
HAL Id: tel-00826616
https://theses.hal.science/tel-00826616v1

Submitted on 27 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming Environment, Run-Time System and
Simulator for Many-Core Machines

Olivier Certner

To cite this version:
Olivier Certner. Programming Environment, Run-Time System and Simulator for Many-Core Ma-
chines. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Sud - Paris XI, 2010.
English. �NNT : �. �tel-00826616�

https://theses.hal.science/tel-00826616v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ de PARIS-SUD

U.F.R. SCIENTIFIQUE d’ORSAY

THÈSE
présentée pour obtenir le grade de

DOCTEUR en SCIENCES

de l’UNIVERSITÉ de PARIS XI ORSAY

Spécialité : Informatique
par

Olivier CERTNER

Sujet :

Environnement de programmation,
support à l’exécution et simulateur pour

machines à grand nombre de cœurs

Programming Environment,
Run-Time System and Simulator

for Many-Core Machines

Soutenue le 15 décembre 2010 devant le jury composé de :

M. Lieven Eeckhout Rapporteur
M. François Bodin Rapporteur
M. Pascal Sainrat Examinateur
M. Jean-José Bérenguer Examinateur
M. Bruno Jégo Examinateur
M. Olivier Temam Directeur

© 2010–2011, 2013 Olivier Certner

Tous droits réservés pour tous pays.
Imprimé en France.

All rights reserved.
Printed in France.

Revisions of this document:

0.1 This is the first version released to the jury. It missed the content of the “Distributed
Work Management” chapter, the “General Conclusion”, some appendices and a summary
of the thesis in French.

0.2 The contents of the “Distributed Work Management” (Chapter 9) and of the
“General Conclusion” are now released. An appendix containing some example Capsule
code has been added.

1.0 This is the version that was released to the jury on the defense day. It includes
minor modifications. Most of the suggestions by some members of the jury are among
them.

1.1 Added dedications and acknowledgements.

1.2 Added an appendix (some example code for the Capsule distributed-memory
run-time system). Added an index. Reworked some figures. Minor corrections throughout
the manuscript.

À mes grands-parents
À mes professeurs

Résumé

L’accroissement régulier de la fréquence des micro-processeurs et des importants gains
de puissance qui en avaient résulté ont pris fin en 2005. Les autres principales techniques
matérielles d’amélioration de performance pour les programmes séquentiels (exécution dans
le désordre, antémémoires, prédiction de branchement, etc.) se sont largement essouflées.
Conduisant à une consommation de puissance toujours plus élevée, elles posent de délicats
problèmes économiques et techniques (refroidissement des puces). Pour ces raisons, les
fabricants de micro-processeurs ont choisi d’exploiter le nombre croissant de transistors
disponibles en plaçant plusieurs cœurs de processeurs sur une même puce.

Par cette thèse, nous avons pour objectif et ambition de préparer l’arrivée probable,
dans les prochaines années, de processeurs multi-cœur à grand nombre de cœurs (une
centaine ou plus). À cette fin, nos recherches se sont orientées dans trois grandes di-
rections. Premièrement, nous améliorons l’environnement de parallélisation Capsule,
dont le principe est la parallélisation conditionnelle, en lui adjoignant des primitives de
synchronization de tâches robustes et en améliorant sa portabilité. Nous étudions ses
performances et montrons ses gains par rapport aux approches usuelles, aussi bien en
terme de rapidité que de stabilité du temps d’exécution.

Deuxièmement, la compétition entre de nombreux cœurs pour accéder à des mémoires
aux performances bien plus faibles va vraisemblablement conduire à répartir la mémoire au
sein des futures architectures multi-cœur. Nous adaptons donc Capsule à cette évolution
en présentant un modèle de données simple et général qui permet au système de déplacer
automatiquement les données en fonction des accès effectués par les programmes. De
nouveaux algorithmes répartis et locaux sont également proposés pour décider de la
création effective des tâches et de leur répartition.

Troisièmement, nous développons un nouveau simulateur d’évènements discrets, Si-
Many, pouvant prendre en charge des centaines à des milliers de cœurs. Nous montrons
qu’il reproduit fidèlement les variations de temps d’exécution de programmes observées sur
un simulateur de niveau cycle jusqu’à 64 cœurs. SiMany est au moins 100 fois plus rapide
que les meilleurs simulateurs flexibles actuels. Il permet l’exploration d’un champ plus
large d’architectures ainsi que l’étude des grandes lignes du comportement des logiciels
sur celles-ci, ce qui en fait un outil majeur pour le choix et l’organisation des futures
architectures multi-cœur et des solutions logicielles qui les exploiteront.

Abstract

Since 2005, chip manufacturers have stopped raising processor frequencies, which had
been the primary mean to increase processing power since the end of the 90s. Other
hardware techniques to improve sequential execution time (out-of-order processing, caches,
branch prediction, etc.) have also shown diminishing returns, while raising the power
envelope. For these reasons, commonly referred to as the frequency and power walls,
manufacturers have turned to multiple processor cores to exploit the growing number of
available transistors on a die.

In this thesis, we anticipate the probable evolution of multi-core processors into
many-core ones, comprising hundreds of cores and more, by focusing on three important
directions. First, we improve the Capsule programming environment, based on condi-
tional parallelization, by adding robust coarse-grain synchronization primitives and by
enhancing its portability. We study its performance and show its benefits over common
parallelization approaches, both in terms of speedups and execution time stability.

Second, because of increased contention and the memory wall, many-core architectures
are likely to become more distributed. We thus adapt Capsule to distributed-memory
architectures by proposing a simple but general data structure model that allows the
associated run-time system to automatically handle data location based on program
accesses. New distributed and local schemes to implement conditional parallelization and
work dispatching are also proposed.

Third, we develop a new discrete-event-based simulator, SiMany, able to sustain
hundreds to thousands of cores with practical execution time. We show that it success-
fully captures the main program execution trends by comparing its results to those of a
cycle-accurate simulator up to 64 cores. SiMany is more than a hundred times faster than
the current best flexible approaches. It pushes further the limits of high-level architectural
design-space exploration and software trend prediction, making it a key tool to design
future many-core architectures and to assess software scalability on them.

ix

Contents

Remerciements xv

Introduction 1

I Capsule: Parallel Programming Made Easier 7

1 Parallel Programming Is Hard 9
1.1 Work Splitting and Dispatching . 10
1.2 Working on the Same Data at the Same Time 10

1.2.1 Atomic Operations and Mutual Exclusion Primitives 11
1.2.2 Transactional Memory . 11

1.3 Task Dependencies . 12
1.4 The Capsule Environment . 13

2 The Capsule Programming Model 15
2.1 Tasks . 16
2.2 Conditional Parallelization . 17
2.3 Recursive Work Declaration . 19
2.4 Coarse-Grain Task Synchronization . 22
2.5 Other Primitives and Abstractions . 27

3 Run-Time System Implementation 29
3.1 Task Abstraction and Scheduling . 30
3.2 Conditional Parallelization . 32
3.3 Synchronization Groups . 35
3.4 Portability Abstractions . 37

x CONTENTS

4 Performance Study 41
4.1 Performance Scalability and Stability . 41

4.1.1 Motivating Example . 43
4.1.2 Benchmarks and Experimental Framework 46
4.1.3 Iterative Execution Sampling . 48
4.1.4 Experimental Results . 50

4.2 Performance Dependence on the Run-Time Platform 54
4.2.1 Run-Time System Implementation 54
4.2.2 Hardware Architecture . 56
4.2.3 Task Granularity and Other Program Characteristics 58

5 Related Work 63
5.1 Data Parallel Environments . 63

5.1.1 Languages . 63
5.1.2 STAPL . 64

5.2 Asynchronous Function Calls . 65
5.2.1 Cool . 65
5.2.2 Cilk . 66
5.2.3 Thread Building Blocks . 68

5.3 Parallel Semantics Through Shared-Objects 69
5.3.1 Orca . 69
5.3.2 Charm++ . 70

6 Conclusion and Future Work 73

II Distributed Architecture Support in Capsule 75

7 Towards Distributed Architectures 77

8 Distributed Data Structures 81
8.1 Data Structure Model . 84

8.1.1 Concepts . 85
8.1.2 Programming Interface . 87

8.2 Implementation Traits . 90
8.2.1 Object Management Policy . 91
8.2.2 Object References . 92
8.2.3 Cell Structuration . 96

CONTENTS xi

8.2.4 Hardware Support . 98
8.3 Status and Future Directions . 100

9 Distributed Work Management 103
9.1 Probe Policy and Task Queues . 104
9.2 Design Considerations . 106

9.2.1 Classical Strategies . 106
9.2.2 Push or Pull? . 108

9.3 Load-Balancing Policy . 108
9.3.1 Migration Decision Algorithm . 109
9.3.2 From Local Decisions to Global Balance 111

9.4 Migration Protocol and Interactions With Task Queues 113
9.4.1 Concurrent Task Migrations . 113
9.4.2 Preserving Locality . 115

10 Related Work 117
10.1 SPMD and Task-Based Languages . 117

10.1.1 SPMD Languages . 117
10.1.2 Cilk . 119

10.2 Memory Consistency . 120
10.2.1 Sequential Consistency . 120
10.2.2 Strong Ordering . 122
10.2.3 Practical Sufficient Conditions for Sequential Consistency 124
10.2.4 Weak Ordering . 125
10.2.5 Processor Consistency . 127
10.2.6 Slow and Causal Memories . 128
10.2.7 Release Consistency . 129
10.2.8 Entry Consistency . 129
10.2.9 Scope Consistency . 131
10.2.10Location Consistency . 132
10.2.11Total Store, Partial Store and Relaxed Memory Order 134
10.2.12Local Consistency . 134

10.3 Distributed-Shared Memory . 135
10.3.1 Ivy . 135
10.3.2 Munin . 139
10.3.3 TreadMarks . 142
10.3.4 Other DSMs with Relaxed Consistency 144

xii CONTENTS

10.3.5 Fine-Grain Coherency . 145
10.4 Distributed Objects . 148

10.4.1 Emerald . 148
10.4.2 Amber . 149
10.4.3 Orca . 150
10.4.4 Charm++ . 153
10.4.5 CRL . 155

III SiMany: Simulating Many-Core Architectures 157

11 The Need for Many-Core Simulation 159

12 Virtual Timing 163
12.1 Principles . 163

12.1.1 Timing Annotations . 163
12.1.2 Distributed Timing . 164
12.1.3 Distributed Spatial Synchronization 165
12.1.4 Non-Connected Sets of Active Cores 168
12.1.5 Time Drift of Dynamically Created Tasks 168

12.2 Ensuring Correct Simulation . 170
12.2.1 Program Execution Correctness . 170
12.2.2 Locks and Critical Sections . 171
12.2.3 Deadlock Avoidance Proof . 172

13 Simulator Implementation 175
13.1 Implementing an Efficient Simulation . 175

13.1.1 Direct Execution of Computations 175
13.1.2 Software Architecture . 175
13.1.3 Overhead of Network Communications and OS 177
13.1.4 Userland Threading and Scheduling 179

13.2 Modeling a Network of Cores . 180
13.2.1 Simulated Architecture Overview 180
13.2.2 Network Interface Implementation 181
13.2.3 Bandwidth and Concurrency Limits 182
13.2.4 Control Messages . 184
13.2.5 Network Interface and Core Interactions 185
13.2.6 Programming Model Support . 186

CONTENTS xiii

14 Experimental Evaluation 189
14.1 Framework and Methodology . 189

14.1.1 Simulator Parameters . 189
14.1.2 Benchmarks . 191

14.2 Experimental Results and Hardware Exploration 192
14.2.1 Simulator Validation . 192
14.2.2 Simulation Speed . 194
14.2.3 Speedups on Regular 2D meshes 195
14.2.4 Simulation Time/Accuracy Trade-Off 196
14.2.5 Clustered Architectures . 202
14.2.6 Polymorphic Architectures . 202

15 Related Work 205
15.1 General Discrete-Events Simulation . 205
15.2 Single-Core Simulation . 208

15.2.1 Monolithic Simulation . 208
15.2.2 Modular Simulation . 209
15.2.3 Speeding up the Simulation . 210

15.3 Multi-Core and Many-Core Simulation . 212
15.3.1 Sampling Techniques May Not Scale 212
15.3.2 Conservative Discrete-Events Based Simulators 214
15.3.3 Relaxed Synchronization . 215
15.3.4 Other Approaches . 216

16 Conclusion And Future Work 219

General Conclusion 221

Appendices 231

A Quicksort Example Code 233

B Dijkstra Example Code 243

xiv CONTENTS

Selected Personal Bibliography 259

Bibliography 263

Index 291

xv

Remerciements

C’est avec une grande satisfaction et une certaine émotion que j’écris ces lignes, quelques
mois après le jour effectif de ma soutenance. Se consacrer quatre ans à l’exploration
de sujets passionants et complexes fut une aventure extrêmement enrichissante sur les
plans scientifique et technique. Une telle durée autorise en effet la poursuite de projets
scientifiques relativement ambitieux, pour peu que l’on jouisse de la liberté suffisante, ce
qui fut mon cas. Elle permet aussi d’explorer leurs applications pratiques dans un cadre
assez général, même si cela ne fait (malheureusement ?) pas partie des objectifs premiers
d’une thèse.

Avant de parler plus avant du déroulement de la thèse et de remercier les personnes
qui y ont directement ou indirectement contribué, je souhaiterais expliquer ce qui m’a
conduit à la faire et l’enchaînement des évènements préalables. J’ai ainsi l’espoir de servir
l’intérêt d’éventuels lecteurs qui se demanderaient s’ils souhaitent suivre la même voie.
D’autres, scientifiques ou ingénieurs plus expérimentés, pourront y trouver un témoignage
que j’espère utile sur les facteurs qui peuvent pousser un étudiant à entreprendre un
doctorat.

J’avais commencé à envisager un projet de thèse quelques années avant de le concrétiser,
à peu près au moment de ma scolarité à l’ENST à Paris (2002-2003). Il était alors possible
de suivre des cours de certains DEA d’informatique en même temps que ceux de l’école,
avec comme débouché possible le démarrage d’une thèse. Poursuivant en cela la grande
tradition française de l’enseignement supérieur scientifique, le contenu de ces DEA était fort
théorique. Ils n’abordaient malheureusement pas, ou seulement de manière superficielle,
des problématiques informatiques plus concrètes et pourtant très importantes comme la
programmation parallèle, l’ordonnancement de tâches dans un cadre général où aucune
information n’est disponible a priori sur leur durée d’exécution, les différentes techniques
d’optimisation de code lors de la phase de compilation ou encore le fonctionnement des
différents modules d’un système d’exploitation.

Or ces problématiques n’avaient justement cessé d’être l’objet de mon intérêt et de
ma curiosité ; elles étaient celles que je souhaitais étudier. En outre, assister à des cours
d’autres DEA, sans aménagement de la scolarité à l’ENST, paraissait difficile. C’était
également se condamner à n’avoir jamais le temps d’approfondir quoi que ce soit. C’est
ainsi que je renonçais provisoirement à ce projet. À la fin de ma scolarité, je démarrais ma
carrière en tant qu’ingénieur de développement chez un grand éditeur de logiciel français.

Après deux ans passés à ce poste, qui m’apporta une solide expérience des bonnes

xvi Remerciements

pratiques de production et de gestion de code à une échelle industrielle, il m’apparut
plus clairement que l’intégration seule ne me suffisait pas et que l’approfondissement de
problématiques informatiques fondamentales était important pour moi. Le temps passant,
il deviendrait plus difficile de se consacrer à une thèse. Le moment semblait propice,
d’autant qu’à la même époque, les fabricants de micro-processeurs s’étaient orientés vers
un nouveau type de puce, les multi-cœurs, intégrant plusieurs processeurs destinés à
travailler en parallèle. Cette évolution m’intéressant énormément, je réactivais mon projet
de thèse initial.

Il me fallait à présent trouver une équipe qui pourrait m’accueillir et dont les grands
axes de recherche seraient compatibles avec mes centres d’intérêt. Assez rapidement, j’en
isolais deux. La première, à Rennes, Caps, dirigée par André Seznec, se consacrait à l’étude
de mécanismes matériels micro-architecturaux permettant d’améliorer la performance des
processeurs classiques, c’est-à-dire séquentiels. Plus précisément, leur travaux portaient,
entre autres, sur les mécanismes de remplacement des données au sein des mémoires
caches, sur la prédiction de branchement et sur le SMT (Simultaneous MultiThreading).

La seconde équipe, Alchemy (Architecture, Languages and Compilers to Harness the
End of Moore Years), basée à Saclay en région parisienne et dirigée par Olivier Temam,
visait à inventer et explorer des techniques pouvant potentiellement prendre le relais des
architectures séquentielles classiques, dont les progrès deviennent de plus en plus difficiles
et de moins en moins rentables. Parmi les axes de recherche qu’elle suivait, on trouve par
exemple les processeurs SMT, les multi-cœurs et les modèles de programmation associés,
la simulation d’architectures et de systèmes, les réseaux de neurones, la mutualisation
d’accélérateurs ou encore l’amélioration du modèle polyhédrique (optimisation de la
compilation de boucles), en théorie et en pratique, notamment par l’intégration dans GCC
(voir par exemple Graphite, intégré par défaut depuis la version 4.5).

Mon choix s’est assez rapidement porté sur la seconde équipe, dont les centres d’intérêt
correspondaient mieux à mes attentes. En effet, les techniques d’optimisation des proces-
seurs séquentiels m’étaient en grande partie déjà connues. Le parallélisme m’apparaissait
comme un terrain d’études a priori plus obscur et donc potentiellement plus excitant et
formateur. Le principe n’était pas nouveau (comme on pourra le constater à la lecture
de l’introduction de cette thèse) mais l’environnement matériel, logiciel et commercial
dans lequel il allait être mis en œuvre différait sensiblement de celui qu’avaient connu les
pionniers de la discipline.

L’équipe Caps mentionnée plus haut a aujourd’hui laissé la place à un nouveau projet
centré sur les problématiques des multi-cœurs, ce qui semble a posteriori valider mon
choix. Il est cependant trop tôt pour jauger correctement la pertinence à long terme de
cette évolution, comme l’indiquent un nombre grandissant d’experts. La conclusion de
cette thèse le rappelera : le futur des multi-cœurs est incertain et de nombreux problèmes
restent à résoudre avant d’être véritablement assuré de leur pérennité.

Il restait enfin à trouver un financement pour ma thèse. Olivier Temam, directeur
d’Alchemy, était alors en relation avec Bruno Jégo, de l’équipe AST (« Advanced
System Technology ») chez ST Microelectronics, car ils collaboraient à un même projet
de recherche européen. L’équipe AST s’occupait des aspects logiciels d’un projet d’ar-

Remerciements xvii

chitecture multi-cœur embarquée nommé « xStream ». À ce titre, Bruno s’intéressait
aux modèles de programmation susceptibles d’être utilisés pour ces architectures. Sur
ses recommendations, ST s’est engagée dans le financement de ma thèse, au travers du
dispositif CIFRE (convention entre deux partenaires privé et public, avec subvention de
l’État).

La première année de thèse a commencé par la familiarisation avec l’environnement
de programmation et d’exécution parallèle Capsule, développé initialement par Pierre
Palatin et Yves Lhuillier sous la direction d’Olivier Temam. Les approches précédentes
les plus connues, Cilk et Charm++, ont été rapidement abordées. Elles seront décrites
de manière détaillée aux Chapitres 5 et 10. Les premiers travaux ont concerné l’étude de
l’influence de l’utilisation de la division conditionnelle, le principe central de Capsule,
sur la stabilité du temps d’exécution de programmes parallèles. J’ai également consacré
quelques semaines à la parallélisation de MoGo au sein de l’environnement Capsule.
MoGo est un des meilleurs programmes de jeu de go au monde et a été développé à l’Inria
par Sylvain Gelly et Olivier Teytaud (entre autres). Cette entreprise n’a malheureusement
pas donné de résultat directement exploitable et n’a donc pas été poursuivie.

Enfin, c’est à cette époque qu’a commencé à prendre forme l’un des axes principaux
de mes travaux, à savoir l’adaptation de Capsule à des architectures distribuées. Pierre
Palatin n’avait disposé que de peu de temps à la fin de sa thèse pour commencer à réfléchir
à des techniques générales de gestion des données faciles à mettre en œuvre et efficaces
dans ce contexte. De mon côté, je souhaitais en sus aborder la gestion des tâches à exécuter
par les différents cœurs, une problématique cruciale pour des architectures distribuées,
puisque le coût de communication entre les différents cœurs y est largement plus important
que sur des architectures à mémoire partagée ou à bus.

Dans un contexte d’accroissement rapide du nombre de cœurs par puce, cet axe
semblait devoir prendre une importance croissante. Il n’avait jusque là que peu attiré
l’attention des chercheurs se consacrant spécifiquement aux modèles de programmation
pour multi-cœurs, peut-être parce qu’ils considéraient difficile voire illusoire de toucher au
modèle de mémoire partagée si répandu dans l’industrie. Au contraire, ceux qui s’étaient
intéressés à la programmation par flux (streaming), bien avant l’avènement des multi-cœurs,
avaient naturellement été parmi les premiers à envisager une telle remise en question.
Cependant, leur modèle de programmation, bien adapté pour des applications spécifiques
comme le traitement d’image ou de son, s’avère relativement incommode dans un cadre
général. Il ne semblait pouvoir constituer une réponse universellement acceptable.

L’équipe Alchemy ne disposait initialement que d’une seule machine à mémoire distri-
buée. De plus, elle ne présentait aux programmeurs qu’une interface de mémoire partagée
classique. En outre, nous souhaitions anticiper l’accroissement du nombre de cœurs par
puce, bien au delà de ce qui se faisait à l’époque (et de ce qui est d’ailleurs disponible même
au moment où j’écris ces lignes). Les travaux sur les architectures distribuées devaient
prendre toute leur mesure pour un nombre de cœurs potentiellement élevé. Enfin, conduire
des expérimentations réalistes nécessitait de pouvoir faire varier certaines caractéristiques
de l’architecture elle-même, ce qui était bien évidemment impossible avec des machines
physiques. Pour toutes ces raisons, il m’est apparu essentiel, au commencement de la

xviii Remerciements

seconde année de thèse, de disposer d’un simulateur de machines distribuées, afin de tester
et valider les développements précédents.

Peu de simulateurs étaient capables de supporter des dizaines, voire des centaines
de cœurs, et ils n’étaient pas tous librement disponibles. Aucun n’avait été conçu pour
simuler à la fois des modèles d’exécution à base de tâches créées dynamiquement lors de
l’exécution d’un programme et des architectures distribuées. J’ai donc dû concevoir et
réaliser un tel simulateur dans son intégralité. Ce projet aura finalement dûré près d’un
an et demi, en comptant la réalisation du système d’exécution lié à Capsule, c’est-à-dire
les mécanismes de répartition de tâches et le support de structures de données distribuées,
développements qu’il est difficile de dissocier complètement du simulateur proprement
dit. Olivier Temam, mon directeur de thèse, au départ favorable à ce projet, y a ensuite
manifesté une vive opposition à cause du temps qu’il me prenait, pensant qu’il n’était pas
consacré directement à la recherche sur les structures de données distribuées. Aussi a-t-il
fallu, à certains moments, faire preuve de persuasion et de ténacité.

Le simulateur et les résultats obtenus grâce à lui forment la Partie III de ce manuscrit.
L’aboutissement de ce projet a également rendu possible un avancement significatif de
la recherche sur les structures de données, par l’évaluation quantitative qu’il a permise
sur des architectures variées. Ces travaux demandent cependant à être poursuivis, afin
d’exploiter le potentiel du simulateur et des techniques proposées dans cette thèse, ainsi
que d’élargir les horizons qu’ils ont permis d’entrevoir. Les derniers mois de recherche
effective ont servi à parachever les résultats expérimentaux et à rédiger les articles.

La fin de la thèse a été classiquement consacrée à la rédaction de ce manuscrit. Exercice
obligé du doctorat, elle était aussi l’occasion d’approfondir les différents points techniques
abordés, de mentionner les pistes suivies, y compris celles qui se sont avérées infructueuses,
et de faire apparaître le cheminement et la cohérence globale de cette aventure de quatre
ans. J’ai essayé, lors de la rédaction, de mettre en exergue ces derniers, tout en satisfaisant
autant que possible aux exigences de clarté et de précision habituellement attachées aux
travaux scientifiques. Voilà qui explique la longueur de cette phase (un peu plus de neuf
mois de travail), mais aussi celle du manuscrit lui-même, qui comprend en outre une
abondante bibliographie.

Je souhaiterais à présent remercier chaleureusement et solennellement les différentes
personnes qui ont permis ou accompagné cette aventure. J’espère seulement ne pas en
oublier ! Si d’aventure cela était le cas, je leur prie de m’excuser et promets de mettre à
jour ce texte en conséquence.

Pour commencer, je voudrais naturellement remercier Olivier Temam de m’avoir
accueilli au sein du projet Alchemy. Je l’avais connu bien avant le démarrage de ma
thèse, dès 2001, alors que je suivais son cours d’architecture des ordinateurs à l’École
Polytechnique, qu’il donnait d’ailleurs pour la première fois. Je me souviens avoir été très
favorablement impressionné par la qualité et la clarté de ses explications. Aussi ai-je eu
l’agréable surprise de constater qu’il dirigeait Alchemy, au moment où je m’interrogeais
sur mon équipe de destination. Olivier m’a fait confiance, en acceptant immédiatement
ma candidature et en me mettant en contact avec Bruno Jégo. Il m’a laissé une grande
liberté dans mes travaux, pratiquement comparable à celle d’un chercheur permanent.

Remerciements xix

Il m’a également transmis une partie de son expérience, me conseillant notamment sur
la rédaction des articles ou sur les écueils à éviter pendant une thèse. Je dois saluer son
énergie et sa grande motivation, qu’il parvient à focaliser avec une redoutable efficacité.

Chez ST Microelectronics, Bruno Jégo a suivi avec constance mes progrès, qu’il a su
encourager y compris aux moments les plus difficiles. Il m’a également laissé une grande
liberté sur le contenu de la thèse, tout en veillant à l’utilisation de programmes de test
représentatifs d’applications utilisées par ST. Je remercie Jean-José Bérenguer, qui a
accepté de suivre mes travaux d’un point de vue plus technique, et qui m’a fait le plaisir
de consacrer beaucoup de temps à la relecture de ce manuscrit, alors même que son rôle
d’examinateur ne l’y obligeait en rien. Le rôle de correspondant technique chez ST était
initialement assuré par Thierry Strudel, qui a été rapidement appelé à d’autres fonctions.

Chez Alchemy à nouveau, je souhaite vivement remercier Albert Cohen de m’avoir
proposé la charge d’une partie des travaux dirigés correspondant aux cours qu’il donnait
à l’École Polytechnique (« Composants d’un système informatique » et « Principes et
programmation des systèmes d’exploitation »). Cette collaboration, qu’il a renouvelée
jusqu’à la fin de ma thèse, m’a permis d’acquérir une bonne expérience de l’enseignement,
tâche que j’affectionne particulièrement. Avec nos compères, Fabrice Le Fessant, Patrick
Carribault, Guillaume Quintin, Boubacar Diouf, Frédéric Brault, Erven Rohou, Louis-
Noël Pouchet et Philippe Dumont, nous avons fait semblant de mener la vie dure à nos
étudiants (en particulier Fabrice !), qui nous l’ont bien rendu par leur enthousiasme et
leur appréciation de nos prestations. Je me souviendrai longtemps de ces inénarrables
cafés, avant les TD ou entre deux groupes, passés à discuter pédagogie, OCaml, logiciel
libres ou d’autres sujets n’ayant pas grand-chose à voir avec l’informatique et donnant
parfois lieu aux conversations les plus délirantes. Je n’oublierai pas non plus les longues
journées passées à remanier ou écrire le texte d’un TD et des programmes associés, puis à
vérifier, de préférence au dernier moment, que les expériences seraient conformes à ce que
nous attendions et pensions expliquer aux étudiants ; elles ne le furent pas toujours pour
autant !

Pendant ces quatre ans, j’ai eu le plaisir de côtoyer les quelques thésards et post-docto-
rants que l’équipe a successivement accueillis. Je souhaite affectueusement remercier mes
camarades de fortune (et d’infortune !), à commencer par Zheng Li (approximativement
« Djong » pour la prononciation du prénom), le deuxième thésard qui a travaillé sur
Capsule pendant la même période à quelques mois près, avec comme focalisation le
support matériel. Comme il s’en souvient probablement, nous nous sommes connus avant
même le démarrage officiel de nos thèses, à l’université d’été ACACES en 2006, où nous
nous étions rendus par le même avion. Je dois louer chez Zheng sa grande ténacité dans le
travail, son bon sens, son enthousiasme et sa bonne humeur, même aux moments où il
jonglait avec la rédaction de son manuscrit, des développements prenants pour un projet
européen et les joies de la paternité ! Sans parler, bien sûr, du petit aperçu de la culture
chinoise qu’il nous a offert.

Zheng et moi avons côtoyé plusieurs mois l’un de nos prédécesseurs sur Capsule,
Pierre Palatin, remarquable pour ses qualités de codeur et d’administrateur système,
mais aussi pour ses fameux T-shirts « PhD Comics » approximativement repassés. Son

xx Remerciements

enthousiasme et sa serviabilité ont été appréciés de toute l’équipe. Avec son compère
Sylvain Girbal, certainement une des personnes qui ait passé le plus de temps dans l’équipe
à l’exception des chercheurs permanents qui l’ont fondée, ils sont les artisans du premier
cluster d’Alchemy, composé de PC assemblés à la main, et fonctionnant grâce à un
système de double démarrage et d’images qui permettait de mettre à jour de manière
simplifiée tout le parc de machines, lui aussi artisanal. Ce système a ensuite été réutilisé
sans nécessiter de gros aménagements pour le deuxième cluster, cette fois quasi-exclusive-
ment composés de puissantes machines Dell, dont j’avais assuré la commande. Même si
elles n’ont clairement pas contribué à ma ligne, soumise à rude épreuve durant la thèse
(particulièrement à la fin), j’ai beaucoup apprécié les virées à trois au centre commercial
des Ulis à discuter informatique ou à les écouter parler de jeux de rôle autour « d’un bon
burger », comme Pierre avait coutume de dire.

Initialement installé au bout du couloir « architecture » d’Alchemy au rez-de-chaussée
du bâtiment N à Saclay, j’ai partagé un bureau avec Luidnel Maignan et Mouad Bahi.
L’ambiance y était studieuse, sans pour autant interdire d’intéressantes conversations,
parfois éloignées de mes thèmes de travail. Elles avaient pour effet bénéfique de m’aérer
l’esprit, quelquefois aussi celui de me pousser à m’intéresser à des domaines assez éloignés
de mes sujets, parfois même de l’informatique en général, comme lors d’une journée passée
à étudier les fondements de la théorie des ensembles et comment ceux-ci pouvait servir à
démontrer la convergence d’une suite là où les axiomes de Péano étaient insuffisants. Ces
escapades sont heureusement restées rares, sans quoi je n’aurais pu finir cette thèse ou,
du moins, y aborder un spectre aussi large de thèmes.

Zheng, quant à lui, occupait un bureau adjacent, en compagnie de Taj Khan, qui
a travaillé sur la simulation statistique par échantillons (« sampling »), domaine dont
on pourra trouver un bref aperçu en section 15.2.3. J’ai pu apprécier la gentillesse de
Taj, son calme et sa patience, très apaisants. Ont également occupé une place dans ce
bureau Benjamin Dauvergne, finissant sa thèse alors que je commençais à peine la mienne,
Benoît Siri, travaillant sur l’exploitation de réseaux de neurones pour le calcul, but qui
nécessitait au préalable une meilleure compréhension de leur dynamique, et Fei Jiang,
dont j’ai honteusement oublié le sujet précis des travaux.

Puis, durant la rédaction de la thèse, les derniers mois, j’ai déménagé mon bureau et
rejoint Philippe Dumont, dans l’aile « compilation ». Cela facilitait nos interactions lors de
la préparation de TDs, mais aussi l’échange d’expérience sur toutes les phases d’une thèse
et sur la recherche en général. J’apprécie chez Philippe son ouverture et son intérêt pour
de nombreux sujets, qu’ils soient culturels (la photo), scientifiques (son entrain à tester de
nouveaux systèmes), ou culinaires (excellents caramels !). Nous avons passé tous deux un
temps considérable à administrer le cluster d’Alchemy, à la fois en ce qui concerne le
matériel (transport de machines, connexions réseaux, alimentations et autres réjouissances)
et les logiciels systèmes (distributions Linux, boot par initrd customisés, DNS, DCHP,
NTP, NFS, rsync et pas mal d’autres), avec l’aide de Philippe Lubrano, Frédérique
Morin et Christian Poli, des « moyens informatiques ».

À ces tâches a également largement participé Louis-Noël Pouchet, dont je salue la
réactivité ainsi que la capacité à faire marcher des systèmes assez instables, même s’il

Remerciements xxi

faut en passer parfois par des solutions, disons. . . pas très propres ! Louis-Noël est une des
rares personnes que je connaisse qui ait un rythme de travail aussi contrasté, capable de
disparaître plusieurs jours pour résoudre un problème, au point de ne plus dormir, comme
de prendre le temps d’agréables discussions avec ses collègues. Poursuivant des recherches
sur l’optimisation de programmes par transformations automatiques de boucle (utilisant et
étendant notamment le fameux modèle polyhédrique, sur laquelle l’expertise de la section
« compilation » est mondialement reconnue), il a quitté le laboratoire après sa soutenance
pour les États-Unis et l’Ohio State University. Philippe, quant à lui, continue ses travaux
sur les méthodes de flux (« streaming ») et sur la synchronisation discrète en Allemagne.
La France y a malheureusement perdu deux chercheurs prometteurs coup sur coup !

D’autres thésards et stagiaires travaillaient dans la section « compilation ». Même
si j’eus moins d’occasion de les rencontrer, j’ai apprécié discuter avec Mounira Bachir,
Boubacar Diouf, Konrad Trifunovic ou encore Frédéric Brault et François Galéa de sciences
et de nombreux autres sujets. Le tableau, enfin, serait incomplet sans faire mention des
autres membres permanents de l’équipe : Cédric Bastoul et son impressionnant musée
de machines Sun, Hugues Berry et ses recherches à l’interface entre l’informatique et
la biologie, Christine Eisenbeis et ses collaborations plutôt variées, y compris avec des
physiciens (c’est dire !). Nos assistantes, Stéphanie Meunier puis Valérie Berthou, ainsi
que Stéphanie Druetta, secrétaire de l’école doctorale d’informatique de l’Université de
Paris-Sud, ont assuré avec discrétion et efficacité tous nos travaux administratifs et veillé
à ce que nous n’oublions pas de suivre les différentes procédures et de fournir tous les
documents nécessaires, parfois jusqu’à l’absurde (même renseignements d’état civil inlassa-
blement demandés, papiers à en-tête de l’université à imprimer obligatoirement en couleur
ou encore les 17 (!) exemplaires de résumé de thèse à fournir avant la soutenance).

Ces années de thèse, à l’exception de la première, prirent souvent l’allure d’un sacerdoce.
Outre le bonheur et la chance d’en avoir été récompensé par la publication de trois articles
dans des conférences de renommée internationale, je dois à tous les gens que je viens de
citer, et ceux qui le seront plus bas, de les avoir rendues plus riches, supportables, en un
mot plus vivantes.

Abordons maintenant la dernière partie de ces remerciements, qui concerne mes proches
et toutes les personnes qui m’ont aidé, consciemment ou non, à devenir ce que je suis.
La liste est certainement beaucoup trop longue pour être donnée de manière exhaustive.
Néanmoins, je souhaite au moins exprimer à cette occasion ma gratitude pour tous les
gens qui ont œuvré à mon éducation et à mon instruction. Par ailleurs, les lecteurs ayant
poursuivi jusqu’à ces lignes souffriront bien quelques paragraphes de plus !

Je voudrais donc remercier, tout en les priant de m’excuser si je n’orthographie pas
correctement leurs noms, faute d’arriver à m’en souvenir précisément après toutes ces
années, tous mes professeurs, à qui cette thèse est dédiée, parmi lesquels, pêle-mêle : de
l’école primaire Fabre, à Toulouse, Mme Descamps, Mme Lloubes, Mme Ducès, M. Escoubas,
qui m’a initié à l’informatique à l’âge de 8 ans et sans qui je ne serais peut-être pas en train
d’écrire ces lignes, M. Catala, dont je n’ai pas oublié l’humour ni les heures consacrées
à l’initiation à la musique classique ; au collège Pierre de Fermat, Mme Thibaut, pour
sa rigueur et la qualité de son enseignement, Mme Porcheron, M. Grialou, Mme Salis,

xxii Remerciements

Mme Cabos, pour sa rigueur mais aussi pour m’excuser de l’avoir embêtée maintes fois afin
d’obtenir des exercices supplémentaires, Mme Calveyrac, M. Lacassagne, qui a fortement
contribué à mon niveau d’anglais, Mme Bacri, Mme Diez ; au lycée Pierre de Fermat,
M. Pignères, pour son bon sens et son humanité, M. Dumoulin, pour sa joie d’ensei-
gner la physique, ses célèbres sorties et ses expériences aux résultats souvent aléatoires,
Mme Husson, Mme Vergé ; en classes préparatoires, toujours à Fermat, Mme Bonnier-Rigny,
pour ses cours précis et sa générosité, M. Gonnord, M. Mercier, pour les efforts et le
temps qu’il a consacrés à la présentation la plus épurée et la plus rigoureuse de concepts
physiques clés, ainsi que pour ses connaissances encyclopédiques ; à l’École Polytechnique,
MM. Finkielkraut, pour son bouillonnement et ses idées stimulantes, Rincé, Lebeau, pour
son excellent cours sur la théorie des distributions, Salençon, Basdevant, Kopper, pour
sa clarté et ses connaissances en mécanique quantique, Maranget, pour savoir introduire
juste ce qu’il faut de théorie et pour ses talents de programmeur.

Je souhaite remercier tous mes amis, qui m’ont soutenu directement et indirectement,
alors même que j’ai été, plus encore que de coutume, tour à tour occupé, indisponible,
injoignable ou absent. François, Didier, Charles, Mathilde, Jean-François, Nadège, Éric,
Éric, Pauline, Philippe, Aurélia, Samy, Anne-Claire, ainsi que, de manière plus épisodique,
Pierre, Guillaume, Patrice, Jean-Christophe, Jihane, Sophie, Hervé, Thomas, Amélie,
Stéphane, Fred, Aline, Mélissa, Kate, vous avez contribué à votre manière à cette thèse,
tout simplement en redonnant le sourire à son auteur aux moments où il en avait besoin
et en l’aidant à préserver sa santé mentale. Quand je leur ai annoncé mon projet de thèse
en programmation parallèle, deux personnes, dont je taierai le nom par charité, se sont
imaginées avec malice que j’allais occuper tout mon temps à cheminer le long de droites
parallèles dans l’espoir de découvrir enfin un endroit où elles se toucheraient. . . Je ne
saurais dire si la conversation qui a suivi leur a fait entrevoir malgré tout la portée et
l’utilité de mon projet !

Je n’aurais pas traversé ces années avec le même enthousiasme sans le soutien des
incommensurables génies que sont Rachmaninoff, Chopin, Ravel, Debussy, Beethoven
ou Mozart (et quelques autres dont j’épargne, par charité à nouveau, la liste au lecteur,
qui pourra néanmoins se la voir fournie sur demande), ni sans l’acuité et la générosité
de Vincent, mon professeur de piano, ainsi que la compagnie des autres membres de
l’association APE à Suresnes.

Enfin, je souhaite remercier les membres de ma famille et proches, qui m’ont soutenu
et encouragé dans mes passions, même s’ils ne les comprirent pas toujours. Je pense,
parmi d’innombrables épisodes, à mon père me répétant inlassablement que « science
sans conscience n’est que ruine de l’âme », à mes parents qui m’ont offert mon premier
ordinateur (j’avais à peine 8 ans), à ceux qui m’ont offert des encyclopédies et des livres,
de science ou de littérature, à ceux qui m’ont offert de merveilleux disques (Annick,
Grand-mère), à ceux qui m’ont fait voyager et découvrir le monde. Merci également à
mon frère Nicolas et ma sœur Victoire pour tous les moments passés ensemble, ainsi qu’à
Roxane et Mister Simon. Plus particulièrement, je dédie cette thèse à mes grands-parents,
à Robert, qui m’a fait partager sa passion pour la musique classique et qui m’a transmis
énergie, curiosité et humour, à Grand-mère pour son affection, ses histoires et sa générosité,

Remerciements xxiii

à Malou pour sa redoutable volonté et ses voyages aux quatre coins de la planète, et
enfin à Joseph, que j’aurais beaucoup aimé connaître. Je salue également Denis pour son
insatiable curiosité et les nombreuses discussions que nous avons eues, ainsi que Jeanine
pour les débats politiques et la cuisine !

Merci enfin à Florence, ma compagne pendant ces années, qui a supporté ma peine,
mes fréquentes absences, mes sautes d’humeur, mon manque chronique de sommeil, le
stress des soumissions d’article à la dernière seconde après des nuits blanches de travail, la
colère et parfois l’indignation face aux appréciations reçues, mais aussi les joies, la fierté
du travail bien fait, l’accomplissement de quelques vieux rêves, les présentations publiques
et les voyages à l’autre bout du monde. Il ne fait aucun doute que, sans son soutien, ce
travail n’aurait pû prétendre au degré de qualité et à la largeur qui sont les siens.

À vous tous, avec toute ma reconnaissance et ma profonde gratitude.

— Olivier

xxiv Remerciements

1

Introduction

2

Introduction 3

The computer industry has been driven for more than 30 years by a law originally
formulated by Moore in his famous article of 1965 [187]. This law said that the number
of components per integrated circuit would double every year. Moore revised the law in
1975 [188], indicating that the doubling would rather happen every other year. Since then,
this law has reflected industry’s progress, and derivatives of it for a variety of metrics,
such as the size of memories, the storage capacity of hard disks, the network capacity or
the cost per transistor, also have held true.

During the same period, the computing power of processors has increased exponentially.
This feat has been possible thanks to several fundamental technology progresses. The most
influential of them has been miniaturization, by which ever smaller transistors could be
engraved onto chips. Besides contributing to the raise of transistor density, this progress,
along with gating and better high-level circuit design, enabled processor frequency to rise
exponentially until a few years ago. Frequency increases, when possible, mechanically aug-
ment the computing power of a processor without changing the programming abstraction,
which is inherently sequential and rooted in the work by Turing [251] on the machines of
the same name. This explains why frequency increase has been one of the major reasons
for performance progress, particularly between 1999 and 2005. Other microarchitectural
innovations that do not change the programming model have supported the performance
growth as well: Out-of-order processing, bigger caches, wider pipelines that can execute
more instructions per clock cycle, improved branch prediction and other techniques to
improve pipeline efficiency.

Frequency increase has however almost completely stalled since 2005 [215]. Frequency
is constrained by the maximum size of pipeline stages. Stages can be reduced gradually
through design improvements, such as performing the same operation with fewer logic
gates, but stage shrinking has been realized mostly by splitting work into more stages.
This technique however brings diminishing returns. The pipeline must be flushed on a
branch misprediction, which diminishes throughput. All stages must keep state infor-
mation, which increases chip complexity. Finally, transistor switching time is no longer
the factor that prevents the information transmission latency to decrease within a chip.
Rather, the wire delay has become preponderant [180] and obliges architects to revise
older designs by putting gates frequently in interaction closer to each other when possible,
or introducing more buffers between gates by default. The maximum distance between two
communicating gates without buffering is roughly inversely proportional to the frequency.
For all these reasons, frequency increase has hit a wall, called the frequency wall [93].

Power consumption of a silicon processor is the main other factor that has put a stop
to the rise of frequency. It increases linearly with it and quadratically with voltage [11].
Lowering the voltage thus could, in principle, largely compensate for greater frequencies.
The power-delay product also decreases with new generations of transistors. Unfortunately,
a lower voltage V implies a higher transistor delay T , according to the relation: T ∝ 1

V ,
and this delay limits the attainable frequency. In the end, power increases as the square
of V and, equivalently, as the square of f , the frequency. The net result is that increasing
the processing power through frequency is exceedingly costly and generates a considerable
amount of heat through static leakage and dynamic switching. The difficulty of dissipating

4 Introduction

the heat is exacerbated by the higher transistor density. This problem has been known
under the denomination of power wall [93].

In the meantime, transistors have been getting cheaper, so manufacturers could use
more of them to deliver the performance growth once provided by frequency. Most
technologies to improve single processor performance have reached relative maturity
and are unable to sustain alone the expected performance increase [241]. Consequently,
manufacturers have settled to use the additional transistors to form more processing units,
which lead to the development of multi-core processors.

It is not the first time in history that computers integrate several processing units.
Supercomputers with multiple processors have existed since the 60s. Entry-level servers
and powerful workstations of the 90s commonly included 2 or 4 processors. Still, founders
would succeed in improving performance of single processors so that they would finally
outperform several ones from the previous generation combined. Having multiple proces-
sors used to be the mean to be ahead of single processor performance by a few years. By
contrast, the recent turn to many-core is a forced move and it is affecting the whole range
of computer devices, from embedded systems and low-entry PCs to supercomputers.

In the previous decades, only expert programmers had been exposed to parallelism
and parallel programming, which were used essentially in big but mostly niche scientific
applications. In the coming years, it is likely that most programs, including irregular
ones, will have to be modified or even mostly rewritten to take advantage of multi-cores,
and that many more programmers will have to be introduced to parallel programming.
There has been recent progress to automate parallelization of legacy sequential code [44],
which may provide a speed relief for the short term and for processors with several cores.
However, roadmaps of major founders mention tens to hundreds of cores per chip [134, 250]
for the coming years. The main graphic chip manufacturers are already shipping dies with
general-purpose computing capabilities comprising tens of cores, each made up of tens
of SIMD execution units [13, 196]. The current automatic techniques cannot cope with
such a high number of processing units, except for very specific application types, such as
those that use linear algebra algorithms [260].

Therefore, our first goal for this thesis is to propose a generic programming approach
that is simple yet effective in order to facilitate the transition to multi-core and many-core
systems and bring parallel programming to a wider audience. Since lots of the design
trade-offs of these systems have still unexplored consequences, both at the hardware and
software levels, there is also a pressing need for tools to experiment with and explore
a large combined design space. For this reason, our second goal is to investigate new
simulation techniques to be able to study in advance upcoming architectures and program
behavior on them.

For more than 20 years, there has been a great amount of research in programming
parallel and distributed systems. We review some of the important approaches and
directions in Chapters 5 and 10. A programming model, called Capsule, has been
developed at the INRIA within the Alchemy project team by Pierre Palatin, Yves Lhuillier
and Olivier Temam. It is a task-based environment that enables to express parallelism in
a simple, concise and intuitive way. The role of the programmer is to declare potential

Introduction 5

parallelism and coarse-grain synchronization constraints. The associated run-time system
dynamically decides which amount of parallelism is profitable, a feature we call conditional
parallelization, and schedules work to the available cores. Initially, the team thought that
hardware support was critical in providing scalable performance, so they developed a
hardware run-time system consisting of a slightly modified SMT processor [202]. Pierre
Palatin then started to implement a software prototype to support his idea that an efficient
software implementation was possible as well [201].

The contribution of this thesis is threefold. First, we improve the Capsule program-
ming model and the implementation of the software run-time system. We show how, in
addition to allowing an efficient parallel execution of programs written with the Capsule
constructs, it reduces the high performance variability exhibited by irregular applications
on multi-core processors. This last work was a joint effort with Pierre Palatin and Zheng
Li. The influence of the run-time platform on software scalability is finally studied. All
this work forms and is described in Part I.

Second, we extend the whole environment to be able to support distributed-memory,
which we foresee as the future organization for multi-core and many-core architectures. We
propose a set of new primitives that enable a programmer to manipulate data structures
in a generic and platform-independent way. The new constructs also automatically enforce
proper fine-grain data access synchronization. We improve the run-time system by adding
transparent support for dynamic data movement. We also propose a new class of local
and distributed task load-balancing mechanisms which are more scalable than the original
central scheme. The inception of this last work was done as a collaboration with Zheng Li.
We show that the combination of both approaches can yield linear speedup for some of
our irregular applications on general-purpose multi-core processors with tens to hundreds
of cores, which are to appear soon. All the work related to the adaptation of Capsule to
distributed architectures is presented in Part II.

Third, we develop a new discrete-event simulator, called SiMany, able to support the
simulation of thousands of cores on commodity computers with reasonable simulation time.
It is based on the intuition that, past a certain architecture size, properly modeling the
interactions between hardware components is more important than modeling accurately
the components themselves. The user, or a relatively simple processor model, assigns
timings to pieces of code, which are executed mostly natively. SiMany keeps track of the
clock advances of each core and models the interconnection network. It ensures that all
the cores make progress at a similar pace through a novel distributed synchronization
technique, called spatial synchronization. Currently, SiMany is the fastest many-core sim-
ulator that can model a large range of architecture organizations, such as shared-memory
and distributed-memory architecture, and different network topologies. This simulation
work is detailed in Part III.

6 Introduction

7

Part I

Capsule: Parallel Programming
Made Easier

8

9

Chapter 1

Parallel Programming Is Hard

The advent of multi-core and many-core processors is essentially shifting the burden of
improving program execution speed from hardware manufacturers to software developers.
The latter group now has to uncover parallelism to exploit the capabilities of the new chips,
either directly by programming in parallel with appropriate languages and environments,
or indirectly by using or developing tools that automatically parallelize current sequential
code. As explained in the Introduction, we focus on the first approach in this thesis, and
specifically in this Part.

Writing parallel code is a notoriously difficult task, whether done from a project’s start
or introduced to optimize sequential program performance as an afterthought. Its complex-
ity comes from the multiple processing units operating concurrently and asynchronously
to achieve a coherent goal. As an analogy, let us consider a factory that employs a single
worker to realize a technical task. The increase of single processor performance corresponds
to the worker regularly improving its performance. There are of course physical and
intellectual limits to a worker’s efficiency, and the company will eventually have no other
choices than hiring more workers to achieve a higher job throughput.

This new situation also creates new problems. It must be clear for all workers what
their role is precisely and which parts of the work they have to perform. Unless their tasks
are essentially independent, the best possible case but also the rarest, the workers will
have to spend time talking or partially monitoring what the others are doing to coordinate.
If the workers are manufacturing goods, some of them will depend on the work of others
and will have to wait for them to complete their stage. In other organizations, workers
may not be affected to a particular task but rather may assist different teams over time,
depending on the levels of market demand.

Programming multiple processors or multi-cores introduces the same problems that
a factory manager may face, but transposed to a technical level. There have been some
studies on the overhead of parallel over sequential programming [127], reporting that it
takes 10 to 15 times more time to code parallel versions of small and simple programs
compared to sequential ones. In the software gaming industry, a designer of the 3D engine
of Unreal 3, Tim Sweeney, estimated that multi-threading the renderer’s scene traversal
loop, content streaming, physics, animation and sound updates doubled to tripled the

10 Chapter 1. Parallel Programming Is Hard

software development and testing costs at Epic games (quoted in [74]).
In the following Sections, we briefly expose the various problems posed by parallelism.

The last Section (1.4) is a general presentation of the Capsule environment. It gives a
brief overview of the work detailed in this Part.

1.1 Work Splitting and Dispatching

A program’s work must be split and dispatched to the available processing units.
Work splitting is a difficult task in itself. It requires identifying which program parts

are inherently sequential and which are independent or may be transformed to be so. It
may be done at compile time, for regular codes, or at run time, for irregular ones [159]. The
links of the chain that carve up work into units need a mean to transmit the information
to the run-time system.

Work distribution includes mapping a task to a processing unit, i.e., deciding where a
task will be dispatched to, and then scheduling its execution, i.e., determining when it will
be processed by the unit. It must balance the expected gains from taking advantage of
multiple units and the overhead of communication and synchronization it may introduce.
The architecture’s units may offer different functional possibilities. General-purpose cores
can accept any work but may not be optimized for the particular task assigned to them,
while specialized units (DSPs, FPGAs or other accelerators) accept only specific codes but
run them more efficiently. The processing units may also differ in computing throughput
or other technical characteristics affecting performance, such as varying access latency to
memory banks.

1.2 Working on the Same Data at the Same Time

In shared-memory architectures, execution units share the memory and may inadvertently
step on each other’s toes. At a low level, there must be mechanisms to arbitrate access to
a given memory address by the different processors/cores1. At a slightly higher level, there
must be mechanisms allowing to maintain coherency of data structures. Several processors
writing to the same data structure (the same memory area) may do so only in restricted
ways, so that another processor reading concurrently the information it contains is able to
interpret them meaningfully. In particular, it usually shouldn’t see “intermediary” states,
where only part of the structure has been updated. To achieve this concretely, a processor
has to monitor the actions of other processors on the same structure. The structure’s
expected semantics dictate which operations are allowed to overlap and which are not.
Programmers and/or compilers must then have some mean to specify the restrictions to
enforce. We will now briefly describe the current possibilities.

1All modern processors automatically implement such mechanisms.

1.2. Working on the Same Data at the Same Time 11

1.2.1 Atomic Operations and Mutual Exclusion Primitives

The use of hardware-assisted atomic operations makes one or multiple operations at a
given address appear to be executed instantaneously at some point in time. It is an
efficient yet simple technique to achieve atomicity. However, it is difficult to compose
such operations, because of other accesses potentially occuring concurrently between
consecutive modifications.

For this reason, more general, and now standard, mutual exclusion primitives, such as
locks, are used to protect a set of accesses. They are most often implemented thanks to the
above-mentioned hardware-assisted instructions2. While a processor executes instructions
within a critical section (e.g., when it holds a lock), other processors cannot enter the same
critical section (e.g., acquire the same lock). The data to be protected is conceptually
associated to a particular lock, by ensuring that the code accessing them can only be
executed as long as the corresponding lock is held. The previous rule on locks then
obviously guarantees that no more than one processor can be accessing the data.

Using locks may cause several problems, such as priority inversion and deadlocks.
Among these, deadlock is the most serious. The simplest deadlock situation occurs when
a thread/process holding a lock never releases it and another one wants to acquire it.
Such a situation highlights the fundamentally cooperative nature of locks. No processors
can require any exclusive access directly, but rather have to wait for the lock to become
available. If the lock is never released, the waiting processor is blocked undefinitely. This
first deadlock example is usually caused by a simple programming error: The programmer
has forgotten to release a lock immediately after acquiring it and using the associated
data. Nonetheless, for concurrent accesses with complex control flow, localizing the place
where to insert the release may be a tough task. Deadlocks can also occur in the more
complex case where a thread/processor must acquire simultaneously multiple locks to
perform some operation. If another thread/processor needs to acquire the same set of
locks, it must do so in the same lock order so as to avoid deadlock. When the order
of lock acquisitions is run-time-dependent, avoiding deadlock may be hard and costly
performance-wise. This is typically the case when composing several independent software
components, such as libraries.

1.2.2 Transactional Memory

Transactional memory [124] is a generalization of classical hardware atomic operations
that has become popular in the research community recently. It permits a processor to
read and modify arbitrary memory locations atomically with respect to other transactions,
i.e., transactions never appear to overlap. One of its most important benefits is to solve the
deadlock problem. Programmers indicate which sections should be performed atomically,

2There exists implementations relying only on one-way atomic memory operations, such as read or
write (see Dijkstra [76]), and even an implementation that doesn’t require any atomicity (see Lamport
[163]). They are extremely inefficient compared to the dedicated atomic instructions provided by all
modern processors, and today only present a theoretical interest.

12 Chapter 1. Parallel Programming Is Hard

but do not specify the implementation to achieve this. Instead, they rely on the run-time
system to do so.

A transaction is delimited by special primitives. Read and write operations belonging
to it are also different from the regular ones. Write special operations do not modify
memory as seen by other processors; their values are temporarily stored elsewhere, at
least conceptually3. When a transaction ends, if the accessed locations were not modified
by other processors, it commits: Values written are effectively made available to other
processors atomically. In the other case, the transaction aborts, and all values written
while it was in progress are discarded. The program then generally retries the transaction
at a later time.

Several hardware and software implementations of transactional memory have been
proposed over time [72, 78, 189, 232]. A survey can be found in Harris et al. [119].
A position paper [52] explains that transactional memory has not reached mainstream
programmers yet because hardware vendors are reluctant to modify their design to support
it, while software implementations are not scalable for large and complex applications
and do not always enforce the same semantics4, causing portability concerns. Moreover, if
transactional memory solves the deadlock problem, it doesn’t eliminate possible livelocks
and introduces problems on its own5. Lots of researchers are currently working on these
problems and satisfactory solutions are likely to be found in the coming years.

1.3 Task Dependencies

Some pieces of work handled by the different units are dependent on each other, as
mandated by the program or algorithm employed. Again, this information must be passed
by the programmer or inferred by the compiler through program analysis.

In sequential programming, dependencies are partly implicit at the language level.
Instructions that use the same variables or objects are dependent6 and the order in which
they appear in the instruction flow determines the dependency direction. In parallel pro-
gramming, two pieces of code are not necessarily ordered. They may execute concurrently,
or in any order, and access the same data. Dependency specification can be achieved by
explicitly imposing an execution order or by detailing which apparent interleavings are
acceptable to produce correct results.

3Some schemes store the modifications directly into the caches or memory [189]. They nonetheless have
to backup the original values in order to be able to restore them if the transaction later fails.

4One cause is that they do not try to work around the weak memory model most often presented by
the hardware in order to preserve performance. For a survey of memory models, see Section 10.2.

5As an example, exception handling may be problematic (see [42]).
6Some dependencies are called false dependencies if they are not conceptual but rather implementation

ones. As an example, a write after a read doesn’t conceptually depend on the read value. But the read
still must be performed before the write to return the appropriate value according to program order.
False dependencies can be worked around through several techniques (static single assignment, register
renaming, spilling, etc.).

1.4. The Capsule Environment 13

1.4 The Capsule Environment

This rest of this Part presents Capsule, an environment to ease parallel programming
and to spread it to a greater number of software developers. It specifies an abstract
programming model that can supplement usual sequential languages and coexist with or
replace current parallel constructs.

The name Capsule stems from the concept of encapsulation, which is a continuous
inspiration for the framework. Encapsulation is a popular software trend that manifests
itself in a number of software technological evolutions, such as the introduction of the
object paradigm and object-oriented languages, the notion of interface or the appearance
of component-based programing frameworks. In full generality, it consists in separating a
program’s actions and/or data into identifiable groups whose possible forms of interactions
are limited in number and completely characterizable.

Encapsulating parts of programs has a considerable advantage in software engineering:
Programmers can focus on the parts they are responsible for and code them as they
please, independently of the parts they use or that rely on theirs. For large organizations,
productivity generally increases and debugging time decreases. Our intuition is that it is
profitable for parallel programming as well. Because component interactions are explicit,
the occurence of potential conflicts can be forecasted or detected easily. Moreover, com-
plete independence or limited interaction enables program parts, objects or components
to be executed in parallel efficiently.

Although some future Capsule environment versions may be able to work directly
at the level of tightly encapsulated components for appropriate languages, the current
versions are mainly concerned with providing an intuitive interface for the programmers to
declare work directly and with using this information to perform most of the work splitting
job and task scheduling. These versions also handle coarse-grain task dependencies through
hierarchical synchronization groups.

The original Capsule was a much simpler prototype hardware version [202] based on
a SMT processor that would allow work declaration through a special assembly instruction
(nthr). It was initially believed that hardware support was key to reach high levels of
performance. Later, a software version was developed showing that, with appropriate
speculative techniques, good performance could be reached also on unmodified multi-core
architectures [201]. This software version extended the programming model to include a
construct to handle coarse-grain synchronization of tasks in an intuitive way.

The current versions are an extension of these concepts, with an important overhaul of
the coarse-grain synchronization primitives and their semantics to ensure their viability and
usefulness when code is encapsulated and reused, and other additions to improve program
portability. All the concepts and their associated constructs are presented in Chapter 2,
along with an implementation based on the C language. Chapter 3 then describes a
supporting software-only run-time system that assumes an architecture with global address
space, i.e., common shared-memory architectures as well as distributed-shared memory

14 Chapter 1. Parallel Programming Is Hard

interfaces7, which can hide hardware memory distribution. A second implementation,
which adapts the current version to distributed-memory architectures with an explicitly
distributed interface, is the subject of Part II. It adds to the core concepts presented
in Chapter 2 some primitives to manage data structures independently of the precise
memory distribution, while retaining the programming simplicity of global addressing.

The version that assumes global addressing does not offer any new mechanisms to reg-
ulate concurrent accesses to data. Programs are simply provided with traditional locking
primitives. The current choice of included features, however, does not preclude future
research on (or integration of) automatic work splitting and automatic parallelization
techniques. The support for fine-grain synchronization is also mostly independent of the
other interfaces of the environment. As an example, the current locking primitives could
easily be replaced by a transactional memory interface and its associated implementation.
We indeed propose an automatic locking scheme based on data structures in Section 8.1.1,
as part of the distributed-memory version.

Another distinguishing feature of the multi-core era is to regularly ship processors with
more cores. Unfortunately, with traditional low-level parallel programming environments,
such as the POSIX threads [129] or MPI [94], changing the number of processing units
or the network characteristics is not transparent to programs in terms of performance.
Therefore, another very important goal is that Capsule’s interface and run-time system
realize platform-independent high performance. With this property, the time spent into
program parallelization will be a long-term investment since programs will adapt to
new architectures without modifications, as they did when single execution units were
improved.

Chapter 2 details the base Capsule programming model and how we achieve intuitive
programming and mostly platform-independent work splitting. Chapter 3 details the im-
plementation of a software-only run-time system for regular shared-memory architectures.
Chapter 4 studies the performance scalability and variability of programs on multi-core
processors. Scalability of both regular and irregular programs is close to ideal on up to
4 cores. Performance variability, which is greater than on single-cores, can be reduced
considerably by the Capsule approach. This property enables better execution time
predictions and allows multi-core embedded systems to obey soft real-time constraints
more easily. Finally, the influence of the run-time platform on performance is studied on
an example benchmark. The performance of alternative run-time system implementations
are compared. The effect of task granularity on obtainable speedups can be important.
Several mechanisms are proposed to mitigate it. Chapter 5 describes some previous
approaches and environments. Finally, Chapter 6 concludes this Part.

7Please consult Part II for more information on distributed-shared memory environments. Some
prominent software implementations are surveyed in Section 10.3.

15

Chapter 2

The Capsule Programming Model

The Capsule programming model aims at overcoming all the parallelization difficulties
summarized in Chapter 1 through a simple and intuitive programming framework. Besides
the foremost goal of obtaining better performance through parallelism, it is designed with
an emphasis on simplicity, to foster a wide adoption thanks to simple concepts that even
non-expert programmers can grasp, and portability, to preserve the investment in software
parallelization from the rapid and unceasing changes in machine architecture. Finally,
it is designed to be general enough so that any kind of applications can be coded with
it, including irregular ones whose ability to exploit multi-cores will be key for the mass
adoption and commercial success of such chips.

Lots of languages especially designed for parallel programming have been proposed in
the past 20 years1, but it is fair to say that not a single one has gained wide acceptance
to date. Their major ideas have nonetheless survived into newer languages or have been
partly integrated into existing popular ones. Besides possibly inadequate constructs or
abstractions, we think they did not spread probably because of the very fact that they
are quite different languages than the mainstream sequential ones, and that they often do
not include the expressive constructs or paradigms that the latter do.

Learning a new language and becoming highly productive with it may take months to
years, a time most engineers are usually not able to dedicate to a task whose benefit is
uncertain. Introducing a new language is an even greater effort encompassing a proper
language specification but also a complete toolchain, including a compiler and a run-time
system in the form of shared libraries or reusable components providing basic services (I/O,
mostly). Consequently, we instead chose to use a widely-used language, C, and augmented
it with special constructs. These new primitives do not introduce a new syntax, but rather
leverage the usual C syntax for function calls. Programs coded with the C variant of
the Capsule programming model are compiled, linked and run with C’s common tools
and run-time environment. This approach also has the benefit that new concepts and
constructs can be implemented and tested more quickly.

The next Sections describe the programming model’s concepts and illustrate them by
introducing the corresponding primitives and giving concrete code as usage examples. The

1We review a few of them in Chapter 5.

16 Chapter 2. The Capsule Programming Model

reader should bear in mind, however, that the concepts are not tied to the current syntax,
which is presented here for pedagogical purposes. Other implementations of the same
concepts, in other existing languages such as Java, or in other new parallel languages,
would be equally possible.

2.1 Tasks

The traditional paradigm is to present programmers with hardware execution units or
the slightly higher abstraction of threads. This low-level approach has however several
drawbacks.

First, programmers must undertake all the splitting, dispatching, and synchronization
steps themselves. This task is already hard and time-consuming for small to moderate
programs or algorithms. It becomes dauting for big ones to the point that it is often not
viable economically [74].

Second, depending on the programming model, the resulting version may not be
portable to other architectures because of the use of specific constructs or hardware func-
tionality. Even if the resulting program is portable, the performance improvements it yields
on the architecture it was developed and tested on may not be preserved when it is run
on another one, because of a varying number of processors/cores, different communication
bandwidth and latency and other differing hardware and software characteristics.

A common solution to adapt to a greater number of cores is to create a large number
of threads. However, creating lots of threads amounts to split work in tiny pieces, which
is inefficient if the actual number of cores is much lower. The reasons are the scheduling
overhead, which increases with the number of threads, and the fact that dispatching
a little piece of work to a dedicated core may cost alone more than just executing it
sequentially. In the latter case, even if the dispatching cost is lower, it introduces more
work in the overall execution and uses more execution units that may be better spent on
larger units of work.

Third, irregular programs with complex control flow and data structures, for which the
total amount of work and the dependencies between parts vary with the input data, cannot
be parallelized efficiently at programming or compile time. They benefit tremendously from
a dynamic approach that dispatches new work as it appears in unpredictable ways during
the execution2. Programmers may want to create new threads dynamically to handle
the just-uncovered load. Unfortunately, thread creation is very expensive on common
platforms and OSes. Its typical cost is on the order of magnitude of 105 cycles [33]. Such
an approach will not allow to exploit fine-grain parallelism, which is key to obtain scalable
speedups for irregular applications [160]. Although seasoned programmers can devise
a scheme where existing threads are recycled for new work instead of being constantly
destroyed and recreated3, it is a time-consuming and tedious job that would have to be

2Examples of such programs are presented in Section 4.1.
3This is indeed part of what is done within our run-time system, whose implementation is described in

Chapter 3.

2.2. Conditional Parallelization 17

for (i = 0; i < n; ++ i)
C[i] = A[i] + B[i];

Figure 2.1: Addition of 2 vectors in pseudo-C sequential code.

done again for each new application.
One of the main intuitions behind Capsule’s model is that it is conceptually easier

for programmers to reason in terms of work to distribute, as exemplified by the analogy
we developed in Chapter 1. We thus settled on an interface with which a programmer
can delimit the regions of code that form a coherent unit. These work units, with proper
synchronization, could be individually handed off to a processing unit as a whole.

Concretely, let us illustrate this concept through the simple example of the addition
of 2 vectors A and B of size n. The corresponding pseudo-C sequential code is shown in
Figure 2.1. The body of the for loop at each iteration triggers an independent computation.
Thus, it makes sense to indicate that the body is a coherent unit that can be executed
on another core/processor for each iteration. The provided primitives to accomplish this
change are detailed in the next section.

2.2 Conditional Parallelization

The central concept of Capsule is that of conditional or potential parallelization. The
programmer indicates which portions of a program may be executed in parallel. The
run-time system decides if a particular portion will effectively be executed by another
core/processor.

This is an important paradigm shift from the preceding parallel programming environ-
ments. The role of the programmer (or the compiler) is to point out all the parallelization
opportunities. However, the actual work splitting actions are decoupled from these anno-
tations, contrary to what would happen with processes or threads. Instead, the run-time
system, based on these indications, decides how to perform work splitting. It eventually
dispatches and schedules the tasks that were effectively created.

The interface to indicate work units comprises two primitives. The first primitive,
named the probe, is a call to the run-time system to declare that a task may be created
at the current code point. On a call, the run-time system uses some algorithm to decide
whether it will allow the actual task creation and return its decision to the program. If the
answer is positive, the program, if appropriate, prepares the data needed to run the task.
It then calls a second primitive, called divide. This primitive indicates to the run-time
system that the data are ready and that it can dispatch the new task.

The corresponding system functions in our C implementation are called capsule_probe
and capsule_divide. Figure 2.2 (next page) shows the vector addition example with the
support code for Capsule. The loop body has been encapsulated in a separate C function.
At line 10, the capsule_probe function is called with a pointer to the loop_body function
and returns a pointer to an execution context (ctxt). At line 13, the returned pointer

18 Chapter 2. The Capsule Programming Model

loop_body (A, B, C, i)
{

C[i] = A[i] + B[i];
}

5
for (i = 0; i < n; ++ i)
{

capsule_ctxt_t * ctxt;
// Probe

10 capsule_probe (& loop_body, & ctxt);

// Probe result?
if (ctxt != NULL)

// The probe succeeded. We divide.
15 capsule_divide (ctxt, A, B, C, i);

else
// The probe failed. Execute the body sequentially.
loop_body (A, B, C, i);

}

Figure 2.2: Addition of 2 vectors in Capsule pseudo-C code, naive variant.

is tested. The run-time system returns a non-null execution context pointer if and only
if the probe succeeded. In this case, the program calls capsule_divide (line 15), which
effectively submits a new task to the system. Otherwise, the program has to execute the
corresponding piece of work sequentially (line 18).

This example’s listing illustrates concretely some important points. First, although not
used in this example, it is possible to execute arbitrary code between the calls to capsule_
probe and capsule_divide. Obviously, this code should be composed preferentially of a few
instructions that execute relatively quickly, because the call to capsule_probe reserves for
the new task some resources which stay unused until capsule_divide is actually called. For
the version of Capsule we present here, the resource concretely is one of the architecture’s
cores4. The advantage of such a separation is to save the operations to prepare the data
that are to be processed by the new task if its creation is refused.

Second, a probe failure indicates that no tasks can be created at the moment of the
call. Still, the probe was called with the intent to execute a particular piece of work,
and this work remains to be done. In this case, the program simply executes the work
sequentially. In the example, this is done by calling the same function loop_body (line 18).
However, in some cases, it may be more appropriate to complete the work in an alternate
way. Parallel algorithms are usually less efficient than optimized sequential variants when
executed on a single processor. As an example, knowing that the work is going to be
executed locally, at least in part, a function may reuse some already computed results,
instead of computing them again to avoid a remote reference. Another example possibility
is to dispatch work that is likely not to share data with the current task, whereas it may

4We present, in Section 9.1, another scheme in which the resource is a slot in a task queue.

2.3. Recursive Work Declaration 19

be more profitable to elect another piece of work that shares data with the just-executed
one if no additional tasks could be created. Both examples try to reinforce locality of
references and to avoid enlarging the set of recently manipulated data.

Third, this example highlights the simplicity of the task paradigm and the ease of
use of Capsule probe and divide primitives. The concrete code remains readable and
understandable in this implementation based on C, a language which is not especially
recognized for its expressiveness. The example also illustrates the power of conditional
parallelization. The user doesn’t need to worry about the granularity of the declared tasks5.
Encapsulation of the loop body into a separate function without side-effect is mandated
by the model. It is also a good practice transformation because it makes apparent that
operations performed in the loop body for distinct iterations are independent6.

The choice of requiring the programmer to specify the work to be executed in parallel
as a parameter to capsule_probe instead of capsule_divide opens the possibility for a
run-time system to take this information into account when making the task creation
decision. It may indeed make sense for a distributed implementation to refuse to create a
task whose code is not available locally. Another possibility is to match the functional
requirements of the code to some specialized units, such as accelerators (DSPs or FPGAs),
and to refuse task creation if no units that provide the necessary functionalities are
available.

The actual signature of capsule_divide is simpler than what is presented here: It
cannot take a variable number of arguments. This is the unfortunate consequence of
the limited capabilities of the C language for passing arbitrary arguments to a regular
function7. The arguments for loop_body must in reality be stored in a structure allocated
for this purpose and a special wrapper function must unpack them before calling loop_body.
The complete code of the Quicksort benchmark’s Capsule version on top of C can be
consulted in Appendix A. Implementations of the programming model on top of higher
level languages would not impose this constraint on the programmer.

2.3 Recursive Work Declaration

The code we presented in Figure 2.2 (facing page) is intuitive but not optimal. All
potential work is effectively indicated8 but it is not dispatched efficiently.

Indeed, before being able to probe for the possibility of executing iteration n in a sepa-
rate task, the initial task must process the iterations from 0 to n-1. This is a consequence
of the use of a regular for loop, which is inherently sequential, as in the original loop

5The influence of task granularity in practice depends on several factors such as the run-time system
implementation or the underlying hardware architectures. For the implementation detailed in Chapter 3,
task granularity’s influence is studied in Section 4.2.3.

6Provided the functions in the program generally have no side-effects, i.e., don’t access global variables.
7Tricks can be used to circumvent this limitation but are out of the scope of this discussion.
8Except the loop control itself, which contains so little work that it would obviously be useless to try

to parallelize it as is.

20 Chapter 2. The Capsule Programming Model

construction of Figure 2.1 (page 17). If the corresponding iterations are on the program’s
critical path, the complete execution time will be extended by the launch delay.

Another problem with this approach is that work is declared in small units, which
makes the number of divisions to execute the loop work in parallel higher. Although a
programmer doesn’t know a priori if it is efficient to try to spawn small tasks, and we
argue he/she shouldn’t care, it is expected that trying to dispatch bigger units of work
at once will be more efficient, because this will lead to a lower number of calls to the
probe primitive. The overhead of probes and, more importantly, divide operations will be
minimized.

These problems can be solved satisfactorily thanks to recursive work declaration, a
principle which can be stated very simply: At any given point in time, a task should probe
to split the known work that remains to be performed into two parts of approximately equal
length. In particular, this implies that new tasks will perform a probe as soon as they
start, which may lead to the creation of more tasks, repeating the process recursively until
all resources become busy. This greedy principle leads to the earliest possible dispatching
of all units of work. For n units of work, one unit is dispatched after log2(n) steps instead
of at most n steps, assuming that all probes succeed. Splitting work in approximately
equal length at each step avoids to create too many tasks for a given amount of work
and is thus a good practice to follow, when task lengths can be evaluated and if the
algorithm permits it. It is not necessary that the estimations be very accurate. The
reader should notice that this practice doesn’t guarantee in itself proper load-balancing.
Dynamic variations due to architecture details, such as data residing in a particular cache,
or to the used algorithms necessarily make static predictions inaccurate, even when the
total amount of work is well-known from the start.

Let us change the original code from Figure 2.2 (page 18) so that the new version
obeys the just-mentioned recursive work declaration principle. The revised code is shown
in Figure 2.3 (facing page). We remark that, in the case of a for loop, application of the
recursive work principle amounts to replacing the for with a kind of parallel for [111].
This new implementation tries to divide the loop in two parts of equal length and to
distribute the second part to another task at each iteration.

Division is attempted through the capsule_probe call at line 22. If the probe succeeds,
the right part of the interval (indices j to n) is dispatched to a new task that will execute
the loop function on it. The original task will continue to process the left part (indices i
to j). The continue statement at line 34 restarts the loop on the the first part, giving an
immediate opportunity to split the remaining interval again, if resources permit so. When
the probe at line 22 fails, it indicates that a new task can’t be created, at least temporarily.
Instead of retrying immediately, which would waste resources, the loop proceeds with
some useful work, in this case the iteration with index i. This is done with the call to
loop_body at line 39.

Figure 2.3 (facing page) highlights that indicating potential parallelism efficiently
through task declarations is not completely trivial, even in the simple case of a perfect
loop whose iterations are completely independent. In the common case of a for loop, a
special capsule_pfor construct could be provided by the run-time system. Frequently used

2.3. Recursive Work Declaration 21

loop_body (A, B, C, i)
{

C[i] = A[i] + B[i];
}

5
loop (A, B, C, s, n)
{

i = s;

10 while (i < n)
{

// The number of elements for the 2nd part
nb = (n - i) / 2;

15 // The start index for the 2nd part
j = n - nb;

// Are there elements in the 2nd part?
if (nb)

20 {
// Yes! We probe.
capsule_probe (& loop_body, & ctxt);

// Probe result?
25 if (ctxt != NULL)

{
// Execute the 2nd part in another task.
capsule_divide (ctxt, A, B, C, j, n);

30 // Update the upper bound for 1st part.
n = j;

// Immediately try to divide the current interval again.
continue;

35 }
}

// Execute the loop body with the current value for i.
loop_body (A, B, C, i)

40
// Next iteration in the current interval.
++ i;

} // End of while.
} // End of the loop function.

Figure 2.3: Addition of 2 vectors in Capsule pseudo-C code, work-optimal variant.

22 Chapter 2. The Capsule Programming Model

constructs of sequential programs more generally should have a parallel counterpart in
the Capsule environment to improve programmers’ productivity and the efficiency of the
code they produce. Nonetheless, the current implementations do not have such constructs
because we concentrated on fundamental concepts on which they can be built afterwards.
Although possible in C, with the use of function pointers, introducing a capsule_pfor
construct would be more appropriate in a higher-level language than C, such as C++,
Java or Python.

2.4 Coarse-Grain Task Synchronization

During an execution, a program performs numerous work declarations, some of which
are executed in separate tasks created by the run-time system. Often, units of work
are not independent: Some of them must wait for the completion of others before they
can start. A typical example is regular scientific computations which follow the simple
fork/join pattern. A single thread is permanently executing and, at some points, launches
other threads to assist in processing a particular region or running an algorithm. Having
completed its work share, it waits for the others to finish. Then, it resumes sequential
execution.

OpenMP [40, 41] is a popular programming model supporting fork-join style computa-
tions9. Parallel regions are enclosed within parallel and parallel end directives. The
latter acts as an explicit synchronization point for the worker threads enlisted for the
region by the run-time system10. Parallel computation thus takes place in a flat delimited
section. Nested sections are not supported by all implementations. OpenMP version 3 [41]
introduced the task directive to explicitly declare tasks. The provided synchronization
primitives to manage them are barrier and taskwait. The first is a regular barrier, i.e.,
it must be executed by all threads and will block the ones reaching it until all execute the
statement. The second specifies a parent-children synchronization: A task wait for its
immediate child tasks to complete. In the case of recursive work distribution, performing
synchronization with these constructs is difficult. Barriers impose that all threads execute
the same sequence of parallel regions, whereas taskwait primitives must be issued at each
level, which often constraints the possible execution patterns more than necessary.

Figure 2.4 (facing page) shows the execution of a simple fork-join computation with
4 tasks coded with parent-children synchronization. Each line of the Figure represents
the life of a single task. Task 1 launches directly or indirectly all the other tasks and
then waits for their completion. However, tasks 3 and 4 are launched by task 2, following
a computation. Parent-children synchronization prevents task 1 from waiting on them
directly. The workaround is to have task 2 wait for tasks 3 and 4 and in turn task 1 wait
for task 2, causing the context for task 2 to live longer after the end of its own computation.

9OpenMP primitives are passed to the compiler in the form of preprocessor directives for the C/C++
implementation. For that of Fortran, they are signaled with prefixes: !$OMP for free source form files, and
!OMP, COMP or *$OMP for fixed source form files.

10In OpenMP parlance, the threads form a team that is created at the start of the section by the thread
executing the parallel construct. The latter thread is called the encountering thread.

2.4. Coarse-Grain Task Synchronization 23

4

3

2

1

Running Sleeping Synchronization Time

Figure 2.4: A fork-join computation implemented with parent-children synchronization.

Moreover, task 2 is woken up when tasks 3 and 4 have finished just to immediately end
and finally wake up task 1. More generally, the parent-children synchronization paradigm
has four major drawbacks. First, it requires to preserve contexts of all tasks but leaves in
the task tree. Second, a processor/core is transitorily needed to process tasks woken up by
synchronization events, even if they are to terminate immediately after. Third, performing
synchronization at all levels in the task tree induces a higher global synchronization
latency. Four, a task can’t spawn tasks executing different algorithms or phases and
selectively wait for some of them afterwards.

With the POSIX threads interface [129], a thread can wait for another thread by
calling the pthread_join function with the identity number of the latter. Only threads
whose joinable flag is positioned can be waited for with pthread_join11. A given thread
can be the target of a pthread_join only once12. Identity numbers may be passed from
one thread to another. Semantically, this model is the most flexible: Any thread can
wait on any other thread. The associated downside is a considerable complexity for other
models than pure fork-join. But the main drawback of this paradigm is the impossibility
to wait for a group of threads with a single call. The identity numbers of all the threads
to wait for must be stored and their termination has to be checked sequentially.

Figure 2.5 (following page) shows the same fork-join execution as Figure 2.4, but imple-
mented with the POSIX threads’ synchronization constructs. Task 1 launches indirectly
three other tasks and, after performing some computation, waits for them to complete.
Assuming that the corresponding three pthread_join are performed respectively with
tasks 2, 4 and 3 as the thread argument, task 1 is woken up three times. Except for the
last one, the wake-ups are spurious. They correspond to a returning pthread_join function
immediately followed by another call to pthread_join. Obviously, if the task terminating

11The final draft of the POSIX specification indicates that threads are created joinable by default.
Creating them as non-joinable (pthread_attr_setdetachstate) or detaching them (making them
non-joinable) while they are running is possible and encouraged to free up resources.

12This restriction is due to the coupling between the use of join information, including the return value
of the joined thread, and their immediate deletion after their first use.

24 Chapter 2. The Capsule Programming Model

4

3

2

1

Running Sleeping Synchronization Time

Figure 2.5: A fork-join computation implemented with POSIX threads style synchroniza-
tion.

last is joined first, task 1 may not have to wake up more than once. In this case, the
subsequent pthread_join calls will still incur some overhead. More generally, it is often
not known in advance which task will finish first. Even in cases where performance models
would make it possible to predict the last task to finish, environments like Capsule, in
which work splitting and task dispatching is performed by the run-time system depending
on the current system conditions, eventually make such a prediction useless in practice.

Compared to the fork-join model implementation of OpenMP, the POSIX threads
synchronization model has lower wake-up latency, supports selective task waiting and
does not require that the context of all non-leaves tasks be held in memory after execution
of payload code. No synchronization at intermediary levels is necessary, which has the
effect of diminishing the overall execution time. However, the POSIX model suffers from
the problem of allocating a processor/core to a synchronizing task temporarily woken
up between two calls to pthread_join. Moreover, a small amount of data about a task
is kept after its end and until synchronization is performed on it. The total amount of
synchronization data is thus at worst proportional to the number of tasks to wait for.

To overcome these limitations, Capsule features synchronization groups that comprise
several effectively-created tasks. The intent behind the group concept is threefold. First,
using context groups allows to wait for several tasks to complete at once, regardless
of the completion order. Second, groups and their relations to tasks must be easy to
understand for programmers so as to have practical interest. Third, most of the group
management should be performed by the run-time system, involving the programmer only
when absolutely necessary, i.e., to indicate program semantics.

Capsule groups form a dynamic hierarchy, from the initial group at the top of the
group tree, which is automatically created at the start of a Capsule program, to the
latest created groups at the bottom of the tree, for a given point of the execution. The
user doesn’t construct groups explicitly by assigning tasks to groups. It is the run-time
system that does so automatically thanks to simple annotations added by the programmer
according to the following rules. Every running task belongs to a single group, called

2.4. Coarse-Grain Task Synchronization 25

4

3

2

1

Running Sleeping Synchronization Time

Figure 2.6: A fork-join computation implemented with Capsule’s synchronization groups.

its father group or current group. The initial task13 belongs to the initial group. Newly
created tasks are assigned to the group of their parent task, a property called group
inheritance. Using the capsule_group_new primitive14, a task can create a new group,
which automatically becomes a sub-group of the calling task’s current group. The task is
then itself associated with the newly created group.

The primitive to wait for tasks is called capsule_group_wait15 and relies on the group
hierarchy. The calling task is put to sleep until all other tasks in its current group and
in all the descendant groups have terminated. Figure 2.6 shows the execution of the
same fork-join computation with 4 tasks considered in the previous paragraphs, but
here coded with Capsule primitives. There is only a single synchronization call to
capsule_group_wait performed by task 1. No such calls need to be performed at the lower
layers. Task 1 is woken up only when all other tasks in its synchronization group have
completed. In the meantime, its context is saved and held by the run-time system. For
this example, there was no need for capsule_group_new, because all tasks belong to the
same computation and task 1 simply needs to wait for all the others. With the group
inheritance property, all tasks automatically belong to the same group, the initial group.

In large programs, several mostly independent computations may be going on simulta-
neously. Some may have been launched directly by the program code, but some others
may have been initiated by code from third-party libraries or components, in which case
the calling program doesn’t know about them. In order to facilitate libraries/components
reuse, it is highly desirable that the synchronization operations they perform be invis-
ible to the program using them. For this reason, Capsule provides a third primitive,
capsule_group_quit, that permits a task to leave its current group and attaches it to the
father group of the latter. We shall now detail how this primitive is meant to be employed

13The initial task is the sequential code that executes the Capsule run-time system initialization.
14In Palatin [201], the equivalent primitive is named cap_split.
15The primitive called cap_join plays a similar role in Palatin [201]. The main difference is that it

causes the joining task to leave the current group as soon as it resumes, compromising the composition of
several algorithms.

26 Chapter 2. The Capsule Programming Model

and why it allows, in combination with the other two, to achieve this goal.
Figure 2.7 (facing page) shows a computation that includes the tasks of the previously

presented examples with some additions. The initial task is task 0, that launches two
independent computations. Tasks 5 to 7 form the first one, whereas tasks 1 to 4, from the
previous examples, form the second one. The former is not directly launched by the code
from task 0, which ignores its existence, but by a library function or some component
method in third-party code that it called. The callee also uses Capsule primitives and
tries to launch tasks in response to the call to take advantage of the cores of the underlying
architecture. The first computation is composed of a large task, task 5, that launches two
other tasks. Task 5 needs the results of tasks 6 and 7 before finishing. Naturally, it should
use capsule_group_wait to wait for them.

In order to isolate its tasks from those of the main program, the third-party function
or component calls capsule_group_new, which leads to the creation of a new group, group
1, pictured in orange in Figure 2.7 (facing page), and to the transfer of task 0 to this
group. Then, several tasks are launched using capsule_probe and capsule_divide, as
explained in Section 2.2. The call to capsule_group_wait by task 5 thus will concern only
the tasks that belong to group 1. In particular, all tasks launched prior to group 1’s
creation are not concerned by this synchronization. However, task 0 now also belongs to
group 1. If the third-party function returned to the main code right away, the next tasks
that are launched would belong to this same group or to a sub-group of it. The call to
capsule_group_wait by task 5 would block until all these tasks are finished, which is not
the intended control flow of this application.

Thus, just before returning, the third-party function must call capsule_group_quit,
causing the calling task, task 0, to be assigned to the father group of group 1, which is
the initial group. The primitive just transfers the group ownership for a single task. The
group hierarchy is left unchanged. In this example, group 1 remains a child of the initial
group. Then, the main program continues and finally starts the second computation,
without the knowledge that another one was launched before. Whether the latter is still
going on or has finished doesn’t change the second computation’s behavior.

The best practice is to systematically create a new group when launching a self-con-
tained computation. If, in the second computation, task 1 had not needed the results
of tasks 2 to 4, it would have been possible to omit the creation of the second group
and the corresponding calls to capsule_group_new and capsule_group_quit surrounding
the spawning of task 1. The initial group would have been the container of tasks 1 to 4.
The capsule_group_wait issued by task 0, used to wait for the end of both computations,
would have had the same effect. This optimization is analoguous to tail recursion for
recursive function calls. Its use is however discouraged because it makes code reuse more
difficult to achieve.

2.5. Other Primitives and Abstractions 27

4

3

2

1

0

5

6

7

Running Sleeping

Initial group Group 1 Group 2

Synchronization Time

Figure 2.7: A Capsule computation with multiple groups.

2.5 Other Primitives and Abstractions

The previous Sections detailed the five core primitives that are unique to the Capsule
programming model. This section presents additional primitives that are of less frequent
use, but are still important from a practical point of view. They comprise the primitives
for run-time system initialization and shutdown, some primitives providing per-task data
storage and abstraction functions for mutual exclusion and other classical synchronization
mechanisms, such as conditional variables. Finally, some primitives are used only for
benchmarking purposes, to gather statistics for executions or to alter the run-time system’s
normal functioning in interesting ways.

Two primitives can be used to start the run-time system: capsule_sys_init and
capsule_sys_init_warmup. Only one of them should be called and calling them more than
once has no effect. The second performs the same initialization as the first, with additional
actions to warm up the run-time system that are useful when benchmarking, as described
later in this Section. The conceptual effect of the initialization is to take over the thread
calling it, called the initial thread, i.e., to have it managed by the run-time system onwards.
Also, the execution context at that moment is internally treated as a new task that would
have been launched before the initialization. This pre-existing task is called the initial
task. Finally, an initial group is created to contain the initial task.

28 Chapter 2. The Capsule Programming Model

The primitive to stop the run-time system is called capsule_sys_destroy. It must be
called by the initial task exclusively. If other tasks than the initial one are still running,
capsule_sys_destroy first behaves as if capsule_group_quit was called enough times to
make its current group the initial group, and then as if capsule_group_wait was called.
The net effect is that the initial task is unscheduled until all other running tasks end.
Finally, all initialization operations are undone and the initial thread state is restored.

To facilitate program portability, Capsule provides its own interface to traditional
synchronization primitives used in multi-threaded programs. Capsule programs, although
using the concepts of potential parallel sections and tasks instead of threads, share with
multi-threaded computations the possibility that multiple pieces of code may be executing
concurrently. Like them, they must take precautions so that this possibility cannot cause
data corruption. As said previously, the choosen interface to ensure proper synchronization
is independent of the core Capsule concepts. Currently, locks for mutual exclusion, as
well as atomic operations over C integers are provided. The interface may be completed
with other synchronization objects, such as conditional variables, or replaced with more
integrated mechanisms, like transactional memory [124].

Capsule also provides a simple interface to store and retrieve per-task data. Normally,
a task starts with parameters passed by the task that launched it. Consequently, there
is conceptually no need for a special per-task data mechanism: The father task simply
pass the necessary data to the new task at startup. However, when modifying large
programs that already use per-thread data storage, it is often more easy to turn the
corresponding function calls to the per-task facilities of Capsule instead of substantially
modifying the code to pass some data down to spawned tasks. These primitives are merely
a programming convenience for quick conversion of a multi-threaded program to use the
Capsule primitives, where the new version tries to create as many tasks as threads of
the original version. In this implementation, only a small amount of data may be stored
per-task16. A destructor may be associated to it and will be automatically called when
the task ends17.

Benchmarking is facilitated by a series of primitives and abstractions. The capsule_
sys_dump_all_stats primitives outputs to a stream run-time system statistics such as the
number of probes and divisions, as well as other numbers specific to the implementation.
The capsule_sys_block primitive prevents all subsequent probes from succeeding, i.e.,
no new tasks are ever spawned. The capsule_sys_unblock primitive can later reallow
probes to succeed. This is useful to test sequential execution of some parts of a Capsule
program. Finally, the primitives capsule_abs_get_ticks and capsule_abs_get_time return
the current time in ticks or in some time unit. The precise significance of ticks and the
time unit used depend on the underlying architecture. Only relative values, i.e., the
difference of numbers obtained through different calls to the primitives, are significant.
Programs should use these primitives to measure the execution of program parts instead
of the system-provided facilities to preserve program portability.

16Currently, a simple pointer.
17This interface is simpler than the POSIX threads interface, which can name different pieces of data

through keys. This latter possibility usually goes beyond what is actually needed by applications.

29

Chapter 3

Run-Time System
Implementation

This Chapter details a run-time system that supports Capsule’s programming model as
presented in Chapter 2.

Originally, the programming model only consisted of the conditional parallelization
concept and an associated primitive to declare a new task, nthr1 [202]. The associated
implementation was an 8-way SMT processor modified to support nthr [202]. It provided
hardware support for locks, but no coarse-grain synchronization primitives; an implicit
synchronization was performed at program end.

Later, the programming model was enriched with rudimentary primitives around the
concept of synchronization groups. nthr was replaced by the two primitives capsule_probe
and capsule_divide2. Finally, a software-only run-time system was implemented. This
version proved that the conditional parallelization concept could be efficiently implemented
purely in software [54].

The current run-time system has been rewritten from scratch for several reasons, of
which the foremost was to make it portable by abstracting particular operating system
interfaces and machine architectures3. The current version is the first to include the
synchronization groups primitives presented in Section 2.4. Other reasons for the rewrite
included cleaning up the code, removing the remaining deadlocks and group handling
bugs and optimizing performance.

Section 3.1 presents the implementation of the task abstraction and the mechanisms to
map tasks onto computing resources. Then, in Section 3.2, we detail the actions performed
by the run-time system to achieve conditional parallelization, i.e., the decision policy
for accepting or refusing to create a new task. Section 3.3 describes the structures and

1nthr stands for new thread, a name which conceptually constrains an implementation to immediately
launch a new thread, if the run-time system accepts to execute the task in parallel.

2The original names were capsys_probe and capsys_divide, see Palatin [201].
3The previous version was mostly POSIX compliant, but used some Linux’s non-portable system calls.

It also relied on some atomicity guarantees provided by the x86 architecture that were not isolated from
“regular” C code.

30 Chapter 3. Run-Time System Implementation

algorithms to implement synchronization groups. Finally, Section 3.4 lists the portability
abstractions that are used by Capsule’s core. To port the run-time system to another
machine/OS, only adequate implementations of these abstractions must be written, leaving
more than 75% of its code lines intact.

3.1 Task Abstraction and Scheduling

Tasks in Capsule correspond to some work that can be performed in parallel and that was
effectively authorized by the run-time system to be executed on another computational
resource. In this C implementation, a work unit is specified as a function, which is its entry
point and is passed as an argument to the capsule_probe primitive. If the probe succeeds,
the program calls the capsule_divide primitive with two arguments. The first is a pointer
to an opaque context structure that was returned to the program by capsule_probe. The
second is an argument of type void * which will be passed to the task entry point when
it starts executing.

Because a new task may not be started immediately, the information about the entry
point and its argument must be stored. This is the role of a C structure called a context.
Such a structure is created each time a probe succeeds and lives until the new task created
by the corresponding divide ends. In addition to the above-mentioned information, it also
contains a pointer to the current group for the task. The handling of groups is the subject
of Section 3.3. Per-task data is also stored in this structure. Finally, it may also contain
information about scheduling, as explained later.

Once started, tasks can suspend their own execution because they block on some
fine-grain synchronization object, like a lock, or because they invoked a coarse-grain
synchronization construct, like capsule_group_wait. The run-time system makes the
assumption that the programmer follows the good habit of parallel programming that
locks must never be held for long. If it is true, switching contexts to execute another
task while the previous one sleeps would be more costly than just waiting for the lock to
become available. Consequently, we have chosen not to implement context switching in
this case. For coarse-grain synchronization, the situation is most often reversed: Waiting
for other tasks’ completion may be extremely long, and ultimately depends on the amount
of work they still have to perform, which is very unlikely to be small. Thus, the run-time
system always suspends a task calling capsule_group_wait, unless it is the only running
task in its group, in which case the primitive returns immediately. This last optimization
is valuable because it saves two context switches in the case where the caller’s work was the
longest of its group, allowing all other tasks to end before it called capsule_group_wait.

In the programming model, tasks are scheduled onto computing resources. The current
implementation schedules tasks into platform-provided threads. At startup, the run-time
system creates a fixed number of threads corresponding to the number of cores/processors
in the system, thanks to the programming interface abstraction described in Section 3.4.
Currently, the scheduling of these threads onto the actual hardware execution units is left

3.1. Task Abstraction and Scheduling 31

to the underlying OS or threading library4. Each thread is represented in the run-time
system by a structure of type thread that serves to hold a pointer to the currently executing
context, as long as the thread is processing a user task, and to store the corresponding
machine execution context. Both these pieces of information are useful when context
switching a task. A description of the context switching API and implementation is
described in Section 3.4.

The run-time system employs one of two alternative strategies to schedule tasks onto
the threads it created. The strategy is chosen when the run-time system is compiled. The
first alternative is to have the run-time system decide which thread is going to handle a
particular task. It requires that it maintains a list of its threads and extra information
to be able to determine if a given thread is busy or idle. When a probe succeeds, the
run-time system tries to find an idle thread to execute the task.

The current implementation maintains two lists of threads: A list of idle threads,
available to execute some context/user task, and a list of busy threads. The run-time
system chooses the thread at the head of the free list to execute a context. It pushes
back a thread that became idle also at the head of this list. The latest idle threads are
thus reused in priority5. The selected thread is stored as a pointer to its structure in the
context structure just before being returned by capsule_probe.

When the father task finally calls capsule_divide, the thread that executes it transmits
the new context to the selected thread by modifying a field of the thread’s structure.
Then, it signals the selected thread using the function capsule_pi_thread_wakeup, which,
for this alternative, takes a pointer to the selected thread’s structure. Once woken up, the
selected thread reads the context to execute in the appropriate field of its structure. More
generally, this technique is employed each time a thread needs to inform another thread
about an action to perform, even if the latter is not to execute some user context. Such
situations are described in the next Sections.

The second alternative is to have the system select the thread to execute the new
context. This strategy has the advantage that the underlying OS or threading library
knows the system state and in particular the scheduling status of all threads and which
execution units they are currently assigned to. This knowledge can help to make a better
decision about the particular thread to signal in order to minimize wake-up and scheduling
latencies. Compared to the first alternative, the implementation doesn’t need to maintain
some lists of threads. A simple counter in the run-time system’s main structure indicates
the current number of idle threads. Another difference is that the run-time system cannot
push the new context to the thread that will process it, because most OSes or threading
libraries6 do not usually indicate the thread(s) that they wake up. The selected thread
has to pull it from a predefined location.

The naive implementation is to hold a to-be-executed context in a field of the run-time
system’s main structure. As the number of cores grows, several threads may be issuing

4See Section 3.4 for more details on this topic.
5This policy was also that of the previous run-time system version.
6We are not aware of a single one offering this possibility, even those performing userland thread

scheduling.

32 Chapter 3. Run-Time System Implementation

division requests simultaneously. A single slot in the main structure practically serializes
work distribution to idle threads, because a thread cannot place a context in the slot
until some idle context retired the previous one to execute it. This has an adverse effect
on performance as soon as around 10 cores are used, as can be seen in the experimental
results of Section 4.2.1. Augmenting the number of slots reduces the delay during which a
thread waits to deposit its task. However, care must be taken to avoid contention on the
cache lines where the slots are stored, since the penalty for such cache conflicts grows at
least linearly with the number of cores.

A more elaborate solution would be to use a hash function that maps a thread’s index
to a particular context slot. An idle thread would start the search for a context to execute
from the slot returned by the hash function applied to its own index. If this slot was
empty, it would then try with the next slot instead and the process would continue until
it actually found a context to execute. When a thread would create a new context, it
would try to place it in the slot returned by the hash function applied to its index. If the
slot was already occupied, it would try with the next slot until finding a free one. This
version has been implemented but no experiments have been done with it yet.

One may think of mitigating the serialization effect using an hybrid method that
would maintain thread groups and signal one of them when a new context to execute is
available. At the OS or threading library’s discretion, one of the threads in the group
then would handle the signal. This proposal requires that the run-time system track the
availability of threads per thread group. It also suffers in part from the same drawback as
the first alternative, because only the threads in the selected group are available to the
OS or threading library to make an optimal decision. It might be possible to compensate
partly for this problem by creating more threads than actual cores/processors or by having
threads belonging to multiple thread groups. We have not explored these possibilities.

Circumventing the false sharing caused by automatic hardware cache coherence and
its performance impact amounts to finding a distributed algorithm to dispatch the work
created after a successful probe. This task is not trivial partly because the current
algorithm to make a decision regarding a probe, which is described in the next Section,
treat all the available resources identically, i.e., without consideration for their location,
the time to access them, the tasks they previously processed, etc. Chapter 9 presents
a completely distributed scheme where probe decision and work dispatching are more
coupled in this respect.

3.2 Conditional Parallelization

When a thread issues a probe, by calling capsule_probe, the programming model states
that the run-time system decides whether it is worthwhile to create a new task to handle
the declared work unit in parallel, as was explained in Section 2.2. It doesn’t, however,
specify the precise meaning of worthwhile, leaving it to the run-time system implementor
to choose some policy adapted to the hardware it targets and the applications that are of
interest to him.

3.2. Conditional Parallelization 33

The only common constraint faced by all implementations is that the probe primitive
should execute as fast as possible, because calls to capsule_probe may be inserted anywhere
in a program, including in innermost loops or critical paths. During a program run, probes
may be issued very frequently, whereas the number of divisions will comparatively be
very small. The bottom line is that a program’s overall execution time is less sensitive
to the positive probe code path’s execution time than to that of the negative probe and
divide code paths [201]. It is thus especially critical that the probe decision algorithm
be simple enough to be able to produce a negative response extremely quickly. For
computationally-intensive algorithms with fine-grain parallelism, a probe that fails should
execute in as low as a few cycles. Comparatively, positive decisions can consume more
computing time, since they will be less frequent and most often compensated for by the
work that will be executed by another resource.

In the implementation presented in this Chapter, the chosen policy7 is that a probe
is allowed to succeed only if one execution unit is immediately available to process the
corresponding work unit, which has two advantages. First, the run-time system doesn’t
need to know which precise execution units are available to make a decision. It is enough
to keep a single shared counter indicating the current number of idle threads. If the
counter is zero, then no threads are available and the probe fails. Conversely, if the
counter is non-zero, some thread is available and the probe can succeed, without having
determined at this point which execution unit will actually execute the new task. Second,
once a thread has called capsule_divide, it has the guarantee that the new task will be
started as soon as possible by some idle thread and thus a currently unused execution
unit8. This property is valuable for embedded systems executing applications that must
meet some soft real-time constraint. Additionally, the policy is simple, which makes it
relatively straightforward to implement, with a low demand on energy, a critical advantage
when choosing a run-time system for an embedded system. Its main drawback is that it
requires programs to issue probes frequently to produce good scalability. Free hardware
resources sit idle at least until one thread issues a probe, regardless of the amount of
available parallelism. The reason is that tasks cannot be declared “in advance” when all
resources are busy, as the run-time system doesn’t maintain task queues. Another policy
involving task queues is presented in Section 9.1.

The policy’s implementation is the following. On a call to capsule_probe, the run-time
system needs to read the shared counter indicating the current number of idle threads to
decide if a new task will be created. If the answer is positive, the counter, and possibly
other data, will need to be updated to reflect the reservation of a thread that will process
the work unit when capsule_divide is called. These operations delimit a window of time
during which an harmful race condition may occur between two or more tasks performing
a probe. If one thread reads the shared counter and the counter is non-zero, it will allow a
task creation. If, before decrementing the counter and updating other data, other threads
read the shared counter but do not make enough progress to update it, they will find

7This policy is the same as that presented in [201].
8The time necessary to start the new task depends on the underlying OS and threading library

implementations.

34 Chapter 3. Run-Time System Implementation

it all in the same state, and all these probes will succeed as well, even if they are more
numerous than the counter’s initial value. Worse, even if the counter is higher than two
and only two threads are involved in the race, the shared counter will not be updated
correctly, since both will have read the same value, decremented it by one and stored back
this same result. The run-time system will later believe that there are more idle execution
units than there are in reality, causing interesting bugs.

For this reason, the counter must be read and updated using atomic operations9 and
it must be protected by a lock. However, a lock acquisition can be costly, especially
when there is much contention on it. Since the counter is global, the number of threads
competing for the lock can be as high as the number of execution units in computation-
ally-intensive pieces of code. Palatin [201] reports a delay of 121 cycles on an Intel Core 2
Duo (2 cores) to perform a locked probe that returns a negative answer.

In order to reduce the probe overhead, capsule_probe can read the shared counter
holding the number of idle threads with an atomic operation but without acquiring
the lock. This value is then used as a hint to optimize the frequent case of a negative
response, where no idle threads are available and the shared counter is zero. Performing a
non-protected read of a shared variable that can be modified concurrently will sometimes
cause the hint value to become outdated before being used by the probing thread.

The first possible case is that threads probing at the same time may not have decre-
mented the counter yet, and the probing thread may see a greater number of idle threads
than there actually are. The update of the counter of idle threads must anyway be
performed through an atomic fetch-and-add operation or under the lock’s protection.
Consequently, the thread will notice the discrepancy later in the probe process. If the
counter has been changed to 0 in the meantime, the probe will be finally refused, although
the lock was acquired. This case is fortunately infrequent because it occurs only if several
probes are racing to take over the last available threads. The overwhelming majority of
probes are performed whereas all cores are already busy and are refused immediately.

The second possible case is that some thread that has just finished to execute some
user task has not incremented the counter yet. The probing thread may thus miss an
opportunity to allow a probe to succeed, if it sees the counter as being 0 where a locked
access would see a strictly positive value. This situation can occur also with a locked
access, although less frequently. It is inherent to the chosen policy, which considers only
the resources as they are when the probe is executed10. It is not too harmful to miss a
probe if the program probes frequently, because the waste of resource is limited to the
interval between two probes.

Overall, this speculative technique allows the negative response code path of a probe
not to acquire a lock to read the shared counter, at the expense of denying slightly more
probes than necessary and increasing the length of the positive response code path by
an additional L1 cache access11. Using a micro-benchmark that computes the difference

9On most architectures, including recent x86 processors, read or write to a word (32 bits) is necessarily
atomic. In this case, atomic operations can be replaced by regular memory operations.

10Some anticipatory scheme could be used here, and may improve performance for some applications.
11The speculative technique introduces an additional counter read without lock. If the counter is not in

3.3. Synchronization Groups 35

between the execution time of a loop executing 100 billions probes that fail and that of
the same empty loop, the cost of a failed probe has been evaluated to 2.109 cycles12 with
less than 1‰ of error on an Intel Core 2 Duo processor13.

The actual cost of a particular probe during a real program execution is extremely hard
to predict. It depends on the processor’s branch prediction unit’s performance, which in
turn depends on the algorithm and amount of state it maintains, possibly the processor’s
pipeline state and finally the outcome of the previous probes by the same thread. It
also depends on the contention on the shared counter and the particular cache coherence
algorithm and implementation. However, this cost is most often the value returned by the
micro-benchmark because most of the probes fail. Branch predictors can easily deal with
monotonic sequences of branch outcomes and there is no contention during periods when
all probes fail because the counter is not modified.

3.3 Synchronization Groups

Synchronization groups are represented as C structures within the run-time system. As
said in Section 3.1, a context holds a pointer to a group structure. By contrast, a group
structure doesn’t maintain a list of the contexts that belong to it and of its sub-groups.
A counter called the group counter holds the sum of the number of running contexts
belonging to the group and the number of sub-group the group possesses. Another counter
serves to store the number of waiting contexts in the group, i.e., how many of them called
capsule_group_wait. The rest of this section describes the mechanisms and algorithms
employed to implement the group semantics, which only require these two counters’
presence.

When a new task is spawned by the divide primitive, it is attached to the father
group of the spawning task, as a result of group inheritance. From the current context
structure, the run-time system retrieves the father group. It then acquires the group
lock that prevents concurrent modifications to the group structure. The group counter
is incremented to reflect the fact that a new task references it as its father. Finally, the
group lock is released.

When a task finishes, before releasing any resources associated to it, its owner group
is updated as specified by the following algorithm:

1. The group lock is acquired.

the L1 cache, then it would not have been in the cache either for the first subsequent protected access
inside the locked section. Hence a difference of a single access to the L1 cache.

12Palatin [201] reports 1 cycle on a Intel Core 2 processor with the old run-time system implementation,
which uses a single global variable containing the number of available threads. The new implementation
performs an additional indirection, which explains the difference.

13For the record, here are some other measurements: 1.872 cycle on a two quad-core Intel Xeon E5430
machine (Hapertown processor, Penryn microarchitecture), 0.931 cycle on a four quad-core AMD Opteron
8380 (Shanghai, K10 microarchitecture). All the numbers are reported with less than 1‰ of error at
99.9% confidence.

36 Chapter 3. Run-Time System Implementation

2. The group counter is decremented by one. If the counter is non-zero, other tasks
belonging to this group or to some descendant group are still running. In this case,
the run-time system immediately jumps to step 5. Otherwise, it continues with the
next step.

3. The counter of the number of waiting tasks in the group is tested. If it is non-zero,
some tasks were waiting for all the running tasks in the group to finish. In this case,
the run-time system wakes up as many tasks of them as possible. It respectively
decrements the counter of waiting tasks and increments the group counter by the
amount of tasks that it actually woke up. Finally, the run-time system proceeds
right away with step 5.

4. If the run-time system reaches this step, then both counters in the group structure
are zero, meaning that no tasks belong to the group and that the group has no
sub-group. Consequently, the group structure can be destroyed. Before that, the
pointer to its parent group is copied. The group’s disappearance must indeed be
signaled to its parent group, because the latter possibly holds tasks waiting for
tasks in its sub-groups. To this end, the run-time system first proceeds with step 5.
Afterwards, it starts recursively the whole algorithm using the parent group’s pointer
copy.

5. The group lock is released.

Once the algorithm has terminated, the context structure of the finishing task is destroyed.
Because this algorithm starts as some task ends but just before its resources are

released, the run-time system can schedule, at step 3, at least one task to be woken up
immediately by making it reuse the previous task’s resources. This property guarantees
that, each time the algorithm is run, the counter of waiting tasks strictly decreases, unless
there are intervening calls to capsule_group_wait. Since one task at least was woken up,
the algorithm will be run again when it ends. As a result, the counter of waiting tasks
eventually reaches 0 and all previously waiting tasks are eventually scheduled. The current
implementation, which creates tasks only when some thread is idle, reassigns the thread
of the task that ended to one of the waiting tasks, which can proceed immediately. It
has the limitation that only one task is allowed to wait for other tasks in a given group,
because this feature was not necessary to implement our benchmarks.

A call to capsule_group_new retrieves the current group from the current context and
then creates a new group which will be a child of the latter. The structure of the now
father group is left unchanged: The counter of alive contexts and sub-groups keeps the
same value since the current context, that was part of it, is now part of the new sub-group.
Apart from the creation of a new structure for the new group, only the current context
structure’s father group pointer is changed.

3.4. Portability Abstractions 37

3.4 Portability Abstractions

Since the Capsule programming model is general and intended for widespread use, the
supporting run-time system must be easy to port to new general-purpose architectures.
To this end, all the run-time system’s code that is dependent on the machine architecture
and on the programming interface, e.g., the OS and threading libraries’ APIs, is confined
in specific files and implements a single abstraction interface. The core of the run-time
system, which implements the Capsule programming model, only uses functions of the
abstraction interface. This approach has several benefits when the run-time system is
ported to another machine architecture/operating system. First, only approximately 25%
of the run-time system code lines14 need to be changed, instead of the whole run-time
system. Second, the core’s code lines are left unchanged, which implies less chance to
introduce new bugs. The rest of this section is an overview of the abstraction interface
and its design choices. It also presents some details about the reference implementation,
which runs on top of a POSIX operating system with POSIX threads15.

The primitives related to concurrency are completely abstracted by the interface,
which is roughly a simplified version of the POSIX thread interface [129]. This choice
was made because the POSIX thread interface is general, reasonably well-designed and
easy to implement with the primitives of other popular systems, e.g., those providing the
Win32 API. The capsule_pi_thread_create function creates a new thread. Functions to
manipulate sleeping locks (mutexes) are capsule_pi_mtx_init, capsule_pi_mtx_destroy,
capsule_pi_mtx_lock and capsule_pi_mtx_unlock; their name is self-explanatory. Their
single argument is a mutex structure of type capsule_pi_mtx_t holding the information
necessary for the implementation. Similar functions are provided for conditional variables,
with the same distinction as in POSIX between waking up a single thread (capsule_
pi_cv_signal) and all threads (capsule_pi_cv_broadcast), and the same requirement to
associate a mutex to a conditional variable while waiting for a signal on it.

In the POSIX thread implementation of this interface, capsule_pi_thread_create is
a wrapper around pthread_create with some code to initialize the structure used by
the run-time system to represent a system thread. A mutex structure, whose type is
capsule_pi_mtx_t, simply contains a pthread_mutex_t object. The associated functions
call their counterparts in the POSIX interface with default attributes. The implementation
of other structures and functions of the interface is similar. The POSIX implementation of
the interface leaves the scheduling of a task on an actual core to the POSIX thread library
and the underlying OS, since the run-time system may schedule a task on a given logical
thread, but not some hardware thread directly. Implementing the abstraction interface
doesn’t however require a threading library. It is possible, for some bare hardware without
OS, to code the abstraction functions using assembly language and low-level knowledge of
the hardware architecture. The scheduling of the logical threads on the hardware threads
is then up to the implementation, which can use for example a simple policy like pinning

14Measured on our reference implementation.
15Operating systems supporting these interfaces include Linux, the BSDs (NetBSD, FreeBSD, OpenBSD,

DragonFlyBSD), SunOS and derivatives (Solaris), and AIX.

38 Chapter 3. Run-Time System Implementation

each logical thread on a different hardware core.
The run-time system uses per-thread local storage to store a pointer to the structure

representing a thread, which is detailed later in this section. The corresponding abstrac-
tion functions are capsule_pi_thread_key_create and capsule_pi_thread_key_destroy to
create and destroy keys serving to reference particular thread-local data, and capsule_pi_
thread_data_set and capsule_pi_thread_data_get to set and retrieve data corresponding
to a given key. The POSIX implementation of these functions simply calls the POSIX
direct counterparts: pthread_key_create, pthread_key_destroy, pthread_setspecific and
pthread_getspecific. To provide timing facilities to both the run-time system and user
programs16, the function capsule_pi_get_time provides a time measurement facility. Its
implementation on top of POSIX is a wrapper around the gettimeofday system call.

At initialization, the run-time system uses the capsule_pi_get_num_procs of the ab-
straction interface to retrieve the number of processors/cores in the system. In the POSIX
implementation, this call is translated into a call to the sysconf system call with the
_SC_NPROCESSORS_CONF argument17. _SC_NPROCESSORS_CONF indicates to the OS to return
the number of processors that were configured. A better argument in the future may be
_SC_NPROCESSORS_ONLN, indicating the number of processors that are online. However, the
run-time system currently doesn’t support CPU/core hotplugging and will have to be
modified for the new argument to be introduced.

Context switching facilities form another important part of the abstraction interface.
They are currently used by the synchronization groups handling code when some task
is suspended as the consequence of calling capsule_group_wait while other tasks in the
group are running. The run-time system switches context to free the waiting task’s core in
order to provide more resources to tasks making progress. The portable context switching
API has been inspired by the UNIX context handling functions, but the latter has been
simplified and abstracted.

The capsule_pi_ex_ctxt_swap function swaps the current execution context with that
stored in an ad-hoc structure. The capsule_pi_ex_ctxt_make function serves to create
an execution context that, when scheduled, will cause the execution of the specified
function. Other parameters include functions to allocate and deallocate a stack for the
context. capsule_pi_ex_ctxt_destroy destroys an execution context and the allocated
stack. These functions are implemented with the UNIX context handling functions
(makecontext, swapcontext and getcontext) on POSIX systems18.

The core implements its own high-level context switching functions on top of the
above-mentioned ones. These functions uses the calling thread’s structure which, as
mentioned in Section 3.1, contains a pointer to the current user context, if the thread is
executing one, and a slot to store the machine execution context when a task is suspended
as a consequence of a call to capsule_group_wait. In the end, these different layers allow

16Through capsule_abs_get_time, see Section 2.5.
17This argument is not standardized by POSIX nor the Single Unix Specification version 3. However, it

appears to be implemented in a sensible way in all the major POSIX operating systems.
18These functions have been deprecated, but still are implemented on the major systems. They are

more efficient than the traditional longjmp and setjmp families of functions [87].

3.4. Portability Abstractions 39

the core code to create new contexts that can later wait for some task to be created, to
save the current context and switch to a new one or to switch to some group’s waiting
context with a single and simple function call.

In order to improve performance and to be able to implement the conditional paral-
lelization policy, as described in Section 3.2, the run-time system core needs to use atomic
instructions, in addition to locks. A specific part of the abstraction interface, called the
machine abstraction interface, provides functions that realize machine-dependent opera-
tions, i.e., those that rely on particular machine and processor architectures19. It provides
simple atomic read and atomic write operations, as well as compare-and-swap. Instead of
implementing the latter in assembly, we relied on the builtin functions provided by the
GCC compiler [95] (__sync_bool_compare_and_swap and __sync_val_compare_and_swap).
Portable interfaces are defined to manipulate atomically booleans, integers and pointers,
but also 64 bits numbers20.

Initially, the interface included some functions for a thread to wait for a new user task to
execute21 (capsule_pi_thread_wait) or, conversely, to signal that a new user task needed
to be handled by a thread (capsule_pi_thread_wakeup). Two alternatives for the functions
were provided, depending on the chosen strategy to schedule tasks onto the run-time
system’s threads, as explained in Section 3.1. In the alternative where the run-time system
explicitly chooses the thread to handle a particular task, capsule_pi_thread_wakeup takes
a pointer to the thread structure of the thread to wake up. In the alternative where
the task scheduling decision is left to the OS or the architecture, this function takes
instead two arguments: The main run-time system structure, through which the tasks
pass between creation and take over by a thread, and a structure indicating the reason for
the wake-up, either a user task to execute or a signal to shut down.

This situation made the code somewhat complex and had two main drawbacks. First,
code specific to some programming interface had to manipulate core run-time system
structures, implying that it had to be changed when some core structure or its synchroniza-
tion protocol was changed. Second, this code had to be duplicated in each programming
interface support. Since these pieces of code mostly consisted of elusive synchronization
code, one could introduce bugs easily when porting the run-time system to a new pro-
gramming interface. In the end, we decided to implement the relevant synchronization
mechanisms once and for all inside the core. The abstraction interface was changed to
include lower-level and simpler mechanisms.

The abstraction interface allows a wide range of implementations for the base concur-
rency mechanisms, making the run-time system portable over all general-purpose machines.
It is even possible to support raw hardware, i.e., machines without operating systems,
by using the appropriate C or assembly code to implement simple threading with one
thread being assigned and run by one core. A userland threading implementation of the
abstraction interface is used in Part III (see Section 13.1.4) as part of the evaluation of

19These operations are independent of the particular programming interface, i.e., the OS or threading
library.

20This interface allows to detect overflows when adding numbers.
21Or for some other action triggered by the run-time system itself, such as shutting down.

40 Chapter 3. Run-Time System Implementation

the concepts presented in Part II.

41

Chapter 4

Performance Study

This Chapter presents performance results of software run-time system implementations
for the Capsule environment that were evoked in Chapter 3.

Section 4.1 is a study of performance scalability and variability of regular and irregular
programs, with complex control flow and data structures, on multi-core platforms. It
compares the performance of common but naive parallel versions of these programs to
what can be achieved by porting the program to Capsule. It shows that Capsule
parallelization offers both higher scalability and less execution time variability over data
sets. The reduced execution time variability enables to accurately and quickly forecast the
performance of computationally-intensive program pieces, a feature especially useful for
embedded systems that often run applications with soft real-time constraints. Section 4.1
is an adaptation and refinement of the content of Certner et al. [54].

Section 4.2 is a study of the influence of the run-time system implementation and the
underlying architecture on program performance. It first compares the performance of
the previous implementation and that of the current one using an example benchmark.
For the current version, it gives different sets of results corresponding to some of the
scheduling alternatives that were described in Section 3.1. The new version can achieve
better performance than the old one, especially for a high number of cores, despite the
introduction of several abstractions and some new functionality1. The comparison of
the scheduling alternatives’ results illustrate that better performance could be achieved
by leaving some key decisions to the operating system. Finally, the influence of task
granularity on performance is briefly studied. Some modifications of the run-time sys-
tem are proposed to make a program’s performance more independent of some specific
characteristics of the architecture.

4.1 Performance Scalability and Stability

Until recently, the necessity to predict the execution time of an application was essentially
a feature of real-time systems. These systems, in turn, were associated with simple con-

1See Chapter 3.

42 Chapter 4. Performance Study

trollers or elementary processors running similarly simple applications. Due to both the
increasing performance of embedded systems, and the consumers’ taste for rich and com-
plex applications, many programs are now more complex, must achieve high performance
and their performance must remain reasonably predictable. They range from soft real-time
mobile applications such as GPS navigation software, to consumer electronics or desktop
applications such as video compression-decompression, games, rendering software, or even
scientific applications such as real-time finite-element modeling for engine control [80].

Two factors determine the predictability of a program execution time: The program
workload, depending on the algorithm and the input data set and which is platform-
independent, and the program behavior on the architecture. While the impact of the
first factor is not trivial, one can correlate in many cases a program execution time
on a single core to some restricted set of data characteristics or program parameters.
However, the execution time variability on multi-core machines is significantly higher
than on single-cores due to thread partitioning, balancing issues and contention. As a
result, the second factor is becoming both important and tedious to address. Therefore,
just as applications become more complex and the performance of an increasing span
of applications must become predictable, the widespread use of multi-cores is making
this task even harder. The purpose of this study is to focus on this second factor, and
to show that, through a proper parallelization approach, it is possible to get parallel
programs with fairly predictable throughput, with neither compromise on speedup nor
ease of programming.

In real-time systems, performance prediction is today essentially based on a detailed
knowledge of the underlying architecture, and the program behavior on this architecture.
It is done using one or a combination of the following approaches:

1. Trying to predict the detailed performance of programs on architectures, such as
Absint [228] for simple pipeline architectures and for superscalar architectures [178].

2. Changing the program so that its behavior is better understood and predictable,
such as StreamIt [248] for stream processing applications.

3. Changing the architecture so that its behavior is more predictable, such as disabling
the cache or replacing it with scratchpads [208], using software instead of hardware
cache coherence, VLIW instead of out-of-order execution, etc.

In summary, most approaches rely either on analyzing in details program behavior on
architectures or on simplifying programs or architectures. The former is increasingly
difficult as architectures have become more complex. The advent of multi-core processors
will make it even harder. The latter can have the effect of reducing program performance
or limiting the scope of the approach to some domain-specific applications.

We hereby propose a fourth approach for achieving both easier to predict and high
performance on multi-core/multi-thread architectures. For complex applications with
irregular control flow and/or data structures, one of the main sources of performance
variability on these architectures is simply that a variable number of cores are used
throughout the program execution. Such poor load balancing can induce both irregular

4.1. Performance Scalability and Stability 43

and poor performance. Our approach is then based on a simple principle: Using real-time
conditional task division, we can design parallel programs, and even ones with irregular
behavior, so that they try to leave no processor cores unused at any time. That cores are
used most of the time makes it easier to deduce performance based on a sample of the
execution, for computationally-intensive pieces of code.

This approach requires no knowledge of the architecture, and thus no detailed analysis.
It is not tied to any particular way of handling concurrent accesses, thus allowing pro-
grammers to use it in combination with, for example, syncrhonization mechanisms that
avoid deadlocks, such as the transactional memory approach [124], which has become very
popular recently. It can also adapt to varying architectures and scales well with the number
of cores. It can be applied efficiently and independently to any computationally-intensive
part of a program. Finally, it relies on a all-software implementation which is very efficient
on a large range of existing processors and architectures.

The approach is based on the Capsule programming environment, which is described
in Chapter 2, and a shared-memory implementation following the principles of Chapter 3.
Like Cilk [34], or to a lesser extent Charm++ [150], Capsule implements parallelization
through the intuitive operation of splitting/dividing an encapsulated task in two. The
main difference is that Capsule’s division is conditional upon available hardware resources.
This distinguishing feature allows the run-time system to better match task granularity
to available resources and to considerably reduce the overhead associated with very small
tasks.

Using this dynamic parallelization approach, the execution time of irregular programs
is both lower and much more stable than statically parallelized programs, as we will show
in Section 4.1.1 and Section 4.1.4. As a result, these implementations lend themselves
well to performance prediction, which can be achieved through iterative execution time
sampling. A program is executed on one or several data sets. The resulting execution
time statistics are then used to predict program throughput. This methodology is detailed
in Section 4.1.3. Variabilility results as well as example performance predictions are
presented in Section 4.1.4.

One can observe that the behavior of programs parallelized using conditional division is
even more complex than the behavior of statically parallelized programs, since it depends
on run-time conditions. However, we show that their performance is more stable and thus
more predictable thanks to dynamic adaptation. This observation means that accepting
to relax control and prediction of the detailed program behavior can paradoxically result
into better prediction accuracy and improved performance.

4.1.1 Motivating Example

Consider the example of the Quicksort sorting algorithm, where an array is recursively
split into two sub-arrays according to a pivot element. An intuitive but naive approach
for a 2-way parallelization of Quicksort is to perform the recursive sorting on the first
two sub-arrays concurrently. By repeatedly doing so for subsequent sub-arrays, on an N

44 Chapter 4. Performance Study

2000

576

305

270

1324

98

1423

Figure 4.1: Static Parallelization of Quicksort on a 4-Core Computer.

cores machine, there are enough sub-arrays for each core after log2(N) pivot steps, and
all hardware resources are used at that point.

However, this parallelization is static, and the parallel program performance will be
quite data set dependent because two sub-arrays can have very different sizes. As a
result, the workload of each core can vary considerably from one input array to another.
Some cores will finish their work sooner than others, and will be left idle. Figure 4.1
shows an example of workloads for a random array of 2000 elements on a 4 cores machine.
The initial array is represented as the node on the left. A node’s children represent the
sub-arrays to be sorted independently on different cores after one pivot step. The number
on a node indicates the sub-array size.

Figure 4.3 (page 46) shows the performance of static parallelization for 1000 random
arrays of 1M elements under the “4 cores - static” name. One can observe that the
variability of the execution time on multi-cores is much higher than that observed on
single-core machines. In short, parallelization increases execution time variability, or
conversely decreases program execution time predictability.

Now, let us assume the program is parallelized the same way, i.e., two sub-arrays are
treated concurrently, except that this parallelization is done at every pivot step, regardless
of the number of cores. The cons are that the task granularity will become exceedingly
small after all possible pivot steps, with leaf sub-arrays of one element each, voiding the
benefits of parallelization. The pros are that the potential number of tasks, and thus the
degree of parallelism, is very large.

In order to get the best of both worlds, this systematic parallelization is in fact

4.1. Performance Scalability and Stability 45

1423

305

982

2000

Figure 4.2: Dynamic Parallelization of Quicksort on a 4-Core Computer.

performed conditionally upon the available cores, according to the Capsule programming
model and with the chosen run-time system implementation. At every pivot step, if a core
is available, the Quicksort program will parallelize the treatment of the two resulting
sub-arrays. Otherwise, it will sort them sequentially. As a result, cores will almost always
be used, but the task granularity does not risk becoming too small, except towards the
end of the execution.

The pattern of division depends both upon the data set and the cores’ occupancy,
possibly even by tasks from other processes. Figure 4.2 shows the execution of Quicksort
parallelized that way for the same array as in Figure 4.1 (facing page). Each graph node
indicates that a division occurred, i.e., one sub-array has been assignated to a core for
execution. One can note that more divisions occur on the path with the highest workload
(1423) because it takes advantage of the cores freed early by the paths with smaller
workloads (305). The irregularity of the graph reflects the difficulty of predicting when
each core will become available. Figure 4.3 (next page) shows the performance of the
dynamic parallelization for the same data sets as for the static parallelization under the
“4 cores - dynamic” name.

The key observations are that the performance of the Capsule-parallelized version is
better than the statically parallelized version on average and that, over 1000 arrays, it is
far more stable than the performance of the statically parallelized version. Let us pick 10
random arrays, compute the average execution time for both versions, and then compare
it to the average execution time over 1000 arrays. The error for the statically parallelized
version is 6.42%, while the error for the Capsule version is 1.21%. In fact, a sample of 3
arrays only is sufficient to achieve an error of 2% or less with the Capsule version versus

46 Chapter 4. Performance Study

0 21 42 63 84 10
5

12
6

14
7

16
8

18
9

21
0

23
1

25
2

27
3

29
4

0

100

200

300

400

500

600

700 1 core
4 cores – dynamic
4 cores – static

Execution time (M cycles)

N
u

m
b

er
 o

f
d

at
as

et
s

Figure 4.3: Performance of Static vs. Dynamic Parallelization of Quicksort.

100 arrays for the statically parallelized version, as shown in Figure 4.4 (facing page).
This example suggests that it is possible to precisely predict the behavior of irregular

program parts using a combination of conditional parallelization and execution time
sampling.

4.1.2 Benchmarks and Experimental Framework

Unlike for single-cores, there are no widely-accepted general parallel benchmark suites
for multi-cores. The SPLASH benchmarks [236, 258] are mostly scientific computing
benchmarks, which often have a regular behavior and are not always within the scope of
real-time applications. Other benchmark suites, such as ALPBench [170], BioParallel [138]
and MineBench [192], are domain-specific, with the first targeted at multimedia applica-
tions and the other two at data mining ones. Only recently did the PARSEC benchmark
suite [30] appear, including state-of-the-art benchmarks that are more representative of
the multi-core era and of modern applications, such as financial pricers, computer-assisted
engineering, computer vision, physical simulation and data mining, although it still seems
to be slightly biased towards scientific computing.

An influential survey on parallel computing and benchmarking [12] suggests the dwarves
approach where, instead of large applications, the different characteristics of a parallel
machine should be exercised with a mix of targeted benchmarks. To a large extent,
we have been following that approach by progressively building a mix of kernels and
larger applications, all parallelized using Capsule. This suite includes kernels and more

4.1. Performance Scalability and Stability 47

0 25 50 75 100 125 150 175 200 225 250 275 300
0

2.5

5

7.5

10

12.5

15

17.5

20
dynamic

static

Number of datasets

E
rr

o
r

(%
)

0 10 20 30 40 50 60 70 80 90 100
0

2,5

5

7,5

10

12,5

15

17,5

20
dynamic

static

Number of datasets

E
rr

o
r

(%
)

Figure 4.4: Predictability Error, Static vs. Dynamic.

complex applications, with both known regular or irregular behavior. The benchmark list
is indicated below, together with a short description of the data sets used.

MxV The standard Matrix-Vector multiply kernel. The performance dependency of this
algorithm on the input data set is obviously limited to the matrix size. 1000 matrices
were randomly generated.

SpMxV A Sparse Matrix-Vector multiply kernel, where matrices are expressed in the
Harwell-Boeing format. An increasing amount of real-time applications rely on
physics modeling (games, engine control, etc.), which can rely upon sparse matrices.
300 matrices were collected from MatrixMarket, a web resource for test matrix
collections. 200 matrices were randomly generated using a random sparse matrix
generator called Matgen.

Dijkstra The graph shortest path algorithm used in network routing or for navigation
purposes. 200 graphs were randomly generated with 1000 nodes and 2000 edges.

Quicksort The efficient and common sorting algorithm, tested with 1000 arrays of 1M
elements.

Watershed An image segmentation program used for identification of image areas. The
input images sizes ranged from 512× 512 to 1536× 1024 pixels.

GZIP The popular file compression utility. The storage on embedded devices being scarce,
compression is commonly used for example on smartphones and PDAs. 500 files of

48 Chapter 4. Performance Study

different content types (audio, video, image, office document, telecom, etc.) were
used.

X264 A parallel implementation of an H264/MPEG4 encoder using slicing. Inputs were
134 clips of 100 frames with 640× 360 pixels size.

The first 4 benchmarks were written from scratch using the Capsule API. The number
of lines of code, for both sequential and Capsule versions, is several hundreds, depending
on the benchmark. The Watershed code was provided by a company doing some image
processing, and was substantially rewritten to exercise the dynamic parallelization of
Capsule (∼50% more code lines). The Dijkstra algorithm was parallelized as described
in [202].

The GZIP and X264 benchmarks, by contrast, were converted to Capsule by a simple
substitution of the POSIX threads calls by corresponding Capsule ones. When these
original benchmarks are run, they initially create a number of threads corresponding to
the number of available physical cores and dispatch fixed workloads to them. Introducing
dynamic division would have required to change some of the main algorithms used, which
would have led to a major and costly rewrite of these applications.

All experiments were conducted on a bi-dual-core machine equipped with 2 AMD
Opteron dies and 4 gigabytes of RAM, half of them being attached to one of the two dies
in a cache-coherent non-uniform memory architecture (ccNUMA) architecture. All the
benchmarks and their corresponding data sets were run once per step. The first step is
a simple run of the original sequential version, when possible, to serve as the reference
point when computing speedups. The three other steps employ the benchmark version
parallelized with Capsule and corresponds to the run-time system being allowed to use
1, 2 or the 4 cores available on the machine, respectively.

The Capsule run-time system has also been successfully ported to a 4-core ARM11
MPCore without operating system. Because the latter ARM platform allowed fewer test
applications, we chose to perform experiments on the AMD platform.

4.1.3 Iterative Execution Sampling

The Capsule run-time system allows tasks to divide until all hardware threads are held
busy. This greedy property effectively lets the program spread to all the silicon available,
making its throughput much more stable. In the ideal case of programs whose tasks are
independent, the total program throughput in the system is the sum of the throughputs of
all available hardware threads, if we except the little amount of time spent in the division
process. For such programs, performance also scales nearly linearly with the number of
hardware threads.

For programs exhibiting contention, the situation is more complex. Giving a quantita-
tive interpretation of the observed throughput can be extremely hard, since it may deviate
from the ideal case because of the combined effects of the particular contention patterns,
themselves dependent on the cache hierarchy characteristics and behavior. Fortunately,

4.1. Performance Scalability and Stability 49

this doesn’t imply that the program throughput is not stable accross data sets. The
contention patterns, however complex they may be, may only be a few. More generally,
the run-time system’s greedy property ensures that the same number of tasks are working
concurrently most of the time. Compared to a situation where the number of concurrent
tasks varies, this property diminishes the number of possible contention patterns and the
execution variability, although the latter may stay at high levels. Contention degrades the
attainable scalability from the ideal linear speedup, but only experiments can quantify
the effect simply and accurately.

The more stable throughput of Capsule-parallelized programs can be leveraged for
predicting program performance by sampling executions. For that purpose, we use princi-
ples similar to that of iterative compilation [53], which relies on multiple executions of the
same program to fine-tune optimizations. In our case, the multiple training executions
are used to estimate the average throughput and the throughput relative dispersion of a
program across data sets, and then to forecast future execution throughputs.

Each training run, numbered i, uses one distinct input data set, and produces a
throughput measure ti. After n runs, the estimated throughput average µ̂n is:

µ̂n =

n∑
i=1

ti

n

The estimated relative dispersion sequence is, at this point, defined as:

d̂ispn =

n∑
i=1
|ti − µ̂n|

(n− 1)µ̂n

The training phase lasts until the estimated average and dispersion both converge to the
actual average and dispersion values. Taking the example of the estimated average, it is
useful to introduce the sequence of relative differences of consecutive estimated averages,
i.e., at step i, the value:

|µ̂i+1 − µ̂i|
µ̂i

since this sequence converges towards 0.
The operator has to stop the process when the estimators have reached the desired

precision. Traditionally, the latter is measured thanks to a reference distribution that
depends on some assumptions on the distribution of experimental results. The reference
distribution allows to derive confidence intervals for a chosen probability of error. The
well-known Student distribution [112] is typically used to estimate the mean value of a
normal distribution of unknown variance. For our experiments, we have chosen a much
simpler empirical approach: We ended the training phase when 5 elements in a row
were below a 1% threshold for both relative difference sequences (estimated averages and
estimated relative dispersions).

For programs where single-core execution time variability depends on known data set
characteristics, e.g., the array size for Quicksort or the matrix dimension for MxV and

50 Chapter 4. Performance Study

SpMxV, it is possible to predict parallel execution time, not just throughput, assuming all
training and target data sets have the same characteristics.

When single-core execution time is a complex function of data sets or if the target
data sets is heterogeneous, predictions can usually still be achieved if a meaningful sta-
tistical model of execution can be built from experiments. This model usually involves
analyzing program characteristics during executions such as the instruction mix, the
branch prediction accuracy, cache misses and instruction-level parallelism. The behavior
of a particular program-data set pair is closely correlated to some combination of the
characteristics that can be determined automatically using principal component analysis
and/or clustering [85].

In all cases, the measurements required to do the predictions can be done not only
off-line, by repeating execution of a given program on different data sets, but also on-line,
if the same piece of code is called several times in turn in the same program, allowing
more and more accurate prediction of remaining or future execution times as the program
keeps running. In the following Section, we only consider off-line predictions, since on-line
ones can be done similarly.

4.1.4 Experimental Results

Performance and Scalability of Division-Based Parallelization

Figure 4.5 (facing page) illustrates the speedups and scalability achieved by the Capsule
program versions, under the label “dynamic”. Even irregular programs, which are typically
difficult to parallelize, such as Quicksort or Watershed, can take full advantage of an
increasing number of cores.

We observe nearly perfect speedups for 2 cores, with all speedups being above 1.8,
except for MxV (1.6) and Dijkstra (0.75). The best speedups are 1.92 for Quicksort,
1.95 for GZIP and 2.23 for X264, the latter being super-linear because of one core warming
up some cache for the other core. Dijkstra’s performance is highly dependent on the
characteristics of the graph it processes but also on run-time conditions, including the
number of cores used. With this algorithm, the total workload for a graph indeed depends
on the exploration paths followed by the different tasks. Tasks crossing nodes with a
lower annotated current distance will stop and those that work on a path with small
distances will spawn more tasks to explore nodes from it. Consequently, if a task soon
follows a path with small distances, most tasks following other paths will stop early. Since
tasks are created based on run-time conditions, namely the availability of some cores,
Dijkstra’s behavior and performance thus depends on the number of cores and on the
task scheduling.

Going to 4 cores, most speedups are around or above 3, except for Dijkstra and
Quicksort (1.58 and 2.43 respectively). The latter is penalized by some tasks being
created that span too a small input sub-array. Results can be greatly improved if no
divisions are requested for sub-arrays under a given threshold. As an example, setting the
threshold to 100 elements results in a new speedup of 2.97. This effect will specifically be

4.1. Performance Scalability and Stability 51

M*V SpM*V Gzip X264
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50 1 core
2 cores – dynamic
4 cores – dynamic
4 cores – static

M*V QuickSort SpM*V Dijkstra Watershed Gzip X264
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50
1 core
2 cores – dynamic
4 cores – dynamic
4 cores – static

S
p

ee
d

u
p

Figure 4.5: Speedup and Scalability.

studied in Section 4.2.3. SpMxV’s speedup suffers from memory bandwidth limitation. The
Capsule version still performs significantly better than the static one. The performance
of large benchmarks, such as Watershed (2.86) and GZIP (3.6), is excellent.

As can be seen on Figure 4.5, the performance of the programs’ Capsule versions are
better than those of the naive (static) versions. The difference is particularly important
for irregular benchmarks, such as Quicksort, Watershed and SpMxV. Dijkstra is an
exception here, for reasons explained earlier. X264 has its performance increased when
switching to Capsule, although it doesn’t take advantage of conditional parallelization.
The reason is that the version we used constantly destroys and recreates threads to process
the slices of each frame. The Capsule version creates tasks to reproduce this behavior,
but not threads, which are automatically recycled by the run-time system in a pool.

Performance Variability of Parallel Programs

Figure 4.6 (next page) compares the execution time variability of both static and dynamic
parallelization. The variability is measured through the relative dispersion, as defined in
Section 4.1.3, across all data sets.

The MxV and GZIP benchmarks exhibit a fairly stable throughput, whereas Dijkstra,
Quicksort, SpMxV, Watershed and X264 have an irregular behavior across data sets. One
can observe that, for the latter ones, the variability of execution time on multi-core
machines is much higher than on single-cores. X264 is an exception. Its performance also
varies a lot on single-cores because frame encoding is dependant on the encoded image’s
autocorrelation.

Our approach reduces variability significantly and consistently, although it usually
remains greater than that observed on single-cores. Together with the increase in perfor-
mance brought by Capsule, this feature opens up the possibility of trading off performance

52 Chapter 4. Performance Study

M*V QuickSort SpM*V Dijlstra Gzip Watershed X264
0

5

10

15

20

25

30

35

40 1 core
4 cores – static
4 cores – dynamic

M*V QuickSort SpM*V Dijlstra Gzip Watershed X264
0

5

10

15

20

25

30

35

40 1 core
4 cores – static
4 cores – dynamic

V
ar

ia
b

ili
ty

M*V QuickSort SpM*V Dijkstra Gzip Watershed X264
0

5

10

15

20

25

30

35

40 1 core
4 cores – static
4 cores – dynamic

V
ar

ia
b

ili
ty

M*V QuickSort SpM*V Dijkstra Watershed Gzip X264
0

5

10

15

20

25

30

35

40 1 core
4 cores – dynamic
4 cores – static

V
ar

ia
b

ili
ty

 (
%

)

Figure 4.6: Execution Time Variability, Static vs. Dynamic.

variability versus execution time more efficiently. For a given number of cores, the product
of both metrics is indeed lower for the Capsule-parallelized version.

The reason why GZIP and X264 behave similarly for both parallel versions is due to
our implementations, which don’t allow them to really benefit from the dynamic division
scheme, as explained in Section 4.1.2. Only GZIP performs slightly better in its static
version. The difference accounts for the hardly higher overhead of Capsule compared to
POSIX threads.

Predicting Program Performance

We now illustrate that the greater stability of dynamic division enables a rather accurate
estimate of program performance by sampling a few data sets and using the iterative
technique proposed in Section 4.1.3.

Figure 4.7 (facing page) gives the number of data sets for which the mean execution
time estimation is likely to differ by less than 5% from the real mean execution time.
It shows that, for the irregular benchmarks, dynamic division can reach a given mean
estimation error with fewer runs.

Figure 4.8 (facing page) illustrates the mean estimation error when the prediction
is based on a fixed number of data sets. It shows that the lower dispersion of dynamic
division results in a more accurate prediction using the same number of runs.

Dynamic versions bring a huge improvement for benchmarks that exhibit a high
variability. The numbers for X264 and GZIP are almost identical for both versions, since
the conditional division mechanism is not used. Results for Dijkstra are less spectacular
because of the algorithm’s peculiarities, but are still significant.

4.1. Performance Scalability and Stability 53

M*V QuickSort SpM*V Dijlstra Gzip Watershed X264
0

10

20

30

40

50

60

70
static 4 cores

dynamic 4 cores

M*V QuickSort SpM*V Dijlstra Gzip Watershed X264
0

5

10

15

20

25

30

35

40 1 core

4 cores – static

4 cores – dynamic

M*V QuickSort SpM*V Dijlstra Gzip Watershed X264
0

10

20

30

40

50

60

70
static 4 cores

dynamic 4 cores

M*V QuickSort SpM*V Dijkstra Watershed Gzip X264
0

10

20

30

40

50

60

70
dynamic 4 cores

static 4 cores

N
u

m
b

e
r

o
f

d
a

ta
s

et
s

Figure 4.7: Number of Data Sets to Reach a Mean Estimation Error of 5%.

M*V QuickSort SpM*V Dijkstra Gzip Watershed X264
0

2.5

5

7.5

10

12.5

15
static 4 cores

dynamic 4 cores

M
ea

n
es

tim
at

io
n

er
ro

r

M*V QuickSort SpM*V Dijkstra Watershed Gzip X264
0

2,5

5

7,5

10

12,5

15
dynamic 4 cores

static 4 cores

M
ea

n
 E

st
im

a
ti

o
n

 E
rr

o
r

(%
)

Figure 4.8: Mean Estimation Error After 10 Runs.

54 Chapter 4. Performance Study

1 2 4 6 8 12 16 20 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1

2

3

4

5

6

RTS Scheduling
System Scheduling
Old RTS Implementation

Execution Time (s) Speedup

of Cores

Figure 4.9: Quicksort Performance and Scalability For Different Implementations.

4.2 Performance Dependence on the Run-Time Platform

This Section briefly studies some factors by which the run-time platform may influence
the attainable performance of Capsule programs. Scalability results of an example
benchmark are presented on a 24 cores machine.

Section 4.2.1 compares the performance of the old run-time system implementation
with the one and two of its scheduling alternatives. Section 4.2.3 shows that performance
can vary significantly with task granularity, which indicates a dependency towards the
cost of a division on the experimental platform. Some solutions are proposed to mitigate
this dependency.

4.2.1 Run-Time System Implementation

Figure 4.9 presents the performance of the Quicksort benchmark on 100 random arrays
of 108 elements run on the old run-time system implementation2 and on the new run-time
system implementation with two alternative scheduling strategies. The first strategy is

2See the introduction of Chapter 3.

4.2. Performance Dependence on the Run-Time Platform 55

that the run-time system explicitly selects the thread that last became idle to process a
new task, whereas in the second scheduling is left to the OS and the threading library3.
The first group of globally decreasing curves represent the real execution times for all three
variants. The second group, with increasing curves, represent the associated speedups
over an execution of each particular variant on a single core. The execution time scale is
reported on the left of the graph and the speedup scale on the right.

The machine used for these experiments is a quad Intel Xeon E74504 at 2.40GHz,
each die comprising 6 cores. It runs a Mandriva OS with a Linux kernel based on 2.6.29.
The employed Quicksort implementation slightly differs5 from the one used for the
experiments in Section 4.1.4. The main difference is that it doesn’t try to divide sub-ar-
rays whose number of elements is smaller than 1000. The rationale for this choice will
become apparent below. It would be necessary to run a thorough benchmarking campaign
involving other programs to be able to draw quantitatively meaningful conclusions from
the comparison. Still, the Quicksort graph shows interesting trends that we believe are
general.

The different implementations and scheduling methods do not seem to make any
significant differences for a low number of cores and when the available parallelism is
large. After the i-th pivot step, Quicksort tries to generate 2i−1 new tasks that different
cores/processors can handle independently, provided the sort is relatively balanced and
n ≥ 2i, where n is the array size. With n = 108, log2(n) ≈ 26.58, which implies the
generation of up to 13 tasks for a given pivot step. This is effectively enough to saturate 1
to around 4 to 8 cores most of the time.

During periods where most cores are busy and probes are frequent, threads finishing a
task do not stay idle for long and it is likely that only a few of them are idle concurrently,
unless tasks being dispatched are extremely small. This latter possibility has been largely
ruled out in this Section’s experiments by using the 1000 threshold6. For the variant
where scheduling is deferred to the OS, this property limits the possible contention on
conditional variables and on the single slot the run-time system currently uses to pass a
new task to an idle thread.

As the number of core grows beyond 4 to 8, Quicksort does not generate enough tasks
to maintain all cores busy most of the time, especially if the input array does not produce
well-balanced sub-arrays. The amount of time during which the previous property is
verified shrinks, causing more contention for the system scheduling variant. Experimentally,
this effect shows up starting between 8 to 12 cores: The system scheduling variant does
not perform as well as the other variants for 12 cores. Worse, its performance constantly
decreases for each measurement between 12 and 24 cores. For the other variants, the
performance reaches a plateau at 16 cores, with a slight degradation for the old run-time
system implementation.

3See Section 3.1 for more details.
4This is a Dunnington processor, based on the Penryn microarchitecture, an evolution of Core 2.
5The pivot step has been optimized, resulting in a 10% performance improvement over sequential runs

(code available in Appendix A). Some threshold prevents the creation of task with small granularity, as
detailed in the main text.

6Section 4.2.3 demonstrates this claim.

56 Chapter 4. Performance Study

1 2 4 6 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1

2

3

4

5

RTS Scheduling
System Scheduling
Old RTS Implementation

Execution Time (s) Speedup

of Cores

Figure 4.10: Quicksort Performance and Scalability on an 8-Core Machine.

For the system scheduling variant, these results demonstrate the need to implement a
more sophisticated mechanism than the naive implementation consisting of a single slot
shared by all threads to pass new tasks to idle threads. Only with such a mechanism can
the results become competitive with the simple scheduling currently performed by the
run-time system.

The potential advantage of relying on system components for task scheduling is that
these components have a view of the system hardware topology and the threads currently
being scheduled. For example, they could use this information to select the thread that is
expected to have the lowest wake-up latency, which may be one thread not too far away
from the parent task or one that has waited a long time and thus has a higher scheduling
priority. Potential benefits may appear only as a larger number of cores are used and
when a program is run on a heavy-loaded machine. Section 4.2.3 below discusses other
potential improvements, that ultimately have lead us to the distributed implementation
presented in Part II.

4.2.2 Hardware Architecture

This Section is a brief study of the influence of the particular architecture on scalability
results obtainable with Capsule.

Figure 4.10 presents the performance and scalability of Quicksort on a different

4.2. Performance Dependence on the Run-Time Platform 57

Platform Nb of Cores Microarchitecture Kernel

Intel Core 2 Duo T7400 2 Merom F 7.0
2 × Intel Xeon E5430 2× 4 Harpertown L 2.6.29
4 × Intel Xeon E7450 4× 6 Dunnington L 2.6.29

Figure 4.11: Platforms Used for the Micro-Benchmarks.

Nb of Cores Mean Standard Deviation Nb of Samples

2 11921 1442 95
2× 4 40250 13437 100
4× 6 39922 12722 100

Figure 4.12: Number of Cycles Between a Divide and the Start of a New Task.

machine with two Intel Xeon E5430 processors each composed of two dies with 2 cores.
The OS is identical as that mentioned in Section 4.2.1 for the first machine.

The results show that all variants perform similarly up to 8 cores, as in Section 4.2.1.
Interestingly, the obtained scalability for 8 cores on this machine (5.22) is higher than
that for the 24-core machine (4.83). This difference seems to come from the different
core-to-core and core-to-memory latencies and bandwidths of the two platforms.

Figure 4.12 shows the number of cycles7 elapsed between a divide and the actual start
of the new task. The architectures used are reported in Figure 4.11. They include the two
that were used to obtain the Quicksort results in the previous Section. Measurements
were performed by having the initial task probing and launching another task repeatedly.
For OSes, L stands for Linux and F for FreeBSD (-STABLE branch). A unit in the
number of samples represents 10,000 tests.

The reported time to start a task depends on the architecture as well as on the
operating system. The results show that the numbers are very close for the 8-core and
24-core machines, which have processors with similar microarchitecture and the same OS.
On the Core 2 Duo, starting a task is nearly 4 times faster, as could be expected. The
main reason is the low number of cores and the fact that they are on the same die. As
a consequence, the run-time system efficiency is increased. The order of magnitude for
all these results is 10,000 cycles. No effect on applications’ speedup should therefore be
noticeable, except for programs having a critical path composed of many tasks whose
individual length is not at least two orders of magnitude greater than 10,000 cycles on
average. In the latter case, execution of the critical path will be visibly delayed by this
overhead.

Figure 4.13 (following page) presents the duration of a successful probe and divide
sequence on the same machines. This duration is the overhead penalty a task suffers

7This number has been computed for the variant in which the run-time system selects the thread to
handle the new task. When task scheduling is deferred to the system, this overhead is cut approximately
by two.

58 Chapter 4. Performance Study

Nb of Cores Mean Standard Deviation Nb of Samples

2 6594 715 95
2× 4 15260 4721 100
4× 6 14780 4184 100

Figure 4.13: Number of Cycles Spent in a Probe and Divide Sequence.

when spawning another task, including the time to signal some idle thread to handle the
new task. Probe and divide also involve simple synchronization operations to update the
thread counter. A non-negligible amount of time is dedicated to initializing execution
context structures8. The results show that the dual-core has much less overhead than the
machines with 8 and 24 cores, which is essentially due to the synchronization costs. The
overhead is 2 to 3 times less than the interval of time between a divide and the actual
task start. We discuss its impact on scalability at the end of Section 4.2.3.

4.2.3 Task Granularity and Other Program Characteristics

In this Section, we provide a study on the influence of task granularity on program’s
performance. It uses the same Quicksort implementation and experimental conditions as
in Section 4.2.1. The threshold on the array size is implemented as a simple test inserted
before the probe done at the end of each pivot step. It is passed as a parameter when
launching the Quicksort process.

Figure 4.14 (facing page) presents the performance and scalability results for a variety
of thresholds, from 10 to 105, on the same 24-core machine as in the previous Section.
The convex curves are the execution time ones and the concave curves those reporting
speedup. When no thresholds are used (0), scalability peaks at 3.39 for 6 cores and then
considerably degrades to the point that, when using 24 cores, the program is faster by
only 7% with respect to the single-core run! The trend is the same for a threshold of
10. The scalability peak begins to move to the right with a threshold of 100, where it is
around 16 cores with a 5.03 speedup. For a threshold of 1,000, there is no degradation
any more. The scalability climbs to 6.27, which is almost reached from 16 cores. It still
improves when switching to 10,000 (6.66). Finally, it is 6.82 for 100,000, with that last
step showing diminishing returns. The slight shift between the performance curves for 1
core reflects the difference in the number of probes issued and the common probe failure
overhead.

Clearly, the problem of task granularity can ruin the scalability of a Capsule-paral-
lelized program. To avoid it, programmers could estimate, from the particular algorithm
used, how much work remains to be done by a task and, from this, decide whether it is
worthwhile to try to divide and create another task. This is exactly the approach we took
for Quicksort.

8Some of these operations could be optimized by reducing the initialization to the essential structure
fields instead of zeroing the whole structure.

4.2. Performance Dependence on the Run-Time Platform 59

1 2 4 6 8 12 16 20 24

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1

2

3

4

5

6

7

Execution Time (s) Speedup

of Cores

0
10
100
1,000
10,000
100,000

Figure 4.14: Quicksort Performance With Several Task Thresholds.

Unfortunately, this approach has several drawbacks. First, the amount of work at a
given point in an algorithm may not be known with certainty. In Dijkstra, for example,
the workload highly depends on the graph structure and the weight attached to its edges.
As the algorithm runs, the remaining work also depends on the browsed paths so far, and
thus ultimately on run-time conditions. The situation is even worse for complex programs
involving lots of components. Expecting a programmer to indicate the work amount
together with a task declaration is unrealistic9, not even mentioning the programming
effort involved, except in simple controllable cases.

Second, spawning a particular task may be beneficial on a given architecture, whereas
it may degrade performance on another one. The most obvious trade-off depends on the
total cost of probing and spawning a new task, from the father task’s point of view. If a
task requires more execution time to spawn a new task than to execute the corresponding
work sequentially, dividing is obviously a performance loss. This may happen for very

9Some researchers may be able to produce (semi-)automatic methods in some cases, such as the ones
evoked in Section 4.1.3. However, we have not seen any method that we believe will ever be lightweight
enough to be applied at run time, which is necessary when workload evaluation for a program largely
relies on input data characteristics not known at compile time.

60 Chapter 4. Performance Study

small tasks spawned within innermost loops or on very small data structures, such as a
small sub-array for Quicksort. Programs with mostly mid-sized or coarse-grain tasks do
not run into this problem, since the division cost observed on several recent architectures
is around 10,000 cycles10. When they do, they would temporarily throttle the spawning
of other such tasks by the simple fact that they occupy some hardware resource.

The essential difficulty is that this trade-off is machine-dependent. In practice, this
would mean that a programmer would have to change the threshold to run a program
efficiently on a different architecture. Although this is mitigated by the fact that, as can
be seen on Figure 4.14 (previous page), there may be a relatively large range of threshold
values for which scalability is good and doesn’t vary much (1,000 to 100,000 for Quicksort
on this particular machine11), we think that more of the burden should and could be
handled by the run-time system.

To this end, we propose some possible mechanisms that should be evaluated as a future
work. The first mechanism, that was exposed in [202] for the hardware implementation of
Capsule, is to monitor the rate at which created tasks terminate. If this rate is high,
it is likely that lots of small task are being created. The hardware consequently blocks
divisions during a small amount of time when the rate is higher than some threshold12.
This approach has the advantage that it is completely application-independent and rather
simple to implement. Unfortunately, it is rather radical and may also block long tasks
that happen to compete for task creation with very small tasks. This is the reason why it
is not beneficial for all algorithms13.

A more focused approach is to try to optimize the efficiency of a division, which can be
measured as the ratio of the amount of time spent working on a user task over the amount
of time that was lost by the father task in the division process. The machine-dependent
trade-off mentioned above can be expressed easily in terms of this division’s efficiency
ratio: It has to be greater than 1 so as not to degrade performance. Going further,
the implementation should try to maximize this ratio, which once again leads us to the
problem of evaluating the workload of a given task. An approximation is to use the
task’s depth in the task tree as an estimation of the task’s size. It is used, for example,
by Cilk when it has to decide which task to steal, in an attempt to steal larger tasks
preferentially [36, 37] 14. Some priority could be given to tasks closed to the root of the
task tree by reserving some hardware resources to them.

As Figure 4.14 (preceding page) shows, a growing number of cores leads to even more
performance degradation, because more small tasks can be spawned and dispatched at
once. Following up on the previous idea, it would be beneficial to limit the number of
child tasks a single task can spawn to some threshold smaller than the total number of all
available hardware contexts. In the same vein, the run-time system could monitor the life

10See Section 4.2.2 and Figure 4.13 (page 58).
11Although not shown here, results are very similar on other machines we have access to.
12In [202], the threshold was n/2 terminations during the last 128 cycles, where n is the number of

hardware contexts.
13[202] shows that such benchmarks as Perceptron or LZW benefit from this approach, whereas it achieves

only mixed results for Quicksort.
14A thorough description of Cilk is given in Section 5.2.2.

4.2. Performance Dependence on the Run-Time Platform 61

time of some tasks and throttle the next tasks to be spawned by the same father based on
these statistics15. Currently, the Capsule run-time system doesn’t keep track of child to
parent relationships; it would have to be adapted to do so.

Although not its primary goal, the work presented in Chapter 9 alleviates part of
the shortcomings presented here by providing a scheme that allows load-balancing to be
performed over a very large number of cores, while largely limiting the tasks that can be
spawned by a single core on common 2D meshes networks.

15Section 5.2.2 mentions a recently-proposed approach following a similar principle.

62 Chapter 4. Performance Study

63

Chapter 5

Related Work

5.1 Data Parallel Environments

5.1.1 Languages

High Performance Fortran (HPF) [155] is an evolution of Fortran 90 to add support for
parallel loops, through the introduction of the DOPARALLEL statement and the INDEPENDENT
directive. It assumes a SPMD (Single Program, Multiple Data) model: The same program
is executed on all processors. Particular processors can alter the control flow and execute
different pieces of code by testing their processor number.

Split-C [158] is a set of minimalist modifications of the C language for parallel pro-
gramming and follows the SPMD model as well. However, the design intent is to stay
close to the computer: Most of the semantics are provided by the programmer. Thus, he
can precisely specify which kind of parallelism to exploit, without relying on the compiler
or run-time system’s ability to discover independent tasks or optimize specific patterns of
communications. The compiler is confined to the usual code generation task.

Addressing is global, but there is a distinction between local and remote memory areas.
A new kind of pointers, named global pointers, is added to the C language to allow to
reference objects potentially stored in another processor’s local memory area. Global
pointers support the same operations (dereference, arithmetic) as regular pointers, which
point to local objects only. Distributed memory is supported as well, as described in
Chapter 10.

Unfortunately, only global barriers are available for coarse-grain synchronization, which
actually limits the parallelism that can be expressed. Split-C, which hasn’t evolved since
its inception, is not usable as is for complex applications that exercize simultaneous
algorithms or phases using several of these operations at the same time. Some of its ideas
are however reusable, particularly in terms of data management, as will be discussed in
Chapter 10.

64 Chapter 5. Related Work

5.1.2 STAPL

The Standard Template Adaptive Parallel Library (STAPL) [10, 211] is a C++ library
whose aim is to provide easy to use parallel implementations of standard containers and
algorithms. It is based upon and compatible with the C++ Standard Template Library
(STL) [240], a library whose paradigm is to separate data structure implementations
from that of algorithms. This approach has the benefit of providing a large body of
common code operating on a wide class of structures through genericity (concretely, C++
templates). It supposedly increases programmer’s productivity thanks to code uniformity
and reuse. STL’s major components are the following:

• Containers, data structures that hold data, such as lists, queues, arrays or hash
maps.

• Algorithms, such as sort, search, insertion or comparison of elements or structures
of them.

• Iterators, that bridge containers and algorithms. Iterators are an abstraction of
regular C++ pointers. They yield a container’s element when they are dereferenced1.
Several methods on a container produce an iterator with which one can browse
the container’s elements. Depending on the iterator class (input, output, forward,
bi-directional or random access), the pattern of accesses is more or less constrained.
Algorithms are implemented only in terms of iterator classes and the methods they
provide, independently of the implementation of a container and its associated
iterators.

STAPL tries to preserve the same philosophy and approach while introducing parallel
processing. It keeps the previously mentioned components, except that it substitutes
ranges for iterators. STAPL’s central assumption is that parallel processing requires
that elements of a container be accessed randomly to a certain extent. Ranges are the
incarnation of this assumption. They represent subsets of elements that can be decomposed
into smaller ranges, with the latter being randomly accessible. This definition is recursive
until indivisible ranges are reached, which is determined through a selectable strategy,
often a user-specified compile-time constant indicating a range’s smallest possible size. A
parallel algorithm operates on a range and distributes a partition of the sub-ranges to the
available processors. The recursive structure of ranges allows the automatic production of
recursive parallelism.

In order to avoid computing ranges before each parallel algorithm application, an
inherently sequential computation, STAPL parallel containers, such as lists, internally
maintain a range object at all time. As elements are added to or removed from a container,
its range is updated by modifying the corresponding sub-ranges. After a number of
changes, the range’s partition into sub-ranges may become unbalanced, which has a
performance impact on parallel algorithms because work distribution will not be even.

1Provided they are valid. Invalid iterators sometimes serve to mark the end of a structure or the end of
a browse of a structure.

5.2. Asynchronous Function Calls 65

For this reason, when the number of changes exceeds a certain threshold, a container
computes a new range structure.

Another feature of STAPL, inspired from other more specific frameworks like Spi-
ral [260] or FFTW [97], is to adaptively select the implementation with best performance
for a given algorithm class. At library installation, a set of synthetic test programs are run
on several input data sets with different characteristics. This phase serves to establish a
mapping between data attributes, such as data size, correlation, etc., and implementation
parameters to the observed execution time. The map is specific to the architecture that
executes the tests. At run-time, simple tests and/or lightweight instrumentation quickly
determine the data attributes and, thanks to the map, the algorithm and associated
parameters that will yield the best performance. This framework has been applied to the
parallel reduction problem [264], and to integer sorting and matrix multiplication [249].
Each problem requires a specific combination of appropriate data attributes and mapping
interpolation.

In a recent STAPL evolution [47], algorithms now operate on views, a concept that
permits a container to present different interfaces to the program using it. As an example,
a matrix can present an interface simulating row-major storage, another one corresponding
to a column-major organization and a third one that linearizes it into a vector. Ranges
keep their name but are considerably generalized as task graphs whose edges are the task
dependencies. A task is composed of a work function and a container. The work function
receives a view of the associated container. The run-time system may substitute the view
used when calling a high-level function with another one for performance reasons.

Although STAPL is well-adapted for programs using traditional algorithms on common
data structures, it doesn’t seem to suit batch parallelism that spans several data structures.
In this case, it is necessary to code a specialized container to parallelize the computation.
Experiments with STAPL exhibit good scalability results for simple operations like sorting,
finding an element or computing an inner product. It is unclear how much performance
can be gained by replacing STL calls with that of STAPL in complex programs.

5.2 Asynchronous Function Calls

5.2.1 Cool

Cool [57] is an extension of C++ providing asynchronous function calls. Asynchronous
functions are syntactically distinguished from regular ones by the use of the parallel
keyword. Mutual exclusion is provided through an improved monitor paradigm. Regular
monitors [126] allow at most one method of an object to execute at a given time. In Cool,
methods of an object can be tagged with the mutex or nomutex keywords, depending on
whether they need exclusive access to the object. Several methods tagged with nomutex can
concurrently operate on the object. mutex methods are exclusive with respect to all other
tagged methods. The semantic is thus similar to that of a read/write lock. Non-tagged
methods simply ignore the object’s associated mutex. They can always execute, regardless
of any tagged methods executing concurrently. Initially, Cool provided futures, variables

66 Chapter 5. Related Work

that get the corresponding asynchronous function calls’s return values when they complete.
They were removed to avoid complex corner cases. Instead, a parallel function invocation
returns a condition variable on which the caller can wait.

Cool also introduces the waitfor construct, by which some piece of code inside a
function can wait for the completion of all parallel function calls started inside it. waitfor
blocks can be nested, but they can’t span several functions, because they are syntactical
construcs. CAPSULE groups, in contrast, are used through function calls and are thus
not restricted to particular language scopes. Nested groups are more efficient than nested
waitfor blocks. In addition, every task in a group, i.e., not only the initial task, can
wait for the other tasks to complete, which has several advantages, as was pointed out in
Section 2.4.

5.2.2 Cilk

Cilk is a parallel extension to the C language enabling asynchronous function calls, called
tasks2.

In its original form [34], Cilk allowed child tasks to communicate their results to
the parent task’s successor through explicit continuation passing. Programming was
later facilitated by the introduction of call-return semantics in Cilk-2 [140], with the
spawn keyword, creating new child tasks, and the sync keyword, waiting for child tasks
to complete. Data still had to be passed explicitly between procedures, which was both
impractical and slow for large shared structures. Cilk-3 [140, 210] thus introduced a
software implemented shared-memory system with a relaxed consistency model, which we
discuss in Section 10.1.2. Cilk-4 [140] added inlets, small procedures that are automatically
invoked as each child task returns, in order to process its result as soon as possible, without
waiting for the other tasks. It also introduced abort primitives to stop the execution of
all current children of a procedure, enabling proper coding of speculative computations.
However, this later feature was rather immature, since some important task abortion
corner cases, such as memory deallocation, were not dealt with.

With Cilk, tasks are scheduled by a hierarchical randomized work stealing sched-
uler [36, 37]. Each processor maintains a set of runnable tasks from which, if not empty, it
selects the next task to run. When there are no more local tasks, the processor randomly
chooses a victim processor and requests a task from it. If the victim currently holds no
tasks, another victim is chosen. Inside the runnable tasks set, tasks are sorted by their
level, which corresponds to their depth in the spawned tasks tree. All child tasks of a
level n task thus have level n+ 1.

When selecting a local task to run, a processor first consider tasks with the highest
level. On the other hand, when stealing tasks from another processor, it first considers
tasks that have the lowest level. The rationale for the first rule is to immediately process
new children in order to minimize the number of alive ready tasks on a given processor,
which reduces space consumption, and to increase locality if most child tasks work on

2The original papers use the thread term, but this usage collides with the common definition of thread,
so we replace it by a more appropriate term in this description.

5.2. Asynchronous Function Calls 67

subsets of the seed task’s data, which is typically the case for most divide-and-conquer
algorithms. The rationale for the second rule is to preferentially steal larger amounts
of work in order to minimize the number of steals and amortize their cost. It is indeed
very likely that there will be many more tasks with a high level than low level ones which
represent larger program portions and consequently more work to do.

In the above-mentioned articles, it is shown that this on-line scheduling algorithm
produces a parallel execution time and a maximal amount of space consumed by alive
tasks that are within a constant factor to the optimal bounds, provided that the considered
computations are fully strict. Strict computations assume that dependencies between
tasks always go from a task to one of its descendants in the spawning tree. Fully strict
computations narrows this class to computations in which tasks can depend on some
value produced by their direct children only. The latter class typically includes simple
divide-and-conquer or dataflow computations, but not more general computations using
producer/consumer schemes or mutual exclusion. Tasks in Cilk are not allowed to block
and consequently cannot compete for a lock. A very recent development of Cilk, called
Nabbit [6], allows to schedule computation graphs with arbitrary dependencies optimally,
even if the dependencies are discovered at run-time. However, the optimal space and
time bounds do not hold when the creation of a task depends on the outcome of some
computation.

Optimal scheduling is a hard problem that, without very specific restrictions, is NP-
complete [220], even in the ideal case where one would know in advance all tasks of a
computation, their execution time and the graph of dependencies. Fortunately, several
techniques to devise quite good schedules in the latter case with polynomial complexity
have been known for long [113, 114, 218]. One of them is a simple greedy approach, in
which a processor that becomes idle immediately grabs any task whose dependencies have
previously completed. This greedy strategy yields an execution time within a factor of two
to the optimal. Interestingly, greedy strategies also perform well for on-line scheduling,
where the amount of work per tasks is not precisely known and tasks can be created
dynamically. This property is the profound reason of the near-optimality of Cilk’s work
stealing scheduler [35]. This property is thus enjoyed also by the CAPSULE run-time
system provided probes are frequent enough, as explained in Section 3.2.

An important drawback of the Cilk approach, also present in most task-based environ-
ments, is the influence of task grain size on raw performance and scalability. Creating a new
task and scheduling it on a potentially different processor adds an overhead. For very small
tasks, this overhead may cancel the expected benefit of parallelization, even if task creation
is optimized by preallocating stacks and/or creating support structures lazily [108, 184].
Lots of computations, and in particular divide-and-conquer ones, have their performance
improve drastically with a scheme that blocks task spawning for very deep (high level in
Cilk terminology) tasks. We gave such an example in Section 4.2.3 with the Quicksort
benchmark. A recent paper [81] proposes to instrument the run-time system so that it can
evaluate dynamically the grain size of the tasks created at a given level. It then uses this
information to inline some tasks instead of launching them in parallel. The corresponding
article also highlights Cilk’s poor performance on some benchmarks without cutoff to

68 Chapter 5. Related Work

avoid spawning very small tasks. Compared to Cilk, Capsule mitigates the task grain
size issue by limiting spawning depending on core/processor occupancy. Experiments
nonetheless show that more performance could be obtained with an additional limiting
scheme.

5.2.3 Thread Building Blocks

Thread Building Blocks [133] (TBB) is a parallel library developed by Intel whose aim is
to improve program performance by using threads. Programmers express parallelism as
tasks rather than threads, as with Cilk or Capsule. They can also use some traditional
data containers whose implementations are parallel at a fine-grain level and use atomic
operations instead of locks. These containers resemble the containers provided by the
C++ standard library in that they are generic: They are C++ templates parameterized
by arbitrary types. Tasks are mapped to threads by a non-preemptive userland scheduler
which is modeled after that of Cilk. In particular, it schedules tasks by work stealing into
a fixed number of threads. Details about the Cilk scheduler can be found in Section 5.2.2.

For general for and while loops, TBB provides parallel versions, called parallel_for
and parallel_do. These constructs take iterators3 that form a range and a body object as
parameters. The body object is a functor whose function contains the loop body. The
run-time system automatically partitions a parallel loop into tasks that execute a subset
of the iterations, according to a user-specified grain size or by delegating the split decision
to a partitioner. Since a partitioner requires some knowledge about the internal library
implementation, it is not possible for a programmer to define its own. Instead, it has to
use one of the three that are supplied by the TBB library.

The simple partitioner recursively splits iteration ranges until indivisible ones are
reached or they are all smaller than the grain size. The automatic partitioner begins like
the simple partitioner by recursively splitting ranges until a number of ranges proportional
to the number of threads maintained by the scheduler are created. A range is then split
further only when it is stolen by a processor. Sub-ranges are thus created only when doing
so is necessary to balance the load, which avoids creating very small tasks from the start
and has the effect of automatically choosing a suitable grain size.

The affinity partitioner is useful when a loop is executed several times or different
loops work on the same data set. When an instance of it is used for the first time, it
works like the automatic partitioner but additionally remembers which processor treats a
given range. When this instance is used again later, it divides the loop in the same set of
ranges and dispatches them to the same processors that handled them in the first run.
This increases cache reuse by scheduling computations to the processors that already hold
the data, provided they fit into the respective caches. The memory and performance cost
of remembering scheduling decisions is however unclear and may introduce unacceptable
overhead.

Partitioners serve to mitigate the grain size selection problem, that also plagues Cilk,
in the case of regular loops. Research is still on-going on this topic. A recent proposal,

3These iterators are modeled after the C++ standard library iterators.

5.3. Parallel Semantics Through Shared-Objects 69

lazy binary splitting [252], delays splitting as long as the local task queues are not empty.
This technique is in essence Capsule’s conditional division mechanism applied to work
stealing in the context of parallel for loops.

For more general computation patterns, like recursive or irregular computations,
programmers can directly use tasks and register them to the TBB scheduler. Explicit
continuation passing, as in the early versions of Cilk, is even possible. To ease parallel
programming, TBB provides concurrent versions of traditional containers such as hash
maps, vectors and queues, whose implementations use lock-free techniques to reduce
contention.

5.3 Parallel Semantics Through Shared-Objects

5.3.1 Orca

Orca is a language for implementing coarse-grain parallel applications on loosely coupled
distributed systems. Parallelism in Orca is explicit, since a program starts as a single pro-
cess and additional processes can be created by using the fork directive. The programmer
must specify the number of the processor that will handle the new process. Processes are
never moved automatically by the system, which implies that the Orca run-time system
doesn’t do load-balancing on its own.

Processes interact through data-objects, instances of abstract data types specified
through interfaces, which are sets of operations on an object. Orca takes advantage of
this common object-oriented pattern to provide the essential semantics a parallel program
needs. Mutual exclusion, for instance, is enforced by the run-time system at a data-object
granularity. Indeed, method invocations on a data-object are automatically serialized,
as in monitors [126]. Conditional synchronization is implicitly achieved by the use of
guard conditions in object methods. Guards are conditions on the method parameters
and the object’s internal state that will block the calling process if they are all false. Once
some guards switch to true, a single one among these is chosen non-deterministically and
the process resumes by executing the code associated with it. For ease of understanding
and programming, Orca’s policy is that single operations on a single object are executed
indivisibly, whereas sequences of operations are not. Despite this property, Orca’s model
is flexible because the programmer chooses the granularity of objects and because it allows
lock facilities to be built upon it to guarantee that a sequence of method invocations on
possibly different objects is performed indivisibly.

As a process executes an object’s method, it may block either because the method’s
guards are all false or as a consequence of invoking another method on a sub-object. In the
latter case, blocking can occur either on the new method’s guards or because of automatic
mutual exclusion enforcement on the new method’s object. Making single calls indivisible
is then threatened in the following two cases. First, evaluating guard conditions can cause
side effects, leading to the process suspending after having modified some object. Second,
the process can be blocked on guard conditions of a method called on an inner object.
Allowing another process to operate on the object while the first is blocked would violate

70 Chapter 5. Related Work

the indivisibility principle. However, not permitting it will deadlock the entire system,
since, because of mutual exclusion, no other processes will be able to modify the state of
the object the initial process is blocked on and no guard conditions will ever become true.

The generic solution used by Orca is to copy an object’s content when a process
invokes a method on it and have the process make modifications on this private new
copy. If the process can run the method to completion without blocking, its private copy
replaces the initial object’s public state. If it can’t, the private copy is discarded and the
method invocation is started again later. Moreover, really copying an object, which can be
expensive, is not necessary in the following frequent two cases. First, Orca enforces that
guard conditions can only be defined and evaluated at a method invocation’s start, before
the calling process can even change the object’s state. Except when a guard condition
itself includes a side effect, which can be detected at compilation time, there is no need to
copy the object when guards are evaluated and may block the calling process. Second, a
process executing a method on an object without sub-objects won’t block after mutual
exclusion has been enforced and eventual guards evaluated. Copying the object content is
thus not necessary in this case either.

Orca’s features related to distributed systems and memory consistency are described
in Section 10.4.3.

5.3.2 Charm++

Charm++ [150] is a parallel programming language based on C++ that supports com-
munications via typed messages. It allows dynamic creation of parallel work. Charm++
derives from Charm [146, 147], an environment with a programming language consisting
of C with extensions and a support run-time system called Chare [89]. Compared to the
original language, Charm++ allows to use most of the object-oriented syntax of C++,
with the additional benefit that describing chares is much more natural with it (see below).
Apart from this syntactic sugar, functionality is identical.

Charm runs on top of shared-memory machines as well as distributed ones. In this
Section, we describe some common features and their implementation for shared-mem-
ory machines. In order to be portable to distributed-memory architectures, programs
should not use C or C++ shared data structures, but rather simple message-passing
and information sharing abstractions, like read-only data, accumulators, monotonic vari-
ables or distributed tables, that are provided by the environment and managed by the
run-time system. These special data structures, as well as the mechanisms specific to
distributed-memory machines, are described in Section 10.4.4.

Charm is message-driven: All computations start at the reception of a message. Re-
mote requests consist in sending a request message asynchronously and possibly continuing
to perform useful work. As the corresponding response message comes back, and provided
no computation is still on-going, its processing starts. Potential next steps are then carried
on. Launching a new computation or exchanging data with another processor is thus
always non-blocking. This has the important benefit of hiding the latencies of these
operations. Multiple requests can be outstanding and are processed in the order in which

5.3. Parallel Semantics Through Shared-Objects 71

the responses arrive. A message’s content is typed and can contain any data. It occupies
a contiguous block of memory, as C structures. On shared-memory machines, messages
are stored in global queues that are described below.

Chares are objects representing parallel processes. They comprise private data and
functions, as regular objects, but also entry points, special methods whose goal is to
handle incoming messages. An entry point has a single argument that is a typed message
content. Every message in the system comprises some typed data content, an identificator
that designates the destination chare and the name of an entry point to be executed by
it. The content type of this entry point must be compatible with that of the message
payload. However, the entry point to be called is specified by the sender, not determined
by the receiver from the content type. An entry point executes atomically, i.e., a single
message is processed at a time by a chare. Entry points thus do not need to synchronize.
Synchronous requests can be split over into two distinct entry points. The first sends the
request and the second is called when the request comes back.

Branch-office chares (BOCs) are objects that have a representative chare, called a
branch, on every processor. In addition to what regular chares can hold, they can export
public methods. Any chare can call a branch-office chare’s public method, which results
in a regular synchronous function call to the branch residing on the caller’s processor,
facilitating the support of regular and data-parallel computations. A branch of a BOC
can communicate with any other branch of the same or another BOC, since branches
are also regular chares. BOCs are especially useful in a distributed-memory context, as
explained in Section 10.4.4.

Programs create chares but do not know which processor will execute entry points on
the chare. Messages are directed at chares through a chare identificator (ID), which is
independent of the chare’s location. Similarly, each abstract data type has a separate ID
space and objects of a type have a unique ID in the corresponding space.

On shared-memory architectures, when all processors are busy, incoming messages
go into one of 3 global message queues. The first queue contains messages for chares,
the second messages for BOCs, and the third new chares messages. There is no need to
implement a particular load-balancing strategy. When a processor finishes the execution of
an entry point following reception of a message, it grabs a message in the first non-empty
queue. On distributed-memory machines, there can be no global queues, and different
load-balancing strategies have to be implemented. Also, messages have to be treated to
remain meaningful in the context of multiple address spaces. All the Charm mechanisms
specific to distributed architectures are described in Section 10.4.4.

The way a processor selects the next message to process from a queue can have a
significant impact on application performance. The Charm library provides 3 different
strategies. If none of these strategies suits a particular application, the latter can choose
to install and use its own instead. The first strategy is the LIFO strategy, also called
depth-first strategy, in which the latest created or incoming messages are processed
first. The second strategy is to process messages in FIFO order, or breadth-first. It has
the advantage of usually generating many more messages, especially at the root of a
computation. The load-balancing strategy therefore can dispatch bigger work sets earlier.

72 Chapter 5. Related Work

A disadvantage is that it consumes much more memory than LIFO. A third strategy
combines depth-first and breadth-first. The latter is used when the load is low, in an
attempt to dispatch the greatest amount of work to other processors, whereas the former
is used when the load is high, in order to take advantage of locality. Finally, the run-time
system also provides priority-based queuing strategies. Priorities are assigned by the
application and consist of either an integer or a bit vector, in which case the vectors are
lexicographically ordered.

Charm++ programs are decomposed into modules, which can be compiled separately.
A module contains chare, BOC and regular C++ definitions, and an explicit interface
declaration listing the names that are visible from other modules. The toolchain translates
programs into pure C++ and then compiles and links them with the run-time system’s
libraries. The special keywords include chare to define chares approximately as regular
C++ classes, message to define a new message content type and entry to define entry
points in chares.

73

Chapter 6

Conclusion and Future Work

In this Part, we presented Capsule, an expressive programming model enabling program-
mers to concentrate on indicating potential parallelism and task dependencies, while taking
the responsibility of deciding when work splitting is worthy and eventually dispatching
tasks to hardware execution units. Constructs were conceived with the aim of being simple
to apprehend, yet powerful, and to be as platform-independent as possible. In particular,
programs can be written once and be run unmodified on machines with a varying number
of cores.

A support software-only run-time system was presented, implementing a simple work
splitting decision policy especially suited to embedded systems. We showed that programs
using this run-time system can achieve at the same time a high scalability and have their
execution time variability reduced compared to traditional parallelization approaches, on
up to 4 cores. Some performance numbers for up to 24 cores were presented, as well as a
study on the impact of the run-time environment on the achievable scalability.

This last study leaves a number of interesting questions to be answered. Program
scalability, for more than 10 cores, shows a high dependency towards task granularity.
We believe that programmers should be able to declare most, if not all, available work
units without worrying about their granularity. The philosophy behind this claim is
to preserve program portability for current high-end and future architectures, a very
important advantage when doing parallel programming. We started to propose a number
of schemes to solve this problem that should be evaluated and possibly completed as a
future work. Part II, which describes the adaptation of Capsule to distributed-memory
architectures, presents a new distributed work splitting and dispatching algorithm that
also goes a step further on this road.

74 Chapter 6. Conclusion and Future Work

75

Part II

Distributed Architecture Support
in Capsule

76

77

Chapter 7

Towards Distributed
Architectures

As we mentioned in the general introduction of this manuscript, the fast growth in
processing power has come mainly from frequency raises until 2005. Each year saw an
increase of 50% in computing power per chip on average since the 90s. During the same
period, memory bandwidth has progressed at a rate of 35% per year [181]. Memory
latency, as seen by processors, has increased from 0.3 cycles in 1980 to 220 cycles in
2005 [122]. From 2007 to 2009, the DRAM read/write cycle time has diminished from 3
to 2 ns. It is expected to lower by approximately 11% each 18 months until 2019 [136],
i.e., much more slowly than the expected frequency increase of 23% for the same period1.
Consequently, the gap between memory and processor in terms of latency and bandwidth,
which has increased exponentially in the past years, is going to continue on this trend
for the next decade. This problem has been known under the denomination of memory
wall [181].

Today, to maintain a steady increase in performance, the main chip manufacturers
have been putting more and more cores on chips. This move has been facilitated by the
decreasing cost of transistors, partly thanks to improved lithography and miniaturization.
General-purpose processors with up to tens of cores [135, 254] are currently being shipped.
High-end graphic chips already contain the same number of “macro-cores”, each of which
is made up of tens of SIMD execution units [13, 196]. Cores generally share the same
physical package, which has obvious benefits on communication costs. In designs where
they also share the same interconnect to memory, they are putting even more pressure on
the whole memory subsystem. The exponential progression of the number of cores per die,
with 1.4× more cores expected at each new generation [136] for the coming decade, will
thus continue to widen the performance gap between the processors and the memory for
these designs. We are currently at a point where the performance of a substantial range
of programs is already limited by that of memory.

In the meantime, some researchers have been proposing schemes to reduce the band-
1This has been extrapolated conservatively from the following data found in [136]: 1.4× higher frequency

at each processor generation, with a generation approximately every 24 months or more.

78 Chapter 7. Towards Distributed Architectures

width usage of processors. A study of the impact of these mechanisms, based on an
analytical model of cache misses2, suggests that combining DRAM caches3, 3D-stacked
caches, cache and link compression and smaller cache lines may allow enough bandwidth
scaling for the next 4 generations [120]. However, most of these techniques have an
adverse effect on latency. Other techniques, such as scheduling together processes whose
bandwidth expectations are largely within the total available hardware bandwidth [261],
while improving the situation, do not have enough potential to bridge the gap alone.

For these reasons, architecture designers will eventually have to systematically turn to
distributed-memory architectures. In fact, AMD has been shipping processors with the
circuitry to arrange several of them in a cache-coherent non-uniform memory architecture
(ccNUMA) since at least 2005 (Athlon64 and Opteron). More recently, Intel has adopted
on-chip memory controllers with the introduction of the Nehalem microarchitecture. The
precise arrangement of future multi-core and many-core platforms is hard to anticipate.
It is likely that the number of memory controllers and pins and the chosen memory
organization (completely distributed, clustered, hierarchical, etc.) will vary. Nonetheless,
their common denominator will be the fact that data at different addresses may not
be stored at the same place and may not be accessed with the same latency and/or
bandwidth.

In order not to disrupt traditional programming paradigms, the practical solution that
has been adopted to exploit these architectures so far is simply to hide the distributed
nature of memory through global addressing. With global addressing, programs access
some piece of data through its unique memory address, which has the same meaning and
relevance regardless of the particular core executing the memory instruction. Common
languages assuming a shared-memory underlying architecture, which form the overwhelm-
ing majority of those that are effectively used in the industry, can readily be used without
any particular adaptation, as well as the tool chains to process them.

However, programs running on distributed-memory architectures with global addressing
can experience varying data access latency and bandwidth when using different addresses.
In these architectures, the memory space in physically different banks or memory chips is
usually mapped to contiguous regions of some common address space. This mapping is
most of the time programmable and set up by the operating system. Nonetheless, user
programs are most often not aware of the chosen partitioning4. They use classical memory
management primitives, such as the malloc and free functions from the C standard
library [137], that do not allow to pass usage information to the system libraries and the
OS5. Practical memory management thus adds another layer of complexity when it comes

2This model assumes that the number of cache misses for a given program diminishes with increasing
cache sizes as a power law. Experimentally, the exponent has been oberved to lie somewhere between
0.3 and 0.7, depending on the application, with an average of 0.5 [120]. These experiments confirm the
empirical

√
2 rule stating that the number of cache misses is divided by

√
2 as the cache size is doubled.

3Instead of today’s SRAM caches.
4This remark is a simple factual observation. We are not arguing that programs should be aware of such

details. On the contrary, we advise against any change that would seriously impair program portability
over different architectures and OSes.

5POSIX defines the posix_madvise system call for an application to be able to declare its intended
use of memory areas. It has been inspired by the madvise system call from 4.4BSD. However, there

7. Towards Distributed Architectures 79

to predicting the cost of a particular data access.
Previous work [167, 193] has mostly tackled the problem of statically distributing

data to be processed by loops with affine access patterns. A recent evolution makes the
compiler produce symbolic expressions that can then serve at run time to allocate memory
regions on the node that is likely to access them the most [171]. The essential problem of
these approaches, besides the fact that they are limited to affine loops, is that they have
no or limited ability to adapt their policy depending on the run-time program behavior.
In the context of a dynamic and conditional tasking environment like Capsule, where
task creation in fine depends on the run-time system and run-time conditions, it is almost
impossible6 to predict where to store/move data that should be accessed by some task,
because the lifecycle of tasks itself and their scheduling is run-time-dependent.

We thus need innovative adaptive approaches that can supplement existing techniques
in order to meet the grand challenge of supporting distributed architectures in an efficient
and mostly transparent way. One of the service they should provide is to bring data
close to its users. The programmer should also be relieved from the greatest difficulties
of concurrent data accesses. The work presented in this Part is a modest step towards
these goals. We nonetheless believe that it is a good candidate as a foundation to achieve
these goals through future incremental improvements and, as such, may pave the way for
decisive progress in these areas.

Chapter 8 proposes a new model to express and compose data structures independently
of the physical location of their elements in a distributed-memory machine. The main
contributions of this model are the following. First, despite its large applicability, it
retains the spirit of the classical programming interface presented by most sequential
and object languages. Programmers are thus already familiar with the concepts exposed,
the only novelty being that the latter are more abstract than their original counterparts.
Second, this model makes the links between elements within the same structure or from
different structures visible to the run-time system. The latter can thus, without necessarily
involving the program, take advantage of this information to choose the better location for
data and automatically move and/or replicate them to the nodes using them. It can also
perform data-structure-aware prefetching along the exposed links. Third, the access to
some element’s data is performed through primitives that automatically ensure a simple
synchronization of accesses. More complex synchronization paradigms can be built from
this basic synchronization operation, which relieves the user from part of the fine-grain
atomicity management.

Chapter 9 then presents a new implementation of conditional parallelization and work
dispatching that is completely distributed and local, which introduces two benefits. First,
there are no central components that would impair scalability any more, as could be the
case with the scheme previously presented in Section 3.2. Second, this proposal reduces

are no portable flags to indicate data and thread affinity. Solaris has been known to provide the MADV_
ACCESS_LWP and MADV_ACCESS_MANY flags. Linux uses a new and non-portable system call named
mbind.

6We will be glad to offer some Champagne bottle to anyone who is able to prove us wrong on this in a
fairly general manner!

80 Chapter 7. Towards Distributed Architectures

the performance dependency on task granularity, since the number of probes that can be
accepted is now independent of the number of cores in the architecture.

Finally, Chapter 10 details a large set of previous proposals to implement global
addressing on top of distributed machines or clusters, usually referred to as distributed-
shared memory environments. It contains a comprehensive survey of memory consistency
models and implementations, whose aim is triple: To deepen the description of some
distributed-shared memory proposals, that are closely tied to some models, to situate our
current consistency model between the known alternatives and to provide some inspiration
for future work. It also reviews both distributed support for SPMD and task-based
languages as well as languages based on distributed objects.

81

Chapter 8

Distributed Data Structures

One of the main programming difficulties of distributed-memory and, more largely, of
distributed architectures, is to manage data location explicitly. In architectures providing
global addressing, whether physically distributed or not, a program can reference an object
or structure simply by its storage address. This possibility is the consequence of two main
properties.

The first property is the fact that the same address refers to the same physical storage
unit on all processors1, by the very definition of global addressing. The most basic
hardware that supports it is a shared-memory architecture where all processors access
the same memory banks through a common bus. Other incarnations include various
architectures with physically distributed memory that partition the address space so that
each different memory is accessible through a distinct portion of it. Hiding the costs of
remote accesses is then done either by using the traditional cache hierarchy also found on
uniprocessors, as in cache-coherent non-uniform memory architectures (ccNUMA), or by
replicating memory regions in different memories, as in variants of cache-only memory
architectures (COMA) [117, 169, 221].

The second property, which one may not think of at first, is architecture-independent
and comes from traditional language implementations. It is that a structure or an object
is stored in memory contiguously. The compiler most of the time is the one that arranges
data or fields in the allocated memory area, according to some standards or implementation
details. A simple pointer2 is then enough to reference the structure. The produced code
performs the appropriate pointer arithmetic to access some data and/or fields3. Within
structures or objects, fields are usually referred to by name before compilation. Within
arrays, some numerical index, which may have been computed at run time, is used.

1This property actually does not come from the architecture alone. It also has to be supported by the
run-time system. As an example, operating systems allowing multiple threads per process must ensure
that a physical page or segment is mapped at the same virtual address on all processors executing the
process’ threads. For this reason, saying that an architecture supports global addressing is a language
misuse. But it is a common one and we stick to it in the rest of this document.

2Together with a reference offset in the structure, which is implicitly 0 in practically all implementations.
3This implementation style has been used for years and is itself a significant abstraction from specifying

hard addresses at compile time.

82 Chapter 8. Distributed Data Structures

In order to be sufficiently transparent and expressive, we believe that distributed-mem-
ory support should retain the spirit of both properties, which we find more important than
the possibility of accessing an object thanks to some unique storage address, a property
that it is undesirable to maintain in future systems, in large part because it hides or
imposes object location. To prop up this claim, we will now provide a brief answer to
the following question: What are the assumptions behind these properties that simplify
programming?

By the first property, programmers are able to transmit between threads or tasks the
address of a given object, with the intent to allow them to access the same content and
share the modifications to it. In other words, the advantage of this property is twofold.
First, programmers do not have to manage explicitly the data transmissions from one mem-
ory to another one or different copies of the same data4. In addition to the performance
benefits it can bring in lots of situations, this feature is a productivity advantage since
the programmer doesn’t need to provide the transmission code, which consists in possibly
marshalling/unmarshalling the data, determining their destination and performing proper
synchronization5. This advantage has been confirmed in an experimental study of parallel
programming by non-expert programmers, which compares the number of lines of code
necessary to parallelize a sequential code with MPI and OpenMP [127].

Second, since the programmer does not have to manage explicitly multiple data copies
or versions, contrary to message-passing, he is relieved from maintaining data consistency
for a non-negligible part. The remaining part of this duty then practically consists in
describing which groups of memory accesses have to be performed atomically, so as to
read a coherent view of an object or to update it in a meaningful way.

This description is itself dependent on the memory consistency enforced by the architec-
ture, also called its memory model. It consists in a reasonably complete specification about
the possible dependencies of memory accesses accross the same or different processors6. A
detailed survey of memory consistency models is provided in Section 10.2. A reasonable
but simplifying summary for it is that hardware usually provides strong guarantees that
are intuitive to programmers used to sequential programming7. However, for performance
reasons, the hardware often requires annotations by the programmer to implement this
model.

Memory consistency alone is not enough to enforce data consistency, because the groups
of accesses that must be performed atomically are essentially dependent on a particular
program’s semantics. In shared-memory architectures, and more generally for those that
provide global addressing, the atomicity of multiple accesses at once is generally enforced

4On shared-memory architectures, these actions are performed by the hardware, principally by the
memory hierarchy.

5Here, synchronization consists in knowing when some messages have to be sent and when a piece of
code has to wait for a message, or conversely which code is run in response to a message arrival.

6The word “processors” can be changed to “cores” or “threads” in this context.
7These strong guarantees form a consistency model, called sequential consistency, that preserves the

type of reasoning that can be applied to sequential programs. See Section 10.2.1 for more details.

8. Distributed Data Structures 83

through mutual exclusion, by using locks8 or, more recently, transactional memory9.
The second property, i.e., the fact that objects, structures and arrays are stored in a

contiguous memory area, allows to access any fields or any particular element through
index arithmetic given a single reference to any part of the object. This reference typically
takes the form of a pointer to the start of the entity in the context of global addressing
architectures. Although pointer arithmetic has its drawbacks10, it is especially useful for
highly-structured data, such as arrays or matrices. Maintaining explicit links between the
different elements in such structures, e.g., by having each element point to its neighbors,
would cause a huge space overhead and would increase execution time dramatically for
a lot of algorithms, due to the impossibility of accessing elements randomly in constant
time11.

We present in Section 8.1 a new data structure model that relieves the programmer
from managing data location explicitly. Like implementations of global addressing, it
allows references to objects or structures to be transmitted between processors, which
can then access them under a strong memory consistency model. Traditional addressing
modes are preserved within objects. However, the addresses finally used by a program
as the last step to access an object are not global nor persistent. This model is purely
data-centric. By contrast with object-oriented languages, it defines objects as logical units
of data, such as a C structures or arrays. Objects do not have methods defined on them
and they do not perform any access control at compilation or at run time12. Mutual
exclusion between tasks trying to access the same object concurrently is automatically
enforced.

Section 8.2 contains a possible set of implementation principles for the previous ab-
stractions. These principles enable a run-time system that implements them to move data
at its discretion transparently for the user program. Several data management policies
can be implemented on top of them. We give the example of a simple policy, where data
are moved to tasks that request them. An experimental all-software implementation of
these mechanisms is detailed. Simulation results are deferred to Part III, which details a
novel many-core simulator we developed for the purpose of evaluating our data structure
model and implementation on large scale machines. We also indicate which subset of the
mechanisms could be implemented in hardware to improve performance and suggest an
appropriate design.

Finally, Section 8.3 discusses the current status, possible improvements and future
directions. First, providing different management policies that can be applied per object
has the potential to increase performance in highly contended applications. Second, an

8The implementations of mutual exclusion now all rely on special hardware support in the form of
two-way (or more) atomic instructions, for performane reasons, although they are not required from a
theoretical point of view. See also footnote 2 on page 11.

9For more details and references about transactional memory, see Section 1.2.2.
10The major of them is perhaps the ability to access data through dirty tricks, some of which are: Rogue

casts without type checking, memory scans or violations of layered structures.
11Another important cause of performance degradation is the higher memory occupation, which can

cause more cache misses.
12But it is of course possible to implement such mechanisms on top of our proposal.

84 Chapter 8. Distributed Data Structures

automatic prefetcher can be implemented thanks to links being transparent to the run-time
system, as proposed in Section 8.2. We evoke a number of possible policies that should be
interesting to investigate in this context.

8.1 Data Structure Model

Essentially, computer memories allow to store and retrieve data by specifying their address.
With such a storage facility, the first step to flexibility was to eventually abandon the
naive approach of manipulating data directly through hardcoded locations in favor of
dynamic references through variable pointers. With a pointer, a program can designate
a particular byte of storage. A pointer itself can be stored as an integer in a processor
register or a memory area. The latter can then be used as a fixed name whose target can
change over time.

Because pointers match the intuitive perception of tie or relation between ideas well,
and because the data to represent an idea most of the time cannot fit into a single byte,
programmers have tended to group multiple bytes around the pointed one, most of the
time after it. As a consequence, coherent pieces of data have naturally been organized
by blocks. Pointers can be embedded within data blocks as any other data, leading to a
collection of blocks, also called structures13, possibly linked with other blocks, thereby
forming a graph.

To illustrate these considerations concretely, let’s take the simple example of a sin-
gle-linked list representation. In plain C, a structure type is declared using the struct
keyword to represent an element of the list. This structure contains both the data that
an element is supposed to hold and a pointer to a potential next element in the list. An
object of this type is stored as a contiguous memory block14. An additional pointer usually
serves to point to the list’s first element (the head of the list). It is most often not stored
in an object of the list elements’ type. The NULL pointer value can be used either for the
head pointer or for the next element pointer in an element’s structure to indicate that the
list is empty or that the considered element is the last element in the list (the tail of the
list). In higher level languages, a list may be presented as a front-end object masking the
actual elements. Even in this case do the latter follow the same structure [165].

The C structure type to represent a list element may contain several fields if the
element’s data are split into several pieces15. The C compiler translates accesses to a

13The C struct syntactic construct serves to declare objects represented as memory structures, in our
sense of this expression. These concepts are nonetheless ontologically different. C and Fortran arrays are
also implemented as memory structures.

14The C standard [137, Section 6.2.6.1] mandates that all objects be stored as a contiguous sequence of
bytes. Padding is commonly added between the fields of a C structure to enforce field alignment.

15This arises typically when different algorithms need to access different pieces of data, or even simply
when a programmer makes this distinction to follow his particular data view. A good programming
practice should however be to have a single field to store an element’s data, itself being of a composite
type with several fields. It helps to clearly distinguish the structure imposed by the list data structure
itself and the type to represent for each element the suitable data for a particular problem, with obvious
software engineering benefits.

8.1. Data Structure Model 85

particular C structure field into assembly instructions that use the pointer to the structure
as a base address to which they add the field’s offset. The latter is determined at compile
time based on the number and arrangement of fields according to some standards16 and/or
implementation details.

The data model we present uses abstractions of the concepts of block or structure and
pointer. Most of the operations traditionally associated to these concepts are part of the
model’s programming interface. By contrast, it imposes no particular implementations
and does not require addresses to be valid globally. It also introduces two important
novelties. First, it treats differently standalone data and pointers when they are part
of a block. Second, it enables automatic synchronization of accesses to a single object/
block. Section 8.1.1 describes the concepts more formally and Section 8.1.2 presents the
programming interface.

8.1.1 Concepts

We present in this Section the central concepts of the data structure model we propose,
which are links, cells and handles. With them, we strive to provide an intuitive and easily
manageable data model for programmers, while allowing implementations not to provide
global addressing.

These concepts do not replace traditional ones and the associated implementations in
existing programming languages. They rather complement them and coexist with them.
The rationale for this choice is to have programmers use them for data that are to be
shared between tasks, whereas they will continue to use traditional concepts and their
implementation for data that are private to a task.

Links and Handles

Links are the abstraction that generalizes the notion of pointer. A link is indeed an opaque
reference to a particular object or data block, which is called a cell in the model. As
a pointer, it can be dereferenced to access the content of the target cell. It can also be
transmitted from a task to another, by passing it as a direct argument to a new task or
by ensuring it is stored in a shared cell examined later by the other task.

Like pointers, links are persistent: They can be stored and retrieved at a later point
without affecting the program behavior. However, a pointer reused subsequently may
not be valid any more or may even point to a different object17. By contrast, a link
is guaranteed to remain valid and always point to the same object, unless its target is
explicitly changed. As a consequence, an object lives as long as there are links referencing

16This kind of specification is usually standardized in some document describing the ABI to use for an
architecture and/or an OS.

17This can happen if an object’s memory is freed and later reused for another object, in languages where
memory management has to be performed manually, such as C or C++.

86 Chapter 8. Distributed Data Structures

it18. It is thus of foremost importance that the compiler or the programmer destroy links
explicitly when they have no semantical purpose any more, so that memory can be freed.
We do not currently provide support for weak references, i.e., references whose existence
does not maintain the target object alive by itself, for a reason that will become apparent
later. Nonetheless, the concepts presented in this section are powerful enough to allow
implementations of weak references on top of them.

Dereferencing a pointer gives access to the pointed structure. However, there are
no explicit operations to indicate the end of all accesses to the structure. This is the
reason why it is not possible, in the general case, to automatically manage consistency
structure-wise for blocks accessed through regular pointers. The situation is different
in our model. Links similarly have to be dereferenced to access their target cell, but
the programmer or the compiler must also indicate when a set of accesses have been
performed. They do so through handles, local objects that eventually give access to the
cell they represent through local addresses.

A handle is created when dereferencing a link and lives until explicit destruction by the
program. The creation and destruction events for handles serve to indicate to the run-time
environment when it has to make the content of a given cell available and how to delimit
accesses for data consistency purposes. All accesses performed with the same handle,
and thus by the same task, appear as a single atomic macro-access. Macro-accesses by
multiple tasks are performed according to a strong consistency model. We settled for
sequential consistency19, because it is simple to program and to implement.

Overall, the memory consistency enforced by our model is a refinement of release
consistency that is similar to a constrained scope consistency20, with acquires and releases
corresponding to creation and destruction of handles and a different scope being associated
to each cell. This model might be relaxed in the future, if new experimentations show
that a weaker model may bring significant performance improvements comparatively to
the extra burden put on the programmer. However, we expect that other models will
only bring modest performance enhancements over optimized implementations of the
consistency we propose.

Cells

A cell is an abstraction of the concept of block or structure. It is the elementary and
only data container in the model. Two different cells represent disjoint data sets, which
prohibits overlapping or recursive data constructions at this level.

Cells logically comprise two sections. The first one is a section containing pure or
self-standing data, i.e., data without any outside references to data stored in some regular

18We may later distinguish an object, as manipulated by the program, from its storage, and allow
objects to be logically “destroyed” even if links are still pointing to it. However, if the implementation
described in Section 8.2 is used as the basis for another implementation supporting this model change, a
small storage area will still have to survive the logical destruction as long as some links to the object exist,
precisely to indicate that the cell is no more valid.

19See Section 10.2.1.
20See Section 10.2.7 and Section 10.2.9 respectively.

8.1. Data Structure Model 87

structures or in another cell. It can be used by the programmer as if it was a contiguous
memory region over which he has complete control. Programs can access some random
piece of data in this section through indexed addressing, i.e., by giving the offset of the
wanted region’s starting byte. They also have to specify the region’s length, which is
normally implicit when manipulating object references in an object-oriented language.

The indexed addressing semantic of data sections allows to use them as arrays, matrices
or hash tables, for which random access to any element is required. Specifying an offset
inside a data section is semantically analogous to some pointer arithmetic, where an index
would be added to the data section structure’s base pointer. This is the only kind of
pointer arithmetic that has been transposed into the model; no other such operations are
allowed.

We acknowledge that, beyond semantics, arrays and hash tables are used for the
performance benefits they bring in with current memory subsystems and language imple-
mentations. These data structures implicitly allow to perform an access to any of their
elements in constant time. Our model requires that implementations conforming to it will
preserve this property, but we do not make a more precise statement in order to preserve
some flexibility for implementations.

The second section of a cell is the links section. As its name suggests, its purpose
is to store links towards other cells. Each link within it can be accessed by its index
and then dereferenced as explained above. As the other entities of the model, links are
opaque. It logically follows that the byte content of the links section of a cell is also
not directly accessible by the program. The main reason for this requirement and for
a separate link section is to allow the run-time environment to be able to interpret a
link without involving the user program in any way. With such a property, automatic
prefetching can be implemented, as proposed in Section 8.3.

The size of both sections of a cell is chosen at cell creation. Once created, the sections
cannot be resized. Forbidding cell resizing avoids making implementations unnecessarily
complex. When a cell becomes too small for the intended data, a new cell has to be
allocated again and the relevant data copied into it, as in C, C++ or Java. High level
languages, their compiler or an extra layer of run-time system could perform this additional
work automatically in lieu of the programmer. Because whole arrays may be stored inside
a single cell, cells will considerably vary in size for most programs. This justifies the
above-mentioned requirement of specifying the length of the region to access in a data
section. The run-time environment is required to provide access to at least the requested
region. It may internally give access or transfer a larger data area, for performance or
convenience reasons, at the implementation’s discretion.

8.1.2 Programming Interface

The programming interface for the data structure model presented above is described
below as a collection of functions in the C language. As with the Capsule API in
Chapter 2, this choice serves to illustrate how a program can concretely operate on the
model’s concepts with a simple and widely-known language. Other incarnations in other

88 Chapter 8. Distributed Data Structures

languages, or at a hardware level such as the instruction set or even the memory subsystem,
are possible and do not affect the semantics of the model. Actually, we expect that such
new incarnations, e.g., in higher-level languages, will be necessary for the interface to be
used by programmers in practice, as they can remove the need for most explicit calls to
some of the presented operations. The code of our Dijkstra benchmark is reproduced
in Appendix B as an example of use for the C incarnation of the interface.

The programming interface can be split into two categories: The primitives that create
or operate on handles and those that create or operate on standalone links. Most notably,
a program never manipulates cells directly. It has to use handles, local structures that
represent a local access to a cell, as explained in Section 8.1.1. In the presented incarnation
for the C language, the opacity of the model’s objects is achieved by systematically using
pointers to C structures that have an incomplete type21. To lighten the description, we
will omit this implementation detail in the rest of this section and indicate directly the
type of the objects passed as arguments or returned by the primitives.

Handles

Functions operating on the local structure representing a handle are prefixed with capsule_
hdl_, whereas those that use a handle with the intent to manipulate the cell behind it are
prefixed with capsule_cell_. Both kinds of functions always take a handle as their first
argument.

Cells are created through the capsule_cell_create_cell primitive. The expected
arguments are the size of the data section in bytes and the number of links in the links
section. Once created, the new cell’s data section content is unspecified. All the links in
the links section are initialized to a special link value indicating that the link is invalid.
We will call this value NULL, by analogy with the null pointer of C22. The primitive returns
a handle on the newly created cell. Returning a handle instead of a link was preferred
because we expect that, in most cases, the programmer will want or need to fill the new
cell with data immediately. Two auxiliary functions serve to request the size of the two
sections of a cell.

A cell’s links section is accessed through four primitives. capsule_cell_get_link takes
an index and returns a copy of the link at this index, unless the index is out of range, in
which case an error is signaled. capsule_cell_set_link_from_link takes an index and a
link and copies the passed link into the one at the given index in the links section. As a
special case, passing a null pointer as the link to copy sets the cell’s link to NULL. Similarly
to the previous primitive, capsule_cell_set_link_from_hdl serves to set a link from a
handle, by implicitly constructing a link to the cell represented by the handle.

Accessing the data section is done with two matching primitives. First, capsule_cell_
give_data_access declares that a task wants to access a specific area of the data section.
It takes as parameters the start offset and the length of the area. It returns a local pointer
to the area, unless the parameters would imply that part of it is not contained in the

21I.e., the structures have been declared without specifying their fields.
22Whether NULL designates a null pointer or the special link value should be clear from the context.

8.1. Data Structure Model 89

section according to its size, in which case an error is signaled. The returned pointer is
valid until the companion primitive capsule_cell_revoke_data_access is called with the
same parameters, to indicate that the area is not needed any more. Only a single region of
the data section may be accessed at a time by a given task23. Between the calls to these
two primitives, the program accesses the requested data area as if it was a local structure
thanks to the returned pointer. The run-time environment is responsible for mapping and
unmapping the data region as a contiguous block of memory, even if it internally stores
the data section as several fragments and the region overlaps two or more of them.

A single primitive, capsule_hdl_release, considers the passed handle for itself, al-
though it may also have a profound impact on the cell behind the handle. By calling
it, a program indicates to the run-time system that it does not need the passed handle
any more and that it can be freed. The precise significance of this action is that the cell
will not be accessed in the very near future again by the calling task. Conversely, we
highlight that an alive handle represent the willingness to perform accesses to the cell
immediately. A handle should not be kept if the task is not currently and actually using
the cell. Releasing a handle may cause the cell to be garbage collected, if no more links
are pointing to it. Long-term references to cells must be done exclusively through links.

Links

Contrary to handles, there are no constraints on the life duration of links, which can span
the whole program execution. Another essential difference with handles is that the target
of a link can be changed. This process decomposes itself into a removal of a reference on
the old target cell and the addition of a reference to the new target cell. When a cell has
its last reference removed, it is not reachable any more and is eventually garbage collected.
Functions operating on links are prefixed with capsule_link_ and they all take a link as
their first argument.

A link can be created from a handle thanks to capsule_link_create_from_hdl. Calling
this primitive semantically indicates that the current task intends to keep a long-living
reference24 on the cell represented by the handle and being currently manipulated. It
is expected that this primitive will be systematically called after a cell creation on its
handle.

A link can also be created from another link with capsule_link_create_copy. The
last way of creating links is a bit peculiar since it does not allocate itself the necessary
storage for a link, but rather relies on the program to provide it. This allows, in C, C++
and similar languages, to embed a link inside an already existing structure or object, for
locality of reference reasons.

Links are released using capsule_link_release, which indicates that the passed link
will not be used any more. This primitive has the semantical effect to destroy a reference
to the link’s target cell.

23We have not seen any practical problem with this choice up to now, but we do not exclude to relax
this constraint if it proves to limit performance significantly in some situations.

24Other such references may be already held by the same or other tasks.

90 Chapter 8. Distributed Data Structures

With capsule_link_is_valid, a program can test if a specific link is NULL or really
points to some cell. Valid links can be dereferenced with capsule_link_deref25, one of the
most important primitive of the model. It returns a handle on the target cell. It can be
seen as the reciprocal of the capsule_link_create_from_hdl. Nonetheless, we emphasize
once again that links and handles have different meanings and expected life.

8.2 Implementation Traits

In this Section, we present the important characteristics of the class of implementations
we propose. They come from a prototype implementation of a run-time system supporting
the data structure model. The purposes of this prototype are:

• To illustrate that there exists at least one possible implementation to support the
concepts of Section 8.1.1 with the properties announced at the beginning of this
Chapter.

• To evaluate the performance potential of the whole run-time environment, including
the concepts, the run-time system and the hardware architecture.

We have chosen to code the prototype in plain C and to integrate it within the run-time
system26 described in Chapter 3. This choice reduces the potential complexity of the
implementation and makes experimentations with the different mechanisms manageable
in a reasonable time frame. Since there is currently no consensus on how a many-core
architecture should be structured and how many cores it can incorporate, the run-time
system should adapt to various hardware designs and should be able to run on top of a
flexible many-core simulator. We have developed such a simulator as part of this thesis,
which is described in Part III.

Although all the mechanisms described below are implemented in software, the timings
of some operations inside the simulator can be altered to make them appear as if dedicated
hardware components were taking care of them. The only general assumption we make
for the rest of this Section is that each memory bank is local to at least one processor, i.e.,
that the latter can access the memory content without sending requests through complex
components such as network controllers on a chip or other processors. It does not affect
the validity and generality of our approach significantly.

In this Section, we cover the most important traits of the proposed implementation.
They were elaborated with the constraint that significant parts of them should be im-
plementable in hardware instead of software. Their description thus remains slightly
abstract in the sense that it does not always specify some particular way to concretize
them. However, it provides enough high-level information to devise an implementation
in a mostly straightforward way. Section 8.2.1 describes the current object management
policy, i.e., how cells are stored and how access requests are fulfilled. Section 8.2.2 details

25NULL links can also be used as an argument of this primitive, which will return an error in this case.
26Also are included the modifications to be introduced in Chapter 9, which distribute the probe and

work dispatch operations.

8.2. Implementation Traits 91

the mechanisms used to reference cells accross different address spaces. Section 8.2.3
proposes a possible storage structure for cells. Finally, Section 8.2.4 evokes hardware
support for some mechanisms.

8.2.1 Object Management Policy

For the first implementation, we have settled on a relatively simple object management
policy. When a task tries to access an object, the run-time system automatically moves
its copy into a memory that is directly addressable by the task. There is at any given
time a single copy of a cell in the whole system. It has to be acquired and, if not local,
transmitted at each access.

Consequently, concurrent accesses must be serialized. It is not specified which com-
ponents are responsible for performing this task. With no or slight modifications to
existing architectures, a memory controller, a network interface controller or a processor
could handle the serialization by arbitrating accesses on receiving requests. This latter
possibility is the one implemented in the current software version. Since experiments are
done inside a simulator, the performance trends of the other schemes can still be predicted
reasonably, by choosing realistic ranges of costs for the various operations performed by
dedicated hardware.

With the considered architecture designs, among all possible accesses, those from local
processors/cores and those from remote ones come from different paths, and thus can reach
memory concurrently. Consequently, even local accesses must be protected, because they
may be involved in two scenarios with races. In the first, some remote data request may
come in and trigger a cell move, finally invalidating the content currently accessed by a
local processor. In the second, the remote data request may be serviced first, and then some
cell modifications may be performed locally that may not be transmitted to the requesting
processor. In the current implementation, each cell comprises a lock27. It is acquired
when a core starts a sequence of memory operations on the cell and released when it is
done with it. This locking cycle is delimited in the current implementation by the creation
and destruction of a handle on the target cell, e.g., by calls to the capsule_link_deref
and capsule_hdl_release primitives, which are described in Section 8.1.2.

Using locks to serialize cell access has an unfortunate consequence: Cyclic access
patterns may deadlock the system. For example, consider a core that currently has locked
a cell Ca and tries to access another one, Cb, which is stored in the local memory of
another processor. If a core of this second processor has already locked Cb and tries at
the same time to access Ca, both cores will wait indefinitely for the other core to release
its lock. The chosen data model implementation can also introduce additional deadlock
cases of its own, which a program must remain independent from.

Our current solution is to prevent a task from manipulating more than one handle at a
time, effectively adding a constraint to the data model programming interface, as exposed
in Section 8.1.2. We have not yet decided whether this restriction should be integrated

27If this choice proves to be unacceptable in terms of memory consumption in some contexts, it can be
replaced by other schemes, such as using a single lock for a group of cells, at the expense of scalability.

92 Chapter 8. Distributed Data Structures

into the official programming interface. We do not consider it as been impeding, because
it can be worked around by a higher-level programming layer or a compiler. The current
specification indeed does not specify any data consistency dependencies for concurrent
accesses to different cells by a single task. The compiler or run-time system can thus treat
them as if they did not overlap, by dereferencing cells sequentially in the order of handle
destruction.

We will briefly discuss possible extensions to the current object management policy in
Section 8.3.

8.2.2 Object References

In the proposed data structure model, references are opaque and manipulated as links
by programs. We shall discuss here one possible implementation of links, which relies on
two features. First, we use a very simple way to effectively reference objects stored in
another address space. Second, we describe proxies and associated mechanisms, by which
the final target location of a link may be changed without altering directly the reference
data stored into the local structure that represents it, whether it was created directly by
the program or is part of a cell’s links section. The combination of both properties allows
the run-time system to move cells transparently to the program, whose links remain valid
after the move.

Global Addresses

Internally, cells are referenced by their storage location. The rationale for this choice is
twofold. First, it is the most decentralized way to reference an object, at least theoretically.
Reaching an object’s content is then just a matter of directly contacting the component
holding the data, which has to happen anyway, without involving any other intermediate
component that could become a bottleneck. Second, using global and unique identifiers
for objects instead of storage addresses would create additional problems. Among them,
the foremost are probably to be able to attribute a unique identifier to an object in a
decentralized way28 and then to be able to track the location of an object and retrieve it
from its identifier29.

Since an address is relative to a particular address space, a scheme providing global
and unambiguous addresses for all physical locations must be used. For this purpose, the
run-time system attributes a different number to each address space. It then simply forms
a global address for a location by appending the number of the address space to the local

28Identifiers could be attributed in a distributed way by distinct “authorities”, each assigning them from
its own reserved range of identifiers, all ranges being disjoint. This is actually what is done implicitly for
addresses by our scheme.

29Early on, we considered using translation tables from identifiers to addresses, but they are also a
central structure that will likely serialize execution because of numerous memory accesses. This idea
nonetheless inspired us a proposal for a hardware TLB-like component, described in Section 8.2.4.

8.2. Implementation Traits 93

address within that address space30. We advise not to use any tricks that save part of the
addressable space of a processor to store the address space number of a global address.
Address space is already a scarce resource on lots of architectures and it is hard to predict
how many different address spaces may be used in future distributed architectures31.

Links are thus primarily represented as global addresses. Obviously, this property alone
does not allow transparent cell moves, because they have the effect of changing the global
address of a cell. One possible solution would be to keep on each cell a list of reverse links
indicating which other cells have links pointing to it32. When a cell is moved, the run-time
system could walk that list and signal an update to the relevant cells. This solution has
three important drawbacks. First, reverse links will add a considerable memory overhead.
More importantly, they will force the run-time system to manage containers of variable
size for cells, in order to be able to store an unspecified and potentially high number of
reverse links. Second, setting a link to a new target will incur a communication to the
memory nodes where the old and the new target cells are stored, in order to update the
corresponding reverse link of both cells. Third, when a cell holding a link is moved, the
corresponding reverse link has to be updated. We have settled for a completely different
solution, which is described below.

Proxies

Instead of trying to change the content of a link representation when the target cell is
moved, we look at the problem in another way, and more precisely by the opposite end.
We leave at the cell’s initial location a special kind of cell, which we call a proxy, indicating
that the original content has moved elsewhere. This is analogous to a web page redirection,
where the page at the initial URL forces a browser to load another page, or, more trivially,
to what mail forwarding services do.

Figure 8.1 (next page) shows a general cell situation, with some links pointing to a
cell C, which itself points to other cells. For clarity, the latter cells are stored in address
spaces not represented on the picture, but could as well reside in those drawn. Figure 8.2
(following page) shows the situation after the run-time system has moved cell C to another
address space. A proxy has replaced the cell at its former location. Proxies are special

30Although we generally assume that address space are disjoint, i.e., that a physical location can be
designated only by a single pair of address space and local address, this is not a requirement. The
mechanisms we present in this Chapter also work even if some memory regions are mapped at different
addresses on a single or several processors.

31This kind of error has already been made a surprisingly high number of times since the beginning of
computers, and especially in the PC architecture. An example is the limitation introduced by Intel on
the early x86 processors, which were able to address only 1 Mb although using 2 16-bit registers for that
purpose in an ankward way (segmentation). The DOS limit of 640 kb is also famous among early PC
adopters. We are relatively confident that the industry will make this mistake again, albeit under another
form!

32In addition to links, the mentioned list should also contain references to standalone links that should
also be updated. Since those may be contained for example in a core’s hardware registers, the updating
may be a complex process, although a solution à la Shasta for downgrades in the context of SMP clusters
could be used (see Section 10.3.5).

94 Chapter 8. Distributed Data Structures

C

Address Space Link Cell

Figure 8.1: Situation of a Cell Before a Move.

P C

Address Space Link Cell

Proxy Link Proxy

Figure 8.2: Situation of a Cell After a Move.

implementation cells that only hold a single link, called the proxy link. They do not have
a data nor a links section, contrary to regular cells.

When a link pointing to C is dereferenced, the system follows the global address
stored in the link, as usual. Some network interface or core tied to the address space
that formerly held C is contacted and the proxy link retrieved instead of the actual cell
content. Then, the proxy link is followed by having the contacted network interface or
the core send a new request to some component tied to the proxy link’s target address
space. This request is formed on behalf of the initiating component and must contain the
location of the initial request so that, when a reply is sent to the initiating component,
the latter can match it with one of its requests properly. This solution is preferable to
sending to the initiating component a negative reply with the new location to look at,
leaving to it to send the new request. Indeed, this scheme would cause an additional
message to be exchanged and may considerably increase latency, particularly if the address
space containing the proxy is far from the path between the initiating component and the
address space that holds C’s content.

Every cell move leads to the creation of a new proxy. A cell and its proxies form a
graph. It is easy to show by induction that:

8.2. Implementation Traits 95

• This graph is acyclic.

• That every proxy is the target of exactly one other proxy in the graph, except for
one of them, which is the target of regular links only.

• Starting from any proxy in the set, following the proxy links eventually leads to the
cell content.

Thus, this graph is a chain, which we call the proxy chain. Some cell content request will
be forwarded along its proxies until the address space holding the content is contacted.
Some component tied to the latter will then issue a reply message, holding the cell content.
Once a cell has moved lots of times, dereferencing a link to it will necessitate to follow a
long chain of proxies, increasing latency and creating more traffic in the network. Although
a chain of proxy is acyclic, it may pass several times by the same address space with
distinct proxies. This situation will typically occur for cells frequently accessed by multiple
tasks and for which lots of different link copies are used.

Without reverse links on cells, it is generally not possible to directly update the links
pointing to them. We have settled on a lazy update approach to reduce chains of proxies.
When the initiating address space receives the reply with the content of some cell, it
matches it to the initial request thanks to the global address stored in the link that was
dereferenced. Then, the global address of this latter link is updated to the new location of
the cell. With the policy of having a single cell copy in the whole system, the new location
is local and is necessarily the most up-to-date33. In other words, each link is updated
only when it is dereferenced. Other links logically pointing to the same cell will not be
changed as part of this update. Consequently, the number of proxies to be traversed by a
dereferenced link is at worst the number of the interleaved accesses since the last access
through the same link by tasks running on different address spaces or using different link
copies.

Starting from this simple mechanism, we see a large design-space of possible improve-
ments and trade-offs to be explored. As an example, the run-time system can take action
to limit the length of a proxy chain. As it dereferences a link, it can keep track of the
number of proxies traversed. If that number is above a threshold, the run-time system,
having updated the dereferenced link, can follow the chain again and update all the proxies
to point to the new location.

In a radically different approach, the run-time system could use a single proxy for
each cell and would not have to update any links. Rather, the first cell move would create
its unique proxy and the cell would keep a single reverse link34 to its proxy, updating
it for any subsequent move. The trade-off with this approach is that the worst case is
improved, with no more than one intermediate cell before the seeked content, but the
best access case is worsened, since once a cell has moved, any cores have to go through

33Schemes allowing multiple copies of a single cell can exhibit a similar property, if carefully designed.
34The main difficulty to implement reverse links with the mechanisms presented before was indeed the

variable and potentially unbounded number of reverse links, since the model does not place a limit on the
number of links a single cell may be the target of.

96 Chapter 8. Distributed Data Structures

one proxy for each access and this proxy has a fixed location. This last scheme is very
similar to that used in home-based variants of distributed-shared memory environments35,
with the property that the “home”, in our scheme the unique proxy, would be determined
dynamically on first access. It would be interesting to compare such a scheme to the first
one we proposed above.

The use of proxies and the absence of reverse links are important reasons why we
introduced in the data model the requirement that links always point to valid cells,
beyond correctness and improved error detection. Proxies are completely transparent to
programs, which thus cannot be involved in their management in any way. Cell moves
create additional proxies, consuming memory that cannot be reclaimed by the program
trigerring the moves. In order to know when their memory can be reclaimed, the run-time
system must track references on cells and proxies. Proxies, as regular cells, maintain a
reference count. Each time a proxy is traversed, as part of a link dereference, its reference
count is decremented by one, since the link that lead to it will be updated to the cell’s new
location. Thus, subsequently dereferencing the same link will not cause this proxy to be
examined any more. Proxy links count as a regular link for reference counting purposes.
Collecting proxies is ultimately necessary to be able to reclaim regular cells.

8.2.3 Cell Structuration

All cells need to store a common subset of information, including a reference count and
the cell type, regular or proxy36. Moreover, cells are referenced by their location and
the run-time system does not know a priori the type of the cell it is going to find at a
particular place. For these reasons, all cells have part of their content structured in the
same way, i.e., having exactly the same in-memory format. This part is called the header
of a cell. It is a contiguous memory block and is stored at a cell’s global address.

In the current implementation, when a link to a cell is dereferenced, the cell is moved
to the requestor. Its header and data content are recreated in the destination address
space, with the intent that the now local content can be manipulated directly by the
requesting task. We have leaned to an efficient implementation, which in particular tries
to avoid memory allocations when possible. To this end, a cell header can also serve as
an handle. After a dereference and the cell move, the run-time system returns to the
requesting task a pointer to a handle that is in reality a pointer to the cell header. Beside
the cell type and its reference count, cell headers include a lock to ensure mutual exclusion
when accessing a cell. This lock is thus taken and released without any indirections, as a
handle on the corresponding cell is respectively handed to the program and later released
by it.

Finally, a cell header contains a pointer to its payload data, which depends on the cell
type. For proxies, the payload data consists of a memory block containing a single link

35The most important distributed-shared memory environments are described in Section 10.3. See in
particular Section 10.3.1 about Ivy and its distributed management of page location and Section 10.3.4
about some other such environments, notably the home-based lazy release consistency approach (HLRC).

36In the future, more cell types may be used, in particular to handle cells containaing a large random-
access data structure, such as arrays.

8.2. Implementation Traits 97

structure to store the proxy link. As explained in Section 8.1.1, a regular cell comprises
two separate sections: The data section and the links section. The payload data for a
regular cell is a small metadata structure containing the following information:

• The size in bytes of the data section.

• A pointer to a memory block containing the whole data section.

• The number of links in the link section.

• A pointer to a memory block containing all the links of the cell stored contiguously.

and the two payload memory blocks it references.
When a cell is transmitted between two address spaces, only the invariant and non-ad-

dress-space-dependent parts of the header and the payload data are sent. More precisely,
the lock in a header structure is not transmitted, nor the pointers to the payload memory
blocks, which are meaningless in the destination address space. Instead, a new lock is
created, the two payload memory blocks are allocated and the pointer slots are filled
with their addresses. The content of both the data and links section is transmitted as is,
without being interpreted nor translated. This implies that the current implementation
is restricted to machines where all processors share the same data organization and
representation rules37.

At the start of a cell move, the run-time system grabs the lock in the header of the
original cell copy. Then, it transmits the cell payload, as explained previously. Just after
it has finished the transmission, it substitutes the original regular cell by a proxy without
releasing the lock on the cell in between, in order to prevent intervening accesses. This
substitution conserves the header as a local structure but leads to the deallocation of the
other blocks composing a regular cell and the allocation of a proxy payload block to hold
the proxy link. Finally, the run-time system releases the lock, authorizing again accesses
to the cell. Holding the lock for the duration of the whole process is a safe way, albeit
coarse, to enforce the model’s data consistency. Other more fine-grain schemes may be
considered in the future to improve the access latency of large cells.

Creating a regular cell involves 4 block allocations: One for the header, one for the
metadata structure and one for each cell section. The rationale for splitting the total
amount of memory required to store a cell, beyond proxy substitution that imposes it
at least for the header, is both to facilitate memory allocation and to allow not too
complex hardware implementations. Of the 4 blocks mentioned above, the header and the
metadata structures always have the same size for any cell. They can thus be allocated
from separate pools. They may also be allocated from special memory areas, as described
in Section 8.2.4.

Having a separate memory region dedicated to the storage of cell headers in practice
avoids a high level of fragmentation, not only at cell creation or deletion, but more

37Contrary to what the reader might think, only minor run-time system modifications and, optionally,
some compiler support, would make this limitation disappear.

98 Chapter 8. Distributed Data Structures

importantly when a regular cell is turned into a proxy. If a single memory block was
allocated for a whole regular cell, a substitution to a proxy would cause the space used by
its payload data parts to be wasted, because it is not possible with traditional allocators
to free a sub-region of an area allocated at once38. Even if it was, the headers of proxies
would remain as small allocated regions separated by the payload size of former cells,
considerably fragmenting memory.

8.2.4 Hardware Support

We mention in this Section ideas about some possible hardware support for the data
structure model. We have sketched the associated proposals with the constraint to
keep them reasonably realistic. To this end, they are often similar to already existing
mechanisms with different purposes. Further work might prove that some of them are
actually required to produce an implementation on many-core machines that can obtain
excellent performance for a vast majority of applications. We point out that none of
these ideas were actually implemented during the thesis and that this section should be
viewed as experimental. Our goal when devising these schemes was to roughly estimate
the time that some operations in the model implementation would take in the best case,
i.e., with proper but tractable hardware support. These estimations have been used in
our simulations, as explained in Section 8.3.

A major drawback of the chosen cell structure presented in Section 8.2.3 is the number
of indirections actually required to access data inside a cell. Starting from a pointer
to a cell handle, which is concretely the cell header, the program and the run-time
system need to follow 3 pointers to reach one of the cell’s sections: The initial pointer
to read the cell header, the payload pointer to read the metadata structure and the
pointer for one of the sections to access the requested data or links. The main purpose of
using distributed-memory architectures is to reduce contention on memory, which is too
limited both in latency and bandwidth to allow a very large scalability. Thus, it does not
seem a priori annoying that their benefit comes at the expense of increased latency for
local accesses. However, tripling the latency to local memory may lead to unacceptable
performance for programs whose shared data is not or moderately contended. Purely
local accesses, i.e., those that are not done through the data structure API but operate
on local structures, are obviously not affected by this problem.

The solution we propose to alleviate this increased latency is to introduce special
hardware instructions for accessing a cell and a dedicated TLB-like component doing
translations from a cell address to the local address of a given section. Accesses to a region
of the data section or a link in the links section would be performed through special load
and store instructions. They would take an handle address as the argument indicating
the cell on which to operate. As a preliminary step, the program would still have to

38We note that this possibility is offered by the POSIX interface through the mmap and munmap sys-
tem calls, but at the granularity of a page. Unfortunately, the traditional user interface for memory
management [137] does not include this possibility.

8.2. Implementation Traits 99

dereference a link (capsule_link_deref) and indicate which regions of the sections it would
be interested in (capsule_cell_give_data_access and possibly other new primitives).

When executed, the load and store instructions would simultaneously send the handle
address to the memory hierarchy, as is common, but also to a new TLB-like component,
called the Data Translation Buffer (DTB). This buffer would map the handle address,
which we assume to be virtual, to the virtual addresses of both sections. If the handle
address is not present in the DTB, a core has to wait for a reply from the memory hierarchy
for the header structure. The process is then repeated for the metadata structure. Finally,
the addresses for both sections are returned and an entry is created in the DTB. All these
steps also have the effect of bringing the cell header and the metadata structure in the
first level cache. If the handle address is present in the DTB, a core uses the relevant
section pointer from the DTB to compute the local address where the data that it wants
access to are stored. It then directly sends it to the memory hierarchy and the TLB.

A core dereferences a link to access the content of some cell. When it does so, according
to the current policy, the cell content is transferred to an address space locally accessible
by the core. We do not describe which kind of hardware support is necessary for this
operation and assume some common implementation, such as a DMA engine like that of
the Cell [207, 214]. Except perhaps when prefetched, the requested data are expected to
be used nearly immediately by the requesting core. We assume that, after a cell transfer,
the core that issued the request has the cell header and metadata blocks in one of its
cache, in L2 or in L3. For small cells, e.g., up to some threshold and depending on the
current cache use, we assume that the content of both cell sections is also copied into
some cache in the hierarchy. Filling the caches as soon as possible before an access will
improve data access latency. From this simple idea, there are numerous possible actual
mechanisms, with the usual trade-off between cache occupancy and reduced short-term
access latency.

It is desirable that a remote data request be processed without interrupting some
processor tied to the address space where the requested cell is stored. To this end,
it appears necessary that cell headers can be accessed directly by a network interface
associated to the address space. This could be achieved by allocating headers in special
memory regions. These regions would be delimited by the values of special processor
registers and would receive a particular caching treatment. More precisely, the network
interface and the local processors must be able to properly operate on cell header locks.
By contrast, the requesting core would be interrupted or restarted if stalled when data
are incoming. Allowing it to continue execution nevertheless in this case would require at
least that the allocation of a new header be performed in advance, i.e., before issuing the
data request. This address would be transmitted in the request and reply messages, so
that the network interface receiving the reply could use it directly to store the content of
the new header. However, it would be necessary also to pre-allocate all the cell’s blocks.
This requires to know in advance what the lengths of both sections are, which can be
achieved by having proxies retain this information, at the expense of enlarging the memory
footprint of the model.

100 Chapter 8. Distributed Data Structures

Operation Duration (in Cycles)

Cell Header Allocation 1
Cell Creation 3
Proxy Substitution 1
Handle Creation or Destruction 1

Data Access Request or Revocation 1
Link Content Access 1
Link Local-or-Remote Test 1

Figure 8.3: Cost of Specific Operations of the Data Model.

8.3 Status and Future Directions

Section 8.1 has presented a new data model that allows to write programs for dis-
tributed-memory architectures with simple concepts similar to that used in shared-mem-
ory. Moreover, Section 8.2 has detailed the most important characteristics of a class of
implementations for the associated run-time system. It has also suggested some ideas of
hardware support to enhance the performance of the latter. We now give a brief status
on the current implementation but also on the data model itself. We discuss their current
focus, list their main holes and indicate how they may evolve in the future.

A software run-time support having the characteristics described in Section 8.2 has
been coded. It has been integrated in a many-core simulator to evaluate the performance
potential of the approach before undertaking a complex but more accurate implementation
and simulation experiments. The simulator and the results of these experiments are
presented in Part III.

Figure 8.3 presents the quantitative assumptions for data structure operations that
were used in the experiments. The durations attributed to cell creation, proxy substitu-
tion and header allocations may seem overly short at first. Actually, they assume that
some regions are pre-allocated in advance and/or that hints are available that make a
majority of allocations succeed very fast. The cost of pre-allocation or hint maintenance
is thus amortized over a large number of creation events. The other operations are access
operations and their cost is compatible with the proposals of Section 8.2.4. These costs
do not include that of actual cache or memory accesses, which are factored in through
annotations in the simulator.

For ease of programming, we intended that our data model would uniformly treat all
kind of data, including very small and very large units. The chosen programming interface
reflects this intent. This commitment and the current implementation for it may lead to a
number of performance problems.

For small objects, performance is very much dependent on the overhead of the data
structure implementation, which itself depends on the cost of its particular operations,
i.e., allocation, mutual exclusion, proxy substitution, garbage collection, and the com-
munication costs of the architecture, i.e., the time it takes for some amount of data to

8.3. Status and Future Directions 101

be exchanged by a pair of cores. Comparatively to parallel architectures of the past,
multi-core processors have lower communication costs thanks to networks-on-chip which
can function at very high frequencies and use up a larger fraction of the available silicon,
raising bandwidth and reducing latency. Implementing a distributed-memory support
with fine-grain objects, which may have been regarded as infeasible in the previous decade,
now appears to be possible with good performance, with the tricks previously presented.
This conclusion is supported by the results presented in Chapter 14.

At the other end of the cell size spectrum, the current implementation does not deal
with large cells in any particular way. Large objects are essentially arrays and sometimes
hash tables, since simple objects are small and other object containers are implemented
as a collection of small objects linked with pointers. The significant amount of data
they contain increases the probability that a high number of tasks may access to them.
But tasks are generally interested in retrieving only a small part of the array’s content,
e.g., one or several elements. The chosen management policy is thus inadapted for such
objects, since it causes the whole content to be transferred at each access, taking a time
proportional to the cell’s size, instead of that of the useful regions.

We deliberately chose not to deal with this situation in this first work. One reason is
that our initial focus was irregular data structures, since there already exists an abundant
literature on array data distribution for distributed machines, albeit mostly concerning
static work distribution. Another reason is that we considered that an implementation of
the data structure model should remain relatively simple and mostly application-agnos-
tic, in order to allow an efficient hardware support and be generally applicable. Array
distribution has to be performed differently for each application/algorithm to bring any
performance benefits. Allowing to specify and implement a customizable and potentially
complex data distribution while retaining fast operation in the simplest cases is not a
trivial task and appears to be a research subject on its own. The important guidelines to
explore this path, based on our experience, would be the following:

• The programming interface should allow complete customization of distribution for
applications that need it, even if it already provides several common distribution
patterns, e.g., for arrays with 1 or 2 dimensions. There will always be applications
for which the default support has an adverse effect on performance.

• The interface and the compiler should work to ease the task of the programmer,
possibly by providing him with policies requiring a very complex implementation.
On the contrary, at the run-time system level, only simple but general enough
mechanisms should be implemented. The compiler or libraries should bridge the
gap between them.

Even for small objects, different object management policies than that presented in
Section 8.2.1 would be beneficial. As an example, mostly-read variables would benefit from
the run-time system allowing multiple copies of them in the system. As most accesses are
reads, they do not need particular synchronization operations. On writes, the run-time
system would need to ensure that other tasks will henceforth work on the new value, as
specified by the data consistency model, a potentially costly but infrequent operation.

102 Chapter 8. Distributed Data Structures

A study conducted as part of the development of the Munin distributed-shared memory
environement indicates that several object uses are enough to cover the access patterns
for almost all shared data. The performance of parallel applications can be improved
significantly by choosing an appropriate protocol for each object use. For a detailed
discussion about the access patterns of shared data and the associated protocols, which
allow multiple copies of data to live in the system concurrently, please see Section 10.3
on distributed-shared memory environments, in particular Section 10.3.2 on Munin, and
Section 10.4 about distributed objects environments.

Using opaque links whose format is known by the run-time system has the promising
potential application to prefetch irregular data structures more efficiently to hide latency.
At any point in time, a task is manipulating several cells and holds a number of standalone
links. By automatically following some links among the latter and those stored in the
currently dereferenced cells, the run-time system could prefetch some among those that
are within the current scope of a task, i.e., those that are reachable by this task. We
have just started the implementation of a simple policy that tries to prefetch the links
of all manipulated cells up to a configurable breadth threshold and apply the procedure
recursively up to a configurable depth threshold. The performance of this scheme will
depend on the order in which semantical links are indexed and thus stored in links sections.
For the future, it would be interesting to investigate schemes where the frequence of
accesses to links are monitored individually and could serve to indicate the “hot” links
that are likely to be dereferenced first and should thus be prefetched in priority. The
compiler or, as a last resort, the user could also indicate whether some objects are strongly
tied to help the run-time system make a good choice. The difficulty of this study will be
to find an acceptable balance between the overhead of the monitoring and the benefits it
brings.

The current interface and implementation of the data model are formulated in the
C language. With higher-level ones or with special compiler support, cells could be
dereferenced automatically around accesses to their content. The programmer could even
use links with the same syntax as pointers. Some static analysis at compile time would
group accesses performed in a row and dereference the cell only once for those. The
compiler could also work around the current limitation of having to dereference a single
cell at a time for data consistency purposes. In a computation that needs data from
multiple cells, a cell that is accessed at different steps has to be dereferenced and released
multiple times. The current data consistency model allows the content of this cell to be
changed by other tasks between the different access requests. If the compiler dereferences
cells implicitly for the programmer, it should also specify a consistency model not based
on handle operations that lets the programmer know which guarantees to expect. A
reasonable contract would be to guarantee that a cell content cannot be modified by other
tasks between multiple accesses that are considered grouped, for a meaning of “grouped”
to be defined precisely, e.g., for all accesses within a lexical scope. Such a model can be
enforced by copying all data that must remain coherent at the first cell access in a row.
This task could also be performed by the compiler.

103

Chapter 9

Distributed Work Management

In Part I, Chapter 3, we presented a run-time system implementation suited to shared-
memory architectures with a moderate number of cores. In particular, Section 3.1 showed
different techniques used to map user tasks onto execution units that assume a flat
underlying architecture with uniform memory access and communication costs between
cores. In Section 3.2, we detailed the chosen conditional parallelization policy, which
essentially allowed probes to succeed if an execution unit is immediately available to
process the new task. The associated implementation is based on a single shared counter
indicating the number of currently available execution units.

Although this design provides excellent performance for a low number of cores, it may
not scale on distributed architectures with more complex topologies. In such architectures,
the choice of the execution unit to execute a task will increasingly impact performance.
Also, the counter of available execution units will tend to become a botteleneck. Even in
the steady state of an application where most probe requests are denied and the counter
accessed only for reading without synchronization, access latency will increase with the
number of cores, augmenting the duration of a denied probe. Locked accesses to update
the counter will furthermore cause expensive cache coherency traffic, penalizing small
tasks and degrading overall performance.

For these reasons, we developed a new class of mechanisms where the conditional
division policy and task dispatching are both distributed and local. They only involve
components directly attached to a given execution unit or its immediate neighbors, thus
implicitly being adapted to the architecture topology. Global load-balancing is achieved
thanks to local control rules. The proposed schemes have been implemented. One of
them has been used for the many-core experiments performed in Part III. The parameters
used in this evaluation will be detailed in Section 13.2.6. In this Chapter, we explain and
discuss the mechanisms we propose to reach a global work balance. In the context of
many-core architectures, they must be highly scalable, which we achieve by constraining
them to be entirely distributed and local.

This work was at its inception and then for a large part afterwards a joint effort with
Zheng Li. We focused more on the algorithmic setting and Zheng Li investigated possible
hardware implementations of it. The particular algorithm he employed can be found in Li

104 Chapter 9. Distributed Work Management

et al. [173], a paper we recently published, and his PhD Thesis [172]. It slightly differs
with the mechanisms presented here on several respects, namely the measure of local
activity used for load-balancing and some details about the migration protocol related
to the preservation of locality. The Li et al. [173] article contains a comparison of this
scheme to a central scheme, showing that it is more scalable and offers significantly better
performance starting from 16 cores.

Section 9.1 details the proposed new probe granting policy. It is based on task queues
of fixed size assigned to groups of execution units. Section 9.2 considers possible designs
for a distributed and local load-balancing scheme. In Section 9.3, we expose the chosen
work load-balancing policy, and notably the algorithm that decides whether tasks should
be migrated to neighbors. Section 9.4 details how the different components involved in
load-balancing interact and the task migration protocol.

9.1 Probe Policy and Task Queues

As mentioned in Section 3.2, the constraint imposed by the programming model is that
a probe must be an extremely fast primitive, at least in the case when a task creation
is finally denied. It allows the system to be able to take advantage of very fine-grain
parallelism. In a distributed architecture, maintaining this property can be achieved by
taking decisions locally, in order to avoid remote access latencies and interactions with
many other components.

To this end, we assign a bounded task queue to each execution unit in the architecture.
A queue contains tasks waiting to be executed that are currently assigned to the execution
units associated with it. When some execution unit finishes its current task (or some
system or maintenance work), it will grab a new task from the queue. In our proposal,
the only requirements for task queues is that it must be possible to insert or remove a
task at both ends. One end is called the local end; it is where an execution unit tries to
fetch some waiting task to process it. We will describe in more details the interaction
of the task queue with other components in the next Sections. We emphasize that the
introduction of task queues is an important shift of paradigm from the implementation
that was presented in Section 3.2. Indeed, tasks may not be started right away after
their creation. This may have for example an influence on the soft real-time properties
exhibited by an implementation1.

In the context of homogeneous architectures, where we assume that all cores have
the same computing power and general-purpose capabilities, all the task queues have the
same size, i.e., the same number of task slots. For other types of distributed architectures,
each task queue may be sized differently, based on the expected use of the associated
execution unit(s). In hierarchical architectures, where a single memory and/or network

1Section 4.1 shows that the implementation presented in Part I lowers execution time variability for
multi-core programs. Allowing task creation even when all execution units are already busy may alter this
property. We have not investigated this possible consequence experimentally. A priori, we do not expect
that it will be significant enough to alter the conclusion that Capsule-parallelized programs are more
stable than programs parallelized naively.

9.1. Probe Policy and Task Queues 105

P

R

OK
Spawn?

P

R

NO
Spawn?

Figure 9.1: Probe Policy Example.

controller may be shared by several cores or other execution units, a single task queue
may be used for each such group. In such a case, it could comprise the total number of
slots that would be assigned separately to each unit or some lower number. In the rest of
this Chapter, we consider only the example of homogeneous architectures and talk about
the size of a task queue in general as being the common size of all task queues in the
architecture, for simplification and without loss of generality. We will discuss the choice
of a task queue size in the following Section.

To perform a probe or divide primitive as mandated by a program, an execution unit
only needs to access its associated task queue, which we also call its local task queue.
During a probe, it simply examines the number of free slots in its local queue. As long
as this number is greater than some predefined threshold, it allows probes to succeed.
Figure 9.1 illustrates the resulting policy with a threshold of 1 and a task queue size of 4.

To be more concrete, let us note qsize the size of task queues and q the number of occu-
pied slots for a particular queue. If we note qfree the number of free slots in this queue, we
have the elementary relation q+ qfree = qsize. We introduce qlocal

max , a threshold on a queue’s
occupancy above which new divisions are denied. Obviously, we have 1 ≤ qlocal

max ≤ qsize for
this parameter to make any sense. The condition for authorizing new divisions that was
formulated above thus can be written mathematically as

qfree > qsize − qlocal
max .

A successful probe implies the reservation of one slot in the queue that will accom-
modate the task created by the subsequent divide, thus decrementing q by one. More
precisely, the access to the task queue is an atomic operation that checks the queue’s
occupancy and simultaneously reserves a slot if the condition above is true. Atomicity
is necessary to prevent concurrent accesses, not only from other execution units that
may share the same task queue, but also from the component which is responsible for
load balancing. The implementation of the divide primitive is then straightforward: The
run-time system just puts the new task in the reserved slot.

As we did in Section 8.2 when describing a class of implementations to support our data
structure model, we will not specify a precise implementation of task queues beyond the

106 Chapter 9. Distributed Work Management

requirements already exposed above, in order to allow variations in concrete achievements.
The task queue can be implemented purely in software, as a double-linked list. This
case requires special mechanisms to handle incoming tasks, such as interrupts, and more
generally to perform load-balancing. It also requires some trampoline code that will
call tasks to execute them and will try to fetch a new task each time it regains control.
Hardware implementations are also possible since the task queues are bounded. We will
briefly discuss one possible class of such implementations as part of the next Section.

So far, we have explained how execution units put the tasks they create in their local
task queue and how those are fetched by a local execution unit that has just finished
to execute another task. But, to create parallelism, i.e., to have several tasks executed
concurrently, tasks from a queue must also be able to migrate to farther cores. We discuss
some such mechanisms in the following Section. Compared to the policy exposed in
Section 2.2, the one presented above is less independent with respect to work dispatching.
The queue occupancy determines whether a probe can succeed, and it is dependent on
the local work creation but also on how tasks are migrated from/to the local task queue.
In other words, the outcome of probes also depends on the precise actions performed for
load-balancing and their consequences on the task queue, by contrast with our earlier
proposal.

9.2 Design Considerations

With the above-mentioned policy, task queues are gradually filled with tasks spawned
locally. Enabling efficient parallel execution commands that tasks be spread to all the
available execution units in the network. This is the purpose of the class of dynamic
load-balancing schemes that we present in this Section.

9.2.1 Classical Strategies

There exists a substantial litterature on task scheduling and dynamic work dispatching
for regular multi-processors and cluster-like architectures. Some of the oldest and most
well-known techniques include an early work stealing proposal in the context of functional
languages [46], the drafting algorithm [194], which also makes lightly loaded nodes pull
tasks from busy processors, the gradient model [174] that implicitly computes a gradient
surface which is used by heavily loaded nodes to send tasks to lightly loaded ones, some
refinements of these [177], the receiver or sender initiated diffusions (RID, SID) [1, 257]
or the dimension exchange method (DEM) [70].

These strategies differ on several respects. They can be classified along the components
that initiate load-balancing in push, pull or hybrid models. In the first case, idle or lightly
loaded nodes are the initiators and try to acquire work from loaded ones. In the second,
loaded nodes push extra work to lightly loaded ones. In the third, both sets of nodes
can initiate the transfer of work, depending on the conditions. A second distinguishing
feature of the load-balancing strategies is how they estimate the load for each processor,
and in particular if this assessment is based on a local or global mechanism. Local

9.2. Design Considerations 107

evaluations can influence considerably the migration policies, potentially accentuating the
behavioral differences between pull and push schemes. A third axis of comparison is the
work migration algorithm, and in particular if it distributes work locally, i.e., to neighbors
and other close processors, or globally, i.e., to any processors in the network.

The classical strategies we evoked are not really well suited to supporting a highly
variable number of tasks, some of which are potentially very fine-grain, a situation that we
aim to handle efficiently. Part of these strategies indeed trigger actual load-balancing only
when some thresholds are met. As an example, the gradient model [174] typically classifies
nodes into lightly loaded nodes, normally loaded and heavily loaded ones. Only the latter
can push some of their pending work towards lightly loaded nodes. Depending on the load
measure and the thresholds used, processors that consume work at higher speed, because
they execute short tasks, benefit from locality effects between tasks and/or have a higher
processing power, may not get new work quickly enough. The main cause is that the
algorithm does not globally balance work in advance. In some situations, work in local
excess may not even reach some processors that are already idle, if during its migration it
reaches a normally loaded processor whose classification does not subsequently change.

Taking another example, the SID method [257] tries to attribute part of the local
load excess of a processor to deficient neighbors, in proportion to the difference of their
current load with the load average of the neighborhood. It assumes that excess load
can be split into a wide range of proportions. This method apparently ensures a fast
convergence of neighbor loads to the local average with a few messages. However, if the
situations of the neighbors change rapidly and simultaneously, processing the new load
indications sequentially can temporarily lead to a higher load imbalance. After a neighbor
processor indicated that its load raised, the average load calculation will lead to sending
work to some processors. In the meantime, one of the latter may have sent a notification to
indicate that it is now highly loaded as well. But since its notification was not processed,
it can be still seen as lightly loaded. As a result, it may have received a large range of
work, loading it even more. Of course, this discrepancy will eventually be corrected, but
introduces unnecessary latency and network traffic. The RID method similarly suffers
from this kind of problem.

To diminish and control more finely their impact on the overall information traffic
and contention on hardware components, we have chosen to focus on distributed and
local schemes. They must be able to cope with extremely quick changes in local loads,
which can happen especially with irregular programs parallelized at a fine level. For this
reason, we favor those that do not require much information nor many computations to
balance the load at a low level and that minimize the latency to propagate up-to-date
statistics. It is also desirable to permanently balance the currently available work to be
able to reduce global disparities more quickly. Moreover, the scheme has to manipulate
tasks as black boxes which it cannot split on its own initiative and whose total amount
of work is unknown. The drawback associated to all these features is that a potentially
much higher number of messages will have to be exchanged to ensure quick adaptation.

108 Chapter 9. Distributed Work Management

9.2.2 Push or Pull?

The class of schemes we propose is based on the push paradigm, for task dispatching
and also for updates of load statistics. This may seem surprising at first, as currently
popular schemes such as Cilk or TBB [133] use work stealing, a technique in which idle
processors try to pull pending tasks from other processors at random. If work stealing has
shown excellent performance for a moderate number of processors, it becomes increasingly
inefficient as their number rises [68], essentially because the probability to request work
from a processor whose task set is empty also augments.

Another drawback shared by all pull methods is their higher latency. Transferring work
at least requires a round trip, i.e., two messages, where the same transfer in a push model
requires a single message. It can be argued that with some pull models, and in particular
work stealing, a pull that succeeds moves a task to a place where it is immediately needed,
whereas tasks may sometimes be pushed to processors already having work instead of idle
cores. This reasoning, however, implicitly makes two assumptions that we will argue are
not suitable for fine-grain parallelization and many-core architectures.

First, it supposes that pulls will most often succeed. As said previously, this becomes
less verified as the number of cores grows. Also, such a policy amounts to favor phases
where almost all cores are already busy. Some of the most influential characteristics
of a parallelization approach performance-wise include the handling of “take-off” and
reduction phases, where work is gradually spread to the network and then reduced to
produce results. These phases indeed serialize the execution and thus should be optimized
in priority. With push models, processors can dispatch work as soon as it appears with a
single message when they cannot handle it, i.e., without any trial and error cycles as in
pull models.

Second, some pull models, including work stealing ones, begin to perform load-balanc-
ing only when a core becomes idle. A commonly reported reason behind this choice [174]
is to limit the number of messages exchanged to balance work2. This position has been
argued in situations in which exchanging messages is costly, e.g., when executing parallel
programs on clusters of workstations. However, with integration of cores on the same
chip, exchanging messages has become considerably cheaper. Moreover, we will show with
our scheme that, if load is permanently balanced, including when all cores are busy, cores
finishing a task can get a new one nearly as fast in push models as in pull ones.

As a complement to this Section, we have detailed the scheduling strategy of Cilk in
Section 5.2.2 and that of TBB in Section 5.2.3.

9.3 Load-Balancing Policy

As the load measure for a group of execution units, we could simply use the occupancy
of the associated task queue and perform load-balancing guided by such statistics. In

2Some authors even consider that, as long as all processors are busy, load-balancing is simply not
necessary, which we dismiss later in the main text.

9.3. Load-Balancing Policy 109

P

R

P

R
0 2

Figure 9.2: Example of a Task Migration Decision.

our schemes, we rather use the amount of work that can potentially be accepted by a
group of execution units, i.e., the number of free slots in task queues. Both approaches
are equivalent if all task queues have the same size. The latter seems however more
adaptable to heterogeneous or polymorphic architectures. If some cores can process tasks
quicker than others, they should have a larger task queue and should on average keep
more pending tasks in them, since they may consume them at a higher rate.

Each group of execution units maintains proxies for the number of free slots in the
task queues of its neighbor groups, i.e., local values reflecting the latest free slots updates
received from them. Task migration decisions by a group are taken solely based on the
values of its proxies. The algorithm that perform them is thus conceptually decoupled
from the mechanisms used to update the proxies and to transfer tasks. Nonetheless, it is
their interplay that determines the overall scheme efficiency.

9.3.1 Migration Decision Algorithm

Each time the occupancy of the task queue of a group changes or on receiving proxy up-
dates from neighbor groups, some component of the group executes the decision algorithm.
This component keeps a reference to the neighbor group having the higher number of
free slots. The reference has to be recomputed for each new update, but this operation
can be considerably optimized. If the new update contains a number of free slots higher
than that of the currently referenced neighbor, then the neighbor in the update message
becomes the new reference. If the new update message contains a lower number, then the
reference must be updated only if the referenced neighbor is the one that sent the update.
Indeed, in this case, the maximum may be realized by another neighbor. It is the only
moment when an examination of all the proxies is necessary to find the new maximum.

Once the reference is up-to-date, its number of free slots is compared with that of the
local task queue. If the difference is strictly greater than a predefined threshold, noted
qdiffmin, a task will be pushed from the local queue to the reference neighbor. Figure 9.2
illustrates the policy with two cores each having its own task queue. The values of proxies
are indicated over the link between both routers, which hold the task queues and execute
locally the decision algorithm. The threshold is assumed to be one in this example. The

110 Chapter 9. Distributed Work Management

right router executes the algorithm and decides that it should send a task to the router
on the left, since it has no free slots in its queue whereas the other has two empty slots.
The difference between both numbers is two, which is effectively strictly greater than the
chosen threshold. Note that, with a higher threshold, no tasks would be migrated and the
free slots would remain slightly unbalanced.

The chosen threshold establishes a trade-off between the responsiveness of the scheme,
i.e., how quickly it reacts to load imbalance, which increases if the threshold diminishes,
and the amount of tasks and messages exchanged for load-balancing, which diminishes if
the threshold is raised. It must be greater or equal to 1, in order to avoid a ping-pong
effect. If the number of free slots for two neighbors differs by one and the threshold is set
to 0, then the one with one more free slot will receive a task from the other. The situation
then becomes the mirror of the initial one, triggering again a task migration which will
send the task back. The process then continues until some other task is consumed or
produced by one of the processors.

This effect can subsequently augment the amount of messages exchanged for load-bal-
ancing if not carefully controled. It might however prove useful in order to work around
a possible limitation of the current scheme on large networks. As noted above, the task
queues may stay slightly unbalanced. An important such case is if all tasks are created in
the same network area. The queues in this area may be full because of task creation, but
queues at distance one will have at least qdiffmin more free slots. More generally, queues at
distance d will have at least d · qdiffmin more free slots. Consequently, tasks created in the
area can never reach queues at a distance d verifying:

d ≥ qsize
qdiffmin

,

noting qsize the size of the queue as in Section 9.1. We call this phenomenon the radius
effect. The greatest integer that is strictly lower than qsize/qdiffmin is called the horizon,
i.e., the maximum distance to which a task can send a child task, without the help of
other task creators.

To give some quantitative idea of the radius effect, let us consider a 4-connected two
dimension mesh and some processor P of it running a task that is the only creator of
other tasks. We will assume that P is not close to the edges of the mesh to facilitate
distance counting. Let Pd be some processor located at distance d from P . Given its
relative position to P by a couple of coordinates (x, y), we have |x|+ |y| = d. From that
relation, we deduce that the number of such processors at distance d when d ≥ 1 is 4d,
and finally that the number of processors at distance less or equal to h, some arbitrary
horizon, is

1 +
h∑

d=1
4d = 1 + 2h(h+ 1) .

With a task queue of size qsize equal to 4, a difference threshold qdiffmin of 1, the horizon
h is 3 and the number of reachable task queues is 25. This last number is pessimistic,
since it is obtained by considering that a single task is the source of all other tasks, which
is never the case in practice. As soon as tasks at the edge of the initial task creation

9.3. Load-Balancing Policy 111

P

R

P

R

P

R

P

R

Figure 9.3: Global Load-Balancing Example: Initial Situation.

area in turn create tasks, they extend the horizon by the same number. After 1 such
extension, 85 cores can be reached, and after 4 extensions, 481 cores. So the radius effect
will probably not cause any problem up to several hundreds of cores, for not too small
programs. We have however not investigated how it practically influences the simulations
on 1024 cores performed in Chapter 14. It would be interesting to conduct such a study
as part of future work.

9.3.2 From Local Decisions to Global Balance

If we except the peculiar situation involved in the radius effect, the local decisions taken
by the algorithm make tasks spread gradually to all cores in the network and create a
global work balance during periods where task creation and consumption is low. The
demonstration of such a property is straightforward and similar to the ones that have
been done for the classical diffusive schemes. We refer the reader to Cybenko [70] for
an in-depth analysis of such schemes with formal proofs. We intuitively illustrate the
global balance property through the example of a simple 2× 2 2D mesh network, with
qsize equal to 4 and qdiffmin to 1. Figure 9.3 shows the initial unbalanced situation and
the first migrations computed by the algorithm. Notice that the task queue in the lower
left corner does not push a task to its neighbor on the right, but rather to the neighbor
above, because the number of free slots is higher in it. Figure 9.4 (next page) shows the

112 Chapter 9. Distributed Work Management

P

R

P

R

P

R

P

R

Figure 9.4: Global Load-Balancing Example: After One Step.

situation after the algorithm was executed once on each router concurrently and the next
computed migrations. Figure 9.5 (facing page) shows the final situation, where all task
queues hold 2 tasks, except the task queue at the upper right corner which has only one
task.

The rates of creation and consumption of tasks determine the variance of work distri-
bution throughout the network, in conjunction with the rate at which the load-balancing
algorithm is run and can effectively migrate tasks. Good decisions also requires up-to-date
information, i.e., frequent proxy updates. For this reason, an execution unit group sends
an update of all the statistics that represent its current work load situation to all its
neighors as soon as one of them changes. These statistics comprise the number of free
task slots in the queue and the number of idle local execution units. Each reception of an
update message both triggers the update of the corresponding proxies and a run of the
decision algorithm. In order to reduce the number of generated messages, a task queue
sends through a single message the task it wants to push and a situation update to the
elected neighbor.

With proper hardware support, for example in routers, an iteration of the load-bal-
ancing algorithm can last only a few cycles, which is faster than the time a core needs
to create a single task. Without hardware support, i.e., if cores themselves have to run
the algorithm, they can do so at each task creation, which enforces the same property.

9.4. Migration Protocol and Interactions With Task Queues 113

P

R

P

R

P

R

P

R

Figure 9.5: Global Load-Balancing Example: Final Situation.

Consequently, we have not considered extensions of our algorithm where several tasks
would be pushed at once instead of only one in case of load imbalance. We have already
argued in Section 9.2 that, in a rapidly changing environment, doing so may have an
adverse effect on the bandwidth used by the scheme and the latency introduced before
task startup. In the same line, we also have not considered delaying proxy updates or
running the decision algorithm once out of several updates, because the benefits regarding
bandwidth, and also task creation time if load-balancing is performed in software, probably
will not outweigh the potential loss of performance due to reduced parallelism and a slower
adaptation to program behavior.

9.4 Migration Protocol and Interactions With Task Queues

9.4.1 Concurrent Task Migrations

During some period of an execution where tasks are exchanged at a high rate, some
queues may receive more tasks to be executed than can be simultaneously dispatched
to the local execution units. Consequently, some execution units may temporarily stay
idle although there are enough tasks in the queue to give work to all of them. The group
of execution units may then be wrongly considered as having less available task slots,
potentially inhibiting tasks from being pushed to it, or worse, causing some of its tasks to

114 Chapter 9. Distributed Work Management

be pushed to other groups. To correct this problem, the number of idle execution units
in the group is maintained in the task queue, is communicated in update messages and
stored into proxies, along with the number of free slots. The sum of both numbers is
actually used in the comparison algorithm, practically considering idle cores as free slots.

However, without further precaution, it may happen that, based on this sum, the
algorithm pushes a task to a group that has a higher sum but for which there are actually
no free slots in the task queue. Since pushed tasks must transit by task queues, such a
possibility must not occur. For this reason, the number of free slots and the number of
idle execution units are both transmitted and stored as representing the state of a group.
No tasks are ever pushed to a task queue that is full, even when the comparison of sums
alone would hint for it.

Similarly, since migration decisions are taken based on proxy values, it may happen
that the algorithm decides to push a task to some neighbor group although in the meantime
some tasks have arrived in its task queue. If, as a result, the latter is full, the pushed
task cannot be accepted. We emphasize that this problem is completely independent of
the method or frequency of group statistics updates, since there will always be a delay
between a state change in a task queue and the propagation of information about it3.
In addition to this case which is mandatory to handle, a task may be pushed while the
number of free slots in the destination queue has so diminished that the algorithm would
have decided not to send the task if it had had this information. If the difference threshold
qdiffmin is low, the receiving task queue may even try to push the task back immediately
after reception.

To handle these situations, task queues can refuse tasks pushed to them. They respond
to a push message with either a positive or a negative answer. While waiting for an
acknowledgement, a task queue keeps the task it tries to push in one of its slots. From the
point of view of the other neighbors, the status of its execution units group is unchanged.
It is only after having received a positive acknowledgement that a task queue can actually
free the corresponding slot. Negative acknowledgements trigger a new run of the algorithm.
For this reason, they hold an update of the task queue situation, so that the algorithm
uses the latest provided hint and doesn’t try to push again the same task to the same
queue.

Because tasks being pushed do not immediately free their slots, if the migration
algorithm produces a decision based solely on the number of free slots, it may try to push
too many tasks. To avoid this problem, the number of local free slots is biased by adding
to it the number of tasks that the queue is trying to push, as if they had effectively been
pushed. This technique ensures that there will never be more in-flight pushed tasks than
the number of tasks to actually push, i.e., no tasks will be simultaneously pushed to two
or more task queues. If pushes are all accepted, load-balancing is locally completed. If
they are not, the algorithm will run again and determine the new best neighbors to push

3It is possible to avoid this problem by forbidding other task queue updates while some neighbor is
interacting with the current group. However, this would require a stateful protocol and would impair
concurrency. A symmetrical problem is present in pull models, since a task request to a neighbor may be
denied if its queue became empty without the requestor being notified early enough.

9.4. Migration Protocol and Interactions With Task Queues 115

the tasks to or stop if the neighbors’ situation evolution has balanced the load with the
local task queue.

9.4.2 Preserving Locality

Tasks form a tree in which siblings and parents and their children often manipulate related
sets of data. Since maintaining locality is a critical necessity in modern architectures to
attain high performance, it is desirable to execute all these tasks on the same or relatively
close execution units. If related tasks are executed on the same execution unit, they may
share data through its cache. Running them on close execution units may allow to share
data in a cache of higher level, if the distributed architecture is clustered with respect to
the cache hierarchy. In any case, they will be able to communicate with a lower latency
than if they were very far apart, involving less communication links and thus less overall
bandwidth.

As mentioned in Section 9.1, task queues have two ends. The local end is the one
where tasks are fetched from or conversely added to by the local execution units. The
other end is the global end. It is where incoming tasks that have been accepted are stored.
It is also where the algorithm grabs a task when it has decided to migrate one to another
task queue. In the Figures we presented previously in this Chapter, the local end is on
the left of task queues, whereas the global end is on the right. For example, in Figure 9.1
(page 105), spawned task are placed in a slot at the local end on the left, shifting the
other tasks towards the right4. By constrast, in Figure 9.2 (page 109), migrated tasks are
taken from and migrated to global ends.

With this simple policy, tasks created by a single processor are processed in LIFO
order, i.e., the most recently created tasks are the ones that will be executed next, if they
are not migrated to other execution units groups. The tasks that are migrated are those
that have been created the earliest and thus are less likely to share data with the latest
created ones, if the temporal locality principle is verified. When a task is migrated to an
empty task queue, it will be executed immediately. Conversely, if the destination task
queue already has lots of tasks, it won’t be executed until they, and all their potential
descendants, have terminated, unless it migrates again.

There is thus a potentially sharp turn from attraction to repulsion towards migrating
tasks. Some tasks from a branch in the task tree may stay in the same group area, whereas
other may be forced to migrate far away. In cases where all the task queues are near
saturation, tasks towards the global end of queues may migrate several times, heading
towards less loaded queues but not being executed if the queue fills up again once they
have arrived. Although we do not expect this situation to happen very frequently, it can
randomize the final destination of a task and increase its migration delay and the related
startup latency.

Another possible policy is to migrate tasks from the global end of the origin queue to
the local end of the destination one. It is the policy employed in Li et al. [173]. With

4This move is conceptual. It would not really happen in an efficient implementation of task queues,
e.g., a circular buffer with pointers to the global and local ends.

116 Chapter 9. Distributed Work Management

it, tasks creating other tasks at a high rate will progressively push away the tasks in
the neighbor queues, whereas the previous policy would make child tasks migrate to less
loaded areas in the network, even if they are very far apart. By putting migrated tasks
into queues at the local end, i.e., closer to the execution units, it tends to limit the number
of migrations per task. On the other hand, it also diminishes locality of execution. We
have not experimented yet with this policy on our simulator. A comparison of the behavior
of several programs should help to understand the impact of such a policy change. Some
hybrid schemes may be able to trade off locality for better work repartition more finely
and adaptively.

117

Chapter 10

Related Work

10.1 SPMD and Task-Based Languages

10.1.1 SPMD Languages

High Performance Fortran (HPF) [155], based on previous proposals around the Fortran
programming language, supports array and matrix element distribution accross local
memories along any dimensions. It also allows to specify which elements of different arrays
should reside in the same memory bank.

Split-C [158] distinguishes local and global pointers. The latter are declared using
the global type qualifier. They are implemented on distributed architectures by simply
storing, along with a local address, a processor number that identifies the address space
in which the address is meaningful. Our links similarly store a core number and a local
address. Local pointers can also be converted to global pointers in Split-C. This is
somehow different than Capsule’s approach, where cells must be created explicitly and
the local data have to be copied into it, because the run-time system stores cell data in
memory with a different layout than local data.

Array or matrix elements can be stored accross different local memories according to
common patterns, as in HPF, but the layout description differs. The spreader operator
(::) separates the dimensions that are cyclically spread on all processors from dimensions
whose elements are distributed locally. For example, X[n]::[m] creates a matrix X with
n rows of m columns, the first row being stored on the first processor, the second on the
next processor, and so on up to P , the number of available processors. Row P + 1 is
stored on the first processor again, and so on. Special types of global pointers, declared
with the spread type qualifier, can index data in the processor dimension: Incrementing
them returns the element stored at the same local address in the next processor’s memory,
wrapping around to the first processor if necessary. As for HPF, it is impossible for the
programmer to specify the location of each array element individually, besides grouping
consecutive elements in one dimension1.

1Not necessarily a canonical one.

118 Chapter 10. Related Work

Split-C introduces new data operators. The split-phase operator (:=) allows one to
access (read or write) a shared variable2 asynchronously. The execution thus doesn’t
block, and the programmer can specify several instructions that will be executed while
the shared access is pending completion, masking the cost of the communication. When
the result of the shared access is needed, the programmer calls the sync function, that
waits for all pending accesses to complete. Some functions allowing split-phase bulk data
transfers are also provided.

The signaling store operator (:-) behaves as a shared store specified with the split-
phase operator, except that the store is signaled to the processor owning the region it
references. The program can wait for the completion of a signaling store by calling the
all_store_sync or the store_sync functions, the latter taking in argument the number
of bytes to receive in the local region before continuing execution. There is however no
support to discriminate an individual split-phase assignment or signaling store.

As a future work, we intend to assess whether we can improve Capsule’s data
structures handling’s performance by introducing Split-C’s split-phase data retrieval and
comparing its performance with intelligent prefetching. Signaling stores could also allow
to write data into a cell without moving it to the local processor first, reducing the
operation’s latency and the traffic over the network.

Unified Parallel C (UPC) is an extension of C inspired by Split-C and AC [48]. It
keeps Split-C’s distinction between local and global variables, except that the global
qualifier is replaced by the shared one. By contrast, there is no more distinction between
spread and global pointers and the spreader operator disappears. Instead, all shared
arrays are distributed by blocks over all processors, with a default block size of 1, as in AC.
For example, shared double M[3][2*THREADS]; declares a matrix M consisting of THREADS
matrices of size 3 × 2. M[0][0] and M[0][THREADS] designate the two elements of row 0
of the 3 × 2 matrix stored on the first processor. Other block sizes can be specified at
the right of the shared qualifier, as in shared [2] int N[4][3], which declares a matrix
whose elements are spread in blocks of size 2. The first two elements of its row 0 are
stored on the first processor, the last element of row 0 and the first of row 1 are stored on
the next one, and so on.

The two split-phase assignment operators := and :- of Split-C also disappear. As AC,
UPC relies on the compiler to move data fetch requests earlier than the location in the
instruction flow where the data are actually used in order to reduce latency. To enable
this, the programmer can choose between two memory consistency models. The strict
consistency is simply sequential consistency (see Section 10.2.1). The relaxed consistency
chosen is local consistency (see Section 10.2.10). The consistency model choice is a default
choice specified at the top of a source file. It can be overriden for particular variables
by using the strict or relaxed type qualifiers, or for particular statements through a
#pragma preprocessor directive.

2The global adjective is used in Krishnamurthy et al. [158] to qualify shared variables.

10.1. SPMD and Task-Based Languages 119

10.1.2 Cilk

The Cilk programming language and run-time system was presented in Section 5.2.2. In
this section, we describe its adaptation to distributed architectures, namely the shared
memory model it implements on top of distributed-memory machines and the changes to
the work stealing scheduler.

Cilk, in its third incarnation [140, 210], introduced distributed-shared memory support,
with a memory consistency model called dag consistency. This model intents to enforce
that, for two comparable tasks A and B, if A < B (i.e., if A is specified to terminate
before B begins), then all memory writes by A are visible by B. Incomparable tasks
performing writes, on the other hand, may not see each other’s writes. As an example,
child computations launched concurrently with the spawn directive can modify a common
store area but may or may not see each others’ modifications. The parent task most often
calls the sync directive to wait for its child tasks’ completion. Only at the time it regains
control are all writes by the children guaranteed to have been performed.

To be more precise, a procedure is composed of several tasks3, each of which is the
continuation of a previous one (except the first task). The reason for this organization is
that the Cilk scheduler doesn’t allow a task to block when scheduled. Continuations serve
to wait for data produced by another task, and are activated when the data are available.
Fully strict computations restrict the possible data dependencies to those from a child
to a task in its parent procedure, i.e., a continuation of its parent task. The task partial
ordering of a fully strict computation is the transitive closure of a “precedes” relation in
which a task precedes all its child tasks and these child tasks all precede the continuation
of their father task. Children of the same task are not comparable by it.

Two definitions of dag consistency appeared in Joerg [140] and Blumofe et al. [39].
They essentially differ on how values are propagated between tasks that are not comparable.
The first definition leads to a model which is the same as location consistency, which we
discuss in Section 10.2.10. The second definition is stricter. It eliminates the corner cases
of location consistency in which some old values can reappear later. This new definition,
however, leads to a memory model that is not constructible [96]. Since computations are
dynamic, a model implementation must be able to produce values returned by reads as a
program executes. Constructibility is the property that the values assigned to reads for
a computation could be assigned to the same reads in a super-computation containing
at least the same dependencies and tasks as the original one. This property implies that
a machine that is discovering new tasks and dependencies of a computation graph can
attribute values to new reads coherently with the model and the values already attributed
to performed reads. The weakest memory model, as advocated in Frigo [96], is a model
in which accesses to a given location are serialized in an order compatible with program
order. This model4 is identical to the slow memory model presented in Section 10.2.6.

3We say task where Cilk’s authors would say thread, as in Section 5.2.2.
4Frigo calls it location consistency, even knowing that this name collides with the historical location

consistency model, described in Section 10.2.10. Although his reasons are defendable, we chose not to use
this term since there was already a name for this model (slow memory), which he was apparently not
aware of.

120 Chapter 10. Related Work

The first implementation of dag consistency, called Dagger [140], has each processor
maintain a page cache. When a task accesses a word whose page is not in the cache, the
processor executing it sends a page fetch request to the processor that holds the parent of
the seed task on the first processor. The seed task is the root task of the tasks that a
processor holds. Except for the initial processor, it is a task that was stolen from another
processor. In fully strict computations, a continuation of a task cannot be stolen until all
the children of its previous task return, because it is schedulable only when it has received
the children’s data. This property guarantees that the father of a seed task stays on the
same processor until the latter finishes. If the processor holding the parent task of a seed
task doesn’t have the page in its cache, the process is repeated recursively with the seed
task of this processor. It stops when the page is found in some cache or the request comes
to the initial processor, which directs it to a backing store.

A second implementation of dag consistency, called Backer [38, 210], use frequent
flushes of local page caches to the backing store. When a processor needs some data not
in its cache, it obtains a copy of it directly from the backing store. Let us consider a
dependency T1 → T2, with processor P1 executing task T1 and processor P2 executing task
T2. When T1 finishes, P1 reconciles its cache with the backing store, i.e., it stores back
modified pages in its cache into the backing store. When T2 starts, P2 reconciles its cache
with the backing store, and then empties its cache. This algorithm is not distributed and
lazy like Dagger, but it has the advantage that it works also for computations that are
not strict. Page content is actually transferred through differences, as in TreadMarks (see
Section 10.3.3).

The Cilk scheduler runs on multi-processor machines. It has also been adapted to a
cluster of multi-processors. The work stealing strategy is modified to favor processors on
the same cluster node as the stealing processor over remote processors. The ratio of the
probability to steal a task from a local core over that of the remote core case is constant
and set to a parameter α. Experimentally, α can be chosen to be equal to the ratio of
the average remote steal latency over the local steal one, in order to divide by 2 the rate
of remote steals which balance work at the beginning and end of a computation. Such a
value gives linear speedup for very simple benchmarks [210].

10.2 Memory Consistency

10.2.1 Sequential Consistency

When multiprocessor computers appeared, where several processors could interact with a
shared set of memory modules, programmability of such systems was studied. Lamport
was the first to recognize that prior work on the behavior of programs on a multiprocessor
system assumed a simple global ordering property in such systems, which he called
sequential consistency. He formalized this notion by giving the following definition in its
original paper [162]:

The result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.

10.2. Memory Consistency 121

a = 0; b = 0; c = 0;

Initialization code.

a = 1;
b = 2;

if (b == 2)
c = 3;

print (c);
print (a);

Process 1. Process 2. Process 3.

Figure 10.1: Example Program to Illustrate Sequential Consistency.

Sequential consistency allows programmers to reason about their programs in an
intuitive way, as if every execution had taken place on a single processor. Let us consider
the example program of Figure 10.1, written in pseudo C. It is composed of a common
initialization sequence, at the top of the figure, and 3 processes executing the 3 different
instruction groups at the bottom. Each process is executed on a distinct processor. The
print function, as expected, prints the value of the passed variable. Not counting the
print statements, each instruction is a simple memory access, except the first instruction
executed by process 2, which is also a test whose outcome determines whether the second
instruction is executed.

We restrict ourselves to the executions in which the printed value for c is 3. We
now reason “intuitively” on the program to determine the possible printed values for a.
Because c starts with the value 0, the statement c = 3 must have been executed, implying
that b == 2 was true. Since b was also 0 at startup, the statement b = 2 was executed. a
= 1, the preceding statement in program order, was executed before. Finally, since print
(a) happens after print (c), the printed value for a is 1. In this reasoning, we implicitely
assumed that an address designates a single memory location and that memory accesses
happen atomically at a given point in time. Sequential consistency ensures that each
execution has the same outcome than an execution in which these assumptions are true.

Lamport’s concise definition is operational for systems where access to memory is
centralized, such as systems with a single globally shared memory, where a sufficient
condition is that all requests arriving to memory be handled in FIFO order5. It is much
more difficult to devise a practical scheme to obtain a global sequential ordering in systems
where some data can be stored at multiple places simultaneously, which are the majority
of systems in use nowadays. For performance reasons, cache hierarchies are designed
to hold copies of data that usually reside in memory. Processors also hold outstanding
requests to the memory hierarchy in prefetch or store buffers in order to hide the latency
it introduces. This situation creates more possibilities that distinct processors may see
different sequences of values for shared variables. As we will see in Section 10.2.3, practical
constraints to enforce sequential consistency considerably hinder potential performance.

5Even in the case of multiple memory banks.

122 Chapter 10. Related Work

Sequential consistency is considered the strongest practical memory model6. For this
reason, all the subsequent memory models presented here, which are all weaker than it,
are called relaxed memory models.

10.2.2 Strong Ordering

A later paper by Dubois et al. [79] tried to determine sufficient conditions on how memory
accesses must be performed to implement sequential consistency when data are buffered.
To this end, it provided synthetized and new definitions regarding individual memory
accesses that we hereby summarize.

A processor initiates a memory access when it forms it in its pipeline and then possibly
stores it in one of its local private buffers. It then issues the access when the request
leaves the processor and enters the memory hierarchy or the interconnection between
processors. A read memory access by a processor P1 is considered performed with respect
to a processor P2 if subsequent stores at the same address by P2 can’t affect anymore the
result of the read access by P1. Conversely, a write memory access by P1 is performed
with respect to P2 when subsequent loads by P2 at the same address will return the value
stored by P1 or by another processor that performed a store after P1. Finally, a memory
access by a processor is simply said to be performed if it is performed with respect to all
other processors in the system.

Based on these definitions, Dubois et al. [79] presented strong ordering, a memory
model equivalent to the following conditions:

1. All accesses to shared data by a given processor must be issued and performed in
program order.

2. When a processor P2 loads a value that was stored by processor P1, all memory
accesses performed with respect to P1 up to the issuing of the store must have been
performed with respect to P2.

Condition 1 merely states that the intruction flow order must be respected and obvi-
ously implies the last part of the sequential consistency definition. Condition 2 imposes a
constraint on how distinct processors can interact through memory. Roughly, a processor
reading a value subsequently “sees” all accesses “preceding” the store that wrote it. The
intuitive intent behind condition 2 is to allow reasonable inferences about whether some
writes are visible to a given processor, by establishing transitivity between some accesses.

To illustrate the usefulness of this condition, we consider once again an execution of the
example program of Figure 10.1 (preceding page) that prints 3 as c’s value. For a moment,
let us assume that only strong ordering’s condition 1 is in force, i.e., memory accesses are

6Sequential consistency is weaker than linearizability [123, 125] for objects that are the usual abstraction
of memory cells, i.e., for which a read operation returns the value of the last write applied to the object.
This is because linearizability does not allow to reorder operations that are timely disjoint. In general,
however, processors don’t know when instructions from other processors are issued and performed. Strictly
speaking, for truly distributed systems, because of relativistic effects, linearizability is not applicable.

10.2. Memory Consistency 123

issued in program order. By the same reasoning as in Section 10.2.1, a = 1 was executed
before print (c). However, the new value of a may not have reached processor P3 before
the execution of print (a) because of wiring delays, network contention or the new value
being stored temporarily in a store buffer or a cache. Consequently, when processor P3
executes print (a), the returned value may be 0, in spite of print (a) being executed
after print (c).

If we add condition 2 to the picture, print (a) can’t print 0. Indeed, a = 1 was
performed with respect to processor P1 before b = 2, which in turn was performed before
b == 2 and c = 3 with respect to processor P2. By condition 2, a = 1 has been perfomed
with respect to processor P2 when b is read. Similarly, P3’s print (c) reads c, which was
set P2’s c = 3. Since a = 1 is visible from P2 when c = 3 is executed, condition 2 says
that a = 1 is visible to P3 when c is read. In conclusion, print (a) must print 1.

In the original article, it is stated that:

It follows from logical considerations on the timing of events in a multiprocessor that
a coherent system with a strong ordering of events is sequentially consistent.
Condition 1 constrains the ordering of accesses on global data to be in program order.
The only way that a processor I can affect another processor K is by I modifying a
global variable, X, and by K subsequently reading the value. Condition 2 guarantees
that all global accesses issued and observed by I before the issuance of the STORE
request "happened before" all global accesses issued and observed by K after the
LOAD request is performed.

Unfortunately, as was later discovered, this statement is false: The strong ordering
conditions do not necessarily imply sequential consistency. To exhibit a counter-example,
we reproduce the example program used in Adve and Hill [3] in Figure 10.2 (next page).
This example also proves that concurrent consistency [227], which is very close to strong
ordering, is not equivalent to sequential consistency either.

We consider an execution of it that yields the following values: x = 1, y = 0 and z =
0. x = 1 implies that a = 1 was performed with respect to processor P2. y = 0 implies
that b = 1 has not been performed with respect to P2 at this point. z = 0 implies that
a = 1 has not been performed with respect to P3 at this point. Overall, this execution
doesn’t violate the strong ordering conditions.

At the same time, it is not sequentially consistent. Let us proceed by contradiction
and assume it is. For a given execution, we consider an equivalent execution in which all
processor operations are totally ordered. In the latter, we can note Ai

n the i-th memory
access by processor n. We also note ≺ the total strict ordering over memory events.
As before, x = 1 implies that A1

1 ≺ A1
2. The difference is that, this time, y = 0 implies

that A1
3 ⊀ A2

2 and thus A2
2 ≺ A1

3, because of the total ordering assumed by sequential
consistency. Similarly, z = 0 implies that A1

1 ⊀ A2
3 and thus A2

3 ≺ A1
1. With A1

1 ≺ A1
2 and

A2
3 ≺ A1

1, we deduce A2
3 ≺ A1

2. By program order, we also have A1
3 ≺ A2

3 and A1
2 ≺ A2

2.
By transitivity, we thus have A1

3 ≺ A2
2, which contradicts y = 0.

This counter-example exists because of the nature of condition 2, which only adds an
ordering constraint if a causal ordering between a write and a read at the same address
already exists. In the case of a read by processor Pi not influenced by a given write

124 Chapter 10. Related Work

a = 0; b = 0;
x = 0; y = 0; z = 0;

Initialization code.

a = 1;
x = a;
y = b;

b = 1;
z = a;

Process 1. Process 2. Process 3.

Figure 10.2: Example Program to Highlight that Strong Ordering is Weaker than Sequen-
tial Consistency.

by processor Pj , the write was necessarily not performed with respect to Pi, but the
conditions don’t say whether the write is already performed with respect to another
processor Pk. Such a situation can prevent a total ordering from existing, if the write is
effectively performed with respect to Pk and another write issued and performed by Pi is
not immediately performed with respect to Pk, as shown in the counter-example.

Strong ordering is said in Adve and Hill [3] to be a sufficient condition for most
practical purposes, and in particular well-written programs that access shared data using
usual synchronization primitives7. In fully general cases, however, it makes it harder for
programmers to devise whether a particular execution is authorized.

10.2.3 Practical Sufficient Conditions for Sequential Consistency

As mentioned in Section 10.2.1, sequential consistency is not easy to enforce when multiple
copies of data exist in a system. Practical rules to realize it were devised in Scheurich
and Dubois [226], as part of an effort originally aimed at converting strong ordering’s
condition 2 to a more easily implementable constraint. This latter condition indeed poses
the following question: How does a computer system ensure that operations performed
with respect to a processor Pn are also performed with respect to another processor Po,
as soon as Po performs a read returning a value stored by Pn?

The proposal to get around condition 2’s generality is to replace it with two restricted
conditions:

1. When a processor issues a store, it waits until the stored value is performed with
respect to all other processors before issuing subsequent instructions.

2. When a processor issues a read, it waits until the read value is returned and the
related store has been performed with respect to all other processors.

These conditions obviously imply strong ordering’s condition 2. They are also easier
to implement since each processor initiates a simple verification at each access, instead
of having to monitor the performance of several issued accesses to be able to wait for
their completion on an external read request. Moreover, they actually imply sequential
consistency.

7We think that this statement may be false and might investigate its veracity in a future work.

10.2. Memory Consistency 125

Unfortunately, they also make it hard to implement, and sometimes even completely in-
hibit, most critical hardware optimizations performed in uniprocessors, such as prefetching
or store queuing. Similarly, some compiler optimizations, such as instruction reordering,
are precluded. To alleviate this problem, researchers have investigated two directions.
The first is to investigate less restrictive rules that still guarantee sequential consistency
but allow more optimizations to be performed. An example of a more elaborate set of
conditions can be found in Adve and Hill [4]. The second is to define consistency models
that allows violation of sequential consistency while still being programmable. This second
path has given birth to lots of relaxed memory consistency frameworks since then.

The conditions above have been used in Scheurich and Dubois [226] to prove that
several cache coherence protocols, including the classical MSI protocol [110, 244], make
data accesses sequentially consistent.

10.2.4 Weak Ordering

Dubois et al. [79], which defined strong ordering, also proposed a relaxed memory consis-
tency model, called weak ordering. It establishes a distinction between variables that do
not control concurrent execution, and those that protect shared and writable variables or
serve to synchronize the control flow of processes/threads. The former are called global
data and the latter synchronization variables in the paper. When a processor accesses
a variable, it must be able to somehow infer its type, so that it can perform the access
differently.

The rules for weak ordering are:

1. Accesses to synchronization variables are strongly ordered.

2. Before issuing an access to a synchronization variable, a processor ensures that all
previous global data accesses have been performed.

3. Before issuing an access to global data, a processor ensures that a previous access
to a synchronization variable has been performed.

Compared to strong ordering, weak ordering allows global data accesses to be per-
formed out-of-order, while still allowing to reason about synchronization or critical sections
in the same way. Hardware mechanisms to hide memory access latencies, such as prefetch
or store buffers, can thus be used for regions that do not require synchronization, which
form a large majority of regions in most programs. More precisely, weak ordering restricts
the use of such optimizations only at entry and end of critical sections.

The Adve and Hill [3] paper proposed a different definition of weak ordering, formu-
lated as a contract between software and hardware, rather than specifying constraints
the hardware must adhere to. This different point of view has the benefit that the
programming model is clearer to the programmer. A drawback is that it is not obvious
which hardware optimizations are allowed and how they can be practically implemented.

The new definition involves a synchronization model, and is stated as follows:

126 Chapter 10. Related Work

A system is weakly ordered with respect to a synchronization model if and only
if it appears sequentially consistent to all executions of a program that obey the
synchronization model.

The chosen synchronization model essentially dictates which data dependencies are to
be signaled to the hardware and when. When a program obeys the model, the system
guarantees to the programmer that it will appear sequentially consistent to it, which eases
reasoning on the possible program outcomes.

A simple synchronization model is the data-race free model [3, 5]. In this model, con-
flicting accesses are defined as accesses to a same shared variable by different processors
that are not both reads. The model essentially states that all conflicting accesses must
be ordered with the help of intervening synchronization accesses, in any execution of the
program on an idealized architecture in which program order is followed and all memory
accesses are atomic. This property allows to define, for each such execution, the last
write corresponding to a read. Weak ordering is then showed to be equivalent to the
property that, for each execution, there exists a corresponding execution on the idealized
architecture that contains the same reads and for which the value of each read in the
initial execution is the same as the value of the read’s last write in the corresponding
execution.

An implementation of this new weak ordering is proposed in the same papers [3, 5]. It
consists in the following rules for the hardware:

1. Intra-processor program dependencies are preserved.

2. Writes to a given location are observed in the same order by all processors.

3. Synchronization operations to a given location are totally ordered8.

4. No new accesses are issued by a processor until all the previous (in program order)
synchronization accesses have been performed.

5. Once a synchronization access has been performed by a processor, another synchro-
nization access at the same location by another processor will not commit until all
accesses prior to the first synchronization access are performed.

That an access has committed means for a read to have determined its return value and
for a write to have its value potentially observable by another processor. We point out
that rule 2 is not really necessary. It only serves to simplify some proofs in the mentioned
papers. Furthermore, it is not implied by the original definition, nor by the new abstract
definition.

In the papers, it is claimed that systems conforming to the original definition of weak
ordering also comply to the new one. Actually, as mentioned in the proofs provided by
these papers, the original weak ordering definition has to be modified for this assertion
to hold. More precisely, in condition 1, strong ordering must be replaced by sequential
consistency. In the subsequent sections, weak ordering designates the new definition
associated with the data-race-free model for programs.

8Equivalently, they appear to be performed atomically.

10.2. Memory Consistency 127

10.2.5 Processor Consistency

Processor consistency is a relaxed consistency model that was introduced independently
in Lipton and Sandberg [175], under the name Pipelined RAM (PRAM) consistency,
and in Goodman [109], which gives a more abstract definition. The underlying intent
is to allow processors not to wait for stores to be globally performed before they can
continue executing. This property indeed allows an implementation where writes are
communicated to other processors asynchronously through buffers and an interconnect
where point-to-point messages for a given couple of processors are guaranteed to arrive in
the order in which they are sent9.

Weak ordering requires that the programmer insert synchronization accesses for an
execution to appear sequentially consistent. Processor consistency enjoys the same prop-
erty, for properly defined synchronization operations, but is stronger outside and inside
critical sections. Indeed, without intervening synchronizing accesses, writes by the same
processor may be issued and performed out-of-order in weak ordering, without violating
intra-processor dependencies, which is generally not allowed with processor consistency.
Processor consistency allows to implement more algorithms using data races rather than
explicit synchronization.

A system is processor consistent if any execution of any program is equivalent to an
execution of the program in which all memory accesses by a processor Pi are performed
in program order with respect to any other processor Pj

10. Note that this is substantially
different than imposing that an access by Pi must be performed before Pi can issue the
next access in program order. Indeed, at some point, a processor Pj may observe several
accesses issued by Pi, but another processor Pk may not have observed any accesses by Pi

yet, which is not possible if Pi must wait for each access to be performed globally before
issuing the next one.

An hardware implementation verifying processor consistency is proposed. It relies
on each processor not having more than a single write pending, i.e., issued but not yet
performed. This implementation in reality imposes a stronger ordering than processor
consistency, since, in it, all writes by a processor are serialized, i.e., a new write can’t be
issued before the preceding one has been performed. By contrast, it does not impose more
constraints than implied by the definition for reads.

With processor consistency, reads are allowed to pass previous non-dependent writes
by the same processor, i.e., reads following a write at a different location in program order
may be issued and performed before the write. When performed, this transformation,
which is likely to improve execution performance, suppresses some possible program
outcomes, which can make it harder to detect that a program is not correct with regard
to processor consistency. Because of this property, processor consistency is not stronger
than strong ordering11.

9Hence the name Pipelined RAM.
10The original formulation in Goodman [109] differs. Our formulation leverages the vocabulary introduced

by Dubois et al.. It is strictly equivalent to the original.
11We developed a proof that strong ordering is actually stronger than processor consistency that may

be published in a future work.

128 Chapter 10. Related Work

Another processor consistency definition is given in Gharachorloo et al. [103], which
results in a much stronger model, in which accesses may not be issued before some
other accesses are performed. This model serializes reads and writes from the issuing
processor’s point of view, except that reads are allowed to pass previous non-dependent
writes. Moreover, the paper generally assumes that writes to a given memory location
are always serialized, i.e., are observed by all processors in the same order, which is not
implied by the original definition. Unless otherwise stated, when we mention processor
consistency in the next sections, we refer to the first and weaker definition.

Another paper [8] claims that Goodman included serialization of accesses at a given
location in the original definition. The main presented argument is that he said processor
consistency to be “weaker than strong ordering, but stronger than weak ordering”, and that
weak ordering in this sentence designates cache consistency. We argue that this confusion
results from the introduction of the unnecessary location serialization condition by Adve
and Hill, as explained in Section 10.2.4, rather than from Goodman’s original intent.
Cache consistency and weak ordering, as presented in this thesis, are not comparable.
Moreover, the concise abstract definition found in Goodman [109] simply does not mention
this requirement. Finally, the proposed hardware implementation concerns processors
only, not memory, and it doesn’t maintain by itself location serializability. For these
reasons, we do not consider the location serialization requirement to be part of processor
consistency12.

Processor consistency usually corresponds, with some variations, to the implemented
memory consistency of lots of processors/architectures, including recent ones [219], at
least theoretically.

10.2.6 Slow and Causal Memories

Slow memory and causal memory were introduced as relaxed memory models in Hutto
and Ahamad [128]. Causal memory was later formalized in Ahamad et al. [7].

Slow memory is weaker than processor consistency because it imposes that only the
accesses to the same location by a given processor are observed in program order13 by all
other processors. Mutual exclusion and atomic updates can be implemented, but at the
cost of complexity and performance degradation.

Causal memory, as processor consistency, allows different processors to observe different
interleavings of events. However, it is stronger than it since these interleavings must
obey causality. Causality is defined [7] as a partial order that respects both program
order on each processor and the precedence induced by a write being observed by a read
on another processor. Causal memory is thus equivalent to strong ordering, as defined
in Section 10.2.2. Two algorithms to implement causal memory on top of a message

12It is claimed in Ahamad et al. [8] that the fact that Goodman would have “reinvented” PRAM is
unlikely. This same article presents an example attributed to Goodman that would invalidate our position.
However, it doesn’t appear in Goodman [109], nor in any other articles from the same author.

13The requirement of program order as the common observed order is not stated explicitly in the paper,
but implied since only physical memory models are considered. All operations are implicitly issued and
performed in program order.

10.2. Memory Consistency 129

passing infrastructure are proposed. The simple algorithm works with reliable message
delivery and the assumption that processes never fail. The robust alternative works even if
messages are not reliably delivered or if a limited number of processes stop communicating.

10.2.7 Release Consistency

Release consistency was introduced in Gharachorloo et al. [103]. It is a refinement of weak
ordering in which synchronization accesses are further divided into acquire and release
accesses.

A program is considered properly labeled if, for two conflicting accesses u and v, as
defined in Section 10.2.4, with at least one of them being a non-synchronizing access, for
any sequentially consistent execution of the program, there exists a release access r and an
acquire access a such that u ≺ r ≺ a ≺ v or v ≺ r ≺ a ≺ u, with ≺ being a total ordering
of operations implied by sequential consistency. In other words, conflicting accesses must
be preceded by an acquire access and followed by a release access.

With this notion, the conditions for release consistency are the following:

1. No regular memory operations are allowed to be issued until all previous acquire
operations have been performed.

2. A release access is issued only when all previous regular operations have been
performed.

3. Synchronizing accesses must obey some strong consistency. In Gharachorloo et al.
[103], either sequential consistency or processor consistency14 is suggested.

Each different choice of consistency in condition 3 defines a different version of release
consistency. When sequential consistency is chosen, release consistency is often noted
RCsc or simply RC. When processor consistency14 is chosen, it is noted RCpc.

For properly labeled programs, release consistency is equivalent to weak ordering and
to sequential consistency. As with weak ordering, all traditional processor and compiler
optimizations can be used outside of and inside critical sections. An additional benefit of
release consistency is that it allows more instruction overlap than weak ordering at critical
section boundaries. Condition 1 ensures that all other processors are aware that a process
is in a critical section before seing any effects of the inner instructions. Contrary to weak
ordering, it does not impose that instructions preceding the acquire operation must be
performed before the acquire is issued, which is semantically not necessary. Condition 2
enables a similar additional overlap property.

10.2.8 Entry Consistency

Entry consistency [26] continues the trend of weak ordering and release consistency. As
with these models, entry consistency distinguishes the acquire and release synchronization

14This refers to the second definition of processor consistency, as explained in Section 10.2.5.

130 Chapter 10. Related Work

accesses to be able to enforce strong consistency at critical boundaries only. But it goes
further than these previous proposals in two directions.

First, entry consistency associates to a critical section and its related acquire and
release operations the set of shared variables that are to be accessed inside it. This
additional information allow a release operation to be issued even if some previous memory
accesses have not been performed yet, provided these accesses do not concern the shared
data locations guarded by the critical section. Similarly, acquire operations do not need to
delay the issuance of subsequent accesses to not-guarded data. Another benefit is that no
systematic strong consistency has to be imposed on acquire/release operations for critical
sections that access disjoint data sets. A whole critical section can even execute while
other acquires are pending, which is beneficial when several threads share the same die.

Second, entry consistency can distinguish exclusive and shared accesses to the data
guarded by a critical section. Shared acquires are used for read-only accesses of the
guarded data, whereas exclusive acquires are used for read/write accesses. As usual,
shared and exclusive accesses are incompatible. When several processors want to enter a
critical section to read the same data set, synchronization variables and the regular data
are replicated to let them proceed concurrently.

It may be the case that the data to be accessed inside a critical section is not known
at acquire time. Indexed memory accesses whose index is also computed inside the
critical section are particularly problematic. They require that data can be associated
to synchronization variables dynamically and even while the critical section is executing.
Consequently, the run-time system has to provide functions the program can call to
establish such an association. Performing these calls at run-time has a performance
cost. Moreover, they are cases that are hard for a compiler to insert these annotations
automatically, putting more work on the programmers’ side.

A further optimization is not to wait for guarded data accesses to be performed before
issuing a release. The purpose of a release operation is to mark the end of the critical
sections and of the guarded data accesses. The next access to the same guarded data will
occur inside another critical section, i.e., after another acquire operation. It is thus enough
to ensure that the accesses of the first critical section are performed with respect to the
processor executing the second one before the second acquire can proceed15. Implementing
this optimization requires that the architecture keep track of such accesses and send them
at acquisition. An implementation of release consistency can also benefit from it in a
similar way, as demonstrated by TreadMarks, which is described in Section 10.3.3.

The implementation of entry consistency in the Midway16 run-time system [26] is
that a single processor owns a given synchronization variable at any time. Shared access
requests are handled by simply replicating the variable and the guarded data. Exclusive
access requires a transfer of ownership towards the processor that is about to enter the
critical section. Each processor maintains a best guess for the owner of all synchronization
variables. Each time the ownership is tranferred from a processor Pi to a processor Pj ,
both Pi and Pj update their corresponding best guesses. Other processors don’t change

15This optimization is probably the reason for the name “entry consistency”.
16See also Section 10.3.4.

10.2. Memory Consistency 131

their guess about the owner. When they issue an acquire request, that request is forwarded
to their current best guess, which in turn relays it to its own. The process recursively
continues until the request eventually reaches the current owner. We use the same idea to
implement link dereferencing by following the referenced proxy chain to find the pointed
node, as explained in Section 8.2.2. This mechanism is also very similar to what the Ivy
distributed-shared memory system does, as described in Section 10.3.1.

10.2.9 Scope Consistency

Scope consistency [130, 132] is a memory consistency model that tries to keep the benefits
of entry consistency without imposing on the programmer the burden to associate to a
synchronization variable the data it guards.

All memory references are associated to one or several scopes as follows. At run-time,
a scope’s session starts with an annotated instruction17 referencing the scope and ends
with another. All memory accesses issued after the start and before the end of a session
are informally considered to form part of the scope. By definition, all writes issued during
the session are performed with respect to the scope when the session ends.

With these definition, the conditions for scope consistency are the following:

1. Before a processor P can open a new session for a scope S, all writes performed
with respect to S must be performed with respect to P .

2. A memory access issued by processor P is not allowed to perform before all the
previous session openings in program order.

In other words, all modifications performed during previous sessions that closed are
guaranteed to be visible to a processor when it opens a session for the same scope.

Scope consistency was designed to suit synchronization through critical sections with-
out requiring program modifications. Lock acquisitions and releases are natural candidates
to form the start and end of scopes. A new scope is thus associated to each lock object.
The code for acquiring and releasing a lock is augmented with calls to the run-time system
to declare the start and end of the associated scope. Along with an ability of detecting
writes, this information allow the run-time system to associate writes to a scope and to
know when these writes are to be considered performed with respect to it.

Programs working correctly with release consistency do not, however, work correctly
under scope consistency, despite the fact that critical sections are used to protect access
to shared data. A side effect of release consistency is indeed to guarantee that all accesses
issued before a critical section are performed with respect to all processors when the
critical section ends. This is not the case with scope consistency. Only data modified
inside a critical section are transferred when another processor enters it.

Producer/consumer schemes will typically fail without intervention from the program-
mer. In their case, data are often prepared ahead of the critical section, which then consists

17Annonated instruction is an abstract term and refers to a special hardware instruction or a run-time
system primitive, such as a system call or a library function call.

132 Chapter 10. Related Work

solely of an update of some pointer to that data. There are two alternative solutions to
this problem. First, the critical section can be enlarged to contain data preparation, at
the expense of increasing the locking duration and augmenting lock contention. Second,
another scope has to be created. Data preparation must take place within a session
associated to this new scope and data reading in another one. For this reason, explicit
annotations must be provided by the run-time system.

An implementation of scope consistency with hardware support is considered in Iftode
et al. [132] and is summarized in Section 10.3.4.

10.2.10 Location Consistency

Location consistency was introduced in Gao and Sarkar [99] and later completed [100, 101].
It essentially allows a read to a given memory location to return one of the “most recently”
written values.

An abstract location consistent execution is a concurrent execution of processes in
which the instructions of each process are assumed to be issued and performed sequentially.
Each memory location is associated to a partially ordered multiset (pomset)18. When a
process writes into a location, the write is inserted into the associated pomset so that
all elements of the set that were inserted by the same processor are ordered before it.
Synchronization operations are considered inserted by all the processors participating
in the corresponding synchronization event. A pomset includes only explicit or implicit
operations on its associated memory location.

A read to a given location may return one value from the location’s value set, which
is constructed from the current content of the location’s pomset as follows. Among the
writes in the pomset performed by the processor issuing the read, only the last one is
allowed to be returned. If, before the read, accesses were synchronized, other writes by
other processors may be considered having been performed before the read. In this case,
the last ones of them19 can have their values returned as well. Finally, any value set by a
write that is not comparable to the read and was not performed by the reading processor
is also part of the value set.

A location consistent system is a system in which any execution of any program is
equivalent to an abstract location consistent execution, in the sense that the operations in
both executions are the same, and the result of each read in the original execution is part
of the value set of the memory location at the corresponding read in the abstract location
consistent execution.

The intent behind location consistency is to allow more efficient hardware implementa-
tions and compiler optimizations than in other memory models by dropping the memory
coherence constraint that all writes to a single location are serialized, i.e., all processors

18The example developed in Gao and Sarkar [100] is not consistent with the fact that pomsets are
partially ordered. The described update procedure for a pomset omits to mention transitive closure. The
interested reader should instead consult one of the other two papers [99, 101].

19A last write w to a read r precedes the read (w ≺ r) and there are no other intervening writes between
them (w′ ≺ r ⇒ w′ = w ∨ w ⊀ w′).

10.2. Memory Consistency 133

oberve them in the same order. As explained in Section 10.2.5, processor consistency is
another such memory model with the same intent that also drops this requirement.

Location consistency adds to processor consistency the description of how common
synchronizing operations must behave. For regular reads and writes, location consistency
is weaker than processor consistency. Reads by a processor may not return a sequence
of values compatible with the write order on another processor, since, in a pomset, a
read by a processor is never considered preceded by any write by other processors, except
in the case of intervening synchronization operations. Consequently, such a read can
return indifferently any written value by other processors, including older values. Location
consistency even allows to return older values after newer ones.

A new cache protocol implementation, called the location consistency protocol, that
makes a multi-processor system obey the location consistency requirements, is proposed in
Gao and Sarkar [101]. Each cache line has one of the usual three following states: Invalid,
clean (or shared) and dirty. A write-back policy is employed. Read operations hit in the
cache if the corresponding cache line is in the clean state, as in other cache protocols, but
also if it is in the dirty state. Indeed, location consistency always allows a read to return
the result of the previous write to the location on the same processor. Write operations
always take place in the initiating processor’s cache. At acquire on memory locations,
the corresponding cache lines, if clean, are marked invalid in order to force the next read
accesses to go to the main memory. By contrast, the cache lines that are dirty are not
flushed and their values will satisfy subsequent reads. At release, dirty lines are written
back to memory and marked clean.

In this protocol, local modifications have priority over remote ones, except those
occuring in a critical section. The latter are written back at release and the corresponding
line is dropped at acquire. This property ensures that a value written at a location will be
communicated to a processor subsequently entering a critical section to access the same
location. It also allows to safely conform with location consistency, because a read has to
be satisfied with a value coming from a remote write if there are no previous writes on
the initiating processor.

We nonetheless point out that location consistency never obliges an implementation
to propagate a location’s value from a remote processor to a processor trying to read the
location if the latter previously wrote to it. A consequence is that some values produced
on one processor may never reach any other processors. Moreover, at most one value is
stored by each processor in its cache. Returning earlier values after late ones is thus not
possible. The proposed implementation is thus in reality much stronger than location
consistency. Because location consistency is extremely permissive, stronger models, such
as processor consistency, are rather used in practice.

As a side note, the original paper [99] claims that the vocabulary introduced by Dubois
et al., and thus any memory model defined in terms of it, implicitly assumes the existence
of a global clock for events. As should be clear from the description and the examples
presented in Section 10.2.2, only partial orderings for the different processors are actually
assumed, and they always exist for any physical processor system.

134 Chapter 10. Related Work

10.2.11 Total Store, Partial Store and Relaxed Memory Order

The total store (TSO), partial store (PSO) and relaxed memory (RMO) orders were
introduced with the SPARC architecture [238, 255]. All processors of this architecture
must implement at least total store order. The other consistency models are optionally
implemented and must be explicitly activated.

All these models share the following properties. First, stores are always performed
atomically, i.e., they appear to be performed in the same order for all processors, irre-
spectively of their memory location. Second, loads are never reordered with following
dependent instructions, which read the destination register of the load or are conditionally
executed depending on the load value. Third, for consistency, loads and stores that precede
in program order a write to the same location are always performed before it. Loads on
a processor can be satisfied with the value coming from the last store in memory order
or from the latest local store in program order, as long as this doesn’t violate the first
property.

With total store order, the total order of stores must be compatible with program
order. Loads are blocking and ordered with respect to previous loads in program order.
They may not be reordered with subsequent stores20. Atomic read/write operations
follow the rules for both stores and loads. Total store order is stronger than processor
consistency21. With it, all stores are ordered and their order is a superset of the program
order. Processor consistency, in its strongest version, just requires that the stores to a
single memory location be serialized. In both models, loads are allowed to pass earlier
writes. Total store order is also incomparable with strong ordering.

In the partial store order, the total order of stores is not necessarily compatible with
program order. Partial store order is thus not stronger than processor consistency22. Load
accesses still obey the same restrictions. Finally, relaxed memory order only imposes the
above-mentioned restrictions common to all these three orders. With it, loads may be
reordered with other loads.

Total store order recently regained some interest after Intel published a revision of
the memory consistency model available on x86 processors. Starting from this document
and by observing actual processor behavior, which is not completely consistent with the
specification, some researchers have formalized a memory model called x86-TSO [200] that,
according to them, reflects the actual intent and implementation of the x86 processors
memory model.

10.2.12 Local Consistency

Local consistency [121] is the weakest possible memory model that is compatible with
program order. It simply states that, from the point of view of a given processor, all local

20This requirement was not explicitly specified in an earlier version of the SPARC architecture man-
ual [238]. But it is assumed by some of the example implementation code for usual synchronization
primitives given in this document. The ambiguity was removed in the next version [255].

21First or second definition, see Section 10.2.5.
22Partial store order and the weakest version of processor consistency are actually incomparable.

10.3. Distributed-Shared Memory 135

memory operations appear to have been executed in program order. Interaction between
processors is not constrained at all.

This model allows maximum sequential performance, because it is compatible with all
optimizations that can be applied to uniprocessors. It is however useless without special
synchronization operations that can offer minimum guarantees about the propagation of
values between two processors.

10.3 Distributed-Shared Memory

The aim of distributed-shared memory sytems (DSM) is to present to programmers the
familiar abstract interface of shared-memory systems, even on hardware where memory
is physically distributed. The message-passing paradigm, which can unleash most of
the performance of such architectures, is indeed widely recognized as being difficult to
program because it is low-level. It requires the programmer to explicitly send data from
one process to another. The programmer must elaborate the complete program’s data
flow and the program must keep track of the location of shared data, except for some
restricted classes of computation, which the producer/consumer scheme is a common
example of.

Even today, with multi-core being mainstream, lots of programmers are still unaware
that memory is physically distributed under the hood in high-performance systems [2],
because these systems still present the usual shared-memory-like interface. To avoid
confusion, we advocate the use of the more general term of global addressing for this
abstract interface, and keep the terms shared and distributed to qualify the physical
repartition of memory.

There are several possible classifications of distributed-shared memory along their
design, including the presented memory consistency model and the sharing structuration
and granularity, and along their implementation, such as the data location and access,
the coherency protocol and the implementation level (hardware or software) of all the
mechanisms involved.

So many distributed-shared memory systems were proposed since the mid 80s that it
is impossible to detail them all here. We have nonetheless tried to mention some of the
most influential ones among those that combine mostly regular hardware and software
management, since they favor portability and flexibility, two of our goals in building the
Capsule approach.

10.3.1 Ivy

Ivy was the first proposal for a distributed-shared memory system based on virtual
memory that would allow applications to benefit from locality of reference, even though
the underlying memory is physically distributed. In other words, it uses local memory as
a cache for the whole virtual memory shared by the participating machines. Ivy manages
memory at the granularity of a page size, which enables it to rely on the usual virtual

136 Chapter 10. Related Work

memory mechanisms23 available on single processor machines [75]. It sets the hardware
page permissions so as to trigger page faults when it needs to perform an action at some
memory access.

Other systems before it, such as CM* [242, 243] or Butterfly [21, 166], did global
addressing by merely directing memory requests to the nodes holding the data, according
to some static partitioning of the physical address space. Programs, which were using
virtual memory, couldn’t determine in advance if their accesses were going to be local or
remote. Remote accesses were 5 times more costly than local ones, and severely degraded
as the number of processors trying to access the same memory bank increased.

Ivy is targeted at loosely-coupled multi-processor machines, where communications
have different characteristics than in tightly-coupled ones. Latency is much higher, because
sending a message involves the virtual memory and networking layers of the OS. It largely
dominates the cost of message transmission. At that time, sending a message of a thousand
bytes didn’t take significantly more time than for a few bytes. Page size was on the order
of a thousand bytes, which also didn’t cause too much contention.

Overall, data accesses are managed through page ownership. Only the current page
owner can write to a page in order to maintain memory consistency24. When a processor
issues a write, it has to acquire ownership of the corresponding page through a protocol
before the write can perform. As long as processors are only reading the page, several
copies of it can exist simultaneously. The system then must ensure that nodes are not
using outdated page copies after the page has been modified. Ivy maintains consistency
at each memory write24.

Traditional algorithms to maintain consistency are divided into two main classes:
Invalidation and update. Schemes of the invalidation class inform processors holding data
copies that their copy has become invalid. On message reception, they simply discard
it. Schemes of the update class send messages to all nodes holding a copy so that they
can bring them up-to-date. The former class can be viewed as a lazy form of the latter,
because new copies are not automatically obtained and requests to the node holding the
original data will have to be issued later, usually at the next access to the same data.

With write update protocols, the simplest approach is to have writes trigger a page
fault, so that the OS can detect and update page copies at a single write granularity.
Obviously, a page fault per write is extremely costly and doesn’t allow a process writing
often to benefit from spatial or temporal locality. Ivy doesn’t propose another mechanism
for update and considers only invalidation protocols.

Shared data are accessed through regular memory operations. Initially, a page is
mapped at one processing node. When a read access to a page not present is made, the
hardware and the OS handle the resulting page fault. They ensure first that the page is not
mapped read/write at another processing node, demoting an existing mapping to read-only.
Then, they map the page read-only at the initiating node. Finally, execution is restarted

23Such distributed-shared memory systems are sometimes qualified as shared virtual memory systems
(SVM).

24These design choices actually enforce a strong memory consistency, called sequential consistency,
described in Section 10.2.1.

10.3. Distributed-Shared Memory 137

at the faulty instruction. Once the page is mapped read-only, every subsequent read
access is serviced locally. A write access is handled in a similar way. If the page holding
the data is not mapped or mapped read-only, the OS invalidates all other mappings of the
pages on the other processing nodes. Then, the page is mapped locally with read/write
access. Finally, the faulty write is restarted.

At page fault, Ivy must be able to locate the existing page copies to obtain a new
copy and, in the case of a write access, to invalidate them. To this end, it explores several
strategies to maintain ownership and copy information.

The first is the use of a centralized manager that runs on a predetermined node. It
keeps track of the owner of every page, as well as the location of all copies (the copy set).
When a node faults because of a read, it contacts the manager to obtain a copy of it. The
manager, who knows the owner, locks the page entry and send a request to the current
owner on behalf of the node, asking for a new copy. The owner sends a copy and sets
its access right to read-only. The faulting node acknowledges reception of the copy to
the manager, which updates the copy set for the page and release the page entry lock.
The write fault case is similar, except that the manager, before requesting a copy of the
page on behalf of the faulting node, invalidates all other copies. In this mechanism, the
central manager synchronizes both the access to the owner information but also the access
to the owner’s copy. The manager can avoid to wait for the acknowledgement message
by delegating serialization for page access to the owner. In this case, its availability is
increased and it can process more requests per time unit. Concurrent requests for a page
have to be queued at the owner. Still, the manager eventually becomes a bottleneck as
the number of nodes increases.

The second strategy is to distribute the management of pages. It consists in simply
mapping statically each virtual page to a processing node that acts as a manager for it.
This mapping is realized through a hashing function. When a page fault occurs, the node
uses this function to compute the managing node for it. The rest of the protocol is the
same as in the centralized case. Experiments indicate improvements over the centralized
manager when a parallel program exhibits a lot of page faults.

The third strategy is to have no managers. Each node knows if it is the owner of a
given page. At page fault, the request for a copy or ownership of a page is broadcasted
to all processors. Only the owner responds with a page copy, and possibly the copy set
in case of ownership transfer. This strategy is nonetheless very costly. Experimentally,
applications that cause a large number of page faults perform poorly. The systematic
broadcasts incur a substantial performance penalty for as low as four processing nodes.

A variant of this strategy is to avoid broadcasts by having each processing node
maintain a probable owner field for each page. Initially, those fields point to the true
owner of the page25. At each page fault, the processor requesting a copy or ownership
of a page sends a message to its probable owner. If the receiving node is not the real
owner, it forwards the message to its current probable owner for the page. In any case,

25For example, at machine startup, pages can statically be assigned an owner. An alternative is to
assign the mapping at program start, depending on its characteristics.

138 Chapter 10. Related Work

the receiving node updates its probable owner for the page to the requesting processor.
The message eventually reaches the real owner.

For a given page, a tree can be constructed whose vertices are the processing nodes
and whose root is the current page owner. An edge in the tree between vertices i and j
indicates that node i’s probable owner for the page is j. At startup, all nodes point to
the true owner. By induction, it is easy to see that modifications to the tree keep it a tree
whose root is always the current owner.

This tree allows to establish a mapping between this last Ivy’s scheme and a class of
set union algorithms [245]. These algorithms work on sets that are represented as trees.
The vertices are the set’s elements. The root vertex is an element used as a representative
of the set. The defined operations on sets are the unite operation, which merges two sets
starting from one element of each set, and the find operation, which returns the name of
the set an element belongs to. During find operations, the path from the starting element
to the root is traversed.

In order to optimize subsequent finds on the same elements or for elements on this
find path, an algorithm can perform compaction of the path, by making an element point
to an ancestor of its father. This has the effect of shrinking the path to follow to reach the
root node. Another class of strategies are the reversal ones [245], by which the start node
of a find operation is raised in the upper levels of the tree. With reversal of type zero,
the start node becomes the new root of the tree. This variant corresponds exactly to the
Ivy’s scheme. The bounds given in Tarjan and van Leeuwen [245] on the number of nodes
on find paths thus apply. In particular, the worst-case number of messages exchanged for
m page faults on the same page is proportional to n+m log(n), where n is the number
of processing nodes. A number of other optimizations presented in this paper could be
applied to Ivy, changing the trade-off between the cost of retrieving a page in the short
term, which essentially determines the data access latency, and the average cost of accesses
in the long term.

We use a similar technique in Capsule to find the real location of a cell and transfer
its content when dereferencing a link. It was described in Section 8.2.2. A difference
with our current technique is that the traversed proxies are not updated to point to the
new owner. This is not however a conceptual limitation. Some of the graph techniques
presented in Tarjan and van Leeuwen [245] may be applied to Capsule’s data structure
management, as part of a future work.

Capsule has several advantages over Ivy. First, it uses objects of variable sizes, in
contrast with Ivy’s fixed size and coarse-grained virtual pages. This eliminates false sharing
and the costs of transferring potentially unrelated data structures. Second, Capsule is
aware of the links between the structures, which has important benefits, as was explained
in Section 8.3.

10.3. Distributed-Shared Memory 139

10.3.2 Munin

Munin [24, 49–51] is an object-based distributed-shared memory system implementing the
release consistency memory model26. It allows different consistency protocols to be used
for individual objects27 of a program to enforce this model. The programmer introduces
hints on objects describing the expected access pattern. The compiler passes them to the
run-time system, which uses them to select appropriate replication, migration and update
strategies per object.

Munin supports 8 types of object use [24] that cover the majority of object access
patterns in shared-memory programs [25]. An additional type serves as the default for
objects that do not fit in the other categories. Write-once objects, also called read-only
objects, are written only during initialization and read the rest of the time. Private objects
are accessed by a single thread. Write-many objects are frequently modified by multiple
threads between synchronization points. Result objects are special write-many objects
whose content are updated by multiple threads operating on disjoint areas. They are
read only when all the data have been collected. Synchronization objects are used to give
threads a temporary exclusive access to some data. Migratory objects are accessed by
multiple threads in batch, i.e., each thread performs a potentially long uninterruptible
sequence of accesses before another thread accesses the object. They are associated to a
synchronization object. Producer/consumer objects are written by one thread and read
by several other threads, with the sets of threads accessing remaining stable. Read-mostly
objects are hardly ever written. Finally, general read/write objects, also simply called
conventional, are objects that could not be classified in one of the other categories. They
account only for a small percentage of all data accesses.

According to these hints, the run-time system associates to each object several flags
that indicate how it should be handled. A set of 7 flags was initially used [50], some of
which were not independent, rendering the implementation quite complex to comprehend
and maintain. Experiences also showed that such flexibility was not really necessary. The
flags were later removed in favor of 5 different protocols [49, 51].

The conventional protocol ensures that, when a processor wants to write to an object,
it is the owner of the sole copy of the object in the whole system. It does so by invalidating
other copies before performing a write, in a manner similar to the Ivy strategy using
probable owners. The read-only protocol handles a read-only object by simply replicating
it on each node that tries to read data from it. Any write access after initialization triggers
a run-time error. The migratory protocol ensures that there is a single object copy in
the system. When a processing node accesses a migratory object, the object content is
sent to it and the local copy is invalidated. Further accesses by the same node thus do
not produce invalidation/update messages. The synchronization protocol handles syn-
chronization operations on locks, barriers and conditional variables. It sends appropriate
messages as soon as an operation begins, in an attempt to minimize synchronization

26See Section 10.2.7. The actual model is a bit stronger, but programs are not supposed to rely on it.
27In this context, objects are contiguous regions of memory, not “full-fledged” objects of object-oriented

languages.

140 Chapter 10. Related Work

latency. Finally, the write-shared protocol handles the variables of the write-many, result,
producer/consumer and read-mostly types. It is described in more details below, along
with some optimizations applied to the migratory protocol.

All protocols are implemented in software to allow flexibility. Munin’s run-time system
needs to be informed of memory accesses to maintain object consistency. To this end,
as in Ivy, it relies on the traditional hardware virtual memory facilities provided by the
underlying hardware. The main consequence is that consistency is in reality maintained
per page. Objects with different consistency requirements are allocated in different pages.
If the OS running Munin doesn’t allow user applications to register custom fault handlers,
it has to be modified to properly call the run-time system.

The aim of the write-shared protocol is to reduce the number of exchanged messages
and false sharing. The latter phenomenon is especially problematic for software page-
based distributed-shared memory systems. Software fault handling has a much higher
cost than misses in hardware caches. Communication latency between nodes is much
higher than in tightly-coupled architectures. Changes have to be detected at a lower
granularity than pages, which requires software processing, or whole pages have to be
transferred. Write-shared mitigates these problems thanks to concurrent writers support,
write buffering, compressed updates and timeouts to invalidate not-used copies.

At access to an object that is not present, a fault occurs and the corresponding page
is requested from any node that is known to have a copy. When the copy is received, the
page is mapped read-only and the access is resumed. In the case of a write, the whole
page is copied into a twin page before being mapped read/write. This twin page holds
the initial page content. It is used both to service requests for copies of the page and
when updating other copies with the current page content. In the latter case, only the
differences between the current page and its twin are transmitted. The object is also put
in a delayed update queue.

Subsequent writes to the object are normal memory operations that directly modify
the current page version. The latter thus acts as a buffer for modifications. When a
release synchronization operation is performed, the node walks the delayed update queue
to encode the differences between the twin and current pages for each object. Encoding
directly takes place in the twin page to save space and time. Compressed updates are
then sent to node holding object copies, which uses them to bring the page up-to-date. If
a receiving node has a twin page for the object, because the local processes wrote to it
concurrently, it can detect data races by performing a 3-way diff with the twin, its local
page version and the received version.

To locate copies of an object, each processing node maintains an object directory of all
shared objects. An entry in this table corresponds to a single object. It includes a lock to
serialize concurrent accesses, the start and length of the memory area the object resides in,
the owner for the object, the copy set, which contains the nodes that are probably holding
a copy, the protocol used to maintain release consistency and some run-time statistics.

With the write-shared protocol, the copy set on a node doesn’t necessarily contain
all the nodes holding a copy. When a page copy is requested, the node servicing it adds
the requesting node to its own copy set and send it along with the copy. The receiving

10.3. Distributed-Shared Memory 141

node merges the received copy set into its own. By induction, it is easy to see that
the enumeration of all copies of an object can be performed by asking all nodes in the
local copy set to return their own copy sets, then merging them into the local copy
set, and continuing this procedure as long as some nodes in the local copy set have not
been contacted. As an optimization, pages are directly mapped read/write at write and
encoding is not performed when the owner node is the only node to hold a copy of an
object (its copy set is empty or contains only a single reference to it).

The owner field on a node indicates an object’s probable owner. The real owner can
be found by following the chain of probable owners, as for the conventional protocol. The
main difference is that the role of the owner in the write-shared protocol is to guarantee
that at least one copy of the object is still held in memory. This copy is called the copy of
last resort. Ownership hardly changes: In particular, a node trying to write to an object
doesn’t need to become its owner; it simply gets a copy of it.

In order to reduce the time spent in updating multiple object copies, an update timeout
mechanism causes nodes to drop an object copy when receiving an update message, if the
following conditions are met:

• The copy must not have been accessed since the previous update.

• It must not have been accessed for a long enough time period. A configurable
threshold serves to evaluate this condition.

• It must not have any pending local modifications.

• If the node is the current object owner, it must first ensure that another node can
take ownership.

When a node drops a copy, it informs the updating processor and sent it its copy set. The
updating node merges the received copy set into its own and drops the other node from it.
The dropping node also sets its owner field to the updating node. If it was the previous
owner, the updating node becomes the new owner and changes its own owner field to
point to itself. This is the only ownership transfer case.

The migratory protocol features two optimizations. First, a node that requests the
associated pages to write into them can map them read/write as soon as they are received
and doesn’t need to create twin copies for them. This is because there is a single writer
to the object at any given point in time: The object owner. Second, a simplified version
of the freezing mechanism [91] prevents a just-acquired page to be requested by another
node during a fixed time period (10 to 100 ms).

Experiments with 7 benchmarks showed that Munin can reach performance within
20% of the equivalent message-passing versions on workstations running the System V
kernel [51] and connected with an Ethernet network. For programs relying on a work queue,
which would reach only 55% to 65% of this performance, alternative implementations
were developed, using new function shipping capabilities. Performing remote procedure
calls in this case is a large improvement because only elements pushed or retired from
the queue need to be transferred, whereas with shared objects, the whole queue has to

142 Chapter 10. Related Work

be transferred before a processor can operate on it. The new implementations reach
performance within 5% of that of message-passing versions. These examples shows that
mixing distributed-shared memory with message-passing is possible and effective. It also
highlights that an efficient sharing granularity is sometimes smaller than that of the
manipulated objects.

10.3.3 TreadMarks

TreadMarks [9, 82, 151–153] is a distributed-shared memory designed to run on commodity
workstations on top of regular Unix operating systems. Its main contribution over Munin
is the introduction of a lazy implementation of release consistency, called lazy release
consistency. Another innovation is the use of new Unix facilities allowing page access
rights and page faults to be handled from user space.

In release consistency, as explained in Section 10.2.7, accesses issued inside a critical
section must be performed at release. The intent of this disposition is to ensure that subse-
quent accesses to a critical section using the same lock will see the previous modifications.
A strict approach to release consistency leads to updating/invalidating the modified data
copies at release. However, only the first processing node that will successfully acquire
the lock afterwards really needs these modifications. When executing the critical section,
it will in turn probably modify the same data, thus generating new update/invalidation
messages in addition to the previous ones. Other processing nodes holding data copies
will receive and process all these messages, thus seeing all intermediary object versions,
even if they only need the latest versions when effectively acquiring a lock.

Lazy release consistency [151] consists in sending update/invalidation messages only to
the node that will subsequently acquire the lock. No remote operations are performed at
release. The acquiring processor sends a lock request to the current lock owner. The latter
responds with a lock grant as well as a list of write-notices, indicating that some pages
have been modified since the previous acquire. These write-notices do not necessarily
contain the data modifications, which may be sent at a later time, depending on whether
the chosen consistency policy is update or invalidation.

Program instructions executed on a processor are grouped into intervals. A new interval
starts at each synchronization operation (acquire or release). In order to determine which
modifications have to be applied, each processor maintains a vector timestamp. This
vector contains, for all processors in the architecture, the number of the last interval whose
modifications have been incorporated locally. In the lock request message, along with
lock information, a processor transmits its vector timestamp. The receiving processor
compares this vector to its own to determine which intervals have not been propagated to
the requesting processor yet. If the interval for processor Pi in the requesting processor’s
timestamp vector is m and if it is n in the receiving processor’s one, and m < n, then the
modifications held by Pi in all intervals from m+ 1 to n are transmitted to the requesting
processor.

TreadMarks uses the virtual memory facilities provided by the hardware and the OS.
As done in the write-shared protocol of Munin, it uses twin pages to store the original

10.3. Distributed-Shared Memory 143

content of a page to be able to generate a list of modifications from the current page
version. However, compressed diffs are not computed at release as in Munin. A processor
defers their creation until the modifications are actually requested by another processor
or if new modifications for the page are received locally. Until they are generated, local
modifications continue to accumulate in the current page version, including those taking
place after a release. This technique reduces the number of diffs to create, which saves
computing resources, lowers release latency and eliminates some messages. It is called
lazy diffing [152].

TreadMarks uses a single consistency protocol supporting multiple writers for all data.
This protocol is very similar to the write-shared protocol of Munin. The main difference is
that it uses distributed management of pages, as described in Section 10.3.1, instead of the
probable owner technique of Ivy and Munin. Each lock or barrier also has a corresponding
manager by which all requests to it pass. The manager keeps track of the current lock
owner and arbitrates between multiple lock requests.

Two consistency protocols can alternatively be selected: Lazy invalidate and lazy
hybrid [82, 153]. In the first one, diffs are not sent at lock request with the write-notices.
The node that is granted the lock invalidates its copies of the pages that are referenced
in the write-notices. Subsequent accesses trigger page faults, which lead to diff requests
being sent to the processor mentioned in the corresponding write-notices. Write-notices
for a single page are always kept in order of creation and the corresponding diffs are
applied in this order.

In the second protocol, some diffs are speculatively generated and transmitted along
with write-notices in lock grant messages. Processors maintain a probable copy set for
each page. Initially, the copy set contains only the page manager. As diff requests are
received, the initiating processors are added into the copy sets of the relevant pages. Also,
the processors designated in received write-notices are added to copy sets. Lock grant
messages include diffs for pages whose copy set contain the requesting processor. This
mechanism favors executions were the same pages are repeatedly modified inside critical
sections by the same processors.

For each interval in which a page is modified, a diff is created. Diffs for a single
page accumulate and are transmitted on demand to processors that access the page. Diff
compaction, by which several diffs for a page would be merged in a single one, generally
cannot be performed. Each processor keeps a copy of a page it has accessed once, even
when the page has been invalidated by a write-notice, to be able to later apply diffs
instead of requesting the whole page content to be transferred. Diffs can only be merged
when it is known that other processors that will request them didn’t modify some pages
concurrently. Compaction is thus not implemented because it is complex and would have
other drawbacks [153]. The consequence is that diffs tend to pile up for a heavily modified
page. They are reclaimed at barriers through garbage collection.

Experimental results with 8 benchmarks show that lazy release consistency imple-
mented with a lazy invalidate protocol outperforms an eager invalidate protocol, where
invalidates for copies of modified pages are sent at a release operation. In this latter
protocol, when copies to be invalidated are found modified, a diff is created and sent back

144 Chapter 10. Related Work

to the invalidating processor, which incorporates the diff in its own copy. Eager invalidate
generally performs better than eager update [82], where pages are updated rather than
being invalidated. For the record, Munin’s write-shared protocol is an adaptive protocol
combining the advantages of eager invalidate and eager update. Improvements brought
by lazy invalidate over eager invalidate vary depending on the application: The speedup
of most of the benchmarks improve by 20%, whereas for some in which objects exhibit
a migratory access pattern, lazy invalidation performs worse. Lazy hybrid improves
performance over lazy invalidate, but only by a few percents on average.

10.3.4 Other DSMs with Relaxed Consistency

Midway [26, 28, 265] is an environment providing entry consistency semantics and a global
addressing view of distributed-memory machines. Entry consistency was described in
detail in Section 10.2.8. Midway is composed of a compiler accepting common languages
augmented with some keywords and function calls, and a run-time system responsible for
thread management, synchronization operations and memory consistency.

Annotations serve to distinguish synchronization variables and shared data. Each
shared variable must be associated to at least one synchronization variable supposed to
protect it through run-time system calls. Since synchronization primitives are usually
provided through a library, the latter can easily be changed to include the relevant
annotations. The only indications that must still be included per program are the syn-
chronization primitive/shared data associations. As discussed in Section 10.2.8, this is an
additional requirement compared to distributed-shared memory systems implementing
release consistency. In order to allow a graceful transition from data-race-free programs
to programs annotated for entry consistency, Midway also supports release consistency or
processor consistency [28].

Automatic update release consistency (AURC) [131] is an implementation of lazy
release consistency with hardware support. The network interface at each processor keeps
a list of several local virtual memory pages. It also has a mapping between each local
page in this list to a single remote page. It uses this information by snooping on the
system bus to detect writes to local pages in its list and to propagate them automatically
to the corresponding remote pages. A prerequisite is that the processors access pages
with remote mappings in write-through mode, causing the writes to appear on the system
bus.

In order to maintain consistency, the processor holding pages that receive automatic
updates must be able to know when updates have been completed. To this end, the
network delivers messages in the order in which they are sent. A release synchronization
operation triggers a flush of all local updates. Every page includes a flush timestamp vector
similar to the timestamp vector used in lazy release consistency (see Section 10.3.3) which
tracks the latest modifications by every processor to the page that have been sent through
automatic updates. The flush timestamp vector is changed after data modifications are
performed on the page, so that the receiving processor see its new version after the data
updates. The receiving processor compares the flush timestamp vector on its copy of the

10.3. Distributed-Shared Memory 145

page with its regular lock timestamp vector, which indicates which version of the data
should be accessed according to release memory consistency. When both agree for a page,
it knows that the updates have been received.

When less than two copies of a page exist in the system, the network interface is
configured so that every update to a page is automatically propagated to the other page.
With the fine-grain detection and automatic updating of data, AURC doesn’t need to hold
twin pages or compute diffs. When more than two copies exist, one processor is declared
the owner and all other copies are configured to send automatic updates to its copy. In
this second case, faults at non-owner nodes trigger a page fetch. Experiments show that
AURC reduces the number of page faults, particularly in the case of pages that are shared
by two processors only, for which there are no page faults. Also, the cost of a page fault is
generally reduced, because no diffs have to be computed and then applied. The gain can
be even more significant for applications in which diffs for a page tend to be numerous
because of multiple successive updates, in which case transferring them quickly becomes
as costly as a whole page transfer. Experiments show that AURC increases the network
traffic, but reduces contention on the bus between a processor, its network interface and
its local memory.

An implementation of scope consistency is proposed in Iftode et al. [132]. It uses
the AURC techniques. The main difference is that, with scope consistency, only writes
performed with respect to a scope have to be performed when a new session is opened28.
This is achieved by scopes maintaining an incarnation number, which is the number of
sessions that were opened and closed for a scope. A processor also keeps track of the
pages modified during each local session and the incarnation number of the last session it
executed. At acquire, this number is communicated to the previous lock owner, which
sends back the list of the pages modified in sessions having a greater incarnation number.
In other words, only the pages modified in sessions that occured later than the last session
on the processor are invalidated.

The home-based lazy release consistency protocol (HLRC) [267] uses the same update
policy as AURC, but implements it purely in software. Updates are sent to the home
node for a page at release through diff generation. As soon as the diff is received and
applied at the home node, it is discarded. The advantages of HLRC over LRC is that diffs
are not retained, implying that no garbage collection is necessary. A processor acquiring a
lock also doesn’t need to communicate with potentially multiple processors as page faults
occur in the critical section.

10.3.5 Fine-Grain Coherency

A later extension to Midway [265] introduced software write detection through compiler
and run-time system support, instead of relying on the virtual memory facilities. This
latter approach incurs the overhead of page fault and twin page creation at first write,
and the time to scan both the twin and the current version of a page to produce diffs,
which consumes memory bandwith. It is thus efficient only if it can be amortized thanks

28See Section 10.2.1 for a description of scope consistency and the associated terminology.

146 Chapter 10. Related Work

to a high number of writes before a synchronization operation. Software write detection’s
overhead is significantly lower [246, 265], but takes effect for each write. Therefore, the
software approach allows for a more efficient support for most programs with fine-grain
synchronization.

Dirty bits are associated to shared data and are modified at write thanks to instructions
emitted by the compiler. Memory is organized into regions of varying size and different
sharing granularity. The smallest unit of granularity is called the software cache line. The
first page of a region contains special routines that know the sharing granularity and can
update the proper dirty bit at write. The routines for private regions do nothing and
immediately return to the caller.

When another processor is granted a lock, it is communicated the modification’s logical
timestamps of all software cache lines associated with the lock, along with the current
logical timestamp of the last processor holding the lock. It then changes its own logical
timestamp to the maximum of its old value and the newly received one. Processors always
keep the logical timestamp of the software cache lines they currently hold and transmit
them with lock requests. This enables them to receive only pieces of data that have been
modified at a later timestamp than the copy they hold.

Blizzard [229] is a distributed-shared memory implementation on top of the Tempest
interface [212]. The goal of Tempest is to provide a stable interface for fast user-level
communications and for controlling the semantics and performance of virtual memory.
Virtual memory mappings as well as fine-grain access control are possible with this
interface. Blizzard maintains sequential consistency per block of 32 bytes. Three versions
were presented. The first, Blizzard-S, is an all-software implementation. It inserts access
control code before each shared-memory access into program executables. The virtual
address of access, appropriately masked, is looked up into a state table. Depending on
the access type (read or write) and the state of the accessed block, a particular handler
is invoked. The size of the coherency block can be changed but only at compilation.
Blizzard-E is a hardware implementation that uses the ECC correction bits of the CM-5
as well as MMU support. Blizzard-ES is an hybrid version of Blizzard-E and Blizzard-S.
Blizzard-S is typically slower than Blizzard-E and Blizzard-ES in experiments by 27% to
108%.

Shasta [224, 225] is a software distributed-shared memory system with two levels
of granularity. Lines are indivisible units, whose length is configurable at compile-time
and is typically 64 to 128 bytes. Blocks are coherency units composed of multiple lines.
An application can define several shared virtual memory ranges with varying block size
values, allowing it to tune the coherency unit to particular data sizes and access patterns.
Coherency is maintained through a directory-based invalidation protocol.

A state table on all processors indicate the sharing state of each line among the invalid,
shared and exclusive possibilities. All lines in a block have the same sharing state. The
fixed size of lines makes it easy to compute the relevant entries in the state table and
in the directory given a line’s address. Each virtual page is assigned a home node. All
processors maintain a directory holding sharing information about the lines that are in
the pages they manage. A directory entry for a line contains the current owner, which is

10.3. Distributed-Shared Memory 147

the processor that last issued an exclusive access on the line, and a bit mask indicating
which processors currently have a copy of the line.

The main contribution of Shasta is a number of optimizations to implement efficient
load and store miss checks in software. The first optimization is to move the code comput-
ing the address of a state table entry before the instructions that use it. These instructions
can even be mixed with the regular program instructions that precede the memory access.

Second, the flag technique allows most loads to valid lines to complete without even
accessing the corresponding state table entry. Longwords for locations that are invalid are
set to a special value. The load check code simply loads the value and, if it is different
from the special value, allows the program to proceed with it. If the value is equal to the
special one, the state table entry is accessed to verify whether the line is really invalid.
For an appropriately chosen special value29, the first check allows the program to continue
right away most of the time. This optimizes the common case of a valid line, because no
cache misses are suffered to access the state table.

Third, store checks can be optimized by accessing an exclusive table, which indicates
with a single bit per line whether a line is valid. This table is partially redundant with
the state table. Its advantage is that a line state is represented with one bit. More line
states can thus be held in a single hardware cache line, lowering the number of misses
compared to a regular state table entry access for the program parts exhibiting spatial
locality.

Four, checks for stores and loads to an address range whose size is smaller than a line
can be batched ahead of a code block, which then allows the normal memory operations
in the block to be compiled without checks.

The result of these optimizations is to reduce the check overhead compared to the
original non-instrumented executable from 83% to 21% on average [225]. Further experi-
ments [224] show that the empirical detection of migratory patterns is not beneficial for
64-bytes lines.

Shasta has been extended to support cluster of SMP workstations [223]. The potential
benefits of such a particular support are faster communication between processors on
a same node, intra-node data sharing in hardware, and the elimination of some remote
requests (data fetched by one processor is available to the other processors on the node).
The main difficulty is to allow both for fast inline checks and multiple concurrent accesses
by processors on a single node. A memory operation and its preceding check are not
atomic, and making them appear so thanks to a lock would cause a large overhead for
operations that are expected to be satisfied with local data the majority of the time.

This problem manifests itself for state downgrades, where a local copy is invalidated
because of a write request. A processor having performed a check and preparing to
read a valid value may read an incorrect one if it is invalidated in the meantime and
the flag technique is used. A solution is to have downgrade operations post messages
to the processor holding copies. The receiving processors treat these messages at some
special program points, as they do for the regular messages exchanged in the original

29The value should not be zero nor any small integers.

148 Chapter 10. Related Work

Shasta system. This processing never happens between a memory operation and its
check, because the compiler doesn’t insert such code at these places. Processors finally
acknowledge these messages, allowing the initiating processor to know that the downgrade
is complete.

Two optimizations allow to reduce the number of downgrade messages to send and
contention on the state table. The latter is indeed shared and entries in it are accessed
with a lock associated to the block a line being looked up belongs to. First, each processor
on a node maintains a private state table, that maintains the same state as a processor
would in the original Shasta. Even if another processor in the node accessed a line, it can
still be marked invalid for a given processor. On a memory access to such a line, a miss
will occur, trigerring a check of the shared state table. The processor will notice that a
copy exists locally, and will update its private table accordingly. A processor servicing a
request that requires some downgrade can consult the private tables in order to determine
if another processor accessed a line and considers it as been local. Second, when executing
protocol code, a processor sets a flag to indicate it is not executing user code. With proper
synchronization, other processors can directly modify its private state table instead of
sending a downgrade message.

10.4 Distributed Objects

Distributed objects are also environments aiming at abstracting programs from the poten-
tially distributed nature of the underlying hardware. They achieve this goal by conferring
a central role in data management and distribution on objects. In other words, they
perform a similar job as distributed-shared memory systems, but with coherency units
linked to the manipulated object sizes. Operations on data are not viewed at the level of
read or write accesses to memory words but rather at the higher and more abstract level
of methods performing arbitrary operations on objects.

Some usual advantages of these approaches are an adaptive granularity better suited
to the application data, an easier integration to existing languages, and especially ob-
ject-oriented languages riding the popular trend of encapsulation. The common potential
drawbacks are the need to modify old applications written in imperative or functional
languages and the fact, as demonstrated by Munin or Shasta, that objects are not always
the appropriate coherency unit to obtain good performance.

We also group in this category a proposal that is not based on full-fledged objects but
rather memory regions, which we consider to be some kind of precursors to objects, much
as structures in C form the basis for the C++’s object implementation.

10.4.1 Emerald

Emerald [32, 143] features distributed objects implementing abstract interfaces. Objects
are defined by a unique name, a set of operations, a representation (the data stored in
the object, including references to other objects), and an optional process that, if present,

10.4. Distributed Objects 149

executes independently and in parallel with invocations to the object. To ensure mutual
exclusion, shared variables and operations on objects are declared inside a monitor.

Objects reside at a single location at a time, except for immutable objects that may be
copied and held by several nodes. Emerald transparently supports remote invocations and
object movement. Arguments to method invocations can be passed with the call-by-move
strategy, which moves them to the node servicing the invocation, avoiding a subsequent
remote reference from this node. Objects are moved back when the call returns.

Each node maintains an object table mapping object names, known as unique ids, to a
local object descriptor. This descriptor contains a forwarding address and a local data
area pointer. When the object is moved to another node, the local area pointer is set to
NULL and the forwarding address indicates the new node the object resides in. Objects use
local pointers to inner objects and to the descriptors of other objects. As a node moves,
the inner objects are moved and all pointers in the object have to be updated. Pointers to
inner objects must point to their new storage area and pointers to object descriptors must
be updated to local descriptors on the new node. The compiler generates a template for
each concrete object’s data area indicating which parts are references to other objects.
The migration code uses it to perform pointer translation as an object moves.

Emerald doesn’t try to hide distribution from the programmer. Some applications may
benefit from tuning data distribution, while still using transparent remote invocations. To
this end, Emerald provides several location primitives. Locate determines on which node
an object resides. Fix imposes a new fixed location for an object. Unfix allows an object to
move again after a Fix. Move moves an object to a new location. To designate a location,
the program can pass as an argument another object to stand for its current location, or
an explicit node object. Node objects are abstraction of the underlying machine, and need
not reflect exactly the hardware. All objects on an abstract node must share the same
address space.

Another interesting aspect of Emerald is that, contrary to previous languages, it
proposes a single set of syntaxic constructs to define and use objects, whatever their
use may be. The compiler chooses a proper implementation depending on code analysis
and attributes, such as immutability. As an example, objects determined to be local are
accessed directly through regular pointers and do not have object descriptors.

10.4.2 Amber

The aim of Amber [62] is to explore the possibility of using loosely-coupled multi-proces-
sors as a single large-scale machine by providing language support for concurrency and
distribution. As Emerald, it does not try to hide the object distribution, considering that
the best distribution policy is application-specific. It is built on top of a subset of C++
and is a descendant of the PRESTO framework [27]. It provides a set of classes to manage
threading, synchronization and distribution.

Threads are managed through thread objects having Start and Join methods. Thread-
ing is designed to be inexpensive, allowing applications to create as many threads as
logically needed, regardless of the number of processors of the underlying architecture.

150 Chapter 10. Related Work

Threads are scheduled by the default Amber’s scheduler, which supports time-slicing and
priorities. An application can install instead its own scheduler if it has peculiar needs. In
the end, these user-declared threads are executed into threads of the underlying OS.

Amber’s data placement primitives are similar to that of Emerald. A difference is
that Amber doesn’t provide call-by-move semantics. Object placement is never performed
by the run-time system; it has to be specified by the program. Amber also avoids doing
pointer translation by ensuring that the address space of each thread is the same on
all nodes. When objects are moved, they reside on the new node at the same virtual
address as in the original node. Each node starts with a private heap region from which it
allocates local objects. Private heap can be extended by asking for more address space
from a central manager. This choice allows to avoid complex compiler or run-time system
support and facilitates process migration30.

Although the address of an object is valid on all nodes, the object content may not
be locally present. A processor can check this condition by using the object descriptor
that is the first field of a record actually stored at the object’s address. The record
contains the descriptor and room for the object’s representation. The descriptor includes
a flag to indicate if the object content is local. If it is, the object content is stored in
the representation area. If it is not, the area stores instead a forwarding address, whose
purpose is to indicate the probable node hosting the object31.

Remote method invocation actually moves the invoking thread to the node holding the
object. The implementation is to transfer the stack frame representing the invocation. For
multi-processor nodes, the check of the object descriptor’s locality flag and a subsequent
local access are not atomic and may be interleaved with an incoming request of object
migration serviced on another processor. Instead of using a lock to protect access to
the descriptor and the object, Amber favors the local access case by just performing a
simple read and avoiding expensive synchronization for this code path. It preempts and
reschedules all threads on a node receiving a move request, making them check again for
local availability of the object associated to their current stack frame.

10.4.3 Orca

Orca [16, 18] was designed from the ground up to support coarse-grain parallelism on
loosely coupled distributed systems. It presents to programs a shared passive data-object
model, as described in Section 5.3.1, but the data-objects are in reality distributed over the
underlying architecture. With the goal to improve performance through object replication,
several object management policies have been implemented and evaluated in Orca’s
run-time system [19]. The design space for such an approach includes the mechanism that
preserves consistency when writes occur, the protocol chosen to implement it and the
number and location of object copies.

30The main difficulty is to translate pointers possibly stored in registers, which are not a priori
distinguishable from data.

31See the description of forwarding addresses in Emerald in Section 10.4.1.

10.4. Distributed Objects 151

Replicating an object speeds up read accesses for nodes that hold a copy because
the content is readily available in local memory and no communication needs to take
place at access. When the object is modified, the system must make sure that the other
nodes don’t keep accessing older inconsistent copies32. As explained in Section 10.3.1, two
schemes are possible to ensure consistency: Invalidation or update. The former scheme
has the benefit that invalidation messages are short compared to update messages, making
write accesses faster. On the other hand, it increases latency and network traffic for
subsequent read accesses.

Contrary to the Ivy distributed-shared memory system33, for which a simple update
scheme would require a page fault to be generated at each write operation, Orca implicitly
groups accesses performed by a single method because of the indivisibility principle34.
It thus updates an object only after a method modifying it finished, i.e., after all its
potentially numerous writes were issued. Moreover, the update can be done by transferring
the object’s content only instead of a whole page, or the arguments to the method that
modifies the object, in which case the update is performed by executing the method
remotely.

Replicating objects is done for performance reasons and is thus also dependent on the
protocol chosen to implement a particular update scheme and the underlying hardware
facilities. Several alternatives are studied [19], based on whether efficient broadcast
hardware support is present. It is shown that, in the case where only point-to-point RPC
is available, the cost of invalidating/updating N copies of an object grows linearly with N .
Partial replication to the nodes where processes really access the object limits this growth
in practice. For the invalidation scheme, new copies are created automatically at each
access. For the update scheme, the node holding a primary copy maintains statistics on
the read/write ratio of each other node and decides to assign a copy to a node when its
ratio exceeds a predefined threshold. Nodes holding secondary copies also maintain local
statistics of the number of reads and writes and the run-time system uses them to decide
if a local copy should be dropped. Writes are always transmitted to the node holding the
primary copy. Migration of the primary copy is merely evoked, but no implementation
details are provided. It is unclear if it has been implemented in this case.

When a reliable and efficient hardware broadcast is available, it is shown that invalida-
tion or update messages can be broadcasted in constant time, at least up to 10 processors.
Unless some nodes continuously write into some objects without reading them, which
may be the case in a strict producer/consumer pattern, the updating scheme leads to less
messages exchanged than the invalidation scheme. Both schemes perform a broadcast
for the update/invalidation messages, but only the latter causes nodes that perform a
subsequent read access to issue a point-to-point RPC to the node holding the primary
copy. For this reason, in the broadcast hardware support case, only the update scheme is
considered in the Orca literature. The chosen policy is to simply replicate all objects on

32This strong requirement enforces sequentially consistent accesses to objects (Section 10.2.1). Other
consistency models are possible (Section 10.2).

33See Section 10.3.1.
34See Section 5.3.1.

152 Chapter 10. Related Work

all available nodes. Processes perform read accesses directly on their local copy. Write
accesses, on the other hand, lead to the broadcast of the object’s new content to all other
nodes. For objects that are accessed by few remote processors, this strategy induces
a write overhead that could be avoid by disabling replication. In the same case, both
the write overhead and the message processing delays on the receiving processors could
be lowered by using partial replication and performing RPCs instead of broadcasts. As
an example, a broadcast costs 3 to 4 times a single RPC message on the experimental
hardware used in Bal et al. [19].

A later paper [17] considers an enhanced distribution scheme to be used in conjunction
with efficient hardware broadcasting. The compiler determines the pattern of access to a
given object by each process. This static analysis is facilitated by the fact that the Orca
language doesn’t include pointers, global variables or goto statements. From a pattern,
the compiler computes the numbers of read and write accesses to an object per process
and includes them in extra parameters of fork statements. When a fork occurs, the
run-time system broadcasts the corresponding event to all processors, allowing them to
permanently maintain the same current estimated numbers of reads and writes by each
processor to each shared object. From these numbers, the run-time system takes the
object management decisions. Because all processors have the same view of the global
situation and use the same algorithm, they all come to the same decisions and perform
them independently.

The decision-making algorithm works as follows. Let us call Ri the total number of
read accesses and Wi the number of write accesses to be performed by processor Pi on
a given object O. After each fork, if one of the Ri or Wi for all i changes, the run-time
system considers again its current management policy for object O. The two considered
policies for O are to replicate it on all nodes or to have it in a single node’s memory,
which must be determined. In both cases, the number of messages to be exchanged
according to the Ri and Wi is computed. For the full replication case, reads do not
generate messages but each write causes a broadcast. In total, the run-time system will
send

∑
iWi broadcasts. For the single copy case, all reads and writes generate a RPC

message, except when issued on the processor owning the object. For all j in turn, Pj

is considered the owner and the number of exchanged RPC messages,
∑

i 6=j Ri +Wi, is
computed. The run-time system finally finds the minimum of all the sums weighted by
the cost of the message type used (broadcast or RPC), which determines the policy to
use.

This decision-making process has a relatively low overhead in the experiments for two
reasons. First, all processors come up to the same decision with simple operations on the
statistics. Second, Orca is targeted at coarse grain parallelism, in which fork statements
are infrequent. In contrast, Capsule aims to exploit all the available parallelism in an
application, including fine grain one, and is designed to run on many-core architectures.
The number of operations Orca’s run-time system has to compute before making a decision
linearly increases with the number of processors. A single broadcast message also becomes
more costly with a large number of processors. In this context, a distributed approach
will probably be more appropriate. Finally, with a large number of tasks being created

10.4. Distributed Objects 153

dynamically during a program’s life, Orca needs to assess frequently its object management
decisions. For all these reasons, Orca’s mechanisms will probably have to be adapted to
bring performance improvements in Capsule.

Orca enforces a strong memory consistency assuming that all memory accesses are
serialized. This is implemented in the run-time system by using reliable broadcasting,
which guarantees that all broadcasted messages are delivered in the same order to all
nodes. Thus, all processes see the exact same sequence of values for all objects, although
they may not see a particular set of values for different objects at exactly the same time.
Orca was initially developed [18] on top of the Amoeba operating system, which provides
reliable broadcast through group communication [144] on top of hardware broadcast
using the FLIP protocol [145]. It was then reimplemented in a layered fashion [20], with
the run-time system using a lower layer, called Panda [29], whose role is to provide a
machine-independent interface to multi-tasking, RPC and group communication. This
new software architecture made the Orca run-time system more portable, since adapting
Orca to a new machine amounts to porting Panda. Panda itself requires only bare
message-passing and multi-tasking facilities, which are provided by the underlying OS or
libraries, but can also take advantage of more sophisticated communication mechanisms,
such as hardware support for broadcast and/or reliable communications, where they are
available. Several algorithms to implement reliable broadcasting on top of mere RPC can
be found in Bal et al. [18].

10.4.4 Charm++

Charm++ is an object-oriented programming environment able to run applications in-
differently on shared-memory and distributed-memory architectures thanks to a single
programming model. Its base characteristics and the implementation of its run-time
system in the context of shared-memory machines were presented in Section 5.3.2. In
this Section, we detail the additional mechanisms needed to support distributed-memory
architectures.

Charm’s message-passing makes a program portable to both shared-memory and
distributed-memory architectures. Its message-driven specificity is especially important
for the latter, because it hides the even higher latencies they introduce.

Chares can interact with BOCs with a regular function call instead of having to send a
message to them. Besides SPMD-style programs, BOCs are useful to implement distributed
data structures. Users call regular functions locally and the distributed management of
the structure is transparently done by the branches through messages. Branches need not
even communicate with other branches, in which case the BOC serves to provide uniform
local services. In the end, this is equivalent to duplicating several pieces of code on all
processors. Finally, distributed services can be implemented using BOCs, such as the
Charm load-balancing system modules themselves.

In theory, message-passing is enough to write any parallel program, but the resulting
language is inexpressive for some common cases, for which shared-memory programs can
use traditional data structures. Charm proposes different information sharing abstractions

154 Chapter 10. Related Work

to the programmer through abstract data types. They provide a well-defined interface
which the programs must use to valuate and manipulate the associated objects. These
interfaces include read-only or write-once variables, distributed tables, accumulators and
monotonics. All these objects are implemented through BOCs on distributed-memory
machines.

Read-only variables are initialized at application startup and only read afterwards.
Write-once ones differ in that a program can initialize them during the execution at any
time. A distributed table is a hash table mapping a record containing an integer key to
untyped data. Its content is potentially distributed on several processors. It provides
3 methods: Insert, Delete and Find, which are self-explanatory. All these methods are
asynchronous. A call to Find, in addition to the searched record, must also specify a
chare and an entry point, to which the result will be sent as a message. Accumulators are
pieces of data that support a single operation that is associative and commutative, which
permits the local accumulation and graduate propagation of values on distributed-memory
machines. Monotonics are special accumulator cases in which updates are idempotent
(applying an update several times gives the same result as applying it once) and for which
the value is increasing or decreasing consistently at each update. For example, this type
of variables is useful for branch-and-bound computations which store the best result so
far.

Chares and objects can be distinguished through identificators (IDs). On shared-
memory architectures, the ID is the address at which the object is stored. Charm’s
implementation for distributed-memory machines is the usual couple composed of a
processor number and the address of the designated chare or object in the processor’s
address space. Another implementation would be needed to support object movement.

Because, in distributed-memory, there can be no global message queues, the run-time
system has to perform load-balancing. Messages to chares, in the Charm implementation,
are sent to and handled by the processor holding the chare, and chares never move once
assigned to a processor. Consequently, the load-balancing performed by Charm concerns
only new chares messages. The run-time system chooses the processor to which a chare is
dispatched as soon as it is created, and before it may start to receive messages. The load
on a processor or a node is evaluated by the number of messages waiting to be processed
in its message queue [148]. The Charm library provides several load-balancing strategies.
A user may choose among one of these strategies or may provide its own, better suited to
a particular application.

The random strategy sends new chares to processors randomly. In the contracting
within neighborhood (CWN) strategy [148], processors piggyback their current load on
messages exchanged with their neighbors. A chare creation message is dispatched to the
least loaded neighbor node, and the process continues until it reaches a node which has
the minimal load in its immediate neighborhood. Two parameters influence this gradual
message transmission. The radius specifies the maximum number of hops for a given
message. When this number is reached, the node processing the message must accept and
enqueue it. The horizon, by contrast, specifies the minimum number of hops a message
has to travel. This technique allows a message to eventually reach a less loaded node than

10.4. Distributed Objects 155

the current one, even if the latter has a locally minimal node. Once a node accepts a chare
creation message, the message is enqueued locally and doesn’t move further. Adaptive
CWN (ACWN) [235] is a refinement, inspired by the Gradient Model [174], in which
the effect of the horizon parameter is mitigated. A new parameter, the minimum load,
permits to classify nodes as idle or busy nodes. Idle nodes never try to dispatch a message
to neighbors if the latter are all classified as busy.

For distributed-memory architectures, nodes that do not share some common memory
must physically send a message to communicate. Messages are passive entities that contain
application-specific data. Since they may reference local data through pointers which
are not valid accross nodes, they have to undergo a special treatment when sent. Charm
permits the application to associate packing and unpacking methods to a message type.
The packing method is automatically called when a message is going to be sent. Its goal
is to replace the initial content with self-standing data that include all the content the
original message references. The node receiving the message calls the unpacking method
on it to reconstruct the appropriate data structures. This approach has two main benefits.
The first is that the application tunes message packing/unpacking according to its needs,
without the run-time system imposing a particular structure. The second is that packing
and unpacking are called by the run-time system only if the destination chare resides on
a different node than the sender. This property optimizes message sending by avoiding
unnecessary marshalling when the run-time system has decided that both objects should
reside on the same node. This is useful for clustered architectures or multi-processors of
multi-cores in which all cores of a die share the same memory.

10.4.5 CRL

CRL [141, 142] is an all-software distributed-shared memory implemented as a library. It
requires no special support from the hardware, the OS or the compiler and is intended
to be language independent. Shared access is provided through regions, arbitrarily sized
contiguous areas of memory. A particular region is identified using a unique global region
identifier. Once a region has been created using the rgn_create primitive, a process
has to map it into its address space to use it, with the rgn_map primitive. It also has
to specify whether it is going to perform only reads or reads and writes to the area,
using rgn_start_read or rgn_start_write. It must then inform the run-time system when
the operations have all been performed by using the corresponding rgn_end_read and
rgn_end_write primitives. Finally, regions can be unmapped through rgn_unmap.

A given region may not be mapped at the same address for all processes or for a single
process as it repeatedly maps and unmaps it. References to shared data thus must include
the region’s identifier and can’t consist of a pointer alone. The run-time system implicitly
synchronizes concurrent accesses to a region: A read/write access by a process is exclusive
to all other accesses, whereas read-only accesses can be granted simultaneously to several
processes. The programmer thus doesn’t use explicit synchronization objects, but rather
implicitly uses an equivalent of a read/write lock associated to a given region.

Most of the characteristics of CRL are also found in Capsule’s distributed-memory

156 Chapter 10. Related Work

support. The latter requires the programmer to explicitly call the run-time system to
signal that a cell is going to be accessed. Subsequent calls must then be made to state
which kind of access the program wants to perform. Synchronization is also performed
automatically, based on the primitives’ call sequence.

However, the distributed-memory support of Capsule goes farther than CRL’s mem-
ory regions with the central concepts of cells and links, which introduces important benefits.
First, memory management is entirely performed by the run-time system automatically.
Capsule applications do not need to map or unmap a region or a cell. It is instead
the run-time system that is responsible for deciding how many copies of a cell exist
and where they are stored. Second, the Capsule distributed-memory support provides
links as objects to reference cells. The programmer doesn’t need to explicitly refer to
data by using an extra global identifier; he simply uses a link35 instead. Third, there
is no notion of “home node” for a cell in Capsule, thanks to the proxy mechanism
(see Section 8.2.2). Data access is completely decentralized and doesn’t arbitrarily cause
contention on nodes that have created most cells and/or the most accessed ones. Four,
as discussed in Section 8.3, knowledge of the relations between cells can be leveraged to
improve performance.

CRL features some global operations that have not been implemented in Capsule for
now, such as reduction on floating-point values. However, such features barely introduce a
performance advantage [141]. Also, it only supports global barriers, which are enough for
benchmark programming but are not in the case of real applications. Capsule’s groups
are much more expressive because they allow to implement partial barriers, enabling
several parallel algorithms to operate concurrently (see Section 2.4). Finally, CRL has no
support for tasks and thus doesn’t support dynamic and recursive parallelism, whereas
Capsule’s distributed-memory support is integrated with the base tasking primitives.

CRL’s performance is comparable to the available hardware-implemented distributed-
shared memory at that time (1995), for benchmarks that have a low to moderate ratio
of memory accesses over computations. As an example, Barnes-Hut was the benchmark
with the highest ratio (436 cycles of useful work per access, consisting in a 100 bytes
region on average). Some experiments were conducted on an Alewife machine with a
simple round trip costing about 500 cycles and the bandwidth being around 18 megabytes
per second. They gave for Barnes-Hut with 4096 bodies a speedup with CRL of 14.5 on
32 processors, which was 12% lower than the speedup obtained with Alewife’s hardware
distributed-memory support activated.

To put these old results into perspective, let us recall that today’s multi-core machines
have a bandwidth on the order of 10 to 100 gigabytes per second and data access latencies
varying from 1 to 100 nanoseconds [185, 230]. Both latency and bandwidth have consid-
erably improved, but the latter quicker than the former. We intend to promote the use
of Capsule for all kind of general-purpose applications, in which the ratio of memory
accesses over computations is likely to be much higher.

35Unless a particular field or data member inside a cell is the reference’s target, in which case its offset
in the cell must be stored.

157

Part III

SiMany: Simulating Many-Core
Architectures

158

159

Chapter 11

The Need for Many-Core
Simulation

With the aim to assess how effectively our run-time system can handle data on distributed-
memory architectures, based on the principles and mechanisms exposed in Part II, the need
for a simulator arose for several reasons. First, the currently available distributed-memory
architectures hide their distributed nature to programs thanks to global addressing. Sec-
ond, although many company and academic roadmaps [134, 250] had been mentionning
up to hundreds of cores per chip, there were, at that time, no publicly available simulators
able to sustain such a number of execution units while keeping simulation time manageable
on commodity hardware. Using direct execution on a cluster of machines wasn’t a solution
either, since inter-machine links’ latencies are considerably higher than that of inter-core
links. Finally, hardware variability is a highly desirable feature in order to study whether
the mechanisms can adapt to a wide range of topologies.

Besides programming model validation, simulating many-core machines has become
in the past years a major challenge to the whole hardware community as well. Using
cycle-level simulators to help designing chips, as designers have done for decades, is
simply impractical for many-core architectures. The fastest software-based simulators [45]
indeed introduce a slowdown on the order of 104 to 105 over native execution. A recent
contribution [66] improved the situation (1000× slowdown) by delegating part of the
simulation (the timing model) to some specialized hardware (FPGAs). Even in the
optimistic case where this approach would become feasible for hundreds of cores, the
slowdown for simulating them would still be of the order of 105. A single second of
execution thus would translate into almost 28 hours of simulation and a minute into 2
months!

Because cycle-level simulation of large single-core core architectures was already con-
sidered slow enough to hinder the design process, the community has come up with a
number of efficient solutions to speed up simulation for single-cores. SMARTS [259] and
SimPoint [234] demonstrated that sampling can improve simulation speed by a factor of
103, while producing errors varying from 1% to 10%. SimFlex [256] brought significant
performance for multi-cores running server-type workloads, where all threads operate

160 Chapter 11. The Need for Many-Core Simulation

independently, with 104 to 105 speedups. Statistical simulation and synthetic bench-
marking [84, 195, 199], which recreate a similarly-behaving but much smaller trace or
benchmark, are also successful alternatives for single-cores. They bring speedups up to
105 with an error varying from 5% to 10%.

However, there are no sampling nor statistical simulation techniques mature enough
for general parallel workloads and many-cores yet. Earlier proposals require to simulate an
exponentially growing number of program co-phases [31, 154], which reduces the attainable
speedups (less than 102 for 2 cores). Recently, Namkung et al. [191] showed that relaxing
similarity constraints when clustering samples can practically mitigates this growth up
to 16 cores. Perelman et al. [205] improved the speedup to 104 for 4 cores by clustering
phases accross threads, with errors of a few percents.

Using a different approach, Penry et al. [204] have successfully leveraged modular
simulation to parallelize multi-core simulators on a host CMP, achieving super-linear
speedups thanks to shared caches and careful scheduling of simulation phases. But the
provided speed relief over detailed single-core simulation is bounded by twice the number
of available cores on a chip at design time, i.e., 8 to 16 today. More recently, Genbrugge
et al. [102] applied interval analysis, which consists of a mechanistic model of superscalar
processors able to produce performance numbers without having to model individual
pipeline stages, to multi-core simulation. This approach currently yields a speedup of 10
over traditional cycle-accurate simulation, with a mean error rate of 5% for 8 cores.

Although the problem of simulating hundreds of processors has been a fixture of
large-scale parallel machines design for many years, only a few existing simulators are
able to sustain hundreds to thousands of cores with practical simulation time. As an
example, the design of the IBM BlueGene/L supercomputer family between 1999 and
2004 essentially involved units and small sub-system tests, simulation being used only to
functionally validate the development tools and the system-level software [56].

Recently, the COTSon team at HP labs proposed an approach where a trace-driven
simulator is fed with thread instruction streams computed by a single-core full system
simulator [186]. They present very fast speedups for 1024-core simulation, but only
consider an idealized architecture with a perfect memory hierarchy, i.e., without any inter-
connect, caches nor distribution of memory banks. Most of the other recent approaches are
parallelized discrete-event simulators with varying levels of detail. They allow some events
to be committed out of virtual time order, trading accuracy for speed. SlackSim [63]
is a cycle-level simulator that allows individual cores to progress at different paces in
a controlled manner. Notably, it proposes a bounded slack scheme where cores can run
ahead of the current global time by at most a fixed amount of cycles. Graphite [182], a
higher-level simulator, dynamically instrument executables and then run them natively.
It explores additional lax synchronization schemes, and in particular a distributed one,
LaxP2P, in which one core’s progress is periodically checked against another randomly
chosen core.

In this Part, we propose SiMany, a new discrete-event simulator for many-core archi-
tectures supporting modern task-based programming models, like Cilk [34] or TBB [133].
It improves on the previous simulation approaches in three main directions. First, it

11. The Need for Many-Core Simulation 161

introduces a novel synchronization technique, spatial synchronization, in order to approxi-
mately reproduce the concurrency of interactions between threads/tasks and the hardware
components that the simulated program would experiment on a real many-core machine.
This scheme is distributed and, contrary to previous ones, purely local. A core is allowed
to make progress ahead of its topological neighbors in the interconnection network by at
most a fixed time drift, which involves only nearby information. Cores can be simulated
without interruption during longer phases than in schemes where they have to check
their progress against a unique global window. Both these properties have the effect of
improving the locality of accesses, which ultimately speeds up the simulation.

Second, SiMany pushes further the current trend of raising the level of abstrac-
tion in simulators. This trend was recently illustrated by interval simulation [102] and
Graphite [182]. It is also widespread in the embedded systems domain, where systems-on-
chip (SoC) typically comprise tens of off-the-shelf IP blocks. To cover the resulting large
design-space, the initial stages of a SoC design process are mainly concerned with capturing
the interactions between the IP blocks and the interconnects (bus or networks-on-chip),
using simple, and thus potentially inaccurate, block models. Approaches of this kind have
been successfully used to choose components, evaluate performance and verify general
operation of SoC in early design stages [104, 156, 222]. SiMany includes simple models
for caches and cores, decreasing the time required to simulate these components. It is
highly configurable and can explore a wide range of designs, such as shared-memory and
distributed-memory architectures and arbitrary network topologies. All operations that
do not require interactions are directly executed.

Third, we evaluate the relevance of the scalability results reported by SiMany by
comparing them to those obtained with a cycle-accurate simulator [14] up to 64 cores.
We show that the main performance trends are successfully captured and that SiMany
can be used to forecast scalability and performance variations resulting from coarse-grain
architecture changes. To the best of our knowledge, this quantitative assessment is the
first of its kind for an abstract simulator featuring a loose synchronization mechanism.

We show that SiMany allows to explore a large range of hardware designs and evaluate
software implementations 103 times faster than existing flexible approaches for 1024-core
architectures, while yielding comparable error rates than sampling and statistical sim-
ulation for a low number of cores. Chapter 12 presents the main time modeling and
synchronization concepts. Chapter 13 details the implementation of SiMany. Chapter 14
first presents the experimental methodology. It then compares SiMany’s results to those of
a cycle-accurate simulator up to 64 cores, showing that the main performance trends are
successfully captured. Finally, it presents the performance results for different architecture
classes, such as polymorphic architectures, in which cores differ in computing power, and
clustered network patterns. We also investigate the accuracy/speed trade-off related to
time drift control. Chapter 15 relates this work to the simulation field and Chapter 16
wraps up this many-core simulation Part. The content of Chapter 12 and Chapter 14 will
appear in Certner et al. [55].

162 Chapter 11. The Need for Many-Core Simulation

163

Chapter 12

Virtual Timing

The implementation of the notion of time in an abstract simulator must realize a delicate
trade-off between accuracy and simulation speed. On one hand, an accurate simulation
of hardware components involves more processing power and increases the number of
synchronizations, resulting in a much longer simulation time. On the other hand, too little
timing information or infrequent synchronizations would make the simulator too inaccurate
to obtain meaningful results for design-space exploration and software development.

Moreover, the method for providing timing information must be generic and systematic
enough that an architect can vary the design parameters and still obtain reliable perfor-
mance information. In the end, the simulator must be able to produce an execution time
for the program run on the simulator. We call this reported execution time the virtual time
of a program, as it is a computed execution time, by contrast with the native execution
time of the simulator itself running on the host machine to simulate the program.

Section 12.1 presents virtual timing and our spatial synchronization scheme. Sec-
tion 12.2 highlights how parallel programs are correctly simulated in spite of some events
being processed out of order.

12.1 Principles

12.1.1 Timing Annotations

Virtual time is computed by the simulator from the timing information that has to
be provided for each instruction block. These blocks are not necessarily basic blocks,
i.e., blocks where the control flow is purely sequential. They rather are pieces of code
performing local computations and control flow changes, i.e., blocks of instructions that are
directly executed by a local CPU. The user is given complete freedom about the timings
assigned to these blocks. The simulator handles the timing of any operations that trigger
interaction with other components than the local CPU. When simulating a shared-memory
architecture, this implies that memory accesses will be timed by the simulator itself.
Similarly, when simulating a distributed-memory architecture, the simulator times the

164 Chapter 12. Virtual Timing

messages exchanged between the different components, based on the components’ location
and the network model.

A systematic way to assign timings to blocks is to profile a native run of the program
on a single-core architecture or to execute it in an accurate simulator. This technique may
introduce a bias for pieces of code that will be executed in parallel on the simulator but
are not during the profile run. In the latter case, the execution of all pieces of code shares
the same hardware components, such as caches or branch predictors, which decreases or
conversely increases their execution time compared to the former case where some pieces
execute on different processors. Architectural events, as reported for example by hardware
performance counters, could be used to refine execution time to reduce this bias.

Another possibility is to use a processor model to compute the timings by summing
the values it assigns to each individual instruction. This may be less accurate with respect
to the microarchitecture, but will allow to avoid the bias. However, interval analysis
showed that modeling all pipeline stages is not necessary to obtain accurate simulation
results [102]. Moreover, taking into account microarchitectural details is less important
for many-core than for single-core simulation, as the experimental results will show in
Section 14.2.

Finally, timings can also simply be attributed by hand. Additionally, the timing
annotations can be computed by the simulated program itself. This is useful, for example,
to allow to attribute approximate timings to coarse program parts at once with very low
overhead, depending on the data being processed, or to model branch prediction in a
probabilistic way. Most blocks, though, are usually statically timed1.

12.1.2 Distributed Timing

In our simulation framework, each simulated core, as well as each modeled hardware
component, maintains its own private virtual time when it is active. All these virtual
times would always be the same if they were permanently kept perfectly synchronized2.
But frequent synchronizations have a cost and are not even necessary for independent
events. For this reason, our simulator updates virtual times in a purely distributed fashion.

On one hand, each active component independently increases its virtual time depending
on the operation it is performing. A core increases its virtual time in accordance with
the timing annotations of the code block it is executing. A network interface processing
a message increases its virtual time by the amount necessary to process the header and
then the payload chunks.

On the other hand, when a component interacts with another, inactive one, it propa-
gates its virtual time to it as it wakes it up. Since interactions conceptually occur in the
simulator through messages, the latter are stamped with the virtual time of the component

1An illustration of annotations can be found in Appendix B.
2Actually, virtual times are updated discretely according to block annotations and the simulator’s

timing parameters. So, even in the case of perfect synchronization, virtual times of cores may differ at
worst by Bmax − 1, where Bmax is the greatest virtual time assigned to a block.

12.1. Principles 165

Core
Vtime: 10

Router Router CoreNetwork

Core-Router
Transfer

Routing
Wire Latency

Routing

Router-Core
Transfer

Processing

Reply
Core-Router

Transfer

Routing
Wire Latency

Routing
Router-Core

Transfer

10 15 16 50 51 56

707576110111116

Figure 12.1: Messages’ virtual time incrementation.

that created them at the moment the message was created. A network interface that was
idle takes the virtual time that a message is stamped with as it begins processing it.

As an example, let us examine a full memory access round trip, presented on Fig-
ure 12.1. Each memory request is initially stamped with the initiator core’s virtual
time and is increased by a specific delay as it traverses the architecture’s communication
components (CPU to network interface links, routers, wires, etc.). The reply message is
dated with the request time augmented with a local processing time corresponding to the
data retrieval from the memory banks. When the initiator core finally starts processing
the reply, its own local time is updated to that of the reply.

To summarize, the sum of all delays induced by all the components traversed is added
to a core’s virtual time in case of interaction.

12.1.3 Distributed Spatial Synchronization

Messages themselves are not a reliable enough form of synchronization: Two sets of cores
may not communicate for a long time period, resulting in a possibly excessive time drift.
On the other hand, a systematic global synchronization of all cores would be very costly.
Thus, cores synchronize with their neighbors only, as specified by the interconnect/network
topology, a feature we call spatial synchronization. Upon each modification of its virtual
time, the core sends a virtual time update message to its immediate neighbors3. The latter
then update their view of the neighbor’s virtual time, which we call its proxy. Note that
these update messages are control messages: They have no architectural existence and
they only serve to implement the simulation.

Figure 12.2 (next page) shows such an example for a core belonging to a 2D mesh
that is advancing its virtual time from 20 to 33. The number at each core’s cardinal point
indicates the core’s proxy for the corresponding neighbor. The bottom part of the Figure
represents the core and its neighbors in their final states, i.e., after the update messages
have been processed and the proxies updated.

If a core’s virtual time is greater than the time of its most late neighbor by a user-chosen
constant D, then the core stalls its execution. As soon as this neighbor catches up with
it, thus lowering the time drift under D, the core can resume its execution. Figure 12.3
(page 167) shows an example of how an active core that is making progress (the one on

3Actually, not so many messages are exchanged, as explained in Section 13.2.4.

166 Chapter 12. Virtual Timing

20 33

25

20

35

40

VTime
Update
(33)

VTime Update (33)VTime
Update

(33)

VTime Update (33)

33

25

20

35

40

25

20

35

40

20

20

20

20

25

20

35

40

33

33

33

33

Figure 12.2: Virtual time updates.

12.1. Principles 167

20 33 42 65

33 42 54 65

33 54 65 73

VTime Update (33)

VTime Update (54) VTime Update (54)

VTime Update (73)

42 20 65 42

42 33 65 42

54 33 65 54

Figure 12.3: Spatial synchronization example.

the left) gradually wakes up cores that were waiting for it (D is 20). The three cores
and their simulation states are represented at three successive points in time, from top to
bottom.

In other words, cores are allowed to advance to differing virtual times, but they are
not allowed to drift apart from their neighbors by D or more4. Note that this local bound
guarantee immediately implies a global bound on the drift between any two cores that
cannot exceed the diameter5 of the network graph times D.

In the same way that sampling consists in trading some accuracy for speed, allowing a
time drift reduces the number of synchronizations and thus speeds up the simulation, at
the expense of some inaccuracy. Indeed, drifts open up the possibility that two messages
be received and processed in the opposite order of their virtual time of reception. With
D = 20, consider the example where two cores A and B, having times 50 and 20, want
to send a message to a common neighbor core C. Having a common neighbor, A and B
are allowed to drift apart up to 40 (2 ×D) and thus can be simulated concurrently at
this point. If the simulator processes A, then B and finally C, A’s message can reach C
before B’s, although its timestamp when arriving at C will be 55 whereas B’s message’s

4In all generality, the bound is the maximum of D + Bmax and D + Imax, where Bmax is the greatest
virtual time assigned to a block and Imax is the maximum cost of an interaction timed by the simulator.
Unsurprisingly, the simulation’s accuracy also depends on the level of detail of the program’s annotations
and that of the simulated hardware mechanisms. In the main text, we will keep mentioning D as the local
bound instead, for simplicity. This substitution does not change the validity of our remarks and results,
except quantitatively.

5The diameter is the largest topological distance between two cores of the network.

168 Chapter 12. Virtual Timing

timestamp will be 25, assuming a common 5-cycle latency to reach a neighbor.
When the simulator processes two messages out of order, it biases their processing’s

completion time by the same amount of virtual time, which is at most the time needed
to process the earliest message, but in opposite directions. However, we recall that a
message represents a data access; a huge number of them are thus actually exchanged,
with out-of-order executions occurring randomly. In the end, as the experimental results
will show in Section 14.2, these errors statistically filter out and do not engage in any
visible snowball effects. Section 13.2.3 also presents mechanisms to enforce bandwidth
and concurrency limitations in spite of out-of-order processing.

Therefore, the maximum local drift simulation parameter D is an accuracy/simula-
tion-speed toggle. The smaller the value of D, the more frequent the synchronizations,
the better the accuracy, but the slower the simulation.

12.1.4 Non-Connected Sets of Active Cores

As mentioned before, a core only propagates its own virtual time to its neighbors when it
changes. Indeed, regularly sending time messages, as done in cycle-level simulators, would
degrade simulation speed. However, it may happen that the set of active cores in the
network is non-connected. In that case, time drift control does not spread to the whole
network. Local control indeed relies on the neighbors’ virtual time information but idle
cores don’t have a virtual time of their own and don’t produce any time update messages.
An example of this problem is presented in Figure 12.4 (facing page), where advances of
cores in both sets, on the right and left sides, are not propagated through the idle cores.
As a result, their time drifts apart by more than the diameter of the network times D.

A solution to overcome this problem is to have idle cores maintain a shadow virtual
time which is the minimum virtual time of all their neighbors plus D, as if they were
executing code and had advanced to the maximum virtual time allowed by the local
drift bound before stalling. Like working cores, they only propagate their time to their
neighbors when their shadow virtual time changes. Thanks to this technique, all cores
within the network remain connected with respect to virtual timing, which finally enforces
the expected global time drift.

12.1.5 Time Drift of Dynamically Created Tasks

Many programming models (e.g., Cilk [34] or TBB [133]) provide primitives to spawn
tasks dynamically. Such a task is sent to another core, as specified by the simulated
run-time system and architecture, by emitting a task creation message that is stamped
with the time of the initiating task, as any other messages. While this message travels to
its target core in the network, active cores are concurrently making progress depending
on the order in which the simulator executes them and on the spatial synchronization
mechanism. But, since the latter only takes into account cores, not messages, cores may
well drift ahead of the not-yet-running new task’s timestamp by much more than the
authorized global bound.

12.1. Principles 169

30 35 Idle 85

52 Idle 63 74

35 Idle 85 99

52 58 Idle 74

VTime Update (35)

VTime
Update
(35)

VTime Update (74)

VTime
Update

(74)

VTime Update (58)

VTime
Update
(58)

VTime Update (99)

VTime
Update

(99)

Figure 12.4: The non-connected sets problem.

Figure 12.5 (following page) shows such a situation. The core at the left spawns
a new task at virtual time 20, through a task spawn message, but then continues to
make progress. Since the other cores in the network are idle, the spatial synchronization
mechanism doesn’t prevent it from reaching timestamp 90, which is a lead of more than
D (here, 20) over the new task’s start time.

To keep this drift under control, a core can track the birth times of the tasks it spawned
and take them into account when computing its current drift, as if the new tasks had
started execution on one of its neighbors. When a core finally starts executing the new
task, it sends a control message to the initiating core to inform it that it can discard the
corresponding creation date.

Spawned tasks may be queued while waiting for a core to seize and execute them,
since no cores may have been attributed to them yet or because all cores may already be
busy. Without further precaution, this situation can cause a deadlock. If all cores are
busy and happen to depend on a creator task to make progress and terminate, and if
this creator task is blocked by spatial synchronization, waiting for one of its child tasks

170 Chapter 12. Virtual Timing

20 30 Idle

30 90 20

VTime Update (30)

Task Spawn (20)

VTime Update (90)

VTime Update (20)

Figure 12.5: Time drift of a dynamically created task.

to begin execution, the child task will never have a chance to start precisely because
all cores are busy. The simulator avoids this condition by requiring that the run-time
system, which manages the tasks and implement the task queues, signals the core running
the creator task as soon as its child tasks have been dispatched to a core or have been
enqueued. The core running the creator task then drops the child tasks’ birth dates.

The assumption behind this mechanism is that some tasks are enqueued only if all
cores are busy. Waiting tasks won’t be executed until some running task finishes. When
this happens, the simulator calls the run-time system, offering it the opportunity to
schedule a new task on the corresponding core. This ensures that waiting tasks will
finally be executed. When they are, they will have their start virtual time adjusted to the
finish time of the previous task. Thus, while tasks are enqueued, the current virtual time
they hold, which was computed from the creator core’s time at spawn, becomes no more
relevant as an indication of their real start time and thus is not taken into account by
spatial synchronization. If the simulator is to be used to model enqueing of tasks even
when not all cores are busy, then the queues themselves have to be modeled as separate
hardware components and they must participate in spatial synchronization.

12.2 Ensuring Correct Simulation

12.2.1 Program Execution Correctness

In spite of some messages being processed out of order, program execution correctness is
preserved. A well-written program’s outcome is correct independently of how its threads
are scheduled. In shared-memory, in particular, output must be correct for all potential
orders in which different threads can acquire a given lock. Only the lock acquisitions
within the same thread have to be performed in order so as to avoid deadlocks. In
distributed-memory, a program must be prepared to process incoming messages in any

12.2. Ensuring Correct Simulation 171

order that is allowed by the programming model/run-time system.
Our network implementation enforces that a core receives all messages coming from

another given node in the order the latter sent them. Only messages incoming from
different nodes can be processed out of order. This solves the lock order reversal problem,
because lock acquisitions are immediately translated into messages, and is compatible
with traditional distributed-memory programming models that assume this property, such
as MPI [94].

For dataflow programs, message ordering would not even be necessary. In the end,
maintaining program execution correctness depends on the programming model and can
be implemented by the underlying network and core models independently of virtual
timing and its associated mechanisms.

12.2.2 Locks and Critical Sections

A task running on a core can stall at any time because of spatial synchronization. This
can cause a deadlock if this task is holding locks or is executing a critical section at the
moment of interruption. Indeed, a second task may then try to acquire the same locks
or enter the same critical section and will then block until the first one wakes up again
and releases its resources. But if this second task is very late, i.e., if its virtual time is
far behind that of the first task, spatial synchronization will prevent the first task from
making enough progress to release its resources.

Figure 12.6 (next page) illustrates such a situation in the simple case of two neighbors.
The core on the right acquired a lock at virtual time 35 and then reached time 45 at which
point spatial synchronization suspended it, being ahead of the left node’s time (20) by
more than D (equal to 20 in this example). The left node then sends a lock request at
time 22 and blocks until it receives an acknowledgement. Note that both cores involved
in a deadlock need not be neighbors but can be located at distant places in the network.

Avoiding such deadlocks without the help of a global monitor can be done by tem-
porarily allowing the core holding a lock to execute until it has released its resources.
Waiving the time synchronization could potentially result in more time drift than the
aforementioned global bound. However, locks or critical sections are used precisely to
serialize resource access. Thus, contention essentially occurs when attempting to acquire
a lock rather than in the ensuing critical section, except in the rare cases of deeply nested
locking. As an example, in our dwarf benchmarks, tasks simply do not interact with
others while holding a lock. In practice, the additional time drift thus has no effect on
performance.

In the rare cases where there can be high contention inside a protected or critical
section, typically when atomic instructions are used on a shared variable, the following
mechanism, which is completely general, should be implemented instead of the previous
one. Every task T that needs to access a resource currently in use by some “holder”
task Tr has its virtual time advanced to that of Tr before being put to sleep, waiting for
the resource to become available. Then, Tr remembers that T depends on it so that, each
time Tr makes progress, the virtual time of T can be updated accordingly.

172 Chapter 12. Virtual Timing

20 30 45

20 22 45

Lock Request (22)

Figure 12.6: Deadlock between two tasks competing for a lock.

This mechanism is directly inspired from what happens inside a real machine: Tasks
waiting for a resource interact only with the resource holder and they get the resource at a
time greater than when the holder released it. This implies that, between the point when
they start to wait and the point where they get the resource, time passes by without them
making any other useful actions. The simulator can thus advance them to the current
time of the holder task without influencing the behavior of any other tasks or components,
because, up to this point in virtual time, the holder task is still owning the resource.

12.2.3 Deadlock Avoidance Proof

The spatial synchronization mechanism doesn’t cause by itself any deadlocks in the simu-
lator’s execution because, at any given point in time, the task/core with lower virtual time
can always make progress, unless the system is deadlocked for another reason. Virtual
timing and its associated mechanisms thus don’t introduce new deadlock possibilities.
This Section presents a proof of this property.

Let us assume that the simulator is deadlocked and let us call T0 the task with smallest
virtual time at this point. In all generality, T0 was either just about to execute some code,
such as a local computation, a task spawn, a regular remote or shared-memory access,
or was waiting to receive some message, to acquire some lock or to enter some critical
section. But T0 has the lowest virtual time and is thus late compared to its neighbors.
Consequently, the distributed synchronization mechanism doesn’t prevent it to execute
some code. T0, which is blocked, is thus necessarily in a waiting state. This means that
it is dependent on some action to be performed by another task, which we’ll call T1. To
be exhaustive, we should also consider the case where T0 is dependent on some other
component than a CPU. We show how to deal with implementations where this can occur
at the end of this Section. Suffice it to say here that they can be handled the same way.

The next part of the proof now depends on how locks and critical sections are handled.
If they are handled in the simplest way, T1 will run until it can release the resource that T0

12.2. Ensuring Correct Simulation 173

needs or until a response to T0’s request can be produced, eventually allowing progress of
T0, unless T1 needs to acquire another resource or receive a response. Progress is blocked,
so we are in the latter case and T1 depends on another task T2.

If the more general approach is taken, then T1 is blocked holding the resource that
T0 needs, either because of spatial synchronization or because it is dependent on another
task T2. In any case, thanks to the rules the simulator abides to, which are described in
Section 12.2.2, T1 has propagated its virtual time to T0 just before being suspended. T0
and T1 thus have the same virtual time, which is minimal. Consequently, T1 can’t have
been suspended by spatial synchronization and we are in the case where T1 depends on
another task T2.

In both cases, T1 depends on another task T2 and, in the second case, T1 has minimum
virtual time. We can iterate the previous reasoning n+ 1 times, where n is the number of
cores in the network, to build a dependency chain: T0 → . . .→ Tn. But, since there are
only n cores, there exists i and j in [0;n], with i < j such that Ti = Tj . The dependency
chain Ti → . . . → Tj = Ti shows that there exists a deadlock involving tasks Tk, with
k ∈ [i; j].

We haven’t detailed the case where some tasks depend on some actions to be performed
by components other than the CPUs in order to make progress. This never happens in our
implementation, as will become apparent to the reader of Chapter 13, which explains how
the simulator is implemented and, in particular, Section 13.2, which details the network
implementation. Indeed, network interfaces are designed to transmit messages immediately
and never depend on CPUs to do it. Moreover, the sending of response messages is always
triggered by a CPU making progress. In the end, there are only dependencies between
CPUs.

Nonetheless, such a case can be dealt with exactly in the same way as for tasks.
Within this solution, components have to maintain, at least when they are in a dependency
relation with CPUs, a virtual time of their own. They also must take part in spatial
synchronization and be subject to the handling of locks, critical sections or other exclusive
resources described in Section 12.2.2, as tasks do. Under these conditions, our previous
proof will then obviously still hold if we simply replace tasks by more general components.

This definitely establishes that virtual timing and the associated spatial synchro-
nization can be applied to any possible simulator implementations without introducing
deadlocks. However, they do not solve any pre-existing ones. The simulated run-time
system and programs themselves must be deadlock-free for the simulation to terminate.

174 Chapter 12. Virtual Timing

175

Chapter 13

Simulator Implementation

13.1 Implementing an Efficient Simulation

13.1.1 Direct Execution of Computations

Instruction blocks, as defined in Section 12.1.1, are processed by one of the simulated
CPUs. Their execution increases the corresponding CPUs’ current virtual time by their
timing annotations’ values. Their only other influence in the simulation process comes
from the results of the computation they perform, because these results can change the
subsequent control flow. In other words, a minimal correct simulation is performed if and
only if blocks’ functional results are computed. Consequently, and unlike most simulators,
SiMany does not perform instruction set (ISA) emulation. It does not even do dynamic
binary translation, as used in fast simulators like Graphite [182]. Instead, apart from
network simulation and task management, it relies on direct execution.

To achieve this, it is currently necessary to modify the programs to be simulated, both
to integrate the timing annotations and to explicitly call the programming model’s API
and/or the simulator’s primitives when the program spawns a new task, needs to send
some message or wants to access some remote data. To ease the simulation of very large
programs or to enable it for closed-source ones, for which recompilation is not possible,
these modifications could be applied automatically using one or a combination of the
following techniques: Binary code insertion, static binary translation or JIT compilation
(a.k.a., dynamic translation, as done for example by QEMU [23]).

13.1.2 Software Architecture

The simulator’s main duty, in addition to maintaining a virtual time for all cores, is to
manage the simulated CPUs and the other architecture components, such as the network
interconnecting them, so as to reproduce in large part the operation of a many-core
machine and to report realistic virtual time values. In order to support a large range of
architectures and to vary them simply by changing some configuration files, the knowledge
of low-level hardware characteristics must be restricted to the simulator core as far as

176 Chapter 13. Simulator Implementation

possible. Programming models’ support is then implemented on top of the simulator’s
low-level primitives that give access to the simulated hardware.

However, user programs need to somehow access some simulator’s primitives, when
the programming model doesn’t provide specific services for some categories of actions.
Typically, local memory accesses are directly performed by the underlying architecture and
their timings depend on the accessed data’s location. Furthermore, multi-cores with global
addressing can use one of several different memory consistencies, each leading to different
parallel program semantics. Modeling a different semantics set than what is provided
by the simulator and/or the host machine requires to abstract memory operations. For
these reasons, any data accesses not done through the programming model’s run-time
system must be done through other functions that ultimately call the simulator primitives.
Another example is task/process spawning, for which some programming models provide
no support, such as MPI1 [94]. In this case, the user program must still be able to launch
code on remote cores.

The software architecture of the simulator running a program thus comprises 3 layers.
The first layer is composed of primitives that give low-level access to the simulated
hardware. They allow to launch a piece of code on a core and to exchange messages
between cores in the network through network interfaces. This layer is decoupled from
the programming model and is thus generic in this respect. It can be extended to include
other hardware components than cores and network interfaces. The second layer’s purpose
is to provide an implementation for the chosen run-time environment that relies on the
first layer’s API. It is divided into 2 parts: The run-time system support for the chosen
programming model’s API and some glue functions that expose the computation model
implicitly assumed by the simulated hardware (e.g., for global addressing architectures,
the memory consistency). The third layer is the simulated user program itself. It uses
only APIs from the second layer.

The implementation of the first layer itself uses a mix of shared data, function calls and
message passing primitives. The latter serves both to transmit user messages, explicitly
sent by the program or implicitly generated by memory accesses or calls to some program-
ming model’s functions, as well as control messages, used internally by the simulator’s
first layer2. Messages are used instead of directly modifying the state of shared objects
in order to allow the hardware cores to be simulated in different threads and possibly
different processes, thereby enabling a multi-threaded or even distributed simulation.
Because of the messages’ purpose and nature, a huge number of them are exchanged
during a simulation. Thus, the bandwidth and latency of the chosen implementation for
communicating are of foremost importance to achieve high-speed simulation.

1MPI-2 introduced functions that allow to spawn new MPI tasks, but lots of programs are still using
the much simpler MPI 1.2 API and its comparatively lightweight implementations.

2Control messages will be described in Section 13.2.4.

13.1. Implementing an Efficient Simulation 177

Message Size Sockets Sockets NB Named Pipes Shared-Memory

16 2.13 1.49 4.76 0.27
32 2.19 1.82 4.75 0.25
50 2.16 1.96 4.85 0.26
64 2.18 2.02 4.86 0.28

Figure 13.1: Time to Send a Message (in µs) on an Intel Core 2 Duo T7400, FreeBSD
7.0-STABLE.

Message Size Sockets Sockets NB Named Pipes Shared-Memory

16 0.60 0.29 1.17 0.13
32 0.61 0.31 0.99 0.15
50 0.61 0.37 1.01 0.21
64 0.62 0.39 1.00 0.23

Figure 13.2: Time to Send a Message (in µs) on a 4×AMD Opteron 8380, Linux 2.6.29.

13.1.3 Overhead of Network Communications and OS

Our initial simulator implementation was distributed: Each core was simulated in a sepa-
rate process and they were communicating through sockets, with the intent to distribute
the cores onto a cluster of machines to speed up the simulation. It turned out that this
implementation was extremely slow. As an example, it took it up to 3 hours to simulate a
Dijkstra computation on a thousand-node graph onto 4 cores only.

We finally found out that this was not due to network communication bandwidth
or latency but to the different inter-process communication (IPC) mechanisms’ imple-
mentations and to process scheduling latency. We reached this conclusion in part by
benchmarking the time to send messages of varying length from one process to another
on the same machine using different APIs: Sockets in blocking and non-blocking modes,
named pipes and System V shared-memory segments with busy-waiting, using a lock-free
implementation of circular buffers. Let us recall the following characteristics of communi-
cation between cores on today’s available dies in practice [185, 230]: The bandwidth has
an order of magnitude that varies from 10 to 100 gigabytes per second and data access
latencies vary from 1 to 100 nanoseconds.

Message Size Sockets Sockets NB Named Pipes Shared-Memory

16 0.82 0.38 1.46 0.08
32 0.83 0.39 1.41 0.09
50 0.85 0.48 1.68 0.11
64 0.85 0.44 1.69 0.10

Figure 13.3: Time to Send a Message (in µs) on a 4×Intel Xeon E7450, Linux 2.6.29.

178 Chapter 13. Simulator Implementation

Figure 13.1 (preceding page), Figure 13.2 (previous page) and Figure 13.3 (preceding
page) show the results of this benchmark on different machines and OS. 108 messages
were sent in a row, with lengths ranging from 16 to 64 bytes, which are representative
of the length of messages exchanged during an actual simulation. A variance of around
0.1 µs has been observed in practice, so the presented averages should not be regarded as
sharp. Nonetheless, in all runs, the relative execution times for different message sizes
and communication techniques are preserved. According to the raw performance numbers
for current hardware reported in the previous paragraph, 1 gigabyte should be transferred
in approximately 10 to 100 ms at best, with bandwidth dominating latency.

In all experiments, the shared-memory implementation outperforms all the other
communication methods. The second best method in each case is non-blocking sockets
and it is 2 to 6 times slower depending on the machine and the OS. For regular sockets, the
slowdown ranges from 4 to 10. Surprisingly, named pipes by far perform the worst of all
methods3, being around twice slower than sockets. This simple message benchmark shows
that using shared-memory speeds up the simulation by almost an order of magnitude
at least. In typical simulations of small to moderate benchmarks, billions of cycles are
simulated and nearly as many messages are exchanged, with lengths varying from several
bytes to up to 1 kB. Moreover, contrary to what happens in the message benchmark,
the messages are not all exchanged at once, potentially introducing additional latency
(less friendly cache behavior, scheduling latency, etc.). Due to the number of mechanisms
involved, we do not present a thorough breakdown of the message benchmark time into
raw communication, normal OS scheduling and wake-up events latency, because this would
require very complex experiments and an intimate knowledge of large parts of kernel code.

These are not the only costs involved in distributed simulation. We have observed
experimentally that, for older versions of Linux (2.6.17) and on FreeBSD, the OS may
wait for the next clock tick to wake up a process to handle incoming data. This may delay
each message by several milliseconds, translating to hours when millions of messages are
exchanged, slowing down the simulation by a 104 factor at least. The presented numbers
also don’t take into account networking delays. Besides the hardware latency, ranging
from 10 to 100 µs for Gigabit Ethernet [106], network interrupt coalescing in the OS yields
an additional delay, usually in the order of 10 µs [107]. Finally, the protocol used and its
tuning are important as well, which the deadlock problem between the Nagle and delayed
acks TCP mechanisms [183] is a famous example of.

Thus, simulating some cores on different machines will yield an overhead that, depend-
ing on the conditions, translates into seconds to hours of simulation time for our studied
benchmarks. For distributed simulation to be fast, it is necessary to pay special attention
to all elements that can increase latency or reduce bandwidth compared to shared-memory
simulation: The hardware communication layer, the hardware controllers, the network
drivers state, protocol tuning, the kernel’s communication method’s implementation,
kernel wake-up latency and general scheduling policy. Each of these elements alone may
spoil the benefit of using multiple machines if it introduces too much overhead. This
makes distributed simulation’s efficiency difficult to predict. Additionally, performance is

3This is definitely something that someone interested in OS should look at!

13.1. Implementing an Efficient Simulation 179

likely to vary greatly as the execution environment changes, leading to concerns about
the practical portability of distributed simulation.

13.1.4 Userland Threading and Scheduling

Section 13.1.3 showed the large overhead that distributing simulation would introduce,
including when running it all on a single machine. A solution is to completely by-
pass the kernel by using userland thread multiplexing, avoiding its provided means of
communications (sockets and named pipes) and the OS scheduling latency.

Several userland scheduling implementations have been developed over the years, such
as the GNU Pth [105] and Marcel [247] threading libraries. They essentially provide
transparent userland threading to applications using the Pthread interface by “wrapping”
system calls in order to prevent a userland thread having to block in the kernel to stall
the whole kernel thread it is executing in. For GNU Pth, this is achieved by using
non-blocking calls where possible. For Marcel, enhanced OS activations are used [73]. In
both cases, however, IPC is performed by the kernel in the end. We thus reimplemented
userland scheduling and the associated communication infrastructure so that no kernel
IPC implementations are used.

Each core in the architecture is simulated within a lightweight thread. Context
switching is done through the UNIX context functions (makecontext, swapcontext and
getcontext) which are available on the most popular UNIX variants, are fast and more
easily used than the C standard’s setjmp and longjmp family of functions [87]. These
functions still perform a system call to save the current signal mask and to install the
new context’s one. It would be possible to improve again the current simulator by reim-
plementing them purely in userland since signals are not part of the programming model
exposed to user programs and are neither used by the simulator itself.

Threads communicate thanks to lock-free circular buffers4. When a thread wants to
read from an empty buffer or write to a full buffer, the buffer functions call the userland
scheduler to suspend it, marking it as waiting as well as registering an event function.
The event function serves to check whether the suspending condition has been cleared
without having to context switch to the thread. In the buffer example, the event function
checks whether new data can be read or if buffer space is now available to write into.

The userland scheduler has been kept relatively simple. It knows nothing about the
simulator infrastructure that runs on top of it. A userland thread yields control to the
scheduler mostly implicitly, i.e., by calling some infrastructure primitive that can’t be
serviced right away. The scheduler code then runs and selects the next thread to run
from a single list containing all userland threads. To ensure fairness, all threads are
considered in turn from the list head and are put to the list’s end when they release
control. For threads that are marked sleeping, their event function is executed to see if
they can resume.

The scheduler also maintains a list of real threads executing the lightweight threads.
4This is the same implementation as was used in Section 13.1.3’s shared-memory benchmarks.

180 Chapter 13. Simulator Implementation

We have conducted preliminay experiments using several real threads. Performance
currently drops when using more than one thread because of concurrent accesses to the
various scheduler structures. Indeed, in the current implementation, the lightweight
threads are kept in a single list and a single real thread can manipulate it at a time. The
scheduler will have to be optimized for multi-threading before any conclusion can be made
on whether the simulation can be parallelized efficiently in practice.

13.2 Modeling a Network of Cores

13.2.1 Simulated Architecture Overview

The simulator models architectures that are composed of general purpose cores connected
through a network. The implementation is flexible enough to model a full range of
architectures, from a single die comprising all hardware parts to a core per die with dies
connected by an off-chip network.

The network topology can be freely specified in a configuration file as an adjacency
matrix that gives the connections between the cores. One network interface is associated to
each core and connects it to the network. It is currently not possible to model standalone
interfaces or switches or multiple interfaces per core, but they are hardly found in today’s
and anticipated designs and can be added without much hassle if the need arises. Links
between two network interfaces are configurable: They can have individual latency and
bandwidth multipliers5. This allows to model, for example, a network of clusters, where
the links between clusters have higher bandwidth and latency than intra-cluster links.

All the cores are general purposes ones, providing homogeneity over the network, which
simplifies the environment running on top of it. However, they can be attributed individual
slowdown multipliers to simulate chips with different speeds, e.g., enabling the study of
power-constrained architectures having efficient slow cores for regular operation and more
powerful cores for infrequent uses of heavier applications. Simulating heterogeneous cores,
with different ISAs and/or capabilities, such as specific hardware accelerators, can be
done at the run-time system level by restricting the kind of code that may be executed on
the cores.

No particular memory models are implied by the simulator. We used it to evaluate
realistic distributed-memory and ideal shared-memory architectures, but shared-memory
with full cache hierarchies could be simulated as well. There are currently no memory
limits imposed on the simulated program at each node, other than the host machine’s
memory size. An extension introducing memory limits per node will have to be developed
to use the simulator in the context of memory-constrained embedded platforms.

No cache models have been implemented yet. Rather, cache effects are reproduced
through timing annotations in programs by assuming that the requested data are not in
the cache at the start of a routine and are subsequently in the cache for the rest of it. This
reproduces a pessimistic cache behavior where all caches are emptied at the simulated

5These are integer numbers.

13.2. Modeling a Network of Cores 181

program’s routine boundaries6. Real cache models can be integrated into the simulator
since all memory accesses must ultimately go through the simulator’s primitives, as was
explained in Section 13.1.2. We did not experiment with this possibility but we expect
that the subsequent slowdown will not exceed an order of magnitude.

Finally, although the simulator doesn’t simulate a core’s ISA nor its microarchitecture
in detail, it is possible to reproduce some of the impact they have on performance through
timing annotations. The effects of the implementation and number of functional units for
a class of instructions can be mimicked by varying the timing attributed to instruction
blocks that use them. As an example, we used in our experiments a model where the
instructions of a class are attributed a fixed cost and we split instructions into several
classes, including floating-point and integer additions, multiplications and divisions. We
also introduced annotations to model a branch prediction scheme that succeeds at least
90% of the time and assumes a pipeline depth of 5. More details about the precise
microarchitectural parameters used in the experiments are presented in Section 14.1.1.
Appendix B presents the example code of the Dijkstra benchmark with annotations.

13.2.2 Network Interface Implementation

The network interface (NI) module provides code both for sending and receiving messages,
but these cases are handled asymmetrically at execution time. A NI-dedicated lightweight
thread serves solely to receive messages. It doesn’t maintain a virtual time by itself, but
rather takes the one of each message it receives and increments it as it is processing it.
Message sending, on the other hand, can happen both in the NI thread, if processing a
message itself requires sending another message, or in a thread simulating a core (e.g.,
when requesting some user data). Consequently, before sending data, a thread must
acquire the lock associated to the communication channel it wants to use.

The NI module is designed to roughly reproduce the timing behavior of a real hardware
network interface. Messages are divided into header and payload parts. The cost for
transmitting a header to/from a core is fixed and the payload part is divided into fixed
sized chunks whose processing cost is also fixed. Those costs are counted twice, the first
time at message creation and the second time at message reception. While traveling, a
message’s virtual time is increased by the latency of each traversed hop, irrespective of its
length, which corresponds to a simple model of worm-hole routing [71].

Links between two NIs are implemented as two one-way circular buffers of fixed length.
The buffers do not know anything about the structure of the messages being transferred.
They correspond to a simple model of a physical layer that is concerned only about sending
words of data. Besides being more faithful to the real hardware mechanisms, we saw no
need to implement an extra lookahead facility for messages, since messages in a given link
are always processed in order, which is the same as the messages’ virtual time order7.

6The boundaries are specified implicitly through timing annotations and do not necessarily correspond
to the programming language’s syntaxic structures, such as functions.

7Actually, some messages may not be in virtual time order even in one way of a link, because they may
have been sent by different threads modeling different hardware components. This is inherent to virtual

182 Chapter 13. Simulator Implementation

A major concern when choosing a network architecture and associated protocols is
to avoid deadlocks. Although message transmission is timed as in worm-hole routing,
messages are in reality transferred using store-and-forward inside the simulator, which
avoids deadlocks caused by message reservation of several links at once. Deadlocks can still
occur if a dependency cycle appears between messages only partially transferred because
of NI buffer overflow. To prevent them, NIs maintain for each link separate receive and
send buffers. Also, the protocols chosen in this implementation ensure that each sent
message is always eventually consumed by the destination node before any other messages
are created at this node.

The last kind of deadlocks that can occur are deadlocks related to the simulator’s
software architecture. More precisely, NI threads may themselves generate messages as
part of processing some incoming messages. If this message generation can’t complete
because of a buffer being full, a NI thread becomes blocked and can’t service other
incoming messages until the condition disappears. Except for a particular interaction
with its associated core, described in Section 13.2.5, and for the routing startup algorithm
described below in this Section, a NI thread doesn’t generate new messages as part of
message processing. Because of this property and thanks to how the two special cases are
handled, such deadlocks don’t occur.

Routing decisions are taken independently by each NI, which simply looks up the
next hop corresponding to the message destination in its routing table. Only one pos-
sible next hop is stored for each destination and is used all the time, regardless of the
adjacent links’ traffic. This technique is commonly referred to as oblivious routing [231].
The routing table itself is computed at startup using a distributed adaptation of the
Roy-Floyd-Warshall [92, 216] all-pairs shortest path algorithm which is described in the
next paragraph. The length of a path between 2 cores, as used in this computation, is the
number of hops between the cores, regardless of the links’ latencies.

Our routing startup algorithm works as follows. A NI coming up broadcasts to its
neighbors a message whose aim is to indicate the current best distance to it. NIs receiving
the message increase this distance by one hop and compare it to the one currently stored
for the origin NI. If the new distance is strictly lower or if it is the first time a message
from this origin NI is seen, the new distance is recorded along with the neighbor from
which the message came, and the NIs in turn relay the updated message to their neighbors.
This algorithm effectively terminates since a finite amount of messages are exchanged. A
NI indeed can’t broadcast a message to others concerning the distance to another NI more
than the diameter of the graph times, because each new broadcasted message embeds a
strictly decreasing distance value.

13.2.3 Bandwidth and Concurrency Limits

As messages may arrive out of virtual time order, if they come in from different neighbors,
the virtual time assigned to a NI, when it starts to process a new message, may be lower
than the end time of processing for the previous message. When this happens, both

timing and loose synchronization, of which spatial synchronization is an incarnation.

13.2. Modeling a Network of Cores 183

messages processing may appear to overlap, in terms of virtual time, if the end time of
processing for the new message is greater than the start time of processing for the old one.
This practically means that the NI is seen as able to handle concurrently the different
messages coming from its neighbors. As will be described in Section 14.1, we only used
networks based on 2D meshes, where each core has at most 4 neighbors, implying that
each network interface has at most 4 ports, a quite realistic assumption. We propose
below a way of limiting concurrent processing for networks in which nodes could have a
much higher number of neighbors.

There are at present no general traffic bandwidth limitations implemented but two
nodes communicating with each other will see a circuit bandwidth limit, corresponding to
the smallest bandwidth in the routing path from one node to the other, regardless of the
fact that another pair of communicating nodes may be sharing part of the circuit with
them. In practice, this means that traffic congestion is not modeled.

Even if those limitations were not a concern in our experiments, we hereby propose
a new and general mechanism, called historization, that can serve to implement both
NI port and global bandwidth limitations. It consists in keeping information about the
number of processed packets during a window of fixed or variable length into the past, at
each link and network interface. This history is consulted each time a packet traverses
a link or reaches a NI and is used to further delay its processing, according to a given
policy.

As an example, a link may first process a packet from times 20 to 40 and may then
receive a message with virtual time 15, whose length implies it should be processed in 10
units of times. The NI at the link’s end can update the message timestamp so that the
end of processing appears to happen at virtual time 45, effectively enforcing the fact that
both message processings can’t overlap. Other more sophisticated and realistic policies
can be implemented within this framework.

A weak form of historization is already used when new tasks arrive out of order at
some core to be executed. When some task starts to run, it conveys its time stamp to the
core executing it, except if the previous task that ran there terminated at a higher virtual
time, in which case the core uses the latter as the time starting point for the new task.
Thus, for cores, virtual time is never allowed to go backwards.

One may argue that historization requires an unpractical amount of memory to store
potentially long histories. But only the most recent portions of them are really necessary,
since no new messages are created with a timestamp lower than the current minimum
virtual time. We didn’t evaluate the mechanism yet, but we conjecture that it will allow
to simulate the most relevant part of the effects discussed above with a much narrower
window of time in practice. In any case, the simulator can assess whether it has kept
history information corresponding to an incoming message’s virtual time, which gives a
metric of how much overlapping may be missed when using shorter histories.

Historization introduces further virtual timing bias, since, in a completely ordered
execution, the message coming second would have been delayed instead of the first. This
kind of bias, however, is completely similar to what is already introduced by out of order
processing. We thus expect that it will neither have a major influence on the simulation’s

184 Chapter 13. Simulator Implementation

outcome. Again, this will have to be confirmed experimentally.

13.2.4 Control Messages

Among the messages exchanged on the network, some of them only serve to implement
the simulation and would not have any counterparts on a concrete many-core machine.
They are called control messages and are described in this Section.

The most important control message is the virtual time update message, which was
already introduced in Section 12.1.3. This message is not routed, but rather processed by
each NI. It holds a virtual time value that was reached by the neighbor core that sent it.
This value is cached by the receiving NI, to speed up the time limit calculation done by
the associated core for the purpose of spatial synchronization.

The simplest solution to ensure that tasks will keep making progress is that each core
broadcasts its current time after each incrementation. Incidentally, doing so raises the
probability that different cores can be simulated concurrently, because cores are informed
of their neighbors’ progress as soon as it happens, shifting further their allowed time
window in the future. However, the number of exchanged messages would be overkill. As
an example, if a timing annotation is introduced on average every 5 cycles, a 100 million
cycles execution, corresponding to a small to medium benchmark, would imply that 20
millions time update messages are created, sent, received and processed, which would
considerably slow down the simulation.

A necessary and sufficient condition to avoid deadlocks is that a core communicates
somehow its just-reached virtual time before going to sleep because of spatial synchro-
nization. Because we currently only run our simulator sequentially in only one system
thread, this is the approach we chose. It is implemented by sending a virtual time update
message when the thread representing a core relinquishes control, thanks to the possibility
of registering context-switch hook functions into the scheduler. Investigating a trade-off
between the two previous extreme approaches is left as part of a future study on the
simulator parallelization.

The other control message used by the simulator is the shutdown message, used to
implement the simulator shutdown at end of execution. Shutdown phases are often over-
looked although they are critically important for correct and practical implementations.
Additionally, they are often not trivial to implement. The main concern in shutting down
the simulator is to cleanly signal all threads that they have to exit.

When the simulated application exits, shutdown messages are sent to all NIs through
gradual broadcasts to neighbors. But NI threads can’t exit as soon as they receive such
a message. Indeed, since they are potentially multiple routes between two NIs, several
shutdown messages will be sent to the same NI. Shutting down the associated thread
would disrupt the links and messages still arriving would crash the simulator. NI threads
thus have to wait for shutdown messages from all neighbors before exiting, but they should
relay only the first shutdown seen.

Unwanted interactions between control and applicative messages could occur, if the
delivery of a control message is required for the simulator to make progress but this delivery

13.2. Modeling a Network of Cores 185

is blocked. This can happen for example if network buffers are exhausted by application
messages which are not going to be consumed without delivery of a control message. A
general solution to this problem is to have control messages exchanged on a separate
virtual circuit, with its own buffers. In the current implementation, this was not necessary
because of the guarantee that all messages in receive buffers will eventually be processed
without the need to receive any intervening control messages. This guarantee is provided
both by the simple handling of locks and critical sections, described in Section 12.2.2,
and by the interactions between the network interfaces and cores, described in the next
Section.

13.2.5 Network Interface and Core Interactions

A network interface processing a message usually has to interact with its associated
core. As an example, a task may be waiting for some data from another task in order to
continue execution. In this case, the NI receiving the data must wake-up its associated
task. Naturally, it will make the task restart at its own current virtual time stamp, itself
computed from the message time stamp at reception (see Section 12.1.2).

The other important particular case where the NI interacts with a core in our implemen-
tation is for remote memory access requests. In hardware, such a request would be serviced
by a memory controller, in the general case, or a processor cache, for cache-coherent
shared-memory. In the meantime, the NI would queue the request and process other
messages, until memory sends the reply. Since we do not model separately cores and
memory, and because a thread representing a core can’t be preempted, we decided that
the NI thread would handle the request itself.

This choice creates a situation where both the NI thread and the core thread will
compete for some memory locations, introducing new deadlock cases since the NI thread,
while waiting for a resource, can’t process any incoming messages. In our current im-
plementation, we took care to guarantee that the resource held by the core thread will
eventually be released without the need to receive any other message in the meantime.
In practice, this added to the programming model the constraint that each core can
operate on only one lock-protected memory region at a time. The use of the simple locks
and critical section handling (see Section 12.2.2) finally ensured that the held lock will
eventually be released without receiving further virtual time update messages.

A more general way to handle such a situation would be to have a dedicated thread
for memory management that would wait for the requested memory area to become
available. This, in addition with the use of virtual circuits, exposed in the previous
Section, would simplify deadlock avoidance, would allow to use the more complex scheme
exposed in 12.2.2 and would remove the aforementioned constraint on the programming
model. However, this latter rule has the important benefit of avoiding any deadlocks in
applications. So it is arguable that it is actually a feature rather than a limitation in the
current design.

186 Chapter 13. Simulator Implementation

13.2.6 Programming Model Support

Programming model support in the simulator is located in the run-time system layer (see
Section 13.1.2 for the software architecture overview). In the current implementation,
support is provided only for the CAPSULE programming model, as described in Part I,
enhanced with support for distributed-memory architectures, as presented in Part II. In
addition to evaluating our approach, this choice considerably eases programming because
there is no need to change the code as the simulated architecture varies.

There are no theoretical obstacles to adding support for simpler distributed-mem-
ory programming models, such as some MPI [94] support. However, we expect that
programming using such an interface in a way generic enough to support architectural
variations, while still retaining decent performance, will be a daunting task. Only MPI
2.0 specifies an API for spawning processes, which is very primitive. Moreover, it doesn’t
provide portable mechanisms to discover important hardware characteristics, such as the
underlying architecture topology. Extensions to it will have to be designed, coded and
used. The amount of work required will thus practically be largely superior to the time
that was spent to support our integrated programming model.

The CAPSULE run-time system generates messages to drive task dispatching and
object movements upon program requests. When a program attempts a task spawn,
it calls the capsule_probe primitive, triggering a resource check in the core’s local task
queue. The task propagation mechanism then ensures that tasks are properly balanced
in all the cores’ task queues. It does so using the RESOURCE_UPDATE message, which a
core sends to its neighbors to inform them about its current task queue’s occupancy
any time it changes. Using these messages, cores maintain local proxies to neighbors’
occupation status. With the same aim, RESOURCE_UPDATE messages piggyback the tasks
to be transferred to another core as a result of the chosen policy, based on the sending
core’s current idea of a neighbor’s queue occupancy. Since the latter may have changed
concurrently, the transferred context may ultimately be refused. The destination core
thus responds to a RESOURCE_UPDATE message containing a context with a CTXT_ACK or a
CTXT_NACK message.

A complete description of the load-balancing policies and algorithms used can be
found in Chapter 9. In our implementation, task queue size is configurable, as well as
the task difference threshold above which local migrations are enacted. The threshold
limiting probes is hardcoded to the task queue size, i.e., probes succeed as long as there
are free task slots in the task queue. In the experiments performed in Chapter 14, the
task queue size was set to 4 and the task difference threshold to 1.

Shared data are stored in cell objects and program access them by dereferencing
links, generalized pointers that can reference cells be they stored locally or remotely (see
Section 8.1). The run-time system automatically sends messages (DATA_REQUEST and
DATA_RESPONSE) to retrieve remote cell content when requested and locks the cell for the
access duration.

Finally, coarse synchronization is expressed thanks to task grouping (see Section 2.4).
Each time a task terminates, it decrements the active tasks counter in a cell specific to its

13.2. Modeling a Network of Cores 187

group, potentially generating a remote object access. By calling the capsule_group_wait
primitive, a task can wait for active tasks in a group to finish. During the wait, its
execution context is saved on the current core and resumes when the latter receives a
notification (JOINER_REQUEST) from the last active task in the group.

188 Chapter 13. Simulator Implementation

189

Chapter 14

Experimental Evaluation

14.1 Framework and Methodology

14.1.1 Simulator Parameters

Architecture Configuration

All benchmarks are annotated in order to mimick architectures comprising scalar 5-stage
pipeline cores with timings and functional units similar to the 32-bit PowerPC 405 CPU1.
Each core has a private L1 cache with 1-cycle latency, whose policy is simple and pes-
simistic (see Section 13.2.1). The instructions in the ISA are grouped by classes, including
unconditional branches, conditional ones, common integer arithmetic, integer multiply,
simple floating-point arithmetic, floating-point multiply and floating-point divide. All the
instructions within a given class share a single time value. Branch prediction is handled
specially. Where its outcome is known with certainty at compilation time2, its effect are
included in the timing annotations and a 5-cycle penalty is applied to the mispredicted
branch. For the other cases, a probabilistic branch predictor with a 90% success rate is
assumed.

For scalability and architecture exploration, we use two different types of architectures.
The first type is a shared-memory architecture in which all cores, besides their private
L1 cache, access shared-memory banks with a common low latency (10 cycles). The
delays induced by cache coherence effects are not taken into account. The purpose of this
optimistic architecture model is to study inherent program scalability. This architecture is
actually obtained from a distributed-memory architecture, described below, where all costs
associated with object movement and run-time system operation, such as the spawning
delay, the time to start a task or data transmission between cores, are set to 0.

The second architecture type features distributed-memory without cache coherence.
The run-time system handles shared data as described in Section 13.2.6. Cores comprise
a L2 cache with 10-cycle latency. The base link traversal latency between two of them is

1Floating-point instructions are treated similarly as in PowerPC 750.
2This is true, for example, for unconditional branches and loop constructs.

190 Chapter 14. Experimental Evaluation

set to 1 cycle and the bandwidth to 128 bytes per cycle. The purpose of this architecture
type is to present results using realistic and currently common hardware parameters
while anticipating short to mid-term improvements in network bandwidth. Its completely
distributed design is one of the possible choices for future many-core architectures to avoid
the overhead of systematic hardware cache coherence.

Cycle-Level Parameters

In order to validate the results obtained by SiMany, we compare them to those obtained
on a hybrid cycle-level/system-level simulator based on the UNISIM framework [14] up
to 64 cores. This simulator models architectures of the shared-memory type described
above, except that L1 caches are really modeled, are split into separate instruction and
data caches, and that cache coherence effects influence the reported number of cycles.

UNISIM uses a traditional directory-based cache coherence allowing read-only data
sharing, whereas SiMany runs the distributed CAPSULE run-time system that allows a
data cell to solely reside on a single node at a time, regardless of the concurrent accesses’
types. To perform a fairer comparison, SiMany’s benchmarks used in the validation are
modified versions in which big and mostly read-only data structures, that are shared
when the benchmarks are run on UNISIM, are replicated on all nodes of the underlying
distributed-memory architecture used for SiMany’s runs. Small read/write structures are
still handled by the CAPSULE run-time system, which is comparable to the UNISIM
mechanism for a small or moderate number of cores, for which contention on the central
directory is not a bottleneck.

Architecture Exploration

In addition to uniform 8, 64, 256 and 1024 cores 2D meshes, we simulate our benchmarks
on clustered architectures with the same number of cores but split into 4 or 8 clusters.
The latency of network links inside a cluster is set to 4 times the base latency. The
intra-cluster latency, on the other hand, is set to half the base latency. We also simulate
our benchmarks on polymorphic architectures where one core out of two is twice slower
than base cores and the other faster by a factor of 3/2. These latter architectures thus
have exactly the same cumulated computing power as the uniform ones.

Because the multipliers supported by SiMany are necessarily integer ones (see Sec-
tion 13.2.1), the base configuration already uses a multiplier value of 3 for the simulated
cores and of 2 for the link latency between cores. For the clustered architectures, the
link latency multiplier is removed on the intra-cluster links, which effectively halves the
latency compared to the base configuration and has the side effect of raising the maximum
bandwidth to 256 bytes per cycle. For the polymorphic architectures, the 3/2 factor with
respect to cores in the uniform meshes is obtained by using cores with a multiplier of 2.
The slower cores simply use a multiplier of 6.

14.1. Framework and Methodology 191

Virtual Timing Parameters

The reference value for the maximum local drift parameter D is 100 cycles and this value
is used for all experiments, except when studying the effect of varying D on speed and
accuracy, where values of 50, 500 and 1000 are also used.

The run-time system advances virtual time on its own to account for task management.
Starting a task on a core has an overhead of 5 cycles, in addition to the time to fetch the
task from its slot in the NI’s task queue. Tasks are exchanged between cores in 2 cycles,
according to neighbors’ task queue occupancy information processed into hints by the NI
in 1 cycle. A context switch to a joining task resuming execution costs 10 cycles. Probe
decisions, based on the local task queue occupancy, are done in 1 cycle.

14.1.2 Benchmarks

Our choice of benchmarks follows the dwarf approach’s philosophy advocated by researchers
at Berkeley [12], which proposes a set of kernels deemed representative of large classes
that encompass current and future parallel programs. Porting a full suite comprising
numerous benchmarks to a task-oriented environment and making it support both shared
and distributed-memory architectures would have consumed an exorbitant amount of
time. We thus decided to focus on benchmarks that include a wide range of computation
and communication patterns. Most of them are notoriously difficult to parallelize because
of their complex control flow and/or data structures. We argue that, in the context of the
advent of many-core in general purpose computing, studying the scalability of irregular
benchmarks is as relevant, if not more, as that of niche scientific applications.

We present a parallel version of Quicksort adapted to work on lists instead of the
traditional array version, in order to avoid copying cells or transferring the complete array
to remote processing nodes. Pivot steps are distributed and they gradually construct
a binary search tree. In a second step, the sorted list is sequentially reconstructed by
traversing this tree in-order which brings back all list nodes on a single processing node’s
memory. This last operation is necessary only if a program needs to process the sorted
list sequentially afterwards. Execution times without this last operation are reported. We
used 50 random lists with 100,000 elements for common experiments. To further explore
scalability, we additionally tested balanced lists of 1M elements.

A graph’s Connected Components computation is a common graph algorithm, which
is for example used in image processing. Since the graph topology is not known in advance,
depth-first searches are launched from most of the nodes, resulting in contention for
nodes belonging to the same component, although the conditional division mechanism
mitigates this issue. Parallelizing this algorithm has already been studied but solutions
were proposed in the context of shared-memory machines with large structures being
shared between nodes [64, 118]. We ran our algorithm on 50 random graphs with 1000
nodes and 2000 edges.

We have also parallelized Dijkstra’s shortest paths algorithm, used for routing and
navigation purposes, as described in [202]. It bears some similarity with the connected

192 Chapter 14. Experimental Evaluation

components algorithm except that already explored paths may have to be explored again
when reached with a lower value of the current distance computed. On the other hand, a
task encountering an already explored path close to the optimal can terminate quickly
and free a core so that it can be reused for more interesting paths. Again, sophisticated
variants have already been studied [69] but they require frequent global synchronizations,
which we wanted to avoid. The code for this benchmark is reproduced in Appendix B.
We ran the algorithm on 50 random graphs of 2000 nodes having 3000 edges on average.

Barnes-Hut is the well known N -body simulation algorithm. It partitions space into
a hierarchical tree. Each internal node in the tree represents the center of mass of all the
bodies in the underlying subtree, while the leaf nodes are the bodies. The construction
of this tree is the first phase of the algorithm. In the second phase, the force on each
body B is computed by traversing the tree starting at the root. If the node is a group of
bodies (represented by the center of mass) far away from B, the interaction with each
body in the group is approximated by the summarized interaction with the center of mass.
Otherwise, the subtrees rooted at that node are traversed. The force on a given body
can be computed independently of that of the other bodies, and thus in parallel. The
resulting communication patterns are highly irregular [115]. Only the scalability of the
second phase is reported, assuming that the built tree has been broadcasted to all cores
before it starts. We used 4 data sets with 128 bodies and 4 data sets with 200 bodies.

SpMxV is the sparse matrix-vector multiply algorithm. Matrices are specified in a
row-oriented format alike to the Harwell-Boeing format. We used 30 matrices coming
from a freely available sparse matrix collection [43] and 60 randomly-generated matrices
of size 106 × 106, half of them having an average of 50 non-null coefficients per row and
the other half 100 of them. For the validation experiments, only the first group of 30
matrices is used because of excessive cycle-level simulation time.

Finally, we use a tree traversal algorithm that updates all objects within an Octree
structure. This scenario is typically used in gaming or for graphics generation. We ran
the experiments with 50 randomly generated octrees of depth 6.

14.2 Experimental Results and Hardware Exploration

14.2.1 Simulator Validation

The virtual time speedups obtained by SiMany and by the UNISIM-based simulator for
shared-memory architectures with cache coherence are compared in Figure 14.1 (facing
page) for uniform 2D meshes and in Figure 14.2 (facing page) for polymorphic ones. In
the legend, CL stands for Cycle-Level and designates the results from the UNISIM-based
simulator. VT stands for Virtual Time and indicates results obtained with SiMany. Both
axes employ a logarithmic scale, which tends to emphazise scalability differences at the
bottom of the graphs. One can see that, for every benchmark, SiMany correctly captures
the speedup evolution as the number of cores increases.

SiMany’s results are quantitatively close to the reference ones. The geometric mean of
the errors with respect to the cycle-level simulator results for uniform meshes are 8.8% for

14.2. Experimental Results and Hardware Exploration 193

100

101

 1 2 4 8 16 32 64

Sp
ee

du
p

of Cores

Barnes-Hut CL
Barnes-Hut VT

Connected Components CL
Connected Components VT

Quicksort CL
Quicksort VT

spMxV CL
spMxV VT

Figure 14.1: Regular 2D Mesh Speedups Cycle-Level Comparison.

100

101

 1 2 4 8 16 32 64

Sp
ee

du
p

of Cores

Barnes-Hut CL
Barnes-Hut VT

Connected Components CL
Connected Components VT

Quicksort CL
Quicksort VT

spMxV CL
spMxV VT

Figure 14.2: Polymorphic 2D Mesh Speedups Cycle-Level Comparison.

194 Chapter 14. Experimental Evaluation

16 cores, 18.8% for 32 cores and 22.9% for 64 cores. The error for 16 cores is comparable
to that obtained by other simulation techniques, such as interval simulation, sampling
or statistical simulation on 2 to 8 cores. For 4 and 8 cores, the error is smaller but close
to the 16 cores’ one. These results validate our intuition that simulating the smallest
details of the microarchitecture is less important to many-core simulation than it is for
single-core or dual-core simulation.

For polymorphic meshes, the errors are 22.2% for 16 cores, 30.3% for 32 cores and
33.4% for 64 cores. The higher errors for these meshes are due to slightly different
implementations of the polymorphic architectures. In the UNISIM-based simulator, the
L1 cache speed is the same for all cores, whereas in SiMany it is proportional to the core
speed. For this reason, the cycle-level curves in Figure 14.2 (previous page) are slightly
offset upwards compared to those of Figure 14.1 (preceding page), whereas the virtual
timing curves practically don’t change, since a polymorphic architecture has the same
computing power as the uniform one with the same number of cores.

We observe that, for both architectures, the error increases at a much slower pace
than the number of cores. More importantly, the trends exhibited by the benchmarks on
the reference simulator are fully reproduced in SiMany. For Barnes-Hut, the speedup is
close to ideal until 16 cores, the point of diminishing return after which the curves start
to flatten. For Connected Components, scalability reaches a peak at 16 cores and then
decreases rapidly, because of the high contention on graph nodes as their tag are changed.
SpMxV scales well up to 64 cores.

14.2.2 Simulation Speed

Figure 14.3 (facing page) shows the overall simulation time for every benchmark in all
architecture configurations, normalized to native execution on a single-core machine. The
time required to simulate most of the benchmarks on 1024-core architectures is on the
order of 104 compared to native execution.

The higher simulation time for Barnes-Hut and Connected Components are due to
the distributed-memory architecture simulations. We recall that, on these architectures,
the run-time system is responsible for handling shared data. It actually implements data
access as an exclusive operation, requiring data transfer to the core that needs them,
whether the access is a read or a write. Algorithms that frequently access shared data will
thus cause a high number of messages to be exchanged. On this respect, Quicksort, SpMxV
and Octree, which exhibit no or little data dependencies, are much more representative
of the simulator intrinsic behavior and performance. A regression shows that the average
simulation time increases as a square law with a small coefficient.

SiMany is considerably faster than previous approaches. The best sampling and
statistical simulation techniques so far [191, 205] can produce a 104 simulation time
speedup for 4 cores relative to cycle-level simulation, whose best normalized simulation
time is currently around 106, giving a net simulation time of 102. SiMany simulates our
benchmarks on 4 cores with a normalized simulation time of 26, at the expense of some
accuracy for this low number of cores. The recently proposed Graphite simulator [182]

14.2. Experimental Results and Hardware Exploration 195

100

101

102

103

104

105

106

 1 8 64 256 1024

Si
m

ul
at

io
n

Ti
m

e

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.3: Average Normalized Simulation Time.

reaches a normalized simulation time of 1751 in average to simulate a 32-core architecture
using 8 host cores, which, scaled to a single-core, gives a simulation time of around 14000.
SiMany’s corresponding normalized simulation time is 112 with only one host core being
used.

14.2.3 Speedups on Regular 2D meshes

Figure 14.4 (following page) presents the benchmark virtual time speedups on our shared-
memory architecture type, as explained in Section 14.1.1, whereas Figure 14.5 (page 197)
presents results obtained on distributed-memory architectures.

On the optimistic shared-memory architectures, Dijkstra performs best and exhibits
super-linear speedups (up to 4282 at 256 cores), which is purely due to the algorithm
and the data sets used. Indeed, more cores enable more parallel tasks which increases
the probability to tag nodes optimally, which, in our algorithm, leads to giving up non-
interesting paths quicker. SpMxV scales well up to 256 cores, reaching a 153.6 speedup,
but then hits a ceiling and doesn’t take advantage of more cores, with a speedup of 157.6
at 1024 cores, essentially because of the size of the data sets we used. Performance of
Quicksort may be surprisingly bad. In fact, the theoretical maximum speedup reachable
by Quicksort is log2(n)/2 for balanced arrays of n elements. We used lists of 100,000
elements, in which case the ideal speedup is about 8.30. In practice, we reached no more
than 5.72. Figure 14.6 (page 197) complements these results by presenting speedups
obtained on a few balanced lists of 104 to 106 elements. A least-squares regression on
these results gives the formula 0.95 log2(n)/2 with 2% error. Barnes-Hut’s performance
tops at 15.1 (256 cores) and Octree’s at 6.9 (1024 cores). It is interesting to note that,
for most benchmarks, going from 256 to 1024 cores doesn’t make a big difference and

196 Chapter 14. Experimental Evaluation

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.4: Regular 2D Mesh Speedups (Shared-Memory).

sometimes even lowers performance a bit.
On the realistic distributed-memory architectures, Quicksort’s and in particular

SpMxV’s results do not significantly change, because they cause little data movement
and no contention on cells. Unsurprisingly, the performance of data-contended bench-
marks, such as Dijkstra and Connected Components, collapses, showing how great these
benchmarks’ sensitivity to communication costs is. Connected Components’s performance
actually degrades above 8 cores, despite the run-time system’s load-balancing property.

14.2.4 Simulation Time/Accuracy Trade-Off

We hereby study the practical effects of varying the maximum local drift parameter D.
In addition to the baseline (D = 100), experiments were performed with values of 50,
500 and 1000 for the shared-memory architecture type. As explained in Section 12.1.3,
increasing D means relaxing the spatial synchronization, allowing to simulate each task
for a longer time window, which increases temporal and spatial locality and potentially
causes more messages to be processed out-of-order.

Figure 14.7 (page 198), Figure 14.8 (page 198) and Figure 14.9 (page 199) show the
virtual speedup results for D equal to 50, 500 and 1000 respectively. These results are
to be compared to those of Figure 14.4, which where obtained with the baseline value of
D. Figure 14.14 (page 201) summarizes the average speedup differences to the baseline
values. Only the values for 64, 256 and 1024 cores are considered in the average, since
they give the interesting part of the benchmarks’ scalability profile and exhibit the highest
variations.

Similarly, Figure 14.11 (page 200), Figure 14.12 (page 200) and Figure 14.13 (page 201)

14.2. Experimental Results and Hardware Exploration 197

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.5: Regular 2D Mesh Speedups (Distributed-Memory).

of elements 104 105 106

Practical Speedup 6.46 7.96 9.26
Theoretical Speedup 6.64 8.30 9.97

Figure 14.6: Speedups for Quicksort with Balanced Arrays.

show the normalized simulation time results for D equal to 50, 500 and 1000 respectively.
The baseline results are given in Figure 14.10 (page 199). Figure 14.15 (page 201) summa-
rizes the average relative simulation time difference for all values of D with respect to the
baseline for all benchmarks (the average is over 64, 256 and 1024 cores).

Lowering D to 50 increases simulation time for all benchmarks (17.1% on average),
as expected. Speedup variation is only a few percents for each benchmark. Raising D
to 1000, on the other hand, speeds up simulation by an average 2.33 factor (4.04 when
considering only 1024-core architectures).

Figure 14.14 (page 201) shows that only Dijkstra and Connected Components, whose
algorithms are highly dependent on the tasks’ timings, exhibit speedup variations of more
than a few percents. They perform worse because simulation of cores is less intermixed
when D is high, which decreases the probability of exploring a good path quickly and thus
increases the amount of work to perform. By contrast, the performance of even relatively
contended cases (Barnes-Hut and Octree) doesn’t vary much (respectively −2.9% and
−1.1% for 1024 cores). Regular benchmarks practically don’t exhibit any changes. It is
thus interesting to increase D if it is known that the specific characteristics of a given
algorithm or application make it barely sensitive to timing variations.

198 Chapter 14. Experimental Evaluation

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.7: Regular 2D Mesh Speedups with D = 50 (Shared-Memory).

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.8: Regular 2D Mesh Speedups with D = 500 (Shared-Memory).

14.2. Experimental Results and Hardware Exploration 199

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.9: Regular 2D Mesh Speedups with D = 1000 (Shared-Memory).

100

101

102

103

104

105

106

 1 8 64 256 1024

Si
m

ul
at

io
n

Ti
m

e

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.10: Normalized Simulation Time for Regular 2D Meshes with D = 100 (Shared-
Memory).

200 Chapter 14. Experimental Evaluation

100

101

102

103

104

105

106

 1 8 64 256 1024

Si
m

ul
at

io
n

Ti
m

e

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.11: Normalized Simulation Time for Regular 2D Meshes with D = 50 (Shared-
Memory).

100

101

102

103

104

105

106

 1 8 64 256 1024

Si
m

ul
at

io
n

Ti
m

e

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.12: Normalized Simulation Time for Regular 2D Meshes with D = 500 (Shared-
Memory).

14.2. Experimental Results and Hardware Exploration 201

100

101

102

103

104

105

106

 1 8 64 256 1024

Si
m

ul
at

io
n

Ti
m

e

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.13: Normalized Simulation Time for Regular 2D Meshes with D = 1000
(Shared-Memory).

D Barnes-Hut Conn. Comp. Dijkstra Quicksort SpMxV Octree

50 1.2% −1.6% 1.6% 0 % −0.2% −5.4%
500 −0.9% −17.8% −5.1% 0 % 0.1% 2.5%
1000 −2.4% −38.6% −16.1% 0.1% 0.5% 2.9%

Figure 14.14: Average Virtual Time Speedup Variations with D (Baseline: D = 100).

D Barnes-Hut Conn. Comp. Dijkstra Quicksort SpMxV Octree

50 6.9% 22.2% 11.2% 12.3% 55.1% 2.1%
500 −56.2% −38.3% −44.3% −33.8% −65.2% −33.4%
1000 −65 % −54.1% −56.8% −46.1% −72.2% −40.4%

Figure 14.15: Average Simulation Time Variations with D (Baseline: D = 100).

202 Chapter 14. Experimental Evaluation

14.2.5 Clustered Architectures

Figure 14.16 (facing page) presents speedup results on a clustered distributed-memory
architecture comprising 4 clusters. Intra-cluster latency is twice as low as the one used
for our regular 2D mesh experiments, whereas inter-cluster latency is 4 times higher.
Data-contended benchmarks’ performance varies the most. For low numbers of cores,
clusters are small and the inter-cluster latency dominates. Results in this case are better
on the regular meshes. This situation reverses as the number of cores grows. The average
turning point for all benchmarks is around 78 cores, with however large disparities between
them (from 15 for Barnes-Hut to 139 for Connected Components). Virtual execution
speedup on 1024 cores decreases by 28.7% for Connected Components and by 25.6%
for Dijkstra, whereas it practically doesn’t change for Quicksort (−2.2%) and SpMxV
(−0.2%). These results are coherent with the fact that, in the former benchmarks, tasks
continuously exchange vertex data, whereas in the latter ones, tasks don’t communicate
much and sensitivity to network latency is low.

Figure 14.17 (facing page) shows the speedup results for the experiments with 8
clusters. Results for 8 cores were not computed. 8 clusters on 8 cores implies that each
core is a cluster on its own, with the consequence that all links have the same latency
(the inter-cluster one). Therefore, the results would have been similar to those obtained
for regular meshes with a different link latency for all links. The speedup variations,
with the results for 4 clusters as a reference, are presented in Figure 14.18 (facing page).
Compared to the results for 4 clusters, the individual speedups obtained are all lower
except for SpMxV at 256 cores, whose speedup stays practically the same (+0.1% variation).
The variations are lower as the number of cores increases, coherently with the fact that
the ratios of inter-cluster links over intra-cluster ones for 4 and 8 clusters are getting
closer3, as shown in Figure 14.19 (page 204). The average variation is significant for
Connected Components and Dijkstra, with −13.1% and −15%. By contrast, Quicksort
and SpMxV have the lowest variations: −1.1% and −0.2%. As for the 4 clusters case, the
variations between regular meshes and 8-cluster ones are coherent with the benchmarks’
characteristics.

14.2.6 Polymorphic Architectures

Figure 14.20 (page 204) presents results on a polymorphic architecture in which one core
out of two is slower and the other faster than in the tested uniform meshes, in a way
that preserves the theoretical computing power of the mesh (see Section 14.1.1). The
Dijkstra’s and SpMxV’s performances decrease slightly. The decline is higher for the other
benchmarks (−18.8% on average for 256 and 1024 cores). The run-time system, which
is not particularly tuned for such architectures, has a harder time at balancing the load
because the slower cores can’t spawn tasks at the same rate as faster cores.

3Their ratio, (N − 2)/(N − 3), with N being the side size of a square mesh (here, 8, 16 or 32), indeed
rapidly converges to 1.

14.2. Experimental Results and Hardware Exploration 203

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.16: Clustered 2D Mesh Speedups with 4 Clusters (Distributed-Memory).

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.17: Clustered 2D Mesh Speedups with 8 Clusters (Distributed-Memory).

of Cores 64 256 1024

Speedup Variation −9% −6.6% −3.5%

Figure 14.18: Average Speedup Variations From 4 to 8 Clusters.

204 Chapter 14. Experimental Evaluation

of Cores 64 256 1024

4 Clusters 85.7% 93.3% 96.7%
8 Clusters 71.4% 86.7 % 93.5%

Figure 14.19: Ratios Intra-Cluster Over All Links For 4 and 8 Clusters.

100

101

102

103

 1 8 64 256 1024

Sp
ee

du
p

of Cores

Barnes-Hut
Connected Components

Dijkstra
Quicksort

spMxV
Octree

Figure 14.20: Polymorphic 2D Mesh Speedups (Distributed-Memory).

205

Chapter 15

Related Work

The traditional major problems in simulation are efficiency and accuracy [263]. Effi-
ciency essentially sets the trade-off between the accuracy, the size and complexity of the
architecture being simulated and the size of the programs being run on this architecture.

15.1 General Discrete-Events Simulation

The virtual time concept was initially introduced under the denomination of logical clocks
by Lamport in a seminal article about the ordering of events in a distributed system [164].
This article pointed out that events specified in a distributed program are in essence weakly
ordered. Executing the program will yield a total ordering, imposed by the computing
system’s physical details and clocks. Different executions on different machines, and even
sometimes on the same machine, will lead to different total orderings and potentially
different outcomes or perceived results. Their only guaranteed common subset is the
program’s weak order specification, a required property to ensure correct execution. The
end of the article deals with the possibility of capturing the global order of a distributed
execution by using distributed physical clocks that don’t drift too much apart.

Based on this concept, Chandy and Misra introduced distributed simulation [58], meant
to simulate distributed programs without the need for any global control, which obviously
would hinder scalability. But, although they share the same logical clock concept, the
intent behind distributed simulation is actually the opposite of Lamport’s reasoning: The
point is not so much in highlighting the different global orderings a distributed program
can give spring to than actually constructing one of them from the program specification,
as a physical machine executing the program would do.

The simulation technique presented in this paper is part of a set of such constructions
commonly referred to as conservative distributed simulation. Indeed, processes are allowed
to make progress to some time t only when they have received all messages that completely
determine the process’ behavior up to t. Advancing processes may generate new messages
that are delivered in order to each other process. The different processes are simulated
by independent physical machines between supposed interaction points. The implicitly
constructed global ordering of events here depends on the order in which non-blocked

206 Chapter 15. Related Work

processes are simulated, i.e., on physical characteristics of the distributed machines used
to run the simulation.

This technique seems very natural but its implementation is not trivial. While the
arrival of a message with a given time stamp t offers the guarantee that the initiator
process has progressed at least up to t, because of message ordering, the absence of such
messages is uninformative and can lead to deadlocks. As an example, let us consider a
process PA with current time tA that may receive messages from at least 2 processes PB

and PC . PB may have sent a message at tB > tA, but PA may not start processing it
and raise its clock, simply because of the possibility that PC may send it a message at tC
with tA ≤ tC < tB, in which case processing first the message from PB would be wrong.
Incoming messages from PB are thus blocked in the meantime. If this happens to block
in turn another process PD, on which PC depends to output a message to PA, then the
system is deadlocked. Note that this can happen in a very simple acyclic network. The
possibility of such deadlocks is actually tied to the use of bounded-length queues and the
conservative simulation rules.

Chandy and Misra proposed several ways to deal with deadlocks. In the original paper,
they introduced NULL messages, which are sent by a process Pi that is making progress
but has no real messages to send to some other processes. NULL messages simply contain
the timestamp ti of Pi, informing the receiving processes of Pi’s progress. They can be
shown to eventually allow the simulation to continue [58]. There may be, however, a huge
number of them exchanged, particularly when processes are idle most of the time.

Another approach is to let deadlocks happen and solve them after the fact rather than
trying to prevent them by sending NULL messages. Chandy and Misra also proposed a
scheme based on this paradigm. It relies on some adaptation of the Dijkstra-Scholten
algorithm [77] to work with CSP-like processes in order to detect that a deadlock occured.
It essentially maintains a tree of engaged processes, i.e., processes still taking part in the
current computation. The root of the tree is the global controller. Only leaves of this
tree may become disenganged when they block, causing a message to be sent to their
father. When the root of the tree finally receives such a message, it knows that the other
processes are all blocked. This algorithm is described in [60].

When the global controller has finally received a signal indicating a deadlock, it wakes
up all process to make them exchange information about their real progress and compute
the new time to which they can advance. It can be shown [59] that at least one of them
will then notice that it can resume execution because it can’t be influenced any more by
any other processes.

Chandy and Misra later proposed a completely distributed algorithm to detect dead-
locks in [61]. One may contemplate to use it instead of the aforementioned global detection
algorithm as a first step. But doing so without modifying the second step as well would
be vain, since the latter still requires a global trigger. A process noticing the deadlock
could trigger clock advances in the set of deadlocked processes it belongs to. As far as we
know, nobody has proposed such a scheme yet.

Our approach’s virtual time update messages are similar in nature to NULL messages.
Their role is to indicate processes’ advances to other processes. However, they are the sole

15.1. General Discrete-Events Simulation 207

source of such information in our scheme, in which we intend to model a real network and
associated interfaces. A message arriving at a node doesn’t have the same timestamp as
when it was sent. Its timestamp increase depends on the path it took through the network,
which may be affected in non-trivial ways by contention and routing algorithms. Thus, the
receiving process can’t devise the virtual time of the sending process simply by looking at
the message timestamp. Moreover, because of spatial synchronization, processes need only
exchange timing information with their immediate neighbors. This considerably reduces
the number of virtual time update messages created compared to NULL messages, while
still providing a (weaker) global drift bound. Modeling a real network would be possible
with Chandy and Misra’s method, but this would require introducing processes standing
for each real link, multiplying the number of necessary processes by the average network
graph arity and adding up more NULL messages to the picture.

Jefferson coined the “virtual time” expression as part of a new framework’s descrip-
tion, Time Warp [139], allowing processors in a system to be simulated in an even more
independent fashion. As opposed to conservative distributed simulation techniques, Time
Warp was the first optimistic one. Indeed, processes simulated within it only wait for the
next incoming message, and handle it as soon as it arrives. However, messages may not
actually reach a process in order of their virtual time stamps, since the ordering depends
on the relative speed at which processes are simulated. To guarantee a completely faithful
simulation, the Time Warp framework requires the possibility of canceling the effects of
previously processed messages if a new message with lower virtual time comes in later.

This cancellation is called a rollback. It is implemented in Time Warp by keeping
for each processor an history of saved states (one before each new message processing)
along with their virtual time, which requires some sort of checkpointing. Since processed
messages may in turn have generated other indirect messages, a queue of anti-messages
corresponding to those also has to be maintained so that the simulator can cancel the
initial message processing. After a rollback to an early state, the anti-messages stamped
with a comparatively higher virtual time are sent. When they arrive at processes’ message
queues, the system looks if the associated message is still in the queue. If it is, the message
has not yet been processed and is simply removed from the queue. If it is not, the receiving
process rollbacks to the anti-message’s virtual time.

The amount of required history per process raises with the number of exchanged
messages. As histories and anti-messages queues grow too large, global resynchronization
must happen. At this point, the minimum virtual time of all actors, called the global
virtual time, is computed and broadcasted, which requires several broadcasts in all the
proposed variants [217]. Each state or anti-message that has a comparatively lower time
can be discarded. No rollback will ever need them since all new messages will be necessarily
stamped with a greater time than the global virtual time.

Compared to Time Warp, our approach differs on two main points. First, synchroniza-
tion between actors is always done locally. No global virtual time is ever computed and
broadcasted. Instead, a simulated core knows the current virtual time of its neighbors
and only uses this knowledge to determine if it is late or early. We call this spatial
simulation. Second, we go one step further than optimistic execution, by freeing ourselves

208 Chapter 15. Related Work

from the need to do any rollbacks and anti-messages generation. We define a local
bounded-length virtual time window inside which received messages are allowed to be
processed out-of-order with respect to their virtual time of reception. Within that time
window, messages can then be processed as soon as they arrive and there is no need for
checkpointing because no rollbacks ever need to be performed. This speculative technique
considerably increases simulation efficiency and speed, at a reasonable expense of accuracy,
as was shown in Section 14.2.

Optimistic time windows applied to the Time Warp framework, as proposed in [237],
are similar in spirit than our speculative time windows, but serve a different purpose and
are implemented quite differently. They are used to limit optimistic message processing,
in the hope to restrain the amount of rollbacks that will have to be performed if too many
messages are processed out-of-order. Let us remind that a single message cancellation
may require lots of rollbacks, especially if processes have gotten more out of synchrony.
Our local time drift limits the number of messages that will be processed out-of-order.
In our case, the drift thus controls the degree of accuracy, in addition to the potential
parallelism and the simulation performance. What is more, the optimistic time window
implementation consists in allowing processing of messages that have a virtual time t
smaller than the current global virtual time G plus a fixed window size parameter ω:
t < G+ ω. As discussed earlier, the computation of G requires a global synchronization,
contrary to our distributed spatial approach. The bounded lag approach [176] similarly
requires several synchronizations and broadcasts. Moreover, it is unefficient when processes
may affect each other in a short virtual time frame, i.e., when network links’ latency is
low.

The interested reader can find additional details on the field in the following survey
papers: [98] by Fujimoto and [15] by Bagrodia.

15.2 Single-Core Simulation

There is a large body of work describing how to simulate single-core machines. We hereby
do not pretend to be exhaustive, but tried to mention the most influential papers in
the field in the past ten years. The main motivations for simulation are to be able to
design and test hardware without having to produce real hardware prototypes, which are
expensive and hardly modifiable. There have been essentially two directions of research in
the simulation field for single-cores: Speeding up the simulation and facilitating simulator
implementation and reuse.

15.2.1 Monolithic Simulation

The free and open-source SimpleScalar tool suite [45] has had a considerable success
in providing a framework for in-order and superscalar processor simulation. It is an
execution-driven simulator, i.e., instructions are executed by a realistic architecture model.
It is written in C and has been optimized for speed, is quite portable to POSIX operating

15.2. Single-Core Simulation 209

systems, easily tunable and relatively extendable with respect to microarchitectural mech-
anisms, such as cache or branch prediction. The speed it can reach is several hundreds
thousands of instructions per second. A large majority of microprocessors studies since
then has been performed using it.

SimpleScalar has several limitations. For example, it has an overly simplistic memory
model. But the most important limitation is that it is a monolithic simulator, where
most components are tied up and communicate through shared variables. This makes
it hard to change a given component because doing so may impact the code of all other
components. Because coding a simulator and making sure it is reliable can take a long
time, researchers and engineers strive to reuse code pieces when studying new mechanisms
or evolving already established processors. This first lead to the separation of hardware
pieces into modules inside the simulator, for cache hierarchy and branch prediction, in the
ASIM [86] framework.

15.2.2 Modular Simulation

SystemC [116] is an industry-developed framework promoting the reuse of hardware com-
ponents’ simulators through common interfaces and objects. Schematically, components
are separate modules. They declare ports and communicate through them with other
modules. Ports are connected to other ports and exchange signals thanks to the underlying
channel. Ports present to their module an interface, which the module must use, specifying
the possible operations on the associated channel. SystemC is not tied to a particular
level of abstraction, but it is somewhat inconvenient to simulate very low-level hardware
details (tansistors) with it.

The Liberty Simulation Environment (LSE) [253] introduced a language to describe
how modules operate together to form a complete architecture. This description allows
to statically discover constant control signal or whether signals going through a single
port are actually managed by the same code block. Also, with enough information on
inputs/outputs dependencies, optimal static block scheduling can be devised. In other
cases, static scheduling is complemented by dynamic scheduling. These optimizations are
described in [203]. It is shown that they can more than compensate for the overhead due
to the modular implementation.

UNISIM [14] is a framework aiming at building simulators from reusable components
including architectural control parts that are traditionally hard to break down. To achieve
this, it builds on techniques first proposed by LSE [253] and Microlib [206]. Its design
allows the reuse of existing simulators by wrapping them inside UNISIM components. To
speed up simulation, UNISIM integrates in its engine support for established techniques
such as sampling and TLM, which we discuss below. The UNISIM engine is based on
SystemC.

210 Chapter 15. Related Work

15.2.3 Speeding up the Simulation

Sampling

Simulation sampling is a general approach by which programs are only simulated during
enough and/or representative short phases so that the results are deemed representative.
It intuitively assumes that the behavior of a program during an interval is directly related
to the code being executed during this interval. Basic block execution frequencies, or
other architecture-independent metrics, are measured in fixed sized instruction intervals
using functional simulation or an instrumented run of the program. These statistics can
then serve to find program phases by tracking their changes as intervals get executed.
Finally, a representative phase is chosen and simulated, which gives acceptable errors
compared to the whole execution for a range of metrics (under 8% for IPC1) [233].

Alternatively, metrics can be clustered in a small number of representative ones, indi-
cating that only a few significantly different behaviors actually occur during an execution.
Simulation of representative intervals only is shown to produce close results to a full
execution’s ones, e.g. for cache misses [161] or IPC in SimPoint [234].

Another kind of simulation sampling is statistical sampling, in which enough samples
are simulated so that they are deemed statistically representative of the whole execu-
tion. The choice of samples is performed randomly or systematically at fixed intervals.
SMARTS [259] used systematic sampling, as presented in [67], and performed architectural
warm-up before detailed simulation of samples in order to keep the cold start bias low.
This latter bias is due to no or insufficient knowledge of the micro-architectural state
(caches, pipeline) when the detailed simulation begins, because some of it, e.g., cache and
TLB states, may require a very long history to be realistic. Bias can typically be high
when fast-forwarding (purely functional simulation) is used between instruction ranges
where detailed simulation is performed.

Sampling typically yields errors of a few percent, with 10% as the worst-case, compared
to a detailed full program execution.

Statistical Simulation

Statistical simulation takes another approach to model program behavior on different
architectures. It collects statistics from a program detailed simulation that are later used
to generate a synthetic trace exhibiting the same statistical properties. This trace is
then fed to a trace-driven simulator that generates the desired metric, usually the IPC.
This approach was presented and refined by Nussbaum and Smith [195], Eeckhout and
Bosschere [83] and Oskin et al. [199] in the HLS simulator.

Collected statistics typically comprise the distribution of classes of instructions, where
each class determines which processor’s functional units are used, the distribution of L1
and L2 cache hits/misses for data and instruction, and the distribution of the distance
between dependent instructions. These distributions can be split into variants according

1Designates the number of Instructions Per Cycle.

15.2. Single-Core Simulation 211

to other parameters, such as the basic block size, the proximity to a branch instruction,
the particular register dependency type between instructions,

Statistical sampling usually exhibits an estimation error of up to 10% for IPC, if the
most elaborate mechanisms presented above are used.

Transaction-Level Modeling

Transaction-level modeling (TLM) was formally introduced by the Open SystemC Initia-
tive (OSCI) consortium with the goal to foster interoperability between abstract models
that communicate through messages rather than a handshaking protocol. In TLM ap-
proaches used for performance evaluation (Timed TLM or TTLM), each event in the
system is assigned a timing and the different components have to synchronize before
they can continue to make progress. The SystemC TLM 2.0 standard [197] proposes two
modeling styles so that component models can provide multiple implementations showing
up different accuracy/speed trade-offs.

The Loosely Timed style forces both data and timing results of a transaction to be
returned as soon as it is initiated. This modeling style allows a high simulation speed
and can thus be used for software development and functional verification. However, it
can’t allow to capture resource contention and its associated timing impact. Additionally,
the simulator still issues and processes relatively low-level transactions to interpret local
computation or control flow which is largely slower than our mostly direct code execution2.

In the Approximately Timed style, modeling a component requires that other events
be simulated or the current time advance enough so that the data and timing results of a
transaction can be computed. This style can capture hardware resource contention because
system components remain in lock step and is thus adapted to fine-grained hardware
modeling and study. On the simulation speed front, each transaction execution causes
several costly context switches and events ordering to happen. Moreover, components syn-
chronization happens at each transaction, which strongly limits the achievable simulation
speed. This style is thus not suitable to simulate a very large number of components.

The TLM principle can be applied outside of SystemC as well and need not rely on a
low-level implementation of handshakes through signals.

Emulation

Emulation is functional simulation, with the goal of executing programs as fast as possible,
sacrificing the internal modeling of hardware components. In general, such simulators
don’t allow to directly assess software and hardware performance. They are geared to
validation of large platforms and programs. They often provide virtualization and allow
full-system simulation. Some prominent examples are Simics [179] and QEMU [23].

2The TLM 2.0 whitepaper [198] reports reaching 50 millions of transactions per second. This is to
be compared with current processors with frequency ranging from 2 to 3Ghz and an IPC of about 1 in
practice.

212 Chapter 15. Related Work

However, they may be augmented with simple hardware models that allow rough
timing and/or the ability to generate traces that can later be fed to trace-driven simulators
to evaluate performance. Simics, for example, allows to study memory hierarchies by
generating traces of memory accesses. Those models, however, can at best provide an
order of magnitude estimate of performance.

15.3 Multi-Core and Many-Core Simulation

Multi-core and many-core simulations are difficult because of the number of hardware
components involved and their interactions. Simulators able to exploit the several cores
found in current machines linearly reduces the simulation time but don’t compensate for
the ever increasing number of execution units to simulate in many-core architectures, still
orders of magnitude larger.

Today’s best simulation speed using the techniques presented in Section 15.2 is still
slower than native execution by 2 to 3 orders of magnitude for single-core runs. In the
ideal case where they could be applied to multi-cores, it would be still practical, although
lengthy, to simulate several cores, but, as explained in Chapter 11, many-core architectures
would remain out of reach even for small benchmarks.

Unfortunately, the situation is less than ideal, because sampling techniques do not scale
yet, and may not scale at all beyond hundreds of cores, as we will see in Section 15.3.1.
So, all previous approaches to multi-processor or multi-core simulation rely on discrete-
event simulation or other ad-hoc techniques (respectively described in Section 15.3.2 and
Section 15.3.4). Very recent frameworks have introduced relaxed synchronization. We
review them in Section 15.3.3.

15.3.1 Sampling Techniques May Not Scale

Unfortunately, sampling techniques can’t be readily applied to multi-core, because of the
influence of scheduling and thread interactions on performance. Sampling was proposed
for the SMT case introducing the matrix of observed co-phases [31], i.e., the combination
of the different phases the threads may be in concurrently. Phases are determined for
each thread individually using SimPoint. Then, threads are simulated jointly. As they
enter a new co-phase, the simulator determines if a similar co-phase has already been
simulated in detail. If this is the case, the simulator identifies a co-phase class the new
co-phase belongs to, and both threads may then be fast-forwarded out of the co-phase
using the relative speeds provided by the earlier representatives of this class. Different
update policies for the relative speed statistics are possible. The simplest is to store
the first representative’s behavior only and use it to systematically fast-forward similar
co-phases encountered afterwards. Another approach is to continuously update a class’
statistics with the numbers obtained by simulating in detail each co-phase of this class
out of a given number.

An investigation of how statistical sampling could be applied to multi-threaded sim-
ulation is proposed in [154]. This paper also presents an interesting study about how

15.3. Multi-Core and Many-Core Simulation 213

ideal sampling, i.e., with sample values obtained on a real multi-threaded machine, com-
bined to fast-forwarding, differs from the real observed performance, thus assessing the
fast-forwarding assumption alone, and not the effects of detailed simulation or sample
length. The conclusion is that the interval between two detailed simulation should not
exceed 1 to 10 millions of instructions for a 2-way SMT in order to keep errors under a few
percents. This paper also proposes a new functional warm-up technique (Monte-Carlo),
but it performs worse than the SMARTS functional warming approach (caches and branch
predictors).

These approaches, however, exhibit several drawbacks. First, they have only considered
simulation of 2 cores, and, in the first, simulation of independent programs, not taking
into account interactions between threads sharing memory regions. Second, albeit the
number of really observed co-phases is lower than the product of the number of phases in
each program, it is only so by a constant factor. Third, detailed simulation needs to be
performed for each co-phase matrix entry.

The suspected exponential growing rate of co-phases with the number of simulated
cores is confirmed experimentally in [191], although it is successfully mitigated up to
16 cores in the paper by allowing more samples to be clustered together. Indeed, using
a threshold on their Hamming distance, samples that differ only by a small number of
threads being in different phases are grouped. This technique, however, doesn’t eliminate
the exponential nature of the growth in the number of co-phases, which doesn’t bode well
for its scalability beyond the tested number of cores.

Perelman et al. [205] developed a parallel program phase analysis in which individual
threads’ instruction intervals are clustered into the same set of phases, instead of a
separate set per thread. This approach uses the same number of overall phases (between
5 and 10) as was previously used for a single thread in experiments up to 4 cores. The
paper also mentions an application of this clustering to simulation of parallel programs
using simulation points. However, the precise experimental setup, and in particular how
architectural state is warmed up, is not described. One simulation point is chosen in each
thread to represent a given phase. All the simulation points are then fully simulated,
presumably jointly with the other threads’ corresponding intervals. The results are then
appropriately weighted to yield an overall value for execution time (or IPC). It seems that
this method requires that the architectural state be saved at each simulation point’s start.
Moreover, it doesn’t take into account the interaction between the threads’ concurrent
phases when choosing the intervals to simulate. The architectural variability this scheme
can support thus appears to be extremely limited.

SimFlex [256] is an extension of statistical sampling to multiprocessors for servers
running throughput applications. It benefits from the fact that lots of thread interleavings
are exercized under full load during a short period of real execution time (around 30
seconds). Correlation between the number of transactions per second and the number of
user instructions per cycle executed is further exploited to reach practical simulation time.
However, these techniques are not applicable to general multi-core simulation.

In conclusion, sampling in multi-core simulation exists but doesn’t support a large
number of cores. The co-phases number increases exponentially with the number of

214 Chapter 15. Related Work

threads. Without a major breakthrough in the field, sampling will be of no help for
many-core architectures.

15.3.2 Conservative Discrete-Events Based Simulators

The Wisconsin Wind Tunnel [213] is a parallel discrete-event simulator for cache-coherent
shared-memory machines, designed to run on a specific machine (CM-5, a supercomputer
with SPARC processors, back in the 90s). It features a very simple model of instructions
(adapted to RISC architectures) with a fixed cost of one cycle, except when a cache request
misses. The program’s code is instrumented and then directly executed. Instrumentation
allows to count the virtual cycles elapsed and to give control back to the simulator when
remote memory accesses that the local cache can’t service are issued. Only a simple and
unrealistic network topology is assumed, where all processors are directly connected to
each other processor with a dedicated link having a fixed latency. Except queuing delay,
no contention constraints or bandwith limits are enforced.

The discrete-event technique used is the conservative breathing time bucket one [239].
Each host processor simulates a target processor for the duration of a quantum, specified
as a count of target cycles. This quantum is taken smaller than the chosen simulated
network links’ latency. Once all host processors have finished executing a quantum, they
have to globally synchronize, ensuring that remote messages are effectively processed.
Then, the simulation of the next quantum can begin. This provides lookahead because it
is known that no messages sent during a quantum can affect other target processors before
the next quantum. The CM-5 features a hardware reduction mechanism, implementing
the global synchronization with low latency.

The Wisconsin Wind Tunnel II [190] increases the portability of the WWT approach
on two aspects. First, it uses a mostly machine-independent tool for modifying/injecting
code to instrument the simulated program. Second, messages are exchanged using SAM,
a communication library using active messages when running on clusters of workstations
or shared-memory on SMPs. Modelization is the same as in the original WWT, except
that contention is modeled at the network interfaces.

Still, active messages are not found on commodity hardware for current popular
OS3, and the disproportionate increase of computing power compared to network latency
reduction makes them more necessary than at the time the approach was proposed. What
is more, results show that the approach can scale reasonably up to 8 processors (up to
5.4 speedup), but that the dominant performance factor becomes the idle time at global
synchronization because of the load imbalance accross processors when they process their
quantum.

BigSim [266] is a many-core optimistic discrete-event simulator (see Section 15.1). Our
approach shares with it the requirement to annotate instruction blocks to compute the
simulation time. BigSim uses a simpler network model that completely neglects contention.

3For Linux, the GAMMA project [65] provides networking with low-latency on Ethernet links for only
2 kinds of network chips. It also requires that another card is present for regular IP traffic. Significant
improvements in latency may come with the advent of 10 Gb/s Ethernet.

15.3. Multi-Core and Many-Core Simulation 215

In contrast, we do not model global contention in the network, but we do model contention
on individual links.

Part of the efficiency of BigSim seems to come from the chosen class of simulated
applications. Indeed, the latter includes linear programs, in which threads receive messages
in fixed programmed order, MPI programs following the simple pattern of sequences of
computations followed by a global barrier, and programs coded with Structured Dag-
ger [149], a language allowing to specify some kinds of (non-)dependencies, on top of
the Charm++ [150] programming environment4. By reducing the possible messages
and interactions orderings, dependency violations are infrequent and rollbacks can be
performed by simple timing adjustements.

The simulator itself is parallelized and scales well to hundreds of processors. Since our
approach doesn’t perform rollbacks and enforces a relaxed synchronization, the BigSim
results bodes well for its scalability if parallelized. BigSim experiments have been con-
ducted on a supercomputer, though, and it remains to be seen if such scalability can be
sustained on clusters of workstations. The paper provides no hints on the simulation time
needed for thousands of processors.

15.3.3 Relaxed Synchronization

The SystemC TLM 2.0 standard [198] complements the Loosely Timed modeling style (see
Section 15.2.3) by introducing temporal decoupling, a technique that allows a component
to be simulated during a fixed amount of cycles in a row, called a quantum, without
synchronization with other components, provided that execution stays correct.

For example, a processor may continue its virtual execution as long as it operates on
data located in its L1 cache. Some cache line invalidations may be delayed in this case,
which slightly changes execution but doesn’t affect the result of well-written programs.
The aim of this technique is to reduce the number of context switches and synchronization
points per executed instruction. However, as soon as the processor needs to communicate
with other architecture components, global synchronization still must happen, instead of
the local synchronization that we use.

SlackSim [63] is a CMP cycle-accurate simulator derived from SimpleScalar [45] and
designed to run Pthread applications. It provides a range of synchronization mecha-
nisms, from global barriers at every cycle to unbound slack where threads are simulated
completely independently without any synchronization. Between those two extremes, a
WWT-like quantum-based synchronization or a bounded slack scheme, where all threads
are allowed to go ahead of the current global time up to a fixed amount of cycles, are
selectable. The latter is similar to the Optimistic Time Windows in that the allowed time
window is global, although the window in this case corresponds to the allowed imprecision.
This can also be seen as an extension of the temporal decoupling practice in SystemC
TLM 2.0.

Graphite [22, 182] is an abstract simulator with lax synchronization. It goes further
4The Charm++ language and run-time system are detailed in Sections 5.3.2 and 10.4.4.

216 Chapter 15. Related Work

than SlackSim because processors/cores are allowed to make progress without reference to
a global time. Instead, they periodically check how much ahead they are with respect to
another randomly chosen process. If their clock is ahead of more than S, a configurable
slack parameter, they are put to sleep for a duration computed based on the local clock
advance speed observed so far, which represents the supposedly real simulation time
necessary for the other process to catch up. This synchronization technique is called
LaxP2P.

Compared to spatial synchronization, this technique doesn’t provide a fixed guarantee
about time drift. Also, cores have to communicate with the reference core they randomly
choose, which can be any other core, causing communication overhead in the whole
network. Provided that local time is checked often against enough referees, LaxP2P is
stricter than spatial synchronization, because other cores than the direct neighbors are
considered.

A priori, this property may translate into significantly more accurate results. This is
not the case in practice since messages between two cores necessarily pass by a chain of
direct neighbors. In other words, messages are transmitted along the same topology as is
used for spatial synchronization. With an appropriate tuning of the maximum allowed
local time drift T , it is not necessary to check for drifts between remote cores, because
they can’t influence each other in less than the minimum latency for a message to reach
one from the other. In practice, this means taking T equal or less than the minimal
link latency between two cores. But even for greater values, the occurence of large drift
between remote cores is rare enough so as not to change the virtual execution time result
significantly, as is highlighted by our experiments with varying T .

Finally, Graphite is largely slower than our simulator. It needs 80 cores to produce
speedups that are 10 times smaller, whereas our simulator has not been parallelized yet
and takes advantage of one core only.

15.3.4 Other Approaches

A bunch of other techniques have been applied to multi-core and many-core simulation.
Some of them are not specific to this particular problem, and can be applied to single-core
simulation as well.

Modular simulation (see Section 15.2.2) can be leveraged to speed up simulation of
CMPs on a CMP machine [204]. Components simulation is easily parallelized because
most of their state is internal and opaque to other components. Communication between
components is indeed mostly done thanks to explicit signals. By carefully scheduling the
components parallel execution, so that ones that would access the same resources are
not executed simultaneously and ones invoking common code are clustered into the same
thread, it is possible to avoid lock contention (and even sometimes remove locks) and to
better exploit the larger caches of CMPs.

This translates into super-linear speedups when simulating CMPs comprising more
than 8 cores. For the best scheduling algorithms explored in the paper, speedups nearly
reach the double of host cores when simulating 16 core CMPs (7.7 for 4 host threads).

15.3. Multi-Core and Many-Core Simulation 217

This simulation technique is however inherently limited by the number of cores of current
machines.

Interval analysis provides a mechanistic model of superscalar processors [88], i.e.,
an explicative model, by contrast with black-box/empirical models. On such balanced
processors, the sustained instruction issue rate is equal to the dispatch width except when
disruptive miss events, such as instruction cache misses, mispredicted branches or L2
misses, occur. An interval designates a steady execution flow period ended by a miss event
and the subsequently incurred penalty. Simple modeling of the different miss event types
is proposed and compared to actual measurements on a cycle-accurate simulator.

Thanks to this model, simulation can be performed more efficiently, at a more abstract
level [102]. In this approach, there is no need to simulate each pipeline stage. Instead,
only some parameters, such as dispatch width, reorder-buffer size and memory latency,
are used, coupled to a functional model, to produce accurate performance numbers, with
a 6% average error for single-core simulations (spikes to 16%) and a 4.6% average error
(spikes to 11%) on the reported execution time for multi-core simulations up to 8 cores.
The simulation speedup compared to pure cycle-level simulation is a little less than 10.

The COTson team at HP labs proposed a technique to simulate a thousand of cores
with reasonable speed in [186]. Its main contribution is how a trace of events generated
thanks to a full-system single-core simulator is fed as multiple streams of instructions
representing the cores to a timing simulator. It leverages threading information provided by
the guest OS in the first simulator to constitute these streams. Compared to our approach,
simulation is slightly more detailed at the level of individual processors and their caches.
However, it assumes a perfect memory subsystem, i.e., that all processors are directly
connected to the same memory, that they experience the same access latency to it and that
bandwidth to memory is unlimited. Moreover, scheduling arbitrations and communications
between threads are tied to the way the guest OS performs thread scheduling, leading to
dependencies to the host machine’s number of cores, to the quantum value and to several
other OS implementation details whose influence has not been evaluated. Additionally,
the approach is still slower than ours by 1 to 2 orders of magnitudes for 64 to 256 cores,
the similar timings obtained for 1024 cores being due to the inefficiencies of our run-time
system that automatically moves data at each access. It also exhibits no architectural
variability, being limited to pure shared-memory and homogeneous architectures. Finally,
the presented results have not been validated against a more accurate implementation of
the simulation model, though a comparison with the originally reported scalability for
SPLASH-2 benchmarks [258] is performed.

218 Chapter 15. Related Work

219

Chapter 16

Conclusion And Future Work

In this Part, we presented an abstract simulation technique that allows to simulate thou-
sands of cores with a considerable speedup (102 or more) over existing flexible approaches.
It combines spatial synchronization, which is, to our knowledge, the first completely dis-
tributed and local synchronization approach, with abstract modeling and direct execution
to achieve unprecedented speeds while ensuring realistic simulation. By comparing the
results of SiMany with those of a cycle-level simulator up to 64 cores and by verifying
that several expected behavior variations for well-known benchmarks actually occur, we
showed that the main trends are successfully captured. The analysis of accuracy supports
our claim that simulating the microarchitecture’s innermost details of processors is less
important to many-core than to single-core simulation, in an architecture exploration
context.

We also demonstrated how SiMany can be used to quickly explore different kinds
of architectures, such as polymorphic cores or clustered networks with shared or dis-
tributed memory, and to study the behavior of software on them. An increasing number
of researchers are taking the path of heterogeneous architectures to take advantage of
cheap silicon. We believe that the results we obtained for the polymorphic and clustered
architectures could be improved substantially with specific scheduling policies that would
take into account the latency and computing power disparity among cores.

More data should be gathered about forecasts from discrete-event simulators starting
from around a hundred of cores, the approximate threshold from which cycle-accurate
simulations would take so much time that they cannot practically be conducted. These
data could come from other simulator implementations or from actual many-core hardware,
e.g., made out of FPGAs. They would help the community check the accuracy of absolute
results for a high number of cores, beyond trends.

Finally, the spatial synchronization scheme we presented seems especially suited to
parallel simulation because cores can be simulated independently within their locally
allowed time window. A preliminary study indicates that most often, at least from
networks with 64 cores, enough cores can be simulated during a non-null time window to
keep all cores of current multi-core host machines busy. Whether this property can be
leveraged to improve again SiMany’s efficiency remains to be investigated.

220 Chapter 16. Conclusion And Future Work

221

General Conclusion

222

General Conclusion 223

Contributions

In this thesis, we have started by presenting Capsule, a general parallel programming
environment designed to exploit current multi-core processors. It is an enhancement of
the proposal by Palatin [201], keeping at its heart the fundamental principles of task-
based programming and conditional parallelization and augmenting them with simple
but powerful coarse-grain task synchronization based on the concept of synchronization
groups. Capsule provides to programmers a small set of simple-to-grasp and expressive
platform-independent primitives, effectively easing parallel programming compared to
traditional paradigms and their implementations, such as OpenMP [41] or MPI [94], and
even more modern ones, such as TBB [133].

We have developed an accompanying portable all-software run-time system that imple-
ments the programming interface very efficiently. It can obtain performance results with
microbenchmarks and regular programs that are similar to the original version designed
in hardware. It is tuned towards embedded systems and programs with abundant regular
or irregular parallelism. Experiments on a small to moderate number of cores show that
it can obtain linear speedups while significantly reducing the execution time variability of
parallel programs compared to a simple parallelization approach. An important application
of these results is to enable the efficient parallelization of soft real-time programs on
embedded systems. We have performed additional experiments to quantify the influence of
the run-time platform on program performance, in particular the influence of the hardware
platform and that of task granularity.

In a second part, we have adapted the Capsule environment and run-time system
to distributed-memory architectures, which we foresee as the likely future of many-core
architectures. First, we have proposed a data structuration and manipulation model with
the aim to simplify distributed programming. It allows the run-time system to transpar-
ently manage data and their location according to accesses performed by programs, in
the context of dynamic task-based environments for which it is generally not possible to
know in advance which core will execute a particular task. The programmer only specifies
how structures are related and which portions are accessed. It does not have to manage
data location explicitly, which would require a knowledge of the particular architecture(s)
programs are run on, impairing portability.

Compared to some traditional approaches like distributed-shared memory, it provides a
data consistency model adapted to user-defined structures. It also opens up the possibility
for the run-time system to exploit links between structures for data placement. A possible
application of this property is intelligent data prefetching. Compared to distributed
objects, our model is a pure data model which does not provide support for any particular
object-oriented paradigm. It is thus free of the associated overhead and can be used also
for very small structures. Finally, compared to languages and libraries proposing a set
of predefined high-level data structures (like lists, arrays, sets, etc.), it does not force
programmers to use the predefined structures to benefit from parallel treatment, which
may require cumbersome program transformations.

The second adaptation of Capsule we contributed concerns task management. We

224 General Conclusion

have proposed a class of mechanisms to implement fast probe and divide, work spreading
and global load-balancing for distributed architectures. In order to avoid any scalability
barrier, all these mechanisms are distributed and local. They permanently balance the
available load using the push paradigm, by contrast with work-stealing techniques, over
which we showed they have several advantages. Their local control rules are diffusive and
gradually lead to a global balance of available tasks over all cores. We have shown in Li
et al. [173] that they provide more scalability than the original shared-memory scheme
starting from 16 cores.

Finally, in a third part, we have developed a many-core simulator, SiMany, able to
sustain program execution on architectures comprising thousands of cores with practical
simulation time. It is reasonably realistic and can support substantial architecture vari-
ability, allowing to explore a large span of network organizations with a variable number of
cores of potentially different computing power. At the time of this writing and to the best
of our knowledge, SiMany seems to be the fastest such simulator in existence compared to
previously published approaches and the normalized simulation time they report1.

Speed is essentially achieved through three different techniques. The first is a novel
virtual time synchronization technique, called spatial synchronization, which ensures that
the concurrency a real many-core machine would exhibit is faithfully reproduced. It does
so through a relaxed distributed and local scheme that suspends the simulation of a
component whose virtual time is too much ahead of its neighbors’. Its maximum local
drift parameter acts as a toggle between simulation accuracy and speed. The second
technique is the use of a higher level of abstraction than in past simulators. Only simple
models for caches and cores are used, following the intuition that, beyond some number
of components, simulating accurately their interactions becomes more important than
simulating each of them in great detail. The third technique is the architecture and
implementation of the simulator. In particular, it can execute a large part of the user
code natively.

We have compared the results reported by SiMany with those of a well-known cy-
cle-level/system-level simulator, UNISIM [14]. They show that SiMany reproduces the
performance trends exhibited by traditional simulation techniques at least up to 64 cores.
This is the first validation of this kind for an abstract discrete-event-based simulator with
a relaxed synchronization scheme. We have then exercized the simulator on homogeneous,
polymorphic and clustered architectures with up to 1024 cores. The obtained results are
compatible with the well-known characteristics of the benchmarks we used.

The results of the simulation of programs parallelized with Capsule on distributed
architectures suggest that our approach, which tries to exploit parallelism and to provide
data management at a very fine level, is viable to obtain scalable performance on many-core
architectures. Performance gains are in large part portable between architectures with
different characteristics and increase with a higher number of cores up to several hundreds

1The normalized simulation time is the time to simulate a program over a native run on the same
machine. Sometimes, speedups over regular cycle-level simulation are reported instead. In this case, we
have computed the simulation time assuming that cycle-level simulation is 106 times slower than native
execution, an optimistic slowdown value. See also Chapter 11.

General Conclusion 225

of cores. Additionally, the Capsule programming model makes parallel programming
easier and as such can enable a wider audience of programmers to produce useful parallel
code.

Prospects

On the road to achieve our goal to adapt Capsule to many-core architectures and to
show its performance potential on them, we have contributed to many different fields.
We also undertook a significant programming effort to connect all these pieces together.
Inevitably, we had to skim through or even leave out a lot of the interesting opportunities
that appeared to us during this time-constrained journey. We will now review the most
exciting and promising ones among them.

The Capsule programming model, while being fairly general and expressive, would
benefit from supporting simple but powerful primitives for fine-grain synchronization.
Programs running on the shared-memory version of Capsule can use traditional syn-
chronization primitives, such as locks and condition variables. However, the latter are
not straightforward to use, are difficult to debug and to compose. We briefly mentioned
transactional memory, its potential benefits and its current problems in Section 1.2.2.
The distributed-memory version guarantees that all accesses to a dereferenced cell are
performed atomically. To avoid deadlocks, proper collaboration from the programmer or
the compiler is still necessary2. Moreover, building complex concurrent schemes may not
be straightforward on top of that property.

From these observations, several research directions can be explored. One is to in-
vestigate new general schemes or improve emerging ones that provide mutual exclusion
on a user-definable set of data. They should provide composable constructs that avoid
the current major problems of existing fine-grain synchronization techniques. In this line,
improving transactional memory and integrating it into Capsule seems an interesting
challenge. Another direction is to simplify implementations by finding a set of constructs
allowing to express the most important synchronization patterns in applications. They
could be built on top of a limited set of simple primitives. By leveraging the semantical
information they provide, it may be possible to optimize sequences of accesses, at the
compiler level or in the run-time system. In fact, a proposal has recently started to
combine both approaches [159].

An important goal of the Capsule approach is to shield programs from the idiosyn-
crasies of the architectures they run on. Programmers can (and are encouraged to) specify
all tasks that can be performed in parallel, including very small ones. In doing so, they
are essentially writing code as if the target architecture was an ideal one that would
comprise an infinite number of cores and on which spawning new tasks would always be
profitable. With this information, the run-time system adapts the program to the number
of hardware cores that are actually present through conditional division.

2We here refer to the constraint that only a single cell can be dereferenced at once at any point of a
task (see Section 8.2.1). A source code analyzing tool could easily check this property automatically.

226 General Conclusion

However, as Section 4.2.3 showed, this automatic adaptation is sometimes not enough
to obtain good performance for programs that create a large portion of very small tasks.
Since it does not seem realistic to expect programmers to indicate task size or compilers
to be able to infer it, the run-time system should dynamically detect when spawning
some tasks is not worthwhile, in addition to the task throttling resulting from conditional
parallelization. We have started to propose some possible mechanisms for that purpose
in the same Section. As future work, their impact should be evaluated and they should
be refined accordingly, with the goal to reduce dependence to task granularity as far as
possible.

The data model presented in Chapter 8 has been designed to be able to handle any
kind of data relations and accesses, but it is currently biased towards irregular data
structures, such as lists, trees or graphs. Random access structures such as arrays or hash
tables have to be specified as single cells and their whole content stored into their data
section. With the current run-time system implementation, an access to a cell triggers
the move of its content to the initiating core. Moving all the data of large arrays or hash
tables to fulfill a single element access is obviously extremely inefficient. A possible way to
deal with this problem without imposing too much burden on the programmer is to allow
such structures to be split into smaller elements that are then managed with the same
policies as for small cells. However, it is unclear how this support should be provided
and if it can be completely transparent to the programmer. Although the latter property
is desirable both to ease programming and enhance portability, some applications may
need to use specific policies to run efficiently. The questions of which kind of policies
should be supportable and how they could be implemented and integrated with the basic
management of the current run-time system are crucial.

A study performed as part of the development of the Munin distributed-shared memory
system in the 90s [25] showed that more than 95% of shared accesses conform to a small
set of patterns. Another interesting conclusion was that using objects as the proper
sharing granularity was not optimal in some situations3. The relevance of this study, and
in particular the choice of supported patterns, should be assessed for recent applications
and multi-core architectures. Our run-time system would very probably benefit from
introducing new and more sophisticated policies to handle cell locations, such as selective
data replication and invalidate and update schemes. We note that such an approach
has partially been developed in the Orca distributed object system. Its aim to support
medium-grain full-fledged objects leaves more leeway for sophisticated heuristics, but we
are confident that most of those that were actually proposed4 are simple enough to be
adapted to Capsule efficiently.

The operation of the schemes for distributed task management we proposed depends
on several parameters. Raising the task queue size causes more probes to succeed, which
enlarges the number of tasks a program can create and reduces their average granularity.
At the same time, doing so allows more tasks to be kept in reserve in queues, allowing
the scheme to distribute new tasks more quickly to cores becoming idle. The task queue

3More information about Munin can be found in Section 10.3.2.
4They are detailed in Section 10.4.3.

General Conclusion 227

difference threshold trades off the load-balancing rate with the bandwidth used. Studying
extensively the practical influence of these parameters may have important benefits on
performance. Also, some hybrid policies to preserve locality should be investigated.

There are currently only a few simulators fast enough to simulate thousands of cores
in a reasonable time frame. To the best of our knowledge, prior to our work, there had
been no assessment of the relevance of the results reported by a many-core simulator5.
In our study, we could not validate the results obtained by SiMany beyond 64 cores
because of too long simulation times6. Comparison with real hardware machines was not
possible, since SiMany was precisely designed to explore possible future architectures. The
emergence of many-cores implemented as FPGAs [157] may enable it in the near future,
though they have different characteristics than regular silicon dies. In the meantime,
comparing the results from other many-core simulators with similar features but using
different techniques may provide hints about their accuracy.

Simulation with our new spatial synchronization scheme seems particularly well suited
to parallelization, since cores can be simulated independently in their allowed time window.
More of them are thus likely to be able to make progress at the same time as the simulated
architecture grows. Investigating how much performance can be gained by parallelizing
SiMany seems appealing, since it may be possible to reduce the simulation time by another
order of magnitude or more, allowing to explore more architectures or software designs in
the same time frame and/or to simulate larger programs.

Discussion

Will the many-core evolution really take place? Will it be a success? Of course, we do not
pretend to answer these questions directly and definitely, but we propose some elements
of reflection to feed the discussion.

To the first question, considering the roadmaps of major founders and the current
industry situation that was evoked in the Introduction, the answer is likely to be positive.
However, the growing trend to offload costly scientific computations to graphic chips may
make many-core computing become a reality in other hardware components than the main
processors, where it was expected to occur initially. Graphic chips and general-purpose
processors have dissimilar structures, with the former having simpler execution units and
supporting a higher number of lightweight threads to hide memory latency. The current
commercial strategy of founders is not to report the actual number of cores in graphic
chips, but rather this number multiplied by the number of SIMD units a core includes,
thus presenting SIMD units as if they were individual cores. This feature can give the
impression that graphic chips are much ahead of regular processors in the number of cores
they include, but in reality the gap is narrow. Moreover, a very recent study [168] has

5Except in Monchiero et al. [186], which uses a simulator based on the COTson infrastructure. However,
as we argued in Section 15.3.4, this simulation approach cannot be used for architecture exploration nor
realistic software evaluation.

6And also bugs in the cycle-level simulator used that were exposed because of the high number of
components to simulate.

228 General Conclusion

shown that throughput computing performance is on average less than 2.5× higher for an
Nvidia GTX 280 over an Intel Core i7 960, so the performance difference is even lower.

Exploiting vectorization units of graphic chips is a distinct problem than utilizing
more cores. In particular, candidate program portions must be much more homogeneous
to be vectorized properly. When it is possible to do so, performance is generally much
better than with threads since a single control flow serves to process large sets of data
at once, alleviating the need for additional communication and synchronization. SIMD
execution is also a mean to reduce power consumption over multithreading. These are
important reasons why Intel and AMD have been enhancing their SIMD instruction set,
the latest evolution being the introduction of AVX [90].

More generally, we may be witnessing a convergence of graphic and regular chips.
At least can we say that some of the technical advantages of one class are gradually
introduced in the other class. Even if tight integration is reached one day, in the meantime
both classes will keep their own capabilities and instruction sets. In this thesis, we did
not address the problem of distinguishing execution units based on their capabilities. We
assumed that they all have the same ones, i.e., that tasks can indifferently be scheduled on
any of them. Fortunately, it seems possible to adapt our different proposals to discriminate
various types of tasks and send them only to execution units that can run them, without
altering the main principles and ideas we presented.

Even considering our contributions and those of a large number of researchers, multi-
core and many-core programming remains substantially more difficult than sequential
programming. In the past, low-level synchronization primitives and threading paradigms
made parallelization of programs a hard task. The situation has considerably progressed
and there are now several emerging techniques that ease parallel programming, such as task-
based programming, work dispatching, new coarse-grain and fine-grain synchronization
primitives, support for speculative execution, etc.

Although we can still foresee plenty of additional improvements in these areas, the
intricacy of parallel programming now appears to be shifting rapidly towards the problem
of finding ways to parallelize work that seems naturally sequential to programmers. As we
experimented when parallelizing benchmarks, it can take a major algorithmic overhaul to
uncover independent tasks or ones that can be pipelined. Also, the size of data sets may
have to increase to observe worthwhile benefits when throwing more cores at a problem.
Finally, we have not studied how commercial applications may benefit from multi-core
and many-core programming for the program parts that are not computationally intensive.
If customers cannot see a clear benefit from hardware (and software) upgrades, they
probably won’t be willing to buy new computers. Can many-cores bring benefits for
interactive consumer applications, such as office work or games7? If they cannot, they may
in the end stay confined into the scientific computing, cloud computing and server-based
applications areas. Although data centers are increasingly playing a bigger role these
days, it is unclear whether they could compensate for a slowdown in consumer hardware
demand.

7As mentioned in Chapter 1, the position of one experienced game designer towards parallelization and
multi-cores is rather contrasted.

General Conclusion 229

Another useful approach to improve performance is to use accelerators, such as DSPs
or FPGAs dedicated to particular tasks. A recent proposal [262] has shown that it is
possible to synthetize small compound circuits that can accelerate a range of functions.
However, it has been applied to scientific benchmarks, and it remains to be seen if it can
be useful in consumer applications. In the past years, there has been a growing body of
work on automatic parallelization for irregular codes, trying to identify pipeline stages in
irregular loops and executing them in separate threads [44, 209]. It is unclear, however, if
such techniques can scale to many-cores and cover a sufficiently large number of cases.

The success of many-cores in the end is likely to depend on the maturity of some of the
techniques we mentioned and their integration, both in hardware and in software. It will
also need important breakthroughs in terms of power consumption. Current projections
seem to indicate that improvements in transistor technology will not compensate for
the growing number of them that are forecasted to be included on a single chip. In a
decade, it may not be possible to power all cores of many-core processors at the same time.
Whatever comes out of the mind of scientists and engineers, the next decade is going to
be captivating and may decide the fate of most players in the computing industry.

230 General Conclusion

231

Appendices

232

233

Appendix A

Quicksort Example Code

In this Appendix, we present the integrality of the code for the Quicksort benchmark.
This code comes from the version using the first Capsule programming model and
run-time system, i.e., that runs on architectures with global address space. These are
described in Part I.

The global variable treshold contains the threshold sub-array size under which the
sub-arrays are always sorted sequentially (no probe is performed at all). It was used in
particular in some experiments of Section 4.2. Other parameters of the program include
the array size (global variable array_size), a random seed used to generate the elements of
the array (global variable rand_seed), and the number of times a sort of the random array
is performed and whether a purely sequential sort has to be performed (for comparison;
global variable times). Please look at the usage function starting at line 168 for details
on how to pass these parameters to the program.

The main function starts at line 176. To generate a random array, the program uses
the pair srand/rand, the latter function producing unsigned integers. The result of a call
to rand is capped to ELT_MAX, a compile time constant specifying the maximal value for
array elements. Then, the loop that executes each sort variant, Capsule or sequential, is
first run empty, i.e., without sorting the array. This part serves to obtain the execution
time of the raw loop, in order to substract it from the overall execution time for each sort
test to compute an approximation of its execution time. Then, the program proceeds with
the sorts. The loop for each sort variant makes a copy of the original array (referenced by
the base_array pointer) to a work memory area (referenced by array) precede the actual
sort. It thus makes it possible to sort several times the same random array.

Both the sequential and the Capsule versions perform traditional sequential pivot
steps. The corresponding code has thus been isolated in the qs_pivot_step function,
starting at line 46. The version presented here is slightly faster (around 10%) than a
traditional one where left and right are not changed at the end of the do loop. By
optimizing the sequential version, we guarantee that the speedup results we report are
realistic and computed over excellent sequential versions.

234 Chapter A. Quicksort Example Code

/*
* This file is Copyright (c) 2007-2008 by the INRIA, France.
* It is released under the GNU GPL v2.
*

5 * Written by Olivier Certner.
*/

// C library headers
#include <stdio.h>

10 #include <string.h>
#include <stdlib.h>

// CAPSULE API and abstraction layer
#include <capsule_api.h>

15 #include <capsule_abs_itf.h>

// Default parameters for the used array
unsigned const ELT_MAX = 1000000000;

20 unsigned array_size = 100000;
int rand_seed = 27758;
unsigned times = 2;
unsigned threshold = 100;

25
// Encapsulation stuff

typedef struct
{

30 unsigned * left;
unsigned * right;

}
qsort_t;

35 qsort_t * alloc_qs (unsigned * left, unsigned * right)
{

qsort_t * qs = (qsort_t *) malloc (sizeof (* qs));
qs -> left = left;
qs -> right = right;

40 return qs;
}

// Pivot step
45

unsigned * qs_pivot_step (unsigned * org_left, unsigned * org_right)
{

unsigned tmp, pivot;
unsigned * right = org_right;

50 unsigned * left = org_left;

A. Quicksort Example Code 235

if (org_left >= org_right)
return NULL;

55 // Pivot is the first element of the sub-array
pivot = * org_left;

// Iterative algo to put the elements less or equal
// to the pivot on the left, the others on the right.

60 do
{

// Find an element greater than the pivot,
// starting from the left.
while ((* left <= pivot) && (left < right))

65 ++ left;

// Find an element lower or equal to the pivot,
// starting from the right.
while ((* right > pivot) && (left < right))

70 -- right;

// Exchange left and right.
tmp = * left;
* left = * right;

75 * right = tmp;

// Next ones...
++ left;
-- right;

80 }
while (left < right);

// ’right’ (+ 1 because of last decrementation in the loop) may
// not be strictly greater than the pivot. In this case, it is

85 // the rightmost element lower or equal to the pivot, unless loop
// exited because of last decrementations. We thus have to be
// careful in order to insert the pivot at the right place.
if (right[1] <= pivot)

++ right;
90 else if (* right > pivot)

-- right;

// Place the pivot
* org_left = * right;

95 * right = pivot;

return right;
}

100 //---

236 Chapter A. Quicksort Example Code

//-- Sequential version

void qs_seq (unsigned * left, unsigned * right)
{

105 unsigned * pivot = qs_pivot_step (left, right);

if (pivot)
{

qs_seq (left, pivot - 1);
110 qs_seq (pivot + 1, right);

}
}

115 //---
//-- Capsule version

void qs_capsule_wrapper (void * arg);

120 void qs_capsule (unsigned * left, unsigned * right)
{

// If the array has less than threshold elems,
// sort it sequentially.
if (right - left > threshold)

125 {
// Find pivot
unsigned * pivot = qs_pivot_step (left, right);

// Have still something to sort?
130 if (pivot)

{
// Probe to execute a new task in parallel
capsule_ctxt_t * ctxt;
capsule_probe (& qs_capsule_wrapper, & ctxt);

135
if (ctxt)

// Sorting of the left sub-array is done in parallel
capsule_divide (ctxt, (void *) alloc_qs (left, pivot - 1));

else
140 // Sorting of the left sub-array is done sequentially

qs_capsule (left, pivot - 1);

// Sorting the right sub-array is done in this context
//

145 // Probing again would be completely useless here (we have
// to execute this part; so execute it directly, instead of
// trying to give it to another core). Keeping the other
// cores busy will come from the probes from the recursive
// pivot steps.

150 qs_capsule (pivot + 1, right);

A. Quicksort Example Code 237

}
}
else

qs_seq (left, right);
155 }

void qs_capsule_wrapper (void * arg)
{

qsort_t * qs = (qsort_t *) arg;
160 qs_capsule (qs -> left, qs -> right);

free (qs);
}

165
//---

void usage (char const * prog_name)
{

170 fprintf (stderr, "Usage:\n"
"\t%s [elems_nb iter_nb random_seed threshold do_seq]\n"
"with do_seq being yes or no.\n",
prog_name);

}
175

int main (int argc, char ** argv)
{

unsigned i;
unsigned * base_array, * array;

180 capsule_rc_t rc;
capsule_mach_64bits_t ts_begin, ts_end, ts_elapsed;
float fts_empty_1, fts_empty_2, fts_capsule, fts_seq;
unsigned uns_h, uns_l;
unsigned do_seq = 0;

185
if ((argc != 1) && (argc != 6))
{

usage (argv[0]);
return 1;

190 }

if (argc == 6)
{

char * ec;
195 array_size = (unsigned) strtoul (argv[1], & ec, 0);

if (argv[1][0] == 0 || * ec != 0)
{

fprintf (stderr, "ERROR: 1st arg not parsable.\n");
return 1;

200 }

238 Chapter A. Quicksort Example Code

times = (unsigned) strtoul (argv[2], & ec, 0);
if (argv[2][0] == 0 || * ec != 0)
{

205 fprintf (stderr, "ERROR: 2nd arg not parsable.\n");
return 1;

}

rand_seed = (int) strtol (argv[3], & ec, 0);
210 if (argv[3][0] == 0 || * ec != 0)

{
fprintf (stderr, "ERROR: 3rd arg not parsable.\n");
return 1;

}
215

threshold = (unsigned) strtoul (argv[4], & ec, 0);
if (argv[4][0] == 0 || * ec != 0)
{

fprintf (stderr, "ERROR: 4th arg not parsable.\n");
220 return 1;

}

switch (argv[5][0])
{

225 case ’y’:
case ’Y’:
case ’o’:
case ’O’:
do_seq = 1;

230 break;
}

}

// Banner
235 printf ("CAPSULE quicksort benchmark.\n\n");

printf ("Nb of elements: %u.\n", array_size);
printf ("Tests are repeated %u times.\n", times);
printf ("Random seed: %i.\n", rand_seed);
printf ("Threshold: %u.\n", threshold);

240 if (do_seq)
printf ("Doing sequential sorts for comparison.\n");

else
printf ("Not doing sequential sorts.\n");

printf ("\n");
245

// CAPSULE runtime initialization
capsule_sys_init_warmup ();

// Allocations and array preparation
250 base_array = malloc (array_size * sizeof (* base_array));

A. Quicksort Example Code 239

array = malloc (array_size * sizeof (* array));
srand (rand_seed);
for (i = 0; i < array_size; ++ i)

base_array[i] = rand () % ELT_MAX;
255

// Loop without sorting
printf ("First loop without sorting.\n");
capsule_abs_get_time (& ts_begin);

260 for (i = 0; i < times; ++ i)
memcpy (array, base_array, array_size * sizeof (* array));

capsule_abs_get_time (& ts_end);
capsule_mach_64bits_sub (& rc, & ts_end, & ts_begin, & ts_elapsed);

265
// Print the elapsed time
capsule_mach_64bits_get32h (& ts_elapsed, & uns_h);
capsule_mach_64bits_get32l (& ts_elapsed, & uns_l);
printf ("Elapsed time (32 bits high, low): %u, %u.\n", uns_h, uns_l);

270 capsule_mach_64bits_to_float (& ts_elapsed, & fts_empty_1);

// Testing the CAPSULE regular version
printf ("\nCAPSULE version.\n");

275 capsule_abs_get_time (& ts_begin);

for (i = 0; i < times; ++ i)
{

memcpy (array, base_array, array_size * sizeof (* array));
280 qs_capsule (array, array + array_size - 1);

capsule_group_wait ();
}

capsule_abs_get_time (& ts_end);
285 capsule_mach_64bits_sub (& rc, & ts_end, & ts_begin, & ts_elapsed);

// Print the elapsed time
capsule_mach_64bits_get32h (& ts_elapsed, & uns_h);
capsule_mach_64bits_get32l (& ts_elapsed, & uns_l);

290 printf ("Elapsed time (32 bits high, low): %u, %u.\n", uns_h, uns_l);
capsule_mach_64bits_to_float (& ts_elapsed, & fts_capsule);

#ifndef CAPSULE_NO_STATS
// Dump statistics

295 printf ("\nCAPSULE statistics:\n");
capsule_sys_dump_all_stats (stdout);
printf ("\n");
#endif

300 if (do_seq)

240 Chapter A. Quicksort Example Code

{
// Testing the sequential version
printf ("\nSequential version.\n");

305 capsule_abs_get_time (& ts_begin);

for (i = 0; i < times; ++ i)
{

memcpy (array, base_array, array_size * sizeof (* array));
310 qs_seq (array, array + array_size - 1);

}

capsule_abs_get_time (& ts_end);
capsule_mach_64bits_sub (& rc, & ts_end, & ts_begin, & ts_elapsed);

315
// Print the elapsed time
capsule_mach_64bits_get32h (& ts_elapsed, & uns_h);
capsule_mach_64bits_get32l (& ts_elapsed, & uns_l);
printf ("Elapsed time (32 bits high, low): %u, %u.\n", uns_h, uns_l);

320 capsule_mach_64bits_to_float (& ts_elapsed, & fts_seq);
}

// Loop without sorting
printf ("\nSecond loop without sorting.\n");

325 capsule_abs_get_time (& ts_begin);

for (i = 0; i < times; ++ i)
memcpy (array, base_array, array_size * sizeof (* array));

330 capsule_abs_get_time (& ts_end);
capsule_mach_64bits_sub (& rc, & ts_end, & ts_begin, & ts_elapsed);

// Print the elapsed time
capsule_mach_64bits_get32h (& ts_elapsed, & uns_h);

335 capsule_mach_64bits_get32l (& ts_elapsed, & uns_l);
printf ("Elapsed time (32 bits high, low): %u, %u.\n", uns_h, uns_l);
capsule_mach_64bits_to_float (& ts_elapsed, & fts_empty_2);

// Final stats (for perf measurements)
340 float avg_capsule =

(fts_capsule - (fts_empty_1 + fts_empty_2) / 2) / times;
printf ("\nAverage execution time, one sort, CAPSULE version: \t%f.\n",

avg_capsule);
if (do_seq)

345 {
float avg_seq = (fts_seq - (fts_empty_1 + fts_empty_2) / 2) / times;
printf ("Average execution time, one sort, sequential version: \t%f.\n",

avg_seq);
printf ("Speedup: \t%f.\n", avg_seq / avg_capsule);

350 }

A. Quicksort Example Code 241

// Free the arrays
free (array);
free (base_array);

355
// Terminate the CAPSULE run-time system
capsule_sys_destroy ();

return 0;
360 }

242 Chapter A. Quicksort Example Code

243

Appendix B

Dijkstra Example Code

In this Appendix, we present the integrality of the code for the Dijkstra benchmark1, in
its version that uses the Capsule programming model and run-time system for distributed
architectures, which were described in Part II.

In comparison with the code of Quicksort presented in Appendix A, the code for
Dijkstra makes use of the additional primitives to handle data structures, which were
described in Section 8.1.2, but uses also the functions introduced by SiMany for virtual
time accounting. capsule_vtime_advance serves to increment the virtual time counter
on the core executing the current thread. capsule_vtime_cur_get gives the value of this
counter, for evaluation purposes.

The graph modelization is done in the graph_capsule C module, while the algorithm
itself and the main function are in dijkstra_capsule.c.

Since no cache model is directly implemented in the current SiMany version, timing
annotations for cache latencies must be introduced by hand, as explained in Section 13.2.1.
In dijkstra_capsule.c, they are specified as C expressions using preprocessor constants.
The constants PRED_90P_VT, PRED_FAST_VT, PRED_SLOW_VT are used to model branch
prediction. The first serves to account for a test for which the prediction outcome is a
priori unknown. In this case, a 90% success is assumed. The others account for successful
and wrong predictions respectively. L1_VT and L2_VT account for accesses to the L1 and
L2 caches. FUNC_VT and ADD_VT account for a function call and an addition on integers.
Using preprocessor constants allows to vary the actual values by simple recompilation.

Annotations in graph_capsule do not use preprocessor annotations but rather con-
crete values. These values have only a small impact on simulation results, since this
module is executed only once at benchmark startup to build the graph and once at end
of execution to destroy it. They have been minimized in order to avoid including the
time of reading a file and building a graph when assessing the performance of our parallel
algorithm.

As explained in Section 8.1.2, C was chosen to demonstrate that an implementation
of our concepts was feasible. Primitives are provided through library functions. Other

1As that of Quicksort, it is released under the GPL v2 license.

244 Chapter B. Dijkstra Example Code

choices are possible and even recommended, such as object-oriented languages, which will
reduce the verbosity and the low ratio of algorithmic operations over interactions with
the run-time system in the following listings.

File graph_capsule.h

#ifndef GRAPH_CAPSULE_H
#define GRAPH_CAPSULE_H

/**
5 * The graph data structure is as follows: There are two types of cells,

* node-cells and edge-cells. As evident from their names, they are
* encapsulations of the nodes and edges of a graph inside generic cells.
* These cells are connected to each other by links. These two cells are
* described in greater depth below:

10 *
* 1) node-cell:
* unsigned name
* unsigned distance
* link to the linked-list of edges,

15 * link to the parent of the node, and
* 2) edge-cell:
* unsigned length
* link to the node-cell to which it is connected
* link to the next edge-cell (as it is a part of the linked-list of edges

20 * in a node)
*/

// CAPSULE
#include <capsule_api.h>

25 #include <capsule_ds_api.h>
#include <capsule_vtime_api.h>

// For FILE
#include <stdio.h>

30

typedef struct node_s
{

unsigned name; // Used for pretty print
35 unsigned distance;

} node_t;

typedef struct edge_s
{

40 unsigned length;
} edge_t;

B. Dijkstra Example Code 245

capsule_link_t **
graph_build

45 (FILE * graph_file,
unsigned * graph_size_ptr);

void
graph_destroy

50 (capsule_link_t ** graph,
unsigned nodes_nb);

void
graph_print_distances

55 (capsule_link_t ** graph,
unsigned start,
unsigned nodes_nb);

#endif

File graph_capsule.c

#include "graph_capsule.h"

// For printf
#include <stdio.h>

5
// For malloc
#include <stdlib.h>

// Ints of fixed size
10 #include <stdint.h>

// Assert
#include <assert.h>
#undef NDEBUG

15
#define INFINITY UINT32_MAX

static void
set_edge_content

20 (capsule_hdl_t * hdl,
unsigned length)

{
void * void_ptr;
capsule_rc_t rc = capsule_cell_give_data_access

25 (hdl, 0, sizeof(edge_t), & void_ptr);
assert (! rc);

edge_t * edge_ptr = void_ptr;
edge_ptr -> length = length;

246 Chapter B. Dijkstra Example Code

30
capsule_vtime_advance (3);

rc = capsule_cell_revoke_data_access (hdl, 0, sizeof(edge_t));
assert (! rc);

35 }

static void
set_node_content
(capsule_hdl_t * hdl,

40 unsigned name,
unsigned distance)

{
void * void_ptr;
capsule_rc_t rc = capsule_cell_give_data_access

45 (hdl, 0, sizeof(node_t), & void_ptr);
assert (! rc);

node_t * node_ptr = void_ptr;
node_ptr -> name = name;

50 node_ptr -> distance = distance;

capsule_vtime_advance (4);

rc = capsule_cell_revoke_data_access (hdl, 0, sizeof(node_t));
55 assert (! rc);

}

capsule_link_t **
graph_build

60 (FILE * graph_file,
unsigned * graph_size_ptr)

{
// Return value for DS functions
capsule_rc_t rc;

65
// Return value for file functions
size_t file_rc;

// Links to the graph nodes (to be returned)
70 capsule_link_t ** graph_link;

// Get the number of nodes in the data file
uint32_t nodes_nb_32;

75 file_rc = fread (& nodes_nb_32, sizeof(nodes_nb_32), 1, graph_file);
assert (file_rc == 1);

capsule_vtime_advance (100);

B. Dijkstra Example Code 247

80 unsigned nodes_nb = (unsigned) nodes_nb_32;
* graph_size_ptr = nodes_nb;

// Alloc the array of links to the nodes in the graph
graph_link = (capsule_link_t **)

85 malloc (nodes_nb * sizeof (capsule_link_t *));

capsule_vtime_advance (10);

/*
90 * Each node-cell has 2 links:

* one to the linked-list of edges,
* one to the parent of the node, and
*
* Here, we construct all cells at once.

95 */
unsigned i, j;
for (i = 0; i < nodes_nb; ++ i)
{

capsule_hdl_t * tmp_hdl;
100

rc = capsule_cell_create_cell (sizeof(node_t), 2, & tmp_hdl);
assert (! rc);

rc = capsule_link_create_from_hdl (tmp_hdl, & graph_link[i]);
105 assert (! rc);

// Set the name and distance of the node
set_node_content (tmp_hdl, i, INFINITY);

110 capsule_hdl_release (tmp_hdl);
}

// Memory area to contain list of arcs from a given node
// Format is (see ’gengraph.py’):

115 // - Number of arcs from a node.
// - A list of couples (dest_node, weight), each one being such an
// arc.

uint32_t * per_node_edges = malloc (nodes_nb * sizeof(uint32_t) * 2);
120

capsule_vtime_advance (10);

// Loop on each node, to construct its edge linked-list
for (i = 0; i < nodes_nb; ++ i)

125 {
capsule_hdl_t * node_hdl;

rc = capsule_link_deref (graph_link[i], & node_hdl);
assert (! rc);

248 Chapter B. Dijkstra Example Code

130
// Read in the edges data
uint32_t edges_nb;
file_rc = fread (& edges_nb, sizeof(edges_nb), 1, graph_file);
assert (file_rc == 1);

135
file_rc = fread (per_node_edges, sizeof(* per_node_edges),

edges_nb * 2, graph_file);
assert (file_rc == edges_nb * 2);

140 capsule_vtime_advance (20);

for (j = 0; j < edges_nb; ++ j)
{

uint32_t edge_weight = per_node_edges[j * 2 + 1];
145

capsule_hdl_t * edge_hdl;
rc = capsule_cell_create_cell

(sizeof(edge_t), 2, & edge_hdl);
assert (! rc);

150
// Set the length of the edge
set_edge_content (edge_hdl, edge_weight);

// Set the link from the edge-cell to the destination
155 // node of the graph arc.

uint32_t dest_node_idx = per_node_edges[j * 2];
rc = capsule_cell_set_link_from_link

(edge_hdl, 0, graph_link[dest_node_idx]);
assert (! rc);

160
// Retrieve the current head of the edge list
capsule_link_t * head;
rc = capsule_cell_get_link (node_hdl, 0, & head);
assert (! rc);

165
// Link the new edge to the old head
rc = capsule_cell_set_link_from_link (edge_hdl, 1, head);
assert (! rc);

170 capsule_link_release (head);

// Make the new edge the new head of the edge list
rc = capsule_cell_set_link_from_hdl (node_hdl, 0, edge_hdl);
assert (! rc);

175
// Release the handle on this edge-cell
capsule_hdl_release (edge_hdl);

} // Loop on all possible edges from one node

B. Dijkstra Example Code 249

180 capsule_hdl_release (node_hdl);
} // Loop on all nodes

// Free buffer
free (per_node_edges);

185
capsule_vtime_advance (10);

// Return the link to the graph
return graph_link;

190 }

void
graph_destroy
(capsule_link_t ** graph,

195 unsigned nodes_nb)
{

unsigned i;

// Free the array of links to the graph’s node-cells
200 for (i = 0; i < nodes_nb; ++ i)

capsule_link_release (graph[i]);

free (graph);

205 capsule_vtime_advance (10);
}

void graph_print_distances
(capsule_link_t ** graph,

210 unsigned start,
unsigned nodes_nb)

{
// Used to store return codes
capsule_rc_t rc;

215
// Banner
printf ("Shortest paths starting from nb ’%u’:\n", start);
capsule_vtime_advance (20);

220 // Loop on all nodes
unsigned i;
for (i = 0; i < nodes_nb; ++ i)
{

if (i == start)
225 continue;

capsule_link_t * cur_node = graph[i];
capsule_hdl_t * cur_node_hdl;

250 Chapter B. Dijkstra Example Code

230 rc = capsule_link_deref (cur_node, & cur_node_hdl);
assert (! rc);

void * void_ptr;
rc = capsule_cell_give_data_access

235 (cur_node_hdl, 0, sizeof (node_t), & void_ptr);
assert (! rc);

node_t * cur_node_content = void_ptr;
unsigned dist = cur_node_content -> distance;

240 unsigned name = cur_node_content -> name;

rc = capsule_cell_revoke_data_access (cur_node_hdl, 0, sizeof (node_t));
assert (! rc);

245 if (dist != INFINITY)
{

printf ("Node ’%u’ is at distance: %u.\n", name, dist);
printf ("Reverse path:");

}
250 else

printf ("Node ’%u’ is unreachable.\n", name);

capsule_vtime_advance (20);

255 // First ’from’ node
capsule_link_t * from = NULL;
rc = capsule_cell_get_link (cur_node_hdl, 1, & from);
assert (! rc);

260 capsule_hdl_release (cur_node_hdl);

capsule_hdl_t * cur_from_hdl;

// Walk the reverse path to the start node
265 while ((rc = capsule_link_deref (from, & cur_from_hdl)) ==

CAPSULE_S_OK)
{

void * void_ptr;
rc = capsule_cell_give_data_access

270 (cur_from_hdl, 0, sizeof (node_t), & void_ptr);
assert (! rc);

node_t * cur_from_content = void_ptr;
printf (" %u", cur_from_content -> name);

275
capsule_vtime_advance (10);

rc = capsule_cell_revoke_data_access
(cur_from_hdl, 0, sizeof (node_t));

B. Dijkstra Example Code 251

280 assert (! rc);

capsule_link_release (from);

rc = capsule_cell_get_link (cur_from_hdl, 1, & from);
285 assert (! rc);

capsule_hdl_release (cur_from_hdl);
}
assert (CAPSULE_RC_S (rc));

290
if (dist != INFINITY)
{

printf (".\n");
capsule_vtime_advance (5);

295 }
}

}

File dijkstra_capsule.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

5 // Also includes the CAPSULE APIs
#include "graph_capsule.h"

#include <assert.h>

10 #undef NDEBUG

//#define DEBUG 1

// In CAPSULE, a cell has to be built to pass information
15 // into recursive calls. The cell will contain as raw data payload

// the struct arg_t below, containing the distance to the next node
// to process. The cell will also hold 2 links, one to the next node
// and the other to the node we are coming from.
typedef

20 struct
{

unsigned distance;
} arg_t;

25 // Forward declaration since dijkstra and dijkstra_encap are mutually
// recursive.
void

252 Chapter B. Dijkstra Example Code

dijkstra
(capsule_link_t * node,

30 unsigned distance,
capsule_link_t * from);

void
dijkstra_encap

35 (capsule_link_t * link)
{

capsule_hdl_t * hdl;
capsule_rc_t rc;

40 rc = capsule_link_deref (link, & hdl);
assert (! rc);

arg_t * arg;
void * arg_v_ptr;

45 rc = capsule_cell_give_data_access
(hdl, 0, sizeof (arg_t), & arg_v_ptr);

assert (! rc);
arg = arg_v_ptr;

50 int distance = arg -> distance;
capsule_vtime_advance (L2_VT);

rc = capsule_cell_revoke_data_access (hdl, 0, sizeof (arg_t));
assert (! rc);

55
capsule_link_t * node, * from;
rc = capsule_cell_get_link (hdl, 0, & node);
assert (! rc);
rc = capsule_cell_get_link (hdl, 1, & from);

60 assert (! rc);
capsule_hdl_release (hdl);

dijkstra (node, distance, from);

65 capsule_link_release (node);
capsule_link_release (from);

}

void
70 dijkstra

(capsule_link_t * node,
unsigned distance,
capsule_link_t * from)

{
75 // Func call overhead

capsule_vtime_advance (FUNC_VT);

B. Dijkstra Example Code 253

capsule_rc_t rc;
capsule_hdl_t * node_hdl;

80
rc = capsule_link_deref (node, & node_hdl);
assert (CAPSULE_RC_S (rc));

// Is the link pointing to something?
85 if (rc == CAPSULE_S_OK)

{
// Test (below) overhead
capsule_vtime_advance (PRED_FAST_VT);

90 node_t * node_content;
void * node_v_ptr;
rc = capsule_cell_give_data_access

(node_hdl, 0, sizeof (node_t), & node_v_ptr);
assert (! rc);

95 node_content = node_v_ptr;

// Test and access
capsule_vtime_advance (PRED_90P_VT + L2_VT);

100 if (distance >= node_content -> distance)
{

rc = capsule_cell_revoke_data_access (node_hdl, 0, sizeof (node_t));
assert (! rc);

105 capsule_hdl_release (node_hdl);

return;
}

110 // Update the distance
node_content -> distance = distance;
capsule_vtime_advance (L1_VT);

rc = capsule_cell_revoke_data_access (node_hdl, 0, sizeof (node_t));
115 assert (! rc);

// Update the node where we come from
rc = capsule_cell_set_link_from_link (node_hdl, 1, from);
assert (! rc);

120
// Get the linked list of edges
capsule_link_t * edge;
rc = capsule_cell_get_link (node_hdl, 0, & edge);
assert (! rc);

125
// Done with the origin node
capsule_hdl_release (node_hdl);

254 Chapter B. Dijkstra Example Code

// Loop on all edges from the node being processed (pointed to
130 // by ’node’).

capsule_hdl_t * edge_hdl;
while ((rc = capsule_link_deref (edge, & edge_hdl)) == CAPSULE_S_OK)
{

// High proba branch
135 capsule_vtime_advance (PRED_FAST_VT);

capsule_link_t * next_edge;
rc = capsule_cell_get_link (edge_hdl, 1, & next_edge);
assert (! rc);

140
capsule_link_t * pointed_node;
rc = capsule_cell_get_link (edge_hdl, 0, & pointed_node);

edge_t * edge_content;
145 void * edge_v_ptr;

rc = capsule_cell_give_data_access
(edge_hdl, 0, sizeof (edge_t), & edge_v_ptr);

assert (! rc);
edge_content = edge_v_ptr;

150
unsigned new_dist = distance + edge_content -> length;
capsule_vtime_advance (L2_VT + ADD_VT);

rc = capsule_cell_revoke_data_access (edge_hdl, 0, sizeof (edge_t));
155 assert (! rc);

capsule_hdl_release (edge_hdl);

// Now, probe to see if can use another resource to
160 // browse the graph from the pointed node.

capsule_ctxt_t * ctxt;
capsule_probe (& dijkstra_encap, & ctxt);

if (ctxt)
165 {

// Probe success
capsule_vtime_advance (PRED_SLOW_VT);

// Probe succeeded! Prepare the arg cell.
170 capsule_hdl_t * arg_hdl;

rc = capsule_cell_create_cell (sizeof (arg_t), 2, & arg_hdl);
assert (! rc);

arg_t * arg_content;
175 void * arg_v_ptr;

rc = capsule_cell_give_data_access
(arg_hdl, 0, sizeof (arg_t), & arg_v_ptr);

B. Dijkstra Example Code 255

assert (! rc);
arg_content = arg_v_ptr;

180
arg_content -> distance = new_dist;
capsule_vtime_advance (L1_VT);

rc = capsule_cell_revoke_data_access (arg_hdl, 0, sizeof (arg_t));
185 assert (! rc);

rc = capsule_cell_set_link_from_link (arg_hdl, 0, pointed_node);
assert (! rc);

190 capsule_link_release (pointed_node);

rc = capsule_cell_set_link_from_link (arg_hdl, 1, node);
assert (! rc);

195 capsule_link_t * arg;
rc = capsule_link_create_from_hdl (arg_hdl, & arg);
assert (! rc);

capsule_hdl_release (arg_hdl);
200

capsule_divide (ctxt, arg);

capsule_link_release (arg);
}

205 else
{

capsule_vtime_advance (PRED_FAST_VT);

dijkstra (pointed_node, new_dist, node);
210 capsule_link_release (pointed_node);

}

capsule_link_release (edge);

215 edge = next_edge;
} // Loop on all edges for the current node
assert (CAPSULE_RC_S (rc));
// Out of loop penalty
capsule_vtime_advance (PRED_SLOW_VT);

220
capsule_link_release (edge);

} // Is link pointing to something?
else

// Test failed
225 capsule_vtime_advance (PRED_SLOW_VT);

}

256 Chapter B. Dijkstra Example Code

// Array of pointers to functions that will divide (used for RPC)
capsule_ctxt_func_ptr_t

230 func_array[] =
{

dijkstra_encap
};

235 int
main
(int argc,
char * argv[])

{
240 capsule_link_t ** graph;

FILE * graph_file;
unsigned root_node;
unsigned graph_size;

245 // To calculate the execution time
struct timeval vt1,vt2;
struct timezone zt1,zt2;

if ((argc != 2) && (argc != 3))
250 {

fprintf (stderr, "Usage: %s <graph file> [<root node> (default 0)]\n",
argv[0]);

exit (1);
}

255 if (argc == 3)
root_node = (unsigned) atoi (argv[2]);

else
root_node = 0;

260 capsule_sys_init (func_array, 1);

// Build graph
graph_file = fopen (argv[1], "r");
if (graph_file == NULL)

265 {
fprintf (stderr, "Could not open file %s\n", argv[1]);
exit (2);

}

270 printf ("Building graph from %s...\n", argv[1]);
graph = graph_build (graph_file, &graph_size);

if (root_node >= graph_size)
{

275 fprintf (stderr, "error: root node %d does not exist in graph\n",
root_node);

exit (3);

B. Dijkstra Example Code 257

}

280 fclose (graph_file);

printf ("Graph built.\n");

#if DEBUG
285 printf ("Printing graph...\n");

graph_print_distances (graph, root_node, graph_size);
printf ("Graph printed.\n");

#endif

290 // Start vtime
capsule_mach_64bits_t vtime_1;
capsule_vtime_cur_get (& vtime_1);

// Start timer
295 gettimeofday (& vt1, & zt1);

// Launch the computation
dijkstra (graph[root_node], 0, NULL);

300 // Synchronize
capsule_group_join ();

// Stop timer
gettimeofday (& vt2, & zt2);

305 // Calculate time elapsed
printf ("Real time: %lf s.\n",

(double) (vt2.tv_sec - vt1.tv_sec) +
(double) (vt2.tv_usec - vt1.tv_usec) / 1e6);

310 // End vtime
capsule_mach_64bits_t vtime_2;
capsule_rc_t rc;
rc = capsule_vtime_cur_get (& vtime_2);

315 if (rc == CAPSULE_S_OK)
{

// Virtual time is compiled in

// Compute vtime elapsed
320 capsule_mach_64bits_sub (& rc, & vtime_2, & vtime_1, & vtime_2);

unsigned vt_low, vt_high;
capsule_mach_64bits_get32l (& vtime_2, & vt_low);
capsule_mach_64bits_get32h (& vtime_2, & vt_high);
printf ("Virtual time elapsed: %u, %u.\n", vt_high, vt_low);

325 }

#if DEBUG

258 Chapter B. Dijkstra Example Code

printf ("Printing graph...\n");
graph_print_distances (graph, root_node, graph_size);

330 printf ("Graph printed.\n");

// Don’t destroy the graph to speed simulation time
graph_destroy (graph, graph_size);

#endif
335

capsule_sys_destroy ();
return 0;

}

259

Selected Personal Bibliography

260

Selected Personal Bibliography 261

• “A Practical Approach for Reconciling High and Predictable Performance in Non-
Regular Parallel Programs”, published at DATE’08 (see Certner et al. [54])

• “Scalable Hardware Support for Conditional Parallelization”, published at PACT’10
(see Li et al. [173])

• “A Very Fast Simulator For Exploring the Many-Core Future”, published at IPDPS’11
(see Certner et al. [55])

262 Selected Personal Bibliography

263

Bibliography

264

Bibliography 265

[1] A localized dynamic load balancing strategy for highly parallel systems. In 3rd
Symposium on the Frontiers of Massively Parallel Computation, pages 380–383,
October . ISBN 0-8186-2053-6. 106

[2] Performance guidelines for AMD Athlon 64 and AMD Opteron ccNUMA multipro-
cessor systems, June 2006. Rev. 3.0. 135

[3] Sarita V. Adve and Mark D. Hill. Weak ordering - A new definition and some
implications. Technical Report CS-TR-1989-902, University of Wisconsin, Madison,
December 1989. 123, 124, 125, 126

[4] Sarita V. Adve and Mark D. Hill. Implementing sequential consistency in cache-
based systems. In Benjamin W. Wah, editor, ICPP (1), pages 47–50. Pennsylvania
State University Press, 1990. ISBN 0-271-00728-1. 125

[5] Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition. In ISCA
’90: Proceedings of the 17th annual international symposium on Computer Archi-
tecture, pages 2–14, New York, NY, USA, 1990. ACM. ISBN 0-89791-366-3. doi:
http://doi.acm.org/10.1145/325164.325100. 126, 128

[6] K. Agrawal, C.E. Leiserson, and J. Sukha. Executing task graphs using work-stealing.
In IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2010,
pages 1–12, 19-23 2010. doi: 10.1109/IPDPS.2010.5470403. 67

[7] Mustaque Ahamad, James E. Burns, Phillip W. Hutto, and Gil Neiger. Causal
memory. In Sam Toueg, Paul G. Spirakis, and Lefteris M. Kirousis, editors, WDAG,
volume 579 of Lecture Notes in Computer Science, pages 9–30. Springer, 1991. ISBN
3-540-55236-7. 128

[8] Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The
power of processor consistency. In SPAA ’93: Proceedings of the fifth annual ACM
symposium on Parallel algorithms and architectures, pages 251–260, New York, NY,
USA, 1993. ACM. ISBN 0-89791-599-2. doi: http://doi.acm.org/10.1145/165231.
165264. 128

[9] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared
memory computing on networks of workstations. Computer, 29(2):18–28, 1996. ISSN
0018-9162. doi: http://dx.doi.org/10.1109/2.485843. 142

[10] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, and
Nathan Thomas Nancy M. Amato. Stapl: A standard template adaptive parallel
c++ library. In In Int. Wkshp on Adv. Compiler Technology for High Perf. and
Embedded Processors, page 10, 2001. 64

[11] Robert W. Brodersen Anantha P. Chandrakasan, Samuel Sheng. Low power CMOS
digital design. Journal of Solid-State Circuits, 27(4):473–484, April 1992. 3

266 Bibliography

[12] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006. URL http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html. 46, 191

[13] ATI. Ati radeon hd5870. URL: http://www.amd.com/us/products/desktop/graph-
ics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-overview.aspx. 4, 77

[14] David August, Jonathan Chang, Sylvain Girbal, Daniel Gracia-Perez, Gilles
Mouchard, David A. Penry, Olivier Temam, and Neil Vachharajani. UNISIM:
An open simulation environment and library for complex architecture design and
collaborative development. IEEE Comput. Archit. Lett., 6(2):45–48, 2007. ISSN
1556-6056. doi: http://dx.doi.org/10.1109/L-CA.2007.12. 161, 190, 209, 224

[15] Rajive L. Bagrodia. Perils and pitfalls of parallel discrete-event simulation. In
WSC ’96: Proceedings of the 28th Winter simulation conference, pages 136–143,
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-7803-3383-7. doi:
http://doi.acm.org/10.1145/256562.256592. 208

[16] Henri E. Bal. Orca: a language for distributed programming. SIGPLAN Not., 25
(5):17–24, 1990. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/382080.382082.
150

[17] Henri E. Bal and M. Frans Kaashoek. Object distribution in orca using compile-
time and run-time techniques. In OOPSLA ’93: Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and applications,
pages 162–177, New York, NY, USA, 1993. ACM. ISBN 0-89791-587-9. doi:
http://doi.acm.org/10.1145/165854.165884. 152

[18] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language
for parallel programming of distributed systems. IEEE Trans. Softw. Eng., 18(3):
190–205, 1992. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.126768. 150, 153

[19] Henri E. Bal, M. Frans Kaashoek, Andrew S. Tanenbaum, and Jack Jansen.
Replication techniques for speeding up parallel applications on distributed sys-
tems. Concurrency: Pract. Exper., 4(5):337–355, 1992. ISSN 1040-3108. doi:
http://dx.doi.org/10.1002/cpe.4330040502. 150, 151, 152

[20] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen,
Tim Rühl, and M. Frans Kaashoek. Orca: a portable user-level shared object system.
Technical Report IR-408, Dept. of Mathematics and Computer Science, Vrije Uni-
versiteit, Amsterdam, July 1996. Technical Report IR-408, Dept. of Mathematics
and Computer Science, Vrije Universiteit, Amsterdam. 153

[21] BBN Laboratories. Butterfly parallel processor overview. Technical Report 6148,
BBN Laboratories, Cambridge, MA, March 1986. 136

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

Bibliography 267

[22] Nathan Beckmann, Jonathan Eastep, III Charles Gruenwald, George Kurian, Har-
shad Kasture, Jason E. Miller, Christopher Celio, and Anant Agarwal. Graphite:
A distributed parallel simulator for multicores, November 09 2009. URL http:
//hdl.handle.net/1721.1/49809. 215

[23] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In ATEC ’05:
Proceedings of the annual conference on USENIX Annual Technical Conference,
pages 41–41, Berkeley, CA, USA, 2005. USENIX Association. 175, 211

[24] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: distributed shared mem-
ory based on type-specific memory coherence. In PPOPP ’90: Proceedings of the
second ACM SIGPLAN symposium on Principles & practice of parallel program-
ming, pages 168–176, New York, NY, USA, 1990. ACM. ISBN 0-89791-350-7. doi:
http://doi.acm.org/10.1145/99163.99182. 139

[25] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive software
cache management for distributed shared memory architectures. In ISCA ’90:
Proceedings of the 17th annual international symposium on Computer Architec-
ture, pages 125–134, New York, NY, USA, 1990. ACM. ISBN 0-89791-366-3. doi:
http://doi.acm.org/10.1145/325164.325124. 139, 226

[26] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory parallel
programming with entry consistency for distributed memory multiprocessors. Tech-
nical Report CMU-CS-91-170, Carnegie-Mellon University, Pittsburgh, PA (USA),
September 1991. 129, 130, 144

[27] Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Presto: a system for
object-oriented parallel programming. Softw. Pract. Exper., 18(8):713–732, 1988.
ISSN 0038-0644. doi: http://dx.doi.org/10.1002/spe.4380180802. 149

[28] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The midway
distributed shared memory system. In Proceedings of Compcon ’93, pages 528–537,
San Francisco, February 1993. IEEE. 144

[29] Raoul Bhoedjang, Tim Ruhl, Rutger Hofman, Koen Langendoen, Henri Bal, and
Frans Kaashoek. Panda: a portable platform to support parallel programming
languages. In Sedms’93: USENIX Systems on USENIX Experiences with Distributed
and Multiprocessor Systems, pages 11–11, Berkeley, CA, USA, 1993. USENIX
Association. 153

[30] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques, pages 72–81, New York, NY, USA, October 2008. ACM. ISBN 978-1-
60558-282-5. doi: http://doi.acm.org/10.1145/1454115.1454128. 46

http://hdl.handle.net/1721.1/49809
http://hdl.handle.net/1721.1/49809

268 Bibliography

[31] Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. A co-phase matrix
to guide simultaneous multithreading simulation. In ISPASS, pages 45–56, 2004.
160, 212

[32] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in
the Emerald system. In OOPLSA ’86: Conference proceedings on Object-oriented
programming systems, languages and applications, pages 78–86, New York, NY, USA,
1986. ACM. ISBN 0-89791-204-7. doi: http://doi.acm.org/10.1145/28697.28706.
148

[33] Barney Blaise. Posix threads programming. https://computing.llnl.gov/tutorials/
pthreads. 16

[34] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system. In Proceedings of the 5th
Symposium on Principles and Practice of Parallel Programming, 1995. URL
citeseer.ist.psu.edu/blumofe95cilk.html. 43, 66, 160, 168

[35] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multi-
threaded computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 362–371, New York, NY, USA, 1993.
ACM. ISBN 0-89791-591-7. doi: http://doi.acm.org/10.1145/167088.167196. 67

[36] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. In SFCS ’94: Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, pages 356–368, Washington, DC, USA, 1994.
IEEE Computer Society. ISBN 0-8186-6580-7. doi: http://dx.doi.org/10.1109/SFCS.
1994.365680. 60, 66

[37] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720–748, 1999. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/324133.324234. 60, 66

[38] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,
and Keith H. Randall. Dag-consistent distributed shared memory. In IPPS ’96:
Proceedings of the 10th International Parallel Processing Symposium, pages 132–141,
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7255-2. 120

[39] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,
and Keith H. Randall. An analysis of dag-consistent distributed shared-memory
algorithms. In SPAA ’96: Proceedings of the eighth annual ACM symposium on
Parallel algorithms and architectures, pages 297–308, New York, NY, USA, 1996.
ACM. ISBN 0-89791-809-6. doi: http://doi.acm.org/10.1145/237502.237574. 119

[40] OpenMP Architecture Review Board. Openmp fortran application programming
interface, version 1.0, October 1997. 22

citeseer.ist.psu.edu/blumofe95cilk.html

Bibliography 269

[41] OpenMP Architecture Review Board. Openmp application programming interface,
version 3.0, May 2008. 22, 223

[42] Hans-J. Boehm. Transactional memory should be an implementation technique,
not a programming interface. In Proc. HotPar ’09 (1st USENIX Workship on Hot
Topics in Parallelism), Berkeley, CA, USA, March 2009. Usenix Association. HP
Labs. 12

[43] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett, and Jack J.
Dongarra. Matrix market: A web resource for test matrix collections. In The Quality
of Numerical Software: Assessment and Enhancement, pages 125–137. Chapman &
Hall, 1997. 192

[44] Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David Au-
gust. Revisiting the sequential programming model for multi-core. In MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 69–84, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-3047-8. doi: http://dx.doi.org/10.1109/MICRO.2007.35. 4, 229

[45] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 25(3):13–25, 1997. ISSN 0163-5964. doi:
http://doi.acm.org/10.1145/268806.268810. 159, 208, 215

[46] F. Warren Burton and M. Ronan Sleep. Executing functional programs on
a virtual tree of processors. In FPCA ’81: Proceedings of the 1981 confer-
ence on Functional programming languages and computer architecture, pages
187–194, New York, NY, USA, 1981. ACM. ISBN 0-89791-060-5. doi: http:
//doi.acm.org/10.1145/800223.806778. 106

[47] Antal Buss, Harshvardhan, Ioannis Papadopoulos, Olga Pearce, Timmie Smith,
Gabriel Tanase, Nathan Thomas, Xiabing Xu, Mauro Bianco, Nancy M. Amato,
and Lawrence Rauchwerger. Stapl: standard template adaptive parallel library. In
SYSTOR ’10: Proceedings of the 3rd Annual Haifa Experimental Systems Confer-
ence, pages 1–10, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-908-4. doi:
http://doi.acm.org/10.1145/1815695.1815713. 65

[48] William W. Carlson and Jesse M. Draper. Distributed data access in ac. In PPOPP
’95: Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 39–47, New York, NY, USA, 1995. ACM. ISBN
0-89791-701-6. doi: http://doi.acm.org/10.1145/209936.209942. 118

[49] John B. Carter. Design of the munin distributed shared memory system. J. Parallel
Distrib. Comput., 29(2):219–227, 1995. 139

[50] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and
performance of munin. In SOSP ’91: Proceedings of the thirteenth ACM symposium
on Operating systems principles, pages 152–164, New York, NY, USA, 1991. ACM.
ISBN 0-89791-447-3. doi: http://doi.acm.org/10.1145/121132.121159. 139

270 Bibliography

[51] John Bruce Carter. Efficient Distributed Shared Memory Based on Multi-Protocol
Release Consistency. Ph.D. thesis, Department of Computer Science, Rice University,
Houston, TX, USA, September 1993. 139, 141

[52] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Ste-
fanie Chiras, and Siddhartha Chatterjee. Software transactional memory: Why
is it only a research toy? Queue, 6(5):46–58, 2008. ISSN 1542-7730. doi:
http://doi.acm.org/10.1145/1454456.1454466. 12

[53] John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael O’Boyle,
Grigori Fursin, and Olivier Temam. Automatic performance model construction for
the fast software exploration of new hardware designs. In International Conference
on Compilers, Architecture, And Synthesis For Embedded Systems (CASES 2006),
pages 24–34, Seoul, Korea, October 2006. ACM Press. 49

[54] Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam, Frederic Arzel, and
Nathalie Drach. A practical approach for reconciling high and predictable perfor-
mance in non-regular parallel programs. In Proceedings of the conference on Design,
Automation and Test in Europe (DATE), pages 740–745, New York, NY, USA, 2008.
ACM. ISBN 978-3-9810801-3-1. doi: http://doi.acm.org/10.1145/1403375.1403555.
29, 41, 261

[55] Olivier Certner, Zheng Li, Arun Raman, and Olivier Temam. A very fast simulator
for exploring the many-core future. In Proceedings of the twenty-fifth International
Parallel and Distributed Processing Symposium (IPDPS), May 2011. To appear.
161, 261

[56] Luis Ceze, Karin Strauss, George Almasi, Patrick J. Bohrer, Jose R. Brunheroto,
Calin Cascaval, Jose G. Castanos, Derek Lieber, Xavier Martorell, José E. Moreira,
Alda Sanomiya, and Eugen Schenfeld. Full circle: Simulating linux clusters on linux
clusters. In In Proceedings of the Fourth LCI International Conference on Linux
Clusters: The HPC Revolution 2003, 2003. 160

[57] Rohit Chandra. The COOL parallel programming language: design, implementation,
and performance. PhD thesis, Stanford, CA, USA, 1995. 65

[58] K. M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Trans. Softw. Eng., 5(5):440–452, 1979.
ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.1979.230182. 205, 206

[59] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of
parallel computations. Commun. ACM, 24(4):198–206, 1981. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/358598.358613. 206

[60] K. M Chandy and Jayadev Misra. Termination detection of diffusing computations
in communicating sequential processes. Technical report, Austin, TX, USA, 1980.
206

Bibliography 271

[61] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock de-
tection. ACM Trans. Comput. Syst., 1(2):144–156, 1983. ISSN 0734-2071. doi:
http://doi.acm.org/10.1145/357360.357365. 206

[62] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The am-
ber system: parallel programming on a network of multiprocessors. In SOSP
’89: Proceedings of the twelfth ACM symposium on Operating systems principles,
pages 147–158, New York, NY, USA, 1989. ACM. ISBN 0-89791-338-8. doi:
http://doi.acm.org/10.1145/74850.74865. 149

[63] Jianwei Chen, Murali Annavaram, and Michel Dubois. Slacksim: a platform for
parallel simulations of cmps on cmps. SIGARCH Comput. Archit. News, 37(2):
20–29, 2009. ISSN 0163-5964. doi: http://doi.acm.org/10.1145/1577129.1577134.
160, 215

[64] Francis Y. Chin, John Lam, and I-Ngo Chen. Efficient parallel algorithms for
some graph problems. Commun. ACM, 25(9):659–665, 1982. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/358628.358650. 191

[65] Giovanni Chiola and Giuseppe Ciaccio. Efficient parallel processing on low-cost
clusters with gamma active ports. Parallel Computing, 26(2-3):333–354, 2000. 214

[66] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William Reinhart, Dar-
rel Eric Johnson, Jebediah Keefe, and Hari Angepat. Fpga-accelerated simulation
technologies (fast): Fast, full-system, cycle-accurate simulators. In MICRO ’07:
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 249–261, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-3047-8. doi: http://dx.doi.org/10.1109/MICRO.2007.16. 159

[67] Thomas M. Conte, Mary Ann Hirsch, and Kishore N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. In Proceedings of the 1996 Inter-
national Conference on Computer Design, VLSI in Computers and Processors, ICCD
’96, pages 468–477, Washington, DC, USA, 1996. IEEE Computer Society. ISBN
0-8186-7554-3. URL http://portal.acm.org/citation.cfm?id=645464.653497.
210

[68] Gilberto Contreras and Margaret Martonosi. Characterizing and improving the
performance of intel threading building blocks. In David Christie, Alan Lee, Onur
Mutlu, and Benjamin G. Zorn, editors, IISWC, pages 57–66. IEEE, 2008. ISBN
978-1-4244-2778-9. 108

[69] Andreas Crauser, Kurt Mehlhorn, Ulrich Meyer, and Peter Sanders. A paralleliza-
tion of dijkstra’s shortest path algorithm. In MFCS ’98: Proceedings of the 23rd
International Symposium on Mathematical Foundations of Computer Science, pages
722–731, London, UK, 1998. Springer-Verlag. ISBN 3-540-64827-5. 192

[70] George Cybenko. Dynamic load balancing for distributed memory multiprocessors.
J. Parallel Distrib. Comput., 7(2):279–301, 1989. 106, 111

http://portal.acm.org/citation.cfm?id=645464.653497

272 Bibliography

[71] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor inter-
connection networks. IEEE Trans. Comput., 36(5):547–553, 1987. ISSN 0018-9340.
doi: http://dx.doi.org/10.1109/TC.1987.1676939. 181

[72] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural support for programming languages
and operating systems, pages 336–346, New York, NY, USA, 2006. ACM. ISBN
1-59593-451-0. doi: http://doi.acm.org/10.1145/1168857.1168900. 12

[73] Vincent Danjean and Raymond Namyst. Controling Kernel Scheduling from User
Space: an Approach to Enhancing Applications’ Reactivity to I/O Events. In
Proceedings of the 2003 International Conference on High Performance Computing
(HiPC ’03), Hyderabad, India, December 2003. URL http://www.springerlink.
com/link.asp?id=r99f1x65v4gw07pp. 179

[74] Johan de Gelas. The quest for more processing power, part two: "multi-core and
multi-threaded gaming", 3 2005. URL http://www.anandtech.com/show/1645. 10,
16

[75] Peter J. Denning. Virtual memory. ACM Comput. Surv., 2(3):153–189, 1970. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/356571.356573. 136

[76] Edsger Wybe Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965. ISSN 0001-0782. 11

[77] Edsger Wybe Dijkstra and Carel S. Scholten. Termination detection for diffusing
computations. Inf. Process. Lett., 11(1):1–4, 1980. 206

[78] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching transac-
tional memory. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation, pages 155–165, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi: http://doi.acm.org/10.1145/
1542476.1542494. 12

[79] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors.
In ISCA ’86: Proceedings of the 13th annual international symposium on Computer
architecture, pages 434–442, Los Alamitos, CA, USA, 1986. IEEE Computer Society
Press. ISBN 0-8186-0719-X. doi: http://doi.acm.org/10.1145/17407.17406. 122,
125, 127, 133

[80] Christian Dufour, Jean Belanger, Simon Abourida, and Vincent Lapointe. Fpga-
based real-time simulation of finite-element analysis permanent magnet synchronous
machine drives. In Proceedings of the 38th Annual IEEE Power Electronics Specialists
Conference, PESC’07, June 2007. 42

[81] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. An adaptive cut-off
for task parallelism. In SC ’08: Proceedings of the 2008 ACM/IEEE conference

http://www.springerlink.com/link.asp?id=r99f1x65v4gw07pp
http://www.springerlink.com/link.asp?id=r99f1x65v4gw07pp
http://www.anandtech.com/show/1645

Bibliography 273

on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press. ISBN
978-1-4244-2835-9. 67

[82] Sandhya Dwarkadas, Peter Keleher, Alan L. Cox, and Willy Zwaenepoel. Evalua-
tion of release consistent software distributed shared memory on emerging network
technology. In ISCA ’93: Proceedings of the 20th annual international symposium
on Computer architecture, pages 144–155, New York, NY, USA, 1993. ACM. ISBN
0-8186-3810-9. doi: http://doi.acm.org/10.1145/165123.165150. 142, 143, 144

[83] Lieven Eeckhout and Koenraad De Bosschere. Hybrid analytical-statistical modeling
for efficiently exploring architecture and workload design spaces. In PACT ’01:
Proceedings of the 2001 International Conference on Parallel Architectures and
Compilation Techniques, page 25, Washington, DC, USA, 2001. IEEE Computer
Society. ISBN 0-7695-1363-8. 210

[84] Lieven Eeckhout, Sebastien Nussbaum, James E. Smith, and Koen De Bosschere.
Statistical simulation: Adding efficiency to the computer designer’s toolbox. IEEE
Micro, 23(5):26–38, 2003. ISSN 0272-1732. doi: http://dx.doi.org/10.1109/MM.
2003.1240210. 160

[85] Lieven Eeckhout, Hans Vandierendonck, and Koenraad De Bosschere. Quantifying
the impact of input data sets on program behavior and its applications. Journal of
Instruction-Level Parallelism, 5:1–33, 2003. 50

[86] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha
Manne, Shubhendu S. Mukherjee, Harish Patil, Steven Wallace, Nathan Binkert,
Roger Espasa, and Toni Juan. Asim: A performance model framework. Computer,
35:68–76, 2002. ISSN 0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/2.
982918. 209

[87] Ralf S. Engelschall. Portable multithreading: the signal stack trick for user-space
thread creation. In ATEC ’00: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 20–20, Berkeley, CA, USA, 2000. USENIX
Association. 38, 179

[88] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A mech-
anistic performance model for superscalar out-of-order processors. ACM Trans.
Comput. Syst., 27(2), 2009. 217

[89] W. Fenton, B. Ramkumar, V.A. Saletore, A.B. Sinha, and L.V. Kale. Supporting
machine independent programming on diverse parallel architectures. In Proceedings
of the International Conference on Parallel Processing, pages 193–201, St. Charles,
IL, August 1991. 70

[90] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo. Intel
AVX: New frontiers in performance improvements and energy efficiency, October
2008. 228

274 Bibliography

[91] B. Fleisch and G. Popek. Mirage: a coherent distributed shared memory design.
In SOSP ’89: Proceedings of the twelfth ACM symposium on Operating systems
principles, pages 211–223, New York, NY, USA, 1989. ACM. ISBN 0-89791-338-8.
doi: http://doi.acm.org/10.1145/74850.74871. 141

[92] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/367766.368168. 182

[93] Michael J. Flynn and Patrick Hung. Microprocessor design issues: Thoughts
on the road ahead. IEEE Micro, 25(3):16–31, 2005. ISSN 0272-1732. doi:
http://dx.doi.org/10.1109/MM.2005.56. 3, 4

[94] The MPI Forum. MPI: A message passing interface. In Bob Borchers, editor,
Proceedings of the Supercomputing ’93 Conference, pages 878–885, Portland, OR,
November 1993. IEEE Computer Society Press. ISBN 0-8186-4340-4. 14, 171, 176,
186, 223

[95] Using the GNU Compiler Collection (GCC) version 4.4. The Free Software Founda-
tion, 2008. URL http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/. 39

[96] Matteo Frigo. The weakest reasonable memory model. Master’s thesis, De-
partment of Electrical Engineering and Computer Science, MIT, 1998. URL
ftp://theory.lcs.mit.edu/pub/cilk/frigo-ms-thesis.ps.gz. 119

[97] Matteo Frigo. A fast fourier transform compiler. SIGPLAN Not., 34(5):169–180,
1999. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/301631.301661. 65

[98] R. M. Fujimoto. Parallel discrete event simulation. In WSC ’89: Proceedings of the
21st Winter simulation conference, pages 19–28, New York, NY, USA, 1989. ACM.
ISBN 0-911801-58-8. doi: http://doi.acm.org/10.1145/76738.76741. 208

[99] G. R. Gao and V. Sarkar. Location consistency: Stepping beyond the barriers of
memory coherence and serializability. Technical Report ACAPS Technical Memo
78, School of Computer Science, McGill University, December 1993. Revised Sep
1994. 132, 133

[100] G. R. Gao and V. Sarkar. Location consistency: Stepping beyond the memory
coherence barrier. In Proceedings of the 24th International Conference on Parallel
Processing, volume II, Software, pages II:73–76, Boca Raton, FL, August 1995. CRC
Press. 132

[101] Guang R. Gao and Vivek Sarkar. Location consistency-a new memory model and
cache consistency protocol. IEEE Trans. Comput., 49(8):798–813, 2000. ISSN
0018-9340. doi: http://dx.doi.org/10.1109/12.868026. 132, 133

[102] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. Interval simulation: Raising
the level of abstraction in architectural simulation. In Proceedings of the 16th
International Symposium on High-Performance Computing Architecture, 01 2010.
160, 161, 164, 217

http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/
ftp://theory.lcs.mit.edu/pub/cilk/frigo-ms-thesis.ps.gz

Bibliography 275

[103] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In ISCA ’90: Proceedings of the 17th annual inter-
national symposium on Computer Architecture, pages 15–26, New York, NY, USA,
1990. ACM. ISBN 0-89791-366-3. doi: http://doi.acm.org/10.1145/325164.325102.
128, 129

[104] Tony Givargis and Frank Vahid. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Trans. on CAD of Integrated Circuits and Systems, 21(11):
1317–1327, 2002. 161

[105] GNU. GNU Portable Threads. URL: http://www.gnu.org/software/pth/. 179

[106] Brice Goglin. Design and Implementation of Open-MX: High-Performance Mes-
sage Passing over generic Ethernet hardware. In Workshop on Communication
Architecture for Clusters, held in conjunction with IPDPS 2008, Miami États-Unis
d’Amérique, 2008. doi: 10.1109/{IPDPS}.2008.4536140. URL dx.doi.org/10.
1109/{IPDPS}.2008.4536140http://hal.inria.fr/inria-00210704/en/. 178

[107] Brice Goglin and Nathalie Furmento. Finding a Tradeoff between Host Interrupt
Load and MPI Latency over Ethernet. In IEEE, editor, Cluster 2009, New Orleans
États-Unis d’Amérique, 2009. URL http://hal.inria.fr/inria-00397328/en/.
178

[108] Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler. Lazy threads:
implementing a fast parallel call. J. Parallel Distrib. Comput., 37(1):5–20, 1996.
ISSN 0743-7315. doi: http://dx.doi.org/10.1006/jpdc.1996.0104. 67

[109] J. R. Goodman. Cache consistency and sequential consistency. Technical Re-
port 61, IEEE Scalable Coherence Interface Working Group, March 1989. URL
ftp://ftp.cs.wisc.edu/tech-reports/reports/91/tr1006.ps.Z. Also avail-
able as University of Wisconsin-Madison, Computer Sciences Department technical
report TR #1006. 127, 128

[110] James R. Goodman. Using cache memory to reduce processor-memory traffic. In
ISCA ’83: Proceedings of the 10th annual international symposium on Computer
architecture, pages 124–131, New York, NY, USA, 1983. ACM. ISBN 0-89791-101-6.
doi: http://doi.acm.org/10.1145/800046.801647. 125

[111] J. A. Gosden. Explicit parallel processing description and control in programs
for multi- and uni-processor computers. In AFIPS ’66 (Fall): Proceedings of the
November 7-10, 1966, fall joint computer conference, pages 651–660, New York, NY,
USA, 1966. ACM. doi: http://doi.acm.org/10.1145/1464291.1464361. 20

[112] W. S. Gosset. The probable error of a mean. Biometrika, 6(1):1–25, 1908. URL
http://www.york.ac.uk/depts/maths/histstat/student.pdf. Published under
the pseudonym of "Student". 49

dx.doi.org/10.1109/{IPDPS}.2008.4536140 http://hal.inria.fr/inria-00210704/en/
dx.doi.org/10.1109/{IPDPS}.2008.4536140 http://hal.inria.fr/inria-00210704/en/
http://hal.inria.fr/inria-00397328/en/
ftp://ftp.cs.wisc.edu/tech-reports/reports/91/tr1006.ps.Z
http://www.york.ac.uk/depts/maths/histstat/student.pdf

276 Bibliography

[113] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:416–429, 1969. 67

[114] R. L. Graham. Bounds on multiprocessing anomalies and related packing al-
gorithms. In AFIPS ’72 (Spring): Proceedings of the May 16-18, 1972, spring
joint computer conference, pages 205–217, New York, NY, USA, 1972. ACM. doi:
http://doi.acm.org/10.1145/1478873.1478901. 67

[115] Ananth Y. Grama, Vipin Kumar, and Ahmed Sameh. Scalable parallel formulations
of the barnes-hut method for n-body simulations. In Supercomputing ’94: Proceed-
ings of the 1994 conference on Supercomputing, pages 439–448, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press. ISBN 0-8186-6605-6. 192

[116] T Grotker, S Liao, G Martin, and S Swan. System design with systemc, 2002. 209

[117] Erik Hagersten. Towards Scalable Cache-Only Memory Architectures. PhD thesis,
Royal Institute of Technology, Stockholm / Swedish Institute of Computer Science,
1992. 81

[118] Yijie Han and Robert A. Wagner. An efficient and fast parallel-connected component
algorithm. Journal of the ACM, 37(3):626–642, 1990. URL citeseer.ist.psu.
edu/han90efficient.html. 191

[119] Tim Harris, Adrián Cristal, Osman S. Unsal, Eduard Ayguade, Fabrizio Gagliardi,
Burton Smith, and Mateo Valero. Transactional memory: An overview. IEEE
Micro, 27(3):8–29, May/June 2007. ISSN 0272-1732. doi: http://dx.doi.org/10.
1109/MM.2007.63. 12

[120] Allan Hartstein, Viji Srinivasan, Thomas R. Puzak, and Philip G. Emma. On the
nature of cache miss behavior: Is it

√
2? Journal of Instruction-Level parallelism

(JILP), 10, June 2008. 78

[121] Abdelsalam Heddaya and Himanshu Sinha. Coherence, non-coherence and local
consistency in distributed shared memory for parallel computing. Technical Report
BU-CS-92-004, Computer Science Department, Boston University, Boston, MA,
May 1992. 134

[122] John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau, et al. Com-
puter Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, fourth
edition, 2006. ISBN 0-12-370490-1 (paperback), 0-08-047502-7 (e-book), 0-12-373590-
4. URL http://www.loc.gov/catdir/toc/ecip0618/2006024358.html&http:
//www.loc.gov/catdir/enhancements/fy0665/2006024358-d.html. 77

[123] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In POPL ’87: Proceed-
ings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 13–26, New York, NY, USA, 1987. ACM. ISBN 0-89791-215-2. doi:
http://doi.acm.org/10.1145/41625.41627. 122

citeseer.ist.psu.edu/han90efficient.html
citeseer.ist.psu.edu/han90efficient.html
http://www.loc.gov/catdir/toc/ecip0618/2006024358.html & http://www.loc.gov/catdir/enhancements/fy0665/2006024358-d.html
http://www.loc.gov/catdir/toc/ecip0618/2006024358.html & http://www.loc.gov/catdir/enhancements/fy0665/2006024358-d.html

Bibliography 277

[124] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support
for lock-free data structures. In ISCA ’93: Proceedings of the 20th annual interna-
tional symposium on Computer architecture, pages 289–300, New York, NY, USA,
1993. ACM. ISBN 0-8186-3810-9. doi: http://doi.acm.org/10.1145/165123.165164.
11, 28, 43

[125] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.
ISSN 0164-0925. doi: http://doi.acm.org/10.1145/78969.78972. 122

[126] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.
ACM, 17(10):549–557, 1974. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
355620.361161. 65, 69

[127] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili. Parallel
programmer productivity: A case study of novice parallel programmers. In SC
’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 35,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 1-59593-061-2. doi:
http://dx.doi.org/10.1109/SC.2005.53. 9, 82

[128] Phillip W. Hutto and Mustaque Ahamad. Slow memory: Weakening consistency
to enchance concurrency in distributed shared memories. In Proc. 10th Interna-
tional Conference on Distributed Computing Systems, pages 302–309, Paris, France,
May-June 1990. IEEE Computer Society Press. 128

[129] IEEE. IEEE 1003.1c-1995: Information Technology — Portable Operating System
Interface (POSIX) - System Application Program Interface (API) Amendment 2:
Threads Extension (C Language). IEEE Computer Society Press, pub-IEEE:adr,
1995. 14, 23, 37

[130] L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between re-
lease consistency and entry consistency. Theory of Computing Systems, 31(4):
451–473, 1998. URL http://springerlink.metapress.com/openurl.asp?genre=
article&issn=1432-4350&volume=31&issue=4&spage=451. formerly Mathemati-
cal Systems Theory. 131

[131] Liviu Iftode, Cezary Dubnicki, Edward W. Felten, and Kai Li. Improving release-
consistent shared virtual memory using automatic update. In HPCA ’96: Proceedings
of the 2nd IEEE Symposium on High-Performance Computer Architecture, page 14,
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7237-4. 144

[132] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope consistency: a bridge
between release consistency and entry consistency. In SPAA ’96: Proceedings
of the eighth annual ACM symposium on Parallel algorithms and architectures,
pages 277–287, New York, NY, USA, 1996. ACM. ISBN 0-89791-809-6. doi:
http://doi.acm.org/10.1145/237502.237567. 131, 132, 145

http://springerlink.metapress.com/openurl.asp?genre=article&issn=1432-4350&volume=31&issue=4&spage=451
http://springerlink.metapress.com/openurl.asp?genre=article&issn=1432-4350&volume=31&issue=4&spage=451

278 Bibliography

[133] Intel. Intel threading building blocks. URL: http://www.threadingbuildingblocks.
org/, . 68, 108, 160, 168, 223

[134] Intel. Intel tera-scale computing research program. URL: http://techresearch.intel.
com/articles/Tera-Scale/1421.htm, . 4, 159

[135] Intel. Intel xeon processor 7500 series: a catalyst for mission-critical transformation,
May 2010. Version 1.0. 77

[136] International Technology Roadmap for Semiconductors. System drivers, 2009. 77

[137] ISO/IEC. Programming languages — C, 1999. 78, 84, 98

[138] Aamer Jaleel, Matthew Mattina, and Bruce Jacob. Last level cache (llc) performance
of data mining workloads on a cmp – a case study of parallel bioinformatics work-
loads. In International Symposium on High-Performance Computer Architecture
(HPCA), pages 88–98, February 2006. doi: 10.1109/HPCA.2006.1598115. 46

[139] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425,
1985. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/3916.3988. 207

[140] Christopher F. Joerg. The Cilk system for parallel multithreaded computing. PhD
thesis, Cambridge, MA, USA, 1995. 66, 119, 120

[141] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-performance all-
software distributed shared memory. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 213–226, New York, NY, USA,
1995. ACM. ISBN 0-89791-715-4. doi: http://doi.acm.org/10.1145/224056.224073.
155, 156

[142] Kirk Lauritz Johnson. High-performance all-software distributed shared memory.
PhD thesis, Cambridge, MA, USA, 1996. 155

[143] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility
in the Emerald system. ACM Trans. Comput. Syst., 6(1):109–133, 1988. ISSN
0734-2071. doi: http://doi.acm.org/10.1145/35037.42182. 148

[144] M. Frans Kaashoek and Andrew S. Tanenbaum. Group communication in the
amoeba distributed operating system. In ICDCS, pages 222–230. IEEE Computer
Society, 1991. 153

[145] M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, and Andrew S.
Tanenbaum. FLIP: An internetwork protocol for supporting distributed sys-
tems. ACM Trans. Comput. Syst., 11(1):73–106, 1993. ISSN 0734-2071. doi:
http://doi.acm.org/10.1145/151250.151253. 153

[146] L. V. Kalé, B. Ramkumar, A. B. Sinha, and A. Gursoy. The CHARM parallel pro-
gramming language and system: Part i – description of language features. Technical
Report PPL-95-02, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1995. 70

Bibliography 279

[147] L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A. Saletore. The CHARM parallel
programming language and system: Part ii – the runtime system. Technical Report
PPL-95-03, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1995. 70

[148] Laxmikant V. Kalé. Comparing the performance of two dynamic load distribution
methods. In ICPP (1), pages 8–12, 1988. 154

[149] Laxmikant V. Kale and Milind A. Bhandarkar. Structured dagger: A coordination
language for message-driven programming. In Euro-Par ’96: Proceedings of the
Second International Euro-Par Conference on Parallel Processing, pages 646–653,
London, UK, 1996. Springer-Verlag. ISBN 3-540-61626-8. 215

[150] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++ : A Portable Concurrent
Object-Oriented System Based on C++. In OOPSLA ’93: Proceedings of the
eighth annual conference on Object-oriented programming systems, languages, and
applications, pages 91–108, New York, NY, USA, September 1993. ACM. ISBN
0-89791-587-9. doi: http://doi.acm.org/10.1145/165854.165874. 43, 70, 215

[151] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for
software distributed shared memory. In ISCA ’92: Proceedings of the 19th annual in-
ternational symposium on Computer architecture, pages 13–21, New York, NY, USA,
1992. ACM. ISBN 0-89791-509-7. doi: http://doi.acm.org/10.1145/139669.139676.
142

[152] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-
marks: distributed shared memory on standard workstations and operating systems.
In WTEC’94: Proceedings of the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference, pages 10–10, Berkeley, CA, USA, 1994.
USENIX Association. 142, 143

[153] Peter John Keleher. Lazy Release Consistency for Distributed Shared Memory.
PhD thesis, Department of Computer Science, Rice University, Houston, TX, USA,
January 1995. 142, 143

[154] Joshua L. Kihm and Daniel A. Connors. Statistical simulation of multithreaded
architectures. In MASCOTS ’05: Proceedings of the 13th IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, pages 67–74, Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7695-2458-3. doi: http://dx.doi.org/10.1109/MASCOT.2005.69. 160, 212

[155] Charles Koelbel. An overview of high performance fortran. SIGPLAN Fortran Forum,
11(4):9–16, 1992. ISSN 1061-7264. doi: http://doi.acm.org/10.1145/140734.140736.
63, 117

[156] Tim Kogel, Malte Doerper, Andreas Wieferink, Rainer Leupers, Gerd Ascheid, Hein-
rich Meyr, and Serge Goossens. A modular simulation framework for architectural
exploration of on-chip interconnection networks. In CODES+ISSS ’03: Proceedings

280 Bibliography

of the 1st IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pages 7–12, New York, NY, USA, 2003. ACM. ISBN
1-58113-742-7. doi: http://doi.acm.org/10.1145/944645.944648. 161

[157] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre-
Yves Droz. RAMP blue: A message-passing manycore system in FPGAs. In
Koen Bertels, Walid A. Najjar, Arjan J. van Genderen, and Stamatis Vassil-
iadis, editors, International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 54–61. IEEE, 2007. ISBN 1-4244-1060-6. URL http:
//dx.doi.org/10.1109/FPL.2007.4380625. 227

[158] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick. Parallel programming in split-c. In Supercom-
puting ’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing,
pages 262–273, New York, NY, USA, 1993. ACM. ISBN 0-8186-4340-4. doi:
http://doi.acm.org/10.1145/169627.169724. 63, 117, 118

[159] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. In PLDI
’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, pages 211–222, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-633-2. doi: http://doi.acm.org/10.1145/1250734.1250759. 10, 225

[160] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin
Casçaval. How much parallelism is there in irregular applications? In PPoPP
’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 3–14, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-397-6. doi: http://doi.acm.org/10.1145/1504176.1504181. 16

[161] Thierry Lafage and André Seznec. Choosing representative slices of program execu-
tion for microarchitecture simulations: a preliminary application to the data stream.
pages 145–163, 2001. 210

[162] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process progranm. IEEE Trans. Comput., 28(9):690–691, 1979. ISSN 0018-9340.
doi: http://dx.doi.org/10.1109/TC.1979.1675439. 120

[163] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.
Commun. ACM, 17(8):453–455, 1974. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/361082.361093. 11

[164] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978. ISSN 0001-0782. doi: http:
//doi.acm.org/10.1145/359545.359563. 205

[165] Douglas Lea. libg++, the GNU C++ library. In USENIX Association, editor,
USENIX proceedings: C++ Conference, pages 243–256, Denver, CO, October 1988.
USENIX Association. 84

http://dx.doi.org/10.1109/FPL.2007.4380625
http://dx.doi.org/10.1109/FPL.2007.4380625

Bibliography 281

[166] Thomas J. LeBlanc, Michael L. Scott, and Christopher M. Brown. Large-scale paral-
lel programming: experience with bbn butterfly parallel processor. In PPEALS ’88:
Proceedings of the ACM/SIGPLAN conference on Parallel programming: experience
with applications, languages and systems, pages 161–172, New York, NY, USA, 1988.
ACM. ISBN 0-89791-276-4. doi: http://doi.acm.org/10.1145/62115.62131. 136

[167] Peizong Lee and Zvi Meir Kedem. Automatic data and computation decomposition
on distributed memory parallel computers. ACM Trans. Program. Lang. Syst., 24
(1):1–50, 2002. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/509705.509706.
79

[168] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chen-
nupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking
the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu
and gpu. In Proceedings of the 37th annual international symposium on Com-
puter architecture, ISCA ’10, pages 451–460, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0053-7. doi: http://doi.acm.org/10.1145/1815961.1816021. URL
http://doi.acm.org/10.1145/1815961.1816021. 227

[169] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. The directory-based cache coherence protocol for the dash multiprocessor.
In ISCA ’90: Proceedings of the 17th annual international symposium on Computer
Architecture, pages 148–159, New York, NY, USA, 1990. ACM. ISBN 0-89791-366-3.
doi: http://doi.acm.org/10.1145/325164.325132. 81

[170] Man-Lap Li, Ruchira Sasanka, Sarita V. Adve, Yen kuang Chen, and Eric Debes.
The alpbench benchmark suite for complex multimedia applications. In IEEE
International Symposium on Workload Characterization, pages 34–45, 2005. 46

[171] Yong Li, Ahmed Abousamra, Rami Melhem, and Alex K. Jones. Compiler-assisted
data distribution for chip multiprocessors. In Proceedings of the Nineteenth Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 501–512, September 2010. ISBN 978-1-4503-0178-7. 79

[172] Zheng Li. Architectural Support for the CAPSULE Parallelization Environment.
PhD thesis, École doctorale d’informatique de l’université de Paris-Sud XI, December
2010. 104

[173] Zheng Li, Olivier Certner, José Duato, and Olivier Temam. Scalable hardware
support for conditional parallelization. In Proceedings of the nineteenth Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 157–168, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0178-7. doi:
http://doi.acm.org/10.1145/1854273.1854297. 104, 115, 224, 261

[174] Frank C. H. Lin and Robert M. Keller. The gradient model load balancing
method. IEEE Trans. Softw. Eng., 13(1):32–38, 1987. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/TSE.1987.232563. 106, 107, 108, 155

http://doi.acm.org/10.1145/1815961.1816021

282 Bibliography

[175] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical
Report CS-TR-180-88, Princeton University, Princeton, NJ, September 1988. 127

[176] B. Lubachevsky, A. Shwartz, and A. Weiss. Rollback sometimes works...if fil-
tered. In WSC ’89: Proceedings of the 21st Winter simulation conference,
pages 630–639, New York, NY, USA, 1989. ACM. ISBN 0-911801-58-8. doi:
http://doi.acm.org/10.1145/76738.76819. 208

[177] Reinhard Lüling, Burkhard Monien, and Friedhelm Ramme. Load balancing in large
networks: a comparative study. In SPDP, pages 686–689. IEEE Computer Society,
1991. ISBN 0-8186-2310-1. 106

[178] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled
microprocessors. In RTSS ’99: Proceedings of the 20th IEEE Real-Time Systems
Symposium, page 12, Washington, DC, USA, 1999. IEEE Computer Society. ISBN
0-7695-0475-2. 42

[179] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.
Simics: A full system simulation platform. Computer, 35(2):50–58, 2002. ISSN
0018-9162. doi: http://dx.doi.org/10.1109/2.982916. 211

[180] Doug Matzke. Will physical scalability sabotage performance gains? Computer, 30
(9):37–39, 1997. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.612245. 3

[181] Sally A. McKee. Reflections on the memory wall. In CF ’04: Proceedings of the
1st conference on Computing frontiers, page 162, New York, NY, USA, 2004. ACM.
ISBN 1-58113-741-9. doi: http://doi.acm.org/10.1145/977091.977115. 77

[182] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald III, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A
distributed parallel simulator for multicores. In Proceedings of the 16th International
Symposium on High-Performance Computing Architecture, 01 2010. 160, 161, 175,
194, 215

[183] J. C. Mogul and G. Minshall. Rethinking the TCP Nagle Algorithm. SIG-
COMM Comput. Commun. Rev., 31(1):6–20, 2001. ISSN 0146-4833. doi: http:
//doi.acm.org/10.1145/382176.382177. 178

[184] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy task creation: A technique for
increasing the granularity of parallel programs. IEEE Trans. Parallel Distrib. Syst.,
2(3):264–280, 1991. ISSN 1045-9219. doi: http://dx.doi.org/10.1109/71.86103. 67

[185] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S. Muller. Memory
performance and cache coherency effects on an intel nehalem multiprocessor system.
Parallel Architectures and Compilation Techniques, International Conference on, 0:
261–270, 2009. ISSN 1089-795X. doi: http://doi.ieeecomputersociety.org/10.1109/
PACT.2009.22. 156, 177

Bibliography 283

[186] Matteo Monchiero, Jung Ho Ahn, Ayose Falcon, Daniel Ortega, and Paolo Faraboschi.
How to simulate 1000 cores. Technical Report HPL-2008-190, Hewlett Packard Lab-
oratories, November 9 2008. URL http://www.hpl.hp.com/techreports/2008/
HPL-2008-190.pdf. 160, 217, 227

[187] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965. 3

[188] Gordon E. Moore. Progress in digital integrated electronics. International Electron
Devices Meeting, 21:11–13, 1975. 3

[189] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. Logtm: log-based transactional memory. In HPCA, pages 254–265. IEEE
Computer Society, 2006. 12

[190] Shubhendu Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow, Steve
Huss-lederman, Mark D. Hill, James R. Larus, and David A. Wood. Wisconsin
Wind Tunnel II: A fast and portable parallel architecture simulator. In In Workshop
on Performance Analysis and Its Impact on Design (PAID), 1997. 214

[191] Jeffrey Namkung, Dohyung Kim, Rajesh Gupta, Igor Kozintsev, Jean-Yves Bouget,
and Carole Dulong. Phase guided sampling for efficient parallel application simula-
tion. In CODES+ISSS ’06: Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis, pages 187–192, New York, NY, USA,
2006. ACM. ISBN 1-59593-370-0. doi: http://doi.acm.org/10.1145/1176254.1176301.
160, 194, 213

[192] Ramanathan Narayanan, Berkin Özıs. Ikyılmaz, Joseph Zambreno, Gokhan Memik,
and Alok Choudhary. Minebench: A benchmark suite for data mining workloads.
In IEEE International Symposium on Workload Characterization, pages 182–188,
2006. 46

[193] Angeles Navarro, Emilio Zapata, and David Padua. Compiler techniques for the
distribution of data and computation. IEEE Trans. Parallel Distrib. Syst., 14(6):
545–562, 2003. ISSN 1045-9219. doi: http://dx.doi.org/10.1109/TPDS.2003.1206503.
79

[194] Lionel M. Ni, Chong-Wei Xu, and Thomas B. Gendreau. A distributed drafting
algorithm for load balancing. IEEE Trans. Softw. Eng., 11(10):1153–1161, 1985.
ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.1985.231863. 106

[195] Sébastien Nussbaum and James E. Smith. Modeling superscalar processors via sta-
tistical simulation. In PACT ’01: Proceedings of the 2001 International Conference
on Parallel Architectures and Compilation Techniques, pages 15–24, Washington,
DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1363-8. 160, 210

[196] Nvidia. Fermi, the next generation CUDA architecture. URL: http://www.nvidia.fr/
object/fermi_architecture_fr.html. 4, 77

http://www.hpl.hp.com/techreports/2008/HPL-2008-190.pdf
http://www.hpl.hp.com/techreports/2008/HPL-2008-190.pdf

284 Bibliography

[197] Open SystemC Initiative (OSCI). TLM 2.0 Language Reference Manual, . 211

[198] Open SystemC Initiative (OSCI). TLM 2.0 Whitepaper, . 211, 215

[199] Mark Oskin, Frederic T. Chong, and Matthew K. Farrens. HLS: Combining statisti-
cal and symbolic simulation to guide microprocessor designs. In ISCA, pages 71–82,
2000. 160, 210

[200] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-TSO. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makar-
ius Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes in Computer Sci-
ence, pages 391–407. Springer, 2009. ISBN 978-3-642-03358-2. URL http:
//dx.doi.org/10.1007/978-3-642-03359-9. 134

[201] Pierre Palatin. Exploitation pratique et efficace du parallélisme sur processeurs
multi-cœurs. PhD thesis, Université Paris XI Orsay, September 2008. 5, 13, 25, 29,
33, 34, 35, 223

[202] Pierre Palatin, Yves Lhuillier, and Olivier Temam. CAPSULE: Hardware-assisted
parallel execution of component-based programs. In MICRO 39: Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pages
247–258, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2732-9.
doi: http://dx.doi.org/10.1109/MICRO.2006.13. 5, 13, 29, 48, 60, 191

[203] David A. Penry and David I. August. Optimizations for a simulator construction
system supporting reusable components. In DAC ’03: Proceedings of the 40th annual
Design Automation Conference, pages 926–931, New York, NY, USA, 2003. ACM.
ISBN 1-58113-688-9. doi: http://doi.acm.org/10.1145/775832.776065. 209

[204] David A. Penry, Daniel Fay, David Hodgdon, Ryan Wells, Graham Schelle, David I.
August, and Dan Connors. Exploiting parallelism and structure to accelerate the
simulation of chip multi-processors. In HPCA, pages 29–40, 2006. 160, 216

[205] Erez Perelman, Marzia Polito, Jean yves Bouguet, John Sampson, Brad Calder,
and Carole Dulong. Detecting phases in parallel applications on shared memory
architectures. In In International Parallel and Distributed Processing Symposium,
pages 25–29, 2006. 160, 194, 213

[206] Daniel Gracia Perez, Gilles Mouchard, and Olivier Temam. MicroLib: A case
for the quantitative comparison of micro-architecture mechanisms. In MICRO 37:
Proceedings of the 37th annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 43–54, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2126-6. doi: http://dx.doi.org/10.1109/MICRO.2004.25. 209

[207] Dac Pham, Shigehiro Asano, Mark Bolliger, Michael N. Day, H. Peter Hofstee,
Charles R. Johns, James A. Kahle, Atsushi Kameyama, John M. Keaty, Yoshio
Masubuchi, Mack W. Riley, David Shippy, Daniel Stasiak, Masakazu Suzuoki,
M. Wang, James D. Warnock, Steve Weitzel, Dieter F. Wendel, Takeshi Yamazaki,

http://dx.doi.org/10.1007/978-3-642-03359-9
http://dx.doi.org/10.1007/978-3-642-03359-9

Bibliography 285

and K. Yazawa. The design and implementation of a first-generation CELL processor.
In IEEE International Solid-State Circuits Conference, pages 184–185,592, February
2005. 99

[208] Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison. In DATE ’07: Proceedings of the
conference on Design, automation and test in Europe, pages 1484–1489, New York,
NY, USA, 2007. ACM Press. ISBN 978-3-9810801-2-4. 42

[209] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.
August. Parallel-stage decoupled software pipelining. In Mary Lou Soffa and Evelyn
Duesterwald, editors, CGO, pages 114–123. ACM, 2008. ISBN 978-1-59593-978-4.
229

[210] Keith Harold Randall. Cilk: Efficient multithreaded computing. PhD thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science, 1998. 66, 119, 120

[211] Lawrence Rauchwerger, Francisco Arzu, and Koji Ouchi. Standard templates adap-
tive parallel library (stapl). In LCR ’98: Selected Papers from the 4th International
Workshop on Languages, Compilers, and Run-Time Systems for Scalable Computers,
pages 402–409, London, UK, 1998. Springer-Verlag. ISBN 3-540-65172-1. 64

[212] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and typhoon: user-level
shared memory. SIGARCH Comput. Archit. News, 22(2):325–336, 1994. ISSN
0163-5964. doi: http://doi.acm.org/10.1145/192007.192062. 146

[213] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C.
Lewis, and David A. Wood. The Wisconsin Wind Tunnel: virtual prototyping of
parallel computers. SIGMETRICS Perform. Eval. Rev., 21(1):48–60, 1993. ISSN
0163-5999. doi: http://doi.acm.org/10.1145/166962.166979. 214

[214] Mack W. Riley, James D. Warnock, and Dieter F. Wendel. Cell broadband engine
processor: Design and implementation. IBM Journal of Research and Development,
51(5):545–558, 2007. 99

[215] Philip E. Ross. Why cpu frequency stalled. IEEE Spectrum, 45(4):72, April 2008. 3

[216] Bernard Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218, 1959.
182

[217] Behrokh Samadi. Distributed simulation, algorithms and performance analysis (load
balancing, distributed processing). PhD thesis, University of California, Los Angeles,
1985. 207

[218] Farideh A. Samadzadeh and G. E. Hedrick. Near-optimal multiprocessor scheduling.
In CSC ’92: Proceedings of the 1992 ACM annual conference on Communica-
tions, pages 477–484, New York, NY, USA, 1992. ACM. ISBN 0-89791-472-4. doi:
http://doi.acm.org/10.1145/131214.131275. 67

286 Bibliography

[219] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The semantics of x86-
cc multiprocessor machine code. In POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 379–391, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-379-2. doi:
http://doi.acm.org/10.1145/1480881.1480929. 128

[220] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.
MIT Press, Cambridge, MA, USA, 1989. ISBN 0262691302. 67

[221] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An argument for simple
coma. In HPCA ’95: Proceedings of the 1st IEEE Symposium on High-Performance
Computer Architecture, page 276, Washington, DC, USA, 1995. IEEE Computer
Society. ISBN 0-8186-6445-2. 81

[222] Ali Sayinta, Gorkem Canverdi, Marc Pauwels, Amer Alshawa, and Wim Dehaene. A
mixed abstraction level co-simulation case study using SystemC for system on chip
verification. In DATE ’03: Proceedings of the conference on Design, Automation
and Test in Europe, page 20095, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1870-2-2. 161

[223] D. Scales, K. Gharachorloo, and A. Aggarwal. Fine-grain software distributed
shared memory on smp clusters. In HPCA ’98: Proceedings of the 4th International
Symposium on High-Performance Computer Architecture, page 125, Washington,
DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8323-6. 147

[224] Daniel J. Scales and Kourosh Gharachorloo. Design and performance of the shasta
distributed shared memory protocol. In ICS ’97: Proceedings of the 11th interna-
tional conference on Supercomputing, pages 245–252, New York, NY, USA, 1997.
ACM. ISBN 0-89791-902-5. doi: http://doi.acm.org/10.1145/263580.263643. 146,
147

[225] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:
a low overhead, software-only approach for supporting fine-grain shared mem-
ory. In ASPLOS-VII: Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems, pages
174–185, New York, NY, USA, 1996. ACM. ISBN 0-89791-767-7. doi: http:
//doi.acm.org/10.1145/237090.237179. 146, 147

[226] C. Scheurich and M. Dubois. Correct memory operation of cache-based multipro-
cessors. In ISCA ’87: Proceedings of the 14th annual international symposium on
Computer architecture, pages 234–243, New York, NY, USA, 1987. ACM. ISBN
0-8186-0776-9. doi: http://doi.acm.org/10.1145/30350.30377. 124, 125

[227] C. E. Scheurich. Access ordering and coherence in shared memory multiprocessors.
PhD thesis, Los Angeles, CA, USA, 1989. 123

Bibliography 287

[228] Jörn Schneider and Christian Ferdinand. Pipeline behavior prediction for super-
scalar processors by abstract interpretation. In LCTES ’99: Proceedings of the ACM
SIGPLAN 1999 workshop on Languages, compilers, and tools for embedded systems,
pages 35–44, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-136-4. 42

[229] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R.
Larus, and David A. Wood. Fine-grain access control for distributed shared
memory. SIGOPS Oper. Syst. Rev., 28(5):297–306, 1994. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/381792.195575. 146

[230] Robert Schöne, Wolfgang E. Nagel, and Stefan Pflüger. Analyzing cache bandwidth
on the Intel Core 2 architecture. In Christian H. Bischof, H. Martin Bücker, Paul
Gibbon, Gerhard R. Joubert, Thomas Lippert, Bernd Mohr, and Frans J. Peters,
editors, PARCO, volume 15 of Advances in Parallel Computing, pages 365–372. IOS
Press, 2007. ISBN 978-1-58603-796-3. 156, 177

[231] Loren Schwiebert. Deadlock-free oblivious wormhole routing with cyclic dependen-
cies. In SPAA ’97: Proceedings of the ninth annual ACM symposium on Parallel
algorithms and architectures, pages 149–158, New York, NY, USA, 1997. ACM.
ISBN 0-89791-890-8. doi: http://doi.acm.org/10.1145/258492.258507. 182

[232] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997. 12

[233] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications. In PACT
’01: Proceedings of the 2001 International Conference on Parallel Architectures and
Compilation Techniques, pages 3–14, Washington, DC, USA, 2001. IEEE Computer
Society. ISBN 0-7695-1363-8. 210

[234] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X: Proceedings of the
10th international conference on Architectural support for programming languages
and operating systems, pages 45–57, New York, NY, USA, 2002. ACM. ISBN
1-58113-574-2. doi: http://doi.acm.org/10.1145/605397.605403. 159, 210

[235] W. Shu and L. V. Kale. A dynamic scheduling strategy for the chare-kernel system.
In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, 1989., pages
389 –398, 12-17 1989. doi: 10.1145/76263.76306. 155

[236] Jaswinder P Singh, Wolf Weber, and Anoop Gupta. Splash: Stanford parallel
applications for shared-memory*. Technical report, Stanford, CA, USA, 1992. 46

[237] Lisa M. Sokol, Jon B. Weissman, and Paula A. Mutchler. MTW: An empirical
performance study. In WSC ’91: Proceedings of the 23rd Winter simulation confer-
ence, pages 557–563, Washington, DC, USA, 1991. IEEE Computer Society. ISBN
0-7803-0181-1. 208

288 Bibliography

[238] SPARC International, Inc. The SPARC Architecture Manual—Version 8. Prentice-
Hall, pub-PH:adr, 1992. ISBN 0-13-825001-4. 134

[239] Jeff Steinman. SPEEDES: A multiple-synchronization environment for parallel
discrete-event simulation. The International Journal for Computer Simulation, 2(3):
241–286, 1992. 214

[240] Alexander Stepanov and Meng Lee. The standard template library. Technical
Report X3J16/94-0095, WG21/N0482, ISO Programming Language C++ Project,
May 1994. 64

[241] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3), March 2005. 4

[242] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. The structure and architecture of
cm*: A modular, multi-microprocessor. In Carnegie-Mellon University Computer
Science Department Research Review. Pittsburgh, PA, December 1976. 136

[243] Richard J. Swan, Andy Bechtolsheim, Kwok-Woon Lai, and John K. Ousterhout.
The implementation of the cm* multi-microprocessor. In AFIPS ’77: Proceedings of
the June 13-16, 1977, national computer conference, pages 645–655, New York, NY,
USA, 1977. ACM. doi: http://doi.acm.org/10.1145/1499402.1499516. 136

[244] C. K. Tang. Cache system design in the tightly coupled multiprocessor system.
In AFIPS ’76: Proceedings of the June 7-10, 1976, national computer confer-
ence and exposition, pages 749–753, New York, NY, USA, 1976. ACM. doi:
http://doi.acm.org/10.1145/1499799.1499901. 125

[245] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms.
J. ACM, 31(2):245–281, 1984. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/62.
2160. 138

[246] Chandramohan A. Thekkath and Henry M. Levy. Hardware and software support
for efficient exception handling. In ASPLOS-VI: Proceedings of the sixth interna-
tional conference on Architectural support for programming languages and operating
systems, pages 110–119, New York, NY, USA, 1994. ACM. ISBN 0-89791-660-3.
doi: http://doi.acm.org/10.1145/195473.195515. 146

[247] Samuel Thibault. A flexible thread scheduler for hierarchical multiprocessor ma-
chines. In Second International Workshop on Operating Systems, Programming
Environments and Management Tools for High-Performance Computing on Clus-
ters (COSET-2), Cambridge, USA, June 2005. URL http://hal.inria.fr/
inria-00000138. 179

[248] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A lan-
guage for streaming applications. In R. Horspool, editor, Compiler Construc-
tion, volume 2304 of Lecture Notes in Computer Science, pages 49–84. Springer

http://hal.inria.fr/inria-00000138
http://hal.inria.fr/inria-00000138

Bibliography 289

Berlin / Heidelberg, 2002. URL http://dx.doi.org/10.1007/3-540-45937-5_14.
10.1007/3-540-45937-5_14. 42

[249] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M. Amato,
and Lawrence Rauchwerger. A framework for adaptive algorithm selection in stapl.
In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 277–288, New York, NY, USA, 2005.
ACM. ISBN 1-59593-080-9. doi: http://doi.acm.org/10.1145/1065944.1065981. 65

[250] Tilera. Tilera website. URL: http://www.tilera.com/. 4, 159

[251] Alan Turing. On computable numbers, with an application to the “Entschei-
dungsproblem”. Proceedings of the London Mathematical Society, 42(2):230–265,
1936. URL doi:10.1112/plms/s2-42.1.230. 3

[252] Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi Vishkin. Lazy
binary-splitting: a run-time adaptive work-stealing scheduler. In PPoPP ’10: Pro-
ceedings of the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 179–190, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-877-3. doi: http://doi.acm.org/10.1145/1693453.1693479. 69

[253] Manish Vachharajani, Neil Vachharajani, David A. Penry, Jason A. Blome, Sharad
Malik, and David I. August. The liberty simulation environment: A deliberate
approach to high-level system modeling. ACM Trans. Comput. Syst., 24(3):211–249,
2006. ISSN 0734-2071. doi: http://doi.acm.org/10.1145/1151690.1151691. 209

[254] Scott Vetter, Giuliano Anselmi, Bruno Blanchard, Younghoon Cho, Christopher
Hales, and Marcos Quezada. Ibm power 770 and 780 technical overview and
introduction. Technical Report REDP-4639-00, IBM, March 2010. 77

[255] David L. Weaver and Tom Germond. The SPARC Architecture Manual—Version 9.
Prentice-Hall PTR, pub-PHPTR:adr, 1994. ISBN 0-13-099227-5. 134

[256] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ailamaki,
Babak Falsafi, and James C. Hoe. SimFlex: Statistical sampling of computer system
simulation. IEEE Micro, 26(4):18–31, 2006. URL http://dblp.uni-trier.de/db/
journals/micro/micro26.html#WenischWFAFH06. 159, 213

[257] Marc Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic load balanc-
ing on highly parallel computers. IEEE Trans. Parallel Distrib. Syst., 4(9):979–993,
1993. 106, 107

[258] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: Characterization and methodological con-
siderations. In ISCA ’95: Proceedings of the 22nd annual international symposium
on Computer architecture, pages 24–36, New York, NY, USA, 1995. ACM. ISBN
0-89791-698-0. doi: http://doi.acm.org/10.1145/223982.223990. 46, 217

http://dx.doi.org/10.1007/3-540-45937-5_14
doi:10.1112/plms/s2-42.1.230
http://dblp.uni-trier.de/db/journals/micro/micro26.html#WenischWFAFH06
http://dblp.uni-trier.de/db/journals/micro/micro26.html#WenischWFAFH06

290 Bibliography

[259] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.
SMARTS: Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In in Proceedings of the 30th annual international symposium on Computer
architecture, pages 84–97, 2003. 159, 210

[260] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. Spl: a lan-
guage and compiler for dsp algorithms. In PLDI ’01: Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and implementation,
pages 298–308, New York, NY, USA, 2001. ACM. ISBN 1-58113-414-2. doi:
http://doi.acm.org/10.1145/378795.378860. 4, 65

[261] Di Xu, Chenggang Wu, and Pen- Chung Yew. On mitigating memory bandwidth
contention through bandwidth-aware scheduling. In Proceedings of the Nineteenth
International Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 237–247, September 2010. ISBN 978-1-4503-0178-7. 78

[262] Sami Yehia, Sylvain Girbal, Hugues Berry, and Olivier Temam. Reconciling special-
ization and flexibility through compound circuits. In HPCA, pages 277–288. IEEE
Computer Society, 2009. 229

[263] Joshua J. Yi, Resit Sendag, David J. Lilja, and Douglas M. Hawkins. Speed versus
accuracy trade-offs in microarchitectural simulations. IEEE Transactions on Com-
puters, 56(11):1549–1563, 2007. ISSN 0018-9340. doi: http://doi.ieeecomputersociety.
org/10.1109/TC.2007.70744. 205

[264] Hao Yu, Dongmin Zhang, and Lawrence Rauchwerger. An adaptive algorithm
selection framework. In PACT ’04: Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques, pages 278–289,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2229-7. doi:
http://dx.doi.org/10.1109/PACT.2004.6. 65

[265] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Software write
detection for a distributed shared memory. In OSDI ’94: Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation, page 8,
Berkeley, CA, USA, 1994. USENIX Association. 144, 145, 146

[266] G. Zheng, Gunavardhan Kakulapati, and Laxmikant V. Kale. Bigsim: a parallel
simulator for performance prediction of extremely large parallel machines. In Parallel
and Distributed Processing Symposium, 2004. Proceedings. 18th International, pages
78–, April 2004. doi: 10.1109/IPDPS.2004.1303013. 214

[267] Yuanyuan Zhou, Liviu Iftode, and Kai Li. Performance evaluation of two home-based
lazy release consistency protocols for shared virtual memory systems. In OSDI ’96:
Proceedings of the second USENIX symposium on Operating systems design and
implementation, pages 75–88, New York, NY, USA, 1996. ACM. ISBN 1-880446-82-0.
doi: http://doi.acm.org/10.1145/238721.238763. 145

291

Index

292

293

Index

cell, 85
data section, 86
header, 96
links section, 87
sections, 86

conditional parallelization, 17
control message, 165, 176, 184

shutdown, 184

divide, see primitive

group, 24
inheritance, 25
new, 25
wait, 25

handle, 85
historization, 183

lazy update, 95
link, 85

memory model, 82

ping-pong effect, 110
primitive

divide, 17
probe, 17

probe, see primitive
proxy

cell, 93
chain, 95
link, 94
virtual time, see virtual time

radius effect, 110
recursive work declaration, 20

spatial synchronization, 161, 165

synchronization group, see group

task queue, 104
global end, 115
local end, 104, 115

virtual time, 163
propagation, 164
proxy, 165
shadow, 168

294 INDEX

295

This document was prepared with TEX Live 2010, using the
XEmacs 21.5.28 editor on systems running FreeBSD 7-STABLE
(which includes a bunch of GNU utilities). Figures were done

with OpenOffice, TikZ and gnuplot.

Résumé
L’accroissement régulier de la fréquence des micro-processeurs et des importants gains de

puissance qui en avaient résulté ont pris fin en 2005. Les autres principales techniques matérielles
d’amélioration de performance pour les programmes séquentiels (exécution dans le désordre,
antémémoires, prédiction de branchement, etc.) se sont largement essouflées. Conduisant à une
consommation de puissance toujours plus élevée, elles posent de délicats problèmes économiques
et techniques (refroidissement des puces). Pour ces raisons, les fabricants de micro-processeurs
ont choisi d’exploiter le nombre croissant de transistors disponibles en plaçant plusieurs cœurs de
processeurs sur une même puce.

Par cette thèse, nous avons pour objectif et ambition de préparer l’arrivée probable, dans les
prochaines années, de processeurs multi-cœur à grand nombre de cœurs (une centaine ou plus).
À cette fin, nos recherches se sont orientées dans trois grandes directions. Premièrement, nous
améliorons l’environnement de parallélisation Capsule, dont le principe est la parallélisation condi-
tionnelle, en lui adjoignant des primitives de synchronization de tâches robustes et en améliorant
sa portabilité. Nous étudions ses performances et montrons ses gains par rapport aux approches
usuelles, aussi bien en terme de rapidité que de stabilité du temps d’exécution. Deuxièmement,
la compétition entre de nombreux cœurs pour accéder à des mémoires aux performances bien
plus faibles va vraisemblablement conduire à répartir la mémoire au sein des futures architectures
multi-cœur. Nous adaptons donc Capsule à cette évolution en présentant un modèle de données
simple et général qui permet au système de déplacer automatiquement les données en fonction des
accès effectués par les programmes. De nouveaux algorithmes répartis et locaux sont également
proposés pour décider de la création effective des tâches et de leur répartition. Troisièmement, nous
développons un nouveau simulateur d’évènements discrets, SiMany, pouvant prendre en charge
des centaines à des milliers de cœurs. Nous montrons qu’il reproduit fidèlement les variations
de temps d’exécution de programmes observées sur un simulateur de niveau cycle jusqu’à 64
cœurs. SiMany est au moins 100 fois plus rapide que les meilleurs simulateurs flexibles actuels. Il
permet l’exploration d’un champ plus large d’architectures ainsi que l’étude des grandes lignes du
comportement des logiciels sur celles-ci, ce qui en fait un outil majeur pour le choix et l’organisation
des futures architectures multi-cœur et des solutions logicielles qui les exploiteront.

Abstract
Since 2005, chip manufacturers have stopped raising processor frequencies, which had been the

primary mean to increase processing power since the end of the 90s. Other hardware techniques to
improve sequential execution time (out-of-order processing, caches, branch prediction, etc.) have
also shown diminishing returns, while raising the power envelope. For these reasons, commonly
referred to as the frequency and power walls, manufacturers have turned to multiple processor
cores to exploit the growing number of available transistors on a die.

In this thesis, we anticipate the probable evolution of multi-core processors into many-core
ones, comprising hundreds of cores and more, by focusing on three important directions. First,
we improve the Capsule programming environment, based on conditional parallelization, by
adding robust coarse-grain synchronization primitives and by enhancing its portability. We study
its performance and show its benefits over common parallelization approaches, both in terms of
speedups and execution time stability. Second, because of increased contention and the memory
wall, many-core architectures are likely to become more distributed. We thus adapt Capsule to
distributed-memory architectures by proposing a simple but general data structure model that
allows the associated run-time system to automatically handle data location based on program
accesses. New distributed and local schemes to implement conditional parallelization and work
dispatching are also proposed. Third, we develop a new discrete-event-based simulator, SiMany,
able to sustain hundreds to thousands of cores with practical execution time. We show that it
successfully captures the main program execution trends by comparing its results to those of a
cycle-accurate simulator up to 64 cores. SiMany is more than a hundred times faster than the
current best flexible approaches. It pushes further the limits of high-level architectural design-
space exploration and software trend prediction, making it a key tool to design future many-core
architectures and to assess software scalability on them.

	Remerciements
	Introduction
	I Capsule: Parallel Programming Made Easier
	1 Parallel Programming Is Hard
	1.1 Work Splitting and Dispatching
	1.2 Working on the Same Data at the Same Time
	1.2.1 Atomic Operations and Mutual Exclusion Primitives
	1.2.2 Transactional Memory

	1.3 Task Dependencies
	1.4 The Capsule Environment

	2 The Capsule Programming Model
	2.1 Tasks
	2.2 Conditional Parallelization
	2.3 Recursive Work Declaration
	2.4 Coarse-Grain Task Synchronization
	2.5 Other Primitives and Abstractions

	3 Run-Time System Implementation
	3.1 Task Abstraction and Scheduling
	3.2 Conditional Parallelization
	3.3 Synchronization Groups
	3.4 Portability Abstractions

	4 Performance Study
	4.1 Performance Scalability and Stability
	4.1.1 Motivating Example
	4.1.2 Benchmarks and Experimental Framework
	4.1.3 Iterative Execution Sampling
	4.1.4 Experimental Results

	4.2 Performance Dependence on the Run-Time Platform
	4.2.1 Run-Time System Implementation
	4.2.2 Hardware Architecture
	4.2.3 Task Granularity and Other Program Characteristics

	5 Related Work
	5.1 Data Parallel Environments
	5.1.1 Languages
	5.1.2 STAPL

	5.2 Asynchronous Function Calls
	5.2.1 Cool
	5.2.2 Cilk
	5.2.3 Thread Building Blocks

	5.3 Parallel Semantics Through Shared-Objects
	5.3.1 Orca
	5.3.2 Charm++

	6 Conclusion and Future Work

	II Distributed Architecture Support in Capsule
	7 Towards Distributed Architectures
	8 Distributed Data Structures
	8.1 Data Structure Model
	8.1.1 Concepts
	8.1.2 Programming Interface

	8.2 Implementation Traits
	8.2.1 Object Management Policy
	8.2.2 Object References
	8.2.3 Cell Structuration
	8.2.4 Hardware Support

	8.3 Status and Future Directions

	9 Distributed Work Management
	9.1 Probe Policy and Task Queues
	9.2 Design Considerations
	9.2.1 Classical Strategies
	9.2.2 Push or Pull?

	9.3 Load-Balancing Policy
	9.3.1 Migration Decision Algorithm
	9.3.2 From Local Decisions to Global Balance

	9.4 Migration Protocol and Interactions With Task Queues
	9.4.1 Concurrent Task Migrations
	9.4.2 Preserving Locality

	10 Related Work
	10.1 SPMD and Task-Based Languages
	10.1.1 SPMD Languages
	10.1.2 Cilk

	10.2 Memory Consistency
	10.2.1 Sequential Consistency
	10.2.2 Strong Ordering
	10.2.3 Practical Sufficient Conditions for Sequential Consistency
	10.2.4 Weak Ordering
	10.2.5 Processor Consistency
	10.2.6 Slow and Causal Memories
	10.2.7 Release Consistency
	10.2.8 Entry Consistency
	10.2.9 Scope Consistency
	10.2.10 Location Consistency
	10.2.11 Total Store, Partial Store and Relaxed Memory Order
	10.2.12 Local Consistency

	10.3 Distributed-Shared Memory
	10.3.1 Ivy
	10.3.2 Munin
	10.3.3 TreadMarks
	10.3.4 Other DSMs with Relaxed Consistency
	10.3.5 Fine-Grain Coherency

	10.4 Distributed Objects
	10.4.1 Emerald
	10.4.2 Amber
	10.4.3 Orca
	10.4.4 Charm++
	10.4.5 CRL

	III SiMany: Simulating Many-Core Architectures
	11 The Need for Many-Core Simulation
	12 Virtual Timing
	12.1 Principles
	12.1.1 Timing Annotations
	12.1.2 Distributed Timing
	12.1.3 Distributed Spatial Synchronization
	12.1.4 Non-Connected Sets of Active Cores
	12.1.5 Time Drift of Dynamically Created Tasks

	12.2 Ensuring Correct Simulation
	12.2.1 Program Execution Correctness
	12.2.2 Locks and Critical Sections
	12.2.3 Deadlock Avoidance Proof

	13 Simulator Implementation
	13.1 Implementing an Efficient Simulation
	13.1.1 Direct Execution of Computations
	13.1.2 Software Architecture
	13.1.3 Overhead of Network Communications and OS
	13.1.4 Userland Threading and Scheduling

	13.2 Modeling a Network of Cores
	13.2.1 Simulated Architecture Overview
	13.2.2 Network Interface Implementation
	13.2.3 Bandwidth and Concurrency Limits
	13.2.4 Control Messages
	13.2.5 Network Interface and Core Interactions
	13.2.6 Programming Model Support

	14 Experimental Evaluation
	14.1 Framework and Methodology
	14.1.1 Simulator Parameters
	14.1.2 Benchmarks

	14.2 Experimental Results and Hardware Exploration
	14.2.1 Simulator Validation
	14.2.2 Simulation Speed
	14.2.3 Speedups on Regular 2D meshes
	14.2.4 Simulation Time/Accuracy Trade-Off
	14.2.5 Clustered Architectures
	14.2.6 Polymorphic Architectures

	15 Related Work
	15.1 General Discrete-Events Simulation
	15.2 Single-Core Simulation
	15.2.1 Monolithic Simulation
	15.2.2 Modular Simulation
	15.2.3 Speeding up the Simulation

	15.3 Multi-Core and Many-Core Simulation
	15.3.1 Sampling Techniques May Not Scale
	15.3.2 Conservative Discrete-Events Based Simulators
	15.3.3 Relaxed Synchronization
	15.3.4 Other Approaches

	16 Conclusion And Future Work

	General Conclusion
	Appendices
	A Quicksort Example Code
	B Dijkstra Example Code

	Selected Personal Bibliography
	Bibliography
	Index

