
HAL Id: tel-00825026
https://theses.hal.science/tel-00825026v1

Submitted on 22 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed cost-optimal planning
Loïg Jezequel

To cite this version:
Loïg Jezequel. Distributed cost-optimal planning. Other [cs.OH]. École normale supérieure de Cachan
- ENS Cachan, 2012. English. �NNT : 2012DENS0059�. �tel-00825026�

https://theses.hal.science/tel-00825026v1
https://hal.archives-ouvertes.fr

THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’éCOLE NORmALE SUpéRiEURE DE CACHAN

Mention : Informatique
école doctorale mATiSSE

présentée par

Loïg Jezequel
Préparée à l’Unité Mixte de Recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

Distributed Cost-Optimal
Planning

Thèse soutenue le 13 novembre 2012
devant le jury composé de :

Sophie pinchinat,
Professeure, Université Rennes 1 / présidente du jury

malik Ghallab,
Directeur de Recherche, LAAS-CNRS / rapporteur
marc Zeitoun,
Professeur, Université Bordeaux 1 / rapporteur

Javier Esparza,
Professeur, Technische Universität München / examinateur
Serge Haddad,
Professeur, ENS Cachan / examinateur
patrik Haslum,
Chargé de recherche contractuel, Australian National University / examinateur

éric Fabre,
Directeur de Recherche, INRIA Rennes Bretagne Atlantique / directeur de thèse

Remerciements
Je tiens en premier lieu à remercier les membres de mon jury : Sophie Pinchinat, qui
m’a fait l’honneur de le présider ; Malik Ghallab et Marc Zeitoun, rapporteurs, pour
leur relecture attentive du présent manuscrit ainsi que leurs remarques constructives
avant et pendant la soutenance ; Javier Esparza, Serge Haddad et Patrik Haslum, ex-
aminateurs, pour avoir bien voulu s’intéresser à mon travail et participer à ce jury. De
manière générale je les remercie tous pour le temps qu’ils ont consacré à ma thèse et
pour leurs questions pertinentes qui m’ont ouvert de nombreuses pistes de réflexion.

Je remercie aussi Sylvie Thiébaux, mes collègues de l’IRISA – et en particulier
les membres des équipes DistribCom, S4 et VerTeCS –, ainsi que l’ensemble des
chercheurs avec qui j’ai pu avoir des discussions enrichissantes lors de séjours dans
d’autres laboratoires, lors de conférences, ou lors de leurs visites à l’IRISA.

Enfin, je voudrais remercier tout particulièrement Eric Fabre, mon directeur de
thèse, pour m’avoir donné l’opportunité de travailler sur ce sujet passionnant, pour ses
conseils avisés lors de la rédaction de ce manuscrit et en préparation de la soutenance
mais aussi tout au long des trois ans et demi que nous avons passés à travailler ensem-
ble depuis le début de mon stage de master. J’espère sincèrement que nous pourrons
continuer à collaborer à l’avenir.

Contents

Résumé long en français 9

Introduction 19

1 From Planning to Factored Planning 25
1.1 Planning problems . 26

1.1.1 Formalism of planning problems 26
1.1.2 An example . 26
1.1.3 Cost-optimal planning . 27

1.2 The A* algorithm . 28
1.2.1 Planning problems as search in a graph 28
1.2.2 Presentation of A* . 29

1.3 About heuristics . 31
1.3.1 Delete relaxation heuristics 31
1.3.2 Critical path heuristics . 32
1.3.3 Abstraction heuristics . 33
1.3.4 Landmark heuristics . 33

1.4 Exploiting concurrency . 34
1.4.1 Graphplan . 34
1.4.2 Planning via Petri net unfolding 37

1.5 Exploiting modularity . 39
1.5.1 A first approach to factored planning 40
1.5.2 Factored planning using constraint solving 43

1.6 Complexity of planning . 44
1.6.1 Complexity in general . 45
1.6.2 The case of factored planning 46

2 Planning in Networks of Weighted Automata 49
2.1 Automata and (factored) planning 50

2.1.1 Planning problems in terms of automata 50
2.1.2 Factored representation of planning problems 51

2.2 Basics of message passing algorithms 53
2.3 Message passing for cost-optimal planning 57

2.3.1 Composition: synchronous product 57
2.3.2 Projection: natural projection 57
2.3.3 Relation between product and projection 58
2.3.4 Sample execution of the MPA on weighted languages 61

2.4 Working directly with weighted automata 61

5

CONTENTS

2.4.1 Plan compatibility: product of weighted automata 62
2.4.2 Cost-optimization: projection of weighted automata 63
2.4.3 A sample execution of MPA on weighted automata 64

3 Distoplan: a Factored Planner for Cost-Optimal Planning 69
3.1 Algorithms for the product and the projection 69

3.1.1 Projection as an ε-reduction 70
3.1.2 Product as a breadth first search 70

3.2 Reducing the size of the weighted automata 71
3.2.1 Trimming weighted automata 72
3.2.2 On the determinization of weighted automata 72
3.2.3 Minimizing weighted automata 76

3.3 Distoplan . 77
3.3.1 An extended example . 77
3.3.2 Experimental results . 81

4 Turbo Algorithms for Factored Planning 89
4.1 Turbo algorithms . 90

4.1.1 About updated components 90
4.1.2 About solution extraction . 90

4.2 Turbo algorithms for constraint solving 90
4.2.1 Conditions for convergence 91
4.2.2 Ensuring convergence in all cases 91
4.2.3 Experimental results . 92

4.3 Turbo algorithms for cost-optimal planning 95
4.3.1 Necessity of a normalization 96
4.3.2 Normalization procedure . 97
4.3.3 Experimental results . 97

5 Networks of Automata with Read Arcs 101
5.1 Simple reading mechanism . 102

5.1.1 Writing and reading . 102
5.1.2 Operations on languages . 103
5.1.3 Operations on automata . 103

5.2 Networks of automata with read arcs 104
5.2.1 Reading and writing tags . 105
5.2.2 Automata with read arcs . 105
5.2.3 Operations on languages . 106
5.2.4 Product of automata with read arcs 107

5.3 Planning in networks of ARA . 109
5.3.1 ARA representing planning problems 109
5.3.2 Projection of an ARA . 111
5.3.3 Central relation between product and projection 113
5.3.4 Example . 114

5.4 Generalization to any number of ARA 116
5.4.1 Communication graph of a network of ARA 116
5.4.2 Message passing algorithm for ARA 117

6

CONTENTS

6 Toward a distributed A* 119
6.1 Compatible final states . 120

6.1.1 Intuition on the approach . 120
6.1.2 Proposed algorithm . 121
6.1.3 Implementation of Gk̄ and Θk̄ 125
6.1.4 Running example . 126

6.2 Compatible colored paths . 127
6.2.1 Equivalence of CFS and CCP 129
6.2.2 Running example . 130

7 A#: a Distributed A* for Cost-Optimal Planning 133
7.1 Distributed planning with two components 134

7.1.1 Computation of Rk and Hk̄ 135
7.1.2 Termination of the algorithm 136
7.1.3 Computation of Gk̄ and Θk̄ 137
7.1.4 Running example . 138

7.2 Generalization to any number of components 139
7.2.1 Building Hk̄, Gk̄, and Θk̄ in a distributed way 140
7.2.2 Computing local information in practice 141

Conclusion and perspectives 145

Bibliography 149

7

CONTENTS

8

Résumé long en français

LA PLANIFICATION EST un domaine de l’intelligence artificielle où l’objectif est
de permettre à un système d’atteindre un état particulier (appelé but) au moyen

d’actions qu’il faut choisir et ordonner. Les problèmes de planifications sont en fait
fortement liés à ceux de recherche de chemins. En effet, il est possible de représenter
les états du système considérés par les sommets d’un graphe et les actions modifi-
ant ces états par les arcs (orientés) de ce graphe. Trouver une solution (généralement
appelée plan) à un problème de planification revient alors à trouver un chemin dans
le graphe correspondant. On peut donc résoudre ces problèmes en utilisant des al-
gorithmes classiques de recherche de chemins. Cependant on souhaite fréquemment,
plutôt que simplement trouver un plan, en trouver un qui soit de bonne qualité. Cette
notion de qualité peut être définie en associant à chaque action un coût (généralement
un nombre réel positif) permettant de définir la qualité d’un plan à partir de la somme
de coûts des actions le constituant : plus cette somme sera petite, plus le plan sera
de bonne qualité. On cherche alors à trouver des plans du plus faible coût possible,
c’est-à-dire des chemins de coût minimal dans un graphe valué. En planification ceci
se fait traditionnellement à l’aide de l’algorithme A* (ou d’une de ses variantes), qui
a été proposé en 1968 par Hart, Nilsson et Raphael [37]. Cet algorithme consiste en
une recherche de chemins dans un graphe où le choix des directions à explorer en
priorité est biaisé par des informations sur le coût maximal des chemins prenant ces
directions. Toute la difficulté de l’utilisation de cet algorithme réside dans la recherche
de ces informations biaisant la recherche, c’est à dire dans la construction de ce qu’on
appelle une heuristique. De nombreuses méthodes existent pour calculer des heuris-
tiques, aussi bien pour des problèmes particuliers [20] que sans faire d’hypothèses sur
les problèmes (par exemple en utilisant des méthodes d’abstraction [46] ou de relax-
ation [43] des problèmes).

Plus récemment de nouvelles méthodes de planification sont apparues, tirant avan-
tage de relations d’indépendance existant entre certaines actions au sein d’un problème.
En effet, il arrive que deux actions n’aient pas d’influence l’une sur l’autre, par exem-
ple (dans le cas où un état du système est représenté par une valuation d’un ensemble
de variables) lorsqu’elles ne modifient pas les mêmes variables ni ne touchent aux vari-
ables lues par l’autre. Dans ce cas, l’ordre dans lequel ces actions sont exécutées n’a
pas d’importance. Ceci permet de représenter les plans non plus comme des séquences
d’actions mais comme des ordres partiels d’actions, ce qui peut réduire grandement le
nombre de plans potentiels à considérer pour en trouver un qui soit correct. Un des pre-
miers exemples d’algorithme de planification utilisant à son avantage l’indépendance
entre actions au sein d’un problème est GRAPHPLAN [8]. Cet algorithme se base sur
une représentation des plans par une structure de données, appelée graphe de planifi-
cation, qui a quelques défauts, notamment en ce qui concerne la détection de conflits

9

RÉSUMÉ LONG EN FRANÇAIS

entre actions : seuls les conflits binaires (entre deux actions) sont pris en compte alors
qu’il peut exister des conflits plus complexes. Une façon de prendre en compte plus
que les conflits binaires est d’utiliser des représentations différentes des plans, comme
par exemple les dépliages de réseaux de Petri [47].

Enfin, durant les dix dernières années, une autre façon d’utiliser l’indépendance
entre actions, mais aussi potentiellement entre variables, dans un problème de planifi-
cation est apparue. Cette approche, appelée planification factorisée, a été initialement
proposée par Amir et Engelhardt dans l’article éponyme Factored Planning [1]. Le
principe de cette méthode est de décomposer un problème de planification en plusieurs
sous-problèmes (ou facteurs, ou composants) le plus indépendants possible, qui sont
plus simples à résoudre que le problème d’origine puisque de taille potentiellement
grandement inférieure. L’idée est alors de trouver une solution locale à chacun des
sous-problèmes de telle sorte que ces solutions puissent-être assemblées en un plan
pour le problème considéré (ou solution globale). Plusieurs façons d’exploiter cette
idée ont été proposées (notamment dans [12] et [13]) mais toutes ont pour défaut de se
baser sur des bornes (sur la longueur des plans globaux ou sur le nombre de synchroni-
sations entre plans locaux) incrémentées progressivement au cours de la recherche de
solutions. Ceci empêche de garantir l’optimalité des solutions trouvées car il n’y a pas
a priori de corrélation entre la longueur des plans (en nombre d’actions) et leur coût :
un plan optimal peut être très long.

Une description plus précise de l’évolution des méthodes de planification depuis
l’algorithme A* jusqu’aux approches factorisées est présentée au chapitre 1 du présent
document.

Dans cette thèse nous proposons deux nouvelles approches de la planification fac-
torisée dont le principal intérêt est de permettre la recherche de plans optimaux. La
première est basée sur le calcul sur les automates à poids pour représenter l’ensemble
des solutions d’un facteur et sur une famille d’algorithmes, bien connue en satisfac-
tion de contraintes, pour raffiner ces ensembles de solutions locales afin de trouver
des solutions globales. Le seconde approche consiste en une version distribuée de
l’algorithme A* où un agent est responsable de chaque sous-problème et cherche une
solution localement en dirigeant sa recherche grâce à un biais local (c’est-à-dire grâce
à une heuristique standard pour le facteur considéré) mais aussi grâce à un biais global
obtenu des autres agents.

Planification factorisée par passage de messages
Une première approche de la planification factorisée permettant la recherche de solu-
tions optimales aux problèmes considérés est proposée dans les chapitres 2 à 5 de ce
document. Le principe de cette approche est de représenter un problème de planifica-
tion comme un réseau d’automates à poids, c’est à dire un ensemble de tels automates
se synchronisant par une version pondérée du produit synchrone. On peut alors prouver
qu’utiliser une famille d’algorithmes (dits à passage de messages) bien connus dans le
domaine de la satisfaction de contraintes permet de résoudre de façon modulaire ces
problèmes.

Passage de messages et planification
Formellement, un problème de planification factorisée, est représenté par un ensemble
{A1, . . . ,An} d’automates à poids Ai = (Si, S

I
i , S

F
i ,Σi, Ti, ci, c

i
i, c

f
i) où Si est un

10

PLANIFICATION FACTORISÉE PAR PASSAGE DE MESSAGES

ensemble fini d’états, SIi ⊆ Si est un ensemble d’états initiaux, SFi ⊆ Si est un
ensemble d’états finaux, Σi est un alphabet d’actions, Ti ⊆ Si×Σi×Si est un ensemble
de transitions, ci : Ti → R+ associe un coût à chaque transition, cii : SIi → R+

associe un coût à chaque état initial et cfi : SF → R+ associe un coût à chaque état
final. Les notions de chemin et de mot sont définies de manière standard, par contre
on peut leur associer un coût : pour un chemin il s’agira de la somme des coûts des
transitions le constituant, et pour un mot il s’agira du coût du plus petit chemin le
réalisant (en prenant en compte le coût de l’état initial et de l’état final utilisés pour
accepter le mot). Le langage L(Ai) d’un tel automate est alors l’ensemble des mots
acceptés par l’automate associés à leurs coûts. Résoudre le problème de planification
factorisée défini par {A1, . . . ,An} consiste à trouver un mot de coût minimal dans
L = L(A1)×L · · · ×L L(An) où le produit de langages (×L) est défini de la manière
suivante : Li ×L Lj = {(w, c) : (w|Σi , ci) ∈ Li ∧ (w|Σj , cj) ∈ Lj ∧ c = ci + cj},
avec w|Σ le mot obtenu à partir de w en supprimant les actions ne faisant pas partie de
l’alphabet Σ.

Étant donné un problème {A1, . . . ,An} on définit alors son graphe d’interaction
comme le graphe G = (V,E) tel que V = {A1, . . . ,An} et il y a un arc de E entre
Ai et Aj si et seulement si ils partagent des actions : Σi ∩Σj 6= ∅. Dans un tel graphe
certains arcs sont dits redondants, il s’agit des arcs (Ai,Aj) ∈ E tels qu’il existe un
chemin dans G entre Ai et Aj n’utilisant pas l’arc (Ai,Aj) et ne passant que par des
automatesAk tels que Σk ⊇ Σi∩Σj . Un graphe obtenu à partir du graphe d’interaction
d’un problème en retirant de manière récursive des arcs redondants jusqu’à ce que ce
ne soit plus possible est appelé graphe de communication (pour un problème donné il
peut en exister plusieurs différents, cependant si l’un d’entre eux est un arbre alors tous
le sont).

L’algorithme 1 a pour entrée un problème de planification factorisée {A1, . . . ,An}
et l’un de ses graphes de communication G = (V,E). Il retourne, pour chaque com-
posant Ai, une version mise à jour L(Ai)′ du langage de ce composant. La notation
N (Ai) représente l’ensemble des voisins de Ai dans G. Le langage LI a pour alpha-
bet l’ensemble vide et pour seul mot ε. Les Mi,j sont des messages transmis entre
composants. Enfin on utilise une notion de projection pour réduire le plus possible la
quantité d’information transmise entre composants : Π′Σ(L) = {(w|Σ′ , c) : (w, c) ∈
L ∧ c = min(w′,c′)∈L,w′|Σ′=w|Σ′

(c′)}.

Algorithme 1 Passage de messages dans les problèmes de planification factorisée.
pour tout (Ai,Aj) ∈ E faire
Mi,j ← LI

fait
jusqu’à stabilité des messages faire

sélectionner (Ai,Aj) ∈ E
Mi,j ← ΠΣi∩Σj (L(Ai)×L (

∏
Ak∈N (Ai)\{Aj}Mk,i))

fait
pour tout Ai ∈ V faire
L(Ai)′ = L(Ai)×L (

∏
Ak∈N (Ai)Mk,i)

faire

Théorème 0.1. Si G est un arbre, alors l’algorithme 1 converge et

∀i,L(Ai)′ = ΠΣi(L)

11

RÉSUMÉ LONG EN FRANÇAIS

.

À partir de ce théorème et en remarquant que:

1. quelque soit w un mot de L de coût c minimal, le mot w|Σi est un mot de coût
minimal de ΠΣi(L) et a lui aussi pour coût c ;

2. de même quelque soit wi un mot de ΠΣi(L) de coût ci minimal, il existe un mot
w de L de coût c minimal et tel que w|Σi = wi ;

on obtient une méthode de résolution des problèmes de planification factorisée basée
uniquement sur des calculs locaux (c’est à dire impliquant des voisins dans le graphe
de communication considéré). Cette méthode consiste à utiliser l’algorithme 1 pour
calculer, pour chaque composant Ai du problème, la valeur de L(Ai)′, puis à sélec-
tionner dans l’un de ces langages L(Ak)′ un motwk de coût minimal, puis dans chacun
des langages L(A`)′ des voisins de Ak un mot w` compatible avec wk (c’est à dire,
en étendant légèrement la notion de produit, tel que w` ×L wk est non vide) et de coût
minimal (ce qui est possible d’après la remarque précédente), puis dans chacun de leurs
voisins un mot de coût minimal compatible avec wk et tous les w`, et ainsi de suite. On
obtient alors un mot wi par automate Ai tels que ces mots peuvent être entrelacés en
un mot de L.

Ce formalisme pour la planification factorisée, ainsi que l’utilisation des algo-
rithmes par passage de message pour résoudre ces problèmes (et notamment la preuve
de la validité de cette approche) sont présentés en détails dans le chapitre 2 de ce doc-
ument.

Mise en œuvre
Cependant, on ne peut pas travailler directement sur les langages car ce sont des objets
potentiellement infinis. Il est toutefois possible de définir les opérations nécessaires à
l’algorithme 1 (produit et projection) directement sur les automates, qui sont des objets
finis, et donc d’utiliser cet algorithme en pratique. Nous avons implanté cette méthode
dans un programme du nom de Distoplan en nous basant notamment sur le travail de
Mohri [76] pour ce qui est des opérations sur les automates à poids (déterminisation,
minimisation, ε-reduction). En utilisant notre implantation nous avons pu comparer
notre méthode à d’autres approches (A* avec une heuristique efficace et SATPLAN)
sur des jeux de tests classiques de planification (utilisés lors de compétitions inter-
nationales). Les résultats obtenus se sont révélés très positifs, même si nous avons
trouvé peu de problèmes adaptés à la planification factorisée. En particulier, Disto-
plan a obtenu des résultats meilleurs que A* sur tous les problèmes, tout en passant
à l’échelle de façon comparable à SATPLAN (les différences d’ordre de grandeur des
temps de calcul entre Distoplan et SATPLAN pourraient s’expliquer par le fait que
SATPLAN ne garantit pas l’optimalité des plans trouvés).

Notre implémentation ainsi que les résultats expérimentaux obtenus sont décrits au
chapitre 3 de ce document.

Utilisation d’algorithmes turbo
La principale faiblesse de notre approche de la planification factorisée est qu’elle ne
fonctionne que lorsque les graphes de communication du problème considéré sont des
arbres. Pour contourner ce problème il est possible d’utiliser des méthodes de dé-
composition de graphes. Ces méthodes ont pour objectif de modifier un graphe de

12

PLANIFICATION FACTORISÉE PAR PASSAGE DE MESSAGES

communication en réunissant certains composants, de façon à en faire un arbre con-
stitué de sous-problèmes de taille la plus petite possible. Or, dans notre cas, d’autres
paramètres que la taille des composants entrent en jeu et il vaut peut-être mieux, par
exemple, minimiser les interactions entre composants qu’en réunir le moins possible.
Nous nous sommes donc intéressés à d’autres manières de traiter les problèmes ayant
des cycles d’interactions.

Une voie qui a retenu notre attention est l’utilisation de méthodes dites turbo. Il
s’agit en fait simplement d’exécuter l’algorithme 1 sur des graphes de communication
contenant des cycles, en utilisant des méthodes un peu plus évoluées que la stabilité
des messages pour décider de l’arrêt d’une exécution. Concrètement, celui-ci sera
décidé à l’aide d’une notion de distance entre automates. Ainsi, quand la distance
entre l’automate représentant un message avant mise à jour et l’automate représentant
le même message après mise à jour est inférieur à une borne fixée au préalable, on
peut considérer que ce message est stable. La distance que nous avons choisie est la
suivante :

d(A1,A2) =

∞∑
n=0

1

2n
1Ln(A1) 6=Ln(A2),

où 1L6=L′ vaut 1 quand L 6= L′ et 0 sinon, et Ln(A) est le langage contenant les mots
de longueur n de A. Ceci revient à considérer un priorité les mots les plus courts.

On remarque aussi que, si l’on ne souhaite pas que les coûts des mots augmentent
après chaque produit, il est nécessaire de pouvoir normaliser les automates. Nous avons
choisi pour cela de réduire le coût de chaque chemin de l’automate à normaliser par le
coût du plus court chemin dans cet automate moins 1. Ceci fixe le coût du plus court
chemin à 1. L’avantage qu’a l’utilisation d’une normalisation additive par rapport à une
normalisation multiplicative est qu’elle préserve l’écart entre les coûts des différents
chemins. De plus une telle normalisation peut même aider à trouver les meilleurs
chemins plus rapidement : certains chemins sont écartés car ils ne satisfont pas les
contraintes imposées par le systèmes, mais d’autre le sont car leur coût s’écartent trop
fortement de celui du chemin de plus faible coût.

Une présentation plus détaillée de cette approche ainsi qu’une étude expérimentale
montrant l’intérêt de l’utilisation des algorithmes turbo pour la planification sont décrits
au chapitre 4.

Arcs de lecture

On peut remarquer que, parfois, dans un problème de planification factorisée, une ac-
tion se contente de lire l’état d’un composant sans le modifier. C’est-à-dire que les
variables décrivant l’état de ce composant apparaissent dans la précondition de cette
action sans pour autant que ses effets modifient les valeurs de ces variables. Dans
l’automate représentant un composant une action ne faisant que lire dans ce composant
est représentée par une auto-boucle.

Par exemple dans le problème représenté à la figure 1 les actions α, β et γ ont des
effets sur les automates A1 et A2 mais ne font que lire dans l’automate A3. On peut
remarquer que les mots de A3 correspondant à des solutions sont γ, ααβ, αβα, et
βαα. Il semble donc que l’automate A3 doive savoir par quelles actions et dans quel
ordre son état est lu. Ceci ne semble pas raisonnable et peut engendrer des automates
inutilement grands lors d’exécutions de l’algorithme 1 sur des problèmes impliquant
des lectures.

13

RÉSUMÉ LONG EN FRANÇAIS

α

γ

α

γ

β

α

β

γ

Figure 1: Un problème de planification factorisée avec trois composants, représentés
par les automates: A1,A2 et A3 (de gauche à droite).

Pour éviter ce phénomène nous nous sommes inspirées de la notion d’arcs de lec-
ture dans les réseaux de Petri afin de proposer un mécanisme de lecture d’états lors
du produit d’automates. Nous avons donc modifié notre modèle d’automates afin d’y
ajouter la possibilité de lire l’état de voisins (au sein d’un problème) lors de l’utilisation
d’une action. Pour mettre en place ce mécanisme en utilisant uniquement les transi-
tions nous avons aussi ajouté un mécanisme d’écriture sur celles-ci. Cette approche
permet de définir un produit et une projection très proches de ceux que nous utilisions
précédemment. En fait, la différence principale est dans la notion de langage d’un au-
tomate : on considère ensemble de mots cohérents, c’est à dire tels que les lectures
d’une action doivent être en accord avec les écritures de la précédente.

Dans ce formalisme on remarque que la projection et le produit n’ont pas exacte-
ment les propriétés voulues (ceci étant du en particulier à la notion de langage co-
hérent). On peut cependant, en utilisant ce formalisme, définir une nouvelle version
de l’algorithme par passage de messages (où la projection à lieu un peu moins sou-
vent) qui permet de faire de la planification dans des réseaux d’automates avec arcs de
lecture.

Ce nouveau formalisme, les produit et projection correspondants ainsi que la ver-
sion adaptée de l’algorithme 1 utilisée dans ce contexte sont décrits au chapitre 5.

Planification factorisée par une version distribuée de A*

Nous avons aussi travaillé sur une version distribuée de A* pour la planification opti-
male factorisée, présentée dans les chapitres 6 et 7. Les différences entre cette approche
et la précédente sont les suivantes :

1. il s’agit vraiment d’une approche distribuée (l’algorithme par passage de mes-
sage peut être vu comme un algorithme distribué si chaque composant fait la
mise à jour de ses messages sans se préoccuper des autres, mais il existe un or-
dre de mise à jour des messages qui assure un nombre minimal de mises à jour,
ce qui tend à faire préférer une utilisation non distribuée de cette méthode),

2. elle ne nécessite pas de chercher toutes les solutions au problème considéré,
au contraire, comme A*, notre algorithme (appelé A#) construit pas à pas une
unique solution de coût minimal.

14

PLANIFICATION FACTORISÉE PAR UNE VERSION DISTRIBUÉE DE A*

Afin de concevoir A# nous avons considéré des problèmes de difficulté croissante
menant au problème de planification. L’étude de ces problèmes nous a permis de
nous focaliser indépendamment sur chacune des difficultés induites par une version
distribuée de A*.

Sommets de même couleur
Le premier problème que nous avons considéré est le suivant : on se donne deux
graphes G1 et G2 (où Gk = (Vk, Ek)) et pour chacun d’eux une fonction de coloration
de certains sommets : γk : Fk → Γ où Fk ⊆ Vk et Γ est un ensemble de couleur
commun à tous les graphes. L’objectif est alors, étant donné pour chaque graphe Gk
un sommet initial ik ∈ Vk et une fonction de coût sur les arcs ck : Ek → R+, de trou-
ver un couple (p1, p2) de chemins tel que ∀k, p−k = ik, p

+
k ∈ Fk, γ1(p+

1) = γ2(p+
2)

et tel que la somme des coûts de ces chemins soit minimale. Ce problème peut être
vu comme un problème de planification particulier où l’on peut savoir en connaissant
uniquement les états finaux atteints dans les différents composants si les plans locaux
utilisés pour atteindre ses états sont compatibles ou non.

Nous souhaitons résoudre ce problème de manière distribuée : un agent ϕk sera
chargé de trouver le chemin pk (pour simplifier on considère qu’il n’existe qu’une
solution optimale) dans le graphe Gk. Pour cela il n’utilisera que la connaissance qu’il
a du graphe Gk et des informations transmises par l’autre agent sur le reste du système
(on considérera que chaque agent partage une zone mémoire, dans laquelle il ne peut
que lire, avec l’autre agent qui lui peut y écrire). Chaque agent va en fait exécuter sur
son graphe une version légèrement modifiée de A* afin de chercher un solution locale
dont on peut prouver qu’elle fait partie d’une solution globale de coût minimal.

Les deux principales différences entre l’algorithme exécuté par chaque agent et
A* concernent le choix des sommets à traiter en priorité et la condition d’arrêt de
l’algorithme (décision de l’optimalité d’une solution ou de l’absence de solutions).
Nous en donnons ici une brève description.

Fonction d’évaluation des sommets. Dans A* on choisit, sur la base d’une con-
naissance évolutive du problème considéré, les sommets les plus prometteurs d’un
graphe pour la recherche de plus court chemin. Cette connaissance du problème est
représentée par deux fonctions : l’une indiquant le meilleur coût connu pour attein-
dre les sommets déjà traités au moins une fois, l’autre, appelée heuristique, étant une
borne inférieur sur le coût pour atteindre un but depuis chaque sommet. C’est cette
heuristique qui est construite différemment dans notre cas : elle représente une borne
inférieure sur le coût pour atteindre des sommets compatibles dans les deux graphes.
Elle est calculée comme un minimum sur toutes les couleurs possibles de la somme
entre des heuristiques classiques (une pour chaque couleur dans chaque graphe). Par
exemple pour le sommet v du grapheG1, l’agent ϕ1 considérera la valeur suivante pour
cette fonction :

min
γ∈Γ

(h1(v, γ), h2(i2, γ)),

où h1 est une heuristique locale à G1 et h2 est une heuristique pour G2.

Condition d’arrêt. Pour décider localement de la découverte d’une solution globale
optimale il faut, une fois un candidat trouvé, attendre confirmation de l’autre agent que
la couleur de ce candidat est en accord avec sa propre recherche. Pour cela, au lieu de

15

RÉSUMÉ LONG EN FRANÇAIS

simplement considérer des sommets ouverts ou fermés, comme c’est le cas dans A*,
nous utilisons trois types de sommets : ouverts, fermés (avec le même sens que pour
A*) et candidats. Les sommets candidats ne peuvent être que des sommets colorés. Ils
sont mis en attente par l’agent ϕk jusqu’à ce que l’autre agent puissent soit affirmer
que leur couleur ne peut en aucun cas donner une solution optimale, soit indiquer le
meilleur coût possible pour atteindre un sommet de cette couleur de son coté. Un
sommet candidat tel que la somme du coût pour l’atteindre dansGk et du meilleur coût
pour atteindre sa couleur dans l’autre graphe est inférieure à la valeur de la fonction
d’évaluation de tous les autres sommets ouverts ou candidats est alors nécessairement
d’une couleur permettant de trouver une solution globale de coût minimal.

Chemins de même couleur
Le deuxième problème que nous avons considéré est le suivant : on se donne deux
graphes G1 et G2 (où Gk = (Vk, Ek)) et pour chacun d’eux une fonction de coloration
des arcs : γk : Ek → Γ où Γ est un ensemble de couleur commun à tous les graphes,
ainsi qu’un ensemble de sommets Fk ⊆ Vk. L’objectif est alors, étant donné pour
chaque graphe Gk un sommet initial ik ∈ Vk et une fonction de coût sur les arcs
ck : Ek → R+, de trouver un couple (p1, p2) de chemins pk = e1

k . . . e
nk
k tel que

∀k, p−k = ik, p
+
k ∈ Fk, ∪γ1(e`1) = ∪γ2(e`2) et tel que la somme des coûts de ces

chemins soit minimale.
Ce problème est plus proche d’un vrai problème de planification : la « couleur »

d’un sommet de Fk est dynamique, elle dépend du chemin utilisé pour l’atteindre.
Afin de résoudre ce type de problèmes nous réutilisons les résultats précédents en re-
marquant que ces problèmes peuvent être ramenés à des problèmes de recherche de
sommets de même couleur. Ceci peut se faire par la transformation suivante : pour
modifier Gk on considère comme ensemble de sommets Vk × 2Γ et l’ensemble de
couleurs 2Γ. Le sommet initial est alors (ik, ∅). Les sommets à atteindre sont ceux
de Fk × 2Γ et tout sommet (v,Γv) parmi eux a pour couleur Γv . Enfin il y a un arc
entre (v,Γv) et (v′,Γ′v) si et seulement si (v, v′) ∈ Ek et γk((v, v′)) = γ tel que
Γ′v \Γv = {γ}. On peut donc utiliser le même algorithme que pour le problème précé-
dent. En fait on remarque qu’il est possible d’adapter cet algorithme pour effectuer le
passage d’un problème à l’autre au fur et à mesure de la recherche de solutions.

Ces deux premiers problèmes ainsi que les méthodes utilisées pour les résoudre de
manière distribuée sont décrits en détails au chapitre 6 de ce document.

Planification distribuée
Finalement, on peut identifier un problème de planification factorisée impliquant deux
composants à un problème de recherches de sommets de même couleur. La principale
différence avec la transformation précédente étant que les graphes transformés peuvent
être infinis. Cependant nous avons montré qu’il est possible de calculer ces graphes
dynamiquement lors de la recherche de solutions et, lorsqu’une solution globale existe,
que la recherche de solution terminera toujours en temps fini. Cette approche ne permet
cependant pas de détecter l’absence de solution dans un problème.

Nous avons aussi montré qu’il est possible de calculer les heuristiques utilisées
pour cette recherche à l’aide d’un nombre fini de valeurs « intéressantes », ce qui
permet d’utiliser notre algorithme en pratique.

Finalement nous avons généralisé cette approche à n’importe quel problème de
planification factorisée pour lequel les graphes de communication sont des arbres. Ceci

16

CONCLUSION

implique de transmettre des informations un peu plus complexes que précédemment
entre voisins dans le graphe de communication considéré. Ces informations concernant
non seulement le composant de l’agent ϕk qui les envoie à ϕ` mais aussi tous les
composants qui sont séparés de G` par Gk.

Le chapitre 7 décrit en détail notre algorithme pour la planification factorisée avec
deux composants (comme une extension des résultats du chapitre précédent) ainsi que
sa généralisation à des problèmes impliquant plus de composants.

Conclusion
Pour résumer, dans ce document deux nouvelles approches de la planification factorisée
sont présentées, toutes les deux permettant de trouver des solutions de coût minimal
aux problèmes considérés et nécessitant une structure particulière des interactions entre
composants pour fonctionner.

La première approche est basée sur la représentation sous forme d’automates à
poids de l’ensemble des solutions locales à chaque composant (qui est intéressante
lorsque les composants sont petits en regard du problème global). Ces ensembles de
solutions sont ensuite affinés à l’aide d’un algorithme par passage de messages (tradi-
tionnellement utilisé dans le domaine de la résolution de contraintes) afin de ne garder
que les solutions locales faisant partie d’une solution globale. Cette approche a été
implantée et testée sur des problèmes utilisés lors de compétitions de planification.
Finalement nous avons proposé deux extensions à cette approche : l’une basée sur
l’utilisation de méthodes dites turbo permet, dans une certaine mesure, de traiter des
problèmes pour lesquels les graphes de communication ne sont pas des arbres (sans
garantir toutefois l’optimalité des solutions trouvées) et l’autre permettant de réduire
la taille des automates dans les problèmes impliquant des lectures sans modification
d’état dans certains composants.

La deuxième approche est basée sur un algorithme très proche de A* exécuté par
un agent dans chaque composant. Chacun de ces agents utilise son information locale
ainsi que des informations sur les coûts dans le reste du système (transmises pas ses
voisins) afin de diriger sa recherche d’une solution de coût minimal.

Description des contributions et publications

Voici un descriptif des contributions principales de cette thèse.

Dans le chapitre 2 la contribution est un algorithme de planification factorisée per-
mettant de trouver des plans de coût minimal. À notre connaissance aucune ap-
proche de la planification factorisée antérieure à notre travail ne permettait cela.
Ces résultats ont été présentés à la conférence CDC en 2009 [29].

Dans le chapitre 3 la contribution consiste en une implantation de nos résultats (util-
isant diverses techniques pour réduire la taille des automates considérés) et la
comparaison de cette implémentation avec d’autres algorithmes de planification
connus pour être efficaces. Ces résultats ont été présentés en partie à la con-
férence ICAPS 2010 [31].

Dans le chapitre 4 nos contributions sont la proposition d’utiliser les méthodes turbos
dans le cadre de la planification ainsi qu’une étude expérimentale de cette idée

17

RÉSUMÉ LONG EN FRANÇAIS

montrant son intérêt. Ces résultats ont été présentés au workshop WODES en
2012 [53].

Dans le chapitre 5 notre contribution est la proposition d’un nouveau formalisme pour
décrire les problèmes de planification : les automates avec arcs de lecture. Ces
résultats ont été présentés en partie au congrès mondial IFAC en 2011 [50].

Dans les chapitres 6 et 7 la contribution est une version distribuée de A* permettant
de trouver des solutions de coût minimal de façon distribuée dans des problèmes
de planification. Ces résultats ont été, en partie, présentés à la conférence CDC
en 2012 [51] et une partie des preuves apparaissent dans un rapport de recherche
INRIA [52].

Nous avons aussi présenté des résultats (sans rapport direct avec ce travail de thèse)
sur le diagnostic probabiliste au workshop WODES en 2010 [30].

Travaux futurs
Notre travail reste améliorable, notamment sur les points suivants : la décomposi-
tion automatique de problèmes de planification (soit pour assurer que les graphes de
communication soient des arbres, soit pour permettre une résolution efficace par des
méthodes turbos), l’utilisation de représentations différentes des plans locaux (par ex-
emple en utilisant des modèles prenant en compte la concurrence), la possibilité de
préserver plus que les langages lors de l’utilisation de l’algorithme par passage de mes-
sages, l’étude de métriques sur les automates à poids et les réseaux d’automates à poids
(afin d’avoir de nouvelles conditions pour la terminaison des algorithmes turbo, mais
aussi pour pouvoir mesurer la quantité d’interactions entre deux automates au sein d’un
réseau et ainsi avoir des outils pour décider du bien fondé d’utiliser les méthodes turbo
sur un problème en particulier), et enfin la construction de jeux de tests spécifiques
à la planification factorisée (ce qui permettrait de s’abstraire de la décomposition des
problèmes pour tester l’efficacité des différents algorithmes).

18

Introduction

PLANNING CONSISTS IN choosing and ordering a set of state modifying actions with
the objective of reaching a goal in a given state-space. This problem has been

widely studied during the last 50 years and many approaches have been proposed for
solving it. Current resolution methods for planning problems are mainly based on
guided searches in the considered state-spaces. They traditionally rely on (or are vari-
ations of) the famous A* algorithm originally proposed by Hart, Nilsson, and Raphael
in 1968. This algorithm guarantees that a solution (usually called plan) to the consid-
ered planning problem will be found as soon as there exists one. Moreover, when the
actions have associated costs and under some assumptions on the functions used for
driving the search, it guarantees the cost-optimality of the plan found.

Other approaches to planning exist however. They take advantage of the specific
properties of some planning problems to solve them more efficiently. These methods
have the same worst case complexity as A* in general. However, they have the interest
of being extremely efficient on the classes of problems for which they are developed.
Among these approaches the ones using independence properties between actions of
a problem are of particular interest in our opinion. They are based on the remark that
in many planning problems some actions can be used in any order without changing
the final state they jointly reach. These actions thus do not need to be ordered in a
plan. This reveals a notion of concurrency in planning. One can then represent plans as
partial orders of actions rather than sequences of actions. And thus, it renders possible
a representation of problems based on data-structures well suited for handling concur-
rency, such as Petri nets for example. This can significantly reduce the complexity of
the search.

Going further in this direction it is possible to exploit the independency of some
parts of a planning problem in order to split it into small subproblems (or factors or
components). These components are themselves planning problems potentially expo-
nentially smaller than the original one. If these components are sufficiently indepen-
dent (in other words if their interaction is sufficiently sparse) it is possible to solve
each of them taking into account minimal information about the others. The local
plans obtained in each subproblem can then be merged into a global plan for the origi-
nal planning problem. This kind of approach is generally referred as factored planning
and has been studied for the last 10 years.

However – while being of great interest for the huge gain of efficiency they can
potentially bring in solving planning problems with few interaction – current factored
planning methods suffer from several weaknesses. First of all, to our knowledge, no
factored planning algorithm was able to perform cost-optimal planning prior to this
thesis. This is due to the fact that existing approaches were all based on parameters fix-
ing a bound on the length of local plans to consider. Another side effect of such bounds
is that it prevents detecting the absence of a global plan. The second weakness of ex-

19

INTRODUCTION

isting approaches to factored planning is that they are not easily distributable. They
are essentially centralized and hierarchical. In our opinion many planning problems
are well suited to distributed solving and this approach has to be explored because
of the potential efficiency gain it can bring in the resolution of these problems. The
third weakness concerns the use of approximate methods. There exists approximate
versions of A* (in the centralized case) that provide close-to-optimal plans instead of
cost-optimal ones, in order to gain efficiency. However, approximate methods have
surprisingly not appeared in factored planning. Our goal in this work was to address
these weaknesses.

In order to achieve this objective we first use the fact that factored planning can be
seen, in some sense, as a constraint solving problem. This is what was done in several
previous contributions in factored planning. However, the novelty of our approach is
that we generalize constraint solving methods to the context of planning. Previously,
planning problems where simplified (by bounding lengths of plans) and then recast as
constraint solving problems. More precisely we show that message passing algorithms
can be used for solving planning problems. This allows us to avoid the use of bounds
on the length of plans, making possible the cost-optimal planning and the detection
of the absence of plan. Moreover, the sparse interaction in some factored planning
problems enables the use of the famous turbo algorithms, mainly known for their use
in the domain of digital communication and signal processing. This opens the way
to approximate resolution methods in factored planning. We also propose a second
approach to cost-optimal factored planning. The first approach is top-down: in each
component a set containing all local plans is refined until it contains only the local
plans giving global ones. This second approach is bottom-up: an empty set of local
plans in each component is extended until a cost-optimal global plan is found. It uses
a truly distributed algorithm based on A*.

Overview of the approaches developed in this thesis
Consider the factored planning problem given in Figure 2. It is represented as a network
of weighted automata. Each automaton (or component) Ai is constituted of states (the
circles) and actions (the arrows between the states and the corresponding greek letters).
The upper left state of each automaton is initial and the states represented by double
circles are finals. For example, in A1, the action β permits to go from the initial state
to a final state. The cost of this move is 1. A local plan in one of these automata is
a sequence of actions going from the initial state to a final state. For example βγβ is
one of the local plans of A1 and its cost is 3. As another example, the empty sequence
of actions ε is a local plan in A3. The set of the local plans of each automaton Ai
is called the language of Ai. For example, the language of A2 is (δβ)∗(δ + αα).
In other words, it contains all the local plans starting by any number (including 0)
of repetitions of the sequence δβ, followed by a single action δ or one occurrence of
the sequence αα. These automata also share some of their actions. For example, the
action α is shared between the automata A1 and A2. These shared actions give the
constraints imposed between the different components. Indeed, in a componentAi one
will only be allowed to consider the local plans that use the shared actions between
Ai and some other component Aj in the same order as in some local plan in Aj . In
our example, among the local plans of A1, αωα can be preserved due to the existence
of αα in the language of A2 and ω in the language A3. A global plan in such a
problem is a tuple (p1, p2, p3) where each pi is a local plan in the corresponding Ai.

20

OVERVIEW OF THE APPROACHES

It must be possible to interleave these three local plans into a sequence p of actions
so that the restriction of this sequence to the actions existing in Ai is exactly pi. For
example, the tuple (αωα, αα, ω) is a global plan for the particular problem of Figure 2,
a corresponding interleaving is αωα. Its cost is 4, that is the sum of the costs of the
local plans constituting it. In this problem the only other global plan is (αα, αα, ε)
with cost 3. An example of a local plan in A1 which can not be part of a global plan
is ααωα because it is not possible to fire three α in A2. Less evident, βγβ must not
be preserved because it can only be associated with δβδβδ in the language of A2 and
with γδ in the language of A3, and they do not contain the same number of δ. More
precisely, any local plan in A1 using k times β an no α must not be preserved because
it requires using k+ 1 times δ inA2 and thus k+ 1 times γ inA3 which implies using
k + 2 times β in A1.

α, 0

β, 1

γ, 1

α, 3

ω, 2

α, 0

A1

α, 0

δ, 1

β, 1

α, 0

A2

ω, 2

γ, 1

δ, 1

A3

Figure 2: A factored planning problem with 3 components represented by weighted
automata.

Top-down resolution. In the case of Figure 2 we give an overview of what should be
the behavior of an ideal factored cost-optimal planner based on message passing and
using turbo methods.

The principle of message passing is that each component sends information about
the constraints it imposes to the other components that share actions with it. The mes-
sage sent from Ai to Aj states which sequences of shared actions of Aj can fit with
local plans ofAi. It also contains information on the relative costs that can be achieved
for each of these sequences of shared actions. For example in the case of Figure 2
component A2 will send a message M2,1 to A1. This message will in fact be the
language β∗ + β∗αα, that is the set of acceptable synchronization sequences from the
point of view of A1. The message will also state that the best possible cost of any of
this synchronization sequence p is 2.|p|β (where |p|β is the number of occurrences of β
in p). Using all the messages it receives each component can be updated by removing
its local plans that do not match the received constraints. In each component the costs
of the preserved local plans can also be updated by summing them with the costs of the
constraints they match.

In our example, the language of A1 is initially L1 = (βγ)∗(β + α(α + ωα)∗)
and the cost of a local plan p in this language is |p|β + |p|γ + 3.(|p|α − 1 − |p|ω) +
2.|p|ω . Taking into account the constraints from A2 this language can be restricted
to L′1 = (βγ)∗(β + α(α + ωα)) because no more than two α are possible in a local
plan from the language of A2. The cost of a local plan p in this new language L′1

21

INTRODUCTION

is 3.|p|β + |p|γ + 3.(|p|α − 1 − |p|ω) + 2.|p|ω taking into account the costs in A2

which increases the cost of each β by 2. The constraints from A3 do not change
this language but only the costs of its local plans. The new cost of a plan p will be
3.|p|β + 3.|p|γ + 3.(|p|α − 1 − |p|ω) + 4.|p|ω . Similarly the language of A2 will be
updated from L2 = (δβ)∗(δ + αα) to L′2 = (δβ)∗(δβδ + αα). In this language the
cost of a local plan p is 3.|p|β + 3.|p|δ + |p|α. And the language of A3 is updated
from L3 = (γδ)∗ + (γδ)∗ω to L′3 = (γδ)∗(γδ + ω + ε). The cost of a local plan p
in this language is 3.|p|γ + 3.|p|δ + 4.|p|ω . It is then possible to update L′1 from L′2
and L′3 (and similarly update L′2 and L′3). This will lead to the new languages L′′1 =
(βγ)∗(βγβ+α(α+ωα)∗), L′′2 = (δβ)∗(δβδβδ+αα), andL′′3 = (γδ)∗(γδγδ+ω+ε).

When updating languages one can deduce that some local plans can not be part
of a global plan: the local plans belonging to a set of plans for which the smallest
element is larger after each update, and the local plans p for which there exists p′ such
that the difference between the cost of p and the cost of p′ grows after each update. For
example, one will notice that inA1 no local plan without α can be part of a global plan:
the minimal length of such a local plan grows after each update (initially the smallest
one was β, then it was βγβ, after that it would be βγβγβ, and so on). Moreover among
the local plans containing α only those starting by α will be acceptable because for any
local plans w1 = u and w2 = (βγ)ku with k ≥ 1 and u ∈ α(α + ωα) the difference
between the costs of w1 and w2 is the cost of (βγ)k, which grows after each update.

From that one will be able to deduce that among the local plans ofA1 only αα and
αωα can reasonably be part of a global plan. Similarly, in A2 only αα will be kept
while in A3 the candidates will be ω and ε. Then, as the cost difference between αα
and αωα in A1 grows after each update only αα will be kept. Similarly, ε will be the
only remaining local plan in A3. This will give as global plan (αα, αα, ε), which is
the optimal global plan as stated above.

In order to generalize these simple ideas, several questions have to be answered.
How to formalize this approach? Which problems can it solve? Is it of interest in
practice? Can one derive approximate methods yielding suboptimal plans with costs
close to optimal?

Bottom-up resolution. Still relying on Figure 2 we give an example of how a dis-
tributed A* algorithm should behave.

The idea is to consider an agent ϕi for each automaton Ai. Each agent will run
an extended version of A* on her automaton. The search she performs being driven
by both information local to her automaton and information coming from the other
agents. For example, in the problem of Figure 2, agent ϕ1 could initially consider the
local plans α and β. Using information obtained from agent ϕ2 she will remark that
α is not a good candidate because no local plan with a single α exists in A2. Her
information on local costs combined with information on costs in the rest of the system
can let her conclude that a more interesting plan than β potentially exists. Indeed, a
global plan involving a β would cost at least 4: a local cost of 1 and a cost of 3 from
ϕ2 (any local plan involving β and no α costs at least 3). And a global plan involving
two α may exists and cost less than 4: a local cost of at least 2, a cost of at least 0
from ϕ2 (the local plan αα costs 0 in A2), and a cost of at least 0 from ϕ3 (the local
plan ε costs 0 in A3). Agent ϕ1 will thus consider the local plans αα and αωα. Local
information will give her a cost of 3 for αα and a cost of 2 for αωα. Information from
ϕ2 will consist in a cost of 0 in both cases. Information from ϕ3 will give a cost of
0 for αα and a cost of 2 for αωα. Using this agent ϕ1 will conclude that αωα is the

22

STRUCTURE OF THIS DOCUMENT

only reasonable local plan, and thus that it must be part of a global plan. With similar
reasonings the other agents will find their respective parts of the cost-optimal global
plan.

In this case as well several questions have to be answered. What should be the
information transmitted between agents? Is it always computable? How can one decide
that a cost-optimal global plan has been found?

Structure of this document
Chapter 1 is an overview of the evolution of planning methods from best-first search

algorithms such as A* to methods taking advantage of intrinsic concurrency of
planning problems and then factored planning. The objective of this chapter is
to justify the interest of factored approaches to planning but also to show the
weaknesses of current factored planners.

The next two chapters present the basis of a first approach to factored planning. The
reader may at first glance skip the proofs while reading these chapters. These results
have been published in [29] and [31].

Chapter 2 first presents the formalism we use for representing factored planning prob-
lems, that is networks of weighted automata. Then message passing algorithms
are presented and it is shown how and when they can be plugged into this for-
malism for providing cost-optimal solutions to factored planning problems by
the mean of local computations only (i.e. computations involving only a compo-
nent and its neighbors).

Chapter 3 explains how it is possible to reduce the size of the objects involved in mes-
sage passing algorithms using standard weighted automata algorithms. Indeed,
the results of previous chapter, even if based on local computations only, involve
weighted automata of important size with possibly useless information. Then
this chapter presents a concrete implementation we made of this approach, as
well as experimental results obtained with this factored planner.

The next two chapters describe two independent extensions of the planning method
described in Chapters 2 and 3. Parts of these results have been published in [53]
and [50] respectively.

Chapter 4 mainly presents an experimental study of turbo algorithms for solving fac-
tored planning problems. It reveals that these approximate methods are of in-
terest for planning, in particular in cases where the results of previous chapters
are not supposed to be applicable (that is in cases where the interaction between
components has a complex structure).

Chapter 5 presents a slightly different formalism for factored planning problems than
network of automata. This formalism is proposed for more efficiently dealing
with factored planning problems where some actions of a component only read
the variables of another component without modifying them.

Finally, the last two chapters are almost independent from the previous ones as they
present a different approach to factored planning. These results were partly published
in [51] and some of the proofs appear in [52].

23

INTRODUCTION

Chapter 6 describes two simple distributed problems related to planning and explains
how a distributed version of A* allows one to solve them. This chapter is a first
step towards a truly distributed algorithm for finding cost-optimal solutions to
factored planning problems.

Chapter 7 presents A#, a distributed version of A* for factored planning. It is done
by presenting factored planning as a generalization of the problems of Chapter 6.
This algorithm allows one to solve cost-optimal factored planning problems in
a distributed manner: in each component an agent progressively builds a local
plan using minimal information sent by the other agents on their own progress.

24

Chapter 1

From Planning to Factored
Planning

chapter abstract: This chapter presents the formalism of planning problems consid-
ered in this thesis as well as various approaches currently used for solving planning
problems. These approaches are of three types: centralized approaches based on “best
first” search, centralized approaches exploiting intrinsic concurrency of problems, and
modular (or factored) approaches. We also give some insight about the theoretical
complexity of planning.

PLANNING CONSISTS IN finding a sequence of actions driving a system from an
initial state to a final one (Section 1.1). It amounts to finding a path in a generally

huge graph. Planning problems are traditionally solved using centralized approaches
where this search is driven by heuristic functions indicating which search directions
are the most promising. These approaches rely on the famous “best first” search A*
algorithm [37] where heuristics are (hopefully tight) lower bounds on cost of paths
reaching the goal from any state. The main challenge when using the A* algorithm is
in the design of the heuristic function. It has to be accurate, but also must not be too
expensive to compute. Indeed, to make it of interest in practice the cost of computing a
heuristic and doing a search with it should be smaller than the cost of doing the search
without this heuristic. This approach of planning is presented in Section 1.2, and the
notion of heuristic is discussed in more details in Section 1.3.

Recently, new approaches were proposed for planning, taking profit of the intrinsic
concurrency of planning problems. These approaches propose to exploit the fact that
some, and sometimes many, actions of a planning problem are independent in order to
represent solutions by partial orders of actions rather than sequences of actions. This
representation of solutions reduces the state-space to explore for solving a problem. A
first and famous planner using this kind of approach is Graphplan [8]. The notion of
independence of actions and its exploitation are the topics of Section 1.4.

Finally, in the last 10 years the notion of factored planning appeared [1]. The idea
is to use a decomposition of a planning problem into smaller planning problems with
sparse interaction for solving it by parts. The subproblems can be exponentially smaller
than the original problem, which is the main reason making factored planning of in-
terest. Planning problems are usually decomposed by separating their state variables

25

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

(then subproblems interact by shared actions) or by separating their actions (then sub-
problems interact by shared variables). Factored planning is presented in Section 1.5.

In practice some approach can be much more efficient than another one on some
particular problem, nevertheless these three approaches have the same worst-case com-
plexity. The complexity of planning is discussed more precisely in Section 1.6

1.1 Planning problems
In the domain of artificial intelligence planning refers to a state transformation prob-
lem. It consists of a set of states with the objective of finding a sequence of state
transformations allowing to change an initial state into a goal state. This has been
described, for example, in [36]. Currently, a model of such problems widely used in
the planning community is propositional STRIPS (other models exist however, such as
SAS and SAS+ [3]). This model was originally introduced in [32] as the representa-
tion of planning problems for the STanford Research Institute Problem Solver. In this
section we present a modern formalism of propositional STRIPS.

1.1.1 Formalism of planning problems
Definition 1.1. A planning problem is a tuple P = (A,O, I,G) where A is a finite set
of atoms (or variables), O ⊆ 2A × 2A × 2A is a set of operators, I ⊆ A is an initial
state, and G ⊆ A defines a set of goal states.

The atoms are the state variables of the problem: a state is given by assigning a
truth value to each atom of A. One usually represents a state by the subset of atoms
that take value true. The initial state is a particular state: I ⊆ A giving the initial truth
value of all atoms. G ⊆ A defines a set of states: all the states such that the truth value
of each atom from G is true (in other words, all states which contain G).

Any operator o ∈ O ⊆ 2A × 2A × 2A is a triple o = (preo,delo,addo). We call
preo ⊆ A its precondition, delo ⊆ A its negative effect, and addo ⊆ A its positive
effect. An operator o is always such that delo ∩ addo = ∅. Usually, an operator is
instantiated as several actions, one for each possible firing of this operator as described
below. This is however a technical detail. We thus do not distinguish operators and
actions in this document.

The semantic of operators is as follows. From any state s ⊆ A the operator o =
(preo,delo,addo) can be fired if and only if preo ⊆ s. In this case the system
changes its state to s]o = s \ delo ∪ addo. A sequence of operators o1 . . . on is said
to be firable from a state s if and only if, for any of these operators oi, one has oi is
firable from s]o1] . . .]oi−1. In this case, the (unique) state s]o1] . . .]on, is called the
state reached by o1 . . . on from s.

A solution to a planning problem P = (A,O, I,G), generally called a plan, is
a sequence p of actions (or operators) which is firable from I and such that the state
reached by this sequence from I belongs to the set of states defined by G.

1.1.2 An example
As an example we model the famous Tower of Hanoi problem (with 3 rods and 3 disks)
as a planning problem. This problem is as follows. Three disks of different diameters
(a small one d1, a medium one d2, and a large one d3) are initially stacked on a rod

26

1.1. PLANNING PROBLEMS

r1 in ascending order of diameter. One has to transfer all these disks to another rod
r2 using a third rod r3 and obeying to the following simple rules defining the possible
moves of the disks from rod to rod:

1. a disk can never be placed on top of a smaller disk,

2. only the upper disk on a rod can be moved.

In order to model this we use the 9 following atoms: (at-r1-d1), (at-r2-d1),
(at-r3-d1), (at-r1-d2), (at-r2-d2), (at-r3-d2), (at-r1-d3), (at-r2-d3),
and (at-r3-d3), where (at-rx-dy) means that disk dy is on rod rx. Notice that
these atoms only define the rod on which each disk is. They do not describe in which
order the disks are on a given rod. This is however sufficient to fully describe the valid
states of this problem: for a set of disks and a rod only one ordering of these disks on
the rod is possible. The actions considered will be used to ensure that only valid states
are reachable: an action will never allow to place a disk on a smaller one.

With this representation of the problem the initial state would be defined as the set
of atoms I = {(at-r1-d1), (at-r1-d2), (at-r1-d3)} and the set of goal states
by the set of atoms G = {(at-r2-d1), (at-r2-d2), (at-r2-d3)}. Notice that, in
fact the set G will define only one reachable state (as a given disk can not be on several
rods in a given state).

It is then possible to define the operators for moving the disks (that is for changing
the state of the system). For disk d1 one will have the operators

({(at-rx-d1)}, {(at-rx-d1)}, {(at-ry-d1)})

for all rx 6= ry (this gives 6 operators). Such an operator moves disk d1 from rod rx

to a different rod ry. For disk d2 the operators will be

({(at-rx-d2), (at-ry-d1)}, {(at-rx-d2)}, {(at-rz-d2)})

for all rx 6= ry 6= rz (this gives 6 operators). It corresponds to a move of disk d2 from
rod rx to a different rod rz with the requirement that disk d1 is on a third rod ry (that
is, not above d2 before the move and not under it after the move). Finally, for disk d3
the operators will be

({(at-rx-d3), (at-ry-d1), (at-ry-d2)}, {(at-rx-d3)}, {(at-rz-d3)})

for all rx 6= ry 6= rz (this gives 6 operators as well). It allows to move d3 from rx to
rz as soon as the two other disks do not make this move illegal.

This modeling is only an example and many others are possible in propositional
STRIPS (for example with more complex atoms and simpler operators) and in other
formalisms such as SAS and SAS+ which allow multi-valued variables.

1.1.3 Cost-optimal planning
In general one is not only interested in finding a plan for a given planning problem but
rather in finding the best possible plan solving this problem. This notion of best plan
has to be formally defined. Usually one would have some resource consumption to
minimize. A standard way to model that is to consider that firing an action uses some
resource, or incurs some cost.

In this case, a planning problem P = (A,O, I,G) will be provided with a cost
function c : O → R+, associating to each operator o a cost c(o). From that the

27

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

cost function can be extended to plans, associating a cost to any (firable) sequence of
operators o1 . . . on in the following way: c(o1 . . . on) = c(o1) + · · · + c(on). The
objective is then to find a minimal cost plan (that is a plan p such that no plan p′ exists
with c(p′) < c(p)).

1.2 The A* algorithm
The A* algorithm has been introduced in [37, 38]. It is an algorithm for cost-optimal
planning performing a search in the state-space of a planning problem. Its principle
is to drive the search by using a heuristic giving for each state s a lower bound on the
cost of reaching a goal state from s (that is a lower bound on the cost of the sequences
of operators firable from s that reach a goal state). As this algorithm is the basis for
the results of Chapters 6 and 7, in the following we give a full presentation of A* and
intuitions on the proof of its validity. Then we briefly describe some heuristics.

1.2.1 Planning problems as search in a graph
For simplicity, we consider a representation of planning problems as reachability prob-
lems on graphs. In practice however, one will prefer using A* directly on planning
problems (or equivalently build the graph online) rather than re-encode them as graphs.

Definition 1.2. A reachability problem on a graph is a tuple P = (V,E,Λ, λ, c, i, F)
where the finite set of vertices V and the finite set of directed edges E ⊆ V × V define
a (finite) directed graph G = (V,E), Λ is a set of labels, λ : E → Λ is a labeling
function for edges, c : E → R+ is a cost function associating a cost to edges, i ∈ V is
an initial vertex, and F ⊆ V is a set of final vertices.

A path in G is a sequence of edges p = e1 . . . en such that, for any 1 ≤ i < n, one
has ei = (vi, vi+1). p is said to be a path from v1 = p− to vn+1 = p+. The labeling
and the cost function extend to paths p = e1 . . . en by λ(p) = λ(e1) . . . λ(en) ∈ Λ∗

and c(p) = c(e1) + · · · + c(en). The labeling is said to be deterministic if and only
if for every pair of edges (v, v′) and (v, v′′), λ(v, v′) = λ(v, v′′) entails v′ = v′′. In
this case one can extend the cost function to sequences of labels w = w1 . . . wn in the
following way: c(w) = c(p) for p the unique path such that λ(p) = w (if no such path
exists then c(w) = +∞). The objective is to find a path p such that p− = i, p+ ∈ F
and c(p) is minimal among such paths.

Any planning problem P = (A,O, I,G) with cost function c can be represented
as a reachability problem on graph P = (V,E,Λ, λ, c′, i, F) as follows:

• V = 2A (vertices thus correspond to states of the planning problem),

• E = {(v, v′) : ∃o ∈ O,preo ⊆ v ∧ v]o = v′} (edges correspond to actions),

• Λ = O,

• λ is such that λ((v, v′)) = o with o an operator such that preo ⊆ v and v]o = v′

(without loss of generality we suppose unicity of this o),

• c′ is such that c′(e) = c(λ(e)),

• i = I , and

• F = {v : v ∈ 2A, v ⊇ G}

28

1.2. THE A* ALGORITHM

Notice that any reachability problem obtained in this way always has a determinis-
tic labeling because any operator o in any planning problem is by definition such that
for any state s from which it can be fired s]o is unique. So, one can identify paths in the
graph with plans. Notice also that for a given problem some vertices and edges may
not be of interest (because they can never be accessed from the initial vertex) and can
thus be removed from the graph. In the following we consider that these vertices and
edges were removed. We recall however that, in practice, the A* algorithm will be run
directly on planning problems, without building the full corresponding graphs.

1.2.2 Presentation of A*
The idea of A* is to run a search algorithm on a problem P = (V,E,Λ, λ, c, i, F),
using a time-varying evaluation function f : V → R+ ∪ {+∞} which allows one
to decide at any moment of the execution of the algorithm which vertex should be
expanded next. This is what Algorithm 2 does (expand function is computed by Algo-
rithm 3). In this algorithm two types of vertices are considered: open ones and closed
ones. Initially all vertices v are closed and such that f(v) = +∞.

Algorithm 2 A search algorithm
1: mark i open
2: calculate f(i)
3: while there exists open vertices do
4: let v be the open vertex with minimal f(v)
5: if v ∈ F then
6: return v and terminate
7: else
8: expand(v)
9: end if

10: end while

Algorithm 3 A generic expand function
1: mark v closed
2: for all v′ such that (v, v′) ∈ E do
3: calculate f(v′)
4: if f(v′) strictly decreased then
5: mark v′ open
6: pred(v′)← v
7: end if
8: end for

The pred relation built along execution of the algorithm allows one, after termina-
tion (by fulfilling the condition at line 5 of Algorithm 2), to build a path p from i to the
final vertex v obtained. This path is defined as follows: p = e1 . . . en with p− = i and
ek = (predn−k+1(v), predn−k(v)) where computing predk(v) consists in applying k
times pred to v.

The interest of A* is to propose a concrete manner of computing the evaluation
function f . The idea is to use two functions: g and h with some properties such that
taking f(v) = g(v) + h(v) will ensure the search algorithm to find cost-optimal paths.

29

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

The function g will in fact be such that g(v) is the best cost known (when this function
is used) for reaching v from i. And the function h (usually called the heuristic function)
will be such that h(v) is a lower bound on the optimal cost over the paths reaching a
state in F from v.

The proof of validity of A* is mainly based on the following lemma.

Lemma 1.1 (Lemma 1 of [37]). For any vertex v such that v is open or has not yet
been opened (i.e. g(v) = +∞), and for any cost-optimal path p from i to v, there exists
an open vertex v′ belonging to p such that g(v′) is the optimal cost from i to v′.

A corollary of this lemma is the following:

Lemma 1.2 (Corollary of [37]). For any cost-optimal path p from i to some vertex
v ∈ F , as long as Algorithm 2 has not terminated there exists an open vertex v′

belonging to p such that f(v′) ≤ c(p).

To prove the validity of Algorithm 2 one then notices that if it terminates by return-
ing a vertex v, then v ∈ F (see Line 5) and the path obtained from the pred relation is
a cost-optimal path from i to v (this comes from Lemma 1.1 and Lemma 1.2).

The proof of termination of A* is due to two facts. The number of vertices in the
considered graph is finite. And for any real value c the number of different real values
c′ < c such that c′ is the cost of a path in a given graph is finite, which implies that any
vertex can only be opened a finite number of times.

It is possible to use a slightly different expand function for running Algorithm 2.
This function (Algorithm 4) has two interests. First, it highlights a possible compu-
tation of g. And then, it allows one to safely use heuristics h for which h(v) can be
modified along the search. The interest is to be able to refine h along an execution of
A* using the knowledge obtained on the explored part of the graph.

Algorithm 4 An expand function specific to A*
1: mark v closed
2: for all v′ such that (v, v′) ∈ E do
3: g(v′)← min(g(v′), g(v) + c((v, v′)))
4: if g(v′) strictly decreased then
5: mark v′ open
6: pred(v′)← v
7: calculate f(v′) = g(v′) + h(v′)
8: end if
9: end for

Other algorithms also exist for heuristic search based planning, most of them being
variations around A*. For example let us mention IDA* (which stores less information
than A* thanks to the use of iterative deepening – a search method combining the
advantages of both depth-first search and breadth-first search – see [66]), RTA* and
LRTA* (which trade guarantees on optimality for efficiency of the search, see [67]),
or WA*(which associates a weight – that is a multiplicative factor – to heuristics and
guarantees optimality up to a constant only, see Chapter 3 of [79]). Moreover, search
is not always done from initial state to goal states but sometimes from goal to initial
states (it allows easier computations of particular heuristics), this is called regression
planning (see Chapter 1 in [40]).

30

1.3. ABOUT HEURISTICS

1.3 About heuristics
In planning a heuristic is an estimate of the cost of a path. Heuristics are usually
requested to be admissible, that is to give lower bounds on costs of paths. A typical
example is distance in a beeline which is an admissible heuristic for searching shortest
paths between two points in a street network.

When using the A* algorithm, or any other heuristic based search algorithm, for
planning the main difficulty is to find a “good” admissible heuristic. Such a heuristic
must have two main characteristics:

1. be accurate, that is provide a lower bound as tight as possible,

2. be cheap to compute, the time needed for computing h and solving the problem
using it should be smaller than the time needed for solving the problem without
using a heuristic.

Remark that a heuristic always exists: one can take h equal to 0 in every point. This is
however, in general, not very accurate as in this case A* corresponds in some sense to
a breadth-first search.

Notice that it is possible in practice to use heuristics that are not admissible. It still
guarantees termination of A*, and finding of a solution when it exists, but no longer
guarantees the cost-optimality of the paths found. This is however of interest as it
may be much easier to compute a good heuristic with no guarantee of admissibility
than a good admissible heuristic, while still allowing to find solutions which are almost
cost-optimal (see for example hadd in [10]). In this section we focus on admissible
heuristics as we are mostly interested in cost-optimal planning.

Originally, heuristics were domain specific: a given heuristic was defined for a
given (type of) planning problem (as for example Sokoban [54], Rubik’s Cube [68]
or 15-Puzzle [20]). This allows one to develop very efficient heuristics. However, it
enforces the development of a new heuristic for each new problem. Nowadays the
objective is rather to develop more general heuristics which address any problem in a
given formalism (e.g. STRIPS). It is hopeless to reach the level of efficiency of domain
specific heuristics as for a given heuristic h it is always possible to build a problem
such that, by using h, A* will fall in its worst case and explore all the states before
finding a plan. But general heuristics still give promising results.

According to [45] current heuristics are mainly based on four ideas: delete relax-
ation, critical path, abstraction, and landmark.

1.3.1 Delete relaxation heuristics
The principle of these heuristics is, for a given planning problem P = (A,O, I,G),
to consider a relaxed problem P+ = (A,O+, I, G) where O+ is obtained from O by
removing the negative effects of each operator: O+ = {(preo, ∅,addo) : o ∈ O}.
For any state s ⊆ 2A the cost of reaching G in P+ from s gives a lower bound on the
cost of reaching G in P from s. This gives an accurate heuristic but which is difficult
to construct (deciding the existence of a solution in P+ is NP-complete, as stated by
Lemma 1.3 in Section 1.6).

In the example of Section 1.1.2 using this approach would give operators which
never remove disks from rods. For example the operators moving disk d1 will become
the ({(at-rx-d1)}, ∅, {(at-ry-d1)}) for all rx 6= ry. One can remark that any
sequence of operators moving disk d1 more than two times is never of interest in this

31

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

context: it would always be such that at some time an atom already appearing in the
current state is added. Table 1.1 presents the value of the heuristic obtained (consider-
ing that each operator has cost 1) from some particular states.

s h(s) opt(s) h-plan opt-plan

I 5 7 õ1,2
1 õ1,3

1 õ1,2
2 õ1,3

2 õ1,2
3 o1,2

1 o1,3
2 o2,3

1 o1,2
3 o3,1

1 o3,2
2 o1,2

1

I]o1,2
1 4 6 õ2,3

1 õ1,2
2 õ1,3

2 õ1,2
3 o1,3

2 o2,3
1 o1,2

3 o3,1
1 o3,2

2 o1,2
1

I]o1,2
1]o1,3

2 4 5 õ2,3
1 õ2,1

1 õ3,2
2 õ1,2

3 o2,3
1 o1,2

3 o3,1
1 o3,2

2 o1,2
1

Table 1.1: Delete-relaxation heuristic for the Tower of Hanoi. Value h(s) of this heuris-
tic from state s as well as value opt(s) of an optimal plan from s in the original problem
are depicted. In each case h-plan is an optimal plan in the relaxed problem used for
computing h while opt-plan is an optimal plan in the original problem. oi,jk is the only
operator moving disk k from rod i to rod j and õi,jk is its relaxed counterpart.

Due to the complexity of computing these delete-relaxation heuristics in general,
one will prefer to use estimates of them. An example is the hmax heuristic from [10].
The idea for building hmax(s) is to compute for each atom a ∈ G an estimate gs(a) of
the cost for achieving a from s and combine these estimates. This gs can be computed
by a simple procedure. First gs(a) is initialized to 0 for all a ∈ s and to +∞ for all
a /∈ s. Then an operator o firable from s is selected and for each a ∈ addo the value
gs(a) is updated to min(gs(a), c(o) + gs(preo)) and a is added to s. This is repeated
until no operator selection can change the values of gs. hmax is then defined as follows:
hmax(s) = gs(G). The only remaining part is to define the meaning of gs(S) for some
set S of atoms. One could consider that gs(S) =

∑
a∈S gs(a). This would however

result in a heuristic which is in general not admissible (the heuristic obtained in this
case is the hadd cited previously) because some atoms can be achieved as a side effect
of achieving a particular one. It is thus suggested in [10] to use gs(S) = maxa∈S gs(a)
for building an admissible heuristic.

1.3.2 Critical path heuristics

Critical path heuristics are a family of admissible heuristics denoted by hm (m ∈ N∗).
They were introduced in [42] and are presented in details in Chapter 3 of [40] for
regression planning. These heuristics are such that hm(s) ≥ hm−1(s) for all s. In
other words hm is more accurate than hm−1. As the complexity of computing hm is
exponential in m (but polynomial for a fixed m) there is a tradeoff between accuracy
of hm and efficiency of its computation. Moreover, one has that h1 corresponds to
hmax and h2 corresponds to the lower bound function computed by GRAPHPLAN
using the notion of planning graph (a brief description of GRAPHPLAN principles is
given in Section 1.4.1). hm is thus in some sense a generalization of previous planning
approaches.

The idea for computing hm is that instead of taking as estimate the maximum cost
over all atoms of achieving one of them (as it was the case for hmax), hm(s) will be
the maximum cost over all subsets of m atoms of achieving one of these subsets. This
can be computed for a given m using similar methods as for hmax.

32

1.3. ABOUT HEURISTICS

1.3.3 Abstraction heuristics
The principle for building abstraction heuristics is to map each state s of a planning
problem P = (A,O, I,G) to an abstract state α(s). One can then use as estimate of
the cost from s to G the cost from α(s) to an abstract state in α(G) (where α(G) =
{α(s) : s ⊇ G}) in the transition system induced by α. Each possible abstraction
leads to a heuristic.

For example in the case of the Tower of Hanoi (Section 1.1.2) one could decide to
abstract the position of disk d1. It corresponds to considering that for any given state s,
all states s′ reachable from s using operators modifying the position of d1 only are such
that α(s′) = α(s). Table 1.2 presents the value of the heuristic obtained (considering
that each operator has cost 1) from some particular states.

s h(s) opt(s) h-plan opt-plan

I 3 7 õ1,3
2 õ1,2

3 õ3,2
2 o1,2

1 o1,3
2 o2,3

1 o1,2
3 o3,1

1 o3,2
2 o1,2

1

I]o1,2
1 3 6 õ1,3

2 õ1,2
3 õ3,2

2 o1,3
2 o2,3

1 o1,2
3 o3,1

1 o3,2
2 o1,2

1

I]o1,2
1]o1,3

2 2 5 õ1,2
3 õ3,2

2 o2,3
1 o1,2

3 o3,1
1 o3,2

2 o1,2
1

Table 1.2: An abstraction heuristic for the Tower of Hanoi problem. Value h(s) of this
heuristic from state s as well as value opt(s) of an optimal plan from s in the original
problem are depicted. In each case h-plan is an optimal plan in the abstract problem
used for computing h while opt-plan is an optimal plan in the original problem. oi,jk
is the only operator moving disk k from rod i to rod j and õi,jk is its counterpart in the
abstract problem.

Many abstractions have been considered for building heuristics such as:

• merge and shrink abstractions [46]: starting from a collection of abstractions
(which are actually projections on each variable) a single abstraction is built
using two operations: merging (which builds a single abstraction from two ab-
stractions using a product) and shrinking (which abstracts more), or

• pattern databases based abstractions: pattern databases are an efficient data-
structure for storing and accessing costs of cost optimal paths into an abstraction
of a planning problem. They were introduced in [20] for solving 15-puzzle prob-
lem (as well as several other problems in various papers), and then applied to the
building of domain independent heuristics [24].

1.3.4 Landmark heuristics
A landmark in a planning problem is a propositional formula over truth values of atoms
that is true at some time in any plan. This notion (and the notion of ordering of land-
marks) can be used to build heuristics. It has been suggested first in [80] were the
number of landmarks yet to achieve from a given state s is used as a heuristic. This
heuristic depends on the path used to reach s and thus can in no way be admissible.
In [55] however admissible heuristics based on landmarks have been proposed. As an
example, in the Tower of Hanoi problem of Section 1.1.2 the fact that, at some time, the
disk d3 needs to be alone on rod r2 can be used as a landmark m̀1. Another example
of possible landmark m̀2 is the fact that at some time disks d2 and d3 need to be the

33

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

only two on rod r2. Moreover in any plan m̀2 must occurs after m̀1. This information
can also be used.

1.4 Exploiting concurrency
There exists a notion of independence (or concurrency) between operators of a planning
problem. The idea is that two actions o1 and o2 are said to be independent if they can be
fired in any order and yield the same result. In other words, for any state s from which
o1 and o2 are firable one has s]o1]o2 = s]o2]o1. This notion of independence clearly
generalizes to any number of actions. In presence of independent actions, considering
that plans are sequences of actions artificially increases the number of possible plans. In
Figure 1.1 for example the possible paths between two states with 2 to 4 independent
operators are represented . With n independent operators there exists n! such paths.
This suggests to consider representations of planning problems taking into account this
notion of independence and to search for plans as partial orders of actions rather than
sequences of actions. Notice that building a sequence of operators from a partially
ordered plan, for example in order to execute the plan, is straightforward. However,
another interest of partially ordered plans is that their actual execution may allow to
perform some actions in parallel [64]. This – compared to a sequential execution of the
actions of a plan – can reduce the execution time of this plan.

•

◦

◦

•

•

◦

◦

◦

◦

◦

◦

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

Figure 1.1: From left to rigth: paths with 2 independent operators (concurrency dia-
mond), 3 independent operators (concurrency cube), and 4 independent operators (con-
currency hypercube). States are represented by dots and each operator by a type of
arrow (plain, dashed, dotted. . .).

1.4.1 Graphplan
A famous planner exploiting the independence of actions is GRAPHPLAN [8]. It is
based on a notion of interference between actions. Two actions are said to interfere
with one another if one deletes a pre-condition or an add effect of the other. Formally,
two actions o1 = (preo1

,delo1 ,addo1) and o2 = (preo2
,delo2 ,addo2) interfere if

and only if delo1
∩(preo2

∪addo2
) 6= ∅ or delo2

∩(preo1
∪addo1

) 6= ∅. Interference
implies a notion of independence (actions which do not interfere are independent). The
interesting fact about this notion of independence is that a set of independent actions

34

1.4. EXPLOITING CONCURRENCY

can all be executed together, this is called an execution step. GRAPHPLAN allows one
to find plans as partial orders of actions ensuring that the number of execution steps
of the plans found is minimal. This is achieved by searching plans in what is called a
planning graph.

Planning graph

In this part we consider that each planning problem P = (A,O, I,G) is such that for
every atom a ∈ A there exists an operator noopa = ({a}, ∅, {a}) ∈ O. Notice that
these operators actually do nothing and can be added to any planning problem without
changing the states that can be reached.

Definition 1.3. A planning graph for a planning problem P = (A,O, I,G) is a graph
GP = (V,E) such that V = VA∪̇VO consists of two disjoint subsets of proposition ver-
tices (VA ⊆ A×N∗+) and action vertices (VO ⊆ O×N∗+), andE = Epre∪̇Edel∪̇Eadd

consists of three disjoint subsets of oriented edges called precondition edges (Epre ⊆
VA × VO), delete edges (Edel ⊆ VO × VA), and add edges (Eadd ⊆ VO × VA). This
graph is also leveled: its vertices are partitioned into disjoints subsets V1, . . . , Vn such
that (v, v′) ∈ E only if v ∈ Vi and v′ ∈ Vi−1 ∪ Vi+1. Moreover its levels are of two
types: proposition levels Vi = VA,(i+1)/2 ⊆ {(a, (i+1)/2) : a ∈ A} ⊆ VA for all odd
values of i and action levels Vi = VO,i/2 ⊆ {(o, i/2) : o ∈ O} ⊆ VO for all even val-
ues of i. Finally precondition edges are such thatEpre = {((a, i), (o, i)) : a ∈ preo},
delete edges are such that Edel = {((o, i), (a, i)) : a ∈ delo}, and add edges are
such that Eadd = {((o, i), (a, i)) : a ∈ addo}.

Figure 1.2 presents an example of planning graph corresponding to the Tower of
Hanoi problem of Section 1.1.2.

at-r1-d1

at-r1-d2

at-r1-d3

noop

noop

noop

o1,2
1

o1,3
1

at-r1-d1

at-r1-d2

at-r1-d3

at-r2-d1

at-r3-d1

noop

noop

noop

noop

noop

o1,2
2

o1,3
2

o1,2
1

o1,3
1

o2,1
1

o2,3
1

o3,1
1

o3,2
1

at-r1-d1

at-r1-d2

at-r1-d3

at-r2-d1

at-r3-d1

at-r2-d2

at-r3-d2

VA,1 VO,1 VA,2 VO,2 VA,3

Figure 1.2: 3 firsts proposition levels and 2 firsts action levels of the planning graph
constructed by GRAPHPLAN’s algorithm for the Tower of Hanoi. Precondition and
add edges are represented as plain lines, delete edges are represented as dashed lines.
The boxed proposition vertices and action vertices represent a part of the “propagation”
of mutual exclusion among levels of the graph.

35

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

Graphlan’s algorithm

The principle of GRAPHPLAN is to build a particular planning graph starting from
VA,1 = {(a, 1) : a ∈ I} (which is a representation of the initial state of the problem).
This graph is constructed level by level until a plan is found (a search for a plan happens
after the construction of each proposition level). Each action level VO,i represents the
actions that may be fired at time step i and each proposition level VA,i represents the
propositions that may be true just before firing these actions. To build an action level
of the graph one takes into account a notion of mutual exclusion between vertices of
the previous proposition level. An action level VO,i is constructed by adding a vertex
(o, i) for each action o for which for all a ∈ preo there is a proposition vertex (a, i)
at previous proposition level VA,i and there exists no a1, a2 ∈ preo such that a1 and
a2 are mutually exclusive at level VA,i. To build a proposition level VA,i+1 one just
adds a vertex (a, i + 1) for each atom a such that there is an action vertex (o, i) at
previous action level VO,i with a ∈ addo. An example of planning graph as built by
GRAPHPLAN is given in Figure 1.2.

The mutual exclusion relation is propagated along the construction of the planning
graph by stating that any two actions o1 and o2 at a given action level are mutually ex-
clusive if one of these actions deletes a precondition or an add-effect of the other, or if a
precondition of action o1 and a precondition of action o2 are mutually exclusive at the
previous proposition level. Moreover, two atoms a1 and a2 at a given proposition level
are said to be mutually exclusive when they can only come from mutually exclusive ac-
tions: they can not be added by a single action, and any two actions o1 and o2 such that
a1 ∈ addo1 and a2 ∈ addo2 are mutually exclusive actions. In Figure 1.2 a part of this
propagation of mutual exclusion is highlighted: at action level VO,1 actions o1,2

1 and
o1,3

1 are mutually exclusive because each of them deletes a precondition of the other,
from that atoms at-r2-d1 and at-r3-d1 are mutually exclusive at proposition level
VA,2 because they can only be added by o1,2

1 and o1,3
1 respectively, this implies mutual

exclusion of o1,2
2 and o1,3

2 at level VA,2 for having mutually exclusive preconditions,
and finally at-r2-d2 and at-r3-d2 are mutually exclusive at level VA,3.

The search for a plan after construction of proposition level VA,i is done by back-
ward search. One first checks that the atoms defining the goals of the problem are all
present at proposition level VA,i (∀a ∈ G, (a, i) ∈ VA,i) and that these atoms are not
mutually exclusive. Then a setOi−1 of not mutually exclusive actions from action level
VO,i−1 such that G ⊆ ∪o∈Oi−1

addo is searched. If one is found the same process is
repeated from proposition level VA,i−1 using ∪o∈Oi−1

preo as a goal. As soon as level
VA,1 is reached, a plan has been found. If the search from some proposition level VA,k
(resp. action level VO,`) does not allow to find a plan, then one backtracks and a differ-
ent set of actions (resp. propositions) is searched in action level VO,k (resp. proposition
level VA,`+1). If all possible set have been considered at proposition level VA,i without
finding a plan it means that no plan can be found in the current planning graph. This
graph is thus extended with one more action level and one more proposition level.

Other features and comments

The algorithm presented above can be implemented efficiently using well chosen data
structures for storing mutual exclusion information. Moreover, the information about
goals that can not be achieved from proposition level VA,i can be stored to avoid re-
peated searches. One may also have noticed that when considering a planning problem
with no solution the algorithm may not halt. In GRAPHPLAN however, a method has

36

1.4. EXPLOITING CONCURRENCY

been implemented to detect the absence of solution.
It is also guaranteed that the levels of the planning graphs created by GRAPHPLAN

for any problem are small and quickly constructed. Consider a planning problem with
nA atoms, nI atoms defining the initial state, nO operators, and at most nadd atoms
added by a single operator. A planning graph of depth i is a planning graph where
the last proposition level is VA,i. In this case the size of the planning graph of depth i
constructed by GRAPHPLAN is polynomial in nA, nI , nO, nadd, and i.

In fact, GRAPHPLAN does not fully handle mutual exclusion. In particular one
should have that two proposition vertices (resp. action vertices) at the same level are
mutually exclusive if no plan could possibly have both true (resp. contain both) at the
corresponding time step. This is not ensured by the propagation of mutual exclusion in
planning graphs as done by GRAPHPLAN. Moreover, at some time step it is possible
that more than two actions are mutually exclusive while not being pairwise mutually
exclusive. These facts imply a necessity to check for correctness of plans with respect
to mutual exclusion during the search. But to fully handle mutual exclusion would
increase significantly the cost of building GRAPHPLAN’s planning graph. However,
there exists ways to better handle mutual exclusion such as for example Petri nets and
their unfoldings.

1.4.2 Planning via Petri net unfolding
Petri nets are a well known model for systems with concurrency. Relations between
Petri nets and planning were studied by various authors. We focus here on an approach
to planning based on Petri net unfolding (a technique for reachability analysis preserv-
ing concurrency). This approach, presented in [47], uses a representation of planning
problems as Petri nets in order to benefit of unfoldings for providing plans as partial
orders of actions.

Planning problems and Petri nets

Definition 1.4. A Petri net is a tuple PN = (P, T, F,M0) where P is a set of places,
T is a set of transitions (P ∩T = ∅), F : (P ×T)∪ (T ×P)→ N+ is a flow relation,
and M0 is an initial marking

The places represent the state variables of the system, while the transitions repre-
sent its actions. A markingM : P → N+ associates a certain number of tokens to each
place, it represents a state of the system. The flow relation relates the places and the
transitions, defining the behavior of the system. From a certain marking M a transition
t can be fired if and only if ∀p ∈ P, F (p, t) ≤ M(p). The firing of this transition
leads to the new marking M ′ such that ∀p ∈ P,M ′(p) = M(p) − F (p, t) + F (t, p).
Planning problems will be encoded as 1-safe Petri nets, that is Petri nets such that
∀p ∈ P,M0(p) ≤ 1 and after any sequence of transitions fired from M0 the marking
M reached is such that ∀p ∈ P,M(p) ≤ 1. In other words: a place will never contain
more than 1 token (intuitively, a place will represent the truth value of an atom, that is
a binary variable).

A planning problem P = (A,O, I,G) can then be represented as the Petri net
PNP = (P, T, F,M0) formally defined as follows (an example is also given in Fig-
ure 1.3):

• P = A ∪ A, where A is a set of variables such that a ∈ A if and only if a ∈ A,
the idea being that a is true if and only if a is false.

37

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

• T = ∪o∈OS(o), where one has S(o) = {(pre,del,add) : ∃del′ ⊆ delo \
preo,∃add′ ⊆ addo,pre = preo∪del′∪add′∪(delo \ preo) \ del′,del =

del′ ∪ (delo ∩ preo) ∪ add′,add = add′ ∪ del′ ∪ (delo ∩ preo)}.

• For p ∈ P and t = (pret,delt,addt) ∈ T , F (p, t) = 1 if and only if p ∈ pret,
and F (t, p) = 1 if and only if p ∈ addt or p ∈ pret ∧ p /∈ delt.

• For a ∈ A,M0(a) = 1 if a ∈ I and M0(a) = 0 else, and for a ∈ A,M0(a) =
1−M0(a).

at-r1-d1

at-r2-d1

o′

o′′

at-r1-d1

at-r2-d1

o′ = ({at-r1-d1, at-r2-d1}, {at-r1-d1}, {at-r1-d1})

o′′ = ({at-r1-d1, at-r2-d1}, {at-r1-d1, at-r2-d1}, {at-r2-d1, at-r1-d1})

Figure 1.3: Mapping of the action o = ({at-r1-d1}, {at-r1-d1}, {at-r2-d1})
(from the Tower of Hanoi problem of Section 1.1.2) into a Petri net. The two transitions
o′ and o′′ correspond to the elements of S(o). The marking is not represented because
only one action is considered, not a full planning problem. The places are depicted as
circles and the transitions as squares. The arrows represent the flow relation.

One can then show that solving P is equivalent to finding way to reach a marking
corresponding to G in PNP . The markings corresponding to G being the markings
MG such that for a ∈ A,MG(a) = 1 if a ∈ G and MG(a) can take any value
otherwise, and for a ∈ A,MG(a) = 1−MG(a).

Theorem 1.1 (Corollary of Theorem 1 of [47]). Finding a sequence of firing of tran-
sitions in PNP allowing to reach a marking MG from the original marking M0 is
equivalent to finding a plan in the planning problem P .

Unfolding Petri nets for solving planning problems

In fact, as suggested above, one will prefer to search for a way to reach a marking
MG in the form of a partial order of transitions. Unfolding is a method for performing
reachability analysis in Petri nets while preserving concurrency [71, 26]. Thus it per-
mits to obtain plans as partial orders of actions from a Petri net. Figure 1.4 represents
a Petri net and (a part of) its unfolding. Intuitively it corresponds to the possible runs
in the net. The unfolding of a Petri net gives a partially ordered plan for achieving each
reachable marking of this net. In planning however, one only needs to find one plan,

38

1.5. EXPLOITING MODULARITY

thus unfolding can be stopped as soon as a marking MG has been reached. This has
been done for example in Figure 1.4.

a
•

b
•

c d e

f

1 2 3 4 5

6

a
•

b
•

c d e

f

1

2 3 4

56

a bc

1

a

Figure 1.4: A Petri net (left) and a prefix of its unfolding (right) sufficient for finding
how to reach a markingMG such thatMG(a) = MG(f) = 1, andMG(b) = MG(c) =
MG(d) = MG(e) = 0. In the unfolding plain lines represent a partially ordered plan
reaching this marking.

Moreover, one can use standard heuristics to “drive” the unfolder and try to reach
a marking MG without considering too many other markings. Indeed, unfoldings are
built by adding transitions (usually called events in the unfolding) one by one. One
can use different policies for defining the order in which these events are added. In
particular it is possible to add in priority the events that are the most promising for
reaching a goal marking. The notion of promising event can be defined by the mean of
heuristics, as in A*. In Figure 1.4 this could avoid the unfolding of the dashed parts (or
at least part of them). Driven unfolding was first suggested in [47] and then studied in
details in [11].

1.5 Exploiting modularity

Beyond concurrency is the notion of modularity. Some planning problems are intrin-
sically modular: they are formed by several subproblems (or components, or factors)
which can be solved almost independently. This can be the case for example in plan-
ning problems implying several agents which do not interact much (i.e. are highly
concurrent). In this case each agent and the actions and variables related to her will de-
fine a subproblem. However, the components allowing the efficient modular resolution
of a planning problem are not always as meaningful as in the case of multi-agent prob-
lems: they can simply come from independence relations between variables or actions
of a problem.

39

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

The fact that some parts of a planning problem can be loosely interacting was first
used in what is called hierarchical planning [63]. The idea is to solve a problem using
a hierarchy of abstractions: first the most abstract version of the problem is solved, the
result is then used for solving a finer version of the problem, and so on and so forth
until the non-abstracted problem is solved. After that appeared the notion of factored
planning which consists in decomposing a problem into loosely interacting factors, in
solving these factors, and finally in gathering their solutions into a plan for the original
problem. The factors are frequently defined by a partition of the atoms or by a partition
of the actions of the original planning problem. Such a partition simply defines a set of
planning problems as shown in Section 1.5.2 for the case of actions and in Chapter 2
for the case of atoms.

The main challenges in factored planning are the following: to identify the planning
problems for which using factored planning makes sense, to decompose the problems
into factors, and to solve the factored problems. One may think that these challenges
are almost independent. However even if some general guidelines can be used for
decomposing a problem (limit the interactions between factors as most as possible)
the definition of a good decomposition highly depends on the method used for solving
factored problems. Accordingly, depending on the decomposition method (and thus
depending on the resolution method), the planning problems which can be efficiently
solved will not always be the same.

1.5.1 A first approach to factored planning
The first true factored planner (by planner we refer to a program solving planning
problem) was presented in [1]. The approach uses a specific decomposition of planning
problems as factors organized into a tree. Factors are treated from leaves to root to
propagate constraints and then from root to leaves to build a plan. In this section we
describe this decomposition and explain how it is used for solving factored planning
problems.

Factored planning formalism of [1]

The formalism for factored planning problem used in this first approach is to represent
a problem as a tree T = (V,E, `), an initial state IT and a set of goal states GT where:

• V = {Di : i ≤ m} is a set of planning domains, that is a set of couples
Di = (Ai, Oi) with Ai a set of atoms and Oi a set of operators over Ai, these
Di are the factors;

• E ⊆ V × V is a set of edges;

• ` : E → ∪i≤mAi is a labeling of the edges;

• IT ⊆ ∪i≤mAi;

• ∃t ≤ m,GT ⊆ At, the corresponding domain Dt is the root of T .

This tree should also have the following three properties:

1. for any e = (Di, Dj) ∈ E, `(e) ⊇ Ai ∩Aj ;

2. for any i 6= j such that Ai ∩Aj 6= ∅ a path should exist between Di and Dj ;

40

1.5. EXPLOITING MODULARITY

3. any atom appearing in both Ai and Aj for i 6= j should also appear in the label
of each edge of the shortest path between Di and Dj .

The objective in such a factored planning problem is to find a plan for the corresponding
planning problem PT = (∪i≤mAi,∪i≤mOi, I, G) (without considering this problem
directly but using its factored version instead).

It is possible to transform any planning problem P = (A,O, I,G) into a factored
planning problem with this formalism (consider the tree T = ((A,O), ∅, `), the initial
state IT = I , and the set of goal states GT = G). However any tree T = (V,E, `)
respecting the above definition and such that ∪i≤mAi = A and ∪i≤mOi = O (with
IT = I , and GT = G) would be acceptable. In fact, in order to really benefit from
factored planning one has to have many small factors rather than few big ones. For a
planning problem P , consider the graph GP which vertices are the elements of A and
where there is an edge between a1 and a2 if and only if there exists an action o ∈ O
such that a1 ∈ preo∪delo∪addo and a2 ∈ preo∪delo∪addo (an example is given
in Figure 1.5 in the case of the Tower of Hanoi problem of Section 1.1.2). According
to [1], a possible way to automatically build a tree from a planning problem is to use
tree decomposition techniques (see for example [9]) on this graph. These techniques
will return a tree TP = ({Ai}i, EP) verifying the following properties: ∪iAi = A, for
every edge (a1, a2) of GP there exists i such that a1 ∈ Ai and a2 ∈ Ai, and for every
i, j, k, ifAj is on the path fromAi toAk in TP thenAi∩Ak ⊆ Aj . These subsetsAi are
then used to build the planning domains Di = (Ai, Oi) for the factored representation,
where Oi is the set of all operators oi such that preoi ∪ deloi ∪ addoi ⊆ Ai.

at-r1-d1

at-r2-d1

at-r3-d1

at-r1-d2

at-r2-d2

at-r3-d2

at-r1-d3 at-r2-d3 at-r3-d3

Figure 1.5: Interactions by actions between the atoms of the Tower of Hanoi problem.
The dashed edges correspond to the action moving d3 from r1 to r2.

Planning algorithm of [1]

A schematic presentation of the algorithm proposed for solving factored planning prob-
lems as presented above is given in Algorithm 5. This algorithm takes as input a fac-
tored planning problem T = (V,E, `), an initial state IT , a set of goal states GT , and

41

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

two parameters k and d which will bound the lengths of plans considered in the factors.
The principle of this algorithm is to select a leaf of T and search for plans between var-
ious valuations of the variables shared with its parent. These plans are then sent to the
parent in the form of a set of actions (called macro actions) reflecting their effects and
preconditions. The leaf is then removed from T and the same process is repeated until
only the root remains in T . After that, a plan p is searched in the root of T and sent
to its children in the original T . For each of these children, the macro actions in p are
then replaced by the corresponding local plans and an updated p is sent to their own
children. The same process is repeated until all the gaps in p have been filled, that is
until p has been updated using the leaves of the original T .

Three parts of Algorithm 5 have to be explained: the definition of COk and the
way it is taken into account in the research for a plan (lines 5 and 6), the meaning of
an update of Dj (line 8), and the meaning of expanding a plan (line 16). We only give
intuitions on these parts of the algorithm, however, detailed implementations can be
found in [1].

Algorithm 5 A first algorithm for factored planning
1: (V ′, E′) = (V,E)
2: while V ′ 6= {Dt} do
3: let Di be a leaf of (V ′, E′)
4: let Dj be the parent of Di in (V ′, E′)
5: for all CO ∈ COk(`((Di, Dj))) do
6: search a plan in Di according to CO
7: end for
8: update Dj with all the plans found
9: V ′ ← V ′ \ {Di}

10: E′ ← E′ \ {(Dj , Di)}
11: end while
12: search a plan in Dt achieving GT
13: if a plan p has been found then
14: while V ′ 6= V do
15: let Di /∈ V ′ and Dj ∈ V ′ be two neighbors in T
16: expand p in Di from Dj

17: V ′ ← V ′ ∪ {Di}
18: E′ ← E′ ∪ {(Dj , Di)}
19: end while
20: return p
21: else
22: no solution exists for parameters d and k
23: end if

For any (Di, Dj) ∈ E, the set COk(`((Di, Dj))) contains all possible tuples
({prei : i < k}, {eff i : i ≤ k}) with prei ⊆ `((Di, Dj)) for all i < k, and
eff i ⊆ `((Di, Dj)) for all i ≤ k. Using these tuples a search is done in Di (line 6).
This search has for objective to find a path p (using at most d operators) which reaches
a state s such that effk ∩ s = effk. Moreover, new operators are added to Di in order
to reach this state, each of these operators oi can only be fired from states s such that
s∩eff i = eff i and from s reaches the new state s′ = s\eff i∪prei. Moreover, opera-
tor oi, i ≥ 1 can only be fired once and if oi−1 has already be fired before. This can be

42

1.5. EXPLOITING MODULARITY

implemented using only operators as defined in propositional STRIPS by adding atoms
to Di.

The paths found at line 6 are then used at line 8 to modify Dj . The idea is to add
new operators in Dj for each path p found. These operators enforce to fill the blanks
(i.e. provide a path from the precondition of an oi in Di to its effects) in p if one needs
to use some state s inDj such that s∩effk = effk (for the value of effk corresponding
to p). Intuitively, at line 6 it has been stated that some valuations of the atoms shared
between Di and Dj can be achieved by the operators of Di if operators in Dj allows
to reach some other valuations of these shared atoms.

Finally, when a path has been found at the root to reach a goal of the planning prob-
lem considered, it is needed to expand it into a real path for the planning problem: the
operators added during the first part of the algorithm have to be replaced by operators
of the original planning problem. This is done at line 16 where the operators added to
Dj using the paths in Di are replaced by relevant parts of these paths. This is always
possible as the added operators all correspond to actual paths by construction (line 8).

1.5.2 Factored planning using constraint solving
Another factored planning algorithm of interest was proposed in [13]. This algorithm
works for factored planning problems defined by a partition of the actions of a standard
planning problem. These problems are recast as constraint solving problems (CSP)
by focusing on coordination points between the local plans of the factors (i.e. shared
actions). This allows one to use standard constraint solving methods for planning. In
particular methods based on message passing algorithms can be used [22].

Factored planning formalism of [13]

A factored planning problem (called multi-agent problem in [13]) is defined as a tuple
P = (A, {Oi : i ≤ k}, I, G) such that P ′ = (A,∪i≤kOi, I, G) is a standard planning
problem. Each of the k sets of operators Oi defines a factor Pi = (Ai, Oi, Ii, Gi)
which is itself a planning problem. In such a factor Ai is the set of atoms involved in
the operators from Oi, Ii = I ∩ Ai,and Gi = G ∩ Ai. The operators of a factor can
be separated in two sets: the set of public operators and the set of private operators.
Public operators are the ones with preconditions or effects including atoms from several
factors. Private operators are the ones with preconditions and effects using atoms from
only one factor.

An important notion in such a factored planning problem is the notion of interaction
graph of the factors. This graph has factors as vertices and an edge between two factors
Pi and Pj if and only if they share atoms (Ai ∩ Aj 6= ∅). The complexity of solving
a factored planning problem is highly related with the tree-width of this interaction
graph due to the constraint satisfaction methods used which require it to be a tree [22].
Section 1.6.2 gives more details about this complexity.

Planning algorithm of [13]

Given a factored planning problem P = (A, {Oi : i ≤ k}, I, G) one prefers to
solve P by searching plans in its factors rather than directly solve its counterpart P ′ =
(A,∪i≤kOi, I, G). The factored planning algorithm proposed consists in assuming that
a plan p exists such that no more than d public operators will be used in any factor. This
implies that no more than d × k public operators will appear in p (there is k factors).

43

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

Then one can recast the factored planning problem as a CSP in which the objective is
to find the sequence of public operators used in each factor (and a “time” in {1..dk} for
the occurrence of each of these operators, this time being in increasing order along the
sequence). In other words one has to find a tuple (θ1, . . . , θk) of sequences of couples
of public operators and times of length at most d with constraints ensuring that these
sequences correspond to an actual plan in P .

The first constraint is called coordination constraint. Intuitively it ensures that the
sequences of public operators in all the factors can be assembled into a single coherent
sequence. This constraint can be expressed as follows: (θ1, . . . , θk) should be such
that for any (o, t) in θi, for any a ∈ preo ∩ (∪j 6=iAj) one has:

1. ∃(o′, t′) in some θj such that a ∈ addo′ and t′ < t or a ∈ I (in this case t′ = 0):
a is supplied before being needed;

2. @(o′′, t′′) in some θ` such that a ∈ delo′′ and t′ ≤ t′′ ≤ t: a is not destroyed
before having been used.

Moreover, for any a ∈ G ∩ (∪i 6=j(AOi ∩ AOj)), 1. and 2. should also hold for (a, t)
with t = dk + 1.

The second constraint is called internal-planning constraint. It ensures that in each
factor Pi it is possible to find a plan which allows to fire the public operators in the
order requested by θi. For Oi a set of operators, consider the planning problem P ′i =
(Ainti , Ointi , Iinti , Ginti) where Ainti is the set of atoms appearing only in the operators
from Oi, Iinti = I ∩ Ainti , and Ginti = G ∩ Ginti . The set of operators is Ointi =
{o′ : o ∈ Oi ∧ preo′ = preo ∩Ainti ,delo′ = delo ∩Ainti ,addo′ = addo ∩Ainti },
for simplicity of presentation we consider that there are no two operators o1 and o2

in Oi such that preo1
∩ Ainti = preo2

∩ Ainti , delo1
∩ Ainti = delo2

∩ Ainti , and
addo1

∩ Ainti = addo2
∩ Ainti . This second constraint can be expressed as follows:

(θ1, . . . , θk) should be such that for any θi = (o1, t1) . . . (o`, t`), there exists a plan
p = o′′1 . . . o

′′
n in P ′i such that there exists a subplan p′ = o′′m1

. . . o′′m` with o′′mq = o′q
(o′q is the operator built from oq in P ′i) for all 1 ≤ q ≤ ` and mq < mr for all q < r.
Moreover no o′q should appear in p outside of p′.

If the CSP considered has no solution, one just increases the value of d and tries
to solve the new CSP it defines. As in previous section, this method does not allow
cost-optimal planning: one should test all d (up to the length of the longest possible
plan, which is exponential in the size of P) for ensuring cost-optimality of plans found.

1.6 Complexity of planning
We conclude this section by giving some known results about the complexity of plan-
ning in STRIPS domains. We consider in fact a slightly different version of STRIPS,
where preconditions of operators are defined by two sets of atoms: a set called posi-
tive precondition (atoms for which the truth value must be true for firing the operator)
and a set called negative precondition (atoms for which the truth value must be false
for firing the operator). In our definition of STRIPS, only positive preconditions ex-
ist. It is in fact possible to build a STRIPS domain with only positive preconditions
from a STRIPS domain with both positive and negative preconditions by adding new
atoms representing negation of original atoms [33]. The interest of considering neg-
ative preconditions is thus not to increase the expressivity of STRIPS but to allow a
more accurate complexity analysis.

44

1.6. COMPLEXITY OF PLANNING

1.6.1 Complexity in general
A large collection of complexity results for planning in STRIPS domains is given
in [15]. The decision problem considered for studying complexity is PLANSAT: decide
whether or not there exists a plan for a given STRIPS planning problem. As we will see
the complexity of this decision problem depends on the number and types of precondi-
tions and effects in the operators of the STRIPS domain considered. We thus adopt the
following notation: PLANSAT(k, `,m, n) with k,m ∈ N ∪ {∗} and `, n ∈ {+,−, ∗}
denotes the decision problem of the existence of a plan in a STRIPS domain where
some restrictions are imposed on operators. The value k 6= ∗ (resp. m 6= ∗) bounds
the maximum number of atoms in the precondition (resp. effects) of any operator. The
value ` 6= ∗ (resp. n 6= ∗) specifies that for any operator only positive (+) or negative
(−) preconditions (resp. effects) exist. The symbol ∗ means that nothing is specified:
PLANSAT=PLANSAT(∗, ∗, ∗, ∗). The main result about complexity of planning in
STRIPS domains is the following:

Theorem 1.2 (Theorem 1 in [15]). PLANSAT is PSPACE-complete.

The fact that PLANSAT is in PSPACE is due to the observation that with n atoms
the number of possible states is 2n. Moreover, if a plan exists, a plan with no loops ex-
ists. Thus, if a plan exists, a plan of length less than 2n exists. Such a plan can be found
doing at most 2n non-deterministic choices, so PLANSAT is in NPSPACE=PSPACE.
The PSPACE-hardness of PLANSAT can be proved by giving a polynomial reduc-
tion of any turing machine using only polynomial space to an instance of PLANSAT.
As this reduction only implies operators with positive precondition, no more than two
atoms in precondition, and no more than two atoms in effects, one gets the following
result:

Proposition 1.1 (Corollary 1 in [15]). PLANSAT(2,+, 2, ∗) is PSPACE-complete.

This implies, in particular, that the version of STRIPS we consider (with no neg-
ative precondition) is such that PLANSAT is PSPACE-complete. Finally, even with
only one effect in each operator PLANSAT remains in PSPACE:

Proposition 1.2 (Theorem 3 in [15]). PLANSAT(∗, ∗, 1, ∗) is PSPACE-complete.

Some particular planning domains however are NP-complete, or even polynomial.
These are generally very restrictive on the operators allowed. The following lemmas
give some examples.

Proposition 1.3 (Theorem 4 in [15]). PLANSAT(∗, ∗, ∗,+) is NP-complete.

Proposition 1.4 (Corollary 5 in [15]). PLANSAT(1, ∗, 1,+) is NP-complete.

Proposition 1.5 (Theorem 7 in [15]). PLANSAT(∗,+, 1, ∗) is polynomial.

Proposition 1.6 (Theorem 9 in [15]). PLANSAT(0, ∗, ∗, ∗) is polynomial.

Among other works of interest on complexity of planning one can notice [25]. This
paper presents complexity results for PLANSAT and for k-PLANSAT (decide whether
or not there exists a plan of length smaller than some bound k), these results being
presented for a similar STRIPS formalism than in [15] and for various other formalism
generalizing STRIPS. One can also notice [3] for results on complexity of planning in
SAS (allowing multi-valued variables instead of STRIPS atoms) and SAS+ (SAS with
multiple initial states) domains. PLANSAT reveals to have the same complexity for
SAS and SAS+ domains than for STRIPS domains.

45

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

1.6.2 The case of factored planning
The first important fact to notice is that there is no hope to reduce the complexity of
planning by using factored methods. It is always possible that a planning problem can
not be factorized in more than one factor. However, when it is possible to factorize
a planning problem in many small factors with few interaction, one can really benefit
from factored planning. In fact, when factorization is possible, complexity of factored
planning algorithms is highly related to the tree-width of the graph of interaction be-
tween variables or actions of the planning problem considered. The tree-width of a
graph being the minimum number of vertices which have to be aggregated in a single
vertex in order to make a tree from this graph.

For example, in [1], the complexity of the algorithm presented is exponential in the
number of atoms in the largest factor, which is in fact the tree-width of the graph of
interaction between atoms used for automated factorization of planning problems. This
complexity is also linear in the cost of searching a plan in any factor.

Similarly, in [13], the complexity of the presented algorithm is exponential in the
tree-width of the graph of interaction between the (pre-defined) factors, and linear in
the cost of searching a plan in a factor. The relation with tree-width is due to the
constraint satisfaction methods used [22].

Theorem 1.3 (Theorem 2.4 in [1], Equation 2 in [13]). Complexity of factored plan-
ning is linear in the cost of searching a plan in a factor and exponential in the tree-
width of the graph of interaction between factors.

This theorem strongly relates the complexity of factored planning with the com-
plexity of classical planning. As soon as no decomposition of a planning problem can
be found (i.e. when tree width corresponds to the number of factors) factored plan-
ning corresponds to classical planning. It also reveals that tree-width is an important
parameter for factored planning, even if it is not the only one. Indeed, complexity also
depends of the degree of interaction between factors: the more shared atoms or actions
exist between any two factors, the more factored planning is complex. In [1] the com-
plexity of the algorithm presented is exponential in the maximum number of atoms
shared between two factors. And in [13] the complexity is polynomial in the number
of public actions (actions using a shared atom between two factors), but the degree of
the polynomial is the tree-width of the graph of interaction between factors.

Conclusion
In this chapter we gave a small overview of planning. This view is far from being ex-
haustive due to the vast literature brought to us by more than 40 years of research in
planning since publication of the original paper on A* in 1968. This prevented us from
presenting more “exotic” planners, such as SATPLAN [56] for example, which exploits
a SAT-solver for solving planning problems, obtaining extremely good results in plan-
ning competitions. Notice that domain specific planning was originally the norm. But,
recently lots of works have been done on domain independent planning. Clearly, do-
main independence limits the efficiency of plan search. However it avoids the tedious
work of designing new planners for each family of problems.

We focused on the evolution from planning as heuristic search to factored plan-
ning (and in some sense back to planning as heuristic search since recent heuristics
benefit from the techniques developed for exploiting concurrency and modularity of

46

1.6. CONCLUSION

problems). This relatively new approach to planning can be located between domain
specific and domain independent planning. Indeed, is uses some characteristics of
problems (that is independence of subproblems) for solving them efficiently, while
allowing to deal with a large range of problems. In fact, factored planning gener-
ally uses standard planning methods for solving subproblems (which are themselves
smaller planning problems). This makes it a method having some of the advantages of
domain specific planning (when a good decomposition exists it is very efficient) while
not having its drawbacks (in the worst case there exists only one factor and factored
planning corresponds to standard planning).

However, it is not possible to find cost-optimal plans with the current factored plan-
ning algorithms. They are all based on some bounds on the length of plans, increased
along the execution of the algorithm. Proposing solutions for avoiding the use of such
bounds thus looks to be a topic of interest and an important gap to fill. Moreover very
few implementations of factored planners exist, and none were compared with imple-
mentations of other approaches. In fact, the only implementation we are aware of is
the one presented in [1].

Another topic of interest is the use of approximate methods for factored planning.
Indeed, such methods revealed interest for planning, allowing to significantly reduce
the time needed to find plans by allowing them to be close to optimal instead of optimal.
This is due to the fact that the difficulty in the search for an optimal solution is not in
finding the solution but rather in checking its optimality. However, these kinds of
approaches – despite their noted interest – were almost not considered in the case of
factored planning.

Finally, an important fact about planning is that comparing planners is a difficult
task. Few theoretical studies exist on this topic. Currently the main methods for plan-
ning algorithms comparison consists in the use of benchmarks. The planners which
have to be evaluated are run on the same set of problems and their performances are
compared (usually one is interested in run time). This is in particular what happens
during international planning competitions. The choice of benchmarks has however a
huge impact on this evaluation method. Moreover, due to this manner of comparing
planners there may exist a tendency to avoid theoretical analysis of algorithms and a
focus on experimental results only. In our opinion it is necessary to have a minimal
theoretical understanding of algorithms, at least by proving their validity. For this rea-
son, in this thesis we always start by giving formal descriptions of our results before
doing empirical optimizations on top of this formal basis.

47

CHAPTER 1. FROM PLANNING TO FACTORED PLANNING

48

Chapter 2

Planning in Networks of
Weighted Automata

chapter abstract: In this chapter we present the classical message passing algorithm
and show how it can be used for factored cost-optimal planning. This is done by en-
coding planning problems in terms of weighted automata and showing that the basic
operations (product and projection) needed for message passing can be implemented
directly on weighted automata. This work is a basis for the results of Chapters 3, 4,
and 5.

AS PRESENTED IN Chapter 1 current approaches to cost-optimal planning are mainly
based on A∗ like algorithms, using heuristic functions to drive the graph explo-

ration. If heuristics are accurate, these approaches allow one to avoid looking at cost
expensive paths. Thus, they reduce the explored part of the state-space. However, driv-
ing the search using heuristics is not the only possible method for reducing the cost of
finding a path. In particular, the relatively new approach called factored planning (see
Section 1.5) is of interest. Nevertheless, current factored planning approaches do not
allow one to perform cost-optimal planning. Indeed, they usually rely on incrementally
adjusted bounds on length of the paths (or more precisely on the number of synchro-
nization actions in a path). The aim of this chapter is to propose a general framework
for factored planning not relying on such bounds, and to show how it can be used in
order to perform factored cost-optimal planning.

The approach presented in this Chapter is derived from a family of algorithms
called message passing algorithms [28]. It allows one to permanently handle all the
valid plans in each component of a factored planning problem by representing sets of
plans as weighted regular languages. From now on we prefer speaking about compo-
nents rather than factors because we consider that problems are given decomposed. The
idea of our approach is to begin with the languages (one per component) containing all
local plans of each subproblem and then refine these sets of plans to conserve only the
valid ones, that is the local plans corresponding to global solutions. In this chapter we
focus on the theoretical aspects of our method. We show that factored cost-optimal
planning is possible but we do not consider its efficiency. The practical aspects of our
approach are presented in Chapter 3.

This chapter is structured as follows. First we describe how planning problems

49

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

and factored planning problems can be encoded in terms of weighted automata (Sec-
tion 2.1). Then we present message passing algorithms in their generality (Section 2.2)
and show how they can be applied to find cost-optimal plans in factored planning prob-
lems using weighted languages theory (Section 2.3). Finally we show that this method
works directly with weighted automata (Section 2.4) by proposing weighted automata
implementations of the operations on weighted languages.

2.1 Automata and (factored) planning
In Chapter 1 we desrcribed various representations of planning problems, such as
graphs or Petri nets. In this chapter we consider a different representation using weighted
automata [16, 81]. The interest of this representation is to enable the use of known re-
sults from weighted automata theory and regular weighted languages theory for plan-
ning.

2.1.1 Planning problems in terms of automata
Definition 2.1. An automaton is a tuple A = (S, SI , SF ,Σ, T) where S is a finite set
of states, SI ⊆ S is a set of initial states, SF is a set of final states, Σ is a finite set of
actions (also called alphabet), and T ⊆ S × Σ× S is a set of transitions.

Any transition t ∈ T is denoted as t = (t−, σt, t
+). In such an automaton a

path is a sequence π = t1 . . . tn of transitions such that ∀1 < i ≤ n, t−i = t+i−1.
For any such path we denote by π− its first state t−1 and by π+ its last state t+n .
An accepted path is a path π such that π− ∈ SI and π+ ∈ SF . A word in A
is the sequence of actions σ(π) = σt1 . . . σtn corresponding to an accepted path
π = t1 . . . tn. Finally, the language L(A) of A is the set of all its words: L(A) =
{σ(π) : π an accepted path in A}.

The set of solutions of a planning problem P = (A,O, I,G) given in STRIPS
formalism corresponds to the language of the automatonAP = (S, SI , SF ,Σ, T) such
that:

• S = 2A: the set of states of the automaton corresponds to the states of the
planning problem;

• SI = {I}: the only initial state of the automaton corresponds to the initial state
of the planning problem;

• SF = {s ∈ S : s ⊇ G}: the final states of the automaton are the goal states of
the planning problem;

• Σ = O: the actions of the automaton are the operators of the planning problem;

• T = {(s−, o, s+) : o is firable from s− and s−]o = s+}.

Solving P and finding a word in AP are thus two instances of the same problem. As
we are interested in cost-optimal planning a slightly different model is however needed
to integrate the notion of cost in automata. This model is called weighted automaton.

Definition 2.2. A weighted automaton is a tuple A = (S, SI , SF ,Σ, T, c, ci, cf) such
that (S, SI , SF ,Σ, T) is an automaton, c : T → R+ is a cost function on transitions,
ci : SI → R+ is a cost function on initial states, and cf : SF → R+ is a cost function
on final states.

50

2.1. AUTOMATA AND (FACTORED) PLANNING

The notions of path, accepted path, and word are defined similarly as for automata.
The novelty is that each path π = t1 . . . tn is associated to a cost

c(π) =
∑

1≤i≤n

c(ti).

And from that each word w is associated to a cost c(w) defined as the minimal cost
over all accepted paths giving that word, taking into account the initial and the final
costs:

c(w) = min
π,σ(π)=w

(ci(π−) + c(π) + cf (π+)).

Finally, the language L(A) of A is defined as the set of all words in A associated to
their cost:

L(A) = {(w, c(w)) : ∃π an accepted path in A, σ(π) = w}.

Given a cost-optimal planning problem P = (A,O, I,G) with cost function cP ,
consider the automaton A = (S, SI , SF ,Σ, T, c, ci, cf) such that (S, SI , SF ,Σ, T) =
AP as defined above, ∀t ∈ T, c(t) = cP(σt), ∀s ∈ SI , ci(s) = 0, and ∀s ∈
SF , cf (s) = 0. One gets that L(A) is exactly the set of plans in P associated with
their minimal cost. Thus, finding a minimal cost word in A corresponds to finding a
cost-optimal plan in P . Notice that planning problems are deterministic by definition.
Thus, the automata representing them are deterministic as well and paths and words are
in a one to one correspondence. However, in general the manipulations of automata de-
scribed at the end of this chapter destroy determinism. A plan in one of these automata
will then be a word rather than a path.

2.1.2 Factored representation of planning problems
The factorization of planning problems we consider is given by a partition of the atoms
of these planning problems. This means that factors will synchronize by their oper-
ators rather than by truth values of their atoms as it was the case with the factored
representations of planning problems in Section 1.5.

Consider a planning problem P = (A,O, I,G) and a partition A = A1∪̇ . . . ∪̇An
of its set of atoms. This defines a factor Pk per set Ak of the partition as follows.
Pk = (Ak, Ok, Ik, Gk) is such that Ik = I ∩ Ak is the restriction of the initial state to
Ak, andGk = G∩Ak is the restriction of the goal states toAk. The operators inOk are
defined with names. In other words they are of the form o = (ido,preo,delo,addo)
where (preo,delo,addo) is a standard operator and ido is a unique name. This avoids
unnecessary technical details for identifying correspondences between operators from
different subproblems, in particular when several operators have the same precondi-
tions and effects on a given component. The operators in Ok correspond to the opera-
tors in O having precondition or effects on Ak. The name of an operator in this set is
the corresponding operator inO. So, several operators can have the same preconditions
and effects but different names. Formally: Ok = {(o,preo ∩ Ak,delo ∩ Ak,addo ∩
Ak) : o ∈ O, (preo ∪ delo ∪ addo) ∩Ak 6= ∅}.

Let us denote by id(pk) = ido1 . . . ido` the sequence of operator names corre-
sponding to a plan pk = o1 . . . o` in Pk. Let us also denote by p|O′ the restriction
of a plan p ∈ O∗ to O′ ⊆ O, that is the sequence obtained from p by removing all
operators not in O′. Finally, let us denote by O′k the set of operators from O having
preconditions or effects in Ak, that is O′k = {o : (preo ∪ delo ∪ addo) ∩ Ak 6= ∅},

51

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

one can notice this corresponds exactly to the names of the operators in Ok. One can
then immediately remark the two following facts.

Property 2.1. For any plan p in P there exists a unique plan pk in each Pk such that
id(pk) = p|O′k .

Property 2.2. For any sequence p′ of operators from O which is not a plan in P there
exists at least one component Pk such that no plan pk verifying id(pk) = p′|O′k

exists.

This allows a definition of compatibility between plans of different components,
highly related to the notion of solution of factored planning problems.

Definition 2.3. A tuple of plans (p1, . . . , pn) for subproblems P1, . . . ,Pn are said to
be compatible if and only if there exists a sequence p of operators from O such that
∀k, id(pk) = p|O′k .

For solvingP in its factored form one then has to find a plan pk in eachPk such that
these plans are compatible. Any sequence p of operators such that ∀k, id(pk) = p|O′k
will necessarily be a plan in P from Properties 2.1 and 2.2. Figure 2.1 shows examples
of compatible and non-compatible plans.

p1

g1

p2

g2

p3

g3

p1

g1

p2

g2

p′3

g3

Figure 2.1: pk are plans, circles are names of operators appearing only in one compo-
nent, squares are names of operators appearing in two or three components. Dashed
lines join names of operators which are the same. Left: the three plans are compatible.
Right: p2 and p′3 are not compatible (the name of operators they share are not used in
the same order).

If the considered planning problem P is provided with a cost function c, one will
need to find a tuple of compatible plans minimizing the cost of the plans corresponding
to this tuple (they all have the same cost as they are different orderings of the same
operators). In other words, one has to find (p1, . . . , pn) such that for any p verifying
∀k, id(pk) = p|O′k the cost c(p) is minimal. For achieving that one can split the cost
c(o) of each operator o ∈ O between all the factors Pk containing an operator ok
with name o in any way ensuring that

∑
k ck(ok) = c(o) (where ck is the cost func-

tion of planning problem Pk). Doing that one ensures that any tuple (p1, . . . , pn) of
compatible plans minimizing

∑
k(ck(pk)) gives a cost-optimal solution to P (because∑

k(ck(pk)) = c(p) for any p such that ∀k, id(pk) = p|O′k).
Finally, components are particular planning problems. So, they can be repre-

sented by weighted automata. In this case it is possible to simplify a bit the com-
ponents by considering that the action on a transition corresponding to an operator
o = (ido,preo,delo,addo) is ido rather than o. This allow the following definition
of factored planning problems in terms of weighted automata. This definition is the
one we will be using in most of this document.

52

2.2. BASICS OF MESSAGE PASSING ALGORITHMS

Definition 2.4 (factored cost-optimal planning problem). Given a collection of weighted
automata A1, . . . ,An, find a tuple ((w1, c1), . . . , (wn, cn)) ∈ L(A1) × · · · × L(An)
such that there exists a word w in (∪1≤i≤nΣi)

∗ verifying ∀1 ≤ k ≤ n,w|Σk = wk and
minimizing

∑
1≤i≤n ci.

The first method we suggest for solving cost-optimal planning problems as defined
above is based on the well-known message passing algorithms. In the next section we
formally describe these algorithms in a general context. The remaining of this chapter
is then dedicated to the instantiation of these generic algorithms to the particular case
of planning.

2.2 Basics of message passing algorithms
Message passing algorithms are a family of algorithms first presented by Pearl in
1982 [77] under the name belief propagation algorithms. They consist in propagat-
ing information between levels of a hierarchical system with purpose of updating these
levels and reach a fixpoint where each level says more about the system than previously.
These algorithms are well known, in particular, in the domain of constraint satisfaction.
In this section we describe a general framework for message passing algorithms which
has been proposed before in Chapter 2 of [28].

Consider a finite set Vmax of variables. Each variable v ∈ Vmax taking values in a
domain Dv . Also consider abstract systems defined with these variables. We usually
denote them by S. These systems are provided with two operations, called composition
and reduction. The composition ∧ is associative and commutative. The reduction of a
system S to the subset V ⊆ Vmax of variables is denoted by ΠV(S). These operations
have to verify three axioms:

∀V1, V2 ⊆ Vmax,∀S, ΠV1(ΠV2(S)) = ΠV1∩V2(S), (2.1)

which states that the reduction is in fact a projection.

∀S,∃V ⊆ Vmax, ΠV(S) = S, (2.2)

which permits to consider that the subset of variables over which S is defined is the
smallest subset V of Vmax such that ΠV(S) = S. We denote by Vi the subset of
variables over which a system Si is defined.

∀S1,S2,∀V3 ⊇ V1 ∩ V2, ΠV3
(S1 ∧ S2) = ΠV3

(S1) ∧ ΠV3
(S2), (2.3)

which states that the interaction between two systems is fully captured by their shared
variables. Moreover, we assume that composition admits an identity element I:

∀S, S ∧ I = S. (2.4)

As examples of such systems one can think to the following.

• Constraint systems, where each system Si is a set of local states, that is a set of
valuations of all the variables in Vi. Any local state in Si defines a set of global
states: one global state for each possible valuation of all the variables in Vmax \
Vi. Using a representation of each system as the induced set of global states it is
possible to define projection as a relaxation of constraints and composition as an
intersection of systems.

53

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

• Constraint systems with costs, with the same definition for constraints but with
a cost on each local state. These costs can be defined over any commutative
semiring. As an example consider the (min,+) semiring. The cost of a state
after projection will be the minimum over the costs of all states projecting in it.
The cost of a state obtained by composition will be the sum of the costs of the
two states composing it.

• Systems defined by regular languages and their alphabets. Projection will be
natural projection and composition will be synchronous product. This is the
setting used – without explicitly stating it – in [83] for example.

When dealing with systems defined by composition of smaller systems an impor-
tant notion is the one of interaction graph. This graph describes how systems are related
together.

Definition 2.5. Given a compound system S = S1 ∧ . . . ∧ Sn the (non-directed) in-
teraction graph of this system is defined as: G = (V,E), were V = {S1, . . . ,Sn} and
E = {(Si,Sj) | i < j ∧ Vi ∩ Vj 6= ∅}.

In this graph an edge (Si,Sj) is said to be redundant if and only if there is a path
SiSk1

. . .SkLSj in G such that Vi ∩ Vj ⊆ Vk` and kL /∈ {i, j} for 1 ≤ ` ≤ L. By
recursively removing redundant edges from G until no redundant edge remains one
construct communication graphs of compound systems. Figure 2.2 shows an interac-
tion graph and the corresponding communication graphs.

S1

S2 S3

(a)

S1

S2 S3

(b)

S1

S2 S3

(c)

S1

S2 S3

(d)

Figure 2.2: interaction graph of a system S = S1 ∧ S2 ∧ S3 such that V1 ∩ V2 =
V2 ∩ V3 = V3 ∩ V1 6= ∅ (a), and the three corresponding communication graphs (b) (c)
(d).

Proposition 2.1 (Proposition 1 in [28]). If any communication graph of a compound
system is a tree then all communication graphs of this system are trees. In this case the
system is said to live on a tree.

On communication graphs it is possible to define Algorithm 6 which is of inter-
est in particular when communication graphs are tree, as stated in Theorem 2.1. This
algorithm is called a message passing algorithm (MPA). It works on any communica-
tion graph G = (V,E) of a compound system S = S1 ∧ . . . ∧ Sn. In this algorithm,

54

2.2. BASICS OF MESSAGE PASSING ALGORITHMS

N (Si) denotes the set containing all neighbors of Si in G. The first loop is just an
initialization step. The second loop is the core of the algorithm. The idea is that each
sub-system Si propagates its knowledge of the compound system S to all its neigh-
bors Sj using messagesMi,j . When the messages no longer contain new information
the algorithm ends. The third loop computes the new systems S ′i using the messages
computed before.

Algorithm 6 message passing algorithm
1: for all (Si,Sj) ∈ E do
2: Mi,j ← I
3: end for
4: repeat
5: select (Si,Sj) ∈ E
6: Mi,j ← ΠVi∩Vj (Si ∧ (∧Sk∈N (Si)\{Sj}Mk,i))
7: until stability of messages
8: for all Si ∈ V do
9: S ′i = Si ∧ (∧Sk∈N (Si)Mk,i)

10: end for

Theorem 2.1 (Theorem 1 in [28]). If S = S1∧. . .∧Sn lives on a tree, then Algorithm 6
converges in finitely many steps on any communication graph of S, and at convergence
S ′i = ΠVi(S), ∀1 ≤ i ≤ n.

Intuitively ΠVi(S) is a refinement of the system Si which exactly describes the
behavior of this system inside the compound system S = S1 ∧ . . . ∧ Sn. This makes
this object of great interest for understanding the behavior of S without computing it
(in other words, by performing only computations local to components). Back to some
of the previous examples one would have the following.

• For constraint systems, ΠVi(S) gives exactly the local states of Si which are part
of a global state of S.

• For constraint systems with costs over (min,+) semiring, ΠVi(S) gives the local
states of Si which are part of a global state of S. Each of these local states has
for cost the minimal cost among the global states in which it takes part.

Notice that, when systems live on trees, it is possible to ensure convergence with
exactly one update of each message. The idea is to schedule the message updates: a
message should be updated only when all the other messages taking part in its com-
putation were already updated and no message should be updated twice (it is always
possible to find an updatable message while the algorithm did not converge). This
is what Algorithm 7 does. A possible scheduling of message updates obtained with
Algorithm 7 is depicted in Figure 2.3.

To summarize, the message passing algorithms allow, given a compound system
S = S1∧ . . .∧Sn living on a tree, to compute the projection of this system on the vari-
ables of each of its component ΠVi(S), without computing the whole system. More-
over, this algorithm only requires two operations which follow the axioms presented in
Equations 2.1, 2.2, and 2.3 [28]. In the following we relate this notion of compound
system to factored planning and show how this algorithm can be used to perform fac-
tored cost-optimal planning by instantiating systems, composition, and projection.

55

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

Algorithm 7 MPA with efficient message update scheduling
1: for all (Si,Sj) ∈ E do
2: Mi,j ← I
3: end for
4: repeat
5: select (Si,Sj) ∈ E such thatMi,j not updated and ∀Sk ∈ N (Si) \ {Sj},Mk,i

was updated before
6: Mi,j ← ΠVi∩Vj (Si ∧ (∧Sk∈N (Si)\{Sj}Mk,i))
7: until all messages were updated exactly once
8: for all Si ∈ V do
9: S ′i = Si ∧ (∧Sk∈N (Si)Mk,i)

10: end for

S1

S2 S3

S4 S5 S6

1 2

3
4

5

6

7
8

9 10

Figure 2.3: A communication graph which is a tree, the dots represent messages (for
example the dot numbered 1 is message M4,2) and the numbers correspond to an
ordering of updates which ensures stability in one update per message.

56

2.3. MESSAGE PASSING FOR COST-OPTIMAL PLANNING

2.3 Message passing for cost-optimal planning
Consider a planning problem in factored form given as in Definition 2.4. The set of
plans in each component Ak is the weighted language Lk = L(Ak). In this section
we denote by L the weighted language containing all words corresponding to tuples
of compatible words solution of the factored planning problem associated with their
cost: L = {(w, c) : ∀k, (w|Σk , ck) ∈ Lk ∧ c =

∑
k ck}. We consider that a

weighted language and its set of actions is a system. For example (L,∪kΣk) is a
system, as well as (Lk,Σk) for each k. One can then define a notion of composition
of weighted languages (×L) allowing to define (L,∪kΣk) as the compound system
(L1,Σ1)×L . . .×L (Ln,Σn).

2.3.1 Composition: synchronous product
The composition we consider is in fact the standard synchronous product of languages,
taking costs into account by summation.

Definition 2.6. The product (L1,2,Σ1,2) = (L1,Σ1) ×L (L2,Σ2) of two weighted
languages L1 and L2 with set of actions Σ1 and Σ2 is defined as follows: Σ1,2 =
Σ1 ∪ Σ2, and L1,2 = {(w, c) : (w|Σ1

, c1) ∈ L1 ∧ (w|Σ2
, c2) ∈ L2 ∧ c = c1 + c2}.

As we want to use this product in the setting defined in Section 2.2, we have to
ensure that it is associative and commutative.

Proposition 2.2. ×L is associative: ((L1,Σ1)×L(L2,Σ2))×L(L3,Σ3) = (L1,Σ1)×L
((L2,Σ2)×L (L3,Σ3)).

Proof. By definition one has (L1,Σ1) ×L (L2,Σ2) = ({(w, c) : (w|Σ1
, c1) ∈ L1 ∧

(w|Σ2
, c2) ∈ L2 ∧ c = c1 + c2},Σ1 ∪ Σ2) = (L1,2,Σ1,2). Thus, applying a second

time the definition, ((L1,Σ1)×L (L2,Σ2))×L (L3,Σ3) = ({(w, c) : (w|Σ1,2
, c1,2) ∈

L1,2 ∧ (w|Σ3
, c3) ∈ L3 ∧ c = c1,2 + c3},Σ1,2 ∪ Σ3) = ({(w, c) : (w|Σ1

, c1) ∈
L1 ∧ (w|Σ2

, c2) ∈ L2 ∧ (w|Σ3
, c3) ∈ L3 ∧ c = c1 + c2 + c3},Σ1 ∪ Σ2 ∪ Σ3). Using

a similar reasoning one finds the same result for (L1,Σ1)×L ((L2,Σ2)×L (L3,Σ3)).
Which proves associativity of ×L.

Proposition 2.3. ×L is commutative: (L1,Σ1)×L (L2,Σ2) = (L2,Σ2)×L (L1,Σ1).

Proof. Proof is a direct application of the definition of ×L.

One also needs an identity element for product (axiom 2.4). LI = ({(ε, 0)}, ∅) is
an acceptable identity element.

Remark 2.1. From this definition of product, one immediately has for any factored
planning problem that (L,∪kΣk) = (L1,Σ1)×L . . .×L (Ln,Σn). Where the Lk are
the weighted languages giving the plans in each component with their minimal cost.
And L, as defined above contains all words obtained from tuples of compatible words
in the Lk, with their cost.

2.3.2 Projection: natural projection
In order to fit with the setting of Section 2.2, one also needs a notion of projection
for weighted languages. The operation we suggest is in fact the natural projection of
languages associated with a cost minimization.

57

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

Definition 2.7. The projection ΠΣ′((L,Σ)) of a weighted language (L,Σ) over an
alphabet Σ′ is the language (L′,Σ′) such that: L′ = {(w|Σ′ , c) : (w, c) ∈ L ∧ c =
min(w′,c′)∈L,w′|Σ′=w|Σ′

c′}.

One can then prove that this projection is effectively a projection as defined in
Section 2.2 by showing that is satisfies the two required axioms.

Proposition 2.4. ∀(L,Σ),Σ1,Σ2,ΠΣ1
(ΠΣ2

((L,Σ))) = ΠΣ1∩Σ2
((L,Σ)), that is Π

verifies axiom 2.1.

Proof. Let (L,Σ) be a weighted language with its alphabet and let Σ1 and Σ2 be two
alphabets. Note ΠΣ1

(ΠΣ2
((L,Σ))) = (L′,Σ′) and ΠΣ1∩Σ2

((L,Σ)) = (L′′,Σ′′).
One has Σ′ = Σ′′ = (Σ1 ∩ Σ2) ∩ Σ. Moreover, for a given (w, c) ∈ L, one has
(w|Σ1

)|Σ2
= w|Σ1∩Σ2

. This shows that L′ and L′′ contain the same words. The
remaining is to proove that, for any word w′, if (w′, c′) ∈ L′ and (w′, c′′) ∈ L′′, then
c′ = c′′. First remark that, because (w|Σ1

)|Σ2
= w|Σ1∩Σ2

for any (w, c) ∈ L, the sets
of words giving (w′, c′) and (w′, c′′) are the same. Denote this set by W . To conclude
the proof, it is sufficient to notice that:

c′ = min
(w,c)∈L,w∈W

c = c′′.

Proposition 2.5. ∀(L,Σ),∃Σ′,ΠΣ′((L,Σ)) = (L,Σ), that is Π verifies axiom 2.2.

Proof. Let (L,Σ) be a weighted language. Take Σ′ = Σ. Note ΠΣ′((L,Σ)) =
(L′,Σ′) In this case, L and L′ contain the same words as, for any word w defined
over Σ = Σ′ it is clear that w|Σ = w. From that one also knows that for (w, c) ∈ L
and (w, c′) ∈ L′, c = c′ as each word in L′ corresponds to a single word in L.

2.3.3 Relation between product and projection
We finally show that the product and the projection defined above verify the axiom 2.3.
After that we relate these product and projection to the message passing algorithm of
Section 2.2, and to factored planning problems.

Proposition 2.6. ∀(L1,Σ1),∀(L2,Σ2),∀Σ3 ⊇ Σ1∩Σ2,ΠΣ3
((L1,Σ1)×L(L2,Σ2)) =

ΠΣ3
((L1,Σ1))×L ΠΣ3

((L2,Σ2)), that is ×L and Π verify axiom 2.3.

Proof. Let (L1,Σ1) and (L2,Σ2) be two weighted languages with their alphabets, and
let Σ3 be an alphabet such that Σ3 ⊇ Σ1 ∩ Σ2. Note ΠΣ3((L1,Σ1) ×L (L2,Σ2)) =
(L,Σ) and ΠΣ3

((L1,Σ1)) ×L ΠΣ3
((L2,Σ2)) = (L′,Σ′). It is clear that Σ = Σ′ =

Σ3 ∩ (Σ1 ∪ Σ2), by definition of product and projection. Also note ΠΣ3
((L1,Σ1)) =

(L3
1,Σ

3
1) and ΠΣ3

((L2,Σ2)) = (L3
2,Σ

3
2). And note (L1,Σ1)×L(L2,Σ2) = (L1,2,Σ1,2).

First prove that L and L′ contain the same words: ∀(w, c) ∈ L,∃c′, (w, c′) ∈ L′
and ∀(w, c′) ∈ L′,∃c, (w, c) ∈ L. An intuition of the proof is given in Figure 2.4.
This figure shows two words w1 belonging to L1 and w2 belonging to L2 and the part
of the words of L and L′ they generate. Squares depict elements of Σ1 ∩ Σ2. Notice
that all these elements are in Σ3. Dashed lines depict synchronizations between these
elements. White circles depict the other elements of Σ3 and black circles the elements
of Σ1 and Σ2 which are not in Σ3. The sign ‖ between two parts of words means "all
possible interleavings of these parts".

58

2.3. MESSAGE PASSING FOR COST-OPTIMAL PLANNING

w1

w2

w1|Σ3

w2|Σ3

‖‖‖

‖‖‖

×L ΠΣ3

ΠΣ3
×L

Figure 2.4: Product and projection of words. Top are two words. Middle left is a
representation of their product (which is in fact a set of words). Middle right are the
restrictions of these words to Σ3. Down is a representation of the restriction to Σ3 of
their product, which is also the product of their restrictions to Σ3.

Let (w, c) ∈ L, one has by definition of projection that ∃(w1,2, c) ∈ L1,2 such
that w1,2|Σ3

= w. Thus, by definition of product, ∃(w1, c1) ∈ L1 and ∃(w2, c2) ∈
L2 such that w1,2|Σ1

= w1 and w1,2|Σ2
= w2. Then, by definition of projection,

∃c, (w1|Σ3
, c) ∈ L3

1 and ∃c, (w2|Σ3
, c) ∈ L3

2. Then remark that w1|Σ3
= w1,2|Σ1 |Σ3

=

w1,2|Σ3 |Σ1

= w1,2|Σ3 |Σ1∩Σ3

= w|Σ1∩Σ3
and similarly w2|Σ3

= w|Σ2∩Σ3
. By defini-

tion of product this proves that ∃c′, (w, c′) ∈ L′. It concludes the proof that ∀(w, c) ∈
L,∃c′, (w, c′) ∈ L′.

Let (w, c′) ∈ L′, one has, by definition of L′, w = w1
1w

1
2σ

1
3 . . . σ

n−1
3 wn1w

n
2 with

wi1 ∈ ((Σ1 \Σ2)∩Σ3)∗, wi2 ∈ ((Σ2 \Σ1)∩Σ3)∗, and σi3 ∈ Σ1∩Σ2∪{ε} for all i. By
definition of the product one has w|Σ1∩Σ3

= w1
1σ

1
3w

2
1σ

2
3 . . . w

n
1 is a word in L3

1. Simi-
larly w|Σ2∩Σ3

= w1
2σ

1
3w

2
2σ

2
3 . . . w

n
2 is a word in L3

2. Thus, by definition of the projec-
tion, there exists a word w1 = w1

1
′
σ1

3w
2
1
′
σ2

3 . . . w
n
1
′ in L1 such that wi1

′
|Σ3

= wi1 for all

i. Similarly there exists a word w2 = w1
2
′
σ1

3w
2
2
′
σ2

3 . . . w
n
2
′ in L2 such that wi2

′
|Σ3

= wi2

for all i. As Σ3 ⊇ Σ1 ∩ Σ2, there is a word w′ = w1
1
′
w1

2
′
σ1

3 . . . σ
n−1
3 wn1

′wn2
′ in

L1,2. Thus w′|Σ3
is a word in L. And w′|Σ3

= w1
1
′
|Σ3
w1

2
′
|Σ3
σ1

3 . . . σ
n−1
3 wn1

′
|Σ3
wn2
′
|Σ3

=

w1
1w

1
2σ

1
3 . . . σ

n−1
3 wn1w

n
2 = w. This proves that ∀(w, c′) ∈ L′,∃c, (w, c) ∈ L.

Now prove that, for (w, c) ∈ L and (w, c′) ∈ L′, c = c′. The first step is to show
c ≤ c′. By definition of product, it is known that c′ = c31 + c32 for some (w3

1, c
3
1) ∈ L3

1

and some (w3
2, c

3
2) ∈ L3

2. By definition of projection it is known that c31 = c1 for some
(w1, c1) ∈ L1 and c32 = c2 for some (w2, c2) ∈ L2. Moreover, w1|Σ3

= w3
1 and

w2|Σ3
= w3

2 . As Σ3 ⊇ Σ1 ∩ Σ2, it is known that there is (w1,2, c1,2) ∈ L1,2 such that
w1,2|Σ1

= w1 and w1,2|Σ2
= w2. Thus, by definition of projection, it is known that

c ≤ c1,2. Moreover, by definition of product, c1,2 = c1 + c2 = c31 + c32 = c′. Finally,
c ≤ c′.

The remaining is to prove that c′ ≤ c. It is known, by definition of product and
projection, that there is (w1, c1) ∈ L1 and (w2, c2) ∈ L2 such that c = c1 + c2.
Moreover, it is known that (w, c′) ∈ L′, so, (w|Σ1

, c31),∈ L3
1 and (w|Σ2

, c32) ∈ L3
2,

with c′ = c31 + c32. One has, in particular, that w1|Σ3
= w|Σ1

and w2|Σ3
= w|Σ2

. By

59

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

definition of projection, c1 ≥ c31 and c2 ≥ c32. Hence, c′ = c31 + c32 ≤ c1 + c2 = c.
Finally c′ ≤ c. It has been proved that c ≤ c′ and c′ ≤ c. Hence, c = c′.

Product (×L) and projection (Π) of weighted languages have been proved to verify
the axioms described in equations 2.1, 2.2, and 2.3. Thus, given a compound system
(L,Σ) = (L1,Σ1)×L. . .×L(Ln,Σn), if the communication graphs of this system (de-
fined as in Section 2.2, with languages as systems and alphabets as variables) are trees,
then the message passing algorithm converges on any of these graphs. The outcome of
the algorithm is a language L′k for each Lk, such that (L′k,Σk) = ΠΣk((L,Σ)). By
definition of projection, the two following properties hold for these L′i:

Property 2.3. Any (wk, ck) ∈ L′k such that ck is minimal (that is such that there exists
no (w′k, c

′
k) ∈ L′k with ck′ < ck) is the projection of some minimal cost word in L, in

the following sense: ∃(w, c) ∈ L such that w|Σk = wk and c is minimal. Moreover,
c = ck.

Property 2.4. Any (w, c) ∈ L such that c is minimal can be projected into a minimal
cost word in L′k, in the following sense: ∃(wk, ck) ∈ Lk such that wk = w|Σk and ck
is minimal. Moreover, ck = c.

These two properties allow one to derive a method to compute a cost-optimal word
w in L using only L′1, . . . ,L′n. This method consists in building w|Σk in each L′k in an
order following the communication graph considered.

1. Select a cost-optimal word (wi, c) ∈ L′i for any i, Property 2.3 ensures that this
word is extendable into a cost-optimal word in L.

2. Chose a neighbor Lj of Li in the communication graph and select a cost-optimal
word (wj , c) ∈ L′j which is compatible withwi. There exists one by Property 2.4
and it is part of a cost-optimal word in L by Property 2.3. Notice that wj is any
cost-optimal word in (L′j ,Σj)×L ({(wi, 0)},Σi).

3. Chose a neighbor Lk of L` in the communication graph, where L` is any lan-
guage previously considered (that is, such that w` has already been selected).
Select a cost-optimal word (wk, c) ∈ L′k which is compatible with w`. As the
communication graph is a tree, wk is compatible with all the previously selected
words.

4. repeat 3 until a word has been selected in each component.

Any interleaving of w1, . . . , wn gives a cost-optimal word in L and the cost of this
word is c.

By Remark 2.1 this immediately gives a method for solving planning problems
as described in Definition 2.4. For each component Ak of a planning problem take its
languageLk. Then, from these languages compute the languagesL′k using the message
passing algorithm. Finally, extract the words w1, . . . , wn from these L′k as explained
above. The tuple ((w1, c1), . . . , (wn, cn)) where ci is the cost of wi in Li is a solution
to the problem presented in Definition 2.4. We conclude this section by giving a sample
execution of our planning method on languages.

60

2.4. WORKING DIRECTLY WITH WEIGHTED AUTOMATA

2.3.4 Sample execution of the MPA on weighted languages
Consider three weighted languages L1, L2, and L3, over alphabets Σ1 = {a, α}, Σ2 =
{b, α, β}, and Σ3 = {c, β}. Their interaction graph (which is also a communication
graph) is depicted in Figure 2.5. It is clearly a tree, the message passing algorithm will
converge on this graph.

L1 L2 L3

{α} {β}

Figure 2.5: interaction graph of L1, L2, and L3.

Consider that:

L1 = {(aaαaa, 1), (αaaα, 0.5), (aαa, 1.5)},

L2 = {(bαβb, 0.5), (bbαββ, 2), (αbβbαα, 1.5), (ααβbbβ, 1)}, and

L3 = {(ββcccβ, 0.5), (βccβ, 1), (ββcβ, 1.5), (ccβ, 1.5)}.

The first message to compute is M1,2 = ΠΣ2∩Σ1((L1,Σ1)). This message is
a weighted language (L1,2,Σ1,2), where L1,2 = {(α, 1), (αα, 0.5)} and Σ1,2 = {α}.
The second message isM2,3 = ΠΣ3∩Σ2

(((L2,Σ2)×LM1,2,Σ2)). First one computes
(L2,Σ2) ×LM1,2 = (L,Σ) where L = {(bαβb, 1.5), (bbαββ, 3), (ααβbbβ, 1.5)}
and Σ = Σ2. Then this language has to be projected on Σ3, which leads to a lan-
guage (L2,3,Σ2,3) such that L2,3 = {(β, 1.5), (ββ, 1.5)} and Σ2,3 = {β}. Then
messageM3,2 = ΠΣ2∩Σ3

((L3,Σ3)) = (L3,2,Σ3,2) is computed, and finallyM2,1 =
ΠΣ1∩Σ2

(((L2,Σ2) ×LM3,2,Σ2)) = (L2,1,Σ2,1). One has Σ3,2 = {β} and L3,2 =
{(β, 1.5), (ββ, 1), (βββ, 0.5)}. And L2,1 = {(α, 2), (αα, 2), (ααα, 3)} with Σ2,1 =
{α}.

From that one can compute (L′1,Σ1) = (L1,Σ1)×LM2,1, (L′2,Σ2) = (L2,Σ2)×L
M1,2 ×LM3,2, and (L′3,Σ3) = L3 ×LM2,3. It gives:

L′1 = {(aaαaa, 3), (αaaα, 2.5), (aαa, 3.5)},

L′2 = {(bαβb, 3), (bbαββ, 4), (ααβbbβ, 2.5)}, and

L′3 = {(βccβ, 2.5), (ccβ, 3)}.

One can check that αaaα, ααβbbβ, and βccβ are minimal cost words (resp. in
L′1, L′2, and L′3) each with cost 2.5. Moreover these words are clearly compatible, they
can, for example give the word αaaαβbcbcβ, which is effectively a cost-optimal word
from (L,Σ1 ∪ Σ2 ∪ Σ3) = (L1,Σ1)×L (L2,Σ2)×L (L3,Σ3) with cost 2.5.

2.4 Working directly with weighted automata
The method presented in previous section is not applicable in practice because the set
of all plans of any sub-problem may contain an infinite number of elements. One thus
needs to use a finite encoding of weighted languages. Fortunately, planning problems
can be represented by weighted automata. In this section we show that it is possible
to directly run message passing algorithm using weighted automata as systems. This
is due to the fact that all the operations on weighted languages can be implemented

61

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

directly on weighted automata. In particular, this will allow to use the algorithms pre-
sented in [76] for implementing message passing for cost-optimal planning in practice.
This practical implementation is the topic of Chapter 3.

2.4.1 Plan compatibility: product of weighted automata
We first define a notion of product for weighted automata and show that this product
is an implementation of the product of languages. Figure 2.6 represents two weighted
automata and their product.

Definition 2.8. The product A1 ×A A2 = (S, SI , SF ,Σ, T, c, ci,c
f) of two weighted

automataA1 = (S1, S
I
1 , S

F
1 ,Σ1, T1, c1, c

i
1, c

f
1) andA2 = (S2, S

I
2 , S

F
2 ,Σ2, T2, c2, c

i
2, c

f
2)

is such that: S = S1 × S2, Σ = Σ1 ∪ Σ2, SI = SI1 × SI2 , SF = SF1 × SF2 ,

T = {((s1, s2), σ, (s′1, s
′
2)) | (s1, σ, s

′
1) ∈ T1

∧ (s2, σ, s
′
2) ∈ T2}

∪ {((s1, s2), σ, (s′1, s2)) | (s1, σ, s
′
1) ∈ T1

∧ σ /∈ Σ2}
∪ {((s1, s2), σ, (s1, s

′
2)) | (s2, σ, s

′
2) ∈ T2

∧ σ /∈ Σ1},

and, for t = ((s1, s2), σ, (s′1, s
′
2)) ∈ T , if σ ∈ Σ1 ∩ Σ2, then c(t) = c1((s1, σ, s

′
1)) +

c2((s2, σ, s
′
2)), if σ ∈ Σ1 \ Σ2, then c(t) = c1(s1, σ, s

′
1), if σ ∈ Σ2 \ Σ1, then c(t) =

c2((s2, σ, s
′
2)). For (s1, s2) ∈ SI , ci((s1, s2)) = ci1(s1) + ci2(s2), and for (s1, s2) ∈

SF , cf ((s1, s2)) = cf1 (s1) + cf2 (s2).

a
,0

α
,1 b,

1
α
,0.5 b,

1

α, 1.5

a, 0

a, 0

b,1

Figure 2.6: two weighted automata (left) and their product (right)

Proposition 2.7. Product of weighted automata implements product of weighted lan-
guages: ∀A1,A2, (L(A1),Σ1)×L (L(A2),Σ2) = (L(A1 ×A A2),Σ1 ∪ Σ2).

Proof. Note (L(A1),Σ1)×L (L(A2),Σ2) = (L,Σ) and (L(A1×AA2),Σ1 ∪Σ2) =
(L′,Σ′). It is clear that Σ = Σ′ = Σ1 ∪ Σ2. First show that L and L′ contain
the same words, that is ∀(w, c) ∈ L,∃c′, (w, c′) ∈ L′ and conversely ∀(w, c) ∈
L′,∃c′, (w, c′) ∈ L.

Let w be a word from L. Suppose that w does not appear in L′. Thus there is no
path π in A1 ×A A2 such that σ(π) = w. Hence, by definition of product of weighted
automata, either there is no path π1 in A1 such that σ1(π1) = w|Σ1

or there is no path

62

2.4. WORKING DIRECTLY WITH WEIGHTED AUTOMATA

π2 inA2 such that σ2(π2) = w|Σ2
. So, by definition of product of weighted languages,

w is not a word in L. It proves that if w is in L but not in L′, then wis not in L, which
is a contradiction. Hence, ∀(w, c) ∈ L,∃c′, (w, c′) ∈ L′.

Let w be a word from L′. Suppose that w does not appear in L. Hence, either w|Σ1

does not appear in L1 or u|Σ2
does not appear in L2. Thus, either there is no path π1 in

A1 such that σ1(π1) = w|Σ1
or there is no path π2 inA2 such that σ2(π2) = w|Σ2

. So,
by definition of the product of weighted automata, there is either no path π inA1×AA2

such that σ(π)|Σ1
= w|Σ1

or no path π in A1 ×A A2 such that σ(π)|Σ2
= w|Σ2

. Thus,
no path π inA1×AA2 such that σ(π) = w. Hence, w does not appear in L′. It proves
that if w is a word from L′ and does not appear in L, then w does not appear in L′,
which is a contradiction. Hence, ∀(w, c) ∈ L′,∃c′, (w, c′) ∈ L.

Finally, one has the same words in L and L′. The remaining is to prove that, for
any (w, c) ∈ L the only (w, c′) ∈ L′ is such that c′ = c.

Let (w, c) ∈ L and (w, c′) ∈ L′ and suppose c < c′. It means that there is
two paths, π1 in A1 and π2 in A2 such that σ1(π1) = w|Σ1

, σ2(π2) = w|Σ2
, and

ci1(π−1) + c1(π1) + cf1 (π+
1) + ci2(π−2) + c2(π2) + cf2 (π+

2) = c < c′. In this case there
is a path π in A1 ×A A2 which is constructed from π1 and π2, thus σ(π) = w and
ci(π−) + c(π) + cf (π+) ≤ ci1(π−1) + c1(π1) + cf1 (π+

1) + ci2(π−2) + c2(π2) + cf2 (π+
2).

By definition of c′ one has c′ ≤ ci(π−)+c(π)+cf (π+). Thus c′ ≤ ci1(π−1)+c1(π1)+

cf1 (π+
1) + ci2(π−2) + c2(π2) + cf2 (π+

2) < c′. It is in contradiction with the hypothesis
that c < c′. Thus finally one has c ≥ c′.

Now suppose c′ < c. It means that there is a path π in A1 ×A A2 such that
σ(π) = w and ci(π−) + c(π) + cf (π+) = c′ < c. Hence, there is a path π1 in
A1 and a path π2 in A2, such that σ1(π1) = wΣ1 , σ2(π2) = w|Σ2

and ci1(π−1) +

c1(π1) + cf1 (π+
1) + ci2(π−2) + c2(π2) + cf2 (π+

2) = ci(π−) + c(π) + cf (π+). Moreover,
one has ci1(π−1) + c1(π1) + cf1 (π+

1) + ci2(π−2) + c2(π2) + cf2 (π+
2) ≥ c. Thus, c ≤

ci1(π−1)+c1(π1)+cf1 (π+
1)+ci2(π−2)+c2(π2)+cf2 (π+

2) = ci(π−)+c(π)+cf (π+) < c.
It is in contradiction with the hypothesis that c′ < c. Thus finally one has c′ ≥ c.

To conclude: one has c ≥ c′ and c′ ≥ c. Thus c′ = c. This concludes the proof
that ×A implements ×L.

2.4.2 Cost-optimization: projection of weighted automata

Projection of weighted languages can be implemented directly on weighted automata as
well. The idea is to remove the transitions corresponding to the actions which no longer
appear after the projection. And to add a new transition for each sequence of actions
removed by the projection which is followed by an action which is not removed by the
projection. This projection is more formally defined in the following and an example
is given in Figure 2.7. In a weighted automaton, by (s,Σ, s′) we denote a path from s
to s′ using only transitions with actions from Σ.

Definition 2.9. The projection ΠΣ′(A) = (S′, SI
′
, SF

′
,Σ′, T ′, c′, ci

′
, cf
′
) of a weighted

automaton A = (S, SI , SF ,Σ, T, c, ci, cf) is such that: S′ = S, SI ′ = SI , SF ′ =
SF ∪ {s ∈ S : ∃s′ ∈ S,∃(s,Σ \ Σ′, s′) in A}, T ′ = {(s, σ, s′) ∈ T : σ ∈
Σ′} ∪ {(s, σ, s′) : σ ∈ Σ′ ∧ ∃s′′ ∈ S, (s′′, σ, s′) ∈ T, ∃(s,Σ \ Σ′, s′′) in A}, for t =

(s, σ, s′) ∈ T ′, c′(t) = mint′=(s′′,σ,s′)∈T∧π=(s,Σ\Σ′,s′′)c(t
′) + c(π), and for s ∈ SI ′,

ci
′
(s) = ci(s). finally for s ∈ SF ′, cf ′(s) = mins′∈SF∧π=(s,Σ\Σ′,s′)c

f (s′) + c(π).

63

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

b,
1

α, 1.5

a, 0

a, 0

b,1

α
,1.5

α, 1.5

α, 2.5
α, 2.5

Figure 2.7: a weighted automaton (left) and its projection on {α} (right)

Proposition 2.8. Projection of weighted automata implements projection of weighted
languages: ∀A, ∀Σ′, (L(ΠΣ′(A)),Σ′) = ΠΣ′((L(A),Σ)).

Proof. Note ΠΣ′((L(A),Σ)) = (L,Σ′) and L(ΠΣ′(A)) = L′. First show that L and
L′ contain the same words.

Consider a word w in L. Suppose w does not appear in L′. Then, there is no path π
in A such that σ(π) = w′ and w′|Σ′ = w. Thus, there is no word w′ in L(A) such that
w′|Σ′ = w. Hence, w is not a word from L. Thus if w appears L and not in L′, then w
does not appear in L. This contradiction implies that any word from L also appears in
L′.

Consider a word w in L′. Suppose w does not appear in L. Then, there is no word
w′ in L(A) such that w′|Σ′ = w. Thus, there is no path π in A such that σ(π)|Σ′ = w.
Hence, w does not appear in L′. It proves that if w appears in L′ but not in L then w is
not a word from L′, which is impossible. So, any word from L′ also appears in L.

It remains to prove that for any (w, c) ∈ L and (w, c′) ∈ L′ the costs are such that
c = c′. There is no (w′, c′′) ∈ L(A) such that w′|Σ′ = w and c′′ < c by definition of
projection of weighted languages. Thus, there is no path π in A such that σ(π) = w′

withw′Σ′ = w and ci(π−)+c(π)+cf (π+) < c by definition on the weighted language
of a weighted automaton. Hence, there is no path π′ in ΠΣ′(A) such that σ(π′) = w

and ci′(π′−) + c′(π′) + cf
′
(π′

+
) < c by construction of the projection of weighted

automata. So, c′ ≥ c. In the same way one has c ≥ c′, and then c = c′.

Propositions 2.7 and 2.8 allow to run the message passing algorithm directly on
the automata A1, . . . ,An representing the factors of a factored planning problem. The
result obtained will be an automatonA′k per factorAk with the property that L(A′k) =
L(Ak)′. Thus, from these updated factors A′k one easily gets a cost-optimal solution
for the factored planning problem considered exactly as it can be done with weighted
languages. We conclude this chapter by giving an execution of the message passing
with weighted automata.

2.4.3 A sample execution of MPA on weighted automata
Consider the factored planning problem of Figure 2.8, constituted of 3 automata. A1

and A2 share a single action α, A2 and A3 share a single action β, and A1 and A3

share no action. So, the interaction graph (and thus the communication graphs) of
this system is a tree: the only edges are between A1 and A2 and between A2 and
A3. Figure 2.9 presents the product of these three automata, which is an automaton
A such that (L(A),Σ) = (L(A1),Σ1) ×L (L(A2),Σ2) ×L (L(A3),Σ3). The only
cost-optimal word in A is bβα and its cost is 7.

64

2.4. WORKING DIRECTLY WITH WEIGHTED AUTOMATA

A1 A2 A3

a, 8 α, 3 β, 2 α, 1 b, 1

β, 0

Figure 2.8: A network of three weighted automata.

b, 1

a, 8 a, 8

β, 2

α, 4 a, 8

b, 1

a, 8

b, 1 β, 2 b, 1

α, 4

Figure 2.9: The compound system A = A1 ×A A2 ×A A3.

M1,2 A2 ×AM1,2 M2,3

8

α, 3

8
β, 2

α, 4

β, 2

8

4

β, 2

β, 2

β, 6

Figure 2.10: Messages from A1 to A3.

65

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

Applying the message passing to this system allows to find this word and its cost by
performing local computations only. In this example 4 messages have to be computed:
M1,2, M2,3, M3,2, and M2,1. Figure 2.10 presents the computation of messages
fromA1 toA3, which consists in successively computingM1,2 andM2,3. Figure 2.11
presents the computation of messages in the other way: from A3 to A1, which builds
M3,2 and thenM2,1. Notice that these two computations are independent: M1,2 and
M2,3 do not take part into computation ofM3,2 andM2,1 (and conversely). Notice
also that, with this order of message updates, each message has to be updated only
once. Thus, the values of M1,2, M2,3, M3,2, and M2,1 obtained are definitive and
allow directly to compute the updated componentsA′1,A′2, andA′3. The result of these
computations is presented in Figure 2.12.

M3,2 A2 ×AM3,2 M2,1

β, 1

β, 0

α, 1

β, 3

β, 2

α, 1

α, 4

α, 1

α, 1

α, 3

Figure 2.11: Messages from A3 to A1.

A′1 = A1 ×AM2,1 A′2 = A2 ×AM1,2 ×AM3,2 A′3 = A3 ×AM2,3

a, 8

a, 8

a, 8

a, 8

α, 7

α, 6

α, 4

α, 4

8 8

β, 3

α, 4

β, 3

β, 2

α, 4

β, 2

8 8

4 4

b, 1

b, 1

b, 1

b, 1

β, 2

β, 2

β, 6

Figure 2.12: Updated components.

In these updated components one can remark that the only cost-optimal plans are α
inA′1, βα inA′2, and bβ inA′3. Moreover, these 3 plans have cost 7, which corresponds
to the cost of a cost-optimal word in A as stated above. The only possible interleaving

66

2.4. CONCLUSION

of α, βα, and bβ is bβα, which is a cost-optimal plan in the factored planning problem
considered.

Conclusion
In this chapter we presented a new approach to factored planning, based on message
passing algorithms and weighted automata calculus. The main novelty of this approach
is that it permits to achieve cost-optimality of plans. Indeed, by contrast with previous
approaches our method does not rely on bounds on the length of plans. Such bounds
make optimization difficult because cost-optimal plans and shortest plans are not re-
lated in general. The core of our approach is in fact a way to refine components of a
factored planning problem so that they contain only pieces of global solutions. In each
of these updated components one then has to use standard search methods for finding
a cost-optimal local plan.

Moreover, due to the use of message passing algorithms, our approach has the inter-
est of being generic: one can use any representation of planning problems as systems
as soon as this representation allows to implement the product and the projection of
weighted languages. In fact, it is also possible to preserve more than languages: with
suitable product and projection operations one could for example imagine preserving
simulation relations between systems.

As presented in this chapter, our approach suffers from two weaknesses: even if it
is algebraically functional, one still has to prove that it can bring gains in efficiency, and
it works only for planning problems living on trees. These weaknesses are addressed
in the three following chapters.

In particular the next chapter presents a real implementation of our method based
on well known weighted automata algorithms for the implementation of the product
and the projection. It focuses especially on methods for reducing the size of the au-
tomata involved in the computations (in the example given above one may have noticed
that large parts of the automata considered were not useful). In fact, with the formal
definitions of product and projection given above the A′k would always have the same
size asA = A1×A . . .×AAn. This is not acceptable, as the size ofA is exponential in
the size of its components Ak. The possibility to reduce the size of automata is in fact
what makes our approach of practical interest, allowing to use only small objects for
solving a large planning problem. Notice however that, due to the theoretical complex-
ity of the resolution of planning problems, reducing size of automata will not always
be possible.

67

CHAPTER 2. PLANNING IN NETWORKS OF WEIGHTED AUTOMATA

68

Chapter 3

Distoplan: a Factored Planner
for Cost-Optimal Planning

chapter abstract: This chapter presents concrete ways to implement the operations
presented in the previous chapter, using standard weighted automata algorithms. In
particular it focusses on manners of reducing the size of automata involved in compu-
tations. It also presents Distoplan, our factored planner, and give some experimental
results obtained with it on classical planning benchmarks.

THE FACTORED PLANNING METHOD presented in the previous chapter has been
implemented into a planner called Distoplan. This implementation is based on

weighted automata algorithms from [76]. It is however not a direct implementation
of product and projection as presented above, which would not be efficient as updated
components would all have the size of the compound system. Instead we implement
“more efficient” operations of product and projection by trying to reduce as most as
possible the sizes of the automata produced by these operations. Remark that, in the
worst case, these implementations are not better than the operations of product and
projection as defined in the previous chapter as the minimal possible size of an up-
dated component can always be the size of the full compound system (in fact, the use
of a determinization procedure for weighted automata can even prevent the projection
from terminating). However, in practice, these methods allowed to significantly reduce
the size of the automata involved in the message passing, and thus permitted a very
efficient resolution of planning problems.

This chapter is organized as follows. We first describe how the product and the
projection operations can be implemented in Section 3.1. Then we present techniques
for reducing the size of the automata produced by these operations in Section 3.2.
Finally, in Section 3.3, we present our planner and give some experimental results
obtained with it.

3.1 Algorithms for the product and the projection

This section describes possible implementations of the product and the projection of
weighted automata. The projection can be computed thanks to an ε-reduction algorithm

69

CHAPTER 3. DISTOPLAN

while the product can be obtained using the principles of a breadth first search.

3.1.1 Projection as an ε-reduction
One can remark that the projection operation described in Definition 2.9 corresponds
exactly to a standard ε-reduction (to the left) when costs are ignored. In other words,
ignoring costs, the projection of an automaton A over an alphabet Σ′ can be imple-
mented as follows. For any states s, s′, s′′ from A if there exists a path π from s to s′

such that σ(π) ∈ (Σ \ Σ′)∗, for any transition (s′, σ, s′′) with σ ∈ Σ′, add (s, σ, s′′) in
the set of transitions of A. And if s′ is final then add s to the set of final states of A.
Once this has been done for all states, all transitions (s, σ, s′) such that σ ∈ Σ \ Σ′ are
removed from A. When taking costs into account one has to set the cost of each tran-
sition (s, σ, s′′) with σ ∈ Σ′ to the minimum of c(π) + c(t) over all paths π from s to
some s′ such that σ(π) ∈ (Σ\Σ′)∗ and such that there exists a transition t = (s′, σ, s′′).

More formally, in [76] is presented (in the context of weighted transducers) an
algorithm which performs ε-reduction of weighted automata. It uses the notion of ε-
closure of states. In a weighted automaton A the ε-closure of a state s is a set of
couples (s′, c) such that there exists a path π in A from s to s′ with σ(π) ∈ {ε}∗
and such that c is the minimal cost of such a path in A. Once the ε-closure of each
state of an automaton has been constructed it is indeed straightforward to compute the
ε-reduction of this automaton. One first removes all transitions labelled by ε from the
automaton. Then, for each state s of the automaton and each couple (s′, c) in the ε-
closure of s one simply has to add a transition t = (s, σ, s′′) to the set of transitions
for each t′ = (s′, σ, s′′) already in this set. The cost of t is set to the minimum of its
previous cost (which is +∞ if this transition did not exist previously) and of c + c(t′).
This can be adapted for performing the projection over a set Σ′ simply by considering
transitions labelled by elements outside of Σ′ as ε-transitions. Algorithm 8, at the end
of this chapter, concretely describes a possible implementation of the projection.

Computing ε-closure of a state can be done by classical single-source shortest paths
algorithms such as the Dijkstra’s algorithm [23]. Denote by |E| the number of elements
in a set E. For an automaton A = (S, SI , SF ,Σ, T, c, ci, cf), according to [76] and
considering that the Dijkstra’s algorithm has complexity O(|S|2), the complexity of
this implementation of the projection is O(|S|3 + |S||T |). Notice that other com-
plexities can be achieved depending on the data-structures used for implementing the
Dijkstra’s algorithm (see Chapter 4 of [21] for more details).

3.1.2 Product as a breadth first search
A way to compute the product A of two weighted automata A1 and A2 is to perform
a breadth first search in A from a breadth first search in each of its components. Let
A1 = (S1, S

I
1 , S

F
1 ,Σ1, T1, c1, c

i
1, c

f
1) and A2 = (S2, S

I
2 , S

F
2 ,Σ2, T2, c2, c

i
2, c

f
2). The

automaton A is initially empty (i.e. its sets of states and transitions are empty). The
states SI1 × SI2 are then added to A and defined as initials. From that the following
steps are repeated until no new state is added to A.

1. Let S be the last set of states added to A.

2. Add to A all the transitions starting from S private to A1, that is the following
set of transitions:⋃

(s1,s2)∈S

{((s1, s2), σ, (s′1, s2)) : (s1, σ, s
′
1) ∈ T1 ∧ σ ∈ Σ1 \ Σ2}.

70

3.2. REDUCING THE SIZE OF THE WEIGHTED AUTOMATA

The cost of one of these transitions is set to the cost of the transition of A1 from
which it has been added.

3. Add to A all the transitions starting from S private to A2, that is the following
set of transitions:⋃

(s1,s2)∈S

{((s1, s2), σ, (s1, s
′
2)) : (s2, σ, s

′
2) ∈ T2 ∧ σ ∈ Σ2 \ Σ1}.

The cost of one of these transitions is set to the cost of the transition of A2 from
which it has been added.

4. Add to A all the shared transitions starting from S, that is the following set of
transitions:⋃

(s1,s2)∈S

{((s1, s2), σ, (s′1, s
′
2)) : (s1, σ, s

′
1) ∈ T1 ∧ (s2, σ, s

′
2) ∈ T2}.

The cost of one of these transitions is set to the sum of the costs of the transition
of A1 and the transition of A2 from which it has been added.

5. Add to A the set of states not previously in A reached by these new transitions.
Any state (s1, s2) in this set verifying s1 ∈ Sf1 and s2 ∈ Sf2 is defined as final
and its final cost is set as cf1 (s1) + cf2 (s2).

Notice that this algorithm does not exactly computes the product of A1 and A2 as
described in the previous chapter. Instead, A is the accessible part of this product,
that is the automaton obtained by removing all states of A1 ×A A2 which can not be
reached from the initial ones. This automaton has the same language asA1×AA2 but
is smaller. Notice also that one could describe a similar algorithm based on a depth
first search, or any other search. Algorithm 9, at the end of this chapter, gives a more
precise description of this product computation, based on an unspecified search.

The complexity of this product algorithm is linear in the size of its output A =
(S, SI , SF ,Σ, T, c, ci, cf) as it corresponds to a breadth first search inA for which the
complexity is O(|S|+ |T |) (see Chapter 4 of [21]). For any set T of transitions, denote
by T (Σ) ⊆ T the set of transitions t such that σt ∈ Σ. With regards to the automata
A1 = (S1, S

I
1 , S

F
1 ,Σ1, T1, c1, c

i
1, c

f
1) and A2 = (S2, S

I
2 , S

F
2 ,Σ2, T2, c2, c

i
2, c

f
2) the

complexity of taking the productA1×AA2 is then O(|S1||S2|+ |S2||T1(Σ1 \ Σ2)|+
|S1||T2(Σ2 \ Σ1)|+ |T1(Σ1 ∩ Σ2)||T2(Σ2 ∩ Σ1)|).

3.2 Reducing the size of the weighted automata
The goal of our work is to deal with very large planning problems. Solving these
problems implies to perform a lot of products and projections of automata. Thus, it
is fundamental to reduce the cost of performing these operations. For that we try to
maintain of reasonable size the automata involved in the computations. The idea is that
having a large complexity that depends on the size of a small object may be better for
performances than having a small complexity that depends on the size of a large object.
We thus increase the complexity of the product and the projection with the result of
reducing (hopefully a lot) the size of the automata produced by these operations.

71

CHAPTER 3. DISTOPLAN

3.2.1 Trimming weighted automata

A first fact allows to reduce the size of the automata produced by the product and
the projection described above. These automata can contain states which are not co-
accessible (that is states from which no final state can be reached). Moreover the
automata produced by the projection can contain states which are not accessible (that
is states that can be reached from no initial state). An important fact about states which
are not accessible or not co-accessible is that they do not contribute to the languages of
the automata. Indeed, no accepted path can use them. These states (and the transitions
involving them) can thus be removed from the automata. This can reduce significantly
the size of the automata, as for example in Figure 2.12 where instead of 8 states each
the automata would have 3, 4, and 3 states. The operation of removing states that are
not accessible or not co-accessible in an automaton is called the trimming.

The trimming of a (weighted) automaton can be achieved as follows. First perform
any search from the initial states for detecting the non-accessible states. Then perform
a backward search (that is a search in the automaton in which all transitions have been
reversed) from the final states for detecting the states that are not co-accessible. Finally,
remove from the automaton all the states that have been found to be non-accessible or
non-co-accessible and the transitions involving these states. The complexity of the
trimming operation is linear in the size of the automaton on which it is performed [76].
One can thus add to the versions of the product and the projection proposed above a
trimming step performed just after these operations.

3.2.2 On the determinization of weighted automata

A second important fact about the automata we consider is that, even if they are ini-
tially deterministic, the projection make them lose their determinism. Moreover, the
product of two non-deterministic automata is potentially much larger than the product
of two deterministic automata. As the product of two non-deterministic automata is
also non-deterministic, successive products implying non-deterministic automata may
output very large automata from small ones. In particular, consider the product of an
automatonA with itself. IfA is deterministic thenA×AA = A. IfA is not determin-
istic this is not the case in general, as represented in Figure 3.1. We would thus prefer
to use deterministic automata when taking a product. This implies to determinize the
result of each projection. The remaining of this section focuses on a manner of deter-
minizing weighted automata. It also presents the limitations of the determinization of
weighted automata (not all of them can be determinized).

α

α

α

α

α

α

Figure 3.1: An automaton A (left) and the product A×A A (right).

72

3.2. REDUCING THE SIZE OF THE WEIGHTED AUTOMATA

Determinization algorithm

There exists an algorithm for determinizing weighted automata [76]. This algorithm
is close to the classical subset construction used for the determinization of finite au-
tomata [81]. Given a weighted automaton A = (S, SI , SF ,Σ, T, c, ci, cf), let us
denote by Det(A) its determinized version provided by the algorithm. The states
of Det(A) are of the form q = (A, λ), where A ⊆ S and λ : A → R+. De-
note by si an initial state of A with minimal cost. The initial state of Det(A) is
(SI , λI), such that λI(s) = ci(s) − ci(si) for all s ∈ SI . The cost of this initial
state is ci(si). The other states are obtained by recursion from this initial state: from
q = (A, λ) the new state q′ = (A′, λ′) obtained by firing an action σ ∈ Σ is such that
A′ = {s ∈ S : ∃s′ ∈ A, (s′, σ, s) ∈ T} and, for s′ ∈ A′,

λ′(s′) = λ′(s′)−
(

min
s′′∈A′

λ′(s′′)

)
,

where λ′(s′) is defined as:

λ′(s′) = min
s∈A,t=(s,σ,s′)∈T

λ(s) + c(t).

The cost of transition (q, σ, q′) in Det(A) is then mins′∈A′λ′(s′). The cost of a final
state (A, λ) is mins∈A∩SF λ(s) + cf (s).

Figure 3.2 shows an automaton and its determinized version (in order to clarify the
figure, a state q = (A, λ) is represented by all the pairs s, λ(s) for s ∈ A). The idea
behind this construction is the following. Consider the determinized version Det(A)
of a weighted automaton A, denote by q = (A, λ) a state of Det(A) and by π a path
in Det(A) that reaches q. The set A contains exactly the states from S reachable in
A by paths π′ such that σ(π′) = σ(π) (as in the classical subset construction for the
determinization of finite automata). Consider a minimum cost path πm in A such that
σ(πm) = σ(π). The construction of Det(A) ensures that πm reaches a state s in A
such that λ(s) = 0. For any other state s′ ∈ A, λ(s′) is the minimal cost that has to be
added to the cost of πm in order to reach s′ inA with a path π′ such that σ(π′) = σ(π).
Finally, the cost of π in Det(A) is equal to c(πm).

s1

s2

s3

s4

a, 1

a, 2

b, 3

b, 1

c, 1

c, 0

s1, 0
s2, 0
s3, 1

s2, 1
s3, 0

s4, 0

a, 1

c, 1

b, 2

b, 1

c, 0

Figure 3.2: A weighted automaton (left) and its determinized version (right).

73

CHAPTER 3. DISTOPLAN

Limitations of the determinization

Not all weighted automata are determinizable. In other words, there exists weighted
automata A such that no (finite) deterministic weighted automaton A′ exists verifying
L(A′) = L(A). Figure 3.3 gives an example of a weighted automaton which can not
be determinized. In this automaton, the cost of a wordw is min(|w|a, |w|b), where |w|a
is the number of occurrences of action a in w. A deterministic automaton recognizing
the same language should “count” the number of a and b in a word, and, thus, could
not be finite. Part of an (infinite) determinized version of this automaton is illustrated
in Figure 3.4.

s1

s2

s3

c, 0

c, 0

a, 1

b, 0

a, 0

b, 1

Figure 3.3: A weighted automaton that can not be determinized

There exists a sufficient condition for determinizability of weighted automata [76].
This condition is based on the twin property.

Definition 3.1. In a weighted automaton A = (S, SI , SF ,Σ, T, c, ci, cf), two states
s and s′ are twins if and only if:

1. there exists two paths π and π′ such that π− ∈ SI , π′− ∈ SI , π+ = s, π′
+

= s′,
and σ(π) = σ(π′), and

2. for all w ∈ Σ+ such that there exists a path π and a path π′ in A verifying
σ(π) = w = σ(π′), π− = π+ = s, and π′− = π′

+
= s′ then the costs of these

paths are the same: c(π) = c(π′).

A weighted automaton has the twin property if and only if any two states s, s′ of
this automaton verifying point 1 of Definition 3.1 are twins. Notice that deciding the
twin property in the general case has recently be shown to be PSPACE-complete [59].

Theorem 3.1 (Theorem 5 in [76]). Any weighted automaton verifying the twin property
is determinizable.

The twin property is only a sufficient condition in general. Yet, there exists partic-
ular classes of weighted automata for which this condition is also necessary.

Definition 3.2. An automatonA is said to be unambiguous if and only if for each word
w accepted by A there exists only one accepted path π verifying σ(π) = w.

The twin property is a necessary condition for determinizability of trim unam-
biguous weighted automata [14]. All unambiguous weighted automata admit a trim
unambiguous weighted automaton recognizing the same language. However, not all
weighted automata admit an unambiguous weighted automata accepting the same lan-
guage [62].

74

3.2. REDUCING THE SIZE OF THE WEIGHTED AUTOMATA

Definition 3.3. An automaton A is said to be finitely ambiguous if and only if there
exists an integer k such that for each word w accepted by A there exists at most k
accepted paths π verifying σ(π) = w.

In the case of finitely ambiguous weighted automata determinizability of weighted
automata is decidable as well [62]. In fact, for trim finitely ambiguous weighted au-
tomata the twin property is a necessary condition for determinizability [58].

Definition 3.4. An automaton A is said to be polynomially ambiguous if and only if
there exists a polynomial P : N → N such that for each word w accepted by A there
exists at most P (|w|) accepted paths π verifying σ(π) = w.

Even for polynomially ambiguous weighted automata determinizability is decid-
able [58, 60]. However, for the general class of weighted automata there is – to our
knowledge – no decidability result for determinizability.

Partial determinization

Even if determinizability was decidable, the problem of non-determinizable weighted
automata would remain. We suggest to avoid this problem by performing a partial de-
terminization. That is a determinization procedure that stops determinization at some
depth and provides an automaton which is deterministic “at the beginning”. Such a
procedure allows one to recognize small words with the deterministic part of the au-
tomaton, and to use the non-deterministic part for larger words only. One can use the
partial determinization when the twin property is not verified, or use it in all cases with-
out considering determinizability of weighted automata (it is not reasonable to consider
determinized automata with too many states).

In the determinized version of a weighted automaton it is possible to associate
a depth to each state. Initial state has depth 0. The depth of any other state is the
minimal depth among its predecessors, plus 1. For example, Figure 3.4 represents the
(beginning of the) determinization of Figure 3.3 with depths of states represented by
dashed lines.

0 1 2 3

s1, 0
s2, 0
s3, 0

c, 0

s2, 1
s3, 0

s2, 0
s3, 1

s2, 2
s3, 0

s2, 0
s3, 2

. . .

. . .

a, 0

b, 1

a, 1

b, 0

a, 0

b, 1

a, 1

b, 0

a, 0

b, 1

a, 1

b, 0

Figure 3.4: First steps of the (infinite) determinization of Figure 3.3. Notice that all
states – excepted (s1, 0) – are final states.

Partial determinization consists in stopping determinization at some depth and then
branching the states at this depth to the original (non deterministic) automaton (without
initial states). Formally, in partial determinization at depth n of a weighted automaton
A = (S, SI , SF ,Σ, T, c, ci, cf), all states of depth smaller or equal to n are obtained

75

CHAPTER 3. DISTOPLAN

by a standard determinization procedure (as described above). Then, for each state
(A, λ) at depth n, a transition (A, σ, s) is added for each s and each σ such that there
exists (s′, σ, s) ∈ T for some s′ ∈ A. The cost of such a transition is such that
c′((A, σ, s)) = mins′∈A,(s′,σ,s)∈T λ(s′) + c((s′, σ, s)). For example the partial deter-
minization at depth 2 of the automaton of Figure 3.3 is represented in Figure 3.5.

s1, 0

s2, 0
s3, 0

c, 0 s2, 1
s3, 0

s2, 0
s3, 1

a, 0

b, 0

s1

s2

s3

a, 1

b, 0

a, 0

b, 1

c, 0

c, 0

a, 2

b, 1

b, 2

a, 1

a, 0

b, 1

b, 0

a, 1

Figure 3.5: Partial determinization at depth 2 of Figure 3.3. Notice that all states –
excepted (s1, 0) and s1 – are final states. State s1 may be trimmed.

3.2.3 Minimizing weighted automata
Finally, it is possible to minimize deterministic weighted automata. This means that,
for any deterministic weighted automatonA it is possible to provide another determin-
istic weighted automaton A′ recognizing the same language and such that any other
deterministic weighted automaton recognizing the language of A would have more
states than A′. Hence, if we work with deterministic automata it may be of interest to
minimize them.

Minimization of weighted automata can be achieved by a two steps procedure
consisting in a weight-pushing step followed by a minimization step [76]. Apply-
ing weight-pushing in an automaton aims at “pushing” at most as possible the costs
of transitions toward the initial states while preserving the language of the automaton.
The minimization step is a standard minimization, as described in Section 3 of Chapter
1 of [81] for example, but considering that inA = (S, SI , SF ,Σ, T, c, ci, cf) the label
of a transition t ∈ T is (σt, c(t)) rather than just σt.

More formally, in a weighted automatonA = (S, SI , SF ,Σ, T, c, ci, cf) the weight-
pushing can be described by the following equations. They define the new costs c′ of
transitions, ci′ of initial states, and cf ′ of final states.

∀si ∈ SI , ci
′
(si) = ci(si) + d(si)

∀t ∈ T, d(t−) 6= +∞, c′(t) = c(t) + d(t+)− d(t−)

∀sf ∈ SF , d(sf) 6= +∞, cf
′
(sf) = cf (sf)− d(sf)

In these equations, for any state s, d(s) is a shortest distance from s to the set of final
states SF , taking into account final costs. In other words,

d(s) = min
π,π−=s,π+∈F

c(π) + cf (π+).

76

3.3. DISTOPLAN

According to [76] the overall complexity of the minimization of a deterministic
weighted automaton A = (S, SI , SF ,Σ, T, c, ci, cf) is O((|S|+ |T |) log |S|).

The remaining of this chapter is dedicated to the presentation of the implementation
of the previous algorithms into a factored planner. In particular, we test this planner
on some benchmarks from the international planning competitions and we compare its
performances with the performances of other up-to-date planners. This experimental
analysis will also show the practical interest of reducing the size of automata after each
operation. Indeed, we tried various versions of our planner: a simple version doing
no size reduction, a version using trimming, and a version using determinization and
minimization.

3.3 Distoplan

We implemented the message passing algorithm for weighted automata in a plan-
ner called Distoplan. Our implementation is based on the openFst library1 for most
of the operations on weighted automata (ε-reduction, trimming, minimization, deter-
minization). Our planner accepts as input planning problems given directly in terms of
weighted automata (using the format specified in openFst) or as PDDL (Planning Do-
main Definition Language) files [34] (which are a standard representation of planning
problems in the planning community). The parsing of PDDL files is done using the
parser from HSP∗ planner [39].

Notice that our implementation only deals with factored planning problem. It can-
not automatically find a decomposition of a given planning problem. In other words,
it is unable to find a decomposition of the set of atoms that ensures that the commu-
nication graphs are trees. This is due to the fact that, currently, it is not known what
is an efficient decomposition. Methods to decompose problems exists (such as in [22]
or similarly in [1]) but they only provide a communication graph which is a tree, not
necessarily the best one for factored planning, or even a good one (as it is not know
what exactly is a good decomposition). The possibility of automatically finding good
decompositions of problems will be discussed in the conclusion of this document as a
possible future work.

3.3.1 An extended example

Distoplan has been first tried on a toy example we developed. Consider a problem
where a truck has to transport products between different sites: production sites and
warehouses. The truck, each warehouse and each production site have maximum stor-
age capacity. The truck has the possibility to move from site i to site j (Mij), where the
precise moves and their costs depend on the road network, the truck’s load, or any other
condition. The truck can also load a unit of product from production site i (Li) and un-
load a unit to warehouse i (Ui), while the maximum storage capacities are respected.
Production site i can also produce one unit of product (Pi), under the constraints of
storage capacity. The production cost depends on the current number of units of prod-
uct stored at the production site. The staff at a production site can also influence the
costs of production and load by being ready for one task or another.

1http://www.openfst.org/

77

CHAPTER 3. DISTOPLAN

Figure 3.6 shows the weighted automata corresponding to such a problem involv-
ing a truck (T), two production sites (P1 and P2) and a warehouse (W). The shared
labels and the corresponding transitions are colored. Each production site has a storage
capacity of 2, as the truck, and the warehouse has a storage capacity of 3. Initially
the truck is at production site 2, which has one unit of product stored and ready to be
loaded. The other sites are empty. The goal is to fill the warehouse. At the end produc-
tion sites have to be empty and the truck has to be empty and at the warehouse. Notice
that when the truck is full it can not go from production site 1 to warehouse directly.

empty full

at site 1

at site 2

at warehouse

L1,1 L1,1

L2,1 L2,1

U3,1U3,1

M12,1 M12,3 M12,7M21,1 M21,3 M21,7

M23,1 M23,2 M23,3M32,1 M32,2 M32,3

M13,2M31,2M13,5M31,5

empty

full

U3,1

U3,1

U3,1

empty

full

P1,4L1,3

P1,5

P1,6L1,3

L1,1

empty

full

P1,10L1,3

P1,10

P1,12L1,3

L1,1

Figure 3.6: Truck (top), warehouse (bottom left), and two production sites (bottom
right).

78

3.3. DISTOPLAN

The communication graph of this problem has a star shape, with the truck at the
center and the production sites and the warehouse connected to it (Figure 3.7). So the
MPA requires six message computations.

P1

P2

T W

Figure 3.7: Communication graph

First, consider the computation ofM1,T , the message from P1 to T . M1,T is the
projection of P1 on the load actions, as these are shared with the truck. The steps of
this projection appear in Figure 3.8.

L1,1 L1,12

L1,9

L1,7

L1,6 L1,7

Figure 3.8: P1 after projection (left) and after determinization and minimization (right).

One can obtain in a similar manner the two other messages sent to the truck com-
ponent from the second production site (M2,T) and from the warehouse (MW,T) re-
spectively (Figure 3.9). Notice that final states have termination costs (here 1 or 3).

1 1

L2,0
L2,13

L2,11

3
U3,0 U3,0 U3,0

Figure 3.9: messages from P2 to T (top) and W to T (bottom).

Then the truck updates its own messagesMT,1,MT,2, andMT,W (Figure 3.10).
Notice that these updates propagate the constraints imposed by P1, P2, and W . For
example, only three U3 are allowed byMW,T , hence the messagesMT,1 andMT,2

allow at most three load actions.

79

CHAPTER 3. DISTOPLAN

40

33

24

L1,0

L1,0

47

36

26

15

L2,0

L2,0

L2,0

5

5

U3,0

U3,14U3,15

Figure 3.10: messages from T to P1 (left), P2 (center), and W (right).

At this point messages are stable and the reduced components P ′1, P ′2, W ′ (Fig-
ure 3.11), and T ′ (not represented) can be derived. The following optimal local plans
can easily be found: P1P1L1L1 in P ′1, L2 in P ′2, and U3U3U3 in W ′. Automaton
T ′ is too large to be represented here, one of its optimal local plans is the following:
M21L1M12L2M23U3U3M31L1M12M23U3. It is easy to see that the four optimal local
plans given above can be synchronized into a globally optimal plan of cost 37. Note that
these four local plans can be synchronized in different ways: for example the optimal
global plan could indifferently start with P1P1M21, with P1M21P1, or with M21P1P1.

40

39

37

L1,1

L1,0

L1,0

P1,0

P1,0 P1,0

37

37

37

P2,5

L2,0

L2,0

P2,2

L2,0

L2,0

P2,3

P2,0

L2,0

L2,0P2,4

37

U3,0

U3,0

U3,0

Figure 3.11: MPA output: P ′1 (left), P ′2 (center), and W ′ (right).

A possible optimal global plan is then: production site 1 produces two units of
product. Then the truck moves to production site 1, loads once, returns at production
site 2, loads once, goes to the warehouse, unloads twice, returns to production site 1,
loads once and then goes to the warehouse via production site 2, and unloads.

80

3.3. DISTOPLAN

3.3.2 Experimental results
We then tested our planner on a few standard planning problems. When possible we
compared our results with up-to-date planners in order to validate our approach. The
main difficulty when performing these experiments has been to find problems which
were relevant to factored planning.

Rooms and robot

The first test we performed was on a problem presented in [1], called rooms and robot.
We wanted to try this problem because [1] presents the only implemented factored
planner to our knowledge and uses rooms and robot as a benchmark for testing it.
Thus, it was of interest to note if the performances of our planner were comparable to
the performances of this one (notice that our planner performs cost-optimal planning,
which is not the case of the one from [1]).

The rooms and robot problem is the following: a robot has to move in different
rooms in order to close and lock one window per room. More precisely, the rooms are
organized into a circle and the robot can only move in one step from the room where
it is to an adjacent room on the circle. Inside a room the robot can close the window,
and lock it if it is closed. The goal is to lock all windows (in our case with a minimal
number of actions).

A possible STRIPS description of the domain of this problem is the following. For
each room i there is three atoms: ini stating that the robot is in the room, closedi
stating that the window is closed, and lockedi stating that the window is locked. From
these atoms several actions are defined. An action to close the window in room i:
closei. Its precondition is {ini}, in other words the robot has to be in the room. It
has no negative effect and its positive effect is {closedi}. An action to lock a closed
window in room i: locki. Its preconditions is {ini, closedi}: the robot has to be in the
room and the window has to be closed. It has no negative effect and its positive effect
is {lockedi}. An action to move the robot from room i to the next room (resp. to the
previous room) j on the circle: movecli (resp. moveccli). Its precondition is {ini}.
Its negative effect is {ini}, that removes the robot from room i. Its positive effect is
{inj}, stating that the robot is now in room j.

A natural decomposition of this problem considers each room as a component. In
other words, the component iwill be defined by the set of atoms {ini, closedi, lockedi}.
However, this decomposition is such that the interaction graph contains a cycle and has
no redundant edge, as represented in Figure 3.12 for four rooms (shared actions are
represented on edges).

{in1, closed1, locked1} {in2, closed2, locked2}

{in3, closed3, locked3}{in4, closed4, locked4}

movecl1,moveccl2

movecl2,moveccl3

movecl3,moveccl4

movecl4,moveccl1

Figure 3.12: Interaction graph for rooms and robot.

In order to obtain a tree shaped communication graph, and thus to permit the use of

81

CHAPTER 3. DISTOPLAN

the message passing algorithm on this problem, we had to propose another decompo-
sition. For this purpose, we added an atom isini for each room i, giving the position
of the robot. We accordingly modified the moving actions by adding these new ax-
ioms to preconditions and effects. The window closing and window locking actions
remained as before. Each set {ini, closedi, lockedi} still defines a component and the
set ∪i{isini} defines a new component. The corresponding interaction graph still has
cycles. However, some edges are redundant and the only communication graph is a
tree. This is represented in Figure 3.13, where dashed edges are redundant.

{in1, closed1, locked1} {in2, closed2, locked2}

{in3, closed3, locked3}{in4, closed4, locked4}

movecl1,moveccl2

movecl2,
moveccl3

movecl3,moveccl4

movecl4,
moveccl1

{isin1, isin2,
isin3, isin4}

m
ovecl1 ,m

oveccl1 ,

m
ovecl4 ,m

oveccl2 m
ov
ec
l 2
,m
ov
ec
cl 2
,

m
ov
ec
l 1
,m
ov
ec
cl 3

m
ovecl2 ,m

oveccl4

m
ovecl3 ,m

oveccl3 ,

m
ov
ec
l 3
,m
ov
ec
cl 1

m
ov
ec
l 4
,m
ov
ec
cl 4
,

Figure 3.13: Communication graph for rooms and robot.

The results obtained by Distoplan on this problem are given in Figure 3.14. The
leftmost plot presents the execution time of three versions of Distoplan on small in-
stances of rooms and robot (5 to 11 rooms). The upper curve is obtained using no size
reduction technique. The middle curve is obtained when the automata are trimmed af-
ter each product and each projection. The lower curve is obtained when the automata
are minimized after each each product and projection (they are thus also determinized
after each projection). The rightmost plot presents the execution time of Distoplan on
larger instances of rooms and robot (up to 50 rooms). It has been obtained with the
version of Distoplan where automata are minimized after each iteration.

 0.01

 0.1

 1

 10

 100

 5 6 7 8 9 10 11

tim
e

(s
)

number of rooms

no size reduction
trimming

determinization

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

number of rooms

distoplan

Figure 3.14: results obtained by Distoplan on rooms and robot, the time is in logscale.

82

3.3. DISTOPLAN

The first conclusion we can draw from these results is that, on this particular prob-
lem, using minimal deterministic automata strongly improves the time efficiency of
Distoplan. This significant efficiency gap shows that the use of deterministic automata
- when possible - can really be of interest and may allow a better scalability of our
planner.

A second conclusion is that, as expected, the execution time of Distoplan scales
well with the size of this problem. We obtain, in fact, a problem solving time subexpo-
nential in the number of rooms. This is comparable with what is presented in [1]. It is
possible, thought, that a better efficiency can be achieved using another decomposition
of the problems. Indeed our decomposition has the drawback that the size of one of the
components grows with the number of rooms. Finding a decomposition which avoids
this phenomenon may result in better performances. Such a decomposition is proposed
in [1], but we were not able to adapt it to our setting (recall that our decompositions are
defined by subsets of the atoms while in [1] the decompositions are defined by subsets
of the actions).

IPC benchmarks

We then tested Distoplan on problems from international planning competitions (IPC).
Among the problems we considered we found two that we were able to decompose
well. That is, for which we found a decomposition so that only the number of compo-
nents is increased (their size remaining the same) with growing instances of the prob-
lem. These two problems come from the Promela domains of the fourth international
planning competition [48]. These domains regroup problems translated to PDDL from
the Promela language. The first problem corresponds to the classical “dinning philoso-
phers” problem, while the second problem is based on a communication protocol for a
network of optical telegraphs. In each problem the objective is to find a deadlock. We
also considered other versions of these problems where no deadlock exists. In this case
one has to detect the absence of deadlock.

For each problem we proposed a decomposition ensuring communication graphs
to be trees. Using these decompositions we ran Distoplan on instances of growing size
for each problem and compared the run times obtained with the performances of other
up-to-date planners. For comparison we used a planner based on Fast-Downward [44]
(i.e. an A* based search) with the landmark cut heuristic [45] and the IPC-5 version
of SATPLAN [56]. Notice that SATPLAN would not take part in the same track as
Distoplan in a planning competition. Indeed it does not ensure cost-optimality of the
plans found.

IPC benchmark 1: dinning philosophers

Some philosophers want to eat. They sit all around a table, with one fork between any
two philosophers. To eat a philosopher needs two forks: not all philosophers can eat
at the same time. He has to take a first fork, then a second one. When he has finished
eating a philosopher releases the forks he used. In this setting one has to find deadlocks:
situations were no philosopher can eat and no fork is free.

More precisely, philosophers and forks form an alternating cycle. Each philosopher
can perform the following actions: 1) take left fork if free, 2) take right fork if free,
3) release right fork if taken, and 4) release left fork if taken. These actions can be
performed only in this order. Hence, a simple deadlock occurs when each philosopher
has taken his left fork: no fork can be released and no more fork can be taken.

83

CHAPTER 3. DISTOPLAN

When looking at this problem as a factored problem, an intuitive approach is to con-
sider the set of atoms pi defining each philosopher as a component and the set of atoms
fi defining each fork as a component. However, in this case the communication graph
obtained is not a tree: it is a cycle, as represented in Figure 3.15 (left) for four philoso-
phers. It is possible to come up with a tree shaped communication graph by defining
components as the union of the atoms defining each philosopher with the atoms defin-
ing the opposite fork on the circle. Figure 3.15 (right) represents the interaction graph
obtained for four philosophers. It is a line, and thus a tree.

p1

f4

p4

f3

p3

f2

p2

f1

p1 ∪ f4

f1 ∪ p4

p2 ∪ f3

f2 ∪ p3

Figure 3.15: Interaction graphs for two possible decompositions of the dinning philoso-
phers problem (with four philosophers).

Results obtained with Distoplan on instances of the dinning philosophers problem
of growing size are presented in Figure 3.16. The same figure also gives results ob-
tained with Fast Downward and SATPLAN. The left plot presents results obtained in
the exact case presented above, when a deadlock exists. The right plot presents results
obtained with slightly modified problems where there is no deadlock (this is achieved
by allowing one of the philosophers to take right fork first).

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

number of philosophers

Distoplan
 Fast Downward

SATPLAN

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

number of philosophers

Distoplan
 Fast Downward

Figure 3.16: Performances of Distoplan, Fast Downward, and SATPLAN on philoso-
phers problems with (letf) and without (right) deadlocks. Time is logscale.

One can notice that Distoplan runs in sub-exponential time in the number of philoso-
phers (that is in the number of components) in both cases. In fact, Distoplan is not
affected by the presence or the absence of solution. We used the version of Distoplan
which minimizes automata after each operations (as for rooms and robot, the version

84

3.3. DISTOPLAN

with no size reducing technique and the version using trimming were much less effi-
cient). With regards to other planners we remark that SATPLAN is – as expected –
very efficient when there is solutions. Remark however that it does not guarantee cost-
optimality of solutions. When there is no solution SATPLAN is not able to detect it,
that’s why it is not plotted in the results. Fast Downward works well in presence of
deadlocks, but scales less efficiently than Distoplan. When there is no solutions it has
to explore the full state space of the problem to detect it and thus runs in exponential
time in the number of philosophers.

IPC benchmark 2: optical telegraph

This second benchmark is the following: some telegraph stations – organized as a circle
– have to communicate, following a precise protocol. As for philosophers, the goal is
to find potential deadlocks in the communication protocol. In fact, this problem can
be seen as philosophers with more private actions. The decomposition we proposed
for this problem is based on the same principles as for philosophers. Each natural
component of the circle (here telegraph stations and their communication channels) is
merged with its opposite on the circle.

The results we obtained are presented in Figure 3.17. The left plot has been ob-
tained for problems with deadlocks. The right plot has been obtained for problems
without deadlocks (telegraph stations are organized as a line rather than as a circle).

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

number of stations

Distoplan
 Fast Downward

SATPLAN
 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

number of stations

Distoplan
 Fast Downward

Figure 3.17: Performances of Distoplan, Fast Downward, and SATPLAN on optical
telegraph problems with (left) and without (right) deadlocks. Time is logscale.

For Distoplan and SATPLAN these problems are not that different from the dinning
philosophers problems. The results obtained are thus similar to the previous ones: a
computation time sub-exponential in the size of the problems. The addition of many
private actions in each component (compared to the dinning philosophers case) makes
the state space of this problem much larger. This explains the lower efficiency of Fast
Downward. Notice that, on these problems, most of the computation time of Disto-
plan (90%) is spent building the initial automata from the PDDL representation of the
problems.

Conclusion
In this chapter we explained how the results of Chapter 2 can be implemented con-
cretely. In particular we focused on methods for trying to reduce the size of the au-

85

CHAPTER 3. DISTOPLAN

tomata involved in the computations. In theory, these methods can result in huge au-
tomata, in particular because of the determinization of weighted automata. However,
they revealed to be of interest by reducing significantly the computation time needed
by our planner for solving all the problems we considered.

The main difficulty when testing has been to find benchmarks which factored well.
In other words, we looked for problems such that we were able to propose a decom-
position giving tree shaped communication graphs and such that with increasing size
of problems the number of components increased but not their size. This explains the
little number of problems on which we tried Distoplan.

Our experiments revealed that Distoplan is capable of nice performances on prob-
lems suitable for factored planning. In particular, we found optimal plans in two prob-
lems from international planning competitions much more efficiently than an up-to-
date heuristic search. Moreover we remarked that our approach - as a side effect - is
very efficient for detecting absence of solutions in problems. This is due to the pos-
sibility of early decision of this absence of solution: as soon as an automaton with
empty language is computed during the algorithm there can not exist solutions to the
considered problem.

Finally, we remarked, that a large part of the computation time of Distoplan is ded-
icated to the construction of the automata representation of the problem considered.
This was in particular the case for the optical telegraph problems. Once this construc-
tion was achieved the message passing algorithm ran very fast. This suggest that for
building a competitive version of Distoplan we should focus on this aspect, potentially
using representations of automata adapted to planning.

86

3.3. DISTOPLAN

Algorithm 8 Projection
Input: a weighted automaton A = (S, SI , SF ,Σ, T, c, ci, cf) and a set of actions Σ′

Output: a weighted automaton A′ such that L(A′) is the projection of L(A) on Σ′

1: /*Initialization*/
2: S′ ← S
3: T ′ ← {t ∈ T : σt ∈ Σ′}
4: SI

′ ← SI

5: SF
′ ← SF

6: for all t ∈ T ′ do
7: c′(t)← c(t)
8: end for
9: for all s ∈ SI ′ do

10: ci
′
(s)← ci(s)

11: end for
12: for all s ∈ SF ′ do
13: cf

′
(s)← cf (s)

14: end for
15: /*Closure computation from each state*/
16: for all s ∈ S do
17: closureΣ\Σ′(s)← ∅
18: d(s)← 0
19: while S 6= ∅ and ∃s ∈ S, d(s) < +∞ do
20: select s′ ∈ S such that d(s′) is minimal
21: S ← S \ {s′}
22: closureΣ\Σ′(s)← closureΣ\Σ′(s) ∪ {(s′, d(s′))}
23: for all t ∈ T , t− = s′ ∧ σt ∈ Σ \ Σ′ do
24: d(t+)← min(d(t+), d(s′) + c(t))
25: end for
26: end while
27: end for
28: /*Addition of new transitions and new final states*/
29: for all s ∈ S do
30: for all (s′, c) ∈ closureΣ\Σ′(s) do
31: T ′′ ← {(s, σ, s′′) : σ ∈ Σ′ ∧ ∃(s′, σ, s′′) ∈ T}
32: T ′ ← T ′ ∪ T ′′
33: for all t ∈ T ′′ do
34: c′(t)← min(c′(t), min

t′=(s′′,σt,s′)∈T
c+c(t′)) /*c′(t) = +∞ when not defined*/

35: end for
36: if s′ ∈ SF then
37: SF

′ ← SF
′ ∪ {s}

38: cf
′
(s)← min(cf

′
(s), c+ cf (s′)) /*cf

′
(s) = +∞ when not defined*/

39: end if
40: end for
41: end for
42: return A′ = (S′, SI

′
, SF

′
,Σ′, T ′, c′, ci

′
, cf
′
)

87

CHAPTER 3. DISTOPLAN

Algorithm 9 Product

Input: A1 = (S1, S
I
1 , S

F
1 ,Σ1, T1, c1, c

i
1, c

f
1), A2 = (S2, S

I
2 , S

F
2 ,Σ2, T2, c2, c

i
2, c

f
2)

Output: A such that L(A) is the product of L(A1) and L(A2)
1: /*Initialization*/
2: S ← SI1 × SI2 ; SI ← S
3: for all (s1, s2) ∈ SI do
4: ci((s1, s2)) = ci1(s1) + ci2(s2)
5: end for
6: SF ← ∅; T ← ∅
7: Q← S
8: /*Search in A from A1 and A2*/
9: while Q 6= ∅ do

10: select (s1, s2) ∈ Q and mark it
11: Q← Q \ {(s1, s2)}
12: /*New final states*/
13: if s1 ∈ SF1 and s2 ∈ SF2 then
14: SF ← (s1, s2)

15: cf ((s1, s2))← cf1 (s1) + cf2 (s, 2)
16: end if
17: /*Private transitions of A1*/
18: for all t1 ∈ T1 such that t−1 = s1 and σt1 /∈ Σ2 do
19: T ← T ∪ {((s1, s2), σt1 , (t

+
1 , s2))}

20: c(((s1, s2), σt1 , (t
+
1 , s2)))← c1(t1)

21: if (t+1 , s2) is not marked then
22: Q← Q ∪ {(t+1 , s2)}
23: end if
24: end for
25: /*Private transitions of A2*/
26: for all t2 ∈ T2 such that t−2 = s2 and σt2 /∈ Σ1 do
27: T ← T ∪ {((s1, s2), σt2 , (s1, t

+
2))}

28: c(((s1, s2), σt2 , (s1, t
+
2)))← c2(t2)

29: if (s1, t
+
2) is not marked then

30: Q← Q ∪ {(s1, t
+
2)}

31: end if
32: end for
33: /*Shared transitions*/
34: for all t1 ∈ T1, t2 ∈ T2 such that (t−1 , t

−
2) = (s1, s2) and σt1 = σt2 do

35: T ← T ∪ {((s1, s2), σt1 , (t
+
1 , t

+
2))}

36: c(((s1, s2), σt1 , (t
+
1 , t

+
2)))← c1(t1) + c2(t2)

37: if (t+1 , t
+
2) is not marked then

38: Q← Q ∪ {(t+1 , t
+
2)}

39: end if
40: end for
41: end while
42: return A = (S, SI , SF ,Σ1 ∪ Σ2, T, c, c

i, cf)

88

Chapter 4

Turbo Algorithms for Factored
Planning

chapter abstract: In this chapter we present an experimental study of the use of the
famous turbo methods for planning. Their interest is to permit the use of message
passing algorithms on problems not living on trees. We obtain encouraging results by
using these methods in Distoplan. This validates the interest of approximate methods
(and in particular turbo methods) for factored planning.

IN THE PREVIOUS CHAPTERS we proposed a new approach to factored planning. The
main interest of this approach, based on a message passing algorithm, with regards

to previous results in the domain of factored planning is that it allows one to perform
factored cost-optimal planning. However, as other existing approaches, our approach is
based on strong hypothesis on the shape of the communication graphs of the factored
planning problems. Namely, these graphs have to be trees. This restriction, even if
natural for propagating constraints, is quite limitative. It significantly reduces the range
of problems on which our method can be applied.

There exists however a family of algorithms (called turbo algorithms) which gave
astonishingly good results when dealing with complex communication graphs (con-
taining cycles) with sparse interaction. These algorithms are mostly known for their
use in coding theory [6]. They are closely related (see [70]) to Pearl’s belief propaga-
tion algorithm, well know in the artificial intelligence community [77] . Nowadays, the
turbo algorithms are used with great success in many area of digital communications
and signal processing. However, their efficiency is not fully explained theoretically yet.

This chapter presents a study of the turbo algorithms in the context of factored
planning using message passing algorithms. Our goal is to show that these algorithms
are of interest in the domains of constraint satisfaction (factored planning) and of op-
timization (factored cost-optimal planning). In fact they will allow one to compute
over-approximations of the sets of solutions.

After a brief description of the concept of turbo algorithms and a remark on so-
lution extraction from the updated factors obtained by applying message passing on
a factored planning problem (Section 4.1), we consider the use of turbo algorithms
for solving factored planning problems (Section 4.2) and their cost-optimal counter-
part (Section 4.3). In each case, experimental results are provided that demonstrate

89

CHAPTER 4. TURBO ALGORITHMS FOR FACTORED PLANNING

the interest of investigating the use of approximate methods in the domain of factored
planning.

4.1 Turbo algorithms
The idea of the turbo algorithms, in our context, is to simply run the message passing
algorithms on problems for which the communication graph is not a tree. In general
there is no guarantee that, by doing this, convergence will be achieved. However, it is
possible to stop the update of the messages by using other notions of convergence than
strict stability of their languages. Such methods are discussed in the next sections of
this chapter.

4.1.1 About updated components
Consider a factored planning problem defined by the automataA1, . . . ,An. After hav-
ing stopped updates of messages (using any manner of deciding convergence) compo-
nents of the considered problem can be updated as if messages stabilized. For each Ai
component of the planning problem an updated component A′′i = Ai×Aj∈N (i)Mj,i

can be computed. If the problem does not live on a tree there is no guarantee that these
A′′i have for language the projection on Σi of L(A1 ×A . . .×AAn). From now on we
denote by A′′i the automata obtained from message passing algorithm and by A′i some
automata such that L(A′i) is the projection on Σi of L(A1 ×A . . .×A An).

What is fundamental to notice about theL(A′′i) is that they are over-approximations
of the L(A′i): ∀(w, c) ∈ L(A′i),∃c′, (w, c′) ∈ L(A′′i). Moreover, these L(A′′i) are
refinements of the L(Ai): ∀(w, c) ∈ L(A′′i),∃c′, (w, c′) ∈ L(Ai). This is because
only part of the constraints onAi are taken into account. Turbo algorithms will thus be
of interest if the A′′i they allow to compute give good approximations of the A′i. This
is this quality of the A′′i that we investigate in this chapter.

4.1.2 About solution extraction
If Algorithm 6 converges, one is able to extract a solution to the considered factored
planning problem from the A′′i obtained.

When the communication graphs are trees this is straightforward. One can simply
apply the method proposed in the previous chapters. Because ∀i,L(A′′i) = L(A′i)
and the communication graph is a tree, one can ensure that the tuple of paths found is
indeed a solution of the factored planning considered.

However, when the communication graphs are not trees, one can not ensure that
L(A′′i) = L(A′i). And, even if this is the case, one can not ensure that a solution
will be found using the same method as for trees. Finding a solution may require
the use of backtracking. At some step of the solution extraction, one may be unable
to choose a path πj in A′′j , compatible with the previously chosen paths πi1 , . . . , πik
in its neighbors. This would require the modification of at least one of the πi` (and
potentially also the modification of the paths that where used for computing πi`).

4.2 Turbo algorithms for constraint solving
We first focus on the case of factored planning problems without costs. Simply replac-
ing weighted automata by automata in the definition of factored cost-optimal planning

90

4.2. TURBO ALGORITHMS FOR CONSTRAINT SOLVING

problems defines such problems. It is straightforward to prove that the message passing
algorithms can be used in this case: simply consider weighted automata in which all
costs are null. In this case, determinization and minimization of automata are always
possible. We thus consider only minimal deterministic automata, which allows us to
confound automata and their languages.

This section recalls some known results about turbo algorithms for constraint solv-
ing, and show how these results relate to the specific case of planning. Finally our
experimental setting is presented and experimental results are given.

4.2.1 Conditions for convergence
In [27] turbo algorithms are studied in detail for the case of “systems defined by local
constraints”. Factored planning problems belong to this class of systems. Hence, if a
partial order v exists on automata verifying the following axioms, then existence of a
unique stabilization point for Algorithm 6 on any factored planning problem is ensured
(Lemma 7 of [27]). The first axiom ensures the existence of a least informative system:

∃I,∀A,A v I. (4.1)

The second axiom ensures that the synchronous product adds the same amount of in-
formation to all the systems:

∀A1,A2,A3,A1 v A2 ⇒ A1 ×A3 v A2 ×A3. (4.2)

Finally, the third axiom ensures that the projection does not add information:

∀A1,A2,∀Σ,A1 v A2 ⇒ PΣA1 v PΣA2. (4.3)

The idea behind these axioms is that applying Algorithm 6 to a factored planning
problem will result into messages having a decreasing evolution with respect to v.
There is an obvious partial order on automata verifying these axioms: A1 v A2 if and
only if L(A1) ⊆ L(A2).

If, in addition to the existence of a partial order verifying axioms 4.1, 4.2, and 4.3,
the number of possible automata is bounded, convergence of Algorithm 6 is ensured
within a finite number of steps on any factored planning problem. Indeed, messages de-
crease for v and there is a bounded number of possible messages (Theorem 3 of [27]).

It is, however, not the case that the number of languages (and thus of automata)
over a given alphabet is bounded. Thus, it is not possible to ensure convergence of
Algorithm 6 on any factored planning problem. As an example, consider the problem
in Figure 4.1. This problem has no solution: reaching the goal in A1 implies the firing
of an α, which implies the firing of a γ in A3 and thus the firing of a β in A2, which
enforces the firing of a second α in A1 and thus the firing of a second γ, and so on.
When using message passing on this problem, the messageM1,3 fromA1 toA3 will be
progressively updated but will never reach stability. Figure 4.2 represents this message
after n updates.

4.2.2 Ensuring convergence in all cases
However, one needs to be able to stop computation in all cases. This can be achieved
by using a notion of distance d between languages and deciding convergence as soon
as the messages are stable up to some constant with respect to this distance. In other

91

CHAPTER 4. TURBO ALGORITHMS FOR FACTORED PLANNING

A1

αβ

A2

βγ

A3

γα

Figure 4.1: A factored planning problem such that turbo algorithms do not converge.

. . .α α α α
α

n

Figure 4.2: M1,3 after n updates of all the messages, assumingM3,2 and thenM2,1

are updated between each two updates ofM1,3

words, Algorithm 6 will stop as soon as the updating of each messageMi,j results in
the new messageM′i,j such that d(Mi,j ,M′i,j) ≤ ε, for some small ε.

A distance which seems reasonable is the following:

d(A1,A2) =

∞∑
n=0

1

2n
1Ln(A1) 6=Ln(A2)

where 1L1 6=L2
= 1 as soon as L1 6= L2 and 0 in other cases, and Ln(A) = {w ∈

L(A) : |w| = n} is the set of words of length n belonging to L(A). Using this dis-
tance almost corresponds at looking only at words under a given length ` for checking
convergence. As, for any alphabet, the set of words of length smaller than ` is finite,
and any update of messages in Algorithm 6 can only remove words from the consid-
ered messages, convergence is granted using this distance. Moreover, in any planning
problem, there exists a bound (difficult to compute in a modular way) such that if in a
component there exists no plan with length smaller than this bound, the problem has
no solution. This ensures that convergence with respect to this distance (using a correct
bound) is sufficient for deciding the absence of a solution.

4.2.3 Experimental results
In this section we present some experimental results obtained by running Algorithm 6
on randomly generated factored planning problems for which communication graphs
have cycles. Our goal is to estimate if the over-approximations of the A′i computed by
the message passing algorithms are of interest for planning. That is, if they allow to
find solutions with few backtracking steps.

In all our experiments we randomly generate some factored planning problems.
This is done by choosing a shape for the interaction graph of the problem, and then, for
each node of this graph, randomly generating an automaton. These automata have up to
20 states and up to three time more transitions. Each automaton shares 2 different labels
with each of its neighbors in the interaction graph. Once a problem is generated, we
check if it is not trivially solvable (that is no solution can be found without backtracking
before updating automata). If it is not trivially solvable we check if it is solvable

92

4.2. TURBO ALGORITHMS FOR CONSTRAINT SOLVING

by searching for a path into the full product A of the component automata. Only
problems which are not trivially solvable but still have a solution are considered for our
experiments. In doing this we select the 5-10% “most complicated” problems among
the ones we generate.

Experiment 1: automata on a circle.

For our first experiment we chose a shape of communication graph known to be well
suited for turbo methods: a circle. The setting for this experiment is as follows: we con-
sider a circle of n automata (randomly generated as described above) A0, . . . ,An−1

such that ∀0 ≤ i < n one has Σi ∩ Σ(i+1)%n 6= ∅ (here % stands for modulo) and
∀j, if |i − j| > 1 then Σi ∩ Σj = ∅. We call an iteration an update of all the mes-
sages. Iterations are performed in the following way: first the messages of the form
Mi,(i+1)%n are computed by increasing values of i, and then the messages of the form
Mi,(i−1)%n are computed by decreasing values of i. Figure 4.3 presents the commu-
nication graph corresponding to this setting for five automata, it also shows in which
order the messages are updated in this particular case (for example, M2,3 is updated
in third place). Such iterations are repeated until stabilization of the messages, that is
when no more messages have been modified during an iteration. As soon as stabiliza-
tion is reached an attempt to find a solution is initiated. It is done using the method
presented in Section 4.1.2 without using backtracking. For this reason, even if all prob-
lems have solution, it is not always the case that a solution will be found. Our goal
using this method is to get an idea on the quality of the computedA′′i : if in many cases
a solution is found, it is likely that in practice few backtracking steps will be needed
for finding plans.

A0

A1

A2A3

A4

1:M0,1

2:M1,2

3:M2,3

4:M3,4

5:M4,0

6:M0,4

7:M4,3

8:M3,2

9:M2,1

10:M1,0

Figure 4.3: Experimental setting and propagation of messages during one iteration for
five automata.

Figure 4.4 presents the results obtained in this setting for circles of 3 to 15 au-
tomata. In each case, 50 circles were considered. For each circle size the percentage of
problems for which convergence occurred in 1, 2, or 3 iterations is represented, as well
as the percentage of problems in which a solution (i.e. a plan) has been found (without
using backtracking).

We limited our experiments to circles of up to 15 automata because of the method
used for selecting problems. Selecting problems is in fact very time consuming. Find-
ing a difficult problem as described above frequently requires to generate more than
20 problems and test them by searching solutions without using turbo algorithms. We
however performed some experiments with larger circles, as Algorithm 6 is able to han-

93

CHAPTER 4. TURBO ALGORITHMS FOR FACTORED PLANNING

Figure 4.4: Experimental results for circles of 3 to 15 automata: number of iterations
before convergence and percentage of solutions found are presented.

dle them. The results are presented in Figure 4.5. For each value of n, 50 cycles were
generated but no selection was done among them. For each circle size the percentage
of problems for which convergence occurred in 1, 2, or 3 iterations is represented. Due
to the limitations presented above, we can not give the percentage of cases where a
solution was found (in fact some of the problems considered may have trivial solutions
or no solution).

Figure 4.5: Experimental results for circles of more than 15 automata: number of
iterations before convergence are presented.

94

4.3. TURBO ALGORITHMS FOR COST-OPTIMAL PLANNING

It may seem odd that, in none of the cases considered more than 3 iterations were
required for converging. Thus, we performed a much larger experimentation: 10000
cycles of 3 automata were generated (no selection was performed among them). In this
case we found: 56.01% of convergences within 1 iteration, 35.04% within 2 iterations,
8.92% within 3 iterations, and 0.03% within 4 iterations.

To conclude, this first experiment gave promising results. In particular a conver-
gence within very few iterations in all cases. And more than 80% of success in search-
ing plans in updated components for circles of more than three automata, without using
backtracking at all.

Experiment 2: automata on a tetrahedron.

In this setting, we considered problems with four automata (generated as described
above) for which the communication graph is a tetrahedron. The goal here is to try
more complex shapes than just circles. An iteration is performed by updating each
message exactly once. These updates are done along a path in the communication
graph which takes each edge only once in each direction. This is shown in Figure 4.6.

A3

A0

A1

A2 12:
11:
10:

9:
8:
7:
6:
5:
4:
3:
2:
1: A0 A1

A1 A2

A2 A3

A3 A0

A0 A2

A2 A1

A1 A3

A3 A2

A2 A0

A0 A3

A3 A1

A1 A0

Figure 4.6: Automata on a communication graph with tetrahedra shape (left) and order
of message updates during an iteration (right).

We obtained the following results for 50 “difficult” test cases (selected as described
above): a quick convergence in all cases (2% within 1 iteration, 52% within 2 iterations,
42% within 3 iterations, and 4% within 4 iterations), and a solution found with no
backtracking in 85% of the cases. The slightly slower convergence could come from
the way iterations are performed, which may be less efficient than in the circles of
automata, or from the stronger interaction in this second setting.

These results lead us to think that using the message passing algorithms directly
on problems for which the communication graphs are not trees may give good results
as soon as the interactions are sufficiently sparse. In particular, searching for plans in
problems updated by Algorithm 6 using backtracking may allow one to find a solution
with actually very few backtracks: in our experiments a solution was frequently found
with no backtracking at all.

4.3 Turbo algorithms for cost-optimal planning
In this section we extend the results of previous section by suggesting solutions for
applying turbo algorithms to systems with quantitative aspects (in our case factored

95

CHAPTER 4. TURBO ALGORITHMS FOR FACTORED PLANNING

cost-optimal planning problems). The main issue to deal with is that cycles in the
communication graphs usually result in the costs being counted several times along
execution of Algorithm 6. This implies that one should use some normalization proce-
dure after taking the products. The first part of this section formally justifies the need
for such a normalization. The second part explains concretely how to perform normal-
ization and gives a possible normalization constant. The third part consists of further
experimental results.

4.3.1 Necessity of a normalization
Consider the example in Figure 4.7. During the update of the messages, the cost of α
will grow unbounded. Consider, for example, an update in the following order: M1,2

followed byM2,3, and finallyM3,1. Figure 4.8 presents messageM1,2 after n such
updates. This example shows that, in any factored planning problem where costs of
solutions are not null, it is hopeless to expect to see any stabilization of the messages.
This suggests the need for a normalization procedure after taking synchronous prod-
uct, in order to keep costs of paths within a reasonable scope (one could imagine to
track costs associated to each action, but the loss of information during the projection
prevents this approach).

A1

α, 1

β, 0

A2

β, 0

γ, 0

A3

α, 0

γ, 0

Figure 4.7: An example where stabilization is not possible in presence of costs on
transitions.

β, n

Figure 4.8: MessageM1,2 after n updates.

In our setting, one can imagine two ways for normalizing an automaton: either (1)
adding a (negative) constant to the cost of each path, or (2) dividing the cost of each
path by a constant. The main interest of (2) is that it is the easier to perform in practice:
to divide the cost of all the paths of an automaton by a constant c it is sufficient to
divide the cost of each transition by c. However, the downside is that the difference
of costs between paths is changed. In our case where costs are additive, it may result
in choosing the wrong path. For example, see Figure 4.9: originally the best solution
consisted of firing an α in each automaton, but after dividing the costs of the paths in
A1 by c = 3, the best solution is a firing of β in each automaton.

By contrast, (1) gives small costs to local paths which already have the smallest
costs. It concentrates the smallest costs on the paths that are potentially part of a cost-
optimal solution. In this way, constraint solving will be helped by costs (paths with
very high costs do not have to be considered) and solution extraction should also be

96

4.3. TURBO ALGORITHMS FOR COST-OPTIMAL PLANNING

improved (the smallest cost path in each automaton will likely be part of a solution,
while the random path considered in the previous case has no particular reason of being
part of a solution). For these reasons we will use (1) rather than (2).

A1 α, 3

β, 6

A2 α, 3

β, 1

Figure 4.9: Dividing costs is not acceptable.

In the next part we describe concretely how to add a cost to each path of a weighted
automaton. We also suggest a possible constant to use for normalization.

4.3.2 Normalization procedure
The idea of our normalization procedure is to add a (negative) constant to the cost of
each path of the automaton that is being normalized. A simple way to do this is to
add the constant to the initial cost of each initial state of the considered automaton.
However, this may lead to automata where there is a huge negative initial cost which
compensates for a huge cost for each path. Thus we suggest that, once the constant has
been added to the initial costs, it is propagated throughout the automaton, so that costs
of transitions do not grow too much. This can be done by pushing this cost toward final
states, using algorithms similar to the weight pushing algorithm from [76].

A possible normalization constant is the cost of a shortest path minus one. Using
this constant ensures that, after each normalization, the cost of the shortest path(s) is
one. This has the interest of guaranteeing that a normalized automaton with no negative
costs on transitions always exists. Moreover, this constant is simple to compute due to
the small size of the automata involved in the computations along a standard execution
of Algorithm 6.

Using this normalization it is very likely that no stabilization will be reached when
applying Algorithm 6 to systems with costs. The fact is that normalization (as ex-
pected) only stabilizes paths with smallest costs: the difference between the smallest
costs and the other costs increases when updating messages. To decide when the ex-
ecution of Algorithm 6 should stop on a given problem, a distance similar to the one
proposed in Section 4.2.2, can be used, thus checking equality of words for a given cost
rather than for a given length.

4.3.3 Experimental results
As in the case of factored planning, we generated factored cost-optimal planning prob-
lems for our experiments. The automata generated have almost the same characteristics
as before, except that they have random costs on transitions. We still consider the “diffi-
cult” problems only by eliminating the ones with no solutions and generating automata
with many paths with different costs. This way finding a solution may be easy, but
finding the best one is more difficult.

In all our experiments, the condition for stopping the algorithm is now stability of
the cost-optimal path in each component: if, after an iteration, the cost-optimal plans
remain the same (in each component) as they were before the iteration, then stability
is considered to be reached. In order to select a solution, one proceeds as follows.

97

CHAPTER 4. TURBO ALGORITHMS FOR FACTORED PLANNING

First a (locally) cost-optimal path π0 is chosen in A0, and send it to its neighbors
as before. Then a (locally) cost-optimal path compatible with π0 is chosen in each
neighbor, and propagated as well. This is done until a path is found in each component,
or no compatible path can be found in a given component. We still do not perform
backtracking. If a solution is found, one searches for a cost-optimal solution using a
centralized approach and compares the costs of the two solutions, in order to estimate
the quality of the solution found using the turbo approach.

Experiment 1: automata on a circle.

As was the case in the absence of costs, we first consider automata for which the only
communication graph is a circle. We look at circles of 3 to 7 components, trying 20
different circles in each case. We do not test as many problems as for the no-cost case
because generating difficult problems requires much more time in practice when there
are costs. Minimization of weighted automata may not terminate, and not minimizing
significantly increases the computation time in many cases. Convergence rapidity in
terms of number of iterations is almost the same as in the no-cost case. Thus, we focus
on the percentage of solutions found, and in the cases where a solution is found, on
the quality of this solution. Results for this experiment are presented in Figure 4.10.
Among the percentage of solutions found, the amount of solutions of different qualities
are represented. These qualities are of the form x − y%, meaning that the cost of a
solution of this quality is between x% (exclusive) and y% greater than the cost of a
cost-optimal solution.

Figure 4.10: Experimental results for circles of 3 to 7 weighted automata.

The fact that less solutions are found than in the no-cost case is probably due to
the very restrictive condition used for deciding stability. This fact excepted, the results
obtained are encouraging, with a large part of the solutions found being of decent
quality (less than 5% greater than a cost-optimal solution).

98

4.3. TURBO ALGORITHMS FOR COST-OPTIMAL PLANNING

Experiment 2: automata on a tetrahedron.

We also generated problems where automata are on a tetrahedron, as was the case with
no costs. The results obtained on 50 such problems are as follows. There was conver-
gence within few iterations in almost all cases (except in one experiment, stabilization
was always reached after 2 or 3 iterations). Moreover, a solution was found without
backtracking in 68% of our experiments. Among the 34 solutions found, 17 were opti-
mal. More complete results are presented in Table 4.1.

found opt 0-5% 5-10% 10-15% 15-20% >20%
34 17 0 7 3 4 3

Table 4.1: Experimental results for 50 factored cost-optimal planning problems on
tetrahedra.

The experimental results obtained here by applying turbo algorithms to factored
cost-optimal planning problems for which the communication graphs are not trees
show that these algorithms are of interest. In particular, we frequently obtained op-
timal or close-to-optimal solutions in “difficult” problems. Moreover, these solutions
were frequently found quickly (performances were comparable to what we obtained in
Chapter 3 for factored cost-optimal planning problems for which the interaction graph
was a tree).

Conclusion
In this chapter we presented experimental results on the use of turbo algorithms for
factored planning and factored cost-optimal planning. This was done by executing
these algorithms on randomly-generated problems. The results obtained thus far are
very encouraging.

In the case of constraint solving (factored planning), the algorithms converged in
very few iterations on many test cases. Moreover, in almost all cases, solutions have
been obtained quickly on networks of up to 50 small automata, which are hardly man-
ageable using a centralized approach. This corresponds to finding a path in an automa-
ton with up to 1050 states.

In the case of optimization (factored cost-optimal planning) the algorithms con-
verged in few iterations as well. The solutions obtained were frequently optimal, or
close-to-optimal. This can be explained by the fact that the costs of the solutions which
are not likely to be optimal diverge along an execution of the algorithm.

One should, however, consider these results carefully as they were obtained using
a random problem generator. This generator could generate problems that are particu-
larly well-suited for turbo algorithms. It may be the case that on real problems, turbo
algorithms converge slowly, or do not filter sufficiently many wrong plans to ensure a
quick isolation of a solution after convergence. However, we believe that the experi-
mental results presented in this chapter show that turbo algorithms may render acces-
sible problems which are otherwise intractable with standard centralized approaches.
This should, at least, be a reason for considering these algorithms in the context of
planning.

99

CHAPTER 4. TURBO ALGORITHMS FOR FACTORED PLANNING

100

Chapter 5

Networks of Automata with
Read Arcs

chapter abstract: Real planning problems may have actions that can only be per-
formed in one component when another component is in a specific state (an action can
read some variables without modifying them). This chapter proposes a mechanism to
capture this phenomenon, under the form of automata with read arcs. It is shown that
the message passing algorithms can be extended to this new setting.

THE WORK PRESENTED IN Chapter 2 suffers from a weakness. Planning problems
often specify that an action on some variable (or set of atoms) Vn can only be per-

formed if another variable Vm has some specific value. For example, loading a truck
requires the presence of the truck, but it does not change the truck location. Moreover,
the presence of the truck may also enable another concurrent action, like filling it up.
This ability to read a variable is not encoded by standard automata interactions. Con-
sider the example in Figure 5.1, all actions in A1 and A2 can only be performed if A3

is in its initial (and final) state. To model this, one needed to introduce loops inA3 that
synchronize with α, β and γ. As a consequence, for A1,A2,A3 to jointly reach their
goal, A3 must perform one word in {γ, ααβ, αβα, βαα}, which forces readings of its
state variable to be displayed and ordered. In particular, concurrent readings become
impossible.

In this chapter we propose a mechanism that solves this difficulty: it extends the
semantics of automata interactions to enable state readings, without forcing a compo-
nent to fire a transition in order to display its state. In the previous example, this will
allow A3 to stay idle and simply “show” its state to enable actions in A1 and A2.

Section 5.1 illustrates the principle of this construction in the simplest setting, while
Section 5.2 extends it to the case of networks of automata, with cross and simultane-
ous readings. Section 5.3 proves that this setting enjoys the right algebraic properties
that enable the distributed computation of factored plans. Section 5.4 generalizes the
approach to any number of automata. For simplicity of presentation, all these results
are described in the context of factored planning without costs.

101

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

α

γ

α

γ

β

α

β

γ

A1 A2 A3

Figure 5.1: Network of three partially synchronized automata.

5.1 Simple reading mechanism
This section illustrates how a reading mechanism can be introduced to define automata
interactions. The setting is first limited to the simple case of two automata. The next
sections extend it to an arbitrary number of automata, with cross and multiple readings.

5.1.1 Writing and reading

Beyond the simple composition of two automata A1 and A2 by the usual synchronous
product, one would like to allow a weak form of synchronization, whereA2 is allowed
to perform some of its transitions only when A1 is in specific states. This requires
a double mechanism. First, A1 should display properties of its states. Rather than
associating labels to states, it is equivalently assumed that transitions output a readable
label. So let us define A1 = (S1, S

I
1 , S

F
1 ,Σ1 × O1, T1) where O1 is a finite set of

readable labels, and so T1 ⊆ S1 × Σ1 × O1 × S1. For simplicity, only a single
property is displayed by each state (that is produced by each transition). The language
L(A1) is defined standardly (as in Section 2.1.1) by considering Σ1 ×O1 as alphabet.
Secondly, A2 must be able to read these values. Let I2 be the set of “input values"
to A2, that one can define as A2 = (S2, S

I
2 , S

F
2 , I2 × Σ2, T2), with ? ∈ I2, and so

T2 ⊆ S2 × I2 × Σ2 × S2. The semantics is that a transition t2 = (s2, a, σ, s
′
2) ∈ T2

will be able to fire only if A1 has displayed the value a at the output of one of its
transitions; the special case of a = ? means that t2 is not reading in A1. Again, the
language L(A2) is obtained by considering I2 × Σ2 as alphabet.

To define the interactions of A1 and A2 based on this reading mechanism, let us
first consider the composition of their languages. It consists of words over the alphabet
I2 × Σ×O1 where Σ = Σ1 ∪ Σ2.

Definition 5.1. A word w = (i1, σ1, o1)...(iK , σK , oK) is coherent if and only if, for
1 ≤ k ≤ K, one has

1. ik = ok−1 or ik = ? (in particular i1 = ?),

2. ok = ok−1 if σk 6∈ Σ1, and

3. ik = ? if σk 6∈ Σ2.

102

5.1. SIMPLE READING MECHANISM

In other words, (1) expresses that if label σk is attached to a reading, the previous
label must have provided this value as output. Condition (2) expresses that transitions
labeled by Σ2 \ Σ1 (which correspond to private transitions of A2) can not change (or
must propagate) the output produced by A1. Symmetrically, (3) expresses that private
transitions of A1 can not be associated to a reading.

5.1.2 Operations on languages
Definition 5.2. The projection Π2 of words over I2×Σ×O1 on I2×Σ2 is defined as
the monoid morphism generated by Π2(i, σ, o) = (i, σ) if σ ∈ Σ2, else Π2(i, σ, o) = ε.

Definition 5.3. Similarly, the projection Π1 on Σ1 ×O1 is the monoid morphism gen-
erated generated by Π1(i, σ, o) = (σ, o) if σ ∈ Σ1, otherwise Π1(i, σ, o) = ε.

Definition 5.4. The composition or product of languages L(A1)×LL(A2) is defined
by all coherent words w over alphabet I2 × Σ × O1 such that Π1(w) ∈ L(A1) and
Π2(w) ∈ L(A2).

Notice that this definition extends the natural synchronous product of languages,
where a letter σ ∈ Σ1∩Σ2 corresponds to synchronous actions of two languages. Here,
“letters” (i, σ) and (σ, o) inL(A2) andL(A1) respectively give rise to the synchronous
action (i, σ, o) that both needs input i and produces output o.

As an example, let L(A1) = {w1 = (α, 1)(γ, 2)(α, 3)(δ, 4)} and L(A2) = {w2 =
(1, β)(?, γ)(?, β)(3, δ), w′2 = (1, γ)(1, β)}, with Σ1 = {α, γ, δ},Σ2 = {β, γ, δ} and
I = O = {1, ..., 4}. One has L(A1)×L L(A2) = {w, w′ } (Figure 5.2) where

w = (?, α, 1)(1, β, 1)(?, γ, 2)(?, β, 2)(?, α, 3)(3, δ, 4)

w′ = (?, α, 1)(1, β, 1)(?, γ, 2)(?, α, 3)(?, β, 3)(3, δ, 4)

Observe thatw′2 does not synchronize withw1, due to the impossibility of reading again
1 after action γ has been performed in A1. By contrast, words w1 and w2 synchronize
in two different ways, yielding w and w′. Notice that the readings in A2 constrain the
interleaving of the private events of A1 and A2 (see the notion of asymmetric conflict
in Petri nets with read arcs in [5, 4]). For example, the first occurrence of β has to be
performed after first occurrence of α, while both are private. By contrast, since there
is no reading in the second occurrence of β, it can be performed either before or after
the second occurrence of α. Notice as well that writings in A1 are propagated along
product words by private events ofA2, which are attached to a “stuttering event" ofA1

(circles in Fig. 5.2). Finally, observe that the usual synchronous product of languages
is obtained by positioning all readings to ?.

5.1.3 Operations on automata
In standard automata theory, one has that (L(A1),Σ1)×L (L(A2),Σ2) is the language
L(A1 ×A A2), where ×A is the synchronous product of automata and ×L the usual
synchronous product of languages (they correspond to the products defined in Chap-
ter 2 when all actions have cost 0) which can be defined as Π−1

1 (L(A1))∩Π−1
2 (L(A2)).

As explained in Chapter 2, this property is essential to replace operations on regular
languages, which are possibly infinite objects, by operations on their representations as
automata, which are finite objects. To extend this property to the writing and reading

103

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

1

2

3

4

α

γ

α

δ

×L

1

3

β

γ

β

δ

1

1

γ

β

=

1

1

2

3

3

4

α

β

γ γ

α

β

δ δ

1

1

2

2

3

4

α

β

γ γ

α

β

δ δ

Figure 5.2: Product of languages. Arrows denote output and input values. Product
words, on the right, are depicted as synchronized threads where circles denote stutter-
ing events.

automata described above, one needs a notion of automaton with internal readings and
writings.

Let A = (S, SI , SF , I × Σ × O, T) be an automaton with (internal) inputs and
outputs, assuming ? ∈ I . A path π = t1...tK in A is said to be coherent if and only if
its label sequence (I × Σ × O)(π) forms a coherent word over alphabet I × Σ × O.
The coherent language of A, denoted Lc(A), is now defined as the restriction of L(A)
to its coherent words. One has A = A1 ×A A2 if and only if S = S1 × S2, S

I =
SI1 × SI2 , S

F = SF1 × SF2 , I = I2,Σ = Σ1 ∪ Σ2, O = O1, and the transition set
T = Ts ∪ T1,p ∪ T2,p is defined by:

Ts = { ((s1, s2), i2, σ, o1, (s
′
1, s
′
2)) :

(s1, σ, o1, s
′
1) ∈ T1, (s2, i2, σ, s

′
2) ∈ T2 } (5.1)

T1,p = { ((s1, s2), ?, σ1, o1, (s
′
1, s2)) : σ1 6∈ Σ2,

(s1, σ1, o1, s
′
1) ∈ T1, s2 ∈ S2 } (5.2)

T2,p = { ((s1, s2), i2, σ2, o1, (s1, s
′
2)) : σ2 6∈ Σ1,

(s2, i2, σ2, s
′
2) ∈ T2, s1 ∈ S1, o1 ∈ O1 } (5.3)

Synchronized transitions in Ts correspond of course to σ ∈ Σ1∩Σ2, private transitions
of A1 appear with no reading in T1,p, while private transitions of A2 reproduce all
possible outputs of A1 in T2,p.

Proposition 5.1. Lc(A1 ×A A2) = L(A1)×L L(A2).

Proof. One can easily proceed by double inclusion. Alternatively, let us first ig-
nore the coherence requirement. Then for A1 ×A A2 one gets L(A1 ×A A2) =
Π−1

1 (L(A1)) ∩ Π−1
2 (L(A2)) as for a standard synchronous product. The proposition

follows by restricting both sides to coherent words. 2

5.2 Networks of automata with read arcs
To extend read arcs to networks of automata, several refinements are necessary, and in
particular one needs a mechanism to specify where input values must be read. This

104

5.2. NETWORKS OF AUTOMATA WITH READ ARCS

relies on the notion of tag.

5.2.1 Reading and writing tags
Consider a finite set O of output labels partitioned into O = O1] ...] ON . In the
sequel, each On will characterize the possible values displayed by component An in a
network of automata with read arcs composed of A1, ...,AN .

Definition 5.5. A tag over O is a function α : {1, ..., N} → O ∪ {?} such that
∀n, α(n) ∈ On ∪ {?}.

The support of α is Supp(α) = {n : α(n) 6= ?}, and for J ⊆ {1, ..., N}, TJ

denotes the set of tags whose support is J , T⊆J denotes the set of tags whose support
is included in J , and T denotes the set of all tags. Two tags α and β are compatible ,
denoted α ∼ β, if and only if they coincide on Supp(α) ∩ Supp(β).

Definition 5.6. The composition α ∧ β is defined by (α ∧ β)(n) = α(n) if α(n) 6= ?,
otherwise β(n).

Notice that Supp(α∧β) = Supp(α)∪Supp(β), and α∧β = β ∧α when α ∼ β.
Composition will only be applied in this case. For J ⊆ {1, ..., N}, the restriction of
tag α to J , denoted α|J , is defined by α|J(n) = α(n) for n ∈ J , otherwise α|J(n) = ?.

5.2.2 Automata with read arcs
We assume a partition O = O1] ...]ON given once for all.

Definition 5.7. An automaton with read arcs (ARA) on O is defined as a tuple A =
(S, SI , SF ,T× Σ× TW , T,W), where (S, SI , SF ,T× Σ× TW , T) is an ordinary
automaton, and the writing set ∅ 6= W ⊆ {1, ..., N} defines the indices of output sets
On displayed by A.

A transition t = (s, α, σ, β, s′) ∈ T moves from s to s′ in A when action σ is
performed, assuming t manages to read the values specified by the reading tag α ∈ T.
As a result of the firing, t produces the writing tag β ∈ TW , which means that it
changes the output values in each On, n ∈ W . Intuitively, transition t changes the
state property displayed by each component An for n ∈ W . This is made clear by the
semantics of an ARA, and by the composition operations defined below. The reading
set R of A is defined as the smallest subset of {1, ..., N} such that T ⊆ S × T⊆R ×
Σ×TW ×S, i.e. such that reading tags of transitions all have their support inR. When
needed, R can be appended at the end of the tuple defining A.

Let π = t1...tK be a path inA, and (T×Σ×TW)(π) = (α1, σ1, β1)...(αK , σK , βK)
its associated word. This word is coherent over W if and only if

∀2 ≤ k ≤ K, (αk)|W ∼ (βk−1)|W (5.4)

In other words, readings and writings along this path must be consistent for every
component On of the reading and writing tags, for n ∈W . Given that Supp(βk−1) =
W , (5.4) reproduces condition (1) of Definition 5.1, for every n ∈ W . The readings
performed by transitions of A outside W are not considered. The coherent language
of A, denoted Lc(A), is defined as the subset of words in L(A) that are coherent over
its writing set W .

105

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

Notice that the above definitions of ARA and their semantics are simply the ex-
tension of the automata with inputs and outputs of Section 5.1 to the case of vector
readings and writings.

Definition 5.8. A network of ARA is defined as an N -uple (A1, ...,AN) of ARA such
that An = (Sn, S

I
n, S

F
n ,T⊆Rn × Σn ×T{n}, Tn, {n}, Rn) , 1 ≤ n ≤ N .

Each component An is thus in charge of displaying values in its private set On of
state properties, by means of the writing tags in T{n} attached to transitions. Notice
that An may also read values in its own On by the reading tags in T⊆Rn , which is
somehow redundant with (but not equivalent to) reading its own internal state to enable
the firing of a transition. The interest of this phenomenon becomes clear in the defini-
tion of the composition of ARA, since it allows cross-readings, and for working with
languages, regardless of the actual automata that produced them.

Notice that the networks of ARA are in fact very similar to the asynchronous cellu-
lar automata as described in [86]. However, the networks of ARA formalism is much
closer to the factored planning formalism presented in the previous chapters of this
thesis.

5.2.3 Operations on languages
Definition 5.9. Consider letter (α, σ, β) ∈ T×Σ×TW , and letR′,Σ′,W ′ be respec-
tively reading, label and writing sets. The projection ΠR′,Σ′,W ′ is defined on letters by
ΠR′,Σ′,W ′(α, σ, β) = (α|R′ , σ, β|W ′) if σ ∈ Σ′, otherwise ΠR′,Σ′,W ′(α, σ, β) = ε. It
is then extended to words in (T×Σ×TW)∗ as the induced monoid morphism, and to
languages by union.

Notice that if L is a coherent language over W , its projection ΠR′,Σ′,W ′(L) may
lose coherence, due to the missing writing tags attached to letters σ 6∈ Σ′. Remark:
for w = (α1, σ1, β1)...(αK , σK , βK), the definition of ΠR′,Σ′,W ′ as a monoid mor-
phism allows one to associate uniquely any letter (αk, σk, βk) of w to its image in
ΠR′,Σ′,W ′(w), when σk ∈ Σ′.

Definition 5.10 (Weak inclusion). Let L,L′ be two languages over TR × Σ × TW .
We write L v L′ if and only if ∀w = (α1, σ1, β1)...(αK , σK , βK) ∈ L there exists
a word w′ = (α′1, σ1, β1)...(α′K , σK , βK) ∈ L′ such that α′k is a restriction of αk,
1 ≤ k ≤ K.

In other words, in the above definition, w′ is identical to w up to reading tags, that
may be less specific. We denote it by w v w′, with a light abuse of notation.

Definition 5.11. For i = 1, 2, let wi ∈ (T⊆Ri ×Σi ×TWi)
∗ be a coherent word over

Wi. The product w1×L w2 is defined as the set of words w ∈ (T⊆R ×Σ×TW)∗ that
are coherent over W , with R = R1 ∪R2, Σ = Σ1 ∪Σ2 and W = W1 ∪W2, and such
that

(I) ΠRi,Σi,Wi
(w) v wi, for i = 1, 2

(II) for any letter (α, σ, β) along w

(a) if σ ∈ Σ1 ∩ Σ2, let (α1, σ, β1) and (α2, σ, β2) be the projected images of
(α, σ, β) in w1 and w2, resp., then α = α1 ∧ α2 and β = β1 ∧ β2.

106

5.2. NETWORKS OF AUTOMATA WITH READ ARCS

(b) if σ 6∈ Σ2, let (α1, σ, β1) be the image of (α, σ, β) in w1, then α = α1 ∧
(β2)|W2\W1

and β = β1 ∧ (β2)|W2\W1
, where β2 is such that (α2, σ

′, β2)
is the image of the last letter (α′, σ′, β′) before (α, σ, β) in w and such that
σ′ ∈ Σ2 (if this letter does not exist, take for β2 the only element in T∅).

(c) if σ 6∈ Σ1, symmetric conditions of (b).

Condition (I) ensures that w reproduces readings and writings of w1 and w2. But
the readings in w could erase more ? than necessary, i.e. require more values than
those specified in w1 and w2. So (II) ensures that the readings of letters in w combine
exactly those required by the associated letters in w1 and w2, not more. Specifically,
(II.a) combines the reading and writing tags of the two image letters in w1, w2; the
compatibility of these tags is guaranteed by (I). In (II.b), a private event of w1 has to
be reflected in w. Its reading and writing tags are thus augmented to push forward
the output values previously positioned by (α2,l, σ2,l, β2,l) on W2 \W1. Notice that
α1,k ∼ β2,l, thanks again to (I), so α = α1,k ∧ (β2,l)|W2\W1

= α1,k ∧ β2,l.
Notice that conditions (I,II) above can easily be turned into a recursive construction

of an element in w1 ×L w2, that would interleave letters of these two words, provided
the coherence of reading and writing tags is checked before each composition, in order
to ensure the coherence of the resulting w over W .

The definition of the product of two words naturally extends to languages by union.
It is also clearly associative.

Lemma 5.1. LetLi be a language over T⊆Ri×Σi×TWi
, i = 1, 2. Then the projection

ΠRi,Σi,Wi(L1 ×L L2) is a coherent language over Wi, and satisfies

ΠRi,Σi,Wi
(L1 ×L L2) v Li.

Proof. The result is standard for the usual product of languages (ignoring reading
and writing tags). To extend it here, one simply has to check it for any word w in
the product of w1 ×L w2. The coherence of ΠRi,Σi,Wi

(w) over Wi derives from the
coherence of w over W ⊇ Wi. Then, in the definition/construction of an element in
w1×Lw2, reading tags of wi are modified: for example α = α1,k ∧α2,l, which entails
that α1,k and α2,l are restrictions of α. For writing tags, the relation β = β1,k ∧ β2,l

entails β1,k = β|W1
and β2,l = β|W2

, by considering supports. Similar reasonings hold
for cases (II.b) and (II.c). As a result, ΠRi,Σi,Wi

(w) v wi. 2

Notice that the product L1 ×L L2 removes more words in each Li than the usual
synchronous product (that it reinforces). This is due to the necessity of checking more
properties in words w1 and w2 that are combined, namely the coherence of their cross
readings and common writings overW1∩W2. Notice as well that ΠRi,Σi,Wi

(w1×Lw2)
is not wi in general, but a set of versions of wi where reading tags are reinforced. This
is due to readings inherited from the letters of the other word wj with which they may
synchronize.

5.2.4 Product of automata with read arcs

Definition 5.12. Consider Ai = (Si, S
I
i , S

F
i ,T × Σi × TWi

, Ti,Wi), i = 1, 2. The
product A1 ×A A2 is defined by (S, SI , SF ,T × Σ × TW , T,W) where S = S1 ×
S2, S

I = SI1 × SI2 , SF = SF1 × SF2 ,Σ = Σ1 ∪Σ2,W = W1 ∪W2, and the transition

107

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

set T = Ts ∪ T1,p ∪ T2,p is given by

Ts = { ((s1, s2), α1 ∧ α2, σ, β1 ∧ β2, (s
′
1, s
′
2)) :

(si, αi, σ, βi, s
′
i) ∈ Ti, α1 ∼ α2, β1 ∼ β2 } (5.5)

T1,p = { ((s1, s2), α1 ∧ β2, σ1, β1 ∧ β2, (s
′
1, s2)) :

σ1 6∈ Σ2, (s1, α1, σ1, β1, s
′
1) ∈ T1, s2 ∈ S2,

β2 ∈ TW2\W1
, α1 ∼ β2 } (5.6)

T2,p = { ((s1, s2), α2 ∧ β1, σ2, β1 ∧ β2, (s1, s
′
2)) :

σ2 6∈ Σ1, (s2, α2, σ2, β2, s
′
2) ∈ T2, s1 ∈ S1,

β1 ∈ TW1\W2
, α2 ∼ β1 } (5.7)

Intuitively, (5.5) merges/synchronizes transitions carrying shared labels, provided
they agree on readings and writings. While, (5.6) extends private transitions of A1 to
all possible values of s2, and to all possible values of reading and writing tags over
W2 \W1. And, (5.7) does the symmetric operation for private transitions of A2.

Not all transitions defined above are accessible and coaccessible inA1×A2. There-
fore some trimming should be performed to remove useless transitions, taking into
account that (co-) accessibility here must incorporate the coherence over W .

Theorem 5.1. Lc(A1 ×A A2) = Lc(A1)×L Lc(A2)

Proof. We proceed by double inclusion.
For ⊇, consider w ∈ Lc(Ai)×L Lc(Aj). Note w = (α1, σ1, β1) . . . (αk, σk, βk).

By definition of ×L there exists wi ∈ Lc(Ai) and wj ∈ Lc(Aj) such that w ∈ wi ×L
wj . Notewi = (α1

i , σ
1
i , β

1
i) . . . (αkii , σ

ki
i , β

ki
i) andwj = (α1

j , σ
1
j , β

1
j) . . . (α

kj
j , σ

kj
j , β

kj
j).

These two words are such that there exists fi : {1..ki} → {1..k} with fi(`) < fi(m) if
and only if ` < m and fj similarly defined for wj , with the properties that ∀` ∈ {1..k}:

1. if σ` ∈ Σi ∩ Σj , then ∃`i, `j , such that fi(`i) = fj(`j) = `, α` = α`ii ∧ α
`j
j ,

β` = β`ii ∧ β
`j
j , and σ` = σ`ii = σ

`j
j ,

2. if σ` ∈ Σi \ Σj , then ∃`i, such that fi(`i) = `, α` = α`ii ∧ β
f−1
j (`)

j , β` =

β`ii ∧ β
f−1
j (`)

j , and σ` = σ`ii , with f−1
j (`) the greatest `j such that fj(`j) < `,

3. the symmetric with σ` ∈ Σj \ Σi.

Moreover, by definition of the language of an ARA there exists πi a path in Ai and
πj a path in Aj such that (T × Σi × TWi

)(πi) = wi and (T × Σj × TWj
)(πj) =

wj , in other words πi = (s1
i , α

1
i , σ

1
i , β

1
i , s

1
i
′
) . . . (skii , α

ki
i , σ

ki
i , β

ki
i , s

ki
i

′
) and πj =

(s1
j , α

1
j , σ

1
j , β

1
j , s

1
j
′
) . . . (s

kj
j , α

kj
j , σ

kj
j , β

kj
j , s

kj
j

′
). Then, by definition of ×A any π =

(s1, α̂1, σ̂1, β̂1, s1′) . . . (sk, α̂k, σ̂k, β̂k, sk
′
) ∈ πi ×A πj is such that there exists f ′i :

{1..ki} → {1..k} with f ′i(`) < f ′i(m) if and only if ` < m and f ′j similarly defined
for πj , with the properties that ∀` ∈ {1..k}:

1. if σ̂` ∈ Σi ∩ Σj , then ∃`i, `j , such that f ′i(`i) = f ′j(`j) = `, s` = (s`ii , s
`j
j),

s`
′

= (s`ii
′
, s
`j
j

′
), σ̂` = σ`ii = σ

`j
j , α̂` = α`ii ∧ α

`j
j , and β̂` = β`ii ∧ β

`j
j ,

2. if σ̂` ∈ Σi\Σj , then ∃`i, f ′i(`i) = `, s` = (s`ii , s
f ′j
−1(`)

j

′
), s`′ = (s`ii

′
, s
f ′j
−1(`)

j

′
),

σ̂` = σ`ii , α̂` = α`ii ∧ βj,`, and β̂` = β`ii ∧ βj,`, where α`ii ∼ βj,` ∈ TWj
,

108

5.3. PLANNING IN NETWORKS OF ARA

3. the symmetric with σ̂` ∈ Σj \ Σi.

Identifying fi with f ′i , fj with f ′j , each βj,` with β
f−1
j (`)

j , and each βi,` with βf
−1
i (`)
i

gives a π ∈ πi ×A πj (here we slightly abuse the notations: this product is in fact the
product of two ARA, each one containing only one path) such that (T×Σ×TW)(π) =
w. Moreover w is coherent by definition of×L. Thus, w ∈ Lc(Ai×AAj). We proved
the first inclusion: Lc(Ai ×A Aj) ⊇ Lc(Ai)×L Lc(Aj).

For ⊆, consider w ∈ Lc(Ai ×A Aj). By definition of Lc there exists π a path in
Ai×Aj such that (T×Σ×TW)(π) = w and w is coherent. By definition of product
there exists πi a path in Ai and πj a path in Aj , such that π ∈ πi ×A πj . Moreover
(T × Σi × TWi

)(πi) = wi and (T × Σj × TWj
)(πj) = wj are coherent (else w

would not be coherent). And thus wi ∈ Lc(Ai) and wj ∈ Lc(Aj) by construction of
πi and πj . Moreover w ∈ wi ×L wj (using the same kind of construction as above),
hence w ∈ Lc(Ai) ×L Lc(Aj). This proves the second inclusion: Lc(Ai ×A Aj) ⊆
Lc(Ai)×L Lc(Aj). 2

Theorem 5.1 can be plugged into Lemma 5.1. This gives ΠR1,Σ1,W1(Lc(A1 ×A
A2)) v Lc(A1) (and symmetrically for A2). So the synchronization of A1 with A2

removes words w1 of A1 that have no compatible companion w2 in A2, both for the
firing of common labels in Σ1 ∩Σ2 and for the compatibility of readings and writings.
For words w1 of A1 that are preserved, their writing tags are unchanged, but their
reading tags may inherit extra conditions from their companion w2 in A2.

5.3 Planning in networks of ARA
As mentioned in Chapter 2, a factored planning problem can be modeled as a network
of automata. Similarly it can be defined as a network of automata with read arcs.
Given (A1, ...,AN), a plan is simply a (coherent) word w in Lc(A1 ×A · · · ×A AN),
i.e. a sequence of events reaching a marked or final state from the/an initial state,
ensuring both that synchronized actions are performed correctly, and that readings and
writings in each componentAn are also performed correctly. Factored planning would
consist in deriving w under a factored form, i.e. as a tuple (w1, ..., wN) of words, with
wn = ΠRn,Σn,Wn

(w) ∈ ΠRn,Σn,Wn
(Lc(A1 ×A · · · ×A AN)) v Lc(An), without

computing w, since working withA1×A · · ·×AAN might be intractable. Surprisingly,
this can be achieved if component interactions are sparse enough, as it was already
proved in Chapter 2 for networks of weighted automata. The idea is that the projected
languages ΠRn,Σn,Wn(Lc(A1 ×A · · · ×A AN)) can be derived, without computing
first Lc(A1 ×A · · · ×A AN), by means of local and coordinated computations. The
same procedure can be used as well to select a factored plan (w1, ..., wN) in these
projections. The central tool to achieve this is a relation between the product and
the projection of languages, that we immediately translate into a relation between the
product and the projection of ARA, in order to handle finite objects.

5.3.1 ARA representing planning problems
We first give an overview of some useful property of the ARA representing planning
problems. This property is central because the ARA having it also verify Theorem 5.2
below, which allows to use ARA instead of their languages when taking a projection.

Notice that, in planning problems, it may be the case that some properties of an
initial state have to be displayed. Due to the behavior of ARA this is not directly

109

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

possible as the properties of a state are displayed by the transition preceding it in a
path (and an initial state is not preceded by a transition in general). This issue could
be solved by adding some initial displayed properties before initial states. However it
does not fit well with the notion of coherent words: it would require to check coherency
inside the word but also with the initial state of the path which gave the word. We thus
suggest that the ARA A = (S, SI , SF , T × Σ × TW , T,W) representing planning
problems are always such that: Σ contains the special label start, SI contains only
one element sI , there is no transition t ∈ T such that t+ = sI , and each transition
t ∈ T such that t− = sI is labeled by start. The idea is that sI will be a dummy
initial state. The states corresponding to the initial states of a planning problem will be
the ones such that a transition labeled by start reaches them. And these start labeled
transitions will be used to display the initial states properties.

Definition 5.13. An ARA A = (S, SI , SF , T×Σ×TW , T,W) is state labeled if and
only if for any pair of transitions t = (s, α, σ, β, s′′) and t′ = (s′, α′, σ′, β′, s′′′) in T ,
s′′ = s′′′ entails β = β′.

This means that all writings from transitions reaching given state are the same. In
other words, writings characterize a property of the reached state, which matches our
interpretation of state reading arcs. Notice that different states can still “carry” the
same tag. The reason for defining this property of ARA is that the ARA representing
planning problems are clearly state labeled (because in this case the states of the ARA
match the states of the planning problem, and the actions will write exactly the state
they reach). The property of being state labeled is preserved by several operations on
ARA.

Proposition 5.2. If Ai and Aj are state labeled ARA, then Ai ×A Aj is also state
labeled.

Proof. Consider a state (si, sj) in Ai ×A Aj and two transitions t = (s, α, σ, β, s′′)
and t′ = (s′, α′, σ′, β′, s′′′) such that s′′ = (si, sj) = s′′′ and β 6= β′. Four cases are
possible:

1. t and t′ are both shared transitions, in this case β = βi ∧ βj and β′ = β′i ∧ β′j ,
with βi and β′i (resp. βj and β′j) coming from two transitions ti and t′i (resp. tj
and t′j) leading to the same state si in Ai (resp. sj in Aj). As Ai and Aj are
state labeled we have βi = β′i and βj = β′j , thus β = β′.

2. t is a shared transition and t′ is a private transition. Without loss of generality,
assume t′ is a transition from Ai. One has that β = βi ∧ βj and β′ = β′i ∧ β′j .
As Ai is state labeled one has βi = β′i. One has to prove βj = β′j . Notice
that s′ = (s′′i , sj). Two cases are possible: either sj ∈ SIj or sj /∈ SIj . In
the first case the fact that Aj is state labeled ensure directly βj = β′j . If sj /∈
SIj , the fact that Ai ×A Aj is trim ensure the existence of a path π in it such
that π = t1 . . . tn−1t

′tn+1 . . . tk, π− ∈ SI , and π+ ∈ SF . We note t` =

((s`i , s
`
j), α

`, σ`, β`, (s`i
′
, s`j
′
)). Let m be the largest integer smaller than n such

that smj 6= sj . As Aj is state labeled one has β′j = βpj for all p ∈ {m..n}. For
the same reason βj = βm. Thus, one can conclude that βj = β′j , and finally that
β = β′.

3. t and t′ are both private transitions from the same automaton. Assume, without
loss of generality, that these transitions are fromAi. One has that β = βi∧βj and

110

5.3. PLANNING IN NETWORKS OF ARA

β′ = β′i ∧ β′j . As Ai is state labeled, and as the transitions in Ai corresponding
to t and t′ lead to the same state si, one has βi = β′i. The same justification as
in (2) ensures βj = β′j . Thus, β = β′.

4. t is a private transition from an automaton and t′ is a private transition from the
other automaton. Applying twice the justification from (2) proves that β = β′.

In each possible case one has that β = β′. This proves the proposition. 2

Standard determinization procedure (see for example [16]) can be performed on
ARA. Indeed determinization preserves the language over alphabet T⊆R′ ×Σ′×TW ′ ,
it thus preserves the coherent language. Denote by DET (A) the ARA obtained from
the ARA A by applying a standard determinization procedure to it.

Proposition 5.3. If A is a state labeled ARA, then DET (A) is state labeled.

Proof. Let X ⊆ S be a state in DET (A). Considering the standard determinization
algorithm, X belongs to DET (A) means that there exists a state Y ⊆ S in DET (A)
and a label (α, σ, β) such that ∀s′ ∈ X,∃s ∈ Y, (s, α, σ, β, s′) ∈ T . In other words,
∃β, ∀s′ ∈ X , a transition writing β reaches s′. As A is state labeled, any transition
fromA reaching a state in X writes β. Hence, by construction of the determinized, for
all (Y, α, σ, β,X) and (Z,α′, σ′, β′, X) transitions in DET (A), one has β = β′. One
can then conclude that DET (A) is state labeled. 2

5.3.2 Projection of an ARA
Definition 5.14. The projection of an automaton with read arcs A = (S, SI , SF ,
T × Σ × TW , T,W) on R′,Σ′,W ′, respectively reading, label and writing sets, is
the ARA ΠR′,Σ′,W ′(A) = (S, SI , S′

F
,T⊆R′ × Σ′ × TW ′ , T

′,W ′). Transitions are
defined from a (possibly empty) silent path π, i.e. labeled by Σ \ Σ′, followed by a
visible transition, i.e. labeled by Σ′:

T ′ = { (s, α|R′ , σ, β|W ′ , s
′) : σ ∈ Σ′,

∃(s′′, α, σ, β, s′) ∈ T,
∃π a path in A,Σ(π) ∈ (Σ \ Σ′)∗,

π− = s, π+ = s′′}.

Finally, the set S′F is also constructed from paths of transitions from Σ \ Σ′: S′F =
SF ∪ {s ∈ S : ∃π a path in A,Σ(π) ∈ (Σ \ Σ′)∗, π− = s, π+ ∈ SF }.

The fact that only α|R′ is considered in the definition of the transitions requires a
comment. In the sequel, R′,Σ′,W ′ will be the reading, label and writing sets of some
automaton, and thus will select the transitions of this automaton. So any discarded
transition t′ of path π will be a private transition of another automaton, which can not
modify the values necessary to α|W ′ . So (s, α|R′ , σ, β|W ′ , s

′) will remain firable in the
projection, since coherence is only tested over W ′.

As for the product, this definition may produce states and transitions that are not
accessible and coaccessible, so a trimming may be necessary. In fact, the construc-
tion above corresponds to an ε-reduction to the left: useless transitions are bypassed. It
generally results in non-deterministic automata. Thus, one may perform a determiniza-
tion procedure (and a minimization procedure as well) after taking the projection of an
ARA. The determinization may however incur an exponential blowup in the number of
states, in the worst case.

111

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

In the sequel, we denote by ΠAi the projection ΠRi,Σi,Wi
, for some ARA Ai =

(Si, S
I
i , S

F
i ,T × Σi × TWi

, Ti,Wi), and its writing set Ri. Notice that taking the
projection also preserves the property of being state labeled.

Proposition 5.4. If A is a state labeled ARA, then ΠA′(A) is state labeled for any A′.

Proof. It comes directly from the definition of projection: the only transitions who may
be added are of the form t = (s, α, σ, β, s′) for some existing t′ = (s′′, α, σ, β, s′) in
the original automaton. So every transition going to some vertex are either transitions
from the original automaton or copies of these transitions. 2

The importance of being state labeled comes from the fact that the coherence of
the words produced by Ai ×A Aj is only checked when taking the language. Taking
the projection ΠAi(Ai ×A Aj) first can thus erase some of the coherence conditions,
unless if they are stucturally reflected in the automata.

Theorem 5.2. If Ai and Aj are state labeled then

Lc(ΠAi(Ai ×A Aj)) = ΠAi(Lc(Ai ×A Aj))

Proof. We prove this theorem by double inclusion.
For ⊆, consider w′ a word from Lc(ΠAi(Ai ×A Aj)). By definition of the lan-

guage of an automaton, there exists π′ a path in ΠAi(Ai ×A Aj) such that (T× Σi ×
TWi

)(π′) = w′.
One can show that there exists a path π in Ai ×A Aj such that (T × (Σi ∪ Σj) ×

TWi∪Wj
)(π) = w and ΠAi(w) = w′. The idea is to construct π from π′ = t1 . . . tk:

by definition of ΠAi , for each ti = (t−i , α(ti), σ(ti), β(ti), t
+
i), either ti is a tran-

sition from Ai ×A Aj or there exists t1i , . . . , t
`i
i , transitions from Ai ×A Aj such

that t`ii = (s, α, σ(ti), β, t
+
i) with α|Ri = α(ti), β|Wi

= β(ti), t1i
−

= t−i , and
σ(tji) /∈ Σi for any i ∈ {1..`i − 1}. Consider π̃ = t11 . . . t

`1
1 t

1
2 . . . t

1
k . . . t

`k
k . As it

is a path in Ai ×A Aj , one has (T × (Σi ∪ Σj) × TWi∪Wj
)(π̃) = w̃, with w̃ =

(α(t11), σ(t11), β(t11)) . . . (α(t`kk), σ(t`kk), β(t`kk)). By construction, one has ∀j,∀m <

`j , σ(tmj) /∈ Σi, and ∀j, (α(t
`j
j), σ(t

`j
j), β(t

`j
j)) is the jth letter in w′. Thus, by defini-

tion of projection, ΠAi(w̃) = w′. One can take π = π̃ and w = w̃.
Moreover, there exists such π which is such that w is coherent. This can be shown

by proving that any path π̃ inAi×AAj is such that w̃ = (T×(Σi∪Σj)×TWi∪Wj)(π̃)
is coherent. Suppose there exists π̃ = t1 . . . tk such that w̃ is not coherent. It means that
∃i such that ti = (si, αi, σi, βi, s

′
i), ti+1 = (si+1, αi+1, σi+1, βi+1, s

′
i+1), s′i = si+1,

andαi+1 � βi. AsAi×AAj is trim it means that there exists t′i = ((s′′i , α
′
i, σ
′
i, β
′
i, s
′′′
i))

with s′′′i = si+1 and αi+1 ∼ β′i. We have that s′′′i = s′i and βi 6= β′i. This is not pos-
sible as Ai and Aj , and thus Ai ×A Aj by proposition 5.2, are state labeled. Thus, w̃
has to be coherent.

Finally, as π is such that w is coherent, w ∈ Lc(Ai ×A Aj). Moreover, π was
constructed such that ΠAi(w) = w′, thus w′ ∈ ΠAi(Lc(Ai ×A Aj)). This proves the
first inclusion: Lc(ΠAi(Ai ×A Aj)) ⊆ ΠAi(Lc(Ai ×A Aj)).

For ⊇, consider w′ a word from ΠAi(Lc(Ai ×A Aj)). By definition of projec-
tion there exists w ∈ Lc(Ai ×A Aj) such that ΠAi(w) = w′. By definition of
coherent language of an automaton, there exists a path π = t1 . . . tk in Ai ×A Aj
with ti = (si, αi, σi, βi, s

′
i) such that (α1, σ1, β1) . . . (αk, σk, βk) = w. By defini-

tion of projection of automata there exists π′ a path in ΠAi(Ai ×A Aj) such that
(T × Σi × TWi

)(π′) = ΠAi(w) = w′. Thus, w′ ∈ L(ΠAi(Ai ×A Aj)). As
w′ ∈ ΠAi(Lc(Ai ×A Aj)), by Lemma 5.1 one has that w′ is coherent. Finally w′ ∈

112

5.3. PLANNING IN NETWORKS OF ARA

L(ΠAi(Ai×AAj)) and w′ coherent means, by definition: w′ ∈ Lc(ΠAi(Ai×AAj)).
This proves the second inclusion: Lc(ΠAi(Ai ×A Aj)) ⊇ ΠAi(Lc(Ai ×A Aj)).

As Lc(ΠAi(Ai ×A Aj)) ⊆ ΠAi(Lc(Ai ×A Aj)) and Lc(ΠAi(Ai ×A Aj)) ⊇
ΠAi(Lc(Ai ×A Aj)), the theorem is proved. 2

As explained below, when solving planning problems, it is never requested to take
projections that are not of the form ΠAi(Ai ×A Aj). In consequence, Theorems 5.1
and 5.2 allow one to work directly on automata instead of languages, which is required
in practice as automata are finite objects while languages may be infinite.

5.3.3 Central relation between product and projection
This part presents the key result that motivated the above construction. It enables the
computation of a factored plan by local computations as soon as the component in-
teractions are sparse enough. This is done in the same way as in Chapter 2: for each
automaton Ai of a network one computes the automaton ΠAi(A1 ×A · · · ×A AN)
which represents the set of words from Ai that are compatible with all the other au-
tomata, without computing the full system A1 ×A · · · ×A AN .

However, notice that the axiom 2.3 is not verified by the product and the projection
of coherent languages of ARA:

∃L1,L2,∃R3 ⊇ R1 ∩R2,Σ3 ⊇ Σ1 ∩ Σ2,W3 ⊇W1 ∩W2,

ΠR3,Σ3,W3
(L1 ×L L2) 6= ΠR3,Σ3,W3

(L1)×L ΠR3,Σ3,W3
(L2).

As an example, take for L1 the language of A1 and for L2 the language of A2 in the
example below (Figure 5.3). Then consider Σ3 = Σ2, R3 = R2 and W3 = W1. In
ΠR3,Σ3,W3

(L1 ×L L2) the sequence of actions γβ′′ is possible. This is not the case in
ΠR3,Σ3,W3(L1) ×L ΠR3,Σ3,W3(L2) because after the projections, the readings in A1

required by the action γ can no longer be achieved.
The fact that axiom 2.3 is not verified forbid the direct use of the results of Chap-

ter 2. We thus have to do a lower level proof that some kind of message passing
algorithms can be used in this context. This proof uses the same kind of techniques as
in [28]: we first define a notion of separation between the ARA of a network, and then
use it to derive a method for computing ΠAi(A1 ×A · · · ×A AN) with local computa-
tions only. In this section we present this method in the restricted case of networks of
three ARA only. Section 5.4 then generalizes this method to larger networks.

Definition 5.15. Let A1,A2,A3 have disjoint writing sets Wi, A2 separates A1 and
A3 if and only if:

1. Σ3 ∩ Σ1 ⊆ Σ2 (separation of actions),

2. R3 ∩W1 ⊆ R2, and ∀ t3 = (s, α, σ, β, s′) ∈ T3,
α|W1

6= ? ⇒ σ ∈ Σ2 (propagation of readings),

3. and symmetrically, by inverting indexes 1 and 3.

Condition (2) expresses that any reading performed by A3 inside A1 corresponds
to an action σ that is shared with A2. So in the product A3 ×A A2, component A2

will inherit the readings in A1 that are necessary to A3. This induces the following
theorem.

Theorem 5.3. LetA1,A2,A3 be three state labeled ARA. IfA2 separatesA1 andA3,
then ΠA1(Lc(A1 ×A A2 ×A A3)) = Lc(ΠA1(A1 ×A ΠA2(A2 ×A A3))).

113

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

Proof. By Theorem 5.2 one directly gets:

ΠA1(Lc(A1 ×A A2 ×A A3)) = Lc(ΠA1(A1 ×A A2 ×A A3)).

Then, the separation property ensures:

Lc(ΠA1
(A1 ×A A2 ×A A3)) = Lc(ΠA1

(A1 ×A ΠA2
(A2 ×A A3)))

because every interaction betweenA1 andA3 is fully captured byA2. In particular any
shared action between A1 and A3 exists also in A2 (by condition (1) of the definition
of separation), the readingsA3 has to perform inA1 are only from actions shared with
A2 (by condition (2) of the definition of separation) so they are propagated by these
shared actions, and finally the coherence of the readings of A1 into A3 is ensured by
the shared actions of A1 and A2 in the same manner (by condition (3) of the definition
of separation). 2

The practical consequence of this result is that ΠA1
(A), which language describes

the local plans of A1, can be derived without taking first the full product A = A1 ×A
A2 ×A A3, which language describes all global plans. Indeed, it suffices to combine
A1 with the smaller message ΠA2(A2×AA3) (this notion of message is similar to the
one presented in the previous chapters and will be made more explicit by the following
example) from A2, and project the result on A1. Similar ideas allow one to derive
as well all the local plan descriptions ΠAi(A). In next section a detailed application
example of Theorem 5.3 is presented.

5.3.4 Example
We now illustrate distributed planning on an example with three automata (Figure 5.3).
Readings are depicted by “?x” and writings by “!x”, where x is some value. For
clarity, readings “??” are omitted in figures, and initial writings “!x” appear on the
arrows pointing to initial states. Each of these initial writings “!x” is only a graph-
ical representation for an initial state, followed by a transition labeled by start and
writing the same “!x” (as described in Section 5.3.1).The underlying partition of O is
O1 = {1, 2}, O2 = {3, 4, 5, 6} and O3 = {7, 8}, and one has Σ1 = {α, α′},Σ2 =
{β, β′, β′′, γ},Σ3 = {γ, δ}.

!1 !3 !7

?1, β, !4 ?2, γ, !5

?1?8, β′, !6 ?1, β′′, !6

?2, γ, !8δ, !7α, !2α′, !1

Figure 5.3: Network of ARA: A1 (left), A2 (center), and A3 (right).

Automata A2 and A3 both read in A1; there is no other reading. One can check
thatA2 separatesA1 andA3. Specifically,A1 andA3 share no action andA1 does not
read in A3, and conversely the only readings of A3 in A1 are done by action γ, which
is shared with A2. Since A2 separates A1 and A3, the factored planning problem
corresponding to the network (A1,A2,A3) can be solved as suggested above. The

114

5.3. PLANNING IN NETWORKS OF ARA

first step is to compute M2,1 = ΠA2
(A2 ×A A3). Notice that the transition labeled

by β′ in A2 vanishes in A2 ×A A3 (which is presented in Figure 5.4 (left) after a
trimming step removing several unnecessary transitions), due to requested reading of
8 that is not provided by A3. This is reflected in the projection (Figure 5.4, right)
where only one path to the goal remains possible for component A2. The grayed
transitions in Figure 5.4 (right) indicate parts of the automaton that are not accessible
or co-accessible (they can be removed by a trimming) or that are “redundant” (they
vanish after a determinization step).

!3!7

?2, γ, !5, !8

?5, δ, !5!7 ?1?8, β′′, !6!8

?1?7, β′′, !6!7 ?6, δ, !6!7

!3

?2, γ, !5

?1, β′′, !6?1, β′′, !6

?1, β′′, !6

Figure 5.4: Product A2 ×A A3 after trimming (left) and its projection on A2 before
(right) and after trimming and determinization (right, solid part only).

As soon as M2,1 is computed, it is possible to derive ΠA1
(A1 ×A A2 ×A A3) =

ΠA1(A1 ×A M2,1). The product A1 ×A M2,1 is depicted in Figure 5.5 (left). Notice
that, due to reading tags, actions γ and β′′ are not possible at some states. This makes
necessary at least one execution of the word α, α′, which was mandatory in A1 alone
to reach its goal. This feature remains in the projection ΠA1

(A1 ×A M2,1), depicted
in Figure 5.5 (right).

!1!3

?2, γ, !2!5

?1, β′′, !1!6

?3, α, !2!3

?3, α′, !1!3

?5, α, !2!5

?5, α′, !1!5

?6, α, !2!6

?6, α′, !1!6

!1

α′, !1

α, !2

α, !2

α′, !1

α, !2

α′, !1

α, !2

α′, !1

!1

α, !2

α′, !1α, !2

Figure 5.5: ProductA1×AM2,1 after trimming (left), its projection ΠA1(A1×AM2,1)
(center), and the same ARA after determinization and minimization (right).

One already has ΠA1
(A1 ×A A2 ×A A3): Figure 5.5, right. The same algorithm

can be used to compute ΠA3
(A1 ×A A2 ×A A3) (Figure 5.6). In the particular case

115

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

of three ARA, computing ΠA2
(A1 ×A A2 ×A A3) (Figure 5.6) requires to compute

A1 ×AA2 ×AA3. However, in larger networks our method will be of greater interest.

!3
?2, γ, !5 ?1, β′′, !6

!7
?2, γ, !8 δ, !7

Figure 5.6: ΠA2
(A1 ×A A2 ×A A3) (left) and ΠA3

(A1 ×A A2 ×A A3) (right).

5.4 Generalization to any number of ARA
In this section, we show how the message passing algorithms can be used to solve
factored planning problems represented by networks of more than 3 ARA. This gen-
eralizes the results of the previous section. The main difficulty is still that, in general,
the projection of a product of ARA does not have the same language as the product of
the projections of these ARA (axiom 2.3). As above, this difficulty prevents us from
using the results of Chapter 2 and we thus derive a message passing algorithm from the
separation property.

5.4.1 Communication graph of a network of ARA
It is possible to define a notion of interaction graph on networks of ARA. Then, from
the separation property (Definition 5.15) one can define a notion of redundant edges in
such graphs, which leads to a notion of communication graph for these networks as it
was done in [28] for compound systems.

Definition 5.16. The interaction graph of a network of ARA (A1, . . . ,An) is the (non-
directed) graphG = (V,E) such that V = {A1, . . . ,An} and there is an edge between
Ai and Aj in E if and only if Σi ∩ Σj 6= ∅, or Ri ∩Wj 6= ∅, or Rj ∩Wi 6= ∅.

Definition 5.17. In a graphG = (V,E) and edge (Ai,Aj) ∈ E is said to be redundant
if and only if there exists a path AiAk1 . . .Ak`Aj in G with the following properties:

1. ` ≥ 1 and ∀m, km 6= i ∧ km 6= j,

2. ∀m,Akm separates Ai and Aj .

From this definition of redundant edges one can define the notion of communication
graphs of a network of ARA. These graphs are constructed (slightly differently than in
networks of weighted automata) by removing redundant edges from the interaction
graph of a network.

Definition 5.18. Let G = (V,E) be the interaction graph of a network (A1, . . . ,An)
of ARA. Denote by E′ ⊆ E a maximal subset of edges such that any (Ai,Aj) ∈ E′
verifies:

1. (Ai,Aj) is redundant in G,

2. there exists a pathAiAk1
. . .Ak`Aj in the graph (V,E \E′) such that ∀m,Akm

separates Ai and Aj .

Any such E′ defines a communication graph G′ = (V,E \ E′) of (A1, . . . ,An).

116

5.4. GENERALIZATION TO ANY NUMBER OF ARA

5.4.2 Message passing algorithm for ARA
Theorem 5.4 below allows one to derive a message passing algorithm (close to the one
presented in Chapter 2) for factored planning in networks of automata with read arcs
as soon as they admit a tree shaped communication graph.

In a tree shaped communication graph G each neighbor Ai` of a vertex Ai induces
a subtree. The root of this subtree is Ai` and the rest of its vertices (denoted by Ti`)
contains exactly the vertices reachable from Ai` in G without using the edge between
Ai` and Ai. The edges of this subtree are the ones from G.

Theorem 5.4. Let G be a communication graph of the network of ARA (A1, . . . ,An).
If G is a tree, any non-leaf vertex Ai of G separates the subtrees induced by any two
of its neighbors Ai` and Aim .

Proof. Remark that the only path in G from any vertex A` in the subtree induced by
Ai` to any vertex Am in the subtree induced by Aim passes through Ai. Then, two
cases are possible.

1. Either there were no edge between A` and Am in the interaction graph of the
network (A1, . . . ,An). In this case Σ`∩Σm = ∅,R`∩Wm = ∅, andRm∩W` =
∅, so Ai separates A` and Am.

2. Or, in the interaction graph of (A1, . . . ,An) there were an edge e between A`
and Am. In this case, as the path π`,m between A` and Am in G is unique and
contains at least two edges (because Ai is on this path by construction), then e
was a redundant edge and has been removed. By definition of the communication
graph, there exists a path π′`,m between A` and Am in G such that any ARA on
this path separates A` and Am. The unicity of π`,m allows to conclude that
π`,m = π′`,m. As Ai is on the path π`,m it separates A` and Am.

2

From this theorem one has, for any network of state labeled ARA A = A1 ×A
· · · ×A An, and any tree shaped communication graph G of this network:

ΠAi(Lc(A)) = Lc(ΠAi(A))

= Lc(ΠAi(Ai ×A Ai1 ×A Ti1 ×A · · · ×A Aik ×A Tik))

= Lc(ΠAi(Ai ×A ΠAi1
(Ai1 ×A Ti1)×A · · · ×A ΠAik

(Aik ×A Tik))).

This is true due to the same reasons as Theorem 5.3 and using the fact that ∀`, Ai`
separates Ti` from the rest of the graph (direct consequence of Theorem 5.4).

The difference between the message passing algorithms in networks of ARA and
the message passing algorithms in networks of finite automata comes from the fact that
product and projection of ARA do not verify axiom 2.3. The general message passing
algorithm for networks of ARA is formally described in Algorithm 10.

This algorithm takes as input a network of ARA (A1, . . . ,An) and a tree shaped
communication graph G = (V,E) of this network. It outputs an updated version
A′i of each component Ai of this network. These updated components are such that
Lc(A′i) = ΠAi(Lc(A1×A · · ·×AAn)). Thus, a solution to the factored planning prob-
lem corresponding to (A1, . . . ,An) can be extracted from these updated components,
in the same manner as in Chapter 2.

117

CHAPTER 5. NETWORKS OF AUTOMATA WITH READ ARCS

Algorithm 10 MPA for networks of ARA
for all (Ai,Aj) ∈ E do
Mi,j ← 1

end for
repeat

select (Ai,Aj) ∈ E s.t. Mi,j not updated and ∀Ak ∈ N (Ai) \ {Aj},Mk,i was
updated before
Mi,j ← ΠAi(Ai ×A (×AAk∈N (Ai)\{Aj}Mk,i))

until all messages were updated exactly once
for all Ai ∈ V do
A′i = ΠAi(Ai ×A (×AAk∈N (Ai)Mk, i))

end for

Conclusion
In this chapter we presented a new representation of factored planning problems. Its
interest is to avoid the necessity of counting the reading actions in components on
which they have no effect. The approach is based on automata displaying information
on their states by means of the actions leading to these states. In fact, our networks of
ARA are closely related to the asynchronous automata as described in [86].

We shown that it is possible to use an adaptation of the message passing algorithms
on these networks of ARA in order to solve the factored planning problem they rep-
resent. The main difference with Chapter 2 is that the projections are performed over
larger objects to allow propagation of readings between automata.

Notice also that, even if the model presented in this chapter does not take costs into
account, it is possible to modify it for allowing factored cost-optimal planning. In fact,
the difference between this model and the one of Chapter 2 is on the notion of accepted
path only. Thus, the product and the projection operations presented in this section are
very similar to the standard ones and costs can be taken into account similarly: using
minimization during projection and summing costs of shared actions during product.

This chapter ends the part of this document dedicated to message passing algorithms
for factored cost-optimal planning. The next two chapters present a different approach
to factored planning, based on a distributed version of the A* algorithm. The main
differences between the two approaches are the following. Firstly, the use of message
passing algorithms gave rise to a top-down approach of factored planning: in each
component the set of all local plans is refined until only the local plans part of global
ones are kept. On the contrary, the distributed version of A* presented in the rest of
this document is the basis for a bottom-up approach to factored planning: a local plan
part of a global one is progressively built in each component along an execution of the
algorithm. Secondly, the rest of this document presents a true distributed algorithm.
Even if the approach using message passing algorithms can be used as a distributed al-
gorithm, a centralized use of this approach can be preferable as it allows one to perform
the minimal possible number of message updates.

118

Chapter 6

Toward a distributed A*

chapter abstract: In this chapter we propose two distributed algorithm for solving
two simple problems on weighted graphs. These algorithms, based on the standard A*,
are the basis for the distributed algorithm for solving factored cost-optimal planning
problems presented in Chapter 7.

IN THE PREVIOUS part of this thesis we focused on the modular search for plans in
factored planning problems by computation of the full set of the local plans which

are part of the global plans. In other words we presented a top-down approach to
planning: solutions were computed by refinement of a set containing them all. In this
part we focus on a different approach: a single solution is built progressively. This is a
bottom-up approach to planning. This will be done using a version of the A*-algorithm
run by an agent in each component and biased by information received from the other
agents. In order to fit with the presentation of A* of Section 1.2, in this part we consider
factored planning problems given by graphs rather than automata. This is however only
a question of vocabulary.

The approach of this part for building a distributed version of A* is to consider
problems of increasing generality leading to factored planning problems focusing on
the simple case of two agents (thus two graphs). The solution proposed for problems
involving two agents is then generalized to problems involving any number of compo-
nents as soon as their communication graphs are trees. The first problem we consider
is called compatible final states (CFS). The principle of this problem is the following:
two graphs with goal vertices are considered, along with two coloring functions on
these goal vertices (one for each graph). The objective is to find a couple of paths, one
in each graph, such that these paths reach goal vertices with identical color. Moreover,
the sum of the costs of these paths has to be minimal. One can remark that CFS is in
some sense a simplified version of factored planning. The differences are: the dynamic
allocation of colors (the color of a vertex in a planning problem being the sequence of
labels used to reach it, which depends on the path considered) and the infinite number
of colors (the number of different possible local plans in a factored planning problem
can not easily be bounded).

The second problem we consider is called compatible colored paths (CCP). It is,
in fact, a version of CFS where colors are allocated dynamically to goal vertices, while
still being taken in a finite set. More precisely, in this problem one considers a couple

119

CHAPTER 6. TOWARD A DISTRIBUTED A*

of graphs with goal vertices and a coloring function over edges in each graph. The
objective is to find a couple of paths that reach goal vertices, that use the same colors
(the sets of colors on the edges constituting these paths are the same), and that minimize
the sum of their costs. One then only has to handle infinite sets of colors to deal with
factored planning problems, which is the purpose of Chapter 7.

This chapter is organized as follows. We first formally define CFS and give a
method for solving it in the form of a distributed algorithm where an agent runs a
slightly modified version of A* on each component (Section 6.1). Then, we formally
define CCP and show how it can be re-casted as CFS, this allows to re-use the method
proposed for solving CFS in the (closer to planning) context of CCP (Section 6.2).

6.1 Compatible final states
A CFS problem is defined by a couple (P1,P2) of planning problems on graphs: Pk =
(Vk, Ek,Λk, λk, ck, ik, Fk) for k = 1, 2 (as in Definition 1.2). P1 and P2 have no
common actions, so Λ1 ∩ Λ2 = ∅. However, their final vertices are “colored” by
functions γk : Fk → Γ where Γ is a finite color set. The CFS problem amounts to
finding an optimal distributed plan (p1, p2) where, instead of using Definition 2.3, the
compatibility condition is defined by a compatibility of the final vertices with respect
to coloring: p1 and p2 are compatible if and only if γ1(p+

1) = γ2(p+
2). For simplicity,

we shall assume that there is a unique optimal (common) final color, provided the CFS
problem has a solution. Otherwise selecting one optimal final color among several
becomes an agreement problem, that can be solved on top of our approach.

The approach we propose for solving CFS consists in associating an agent ϕk to
each problem Pk. Each agent performs an A*-like search in its local graph, and takes
into account the constraints and costs of the other agent through an appropriate com-
munication mechanism. Communications are asynchronous and can occur at any time.
In fact, we consider that each agent can write into a memory that the other agent can
only read. An agent does not need to know when the other agent modifies the objects
stored into its memory. The only requirements will be on the characteristics of these
objects.

6.1.1 Intuition on the approach
Let {k, k̄} = {1, 2}. The agent ϕk attached to problem Pk relies on four functions.
Two relate to the standard shape of a local A* and have to be computed locally by ϕk
as usual:

• gk : Vk → R+∪{+∞} yields the (current) best known cost to reach any v ∈ Vk,
and

• hk : Vk × Γ → R+ ∪ {+∞} is a set of heuristic functions towards Fk, one
per terminal color. Equivalently, one has a heuristic function towards any Fk ∩
γ−1(c) for c ∈ Γ.

Besides, two other functions inform ϕk on the state of the search in the other problem
Pk̄. These functions have to be provided by ϕk̄. Namely, one has:

• Hk̄ : Γ → R+ ∪ {+∞}, which is a (generally) time varying heuristic that
measures how much color c ∈ Γ is promising at the current point of resolution
of problem Pk̄, and

120

6.1. COMPATIBLE FINAL STATES

• Gk̄ : Γ → R+ ∪ {+∞}, which eventually indicates the best cost for reaching
color c in Pk̄.

Both values are stored and updated by agent ϕk̄ in the memory he shares with agent
ϕk. We now formalize these features and explain how these four functions are used
and updated by each agent, how termination is detected by both of them, and how an
optimal distributed plan solving the CFS is extracted.

6.1.2 Proposed algorithm
Let us consider first a non-varying distant heuristicHk̄: Hk̄(c) = hk̄(ik̄, c) for all c ∈ Γ
(it simplifies the presentation of our results and will be relaxed later). To the distant cost
function on final colorsGk̄ one associates an oracle Θk̄ : Γ→ {null, optimal, useless},
with the following meaning.

• Θk̄(c) = optimal means that a best plan towards final vertices of color c is
known in Pk̄, and in that case Gk̄(c) represents the optimal cost to reach color c
in Pk̄,

• Θk̄(c) = useless means that ϕk̄ can guarantee that for sure no optimal dis-
tributed plan (pk, pk̄) exists which terminates in color c (for example because no
local plan in Pk̄ terminates in color c), and

• null is the remaining default (and initial) value of Θk̄.

This oracle satisfies the following property: for every color c ∈ Γ, there exists a finite
time at which Θk̄(c) jumps from null to either optimal or useless, and keeps this
value forever. For the moment we assume that Gk̄ and Θk̄ are provided to ϕk. After
the presentation of our algorithm we will explain how these functions can be computed
in practice.

Each agent ϕk executes the variant of A* given in Algorithm 11. Vertices can
be marked in three different ways: open, closed, or candidate. A candidate vertex v
belongs to Fk, and thus represents a local plan in Pk that can be proposed to ϕk̄ as a
possible local component of a distributed plan. Initially all vertices v in Vk \ {ik} are
closed and satisfy gk(v) = +∞. To progressively open them and explore graph Pk,
one relies on the ranking function Rk defined as follows. If v ∈ Vk is not candidate

Rk(v) = gk(v) + min
c∈Γ

(hk(v, c) +Hk̄(c))

which integrates the cost of color c for agent ϕk̄, and then optimizes on the possible
final color. For a candidate vertex v, one takes

Rk(v) = gk(v) +Gk̄(γk(v)) if Θk̄(γk(v)) = optimal

= gk(v) +Hk̄(γk(v)) otherwise

which associates to the possible final vertex v the cost of its color γk(v) for agent ϕk̄.
The recursive (local) search then proceeds as follows. At each iteration, ϕk selects

the most promising non-closed (i.e. open or candidate) vertex v, i.e. the one that
minimizes the ranking function Rk. According to the nature of v, agent ϕk either:

1. progresses in the exploration of Pk using an expansion function (Algorithm 12),
this is the case in particular when v is open, or

121

CHAPTER 6. TOWARD A DISTRIBUTED A*

2. checks whether it can draw some conclusion using the information provided by
the other agent ϕk̄. These conclusions can be:

(a) that v is the goal vertex reached by a local path part of a globally optimal
plan (line 9),

(b) that v will never be the goal vertex reached by a local path part of a globally
optimal plan (line 14), or

(c) nothing for the moment (line 16 and line 11).

The reader familiar with A* may thus immediately identify its shape within Algo-
rithm 11. The main difference lies in the stopping condition, due to the necessity to
take into account constraints transmitted by the other agent.

Algorithm 11 executed by ϕk
1: mark ik open; gk(ik)← 0; calculate Rk(ik)
2: while there exist non-closed vertices do
3: let v be the non-closed vertex with minimal Rk(v)
4: if v is open then
5: expand(v)
6: else
7: /*v is candidate*/
8: case: Θk̄(γk(v)) = optimal
9: if Rk(v) = gk(v) +Gk̄(γk(v)) then

10: return v and terminate
11: else
12: calculate Rk(v)
13: end if
14: case: Θk̄(γk(v)) = useless
15: mark v closed
16: case: Θk̄(γk(v)) = null
17: if there exists open vertices then
18: let v′ be the open vertex with minimal Rk(v′)
19: expand(v′)
20: end if
21: end if
22: end while

Notice that the call to the expand function at line 19 of Algorithm 11 is not re-
quired for termination nor validity, however it will allow agent ϕk̄ to maintain Gk̄ and
Θk̄ using its own instance of Algorithm 11. Otherwise ϕk̄ should run a standard A∗

algorithm in parallel with Algorithm 11.

Theorem 6.1. In this context, any execution of Algorithm 11 by ϕk on Pk terminates.
Moreover, if the CFS problem (P1,P2) has a solution, the output of Algorithm 11 for
agent ϕk is a goal vertex vk ∈ Fk, reached by a local plan pk. The assembling of p1

and p2 provided by agents ϕ1 and ϕ2 resp. yields an optimal distributed plan (p1, p2)
solving (P1,P2).

Theorem 6.1 is proved in three steps: first termination is proved (Lemma 6.1), then
existence of an output when a distributed plan exists is proved (Lemma 6.2), and finally
the fact that the output provides an optimal distributed plan is proved (Lemma 6.3).

122

6.1. COMPATIBLE FINAL STATES

Algorithm 12 expand function
1: if v ∈ Fk then
2: mark v candidate
3: calculate Rk(v)
4: else
5: mark v closed
6: end if
7: for all v′ such that (v, v′) ∈ Ek do
8: gk(v′)← min(gk(v′), gk(v) + ck((v, v′)))
9: if gk(v′) strictly decreased then

10: mark v′ open
11: pred(v′)← v
12: end if
13: calculate Rk(v′)
14: end for

Lemma 6.1. Algorithm 11 terminates when executed by ϕk on Pk.

Proof. Suppose ϕk executes Algorithm 11 on Pk without terminating. It means that
there always exists a vertex which is either open or candidate (else the while loop
would stop). It also means that the vertex with the smallest Rk value never fulfills the
condition of line 9.

Moreover it is not possible to satisfy the condition of line 14 an infinite number of
times in a row. This is because (1) Vk is finite, and thus there exists a finite number
of possible candidates, and (2) when the condition of line 14 is satisfied a candidate
becomes closed an no new vertex becomes candidate.

This implies that the expand function will be called at finite time intervals while
there exists open vertices. Hence, after some time all vertices will be either closed or
candidate. This is due to the facts that (1) each call to expand makes an open vertex
become closed or candidate, (2) Vk is finite, and thus there exists a finite number of
possible open vertices, (3) each v marked as open by expand is such that gk(v) strictly
decreased (line 9 of expand) and even, from the structure of the considered problems,
one has that gk(v) strictly decreased of at least some constant c which is the minimal
non zero difference between the costs of any two transitions from Ek, and (4) for a
given v it is not possible that gk(v) < 0 (this is due to the initialization of gk(ik),
line 1).

As soon as all vertices are either closed or candidate, no new vertex can become
open. This is because only expand function can open vertices and the conditions to
call expand require an open vertex (lines 17 and 4). Moreover, no new vertices will
become candidate, for the same reason.

By definition of Θk̄, for any color c ∈ Γ there exists a time after which either
Θk̄(c) = optimal or Θk̄(c) = useless. In particular, for any candidate (that is for
any non-closed) vertex v, after some time, Θk̄(γk(v)) = optimal or Θk̄(γk(v)) =
useless. Consider the time after which, for any candidate vertex v, either Θk̄(γk(v)) =
optimal or Θk̄(γk(v)) = useless. Consider the vertex v selected. Two cases are
possible: (1) Θk̄(γk(v)) = useless, v is closed, the number of candidate vertices
strictly decreases, (2) Θk̄(γk(v)) = optimal, either algorithm terminate or Rk(v) is
calculated and becomes equal to gk(v) +Gk̄(γk(v)) (and thus if v is selected later the
algorithm will terminate). This proves that, after some time, either all vertices will

123

CHAPTER 6. TOWARD A DISTRIBUTED A*

be closed (if Θk̄(γk(v)) = useless for all v candidate) or condition of line 9 will
be satisfied. Both these cases are in contradiction with the hypothesis taken that ϕk
executes Algorithm 11 on Pk without terminating. This proves Lemma 6.1.

Lemma 6.2. Algorithm 11 outputs some v when executed by ϕk on Pk if and only if
there exists a solution.

Proof. Suppose Algorithm 11 outputs no v when executed by ϕk on Pk. It means
it terminated because all vertices have been marked closed (Lemma 6.1). Thus all
reachable goal vertices have been marked as candidate, by definition of the expand
function. Then all candidate vertices have been marked as closed, meaning that for any
v candidate Θk̄(γk(v)) = useless. If there exists a solution it means that there exists
some v ∈ Fk, reachable in Pk, such that Θk̄(γk(v)) = optimal at some time. This
is not compatible with the facts that all reachable goal vertices have been marked as
candidate and that for any v candidate Θk̄(γk(v)) = useless. Hence, if Algorithm 11
outputs no v when executed by ϕk on Pk then there exists no solution. Which proves
that if there exists a solution then Algorithm 11 outputs some v when executed by ϕk
on Pk.

Suppose Algorithm 11 outputs some v when executed by ϕk on Pk. It means that v
has been marked candidate at some point. Which, by construction implies that v ∈ Fk
and there exists a path from ik to v in Pk. It also means that Θk̄(γk(v)) = optimal,
which, by definition of Θk̄ implies that there exists a path in Pk̄ from ik̄ to some goal
vertex with color γk(v). Thus, there is a path in Pk reaching a goal vertex of color
γk(v) and there is a path in Gk̄ reaching a goal vertex of color γk(v). This exactly
means that there exists a solution. Which proves that if Algorithm 11 outputs some v
when executed by ϕk on Pk then there exists a solution.

Lemma 6.3. When Algorithm 11 outputs some v, when executed by ϕk on Pk, it is the
goal vertex reached by a path pk such that there is an optimal distributed plan (pk, pk̄).

Proof. Notice that any output v of Algorithm 11 is necessarily a goal vertex, by con-
struction. Suppose Algorithm 11 outputs v, a goal vertex reached by a path pk such
that for any pk̄, (pk, pk̄) is not an optimal distributed plan. Denote by v′ a goal vertex
reached by a path p′k such that there exists an optimal distributed plan (p′k, p

′
k̄
) and

Θk̄(γk(v′)) = optimal after some time. Such a v′ exists because, as Algorithm 11
outputs v, by Lemma 6.2 there exists a solution to the considered planning problem.
When Algorithm 11 stops by outputting v, two cases are possible: either (1) gk(v′) is
the optimal cost for reaching v′ or (2) it is strictly greater than this optimal cost.

Consider case (1). For sure, v′ is either open or candidate. The fact that gk(v′) <∞
implies that v′ has been marked as open at some time. From that, as v′ ∈ Fk, it is not
possible that v′ has been marked as closed at line 5 of expand function. Moreover,
as Θk̄(γk(v′)) = optimal after some time, it is not possible that Θk̄(γk(v′)) has been
equal to useless, and so it is not possible that v′ has been marked as closed at line 15
of Algorithm 11. As gk(v′) is the optimal cost for reaching v′, one has gk(v′) < gk(v)
because v is not part of a globally optimal plan. Moreover Hk̄(γk(v′)) ≤ Gk̄(γk(v))
by definition and if Θk̄(γk(v′)) = optimal, Gk̄(γk(v′)) ≤ Gk̄(γk(v)). In conclusion
one has Rk(v′) < Rk(v). This implies that, at line 3 of Algorithm 11, it is never
possible to select v before v′. And, for this reason it is not possible to output v.

124

6.1. COMPATIBLE FINAL STATES

Consider case (2). Using the same argument than in the proof of the original A∗

algorithm (Lemma 1.1), one can show that there exists an open vertex v′′ such that: v′′

is on a p′k and gk(v′′) is optimal. For the same reason as for case (1) it is not possible
to select v before v′′ at line 3 of Algorithm 11. And, so it is not possible to output v.

In both cases a contradiction has been given with the fact that Algorithm 11 can
output a goal vertex reached by a path reached by a path pk such that for any pk̄,
(pk, pk̄) is not an optimal distributed plan. This proves that when Algorithm 11 outputs
some v, it is the goal vertex reached by a path pk such that there is an optimal distributed
plan (pk, pk̄).

6.1.3 Implementation of Gk̄ and Θk̄

The remaining of this section gives a feasible construction of the distant (color) cost
function Gk̄ and of the oracle Θk̄, showing that Algorithm 11 is usable in practice.
These two functions have to be computed by agent ϕk̄ independently of problem Pk,
and in particular, independently of Gk and Θk. The expand function is considered
atomic: no update of Θk̄ or Gk̄ will occur during the execution of this function by ϕk.

A possible implementation follows, where Θk̄ and Gk̄ are computed within Algo-
rithm 11 by ϕk̄:

initialization: ∀c ∈ Γ, Gk̄(c) = +∞, and if Fk̄ ∩γ−1
k̄

(c) = ∅ then Θk̄(c) = useless
otherwise Θk̄(c) = null,

update: as soon as some final vertex v ∈ Fk̄ is open or candidate, if no other open
vertex v′ ∈ Vk̄ satisfies gk̄(v′) + hk̄(v′, γk̄(v)) < gk̄(v), then color γk̄(v) can
not be reached with a lower cost in Pk̄, so Θk̄(γk̄(v)) is set to optimal and

Gk̄(γk̄(v)) = min
v′∈Fk̄,γk̄(v′)=γk̄(v)

gk̄(v′)

final update: when Algorithm 11 stops, for all c ∈ Γ such that Θk̄(c) = null, set
Θk̄(c) = useless, and Gk̄(c) = +∞.

Proposition 6.1. For any c ∈ Γ there exists a finite time after which either Θk̄(c) =
optimal or Θk̄(c) = useless. Moreover, as soon as the value of Θk̄(c) is different
from null it no longer changes.

Proof. Recall that all vertices are accessible in Pk̄. One can not rely on the values of
Θk to prove Proposition 6.1, so, for that purpose, Lemma 6.1 can not be considered
as true, the case where Algorithm 11 does not terminates thus has to be considered.
Consider c ∈ Γ. If no goal vertex with color c exists, then, Θk̄(c) = useless from
the beginning. Else, two cases are possible: (1) Algorithm 11 terminates, and (2)
Algorithm 11 does not terminate.

In case (1) all c ∈ Γ for which Θk̄(c) = null are set to useless when Algorithm 11
terminates.

In case (2) it can be shown that the update will set all Θk̄(c) which are null to
optimal after some time. For the same reasons as in the proof of Lemma 6.1, after
some time all vertices are either closed or candidate. Let v ∈ Fk̄ be such a vertex,
with γk̄(v) = c, and Θ 6= null. If v is candidate it means that Θk̄(c) = optimal
because there is no open vertex, and thus, in particular, no open vertex v′ such that

125

CHAPTER 6. TOWARD A DISTRIBUTED A*

gk̄(v′) + hk̄(v′, c) < gk̄(v). If v is closed it means that v has been the candidate vertex
with the smallest Rk̄ at sometimes, and thus Θk̄(c) as been set to optimal.

In all cases Θj(c) 6= null, which proves the first part of Proposition 6.1.
The second part of the proposition is straightforward. Only initialization and final

update can set Θk̄(c) to useless. It is not possible that Θk̄(c) = optimal before
initialization. Moreover, final update can only change those Θk̄(c) equal to null. Thus
it is not possible for Θk̄(c) to be set to useless after having being set to optimal. Only
update can set Θk̄(c) to optimal. At that time the only c such that Θk̄(c) = useless
come from initialization. It means that they are such that no goal vertex with that color
exists in Pk̄. Thus, it is not possible that a vertex with that color becomes either open
or candidate. Hence, it is not possible to change Θk̄(c) from useless to optimal.

This ends the proof of the second part of Proposition 6.1.

Proposition 6.2. For any c ∈ Γ if Θk̄(c) = optimal then the value of Gk̄(c) is the
optimal cost in Pk̄ for reaching a goal vertex with color c. Moreover, if Θk̄(c) =
useless, c can not be the color reached by a globally optimal solution.

Proof. If Θk̄(c) = optimal it means that, at some time, there existed v ∈ Fk̄ such
that v was open or candidate and γk̄(v) = c, and there were no open vertex v′ ∈ Vk̄
such that gk̄(v′) + hk̄(v′, c) < gk̄(v). At this time Gk̄(c) had been set equal to gk̄(v′′),
where v′′ is a goal vertex with color c minimizing the value of gk̄. Gk̄(c) is thus the
cost of a path reaching color c in Pk̄. Assume it is possible to find a path with cost
cm strictly smaller than Gk̄(c). Let v′′′ be the goal vertex with color c reached by this
path. By a similar argument than in the proof of the original A∗ algorithm, either (1)
gk̄(v′′′) = cm, or (2) there exists an open vertex v′′′′ such that gk̄(v′′′′) + hk̄(v′′′′, c) ≤
cm. In case (1) v′′′ could have been selected as a goal vertex with color c minimizing
the value of gk̄, this is in contradiction with the fact that cm < Gk̄(c). In case (2) the
existence of v′′′′ is in contradiction with the fact that there were no open vertex v′ ∈ Vk̄
such that gk̄(v′) + hk̄(v′, c) < gk̄(v). This proves the first part of the Proposition 6.2.

If Θk̄(c) = useless two cases are possible. Either no goal vertex exists with color
c, in this case c can clearly not be the color reached by a globally optimal solution. Or
Algorithm 11 stopped and Θk̄(c) has been set to useless during final update. In this
case it is possible that no global solution exists, so c can not be the color reached by
a globally optimal solution. It is also possible that a global solution exists, reaching
color c′. In this case, necessarily, c′ 6= c. This is due to the fact that, in this case,
Algorithm 11, outputs this solution, and thus, just before that, a candidate vertex v
of color c′ had the minimal value of Rk̄, thus Θk̄(c′) has been set to optimal. As a
globally optimal solution exists reaching c′ 6= c it is not possible that a globally optimal
solution exists reaching c. Hence, if Θk̄(c) = useless, c can not be the color reached
by a globally optimal solution. This proves the second part of Proposition 6.2.

6.1.4 Running example
We conclude this section by giving a possible execution of Algorithm 11 on a simple
CFS problem. Consider the graphs of Figure 6.1. Heuristics h1 should have the fol-
lowing properties: h1(i1, r) ≤ 1, h1(v1, r) ≤ 0, and h1(v, b) ≤ +∞ for any v. In
the same way the values of H2 (provided to ϕ1 by ϕ2) should always be such that:
H2(r) ≤ 2, and H2(b) ≤ 2 + 0 = 2.

Assume ϕ1 is running Algorithm 11 on P1. Initially, i1 is open, g1(i1) = 0, and
R1(i1) = g1(i1)+minc∈{r,b}(h1(i1, c)+H2(c)). All other vertices are closed and such

126

6.2. COMPATIBLE COLORED PATHS

P1 : i1 v1, r
β, 1

α, 0

P2 : i2 v2, r v′2, b
α, 2 β, 0

β, 1

Figure 6.1: A CFS problem. Goal vertices are represented with their color (ex. v1 is a
goal with color r). Costs and labels are written above edges.

that g1 is infinite. Moreover, Θ1(b) = useless, as no goal vertex with color b exists in
P1. The first execution of the while loop will directly call the expand function, as i1
is not candidate. It will be marked as closed (as i1 is not a goal vertex). As g1(i1) =
0 ≤ 0 = g1(i1) + 0, i1 will not be re-opened. As g1(v1) = +∞ > 1 = g1(i1) + 1,
v1 will be opened, with g1(v1) = 1, and R1(v1) = g1(v1) + minc∈{r,b}(h1(v1, c) +
H2(c)), and pred(v1) = i1. After that, the expand function terminates. Immediately,
Θ1(r) = optimal as v1 is a goal state with color r and no other open vertex exists,
G1(r) = g1(v1) = 1. As there are open vertices, a second execution of the while
loop starts. The open or candidate vertex with minimal value of Rk is v1. As v1 is not
candidate, a call to expand occurs immediately. As v1 ∈ F1, it is now candidate, and
R1(v1) = g1(v1) + G2(r) if Θ2(r) = optimal or R1(v1) = g1(v1) + H2(r) else.
As v1 has no neighbors, no new vertices are opened. From that, a new execution of
the while loop occurs. As v1 is candidate it is checked if it allows to conclude. No
more calls to expand function occur as there no longer exists open vertices. As soon as
Θ2(r) = optimal, with G2(r) = 2 it is possible to conclude. The only possible local
solution is to go from i1 to v1 in one step. Its cost is 1 locally, but 1 + 2 = 3 globally,
as the part of the solution in P2 is to go from i2 to v2 in one step.

6.2 Compatible colored paths
In this section we consider a second type of problems: CCP problems. CCP problems
are in fact CFS problems with additional dynamicity. The principle is that the color of a
goal vertex v is given by the path which allowed to reach it, rather than by v directly (so
a vertex can assume several colors). However the number of possible colors remains
finite as colors are defined as subsets of a finite set.

Formally, a CCP problem is defined by a couple (P1,P2) of planning problems on
graphs: Pk = (Vk, Ek,Λk, λk, ck, ik, Fk) for k = 1, 2. P1 and P2 have no common
actions, so Λ1∩Λ2 = ∅. However, their edges are “colored” by functions γk : Ek → Γ
where Γ is a finite color set. These coloring functions extend to paths in the following
way: the color of a path pk = e1 . . . en in Pk is γk(pk) = ∪i{γk(ei)}. The CCP prob-
lem amounts to finding an optimal distributed plan (p1, p2) where the compatibility
condition is defined with respect to coloring of paths: γ1(p1) = γ2(p2). As above, we
shall assume that there is a unique optimal (common) path coloring, if ever the CCP
problem has a solution. Otherwise selecting one coloring among several becomes an
agreement problem, that can be solved on top of our approach.

In fact, such a CCP problem (P1,P2) with colors taken in Γ can be re-casted as the

127

CHAPTER 6. TOWARD A DISTRIBUTED A*

(much larger) CFS problem (P ′1,P ′2) with colors taken in Γ′ = 2Γ, such that:

• V ′k = Vk × 2Γ,

• E′k = {((v, C), (v′, C ′)) : (v, v′) ∈ Ek ∧ C ′ = C ∪ {γk((v, v′))}},

• Λ′k = Λk,

• for (v, C) ∈ E′k, λ′k((v, C)) = λk(v),

• for (v, C) ∈ E′k, c′k((v, C)) = ck(v),

• i′k = (ik, ∅),

• F ′k = Fk × 2Γ,

• for (v, C) ∈ F ′k, γ′k((v, C)) = C.

Directly computing (P ′1,P ′2) from (P1,P2) would not be efficient: it implies a
significative increase of the size of the problem. Moreover, as soon as one will want to
solve real planning problem, the number of colors will in general be infinite (see next
chapter). Thus, the corresponding CFS problem will as well be infinite. That is why, in
this section, we propose a way to compute (P ′1,P ′2) dynamically along the search for
an optimal solution of (P1,P2). The idea is that each agent ϕk will run Algorithm 11
starting from i′k = (ik, ∅). The only difference will be in the expand function for which
Algorithm 13 will be used. This new expand function is responsible for dynamically
computing the part of (P ′1,P ′2) needed for finding a solution to (P1,P2).

Algorithm 13 expand function
1: /*expand function has been called with an argument v of the form (v′, C)*/
2: if v′ ∈ Fk then
3: mark v = (v′, C) candidate
4: calculate Rk(v)
5: else
6: mark v = (v′, C) closed
7: end if
8: for all v′′ such that (v′, v′′) ∈ Ek do
9: C ′ ← C ∪ {γk((v′, v′′))}

10: gk((v′′, C ′))← min(gk((v′′, C ′)), gk((v′, C)) + ck((v′, v′′)))
11: if gk((v′′, C ′)) strictly decreased then
12: mark (v′′, C ′) open
13: pred((v′′, C ′))← (v′, C)
14: end if
15: calculate Rk((v′′, C ′))
16: end for

From that it is sufficient to prove that obtaining a solution of (P1,P2) or (P ′1,P ′2)
makes effectively no difference, and that Algorithm 11 using the expand function of
Algorithm 13 allows one to solve (P ′1,P ′2) directly from (P1,P2). This is what we do
in the remaining of this section.

128

6.2. COMPATIBLE COLORED PATHS

6.2.1 Equivalence of CFS and CCP

We first prove that the solutions of (P1,P2) and (P ′1,P ′2) are actually the same.

Proposition 6.3. Any distributed plan in (P ′1,P ′2) gives a distributed plan in (P1,P2).

Proof. Let (p′1, p
′
2) be a couple of paths constituting a distributed plan in (P ′1,P ′2). One

has p′k = (v1
k, C

1
k) . . . (vnkk , Cnkk) is a path in (V ′k, E

′
k). Notice that C1

k = ∅. Moreover,
by definition of a distributed plan, one has γ′1(p′1) = γ′2(p′2). By definition of (P ′1,P ′2),
γ′k(p′k) = Cnkk . Hence, Cn1

1 = Cn2
2 .

Let pk = v1
k . . . v

nk
k . We show that (p1, p2) is a couple of paths constituting a

distributed plan in (P1,P2). By definition of (P ′1,P ′2), and more precisely of E′k,
there exists an edge between (vik, C

i
k) and (vi+1

k , Ci+1
k) in (V ′k, E

′
k) only if there is an

edge between vik and vi+1
k in (Vk, Ek). This proves that pk is necessarily a path in

(Vk, Ek). To prove that (p1, p2) is distributed plan in (P1,P2) it remains to show that
γ1(p1) = γ2(p2). Notice that γk(pk) = ∪iγk((vik, v

i+1
k)) by definition of (P1,P2).

Moreover, for any i, Ci+1
k = Cik∪{γk((vik, v

i+1
k))} by construction of (P ′1,P ′2). Thus,

γk(pk) = Cnkk . Which proves that γ1(p1) = γ2(p2).

Proposition 6.4. Any distributed plan in (P1,P2) gives a distributed plan in (P ′1,P ′2).

Proof. Let (p1, p2) be a couple of paths constituting distributed plan in (P1,P2). One
has pk = v1

k . . . v
nk
k is a path in (Vk, Ek). By definition of a distributed plan one

has: γ1(p1) = γ2(p2). As γk(pk) = ∪iγk((vik, v
i+1
k)) one has ∪iγ1((vi1, v

i+1
1)) =

∪iγ2((vi2, v
i+1
2)).

Let p′k = (v1
k, C

1
k) . . . (vnkk , Cnkk) such that Ci+1

k = Cik ∪ γk((vik, v
i+1
k)), and

C1
k = ∅. We show that (p′1, p

′
2) is a couple of paths constituting a solution of (P ′1,P ′2).

By construction of (P ′1,P ′2), one has that, if there is an edge ek = (vk, v
′
k) ∈ Ek then

there is an edge in E′k between (vk, Ck) and (v′k, Ck ∪{γk(ek)}) for any Ck. Thus, for
any i, there is an edge in E′k between (vik, C

i
k) and (vi+1

k , Ci+1
k). This proves that p′k is

a path in (V ′k, E
′
k). It remains to prove that γ′1(p′1) = γ′2(p′2). One has γ′k(p′k) = Cnkk

by definition. Moreover, Cnkk = Cnk−1
k ∪ γk((vnk−1

k , vnkk)) = ∪iγk((vik, v
i+1
k)) =

γk(pk). So, finally, γ′1(p′1) = γ1(p1) = γ2(p2) = γ′2(p′2).

One can remark that given a distributed plan (p1, p2) for (P1,P2), applying the
construction of the proof of Proposition 6.4 to (p1, p2) leads to a distributed plan
(p′1, p

′
2) with an interesting property. Indeed, applying the construction of the proof

of Proposition 6.3 to (p′1, p
′
2) leads back to (p1, p2). Moreover, pk and p′k in the proofs

are always such that ck(pk) = c′k(p′k). This ensures that Proposition 6.3 and Proposi-
tion 6.4 hold as well for cost-optimal distributed plans. This remark, Proposition 6.3,
and Proposition 6.4 show that providing a solution of (P ′1,P ′2) or providing a solution
of (P1,P2) is equivalent. For this reason one could run Algorithm 11 on (P1,P2) for
solving (P ′1,P ′2). Has stated before, this is however not reasonable, as (P1,P2) can be
much larger than (P ′1,P ′2). This is for this reason that we provided a new version of
the expand function (Algorithm 13) which is responsible for computing (P1,P2) dy-
namically along the execution of Algorithm 11. This is proven in the next proposition.

Proposition 6.5. For agent ϕk, executing Algorithm 11 on (P1,P2) using the expand
function from Algorithm 13 is equivalent to executing Algorithm 11 on (P ′1,P ′2) using
the expand function from Algorithm 12.

129

CHAPTER 6. TOWARD A DISTRIBUTED A*

Proof. First notice that the initial state of the system is the same in both cases. Initially,
i′k = (ik, ∅) is open, with gk(i′k) = 0 and

Rk(i′k) = gk(i′k) + min
C

(hk(i′k, C) +Hk̄(C)).

All other couples (v, C) are closed and such that gk((v, C)) = +∞. The value of
Rk((v, C)) has not been calculated yet.

Consider a state of the system, that is, for each (v, C), a marking (open, closed
or candidate), and a value for gk((v, C)) and Rk((v, C)). The goal is to show that,
whatever is the next step executed in Algorithm 11 by ϕk it will lead to the same
state independently of the fact that (P1,P2) (with expand function of Algorithm 13) or
(P ′1,P ′2) (with expand function of Algorithm 12) is considered. Notice that the only
possible difference is during a call to the expand function, as the rest of the algorithm
is exactly identical. The expand function is always called on an open couple (v, C)
minimizing the value of Rk(v, C). So, when considering both (P1,P2) and (P ′1,P ′2),
expand is called on the same (v, C). We show that the effects of the call to expand on
(v, C) are independent from its implementation (that is Algorithm 12 or Algorithm 13).

After a call to expand a first effect occurs, changing the marking of (v, C) and
potentially the value of Rk((v, C)). As v ∈ Fk if and only if (v, C) ∈ F ′k one directly
has that the new marking of (v, C) does not depend of the expand function called. For
the same reason, Rk((v, C)) is calculated at line 3 of Algorithm 12 if and only if it is
calculated at line 4 of Algorithm 13. Moreover both calculations have the same result.
Hence, the effects on (v, C) of both expand functions are the same.

After that, the neighbors of v (Algorithm 13) or (v, C) (Algorithm 12) are con-
sidered. The important fact to notice is that, (v′, C ′) is a neighbor of (v, C) if and
only if v′ is a neighbor of v and C ′ = C ∪ {γk((v, v′))}. So, in both expand func-
tions the computation of gk((v′, C ′)) is exactly the same, as well as the computation
of Rk((v′, C ′)). Moreover, (v′, C ′) is marked open with the same conditions. So, the
effects of both expand functions on the neighbors are the same.

Thus, starting from a given state of the system, the next step executed in Algo-
rithm 11 by ϕk will lead to the same state independently of the fact that (P1,P2) (with
expand function of Algorithm 13) or (P ′1,P ′2) (with expand function of Algorithm 12)
is considered. This concludes the proof of Proposition 6.5.

Altogether, Propositions 6.3, 6.4, and 6.5, prove that using Algorithm 11 with the
expand function from Algorithm 13 gives a solution to CCP problems.

6.2.2 Running example
As in previous section we conclude the study of CCP problems by giving a possible ex-
ecution of Algorithm 11 on a simple such problem. Consider the graphs of Figure 6.2.
Then, the corresponding CFS problem (P ′1,P ′2) is as depicted on Figure 6.3.

An execution of Algorithm 11 by ϕ1 on P1 starts by marking (i1, ∅) as open. Then,
expand function is called on (i1, ∅). As i1 is not a goal vertex it is marked closed. The
neighbors of i1 are i1 itself (reached by an edge with color r) and v1 (reached by an
edge with color b). Moreover, at that time g1((i1, {r})) = g1((v1, {b})) = +∞. Thus,
(i1, {r}) and (v1, {b}) are marked open. Immediately, Θ1({b}) is set to optimal and
G1({b}) = 1. From that there exists two open or candidate elements. One of them is
selected, depending on the values of heuristics and of the costs of the edges. Suppose
(v1, {b}) is selected. It is then marked as candidate by expand function. No new el-
ements are opened as v1 has no successor. After that, either (v1, {b}) (candidate) or

130

6.2. COMPATIBLE COLORED PATHS

P1 : i1 v1
β, b, 1

α, r, 0

P2 : i2 v2 v′2
α, b, 2 β, r, 1

β, r, 1

Figure 6.2: A CCP problem. Labels, colors, and costs are written above edges (in this
order). All non-initial vertices are goal vertices.

P ′1 : (i1, ∅) (i1, {r}) (v1, {r, b})

(v1, {b})

α, 0

β, 1

α, 0

β, 1

P ′2 : (i2, ∅) (v2, {b}) (v′2, {r, b})
α, 2 β, 1

β, 1

Figure 6.3: CFS problem corresponding to the CCP problem of Figure 6.2. We recall
that the color of a goal vertex (v, C) is C. For example, the goal vertex (v1, {b}) has
color {b}.

131

CHAPTER 6. TOWARD A DISTRIBUTED A*

(i1, {r}) (open) is selected. In both cases, if Θ2({b}) = null, expand function is called
on (i1, {r}). It results in (i1, {r}) being closed (and not re-opened) and (v1, {r, b})
being opened. Immediately, Θ1({r, b}) is set to optimal and G1({r, b}) = 1. Af-
ter that, if still Θ2({b}) = null, another call to expand makes (v1, {r, b}) candidate.
Finally, after some time, Θ2({b}) = optimal with G2({b}) = 2.Then, necessarily,
R1((v1, {b})) = g1((v1, {b})) + G2({b}) = 3. If H2({r, b}) is sufficiently tight, that
is, 2 < H2({red, blue}) ≤ 3, ϕ1 is immediately able to conclude that its part of the
solution should reach v1 and be with color {b} . Else, as soon as Θ2({r, b}) 6= null
it is possible to conclude: if Θ2({r, b}) = useless, (v1, {r, b}) is discarded, and if
Θ2({r, b}) = optimal, then one has R1((v1, {b})) < R1((v1, {r, b})).

We let the execution of Algorithm 11 by ϕ2 on P2 to the reader as the reasoning is
similar.

Conclusion
In this chapter we have presented two distributed problems: CFS and CCP. We first
proposed a method for solving CFS, based on agents running local A* algorithms with
a bias due to the other agent results. We shown that our algorithm is usable in prac-
tice by providing concrete implementations of all the functions needed for it to run
correctly. After that we explained how CCP can be reduced to CFS, allowing the algo-
rithm proposed for solving CFS to be re-used in the case of CCP.

The tools used for the study of these problems lays the foundations for building the
distributed algorithm for solving factored planning problems which is presented in the
next chapter.

132

Chapter 7

A#: a Distributed A* for
Cost-Optimal Planning

chapter abstract: In this chapter we extend the results of Chapter 6 to the case of
factored planning problems with two components. After that we show how the approach
can be generalized to factored planning problems with any number of components as
soon as their communication graphs are trees. This leads to a distributed algorithm
(that we called A#) for cost-optimal planning.

IN THIS CHAPTER we focus on solving factored planning problems using the methods
proposed in Chapter 6. We consider factored planning problems given as tuples of

reachability problems on graphs. In other words, a planning problem P is of the form
(P1, . . . ,Pn) where each Pi is a reachability problem on a graph as in Definition 1.2.
The solution of such a problem is a tuple (p1, . . . , pn) of paths (one in each component)
such that the corresponding sequences of labels are compatible (as in Chapter 2). We
consider reachability problems on graph rather than automata in order to match the
earlier presentation of A* (Section 1.2), so that the principles of our algorithm can be
made more intuitive (this is however only a matter of notations).

The idea of this chapter is to reduce a general factored planning problem with two
components to a CFS problem, in the same way than CCP has been reduced to CFS
in the previous chapter. The main difference between these two reductions is that the
CFS problem obtained from a factored planning problem usually involves an infinite
graph, therefore specific techniques are necessary to accommodate this extra difficulty.
A large part of this chapter is thus dedicated to dealing with these particular infinite
CFS problems. We will see that a computation of the CFS problem corresponding to a
factored planning problem is possible along the search for a distributed plan, allowing
to deal with factored planning problems with two components as soon as they have
solutions.

We also generalize our results to the factored planning problems with more than two
components for which the communication graphs are trees. This is done by remarking
that, from the point of view of each agent, everything behaves exactly as if the problem
had only two components: the component the agent is working on and the set of all the
other components.

This chapter is organized as follows. We first explain in details the relations be-

133

CHAPTER 7. A#: A DISTRIBUTED A* FOR COST-OPTIMAL PLANNING

tween CFS and factored planning, explain how to deal with their differences, and show
that our approach is correct (Section 7.1). After that we describe a possible generaliza-
tion of this approach into a method for solving factored planning problems with more
than two components (Section 7.2).

7.1 Distributed planning with two components
This section extends the algorithm proposed to solve CFS problems to the more gen-
eral framework of factored cost-optimal planning problems in the limited case of two
components (or distributed planning, DP). Formally, a DP problem is defined by a cou-
ple (P1,P2) of reachability problems on graphs: Pk = (Vk, Ek,Λk, λk, ck, ik, Fk) for
k = 1, 2. The DP problem amounts to finding an optimal distributed plan (p1, p2)
where the compatibility condition is defined with respect to labeling of paths over
the shared labels Λ1 ∩ Λ2: λ1(p1)|Λ1∩Λ2

= λ2(p2)Λ1∩Λ2
= w (when dealing with

problems involving more components, this will meet the notion of compatibility of
Chapter 2). We shall assume that there is a unique optimal (common) path labeling
w ∈ (Λ1 ∩ Λ2)∗, if ever the DP problem has a solution. Otherwise selecting one la-
beling among several becomes an agreement problem, that can be solved on top of our
approach.

Compared to CFS, DP problems introduce two difficulties. First, colors are as-
signed dynamically to vertices: the color of vertex v is not given in advance by some
coloring function γ, but is set as a function of the path p leading to this vertex v = p+.
We already dealt with this difficulty in the case of CCP problems, and adapt a similar
approach in the case of DP problems. Secondly, rather than a finite set Γ of colors,
one potentially has an infinite set: the idea is that the “color” of the vertex v = p+ is
the sequence of shared actions met along path p leading to v. And there is generally
no (efficient) bound on the number of shared actions in a globally optimal distributed
plan1.

As we did for CCP problems, let us recast a DP problem (P1,P2) as a CFS problem
(P ′1,P ′2) with color set Γ = (Λ1 ∩ Λ2)∗, the set of sequences of shared actions. One
has P ′k = (V ′k, E

′
k,Λ

′
k, λ
′
k, c
′
k, i
′
k, F

′
k) with:

• V ′k = Vk × Γ,

• E′k = {((v, w), (v′, w′)) : (v, v′) ∈ Ek ∧ w′ = w πΛ1∩Λ2
(γk((v, v′)))},

• Λ′k = Λk

• for ((v, w), (v′, w′)) ∈ E′k, λ′k(((v, w), (v′, w′))) = λk((v, v′))

• for ((v, w), (v′, w′)) ∈ E′k, c′k(((v, w), (v′, w′))) = ck((v, v′)),

• i′k = (ik, ε),

• F ′k = Fk × Γ,

• for (v, w) ∈ F ′k, γ′k((v, w)) = w.

1Strictly speaking, there exists a bound since the product planning problem P = P1 × P2 is finite, and
no optimal plan will cross twice the same global state. However, the interest of distributed planning is to
deploy local reasonings in Pk without making assumptions on the size of the ‘external’ component Pk̄ .

134

7.1. DISTRIBUTED PLANNING WITH TWO COMPONENTS

(P ′1,P ′2) has however a major difference with CFS problems considered in Section 6.1
and Section 6.2: V ′1 , E

′
1, V

′
2 , and E′2 may be infinite.

The remaining of this section is dedicated to extending the results of Section 6.2
to the case of the particular infinite graphs considered here. It will allow one to use
Algorithm 11 along with the expand function given in Algorithm 14 for solving DP
problems. This new expand function is in fact responsible for computing parts of P ′k
from Pk, when needed. Three points related to finiteness of graphs where not addressed
in Section 6.2 and have to be addressed now:

1. computation ofRk((v, w)) sometimes implies to take a minimum over an infinite
number of elements,

2. termination of the algorithm relies on finiteness of the graphs,

3. computation of Gk̄ and Θk̄ are not directly possible on infinite graphs as non-
accessible colors cannot be determined at initialization.

Algorithm 14 expand function
/*expand function has been called with an argument v of the form (v′, w)*/
if v′ ∈ Fk then

mark v = (v′, w) candidate
calculate Rk(v)

else
mark v = (v′, w) closed

end if
for all v′′ such that (v′, v′′) ∈ Ek do
w′ ← wπΓ(γk((v′, v′′)))
gk((v′′, w′))← min(gk((v′′, w′)), gk((v′, w)) + ck((v′, v′′)))
if gk((v′′, w′)) strictly decreased then

mark (v′′, w′) open
pred((v′′, w′))← (v′, w)

end if
calculate Rk((v′′, w′))

end for

7.1.1 Computation of Rk and Hk̄

For any color w – or at least any color which may correspond to an optimal distributed
plan – Hk̄(w) should give a lower bound on the cost of reaching w in Pk̄. Clearly,
taking Hk̄(w) = 0 for any w gives such a lower bound. However, it is usually better to
get a tight bound in order to avoid as much exploration of the graphs as possible. For
practical use of our algorithm, using a more accurate Hk̄ would be recommended. An
example of such an Hk̄ is the following, where w′ < w denotes that w′ is a prefix of w
(recall that Hk̄ is computed by the agent ϕk̄):

Hk̄(w) = min(Ho
k̄(w), Hc

k̄(w), Gk̄(w))

with:
Ho
k̄(w) = min

(vk̄,w
′) open

w′<w

(gk̄((vk̄, w
′)), hk̄((vk̄, w

′))),

135

CHAPTER 7. A#: A DISTRIBUTED A* FOR COST-OPTIMAL PLANNING

Hc
k̄(w) = min

(vk̄,w
′) candidate
w′<w

(gk̄((vk̄, w
′))).

Notice that for any w it is possible to compute Hk̄(w), as the set of open and candidate
(v, w) is always finite. Notice also that all the values of Hk̄ can be computed by the
agent ϕk from a finite number of values of Hk̄ given by ϕk̄: the Hk̄(w) such that
(vk̄, w) is open or candidate. We denote the part of Hk̄ corresponding to these values
by Ĥk̄. One then has: Hk̄(w) = minw′<w Ĥk̄(w′) (and this is a minimum over a finite
number of values).

When (v, w) is candidate, the computation of Rk is not an issue, it can be done
exactly as in the simpler cases of CFS and CCP. Notice that, when (v, w) is candidate,
v is necessarily in Fk. Hence, when Θk̄(w) = optimal one has:

Rk((v, w)) = gk((v, w)) +Gk̄(w),

and in other cases:
Rk((v, w)) = gk((v, w)) +Hk̄(w).

However, when (v, w) is open it is not possible to directly use the previous def-
inition of Rk((v, w)) as it may involve the computation of a minimum over an in-
finite number of elements. First of all, computing Rk as before would require the
computation of hk((v, w), w′) for any color w′. We consider instead hk((v, w)) =
minw′ hk((v, w), w′), which is computable with standard heuristic computation tech-
niques as a lower bound on the cost of a path in Pk from v to a goal vertex.

From that, when (v, w) is open, we suggest to compute Rk((v, w)) as follows:

Rk((v, w)) = gk((v, w)) + hk((v, w)) + min
w′>w

Hk̄(w′).

The second difficulty is that there may be an infinite number of colorsw to consider
when computing minw′ Hk̄(w′) = minw′>wHk̄(w′). This suggests to add a constraint
on Hk̄: it should be such that minw′>wHk̄(w′) is computable for any w. Fortunately,
using the implementation of Hk̄ proposed above it is possible. One just has to remark
that:

min
w′>w

Hk̄(w′) = min(Hk̄(w), min
w′>w

Ĥk̄(w′)),

as the number of w where Ĥk̄(w) is defined is always finite, this minimum can be
computed.

7.1.2 Termination of the algorithm

The main difference here with the cases of CFS and CCP problems is that the termina-
tion of the algorithm is not ensured when there is no solution. This is due to the fact
that the graph to explore is in general infinite. In fact, it would be possible to ensure
termination, as there is a bound on the length of the color corresponding to a possible
solution. This bound can be computed by considering the number of vertices in the
product of P1 and P2: if a solution exists, one is such that it passes at most once in
each vertex of this graph. However, as stated before, it is not straightforward to tightly
compute this bound in a distributed manner. For this reason, in the following we focus
on the case where there exists a solution.

136

7.1. DISTRIBUTED PLANNING WITH TWO COMPONENTS

Theorem 7.1. In this context, if the considered DP problem (P1,P2) has a solution,
then: any execution of Algorithm 11 (using the expand function of Algorithm 14) by
the agent ϕk on Pk terminates. Moreover, the output of Algorithm 11 for agent ϕk is a
goal vertex vk ∈ Fk, reached by a local plan pk. The assembling of p1 and p2 provided
by agents ϕ1 and ϕ2 resp. yields an optimal distributed plan (p1, p2) solving (P1,P2).

To prove theorem 7.1 one first proves that as soon as a solution exists for (P1,P2),
Algorithm 11 terminates and outputs a vertex (Lemma 7.1). Then, it is sufficient to
notice that the proof of Lemma 6.3 (of Chapter 6) never relies on the assumption that
V1, E1, V2, or E2 are finite, so this proposition also applies here.

Lemma 7.1. When (P1,P2) has a solution, Algorithm 11 terminates by outputting
some (v, w) when executed by ϕk on Pk.

Proof. Assume (P1,P2) has a solution but Algorithm 11 does not terminate when
executed by ϕk. It means there is always an open or candidate couple (v, w). After
some time, such a couple will be candidate. This is due to the fact that there exists a
reachable goal vertex (else no solution would exist). After some time, any candidate
couple that may be part of a solution will become the couple with the minimal value
for Ri. This is due to the fact that

1. all couples (v′, w′) marked as open by a call to expand function with argument
(v, w) are such that gk((v′, w′)) ≥ gk((v, w)) + c, where c is the minimal cost
of an edge in Pk,

2. any candidate couple (v, w) that may be part of a solution is such thatRk((v, w))
is smaller than +∞, and

3. as for any w, Θk̄(w) has to take a value after some time and Algorithm 11 does
not terminate, any candidate couple with minimal value for Rk will be discarded
after some time.

After some time a couple (v, w) such that Θk̄(w) = optimal will become candidate.
Once again this is due to the existence of a solution. From the previous argument,
such a couple will become the couple with minimal value for Rk. Thus, Algorithm 11
will terminate thanks to this couple. This is in contradiction with the non termination
assumption. Thus this assumption is false: when (P1,P2) has a solution, Algorithm 11
terminates.

For the second part of the lemma, assume Algorithm 11 terminates without out-
putting a (v, w). It means that, at some point, all couples (v, w) were closed. However,
as (P1,P2) has a solution, there exists a reachable couple (v′, w′) such that v′ ∈ Fk
and after some time Θk̄(w′) = optimal. As all couples (v, w) were closed it means
that all the reachable part of P ′k has been explored (each (v, w) has been marked open
at some time). As v′ is a goal vertex, (v′, w′) has been marked candidate after being
marked open. As after some time Θk̄(w′) = optimal it is not possible that (v′, w′) has
been marked closed before Algorithm 11 terminated. This is in contradiction with our
assumption, thus, Algorithm 11 can only terminate by outputting some (v, w).

7.1.3 Computation of Gk̄ and Θk̄

As before, these two functions have to be computed by agent ϕk̄ independently of Pk,
and in particular, independently of Gk and Θk. A possible implementation, where Θk̄

and Gk̄ are computed along execution of Algorithm 11 by ϕk̄, is the following:

137

CHAPTER 7. A#: A DISTRIBUTED A* FOR COST-OPTIMAL PLANNING

initialization: ∀w ∈ Γ, Θk̄(w) is considered as null and Gk̄(w) = +∞ (but only the
Θk̄(w) 6= null and the corresponding values of Gk̄ are stored).

update (1): as soon as there exists v ∈ Fk̄ such that (v, w) is open or candidate,
Θk̄(w) 6= useless, and there is no open couple (v′, w′) such that gk̄((v′, w′)) +
hk̄((v′, w′)) < gk̄((v, w)) and w′ < w, Θk̄(w) = optimal and

Gk̄(w) = min
v′∈Fk̄

gk̄((v′, w)).

update (2): as soon as for a given w there exists no w′ < w and v such that (v, w′) is
open with Rk̄((v, w′)) < +∞ or (v, w) is candidate with Rk̄((v, w)) < +∞, if
Θk̄(w) = null, then Θk̄(w) is set to useless.

final update: when Algorithm 11 stops, for all w ∈ Γ such that Θk̄(w) = null, set
Θk̄(w) = useless, and Gk̄(w) = +∞.

Proposition 6.1 and Proposition 6.2 still hold with this new manner of computing
Θk̄ and Gk̄. The only difference in the proofs lies in the detection of the non-reachable
colors. One just has to remark that, after some time, any color w which can not be
part of a distributed solution will be such that no prefix w′ of w appears in an open
couple (v, w′) such that Rk̄((v, w′)) < +∞ and no (v, w) will be candidate with
Rk̄((v, w)) < +∞. Checking the value of Rk̄ is necessary because for some w it
is possible that Hk(w) becomes equal to +∞ if no goal vertex can be reached with
color w in Pk. This was already the case in previous problems (CFS and CCP) but
as we now consider infinite graphs, there is no guarantee that in such cases where
Rk̄((v, w)) = +∞ the paths starting from (v, w) will be explored. It is possible
that an infinite number of couples (v′, w′) such that Rk̄((v′, w′)) < +∞ have to be
considered before being able to treat (v, w). Hence, after some time, Θk̄(w) will be
equal to useless thanks to update (2). After that it will never become equal to optimal
by definition of update (1).

7.1.4 Running example
We conclude this section by a possible run of A# on a small factored planning problem
with two components. Consider the graph of Figure 7.1.

P1 : i1 v1
β, 1

α, 0

P2 : i2 v2 v′2
α, 2 β, 0

β, 1

Figure 7.1: A DP problem. All non-initial vertices are goal. Costs and labels are
written above edges.

Applying the transformation of DP problems into CFS problems proposed above ,
the graph P ′1 would be as depicted in Figure 7.2.

138

7.2. GENERALIZATION TO ANY NUMBER OF COMPONENTS

(i1, ε) (i1, α) (i1, αα)

(v1, β) (v1, αβ) (v1, ααβ)

. . .

. . .

α, 0

β, 1

α, 0

β, 1

α, 0

β, 1

Figure 7.2: The DP problem of Figure 7.1 re-casted as a CFS problem (only P ′1 is
depicted). We recall that the color of a goal vertex (v, w) is w. For example, the goal
vertex (v1, αβ) has color αβ.

An execution of Algorithm 11 by ϕ1 on P1 starts with (i1, ε) open. Then a call
to expand function closes (i1, ε) and opens (i1, α) and (v1, β). After that depending
on the values of the different heuristics, a call to expand function will occur on either
(i1, α) or (v1, β). Assume it is called on (i1, α). Then (i1, α) is closed and (i1, αα)
and (v1, αβ) are opened. After that expand will be called on either (v1, β), (i1, αα) or
(v1, αβ). Which will either mark (v1, β) or (v1, αβ) candidate, or close (i1, αα) and
open (i1, ααα) and (v1, ααβ). After each time an element (v1, wβ) is opened with
w ∈ {α}∗, Θ1(wβ) = optimal and G1(wβ) = |w|.0 + 1. As all costs of edges are
positive, any open element of the form (v1, wβ) with w ∈ {α}∗ becomes candidate
after a finite time. After some time Θ2(β) = useless (it is not possible to reach a
goal state in G2 using only one edge with color β), and Θ2(αβ) = optimal with
G2(αβ) < min(H2(wβ), G2(wβ)) for all w ∈ {α}∗ such that Θ2(wβ) 6= optimal
and G2(αβ) < G2(wβ) for all w ∈ {α}∗ such that Θ2(wβ) = optimal. It allows ϕ1

to conclude that its part of the optimal solution (which has a global cost of 3) reaches
v1 with color αβ. Moreover, the values of pred allow to conclude that the path in P1

should be to loop on i1 one time and then go to v1.

7.2 Generalization to any number of components
In this section we propose a generalization of the A#-algorithm above (Algorithm 11
using the expand function of Algorithm 14) to factored planning problems with any
number of components. Our generalization is based on the fact that, from the point
of view of an agent ϕk, any factored planning problem with n components can be
considered as a factored planning problem with two components only. These two com-
ponents - for which the communication graph is depicted in Figure 7.3 - are Pk and
Pk̄ = (P1, . . . ,Pk−1,Pk+1, . . . ,Pn). Thus, ϕk will simply be able to run Algo-
rithm 11 on its component, as soon as she has access to Hk̄, Gk̄, and Θk̄.

Pk Pk̄ = (P1, . . . ,Pk−1,Pk+1, . . . ,Pn)
Λk ∩ (∪k′ 6=kΛk′)

Figure 7.3: Communication graph of the factored planning problem P = (P1, . . . ,Pn)
from the point of view of ϕk: it has two components.

Obviously, one however does not want to compute Pk̄ for each k, as this may be

139

CHAPTER 7. A#: A DISTRIBUTED A* FOR COST-OPTIMAL PLANNING

intractable. Instead, the approach we propose, is for ϕk to use local information sent
from its neighbors in a communication graph ofP in order to computeHk̄,Gk̄, and Θk̄.
If this communication graph is not a tree, this computation is in general not possible
(even if ϕk uses local information not only from its neighbors but from all the other
agents).

The remaining of this section presents a possible way to compute Hk̄, Gk̄, and Θk̄

as soon as the considered factored planning problem lives on a tree. First, we describe
the information needed from the neighbors of ϕk and how this information can be used
to compute the functions needed by Algorithm 11 (7.2.1). Then, we explain how the
neighbors of ϕk can provide the needed information to ϕk (7.2.2).

7.2.1 Building Hk̄, Gk̄, and Θk̄ in a distributed way
From here, we assume that the considered factored planning problemP = (P1, . . . ,Pn)
lives on a tree. An example of such a tree is represented in Figure 7.4. This figure gives
a particular representation of a tree shaped communication graph. The tree is rooted in
Pk. The Pki are the neighbors of Pk. And for each Pki , Tki is the subtree defined by
all the nodes reachable from Pki without using the edge (Pki ,Pk).

The principle of the computation we propose for Hk̄, Gk̄, and Θk̄ is for the agent
ϕk to receive information from each of its neighbors ϕk′ , giving him estimations of the
costs in the subtree Tk′ rooted atPk′ . More concretely, the agent ϕk′ will provide to the
agent ϕk three functions: Hk

k′ , G
k
k′ , and Θk

k′ . These functions will have the following
properties:

• Hk
k′ : Λk ∩ Λk′ → R+ ∪ {+∞} is such that for any w,Hk

k′(w) gives a lower
bound on the cost of a distributed plan in Tk′ (including Pk′) compatible with w.

• Θk
k′ : Λk ∩ Λk′ → {null, optimal, useless} is such that for any w,Θk

k′(w) =
null until, after a finite time, it becomes equal to optimal or useless. Moreover
it can only be equal to useless if no cost-optimal distributed plan exists which
is compatible with w.

• Gkk′ : Λk ∩ Λk′ → R+ ∪ {+∞} is such that for any w, as soon as Θk
k′(w) =

optimal, Gkk′(w) is the optimal cost of a distributed plan in Tk′ (including Pk′)
compatible with w.

Using these functions it is quite straightforward to compute Hk̄, Gk̄, and Θk̄. One
just has to give them the following values.

Hk̄(w) =
∑

k′∈N (k)

Hk
k′(πΛk′ (w))

This effectively ensures that Hk̄(w) is a lower bound on the cost of a distributed plan
in Pk̄ because as P lives on a tree the Tk′ are independent: as soon as a distributed plan
p′ is found in any Tk′ which is compatible with w any distributed plan p′′ found in any
Tk′′ (with k′ 6= k′′) which is compatible with w is necessarily compatible with p′ as
well. Hence, a sum of lower bounds in the Tk′ is always a lower bound in Pk̄.

Θk̄(w) =

 useless if ∃k′ ∈ N (k),Θk
k′(πΛk′ (w)) = useless

optimal if ∀k′ ∈ N (k),Θk
k′(πΛk′ (w)) = optimal

null else
(7.1)

140

7.2. GENERALIZATION TO ANY NUMBER OF COMPONENTS

Pk

Pk1
. . . Pk`

. . .

Tk1
Tk`

Λk ∩ Λk1
Λk ∩ Λk`

Figure 7.4: A communication graph with tree shape and the subtrees corresponding to
the neighbors of Pk. Tki represents the tree formed by the descendants of Pki in this
tree rooted in Pk.

When in one subtree Tk′ it is possible to ensure that no distributed plan can possibly
be part of a cost-optimal distributed plan of P involving some w in Pk, one can ensure
that w can not be part of a cost-optimal distributed plan. Thus, as soon as for some
k′,Θk

k′(πΛk′ (w)) = useless one can for sure set Θk̄(w) = useless. Moreover, when
one knows the best cost of a distributed plan in each Tk′ , for sure it is possible to com-
pute the best cost of a distributed plan in Pk̄ (for the same reasons that the computation
of Hk̄ is correct). Thus, as soon as for all k′,Θk

k′(πΛk′ (w)) = optimal one can set
Θk̄(w) = optimal. The fact that after some time for any w, Θk̄(w) 6= null is ensured
by the fact that for any w′ and any k′, after some time Θk

k′(w
′) 6= null.

Gk̄(w) =
∑

k′∈N (k)

Gkk′(πΛk′ (w)).

First, remark that, if Θk̄(w) (as defined in Equation 7.1) is optimal for some w, then,
necessarily for all k′,Θk

k′(πΛk′ (w)) = optimal, and thus Gkk′(πΛk′ (w)) is the optimal
cost of a distributed plan in Tk′ compatible with w. Hence, for the same reasons that
the computation of Hk̄ is correct, the sum of these Gkk′(πΛk′ (w)) is the best possible
cost of a path in Pk̄ compatible with w.

We shown that, if any agent ϕk′ , neighboring ϕk, can provide the functions Hk
k′ ,

Gkk′ , and Θk
k′ to ϕk, then one can let each agent execute Algorithm 11 in order to solve

any factored planning problem living on a tree.

7.2.2 Computing local information in practice
To conclude the presentation of A# in its full generality we propose a way to compute
in practice the required functions Hk

k′ , G
k
k′ , and Θk

k′ for any k′ ∈ N (k). Notice that
there may (certainly) exists better solutions for computing these functions. However,
our goal here is only to show that A# is implementable.

The function for which it is the simplest to prove implementability is certainlyHk
k′ .

One just has to consider that it is always equal to 0. This is correct because all plans
have cost greater or equal to 0, so 0 is a lower bound on the optimal cost in any set of
plan, and in particular for any w, 0 is a lower bound on the optimal cost of a distributed
plan in Tk′ compatible with w. Notice that this is in fact this function that should be

141

CHAPTER 7. A#: A DISTRIBUTED A* FOR COST-OPTIMAL PLANNING

improved for efficient use of A#: the most accurate Hk
k′ is, the most accurate is Hk̄,

and so the most efficient is the search.
Proposing an implementation of Θk

k′ is more complex. First because it requires
checking values of Θk′

k′′ for all k′′ 6= k ∈ N (k′). But mainly because Θk
k′ has Λk∩Λk′

for domain, while the Θk′

k′′ have Λk′∩Λk′′ for domain. For this reason several elements
from the domain of Θk′

k′′ have to be considered in order to be able to decide optimality
for a single element of the domain of Θk

k′ . That is why we suggest the following
implementation of Θk

k′ (and Gkk′ which is closely related):

initialization: ∀w ∈ Λk ∩ Λk′ , Θk
k′(w) is considered as null and Gkk′(w) = +∞.

update (1): ∀w ∈ Λk ∩ Λk′ , Θk
k′(w) = optimal as soon as there exists v ∈ Fk̄ and

w′ such that πΛk(w′) = w, (v, w′) is open or candidate, Θk
k′(w) 6= useless,

∀k′′ 6= k ∈ N (k′), Θk′

k′′(πΛk′′ (w
′)) = optimal, and there is no open couple

(v′, w′′) such that πΛk(w′′) < w with:

gk′((v
′, w′′)) + hk′(v

′) + min
w′′′>w′′

 ∑
k′′ ∈ N(k′)
k′′ 6= k

Hk′

k′′(πΛk′′ (w
′′′))

 (7.2)

< gk′((v, w
′)) +

∑
k′′ ∈ N(k′)
k′′ 6= k

Gk
′

k′′(πΛk′′ (w
′)),

and in this case:

Gkk′(w) = min
v′ ∈ F

k′
πΛk

(w′) = w

gk′((v′, w′)) +
∑

k′′ ∈ N(k′)
k′′ 6= k

Gk
′

k′′(πΛk′′ (w
′))

 (7.3)

update (2): ∀w ∈ Λk ∩ Λk′ , as soon as there exists no (v, w′) verifying the two fol-
lowing properties:

1. πΛk(w′) < w and (v, w′) is open, or πΛk(w′) = w and (v, w′) is candidate,
and

2. Rk′((v, w′)) < +∞ and for all k′′ 6= k ∈ N (k′),Θk′

k′′(πΛk′′ (w
′)) 6=

useless,

if Θk̄(w) = null, then Θk
k′(w) is set to useless.

final update: when Algorithm 11 stops, for all w ∈ Λk ∩ Λk′ such that Θk
k′(w) =

null, set Θk
k′(w) = useless.

One may notice that, in the case of a factored planning problem with two components
(Pk,Pk̄), the values of Θk

k̄
(resp. Gk

k̄
) as defined here correspond exactly to the values

of Θk̄ (resp. Gk̄) as defined in Section 7.1.3. The principles of this computation are the
same as in Section 7.1.3 but also take into account the costs coming from Tk′ . This im-
poses, for checking optimality for a given w, to consider all possible distributed plans
in Tk′ which may be compatible with any plan inPk′ givingw. The fact that, for anyw,
Θk
k′(w) will ultimately be different from null is due to the tree shape of the communi-

cation graph considered. At the leaves of this tree the decision of optimality can be done

142

7.2. GENERALIZATION TO ANY NUMBER OF COMPONENTS

independently from other components as leaves have only one neighbor. From that, the
neighbors of the leaves can decide optimality, and then their own neighbors can decide
optimality, and so on. Finally, the computation of the minimums requested above can
effectively be achieved, even if they are minimums over theoretically infinite sets. For
the minimum in the computation of Gkk′ (Equation 7.3) this is due to the fact that, at
any time, there exists only a finite number of (v′, w′) such thatGk

′

k′′(πΛk′′ (w
′)) < +∞

for all k′′ 6= k ∈ N (k′). For the other minimum (Equation 7.2) this is due to the fact
that it is not possible to store an infinite number of values for Hk′

k′′ , so in practice only
a finite number of value will be considered, allowing computation of this minimum.

Conclusion
In this chapter we have extended the results of Chapter 6 in order to be able to solve
factored cost-optimal planning problems, first with two components only and then with
any number of components but living on trees. In each case we provided implementa-
tions for all the functions needed for estimating costs. This shows that our algorithm
can be used in practice. Moreover, as for A*, it is possible to use different heuristics
that the user can define as soon as they verify some properties. The private heuris-
tic in each component (hk) can be any admissible heuristic, in the same sense than in
A*. The heuristics shared with other components (Hk′

k) should be such that for any
w,Hk′

k (w) gives a lower bound on the cost of a distributed plan compatible with w in
the subtree Tk of the communication graph for which Pk is the root and which does not
contain Pk′ . Moreover it should be possible to have access to this heuristic by keeping
only a finite number of values in memory.

In order to improve this algorithm one could imagine driving the search in each
local component so that candidate elements are treated as fast as possible. For example
an agent could decide to temporary ignore the informations from other agents in order
to quickly check if a given candidate is really of interest. An other modification could
be to update values of Rk dynamically: when the value of some function changes,
potentially modifying the value of Rk, one could recompute it and thus change the
order in which elements will be considered.

143

CHAPTER 7. A#: A DISTRIBUTED A* FOR COST-OPTIMAL PLANNING

144

Conclusion and Perspectives

THIS DOCUMENT has presented several results related cost-optimal factored plan-
ning, organized into two families of algorithms.

The first family relies on a message passing strategy, and aplies to planning prob-
lems encoded as networks of weighted automata. For each component of such a prob-
lem, they compute the set of all local plans that are part of a global plan. Equiva-
lently, they discard from each component all local plans that can not be part of a global
(or factored) plan, so these methods proceed by filtering. Moreover, they also out-
put local plans that are part of a cost-optimal global plan. Extracting a cost-optimal
global/factored plan is then simple: one has to isolate a tuple of optimal local plans,
one per component, in such a way that they are compatible. This problem again can
be solved with a message passing algorithm. One may argue that this last step is again
equivalent to a factored planning problem, but the set of local plans to explore to build
a compatible tuple can be much smaller than in the original planning problem. Two
extensions of this approach have been proposed (read arcs and turbo planning), and
this method has been implemented and experimented on classical benchmarks, with
promising results. In particular, the experiments with turbo planning suggest that this
approch can be extremely valuable for approximate factored cost-optimal planning on
huge intractable models. Besides being a mixture of ideas borrowed to different re-
search domains.

The second family of algorithms may look a little more familiar to the planning
community since it extends the classical A* approach to a distributed setting. We
called A# this multi-agent version of A*. It does not simply consist in running in par-
rallel several interacting searches for a plan on the same model/graph, as one would
imagine. The idea here is that agents are each in charge of a component, in a network
of interacting components. The main difference with the message passing approach is
that the agents do not proceed by filtering out local plans that are not possible, they pro-
ceed in the reverse direction, by trying to build a local plan that would both match the
proposals of the other agents (compatibility), and would make the so obtained factored
plan globally cost-optimal. The driving idea is that each agents performs a best first
search on his planning problem, like in a classical A*, but his search is biased by cost
functions provided by its neighbors. These cost functions ensure that a consensus is
reached on actions that must be performed in common, and guarantee that the obtained
factored plan is optimal.

We detail below what we believe are the contributions of each chapter, before draw-
ing some perspectives for this work.

145

CONCLUSION AND PERSPECTIVES

Contributions
In Chapter 2 a first contribution is the idea of handling all plans of a component using

weighted automata. A second one is to show that weighted automata along with
well defined projection and product can be used as systems for message passing
algorithms. The conjunction of these two ideas gives the main contribution of
this chapter: the first – to our knowledge – factored planning algorithm allowing
to find cost-optimal plans.

In Chapter 3 a first contribution is to show that the algorithm of the previous chapter
can be implemented in practice using standard weighted automata algorithms. A
second one is the idea of partial determinization of weigthed automata for dealing
with non-determinizability. The main contribution is the first implementation of
a factored cost-optimal planner (which is also one of the few implementations of
factored planners) and the test of this planer on standard planning benchmarks.

In Chapter 4 a first contribution is the idea of using turbo algorithms for factored
planning for providing over-approximations of the sets of local plans. A second
contribution is an experimental study of this approach showing that approximate
methods are of interest for factored planning.

In Chapter 5 the main contribution is the proposition of a new formalism for describ-
ing planning problems: automata with read arcs, along with the presentation of
a product and a projection well suited for this formalism and the description of a
new version of the message passing adapted to it.

In Chapter 6 and Chapter 7 the principal contribution is the description of a dis-
tributed version of A* and the proof of validity of this algorithm for solving
planning problems. The presentation of two simple problems and algorithms for
solving them (as well as proofs of validity for these algorithms) in Chapter 6 are
side contributions of these chapters.

Perspectives
Decomposition of planning problems. A weakness of our approaches to factored
planning is that they rely on the existence of a representation of the planning prob-
lem as a network of interacting components/sub-problems, this network taking ideally
the shape of a tree. It is always possible to reshape a planning problem under that
form, and methods exist to do so. Typically, one can start from components that repre-
sent each a single variable of the planning problem, which induces a dense interaction
graph. Then one groups these elementary sub-problems into larger components until
the resulting interaction graph is a tree, while at the same time minimizing the size of
each component. Minimal size components are not aways the best optimization crite-
rion, however, since this size is only a crude approximation to the actual complexity
of the planning problem. It is probably better, for example, to gather components with
strong interactions (in order to minimize internal concurrency), and conversely to keep
components with little interaction separated, to take advantage of concurrency. One
needs to identify the relevant criteria to perform such decompositions, and to develop
the adequate combinatorial optimization techniques. Further, one could imagine that
the actual decomposition used to solve a problem could be dynamic, i.e. could change
along the execution of the planning algorithm. Notice that, even for turbo methods one

146

PERSPECTIVES

will certainly benefit from the use of a well chosen decomposition. In particular one
would like to be able to decide when turbo methods should be preferred to standard
methods requiring a tree-shaped communication graph.

Benchmarks adapted to factored planning. During our experiments we noticed a
lack of factored planning benchmarks, and the factorization of standard planning prob-
lems is not straightforward. In order to be able to test and compare factored planning
methods independently of problem decomposition issues, it would be of interest to
propose realistic factored planning oriented benchmarks. We did a first step in this di-
rection by designeing a generator of random factored problem, which was used in our
experiments on turbo methods. However, the random generation of problems may be
biased, it is not clear what the good parameters of these generators can be, and results
obtained on random problems may not remain true on more realistic factored planning
problems.

Metrics to compare weighted automata. In the standard setting of stochastic sys-
tems, the convergence analysis of turbo methods makes use of correlation metrics.
Typically, if the correlation between components vanishes along cycles of the interac-
tion graph, then it is likely that ignoring these cycles will not be damageable, and so
turbo inference methods will behave well. Similarly, such metrics can be used to detect
the converge of these iterative methods, when the messages exchanged bring vanishing
information. In our implementation, we have used a simple distance between weighted
automata, which gives importance to short words. This seems reasonable because we
know that optimal words can not be extremely long. However we have to decide arbi-
trarily up to which length words should be considered: evaluating precisely the maxi-
mal possible length of a cost-optimal word is complex and may impose to look at the
global problem. It would be of interest to consider other metrics on weighted automata,
allowing to measure the proximity of two automata, and thus decide convergence of
turbo algorithms. Better, one could hope being able to decide beforehand whether in-
teractions are sparse enough to make turbo algorithms reliable. Naturally, such metrics
would help as well building the appropriate problem decompositions mentioned above.

Taking advantage of internal concurrency. This work has proposed to model com-
ponents either as weighted oriented graphs or as weighted automata. So the only notion
of concurrency that was exploited lies between components, through the fact that pri-
vate events of distinct components may not be causally related. The representation of
global plans as tuples of compatible local plans allows one to model this concurrency.
But local plans are still sequences of events, so the concurrency that is internal to com-
ponents is completely unexploited. Clearly, this ability would be necessary, since for
example decomposition methods proceed by grouping state variables in order to obtain
a tree shaped interaction graph of components. Petri nets could therefore be an inter-
esting alternative as component models, provided one is able to define the operations
that are necessary to derive message passing algorithms. The product is standard and
raises no difficulty, but the projection seems more problematic. Alternatively, one could
imagine using more structured sub-classes of Petri nets, as causal nets for example, or
other ways to encode sets of trajectories, as unfoldings and their variants.

More elaborate planing objectives. For a given factored planning problem A =
A1 ×A · · · ×A An, our message passing algorithm computes an updated version A′i

147

CONCLUSION AND PERSPECTIVES

of each component Ai such that L(A′i) = ΠΣi(L(A)). One may be interested in
obtaining stronger properties on these new components A′i. For example to ensure
that A′i simulates ΠΣi(A) or even that these objects are bisimilar. This would be of
interest for finding plans with more complex requirements than just reaching a goal
state in each sub-problem. Thinking about applications, one quickly realizes that dis-
tributed optimal planning should not only provide good or optimal paths to a goal, but
also guarantee extra properties along this path. For example, one may wish to ensure
that intermediate goal states are met, or conversely that specific intermediate states are
avoided. Such issues appear in particular in reconfiguration problems for large systems,
where one wishes to drive the system to a better or target state/configuration (e.g. for
maintenance) and at the same time guarantee a minimal service disruption at any step.
Similarly, security concerns may appear, if one wishes to drive the system to a better
configuration while ensuring that on the path no known vulnerability is created. One
may also consider how a distributed/factored plan is effectively implemented: each
component knows what it must do, and when it must synchronize with its neighbors.
But such rendez-vous require communications that may be difficult to implement. This
is another source of constraints about the desirable plans one may wish to propose.
Finally, the field of partially controllable components has not been addressed by this
thesis.

148

Bibliography

[1] Eyal Amir and Barbara Engelhardt. Factored Planning. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pages 929–935, 2003.

[2] Fahiem Bacchus and Qiang Yang. Downward Refinement and the Efficiency of
Hierarchical Problem Solving. Artificial Intelligence, 71(1):43–100, 1994.

[3] Christer Bäckström. Equivalence and Tractability Results for SAS+ Planning.
In Proceedings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning, pages 126–137, 1992.

[4] Paolo Baldan, Nadia Busi, Andrea Corradini, and Giovanni Michele Pinna. Do-
main and Event Structure Semantics for Petri Nets with Read and Inhibitor Arcs.
Teoretical Computer Science, 323(1-3):129–189, 2004.

[5] Paolo Baldan, Andrea Corradini, and Ugo Montanari. Contextual Petri Nets,
Asymmetric Event Structures and Processes. Information and Computation,
171(1):1–49, 2001.

[6] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near Shannon Limit
Error-Correcting Coding and Decoding: Turbo-Codes. In Proceedings of the
IEEE International Conference on Communications, pages 1064–1070, 1993.

[7] Jean Berstel. Transductions and Context-Free Languages. Electronic Edition,
2009.

[8] Avrim Blum and Merrick Furst. Fast Planning Through Planning Graph Analysis.
Artificial Intelligence, 90(1-2):281–300, 1995.

[9] Hans Bodlaender. A Linear Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. In Proceedings of the 25th annual ACM Symposium on Theory
of Computing, pages 226–234, 1993.

[10] Blai Bonet and Héctor Geffner. Planning as Heuristic Search. Artificial Intelli-
gence, 129(1-2):5–33, 2001.

[11] Blai Bonet, Patrik Haslum, Sarah Hickmott, and Sylvie Thiébaux. Directed Un-
folding of Petri Nets. Transactions on Petri Nets and other Models of Concur-
rency, 1(1):172–198, 2008.

[12] Ronen Brafman and Carmel Domshlak. Factored Planning: How, When, and
When Not. In Proceedings of the 21st AAAI Conference on Artificial Intelligence,
pages 809–814, 2006.

149

BIBLIOGRAPHY

[13] Ronen Brafman and Carmel Domshlak. From One to Many: Planning for Loosely
Coupled Multi-Agent Systems. In Proceedings of the 18th International Confer-
ence on Automated Planning and Scheduling, pages 28–35, 2008.

[14] Adam Buchsbaum, Raffaele Giancarlo, and Jeffery Westbrook. On the De-
terminization of Weighted Finite Automata. SIAM Journal on Computing,
30(5):1502–1531, 2000.

[15] Tom Bylander. Complexity Results for Planning. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence, pages 274–279, 1991.

[16] Christos Cassandras and Stéphane Lafortune. Introduction to Discrete Event Sys-
tems. Kluwer Academic, 1999.

[17] Yixin Chen, Benjamin Wah, and Chih-Wei Hsu. Temporal Planning Using Sub-
goal Partitioning and Resolution in SGPlan. Journal of Artificial Intelligence
Research, 26(1):323–369, 2006.

[18] Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonc-
tions sous-séquentielles en tant que relations rationnelles. Theoretical Computer
Science, 5(3):325–337, 1977.

[19] Jeasik Choi and Eyal Amir. Factored Planning for Controlling a Robotic Arm:
Theory. In Proceedings of the 5th International Workshop on Cognitive Robotics,
pages 47–54, 2006.

[20] Joseph Culberson and Jonathan Schaeffer. Pattern Databases. Artificial Intelli-
gence, 14(3):318–334, 1998.

[21] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms.
McGraw-Hill, 2008.

[22] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[23] Edsger Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[24] Stefan Edelkamp. Planning with Pattern Databases. In Proceedings of the 12th
International Conference on Automated Planning and Scheduling, pages 13–24,
2001.

[25] Kutuhan Erol, Dana Nau, and V. S. Subrahmanian. On the Complexity of
Domain-Independent Planning. In Proceedings of the 10th AAAI Conference on
Artificial Intelligence, pages 381–386, 1992.

[26] Javier Esparza, Stefan Romer, and Walter Vogler. An Improvement of McMillan’s
Unfolding Algorithm. Formal Methods in System Design, 20(3):285–310, 1996.

[27] Eric Fabre. Convergence of the Turbo Algorithm for Systems Defined by Local
Constraints. Technical Report RR-4860, INRIA, 2003.

[28] Eric Fabre. Bayesian Networks of Dynamic Systems. Habilitation à diriger des
recherches, Université de Rennes1, 2007.

150

BIBLIOGRAPHY

[29] Eric Fabre and Loïg Jezequel. Distributed Optimal Planning: an Approach by
Weighted Automata Calculus. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 211–216, 2009.

[30] Eric Fabre and Loïg Jezequel. On the Construction of Probabilistic Diagnosers.
In Proceedings of the 10th International Workshop on Discrete Event Systems,
pages 229–234, 2010.

[31] Eric Fabre, Loïg Jezequel, Patrik Haslum, and Sylvie Thiébaux. Cost-Optimal
Factored Planning: Promises and Pitfalls. In Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling, pages 65–72, 2010.

[32] Richard Fikes and Nils Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence, 2(3):189–208,
1971.

[33] Cenk Gazen and Craig Knoblock. Combining the Expressivity of UCPOP with
the efficiency of GRAPHPLAN. In proceedings of the 4th European Conference
on Planning, pages 221–233, 1997.

[34] Malik Ghallab, Craig Isi, Scott Penberthy, David Smith, Ying Sun, and Daniel
Weld. PDDL - The Planning Domain Definition Language. Technical report,
Yale Center for Computational Vision and Control, 1998.

[35] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004.

[36] Cordell Green. Application of Theorem Proving to Problem Solving. In Pro-
ceedings of the 1st International Joint Conference on Artificial Intelligence, pages
219–239, 1969.

[37] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[38] Peter Hart, Nils Nilsson, and Bertram Raphael. Correction to "A Formal Basis
for the Heuristic Determination of Minimum Cost Paths". ACM SIGART Bulletin,
37:28–29, 1972.

[39] Patrik Haslum. Tp4’04 and HSP*-a. In 4th International Planning Competition
Booklet, pages 38–40, 2004.

[40] Patrik Haslum. Admissible Heuristics for Automated Planning. Phd thesis,
Linköpings Universitet, 2006.

[41] Patrik Haslum. Reducing Accidental Complexity in Planning Problems. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence,
pages 1898–1903, 2007.

[42] Patrik Haslum and Héctor Geffner. Admissible Heuristics for Optimal Planning.
In Proceedings of the 5th International Conference on Automated Planning and
Scheduling, pages 140–149, 2000.

151

BIBLIOGRAPHY

[43] Patrik Haslum, Malte Helmert, and Jörg Hoffmann. Explicit-State Abstraction:
A New Method for Generating Heuristic Functions. In proceedings of the 23rd
AAAI Conference on Artificial Intelligence, pages 1547–1550, 2008.

[44] Malte Helmert. The Fast Downward Planning System. Journal of Artificial Intel-
ligence Research, 26(1):191–246, 2006.

[45] Malte Helmert and Carmel Domshlak. Landmarks, Critical Paths and Abstrac-
tions: What’s the Difference Anyway? In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, pages 162–169, 2009.

[46] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible Abstraction Heuris-
tics for Optimal Sequential Planning. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling, pages 176–183, 2007.

[47] Sarah Hickmott, Jussi Rintanen, Sylvie Thiébaux, and Lang White. Planning via
Petri Net Unfolding. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence, pages 1904–1911, 2007.

[48] Jörg Hoffmann, Stefan Edelkamp, Sylvie Thiébaux, Roman Englert, Frederico
dos Santos Liorace, and Sebastian Trüg. Engineering Benchmarks for Planning:
the Domains Used in the Deterministic Part of IPC-4. Journal of Artificial Intel-
ligence Research, 26(1):453–541, 2006.

[49] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered Landmarks in Plan-
ning. Journal of Artificial Intelligence Research, 22(1):215–278, 2004.

[50] Loïg Jezequel and Eric Fabre. Networks of Automata with Read Arcs: A Tool
for Distributed Planning. In Proceedings of the 18th IFAC World Congress, pages
7012–7017, 2011.

[51] Loïg Jezequel and Eric Fabre. A#: A Distributed Version of A* for Factored
Planning. In Proceedings of the 51th IEEE Conference on Decision and Control,
page to appear, 2012.

[52] Loïg Jezequel and Eric Fabre. A-sharp: A Distributed A-star for Factored Plan-
ning. Technical Report RR-7927, INRIA, 2012.

[53] Loïg Jezequel and Eric Fabre. Turbo Planning. In Proceedings of the 11th Inter-
national Workshop on Discrete Event Systems, page to appear, 2012.

[54] Andreas Junghanns and Jonathan Schaeffer. Domain-Dependent Single-Agent
Search Enhancements. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence, pages 570–577, 1999.

[55] Erez Karpas and Carmel Domshlak. Cost-Optimal Planning With Landmarks. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
pages 1728–1733, 2009.

[56] Henry Kautz, Bart Selman, and Jörg Hoffmann. SATPLAN: Planning as Satisfi-
ability. In 5th International Planning Competition Booklet, pages 45–46, 2006.

[57] Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie Thiébaux. Factored
Planning Using Decomposition Trees. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 1942–1947, 2007.

152

BIBLIOGRAPHY

[58] Daniel Kirsten. A Burnside Approach to the Termination of Mohri’s Algorithm
for Polynomially Ambiguous Min-Plus-Automata. RAIRO - Theoretical Infor-
matics and Applications, 42(3):553–581, 2008.

[59] Daniel Kirsten. Decidability, Undecidability, and PSPACE-Completeness of the
Twins Property in the Tropical Semiring. Theoretical Computer Science, 420:56–
63, 2012.

[60] Daniel Kirsten and Sylvain Lombardy. Deciding Unambiguity and Sequentiality
of Polynomially Ambiguous Min-Plus Automata. In Proceedings of the 26th In-
ternational Symposium on Theoretical Aspects of Computer Science, pages 589–
600, 2009.

[61] Daniel Kirsten and Ina Maürer. On the Determinization of Weighted Automata.
Journal of Automata, Languages and combinatorics, 10(2):287–312, 2005.

[62] Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Decid-
ing Unambiguity and Sequentiality From a Finitely Ambiguous Max-Plus Au-
tomaton. Theoretical Computer Science, 327(3):349–373, 2004.

[63] Craig Knoblock. Learning Abstraction Hierarchies for Problem Solving. In Pro-
ceedings of the 8th National Conference on Artificial Intelligence, pages 923–928,
1990.

[64] Craig Knoblock. Automatically Generating Abstractions for Planning. Artificial
Intelligence, 68(2):243–302, 1994.

[65] Craig Knoblock. Generating Parallel Execution Plans With a Partial-Order Plan-
ner. In Proceedings of the 2nd International Conference on Artificial Intelligence
Planning Systems, pages 98–103, 1994.

[66] Richard Korf. Depth-First Iterative-Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence, 27(1):97–109, 1985.

[67] Richard Korf. Real-Time Heuristic Search. Artificial Intelligence, 42(2-3):189–
211, 1990.

[68] Richard Korf. Finding Optimal Solutions to Rubik’s Cube Using Pattern
Databases. In Proceedings of the 14th National Conference on Artificial Intel-
ligence, pages 700–705, 1997.

[69] Sylvain Lombardy and Jean Mairesse. Series Which are Both Max-Plus and Min-
Plus Rational are Unambiguous. RAIRO - Theoretical Informatics and Applica-
tions, 40(1):1–14, 2006.

[70] Robert McEliece, David MacKay, and Jung-Fu Cheng. Turbo Decoding as an In-
stance of Pearl’s Belief Propagation Algorithm. IEEE Journal on Selected Areas
in Communications, 16(2):140–152, 1998.

[71] Kenneth McMillan. Using Unfoldings to Avoid the State Explosion Problem in
the Verification of Asynchronous Circuits. In Proceedings of the 4th International
Workshop on Computer Aided Verification, pages 164–177, 1993.

153

BIBLIOGRAPHY

[72] Mehryar Mohri. Minimization of Sequential Transducers. In Proceedings of
the 5th Annual Symposium on Combinatorial Pattern Matching, pages 151–163,
1994.

[73] Mehryar Mohri. On Some Applications of Finite-State Automata Theory to Natu-
ral Language Processing. Journal of Natural Language Engineering, 2(1):61–80,
1996.

[74] Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2):269–311, 1997.

[75] Mehryar Mohri. Weighted Finite-State Transducer Algorithms: An Overview.
Formal Languages and Applications, 148(1):551–564, 2004.

[76] Mehryar Mohri. Handbook of Weighted Automata, chapter 6. Springer, 2009.

[77] Judea Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach. In Proceedings of the 2nd National Conference on Artificial Intelli-
gence, pages 133–136, 1982.

[78] Judea Pearl. Fusion, Propagation, and Structuring in Belief Networks. Artificial
Intelligence, 29(3):241–288, 1986.

[79] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison-Wesley, 1986.

[80] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks Revisited. In
Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages 975–
982, 2008.

[81] Jacques Sakarovitch. Éléments de théorie des automates. Vuibert, 2003.

[82] Rong Su. Distributed Diagnosis for Discrete-Event Systems. Phd thesis, Univer-
sity of Toronto, 2004.

[83] Rong Su and W. M. Wonham. Global and Local Consistencies in Distributed
Fault Diagnosis for Discrete-Event Systems. IEEE Transactions on Automatic
Control, 50(12):1923–1935, 2005.

[84] Rong Su, W. M. Wonham, James Kurien, and Xenofon Koutsoukos. Distributed
Diagnosis for Qualitative Systems. In Proceedings of the 6th International Work-
shop on Discrete Event Systems, pages 169–174, 2002.

[85] David Thorsley and Demosthenis Teneketzis. Diagnosability of Stochastic
Discrete-Event systems. IEEE Transactions on Automatic Control, 50(4):476–
492, 2005.

[86] Wieslaw Zielonka. The Book of Traces, chapter 7. World Scientific, 1995.

154

N° d’ordre : ENSC-2012 n°398
école normale supérieure de Cachan - Antenne de Bretagne
Campus de Ker Lann - Avenue Robert Schuman - 35170 BRUZ
Tél : +33(0)2 99 05 93 00 - Fax : +33(0)2 99 05 93 29

Résumé

La planification est un domaine de l’intelligence artificielle qui a pour
but de proposer des méthodes permettant d’automatiser la recherche
et l’ordonnancement d’ensembles d’actions afin d’atteindre un objectif
donné. Un ensemble ordonné d’actions solution d’un problème de
planification est appelé un plan. Parfois, les actions disponibles
peuvent avoir un coût ; on souhaite alors trouver des plans minimisant
la somme des coûts des actions les constituant. Ceci correspond en
fait à la recherche d’un chemin de coût minimal dans un graphe, et est
donc traditionnellement résolu en utilisant des algorithmes tels que
A*.

Dans ce document, nous nous intéressons à une approche particulière
de la planification, dite factorisée ou modulaire. Il s’agit de décomposer
un problème en plusieurs sous-problèmes (généralement appelés
composants) le plus indépendants possibles, et d’assembler des plans
pour ces sous-problèmes en un plan pour le problème d’origine. L’intérêt
de cette approche est que, pour certaines classes de problèmes de
planification, les composants peuvent être bien plus simples à résoudre
que le problème initial.

La première partie de ce document présente une méthode de
planification factorisée basée sur l’utilisation d’algorithmes dits à
passage de messages. Une représentation des composants sous forme
d’automates à poids nous permet de capturer l’ensemble des plans
d’un sous-problème, et donc de trouver des plans de coût minimal, ce
que ne permettaient pas les approches précédentes de la planification
factorisée. Cette première méthode est ensuite étendue~: en utilisant
des algorithmes dits « turbos », permettant une résolution approchée
des problèmes considérés, puis en proposant une représentation
différente des sous-problèmes, afin de prendre en compte le fait que
certaines actions ne font que lire dans un composant.

La seconde partie de ce document présente une autre approche da la
planification factorisée, basée sur une version distribuée de l’algorithme
A*. Dans chaque composant, un agent réalise la recherche d’un plan
local en utilisant sa connaissance du sous-problème qu’il traite, ainsi
que des informations transmises par les autres agents. La principale
différence entre cette méthode et la précédente est qu’il s’agit d’une
approche distribuée de la planification modulaire.

Abstract

Automated planning is a field of artificial intelligence that aims
at proposing methods to chose and order sets of actions with the
objective of reaching a given goal. A sequence of actions solving a
planning problem is usually called a plan. In many cases, one does not
only have to find a plan but an optimal one. This notion of optimality
can be defined by assigning costs to actions. An optimal plan is then a
plan minimizing the sum of the costs of its actions. Planning problems
are standardly solved using algorithms such as A* that search for
minimum cost paths in graphs.

In this document we focus on a particular approach to planning
called factored planning or modular planning. The idea is to consider
a decomposition of a planning problem into almost independent sub-
problems (or components). One then searches for plans into each
component and try to assemble these local plans into a global plan for
the original planning problem. The main interest of this approach is that,
for some classes of planning problems, the components considered
can be planning problems much simpler to solve than the original one.

The first part of this document proposes a study of the use of some
message passing algorithms for factored planning. In this case the
components of a problem are represented by weighted automata. This
allows to handle all plans of a sub-problems, and permits to perform
factored cost-optimal planning. Achieving cost-optimality of plans was
not possible with previous factored planning methods. This approach is
then extended by using approximate resolution techniques («turbo»
algorithms) and by proposing another representation of components
for handling actions which read-only in some components.

The second part of this document describes another approach to
factored planning: a distributed version of the famous A* algorithm.
Each component is managed by an agent which is responsible for
finding a local plan in it. For that, she uses information about her
own component, but also information about the rest of the problem,
transmitted by the other agents. The main difference between this
approach and the previous one is that it is not only modular but also
distributed.

	Résumé long en français
	Introduction
	From Planning to Factored Planning
	Planning problems
	Formalism of planning problems
	An example
	Cost-optimal planning

	The A* algorithm
	Planning problems as search in a graph
	Presentation of A*

	About heuristics
	Delete relaxation heuristics
	Critical path heuristics
	Abstraction heuristics
	Landmark heuristics

	Exploiting concurrency
	Graphplan
	Planning via Petri net unfolding

	Exploiting modularity
	A first approach to factored planning
	Factored planning using constraint solving

	Complexity of planning
	Complexity in general
	The case of factored planning

	Planning in Networks of Weighted Automata
	Automata and (factored) planning
	Planning problems in terms of automata
	Factored representation of planning problems

	Basics of message passing algorithms
	Message passing for cost-optimal planning
	Composition: synchronous product
	Projection: natural projection
	Relation between product and projection
	Sample execution of the MPA on weighted languages

	Working directly with weighted automata
	Plan compatibility: product of weighted automata
	Cost-optimization: projection of weighted automata
	A sample execution of MPA on weighted automata

	Distoplan: a Factored Planner for Cost-Optimal Planning
	Algorithms for the product and the projection
	Projection as an -reduction
	Product as a breadth first search

	Reducing the size of the weighted automata
	Trimming weighted automata
	On the determinization of weighted automata
	Minimizing weighted automata

	Distoplan
	An extended example
	Experimental results

	Turbo Algorithms for Factored Planning
	Turbo algorithms
	About updated components
	About solution extraction

	Turbo algorithms for constraint solving
	Conditions for convergence
	Ensuring convergence in all cases
	Experimental results

	Turbo algorithms for cost-optimal planning
	Necessity of a normalization
	Normalization procedure
	Experimental results

	Networks of Automata with Read Arcs
	Simple reading mechanism
	Writing and reading
	Operations on languages
	Operations on automata

	Networks of automata with read arcs
	Reading and writing tags
	Automata with read arcs
	Operations on languages
	Product of automata with read arcs

	Planning in networks of ARA
	ARA representing planning problems
	Projection of an ARA
	Central relation between product and projection
	Example

	Generalization to any number of ARA
	Communication graph of a network of ARA
	Message passing algorithm for ARA

	Toward a distributed A*
	Compatible final states
	Intuition on the approach
	Proposed algorithm
	Implementation of G and
	Running example

	Compatible colored paths
	Equivalence of CFS and CCP
	Running example

	A#: a Distributed A* for Cost-Optimal Planning
	Distributed planning with two components
	Computation of Rk and H
	Termination of the algorithm
	Computation of G and
	Running example

	Generalization to any number of components
	Building H, G, and in a distributed way
	Computing local information in practice

	Conclusion and perspectives
	Bibliography

