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The present thesis is devoted to the investigation of certain aspects of the large time behavior of the solutions of two nonlinear Schrödinger equations in dimension three in some suitable perturbative regimes.

The rst model consist in a Schrödinger equation with a concentrated nonlinearity obtained considering a point (or contact) interaction with strength α, which consists of a singular perturbation of the Laplacian described by a selfadjoint operator H α , and letting the strength α depend on the wave function: i du dt = H α u, α = α(u). It is well-known that the elements of the domain of a point interaction in three dimensions can be written as the sum of a regular function and a function that exhibits a singularity proportional to |x -x 0 | -1 , where x 0 is the location of the point interaction. If q is the so-called charge of the domain element u, i.e. the coecient of its singular part, then, in order to introduce a nonlinearity, we let the strength α depend on u according to the law α = -ν|q| σ , with ν > 0. This characterizes the model as a focusing NLS with concentrated nonlinearity of power type. In particular, we study orbital and asymptotic stability of standing waves for such a model. We prove the existence of standing waves of the form u(t) = e iωt Φ ω , which are orbitally stable in the range σ ∈ (0, 1), and orbitally unstable for σ ≥ 1. Moreover, we show that for σ ∈ (0,

every standing wave is asymptotically stable, in the following sense. Choosing an initial data close to the stationary state in the energy norm, and belonging to a natural weighted L p space which allows dispersive estimates, the following resolution holds: u(t) = e iω∞t+il(t) Φ ω∞ + U t * ψ ∞ + r ∞ , where U t is the free Schrödinger propagator,

, respectively, and nally l(t) is a logarithmic increasing function

. Notice that in the present model the admitted nonlinearities for which asymptotic stability of solitons is proved, are subcritical in the sense that it does not give rise to blow up, regardless of the chosen initial data.

The second model is the energy critical focusing nonlinear Schrödinger equation i du dt = -∆u -|u| 4 u. In this case we prove, for any ν and α 0 suciently small, the existence of radial nite energy solutions of the form u(t, x) = e iα(t) λ 1/2 (t)W (λ(t)x) + e i∆t ζ * + o Ḣ1 (1) as t → +∞, where α(t) = α 0 ln t, λ(t) = t ν , W (x) = (1 + 1 3 |x| 2 ) -1/2 is the ground state and ζ * is arbitrarily small in Ḣ1 .

Résumé

Cette thèse est consacrée à l'étude de certaine aspects du comportement en temps longs des solutions de deux équations de Schrödinger non-linéaires en dimension trois dans des régimes perturbatives convenables.

Le premier modèle consiste en une équation de Schrödinger avec une non-linéarité concentrée obtenue en considérant une interaction ponctuelle de force α, c'est-à-dire une perturbation singulière du Laplacien décrite par un opérateur autoadjoint H α , où la force α dépend de la fonction d'onde : i du dt = H α u, α = α(u). Il est bien connu que les éléments du domaine d'une interaction ponctuelle en trois dimensions peuvent être décrits comme la somme d'une fonction régulière et d'une fonction ayant une singularité proportionnelle à |x -x 0 | -1 , où x 0 est l'emplacement du point d'interaction. Si q est la charge d'un élément du domaine u, c'est-à-dire le coecient de sa partie singulière, alors pour introduire une non-linéarité, on fait dépendre la force α de u selon la loi α = -ν|q| σ , avec ν > 0. Ce modèle est déni comme une équation de Schrödinger non-linéaire focalisant de type puissance avec une non-linéarité concentrée en x 0 .

Notre étude porte sur la stabilité orbitale et asymptotique des ondes stationnaires de ce modèle.

Nous prouvons l'existence d'ondes stationnaires de la forme u(t) = e iωt Φ ω , qui soient orbitalement stables pour σ ∈ (0, 1) et orbitalement instables quand σ ≥ 1. De plus nous montrons que si σ ∈ (0, 

Introduction

The purpose of this thesis is to understand certain aspects of the large time behavior of the solutions to some nonlinear Schrödinger (NLS) equations of the form

(1)

i du dt = -u -f (x, |u| 2 )u, x ∈ R 3 .
Let us note that it is also possible to consider abstract equations with other self-adjoint operators in place of the Laplacian. Anyway, the local and global well-posedness of the associated Cauchy problem have been largely investigated for a wide family of nonlinearities in dimension three as well as in the generic Euclidean space R n , n ≥ 1 (for example see [START_REF] Ginibre | On a class of nonlinear Schrödinger equations.I. The Cauchy problem, general case[END_REF], [START_REF] Ginibre | On a class of nonlinear Schrödinger equations.II. Scattering theory, general case[END_REF], [START_REF] Glassey | On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations[END_REF], [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] and references therein). In particular, under suitable hypotheses on f , this equation has a unique solution once an initial datum is xed.

Broadly speaking, the evolution turns out to be a competition between the linear part of the equation (which tends to disperse the solution) and the nonlinear part (which can either focus or defocus the solution depending on the sign of the nonlinear function f ). Therefore, one might expect the dynamics to be a combination of three phenomena. The rst one is a linearly dominated behavior which occurs when the eects of the linear part dominate those of the nonlinear one.

In such a case, the solution is global and at large times converges to a solution to the linear Schrödinger equation that is known to disperse to zero. One can also have a nonlinear dominated behavior when the nonlinear eects are stronger than the linear ones. In this situation, if equation [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] is focusing (as will be in this thesis), then the solution can develop singularities at nite times.

Finally, the linear and nonlinear eects may be in balance. In the focusing case one of the most classical manifestations of this regime is the existence of soliton type solutions.

To be more precise in the denition of soliton let us notice that the inhomogeneity given by the x dependence of f in (1) destroys the translation invariance but the dynamics still enjoys the phase shift invariance. As a consequence, it is well known that under suitable assumptions equation [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] admits a branch of non-trivial solutions of the form u(t, x) = e iωt Φ ω (x),

with ω in some interval and Φ ω satisfying

-Φ ω + ωΦ ω -f (x, |Φ ω | 2 )Φ ω = 0.
Existence and uniqueness as well as the properties of the solutions of this equation, which are called solitary waves or solitons, have been largely inspected, see for example [START_REF] Berestycki | Nonlinear scalar eld equations, i existence of a ground state[END_REF] and [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF].

Solitons appear in a wide class of nonlinear dispersive partial dierential equations such as the wave equation, the Korteweg-de Vries equation or the Klein-Gordon equation. One could believe that when the nonlinear eects are not strong enough to produce nite time blow up, solutions with generic initial data should eventually resolve into a superposition of a radiation component (which x Introduction behaves like a solution to the linear Schrödinger equation) plus a nite number of modulated nonlinear bound states. This statement is known as soliton resolution conjecture.

As far as NLS type equations are concerned, the only case where this conjecture is proved rigorously is the cubic NLS in dimension one, that can be integrated by means of the inverse scattering method. In the non-integrable case the conjecture is in general widely open. However, there are certain important perturbative regimes that are accessible to the analysis.

Two examples of such perturbative regimes are considered in this thesis both of them being related to small initial perturbations of a single solitary wave. More precisely, in part I we study the orbital and asymptotic stability of solitary waves of some three-dimensional NLS with concentrated nonlinearities opportunely dened, and in part II we exhibit some "exotic" regimes in the vicinity of the ground state of the NLS in the energy critical regime.

Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three

The rst part of this work is devoted to the analysis of orbital and asymptotic stability of the solitary waves of a Schrödinger equation with concentrated nonlinearity in dimension three. Such a model was proposed and constructed by Adami, Dell'Antonio, Figari, and Teta in [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] and [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF].

For the analogous one-dimensional model constructed by Adami and Teta in [START_REF] Adami | A class of nonlinear Schrödinger equations with concentrated nonlinearity[END_REF] these stability properties are studied by Buslaev, Komech, Kopylova, and Stuart in [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] and [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF].

By Schrödinger operator with concentrated nonlinearity is meant a dynamical generator whose nonlinear part is localized at one point. More precisely, the considered model is dened through the nonlinear operator H α dened on a suitable subspace of L 2 (R n ), n = 1, 2, 3, where α is a xed functional acting on the element domain precisely dened below. The action of the operator H α when restricted to regular functions vanishing in 0 is that of the Laplacian. On the other hand, when α is a constant one gets a family of operators known as pointwise interaction (the topic is treated in the book of Albeverio et alii [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF]). In [START_REF] Noja | Wave equations with concentrated nonlinearities[END_REF], Noja and Posilicano give a general denition of concentrated nonlinearities in the case n = 3 that is considered here. In this particular case, the subspace of L 2 (R 3 ) which turns out to be the operator domain of H α is

D(H α ) = u ∈ L 2 (R 3 ) : u(x) = φ(x) + q 1 4π|x| with φ ∈ H 2 loc (R 3 ), ∆φ ∈ L 2 (R 3 ), q ∈ C, lim x→0 u(x) -q 1 4π|x|
= α(u)q , while the action of the operator is described by

H α u = -φ.
The complex number q is sometimes called charge. In particular we consider the case [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF] α(u) = -ν|q| 2σ , ν > 0, σ > 0.

Introduction xi

The solitary waves (or standing waves) of Equation ( 3)exist if and only if ω > 0 and their analytic expression is known (see Section 1.2.2).

Notice that equation ( 3) is phase shift invariant (but not translationally invariant since this symmetry is broken by the pointwise interaction): this prevents the solitons from being stable in the sense of Lyapunov.

Hence, the natural notion to be used in this context is that of orbital stability, which roughly speaking, is Lyapunov stability up to symmetries. More precisely, one can dene the orbit of a soliton Φ ω as O(Φ ω ) = {e iθ Φ ω (x), θ ∈ [0, 2π)}. Thus, by denition, the state Φ ω is orbitally stable in the future if for every > 0 there exists δ > 0 such that

u(0) -Φ ω V < δ ⇒ d(u(t), O(Φ ω )) < ∀t > 0, where d(u, O(Φ ω )) = inf v∈O(Φω) u -v V ,
and • V is the norm in the energy space. A stationary state is said to be orbitally unstable if it is not orbitally stable. This type of investigations can be done following two dierent approaches:

the rst one is based on variational and compactness argument (see the paper of Cazenave and

Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] for details), while the second one is based on the idea of constructing a sort of Lyapunov function (see the paper of Weinstein [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF], [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] and those of Grillakis, Shatah and Strauss [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF], [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry II[END_REF]). In our setting one can observe that the hypotheses of the results of Weinstein [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] and of Grillakis, Shatah, and Strauss [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF] are satised then we prove the following theorem.

Theorem 0.1. (Orbital stability) Consider equation [START_REF] Adami | Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three[END_REF] with concentrated power nonlinearity [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF], then for all ω > 0 (a) the standing wave Φ ω is orbitally stable when 0 < σ < 1, (b) the standing wave Φ ω is orbitally unstable when σ > 1.

Finally, in the case σ = 1 instability by blow up is proved exploiting the additional pseudoconformal transformation. Roughly speaking, for each solitary wave Φ ω in any neighbourhood of initial data there is a (non global) solution of equation (3) whose charge diverges as the time goes to innity. Hence the standing wave is orbitally unstable.

A more challenging and subtle task is the study of asymptotic stability. One says that a soliton is asymptotically stable if it has a neighbourhood of initial data such that the corresponding solutions converges in some suitable weighted Lebesgue space to some soliton which is in general dierent from the initial one. Hence, one expects that the solution to the NLS equation ( 3) can be decomposed as u(t, x) = e iΘ(t) Φ ω(t) (x) + χ(t, x) ,

where the real functions ω(t) ∼ Θ(t) behave as a precise constant as the time goes to innity, while the function χ(t) disperses. This implies that, for large times, the solution u(t) is approximated by a soliton which might not be the initial one. Under some restriction on the nonlinearity, asymptotic stability of solitary waves of equation [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] in some xed dimension were proved by Soer and Weinstein [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations[END_REF], [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations II. the case of anisotropic potentials and data[END_REF], and Buslaev and Perelman [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF], [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF]. In the cited papers the techniques nowadays classical in dealing with this type of problems are also developed . These results have been extended to higher dimension; in this direction some meaningful works are [START_REF] Cuccagna | Stabilization of solution to nonlinear Schrödinger equations[END_REF][START_REF] Tsai | Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions[END_REF][START_REF] Tsai | Relaxation of excited states in nonlinear Schrödinger equations[END_REF][START_REF] Gustafson | Asymptotic stability and completeness in the energy space for nonlinear schrödinger equations with small solitary waves[END_REF][START_REF] Gang | Relaxation of solitons in nonlinear schrödinger equations with potentials[END_REF][START_REF] Genoud | Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves[END_REF][START_REF] Cuccagna | On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations[END_REF].

The rst step in the asymptotic stability analysis is the study of the spectrum of the operator L which comes out linearizing the NLS equation (3) around the solitary wave Φ ω . Exploiting the explicit expression of the resolvent of the linearization L the spectrum σ(L) saties:

Introduction if σ = 1, then L has just the eigenvalue 0 with algebraic multiplicity 4, if σ ∈ (1, +∞), then L has two simple real eigenvalues ±µ = ±2σ √ σ 2 -1ω and the eigenvalue 0 with algebraic multiplicity 2.

In the case σ = 1/ √ 2 the endpoints of the essential spectrum ±iω are resonances for the linearized problem.

The second fundamental ingredient for the study of asymptotic stability consists in the so-called modulation equations that describe the evolution of the parameter ω(t), of the phase Θ(t), and, in case of presence of the purely imaginary eigenvalues, of the coecients of the corresponding eigenfunctions. Such equations are obtained constructing a solution u(t) of the NLS equation (3) close to the stationary wave Φ ω(t) for all t > 0 and such that the reminder u(t) -Φ ω(t) is symplectically orthogonal to the generalized kernel of the linearized operator L(t) at every positive time.

In order to obtain information about the asymptotic behavior of the solution of the NLS, we are interested in determine the behavior of the solutions of the modulation equations as t → +∞. To this purpose, one studies the behavior of the propagator of the operator L. In particular, some dispersive estimates for the propagator of L are proved. As it often happens in establishing such estimates, the structure of the resolvent of the linearized operator (in this case it is explicitly known) imposes to chose the initial data in some suitable weighted L 1 (R 3 ). Let us denote this weight by w.

In the thesis only the spectral cases σ ∈ (0, 1/

√ 2) and σ ∈ ( 1 √ 2 , √ 3+1 2 √ 
2 ) are studied. The rst case correspond to the absence of non-vanishing eigenvalues while in the second case purely imaginary eigenvalues ±iξ with the condition 2ξ > ω appear. We do not consider the case σ = 1

√ 2
where there is a resonance at the endpoint of the continuous spectrum. In the rst case the steps described above lead to the following result.

Theorem 0.2. (Asymptotic stability in case the point spectrum only consists in the eigenvalue 0) Assume that u(t) ∈ C(R + , V ) is a solution to [START_REF] Adami | Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three[END_REF] with concentrated power nonlinearity [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF] where σ ∈ (0, 1/ √ 2). Moreover, suppose that u(0) = u 0 ∈ V ∩ L 1 w (R 3 ). Denoting

d = u 0 -e iθ 0 Φ ω 0 V ∩L 1 w ,
for some ω 0 > 0 and θ 0 ∈ R, then, provided d is suciently small, the solution u(t) can be asymptotically decomposed as

u(t) = e iω∞t Φ ω∞ + U t * ψ ∞ + r ∞ (t),
where ω ∞ > 0 and ψ ∞ , r ∞ ∈ L 2 (R 3 ) with r ∞ (t) L 2 = O(t -5/4 ) as t → +∞, in L 2 (R 3 ).

Introduction xiii Theorem 0.3. (Asymptotic stability in the case of purely imaginary eigenvalues) Assume that u(t) ∈ C(R + , V ) is a solution to [START_REF] Adami | Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three[END_REF] with concentrated power nonlinearity [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF] where

σ ∈ ( 1 √ 2 , σ * ), for a certain σ * ∈ ( 1 √ 2 , √ 3+1 2 √ 2 ]
. Moreover, suppose that the initial datum u(0) = u 0 = e iω 0 +γ 0 Φ ω 0 + e iω 0 +γ 0 [(z 0 + z 0 )Ψ

1 + i(z 0 -z 0 )Ψ 2 ] + f 0 ∈ V ∩ L 1 w (R 3 ),
with ω 0 > 0, γ 0 , z 0 ∈ R, and

f 0 ∈ L 2 (R 3 ) ∩ L 1 w (R 3
) is close to a stationary wave, i.e.

|z 0 | ≤ 1/2
and

f 0 L 1 w ≤ c 3/2 ,
where c, > 0.

Then, provided is suciently small, the solution u(t) can be asymptotically decomposed as

u(t) = e iω∞t+ib 1 log(1+ k∞t) Φ ω∞ + U t * ψ ∞ + r ∞ (t),
where

ω ∞ , k ∞ > 0, b 1 ∈ R, and ψ ∞ , r ∞ ∈ L 2 (R 3 ) such that r ∞ (t) L 2 = O(t -1/4 ) as t → +∞, in L 2 (R 3 ).
Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 3

In the second part of the thesis we study the equation (also called energy critical NLS equation)

i du dt = -u -|u| 4 u x ∈ R 3 u(0) = u 0 ∈ Ḣ1 (R 3 ) .

This Cauchy problem is known to be locally well-posed: for any initial datum u 0 ∈ Ḣ1 (R 3 ) there exists a unique solution u dened on a maximal interval of denition I = (T -, T + ) such that u ∈ C(I, Ḣ1 (R 3 )) ∩ L 10 (I × R 3 ) for any compact interval I ⊂ I. If T + < +∞ (or T -> -∞), then u L 10 ((0,T + )×R 3 ) = +∞ (respectively u L 10 ((T -,0)×R 3 ) = +∞), and one says that the solution blows up in nite time.

During their lifespan the solutions to (4) satisfy the conservation of energy

E(u(t)) = 1 2 R 3 |∇u(t, x)| 2 dx - 1 6 R 3 |u(t, x)| 6 dx = E(u(0)).
Both the energy and the equation are invariant under the scaling u(t, x) -→ λ -1/2 u t λ 2 , x λ , ∀λ > 0.

The existence of this invariance is the reason of the name "energy critical NLS".

If the initial data are suciently small, the solution is global and scatters as t → ∞. For large data, the exitence of nite time blow up solution can be proved by mean of the viral identity

d 2 dt 2
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Moreover, equation ( 4) admits a stationary state in Ḣ1 (R 3 ), namely a solution of -W -|W | 4 W = 0.

A particular solution to the above equation is the so-called Talenti-Aubin solution

W (x) = 1 + |x| 2 3 -1/2
, which belongs to Ḣ1 (R 3 ) but not to L 2 (R 3 ).

In [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case[END_REF], Kenig and Merle show that the energy of the ground state W is critical in the following sense: for any u(t) a radial solution to [START_REF] Adami | Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three[END_REF] such that E(u(0)) < E(W ) one has if u(0) Ḣ1 < W Ḣ1 , then the solution is global and scatters as t → ∞;

if u(0) Ḣ1 > W Ḣ1 and u(0) ∈ L 2 (R 3 ), then the solution blows up in nite time.

The behavior of radial solutions with critical energy was classied by Duyckaerts and Merle in [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]. In this case, in addition to nite time blow up and scattering to zero (and W itself ), one has solutions that as t → ∞ converge in Ḣ1 (R 3 ) to a rescaled ground state. In the case where E(u(0)) > E(W ) the dynamics is expected to be richer and to include the solution that as t → ∞ behave as a modulated ground state e iα(t) λ 1 2 (t)W (λ(t)x) with fairly general α(t) and λ(t). For a closely related model of the critical wave equation, the solutions of this type with λ(t) → ∞ as t → ∞ (blow up at innity) and λ(t) → 0, tλ(t) → ∞ as t → ∞ (non-dispersive vanishing)

were recently constructed by Donninger and Krieger (see [START_REF] Donninger | Nonscattering solutions and bluw up at innity for the critical wave equation[END_REF]). The goal of the second part of this thesis is to prove an analogous result for the NLS equation [START_REF] Adami | Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three[END_REF]. More precisely we show the following theorem. Theorem 0.4. There exists β 0 > 0 such that for any ν, α 0 ∈ R with |ν| + |α 0 | ≤ β 0 and any δ > 0 there exist T > 0 and a radial solution u ∈ C([T, +∞), Ḣ1 ∩ Ḣ2 ) to (4) of the form:

(5)

u(t, x) = e iα(t) λ 1/2 (t)W (λ(t)x) + ζ(t, x),
where λ(t) = t ν , α(t) = α 0 ln t, and ζ(t) veries:

ζ(t) Ḣ1 ∩ Ḣ2 ≤ δ, ζ(t) L ∞ ≤ Ct -1+ν 2 , < λ(t)x > -1 ζ(t) L ∞ ≤ Ct -1-3 2 ν ,
Introduction xv scale t ν |x| 1, the self-similar region where |x| = O(t 1/2 ), and, nally, the remote region where |x| = O(t). In the inner region the solution will be constructed as a perturbation of the prole e iα 0 ν ln t t ν/2 W (t ν x). While, the self-similar and remote regions are the regions where the solution is small and described essentially by the linear equation i du dt = -u. The second step consists in considering the linearization of (4) around W and prove the boundedness of the propagator of the linearized operator along its essential spectrum in the H 1 (R 3 ).

To achieve this result we use the distorted Fourier transform and some of its properties. In such arguments, some of the techniques are from Buslaev and Perelman [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF], and Krieger and Schlag [START_REF] Krieger | Stable manifolds for all monic supercritical NLS in one dimension[END_REF].

Finally, in the third and last step the results of the previous steps are exploited in order to prove, by a xed point argument, the existence of an exact solution on the NLS equation ( 4) that satises the properties claimed in the theorem.

The results presented here form the core of three papers: 

• R.
i du dt = -u -f (x, |u| 2 )u, x ∈ R 3 .
Notons qu'on peut aussi considérer des equations abstraites avec des opérateurs autoadjoints autre que le Laplacien. L'existence locale et globale pour le problème de Cauchy associé a été amplement examinée pour une grand famille de nonlinéarités (pour exemple voir [START_REF] Ginibre | On a class of nonlinear Schrödinger equations.I. The Cauchy problem, general case[END_REF], [START_REF] Ginibre | On a class of nonlinear Schrödinger equations.II. Scattering theory, general case[END_REF], [START_REF] Glassey | On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations[END_REF], [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] et leur références). En particulier, sous des hypothèses convenables sur f , cette équation a une solution unique une fois que la donnée initiale est xée.

De manière générale, l'évolution se révèle être une compétition entre la partie linéaire de l'équation (qui tend à disperser la solution) et la partie non-linéaire (qui peut être soit focalisante, soit défocalisante en fonction du signe de la fonction f ). On pourrait ainsi penser que la dynamique se caractérise par la combinaison de trois phénomènes. Le premiér est un comportement linéairement dominé qui apparait quand les eets de la partie linéaire dominent ceux de la non-linéarité. Dans ce cas, la solution est globale et en temps longs elle converge vers une solution de l'équation de Schrödinger linéaire qui nous le savons, se disperse vers zero. Si les eets non-linéaires sont plus forts que les eets linéaires, on peut avoir un comportement complètement non-linéaire. En ce cas, si l'équation [START_REF] Berestycki | Nonlinear scalar eld equations, i existence of a ground state[END_REF] est focalisante (cas étudié dans cette thèse), alors la solution peut développer des singularités en temps ni. Enn les eets linéaires et non-linéaires peuvent être en équilibre.

Dans le cas focalisant une des manifestations les plus classiques de ce régime est l'existence de solutions solitoniques.

Pour dénir d'une façon plus précise la notion de soliton on observe que la non-homogénéité, qui vient de la dépendance de f en x dans l'équation [START_REF] Berestycki | Nonlinear scalar eld equations, i existence of a ground state[END_REF], détruit l'invariance par rapport aux translations mais la dynamique est toujours invariante par rapport à la variation de phase. Par conséquent, il est bien connu que, sous des hypothèses convenables, l'équation (7) admet une famille de solutions de la forme Stabilité orbitale et asymptotique des ondes stationnaires pour des l'équations de Schrödinger avec des non-linéarités concentrése en dimension trois

u(t, x) = e iωt Φ ω (x), avec ω appartenant à un intervalle et Φ ω satisfaisant -Φ ω + ωΦ ω -f (x, |Φ ω | 2 )Φ ω = 0.
La première partie de cette thèse est dédiée à l'analyse de la stabilité orbitale et asymptotique des ondes solitaires de l'équation de Schrödinger avec des non-linéarités concentrées en dimension trois.

Ce modèle a été introduit par Adami, Dell'Antonio, Figari et Teta ( [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] et [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF]). Les propriétés de stabilité du modèle analogue en dimension un, construit par Adami et Teta ( [START_REF] Adami | A class of nonlinear Schrödinger equations with concentrated nonlinearity[END_REF]), ont été étudiées par Buslaev, Komech, Kopylova et Stuart ( [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] et [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF]).

Un opérateur de Schrödinger à non-linéarité concentrée est un générateur de dynamique dont la partie non-linéaire est localisée en un point. Plus précisément, le modèle considéré est déni à l'aide de l'opérateur non-linéaire H α déni sur un sous-espace approprié de L 2 (R n ), n = 1, 2, 3, où α est une fonctionnel xée agissant sur un élément du domaine déni précisément cidessous.. Dans le cas n = 3 (cas étudié dans cette thèse) une dénition générale des non-linéarités concentrées a été donnée par Noja et Posilicano [START_REF] Noja | Wave equations with concentrated nonlinearities[END_REF]. Dans ce cas, le domaine de l'opérateur H α est le sous-espace suivant de L 2 (R 3 ) :

D(H α ) = u ∈ L 2 (R 3 ) : u(x) = φ(x) + q 1 4π|x| avec φ ∈ H 2 loc (R 3 ), ∆φ ∈ L 2 (R 3 ), q ∈ C, lim x→0 u(x) -q 1 4π|x|
= α(u)q , l'action de l'opérateur étant décrite par

H α u = -φ.
Le nombre complexe q est parfois appelé charge. Dans cette thèse on considère le cas ( 8)

α(u) = -ν|q| 2σ , ν > 0, σ > 0.
Introduction xix ont été étudiée par Adami, Dell'Antonio, Figari, and Teta en [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] et [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF].

Les ondes solitaires (ou ondes stationnaires) de l'Équation (9) existent si et seulement si ω > 0 et leur expression analytique est alors connue (voir Section 1.2.2).

Notons que l'Équation (9) est invariante par changements de phase ce qui l'empêche la stabilité des solitons au sens de Lyapounov.

Un état Φ ω est dit orbitalement stable dans le futur si pour tout > 0 il existe δ > 0 tel que Theorem 0.5. (Stabilité orbitale) Considérons l'équation [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF] avec non-linéarité puissance concentrée [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF], alors pour tout ω > 0

u(0) -Φ ω V < δ ⇒ d(u(t), O(Φ ω )) < ∀t > 0, où • V est la norme dans l'espace d'énergie, O(Φ ω ) = {e iθ Φ ω (x), θ ∈ [0, 2π)} est l'orbite de Φ ω et d(u, O(Φ ω )) = inf v∈O(Φω) u -v V ,.
(a) l'onde stationnaire Φ ω est orbitalement stable si 0 < σ < 1, (b) l'onde stationnaire Φ ω est orbitalement instable si σ > 1.
Finalement pour le cas σ = 1 l'instabilité par explosions se démontre en exploitant la transformation pseudo-conforme. 

) Soit σ ∈ (0, 1/ √ 2). Soit u ∈ C(R + , V ) une solution de (9) avec u(0) = u 0 ∈ V ∩ L 1 w (R 3 ) et ω 0 > 0, θ 0 ∈ R. On note d = u 0 -e iθ 0 Φ ω 0 V ∩L 1 w . Alors, si d est susamment petit, la solution u(t) se décompose en somme u(t) = e iω∞t Φ ω∞ + U t * ψ ∞ + r ∞ (t), où ω ∞ > 0 et ψ ∞ ∈ L 2 (R 3 ) et le reste r ∞ (t) vérie r ∞ (t) L 2 = O(t -5/4 ) quand t → +∞. Dans le deuxième cas spectral (σ ∈ ( 1 √ 2 , √ 3+1 2 √ 
2 )), la présence de deux valeurs propres purement imaginaires ralentit la vitesse de décroissance du reste r ∞ . Cette décroissance plus lente peut être observée à travers le comportement des paramétrés dont l'évolution est décrite par les équations des modulation. Pour étudier les équations de modulation il est, dans ce cas, nécessaire de tenir compte des termes quadratiques et cubiques de la non-linéarité et exploiter un changement de variables, an de réduire les équations à une forme normale, ce qui permet ensuite, à l'aide des estimations dispersives, de procéder à l'analyse du comportement asymptotique. Cela complexié l'étude des propriétés de ψ ∞ et r ∞ . An de formuler le dernier résultat notons Ψ 1 , Ψ 2 les fonctions propres correspondantes aux valeurs propres purement complexes et z 0 le coecient dans la donnée initiale. Theorem 0.7. (Stabilité asymptotique en présence de valeurs propres purement imaginaires

) Soit σ ∈ ( 1 √ 2 , σ * ), où σ * ∈ ( 1 √ 2 , √ 3+1 2 √ 2 ]. Soit u(t) ∈ C(R + , V ) une solution de (9) avec u(0) = u 0 ∈ V ∩ L 1 w de la forme u(0) = u 0 = e iω 0 +γ 0 Φ ω 0 + e iω 0 +γ 0 [(z 0 + z 0 )Ψ 1 + i(z 0 -z 0 )Ψ 2 ] + f 0 ∈ V ∩ L 1 w (R 3 ),
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Alors, si est susamment petit, la solution u(t) se en somme

u(t) = e iω∞t+ib 1 log(1+ k∞t) Φ ω∞ + U t * ψ ∞ + r ∞ (t), as t → +∞, où ω ∞ , k ∞ > 0, b 1 ∈ R et φ ∞ ∈ L 2 (R 3 ) et r ∞ (t) vérie r ∞ (t) L 2 = O(t -1/4 ) quand t → +∞, en L 2 (R 3 ).
Relaxation non-dispersive et explosion à l'inni pour l'équation de Schrödinger non-linéaire à énergie critique en dimension trois Dans la deuxiéme partie de cette thése nous étudierons l'équation (appelée équation de Schrödinger non-linéaire à énergie critique) [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF] 

i du dt = -u -|u| 4 u x ∈ R 3 u(0) = u 0 ∈ Ḣ1 (R 3 )
.

Ce probléme de Cauchy est bien posé localement en temps : pour tout donnée initiale u 0 ∈ Ḣ1 (R 3 ) il existe une unique solution u dénie sur un intervalle maximal de dénition

I = (T -, T + ) tel que u ∈ C(I, Ḣ1 (R 3 )) ∩ L 10 (I × R 3 ) pour tout intervalle compact I ⊂ I. Si T + < +∞ (ou T -> -∞), alors u L 10 ((0,T + )×R 3 ) = +∞ (respectivement u L 10 ((T -,0)×R 3 ) = +∞) et on dit que la solution explose en temps ni.
Pendant sa durée de vie la solution de [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF] conserve l'énergie :

E(u(t)) = 1 2 R 3 |∇u(t, x)| 2 dx - 1 6 R 3 |u(t, x)| 6 dx = E(u(0)).
L'énergie et l'équation sont toutes les deux invariantes par changement d'échelle

u(t, x) -→ λ -1/2 u t λ 2 , x λ , ∀λ > 0.
Si les données initiales sont susamment petites, la solution est globale et se disperse quand t → ∞. Pour des données grandes on peut démontrer l'existence de solutions explosives en temps ni à l'aide de l'identité de viriel

d 2 dt 2 R 3 |x| 2 |u(t, x)| 2 dx = 8E(u) - 16 3 R 3 |u(t, x)| 4 dx,
qui montre que le solutions avec des données initiales localisés avec énergie négative ne peuvent pas vivre qu'un temps ni.

De plus l'équation [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF] admet un état stationnaire en Ḣ1 (R 3 ), c'est-à-dire une solution de

-W -|W | 4 W = 0.
Une solution particulière de l'équation ci-dessus est la solution de Talenti-Aubin

W (x) = 1 + |x| 2 3 Introduction si u(0) Ḣ1 < W Ḣ1 , alors la solution est globale et se disperse pour t → ∞ ; si u(0) Ḣ1 > W Ḣ1 et u(0) ∈ L 2 (R 3
), alors la solution explose en temps ni.

Le comportement des solutions radiales à énergie critique a été classié par Duyckaerts et Merle [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]. Dans ce cas, en plus de l'explosion en temps ni et dispersion à zéro (et à W même), on a des solutions qui quand t → ∞ convergent dans Ḣ1 (R 3 ) vers un état stationnaire re-écaillé. Quand E(u(0)) > E(W ), on s'attende à ce que la dynamique soit plus riche et inclue des solutions qui quand t → ∞ se comportent comme un état stationnaire modulé e iα(t) λ

1 2 (t)W (λ(t)x) avec α(t) et λ(t) assez généraux.
Pour le modèle trés proche de l'équation des ondes critique les solutions de ce type ont été récemment construites par Donninger et Krieger (voir [START_REF] Donninger | Nonscattering solutions and bluw up at innity for the critical wave equation[END_REF]) avec λ(t) → ∞ quand t → ∞ (explosion à l'inni) et λ(t) → 0, tλ(t) → ∞ pour t → ∞ (relaxation). Le but de la deuxiéme partie de cette thése est de démontrer un résultat similaire pour l'équation de Schrödinger non-linéaire [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF]. Plus précisément on prouvera le théorème suivant. Theorem 0.8. Il existe [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF] de la forme : [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF] 

β 0 > 0 tel que pour tout ν, α 0 ∈ R avec |ν| + |α 0 | ≤ β 0 et tout δ > 0, il existe T > 0 et une solution radiale u ∈ C([T, +∞), Ḣ1 ∩ Ḣ2 ) de
u(t, x) = e iα(t) λ 1/2 (t)W (λ(t)x) + ζ(t, x), où λ(t) = t ν , α(t) = α 0 ln t, et ζ(t) vérie: ζ(t) Ḣ1 ∩ Ḣ2 ≤ δ, ζ(t) L ∞ ≤ Ct -1+ν 2 , < λ(t)x > -1 ζ(t) L ∞ ≤ Ct -1-3 2 ν , (12) 
pour tout t ≥ T . Les constantes C ici et dessous sont indépendantes de ν, α 0 et δ.

De plus il existe

ζ * ∈ Ḣs , ∀s > 1 2 -ν, tel que, quand t → +∞, ζ(t) -e it∆ ζ * → 0 dans Ḣ1 ∩ Ḣ2 .
Comme mentionné ci-dessus, un résultat similaire pour l'équation des ondes à énergie critique a été obtenu par Donninger et Krieger [START_REF] Donninger | Nonscattering solutions and bluw up at innity for the critical wave equation[END_REF]. Cette construction a été inspirée par l'article précédent de Krieger, Schlag et Tataru [START_REF] Krieger | Slow blow-up solutions for the H 1 (R 3 ) critical focusing semilinear wave equation in R 3[END_REF], où le cas d'explosions en temps ni a été traité. Ces deux articles, ont été une source d'inspiration pour partie des techniques employées dans la démonstration du théorème précédent.

Les résultés présentés ici vont à former trois publications :

• R. 

Absence of nonvanishing eigenvalues 1.1 Introduction

In this chapter we begin a systematic analysis of the stability of solitary waves for a nonlinear Schrödinger equation with a nonlinearity concentrated in space dimension three. In particular, we show that the standing waves of the model are asymptotically stable in the sense that at large times, the evolution decomposes as the sum of a standing wave (possibly with dierent parameters from those of the reference initial soliton), a free linear wave, and a small remainder with a spatial decay stronger than the linear dispersive one.

An analogous study concerning the NLS equation with a concentrated nonlinearity in dimension one was given in [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] and [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF]. These papers have been a source of inspiration for the present work, in particular for what concerns the general scheme of analysis and for some proofs. However, the one and the three-dimensional models are dierent, in particular the latter is strongly singular and its energy space is not contained in H 1 (R 3 ). This fact prevents us from following step by step the techniques and the results of the cited papers; in particular, no formal manipulations with delta distributions are possible, and the full denition of a delta interaction as a point perturbation of the Laplacian is needed in the analysis. We shall comment on that along the paper.

We start by giving a presentation of the model. According to [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF], we construct a Schrödinger equation with concentrated nonlinearities in dimension three by starting from the standard threedimensional linear Schrödinger operator with a so-called point or delta interaction ( [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF]). Point interactions are widely used in Quantum Mechanics as models of contact or zero-range interactions and they are intended to describe strongly concentrated potentials at a point. In order to rigorously dene a delta interaction located at the origin of R 3 we rst consider the Laplacian restricted to the set C ∞ 0 (R 3 \{0}) and obtain a symmetric non selfadjoint operator with deciency indices [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF][START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF]. Second, by the classical Von Neumann-Krejn theory there exists a one-parameter family of selfadjoint extensions, which we denote by H α . The operator H α is dened on the domain

D(H α ) = {u ∈ L 2 (R 3 ) : u(x) = φ(x) + qG 0 (x) with φ ∈ L 2 loc (R 3 ) , ∇φ ∈ L 2 (R 3 ) , ∆φ ∈ L 2 (R 3 ), (1.1) q ∈ C, lim x→0 (u(x) -qG 0 (x)) = αq},
where G 0 is the Green's function of the Laplacian in three dimensions, i.e.

(1.2)

G 0 (x) = 1 4π|x| , 4
Chapter 1. Absence of nonvanishing eigenvalues and the action is given by H α u(x) = -∆φ(x), x ∈ R 3 . To summarize, any element of the domain decomposes in a regular part φ and a singular (Coulombian) part; the coecient q of the singular part is conventionally called charge, and the boundary condition imposes a relation between the charge and the value of the regular part at the origin depending on the so-called strength α of the point interaction, which is the parameter that xes the selfadjoint extension.

An alternative equivalent and perhaps more direct construction, which better justies the interpretation and the physical meaning of H α , can be given by dening H α as a suitable scaling limit (in norm resolvent sense) of a family of Schrödinger operators of the form -∆ + V , where

V is a short range potential that approximates a delta distribution as → 0. Performing such limit requires a rescaling procedure in order to yield a non-trivial result, and the parameter α appearing in the above denition characterizes the particular selfadjoint extension and is related

to zero energy resonances of the approximating operators. For details and further information see [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF].

Whatever the denition given to the operator H α is, we recall that, for α ≥ 0 (repulsive delta interaction), H α is positive and its spectrum is purely absolutely continuous and coincides with [0, +∞), while for α < 0 (attractive delta interaction) an isolated simple negative eigenvalue λ = -(4πα) 2 appears, corresponding to a bound state. A second property relevant to the physical interpretation of the model and related to the value of α is that the scattering length of a delta interaction of strength α is given by -(4πα) -1 . The closed and lower bounded quadratic form associated to H α is

(1.3) H α (u) = R 3 |∇φ(x)| 2 dx + α|q| 2 ,
dened on the domain of nite energy states

(1.4) V = {u ∈ L 2 (R 3 ) : u(x) = φ(x) + q u G 0 (x), with φ ∈ L 2 loc (R 3 ), ∇φ ∈ L 2 (R 3 ), q ∈ C},
which is a Hilbert space endowed with the norm (1.5)

u 2 V = ∇φ L 2 + |q| 2 .
Note that for a generic element u of the form domain the charge q and its regular part φ are independent of each other. determined by u; for example, the relation between the element u and its charge is given by Note also that the energy domain is strictly larger than H 1 (R 3 ). So, the linear problem cannot be considered as a small perturbation of the standard free problem in the sense of the quadratic forms (at variance with the one-dimensional case). An equivalent representation of the energy space is obtained, xed λ > 0, by (1.6)

V = u = φ λ + qG λ , with φ λ ∈ H 1 (R 3 ), q ∈ C , G λ (x) = e -λ|x| 4π|x| ,
and one can dene an equivalent energy norm by

u 2 V = ∇φ λ 2 L 2 + |q| 2 , ∀u ∈ V.
Notice that G λ ∈ L 2 (R 3 ) and φ λ ∈ H 1 (R 3 ), while in the representation (1.4) the regular part was just in the homogeneous Sobolev space D 1 (R 3 ) only.

Following [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF], the nonlinear model can be dened by allowing the strength α to depend on u as α(u) = -ν|q| 2σ , with ν > 0, σ > 0, so that

D(H α ) = {u ∈ L 2 (R 3 ) : u(x) = φ(x) + qG 0 (x) with φ ∈ H 2 loc (R 3 ), ∆φ ∈ L 2 (R 3 ), q ∈ C, lim x→0 (u(x) -qG 0 (x)) = -ν|q| 2σ q},
and H α u = -∆φ. In the following sections, we often omit the notation H α(u) in favour of H α if no risk of confusion exists between the linear and the nonlinear operator. We stress that the nonlinearity we are considering is focusing. It can be interpreted as modeling the action of a defect in a medium which exerts a nonlinear response to the propagation. We remark that a more general denition of concentrated nonlinearities (with applications to the case of the wave equation) is given in [START_REF] Noja | Wave equations with concentrated nonlinearities[END_REF].

We consider the evolution generated by the nonlinear operator H α(u) , i.e.

(1.7)

i du dt = H α u.
In the present literature, there is some physical and numerical analysis of Schrödinger dynamics in presence of nonlinear defects, mainly focused on the milder one-dimensional case ( [START_REF] Malomed | Modulational instability of a wave scattered by a nonlinear centre[END_REF], [START_REF] Sukhorukov | Nonlinearity and disorder: Classication and stability of nonlinear impurity modes[END_REF], [START_REF] Dorr | Soliton supported by localized nonlinearities in periodic media[END_REF]).

The more technical construction of the three-dimensional problem has hindered extended modeling study, numerical work as well as rigorous analysis. Moreover, a certain amount of literature is devoted to NLS equation with nonhomogeneous (i.e. x-dependent and decaying) nonlinearities, yet with a relatively low decay at innity (see [START_REF] Fibich | Stability of solitary waves for nonlinear Schrödinger equation with inhomogeneous nonlinearities[END_REF][START_REF] Genoud | Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves[END_REF] and references therein).

Local (for any σ > 0) and global (for σ < 1) well-posedness of the Cauchy problem associated to the nonlinear Schrödinger equation (1.7) in the space V have been established in [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] and [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF]. In particular, (1.7) admits two conserved quantities called mass and energy, dened as

M (u(t)) = u(t) 2 L 2 , E(u(t)) = 1 2 ∇φ(t) 2 L 2 -ν 2σ+2 |q(t)| 2σ+2 .
In Section 1.2 we prove that equation (1.7) admits standing waves, i.e. solutions of the form u(x, t) = e iωt Φ ω (x) , where the prole or amplitude Φ ω up to a phase factor e iθ is given by

(1.8) Φ ω (x) = √ ω 4πν 1 2σ e - √ ω|x|
4π|x| .

The set of standing waves is called the solitary manifold M, and the main concern of this chapter consists in the study of the large-time evolution of initial data in the vicinity of M. A rst result concerns stability and instability of standing waves. Stability has to be intended as orbital stability, i.e. Lyapunov stability up to symmetries of the equation, in this case up to gauge (U (1)) invariance. The orbit of Φ ω is then O(Φ ω ) = {e iθ Φ ω (x), θ ∈ R}. Thus, by denition, the state Φ ω is orbitally stable if for every > 0 there exists δ > 0 such that

d(ψ(0), O(Φ ω )) < δ ⇒ d(ψ(t), O(Φ ω )) < ∀t > 0, where d(ψ, O(Φ ω )) = inf u∈O(Φω) ψ -u V .
A stationary state is said to be unstable if it is not stable. Then, we have the following result, proved in Section 1.3:

Theorem (Orbital Stability) Let us consider (1.7). Then, for every ω > 0,

(a) if 0 < σ < 1, then the state Φ ω is orbitally stable (b) if σ ≥ 1, then Φ ω is orbitally unstable.
The result directly follows from Weinstein [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] and Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF] theory for the case σ = 1, while for the case σ = 1 the pseudoconformal invariance of the equation gives the instability by blow-up.

The core of the chapter is devoted to the study of the asymptotic stability of the family of stationary states. Asymptotic stability means, loosely speaking, that the solution u(t) corresponding Chapter 1. Absence of nonvanishing eigenvalues to an initial datum u(0) close to the family of orbits, approaches some element of the family of orbits as t → ∞. The analysis makes use of the representation (1.9)

u(t, x) = e iΘ(t) Φ ω(t) (x) + χ(t, x) ,
where Θ(t) = t 0 ω(s)ds + γ(t), and γ(t) is a suitable phase. Namely, the solution is represented at every time as a modulated solitary wave, with time dependent parameters, up to a uctuating remainder χ which has to be controlled. Asymptotic stability of the family of standing waves means that the modulating parameters ω(t) and γ(t) have a limit as t → ∞, and the uctuation χ is in some sense a small and decaying dispersive correction; the radiation damping through dispersion is responsible for the "dissipative" asymptotic behavior of the solution u around the family of relative equilibria O(Φ ω ) . Notice that, however, in general the solution does not converge to the solitary wave to which it was close initially.

The subject of asymptotic stability of solitary waves was pioneered by Soer and Weinstein ([42], [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations II. the case of anisotropic potentials and data[END_REF]), and Buslaev and Perelman ([9], [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF]), who developed the main strategies and techniques, nowadays classical; a more recent presentation is contained in [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF]. Many relevant later contributions rening and enlarging the hypotheses in the original papers, as well as concerning the kind of initial admitted data and nonlinearities, are contained in [START_REF] Cuccagna | Stabilization of solution to nonlinear Schrödinger equations[END_REF][START_REF] Tsai | Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions[END_REF][START_REF] Tsai | Relaxation of excited states in nonlinear Schrödinger equations[END_REF][START_REF] Gustafson | Asymptotic stability and completeness in the energy space for nonlinear schrödinger equations with small solitary waves[END_REF][START_REF] Gang | Relaxation of solitons in nonlinear schrödinger equations with potentials[END_REF][START_REF] Genoud | Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves[END_REF][START_REF] Cuccagna | On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations[END_REF]. According to this consolidated analysis, one must preliminarily indagate the spectrum of the linearization of equation (1.7) around the solitary solution. Writing u = e iωt (Φ ω + R) and identifying R with the vector of its real and imaginary part, we obtain that it satises the canonical system

J dR dt = H α 1 + ω 0 0 H α 2 + ω R ≡ DR
where H α j are (linear) delta interaction hamiltonian operators with xed strength α j that depend on the stationary state Φ ω (through its charge) and on the parameters of the model ν, σ (see eq.

(1.17)). So the dynamics of the linearization of the NLS equation around the standing wave Φ ω is controlled by the nonselfadjoint (Hamiltonian) matrix operator L = JD. The explicit characterization of the spectrum of the linearization L is possible due to the detailed knowledge of the properties of operators H α j . Such feature is infrequent and allows to avoid further spectral assumptions. The complete result is given in Section 1.4, Theorem 1.10. Here it is sucient to recall that in this chapter we study asymptotic stability of standing waves in the range σ ∈ (0, 1/ √ 2) only, which corresponds to L having no eigenvalues dierent from zero and no resonances at the threshold of the essential spectrum. The following chapter will treat the case σ ∈ (1/ √ 2, 1), where two simple eigenvalues ±i2σ √ 1 -σ 2 ω appear.

Let us notice that the representation (1.9) amounts in fact to a change of coordinates from the original global u to the new set {ω, γ, χ}, with a nite dimensional component given by {ω, γ}, that describes the solitary manifold and an innite dimensional one described by χ. However, the representation is not unique, because any choice of ω, γ gives a corresponding choice of χ such that u given by (1.9) is a solution of (1.7); so one has to restrict in some way the behavior of the new parameters {ω, γ, χ} of the solution. To this end, we exploit the fact that the solitary manifold can be naturally endowed with a symplectic structure (see Section 1.2.1) and it turns out that its tangent space T Φω coincides with the generalized kernel of the linearization L. The generalized kernel is in turn non trivial, so the propagator e -tL has a component growing in time.

A parametrization of the running approximate solitary wave in the neighborhood of the solitary manifold suitable for asymptotic analysis is hence obtained through a symplectic splitting in a component along the solitary manifold and a component transversal (symplectically orthogonal) to it. Requiring that the innite dimensional component χ is purely transversal, i.e. projecting to zero on the directions of the generalized kernel of the linearization, provides the set of the 1.2. Preliminaries 7 so called modulation (coupled) equations for the parameters ω(t) and γ(t), as well as a partial dierential equation for χ (see [START_REF] Fröhlich | Solitary wave dynamics in an External Potential[END_REF] for an enlightening description of the symplectic projection method). The goal is to establish the asymptotic behavior of the solutions to the modulation equations with a simultaneous control of the decay of the nonlinear part χ, through the so-called majorant's method (see [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF][START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF]).

The main result of this chapter is the following, and it is proven in Section 1.7.

Theorem (Asymptotic stability) Assume σ ∈ (0, 1/

√ 2). Let u ∈ C(R + , V ) be a solution of equation (1.7) with u(0) = u 0 ∈ V ∩ L 1
w and denote d = u 0 -e iθ 0 Φ ω 0 V ∩L 1 w , for some ω 0 > 0 and θ 0 ∈ R. If d is suciently small, then the solution u(t) decomposes asimptotically as follows

u(t) = e iω∞ Φ ω∞ + U t * u ∞ + r ∞ , t → +∞, where ω ∞ > 0 and u ∞ , r ∞ ∈ L 2 (R 3 ) with r ∞ L 2 = O(t -5/4 ) as t → +∞.
In the previous statement, L 1 w is dened in Section 1.4.2 and is a weighted space of integrable functions. The weight guarantees the validity of the dispersive estimates needed in order to control the decay of the transversal evolution, and it seems at present unavoidable in view of the singularity of nite energy states. Moreover, it imposes a certain localization on the the admitted initial data, which seems to be a technical requirement.

Concerning the treatment of the modulation equations, one of the main additional diculties with respect to standard models, and in particular with the case of concentrated nonlinearities in one dimension treated in [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] and [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF], is that the equations controlling the evolution of the transversal part χ have domains that change with time. This fact forced us to make use of the variational formulation (i.e. in terms of quadratic forms) instead of the traditional strong formulation (i.e. in terms of operators). The same problem propagates to the proof of the asymptotics given in the above theorem. A last remark concerns the seemingly anomalous value of the nonlinearities where asymptotic stability is proven; this because in the typical situations, when standard NLS with or without potential is treated, it is dicult to have information about subcritical nonlinearities (but see the notably exception in [START_REF] Kirr | Asymptotic stability of ground states in 3d nonlinear schrödinger equation including subcritical cases[END_REF]), and in particular pure power. On the other hand, the present model corresponds to an inhomogeneous (space dependent and strongly singular) nonlinearity; this seems to indicate that the analysis of specic models can give results not accessible to general theory, at least at present.

Preliminaries 1.2.1 Hamiltonian structure

We consider L 2 (R 3 , C) as a real Hilbert space endowed with the scalar product

(1.10) (u, v) L 2 = Re R 3 uv dx = R 3 (Re v Re u + Im v Im u)dx.
It is sometimes convenient to shift from the complex valued representation of u to the vector real valued one through the identication u = Re u + i Im u → (Re u, Im u) = (u 1 , u 2 ). As a consequence, H s (R 3 , C) ∼ = H s (R 3 , R 2 ), while multiplication by i is equivalent to multiplication by the matrix -J, where (1.11)

J = 0 1 -1 0 .
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The space L 2 (R 3 ) is also a symplectic manifold when endowed with the symplectic form (1.12)

Ω(u, v) = Im R 3 uv dx = R 3 (Re v Im u -Im v Re u)dx = R 3 (u 2 v 1 -u 1 v 2 )dx.
Along the chapter we often shift between real and complex representation when no ambiguity occurs.

In our model the Hamiltonian functional coincides with the total energy and it is given by (1.13) 

E(u(t)) = 1 2 ∇φ 2 L 2 - ν 2σ + 2 |q| 2σ+2 , u = φ + qG 0 ∈ V.
M = e iΘ Φ ω , ω > 0 , Θ ∈ [0, 2π) ,
where the function Φ ω reads

Φ ω (x) = √ ω 4πν 1 2σ e - √ ω|x| 4π|x|
and the parameters ω and Θ play the role of local coordinates.

Proof. Recall that the function G 0 dened in (1.2) satises the equation -G 0 = δ where δ is the Dirac's delta distribution centred at x = 0. Hence, for x = 0 equation (1.15) is equivalent to -Φ ω (x) + ωΦ ω (x) = 0. Consider the corresponding equation in spherical coordinates, namely

- ∂ 2 u ∂ 2 r - 2 r ∂u ∂r - 1 r 2 ∂ 2 u ∂ 2 φ - cos φ r 2 sin φ ∂u ∂φ - 1 r 2 sin 2 φ ∂ 2 u ∂ 2 θ + ωu = 0,
and exploit the spherical harmonics expansion of the solution u(r, θ, φ) = +∞ l=0 l j=-l u l,j (r)Y l,j (θ, φ), where Y l,j denotes the set of spherical harmonics which is an orthonormal basis of L

2 ([0, π] × [0, 2π], sin θdθdφ). Since ∂ 2 Y l,j ∂φ 2 + cos φ sin φ ∂Y l,j ∂φ + 1 sin 2 φ ∂ 2 Y l,j ∂θ 2 = -λY l,j ,
for some λ ∈ C, one has that λ belongs to the set {λ l := l(l + 1), l ∈ N}, and so the functions u l,j solves -u l,j (r) -2 r u l,j (r) + ω -λ l r 2 u l,j (r) = 0. Then, from formula 8.491.6 in [START_REF] Gradshteyn | Tables of integrals, series and products[END_REF],

u j,l (r) = 1 √ r Z 1
where Z ν is a generic Bessel's function. By the asymptotic expansions 8.443 and 8.451.1 in [START_REF] Gradshteyn | Tables of integrals, series and products[END_REF] one immediately has that if λ = 0, then u j,l cannot belong to L 2 (R + , r 2 dr). Hence, we x λ = 0 and denote Φ ω (x) = u(r) r , r = |x|. Thus u has to be a L 2 (R + , r 2 dr) solution of u (r) -ωu(r) = 0, and

Φ ω (x) = qe - √ ω|x| 4π|x| ,
for some q ∈ C and ω > 0.

Writing (1.15) in weak form and separating regular and singular part of the test function, one obtains

-ν|q| 2σ qq v + √ ω 4π qq v = 0,
for all q v ∈ C which coincides with the boundary condition for H α . Supposing ν = 0 one obtains

|q| 2σ = √ ω 4πν . This requires ν > 0, so Φ ω (x) = √ ω 4πν 1 2σ e - √ ω|x| 4π|x| 
which, up to a phase factor, gives the stated result. In the case ν = 0, from boundary condition we get q = 0 or ω = 0. If q = 0 , then the function u vanishes. If ω = 0, then one has u(x) = 1 4π|x| , which is the resonance function of the delta interaction with vanishing strength, but it is not an element of the operator domain, and it does not solve the stationary equation (1.15). So for ν = 0 standing waves do not exist.

In the following we denote q ω = √ ω 4πν

1 2σ .
Remark 1.2. From the proof above, it turns out that a nite energy standing wave is in fact an element of D(H α ).

Linearization of H α(u) around Φ ω

The linearization of equation (1.7) around a stationary solution is not completely obvious, due to the fact that the nonlinearity is embodied in the domain of the operator H α(u) and not in the action of the operator itself. Nevertheless, we can consider the Hamiltonian associated to equation (1.7) given by formula (1.14) and notice that the nonlinearity no longer appears in the domain V but directly in the Hamiltonian functional. So we derive the linear operator which approximates H α(u) from the quadratic form which approximates E(Φ ω ) and obtain the following result.

Proposition 1.3. The Hessian E (Φ ω ) of the functional E can be represented as

E (Φ ω )(h, k) = H α,Lin h, k
, where H α,Lin is the operator given by

H α,Lin = H α 1 0 0 H α 2 ,
where H α 1 and H α 2 are the selfadjoint operators on L 2 (R 3 ) dened in the introduction (see (1.1)), and

(1.17)

α 1 = -ν(2σ + 1)|q ω | 2σ = - 2σ + 1 4π √ ω, α 2 = -ν|q ω | 2σ = - √ ω 4π .
H α,lin is selfadjoint with respect to the real scalar product in L 2 (R 3 , C) .
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Proof. The rst Gâteaux derivative of E(u) reads

(1.18) E (u)[h] = d d {E(u + h)} =0 = Re R 3 ∇φ u (x) • ∇φ h (x)dx -ν|q u | 2σ Re(q u q h ) ∀u, h ∈ V, while the second Gâteaux derivative at Φ ω reads ∂ 2 ∂ ∂λ {E(Φ ω + h + λk)} =0,λ=0 = Re R 3 ∇φ h (x) • ∇φ k (x)dx - ∂ 2 ∂ ∂λ { ν 2σ + 2 |q u | 2σ+2 } =0,λ=0 .
The last term gives, after some calculation, the contribution (here

h = (h 1 , h 2 ), k = (k 1 , k 2 )) ∂ 2 ∂ ∂λ {- ν 2σ + 2 |q u | 2σ+2 } =0,λ=0 = -ν|q ω | 2σ [(2σ + 1)q h 1 q k 1 + q h 2 q k 2 ]
.

So E (Φ ω ) is given by the direct sum of two quadratic forms: one is acting on the real part of the functions h and k, and the other on the imaginary part. The term related to the real part is a lower bounded quadratic form whose corresponding selfadjoint operator is H α 1 , while the quadratic form related to the imaginary part corresponds to the operator H α 2 (α 1 and α 2 have been dened in (1.17)). Then, the operator H α,Lin that represents the entire quadratic form E (Φ ω ) is self-adjoint and the proof is complete. Now, to get the linearized equation set u(t) = e iωt (Φ ω + R(t)) and obtain

d dt R = J(E (Φ ω ) + ωΦ ω ) + J(E (Φ ω ) + ω)R + higher order terms J(H α,Lin + ω)R .
Summing up, the linearized equation (1.7) becomes

(1.19) dR dt = JDR, where D = L 1 0 0 L 2 , with (1.20) 
L j = H α j + ω, j = 1, 2. Notice that the operator (1.21) JD := L = 0 L 2 -L 1 0 ,
is not selfadjoint nor skew adjoint. Nevertheless, a standard application of Hille-Yosida theorem and a simple analysis of the resolvent of L which takes into account the factorized structure L = JD with D s.a. shows that it generates a semigroup of linear operators with (at most) exponential growth in time. A more precise analysis of the resolvent of the operator L will be given in Theorem 1.10 and in the appendix 1.11 we will prove that the semigroup has in fact a linear growth (see Theorem 1.32) in the case here interesting, i.e. σ ∈ (0, 1/ √ 2).
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Orbital stability

In order to prove the orbital stability of the stationary solutions to equation (1.7), we apply Grillakis-Shatah-Strauss theory, and in particular Theorem 2 in [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF]. As a rst step, we recall the following known fact proved in [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF].

Proposition 1.4. If α(u) = α where α < 0 is a constant, then

(1.22) σ(H α ) ≡ {-(4πα) 2 } ∪ [0, +∞).
Thanks to the last proposition one can prove the following lemma which implies the spectral properties needed to verify Assumption 3 in [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF].

Lemma 1.5. The spectrum of the operator D is

σ(D) = {-4σ(σ + 1)ω, 0} ∪ [ω, +∞),
and

ker(D) = span 0 Φ ω .
Proof. Since D is the direct sum of the operators L 1 and L 2 acting on L 2 (R 3 ) ⊕ L 2 (R 3 ), its spectrum is given by the union of σ(L 1 ) and σ(L 2 ).

From (1.22) follows σ(H α 1 ) = {-(2σ + 1) 2 ω} ∪ [0, +∞), σ(H α 2 ) = {-ω} ∪ [0, +∞). Then σ(L 1 ) = σ(H α 1 ) + ω = {-4σ(σ + 1)ω} ∪ [ω, +∞), σ(L 2 ) = σ(H α 2 ) + ω = {0} ∪ [ω, +∞).
Hence, ker(L 1 ) = {0} and ker(L 2 ) = span{Φ ω }, which concludes the proof.

We can now prove the following Theorem 1.6. (Orbital stability) For each ω > 0, if 0 < σ < 1, then Φ ω is orbitally stable. If σ > 1, then Φ ω is orbitally unstable.

Proof. Well-posedness and existence of a branch of standing waves, i.e. Assumptions 1 and 2 in [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF], are proved in [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] and [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF] and in the previous section, while Assumption 3 is true thanks to Lemma 1.5. Hence, from Theorem 3 in [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF] we have orbital stability if

d dω Φ ω (x) 2 L 2 > 0 and orbital instability if d dω Φ ω (x) 2 L 2 ) < 0. In order to inspect the sign of d dω Φ ω (x) 2 L 2 , we compute Φ ω 2 L 2 = √ ω 4πν 1 σ 1 8π √ ω , hence d dω Φ ω (x) 2 L 2 = 1 8π(4πν) 1/σ 1-σ 2σ ω 1-3σ
2σ , which concludes the proof.

The case σ = 1

Since Theorem 3 in [START_REF] Grillakis | Stability theory of solitary wawes in the presence of symmetry I[END_REF] does not give information about orbital stability of the stationary state e iωt Φ ω when d dω Φ ω (x) 2 L 2 = 0, we need to inspect the case σ = 1 apart. In such case, equation (1.7) exhibits one additional symmetry (see [START_REF] Adami | Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity[END_REF]).

Chapter 1. Absence of nonvanishing eigenvalues Remark 1.7. Equation (1.7) is invariant under the pseudoconformal transformation

u T pc (t, x) = e -i |x| 2 4(T -t) (T -t) 3/2 u 1 T -t , |x| T -t .
In [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF] it is proved that equation (1.7) may have some non global solutions which blow up, in the following sense: the solution u(t) of equation (1.7) blows up (in the future) at time T < +∞ if lim sup

t→T - ∇φ L 2 = +∞,
where φ is the regular part of the function u according to decomposition (1.1). Due to the conservation of the energy this condition is equivalent to lim sup t→T -|q u (t)| = +∞.

Thanks to the pseudoconformal invariance we prove that in any neighbourhood (in energy norm) of each standing wave there are initial data of a blow up solution.

Theorem 1.8. Fix σ = 1 and ω > 0. For any δ > 0 there exists a blow up solution

u(t) ∈ V such that u(0) -Φ ω V < δ.
Proof. Applying the pseudoconformal transformation to the solitary wave e i ωt Φ ω one gets that for any T > 0, the function

u ω,T (t, x) = e i ω T -t ω 1/4 √ 4πν e - √ ω|x| T -t 4π √ T -t|x| e -i |x| 2 4(T -t)
is a solution to equation (1.7). Thus, for any T > 0, the initial datum u T

(x) = e i ω T ω 1/4 √ 4πν e - √ ω|x| T 4π √ T -t|x| e -i |x| 2 4T
gives rise to a solution that blows up at time T . Now, let ω depend on T as ω = ωT 2 , so that u T (x) = e -i |x| 2 4T Φ ω (x).

We prove the theorem by showing that (e

-i |•| 2 4T -1)Φ ω V → 0 as T → +∞. Indeed, noting that the function (e -i |•| 2 4T -1)Φ ω belongs to H 1 (R 3 ), (e -i |•| 2 4T -1)Φ ω V = ∇((e -i |•| 2 4T -1)Φ ω ) L 2 ≤ 1 2T | • |Φ ω L 2 + 1 4T | • | 2 ∇Φ ω L 2 → 0, T → +∞.

Spectral and dispersive properties of linearization L

Here we study the long time behaviour of equation (1.19), that is the linearization of (1.7) around the stationary solution e iωt Φ ω . The generalized kernel of the operator

L (see (1.21)) is dened as N g (L) = k∈N ker(L k ).
In what follows let us denote

ϕ ω (x) = dΦω dω (x) = 1 4σω √ ω 4πν 1 2σ e - √ ω|x| 4π|x| -1 2 √ ω √ ω 4πν 1 2σ e - √ ω|x| 4π , g ω (x) = ω 1 4 √ 4πν |x| e -√ ω|x| 4π , h ω (x) = ω 1 4 √ 4πν -1 4ω 3 2 e - √ ω|x| 4π|x| + 1 2ω e - √ ω|x| 4π + 1 2 √ ω |x| e -√ ω|x| 4π + 1 3 |x| 2 e -√ ω|x| 4π
.

In Appendix 1.9 we prove the following theorem.
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σ is dierent from 1, then N g (L) = span 0 Φ ω , ϕ ω 0 . Moreover, if σ = 1, then N g (L) = span 0 Φ ω , ϕ ω 0 , 0 g ω , h ω 0 .
In the following section we provide an explicit description of the spectrum of the non-selfadjoint operator L and the dispersive estimates for the action of the propagator e -Lt upon the absolutely continuous subspace.

The resolvent and the spectrum of the linearized operator

The purpose of this section is to prove an explicit formula for the resolvent of the linearized operator. For later convenience we denote

(1.23) G ω±iλ (x) = e i √ -ω∓iλ|x| 4π|x| ω > 0, λ ∈ C,
with the prescription Im √ -ω ± iλ > 0. Furthermore, we make use of the notation g, h := R 3 g(x)h(x) dx.

We prove the following Theorem 1.10. The resolvent R(λ) = (L -λI) -1 of the operator L dened in (1.21) is given by

(1.24) R(λ) = -λG λ 2 * -Γ λ 2 * Γ λ 2 * -λG λ 2 * + 4π W (λ 2 ) i Λ 1 iΣ 2 -iΣ 1 Λ 2 ,
where

W (λ 2 ) = 32π 2 α 1 α 2 -4iπ(α 1 + α 2 ) √ -ω + iλ + √ -ω -iλ -2 √ -ω + iλ √ -ω -iλ,
and formula (1.24) holds for all λ ∈ C \ {λ ∈ C : W (λ 2 ) = 0, or Re(λ) = 0 and | Im(λ)| ≥ ω}. Furthermore, the symbol * in (1.24) denotes the convolution and

(1.25) G λ 2 (x) = 1 2iλ (G ω-iλ (x) -G ω+iλ (x)) , Γ λ 2 (x) = 1 2 (G ω-iλ (x) + G ω+iλ (x)) .
Finally, the entries of the second matrix are nite rank operators whose action on f ∈ L 2 (R 3 ) reads

(1.26)

Λ 1 f = [iλ(4πα 2 -i √ -ω + iλ) G λ 2 , f -(4πα 1 -i √ -ω + iλ) Γ λ 2 , f ]G ω+iλ + +[iλ(4πα 2 -i √ -ω -iλ) G λ 2 , f + (4πα 1 -i √ -ω -iλ) Γ λ 2 , f ]G ω-iλ , Λ 2 f = [iλ(4πα 1 -i √ -ω + iλ) G λ 2 , f -(4πα 2 -i √ -ω + iλ) Γ λ 2 , f ]G ω+iλ + +[iλ(4πα 1 -i √ -ω -iλ) G λ 2 , f + (4πα 2 -i √ -ω -iλ) Γ λ 2 , f ]G ω-iλ , Σ 1 f = -[iλ(4πα 2 -i √ -ω + iλ) G λ 2 , f -(4πα 1 -i √ -ω + iλ) Γ λ 2 , f ]G ω+iλ + +[iλ(4πα 2 -i √ -ω -iλ) G λ 2 , f + (4πα 1 -i √ -ω -iλ) Γ λ 2 , f ]G ω-iλ , Σ 2 f = -[iλ(4πα 1 -i √ -ω + iλ) G λ 2 , f -(4πα 2 -i √ -ω + iλ) Γ λ 2 , f ]G ω+iλ + +[iλ(4πα 1 -i √ -ω -iλ) G λ 2 , f + (4πα 2 -i √ -ω -iλ) Γ λ 2 , f ]G ω-iλ .
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The spectrum of the operator L can be decomposed into an essential and a discrete part,

(1.27) σ(L) = σ ess (L) ∪ σ d (L),
where the essential spectrum is

σ ess (L) = C + ∪C -= {λ ∈ C : Re(λ) = 0 and Im(λ) ≥ ω}∪{λ ∈ C : Re(λ) = 0 and Im(λ) ≤ -ω},
and the discrete spectrum depends on the paremeter σ as follows:

(a) if σ ∈ (0, 1/ √ 2], then the only eigenvalue of L is 0 with algebraic multiplicity 2. (b) if σ ∈ (1/ √ 2, 1), then L has two simple eigenvalues ±i2σ √ 1 -σ 2 ω
and the eigenvalue 0 with algebraic multiplicity 2.

(c) if σ = 1, then the only eigenvalue of L is 0 with algebraic multiplicity 4.

(d) if σ ∈ (1, +∞), then L has two simple eigenvalues ±2σ √ σ 2 -1ω and the eigenvalue 0 with algebraic multiplicity 2.

Before giving the proof, we need two preliminary lemmas. Lemma 1.11. For any µ ∈ C, ω > 0, the Green's function G µ of the operator H µ , dened by

D(H µ ) = H 4 (R 3 ), H µ = µ + (-+ ω) 2 , reads (1.28) G µ (x) = 1 2i √ µ G ω-i √ µ (x) -G ω+i √ µ (x) .
Proof. By denition of Green's function, G µ solves the equation

[µ + (-+ ω) 2 ]G µ (x) = δ(x).
Taking the Fourier transform, one gets

G µ (k) = 1 (2π) 3/2 (µ + (k 2 + ω) 2 ) = 1 2i √ µ G ω-i √ µ (k) -G ω+i √ µ (k) ,
where the function G ω±i √ µ was dened in (1.23). The proof is complete.

Remark 1.12. The function G µ is an element of H s (R 3 ) for any s < 7/2.

Let us denote

H 21 µ = µ + L 2 L 1 ,
where L 2 and L 1 were dened in (1.20). Applying elementary rules on composition of operators, one can easily see that the domain of the operator H 21 µ , which coincides with the domain of L 2 L 1 , is given by

(1.29) D(L 2 L 1 ) = u ∈ L 2 (R 3 ) : u = ξ + pG ω+i √ µ + qG ω-i √ µ , with ξ ∈ H 4 (R 3 ), p, q ∈ C, ξ(0) + ip -ω -i √ µ 4π + iq -ω + i √ µ 4π = α 1 (p + q), (-+ ω)ξ(0) + √ µp -ω -i √ µ 4π - √ µq -ω + i √ µ 4π = α 2 i √ µ(q -p) .
In the following lemma the inverse operator of H 21 µ is constructed.
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(1.30) (H 21 µ ) -1 : L 2 (R 3 ) → D(H 21 µ ) f → G µ * f + p(f )G ω+i √ µ + q(f )G ω-i √ µ ,
where the functionals p,q : L 2 (R 3 ) → C act as

(1.31) p(f ) = 4π i √ µW (µ) [i √ µ(4πα 2 -i -ω + i √ µ) G µ , f -(4πα 1 -i -ω + i √ µ) Γ µ , f ] q(f ) = 4π i √ µW (µ) [i √ µ(4πα 2 -i -ω -i √ µ) G µ , f + (4πα 1 -i -ω -i √ µ) Γ µ , f ],
with G µ and Γ µ are given by (1.25), and

W (µ) = 2(4π) 2 α 1 α 2 -4iπ(α 1 + α 2 ) -ω + i √ µ + -ω -i √ µ -2 -ω + i √ µ -ω -i √ µ.
Proof. First we show that the denition of the functionals p and q ensures

G µ * f + p(f )G ω+i √ µ + q(f )G ω-i √ µ ∈ D(H 21 µ ) = D(L 2 L 1 )
for all f ∈ L 2 (R 3 ). Indeed, p(f ) and q(f ) solve the algebraic system given by the bounday condition in the denition of the domain (1.29), namely

   G µ , f + ip √ -ω-i √ µ 4π + iq √ -ω+i √ µ 4π = α 1 (p + q) Γ µ , f + √ µp √ -ω-i √ µ 4π - √ µq √ -ω+i √ µ 4π = α 2 i √ µ(q -p).
Now, denote by H 0 the operator that acts as the Laplacian on the subspace of the Schwartz functions in R 3 that vanish in a neighbourhood of the origin. It is well-known (see [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF]), that both selfadjoint operators H α 1 and H α 2 dened in Proposition 1.3 are restrictions of H * 0 (i.e. the adjoint of H 0 as an operator in L 2 (R 3 )), whose action on G ω±i √ µ yields (1.32)

[µ + ( H * 0 + ω) 2 ]G ω±i √ µ = 0. Recalling that G µ ∈ H 4 (R 3 ), it follows, for any f ∈ L 2 (R 3 ), H 21 µ (G µ * f +p(f )G ω+i √ µ +q(f )G ω-i √ µ ) = (µ+( H * 0 +ω) 2 )(G µ * f +p(f )G ω+i √ µ +q(f )G ω-i √ µ ) = = (µ + (-+ ω) 2 )(µ + (-+ ω) 2 ) -1 f = f.
To conclude the proof one has to show

G µ * (H 21 µ f ) + p(H 21 µ f )G ω+i √ µ + q(H 21 µ f )G ω-i √ µ = f for any f ∈ D(H 21 ). To this purpose let us set f = ξ + aG ω+i √ µ + bG ω-i √ µ for some ξ ∈ H 4 (R 3 )
and a, b ∈ C such that the boundary condition in (1.29) are satised, then, by (1.32)

H 21 µ f = [µ + (-∆ + ω) 2 ]ξ
and, by system (1.31)

p(f ) = a, q(f ) = b.
The proof is complete.

Remark 1.14. The inverse of the operator

H 12 µ = µ + L 1 L 2 is obtained exchanging α 1 and α 2 in the expression of (H 21 µ ) -1 .
Now we can turn to the proof of Theorem 1.10.

Proof. We preliminarily observe that

Γ µ (x) = (-+ ω)G µ (x) = e i √ -ω+i √ µ|x| + e i √ -ω-i √ µ|x| 8π|x| = 1 2 G ω-i √ µ (x) + G ω+i √ µ (x) .
As proven in Appendix 1.10, the following identity holds:

R(λ) = (L-λI) -1 = -λ(λ 2 + L 2 L 1 ) -1 -L 2 (λ 2 + L 1 L 2 ) -1 L 1 (λ 2 + L 2 L 1 ) -1 -λ(λ 2 + L 1 L 2 ) -1 = -λ(H 21 λ 2 ) -1 -L 2 (H 12 λ 2 ) -1 L 1 (H 21 λ 2 ) -1 -λ(H 12 λ 2 ) -1 ,
with λ in the resolvent set of L, to be specied.

In order to nd the explicit expressions for Λ 1 and Λ 2 given in (1.26), one sets λ = √ µ and then applies Lemma 1.13, Remark 1.14, and uses the denition of p and q given in (1.31). Besides, the operators Σ 1 and Σ 2 can be obtained applying L 1 and L 2 to (H 21 λ 2 ) -1 and (H 12 λ 2 ) -1 , respectively, and using some trivial algebra.

The statement about the essential spectrum of L is a consequence of Weyl's theorem (Theorem XIII.4 in [START_REF] Reed | Methods of modern mathematical physics. IV: Analysis of operators[END_REF]). On the other hand, the eigenvalues of L are given by the poles of the resolvent (1.24), or equivalently by the complex roots of the function W (λ); these can be computed through a lengthy but elementary calculation, here omitted.

Remark 1.15. As a by-product, the previous analysis of the complex roots of W (λ) reveals the presence of a resonance at the endpoints of essential spectrum for the case σ = 1 √ 2 .

1.4.2 Dispersive estimates for the linearized problem in the case σ ∈ (0, 1/ √ 2)

In this section we focus on the case σ ∈ (0, 1/ √ 2) and study the behaviour for large t of the propagator e -Lt restricted to the subspace associated to the essential spectrum of the operator L. In order to achieve an eective estimate, the following weighted L p spaces are needed

L 1 w (R 3 ) = f : R 3 → C : R 3 w(x)|f (x)|dx < +∞ ,
and

L ∞ w -1 (R 3 ) = f : R 3 → C : esssup x∈R 3 (w(x)) -1 |f (x)| < +∞ , where w(x) = 1 + 1
|x| . The use of such spaces is due to the singularity of the elements of (1.1).

A similar choice was made in [START_REF] D'ancona | Dispersive estimate for the Schroedinger equation with point interaction[END_REF] for the sake of deriving dispersive estimates in the case of N delta interactions in R 3 .

Theorem 1.16. There exists a constant C > 0 such that

1 2πi R 3 C + ∪C - (R(λ + 0) -R(λ -0))(x)e -λt f (y) dλdy ≤ C 1 + 1 |x| t -3 2 R 3 1 + 1 |y| |f (y)|dy
for any f ∈ L 1 w (R 3 ), where C + = {λ ∈ C : Re(λ) = 0 and Im(λ) ≥ ω}, C -= {λ ∈ C : Re(λ) = 0 and Im(λ) ≤ -ω} .

1.4. Spectral and dispersive properties of linearization L 17 Proof. One can compute the propagator e -Lt as the inverse Laplace transform of the resolvent of L. In particular, by Theorem 1.10 and applying the residue theorem, it follows that for t > 0

e -Lt = 1 2πi iR+0 R(λ)e -λt dλ = 1 2πi |λ|=r R(λ)e -λt dλ + 1 2πi C + ∪C - (R(λ + 0) -R(λ -0))e -λt dλ, with r ∈ (0, ω) and R(λ ± 0) = lim →0 + R(λ ± ).
We show the computations only for the component R 1,1 (λ) of the resolvent whose analytic expression is given in (1.24) and (1.26), since the other components can be handled in the same way.

Recalling the denition of α 1 and α 2 given in equation (1.17), R 1,1 (λ) can be written as an integral kernel, namely

(1.33) R 1,1 (λ; x, y) = i e i √ -ω+iλ|x-y| -e i √ -ω-iλ|x-y| 8π|x -y| + +i -σ √ ωe i √ -ω-iλ|y| e i √ -ω+iλ|x| + [(σ + 1) √ ω + i √ -ω + iλ]e i √ -ω-iλ(|x|+|y|) 8π|x||y|[(2σ + 1)ω + i(σ + 1) √ ω √ -ω -iλ + √ -ω + iλ - √ -ω -iλ √ -ω + iλ] + -i [(σ + 1) √ ω + i √ -ω + iλ]e i √ -ω+iλ(|x|+|y|) -σ √ ωe i √ -ω+iλ|y| e i √ -ω-iλ|x| 8π|x||y|[(2σ + 1)ω + i(σ + 1) √ ω √ -ω -iλ + √ -ω + iλ - √ -ω -iλ √ -ω + iλ] .
Since from equation (1.33) it is clear that the computation of the integral on C + and on C -are analogous, we treat the cut C + only. On C + , √ -ω + iλ is continuous while, by the prescription Im( √ -ω ± iλ) > 0, considering as a real parameter, one has

lim →0 + -ω -i(λ + ) = -lim →0 + -ω -i(λ -) = - √ -ω -iλ.
Performing the change of variable k = √ -ω -iλ, one can write

C + (R 1,1 (λ + 0) -R 1,1 (λ -0))e -λt dλ = ie -iωt +∞ -∞ F (k)2ke -itk 2 dk,
where F is the function R(λ + 0) -R(λ -0) expressed in the variable k.

The function R 1,1 dened in (1.33) is the sum of a convolution summand R * ,1,1 and a multiplication summand R m,1,1 , where

R * ,1,1 (λ; x, y) = i e i √ -ω+iλ|x-y| -e i √ -ω-iλ|x-y| 8π|x -y| and (1.34) R m,1,1 (λ; x, y) = i -σ √ ωe i
Chapter 1. Absence of nonvanishing eigenvalues One can easily compute F * and gets F * (k) = -sin(|x-y|k) 4π|x-y| . Thus, by formula 3.851 in [START_REF] Gradshteyn | Tables of integrals, series and products[END_REF],

+∞ -∞ F * (k)2ke -itk 2 dk = sin(|x -y|k)dk -i 1 + i 16 √ π t -3 2 e i |x-y| 2 4t
, for any t > 0. Hence (1.35) 

1 2πi R 3 +∞ -∞ F * (k; y)dkf (y)dy ≤ 1 8 √ 2π t -3 2 R 3 |f (y)|dy. Let us estimate +∞ -∞ F m (k)2ke
g(k)e -ik(|x|+|y|) = = (σ + 1) √ ω + i √ -2ω -k 2 (2σ + 1)ω + i(σ + 1) √ ω( √ -2ω -k 2 -k) + k √ -2ω -k 2 e -ik(|x|+|y|) ,
which results from the second term in (1.34) 

referred to R m,1,1 (λ + 0). Notice that g ∈ C 1 (R, C) and |g(k)| ∼ 1 ik as k → +∞, hence g ∈ L 2 (R). Moreover, dg dk (k) = -ik (2σ + 1)ω + i(σ + 1) √ ω( √ -2ω -k 2 -k) + k √ -2ω -k 2 √ -2ω -k 2 + - (σ + 1) √ ω + i √ -2ω -k 2 [(2σ + 1)ω + i(σ + 1) √ ω( √ -2ω -k 2 -k) + k √ -2ω -k 2 ] 2 • • - i(σ + 1) √ ωk √ -2ω -k 2 -i(σ + 1) √ ω + -2ω -k 2 - k 2 √ -2ω -k 2 ,
which belongs to L 2 (R) too, so g is an element of H 1 (R), and as consequence ǧ ∈ L 1 (R), where ǧ is the inverse Fourier transform of g. Furthermore, one can compute the inverse Fourier transform of 2ke -itk 2 as

U t (s) = 1 2πi +∞ -∞ 2ke -itk 2 e -iks dk = 1 (4πit) 3 2 e -s 2 4it .
From the last identity it follows

1 2πi R 3 +∞ -∞ i 8π|x||y| g(k)e -ik(|x|+|y|) 2ke -itk 2 dkf (y)dy = (1.36) = R 3 +∞ -∞ 1 8π|x||y| ǧ(u)U t (u -|x| -|y|)duf (y)dy ≤ C 1 |x| t -3 2 R 3 |f (y)| |y| dy,
where the last inequality follows from Hölder inequality and C > 0. The other terms in F m (k)

are handled in an analogous way so we do not give details.

Summing up, let f ∈ L 1 w (R 3 ). Then

1 2πi R 3 C + ∪C - (R(λ + 0) -R(λ -0))e -λt dλf (y)dy ≤ ≤ 1 2π R 3 C + (R(λ + 0) -R(λ -0))e -λt dλf (y) dy+ + R 3 C - (R(λ + 0) -R(λ -0))e -λt dλf (y) dy = 1 2π (I + II).
Let us estimate the integral I. Thanks to the estimates (1.35) and (1.36) one has

I = R 3 +∞ -∞ F (k)2ke -itk 2 dkf (y) dy ≤ ≤ R 3 +∞ -∞ F * (k)2ke -itk 2 dkf (y) dy + R 3 f (y) +∞ -∞ F m (k)2ke -itk 2 dk dy ≤ ≤ Ct -3/2 R 3 |f (y)|dy + 1 |x| R 3 |f (y)| |y| dy ≤ C 1 + 1 |x| t -3/2 R 3 |f (y)| 1 + 1 |y| dy.
The integral II can be estimated in the same way, which completes the proof.

Remark 1.17. Evaluating the propagator e -Lt at t = 0 one gets

1 = 1 2πi |λ|=r R(λ)dλ + 1 2πi C + ∪C - (R(λ + 0) -R(λ -0))dλ = P 0 + P c .
From Lemma 1.18 it will follow that the operators P 0 and P c are symplectic projectors onto the subspaces associated to generalized kernel and to the continuous spectrum respectively. Finally, let us note that explicitly integrating the resolvent around its poles it turns out that the dynamics along the generalized kernel grows linearly in time. This fact is proved in Appendix 1.11.

Modulation equations

In this section we restrict to the case σ ∈ (0, 1/ √ 2), summarize the main technical steps and give some preliminary results towards the proof of asymptotic stability of standing waves. In particular, we write the so-called modulation equations that rule the evolution of a perturbed standing wave when splitted in a solitary component and a uctuating one. We recall once more that the scalar product we adopt is the real scalar product on the Hilbert space L 2 (R 3 , C) dened in (1.10). In order to make the reading easier, let us give a brief outline of the strategy to be employed. We follow the roadmap of the classical papers [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations[END_REF], [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations II. the case of anisotropic potentials and data[END_REF], [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF], [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF], [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF], also adopted for the model with concentrated nonlinearity in dimension one in [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] and [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF]. More specically, we decompose the dynamics in the neighbourhood of the solitary manifold in a "longitudinal" and a "transversal" component with respect to the generalized kernel N g (L), given in Theorem 1.9, of the linearized operator L. In order to perform the required analysis, we exploit the symplectic structure introduced in Section 1. σ ∈ (0, 1/ √ 2) guaranteeing orbital stability. So the symplectic form is nondegenerate on the solitary manifold M, which is a symplectic submanifold. By its very denition, M is invariant for the ow of (1.7).

The following lemma establishes the relation between the spectral projection P 0 introduced in Remark 1.17 and the symplectic projection onto the solitary manifold. Lemma 1.18.

Let ∆ = 1 2 d dω Φ ω 2 L 2 , then for any f ∈ L 2 (R 3 ) (1.37) P 0 f = 1 ∆ Ω (f, ϕ ω ) JΦ ω - 1 ∆ Ω (f, JΦ ω ) ϕ ω ,
where Ω(•, •) was dened in (1.12).

Proof. The explicit expression of the spectral projection P 0 = 1 2πi |λ|=r R(λ)dλ can be recovered by Appendix 1.11, and the equivalence with the r.h.s. follows by straightforward calculations.

Notice that the given representation of P 0 is well dened thanks to the fact that ∆ > 0, again as a consequence of the choice σ ∈ (0, 1/ √ 2). Moreover, P 0 is a symplectically orthogonal projection, in the sense that given a couple {ζ, f } with ζ ∈ Im P 0 and f ∈ Ker P 0 , one has Ω(ζ, f ) = 0 . In particular, it is useful to note that due to the denition of symplectic form Ω, a state f with vanishing component along the continuous spectrum of L is orthogonal to the vectors Je 1 and Je 2 , or in complex notation, to Φ ω and i d dω Φ ω = iϕ ω .

After these preliminaries, as anticipated in formula (1.9), we write the solution to (1.7) as

(1.38) u(t, x) = e iΘ(t) Φ ω(t) (x) + χ(t, x) , Θ(t) = t 0 ω(s)ds + γ(t),
with the nal goal of proving that the solution decomposes in the sum of a solitary component and a dispersive one.

The local splitting of the invariant symplectic manifold (L 2 (R 3 , C), Ω) in two symplectically orthogonal manifolds, the nite dimensional solitary manifold M and the innite dimensional range of the spectral projection on the continuous spectrum, suggests to symplectically project the ow according to this decomposition (see also Remark 1.17), in order to obtain the so called modulation equations. The projection along M ("longitudinal") gives rise to two ordinary dierential equations for the frequency ω and the phase γ of the solitary wave, depending parametrically on the uctuating component χ; while the projection on the continuous spectrum ("transversal") gives a partial dierential equation for the remainder χ (with coecients depending on γ and ω). The solution to the equation for the χ component will be shown to decay in time in suitable norms. As a consequence, one has the asymptotic behavior of the solutions for the parameters ω and γ of the solitary wave, to be shown in Section 6, and nally asymptotic stability, which will be the subject of Section 7.

To deduce the modulation equations it proves convenient to make use of the variational formulation of equation (1.7)

(1.39) i du dt (t), v L 2 = E [u(t)](v) ∀v ∈ V.
To begin with, we replace in the previous equation the Ansatz (1.38 

i dχ dt (t), v L 2 = Q α,Lin (χ(t), v) + γ(t)(Φ ω(t) + χ(t), v) L 2 + ω(t) -i dΦ ω(t) dω , v L 2 + N (q χ (t), q v )
for any v ∈ V .

Here Q α,Lin is the quadratic form of the operator D dened in (1. [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]) and acting as

Q α,Lin (χ, v) = (∇φ χ , ∇φ v ) L 2 - √ ω 4π Re(q χ q v ) -σ √ ω 2π Re q χ Re q v + ω(χ, v) L 2 ,
and the nonlinear remainder N (q χ , q v ) is given by

N (q χ , q v ) = -ν|q χ +q ω | 2σ Re((q χ +q ω )q v )+ν(2σ+1)|q ω | 2σ Re q χ Re q v +ν|q ω | 2σ Im q χ Im q v +ν|q ω | 2σ Re(q ω q v ),
where, according to Section 1.2.2,

q ω = √ ω 4πν 1 2σ .
Remark 1.19. The remainder N (q χ , q v ) depends nonlinearly on χ (and ω) and it is real linear in v; so, by Riesz representation theorem and with a slight abuse of notation, there exist a vector N (q χ ) such that N (q χ , q v ) = Re N (q χ )q v . The dependence just on the charges of χ and v is a peculiarity of this model. Moreover, by its very denition, the remainder is the dierence between the action of the complete vector eld and its linear part at the solitary wave, and so it is quadratic in q χ near χ = 0.

Corresponding expressions can be given with obvious modication in purely real form, which we omit for the sake of brevity. Since ω, γ and χ are all unknown the Ansatz (1.38) makes the problem underdetermined, and a supplementary condition is needed to give a unique representation of the solution; a way to close the system for ω, γ and χ is to require that the χ component is decoupled from the discrete spectrum, i.e. P 0 χ = 0, or equivalently to project equation (1.40) onto the symplectically orthogonal complement of the generalized kernel of L. The corresponding modulation equations take dierent forms according to the way one writes the projection and we give two of them for future reference. In the following we denote by Q L the bilinear form associated to the linear nonselfadjoint operator L.

Theorem 1.20. (Modulation equations I) Let χ be a solution to equation (1.40) such that P 0 χ(t) = 0 for all t ≥ 0, and let the functions ω and γ belong to C 1 (R); then ω and γ solve the equations

(1.41) ω = Re (JN (q χ )q P * 0 (Φω+χ) ) ϕ ω -dP 0 dω χ, Φ ω + χ L 2
, and

(1.42)

γ = Re (JN (q χ )q J(ϕω-dP 0 dω χ) ) ϕ ω -dP 0 dω χ, Φ ω + χ L 2 .
Proof. We adapt the reasoning in [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF]. Equation (1.40) is equivalent to

(1.43) d dt (Φ ω + χ), v L 2 = Q L (χ, v)) + γ (J(Φ ω + χ), v) L 2 + Re(JN (q χ )q v ) ∀v ∈ V .
Chapter 1. Absence of nonvanishing eigenvalues Set v = P * 0 (Φ ω +χ) where P * 0 is the adjoint in L 2 (R 3 ) of the operator P 0 ; notice that dierentiating in time P 0 χ = 0, one has

P 0 d dt (Φ ω + χ) = ω ϕ - dP 0 dω χ ,
where expressions such as dP 0 dω χ are computed from the representation given in (1.37).

Moreover, one immediately has the identities

Q L (χ, P * 0 (Φ ω + χ)) = Q L (P 0 χ, (Φ ω + χ)) = 0
and, using P 0 J = JP * 0 ,

(J(Φ ω + χ), P * 0 (Φ ω + χ)) L 2 = J(Φ ω + χ), (P * 0 ) 2 (Φ ω + χ) L 2 = (JP * 0 (Φ ω + χ), P * 0 (Φ ω + χ)) L 2 = 0 .
So one remains with

P 0 d dt (Φ ω + χ), Φ ω + χ L 2
= Re(JN (q χ )q P * 0 (Φω+χ) ) 

from
= P * 0 J. d dt (Φ ω + χ), JP 0 (Φ ω + χ) L 2 = d dt (Φ ω + χ), JP 2 0 (Φ ω + χ) L 2 = P 0 d dt (Φ ω + χ), JP 0 (Φ ω + χ) L 2 = 0 ; Q L (χ, JP 0 d dt (Φ ω + χ)) = 0 .
It follows from the weak equation (1.43)

γ Φ ω + χ, P 0 d dt (Φ ω + χ) L 2 = Re(JN (q χ )q JP 0 d dt (Φω+χ)
and hence, after substituting the expression of P 0 d dt (Φ ω + χ) determined above and cancellation of ω the equation for γ follows. This ends the proof.

Two properties of the modulation equations which will be useful in the subsequent analysis are the following.

Corollary 1.21. Under the hypotheses of Theorem 1.20, and if it is known that χ L 1 w is suciently small, the right hand sides of (1.41) and (1.42) are smooth and there exists a continuous function

R = R(ω, χ L 1 w ) such that, for any t ≥ 0, | ω(t)| ≤ R|q χ (t)| 2 and | γ(t)| ≤ R|q χ (t)| 2 .
The proof of the previous result is a consequence of two facts. In the rst place

(ϕ ω , Φ ω ) L 2 = 1 2 d dt Φ ω 2 > 0 by condition σ ∈ (0, 1/ √
2) which gives orbital stability; secondarily, the nonlinear part in (1.40) actually depends only on the charges q χ and q v ; provided that |q χ | ≤ c, there exists a positive constant C > 0 such that the denominators in (1.41) and (1.42) are strictly away from zero and

|N (q χ )| ≤ C|q χ | 2 , ∀χ ∈ V.
The second property concerns the compatibility of the orthogonality condition of the uctuating part χ with arbitrary choices of initial data. The following lemma assures in fact that the orthogonality condition P 0 χ = 0 can be satised at the initial time in the neighbourhood of the solitary manifold without loss of generality. 

(0) = u 0 ∈ V ∩ L 1
w and assume

d = u 0 -e iθ 0 Φ ω 0 V ∩L 1 w 1,
for some ω 0 > 0 and θ 0 ∈ R. Then, there exists a stationary wave e i θ 0 Φ ω 0 , and χ 0 (x) with P 0 ( ω 0 )χ 0 = 0 such that u 0 (x) = e i θ 0 (Φ ω 0 (x) + χ 0 (x)) , and

χ 0 V ∩L 1 w = O(d) as d → 0.
The result is commonly stated as a preliminary step in the analysis of modulation equations (see for example [START_REF] Gustafson | Asymptotic stability and completeness in the energy space for nonlinear schrödinger equations with small solitary waves[END_REF], [START_REF] Kirr | Asymptotic stability of ground states in 3d nonlinear schrödinger equation including subcritical cases[END_REF] and [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF]). The proof is an application of the implicit function theorem making use again of the condition d dt Φ ω 2 = 0; we omit details and refer to the cited references. As a consequence of the previous lemma, in all proofs in the rest of the chapter we can assume P 0 χ 0 = 0 where χ 0 = χ(0).

An equivalent form of the modulation equations for the soliton parameters ω and γ can be obtained exploiting the characterization of the condition P 0 χ = 0 through the (Hilbert) orthogonality

(χ, Φ ω ) L 2 = 0 = (χ, iϕ ω ) L 2 .
In some respects they are more transparent and we give them making use of the complex writing.

Theorem 1.23. (Modulation equations II) Let χ be a solution to equation (1.40) such that P 0 χ(t) = 0 for all t ≥ 0, and let the functions ω and γ belong to C 1 (R); then ω and γ satisfy the equations

(1.44) ω = ((χ, ϕ ω ) L 2 + (ϕ ω , Φ ω ) L 2 )N (χ, iΦ ω ) -(χ, iΦ ω ) L 2 N (χ, ϕ ω ) (ϕ ω , Φ ω ) 2 L 2 -(χ, ϕ ω ) 2 L 2 (1.45) γ = ((χ, ϕ ω ) L 2 -(ϕ ω , Φ ω ) L 2 )N (χ, ϕ ω ) + (χ, i d dω ϕ ω ) L 2 N (χ, iΦ ω ) (ϕ ω , Φ ω ) 2 L 2 -(χ, ϕ ω ) 2 L 2
Proof. Dierentiating in time the orthogonality conditions (χ, Φ ω )

L 2 = 0 = (χ, iϕ ω ) L 2 , it easily follows that (i χ, iΦ ω ) L 2 = -ω(χ, ϕ ω ) L 2 , (i χ, ϕ ω ) L 2 = ω χ, i d dω ϕ ω L 2
.

So testing the weak equation for χ with iΦ ω and ϕ and taking into account properties of operators L 1 and L 2 and orthogonality conditions again, one obtains the system

ω((χ, ϕ ω ) L 2 -(Φ ω , ϕ ω ) L 2 ) + γ(χ, iΦ ω ) L 2 = -N (χ, iΦ ω ) ω χ, d dω ϕ ω L 2 -γ((Φ ω , ϕ ω ) L 2 + (χ, ϕ ω ) L 2 ) = N (χ, ϕ ω ).
The thesis follows solving for ω and γ.

Notice that to this second form of modulation equations apply similar remarks to the ones made for the rst form. In particular, if a priori estimates on smallness of χ are known, the modulation equations are well dened thanks to the condition d dω Φ ω 2 > 0 , and the analogous of Lemma 1.22 holds true.
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Time decay of weak solutions

The goal of this section is to provide the time decay of the transversal component χ of the solution u (see [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case[END_REF]) to equation (1.7); the result we achieve shows that χ is in fact not only a uctuation, but also a decaying dispersive remainder and it paves the way to the proof of asymptotic stability of standing waves, that is given in the next section. To this end we follow the idea developed in [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF], [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF], [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF] for the standard NLS and applied in [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] to the case of 1-d concentrated nonlinearities.

For any T > 0, dene preliminarily the so-called majorant (1.46)

M (T ) = sup 0≤t≤T (1 + t) 3/2 χ(t) L ∞ w -1 + (1 + t) 3 (| γ(t)| + | ω(t)|) .
We aim at proving that the majorant is uniformly bounded in T by a constant M = O(d), where d is the size of the dispersive component χ. The proof of such bound is the content of the following theorem.

Theorem 1.24. Let u ∈ C(R + , V ) be a solution to equation (1.7) with u(0

) = u 0 ∈ V ∩ L 1 w and dene d := u 0 -e iθ 0 Φ ω 0 V ∩L 1
w , for some ω 0 > 0 and θ 0 ∈ R. Then, if d is suciently small, there are ω, γ ∈ C 1 (R + ) which satisfy (1.41)-(1.42), and such that the solution u can be written as in (1.38). Moreover, there is a positive constant M > 0, depending only on the initial data, such that, for any T > 0, one has M (T ) ≤ M and M = O(d) as d → 0. In particular

χ(t) L ∞ w -1 ≤ M (1 + t) -3/2 ∀t > 0, (1.47) 
| γ(t)| + | ω(t)| ≤ M (1 + t) -3 ∀t > 0.
(

The previous theorem is implied by the following proposition that is proven in Section 1.6.3 by using the results given in Sections 1.6.1 and 1.6.2, and the dispersive properties of the linearization operator L given in Section 1.4.2.

Proposition 1.25. Under the hypotheses of the previous theorem, assume that there exist some t 1 > 0 and ρ > 0 such that M (t 1 ) ≤ ρ. Then there are two positive numbers

d 1 and ρ 1 , independent of t 1 , such that if d = χ 0 V ∩L 1 w < d 1 and ρ < ρ 1 , then M (t 1 ) ≤ ρ 2 .
Indeed, if Proposition 1.25 were true, then Theorem 1.24 would follow from the next argument: let I ⊂ [0, +∞) be dened as

I = {t 1 ≥ 0 : ω, γ ∈ C 1 ([0, t 1 ]), M (t 1 ) ≤ ρ}.
I is obviously relatively closed in [0, +∞) with the topology induced by considering it as a subspace of R with the standard Euclidean topology. On the other hand, the thesis of Proposition 1.25 and the estimates of Corollary 1.21 imply that I is also relatively open. Hence, the uniform estimate of Theorem 1.24 follows from the fact that sup I = +∞.

Frozen linearized problem

Note that the equation (1.40) is non autonomous. In order to make its study simpler, it is useful to exploit a further reparametrization of the solution χ(t). We x a time t 1 > 0 and denote ω 1 = ω(t 1 ) and γ 1 = γ(t 1 ). Now dene (in vector notation; we recall that J corresponds to -i)

(1.49)
e -JΘ(t) χ(t, x) = e -J Θ(t) η(t, x) , where Θ(t) = ω 1 t + γ 1 .
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The function η satises the equation

e J(Θ-Θ) dη dt , v L 2 = Q L (e J(Θ-Θ) η, v) + (ω 1 -ω)(Jη, v) L 2 + γ(JΦ ω , v) L 2 -ω dΦ ω dω , v L 2
+ JN (e J(Θ-Θ) q η )q v ∀v ∈ V

We need a further manipulation which allows to rewrite the previous equation in a form which makes the role of reparametrization clear. To this end we need the following identities, which can be obtained from straightforward computations

• Je J(Θ-Θ) = e J(Θ-Θ) J;

• Q L (e J(Θ-Θ) u, v) -e J(Θ-Θ) Q L (u, v) = (σ + 1) √ ω 2π
sin(Θ -Θ)σ 3 q u q v , for any u, v ∈ V , where

σ 3 = 1 0 0 -1 .
Making use of the previous identities, one rewrites the equation for η as

(1.50) dη dt , v L 2 = (ω 1 -ω)(Jη, v) L 2 + Q L (η, v) + e -J(Θ-Θ) γJΦ ω - ω dΦ ω dω , v L 2 + +e -J(Θ-Θ) (σ + 1) √ ω 2π
sin(Θ -Θ)σ 3 q η q v + e -J(Θ-Θ) JN (e J(Θ-Θ) q η )q v , ∀v ∈ V .

Let us dene the linearization frozen at time t 1 as L I = L(ω 1 ), and observe that for all u, v ∈ V

Q L (u, v) -Q L I (u, v) = √ ω - √ ω 1 4π Tq u q v -(ω 1 -ω)(Ju, v) L 2 ,
where T = 0 -1 2σ + 1 0

. Hence, equation (1.50) becomes

(1.51) dη dt , v L 2 = Q L I (η, v) + N I (t, ω, q η , q v ) ∀v ∈ V
where, for all v ∈ V , the time dependent nonlinear remainder (including now dragging" terms due to reparametrization) is given by

N I (t, ω, q η , q v ) = e -J(Θ-Θ) γJΦ ω - ω dΦ ω dω , v L 2 + √ ω - √ ω 1 4π Tq η q v (1.52) + e -J(Θ-Θ) (σ + 1) √ ω 2π
sin(Θ -Θ)σ 3 q η q v + e -J(Θ-Θ) JN (e J(Θ-Θ) q η )q v .

(1.53)

The gain in changing from original (1.40) for the dispersive component to equation (1.51) is that the latter is still non autonomous, but now the generator of the evolution is (in weak form) a sum of a xed linear vector eld (the frozen linearization L I ) and a nonlinear time dependent perturbation (see also [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF]). This allows to use the known dispersive properties of linearization operator L described in 1.4.2.
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Duhamel's representation

In this subsection we write the equation (1.51) in Duhamel's representation to better exploit the dispersive properties of the propagator e L I t . This is not a completely trivial task since our frozen equation is a variational equation and cannot be written in strong form. In order to reach our purpose, we consider (1.51) separating in the test function v the regular and singular part accordingly to (1.6). So we begin by setting

v = φ λ v ∈ H 1 (R 3 ). We get dη dt (t), φ λ v L 2 = (L I η(t) + f I (t), φ λ v ) L 2 ,
where f

I (t) = e -J(Θ(t)-Θ(t)) γ(t)JΦ ω(t) -ω(t)
dΦ ω(t) dω

. Hence, by Duhamel's principle one gets

(η, φ λ v ) L 2 = e L I t η 0 + t 0 e L I (t-s) f I (s)ds, φ λ v L 2
.

If one considers the same equation with v = q v G λ where q v ∈ C, one has dη dt

(t), q v G λ L 2 = (L I η(t) + f I (t) + g I (t), q v G λ ) L 2 ,
where

g I (t) = e -J(Θ(t)-Θ(t)) 4 √ λ(σ + 1) ω(t) sin(Θ(t) -Θ(t))σ 3 q η (t)G λ + +8π √ λJN (e J(Θ(t)-Θ(t)) q η (t))G λ + 2 √ λ( ω(t) - √ ω 1 )Tq η (t)G λ ,
where q η is the charge of the function η. And hence,

(η, q v G λ ) L 2 = e L I t η 0 + t 0 e L I (t-s) (f I (s) + g I (s))ds, q v G λ L 2
.

Summing up, for any v ∈ V , the solution to equation (1.51) can be written as

(η, v) L 2 = e L I t η 0 + t 0 e L I (t-s) f I (s)ds, v L 2 + t 0 e L I (t-s) g I (s)ds, q v G λ L 2
.

In what follows we will use the following estimate on the function g I .

Lemma 1.26. Under the hypotheses of Proposition 1.25, there exists a constant C > 0 such that

g I (t) V ∩L 1 w ≤ C(|q η | 2 + ρ|q η |),
for any t ≤ t 1 .

Proof. First of all let us notice that it is possible to chose t 1 in such a way that ω(t) ≥ c > 0 for

any 0 ≤ t ≤ t 1 , then | ω(t) - √ ω 1 | ≤ C|ω(t) -ω 1 | ≤ C t 1 t | ω(s)|ds ≤ C sup 0≤t≤t 1 (1 + t) 3 | ω(t)| t 1 t (1 + s) -3 ds ≤ Cρ,
and

|Θ(t)-Θ(t)| ≤ t 0 t 1 s | ω(τ )|dτ ds+ t 1 t | γ(s)|ds ≤ Cρ t 0 t 1 s (1+τ ) -3 dτ ds+Cρ t 1 t (1+s) -3 ds ≤ Cρ.
The result follows since

g I (t) V ∩L 1 w ≤ C(|Θ(t) -Θ(t)||q η (t)| + | ω(t) - √ ω 1 ||q η (t)| + |q η (t)| 2 ).
1.6. Time decay of weak solutions 27

We end the section with a technical result that allows to transfer dispersive estimates on the frozen uctuating component P c (L I )η = P c (ω 1 )η into estimates on η. This is needed because η appears in the integral Duhamel's equation where estimates have to be done, but the dispersive behavior is at our disposal for P c (ω 1 )η. This is stated in the following lemma (see for analogous construction, for example, [START_REF] Gang | Relaxation of solitons in nonlinear schrödinger equations with potentials[END_REF] and [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF]).

Lemma 1.27. Let the hypotheses of Proposition 1.25 hold true and suppose that the quantity

sup 0≤t≤t 1 (|ω(t) -ω 1 | + |Θ(t) -Θ(t)|) = δ
is suciently small; then, for any t ∈ [0, t 1 ] there is a bounded linear operator Π(t) :

P c (ω 1 )(V ∩ L ∞ w -1 ) → V ∩ L ∞ w -1
, and a positive constant C = C(δ, ω 1 ) > 0 such that η(t) = Π(t)h(t), and

C(δ, ω 1 ) -1 h V ∩L ∞ w -1 ≤ η V ∩L ∞ w -1 ≤ C(δ, ω 1 ) h V ∩L ∞ w -1 .
Proof. We give only a sketch of the standard proof, referring for details to the literature cited above. Set η(t) = P 0 (ω 1 )η + P c (ω

1 )η = ik 1 (t)Φ ω 1 + k 2 (t) d dω 1 Φ ω 1 + h(t) .
The condition P 0 χ = 0 makes time dependent functions k 1 and k 2 to satisfy a linear system with a source term depending on h; the coecient matrix has an inverse uniformly bounded in t and t 1 thanks to the conditions

(Φ ω , d dω 1 Φ ω 1 ) L 2 > const > 0 and (Φ ω 1 , d dω Φ ω ) L 2 > const > 0 valid for |ω -ω 1 | small enough.
This gives a representation of k 1 and k 2 in terms of h and as a consequence the required bound on the nite dimensional component. Now dene

Π(t)h(t) = η(t) -ik 1 Φ ω 1 -k 2 d dω 1 Φ ω 1 and the complete bound follows. 1.6.3 Proof of Proposition 1.25 Estimate of | γ| + | ω|. Lemma 1.28. If η ∈ V ∩ L ∞ w -1 , then the charge q η of the function η satises |q η | ≤ 4π η L ∞ w -1 . Proof. Since η ∈ L ∞ w -1 (R 3 ) then η L ∞ w -1 = sup x∈R 3 |x| 1+|x| φ η (x) + qη 4π(1+|x|) ≥ 1 4π |q η |.
From the last lemma and Corollary 1.21 one gets

| γ(t)| + | ω(t)| ≤ c|q η (t)| 2 ≤ c 1 η(t) 2 L ∞ w -1 ≤ c 1 (1 + t) -3 M (t) 2 , ∀t ∈ [0, t 1 ], with c 1 independent of t 1 . Hence, one can choose ρ 2 1 < 1 4c 1 and get (1 + t) 3 (| γ(t)| + | ω(t)|) ≤ c 1 ρ 2 ≤ ρ 4 , ∀t ∈ [0, t 1 ]. Estimate of η L ∞ w -1 .
As explained in the previous section, for any t ∈ [0, t 1 ] we have η(t) = P 0 (ω 1 )η(t) + P c (ω 1 )η(t) (for the denitions of P 0 and P c see Remark 1.17) and thanks to Lemma 1.27 we have η(t) = Πh(t) where Π(t) :

P c (ω 1 )(V ∩ L ∞ w -1 ) → V ∩ L ∞ w -1 is bounded.
In order to estimate η L ∞ w -1

we make use of the equation for h. For all v ∈ V , h is a solution to dh dt , v

L 2 = Q L I (h, v) + (P c (ω 1 )f I , v) L 2 + (P c (ω 1 )g I , g v G λ ) L 2 ,
where f I and g I were dened at the beginning of Section 1.4.2, hence, for any v ∈ V , h satises

(h, v) L 2 = e L I t h 0 + t 0 e L I (t-s) P c (ω 1 )f I (s)ds, v L 2 + t 0 e L I (t-s) P c (ω 1 )g I (s)ds, q v G λ L 2 .
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In addition let us assume that v ∈ V ∩ L 1 w , hence by Hölder inequality

(h, v) L 2 ≤ e L I t h 0 V ∩L ∞ w -1 + t 0 e L I (t-s) P c (ω 1 )f I (s)ds V ∩L ∞ w -1 v L 1 w + + t 0 e L I (t-s) P c (ω 1 )g I (s)ds V ∩L ∞ w -1 q v G λ L 1 w .
Now we can apply the dispersive estimate proved in Theorem 1. [START_REF] D'ancona | Dispersive estimate for the Schroedinger equation with point interaction[END_REF] and get 

e L I t h 0 V ∩L ∞ w -1 ≤ c(1 + t) -3/2 h 0 V ∩L 1 w ≤ c(1 + t) -3/2 d
t 0 e L I (t-s) P c (ω 1 )f I (s)ds V ∩L ∞ w -1 ≤ c t 0 (1 + t -s) -3/2 f I (s) V ∩L 1 w ds ≤ ≤ c t 0 (1 + t -s) -3/2 (| γ(s)| + | ω(s)|)ds ≤ c t 0 (1 + t -s) -3/2 η(s) 2 L ∞
w -1 ds.

Analogously, using Lemma 1.25 and Theorem 1.16,

t 0 e L I (t-s) P c (ω 1 )g I (s)ds V ∩L ∞ w -1 ≤ c t 0 (1 + t -s) -3/2 g I (s) V ∩L 1 w ds ≤ ≤ c t 0 (1 + t -s) -3/2 ( η(s) 2 L ∞ w -1 + ρ η(s) L ∞ w -1 )ds.
Let us dene

m(t) = sup s∈[0,t] (1 + s) 3/2 η(s) L ∞ w -1 .
Now, using the above inequalities, Lemma 1.25, and exploiting the duality paring dened by the inner product in L 2 , it holds

(1 + t) 3/2 η(t) L ∞ w -1 = (1 + t) 3/2 sup 0 =v∈L 1 w (η(t), v) L 2 v L 1 w ≤ ≤ c e L I t h 0 V ∩L ∞ w -1 + t 0 e L I (t-s) P c (ω 1 )f I (s)ds V ∩L ∞ w -1 + t 0 e L I (t-s) P c (ω 1 )g I (s)ds V ∩L ∞ w -1 ≤ ≤ c t 0 (1 + t -s) -3/2 ( η(s) 2 L ∞ w -1 + ρ η(s) L ∞ w -1 )ds, ≤ c d + m 2 (t) t 0 (1 + t) 3/2 (1 + s) -3 (1 + t -s) -3/2 ds + ρm(t) t 0 (1 + t) 3/2 (1 + s) -3/2 (1 + t -s) -3/2 ds .
Observe that the constant c and both integrals appearing in the last inequality are bounded independently of t, and this implies that for any t ∈ [0, t 1 ] we have 

m(t) ≤ c(d + m 2 (t 1 ) + ρm(t 1 )) ≤ c(d + ρ 2 1 ) ≤ c 2 d,
u(0) = u 0 ∈ V ∩ L 1
w and denote d = u 0 -e iθ 0 Φ ω 0 V ∩L 1 w , for some ω 0 > 0 and θ 0 ∈ R. Then, if d is suciently small, the solution u can be decomposed as follows

(1.54) u = e iω∞t Φ ω∞ + U t * ψ ∞ + r ∞ ,
where

ω ∞ > 0 and ψ ∞ , r ∞ ∈ L 2 (R 3 ), with r ∞ L 2 = O(t -5/4 ) as t → +∞.
Proof. Along the proof we assume that P 0 (u 0 -e iθ 0 Φ ω 0 ) = 0, and we recall from Lemma 1.22 that there is no loss of generality in this choice. First of all let us notice that Theorem 1.24 implies ω(t) → ω ∞ , and Θ(t) -ω ∞ t → 0, as t → +∞. Next, let us dene the modulated soliton as s(t, x) = e iΘ(t) Φ ω(t) (x), and the function

(1.55) z(t, x) = u(t, x) -s(t, x).
By equation (1.7) and (1.15) one has that, for any v ∈ V , z(t) is also a solution to i dz dt , v

L 2 = Re R 3 ∇φ z • ∇φ v dx -ν Re((|q u | 2σ q u -|q s | 2σ q s )q v ) + γs -i ω ds dω , v L 2
.

As one can verify by direct dierentiation, the solution of the last equation can be expressed as

(1.56) z(t, x) = U t * z 0 (x) + i t 0 U t-τ (x)q z (τ )dτ -i t 0 U t-τ * f (s(τ ))dτ,
where we denoted f (s) = γs -i ω ds dω and, according to (3.77), q z (t) = q u (t) -q s (t). Let us consider the last integral in formula (1.56)

t 0 U t-τ * f (s(τ ))dτ = U t * ∞ 0 U -τ * f (s(τ ))dτ - ∞ t U t-τ * f (s(τ ))dτ,
and note that the regularity of s(t, x)

implies ψ 1 (x) = ∞ 0 U -τ * f (s(τ ))dτ ∈ L 2 (R 3 ), and r 1 (t, x) = - ∞ t U t-τ * f (s(τ ))dτ ∈ L 2 (R 3
). Moreover, from Theorem 1.24 and the unitarity of the evolution group of the free Laplacian we have r 1 (t)

L 2 = O(t -2 ), t → +∞.
To conclude the proof it is left to prove a similar asymptotic decomposition for the rst integral in the formula (1.56). As before, one can write

t 0 U t-τ (x)q z (τ )dτ = U t * ∞ 0 U -τ (x)q z (τ )dτ - ∞ t U t-τ (x)q z (τ )dτ.
First of all one needs to show that ψ 0 (x) = ∞ 0 U -τ (x)q z (τ )dτ belongs to L 2 (R 3 ). To this aim, let us observe that ψ 0 (x) =

1 (4πi) 3/2 h r 2 4 , with h(y) = ∞ 0 e -iy/τ τ -3/2 q z (τ ) dτ , hence ψ 0 2 L 2 = 1 (4π) 2 ∞ 0 h r 2 4 2 r 2 dr = 1 (2π) 2 ∞ 0 |h(y)| 2 √ ydy.
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From the rst and the last terms one gets ψ 0 ∈ L 2 (R 3 ) if and only if h ∈ L 2 (R + , √ ydy). On the other hand, one can perform the change of variable u = 1 τ in the integral function h and get

h(y) = ∞ 0 e -iyu 1 √ u q z 1 u du = ∞ 0 e -iyu 1 u q z 1 u √ udu,
where we set y = |x| 2 4 . Then h(u) = 1 u q z 1 u . Moreover, by Theorem 1.24,

1 u q z 1 u 2 √ u ≤ u 3/2 (1+u) 3 then h ∈ L 2 (R + ,
√ udu) and hence, by Plancherel's identity h ∈ L 2 (R + , √ ydy).

Finally, let us denote r 0 = ∞ t U t-τ (x)q z (τ )dτ . As before, we have r 0 (x) = g r 2 4 , with g(y) = ∞ 0 e -iy/(t-τ ) (t -τ ) -3/2 q z (τ ) dτ . Moreover, we can set y = |x| 2 4 exploit the change of variables u = -1 t-τ in order to get

g(y) = ∞ 0 e -iyu i u q z t + 1 u √ udu.
Again, Theorem 1.24 implies that g(u

) = i u q z t + 1 u ∈ L 2 (R + , √ udu), for any t ≥ 0. In particu- lar, g 2 
L 2 (R + , √ udu) ≤ c ∞ 0 u 3/2 ((1 + t)u + 1) 3 du ≤ c(1 + t) -5/2 ,
for any t ≥ 0, with c, c > 0 independent of time. Summing up, Plancherel's identity allows us to conclude r 0 L 2 = O(t -5/4 ) as t → +∞. Hence the theorem follows with ψ ∞ = z 0 + ψ 0 + ψ 1 , and r ∞ = r 0 + r 1 .

1.8 Appendices 1.9 The generalized kernel of the operator L The aim of this appendix is to provide the proof or Theorem 1.9.

Proof. It is easy to see that cΦ ω , with c ∈ C, is the unique family of distributional solutions to the equation

-u + ωu = 0.
Furthermore, Φ ω belongs to D(H α 2 ) but not to D(H α 1 ) since the boundary condition is not satised. Hence ker(L) = span 0 Φ ω .

Let us now consider the operator

L 2 = -L 2 L 1 0 0 -L 1 L 2 .
Since the operator L 1 is invertible, the following holds

u ∈ ker(L 1 L 2 ) ⇔ u ∈ ker(L 2 ), then ker(L 1 L 2 ) = span{Φ ω }, u ∈ ker(L 2 L 1 ) ⇔ ∃u ∈ D(H α 1 ) such that L 1 u = Φ ω .
Solving the former equation one gets that ker(L 1 L 2 ) = span {ϕ ω }. From this follows ker(L 2 ) = span 0 Φ ω , ϕ ω 0 .

The operator L 3 has the following form

L 3 = 0 -L 2 L 1 L 2 L 1 L 2 L 1 0 . As before u ∈ ker(L 1 L 2 L 1 ) ⇔ L 1 u ∈ ker(L 1 L 2 ) = span {Φ ω } ⇔ ker(L 1 L 2 L 1 ) = span {ϕ ω }, u ∈ ker(L 2 L 1 L 2 ) ⇔ u ∈ ker(L 2 ) = span {Φ ω } or L 2 u ∈ ker(L 2 L 1 ) = span {ϕ ω }.
Let us notice that the equation

-u + ωu = ϕ ω
has a unique family of distributional solutions given by

u(x) = √ ω 4πν 1 2σ c 2 2 √ ω + 1 16σ 2 ω 2 e - √ ω|x| 4π|x| + c 1 2 √ ω e √ ω|x| 4π|x| + - 1 8ω |x| e - √ ω|x| 4π + 1 8σω 3 2 - 1 8ω 3 2 e - √ ω|x|
4π .

Notice that one must impose that u belongs to D(H α 2 ) which means that u ∈ L 2 (R 3 ) and satises the boundary condition. This is equivalent to ask the following algebraic conditions to be veried

c 1 = 0 c 2 = σ-1 8σω 3 2
.

Therefore, if σ = 1, then ker(L 2 L 1 L 2 ) = span {Φ ω }. Hence ker(L 3 ) = ker(L 2 ),
which concludes the rst part of the theorem.

In the case σ = 1 we get ker(L

2 L 1 L 2 ) = {Φ ω , g ω }, then ker(L 3 ) = span 0 Φ ω , ϕ ω 0 , 0 g ω .
With analogous computations one can prove that

ker(L 4 ) = ker(L 5 ) = span 0 Φ ω , ϕ ω 0 , 0 g ω , h ω 0 ,
which concludes the proof.

Proof of the resolvent formula

In this appendix we prove that the operator (L -λI) -1 is given by

R(λ) = -λ(λ 2 + L 2 L 1 ) -1 -L 2 (λ 2 + L 1 L 2 ) -1 L 1 (λ 2 + L 2 L 1 ) -1 -λ(λ 2 + L 1 L 2 ) -1
for the resolvent of the linear operator L. More precisely, we prove the following proposition.

Proposition 1.30. If λ ∈ C\σ(L), then R(λ)(L-λI)u = u, ∀u ∈ D(L), and

(L-λI)R(λ)f = f for any f ∈ (L 2 (R 3 )) 2 .
Before proving the former proposition, let us prove the following lemma.

Lemma 1.31. For any λ ∈ C \ σ(L) the following identities hold

1. (λ 2 + L 2 L 1 ) -1 L -1 1 = L -1 1 (λ 2 + L 1 L 2 ) -1 , 2. (λ 2 + L 1 L 2 ) -1 = (λ 2 L -1 1 + L 2 ) -1 L -1 1 , 3. (λ 2 + L 1 L 2 ) -1 L 2 -1 = L 2 -1 (λ 2 + L 2 L 1 ) -1 ,
where L 2 is the restriction of the operator L 2 to the projection of its domain onto the subspace of L 2 (R 3 ) associated to the continuous spectrum of L 2 .

Proof. First of all, let us notice that all the inverse operators are well dened since λ is not allowed to be a spectral point of L, L 1 is invertible and L 2 is restricted to a subspace on which it is invertible too.

In order to prove 1, we prove the following claim

(λ 2 + L 2 L 1 ) -1 L -1 1 = (λ 2 L 1 + L 1 L 2 L 1 ) -1 = L -1 1 (λ 2 + L 1 L 2 ) -1 .
To this purpose, let us take any ξ ∈ L 2 (R 3 ), then one has

(λ 2 + L 2 L 1 ) -1 L -1 1 ξ ∈ D(L 2 L 1 ) and L -1 1 ξ ∈ D(L 1 ).
Hence, the following chain of identities holds

(λ 2 L 1 + L 1 L 2 L 1 )(λ 2 + L 2 L 1 ) -1 L -1 1 ξ = L 1 (λ 2 + L 2 L 1 )(λ 2 + L 2 L 1 ) -1 L -1 1 ξ = L 1 L -1 1 ξ = ξ.
On the other hand, let us take η ∈ D(L 1 L 2 L 1 ), and observe that, in particular, η ∈ D(L 2 L 1 ).

This justies the following identities

(λ 2 + L 2 L 1 ) -1 L -1 1 (λ 2 L 1 + L 1 L 2 L 1 )η = = (λ 2 + L 2 L 1 ) -1 L -1 1 L 1 (λ 2 + L 2 L 1 )η = (λ 2 + L 2 L 1 ) -1 (λ 2 + L 2 L 1 )η = η,
which concludes the proof of the rst identity of the claim. The second one is proved in the same way.

The proof of 3. can be done in the same way exganging L 1 with L 2 and L 2 with L 1 .

It is left to prove 2.. To do that, let ξ be in

L 2 (R 3 ), then (λ 2 L -1 1 + L 2 ) -1 L -1 1 ξ ∈ D((λ 2 L -1 1 + L 2 )) and L -1 1 ξ ∈ D(L 1 )
. Hence, we have

(λ 2 + L 1 L 2 )(λ 2 L -1 1 + L 2 ) -1 L -1 1 ξ = L 1 (λ 2 L -1 1 + L 2 )(λ 2 L -1 1 + L 2 ) -1 L -1 1 ξ = ξ.
On the other hand, for any η ∈

D(L 1 L 2 ) one has η ∈ D(L 2 ) ⊂ L 2 (R 3 ) = D(L -1 1 ), which justies (λ 2 L -1 1 + L 2 ) -1 L -1 1 (λ 2 + L 1 L 2 )η = (λ 2 L -1 1 + L 2 ) -1 L -1 1 L 1 (λ 2 L -1 1 + L 2 )η = η.
We can now prove the proposition.

1.10. Proof of the resolvent formula 33 Proof. I step: proof of the first identity.

Let us recall that for u ∈ D(L) holds

R(λ)(L -λI)u = = -λ(λ 2 + L 2 L 1 ) -1 -L 2 (λ 2 + L 1 L 2 ) -1 L 1 (λ 2 + L 2 L 1 ) -1 -λ(λ 2 + L 1 L 2 ) -1 -λ L 2 -L 1 -λ u 1 u 2 = w 1 w 2 ,
where

w 1 = λ 2 (λ 2 + L 2 L 1 ) -1 u 1 + L 2 (λ 2 + L 1 L 2 ) -1 L 1 u 1 -λ(λ 2 + L 2 L 1 ) -1 L 2 u 2 + λL 2 (λ 2 + L 1 L 2 ) -1 u 2 ,
and

w 2 = λ 2 (λ 2 + L 1 L 2 ) -1 u 2 + L 1 (λ 2 + L 2 L 1 ) -1 L 2 u 2 + λ(λ 2 + L 1 L 2 ) -1 L 1 u 1 -λL 1 (λ 2 + L 2 L 1 ) -1 u 1 .
We will concentrate on the rst component w 1 , because the second one can be treated in the same way.

The spectrum of the selfadjoint operator L 2 is ( [START_REF] Albeverio | Solvable models in quantum mechanics[END_REF])

σ(L 2 ) = {0} ∪ [ω, +∞),
where 0 is a simple eigenvalue and ker(L 2 ) = span{Φ ω }. Hence, any u 2 ∈ D(L 2 ) can be decomposed as

u 2 = aΦ ω + g 2 ,
where a ∈ C and g 2 belongs to the projection of D(L 2 ) onto the continuous spectrum of L 2 . Moreover, since

L 2 Φ ω = 0, one gets Φ ω ∈ D(L 1 L 2 ) and Φ ω = 1 λ 2 (λ 2 + L 1 L 2 )Φ ω = (λ 2 + L 1 L 2 ) 1 λ 2 Φ ω , which is equivalent to (λ 2 + L 1 L 2 ) -1 Φ ω ∈ ker(L 2 ).
As a consequence, since L 1 and L 2 are invertible on their domains, one has

w 1 = λ 2 (λ 2 + L 2 L 1 ) -1 L -1 1 L 1 u 1 + L 2 (λ 2 + L 1 L 2 ) -1 L 1 u 1 + -λ(λ 2 + L 2 L 1 ) -1 L 2 g 2 + λ L 2 (λ 2 + L 1 L 2 ) -1 L 2 -1 L 2 g 2 ,
hence, by lemma 1.31 it follows

w 1 = (λ 2 L -1 1 + L 2 )(λ 2 + L 1 L 2 ) -1 L 1 u 1 -λ(λ 2 + L 2 L 1 ) -1 L 2 g 2 + λ L 2 L 2 -1 (λ 2 + L 2 L 1 ) -1 L 2 g 2 = = (λ 2 L -1 1 + L 2 )(λ 2 L -1 1 + L 2 ) -1 L -1 1 L 1 u 1 = u 1 .
Summing up, we proved

R(λ)(L -λI)u = u ∀u ∈ D(L).
II step: proof of the second identity. First of all let us recall that for f ∈ (L 2 (R 3 )) 2 one has

(λ 2 + L 2 L 1 ) -1 f 1 ∈ D(L 2 L 1 ) and (λ 2 + L 1 L 2 ) -1 f 2 ∈ D(L 1 L 2 ).
Hence, the following identities hold

(L -λI)R(λ)f = -λ L 2 -L 1 -λ -λ(λ 2 + L 2 L 1 ) -1 -L 2 (λ 2 + L 1 L 2 ) -1 L 1 (λ 2 + L 2 L 1 ) -1 -λ(λ 2 + L 1 L 2 ) -1 f 1 f 2 = = (λ 2 + L 2 L 1 )(λ 2 + L 2 L 1 ) -1 f 1 (λ 2 + L 1 L 2 )(λ 2 + L 1 L 2 ) -1 f 2 = f,
which concludes the proof.

Chapter 1. Absence of nonvanishing eigenvalues 1.11 The dynamics generated by L along the generalized kernel

In this appendix we estimate the behaviour of the propagator of L around the eigenvalue 0. This is achieved in the following theorem in which it is proved that the dynamics has a linear growth in time along the generalized kernel.

Theorem 1.32. For any r ∈ (0, ω) the following identity holds

1 2πi |λ|=r R(λ; x, y)e -λt dλ = =   √ ω 1-σ e - √ ω(|x|+|y|) 2π|x||y| (2σ √ ω|x| -1) 0 i 2ω 3 2 σ 1-σ e - √ ω(|x|+|y|) π|x||y| t √ ω 1-σ e - √ ω(|x|+|y|) 2π|x||y| (2σ √ ω|y| -1)   ,
for any x, y ∈ R 3 .

Proof. Since the convolution term of the resolvent R(λ) is continuous in zero it suces to compute the integral of the multiplication term. First of all, let us note that the function

f (λ) = 4πi W (λ 2 ) Λ 1 (λ)e -λt = i e -λt W (λ 2 ) • • (4πα 2 -i √ -ω + iλ)e i √ -ω-iλ|x| + (4πα 2 -i √ -ω -iλ)e i √ -ω+iλ|x| 8π|x||y| e i √ -ω+iλ|y| -e i √ -ω-iλ|y| + + -(4πα 1 -i √ -ω + iλ)e i √ -ω-iλ|x| + (4πα 1 -i √ -ω -iλ)e i √ -ω+iλ|x| 8π|x||y| e i √ -ω+iλ|y| + e i √ -ω-iλ|y| = = i 8π|x||y| 2(4πα 2 + √ ω)e - √ ω|x| i|y| √ ω e - √ ω|y| λ + o(λ 2 ) + 8πα 1 e - √ ω|y| i|x| √ ω e - √ ω|x| λ + o(λ 2 ) + +2ie - √ ω|y| 1 √ ω + |x| e - √ ω|x| λ + o(λ 2 ) 1 -σ 2ω λ 2 + o(λ 4 ) -1 ∼ ∼ - √ ω 1 -σ e - √ ω(|x|+|y|) 2π|x||y| [(4πα 2 + √ ω)|y| + (4πα 1 + √ ω)|x| + 1] 1 λ .
as λ → 0. Hence the function f (λ) has a pole of order one in zero. Then, by the Cauchy theorem one gets

1 2πi |λ|=r 4πi W (λ 2 ) Λ 1 (λ)e -λt dλ = - √ ω 1 -σ e - √ ω(|x|+|y|) 2π|x||y| [(4πα 2 + √ ω)|y| + (4πα 1 + √ ω)|x| + 1] = = - √ ω 1 -σ e - √ ω(|x|+|y|) 2π|x||y| [-2σ √ ω|x| + 1].
Switching α 1 to α 2 and vice versa, it follows

1 2πi |λ|=r 4πi W (λ 2 ) Λ 2 (λ)e -λt dλ = - √ ω 1 -σ e - √ ω(|x|+|y|) 2π|x||y| [(4πα 1 + √ ω)|y| + (4πα 2 + √ ω)|x| + 1] = = - √ ω 1 -σ e - √ ω(|x|+|y|) 2π|x||y| [-2σ √ ω|y| + 1].
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On the other hand, the function

4πi W (λ 2 ) Σ 1 (λ)e -λt
is the sum of a continuous function and a function with a pole of second order in zero, namely

g(λ)e -λt = = i (4πα 1 -i √ -ω + iλ)e i √ -ω-iλ|x| + (8πα 1 -i √ -ω -iλ)e i √ -ω+iλ|x| W (λ 2 )4π|x||y| (e i √ -ω+iλ|y| +e i √ -ω-iλ|y| )e -λt . Note that g(λ) = +∞ k=2 a k λ k with a -2 = i ω 1 -σ 4πα 1 + √ ω π|x||y| e - √ ω(|x|+|y|) , a -1 = 0,
then, by residue theorem,

1 2πi |λ|=r 4πi W (λ 2 ) Σ 1 (λ)e -λt dλ = -i ω 1 -σ 4πα 1 + √ ω π|x||y| e - √ ω(|x|+|y|) t = i 2σω 3 2
(1 -σ)π|x||y| e - √ ω(|x|+|y|) t.

In the same way

1 2πi |λ|=r 4πi W (λ 2 ) Σ 2 (λ)e -λt dλ = 0,
which concludes the proof.

Chapter 2

Presence of purely imaginary eigenvalues

Introduction

In the previous chapter we have studied the asymptotic stability of standing waves for a nonlinear Schrödinger equation with a nonlinearity concentrated at the origin in the case in which the discrete spectrum of the linearized operator is made just by the eigenvalue 0 with algebraic multiplicity 2. We recall that this component of the discrete spectrum exists in any case due to the U (1) invariance of the dynamics, related through Noether Theorem to mass (or L 2 -norm)

conservation. Here we go on with the analysis of the asymptotic stability in the case in which a couple of two purely imaginary simple eigenvalues ±iξ is present in the spectrum of the linearized operator with the further condition that ±2iξ belongs to the continuous spectrum. This case corresponds to the nonlinearities where σ ∈

1 √ 2 , √ 3+1 2 √ 2
. The asymptotic stability result is achieved following the outline of [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF] and [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF]. In particular, in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF] the same problem for the analogous one-dimensional model is studied.

Nevertheless, the three-dimensional case presents some dierences. The rst one is that, as explained in Chapter 1, the concentrated nonlinearity imposes to develop the analysis at the form level. This means that the estimates on the evolution of the initial data are more delicate.

The second main dierence is the faster decay of the propagator of the free Laplacian. This allows to develop the the analysis using just the structural weight w = 1 + 1 |x| which arises from the dispersive estimate (once again see the previous chapter) instead of introducing new weighted spaces as done in the one-dimensional case.

Finally, the eigenfunctions associated to the purely imaginary eigenvalues do not have any oscillating term as in the one-dimensional case but they exponentially decrease as |x| → +∞. This fact will be very useful in order to get the decay in time of the radiation term.

On the other hand, comparing with the case in Chapter 1, and in parallel with the already known one-dimensional case, the presence of the two purely imaginary eigenvalues slows down the speed of decay of the remainder. This slower decay can be observed from the behavior of the parameters whose evolution is described by the modulation equations; these include an extra equation describing the evolution of the coecients of the eigenfunctions associated to the purely imaginary eigenvalues. Hence, in order to deal with the modulation equations, it is necessary to consider also the quadratic and the cubic terms of the nonlinearity and, later, exploit a change of variables to have a normal form of the modulation equation to go on with the estimates. This makes more complicate the analysis of the integrability and of the decay of the terms in the 38 Chapter 2. Presence of purely imaginary eigenvalues asymptotic decomposition. Denoting by N 2 (q, q) the quadratic terms coming from the Taylor expansion of the nonlinearity, and by Ψ(ω 0 ) = Ψ 1 (ω 0 ) Ψ 2 (ω 0 )

the eigenfunction of the linearized operator associated to iξ 0 . Usually, when investigating asymptotic stability in presence of purely imaginary eigenvalues, one assumes that the following non-degeneracy condition holds:

(2.1)

JN 2 (q Ψ(ω 0 ) , q Ψ(ω 0 ) )q Ψ + (2iξ 0 ) = 0, where Ψ + (2iξ 0 ) is the generalized eigenfunction associated to +2iξ 0 . The previous condition can be considered as a nonlinear version of the Fermi Golden Rule (see for example [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations[END_REF], [START_REF] Soer | Multichannel nonlinear scattering for nonintegrable equations II. the case of anisotropic potentials and data[END_REF], [START_REF] Sigal | Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions[END_REF],

[44], [START_REF] Tsai | Asymptotic dynamics of nonlinear Schrödinger equations[END_REF], [START_REF] Tsai | Relaxation of excited states in nonlinear Schrödinger equations[END_REF], [START_REF] Tsai | Relaxation of excited states in nonlinear Schrödinger equations[END_REF], [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equations[END_REF], and [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF]). It is necessary to guarantee a time decay of the normal modes related to the discrete spectrum of the linearization; the decay is due to coupling with the continuous spectrum given by FGR, and consequent dispersion. Thanks to the explicit character of our model, we are able to directly verify that the decay of the discrete modes holds for σ in the range

1 √ 2 , σ * , for a certain σ * ∈ 1 √ 2 , √ 3+1 2 √ 2 
(see Section 2.3.4). The numerical evidence is that this is true on the whole interval

1 √ 2 , √ 3+1 2 √ 2
. Eventually, we proved the following result.

Theorem (Asymptotic stability in the case of purely imaginary eigenvalues) Assume that u(t) ∈ C(R + , V ) is a solution to (3) with concentrated power nonlinearity (2) where σ ∈

( 1 √ 2 , σ * ), for a certain σ * ∈ ( 1 √ 2 , √ 3+1 2 √ 2 ]
. Moreover, suppose that the initial datum

u(0) = u 0 = e iω 0 +γ 0 Φ ω 0 + e iω 0 +γ 0 [(z 0 + z 0 )Ψ 1 + i(z 0 -z 0 )Ψ 2 ] + f 0 ∈ V ∩ L 1 w (R 3 ), with ω 0 > 0, γ 0 , z 0 ∈ R, and f 0 ∈ L 2 (R 3 ) ∩ L 1 w (R 3
) is close to a stationary wave, i.e.

|z 0 | ≤ 1/2 and f 0 L 1 w ≤ c 3/2 ,
where c, > 0.

Then, provided is suciently small, the solution u(t) can be asymptotically decomposed as

u(t) = e iω∞t+ib 1 log(1+ k∞t) Φ ω∞ + U t * ψ ∞ + r ∞ , as t → +∞, where ω ∞ , k ∞ > 0, b 1 ∈ R, and ψ ∞ , r ∞ ∈ L 2 (R 3 ) such that r ∞ L 2 = O(t -1/4 ) as t → +∞, in L 2 (R 3 ).
Notice that the range of the admitted nonlinearities σ implies that ±2iξ is in the essential spectrum of the linearized operator.

A last comment of general nature is in order. As in the one dimensional case studied by Buslaev, Komech, Kopylova, and Stuart in [START_REF] Buslaev | On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator[END_REF] and Komech, Kopylova, and Stuart in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF], and the three dimensional model analyzed in the previous chapter, the analysis of a specic model allows to obtain asymptotic stability of standing waves without a priori assumptions. In particular the nonlinearity is xed, of power type and subcritical, no smallness of initial data is required (in the sense that we give results for every standing wave of the model and initial data near the family of standing waves). Moreover, while Komech, Kopylova, and Suart nd a link between the Fermi Golden Rule and the decay of normal modes, here such decay is directly veried. This fact seems to indicate that some of these assumptions or hypotheses are in fact unnecessary when enough information about the model is known.

For the sake of completeness, in this chapter we will repeat proofs requiring some modications because of the facts mentioned above; on the contrary, where the arguments hold unchanged, just a reference will be given.

Recall that we are considering the following nonlinear evolution problem associated to the operator H α , i.e.

(2.2)

i du dt = H α u,
with an initial datum u(0) = u 0 . The action of the operator H α is dened in Section 1.1 and the existence of the solitary waves manifold

M = Φ ω (x) = √ ω 4πν 1 2σ e - √ ω|x| 4π|x| ∈ D : ω > 0 .
is proved in Section 1.2.2. Furthermore, in Section 1.4 we describe some spectral properties of the linearized operator

L = 0 L 2 -L 1 0 , where L j = H α j + ω for j = 1, 2, where α 1 = -(2σ + 1) √ ω 4π and α 2 = - √ ω 4π .
Let us stress that in the case σ ∈ (1/ √ 2, 1) the discrete spectrum of L consist in the eigenvalue 0 with algebraic multiplicity 2 and two purely imaginary eigenvalues ±iξ with

(2.3) ξ = 2σ 1 -σ 2 ω.
As it is proved in Appendix 2.6.1, the eigenfunction Ψ associated to the eigenvalue iξ can be chosen such that its rst component is real and its second component is purely imaginary. Hence, one gets that the eigenfunction associated to -iξ is

Ψ * = Ψ 1 -Ψ 2 .
As a consequence, the domain of the operator L can be decomposed in three symplectic subspaces, more precisely

D(L) = X 0 ⊕ X 1 ⊕ X c ,
where X 0 , X 1 , and X c are the generalized kernel, the eigensubspace corresponding to the eigenfunctions Ψ and Ψ * , and the continuous spectral subspace respectively. The projection operators from L 2 (R 3 ) onto X 0 , X 1 and X c are

P 0 f = - 2 ∆ Ω f, dΦ ω dω JΦ ω + 2 ∆ Ω (f, JΦ ω ) dΦ ω dω , ∆ = d dω Φ ω L 2 , P 1 f = Ω(f, Ψ) κ Ψ + Ω(f, Ψ * ) κ Ψ * , κ = Ω(Ψ, Ψ * ), P c f = f -P 0 f -P 1 f,
respectively. Moreover, we denote with Π ± the projections onto the branches C ± of the continuous spectrum separately.

Finally note that the dispersive estimate in Theorem 1.16 still holds true since there are no embedded eigenvalues nor threshold resonances and the eigenvalue 0 has the same algebraic multiplicity as in the case 0, 1

√ 2 .
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Modulation equations

Since the operators we are dealing with are all dierent in domain while the forms associated to them have all the same domain, namely

V = u = φ λ + qG λ , with φ λ ∈ D 1 (R 3 ), q ∈ C ,
it makes sense to do the following computations at the form level as done in Section 1.5. In order to do that let us recall that the variational formulation of equation (2.2) is

(2.4) i du dt (t), v L 2 = Q α (u(t), v) ∀v ∈ V.
Note that the last equation makes sense because V is independent on the positive parameter λ and it is a Hilbert space with the norm

u 2 V = ∇φ λ 2 L 2 + |q| 2 , ∀u ∈ V.
In order to inspect the asymptotic stability of equation (2.2) it is useful to solve it with the ansatz (2.5)

u(t, x) = e iΘ(t) Φ ω(t) (x) + χ(t, x) ,
where (2.6)

χ(t, x) = z(t)Ψ(t, x) + z(t)Ψ * (t, x) + f (t, x) = ψ(t, x) + f (t, x),
with ψ ∈ X 1 , f ∈ X c , and

Θ(t) = t 0 ω(s)ds + γ(t),
with ω(t), γ(t) to be chosen in a suitable way.

Hence, we are constructing a solution of equation (2.2) close at each time to a solitary wave. Let us notice that the solitary wave does not need to be the same at every time, which means that the parameters ω(t) and Θ(t) are free to vary in time.

As in the case in which σ ∈ 0, 

i dχ dt (t), v L 2 = Q α,Lin (χ(t), v) + γ(t)(Φ ω(t) + χ(t), v) L 2 + + ω(t) -i dΦ ω(t) dω , v L 2 + N (q χ (t), q v ),
for all v ∈ V , where N (q χ (t), q v ) is the nonlinear part of the variational formulation of equation (2.2) dened together with Q α,Lin (χ(t), v) in Section 1.5.

Since ω(t), γ(t), and χ(x, t) are unknown and the propagator grows in time along the directions of the generalized kernel of the operator L, the idea is to get a determined system requiring the function χ(t) to be orthogonal to the generalized kernel of L at any time t ≥ 0. Hence, one obtains that ω, γ, z, and f must solve the following system of equations. 

ω = Re (JN (q χ )q P * 0 (Φω+χ) ) ϕ ω -dP 0 dω χ, Φ ω + χ L 2 , (2.9) γ = Re (JN (q χ )q J(ϕω-dP 0 dω χ) ) ϕ ω -dP 0 dω χ, Φ ω + χ L 2
, and z and f satisfy

(2.10) (Ψ, JΨ) L 2 ( ż -iξz) = Re(JN (q χ )q JΨ ) + ω f, J dΨ dω L 2 - dψ dω , JΨ L 2 + γ(χ, Ψ) L 2 , (2.11) df dt , v L 2 = Q L (f, v) + -ω zP c dΨ dω + zP c dΨ * dω + γP c Jχ, v L 2 + +(8π √ λP c JN (q χ )G λ , q v G λ ) L 2 ,
for all v ∈ V .

Proof. Equations (2.8) and (2.9) can be proved with the same argument exploited in the case σ ∈ 0, • (Ψ * , JΨ) L 2 = 0,

• dΦω dω , JΨ L 2 = 0, • df dt , JΨ L 2 = -ω f, J dΨ dt L 2 , and • ω dΨ * dω , JΨ L 2 = -Ψ * , J dΨ dt L 2 .
Finally, equation (2.11) follows taking the projection onto the continuous spectrum P c of both side of equation (2.7) and recalling that f ∈ X c .

Frozen spectral decomposition

The goal of this subsection is to get an autonomous linearized equation for the component f , as done in Section 1.6.1.

Let us x some T > 0, then for any t ∈

[0, T ] one can decompose f (t) ∈ X c = X c (t) as f = g + h with g ∈ X d T = X 0 T ⊕ X 1 T , h ∈ X c T ,
where the subscript T means that the time is xed at t = T .

Chapter 2. Presence of purely imaginary eigenvalues Denote P d T = P 0 T + P 1 T and ω T = ω(T ). Moreover, let us dene

L T = L(ω T ), then Q L (u, v) -Q L T (u, v) = √ ω - √ ω T 4π Re(Tq u q v ) -(ω T -ω)(Ju, v) L 2 ,
for all u, v ∈ V , where

T = 0 -1 2σ + 1 0 .
Hence, observing that P c Ψ = 0, the equation (2.11) for f is equivalent to df dt , v

L 2 = Q L T (f, v) + (ω -ω T )Jf + ω dP c dω ψ + γP c Jχ, v L 2 + + 8π √ λ √ ω - √ ω T 4π Tq f + P c JN (q χ ) G λ , q v G λ L 2
, for all v ∈ V .

Since our dispersive estimate holds only on the continuous spectral subspace, we need to prove that it is enough to estimate the symplectic projection of χ(t) onto that subspace. This is stated in the following lemma where we denote, with a slight abuse, as R(a) R(a, b) bounded continuous real valued functions vanishing as a, b → 0, and

R 1 (ω) = R( ω -ω 0 C 0 ([0,T ]) ).
Lemma 2.2. If |ω -ω T | is small enough, then the function g can be estimated in terms of h as follows:

g L ∞ w -1 ≤ R 1 (ω)|ω -ω T | h L ∞ w -1 .
The last lemma can be proved following the proof of Lemma 3.2 in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF].

As a consequence, one can apply the operator P c T to both sides of the equation for f and obtain (2.12)

dh dt , v L 2 = Q L T (h, v) + P c T (ω -ω T )Jf + ω dP c dω ψ + γP c Jχ , v L 2 + + 8π √ λP c T √ ω - √ ω T 4π Tq f + P c JN (q χ ) G λ , q v G λ L 2
, for any v ∈ V .

Asymptotic expansion of dynamics

In order to prove the asymptotic stability of the ground state we need to show that for large times z and h are small. For this purpose, the goal of this section is to expand the inhomogeneous terms in the modulation equations.

In what follows we denote

(q, p) = q 1 p 1 + q 2 p 2 , ∀p, q ∈ C 2 .
With an abuse of notation in what follows we denote by q ω = √ ω 4πν 1/(2σ) 0 the charge of the function Φ ω 0 . As a preliminary step, we expand the nonlinear part of the equation (2.7) N (q χ ) as (2.13)

N (q χ ) = N 2 (q χ ) + N 3 (q χ ) + N R (q χ ),
where N 2 and N 3 are the quadratic and cubic terms in q χ respectively, while N R is the remainder. Exploiting the Taylor expansion of the function

F (t) = t σ around |q ω | 2 , one gets Re(N 2 (q χ )q v ) = Re((σ|q ω | 2(σ-1) |q χ | 2 q ω +2σ|q ω | 2(σ-1) (q ω , q χ )q χ +2(σ-1)σ|q ω | 2(σ-2) (q ω , q χ ) 2 q ω )q v ),
and

Re(N 3 (q χ )q v ) = Re((σ|q ω | 2(σ-1) |q χ | 2 q χ + 2(σ -1)σ|q ω | 2(σ-2) (q ω , q χ ) 2 q χ + +2(σ -1)σ|q ω | 2(σ-2) (q ω , q χ )|q χ | 2 q ω + 4 3 (σ -2)(σ -1)σ|q ω | 2(σ-3) (q ω , q χ ) 3 q ω )q v ),
for any q v ∈ C. For later convenience, let us dene the following symmetric forms 1) [(q ω , q 1 )q 2 + (q ω , q 2 )q 1 ]+ +2(σ -1)σ|q ω | 2(σ-2) (q ω , q 1 )(q ω , q 2 )q ω , and N 3 (q 1 , q 2 , q 3 ) = 1 6 σ|q ω | 2(σ-1) 3 i,j,k=1

N 2 (q 1 , q 2 ) = σ|q ω | 2(σ-1) (q 1 , q 2 )q ω + σ|q ω | 2(σ-
(q i , q j )q k + 1 3 (σ -1)σ|q ω | 2(σ-2) 3 i,j,k=1 (q ω , q i )(q ω , q j )q k + + 1 3 (σ -1)σ|q ω | 2(σ-2) 3 i,j,k=1
(q ω , q i )(q j , q k )q ω + 4 3 (σ -2)(σ -1)σ|q ω | 2(σ-3) (q ω , q 1 )(q ω , q 2 )(q ω , q 3 )q ω .

In order to prove the asymptotic stability result, we shall prove in Section 2.4, the following asymptotics (2.14)

f (t) L ∞ w -1 ∼ t -1 , z(t) ∼ t -1 2 , ψ(t) V ∼ t -1 2 ,
as t → +∞.

Remark 2.3. As in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF], the rst step in proving these expected asymptotics is to separate leading terms and remainders in the right hand sides of the modulation equations (2.8) -(2.10),

(2.12). Basically, in the next subsections, we will expand the expression for ω, γ, and ż up to and including the terms of order t -3/2 , and for ḣ up to and including t - 

ω = 1 ∆ Re((JN 2 (q ψ ) + 2JN 2 (q ψ , q f ) + JN 3 (q ψ ))q ω ) + 1 ∆ 2 ψ, dΦ ω dω L 2 Re(JN 2 (q ψ )q ω ) + Ω R , where ∆ = 1 2 d dω Φ ω 2 L 2 and the remainder Ω R is estimated by |Ω R | ≤ R(ω, |z| + f L ∞ w -1 )(|z| 2 + f L ∞ w -1 ) 2 .
Recalling that ψ = zΨ + zΨ * , one can rewrite the former equation for ω as (2.15) ω = Ω 20 z 2 +Ω 11 zz+Ω 02 z 2 +Ω 30 z 3 +Ω 21 z 2 z+Ω 12 zz 2 +Ω 03 z 3 +z(q f , Ω 10 )+z(q f , Ω 01 )+Ω R .

Remark 2.5. Since the second component of the vector q ω equals 0, one has

Ω 11 = 2 q ω ∆ Re(JN 2 (q Ψ )q Ψ * ) = 0.
This fact will turn out to be useful in writing the canonical form of the modulation equations.

Equation for γ

As in the previous subsection the equation for γ (2.9) can expanded as

γ = 1 ∆ Re((JN 2 (q ψ ) + 2JN 2 (q ψ , q f ) + JN 3 (q ψ ))q J dΦω dω ) + 1 ∆ 2 ψ, J d 2 Φ ω d 2 ω L 2 Re(JN 2 (q ψ )q ω ) + Γ R ,
where the remainder Γ R is estimated by

|Γ R | ≤ R(ω, |z| + f L ∞ w -1 )(|z| 2 + f L ∞ w -1 ) 2 .
As before, the equation for γ shall be written in the form (2.16) γ = Γ 20 z 2 + Γ 11 zzΓ 02 z 2 + Γ 30 z 3 + Γ 21 z 2 z + Γ 12 zz 2 + Γ 03 z 3 + z(q f , Γ 10 ) + z(q f , Γ 01 ) + Γ R .

Remark 2.6. In this case Γ 11 does not vanish as in equation (2.15).

Equation for z

Exploiting the results of the previous subsections, equation (2.10) can be expanded as

ż -iξz = 2 κ Re(JN 2 (q ψ )q f ) + 1 κ Re((JN 2 (q ψ ) + JN 3 (q ψ ))q JΨ )+ -1 ∆κ dψ dω , JΨ L 2 Re(JN 2 (q ψ )q ω ) + 1 ∆κ (ψ, Ψ) L 2 Re(JN 2 (q ψ )q J dΦω dω ) + Z R , where κ = -(Ψ, JΨ) L 2 and |Z R | ≤ R(ω, |z| + f L ∞ w -1 )(|z| 2 + f L ∞ w -1 ) 2 .
With the same notation as before, the previous equation can be written in the form (2.17) ż = iξz+Z 20 z 2 +Z 11 zz+Z 02 z 2 +Z 30 z 3 +Z 21 z 2 z+Z 12 zz 2 +Z 03 z 3 +z Re(q f Z 10 )+z Re(q f Z 01 )+Z R , and it turns out that (2.18)

Z 11 = 2 κ Re(JN 2 (q Ψ , q Ψ * )q Ψ ), Z 20 = 1 κ Re(JN 2 (q Ψ )q Ψ ), Z 02 = 1 κ Re(JN 2 (q Ψ * )q Ψ ), Z 21 = 3 κ Re(JN 3 (q Ψ * , q Ψ , q Ψ )q Ψ ) + 1 ∆κ dΨ * dω , jΨ L 2 Re(JN 2 (q Ψ )q JΦω )+ -(Ψ * , Ψ) L 2 Re(JN 2 (q Ψ )q dΦω dω ) -2 Ψ 2 L 2 Re(JN 2 (q Ψ * , q Ψ )q dΦω dω ) , Z 10 = 2 JN 2 (q Ψ * ,q Ψ ) κ , Z 01 = 2 JN 2 (q Ψ ) κ .

Equation for h

In order to expand asymptotically the equation (2.12) for h, the following remark will be useful.

Remark 2.7. For any f ∈ L 2 (R 3 ) the following holds

P c T P c f = P c T (I -P d )f = P c T (P c T + P d T -P d )f = P c T f + P c T (P d T -P d )f. Let us denote ρ(t) = ω(t) -ω T + γ(t),
then equation (2.12) can be rewritten as

dh dt , v L 2 = Q L T (h, v) + (ρP c T Jh, v) L 2 + (8πP c T JN 2 (q ψ )G λ , q v G λ ) L 2 + + P c T ω dP c dω ψ + γP c Jψ + ρJg + γ(P d T -P d )Jf , v L 2 + + 8π √ λP c T √ ω - √ ω T 4π Tq f + P c JN (q χ ) -JN 2 (q ψ ) G λ , q v G λ L 2 , for any v ∈ V . Denote H R = P c T ω dP c dω ψ + γP c Jψ + ρJg + γ(P d T -P d )Jf ,
and

H R = 8π √ λP c T √ ω - √ ω T 4π Tq f + P c JN (q χ ) -JN 2 (q ψ ) G λ .
The next lemma will justify what follows.

Lemma 2.8. There exists a constant C > 0 such that for each h ∈ X c T holds

[P c T J -i(Π + T -Π - T )]h L 1 w ≤ C h L ∞ w -1 .
The proof is in Appendix 2.6.2 for any t > 0. Finally, let us dene

(2.19) L M (t) = L T + iρ(t)(Π + T -Π - T ),
then the previous equation becomes

(2.20) dh dt , v L 2 = Q L M (h, v) + (8πP c T JN 2 (q ψ )G λ , q v G λ ) L 2 + ( H R , v) L 2 + (H R , q v G λ ) L 2 ,
for any v ∈ V , where we have denoted

H R = H R + ρ[P c T J -i(Π + T -Π - T )]h.
Finally, let us expand the second summand in the right hand side of (2.20), getting dh dt , v

L 2 = Q L M (h, v) + (z 2 H 20 + zzH 11 + z 2 H 02 )q v + ( H R , v) L 2 + (H R , q v G λ ) L 2 ,
for any v ∈ V , where

H 20 = (8π √ λP c T JN 2 (q Ψ )G λ , G λ ) L 2 , H 11 = 2(8π √ λP c T JN 2 (q Ψ , q Ψ * )G λ , G λ ) L 2 , H 02 = (8π √ λP c T JN 2 (q Ψ * )G λ , G λ ) L 2 .
Thanks to the estimates done for the other equations and Lemma 2.8, one can estimates the remainders in the following way:

H R L 1 w ≤ C |z|(| ω| + | γ|) + R 1 (ω)(|ω -ω T | + | γ| f L ∞ w -1 ) ≤ ≤ R 1 (ω, |z| + f L ∞ w -1 ) |z| 3 + |z| f L ∞ w -1 + f 2 L ∞ w -1 + |ω -ω T | f L ∞ w -1 , hence (2.21) H R L 1 w ≤ R 1 (ω, |z| + f L ∞ w -1 ) |z| 3 + |z| f L ∞ w -1 + f 2 L ∞ w -1 + |ω -ω T | f L ∞ w -1 , and (2.22) 
H R L 1 w ≤ R 1 (ω, |z| + f L ∞ w -1 ) |z| 3 + |z| f L ∞ w -1 + f 2 L ∞ w -1 + |ω -ω T |(|z| 2 + f L ∞ w -1 ) .
Remark 2.9. In the same way one could directly expand the equation for the function f getting

(2.23) df dt , v L 2 = Q L (f, v) + (z 2 F 20 + zzF 11 + z 2 F 02 )q v + ( F R , v) L 2 + (F R , q v G λ ) L 2 ,
for any v ∈ V , where

F 20 = (8π √ λJN 2 (q Ψ )G λ , G λ ) L 2 , F 11 = 2(8π √ λJN 2 (q Ψ , q Ψ * )G λ , G λ ) L 2 , F 02 = (8π √ λJN 2 (q Ψ * )G λ , G λ ) L 2 . and F R = ω dP c dω ψ + γP c Jψ + γ(P d T -P d )Jf, F R = 8π √ λ √ ω - √ ω T 4π Tq f + P c JN (q χ ) -JN 2 (q ψ ) G λ .
Furthermore, the L 1 w norms of the remainders F R and F R can be estimated by the corresponding norms of the remainders H R and H R .

Canonical form of the equations

In this section we would like to use the technique of normal coordinates in order to transform the modulation equations for ω, γ, z, and h to a simpler canonical form. We will also try to keep the estimates of the remainders as much close as possible to the original ones. 

Canonical form of the equations

Canonical form of the equation for h

Our goal is to exploit a change of variable in such a way that the function h is mapped in a new function decaying in time at least as t -3/2 . For this purpose one could expand h as (2.24)

h = h 1 + k + k 1 ,
where k = a 20 z 2 + a 11 zz + a 02 z 2 , with some coecients a ij = a ij (x, ω) such that a ij = a ji , and

k 1 = -exp t 0 L M (s)ds k(0). Note that h 1 (0) = h(0), since k 1 (0) = -k(0).
Proposition 2.10. There exist a ij ∈ L ∞ w -1 (R 3 ), for i, j = 0, 1, 2, such that the equation for h 1 has the form (2.25)

dh 1 dt , v L 2 = Q L M (h 1 , v) + ( H R , v) L 2 + (H R , q v G λ ) L 2 ,
for all v ∈ V , where

H R = H R + H R with (2.26) H R = -ω da 20 dω z 2 + da 11 dω zz + da 02 dω z 2 + (2a 20 z + a 11 z)( ż -iξ T z)+ +(a 11 z + 2a 20 z)( ż + iξ T z) -ρ(Π + T -Π - T )k .
Proof. The thesis is proved substituting (2.24) into (2.20) and equating the coecients of the quadratic powers of z which leads to the system (2.27)

   Q L T (a 20 , v) + Re(H 20 q v ) -(2iξ T a 20 , v) L 2 = 0 Q L T (a 11 , v) + Re(H 11 q v ) = 0 Q L T (a 02 , v) + Re(H 02 q v ) + (2iξ T a 02 , v) L 2 = 0
, for all v ∈ V . The former system admits the solution

a 11 = -L -1 T H 11 a 20 = -(L T -2iξ T -0) -1 H 20 a 02 = a 02 = -(L T + 2iξ T -0) -1 H 02
Remark 2.11. From the explicit structure of the remainder H R it follows that it still satises estimate (2.21).

We will need to apply the next lemma which can be proved as Proposition 2.3 in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF]. Lemma 2.12.

If σ ∈ 1 √ 2 , √ 3+1 2 √ 2
and f ∈ V ∩ L 1 w , then there exists some constant C > 0 such that for any t ≥ 0

e -L T t (L T + 2iξ T -0) -1 P c T f L ∞ w -1 ≤ C(1 + t) -3/2 f L 1 w .
Remark 2.13. Let us note that

h = P c T h = P c T h 1 + P c T k + P c T k 1 ,
hence, in order to estimate the decay of h L ∞ w -1

, it suces to estimate the decay of

P c T h 1 L ∞ w -1 , P c T k L ∞ w -1 , and P c T k 1 L ∞ w -1 .

Canonical form of the equation for ω

Since Ω 11 = 0, we can exploit the method by Buslaev and Sulem in [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF], Proposition 4.1 and get the following proposition.

Proposition 2.14. There exist coecients b ij = b ij (ω), with i, j = 0, 1, 2, 3, and vector functions b ij = b ij (x, ω), with i, j = 0, 1, such that function

ω 1 = ω + b 20 z 2 + b 11 zz + b 02 z 2 + b 30 z 3 + b 21 z 2 z + b 12 zz 2 + b 03 z 3 + +z(f, b 10 ) L 2 + z(f, b 01 ) L 2 ,
solves a dierential equation of the form

ω1 = Ω R ,
for some remainder Ω R . Proof. Substituting the equations (2.15), (2.17), and (2.23) into the derivative with respect to time of the expression for ω 1 and equating the coecients of z 2 , zz, z 2 , z, and z one gets the following system

                         Ω 20 + 2iξb 20 = 0 Ω 02 -2iξb 02 = 0 Ω 30 + 3iξb 30 + 2Z 20 b 20 + Re(F 20 q b 10 ) = 0 Ω 03 -3iξb 03 + 2Z 02 b 02 + Re(F 02 q b 01 ) = 0 Ω 21 + iξb 21 + 2Z 11 b 20 + 2Z 20 b 02 + Re(F 11 q b 10 + F 20 q b 01 ) = 0 Ω 12 -iξb 12 + 2Z 11 b 02 + 2Z 20 b 20 + Re(F 11 q b 01 + F 20 q b 10 ) = 0 (q f , Ω 10 ) + iξ(f, b 10 ) L 2 + Q L (f, b 10 ) = 0 (q f , Ω 01 ) + iξ(f, b 01 ) L 2 + Q L (f, b 01 ) = 0 .
The last two equations of this system can be solved in a way similar to the ones system (2.27), and the proof follows.

Remark 2.15. From the proof of the previous proposition it also follows that the remainder Ω R can be estimated as Ω R , namely

| Ω R | ≤ R(ω, |z| + f L ∞ w -1 )(|z| 2 + f L ∞ w -1 ) 2 .
In the next lemma we prove a uniform bound for |ω T -ω| on the interval [0, T ]. For later convenience let us denote

R 2 (ω, |z| + f L ∞ w -1 ) = R max 0≤t≤T |ω T -ω|, max 0≤t≤T (|z| + f L ∞ w -1 ) . Remark 2.16. Let us note that |ω| ≤ |ω 0 | + |ω 0 -ω T | + |ω -ω T |, then max 0≤t≤T R(ω, |z| + f L ∞ w -1 ) = R max 0≤t≤T |ω T -ω|, max 0≤t≤T (|z| + f L ∞ w -1
) .

The next lemma can be proved as in Section 3.5 of [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF].

Lemma 2.17. For any t ∈ [0, T ] we have

|ω T -ω| ≤ R 2 (ω, |z| + f L ∞ w -1 ) T t (|z(τ )| + f (τ ) L ∞ w -1 ) 2 dτ + +(|z T | + f T L ∞ w -1 ) 2 + (|z| + f L ∞ w -1 ) 2 .

Canonical form of the equation for γ

Equations (2.16) for γ and (2.15) for ω dier just because in general Γ 11 = 0. But we can perform the same change of variable in the previous subsection, namely

γ 1 = γ + d 20 z 2 + d 02 z 2 + d 30 z 3 + d 21 z 2 z + d 12 zz 2 + d 03 z 3 + z(f, d 10 ) L 2 + z(f, d 01 ) L 2 ,
for some suitable coecients d ij = d ij (ω), with i, j = 0, 1, 2, 3, and vector functions d ij = d ij (x, ω), with i, j = 0, 1. Then the function γ 1 solves the dierential equation

γ1 = Γ 11 (ω)zz + Γ R ,
for some remainder Γ R , which can be estimated as Γ R , i.e.

| Γ R | ≤ R(ω, |z| + f L ∞ w -1 )(|z| 2 + f L ∞ w -1 ) 2 .

Canonical form of the equation for z

Exploiting the change of variable (2.24) used to obtain the canonical form of equation (2.20) for h, one can prove the following proposition.

Proposition 2.18. There exist coecients c ij = c ij (ω), with i, j = 0, 1, 2, 3, such that function

z 1 = z + c 20 z 2 + c 11 zz + c 02 z 2 + c 30 z 3 + c 21 z 2 z + c 03 z 3 ,
solves a dierential equation of the form (2.28)

ż1 = iξz 1 + iK|z 1 | 2 z 1 + Z R ,
where

iK = Z 21 + Z 21 + i ξ Z 20 Z 11 - i ξ Z 2 11 - 2i 3ξ Z 2 02 ,
with the coecient Z ij , i, j = 0, 1, 3, dened in (2.18), and

Z R = (g + P c T h 1 + P c T k 1 , Z 10 )z + (g + P c T h 1 + P c T k 1 , Z 01 )z + Z R .
The proof is a matter of calculation, but we give it explicitly to stress the role of the functions

a ij , i, j = 0, 1, 2.
Proof. Substituting (2.24) in the equation (2.17) the dierential equation for z becomes (2.29)

ż = iξz + Z 20 z 2 + Z 11 zz + Z 02 z 2 + Z 30 z 3 + Z 21 z 2 z + Z 12 zz 2 + Z 03 z 3 + +Z 30 z 3 + Z 21 z 2 z + Z 12 zz 2 + Z 03 z 3 + Z R ,
where Z 30 = Re(q a 20 Z 10 ), Z 03 = Re(q a 02 Z 01 ), Z 21 = Re(q a 11 Z 10 ) + Re(q a 20 Z 01 ), Z 12 = Re(q a 11 Z 01 ) + Re(q a 02 Z 10 ), and the remainder Z R is as in the statement of the proposition.

Inserting equation (2.29) into the time derivative of the expression for z 1 and equating the coefcients of z 2 , zz, z 2 , z 3 , zz 2 , and z 3 one obtains the system

               iξc 20 + Z 20 = 0 -iξc 11 + Z 11 = 0 -3iξc 02 + Z 02 = 0 2iξc 30 + Z 30 + Z 30 + 2c 20 Z 20 + c 11 Z 20 = 0 Z 12 + Z 12 + 2c 20 Z 20 + c 11 (Z 11 + Z 02 ) + 2c 02 Z 11 -2iξc 12 = 0 -4iξc 03 + Z 03 + Z 03 + c 11 Z 02 = 0
The theorem follows from the fact the the above system is solvable and in particular Re(iK) = Re(Z 21 ).

c 20 = i ξ Z 20 , c 11 = - i ξ Z
Moreover, we need the following lemma.

Lemma 2.20. There exists

σ * ∈ 1 √ 2 , √ 3+1 2 √ 2 such that if σ ∈ 1 √ 2 , σ * , then Re(Z 21 ) < 0,
∀ω belonging to an open neighbourhood of ω 0 .

Proof. First of all recall that ξ T = 2σ

√ 1 -σ 2 ω T , then one can compute (2.30) κ = -(Ψ, JΨ) L 2 = i 4π √ ω T 1 1 -2σ √ 1 -σ 2 - ( √ 1 -σ 2 -1) 2 σ 2 1 1 + 2σ √ 1 -σ 2 = = i 4π √ ω T σ 2 1 + 2σ √ 1 -σ 2 -( √ 1 -σ 2 -1) 2 1 -2σ √ 1 -σ 2 σ 2 (2σ 2 -1)
.

Since κ is purely imaginary with positive imaginary part and L -1 T 2P c T J is self-adjoint, for the rst summand in the expression for Re(Z 21 ) one gets

Re(q

a 11 Z 10 ) = -2 Re   q L -1 T 2P c T JN 2 (q Ψ ,q Ψ * ) JN 2 (q Ψ , q Ψ * ) κ   = 0. Hence, Re(Z 21 ) = -2 Re q a 20 JN 2 (q Ψ ) κ .
By direct computations one has

a 20 (x) = (L T -(2iξ T + 0)) -1 H 20 = A e - √ ω T +2ξ T |x| 4π|x| 1 -i + C e -i √ -ω T +2ξ T |x| 4π|x| 1 i , with A = -4π d [((2σ + 1) √ ω T -i √ -ω T + 2ξ T )(H 20 ) 1 + (i √ ω T + √ -ω T + 2ξ T )(H 20 ) 2 ] C = 4π d [((2σ + 1) √ ω T - √ ω T + 2ξ T )(H 20 ) 1 -(i √ ω T -i √ ω T + 2ξ T )(H 20 ) 2 ]
,

where d = 2i(2σ+1)ω T +2(σ+1) √ ω T √ -ω T + 2ξ T -2i(σ+1) √ ω T √ ω T + 2ξ T -2 √ ω T + 2ξ T √ -ω T + 2ξ T .
From which follows q a 20 = 4π d

(i √ -ω T + 2ξ T - √ ω T + 2ξ T )(H 20 ) 1 ((2σ + 1) √ ω T - √ ω T + 2ξ T - √ -ω T + 2ξ T )(H 20 ) 1 + + -i(2 √ ω T + √ ω T + 2ξ T + i √ -ω T + 2ξ T )(H 20 ) 2 (- √ ω T + 2ξ T + i √ -ω T + 2ξ T )(H 20 ) 2 . Hence (2.31) Re((q a 20 ) 1 ) = 16π |d| 2 [i(H 20 ) 1 (-(σ + 1) √ ω T √ ω T + 2ξ T √ -ω T + 2ξ T + ((σ + 1)ω T + ξ T ) √ -ω T + 2ξ T )+ (H 20 ) 2 (-(2(σ + 1)ξ T + (2σ + 1)ω T ) √ ω T + (ξ T + (2σ + 1)ω T ) √ ω T + 2ξ T )] Im((q a 20 ) 2 ) = 16π |d| 2 [i(H 20 ) 1 ((2(σ + 1) 2 ω T + ξ T ) √ -ω T + 2ξ T -(3σ + 2) √ ω T √ ω T + 2ξ T √ -ω T + 2ξ T )+ +(H 20 ) 2 ((σ + 1)ω 3/2 T + ((σ + 1)ω T -ξ T ) √ ω T + 2ξ T )].
Moreover, by (

JN 2 (q Ψ ) = -2σ|q ω T | 2σ-1 (q Ψ ) 1 (q Ψ ) 2 σ|q ω T | 2σ-1 (3(q Ψ ) 2 1 + (q Ψ ) 2 2 ) + 2σ(σ -1)|q ω T | 2σ-1 (q Ψ ) 2 1 = =   -2iσ|q ω T | 2σ-1 1 - √ 1-σ 2 -1 σ 1 + √ 1-σ 2 -1 σ 2σ|q ω T | 2σ-1 1 - √ 1-σ 2 -1 σ   , 2.13) one gets (2.32) 
H 20 = (8π √ ω T P c T JN 2 (q Ψ )G ω T , G ω T ) L 2 = = JN 2 (q Ψ ) - (JN 2 (q Ψ )) 1 |q ω T | 16π∆ω 3/2 1 σ -1 1 0 + + √ ω T κ   -(JN 2 (q Ψ )) 2 1 √ ω T -ξ T + √ ω T - √ 1-σ 2 -1 σ 1 √ ω T +ξ T + √ ω T 2 (JN 2 (q Ψ )) 1 1 √ ω T -ξ T + √ ω T + √ 1-σ 2 -1 σ 1 √ ω T +ξ T + √ ω T 2   . which implies (2.33) 
Let us notice that (2.32) and (2.33 

) imply i(H 20 ) 1 i(JN 2 (q Ψ )) 1 = -1 2σ-1 (JN 2 (q Ψ )) 2 1 + + √ ω T 4πiκ 1 √ ω T -ξ T + √ ω T - √ 1-σ 2 -1 σ 1 √ ω T +ξ T + √ ω T 2 i(JN 2 (q Ψ )) 1 (JN 2 (q Ψ )) 2 (H 20 ) 2 i(JN 2 (q Ψ )) 1 = (JN 2 (q Ψ )) 2 i(JN 2 (q Ψ )) 1 + - √ ω T 4πiκ 1 √ ω T -ξ T + √ ω T + √ 1-σ 2 -1 σ 1 √ ω T +ξ T + √ ω T 2 (JN 2 (q Ψ )) 2 1 i(H 20 ) 1 (JN 2 (q Ψ )) 2 = 1 2σ-1 i(JN 2 (q Ψ )) 1 (JN 2 (q Ψ )) 2 + + √ ω T 4πiκ 1 √ ω T -ξ T + √ ω T - √ 1-σ 2 -1 σ 1 √ ω T +ξ T + √ ω T 2 (JN 2 (q Ψ )) 2 2 (H 20 ) 2 (JN 2 (q Ψ )) 2 = (JN 2 (q Ψ )) 2 2 + + √ ω T 4πiκ 1 √ ω T -ξ T + √ ω T + √ 1-σ 2 -1 σ 1 √ ω T +ξ T + √ ω T 2 i(JN 2 (q Ψ )) 1 (JN 2 (q Ψ ))
Re(Z 21 ) = -2 Re q a 20 JN 2 (q Ψ ) κ = 2 iκ (Re((q a 20 ) 1 )i(JN 2 (q Ψ )) 1 + Im((q a 20 ) 2 )(JN 2 (q Ψ )) 2 ) = = 128πω 3/2 T |q ω T | 4σ-2 iκ|d| 2 σ 2 1 - √ 1 -σ 2 -1 σ 2 f (σ), with f (σ) = 2(1 + σ) 2 + 2σ 1 -σ 2 -1 + 4σ 1 -σ 2 -(2+3σ) -1 + 4σ 1 -σ 2 1 + 4σ 1 -σ 2 + + 1 + -1 + √ 1 -σ 2 σ (-1 -σ) -1 + 16σ 2 -16σ 4 + 1 + σ + 2σ 1 -σ 2 -1 + 4σ 1 -σ 2 • •      1 -1 + 2σ - 1 1+ √ 1-2σ √ 1-σ 2 - -1+ √ 1-σ 2 σ+σ √ 1+2σ √ 1-σ 2 2 1 √ 1-2σ √ 1-σ 2 - (-1+ √ 1-σ 2 ) 2 σ 2 √ 1+2σ √ 1-σ 2      + + 1 + σ + 1 + σ -2σ 1 -σ 2 1 + 4σ 1 -σ 2 + + 1 + -1 + √ 1 -σ 2 σ -1 -2σ + -4σ -4σ 2 1 -σ 2 + 1 + 2σ + 2σ 1 -σ 2 1 + 4σ 1 -σ 2 • •      1 - 1 1+ √ 1-2σ √ 1-σ 2 + -1+ √ 1-σ 2 σ+σ √ 1+2σ √ 1-σ 2 2 1 √ 1-2σ √ 1-σ 2 - (-1+ √ 1-σ 2 ) 2 σ 2 √ 1+2σ √ 1-σ 2      . Notice that one has f (σ) → f > 0, d → d = 0, and iκ → -∞ as σ → 1/ √ 2; this implies lim σ→1/ √ 2 Re(Z 21 ) = 128 √ 2ω 3/2 T |q ω T | 2 √ 2-2 π| d| 2 f lim σ→1/ √ 2 1 iκ = 0 -.
Hence there is a neighborhood of

1 √ 2 
where Re(Z 21 ) is strictly negative. A Mathematica plot of

the function f (σ) in the range 1 √ 2 , √ 3+1 2 √ 2
is given in gure 2.19.

Summing up, one can conclude that there exists σ

* ∈ 1 √ 2 , √ 3+1 2 √ 2 such that Re(Z 21 ) < 0 for σ ∈ 1 √ 2 , σ * .
Remark 2.21. The following reformulation on the equation for z 1 will turn out to be useful.

First of all, if we denote K T = K(ω T ), then the ordinary dierential equation for z 1 becomes

ż1 = iξz 1 + iK T |z 1 | 2 z 1 + Z R ,
for some remainder Z R . Secondly, let us notice that z 1 is oscillating while y = |z 1 | 2 decreases at innity. Hence, it is easier to deal with the variable y, which satises the equation

(2.34) ẏ = 2 Re(iK T )y 2 + Y R ,
where Y R is some suitable remainder.

Remark 2.22. From Lemma 2.2 we have

|(g + P c T h 1 + P c T k 1 , Z 10 )| ≤ R(ω)( g L ∞ w -1 + P c T h 1 L ∞ w -1 + P c T k 1 L ∞ w -1 ) ≤ ≤ R 1 (ω)(|ω T -ω| h L ∞ w -1 + P c T h 1 L ∞ w -1 + P c T k 1 L ∞ w -1 ), hence |Y R | = | Z R ||z| = | Z R + i(K -K T )|z 1 | 2 z 1 ||z| ≤ ≤ R 1 (ω, |z| + f L ∞ w -1 )|z|[(|z| 2 + f L ∞ w -1 ) 2 + |z||ω T -ω|(|z| 2 + h L ∞ w -1 )+ +|z| P c T k 1 L ∞ w -1 + |z| P c T h 1 L ∞ w -1 ].

Majorants

In this section we exploit the so-called majorant method to prove large time asymptotic for the solutions of the modulation equations. Preliminary, we need some assumptions on the initial conditions.

Initial conditions

Let us x some > 0 to be chosen subsequently to control uniformly estimates. Then we assume that (2.35)

|z(0)| ≤ 1/2 f (0) L 1 w ≤ c 1/2 ,
where c > 0 is some positive constant.

Chapter 2. Presence of purely imaginary eigenvalues

From the denition of z 1 one has

z 1 -z = R(ω)|z| 2 .
Then the following estimate holds

y(0) = |z 1 (0)| 2 ≤ |z(0)| 2 + R(ω, |z(0)|)|z(0)| 3 ≤ + R(ω, |z(0)|) 3/2 .
We also want an estimate for the initial datum of the function h(t), for this purpose recall that h

= f + (P d -P d T )f . Hence, h(0) L 1 w ≤ f (0) L 1 w + (P d -P d T )f (0) L 1 w ≤ c 3/2 + R 1 (ω)|ω T -ω| f (0) L ∞ w -1 , for some constant c > 0.
Thanks to the former estimates, one can prove the following lemma. Lemma 2.23. Let us assume conditions (2.35) on the initial data. Then

P c T k 1 L ∞ w -1 ≤ c |z(0)| 2 (1 + t) 3/2 ≤ c (1 + t) 3/2 , for all t ≥ 0. Proof. Let us denote ζ = t 0 ρ(τ )dτ .
From the denition of the exponential and the idempotency of the projections one gets

e iζΠ ± T = Π ± T e iζ + Π ∓ T + P d T .
Then it follows

e iζ(Π + T -Π - T ) = (Π + T e iζ + Π - T + P d T )(Π - T e -iζ + Π + T + P d T ) = Π + T e iζ + Π - T e -iζ + P d T .
The lemma follows from the fact that L T commutes with the projectors Π ± T , the denition (2.19) of the operator L M and the decay of the evolution of the functions P c T a ij , i, j = 0, 1, 2, stated in Lemma 2.12, namely

P c T k 1 L ∞ w -1 = e t 0 L M (τ )dτ P c T k(0) L ∞ w -1 = = e L T t P c T (e iζ Π + T + e -iζ Π - T + P d T )(a 20 z 2 (0) + a 11 z(0)z(0) + a 02 z(0) 2 ) L ∞ w -1 ≤ ≤ c |z(0)| 2 (1 + t) 3/2 ≤ c (1 + t) 3/2 .

Denition of the majorants

We are now in the position to dene the majorants:

M 0 (T ) = max 0≤t≤T |ω T -ω| 1 + t -1 (2.36) M 1 (T ) = max 0≤t≤T |z(t)| 1 + t -1/2 (2.37) M 2 (T ) = max 0≤t≤T P c T h 1 (t) L ∞ w -1 1 + t -3/2 (2.38) 
.

We denote

(2.39) M = (M 0 , M 1 , M 2 ).
2.4. Majorants 55 Remark 2.24. From the estimates on g, k 1 and the denitions of the majorants follows

f L ∞ w -1 = g + P c T h 1 + P c T k + P c T k 1 L ∞ w -1 ≤ ≤ R 1 (ω) |ω T -ω| + |z| 2 + (1 + t) 3/2 P c T h 1 L ∞ w -1 ≤ ≤ 1 + t R 1 (ω)(M 2 1 + 1/2 M 2 ).
From the assumptions (2.35) on the initial data one obtains

y(0) ≤ + R( 1/2 M ) 3/2 ≤ (1 + R( 1/2 M ) 1/2 ), h(0) L 1 w ≤ c 3/2 R( 1/2 M ) 2 M 0 (1 + M 2 1 + 1/2 M 2 ).

The equation for y

We want to study the asymptotic behavior of the solution of equation (2.34) for the variable y introduced in Remark 2.18. To do that we need the following lemma which is the analogous of Lemma 4.1 in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF].

Lemma 2.25. The remainder Y R in equation (2.34) satises the estimate

|Y R | ≤ R( 1/2 M ) 5/2 (1 + t) 2 √ t (1 + |M |) 5 .
Hence, equation (2.34) is of the form

(2.40) ẏ = 2 Re(iK T )y 2 + Y R , with Re(iK T ) < 0, y(0) ≤ y 0 , |Y R | ≤ Y 5/2 (1+ t) 2 √ t ,
where y 0 and Y > 0 are some constants. Then we can apply Proposition 5.6 in [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF] and get the next lemma.

Lemma 2.26. Assuming the initial condition and the source term of equation (2.34) as above, the solution y(t) is bonded as follows for any t > 0

y(t) - y(0) 1 + 2 Im(K T )y 0 t ≤ cY 1 + t 3/2
, where c = c(y 0 , Im(K T )).
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The equation for P c

T h 1

As a rst step let us estimate the remianders in the equation (2.25) for h 1 . This is done in the next two lemmas.

Lemma 2.27. The remainders H R and H R can be estimated as

P c T H R L 1 w ≤ R( 1/2 M ) 1 + t 3/2 ((1 + M 1 ) 3 + 1/2 (1 + |M |) 4 ),
and

P c T H R L 1 w ≤ R( 1/2 M ) 1 + t 3/2 ((1 + M 1 ) 3 + 1/2 (1 + |M |) 4 ).
Proof. From the estimate (2.21) on H R one has

P c T H R L 1 w ≤ R 2 (ω, |z| + f L ∞ w -1 )[|z| 3 + (|z| + |ω T -ω|)(|z| 2 + P c T k 1 L ∞ w -1 + + P c T h 1 L ∞ w -1 ) + (|z| 2 + P c T k 1 L ∞ w -1 + P c T h 1 L ∞ w -1 ) 2 ] ≤ ≤ R( 1/2 M ) 1 + t 3/2 M 3 1 + + 1 + t 1/2 M 1 + 1 + t M 0 1 + t M 2 1 + (1 + t) 3/2 + 1 + t 3/2 M 2 + + 1 + t M 2 1 + (1 + t) 3/2 + 1 + t 3/2 M 2 ≤ ≤ R( 1/2 M ) 1 + t 3/2 ((1 + M 1 ) 3 + 1/2 (1 + |M |) 4 ).
The bound for H R follows in the same way from the estimate (2.22).

In the next lemma we get a estimate the evolution under the linear operator L T of the remainder P c T H R .

Lemma 2.28. For any t, s ≥ 0 the following estimate holds

e L T t P c T H R (s) L ∞ w -1 (1 + t) 3/2 ≤ R( 1/2 M ) 1 + s 3/2 (M 3 1 + 1/2 (1 + |M |) 3 ).
Proof. From the analytic expression (2.26) of H R and the estimates of the evolution of the func- tions a 20 , a 11 , and a 02 stated in Lemma 2.12, one has

e L T t P c T H R (s) L ∞ w -1 (1 + t) 3/2 ≤ ≤ R 2 (ω, |z| + f L ∞ w -1 )|z|[|z||ω T -ω| + (|z| + k 1 L ∞ w -1 + h 1 L ∞ w -1 ) 2 ] ≤ ≤ R( 1/2 M ) 1 + s 1/2 M 1 1 + s 3/2 M 0 M 1 + 2.4. Majorants 57 + 1 + s 1/2 M 1 + (1 + s) 3/2 + 1 + s 3/2 M 2 2   ≤ ≤ R( 1/2 M ) 1 + s 3/2 (M 3 1 + 1/2 (1 + |M |) 3 ).
From the two previous lemmas we can get the following result.

Lemma 2.29. Let us consider the equation for

P c T h 1 dP c T h 1 dt , v L 2 = Q L M (P c T h 1 , v) + (P c T H R , v) L 2 + (P c T H R , q v G λ ) L 2 ,
with initial condition and source terms satisfying

h 1 (0) L 1 w ≤ 3/2 h 0 , H R = H R + H R ,
such that

P c T H R L 1 w ≤ H 1 1 + t 3/2 , P c T H R L 1 w ≤ H 2 1 + t 3/2 , e L T t P c T H R (s) L ∞ w -1 (1 + t) 3/2 ≤ H 3 1 + s 3/2 (M 3 1 + 1/2 (1 + |M |) 3 ).
for some positive constant h 0 , H 1 , H 2 and H 3 . Then its solution is bounded as follows

P c T h 1 L ∞ w -1 ≤ c 1 + t 3/2 (h 0 + H 1 + H 2 + H 3 ),
where c = c(ω T ) > 0.

Proof. By the Duhamel representation (see Section 1.6.2) one has

(P c T h 1 , v) L 2 = e t 0 L M (τ )dτ h 1 (0) + t 0 e t s L M (τ )dτ P c T H R (s)ds, v L 2 + + t 0 e t s L M (τ )dτ P c T H R (s)ds, q v G λ L 2 , for all v ∈ V .
Then from the dispersive estimate in Theorem 1.16 and the estimates on the remainders proved above in the duality paring dened by the inner product L 2 , one has

P c T h 1 L ∞ w -1 = sup 0 =v∈L 1 w (P c T h 1 , v) L 2 v V ∩L 1 w ≤ ≤ c(ω T ) 1 (1 + t) 3/2 h 1 (0) L 1 w + t 0 1 (1 + t -s) 3/2 ( P c T H R (s) L 1 w + P c T H R (s) L 1 w )ds+ 58
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+ t 0 e L T (t-s) P c T H R (s) L ∞ w -1 ds ≤ ≤ c(ω T ) 1 + t 3/2 h 0 + t 0 1 (1 + t -s) 3/2 1 + s 3/2 ds(H 1 + H 2 + H 3 ) .
The lemma follows from the fact that

t 0 1 (1 + t -s) 3/2 1 + s 3/2 ds ≤ c 1 + t 3/2
, for some constant c > 0.

Uniform bounds for the majorants

To prove that the majorants are uniformly bounded, the following lemma will be useful.

Lemma 2.30. For any T > 0 the majorants M 0 , M 1 , and M 2 satisfy the following inequalities

M 0 (T ) ≤ R( 1/2 M )[(1 + M 1 ) 4 + (1 + |M |) 2 ], (M 1 (T )) 2 ≤ R( 1/2 M )[1 + 1/2 (1 + |M |) 5 ], M 2 (T ) ≤ R( 1/2 M )[(1 + M 1 ) 3 + 1/2 (1 + |M |) 4 ].
Proof. It follows form Lemma 2.26 and 2.29 as Lemma 4.6 in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF], but we give the proof for sake of completeness.

Step 1. Let us begin noting that

|z| 2 + f L ∞ w -1 ≤ R 2 (ω, |z| + f L ∞ w -1 )(|z| 2 + P c T k 1 L ∞ w -1 + P c T h 1 L ∞ w -1 ) ≤ ≤ R( 1/2 M ) (1 + t) 3/2 + 1 + t M 2 1 + 1 + t 3/2 M 2 ≤ ≤ R( 1/2 M ) 1 + t (1 + M 2 1 + 1/2 M 2 ).
Then by the denition of M 0 and the bound on |ω T -ω|:

M 0 (T ) ≤ max 0≤t≤T 1 + t -1 R( 1/2 M ) T t 1 + τ 2 (1 + M 1 (τ ) 2 + + 1/2 M 2 (τ )) 2 dτ + 1 + t 2 (1 + M 2 1 + 1/2 M 2 ) 2 ≤ ≤ R( 1/2 M )[(1 + M 1 ) 4 + (1 + |M |) 2 ].
Step 2. Since y = |z 1 | 2 , we can exploit the inequality proved in Lemma 2.26, the fact that 5 and y(0) ≤ y 0 , one gets

Y = R( 1/2 M )(1 + |M |)
y ≤ R( 1/2 M ) 1 + t + 1 + t 3/2 (1 + |M |) 5 .
From which follows

|z| 2 ≤ y + R(ω)|z| 3 ≤ 2.4. Majorants 59 ≤ R( 1/2 M ) 1 + t + 1 + t 3/2 (1 + |M |) 5 + 1 + t 3/2 M 3 1 ≤ R( 1/2 M )[1+ 1/2 (1+|M |) 5 ].
Step 3. Recall that

h(0) L 1 w ≤ c 3/2 R( 1/2 M ) 2 M 0 (1 + M 2 1 + 1/2 M 2 ), H 1 = R( 1/2 M )((1 + M 1 ) 3 + 1/2 (1 + |M |) 4 ), H 2 = R( 1/2 M )((1 + M 1 ) 3 + 1/2 (1 + |M |) 4
),

H 3 = R( 1/2 M )(M 3 1 + 1/2 (1 + |M |) 3 ).
Hence from Lemma 2.29 follows

P c T h 1 L ∞ w -1 ≤ R( 1/2 M ) 1 + t 3/2 ((1 + M 1 ) 3 + 1/2 (1 + |M |) 4 ),
which implies the inequality for M 2 .

We are now in the position to prove the uniform boundedness of the majorants.

Proposition 2.31. If > 0 is suciently small, there exist a positive constant M independent of T and such that

|M (T )| ≤ M ,
for all T > 0.

Proof. From the previous lemma follows

|M | 2 ≤ R( 1/2 M )[(1 + M 1 ) 8 + 1/2 (1 + |M |) 8 ] ≤ R( 1/2 M )(1 + 1/2 F (M )),
where in the last inequality we have replaced the estimate for M 2 1 , and F (M ) is a suitable polynomial function.

Furthermore, M (0) is small and M (T ) is a continuous function. Hence it follows that |M | is bounded independent of

1.

The last proposition gives a summary of the behavior of the functions ω(t), z(t), P c T h 1 (t), and f (t).

Corollary 2.32. There exists a nite limit ω ∞ for the function ω(t) as t → +∞. Moreover the following holds for all t > 0

|ω ∞ -ω(t)| ≤ M 1+ t , |z(t)| ≤ M 1+ t 1/2 , P c T h 1 (t) L ∞ w -1 ≤ M 1+ t 3/2 , f (t) L ∞ w -1 ≤ M 1+ t .
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The results of the previous section lead us to the following theorem.

Theorem 2.33. Let u(t) be a solution of equation (2.2) with initial datum u 0 ∈ V ∩ L 1 w of the form

u 0 (x) = e iθ 0 Φ ω 0 (x) + z 0 Ψ(x) + z 0 Ψ * (x) + f 0 (x), where θ 0 ∈ R, ω 0 > 0, z 0 ∈ C with |z(0)| ≤ 1/2 , f 0 L 1 w ≤ c 3/2 ,
for some , c > 0. Then, provided is small enough, there exist where

|ω ∞ -ω(t)| ≤ M 1 + t , |z(t)| ≤ M 1 + t 1/2 , f (t) L ∞ w -1 ≤ M 1 + t .
Proof. Let us recall that the decomposition of the function f as

f = g + h 1 + k + k 1
depends on the quantity ω(T ). On the other hand Corollary 2.32 claims that the function ω(t) converges to some ω ∞ > 0 as t → +∞.

As a consequence, one can reformulate the decomposition by choosing T = +∞. Moreover, all the estimates obtained before for nite T can be extended to T = +∞ without modication. Hence the theorem.

The next goal is to construct precise asymptotic expressions for ω(t), γ(t), and z(t). For later convenience let us dene (recall that ξ depends explicitly on ω, see (2.3); and similarly for K, see (2.28) and subsequent, and γ)

ξ ∞ = ξ(ω ∞ ), γ ∞ = γ(ω ∞ ), K ∞ = K(ω ∞ ).
Lemma 2.34. Under the assumption of Theorem 2.33 the functions ω(t), γ(t), and z(t) have the following asymptotic behavior as t → +∞:

ω(t) = ω ∞ + q 1 1 + k ∞ t + q 2 1 + k ∞ t cos(2ξ ∞ t + a 1 log(1 + k ∞ t) + a 2 ) + O(t -3/2 ), γ(t) = γ ∞ + b 1 log(1 + k ∞ t) + O(t -1 ), z(t) = z ∞ e i t 0 ξ(τ )dτ (1 + k ∞ t) 1-iδ 2 + O(t -1 ),
where

z ∞ = z 1 (0) + +∞ 0 e -i s 0 ξ(τ )dτ (1 + k ∞ s) 1-iδ 2 Z 1 (s)ds, k ∞ = 2 Im(K ∞ )y 0 , δ = Re(K∞)
Im(K∞) , and q 1 , q 2 , a 1 , a 2 , b 1 are constants. Proof. We will prove just the asymptotics for z(t); the formulas for ω(t) and γ(t) can be deduced as in Sections 6.1 and 6.2 of [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equation[END_REF].

In order to do that let us recall the equation for z 1 (t) can be written as

ż1 = iξz 1 + iK ∞ |z 1 | 2 z 1 + Z R ,
moreover Remark 2.22 and the inequalities satised by the majorants in Lemma 2.30 justify the

following estimates on Z R | Z R | ≤ R 1 (ω, |z| + f L ∞ w -1 )[(|z| 2 + f L ∞ w -1 ) 2 + |z||ω T -ω|(|z| 2 + h L ∞ w -1 )+ +|z| P c T k 1 L ∞ w -1 + |z| P c T h 1 L ∞ w -1 ] ≤ ≤ R( 1/2 M ) 2 (1 + t) 3/2 √ t (1 + M 4 ) = O(t -2 ),
as t → +∞. On the other hand, Lemma 2.26 implies

y(t) = y(0) 1 + 2 Im(K ∞ )y(0)t + O(t -3/2 ), as t → +∞.
Let us note that |z 1 | satises the same bound of |z|, namely

|z 1 | ≤ M 1 + t 1/2
, then the equation for z 1 (t) can be rewritten in the formulas

ż1 = iξz 1 + iK ∞ y(0) 1 + 2 Im(K ∞ )y(0)t z 1 + Z 1 ,
where Z 1 = O(t -2 ) as t → +∞.

Since y(0) = y 0 , one has K ∞ y 0 = i 2 k ∞ (1 -iδ) and the equation for z 1 (t) becomes

ż1 = iξ - i 2 k ∞ (1 -iδ) 1 1 + k ∞ t z 1 + Z 1 .
Hence, one gets

z 1 (t) = e i t 0 ξ(τ )dτ (1 + k ∞ t) 1-iδ 2 z 1 (0) + s 0 e -i t 0 ξ(τ )dτ (1 + k ∞ s) 1-iδ 2 ds = z ∞ e i t 0 ξ(τ )dτ (1 + k ∞ t) 1-iδ 2 + z R ,
where z ∞ is as in the statement of the lemma and

z R = - +∞ t e i t s ξ(τ )dτ 1 + k ∞ s 1 + k ∞ t 1-iδ 2 Z 1 (s)ds.
The bound on Z 1 implies z R = O(t -1 ). Therefore z(t) has the asymptotic behavior as t → +∞ stated in the lemma because

z(t) = z 1 (t) + O(t -1 ) = z ∞ e i t 0 ξ(τ )dτ (1 + k ∞ t) 1-iδ 2
+ O(t -1 ).

Scattering asymptotics

Let us make the following ansatz

u(t, x) = s(t, x) + ζ(t, x) + f (t, x),
where s(t, x) = e iΘ(t) Φ ω(t) (x),

is the modulated soliton and

ζ(t, x) = e iΘ(t) [(z(t) + z(t))Ψ 1 (x) + i(z(t) -z(t))Ψ 2 (x)]
is the uctuating component. Recall that the functions Φ ω , Ψ 1 and Ψ 2 satisfy

ωΦ ω = -H α Φ ω , ωΨ 1 = -iξΨ 2 -H α 1 Ψ 1 , ωΨ 2 = iξΨ 1 -H α 2 Ψ 2 .
Therefore from equation (2.2) one gets

i df dt , v L 2 = Q 0 (f, v) -ν(|q u | 2σ q u -|q s | 2σ q s -α 1 q (z+z)Ψ 1 -α 2 q (z-z)Ψ 2 )q v + +( γ(s + ζ) -i ω d dω (s + ζ) -ie iΘ [( ż -iξz)(Ψ 1 + iΨ 2 ) + ( ż -iξz)(Ψ 1 -iΨ 2 )], v) L 2 ,
for all v ∈ V , where Q 0 is the quadratic form of the free Laplacian. Hence, as in [START_REF] Adami | The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity[END_REF], the solution f (t) can be formally expressed as

f (t, x) = U t * f 0 (x) + i t 0 U t-τ (x)q f (τ )dτ -i t 0 U t-τ * G(τ )dτ,
where we have denoted

G(t) = γ(t)(s(t) + ζ(t)) -i ω(t) d dω (s(t) + ζ(t))+ -ie iΘ(t) [( ż(t) -iξz(t))(Ψ 1 (t) + iΨ 2 (t)) + ( ż(t) -iξz(t))(Ψ 1 (t) -iΨ 2 (t))]
and U t (x) = e i |x| 2 4t (4πit) 3/2 is the propagator of the free Laplacian in R 3 .

In order to prove the asymptotic stability result we need the two following lemmas.

Lemma 2.35. If the assumptions of Theorem 2.33 hold true, then

t 0 U t-τ (x)q f (τ )dτ = U t * +∞ 0 U -τ (x)q f (τ )dτ - +∞ t U t-τ (x)q f (τ )dτ = U t * φ 0 + r 0 ,
where φ 0 ∈ L 2 (R 3 ) and r 0 = O(t -1/4 ) as t → +∞ in L 2 (R 3 ). Hence φ 0 ∈ L 2 (R 3 ) if and only if φ 0 ∈ L 2 (R + , √ ydy). On the other hand, one can make the change of variables u = 1 τ in the integral function φ 0 and get

φ 0 (y) = +∞ 0 e -iyu 1 u q f 1 u √ udu, then φ 0 = 1 u q f 1 u .
Moreover, by corollary 2.32 one has φ 0 2

L 2 = +∞ 0 1 u 2 q f 1 u 2 √ udu ≤ C +∞ 0 √ u (u + ) 2 du ≤ C,
for some constant C > 0, hence the Plancherel identity implies φ 0 ∈ L 2 (R + , √ ydy).

In the same way, for any t > 0 the following holds

r 0 2 L 2 = 1 (2π) 2 1 u q f t + 1 u 2 L 2 (R + , √ udu) ≤ C 1 √ 1 + t ,
for some constant C > 0 independent of t. Which concludes the proof.

The analogous result for the integral function t 0 U t-τ * G(τ )dτ requires dierent tools.

Lemma 2.36. Assume that the assumptions of Theorem 2.33 hold true, then

t 0 U t-τ * G(τ )dτ = U t * +∞ 0 U -τ * G(τ )dτ -U t * +∞ t U -τ * G(τ )dτ = U t * φ 1 + r 1 ,
where

φ 1 ∈ L 2 (R 3 ) and r 1 = O(t -1/2 ) as t → +∞ in L 2 (R 3 ).
Proof. We exploit the idea used in [START_REF] Komech | On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator[END_REF] to prove Lemma 5.5.

Step 1: restriction to the leading terms. 

z ∞ = e iξ∞t √ 1 + k ∞ t ,
which are of order t -1 and a remainder of order t -3/2 . The convergence and the decay of the remainder is trivial from the unitarity of U t . Furthermore, from the analytic denition of G it follows that it is a complex linear combination of functions of the form

Q(x) = e - √ α|x| 2 , α = ω ∞ , ω ∞ + ν ∞ , ω ∞ -ν ∞ .
Hence it suces to prove the lemma for the functions Π(t)Q(x), where Π(t) is one between e iΘ(t) z 2 ∞ , e iΘ(t) z ∞ 2 and e iΘ(t) |z ∞ | 2 .
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Step 2: decomposition of U t * Q.

Let us note that we can rewrite the convolution product as follows

U t * Q = e i |x| 2 4t (4πit) 3/2 R 3 e -i (x,y) 2t Q(y)dy + e i |x| 2 4t (4πit) 3/2 R 3 e -i (x,y) 2t (e i |y| 2 4t -1)Q(y)dy = (2.41) = e i |x| 2 4t (2it) 3/2 Q x 2t + e i |x| 2 4t (2it) 3/2 Q t x 2t ,
where Q t (y) = (e i |y| 2 4t -1)Q(y). Since |e iθ -1| ≤ θ and the function G(y) is exponentially decaying as |y| → +∞, the L 2 norm of the second term of (2.41) can be estimated in the following way for any t > 1

1 (2t) 3/2 Q t • 2t L 2 = Q t (•) L 2 ≤ 1 4t R 3 |y| 4 |Q(y)| 2 dy 1/2 ≤ C t ,
for some constant C > 0. Hence, recalling that Π(τ )

≤ (1 + k ∞ τ ) -1 , we obtain +∞ 0 Π(τ )U τ * Q t dτ ∈ L 2 (R 3 ), and 
+∞ t Π(τ )U τ * Q t dτ = O(t -1 ), as t → +∞ in L 2 (R 3 ).
Step 3: Analysis of the first term in (2.41) in a particular case.

Let us rst show how to treat the terms with the phase Θ(t) replaced by ω ∞ t.

Note that

Q(x) = 1 α + |x| 2 ,
Hence, in the case of the summands with |z ∞ | 2 it suces to prove the integrability of the function

I(x) = ∞ 0 e i(ω∞τ -|x| 2 4τ ) √ τ (1 + k ∞ τ )(|x| 2 + 4ατ 2 ) dτ = = A(x) ∞ 0 e i(ω∞τ -|x| 2 4τ ) √ τ (1 + k ∞ τ ) - 4α k ∞ τ √ τ (|x| 2 + 4ατ 2 ) dτ + + 4α 2 k 2 ∞ A(x) ∞ 0 e i(ω∞τ -|x| 2 4τ ) √ τ (|x| 2 + 4ατ 2 ) dτ = I 1 (x) + I 2 (x),
and the decay of 

I t (x) = ∞ t e i(ω∞τ -|x| 2 4τ ) √ τ (1 + k ∞ τ )(|x| 2 + 4ατ 2 ) dτ = = A(x) ∞ t e i(ω∞τ -|x| 2 4τ ) √ τ (1 + k ∞ τ ) - 4α k ∞ τ √ τ (|x| 2 + 4ατ 2 ) dτ + + 4α 2 k 2 ∞ A(x) ∞ t e i(ω∞τ -|x| 2 4τ ) √ τ (|x| 2 + 4ατ 2 ) dτ = I 1,t (x) + I 2,t (x),
(x) = 2 k 2 ∞ 4α+ 2 k 2 ∞ |x| 2 . For the function I 2 (x) one has |I 2 (x)| ≤ 4α 2 k 2 ∞ A(x) ∞ 0 √ τ (|x| 2 + 4ατ 2 ) dτ = C A(x) |x| ∈ L 2 (R 3 ).
With the same estimate it is trivial to prove

I 2,t (x) = O(t -1/2 ) as t → +∞, in L 2 (R 3 ).
In order to treat

I 1 note that √ τ (1 + k ∞ t) - 4α k ∞ τ √ τ (|x| 2 + 4ατ 2 ) = - 1 k ∞ √ τ (1 + k ∞ τ ) + |x| 2 k ∞ √ τ (|x| 2 + 4ατ 2 ) . Since 1 k∞ √ τ (1+ k∞τ ) = O(t -3/2 ) as t → +∞, is integrable on (0, +∞) and A(x) ∈ L 2 (R 3 ) one has to prove |x| 2 A(x) k ∞ +∞ 0 e i(ω∞τ -|x| 2 4τ ) 1 √ τ (|x| 2 + 4ατ 2 ) dτ = = A(x) +∞ 0 e iω∞(τ -|x| 2 4ω∞τ ) 1 √ τ dτ -4αA(x) +∞ 0 e i(ω∞τ -|x| 2 4τ ) τ 3/2 (|x| 2 + 4ατ 2 ) dτ ∈ L 2 (R 3 ).
From formulas 3.871.3 and 3.871.4 in [START_REF] Gradshteyn | Tables of integrals, series and products[END_REF] one has

A(x) +∞ 0 e iω∞(τ -|x| 2 4ω∞τ ) 1 √ τ dτ = e iπ/4 √ πω ∞ A(x)|x| 3/2 e -√ ω∞|x| ∈ L 2 (R 3 ).
It remains to handle with the second integral in the former sum which can be done integrating by parts in the following way

A(x)

+∞ 0 e i(ω∞τ -|x| 2 4τ )

τ 3/2 (|x| 2 + 4ατ 2 ) dτ = = 4A(x) +∞ 0 e i(ω∞τ -|x| 2 4τ ) d dτ τ 7/2 (|x| 2 + 4ατ 2 )(|x| 2 + 4ω ∞ τ 2 ) dτ ≤ ≤ CA(x) +∞ 0 τ 5/2 (|x| 2 + 4 min{α, ω ∞ }τ 2 ) 2 dτ ≤ C A(x) |x| ∈ L 2 (R 3 ).
Then we are done.

In order to estimate the decay of I 1,t it suces to study the decay of

|x| 2 A(x) k ∞ +∞ t e i(ω∞τ -|x| 2 4τ ) 1 √ τ (|x| 2 + 4ατ 2 ) dτ = = A(x) +∞ t e iω∞(τ -|x| 2 4ω∞τ ) 1 √ τ dτ -4αA(x) +∞ t e i(ω∞τ -|x| 2 4τ ) τ 3/2 (|x| 2 + 4ατ 2 )
dτ,

which can be done integrating by parts as before. Let us do that for the second term (the computation for the rst one are analogous and simpler):

A(x) +∞ t e i(ω∞τ -|x| 2 4τ ) τ 3/2 (|x| 2 + 4ατ 2 ) dτ = = 4A(x) +∞ t e i(ω∞τ -|x| 2 4τ ) d dτ τ 7/2 (|x| 2 + 4ατ 2 )(|x| 2 + 4ω ∞ τ 2 ) dτ ≤ ≤ CA(x) t -1/2 + +∞ t τ 5/2 (|x| 2 + 4 min{α, ω ∞ }τ 2 ) 2 dτ ≤ ≤ CA(x) 1 + 1 |x| t -1/2 .
The case of the summands with z 2 ∞ is analogous, while the case of z ∞ 2 is more dicult because

|x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 = 0 for τ = t * = |x| 2 √ 2ξ ∞ -ω ∞ .
Let g : R + → R + be a continuous function with the properties:

0 < g(t * ) < t * ∀t * > 0,
and 

A(x)g(t * ) ∈ L 2 (R 3 ).
A(x) t * -g(t * ) 0 e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ ≤ ≤ CA(x) (t * -g(t * )) -1/2 + t * -g(t * ) 0 t 5/2 (|x| 2 + 4ατ 2 )||x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 | dτ + + t * -g(t * ) 0 t 9/2 (|x| 2 + 4ατ 2 ) 2 ||x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 | dτ + + t * -g(t * ) 0 t 9/2 (|x| 2 + 4ατ 2 )||x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 | 2 dτ ≤ ≤ CA(x)((t * -g(t * )) -1/2 + (t * -g(t * )) 3/8 ) ∈ L 2 (R 3 ),
where the last inequality follows from formula 3.194.1 in [START_REF] Gradshteyn | Tables of integrals, series and products[END_REF]. In the same way (exploiting formula 3.194.2 instead of 3.194.1 in [START_REF] Gradshteyn | Tables of integrals, series and products[END_REF]), one has

A(x) ∞ t * +g(t * ) e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ ≤ ≤ CA(x)((t * + g(t * )) -1/8 + (t * + g(t * )) -9/8 + (t * -g(t * )) -1/2 ) ∈ L 2 (R 3 ). Finally, A(x) t * +g(t * ) t * -g(t * ) e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ ≤ ≤ CA(x) t * +g(t * ) t * -g(t * ) 1 √ τ dτ ≤ C A(x)g(t * ) t * -g(t * ) ∈ L 2 (R 3 ).
Summing up, the integrability of the integral function First of all, let us note that integrating by parts one obtains

+∞ 0 Π(τ )U τ * Qdτ
A(x) (0,t * -g(t * )]∩[t,+∞) e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ ≤ ≤ CA(x) t * -g(t * ) t d dτ t 7/2 (|x| 2 + 4ατ 2 )(|x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 ) dτ ≤ ≤ CA(x) t -1/2 + t * -g(t * ) t √ τ |x| 2 + 4ατ 2 dτ + t * -g(t * ) t √ τ ||x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 | dτ + + t * -g(t * ) t τ 9/2 (|x| 2 + 4ατ 2 )||x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 | 2 dτ .
The three integrals in the last inequality can be estimated in the following way:

(i) t * -g(t * ) t √ τ |x| 2 +4ατ 2 dτ ≤ C +∞ t τ -3/2 dτ ≤ Ct -1/2 ; (ii) t * -g(t * ) t √ τ |x| 2 +4(2ξ∞-ω∞)τ 2 dτ = t * -g(t * ) t √ τ (|x|+2 √ 2ξ∞-ω∞τ )||x|-2 √ 2ξ∞-ω∞τ | dτ ≤ Ct -1/2 t * -g(t * ) 0 1 ||x|-2 √ 2ξ∞-ω∞τ | dτ ≤ Ct -1/2 ; (iii) t * -g(t * ) t τ 9/2 (|x| 2 +4ατ 2 )||x| 2 +4(ω∞-2ξ∞)τ 2 | 2 dτ ≤ Ct -1/2 t * -g(t * ) 0 τ ||x|-2 √ ω∞-2ξ∞τ | 2 dτ ≤ Ct -1/2 (1 + ln ||x| -2 √ ω ∞ -2ξ ∞ (t * -g(t * ))|).
Hence, since A(x) ln ||x| -2

√ ω ∞ -2ξ ∞ (t * -g(t * ))| ∈ L 2 (R 3 ), one can conclude A(x) (0,t * -g(t * )]∩[t,+∞) e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ = O(t -1/2 ) as t → +∞, in L 2 (R 3 ).
Let us now observe that A(x)

(t * -g(t * ),+∞)∩[t,+∞) e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ ≤ ≤ CA(x) +∞ t d dτ t 7/2 (|x| 2 + 4ατ 2 )(|x| 2 + 4(ω ∞ -2ξ ∞ )τ 2 ) dτ ≤ ≤ B(x)A(x) t -1/2 + +∞ t √ τ |x| 2 + 4ατ 2 dτ ≤ CB(x)A(x)t -1/2 ∈ L 2 (R 3 ),
where B : R 3 → R + is a continuous bounded function.

Finally,

A(x)

(t * -g(t * ),(t * +g(t * )]∩[t,+∞) e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ ≤ ≤ CA(x) t * +g(t * ) t 1 √ τ dτ ≤ CA(x)g(t * )t -1/2 ∈ L 2 (R 3 ).
Summing up, thanks to the unitarity of U t , we proved

U t * +∞ t Π(τ )U τ * Qdτ = O(t -1/2 ), as t → +∞, in L 2 (R 3 ).
Step 4: conclusion of the proof.

The conclusions of the previous step hold true if the phase ω ∞ t is replaced by Θ(t). In fact, the estimates which involve the integral of the absolute value are totally unaected by change of phase, then it is only left to adjust the argument involving integration by parts. This can be done integrating by parts exactly as before, which leaves a factor e i(Θ(t)-ω∞t) in the integrand.

Then, the boundary terms can be treated in the same way because |e i(Θ(t)-ω∞t) | = 1. Finally, the extra contribution to the integrand can be estimated as it is done for the summand arising from

dierentiation of t 7/2 since | Θ(t) -ω ∞ | ≤ C
1+ k∞t for all t > 0, where C is a positive constant.

Summing up, we have proved the following asymptotic stability result.

Theorem 2.37.

Let σ ∈ 1 √ 2 , σ * , for a certain σ * ∈ 1 √ 2 , √ 3+1 2 √ 2 and u(t) ∈ C(R + , V ) be a solution of equation (2.2) with u(0) = u 0 = e iω 0 t+γ 0 Φ ω 0 + e iω 0 t+γ 0 [(z 0 + z 0 )Ψ 1 + i(z 0 -z 0 )Ψ 2 ] + f 0 ∈ V ∩ L 1 w (R 3 ),
for some ω 0 > 0, γ 0 , z 0 ∈ R and

f 0 ∈ L 2 (R 3 ) ∩ L 1 w (R 3
). Furthermore, assume that the initial datum u 0 is close to a solitary wave, i.e.

|z 0 | ≤ 1/2 and f 0 L 1 w ≤ c 3/2 ,
where c, > 0.

Then, if is suciently small, the solution u(t) can be asymptotically decomposed as follows 

u(t) = e iω∞t+ib 1 log(1+ k∞t) Φ ω∞ + U t * φ ∞ + r ∞ (t), as t → +∞, where ω ∞ , k ∞ > 0, b 1 ∈ R and φ ∞ , r ∞ (t) ∈ L 2 (R 3 ) with r ∞ (t) L 2 = O(t -1/4 ) as t → +∞, in L 2 (R 3
Ψ(x) = Ψ 1 (x) Ψ 2 (x) = e - √ ω-ξ|x| 4π|x| 1 i - √ 1 -σ 2 -1 σ e - √ ω+ξ|x| 4π|x| 1 -i .
Proof. In order to prove the proposition we need to solve the equation LΨ = iξΨ in D(L). For x = 0, the previous equation is equivalent to the system

(-+ ω) 2 Ψ 1 -ξ 2 Ψ 1 = 0 Ψ 2 = i ξ (-+ ω)Ψ 1
, from which follows that Ψ 1 must belong to L 2 (R 3 ) and solve the equation

(-+ ω -ξ)(-+ ω + ξ)Ψ 1 = 0.
Hence, the solutions in L 2 (R 3 ) are of the form

Ψ 1 (x) = A e -√ ω-ξ|x| 4π|x| + B e -√ ω+ξ|x| 4π|x| Ψ 2 (x) = iA e -√ ω-ξ|x| 4π|x| -iB e -√ ω+ξ|x| 4π|x| , for any A, B ∈ C. It is left to look for A, B ∈ C such that Ψ i ∈ D(L i ) for i = 1, 2, i.e. - √ ω-ξ 4π A - √ ω+ξ 4π B = -(2σ + 1) √ ω 4π (A + B) -i √ ω-ξ 4π A + i √ ω+ξ 4π B = - √ ω 4π (iA -iB)
.

Exploiting the fact that ξ = 2σ √ 1 -σ 2 ω one can show that the two equations of the previous system are linearly dependent and

B = - √ 1 -σ 2 + 1 σ A.
The thesis follows by setting A = 1.

Let us note that in the previous proof we have chosen the constant in such a way that Ψ 1 (x) ∈ R and Ψ 2 (x) ∈ iR for any x ∈ R 3 \ {0}. This fact will be used to prove the next proposition.

Proposition 2.40. The eigenspace associated to -iξ is spanned by

Ψ * = Ψ 1 -Ψ 2 .
Proof. In the previous proposition we proved that

L 2 Ψ 2 = iξΨ 1 -L 1 Ψ 1 = iξΨ 2 ,
with Ψ 1 real and Ψ 2 purely imaginary.

Taking the conjugate of both equations and recalling that the operators L i , i = 1, 2 act on the real and imaginary parts separately, one has

L 2 (-Ψ 2 ) = -iξΨ 1 -L 1 Ψ 1 = -iξ(-Ψ 2 ) , which is equivalent to LΨ * = -iξΨ * ,
because the operators L i , i = 1, 2 are linear. The proof is complete.

The generalized eigenfunctions

Our goal is to compute the generalized eigenfunctions associated to the continuous spectrum. In order to do that, we treat the two branches C + and C -of the continuous spectrum separately.

Proposition 2.41. The generalized eigenfunctions associated to C + are

Ψ + (x) = A e - √ ω+η|x| 4π|x| 1 -i + C e -i √ η-ω|x| 4π|x| 1 i + D e i √ η-ω|x| 4π|x| 1 i , for any η ∈ [ω, +∞) and D ∈ C, with A = σ √ ω √ ω+η-(σ+1) √ ω (C + D), C = (2σ+1)ω+(σ+1) √ ω(i √ η-ω- √ η+ω)-i √ η 2 -ω 2 -(2σ+1)ω+(σ+1) √ ω(i √ η-ω+ √ η+ω)-i √ η 2 -ω 2 D.
Proof. For any η ∈ [ω, +∞), we need to solve the system

LΨ + = iηΨ + ,
where Ψ + ∈ L ∞ (R 3 ) does not necessary belongs to L 2 (R 3 ). As in the computation for the eigenfunction at ±iξ, if x = 0 the former equation is equivalent to the system

(-+ ω -ξ)(-+ ω + ξ)(Ψ + ) 1 = 0 (Ψ + ) 2 = i ξ (-+ ω)(Ψ + ) 1 , which leads to Ψ + (x) = A e - √ ω+η|x| 4π|x| 1 -i + B e √ ω+η|x| 4π|x| 1 i + C e -i √ η-ω|x| 4π|x| 1 i + D e i √ η-ω|x| 4π|x| 1 i ,
for some A, B, C, D ∈ C. Since we require Ψ + ∈ L ∞ (R 3 ), we get B = 0. Moreover, the boundary conditions in the domain of the operators L 1 and L 2 must be satised by (Ψ + ) 1 and (Ψ + ) 2 respectively. Then A, C, and D solve the system

- √ ω+η 4π A -i √ η+ω 4π C + i √ η+ω 4π D = -(2σ+1) √ ω 4π (A + C + D) i √ ω+η 4π A + √ η+ω 4π C - √ η+ω 4π D = - √ ω 4π (-iA + iC + iD)
, which concludes the proof.

In the same way, one can prove the analogous result about C -.

Proposition 2.42. The generalized eigenfunctions associated to C -are

Ψ -(x) = A e - √ ω-η|x| 4π|x| 1 i + C e -i √ -(η+ω)|x| 4π|x| 1 -i + D e i √ -(η+ω)|x| 4π|x| 1 -i , for any η ∈ (-∞, -ω],
where D ∈ C and Lemma 2.8 In this appendix we prove Lemma 2.8 whose statement is recalled for the reader's convenience. Lemma 2.43. There exists a constant C > 0 such that for each h ∈ X c holds

A = σ √ ω √ ω-η-(σ+1) √ ω (C + D), C = 2.6.2 Proof of
[P c J -i(Π + -Π -)]h L 1 w ≤ C h L ∞ w -1 .
Proof. From the denitions of the operators P c and Π ± one gets

P c J -i(Π + -Π -) = Π + (J -iI) + Π -(J + iI) = = 1 2πi C + (R(λ + 0) -R(λ -0))(J -iI)dλ + C - (R(λ + 0) -R(λ -0))(J + iI)dλ .
We will estimate just the rst integral because the second one can be handled in the same way.

Exploiting the explicit form of the resolvent (1.10) it follows that

R(λ)(J -iI) = (iλG λ 2 * +Γ λ 2 * ) 1 i -i 1 + 4π D(λ 2 ) Λ 1 + Σ 2 i(Λ 1 + Σ 2 ) -i(Λ 2 + Σ 1 ) Λ 2 + Σ 1 = = R * (λ)(J -iI) + R m (λ)(J -iI),
where R * and R m correspond to the convolution term of the resolvent and the multiplicative term.

Note that

iλG λ 2 (x -y) + Γ λ 2 (x -y) = 2G ω-iλ (x -y) = e i √ -ω+iλ|x-y|
2π|x -y| is continuous on C + . Hence, the integral on C + of the convolution addends vanishes.

Let us now consider the multiplicative addends in the integral on C + . From the explicit formulas for Λ 1 and Σ 2 given in Proposition 1.10 one can compute

(Λ 1 +Σ 2 )(x, y) = 8π(α 2 -α 1 )G ω-iλ (y)G ω+iλ (x)+[8π(α 2 +α 1 )-4i √ -ω -iλ]G ω-iλ (y)G ω-iλ (x) = = 4σ √ ω e i √ -ω+iλ|y| 4π|y| e i √ -ω-iλ|x| 4π|x| -[4(σ + 1) √ ω -4i √ -ω -iλ] e i √ -ω+iλ(|x|+|y|) (4π) 2 |x||y| . Denote D ± (λ 2 ) = D((λ ± 0) 2 ).
Then it follows

C + [(R m (λ + 0) -R m (λ -0))(J -iI)] 1,1 dλ = = C + σ √ ωe i √ -ω+iλ|y| e -i √ -ω-iλ|x| + ((σ + 1) √ ω -i √ -ω -iλ)e i √ -ω+iλ(|x|+|y|) π|x||y|D + (λ 2 ) dλ+ - C + σ √ ωe i √ -ω+iλ|y| e i √ -ω-iλ|x| + ((σ + 1) √ ω + i √ -ω -iλ)e i √ -ω+iλ(|x|+|y|) π|x||y|D -(λ 2 )
dλ.

If we compute the change of variable k = √ -ω -iλ in the rst integral of the last equality, and k = -√ -ω -iλ in the second one, then one has

C + [(R m (λ + 0) -R m (λ -0))(J -iI)] 1,1 dλ = = 4i π|x||y| +∞ -∞ σ √ ωk e - √ k 2 +2ω|y| D(k) e -ik|x| dk + +∞ -∞ 2ik 2 e - √ k 2 +2ω(|x|+|y|) D(k) dk ≤ ≤ C e - √ 2ω|y| |y||x| min 1 |x| , e - √ 2ω|x| ≤ C e - √ 2ω|y| |y| e - √ 2ω|x|
|x| ,

where the rst inequality is obtained integrating by parts both integrals.

The integral of the other three elements of the matrix operator (R m (λ + 0) -R m (λ -0))(J -iI) can be estimated in the same way and this implies the statement of the lemma.

Part II

Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in R 3

Chapter 3

Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 

E(u(t)) ≡ 1 2 R 3 |∇u(t, x)| 2 dx - 1 6 R 3 |u(t, x)| 6 dx = E(u 0 ).
The problem is energy critical in the sense that (3.1) as well as (3.2) are invariant with respect to the scaling u(t, x) → λ 1/2 u(λx, λ 2 t), λ ∈ R + . For Ḣ1 small data one has global existence and scattering. In the case of large data blow up may occur. Indeed, the classical virial identity

d 2 dt 2 R 3 |x| 2 |u(t, x)| 2 dx = 8E(u) - 16 3 R 3 |u(t, x)| 6 dx shows that if xu 0 ∈ L 2 (R 3
) and E(u 0 ) < 0, the solution has to break down in nite time.

Furthermore, Equation (3.1) admits an explicit stationary solution (ground state):

W (x) = (1 + 1 3 |x| 2 ) -1/2 , ∆W + W 5 = 0,
so that scattering cannot always occur even for solutions that exist globally in time.
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(i) u ap has the form: u ap (t, x) = e iα(t) λ 1/2 (t)(W (λ(t)x)+χ ap (t, λ(t)x)), where χ ap (t, y), y = λ(t)x, veries 

χ ap (t) Ḣk ≤ Cδ ν+k-1/2 t -ν(k-1) , k = 1, 2, (3.5) 
χ ap (t) L ∞ ≤ Ct -(1+2ν)/2 , (3.6) |y| -1 χ ap (t) L ∞ + ∇χ ap (t) L ∞ ≤ Ct -1-2ν , (3.7) |y| -2 χ ap (t) L ∞ + |y| -1 ∇ y χ ap (t) L ∞ ≤ C(|ν| + |α 0 |)t -1-2ν , (3.8) ∇ 2 χ ap (t) L ∞ ≤ C(|ν| + |α 0 |)t -1-2ν . ( 3 
R(t) Ḣk ≤ t -(2+ 1 8 )(1+2ν)+ν(k+1) , k = 0, 1, 2.
The construction of u ap (t) will be achieved by considering separately the three regions that correspond to three dierent space scales: the inner region with the scale t ν |x| 1, the self-similar region where |x| = O(t 1/2 ), and, nally, the remote region where |x| = O(t). In the inner region the solution will be constructed as a perturbation of the prole e iα 0 ln t t ν/2 W (t ν x). The self-similar and remote regions are the regions where the solution is small and is described essentially by the linear equation i du dt = -u. In the self-similar region the prole of the solution will be determined uniquely by the matching conditions coming out from the inner region, while in the remote region the prole remains essentially a free parameter of the construction, only the limiting behavior at the origin is prescribed by the matching procedure.

The inner region

We start by considering the inner region 0 ≤ t ν |x| ≤ 10t 1/2+ν-1 with 0 < 1 < 1/2 + ν to be xed later. Writing u(t, x) as u(t, x) = e iα(t) λ 1/2 (t)ψ(t, ρ), ρ = λ(t)|x|, we get from (3.1)

(3.11) it -2ν dψ dt -α 0 t -(1+2ν) ψ + iνt -(1+2ν) ( 1 2 + ρ∂ ρ )ψ = -ψ -|ψ| 4 ψ. Write ψ(t, ρ) = W (ρ) + χ(t, ρ). Then χ(t) = χ(t) χ(t) solves (3.12) it -2ν d χ dt = H χ + N (χ), where H = -σ 3 -3W 4 σ 3 -2W 4 σ 3 σ 1 , σ 1 = 0 1 1 0 , σ 3 = 1 0 0 -1 , N (χ) = N (χ) -N (χ) , N (χ) = N 0 + N 1 (χ) + N 2 (χ), N 0 = α 0 t -(1+2ν) W -iνt -(1+2ν) W 1 , W 1 (ρ) = ( 1 2 + ρ∂ ρ )W (ρ) N 1 (χ) = α 0 t -(1+2ν) χ -iνt -(1+2ν) ( 1 2 + ρ∂ ρ )χ, N 2 (χ) = -|W + χ| 4 (W + χ) + W 5 + 3W 4 χ + 2W 4 χ.
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for any k, l ∈ N, k + l ≤ 2N , 0 ≤ ρ ≤ 10t 1 2 +ν-1 , t ≥ 1. Fix N = 27, 1 = 1+2ν 27
1 and set ψ ap in = W + χ ap in , χ ap in = χ (27) ,

R in = -it -2ν dψ ap in dt -ψ ap in + α 0 t -1-2ν ψ ap in -iνt -1-2ν ( 1 2 + ρ∂ ρ )ψ ap in -|ψ ap in | 4 ψ ap in .
As a direct consequence of Lemma 3.3 and estimate (3.20) we obtain the following result.

Lemma 3.5. For any α 0 ∈ R and any ν > -1 2 there exists T = T (α 0 , ν) > 0 such that for t ≥ T the following holds. (i) The prole χ ap in (t) veries

χ ap in L ∞ (0≤ρ≤10t 1 2 +ν-1 ) ≤ C(|ν| + |α 0 |)t -1 2 -ν , (3.21) ρ -k ∂ l ρ χ ap in L ∞ (0≤ρ≤10t 1 2 +ν-1 ) ≤ C(|ν| + |α 0 |)t -1-2ν , 1 ≤ k + l ≤ 2, (3.22) ρ -k ∂ l ρ χ ap in L 2 (ρ 2 dρ,0≤ρ≤10t 1 
2 +ν-1 ) ≤ C(|ν| + |α 0 |)t -( 1 2 +ν)(k+l- 1 
2 ) , k + l ≤ 2.

(3.23)

(ii) The error R in (t) admits the estimate

(3.24) ρ -k ∂ l ρ R in (t) L 2 (ρ 2 dρ,0≤ρ≤10t 1 2 +ν-1 ) ≤ t -3(1+2ν)/4-ε 1 (2N +1/2) , k + l ≤ 2.

The self-similar region

We next consider the self-similar region

1 10 t -ε 1 ≤ |x|t -1/2 ≤ 10t ε 2
, where 0 < ε 2 < 1/2 to be xed later. Write u(t, x) = e iα 0 ln t t -1/4 w(t, y), y = t -1/2 |x|. Then, w(t) solves 2 + y∂ y . Note that in the limit ρ → +∞, y → 0 one has, at least, formally

t ν/2 (W (ρ) + k≥1 t -k(1+2ν) χ k (ρ)) = t -1/4 n≥0 0≤l≤ n 2 t -1 4 (2n+1)(1+2ν) (ln y + ( 1 2 + ν) ln t) l k≥l α (k) l,2k-n-1 y 2k-n-1 , (3.26) 
where α (k) l,j , k = 0, are given by Lemma 3.3 and α (0) l,j come from the expansion of W (ρ) as ρ → ∞:

W (ρ) = j≤0 α (0) 0,j ρ j , α (0) 
0,2m = 0 ∀m ∈ Z. 

χ ap (t) L ∞ ≤ Ct -(1+2ν)/2 (3.56) |y| -1 χ ap (t) L ∞ + ∇χ ap (t) L ∞ ≤ Ct -1-2ν , (3.57) |y| -2 χ ap (t) L ∞ + |y| -1 ∇ y χ ap (t) L ∞ ≤ C(|ν| + |α 0 |)t -1-2ν , (3.58) ∇ 2 χ ap (t) L ∞ ≤ C(|ν| + |α 0 |)t -1-2ν . (3.59)
All the estimates stated in this subsection are valid for ν suciently small and t ≥ T (α 0 , ν, δ). 

∇ l χ ap (t) L 2 (|y|≤10t 1/2+ν+ε 2 ) ≤ Ct -(1+2ν)(1-2ε 2 )/4 , l = 1, 2, ∇ l (χ ap (t) -χ ap 0 (t)) L 2 (|y|≥t 1/2+ν+ε 2 ) ≤ Ct -(1+2ν)/4 , l = 1, 2, (3.60) 
where χ ap 0 (t, y) = e -iα 0 ln t t -ν/2 v 2,0 (t, t -ν y).

Inequalities (3.60) imply, in particular,

∇ l χ ap (t) L 2 (R 3 ) ≤ Ct -ν(l-1) δ ν+l-1/2 , l = 1, 2. Moreover, introducing ζ * (x) = π -3/2 e 3iπ/4 R 3 dξe ix•ξ Θ δ (2ξ)z(2ξ) and observing that ζ * ∈ Ḣs (R 3 ) for any s > 1/2 -ν, and ∇ l (v 2,0 -e i∆t ζ * ) L 2 (|x|≥t γ ) → 0 as t → +∞ for any γ > 1-2ν 3-2ν and any l ≥ 1, one obtains that e iα(t) χ ap (t, λ(t)•) -e it∆ ζ * → 0 in Ḣ1 ∩ Ḣ2 as t → +∞.
This concludes the proof of the rst part of Proposition 3.2.

We next consider the error R = -i du ap dt -∆u ap -|u ap | 4 u ap . It has the form

R = E 1 + E 2 + E 3 + E 4 .
where

E 1 =i( 1 2 -ε 1 )t -1 (u ap in (t, x) -u ap ss (t, x)) Θ(t -1/2+ε 1 x) -2t -1/2+ε 1 (∇u ap in (t, x) -∇u ap ss (t, x)) • ∇Θ(t -1/2+ε 1 x) -t -1+2ε 1 (u ap in (t, x) -u ap ss (t, x))∆Θ(t -1/2+ε 1 x), E 2 =i( 1 2 + ε 2 )t -1 (u ap ss (t, x) -u ap out (t, x)) Θ(t -1/2-ε 2 x) -2t -1/2-ε 2 (∇u ap ss (t, x) -∇u ap out (t, x)) • ∇Θ(t -1/2-ε 2 x) -t -1-2ε 2 (u ap ss (t, x) -u ap out (t, x))∆Θ(t -1/2-ε 2 x), Θ(ξ) = ξ • ∇Θ(ξ), and E 3 , E 4 are given by E 3 =Θ(t -1/2+ε 1 x)R in (t, x) + (1 -Θ(t -1/2+ε 1 x))Θ(t -1/2-ε 2 x)R ss (t, x) + (1 -Θ(t -1/2-ε 2 x))R out (t, x), E 4 =Θ(t -1/2+ε 1 x)(|u ap in | 4 u ap in -|u ap | 4 u ap ) + (1 -Θ(t -1/2+ε 1 x))Θ(t -1/2-ε 2 x)(|u ap ss | 4 u ap ss -|u ap | 4 u ap ) + (1 -Θ(t -1/2-ε 2 x))(|u ap out | 4 u ap out -|u ap | 4 u ap ).
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Here R in (t, x) = e iα 0 ln t t 5ν/2 R in (t, t ν |x|), R ss (t, x) = e iα 0 ln t t 5ν/2 R ss (t, t ν |x|).

First we adress E 1 . By lemma 3.8 (iii) we have

(3.61) E 1 H 2 ≤ Ct -9(1+2ν)/4+ν+5ε 1 /2 ln t ≤ Ct -(2+ 3 20 )(1+2ν) .
Similarly, from (3.53) we get for E 2 :

(3.62)

E 2 H 2 ≤ Ct -1-( 1 2 +ε 2 )( 3 2 +5ν) ln t ≤ Ct -(2+ 1 4 )(1+2ν)
.

Next, we consider E 3 . From Lemma 3.5 (ii) , Lemma 3.8 (ii) and (3.55) it is apparent that 

(3.63) E 3 H 2 ≤ Ct -9 4 (1+2ν)+5ε 1 /2 ≤ Ct -(2+

Construction of an exact solution

We are now in position to prove Theorem 3.1. Consider (3.1) and write u(t, x) = e iα 0 ln t t ν/2 Ψ(τ, y), where y = t ν x and τ = t 1+2ν 1+2ν . Further decomposing Ψ as Ψ(τ, y) = Ψ ap (τ, y) + f (τ, y), Ψ ap (τ, y) = e -iα 0 ln t t -ν/2 u ap (t, x), where u ap is the approximate solution of (3.1) given by Proposition (3.2), we get the following equation for the remainder f

(3.65) i d f dτ = H(τ ) f + F(f ) + r, f = f f , where H(τ ) = H + τ -1 l, H = -σ 3 -3W 4 σ 3 -2W 4 σ 3 σ 1 , l = α 0 2ν + 1 σ 3 -i ν 2ν + 1 ( 1 2 + y • ∇), F(f ) = F (f ) -F (f ) , F (f ) = F 1 (f ) + F 2 (f ) F 1 (f ) = V 1 (τ )f + V 2 (τ )f , V 1 (τ ) = 3(W 4 -|Ψ ap (τ )| 4 ), V 2 (τ ) = 2(W 4 -(Ψ ap (τ )) 2 |Ψ ap (τ )| 2 ), F 2 (f ) = -|Ψ ap + f | 4 (Ψ ap + f ) + |Ψ ap | 4 Ψ ap + 3|Ψ ap | 4 f + 2(Ψ ap ) 2 |Ψ ap | 2 f , r = r -r , r(τ, y) = t -5ν/2 e -iα 0 ln t R(t, x).
Chapter 3. Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 3 R being the error given by Proposition 3.2. Note that by Proposition 3.2 one has

V i (τ ) W 2,∞ (R 3 ) ≤ C(|α 0 | + |ν|)τ -1 , i = 1, 2, (3.66) Ψ ap (τ ) W 2,∞ (R 3 ) ≤ C, (3.67) r(τ ) H 2 (R 3 ) ≤ Cτ -2-1 8 , (3.68) 
for any τ ≥ τ 0 with some τ 0 > 0.

Our intention is to solve (3.65) with zero condition at τ = +∞ by a x point argument. To carry out this analysis we will need some energy type estimates for the linearized equation i d f dτ = H(τ ) f .

The required estimates are collected in the next subsection, their proofs being removed to Section 4.

Linear estimates

We start by recalling some basic spectral properties of the operator H (a more detailed discussion and the proofs can be found, for example, in [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]). Since we are considering only radial solutions, we will view H as an operator on L

2 rad (R 3 ; C 2 ) with domain D(H) = H 2 rad (R 3 ; C 3 ). H satises the relations σ 3 Hσ 3 = H * , σ 1 Hσ 1 = -H.
The essential spectrum of H lls up the real axis. The discrete spectrum of H consists of two simple purely imaginary eigenvalues iλ 0 , -iλ 0 , λ 0 > 0. Here P is the spectral projection of H onto the essential spectrum given by

P = I -P + -P -, P ± = < •, σ 3 ζ ∓ > < ζ ± , σ 3 ζ ∓ > ζ ± , < •, • > is the scalar product in L 2 (R 3 , C 2 ).
Let U (τ, s) be the propagator associated to Equation (3.69). In Section 4 we prove the following results.

Proposition 3.9. There exists a constant C > 0 such that

U (τ, s)f H 2 ≤ C s τ C(|α 1 |+|ν 1 |) f H 2 ,
for any s ≥ τ > 0 and any f ∈ H 2 rad . Here α 1 = α 0 1+2ν , ν 1 = ν 1+2ν .

Contraction argument

We 

Linearized evolution

In this section we prove Proposition 3.9. The proof will be achieved by combining the results of [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF] with a careful spectral analysis of the operator H around zero energy. More precisely, in subsection 1 we consider the operator H as before, restricted to the subspace of radial functions, and construct a basis of Jost solutions for the equation Hζ = Eζ. In subsection 2 we study the spectral decomposition of H near E = 0. Finally, in subsection 3 we prove Proposition 3.9 by combining the results of the previous two subsections with the coercivity properties of H established in [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]. In this subsection we construct a basis of Jost solutions of the equation Hζ = Eζ, E ∈ R. Since the subject is completely standard we will only briey sketch the proofs (see also [START_REF] Buslaev | Scattering for the nonlinear Schrödinger equation: states close to a soliton[END_REF], [START_REF] Krieger | Stable manifolds for all monic supercritical NLS in one dimension[END_REF] for a closely related construction in the context of energy subcritical NLS). Recall that

H = -(∂ 2 ρ + 2ρ -1 ∂ ρ )σ 3 + V (ρ), V = V 1 V 2 -V 2 -V 1 , V 1 (ρ) = -3W 4 (ρ), V 2 (ρ) = -2W 4 (ρ), W (ρ) = (1 + ρ 2 /3) -1/2 .
We emphasize that V (ρ) is a smooth function of ρ that decays as ρ -4 as ρ → ∞. Since σ 1 H = -Hσ 1 it suces to consider the case E ≥ 0, so we write E = k 2 , k ≥ 0. It will be convenient for us to remove the rst derivative in H. In order to do that set f = ρζ, then one gets (3.71) Hf = Ef, H = -∂ 2 ρ σ 3 + V (ρ).

We will consider the operator H on R, to recover the original radial R 3 problem it suces to restrict H to the subspace of odd functions.

We start by constructing the most rapidly decaying solution to (3.71).

Lemma 3.10. For all k ≥ 0 there exists a real solution f 3 (ρ, k) of the equation for all ρ ≥ 0, k > 0 and l ≥ 0.

Proof. One writes the following integral equation for χ 3 : for all ρ ≥ 0, 0 ≤ k 1. In addition, one has

|∂ 2 k b(ρ, k)| ≤ C ln 1 k + 1 ,
for all 0 ≤ ρ 1, 0 < k 1.

Proof. To construct f 1 we will reduce the order of the system (3.72) by means of the substitution

f 1 = z 0 f 3 + z 1 1 0 . Further setting z 2 = z 0 f 3,2 , f 3 = f 3,1 f 3,2
, we get that z = z 1

z 2 solves -z 1 -k 2 z 1 + V 11 z 1 + V 12 z 2 = 0, -z 2 + kz 2 + V 21 z 1 + V 22 z 2 = 0. (3.75) 
Here

V 11 = V 1 -V 2 f 3,1 f 3,2 , V 12 = 2 f 2 3,2 (f 3,1 f 3,2 -f 3,1 f 3,2 ), V 21 = V 2 , V 22 = - 1 f 3,2
(f 3,2 + kf 3,2 ).

By Lemma 3.10, there exists R > 0 independent of k, such that the functions V ij (ρ, k), i, j = 1, 2 are smooth in both variables for k > 0 and ρ ≥ R and verify for all l ≥ 0, ρ ≥ R, k > 0, Then, for ρ ≥ R, the statement of Lemma 3.11 follows directly from (3.77) and Lemma 3.10. To cover the case x ≤ R one can invoke the Cauchy problem with initial data at ρ = R.

|∂ l ρ V j1 (ρ, k)| ≤ C l < ρ > -4-l , j = 1, 2, |∂ l ρ ∂ k V 11 (ρ, k)| ≤ C l < ρ > -5-l < kρ > -2 , |∂ l ρ ∂ 2 k V 11 (ρ, k)| ≤ C l < ρ > -4-l < kρ > -3 ln 1 kρ + 2 , |∂ l ρ ∂ m k V j2 (ρ, k)| ≤ C l < ρ > -3-l+m < kρ > -1-m , j = 1, 2, m = 0, 1, |∂ l ρ ∂ 2 k V 22 (ρ, k)| ≤ C l < ρ > -1-l < kρ > -3 ln 1 kρ + 2 ,
Note that since k 2 ∈ R, f 2 (•, k) = f 1 (•, k) is also a solution of (3.72).

Remark 3.12. Recall that the equation Hf = 0 has a basis of explicit solutions ρΦ ± (ρ) 1

±1 , ρΘ ± (ρ) 1 ±1 , with Φ ± , Θ ± given by (3.18). Comparing the behavior of ρΦ ± , ρΘ ± , with the asymptotics of f 1 (ρ, 0), f 3 (ρ, 0), one gets (3.78) f 1 (ρ, 0) = 1 2 ρ(ξ 0 (ρ) + ξ 1 (ρ)), f 3 (ρ, 0) = 1 2 ρ(ξ 1 (ρ) -ξ 0 (ρ)),

where ξ 0 = 1 √ 3 W 1 -1 , ξ 1 = -2 √ 3 W 1 1 1 .
Next, we construct an exponentially growing solution at +∞. V χ 4 (s, k)ds. Finally, the estimates for the derivatives can be obtained dierentiating (3.79).

We now briey describe some properties of the solutions f j , j = 1, . . . , 4 that we will need later.

Recall that the Wronskian w(f, g) = f , g R 2 -f, g R 2 does not depend on ρ if f and g are solutions of (3.71).

The estimates of Lemmas 3.10, 3.11, 3.13 lead to the relations:

(3.80)

w(f 1 , f 2 ) = 2ik, w(f 1 , f 3 ) = w(f 2 , f 3 ) = 0, w(f 3 , f 4 ) = -2k, k > 0, the three rst relations being valid for k = 0 as well. Notice also that by Lemmas 3.10, 3.11, ∂ k f 1 (ρ, 0), ∂ k f 3 (ρ, 0), are solutions of the equation Hf = 0 verifying for ρ ≥ 0,

∂ k f 1 (ρ, 0) - iρ 0 ≤ C, ∂ 2 kρ f 1 (ρ, 0) - i 0 ≤ C < ρ > 2 , ∂ k f 3 (ρ, 0) + 0 ρ ≤ C < ρ > , ∂ 2 kρ ζ 3 (ρ, 0) + 0 1 ≤ C < ρ > 2 ,
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As a consequence, one has

w(∂ k f 1 | k=0 , f 1 | k=0 ) = i, w(∂ k f 1 | k=0 , f 3 | k=0 ) = 0, w(∂ k f 3 | k=0 , f 1 | k=0 ) = 0, w(∂ k f 3 | k=0 , f 3 | k=0 ) = -1.
(3.81)

In addition to scalar Wronskian we will use matrix Wronskians. If F , G are 2 × 2 matrix solutions of (3.72), their matrix Wronskian W (F, G) = F t G -F t G is independent of ρ. Set g j (ρ, k) = f j (-ρ, k), j = 1, . . . , 4. Since the potential V is even, g j , j = 1, . . . , 4 are again solutions of (3.72) which have the same asymptotic behavior as ρ → -∞ as f j as ρ → +∞. Consider the matrix solutions F , G, dened by F = (f 1 , f 3 ), G = (g 1 , g 3 ). The following relation is a standard consequence of the asymptotics given by Lemma 3.14 (i),

(3.97)

E * κ 2 σ 3 E κ 1 σ 3 = θ κ 1 (k)θ κ 2 (k),
for any 0 < κ 1 , κ 2 ≤ k 0 .

Remark 3.15. Notice that because of the presence of the cut o function θ κ , E κ is bounded as an operator from L 2 ([0, k 0 ]) to H m (R 3 ) for any m ≥ 0, uniformly in κ ≤ k 0 .

We next introduce quasi-resonant functions h κ (y), 0 < κ ≤ k 0 , by setting

h κ = √ 2E κ 1 0 .
Lemma 3.16. For any 0 < κ ≤ k 0 , h κ ∈< y > -1 L 2 (R 3 ) and as κ → 0, one has (3.98)

h κ L 2 (R 3 ) = O(κ 1/2 ), yh κ L 2 (R 3 ) = O(κ -1/2 ), (3.99) 
< h κ , σ 3 (ξ 0 + ξ 1 ) >= 4π + O(κ 1/2 ln κ), < h κ , σ 3 (ξ 1 -ξ 0 ) >= O(κ 1/2 ln κ).

Proof. Applying Lemma 3.14 (i), we decompose h κ as follows:

h κ (y) = h κ,0 (y) + h κ,1 (y) + h κ,2 (y), Notice also that for any f ∈ H 1 rad and any 0 < κ ≤ 1 one has f H 1 (R 3 ) ≤ C( f L 2 (0,κ/4) + κ -1 ∇f L 2 (R 3 ) ).

Combining this inequality with (3.108), we get

f H 1 (R 3 ) ≤ C κ ∇f L 2 (R 3 ) ,
provided κ is suciently small.

We nally combine Lemmas 3.17, 3.20 to derive the following result which will be in the heart of the proof of Proposition 3.9

Lemma 3.21. There exists κ 2 , 0 < κ 2 ≤ k 0 , and C > 0 such that for any 0 < κ ≤ κ 2 one has (3.109)

Hf, σ 3 f ≥ Cκ 3 f 2 H 1 - κ C E * κ σ 3 f 2 L 2 (R + ) ,
for any f ∈ H 1 rad (R 3 , C 2 ) verifying f, σ 3 ζ ± = 0. Proof. Write f = f 1 + f 2 , where f 1 = E κ σ 3 E * κ σ 3 f and f 2 = f -f 1 . One clearly has (3.110)

f 1 H 1 (R 3 ) ≤ C E * κ σ 3 f L 2 (R + ) , Hf 1 L 2 (R 3 ) ≤ Cκ 2 E * κ σ 3 f L 2 (R + ) ,
for any 0 < κ ≤ k 0 . Consider f 2 . It follows from (3.96), (3.97) that for any κ ≤ κ/2,

• f 2 , σ 3 ζ ± = 0;

• E * κ σ 3 f 2 = 0;

• f 2 , σ 3 h κ = f 2 , σ 3 σ 1 hκ = 0.

Hence, by Lemmas 3.17 

d dτ G 1 (τ ) ≤ C τ (|α 1 | + |ν 1 |) u(τ ) 2 H 1 (R 3 ) ≤ C τ (|α 1 | + |ν 1 |)G 1 (τ ).
Integrating we obtain f H 1 (R 3 ) , for any 0 < τ ≤ s and any f ∈ H 1 rad . To control the higher regularity, consider the functional G 2 (τ ) = H 2 u, σ 3 Hu + c 2 G 1 (τ ). One has 

C -1 u 2 H 3 (R 3 ) ≤ G 2 ≤ C u 2 H 3 (R 3 ) ,

1. 5 .

 5 Modulation equations 23 Lemma 1.22. Let u ∈ C(R + , V ) be a solution to equation (1.7) with u

4 , 29 1. 7

 4297 provided d and ρ are small enough. Since the constant c 2 does not depend on t 1 , we can choose d < ρ 4c 2 and nally get m(t 1 ) ≤ ρ concluding the proof of Proposition 1.25. 1.7. Asymptotic stability Asymptotic stability Now we are in the position to prove the asymptotic stability result as stated in the next theorem. Before formulating the result, let us denote by U t the integral kernel which denes the propagator of the free Laplacian in R 3 , namely U t (x) = (4πit) -3/2 e i |x| 2 4t . Theorem 1.29. Assume σ ∈ (0, 1/ √ 2). Let u ∈ C(R + , V ) be a solution to equation (1.7) with

47
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2. 5 .

 5 Large time behavior of the solution and scattering asymptotics 61

2. 5 .√ 2 ) 1 (4πi) 3 /2 φ 0 r 2 4|

 52132 Large time behavior of the solution and scattering asymptotics 63 Proof. One can proceed as it is done in the case σ ∈ (0, 1/ (see the proof of Theorem 1.29): since φ 0 (x) = , for some function φ 0 : R + → C, one gets φ 0 (y)| 2 √ ydy.

2. 5 .

 5 Large time behavior of the solution and scattering asymptotics 65 where A

2. 5 .

 5 Large time behavior of the solution and scattering asymptotics 67 is achieved. It is left to study the decay of A(x) +∞ t e i((ω∞-2ξ∞)τ -|x| 2 4τ ) t 3/2 |x| 2 + 4ατ 2 dτ.
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3. 1 Introduction 3 . 1 . 1

 1311 Setting of the problem and statement of the resultIn this chapter we consider the energy critical focusing nonlinear Schrödinger equationi du dt = -∆u -|u| 4 u, x ∈ R 3 , u(0) = u 0 ∈ Ḣ1 (R 3 ).

(3. 1 )

 1 The Cauchy problem (3.1) is locally well posed, which means that for any initial datum u 0 ∈ Ḣ1 (R 3 ) there exists a unique solution u dened on a maximal interval of denition I = (T -, T + ) such that u ∈ C(I, Ḣ1 (R 3 )) ∩ L 10 (I × R 3 ) for any compact interval I ⊂ I. If T + < +∞ (or T -> -∞), then u L 10 ((0,T + )×R 3 ) = +∞ (respectively u L 10 ((T -,0)×R 3 ) = +∞), and one says that the solution blows up in nite time. Moreover, the solutions during their life span satisfy conservation of energy:(3.2) 

  α 0 )w -|w| 4 w, where L = -+ i 2 1

1 - 1 = HW 1 1 1

 111 The corresponding eigenfunctions ζ + , ζ -are in S(R 3 ) and can be chosen in such a way that ζ -= σ 1 ζ + = ζ+ . Notice also that HW = 0. which means that H has a resonance at zero. Consider the projection of the linearized equation i d f dτ = H(τ ) f onto the essential spectrum of H:

1 dseF 1 F 2

 112 now transforme (3.65) into a x point problem. Rewrite (3.65) in the following integral form (3.70)f (τ ) = J(f )(τ ), )(τ ) = J 0 (f )(τ ) + J + (f )(τ ) + J -(f )(τ ), J 0 (f )(τ ) = i +∞ τ dsU (τ, s)P (F 1 (f (s)) + r(s)), J + (f )(τ ) = i +∞ τ dse λ 0 (τ -s) P + (F 2 (f (s)) + r(s)), J -(f )(τ ) = -i τ τ -λ 0 (τ -s) P -(F 2 (f (s)) + r(s)), (f ) = F(f ) + s -1 l(P + + P -) f , (f ) = F(f ) + s -1 l f ,τ 1 ≥ max{τ 0 , 1} to be xed later (slightly abusing notation we identify in (3.70) C 2 vectors of the form f f with their rst component f
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 3341 Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R Solutions to the equation Hζ = Eζ.

(3. 72 )

 72 Hf = k 2 f, such that f 3 (ρ, k) = e -kρ χ 3 (ρ, k), where χ 3 is C ∞ function of (ρ, k) ∈ R × R * + verifying χ 3 (ρ, k) = 0 1 + a(ρ, k), |∂ l ρ ∂ m k a(ρ, k)| ≤ C l < ρ > -2-l+m (1 + k < ρ >) -1-m , m = 0, 1, |∂ l ρ ∂ 2 k a(ρ, k)| ≤ C l < ρ > -l (1 + k < ρ >)

χ 3 (

 3 -s, k)σ 3 V (s)χ 3 (s, k)ds,The statement of the lemma follows then from the estimate|∂ l k K(ξ, k)| ≤ C l |ξ| l+1 < kξ > l+1 , ξ ≤ 0, k ≥ 0, l ≥ 0and the decay properties of V :|∂ l ρ V (ρ)| ≤ C l < ρ > -4-l , ρ ∈ R, l ≥ 0,by standard Volterra iterations.We next construct the oscillating solutions to Equation (3.72).

3. 4 . Linearized evolution 91 Lemma 3 . 11 .

 491311 For all k ≥ 0 there exists a solution f 1 (ρ, k) of Equation(3.72) such that f 1 is a smooth function of (ρ, k) ∈ R × R * + of the form f 1 (ρ, k) = e ikρ ( 1 0 + b(ρ, k)), where b veries |b(ρ, k)| ≤ C(< ρ > -2 +ke -kρ ), |∂ ρ b(ρ, k)| ≤ C(< ρ > -3 +k 2 e -kρ ), |∂ k b(ρ, k)| ≤ C(< ρ > -1 + < kρ > e -kρ ), |∂ 2 ρk b(ρ, k)| ≤ C(< ρ > -2+k < kρ > e -kρ ),(3.74) 

V 11 V 12 V

 1112 [START_REF] Fröhlich | Solitary wave dynamics in an External Potential[END_REF] V 22 z(s, k)ds, and taking into account(3.76), one proves easily the existence of a smooth solution satisfying|∂ l ρ ∂ m k (e -ikρ z 1 -1)|+ < ρ > |∂ l ρ ∂ m k (e -ikρ z 2 )| ≤ C l < ρ > -2-l+m < kρ > -1-m , m = 0, 1, |∂ n ρ ∂ 2 k (e -ikρ z 1 -1)| + |∂ n ρ ∂ 2 k (e -ikρ z 2 )| ≤ C ln 1 kρ + 2 , n = 0, 1,(3.77)Chapter 3. Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 3 for all ρ ≥ R, k > 0, l ≥ 0.To reconstruct f 1 , we set z 0 (ρ, k) =

Lemma 3 . 13 . 1 e

 3131 For any k > 0, there exists a solution f 4 (ρ, k) to(3.72) such that f 4 = e kρ χ 4 with χ 4 verifying∂ l ρ (χ 4 (ρ, k) -0 1 ) = O k (ρ -3-l ), ρ → +∞.Proof. We construct f 4 by means of the following integral equation:χ 4 (ρ, k) k(s-ρ) sin k(ρ-s) k 0 0 e 2k(s-ρ) 2k

( 3 .

 3 79)For k > 0 and R 1 suciently large (depending on k), the operator generating (3.79) is small on the space of bounded continuous functions. Therefore, (3.79) has a solution χ 4 verifying |χ 4 (ρ, k)| ≤ C, ρ ≥ R 1 . Iterating this bound one gets that χ 4 (ρ, k) -0 1 = O k (ρ -3 ) as ρ → ∞.

1 k + 1 , 0 < k 1 .0 0 2 . 3 . 4 . 2

 1112342 Denote D(k) = W (F, G). It follows from Lemmas 3.10, 3.11 that D is smooth for k > 0 and admits the estimate (3.82) |∂ 2 k D(k)| ≤ C ln In addition, by (3.78), (3.80), (3.81), one has (3.83) D(0) = 0, ∂ k D(0) = -2i Scattering solutions and the distorted Fourier transform in a vicinity of zero energy Set (3.84)F(ρ, k) = F (ρ, k)s(k), where s(k) = D t -1 (k) 2ik 0 . By (3.82), (3.83), s = s 1 s 2is a smooth function of k for 0 < k < k 0 (k 0 suciently small), continuous up to k = 0, verifyings 1 (0) = -1, s 2 (0) = 0, |∂ k s(k)| ≤ C| ln k|, 0 < k ≤ k 0 .

( 3 .Chapter 3 .e = a 1 f 1 + 2 . 1 0 +e -ikρ 1 0

 331211 85)By construction, one has w(F, g 1 ) = 2ik, w(F, g 3 ) = 0, for any 0 ≤ k < k 0 . As a consequence, (3.86)F(ρ, k) = r 1 (k)g 1 (ρ, k) + g 2 (ρ, k) + r 2 (k)g 3 (ρ, k), 0 ≤ k < k 0 ,with some coecients r 1 (k), r 2 (k) that, by (3.78), (3.85), verify(3.87) r 1 (0) = r 2 (0) = 0.Computing the Wronskians w(F, F) and w(F, Ḡ), where G(ρ, k) = F(-ρ, k), one gets|s 1 (k)| 2 + |r 1 (k)| 2 = 1, r 1 (k)s 1 (k) + r 1 (k)s 1 (k) = 0, 0 ≤ k < k 0 .94 Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 3One can write the following Wronskian representation for r 1 :(3.88) r 1 (k) = s 1 (k) w(g 2 , f 1 ) 2ik + s 2 (k) w(g 2 , f 3 ) 2ik , k = 0.Using (3.85) and the relationsw(g 2 , f 3 )| k=0 = w(g 2 , f 1 )| k=0 = ∂ k w(g 2 , f 1 )| k=0 ,one easily deduces from (3.88) that r 1 is smooth for 0 < k < k 0 , continuous up to k = 0, and veries (3.89)|∂ k r 1 (k)| ≤ C| ln k|, 0 < k < k 0 ,which in its turn, implies that r 2 is smooth for 0 < k < k 0 , continuous up to k = 0 and admits a similar estimate:(3.90) |∂ k r 2 (k)| ≤ C| ln k|, 0 < k < k 0 .Introduce the following odd solution of (3.72):e(ρ, k) = F(-ρ, k) -F(ρ, k). f 2 + a 2 f 3 , a j = r j -s j , j = 1,It follows from (3.85), (3.87), (3.89), (3.90) that (3.92) a 1 (0) = 1, a 2 (0) = 0, and (3.93)|∂ k a j | ≤ C| ln k|, 0 < k < k 0 , j = 1, 2,which together with Lemmas 3.10, 3.11 implies the following result.Lemma 3.14. One has:(i) e(ρ, k) = e 0 (ρ, k)+e 1 (ρ, k), where e 0 (ρ, k) = a 1 (k)e ikρ and the remainder e 1 (ρ, k) admits the estimates|e 1 (ρ, k)| ≤ C(< ρ > -2 +k| ln k|e -kρ ), ρ ≥ 0, |∂ k e 1 (ρ, k)| ≤ C| ln k|(< ρ > -1 +e -kρ/2 ), ρ ≥ 0, e 1 (•, k) L 2 (R + ) ≤ C, ρe 1 (•, k) L 2 (R + ) + ∂ k e 1 (•, k) L 2 (R + ) ≤ Ck -1/2 | ln k|, (3.94) for any 0 < k ≤ k 0 . (ii) (ρ∂ ρ -k∂ k )e(ρ, k) = e ikρ 1 0 k∂ k a 1 (k) + e 2 (ρ, k), with e 2 (ρ, k) verifying |e 2 (ρ, k)| ≤ C(< ρ > -1 +k| ln k|e -kρ/2 ), ρ ≥ 0, e 2 (•, k) L 2 (R + ) ≤ C, (3.95) for any 0 < k ≤ k 0 .

3. 4 . 2 .κ σ 3 ζ

 423 Linearized evolution 95 For 0 < κ < k 0 , introduce the operators E κ :L 2 (R + , C 2 ) → L 2 (R 3 , C 2 ), (E κ Φ)(y) = 1 2 3/2 π R + dkθ κ (k)E(y, k)Φ(k), Φ ∈ L 2 (R + , C 2 ),where E(y, k) is a 2 × 2 matrix given byE(y, k) = ρ -1 (e(ρ, k), σ 1 e(ρ, k)), ρ = |y|, θ κ (k) = θ(κ -1 k), θ is a C ∞ even function verifying θ(k) = 1 if |k| ≤ 1/4 0 if |k| ≥ 1/Since e(ρ,k) is a solution of the equation He = k 2 e, one has HE κ = E κ k 2 σ 3 . By Lemma 3.14 (i), the operators E κ are bounded uniformly with respect to κ ≤ k 0 . The action of the adjoint operators E * κ: L 2 (R 3 , C 2 ) → L 2 (R + , C 2 ) is given by (E * κ u)(k) = 1 2 3/2 π θ κ (k) R 3dyE * (y, k)u(y), u ∈ L 2 (R 3 , C 2 ). ± = 0 for any 0 < κ ≤ k 0 .

  κ,1 (y) = 1 2πρ R + dke ikρ (a 1 (k) -1)θ κ (k) 1 0 , h κ,2 (y) = 1 2πρ R + dkθ κ (k)e 1 (ρ, k),(3.100)Chapter 3. Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 3

Hf 2 , σ 3 f 2 ≥ Cκ 3 f 2 2 H 1 ( 2 L 2

 222122 R 3 ) , provided κ is suciently small. Combining (3.110), (3.111) one gets (3.109).We are now in the position to prove Proposition 3.9. Consider the equationi du dτ = P H(τ )P u, u(s) = f,(3.112)whereH(τ ) = H + τ -1 l, l = α 1 σ 3 -iν 1 ( 1 2 + y • ∇), α 1 , ν 1 ∈ R, s > 0 and f ∈ S(R 3 ) verifying f, σ 3 ζ ± = 0. Fix κ such 0 < κ ≤ κ 2 and consider the functional G 1 (τ ) = Hu, σ 3 u +c 0 E * κ σ 3 u (R + ) . Clearly,(3.113)G 1 (τ ) ≤ C u(τ ) 2 H 1 (R 3 ) .
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 41 Linearized evolution 99 Moreover, since u(τ ), σ 3 ζ ± = 0, choosing c 0 suciently large we get:(3.114) G 1 (τ ) ≥ c 1 u(τ ) 2 H 1 (R 3 ) . + |ν 1 |) ∇u(τ ) 2 L 2 (R 3 ) . Next, we address E * κ σ 3 u 2 L 2 (R 3 ) . Denote Φ(τ ) = E * κ σ 3 u(τ ). Then Φ(τ, k) solves (3.116) iΦ τ = k 2 σ 3 Φ + 1 τ Y,whereY = E * κ σ 3 lu.Integrating by parts and applying Lemma 3.14 (ii), one can rewrite Y in the formY (τ, k) = Y 0 (τ, k) + Y 1 (τ, k),whereY 0 (τ, k) = iν 1 k∂ k Φ(τ, k),and Y 1 (τ, k) admits the estimateY 1 (τ ) L 2 (R + ) ≤ C(|α 1 | + |ν 1 |) u(τ ) L 2 (R 3 ) .Therefore,(3.116) givesd dτ Φ(τ ) 2 L 2 (R + ) ≤ C τ (|α 1 | + |ν 1 |) u(τ ) 2 L 2 (R 3 ) .Combining this inequality with (3.116) and taking into account (3.114) one gets(3.117) 

G 1 (

 1 τ ) ≤ C s τ C(|α 1 |+|ν 1 |) G 1 (s), 0 < τ ≤ s,which by (3.113), (3.114), leads to the bound (3.118)U (τ, s)f H 1 (R 3 ) ≤ C s τ C(|α 1 |+|ν 1 |)
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 33231 Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R is chosen suciently large.Computing the derivative d dτ H 2 u(τ ), σ 3 Hu(τ ) and taking into account (3.117) we get(+ |ν 1 |) u(τ ) 2 H 3 (R 3 ) ≤ C τ (|α 1 | + |ν 1 |)G 2 (τ ).

U

  (τ, s)f H 3 (R 3 ) ≤ C s τ C(|α 1 |+|ν 1 |) f H 3 (R 3 ) , for any 0 < τ ≤ s.The H 2 bounded stated in Proposition 3.9 follows from (3.118), (3.120) by interpolation.
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	Part I
	Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three
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  -itk 2 dk. One can notice that F m (k) is the sum of terms of the , and s can be 0, |x|, |y| or |x| + |y|. Let us consider the term

	form by e i	i 8π|x||y| g(k)e ±iks , where g(k) is a rational function of k and √ -2ω-k 2 s	√	-2ω -k 2 possibly multiplied

  2.1. Let us begin by noticing that the solitary manifold M dened in(1.16) is a symplectic submanifold of (L 2 (R 3 , C), Ω), invariant under the ow of (1.7). Its tangent space at the standing wave Φ ω is two-dimensional and is generated by the vectors d dθ {e iθ Φ ω } θ=0 and d dω {Φ ω } ω=0 , in real representation given by (second component vanishing). As already remarked the couple of vectors {e 1 , e 2 } is a basis for N g (L). It is immediately seen that Ω(e 1 , e 2 ) = 1

						2	d dω Φ ω	2 = 0, thanks to the condition
	d dθ	{e iθ Φ ω } θ=0 → e 1 =	0 Φ ω	and	d dω	{Φ ω } → e 2 =	ϕ ω 0	,

where ϕ ω = d dω Φ ω was dened in Section 1.4. However, when no confusion arises, we use the shorthand expressions Φ ω and ϕ ω with the meaning of the corresponding real representative Chapter 1. Absence of nonvanishing eigenvalues vectors

  ).

	1.5. Modulation equations	21
	By equation (1.15) and Proposition 1.3, equation (1.39) can be rephrased as	
	(1.40)	

  , where d was dened in the statement of the present proposition. Furthermore, again by Theorem 1.16,

  Theorem 2.1. (Modulation equations) If χ(t) is a solution of equation (2.7) such that P 0 χ(t) = 0 for all t ≥ 0 and ω(t) and γ(t) are continuously dierentiable in time, then ω and γ

	are solutions of
	(2.8)

  Substituting the expansion for the nonlinear part N given in(2.13) in equation (2.8) and considering the asymptotics (2.14) one gets

	Chapter 2. Presence of purely imaginary eigenvalues
	Equation for ω

1 . 

Remark 2.4. Note that since the nonlinearity depends only on the charges the same holds for its Taylor expansion.

  11 , and c 02 = i 3ξ Z 02 . Remark 2.19. For later convenience let us note that, since Z 21 , Z 20 , Z 11 , and Z 02 are purely imaginary, one has

  ω(t), γ(t), z(t) ∈ C 1 ([0, +∞)) solutions of the modulation equations (2.8)-(2.10), and two constants ω ∞ , M > 0 such that

	ω ∞ = lim t→+∞	ω(t) and for all t ≥ 0
	u(t, x) = e i( t 0 ω(s)ds+γ(t)) Φ ω(t) (x) + z(t)Ψ(t, x) + z(t)Ψ

* (t, x) + f (t, x) ,

  From the expansions (2.15), (2.16) and (2.17) for ω(t), γ(t) and ż(t) -iξz(t) follow that the function G(t) is made by a quadratic part consisting in the terms multiplied e iΘ(t) z 2 ∞ , e iΘ(t) z ∞ 2 or e iΘ(t) |z ∞ | 2 , with

  It follows that g(t * ) = O(t * ) = O(|x|) as |x| → +∞. Hence, one can represent (0, +∞) = (0, t * -g(t * )] ∪ (t * -g(t * ), t * + g(t * )] ∪ (t * + g(t * ), +∞). Integrating by parts once more one has

  ). Let us start with the eigenvalue iξ. The following proposition holds true. The eigenspace associated to iξ is spanned by

	2.6. Appendices		69
	Proposition 2.39.		
	Remark 2.38. Numerical evidences (see Lemma 2.20) suggest σ * =	√ 2 3+1 √ 2	0, 96.
	2.6 Appendices		
	2.6.1 Eigenfunctions associated to ±iξ and generalized eigenfunctions
	The eigenfunctions associated to ±iξ		
	Here we want to describe the eigenspaces associated to the simple purely imaginary eigenvalues ±iξ = ±i2σ √ 1 -σ 2 ω.

  .9) Furthermore, there exists ζ * ∈ Ḣs , for any s > 1 2 -ν, such that, as t → +∞, e iα(t) λ 1/2 (t)χ ap (t, λ(t)•)e it∆ ζ * → 0 in Ḣ1 ∩ Ḣ2 . (ii) The corresponding error R = -i du ap dt -∆u ap -|u ap | 4 u ap satises

(3.10) 

  3 20 )(1+2ν) .

	Finally, applying Lemma 3.5 (estimates (3.21), (3.22)), Lemma 3.8 (estimates (3.41), (3.42),(3.43),(3.46))
	and (3.51), (3.53), it is not dicult to check that
	(3.64)

E 4 H 2 ≤ Ct -3(1+2ν) . Combining (3.61), (3.62), (3.63), (3.64), we get (3.10), which concludes the proof of Proposition 3.2.

  ). Our intention is to view J as a mapping in the space C([τ 1 , +∞), H 2 rad ) equipped with the norm |f | = sup τ ≥τ 1 f (τ ) H 2 τ 1+1/16 and to show that J is contraction of the unite ball |f | ≤ 1 into itself provided |α 0 | + |ν| is suciently small and τ 1 is chosen suciently large. Indeed, by (3.67), (3.66) one has, for anyf, g ∈ H 2 with f H 2 ≤ 1, g H 2 ≤ 1, F 1 (f ) -F 1 (g) H 2 ≤ C( f H 2 + g H 2 + (|α 0 | + |ν|)τ -1 ) f -g H 2 , P ± (F 2 (f ) -F 2 (g)) ≤ C( f H 2 + g H 2 + (|α 0 | + |ν|)τ -1 ) f -g H 2 ,1}, provided |α 0 | + |ν| is sucientlt small. This means that for τ 1 suciently large, J is a contraction of the unit ball |f | ≤ 1 into itself and consequently, has a unique xe point f that satisesf (τ ) H 2 ≤ τ -1-1/16 , ∀τ ≥ τ 1 ,which together with Proposition 3.2 gives Theorem 3.1.

	which together with (3.68) and Proposition 3.9 gives		
	|J(f ) | ≤	1 2	+ Cτ 1 -1/16	,	|J(f ) -J(g) | ≤ (	1 2	-1/16 1 + Cτ

) |f -g |, for any f, g ∈ { |h | ≤

+λ ( √ ωr),

√ -ω-iλ|y| e i √ -ω+iλ|x| + [(σ + 1) √ ω + i √ -ω + iλ]e i √ -ω-iλ(|x|+|y|) 8π|x||y|[(2σ + 1)ω + i(σ + 1) √ ω √ -ω -iλ + √ -ω + iλ -√ -ω -iλ √ -ω + iλ] + -i [(σ + 1) √ ω + i √ -ω + iλ]e i √ -ω+iλ(|x|+|y|) -σ √ ωe i √ -ω+iλ|y| e i √ -ω-iλ|x| 8π|x||y|[(2σ + 1)ω + i(σ + 1) √ ω √ -ω -iλ + √ -ω + iλ -√ -ω -iλ √ -ω + iλ]

(2σ+1)ω+(σ+1) √ ω(i √ -(η+ω)-√ ω-η)-i √ η 2 -ω 2 -(2σ+1)ω+(σ+1) √ ω(i √ -(η+ω)+ √ η+ω)-i √ η 2 -ω 2 D.

This choice has no specic meaning here. To produce an approximate solution with an error verifying (3.10) it is sucient to require (2N + 3)ε1 > 3(1 + 

2ν)/2, 0 < ε1 < 1+2ν 20 , see (3.24) and (3.45),(3.46).
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Chapter 3. Nondispersive vanishing and blow up at innity for the energy critical nonlinear Schrödinger equation in R 3

The ground state W is known to play an important role in the dynamics of (3.1). It was proved by Kenig and Merle [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case[END_REF] that E(W ) is an energy threshold for the dynamics in the following sense. If u 0 is radial and E(u 0 ) < E(W ) then (i) the solution of (3.1) is global and scatters to zero as a free wave in both directions, provided ∇u 0 L 2 < ∇W L 2 ;

(ii) the solution blows up in nite time in both direction, provided u 0 ∈ L 2 and ∇u 0 L 2 > ∇W L 2 .

The behavior of radial solutions with critical energy E(u 0 ) = E(W ) was classied by Duyckaerts and Merle in [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]. In this case, in addition to the nite time blow up and scattering to zero, one has the existence of solutions that converge as t → ∞ to a rescaled ground state. In the case of energy slightly greater than E(W ) the dynamics is expected to be richer and to include the solutions that as t → ∞ behave like e iα(t) λ 1/2 (t)W (λ(t)x) with fairly general α(t) and λ(t). For a closely related model of the critical wave equation, the existence of this type of solutions with λ(t) → ∞ (blow up at innity) and λ(t) → 0, tλ(t) → ∞ (non-dispersive vanishing) was recently proved by Donninger and Krieger [START_REF] Donninger | Nonscattering solutions and bluw up at innity for the critical wave equation[END_REF]. Our objective in this chapter is to obtain an analogous result for NLS (3.1). More precisely, we prove the following.

Theorem 3.1. There exists β 0 > 0 such that for any ν, α 0 ∈ R with |ν| + |α 0 | ≤ β 0 and any δ > 0 there exist T > 0 and a radial solution u ∈ C([T, +∞), Ḣ1 ∩ Ḣ2 ) to (3.1) of the form:

where λ(t) = t ν , α(t) = α 0 ln t, and ζ(t) veries:

for all t ≥ T . The constants C here and below are independent of ν, α 0 and δ. Furthermore, there exists

In order to prove the main Theorem 3.1, in Section 2 we construct (Proposition 3.2) a suciently good approximate solution of (3.1) very much in the spirit of [START_REF] Donninger | Nonscattering solutions and bluw up at innity for the critical wave equation[END_REF], [START_REF] Krieger | Slow blow-up solutions for the H 1 (R 3 ) critical focusing semilinear wave equation in R 3[END_REF], [START_REF] Perelman | Blow up dynamics for equivariant critical Schrödinger maps[END_REF]. In Section 3 we build up an exact solution by solving the problem for the small remainder with zero initial data at innity, the main technical tool of the construction being some suitable energy type estimates for the linearized evolution. These estimates are proved in Section 4.

Approximate solutions

In this section we prove the following result. Proposition 3.2. For any ν and α 0 suciently small and any 0 < δ ≤ 1 there exists a radial approximate solution u ap ∈ C ∞ (R 3 , R * + ) of (3.1) such that the following holds for t ≥ T with some T = T (ν, α 0 , δ) > 0.
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We look for a solution to (3.12) of the form

Substituting (3.13) into (3.12) and identifying the terms with the same powers of t we get the following system for {χ k } k≥1 :

k and D

k being contributions of it -2ν dχ dt -N 1 (χ) and -N 2 (χ) respectively:

k (ρ).

Note that D k depends on χ p , 1 ≤ p ≤ k -1 only:

We subject (3.14) to zero initial conditions at 0: 

with some coecients α (k) l,j verifying α (k) k,2m = 0 for all k, m. The asymptotic expansion (3.15) can be dierentiated any number of times with respect to ρ.

Proof. It will be convenient for us to rewrite (3.14) as (3.16)

For k = 1 (3.16) gives (3.17)

Approximate solutions 79

The homogeneous equation L ± f = 0 has two explicit solutions Φ ± , Θ ± given by

Therefore, solving (3.17) with zero initial conditions at the origin we obtain

Since W , W 1 are C ∞ even functions, v + 1 and v - 1 are also C ∞ functions with even Taylor expansion at ρ = 0 that starts at order 2. Furthermore, the asymptotic expansions of v + 1 and v - 1 as ρ → +∞ can be obtained directly from (3.19). As claimed, one has

1,j ρ 2j-1 ln ρ, as ρ → +∞.

We next proceed by induction. Let us consider k > 1 and assume that we have found

Then one can easily check that D k is an even C ∞ function with a Taylor series at 0 starting at order 2(k -1) and as ρ → +∞, D k admits an asymptotic expansion of the form

) at the origin. Finally, the asymptotic expansion at innity follows directly from the representation

Remark 3.4. Clearly, for any k, χ k is a polynomial with respect to α 0 and ν of the form

where the coecients χ k m,n are C ∞ functions of ρ with an even Taylor expansion at 0 that starts at order 2k. As ρ → +∞, χ k m,n , admits an asymptotic expansion of the form (3.15).

It follows from our construction that χ (N ) veries,

As it will become clear later, to prove Proposition 3.2, it is sucient to consider only three rst terms of expansion (3.27). Therefore, we look for an approximate solution of the form 

where

Here µ n = α 0 + i 4 (2n + 1)(1 + 2ν). We require that S n,l = 0, n = 0, 1, 2, l = 0, 1, which means that the corresponding A n,l have to solve

In addition, in order to have the matching with the inner region, A n,l have to satisfy

Lemma 3.6. There exists a unique solution of (3.29) that as y → 0 admits an asymptotis expansion of the form

First of all note that the equation (L + µ)f = 0 has a basis of solutions e 1 (y, µ), e 2 (y, µ) such that:

, where ẽ1 is an entire function of y and µ, odd with respect to y; (ii) e 2 is a entire function of y and µ, even with respect to y, and as y → 0, e 2 (y, µ) = 1 + O(y 2 ). 

0,0 e 2 (y, µ 1 ).

We next consider the remaining equations of (3.29). Equation (L + µ 2 )A 2,1 (y) = 0 and (3.31) yield A 2,1 (y) = c 0 e 1 (y, µ 2 ), with some constant c 0 . Then, for A 2,0 we have (L + µ 2 )A 2,0 = F , where
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As y → 0, F has an asymptotic expansion of the form

with some coecients κ i , κ -2 and κ -1 + c 0 being independent of c 0 . Write A 2,0 (y) = -κ -2 6y 3 + A 2,0 (y). Then A 2,0 solves (3.33)

where F = F + κ -2 6 (L + µ 2 ) 1 y 3 has the following asymptotics as y → 0:

Then Equation (3.33) has a unique solution of the form A 2,0 (y) = α

(1) 0,-1 e 1 (y, µ 2 ) + a C ∞ odd function.

Remark 3.7. By uniqueness, A n,l given by Lemma 3.6 verify matching conditions (3.30). Note also that all A n,l are entire functions of α 0 and ν.

We next study the behavior of A n,l as y → +∞. To this purpose notice that for any µ ∈ C, equation (L + µ)f = 0 has a basis of solutions f 1 (y, µ), f 2 (y, µ) such that yf 1 , yf 2 are smooth functions in both variables and as y → +∞ one has (3.34)

These asymptotics are uniform in µ on compact subsets of C and can be dierentiated any number of times with respect to y.

with some coecients d n j , j = 1, 2, n = 0, 1, 2. As a consequence, as y → +∞, one has

Asymptotics (3.36) can be dierentiated any number of times with respect to y.

Let us now consider A 2,0 and write it as (3.37)

A 2,0 (y) = 2d 2 1 ν ln yf 1 (y, µ 2 ) -2(ν + 1)d 2 2 ln yf 2 (y, µ 2 ) + A 2,0 (y).

Then A 2,0 (y) solves (3.38)

It follows from the asymptotics (3.34), (3.36) that G j , j = 1, 2, has the following behavior as y → +∞,

e imy 2 /4 y -2iα 0 ν(2m-1) G 2,m (y),

for any l ≥ 0, provided ν is suciently small.

Integrating (3.38) one gets (3.39)

A 2,0 (y

Here λ i , i = 1, 2, is a constant and g i , i = 1, 2, is the solution of (L + µ 2 )g i = G i , with the following behavior as y → +∞:

for any l ≥ 0.

Denote

The next lemma is a direct consequence of (3.30), (3.34), (3.36), (3.37), (3.39) and (3.40). Lemma 3.8. For any α 0 , ν ∈ R suciently small there exists T (α 0 , ν) > 0 such that for t ≥ T (α 0 , ν) the following holds. (i) χ ap ss (t) veries

(ii) The error R ss (t) admits the estimate 

for any l ≥ 0 and 1 10 t

The remote region

We next consider the remote region |x| ≥ 1 10 t 1/2+ε 2 . In this region we take as an approximate solution to (3.1) the following radial prole:

where

It follows from the asymptotics (3.34) that for t ≥ T with some T = T (δ) > 0 and any l ≥ 0, one has

Furthermore, v 2 can be written as

with v2,1 verifying, for any l ≥ 0,

We next address v 3 . One has

3.2. Approximate solutions 85 for any l ≥ 0 and t ≥ T (δ).

As a direct consequence of estimates (3.47), (3.49), (3.50), one obtains

≤ Ct -5/4 , l = 1, 2, 

Proof of Proposition 3.2

We are now in position to conclude the proof of Proposition 3.2. Fix ε 2 such that 3 8 ≤ ε 2 < 1 2 and consider the radial prole u ap (t, x) dened by

where u ap in (t, x) = e iα 0 ln t t ν/2 ψ ap in (t, t ν |x|). Write u ap as u ap (t, x) = e iα 0 ln t t ν/2 (W (y) + χ ap (t, y)), y = t ν x. By Lemma 3. 

which together with (3.101) leads to the estimates

We next compute < h κ , σ 3 (ξ 1 ± ξ 0 ) >. By (3.101), (3.102), we have

which gives (3.99).

Proof of Proposition 3.9

We start by deriving some coercivity bounds for the operator H.

Lemma 3.17. There exists κ 0 , 0 < κ 0 ≤ k 0 , and C > 0 such that (3.105)

Remark 3.18. Notice that since ζ ± , h κ ∈< y > -1 L 2 (R 3 ) the scalar products that appear in (3.106) are well dened for any f ∈ Ḣ1 .

Proof. The proof of Lemma 3.17 Furthermore, since f veries (3.106), one has A(κ) α 0 α 1 = g, σ 3 h κ g, σ 3 σ 1 hκ , where A(κ) = -ξ 0 , σ 3 h κ ξ 1 , σ 3 h κ h κ , σ 3 ξ 0 -h κ , σ 3 ξ 1 .

By (3.99),

A(κ) = -2π 1 1 1 -1 + O(κ 1/2 ln κ), κ → 0.

Therefore, for κ suciently small, one has

As a consequence, ∇f L 2 (R 3 ) ≤ Cκ -1/2 ∇g L 2 .

Combining this inequality with (3.107) we get (3.105).

Next, we prove Lemma 3.20. There exists κ 1 , 0 < κ 1 ≤ k 0 , and C > 0 such that for any 0 < κ ≤ κ 1 one has

for all f ∈ H 1 rad (R f L 2 (0,κ/4) ≤ Cκ 1/2 f L 2 (R 3 ) .