A. Hubert and R. Schafer, Magnetic Domains, 1998.
URL : https://hal.archives-ouvertes.fr/jpa-00214508

U. Hartmann, MAGNETIC FORCE MICROSCOPY, Annual Review of Materials Science, vol.29, issue.1, p.53, 1999.
DOI : 10.1146/annurev.matsci.29.1.53

M. R. Freeman and B. C. Choi, Advances in Magnetic Microscopy, Science, vol.294, issue.5546, p.1484, 2001.
DOI : 10.1126/science.1065300

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the Spin Hall Effect in Semiconductors, Science, vol.306, issue.5703, p.1910, 2004.
DOI : 10.1126/science.1105514

N. Nagaosa, J. Sinova, S. Onoda, A. H. Macdonald, and N. P. Ong, Anomalous Hall effect, Reviews of Modern Physics, vol.82, issue.2, p.1539, 2010.
DOI : 10.1103/RevModPhys.82.1539

L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nature Materials, vol.96, issue.3, p.179, 2008.
DOI : 10.1038/nmat2133

L. Luan, Magnetic force microscopy studies of unconventional superconductors single vortex manipulation and magnetic penetration depth measurements, Thèse de Doctorat, 2011.

S. J. Bending, Local magnetic probes of superconductors, Advances in Physics, vol.48, issue.4, p.449, 1999.
DOI : 10.1080/000187399243437

J. W. Mcclure, Diamagnetism of Graphite, Physical Review, vol.104, issue.3, p.666, 1956.
DOI : 10.1103/PhysRev.104.666

O. V. Yazyev, Emergence of magnetism in graphene materials and nanostructures, Reports on Progress in Physics, vol.73, issue.5, p.56501, 2010.
DOI : 10.1088/0034-4885/73/5/056501

L. T. Hall, Monitoring ion-channel function in real time through quantum decoherence, Proceedings of the National Academy of Sciences, vol.107, issue.44, p.18777, 2010.
DOI : 10.1073/pnas.1002562107

R. Kleiner, D. Koelle, F. Ludwig, and E. J. Clarke, Superconducting quantum interference devices: State of the art and applications, Proc. IEEE, p.1534, 2004.
DOI : 10.1109/JPROC.2004.833655

L. T. Hall, High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond, Scientific Reports, vol.314, 2012.
DOI : 10.1038/srep00401

J. B. Aguayo, S. J. Blackband, J. Schoeniger, M. A. Mattingly, and E. M. Hintermann, Nuclear magnetic resonance imaging of a single cell, Nature, vol.35, issue.6075, p.190, 1986.
DOI : 10.1038/322190a0

C. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and E. D. Rugar, Nanoscale magnetic resonance imaging, Proceedings of the National Academy of Sciences, vol.106, issue.5, p.1313, 2009.
DOI : 10.1073/pnas.0812068106

C. A. Meriles, L. Jiang, G. Goldstein, J. S. Hodges, J. Maze et al., Imaging mesoscopic nuclear spin noise with a diamond magnetometer, The Journal of Chemical Physics, vol.133, issue.12, p.124105, 2010.
DOI : 10.1063/1.3483676

URL : http://arxiv.org/abs/1004.5426

D. Rugar, J. Sidles, and E. A. Hero, Single spin detection by magnetic resonance force microscopy, Nature, vol.430, issue.6997, p.430, 2004.
DOI : 10.1038/360563a0

P. Rabl, S. J. Kolkowitz, F. H. Koppens, J. G. Harris, P. Zoller et al., A quantum spin transducer based on nanoelectromechanical resonator arrays, Nature Physics, vol.83, issue.8, p.602, 2010.
DOI : 10.1038/nphys1679

M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin et al., Nanoscale magnetic imaging of a single electron spin under ambient conditions, Nature Physics, vol.92, issue.4, 2012.
DOI : 10.1126/science.1220513

D. Budker and M. Romalis, Optical magnetometry, Nature Physics, vol.185, issue.4, p.227, 2007.
DOI : 10.1063/1.126327

URL : https://hal.archives-ouvertes.fr/hal-00975236

V. Shah, S. Knappe, P. D. Schwindt, and E. J. Kitching, Subpicotesla atomic magnetometry with a microfabricated vapour cell, Nature Photonics, vol.95, issue.11, p.649, 2007.
DOI : 10.1038/nphoton.2007.201

A. M. Chang, Scanning Hall probe microscopy, Applied Physics Letters, vol.61, issue.16, pp.1974-1976, 1992.
DOI : 10.1063/1.108334

G. Boero, M. Demierre, P. Besse, and E. R. Popovic, Micro-Hall devices: performance, technologies and applications, Sensors and Actuators A: Physical, vol.106, issue.1-3, p.314, 2003.
DOI : 10.1016/S0924-4247(03)00192-4

A. Sandhu, A. Okamoto, I. Shibasaki, and E. A. Oral, Nano and micro Hall-effect sensors for room-temperature scanning hall probe microscopy, Microelectronic Engineering, vol.73, issue.74, pp.524-528, 2004.
DOI : 10.1016/S0167-9317(04)00205-9

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher et al., High???resolution scanning SQUID microscope, Applied Physics Letters, vol.66, issue.9, p.1138, 1995.
DOI : 10.1063/1.113838

M. I. Faley, U. Poppe, K. Urban, D. N. Paulson, and R. L. Fagaly, A New Generation of the HTS Multilayer DC-SQUID Magnetometers and Gradiometers, Journal of Physics: Conference Series, vol.43, p.1199, 2006.
DOI : 10.1088/1742-6596/43/1/292

F. Baudenbacher, L. E. Fong, J. R. Holzer, and E. M. Radparvar, Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples, Applied Physics Letters, vol.82, issue.20, p.3487, 2003.
DOI : 10.1063/1.1572968

J. R. Kirtley, Fundamental studies of superconductors using scanning magnetic imaging, Reports on Progress in Physics, vol.73, issue.12, p.126501, 2010.
DOI : 10.1088/0034-4885/73/12/126501

J. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, and E. M. Monthioux, Carbon nanotube superconducting quantum interference device, Nature Nanotechnology, vol.424, issue.1, p.53, 2006.
DOI : 10.1038/nnano.2006.54

URL : https://hal.archives-ouvertes.fr/hal-00700071

A. Finkler, Self-Aligned Nanoscale SQUID on a Tip, Nano Letters, vol.10, issue.3, p.1046, 2010.
DOI : 10.1021/nl100009r

Y. Martin and H. K. Wickramasinghe, Magnetic imaging by ??????force microscopy?????? with 1000 ?? resolution, Applied Physics Letters, vol.50, issue.20, p.1455, 1987.
DOI : 10.1063/1.97800

J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger et al., Magnetic resonance force microscopy, Reviews of Modern Physics, vol.67, issue.1, p.249, 1995.
DOI : 10.1103/RevModPhys.67.249

B. M. Chernobrod and G. P. Berman, Spin microscope based on optically detected magnetic resonance, Journal of Applied Physics, vol.97, issue.1, pp.14903-014903, 2005.
DOI : 10.1063/1.1829373

URL : http://arxiv.org/abs/quant-ph/0405143

J. Wrachtrup, C. Von-borczyskowski, J. Bernard, M. Orritt, and E. R. Brown, Optical detection of magnetic resonance in a single molecule, Nature, vol.363, issue.6426, p.244, 1993.
DOI : 10.1038/363244a0

J. Köhler, J. A. Disselhorst, M. C. Donckers, E. J. Groenen, J. Schmidt et al., Magnetic resonance of a single molecular spin, Nature, vol.363, issue.6426, p.242, 1993.
DOI : 10.1038/363242a0

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup et al., Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers, Science, vol.276, issue.5321, p.2012, 1997.
DOI : 10.1126/science.276.5321.2012

J. M. Taylor, High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics, vol.21, issue.10, p.810, 2008.
DOI : 10.1038/nphys1075

C. Degen, Nanoscale magnetometry: Microscopy with single spins, Nature Nanotechnology, vol.79, issue.11, p.643, 2008.
DOI : 10.1038/nnano.2008.328

J. R. Maze, Nanoscale magnetic sensing with an individual electronic spin in diamond, Nature, vol.99, issue.7213, p.644, 2008.
DOI : 10.1038/nature07279

G. Balasubramanian, Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature, vol.2, issue.7213, p.648, 2008.
DOI : 10.1038/nature07278

URL : http://hdl.handle.net/11858/00-001M-0000-0012-0B8B-A

P. Muret, P. Volpe, T. Tran-thi, J. Pernot, C. Hoarau et al., Schottky diode architectures on p-type diamond for fast switching, high forward current density and high breakdown field rectifiers, Diamond and Related Materials, vol.20, issue.3, p.285, 2011.
DOI : 10.1016/j.diamond.2011.01.008

URL : https://hal.archives-ouvertes.fr/hal-00739714

J. Achard, Thick boron doped diamond single crystals for high power electronics, Diamond and Related Materials, vol.20, issue.2, p.145, 2011.
DOI : 10.1016/j.diamond.2010.11.014

M. Bonnauron, S. Saada, L. Rousseau, G. Lissorgues, C. Mer et al., High aspect ratio diamond microelectrode array for neuronal activity measurements, Diamond and Related Materials, vol.17, issue.7-10, p.1399, 2008.
DOI : 10.1016/j.diamond.2007.12.065

A. E. Hadjinicolaou, Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis, Biomaterials, vol.33, issue.24, p.5812, 2012.
DOI : 10.1016/j.biomaterials.2012.04.063

K. C. Lee, Entangling Macroscopic Diamonds at Room Temperature, Science, vol.334, issue.6060, p.1253, 2011.
DOI : 10.1126/science.1211914

T. E. Glover, X-ray and optical wave mixing, Nature, vol.60, issue.7413, p.603, 2012.
DOI : 10.1038/nature11340

URL : https://hal.archives-ouvertes.fr/hal-00874202

A. Zaitsev, Optical Properties of Diamond : A Data Handbook, 2001.
DOI : 10.1007/978-3-662-04548-0

Y. Chang, Mass production and dynamic imaging of fluorescent nanodiamonds, Nature Nanotechnology, vol.127, issue.5, p.284, 2008.
DOI : 10.1038/nnano.2008.99

J. Wrachtrup and F. Jelezko, Processing quantum information in diamond, Journal of Physics: Condensed Matter, vol.18, issue.21, p.807, 2006.
DOI : 10.1088/0953-8984/18/21/S08

Y. Mita, diamond with heavy neutron irradiation, Physical Review B, vol.53, issue.17, p.11360, 1996.
DOI : 10.1103/PhysRevB.53.11360

T. Gaebel, Photochromism in single nitrogen-vacancy defect in diamond, Applied Physics B, vol.64, issue.2, p.243, 2005.
DOI : 10.1007/s00340-005-2056-2

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and E. J. Wrachtrup, Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection, New Journal of Physics, vol.15, issue.1, 2012.
DOI : 10.1088/1367-2630/15/1/013064

V. Jacques, J. D. Murray, F. Marquier, D. Chauvat, F. Grosshans et al., Enhancing single-molecule photostability by optical feedback from quantum jump detection, Applied Physics Letters, vol.93, issue.20, p.203307, 2008.
DOI : 10.1063/1.3013843

URL : https://hal.archives-ouvertes.fr/hal-00164600

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. Hermier et al., Towards non-blinking colloidal quantum??dots, Nature Materials, vol.85, issue.8, p.659, 2008.
DOI : 10.1038/nmat2222

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat et al., Single Photon Quantum Cryptography, Physical Review Letters, vol.89, issue.18, p.89, 2002.
DOI : 10.1103/PhysRevLett.89.187901

URL : https://hal.archives-ouvertes.fr/hal-00509134

R. Alléaume, Experimental open-air quantum key distribution with a single-photon source, New Journal of Physics, vol.6, p.92, 2004.
DOI : 10.1088/1367-2630/6/1/092

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier et al., Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment, Science, vol.315, issue.5814, p.966, 2007.
DOI : 10.1126/science.1136303

V. Jacques, Source de photons uniques et interférences à un seul photon. de l'expérience des fentes d'young au choix retardé, Thèse de Doctorat, 2007.

P. Neumann, Towards a room temperature solid state quantum processor ? The nitrogen-vacancy center in diamond, Thèse de Doctorat, 2012.

L. Childress, Coherent manipulation of single quantum systems in the solid state, Thèse de Doctorat, 2007.

A. Batalov, Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond, Physical Review Letters, vol.102, issue.19, p.195506, 2009.
DOI : 10.1103/PhysRevLett.102.195506

L. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson, Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies, New Journal of Physics, vol.10, issue.10, p.103024, 2008.
DOI : 10.1088/1367-2630/10/10/103024

V. M. Acosta, A. Jarmola, E. Bauch, and E. D. Budker, Optical properties of the nitrogen-vacancy singlet levels in diamond, Physical Review B, vol.82, issue.20, p.201202, 2010.
DOI : 10.1103/PhysRevB.82.201202

M. W. Doherty, N. B. Manson, P. Delaney, and L. C. Hollenberg, The negatively charged nitrogen-vacancy centre in diamond: the electronic solution, New Journal of Physics, vol.13, issue.2, p.25019, 2011.
DOI : 10.1088/1367-2630/13/2/025019

L. Robledo, H. Bernien, T. Sar, and E. R. Hanson, Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond, New Journal of Physics, vol.13, issue.2, p.25013, 2011.
DOI : 10.1088/1367-2630/13/2/025013

J. P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert et al., Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging, New Journal of Physics, vol.14, issue.10, 2012.
DOI : 10.1088/1367-2630/14/10/103033

C. Cohen-tannoudji, J. Dupont-roc, S. Haroche, and E. F. Laloë, Gas, Physical Review Letters, vol.22, issue.15, p.758, 1969.
DOI : 10.1103/PhysRevLett.22.758

URL : https://hal.archives-ouvertes.fr/hal-00001413

P. Neumann, Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance, New Journal of Physics, vol.11, issue.1, p.13017, 2009.
DOI : 10.1088/1367-2630/11/1/013017

N. D. Lai, D. Zheng, F. Jelezko, F. Treussart, and E. J. Roch, Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal, Applied Physics Letters, vol.95, issue.13, p.133101, 2009.
DOI : 10.1063/1.3238467

URL : https://hal.archives-ouvertes.fr/hal-00409380

P. Maletinsky, A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres, Nature Nanotechnology, vol.314, issue.5, p.320, 2012.
DOI : 10.1038/nnano.2012.50

T. P. Alegre, C. Santori, G. Medeiros-ribeiro, and R. G. Beausoleil, Polarizationselective excitation of nitrogen vacancy centers in diamond, Phys. Rev. B, p.76, 2007.

D. Zheng, Study and manipulation of photoluminescent NV color center in diamond, Thèse de Doctorat, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00595302

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet et al., Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity, Physical Review B, vol.84, issue.19, p.195204, 2011.
DOI : 10.1103/PhysRevB.84.195204

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze et al., A diamond nanowire single-photon source, Nature Nanotechnology, vol.5, issue.3, p.195, 2010.
DOI : 10.1103/PhysRevB.74.104303

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.212.5466

J. Riedrich-möller, One- and two-dimensional photonic crystal microcavities in single crystal diamond, Nature Nanotechnology, vol.78, issue.1, p.69, 2012.
DOI : 10.1038/nnano.2011.190

A. Beveratos, R. Brouri, T. Gacoin, J. Poizat, and E. P. Grangier, Nonclassical radiation from diamond nanocrystals, Physical Review A, vol.64, issue.6, p.64, 2001.
DOI : 10.1103/PhysRevA.64.061802

URL : https://hal.archives-ouvertes.fr/hal-00509137

J. J. Greffet, J. P. Hugonin, M. Besbes, N. D. Lai, F. Treussart et al., Diamond particles as nanoantennas for nitrogen-vacancy color centers, 2011.

P. Siyushev, Monolithic diamond optics for single photon detection, Applied Physics Letters, vol.97, issue.24, p.241902, 2010.
DOI : 10.1063/1.3519849

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017569

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity, Nature Photonics, vol.2, issue.5, p.301, 2011.
DOI : 10.1038/nphoton.2011.52

I. Bayn, Processing of photonic crystal nanocavity for quantum information in diamond, Diamond and Related Materials, vol.20, issue.7, p.937, 2011.
DOI : 10.1016/j.diamond.2011.05.002

F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Man-Made Diamonds, Nature, vol.81, issue.4471, p.51, 1955.
DOI : 10.1063/1.1746434

A. Tallaire, Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition, Diamond and Related Materials, vol.15, issue.10, p.1700, 2006.
DOI : 10.1016/j.diamond.2006.02.005

K. Schmetzer, High pressure high temperature treatment of diamonds ??? a review of the patent literature from five decades (1960???2009), The Journal of Gemmology, vol.32, issue.1-4, p.52, 1960.
DOI : 10.15506/JoG.2010.32.1-4.52

G. De-lange, D. Ristè, V. V. Dobrovitski, and E. R. Hanson, Single-Spin Magnetometry with Multipulse Sensing Sequences, Physical Review Letters, vol.106, issue.8, p.80802, 2011.
DOI : 10.1103/PhysRevLett.106.080802

P. C. Maurer, Room-Temperature Quantum Bit Memory Exceeding One Second, Science, vol.336, issue.6086, p.1283, 2012.
DOI : 10.1126/science.1220513

URL : http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132060

G. Balasubramanian, Ultralong spin coherence time in isotopically engineered diamond, Nature Materials, vol.127, issue.5, p.383, 2009.
DOI : 10.1038/nmat2420

M. Markham, J. Dodson, G. Scarsbrook, D. Twitchen, G. Balasubramanian et al., CVD diamond for spintronics, Diamond and Related Materials, vol.20, issue.2, p.134, 2011.
DOI : 10.1016/j.diamond.2010.11.016

S. Hong, M. S. Grinolds, P. Maletinsky, R. L. Walsworth, M. D. Lukin et al., Coherent, Mechanical Control of a Single Electronic Spin, Nano Letters, vol.12, issue.8, 2012.
DOI : 10.1021/nl300775c

G. Waldherr, Dark States of Single Nitrogen-Vacancy Centers in Diamond Unraveled by Single Shot NMR, Physical Review Letters, vol.106, issue.15, p.157601, 2011.
DOI : 10.1103/PhysRevLett.106.157601

N. M. Nusran, M. U. Momeen, and M. V. Dutt, High-dynamic-range magnetometry with a single electronic spin in diamond, Nature Nanotechnology, vol.105, issue.2, p.109, 2011.
DOI : 10.1038/nnano.2011.225

V. Acosta, Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications, Physical Review B, vol.80, issue.11, p.80, 2009.
DOI : 10.1103/PhysRevB.80.115202

L. M. Pham, Magnetic field imaging with nitrogen-vacancy ensembles, New Journal of Physics, vol.13, issue.4, p.45021, 2011.
DOI : 10.1088/1367-2630/13/4/045021

URL : http://doi.org/10.1088/1367-2630/13/4/045021

S. Steinert, High sensitivity magnetic imaging using an array of spins in diamond, Review of Scientific Instruments, vol.81, issue.4, p.43705, 2010.
DOI : 10.1063/1.3385689

B. J. Maertz, A. P. Wijnheijmer, G. D. Fuchs, M. E. Nowakowski, and D. D. Awschalom, Vector magnetic field microscopy using nitrogen vacancy centers in diamond, Applied Physics Letters, vol.96, issue.9, p.92504, 2010.
DOI : 10.1063/1.3337096

A. Gali, M. Fyta, and E. E. Kaxiras, supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors, Physical Review B, vol.77, issue.15, p.155206, 2008.
DOI : 10.1103/PhysRevB.77.155206

F. Treussart, V. Jacques, E. Wu, T. Gacoin, P. Grangier et al., Photoluminescence of single colour defects in 50 nm diamond nanocrystals, Physica B, pp.376-377, 2006.

C. Santori, P. Barclay, K. Fu, and E. R. Beausoleil, Vertical distribution of nitrogenvacancy centers in diamond formed by ion implantation and annealing, Phys. Rev. B, p.79, 2009.

J. Botsoa, center formation in type-1b diamond studied using photoluminescence and positron annihilation spectroscopies, Physical Review B, vol.84, issue.12, p.125209, 2011.
DOI : 10.1103/PhysRevB.84.125209

F. Waldermann, Creating diamond color centers for quantum optical applications, Diamond and Related Materials, vol.16, issue.11, p.1887, 2007.
DOI : 10.1016/j.diamond.2007.09.009

J. Tisler, Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds, ACS Nano, vol.3, issue.7, p.1959, 2009.
DOI : 10.1021/nn9003617

URL : https://hal.archives-ouvertes.fr/hal-00481219

G. Binnig, C. F. Quate, and E. C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

L. and L. Xuan, Génération de seconde harmonique à l'échelle nanométrique : nanocristaux de KTP, exaltation par un réseau métallique, Thèse de Doctorat, 2009.

A. Slablab, Étude de la génération de rayonement optique de seconde harmonique dans les systèmes nanométrique, Thèse de Doctorat, 2010.

T. Wilson, Confocal Microscopy, 1990.

S. Reynaud, La fluorescence de résonance : étude par la méthode de l'atome habillé, Ann. Phys, vol.8, p.315, 1983.

R. Brouri, A. Beveratos, J. P. Poizat, and E. P. Grangier, Photon antibunching in the fluorescence of individual color centers in diamond, Optics Letters, vol.25, issue.17, pp.1294-1296, 2000.
DOI : 10.1364/OL.25.001294

URL : https://hal.archives-ouvertes.fr/hal-00509140

C. Gerry and P. Knight, Introductory Quantum Optics, 2004.
DOI : 10.1017/CBO9780511791239

A. Beveratos, Réalisation expérimentale d'une source de photons uniques par fluorescence de centres colorés dans le diamant : application à la cryptographie quantique, Thèse de Doctorat, 2002.

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale, Nano Letters, vol.9, issue.10, p.3555, 2009.
DOI : 10.1021/nl9017379

M. V. Hauf, Chemical control of the charge state of nitrogen-vacancy centers in diamond, Physical Review B, vol.83, issue.8, p.81304, 2011.
DOI : 10.1103/PhysRevB.83.081304

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond, Nature Physics, vol.42, issue.2, p.94, 2005.
DOI : 10.1016/0038-1098(69)90593-6

N. Manson and J. Harrison, Photo-ionization of the nitrogen-vacancy center in diamond, Diamond and Related Materials, vol.14, issue.10, p.1705, 2005.
DOI : 10.1016/j.diamond.2005.06.027

P. Siyushev, H. Pinto, A. Gali, F. Jelezko, and E. J. Wrachtrup, Low temperature studies of charge dynamics of nitrogen-vacancy defect in diamond, pp.1204-4898, 2012.

J. Steeds, S. Charles, J. Davies, and E. I. Griffin, Photoluminescence microscopy of TEM irradiated diamond, Diamond and Related Materials, vol.9, issue.3-6, p.397, 2000.
DOI : 10.1016/S0925-9635(99)00360-X

J. Ristein, Electronic properties of diamond surfaces ??? blessing or curse for devices?, Diamond and Related Materials, vol.9, issue.3-6, p.1129, 2000.
DOI : 10.1016/S0925-9635(99)00316-7

N. Ashcroft and N. Mermin, Physique des solides, EDP Sciences, 2002.

B. Grotz, Charge state manipulation of qubits in diamond, Nature Communications, vol.7, issue.8, p.729, 2012.
DOI : 10.1038/ncomms1729

E. Kim, V. M. Acosta, E. Bauch, D. Budker, and P. R. Hemmer, Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose, Applied Physics Letters, vol.101, issue.8, p.82410, 2012.
DOI : 10.1063/1.4747211

A. T. Collins, The Fermi level in diamond, Journal of Physics: Condensed Matter, vol.14, issue.14, p.3743, 2002.
DOI : 10.1088/0953-8984/14/14/307

A. T. Collins, A. Connor, C. Ly, A. Shareef, and P. M. Spear, High-temperature annealing of optical centers in type-I diamond, Journal of Applied Physics, vol.97, issue.8, p.83517, 2005.
DOI : 10.1063/1.1866501

C. Nebel, Surface transfer-doping of h-terminated diamond with adsorbates, New Diamond Front. Carbon Technol, vol.15, p.247, 2005.

V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger et al., An efficient purification method for detonation nanodiamonds, Diamond and Related Materials, vol.17, issue.1, p.13, 2008.
DOI : 10.1016/j.diamond.2007.09.011

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air, Journal of the American Chemical Society, vol.128, issue.35, p.11635, 2006.
DOI : 10.1021/ja063303n

T. Gaebel, C. Bradac, J. Chen, J. Say, L. Brown et al., Size-reduction of nanodiamonds via air oxidation, Diamond and Related Materials, vol.21, p.28, 2012.
DOI : 10.1016/j.diamond.2011.09.002

L. S. Hounsome, R. Jones, P. M. Martineau, D. Fisher, M. J. Shaw et al., Origin of brown coloration in diamond, Physical Review B, vol.73, issue.12, p.125203, 2006.
DOI : 10.1103/PhysRevB.73.125203

B. Naydenov, Increasing the coherence time of single electron spins in diamond by high temperature annealing, Applied Physics Letters, vol.97, issue.24, p.242511, 2010.
DOI : 10.1063/1.3527975

B. R. Smith, E. T. Gruber, and . Plakhotnik, The effects of surface oxidation on luminescence of nano diamonds, Diamond and Related Materials, vol.19, issue.4, p.314, 2010.
DOI : 10.1016/j.diamond.2009.12.009

H. J. Mamin, C. T. Rettner, M. H. Sherwood, L. Gao, and E. D. Rugar, High field-gradient dysprosium tips for magnetic resonance force microscopy, Applied Physics Letters, vol.100, issue.1, p.13102, 2012.
DOI : 10.1063/1.3673910

M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth et al., Quantum control of proximal spins using nanoscale magnetic resonance imaging, Nature Physics, vol.7, issue.9, p.687, 2011.
DOI : 10.1016/j.diamond.2010.01.011

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent et al., A single nitrogen-vacancy defect coupled to a nanomechanical oscillator, Nature Physics, vol.7, issue.11, p.879, 2011.
DOI : 10.1103/PhysRevB.82.165320

S. Kolkowitz, A. C. Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl et al., Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit, Science, vol.335, issue.6076, p.1603, 2012.
DOI : 10.1126/science.1216821

T. Akiyama, U. Staufer, N. F. De-rooij, P. Frederix, and E. A. Engel, Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy, Review of Scientific Instruments, vol.74, issue.1, p.112, 2003.
DOI : 10.1063/1.1523631

K. Karrai and R. D. Grober, Piezoelectric tip???sample distance control for near field optical microscopes, Applied Physics Letters, vol.66, issue.14, p.1842, 1995.
DOI : 10.1063/1.113340

S. Kühn, C. Hettich, C. Schmitt, J. Poizat, and E. V. Sandoghdar, Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy, Journal of Microscopy, vol.202, issue.1, 2001.
DOI : 10.1046/j.1365-2818.2001.00829.x

A. Cuche, A. Drezet, J. Roch, F. Treussart, and E. S. Huant, Grafting fluorescent nanodiamonds onto optical tips, Journal of Nanophotonics, vol.4, issue.1, p.43506, 2010.
DOI : 10.1117/1.3374237

URL : https://hal.archives-ouvertes.fr/hal-01000129

A. Cuche, Sondes actives pour l'optique en champ proche à base de nanoparticules isolantes ou de nanodiamants fluorescents, Thèse de Doctorat, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00456562

R. S. Schoenfeld and W. Harneit, Real Time Magnetic Field Sensing and Imaging Using a Single Spin in Diamond, Physical Review Letters, vol.106, issue.3, p.30802, 2011.
DOI : 10.1103/PhysRevLett.106.030802

G. E. Maciel, P. D. Ellis, and D. C. Hofer, Carbon-13 chemical shifts of the carbonyl group. V. Observation of a deuterium isotope effect using carbon-13 field-frequency lock, The Journal of Physical Chemistry, vol.71, issue.7, pp.2160-2164, 1967.
DOI : 10.1021/j100866a029

T. Shinjo, Magnetic Vortex Core Observation in Circular Dots of Permalloy, Science, vol.289, issue.5481, p.930, 2000.
DOI : 10.1126/science.289.5481.930

S. A. Wolf, Spintronics: A Spin-Based Electronics Vision for the Future, Science, vol.294, issue.5546, p.1488, 2001.
DOI : 10.1126/science.1065389

I. Zuti?, J. Fabian, S. Das, and . Sarma, Spintronics: Fundamentals and applications, Reviews of Modern Physics, vol.76, issue.2, p.323, 2004.
DOI : 10.1103/RevModPhys.76.323

T. L. Gilbert, A lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev, vol.100, 1955.

T. Gilbert, Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials, IEEE Transactions on Magnetics, vol.40, issue.6, p.3443, 2004.
DOI : 10.1109/TMAG.2004.836740

P. Fischer, M. Im, S. Kasai, K. Yamada, T. Ono et al., X-ray imaging of vortex cores in confined magnetic structures, Physical Review B, vol.83, issue.21, p.212402, 2011.
DOI : 10.1103/PhysRevB.83.212402

A. Drews, B. Krüger, G. Meier, S. Bohlens, L. Bocklage et al., Current- and field-driven magnetic antivortices for nonvolatile data storage, Applied Physics Letters, vol.94, issue.6, p.62504, 2009.
DOI : 10.1063/1.3072342

A. Drews, Dynamics of magnetic vortices and antivortices, Thèse de Doctorat, 2009.

B. Pigeau, A frequency-controlled magnetic vortex memory, Applied Physics Letters, vol.96, issue.13, p.132506, 2010.
DOI : 10.1063/1.3373833

URL : https://hal.archives-ouvertes.fr/hal-00458967

K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno et al., Electrical switching of the vortex core in a magnetic disk, Nature Materials, vol.200, issue.4, p.270, 2007.
DOI : 10.1038/nmat1867

S. Choe, Vortex Core-Driven Magnetization Dynamics, Science, vol.304, issue.5669, p.420, 2004.
DOI : 10.1126/science.1095068

S. Pollard, L. Huang, K. Buchanan, D. Arena, and Y. Zhu, Direct dynamic imaging of non-adiabatic spin torque effects, Nature Communications, vol.89, p.1028, 2012.
DOI : 10.1038/ncomms2025

S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman et al., Dynamics of Coupled Vortices in a Pair of Ferromagnetic Disks, Physical Review Letters, vol.106, issue.19, 2011.
DOI : 10.1103/PhysRevLett.106.197203

V. S. Pribiag, Magnetic vortex oscillator driven by d.c. spin-polarized current, Nature Physics, vol.6, issue.7, p.498, 2007.
DOI : 10.1126/science.282.5386.85

URL : http://arxiv.org/abs/cond-mat/0702253

A. Ruotolo, Phase-locking of magnetic vortices mediated by antivortices, Nature Nanotechnology, vol.8, issue.8, p.528, 2009.
DOI : 10.1038/nnano.2009.143

D. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh et al., Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, Nature Materials, vol.26, issue.2, p.165, 2010.
DOI : 10.1038/nmat2591

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810356

L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, vol.8, pp.101-114, 1935.
DOI : 10.1016/B978-0-08-036364-6.50008-9

J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A. Crowell, Imaging of spin dynamics in closure domain and vortex structures, Physical Review B, vol.67, issue.2, p.20403, 2003.
DOI : 10.1103/PhysRevB.67.020403

J. Raabe, R. Pulwey, R. Sattler, T. Schweinböck, J. Zweck et al., Magnetization pattern of ferromagnetic nanodisks, Journal of Applied Physics, vol.88, issue.7, p.4437, 2000.
DOI : 10.1063/1.1289216

K. W. Chou, Direct observation of the vortex core magnetization and its dynamics, Applied Physics Letters, vol.90, issue.20, p.202505, 2007.
DOI : 10.1063/1.2738186

A. Wachowiak, Direct Observation of Internal Spin Structure of Magnetic Vortex Cores, Science, vol.298, issue.5593, p.577, 2002.
DOI : 10.1126/science.1075302

G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller et al., Absorption of circularly polarized x rays in iron, Physical Review Letters, vol.58, issue.7, p.737, 1987.
DOI : 10.1103/PhysRevLett.58.737

S. Heinze, Real-Space Imaging of Two-Dimensional Antiferromagnetism on the Atomic Scale, Science, vol.288, issue.5472, p.1805, 2000.
DOI : 10.1126/science.288.5472.1805

B. Vellekoop, L. Abelmann, S. Porthun, and C. Lodder, On the determination of the internal magnetic structure by magnetic force microscopy, Journal of Magnetism and Magnetic Materials, vol.190, issue.1-2, p.148, 1998.
DOI : 10.1016/S0304-8853(98)00280-7

J. M. García, A. Thiaville, J. Miltat, K. J. Kirk, J. N. Chapman et al., Quantitative interpretation of magnetic force microscopy images from soft patterned elements, Applied Physics Letters, vol.79, issue.5, p.656, 2001.
DOI : 10.1063/1.1389512

T. Häberle, Towards quantitative magnetic force microscopy: theory and experiment, New Journal of Physics, vol.14, issue.4, p.43044, 2012.
DOI : 10.1088/1367-2630/14/4/043044

M. J. Donahue and D. G. Porter, OOMMF user's guide, version 1.0, National Institute of Standards and Technology, 1999.

B. Pigeau, G. De-loubens, O. Klein, A. Riegler, F. Lochner et al., Optimal control of vortex-core polarity by resonant microwave pulses, Nature Physics, vol.8, issue.1, p.26, 2010.
DOI : 10.1103/PhysRevB.68.104430

URL : https://hal.archives-ouvertes.fr/hal-00610646

I. M. Miron, Fast current-induced domain-wall motion controlled by the Rashba effect, Nature Materials, vol.59, issue.6, p.419, 2011.
DOI : 10.1038/nmat3020

URL : https://hal.archives-ouvertes.fr/hal-00613090

M. Geiselmann, 3D optical manipulation of a single electron spin, 2012.

B. Buchler, T. Kalkbrenner, C. Hettich, and E. V. Sandoghdar, Measuring the Quantum Efficiency of the Optical Emission of Single Radiating Dipoles Using a Scanning Mirror, Physical Review Letters, vol.95, issue.6, p.95, 2005.
DOI : 10.1103/PhysRevLett.95.063003

S. Petit-watelot, Commensurability and chaos in magnetic vortex oscillations, Nature Physics, vol.8, issue.9, p.682, 2012.
DOI : 10.1016/j.jmmm.2011.05.037

URL : https://hal.archives-ouvertes.fr/hal-01456520

G. Tatara and H. Kohno, Theory of Current-Driven Domain Wall Motion: Spin Transfer versus Momentum Transfer, Physical Review Letters, vol.92, issue.8, p.92, 2004.
DOI : 10.1103/PhysRevLett.92.086601

S. Heinze, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Physics, vol.5, issue.9, p.713, 2011.
DOI : 10.1088/1367-2630/9/10/396

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and E. A. Zaitsev, Creation and nature of optical centres in diamond for single-photon emission???overview and critical remarks, New Journal of Physics, vol.13, issue.3, p.35024, 2011.
DOI : 10.1088/1367-2630/13/3/035024

P. Spinicelli, molecules through nanoapertures, New Journal of Physics, vol.13, issue.2, p.25014, 2011.
DOI : 10.1088/1367-2630/13/2/025014

M. Koshino and T. Ando, Diamagnetism in disordered graphene, Physical Review B, vol.75, issue.23, p.235333, 2007.
DOI : 10.1103/PhysRevB.75.235333

D. Gatteschi, R. Sessoli, and E. J. Villain, Molecular Nanomagnets, 2006.
DOI : 10.1093/acprof:oso/9780198567530.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00012648

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller et al., Quantum oscillations in a molecular magnet, Nature, vol.10, issue.7192, p.203, 2008.
DOI : 10.1038/nature06962

URL : https://hal.archives-ouvertes.fr/cea-00930875

G. Cardano, Ars Magna or the Rules of Algebra, 1994.