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Abstract

Ions in solution play a fundamental role in many physical, chemical, and biological pro-
cesses. For industrial applications these systems are usually described using simple analytical
models which are fitted to reproduce the available experimental data. In this work, we pro-
pose a multi-scale coarse graining procedure to derive such models from atomistic descriptions.
First, parameters for classical force-fields of ions in solution are extracted from ab-initio calcu-
lations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution
functions measured in classical molecular dynamics simulations, allowing us to define an im-
plicit solvent model of electrolytes. Finally, perturbation calculations are performed to define
the best possible representation for these systems, in terms of charged hard-sphere models.
Our final model is analytical and contains no free “fitting” parameters. It shows good agree-
ment with the exact results obtained from Monte-Carlo simulations for the thermodynamic
and structural properties. Development of a similar model for the electrolyte viscosity, from
information derived from atomistic descriptions, is also introduced.

Keywords : electrolytes, coarse-graining, effective potentials, perturbation theory, specific
effects, primitive model.

Modélisation multi-échelle des ions en solution: des descriptions
atomiques jusqu’au génie chimique

Résumé

Les ions en solutions ont un rôle fondamental dans de nombreux processus physiques, chi-
miques et biologiques. Dans le cadre des applications industrielles, l’ingénieur les décrits par
des modèles analytiques simples, qui sont paramétrisés et ajustés afin de réproduire des don-
nées expérimentales. Dans ce travail, nous proposons une procédure multi-échelle à gros-grains
pour obtenir ces modèles simples à partir de descriptions atomiques. D’abord, les paramètres
de forces classiques pour des ions en solutions sont extraits de calculs ab-initio. Des potentiels
effectifs (McMillan-Mayer) ion-ion sont ensuite obtenus à partir des fonctions de distribution
de paire mesurées dans des simulations de dynamique moléculaire. Avec ces potentiels effec-
tifs, nous pouvons établir une description à solvant continu des électrolytes. Finalement, nous
mettons en oeuvre un calcul de perturbation, pour définir la meilleure représentation possible
pour ces systèmes, en termes de sphères dures chargées (éventuellement associées). Le modèle
final ainsi obtenu est analytique et il ne contient pas de paramètres ajustables. On montre qu’il
est en bon accord avec les résultats exacts obtenus par des simulations Monte-Carlo pour la
structure et la thermodynamique. La thèse se termine en proposant la mise au point d’une
analyse similaire pour la viscosité des éléctrolytes, obtenue à partir d’une base moléculaire

Mots-clefs : électrolytes, gros-grains, potentiels effectifs, théorie des perturbations, effets spé-
cifiques, modèle primitif.
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1.1 Importance d’une description à plusieurs échelles

Les ions en solution jouent un rôle fondamental dans beaucoup de processus physiques,
chimiques, biologiques et industriels. Par exemple, les ions aident la régulation des
fonctions cellulaires de base [2] et ils participent aussi à la destruction de la couche
d’ozone [3]. En outre, ils déterminent comment le retraitement et le stockage du com-
bustible nucléaire usé peuvent être accomplis [4]. Si les simulations numériques nous
ont aidé à développer une compréhension détaillée des propriétés microscopiques im-
pliquées dans cette classe de phénomènes, le lien avec les propriétés thermodynamiques
macroscopiques, que l’on obtient expérimentalement, n’est pas toujours facile à établir.
De plus, de telles simulations nécessitent des ressources informatiques considérables, qui
peuvent, dans certains cas, prendre plusieurs semaines ou plusieurs mois. Pour cette
raison la plupart des modélisations en génie chimique adoptent les modèles les plus sim-
ples capables de décrire les données expérimentales disponibles, pour ensuite ajuster les
paramètres à fin de les reproduire.

Le but de ce travail est de dépasser cette difficulté le mieux possible en développant
une description à plusieurs échelles des ions en solution. Il s’agit de passer d’une de-
scription microscopique (déterminée par des simulations à échelle atomique) à un modèle
mésoscopique approprié pour des applications en génie chimique. Ce travail est ainsi
motivé par deux raisons principales. Premièrement, un tel processus nous permet de
donner une interprétation physique, voir une explication aux modèles simples utilisés
pour étudier les systèmes complexes qui se présentent typiquement dans le cadre indus-
triel. Il ne suffit pas de dire qu’un modèle donné "fonctionne" (i.e. qu’il est capable

16
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de reproduire des données expérimentales), nous devons aussi être capables d’expliquer
pourquoi il "fonctionne". Deuxièmement, si cette procédure est réalisée correctement,
elle n’aura pas besoin des données expérimentales externes. Ceci est particulièrement
important pour des applications nucléaires, où les expériences sont bien connues pour
être difficiles à réaliser. Pour donner une idée de ce dont nous aurons besoin pour une
description des ions en solution à plusieurs échelles réussie, nous allons brièvement anal-
yser le procédé PUREX (Plutonium–Uranium Refining by Extraction en anglais) utilisé
dans le traitement du combustible nucléaire usé [4], parce qu’il illustre convenablement
les bénéfices et le besoin d’une approche à plusieurs échelles.

Contexte: Le procédé PUREX

Figure 1.1: Un schéma représentant le procédé d’extraction liquide–liquide (PUREX)
utilisé dans le traitement du combustible nucléaire usé.

Développé pendant les années 1940 comme une des parties du projet Manhattan, le
procédé PUREX fut ensuite développé pour un usage non lié à l’industrie militaire et
il est devenu depuis le procédé de–facto du recyclage des combustibles nucléaires usés
des réacteurs à eau. A la fin du cycle nucléaire, quand le combustible est enlevé du
réacteur, celui–ci contient des produits de transmutation et de fission (lanthanindes,
actinides « mineurs » hautement radioactifs : Np, Am et Cm), parmi lesquels une
quantité considérable de matériel encore fissile (plutonium et uranium), qui pourrait
être réutilisé. Le procédé PUREX a été conçu précisément pour récupérer ce plutonium
et cet uranium. Outre cette possibilité de réutilisation de combustible nucléaire, ce
traitement réduit aussi fortement le volume des déchets et leur radioactivité, ce qui
permet de les stocker plus facilement. Ainsi, sans traitement les déchets ont une durée
de vie (estimée comme le temps que met le déchet pour retrouver une radioactivité
semblable à celle du minerai d’uranium naturel) de l’ordre de plusieurs centaines de
milliers d’années, mais elle tombe à environ 10000 ans après cette séparation. Une telle
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politique à long terme n’a bien sûr un sens que si l’on construit les futures centrales
utilisant le plutonium et l’uranium (centrale de génération IV).

Le procédé PUREX est une procédure d’extraction liquide–liquide qu’utilise la haute
sélectivité d’une molécule organique particulière, le TBP (Tributyle Phosphate), pour
extraire les actinides majeurs (U et Pu) du combustible nucléaire usé. Une représenta-
tion schématique du processus est présentée dans la Figure1.1. Les déchets nucléaires
sont dissous dans une solution d’acide nitrique aqueuse et mélangés avec une solution
organique et du TBP. Cela donnera une extraction de l’uranium et du plutonium de
la phase liquide à la phase organique. Cette extraction est réalisée à travers une réac-
tion de complexation entre le soluté (dans la phase aqueuse) et le TBP (dans la phase
organique), qui a lieu à l’interphase. Un exemple de ceci peut être l’extraction de
l’uranium1, pour lequel la réaction d’équilibre avec les solutés dans la phase organique
peut être représentée par [4]:

nH2O + UO2+
2 aq + 2NO−3 aq + 2TBP→ (UO2(NO3)2, 2TBP(H2O)n)org (1.1)

pour lequel la loi d’action de masse donne

KU(VI) =
[UO2(NO3)2, 2TBP]org[

UO2+
2

]
org

[
NO−3

]2
aq [TBP]2org

·
γU(VI)org

γU(VI)aqγ2
NO3aqγ

2
TBPorg

(1.2)

pour la constante d’équilibre d’extraction. Dans cette équation [X] et γX représentent
la concentration et le coefficient d’activité de l’espèce X dans la phase donnée (aqueuse
ou organique). Afin de déterminer les conditions de travail optimales pour ce processus,
nous devons pouvoir calculer les coefficients d’activité ; en particulier ceux de la phase
aqueuse. Normalement, ces coefficients sont calculés en adoptant des simples représen-
tations semi–empiriques de solution ionique, comme celles fournies par le modèle de
Pitzer ou le modèle de Zdanovskii–Mikulin, avec des paramètres ajustés pour repro-
duire les données expérimentales disponibles. Alors que des systèmes aussi complexes
doivent forcement être décrits en utilisant des modèles simples, nous proposons qu’au
lieu d’ajuster les paramètres de ce type de modèles, nous tentions de les déduire des de-
scriptions atomiques plus précises. Nous cherchons ainsi à mettre en place une stratégie
de « coarse–graining » qui pourra nous permettre d’aller d’une description à échelle
atomique (où le soluté et le solvant sont traités de la même manière) à un modèle ana-
lytiquement soluble dans lequel nous prendrons en considération uniquement les degrés
de liberté du soluté.

1.2 Plan de Travail

L’exemple donné ci–dessus montre la nécessité de développer une description à plusieurs
échelles des ions en solution. En tout, nous considérerons trois niveaux distincts de de-
scription : (1) une description ab–initio atomique dans laquelle on tient compte des
degrés de liberté électroniques, (2) un modèle atomique classique où les interactions
entre les atomes et les molécules sont menés par des champs de force classiques et (3)
une description à solvant continu. Une représentation schématique de ces différentes

1Dans un état d’oxydation (VI):
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Figure 1.2: Un schéma représentant les différents échelles (et modèles) qui peuvent
êtres utilisées pour décrire les solutions d’électrolytes.

échelles, avec ses modèles et méthodes de simulation correspondants, est donnée dans
la Figure1.2. Dans le chapitre suivant, nous donnerons les concepts théoriques de base
nécessaires pour comprendre et interpréter le travail qu’on a réalisé. Ensuite, nous ren-
trerons dans le travail proprement de la thèse. Tout d’abord, nous montrerons comment
faire le lien entre le niveau 1 et 2 en déduisant les champs de force classiques pour
des ions en solution à partir de calculs ab–initio. Après cela, nous montrerons com-
ment établir un lien similaire entre les niveaux 2 et 3, nous permettant de définir des
potentiels effectifs ion–ion pour un modèle à solvant continu. Même si cette approche
réduit énormément la complexité du système, elle nécessite toute de même des coûteuses
simulations numériques, mais elle reste pratiquement la seule réalisable pour le calcul
des activités en solution. La partie suivante montre comment déduire des modèles an-
alytiques simples (en fonction des sphères dures chargées, éventuellement associées) à
partir des potentiels effectifs ion–ion. On constatera que l’additivité des tailles, utilisée
dans les solutions MSA et BIMSA mises en oeuvre pour décrire ces systèmes de sphères
dures est incompatible avec la structure microscopique des électrolytes, aussi, le chapitre
suivant se centre sur le développement de modèles non additifs pour les électrolytes. La
thèse se termine en proposant la mise au point d’une analyse similaire pour la viscosité
des électrolytes, obtenu à partir d’une base moléculaire par une théorie de couplage de
mode.

1.3 Résumé

Ici nous proposons un résumé détaillé de notre travail et les résultats principaux que
nous avons obtenus.

Effets spécifiques à partir d’une description ab–initio
Nous commençons notre travail en déduisant des champs de force classiques à partir
d’une description ab–initio basée sur la théorie de la fonctionnelle de la densité (DFT).
En adoptant l’approximation de Born–Oppenheimer, les noyaux peuvent être traités
comme des particules classiques qui évoluent sur la surface d’énergie potentielle créée
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par les électrons. Grâce au théorème de Hohenberg et Kohn, la force subie par les
noyaux, peut être déterminée à partir de la densité électronique, en nous épargnant
le calcul de la solution de l’équation de Schrödinger pour un système d’électrons qui
interagissent entre eux. En utilisant la méthode de Kohn et Sham, cette densité élec-
tronique est facilement évaluée en fonction de propriétés à un seul électron. Cette
formulation de type « Density Functional Theory » (DFT) est en principe exacte, mais
plusieurs approximations doivent être introduites pour que la solution du problème soit
obtenues dans un laps de temps raisonnable. Les approximations principales sont les
suivantes : (1) l’utilisation d’un pseudo potentiel pour remplacer les électrons fortement
liés au noyau, (2) l’utilisation d’une base finie d’ondes planes pour représenter les or-
bitales et (3) l’utilisation des fonctionnelles locales simples pour approximer l’énergie
d’échange et corrélation.

Les deux problèmes principaux de la DFT sont: (1) le fait qu’elle fournit une densité
électronique qui est délocalisée dans l’espace, ce qui est difficile à interpréter en fonction
des propriétés locales et, (2) l’impossibilité de la plupart de fonctionnelles d’échange et
corrélation de décrire adéquatement les interactions de dispersion. Heureusement, ces
deux problèmes peuvent être résolus en utilisant les fonctions de Wannier de localisation
maximale. Celles–ci sont obtenues à partir d’une transformation unitaire des orbitales
canoniques de Kohn et Sham. Cette transformation est choisie pour que les orbitales
aient l’extension la plus réduite possible, ce qui permet de les attribuer à des atomes ou
à des molécules individuelles. Une fois que ces orbitales sont connues, les interactions
de dispersion (au deuxième ordre) sont facilement calculées en utilisant une méthode
développé par Silvestrelli et généralisée par Aguado et al [5].

Nous avons réalisé des simulations de dynamique moléculaire (MD) pour une série
d’ions monovalents dans l’eau afin de générer une trajectoire suffisamment longue et
adéquate pour nos calculs DFT. Ensuite, nous avons utilisé l’information fournie par les
fonctions de Wannier pour étudier la réponse de la densité électronique locale à un champ
électrique extérieure. A partir de cela, nous pouvons calculer les polarisabilités des ions
en solution. Ceci est important parce qu’il n’existe pas des données expérimentales pour
les polarisabilités en phase condensée. Nos résultats, donnés dans le Tableau 1, montrent
une décroissance dans les polarisabilités des anions en solution par rapport à leurs valeurs
en phase gazeuse tandis que les valeurs des cations ne changent pratiquement pas.

Finalement, en utilisant un simple schéma de « force–matching », nous paramétrons
les champs de force classiques pour reproduire les forces données par les calculs ab–
initio (avec la correction de dispersion). Les champs de force pour une série de cations
monovalents ont été utilisés dans des simulations de dynamique moléculaire (MD) pour
comparer les prédictions données par nos potentiels aux données expérimentales connues.
Nous avons reproduit une large gamme de propriétés d’équilibre et dynamique, telles
que les distances de contact moyen ion–eau, les nombres de coordination, les énergies
libres d’hydratation et les coefficients d’auto–diffusion. Dans tous les cas, on obtient un
très bon accord avec les expériences.

Descriptions moléculaires à solvant continu
Nous savons qu’il est possible d’obtenir des champs de force « précis » directement des
calculs ab–initio, mais la quantité de propriétés thermodynamiques qui peuvent être
mesurées avec des simulations de MD est assez réduite. Les propriétés ion–eau sont
facilement obtenues mais les propriétés ion–ion (tels que les coefficients d’activité) sont
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presque impossibles à calculer directement. Même si la théorie de Kirkwood–Buff , qui
est exacte, peut être utilisée dans ce but, les temps de simulation requis sont trop longs.
Une autre approche est fournie par la théorie des électrolytes en solution de McMillan–
Mayer. Cette théorie, qui est aussi exacte, nous permet de réaliser le calcul des propriétés
thermodynamiques des ions en trois étapes : premièrement, on fait la moyenne sur les
degrés de liberté du solvant et on mesure les corrélations ion–ion. Deuxièmement, on
utilise cette information pour définir des potentiels effectifs ion–ion pour un modèle
solvant continu, où il n’y a que des ions. Dernièrement, les propriétés thermodynamiques
structurales sont mesurées en faisant des simulations Monte–Carlo (MC) pour ce système
simplifié. Le fait d’avoir enlevé les molécules d’eau réduit énormément le nombre de de
degrés de liberté, ce qui rend la simulation beaucoup plus rapide.

Malgré le fait que la théorie de McMillan–Mayer est rigoureusement exacte, elle
dépend des potentiels de force moyenne (PMF) à n–corps qu’on ne peut pas calculer.
Ainsi, l’approximation usuellement utilisée est de considérer que les potentiels sont ad-
ditifs par paire. Pour éviter des calculs complexes nécessaires pour calculer le PMF à
deux corps, nous avons utilisé une équation intégrale pour déduire le potentiel effectif des
corrélations ion–ion obtenues par des simulations de MD (solvant explicite). Grâce à sa
simplicité et à la précision avec laquelle elle décrit les systèmes ioniques, nous avons choisi
d’utiliser l’équation intégrale HNC («hyper–netted chain») donnée dans l’équation (5.1).
Cette équation donne un lien direct entre les fonctions de distribution radiale ion–ion
et les potentiels d’interaction correspondants. Malheureusement, elle nécessite que les
fonctions de distribution soient connues pour toutes les distances ou, au moins jusqu’au
point où les fonctions ont convergé à leur valeur asymptotique. Puisque ceci n’est pas
possible pour les simulations qu’on utilise, il est nécessaire de corriger ce comportement
à longue distance. Nous utilisons une méthode d’inversion qui utilise deux relations
exactes pour les systèmes ioniques (les lois d’addition de Stillinger–Lovett) pour ajuster
le comportement à longue distance (à petit vecteur d’onde) des fonctions de distribu-
tion radiale. Ceci nous permet de fixer sans ambiguïtés le niveau de référence de nos
potentiels interactions et de retrouver leur valeur asymptotique espérée. Ces potentiels
effectifs sont naturellement décomposés en une interaction à courte portée (moyennée
sur le solvant) et une interaction de Coulomb à longue portée. La première de ces deux
contributions est celle qui contient les effets spécifiques des ions.

Nous avons étudié deux types de systèmes : (1) les sels simples halogenures alcalino–
terreux et (2) les sels de chlorure de lanthanides. Pour le premier système, nous prenons
des combinaisons des cations Li+, Na+ et K+ avec des anions Cl−, Br− et I−, et pour
le deuxième système, nous prenons les cation La3+, Nd3+, Eu3+, Dy3+ et Lu3+ comme
représentant la série de lanthanides. Les fonctions de distribution radiale obtenue des
simulations à concentration finie (c ' 0, 5mol.L−1) sont ensuite utilisées dans notre
procédure d’inversion HNC pour déduire des potentiels effectifs ion–ion. Les résultats
que nous avons obtenus pour les alcalins sont donnés dans les figures (5.3) et (5.4). Les
résultats pour les lanthanides sont donnés dans la figure (5.11). Dans les deux cas, les
potentiels cation–cation et anion–anion sont assez bien représentés par des potentiels de
sphères dures chargées : les potentiels à courte portée sont très répulsifs à courte distance
et ils présentent des faibles oscillations à longue distance (les oscillations sont toujours
en dessous de l’énergie thermique de fluctuation). Par contre, les potentiels cation–anion
présentent une structure assez particulière qui ne peut pas être représentée en termes
de sphères dures. Ces potentiels ont deux minima locaux séparés par une barrière
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d’énergie potentielle importante (> kBT ). Le premier minimum correspond à la paire
au contact (CIP) tandis que le deuxième minimum correspond à la paire séparée par une
molécule d’eau (SSIP). La stabilité relative de ces deux configurations est déterminée par
l’énergie libre de solvatation. De plus, en utilisant le modèle d’association généralisant
celui de Bjerrum, les potentiels cation–anion peuvent être utilisés pour déterminer les
constants d’association d’équilibre K0. La valeur de K0 pour les alcalins est présentée
dans le tableau 5.2. Ces valeurs permettent de quantifier la stabilité de la CIP à partir
desquelles nous pouvons constater que les sels Li+ sont les moins associés et les K+ sont
les plus associés et les sels Na+ ont un comportement intermédiaire. Les valeurs de K0

pour les lanthanides sont données dans le tableau 5.4. Nous récupérons l’ordre espéré
dans la série de lanthanides et nos résultats sont en très bon accord avec les résultats
obtenus par Ruas et al. [6] qui les ont ajustés au modèle BIMSA pour récupérer les
coefficients osmotiques expérimentaux.

Nous utilisons ces potentiels pour réaliser les simulations MC sur plusieurs concentra-
tions. Pour rester simples, nous avons supposé que la dépendance à n corps des potentiels
peut être négligée, ce qui devrait être une approximation valide jusqu’aux concentrations
molaires. Le bon accord entre les fonctions de distribution radiale obtenues à partir des
deux niveaux de description (solvant explicite et solvant continu) montrent la valid-
ité du processus d’inversion. Les coefficients osmotiques des solutions sont facilement
mesurables dans les simulations MC étant donné qu’ils correspondent à la pression du
gaz de solutés. Les comparaisons avec les coefficients osmotiques expérimentaux (avec
la conversion au système de référence de McMillan–Mayer) montrent un accord accept-
able. Ces résultats sont présentés dans les figures 5.7 et 5.13. Globalement, l’ordre
dans les coefficients osmotiques, en fonction de l’anion, est reproduit. Cependant, cette
comparaison est d’autant plus intéressante que les champs de force atomiques que nous
avons utilisés dans les simulations MD n’ont pas du tout été ajustés pour redonner les
bonnes valeurs des activités ioniques. Un test important serait de calculer les coeffi-
cients osmotiques directement à partir des simulations MD, en utilisant la théorie de
KB, mais c’est précisément pour éviter ces calculs beaucoup trop longs pour en déduire
les activités avec une précision suffisante que nous avons développé notre méthode de
«coarse–graining».

D’une description moléculaire aux modèles primitifs
Même si les potentiels effectifs fournissent une description adéquate pour des solutions
d’électrolytes, qui ne fait référence qu’aux degrés de liberté des solutés, la description
a toujours besoin d’une simulation numérique relativement coûteuse. Pour des appli-
cations industrielles, où des solutions analytiques explicites sont nécessaires, il est clair
qu’on doit simplifier encore plus nos modèles. Pour accomplir cela, nous utilisons la
théorie des perturbations des fluides. L’idée est simple, nous voulons établir un lien
entre les propriétés du système modèle (qui n’a pas de solution analytique) et celles
d’un système de référence connu. Il est possible de déduire un développement en série
de l’énergie libre du système modèle autour de l’énergie libre de référence (Eq. (6.1)),
dans laquelle les coefficients dans le développement sont obtenus comme des moyennes
prises dans l’ensemble du système de référence. Au premier ordre, nous avons besoin
juste de l’énergie libre et les fonctions de distribution radiale du système de référence
au même temps que l’énergie de perturbation (Eq. (6.2)). En outre, ce développement
au premier ordre est aussi une borne supérieure rigoureuse. Cela signifie que pour
n’importe quelle référence que nous choisissons, l’énergie donnée par ce développement
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sera toujours au–dessus de l’énergie libre du système modèle. Grâce à cette inégalité de
Gibbs–Bogoluibov, la procédure pour déduire le meilleur modèle simple est directe : une
fois le système de référence est choisi et adéquatement paramétré, le développement de
l’énergie libre (au premier ordre) est minimisée. Tout ce qui reste à faire est de choisir
le meilleur système de référence possible. Évidemment, lorsque la référence s’approche
le plus du système modèle que nous voulons étudier, les résultats seront meilleurs.

Pour les solutions d’électrolytes, le premier choix est celui d’un système de sphères
dures chargées pour lequel la solution MSA fournit des expressions analytiques pour
les propriétés thermodynamiques et structurales (l’énergie libre et les fonctions de dis-
tribution radiale). Malheureusement, lorsque nous utilisons des potentiels de référence
avec des singularités, une partie de l’espace de configuration du système modèle sera
systématiquement négligée. Cela nous amène à une erreur intrinsèque dans les calculs
de perturbation qui doit absolument être prise en compte. Cela signifie que nous ne pou-
vons pas fournir une description adéquate en utilisant un modèle à deux composants.
Ceci est dû au fait que les potentiels effectifs d’interaction cation–anion présentent deux
minima qui sont impossibles à représenter en utilisant juste une distance de moindre
approche. La solution que nous proposons est de traiter le CIP et le SSIP indépendam-
ment. Du coup, nous allons considérer un système associé à trois composants comme la
référence dans nos calculs de perturbation.

Pour les systèmes de référence à trois composants nous avons utilisé deux représen-
tations pour la paire : (1) comme une sphère neutre et (2) comme un «dumbbell»
dipolaire. Dans le premier cas, l’énergie libre et les fonctions de distribution radiale
sont facilement obtenues à partir de la solution MSA. Dans le deuxième cas, nous util-
isons la solution BIMSA pour la thermodynamique et la solution MSA pour les fonctions
de distribution radiale (en considérant un système de sphères dures équivalent). Afin de
corriger les régions négatives (non–physiques) qui peuvent apparaître dans les fonctions
de distribution radiale données par MSA, nous utilisons une approximation exponen-
tielle. Avant de réaliser les calculs de perturbation, il est nécessaire d’établir une relation
entre les propriétés de ce système à trois composants et celles du système originale à
deux composants. Pour les calculs de perturbation nous avons besoin d’une relation
entre les énergies libres et les potentiels effectifs de ces deux systèmes ; pour comparer
les résultats prédits par notre modèle primitif avec ceux du modèle moléculaire (MC ou
MD) nous avons aussi besoin d’une relation entre les fonctions de distribution radiale
des systèmes à deux et à trois composants.

En utilisant un formalisme de fonction caractéristique, nous avons établi une relation
entre les énergies libres des deux systèmes qui est exacte à dilution infinie. La différence
entre les énergies libres correspond au potentiel chimique de la paire. En prenant les
interactions moyennées sur les rotations entre un ion libre et une paire (dipôle), et entre
deux dipôles, nous avons aussi obtenu des relations approximatives pour les potentiels
d’interaction de la paire (en fonction des potentiels entre les ions dans le système à
deux composants). Les équations qui définissent les potentiels paire–ion et paire–paire
sont données dans l’équation (6.52). Un calcul similaire de champ moyen et de dilution
infinie permet d’établir un lien entre les fonctions de distribution radiale du système à
trois composants avec celle dus système à deux composants. Cette relation est donnée
dans l’équation (6.67).

Les potentiels effectifs pour les neuf sels alcalins que nous avions obtenu ont été
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utilisés dans des calculs PFT pour déduire le meilleur modèle analytique (au premier
ordre) pour ces systèmes. Lorsque nous comparons les énergies libres des différents
modèles que nous avons utilisé (pour les différents systèmes de référence et les différents
paramétrisations de la paire) avec les valeurs exactes calculées par MC, nous avons
observé ceci : (1) Le modèle non–associé à deux composants est trop répulsif (pas assez
attractif). Ceci est dû au fait qu’un tel modèle néglige complètement la paire au contact.
(2) La paramétrisation précise de la paire n’est pas importante. Nous avons utilisé quatre
paramétrisations et elles donnent toutes, essentiellement, les mêmes résultats jusqu’aux
concentrations molaires. (3) L’inégalité de Gibbs–Bogoluigov est toujours satisfaite.
Même si c’est une relation exacte, qui devrait toujours être vrai, le fait d’avoir utilisé
des solutions approximatives (MSA et BIMSA) pour calculer les énergies libres et les
fonctions de distribution radiale de référence permettrait une possible exception à cette
règle. Le fait qu’il n’y ait pas d’exception est une façon de valider a posteriori les
différentes approximations que nous avons utilisées. (4) Nous avons obtenu des très
bons accords avec les résultats exacts. L’erreur relatif entre les prédictions de notre
modèle finale et les calculs exacts est de l’ordre de 10 ∼ 20% jusqu’aux concentrations
molaires. (5) Les diamètres optimaux, déduits par la minimisation, sont essentiellement
indépendants de la concentration. (6) Les fonctions de distribution radiale cation–
anion, obtenus en utilisant une représentation à trois composants, peuvent prendre en
compte la CIP et la SSIP (ce qui n’est pas possible avec une représentation à deux
composants). Les paramètres finaux de notre modèle sont donnés dans le tableau (6.3).
Une comparaison entre les résultats exacts et les valeurs prédites par notre modèle pour
les énergies libres et les coefficients osmotiques est donné dans les figures (6.9) et (6.10).

Perspectives
Nous concluons cette thèse en proposant deux perspectives possibles pour continuer
avec le développement d’une description multi-échelle des ions en solution. D’abord,
étant donné que la non-additivité des potentiels effectifs a été le principal problème
auquel nous nous sommes confrontés pour établir un modèle primitif des électrolytes
(en termes de sphères dures chargées), nous envisageons qu’une théorie de perturbation
spécialement conçue pour traiter des potentiels de perturbations infinis peut être util-
isée pour déterminer les propriétés thermodynamiques et structurales d’un système de
sphères dures non-additives. Ceci est important car tous les modèles de sphères dures
(comme Percus-Yevick ou MSA) supposent que les diamètres sont additifs. Il n’existe
pas une solution analytique pour ce genre de modèles si les diamètres ne sont pas ad-
ditifs. La théorie que nous proposons est une extension de celle développée par Sillren
et Hansen [7, 8], qui ont montré qu’au lieu d’utiliser un développement en série du po-
tentiel v(r), il est plus pratique de le faire avec le facteur de Boltzmann (exp (−βv(r))).
En effet, même si le potentiel tend vers l’infini, cette quantité restera dans tous les cas
finie. Nous montrons comment un tel développement doit être évalué, pour un système
à plusieurs composants, au premier ordre pour la structure et à deuxième ordre pour
l’énergie libre. Nous finissons en donnant un exemple pour le cas d’un système simple
de sphères dures, à deux composantes A et B, avec une non-additivité dans l’interaction
A–B.

Finalement, nous essayons de mettre au point une procédure similaire pour étudier
les propriétés de transport des ions en solution (jusqu’ici nous avons seulement considéré
les propriétés thermodynamiques d’équilibre). Nous nous sommes particulièrement in-
téressé à la viscosité des électrolytes. À la différence des autres coefficients de transport,
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comme les coefficients d’autodiffusion, de diffusion mutuelle ou la conductivité, aucun
réel progrès n’a été possible pour la viscosité depuis les travaux originaux d’Onsager,
Fuoss et Falkenhagen dans les années 1930 [9]. Leur théorie, qui est basée sur le modèle
de charges ponctuelles de Debye et Hückel, est seulement valide à très basse concen-
tration et elle est incapable de décrire les effets spécifiques (elle donne uniquement la
contribution ionique d’excès). Expérimentalement, il est observé que la contribution
dominante à la viscosité est linéaire en concentration c (au moins jusqu’aux concentra-
tions molaires) et est caractéristique de chaque ion. C’est ce terme linéaire (qui donne le
coefficient de Jones-Dole) qu’il n’a pas été jusqu’à présent possible d’expliquer à partir
d’une base moléculaire, car il peut être positif pour certains ions et négatif pour d’autres.
Ce phénomène est parfois considéré comme étant une conséquence de la nature faiseur ou
briseur de structure du solvant («structure-maker» ou «structure- breaker») de chaque
ion, mais il n’existe aucune théorie microscopique capable d’expliquer ce phénomène.
Un premier pas vers une telle théorie de la viscosité a été récemment donne par Chandra
et Bagchi [10], qui ont utilisé une théorie de couplage de modes pour trouver une expres-
sion analytique pour la viscosité d’excès ionique qui dépend uniquement des facteurs de
structure ion–ion. En utilisant cette théorie ils ont été capables d’en déduire exactement
la loi limite de Debye-Falkenhagen pour la viscosité. Nous avons essayé de généraliser
leur théorie pour qu’elle prenne en compte l’effet du solvant. Au premier ordre en c,
nous devons seulement considérer le terme ion-ion et solvant-solvant. Pour le premier,
nous utilisons la solution donnée par MSA pour les facteurs de structure, tandis que
pour le deuxième nous utilisons des résultats obtenus par des simulations de dynamique
moléculaire. En tout, il y a trois contributions à la viscosité: (1) un terme de collision à
temps court, (2) un terme ion-ion à temps long et (3) un terme solvant-solvant à temps
long. La contribution à temps court est calculée en utilisant la théorie d’Enskog (pour
un système effectif de sphères-dures), et les contributions à temps long sont calculées
en utilisant la théorie de couplage de mode. De ces trois termes, tous sont positifs,
sauf la contribution solvant-solvant calculée par le couplage de mode, qui est toujours
négative. C’est la compétition entre ces trois termes qui va déterminer si le coefficient
de Jones-Dole est négatif ou positif (Figure 8.7). Nous avons ainsi réussi pour la pre-
mière fois à expliquer pourquoi certains ions peuvent diminuer la viscosité du solvant.
Cette première approche pourra être améliorée en particulier en précisant différemment
la séparation entre les contributions aux temps court et long, qui est nécessaire pour
calculer le terme de couplage de mode, ou en tenant compte de la rotation des molécules
de solvant.
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2.1 The Importance of a Multi-Scale Description

Ions in solution play a fundamental role in many physical, chemical, biological, and
industrial processes. They not only help to regulate basic cellular functions [2], but they
also participate in the destruction of the ozone layer [3] and dictate how the reprocessing
and storage of spent nuclear fuel can be performed [4]. Although computer simulations
have helped us develop a detailed understanding of the microscopic properties involved in
these types of phenomena, the link with macroscopic thermodynamics, which we probe
experimentally, is not always easy to establish. Furthermore such simulations require
considerable computational resources, taking in some cases several weeks or months to
finish. For these reasons, most engineering solutions adopt the simplest possible models
able to reproduce the available experimental data, and then adjust the parameters to
do exactly that.

The goal of this work is to develop a multi-scale description of ions in solution,
allowing us to go from a fully microscopic description (determined by atomic-scale sim-
ulations), to a mesoscopic model suitable for engineering applications. The reasons for
doing this are twofold. First, such a process allows us to give a physical interpretation
(explanation) of the simple models required to study the complex systems typically en-
countered within industrial settings. It is not enough to say that a given model works
(i.e. reproduces the experimental data), we should also be able to explain why it works.
Second, if done correctly, this procedure requires no external experimental data. This
is particularly important for nuclear applications, where experiments are notoriously
difficult to perform. To give an idea of what we expect from a successful multi-scale
description of ions in solution, we will briefly review the PUREX process (which is
an acronym for Plutonium-Uranium Refining by Extraction) used in the treatment of
spent nuclear fuel [4], as it illustrates nicely the benefits and the need of a multi-scale
approach.

26
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Context: The PUREX process

Figure 2.1: A schematic representation of the PUREX (liquid-liquid extraction) process
used in the recycling of spent nuclear fuel.

Developed in the 1940s as part of the Manhattan project, the PUREX process [4]
was later extended for non-military industrial use, and has since become the de-facto
standard for the recycling of spent nuclear fuel from water reactors. At the end of the
nuclear cycle, when the fuel is removed from the reactor, it not only contains the trans-
mutation and fission products (the most important of which are the highly radiotoxic
“minor” actinoids: Np, Am, and Cm), but also a considerable amount of fissile material
(Plutonium and Uranium), which could be reused. The PUREX process was designed
precisely to recover this Plutonium and Uranium. Besides providing fresh nuclear fuel,
it reduces the volume of the waste and its radioactivity, making it much easier to store.

The PUREX process is a liquid-liquid extraction procedure which uses the high se-
lectivity of a particular organic molecule, TBP (Tributyle Phosphate), to extract the
major actinoids (U and Pu) from the spent nuclear fuel. A (very) schematic represen-
tation of the process is given in Figure 2.1. The nuclear waste is dissolved in a solution
of aqueous nitric acid and mixed with an organic solution of TBP. This results in an
extraction of the Uranium and the Plutonium from the liquid to the organic phase.
This extraction is performed through a complexation reaction between the solutes (in
the aqueous phase) and the TBP (in the organic phase), which occurs at the interface
of the two phases. As an example, we can consider the extraction of Uranium1, whose

1Besides having to consider all the different elements present in the solution, one must also take
into account the different oxydation states in which they can be present. The example presented here
corresponds to the extraction of Uranium (VI).
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equilibrium reaction with the aggregates in the organic phase can be represented by [4]

nH2O + UO2+
2 aq + 2NO−3 aq + 2TBP→ (UO2(NO3)2, 2TBP(H2O)n)org (2.1)

for which case the mass-action law gives

KU(VI) =
[UO2(NO3)2, 2TBP]org[

UO2+
2

]
org

[
NO−3

]2
aq [TBP]2org

·
γU(VI)org

γU(VI)aqγ2
NO3aqγ

2
TBPorg

(2.2)

for the equilibrium extraction constant. In this equation [X] and γX represent the
concentration and the activity coefficient of species X in the given phase (aqueous or
organic). To determine the optimal working conditions for this process, we must be able
to calculate the activity coefficients. In particular, for the the aqueous phase. Normally,
this has been done by adopting simple semi-empirical representations of ionic solution,
such as those provided by the Pitzer or the Zdanovskii-Mikulin model, and fitting the
parameters to reproduce the available experimental data. While such complicated sys-
tems must necessarily be described using these types of simple models, we propose that
instead of fitting their parameters, they should be derived from more exact atomistic
descriptions. We thus seek to put in place a coarse-graining strategy that will allow
us to go from an atomic scale description (where the solute and solvent are treated
equally) to an analytically solvable model in which only the solute degrees of freedom
are considered.

2.2 Plan of our Work
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molecular 
dynamics
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molecular 
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Figure 2.2: Schematic representation of the different scales, and models, that can be
used to describe electrolyte solutions. Note that Monte-Carlo (MC) simulations can
be performed at any level of description; we will employ them only for the continuous
solvent models.

The example given above has shown the necessity of developing a multi-scale descrip-
tion of ions in solution. In total, we will consider three distinct levels of description:
(1) an ab-initio atomistic description, in which the electronic degrees of freedom are
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taken into account, (2) a classical atomic scale model, where the interactions between
atoms and molecules are given by classical force-fields, and (3) and implicit solvent de-
scription. A schematic representation of the different scales, with their corresponding
models and simulation methods, are given in Fig. 2.2. In the next chapter, we briefly
cover the basic theoretical concepts needed to understand and interpret the work we
have carried out. In the following chapter, we show how to provide a link between levels
(1) and (2), i.e. how to obtain a classical potentials for ions in solution from ab-initio
(density functional theory) calculations. We then show how the same link can be estab-
lished between levels (2) and (3), allowing us to define effective ion-ion potentials for
an implicit solvent model. While this greatly reduces the complexity, it still requires
costly numerical simulations. The following part shows how simple analytical models,
in terms of charged hard-spheres, can be derived from the effective ion-ion potentials.
As the additivity of the MSA and BIMSA theories we use to describe these hard-sphere
systems is shown to be incompatible with the microscopic structure of real electrolytes,
the following part of our work is focused on the development of non-additive models.
Finally, we try to develop a similar (simple) description for the viscosity of electrolytes,
by using the information derived from atomistic simulations within a Mode-Coupling
Theory to study the solute-solvent effects.
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We begin with a brief overview of the standard theoretical framework used to de-
scribe ionic solutions. First, we summarize the basic principles of Classical Statisti-
cal Thermodynamics, the branch of Physics which provides the link between a micro-
scopic description and a macroscopic one, between mechanics (equations of motion)
and thermodynamics (state variables). It is not surprising then, that it provides the
framework needed to derive realistic models of electrolyte solutions. From a simulation
point of view, the toolbox of Statistical Mechanics not only determines what can be
measured, but also how it should be measured. We proceed by summarizing the two
exact theories used to study electrolytes: the Kirkwood-Buff (explicit solvent) and the
McMillan-Mayer (implicit-solvent) theories. No attempt is made at providing a com-
plete description of the different theoretical concepts introduced in this chapter, nor do

30
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we pretend to give rigorous derivations for the different formulae presented; instead, we
have tried to provide a brief, self-contained, summary of the theory used throughout
this work. The interested reader should turn to the standard textbooks in statistical
mechanics [11, 12, 13, 14, 15, 16] and the theory of liquids [17, 18].

3.1 Statistical Thermodynamics of Simple Liquids

3.1.1 Statistical Averages and Distributions

Consider a macroscopic system of volume V with N identical (point) particles. The
state of such a system, at any given time, is completely specified by the N generalized
coordinates {qi} and momenta {pi}, where the bold-symbols are used to represent
vector quantities. These variables define a point Γ = (q1, . . . , qN ,p1, . . . ,pN) in the
6N -dimensional phase space. As the system evolves in time, this point will describe a
trajectory within the phase space that is entirely determined by Hamilton’s equations
of motion [11, 14]

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

(3.1)

where the Hamiltonian H is defined as

H = KN + VN + Φ (3.2)

with KN and VN , the kinetic and (internal) potential energies, respectively, and Φ the
energy due to any possible external potentials. For a macroscopic system, the value
of a given property A(Γ), a function of the position and momenta of the particles
at a particular moment in time, is of no practical interest. Its average, on the other
hand, is an intrinsic property of the system. There are two ways of measuring these
averages: (1) as a time average A over the trajectory (Boltzmann method) or (2) as an
ensemble average 〈A〉 (Gibbs method). If the system is ergodic, these two averages are
equivalent [15]

A = 〈A〉 (3.3)

The time average A is formally defined as

A = lim
τ→∞

1

τ

∫ τ

0

dtA(Γ(t)) (3.4)

where Γ(t) is the phase-space trajectory described by a point initially at Γ(0) at t = 0.
Notice thatA depends on time implicitly, through its dependence on Γ, its time evolution
is therefore governed by the Liouville operator L [17]

dA(Γ(t))

dt
= iLA(Γ(t)) (3.5)

L ≡ i{H, } (3.6)
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where { , } is the Poisson bracket

{A,B} =
N∑
i

(
∂A
∂ri
· ∂B
∂pi
− ∂A
∂pi
· ∂B
∂ri

)
(3.7)

such that

A(Γ(t)) = eiLtA(Γ(0)) (3.8)

This is the type of average one measures during a Molecular Dynamics simulation,
where the positions and velocities of the particles are propagated in time Γ(t) by solving
Newton’s equation of motion (which yield the same dynamics as L).

The ensemble average of Gibbs [19] 〈A〉 is defined through the use of statistical
distributions f(Γ) in phase space. The idea is as follows. We imagine a very large
number N of identical copies of the system, each in the same macrostate (i.e. same
energy), but in possibly different microstates Γ (i.e. different positions and velocities)
compatible with the macrostate. We wish to compute the probability of observing a
given state Γ. This is done by counting the total number D(Γ) of systems, among
all the N mental copies, which are within a region dΓ of Γ. The ratio between these
two numbers defines the phase-space probability density f(Γ) = D(Γ)/N , such that
the integral of f(Γ) over a given region in phase-space will give the ratio between the
number of systems in that region and the total number of systems. The genius of Gibbs’
work was to realize that this ratio could be used to specify the probability that a given
system, among the ensemble of mental copies, lies within the same region. The average
of a given property A can then be computed as

A =

∫
dΓA(Γ)f(Γ) (3.9)

although it is usually expressed in terms of the relative (not normalized) probability
distributions f ′

A =

∫
dΓA(Γ)f ′(Γ)∫

dΓf ′(Γ)
(3.10)

The quantity appearing in the denominator is the so-called partition function, which
essentially gives the volume (number of states) of the phase-space. This is the main
object of study within (equilibrium) Statistical Mechanics (if we know this, we know
everything). These are the types of averages one measures during a Monte-Carlo simu-
lation. In what follows, we give a brief account of the basic ensembles used to perform
these measurements; where the difference among them is due to the different ways in
which the macrostate of the system can be specified, each leading to a distinct form of
f(Γ). For simplicity we have only considered point particles in three-dimensional space,
but the generalization to more complicated systems is straightforward [14].

Before proceeding, it is important to note that not all averages are created
equal. Within a simulation, the time and ensemble averages defined by Equa-
tions (3.4) and (3.9), respectively, will only allow us to measure a particular kind of
property. Namely, those which do not depend on the absolute value of the phase-space
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volume. As such, we are unable to directly measure the partition functions
∫
dΓf(Γ), or

any of the thermodynamic potentials (the S, F , Ω, and G introduced below). However,
we can measure the ratio of two such volumes, which means that the derivatives of these
thermodynamic potentials can be directly obtained. Once we know the derivatives, the
difference between the thermodynamic potentials at two distinct states can be obtained
by a simple integration procedure.

Micro-Canonical Ensemble (NVE)

Consider an ensemble of closed and isolated systems. The macrostate of all these systems
is specified by the number of particles N , the volume V , and the total energy E. As
there is no macroscopic difference among them, the only difference being the position
and momenta of their particles, it does not make sense to favor one configuration over
another. The probability is then defined as being the same for all the microstates

f(Γ) =

{
constant ifH(Γ) = E

0 otherwise
(3.11)

and the micro-canonical partition function, which counts the number of valid mi-
crostates, is then given by

W =
1

N !h3N

∫
dΓδ(H(Γ)− E) (3.12)

where h3N is a measure of the “volume” of a particular state and the N ! term is needed
to (approximately) correct for the over counting of states (as the particles are indis-
tinguishable) [11, 14]. The contact with thermodynamics is given by the celebrated
Boltzmann relation, which gives the entropy of the system as a function of the partition
function [11]

S = kB lnW (3.13)

where kB is the Boltzmann constant. From this, all other thermodynamic quantities are
easily obtained. In particular the temperature T , pressure P , and chemical potential µ
are given by

dS =
1

T
dE +

P

T
dV − µ

T
dN (3.14)

1

T
= kB

(
∂ lnW

∂E

)
N,V

,
P

T
= kB

(
∂ lnW

∂V

)
E,N

,
µ

T
= kB

(
∂ lnW

∂N

)
E,V

Canonical Ensemble (NVT)

We again consider an ensemble of systems, with the same number of particles N and
the same volume V , but now we allow for them to exchange energy with each other.
Although the energy of any given system will fluctuate, the total energy (for the whole
ensemble) remains constant, and at equilibrium the temperature will be the same for
all of them. In this sense, every system is considered to be in contact with a heat bath
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or thermostat (temperature T ) formed by all the other systems. The probability dis-
tribution for this canonical ensemble can then be obtained by considering the number
of ways in which the total energy can be partitioned among the different systems, and
finding the most probable distribution [14]. This is naturally expressed as a constrained
minimization problem, which is solved using Lagrange’s method of undetermined mul-
tipliers. In this case, the Lagrange multiplier (which guarantees the conservation of
energy : system + heat bath ) is the inverse temperature β−1 = kBT . The other en-
sembles are derived in exactly the same manner: we open the systems, allowing for the
exchange of some conserved quantity among themselves, and look for the best (most
likely) way of performing this distribution.

The probability distribution f(Γ) for this ensemble is given by the Boltzmann dis-
tribution [14]

f(Γ) ∼ e−βH(Γ) (3.15)

The canonical partition function Q is then given by

Q =
1

N !h3N

∫
dΓe−βH(Γ) (3.16)

Since the momentum integrals can be performed analytically, each yielding a factor of√
2πmkBT , we can simplify this equation to obtain

Q =
1

N !

Z

Λ3N
(3.17)

where Λ =
√
h2/2πmkBT is the de Broglie wavelength for a particle of mass m, and Z

is the configuration integral

Z =

∫
dqNe−βVN (3.18)

The associated potential, providing the link with thermodynamics, is the Helmholtz free
energy F [14]

F = −kBT lnQ (3.19)

from which we may directly obtain the entropy S, pressure P , and chemical potential µ

dF = −SdT − PdV + µdN (3.20)

S = kB lnQ+ kBT

(
∂ lnQ

∂T

)
N,V

, P = kBT

(
∂ lnQ

∂V

)
N,T

, µ = kBT

(
∂ lnQ

∂N

)
V,T

as well as the internal energy U ≡ F + TS

U = −
(
∂ lnQ

∂β

)
N,V
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Grand-Canonical Ensemble (µV T )

If we take the canonical ensemble NV T , and now allow for the systems to exchange
particles among themselves, we obtain the grand-canonical ensemble. An additional
Lagrange multiplier γ is introduced in order to fix the total number of particles in the
ensemble. This new parameter γ = −βµ is directly related to the chemical potential
of the reservoir µ, which (at equilibrium) should be the same for all the systems. The
probability distribution for this ensemble is of the same Boltzmann form as before [14],
and is given by

f(Γ, N) ∼ e−β(H(Γ)−µN) (3.21)

with the grand-canonical partition function Ξ defined as

Ξ =
∑
N

1

N !

eNβµ

h3N

∫
dΓe−βH(Γ) (3.22)

By performing the integration over momenta, this equation can be written in terms of
the N particle configuration integrals ZN as

Ξ =
∑
N

zN

N !
ZN (3.23)

where z = eβµ

Λ3 is the activity. The link with thermodynamics is now given by the
Grand-Potential Ω [14]

Ω = −kBT ln Ξ (3.24)

from which the entropy S, pressure P , and number of particles follow directly

dΩ = −SdT −Ndµ− PdV (3.25)

S = kB ln Ξ + kBT

(
∂ ln Ξ

∂T

)
V,µ

, N = kBT

(
∂ ln Ξ

∂µ

)
V,T

, P = kBT

(
∂ ln Ξ

∂V

)
V,T

as well as the Helmholtz free energy

F = Ω +Nµ (3.26)

The fact that the Grand-Potential Ω is a function of only one extensive parameter
(V ) provides an additional relationship, since application of Euler’s Theorem1 gives
Ω = −PV .

Isobaric-Isothermal Ensemble (NPT)

Again, we start from the canonical ensemble, but now we open the systems to changes
in volume. As the total volume of the ensemble must remain constant, we obtain an

1Let f(x1, . . . , xN ;X1, . . . , XM ) be a homogeneous thermodynamic function of order n, which de-
pends on xi extensive variables andXi intensive variables, Euler’s theorem states that nf =

∑N
i=1 xi

∂f
∂xi

.
By definition, all extensive thermodynamic variables are homogeneous of order 1 and all intensive vari-
ables homogeneous of order 0.
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additional Lagrange multiplier of the form γ = βPV , where P is the pressure of the
reservoir or barostat [14, 20]

f(Γ, V ) ∼ e−β(H(Γ)+PV ) (3.27)

The partition function for this ensemble is

∆ =
βP

N !h3N

∫
dV e−βPV

∫
dΓe−βH(Γ) (3.28)

and the connection with thermodynamics is given by the Gibbs free energy G

G = −kBT ln ∆ (3.29)

from which we directly derive the entropy S, average volume V , and chemical potential
µ

dG = −SdT + V dP + µdN (3.30)

S = kB ln ∆ + kBT

(
∂ ln ∆

∂T

)
N,P

, V = −kBT
(
∂ ln ∆

∂P

)
N,T

, µ = −kBT
(
∂ ln ∆

∂N

)
T,P

Which Ensemble to Choose?

In principal, it makes no difference which ensemble we choose, as they are all equivalent
in the thermodynamic limit, when the size of the system (in both volume and number
of particles) approaches infinity at constant density. This is due to the fact that, at
equilibrium, the probability of observing a given value for A, which is far from its
average value 〈A〉, becomes infinitely small as the size of the system increases. Usually,
the relative fluctuations for a given microscopic quantity will scale as O(N−1/2) [14], and
they can be safely ignored. The choice of ensemble will thus depend on the quantity we
wish to measure, and on how easy this calculation can be performed.

From a theoretical perspective, where we can always go to the thermodynamic limit,
the choice of ensemble is purely one of convenience2: in which ensemble is it easiest
to carry out the calculations? The micro-canonical ensemble, although simple in ap-
pearance is actually the most difficult to work with, which is why it is relegated to
being a stepping-stone towards the more friendly canonical and grand-canonical ensem-
bles. From a simulation point of view, no ensemble is more difficult than the others3, but
since we are restricted to working with a finite number of particles, we cannot ignore the
fluctuations in our system. Given that experiments are usually performed at constant
temperature T and pressure P , special care should be taken when comparing our results
to experimental values, to make sure that the fluctuations (if important) are properly
taken into account. Hopefully, the reader will have an idea of just how tedious this
process can be, particularly when dealing with multi-component systems, after reading
Chapter 7.

2Although some results, which depend directly on the fluctuations, can only be derived in a given
ensemble.

3This is true once the programming has been performed, since the computer will do all the work,
but this is different matter.
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3.1.2 Distribution Functions

N-particle Densities and Distributions

In the study of dense media, the particle distribution functions, which measure the spa-
tial density correlations in the fluid, play a fundamental role in most of the theories
of liquids that have been developed. Furthermore, they provide a direct link to exper-
imental observations, since scattering experiments measure these type of correlations.
Consider a system described by one of the ensembles mentioned above. The probability
ρ(n)(r1, . . . , rn) of finding n particles at positions r1, . . . , rn, irrespective of the positions
of all the other particles or their momenta, is obtained by integrating (tracing out) the
phase-space probability distribution f(Γ) over these irrelevant degrees of freedom. This
n-particle density is then defined as

ρ(n)(r1, . . . , rn) = Tr
′
f (3.31)

where the prime indicates that the trace (for the given ensemble) is constrained to
those states which contain n atoms at positions r1, . . . , rn. The n-particle distribution
function g(n)(r1, . . . , rn) is then defined by

g(n)(r1, . . . , rn) =
ρ(n)(r1, . . . , rn)∏n

i=1 ρ
(1)(ri)

(3.32)

These functions provide a measure of the structure in the fluid with respect to a com-
pletely random system (in which there are no spatial correlations among particles). For
what follows, it is convenient to consider the precise definition of these distribution
functions in the canonical and grand-canonical ensembles [17]

ρ
(n)
NV T (r1, r2, . . . , rn) =

N !

(N − n)!

1

Z

∫
dr′ (N−n)e−βVN (3.33)

ρ
(n)
NPT (r1, r2, . . . , rn) =

1

Ξ

∞∑
N=n

zN

(N − n)!

∫
dr′(N−n)e−βVN (3.34)

The Radial Distribution Function and the Structure Factor

The most useful of these functions are the single and two-body densities, which can be
expressed as averages of the corresponding microscopic densities by

ρ(1)(r1) =
〈
ρ̂(1)(r1)

〉
=

〈
N∑
i=1

δ(r1 − r′i)

〉
(3.35a)

ρ(2)(r1, r2) =
〈
ρ̂(2)(r1, r2)

〉
=

〈
N∑
i=1

N∑
j 6=i

δ(r1 − r′i)δ(r2 − r′j)

〉
(3.35b)

where δ(r) is the Dirac distribution. If the fluid is homogeneous and isotropic, the
corresponding two-particle density g(2)(r, r′) is a scalar function of only one variable
r12 = |r1 − r2|, and is then called the radial distribution function g(r). This function,
which essentially gives the conditional probability for observing a particle at r2 given
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that there is already a particle at r1, plays a fundamental role in the theory of liquids
for two reasons: (1) If the potential energy of the system is pair-wise additive, the
thermodynamic properties can be obtained as integrals over the g(r), and (2) the g(r)
are directly related, through a Fourier transform, to the structure factors S(k) obtained
from scattering experiments [17]

S(k) = 1 + ρh̃(k) (3.36)

where h(r) is the pair correlation function

h(r) = g(r)− 1 (3.37)

and the tilde denotes a three-dimensional Fourier transform, such that

f̃(k) =

∫
dr e−ik.rf(r) (3.38a)

f(r) =
1

(2π)3

∫
dk eik.rf(k) (3.38b)

For homogeneous isotropic systems, this transform pair can be simplified to

f̃(k) =

∫ ∞
0

dr 4πr2 sin (kr)

kr
f(r)

f(r) =
1

(2π)3

∫ ∞
0

dk 4πk2 sin (kr)

kr
f(k)

Besides being an experimentally measurable quantity, the structure factor is useful be-
cause it provides a direct link with the thermodynamics of the system. This is achieved
through the compressibility equation

S(k = 0) ≡ ρkBTχT (3.39)

where ρ = N/V is the number density and χT is the isothermal compressibility [17].

The potential of mean force
Additionally, the radial distribution function can be used to obtain information on the
interactions between particles. It can be shown [17] that at infinite dilution, the g(r)
are given directly by the pair interaction potential v(r) between particles

g(r) =
ρ→0

e−βv(r) (3.40)

This relation can be extended to finite concentration systems to yield the Potential of
Mean Force (PMF) [14] w(r)

g(r) = e−βw(r) (3.41)

which, as its name suggests, gives the average force 〈F 〉 = −∇w(r) felt by two particles,
at a fixed distance r from each other.

The ensemble dependence
Although the definition given in Eq. (3.35) is valid for any ensemble, there is a sub-
tle difference between the radial distribution functions obtained in the canonical and
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grand-canonical ensembles, gNV T (r) and gNPT (r), which merits special attention. The
difference is in the asymptotic form of g(r) as r −→∞. If two particles are infinitely far
from one another, we expect them to be uncorrelated, and the probability of observing
two particles at r1 and r2 should be equal to the product of the probabilities of observ-
ing each one separately ρ(2)(r1, r2) ' ρ(1)(r1)ρ(2)(r2). This would imply that g(r) −→ 1
for r −→ ∞. However, this is only true for a system in which the number of particles
is allowed to fluctuate; if the number of particles remains fixed, a term proportional to
N−1 appears [17]

gNV T (r) −→
r→∞

1−O
(

1

N

)
(3.42)

gNPT (r) −→
r→∞

1 (3.43)

Although this difference seems unimportant, and it often is, if we integrate the g(r)
over all of space, this 1/N term can give a finite contribution. Equations which involve
these types of integrals (such as the Ornstein-Zernicke or Kirkwood-Buff equations) are
usually derived in a grand-canonical ensemble (where no finite size correction is present)
and should not be used with radial distribution functions obtained from constant particle
ensembles, unless the appropriate corrections are made.

The Direct Correlation Function

Finally, it is necessary that we mention one more distribution function, the direct cor-
relation function c(r). We have seen that h(r) gives a measure of the total correlation
between two particles, averaged over all the other particles in the system. It is thus nat-
ural to seek a separation of the direct and indirect contributions to these correlations.
The direct correlation function c(r) was introduced by Ornstein and Zernicke precisely
for this reason, by means of the following equation

h(r) = c(r) + ρ

∫
dr′c(|r − r′|)h(r′) (3.44)

where the distribution functions are those of the grand-canonical ensemble [21]. Fur-
thermore, it can be shown that the asymptotic form of the direct correlation function is
given by the pair potential v(r) as [17]

c(r) =
r→∞

−βv(r) (3.45)

In the case of a mixture, the Ornstein-Zernicke equation can be easily generalized to
give [17]

hij(r) = cij(r) +
∑
k

∫
dr′cik(|r − r′|)ρkhkj(r′) (3.46)

where hij and cij(r) are the pair and direct correlation functions for particles of type i
and j, respectively, ρi is the (number) density of species i, and the sum runs over all
the species in the system. As before, the asymptotic behaviour of the direct correlation
functions is determined by the pair potentials through

cij(r) =
r→∞

−βvij(r) (3.47)
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3.1.3 Integral Equations

A considerable effort has been made during the last half century to develop theories
which are able to predict the radial distribution functions g(r) of a given system, since
the thermodynamic properties can then be easily obtained. The challenge is to find a
link between the interaction potential v(r) and the radial distribution function g(r). We
have already seen one such relation, Eq. 3.40, but it is only valid at infinite dilution.
The different integral equations that have been developed attempt to provide a general,
though approximate, theory of liquids, from which the structural and thermodynamic
properties at any density or temperature (within the fluid phase) can be obtained. Using
a diagrammatic expansion [17, 22], it is possible to derive the following exact relation
between the various distribution functions and the interaction potential

ln [h(r) + 1] = −βv(r) + d(r) + h(r)− c(r) (3.48)

but this is of limited practical use, since yet another unknown function d(r), the so-
called bridge function, has been introduced. Given that the Ornstein-Zernicke equation
(Eq. (3.44)) provides an additional relationship between h(r) and c(r), we are left with
two equations for three unknown functions: h(r), c(r), and d(r). We thus require one
additional relation among them, in order to solve this set of equations. We proceed by
briefly discussing the three most popular approximations, or closure relations, that have
been proposed, two of which (MSA and HNC) will be extensively used in our work.

Percus-Yevick (PY) Equation

For systems with strongly repulsive, short-ranged potentials, the PY solution provides
an accurate description for their structural and thermodynamic properties [23, 14]. In
terms of the bridge function, the PY equation can be expressed as [17]

d(r) = ln [h(r)− c(r) + 1]− h(r) + c(r) (3.49)

For hard-sphere systems, where the PY equation (and its improvements) admits an an-
alytical solution [24, 25, 26], it provides an almost exact theory up to the crystallization
point (at a packing fraction of η = 0.49). This remains valid in the case of mixtures, as
long as the size asymmetry between the different components is small. Unfortunately,
for charged systems the PY approximation is of absolutely no use.

Mean-Spherical Approximation (MSA)

The MSA [27, 28, 29] was proposed in an attempt to study systems which present a
short-range repulsion and a long-range tail in the potential, with the repulsion modelled
as a hard-sphere interaction, such that

v(r) =

{
∞ r < σ

vtail(r) r > σ
(3.50)

where σ is the hard-sphere diameter. The MSA closure is given by

g(r) = 0, r ≤ d (3.51)
c(r) = −βv(r), r > d (3.52)
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where the first expression is exact, while the second assumes that the asymptotic form
of the direct correlation function (Eq. (3.45)) is valid for all distances (beyond contact).
These two relations, together with Equations (3.48) and (3.44), provide a closed set
of equations for the g(r). The main advantage of MSA is the fact that it allows for
an analytical solution for many different potentials vtail(r). In particular, for Coulomb
interactions, an analytic solution to the primitive model of electrolytes (i.e. charged
hard spheres) can be obtained [27].

Hypernetted Chain (HNC) Equation

The HNC closure [30] can obtained by completely ignoring the bridge terms

d(r) = 0 (3.53)

and although this might seem like a poor approximation, the HNC equation is particu-
larly well suited for the description of electrolyte systems, and systems with long-range
potentials in general [17, 14]. Unfortunately, no analytical solution exists in this case.
The g(r) must then be obtained numerically, using an iterative procedure to solve Equa-
tions (3.48) and (3.44). In the case of electrolyte solutions, which is what interests us,
the HNC equation yields radial distribution functions which are in very good agreement
with simulation results [31]. While convergence problems arise near the phase separation
boundary [32], we do not consider such systems in this work.

3.1.4 Thermodynamic Integration and Perturbation Theory

Introduction

As mentioned before, the thermodynamic potentials cannot be directly obtained during
a simulation (Molecular Dynamics or Monte Carlo), whereas their derivatives are easily
measured. It is then natural to think of measuring the differences between the potentials
by integrating their derivatives. For simplicity, we will focus on the canonical (NV T )
ensemble, and thus on the Helmholtz free energy F (N, V, T ). The generalization to
other ensembles is straightforward.

Consider the two thermodynamic relations given in Eq. (3.20), which relate the
derivatives of the free energy F with respect to volume V and temperature T , to the
pressure P and the internal energy U , both of which can be directly measured during a
simulation (See Equation (4.35)). The simplest procedure to obtain the free energy of
a given (fluid) system, is to start at infinite dilution ρA = 0, and to integrate P with
respect to ρ, until the desired density ρB is reached. As the free energy of the ideal gas
is known, we would thus obtain the absolute free energy, and not just a free energy dif-
ference. In general, this is only valid for low densities ρB, such that the thermodynamic
trajectory does not cross a phase boundary. To overcome such a problem, a two-step
thermodynamic integration can be performed, which avoids the coexistence region by
starting at an artificial temperature TA above the critical temperature Tc. The system
can then be compressed along the TA isotherm to the desired density ρB, before being
cooled to the target temperature TB. A schematic representation of this procedure is
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Figure 3.1: Typical phase diagram of a monatomic system, the c and t subscripts refer
to the critical and triple point, respectively.

given in Figure 3.1. Formally, the procedure is expressed as follows: we integrate the
derivative of F with respect to ρ (V), from ρA to ρB, to obtain

βAF (ρB, TA)

N
=
βAF (ρA, TA)

N
+

∫ ρB

ρA

dρ′
βAP (ρ′, TA)

ρ′2
(3.54)

We then perform an analogous integration, this time over the derivative of F with respect
to temperature, to obtain the following expression for the free energy of the system at
ρB and TB

βBF (ρB, TB)

N
=
βAF (ρA, TA)

N
+

∫ ρB

ρA

dρ′
βAP (ρ′, TA)

ρ′2
+

∫ βB

βA

dβ′
U(ρB, β

′)

N
(3.55)

For the electrolyte solutions studied here, Equation 3.54 will always be valid, as the
systems are always supracritical 4 [33, 34].

The λ Coupling Parameter

Fortunately, we are not just limited to actual thermodynamic variables, such as V ,
T , or N , when performing the thermodynamic integration. Since the free energy F
is a thermodynamic state variable, all paths through the thermodynamic state space,
whose endpoints coincide, will give the same result5. In particular, we can choose to use
unphysical degrees of freedom, thereby augmenting the dimension of the configuration
space, and allowing us to relate arbitrarily distinct systems with each other. Suppose
we wish to measure the change in free energy between a system in a state A and one
in state B, which are characterized by two distinct potentials VA and VB, with all other
state variables (density and temperature) being equal. We need to construct a path
through the configuration space that takes us from state A to state B, and integrate the

4The critical temperature Tc being well below the ambient temperature of T = 298.15 K.
5Again, this is true as long as no phase transition boundaries are crossed
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change in free energy along this trajectory. This (reversible) work, required to change
the Hamiltonian from HA to HB will give us the free energy difference between the two
states. The most common way of doing this is to use Kirkwood’s method [35], which
introduces an additional (coupling) parameter λ into the Hamiltonian of the system, in
such a way that F (λ = 0) = FA and F (λ = 1) = FB. By definition (Eq. (3.19)), we
have (

∂F (λ)

∂λ

)
N,V,T

= − 1

β

∂

∂λ
lnQ(N, V, T, λ) (3.56)

=

〈
∂H(λ)

∂λ

〉
λ

(3.57)

where the ensemble averages 〈· · ·〉 are taken with respect to the system with Hamiltonian
H(λ). We thus obtain the free energy difference ∆F as

∆F = FB − FA =

∫ λ=1

λ=0

〈
∂H(λ)

∂λ

〉
λ

(3.58)

This approach to the calculation of free energies is very common when performing sim-
ulations. The integration is discretized over a set of points λi, and a separate simulation
(with a Hamiltonian H(λi)) is performed for each λ-point in order to measure the en-
semble average appearing in the integrand. Finally, the integral is approximated using
a suitable quadrature scheme (see Appendix C).

Perturbation Theory

Although the λ-coupling parameter approach provides a powerful method for measuring
the thermodynamic properties of a system, it requires (several) costly numerical simu-
lations, and it is thus unsuitable for applications which require explicit expressions for
the thermodynamic or structural properties. A solution to this problem is provided by
the standard perturbative fluid theory (PFT) [17, 14, 36], which allows us to relate the
properties of the system of interest, to those of a simpler well known system, for which
accurate analytical solutions exist. Let V be the total potential energy of our (model)
system, V(0) the potential energy of an arbitrary reference system, and δV = V − V(0)

the perturbation energy between the two. From the Kirkwood coupling parameter ap-
proach, using a simple linear interpolation between the two states (V(0) and V(0) + δV),
we have

V (λ) = V (0) + λδV (3.59)

the free energy of the model system is given by

βF = βF (0) + β

∫ 1

0

dλ〈δV〉λ (3.60)

If we perform a series expansion of the ensemble average around its value for λ = 0, we
obtain [17]

βF = βF (0) + β〈δV〉0 −
1

2
β2
(〈

(δV)2
〉

0
− 〈δV〉20

)
+O(β3) (3.61)
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where the ensemble averages 〈· · ·〉0 are taken in the reference system ensemble (charac-
terized by V(0)). This cumulant expansion was first obtained by Zwanzig [37] from an
expansion of the free energy as a power series in β. The advantage of this approach is
the fact that all the coefficients in the expansion are given by averages in the reference
system ensemble: no properties of the model system need to be known beforehand. Fur-
thermore, assuming pair-wise additivity in the potentials (including the perturbation),

V(0) =
∑
i<j

vij(rij), δV =
∑
i<j

δvij(rij) (3.62)

these averages can all be expressed in terms of the n-body distribution functions [36].
Unfortunately, we usually only have access to the two-body distribution functions g(r),
and are thus forced to stop at first order

βF / βF (0) + β〈δV〉0 (3.63)

/ βF (0) +
βNρ

2

∫
drg(0)(r)δv(r) (3.64)

In Chapter 7 we show how the second order corrections to the free energy could be
obtained, but they require an approximate solution to the three- and four-body distri-
bution functions, and are considerably more complicated to evaluate.

Besides being the simplest approximation to the free energy, the first-order expansion
also provides a strict upper bound. This is referred to as the Gibbs-Bogoluibov inequal-
ity [17], and is a consequence of the convexity of the exponential function appearing
in the Boltzmann distribution. Once a reference system has been chosen, and suitably
parametrized, Eq. (3.63) is minimized to determine the best, first order approximation
to the free energy of the model system. It is clear that the closer the reference and model
potentials are to each other, the more accurate this approximation will become. In fact,
to first-order, the corrections to the free energy are computed under the assumption
that the structure of the model and reference fluids is the same [17].

This procedure is useful if, and only if, the properties of the reference system are
well known, or at least easier to calculate than those of the model system. Although
the minimization must be done numerically, no simulations are required6. It is not sur-
prising then, that PFT is commonly used with hard-and soft-core reference potentials,
which have been extensively studied [38, 39]. This has proven to be very successful in
the case of dense fluids, since it is well known that at high densities, their structure
is essentially determined by the short-range repulsive interactions [17], for which hard-
cores are a very good approximation. In particular, the use of hard-sphere reference
systems is convenient, since the exact solution to the Percus-Yevick integral equation
and its improvements, provides very accurate estimates for their structural and ther-
modynamic properties. For charged particles in solution, the simplest implicit solvent
model representation is that of charged hard-spheres, which is usually described within
the MSA approximation. This is the approach we shall adopt when trying to derive
implicit solvent models of electrolytes in solution.

6If simulations are needed to compute the properties of the reference system, we might as well use
the exact expression (3.60), and not just the first-order correction
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3.1.5 Time Correlation Functions: The Green-Kubo Formalism

Up to this point, we have only discussed equilibrium properties, and no mention has
been made of the dynamic properties, or how these can be obtained, as they fall into
the domain of non-equilibrium statistical mechanics. If the central role in equilibrium
statistical mechanics is played by the partition function, the corresponding role in the
study of non-equilibrium phenomena is played by the time correlation function CAB(t),
defined as an ensemble average by

CAB(t) = 〈A(t)B(t = 0)〉 =

∫
dΓA(Γ(t))B(Γ(0))f(Γ(0)) (3.65)

or as a time average by

CAB(t) = A(t)B(t = 0) = lim
τ→∞

1

τ

∫ τ

0

dt′A(Γ(t′ + t))B(Γ(t′)) (3.66)

Kubo showed that, within a linear-response regime, all of the phenomenological trans-
port coefficients γ can be expressed as integrals over a specific time auto-correlation
function CAA(t)7. The procedure for deriving these equations is relatively straightfor-
ward: the solutions, in reciprocal k-space, to the macroscopic and microscopic transport
equations are compared to each other, in order to establish a microscopic expression for
the macroscopic transport coefficient γ. Such expressions are of the form [14]

γ =
〈
(A(t)− A(0))2

〉
(3.67)

where A = A(Γ(t)) is some microscopic property of the system. Finally, by expressing
A(t) as the integral of its time derivative Ȧ, this equation can then be written as

γ =

∫ ∞
0

dt
〈
Ȧ(t)Ȧ(0)

〉
(3.68)

=

∫ ∞
0

dtCȦȦ(t)

The expressions for the self-diffusion coefficientD, shear viscosity η, and thermal con-
ductivity λ, in terms of the mean-squared fluctuations of a microscopic property (3.67),
are given by [14, 40, 41]

D = lim
t→∞

1

6t

〈
[r(t)− r(0)]2

〉
(3.69)

η = lim
t→∞

1

2V kBTt

〈[
N∑
i

ri,z(t)pi,x(t)− ri,z(0)pi,x(0)

]2〉
(3.70)

λ = lim
t→∞

1

2V kBT 2t

〈[
N∑
i

ri,x(t)∆Ei(t)− rx,i(0)∆Ei(0)

]2〉
(3.71)

7Unlike with equilibrium thermodynamics, where a unique partition function determines all the
equilibrium properties, each transport coefficient is obtained from a distinct auto-correlation function.



46 3.2. EXPERIMENTAL PROPERTIES OF ELECTROLYTES SOLUTIONS

with ∆Ei = Ei − 〈Ei〉. The corresponding Green-Kubo relations, expressing the trans-
port coefficients as the time-integral of an auto-correlation function, are

D =
1

3

∫ ∞
0

dt〈v(t).v(0)〉 (3.72)

η =
1

V kBT

∫ ∞
0

dt〈σxz(t)σxz(0)〉 (3.73)

λT =
1

3V kBT 2

∫ ∞
0

dt〈S(t)S(0)〉 (3.74)

where σxz are the off-diagonal components of the shear-stress tensor and S is a vectorial
flux defined as

σxz =
N∑
i

(pi,xpi,z
m

+ ri,zFi,x

)
(3.75)

S =
∂

∂t

N∑
i

ri∆Ei (3.76)

Finally, we note that Eqs.(3.69-3.71) are only strictly valid for non-periodic systems [40,
41].

3.2 Experimental Properties of Electrolytes Solutions

Before continuing with the theoretical description of electrolyte solutions, it is important
to discuss how such systems are characterized in the laboratory. As most experiments
are performed at constant temperature T and pressure P , the natural thermodynamic
potential is the Gibbs potential (Eq. (3.30)). For an electrolyte solution, the differential
form of this potential is given by

dG = V dP − SdT + µwdNw +
∑
i

µidN i (3.77)

where w and i refer to the water (solvent) and ion (solute) particles. Among the vari-
ous thermodynamic properties of the system, the chemical potentials of the individual
components µw and µi are probably the most important, since the Gibbs potential can
be directly obtained from them. Experimentally, however, such properties are usually
measured with respect to some standard state8, which we denote with a superscript (0).

For the ions, the chemical potential difference ∆µi = µi − µ(0)
i , is given directly by

the ratio of the activities of the two states ai = zi/z
(0)
i , since

kBT ln ai = µi − µ(0)
i (3.78)

If we let ai = ciγi, with ci and γi the ion concentration and activity coefficient for species
i, we obtain

µi = µ
(0)
i + kBT ln ci + kBT ln γi (3.79)

8Not necessarily the ideal gas preferred by physicists
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where the standard term µ
(0)
i , which represents the solvent-ion interactions, is chosen in

such a way that γi = 1 as ci → 0. For the water, the formula for the chemical potential
reads

µw = µ(0)
w + kBT ln aw (3.80)

where the standard term µ
(0)
w represents the chemical potential of the pure solvent. In

this manner, aw = 1 at infinite salt dilution.

The water activity aw is an experimentally measurable quantity, which is used to
define the osmotic coefficient φ, by [42]

ln aw =

∑
i ci
cw

φ (3.81)

Furthermore, thanks to the Gibbs-Duhem relation [43], there is a link between the
chemical potentials (activities) of the ions and the water; and thus, between the osmotic
coefficient φ of the solution and the activity coefficients γi of the ions. Since experimen-
tally we cannot consider the ions individually, but instead have to work with the salt
as a whole, it is normal to define an activity coefficient for the salt γsalt. For a simple
binary electrolyte, S −→ ν1C+ + ν2A−, where C+ and A− refer to the cations and the
anions, respectively, and the νi to the corresponding stoichiometric coefficients, we have

γsalt = (γν11 γ
ν2
2 )

1
ν1+ν2 (3.82)

and the Gibbs-Duhem relation reads

ln γsalt = φ(m)− 1 +

∫ m

0

dm
φ− 1

m
(3.83)

where m is the salt concentration (in the molality scale). Thus, a calculation of the
osmotic coefficient φ is equivalent to a calculation of the activities of the solute particles
γi. For our simulations, we have only considered φ, since the other properties can easily
be obtained from it.

The Solute Gas Model
Finally, we note that many models of electrolyte solutions consider the system as a solute
gas, in which the solvent is treated as a dielectric continuum. The link between the solute
gas and the experimental thermodynamic properties was obtained by McMillan-Mayer,
as will be discussed in Section 3.4.3. In such cases, care should be taken when comparing
the thermodynamic properties predicted by the solute gas (implicit solvent) models
with their experimental counterparts. The former are said to have been performed in
the McMillan-Mayer (MM) reference frame and the latter in the Lewis-Randall (LR)
reference frame. Generally speaking, the difference between the two arises from the
fact that derivatives taken in the LR reference frame are performed at constant solute
concentration; whereas derivatives taken in the MM reference frame are performed at
constant solvent chemical potential. It is thus necessary to establish conversion laws to
pass between the two reference frames.

For the solute gas model, the Gibbs free energy is now given by

dG = V dΠ− SdT +
∑
i

µidN i (3.84)
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where Π is the pressure of the solute gas and the sum is over all solute particles (no
explicit reference is made to the solvent). This fictitious pressure Π, which is referred to
as the osmotic pressure, can be shown to depend on the activity of the solvent aw [42].
Thus, it provides an alternative definition of the osmotic coefficient (Eq.(3.81)), in terms
of the pressure of the solute gas Π

φMM =
βΠ∑
i ci

(3.85)

where we have been careful to note that this quantity has been derived in the MM
reference frame. The link with the LR osmotic coefficient is provided by the following
simplified formula [44]

φLR = (1−
∑
i

ciV i)φ
MM (3.86)

where V i is the partial volume of solute i.

3.3 The Implicit Solvent Model

Within an implicit solvent description of electrolyte solutions, the solvent is considered
as a dielectric continuum, and the system is defined by the interaction potential between
the solute particles. The simplest choice, referred to as the Primitive Model (PM), is to
describe the solutes as charged hard spheres. Let us consider an m-component system
of volume V , with ρi, σi, and qi = zie the number densities, hard-sphere diameters, and
charges of species i (e is the elementary charge). The pair potential of such a system is
given by

βvij(r) = βvHSij (r) +
LBzizj
r

(3.87)

where LB is the Bjerrum length9 (ε0 is the vacuum permittivity and εr is the dielectric
constant of the solvent)

LB =
βe2

4πε0εr
(3.88)

and vHSij (r) is the hard-sphere potential

vHSij (r) =

{
+∞ if r ≤ σij

0 if r > σij
(3.89)

with σij = (σi + σj)/2 the contact distance between particles of species i and j. For the
special case of a two-component system with equal diameters and valence charges, the
resulting model is commonly referred to as the restricted primitive model.

Unfortunately, even such a simple model as this one doesn’t admit an exact ana-
lytical solution. However, several approximations exist which yield satisfactory results,

9This characteristic length gives the distance at which the interaction between two elementary
charges is equal to the thermal energy kBT . For liquid water at standard temperature, LB = 7.14 Å.
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particularly for 1 − 1 electrolytes. In the infinite dilution limit, where the short range
interactions between the particles can be neglected, the Debye-Hückel theory [14] pro-
vides exact limiting laws for the thermodynamics of electrolyte solutions. At higher
concentrations, the repulsive short-range interactions cannot be neglected, and a differ-
ent approach is required. Such a solution was provided by Blum [27, 28], who solved
the MSA closure (3.51), giving explicit (approximate) expressions for the thermody-
namic and structural properties of electrolyte solutions. This theory was generalized
to include ion association, by allowing for the formation of bonds between the charged
hard-spheres, and is known as the binding MSA (BIMSA) [45, 46]. In what follows, we
give a brief description of these three theories, as they will be extensively referenced
throughout our work; in particular, the MSA and BIMSA theories, which we use within
a first-order perturbation theory to derive the best primitive model representation of
electrolytes.

3.3.1 The Limiting Laws

The Debye-Hückel (DH) theory, first published in 1923, holds a special position within
the theory of electrolytes, as it was the first theory capable of predicting the activity
coefficients of ions in solution, correctly describing their deviation from ideal behaviour
up to millimolar concentrations. This mean-field theory predicts the following for the
thermodynamic properties of a solution [14]

βU ex

N
= − κ3

D

8πρN
(3.90a)

βF ex

N
= − κ3

D

12πρN
(3.90b)

φ ≡ βP

ρN
= 1− κ3

D

24πρN
(3.90c)

ln γi = −κDLBz
2
i

2
(3.90d)

where U ex and F ex are the excess internal and Helmholtz free energies, respectively, φ is
the (MM) osmotic coefficient, γi is the activity coefficient of species i, and ρN =

∑
i ρi

is the total number density. All quantities are seen to depend on the Debye length ΛD,
defined as

Λ−1
D ≡ κD =

√
4πLB

∑
i

ρiz2
i (3.91)

which gives a measure of the size of the electrostatic screening cloud surrounding each
ion. Most importantly, all quantities are seen to vary linearly with the square root of the
salt concentration. It turns out that this is a general property of electrolyte solutions:
At sufficiently low concentrations, any thermodynamic or physical property f can be
expressed as

f − f (0) = A
√
c+ . . . (3.92)

where f (0) gives the value corresponding to the pure solvent, and A is a constant which
depends only on the charged nature of the system, making the DH expressions exact
limiting laws.
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3.3.2 The MSA Solution

The problem with the DH theory is the fact that it does not consider the short-range in-
teractions between particles, which become important as the concentration is increased.
The MSA solution (Eq. (3.51)) attempts to address these problems by taking into ac-
count the finite size of the particles, as well as the long-range electrostatic interactions.
It has been widely adopted in the study of electrolytes, since explicit algebraic equations
can be obtained for the excess (electrostatic) thermodynamic properties and the radial
distribution functions. In order to obtain a complete description of electrolytes, within
the primitive model, the results provided by the MSA theory must be complimented
with the remaining (non-electrostatic) terms. We proceed to give a detailed descrip-
tion of the different contributions to the thermodynamics and the radial distribution
functions of a primitive model, within the MSA description.

Thermodynamics

The free energy density f = F/V of a mixture of charged hard-spheres is naturally
decomposed in the following manner

βf = βf id + βf ev + βf el (3.93)

where f id is the ideal contribution to the free energy, f ev is the excluded-volume term
(i.e. the hard-sphere term), and f el is the electrostatic term.

Ideal Contribution:
The ideal contribution is given by the free energy of an ideal gas of the same composi-
tion [17]

βf id =
∑
i

ρi
(
βµidi − 1

)
(3.94)

where βµidi = ln [Λ3
i ρi]. Notice that this term depends only on the density and mass of

the distinct species.

Excluded Volume Contribution:
To compute the excluded volume term, we use the semi-empirical equation of state of
Boublik, Mansoori, Carnahan, Starling, and Leland (BMCSL) [47, 48, 49], since it is
known to provide an accurate description of hard-sphere mixtures over a wide range of
concentrations and size ratios. The (hard-sphere) excess free energy density is given by

βf ev =
6

π

(
ζ3

2

ζ2
3

− ζ0

)
ln ∆ +

3ζ1ζ2

∆
+

ζ3
2

ζ3∆2
(3.95)

where ζj and ∆ are defined as10

ζj =
π

6

∑
i

ρi(σi)
j (3.96)

∆ = 1− ζ3 (3.97)

10Notice that Blum and Høye [28] do not include the π/6 factor in their definition.
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Electrostatic Contribution:
The excess free energy density, as given by the MSA solution, is

βf el = β∆E +
Γ3

3π
(3.98)

where the excess internal energy ∆E is defined as

β∆E = −LB

{
Γ

[∑
i

ρiz
2
i

1 + Γσi

]
+

π

2∆
ΩP 2

n

}
(3.99)

and Γ, which can be considered as a generalized screening parameter (akin to κD), is
obtained by solving the following algebraic equation

2Γ = α

{∑
i

ρi

[
zi − π

2∆
σ2
i Pn

1 + Γσi

]2
} 1

2

(3.100)

with

α2 = 4πLB (3.101a)

Pn =
1

Ω

∑
i

ρiσizi
1 + Γσi

(3.101b)

Ω = 1 +
π

2∆

∑
i

ρiσ
3
i

1 + Γσi
(3.101c)

In practice, the solution for Γ is easily found using an iterative scheme. A good starting
value is the Debye screening length: 2Γ(0) = κD.

Structure

Finally, Blum and Høye [28] have also provided explicit expression for the radial distribu-
tion functions of the primitive model, which we will use extensively in our perturbation
calculations. However, they do not give a closed algebraic formula for the gij(r), but
instead for the Laplace transform of rgij(r)

Ĝij(s) ≡
∫ ∞

0

dr e−srrgij(r) (3.102)

Fortunately, these equations can be easily transformed numerically, since they are pro-
portional to the Fourier transform of gij(r) for a wave vector k = is (See Appendix D
and Eq. (3.38)).

The solution for Ĝij(s) is found to be

Ĝij(s) =
D0D±
DT

Ĝ0
ij(s)−

D0Γ2

sα2πDT

e−sσijaiaj + ∆Ĝij(s) (3.103)

where the first term on the right hand side corresponds to the Percus-Yevick (hard-
spheres) radial distribution function, the second term gives the pure electrostatic con-
tributions (charges), and the third term provides the contribution arising from the cross
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interactions (hard-spheres + charges). The different terms appearing in Eq. (3.103) are
defined as

DT = D0D± + ∆DT (3.104a)

D0 = 1− 2π

∆

∑
i

ρiϕ2(σi)

(
1 +

3ζ3

∆

)
(3.104b)

− 2π

∆

{∑
i

ρiϕ1(σi)

[
σi

(
1 +

3ζ2σi
2∆

)
+

π

4∆

∑
j

ρjϕ1(σj) (σj − σi)2

]}

D± = 1 +
2Γ

s

[
1 +

Γ

α2

∑
i

ρia
2
iϕ0(σi)

]
− π

s∆
PmPϕ1 (3.104c)

∆DT =
π

s∆

{
PmPϕ1

[
δ2

1 −
2π

∆
δ2

∑
i

ρiϕ2(σi)

]
(3.104d)

+ 4
Γ2

α2

[
Pϕ1(δ2Pϕ1 + δ1Pϕ0) +

π

2∆
P 2
ϕ0

∑
i

ρiϕ2(σi)

]}
(3.104e)

with

Pϕ0 =
∑
i

ρiσiaiϕ0(σi) (3.105a)

Pϕ1 =
∑
i

ρiaiϕ1(σi) (3.105b)

Pm =
2Γ

α2

∑
i

ρiσiai (3.105c)

and

δ1 = 1− π

∆

∑
i

ρiσiϕ1(σi) (3.106a)

δ2 = 1 +
π

2∆

∑
i

ρiσ
2
iϕ0(σi) (3.106b)

δ3 =
π

∆

∑
i

ρiϕ2(σi) (3.106c)

where

ai =
α2

2Γ (1 + Γσi)

(
zi − Pnσ2

i

π

2∆

)
(3.107)

and the ϕi functions are defined as

ϕ0(σ) = s−1

(
1− e−sσ

)
(3.108a)

ϕ1(σ) = s−2

(
1− e−sσ − sσ

)
(3.108b)

ϕ2(σ) = s−3

(
1− e−sσ − sσ +

1

2
s2σ2

)
(3.108c)
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The hard-sphere term is given by

Ĝ0
ij(s) =

e−sσij

s2∆D0

{
s

[
σij + σiσj

3ζ2

2∆

]
+ 1 +

3ζ3

∆
(3.109)

+
πs

2∆

∑
k

ρkϕ1(σk) (σk − σi) (σk − σj)

}

and the cross-contribution by

∆Ĝij(s) =
e−sσij

2∆s2DT

{
π

s∆

(
2δ2PmPϕ1 −

2Γ2

α2
P 2
ϕ0

)
(3.110)

+
2π

∆
σijPϕ1

(
2Γ2

α2
Pϕ0 + δ1Pm

)
− sπ

∆
Pϕ1σiσj

(
2Γ2

α2
Pϕ1 − Pmδ3

)
− 2Γ2

α2

[
(ai + aj) (δ1Pϕ0 + 2δ2Pϕ1) + s (aiσj + ajσi) (δ1Pϕ1 + δ3Pϕ0)

]}

3.3.3 The BIMSA Solution

For highly-charged systems, or systems with a low solvent dielectric constant, the strong
electrostatic attraction will favor the association of the free ions into ion pairs. How-
ever, the MSA solution is known to provide a very poor description of such systems.
Fortunately, a generalization of the MSA theory, which allows for the formation of
bonds between ions (through a sticky-point potential), has been developed by Blum
and Bernard [45, 46, 50]. For what follows, we assume that we are working with a
binary electrolyte, in which the cations and anions are allowed to form pairs with each
other. We thus have a three component system, composed of free cations (1) and anions
(2), along with the pairs (3). We consider the general case, where the diameters of the
cations and anions within the pair, σC and σA, respectively, are allowed to differ from
those of the free cations and anions, σ1 and σ2. Our system is thus characterized by
four diameters {σ1, σ2, σC , σA} but only three densities {ρ1, ρ2, ρ3}. For this model, the
free energy can now be decomposed as

βf = βf id + βf ev + βf el + βf as (3.111)

where we have added an extra term to Eq. (3.93) to take into account the contributions
arising from the association of ion pairs. The ideal and excluded volume terms are
computed exactly as before, using the ideal gas (Eq. (3.94)) and BMCSL expressions
(Eq. (3.95)), only now we have an effective four component system (free and paired
cations and anions). The expressions for the electrostatic and association contributions
that we use are those obtained by Vilariño and coworkers [50], although we have adopted
a slightly different definition for the reference free energy of the pair11.

Electrostatic Contribution:
The excess electrostatic free energy density of the BIMSA model takes the same form

11This is detailed in Section 6.4, where we establish a link between the free energy of a binary
electrolyte in a two- and three-component (paired) representation
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as its MSA counterpart (Eq. (3.98)), namely

βf el = β∆E +
Γ3

3π
(3.112)

(3.113)

but the excess internal energy is now given by

∆E = −LB

{[∑
i

ρizi
Γzi + ησi
1 + Γσi

]
− ρ3

η

σA + σC

[
σ2
C

1 + ΓσC
YA +

σ2
A

1 + ΓσA
YC

]}
(3.114)

with

η =
π

2∆

{[∑
i

ρiσiYi

]
+

ρ3

σA + σC

[
σ2
A

1 + ΓσA
YC +

σ2
C

1 + ΓσC
YA

]}
(3.115a)

Yi =
zi − ησ2

i

1 + Γσi
(3.115b)

and the screening parameter Γ must now be obtained by solving the following equation

(2Γ)2 = α

{[∑
i

ρiY
2
i

]
+

2ρ3

σC + σA

(
σA

1 + ΓσA
+

σC
1 + ΓσC

)
YAYC

}
(3.116)

Association Contribution:
Finally, the excess free energy due to the pairing of the ions (using a simple sticky point
model) is given by

βf as = −ρ3 ln
gCA(σCA)

g∞CA
(3.117a)

ln
gCA(σCA)

g∞CA
= ln gCA(σCA)− 2LB

σC + σA
(YCYA − zCzA) (3.117b)

where the contact value of the radial distribution function for the paired ions gCA(σCA)
is obtained from

gCA(σCA) =
1

∆
+

3ζ2

∆2

σCσA
σC + σA

+
2ζ2

2

∆3

(
σCσA
σC + σA

)2

(3.117c)

3.4 Exact theories of Electrolyte Solutions

3.4.1 Introduction

The pioneering works of Debye, Hückel, and Onsager in the 1920s and 30s provided
a theoretically sound description of the thermodynamic and dynamical properties of
electrolyte solutions, able to explain the experimental observations. However, these
so-called Limiting Laws, though exact, are only valid at very low concentrations. Fur-
thermore, they were derived using extremely simple models (i.e. point charges in a
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dielectric continuum), for which no rigorous justification existed, and which could not
provide a detailed description of the solvation effects (only excess ion properties could
be measured). Fortunately, we would not have to wait too long for an exact, statistical-
mechanical description of ions in solution to appear. Such a theory was provided by
McMillan and Mayer (MM) in 1945 [51], with their seminal article on the “Statistical
Thermodynamics of Multicomponent Systems”. Their theory, which is exact, provided
a theoretical support for the earlier models of Debye, Hückel, and Onsager, by showing
that one can always define an implicit solvent model which exactly describes the micro-
scopic (explicit solvent) system. Less than a decade later, an alternative theory (which
is also exact and thus equivalent to the MM description) was proposed by Kirkwood
and Buff (KB) [52]. Their theory relies on the microscopic distribution functions (for
the solvent and the ions) to provide a complete thermodynamic description of the solu-
tions. Although there is a lively debate within the community as to which of the two
is best, or preferable, the MM theory provides the natural framework for working with
implicit solvent solutions. Since our stated goal is to go from a fully atomistic micro-
scopic description of ions in solutions, to an analytically solvable implicit solvent model,
we shall focus mainly the MM theory. Nevertheless, it is important to understand the
KB description, and how it is applied; as this will allow us compare our methods and
results to those of other groups working in the field. As such, we proceed by presenting
a brief description of these two theories. For the KB theory, we follow the presenta-
tion of the original article [52]; but for the MM theory we favor a simplified version,
due to Friedman [13], as the original formulation of McMillan and Mayer is somewhat
mathematically involved.

3.4.2 Kirkwood-Buff Theory of Electrolyte Solutions

Consider a multi-component system within the grand-canonical ensemble, the partition
function, Eq. (3.22) is now given by

Ξ =
∑
N

(∏
i

zNii
Ni!

)
ZN (3.118)

where the zi and Ni denote the activities and number of particles of species i, and
N = (N1, . . . , Ni, . . .) and µ = (µ1, . . . , µi, . . .) will be used as a short-hand notation
for the particle numbers and chemical potentials of all the species. The single- and two
particle densities, obtained from a straight-forward generalization of Eq. (3.35)

ρi(r1) = 〈ρ̂i(r1)〉 (3.119a)
ρij(r1, r2) = 〈ρ̂ij(r1, r2)〉 (3.119b)

They are normalized, by definition, as follows∫
dr1ρi(r1) = 〈Ni〉 (3.120a)∫

dr1dr2ρij(r1, r2) = 〈NiNj〉 − δij〈Ni〉 (3.120b)
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After a simple algebraic manipulation, we can express the relative fluctuations in the
number of particles, in terms of the integrals over the distribution functions, as∫∫

dr1dr2 [ρij(r1, r2)− ρi(r1)ρj(rj)] = 〈NiNj〉 − 〈Ni〉〈Nj〉 − δij〈Ni〉 (3.121)

For a homogeneous, isotropic system this equation can be simplified to read

V −1Gij =
〈NiNj〉 − 〈Ni〉〈Nj〉

〈Ni〉〈Nj〉
− δij
〈Ni〉

(3.122)

where we have introduced the KB integrals Gij

Gij ≡
∫

dr (gij(r)− 1) (3.123)

All that remains is to relate the fluctuations in the number of particles to some thermo-
dynamic quantity. Such a relationship is trivial to find, as the following two equations
follow directly from the definition of the grand-canonical partition function (Eq. (3.22))

zi
∂ ln Ξ

∂zi
≡ β−1∂ ln Ξ

∂µi
= 〈Ni〉 (3.124a)

zizj
∂2 ln Ξ

∂zi ∂zj
≡ β−2 ∂

2 ln Ξ

∂µi ∂µj
− δijβ−1∂ ln Ξ

∂µi
= V ρiρjGij (3.124b)

We have here a relationship between the distribution functions and the derivatives of the
grand-potential, from which a complete thermodynamic description can (in principle) be
derived. However, as these equations have been derived in the grand-canonical ensemble
(µV T ), they do not correspond to the standard experimental conditions of constant
temperature and pressure. The main work of Kirkwood and Buff [52] was to show how
these results could be carried over into the experimental (NPT ) ensemble. This is done
by using the standard theory of partial derivatives, to transform between derivatives
taken in the different ensembles (i.e. with different fixed variables).

Theoretical and Experimental Setups
The first step is to express the chemical potential derivatives as derivatives over the
number of particles, essentially going from a µV T to an NV T description. The standard
chain-rule for differentiation gives

∂

∂µi

∣∣∣∣
µ/µi,V

=
∑
k

∂Nk

∂µi

∣∣∣∣
µ/µi,V

∂

∂Nk

∣∣∣∣
N/Nk,V

(3.125)

where ∂
∂Xi

∣∣∣
X/Xi

refers to a partial derivative taken with respect to Xi, with all other

Xj 6=i held constant. By inserting µj on both sides, we obtain12

δij =
∑
k

AikBkj (3.126)

12In their original paper [52], Kirkwood and Buff take an alternative route, proving instead that
A = ABA and not A = B−1 directly.
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where the auxiliary A and B matrices are defined as

Bij =
1

βV

∂Ni

∂µj

∣∣∣∣
µ/µj ,V

≡ ρiρjGij + δijρi (3.127a)

Aij = βV
∂µi
∂Nj

∣∣∣∣
N/Nj ,V

(3.127b)

The second step is to express the derivatives with respect to particle numbers at
constant V and T , which appear in the A factors, as derivatives at constant P and T
instead. Using the following two properties of partial derivatives

∂

∂Ni

∣∣∣∣
N/Ni,V

=
∂

∂Ni

∣∣∣∣
N/Ni,P

+
∂P

∂Ni

∣∣∣∣
N/Ni,V

∂

∂P

∣∣∣∣
N

(3.128)

−1 =

(
∂P

∂Ni

)
N/Ni,V

(
∂Ni

∂V

)
N/Ni,P

(
∂V

∂P

)
N

(3.129)

the coefficients of the A matrix can be redefined as

(βV )−1Aij =

(
∂µi
∂Nj

)
N/Nj ,P

+
V iV j

V κT
(3.130)

where we have used the definition of the partial volumes V i and the isothermal com-
pressibility κT

V i =

(
∂V

∂Ni

)
N/Ni,P

=

(
∂µi
∂P

)
N

(3.131)

κT = − 1

V

(
∂V

∂P

)
N ,T

(3.132)

Furthermore, use of Euler’s theorem13 provides two additional equations for the partial
volumes and the chemical potential derivatives.

V =
∑
j

NjV j (3.133)

0 =
∑
j

Nj

(
∂µi
∂Nj

)
N/Nj ,P,T

(3.134)

From these equations, the following three expressions, relating a macroscopic thermo-
dynamic quantity (in the NPT ensemble) to the fluctuations in the number of particles
(in the µV T ensemble), are easily derived [18, 52]

(kBTκT )−1 = |B|−1
∑
ij

ρiρjB
†
ji (3.135a)

V i = kBTκT |B|−1
∑
j

ρjB
†
ji (3.135b)

(
∂µi
∂Nj

)
N ′j ,P

=
kBT

V
|B|−1

∑kl ρkρl

(
B†jiB

†
kl −B

†
liB
†
kj

)
∑

kl ρkρlB
†
lk

 (3.135c)

13V (N,P, T ) is a homogeneous function order 1 and µ(N,P, T ) is an intensive property (homogeneous
of order 0).
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where B† denotes the cofactor matrix of B, and |B| its determinant. Inspection of
Eq. (3.135a) shows that we have arrived at an expression for the compressibility χT in
terms of the radial distribution functions (Eq.(3.127)), which generalizes the compress-
ibility equation (Eq.(3.39)) to the case of multi-component systems. An expression for
the osmotic pressure Π (the pressure due to the solute particles) can also be obtained

β

(
Π

ρi

)
T,µ1,ρk

=
∑
j≥2

ρj|B|−1B†ji (3.136)

where the solvent is labelled 1 and the solutes j = 2, 3, . . .. The derivative on the left-
hand side of this equation is taken at constant solvent chemical potential and solute
densities (k 6= i).

We end by noting that the Kirkwood-Buff theory, although providing an exact de-
scription of solutions, has been derived in a grand-canonical ensemble. As such, the
particle numbers, for all the components in the system, will fluctuate independently of
each other. This is incompatible with the electro-neutrality usually imposed when deal-
ing with electrolyte solutions, and charged systems in general. Furthermore, Eq. (3.135)
only provides expressions for single-ion quantities, which cannot be determined exper-
imentally. A solution to these problems was proposed by Kusalik and Patey [53], who
developed a k-dependant generalization of the KB equations, before taking the k −→ 0
limit under the appropriate constraints (i.e. electro-neutrality). Finally, the Gij in-
tegrals are very sensitive to the long-range value of the radial distribution functions,
which means that the N−1 tail that appears in the canonical gij(r) must absolutely
be corrected for. The reader will probably guess as to why we have not adopted the
KB theory in our description of electrolyte solutions: (1) its application is not entirely
straightforward, (2) it makes explicit reference to the solvent (we wish to derive an im-
plicit solvent model), and (3) it is computationally very demanding (the gij(r) need to
be computed with a very high degree of accuracy to obtain converged results for the
Gij), making it practically impossible to use for aqueous electrolyte solutions.

3.4.3 McMillan-Mayer Theory of Electrolyte Solutions

The Implicit-Solvent Model
In general, the statistical mechanical theory of multi-component systems developed by
McMillan and Mayer can be considered to be a generalization of the theory of imperfect
gases. It provides expressions for the thermodynamic properties and the distribution
functions of a multi-component system, at a given activity(chemical potential), in terms
of the distribution functions at an arbitrary reference activity; provided the two sets do
not bridge a phase transition [51]. These expressions are given as a power series in the
activity change between the two states. An exact implicit solvent theory of electrolyte
solutions is obtained when the reference activity of the solvent is taken to be that of
the pure solvent (at some standard state), while the reference for the solutes is chosen
to be zero. With this choice, the expansion coefficients contain no explicit reference to
the solute-solvent or solvent-solvent potentials, they depend only on the n-body solute-
solute potentials of mean force.

In practice, this McMillan-Mayer theory of electrolyte solutions is obtained by tracing
out the unwanted (solvent) degrees of freedom from the full grand-canonical partition
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function. This procedure, or mathematical trick, allows us to define an equivalent
system, which is described by an effective Hamiltonian that makes no reference to the
solvent. For simplicity, consider a solution with only two species, the solvent and one
solute. The positions of the former are represented by Ri, those of the latter by ri. In
this case, the grand-canonical partition function takes the form

Ξ(z, y, V, T ) =
∑
N

∑
M

zN

N !

yM

M !

∫
drN

∫
dRMe−βVN+M ({rN ;RM}) (3.137)

=
∑
N

zN

N !

∫
drN

[∑
M

yM

M !

∫
dRMe−βVN+M ({rN ,RM})

]

where VN+M is the total interaction potential for a system with N solute particles and
M solvent particles, and z and y are the activities of the solute and solvent, respectively.
The quantity inside square brackets is then related to the potentials of mean-force. For
this two-component system, the n-body (solute-solute) particle distribution function
(Eq. (3.33)) takes the form

g(n)(r1, . . . , rn) =
1

ρnΞ(z, y, V, T )

∑
N≥n

zN

N !

∫
dr(N−n) (3.138)

×

[∑
M

yM

M !

∫
dRMe−βVN+M ({rN ;RM})

]

where ρ is the solute density. By changing the variable in the summation, this expression
can be brought to a form which resembles that of Eq. (3.137)

g(n)(r1, . . . , rn) =

(
z

ρ

)n
1

Ξ(z, y, V, T )

∑
N≥0

zN

N !

∫
drN (3.139)[∑

M

yM

M !

∫
dRMe−βVN+M+n({rN+n;RM})

]
(3.140)

Taking the limit of this last expression as z −→ 0 (as the chemical potential of the
solute tends to minus infinity), we obtain

g(n)(r1, . . . , rn) =
z→0

γn

Ξ(z = 0, y, V, T )

[∑
M

yM

M !

∫
dRMe−βVM+n({rn;RM})

]
(3.141)

with γ = z/ρ. For a one component system, it is well known that z → ρ at infinite
dilution [17], and thus γ should tend to 1, but this is no longer true in the multi-
component case, since γ 6= 0 [13]. Using Eq. (3.141), we can rewrite the term in brackets
in Eq. (3.138) in terms of the n-body (solute-solute) particle distribution function, thus
eliminating all explicit references to the solvent degrees of freedom

Ξ(z, y, V, T ) = Ξ(z = 0, y, V, T )
∑
N

aN

N !

∫
drN g(N)(r1, . . . , rn)

∣∣
z=0

(3.142)



60 3.4. EXACT THEORIES OF ELECTROLYTE SOLUTIONS

where we have redefined the solute activity as14

a = z/γ ≡ z lim
z→0

ρ

z
(3.143)

Finally, using the definition of the PMF (3.41) we obtain

Ξ(x, y, V, T ) = Ξ(z = 0, y, V, T )
∑
N

aN

N !

∫
drNe−βw

(N)({rN}) (3.144)

where the w(N)({rN}) are the N -body potentials of mean force at infinite dilution (i.e.
for a solution with exactly N solute particles). Note that the sum appearing on the
right-hand side of this equation takes the exact form of a grand-canonical partition
function (Eq. (3.22)). We can thus express the full partition function as a product of
the partition functions of the pure solvent (at the same activity and temperature as the
solution) Ξ(0, y, V, T ) and the partition function of an effective solute gas Ξ(a, V, T ).

Ξ(x, y, V, T ) = Ξ(z = 0, y, V, T )× ΞMM(a, V, T ) (3.145)

From the definition of the grand-potential Ω = ln Ξ (3.24), we see that the pressure of
the solution is naturally separated into a pure solvent Psol and pure solute term PMM .
The latter is, by definition, equivalent to the osmotic pressure of the solution (Π = Posm)

P = Psol + Posm (3.146)

Although we have only considered the case of a two component system of point
particles, the generalization to many solutes and molecular systems is straightforward.
When compared to the KB description presented in the previous section, we see that
the MM theory provides a much more comfortable representation for electrolytes in
solution. This is obtained at the “cost” of hiding all the effects of the solvent within the
PMF.

Theoretical and Experimental Reference Frames
As mentioned above, the thermodynamics of the solute gas within the MM frame-
work are computed with respect to a pure solvent at constant chemical potential. The
measured values will not correspond to those observed experimentally, at constant tem-
perature and pressure [54]. A schematic representation of the these two setups, the
experimental or Lewis-Randall (LR) and McMillan-Mayer (MM) is given in Figure 3.2.
The approximate relation used to perform the conversion between the osmotic coef-
ficients obtained at these two levels of description, which is exact if the solution is
incompressible, has been given in Eq. (3.86).

All the values for φ presented in this work are given in the MM (implicit solvent)
reference system. For the alkali halide salts we use the experimental values provided by
Robinson and Stokes [42], and for the lanthanoid chloride salts we use the values given by
Spedding and coworkers [55]. The conversion between the LR and MM reference systems
requires knowledge of the mass density of the solution, as well as the concentration
derivative of the density (needed to compute the partial volume V ), for which we use
the data given by Novotný [56] and Spedding [57].

14This transformation amounts to a constant shift in the solute chemical potential.
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Figure 3.2: Schematic representation of the difference between the Lewis-Randall (ex-
perimental) and McMillan-Mayer reference frames.
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4.1 Introduction

Inorganic ions are known to be of fundamental importance in many fields of chemistry.
In particular, their role within biological processes has recently attracted widespread
attention, as they are known to influence the solvation of proteins [58], as well as their
diffusion along DNA [2]. A proper description of the thermodynamic and dynamic
properties of ions in solution (and at interfaces) also presents important industrial ap-
plications. Within the nuclear industry, for example, basic properties such as the ion

62
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Figure 4.1: The first step in the multi-scale description of electrolyte solutions: Deriving
classical potentials from ab-initio calculations.

activities and the hydration free energies are of fundamental importance for the repro-
cessing of spent nuclear fuel and its subsequent storage [4, 59].

Within the engineering community, such systems have traditionally been treated
using simple, almost phenomenological implicit solvent descriptions, which are fitted to
reproduce the experimental data. While this has the advantage of providing (in a best
case scenario) perfect agreement with experiments, it is not evident how such models
can be interpreted in terms of the physically relevant microscopic parameters. This is
important in order to quantify the environmental effects which strongly influence the
ion-specific behaviour. Furthermore, the predictability provided by these simple models
is somewhat of a mystery. What happens if the parameters of the model are varied?
What happens if I try to apply the model to a different system from that to which it
was parametrized? Finally, and this is probably the biggest question mark hanging over
such an approach, what can we do if little or no experimental data is available?

To sidestep these difficulties, the obvious solution is to start at the bottom and
slowly build up the more approximate (less computationally demanding) models. The
advantage of such a bottom-up approach is that, at each step, we know exactly what it
is we are taking out, and what we are replacing it with. In this chapter we will deal with
the first step in our multi-scale description of ionic solutions: that of deriving classical
force-fields for the ions, from ab-initio calculations. We begin with a brief overview of the
ab-initio density functional theory used to treat the electronic degrees of freedom, before
introducing the basic concepts of classical molecular dynamics. We then proceed to show
how the use of ab-initio calculations, in particular those for the (localized) electronic
density, can be used to unambiguously define the classical interaction potentials between
polarizable ions in solution. Finally, we test our potentials against a wide variety of
experimental data to see how they behave.
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4.2 Principles of Ab-Initio Simulations

It is well known that trying to solve the Schrödinger equation for any but the sim-
plest of systems, such as a particle in a potential well, a harmonic oscillator, or the
hydrogen atom, is a formidable task, which can only be done approximately. Unfor-
tunately, the situation quickly becomes insurmountable, as the number of degrees of
freedom N increases, since the complexity of the available methods typically scales as
O(N 4∼7) [60]. Attempting a fully quantum description of the structural or dynamic
properties of ionic solutions, for which the characteristic length and time scales are of
the order of nanoseconds and nanometers, respectively, is clearly out of the question.
It is not surprising then, to see that most high-level quantum chemistry calculations,
which give approximate solutions to Schrödinger’s equation, are restricted to electronic
structure calculations of isolated molecules in vacuum or within small water clusters
(i.e. to optimize the geometry or compute the electronic spectra) [61]. This approach
is clearly ill suited for the study of condensed phases.

The first approximation that is usually made in order to reduce the complexity
inherent to a fully quantum description, is to assume that the electrons evolve over
a time scale that is much shorter (faster) than that which governs the motion of the
nuclei1. The electrons remain in their ground state as they adiabatically follow the
nuclei motion. This is the Born-Oppenheimer approximation [62, 63, 64], which allows
us to replace the total wavefunction of the system with a separable wavefunction

ΨS({RI}, {ri}) = Ψ ({RI}) Ψ0 ({ri}|{RI}) (4.1)

where Ψ0({ri}|{RI}) is the ground state wavefunction2 of the electronic Hamiltonian
(Ĥe) for a fixed ionic (nuclei) configuration {RI}, and Ψ({RI}) is the nuclear part of the
total wavefunction. Under this adiabatic approximation, the Hamiltonian determining
the time evolution of the ionic wavefunction is given by

ĤN = T̂N + V̂NN + E0({R̂I}) (4.2)

where T̂N is the nuclear kinetic energy operator, V̂NN the nuclei-nuclei potential en-
ergy operator, and E0 is the ground-state electronic energy for the particular nuclear
configuration {RI}

E0 = min
Ψ({ri})

〈Ψ|Ĥe|Ψ〉 (4.3)

By definition, this minimum is obtained for Ψ = Ψ0. The electronic Hamiltonian is given
by the sum of the electron kinetic energy T̂e, the electron-electron potential energy V̂ee,
and the electron-nuclei (external) potential energy V̂Ne = V̂ext operators

Ĥe = T̂e + V̂ee + V̂ext (4.4)

Taking into account the large mass of the nuclei, the second approximation that is
made is to consider the classical limit for the nuclei dynamics. In this case, the potential

1This is due to the large mass ratio between the nuclei and the electrons. For a hydrogen atom this
ratio of proton to electron mass is mp/me ' 2× 103

2We consider only non-degenerate ground states.
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energy surface describing the nuclei dynamics is, from Eq. (4.2), vNN({R}I)+E0({RI}),
which is a function only of the nuclei coordinates. To compute the forces on the nuclei,
it is then necessary to compute the gradient (with respect to the nuclei coordinates) of
this function. The first term (vNN) is trivially obtained, leaving just the gradient of the
electronic energy (E0), which can be evaluated with the help of the Hellmann-Feynman
theorem [62], which states that

∂E0

∂RI

=

∫
dr
∂vNe(r, {RJ})

∂RI

ρ0(r) (4.5)

where ρ0(r) is the equilibrium electronic density

ρ0(r) = N

∫
dr2 . . . drN |Ψ0(r, . . . , rN)|2 (4.6)

with N the number of electrons. This theorem proves that the force exerted by the
electron cloud on the nuclei, within a Born-Oppenheimer approximation, can be com-
puted within a completely classical framework, i.e. by computing the classical elec-
trostatic interaction between a set of point charges {Ri} (the nuclei) immersed in an
electronic charge distribution ρ0(r). We can thus replace the problem of determining the
3(N + M)-dimensional wavefunction Ψ({RI}, {ri}) (N electrons and M nuclei), with
that of determining the much “simpler” 3-dimensional electron density function ρ(r).

4.2.1 Solving the N-body Problem: A Variational Approach

The Hohenberg - Kohn Theorem

The fact that we can consider the electronic density ρ(r) as the fundamental function,
from which we can derive all the ground state properties of the system, in lieu of the
more complicated electronic wavefunction Ψ, is due to the well-known Hohenberg-Kohn
theorem [62]. This theorem states that there exists a one to one map between the
external potential vext(r) and the electron density ρ(r)3, both of which determine all
the ground state properties of the system (Ψ0)

ρ0(r) vext(r)

Ψ0

-�

@
@
@R

I �
�
�	

� (4.7)

The electron density ρ(r) is considered simpler than the full wavefunction Ψ, since the
function space that needs to be searched has been reduced to the more reasonable case
of scalar three-dimensional real functions. However, all that has been done is to write
one unknown quantity Ψ in terms of another ρ(r), without specifying how either is to
be calculated. Since ρ(r) determines all ground state properties of the system, the total
energy is a functional of ρ, and can be written as

E[ρ] =

∫
drρ(r)vext(r) + FHK[ρ] (4.8)

3This is only true if the density is v-representable, which is not easy to prove; however, the for-
mulation of density functional theory only requires the density be N -representable, which is a weaker
condition, that should be satisfied by most non-pathological density functions [62].
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where FHK[ρ] is the so-called Hohenberg-Kohn functional, which is independent of the
external potential

FHK[ρ] = T [ρ] + Vee[ρ] (4.9)

Fortunately, it can be shown that the minimization of the functional E[ψ] (Eq. (4.3)), can
be expressed, due to the Hohenberg-Kohn theorem, as a minimization of the functional
E[ρ] [62]

E0 = min
ρ(r)

E[ρ] (4.10)

or equivalently as

E0 ≤ E[ρ] (4.11)

with the ground state energy E0 being obtained for the ground state density ρ0(r)
(which is assumed to be non-degenerate). Any trial density ρ′(r) 6= ρ(r) will result in
an energy value E[ρ′] > E0.

The Kohn - Sham Method

The problem of determining the ground state properties of the system is then reduced to
the variational problem of finding the minimum of Eq. (4.8). However, the (universal)
HK functional FHK[ρ] = T [ρ]+Vee[ρ] is still undefined. The idea behind the Kohn-Sham
method [65] is to introduce an auxiliary (fictitious) system of non-interacting electrons
in order to evaluate the kinetic energy term T [ρ] exactly; the remaining term Vee[ρ] is
computed within a mean-field approximation, and the small correction (the difference
with respect to the exact calculation) is treated separately. For this auxiliary system,
the wave function is given by a single Slater determinant of N/2 one-electron orbitals
φi [66], which correspond to the lowest N/2 eigenvectors (each state holds two electrons)
of the single electron Hamiltonian

Ĥs = −1

2
∇2 + vs(r) (4.12)

where vs(r) is determined uniquely by ρ(r) thanks to the Hohenberg-Kohn theorem.
The kinetic energy functional is then replaced by the corresponding quantity in the
non-interacting case T [ρ]→ Ts[ρ]

Ts[ρ] =
N∑
i=1

〈φi[ρ]| − 1

2
∇2|φi[ρ]〉 (4.13)

and the electron-electron potential energy is evaluated within a classical mean-field
approximation Vee[ρ]→ J [ρ]

J [ρ] =
1

2

∫∫
drdr′

ρ(r)ρ(r′)

|r − r′|
(4.14)

With these substitutions in mind, the energy functional is written as

E[n] =

∫
drn(r)vext(r) + Ts[n] + J [n] + Exc[n] (4.15)
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which is still exact, since all that has been done is to group the unknown quantities into
the exchange-correlation term

Exc[n] = (T [n]− Ts[n]) + (Vee[n]− J [n]) (4.16)

Practical Considerations: Approximative Functionals, Plane Waves, and
PseudoPotentials

We have seen that the whole problem of DFT is reduced to finding an appropriate
exchange-correlation functional Exc. The first such functional to be proposed was the
Local Density Approximation (LDA) [64], which assumes that the exchange-correlation
energy is the same as that of a uniform electron gas at the corresponding density. This
energy is known thanks to the work of Ceperley and Alder [67], who have tabulated
it for several densities. The next generation of functionals, the generalized gradient
approximations (GGA), attempted to improve on the simple LDA functional by not
just using the local electron density, but also its gradient. When higher order terms
(derivatives) in the expansion are included, we obtain the meta-GGA functionals [64].
The Becke-Lee-Yang-Parr (BLYP) [68, 69] and Perdew-Burke-Ernzerhorf (PBE) [70]
functionals used in this work are of the GGA variety. Attempts to improve on these
functionals, in order to include non-local effects, by using exact results for the exchange
energy have led to the so-called hybrid functionals.

When solving the Kohn-Sham equations, it is convenient to search for a set of orbitals
which diagonalize the Kohn-Sham Hamiltonian, as this greatly simplifies the calcula-
tions [63]. To take advantage of the underlying periodicity of the system (assuming
periodic boundary conditions are used), the orbitals or wavefunctions φi are expanded
in a plane wave basis set, which simplifies the calculations even further. However, this
has the disadvantage that a great many number of plane-waves are required in order
to properly describe the wavefunction close to the nuclei. As the wavefunctions must
be orthogonal to each other 〈φi|φj〉 = δij, the valence electron wavefunction is expected
to undergo rapid oscillations in the vicinity of the nuclei [63, 64]. It is this fast lo-
calized variation in the wavefunctions which makes it computationally impossible to
use a basis set of plane waves for all the orbitals. However, since it is the valence
electrons which dictate the “chemistry” of the system, the core electrons being tightly
bound and hardly participating in any type of bonding, we need only attempt a quan-
tum description for the former, the effects of the latter can be approximated by using
a pseudo-potential. There exist an ample number of pseudo-potentials, obtained by
using different parametrizations and boundary conditions, which we will not attempt to
cover. Unfortunately, the “science” behind pseudo-potential development is somewhat
technical, not very interesting, and very hard to implement4. We will therefore ignore all
further discussion on the subject, except to say that the pseudo-potentials are derived for
use with a specific exchange-correlation functional and should obviously not be mixed.
The Troullier-Martins (TM) [71] and Goedecker-Tetter-Hutter (GTH) [72, 73, 74] pseu-

4This is a matter of personal taste, but in the end, the whole business of pseudopotentials (which
is better, which is worse) made me recall Olivier Heavyside’s response to those who would criticize
the rigour of his work: "I do not refuse my dinner simply because I do not understand the process
of digestion". Likewise, I dot not refuse a good (enough) pseudo-potential simply because I have not
understood how it was obtained.
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dopotentials we have used are standard for the condensed matter systems we consider,
and are known to yield reasonably good results.

4.2.2 The Use of Maximally Localized Wannier Functions

Introduction

The problem with the canonical Kohn-Sham orbitals, and this is independent of the
basis set that is used, is the fact that they are delocalized in space. This leads to an
electronic density that is also delocalized over the entire simulation cell. It is thus not
easy to directly obtain localized properties of individual atoms or molecules, such as
information on the formation of bonds or the response of the molecular orbitals to an
externally applied electric field. It is clear, however, that any unitary transformation
of the Kohn-Sham orbitals, which leaves the density and energy unchanged, is a valid
solution to the Kohn-Sham equations obtained from eqs. (4.10), (4.12) and (4.15). We
must thus look for an equivalent set of orbitals which are localized around the individual
ions (RI). This transformation, from the canonical delocalized Kohn-Sham orbitals to a
set of localized orbitals, is achieved through the use of the maximally localized Wannier
function (MLWF) formalism [75, 76, 77].

The Wannier functions are defined through a unitary transformation of the KS eigen-
vectors

|φwi 〉 =

N/2∑
j=1

Uij|φj〉 (4.17)

where the unitary matrix U is determined by an iterative minimization of the Wannier
function spread Ω, defined as

Ω =

N/2∑
i=1

Si (4.18)

where the Si are the spreads of the individual Wannier orbitals φwi

Si =
∑
α

−1

(2π)3
log |si,α|2 (4.19)

si,α = 〈φwi |ei(2π/L)ri,α|φwi 〉 (4.20)

with α = x, y, z. Aside from their spread Si (which gives the size of the localized electron
cloud), the Wannier orbitals are defined in terms of their centers rwi

rwi,α = − L

2π
I(ln si,α) (4.21)

We have implicitly assumed that the calculations are performed on a cubic simulation
box with periodic boundary conditions, since this is the only case that will interest us
in this work.
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Computing Ionic (Molecular) Polarizabilities

The MLWF provide a picture of the electron density around individual atoms which
is easily interpreted from a chemical point of view. It is thus natural to consider the
possibility of computing the molecular polarizabilities by studying the response of the
MLWF to an applied external field. Since the dipole moments of single ions or molecules
can be computed from the distribution of the charge centers of the MLWF localized
in their vicinity. This approach has been recently validated [78, 79, 80] and used to
develop a complete theory of electric polarization in crystalline dielectrics [81, 82, 83].
The partial dipole moment of a given ion or molecule I is defined, in atomic units, as

µI =
∑
J

ΘI(J)

(
ZJRJ − 2

∑
i

ϑJ(i)rwi

)
(4.22)

where ZI and RI are the nuclear charges and positions. For notational simplicity,
throughout this section we use capital indices {I, J,K, . . .} to refer to individual ions, or
groups of ions (molecules), and lowercase indices refer to the Wannier orbitals (electronic
degrees of freedom). The sum over J runs over the ions; with ΘI(J) choosing those
belonging to molecule I only

ΘI(J) =

{
1, ion J belongs to molecule I = {I1, . . . , In}
0, otherwise

and the sum over i runs over the Wannier orbitals, with ϑJ(i) choosing only those which
are localized in the vicinity of ion J (itself belonging to molecule I)5

ϑJ(i) =

{
1, |rwi −RJ | < rc

0, otherwise
(4.23)

For the condensed, non-metallic, systems we consider in this work, all Wannier orbitals
are localized in the vicinity of one, and only one atom, such that if ϑI(k)ϑJ(k) = 1 then
ion I and ion J are necessarily the same. In practice, the cutoff radius used to determine
the localization of the Wannier orbitals was chosen to be rc = 1.5a0 (a0 = 0.529 Å is
the Bohr radius).

If a small electric field E is applied to the system, the linear response can be charac-
terized by an additional field-induced dipole moment δµI on each individual molecule.
This externally applied field can be considered as an optical field, to differentiate it from
the static electric field created by the charge distribution of the ions (molecules). The
net induced dipole δµI of molecule I can then be written in terms of the total (optical)
electric field which acts on it

δµI({RK}) = αI({RK}) ·

[
E +

∑
J 6=I

Tdip-dip
IJ · δµJ({RK})

]
(4.24)

where the sum runs over all polarizable entities (ions or molecules) J 6= I. In this
last equation, we have introduced the dipole polarizability tensor αI of molecule I,

5For systems for which this is no longer valid, i.e. when a Wannier center can be attributed to two
distinct atoms, a different localization rule must be used.
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as well as the dipole-dipole interaction tensor Tdip-dip
IJ . As is usual, when dealing with

periodic systems, this last term is evaluated using the Ewald summation technique (see
Section 4.3.3) [84, 85]. The first term on the right-hand side of (4.24) gives the direct
contribution of the external field E to the induced dipole, while the second term gives
the contribution due to the electric fields that are reradiated from the induced dipoles
of all the other molecules (I 6= J) in the system. In principle, higher-order induced
multiples will also contribute to this expansion, but we will ignore them in what follows.
This approximation is justified, on the grounds that, for a uniform electric field E , the
directly induced higher-order multiples of spherical atoms (ions) vanish; and even in
the case of molecules, their effect is expected to be negligible compared to that of the
dipoles.

Within DFT calculations on periodic systems, the coupling between the electronic
density and the external electric field is expressed through the macroscopic polarization
of the periodically replicated cell [86, 87]. This is accomplished using Resta’s Berry
phase approach [88], which proposes a novel definition for the position expectation
values for use with periodic systems, where the conventional position operator becomes
meaningless. The new partial dipole moment of each species, in the presence of the
external field, is then calculated via another localization procedure (through Eq. (4.22)).
In practice, this is performed for an externally applied field E (α) in each of the three
Cartesian directions α = x, y, z, in order to compute the corresponding dipoles µI(E (α)).
The field induced dipoles are then calculated from the difference between the total
molecular dipoles in the presence and absence of the field δµ(α)

I = µI(E (α))−µI(E = 0)6.
In each case, the total (optical) electric field f (α)

I at the position RI of each ion is
obtained from

f
(α)
I = E (α) +

∑
I 6=J

Tdip-dip
IJ · δµ(α)

J (4.25)

which is conveniently evaluated using a dipolar Ewald sum. Finally, Equation (4.24) can
be inverted to yield the individual electronic polarizabilities for the particular condensed
phase configuration {RI}

αI({RJ}) = (FI)−1 ·ΠI (4.26)

where FI and ΠI are second-rank three-dimensional tensors defined as

FαβI = f
(β)
I · êα (4.27)

Παβ
I = δµ

(β)
I .êα (4.28)

where êα (α = x, y, z) represents the canonical Cartesian unit vectors x̂, ŷ, and ẑ.

Computing Dispersion Interactions

It is a well known fact that DFT calculations are unsuited for the task of describing
dispersion interactions, which arise from long-range density fluctuations, since most

6Within the linear response regime we consider, the induced dipoles from an arbitrary, externally
applied field E , can be computed by considering the response to the individual components of the
electric field Eα separately.
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exchange-correlation functionals EXC [ρ] do not take into account these non-local effects.
The most blatant example of this is the instability (or metastability) of liquid water at
standard temperature and pressure: the overly structured water presents a density that
can underestimate the experimental value by 10 ∼ 25% [89]7. However, Silvestrelli has
noticed that this dispersion interaction can be approximately introduced a posteriori
within a DFT approach, by introducing an interaction of the form −C̃ij

6 /r
6
ij between

Wannier centers [90], where the C̃ij
6 terms depend only on the spread Si of the orbitals.

Assuming an isotropic distribution of Wannier centers around the nuclei, Rotenberg et
al. [91] hove shown that the dispersion interaction, to second leading order, is given by

Edispersion = −
∑
n=6,8

CIJ
n

Rn
IJ

(4.29)

with

CIJ
6 =

∑
i

∑
j

ϑI(i)ϑJ(j)C̃ij
6 (4.30)

CIJ
8 =

∑
i

∑
j

ϑI(i)ϑJ(j)(dI(i)
2 + dJ(j)2)C̃ij

6 (4.31)

where dI corresponds to the (fixed) distance between Wannier orbitals and the ion to
which they belong. Note that this distance is determined by the localization procedure
(as an average over the corresponding distance of all the relevant Wannier centers), it
is not a free parameter.

The −C̃ij
6 /r

6
ij interaction between Wannier centers is computed using Silvestrelli’s

procedure [90], which is itself based on the expression proposed by Andersson to describe
the long-range interaction between two separated fragments of matter [92]. For two
Wannier centers i and j, belonging to two distinct molecules I and J , respectively, this
interaction is given by

C̃ij
6 =

3

32π3/2

∫∫
r ≤rc
r′≤r′c

drdr′

√
ρwi (r)ρwj (r′)√

ρwi (r) +
√
ρwj (r′)

(4.32)

where ρwi (r) is the density of the i-th fragment, and rc = (1.475 − 0.866 lnSi)Si is the
corresponding cutoff radius used to perform the integration. Following Silvestrelli, this
electron density is assumed to present a hydrogen-like (exponential) localization around
the Wannier center rwi , such that

ρwi (r) = ni
κ3
i

8π
e−κi|r−rwi | (4.33)

where ni = 2 is the number of electrons per orbital and κi = 2
√

3/Si.

7Ab-Initio MD simulations at ambient conditions were observed to describe the experimental prop-
erties of water at a temperature 20% lower (T ' −30◦)!
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4.3 Molecular Dynamics Simulations

4.3.1 Introduction to MD

Consider that we want to study a closed (isolated) system of N point particles in a
volume V . The Molecular Dynamics (MD) approach to this problem is to solve Newton’s
equations of motion,

miq̈i = −∇iVN({qj}) (4.34)

in order to follow the trajectory of the system through phase space {qi,pi}, where qi,
pi, and mi refer to the position, momentum, and mass of the i-th particle, ∇i gives
the gradient with respect to qi, and VN is the total potential energy of the system
(which is assumed to depend only on the positions of the particles). Although there
is little interest in solving Eq. (4.34) just to obtain the positions and velocities as a
function of time, which in themselves provide almost no useful information, knowledge
of these quantities allows us to measure many relevant microscopic properties A(q,p).
By relevant, we mean that these quantities can be related to the dynamic, structural,
and thermodynamic properties (usually measured experimentally) which characterize
the system, by averaging them over a sufficiently long period of time τ . The simplest
examples are the internal energy U , the temperature T , and the pressure P [20]

U = H = lim
τ→∞

1

τ

∫
dt

[∑
i

p2
i (t)

2mi

+ VN({qj(t)})

]
(4.35a)

T = T = lim
τ→∞

1

τ

∫
dt

[
1

N

∑
i

pi(t)
2

3kBmi

]
(4.35b)

P = P = kBTρ+ lim
τ→∞

1

τ

∫
dt

[
1

6V

∑
i 6=j

f(rij(t)) · rij(t)

]
(4.35c)

which are obtained from a time average of the corresponding (instantaneous) microscopic
quantities H, T , and P . As mentioned before, if the system is ergodic (which we will
always assume), these time averages A will correspond to the ensemble averages of Gibbs
〈A〉, which form the basis of Statistical Mechanics.

Of the three state variables given in Eq. (4.35), the internal energy U is probably
the most important, since it is a conserved quantity. Our simulations should, at the
very least, respect this condition. However, since the propagator (integrator) used to
solve the equations of motion is necessarily discretized (using a finite time step ∆t)
and approximate, it is not evident a priori that the energy will be conserved. Small
fluctuations in the energy are inevitable, but the propagator should be such that there
is no appreciable long-term energy drift. A considerable amount of study has been
devoted to finding new and improved integrator schemes (generally by using the Liouville
formulation of Classical Mechanics), and yet the most common one continues to be the
Verlet algorithm, introduced by Loup Verlet at the dawn of the computer simulation era
(1967). Among the many variants that have been proposed, the velocity Verlet algorithm
is probably the best known. It gives a second (first) order expansion for the positions
(velocities) at a time t+ ∆t, in terms of the positions and velocities (momenta) at time
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t, and the forces at both t and t+ ∆t [20]

qi(t+ ∆t) = q(t) +
pi
mi

∆t− ∇iVN({qj(t)})
2mi

(∆t)2 (4.36a)

pi(t+ ∆t) = pi(t)−
∆t

2
∇i [VN({qj(t+ ∆t)})− VN({qj(t)})] (4.36b)

This algorithm has various properties one looks for in a “good” propagator: it is time
reversible (like Newton’s equations of motion), it preserves the volumes in phase-space,
and it gives sufficiently small energy fluctuations [20].

So far, we have made no mention as to the form of the potential VN of this N -body
system of classical particles. If the N particles correspond to the nuclei, as discussed in
the previous section, and the potential energy is computed from a quantum-mechanical
description of the electrons (under the Born-Oppenheimer approximation), we obtain
what is known as Born-Oppenheimer Dynamics. Notice that in this scenario, the po-
tential energy VN , and thus the electronic wavefunction or density (if using a DFT
approach), must be solved for at each step. To avoid repeating this extremely expensive
calculation, Car and Parrinello [93] devised a scheme in which this is done only once
(at the beginning), and the wavefunction is then propagated alongside the nuclei. This
is accomplished by using an extended Lagrangian formulation, essentially treating the
Kohn-Sham wavefunctions as additional degrees of freedom, with an associated mass
and momenta. This is what is known as Car-Parrinello molecular dynamics.

In this work we will only be interested with Classical Molecular Dynamics. So far we
have considered only point particles, but the treatment of molecules is easily introduced.
For the trivial case of non-rigid molecules, a model potential (typically of the harmonic
form) is used to describe the intramolecular interactions and the equations of motion
are propagated in the usual way. Instead of specifying the intramolecular interactions,
a constraint on the geometry of the molecules can also be used. These constraints are
typically specified as fixed distances (bonds) between atoms. In this case we are dealing
with rigid-bodies, and an extra step must be introduced when propagating the positions
to ensure that the constraints are always satisfied. This is generally done using the
SHAKE algorithm [94, 95] (or one of its variants), which corrects for the change in
bond lengths, appearing after a conventional propagation, by computing the constraint
forces necessary to keep the bond at the desired length and correcting the positions
accordingly.

4.3.2 Ensembles: Thermostats and Barostats

As mentioned in the discussion on statistical ensembles (Section 3.1.1) a micro-canonical
(NV E) description, which represents closed isolated systems (constant number of par-
ticles N , volume V , and energy E) is not the most convenient. From a Statistical-
Mechanical point of view, the micro-canonical ensemble is disfavored since it restricts
the systems to the surface of constant energy E. The canonical (NV T ) and grand-
canonical (µV T ) ensembles are much more comfortable to work with, since the integra-
tions can be taken over the whole phase-space, with each configuration (point) weighted
by the appropriate Boltzmann factor. With simulations the situation is slightly dif-
ferent, in that the NV E ensemble is by far the easiest to work with (and code), but
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since the goal is usually to compare with experiments, the NV T or NPT ensembles
are preferred. In theory, this is not a problem, since the ensembles are all equivalent
in the thermodynamic limit N

V
=

N,V→∞
ρ (constant), but we can only simulate finite size

systems.

Performing simulations under constant temperature or pressure requires special at-
tention. Experimentally, the temperature or pressure of a given system is fixed by placing
it in contact with an appropriate heat or pressure reservoir. As such, the interactions
between the reservoir and the system give rise to mainly local surface effects. However,
the treatment of such surface effects within simulations is best avoided, which means
that we must find another way of simulating (approximating) the coupling between our
system and the reservoir(s). The preferred method for doing this is to use Andersen’s
extended Lagrangian approach, which has the following two advantages: (1) it provides
a method for performing deterministic molecular dynamics simulations and (2) the sys-
tem possesses an effective Hamiltonian (conserved quantity)8. The application of this
formalism to constant temperature simulations was given by Hoover [96], generalizing
previous work done by Nosé [97, 98], and is known as a Nosé-Hoover thermostat. Their
idea was to introduce an additional degree of freedom ζ, with an associated mass Q and
momentum pζ , which acts as a thermodynamic friction coefficient. This fictitious vari-
able acts as a thermostat, allowing us, in most cases, to generate the desired canonical
(NV T ) distribution.

The problem with the simple Nosé-Hoover thermostat is the fact that its efficacy
depends strongly on the number of conserved constants of motion [99, 20]; furthermore,
it is non-ergodic for low-dimensional systems, such as the harmonic oscillator [20]. To
overcome these limitations, Martyna et al. [99] have proposed that a chain of Nosé-
Hoover thermostats ζj could be used instead: the thermostat ζ1 coupled to the system
is itself coupled to another thermostat ζ2, which in turn can be coupled to yet another
thermostat ζ3, and so on. The authors have also provided an analogous scheme to
treat systems at constant pressure and temperature (NPT ). In the end, the number of
Nosé-Hoover thermostats which should be used will depend on the number of conserved
quantities in the system. For our simulations, we have used a Nosé-Hoover chain of
length three. The effective Hamiltonians for these two cases (NPT and NV T ) are
given by [99, 20]

HNPT = H({qi;pi}) +
p2
ε

W
+

M∑
j=1

p2
ζj

Qj

+ (Nf + 1)kBTζ1 (4.37a)

HNV T = H({qi;pi}) +
M∑
j=1

p2
ζk

2Qk

+NfkBTζ1 +
M∑
j=2

kBTζj (4.37b)

where Nf denotes the number of degrees of freedom, and ε is the extra variable used
to barostat the system (with associated mass W an conjugate momentum pε). The
equations of motion (system + reservoir) for the general case of a system at constant
temperature and pressure (NPT ) are summarized in Eq. (4.38), along with the transfor-
mations required to obtain the corresponding equations for a system at constant volume

8Strictly speaking it is not a real Hamiltonian, as the equations of motion cannot be derived from
it.
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and temperature (NV T ).

q̇i =
pi
mi

+
pε
W
ri ←→q̇1 =

pi
mi

(4.38a)

ṗi = −∇iVN −
pζ1
Q1

pi −
(

1 +
3

Nf

)
pε
W
pi ←→ṗi = −∇iVN −

pζ1
Q1

pi (4.38b)

ζ̇j =
pζj
Qj

=ζ̇j (4.38c)

ṗζ1 =

[
N∑
i

p2
i

mi

−NfkBT

]
− pζ1

pζ2
Q2

=ṗζ1 (4.38d)

ṗζj =

[
p2
ζj−1

Qj−1

− kBT

]
− pζj

pζj+1

Qj+1

=ṗζj (4.38e)

ṗζM =

[
p2
ζM−1

QM−1

− kBT

]
=ṗζM (4.38f)

V̇ =
3V pε
W

6−→ (4.38g)

ṗε = 3V (Pint − Pext) +
3

Nf

N∑
i

p2
i

mi

− pζ1
Q1

pε 6−→ (4.38h)

︸ ︷︷ ︸
Constant Pressure and Temperature (NPT )

︸ ︷︷ ︸
Constant Temperature (NV T )

(4.38i)

Where we have assumed that the barostat is coupled to the same thermostat as the
system, although a separate Nosé-Hoover chain could also be used [99].

This extended Lagrangian formalism is not the only method available for perform-
ing simulations within the NV T or NPT ensembles, and it is certainly not the eas-
iest to implement. Among the most popular alternatives, we find the Andersen and
Berendsen thermostats, as well as the Berendsen barostat. The Andersen method [100]
is to randomly reassign the velocities of the particles, to velocities chosen from a
Maxwell-Boltzmann distribution at the desired temperature; essentially simulating ran-
dom stochastic collisions between the particles and an imaginary heat bath. The Berend-
sen method [101] is to periodically rescale the velocities (thermostat) and/or the volume
of the simulation cell (barostat). Unfortunately, the Berendsen thermostat (barostat) is
unable to reproduce the correct distribution (although the deviation is expected to be
small); and while this is not a problem for the Andersen thermostat (which yields the
correct canonical distribution), it has the disadvantage of not providing deterministic
dynamics for the system (due to the stochastic collisions) [20]. It is for these reasons
that the Nosé-Hoover chains are usually preferred.

4.3.3 Practical Considerations

Periodic Boundary Conditions

Although the goal of numerical simulation techniques is to study the properties of bulk
systems, it is clear that a brute force approach is unfeasible, since we cannot expect to
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store N ∼ 1023 positions and velocities on any computer in the foreseeable future. In
practice, we do not necessarily need to simulate such large systems, the size just needs
to be large enough so that surface (boundary) effects are negligible, but this is still
prohibitively expensive. The solution to this problem was recognized early on, it consists
in periodically replicating the simulation cell in all directions. When a particle leaves
the simulation box through one side, it is immediately reinserted through the opposite
side. This simple procedure allows us to effectively mimic bulk systems and remove
the surface altogether, all the while using only a relatively small number of particles9.
Furthermore, if the interaction potentials between the particles are sufficiently short-
ranged, we need not consider the interactions between all the particles in the system.
Usually, the cutoff rc is chosen such that rc ≤ L/2. If this is the case, a given particle will
only interact with the particles in its own cell and (at most) with the image particles in
one of its neighbouring cells. This approximation dramatically reduces the simulation
time. A schematic representation of the use of periodic boundary conditions, with a
spherical cutoff to truncate the interactions, is given for the case of a two-dimensional
system in Figure 4.2. This cutoff procedure is valid only if the interaction potentials are
short ranged, for long-range electrostatic interactions we must therefore use a different
procedure.

Figure 4.2: Schematic representation of a two-dimensional system under periodic
boundary conditions, with a cutoff radius used to truncate the interaction potentials.
The center (shaded) cell corresponds to the simulation cell, which is periodically repli-
cated in all directions.

Treatment of Electrostatic Forces

The standard method for treating long-range interactions in periodic systems is the
Ewald summation technique [20]. This formalism avoids a direct summation of the
long-range interactions, which is only conditionally convergent, by separating the inter-
actions in two terms: (1) a short-range part which can be summed directly, and (2) a

9The number of particles that should be used obviously depends on the system and the phenomena
being studied, but for our purposes a few hundred to a few thousand is generally enough.
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long-range part which is conveniently expressed as a Fourier series, and thus summed in
reciprocal k-space. For a system of zi point charges, the way of obtaining this separa-
tion is to introduce a diffuse screening charge distribution, of total charge −zi, around
each point charge zi. The electrostatic potential of this new charge distribution (point
particle + screening charge) is short ranged, decaying rapidly to zero, so that the in-
teraction between the system of screened charges can be computed using the usual
methods (a direct sum in real-space). It is then necessary to correct for the addition of
the screening charge distributions. These interactions among screening charges can be
easily computed in reciprocal space; however, in order to do this, the “self” interaction
between the point charge and its corresponding screening charge must be included, and
this needs be corrected for in the final result. We have mentioned only point charges,
but the method can be easily extended to treat higher-order multipoles. A schematic
representation of the Ewald procedure is given in Figure 4.3.

æ

æ

æ æ

æ

æ

æ æ

= +

(r - space)

(k - space)

Figure 4.3: Schematic representation of the separation of charge interactions into real-
and reciprocal-space sums. Note that the coupling between the two systems is assumed
to be negligible.

Consider a finite system of charged, polarizable, particles. Let ri, zi, and µi denote
their positions, charges, and (permanent) dipoles. The total potential energy for this
system can be conveniently written in tensor notation as [84]

U =
∑
i<j

[
ziTchg-chg

ij zj − ziTchg-dip
ij · µj + zjTchg-dip

ij · µi − µi · Tdip-dip
ij · µj

]
(4.39)

where the various Tij denote the multipole - multipole interaction tensors. For a system
of charges and dipoles, we must consider three terms, the charge-charge, charge-dipole,
and dipole-dipole interactions

Tchg-chg
ij =

1

rij
(4.40a)

(Tchg-dip
ij )α = ∇αTchg-chg

ij = −rij.êα
r2
ij

(4.40b)

(Tdip-dip
ij )αβ = ∇α∇βTchg-chg

ij =
1

r5
ij

(
3(rij.êα)(rij.êβ)− r2

ijδαβ
)

(4.40c)
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with rij = |ri − rj| the distance between particles i and j. As mentioned above, this
expression cannot be used to compute the energy for a system under periodic boundary
conditions. To obtain the corresponding real-space Ewald contribution for such a sys-
tem, one can replace the interaction tensors with their screened counterparts. This is
accomplished by performing the following substitution [84, 102]

1

rnij
−→ 1̂

rnij

with

1̂

rij
=

erfc(αrij)
rij

(4.41a)

1̂

r2n+1
ij

=
1

r2
ij

(
1̂

r2n−1
ij

+
(2α2)n√

πα (2n− 1)!!
e−α

2r2ij

)
(4.41b)

where erfc(x) = 2√
π

∫∞
x

exp (−t2)dt is the complementary error function, α is the Ewald
screening parameter, which determines the spread of the screening charge, and (!!)
denotes a double factorial. The reciprocal space sum for the three contributions is
given by [84]

U chg-chg
recip =

4π

V

∞∑
|k|>0

e−k
2/4α2

k2

[∑
i

zi cos (k.ri)

]2

+

[∑
i

zi sin (k.ri)

] (4.42a)

U chg-dip
recip =

8π

V

∞∑
|k|>0

(∑
i

zi sin (k.ri)×
∑
j

(k.µj) cos (k.rj) (4.42b)

−
∑
i

zi cos (k.ri)×
∑
j

(k.µj) sin (k.rj)

)

Udip-dip
recip =

4π

V

∞∑
|k|>0

[∑
i

(k.µi) cos (k.ri)

]2

+

[∑
i

(k.µi) sin (k.ri)

]2
 (4.42c)

where V is the volume of simulation cell and the wave-vectors k are defined as k =
2π(nx/Lx, ny/Ly, nz/Lz), with Lx, Ly, and Lz the side lengths of the cell. The self-
energy corrections are

U chg-chg
self =

α√
π

∑
i

z2
i (4.43a)

U chg-dip
self =

2α3

3
√
π

∑
i

µ2
i (4.43b)

where the sums over i, j are understood to run over the particles in the primary (sim-
ulation) cell. Finally, we notice that the sums in Eq. (4.42) do not include the k = 0
term. This contribution will depend on the boundary conditions at infinity, but can
be safely ignored if the system is assumed to be surrounded by a conducting (metallic)
material [20]. The use of these tin-foil boundary conditions is the norm when studying
ionic systems. An approximation that is commonly used to reduce the computational
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complexity of the reciprocal-space sum, is to solve Poisson’s Equation on a grid (re-
quiring the interpolation of the charges to the grid points), by using the very efficient
Fast Fourier Transform routines (FFT) [103]. This is the Particle Mesh Ewald (PME)
method [20].

4.4 Application to a Bottom-Up Approach for Deriv-
ing Classical Potentials

4.4.1 Introduction

We have seen that within a Born-Oppenheimer description, the nuclei can be considered
as classical particles which evolve on a potential energy surface due to the presence of the
electrons. There are two possible approaches to the problem of determining this potential
energy contribution: (1) we either attempt to compute it directly, from knowledge of
the electron density; or (2) we ignore the electron degrees of freedom altogether, and
assume some ad-hoc form for the ion-ion potentials. The former is usually addressed by
adopting the DFT approach introduced above, and leads to Born-Oppenheimer or Car-
Parrinello Molecular Dynamics; while the latter is the basis of the molecular descriptions
used in classical Molecular Dynamics or Monte-Carlo simulations.

These classical interaction potentials are usually parametrized to reproduce some
combination of experimental results, such as enthalpic or structural properties of hy-
dration. However, this approach has several disadvantages. First, it is not always
possible to obtain reliable experimental data over the range of densities, temperatures,
and pressures one wishes to study. This is true for the calculation of condensed phase
polarizabilities, for which no experimental data is available, and for the thermodynamics
of actinoid salt solutions, for which experiments are very difficult to perform. Second,
the experimental data used for the fitting procedure very rarely gives direct information
on the microscopic properties of the system. This means that different parametriza-
tions can show the same level of experimental agreement with a given property, while
at the same time giving rise to vastly different microscopic behaviour. Additionally,
any agreement with respect to the other macroscopic properties (different from the ones
used in the fit) is completely fortuitous. Finally, the choice of what property is used in
the fitting is totally arbitrary; and the importance of said property to the physical and
chemical processes relevant to the system is usually secondary to the ease with which it
can be measured.

We use an alternative parametrization scheme which relies on the information ob-
tained from DFT calculations (in particular the MLWF) to compute, either directly or
by means of a fitting procedure, the main electronic contributions to the interaction
potentials for ions in water. This method, developed by Aguado et al. [5], has been
shown to give excellent results when applied to both molten salts and liquid water [91].
While this approach does not completely solve the difficulties enumerated above, and
actually introduces some new ones, it presents two important advantages. First, it re-
quires no experimental (fitting) data, all the required information is computed by a DFT
calculation beforehand. Second, it uses a microscopic approach that can be consistently
applied to most systems. Additionally, this method easily allows for further refinement,
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whether it be to include a more exact DFT calculation (to incorporate a more robust
exchange-correlation functional), or a more sophisticated classical potential (i.e. one
with quadrupolar interactions), and has relatively few “free” parameters.

We proceed by presenting a general framework that can be used to derive classical
potentials from it ab-initio simulations. Although the long term goal of this project is
to obtain polarizable potentials that can accurately describe the structural, thermody-
namic, and dynamic properties of divalent and trivalent radionuclides at the water/clay
interface, in this work we will focus mainly on the halide cations in bulk water. We have
decided not to attempt a new parametrization for water, as this would be beyond the
scope of our work, and have instead chosen to use the polarizable Dang-Chang water
model (DCW) [104]. This model has been developed to accurately describe the liq-
uid/vapour interface, and manages to reproduce the strong water polarization induced
by divalent cations. Although, as a first approximation, we are forced to consider the
cations as non-polarizable (which is reasonable given their small polarizabilities), it is
important to use a polarizable water model, in order to provide an accurate description
of liquid water at interfaces.

4.4.2 Describing Atomic Interactions Within a Classical Frame-
work

Classical potentials are usually divided into two classes, Bonded and Non-Bonded. The
former determine the interactions between intramolecular atoms, which include the
angle-bending, bond-stretching, and torsion potentials; the latter determine the inter-
molecular interactions, namely the charge-charge (Coulomb), Van der Waals, repulsion,
and polarization (induction) interactions. Since we consider only ions in aqueous solu-
tion, and we use a rigid-model for the water molecules, there will be no further mention
of bonded-potentials; any reference to a potential is understood to refer to the (non-
bonded) water-water, water-ion, or ion-ion interactions.

A general interaction potential between two arbitrary atoms can be written as

Vtotal = Vcharge + Vrepulsion + Vdispersion + Vpolarization (4.44)

where the first three components appearing on the right hand side of this equation are
pair-interaction potentials. The last component Vpolarization takes into account the many-
body effects through the inclusion of the polarization energy. We follow by giving a brief
description of each of the terms appearing in (4.44), we also specify the exact functional
form that we will be using for each of them.

• Charge-Charge

Vcharge =
∑
i<j

zizj
rij

(4.45)

The charge-charge interaction between particles is given by the usual Coulomb
potential between two point charges. Since the ion charges, which are the only
parameters, are fixed beforehand, this contribution to the potential is trivially
determined.
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• Repulsion

Vrepulsion =
∑
i<j

Bije−A
ijrij (4.46)

The repulsion interaction is a short-range potential due to the electrostatic re-
pulsion and the Pauli-exclusion principle of two electron clouds on neighbouring
atoms.

• Dispersion

Vdispersion = −
∑
i<j

[
f ij6 (rij)

Cij
6

(rij)6
+ f ij8 (rij)

Cij
8

(rij)8

]
(4.47)

The dispersion interaction arises from the (correlated) instantaneous density fluc-
tuations between two separated fragments of matter (the electron density cloud),
which give rise to an induced multipole - induced multipole attraction. As men-
tioned above, this contribution is not easily included within traditional DFT cal-
culations due to their non-local origin.

The so-called damping functions f ij6 (r) and f ij8 (r) are introduced in order to correct
the spurious short-range divergence of the dispersion potentials ' 1/r6, 1/r8. The
functional form of these functions is that proposed by Tang-Toennies

f ijn (rij) = 1− eb
ij
Drij

n∑
k=0

(bijDrij)
k

k!
, n = 6, 8 (4.48)

The parameter bijD determines the distance over which the dispersion interaction
will be damped, with the dispersion potential assuming its asymptotic value for
r > 1/bijD.

• Polarization

Vpolarization =
∑
i<j

[
gijI (rij)Tchg-dip

ij · (ziµj − zjµi)− µi · Tdip-dip
ij · µj

]
(4.49)

+
∑
i

1

2αi
µ2
j

The polarization (induction) potential is used to describe the distortions, caused
by the electric fields, on the electronic density distribution around a given atom.
These changes will induce multipole moments that will interact with the charges
and multipoles of the remaining ions. Here we consider only the charge - dipole
and dipole - dipole interactions. The addition of the last term, with respect to
the potential energy given in Eq. (4.39), is due to the presence of the induced
dipoles and represents the cost of deforming the electron shell (before we considered
only permanent dipoles). The damping functions for these multipole interactions
gijI (rij) take the form

gijI (rij) = 1− cijI e
−bijI rij

4∑
k=0

(bijI rij)
k

k!
(4.50)
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Our potential differs from the so-called Lennard-Jones or 12− 6 potential which are
commonly used

V LJ
ij (r) = 4ε

[(
σij
rij

)12

−
(
σij
r

6
)]
' Vrepulsion + Vdispersion (4.51)

since we allow for higher order dispersion interactions and we explicitly take into account
the many-body polarization effects. The average effect of these missing terms can be in-
cluded (implicitly) within the LJ potentials by artificially increasing the (C6) dispersion
interaction, or by modifying the charge distribution (in the case of molecules) to take
into account the induced dipoles. As they are, by far, the most popular potentials, we
give a brief description of their relevant parameters. The distance parameter σij speci-
fies the separation at which the potential is zero, and thus gives a measure of the size of
the Lennard-Jones particles. The energy parameter ε gives the depth of the well at the
minimum, which appears at a distance of rm = 21/6σ. Although this potential includes
the correct asymptotic form for the 1/r6 dispersion interaction, there is no physical jus-
tification for the 1/r12 form given to the repulsion10. By adopting a physically relevant
functional form (4.44) for the various potential energy contributions, we can be certain
that (in principle) they can be rigorously derived from ab-initio calculations.

4.4.3 The Procedure

Wavefunction Optimization

Wavefunction Localization

φwi , µ
DFT
i , Cij

6 , C
ij
8

φi, F
DFT

Evaluate Classical Potentials

FMD, µMD
i

Check Convergence∑
i |FDFT

i − FMD
i | < εF∑

i |µDFT
i − µMD

i | < εµ

Start End
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Ab-Initio Computation Classical Computation

Ê
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Ì

Í

Î

Ï

Parametrize Potentials

Aij, Bij, bijD, b
ij
I , c

ij
I

Figure 4.4: Schematic representation of the method used to derive the ion-water inter-
action parameters. The actual force-fitting scheme corresponds to the right-hand side
of the diagram, the left-hand side being the necessary preliminary calculations.

10The historical reason for why this choice was so widely adopted is quite simple: Not so long ago,
when the first computer simulations were being performed, processing resources were very expensive,
and it was much more efficient to compute a power of 12 = 6 × 2, than to consider any other power,
much less a more realistic exponential form for the repulsion
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Water-Ion Interactions
The “input” required for our force-fitting procedure is a previously generated MD trajec-
tory of a single in solution, basically a series of snapshots for the positions of the ion and
water molecules. This trajectory can be generated using ab-initio MD or classical MD
(with an already existing force-field), what matters is that the configurations provide an
adequate sampling of the water structure around the ion. The first step is to compute
the ab-initio forces FDFT on all the atoms (molecules), for the entire trajectory, through
a DFT wavefunction optimization. The second step, which also involves a DFT calcu-
lation, is to compute the corresponding Wannier Orbitals. This allows us to obtain the
ion-water dispersion parameters Cij

6 and Cij
8 , as well as the molecular dipoles µI and

the αI polarizabilities (see previous section) for all the species in our system. Once this
is done, we have all the ab-initio data required for the force-matching scheme11. The
remaining potential parameters, for the repulsion and induction terms, are considered
as free (adjustable) and used to minimize the error functions χ2 for the forces and the
dipoles. These functions take the form

χ2
F =

1

NframesNmolecules

Nframes∑
i=1

Nmolecules∑
j=1

∑
α=x,y,z

(FDFT
j,α (i∆t)− FMD

j,α (i∆t))2∣∣FDFT
j (i∆t)

∣∣2 (4.52)

where F can just as well represent the forces or the dipoles. The total error function to
be minimized is then taken to be

χ2
total = γion-frcχ

2
ion-frc + γion-dipχ

2
ion-dip + γwat-dipχ

2
wat-dip (4.53)

where the weights for each of the terms are chosen such that
∑

X γX = 1. The three
terms in the error function correspond to the three distinct families of fitting parameters
available: the water – ion repulsion (aij and Bij), and the ion (dipole) – water (charge)
and water (dipole) – ion (charge) induction (cijD and bijD). This minimization procedure
is represented on the right half Figure 4.4. An initial parametrization of the potentials is
performed (step 3), and the classical forces and dipoles are then computed for the whole
trajectory (step 4). Finally, we compare the “proposed” MD values with the reference
DFT calculations (step 5). If the difference between the two is small enough (if the error
function has been minimized) we stop the procedure (step 6); otherwise, we start over
again, by reparametrizing the potentials (step 3).

Ion-Ion Interactions
The ion-ion interaction parameters are derived in the same manner as above, only now
we consider a crystalline salt system (cation + anion), instead of an ion in solution. How-
ever, the fitted potentials must not only provide accurate (classical) approximations to
the ab-initio forces and dipoles, but they must also give the correct crystalline struc-
ture and density. The work presented in this chapter was carried out in collaboration
with Sami Tazi, who focused mainly on the divalent cations and who performed all the
ion-ion parametrizations. We kindly thank him for allowing us to include unpublished
results in this work.

11We note that this separation is purely conceptual, steps 1 and 2 can be carried out almost simul-
taneously, since most codes DFT codes perform the calculation of the forces and the Wannier orbitals
directly
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4.5 Results

4.5.1 Polarizabilities of Ions in Solution

The polarizabilities for a series of monatomic cations (Li+, Na+, K+, Rb+, and Cs+)
and anions (F−, Cl−, Br−, and I−) were computed using the CPMD package [105], as
described above (Section 4.2). The intensity of the applied external field was set to a
value of 0.001 a.u. The gradient-corrected BLYP functional [68, 69] was used for all the
ions except Rb+, for which a PBE functional [70] was used instead. The pseudopotentials
were those of Troullier-Martins (Cl−, Br−, K+, and Cs+) and Goedecker-Teter-Hutter
(I−, Na+, and Rb+). A plane-wave basis set with an energy cutoff of at least 70 Ryd
was used in all cases. A recent study [106] comparing the dipole polarizabilities of
small water clusters (n = 2−12) obtained from DFT calculations, using various density
functionals, has shown that hybrid functionals provide more accurate results (when
compared to coupled-cluster calculations). However, the use of such functionals for the
condensed-phase systems we consider here is prohibitively costly. We must thus expect
(and accept) errors of a few percent in our calculated values.

The configurations have been extracted from classical molecular dynamics simula-
tions performed in the NV T ensemble, with a time step of 1 fs., at a temperature of
T = 300K, using a Berendsen thermostat with a coupling constant of τ = 0.1 ps. The
simulations were performed using the Tinker code [107]. The volume was determined
by a previous simulation, of the same system, in the NPT ensemble. In all cases, a pe-
riodically replicated cubic simulation box, with one ion, and at least 31 water molecules,
was used. The ions were described using the nonpolarizable LJ potentials of Dang and
coworkers [108, 109, 110], while the water molecules where represented by the rigid
nonpolarizable SPC/E model [111]. Simulations of 1 ns were performed, with the first
0.5 ns being discarded for equilibration purposes. Configurations (snapshots) were then
saved every 1000 steps (1 ps) to generate the actual trajectory (500 total frames) used
to compute the polarizabilities.

(a) Alkaline ions. (b) Halide ions.

Figure 4.5: Distribution of the isotropic polarizabilities α = 1
3
Tr(α) of monovalent ions

in water.

The polarizability tensor α for all the ions was observed to be isotropic, containing
off diagonal elements equal to 0. The distributions for α = 1

3
Trα are given in Figure 4.5.

The average isotropic polarizability for each species has been computed using these
distributions; the results are summarized in Table 4.1, where the values for commonly
used force fields, obtained empirically [112] or by fitting to ab-initio data [113, 114, 115,



CHAPTER 4. ION-SPECIFIC EFFECTS FROM AB-INITIO DESCR. 85

(a) Alkaline ions. (b) Halide ions.

Figure 4.6: Distribution of the isotropic molecular polarizability α = 1
3
Tr(α) of water

in the presence of monovalent ions.

116], are reproduced. Our theoretical predictions are in remarkably good agreement with
the fitted values used in these force-fields. This is especially true for the cations, while
some small discrepancies are observed in the case of the anion polarizabilities, especially
for F− and Br−. The results obtained for the molecular polarizability of water are shown
in Figure 4.6. The experimental value of α = 1.45 Å3 is recovered, and the effects of
the ion are seen to be negligible (this is to be expected since the salt concentration is so
low).

As far as we know, the only previous attempts of calculating the polarizabilities
of ions in solution have focused solely on the nitrate [117], sulfate [118], and chlo-
ride ions [119]. Therefore, we can only compare our results with the latter. In this
study [119], a point charge representation of the static charge distribution of solvating
water molecules was used to calculate the electrostatic contribution to the confining
potential felt by the ions. In a first attempt, using an SPC/E water model, the au-
thors obtained a polarizability of around 4.2 Å3. To improve these results, Jungwirth
and Tobias proceeded to refine the water charge distribution, by performing a Wannier
localization procedure. This led them to use net charges of +6, +1, and −2 on the
positions of the oxygen atoms, hydrogen atoms, and Wannier centers [78, 120], respec-
tively. This second attempt lead to a polarizability of 3.9 Å3, which is still higher than
our proposed value of 3.4 Å3 for several reasons. First, and perhaps most importantly,
is the lack of statistics, since they have used only five snapshots. Second, their partial
charge model, derived from the Wannier localization procedure, may be too simple; in
which case, higher order multipoles should be used to obtain a better representation of
the electrostatic potential [121]. Finally, these calculations have not taken into account
the multipole-induced dipole (polarization) contributions.

The importance of environmental effects on the polarizabilities of ions in solution
can be easily quantified by comparing our results, for the condensed phase, with the
gas phase isotropic polarizabilites [122, 123], (also reported in Table 4.1). These effects,
which are known to play an important role for anions in ionic crystals and liquids [129,
130], are due to the existence of a confining potential. This potential arises from the
Coulombic repulsion and exclusion between the electron density of the ion and those of
the first neighbour solvation shell [131]. This effect is observed to be most important
in the case of anions: the polarizability of the fluoride anion in solution is reduced by
as much as 47% with respect to its gas value. Although this difference becomes less
pronounced for the “bigger” ions, the value for the iodide anion is still reduced by 27%.
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Ion This work(∗) SWM4-NDP(a) Amoeba(b) DC97(c) Gas phase
Cl− 3.5 3.969 4.000 3.690 5.482
Br− 4.6 5.262 5.650 4.770 7.268
I− 7.0 7.439 7.250 6.920 10.275
Li+ 0.029 0.032 0.028 0.029 0.032
Na+ 0.18 0.157 0.120 0.240 0.157
K+ 0.81 0.830 0.780 0.830 0.830
Rb+ 1.32 1.370 1.350 − 1.370
Cs+ 2.02 2.360 2.260 2.440 2.360

Table 4.1: Average values of the isotropic polarizability < ᾱ > of monatomic ions. All
values are in Å3. Also reported are the values employed in common force fields and
the gas-phase polarizabilities [122, 123]. ((a): Reference [124], (b): provided in the
TINKER molecular modeling simulation package [107] for Amoeba [113, 114, 115], (c):
From DC97 [125, 104, 126, 127] force fields). (∗) We note that Ref. [128] contains a
typo which erroneously assigns a polarizability of 7.5 Å3 to Li+.

In the case of cations, no discernible effect is observed, except for Cs+, which is by far
the most polarizable one.

The variation of the polarizabilities of F−, Cl−, and Br− ions in water clusters, with
respect to their gas phase values, has been the object of a recent study by Bauer et
al. [132] Their method is based on a Hirshfeld partitioning of the electron density [133],
which is obtained by ab-initio calculations at the B3LYP level of theory. However,
the strong basis set dependence, as well as the small system size, and the fact that
the induced dipole-induced dipole contributions are not explicitly taken into account,
makes it difficult to establish a clear comparison with the values we have obtained for
bulk systems. This notwithstanding, their results are in good agreement with ours, as
they have also shown a significant reduction of the polarizability of halide ions upon
solvation by water molecules.

4.5.2 A New Force-Field for Ions in Solution

Ab -Initio Derived Potential Parameters

Ion-Water

We have parametrized the ion-water force fields for a series of alkali cations (Li+,
Na+, K+, Rb+, and Cs+) in solution. As mentioned above, since one of the interests
of this work is to develop potentials that will eventually be used to study the specific
effects of ions at interfaces, we are forced to use a polarizable water model, for which
we have chosen the one provided by Dang and Chang (DCW) [104]. This is a four site
polarizable water model, which assigns fixed charges to the Hydrogen atoms (HW) and
to a fictitious polarizable point (MW) located on the bisector of the H-O-H angle, at a
distance of 0.215 Å from the Oxygen atom (OW). Lennard-Jones parameters are only
assigned to the oxygen atoms. Since we adopt a different water model, we do not use
the trajectories previously employed to derive the ion polarizabilities. An alternative set
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Figure 4.7: Comparison between the ab-initio (DFT) and the fitted (MD) forces felt
by a single RB+ ion in water, over a sample trajectory of 100 configurations (frames).
The forces are given in atomic units Eh/a0, where Eh is the Hartree energy.

of trajectories is generated using exactly the same procedure as before, only now we use
polarizable potentials for both the ions and the water molecules. The Na+ parameters
were taken from Ref. [134], those for K+ and Cs+ from Ref. [135], and those for Li+ and
Rb+ from Ref. [108] and [124], respectively.

Ion distance (a0) spread (a0)
Li+ 0.0012 0.682
Na+ 0.416 0.857
K+ 0.680 1.333
Rb+ 0.799 1.566
Cs+ 0.971 1.854

Table 4.2: Average distance and spreads of the (ionic) Wannier Orbitals.

The DFT calculations are exactly the same as those used above to derive the polar-
izabilites, although in this case no external field calculations are required. In this way
we are able to obtain the forces and the Wannier orbitals for the entire trajectory. The
average spread and distance of the Wannier orbitals (from their parent atom) are given
in Table 4.2. From the localization procedure we can immediately derive the ion-water
dispersion interaction parameters Cij

6 and Cij
8 , as detailed above, for which we have

used a program written by Benjamin Rotenberg, which he was kind enough to supply.
The remaining (repulsion and induction) parameters are obtained from the force-fitting
procedure using the MINUIT minimization library [136].

Our initial results showed a very large error value for the ion-dipole error function
χ2
ion−dip ' 1 in the case of cations. We were unable to reproduce the induced dipoles on

the ions by fitting the damping parameters for the (ion) dipole - (water) charge inter-
actions. We believe this is due to the relatively low values of the induced dipoles on the
cations, which is a consequence of their small polarizability. Therefore, we have chosen
not to represent the cations as polarizable species. Fortunately, this does not seem to
have a negative impact on our final results, as we are able to accurately reproduce the
(ab-initio DFT) forces on the ions. With this simplification of non-polarizable cations,
our fitting procedure contains only four free parameters: the ion - water (oxygen) repul-
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Figure 4.8: Comparison between the ab-initio (DFT) and the fitted (MD) forces and
dipoles of an individual water molecule, over a sample trajectory of 100 configurations
(frames). The forces and dipoles are given in atomic units, Eh/a0 and ea0, respectively.

sion parameters Aij and Bij and the water (dipole) - ion (charge) damping parameters
cijI and bijI . Since the DFT forces do not include the dispersion contributions, the fitting
procedure does not allow for the parametrization of the dispersion damping parameters
bijD. We have thus taken the same value for all the ions bijD = 3.0 a0, except for Cs+, for
which we have used a lower value bijD = 1.8 a0. These values were transferred from a
separate parametrization of the ion-ion potentials designed to reproduce the crystalline
structure of the chloride compounds. We thus assume that the effective size of the
cation’s electron density does not vary considerably upon solvation. This is supported
by the small difference in ion polarizability between the gas and liquid phases described
above.

The actual error function minimized is then given by Equation (4.53) with γ1 =
γ3 = 0.5 and γ2 = 0. The final parameters for our proposed ion-water potentials are
summarized in Table 4.3. Although the exact values obtained from the minimization
will depend on the weights γX , this dependence will be very small, since there is a
difference of two orders of magnitude between the error functions for the ion forces and
the water dipoles. As long as the relative weights are of the same order of magnitude
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we have χ2
total ' χ2

ion-frc. An illustration of the type of agreement that can be achieved is
given in Figure 4.7 for the case Rb+, where the fitted (MD) forces are compared to the
reference (DFT) values. Figure 4.8 shows the corresponding comparison for the forces
and dipoles of a single water molecule for this same system (Rb+ in water). The dipoles
are seen to be in very good agreement, while a considerable difference is observed for
the force felt by the water molecule. This disagreement is a consequence of the missing
dispersion interactions in the DFT calculations. Note that we have not attempted
to fit the forces on the water molecules, but only their dipoles (through the water-ion
polarization damping). Finally, we note that there was no observable difference between
“hydration” and “bulk” waters: fitting the dipole of the water molecules inside the ion’s
first hydration sphere gave essentially the same result as using all the water molecules.
A plot of the ion-water repulsion potential is presented in Figure 4.9.

Ion Aij × 10−2 (a) Bij (b) C
ij
6 × 10−1 (c) C

ij
8 × 10−2 (d) b

ij (b)
I

c
ij
I

χ2
ion-force χ2

wat-dip × 102

Li+ 0.247 4.094 0.050 0.016 4.010 2.950 0.156 0.176

Na+ 7.111 5.061 0.013 0.001 1.562 0.683 0.225 0.800

K+ 1.256 3.734 3.429 1.960 1.314 0.462 0.111 0.279

Rb+ 1.578 3.656 5.580 3.687 1.248 0.476 0.102 0.235

Cs+ 2.694 3.635 9.291 7.553 2.524 2.950 0.228 0.300

Table 4.3: Parameters for the ion-water interactions obtained using our parametrization
method, as well as the minimized error functions χ2 ((a) : Eh, (b) : Å−1, (c) : Å6, (d) : Å8).
The repulsion and dispersion parameters correspond to the ion - oxygen interactions,
while the damping parameters are for the water (dipole) - ion (charge) interactions.
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Figure 4.9: Ion-water repulsion potential obtained from the fit to the ab-initio forces.

Ion-Ion
The ion-ion parameters for the cations considered above where obtained by considering
the series of chloride crystalline compounds. These parametrization where performed
by Sami Tazi, and should be published soon; we include his results in order to provide
a complete set of force-fields for chloride salts in solution. The chloride-water potential
parameters are given in Table 4.4, and the ion-ion parameters in Table 4.5.
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Aij × 10−2 Bij C
ij
6 × 10−1 C

ij
8 × 10−2 b

ij
I

c
ij
I

Cl−-OW 4.996 3.559 9.285 6.986 − −
Cl−-HW − − − − 4.793 1.093

Cl−-MW − − − − 2.444 −1.900

Table 4.4: Parameters for the chloride-water interactions. The units are the same as in
Table 4.3. The damping parameters (bijI and cijI ) correspond to the ion (dipole) - water
(charge) interactions. There is no need to damp the water dipoles in this case.

System Ion Pair Aij × 10−2 Bij C
ij
6 × 10−1 C

ij
8 × 10−2 b

ij
d

b
ij
I

c
ij
I

Li+-Li+ 4.818 6.958 0.001 ' 0 6.958 − −
Li-Cl Li+-Cl− 0.155 3.000 0.108 0.041 3.000 3.128 1.4326

Cl−-Cl− 6.984 3.777 27.095 20.901 1.65 − −
Na+-Na+ ' 0 4.964 0.132 0.022 4.9648 − −

Na-Cl Na+-Cl− 0.444 3.000 1.353 0.615 3.000 2.7746 2.0398

Cl−-Cl− 6.983 3.776 27.095 20.901 1.65 − −
K+-K+ 1.747 4.9989 3.266 1.506 4.9989 − −

K-Cl K+-Cl− 0.829 3.000 0.898 5.443 3.000 1.2816 0.90587

Cl−-Cl− 6.983 3.7767 27.095 20.901 1.65 − −
Rb+-Rb+ ' 0 3.4849 10.180 6.355 3.4849 − −

Rb-Cl Rb+-Cl− 1.079 3.000 17.100 11.748 3.000 1.46 0.98248

Cl−-Cl− 6.983 3.7767 27.095 20.901 1.65 − −
Cs+-Cs+ 3.529 3.7819 33.360 30.322 3.7819 − −

Cs-Cl Cs+-Cl− 1.501 3.000 33.420 27.578 1.8 1.541 0.46651

Cl−-Cl− 6.983 3.776 27.095 20.901 1.65 − −

Table 4.5: Ion-Ion potentials parameters. The units are the same as in Table 4.3. The
damping parameters (bijI and cijI ) correspond to the chloride (dipole) - cation (charge)
interactions.

Validation of the Method

In order to test the force-fields we have developed, we proceed to compare various struc-
tural, thermodynamic, and dynamic properties with the corresponding values obtained
from experiments. To this end, additional MD simulations have been performed. All
the systems consist of one ion and 215 water molecules (DCW), in a periodically repli-
cated cubic simulations box L = 18.65 Å. The total simulation time was 3 ns, with
0.25 ns of equilibration. A Nosé-Hoover chain of length three, with a time constant of
1 ns, was used as a thermostat at T = 298.15 K. The electrostatic interactions were
computed using a dipolar Ewald sum. An Ewald convergence parameter of α = 0.3646
was used, with 17 total grid point in each direction, and a real-space cutoff equal to
L/2. A tolerance of 1 × 10−7 was used to obtain the self-consistent dipole moments.
The simulations were performed using the CP2K simulation package [137]. The ion-water
radial distribution functions are given in Figure 4.10. The distance to the first peak in
the gij(r), as well as the coordination number, are summarized in Table 4.6, where the
corresponding experimental values are also given. The agreement of our results with
experiments is seen to be excellent, considering the large errors reported for the latter.

The infinite dilution diffusion coefficients for the ions are obtained from the particle’s
mean-squared displacement, using the well-known Einstein relation (see Section 3.1.5).
A plot of 〈r2〉 as a function of time is given in Figure 4.11. As this is a single ion
property, it is very slow to converge and relatively long rung are needed. The statistical
errors were computed using block averages, with a (optimal) block length of 256 (see
AppendixB). The onset of the linear regime appears around t ' 2 ns in all cases, and
although the statistical errors increase considerably with time, a weighted least-squares
fit is seen to correspond very well with the measured data. These values give the same
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Figure 4.10: Ion-Water radial distribution functions obtained from simulations of a
single ion with 215 water molecules.

Ion rpeak Ncoord

Li+ 1.96(1.90− 2.25) 4(4)
Na+ 2.41(2.41− 2.5) 5.9(4− 8)
K+ 2.74(2.60− 2.92) 7.2(4− 8)
Rb+ 2.88(−) 7.5(−)
Cs+ 3.2(2.95− 3.15) 9.6(−)

Table 4.6: Distance to the first peak and coordination number obtained from the ion-
water radial distribution functions (Figure 4.10). Experimental values, where available,
are provided in parenthesis.

results, within error bars, to those obtained from the integral of the velocity auto-
correlation function (not shown). The final results for D0 were computed by averaging
the values obtained from the mean-squared displacements in the x, y, and z directions
, as they each provide an independent measure of the diffusion coefficient. These values
are given in Table 4.7. It was recently noticed that when computing diffusion coefficients
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series of cations using our force field parameters. The circles represent the simulation
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in systems with periodic boundary conditions, a considerable dependence on the system
size is observed [138, 139]. In order to correct for the hydrodynamic self-interaction at
the origin of this size-dependence, a 1/L correction must be added to the simulation
results, effectively extrapolating to an infinite system size

D0 = D0PBC + 2.837297kBT/(6πηL) (4.54)

where η is the shear viscosity of the solvent. For the systems we have considered,
L = 18.65Å and T = 298.15 K, the correction is of the order of ' 0.44. This amounts
to roughly 50% of the value of the uncorrected diffusion coefficient for Li+, and 20% for
water, which shows how important it is to take this effect into account. Since neither
the diffusion coefficient DDCW

0 = 2.74 × 10−9m/s nor the viscosity η = 7.4 × 10−4Pa.s
of our water model correspond to the experimental values (Dwater

0 = 2.3 × 10−9m/s
and ηwater = 8.9 × 10−4Pa.s), it makes little sense to compare our results directly with
experiments. Instead, it is more instructive to compare the ratio of ion/water diffusion
coefficients (with the appropriate system-size correction), since it provides a measure of
how fast the ion moves with respect to the solvent. These ratios are also provided in
Table 4.7.

Ion Dion
0PBC

(10−9m2/s) (Dion
0 /Dwater

0 ) (Dion
0 /Dwater

0 )EXP

Li+ 0.90(4) 0.48(1) 0.44
Na+ 1.04(1) 0.54(1) 0.57
K+ 1.7(1) 0.78(3) 0.84
Rb+ 1.6(1) 0.74(3) 0.89
Cs+ 1.8(1) 0.81(3) 0.89

Table 4.7: Infinite dilution diffusion coefficients obtained from molecular dynamics
simulations under periodic boundary conditions. The ratio of ion/water diffusion co-
efficients (with the appropriate system-size correction) is also shown, along with the
corresponding experimental values.

Finally, to test the thermodynamic properties given by our potentials, we have also
measured the relative hydration free energy ∆∆F among adjacent cations in the series
of alkalines Li+→ Na+, Na+→K+, K+→Rb+, and Rb+→Cs+ as well the change in the
free energy of hydration between Li+ and Cs+. Computationally, it is more convenient
to measure these relative free energies, since we need not worry about the numerous cor-
rections [140, 141] (for system size, boundary conditions, and treatment of electrostatic
interactions) that need to be included when comparing the solvation free energies ∆F
to experiments. We can safely assume that the correction term is the same for all the
cations, and is thus canceled out when computing the difference between the energies
∆∆F . The measurements were carried out using the standard λ-coupling parameter
techniques (see Section 3.1.4). A 6-point Gaussian quadrature was used to perform the
integration12. The data needed for each point in the quadrature was obtained from
separate (NV T ) MD simulations of 0.3 ns, with 0.25 ns of equilibration (the simulation
protocol is the same as before). Since experiments are performed at constant temper-
ature and pressure, we only have the reference values for the change in the Gibbs free

12For the Li+→Cs+ transmutation, an 8-point Gaussian quadrature was used instead
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energy of solvation ∆∆G; however, we can effectively ignore the volume term13 and
consider that ∆∆G = ∆∆F . Our results, which are summarized in Table 4.8, show
good quantitative agreement with experiments, except for the transmutations involving
K+, which appear to bee too “close” to Na+ and too “far” from Rb+.

A+ −→ B+ ∆∆G (∆∆G)EXP

Li+ −→ Na+ 110 106
Na+−→ K+ 57 71
K+ −→ Rb+ 13 21
Rb+−→ Cs+ 32 25
Li+ −→ Cs+ 215 225

Table 4.8: The change in hydration free energies ∆∆F along the series of alkalines. All
values are given in kJ/mole.

4.6 Conclusions

In this chapter, we have shown how to implement a systematic procedure to derive
classical force-fields for ions in solutions, from purely ab-initio calculations. The method
relies primarily on the study of the MLWF. This representation presents a twofold
advantage: (1) The MLWF provide a localized description of the electronic density and
(2) they allow us to correct for the missing dispersion terms in a consistent manner.
We have shown how this method can be used to obtain dipole polarizabilites for ions
in condensed phases, for which there is no experimental data. Comparing our results
with the corresponding gas phase values, we appreciate the importance of properly
taking into account the environmental effects due to the solvent, as these can reduce the
polarizabilities of anions by up to 50 ∼ 70%. Remarkably, our predicted values are in
very good agreement with those used in most polarizable potentials, which have been
“adjusted” to reproduce the experimental data that is available. Although we have only
presented the results of monovalent ions in this work, the method can just as easily be
applied to multivalent or molecular ions [128].

Using the dispersion corrected DFT results, a simple-force matching procedure was
then used to determine the best possible classical force-fields. Although we cannot claim
perfect quantitative agreement with experiments (obviously), we nonetheless manage to
obtain results, for a variety of equilibrium and dynamical properties, which are in good
agreement with the experimental values (in some cases very good agreement) and which
reproduce the expected ion specific behaviour. The main advantage of our method, is
the fact that it does not require any type of (experimental) input data: All the necessary
parameters are obtained from ab-initio calculations. Furthermore, the method is easily
generalized and improved upon; whether it be to include a new and improved exchange-
correlation functional or to consider higher-order multipole moments.

13The basic thermodynamic relation between the potentials gives G = F +PV (∆G = ∆F +P∆V ),
and since P∆V << ∆F , and the change in volume is expected to be roughly the same among the
cations (∆∆V h 0), we can safely assume that ∆∆G = ∆∆F .
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5.1 Introduction

In the previous chapter we have seen how to derive atomic scale interaction potentials
for ions in solution directly from ab-initio calculations. Once these potentials are known,
explicit solvent Molecular Dynamics simulations can be performed to study the ion spe-
cific properties. This method provides a convenient approach to the study of electrolytes
in bulk and at interfaces, since the microscopic properties of the system are directly ac-
cessible. In particular, the solvent-ion properties, such as the free-energies of solvation
or the self-diffusion coefficients can be easily calculated, as we have shown. However,
the ion-ion properties, such as the ion activities or osmotic coefficients, are notoriously
difficult to obtain. This is due to the separation between the characteristic length and
time scales of the “fast” water molecules and the “slow” ions. A simulation that properly
accounts for both of these regimes must use a time step that is small enough to probe
the fast water dynamics, which makes the calculation of the ion properties very time
consuming.

94
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Figure 5.1: The second step in the multi-scale description of electrolyte solutions: De-
riving implicit solvent models from classical molecular dynamics simulations of explicit
solvent solutions.

Fortunately, the McMillan-Mayer theory of electrolyte solutions allows us to safely
ignore the solvent degrees of freedom, and to focus our attention solely on the ions. In-
stead of using an explicit solvent (atomistic) description, we can use an implicit solvent
model, that of a solute gas, whose interactions are determined by the McMillan-Mayer
effective potentials. These effective particles move within a dielectric continuum, which
takes the place of the solvent. Computing the properties of this reduced system is
evidently much easier. Here we will only consider the equilibrium thermodynamic prop-
erties of electrolyte solutions, and in particular the osmotic coefficients φ. This collective
property is very sensitive to the type of salt used, and is therefore a prime candidate to
characterize the ion-specificity. Furthermore, as experimental data for this quantity is
usually easy to obtain (at least for simple systems), it serves as a stringent benchmark
during force-field development.

In this chapter we present the second step in our multi-scale description, by deriving
effective (implicit solvent) interaction potentials for ions in solution from MD simula-
tions of the explicit solvent system. These effective potentials will then be used to carry
out Monte-Carlo simulations that will allow us to easily measure the thermodynamic
properties our system, notable the free energy and the osmotic coefficients. Finally,
we show the results obtained from this coarse graining procedure on two types of sys-
tems, alkaline salts (simple 1 − 1 electrolytes) and lanthanoid salts (strongly charged
asymmetric 3 − 1 electrolytes), and compare our results with available experimental
data.
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5.2 McMillan-Mayer Ion-Ion Potentials

5.2.1 Computing the Effective Interactions

The Closure

Although the McMillan-Mayer theory is rigorously exact, it is seldom used directly, as it
relies on the knowledge of the n-body potentials of mean force (PMF). To say that this
is impractical is a gross understatement. In order to render the simulations feasible, we
introduce two approximations for the PMF. First, we assume that three-body and higher
order contributions can be neglected, rendering the potentials pairwise additive. Second,
in order to avoid the substantial computational effort required to measure the infinite
dilution PMF [142], we use an approximate inversion scheme to obtain the potentials
from radial distribution functions measured in finite concentration simulations.

Normally, one knows the interaction potentials, and uses simulations or one of the
many integral equations to study the thermodynamic and structural properties of the
system. In this case, we are faced with the inverse problem. Namely, that of inverting
the radial distribution function gij(r), in order to obtain a two-body potential vij(r)
which accurately reproduces the measured structure. The existence and uniqueness of
such a potential is guaranteed by a theorem due to Chayes and Chayes [143, 144], but the
inversion procedure is left unspecified. Methods based on integral equation theories [145,
146], inverse Monte Carlo simulations [147], and Maximum Entropy principles [148] have
been employed to study a wide variety of systems, with varying degrees of success. If
this inversion is carried out at a sufficiently low concentration, we can assume that n-
body effects are negligible, and this effective pair potential will be equal to the infinite
dilution PMF.

Due to its simplicity, and the accuracy with which it describes electrolyte solutions,
we use the HNC approximation (Eqs. 3.48 and 3.53), together with the Ornstein-Zernicke
relation (Eq. 3.44), to perform the inversion. For a multi-component system, the HNC
closure is given by

βvij(r) = hij(r)− cij(r)− ln [hij + 1] (5.1)

and the Ornstein-Zernicke by Eq. (3.46)

hij(rij) = cij(rij) +
∑
k

∫
drk cik(rik)ρkhkj(rkj) (5.2a)

which, in Fourier space, is written as

h̃ij(k) = c̃ij(k) +
∑
k

c̃ik(k)ρkh̃kj(k) (5.2b)

Notice that only the pair correlation function hij(r) = gij(r) − 1 would need to be
computed during a simulation. Once these distribution functions are known, the two
equations can be directly solved for vij(r). However, the OZ equation requires that
the gij(r) be known over the whole range of inter-particle distances 0 < r < ∞, or
at least up to distances over which it has converged to its asymptotic value of zero.
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Unfortunately, the values of r over which the hij(r) can be measured are limited due
to the finite size of the simulation box L. Additionally, the long range nature of the
interaction potential makes it very difficult to obtain accurate measurements of gij(r) at
long distances. This is especially true for the cation-cation and anion-anion interactions,
which are dominated by the strong electrostatic repulsion.

Special care must be taken when extracting effective potentials from distribution
functions, since the latter depend on the ensemble in which they are measured, and the
OZ relation, as given in Eq. (5.2), is only valid in the grand-canonical ensemble [21]. Ex-
act relations for the corrections which need to be applied to canonical radial distribution
functions exist, but they involve the isothermal compressibility of the solution, as well
as the partial molar volumes of the solutes [18]. Lyubartsev and Marčelja [145] used the
(simpler) correction of a single-component system, in the strong coupling limit; while
Kalcher and Dzubiella [142] have fitted the large-r behaviour of the PMF to a Debye-
Hückel potential, in order to determine the correction factor. The procedure we use,
which fits the small-k values of the pair correlation functions provides a convenient alter-
native to the latter method. Furthermore, our procedure is exact, in the sense that the
Stillinger-Lovett conditions used in the fit are a consequence of the electro-neutrality and
the long-range behaviour of the direct correlation functions (which is just determined
by the charged nature of the system) [149].

Recovering the Asymptotic Coulomb Behaviour

In order to properly treat the long-range correlations, and unambiguously determine
the effective pair potentials vij(r), we use some exact results regarding the distribution
functions of charged systems. This allows us to extrapolate the measured hij(r) at
long distances, in such a way that the asymptotic value of the effective (Coulomb)
potential is recovered. For ionic liquids, the Stillinger-Lovett conditions establish two
exact relations, which the set of hij(r) must satisfy, regardless of the specific short-range
interactions among the particles [17]

ρN
∑
j

∫
dr xjzjgij(r) = −zi (5.3a)

ρN
∑
i

xizi
∑
j

xjzj

∫
dr r2gij(r) = −6Λ2

D

∑
i

xiz
2
i (5.3b)

where ρN =
∑

i ρi is the total number density, xi = ρi/ρN is the density fraction of
species i, and ΛD is the Debye screening length, which depends on the dielectric constant
of the solvent (Equation (3.91)). Notice that the first equation is just a consequence of
the electro-neutrality of the system. Again, as with the OZ equation, these two relations
are easier to work with in Fourier space

ρN
∑
j

xjzjh̃ij(k = 0) = −zi (5.4a)

ρN
∑
i

xizi
∑
j

xjzj

(
∇2
kh̃ij(k)

)∣∣∣
k=0

= 6Λ2
D

∑
i

xiz
2
i (5.4b)

where ∇2
k is the Laplacian with respect to the wave-vector k. The second of these

equations is easily derived from the properties of the Fourier transform: The Laplacian
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∇2
k gives a factor of −r2, and by evaluating the resulting expression at k = 0, we obtain

an equation analogous to Eq.(5.3), but for hij(r) instead of gij(r) = hij(r) + 1. The
missing (divergent) terms (∼

∫
drr2) can be safely introduced, since electro-neutrality

guarantees that the sum of these contributions is exactly zero (
∑

i xizi = 0).

Our inversion procedure follows the one used in Ref [150]; it is based on the long-
wavelength (short wavenumber) asymptotic behaviour of h̃ij(k), given by Equation 5.4.
Expanding the distribution functions in even powers of k, at small k, we obtain

hmod
ij (k) = a

(0)
ij + a

(2)
ij k

2 + a
(4)
ij k

4 + a
(6)
ij k

6 + a
(8)
ij k

8 +O(k10) (5.5)

where the expansion coefficients a(n)
ij are related to the moments of order (2n + 1) of

hij(r)

a
(n)
ij = 4π

(−1)n

(2n+ 1)!

∫ ∞
0

dr hij(r)r2n+1

which are finite as long as the hij(r) decays sufficiently rapidly to 0 at large r. Insert-
ing Equation (5.5) into Equation (5.4), we obtain the following two relations for the
expansion coefficients a(0)

ij and a(2)
ij

ρN
∑
i

xizia
(0)
ij = −zi (5.6a)

ρN
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i

xizi
∑
j

a
(2)
ij = Λ2

D

∑
i

xiz
2
i (5.6b)

For the two-component systems considered here, these two relations reduce the number
of fitting parameters in Eq. (5.5) from 15 to 12.

When computing h̃ij(k), it is important to remove any discontinuities in the MD
generated hij(r), so as to minimize the numerical artifacts when using the Fast Fourier
Transform routines. Considering the fact that the long range values of hij(r) are also
not known with high accuracy, we have chosen to truncate the functions at the nodes
rc closest to L/2. If hmdij (r) represents the raw MD values, we set

h̃ij(k) =

{
h̃mod
ij (k) k ≤ k̃

h̃datij (k) k > k̃
(5.7a)

with

hdatij (r) =

{
hmd
ij (r) r < rc

0 r ≥ rc
(5.7b)

where h̃fitij (k) is obtained by fitting h̃datij (the FT of the truncated MD values) to the
functional form given in Eq (5.5). It is worth mentioning that for the systems considered
here, the change to hij(r) in real space, compared to the initial MD values, is negligible.
The actual h̃ij(k) used in the HNC inversion procedure (Eq. (5.1)) are those defined by
Eq. (5.7).
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The advantage of this method can be appreciated by inspecting the Bhatia-Thornton
structure factors [151, 17]

SNN(k) =
∑
i

∑
j

Sij(k) (5.8a)

SNZ(k) =
∑
i

∑
j

zjSij(k) (5.8b)

SZZ(k) =
∑
i

∑
j

zizjSij(k) (5.8c)

where Sij(k) = δij +
√
ρiρjh̃ij(k) is the partial structure factor of a multi-component

system. These functions, which give information on the density and concentration corre-
lations within the fluid, possess well-defined long-wavelength limits, which are indepen-
dent of the specific short-range potentials (i.e. they are a consequence of the long-range
Coulomb interactions). Specifically, at small k, we have SNN(k) ∼ k0, SNZ(k) ∼ k2,
and SZZ(k) ∼ k2, with SZZ > 0 for all values of k [17]. The inversion procedure we have
detailed above, in which we enforce the Stillinger-Lovett sum rules, gives modified pair
distribution functions h̃ij(k) which obey these asymptotic limits [152].

5.2.2 Short-Range Solvent Averaged Interactions

When dealing with charged systems, it is convenient to separate the interaction poten-
tials into a short-range and a long-range contribution

vij(r) = vlrij(r) + vsrij(r) (5.9)

with

βvij(r) =
LBzizj
r

such that at long distances we recover the expected Coulomb interaction vij(r) =
r−→∞

vlrij(r). The short-range contribution to the potential will contain the average solvent
effects. It is this term which gives the ion specific effects; in essence, all that is not
due to the charge of the ions. A corresponding separation can thus be performed for
the thermodynamic properties which depend only on the pair potentials, namely the
McMillan-Mayer energy

U = U sr + U lr (5.10)

U =

〈∑
i 6=j

vlrij

〉
+

〈∑
i 6=j

vsrij

〉
(5.11)

and osmotic coefficient, which are computed using the pressure-energy relation for ionic
systems [153]

φ = φsr +
βU lr

3N
(5.12)
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where the short range part is calculated using the virial equation [14]

φsr = 1− 1

6N

〈∑
i 6=j

rij
∂vsrij
∂rij

〉
(5.13)

Computationally, the only term that requires some care is the evaluation of the long
range energy U lr, but this is easily taken care of by using the standard Ewald summation
techniques (see Section 4.3.3).

5.2.3 Ion Association

For electrolyte solutions with high charges, or with low dielectric constants, the ions will
tend to form pairs which behave as a chemically distinct species. The degree (strength)
of this association, which determines the fraction of free and paired ions, is given by
a mass action law, characterized by an equilibrium association constant K. Since the
definition of a “pair” is completely arbitrary, the values for these constants cannot be
considered independently of the model used to derive them. This was pointed out
by Onsager, in discussing the Bjerrum association, when he said that “The distinction
between the free ions and associated pairs depends on an arbitrary convention . . . In a
complete theory this would not matter; what we remove from one page of the ledger
would be entered elsewhere with the same effect”. As long as we consistently use the
same criteria to evaluate the association of all our systems, we can safely talk about ion
pairs, and compare the relative strength of the “pairing” for the different systems. It is
important to keep this consideration in mind, since the 1− 1 electrolytes we study here
are not generally considered to be associated salts.

To characterize the degree of ion association, we employ the Bjerrum model, which
uses a distance criteria to define the pair as two ions within a distance d of each other.
At infinite dilution, the association constant K0 can then be expressed as [154]

K0(d) ≡ ρ3

ρ1ρ2

=

∫ d

0

dr 4πr2e−βv12(r) (5.14)

where the cations and anions are labelled as 1 and 2, respectively, and the pair as
species 3. Again, the choice of d is completely arbitrary. The expression which appears
in the integral (r2 exp (−βv(r))) essentially gives the conditional probability for observ-
ing the anion at a distance r from the cation (or vice versa). For purely Coulombic
potentials, this function will present a minimum at the crossover point between the de-
creasing Boltzmann factor (exp−βv(r)) and the increasing entropic term (r2). For more
complicated interactions, such as our McMillan-Mayer potentials, several local minima
will appear, but the overall behaviour remains the same. We will thus use this (first)
minimum in the integrand as the cutoff distance d1.

1This cutoff distance can also be defined as the inflexion point in integrated function K0(d).
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5.3 Results

5.3.1 Simple Electrolytes

We study the nine alkali-halide electrolyte solutions obtained from combinations of
Li+, Na+, and K+ cations with Cl−, Br−, and I− anions. Finite concentration (non-
polarizable) MD simulations are performed in order to compute the radial distribution
functions gij(r) needed to obtain the MM effective potentials. Once the potentials
are known, we use implicit solvent MC simulations to measure the thermodynamic
properties of the systems.

Simulation Details

ion/water σio (Å) εio (KJ mol−1) charge (e)
Cl− 3.785 0.5216 −1
Br− 3.854 0.5216 −1
I− 4.168 0.5216 −1
Li+ 2.337 0.6700 +1
Na+ 2.876 0.5216 +1
K+ 3.250 0.5216 +1

SPC/E σoo (Å) εoo(KJ mol−1) charge (e)
O(H2O) 3.169 0.6502 −0.8476
H(H2O) − − +0.4238

Table 5.1: Lennard-Jones force-field parameters used in molecular dynamics simula-
tions.

All the systems consist of 2000 water molecules and 24 ion pairs, within a periodically
replicated cubic simulation box, which corresponds to a salt concentration of c = ρN/2 '
0.6 M (1M = 1mol.L−1). The simulations are performed using the Tinker code [107]
within the NPT ensemble, at standard temperature T = 298.15 K and pressure P =
1 atm. We use the Berendsen thermostat and barostat [101], with a coupling constant
of 2 ps and 0.1 ps, respectively. The Beeman algorithm [20] is used to integrate the
equations of motion with a timestep of 1 fs. Electrostatic interactions are evaluated
using the particle mesh Ewald method [155], under tinfoil boundary conditions. The
rattle algorithm [95] is used to handle the molecular constraints on the water molecules.
A total of five simulations, each starting from a different random initial configuration, are
performed for all nine systems. The final “converged” results are obtained by averaging
the partial results measured during each of these five simulations; statistics are gathered
during a 0.6 ns simulation, after a 0.25 ns equilibration run. In practice, the only results
that are of interest to us, are the radial distribution functions gij(r) we use to extract
the effective pair interaction potentials vij(r).

We model the ions as non-polarizable charged Lennard-Jones (LJ) particles, and
the rigid non-polarizable SPC/E model [111] is used to represent the water molecules.
The LJ parameters, εij and σij, for the ion-water interactions are those of Dang and
coworkers [109, 156, 157], which are reported in Table 5.1. The ion-ion parameters are
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obtained using the usual Lorentz-Berthelot mixing rules

σij =
1

2
(σii + σjj) εij =

√
εiiεjj (5.15)

These force-field potentials have been extensively studied, both for ion thermodynamic
and dynamic properties [158, 158, 159], as well as for electrolyte structure and thermo-
dynamics [142, 160]. The gij(r) obtained from these simulations are shown in Figure 5.2
as a function of the cation C+ for a fixed anion A−. Comparing with the results ob-
tained by Kalcher and Dzubiella [142] (using considerably longer simulation times) for
Na+-Cl−, K+-Cl−, Li+-Cl−, and Na+-Cl−, we find good agreement, although we obtain
a higher value for the first peak of the Li+-Cl− gij(r).
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Figure 5.2: Radial distribution functions gij(r) obtained from MD simulations at c '
0.6 M for the Cl−, Br−, and I− salts as a function of the cation C+=Li+, Na+, K+.

A brief justification for the MD force-fields used to obtain the effective MM pair-
potentials is called for, as we have not used those obtained in the previous chapter from
ab-initio considerations. Although the presentation of this work can be considered to
be in a logical or conceptual ordering, where a systematic coarse graining procedure
is performed at each level, in order to derive the model parameters used at the next
level; the work was actually carried out (chronologically) in the inverse order. That is
to say, that we actually started our work by trying to derive mesoscopic models, using
already existing classical force-fields (the commonly used Dang Chang non-polarizable
potentials). This was done in an effort to maximize the time and computing resources
available, by working on both parts of the project simultaneously. However, since each
step of the procedure can be considered to be independent of the others (once we have
the model parameters, we do not need to know how they were derived). Therefore, this
inconsistency regarding the MD force-fields will in no way effect our overall results or
conclusions, nor will it alter the method we have developed.

Effective Pair Potentials

The radial distribution functions measured during the MD simulations are used within
our HNC inversion scheme, to obtain the effective ion-ion interaction potentials. As
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Figure 5.3: Effective McMillan-Mayer cation-anion (C+-A−) pair potentials vij(r) ob-
tained from the HNC closure using MD generated radial distribution functions. The left
(right) panel shows the potential as a function of the cation (anion) for a given anion
(cation).
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Figure 5.4: Effective McMillan-Mater cation-cation (left) and anion-anion (right) pair
potentials vij(r) obtained from the HNC closure using MD generated radial distribution
functions.

mentioned before, the only parameter that needs to be specified is the dielectric constant
of the solvent εr. We use the value of bulk water for the SPC/E model we have used
εr = 72 [161]. The effective cation-anion potentials we obtain are presented in Figure 5.3.
We observe the existence of two distinct regimes in the potentials: at short distances
r . 7 Å the potentials are strongly oscillating, while at long distances r & 7 Å we recover
the Coulomb attraction. These results support the separation of the potential into a
long-range electrostatic contribution and a short-range, solvent averaged interaction,
which contains the ion-specific effects. Furthermore, within this short-range region, we
identify two clear minima for all the systems considered, except for Li+-I−. The first
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minimum, which appears in the region 2 < r/Å < 4, corresponds to configurations
which we identify with the Contact Ion Pair (CIP); while the second minimum, which
appears around 4 < r/Å < 6, corresponds to the Solvent Separated Ion Pair (SSIP).
We note that a potential barrier of at least kBT separates the SSIP from the CIP.
It is immediately clear that a simple representation, in terms of charged hard-spheres
cannot accurately represent such systems, since a single contact distance (or distance of
minimum approach) cannot describe these two (stable) configurations.

When comparing the effective potentials to the asymptotic Coulomb attraction, an
interesting trend is revealed for the relative stability of the CIP: It is unstable for Li+
salts (non-existent for Li+-I−) and very stable for K+ salts; with Na+ salts presenting an
intermediate case, in which the first and second minima deviate only slightly from the
Coulomb potential. The variations in the potentials, as a function of the cation C+, are
roughly the same for all anions A−. A larger contact distance, and a more stable contact
minimum, is observed when transversing the series of alkali cations (Li+, Na+, K+).
A similar, though less noticeable effect is obtained when comparing the cation-anion
potentials as a function of the anion, but in this case the energy at contact increases
along the series (Cl−, Br−, I−). We notice that the difference between chloride Cl− and
bromide Br− salts is seen to be very small, and an inversion in the (expected) ordering is
observed for K+-Cl− and K+-Br−. However, this is likely due to the limited accuracy of
the inversion procedure, as the corresponding radial distribution functions (Figure 5.2)
are practically indistinguishable, especially withing the CIP region. In general, the
ordering observed in these effective potentials, in terms of the contact distance and the
strength of the interaction at contact, provides a clear and quantitative description of
the salt-specificity (i.e. how the cation-anion interactions are modified by the solvation
effects depending on the type of the ions). Finally, the averages of the effective cation-
cation and anion-anion potentials2 are given in Figure 5.4. In this case, we see that a
hard-core repulsion plus a long-range Coulomb tail is a very good approximation to the
effective potential, as the energy oscillations (with respect to the Coulomb repulsion)
are always less than kBT . Comparing our results to those obtained by Kalcher [142] and
Fennel [162], the latter from infinite dilution PMF calculations, we again observe good
agreement; although we seem to have systematically overestimated the cation-anion
attraction in the case of Li+ salts, probably due to an incomplete sampling in our initial
MD simulations.

The McMillan-Mayer effective potentials, for each of the nine alkali-halide salts spec-
ified above, are used to carry out Monte Carlo simulations. These are performed in the
NVT ensemble, within a periodically replicated cubic simulation box, for 14 different
values of the salt concentration c, within the range 0 < c < 2 M. The concentration
values are chosen to obtain an equally spaced distribution of points for

√
c. We assume

that the potentials are concentration independent, and the same effective potential is
used for simulations at all the concentrations. The dielectric constant was that of the
bulk system εr = 72. The simulated systems all contain the same number of particles
N = 216, the volume is determined by the concentration c, and the temperature is the
same as in the original MD simulations T = 298.15 K. The systems are equilibrated over
5× 105 steps, and subsequent data gathering runs of 106 steps are performed. One MC
step consists in attempting a random displacement of all the particles, with each move

2For each ion we have three different counter-ions, and each provides an independent measurement
for the ion-ion potential.
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being accepted/rejected according to the Metropolis scheme. Partial averages are sam-
pled every step for the pressure and energy, and every 25 steps for the radial distribution
function; a subsequent block averaging is performed every 100 steps.

Validation of the Inversion Procedure
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Figure 5.5: Comparison between the MD (raw and OZ “corrected” results) and the MC
radial distribution functions for the K+ salts at c = 0.64 M.

In order to test our inversion procedure, we have compared the radial distribu-
tion functions obtained from the original (explicit solvent) MD simulations, with those
obtained from implicit solvent MC simulations (at the same concentration) using the
effective ion-ion potentials. For all the systems considered, we obtain very good agree-
ment, in particular for the cation-anion distributions. Although a slight difference is
observed in the cation-cation and anion-anion gij(r), this is probably due to the fact
that we have used the average potential for the like-ion interactions. However, this effect
is secondary, as it is the cation-anion interactions which give the dominant contributions
to the thermodynamics. In addition, we have also compared the “raw” (MD) data to
the “corrected” (MD OZ) data actually used in the inversion (the gij(r) fitted to satisfy
the OZ equations). As expected, the difference in real space is barely noticeable. These
comparisons, for the case of the K+ salts, are shown in Figure 5.5.

Finally, we note that the validity of the inversion procedure we have used relies on
one basic assumption: that the effective potentials derived from finite concentration
simulations accurately represent the infinite dilution PMF. Given that the PMF are
expected to be concentration-independent up to molar concentrations [142], and the
fact that the dielectric constant of the solution at 0.6 M is essentially that of bulk
(SPC/E) water εr = 72 [142, 161], we expect this approximation to be valid.

Thermodynamics of the Solute Gas

The two basic thermodynamic properties that we measure during the implicit sol-
vent MC simulations are the McMillan-Mayer internal energy U and pressure P . As
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Figure 5.6: Total U (left) and short-range U sr (right) McMillan-Mayer internal en-
ergy obtained from implicit solvent Monte-Carlo simulations as a function of the anion
(A−=Cl−, Br−, I−), for the Li+, Na+, and K+ cations.

mentioned before, this pressure corresponds to the osmotic pressure of the solute gas
P = Posm, in equilibrium with the pure solvent (see Section 3.4.3). The data is presented
in the form of an osmotic coefficient φ = βP/ρN , as this is the quantity that is usually
measured experimentally. The values for the total- and short-range energy per particle
are given in Figure 5.6. The long-range Coulomb energy (not shown) is essentially the
same for all the systems, confirming our previous assertion, that it is short-range sol-
vent averaged interactions which determine the salt specificity. The following order is
observed in the MM energies: U sr

Na+-A− > 0, U sr
Li+-A− ' 0, and UK+-A− < 0. It’s worth

pointing out that although the CIP is unstable for the Li+ salts, when compared to
Na+ (as seen in Figure 5.3), the energy (total or short-range) is actually lower for Li+.
This is due to the depth of the minimum in the SSIP region, with respect to the CIP,
which is seen to be more stable for Li+. Since the pair is only marginally stable for
Na+ salts, it is the SSIP that gives the dominant contribution in both cases. For the
K+ salts, the solvent averaged contributions give rise to a considerably lower internal
energy, compared to both Li+ and Na+ salts. It is easy to see that the CIP gives the
dominant contribution in this case.

The osmotic coefficients φ are shown in Figure 5.7, along with the experimental
values. The ordering in the series, as a function of the anion, φC+-Cl− > φC+-Br− > φC+-I−

is the same ordering obtained for the total internal energy U . This series corresponds
very well with experimental observations, except for the inversion of the K+-Br− and
K+-Cl− osmotic coefficients. This inversion was already present in the cation-anion
potentials, although the energy difference at the first minimum is barely noticeable
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(. 0.1kBT )3. The small difference in the osmotic coefficients obtained for Na+-Cl−,
with respect to our previously published results [163], is due to a difference in the
effective potentials used in the simulations. This is just a consequence of the different
inversion methods we have used: initially we tried to directly fit the long-r behaviour
of the potentials (as done by Kalcher et al. [142]), instead of the small-k fit for the
pair-correlation functions we have used here.

The direct comparison between osmotic coefficients obtained from simulations and
experiments is seen to be less than perfect, but this is not unexpected, as it is well known
that the effective potentials will strongly depend on the underlying atomistic force-fields
used in the MD simulations [162, 164]. Given the fact that the ion-water potentials are
generally fitted to reproduce single-ion properties, and that the ion-ion potentials are
obtained using simple mixing rules, it is not evident a priori, that they will be able to
provide a suitable description for macroscopic thermodynamic properties. In fact, it was
recently shown that it is not always possible, using Lennard-Jones potentials with addi-
tive diameters, to parametrize such force-fields to give both the solvation free energies
and the osmotic coefficients [165]. The inversion procedure must also be considered,
since small variations in the effective potentials are known to lead to relatively large
differences in the osmotic coefficients (which is why they serve as a good benchmarking
parameter) [166], as our results also indicate.

As mentioned above, we assume that both the short-range solvent averaged potential

3The difference in the anion-anion interaction potentials is of the same order of magnitude ' 0.1kBT .
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and the solvent dielectric constant are concentration independent. Although many-body
contributions are not negligible over the concentration range we have studied, bring-
ing into question the use of concentration independent pair-wise additive potentials,
Kalcher and Dzubiella [142] and Vrbka et al. [160] have shown that osmotic coefficients
obtained through the compressibility (exact) and the virial routes (with a concentra-
tion dependent dielectric permittivity [166, 167]) are equal to each other (within error
bars). However, since this correction does not necessarily improve the agreement with
experiments, and since we are interested in deriving implicit solvent primitive models,
we do not consider such a concentration dependence. In what follows, we assume that
the effective potentials we have derived represent the exact two-body potentials. This is
not a bad approximation, as the variations among the different salts are globally repro-
duced, and the error with respect to the experimental values is not greater than what
could be expected using more “exact” representations.

Ion Association

Li+ Na+ K+

k0 (L.mol−1)
Cl− 0.12 0.48 1.40
Br− 0.04 0.39 1.51
I− 0.00 0.25 1.47

Table 5.2: Equilibrium Bjerrum association constants derived from the cation-anion
effective potentials.

The monovalent salts we have studied are not generally considered to form electro-
static ion pairs; however, this does not prevent us from using the Bjerrum concept to
estimate the degree of association. The values for the equilibrium association constant
K0, computed using Eq. (5.14), are given in Table 5.2. These values allow us to quantify
the observations made previously on the stability of the CIP. Namely, that the Li+ salts
are the least associated, the K+ salts the most associated, and the Na+ salts present an
intermediate behaviour. In terms of the anions, the variation is not as clear, the chloride
Cl− and bromide Br− salts give comparable results, although the former seems to be
slightly more associated, and the I− salts can be considered to be the least associated.
However, this is contradicted by the results shown for the K+ salts, but we must take
into account the inversion of the Cl− and Br− seen in the effective potentials. Quanti-
tatively, we also observe an order of magnitude difference between the Li+ and the K+

salts. The variation of K0 among salts with the same cation C+ is seen to vary only
slightly, at least compared to the variation seen for salts with a fixed anion A−.

Within the literature [154], one can find references to multi-step ion association con-
stants, used to describe the association mechanism between a cation and an anion: from
a configuration in which the solvation spheres of both ions are intact, to one in which
the solvation shell is shared among the two (overlaps), and finally, to a configuration in
which the ions are at contact. However, from the simplified description provided by the
Bjerrum association model, with the MM effective potentials, we can only make a clear
distinction between ions at contact (with no water molecules between them) and those
which are separated by one or more water molecules. In fact, the Bjerrum model we use
essentially defines the pair as a cation and an anion within the CIP region.



CHAPTER 5. IMPLICIT SOLVENT MOLECULAR DESCR. 109

5.3.2 Highly Charged Asymmetric Electrolytes

To test the validity of our coarse-graining procedure, we have also studied a series of
highly-charged asymmetric electrolytes: the lanthanoid - chloride Ln3+-Cl− salt solu-
tions. In order to obtain a clear picture of the cation specificity, we have chosen five
representative lanthanoids Ln3+= La3+, Nd3+, Eu3+, Dy3+, and Lu3+; which span the
entire series (see Figure 5.8). These systems present important industrial applications,
as the lanthanoids Ln3+ are commonly used as actinoid An3+ salt analogues, for which
experimental data is difficult to obtain. This work was done in collaboration with Mag-
ali Duvail and Philippe Guilbaud, who kindly provided us with all their MD simulation
results.

57

La
138.90547

58

Ce
140.116

59

Pr
140.90765

60

Nd
144.242

61

Pm
145

62

Sm
150.36

63

Eu
151.964

64

Gd
157.25

65

Tb
158.92535

66

Dy
162.500

67

Ho
164.93032

68

Er
167.259

69

Tm
168.93421

70

Yb
173.054

71

Lu
174.9668

89

Ac
227

90

Th
232.03806

91

Pa
231.03586

92

U
238.02891

93

Np
237

94

Pu
244

95

Am
243

96

Cm
247

97

Bk
247

98

Cf
251

99

Es
252

100

Fm
257

101

Md
258

102

No
259

103

Lr
262

Ln3�

An3�

Figure 5.8: Elemental data for the actinoid and lanthanoid series. The lanthanoid
elements considered in this work are circled in green.

Simulation Details

ion/water σio (Å) εio (KJ mol−1) charge (e) α(Å3)
Cl− 3.827 0.4187 −1 3.250
La3+ 3.384 0.4215 +3 1.134
Nd3+ 3.317 0.4404 +3 0.955
Eu3+ 3.237 0.4586 +3 0.823
Dy3+ 3.161 0.4649 +3 0.728
Lu3+ 3.045 0.4822 +3 0.623

POL3 σoo (Å) εoo(KJ mol−1) charge (e) α(Å3)
O(H2O) 3.204 0.6531 −0.7300 0.528
H(H2O) − − +0.3650 0.170

Table 5.3: Lennard-Jones force-field parameters used in molecular dynamics simula-
tions.

Simulations for the five binary lanthanoid-chloride aqueous solutions are performed
at two different concentrations, c = 0.5 and 1.0 mol kg−1, within the NPT ensem-
ble, using the AMBER 10 code module, Sander [168]. The long-range interactions are
computed using the particle-mesh Ewald method [169], the temperature and pressure
(T = 298.15 K and P = 1 atm) are controlled using a Berendsen thermostat and baro-
stat [101] (coupling constant τ = 1 ps.). A 1 fs time step is used to integrate the equa-
tions of motion, with the Beeman algorithm [20]. All systems are equilibrated during at
least 100 ps, with the lanthanoid salts initialized as first shell dissociated (i.e. chloride
anions are outside the first solvation sphere of the lanthanoid cation), and subsequent
production runs of 2 ns are then performed. The molecules (atoms) are considered to
be polarizable species, the pair interactions are modelled with the usual Lennard-Jones
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potentials, and the Lorenz-Berthelot mixing rules are used to determine the cross in-
teractions. The POL3 model is used to represent the water molecules [170, 171], the
model of Smith and Dang [172] is used for the Cl− anion, and the potential parameters
of Duvail et al. [173, 152] are used for the Ln3+ cations. The ion-water and water-water
LJ parameters are summarized in Table 5.3. A cubically replicated cubic simulation box
with 887 (1498) water molecules, 8 (27) Ln3+ cations, and 24 (81) Cl− anions is used
for the simulations at 0.5 (1.0) mol kg−1.

Figure 5.9: The two characteristic hydrogen bonded structures of Cl− anions with water
molecules in the Ln3+ first solvation shell.

As before, the output required from these MD simulations is the radial distribution
functions. We use those obtained at c = 0.5 mol kg−1 to perform the inversion procedure,
where we have again assumed that the dielectric constant of the solution is that of bulk
water for the POL3 model εPOL3

r = 106. These distribution functions are shown in
Figure 5.10, where a decrease in the Ln3+-Cl− “contact” distance is observed across the
series (La3+ > Nd3+ > Eu3+ > Dy3+ > Lu3+), which is accompanied by a decrease in
the average size of the cation’s solvation sphere [152]. In contrast to the 1−1 electrolytes,
the first peak in this cation-anion gij(r) actually corresponds to the SSIP, and not the
CIP [174]. As previous experimental and computational studies have shown, there is
no inner-sphere complexation (CIP) between Ln3+ and Cl− at this concentration. This
outer sphere complex presents two preferred locations for the Cl− anion, corresponding
to two distinct hydrogen-bond formations between the anion and the water molecules
of the (first) hydration sphere [174]. A snapshot from the MD simulations illustrating
these two configurations is provided in Figure 5.9. This internal structure within the
SSIP is clearly reproduced in the distribution functions, where the first peak is seen to
be composed of two sub-peaks.

Effective Pair Potentials

The effective potentials obtained from the MD generated gij(r) are given in Figure 5.11.
The cation-cation potentials clearly present a hard-core repulsion at short distances,
which reproduces the expected ordering in the series La3+ < Nd3+ < Eu3+ < Dy3+ <
Lu3+. The long-range, small energy fluctuations, which become attractive for Eu3+

and Lu3+, are likely a consequence of the errors inherent to the inversion procedure,
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Figure 5.11: Effective McMillan-Mayer (a) cation-cation, (b) anion-anion, and (c)
cation-anion pair potentials vij(r) obtained from the HNC closure using MD generated
radial distribution functions. (d) A comparison between the “exact” infinite dilution
PMF, our effective potential, and the asymptotic Coulomb potential is also shown, for
the case of Nd3+-Cl− and Dy3+-Cl−.

which are magnified by the noise present in the original radial distribution functions
(Figure 5.10). The cation-anion potentials also reproduce the same ordering, for both the
height (depth) and the position of the first maxima (minima), with the exception of the
Nd3+-Cl− potential, which completely underestimates the ion association. This anomaly
can already be seen in the original gij(r), which leads us to believe that this is due, either



112 5.3. RESULTS

to an incomplete sampling (the simulation time was too short), or to an inadequate
force field. The Cl−-Cl− potential is essentially the same for all the salts considered,
and the average of the five estimates is the potential that will be used for the implicit
solvent MC simulations. The figures also report the average cation-cation Ln3+-Ln3+

and cation-anion Ln3+-Cl− potentials. These fictitious potentials are used in additional
simulations, in order to evaluate the sensitivity of the measured thermodynamic data to
variations in the potentials, allowing us to measure the propagation of errors throughout
the coarse-graining procedure.

These potentials are then used in implicit solvent MC simulations. The details of
the simulation protocol are the same as in the previous case, for the alkali-halide salts.
The effective potentials used are those obtained from the MD simulation results at the
lowest concentration available c = 0.5 mol kg−1(' 0.51 M). Again, these are assumed
to be concentration independent and used for all the MC simulations (0 ≤ c ≤ 1.44 M).
As before, we use a concentration independent dielectric constant which corresponds to
that of the bulk water, εr = 106 for the POL3 water model used in this case.

Validation of the Inversion Procedure
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Figure 5.12: Comparison between the MD (explicit solvent) and MC (implicit solvent)
radial distribution functions for Dy3+-Cl− at c = 0.5 (left) and 1.0 mol kg−1 (right).

A comparison between the effective HNC potentials and the exact infinite dilution
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PMF (obtained by Duvail et al. [173] from umbrella sampling simulations of two ions
in water is given in Figure 5.11(d), where the PMF have been shifted to align with the
first-peak in the HNC potential. Very good agreement is obtained, particularly at short
distances, which shows that the concentration dependence of the effective potentials is
still very weak at c ' 0.5 M(which is not to say that these difference are insignificant,
as relatively small variations in the effective potentials can give rise to considerable dif-
ferences in the osmotic coefficients). The poor asymptotic behavior of the PMF, which
is unable to reproduce the Coulombic tail, is due to the uncertainty in the Umbrella
sampling simulations, as well as artifacts arising from the periodic boundary conditions.
The former is due to the limited sampling that can be achieved for large ion-ion separa-
tions, while the latter results from the self interactions of the ions with all their periodic
replicas.

The advantage of the approximate HNC closure we have used is to allow us to recover
the expected long-range Coulomb behaviour. The main drawback of our procedure is
obviously the fact that we ignore all correlations beyond the cutoff distance rc (used to
truncate the distribution functions, in order to avoid discontinuities when computing the
Fourier transforms). Inspection of the radial distribution functions (Figure 5.10) leads
us to believe that this effect will only be important for the cation-cation interactions,
since the cation-anion and anion -anion gij(r) have already converged to their asymptotic
values at rc & 10 Å. We note that this problem was not encountered when computing the
effective potentials of the 1− 1 electrolytes, since there was no apparent structuring at
large distances. This could be improved upon by considering independent measurements
for hij(r) and h̃ij(k), as has been done in Ref [150].

The radial distribution functions obtained from the implicit solvent simulations of
Dy3+-Cl− at two concentrations, are given in Figure 5.12, where they are compared
to the corresponding explicit solvent functions. At c = 0.5 mol kg−1(' 0.51 M) the
agreement is seen to be excellent for the cation-anion and anion-anion gij(r). The
cation-cation comparison is less favorable, particularly at long distances, but this was
to be expected, since we have truncated the cation-cation radial distribution functions
at a node rc ∼ 11 Å (where significant structuring can still be observed) in order to
perform the potential inversion. We obtain essentially the same results at the higher
concentration c = 1.00 mol kg−1(' 1.06 M), although there is a slight underestimation
of the cation-anion pairing. This difference is most noticeable in the second maxima of
the first peak. These results validate the coarse-graining strategy, although they indicate
the onset of n-body effects at molar concentrations.

Thermodynamics of the Solute Gas

The osmotic coefficients obtained from the implicit solvent MC simulations are compared
to the experimental values in Figure 5.13. It is evident at first sight that our results
overestimate (underestimate) the repulsion (attraction); however, this is due (in large
part) to the fact that the dielectric constant of our water model εPOL3 = 106 significantly
overestimates that of real water εexp = 78.4. Given that the thermodynamics of the
system is (to first order) determined by the cation-anion attraction, a screened Coulomb
potential will lead to a decrease in the ion association, and thus to an increase in the
osmotic coefficient. This is verified by the MC results obtained using the dielectric
constant of pure water εr = 78.4, with the same short-range (solvent averaged) potentials
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as before. These results are also shown in Figure 5.13, where it can be clearly seen that
this reduction in the dielectric constant produces a shift in the osmotic coefficients,
which is salt independent. The agreement with respect to the experimental values is
improved, especially at low concentrations, as expected.
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Figure 5.14: Variation of the osmotic coefficient at c = 0.51 M due to changes in the
cation-cation and cation-anion effective potentials: (circles) salts-specific reference po-
tentials, (squares) reference Ln3+-Cl− with average Ln3+-Ln3+ potentials, and (triangles)
average Ln3+-Cl− with reference Ln3+-Ln3+ potentials.

In order to provide an estimate of the intrinsic error in the inversion procedure,
we have performed additional MC simulations with two different set of effective poten-
tials: For the first, the salt-specific (reference) Ln3+-Cl− potentials are replaced by the
average Ln3+-Cl− potential, with all other potentials being left unchanged; while for
the second, the corresponding substitution is performed for the Ln3+-Ln3+ interaction
potentials. The osmotic coefficients computed from MC simulations at c = 0.51 M,
using these modified potentials, are given in Figure 5.14. The results obtained using
the average Ln3+-Cl− potential (varying only the Ln3+-Ln3+ potential) are seen to be
essentially equivalent for all the lanthanoids, with a relative error of ' 5% with respect
to the average value of φ; even though the energy differences among the cation-cation



CHAPTER 5. IMPLICIT SOLVENT MOLECULAR DESCR. 115

potentials can be as large as kBT , and the onset of the hard-core repulsion can vary
by up to 1 Å. Given the fact that the energy fluctuations present in the Ln3+-Ln3+

potentials are largely introduced during the inversion procedure, this variation in φ (as
a function of the cation-cation potential) can be considered to provide an estimate of
the error due to the uncertainty in the interactions. This small variation is nonetheless
surprising, since the short-range energy fluctuations are roughly an order of magnitude
weaker than the Coulomb repulsion which dominates the cation-cation interactions. The
reason for this is simple: as the concentration is increased, packing effects become im-
portant, and the solvent averaged cation-cation potentials start to play a role, despite
the dominant electrostatic repulsion. A simple calculation can help illustrate this sit-
uation. We imagine a hard-sphere representation of the system, with the hard-core
diameters σij given by the steep repulsive barriers in the effective potentials vij(r). Let
σ22 = 4.5 Å (v22(σ22) ' 1kBT ) and σ12 = 6 Å (SSIP), this gives σ11 = 7.5 Å for the
diameter of the hydrated cation. The packing fraction of this hard-sphere system, at
c = 1 M, is 22%.

Ion Association
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Figure 5.15: Bjerrum association constants obtained from the effective cation-anion
potentials. The open symbols show the values of K0 as a function of the cutoff distance,
and the solid lines show the value of the integrand (4πr2 exp [−βv12(r)]) as a function
of r.

Our estimates for the association constants K0 of the different lanthanoid salts are
given in Table 5.4, where we compare our results to those obtained by Ruas et al [6],
who considers them as fitting parameters (along with the cation diameters and the
concentration dependent dielectric permittivity) within a BIMSA model adjusted to
reproduce the experimental osmotic coefficients. Although we use a vastly different
approach, starting from an approximate molecular description of the system, we are
able, without any fitting parameters, to reproduce the same variation across the series
of lanthanoids. Our final values for K0 differ only by a factor of two from the fitted
values of Ruas and coworkers.



116 5.4. CONCLUSIONS

Ln3+ K0(HNC) K0(BIMSA)
La3+ 6.1 3.05
Nd3+ 4.2 2.59
Eu3+ 5.6 2.55
Dy3+ 4.7 2.39
Lu3+ 4.2 2.08

Table 5.4: Associations ConstantsK0 (L.mol−1) obtained from the cation-anion effective
HNC potentials and from BIMSA fits to the experimental osmotic coefficients. The
BIMSA values are taken from Ref [6].

5.4 Conclusions

We have shown how a coarse-grained description of electrolyte solutions can be derived
which allows for a relatively simple calculation of the osmotic (or activity) coefficients
of ions in solution. Although we manage to obtain results which are in qualitative
agreement with experimental data, it is clear that obtaining accurate quantitative results
is very difficult, as this would require very precise fine-tuning of the effective potentials.
The problem is clearly seen when inspecting the variation for the osmotic coefficients
of the lanthanoid-chloride salts, as a function of the cation, since the difference is never
more than a few percentage points. In contrast, our effective potentials predict a rather
large variation, which is extremely sensitive to the relative stability of the contact (CIP)
and solvent separated ion pair (SSIP).

Even though the reduction in computational complexity provided by such an im-
plicit solvent description is remarkable, compared to what would have been required to
compute the osmotic coefficients directly from explicit solvent MD simulations (using
the Kirkwood-Buff theory), the calculations are still relatively long. For engineering
applications, this remains prohibitively expensive, and it is necessary to look for further
simplifications. The work we have presented in this chapter can thus be considered
as an intermediate step, between the fully atomistic description used previously, and
the primitive (analytically solvable) model we derive in the next chapter. Finally, we
note that all the results obtained from the MC simulations on the alkali-halide and
lanthanoid-chloride salts are given in Appendix E.
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6.1 Introduction

In the last chapter, we have seen how to use the McMillan-Mayer theory to easily
measure the thermodynamic properties of ions in solution, from a completely atomistic
description. Explicit solvent MD simulations were performed in order to measure the ion-
ion correlations, which were then used to define effective ion-ion potentials. Once these
potentials are known, implicit solvent Monte-Carlo simulations allow us obtain the ion
thermodynamic properties with a reasonable computational investment. However, such
a description still requires the use of numerical simulations, since the effective potentials
are still too complicated to attempt any sort of analytical solution. This is an important
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issue when considering industrial applications, where analytic solutions are required
(even the relatively fast implicit solvent MC simulations are considered too expensive
and time consuming). Furthermore, the study of complex systems, such as porous
or electrochemical materials, requires simple implicit solvent models. Usually, these
have been fitted to reproduce experimental data, providing little microscopic insight
into the relevant physical phenomena. Our job is to derive these models from molecular
simulations. These problems can be addressed by performing yet another coarse-graining
procedure, effectively deriving a simple (analytic) model from molecular considerations.
The question that must be asked, is then: What is the best possible (simple) model of
electrolytes?

6.2 Deriving the Simplest Implicit Solvent Model: A
perturbation approach

As mentioned above (Section 3.1.4), thermodynamic perturbation theory provides a
convenient way of approximating the free energy of a given (model) system, in terms
of the free energy of a well-known (reference) system. We recall the expression for the
second-order expansion of the Helmholtz Free energy (Eq. (3.55))

βF = βF (0) + β〈δV〉0 −
1

2
β2
(〈
δV2
〉

0
− 〈δV〉20

)
+O(β3) (6.1)

where V = V(0) + δV and V(0) are the potentials for the model and reference systems,
respectively (δV is the perturbation), and the ensemble averages are all computed in
the reference system ensemble. For a multi-component system with pair-wise additive
potentials, the first order approximation, which also provides a rigorous upper bound
(analogous to Eq. (3.63)), is given by

βf . βf (0) +
1

2
β
∑
i

∑
j

ρiρj

∫
dr g(0)

ij (r)
[
vij(r)− v(0)

ij (r)
]

(6.2)

where f = F/V is the free energy density. For the binary 1 − 1 electrolytes we have
considered, the obvious reference to choose for a perturbation calculation is the two-
component charged hard-sphere (HS) system, specified by the diameter σi and density
ρi of the cation and anion. The advantage of such a representation, is the fact that it
presents a clear one-to-one mapping to our model system. In principle, we have all that
is needed to perform the calculations, as the reference free energy and radial distribution
functions, f (0) and g

(0)
ij , can be taken from the MSA solution (see Section 3.3.2), and

the perturbation is simply given by the short-range MM potentials

δvij ≡ vij(r)− v(0)
ij (r) = vsrij(r) (6.3)

We can perform this substitution since the long-range Coulomb interaction is the same
for both systems, and the HS divergence in v(0)

ij (r) is cancelled by the g(0)
ij (r) (which are

exactly zero in the overlap region).

However, there are two fundamental problems with this approach. First, the MSA
solution for the gij(r) is known to yield unphysical (i.e. negative) regions at distances
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close to contact for small diameters. Since the perturbation approach we use is defined
as a minimization procedure, we must correct for this artificial behaviour1. To this end,
we have used an exponential approximation to the gij(r) given by the MSA solution

gij(r) = Θ(σij) exp
[
gMSA
ij (r)− 1

]
(6.4)

which removes any unphysical regions, and has the added benefit of improving the com-
parison with HNC calculations. In this equation, Θ(σij) is the Heaviside step function
(σij = (σi + σj)/2), which ensures that gij(r) vanishes within the HS overlap regions
(r < σij). All references to the MSA radial distribution functions gij(r) are under-
stood to refer to this “corrected” version, unless stated otherwise. The second problem,
which is much more severe, relates to the inherent inability of such a reference to ac-
curately represent the strong non-additive nature of our system. As we have already
mentioned when discussing the effective MM potentials, an additive two-component ref-
erence system is not able to describe both the CIP and the SSIP configurations. For
comparison purposes, we have nonetheless performed the perturbation calculations us-
ing this “flawed” reference system. The results obtained using this approximation are
labelled MSA2.

In what follows, we show why a three component system, in which an ion pair is
explicitly introduced (representing the CIP interaction), is able to provide a better de-
scription for our systems. We demonstrate how a perturbation theory with this artificial
three-component reference system can be performed, by deriving relations which relate
the free energy and the interaction potentials of the two systems (the two-component
model system and the three-component reference system ). We then apply this method
to study the series of alkali-halide salts considered previously (for which we know the
MM effective potentials), in order to obtain an analytical solution to the thermodynamic
and structural properties of these systems. Our final model shows very good agreement
with the exact MC data and has no free parameters.

6.3 Choosing the Reference System: the importance
of the pair

6.3.1 Singular Reference Potentials

When performing perturbation calculations with singular reference potentials (i.e hard-
spheres), an intrinsic error is introduced which must be taken into account to obtain
the best approximation to the free energy2. This error is due to the difference in the
configuration space that is available to the model and reference systems, Ω and ΩHS,
respectively. Fortunately, the error has the “correct” sign, so that the Gibbs-Bogoluibov
inequality is always satisfied, whether or not the error is corrected for. This was rec-
ognized by Mon [175, 176, 177], who showed that a correction term ∆F = ln ε should
be added to the right hand side of Eq. (6.1), where ε is defined as the following ratio of

1Otherwise, the negative portions in the gij(r) will give rise to a large (negative) perturbation term,
which drives the minimization to the edges of the parameter space.

2Strictly speaking, it is not the singularity of the reference potentials which poses a problem, but
the singularity in the perturbation (i.e. when the singularity is only present in the reference potential)
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Figure 6.1: Minimum distance probability distribution functions obtained from MC
simulations of Na+-Br−.

configuration integrals

ε =

∫
ΩHS

exp [−βV ]∫
Ω

exp [−βV ]
(6.5)

This gives the fraction of configurations generated by the model Boltzmann distribution
exp [−βV ] with no hard-sphere overlaps.

Although the hard-sphere configuration space ΩHS depends on the specific diameters
chosen for the HS reference system, the correction term can (in principle) be computed
for all such possible values in just one MC simulation. This is accomplished by comput-
ing the minimum distance distributions dij(r), i.e. the histograms of the distances of
minimal approach for each of the pair interactions. These are defined such that dij(r)dr
is the probability, for a configuration sampled within the model ensemble, to have a
minimum i− j particle distance between r and r+dr. These functions are computed in
a similar manner to the gij(r)3: At a given step (n) during our simulation we compute
the minimum pair distances rmin

ij = min({rij}) and update the distributions as follows

d
(n+1)
ij (k) =

{
d

(n)
ij (k) + 1 if (k − 1)∆r ≤ rmin

ij < k∆r

d
(n)
ij (k) otherwise

(6.6)

where k = (1, 2, . . .) is the bin index (∆r the bin width) for the discretized histogram.
The normalized dij(k) will thus give the fraction of configurations (generated during
the simulation) for which the minimum distance, between particles of type i and j, was
between (k − 1)∆r and k∆r.

We now define the cumulative probability distribution Dij(r)

Dij(r) =

∫ r

0

dr′ dij(r′) (6.7)

3The dij(r) can be considered as non-normalized radial distribution functions for the distances of
closes approach.
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which gives the probability that the minimum i− j distance is less than or equal to r.
For a given HS reference system, the fraction of configurations with no i− j HS overlap
(those for which the minimum pair distance is greater than the contact distance) is
εij = 1 − Dij(σij). For a one-component system, ε can thus be determined directly
from the D(r). However, for multi-component systems this is no longer valid, since the
inter-particle overlaps cannot be considered independently (i.e. ε cannot be recovered
form the various εij(r)). Fortunately, for the charged binary systems considered here,
the cation-anion contribution is dominant, and a single-pair approximation can be made

ε ' ε12 = [1−D12(σ12)] (6.8)

The distribution functions dij(r) and Dij(r) obtained from MC simulations of Na+-
Br−, at several concentrations, are shown in Figure 6.1. These functions allow us to
establish upper limits on the values of σij that would produce an adequate sampling
of the model configuration space (ε ' 1). For this particular example, we see that
σ11 . 3.5 Å, σ22 . 4.75 Å, and σ12 . 2.75 Å. If our HS reference system does not
satisfy these constraints, a portion of the model system’s configuration space will by
systematically ignored. It seems reasonable to take the limiting values for σij, since
the MC simulations show that these are in fact the minimum inter-particle separations
(varying only slightly with concentrations) and can thus be considered as “effective”
hard-core diameters. However, this would clearly result in a non-additive model σ12 6=
(σ11 + σ22)/2, for which no analytic solution is known: the MSA theory (as well as PY)
requires additivity in the hard-sphere diameters. Furthermore, we note that Mon’s first
order correction is of little practical use for us, given the fact that it diverges for the
“interesting” values of σij, since the correction factor ε is essentially a step function

ε =

{
1 σ12 . 3 Å
0 σ12 & 3 Å

(6.9)

If we take a value of σ12 < 3 Å, the additivity constraint will give cation and anion
diameters which are too small, leading to an increased perturbation term 〈δv〉04, and
to a reference hard-sphere model that samples regions of the configuration space not
available to the model system5. However, taking a value of σ12 > 3 Å gives a divergent
correction.

Since it is the cation-anion interactions which give the dominant contributions to
the thermodynamics, a possible solution to this problem is to treat the CIP interactions
and the “free” cation-anion interactions (corresponding to the SSIP) separately. This
distinction between the two states is clearly shown in the d12(r) at low concentrations c .
0.1 M, where a bimodal distribution for the minimum cation-anion distance is observed
(see Figure 6.1). Since there is a considerable potential barrier separating the two regions
δv12 & 1 kBT , we can consider a representations in which a part of the ions are “paired”
together, and the remaining ions are represented as “free”, and prevented from coming
too close to each other. This will help reduce the intrinsic errors in a PFT calculation,
since the HS overlap configurations discussed before, corresponding to the strong cation-
anion interactions, are now incorporated into the reference system in the form of an ion

4The peak in the gij(r) will lie in a region where the perturbation potential is very repulsive
5This is relevant, since the first order perturbation theory we use, assumes that the structure of the

fluid is unaffected by the perturbation in the potential.
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pair. This results in a more accurate sampling of the relevant configuration space.
However, this approximation will only be valid at moderate concentrations c . 1 M,
where higher-order clustering can be safely ignored. Although the previous analysis is
based on the Na+-Br− simulation results, the same observations can be made for all the
1− 1 salts which we have considered (see Appendix E.4).

6.3.2 The Three - Component Model

We now introduce the paired three-component models that will be used as reference in
the perturbation calculations. These new systems consist of free ions and neutral pairs,
which are in chemical equilibrium with each other. We consider two distinct families
of reference models, which differ in the manner in which the internal structure of the
pair is taken into account: (1) as a neutral-sphere or (2) as a dipolar dumbbell. In
both cases, the free ions are represented as charged hard spheres. We now detail how
the free energies and radial distribution functions of these three-component systems
are calculated, and in the next section, we answer the question of how to relate the
properties of this auxiliary system, to those of the real two-component system we are
actually interested in.

The Pair as a Neutral Sphere
If the pair is represented as a neutral sphere, the system can be characterized by spec-
ifying the diameters σi and densities ρi of the three components, where i = 1, 2, 3 for
cations, anions, and pairs, respectively. Note that the charges are fixed parameters. As
we mentioned before, the free energy of such a system is naturally divided into ideal,
excluded volume, and electrostatic contributions

βf = βf id + βf ev + βf el (6.10)

The ideal term is given by the free energy of a corresponding ideal gas, the excluded
volume term is computed using the BMCSL approximation, and the electrostatic term
by the MSA solution. The radial distribution functions gij(r) are also those given by
MSA (see Section 3.3.2). We refer to this representation as MSA3.

The Pair as a Dipolar Dumbbell
If the pair is represented as a dipolar dumbbell, we require an additional degree of
freedom to represent the internal structure of the pair. We must specify the densities of
the three components, as well as four diameters: those of the free ions, σ1 and σ2, as well
as those of the cation and anion which form the pair, σC and σA, respectively. Since we
are dealing with the pair at contact (CIP), we expect these last two diameters to differ
from those of the free ions, which will correspond to the hydrated sizes. However, in
order to simplify the perturbation calculations, we consider only symmetric dumbbells
(σC = σA).

For these systems, we must add an additional association term f as to Eq. (6.10),
such that the free energy is now given by

βf = βf id + βf ev + βf el + βf as (6.11)

The ideal term is exactly the same as before. The excluded volume term is computed
using the same BMCSL approximation, with the free and paired cations and anions
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treated independently (i.e. considering we have a four component system). The electro-
static and association terms are now given by the BIMSA solution (see Section 3.3.3).

σ3

σC σA

Figure 6.2: Schematic representation of the effective dumbbell size.

Unfortunately, the BIMSA theory does not provide tractable, analytic expressions
for the radial distribution functions. For this reason, we have adopted a mixed represen-
tation, in which the pair is treated as a dumbbell when computing f and as an effective
hard sphere when computing gij(r). This allows us to use the same MSA solution for
the gij(r) as before. However, we are forced to introduce an additional diameter into
the system, that of the effective dumbbell size σ3 (as shown in Figure 6.2). We use four
simple geometric criteria to define this effective diameter in terms of σC (the dumbbell
ion diameters), the resulting models are referred to as BIMSAi (i = 1, 2, 3, 4).

σ3/σC Model
4
π

(' 1.37) BIMSA1
3
√

3
π

(' 1.65) BIMSA2
4
√

2
π

(' 1.80) BIMSA3
2 BIMSA4

Table 6.1: Transformation rules to obtain the effective dumbbell size from the
cation(anion) dumbbell diameter.

6.4 The Free Energy of the Paired System

We proceed to show how the free energies of the paired three-component system can
be related to those of the original two-component system. Consider an open binary
system of charged point particles, with chemical potentials µ1 and µ2, at temperature
T and volume V ; as before, 1 and 2, refer to the cation and anion, respectively. The
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grand-canonical partition for this system Ξ(µ1, µ2, V, T ) is given by

Ξ(µ1, µ2, V, T ) =
∑
N1,N2

zN1
1 zN2

2

N1!N2!

∫
drN1

1 drN2
2 exp (−βV), (6.12)

where V = V({r1}, {r2}) is the potential energy of the N1 + N2 particle system. We
recall the definitions of the activity zi and thermal wavelength Λi of species i: zi =
exp (βµi)/Λ

3
i and Λi = h/

√
2πmikBT (mi is the mass of species i). The free energy of

this system F (N1, N2, V, T ) is obtained from the grand-potential Ω through a Legendre
transformation

F (N1, N2, V, T ) = Ω(µ1, µ2, V, T ) +N1µ1 +N1µ1 (6.13)

Using a purely geometrical criteria to define an ion pair, as a cation and anion at a
distance less than or equal to d, we wish to rewrite Eq. (6.12) as a partition function
for a three component system (composed of free cations (1) and anions (2), along with
neutral “pair” particles (3))

Ξ′(µ′1, µ
′
2, µ

′
3, V, T ) =

∑
N1,N2,N3

z′N1
1 z′N2

2 z′N3
3

N1!N2!N3!

∫
drN1

1 drN2
2 drN3

3 exp (−βV ′) (6.14)

where primed variables are used for the three-component quantities. This system is
characterized by an effective potential V ′, which determines the interactions among
the free ions and the effective pairs. In writing Eq. (6.14), we have assumed that this
potential only depends on the positions of the different species V ′ = V ′({r1}, {r2}, {r3});
any dependence on the internal degrees of freedom of the pair must have been averaged
out. The free energy of this “new” system is given by

F ′(N ′1, N
′
2, N

′
3, V, T ) = Ω′(µ′1, µ

′
2, µ

′
3, V, T ) +N ′1µ

′
1 +N ′2µ

′
2 +N ′3µ

′
3 (6.15)

All that remains to be done is to relate Eqs. (6.13) and (6.15).

In what follows, we use a characteristic function formalism [178, 179] to obtain an
expression relating the free energies of the two systems, which is exact at infinite dilution.
Define the following cluster functions, Pk1k2 and P k1k2 = 1− Pk1k2 ,

Pk1k2 =

{
1, if k1 and k2 are associated: ||r1k1

− r2k2
|| ≤ d

0, if k1 and k2 are not associated: ||r1k1
− r2k2

|| > d
(6.16)

such that
∏

k1,k2
(Pk1k2 + Pk1k2) = 1, where k1 and k2 refer to the indices of the cations

and anions, respectively. We note that this geometric distance criteria, used to define
the pair, is completely arbitrary; any other choice is valid, but this is the most natural
one. Introducing this last relation in Eq. (6.12) gives

Ξ(µ1, µ2, V, T ) =
∑
N1,N2

zN1
1 zN2

2

N1!N2!

∫
drN1

1 drN2
2 exp (−βV)

∏
k1,k2

(Pk1k2 + Pk1k2). (6.17)

At infinite dilution, for the systems we are considering, contributions from clusters of
order higher than 2 are negligible (i.e. each ion belongs to at most one ion pair), and
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the product inside the integral can be expanded to give

Ξ(µ1, µ2, V, T ) =
ρ1,ρ2→0

∑
N1,N2

zN1
1 zN2

2

N1!N2!

∫
drN1

1 drN2
2 exp (−βV) (6.18)

×
min(N1,N2)∑

N3=0

C(N3|N1, N2)Q(N3|N1, N2)Q(N3)

with

Q(N3) =

N3∏
k=1

Pkk (6.19a)

Q(N3|N1, N2) =

N1∏
k1

N2∏′

k2

Pk1k2 (6.19b)

where the prime indicates a product over all pairs (k1, k2), except those for which k1 =
k2 ≤ N3, such that

Q(N3|N1, N2) =

{
1, all pairs except (1, 1), . . . , (N3, N3) are unassociated
0, otherwise.

In writing Eqs. (6.18) and (6.19), we have used the fact that the cations (anions) are
indistinguishable, allowing us to permute the particle numbers in such a way that the
cluster functions Pk1k2 have the lowest possible indices (i.e. the cation and the anion
of a given pair have the same label: k1 = k2 = k). The factor C(N3|N1, N2) counts
the distinct number of ways of forming N3 pairs from N1 cations and N2 anions: there
are

(
N3

N1

)
ways of choosing the N3 cations,

(
N3

N2

)
ways of choosing the N3 anions, and N3!

equivalent ways of pairing them, which gives

C(N3|N1, N2) =
N1!N2!

(N1 −N3)!(N2 −N3)!N3!

The grand-canonical partition function, Eq. (6.18), can then be expressed as

Ξ(µ1, µ2, V, T ) =
∑

N1,N2,N3

zN1
1 zN2

2 zN3
3

N1!N2!N3!

∫
dr(N1+N3)

1 dr(N2+N3)
2 (6.20)

× exp (−βV)Q(N3)Q(N3|N1 +N3, N2 +N3)

where z3 = z1z2. This relation between the activities of the free and paired ions is just
an expression of the mass-action law which must be satisfied at equilibrium.

Next, we perform a transformation on the pair coordinates, in order to distinguish
between its translational and internal degrees of freedom. If r1 = (rx1 , r

y
1 , r

z
1) and r2 =

(rx2 , r
y
2 , r

z
2) are the coordinates for the cation and anion of a given pair, of bond length l,

we define (for each pair) the vectors r3 = (r1 + r2)/2 and rl = (r1 − r2)/2. Expressing
rl in spherical coordinates (in the molecular reference frame, with origin at the charge
barycenter) rl = (l/2, θ, φ), we obtain

Ξ(µ1, µ2, V, T ) =
∑

N1,N2,N3

zN1
1 zN2

2 zN3
3

N1!N2!N3!

∫
drN1

1 drN2
2 drN3

3

∫
d(cos θ)N3dφN3

×
∫ N3∏

i

(
l2i dli

)
exp(−βV)Q(N3)Q(N3|N1 +N3, N2 +N3)
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Comparing this last equation with (6.14), we see that

z′N3
3 exp (−βV ′) = zN3

3

∫
d(cos θ)N3dφN3

∫ N3∏
i

(l2i dli) exp (−βV) (6.21)

×Q(N3)Q(N3|N1 +N3, N2 +N3)

At infinite dilution, V ′ = 0 and V = Vext + Vint = Vint (the inter-pair interactions are
negligible Vext = 0), and the internal and external degrees of freedom are uncoupled, so
that

z′3 = 4πz3zint (6.22)

with

zint =

∫
l2dl exp (−βvint(l)) (6.23)

where vint(r) is the interaction potential for a paired cation and anion. This internal
partition function is, by definition of Eq. (5.14), proportional to the association constant
K0

zint = K0/4π (6.24)

We obtain the following for the effective potential of the paired system V ′

exp (−βV ′) =

∫
d(cos θ)N3dφN3

∫ ∏N3

i (l2i dli) exp (−βV)Q(N3)Q(N3|N1 +N3, N2 +N3)

(4πzint)N3

(6.25)

The equilibrium condition for the activities (Eq. (6.22)) establishes the following condi-
tion on the chemical potential of the pair

µ′3 = µ1 + µ2 + kBT ln (4πzint) + 3kBT ln

(
Λ′3

Λ1Λ2

)
(6.26)

Finally, since Ω = Ω′, as they are describing the same system (the separation between
free and paired ions being completely arbitrary), Eqs. (6.13) and (6.15) give the following
relationship between the free energies in both representations

F = F ′ − kBTN3 lnK0 − 3kBTN3 ln

(
Λ′3

Λ1Λ2

)
(6.27)

where we have assumed that the chemical potentials of the free ions are unchanged, i.e
µ′1 = µ1 and µ′2 = µ2. From the definition of the ideal free energy (Eq. (3.94)), and the
fact that N ′1 +N3 = N1 and N ′2 +N3 = N2 (for a 1− 1 electrolyte), we see that the last
term on the right hand side of Eq. (6.27) will exactly cancel an equivalent term coming
from the ideal part of F ′. Therefore, in order to simplify the calculations, this term can
be ignored, provided that it is also set to zero in F ′. We thus obtain

F = F ′(Λ′3 = Λ1Λ2)− kBTN3 lnK0 (6.28)

As expected, we see that the difference in the free energies (the second term on the right
hand side of Eq. (6.28)) is given by the shift in the standard chemical potential of the
pair (the energy required to create the pair).
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6.5 The Effective Interactions of the Paired System

We have just seen how to relate the free energies of the two-and three-component sys-
tems; all that remains to be done is to determine the effective ion-ion, pair-ion, and
pair-pair interaction potentials v′ij(r) for the auxiliary paired system from the original
potentials vij(r). Since we only allow for uncharged cation-anion pairs, the like-charge
interactions are not modified with respect to the two-component model, v11(r)′ = v11(r)
and v22(r) = v′22(r), leaving only four unspecified potentials: the pair-ion potentials v′31

and v′32, the pair-pair potential v′33, and the internal potential of the pair vint.

As we discussed previously, the cation-anion effective potentials v12(r) present a
strong potential barrier (& kBT ) between the CIP and the SSIP; a fact which is used
to unambiguously define the ion pair. Furthermore, given the height of the barrier,
the probability of observing a pair in the transition state is considerably less than the
probability of the pair being in either of the two local minima. As such, the interaction
between free (paired) cations and anions can be approximated by extrapolating vsr12, at
the barrier, to an exponential function. An example of this separation procedure is given
in Figure 6.3 for the Na+-Br− MM effective potential. In what follows, we show how to
approximate the pair-ion and pair-pair potentials.
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Figure 6.3: Separation of the paired (vint(r)) and free (v′12(r)) cation-anion interactions
for the case of Na+-Br−.

6.5.1 The Pair-Ion Potential

Without loss of generality, we can consider the coordinate origin to coincide with the
charge barycenter of the pair, let +l/2 and −l/2 be the position vectors of the positive
(q1) and negative (q2) charges of the dipole (pair), and r be the position vector of the
“free” ion (charge qi). The probability of finding a charge qi at r and a “dipole” of length
l, with solid angle Ω(θ, φ), at the origin, is simply

P (l,Ω, r) =
exp [−βv(l,Ω, r)]l2dldΩdr∫

dr
∫
dΩ
∫
dl l2 exp [−βv(l,Ω, r)]

(6.29)

where dΩ = sin θdθdφ and v(l,Ω, r) = vint(l)+vext(l,Ω, r), with vint the internal (charge–
charge) potential of the dipole and vext the external (dipole–charge) potential energy.
The probability of finding the charge at r and the dipole at an orientation Ω (irrespective
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of the distance between the charges of the pair) is then

P (Ω, r) =
drdΩ

∫
dl l2 exp [−βv(l,Ω, r)]∫

dr
∫
dΩ
∫
dl l2 exp [−βv(l,Ω, r)]

(6.30)

which leads us to define the following effective dipole-charge potential

exp [−βv′′3i(Ω, r)] = 〈exp [−βvext(l,Ω, r)]〉l (6.31a)

P (Ω, r) =
exp [−βv′′3i(Ω, r)]dΩdr∫
dr
∫
dΩ exp [−βv′′3i(Ω, r)]

(6.31b)

where

〈A〉l =

∫
dl l2A exp [−βvint(l)]/zint (6.32)

with zint given by Eq. (6.23).

Performing a first order Taylor expansion of exp [−βv′′3i] and exp [−βvext], in
Eq. (6.31a), and separating the external potential into short-range and long-range (elec-
trostatic) contributions, we arrive at

v′′ sr3i (Ω, r) = 〈vsrext(l,Ω, r)〉l (6.33a)
v′′ lr3i (Ω, r) =

〈
vlrext(l,Ω, r)

〉
l

(6.33b)

Again, without loss of generality, we can set the z-axis parallel to r, and assuming
that the long-range potential vlrext is that of a (point) dipole-charge interaction [180],

vdip−charge =
qi

4πε0εr
p.r̂ (6.34)

we have

v′′ lr3i (Ω, r) =
qi〈p〉l cos θ

4πε0εrr2
(6.35)

where p is the “pair” dipole.

Since we would like to derive effective potentials between point particles, and this
effective pair–charge potential v′′3i(Ω, r) still makes reference to the internal degrees of
freedom of the pair (the dipole orientation Ω), it is natural to perform a subsequent
average over Ω, which serves as the definition of v′3i(r)

exp [−βv′3i(r)] = 〈exp [−βv′′3i(Ω, r)]〉Ω (6.36a)

P (r) =
exp [−βv′3i(r)]∫
dr exp [−βv′3i(r)]

(6.36b)

with

〈A〉Ω =
1

4π

∫
dΩA =

1

4π

∫
dφ
∫

dθ sin θA (6.37)
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Again, we perform a Taylor expansion of exp [−βv′′3i] and separate the short-range and
long-range contributions of the potential, which gives, to second order

exp [−βv′3i(r)] = 1− β〈v′′ sr3i (Ω, r)〉Ω − β
〈
v′′ lr3i (Ω, r)

〉
Ω

+
1

2
β2
〈

(v′′ sr3i (Ω, r))
2
〉

Ω
+

1

2
β2
〈(
v′′ lr3i (Ω, r)

)2
〉

Ω
(6.38)

+ β2
〈
v′′ sr3i (Ω, r)v′′ lr3i (Ω, r)

〉
Ω

From Eq. (6.35), we see that the first order long-range contribution is exactly zero
(〈cos θ〉Ω = 0). Therefore, taking the lowest (non-vanishing) short- and long-range
contributions to the potential, we obtain

exp [−βv′3i(r)] = 1− β〈v′′ sr3i (Ω, r)〉Ω +
1

2
β2
〈(
v′′lr3i (Ω, r)

)2
〉

Ω
(6.39)

Finally, a first order series expansion of the left hand side of Eq. (6.39), allows
us to define the corresponding short-range and long-range contributions to v′3i(r) =
v′ sr3i (r) + v′ lr3i (r)

v′ sr3i (r) =

∫
dlw(l)vsrext(l,Ω, r) (6.40a)

v′ lr3i (r) = −β
6

(
qi〈p〉l

4πε0εrr2

)2

(6.40b)

where i = 1, 2 and w(l) is defined as

w(l) = (4πzint)
−1 exp [−βvint(l)] (6.41)

The integral in Eq. (6.40a) can be written in a simpler form in k-space, since

v′ sr3i (r) =

∫
dlw(l) [vsr1i(r − l/2) + vsr2i(r + l/2)]

performing a change of variables, and using the fact that w(l) is an even function of l,
we obtain

v′ sr3i (r) =

∫
dlw(l) [vsr1i + vsr2i] (r − l/2)

=
1

(2π)3

∫
dk exp (ik.r) w̃(k/2) [ṽ sr

1i + ṽ sr
2i ] (k) (6.42)

with w̃(k) and ṽ sr
ij (k) the 3-dimensional Fourier transforms of w(r) and vsrij(r), respec-

tively.

6.5.2 The Pair-Pair Potential

To obtain the effective pair-pair potentials, we proceed in the same manner as above.
Consider two pairs, A and B, without loss of generality, we can take the coordinate
origin at the charge barycenter of pair A. Let r be the vector to the charge center of
pair B. First, we define a potential v′′33(ΩA,ΩB, r) averaged over the bond lengths of the
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two dipoles lA and lB; we then average over the angular degrees of freedom ΩA(θA, φA)
and ΩB(θB, φB), to obtain an effective pair-pair potential v′33(r), which only depends on
the distance r between the two pairs. Let v′′33(ΩA,ΩB, r) be defined as

exp [−βv′′33(ΩA,ΩB, r)] = 〈exp [−βvext(lA, lB,ΩA,ΩB, r)]〉lA,lB (6.43a)

P (ΩA,ΩB, r) =
exp [−βv33′′(ΩA,ΩB, r)]dΩAdΩBdr∫
dr
∫
dΩA

∫
dΩB exp [−βv′′33(ΩA,ΩB, r)]

(6.43b)

where

〈A〉lA,lB =

∫
l2AdlA

∫
l2BdlB A exp [−β (vint(lA) + vint(lB))]/ (zint)

2 (6.44)

Separating vext(lA, lB,ΩA,ΩB, r) into a short- and long-range potential, and performing a
series expansion of Eq. (6.43a), allows us to define the corresponding short and long range
contributions to v′′33(ΩA,ΩB, r). Assuming that the long-range pair-pair interaction is
that of two point dipoles [180]

vdip−dip =
1

4πε0εrr3
[pA.pB − 3 (pA.r̂) (pB.r̂)] (6.45)

with r̂ = r/||r||, we obtain

v′′ sr33 (ΩA,ΩB, r) = 〈vsrext(lA, lB,ΩA,ΩB, r)〉lA,lB (6.46a)

v′′ lr33 (ΩA,ΩB, r) =
〈p〉2l

4πε0εrr3
(sin θA sin θB cos (φB − φA)− 2 cos θA cos θB) (6.46b)

where we have set the z − axis parallel to r. Averaging over the angular degrees of
freedom gives the desired effective potential v′33(r)

exp [−βv′33(r)] = 〈exp [−βv′′33(ΩA,ΩB, r)]〉ΩA,ΩB (6.47a)

P (r) =
exp−βv′33(r)∫

dr exp [−βv′33(r)]
(6.47b)

with

〈A〉ΩA,ΩB =
1

(4π)2

∫
dΩA

∫
dΩB A (6.48)

In the same way we derived Eq. (6.40), we perform a series expansion of Eq. (6.47a) and
keep the lowest order (non-vanishing) terms; as before, the first order long-range contri-
bution

〈
v′′ lr33

〉
ΩA,ΩB

vanishes, and we neglect the cross correlation term β2
〈
v′′ sr33 v′′ lr33

〉
ΩA,ΩB

,
since it will be negligible compared to β〈v′′ sr33 〉ΩA,ΩB . Finally, we obtain the following for
v′33(r) = v′ sr33 (r) + v′ lr33 (r)

v′ sr33 (r) = 〈v′′ sr33 (ΩA,ΩB, r)〉ΩA,ΩB

=

∫
dlA

∫
dlB w(lA)w(lB)vsrext(lA, lB,ΩA,ΩB, r) (6.49a)

v′ lr33 (r) = −β
2

〈(
v′′lr33 (ΩA,ΩB, r)

)2
〉

ΩA,ΩB

= −β
3

(
〈p〉2l

4πε0εrr3

)2

(6.49b)
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In the last step, we have used the following relation

〈
(sin θ1 sin θ2 cos (φ2 − φ1)− 2 cos θ1 cos θ2)2

〉
Ω1,Ω2

=
2

3

As before, the short-range contribution is given as a convolution product, and it is
therefore natural to express it in k-space

v′ sr33 (r) =

∫
dlA

∫
dlB w(lA)w(lB)

×
[
vsr11(r − lA/2 + lB/2) + vsr12(r − lA/2− lB/2)

+ vsr21(r + lA/2 + lB/2) + vsr22(r + lA/2− lB/2)

]
=

∫
dlA

∫
dlBw(lA)w(lB) [vsr11 + 2vsr12 + vsr22] (r − lA/2− lB/2)

=
1

(2π)3

∫
dk exp (ik.r) [w(k/2)]2 [ṽ sr

11 + 2ṽ sr
12 + ṽ sr

22] (k) (6.50)

6.5.3 Summary
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Figure 6.4: Effective pair-ion v′ sri3 (r) (i = 1, 2) and pair-pair v′ sr33 short-range potentials
used in the PFT calculations with a paired reference system.

We have shown that at infinite dilution, the effective pair–ion and pair–pair interac-
tions can be naturally decomposed into short-range and long-range contributions

v′3j(r) = v′ sr3j (r) + v′ lr3j j = 1, 2, 3 (6.51)

which are easily obtained as averages over the corresponding potentials of the two-
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component system

v′ sr3i (r) =
1

(2π)3

∫
dk exp (ik.r)w̃(k/2) [ṽsr1i + ṽsr2i] (k) (6.52a)

v′ sr33 (r) =
1

(2π)3

∫
dk exp (ik.r) [w̃(k/2)]2 [ṽsr11 + 2ṽsr12 + ṽsr22] (k) (6.52b)

v′ lr3i (r) = −kBT
6

(
z2aLB

r2

)2

(6.52c)

v′ lr33 (r) = −kBT
3

(
z2a2LB

r3

)2

(6.52d)

We have assumed that our system corresponds to a symmetric electrolyte, such that
〈p〉l = eza, where a = 〈l〉l is the average “intra-molecular” pair distance (z is the valence
charge of the ions qi = ±ze). For non-symmetric case, the same procedure can be
performed, but an additional long-range term would need to be added to the pair–ion
and pair–pair interactions, since the pair would now be a charged species. The effective
(short-range) pair-pair and pair-ion potentials of the eight salts (Li+-I− is not included
since no CIP was obtained in the MM potential v12(r)) we have considered are shown in
Figure 6.4. It is seen that all the interactions are essentially those of soft-spheres, since
the energy oscillations are now considerably lower than the thermal energy kBT . As we
have also removed the large energy fluctuations from the cation-anion potential v12(r),
by removing the portion corresponding to the CIP, we can expect that a (charged) hard-
sphere perturbation theory will provide a good approximation for these paired systems.
Finally, we note that the theory defined by Eqs. (6.20), (6.25), and (6.28) is exact,
whatever the criteria used for the definition of the pair. However, these expressions are
only valid in the dilute limit, since correlations between rotation and translation have
been neglected.

6.6 The Structure of the Paired System

We have seen how to derive effective potentials for a system which includes the ion pair
as a distinct species. If the potentials for this three component system are used to gen-
erate radial distribution functions, it is important to be able to recover the distribution
functions corresponding to the original two-component system. The procedure is very
similar to that used in deriving the effective potentials.

We start by considering a two-component system of N total particles, with N1 = N/2
particles of type 1 (cation) and N2 = N/2 particles of type 2 (anion). Let a fraction of
these N1 (N2) particles be paired together. Assuming that a particle can belong to at
most one pair (which is a valid approximation at very low dilution), we can decompose
the two-body probability density as follows

ρij(r1, r2) = ρffij (r1, r2) + ρfpij (r1, r2) + ρpfij (r1, r2) + ρppij (r1, r2), i = 1, 2 (6.53)

where ρffij (r1, r2) gives the probability of finding a (free) particle of type i at r1 and a
(free) particle of type j at r2; with the three remaining distribution functions ρfpij , ρ

pf
ij ,

and ρppij defined in an analogous manner for free - paired (fp), paired - free (pf), and
paired-paired (pp) ions.
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Free ion - Free ion
The first term in Eq. (6.53) is easily evaluated, since, by definition

ρffij (r1, r2) ≡ ρ′iρ
′
jg
′
ij(r1, r2) (6.54)

where g′ij(r1, r2) is the distribution function obtained from the effective three component
system (i and j refer to the free ions).

Free ion - Paired ion
At infinite dilution, the second term on the right-hand side of Eq. (6.53) is evaluated
by considering a three particle system, composed of a free ion of type i and paired ion
of type j. Let j∗ denote the ion type for the remaining particle in the pair, such that

j∗ =

{
1 if j = 2

2 if j = 1

The (canonical) configuration integral for this system is given by

Zijj∗ =

∫
dridrjdrj∗e−βV (6.55)

where V = Vint(rj, rj∗) +Vext(ri, rj, rj∗) is the total potential energy, which is naturally
separated into an internal contribution (due to the pair) and an external contribution
(due to the interactions between the free i particle and the (j, j∗) pair). The two-body
distribution function takes the following form

ρfpij (r1, r2) =
1

Zijj∗

∫
dridrjdrj∗ exp [−βV ]δ(ri − r1)δ(rj − r2)

and since Vint(rj, rj) = Vint(l = rj∗ − rj) = vint(l), we have, after a change of variables

ρfpij (r1, r2) =
4πzint
Zijj∗

∫
dlw(l) exp [−βVext(r1, r2 + l/2; l/2)] (6.56)

where Vext(r1, r2 + l/2; l/2) is the potential between a free particle (type i) located at r1

and a pair centered at r3 = r2 + l/2 (with charges at r2 and r2 + l). Using a mean-field
approximation, we replace the exponential factor appearing in this expression with its
average value

exp [−βVext(r1, r2 + l/2; l/2)] ' exp [−βv′i3(r1, r2 + l/2)] (6.57)

Finally, since we are considering the infinite dilution limit, where the translational and
rotational degrees of freedom are uncoupled, the configuration integral for this system
can be separated according to

Zijj∗ ' Zi3 × (4πzint)

where Zi3 is the configuration integral of an effective two body system, composed of a
free ion (i) and a pair (3), which is given (under the same mean-field approximation) as

Zi3 =

∫
dridr3e

−βv′i3(ri,r3)
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This allows us to write the distribution function, Eq. (6.56), as

ρfpij (r1, r2) '
∫

dlw(l)

(
exp [−βv′i3(r1, r2 + l/2)]

Zi3

)
(6.58)

but by definition, the term in parenthesis is just the two-body distribution function for
the primed system, such that

ρfpij (r1, r2) =

∫
dlw(l)ρ′i3(r1, r2 + l/2) (6.59)

Paired ion - Paired ion
The last term on the right hand side of Eq. (6.53) is computed using the same mean-
field, infinite dilution, approximation used before. To begin with, we assume that the i
and j particles belong to different pairs. At infinite dilution, we need only consider two
such pairs, (i, i∗) and (j, j∗); the configuration integral for this four particle system is
given by

Zii∗jj∗ =

∫
dridrjdri∗drj∗ exp [−βV ] (6.60)

where the potential V is again separated into an internal contribution Vint = vint(ri, ri∗)+
vint(rj, rj∗) (interactions among the ions belonging to the same pair) and an external
contribution Vext(r1 + l1/2, r2 + l2/2; l1/2, l2/2), due to interactions between the two
pairs, located at r1 + l1/2 and r2 + l2/2, with a pair distance of l1 and l2, respectively.
The pair distribution function takes the form

ρppij (r1, r2) =
2

Zii∗jj∗

∫
dridri∗drjdrj∗e−βVδ(ri − r1)δ(rj − r2) (6.61)

where the factor of two is needed to count the possible ways of choosing the (i, j) particles
from two pairs. Separating the internal and external contributions to the potential, and
changing the integration variables to the pair lengths l1 and l2, we have

ρppij (r1, r2) = 2
(4πzint)

2

Zii∗jj∗

∫
dl1dl2w(l1)w(l2) (6.62)

× exp [−βVext(r1 + l1/2, r2 + l2/2, l1/2, l2/2)]

Again, we replace the external potential with its average value v′33, and we take the
configuration integral to be separable

Zii∗jj∗ ' Z ′33(4πzint)
2 (6.63)

Z ′33 =

∫
dr3dr′3e

−βv′33(r1+l1/2,r2+l2/2) (6.64)

Equation (6.62) then becomes

ρppij =

∫
dl1dl2w(l2)w(l2)

(
2

exp [−βv′33(r1 + l1/2, r2 + l2/2)]

Z3

)
(6.65)
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but, as before, the term in parenthesis is just the pair-pair distribution function (in the
primed system), so that

ρppij =

∫
dl1dl2w(l1)w(l2)ρ′33(r1 + l1/2, r2 + l2/2) (6.66)

In deriving this equation, we have assumed that the i and j particles belong to different
pairs; in the case that they belong to the same pair, the probability is given directly by
the distribution function of the pair ρ′3w(l).

The transformation
Finally, the distribution function for the original two-component system can be expressed
in terms of the Fourier transforms of the corresponding functions for the effective three
component system as

ρiρjgij(r1, r2) = ρ′iρ
′
jg
′
ij(r1, r2) + ρ′3w(r)(1− δij) (6.67)

+ ρ′3
1

(2π)3

∫
dk exp [ik.r]w̃(k/2)

{
ρ′ig
′
i3(k) + ρ′jg

′
j3(k) + ρ′3w(k/2)g′33(k)

}
We recall that this is has been derived within a mean-field approximation, at infinite
dilution; so that it can only be expected to give a rough approximation to the radial
distribution function of the two-component system. However, as we shall see below,
comparison with the exact MC results shows relatively good agreement up to molar
concentrations.

6.7 The Minimization Procedure

Model Pert. Energy Pert. Terms Min. Parameters Solution

MSA3
δv′ij(r) = v′ srij (r) i, j = 1, 2 ∆f ′id ρ′3 ideal gas

δv′3i(r) = v′sr3i (r) + v′lr3i (r)
f ′ev σ1, σ2, σ3, ρ

′
3 BMCSL

f ′el, g′ij(r) σ1, σ2, σ3, ρ
′
3 MSA

BIMSAi δv′ij(r) = v′srij (r)

∆f ′ id ρ′3 ideal gas
f ′ ev σ1, σ2, σC , ρ

′
3 BMCSL

f ′ el, f as σ1, σ2, σC , ρ
′
3 BIMSA

g′ij(r) σ1, σ2, σ3(σC), ρ′3 MSA

Table 6.2: Summary of the different terms appearing in the perturbation calculations,
Eq. (6.68), their dependence on the minimization parameters, and the solutions that
have been employed.

From Eqs. (6.2) and (6.28), we can write the first order perturbation expansion for the
excess free energy density of a binary electrolyte, using a three-component (associated)
reference system, as

βf ex . ∆f ′ id + βf ′ ex − ρ′3 lnK0 +
1

2
β

3∑
i=1

3∑
j=1

ρ′iρ
′
j

∫
dr g′ij(r)δv

′
ij(r) (6.68)

where ∆f ′ id = f ′ id − f id gives the difference in the ideal free energies (between the
reference three-component system and the model two-component system). The solutions
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used for the excess free energy f ′ex and radial distribution functions g′ij(r) will depend
on the model used to represent the reference system (MSA3 or one of the BIMSA
models), as detailed in Section 6.3.2. A summary of the different terms contributing to
the perturbation calculation, along with the relevant minimization diameters and the
solution that has been used, is given in Table 6.2. All the models that are considered
have four minimization parameters: the two diameters for the free ions (σ1 and σ2), the
diameter of the pair (sphere σ3 or dumbbell σC), and the pair fraction or density (ρ′3).

We note that the perturbation potential δv′ij(r) that should be used will depend
on the representation of the pair. For hard-spheres (MSA3), the long-range dipolar
contributions should be included, as they are not part of the reference system. When
the pair is represented as a dipolar dumbbell (BIMSAi), these long-range contributions
are (in theory) already included in the reference, and should therefore not appear in the
perturbation. However, one should keep in mind that the BIMSA solution we use for
f el, which is computed by averaging over the internal energy, using a linearized radial
distribution function, does not properly account for these terms. In practice, including
the long-range potentials within the perturbation should improve the results, but for
consistency reasons, we show only the “uncorrected” results6.

The PFT calculations are performed for the nine alkali-halide electrolytes, using the
MM potentials derived above, over a range of concentrations 0 < c < 2 M. As before,
we take a concentration independent dielectric permittivity of εr = 72 (corresponding
to the bulk value of the SPC/E water model used in the original MD simulations). The
results are fitted to the following limiting form [9]

βf ex = Ac3/2 + b0c
2 ln c+ b2c

2 + b3c
5/2 + b4c

3 + b5c
7/2 (6.69)

allowing us to obtain the osmotic coefficients φ, since

φex =
1

2

(
∂βf ex

∂c
− βf ex

c

)
(6.70)

The inverse fit is also carried out on the MC results for φ, in order to compare our PFT
predictions with the exact results, for both the free energy and the pressure.

6.8 Results

Case Study: K+-Br−

We proceed to give a detailed account of the results obtained for K+-Br−. The
excess free energy densities f for the six reference systems we have used are shown in
Figure 6.5, where they are compared to the exact MC results; also shown are the os-
motic coefficients φ and the relative error |f ex − f exMC|/|f exMC|. The first thing to note
is the fact that the Gibbs-Bogoliubov inequality is satisfied in all cases. Since we use
approximate solutions for the (reference) free energies and radial distribution functions,

6We have performed the PFT calculations for the BIMSA models, with the long-range potentials
included in the perturbation term, and we indeed obtain better agreement; however, this is only ap-
preciable at high concentrations, where our approximations are no longer justified.
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Figure 6.5: The excess free energy density f ex, osmotic coefficient φ = 1 + φex, and
relative error (with respect to the MC results), as a function of the reference system
used in the PFT calculations, for K+–Br−. The exact MC results are shown in solid
black lines.

it is not clear a priori whether we will actually satisfy this rigorous condition. As ex-
pected, the two-component representation is seen to yield very poor results, showing
only moderate agreement with the exact values at very low concentrations. The passage
to a three-component representation provides a marked improvement, reducing the rel-
ative error by almost an order of magnitude (for the best model). At low concentrations
c . 0.5 M, the various three-component representations are essentially equivalent, the
differences only become apparent at molar concentrations. For these paired systems, we
identify the following relations among our different representations: MSA3'BIMSA1
and BIMSA2'BIMSA3'BIMSA4. It is clear that a representation of the pair as a
dumbbell provides the best description. Among the six different dumbbell representa-
tions we have used (BIMSAi), it is seen that a better (lower) estimate is obtained for
larger values of the effective hard-sphere diameter σ3 (σC), with the BIMSA4 model
providing the best approximation (the relative error is less than 10% at c = 1.0 M).
The same global behaviour is seen in the osmotic coefficients, although they provide for
a more sensitive comparison, since they depend on both the value of f , as well as its
derivative.

The fraction of pairs (given directly by the minimization) is shown in Figure 6.6.



138 6.8. RESULTS

0 0.2 0.4 0.6 0.8 1 1.2

c (M
1/2

)

0

0.1

0.2

0.3

0.4

0.5

ρ
p
/ρ

0

msa3
bimsa1
bimsa2
bimsa3
bimsa4

Figure 6.6: Fraction of pairs obtained from the PFT calculations for K+-Br−.

There is a strong dependence on the criteria used to define the ion pair, but again,
the variation only becomes important at high concentrations c & 1.0 M. The optimal
diameters, expressed in terms of the cation–anion contact distance σ12 = 1

2
(σ1 +σ2) and

size difference σ12 = σ2 − σ1, and the dumbbell ion size σC , are given in Figure 6.7.
Fortunately, the minimization diameters are seen to vary only very little with the con-
centration, and the size of the (free) ions is essentially independent of the model used in
the PFT calculation. For comparison purposes, we have also fitted the MC free energy
to a two-component MSA model. These are the fit values referenced in the figures. The
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Figure 6.7: Minimization diameters obtained from the PFT calculations for K+-Br−.

comparison between both sets of data, the PFT results and the (MC) fits, is seen to be
considerable, especially for σ12. For the potassium salts, where the CIP is dominant, the
favoured cation-anion distance will correspond to this CIP region; this is precisely what
we obtain from the fits, but not at all what is obtained from the PFT calculations. Al-
though one would have expected the PFT results corresponding to the two-component
reference system (MSA2) to yield the same diameters as the fit, the non-additivity in
the effective potentials would have resulted in an increased perturbation term for the
cation-cation and anion-anion terms. The value for σ12 that is obtained from the PFT
calculations corresponds to the SSIP. By construction, the CIP configuration is repre-
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sented by the ion pair. This can be clearly seen by inspecting the radial distribution
functions, which are shown in Figure 6.8. Here is where we can appreciate the advantage
of our method, since we have been able to describe a strongly non-additive system, in
terms of additive hard-sphere models, by introducing the concept of ion association.
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Figure 6.8: Comparison between radial distribution functions obtained from MC sim-
ulations (exact) and our PFT calculations (using the BIMSA4 model) for K+-Br− at
c = 0.5 M, . The results obtained from a fit to a two component model (using the MSA
solution with concentration independent diameters) are also shown.

Similar results are obtained for the other salts we have studied (See Appendix F),
with the BIMSA4 model always providing the best approximation to the free energy,
with a relative error . 20% at molar concentrations. We thus consider this to be our
final model; except for Li+-I−, for which we use the MSA2 model, since no contact ion
pair is formed.

Final Results
Our PFT predictions for the excess free energies of the nine salts are shown in Figure 6.9,
where they are compared to the exact MC values. We note that the ordering seen in the
MC values is preserved in the PFT results: I−>Br−>Cl− and Na+>Li+>K+. This is
the same ordering given by the association constant K0, except for an inversion of Na+

and Li+; which, as we mentioned before, is due to the more stable SSIP configuration
of Li+.

The average minimization diameters given by the PFT calculations are summarized
in Table 6.3. The two- and three-component free ion diameters are seen to be essentially
equivalent, supporting our previous observation, that the inclusion of the pair is just a
way of renormalizing the cation-anion interactions, in order to account for the portion
of the configuration space that is neglected by a two-component representation (the
non-additive region). These diameters can be given a clear physical interpretation, by
inspecting the cation-anion effective potentials v12(r). The values we have obtained for
σ12 are seen to correspond to the distance for which the potential energy difference, with
respect to the second minimum (SSIP), is ' kBT .
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Li+ Na+ K+

σ1/Å
Cl− 3.92(3.92) 3.71(3.67) 3.86(3.88)
Br− 3.94(3.94) 3.80(3.75) 3.91(3.88)
I− − (3.98) 4.09(4.01) 4.09(3.87)

σ2/Å
Cl− 4.39(4.40) 4.75(4.78) 4.71(4.66)
Br− 4.46(4.46) 4.88(4.92) 4.85(4.79)
I− − (4.94) 5.27(5.31) 5.32(5.13)

σ12/Å
Cl− 4.16(4.16) 4.23(4.23) 4.28(4.27)
Br− 4.20(4.20) 4.34(4.33) 4.38(4.34)
I− − (4.46) 4.68(4.66) 4.71(4.50)

σ12/Å
Cl− 0.47(0.48) 1.03(1.10) 0.84(0.78)
Br− 0.51(0.52) 1.07(1.16) 0.94(0.90)
I− − (0.96) 1.18(1.30) 1.23(1.25)

σ3/Å
Cl− 6.62 6.76 7.1
Br− 6.71 6.94 7.15
I− − 7.80 7.90

σC/Å
Cl− 3.30 3.38 3.55
Br− 3.35 3.47 3.57
I− − 3.90 3.95

Table 6.3: Optimal three-component reference system parameters obtained from our
final PFT calculations, using an associated reference system. The two-component MSA2
parameters are shown in parenthesis.

6.9 Conclusions

We have shown how to successfully derive an analytical model of electrolytes in solution,
from the effective McMillan-Mayer ion-ion potentials obtained from explicit solvent MD
simulations. To do this, we have used the standard fluid perturbation theory to relate
the properties of our system of interest (characterized by the complicated MM effective
potentials) to a primitive-type model, in which the ions are represented as charged hard-
spheres. The reason for choosing this particular reference system is simple: there exist
well known analytical (approximate) solutions, such as the MSA and the BIMSA, which
provide an accurate description for the thermodynamics. In the case of the MSA solution
(within an exponential approximation), we also have a relatively good description of the
structure of the fluid. However, the perturbation calculations are not as straightforward
as one could have imagined, because of the strong non-additive nature of electrolytes: the
cation-anion contact distance σ12 does not correspond to the average of the cation-cation
σ1 and anion-anion σ2 contact distances. Due to the strong electrostatic attraction, the
cation-anion contact distance is significantly reduced (σ12 < (σ1 + σ2)/2) with respect
to the additive value. This poses a considerable problem, since the MSA solution we
use requires additive diameters for the hard-spheres. As expected, PFT calculations
performed using a naive two-component hard-sphere reference system show very poor
results when compared to the exact MC calculations.

We have proposed to treat this troublesome non-additivity by allowing for the as-
sociation of (oppositely charged) ions. We thus consider the contact ion pair (CIP),
which corresponds to the first peak in the cation-anion radial distribution function, as a
distinct chemical species. The chemical equilibrium between the free ions and the pair is
characterized with the help of the Bjerrum association constant K0, which is determined
by the effective potentials. The interactions between free ions in this auxiliary three-
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component system remain unchanged7, and the interactions involving the pair can be
easily calculated (to first order) by considering the average dipole-ion and dipole-dipole
interactions at infinite dilution. A similar calculation was used to relate the structure
of the three-component fluid to that of the original two-component system. Finally, we
have shown how to relate the free energies of both representations; where the difference
between them is due to the standard chemical potential of the pair.

We have considered the free ions as charged hard-spheres, and we have adopted two
representations for the pair: as a neutral sphere or as a dipolar dumbbell. In the first
case, we can use the MSA solution to compute the free energy and radial distribution
functions of the system. In the second case, we use a mixed representation, in which the
free energy is computed using the BIMSA solution, and the radial distribution functions
are obtained from the MSA solution for an equivalent system of hard-spheres (where the
dumbbell is treated as a sphere)8. We have considered four different parametrizations
for the pair, for a total of five distinct associated reference systems (MSA3 and the four
BIMSA models). The PFT calculations obtained using these systems show very good
agreement with the exact results; the improvement with respect to the PFT calculations
for the two-component reference systems show the importance of properly accounting
for the CIP. Furthermore, it is clearly shown that the exact parametrization of the pair
is not important, with all reference systems yielding essentially the same results up to
molar concentrations. Also, the minimization diameters are practically independent of
the concentration.

In order to understand why our method works, and why the CIP should be treated
independently, it is instructive to compare the radial distribution functions predicted
by our theory and those obtained by a simple fit of the exact free energy (MC) to
a two-component charged hard-sphere system (within the MSA approximation). By
construction, the fit will give excellent agreement with the exact free energy; however,
due to the non-additivity of the real system, the additive MSA solution gives radial
distribution functions which are in very poor agreement with the MC values. Here we
identify two distinct scenarios, depending on the relative stability of the CIP: For the
weakly associated electrolytes (Li+ and Na+ salts) the fit will give a cation-anion distance
which corresponds to the SSIP configuration. For the strongly associated electrolytes
(K+ salts), on the other hand, this contact distance will correspond to the CIP. In the
first case, an additive system will severely underestimate the diameters of the free ions;
while in the second case, the enforcement of additivity will cause us to completely ignore
the CIP. Our model separates the CIP, which is responsible for the non-additivity, from
the additive interactions of the free (hydrated) ions. The next step in our work, would
be to consider a non-additive reference model, as this would allow us to use the simpler
two-component system as a reference. Preliminary results for the development of such
non-additive systems are presented in the next chapter.

7Except for the cation-anion potentials, which have been modified to remove the minimum corre-
sponding to the CIP, which itself defines the internal potential of the pair

8We were forced to do this because BIMSA does not provide tractable expression for the radial
distribution functions.
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7.1 Motivation

One of the main problems we encountered when attempting to derive a primitive model
description of electrolyte solutions, was how to adequately represent their strong non-
additivity using additive models. We overcame this difficulty by introducing the CIP
as an additional chemical species. This allowed us to separate the strong cation-anion
attraction at short-distances, responsible for the non-additivity, from the remaining
interactions (those of the “free” ions). This auxiliary three-component system allowed
for a simple representation in terms of (additive) charged hard-spheres, for which the
MSA (BIMSA) solutions are well suited.

In this chapter, we propose to develop an alternative route: that of treating the non-
additivity directly. We thus seek to generalize the thermodynamic perturbation theory

143
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developed recently by Sillren and Hansen [7, 8], which allows one to obtain the properties
of a non-additive hard-sphere system from those of an additive reference system. We
use an approach similar to that employed by Andersen, Weeks, and Chandler to develop
their “blip-function” formalism, only we wish to evaluate the first order correction to the
radial distribution function (the second order correction to the free energy)1. We follow
the derivation given by Barker and Henderson [36, 181] for the case of a one-component
system2, and generalize their theory to the multi-component case. We will present no
new results in this chapter, as Henderson is supposed to have already published such
a theory; however, his work was presented in an obscure Canadian journal of applied
mathematics (Utilitas Mathematica 1, 211, (1972)), which we were unable to obtain.

As mentioned before, we expect that a perturbation theory which uses non-additive
reference systems could provide a good description of electrolyte solutions without hav-
ing to include the concept of ion association (i.e. a binary electrolyte could be well
represented by a two-component system of non-additive charged hard-spheres). The
free energy of our system would be determined by Eq. (6.2),

βF . βFNA +
1

2

∑
i

∑
j

ρiρj

∫
dr gNAij (r)

[
vij(r)− vNAij (r)

]
(7.1)

where the vij(r) are the MM effective ion-ion potentials and the reference is now a system
of non-additive (NA) charged hard-spheres. Since we only have analytical solutions for
additive models (MSA), the reference free energies and radial distribution functions
would themselves be computed by yet another perturbation calculation. Thus, the non-
additive reference free energy would be given by

βFNA = βF (0) +
1

2

∑
i

∑
j

ρiρj

∫
dr g(0)

ij

[
vNAij (r)− v(0)

ij (r)
]

(7.2)

where F (0) and g(0)
ij are the free energies and radial distribution functions of an additive

system. With a similar expression for the non-additive radial distribution function gNAij .
In this chapter we focus on the development of Eq. (7.2): i.e. how to obtain the proper-
ties of a non-additive hard-sphere system from an additive hard-sphere representation.
As we shall see below, the difficulty is in the calculation of gNAij (r), since this is a second
order term. We begin by defining the formalism and the notation that will be used in
the remainder of the chapter. We then present the second-order perturbation theory
needed to compute the corrections to the radial distribution functions, and we end by
showing a simple application of this theory. We note that this is a work in progress,
which is not yet applicable to charged system, but we believe it is prudent to start by
studying hard-spheres before introducing any further complications.

7.2 Definitions

In order to simplify the equations, we have adopted a notation which is more suitable
for the description of multi-component systems, but differs slightly from that used in

1The AWC theory chooses the reference system in such a way that the first order correction to the
free energy is exactly zero.

2This is the version presented in most textbooks
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the rest of this work. In what follows, we redefine the basic quantities needed for our
derivations, which have been previously introduced in Section 3.1 for the case of a one-
component system. We now consider an m-component system, with Nν particles of
species ν, with ν = 1, . . . ,m. Let N = (N1, N2, . . . , Nm) be an m-dimensional vector
representing the particle numbers of each species, with N =

∑
ν Nν the total number of

particles. The position vectors for the particles are denoted as

{N} = {N1}1, {N2}2, . . . , {Nm}m
{i}ν = r1ν , r2ν , . . . , riν

and the corresponding volume elements as

d{N} = d{N1}1d{N2}2 · · · d{Nm}m
d{i}ν = dr1νdr2ν · · · driν

Assuming that the total potential energy V({N}) is pair-wise additive, we have

V ({N}) =
m∑
ν=1

Nν∑
i=1

Nν∑
j>i

vνν (riν , rjν ) +
m∑
ν=1

m∑
η>ν

Nν∑
i=1

Nη∑
j=1

vνη
(
riν , rjη

)
(7.3)

where vνη is the ν − η pair interaction potential. The corresponding Boltzmann factor
can be written as

exp [−βV({N})] =
∏′

〈ν,η〉
〈i,j〉

eνη(riν , rjη) (7.4)

where < η, ν > is used to denote all possible (η, ν) pairs (likewise for < i, j >), and the
prime indicates that only the terms iν 6= jη should be included. We thus have

exp [−βV({N})] =

(
m∏
ν=1

Nν∏
i=1

Nν∏
j>i

eνν (riν , rjν )

)(
m∏
ν=1

m∏
η>ν

Nν∏
i=1

Nη∏
j=1

eνη
(
riν , rjη

))
(7.5)

with eνη(r, r′) = exp [−βvνη(r, r′)].

Canonical Ensemble
Using this notation, the canonical partition function Q(N , V, T ) of an N -particle sys-
tem, at constant volume V and temperature T , is given in terms of the configuration
integral Z(N ) by (Eq. (3.16))

Q(N ) =
m∏
ν=1

(
1

Λ3Nν
ν Nν !

)
Z(N )

Z(N ) =

∫
· · ·
∫

d{N} exp [−βV ({N})] (7.6)

The n-particle distribution function (Eq. (3.33)),

ρ
(n)
N ({n}) =

m∏
ν=1

(
Nν !

(Nν − nν)!

)
1

ZN

∫
· · ·
∫

d{N − n} exp [−βV ({N})] (7.7)
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gives the probability of observing n =
∑

ν nν particles, nν of which are of species ν, at
positions {n}, irrespective of the positions of the remaining N − n particles.

Grand-Canonical Ensemble
The grand partition function of an open system, at constant chemical potential µ,
volume V , and temperature T , is given by (Eq (3.22))

Ξ(µ) =
∞∑
N=0

m∏
ν=1

(
zNνν
Nν !

)∫
· · ·
∫

d{N} exp [−βV ({N})] (7.8)

(7.9)

and the n-particle density is now defined as

%(n)({n}) =
1

Ξ

∞∑
N=n

m∏
ν=1

(
zNνν

(Nν − nν)!

)∫
· · ·
∫

d{N − n} exp [−βV ({N})]

=
1

Ξ

∞∑
N=0

m∏
ν=1

(
zNν+nν
ν

Nν !

)∫
· · ·
∫

d{N} exp [−βV ({N + n})] (7.10)

We note the different variables used to represent the canonical and grand-canonical
distribution functions, ρ and %, respectively.

7.3 Second-Order Perturbation Theory

For generality, it is convenient to consider the partition functions as functionals of the
eνµ. If φ is an arbitrary function of N , V, T and a functional of the eνη (or vνη), the
functional series expansion in powers of ∆eην = eην − e(0)

ην is given by

φ(N , V, T ) =
∞∑
j=0

 1

j!

(
m∑
ν=1

m∑
η≥ν

δνη

)j

φ


e=e(0)

(7.11)

δνη =

∫∫
dr1νdr2η ∆eνη(r1ν , r2η)

δ

δeνη(r1ν , r2η)

∣∣∣∣
N ,V,T

(7.12)

where the functional derivatives are taken at constant number of particles (as well as
constant volume and temperature). The standard formulation of PFT seeks to evaluate
the changes in φ as a function of the perturbation; however, this is clearly not applicable
when the perturbation diverges, which is why we use δeνµ and not vνµ directly.

For a 1-component system, this functional expansion yields, to second order

φ(N,V, T ) = φ0 +

∫∫
dr1dr2∆e(r1, r2)

δφ

δe(r1, r2)

∣∣∣∣
N ,e=e(0)

(7.13)

+
1

2!

∫∫∫∫
dr1dr2dr3dr4 ∆e(r1, r2)∆e(r3, r4)

δ2φ

δe(r1, r2)δe(r3, r4)

∣∣∣∣
N ,e=e(0)

and for a two-component (AB) system, with arbitrary and independent perturbations
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in the three pair potentials AA, AB, and BB, we have

φ(NA, NB, V, T ) = φ0 +

∫∫
dr1dr2 ∆eAA(r1, r2)

δφ

δeAA(r1, r2)

∣∣∣∣
N ,e=e(0)

(7.14)

+

∫∫
dr1ds1 ∆eAB(r1, s1)

δφ

δeAB(r1, s1)

∣∣∣∣
N ,e=e(0)

+

∫∫
ds1ds2 ∆eBB(s1, s2)

δφ

δeBB(s1, s2)

∣∣∣∣
N ,e=e(0)

+
1

2

∫∫∫∫
dr1dr2dr3dr4 ∆eAA(r1, r2)∆eAA(r3, r4)

δ2φ

δeAA(r1, r2)δeAA(r3, r4)

∣∣∣∣
N ,e=e(0)

+
1

2

∫∫∫∫
ds1ds2ds3ds4 ∆eBB(s1, s2)∆eBB(s3, s4)

δ2φ

δeBB(s1, s2)δeBB(s3, s4)

∣∣∣∣
N ,e=e(0)

+
1

2

∫∫∫∫
dr1dr2ds1ds2∆eAB(r1, s1)∆eAB(r2, s2)

δ2φ

δeAB(r1, s1)δeAB(r2, s2)

∣∣∣∣
N ,e=e(0)

+

∫∫∫∫
dr1dr2ds1ds2∆eAA(r1, r2)∆eBB(s1, s2)

δ2φ

δeBB(s1, s2)eAA(r1, r2)

∣∣∣∣
N ,e=e(0)

+

∫∫∫∫
dr1dr2dr3ds1∆eAA(r2, r3)∆eAB(r1, s1)

δ2φ

δeAA(r2, r3)eAB(r1, s1)

∣∣∣∣
N ,e=e(0)

+

∫∫∫∫
dr1ds1ds2ds3∆eBB(s2, s3)∆eAB(r1, s1)

δ2φ

δeBB(s2, s3)δeAB(r1, s1)

∣∣∣∣
N ,e=e(0)

As pointed out by Henderson and Barker, such a series expansion for F , derived in
the canonical ensemble, is “not useful for numerical computation . . . because it is valid
only for a finite system. To obtain results which are useful, one must take the thermo-
dynamic limit, and unfortunately, this involves [for the second order term] the unknown
asymptotic behaviour of the four-body distribution function when two of the molecules
involved are remote from the other two” [181]. For this reason, we will seek to express the
functional derivative in the canonical ensemble, in terms of their grand-canonical coun-
terparts, where the asymptotic behaviour of the n-body distribution functions presents
no difficulties. We therefore require a relationship between partial derivatives taken at
constant number of particles to those taken at constant chemical potential.

7.4 Ensemble Transformation

In deriving the relationships between derivatives in the different ensembles, we have not
used the functional formalism introduced above, but this is just a matter of notational
convenience; the results derived here for the partial derivatives are trivially extended
to the case of functional derivatives. We therefore consider a system in which the pair
potentials vνη(r; γνη) depend on a parameter γνη, such that γνη = 0 corresponds to a
reference potential and γνη = 1 to the potential of the system we wish to study. Re-
lations between derivatives in the different ensembles can easily be found by treating
the γνµ as additional thermodynamic variables. The procedure is similar to that used
in deriving the Kirkwood-Buff theory (Section 3.4.2), only now we want to establish a
relationship between the (µV T ) and (NV T ) ensembles, instead of (µV T ) and (NPT ).
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For simplicity, we denote the m(m + 1)/2 perturbation parameters (one for each dis-
tinct pair-potential) as the “vector” γ. In order, to distinguish the γ vector from the
m-dimensional vectors (N , n, µ) we use capital non-Greek letters to represent the
individual components, i.e. γX , γY .

7.4.1 Basic Properties

From the basic properties of partial derivatives, we have

• N , V,γ −→ µ, V,γ

∂

∂Nν

∣∣∣∣
N/Nν ,V,γ

−→
∑
η

(
∂µη
∂Nν

)
N/Nν ,V,γ

∂

∂µη

∣∣∣∣
µ/µη ,V,γ

(7.15a)

∂

∂V

∣∣∣∣
N ,γ

−→ ∂

∂V

∣∣∣∣
µ,γ

+
∑
η

(
∂µη
∂V

)
N ,γ

∂

∂µη

∣∣∣∣
µ/µη ,V,γ

(7.15b)

∂

∂γX

∣∣∣∣
N ,V,γ/γX

−→ ∂

∂γX

∣∣∣∣
µ,V,γ/γX

+
∑
η

(
∂µη
∂γX

)
N ,V,γ/γX

∂

∂µη

∣∣∣∣
µ/µη ,V,γ

(7.15c)

• µ, V,γ −→N , V,γ

∂

∂µν

∣∣∣∣
µ/µν ,V,γ

−→
∑
η

(
∂Nη

∂µν

)
µ/µν ,V,γ

∂

∂Nη

∣∣∣∣
N/Nη ,V,γ

(7.16a)

∂

∂V

∣∣∣∣
µ,γ

−→ ∂

∂V

∣∣∣∣
N ,γ

+
∑
η

(
∂Nη

∂V

)
µ,γ

∂

∂Nη

∣∣∣∣
N/Nη ,V,γ

(7.16b)

∂

∂γX

∣∣∣∣
µ,V,γ/γX

−→ ∂

∂γX

∣∣∣∣
N ,V,γ/γX

+
∑
η

(
∂Nη

∂γX

)
µ,V,γ/γX

∂

∂Nη

∣∣∣∣
N/Nη ,V,γ

(7.16c)

Where Nη denotes the average number of particles of type η in the grand-canonical
ensemble (Nη = 〈Nη〉 = kBT∂ ln Ξ/∂µη).

The following preliminary results will prove to be useful. Inserting µα into Eq. (7.16a)(
∂µα
∂µν

)
µ/µν ,V,γ

=
∑
η

(
∂Nη

∂µν

)
µ/µν ,V,γ

(
∂µα
∂Nη

)
N/Nη ,V,γ

(7.17)

δαν =
∑
η

AαηBην

we obtain a simple matrix equation which relates the derivatives of N and µ with respect
to each other. Inserting Nν into Eq. (7.15b) we have(

∂Nν

∂V

)
N ,γ

=

(
∂N ν

∂V

)
µ,γ

+
∑
η

(
∂N ν

∂µη

)
µ/µη ,V,γ

(
∂µη
∂V

)
N ,γ
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but the term on the lhs is zero, and the last term on the rhs can be expressed as a
function of the pressure, by using the definition of µη and P (Eq. (3.20))

(
∂N ν

∂V

)
µ,γ

=
∑
η

(
∂P

∂Nη

)
N/Nη ,V,γ

(
∂N ν

∂µη

)
µ/µη ,V,γ

%ν =
∑
η

(
∂P

∂Nη

)
N/Nη ,V,γ

(
∂N ν

∂µη

)
µ/µη ,V,γ

(7.18)

with %ν = N ν/V . Finally, if we insert µν into Eq. (7.16c), we obtain the following
relationship

(
∂µν
∂γX

)
µ,V,γ/γX

=

(
∂µν
∂γX

)
N ,V,γ/γX

+
∑
η

(
∂Nη

∂γX

)
µ,V,γ/γX

(
∂µν
∂Nη

)
N/Nη ,V,γ(

∂µν
∂γX

)
N ,V,γ/γX

= −
∑
η

(
∂µν
∂Nη

)
N/Nη ,V,γ

(
∂2kBT ln Ξ

∂µη ∂γX

)
µ/µη ,V,γ/γX

(7.19)

Summary:

Aνη =

(
∂µν
∂Nη

)
N/Nν

(7.20a)

Bνη =

(
∂Nν

∂µη

)
µ/µν

(7.20b)

with A B = I, where I is the unit matrix, so that

Aνη = (B−1)νη =
1

|B|
B†ην (7.20c)

where |B| and B† are the determinant and the cofactor matrix of B, respectively.

%ν = V −1
∑
η

Bνη
(
∂P

∂ρη

)
N/Nη

(7.20d)(
∂µν
∂γX

)
N

= −kBT
∑
η

Aνη

(
∂2 ln Ξ

∂µη ∂γX

)
µ/µη

(7.20e)
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Example: In the case of a 1-component system, Eq. (7.16a) reduces to

∂

∂µ
=

(
∂%

∂µ

)
∂

∂ρ
(7.21a)

and Eq. (7.20) takes the following simplified form(
∂P

∂ρ

)
= %

(
∂µ

∂%

)
≡ 1

%χT
= kBTS

−1(0) (7.21b)(
∂µ

∂γ

)
N

= −kBT
V

(
∂2 ln Ξ

∂ρ ∂γ

)
(7.21c)

where S(k) is the structure factor.

7.4.2 Free Energy Derivatives

We now use the results previously derived to compute the first and second-order free
energy derivatives needed in the perturbation calculations

First Order
Using the definition of the Legendre transformation between F and Ω (Eq. (3.26)), we
have(

∂F

∂γX

)
N ,V,γ/γX

= −
(
∂kBT ln Ξ

∂γX

)
N ,V,γ/γX

+
∑
ν

Nν

(
∂µν
∂γX

)
N ,V,γ/γX

and using Eq. (7.15c) we obtain

= −
(
∂kBT ln Ξ

∂γX

)
µ,V,γ/γX

−
∑
ν

(
∂µν
∂γX

)
N ,V,γ/γX

(
∂kBT ln Ξ

∂µν

)
µ/µν ,V,γ

+
∑
ν

Nν

(
∂µν
∂γX

)
N ,V,γ/γX

= −kBT
(
∂ ln Ξ

∂γX

)
µ,V,γ/γX

where we have assumed that Nν = Nν .

Second Order
By definition(

∂2F

∂γY ∂γX

)
N ,V,γ/{γX ,γY }

= −kBT
∂

∂γY

[(
∂ ln Ξ

∂γX

)
µ,V,γ/γX

]
N ,V,γ/γY

using Eq. (7.15c), we obtain

= −kBT
(
∂2 ln Ξ

∂γY ∂γX

)
µ,V,γ/{γX ,γY }

− kBT
∑
ν

(
∂µν
∂γY

)
N ,V,γ/γY

(
∂2 ln Ξ

∂µν ∂γX

)
µ/µν ,V,γ/γX
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and finally, from Eq. (7.20e), we arrive at

= −kBT
(
∂2 ln Ξ

∂γY ∂γX

)
µ,V,γ/{γX ,γY }

+ (kBT )2
∑
νη

(
B−1

)
νη

(
∂2 ln Ξ

∂µν ∂γX

)
µ/µν ,V,γ/γX

×
(
∂2 ln Ξ

∂µη ∂γY

)
µ/µη ,V,γ/γY

Summary:(
∂F

∂γX

)
N

= −kBT
(
∂ ln Ξ

∂γX

)
µ

(7.22a)(
∂2F

∂γY ∂γX

)
N

= −kBT
(
∂2 ln Ξ

∂γY ∂γX

)
µ

(7.22b)

+ (kBT )2
∑
νη

(
B−1

)
νη

(
∂2 ln Ξ

∂µν ∂γX

)
µ/µν

(
∂2 ln Ξ

∂µη ∂γY

)
µ/µν

Example: In the case of a 1-component system, Eqs. (7.22) take the following
form(

∂F

∂γ

)
N

= −kBT
(
∂ ln Ξ

∂γ

)
µ

(7.23a)(
∂2F

∂γ2

)
N

= −kBT
(
∂2 ln Ξ

∂γ2

)
µ

+ (kBT )2 %

V

(
∂ρ

∂P

)(
∂

∂ρ

∂ ln Ξ

∂γ

)2

(7.23b)

where we have used Eqs. (7.21a) and (7.21b) to relate ∂
∂µ

to ∂
∂ρ
. Furthermore,

since −kBT ∂ ln Ξ
∂γ

= 1
2
V %2

∫
drg(r)∂v(r)

∂γ
, we have

= −kBT
(
∂2 ln Ξ

∂γ2

)
µ

+N

(
∂ρ

∂P

)[
∂

∂ρ

(
1

2
%2

∫
drg(r)

∂v(r)

∂γ

)]2

= −kBT
(
∂2 ln Ξ

∂γ2

)
µ

+
1

4
βNS(0)

[
∂

∂ρ

(
%2

∫
dr g(r)

∂v(r)

∂γ

)]2

7.4.3 Grand-Potential Derivatives

As mentioned before, the results given in Eqs. (7.20) and (7.22) can be directly expressed
in terms of functional derivatives by identifying ∂

∂γX
←→ δ

δeX(r,s)
. We are thus left with

the task of evaluating the first and second order functional derivatives of ln Ξ with
respect to the eX(r, s). These computation is straightforward, but care must be taken
to correctly count all the terms appearing in the derivatives.
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First Order:
By definition (Eq. (7.8)), the first order functional derivative of the grand potential is
given by

eαβ(r, s)
δ ln Ξ

δeαβ(r, s)
=

1

Ξ

∞∑
N=0

(
m∏
ν=1

zNνν
Nν !

)∫
· · ·
∫

d{N}

 ∏
〈ν,η〉/(α,β)
〈i,j〉

eνη(riν , rjη)


× eαβ(r, s)

δ

δeαβ(r, s)

∏
〈i,j〉

eαβ(riα , rjβ)


The functional derivative appearing inside the integral will produce a delta function in
both variables, for each one of the eαβ functions; and since, upon integration, all terms
of the resulting sum are equivalent, we need only take one of them into account. If
α = β we have Nα(Nα − 1)/2 equivalent terms, and if not we we have NαNβ terms

eαβ(r, s) δ
δeαβ(r,s)

(∏
〈i,j〉 eαβ(r1α , r1β)

)
=
∏
〈i,j〉

eαβ(r1α , r2β)

×

{
Nα(Nα−1)

2
δ(r1α − r)δ(r2α − s) α = β

NαNβδ(r1α − r)δ(r1β − s) α 6= β

This can be expressed in terms of the two-body distribution function, Eq. (7.10), as

δ ln Ξ

δeαβ(r, s)
= cαβ e

−1
αβ(r, s)%

(2)
αβ(r, s) (7.25)

where

cαβ =

{
1
2

, α = β

1 , α 6= β
(7.26)

Second Order
By definition, the second order derivatives are given by

δ2 ln Ξ

δeνη(p, q) δeαβ(r, s)

≡ 1

Ξ

(
δ2Ξ

δeνη(p, q) δeαβ(r, s)

)
−
(

δ ln Ξ

δeαβ(r, s)

)(
δ ln Ξ

δeνη(p, q)

)
(7.27)

=
1

Ξ

[
δ

δeνη(p, q)

(
Ξ cαβ e

−1
αβ(r, s)%

(2)
αβ(r, s)

)]
− cαβcνηe−1

αβ(r, s)e−1
νη (p, q)%

(2)
αβ(r, s)%(2)

νη (p, q)

= −δανδβηδ(r − p)δ(s− q)cαβe
−2
αβ(r, s)%

(2)
αβ(r, s) + cαβe

−1
αβ(r, s)

δ%
(2)
αβ(r, s)

δeνη(p, q)

In total, we must evaluate seven different combinations (for the general case whenm ≥ 4)
for the functional derivatives of %(2)

αβ with respect to variations in eνη. We assume that
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α 6= β 6= ν 6= η, and to simplify the expressions, we will only explicitly write the part of
the configuration integral which is affected by the functional differentiation.

In what follows, all functional derivatives are taken with respect to the natural
variables for the grand-canonical ensemble, i.e. at constant µ, V , and T , unless stated
otherwise.

1. αα− αα
By definition,

δ%
(2)
αα(r, s)

δeαα(p, q)
=

δ

δeαα(p, q)

[
1

Ξ

∑
Nα>2

1

(Nα − 2)!

∫
d{Nα − 2}α

Nα∏
i<j

eαα(riα , rjα)

]
r1α→r

r2α→s

where the integral runs over all variables, except r1α and r2α , which are held at r
and s, respectively. The derivative will give two global terms: (1) from acting on the
partition function in the denominator and (2) from acting on the product of Boltzmann
factors inside the integral. Each of these can easily be expressed in terms of an n-body
distribution function (Eq. (7.10)) as follows

δ%
(2)
αα(r, s)

δeαα(p, q)
=

[
1

Ξ

∑
Nα>2

1

(Nα − 2)!

∫
d{Nα − 2}α

δ

δeαα(p, q)

Nα∏
i<j

eαα(riα , rjα)

]
r1α→r

r2α→s

− cααe−1
αα(p, q)%(2)

αα(p, q)%(2)
αα(r, s)

The terms inside square brackets will give four distinct contributions, depending on
whether or not the variables riα and rjα are integration variables: (a) one term for
(r1α , r2α), (b) (Nα− 2) terms for (r1α , rjα≥3), (c) (Nα− 2) terms for (r2α , rjα≥3), and (d)
(Nα − 2)(Nα − 3)/2 terms for all pairs (riα≥3, rjα>iα).

eαα(p, q)
δ%

(2)
αα(r, s)

δeαα(p, q)
= δ(r − p)δ(s− q)%(2)

αα(r, s) + [δ(r − p) + δ(s− p)] %(3)
ααα(r, s, q)

+ cαα
(
%(4)
αααα(r, s,p, q)− %(2)

αα(r, s)%(2)
αα(p, q)

)
(7.28)

The density derivatives for the other six cases can be computed in roughly the same
manner.

2. αα− αβ
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δ%
(2)
αα(r, s)

δeαβ(p, q)
=

δ

δeαβ(p, q)

[
1

Ξ

∑
Nα≥2

∑
Nβ≥0

1

(Nα − 2)!Nβ!

×
∫

d{Nα − 2}αd{Nβ}β
Nα∏
i=1

Nβ∏
j=1

eαβ(riα , rjβ)

]
r1α→r

r2α→s

=

[
1

Ξ

∑
Nα≥2

∑
Nβ≥0

1

(Nα − 2)!Nβ!

×
∫

d{Nα − 2}αd{Nβ}β
δ

δeαβ(p, q)

Nα∏
i=1

Nβ∏
j=1

eαβ(riα , rjβ)

]
r1α→r

r2α→s

− cαβe−1
αβ(p, q)%

(2)
αβ(p, q)%(2)

αα(r, s)

The functional derivative will give three distinct contributions: (a) Nβ terms for
(r1α , rjβ≥1), (b) Nβ terms for (r2α , rjβ≥1), and (c) Nβ(Nα − 2) terms for the pairs
(riα≥3, rjα≥1)

eαβ(p, q)
δ%

(2)
αα(r, s)

δeαβ(p, q)
= [δ(r − p) + δ(s− p)] %

(3)
ααβ(r, s, q) (7.29)

+ cαβ

(
%

(4)
αααβ(r, s,p, q)− %(2)

αα(r, s)%
(2)
αβ(p, q)

)
3. αα− ββ

δ%
(2)
αα(r, s)

δeββ(p, q)
=

δ

δeββ(p, q)

[
1

Ξ

∑
Nα≥2

∑
Nβ≥0

1

(Nα − 2)!Nβ!

×
∫

d{Nα − 2}αd{Nβ}β
Nβ∏
i<j

eββ(riβ , rjβ)

]
r1α→r

r2α→s

=

[
1

Ξ

∑
Nα≥2

∑
Nβ≥0

1

(Nα − 2)!Nβ!

×
∫

d{Nα − 2}αd{Nβ}β
δ

δeββ(p, q)

Nβ∏
i<j

eββ(riβ , rjβ)

]
r1α→r

r2α→s

− cββe−1
ββ%

(2)
ββ (p, q)%(2)

αα(r, s)

This time, the functional derivative only gives one contribution, the Nβ(Nβ−1)/2 terms
for the pairs (r1β≥1, rjβ>iβ)

eββ(p, q)
δ%

(2)
αα(r, s)

δeββ(p, q)
= cββ

(
%

(4)
ααββ(r, s,p, q)− %(2)

αα(r, s)%
(2)
ββ (p, q)

)
(7.30)
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4. αβ − αβ

δ%
(2)
αβ(r, s)

δeαβ(p, q)
=

δ

δeαβ(p, q)

[
1

Ξ

∑
Nα≥1

∑
Nβ≥1

1

(Nα − 1)!(Nβ − 1)!

×
∫

d{Nα − 1}αd{Nβ − 1}β
Nα∏
i=1

Nβ∏
j=1

eαβ(riα , rjβ)

]
r1α→r

r1β→s

=

[
1

Ξ

∑
Nα≥1

∑
Nβ≥1

1

(Nα − 1)!(Nβ − 1)!

×
∫

d{Nα − 1}αd{Nβ − 1}β
δ

δeαβ(p, q)

Nα∏
i=1

Nβ∏
j=1

eαβ(riα , rjβ)

]
r1α→r

r1β→s

− cαβe−1
αβ(q, q)%(2)(p, q)%

(2)
αβ(r, s)

The functional derivatives will give rise to four distinct terms: (a) a single term for the
pair (r1α , r1β), (b) (Nβ − 1) terms for the pairs (r1α , rjβ≥2), (c) (Nα − 1) terms for the
pairs (riα≥2, r1β), and (d) (Nα − 1)(Nβ − 1) terms for the pairs (riα≥2, rjβ≥2)

eαβ(p, q)
δ%

(2)
αβ(r, s)

δeαβ(p, q)
= δ(r − p)δ(s− q)%

(2)
αβ(r, s) (7.31)

+ δ(r − p)%
(3)
αββ(r, s, q) + δ(s− q)%

(3)
αβα(r, s,p)

+ cαβ

(
%

(4)
αβαβ(r, s,p, q)− %(2)

αβ(r, s)%
(2)
αβ(p, q)

)
5. αα− βν

δ%
(2)
αα(r, s)

δeβν(p, q)
=

δ

δeβν(p, q)

[
1

Ξ

∑
Nα≥2

∑
Nβ≥0

∑
Nν≥0

1

(Nα − 2)!Nβ!Nν !

×
∫

d{Nα − 2}αd{Nβ}βd{Nν}ν
Nβ∏
i=1

Nν∏
j=1

eβν(riβ , rjν )

]
r1α→r

r2α→s

=

[
1

Ξ

∑
Nα≥2

∑
Nβ≥0

∑
Nν≥0

1

(Nα − 2)!Nβ!Nν !

×
∫

d{Nα − 2}αd{Nβ}βd{Nν}ν
δ

δeβν(p, q)

Nβ∏
i=1

Nν∏
j=1

eβν(riβ , rjν )

]
r1α→r

r2α→s

− cβνe−1
βν (p, q)%

(2)
βν (p, q)%(2)

αα(r, s)

As with case (3), we only obtain one contribution from the functional derivative, the
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NβNν terms corresponding to the pairs (riβ≥1, rjν≥1)

eβν(p, q)
δ%

(2)
αα(r, s)

δeβν(p, q)
= cβν

[
%

(4)
ααβν(r, s,p, q)− %(2)

αα(r, s)%
(2)
βν (p, q)

]
(7.32)

6. αβ − αν

δ%
(2)
αβ(r, s)

δeαν(p, q)
=

δ

δeαν(p, q)

[
1

Ξ

∑
Nα≥1

∑
Nβ≥1

∑
Nν≥0

1

(Nα − 1)!(Nβ − 1)!Nν !

×
∫

d{Nα − 1}αd{Nβ − 1}βd{Nν}ν
Nα∏
i=1

Nν∏
j=1

eαν(riα , rjν )

]
r1α→r

r1β→s

=

[
1

Ξ

∑
Nα≥1

∑
Nβ≥1

∑
Nν≥0

1

(Nα − 1)!(Nβ − 1)!Nν !

×
∫

d{Nα − 1}αd{Nβ − 1}βd{Nν}ν
δ

δeαν(p, q)

Nα∏
i=1

Nν∏
j=1

eαν(riα , rjν )

]
r1α→r

r1β→s

− cανe−1
αν (p, q)%(2)

αν (p, q)%
(2)
αβ(r, s)

The functional derivative will give two distinct contributions: (a) Nν terms for the pairs
(r1α , rjν≥1) and (b) (Nα − 1)Nν terms for the pairs (riα≥2, rjν≥1)

eαν(p, q)
δ%

(2)
αβ(r, s)

δeαν(p, q)
= δ(r − p)%

(3)
αβν(r, s, q) (7.33)

+ cαν

[
%

(4)
αβαν(r, s,p, q)− %(2)

αβ(r, s)%(2)
αν (p, q)

]
7. αβ − νη

δ%
(2)
αβ(r, s)

δeνη(p, q)
=

δ

δeνη(p, q)

[
1

Ξ

∑
Nα≥1

∑
Nβ≥1

∑
Nν≥0

∑
Nη≥0

1

(Nα − 1)!(Nβ − 1)!Nν !Nη!

×
∫

d{Nα − 1}αd{Nβ − 1}βd{Nν}νd{Nη}η
Nν∏
i=1

Nη∏
j=1

eνη(riν , rjη)

]
r1α→r

r1β→s

=

[
1

Ξ

∑
Nα≥1

∑
Nβ≥1

∑
Nν≥0

∑
Nη≥0

1

(Nα − 1)!(Nβ − 1)!Nν !Nη!∫
d{Nα − 1}αd{Nβ − 1}βd{Nν}ν

× d{Nη}η
δ

δeνη(p, q)

Nν∏
i=1

Nη∏
j=1

eνη(riν , rjη)

]
r1α→r

r1β→s

− cνηe−1
νη (p, q)%(2)

νη (p, q)%
(2)
αβ(r, s)
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As with cases (3) and (5), we only obtain one distinct contribution from the functional
derivatives, the NβNν terms for the pairs (riβ≥1, rjν≥1), so that

eνη(p, q)
δ%

(2)
αβ(r, s)

δeνη(p, q)
= cνη

(
%

(4)
αβνη(r, s,p, q)− %(2)

αβ(r, s)%(2)
νη (p, q)

)
(7.34)
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Summary:
Finally, Eqs. (7.25), (7.27), and (7.28) – (7.34), can be expressed in the following
generalized form

eνµ(p, q)

cνµ

δ ln Ξ

δeνµ(p, q)

∣∣∣∣
µ

= %(2)
νµ (p, q) (7.35a)

eαβ(r, s)

cνηcαβ

δ2 ln Ξ

δeνη(p, q) δeαβ(r, s)

∣∣∣∣
µ

= c−1
νη

δ%
(2)
αβ(r, s)

δeνη(p, q)
(7.35b)

− δανδβηδ(r − p)δ(s− q)e−1
αβ(r, s)%

(2)
αβ(r, s)

− δαηδβνδ(r − q)δ(s− p)e−1
αβ(r, s)%

(2)
αβ(r, s)

eνη(p, q)

cνη

δ%
(2)
αβ(r, s)

δeνη(p, q)

∣∣∣∣∣∣
µ

= %
(4)
αβνη(r, s,p, q)− %(2)

αβ(r, s)%(2)
νη (p, q) (7.35c)

+ δανδβηδ(r − p)δ(s− q)%
(2)
αβ(r, s)

+ δαηδβνδ(r − q)δ(s− p)%
(2)
αβ(r, s)

+ (δανδ(r − p) + δβνδ(s− p)) %
(3)
αβη(r, s, q)

+ (δαηδ(r − q) + δβηδ(s− q)) %
(3)
αβν(r, s,p)

eνη(p, q)

cνη

δ%
(2)
αβ(r, s)

δeνη(p, q)

∣∣∣∣∣∣
µ

=
eαβ(r, s)

cαβ

δ%
(2)
νη (p, q)

δeαβ(r, s)

∣∣∣∣∣
µ

(7.35d)

where cαβ = 1− δαβ/2.
Practically the same results could have been obtained using the γ-perturbation
representation (which we used to derive the relationships between derivatives
in both ensembles), instead of considering the thermodynamic functions as
functionals of the interaction potentials. We have basically treated the two
representations as interchangeable (we derived Eq. (7.22) assuming a perturba-
tion given by the γ parameter); however, the results that are obtained for the
second order derivative are not exactly the same (an additional term involving
the second order derivative of the interaction potentials appears). This should
be taken into account when comparing our results with those given by Barker
and Henderson [36, 181], for the one-component case.

7.5 Case Study: A Two Component system (AB non-
additivity)

7.5.1 Model

We now focus on the two-component hard-sphere system with non-additive AB interac-
tions considered in Ref [7]. Let σA and σB be the hard-sphere diameters, the distances
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of closest approach for the three pairs are

σAA = σA

σBB = σB (7.36)

σAB =
1

2
(σA + σB)(1 + ∆)

where ∆ > 0 is the dimensionless non-additivity parameter. The hard sphere potentials
are given by

vνη =

{
∞, r < σAB

0, r > σAB; ν, η = A or B
(7.37)

For a perturbation calculation, the natural reference is evidently the additive hard-sphere
system (∆ = 0). The perturbation3 in the AB interactions is then

wAB(r) =


0, r < 1

2
(σA + σB)

∞, 1
2
(σA + σB) < r < σAB

0, r > σAB

(7.38)

and the so-called blip function is given by

∆eAB(r) =


0, r < 1

2
(σA + σB)

−1, 1
2
(σA + σB) < r < σAB

0, r > σAB

(7.39)

For what follows, we define the following functions

fAB(r, r′) =
∆eAB(r, r′)

e(0)(r, r′)
= e−βwAB(r,r′) − 1 (7.40a)

ΘAB(r, r′) = fAB(r, r′)gAB(r, r′) (7.40b)

7.5.2 Functional Expansion

For convenience, we will use r and s to denote the position vectors of A and B particles,
respectively, and p and q for arbitrary particles. To second order, the functional Taylor
expansion of the free energy for this non-additive AB system is given by (Eq. (7.14))

F = F0 +

∫∫
dr′1ds

′
1∆eAB(r′1, s

′
1)

δF

δeAB(r′1, s
′
1)

∣∣∣∣
N ,e=e(0)

+
1

2

∫∫∫∫
dr′1dr

′
2ds

′
1ds

′
2∆eAB(r′1, s

′
1)∆eAB(r′2, s

′
2)

× δ2F

δeAB(r′2, s
′
2) δeAB(r′1, s

′
1)

∣∣∣∣
N ,e=e(0)

(7.41)

3For clarity, and following Ref [7], we use w and not δv to denote the perturbation, so as to
differentiate it from a functional derivative.
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the corresponding expansion for the pair densities, to first order, is

ρX(p, q) = ρ
(0)
X (p, q) +

∫∫
dr′1ds

′
1∆eAB(r′1, s

′
1)

δρX(p, q)

δeAB(r′1, s
′
1)

∣∣∣∣
N ,e=e(0)

(7.42)

where X = AA,BB,AB. The functional derivatives appearing here will be evaluated in
the grand-canonical ensemble, allowing us to express the perturbation in terms of the
two, three, and four-body density functions of an open system. From Equations (7.35),
we have

eAB(r1, s1)
δ ln Ξ

δeAB(r1, s1)

∣∣∣∣
µ

= %AB(r1, s1) (7.43a)

eAB(r′1, s
′
1)
δ%AA(r1, r2)

δeAB(r′1, s
′
1)

∣∣∣∣
µ

=
(
δ(r1 − r′1) + δ(r2 − r′1)

)
%AAB(r1, r2, s

′
1) (7.43b)

+ %AAAB(r1, r2, r
′
1, s
′
1)− %AA(r1, r2)%AB(r′1, s

′
1)

eAB(r′1, s
′
1)
δ%BB(s1, s2)

δeAB(r′1, s
′
1)

∣∣∣∣
µ

=
(
δ(s1 − s′1) + δ(s2 − s′1)

)
%BBA(s1, s2, r

′
1) (7.43c)

+ %BBAB(s1, s2, r
′
1, s
′
1)− %BB(s1, s2)%AB(r′1, s

′
1)

eAB(r′1, s
′
1)
δ%AB(r1, s1)

δeAB(r′1, s
′
1)

∣∣∣∣
µ

= δ(r1 − r′1)δ(s1 − s′1)%AB(r1, s1) (7.43d)

+ δ(r1 − r′1)%ABB(r1, s1, s
′
1)

+ δ(s1 − s′1)%ABA(r1, s1, r
′
1)

+ %ABAB(r1, s1, r
′
1, s
′
1)− %AB(r1, s1)%AB(r′1, s

′
1)

eAB(r1, s1)
δ2 ln Ξ

δeAB(r′1, s
′
1) δeAB(r1, s1)

∣∣∣∣
µ

= −δ(r1 − r1′)δ(s1 − s′1)e−1
AB(r1, s1)%AB(r1, s1)

+
δ%AB(r1, s1)

δeAB(r′1, s
′
1)

∣∣∣∣
µ

(7.43e)

Using Eqs. (7.15c), (7.20), and (7.43a) the functional derivatives of the two-particle
density (for a closed system) can be expressed as

δρX(p, q)

δeAB(r1, s1)

∣∣∣∣
N

=
δ%X(p, q)

δeAB(r1, s1)

∣∣∣∣
µ

− kBTe−1
AB(r1, s1)

∑
ν=A,B

∑
η=A,B

(B−1)νη

(
∂

∂µν
%X(p, q)

)(
∂

∂µη
%AB(r1, s1)

)
and the functional derivatives of the free energy are given by Eq. (7.22), which in this
case reduces to

δF

δeAB(r1, s1)

∣∣∣∣
N

= −kBTe−1
AB(r1, s1)%AB(r1, s1) (7.44)

and
δ2F

δeAB(r2, s2) δeAB(r1, s1)

∣∣∣∣
N

(7.45)

= kBTe
−1
AB(r1, s1)

{
δ(r1 − r1)δ(s1 − s2)e−1

AB(r1, s1)%AB(r1, s1)− δ%AB(r1, s1)

δeAB(r2, s2)

∣∣∣∣
µ

+ kBTe
−1
AB(r2, s2)

∑
ν=A,B

∑
η=A,B

(B−1)νµ

(
∂%AB(r1, s1)

∂µν

)(
∂%AB(r2, s2)

∂µη

)}
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where

B =


(
∂NA

∂µA

)
µB

(
∂NA

∂µB

)
µA(

∂NB

∂µA

)
µB

(
∂NB

∂µB

)
µA


Let ∆1ρX be the first order correction to the canonical two-particle density, such

that

∆1ρX(p, q) =

∫∫
dr′1ds

′
1∆eAB(r′1, s

′
1)

δρX(p, q)

δeAB(r′1, s
′
1)

∣∣∣∣
N ,e=e(0)

(7.46)

=

∫∫
dr′ds′∆eAB(r′1, s

′
1)

δ%X(p, q)

δeAB(r′1, s
′
1)

∣∣∣∣
µ,e=e(0)

− kBT
∑
ν

∑
η

(B−1)νη

(
∂%

(0)
X (p, q)

∂µν

)

×
(

∂

∂µη

∫∫
dr′1ds

′
1fAB(r′1, s

′
1)%

(0)
X (p, q)

)
≡ ∆1%X(p, q) + ∆∞%X(p, q) (7.47)

which we write in terms of its grand-canonical counterpart ∆1%X(p, q) plus a correction
term ∆∞%X(p, q)

∆1%X(p, q) =

∫∫
dr′1ds

′
1∆eAB(r′1, s

′
1)

δ%X(p, q)

δeAB(r′1, s
′
1)

∣∣∣∣
µ,e=e(0)

(7.48)

∆∞%X(p, q) = −kBT
∑
ν

∑
ν

(B−1)νµ

(
∂%

(0)
X (p, q)

∂µν

)
(7.49)

×
(

∂

∂µη

∫∫
dr′1ds

′
1fAB(r′1, s

′
1)%

(0)
X (p, q)

)
The perturbation expansion for the free energy (Eq. (7.41)) can be expressed as F =
F (0) + F1 + F2, with

F1 = −kBT
∫∫

dr1ds1fAB(r1, s1)%
(0)
AB(r1, s1) (7.50a)

F2 =
1

2
kBT

∫∫
dr1ds1fAB(r1, s1)

[
fAB(r1, s1)%

(0)
AB(r1, s1)−∆1%AB(r1, s1)

−∆∞%AB(r1, s1)

]
(7.50b)

and that for the two particle density as ρX(p, q) = ρ
(0)
X (p, q)+∆1%X(p, q)+∆∞%X(p, q).

All the results given up to this point are exact; however, they are of no use since they
require the three and four-particle density functions. Therefore, we use the standard
Kirkwood superposition approximation to approximate these functions, in terms of the
two-particle densities %AA, %BB, and %AB.

We need to evaluate the first-order correction to the two-body distribution function
∆1%X(p, q), which appears in both the free energy (second order) and pair distribution
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function expansion (first order). From Eqs. (7.48) and (7.43) we have

∆1%AA(r1, r2)

%2
A

= %BgAA(r1, r2)

∫
ds′1ΘAB(r1, s

′
1)gAB(r2, s

′
1) (7.51a)

+ %BgAA(r1, r2)

∫
ds′1ΘAB(r2, s

′
1)gAB(r1, s

′
1)

+ %A%BgAA(r1, r2)

∫∫
dr′1ds

′
1ΘAB(r′1, s

′
1)

×
[
gAA(r1, r

′
1)gAB(r1, s

′
1)gAB(r2, s

′
1)gAA(r2, r

′
1)− 1

]
∆1%BB(s1, s2)

%2
B

= %AgBB(s1, s2)

∫
dr′1ΘAB(r′1, s1)gAB(r′1, ss) (7.51b)

+ %AgBB(s1, s2)

∫
dr′1ΘAB(r′1, s2)gAB(r′1, s1)

+ %A%BgBB(s1, s2)

∫∫
dr′1ds

′
1ΘAB(r′1, s

′
1)

×
[
gBB(s1, s

′
1)gAB(r′1, s1)gAB(r′1, s2)gBB(s2, s

′
1)− 1

]
∆1%AB(r1, s1)

%A%B
= ΘAB(r1, s1) (7.51c)

+ %BgAB(r1, s1)

∫
ds′1ΘAB(r1, s

′
1)gBB(s1, s

′
1)

+ %AgAB(r1, s1)

∫
dr′1ΘAB(r′1, s1)gAA(r1, r

′
1)

+ %A%BgAB(r1, s1)

∫∫
dr′1ds

′
1ΘAB(r′1, s

′
1)

×
[
gAA(r1, r

′
1)gAB(r1, s

′
1)gAB(r′1, s1)gBB(s1, s

′
1)− 1

]

where the terms in square bracket can be expanded in terms of h-bonds as

• AA

[
gAA(r1, r

′
1)gAB(r1, s

′
1)gAB(r2, s

′
1)gAA(r2, r

′
1)− 1

]
= hAA(r1, r

′
1) + hAB(r1, s

′
1) + hAB(r2, s

′
1) + hAA(r2, r

′
1)

+ hAA(r1, r
′
1)hAB(r1, s

′
1) + hAA(r1, r

′
1)hAB(r2, s

′
1) + hAA(r1, r

′
1)hAA(r2, r

′
1)

+ hAB(r1, s
′
1)hAB(r2, s

′
1) + hAB(r1, s

′
1)hAA(r2, r

′
1) + hAB(r2, s

′
1)hAA(r2, r

′
1)

+ hAA(r1, r
′
1)hAB(r1, s

′
1)hAB(r2, s

′
1) + hAA(r1, r

′
1)hAB(r1, s

′
1)hAA(r2, r

′
1)

+ hAA(r1, r
′
1)hAB(r2, s

′
1)hAA(r2, r

′
1) + hAB(r1, s

′
1)hAB(r2, s

′
1)hAA(r2, r

′
1)

+ hAA(r1, r
′
1)hAB(r1, s

′
1)hAB(r2, s

′
1)hAA(r2, r

′
1)
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• BB[
gBB(s1, s

′
1)gAB(r′1, s1)gAB(r′1, s2)gBB(s2, s

′
1)− 1

]
= hBB(s1, s

′
1) + hAB(r′1, s1) + hAB(r′1, s2) + hBB(s2, s

′
1)

+ hBB(s1, s
′
1)hAB(r′1, s1) + hBB(s1, s

′
1)hAB(r′1, s2) + hBB(s1, s

′
1)hBB(s2, s

′
1)

+ hAB(r′1, s1)hAB(r′1, s2) + hAB(r′1, s1)hBB(s′1, s2) + hAB(r′1, s2)hBB(s2, s
′
1)

+ hBB(s1, s
′
1)hAB(r′1, s1)hAB(r′1, s2) + hBB(s1, s

′
1)hAB(r′1, s1)hBB(s2, s

′
1)

+ hBB(s1, s
′
1)hAB(r′1, s2)hBB(s2, s

′
1) + hAB(r′1, s1)hAB(r′1, s2)hBB(s2, s

′
1)

+ hBB(s1, s
′
1)hAB(r′1, s1)hAB(r′1, s2)hBB(s2, s

′
1)

• AB[
gAA(r1, r

′
1)gAB(r1, s

′
1)gAB(r′1, s1)gBB(s1, s

′
1)− 1

]
= hAA(r1, r

′
1) + hAB(r1, s

′
1) + hAB(r′1, s1) + hBB(s1, s

′
1)

+ hAA(r1, r
′
1)hAB(r1, s

′
1) + hAA(r1, r

′
1)hAB(r′1, s1) + hAA(r1, r

′
1)hBB(s1, s

′
1)

+ hAB(r1, s
′
1)hAB(r′1, s1) + hAB(r1, s

′
1)hBB(s1, s

′
1) + hAB(r′1, s1)hBB(s1, s

′
1)

+ hAA(r1, r
′
1)hAB(r1, s

′
1)hAB(r′1, s1) + hAA(r1, r

′
1)hAB(r1, s

′
1)hBB(s1, s

′
1)

+ hAA(r1, r
′
1)hAB(r′1, s1)hBB(s1, s

′
1) + hAB(r1, s

′
1)hAB(r′1, s1)hBB(s1, s

′
1)

+ hAA(r1, r
′
1)hAB(r1, s

′
1)hAB(r′1, s1)hBB(s1, s

′
1)

7.5.3 Diagrammatic Representation

For convenience, we express Eqs.(7.51) using the standard diagrammatic representation,
in terms of g, h, and Θ bonds. We adopt the following notation, assuming that a colored
circle carries with it a density factor ρν and an integration over the position of the
corresponding particle.

−→ g-bond
−→ h-bond
−→ Θ-bond

−→ A particle
−→ B particle

−→ AB interaction
−→ AA interaction
−→ BB interaction
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where the reducible cluster diagrams are shaded in gray. Following Henderson
and Barker [181], we ignore these contributions, since one of the functions of the
correction term ∆∞%AB is to cancel these reducible cluster integrals. We have then
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• AA

∆1%AA(r1, r2)
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eliminating the reducible cluster integrals we obtain
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• BB

∆1%BB(s1, s2)
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again, eliminating the reducible cluster diagrams gives

∆1%BB(s1, s2)

ρ2
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These high-dimensional cluster integrals can be evaluated with the method of Attard
and Patey [182, 183, 184], who use a series expansion in terms of Legendre polynomials,
which significantly reduces the complexity of the calculations.

7.6 Conclusions

Motivated by the results obtained in the previous chapter, we have attempted to de-
velop a perturbation theory which would allow us to compute the free energies and
radial distribution functions of a non-additive hard-sphere system (to first order). We
have re-derived the second order perturbation theory of Barker and Henderson, for the
general case of a multi-component system and have shown how such a theory could be
used to compute the first(second)-order correction to the free energy (radial distribution
functions) of a two-component system (A and B particles) with non-additive A-B inter-
actions. The long-term goal of this project is to derive non-additive corrections to the
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standard MSA theory used to describe charged systems. We expect this to be of great
use, in particular for electrolyte mixtures, where the non-additivity provides a natural
description for the specific interactions among distinct cation-anion pairs.
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8.1 Introduction

So far we have been primarily interested with the equilibrium thermodynamic and struc-
tural properties of electrolyte solutions. In this chapter we propose to study the trans-
port properties, in particular the viscosity. Among the different transport coefficients
of ionic solutions, the viscosity is probably the most interesting, as it is the least under-
stood. One could go as far as to say that no significant improvements have been made
to the pioneering work presented by Onsager, Fuoss, and Falkenhagen almost a century
ago (1930s) [9]; contrary to the other dynamic properties, such as the mutual- and self-
diffusion or the conductivity. These classical theories, based on the simple point-charge
model of Debye and Hückel, provide exact limiting laws for the concentration variation
of the transport properties, which correctly predict the increase in the diffusion, con-
ductivity, and viscosity of electrolyte solutions as a function of the salt concentration c.

168
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However, these laws are only valid in the very dilute regime, and are unable to properly
describe the ion specificity (in particular, because the influence of the ion size is not
considered). As mentioned before, the limiting laws only provide for the

√
c dependence

of the transport properties (consequence of the charged nature of the system). Several
successful attempts at extending the validity of such implicit solvent descriptions have
been made over the years: The effect of the ion size on the conductance was studied by
Onsager and Fuoss (1950s) [185], and Turq and Micheletti have done the same for the
self-diffusion (1970s) [186, 187]. More recently (2005), a study by Dufrêche et al [188],
which coupled the Smoluchowsky theory to the MSA solution for the equilibrium pair
correlation, has provided simple analytical expressions for the mutual- and self-diffusion
coefficients, as well as for the electric conductivity coefficient, which are in very good
agreement with the experimental values up to molar concentrations. A similar theory
for the viscosity has yet to be proposed.

For a symmetric electrolyte, the Onsager-Fuoss-Falkenhagen Limiting Law is given
by

η(c) = η(0) +
κD(c)ζ0

480π
(8.1)

where η(0) is the viscosity of the pure solvent, κD is the inverse Debye screening length,
and ζ0 is the friction coefficient at infinite dilution. This last term can be related to
the (infinite dilution) diffusion coefficient, by means of the well known Einstein relation
ζ0 = kBT/D0. This contribution is seen to be particularly small, due to the factor
of 480π which appears in the denominator. As expected, experimental measurements
show that this term is only relevant at very low concentrations. At higher concentrations
(from 10−2 M to molar concentrations) the dominant contribution is linear in c, so that

ηex ≡ η(c)− η(0) = A
√
c+Bc (8.2)

It is this B term, the so-called Jones-Dole coefficient [189], which proves to be prob-
lematic, as no satisfactory (microscopic) theory has been proposed which manages to
explain the experimental values. This B term, which is observed to be additive (i.e.
B = B+ +B− for a simple electrolyte), is a fundamental property of the ion specificity.
In particular, no quantitative explanation has been given for the fact that this B coeffi-
cient is negative for some ions, and positive for others [1, 42, 154, 190]. This specificity
in the B coefficient is interpreted on the basis of the structure breaking nature of the
former, and the structure making effect of the latter; but again, no theory has been able
to explanation such a simple experimental observation. The experimental values of B for
Li+, Na+, K+, and Cl− are given in Table 8.1. We note that all the microscopic theories
of the viscosity of electrolytes predict positive values for the Jones-Dole B coefficient,
in stark contrast to the experimental results [42, 9, 10].

Ion B(dm3/mol)
Li+ 0.146
Na+ 0.085
K+ −0.009
Cl− −0.005

Table 8.1: Experimental Jones-Dole B coefficients [1].
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In the case of neutral (colloidal) particles in suspension, the linear term for the excess
viscosity (i.e. the B coefficient) was first calculated by Einstein in 1906 [191, 192], who
showed that

η = η(0)(1 + 2.5φ) (8.3)

where φ = ρi Vi is the volume fraction of the solute (ρi and Vi its density and volume,
respectively)1. From this relation, we see that B ∝ Vi. In the case of ions, this approach
clearly fails, as ions with negative partial volumes (i.e Li+ and Na+) have positive B
coefficients; and ions with positive partial volumes may have negative B coefficients (i.e.
K+). This apparent paradox for the viscosity of electrolytes is not yet fully understood.

A first step towards providing a clear microscopic description for the concentration
dependence of the viscosity of electrolytes was taken by Chandra and Bagchi [10], who
were able to recover (exactly) the Falkenhagen law using a Mode Coupling Theory
(MCT) approach [17, 193]. In this chapter, we propose to use the same framework to
study the ion-solvent contributions to the viscosity. In what follows, we give a brief
introduction to the Mori-Zwanzig formalism [194, 195] which lies at the basis of MCT.
Then, generalizing the work of Chandra and Bagchi [10], we show how this theory can be
applied to study the ion-solvent contributions to the viscosity, in an attempt to provide
a microscopic understanding of their ion specificity.

8.2 Mori-Zwanzig Projector Operator Formalism

Short-time contribution
Binary, ternary, . . . particle collisions

Long-time tail
Hydrodynamic interactions

CAB(t)

t0

Figure 8.1: Schematic representation of the domain separation in a time correlation
function, between the short-time (kinetic) and the long-time (hydrodynamic) contribu-
tions.

The Green-Kubo formula for the viscosity can be written in q-dependent form as [17]

η = lim
ε→0

lim
q→0

1

V kBTq2

∫ ∞
0

dt
〈
J̇x(q, t)J̇x(−q, 0)

〉
eiεt (8.4a)

where Jx =
∑

imivi,xe
−iq.ri is the transverse current (the projection of the particle cur-

rent perpendicular to the wave-vector q), assuming that q = qẑ. What is missing is a
1The original publication [191], which appeared in 1906 (right after his annus mirabilis) does not give

the correct numerical prefactor (1 instead of 2.5); the correct result was only published in 1911 [191].
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theory that allows us to compute the time self-correlation functions (for the off-diagonal
components of the shear-stress tensor or the transverse current) appearing in this inte-
gral. The simplest solution is to use a Taylor time series expansion around the value at
t = 0, where the n-th term will give the contribution arising from n-body collisions [17].
This approach works well in the case of a gas, but it is entirely unsuitable for describing
the behaviour of a liquid, in which the long-time, long-wavelength, hydrodynamic col-
lective motion of the particles becomes important. This is represented by a persistent
long-time tail in the time correlation functions, which is schematically represented in
Figure 8.1. It is clear that while the short-time behaviour of the correlation functions
can be represented in terms of kinetic contributions, arising from particle collisions, the
long-time behaviour must be treated differently. One way of doing this, is to use the
Mori-Zwanzig projector operator formalism, to which we now turn.

The Mori-Zwanzig technique, which is rigorously exact, allows us to rewrite the Liou-
ville equation, for an arbitrary set of dynamical variables A, in the form of a generalized
Langevin equation (i.e. a Langevin equation with memory). This provides us with a
convenient method for evaluating the time evolution of the dynamical variables A, as
well as their time correlation functions CAA(t). Furthermore, this approach naturally
introduces the concept of a set of “fast” variables, at the origin of the random force in
the Langevin equation, which evolve on a completely different time-scale from the “slow”
variables A. This is precisely the separation we are looking for in order to evaluate the
long-time contributions to the viscosity. The only issue is to choose the appropriate
“slow” variables contributing to the viscosity.

Let A be the dynamical variable of interest, its time evolution is governed by the
Liouville equation (Eq. (3.8))

A(t) = eiLtA(0) (8.5a)

Ȧ(t) = iLA(t) (8.5b)

We define a projector P , over the subspace spanned by A = A(0), by its action on
another dynamical variable B(t) as

PB(t) ≡ 〈B(t)A∗〉〈AA∗〉−1A (8.6)

If I is the identity operator, we can also define the orthogonal operator Q by

Q ≡ I− P (8.7)

These projectors essentially separate out the parts of B(t) which depend on A from
those which do not; we thus speak of the parallel and orthogonal components of B(t)
(with respect to A) within the multi-dimensional Hilbert space of all possible dynamical
variables.

Using this formalism, one can transform Eq. (8.5) into a generalized Langevin equa-
tion of the form [193, 194, 196]

dA(t)

dt
= iΩA(t)−

∫ t

0

dτ K(τ)A(t− τ) + f(t) (8.8)

where the first two terms on the right hand side give the contributions to the time
evolution of A(t) which depend on A itself (as well as its past values), while the last term
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gives the contributions arising from the variables orthogonal to A. We have introduced
three new functions Ω, K(t), and f(t), which are the frequency, the memory function,
and the random force2, respectively. They are defined as

iΩ ≡
〈
Ȧ,A∗

〉
〈A,A∗〉−1 (8.9a)

K(t) ≡ 〈f(t), f ∗〉〈A,A∗〉−1 (8.9b)

f(t) ≡ eiQLtQȦ = eiQLQtiQLA (8.9c)

Usually, Ω is equal to zero, unless we consider a set of dynamical variables Ai which ex-
hibit collective oscillations (propagation) among themselves3. The definition of the ran-
dom force f(t), whose time evolution is dictated by the anomalous propagator exp [iQLt]
(instead of the standard Liouville propagator exp [iLt]), guarantees that it is orthogonal
to A at all times

〈f(t),A∗〉 = 0 (8.10)

Therefore, by multiplying Eq. (8.8) by A∗ and taking the ensemble average, we obtain
the following formula for the time correlation function

dCAA
dt

= iΩCAA(t)−
∫ t

0

dτ K(τ)CAA(t− τ) (8.11)

8.3 Mode - Coupling Theory for the Viscosity

We base our study on the MCT for the viscosity proposed by Geszti [197] to study
the liquid-glass transition of simple liquids. This theory was later applied to electrolyte
solutions by Chandra and Bagchi [10], who where able to exactly derive the Falkenhagen
expression for the ionic contribution to the viscosity. We propose to do the same to study
the concentration of the solvent-solvent contribution to the viscosity. We choose as the
slow “modes” Ai the hydrodynamic variables for the particle density and current

AX = JX =
∑
i

mivi,αe
−iq.ri , X = x, y, z (8.12a)

Aα = ρα(q) =
∑
i∈α

e−iq.ri (8.12b)

where α runs over the different particle types (solvent and solute). This differs from
the choice of Chandra and Bagchi, who use the total charge density (for an implicit
solvent system) as a slow variable for the projection. Also, we consider the density of
each species independently (solvent and solute particles). Thus, we are interested in
studying the subspace A spanned by the six variables A

A = (Ax, Ay, Az, A0, A1, A2) (8.13)

2Although not physically a force, f(t) is referred to as one, in reference to the corresponding term
appearing in the Langevin equation for the velocity of a Brownian particle.

3For simplicity we have only considered the single variable case, but the generalization to the many-
variable case is straightforward: it suffices to write the equations in matrix form.
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where the indices 0, 1, and 2 refer to the solute (water), the cation, and the anion,
respectively. With this choice, Mori has shown that one can rewrite the Green-Kubo
expression for the viscosity as

η = lim
ε→0

lim
q→0

1

V kBTq2

∫ ∞
0

dt
〈[
QJ̇x(q, t)

] [
QJ̇x(−q, 0)

]〉
e−εt (8.14)

= lim
ε→0

lim
q→0

1

q2V

∫
dt 〈[QLJx(−q)][ eiQLQt−εtQLJx(q) ]〉

where, as before, Q = I− P is the projector onto the subspace orthogonal to A, and P
the projector onto A.

The first approximation that is usually made is to replace the full evolution operator
by its projection over the slow variables only, we thus take

exp [iQLQt− εt] ' P exp [iQLQt− εt]P

Furthermore, by using a Gaussian approximation4, the resulting expression for η can
be written solely in terms of binary products of the basic variables: JXJX ′ and ραρβ.
Finally, since the contribution from the density-density terms (the density modes) is
expected to be much more important than those of the current-current terms (which
decay much faster), the latter can be neglected, and then the viscosity can be expressed
as

ηρρ =
∑
αβ

ηρραβ (8.15)

with α, β referring to the particle species (in our case the water and the ions), and

ηρραβ =
kBT

60π2

∫ ∞
0

dq q4
S ′αα(q)S ′ββ(q)

S2
αα(q)S2

ββ(q)

∫ ∞
τ

dt F 2
αβ(q, t) (8.16)

where a prime denotes a partial derivative with respect to q, and the notation ηρραβ is
used to stress the fact that we only considered the density (ρ) modes within the MCT
calculations. In this last equation, Sαβ(q) and Fαβ(q) refer to the structure factor and
the intermediate scattering function, respectively. They are defined in terms of the
density-density correlation functions as

Sαβ(q) =
1√
NαNβ

〈δρα(q)δρβ(−q)〉 (8.17a)

Fαβ(q, t) =
1√
NαNβ

〈δρα(q, t)δρβ(−q, 0)〉 (8.17b)

such that Fαβ(q, 0) = Sαβ(q). As mentioned before, this approach allows us to take into
account the long-time (hydrodynamic) contributions to the viscosity; the short-time
contributions due to the particle collisions, which give rise to a binary term ηB, must
be computed separately. This is why the lower limit in the time integral is given by
a characteristic time τ , which marks the transition between the kinetic and collective
motion. Thus, the complete expression for the viscosity becomes

η = ηB + ηρρ (8.18)
= ηB + ηρρsolvent−solvent + ηρρsolvent−ion + ηρρion−ion

4Assuming that the JX and ρα variables are propagated independently of each other [17, 198].
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The ion-ion contribution ηρρion−ion is similar to the one studied in detail by Chandra and
Bagchi [10], who show that the lowest order term (as given by the MCT calculations)
is able to reproduce the correct limiting law. At higher concentrations, although they
obtain a significant increase with respect to the limiting value, they still considerably
underestimate the viscosity. We believe that this is due to the fact their theory only takes
into account the ion/ion interactions. In order to provide a more suitable description of
the excess viscosity, it is thus necessary to consider the molecular details of the solvent-
solvent and solvent-ion correlations. As a first approximation, given the fact that we
are interested in understanding the linear behaviour (the Jones-Dole B coefficient), we
consider only the former5, such that

η ' ηB + ηρρsolvent-solvent + ηρρion-ion (8.19)

8.4 The Procedure

8.4.1 Calculation of the Binary Term

To compute the binary (collision) contributions to the viscosity, we use the standard
kinetic theory of gases, within the Enskog approximation, to describe the molecular
collisions. We thus assume that over these short time-scales, our system (water +
cations + anions) can be represented as a dense hard-sphere fluid. As given originally
by Enskog [199], the theory is only applicable to pure fluids, but Tham and Gubbins
have provided a generalization for multi-component systems [200]. They obtain the
following for the viscosity

ηB =
1

2

∑
i

ρikBTb
(0)
i

(
1 +

4

5

∑
j

Mjib
∗
ijgij

)
(8.20)

+
4

15

∑
ij

[
2πkBT

mimj

mi +mj

] 1
2

ρiρjgijσ
4
ij

where i, j run over the distinct species in the system,Mij, b∗ij, σij (the contact diameter),
and gij (the radial distribution function at contact) are given by

Mij =
mi

mi +mj

σij =
1

2
(σi + σj) (8.21)

b∗ij =
2

3
πρjσ

3
ij gij = gij(σij)

and b0
j is defined through the following matrix equation

∑
j

Hijb
0
j = Ki (8.22)

5One can show that, to first order, ηρρion-solvent is proportional to c
2 (where c is the salt concentration).
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with

Hij =
∑
k

σ2
ikρiρkgik

(mi +mk)
3
2

(
2πkBTmk

mi

) 1
2

×
(

40

3
miδij + 8mkδij −

16

3
miδik

)
(8.23)

ki = 5ρi

[
1 +

4

5

∑
j

Mjib
∗
ijgij

]

For a binary electrolyte, which is the case we will consider here, we must thus specify
the effective hard-sphere diameters of the water (0), the cation (1), and the anion (2),
as well as the values of the radial distribution functions at contact. These parameters
are deduced from MD simulation results. The water-water and water-ion parameters
are taken directly from the distance and height of the first peak in the corresponding
radial distribution functions. Due to the difficulty of accurately measuring the ion-
ion correlations at low concentrations, the ionic values are approximated by assuming
additivity of the hard-sphere diameters and ignoring the ion-ion correlations, so that

σii = 2σ0i − σ00 i, j = 1, 2 (8.24a)

σ12 =
1

2
(σ11 + σ12)

gij = 1 (8.24b)

for the radial distribution functions at contact. As the dominant contributions will come
from the water-water and water-ion collisions, Eq. (8.24) is easy enough to justify: it
gives the correct water-ion contact distances (with respect to the simulations), under the
additivity constraints imposed by the Enskog theory. For the low concentration regime
we are interested in, the ion-ion collisions will be practically non-existent, which means
that the exact values of the ion-ion gij should not be relevant.

8.4.2 Calculation of the Mode-Coupling Term

Solvent-Solvent Contribution
From Eq. (8.16), we see that the water-water contribution to the viscosity is given by

ηρρ00 =
kBT

60π2

∫ ∞
0

dq q4

(
S ′ 200(q)

S4
00(q)

)∫ ∞
τ

dt F 2
00(q, t) (8.25)

While the structure factors S00(q) are easily obtained during a simulation, we must resort
to some approximate theory in order to compute the intermediate scattering function
F00(q, t). To this end, we assume that the decay of the water-water density fluctuations
is given by the following mean-field expression [198]

F00(q, t) = S00(q) exp
(
−D0(q)q2t

)
(8.26)

where D0(q) = D0/S00(q) (D0 is the self-diffusion coefficient of water). Under this
approximation, the time integral in Eq. (8.25) can be performed analytically, and we
are left with the following expression

ηρρ00 =
kBT

60π2

∫ ∞
0

dq q4

(
R00(q)

S00(q)

)2
exp [−2D0(q)q2τ ]

2D0(q)q2
(8.27)
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where R00 = S ′00 = ∂S00(q)/∂q. In order to study the dependence on the salt concen-
tration c, we perform a series expansion of S00(q) around its value at infinite dilution
S

(0)
00 (q)

S00(q) = S
(0)
00 (q) + cδS00 +O(c2) (8.28)

where, by definition, the first order correction is given by

δS00 =
∂S00(q)

∂c

∣∣∣∣
c=0

(8.29)

=
∂S00(q)

∂c1

∣∣∣∣
c1=0

+
∂S00(q)

∂c2

∣∣∣∣
c2=0

with similar expressions for R00(q). Inserting these relations into Eq. (8.27), we obtain

ηρρ00 =
kBT

60π2

∫ ∞
0

dq q4

(
R

(0)
00 (q)

S
(0)
00 (q)

)2 exp
[
−2D0/S

(0)
00 (q)q2τ

]
2D0/S

(0)
00 (q)q2

(8.30)

×
(
1 + c(∆Q+ ∆F ) +O(c2)

)
where ∆Q and ∆F give the (linear) correction terms due to the changes in the water
density fluctuations, and the manner in which they decay, induced by the presence of
the salt

∆Q = 2
δR00(q)

R
(0)
00

− 4
δS00(q)

S
(0)
00 (q)

(8.31a)

∆F =
δS00(q)

S
(0)
00 (q)

(
3 + 2D0/S

(0)
00 (q)q2τ

)
(8.31b)

Ion-Ion Contribution
The ion-ion contributions to the viscosity can be expressed as

ηρρion-ion =
∑
i,j

ηρρij i, j = 1, 2 (8.32)

with ηρρij given by Eq. (8.16). We follow the same method proposed by Chandra [10], and
assume a continuum (implicit-solvent) model when computing these ion-ion terms. As
before, we require some approximate theory to relate the intermediate scattering func-
tions Fij(q, t) to the structure factors Sij(q). Using a time-dependent density-functional
description, one obtains the following [10]∑

γ

(
(s+ q2Dα)δαγ − q2Dα

√
ραργcαγ(q)

)
F̂γβ(q, s) = Sαβ(q) (8.33)

where F̂ (q, s) is the Laplace transform of F (q, t). This matrix equation is trivially solved
to yield

F (q, s) = M−1(q, s)S(q) (8.34)

with

Mαβ = (s+ q2Dα)δαβ − q2Dα
√
ραρβcαβ(q) (8.35)
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For the numerical calculations, we use the MSA solution for the structure factors, and
the Laplace inversion required to obtain F (q, t) is performed using the Gaver-Wynn-
Rho method (see Appendix D). The parameters used for this charged hard-sphere
model are the same as those used to compute the binary term (themselves derived from
MD simulations).

8.5 Results

8.5.1 Molecular Dynamics Simulations

We have chosen to study the viscosity of three distinct chloride salts: Li+-Cl−, Na+-
Cl−, and K+-Cl−. In order to determine the various parameters needed for our Mode-
Coupling calculations, we have performed molecular dynamics simulations for the single-
ion (Li+, Na+, K+, and Cl−) and binary salt (Li+-Cl−, Na+-Cl−, K+-Cl−) solutions at
two distinct concentrations, as well as for bulk water. All the systems consists of 2048
total molecules (water + ions), with 0, 12, or 24 ions (ion pairs in the case of the
binary salt simulations), corresponding to a concentration of c = 0 M, c ' 0.32 M,
and c ' 0.65 M, respectively. The simulations are first equilibrated within the NPT
ensemble, in order to fix the density of the solution, and a subsequent NV T simulation is
performed for data gathering purposes6. We use the same force-fields as in Section 5.3.1
(Dang-Chang for the ions and SPC/E for the water molecules).

The simulation results can be divided into two sets: (1) those used to determine
the hard-sphere parameters needed to compute the binary Enskog contribution to the
viscosity (the densities, diameters, and radial distribution functions at contact) and
(2) those used to determine the mode-coupling term (δR00 and δS00). The former are
obtained from the average densities of the NPT simulations and the radial distribution
functions (NPT or NV T ), while the latter can be estimated from the difference between
the structure factors obtained at two different concentrations

Water Density
In Figure 8.2, we show the average water density obtained from NPT simulations at
three different ion (salt) concentrations. Within this (low) salt concentration regime,
the water density is seen to vary linearly with the salt concentration, as expected. Fur-
thermore, by comparing the single-ion and binary salt results, we see that the variation
can also be considered to be additive (with respect to the cation/anion values). If
ρ

(0)
wat = 55.14 M is the density of bulk SPC/E water, then the water density (for a given

salt concentration) will be given by the following linear relationship

ρwat(c) = ρ
(0)
wat + c α (8.36)

where α is a salt-specific parameter

α =


−1.2 Li+-Cl−

−1.1 Na+-Cl−

−1.8 K+-Cl−
(8.37)

6As expected, the results are (within error bars) the same in both ensembles.
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Figure 8.2: Average water density as a function of ion concentration obtained from
NPT simulations. (right) single-ion and (left) binary X+-Cl− salt simulations.

Recalling the Euler relation for the partial (molar) volumes, Eq. (3.133), we have,
for the single-ion case

V = nwatV wat + nionV ion (8.38)

where nwat and nion are the number of moles of water and ions, respectively. Assuming
that the partial volumes are concentration independent, such that V wat = 1/ρ

(0)
wat, our

simulation data can be used to determine the V ion. The partial molar volumes of the
salt V salt (which are the experimentally measurable quantities) are then easily obtained,
since V salt = V cation +V anion. The values we have obtained are given in Table 8.2, along
with the experimental values given by Marcus [1]. We observe a shift for the single-ion
values, since these depend on the reference state, but the values for the salt show good
agreement.

Ion V MD V EXP

Li+ −0.59 −7.3
Na+ −2.92 −7.6
K+ 7.58 2.6
Cl− 19.32 24.2

Salt V MD V EXP

Li+-Cl− 18.7 16.9
Na+-Cl− 16.4 16.6
K+-Cl− 26.9 26.8

Table 8.2: Single-ion (left) and salt (right) partial molar volumes computed from MD
simulations. The experimental results were taken from Ref. [1]. All values are given in
cm3.mol−1.

Radial Distribution Functions at Contact
In Figure 8.3, we give the variation of the water-water radial distribution functions at
contact, as a function of the ion (salt) concentration, obtained from NV T simulations.
As before, the values are seen to be linear and additive. If g(0)

wat-wat(σwat-wat) = 3.095 is the
value at contact for the pure solvent, the variation with respect to the salt concentration
is given by

gwat-wat(σwat-wat) = g
(0)
wat-wat(σwat-wat) + c β (8.39)

with

β =


−0.10 Li+-Cl−

−0.14 Na+-Cl−

−0.08 K+-Cl−
(8.40)
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The value of the ion-water radial distribution functions gwat-ion(σwat-ion) shows practically
no variation at low salt concentration, and as a first approximation, we can consider
them be equal to the infinite dilution limit

gwat-ion(σwat-ion) =


14.31 Li+

7.25 Na+

4.30 K+

3.80 Cl−

(8.41)

As mentioned before, given the difficulty in accurately measuring the ion-ion correlations
within finite concentration simulations, and the fact that we are only interested in the
linear corrections (at low concentrations), we take gion-ion = 1.
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Figure 8.3: The water-water radial distribution function at contact as a function of ion
(salt) concentration obtained from NV T simulations. (right) single-ion and (left) binary
salt simulations.

Effective Hard-Sphere Diameters
The effective hard-sphere contact diameters are obtained from the distances to the first
peaks in the radial distribution functions. These values show no considerable variation
with salt concentration, allowing us to consider them as constant. A value of σwat-wat =
2.745 Å is obtained for the diameter of the water molecules (this corresponds to the
distance between oxygen atoms). Finally, the ion diameters are deduced from the water-
ion and water-water contact distances. These results are summarized in Table 8.3.

Ion σwater-ion σion-ion
Li+ 1.96 1.175
Na+ 2.45 2.155
K+ 2.82 2.895
Cl− 3.21 3.675

Table 8.3: Ion-water and ion-ion contact distances obtained from MD simulations.
The former are obtained directly from the simulations (through the radial distribution
functions), while the latter are deduced assuming additivity of the contact diameters
(Eq. (8.24)).

Structure Factors
In Figure 8.4 we show the structure factors obtained from the four different single-ion
simulations at the lowest salt concentration considered (c ' 0.32 M). Both the results
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obtained from the direct calculation, as well as those given by the Fourier transform of
the radial distribution functions are presented. The agreement between the two is seen
to be excellent, except for small values of k, where numerical errors start to become
important. Fortunately, the dominant contribution of the density modes (water-water)
we are interested in, comes from intermediate length scales 1.5 ≤ k ≤ 4, at which the
two routes give the same results.
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Figure 8.4: Structure factors obtained from single ion NV T simulations at c '
0.32 M (2036 water molecules + 12 ions). (symbol) direct computation and (dashed
lines) Fourier transform data.

The water-water structure factors7 obtained from the two finite concentration (single-
ion) simulations are used to estimate the concentration derivative δS00 (Eq. (8.29)). Let
∆±S00 be the difference in structure factors obtained from concentrations at c± and
c± + ∆c±

∆±S00 = S00(c± + δc±)− S00(c±) (8.42)

We approximate δS00 as

δS00 ≈
∆+S00

∆c+

+
∆−S00

∆c−
(8.43)

7In practice, these are taken to be the oxygen-oxygen structure factors.
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The values obtained for c± = 0 and 0.32 M , with ∆±c ' 0.32 M in both cases, show
no significant variation. The results obtained for the latter, which are the ones we have
used in the calculations, are presented in Figs. (8.5) and(8.6), for ∆±S00(k) and δS00(k),
respectively.
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Figure 8.5: Difference between the water-water structure factors ∆S00 obtained at
c = 0.65 and c = 0.32. (symbol) direct calculation and (dashed-line) Fourier transform
data.

For ∆±S00(k), we have presented the values obtained from a direct calculation of
S00(k) and from a Fourier transform of h00(r). Although the measured difference is seen
to be very small (' 0.01), the values (and the oscillations) of ∆S00(k) are nonetheless
larger than the statistical errors. The final values of δS00(k), for the three salts we have
considered, present the same global trend: the location and amplitude of the peaks show
only a very weak salt specificity. As mentioned before, the important range of q vectors
lies around the first peak of S00(k), at q ' 2 Å−1. For smaller values of q, the q2 factor
appearing in Eq. (8.30) will result in a vanishing contribution, while at larger values,
the fluctuations will decay very rapidly (∼ exp(−D0q

2t)).

8.5.2 Mode-Coupling Calculations

Using the values previously calculated, we have computed the viscosity of three model
electrolytes (Li+-Cl−, Na+-Cl−, and K+-Cl−). The binary Enskog contribution is com-
puted from Eq. (8.20), for a three-component hard-sphere system with diameters taken
from the radial distribution functions measured in MD simulations. The ion-ion mode-
coupling term is computed from Eq. (8.32), for an implicit solvent (two-component)
model, with the same ion diameters used for the binary term. Finally, we use water-
water structure factors to compute the infinite dilution mode-coupling term. The only
external parameters that are required are the infinite dilution self-diffusion coefficients
(for the water and the ions), and the characteristic time τ used in the integration for the
water-water term (Eq. (8.16))8. We have taken the experimental values for the diffusion

8For the ion-ion terms, whose dominant contributions come from the small q-values, with a charac-
teristic decay time of the order of ∼ 1 ns, we can take τ = 0 (i.e. the binary term, due to collisions
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Figure 8.6: Derivative of the water-water structure factor, with respect to the salt
concentration, obtained from a finite difference calculation.

coefficients: D = 1.02, 1.33, 1.95, and 2.03 for Li+, Na+, K+, and Cl−, respectively, and
D = 2.4 for water (in 10−9 m2/s) [42]. We have considered several values of τ in the
range 0.1 < τ/ps < 2. The numerical integrations were performed using a simple trape-
zoidal rule [103], with the number of points consecutively increased until a fractional
accuracy of 10−6 was achieved. The detailed results for the excess contributions to the
viscosity are given in Figure 8.7, for τ = 0.24 ps. In all cases, we observe the same
global behaviour: (1) the binary contribution is positive and increases linearly with the
concentration, (2) the water-water contribution is negative (this is true for all values of
τ), and (3) the ion-ion contribution is positive, and also increases linearly with the con-
centration (except at low concentrations). A comparison between the fractional change
in the viscosity, as a function of the concentration, for the three salts we have studied
is presented in Figure 8.8. This precise value of τ was chosen because it gives the limit
at which the Jones-Dole B coefficient becomes positive for Na+-Cl− and K+-Cl−. For
lower values, the linear variation in the viscosity will be negative.

Unfortunately, these results predict that the viscosity of the Li+ salt is to be less
than that of Na+ or K+ (at all concentration); something which is in clear disagreement
with the experimental data (see Figure 8.8b). We believe that this is due to the fact
that we have not taken into account the strongly bound hydration sphere of Li+. Not
only should we consider an effective diameter given by the size of the hydrated ion, but
we should also remove the water molecules within this hydration sphere from the calcu-
lation of S00(k). These modifications will result in a significant increase for the Enskog
and the water-water (MCT) contribution to the viscosity. Finally, it should be possible
to develop a consistent theory, by choosing the free parameters (D and τ) in such a way
that the viscosity of bulk water is recovered. Our results are promising, since we have
shown that the linear (salt) concentration dependence of the viscosity (arising from the
long-time water-water fluctuations) may be negative. If this term is dominant, with
respect to the short-time collision contribution and the long time ion-ion contribution,
then we obtain a negative Jones-Dole B coefficient. However, further work is still neces-
sary to improve the agreement with respect to experiments, particularly for small ions.

between ions, is negligible)
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Figure 8.7: Excess binary and long-time (MCT) contributions to the viscosity of simple
electrolytes. The water-water term was computed using τ = 0.24 ps.

8.6 Conclusions

In this chapter, we have considered a Mode-Coupling theory for the viscosity of elec-
trolyte solutions which attempts to go beyond the work of Chandra and Bagchi [10], by
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Figure 8.8: Fractional change in the viscosity, as a function of the concentration, ob-
tained from (a) MCT calculations and (b) experiments [201]. The water-water term is
computed using a characteristic time of τ = 0.24 ps.

taking into account the effects of the salt on the water structure. As a first approxima-
tion, the viscosity of the solution is said to arise from two terms: a short-time (binary)
contribution, due to the collisions between particles, and a long-time contribution, due
to the collective (hydrodynamic) motion of the fluid. The first term is computed us-
ing the Enskog theory, by considering the system as being composed of hard spheres;
while the second term, which is separated into ion-ion and water-water contributions,
is computed using a mode-coupling calculation. The work of Chandra and Bagchi has
shown the validity of using a Mode-Coupling approach, as they have been able to recover
the exact limiting law for the excess ionic contribution to the viscosity (the Onsager-
Falkenhagen law) using an implicit solvent model. We use a similar representation to
compute the ion-ion terms; for the water-water calculations we use results obtained
from MD simulations. We find that, to first order in the salt concentration, this (MCT)
water-water term always gives a negative contribution to the viscosity. This provides us
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with a glimpse into the seemingly anomalous behaviour of the Jones-Dole coefficient: it
will be negative if the disruption to the water structure (due to the presence of the salt)
is strong enough to overcome the effect of the collisions and the long-time ion-ion density
correlations (which tend to increase the viscosity). The interpretation of the viscosity
paradox mentioned before is the following. Small ions (Li+ and Na+) have a negative
partial volume because of the strong polarization of the water molecules of their inner
solvation shells. Nevertheless, this does not imply that the Jones-Dole coefficient B is
negative, because the solvation sphere is rigidly bound to the ions, resulting in a larger
effective solute particle, with a positive hydrodynamic volume. For the bigger ions (K+),
although the polarization of the inner-sphere is weaker, they modify the structure of the
solvent, and this breaking structure effect is responsible for the negative value of the
B coefficient (the positive binary term is not enough to overcome this hindering of the
viscosity).

To end, we acknowledge that our theory is not yet self-consistent. We need to develop
a method for unambiguously separating the relevant short- and long-time interactions.
We must also determine whether the water molecules in the hydration sphere of the
ions should be considered as individual particles, contributing the collision terms and
the water-water density fluctuations, or if their effects should be taken into account
through a large effective ion.



Chapter 9

General Conclusions

Throughout this work, we have developed a multi-scale description of ionic solutions. We
have started by using ab-initio calculations to determine ion-specific properties such as
the ionic polarizabilites in liquid water (which cannot be measured experimentally). Our
results are in very good agreement with the (fitted) values of common classical potentials.
Using a simple force-matching protocol, we have been able to parametrize a set of force-
fields for monovalent ions in solution, which show relatively good agreement with the
experimental results for various thermodynamic, structural, and dynamic properties. A
description of electrolyte solutions using such a classical atomistic description allows us
to easily measure the ion-water properties. However, the ion-ion properties require very
expensive simulations, encouraging the development of simpler models.

By using the McMillan-Mayer theory, which is in principle exact, we have derived
effective ion-ion potentials for an implicit solvent model. With this description, in
which the solvent degrees of freedom have been averaged out, the calculation of ion-ion
properties becomes practical (the calculation times are reduced, roughly, by an order of
magnitude). However, this type of modelling is still unsuitable for some tasks, such as
the study of complex systems typically encountered in engineering applications. Simple
phenomenological models, which can be adjusted to reproduce the experimental data,
are favored over the more fundamental descriptions in these cases. With this in mind,
we have developed a coarse-graining procedure that allows us to derive a primitive
model description1 of electrolyte solutions. To derive these models we have used the
standard perturbation theory of liquids, which provides a rigorous method for relating
the properties of the system of interest (which are determined, in our case, by the
complex McMillan-Mayer effective potentials) to those of a simpler system (for which
we use a primitive model).

The advantage of representing electrolyte solutions as charged hard-spheres in a
dielectric continuum, is the fact that several integral equations exist which provide
accurate descriptions for the thermodynamic and structural properties. Among them,
the most popular is probably the Mean Spherical Approximation (MSA), since it can
be solved analytically. In particular, we have explicit expressions for the free energy
and the radial distribution functions, which are the two quantities required for a first-
order perturbation calculation. For a simple 1 − 1 electrolyte, one would think that a

1We use the term primitive model in the broad sense, of an implicit solvent description in terms of
hard-sphere (which may eventually be associated).

186
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two-component hard-sphere system would provide a suitable representation2; however,
within a first-order perturbation theory, the structure of the two systems (the system
we want to study and the system we use as a reference) is assumed to be equal, and this
imposes certain restrictions on the reference systems which can be used. In particular, for
electrolyte systems, this is incompatible with a two-component additive representation.
The reason for this is simple: ion sizes are strongly non-additive.

While the (static) picture of ions as hydrated charged spheres is suitable for isolated
ions, or when describing the interaction between ions of equal sign charges, it breaks
down when trying to describe the strongly attractive cation-anion interactions. In this
case, it is possible for the ions to penetrate each others hydration spheres, giving rise to
a contact ion pair (CIP). It is the relative stability of this pair with respect to the solvent
separated ion pair (SSIP), which describes the interaction between hydrated cations and
anions, that is difficult to represent using a simple two-component model. Regardless
of the stability of the contact pair, or the fraction of pairs present in the solution at
any given moment, it is necessary to take this interaction into account to obtain a
suitable thermodynamic description. In fact, when we fitted the exact free energies of
our systems (obtained from Monte-Carlo simulations) to a two-component MSA system,
we observed that the cation-anion contact diameter could correspond to either the CIP or
the SSIP, depending on the strength of the association (as characterized, for example,
by the Bjerrum model). For the weakly associated Li+ and Na+ salts, the contact
distance corresponds to the second peak in the radial distribution function (the SSIP),
while for the more associated K+ salts, the distance corresponds to the first peak (the
CIP). By construction, a fit to the free energy (or the osmotic coefficients) will give very
good agreement for the thermodynamics, but the accuracy with which it represent the
structure of the fluid can vary significantly from one system to another.

In contrast, a (first-order) perturbation theory requires that the structure of the
reference system be as close as possible to that of the real system. In order to achieve
this, using an additive hard-sphere model, we are forced to adopt a three-component
representation, in which the CIP is considered as a distinct chemical species. We have
derived relations between the free energy and the pair interaction potentials of the two-
and three-component systems in order to perform the perturbation calculations, as well
as a relationship between the corresponding radial distribution functions. The results
obtained using this type of reference system are in very good agreement with the exact
results, and they show only a relatively small dependence on the representation used
for the CIP. Furthermore, we also obtained an improved agreement for the structure of
the fluid: we represent both the CIP and the SSIP, and we recover the correct contact
distances for the cation-cation and anion-anion interactions. In general, our model
remains valid up to molar concentrations, after which many of the assumptions we have
made are no longer valid.

Several extensions to the theory we have presented are conceivable. The most ob-
vious, is to consider a non-additive hard-sphere model. This would allow us to use
a two-component reference system in our PFT calculations. Work in this direction is
in progress. Furthermore, we must also investigate the development of similar models
for the dynamics of electrolytes. We have started to study the viscosity of electrolytes

2This is the obvious choice, and the one that is used when fitting the MSA parameters to recover
the experimental osmotic coefficients.
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in an attempt to explain the ion-specificity of the Jones-Dole B coefficient. Using a
Mode-Coupling calculation we show that the water-water density fluctuations can give
a negative contribution to the viscosity. Finally, we end our work by noting that it
is very unlikely that we should be able to develop a microscopic theory which shows
better agreement with experiments than the fitted phenomenological models used by
engineers. However, by using the result obtained from microscopic simulations, we can
develop simple models which accurately represent the underling physics of our system.
For complex systems, for which experimental data is scarce, this approach helps us to
provide a realistic model, by defining the relevant parameters.
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Appendix A

Principles of Monte Carlo Simulations

Monte-Carlo simulations provide a convenient simulation technique to measure ensemble
averages of the type

〈A〉 =

∫
·· ·
∫
drNA({ri})e−βVN∫
·· ·
∫
drN e−βVN

(A.1)

even though we are unable to compute the integrals in the numerator, or the denomi-
nator, we can measure the ratio of the two. The trick is to perform a weighted random
walk through configuration space Γ, such that the relative probability for visiting any
two points A and B is equal to the ratio of their ensemble probabilities. The average
of A along this stochastic trajectory will correspond to the ensemble average 〈A〉. The
master equation for the Markov Chain which describes this random walk, assuming
discrete time steps, is given by

P (A, t+ ∆t)− P (A, t) =
∑
B

[P (B, t)WB−→A − P (A, t)WA−→B] (A.2)

where P (A, t) is the probability of being in the state A at time t and Wa−→B gives
the transition probability for going from state A to state B. For stationary systems,
the left hand side of this equation gives zero (as the probabilities are time independent
P (A, t) = PA) and the following balance condition must be satisfied∑

B

PBWB−→A =
∑
B

PAWA−→B (A.3)

which states that the average number of moves arriving at state A should be equal to the
average number of moves leaving state A. There are many possible choices for WA−→B
which satisfy this equation, but it is convenient to enforce an even stronger detailed
balance condition, such that

P (A)WA−→B = P (B)WB−→A (A.4)

in which case the transition probabilities satisfy the following relation

WA−→B

WB−→A
=
P (B)

P (A)
= e−β(VB−VA) (A.5)
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Again, there is no unique way of choosing the transition probabilities to satisfy this
equation, the only restriction that is imposed is that they must be ergodic: it should
be possible, within a finite number of steps, to reach every point in the configuration
space (regardless of the initial configuration) [20]. We use the scheme proposed by
Metropolis [202]

WA−→B =

{
e−β(VB−VA) VB ≥ VA

1 VB < VA
(A.6)

In practice, a Monte-Carlo simulation using the Metropolis algorithm would be im-
plemented as follows

1. Choose a valid initial configuration A (VA <∞).

2. Generate a new configuration B.

3. Use the Metropolis scheme to accept/reject this new configuration. In both cases
the final state is counted for the calculation of the average.

• If VB < VA always accept the move.

• If VB > VA generate a random number ε from a uniform distribution ε ∈ [0, 1].
Accept the move if ε < exp[−β(VB − VA)], reject it otherwise.

4. Set A = B and return to step 2.

Although the metropolis rule gives a clear recipe for computing the acceptance (transi-
tion) probabilities, it says nothing about how to generate the new configurations. For
simple systems, at moderate densities, it is usually sufficient to consider random dis-
placements in the configurations, but for more complex systems (such as polymers or
dense media) this approach is bound to fail, since the transition probabilities towards the
new states are bound to be very low1. In these cases, it is usual to bias the generation of
the new configurations, so that there is a high-probability of them being accepted. This
results in much improved statistics, as the relevant (interesting) regions of phase-space
are sampled more often, but the averages need to be corrected at the end, in order to
remove the original bias [20]. Fortunately, for the solute gases studied here, the simple
scheme of generating random displacements can be applied.

1This leads to a poor sampling of the phase space, and thus, to very poor statistics
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Averages and Error Calculations

Summary
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B.2 Real-time Updating During a Simulation . . . . . . . . . . . 194

The properties measured during a molecular dynamics or Monte-Carlo simulation
correspond to averages of microscopic, fluctuating quantities. In the limit of an infinitely
long simulation run, the values obtained would be the exact values. However, as we are
limited to finite simulations (in both time and size) it becomes necessary to provide an
estimate of the error. One of most popular ways of achieving this, is to use the block-
averaging technique. In what follows, we review the basic concepts of this blocking
procedure, before showing how it can be implemented during a simulation.

B.1 Block-Averages

During a simulation, the microscopic properties of the system are periodically measured
A({qi;pi}), and the average 〈A〉 obtained at the end is used as an estimate of the
corresponding macroscopic observable A. This microscopic variable is assumed to be a
random variable with a Gaussian distribution. The average and variance are then given
by

〈A〉simulation =
1

N

N∑
i=1

Ai (B.1a)

σ2(A) =
1

N

N∑
i=1

(Ai − 〈A〉)2 (B.1b)

where N is the number of data points gathered during the simulation. For a sufficiently
large number of measurements, the central limit theorem tells us that 〈A〉 is in itself a
random (Gaussian) variable, with average 〈A〉 and variance

σ2(〈A〉) =
σ2(A)

N
(B.1c)
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Aside from giving an estimate of the error, the variance is an intrinsic property of the
system (for the given ensemble), which can be used to directly obtain such information
as the isothermal compressibility (fluctuation in the number of particles) or the specific
heat (energy fluctuations). Special care should be taken when applying Eq. (B.1b) to
data obtained during a simulation, since it has been implicitly assumed that the Ai
are mutually uncorrelated measurements (statistically independent). However, this will
depend on the manner in which the measurements are collected. If the sampling is
performed too frequently, consecutive measurements will fail to provide any new infor-
mation, and thus lead to a high correlation among adjacent measurements. Additionally,
we do not know the actual value of 〈A〉, we only have the estimate provided by the simu-
lation. Since there are only N−1 independent measurements1 of Ai, σ2(〈A〉) (Eq. B.1b)
should be replaced by the unbiased estimate of the variance σ2

s(〈A〉)

σ2
s(A) =

1

N − 1

N∑
i=1

(Ai − 〈A〉simulation)2 (B.2)

The optimal sampling frequency for obtaining uncorrelated measurements will ob-
viously depend on the system, and the property being studied, but this can only be
known after the simulation has been performed. Flyvbjerg and Petersen [20, 203, 204]
have proposed a simple, but clever method of “block-averages” that provides a reliable
estimate of the variance, from a given series of simulation data Ai. Their idea is to
successively group the data into blocks, producing a new data set A(M)

i , in which the
A(M)
i correspond to the averages of the i-th block of the previous iteration (M − 1). At

any given level, the error of the average, and its own error estimate, is given by

σ(〈A〉) ≈ σ(A(M))√
NM − 1

(
1± 1√

2(NM − 1)

)
(B.3)

where NM is the number of data points at level M . Initially, this value will increase as
the number of blocking operations increases (in turn reducing the number of redundant,
correlated, measurements), until a plateau is reached. This constant value is taken to
be the error of the average.

The simplest blocking procedure is to divide the data in half at every iteration,
by forming blocks of length two among consecutive data points A(M)

1 = 1
2
(A

(M−1)
1 +

A
(M−1)
2 ), . . . . An example of the results obtained from this blocking operation is given

in Figure B.1 for the calculation of the mean-squared displacement 〈∆x2(t)〉 of a single
Na+ ion in water, for several values of t. For this particular case, we see that the
optimal number of block operations is M = 8; this means that we should group our
data into blocks of length 28 = 256 in order to obtain uncorrelated measurements. It is
not convenient, or even necessary, to perform this block analysis every time, for every
property, but it should be done at least once for a representative system, in order to
obtain the optimal block size.

1The N-th data point AN can be trivially obtained from knowledge of the other N − 1 points and
the estimated average.
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Figure B.1: Error of the mean as a function of the number of blocking operations, for
the calculation of the mean-squared displacement at four distinct times.

B.2 Real-time Updating During a Simulation

In what follows we show how the variance of a given property can be updated in real-
time during a simulation, as the estimate of the average is also updated. We assume
that the xi represent uncorrelated measurements (i.e. they have been obtained by a
suitable block-average). At a given step N during the simulation, the running average
〈x〉N is trivially obtained from the same average at the previous step and the new value
xN

〈x〉N =
1

N

N∑
i=1

xi (B.4)

=
1

N

(
N−1∑
i=1

xi + xN

)

=

(
N − 1

N

)(
1

N − 1

N−1∑
i=1

xi

)
+
xN
N

=
1

N

(
(N − 1) 〈x〉N−1 + xN

)
(B.5)



APPENDIX B. AVERAGES AND ERROR CALCULATIONS 195

In the same manner, the variance at step N can be obtained from the variance and the
average at step N − 1, as well as xN 2

σ2
N =

1

N

N∑
i=1

(xi − 〈x〉N)2 (B.6)

=
〈
x2
〉
N
− 〈x〉2N

=
1

N

(
N−1∑
i=1

x2
i + x2

N

)
− 1

N2

(
(N − 1) 〈x〉N−1 + xN

)2

=
N − 1

N

(
1

N − 1

N−1∑
i=1

x2
i

)
−

(N − 1)2 〈x〉2N−1

N2
+

1

N
x2
N

−
2 (N − 1)xN〈x〉N−1

N2
− 1

N2
x2
N

=
N − 1

N

(〈
x2
〉
N−1
− N − 1

N
〈x〉2N−1

)
+
N − 1

N2

(
x2
N − 2xN〈x〉N−1

)
=
N − 1

N

(〈
x2
〉
N−1
− 〈x〉2N−1

)
+
N − 1

N2

(
〈x〉2N−1 − 2xN〈x〉N−1 + x2

N

)
=
N − 1

N

[
σ2
N−1 +

1

N

(
〈x〉N−1 − xN

)2
]

(B.7)

Again, one should not use this value to compute the error of the mean, but instead use
σ2
s (i.e. the final value should be multiplied by N/(N − 1)).

2The alert reader will notice that this is not the simplest way of obtaining σ2
N from σ2

N−1. This
particular expression is advantageous, since it will not suffer from truncation errors (it is the sum of
two non-negative values) which can appear and do lead to negative values for the variance. We can
easily ignore these artifacts, but most computers are simply unwilling to compute the square-root of
−0.0. The author learned this the hard way, which is why it merits a footnote!
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Numerical Integration

Summary
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C.1 Gaussian Quadratures

Numerical quadratures, which replace an integral by a weighted sum of the integrand at
a finite number of points (within the integration interval), provide a fast and accurate
method for approximating one-dimensional integrals. The simplest procedure is to divide
the integration range into a grid of equally spaced points; the integration over each of
these intervals can then be approximated by the area of the corresponding trapezoid.
This leads to the Newton-Cotes family of quadrature rules [205, 103], which only vary
in the weights used to perform the sum. In order for these methods to work, the grid
spacing needs to be small enough to provide an adequate sampling of the function.
Unfortunately, we do not always know what our function looks like before performing
the integration, making it difficult to determine the “optimal” grid spacing. For these
cases, the Gaussian quadratures present a very convenient alternative.

W (x) (a, b) polynomial Pn
1 (−1, 1) Legendre Pn(x)

1√
1−x2 (−1, 1) Chebyshev Tn(x)

xαe−x (0,∞) Laguerre L
(α)
n (x)

e−x
2

(−∞,∞) Hermite Hn(x)

(1− x)α(1 + x)β (−1, 1) Jacobi P
(α,β)
n (x)

Table C.1: Weight functionsW (x) and orthogonal polynomials Pn for the most common
Gaussian quadratures.

The main idea behind the Gaussian quadrature method is to treat both the weights
and the position of the abscissas as free parameters. If the integrand can be expressed

196
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as W (x)f(x), where W (x) is a known weighting function, the general approximation is
given by [206, 205] ∫ b

a

dxW (x)f(x) ≈
N∑
i=1

wif(xi) (C.1)

where the “optimal” weights wi and abscissas xi will depend on the specific weighting
function W (x). It turns out that if f(x) is a polynomial of degree M < 2N − 1, this
approximation can be made exact using only N points xi. This is accomplished by
choosing the points to be the roots of the N -th order polynomial PN of a particular
class of polynomials: those which are orthogonal with respect to the same weighting
function W (x), and over the same interval (a, b), such that

〈PN |PM〉 ≡
∫ b

a

W (x)PN(x)PM(x) (C.2)

is exactly zero if N 6= M . The required weights are given by

wi =
AN
AN−1

〈PN |PN〉
PN(xj)P ′N+1(xj)

(C.3)

where AN is the coefficient of the leading term (xN) in PN(x), and the prime denotes a
derivative. The most common weight functions, along with the corresponding family of
orthogonal polynomials, are given in Table C.1.

C.2 Gauss-Legendre Quadrature

For W (x) = 1, we obtain the Gauss-Legendre quadrature, which is the only quadrature
used in this work. In order to evaluate integrals over an arbitrary interval (a, b), and not
necessarily (−1, 1), we must perform a change of variables, such that the quadrature is
now given by [205] ∫ b

a

dy f(y) =
a− b

2

N∑
i=1

wif(yi) (C.4)

where the abscissas yi are defined in terms of the roots xi of the N -th Legendre poly-
nomial PN(x) as

yi =

(
b− a

2

)
xi +

(
b+ a

2

)
(C.5)

Finally, the weights are computed according to

wi =
2

(1− x2
i ) [P ′N(xi)]

2 (C.6)

The values of yi and wi for the case of a 6- and 8-point Gauss-Legendre quadrature,
over the interval (0, 1), are given in Tables C.2 and C.3, respectively. These are the
quadratures we have used to compute the hydration free energies from the λ-integration
scheme.
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i yi wi
1 0.03376524289842399 0.08566224618958517
2 0.1693953067668677 0.1803807865240693
3 0.3806904069584015 0.2339569672863455
4 0.6193095930415985 0.2339569672863455
5 0.8306046932331323 0.1803807865240693
6 0.9662347571015760 0.08566224618958517

Table C.2: Abscissas (yi) and weights (wi) required for a 6-point Gauss-Legendre
quadrature over the interval (0, 1).

i yi wi
1 0.01985507175123188 0.05061426814518813
2 0.10166676129318663 0.11119051722668724
3 0.2372337950418355 0.1568533229389436
4 0.4082826787521751 0.1813418916891810
5 0.5917173212478249 0.1813418916891810
6 0.7627662049581645 0.1568533229389436
7 0.8983332387068134 0.11119051722668724
8 0.9801449282487681 0.05061426814518813

Table C.3: Abscissas (yi) and weights (wi) required for a 8-point Gauss-Legendre
quadrature over the interval (0, 1).
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Numerical Laplace Inversion
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D.1 Introduction

The Laplace transform is very popular in science and engineering, particularly when
dealing with differential equations, since they can usually be expressed as “simple” al-
gebraic equations within the Laplace space (s). The problem, however, is that the
conversion back to real-space is not always easy to perform. If f(t) is a function within
the (real) time domain, and f̂(s) its Laplace transform in the s-domain, we have the
following transform pair [207]

f̂(s) =

∫ ∞
0

dt e−stf(t), <(s) > α (D.1a)

f(t) =
1

2πi
lim
R→∞

∫ γ+iR

γ−iR
estf̂(s), γ > α (D.1b)

where α is the abscissa of convergence of f̂(s) and γ defines the vertical Bromwich
contour along which the line integral is performed. Several numerical methods exists for
performing the Laplace inversion which manage to avoid the use of complex analysis.
We use two such methods in this work. The first is based on a Fourier representation of
the inversion integral, while the second uses linear combinations of the so-called Gaver
functionals to estimate f(t).

199
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D.2 The Fourier Expansion

The inversion integral (D.1b) is easily expressed as a Fourier transform for s = γ +
iω [207]

f(t) =
eγt

2π

∫ ∞
−∞

dω f̂(γ + iω)eiωt (D.2)

and if f(t) is a real function, this can be simplified to give

f(t) = −2eγt

π

∫ ∞
0

dω=
(
f̂(γ + iω)

)
sinωt (D.3)

This last integral is easily evaluated using the Fast Fourier Transform routines
(FFT) [103], which is what we have done to obtain the radial distribution functions given
by the MSA solution to the primitive model. However, this method is only useful if f̂(s)
is easy to evaluate, since we generally require a large number of points (N = 212∼17) to
setup the grids required by the FFT.

D.3 The Gaver Functional Expansion

The Gaver approach to the Laplace inversion problem is based on the family of func-
tionals fk(t) introduced by Gaver in the 1960s [207]

fk(t) = kτ

(
2k

k

) k∑
j=0

(−1)j
(
k

j

)
f̂ ((k + j)τ) (D.4)

where τ = ln 2/t. If f(t) possesses a Taylor expansion for all t > 0, then the Gaver
functionals possess the following asymptotic expansion [208]

fk(t) ∼
k→∞

f(t) +
c1(t)

k
+
c2(t)

k2
+ · · · (D.5)

where the coefficients ci(t) are independent of k (i.e. they are the same for all the fk(t)).
This expansion shows precisely why the Gaver Functionals are useful: the first order
term is the Laplace inverse we are looking for. Unfortunately, the series is very slow to
converge, which is why several sequence accelerators have been developed [208]. The
idea is simple, since all the fk(t) have the same expansion, “clever” combinations of these
functionals can be used to eliminate the error terms ci(t).

Gaver-Stehfast
The Gaver-Stehfast (GS) method uses a linear combination of the first M Gaver Func-
tionals fk(t) to construct an estimate for f(t)

f(t,M) =
M∑
k=1

W
(M)
k fk(t) (D.6)
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Figure D.1: Inverse Laplace transforms of four test functions using the Gaver-Stehfast
(GS) and Gaver-Wynn-Rho (GWR) methods, the exact results for f(t) are also shown.
(a) f(t) = exp (−3t), (b) f(t) = exp (−3t)x2/2, (c) f(t) = sin (3t) and (d) f(t) =
exp (−3t) sin (2t). For convenience, all the results have been scaled and shifted so that
f(t) ∈ (0, 1).

where M is an even integer and the weights are given by

W
(M)
k = (−1)k+M k

M

M !

(
M

k

)
(D.7)

Gaver-Wynn-Rho
An alternative sequence accelerator is the Wynn-Rho (GWR) algorithm, which is ex-
pressed recursively as [208, 209]

ρ
(n)
−1 = 0, ρ

(n)
0 = fn(t), n ≥ 0

ρ
(n)
k = ρ

(n+1)
k−2 +

k

ρ
(n+1)
k−1 − ρ

(n)
k−1

, k ≥ 1 (D.8)

In this case, the estimate to f(t) is given by

f(t, 2M) = ρ
(0)
2M (D.9)

where M (which must again be even) is the largest index in the Gaver Functionals used
to construct the approximation.

Performance
In theory, the estimate for f(t) can always be improved upon by increasing the number
of Gaver functionalsM ; however, when using fixed precision arithmetic, round-off errors
will cause the accuracy to rapidly decrease after a certain optimal value. On a standard
computer, with 8 byte real numbers (roughly 16 decimal digit precision), a value ofM =
16 and M = 8 should be used for the GS and GWR methods, respectively [208, 210].
A comparison between the two methods is shown in Figure D.1, for four different test
functions. It is clear that these methods do not provide “the” solution to the inverse
Laplace problem: when they work, they work very well, but when they fail, they do it
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miserably. In general, strongly oscillating functions should be avoided. While there is
no appreciable difference in the GS and GWR results presented in the Figure, the latter
is the preferred method, as it (consistently) provides a higher degree of accuracy [208].
This is the method we have used when computing the inverse Laplace transforms of the
intermediate scattering functions F (q, s).
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Figure E.1: Comparison between MD and MC radial distribution functions for Li+
salts at c = 0.64 M.
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Figure E.2: Comparison between MD and MC radial distribution functions for Na+

salts at c = 0.64 M.
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Figure E.3: Comparison between MD and MC radial distribution functions for K+ salts
at c = 0.64 M.
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E.2 McMillan-Mayer Energy and Pressure
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Figure E.4: Total (left), short (center), and long range (right) internal energy per
particle obtained from MC simulations, as a function of the cation C+.
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Figure E.5: Total (left), short (center) and long range (right) internal energy per particle
obtained from MC simulations, as a function of the anion A−.
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obtained from MC simulations, as a function of the cation C+. The experimental values
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E.3 Structure of the Solute Gas
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Figure E.8: Concentration variation of the radial distribution functions obtained from
MC simulations for the nine different salts. From left to right, A− = Cl−, Br−, I−, and
from top to bottom, C+ = Li+, Na+, K+.
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Figure E.9: Concentration variation of the average cation-anion C+-A− coordination
number, obtained by integration of the MC generated radial distribution functions.
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E.4 Minimum Distance Distributions

0

1

2

3

4

0

2

4

6

8

10

d ij (
r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

1

2

3

4

Li
+
 - Li

-

Li
+
 - Cl

-

Cl
-
 - Cl

-

0

1

2

3

4

0

2

4

6

8

10

d ij (
r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

1

2

3

4

Li
+
 - Li

-

Li
+
 - Br

-

Br
-
 - Br

-

0

1

2

3

4

0

2

4

6

8

10

d ij (
r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

1

2

3

4

Li
+
 - Li

-

Li
+
 - I

-

I
-
 - I

-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

D
ij (

r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

0.2

0.4

0.6

0.8

1

Li
+
 - Li

-

Li
+
 - Cl

-

Cl
-
 - Cl

-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

D
ij (

r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

0.2

0.4

0.6

0.8

1

Li
+
 - Li

-

Li
+
 - Br

-

Br
-
 - Br

-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

D
ij (

r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

0.2

0.4

0.6

0.8

1

Li
+
 - Li

-

Li
+
 - I

-

I
-
 - I

-

Figure E.10: Overlap distribution functions dij(r) (top)and Dij(r) (bottom) calculated
from MC simulations for Li+ salts at various concentrations.



210 E.4. MINIMUM DISTANCE DISTRIBUTIONS

0

1

2

3

4

0

2

4

6

8

10

d ij (
r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

1

2

3

4

Na
+
 - Na

-

Na
+
 - Cl

-

Cl
-
 - Cl

-

0

1

2

3

4

0

2

4

6

8

10

d ij (
r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

1

2

3

4

Na
+
 - Na

-

Na
+
 - Br

-

Br
-
 - Br

-

0

1

2

3

4

0

2

4

6

8

10

d ij (
r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

1

2

3

4

Na
+
 - Na

-

Na
+
 - I

-

I
-
 - I

-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

D
ij (

r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

0.2

0.4

0.6

0.8

1

Na
+
 - Na

-

Na
+
 - Cl

-

Cl
-
 - Cl

-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

D
ij (

r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

0.2

0.4

0.6

0.8

1

Na
+
 - Na

-

Na
+
 - Br

-

Br
-
 - Br

-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

D
ij (

r)

0.01 M
0.25 M
0.49 M
1.00 M
1.96 M

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
r (Å)

0

0.2

0.4

0.6

0.8

1

Na
+
 - Na

-

Na
+
 - I

-

I
-
 - I

-

Figure E.11: Overlap distribution functions dij(r) (top)and Dij(r) (bottom) calculated
from MC simulations for Li+ salts at various concentrations.
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Figure E.12: Overlap distribution functions dij(r) (top)and Dij(r) (bottom) calculated
from MC simulations for Li+ salts at various concentrations.
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PFT Results

Summary
F.1 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

F.2 Minimization Diameters . . . . . . . . . . . . . . . . . . . . . 223

F.3 Radial Distribution Functions . . . . . . . . . . . . . . . . . . 226

F.1 Free Energy

• βf ex = βF ex/V

Excess free energy density obtained through PFT calculations using various refer-
ence systems, “exact” MC results are also shown.

• φ = βPV/N

Osmotic coefficients obtained through PFT calculations using various reference
systems, “exact” MC results are also shown.

• βf ex0 = β(f ex −∆f ex)

Reference excess free energy, defined as the difference between the total excess
free energy and the free energy perturbation. Note that in the case of a three
component reference, this term is not given just by the excess free energy of the
reference, there is an extra contribution due to the difference in the ideal free
energy between the two and three component systems.

• ∆βf ex

Perturbation free energy

• ρp/ρ0

Fraction of pairs obtained from the PFT calculations in the case of a three-
component reference system.

• Errorβf ex =
fex−fex

MC
fex
MC

212
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Relative error of the excess free energy given by the PFT calculations with respect
to the “exact” MC results.

• ∆f ex/f ex0

Relative magnitude of the perturbation free energy to the corresponding reference
free energy obtained from PFT calculations.

• ∆f ex/f ex

Relative magnitude of the perturbation free energy to the corresponding total free
energy obtained from PFT calculations.
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Figure F.1: LiCl PFT results
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Figure F.2: LiBr PFT results
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Figure F.4: NaCl PFT results
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Figure F.5: NaBr PFT results
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Figure F.6: NaI PFT results
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Figure F.7: KCl PFT results
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Figure F.8: KBr PFT results
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Figure F.9: KI PFT results
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F.2 Minimization Diameters
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Figure F.10: Minimization diameters for Li+ salts
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Figure F.11: Minimization diameters for Na+ salts
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Figure F.12: Minimization diameters for K+ salts
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Figure F.13: Minimization diameters for Li+ salts (average and difference).



APPENDIX F. PFT RESULTS 225

2.5

3

3.5

4

4.5

5

5.5

0.4

0.6

0.8

1

1.2

1.4

1.6

σ
ij 
(Å

)

msa2
msa3
bimsa1
bimsa2
bimsa3
bimsa4
fit

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

c (M
1/2

)

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

σ12

σ12

σC

(a) NaCl

2.5

3

3.5

4

4.5

5

5.5

0.4

0.6

0.8

1

1.2

1.4

1.6

σ
ij 
(Å

)

msa2
msa3
bimsa1
bimsa2
bimsa3
bimsa4
fit

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

c (M
1/2

)

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

σ12

σ12

σC

(b) NaBr

2.5

3

3.5

4

4.5

5

5.5

0.4

0.6

0.8

1

1.2

1.4

1.6

σ
ij 
(Å

)

msa2
msa3
bimsa1
bimsa2
bimsa3
bimsa4
fit

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

c (M
1/2

)

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

σ12

σ12

σC

(c) NaI

Figure F.14: Minimization diameters for Li+ salts (average and difference).
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Figure F.15: Minimization diameters for K+ salts (average and difference).
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Figure F.16: Comparison between RDFs obtained from MC and PFT calculations
for LiCl at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown.
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Figure F.17: Comparison between RDFs obtained from MC and PFT calculations
for LiBr at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown.
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Figure F.18: Comparison between RDFs obtained fromMC and PFT calculations for LiI
at several concentrations. The results obtained from fitting the exact free energy (MC)
to a concentration independent two-component model, as given by the MSA solution,
are also shown.



APPENDIX F. PFT RESULTS 229

0

0.2

0.4

0.6

0.8

0

5

10

15

20

g ij(r
)

mc
msa2
bimsa1
bimsa4
fit

0 1 2 3 4 5 6 7 8 9 10 11 12
r (Å)

0

0.2

0.4

0.6

0.8

Na
+
 - Na

+

Na
+
 - Cl

-

Cl
-
 - Cl

-

(a) c=0.1 M

0

0.2

0.4

0.6

0.8

0

2

4

6

8

g ij(r
)

mc
msa2
bimsa1
bimsa4
fit

0 1 2 3 4 5 6 7 8 9 10 11 12
r (Å)

0

0.2

0.4

0.6

0.8

Na
+
 - Na

+

Na
+
 - Cl

-

Cl
-
 - Cl

-

(b) c=0.5 M

0

0.2

0.4

0.6

0.8

0

2

4

6

8

g ij(r
)

mc
msa2
bimsa1
bimsa4
fit

0 1 2 3 4 5 6 7 8 9 10 11 12
r (Å)

0

0.5

1

1.5

2

Na
+
 - Na

+

Na
+
 - Cl

-

Cl
-
 - Cl

-

(c) c=1.0 M

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

g ij(r
)

mc
msa2
bimsa1
bimsa4
fit

0 1 2 3 4 5 6 7 8 9 10 11 12
r (Å)

0

0.5

1

1.5

2

Na
+
 - Na

+

Na
+
 - Cl

-

Cl
-
 - Cl

-

(d) c=1.7 M

Figure F.19: Comparison between RDFs obtained from MC and PFT calculations
for NaCl at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown
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Figure F.20: Comparison between RDFs obtained from MC and PFT calculations
for NaBr at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown
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Figure F.21: Comparison between RDFs obtained from MC and PFT calculations
for NaBr at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown.
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Figure F.22: Comparison between RDFs obtained from MC and PFT calculations
for KCl at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown.
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Figure F.23: Comparison between RDFs obtained from MC and PFT calculations
for KBr at several concentrations. The results obtained from fitting the exact free
energy (MC) to a concentration independent two-component model, as given by the
MSA solution, are also shown.
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Figure F.24: Comparison between RDFs obtained from MC and PFT calculations for KI
at several concentrations. The results obtained from fitting the exact free energy (MC)
to a concentration independent two-component model, as given by the MSA solution,
are also shown.
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