Influence de l'état protéique sur la dynamique de séparation de phase et de gélification dans un système ternaire aqueux à base de protéines de pois et d'alginate - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Influence of protein state on the phase separation and gelation within an aqueous system made of pea proteins and alginate

Influence de l'état protéique sur la dynamique de séparation de phase et de gélification dans un système ternaire aqueux à base de protéines de pois et d'alginate

Résumé

Two aqueous systems at 20°C in 0.1 M NaCl and pH 7.2 containing globular pea proteins and sodium alginate were investigated in this study. First, phase behavior of (i) either low-denatured mixed globulins or (ii) their thermally pre-aggregated counterparts - alginate mixtures was compared using a multi-scale approach, by means of phase diagram and microstructure analysis by confocal microscopy. Thermodynamic incompatibility was the main driving force leading to phase separation within the mixtures, which presented according to their initial biopolymer composition both different morphological and time-evolution features of coexisting phases. Thereafter, a cold-set gelation for each system was performed, as the slow hydrolysis of glucono-δ-lactone (GDL) acidified the media and mediated the release in situ of calcium ions from calcium carbonate, practically insoluble at pH higher than 7. Such procedure would allow gelation via calcium of alginate only or both alginate and the protein phase, giving rise to filled and mixed gels, respectively. An attempt to correlate rheological measurements (G’, G’’ dynamic moduli) with microstructural data was carried out according to image texture analysis by the cooccurrence method. Phase separation was kinetically entrapped by gelation. Compared to single-alginate gels or native globulins-alginate filled gels where alginate was the only gelling agent via calcium, mixed gels reflected in fact great synergism effect regarding final gel elasticity. Meanwhile, pre-aggregated pea globulins could not form a gel with the gelation procedure of choice here. Besides, stronger segregative effects were evidenced by increasing initial biopolymer composition thus enhancing self-biopolymer interaction in their respective enriched-coexisting phases. The strongest mixed gels displayed entangled structure. According to a differential labelling of each incompatible biopolymer, observations with transmission electron microscopy suggested inter-biopolymer attractive interaction at the interface of coexisting phases, probably via calcium cations. Salt-bridging would reinforce cohesiveness between both protein and alginate networks
Deux systèmes aqueux à 20°C constitués de protéines globulaires de pois et d’alginate de sodium ont été considérés au cours de cette étude, dans des conditions de solvant fixées à pH 7,2 et 0,1 M NaCl. Dans un premier temps, le comportement de phase de globulines faiblement dénaturées (i) ou pré-agrégées thermiquement (ii) en mélange avec de l’alginate a été comparé à différentes échelles d’observation, en termes de diagrammes de phase et de microstructure analysée par microscopie confocale. Attribuée à un phénomène général d’incompatibilité thermodynamique, la séparation de phase a été décrite tout particulièrement sous des aspects morphologiques et cinétiques à l’échelle microscopique, selon la composition de départ en biopolymères et le mode de préparation des globulines. Par la suite, une gélification de chacun des deux systèmes a été opérée à froid, par libération de calcium ionique in situ à partir d’un sel de calcium de carbonate peu soluble au-dessus de pH 7, sous l’effet acidifiant d’une hydrolyse lente de la glucono-δ-lactone (GDL). L’intérêt d’un tel procédé reposait sur l’obtention de gels remplis à mixtes lorsque l’alginate seul ou l’alginate et la phase protéique pouvaient gélifier en présence de calcium. Des corrélations entre propriétés rhéologiques mesurées en régime dynamique (modules G’ et G’’) et données de microstructure ont été effectuées, par l’intermédiaire de l’analyse de texture d’image selon la méthode de cooccurrence. Chaque mélange témoignait d’une séparation de phase bloquée cinétiquement par sa gélification. Par rapport aux gels d’alginate seul ou gels remplis où l’alginate seul pouvait gélifier via le calcium, les gels mixtes témoignaient d’un effet de synergie remarquable d’un point de vue élasticité finale des gels. Dans le même temps, les globulines pré-agrégées ne montraient pas d’aptitude à la gélification selon le procédé appliqué ici. En outre, des effets ségrégatifs induisaient un enrichissement des protéines et du polyoside dans deux phases coexistantes, renforçant de ce fait des interactions entre biopolymères du même type. Les gels mixtes les plus élastiques présentaient une structure enchevêtrée avec un réseau protéique prédominant. Les observations en microscopie électronique à transmission effectuées par un marquage différentiel des deux biopolymères suggèreraient qu’il puisse se former localement des interactions attractives inter-biopolymères, probablement via le calcium, à l’interface des deux phases initialement immiscibles. Ce pontage consoliderait globalement la cohésion entre les deux réseaux protéique et polyosidique
Fichier principal
Vignette du fichier
These_A_MESSION_Jean_Luc_2012.pdf (7.3 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-00825480 , version 1 (23-05-2013)

Identifiants

  • HAL Id : tel-00825480 , version 1

Citer

Jean-Luc Mession. Influence de l'état protéique sur la dynamique de séparation de phase et de gélification dans un système ternaire aqueux à base de protéines de pois et d'alginate. Autre. Université de Bourgogne, 2012. Français. ⟨NNT : 2012DIJOS030⟩. ⟨tel-00825480⟩
556 Consultations
1934 Téléchargements

Partager

Gmail Facebook X LinkedIn More