C. Lumeng and A. Saltiel, Inflammatory links between obesity and metabolic disease, Journal of Clinical Investigation, vol.121, issue.6, pp.2111-2118, 2011.
DOI : 10.1172/JCI57132

G. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.314, issue.7121, pp.860-867, 2006.
DOI : 10.1038/nature05485

J. Olefsky and C. Glass, Macrophages, Inflammation, and Insulin Resistance, Annual Review of Physiology, vol.72, issue.1, pp.219-265, 2010.
DOI : 10.1146/annurev-physiol-021909-135846

K. Sun, C. Kusminski, and P. Scherer, Adipose tissue remodeling and obesity, Journal of Clinical Investigation, vol.121, issue.6, pp.2094-101, 2011.
DOI : 10.1172/JCI45887

E. Dalmas, K. Clement, and M. Guerre?millo, Defining macrophage phenotype and function in adipose tissue, Trends in Immunology, vol.32, issue.7, pp.307-321, 2011.
DOI : 10.1016/j.it.2011.04.008

H. Xu, G. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, Journal of Clinical Investigation, vol.112, issue.12, pp.1821-1851, 2003.
DOI : 10.1172/JCI19451DS1

S. Shoelson, L. Herrero, and A. Naaz, Obesity, Inflammation, and Insulin Resistance, Gastroenterology, vol.132, issue.6, pp.2169-80, 2007.
DOI : 10.1053/j.gastro.2007.03.059

C. Lumeng, J. Bodzin, and A. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, Journal of Clinical Investigation, vol.117, issue.1, pp.175-84, 2007.
DOI : 10.1172/JCI29881

C. Shi and E. Pamer, Monocyte recruitment during infection and inflammation, Nature Reviews Immunology, vol.182, issue.11, pp.762-74, 2011.
DOI : 10.1038/nri3070

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947780

F. Geissmann, S. Jung, and D. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

F. Geissmann, M. Manz, S. Jung, M. Sieweke, M. Merad et al., Development of Monocytes, Macrophages, and Dendritic Cells, Science, vol.327, issue.5966, pp.656-61, 2010.
DOI : 10.1126/science.1178331

URL : https://hal.archives-ouvertes.fr/hal-00502972

C. Auffray, M. Sieweke, and F. Geissmann, Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells, Annual Review of Immunology, vol.27, issue.1, 2009.
DOI : 10.1146/annurev.immunol.021908.132557

URL : https://hal.archives-ouvertes.fr/hal-00407757

C. Auffray, D. Fogg, M. Garfa, G. Elain, O. Join?lambert et al., Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior, Science, vol.317, issue.5838, pp.666-70, 2007.
DOI : 10.1126/science.1142883

URL : https://hal.archives-ouvertes.fr/pasteur-00337698

F. Tacke, D. Alvarez, T. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival, J Clin Invest. J Exp Med. Blood, vol.117204113, issue.16, pp.963-72, 2007.

C. Combadiere, S. Potteaux, M. Rodero, T. Simon, A. Pezard et al., Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis, Circulation. Arterioscler Thromb Vasc Biol, vol.11731, pp.2322-2352, 2008.

K. Rogacev, C. Ulrich, L. Blomer, F. Hornof, K. Oster et al., Monocyte heterogeneity in obesity and subclinical atherosclerosis, European Heart Journal, vol.31, issue.3, pp.369-76, 2010.
DOI : 10.1093/eurheartj/ehp308

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Zhang et al., Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors, Immunity, vol.33, issue.3, pp.375-86, 2010.
DOI : 10.1016/j.immuni.2010.08.012

URL : http://doi.org/10.1016/j.immuni.2010.08.012

D. Westcott, J. Delproposto, L. Geletka, T. Wang, K. Singer et al., monocytes in obesity, The Journal of Experimental Medicine, vol.118, issue.13, pp.3143-56, 2009.
DOI : 10.1038/sj.ijo.0803632

H. Wu, X. Perrard, Q. Wang, J. Perrard, V. Polsani et al., CD11c Expression in Adipose Tissue and Blood and Its Role in Diet-Induced Obesity, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.2, pp.186-92, 2010.
DOI : 10.1161/ATVBAHA.109.198044

C. Tsou, W. Peters, Y. Si, S. Slaymaker, A. Aslanian et al., Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites, Journal of Clinical Investigation, vol.117, issue.4, pp.902-911, 2007.
DOI : 10.1172/JCI29919

C. Lumeng, S. Deyoung, J. Bodzin, and A. Saltiel, Increased Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced Obesity, Diabetes, vol.56, issue.1, pp.16-23, 2007.
DOI : 10.2337/db06-1076

P. Panizzi, F. Swirski, J. Figueiredo, P. Waterman, D. Sosnovik et al., Impaired infarct healing in atherosclerotic mice with Ly?6C(hi) monocytosis Association of common polymorphisms in the fractalkine receptor (CX3CR1) with obesity, J Am Coll Cardio Obesity, vol.5519, pp.222-229, 2010.

R. Shah, C. Hinkle, J. Ferguson, N. Mehta, M. Li et al., Fractalkine Is a Novel Human Adipochemokine Associated With Type 2 Diabetes, Diabetes, vol.60, issue.5, pp.1512-1520, 2011.
DOI : 10.2337/db10-0956

T. Imai, K. Hieshima, C. Haskell, M. Baba, M. Nagira et al., Identification and Molecular Characterization of Fractalkine Receptor CX3CR1, which Mediates Both Leukocyte Migration and Adhesion, Cell, vol.91, issue.4, pp.521-551, 1997.
DOI : 10.1016/S0092-8674(00)80438-9

C. Combadiere, K. Salzwedel, E. Smith, H. Tiffany, E. Berger et al., Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV?1 Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia?, J Biol Chem. FEBS Lett, vol.273429, issue.30, pp.167-72, 1998.

S. Jung, J. Aliberti, P. Graemmel, M. Sunshine, G. Kreutzberg et al., Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion, Molecular and Cellular Biology, vol.20, issue.11, pp.4106-4120, 2000.
DOI : 10.1128/MCB.20.11.4106-4114.2000

J. Niess, S. Brand, X. Gu, L. Landsman, S. Jung et al., CX3CR1-Mediated Dendritic Cell Access to the Intestinal Lumen and Bacterial Clearance, Science, vol.307, issue.5707, pp.254-262, 2005.
DOI : 10.1126/science.1102901

L. Landsman, C. Varol, J. S. Shaul, M. Bennett, G. Strissel et al., Distinct differentiation potential of blood monocyte subsets in the lung Dynamic, M2?like remodeling phenotypes of CD11c+ adipose tissue macrophages during high?fat diet??induced obesity in mice, J Immunol. Diabetes, vol.17859, issue.34, pp.1171-81, 2007.

K. Strissel, Z. Stancheva, H. Miyoshi, J. Perfield, J. Defuria et al., Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications, Diabetes, vol.56, issue.12, pp.2910-2918, 2007.
DOI : 10.2337/db07-0767

D. Lacasa, S. Taleb, M. Keophiphath, A. Miranville, K. Clement et al., Macrophage?secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states, 868?77. 37. Zeyda M, pp.341-347, 2007.

E. Gautier, T. Huby, F. Saint?charles, B. Ouzilleau, J. Pirault et al., Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis, Circulation, vol.119, issue.17, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.807537

C. Combadiere, S. Potteaux, J. Gao, B. Esposito, S. Casanova et al., Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia?reperfusion brain injury in the rat Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice, Circulation. Eur J Neurosci. Am J Physiol Renal Physiol, vol.10715294, pp.264-71, 2002.

S. Hapfelmeier, A. Muller, B. Stecher, P. Kaiser, M. Barthel et al., . Typhimurium colitis, The Journal of Experimental Medicine, vol.58, issue.2, pp.437-50, 2008.
DOI : 10.1038/312548a0

C. Combadiere, C. Feumi, R. W. Keller, N. Rodero, M. Pezard et al., CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, Journal of Clinical Investigation, vol.117, issue.10, pp.2920-2928, 2007.
DOI : 10.1172/JCI31692DS1

URL : https://hal.archives-ouvertes.fr/inserm-00176389

T. Jia, N. Serbina, K. Brandl, M. Zhong, I. Leiner et al., Additive Roles for MCP-1 and MCP-3 in CCR2-Mediated Recruitment of Inflammatory Monocytes during Listeria monocytogenes Infection, The Journal of Immunology, vol.180, issue.10, pp.6846-53, 2008.
DOI : 10.4049/jimmunol.180.10.6846

C. Auffray, D. Fogg, E. Narni?mancinelli, B. Senechal, C. Trouillet et al., CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2 The many roles of chemokines and chemokine receptors in inflammation, 595?606. 81. Serbina NV, Pamer EG, pp.311-318, 2006.

F. Tacke, D. Alvarez, T. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, Journal of Clinical Investigation, vol.117, issue.1, pp.185-94, 2007.
DOI : 10.1172/JCI28549

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716202

C. Qu, E. Edwards, F. Tacke, V. Angeli, J. Llodra et al., Role of CCR8 and Other Chemokine Pathways in the Migration of Monocyte-derived Dendritic Cells to Lymph Nodes, The Journal of Experimental Medicine, vol.10, issue.10, pp.1231-1272, 2004.
DOI : 10.1189/jlb.0302105

C. Varol, L. Landsman, D. Fogg, L. Greenshtein, B. Gildor et al., Monocytes give rise to mucosal, but not splenic, conventional dendritic cells, The Journal of Experimental Medicine, vol.21, issue.1, pp.171-80, 2007.
DOI : 10.1038/sj.leu.2403268

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118434

C. Tsou, W. Peters, Y. Si, S. Slaymaker, A. Aslanian et al., Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites, Journal of Clinical Investigation, vol.117, issue.4, pp.902-911, 2007.
DOI : 10.1172/JCI29919

F. Swirski, M. Nahrendorf, M. Etzrodt, M. Wildgruber, V. Cortez?retamozo et al., Identification of splenic reservoir monocytes and their deployment to inflammatory sites Langerhans cells arise from monocytes in vivo, Science. Nat Immunol, vol.3257, pp.612-618, 2006.

R. Crofton, D. Dulk, M. Van-furth, and R. , The origin, kinetics, and characteristics of the kupffer cells in the normal steady state, Journal of Experimental Medicine, vol.148, issue.1, pp.1-17, 1978.
DOI : 10.1084/jem.148.1.1

A. Mildner, H. Schmidt, M. Nitsche, D. Merkler, U. Hanisch et al., Microglia in the adult brain arise from Ly?6ChiCCR2+ monocytes only under defined host conditions Macrophage subpopulations in the mouse spleen renewed by local proliferation, Nat Neurosci. Immunobiology, vol.10191, pp.52-64, 1994.

M. Merad, M. Manz, H. Karsunky, A. Wagers, W. Peters et al., Langerhans cells renew in the skin throughout life under steady?state conditions Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Nat Immunol. Science, vol.3330, pp.841-846, 2002.

C. Shi, T. Jia, S. Mendez?ferrer, T. Hohl, N. Serbina et al., Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll?like receptor ligands. Immunity Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection, Cell Host Microbe, vol.346, pp.470-81, 2009.

C. Cheong, I. Matos, J. Choi, D. Dandamudi, E. Shrestha et al., Microbial stimulation fully differentiates monocytes to DC?SIGN/CD209(+) dendritic cells for immune T cell areas. Cell Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation, Science, vol.143332, pp.1284-1292

P. Panizzi, F. Swirski, J. Figueiredo, P. Waterman, D. Sosnovik et al., Impaired Infarct Healing in Atherosclerotic Mice With Ly-6ChiMonocytosis, Journal of the American College of Cardiology, vol.55, issue.15, pp.1629-1667
DOI : 10.1016/j.jacc.2009.08.089

A. Murphy, M. Akhtari, S. Tolani, T. Pagler, N. Bijl et al., ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice, Journal of Clinical Investigation, vol.121, issue.10
DOI : 10.1172/JCI57559DS1

L. Arnold, A. Henry, F. Poron, Y. Baba?amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-69, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

E. Gautier, C. Jakubzick, and G. Randolph, Regulation of the Migration and Survival of Monocyte Subsets by Chemokine Receptors and Its Relevance to Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.10, pp.1412-1420, 2009.
DOI : 10.1161/ATVBAHA.108.180505

K. Woollard and F. Geissmann, Monocytes in atherosclerosis: subsets and functions, Nature Reviews Cardiology, vol.4, issue.2, pp.77-86
DOI : 10.1038/nrcardio.2009.228

F. Swirski, R. Weissleder, and M. Pittet, Heterogeneous In Vivo Behavior of Monocyte Subsets in Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.10, pp.1424-1456, 2009.
DOI : 10.1161/ATVBAHA.108.180521

H. Xu, G. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, Journal of Clinical Investigation, vol.112, issue.12, pp.1821-1851, 2003.
DOI : 10.1172/JCI19451DS1

C. Tam, K. Clement, L. Baur, and J. Tordjman, Obesity and low-grade inflammation: a paediatric perspective, Obesity Reviews, vol.1, issue.3, pp.118-144
DOI : 10.1111/j.1467-789X.2009.00674.x

J. Thaler and M. Schwartz, Minireview: Inflammation and Obesity Pathogenesis: The Hypothalamus Heats Up, Endocrinology, vol.151, issue.9, pp.4109-4124
DOI : 10.1210/en.2010-0336

D. Tripathy, P. Mohanty, S. Dhindsa, T. Syed, H. Ghanim et al., Elevation of Free Fatty Acids Induces Inflammation and Impairs Vascular Reactivity in Healthy Subjects, Diabetes, vol.52, issue.12, pp.2882-2889, 2003.
DOI : 10.2337/diabetes.52.12.2882

D. Oh, S. Talukdar, E. Bae, T. Imamura, H. Morinaga et al., GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects, Cell, vol.142, issue.5, pp.687-98
DOI : 10.1016/j.cell.2010.07.041

P. Dandona, P. Mohanty, H. Ghanim, A. Aljada, R. Browne et al., The Suppressive Effect of Dietary Restriction and Weight Loss in the Obese on the Generation of Reactive Oxygen Species by Leukocytes, Lipid Peroxidation, and Protein Carbonylation, Journal of Clinical Endocrinology & Metabolism, vol.86, issue.1, pp.355-62, 2001.
DOI : 10.1210/jc.86.1.355

E. Dalmas, C. Rouault, M. Abdennour, C. Rovere, S. Rizkalla et al., Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction, American Journal of Clinical Nutrition, vol.94, issue.2, pp.450-458
DOI : 10.3945/ajcn.111.013771

URL : https://hal.archives-ouvertes.fr/hal-00858489

A. Goodman and J. Gordon, Our Unindicted Coconspirators: Human Metabolism from a Microbial Perspective, Cell Metabolism, vol.12, issue.2, pp.111-117
DOI : 10.1016/j.cmet.2010.07.001

H. Tilg and A. Kaser, Gut microbiome, obesity, and metabolic dysfunction, Journal of Clinical Investigation, vol.121, issue.6, pp.2126-2158
DOI : 10.1172/JCI58109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104783

P. Cani, J. Amar, M. Iglesias, M. Poggi, C. Knauf et al., Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, Diabetes, vol.56, issue.7, pp.1761-72, 2007.
DOI : 10.2337/db06-1491

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.612.6162

S. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, Journal of Clinical Investigation, vol.112, issue.12, pp.1796-808, 2003.
DOI : 10.1172/JCI19246DS1

N. Ouchi, J. Parker, J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease, Nature Reviews Immunology, vol.38, issue.2, pp.85-97
DOI : 10.1038/nri2921

K. Lolmede, C. Duffaut, A. Zakaroff?girard, and A. Bouloumie, Immune cells in adipose tissue: Key players in metabolic disorders, Diabetes & Metabolism, vol.37, issue.4, pp.283-90
DOI : 10.1016/j.diabet.2011.03.002

URL : https://hal.archives-ouvertes.fr/inserm-00617735

E. Anderson, D. Gutierrez, and A. Hasty, Adipose tissue recruitment of leukocytes, Current Opinion in Lipidology, vol.21, issue.3, pp.172-179
DOI : 10.1097/MOL.0b013e3283393867

V. Bourlier, A. Zakaroff?girard, A. Miranville, D. Barros, S. Maumus et al., Remodeling Phenotype of Human Subcutaneous Adipose Tissue Macrophages, Circulation, vol.117, issue.6, pp.806-821, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.724096

URL : https://hal.archives-ouvertes.fr/inserm-00480230

C. Lumeng, J. Delproposto, D. Westcott, and A. Saltiel, Phenotypic Switching of Adipose Tissue Macrophages With Obesity Is Generated by Spatiotemporal Differences in Macrophage Subtypes, Diabetes, vol.57, issue.12, pp.3239-3285, 2008.
DOI : 10.2337/db08-0872

M. Feuerer, L. Herrero, D. Cipolletta, A. Naaz, J. Wong et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters, Nature Medicine, vol.38, issue.8, pp.930-939, 2009.
DOI : 10.1038/nm.2002

J. Liu, A. Divoux, J. Sun, J. Zhang, K. Clement et al., Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice, Nature Medicine, vol.59, issue.8, pp.940-945, 2009.
DOI : 10.1038/nm.1994

M. Pasarica, O. Sereda, L. Redman, D. Albarado, D. Hymel et al., Reduced Adipose Tissue Oxygenation in Human Obesity: Evidence for Rarefaction, Macrophage Chemotaxis, and Inflammation Without an Angiogenic Response, Diabetes, vol.58, issue.3, pp.718-743, 2009.
DOI : 10.2337/db08-1098

K. Strissel, Z. Stancheva, H. Miyoshi, J. Perfield, J. Defuria et al., Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications, Diabetes, vol.56, issue.12, pp.2910-2918, 2007.
DOI : 10.2337/db07-0767

A. Villaret, J. Galitzky, P. Decaunes, D. Esteve, M. Marques et al., Adipose Tissue Endothelial Cells From Obese Human Subjects: Differences Among Depots in Angiogenic, Metabolic, and Inflammatory Gene Expression and Cellular Senescence, Diabetes, vol.59, issue.11, pp.2755-63
DOI : 10.2337/db10-0398

URL : https://hal.archives-ouvertes.fr/inserm-00613693

C. Lumeng, J. Bodzin, and A. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, Journal of Clinical Investigation, vol.117, issue.1, pp.175-84, 2007.
DOI : 10.1172/JCI29881

C. Duffaut, J. Galitzky, M. Lafontan, and A. Bouloumie, Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity, Biochemical and Biophysical Research Communications, vol.384, issue.4, pp.482-487, 2009.
DOI : 10.1016/j.bbrc.2009.05.002

URL : https://hal.archives-ouvertes.fr/inserm-00410102

U. Kintscher, M. Hartge, K. Hess, A. Foryst?ludwig, M. Clemenz et al., T-lymphocyte Infiltration in Visceral Adipose Tissue: A Primary Event in Adipose Tissue Inflammation and the Development of Obesity-Mediated Insulin Resistance, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.7, pp.1304-1314, 2008.
DOI : 10.1161/ATVBAHA.108.165100

S. Nishimura, I. Manabe, M. Nagasaki, K. Eto, H. Yamashita et al., CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity, Nature Medicine, vol.17, issue.8, pp.914-934, 2009.
DOI : 10.1038/nm.1964

E. Dalmas, K. Clement, and M. Guerre?millo, Defining macrophage phenotype and function in adipose tissue, Trends in Immunology, vol.32, issue.7, pp.307-321
DOI : 10.1016/j.it.2011.04.008

C. Lumeng, S. Deyoung, J. Bodzin, and A. Saltiel, Increased Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced Obesity, Diabetes, vol.56, issue.1, pp.16-23, 2007.
DOI : 10.2337/db06-1076

M. Shaul, G. Bennett, K. Strissel, A. Greenberg, and M. Obin, Dynamic, M2?like remodeling phenotypes of CD11c+ adipose tissue macrophages during high?fat diet??induced obesity in mice. Diabetes, pp.1171-81

D. Westcott, J. Delproposto, L. Geletka, T. Wang, K. Singer et al., monocytes in obesity, The Journal of Experimental Medicine, vol.118, issue.13, pp.3143-56, 2009.
DOI : 10.1038/sj.ijo.0803632

C. Poitou, E. Dalmas, M. Renovato, V. Benhamo, F. Hajduch et al., CD14dimCD16+ and CD14+CD16+ Monocytes in Obesity and During Weight Loss: Relationships With Fat Mass and Subclinical Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.10, pp.2322-2352
DOI : 10.1161/ATVBAHA.111.230979

K. Rogacev, C. Ulrich, L. Blomer, F. Hornof, K. Oster et al., Monocyte heterogeneity in obesity and subclinical atherosclerosis, European Heart Journal, vol.31, issue.3, pp.369-76
DOI : 10.1093/eurheartj/ehp308

M. Zeyda, K. Gollinger, E. Kriehuber, F. Kiefer, A. Neuhofer et al., Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression, International Journal of Obesity, vol.58, issue.12, pp.1684-94
DOI : 10.1038/ijo.2010.103

D. Morris, K. Singer, and C. Lumeng, Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states, Current Opinion in Clinical Nutrition and Metabolic Care, vol.14, issue.4, pp.341-347
DOI : 10.1097/MCO.0b013e328347970b

D. Patsouris, P. Li, D. Thapar, J. Chapman, J. Olefsky et al., Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals, Cell Metabolism, vol.8, issue.4, pp.301-310, 2008.
DOI : 10.1016/j.cmet.2008.08.015

P. Li, M. Lu, M. Nguyen, E. Bae, J. Chapman et al., Functional Heterogeneity of CD11c-positive Adipose Tissue Macrophages in Diet-induced Obese Mice, Journal of Biological Chemistry, vol.285, issue.20, pp.15333-15378
DOI : 10.1074/jbc.M110.100263

G. Baffy, Kupffer cells in non-alcoholic fatty liver disease: The emerging view, Journal of Hepatology, vol.51, issue.1, pp.212-235, 2009.
DOI : 10.1016/j.jhep.2009.03.008

Z. Li, M. Soloski, and A. Diehl, Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease, Hepatology, vol.24, issue.4, pp.880-885, 2005.
DOI : 10.1002/hep.20826

D. Cai, M. Yuan, D. Frantz, P. Melendez, L. Hansen et al., Local and systemic insulin resistance resulting from hepatic activation of IKK-?? and NF-??B, Nature Medicine, vol.100, issue.2, pp.183-90, 2005.
DOI : 10.1172/JCI200111559

G. Tuncman, J. Hirosumi, G. Solinas, L. Chang, M. Karin et al., Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance, Proceedings of the National Academy of Sciences, vol.103, issue.28, pp.10741-10747, 2006.
DOI : 10.1073/pnas.0603509103

A. Obstfeld, E. Sugaru, M. Thearle, A. Francisco, C. Gayet et al., C?C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity?induced hepatic steatosis. Diabetes, pp.916-941

M. Nguyen, S. Favelyukis, A. Nguyen, D. Reichart, P. Scott et al., A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty Acids via Toll-like Receptors 2 and 4 and JNK-dependent Pathways, Journal of Biological Chemistry, vol.282, issue.48, pp.35279-92, 2007.
DOI : 10.1074/jbc.M706762200

E. Hong, H. Ko, Y. Cho, H. Kim, Z. Ma et al., Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle, Diabetes, vol.58, issue.11, pp.2525-2560, 2009.
DOI : 10.2337/db08-1261

X. Zhang, F. Dong, J. Ren, M. Driscoll, and B. Culver, High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex, Experimental Neurology, vol.191, issue.2, pp.318-343, 2005.
DOI : 10.1016/j.expneurol.2004.10.011

D. Souza, C. Araujo, E. Bordin, S. Ashimine, R. Zollner et al., Consumption of a Fat-Rich Diet Activates a Proinflammatory Response and Induces Insulin Resistance in the Hypothalamus, Endocrinology, vol.146, issue.10, pp.4192-4201, 2005.
DOI : 10.1210/en.2004-1520

X. Zhang, G. Zhang, H. Zhang, M. Karin, H. Bai et al., Hypothalamic IKK??/NF-??B and ER Stress Link Overnutrition to Energy Imbalance and Obesity, Cell, vol.135, issue.1, pp.61-73, 2008.
DOI : 10.1016/j.cell.2008.07.043

A. Kleinridders, D. Schenten, A. Konner, B. Belgardt, J. Mauer et al., MyD88 Signaling in the CNS Is Required for Development of Fatty Acid-Induced Leptin Resistance and Diet-Induced Obesity, Cell Metabolism, vol.10, issue.4, pp.249-59, 2009.
DOI : 10.1016/j.cmet.2009.08.013

J. Thaler, S. Choi, M. Schwartz, and B. Wisse, Hypothalamic inflammation and energy homeostasis: Resolving the paradox, Frontiers in Neuroendocrinology, vol.31, issue.1, pp.79-84
DOI : 10.1016/j.yfrne.2009.10.002

J. Ehses, A. Perren, E. Eppler, P. Ribaux, J. Pospisilik et al., Increased Number of Islet-Associated Macrophages in Type 2 Diabetes, Diabetes, vol.56, issue.9, pp.2356-70, 2007.
DOI : 10.2337/db06-1650

E. Gautier, T. Huby, F. Saint?charles, B. Ouzilleau, J. Pirault et al., Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis, Circulation, vol.119, issue.17, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.807537

J. Dyer and C. Rosenfeld, Metabolic Imprinting by Prenatal, Perinatal, and Postnatal Overnutrition: A Review, Seminars in Reproductive Medicine, vol.29, issue.03, 2011.
DOI : 10.1055/s-0031-1275521

S. Ng, R. Lin, D. Laybutt, R. Barres, J. Owens et al., Chronic high-fat diet in fathers programs ??-cell dysfunction in female rat offspring, Nature, vol.28, issue.7318, pp.963-969
DOI : 10.1038/nature09491

B. Wajchenberg, Subcutaneous and Visceral Adipose Tissue: Their Relation to the Metabolic Syndrome, Endocrine Reviews, vol.21, issue.6, pp.697-738, 2000.
DOI : 10.1210/edrv.21.6.0415

J. Lovejoy and A. Sainsbury, Sex differences in obesity and the regulation of energy homeostasis, Obesity Reviews, vol.147, issue.2, 2008.
DOI : 10.1111/j.1467-789X.2008.00529.x

M. Gambacciani, M. Ciaponi, B. Cappagli, L. Piaggesi, D. Simone et al., Body Weight, Body Fat Distribution, and Hormonal Replacement Therapy in Early Postmenopausal Women, The Journal of Clinical Endocrinology & Metabolism, vol.82, issue.2, pp.414-421, 1997.
DOI : 10.1210/jcem.82.2.3735

Y. Macotela, J. Boucher, T. Tran, and C. Kahn, Sex and Depot Differences in Adipocyte Insulin Sensitivity and Glucose Metabolism, Diabetes, vol.58, issue.4, 2009.
DOI : 10.2337/db08-1054

K. Grove, S. Fried, A. Greenberg, X. Xiao, and D. Clegg, A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice, International Journal of Obesity, vol.150, issue.6, pp.989-1000, 2010.
DOI : 10.1038/ijo.2010.12

K. Muraki, S. Okuya, and Y. Tanizawa, Estrogen Receptor ?? Regulates Insulin Sensitivity through IRS-1 Tyrosine Phosphorylation in Mature 3T3-L1 Adipocytes, Endocrine Journal, vol.53, issue.6, pp.841-51, 2006.
DOI : 10.1507/endocrj.K06-005

K. Blouin, A. Veilleux, V. Luu?the, and A. Tchernof, Androgen metabolism in adipose tissue: Recent advances, Molecular and Cellular Endocrinology, vol.301, issue.1-2, 2008.
DOI : 10.1016/j.mce.2008.10.035

S. Musatov, W. Chen, D. Pfaff, C. Mobbs, X. Yang et al., Silencing of estrogen receptor ?? in the ventromedial nucleus of hypothalamus leads to metabolic syndrome, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2501-2507, 2007.
DOI : 10.1073/pnas.0610787104

B. Calippe, V. Douin?echinard, M. Laffargue, H. Laurell, V. Rana?poussine et al., Chronic Estradiol Administration In Vivo Promotes the Proinflammatory Response of Macrophages to TLR4 Activation: Involvement of the Phosphatidylinositol 3-Kinase Pathway, The Journal of Immunology, vol.180, issue.12, pp.7980-7988, 2008.
DOI : 10.4049/jimmunol.180.12.7980

URL : https://hal.archives-ouvertes.fr/hal-00321739

V. Douin?echinard, S. Laffont, C. Seillet, L. Delpy, A. Krust et al., Estrogen Receptor ??, but Not ??, Is Required for Optimal Dendritic Cell Differentiation and CD40-Induced Cytokine Production, The Journal of Immunology, vol.180, issue.6, pp.3661-3670, 2008.
DOI : 10.4049/jimmunol.180.6.3661

URL : https://hal.archives-ouvertes.fr/inserm-00312757

G. Soucy, G. Boivin, F. Labrie, and S. Rivest, Estradiol Is Required for a Proper Immune Response to Bacterial and Viral Pathogens in the Female Brain, The Journal of Immunology, vol.174, issue.10, pp.6391-6399, 2005.
DOI : 10.4049/jimmunol.174.10.6391

A. Maret, J. Coudert, L. Garidou, G. Foucras, P. Gourdy et al., Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor ?? expression in hematopoietic cells, European Journal of Immunology, vol.33, issue.2, pp.512-533, 2003.
DOI : 10.1002/immu.200310027

D. Lacasa, S. Taleb, M. Keophiphath, A. Miranville, and K. Clement, Macrophage-Secreted Factors Impair Human Adipogenesis: Involvement of Proinflammatory State in Preadipocytes, Endocrinology, vol.148, issue.2, pp.868-77, 2007.
DOI : 10.1210/en.2006-0687

URL : https://hal.archives-ouvertes.fr/inserm-00126603

S. Boehme, F. Lio, D. Maciejewski?lenoir, K. Bacon, and P. Conlon, The Chemokine Fractalkine Inhibits Fas-Mediated Cell Death of Brain Microglia, The Journal of Immunology, vol.165, issue.1, pp.397-403, 2000.
DOI : 10.4049/jimmunol.165.1.397

A. Cardona, E. Pioro, M. Sasse, V. Kostenko, S. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nature Neuroscience, vol.24, issue.7, pp.917-941, 2006.
DOI : 10.1038/nn1715

S. Weisberg, D. Hunter, R. Huber, J. Lemieux, S. Slaymaker et al., CCR2 modulates inflammatory and metabolic effects of high-fat feeding, Journal of Clinical Investigation, vol.116, issue.5, pp.115-139, 2006.
DOI : 10.1172/JCI24335C1

H. Kanda, S. Tateya, Y. Tamori, K. Kotani, K. Hiasa et al., MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity, Journal of Clinical Investigation, vol.116, issue.6, pp.1494-505, 2006.
DOI : 10.1172/JCI26498DS1

K. Inouye, H. Shi, J. Howard, C. Daly, G. Lord et al., Absence of CC Chemokine Ligand 2 Does Not Limit Obesity-Associated Infiltration of Macrophages Into Adipose Tissue, Diabetes, vol.56, issue.9, pp.2242-50, 2007.
DOI : 10.2337/db07-0425

E. Kirk, Z. Sagawa, T. Mcdonald, O. Brien, K. Heinecke et al., Monocyte Chemoattractant Protein-1 Deficiency Fails to Restrain Macrophage Infiltration Into Adipose Tissue, Diabetes, vol.57, issue.5, pp.1254-61, 2008.
DOI : 10.2337/db07-1061

I. Ivanov, K. Atarashi, N. Manel, E. Brodie, T. Shima et al., Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria, Cell, vol.139, issue.3, pp.485-98, 2009.
DOI : 10.1016/j.cell.2009.09.033

R. Hanna, L. Carlin, H. Hubbeling, D. Nackiewicz, A. Green et al., The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C??? monocytes, Nature Immunology, vol.166, issue.8, pp.778-85
DOI : 10.1084/jem.20110308

P. Murray and T. Wynn, Obstacles and opportunities for understanding macrophage polarization, Journal of Leukocyte Biology, vol.89, issue.4, pp.557-63
DOI : 10.1189/jlb.0710409

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058818

E. Gautier, T. Huby, F. Saint?charles, B. Ouzilleau, M. Chapman et al., Enhanced Dendritic Cell Survival Attenuates Lipopolysaccharide-Induced Immunosuppression and Increases Resistance to Lethal Endotoxic Shock, The Journal of Immunology, vol.180, issue.10, pp.6941-6947, 2008.
DOI : 10.4049/jimmunol.180.10.6941

M. Daoudi, E. Lavergne, A. Garin, N. Tarantino, P. Debre et al., Enhanced adhesive capacities of the naturally occurring Ile249?Met280 variant of the chemokine receptor CX3CR1, J Biol Chem, vol.279, 2004.

D. Moatti, S. Faure, F. Fumeron, A. Mel, W. Seknadji et al., Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease, Blood, vol.97, issue.7, 2001.
DOI : 10.1182/blood.V97.7.1925

S. Apostolakis, V. Amanatidou, E. Papadakis, and D. Spandidos, Genetic diversity of CX3CR1 gene and coronary artery disease: New insights through a meta-analysis, Atherosclerosis, vol.207, issue.1, pp.8-15, 2009.
DOI : 10.1016/j.atherosclerosis.2009.03.044

D. Sirois?gagnon, A. Chamberland, S. Perron, D. Brisson, D. Gaudet et al., Association of Common Polymorphisms in the Fractalkine Receptor (CX3CR1) With Obesity, Obesity, vol.18, issue.1, pp.222-229
DOI : 10.1111/j.1467-789X.2008.00529.x

R. Shah, C. Hinkle, J. Ferguson, N. Mehta, M. Li et al., Fractalkine Is a Novel Human Adipochemokine Associated With Type 2 Diabetes, Diabetes, vol.60, issue.5, pp.1512-1520
DOI : 10.2337/db10-0956

G. Hansson and A. Hermansson, The immune system in atherosclerosis, Nature Immunology, vol.177, issue.3, pp.204-212
DOI : 10.1056/NEJM200003233421202

S. Bjorkerud and B. Bjorkerud, Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability, Am J Pathol, vol.149, pp.367-380, 1996.

R. Virmani, A. Burke, and F. Kolodgie, Morphological characteristics of coronary atherosclerosis in diabetes mellitus, Canadian Journal of Cardiology, vol.22, pp.81-84, 2006.
DOI : 10.1016/S0828-282X(06)70991-6

F. Kolodgie, J. Narula, A. Burke, N. Haider, A. Farb et al., Localization of Apoptotic Macrophages at the Site of Plaque Rupture in Sudden Coronary Death, The American Journal of Pathology, vol.157, issue.4, pp.1259-1268, 2000.
DOI : 10.1016/S0002-9440(10)64641-X

P. Libby, Y. Geng, M. Aikawa, U. Schoenbeck, F. Mach et al., Macrophages and atherosclerotic plaque stability, Current Opinion in Lipidology, vol.7, issue.5, pp.330-335, 1996.
DOI : 10.1097/00041433-199610000-00012

Y. Geng and P. Libby, Progression of Atheroma: A Struggle Between Death and Procreation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.9, pp.1370-1380, 2002.
DOI : 10.1161/01.ATV.0000031341.84618.A4

J. Zhou, S. Lhotak, B. Hilditch, and R. Austin, Activation of the Unfolded Protein Response Occurs at All Stages of Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice, Circulation, vol.111, issue.14, pp.1814-1821, 2005.
DOI : 10.1161/01.CIR.0000160864.31351.C1

I. Tabas, Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis: The Importance of Lesion Stage and Phagocytic Efficiency, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.11, pp.2255-2264, 2005.
DOI : 10.1161/01.ATV.0000184783.04864.9f

J. Liu, D. Thewke, Y. Su, M. Linton, S. Fazio et al., Reduced Macrophage Apoptosis Is Associated With Accelerated Atherosclerosis in Low-Density Lipoprotein Receptor-Null Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, pp.174-179, 2005.
DOI : 10.1161/01.ATV.0000148548.47755.22

S. Arai, J. Shelton, M. Chen, M. Bradley, A. Castrillo et al., A role for the apoptosis inhibitory factor AIM/Sp??/Api6 in atherosclerosis development, Cell Metabolism, vol.1, issue.3, pp.201-213, 2005.
DOI : 10.1016/j.cmet.2005.02.002

E. Gautier, T. Huby, J. Witztum, B. Ouzilleau, E. Miller et al., Macrophage Apoptosis Exerts Divergent Effects on Atherogenesis as a Function of Lesion Stage, Circulation, vol.119, issue.13, pp.1795-1804, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.806158

S. Cory, J. Adams, M. Kockx, D. Meyer, G. Buyssens et al., The Bcl2 family: regulators of the cellular life-or-death switch Cell composition, replication, and apoptosis in atherosclerotic plaques after 6 months of cholesterol withdrawal Apoptosis and related proteins in different stages of human atherosclerotic plaques, DJ. Expression of Bcl-x, Bcl-2, Bax, and Bak in endarterectomy and atherectomy specimens, pp.647-656378, 1998.

H. Lin, C. Chen, and B. Chen, Resistance of bone marrow-derived macrophages to apoptosis is associated with the expression of X-linked inhibitor of apoptosis protein in primary cultures of bone marrow cells, Biochemical Journal, vol.353, issue.2, pp.299-306, 2001.
DOI : 10.1042/bj3530299

J. Zhang, Y. Li, M. Yu, C. B. Shen, and B. , Lineage-dependent NF-??B activation contributes to the resistance of human macrophages to apoptosis, The Hematology Journal, vol.4, issue.4, pp.277-284, 2003.
DOI : 10.1038/sj.thj.6200252

L. Sevilla, A. Zaldumbide, F. Carlotti, M. Dayem, P. Pognonec et al., Bcl-XL expression correlates with primary macrophage differentiation, activation of functional competence, and survival and results from synergistic transcriptional activation by Ets2 and PU.1 Anti-apoptotic genes in the survival of monocytic cells during infection, J Biol Chem. Curr Genomics, vol.27610, issue.21, pp.17800-17807306, 2001.

E. Thorp, Y. Li, L. Bao, P. Yao, G. Kuriakose et al., Brief Report: Increased Apoptosis in Advanced Atherosclerotic Lesions of Apoe-/- Mice Lacking Macrophage Bcl-2, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.2, pp.169-172, 2009.
DOI : 10.1161/ATVBAHA.108.176495

K. Wagner, C. E. Rucker, E. Riedlinger, G. Broussard, C. Schwartzberg et al., Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly, Development, vol.127, pp.4949-4958, 2000.

B. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, and I. Forster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Research, vol.8, issue.4, pp.265-277, 1999.
DOI : 10.1023/A:1008942828960

E. Gautier, T. Huby, B. Ouzilleau, C. Doucet, F. Saint-charles et al., Enhanced Immune System Activation and Arterial Inflammation Accelerates Atherosclerosis in Lupus-Prone Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.7, pp.1625-1631, 2007.
DOI : 10.1161/ATVBAHA.107.142430

E. Gautier, T. Huby, F. Saint-charles, B. Ouzilleau, M. Chapman et al., Enhanced Dendritic Cell Survival Attenuates Lipopolysaccharide-Induced Immunosuppression and Increases Resistance to Lethal Endotoxic Shock, The Journal of Immunology, vol.180, issue.10, pp.6941-6946, 2008.
DOI : 10.4049/jimmunol.180.10.6941

E. Gautier, T. Huby, F. Saint-charles, B. Ouzilleau, J. Pirault et al., Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis, Circulation, vol.119, issue.17, pp.2367-2375, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.807537

J. Pesce, T. Ramalingam, M. Mentink-kane, M. Wilson, E. Kasmi et al., Arginase-1???Expressing Macrophages Suppress Th2 Cytokine???Driven Inflammation and Fibrosis, PLoS Pathogens, vol.157, issue.4, p.1000371, 2009.
DOI : 10.1371/journal.ppat.1000371.s003

URL : http://doi.org/10.1371/journal.ppat.1000371

F. Kolodgie, A. Petrov, R. Virmani, N. Narula, J. Verjans et al., Targeting of Apoptotic Macrophages and Experimental Atheroma With Radiolabeled Annexin V: A Technique With Potential for Noninvasive Imaging of Vulnerable Plaque, Circulation, vol.108, issue.25, pp.3134-3139, 2003.
DOI : 10.1161/01.CIR.0000105761.00573.50

H. Shimano, N. Yamada, K. Motoyoshi, A. Matsumoto, S. Ishibashi et al., Plasma Cholesterol-Lowering Activity of Monocyte Colony-Stimulating Factor (M-CSF), Annals of the New York Academy of Sciences, vol.240, issue.1
DOI : 10.1111/j.1749-6632.1990.tb00177.x

J. Stoudemire and M. Garnick, Effects of recombinant human macrophage colonystimulating factor on plasma cholesterol levels, Blood, vol.77, pp.750-755, 1991.

M. Witmer-pack, D. Hughes, G. Schuler, L. Lawson, A. Mcwilliam et al., Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse, J Cell Sci, vol.104, pp.1021-1029, 1993.

J. Qiao, J. Tripathi, N. Mishra, Y. Cai, S. Tripathi et al., Role of macrophage colonystimulating factor in atherosclerosis: studies of osteopetrotic mice Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1, Am J Pathol. Circ Res, vol.150102, issue.34, pp.1687-1699113, 1997.

M. Westerterp, J. Koetsveld, S. Yu, S. Han, R. Li et al., Increased Atherosclerosis in Mice With Vascular ATP-Binding Cassette Transporter G1 Deficiency--Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.11, pp.2103-2105
DOI : 10.1161/ATVBAHA.110.212985

D. Ye, M. Hoekstra, R. Out, I. Meurs, J. Kruijt et al., Hepatic cell-specific ATP-binding cassette (ABC) transporter profiling identifies putative novel candidates for lipid homeostasis in mice, Atherosclerosis, vol.196, issue.2, pp.650-658, 2008.
DOI : 10.1016/j.atherosclerosis.2007.07.021

A. Merched, E. Williams, L. Chan, B. Van-vlijmen, G. Gerritsen et al., Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice, Arterioscler Thromb Vasc Biol. Circ Res, vol.2388, issue.38, pp.1608-1614780, 2001.

D. Schrijvers, D. Meyer, G. Herman, A. Martinet, and W. , Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability, Cardiovascular Research, vol.73, issue.3, pp.470-480, 2007.
DOI : 10.1016/j.cardiores.2006.09.005

I. Tabas, J. Smith, E. Trogan, M. Ginsberg, C. Grigaux et al., Apoptosis and efferocytosis in mouse models of atherosclerosis Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E, Curr Drug Targets. Proc Natl Acad Sci U S A, vol.892, pp.1288-1296, 1995.

D. Voelker and G. Feigenson, Original Contribution Membrane lipids: where they are and how they behave, Nat Rev Mol Cell Biol, vol.9, issue.2, pp.112-124, 2008.

C. Binder, M. Chang, P. Shaw, Y. Miller, K. Hartvigsen et al., Innate and acquired immunity in atherogenesis, Nature Medicine, vol.42, issue.11, pp.1218-1226, 2002.
DOI : 10.1073/pnas.192399699

G. Hansson, P. Libby, U. Schonbeck, and Z. Yan, Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis, Circulation Research, vol.91, issue.4, pp.281-291, 2002.
DOI : 10.1161/01.RES.0000029784.15893.10

J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of Dendritic Cells, Annual Review of Immunology, vol.18, issue.1, pp.767-811, 2000.
DOI : 10.1146/annurev.immunol.18.1.767

R. Steinman, Dendritic cells: versatile controllers of the immune system, Nature Medicine, vol.305, issue.10, pp.1155-1159, 2007.
DOI : 10.1038/nm1643

H. Groux, N. Fournier, and F. Cottrez, Role of dendritic cells in the generation of regulatory T cells, Seminars in Immunology, vol.16, issue.2, pp.99-106, 2004.
DOI : 10.1016/j.smim.2003.12.004

J. Choi, Y. Do, C. Cheong, H. Koh, S. Boscardin et al., Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves, The Journal of Experimental Medicine, vol.11, issue.3, pp.497-505, 2009.
DOI : 10.1084/jem.194.2.173

Y. Bobryshev, T. Taksir, R. Lord, and M. Freeman, Evidence that dendritic cells infiltrate atherosclerotic lesions in apolipoprotein E-­?deficient mice, Histol Histopathol, vol.16, issue.3, pp.801-808, 2001.

F. Tacke, D. Alvarez, T. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, Journal of Clinical Investigation, vol.117, issue.1, pp.185-194, 2007.
DOI : 10.1172/JCI28549

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716202

K. Paulson, S. Zhu, M. Chen, S. Nurmohamed, J. Jongstra-­?bilen et al., Resident Intimal Dendritic Cells Accumulate Lipid and Contribute to the Initiation of Atherosclerosis, Circulation Research, vol.106, issue.2, pp.383-390, 2010.
DOI : 10.1161/CIRCRESAHA.109.210781

S. Jung, D. Unutmaz, P. Wong, G. Sano, K. De-los-santos et al., In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens, Immunity, vol.17, issue.2, pp.211-220, 2002.
DOI : 10.1016/S1074-7613(02)00365-5

E. Gautier, T. Huby, F. Saint-­?charles, B. Ouzilleau, J. Pirault et al., Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis, Circulation, vol.119, issue.17, pp.2367-2375, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.807537

T. Ishibashi, K. Yokoyama, J. Shindo, Y. Hamazaki, Y. Endo et al., Potent cholesterol-lowering effect by human granulocyte-macrophage colony-stimulating factor in rabbits. Possible implications of enhancement of macrophage functions and an increase in mRNA for VLDL receptor, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.14, issue.10, pp.1534-1541, 1994.
DOI : 10.1161/01.ATV.14.10.1534

S. Nimer, R. Champlin, and D. Golde, Serum Cholesterol???Lowering Activity of Granulocyte-Macrophage Colony-Stimulating Factor, JAMA: The Journal of the American Medical Association, vol.260, issue.22, pp.3297-3300, 1988.
DOI : 10.1001/jama.1988.03410220081032

S. Zbinden, R. Zbinden, P. Meier, S. Windecker, and C. Seiler, Safety and Efficacy of Subcutaneous-Only Granulocyte-Macrophage Colony-Stimulating Factor for Collateral Growth Promotion in Patients With Coronary Artery Disease, Journal of the American College of Cardiology, vol.46, issue.9, pp.1636-1642, 2005.
DOI : 10.1016/j.jacc.2005.01.068

K. Hanada, R. Tsunoda, and H. Hamada, GM-­?CSF-­?induced in vivo expansion of splenic dendritic cells and their strong costimulation activity- collateral growth promotion in patients with coronary artery disease, J Leukoc Biol. J Am Coll Cardiol, vol.6046, issue.29, pp.1811636-1642, 1996.

K. Hanada, R. Tsunoda, and H. Hamada, GM-­?CSF-­?induced in vivo expansion of splenic dendritic cells and their strong costimulation activity, J Leukoc Biol, vol.60, issue.2, pp.181-190, 1996.

L. Kritharides, W. Jessup, J. Gifford, and R. Dean, A Method for Defining the Stages of Low-Density Lipoprotein Oxidation by the Separation of Cholesterol and Cholesteryl Ester-Oxidation Products Using HPLC, Analytical Biochemistry, vol.213, issue.1, pp.79-89, 1993.
DOI : 10.1006/abio.1993.1389

T. Miettinen, E. Ahrens, J. Grundy, and S. , Quantitative Isolation and Gas-­?-­?Liquid Chromatographic Analysis of Total Dietary and Fecal Neutral Steroids, J Lipid Res, vol.6, pp.411-424, 1965.

B. Borgstrom, Quantification of cholesterol absorption in man by fecal analysis after the feeding of a single isotope-­?labeled meal, J Lipid Res, vol.10, issue.3, pp.331-337, 1969.

C. Sun, J. Hall, R. Blank, N. Bouladoux, M. Oukka et al., Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid, The Journal of Experimental Medicine, vol.398, issue.8, pp.1775-1785, 2007.
DOI : 10.1084/jem.188.2.287

S. Gordon, Macrophage heterogeneity and tissue lipids, Journal of Clinical Investigation, vol.117, issue.1, pp.89-93, 2007.
DOI : 10.1172/JCI30992

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716225

G. Randolph, Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis, Current Opinion in Lipidology, vol.19, issue.5, pp.462-468, 2008.
DOI : 10.1097/MOL.0b013e32830d5f09

E. Bettelli, Y. Carrier, W. Gao, T. Korn, T. Strom et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature, vol.31, issue.7090, pp.235-238, 2006.
DOI : 10.1038/nature04753

M. Veldhoen, R. Hocking, C. Atkins, R. Locksley, and B. Stockinger, TGF?? in the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation of IL-17-Producing T Cells, Immunity, vol.24, issue.2, pp.179-189, 2006.
DOI : 10.1016/j.immuni.2006.01.001

R. Mebius, Vitamins in control of lymphocyte migration, Nature Immunology, vol.172, issue.3, pp.229-230, 2007.
DOI : 10.1084/jem.20051100

T. Waldmann, The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design, Nature Reviews Immunology, vol.153, issue.8, pp.595-601, 2006.
DOI : 10.1038/nri1901

L. Yu, R. Hammer, J. Li-­?hawkins, V. Bergmann, K. Lutjohann et al., Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.16237-16242, 2002.
DOI : 10.1073/pnas.252582399

K. Berge, H. Tian, G. Graf, L. Yu, N. Grishin et al., Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters, Science, vol.290, issue.5497, pp.1771-1775, 2000.
DOI : 10.1126/science.290.5497.1771

J. Repa, K. Berge, C. Pomajzl, J. Richardson, H. Hobbs et al., Regulation of ATP-binding Cassette Sterol Transporters ABCG5 and ABCG8 by the Liver X Receptors alpha and beta, Journal of Biological Chemistry, vol.277, issue.21, pp.18793-18800, 2002.
DOI : 10.1074/jbc.M109927200

Y. Yamanashi, T. Takada, T. Yoshikado, J. Shoda, and H. Suzuki, NPC2 Regulates Biliary Cholesterol Secretion via Stimulation of ABCG5/G8-Mediated Cholesterol Transport, Gastroenterology, vol.140, issue.5, pp.1664-1674, 2011.
DOI : 10.1053/j.gastro.2011.01.050

Y. Ji, N. Wang, R. Ramakrishnan, E. Sehayek, D. Huszar et al., Hepatic Scavenger Receptor BI Promotes Rapid Clearance of High Density Lipoprotein Free Cholesterol and Its Transport into Bile, Journal of Biological Chemistry, vol.274, issue.47, pp.33398-33402, 1999.
DOI : 10.1074/jbc.274.47.33398

K. Kozarsky, M. Donahee, A. Rigotti, S. Iqbal, E. Edelman et al., Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels, Nature, vol.387, issue.6631, pp.414-417, 1997.
DOI : 10.1038/387414a0

T. Huby, C. Doucet, C. Dachet, B. Ouzilleau, Y. Ueda et al., Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues, Journal of Clinical Investigation, vol.116, issue.10, pp.2767-2776, 2006.
DOI : 10.1172/JCI26893DS1

K. Kozarsky, M. Donahee, J. Glick, M. Krieger, and D. Rader, Gene Transfer and Hepatic Overexpression of the HDL Receptor SR-BI Reduces Atherosclerosis in the Cholesterol-Fed LDL Receptor-Deficient Mouse, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.3, pp.721-727, 2000.
DOI : 10.1161/01.ATV.20.3.721

G. Brufau, A. Groen, and F. Kuipers, Reverse Cholesterol Transport Revisited: Contribution of Biliary Versus Intestinal Cholesterol Excretion, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.8, pp.1726-1733, 2011.
DOI : 10.1161/ATVBAHA.108.181206

J. Van-der-veen, V. Dijk, T. Vrins, C. Van-meer, H. Havinga et al., Activation of the Liver X Receptor Stimulates Trans-intestinal Excretion of Plasma Cholesterol, Journal of Biological Chemistry, vol.284, issue.29, pp.19211-19219, 2009.
DOI : 10.1074/jbc.M109.014860

A. Van-der-velde, C. Vrins, K. Van-den-oever, C. Kunne, O. Elferink et al., Direct Intestinal Cholesterol Secretion Contributes Significantly to Total Fecal Neutral Sterol Excretion in Mice, Gastroenterology, vol.133, issue.3, pp.967-975, 2007.
DOI : 10.1053/j.gastro.2007.06.019

L. Hooper, M. Wong, A. Thelin, L. Hansson, P. Falk et al., Molecular Analysis of Commensal Host-Microbial Relationships in the Intestine, Science, vol.291, issue.5505, pp.881-884, 2001.
DOI : 10.1126/science.291.5505.881

R. Ley, F. Backhed, P. Turnbaugh, C. Lozupone, R. Knight et al., Obesity alters gut microbial ecology, Proceedings of the National Academy of Sciences, vol.102, issue.31, pp.11070-11075, 2005.
DOI : 10.1073/pnas.0504978102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176910

R. Ley, P. Turnbaugh, S. Klein, and J. Gordon, Microbial ecology: Human gut microbes associated with obesity, Nature, vol.308, issue.7122, pp.1022-1023, 2006.
DOI : 10.1038/4441022a

P. Turnbaugh, F. Backhed, L. Fulton, and J. Gordon, Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome, Cell Host & Microbe, vol.3, issue.4, pp.213-223, 2008.
DOI : 10.1016/j.chom.2008.02.015

J. Furet, L. Kong, J. Tap, C. Poitou, A. Basdevant et al., Differential Adaptation of Human Gut Microbiota to Bariatric Surgery-Induced Weight Loss: Links With Metabolic and Low-Grade Inflammation Markers, Diabetes, vol.59, issue.12, pp.3049-3057, 2010.
DOI : 10.2337/db10-0253

T. Denning, Y. Wang, S. Patel, I. Williams, and B. Pulendran, Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17???producing T cell responses, Nature Immunology, vol.146, issue.10, pp.1086-1094, 2007.
DOI : 10.1038/ni1212

O. Harrison and K. Maloy, Innate Immune Activation in Intestinal Homeostasis, Journal of Innate Immunity, vol.3, issue.6, pp.585-593, 2011.
DOI : 10.1159/000330913

S. Turley, Role of Niemann-Pick C1???Like 1 (NPC1L1) in Intestinal Sterol Absorption, Journal of Clinical Lipidology, vol.2, issue.2, pp.20-28, 2008.
DOI : 10.1016/j.jacl.2008.01.008

L. Yu, J. Li-­?hawkins, R. Hammer, K. Berge, J. Horton et al., Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol, Journal of Clinical Investigation, vol.110, issue.5, pp.671-680, 2002.
DOI : 10.1172/JCI0216001

D. Wang, Regulation of Intestinal Cholesterol Absorption, Annual Review of Physiology, vol.69, issue.1, pp.221-248, 2007.
DOI : 10.1146/annurev.physiol.69.031905.160725

J. Repa, S. Turley, J. Lobaccaro, J. Medina, L. Li et al., Regulation of Absorption and ABC1-Mediated Efflux of Cholesterol by RXR Heterodimers, Science, vol.289, issue.5484, pp.1524-1529, 2000.
DOI : 10.1126/science.289.5484.1524

E. Frisdal, P. Lesnik, M. Olivier, P. Robillard, M. Chapman et al., Interleukin-6 Protects Human Macrophages from Cellular Cholesterol Accumulation and Attenuates the Proinflammatory Response, Journal of Biological Chemistry, vol.286, issue.35, pp.30926-30936, 2011.
DOI : 10.1074/jbc.M111.264325

N. Javitt, Cholesterol, Hydroxycholesterols, and Bile Acids, Biochemical and Biophysical Research Communications, vol.292, issue.5, pp.1147-1153, 2002.
DOI : 10.1006/bbrc.2001.2013

C. Falany, M. Johnson, S. Barnes, and R. Diasio, Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-­?acyltransferase, J Biol Chem, vol.269, issue.30, p.19375, 1994.

D. Peet, S. Turley, W. Ma, B. Janowski, J. Lobaccaro et al., Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXR??, Cell, vol.93, issue.5, pp.693-704, 1998.
DOI : 10.1016/S0092-8674(00)81432-4

S. Erickson, S. Lear, S. Deane, S. Dubrac, S. Huling et al., Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice, The Journal of Lipid Research, vol.44, issue.5, pp.1001-1009, 2003.
DOI : 10.1194/jlr.M200489-JLR200

P. Dawson, J. Haywood, A. Craddock, M. Wilson, M. Tietjen et al., Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice, Journal of Biological Chemistry, vol.278, issue.36, pp.33920-33927, 2003.
DOI : 10.1074/jbc.M306370200

T. Gerloff, B. Stieger, B. Hagenbuch, J. Madon, L. Landmann et al., The Sister of P-glycoprotein Represents the Canalicular Bile Salt Export Pump of Mammalian Liver, Journal of Biological Chemistry, vol.273, issue.16, pp.10046-10050, 1998.
DOI : 10.1074/jbc.273.16.10046

P. Hylemon and J. Harder, Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems, FEMS Microbiology Reviews, vol.22, issue.5, pp.475-488, 1998.
DOI : 10.1111/j.1574-6976.1998.tb00382.x

O. Bortolini, A. Medici, and S. Poli, Biotransformations on steroid nucleus of bile acids, Steroids, vol.62, issue.8-9, pp.8-9564, 1997.
DOI : 10.1016/S0039-128X(97)00043-3

S. Yamazaki and R. Steinman, Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells, Journal of Dermatological Science, vol.54, issue.2, pp.69-75, 2009.
DOI : 10.1016/j.jdermsci.2009.02.001

Z. Fehervari and S. Sakaguchi, Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells, International Immunology, vol.16, issue.12, pp.1769-1780, 2004.
DOI : 10.1093/intimm/dxh178

C. Tadokoro, G. Shakhar, S. Shen, Y. Ding, A. Lino et al., T cells and dendritic cells in vivo, The Journal of Experimental Medicine, vol.21, issue.3, pp.505-511, 2006.
DOI : 10.1038/ni1139

C. Oderup, L. Cederbom, A. Makowska, C. Cilio, and F. Ivars, Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression, Immunology, vol.27, issue.2, pp.240-249, 2006.
DOI : 10.1002/(SICI)1521-4141(199809)28:09<2902::AID-IMMU2902>3.0.CO;2-B

J. Lo, Y. Wang, A. Tumanov, M. Bamji, Z. Yao et al., Lymphotoxin ?? Receptor-Dependent Control of Lipid Homeostasis, Science, vol.316, issue.5822, pp.285-288, 2007.
DOI : 10.1126/science.1137221

K. Kikly, L. Liu, S. Na, and J. Sedgwick, The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation, Current Opinion in Immunology, vol.18, issue.6, pp.670-675, 2006.
DOI : 10.1016/j.coi.2006.09.008

M. Chen, L. Huang, and J. Wang, Deficiency of Bim in dendritic cells contributes to overactivation of lymphocytes and autoimmunity, Blood, vol.109, issue.10, pp.4360-4367, 2007.
DOI : 10.1182/blood-2006-11-056424

C. Sutton, C. Brereton, B. Keogh, K. Mills, and E. Lavelle, A crucial role for interleukin (IL)-1 in the induction of IL-17???producing T cells that mediate autoimmune encephalomyelitis, The Journal of Experimental Medicine, vol.203, issue.7, pp.1685-1691, 2006.
DOI : 10.1074/jbc.M308809200

Y. Chung, S. Chang, G. Martinez, X. Yang, R. Nurieva et al., Critical Regulation of Early Th17 Cell Differentiation by Interleukin-1 Signaling, Immunity, vol.30, issue.4, pp.576-587, 2009.
DOI : 10.1016/j.immuni.2009.02.007

E. Esplugues, S. Huber, N. Gagliani, A. Hauser, T. Town et al., Control of TH17 cells occurs in the small intestine, Nature, vol.155, issue.7357, pp.514-518, 2011.
DOI : 10.1038/nature10228

G. Duester, Families of retinoid dehydrogenases regulating vitamin A function, European Journal of Biochemistry, vol.21, issue.14, pp.4315-4324, 2000.
DOI : 10.1046/j.1432-1327.2000.01497.x

M. Svensson, B. Johansson-­?lindbom, F. Zapata, E. Jaensson, L. Austenaa et al., Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells, Mucosal Immunology, vol.97, issue.1, pp.38-48, 2008.
DOI : 10.1038/mi.2007.4

M. Svensson, J. Marsal, A. Ericsson, L. Carramolino, T. Broden et al., CCL25 mediates the localization of recently activated CD8????+ lymphocytes to the small-intestinal mucosa, Journal of Clinical Investigation, vol.110, issue.8, pp.1113-1121, 2002.
DOI : 10.1172/JCI0215988

M. Drakes, P. Stiff, and T. Blanchard, Inverse relationship between dendritic cell CCR9 expression and maturation state, Immunology, vol.427, issue.4, pp.466-476, 2009.
DOI : 10.1111/j.1365-2567.2009.03043.x

M. Wendland, N. Czeloth, N. Mach, B. Malissen, E. Kremmer et al., CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine, Proceedings of the National Academy of Sciences, vol.104, issue.15, pp.6347-6352, 2007.
DOI : 10.1073/pnas.0609180104

URL : https://hal.archives-ouvertes.fr/hal-00165504

F. Stabler, W. Gruber, K. Stinshoff, and P. Röschlau, Ein praxisgerechte enzymatiches cholesterin-­?bestimmung (A practical enzymatic cholesterol determination), Das Medizinische Laboratorium, vol.30, issue.2, pp.29-37, 1977.

A. Wahlefeld, Methods of Enzymatic Analysis, pp.1831-1835, 1974.

E. Sehayek, J. Ono, S. Shefer, L. Nguyen, N. Wang et al., Biliary cholesterol excretion: A novel mechanism that regulates dietary cholesterol absorption, Proceedings of the National Academy of Sciences, vol.95, issue.17, pp.10194-10199, 1998.
DOI : 10.1073/pnas.95.17.10194

S. Bustin, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, Journal of Molecular Endocrinology, vol.25, issue.2, pp.169-193, 2000.
DOI : 10.1677/jme.0.0250169