): C934-43.
- Noda, M. and D. T. Denhardt (2002). Osteopontin. In: <u>Principles of Bone Biology</u>. Eds.: B. J.P., R. L.G. and G. A. Rodan. Academic Press, San Diego, CA, USA. 235-250.
- Noguchi, M. and S. Noda (2001). "Pyridinoline cross-linked carboxyterminal telopeptide of type I collagen as a useful marker for monitoring metastatic bone activity in men with prostate cancer." <u>J Urol</u> **166**(3): 1106-10.

- Norris, R. A., T. K. Borg, J. T. Butcher, T. A. Baudino, I. Banerjee and R. R. Markwald (2008a). "Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin." <u>Ann N Y Acad Sci</u> **1123**: 30-40.
- Norris, R. A., B. Damon, V. Mironov, V. Kasyanov, A. Ramamurthi, R. Moreno-Rodriguez, T. Trusk, J. D. Potts, R. L. Goodwin, J. Davis, S. Hoffman, X. Wen, Y. Sugi, C. B. Kern, C. H. Mjaatvedt, D. K. Turner, T. Oka, S. J. Conway, J. D. Molkentin, G. Forgacs and R. R. Markwald (2007). "Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues." J Cell Biochem 101(3): 695-711.
- Norris, R. A., R. A. Moreno-Rodriguez, Y. Sugi, S. Hoffman, J. Amos, M. M. Hart, J. D. Potts, R. L. Goodwin and R. R. Markwald (2008b). "Periostin regulates atrioventricular valve maturation." <u>Dev Biol</u> **316**(2): 200-13.
- Nyambo, R., N. Cross, J. Lippitt, I. Holen, G. Bryden, F. C. Hamdy and C. L. Eaton (2004). "Human bone marrow stromal cells protect prostate cancer cells from TRAIL-induced apoptosis." <u>J Bone Miner Res</u> **19**(10): 1712-21.
- Oh, H. S., A. Moharita, J. G. Potian, I. P. Whitehead, J. C. Livingston, T. A. Castro, P. S. Patel and P. Rameshwar (2004). "Bone marrow stroma influences transforming growth factor-beta production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells." <u>Cancer Res</u> 64(17): 6327-36.
- Ohno, S., M. Noshiro, S. Makihira, T. Kawamoto, M. Shen, W. Yan, Y. Kawashima-Ohya, K. Fujimoto, K. Tanne and Y. Kato (1999). "RGD-CAP ((beta)ig-h3) enhances the spreading of chondrocytes and fibroblasts via integrin alpha(1)beta(1)." <u>Biochim Biophys Acta</u> **1451**(1): 196-205.
- Oku, E., T. Kanaji, Y. Takata, K. Oshima, R. Seki, S. Morishige, R. Imamura, K. Ohtsubo, M. Hashiguchi, K. Osaki, K. Yakushiji, K. Yoshimoto, H. Ogata, H. Hamada, K. Izuhara, M. Sata and T. Okamura (2008). "Periostin and bone marrow fibrosis." <u>Int J Hematol</u> 88(1): 57-63.
- Oremek, G., H. Sauer-Eppel and M. Klepzig (2007). "Total procollagen type 1 amino-terminal propeptide (total P1NP) as a bone metastasis marker in gynecological carcinomas." <u>Anticancer Res</u> **27**(4A): 1961-2.
- Oremek, G. M., A. Weis, N. Sapoutzis and H. Sauer-Eppel (2003). "Diagnostic value of bone and tumour markers in patients with malignant diseases." <u>Anticancer Res</u> **23**(2A): 987-90.
- Orwoll, E. S. (2003). "Toward an expanded understanding of the role of the periosteum in skeletal health." J Bone Miner Res **18**(6): 949-54.
- Oshima, A., H. Tanabe, T. Yan, G. N. Lowe, C. A. Glackin and A. Kudo (2002). "A novel mechanism for the regulation of osteoblast differentiation: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist." J Cell Biochem **86**(4): 792-804.
- Otto, F., A. P. Thornell, T. Crompton, A. Denzel, K. C. Gilmour, I. R. Rosewell, G. W. Stamp, R. S. Beddington, S. Mundlos, B. R. Olsen, P. B. Selby and M. J. Owen (1997). "Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development." <u>Cell</u> **89**(5): 765-71.
- Ouyang, G., M. Liu, K. Ruan, G. Song, Y. Mao and S. Bao (2009). "Upregulated expression of periostin by hypoxia in non-small-cell lung cancer cells promotes cell survival via the Akt/PKB pathway." <u>Cancer Lett</u> 281(2): 213-9.
- Parikka, V., A. Vaananen, J. Risteli, T. Salo, T. Sorsa, H. K. Vaananen and P. Lehenkari (2005). "Human mesenchymal stem cell derived osteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases." <u>Matrix</u> <u>Biol</u> 24(6): 438-47.
- Park, B. K., H. Zhang, Q. Zeng, J. Dai, E. T. Keller, T. Giordano, K. Gu, V. Shah, L. Pei, R. J. Zarbo, L. McCauley, S. Shi, S. Chen and C. Y. Wang (2007). "NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF." <u>Nat Med</u> **13**(1): 62-9.
- Paterson, C. R., S. P. Robins, J. M. Horobin, P. E. Preece and A. Cuschieri (1991). "Pyridinium crosslinks as markers of bone resorption in patients with breast cancer." <u>Br J Cancer</u> **64**(5): 884-6.
- Paulitschke, V., R. Kunstfeld, T. Mohr, A. Slany, M. Micksche, J. Drach, C. Zielinski, H. Pehamberger and C. Gerner (2009). "Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells." <u>J Proteome Res</u> 8(5): 2501-10.
- Pecherstorfer, M., M. J. Seibel, H. W. Woitge, E. Horn, J. Schuster, J. Neuda, P. Sagaster, H. Kohn, P. Bayer, D. Thiebaud and H. Ludwig (1997). "Bone resorption in multiple myeloma and in monoclonal gammopathy of undetermined significance: quantification by urinary pyridinium cross-links of collagen." <u>Blood</u> **90**(9): 3743-50.
- Pecherstorfer, M., I. Zimmer-Roth, T. Schilling, H. W. Woitge, H. Schmidt, G. Baumgartner, D. Thiebaud, H. Ludwig and M. J. Seibel (1995). "The diagnostic value of urinary pyridinium cross-links of collagen, serum total alkaline phosphatase, and urinary calcium excretion in neoplastic bone disease." J Clin Endocrinol Metab 80(1): 97-103.
- Pécheur, I., O. Peyruchaud, C. M. Serre, J. Guglielmi, C. Voland, F. Bourre, C. Margue, M. Cohen-Solal, A. Buffet, N. Kieffer and P. Clézardin (2002). "Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone." <u>Faseb J</u> 16(10): 1266-8.

- Pereira, R. F., K. W. Halford, M. D. O'Hara, D. B. Leeper, B. P. Sokolov, M. D. Pollard, O. Bagasra and D. J. Prockop (1995). "Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice." <u>Proc Natl Acad Sci U S A</u> 92(11): 4857-61.
- Petrioli, R., S. Rossi, M. Caniggia, D. Pozzessere, S. Messinese, M. Sabatino, S. Marsili, P. Correale, F. Salvestrini, A. Manganelli and G. Francini (2004). "Analysis of biochemical bone markers as prognostic factors for survival in patients with hormone-resistant prostate cancer and bone metastases." <u>Urology</u> 63(2): 321-6.
- Pollock, J. H., M. J. Blaha, S. A. Lavish, S. Stevenson and E. M. Greenfield (1996). "In vivo demonstration that parathyroid hormone and parathyroid hormone-related protein stimulate expression by osteoblasts of interleukin-6 and leukemia inhibitory factor." J Bone Miner Res **11**(6): 754-9.
- Poole, K. E., R. L. van Bezooijen, N. Loveridge, H. Hamersma, S. E. Papapoulos, C. W. Lowik and J. Reeve (2005).
 "Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation." <u>Faseb J</u> 19(13): 1842-4.
- Puglisi, F., C. Puppin, E. Pegolo, C. Andreetta, G. Pascoletti, F. D'Aurizio, M. Pandolfi, G. Fasola, A. Piga, G. Damante and C. Di Loreto (2008). "Expression of periostin in human breast cancer." <u>J Clin Pathol</u> **61**(4): 494-8.
- Puppin, C., D. Fabbro, M. Dima, C. Di Loreto, E. Puxeddu, S. Filetti, D. Russo and G. Damante (2008). "High periostin expression correlates with aggressiveness in papillary thyroid carcinomas." J Endocrinol **197**(2): 401-8.
- Quaresima, B., F. Romeo, M. C. Faniello, M. Di Sanzo, C. G. Liu, A. Lavecchia, C. Taccioli, E. Gaudio, F. Baudi, F. Trapasso, C. M. Croce, G. Cuda and F. Costanzo (2008). "BRCA1 5083del19 mutant allele selectively upregulates periostin expression in vitro and in vivo." <u>Clin Cancer Res</u> **14**(21): 6797-803.
- Raines, E. W. (2000). "The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease." Int J Exp Pathol **81**(3): 173-82.
- Ramankulov, A., M. Lein, G. Kristiansen, S. A. Loening and K. Jung (2007). "Plasma osteopontin in comparison with bone markers as indicator of bone metastasis and survival outcome in patients with prostate cancer." <u>Prostate</u> 67(3): 330-40.
- Reppe, S., L. Stilgren, O. K. Olstad, K. Brixen, L. S. Nissen-Meyer, K. M. Gautvik and B. Abrahamsen (2006). "Gene expression profiles give insight into the molecular pathology of bone in primary hyperparathyroidism." <u>Bone</u> 39(1): 189-98.
- Ribatti, D., B. Nico and A. Vacca (2006). "Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma." <u>Oncogene</u> **25**(31): 4257-66.
- Riener, M. O., F. R. Fritzsche, C. Soll, B. C. Pestalozzi, N. Probst-Hensch, P. A. Clavien, W. Jochum, A. Soltermann, H. Moch and G. Kristiansen (2010). "Expression of the extracellular matrix protein periostin in liver tumours and bile duct carcinomas." <u>Histopathology</u> 56(5): 600-6.
- Rios, H., S. V. Koushik, H. Wang, J. Wang, H. M. Zhou, A. Lindsley, R. Rogers, Z. Chen, M. Maeda, A. Kruzynska-Frejtag, J. Q. Feng and S. J. Conway (2005). "periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype." <u>Mol Cell Biol</u> 25(24): 11131-44.
- Robey, P. G. and A. L. Boskey (2008). Chapter 6. The Composition of Bone. In: <u>Primer on the Metabolic Bone</u> <u>Diseases and Disorders of Mineral Metabolism 5th ed</u>. Eds.: V. Rosen. ASBMR Publications, Durham, NC, USA. **7**: 32-38.
- Rocchi, P., F. Boudouresque, A. J. Zamora, X. Muracciole, E. Lechevallier, P. M. Martin and L. Ouafik (2001). "Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines." <u>Cancer Res</u> 61(3): 1196-206.
- Romberger, D. J. (1997). "Fibronectin." Int J Biochem Cell Biol **29**(7): 939-43.
- Roodman, G. D. (2006). "Regulation of osteoclast differentiation." <u>Ann N Y Acad Sci</u> **1068**: 100-9.
- Ross, F. P. (2008). Chapter 3. Osteoclast Biology and Bone Resorption. In: <u>Primer on the Metabolic Bone Diseases</u> <u>and Disorders of Mineral Metabolism 5th ed</u>. Eds.: V. Rosen. ASBMR Publications, Durham, NC, USA. 7: 16-22.
- Roy, S., D. Patel, S. Khanna, G. M. Gordillo, S. Biswas, A. Friedman and C. K. Sen (2007). "Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue." <u>Proc Natl Acad</u> <u>Sci U S A</u> **104**(36): 14472-7.
- Ruoslahti, E. (1996). "RGD and other recognition sequences for integrins." Annu Rev Cell Dev Biol 12: 697-715.
- Saadi, A., N. B. Shannon, P. Lao-Sirieix, M. O'Donovan, E. Walker, N. J. Clemons, J. S. Hardwick, C. Zhang, M. Das, V. Save, M. Novelli, F. Balkwill and R. C. Fitzgerald (2010). "Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers." <u>Proc Natl Acad Sci U S A</u> 107(5): 2177-82.
- Sanders, J. L., N. Chattopadhyay, O. Kifor, T. Yamaguchi and E. M. Brown (2001). "Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells." <u>Am J Physiol Endocrinol Metab</u> **281**(6): E1267-74.

- Sanders, J. L., N. Chattopadhyay, O. Kifor, T. Yamaguchi, R. R. Butters and E. M. Brown (2000). "Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines." <u>Endocrinology</u> **141**(12): 4357-64.
- Santini, D., B. Vincenzi, R. A. Hannon, J. E. Brown, G. Dicuonzo, S. Angeletti, A. La Cesa, R. E. Coleman, G. Tonini, A. Budillon, M. Caraglia and I. Holen (2006). "Changes in bone resorption and vascular endothelial growth factor after a single zoledronic acid infusion in cancer patients with bone metastases from solid tumours." Oncol Rep 15(5): 1351-7.
- Sasaki, H., M. Dai, D. Auclair, I. Fukai, M. Kiriyama, Y. Yamakawa, Y. Fujii and L. B. Chen (2001a). "Serum level of the periostin, a homologue of an insect cell adhesion molecule, as a prognostic marker in nonsmall cell lung carcinomas." <u>Cancer</u> **92**(4): 843-8.
- Sasaki, H., M. Dai, D. Auclair, M. Kaji, I. Fukai, M. Kiriyama, Y. Yamakawa, Y. Fujii and L. B. Chen (2001b). "Serum level of the periostin, a homologue of an insect cell adhesion molecule, in thymoma patients." <u>Cancer Lett</u> **172**(1): 37-42.
- Sasaki, H., Y. Sato, S. Kondo, I. Fukai, M. Kiriyama, Y. Yamakawa and Y. Fuji (2002). "Expression of the periostin mRNA level in neuroblastoma." J Pediatr Surg **37**(9): 1293-7.
- Sasaki, H., C. Y. Yu, M. Dai, C. Tam, M. Loda, D. Auclair, L. B. Chen and A. Elias (2003). "Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer." <u>Breast Cancer Res Treat</u> 77(3): 245-52.
- Schmidt, G., H. Robenek, B. Harrach, J. Glossl, V. Nolte, H. Hormann, H. Richter and H. Kresse (1987). "Interaction of small dermatan sulfate proteoglycan from fibroblasts with fibronectin." <u>J Cell Biol</u> **104**(6): 1683-91.
- Schneider, A., L. M. Kalikin, A. C. Mattos, E. T. Keller, M. J. Allen, K. J. Pienta and L. K. McCauley (2005). "Bone turnover mediates preferential localization of prostate cancer in the skeleton." <u>Endocrinology</u> 146(4): 1727-36.
- Schvartz, I., D. Seger and S. Shaltiel (1999). "Vitronectin." Int J Biochem Cell Biol **31**(5): 539-44.
- Schwaninger, R., C. A. Rentsch, A. Wetterwald, G. van der Horst, R. L. van Bezooijen, G. van der Pluijm, C. W. Lowik, K. Ackermann, W. Pyerin, F. C. Hamdy, G. N. Thalmann and M. G. Cecchini (2007). "Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases." <u>Am J Pathol</u> 170(1): 160-75.
- Seibel, M. J. (2008). "The use of molecular markers of bone turnover in the management of patients with metastatic bone disease." <u>Clin Endocrinol (Oxf)</u> **68**(6): 839-49.
- Seibel, M. J., M. Koeller, B. Van der Velden and I. Diel (2002a). "Long-term variability of bone turnover markers in patients with non-metastatic breast cancer." <u>Clin Lab</u> **48**(11-12): 579-82.
- Seibel, M. J., M. Koeller, B. Van der Velden and I. Diel (2002b). "Markers of bone turnover do not predict bone metastases in breast cancer." <u>Clin Lab</u> **48**(11-12): 583-8.
- Seibel, M. J., H. W. Woitge, M. Pecherstorfer, M. Karmatschek, E. Horn, H. Ludwig, F. P. Armbruster and R. Ziegler (1996). "Serum immunoreactive bone sialoprotein as a new marker of bone turnover in metabolic and malignant bone disease." <u>J Clin Endocrinol Metab</u> 81(9): 3289-94.
- Selvamurugan, N., S. Kwok and N. C. Partridge (2004). "Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells." J Biol Chem 279(26): 27764-73.
- Shao, R., S. Bao, X. Bai, C. Blanchette, R. M. Anderson, T. Dang, M. L. Gishizky, J. R. Marks and X. F. Wang (2004).
 "Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression." <u>Mol Cell Biol</u> 24(9): 3992-4003.
- Shao, R. and X. Guo (2004). "Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a model for the study of in vitro angiogenesis." <u>Biochem Biophys Res Commun</u> **321**(4): 788-94.
- Shi, Q., S. Bao, J. A. Maxwell, E. D. Reese, H. S. Friedman, D. D. Bigner, X. F. Wang and J. N. Rich (2004). "Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation." J <u>Biol Chem</u> 279(50): 52200-9.
- Shimazaki, M., K. Nakamura, I. Kii, T. Kashima, N. Amizuka, M. Li, M. Saito, K. Fukuda, T. Nishiyama, S. Kitajima, Y. Saga, M. Fukayama, M. Sata and A. Kudo (2008). "Periostin is essential for cardiac healing after acute myocardial infarction." J Exp Med 205(2): 295-303.
- Shimo, T., S. Kubota, N. Yoshioka, S. Ibaragi, S. Isowa, T. Eguchi, A. Sasaki and M. Takigawa (2006). "Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer." <u>J Bone Miner</u> <u>Res</u> 21(7): 1045-59.
- Shulby, S. A., N. G. Dolloff, M. E. Stearns, O. Meucci and A. Fatatis (2004). "CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells." <u>Cancer</u> <u>Res</u> 64(14): 4693-8.
- Simonet, W. S., D. L. Lacey, C. R. Dunstan, M. Kelley, M. S. Chang, R. Luthy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H. L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay,

L. Renshaw-Gegg, T. M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee and W. J. Boyle (1997). "Osteoprotegerin: a novel secreted protein involved in the regulation of bone density." <u>Cell</u> **89**(2): 309-19.

- Singh, B., J. A. Berry, A. Shoher, G. D. Ayers, C. Wei and A. Lucci (2007). "COX-2 involvement in breast cancer metastasis to bone." <u>Oncogene</u> **26**(26): 3789-96.
- Singh, B., J. A. Berry, A. Shoher and A. Lucci (2006a). "COX-2 induces IL-11 production in human breast cancer cells." J Surg Res **131**(2): 267-75.
- Singh, B., J. A. Berry, L. E. Vincent and A. Lucci (2006b). "Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer." J Surg Res **134**(1): 44-51.
- Sipkins, D. A., X. Wei, J. W. Wu, J. M. Runnels, D. Cote, T. K. Means, A. D. Luster, D. T. Scadden and C. P. Lin (2005). "In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment." <u>Nature</u> **435**(7044): 969-73.
- Siriwardena, B. S., Y. Kudo, I. Ogawa, M. Kitagawa, S. Kitajima, H. Hatano, W. M. Tilakaratne, M. Miyauchi and T. Takata (2006). "Periostin is frequently overexpressed and enhances invasion and angiogenesis in oral cancer." <u>Br J Cancer</u> **95**(10): 1396-403.
- Skonier, J., M. Neubauer, L. Madisen, K. Bennett, G. D. Plowman and A. F. Purchio (1992). "cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta." <u>DNA Cell Biol</u> 11(7): 511-22.
- Smith, M. J., A. C. Culhane, M. Donovan, J. C. Coffey, B. D. Barry, M. A. Kelly, D. G. Higgins, J. H. Wang, W. O. Kirwan, T. G. Cotter and H. P. Redmond (2009). "Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification." <u>Br J Cancer</u> 100(9): 1452-64.
- Snider, P., R. B. Hinton, R. A. Moreno-Rodriguez, J. Wang, R. Rogers, A. Lindsley, F. Li, D. A. Ingram, D. Menick, L. Field, A. B. Firulli, J. D. Molkentin, R. Markwald and S. J. Conway (2008). "Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart." <u>Circ Res</u> 102(7): 752-60.
- Soikkeli, J., P. Podlasz, M. Yin, P. Nummela, T. Jahkola, S. Virolainen, L. Krogerus, P. Heikkila, K. von Smitten, O. Saksela and E. Holtta (2010). "Metastatic Outgrowth Encompasses COL-I, FN1, and POSTN Up-Regulation and Assembly to Fibrillar Networks Regulating Cell Adhesion, Migration, and Growth." <u>Am J Pathol</u>.
- Soltermann, A., V. Tischler, S. Arbogast, J. Braun, N. Probst-Hensch, W. Weder, H. Moch and G. Kristiansen (2008). "Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer." <u>Clin Cancer Res</u> **14**(22): 7430-7.
- Sommerfeldt, D. W. and C. T. Rubin (2001). "Biology of bone and how it orchestrates the form and function of the skeleton." <u>Eur Spine J</u> **10 Suppl 2**: S86-95.
- Song, G., Y. Ming, Y. Mao, S. Bao and G. Ouyang (2008). "Osteopontin prevents curcumin-induced apoptosis and promotes survival through Akt activation via alpha v beta 3 integrins in human gastric cancer cells." <u>Exp</u> <u>Biol Med (Maywood)</u> **233**(12): 1537-45.
- Song, G., G. Ouyang and S. Bao (2005). "The activation of Akt/PKB signaling pathway and cell survival." <u>J Cell Mol</u> <u>Med</u> **9**(1): 59-71.
- Sotiriou, C., M. Lacroix, L. Lespagnard, D. Larsimont, M. Paesmans and J. J. Body (2001). "Interleukins-6 and -11 expression in primary breast cancer and subsequent development of bone metastases." <u>Cancer Lett</u> **169**(1): 87-95.
- Springer, I. N., H. Terheyden, M. A. Suhr, P. Warnke, A. Dunsche, M. Tiemann and Y. Acil (2003). "Follow-up of collagen crosslink excretion in patients with oral squamous cell carcinoma and analysis of tissue samples." <u>Br J Cancer</u> 89(9): 1722-8.
- Stamenkovic, I. (2003). "Extracellular matrix remodelling: the role of matrix metalloproteinases." J Pathol 200(4): 448-64.
- Stein, G. S., J. B. Lian, A. J. van Wijnen, J. L. Stein, M. Montecino, A. Javed, S. K. Zaidi, D. W. Young, J. Y. Choi and S. M. Pockwinse (2004). "Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression." <u>Oncogene</u> 23(24): 4315-29.
- Stock, M., H. Schafer, M. Fliegauf and F. Otto (2004). "Identification of novel genes of the bone-specific transcription factor Runx2." J Bone Miner Res **19**(6): 959-72.
- Studebaker, A. W., G. Storci, J. L. Werbeck, P. Sansone, A. K. Sasser, S. Tavolari, T. Huang, M. W. Chan, F. C. Marini, T. J. Rosol, M. Bonafe and B. M. Hall (2008). "Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner." <u>Cancer Res</u> 68(21): 9087-95.
- Sugiura, T., H. Takamatsu, A. Kudo and E. Amann (1995). "Expression and characterization of murine osteoblastspecific factor 2 (OSF-2) in a baculovirus expression system." <u>Protein Expr Purif</u> **6**(3): 305-11.

- Sun, Y. X., M. Fang, J. Wang, C. R. Cooper, K. J. Pienta and R. S. Taichman (2007). "Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells." <u>Prostate</u> 67(1): 61-73.
- Sun, Y. X., A. Schneider, Y. Jung, J. Wang, J. Dai, J. Wang, K. Cook, N. I. Osman, A. J. Koh-Paige, H. Shim, K. J. Pienta, E. T. Keller, L. K. McCauley and R. S. Taichman (2005). "Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo." J Bone Miner Res 20(2): 318-29.
- Sutherland, M. K., J. C. Geoghegan, C. Yu, E. Turcott, J. E. Skonier, D. G. Winkler and J. A. Latham (2004). "Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation." <u>Bone</u> **35**(4): 828-35.
- Sutton, C. W., N. Rustogi, A. Scally, C. Gurkan, M. A. Loizidou, A. Hadjisavvas and K. Kyriacou (2010). "Quantitative Proteomic Profiling of Matched Normal and Tumor Breast Tissues." J Proteome Res.
- Tai, I. T., M. Dai and L. B. Chen (2005). "Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by anti-periostin antibodies." <u>Carcinogenesis</u> **26**(5): 908-15.
- Takanami, I., T. Abiko and S. Koizumi (2008). "Expression of periostin in patients with non-small cell lung cancer: correlation with angiogenesis and lymphangiogenesis." Int J Biol Markers **23**(3): 182-6.
- Takayama, G., K. Arima, T. Kanaji, S. Toda, H. Tanaka, S. Shoji, A. N. McKenzie, H. Nagai, T. Hotokebuchi and K. Izuhara (2006). "Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals." J Allergy Clin Immunol **118**(1): 98-104.
- Takeshita, S., R. Kikuno, K. Tezuka and E. Amann (1993). "Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I." <u>Biochem J</u> **294 (Pt 1)**: 271-8.
- Tamura, D., T. Hirag, A. Myoui, H. Yoshikawa and T. Yoneda (2004). Cadherin-11-mediated interactions between metastatic breast cancer cells and bone marrow stromal/osteoblastic cells enhance bone metastases. <u>26th Annual Meeting of the American-Society-for-Bone-and-Mineral-Research</u>. Seattle, WA, Amer Soc Bone & Mineral Res. **19:** S65-S65.
- Tayebjee, M. H., R. J. MacFadyen and G. Y. Lip (2003). "Extracellular matrix biology: a new frontier in linking the pathology and therapy of hypertension?" J Hypertens **21**(12): 2211-8.
- Terpos, E., J. Palermos, K. Tsionos, K. Anargyrou, N. Viniou, P. Papassavas, J. Meletis and X. Yataganas (2000). "Effect of pamidronate administration on markers of bone turnover and disease activity in multiple myeloma." <u>Eur J Haematol</u> 65(5): 331-6.
- Terpos, E., M. Politou, R. Szydlo, E. Nadal, S. Avery, E. Olavarria, E. Kanfer, J. M. Goldman, J. F. Apperley and A. Rahemtulla (2004). "Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma." <u>Leukemia</u> 18(8): 1420-6.
- Terpos, E., R. Szydlo, J. F. Apperley, E. Hatjiharissi, M. Politou, J. Meletis, N. Viniou, X. Yataganas, J. M. Goldman and A. Rahemtulla (2003). "Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index." <u>Blood</u> **102**(3): 1064-9.
- Teti, A. and A. Zallone (2009). "Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited." <u>Bone</u> **44**(1): 11-6.
- Thiery, J. P. (2002). "Epithelial-mesenchymal transitions in tumour progression." <u>Nat Rev Cancer</u> 2(6): 442-54.
- Thiery, J. P. and J. P. Sleeman (2006). "Complex networks orchestrate epithelial-mesenchymal transitions." <u>Nat Rev</u> <u>Mol Cell Biol</u> **7**(2): 131-42.
- Thomas, R. J., T. A. Guise, J. J. Yin, J. Elliott, N. J. Horwood, T. J. Martin and M. T. Gillespie (1999). "Breast cancer cells interact with osteoblasts to support osteoclast formation." <u>Endocrinology</u> **140**(10): 4451-8.
- Thurairaja, R., R. K. Iles, K. Jefferson, J. P. McFarlane and R. A. Persad (2006). "Serum amino-terminal propeptide of type 1 procollagen (P1NP) in prostate cancer: a potential predictor of bone metastases and prognosticator for disease progression and survival." <u>Urol Int</u> **76**(1): 67-71.
- Tian, E., F. Zhan, R. Walker, E. Rasmussen, Y. Ma, B. Barlogie and J. D. Shaughnessy, Jr. (2003). "The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma." <u>N Engl J</u> <u>Med</u> 349(26): 2483-94.
- Tilman, G., M. Mattiussi, F. Brasseur, N. van Baren and A. Decottignies (2007). "Human periostin gene expression in normal tissues, tumors and melanoma: evidences for periostin production by both stromal and melanoma cells." <u>Mol Cancer</u> **6**: 80.
- Tischler, V., F. R. Fritzsche, P. J. Wild, C. Stefan, H. H. Seifert, M. O. Riener, T. Hermanns, A. Mortezavi, J. Gerhardt,
 P. Schraml, K. Jung, H. Moch, A. Soltermann and G. Kristiansen (2010). "Periostin is up-regulated in high grade and high stage prostate cancer." <u>BMC Cancer</u> 10(1): 273.
- Tometsko, M., A. Armstrong, R. Miller, J. Jones, M. Chaisson, D. Branstetter and W. Dougall (2004). RANK ligand directly induces osteoclastogenic, angiogenic, chemoattractive and invasive factors on RANK-expressing human cancer cells MDA-MB-231 and PC3. <u>26th Annual Meeting of the American-Society-for-Bone-and-Mineral-Research</u>. Seattle, WA, Amer Soc Bone & Mineral Res. **19**: S25-S25.

- Tomokiyo, A., H. Maeda, S. Fujii, N. Wada, K. Shima and A. Akamine (2008). "Development of a multipotent clonal human periodontal ligament cell line." <u>Differentiation</u> **76**(4): 337-47.
- Tsunoda, T., B. Furusato, Y. Takashima, S. Ravulapalli, A. Dobi, S. Srivastava, D. G. McLeod, I. A. Sesterhenn, D. K. Ornstein and S. Shirasawa (2009). "The increased expression of periostin during early stages of prostate cancer and advanced stages of cancer stroma." <u>Prostate</u> **69**(13): 1398-403.
- Uitto, J. (1979). "Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases." J Invest Dermatol **72**(1): 1-10.
- Uitto, J. and J. R. Lichtenstein (1976). "Defects in the biochemistry of collagen in diseases of connective tissue." J Invest Dermatol **66**(02): 59-79.
- Ulrich, U., K. Rhiem, J. Schmolling, C. Flaskamp, I. Paffenholz, H. Salzer, T. Bauknecht and H. Schlebusch (2001). "Cross-linked type I collagen C- and N-telopeptides in women with bone metastases from breast cancer." <u>Arch Gynecol Obstet</u> **264**(4): 186-90.
- van Alphen, R. J., E. A. Wiemer, H. Burger and F. A. Eskens (2009). "The spliceosome as target for anticancer treatment." <u>Br J Cancer</u> **100**(2): 228-32.
- van der Pluijm, G., B. Sijmons, H. Vloedgraven, C. van der Bent, J. W. Drijfhout, J. Verheijen, P. Quax, M. Karperien,
 S. Papapoulos and C. Lowik (2001). "Urokinase-receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo." <u>Am J Pathol</u> 159(3): 971-82.
- van Golen, C. M., T. S. Schwab, B. Kim, M. E. Soules, S. Su Oh, K. Fung, K. L. van Golen and E. L. Feldman (2006). "Insulin-like growth factor-I receptor expression regulates neuroblastoma metastasis to bone." <u>Cancer Res</u> **66**(13): 6570-8.
- Venkitaraman, A. R. (2002). "Cancer susceptibility and the functions of BRCA1 and BRCA2." Cell 108(2): 171-82.
- Vinholes, J., R. Coleman, D. Lacombe, C. Rose, M. Tubiana-Hulin, P. Bastit, J. Wildiers, J. Michel, R. Leonard, J. Nortier, F. Mignolet and J. Ford (1999). "Assessment of bone response to systemic therapy in an EORTC trial: preliminary experience with the use of collagen cross-link excretion. European Organization for Research and Treatment of Cancer." <u>Br J Cancer</u> **80**(1-2): 221-8.
- Vinholes, J. J., O. P. Purohit, M. E. Abbey, R. Eastell and R. E. Coleman (1997). "Relationships between biochemical and symptomatic response in a double-blind randomised trial of pamidronate for metastatic bone disease." <u>Ann Oncol</u> **8**(12): 1243-50.
- Vogel, K. G., M. Paulsson and D. Heinegard (1984). "Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon." <u>Biochem J</u> **223**(3): 587-97.
- Voorzanger-Rousselot, N. and P. Garnero (2007). "Biochemical markers in oncology. Part I: molecular basis. Part II: clinical uses." <u>Cancer Treat Rev</u> **33**(3): 230-83.
- Voorzanger-Rousselot, N., D. Goehrig, F. Journe, V. Doriath, J. J. Body, P. Clézardin and P. Garnero (2007). "Increased Dickkopf-1 expression in breast cancer bone metastases." <u>Br J Cancer</u> **97**(7): 964-70.
- Voorzanger-Rousselot, N., F. Juillet, E. Mareau, J. Zimmermann, T. Kalebic and P. Garnero (2006). "Association of 12 serum biochemical markers of angiogenesis, tumour invasion and bone turnover with bone metastases from breast cancer: a crossectional and longitudinal evaluation." <u>Br J Cancer</u> **95**(4): 506-14.
- Wada, N., M. Fujisaki, S. Ishii, T. Ikeda and M. Kitajima (2001). "Evaluation of bone metabolic markers in breast cancer with bone metastasis." <u>Breast Cancer</u> 8(2): 131-7.
- Wada, S., Y. Katayama, Y. Yasutomo, N. Kugai and N. Nagata (1993). "Changes of bone metabolic markers in patients with bone metastases: clinical significance in assessing bone response to chemotherapy." <u>Intern</u> <u>Med</u> 32(8): 611-8.
- Wallace, D. P., M. T. Quante, G. A. Reif, E. Nivens, F. Ahmed, S. J. Hempson, G. Blanco and T. Yamaguchi (2008).
 "Periostin induces proliferation of human autosomal dominant polycystic kidney cells through {alpha}V-integrin receptor." <u>Am J Physiol Renal Physiol</u> 295(5): F1463-71.
- Wallner, K., P. K. Shah and B. G. Sharifi (2002). "Balloon catheterization induces arterial expression of new Tenascin-C isoform." <u>Atherosclerosis</u> **161**(1): 75-83.
- Wang, C. C., J. J. Chen and P. C. Yang (2006). "Multifunctional transcription factor YY1: a therapeutic target in human cancer?" <u>Expert Opin Ther Targets</u> **10**(2): 253-66.
- Westendorf, J. J., R. A. Kahler and T. M. Schroeder (2004). "Wnt signaling in osteoblasts and bone diseases." <u>Gene</u> **341**: 19-39.
- Wilde, J., M. Yokozeki, K. Terai, A. Kudo and K. Moriyama (2003). "The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement." <u>Cell Tissue Res</u> **312**(3): 345-51.
- Winter, M. C. and R. E. Coleman (2009). "Bisphosphonates in breast cancer: teaching an old dog new tricks." <u>Curr</u> <u>Opin Oncol</u> **21**(6): 499-506.
- Woitge, H. W., M. Pecherstorfer, E. Horn, A. V. Keck, I. J. Diel, P. Bayer, H. Ludwig, R. Ziegler and M. J. Seibel (2001).
 "Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma." <u>Br J Cancer</u> 84(3): 344-51.

- Wymenga, L. F., K. Groenier, J. Schuurman, J. H. Boomsma, R. O. Elferink and H. J. Mensink (2001). "Pretreatment levels of urinary deoxypyridinoline as a potential marker in patients with prostate cancer with or without bone metastasis." <u>BJU Int</u> 88(3): 231-5.
- Wysolmerski, J. J., P. R. Dann, E. Zelazny, M. E. Dunbar, K. L. Insogna, T. A. Guise and A. S. Perkins (2002). "Overexpression of parathyroid hormone-related protein causes hypercalcemia but not bone metastases in a murine model of mammary tumorigenesis." J Bone Miner Res **17**(7): 1164-70.
- Yamaguchi, A., T. Komori and T. Suda (2000). "Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1." <u>Endocr Rev</u> **21**(4): 393-411.
- Yamaguchi, Y., D. M. Mann and E. Ruoslahti (1990). "Negative regulation of transforming growth factor-beta by the proteoglycan decorin." <u>Nature</u> **346**(6281): 281-4.
- Yan, Q. and E. H. Sage (1999). "SPARC, a matricellular glycoprotein with important biological functions." J <u>Histochem Cytochem</u> **47**(12): 1495-506.
- Yan, W. and R. Shao (2006). "Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation." J Biol Chem **281**(28): 19700-8.
- Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand and J. Holash (2000). "Vascular-specific growth factors and blood vessel formation." <u>Nature</u> **407**(6801): 242-8.
- Yang, J., S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson and R. A. Weinberg (2004). "Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis." <u>Cell</u> **117**(7): 927-39.
- Yang, Z., T. R. Kyriakides and P. Bornstein (2000). "Matricellular proteins as modulators of cell-matrix interactions: adhesive defect in thrombospondin 2-null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2." <u>Mol Biol Cell</u> **11**(10): 3353-64.
- Yeung, F., W. K. Law, C. H. Yeh, J. J. Westendorf, Y. Zhang, R. Wang, C. Kao and L. W. Chung (2002). "Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells." <u>J Biol Chem</u> 277(4): 2468-76.
- Yi, B., P. J. Williams, M. Niewolna, Y. Wang and T. Yoneda (2002). "Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer." <u>Cancer Res</u> 62(3): 917-23.
- Yilmaz, M., G. Christofori and F. Lehembre (2007). "Distinct mechanisms of tumor invasion and metastasis." <u>Trends</u> <u>Mol Med</u> **13**(12): 535-41.
- Yin, J. J., K. S. Mohammad, S. M. Kakonen, S. Harris, J. R. Wu-Wong, J. L. Wessale, R. J. Padley, I. R. Garrett, J. M. Chirgwin and T. A. Guise (2003). "A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases." <u>Proc Natl Acad Sci U S A</u> 100(19): 10954-9.
- Yin, J. J., K. Selander, J. M. Chirgwin, M. Dallas, B. G. Grubbs, R. Wieser, J. Massague, G. R. Mundy and T. A. Guise (1999). "TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development." <u>J Clin Invest</u> 103(2): 197-206.
- Yoneda, T., P. Williams, C. Dunstan, J. Chavez, M. Niewolna and G. R. Mundy (1995). "Growth of Metastatic Cancer-Cells in Bone Is Enhanced by Bone-Derived Insulin-Like Growth-Factors (Igfs)." <u>Journal of Bone and</u> <u>Mineral Research</u> **10**: S196-S196.
- Yoshida, A., Y. Nakamura, A. Shimizu, M. Harada, Y. Kameda, A. Nagano, M. Inaba and T. Asaga (2000). "Significance of the parathyroid hormone-related protein expression in breast carcinoma." <u>Breast Cancer</u> **7**(3): 215-20.
- Yoshioka, N., S. Fuji, M. Shimakage, K. Kodama, A. Hakura, M. Yutsudo, H. Inoue and H. Nojima (2002). "Suppression of anchorage-independent growth of human cancer cell lines by the TRIF52/periostin/OSF-2 gene." <u>Exp Cell Res</u> 279(1): 91-9.
- Zalatnai, A. (2006). "Molecular aspects of stromal-parenchymal interactions in malignant neoplasms." <u>Curr Mol</u> <u>Med</u> **6**(6): 685-93.
- Zayzafoon, M., S. A. Abdulkadir and J. M. McDonald (2004). "Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines." J Biol Chem **279**(5): 3662-70.
- Zelenka, P. S. (2004). "Regulation of cell adhesion and migration in lens development." Int J Dev Biol **48**(8-9): 857-65.
- Zhang, Y., G. Zhang, J. Li, Q. Tao and W. Tang (2010). "The expression analysis of periostin in human breast cancer." <u>J Surg Res</u> **160**(1): 102-6.
- Zhao, Y., R. Bachelier, I. Treilleux, P. Pujuguet, O. Peyruchaud, R. Baron, P. Clément-Lacroix and P. Clézardin (2007). "Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases." <u>Cancer Res</u> **67**(12): 5821-30.
- Zheng, Y., H. Zhou, J. R. Modzelewski, R. Kalak, J. M. Blair, M. J. Seibel and C. R. Dunstan (2007). "Accelerated bone resorption, due to dietary calcium deficiency, promotes breast cancer tumor growth in bone." <u>Cancer Res</u> 67(19): 9542-8.

- Zhu, M., M. S. Fejzo, L. Anderson, J. Dering, C. Ginther, L. Ramos, J. C. Gasson, B. Y. Karlan and D. J. Slamon (2010). "Periostin promotes ovarian cancer angiogenesis and metastasis." <u>Gynecol Oncol</u>.
- Zhu, S., M. F. Barbe, N. Amin, S. Rani, S. N. Popoff, F. F. Safadi and J. Litvin (2008). "Immunolocalization of Periostin-like factor and Periostin during embryogenesis." J Histochem Cytochem **56**(4): 329-45.
- Zhu, S., M. F. Barbe, C. Liu, M. Hadjiargyrou, S. N. Popoff, S. Rani, F. F. Safadi and J. Litvin (2009). "Periostin-like-factor in osteogenesis." J Cell Physiol **218**(3): 584-92.
- Zimmerman, L. B., J. M. De Jesus-Escobar and R. M. Harland (1996). "The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4." <u>Cell</u> **86**(4): 599-606.

PARTIE VI :

LISTE DES COMMUNICATIONS SCIENTIFIQUES

ARTICLES DE RECHERCHE

Contié S, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clézardin P, Garnero P (2010). Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice. Calcif Tissue Int (*in press*), DOI: 10.1007/s00223-010-9391y, PubMed ID: 20567965

Contié S, Voorzanger-Rousselot N, Litvin J, Clézardin P, Garnero P (2010). Increased expression and serum levels of the stromal cell-secreted protein periostin in breast cancer bone metastases. Int J Cancer (*in press*), DOI: 10.1002/ijc.25591, PubMed ID: 20715172

Contié S, Clézardin P, Garnero P. Genomic meta-analysis of the expression of periostin and related proteins in cancer. PLoS ONE (*submitted*)

REVUES

CONGRÈS

<u>The 36th European Symposium on Calcified Tissues (The European Calcified Tissue Society)</u>. **Contié S**, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clézardin P, Garnero P (2009). Development of a new ELISA for serum periostin: growth-related changes and effects of bisphosphonate in mice. Bone 44: S253–S338

<u>The 31st American Society for Bone and Mineral Research Annual Meeting (ASBMR)</u>. **Contié S**, Voorzanger-Rousselot N, Litvin J, Clézardin P, Garnero P (2009). Periostin is a marker of stromal reaction induced by bone metastases from breast cancer. J Bone Miner Res 24 (Suppl 1)

<u>The 9th International Meeting on Cancer Induced Bone Diseases (The Cancer and Bone Society)</u>. **Contié S**, Voorzanger-Rousselot N, Litvin J, Clézardin P, Garnero P (2010). Periostin as a circulating marker for breast cancer bone metastases. Bone 47: S255–S329

BREVETS

Sequences, antibodies, methods and kits for the detection and in vitro assay of periostin, for diagnosis, follow-up or prognosis of pathologies or biological phenomena involving periostin. *P. Garnero, S. Contié*, N. Voorzanger-Rousselot, P. Clézardin. Dépôt PCT.

LA PÉRIOSTINE, UN NOUVEAU BIOMARQUEUR DES MÉTASTASES OSSEUSES : DÉVELOPPEMENT D'UN IMMUNODOSAGE ET ÉVALUATION PRÉCLINIQUE

Résumé : La périostine est une protéine matricellulaire préférentiellement exprimée aux sites de contraintes mécaniques, notamment le périoste, et dans le stroma associé à de nombreux types de cancers. En premier lieu, nous nous sommes attachés à évaluer la pertinence de cette protéine en tant que biomarqueur du métabolisme osseux et de la réaction stromale dans les métastases osseuses. Nous avons développé le premier dosage ELISA de la périostine circulante chez la souris présentant des caractéristiques analytiques (spécificité, précision) conformes aux exigences réglementaires. Ce dosage nous a permis de préciser l'implication de la périostine dans le métabolisme osseux et les métastases osseuses de cancer du sein. Nos données in vitro et in vivo suggèrent que la périostine n'est pas un indice direct du remodelage osseux, contrairement aux marqueurs biologiques conventionnels, mais une composante de l'ossification primaire. Nous avons aussi montré dans les métastases osseuses d'origine mammaire que la périostine est surexprimée par les cellules stromales de la métastase, comme cela a pu être observé au niveau des tumeurs primaires. Enfin, nous avons confirmé par une approche bioinformatique la relation étroite entre périostine et réaction stromale dans la plupart des tumeurs chez l'Homme. La périostine et d'autres protéines conjointement exprimées pourraient donc constituer un panel de marqueurs biologiques de la progression tumorale, certains pouvant se révéler comme nouvelles cibles thérapeutiques en oncologie.

Mots clés : Périostine; cancer; métastases osseuses; réaction stromale; périoste; ELISA; marqueurs osseux; ossification ontogénique

PERIOSTIN, A NEW BIOMARKER OF BONE METASTASES: IMMUNOASSAY DEVELOPMENT AND PRECLINICAL ASSESSMENT

Abstract: Periostin is a matricellular protein preferentially expressed at sites subjected to mechanical constraints, including the periosteum, and in the stroma associated to several tumor types. We first aimed to evaluate the relevance of periostin as a biomarker of bone metabolism or stromal reaction in bone metastases. We developed the first ELISA for serum periostin in mouse with analytical characteristics (specificity, precision) that are in accordance with regulatory standards. This ELISA allowed us to specify further the involvement of periostin in bone metabolism and breast cancer bone metastases. Our *in vitro* and *in vivo* data suggested that periostin is a component of primary ossification rather than a direct index of bone remodeling, unlike conventional bone markers. In breast cancer bone metastases, we also showed that periostin is overexpressed by stromal cells associated with bone metastasis, in agreement with its localization in the stroma of primary tumors. Finally, using bioinformatics analyses of large datasets from various tumors in human, we confirmed the close relationship between periostin and the stromal reaction. Periostin and other co-expressed proteins could therefore constitute a set of biological markers of cancer progression, and/or appear as potential therapeutic targets.

Key words: Periostin; cancer; bone metastasis; stromal reaction; periosteum; ELISA; bone markers; ontogenetic ossification

Laboratoires :

Synarc Biochemical Markers 16 rue Montbrillant, 69003 Lyon

INSERM U664, UFR Médecine Lyon-Est 7 rue Guillaume Paradin, 69372 Lyon