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CHAPTER I

INTRODUCTION

CONTEXT

How does the brain work? This has been a recurrent question through history.
The first documented causal relationship between speech, motor tasks and the

brain dates from 3,000 BCE [Wilkins: 1964]. However, the role of the brain re-
mained a subject of debate until Galen of Pergamon (127- 199 ), based on several
predecessors, convinced the western civilization that it was the centre of sensations
and the intellect. With the advent of the European Renaissance, the use of images
to document and study human anatomy began to play a role in the study of the brain
through the hands of Leonardo Da Vinci (1452-1519) and Andreas Vesalius (1514-
1564) [Linden: 2002, Gross: 1998b]. In particular, Vesalius [1563] distinguished for
the first time the soft tissue on the cortex of the brain from the hard white substance
in its interior [Singer: 1956]. Marcello Malpighi (1628-1694) studied this white sub-
stance and, in using a primitive microscope, discovered that it was composed of fi-
bres. Extending this work, Nicholaus Steno (1638-1686), argued that in order to
discover the purpose of these fibres, their pathways should be traced and studied.
However, it wasn’t until tears later that Felix Vicq D’Azyr differentiated association
from commissural fibres and proposed that the multiple connections had a role in
keeping the normal functioning of the brain in the case of “inconveniences”. Gall and
Spurzheim [1810] took this a step further, they stated that the cortex had areas with
specialized functions and the white matter was the “wiring” connecting these areas,
a theory that revolutionised neuroscience. This was further proved by Broca [1861]
who showed that damage in a precise area of the cortex caused speech impediments.
The paradigm of cortical specialization along with the newly included neuron theory
gave place to the importance of the human brain’s white matter in the functioning
brain [Schmahmann and Pandya: 2007a]. This led Dejerine and Dejerine-Klumpke
[1895] and Wernicke to produce detailed descriptions of the white matter in their
atlases and to link changes in the white matter structure structure with neurolog-
ical disorders. During the twentieth century, theories about brain function began
to afford a more prominent place to white matter leading to, and influenced by, the
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12 CHAPTER I. INTRODUCTION

development of several methods to trace the tracts of the white matter were devel-
oped [Schmahmann and Pandya: 2007a]. However, it was not until the introduction
of Diffusion Magnetic Resonance Imaging (DMRI) [Taylor and Bushell: 1985, Websey
et al.: 1984a,b, Le Bihan and Breton: 1985, Le Bihan et al.: 1986] and tractography
that the analysis of white matter could be done in vivo and non invasively [Basser
et al.: 2000, Mori et al.: 2005, Catani et al.: 2002].

The great success of DMRI comes from its capability to accurately describe the ge-
ometry of the underlying microstructure [Johansen-Berg and Behrens: 2009]. DMRI
captures the average diffusion of water molecules, which probes the structure of the
biological tissue at scales much smaller than the imaging resolution. The diffusion
of water molecules is Brownian under normal unhindered conditions, but in fibrous
structures such as white matter, water molecules tend to diffuse along fibres. Due
to this physical phenomenon, DMRI is able to obtain information about the neural
architecture in vivo. Furthermore, the introduction of DMRI-based tractography, a
technique to trace the white matter fibre bundles in vivo, opened new perspectives
in studying the anatomy of the white matter and relating it to neurological disor-
ders [Ciccarelli et al.: 2008].

This thesis builds on research DMRI and tractography [Basser et al.: 2000, Mori
et al.: 2005, Catani et al.: 2002, Behrens et al.: 2003, Lenglet et al.: 2006b, Descoteaux
et al.: 2007a]. DMRI is not only able to model and analyse the structure of the white
matter within a voxel, but that it is also a powerful tool to analyse the anatomy
of the brain and its connectivity. Moreover, it has been recently proved useful in
order to analyse the differences on the white matter and its consequences in brain
function [Ciccarelli et al.: 2008, Kubicki et al.: 2007].

The starting point and motivation of this thesis is the in vivo dissection of the
white matter, performed by Mori et al. [2005] and Catani et al. [2002]. This pro-
cedure isolates the white matter tracts that play a role in a particular function or
disorder of the brain so they can be analysed looking for differential characteristics.
Manually performing this dissection requires a great knowledge of brain anatomy
and several hours of work. Hence, the development of a technique able to automat-
ically perform the identification of white matter structures is of utmost importance.

ORGANIZATION OF THIS THESIS

This thesis is organized in three parts. The first part describes the white matter
cerebral history and anatomy, the principles of DMRI and the main algorithmic tech-
niques required to understand this thesis. Then, the second part describes the first
methodological contributions of this thesis: the identification of white matter struc-
tures through clustering QBall imaging voxels. The third part describes the contri-
butions at the heart of our methodological development to automatically perform the
identifications of white matter structures from tractography: the proposal of a Gaus-
sian process mathematical framework for white matter fibre bundles, its application
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Figure i.1: Sketch of the chapters of this thesis.

to automated in vivo dissection, spinal cord straightening and population differences
in schizophrenia. The organization of this thesis shown in figure i.1.

Part I: Background

The background part describes the white matter cerebral anatomy, the principles
of DMRI and tractography and finally a review of clustering techniques.

Chapter 1 briefly reviews the history of neuroscience. It starts from the first ac-
count of the relationship between the brain and intellectual and motor tasks and
ends in the present day, where the current development of magnetic resonance imag-
ing (MRI) renders possible to analyse the brain in vivo and non-invasively.

Chapter 2 answers the following question: what are we looking for in the human
brain white matter? In particular, what is the organization of the white matter?
How is the brain connected? What are the large fibre bundles in the brain? How
can we analyse it through DMRI? This chapter covers the basic cerebral anatomy of
white matter and its imaging through DMRI. First, we review brain organization and
we highlight the three major white matter tract groups and present some if its most
representative tracts. Then, we introduce the physical process of diffusion and how
it is related to the structure of living tissue followed by a brief review of the history
of nuclear magnetic resonance imaging, from its beginning until the development of



14 CHAPTER I. INTRODUCTION

DMRI. Finally, the chapter describes MRI-based tractography, a tool capable of re-
constructing white matter fibres bundles, and some of its major clinical applications.

Chapter 3 answers the following question: Given a set of elements, how can we
get insight on them and divide them into groups? The main goal of this thesis is to
identify white matter structures; to this end, techniques designed to group elements
into clusters are fundamental. This chapter builds a taxonomy of clustering algo-
rithms dividing them into families and describes the major representatives of each
family.

Part II: White Matter Structure Identification Through Manifold
Learning

Part II deals with the identification of white matter structures directly from the
images obtained by DMRI. In order to do this, we present an algorithm which com-
bines techniques from two areas: manifold learning and clustering. The first tech-
nique is about how to automatically find a good representation for a set of objects, in
our case voxels from DMRI images and the second technique deals with the clustering
of this voxels.

Chapter 4 answers the question: given a set of elements, is it possible to auto-
matically reduce the complexity of their representation by inferring a suitable space
for them? The representation of the water diffusion profile within a voxel is com-
plex. Hence, algorithms which aim to perform statistical analysis of DMRI images
must deal with the complexity of this representation. This chapter reviews state-
of-the-art manifold learning techniques. These techniques take a set of elements
as an input and infer a representation of their features which is simpler to handle
than the original. Manifold learning techniques are fundamental for the contribu-
tion presented as they enable us to automatically simplify the information of the
DMRI images while keeping its most important features.

Chapter 5 addresses the question: is it possible to segment a DMRI image into
several white matter bundles automatically? This chapter presents a new cluster-
ing algorithm to segment high-angular resolution diffusion imaging (HARDI) data.
More precisely, in this chapter, we compare the use of DT and QBI images and show
what can be gained by using HARDI data. We also discuss how the combination
of manifold learning techniques and clustering is able to provide a tool suited to si-
multaneously identify several white matter bundles. First, we use Markovian re-
laxation in order to seamlessly integrate spatial and diffusion information. Then,
the diffusion maps manifold learning technique is used in order to infer a suitable
representation of the image voxels and improve the posterior clustering results. Fi-
nally, a clustering algorithm is applied to the output of the previous step. Results
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on synthetic and real human brain images are presented in order to demonstrate the
advantages of this algorithm.

Part III: Gaussian Process Modelling of White Matter Fibres

Part III deals with the main contribution of this thesis: the proposal of a math-
ematical framework for white matter fibre bundles. Here we describe the needed
mathematical background, the framework itself and its application to automatic in
vivo dissection of white matter.

Chapter 6 answers the following question: What is an appropriate mathematical
tool to represent white matter fibre bundles? This chapter covers the mathematical
concepts needed to understand the major contribution of this thesis. In particular,
how Gaussian processes are an appropriate mathematical tool to represent smooth
functions, curves and bundles of curves in space. Finally, it covers how to use this
framework to quantify the similarity between smooth functions and how to define an
inner product space of these functions such that it is possible and straight forward to
perform statistical analysis of these functions.

Chapter 7 addresses the following: How can the Gaussian Process framework be
applied to the representation of white matter fibre bundles? Is it possible to use the
inner product space provided by this representation in combination with anatomical
information in order to perform automatic in vivo dissection of the white matter? In
this chapter we show that Gaussian processes are a fit model for white matter fibre
tracts. Moreover we take advantage of the inner product space of white matter fibre
bundles represented as Gaussian processes: using this space, we develop a cluster-
ing algorithm which is capable of incorporating anatomical information. Finally, we
apply this algorithm to a database of 68 subjects and we identify successfully the
major white matter structures of the brain.

Chapter 8 illustrates other uses of the Gaussian process-based modelling of white
matter fibres. Within this chapter, we provide a sound formulation to select the most
representative fibre of a bundle. Then, we use this formulation in order to develop a
fully automated algorithm to straighten spinal cord images using DMRI-based trac-
tography. Straightening of spinal cord images constitutes an important application.
The raw, non-straightened visualization of spinal cord images may hamper diagno-
sis because the curvature of the spinal cord in the antero-posterior direction makes
it difficult to obtain its full coronal or sagittal picture. Moreover, this curvature is
subject-dependent and therefore group studies are hard to achieve at the spinal level.
Consequently, a method to straighten the spinal cord such that individual images
can be compared an eventually pooled constitutes an important application of DMRI-
based tractography.
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Chapter 9 illustrates the uses of our Gaussian-process framework in order to per-
form statistical analyses among populations. we combine the clustering results ob-
tained from the algorithm presented in chapter 7 with a dataset composed of healthy
controls and schizophrenic subjects to show group differences in the white matter fi-
bre bundles of the brain. By expressing state-of-the-art statistical analysis tools in
terms of our framework, we are able to study group differences between schizophrenic
and healthy subjects. These studies are carried on in the tracts as a whole and then
in a skeletonized representation in order to show differences in precise areas.



CHAPTER II

RÉSUMÉ

CONTEXTE

Au cours de l’histoire, l’homme s’est posé la question du fonctionnement du cerveau
de façon récurrente. La première trace écrite d’une mise en évidence de la relation
entre le cerveau d’une part, et le langage et les tâches motrices d’autre part remonte
à l’an 3000 avant J.-C. [Wilkins: 1964]. Cependant, le rôle joué par le cerveau est
longtemps resté sujet à caution, jusqu’à ce que Galien de Pargame (127-199), se bas-
ant sur les travaux de certains prédécesseurs, convainque la civilisation occidentale
que le cerveau constitue le centre des perceptions sensorielles et de l’intelligence.
À l’arrivée de la Renaissance en Europe, l’utilisation de documents illustrés pour
l’anatomie a commencé à s’imposer dans l’étude du cerveau, sous l’impulsion de
Léonard de Vinci (1452-1519) et d’André Vésale (1514-1564) [Linden: 2002, Gross:
1998b]. En particulier, Vésale [1563] a été le premier à distinguer les tissus mous
constituant le cortex cérébral, de la matière blanche plus rigide qui constitue la par-
tie interne du cerveau [Singer: 1956]. Marcello Malpighi (1628-1694) a étudié cette
substance blanche et a découvert à l’aide d’un miscroscope primitif qu’elle était com-
posée de fibres. Dans la continuité de ces travaux, Nicolas Sténon (1638-1686) a
émis l’idée que pour comprendre la fonction de ces fibres, il serait nécessaire de
tracer et d’étudier leurs trajectoires. Ce n’est que des années plus tard que Félix
Vicq d’Azyr a fait pour la première fois la distinction entre fibres commissurales et
fibres d’association, et il a émis l’hypothèse que ces connexions multiples jouaient
un rôle dans le maintien des fonctions cérébrales en cas de �troubles�. Gall and
Spurzheim [1810] ont poussé cette hypothèse plus loin, et ont affirmé que le cor-
tex comprenait des zones spécialisées dans certaines fonctions, alors que la matière
blanche consituait le �câblage�reliant ces différentes zones entre elles, une théorie
qui a profondément révolutionné les neurosciences. Cette théorie a été vérifiée plus
tard par Broca [1861], qui a montré qu’une lésion affectant une région précise du cor-
tex entrainait des troubles du langage. Le paradigme de la spécialisation corticale
ainsi que la théorie des neurones récemment introduite a révélé toute l’importance de
la matière blanche du cerveau humain dans le fonctionnement du cerveau [Schmah-
mann and Pandya: 2007a]. Cela a encouragé Dejerine and Dejerine-Klumpke [1895]

17
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et Wernicke à réaliser une description détaillée de la matière blanche dans leurs at-
las, et à mettre en relation les changements de structure dans la matière blanche avec
des troubles neurologiques. Au cours du XXe siècle, les études concernant la fonc-
tion du cerveau ont octroyé une place plus prépondérante encore à la matière blanche.
Cette évolution s’est faite en étroite interaction avec le développement de différentes
techniques permettant de tracer les faisceaux de la matière blanche [Schmahmann
and Pandya: 2007a]. Il a fallu attendre la découverte de l’Imagerie par Résonance
Magnétique de Diffusion (IRMD) [Taylor and Bushell: 1985, Websey et al.: 1984a,b,
Le Bihan and Breton: 1985, Le Bihan et al.: 1986] et la tractographie pour que
l’analyse de la matière blanche puisse être faite in vivo et de façon non inva-
sive [Basser et al.: 2000, Mori et al.: 2005, Catani et al.: 2002].

On peut attribuer le succès de l’IRMD à sa capacité à décrire de façon précise
la géométrie des structures miscroscopiques sous-jacentes [Johansen-Berg and
Behrens: 2009]. L’IRMD mesure la diffusion moyenne des molécules d’eau, qui est
très étroitement reliée à la structure des tissus biologiques, et ce à des échelles
bien inférieures à la résolution des images. La diffusion des molécules d’eau est
bien décrite par un mouvement brownien quand il n’y a pas d’obstacle dans le mi-
lieu ; en revanche, au sein d’une structure fibreuse telle que la matière blanche,
les molécules d’eau ont tendance à se déplacer de préférence tangentiellement aux
fibres. Grâce à ce phénomène physique, l’IRMD est capable d’apporter des informa-
tions sur l’architecture des fibres in vivo. L’introduction de la tractographie à base
d’IRMD, une technique permettant de retrouver les faisceaux de fibres de la matière
blanche, a par ailleurs ouvert de nouvelles perspectives dans l’étude de l’anatomie
de la matière blanche, et de ses relations avec certains troubles neurologiques [Ci-
ccarelli et al.: 2008]. Cette thèse se base sur les précédents travaux en IRMD et
en tractographie [Basser et al.: 2000, Mori et al.: 2005, Catani et al.: 2002, Behrens
et al.: 2003, Lenglet et al.: 2006b, Descoteaux et al.: 2007a]. L’IRMD est non seule-
ment capable de modéliser et d’analyser la structure de la matière blanche à l’échelle
du voxel, mais c’est également un puissant outil pour analyser l’anatomie et la con-
nectivité cérébrales. Par ailleurs, cette technique s’est récemment montrée très utile
pour l’analyse des anomalies de la matière blanche, et leurs conséquences sur le plan
fonctionnel. Le point de départ et la motivation principale de cette thèse a été la
publication d’une dissection in vivo de la matière blanche, réalisée par Mori et al.
[2005] et Catani et al. [2002]. Cette procédure consiste à isoler les faisceaux de fi-
bres de la matière blanche qui jouent un rôle dans une fonction ou une pathologie
particulière du cerveau, afin de pouvoir les analyser et les comparer à la recherche
de différences caractéristiques. Réaliser cette dissection de façon manuelle est une
tâche qui demande une connaissance pointue de l’anatomie cérébrale, et qui peut
prendre plusieurs heures. L’élaboration d’une technique permettant d’automatiser
l’identification des structures de la matière blanche est donc d’une importance capi-
tale.
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Figure ii.1: Plan des contributions de notre thèse.

PLAN DU MANUSCRIT ET CONTRIBUTIONS

Cette thèse s’articule autour de trois parties. La première partie dresse un his-
torique, puis décrit l’anatomie de la matière blanche du cerveau, le principe de
l’IRMD et les techniques et algorithmes nécessaires à la compréhension de cette
thèse. La seconde partie décrit ensuite la première contribution méthodologique
de cette thèse, à savoir l’identification de structures de la matière blanche par re-
groupement de voxels en imagerie QBall. La troisième partie détaille nos contri-
butions méthodologiques pour le développement d’un outil d’identification automa-
tique des structures de la matière blanche à partir des résultats de la tractographie :
nous proposons un cadre mathématique basé sur la notion de processus gaussien
pour décrire les faissceaux de fibres de la matière blanche, que nous appliquons à
la dissection automatique in vivo, au redressement de la moelle épinière et l’étude
de différences entre populations de sujets en schizophrénie. L’organisation de cette
thèse est synthétisée sur la figure figure ii.1.

Partie I : Rappels généraux

Chapitre 1 donne un aperçu historique rapide des neurosciences, depuis la toute
première mise en évidence de la relation entre le cerveau et les tâches motrices
et intellectuelles, jusqu’aux développements récents de l’Imagerie par Résonnance
Magnétique (IRM) qui permettent d’analyser le cerveau in vivo et de façon non inva-
sive.
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Chapitre 2 répond aux questions suivantes : que cherchons-nous dans la matière
blanche du cerveau humain ? En particulier, comment s’organise la matière
blanche ? Comment les différentes parties du cerveau sont-elles reliées entre elles ?
Quels sont les faisceaux de fibres importants dans le cerveau ? Comment peut-on
les analyser à l’aide de l’IRMD ? Ce chapitre regroupe les bases de l’anatomie du
cerveau et de la matière blanche, et de son observation grâce à l’IRMD. D’abord,
nous rappelons l’organisation générale du cerveau et nous présentons les trois prin-
cipaux groupes de fibres de la matière blanche, en détaillant parmi chaque groupe les
faisceaux les plus importants. Nous introduisons ensuite les principes physiques de
l’IRMD, et le lien entre cette imagerie et la structure des tissus biologiques, après
quoi nous faisons un bref rappel historique de l’imagerie par résonance magnétique
nucléaire de ses débuts jusqu’à la découverte et aux récents développements en
IRMD. Le chapitre se termine sur une description de la tractographie basée sur
l’IRMD, un outil qui permet de reconstruire les faisceaux de fibres de la matière
blanche, ainsi que les applications cliniques principales.

Chapitre 3 répond aux questions suivantes : étant donné un ensemble
d’éléments, comment peut-on obtenir de l’information sur chacun des éléments afin de
pouvoir les organiser en groupes ? Le but principal de cette thèse est d’identifier les
structures de la matière blanche ; pour y parvenir, l’utilisation de techniques dédiées
à la séparation des éléments en sous-groupes est fondamentale. Ce chapitre propose
un regroupement en familles des algorihmes de classification, et décrit les propriétés
représentatives de chaque famille.

Partie II : Identification des structures de la matière blanche par ap-
prentissage de variétés

La seconde partie traite l’identification des structures de la matière blanche, di-
rectement à partir des images obtenues en IRMD. A cette fin, nous présentons un
algorithme qui a recours à des techniques d’apprentisage de variétés et de classifi-
cation. La première technique permet de trouver de façon automatique une bonne
représentation pour un ensemble d’objets, à savoir les voxels obtenus par IRMD en
ce qui nous concerne ; la seconde technique quant à elle concerne la classification de
ces voxels.

Chapitre 4 répond à la question suivante : étant donné un ensemble d’éléments,
est-il possible de réduire de façon automatique la complexité de leur représentation,
en recherchant l’ensemble le plus approprié pour les décrire ? La représentation de
la diffusion des molécules d’eau à l’intérieur d’un voxel est un objet complexe. Les
algorithmes qui tentent de faire des analyses statistiques des images IRMD doivent
compter avec la complexité de cette représentation. Ce chapitre présente un état de
l’art des techniques d’apprentissage de variétés. Ces techniques permettent, étant
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donné un ensemble d’éléments, d’inférer une représentation de leurs caractéristiques
qui est plus synthétique et donc plus simple à manipuler que la représentation
originale. Les techniques d’apprentissage de variétés sont au coeur de la contribu-
tion présentée dans cette partie, dans le sens où elles permettent de simplifier la
représentation des images IRMD, tout en en conservant les informations principales.

Chapitre 5 répond à la question suivante : est-il possible de segmenter une im-
age IRMD en plusieurs faisceaux de fibres de la matière blanche de façon automa-
tique ? Ce chapitre présente un nouvel algorithme de classification pour la seg-
mentation des images de diffusion à haute résolution angulaire (HARDI, pour High
Angular Resolution Diffusion Imaging). Plus exactement, nous comparons dans ce
chapitre l’utilisation des images du tenseur de diffusion et des images obtenues en
QBall, et montrons la valeur ajoutée des images HARDI. Nous montrons également
en quoi l’utilisation combinée de techniques d’apprentissage de variétés et de clas-
sification permet de proposer un outil bien adapté à l’identification simultanée de
plusieurs faisceaux de la matière blanche. Tout d’abord, nous utilisons la relax-
ation de Markov afin d’intégrer de façon transparente les informations spatiales
et les informations de diffusion. Puis la technique d’apprentissage de variétés est
appliquée aux cartes de diffusion afin de trouver une représentation adéquate des
voxels en IRMD, et dans le but d’améliorer les résultats de la classification. En-
fin, un algorithme de classification est lancé sur le résultat de l’étape précédente.
Nous présentons des résultats sur des données synthétiques ainsi que sur des im-
ages réelles du cerveau humain, afin de mettre en évidence les avantages de cet algo-
rithme.

Partie III : Modélisation des fibres de la matière blanche à l’aide de
processus gaussiens

La troisième partie présente la contribution principale de cette thèse : un cadre
mathématique pour la description des faisceaux de fibres de la matière blanche.
Nous décrivons ici le contexte mathématique, la formalisme que nous proposons et
son application à la dissection automatique et in vivo de la matière blanche.

Chapitre 6 répond aux questions suivantes : qu’est-ce qu’un outil mathématique
approprié pour la représentation des faisceaux de fibres de la matière blanche ? Ce
chapitre présente les notions mathématiques nécessaires à la compréhension de la
contribution principale de cette thèse. En particulier, en quoi la notion de proces-
sus gaussien est un outil mathématique bien adapté à la représentation de fonctions
régulières, des courbes et des familles de courbes dans l’espace. Enfin, il présente
la façon d’utiliser ce cadre pour analyser de façon quantitative le degré de similarité
entre deux fonctions régulières, et comment définir un espace muni d’un produit in-
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terne de ces fonctions, de façon à permettre et faciliter l’analyse statistique de ces
fonctions.

Chapitre 7 s’intéresse aux questions suivantes : comment peut-on appliquer
la notion de processus gaussien à la représentation des fibres de la matière
blanche ? Est-il possible d’utiliser l’espace muni du produit interne que définit cette
représentation, en combinaison avec des informations anatomiques afin de réaliser
une dissection in vivo et automatique de la matière blanche ? Dans ce chapitre, nous
montrons que le processus gaussien est un modèle bien adapté à la représentation des
fibres de la matière blanche. De plus, nous pouvons avantageusement tirer profit
du produit interne entre deux faisceaux de fibres représentées comme des proces-
sus gaussiens : nous développons un algorithme de classification qui est capable
d’incorporer des informations anatomiques. Enfin cet algorithme est appliqué sur
une base de données de 68 sujets, ce qui permet d’identifier avec succès les structures
les plus importantes de la matière blanche du cerveau.

Chapitre 8 présente d’autres applications du modèle de processus gaussien pour la
description des fibres de la matière blanche. Dans ce chapitre, nous proposons une
formulation adaptée à la sélection d’une fibre qui soit la plus représentative possi-
ble d’un faisceau. Nous utilisons ensuite cette formulation pour développer un al-
gorithme entièrement automatisé de redressement de la moelle épinière, à base de
tractographie IRMD ; ceci est à notre sens une application importante. En effet, la
visualisation d’images non transformées de la moelle peut rendre le diagnostic com-
pliqué, car la courbure de la moelle ainsi que l’orientation antéro-postérieure peut
rendre la visualisation d’une coupe coronale ou une coupe sagittale complète difficile.
De plus, cette courbure est très dépendante du sujet, ainsi il est très difficile de faire
des études entre sujets au niveau de la moelle épinière. Ainsi, une technique de re-
dressement de la moelle qui permette à chaque image de pouvoir être comparée à une
autre constitue une application importante de la tractographie basée sur l’IRMD.

Chapitre 9 montre les utilisations de notre modèle basé sur la notion de processus
gaussien afin de mener des études statistiques entre différentes populations. Nous
fusionnons les résultats de la classification obtenus grâce à l’algorithme présenté en
chapter 7 sur une base de données composée de sujets sains et de patients atteints
de schizophrénie, afin de montrer des différences entre groupes au niveau des fais-
ceaux de fibres de la matière blanche dans le cerveau. En combinant les techniques
récentes d’analyse statistiques avec notre cadre mathématique, nous sommes en
mesure d’étudier les différences entre groupes de sujets sains et de patients atteints
de schizophrénie. Ces études sont menées sur les faisceaux dans leur intégralité das
un premier temps, puis sur une représentation sous forme de squelette des fibres afin
de localiser plus précisément certaines différences.
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CHAPTER 1

BRAIN HISTORY

BRAIN, n.: An apparatus with which we
think what we think.[. . . ]

The Devil’s Dictionary,
Ambrose Bierce, 1911

How long have we been figuring out how the mind and the intellect works?
Which were the main paradigms of early neuroscience? When and why did we start
thinking that the brain’s white matter played an important role in brain function?
In this chapter we go through a brief chronicle of neuroscience, neuroanatomy and,
in particular the history of the human brain white matter. The chronicle, which
is by no means exhaustive, is mainly based on the excelent works of Gross [1998b]
and Schmahmann and Pandya [2007a].

1.1 ANCIENT HISTORY: THE SEAT OF THE MIND

Where in the human body is the seat of sensations, feelings and intellect? This
question has been around for centuries. The first written reference to the brain,
the first hint of its role in intellectual and motor tasks, can be found in the Edwin
Smith surgical papyrus (figure 1.1). This papyrus is a surgical treatise originally
written approximately 3,000 BCE 1. The publication of an English translation in
1930 [Breasted: 1930] contradicted previous thoughts on ancient Egyptian medicine
which stated that it was a bunch of superstitions and incantations. The manuscript
describes diagnosis and treatment in a detailed and methodological manner. Ev-
ery case is documented in 4 columns: “title”, “examination”, “diagnosis” and, if the
physician considered it appropriate, “treatment”. The diagnoses are concluded by
one of two statements: “an ailment I will treat” or “an ailment not to be treated”.
By analysing the thirty four cases, the fact that the surgeon seemed to be aware of
the cause-consequence relation between head injury and behavioural change clearly
stands out. For instance, it is possible that the following transcription of the trans-

1. In this chapter we use historical writing conventions for the dates: BCE means Before Christian
Era, CE means Christian Era and ca. stands for circa or “approximately in”.
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lated papyrus reveals the surgeon relating a brain injury with aphasia [Wilkins:
1964]:

“ Case Twenty

Title Instructions concerning a wound in his temple, penetrating to the
bone, (and) perforating his temporal bone.

Examination If thou examinest a man having a wound in his temple,
penetrating to the bone, (and) perforating his temporal bone, while
his two eyes are blood shot, he discharges blood from both his nostrils,
and a little drops; if thou puttest thy fingers on the mouth of that
wound (and) he shudder exceedingly; if thou ask of him concerning
his malady and he speak not to thee; while copious tears fall from
both his eyes, so that he thrusts his hand often to his face that he
may wipe both his eyes with the back of his hand as a child does, and
knows not that he does so...

Diagnosis Thou shouldst say concerning him: “One having a wound in
his temple, penetrating to the bone, (and) perforating his temporal
bone; while he discharges blood from both his nostrils, he suffers with
stiffness in his neck, (and) he is speechless. An ailment not to be
treated.”

Treatment Now when thou findest that man speechless, his [relief] shall
be sitting; soften his head with grease, (and) pour [milk] into both his
ears.

”
Despite the existence of the Edwin Smith papyrus, the Egyptians considered the

brain a minor organ, placing the seat of the mind and the soul in the heart. The
funerary rituals described in the book of the dead can be taken as evidence of this.
During the rituals the embalmers extracted the heart with great care and weighed
it against feathers to determine its tendency towards good and evil. The brain,
on the other hand, was extracted through the nostrils and discarded [Faulkner:
1972]. Although the belief that the heart was the seat of perception and cogni-
tion seems to have been common along the pre-Columbian, Babylonian, Indian and
Mesopotamian cultures [Obeyesekere: 1977, Roux: 1966], there are some exceptions
like the Incas who practised trepanation as a cure for some sorts of mind-related
disorders [Jørgensen: 1988, Sosa and Valderrama-lturbe: 2001].

Three Greek medical schools

Centuries later, in Greece, new arguments for the brain being the centre of sensa-
tion and intellect emerged. The first Greek writings stating this hypothesis belong
to Alcmaeon of Croton (ca. 450 BCE). Alcmaeon, a prominent member of the medical
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Figure 1.1: Edwin Smith Papyrus in its original version, written in a hieratic script

school of Croton, seems to be have been one of the first practitioners of dissection
as a way to look for anatomical knowledge. Through dissection studies, he devel-
oped detailed theories on the senses, with a particular interest in vision. Alcmaeon
described the optic nerves through their crossing “behind the forehead”, becoming
the author of one of the first written documents identifying a major white matter
structure. Moreover, he used this evidence to state a hypothesis on the coordinated
movement of the eyes.

Even though the doctrine of Alcmaeon was shared by several medical schools and
Greek physicians such as Hippon of Samos (ca. 470 BCE) and Anaxagoras of Calzome-
nae (ca. 428 BCE), this view was not dominant in the Greek world. Empedocles (ca.
430 BCE), taught that the blood was the vessel of all sensations and thoughts and
saved a prominent place for the heart concerning those functions. Being a leading
member of the medical centre at the second most important centre of Greek medicine,
Agrigentum, he was an influential figure of his time.

Not far from there, on the island of Cos, Hippocrates (ca. 425 BCE) exercised his
role as a physician and philosopher at the first leading centre of Greek medicine.
Unlike the school of Cos, Hippocrates and his pupils were not fond of dissection as
a means to expand their medical knowledge. Their comprehension of the body and
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its functions was based on external observation and behavioural changes specific to
different diseases. The Hippocratic texts are written in different styles and with
various levels of detail which leads us to believe they were written by a Hippocratic
society rather than by a single individual. Within these texts, the brain is considered
the origin and cause of all intellectual and sensory functions:

“ It ought to be generally known that the source of our pleasure, merri-
ment, laughter, and amusement, as of our grief, pain anxiety and years
is none other than the brain. It is specially the organ that enables us to
think, see, and hear, and to distinguish the ugly and the beautiful, the bad

and the good, pleasant and unpleasant [. . . ] ”

Against observational science

Even though he was not fond of the pre-Socratic tradition of natural philosophy,
Plato (427-347 BCE) also championed the brain as the seat of the intellect. Through
the foundation of his philosophical school in Athens, The Academy, and his written
dialogues he shaped philosophy, law, politics and science as we know them today.

Plato disregarded empirical exploration of the universe, considering the observ-
able part of everything a mere superficial appearance, an imperfect and transient
illusion of the sensory world. According to his teachings, a philosopher should un-
derstand the cause and consequences of each kind of object through abstraction and
introspection. This concept was strongly established in the seventh volume of Plato’s
masterpiece, The Republic, known as the allegory of the cave: “The philosopher must
escape the tyranny of sensory experience and empirical knowledge and climb out
of the cave in order to reach the higher realities of true knowledge” as synthesized
by Gross [1998b]. His views of the brain were exposed in detail in the Timaeus, an
essay of great influence in the Middle Ages. According to it:

“ It is the divinest part of us and lords over all the rest. ”
Plato gave a strong structure to philosophical, political and governmental systems

which still holds. Despite that, through the Timaeus, his disregard of empirical sci-
ence was deeply influential during Medieval times. His teachings therefore have
been referenced as “essentially evil” and “an aberration” by modern science histori-
ans [Lloyd: 1970, Sarton: 1993].

Plato’s prodigal student

Although Plato advocated “against” empirical science, a student who spent twenty
years at the Academy is inscribed into history as one of the greatest naturalists of all
times. Aristotle was born in 384 BCE to a medical family. His family, well posi-
tioned in the Macedonian kingdom, and his reputation led to the appointment of
Aristotle as tutor of Alexander the Great. Funded by Alexander, Aristotle was able
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to found his school and research centre, the Lyceum, and to endeavour numerous
philosophical and natural research programs.

Aristotle is considered the first comparative biologist and one of the greatest nat-
uralists of all times. Despite his awareness of the previous work of Alcmaeon, Hip-
pocrates, Plato and others, he was one of the most fierce supporters of the heart as
the seat of the mind. Several of his writings strongly advocated against the brain as
the centre of sensation

“ And of course, the brain is not responsible for any of the sensations
at all. The correct view [is] that the seat and source of sensation is the

region of the heart. ”
He relegated the main functions of the brain to the cooling of the blood. A hypothesis
which he upheld through several arguments, some of them based on the consistence
of the brain:

“ For if the brain be either too fluid or too solid, it will not perform its
office, but in the one case will freeze the blood and in the other will not

cool it at all, and thus, cause disease, madness and death. ”
Aristotle meticulously dissected 49 animals from elephant to snail and no hu-

man beings. He was able to notice that their circulatory systems were more spread
along the body than the nerves. Most of his arguments are summarized in table 1.1,
adapted from Gross [1995]. This doctrine was not supported by Aristotle alone, Dio-
cles of Carystus (fourth century BCE) and Praxagoras of Croton (ca. 340 BCE), also
asserted the heart as the centre of intellect and sensation [Crivellato and Ribatti:
2007]. Both physicians considered the heart, arteries and veins as a pumping sys-
tem for the physic pneuma, the light and invisible substance believed to perform
sensory, motor and intellectual activities.

Despite his heart advocacy, Aristotle greatly influenced the subsequent devel-
opment of neuroscience. Being the most influential naturalist until the late Mid-
dle Ages, his stress on dissection encouraged several scholars to use this technique
as a principal resource for research. More directly, he contributed significantly to
the creation of the Museum at Alexandria, where systematic human neuroanatomy
emerged. Regarding his (mis)interpretation of brain function, perhaps the key was
in the absence of clinical observation, central in the Edwin Smith surgical papyrus
and on the studies of Alcmaeon, the Hippocratic doctors and other ancient scholars.

The Museum at Alexandria

The Museum at Alexandria was founded by Ptolemy I, a general of Alexander the
Great who became the first Greek ruler of Egypt by the end of the fourth century
BCE. Being a student of Aristotle, he was in close ties with the Lyceum and fond
of philosophical activities. Ptolemy commissioned the conception of the museum to
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Brain Heart
Affected by emotion Not affected
All animals have a heart or similar or-
gan

Only vertebrates and cephalopods
have one, and yet other animals have
sensations

Source of blood which is necessary for
sensation

Bloodless and therefore without sen-
sation

Warm, characteristic of higher life Cold
Connected with all the sense organs
and muscles via the blood vessels

Not connected with the sense organs
or the connection is irrelevant

Essential for life Not so
Formed first and last to stop working Formed second
Sensitive Insensitive: if the brain of animal be

laid bare, it may be cut without any
signs of pain or struggling

In a central location, appropriate for a
central role

Not so

Table 1.1: Comparative table of Aristotle’s analyses of brain and heart. Adapted from [Gross: 1995].
The table is a compilation of citations from several works of Aristotle [1942, 1955, 1957a,c,b].

Demetrius of Phaleron (ca. 350-280 BCE) and Strato of Lampsacus (ca. 335-269 BCE).
Both of these Greek philosophers had studied at the Lyceum. Strato even became
the third head of the philosophical school. The three of them conceived a state-
supported research institute where over a hundred professors were living on site
with their salaries and expenses paid. The Museum had lecture and study rooms,
a botanical garden, a zoo, an astronomical observatory and dissecting and operating
rooms.

Herophilus (ca. 270) and Erasistratus (ca. 260), founders of the systematic study
of the structure of the human body [Von Staden: 1989], worked within the walls of
these operating rooms. Being in Alexandria, the dissection of human bodies was
simpler than in ancient Greece as Egyptians did not worship the integrity of the
dead human body in the same way Greeks did. Moreover, the custom of mummifi-
cation probably simplified the acceptance of “working” with a dead human body. A
minor extra detail that might have helped the two physicians to work freely with hu-
man bodies was the complete support of the foreign rulers of Egypt, the Macedonian
dynasty of Ptolemies. Among the licences from the rulers of Egypt that Herophilus
and Erasistratus enjoyed was the authorization to perform live dissection of human
beings. The practice of human vivisection is not documented in any other place or
epoch except for the German and Japanese research programs of the second World
War. Furthermore, the dissection of human cadavers as a means to study the struc-
ture of the body in the Western civilization disappeared the thirteenth century [Gross:
1998b].

The study of the brain was of particular interest to Herophilus and Erasistra-
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tus. They believed it has a dominant role in sensations, thought and movement.
The first detailed description of the brain including the ventricles was an outcome of
their research 2. Herophilus located intelligence in the brain, was the first to pro-
duce anatomical drawings and to distinguish sensory and motor nerves. Erasistra-
tus, located the origin of the nerves in the brain, stated that the fourth ventricle was
the “command centre” of the brain and likened the gyri of the brain to the coils of the
small intestine. This intestinal metaphor was sustained until the nineteenth cen-
tury, a fact that can be appreciated in many anatomical drawings where the appear-
ance of the brain is similar to that of the small intestine. Erasistratus compared
the human brain with the brains of several animals and claimed that the intelli-
gence of the human being was due to the larger number of gyri. Galen ridiculed this
statement by drawing attention to the convoluted brain of the ass. This “joke” was
often cited during the following 1,500 years after, and seems to have inhibited any
serious study on the cerebral gyri until the seventeenth century. Also, Erasistratus
performed experiments on the living brain, unfortunately no document of these stud-
ies survives. After the period of the two physicians, medical studies in Alexandria
decayed rapidly, turning to a more arcane practice.

Galen of Pergamon

Galen (129-199 CE), was the most influential figure of ancient medical science.
History, physiology, anatomy and medicine were shaped after Galen’s manuscripts
from medieval times until our days. Central to Galen’s doctrine, was his belief in
the absolute need for a rigorous anatomical methodology. He claimed, in fact, that
only correct dissections would provide “apodeictic proofs”, or incontrovertible demon-
strations, enabling the researcher to draw legitimate conclusions.

Galen took an interest in the brain functions considering that

“ The brain is that part which receives all sensations, produces images

and understands thoughts ”
He fought the contemporary stoic doctrine that placed the heart at the centre of the
intellectual and sensory system by providing arguments based on rigorous anatom-
ical demonstrations. In one of these demonstrations, he proved that the voice dis-
appears after an incision in the inferior laryngeal nerves is made in the pig [Gross:
1998a] and other animals. His research yielded a detailed description of the brain.
However, the accuracy of his work was not appreciated until recent historical analy-
ses stated that the brain he described probably belonged to an ox, which in Galen’s
time was more easily available than the human brain.

Galen provided a detailed map of the brain. He paid particular attention to
the ventricles and described them in detail. Most probably, he was following the
program of Erasistratus, where the ventricles had a crucial physiological role. He

2. For the readers not familiarized with brain anatomy, an introduction to it is given in chapter 2
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linked these programs and classical Greek conceptions of the soul by stating that the
ventricles, being a cavity, were the harbour of the substance performing all the intel-
lectual and sensory functions, the physic pneuma. He had a mechanic view of brain
function. The physic pneuma was produced by mixing vital pneuma, the inspired
air that had already passed from the lungs and came from fine capillaries, with ex-
ternal air coming from the nostrils. This mixing was produced within the anterior
and middle ventricles and at the base of the brain. Galen’s point of view persisted
during thirteen centuries [Crivellato and Ribatti: 2007]. Despite this important role
assigned to the ventricles, he located the seat of the soul in the brain tissue, a con-
clusion supported by the theory that the brain was the only source of the spinal cord
and other nerve systems in the body.

Around Galen’s death, in 199 CE, Greek science and medicine went into deca-
dence. Analysis and study were replaced by dogma and prayer, and exorcism took
the place of medical healing.

1.2 MIDDLE AGES: SMALL ROOMS

During the Middle Ages, the main trend in the Western world with respect to
brain research was about the localization of mental faculties. Following Galen’s doc-
trine, these faculties were localized in the ventricles. The brain was divided into
three small rooms or cells. The first one comprising the two lateral ventricles, re-
ceived the input from all the sense organs and was the site of the common sense or
sensus communis, that integrated across modalities. The second, or middle, cell, was
responsible for the cognitive processes: reasoning, judgement and thought. The
third cell, or ventricle, was the site of memory. The Persian philosopher Ibn Sina
(ca. 980-1037), also known as Avicenna, documented this doctrine in one of his many
medical writings. This can be observed in a 1347 edition of his work De generation
embryonis shown in figure 1.2.

Even though Galen postulated that the intellectual faculties were located in the
solid sections of the brain, with the advent of Christian philosophers a relocation to
the ventricles took place. Nemesius, bishop of Emesia (ca. 390) and St Augustine
(350-430), supported the non-material nature of the soul with the cell doctrine [Tas-
cioglu and Tascioglu: 2005]. According to this doctrine, the tissue was too earthy
to contain the soul and that its seat were the “empty” cells of the brain. The three
cells were thought of as the three sections of a temple, or the three parts of the holy
trinity. Hieronymus Brunschwig (1450-1512) illustrated this in coloured woodcuts
in his 1512 work Liber de Arte Distillandi, a practical manual on chemistry, alchemy
and the distillation devices used to manufacture drug therapies, see figure 1.3.

It was not until the tenth century that the main doctrine changed. The cell prin-
ciple remained intact during 1,200 years with only minor developments [Pagel: 1959].
Then, the process was conceptualized as a more dynamic one by presenting an anal-
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Figure 1.2: Ventricular theory of sensation and perception illustrated in a Latin edition of De genera-
tione embryonis edited in 1347 and written by the Persian philosopher Ibn Sina between 980 and 1037.

ogy with the digestive system: the first cell received the sensory inputs and made
them into images; these images were warmed up in the middle cell making them
more appropriate for further processing into cognition; finally, the mental leftovers
were stored in the third cell.

1.3 RENAISSANCE: THE HUMAN BEING IS THE CENTRE

The Renaissance period brought the human being back to the focus of the Western
world. Art and science were again centred on the details of the human body. In the
arts, the muscles and factions were painted and sculpted with exquisite detail; and
in medical sciences and natural philosophy of the human being, anatomy and dissec-
tions were, once again, the purpose and main resource for intellectual inquiry. Along
with more detailed anatomical studies, illustrations were becoming more sophisti-
cated in the hands of Albrecht Dürer (1471-1528) and Leonardo da Vinci (1452-1519).

Leonardo Da Vinci, performed several studies on human anatomy and function,
ranging from intercourse, to the optics of the eye. Regarding the anatomy and func-
tions of the brain, he studied the ventricular and optical systems as shown in fig-
ure 1.4. By injecting hot wax into the brain, he was able to extract a model of the
ventricles and study its shape. Moreover, he performed a meticulous study of the
nerves connecting the eyes, nose and mouth to the brain, paying particular attention
to the optical tract as it can be observed on the right plate of figure 1.4.

In Padua, Andreas Vesalius (1514-1564) reinvented anatomy, by daring to chal-
lenge the dominant doctrine originated in the work of Galen. Vesalius is often paired
with Copernicus as an initiator of the scientific revolution. His masterpiece, De Hu-
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Figure 1.3: The mind and sensation flowing through the ventricles. A page of Hieronymus Brun-
schwig illustrated this concept in his 1512 work Liber de Arte Distillandi, a practical manual on chemi-
cal, alchemical and distillation devices used to manufacture drug therapies. Remarkably, illustrations
were printed in colour using woodcuts.

mani Corporis Fabrica (1543),is the new beginning of human anatomy in the Western
world and, as expected, was rejected by the church authorities [Singer: 1956].

Andreas Vesalius, like many others after him, tried to match the quality of his
illustrations with that of his research [Linden: 2002]. He entrusted the illustrations
of his work to prominent artists of his time, the cover of the 1543 edition of De Hu-
mani Corporis Fabrica shown in figure 1.5, was designed by one of the painters at the
school of Titian. Vesalius took up dissection as a technique for intellectual inquiry,
even going so far as to illustrating the tools he used in his work (figure 1.6).

Vesalius focused his dissection studies on the ventricles, vessels and meninges,
and did not perform accurate drawings of the gyri or sulci(figure 1.7). Despite the
attention he paid to the ventricles, he was against the ventricular doctrine supported
by the religious institutions:

“ I believe nothing ought to be said of the location of the faculties [. . . ] of
the principle soul in the brain-even though they are so assigned by those

who today rejoice in the name of theologians. ”
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Figure 1.4: Representation of the ventricular system and of the brain anatomy by Leonardo Da Vinci.

Like Galen, he rejected Erasistratus’ doctrine on gyri. However, he advocated for
the importance of the gyri as a way for the blood vessels to nourish the inner parts of
the brain and stated that they should be studied:

“ [You] may learn the shape of this twistings by observing the brain of

some animals [on your plate] at breakfast or at dinner ”
Furthermore, he was the first to distinguish the grey matter calling it cerebrum and
white matter, the medulla. Vesalius used different anatomical markings for the cor-
tex and the white matter in his drawings (see for instance the right plate of figure 1.7).
Remarkably, he observed that the medulla was continuous with the corpus callosum,
named in this way due to its particular hardness, and that this structure links the two
halves of the brain. This division was confirmed and studied in depth by Archiangelo
Piccolomini (1526-1586), professor of anatomy in Rome, who succeeded in separating
the grey and white matter through gross dissection and noting “certain lines” in the
cerebrum.

Up to this point the analysis of the grey and white matter of the brain underwent
the same historical path. However, from this historical point and on we could focus
on the functional or anatomical study of the brain. In the remainder of this chapter
we will focus only on the history of the white matter anatomy and function, as its
analysis is the main subject of this thesis.
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Figure 1.5: Cover artwork from the 1543 edition of De Humani Corporis Fabrica by Andreas Vesalius,
who is shown performing an anatomical dissection. It is believed that it was drawn by one of the
painters working at the school of Titian.

1.4 MODERN AGE: GROSS TRACTOGRAPHY

The method of gross dissection of the human brain’s white matter was developed
by Arcangelo Piccolhomini (1526-1605) in 1586. This dissection technique enabled
scholars to study the white matter in depth and elaborate theories of brain function
which considered the cortex and the white matter as having separate but comple-
mentary roles in brain function. Among them, Thomas Willis (1621-1675), one of
the most important medical figures after Galen, stated that the cortex was involved
in memory and will. The sensory stimuli came through medullary pathways to the
corpus striatum, became perceptions and imagination in the corpus callosum and
then stored as memories in the cortex. He upheld that the cortex was the initia-
tor of voluntary movement and the cerebellum of involuntary movement. However,
Willis conceived the cortex as a “single organ” with a single function. This is observ-
able in his ventral drawing of the brain in figure 1.8, where there is a fine-grained
labelling of the cranial nerves and basal structures but the whole cortex is labelled
with a single “A”. Being a medic by profession, most of his conclusions were based
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Figure 1.6: Artwork from the 1543 edition of De Humani Corporis Fabrica(1543) by Andreas Vesalius,
showing the instruments used for dissection.

on observations of human pathologies and experiments with live animals. These
studies led him to notice the great variability of the gyrus patterns among different
species and to correlate this variation with intellectual capabilities:

“ Hence, these folds or gyri are far more numerous and rarer in man than
in any other animal because of the variety and number of acts of the higher
Faculties, but they are varied by a disordered and almost haphazard ar-
rangement so that the operations of the animal function might be freely

changeable and not limited to one. ”
Willis thought of the brain and the white matter in terms of the Galenic paradigm,
and assigned to the white matter the role of a highway for animal spirits to flow from
the cerebrum and cerebellum into the nervous system. Spirits directed to the brain
carried the sensations and the ones flowing outwards from it served as carriers of
locomotor function.

The founder of microscopic anatomy, Marcello Malpighi (1628-1694), professor in
Bologna, was the first to examine the cortex at such a small scale. Within his stud-
ies, he observed a set of glands with tubes perpendicular to the cortex, as shown in
figure 1.9, one of the illustrations from his work De Cerebri Cortice (1666). Being a
dedicated botanist, Malpighi found parallels between plant and the structure of the
brain:

“ [These fibres] ramify from four reflected crura of this medulla in all

directions, until they end by their branched extremities in the cortex ”
Even though his drawings and observations seem to fit the description of pyramidal
neurons, it is likely that these were artefacts of his dissection and analysis process.
This is believed to be the case because of his written observations stating that the
“glands” were more prominent in boiled than fresh tissue [Gross: 2007]. The glan-
dular theory of the brain that Malpighi upheld was common in the seventeenth and
eighteenth centuries and conformed to on of the two most important Greek doctrines
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Figure 1.7: Even if his texts stated that more attention should be paid to the gyri of the brain, the
drawings of Andreas Vesalius show that his dissection studies were more focused on the ventricles,
blood vessels and meninges and distinguished the grey matter from the white matter. This can be
observed in the difference of detail in his drawings from De Humani Corporis Fabrica (1543).

of the brain, the Aristotelian. This doctrine claimed that it was a cooling organ
and the Hippocratic postulating it as the source of the bodily humour responsible
for introspection and solid temperament, the phlegm. At the same time, the op-
posed doctrine, supported by Fredrik Ruysch (1628-1731) and Thomas Bartholine
(1660-1680), professors in Amsterdam and Copenhagen respectively. This doctrine
advocated that the cortex was vascular, made almost purely of blood vessels and that
the gyri were mechanisms for protecting such a delicate vascular structure.

Based on the observations of Malpighi, Nicholaus Steno (1638-1686), argued that
in order to discover the purpose of these fibres, their pathways should be traced
through scraping and studied [Clarke: 1970]. In doing so, he started a long debate
on whether the right way to trace fibres was from the cortex to the stem, or the other
way around. These heated debates seemed to be customary at that time in Europe,
as it was illustrated using eggs by Swift [1726]. Willis implemented Steno’s idea and
showed that the white matter was composed of an intricate arrangement of fibres
grouped in bundles. Using the scraping technique as a main tool of inquiry, Ray-
mond de Vieussens (1635-1715) and several others studied the structure and distri-
bution of the white matter bundles [Schmahmann and Pandya: 2007a]. Particularly,
Felix Vicq D’Azyr (1748-1794) differentiated association from commissural fibres and
studied bundles in detail several . He proposed that the multiple connections had a
role in preserving the normal functioning of the brain in the case of “inconveniences”.

By the beginning of the nineteenth century, there was a consensus on the com-
plexity and heterogeneity of the white matter. Several methods to perform its fix-
ation and analysis through gross dissection were available. The white matter bun-
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Figure 1.8: Illustration from Cerebri Anatomie (1664) by Thomas Willis. Willis conception of the
cortex as a “single organ” with a single function, in this illustration it is noticeable the fine-grained
labelling of the cranial nerves and basal structures contrasting with the whole cortex, labelled with a
single “A”.
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(1628–1731), Professor of Anatomy in Amsterdam, who noted: “the cortical substance
of the cerebrum is not glandular, as many anatomists have described it, nay have posi-
tively asserted, but wholly vascular” (Clarke & O’Malley, 1996). In this view the con-
volutions were viewed as mechanisms for protecting the delicate blood vessels of the
cortex.

Willis Gives the Cortex Cognitive Function

Prior to the nineteenth century there were only a very few figures who advocated signif-
icant functions for the cerebral cortex. The first and most important of these was
Thomas Willis (1621–1675), who held the Chair of Natural Philosophy at Oxford and
was one of the founders of the Royal Society (Dewhurst, 1982). His Cerebri Anatomie
(Willis, 1664) was the first monograph on the brain and dealt with brain physiology,
brain chemistry, and clinical neurology as well as brain anatomy. Many of its illustra-
tions such as Fig. 3 were by the architect Sir Christopher Wren, then Professor of
Astronomy at Oxford.

Willis implicated the “cortical and grey part of the cerebrum” in the functions of
memory and will. In his scheme, sensory signals came along the sensory pathways into the
corpus striatum where the common sense was located. They were then elaborated into per-
ceptions and imagination in the overlying white matter (then called the corpus callosum or
hard body since it was harder than the cortex) and then passed to the cerebral cortex where
they were stored as memories. According to Willis, the cortex initiates voluntary move-
ment whereas the cerebellum is involved only in involuntary movement.

Willis’s ideas on brain function came not only from his dissections but also from his
experiments on animals and his correlation of symptoms and pathology in humans. Willis
noticed that whereas the cerebellum was similar in a variety of different mammals, the

Figure 2. Malpighi’s “cortical glands” from his De Cerebri Cortice (1666) with their attached
fibers. Although he may have seen brain cells, these drawings are likely to have been of artifacts
(Meyer, 1971; Clarke & Bearn, 1968). Swedenborg used these supposed cortical elements to build
an elaborate theory of brain function that has close similarities with the neuron doctrine.

Figure 1.9: Cortical “glands” as illustrated by Marcello Malpighi in his De Cerebri Cortice (1666).
The illustration seems to be depicting pyramidal neurons and their axons, perpendicular to the cortex
and going into the white matter. However it is likely that he was observing artefacts. This is believed
to be the case because Malpighi reported that the glands were more prominent in boiled than fresh
tissue.

dles were divided in association and commissural groups and many of them were be-
ing studied in detail. Researchers like Herbert Mayo (1796-1852), Friedrich Arnold
(1803-1890), Karl Burdach (1776-1847), Louis-Pierre Gratiolet (1815-1865), Achille
Foville (1799-1878) and Johan Reil (1759-1813) among others, produced a large cor-
pus of studies on the bundles of white matter based on gross dissection and mi-
croscopy. Several of these having exquisite illustrations and remarkable discoveries



40 CHAPTER 1. BRAIN HISTORY

Figure 1.10: Illustration from Traite d’Anatomie et Physiologie (1786) by Félix Vicq d’Azyr. The gyri
are drawn resembling the small intestine, following the doctrine of Erasistratus.

about new bundles and the organization of the human brain’s white matter [Schmah-
mann and Pandya: 2007a].

Concerning the cortex, Thomas Willis, François Pourfour du Petit (1644-1741)
and Emmanuel Swedenborg (1688-1772) had elaborated theories assigning it a fun-
damental importance in sensory and motor functions [Gross: 1998b]. Still, the pre-
dominant doctrine considered it to be either vascular or glandular, with a principal
function of nourishing the subcortical structures or cooling down the blood. Even
more, most of the illustrations until the mid-eighteenth century showed the cortex
and its gyri like the intestine, following Erasistratus, and no effort was taken in per-
forming an accurate depiction of the gyri as shown in figure 1.10.

Cortical specialization

Gall and Spurzheim [1810] shed new light onto the conception of the cortex. They
stated it had areas with specialized functions and the white matter was the “wiring”
connecting them, a theory that revolutionised neuroscience. The illustrations per-
formed and included by Gall and Spurzheim showing the anatomy of the human
brain, along with several animals, was superior to any of the studies previously pub-
lished [Monro: 1813]. In their work, they studied the white matter in detail and
added the category of projection fibres, which connect the brainstem and the cortex,
to the categorization proposed by Vicq D’Azyr. They claimed that by studying the
shape of a person’s head, several intellectual and moral dispositions could be iden-
tified. They called this field of research “Phrenology”. This claim, although exten-
sively supported in their four-volume publication, led to a heated debate around their
work and provoked the most critical responses to their work.
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Aside from the claim about the inference of intellectual disposition by analysing
the shape of the head, the cortical specialization paradigm has been repeatedly
proven since Gall and Spurzheim first published their work. One of the most sig-
nificant demonstrations was provided by Broca [1861]. Broca presented the brain of
a recently deceased patient who could only say “tan” to the medical society of Paris.
The brain of this patient was damaged in a specific area of the frontal lobe, which
now bears the name of Broca. Over the next few months, he displayed the brains
of several patients with similar pathologies and a lesion in the same area. Through
this, Broca demonstrated that damage in a specific area of the cortex caused speech
impediments, proving cortical specialization.

1.5 NINETEENTH CENTURY: CHEMICAL TRACTOGRAPHY

The gross dissection method proved to be extremely useful in the first era of white
matter analysis, however due to its technical limitations, it was not capable of re-
solving certain questions. Firstly, at that scale of analysis it was not possible to
determine the direction of the fibres; the distinction of afferent from efferent con-
nections was impossible to achieve. For this reason, it was unfeasible to tell if, for
instance, projection fibres were going to the cortex, emanating from the cortex or just
turning around and coming back to the brainstem. By the middle of the nineteenth
century, the study of white matter had come to a point where microscopy was needed
to further elucidate its characteristics [Todd: 1845].

Parallel to the gross dissection-based analysis the neuron theory was devel-
oped during the late seventeenth and early nineteenth centuries. By the end of
the eighteenth century, Evangelista Purkinje (1787-1869) and Theodore Schwann
(1810-1882) among others, had described the nerve cell and the axon [Schmahmann
and Pandya: 2007a]. However, it was not until the development of optical physics
led to the achromatic microscope, and chemistry led to staining techniques, that
neurons could be visualized and studied in detail. This was particularly achieved
by the staining method developed by Camillo Golgi (1843-1926) first published in
1883 [Golgi et al.: 2001]. Santiago Ramón y Cajal (1852-1934) used Golgi’s tech-
nique extensively. Through this precise staining, he was able to clearly illustrate
the shape of the neuron and emphasize the structural , functional and developmental
singularity of the nerve cell, which is now known as the “neuron doctrine”. Golgi
supported a diametrically opposed view: called the “reticular doctrine” in which the
neurons were not singular elements but just nodes on a continuous complex network
that performed all the processing of the nervous system. Cajal and Golgi jointly re-
ceived the Nobel Prize in medicine for their work in 1906. Presently, the “neuron
doctrine” has prevailed and the works of Golgi and Cajal, remain fundamental for
neuroscience [Glickstein: 2006, Bullock et al.: 2005].

The advances in microscopy and staining in the first half of the nineteenth cen-
tury which led to the acceptance of the “neuron doctrine”, also enabled white matter
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Figure 1.11: Illustration from Anatomie du Système Nerveux by Dejerine and Dejerine-Klumpke
[1895]. The white matter has undergone a myelin staining procedure and there is a careful labelling
of the subcortical structures.

tractographers to perform accurate studies on the distribution and pathway of the
bundles. Theodor Meynert (1833-193) applied these techniques to bats in order to
establish the existence of the three white matter fibre systems: association, com-
missural and projection. Moreover, he also proved the existence of the U-fibres, pre-
viously reported by Arnold (1803-1890) in 1838. Carl Wernicke (1848-1900) not only
had made significant contributions to aphasiology and cortical specialization, also he
published and extensive atlas of myelin-stained human white matter. This atlas, in-
stead of being presented as drawings of dissected stained brains, was in the form of
serial sections in three orientations: axial, coronal and sagittal. In this work, the
difference of myelination between projection and most association fibres was made
evident through the different grade of black obtained from the staining techniques.

Joseph Dejerine (1849-1917) contributed significantly to clinical neurology. Like
Wernicke, he used his anatomical knowledge and state-of-the-art staining techniques
in order to identify white matter structures and link them with clinical syndromes.
In his Anatomie du Système Nerveux published in 1895 [Dejerine and Dejerine-
Klumpke: 1895], he described white matter structures in detail and provided a his-
torical account of the development and notion of fibre organization. An image of
Dejerine’s work is shown in figure 1.11, where the detail and clarity of his illustra-
tions are noticeable. Dejerine used myelin staining techniques on human brains to
trace major pathways and to study the degeneration of the white matter produced
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by clinicopathological cases. Based on the paradigm of cortical specialization and on
the knowledge of affected cortical areas on a number of pathologies, he studied which
pathways were connecting these areas to the rest of the brain and drew conclusions
about different cortical systems implicated in these disorders. Through the study
of the relationship between pathology and structure and his historical accounts, De-
jerine attempted to resolve the existing discrepancies regarding the structure of the
white matter. His numerous and fundamental contributions to clinical neuroscience
and to the study of brain anatomy are difficult to summarize.

Clinical neurology was emerging as a discipline at the time that Dejerine and
Wernicke published their studies. At that time, Jean-Martin Charcot (1825-1893)
had been leading a series of studies linking white matter lesions to its clinical con-
sequences for several years. The complexity of the white matter was perceived at
a completely different scale than ever before; the intricacy of its pathways and the
importance of the different types of cortical area linkages were recognized as subjects
of great importance [Ramón y Cajal: 1933]. However, the study of these cortical con-
nections, recognized as a fundamental issue in understanding the brain in depth, had
not been performed yet due to technical limitations.

Chemical tracing by staining combined with histology, still persists as the princi-
ple technique to investigating cortical connections. The development of anterograde
tract tracers capable of trace the connections from the neuron to the axon and retro-
grade tracers capable of tracing from the axons to the cell bodies facilitated the de-
tailed study of cortical connectivity [Schmahmann and Pandya: 2007a]. These tech-
niques enabled researchers to differentiate axons leaving from a cortical area, from
the ones arriving to it. Today, there is an availability of chemical tracers which are
capable to stain axons individually, enabling a precise study of cortical connections
in the brain. However, a major distortion in these type of studies is due to the histo-
logical process, in which the brain must be excised, fixated and sectioned in order to
contemplate the results of these techniques.

1.6 TWENTIETH CENTURY: IMAGING-BASED TRACTOGRAPHY

With the purpose studying the cortical connections without the need for histol-
ogy, Cowan et al. [1972] developed autoradiographic tracing. This technique con-
sists in the injection of a radioactive chemical tracer is used in combination with ra-
diography to visualize axonal pathways. In addition to the visualization of nerve
endings, this technique also displayed the course of the axons from the injection
site to its distant terminations.This technique technique consists in the injection of
a radioactive chemical tracer is used in combination with radiography to visualize
axonal pathways. In addition to the visualization of nerve endings, this technique
also displayed the course of the axons from the injection site to its distant termina-
tions. The introduction of this technique set the grounds for a considerable amount
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Figure 1.12: Chemical tracing, from Golgi staining to autoradiography. On the left a pyramidal neu-
ron reproduced from the original histological atlas of Ramón y Cajal [1995]. On the right autoradio-
graphic tracing reproduced from Schmahmann et al. [2007]. In this radiography the injection site can
be noted close to the OTS label and several white matter structures have been labelled.

of research which investigated several characteristics of the brain such as: cortico-
cortical connections, subcortical connections and the delineation of hemispheric fibre
systems [Schmahmann and Pandya: 2009]. A comparison between the first axonal
tracing techniques, performed by Ramón y Cajal, and state-the-art autoradiographic
tracing performed by Schmahmann et al. [2007] is shown in figure 1.12. Autoradio-
graphic tracing nonetheless, is suited to be used on experimental animals only. The
injection of radioactive substances directly on the brain makes this invasive tech-
nique impossible to be applied for the study of the human brain’s white matter in
vivo.

In introducing diffusion weighted magnetic resonance imaging and then diffusion
tensor imaging, Websey et al. [1984a,b], Le Bihan and Breton [1985], Taylor and
Bushell [1985], Le Bihan et al. [1986] and Basser et al. [1994b], set the grounds for in
vivo tractography of the human brain. These techniques rendered possible to mea-
sure the directionality of diffusion in the whole brain, divided in millimetric sections,
in vivo and non-invasively. Using these measures, it was feasible to trace the white
matter fibres either in the shape of three-dimensional trajectories representing small
bundles [Basser et al.: 2000, Mori et al.: 2005, Catani et al.: 2002] or in terms of the
probabilistic measure of connectivity between areas of the brain [Behrens et al.: 2003,
Anwander et al.: 2007, Descoteaux et al.: 2009a]. Both types of tractography studies
are shown in figure 1.13.

1.7 AUTOMATED In Vivo DISSECTION OF THE WHITE MATTER

Today, the white matter fibre bundles can be estimated and traced in vivo through
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Figure 1.13: Diffusion-based tractography studies. On the left, streamline tractography results ob-
tained using the techniques proposed by Basser et al. [2000]. On the right, probabilistic tractography
results reproduced from [Descoteaux et al.: 2009a].

Diffusion MRI-based tractography techniques. The works done by Catani et al.
[2002] and Mori et al. [2005] show that by using a meticulous procedure, somewhat
similar to the procedure of gross dissection, it is possible to effectively recover major
white matter structures with impressive precision. Then, works like the ones done
by Lawes et al. [2008] and Dauguet et al. [2007] have validated against gross dissec-
tion and autoradiographic tracing the results of these studies. However, the task of
in vivo dissection is arduous and not suited for group studies due to its dependence
on the practitioner realizing it.

This chapter sets the starting point and motivation of this thesis: the study of
the human brain through in vivo dissection of the white matter, firstly performed by
Mori et al. [2005] and Catani et al. [2002]. Manually performing this dissection re-
quires a great knowledge of brain anatomy and several hours of work. The develop-
ment of a technique able to automatically perform the identification of white matter
structures is, therefore, of the utmost importance. Recently, some automatic dissec-
tion algorithms which combine anatomical information with the result of diffusion
MRI-based tractography have been proposed [O’Donnell and Westin: 2007, Maddah:
2008]. However, these approaches need to pre-locate the bundles to be dissected, to
previously build atlases of the white matter or fine-tuning parameters. This thesis
addresses the automatization of in vivo dissection, proposing two different techniques
to perform it. Firstly by directly analysing the voxels of the image obtained by dif-
fusion magnetic resonance imaging. Secondly by clustering fibres obtained through
diffusion magnetic resonance tractography. The latter clustering technique, uses a
novel mathematical framework proposed in this thesis and a volumetric atlas of the
white matter in order to perform a near-parameterless dissection [Wassermann et al.:
2010a]. In figure 1.14 we illustrate the efficacy of this technique by showing the re-
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Figure 1.14: Result of the automatic dissection of the inferio-fronto occipital fasciculus using the tech-
niques proposed in chapter 7 of this thesis. On the top, the same fasciculus excised using gross dissec-
tion [Lawes et al.: 2008], on the bottom averaged over a population of 68 individuals. The red-yellow
colormap indicates the probability of the point belonging to the bundle. Red means low probability
and yellow high probability.

sult of an automatic dissection of the inferio-fronto occipital fasciculus averaged over
a population of 68 individuals against the same fasciculus excised using gross dissec-
tion [Lawes et al.: 2008].

1.8 SUMMARY

In this chapter we briefly went through the history of neuroscience from 3,000 BCE
to the present day. Through this history we have seen how the white matter of the
brain and its structure gained importance in the elucidation of brain function. To-
day, the advent of imaging technologies, specially diffusion magnetic resonance imag-
ing in the last twenty years, has provided a unique means to non-invasively analyse
the white matter structure, trace axonal pathologies and perform virtual dissection
in vivo. Results obtained through this process are impressive. Still, the amount of
skill and anatomical knowledge needed in order to perform it is considerable. Con-
sequently, this thesis addresses the task of performing automatical in vivo dissection
of the human brain white matter.



CHAPTER 2

BRAIN ANATOMY AND DIFFUSION

MRI

Science cannot solve the ultimate mystery of
nature. And that is because, in the last
analysis, we ourselves are a part of the
mystery that we are trying to solve.

Max Planck (1858-1947)

We have come a long way since the Edwin Smith papyrus was written but the
fundamental question remains: “How does the brain work?” . In the past 20 years,
the advent of Nuclear Magnetic Resonance has allowed us to quantify in vivo brain
function, observe its structure and correlate both approaches in order to clarify how
the living brain works. Using such indirect approaches to quantify structure and
function, provides rich yet complex indices of the brain. This highlights the need of
mathematical models and algorithms able to build a bridge between nuclear physics
and neuroscience. The main subject of this thesis is brain structure, specifically the
structure of the brain’s white matter and how it can be analysed by processing the
results of diffusion Magnetic Resonance Imaging. The brain being the main subject
of our thesis, we start this work by briefly describing its anatomy.

2.1 HUMAN BRAIN AND NEURAL TISSUE

The most basic neural information processing unit in the brain is the neuron, a cell
which transmits electrochemical signals. A neuron is composed of two main parts,
the cell body which integrates information from other neurons and the axon that
transmits this information, see figure 2.1a. In receiving input from other neurons,
a neuron may depolarize (fire) producing an electrical action potential which travels
away from the neuronal cell body, down the axon. When this action potential arrives
at synapses (communicating points) with other neurons, it provokes the release of a
neurotransmitter and, if there is sufficient quantity of neurotransmitter at the synap-
tic cleft, the receiving (postsynaptic) neuron may also fire. The conduction velocity
of this potential is increased by an insulating substance, the myelin, which glial cells

47
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(a) (b)

Figure 2.1: A neuron (a) and its signal propagation process (b). Adapted from Wikipedia

wrap in layers around the axon as a sheath, see figure 2.1b.
Cell bodies are gray while myelin is white. This coloring distinguishes two dif-

ferent components of the brain: the gray and white matter. The gray matter is
principally composed of neuron bodies and its dendrites. In the human brain, the
gray matter is located in the exterior part of the brain, the cortex, and in internal,
or sub-cortical, brain structures like the thalamus or the basal ganglia as shown in
figure 2.2. The cortex, as it can be seen in figure 2.2 as a gray layer wrapped around
the brain, is a highly convoluted structure whose ridges and valleys are respectively
called gyri and sulci. Millions of axons innervate the cortical and subcortical struc-
tures forming the white matter, depicted in figure 2.2 as the white or striped areas
within the cortex. The white matter is composed of axonal pathways grouped into
bundles which travel together called white matter fibre tracts. These tracts form a
fibrous tissue as it is observable in figures 2.6 and 2.8. In addition, there are two
fluid systems in the brain, the ventricles and spaces around the brain containing
cortico-spinal fluid (CSF) and a vascular system providing blood flow.

The brain is divided in two hemispheres, left and right. The functions of each
hemisphere are complementary, for instance, the left hemisphere controls the right
hand and produces language while the right hemisphere controls the left hand and
handles emotional content. Furthermore, each hemisphere is divided into five lobes,
shown in figure 2.3, and the lobes into gyri, shown in figure 2.4. Each one of these
lobes has a main, but not exclusive role in different aspects of brain function: the
frontal lobe, responsible for motor functions, speech production, personality, insight
and foresight; the parietal lobe, responsible for language comprehension, spatial ori-
entation and perception, and somatic senses, such as touch and temperature; the tem-
poral lobe handles audition, language comprehension, visual processing and memory;
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Figure 2.2: General illustrations of the brain. An axial slice on the left and a coronal slice on the
right. Gray and white matter are easily distinguished. Moreover, the fibrous nature of the white
matter is sketched using lines which can be observed, for instance in the optic radiation (left) and
the corpus callosum (right). The vesicles and subcortical structures are marked as are all the other
principal brain structures. Gray [1918]

the occipital lobe, responsible for primary visual processing and association; and the
limbic lobe which handles emotional responses, drive-related behaviour and mem-
ory. The lobes and subcortical structures do not function in isolation, in fact they
are heavily connected through the fibre bundles which compose the white matter.

White matter fibre tracts interconnect the processing streams in the functional
regions of the brain. These tracts are divided in three types: commissural, con-
necting the hemispheres; association, connecting the lobes and gyri within the same
hemisphere; and projection, connecting the spinal cord, the cerebellum and subcor-
tical structures like the thalamus to the cortex. The fibre bundles are classified by
their endpoints, like the cortico-spinal tract, or might have different names along
their course like the corona radiata, internal capsule and cerebral peduncle which
are named sections of the same bundle. Also, bundles are named after a region, like
the cingulum or their shape, like the arcuate (arc-shaped) or uncinate (hook-shaped)
fasciculi. In most cases, there are small sets of bundles which diverge from the trunk
of the tract and innervate cortical and subcortical structures, as shown in figure 2.7.

2.1.1 Commissural fibres

Commissural fibres connect the right and left hemispheres, see figure 2.5. The
largest and densest of these bundles is the corpus callosum (CC) composed of more
than 300 million axons. This bundle connects cortical areas to their respective con-
tralateral parts, i.e. left and right pre-central gyri, although in some cases it connects



50 CHAPTER 2. BRAIN ANATOMY AND DIFFUSION MRI

Figure 2.3: Lobes of a cerebral hemisphere. Frontal is blue, parietal yellow, temporal green and
occipital red. The limbic is internal and can not be seen. Image adapted from Gray [1918]

Figure 2.4: Lateral and mid-saggital illustrations of the brain showing the most important gyri and
their names. Motor area in red. Area of general sensations in blue. Visual area in yellow. Olfac-
tory area in purple. Image adapted from Gray [1918]

related contralateral areas like the visual cortex to the contralateral visual associa-
tion cortex. The anterior part of the CC is called genu, the posterior splenium and
the part connecting its temporal regions is called the tapetum. The anterior (AC)
and posterior (PC) commissures are smaller commissural tracts connecting the con-
tralateral temporal cortices.

2.1.2 Association Fibres

Association fibres connect gyri within the same hemisphere. The length of their
trajectories varies from short bundles connecting areas within the same gyrus and
“U-fibres” connecting adjacent gyri to long associating fibres connecting the extremes
of the same hemisphere as the inferior fronto-occipital fasciculus, see figure 2.6.
These bundles mostly have anterior-posterior trajectories. Even if association tracts
have well-defined end-points, they are composed of several smaller bundles which en-
ter and leave the main trunk connecting cortical and sub-cortical areas, as shown in



51

Figure 2.5: Commissural pathways. 1. Frontal forceps 2. Corpus callosum commissural fibres 3.
Short arcuate fibres 4. Occipital forceps 5. Indusium griseum 6. Medial longitudinal stria 7. Lat-
eral longitudinal stria. [Williams et al.: 1997]

figure 2.7. In this section we give an overview, which is by no means exhaustive, of
the major association bundles and their function:

The cingulum (CG) and the fornix (FX), form part of the limbic system which
handles memory and emotion. The cingulum (Latin word for “belt”) connects
the cingulate gyrus to other regions in the libmic lobe, specially the hippocam-
pus. The fornix goes from the hippocampus to the mammilary bodies.

The superior longitudinal fasciculus (SLF) describes an arch which connects
the posterior inferior frontal cortex, specifically Brocca’s area, to Wernicke’s
area in the superior posterior temporal gyrus. Traversing the inferior parietal
cortex, specifically Gerschwind’s territory. This fasciculus plays a fundamental
role on language and speech and it can be subdivided into three parts [Catani
et al.: 2007]: the anterior indirect segment, connecting Brocca’s and Ger-
schwind’s areas; the posterior indirect segment connecting Gerschwind’s and
Wernicke’s areas; and the arcuate describing an arch which goes through the
three areas.

The uncinate fasciculus (UNC) connects the frontal portions of the temporal lobe
with the inferior frontal gyrus describing a C shape which crosses behind the
external capsule. Its function is still undetermined although it is believed that
it forms a part of the limbic system Hasan et al. [2009].

The inferior fronto-occipital fasciculus (IFO) connects the occipital lobe to the
frontal lobe running through the temporal lobe, below the insular cortex. Its
role is still a subject of debate, however it is believed to play a role in spatial
and visual processing [Schmahmann and Pandya: 2007b].

The inferior longitudinal fasciculus (ILF) connects the occipital and temporal
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Figure 2.6: Association pathways. 1. Short arcuate bundles (U-fibres). 2. Superior longitudinal
fasciculus (part is known as the arcuate fasciculus). 3. External capsule. 4. Inferior occipito-
frontal fasciculus. 5. Uncinate fasciculus. 6. Sagittal stratum. 7. Inferior longitudinal fasci-
culus. [Williams et al.: 1997]

(a) Arcuate fasciculus

S

A
Anatomicalregionofthecingulum.Axonsactuallyenterandleave.

Figure2-6:Axonsenterandleavesomefibertractsalongtheircourse,asseenin
thisexampleofthecingulumbundle.ImagescourtesyofJamesFallon,Professorof
AnatomyandNeurobiologyattheUniversityofCalifornia,Irvine.

havebeenreportedinschizophrenia[63],andasymmetryoftheuncinatefasciculus

acrosshemisphereswasfoundinapostmortemdissectionstudy[48].

2.2.4TheInferiorOccipitofrontalFasciculus

Theinferioroccipitofrontalfasciculus(Figure2-5)connectsoccipitalandfrontallobes.

Itrunsfromthefrontallobe,throughthetemporallobe(passingbelowtheinsula),

totheoccipitallobe[84].

2.2.5TheInferiorLongitudinalFasciculus

Theinferiorlongitudinalfasciculus(Figures2-4and2-5)connectsoccipitalandtem-

porallobes.Itisinvolvedintheventralstreamforvisualprocessing,theobject

recognitionpathway[25].ItsconnectionshavebeeninvestigatedusingDTItractog-

raphy[25].

34

(b) Cingulum bundle

Figure 2.7: Axons enter and leave anatomical bundles. Image (a) manually selected Arcuate fasci-
culus after full brain tractography. Image (b), reproduced from O’Donnell [2006] with permission of
Jimmy Fallon, UCI.

lobes by linking their poles. It is involved in visual processing, particularly
in object recognition [Catani et al.: 2003].

2.1.3 Projection fibres

These fibres connect the cortex with the spinal cord, the cerebellum and subcorti-
cal structures like the thalamus and the basal ganglia. They compose a large bundle
which starts at the pyramidal tract and goes through the cerebral peduncule, internal
capsule, corona radiata and reaches the cortex, as seen in figure 2.8. This bundle is
principally composed of

The cortico-thalamic radiations (CTR), connecting the thalamus with the cor-
tex. This set of bundles has representatives which play fundamental roles in
sensory tasks like the optic tract (OT) or the anterior thalamic radiation (ATR).

The cortico-pontine fibres (CP), connecting the pons with the cortex including
the cortico-spinal tract (CST). This bundle is involved in sensory-motor tasks.

The cerebral peduncle (CP), connecting the cerebellum with the cortex. This set
of bundles carries motor information between the brain and the body.
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Figure 2.8: Projection fibres (mid-saggital view). 1. Corona radiata 2. Anterior thalamic radia-
tion 3. Internal capsule 4. Anterior commissure (which is a commissural bundle) 5. Optic tract 6.
Cerebral peduncle 7. Longitudinal pontine fibres (cortico-spinal and cortico-nuclear tracts) 8. Pyra-
midal tract of medulla oblongata 9. Hilus of olivary nucleus 10. Olivary nucleus. [Williams et al.:
1997]

2.1.4 Microscopical structure of the white matter

The main goal of this thesis is the in vivo and non-invasive analysis of the human
brain’s white matter. The main characteristic which enables this type of study lies
on the microscopical structure of the white matter and how it affects the random
motion of water particles within it.

When looking closely at the white matter, as in the histological study shown in
figure 2.9, we observe that it is composed of axons, or white matter fibres, packed to-
gether in bundles. Within this configuration, it is possible to divide the white matter
in two compartments, an intra-axonal and extra-axonal one. Water particles in the
brain are in constant motion. Particularly, those contained within the intra-axonal
compartment are restricted by the axonal walls and move mostly along the axon. On
the other hand, those contained in the extra-axonal compartment are able to move
in any direction, even if they do not move freely as they are being hindered by the
axons. The random motion of these particles, known as the physical process called
diffusion, constitutes a fundamental property of the white matter tissue which, in
turn, facilitates in vivo analysis of the white matter structure [Beaulieu: 2002].

Characterizing and quantifying the diffusion of water particles through a nuclear
magnetic resonance technique called diffusion-weighted imaging, as we will see later
on this thesis, enables us reconstruct the commissural, association and projective
fibres which constitute this tissue and to study them. Before going into how diffu-
sion process can be measured and how this measures can be used to characterize the
structure of the white matter, we describe the diffusion process itself.

2.2 THE DIFFUSION PROCESS

Scottish botanist Robert Brown had just returned from a trip to Australia. It was
1827 and he had brought several samples of indigenous Australian flora. He devoted
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(a) (b)

Figure 2.9: Electron micrographs of transverse (a) and longitudinal (b) sections of white matter tissue.
The axons (AX), myelin sheath (MY) are labeled on the image. The random motion of a water particle
in the extra-axonal compartment is illustrated as a red trajectory and the motion within the intra-
axonal compartment is drawn in blue. Image adapted from Beaulieu [2002]

himself to the study of fertilization mechanisms and, in order to elucidate those mech-
anisms, he suspended a sample of pollen grains in water and observed them under
his microscope. To his surprise, Brown found those grains to be in constant motion,
they could even be alive. Being a man of science, he tried to prove that this move-
ment was due to the fact that the grains were alive that he was observing “life itself”.
He suspended rock and coal samples. Observing them, to his surprise, he found the
same phenomenon: rock and coal grains moved as much as pollen [Brown: 1828].

Today, we know that Brown observed the constant movement of water particles
under thermal agitation, a physical process known as “Brownian motion” or “diffu-
sion”. Even if he did not observe “life itself”, the mechanism he observed is funda-
mental for any living being. Diffusion facilitates the transport of metabolites into
cells, is omnipresent in living tissue water, and plays a fundamental role in many
other vital processes of living organisms [Jones: 2008].

But, what is diffusion? Let us imagine a glass of water. If we drop a splash of
dark ink in this glass, we can observe that the liquid in the glass goes through two
stages:

1. Right after the ink was dropped into the water, there is a noticeable ink stain.
The ink and the clear water are easily distinguishable.

2. After a while, and without the need to move the glass or stir the liquid, all the
water in the glass is tinted, showing a paler tone of the original ink color.

This mixing process we have just witnessed is called “diffusion”.
If we analyse diffusion on a particle-by-particle basis we find that of the particles

experienced what is called a “random walk”. By random walk, we mean that an
observed particle stays for a fixed time τ in a particular place and then moves to a
random new location in space. This process repeats itself without memory, meaning
that the previous location has no influence on where the particle will go next. Due to
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its random nature, it is not possible to predict the path of a simple particle. However,
Einstein [1905] proved that, if we observe a sufficiently large sample of particles,
it is possible to characterize at least one aspect of this phenomenon: the squared
displacement of the particles from their starting point over a time τ , averaged over
all the sampled particles, is directly proportional to the observation time. This is
usually notated as

〈r2〉 = 6Dτ

where 〈·〉 accounts for the averaging operation, r for the displacement and the scalar
constant D, known as the self diffusion coefficient, measures the mobility of the par-
ticle ensemble. More precisely,

D =
1

6τ
〈RTR〉 (2.1)

where R = r− r0 is the net displacement vector of a particle with r being its position
after a time τ , and r0 its original position. This model assumes that the medium
where the particles are is unrestricted. The particles therefore have equal mobility
in every direction. This is known as the isotropic case, where the diffusion coefficient
depends only on the medium and not the direction.

Taking a step back from particle observation and looking at the diffusion process
macroscopically, we find that Fick [1855], coauthor of what is likely the first treatise
in medical physics [Fick and Müller: 1866], had previously formulated a series of laws
which govern the diffusion process. Particularly, the first law of [Fick: 1855] relates
the concentration difference of the diffusion substance C to a flux J. This flux is
proportional to the gradient of the concentration, ∇C. The proportionality constant
D is the previously mentioned diffusion coefficient D and the governing equation is
given by

J = −D∇C. (2.2)

One of the main concepts behind Fick’s law is that particles go from areas of higher
concentration to areas of lower concentration resulting in an even concentration in
the whole fluid (as illustrated by the glass with ink and water), hence the minus sign.
This is entirely analogous with Fourier’s previous law of heat transfer, where heat
flows from high to low temperature regions, and was probably an inspiration to Fick.

Focusing on the goal of this thesis, we consider the case of biological tissues. In
these tissues, the mobility of a water molecule is constrained by obstacles formed
by surrounding structures. In chapter 2, particularly in figure 2.9, we have seen
that this is the case of white matter tissue in the brain [Beaulieu: 2002]. The gen-
eral diffusion displacement probability density function (p.d.f. ), also called diffusion
propagator, of water molecules is extremely complex and is still unknown today.
Therefore, simple models of diffusion have been historically proposed. Amongst
these models, the most popular is certainly the diffusion tensor (DT) model proposed
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by Basser et al. [1994b]. In this simplified model of water diffusion, Einstein’s and
Fick’s laws of diffusion are generalized. The scalar diffusion coefficient D is replaced
by a positive symmetric semi-definite matrix D representing diffusion, the diffusion
tensor. Therefore, Einstein’s relation (equation 2.1) is generalized, considering the
covariance matrix of the net displacement vector R

D =

Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

 =
1

6τ
〈RRT 〉. (2.3)

We can use this generalization to characterize the diffusion propagator. First, we
notate the probability that a particle moves along the vector R in a time τ as P (R, τ).
Then, we make a first order approximation to P (R, τ) ignoring the high order terms
and using equation 2.3. Finally, we obtain a partial differential equation which gov-
erns the diffusion propagator 1:

∂P (R, τ)

∂τ
= D∇2P (R, τ). (2.4)

Under the assumption that the diffusion is Gaussian, the solution of this equation is
the propagator model given by Basser et al. [1994b]:

P (R, τ) =
1√

(4πτ)3|D|
exp

(
−RTD−1R

4τ

)
.

The characteristics of this propagator model have proved to be an invaluable
resource in characterizing diffusion in living tissue, particularly in the human
brain [Johansen-Berg and Behrens: 2009].

In summary, diffusion is a fundamental physical process in nature and partic-
ularly physiology. The random motion of water molecules within a tissue are in-
fluenced by a variety of factors like cell membranes, the cytoskeleton, and macro-
molecules [Tanner and Stejskal: 1968]. It is due to this that being able to measure
and characterize diffusion, and in fact the diffusion propagator, is a valuable tool
to elucidate the microstructural and physiological features of tissues [Basser and
Pierpaoli: 1996]. In the past twenty years, nuclear magnetic resonance has made a
breakthrough in this area providing, through diffusion magnetic resonance imaging
(dMRI), a probe into the microstructure of living tissue [Alexander et al.: 2007].

2.3 NUCLEAR MAGNETIC RESONANCE

In 1946, Bloch et al. [1946] and Purcell et al. [1946] simultaneously described Nu-
clear Magnetic Resonance (NMR) which yielded them a joint Nobel Prize in Physics
in 1952. The basic principle behind NMR is that after aligning a magnetic nu-

1. The detailed intermediate mathematical derivations can be found in the work by Tuch [2002]
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Figure 2.10: Water diffusion measured by the first NMR-obtained signal: The decay of transverse
polarization associated with water at 25◦C used by Carr and Purcell [1954] to measure the diffusion
coefficient of water. In this work, using a small magnetic gradient and the Spin-Echo method proposed
earlier by Hahn [1950] they observed that the decay is largely determined by the molecular diffusion
through the magnetic gradient. Image adapted from Carr and Purcell [1954]

cleus, for instance the proton 1H, with a very strong external magnetic field, its
response to a perturbation of the alignment by an electromagnetic field is charac-
teristic. Shortly after this, Hahn [1950] published a paper on the NMR spin echo in
which he noted that the random thermal motion of the spins would reduce the am-
plitude of the observed signal in the presence of an inhomogeneity of the magnetic
field. His work was influential on NMR and fundamental in understanding mag-
netic resonance imaging (MRI). Inspired by this work, Carr and Purcell [1954] used
the Spin-Echo NMR sequence proposed by Hahn [1950] and a sequence of their own
to measure the diffusion coefficient of water at 25◦C, see figure 2.10. Carr and Pur-
cell used a small magnetic gradient and the Spin-Echo sequence and showed that the
decay on the transverse polarization was affected by water diffusion. Then they pro-
posed a second NMR sequence which was not influenced by water diffusion and used
both decays obtained by both sequences to measure the diffusion constant. This was
the first NMR signal ever obtained.

Almost 20 years later, the first acquisition of a bi-dimensional image using NMR
was performed by Lauterbur [1973], see figure 2.11. As the image was obtained
using two coupled magnetic gradients, he called the process zeugmatography, from
the Greek work zeugma, “that which is used to join”. Mansfield [1977] improved
on the previous technique. By using mathematical properties of the MRI signal, he
proposed a new ultrafast acquisition procedure: echo-planar imaging. The two pre-
vious techniques, zeugmatography and echo-planar imaging, became a fundamental
parts of medical MRI yielded a joint Nobel Prize in Physiology or Medicine 2003 to
their authors . There is a single piece missing to fully describe the techniques at the
heart of diffusion MRI: the gradient spin echo sequence developed by Stejskal and
Tanner [1965]. Due to its critical role, we dedicate the next section to the descrip-
tion of their technique.
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Figure 2.11: First bi-dimensional image obtained from NMR. Lauterbur [1973] was the first to pro-
pose the use of two coupled magnetic gradients in order to obtain a bi-dimensional slice. He called
this process zeugmatography. On the left we can see a drawing of the imaged object, with two capil-
laries filled with water, and on the right the resulting image obtained by NMR. Both images adapted
from Lauterbur [1973].

2.3.1 Pulse Gradient Spin Echo (PGSE)

The Stejskal and Tanner [1965] imaging sequence is used to measure the diffusion
of water molecules in a given direction g. This sequence uses two gradient pulses,
g(t), of duration time δ, in the direction g to control the diffusion-weighting. The
gradient pulses are placed before and after a 180◦ refocusing pulse (RF). More specif-
ically, a first 90◦ RF is applied to flip the magnetization in the transverse plane. The
first gradient pulse induces a phase shift of the spins whose position are now a func-
tion of time. The position of the spins is assumed to stay constant during time δ.
Finally, after a time ∆, the 180◦ combined with the second gradient pulse causes a
second phase shift. For static spins only, this pulse cancels the phase shift. Alter-
natively, spins under Brownian motion during the time period ∆, undergo different
phase shifts by the two gradient pulses, resulting in a T2 signal attenuation [Cercig-
nani and Horsfield: 2001]. This pulse sequence is illustrated in figure 2.12

Figure 2.13 shows examples of diffusion weighted images of the brain acquired at
different directions. In this figure it can be observed that direction specific attenua-
tion is related to the orientation of white matter fibres. By assuming that the pulses
are infinitely narrow (narrow pulse approximation), meaning the gradient pulse du-
ration δ is short enough to neglect the diffusion of the water molecule at that time,
Stejskal and Tanner [1965] showed that the attenuation of the signal S(q, τ) is ex-
pressed as the 3-dimensional Fourier transform F of the ensemble average propaga-
tor P ,

S(q, τ)

S0
=

∫
R3

P (r|r0, τ) exp(−2πiqTR)dr = F [P (r|r0, τ)]. (2.5)

In this equation, q = γδG/2π, with γ the nuclear gyromagnetic ratio for water pro-
tons, G the applied diffusion gradient vector, S0 is the baseline image acquired with-
out any diffusion gradient (also called the B0 image) and P (r|r0, τ) is the diffusion
p.d.f. or diffusion propagator introduced in chapter 2. This P (·) is ultimately the
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Figure 2.12: Scheme of Stejskal-Tanner imaging sequence [Stejskal and Tanner: 1965] reproduced
from Lenglet [2006]

function we are seeking to reconstruct in diffusion MRI. In order to reconstruct this
p.d.f. , it must be sampled along many q vectors. The space of all possible 3D q

vectors is called q-space. Callaghan et al. [1988] proposed the use of this sampling
technique to reconstruct the diffusion propagator and called it q-space imaging.

If we assume the diffusion p.d.f. to be Gaussian, the Fourier integral in equa-
tion 2.5 can be worked out analytically. The Stejskal-Tanner signal attenuation
equation then becomes

S(q, τ)

S0
= exp(−τqTDq) = exp(−τD(q)), (2.6)

where D(q) = qTDq is the apparent diffusion coefficient (ADC). The signal attenua-
tion is often written using a unit vector g = q/‖q‖ and a quantity called b-value [Le
Bihan et al.: 1986], b = τ‖q‖2:

S(b,g)

S0
= exp(−bgTDg) = exp(−bD(g)), whereS0 = S(0, ·). (2.7)

This is the most common formulation under a Gaussian assumption. For large b-
values, the true signal quickly falls off, while the background noise is relatively unaf-
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Figure 2.13: Axial slice of diffusion-weighted images (DWI) with two different diffusion gradient di-
rections (red arrows). MR signal attenuation is found in regions having fibres mostly aligned with
diffusion gradient direction (yellow arrows).

fected resulting in noisy measurements, shown in figure 2.14. The b-value has to be
appropriately tuned to avoid either very low signal attenuation when b is low or poor
signal-to-noise ratio (SNR) when b is high.

2.4 DIFFUSION-WEIGHTED MRI OF LIVING TISSUE

The first diffusion-weighted Magnetic Resonance Imaging (DWI) acquisition of bi-
ological tissue took place in 1984. Websey, Moseley, and Ehman [Websey et al.:
1984a,b] obtained an image of in vitro biological tissue followed by Taylor and Bushell
[1985] who imaged a hen’s egg. However, none of these acquisition techniques were
suitable for use in a clinical setting. Less than a year after this, Le Bihan and Bre-
ton [Le Bihan and Breton: 1985, Le Bihan et al.: 1986] were the first who performed
a DWI acquisition in vivo of the human brain using a whole-body scanner. Up to
this point, a DW image was simply the unprocessed result of the application of Ste-
jkal and Tanner’s pulse sequence in one gradient direction, which corresponded to a
single point in q-space [Callaghan et al.: 1988].

2.4.1 Anisotropic diffusion in living tissue

Moseley et al. [1990] were the first to use various gradient directions in order to
show heavy DW anisotropy in living tissue. They proposed the apparent diffusion
coefficient (ADC) to quantify diffusion in a given direction. By assuming that diffu-
sion within an imaged voxel followed a Gaussian p.d.f. and using the Gaussian-based
solution of the Stejkal-Tanner equation 2.7, they calculated the ADC as

D(g) = −1

b
ln

(
S(b,g)

S0

)
.

Through this formulation they argued that signal attenuation in a PGSE sequence
measured apparent diffusivity parallel to the sensitizing gradient. Their first ex-
periment showing that diffusion was anisotropic used a segment of fresh sugar cane.
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Figure 2.14: Samples of DW images with different b-values. Its noticeable the decay in the signal-
to-noise ratio as the b-value increases.

They imaged two directions perpendicular to the circular section of the sugar cane
and found that images showed differences in the areas where its vascular fibres of
the cane were aligned with the gradients. Moreover, they showed that in different
white matter structures of a cat, signal on the x (right-left), y (rostral-caudal), and
z (dorsal-ventral) axes was attenuated when the fibres of the structures were parallel
to the diffusion-sensitizing gradient.

The attenuation of the signal (increase of the ADC) observed by Moseley et al. in
the cat’s brain was due to the restricted nature of diffusion inside white matter fibres
or axons. Myelin, the axonal membrane, microtubules and neurofilaments are all
longitudinally oriented structures that could hinder water diffusion perpendicular to
the length of the axon and cause the perpendicular diffusion coefficient D(⊥) to be
smaller than the parallel diffusion coefficient D(‖) [Beaulieu: 2002] as illustrated in
figure 2.15a. When the apparent diffusion coefficients are measured in a voxel, as
illustrated in figure 2.15b, there is diffusion taking place inside (blue) and outside
the axons (red). However, the diffusion outside the axons is negligible. The signal
attenuation therefore corresponds to the diffusion within them.

Up to this point, directional differences in diffusion had been shown in an orga-
nized tissue, the brain’s white matter. The goal was now to find a formalism that,
unlike the ADC, would not be as dependant of the gradient encoding used for the ac-
quisition. It was Basser et al. [Basser et al.: 1994a,b] who, in 1992, proposed the use
of a symmetric and positive-definite matrix to model the intrinsic diffusion properties
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(a) Schematic of the longitudinal view of a myelinated
axon [Beaulieu: 2002]

110 Chapitre 3. Acquisition des images du tenseur de diffusion

mouvement
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matière blanche
fibre de la

molécules d’eau

FIG. 3.13 – Mouvement brownien des molécules d’eau dans le tissu anisotrope de la matière
blanche. Mobilité diminuée transversalement à la direction des fibres de myéline (en rouge).

La matrice possède les propriétés suivantes: elle est symétrique, définie positive et réelle.
Elle représente donc une forme quadratique et est une propriété intrinsèque du tissu. Le coeffi-
cient de diffusion dans une direction quelconque de l’espace est donné par le produit scalaire
tensoriel (équation (3.21)).

(3.21)

Par extension du cas isotrope, et bien que ce modèle ne prenne pas en compte la restriction
de la diffusion dans la substance blanche, nous supposons que la probabilité pour qu’un spin se
déplace du point au point pendant le temps de diffusion suit la distribution de probabilité
gaussienne (3.22).

(3.22)

L’obtention du tenseur de diffusion n’est pas immédiate. Elle nécessite l’acquisition
d’un grand nombre de mesures dites PONDÉRÉES EN DIFFUSION correspondant à des directions
d’observation du phénomène de diffusion différentes et à des distances moyennes de déplace-
ments différentes. Cette sensibilité à la diffusion est obtenue, au niveau du signal RMN, par
l’introduction d’impulsions de gradients appelées GRADIENTS DE DIFFUSION dont le paramé-
trage est directement lié à la compréhension de leur action sur le signal RMN. C’est la raison
pour laquelle nous allons tout d’abord présenter la physique du signal RMN de diffusion (sec-
tion 3.3.1), pour ensuite développer une séquence IRM pondérée en diffusion (section 3.3.2).
Enfin, nous caractériserons la modification du signal RMN de diffusion en fonction du gradient
de diffusion appliqué (section 3.3.3).

3.3.1 La physique du signal

Pour comprendre la physique du signal RMN de diffusion, nous devons revenir un instant à
la physique du signal RMN standard. Nous avions constaté, à l’aide de la figure (3.4)c, qu’après

Brownian movement 
of water particles

White matter fibers

(b) Schematic of the axonal packaging
within a voxel [Poupon: 1999]

Figure 2.15: The restricted nature of diffusion inside white matter fibres or axons: Myelin, the ax-
onal membrane, microtubules and neurofilaments are all longitudinally oriented structures that could
hinder water diffusion perpendicular to the length of the axon and cause the perpendicular diffusion co-
efficient D(⊥) to be smaller than the parallel diffusion coefficient D(‖) [Beaulieu: 2002] as is illustrated
in (a). When the apparent diffusion coefficients are measured in a voxel, as illustrated in (b), there is
diffusion taking place inside (blue) and outside the axons (red). However, the diffusion taking place
outside of the axons is negligible, hence the signal attenuation corresponds to the diffusion inside of the
axons.

of biological tissues, a second order diffusion tensor (DT). They called this particular
type of DWI diffusion tensor magnetic resonance imaging (DTI).

2.4.2 Diffusion Tensor MRI

In introducing DTI, Basser et al. made two fundamental points with regards to
previous research [Basser et al.: 1994a]:

1. When imaging a tissue in which the diffusion was anisotropic, it was not always
possible to know the preferred diffusion direction. Therefore, using explicit-
chosen gradient-sensitizing directions, as Moseley et al. [1990] did, was not al-
ways convenient.

2. Measuring diffusion only along the three coordinate axes, the diagonal of the DT
was not sufficient to fully characterize anisotropic diffusion. All the elements
of the DT should be calculated, diagonal and off-diagonal ones.

To overcome these limitations, they assumed that the diffusion propagator had a
Gaussian p.d.f. and proposed to use the full DT to model diffusion in each im-
aged voxel. Using the Gaussian p.d.f. assumption, they solved the differential equa-
tion 2.4. This equation characterises the diffusion propagator, and established the
DT model for the diffusion propagator:

P (r|r0, τ) =
1√

(4πτ)3|D|
exp

(
−(r− r0)TD−1(r− r0)

4τ

)
,

which accounts for the probability that a particle moves from r0 to r in a time τ . In
fact, the DT model approximates the propagator by a 3-variate normal distribution
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with zero mean. The diffusion tensor D therefore can be viewed as the covariance
matrix describing the Brownian motion of an ensemble of water molecules, shown in
equation 2.3, in each imaging voxel. Having proposed a model for the propagator
which provided a solution for the previously mentioned issues, the next problem to
tackle was how to estimate D from a set of DW images.

Since D is symmetric (equation 2.3), it has only six unknown coefficients that we
need to estimate. Therefore, DTI needs at least six DW images and one unweighted
diffusion image (b = 0s/mm2), usually called B0, to solve the system of equations
which has the coefficients of the DT as a solution. The typical setting consists of
between 7 and 60 DW images acquired with non-collinear gradient directions and b =

1000s/mm2 and a single B0 image. A large group of techniques has been proposed
to estimate the DT from a set of DW images ranging from linear and non-linear
least squares [Basser et al.: 1994a] to much more sophisticated techniques based
on Riemannian frameworks [Lenglet et al.: 2006b, Fillard et al.: 2007].

Perhaps the most important feature of the DT model is the combination between
its richness as a mathematical model and the simplicity of its manipulation. The
DT a positive semi-definite matrix, therefore it can be decomposed in a set of posi-
tive eigenvalues, λ1 ≥ λ2 ≥ λ3 and its corresponding unit-norm eigenvectors e1, e2, e3.
The first vector gives the principal direction of the DT, the other two span an plane or-
thogonal to it and the eigenvalues quantify the diffusivity in those directions. More-
over, if λ1 � λ2, then e1 is aligned with the preferred diffusion direction of the en-
semble of water particles inside the voxel and λ1 is its diffusivity. As a direct con-
sequence of the previous property, when the imaged voxel contains a bundle of well
organized axons sharing a common orientation, as in figure 2.15b, the first eigenvalue
is aligned with the direction of the axons.

With respect to visualization, given that the DT is a covariance matrix, it is possi-
ble, and common, to represent it as an ellipsoid [Basser et al.: 1994b, Basser: 1995],
shown in figure 2.16a. Such visualization provides a sense of the anisotropy (shape)
and the diffusivity (volume) of the tensor as observed in figure 2.16b. This figure
shows the tensor field corresponding to an axial slice of the human brain. Tensors
imaged on the CC, for instance, look very elongated, while tensors imaged on the
ventricles look bigger and spherical. To achieve a simple visualization of the white
matter structures, Pajevic and Pierpaoli [1999] proposed a DT-based colour scheme
of the human white matter: they coloured the voxels according to the direction of
the first eigenvector of the DT for tensors with a preferred direction aligned with the
left-right axis; red, green for anterior-posterior; and blue for superior-inferior. In
proposing this map, they showed that several white matter fibre bundles were easily
identifiable due to their defined orientation, as can be seen in figure 2.16c.
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(a) Representation of the DT as
an ellipsoid

analytical QBI DTI ellipsoids

Figure 7.11: Axial slice showing intersection between the genu of the corpus callo-
sum, the capsule fibers and the superior frontal gyrus fibers such as in Tuch (2004).
An order 6 estimation with λ = 0.006 is used.

of 3 mm. Figures 7.11, 7.12 and 7.13 were selected in an axial, coronal and sagittal
slice respectively. We highlight the ROI on the FA map and compute the least-squares
DTI ellipsoids in that ROI. We adjust the opacity of each ODF surface with respect to
the underlying GFA measure.

The first ROI in Figure 7.11 is in an axial slice showing the intersection between
the genu of the corpus callosum, the capsule fibers and the superior frontal gyrus
fibers. This slice is taken towards the front of the head and corresponds to the ROI
of [(Tuch, 2004, Fig.11)]. Note that we pick up the main fiber bundles as well as
multiple fiber voxels where we detect evidence for multiple directions.

The second ROI in Figure 7.12 is a coronal slice of the intersection between tran-
scallosal projections of the body of the corpus callosum, the corona radiata and the
superior longitudinal fasciculus. This region is very similar to the ROIs in the cen-
trum semiovale of [Tuch et al. (2005)] and [Tournier et al. (2004)]. We see two impor-
tant crossings. First, the corona radiata crossing the transcallosal fibers projecting to
the precentral gyrus and secondly, we have high-lighted the crossings between tran-
scallosal projections and superior longitudinal fasciculus. The superior longitudinal
fibers are harder to see as they come out of the page. This is also the case for the
corpus callosum body coming out of the page as well in the lower left corner.

Finally, we show a sagittal slice in Figure 7.13 taken in the corona radiata showing
diverging and crossing fibers. We detect multiple fibers towards the top right of the
brain. Some crossings are due to diverging and splitting fibers in the corona radiata.
There are also crossings between the corona radiata and the superior longitudinal

133

(b) Sample tensor field of an axial brain slice

(c) RGB colormap proposed by Pajevic and Pierpaoli [1999] adapted from the original publication

Figure 2.16: Representation and visualization of DTI: (a) The DT is a covariance matrix, and can
therefore be visualized as an ellipsoid with its principal axes inferred from the DT eigendecomposition.
(b) The ellipsoid representation provides a sense of the anisotropy (shape) and diffusivity (size) of the
DT. (c) Using the principal diffusivity direction a color visualization which renders possible to identify
major white matter structures.

DTI measures

The DT is a rich formalism providing a considerable amount of information about
the diffusion within each voxel. However, manipulating matrices, especially when
looking for statistical differences between populations can be cumbersome. Shortly
after defining the DTI, Basser tackled this problem by defining a set of scalar, ro-
tationally invariant measures to quantify several characteristics of the DT [Basser:
1995]. In the following we only describe the most frequently used measures:

– The trace of the diffusion tensor,

Trace(D) = λ1 + λ2 + λ3,

is a rotationally invariant index of the overall diffusivity within the voxel being
3 times the mean diffusivity, 〈λ〉 = (λ1 + λ2 + λ3) /3, of the particle ensemble
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contained by the voxel.
– The fractional anisotropy (FA)

FA (D) =

√
3

2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2√

λ2
1 + λ2

2 + λ2
3

is perhaps the most widely used index in clinical applications [Ciccarelli et al.:
2008]. It is a rotationally invariant, dimensionless measure of the anisotropy
of the tensor. It ranges from 0, when the tensor represents completely isotropic
diffusion (is sphere-shaped), to 1, when its diffusivity is constrained along a
single axis.

– The relative anisotropy (RA)

RA (D) =

√
3

2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

〈λ〉

corresponds to the mean deviation of the diffusivities and represents the ratio
of anisotropy over the mean diffusivity of the tensors.

– Axial (λ‖) and radial diffusivities (λ⊥),

λ‖ = λ1

λ⊥ =
λ2 + λ3

2
,

provide a sense of the quantity of diffusion taking place along the preferred
diffusion direction and orthogonal to it. Histological studies using mice and
other phantoms report that these two measures used together provide an in-
dicator demyelination and dysmyelination of the axons [Song et al.: 2002,
Beaulieu: 2002]. Due to their physiological interpretation, these measures are
frequently used in order to assess white matter integrity in neurological disor-
ders [Ciccarelli et al.: 2008].

– On a more geometrical note, linear (CL), planar (CP ) and spherical (CS) mea-
sures

CL =
λ1 − λ2

λ1

CP =
λ2 − λ3

λ1

CS =
λ3

λ1

proposed by Westin et al. [2002], describe whether the tensor is cigar-shaped
(CL), disk-shaped (CP ) or spherical-shaped (CS).

Although these measures have been successfully used in different applications, all
but radial and axial diffusivity share a common limitation: the measures are cou-
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pled. This means that when one of the measures varies, the others variate too.
Hence, looking only at variations on these measures it is not simple to specify in what
way the tensor properties were affected. In order to solve this, Ennis and Kindlmann
[2006] proposed two sets of three measures each to quantify, orthogonally, shape and
diffusivity of the tensors. On the other hand, Savadjiev et al. [2010] calculate scalar
measures on neighbourhoods of voxels in order to describe local structure of the white
matter in an area and not in a single voxel. Even if these recent measures have not
been tested extensively, studies are currently underway applying them to clinical set-
tings in the quest for biomarkers.

2.4.3 Tensor computation

The first question arising tensor computation concerns the validity of the tensors:
Is every symmetric 3 × 3 positive definite matrix a valid DT? The answer is no, in
the physical setting which tensors model there are no possible scenarios where an
eigenvalue might be 0 [Fillard et al.: 2007]. This is due to the nature of the diffusion
process: even if the diffusion is clearly oriented in one direction and very restrictive
in the perpendicular plane, the case where a biological tissue might not let a water
particle move in a certain direction is impossible. Consequently, the DT constitute a
convex set, in particular isometric to the shell of a cone in R6, where no 0 eigenvalues
are permitted [Fillard et al.: 2007, Arsigny et al.: 2006, Lenglet et al.: 2006b].

From the application perspective, several operations on DTI like denoising or es-
timation of the tensor values rely heavily in complex computations like solving par-
tial differential equations or gradient descent [Fillard et al.: 2007, Castaño-Moraga
et al.: 2007]. There are several difficulties in these computations on the space of
DTs. Due to the fact that while in standard Euclidean calculus convex operations
are stable, for instance: mean of a set of tensors is a tensor, the boundaries of the
space can easily be reached with the complex computations we mentioned before and
null or negative eigenvalues of the DT might appear.

Even if very small eigenvalues are clearly not null ones, both are unlikely to exist
from a physical point of view. Consequently, a mathematical framework suited for
DT computation must render improbable that such tensors result from computation.
In order to achieve this, several mathematical frameworks have been developed
among all of them, we only introduce the most used two: the Riemannian [Lenglet
et al.: 2006b] and the Log-Euclidean [Arsigny et al.: 2006] frameworks.

Lenglet et al. [2006b] and Arsigny et al. [2006] proposed the Riemannian and
Log-Euclidean frameworks respectively with the two goals: the operations between
tensors should stay in the convex cone that we described before; and given two ten-
sors, a gradual interpolation between them must preserve monotone interpolation of
the determinants. These two frameworks are equivalent with a distinction on their
implementation. As all of the properties and operations of these frameworks are
defined after the metric, we only introduce the metric proposed by them:
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The metric proposed by Lenglet et al. [2006b] uses the idea that the tensors are
the parameter of a zero-mean Gaussian distribution and use Fisher’s information ma-
trix in order to derive it. Finally the formulation their metric, the Geodesic metric
between tensors, is

dg(D1,D2) =

√√√√1

2

3∑
i=1

ln2(λi) (2.8)

Where the scalars λi are the eigenvalues of the matrix D−
1
2

1 D2D
− 1

2
1 .

Similarly, Arsigny et al. [2006] proposed the Log-Euclidean metric. This metric
which shares the same interpretation than the previous one, based on Lie algebras,
uses matrix-exponentials as an alternative to calculate it:

dle(D1,D2) =
√

trace ({ log(D1)− log(D2) }2) (2.9)

where in this case log(·) refers to the matrix logarithm.
Both of these metrics yield close results and have been used in clinical and image-

processing applications, however the Log-Euclidean version has the advantage of pro-
viding a faster environment to perform tensor calculations.

Several other metrics have been proposed, among them the J-Divergence [Wang
and Vemuri: 2005] based on the Kullback-Leibler divergence, the Geodesic-
Loxodromes [Kindlmann et al.: 2007] which aim to maintain FA monotone in inter-
polation operations, and many others.

2.4.4 Beyond DT-MRI

There is a considerable amount of (constantly growing) work using the DT diffu-
sion model and its derivatives in clinical neurology and in human brain function re-
search [Jones: 2008, Ciccarelli et al.: 2008, Kubicki et al.: 2007]. However, Wiegell
et al. [2000] proved that at the scale to which an MRI machine is capable of perform-
ing imaging, DTI has shortcomings in representing water diffusion in the brain’s
white matter. While the radius of an axon varies from 0.2µm to 20µm, the volume
of a DW voxel ranges from 1mm3 to 3mm3 in clinical settings. Consequently, when
different axon bundles within a voxel cross, kiss or diverge, several directions could
be regarded as the “preferred diffusivity”. In these cases, in which a single fibre
orientation is completely inadequate in characterizing the fibre orientations, the DT
tensor formalism, which assumes an unimodal p.d.f. , is insufficient. This highlights
the need for better diffusion models, capable of allowing more than a single preferred
fibre orientation.

A solution to this problem, QBall Magnetic Resonance Imaging, was proposed by
Tuch [2004]. This solution was improved later by Descoteaux et al. [2007a] among
others. In the following section we go through the details of the QBall Magnetic
Resonance Imaging (QBI) technique presented by Descoteaux et al. [2007a] which we
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162 points 642 points

Figure 2.17: Discrete samplings of the sphere for different numbers of gradient directions correspond-
ing to order 3 and order 4 tessellation of the sphere respectively.

use in this thesis.

2.4.5 QBall MRI

As mentioned before, the DT model lacks the capability of accurately modeling the
diffusion of water particles where there are several fibres crossing the voxel in dif-
ferent directions. In order to overcome this limitation, Tuch [2004] proposed QBall
Magnetic Resonance Imaging (QBI). In this method, the angular information of the
diffusion probability displacement of water molecules is modelled through a diffusion
Orientation Distribution Function (ODF). In order to obtain a probability of diffusion
for the particle ensemble in each direction, the ODF is reconstructed as by integrating
the propagator along its radius,

Ψ(r) =
1

Z

∫ ∞
0
P ′(ζr)dζ, r ∈ S2, (2.10)

where S2 is the unit-norm sphere, Z is a dimensionless normalization constant and
P ′(·) is the diffusion propagator. Consequently, the ODF is an angular function in
which, for each direction, it expresses the diffusion probability. Recently, the formu-
lation of the previous equation has been corrected by [Aganj et al.: 2009] and Tristán-
Vega et al. [2009] who added the missing volume element. However, due to the fact
that in this thesis, before the publication of the cited work, we had developed methods
using the original formulation, we stick to the mathematical formalisms previously
proposed by Descoteaux et al. [2007a].

Due to the need of a denser angular sampling, the ODF, Ψ(·), is estimated at the
cost of longer acquisition times than DTI. The angular sampling is obtained through
High Angular Resolution Diffusion Magnetic Resonance Imaging (HARDI) [Tuch
et al.: 2002]. This technique acquires a large number of DW images by performing
a discrete sampling of points on the sphere as illustrated in ?? ??, and acquiring on
each of the directions obtained. Hence, the HARDI signal at each voxel is a discrete
spherical function, S(g), with no a priori assumption about the nature of the diffusion
process within the voxel. [Tuch: 2004] showed that an estimation of the ODF can be
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Figure 2.18: Funk-Radon Transform illustrated for the input diffusion attenuation signal S (b = 1000
s/mm2) with 1 fibre (left) and two orthogonal fibres (right). The thin lines are the true underlying fibre
directions and the thicker tubes are the detected maxima. One must imagine these functions as living
on the surface of the sphere. Here, for visualization purposes, the radius of the respective spheres are
scaled by the corresponding value on the surface. Blue to red colors represent low to high spherical
values.

performed directly on the HARDI signal S(·) by applying the Funk-Radon transform
G[·]:

Ψ(r) = G[S](r) =

∫
S2

δ
(
r>s
)
S(s)ds (2.11)

Intuitively, the Funk-Radon transform of a value at an arbitrarily defined “pole” of
the signal on the sphere, is the integral of the spherical function S over the corre-
sponding “equator” or great circle perpendicular to that “pole”. This is illustrated in
figure 2.18.

Several analytical solution of the Funk-Radon transform have recently been pro-
posed [Descoteaux et al.: 2007a, Anderson: 2005, Hess et al.: 2006]. These solutions
are all based on the spherical harmonics representation of the HARDI signal, which
gives a compact representation of the ODF.

As mentioned before, QBI [Tuch: 2004] reconstructs the diffusion ODF directly
from the HARDI measurements on a single sphere by the Funk-Radon transform
(FRT). The ODF is intuitive because it has its maxima aligned with the underlying
population of fibres. However, computing statistics on a large number of discrete
ODF values on the sphere 2 is computationally heavy and infeasible to integrate into
a segmentation algorithm of the whole brain. A more compact representation of the
ODF is thus needed. [Descoteaux et al.: 2007a, Anderson: 2005, Hess et al.: 2006]
proposed a simple analytical spherical harmonic (SH) reconstruction of the ODF.

Letting Y m
` denote the SH of order ` and degree m (m = −`, ..., `), we de-

fine a modified SH basis that is real and symmetric. For ` = 0, 2, 4, ... , `max and
m = −`, ... , 0, ... , `, we define a single index j in terms of ` and m such that

2. Typically, the ODF is reconstructed on more than 200 discrete spherical values.
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j(`,m) = (`2 + `+ 2)/2 +m. The modified basis is given by

Yj =


√

2 · Re(Y m
` ), if m < 0

Y m
` , if m = 0√
2 · Im(Y m

` ), if m > 0.

(2.12)

where Re(Y m
` ) and Im(Y m

` ) represent the real and imaginary parts of Y m
` respectively.

The basis is designed to be symmetric, real and orthonormal because of the normal-
ization factor

√
2. Moreover, note that there are exactly L = (1/2)(`max +1)(`max+2)

terms in the spherical harmonic series of order `max.

It is possible to obtain an analytical QBI solution [Descoteaux et al.: 2007a], final
ODF Ψ, with

Ψ(θ, φ) =

L∑
j=1

2πP`(j)(0)cj︸ ︷︷ ︸
fj

Yj(θ, φ), (2.13)

where θ, φ obey physics convention (θ ∈ [0, π], φ ∈ [0, 2π]), L = (` + 1)(` + 2)/2 is
the number of elements in the spherical harmonic basis, cj are the SH coefficients
describing the input HARDI signal, P`(j) is the Legendre polynomial of order `(j) 3

and fj the coefficients describing the ODF Ψ. Here, we use the solution presented
by Descoteaux et al. [2007a] with a Laplace-Beltrami regularization of the SH co-
efficients cj to obtain a more robust ODF estimation. The detailed implementation
of the Laplace-Beltrami regularization and HARDI signal estimation is presented in
the work previously cited reference.

Distances between ODFs Once the ODF are computed, we want to capture simi-
larities and dissimilarities between two ODFs, i.e two spherical functions Ψ,Ψ′ ∈ S2

that can be represented by real SH vectors of length L, f = {f1, ..., fL} and f ′ =

{f ′1, ..., f ′L} ∈ RL, as shown in the previous section equation equation 2.13. Since the
ODFs come from real physical diffusion measurements they are bounded and form an
open subset of the space of real-valued L2 spherical functions with an inner product
〈, 〉 defined as

〈Ψ,Ψ′〉 =

∫
Ω

Ψ(θ, φ) ·Ψ(θ, φ)′dΩ

=

∫
Ω

 L∑
i=1

fiYi(θ, φ)

L∑
j=1

f ′jYj(θ, φ)

 dΩ,
(2.14)

where Ω denotes integration over the unit sphere. Because of the orthonormality of
the spherical harmonic basis,

∫
Ω Yi(θ, φ)Yj(θ, φ)dΩ = δij , the cross terms cancel and

3. `(j) is the order associated with the jth element of the SH basis, i.e. for j =
1, 2, 3, 4, 5, 6, 7, ... `(j) = 0, 2, 2, 2, 2, 2, 4, ...
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the expression is simply

〈Ψ,Ψ′〉 =
L∑
j=1

fj · f ′j . (2.15)

Therefore, the induced L2 norm ||Ψ|| =
√
〈Ψ,Ψ′〉 giving us the distance metric be-

tween two ODFs is

||Ψ−Ψ′|| =
√∫

Ω
(Ψ(θ, φ)−Ψ′(θ, φ))2 dΩ =

√√√√ L∑
j=1

(fj − f ′j)2. (2.16)

The Euclidean distance was also used successfully for DTI segmentation in [Lenglet
et al.: 2006a] even though more appropriate metrics exist such as the J-
Divergence [Wang et al.: 2004, Lenglet et al.: 2006b] and Riemannian geodesic dis-
tances [Lenglet et al.: 2006b]. Similarly, one can think of choosing another metric
to compare ODFs. For instance, since the ODF can be viewed as a probability dis-
tribution function (PDF) of fibre orientations, one can use the Kullback-Leibler dis-
tance between two PDFs, as done in [Tuch: 2004]. However, in that case the prob-
lem quickly blows up computationally because one needs to use all N discrete HARDI
data on the sphere instead of the L SH coefficients (L� N ).

2.4.6 Beyond QBall-MRI

Techniques which model better the propagator like QBI and other methods based
in HARDI made a great impact in the field of diffusion MRI. However, there are sev-
eral shortcomings of these techniques that should be solved before its use in clinical
settings becomes part of the routine. Firstly, HARDI acquisition schemes take long
time, in setting where imaging time is critical, this is major difficulty. Moreover,
there are no invariant measures of QBall imaging with a clear biological interpreta-
tion and an extensive use in applied scenarios validating their capabilities of serving
as biomarkers for diseases or differences in brain capabilities.

The quest for new models, closer to the general case of the diffusion propagator
while retaining the simplicity of use that characterizes the diffusion tensor, is a very
active area of research. We refer the reader interested in such models to other work
work done in this direction by Jansons and Alexander [2003], Tuch [2004], Tournier
et al. [2004], Wedeen et al. [2008], Aganj et al. [2009], Tristán-Vega et al. [2009],
Ghosh and Deriche [2009] and Özarslan et al. [2009].

2.4.7 Summary

We have just described a brief although by no means exhaustive overview of the
history of diffusion NMR particularly DTI and QBI. In this history, we have seen
that DWI and in particular DTI are fit tools to characterize anisotropy in living tis-
sue. Moreover, its usefulness in elucidating the microstructural features of fibrous
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tissues, such as the human nervous system and more specifically, the brain’s white
matter, has been proven extensively. These microstructural features have also been
used to explore neural function and neurological disorders [Jones: 2008, Catani: 2006,
Beaulieu: 2002, Kubicki et al.: 2007]. However, up to this point we have only anal-
ysed what happens within a voxel in DWI and DTI. If we take a close look at fig-
ure 2.16b we may note that in areas where the tissue is highly organized, there
seems to be a smooth continuity of the preferred diffusivity direction following the
white matter structure. This observation is the kick-off idea to use DT-MRI as a tool
to trace axon bundles in the white matter with a group of techniques called tractog-
raphy.

2.5 TRACTOGRAPHY

Up to this point we have a representation of the water diffusion on each voxel
of a DMRI image taken from the human brain. However, as we have seen in chap-
ter 2, the pathways of the axons in the white matter are of the utmost importance
in analysing the anatomy of the brain. Historically, these pathways were identified
through dissection or traced using staining techniques directly on the brain tissues.

Diffusion MRI provides a unique, non-invasive set of tools to trace axonal path-
ways in the living brain. Either by following the preferred diffusivity direction or by
using a probabilistic models of the diffusivity to simulate water particles moving in
the brain, it can recover the connectivity and pathways of the brain’s white matter.
Diffusion MRI-based tractography can be divided in two families: global and stream-
line. Global, or probabilistic, tractography provides a connectivity measure between
two regions of the brain. Even if it has been used to parcellate cortical [Anwander
et al.: 2007] and sub-cortical [Behrens et al.: 2003] areas, the interpretation of these
measures and their usability to find differences in neurological disorders still an is-
sue [Jones: 2008]. On the other hand, streamline, or deterministic, tractography,
altough having its limitations [Johansen-Berg and Behrens: 2006], has been inten-
sively studied and used in clinical and neuroscientifical scenarios. In this section,
we describe streamline tractography and briefly review its applications.

2.5.1 The streamline

In regions where the diffusion anisotropy is high, it is reasonable to assume that
the major eigenvector of the diffusivity tensor is parallel to the local direction of the
tracts [Beaulieu: 2002]. In these regions, a vector field can be obtained from the
diffusivity tensor field, where the vector at each point is the major eigenvector of the
tensor. Due to the previous arguments, any line with a tangent parallel to the vector
field is a plausible estimation of a segment of the underlying fibre tract. Such lines
are called streamlines.
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Algorithm 2.1 Streamline tractography method with Euler integration [Basser
et al.: 2000]
Input: A tensor field Σ(·) and seed point p0

Stopping criteria: Two thresholds: tanisotropy and tcurvature

Output: A trajectory r(·) representing a white matter fibre bundle

1: s← 0
2: r(s)← p0

3: repeat
4: r(s+ ∆s)← r(s) + ∆s e1(Σ(r(s+ ∆s)))
5: anisotropy← FA(Σ(r(s+ ∆s)))

6: curvature← e1(Σ(r(s)))·e1(Σ(r(s+∆s)))
‖e1(Σ(r(s)))‖‖e1(Σ(r(s+∆s)))‖

7: s← s+ ∆s
8: until anisotropy > tanisotropy or curvature > tcurvature

9: return {r(0), r(∆s), r(2∆s), . . . , r(s)}

Mathematically speaking, in this case, a streamline is a 3D curve in space [Mori
et al.: 1999, Basser et al.: 2000]. Letting r(s) be the point (x, y, z), which is distance
s along the streamline, the equation describing the evolution of the streamline is

dr(s)

ds
= e1(Σ(r(s)))

where Σ(r(s)) is the tensor at r(s) and e1(Σ(r(s))) is the unit length vector parallel to
the eigenvector corresponding to the largest eigenvalue of Σ(r(s)).

There are several algorithms and techniques available to solve the previous equa-
tion. In fact, it is a very active area of research. Therefore, we present only the
basic equation and its major problems and then mention a set of representative pub-
lications which propose significant approaches to solve the problems. Due to the fact
that none of these approaches has been extensively used in clinical applications, we
will leave a more in-depth study of each algorithm to the interested reader.

2.5.2 Tracking the streamline

Revisiting the previous section, streamline tractography consists of tracking the
trajectory r(s) of a white matter fibre tract from a field which comprises information
about the water diffusivity on the brain. In the case of diffusion tensor streamline
tractography, it consists of taking a tensor field Σ : R3 → PSD3 and an initial point in
space, p0 ∈ R3, and clamping the start of the trajectory to that point r(0) = p0. Then,
the axonal trajectory is tracked through solving the differential equation [Conturo
et al.: 1999, Mori et al.: 1999, Basser et al.: 2000]

dr(s)

ds
= e1(Σ(r(s))). (2.17)

Algorithm 2.1 solves equation 2.17 as proposed by Basser et al. [2000].
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There are two main points to note about equation 2.17 and its proposed solu-
tion, algorithm 2.1. In the first place, it is a differential equation meaning that ap-
proximation error accumulates as the tracking process moves forward estimating the
streamline. Secondly, the right hand side of the equation is defined on a continu-
ous diffusion tensor field. Diffusion tensor MRI provides us with an imaging grid, a
sampling of the field Σ(·), making interpolation on a tensor field necessary in order
to solve equation 2.17.

Streamline tractography has had a remarkable success in performing in vivo dis-
section [Catani et al.: 2002] and obtaining biomarkers for neurological disorders [Ci-
ccarelli et al.: 2008], however it is susceptible to errors. The causes of these errors
can be characterized in three categories:

1. Noise in the diffusion image which causes a poor estimation of dominant diffu-
sion directions.

2. Error in the modelling of the diffusion characteristics. This is a result of the
underlying complexity of the white matter as opposed to the diffusion models
which do not model complex configurations accurately.

3. Integration errors introduced in the tractography process by the algorithms cho-
sen to solve equation 2.17.

A great number of new tractography algorithms are being proposed every year.
Each algorithm aims to overcome some or all of these problems through a wide variety
of mathematical tools. Here we briefly survey the most representative approaches
and their characteristics:

– Conturo et al. [1999], Mori et al. [1999] and Basser et al. [2000] proposed vari-
ations of algorithm 2.1 which implement different approaches of numerical in-
tegration. This has an effect on the robustness of the algorithm to high curva-
ture and dispersion [Lazar and Alexander: 2003].

– Westin et al. [2002] proposed a method based on tensor deflection in order to
traverse regions of low anisotropy. However, this method proved to be less ef-
fective in regions where the tensor field had a definite principal direction than
previous methods [Lazar and Alexander: 2003].

– Lenglet et al. [2004] and Fillard et al. [2007] addressed the problem of tensor
interpolation by defining it on the Riemannian space of the symmetric positive
3 × 3 matrices. They achieved smoother tractographies and were capable of
tracking fibres with higher curvature and through regions which were close to
low diffusion anisotropy areas.

– Qazi et al. [2009] use a model where up to two tensors are admitted at each
voxel. Hence, there are up to two possible principal directions that the stream-
line tracking can follow. This algorithm shows encouraging results in complex
areas like the fanning of the CST to different areas of the motor cortex at the ex-
pense of a complicated interpolation of the diffusion field needed to solve equa-
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tion 2.17. The question of how many tensors (principal directions) should be
used at each voxel is still open.

– Descoteaux et al. [2009a] take advantage of HARDI models using QBall fields
in order to perform a more accurate tractography in fanning regions allowing
an arbitrary number of directions to be chosen. Even if there is a single seed,
when the tracking reaches a fanning point, new seeds for streamline tracking
are spanned in a dense sample of probable directions. This method produces a
set of fibres which recovers segments of white matter fibres more accurately but
does not reflect the continuity of the fibres or the cortical and subcortical regions
they connected since they need to be cut in order to perform the splitting.

– [Malcolm et al.: 2010] fit local fibre orientations at each voxel while they per-
form the tractography using an unscented Kalman filter. This varies from
all other techniques as they fit the model before performing the tractography.
This approach is useful for obtaining smooth fibres in regions with complex
diffusion patterns. Their work looks promising, however it lacks an in-depth
validation study to fully grasp its value.

Despite the availability of streamline tracking algorithms, only a few of them, mostly
the earliest and most studied ones [Conturo et al.: 1999, Mori et al.: 1999, Basser
et al.: 2000, Fillard et al.: 2007], have made recurrent appearances in clinical re-
search [Ciccarelli et al.: 2008]. This may be due to their efficacy in tracking major
white matter structures, ease of implementation, availability in easy-to-use software
packages or the existence of a study that clearly sets the characteristics of the algo-
rithm for a clinician who must adjust the parameters [Lazar and Alexander: 2003].

In the following sections, we survey the main achievements of diffusion tensor
streamline tractography (DTST) [Johansen-Berg and Behrens: 2009], the most im-
portant validation methodologies and their outcome, and its use in the search for
biomarkers of neurological disorders.

2.5.3 In vivo dissection

Probably the first and most visually appealing result obtained from streamline
tractography is its capacity to isolate and delineate major white matter fibre path-
ways or in vivo dissection of the white matter as in the dissection presented in fig-
ure 2.19. Stieltjes et al. [2001] and Catani et al. [2002] coined this term. Stielt-
jes et al. [2001] produced a dissection of the human brainstem. They performed
an interrater reliability study in order to assess the reproducibility of their results
and validated the dissection anatomically by performing qualitative comparison with
histological data and atlases of the human nervous system. Catani et al. [2002] ex-
tended the previous work by carefully dissecting several white matter structures such
as the Superior Longitudinal Fasciculus, the Internal Capsule and the Fornix among
others. Catani et al. did not provide validation through qualitative or quantita-
tive comparisons with other studies, however they performed an impressive job by
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Figure 2.19: In vivo dissection using diffusion tensor streamline tractography. Major white mat-
ter tracts are shown dissected in accordance with anatomical knowledge. Adapted from Catani et al.
[2002].

showing accurate reconstructions of each analysed structure and most of its compo-
nents. Following the same line of work, Wakana et al. [2004] produced an atlas of the
white matter based on tractography, a procedure which was later mimicked by Catani
and de Schotten [2008]. Wakana et al. showed the reconstructions of several white
matter structures and provided a detailed description of how these structures were
reconstructed establishing the basis for a reproducible method. Later, they provided
a quantitative analysis of the reproducibility of in vivo dissection showing that it can
be repeated with a high chance of success [Wakana et al.: 2007].

In vivo dissection of the white matter through streamline tractography produces
appealing results which can be used in order to elucidate brain function and search
for biomarkers of neurological disorders. However, it requires a considerable exper-
tise in seeding regions on the brain to obtain white matter fibre bundles and then
pruning these results to get rid of unwanted fibres in the bundle. This opens the
quest for automatic in vivo dissection of the brain white matter.

2.5.4 Validation

Even if it has been shown that (diffusion tensor-based) tractography is a repro-
ducible technique to reconstruct white matter structures from diffusion MRI, the
question of its anatomical accuracy is still open, however. Several works have been
done in order to address this problem in different settings.

Software Phantoms

The simplest approach to validation is the use of software phantoms. Software
phantoms [Alexander et al.: 2002, Tuch: 2004, Descoteaux et al.: 2007b] were used
frequently in order to validate different kinds of diffusion weighted sequences and
diffusion models by simulating underlying tissues of different complexities. Par-
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ticularly, these phantoms have been used in order to show limitations of the stan-
dard diffusion tensor model and prove that other models were more appropriate for
these tissue configurations. However, most of these models are based on the diffu-
sion properties of a single voxel which is not enough to validate tractography algo-
rithms. With this in mind, Lori et al. [2002], Lazar and Alexander [2003], Gössl
et al. [2002] and Leemans et al. [2005] proposed software phantoms based on global
diffusion properties of white matter fibres instead of the tissue in one voxel. These
phantoms were used in order to compare fibre tracking algorithms and evaluate their
limitations. The result of these comparisons was that up to the year 2005, when
HARDI models had not been extensively used for streamline tracking, the diffusion
tensor-based streamline tracking (DTST) algorithms proposed by Basser et al. [2000]
as the Runge-Kutta based method was the most effective and precise, except for the
case where the fibre should bypass areas of low diffusion anisotropy where the track-
ing algorithm would be interrupted. Later, Descoteaux et al. [2009a] and Malcolm
et al. [2010] used software phantoms in order to show how DTST algorithms react
when bypassing areas of crossing and kissing fibres and to validate new tractography
algorithms designed to overcome these limitations by using more complex models of
the underlying diffusion pattern.

Software phantoms provide an inexpensive and highly controllable environment
to validate tractography algorithms. However, the leap between these simulations
and real data obtained through diffusion MRI is not negligible. It is hard to accu-
rately simulate the noise and artifacts included by the imaging equipment and tissue
characteristics such as permeability. Therefore, these phantoms provided an over-
simplistic yet useful set of scenarios in order to perform preliminary tests in a highly
controlled setting with an available ground truth.

Physical Phantoms

In order to provide a controlled environment to validate tractography algorithms
where different acquisition conditions are closer to real scenarios, physical phantoms
were proposed. These phantoms can be divided into two families: synthetic and
biological.

Synthetic Phantoms are built from synthetic fibres from medical applications as
hemodialysis fibres [Perrin et al.: 2005] or textile fibres such as rayon, cotton [Scifo
et al.: 2004], glass capillaires [Yanasak and Allison: 2006] or acrylic [Poupon et al.:
2008], provide a controlled environment for validating tractography algorithms. The
synthetic fibres which form these phantoms are put together such that they gen-
erate different configuration and immersed in water and a relaxation agent [Tofts
et al.: 2000]. A diffusion weighted MRI acquisition is then performed on these phan-
toms. The obtained images are used in order to validate diffusion models [Poupon
et al.: 2008] and tractography algorithms [Fillard et al.: 2009a]. The main issues
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in building these phantoms are the material, how to hold all the synthetic fibres
together and which liquid medium should the phantom be immersed in. Summa-
rizing several works edited by Fillard et al. [2009a], a key step in achieving a valid
diffusion tensor based tractography is the previous regularization of the diffusion im-
ages [Poupon et al.: 2000, Fillard et al.: 2007, Tristán-Vega and Aja-Fernández: 2009].
These phantoms provide a valuable means to validate tractography algorithms and
diffusion models. However, differences with microscopical geometry of brain tissue
and its permeability characteristics limits the degree of validation provided by these
methods.

Biological Phantoms can be made of muscle [Basser et al.: 1994b], excised and
overlapped tissue from areas where the white matter has well-known configurations
like the spinal cord [Schwartz et al.: 2005, Campbell et al.: 2005] or the optic chi-
asm [Roebroeck et al.: 2008]. Skeletal muscle has thicker fibres and simpler con-
figurations than the brain’s white matter. Due to these characteristics, it is suited
to provide validation of streamline tractography algorithms in simple scenarios [Da-
mon et al.: 2002, Heemskerk et al.: 2005]. These studies show that tractography
agrees not only with local orientations of the muscular tissue but with the global
structure of the muscular fibres. Descoteaux et al. [2009a] used a phantom built
of the combination of two excised and overlapped rat spinal cords [Campbell et al.:
2005] in order to validate a Q-ball based streamline tractography algorithm. De-
scoteaux et al. showed that this algorithm is capable of traversing crossing areas.
Finally, Roebroeck et al. [2008] performed a high spatial resolution acquisition at 9.4
teslas of four excised human optic chiasms. Roebroeck et al. validated that, even at
high resolutions, diffusion tensor-based tractography experiences problems in areas
of complex configuration. This work cites more advanced methods like the ones con-
sidering a Riemannian geometry of the diffusion tensor manifold [Lenglet et al.: 2004,
Fillard et al.: 2007] and HARDI methods [Descoteaux et al.: 2009a] as candidates to
overcome these problems.

Overall, biological phantom-based studies validate streamline tractography in
several scenarios and show its limitations in complex tissue areas in detail. Al-
though these studies provide a most valuable way to validate streamline tractog-
raphy, the main limitation of these methods are the changes on the water diffusion
properties of the tissue after it is excised and the simple architecture of the muscular
tissue and the crossing produced by overlapping two rat spinal cords. Nevertheless,
the use of these phantoms provides a valuable means to validate tractography in
simple scenarios like muscular based cases, and in scenarios that could not be re-
producible in clinical environments due to high magnetics field or long acquisition
times.
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Figure 2.20: Validation of in vivo dissection by comparing it to gross dissection. Adapted from Lawes
et al. [2008]. The left inferior fronto-occipital tract (IFO) is shown. Top, IFO obtained through in vivo
dissection. Bottom, IFO obtained from gross dissection. The letters indicate areas of similarity. For
a detailed description of these areas see Lawes et al. [2008].

Anatomical comparison

Work has also been done in order to validate streamline tractography against
human and other mammal brains. Usual validation is done through tracking a
well known white matter fibre bundle like the corpus callosum, the cortical spinal
tract [Basser et al.: 2000] or the optic chiasm [Roebroeck et al.: 2008] much like the in
vivo dissection procedure mentioned in subsection 2.5.3. However, these studies do
not provide a comparison with the actual subject being studied. Lawes et al. [2008]
overcame this by performing a remarkable study in order to qualitatively match the
results of streamline tractography with gross dissection, see figure 2.20. With the
aim of providing quantitative validation, Dauguet et al. [2007] and Schmahmann
et al. [2007] acquired diffusion weighted images of a macaque brain and then used
chemical tracers to compare in vivo tractography results with stained histological
sections of the post-mortem brain. They showed general agreement between both
of these techniques. However they also stressed the dependence of the results with
the fine-tuning of the of the tractography algorithm’s parameters and the problems
derived from the registration of the in vivo and post-mortem modalities.

2.5.5 Limitations

Up to this point, we have reviewed streamline tractography methods and several
of the studies that have been used for its validation. These studies show that trac-
tography constitutes a useful tool in tracing white matter pathways in most cases,
however it has a number of limitations [Johansen-Berg and Behrens: 2006].
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In the first place the size of the imaging voxels recovering the diffusion informa-
tion is typically a few cubic millimetres, hence a voxel can contain tens of thousands
of axons [Beaulieu: 2002]. The majority of the tractography methods assume that
the underlying tract is well described by a single orientation estimate. There is an
active area of research aiming to solve this through developments in spatial [Jaer-
mann et al.: 2004, Peled and Yeshurun: 2001] and orientational [Tuch et al.: 2002]
resolution, diffusion modelling [Descoteaux et al.: 2007a, Tuch: 2004, Tournier et al.:
2004, Aganj et al.: 2009, Tristán-Vega et al.: 2009] and tractography [Malcolm et al.:
2010, Hageman et al.: 2006, Deriche and Descoteaux: 2007, Jbabdi et al.: 2004, 2007,
Iturria-Medina et al.: 2007]. Some of these: state-of-the-art techniques already
produced sensible anatomical results [Tuch et al.: 2005, Cohen-Adad et al.: 2008,
Perrin et al.: 2008]. Other fundamental limitations include the inability to differen-
tiate afferent from efferent pathways, locate synapses or determine whether the fibre
is active at a given time. Nevertheless, recent work seeks to overcome the latter
limitations and obtain activation —hence functional— information out of diffusion
weighted images [Le Bihan et al.: 2006, Aso et al.: 2009a].

To conclude, the limitations mean that tracts that are not present in the im-
aged tissue might appear after tractography (false positives) and that tracts that
are present in the same tissue might not appear (false negatives). For this reason,
results involving diffusion weighted-based streamline tractography should always be
interpreted with care. Several studies have proven and validated that streamline
tractography is capable of providing biomarkers of various neurological disorders.
Tractography achieves this by supplying the means to quantitatively assess the loca-
tion or presence of white matter tracts, defining paths over which quantitative com-
parison can be performed among populations or time and providing new information
on normal anatomy relevant to surgical planning or an understanding of diseases.

2.5.6 Streamline tractography in neurological disorders

We have seen in this section that diffusion-based tractography is able to generate
virtual, three-dimensional representations of the white matter fibre tracts. More-
over, we have seen that several studies concluded that, up to a certain degree of pre-
cision, tractography reconstructions are anatomically correct. This ability to trace
the white matter pathways in a non-invasive way has generated enthusiasm and high
expectations in the medical community [Mesulam: 2005].

In recent years, the amount of medical-oriented applications of tractography un-
derwent an explosion. In this section, we survey some of the most relevant of these
works following the reviews of Ciccarelli et al. [2008] and Kubicki et al. [2007]. From
these reviews we selected only the studies that introduce or clearly illustrate different
measures obtained from diffusion tensor-based streamline Tractography (DTST) as
biomarkers. For more extensive reading on disorders and, and the clinical interpre-
tations of these biomarkers we refer the reader to the previously mentioned reviews.
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Table 2.1 shows a summary of the tractography-based biomarkers presented in this
section and the non-diffusion-based indices used to validate these biomarkers.

Stroke

Stroke is the first clinical application where the diffusion weighted imaging was
used in order to visualize and quantify damage [Pierpaoli et al.: 2001]. Although its
routine clinical application does not require tractography, several studies have used
this technique in order to obtain quantitative measures along the pathways affected
by the stroke.

Several different studies analysed the scalar quantities derived from DT-MRI
along white matter bundles obtained through streamline tractography [Møller et al.:
2007, Konishi et al.: 2005]. These studies were able to relate the volume of the le-
sion with tract involvement [Konishi et al.: 2005] and correlate changes on scalar
quantities with specific neurological scores [Møller et al.: 2007]. Changes of scalar
quantities along the tracts are the most usual biomarkers analysed using diffusion
tensor tractography.

Analysing less typical biomarkers, Cho et al. [2007] performed a study on 55
patients with one hand completely paralysed after a corona radiata stroke. They
traced the left and right CST using DTST and divided the results into four types
(figure 2.21):

Type A, the CST was preserved around the infarct, the tract originated in the af-
fected hemisphere including the primary motor cortex and passing around the
infarct to the medulla.

Type B, the CST was similar to type A, except the fibre originated in another cor-
tex (primary sensory cortex, posterior parietal cortex, premotor cortex and pre-
frontal cortex), but not the primary motor cortex.

Type C, the CST was interrupted at the infarct.

Type D, the CST did not reach the infarct due to degeneration.

Six months after the stroke, the motor function of the affected hand was evaluated
with several indices of recovery for the affected hand measuring strength and finger
movement. These showed significant correlation with the DTST type. Highest re-
covery scores were seen in the DTST type A patients; patients with lower motricity
index had DTST type D. Cho et al. concluded that the integrity of the corticospinal
tract determined by DTST obtained during the early stage of a corona radiata infarct
was helpful in predicting the motor outcome of the affected hand. Hence, proving
that the existence of a tract, if carefully analysed, is a valid biomarker.

Schaechter et al. [2008] analysed 10 patients after a stroke which resulted in
loss of hand strength in one hand and 10 healthy controls. Their study showed that
a decrease in the number of white matter fibre tracts of the CST obtained through
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Figure 2.21: Diffusion tensor tractography (DTST) result types in stroke patients with impaired hand
movement reproduced from Cho et al. [2007]: Type A, normal CST after the infarct; Type B, similar
to A, except that the affected CST reaches a different area of the cortex; Type C, CST interrupted at the
infarct; Type D, CST did not reach the infarct due to degeneration.

tractography on the hemisphere affected with the stroke correlates positively with in-
creased activation on the ipsilesional motor area (M1/S1) (figure 2.22). In their work
they argue that this demonstrates a quantitative relationship between the damage
of the CST, measured as the quantity of fibres that could be traced, and cortical acti-
vation in stroke patients.

Multiple Sclerosis

Streamline tractography has been used in order to address four questions in Mul-
tiple Sclerosis:

– Can tractography be used to assess the pathological process in the white matter
pathways?

– Does tractography improve the correlation between radiological findings and
clinical disability?

– Can a tractography-derived connectivity index correlate with disability better
than fractional anisotropy?

– Does tractography detect the structural changes that contribute to functional
adaptive changes?

The first issue a MS tractography study has to deal with is the effect of the white
matter lesions on tractography results. Specifically, there is a reduction of the frac-
tional anisotropy index in the voxels which encompass the MS lesions. For this rea-
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Figure 2.22: Corticospinal tracts reconstructed by diffusion tensor streamline tractography (A). Ar-
eas where fMRI shows morphological overlap with tractography reaching the M1/S1 cortical regions
(B). Correlation between fMRI BOLD signal on the M1/S1 cortical regions and tractography integrity.
Adapted from Schaechter et al. [2008] by Ciccarelli et al. [2008].

son, streamline tracking algorithms might stop the tracking procedure even when
there is a white matter fibre traversing the lesion [Lin et al.: 2007, Pagani et al.:
2005].

Lin et al. [2007] and Pagani et al. [2005] analysed around 30 MS patients with
affected mean pyramidal functional system but normal-appearing white matter in
non diffusion-weighted MR images and around 20 healthy control subjects. In or-
der to overcome the problem of interrupted fibres while segmenting the pyramidal
tract, they generated a template probability map of the pyramidal tracts in healthy
subjects, as shown in figure 2.23a. Then, they analysed diffusivity indices on those
maps. Both research groups analysed fractional anisotropy (FA), axial (λ1), radial
(λ⊥) and mean (MD) diffusivity. They performed statistical analyses by comparing
the distribution of these indices within the tract probability maps using the Mann
Whitney-U test for non-Gaussian distributions and correlated these indices with the
volume of the MS lesion. Both groups had similar findings of significant differences
in the four analysed indices and argued the clinical significance of those indices in the
diagnosis of MS, relating these differences with a Wallerian degeneration [Pierpaoli
et al.: 2001] of the pyramidal tracts. Following their previous work, Lin et al. [2007]
performed a more detailed study on patients with a different kind of MS, neuromyeli-
tis optica. In addition to of the previous analysis, they normalized the length of the
pyramidal tracts of the subjects and analysed the variation of the previously selected
diffusivity indices along the tracts, as seen in figure 2.23b. They found that in this
case the λ1 had no significant variation between patients and controls. Moreover,
they showed that while FA and λ⊥ were different all along the tract with the excep-
tion of the segments closer to the cortex, the MD showed significant differences along
the length of the tract. They correlated this with previous work on the biological
basis of diffusion and argued that there was an increased permeability in the axonal
membrane or myelin sheath of the axons.
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Instead of producing tract probability maps from streamline tracking, Ciccarelli
et al. [2005] used a global tractography method by Parker et al. [2002] in order to
tract through MS lesions. With a sample of 7 patients and 10 controls, they found
that there were no changes in the fractional anisotropy while the voxels connected
with the optical tract showed a small difference in connectivity with statistical sig-
nificance. Although they admitted that their samples size was too small to be repre-
sentative, they argued that the global tractography method from Parker et al. [2002]
is to tract through lesions and detect differences in connectivity.

Audoin et al. [2007] combined tractography and fMRI in order to study structural
plasticity on MS. Their sample consisted of 24 early MS patients with affected work-
ing memory and 15 healthy controls. After using a public atlas to select a set of
cortical and subcortical regions involved in working memory, they traced the white
matter fibres joining them and constituting the executive system of working memory.
Regions that were untraceable due to MS lesions were not considered. Then, using
the Mann Whitney-U test to compare non-Gaussian distributions, they searched for
differences in the distribution of MD and FA on the selected tracts. This analysis
showed a significant increase of the MD on tracts connecting Brodmann’s 45/46 and
9 areas on the right hemisphere and the left and right Broadmann 9 areas. Also,
increased MD and decreased FA were found connecting Brocca’s area and the tha-
lamus on the right side. They measured connectivity by counting the fibres joining
each pair of selected regions. Using the Wilcoxon rank test, a significant increase
of connectivity between the thalami was found. Finally, their study showed corre-
lations between the connectivity and diffusion indices and an fMRI study involving
the selected cortical and subcortical regions. As a result of their study they claimed
that the combination of DTST and fMRI detected structural changes on the working
memory circuit and evidenced white matter plasticity.

2.6 SUMMARY

Diffusion tensor based streamline tracking provides the means to recover anatom-
ical structures of the human cerebral white matter. An extensive set of studies have
been performed in order to validate this technique and have exhibited several of its
limitations. To overcome these limitations, a constantly growing set of new tech-
niques exists, from the algorithms used to perform the tractography to the acquisi-
tion sequences. Nevertheless, most of these techniques are not easy to implement in
clinical scenarios due to long acquisition times or the fact that the complex algorithms
have a set of parameters which are not easy for non-expert users to tune.

Even if several limitations have been reported, several studies have also shown
that this technique is reproducible and recovers the major white matter structures ac-
curately. Moreover, this technique has been widely adopted by clinicians and neuro-
scientists. There is a growing body of clinical studies showing that diffusion tensor-
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(a) Tract Probability Maps of the pyra-
midal tracts

(b) Diffusivity indices analysed along the pyrami-
dal tracts

Figure 2.23: On the left (a): Tract probability maps for the pyramidal tracts generated from a set of
healthy subjects over a T1 template. The colour scale indicates the probability that a fibre from the
pyramidal tract traverses the region. These maps were generated in order to overcome limitations on
tractography due to Multiple Sclerosis lesions. Adapted from Pagani et al. [2005]. On the right (b):
diffusivity indices analysed along the tracts for MS patients compared to healthy controls. Adapted
from Lin et al. [2007]

Table 2.1: Tractography-based biomarkers proposed in investigating brain stroke and multiple sclero-
sis. The table show the author of the work, the proposed biomarker and the non-diffusion-based index
used to correlate and validate the tractography-based biomarker.

Stroke
Author Biomarker Correlation Index
Konishi et al. [2005] Statistical analysis of diffu-

sivity indices along the tract
Volume of the lesion and tract
involvement

Møller et al. [2007] Statistical analysis of diffu-
sivity indices along the tracts

Neurological scores

Cho et al. [2007] Tract existence and reach Paralysis recovery scores
Schaechter et al.
[2008]

Number of fibres Activation surface on the ip-
silesional motor area

Multiple Sclerosis
Author Biomarker Correlation Index
Ciccarelli et al.
[2005]

Connectivity measure
through global tractogra-
phy

Previous anatomical knowl-
edge of the disease

Pagani et al. [2005] Averaged diffusivity indices
on the tract probability map

MS symptom scores

Lin et al. [2006] Statistical analysis of diffu-
sivity indices along the tract

Comparisons with previous
studies

Lin et al. [2007] Averaged diffusivity indices
on the tract probability map

MS lesion size

Audoin et al. [2007] Averaged diffusivity indices
on the tract probability map
and number of tracts

Functional (fMRI) connectiv-
ity
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based tractography is capable of providing biomarkers. These biomarkers have been
shown to have a wide range of applications, from elucidating characteristics of the
healthy brain to identifying characteristics of neurological disorders, contributing to
its diagnosis. However, most of the clinical studies performed require heavy user
interaction to identify major white matter structures and to analyse their character-
istics. This calls for a tool which allows for the sound performance of statistics on
white matter fibre tracts obtained through diffusion tensor-based tractography tech-
niques and to automatically identify white matter structures.



CHAPTER 3

CLUSTERING

Comparisons are odorous.

Much Ado About Nothing,
William Shakespeare, 1600

The main goal of this thesis is the automatic identification of white matter struc-
tures in the brain. Hence, given a set of elements which could be the voxels of a
dMRI image or white matter fibres obtained through tractography, our goal is to
group them such that these groups coincide with anatomical structures. Having
said all this, we direct our attention to a particular research area in computer sci-
ence which deals with the task of grouping elements, clustering.

3.1 WHAT IS CLUSTERING?
Data clustering was conceived in order to discover the natural grouping of a set of
elements. The need to automatically group animals, diseases, rocks and almost any
other examples of element or observation of has led to the development of cluster-
ing methodologies in most scientific areas dealing with recollection and processing
of real data. The first article with the term “data clustering” in its title appeared
in 1954 and dealt with anthropological data. Since then, there has been an enor-
mous number of contributions to this discipline, averaging a minimum of least 1, 300

articles dealing with data clustering per year during the last 10 years. This copi-
ous amount of work makes the task of reviewing the literature, colossal. Several
surveys on data clustering have been published, the most relevant being the articles
by Jain [Jain: 2009, Jain et al.: 1999, 2000] and the books written by Jain and Dubes
[1988], Duda et al. [2001] and Hastie et al. [2009].

Despite this amount of work, clustering algorithms can be roughly divided into
two main classes: hierarchical and partitional. Hierarchical algorithms find nested
clusters in an agglomerative fashion or divisive fashion. Partitional algorithms on
the other hand, find a partition of the data, looking for all the clusters simultaneously,
and do not impose a hierarchical structure. The input of a hierarchical algorithm is
an N × N matrix where N is the number of elements to be clustered. Each entry
of this matrix quantifies the proximity between a pair of elements. A partitional al-
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(b) Clustering Results

Fig. 1. Diversity of clusters. The clusters in this data set, though easily identified by a
human, are difficult to be detected automatically. The clusters are of different shapes,
sizes and densities. Background noise makes the clustering task even more difficult.

In the rest of this paper, we shall describe some recent advances in clustering
that alleviate these limitations for partitional clustering. In Section 2, we exam-
ine how different data partitions in a clustering ensemble can be combined to
discover clusters with high diversity. Feature selection can be performed when
high dimensional data is to be clustered (Section 3). The arbitrariness of clus-
tering can be reduced by introducing side-information – notably constraints on
the cluster labels (Section 4). Finally, we conclude in Section 5.

2 Clustering Ensemble

In supervised learning, it is often beneficial to combine the outputs of multiple
classifiers in order to improve the classification accuracy. The goal of clustering
ensemble is similar: we seek a combination of multiple partitions that provides
improved overall clustering of the data set. Clustering ensembles are beneficial
in several aspects. It can lead to better average performance across different
domains and data sets. Combining multiple partitions can lead to a solution
unattainable by any single clustering algorithm. We can also perform parallel
clustering of the data and combine the results subsequently, thereby improv-
ing scalability. Solutions from multiple distributed sources of data or attributes
(features) can also be integrated.

We shall examine several issues related to clustering ensemble in this section.
Consider a set of n objects X = {x1, . . . , xn}. The clustering ensemble consists
of N different partitions of the data set X . The k-th partition is represented by
the function πk, where πk(xi) denotes the cluster label of the object xi in the
k-th partition, which consists of mk clusters.

2.1 Diversity

How can we generate each of the partitions in the ensemble? While the opti-
mal strategy is probably dependent on the problem domain and the goal for

Figure 3.1: Seven clusters coloured as they should be grouped by an ideal clustering algorithm. None
of the available clustering algorithms can detect all of these [Jain: 2009]. Image adapted from [Jain
and Law: 2005]

gorithm, on the other hand, can either use a similarity matrix or an N × D pattern
matrix, where N elements are embedded in a D-dimensional feature space. Using
what is called a (dis)similarity function, the proximity matrix can be easily derived
from the feature matrix. Moreover, there exists a series of algorithms which per-
form the converse task, usually called manifold learning techniques [Pearson: 1901,
Torgerson: 1952, Scholkopf et al.: 1999].

Data clustering is typically used for the following purposes [Jain: 2009]:

Underlying structure: to gain insight into data, generate hypotheses, detect
anomalies, and identify salient features.

Natural classification: to identify the degree of similarity among forms or organ-
isms.

Compression: as a method for organizing the data and summarizing it through
cluster prototypes.

Clustering, however, has a main problem: the definition of a cluster is somewhat
fuzzy and very dependant on the application. In figure 3.1 different types of clusters
are illustrated. The distinctive characteristics of these clusters are density, isotropy
(blue), anisotropy (cyan), different scales of the same cluster (orange, grey, pink), non
convexity (black, red), lack of linear separability and inclusion of clusters (orange,
grey, pink and black, red). These are most of the issues clustering algorithms deal
with, successfully or not.

An operational definition of clustering can be stated as follows: Given a repre-
sentation of N objects, find K groups based on a measure of proximity such that
the objects in the same group are close while objects in different groups are distant.
However, we must address several questions in order to achieve this task:

Data representation: How do we define proximity between two objects?
– What features of the objects should we use to distinguish them?
– Should we normalize the proximity measure?
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Cluster hypotheses: What are the expected characteristics of the clusters?
– Do we know the number of clusters we are expecting to find?
– Can we expect the clusters to be convex? Do we have cues as to their shapes?
– Is density a distinctive factor?
– Do the clusters have different scales?
– Is it possible that there are outliers?

Cluster validity: After the clustering process has been performed, are the clusters
valid? Did the algorithm produce an output which is coherent with what we
know of the data?

Studying the data and the analysis that we are expecting to perform using clus-
tering is decisive in answering the previous questions.

3.1.1 Data representation

One of the most important factors influencing the performance of the clustering
algorithm is data representation. This is the choice of features which represent each
element to be clustered. If this representations is good, it is likely that the clusters
that we are looking for are compact and isolated. Unfortunately, there is no univer-
sally good representation; it must be chosen using domain knowledge [Jain: 2009].

A simple example of how data representation simplifies a problem is shown in
figure 3.2: two representations of the same set of points are shown in this image,
rectangular and polar coordinate systems. Looking at the scatter plots of both rep-
resentations drawn in Cartesian systems, the difference is remarkable. Analysing
this case in the rectangular representation is difficult for most clustering algorithms
because one cluster is contained in the other and due to their lack of convexity. On
the other hand, the polar case presents two compact and isolated clusters which can
be separated linearly, a trivial case. Moreover, there is an issue of scale in these two
clusters: the larger circle has exactly the same shape as the smaller one, they are
simply differentiated by their scale. When using the polar representation, this mat-
ter of scale disappears as the spread around the mean radius for both clusters is the
same. Thus, we can affirm that the polar representation has a normalizing effect on
this dataset, removing scale differences.

In cases where the analysed elements are more complex than points in space, the
features chosen to represent each element are of great importance. As an example
we use the classification and organization of animals presented by Pampalk et al.
[2003]. As seen in figure 3.3a, we have a set of animals and two kinds of features,
appearance and activities. It is possible to use each row as a Boolean vector usu-
ally called a feature vector. Then, we feed these feature vectors to a clustering or
visualizing algorithm in order to group animals. In figure 3.3b we show a spatial or-
ganization of the animals based on their activities, the lighter the background colour,
the higher the density of animals in that area. Conversely, we show a spatial or-
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Figure 3.2: Two representations of the same set of elements to cluster in rectangular (a) and polar (b)
coordinate systems. While the rectangular representation presents a difficult setting for most cluster-
ing algorithms, the polar representation is a trivial setting for all of them.

ganization based on their appearance in figure 3.3c. In figure 3.3b it is possible to
observe that birds are pushed towards the lower part of the diagram, while mammals
towards the upper part. An exception of this is the cow which seems to be either a
strange type of bird or to be classified with the chicken, somehow as a farm animal.
Moreover, predators have been pushed towards the left side while herbivores towards
the right. In figure 3.3c where animals are arranged according to their activities, we
can see a clear separation between birds and mammals. Within this arrangement
animals go from smaller on the left, to bigger on the right. It is clear from the com-
parison of these two graphs that the choice of features leads to completely different
results.

The representation of the data is of utmost importance to clustering algorithms.
Different representations can not only turn a hard problem into an easy one (and the
other way around) but they also play a role in the interpretation of the data which
will be done after the clustering.

3.1.2 Representation Matrices

Clustering algorithms mostly deal with two types of data representation: a pat-
tern matrix or a proximity matrix. An example of pattern matrix is shown in fig-
ure 3.3a. In this matrix there is a row for each element and a column for each fea-
ture. On the other hand, the proximity matrix is a squared matrix with as many
rows (and columns) as elements in our dataset. If we notate this matrix as A, then
the entry Aij contains a number quantifying how close the elements i and j are, a
proximity index. There are two kinds of proximity indices:

Similarity where Aij is maximal when i and j are considered as indistinguishable
and minimal when they are as different as possible. In this matrix Aii ≥ Aij .
A simple example of similarity measure between two vectors is the inner prod-
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Dove × × × ×

Chicken × × ×

Duck × × × ×

Goose × × × × ×

Owl × × × × ×

Hawk × × × × ×

Eagle × × × × ×

Fox × × × ×

Dog × × × ×

Wolf × × × × × ×

Cat × × × ×

Tiger × × × × ×

Lion × × × × × ×

Horse × × × × × ×

Zebra × × × × × ×

Cow × × × ×

Table 1: 16 animals described by 13 attributes.

the center layer, weights both feature groups equally. The
last layer uses a weighting ratio of 0:1, thus, focuses only
on activities. The weighting ratios of all other layers are
linearly interpolated.

From the resulting Aligned-SOMs 5 layers are depicted
in Figure 2. For interactive exploration a HTML version
with all 31 layers is available on the internet.1 When the
focus is only on appearance all small birds are located to-
gether in the lower right corner of the map. The Eagle is
an outlier because of its size. On the other side, all mam-
mals are located in the upper half of the map separating
the medium sized ones on the left from the large ones on
the right. As the focus is gradually shifted to activity fea-
tures the structure changes. In particular, the animals are
arranged in such a way that predators or located on the left
and others on the right. Although there are several signifi-
cant changes regarding individuals, the overall structure has
remained largely the same, enabling the user to easily iden-
tify similarities and differences between two different ways
of viewing the same data.

5. APPLICATIONS
In this section we present two applications of Aligned-

SOMs. The first application is the identification of distinc-
tive sequences in multivariate time series data representing
musical performance strategies. The second application is
the content-based organization and visualization of a mu-
sic collection for interactive exploration. For both applica-
tions we use a HTML based user interface with JavaScript
and many images to conveniently interact with the Aligned-
SOMs. A demonstration is available on the internet.1

5.1 ExploringMusical PerformanceStrategies
The first application is part of a large data mining project2

whose goal is to study fundamental principles of expressive

1http://www.oefai.at/˜elias/kdd03/
2http://www.oefai.at/music

Figure 3: Part of a trajectory corresponding to an
expert performance of Chopin etude op. 10, No. 3.
The loudness and tempo curves are smoothed. The
bar boundaries are indicated through the black sec-
tions. The time dimension is visualized through the
thickness and shading of the trajectory.

music performance [35, 36]. Performances by concert pi-
anists are measured with respect to timing and loudness
fluctuations. The goal is to find characteristic patterns that
give insight into typical interpretation strategies used by pi-
anists.

The dataset used for this particular experiment consists
of performances of Mozart piano sonatas, played by 6 in-
ternationally renowned pianists (Daniel Barenboim, Roland
Batik, Glenn Gould, Maria João Pires, András Schiff, Mit-
suko Uchida). Each performance is characterized by two
series of numeric values that represent the measured tempo
and loudness, respectively, over the course of the perfor-
mance. An example of one such time series in the form of a
smoothed trajectory in the two-dimensional tempo-loudness
space is shown in Figure 3, with tempo on the vertical axis
and loudness on the horizontal axis. Details of this form of
performance visualization can be found in [23]. The various
trajectories are cut into overlapping segments each repre-
sented by 60 low-level features. The purpose of the whole
procedure is to find out whether there are indeed character-
istic and interpretable classes of tempo-loudness strategies
that pianists apply consistently, and whether these are dif-
ferent between performers.

At the current state of our research it is not clear how
to best represent the performance trajectories to capture
the main characteristics. Some of the open questions are re-
lated to the weighting of the tempo and loudness dimensions,
strength of the trajectory smoothing, and the normalization
of the data.

Regarding the normalization we have found 5 forms to
be of particular interest which can be categorized in 3 lev-
els. The first level is no normalization, the second level is
normalizing the mean, the third level is to normalize mean
and variance. The effect of the second level is that we focus
only on absolute changes regarding loudness or tempo. For
example, did the pianist speed up by 10 beats per minute
(bpm)? In the third level we focus only on relative changes,
for example, has the pianist played 10% faster or slower?
Within the second and third levels we distinguish between
2 ways of normalizing the data, namely, normalizing over a
short segment of the trajectory (‘local’) or normalizing over

(a) (b) (c)

Figure 3.3: Animals spatially organized in relation to two types of features: (a); according to their
activities (b); and based on their appearance in (c). The lighter the background the higher, the density
when it is lighter. Adapted from Pampalk et al. [2003].

uct. Let vi and vj be two vectors, then, their inner product

Aij = 〈vi,vj〉

is 0 when they are perpendicular and equal to ‖vi‖‖vj‖ when they are parallel.

Dissimilarity where Aij is minimal when elements i and j are considered indistin-
guishable and maximal when they are as different as possible. In this matrix
Aii ≤ Aij . Dissimilarity can be easily shown with the Euclidean distance be-
tween two vectors,

Aij = ‖vi − vj‖.

In this representation, Aij = 0 if the two elements are the same and it can reach
Aij =∞ if they are not similar at all.

It is important to note that the elements to be clustered do not need to be in an inner-
product space (similarity case) nor in a metric space (dissimilarity case). Several
of the proximity measures do not usually meet the hypotheses needed to constitute
these spaces. However, if one is able to show that the elements “live” in a metric or
inner-product space, inherent properties of these spaces are helpful in finding algo-
rithmic optimizations [Jain and Dubes: 1988].

Knowing that data should carefully be analysed and represented in order to be
clustered, we move to the analysis of the clusters that we are looking for.

3.1.3 Cluster Hypotheses

The first hypothesis that we can make concerns the structure of the clusters: are
we looking for a hierarchy or for a partition? A hierarchy seems logical in cases
like a clustering of human body parts: when the scenario is such that elements are
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“little finger”, “right forearm”, “torso”, “right leg”, “big toe”, etc. and the fact that the
parts are connected or not is the similarity measure. In cases like having to cluster
food items as “carbohydrates”, “dairy products”, “vegetables”, “fruits”, etc. the goal is
clearly to look for a partition and not a hierarchy.

In partitional clustering, the number of clusters is usually the next point to take
into account. Generally, there is no way to know this number in advance. Even if
the most popular clustering algorithm, K-Means [Jain: 2009], and the majority of par-
titional algorithms require this as a parameter, it is usually impossible to directly in-
fer this information. Several approaches have been taken to automatically infer the
number of clusters: statistical descriptors [Figueiredo and Jain: 2002, Hansen and
Yu: 2001]; information theory-based approaches [Fraley and Raftery: 1998, Celeux
and Soromenho: 1996]; and a wide range of mathematical tools such as eigenvalue
analysis [Tibshirani et al.: 2001] or the formulation of an infinite mixture model [Ras-
mussen: 2000]. However, no method works in the general case.

The second hypothesis we analyse is in reference to the form. If we picture each
element as a point in space, then the clusters should be given by high-density groups.
As we can see in figure 3.1, given this graphical representation, the clusters may have
different shapes. The first point to make regarding shape is whether the clusters are
convex or not. Provided that the clusters are convex, the job of clustering algorithm
is simpler. This is due to the fact that searching for a convex hull containing each
cluster separately is a relatively easy task and the most usual clustering algorithms
perform it successfully. If convexity can not be assured, the user of the clustering
algorithm must analyse whether or not there is a family of cluster shapes. If there
is, these shapes can be represented as parametric probability distributions and the
clustering algorithm can be cast into an algorithm to find mixtures of probability dis-
tributions, like the Expectation-Maximization algorithm [Dempster et al.: 1977]. If
it is not possible to make an assumption about the cluster shape, the user must resort
to methods without cluster bias like mode seeking methods or specifically modified
versions of other clustering techniques.

The last issue to consider is the variability of density or scale. Clusters might
have densities which largely differ or, equivalently, have very different scales. In
this cases, the algorithm must take that into account and most-likely normalize the
proximity values according to density estimates. The occurrence of outliers is an-
other characteristic consider. If outliers are expected, the algorithms must be robust
to them in order to find valid clusters.

In the same way that data representation and proximity measures lead to differ-
ent results, the choice of the clustering algorithm leads to different clusters for the
same database. Therefore, it is fundamental to know the biases of each algorithm
and how the obtained results are influenced by them.

3.2 CLUSTERING ALGORITHMS
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Up to this point, we have reviewed the conditions and hypotheses which we should
analyse before selecting or designing a clustering algorithm. In this section we
present the most widely use approaches to clustering algorithms divided in cate-
gories. These categories are not definitive since several algorithms can be cast into
more than one of them but they are useful in understanding the different approaches
and their consequences. Taking all of this into account, we survey the most repre-
sentative clustering algorithms of each family.

3.2.1 Hierarchical Algorithms

Hierarchical algorithms produce a nested series of partitions. This family is sub-
divided in two: agglomerative and divisive. Although divisive algorithms exist in
theory, there are almost no examples of this algorithmic family in order to recover a
hierarchy of the analysed set of elements [Jain: 2009, Jain and Dubes: 1988, Hastie
et al.: 2009], hence we will not describe them in this section.

Agglomerative algorithms start from a scenario where every element is in its own
cluster and join, recursively, the two most similar clusters until no other pair of clus-
ters can be joined. The result of these algorithms is usually a tree or a set of trees
(forest) in the case that of isolated sets of elements. The general scheme for this fam-
ily is shown in algorithm 3.1. The algorithms of this family are usually variations
of three techniques. Single, complete and average-linkage. The difference among
these techniques is in how the dissimilarity between elements, d(·, ·), is generalized
to a dissimilarity between clusters, d(·, ·):

Single-linkage: inter-cluster similarity represents the distance between two
clusters as the distance of their closest elements

d(P,Q) = min
p∈P,q∈Q

d(p, q)

Complete-linkage: inter-cluster similarity uses the distance between the most
distant elements of the cluster

d(P,Q) = max
p∈P,q∈Q

d(p, q)

Average-linkage: inter-cluster similarity uses the mean distance between the
two clusters

d(P,Q) =
1

|P ||Q|
∑
p∈P

∑
q∈Q

d(p, q)

The single-linkage algorithm has a tendency to produce elongated clusters while
the complete and average-linkage ones tend to produce round, isotropic clusters. All
of these algorithms are biased towards isotropic clusters. At the expense of adding
parameters, modifications to these algorithms can make them apt to detect arbitrar-
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Figure 3.4: Agglomerative clustering results. Top row: original data. Middle row: dendrograms
for a set of points clustered using the Euclidean distance as a dissimilarity measure. Bottom row:
clusters obtained by thresholding the dendrograms to obtain 3 clusters.

ily shaped clusters, this is the case of the CHAMELEON hierarchical clustering al-
gorithm proposed by Karypis et al. [1999].

An important property of agglomerative algorithms is monotonicity. That is, the
dissimilarity (similarity) between merged clusters is monotone increasing (decreas-
ing) with the level of the merger. Hence, the results of agglomerative clustering can
be plotted as a tree such that the height of each node is proportional to the value
of the intergroup dissimilarity d(·, ·). This kind of plotting is called a dendrogram,
shown in figure 3.4. The dendrogram is a useful tool to visualize the hierarchy and
to perform interactive exploration of obtained clusters. Moreover it is responsible
for the success of the agglomerative algorithms [Hastie et al.: 2009].

Finally, if the user wants a set of clusters as a result instead of a hierarchy, sev-
eral criteria can be applied to obtain those. The simplest technique is to find the
highest nodes below (above) a threshold inter-cluster dissimilarity (similarity). This
is shown in figure 3.4. Applying a threshold of 0.23 to the dendrogram in figure 3.4
leads to 3 clusters; A threshold of 1.5 leads to 2 clusters in the dendrogram shown in
figure 3.4c and in the dendrogram of figure 3.4d, 0.8 leads to 3 clusters.

The monotonicity, ease of visualization and lack of parameters are two of the ma-
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Algorithm 3.1 General algorithm for hierarchical agglomerative clustering
Inputs: A dissimilarity function between clusters, d(·, ·), and a set of elements X.
Outputs: A graph representing the set of trees calculated from the data.

1: set the AvailableClusters to all the elements in X.
2: set Edges← ∅.
3: set Nodes← AvailableClusters.
4: while there is a pair of clusters that can be joined do
5: select P,Q such that d(P,Q) = minP ′,Q′∈AvailableClusters d(P ′, Q′).
6: remove p, q from AvailableClusters and add P ∪Q.
7: add P ∪Q to the Nodes of the output graph.
8: add (P, P +Q), (Q,P +Q) to the Edges of the output graph.
9: end while

10: return the graph (Nodes,Edges).

jor assets of hierarchical algorithms. These properties lead to the interactive explo-
ration of the results as the user can interactively analyse the dendrogram and differ-
ent thresholds resulting in different clusterings results. Furthermore, it is possible
to design an objective function to automatically analyse the dendrogram and obtain
a clustering which agrees with the desired properties. Hierarchical clustering al-
gorithms are not only able to provide a flat clustering of the elements but can also
obtain a hierarchy from of them, allowing for a rich set of post-clustering analysis to
be performed.

3.2.2 Partitional algorithms

Partitional algorithms result in a single partition of the data. In large sets,
where the construction of the dendrogram is costly, partitional algorithms perform
better. However, a common problem with partitional algorithms is that the num-
ber of clusters has to be determined in advance. In subsection 3.1.3, we referenced
a number of heuristics designed to solve this problem, there is, however, no silver
bullet. The partitional algorithms usually optimize a given criterion in order to per-
form the clustering. This criterion is defined either locally (on a subset of patterns)
or globally (on the entire dataset). A combinatorial search of the optimal value for
all possible labellings is clearly prohibitive. In practice, the algorithm converges to
a local optimum and either provides this result as the clustering or repeats the oper-
ation in a randomized way to reach a locally optimal labelling which is closer to the
global.

Squared-error Algorithms

The more frequently used algorithms minimize a squared error criterion, which
works well with isolated and compact clusters. This partitional family of algorithms
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Figure 3.5: Results of the K-means algorithm using d(x,x′) = ‖x − x′‖2 with several values of k. It
can be observed that regardless the “real” number of clusters in the dataset, K-means always finds k
clusters.

searches clusters which minimize a squared-error function, usually

ε2(C) =

k∑
i=1

∑
x∈Ci

d2(centroid(Ci), x). (3.1)

Each algorithm using ε(·) as its objective function needs the definition of a cluster
centroid. In the case of the most common squared-error algorithm, K-means, the
centroid is the arithmetic mean:

centroid(C) = argmin
x̄

1

|C|
∑
x∈C

d2(x̄, x).

The basic implementation of an algorithm of the K-means family is shown in algo-
rithm 3.2 and an example of the application of K-means to a small dataset is illus-
trated in figure 3.5. One of the main drawbacks of most algorithms of this family
is that, regardless of the “real” number of clusters in the dataset, they always find k
clusters, putting into question the validity of their results.

Since Steinhaus [1956] proposed K-means, there have been several extensions to
this algorithm. The most representative were designed in order to: find a better ap-
proximation to the optimal minima by adding criteria to split the sets of clusters [Ball
and Hall: 1965, Forgy: 1965]; make it more robust to outliers by replacing the mean
with the medoid, K-medoids [Kaufman and Rousseeuw: 1987]; provide a probability
of belonging to the cluster instead of a hard partition, C-means [Dunn: 1973]; gener-
alize it to arbitrary shapes, kernel K-means [Scholkopf et al.: 1998]; and to automat-
ically find the number of clusters, X-means [Pelleg and Moore: 2000]. All of these
variants have been used in different situations with reasonable success. However,
combining them, for instance, in order to derive a version which is able to handle
arbitrary shapes and automatically finds the number of clusters, is not simple. Re-
garding the inherent problem of error minimization in K-means, it has been shown
that the minimization of its objective function (equation 3.1) is an NP-Hard prob-
lem [Meilă: 2006]. However, Meilă [2006] showed that when the clusters are well
separated, it has a high probability of converging to the global optimum.
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Algorithm 3.2 Squared-error clustering algorithm

Inputs: A dissimilarity function between elements, d(·, ·); a centroid function,
centroid(·); a set of elements X; and a number of clusters k.
Outputs: A set of clusters {C1, . . . , Ck} minimizing ε2(C) (equation 3.1).

1: Pick partition of X in k clusters C = {C1, . . . , Ck}
2: repeat
3: calculate the centroid of each cluster: ci = centroid(Ci)
4: set Cold to C
5: generate a new clustering C = {C1, . . . , Ck} s.t.
6: for each element x ∈ X do
7: x ∈ Ci iif d(ci, x) = minj=1...k d

2(cj , x)
8: end for
9: until the new clustering C is equal to the old clustering Cold

10: return C

All in all, K-means is the most frequently used partitional algorithm. Despite all
its limitations, its simple implementation and empirical results amount to the user’s
expectation in a wide variety of applications.

Mixture-resolving Algorithms

The mixture resolving approach assumes that the patterns to be clustered are
drawn from one of several distributions, usually parametric, and the goal is to identify
the parameters of these distributions. In some cases, the number of distributions is
also inferred from the data. The previously analysed algorithm, K-means, can be
formulated in terms of this paradigm as well. Its basic implementation amounts to
infer the parameters of a fixed number of Gaussian distributions with different means
and the same variance. The most well-known technique for mixture-resolving is the
Expectation-Maximization (EM) algorithm [Dempster et al.: 1977] which finds the
parameters of the mixture model by maximizing their likelihood with respect to the
dataset. An advantage of this algorithm is that it assumes that the data represents a
set of observed elements considering that unobserved elements also exist. Using this
representation, the algorithm takes models of the observed and unobserved elements
in order to obtain the parameters of the mixture. Using a Bayesian approach, the
latent Dirichlet Allocation (LDA) algorithm proposed by Blei et al. [2003] and its
derivatives [Blei et al.: 2004, Teh et al.: 2006] use an infinite mixture of Dirichlet
processes in order add the number of clusters to the inferred parameters.

Mode-seeking Algorithms

Mode seeking is the general name for a family of clustering algorithms which
assumes that the data to be clustered can be regarded as an empirical probability
distribution function. In this function, dense regions correspond to the maxima of
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Figure 3.6: A set of randomly generated points and their estimated density function. Lighter colour
in the background indicates higher density.

the p.d.f. , usually called modes, representing cluster centroids. This concept is illus-
trated in figure 3.6 where a set of random generated cluster in 2D and their density
function is shown. Mode seeking algorithms are designed in order to have two main
features: there is no shape bias and there is no pre-specified number of clusters.
However, they suffer from their main hypothesis, in high-dimensional spaces a re-
gion with high density is difficult to find making them ineffective for this case.

Generally speaking, these techniques search for densely connected regions in fea-
ture space called modes. Different algorithms use different definitions of connect-
edness. The Jarvis-Patrick algorithm [Jarvis and Patrick: 1973] defines that two
points to cluster are as similar as the number of neighbours they share within a spec-
ified radius. The DBSCAN [Ester et al.: 1996] and mean shift algorithms [Cheng:
1995] use Parzen windows in order estimate the density of the points in space and
then make their points go “up-hill” towards peaks in this density function. The main
difference between DBSCAN and mean shift is their original goal. DBSCAN was
conceived to perform clustering in large databases, hence more attention has been
paid to its memory consumption and algorithmic cost. Mean shift, an application of
the density gradient estimation algorithm of Fukunaga and Hostetler [1975], is more
concerned with the mathematical properties of the density estimation and their con-
sequences on the clustering result than with algorithmic costs. The main problem of
the mean shift approach is that it looks for the clusters by optimizing a function for
each element leading to convergence problems. Hinneburg and Keim [1998], with-
out knowing mean shift clustering algorithm, generalized DBSCAN into DENCLUE
using the density estimation proposed by Fukunaga and Hostetler [1975] but with
more attention to algorithmic costs than Cheng [1995]. The mean shift algorithm
finally made its entrance in the image processing area through the work of Comani-
ciu and Meer [2002] and Carreira-Perpiñán [2000]. Since then, it sprouted a copious
amount of variations and applications having more than 2, 000 citations eight years
after its publication.
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Algorithm 3.3 Mean shift algorithm
Inputs: A dissimilarity function between clusters, d(·, ·), a kernel function φh(·) and
a set of elements X.
Outputs: A set of clusters C.

1: C ← ∅ //Set of resulting clusters
2: for each point x0 in X do
3: set x0 ← x
4: set k ← 0
5: repeat //Look for the closest mode to x
6: set xk+1 ← arg minx

∑
x′∈X d

2(x′,x)φh
(
d2(x′,xk)

)
7: set k ← k + 1
8: until xk = xk−1

9: if there is c ∈ C s.t. its mode is xk then
10: add x to c
11: else
12: add the set {x} to C
13: end if
14: end for
15: return C

Mean shift uses a kernel function Φ in order to perform density estimation, given a
distance function d(·, ·) (which is a dissimilarity function with a triangular inequality
property). Using this kernel function, the empirical density for a point x ∈ X is
given by

f(x) = c
∑
x′∈X

Φh

(
d2(x,x′)

)
. (3.2)

In this equation, c is calculated such that f(·) integrates to 1 and h is the bandwidth of
the kernel function Φ. Having this density estimation, each point is moved towards
its sample mean by following the gradient direction of the density estimation. Using
equation 3.2 to estimate the local density of x, and by notating x0 = x, at each step of
the algorithm the point is moved to a new location

xk+1 = arg min
x

∑
x′∈X

d2(x′,x)φh
(
d2(x′,xk)

)
. (3.3)

where φh(x) = ∇Φh(x). Finally, all the points that converged to the same mean
are considered to be in the same cluster. The pseudocode of mean shift is shown in
algorithm 3.3 and the behaviour of the algorithm is illustrated in figure 3.7. The
arbitrary shape of the clusters can be noticed in this figure.

The mean shift algorithm has two disadvantages: convergence, the cycle start-
ing in line 5 of algorithm 3.3 can oscillate indefinitely; speed, the algorithm has to
minimize a cost function ( equation 3.3 ) for each element to cluster. The speed prob-
lem has been addressed by using a variable step size for the cost function [Hinneburg
and Gabriel: 2007] and by casting the algorithm in a EM framework and using this
interpretation to achieve an optimization of the algorithm [Carreira-Perpinan: 2007].
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Figure 3.7: Illustration of mean shift clustering. (a) two dimensional set of 110,400 points. (b) Clus-
tering result. (c) Trajectories of the mean shift procedures drawn over the density estimate of the
dataset. Reproduced from Comaniciu and Meer [2002].

Finally, Sheikh et al. [2007] recently solved both issues by using the medoid instead of
the mean: being the medoid an element of the input dataset, the problem to solve for
each element changes from an optimization problem to a selection problem, leading
to a faster algorithm with proved convergence.

Graph-based Algorithms

Graph theoretic-clustering represents the data points as nodes in a weighted
graph and the edges connecting the nodes are weighted by their pair-wise similar-
ity s(·, ·). The main goal of these algorithms is to find a partition of the nodes into
two subsets A and B such that the similarity between the two sets is minimal. More
formally: The input of the algorithm is a graph G(X,E) where X = {x1, . . . , xN} is
the set of nodes and E ⊂ X ×X the set of edges. Then, the algorithm must find two
sets of nodes A and B such that A∩B = ∅ and the inter-set similarity, or cut, defined
as

cut(A,B) =
∑

xa∈A,xb∈B
s(xa, xb) (3.4)

is minimal.



101

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Figure 3.8: Illustration of a simple application of Fiedler’s theory to clustering. From left to right:
toy example to cluster; distance for the example matrix, where blue means that the elements are close
while red means that they are distant; Fiedler vector for the graph induced by the previous matrix,
blue means a value smaller than 0 and red larger; and the reordered distance matrix where the rows
and columns are grouped according to their value on Fiedler’s vector, the cluster structure is clearly
observable.

The theoretical background for these algorithms was stated by Fiedler [Fiedler:
1973, 1975]. He, analysed the connectivity of graphs through the eigendecomposi-
tion of a matrix which was later called Graph Laplacian [Pothen et al.: 1990, Mohar:
1991, Chung: 1997] and is defined as

L(G)ij =


deg(xi) i = j

−1 (xi, xj) ∈ E
0 any other case

. (3.5)

where deg(xi) is the number of nodes connected to xi or its degree. [Fiedler: 1975]
proved that the second smallest eigenvalue of this matrix is 0 if and only if G is not
connected. Furthermore, he demonstrated that it is possible to use its corresponding
eigenvector, known as the Fiedler eigenvector, to split the graph into two highly con-
nected subgraphs while minimizing the cut size: taking advantage of the fact that
each component of the Fiedler eigenvector corresponds to a node, he showed that
clustering is simply performed by grouping the nodes whose value in this eigenvector
is positive on one side and the ones with negative value on the other. A toy example
of an application of this theory is shown in figure 3.8.

His work characterizing the connectivity of a graph through the eigenvalues of
its Laplacian matrix was continued later as Spectral Graph Theory. In this theory,
the notion of Graph Laplacian is generalized by allowing magnitudes different from
1 in the non-zero elements of the matrix and leading to multiple applications [Chung:
1997]. Furthermore, Hein et al. [2007] formalized the relationship between graph
Laplacian and the Laplacian operator and studied in depth its consequences.

The main problem with the application of Fiedler’s technique, known as Min-Cut
clustering, is that the cluster sizes are unbalanced: if there is a very small set of
isolated points, the output of the algorithm would be a very small and a huge cluster.
This type of result does not shed any light on the structure of the clustered elements
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nor it agrees with the goals of a clustering analysis, see figure 3.9. It was Wei and
Cheng [1991] who proposed to solve this problem by normalizing the cut with the
cluster sizes and named it ratio-cut. Later, Hagen and Kahng [1992] showed that
the ratio-cut could be formulated into a Graph Laplacian and used the tools proposed
by Fiedler [1975] to find the graph partition.

Not ten years after this, Shi and Malik [2000] boosted the use of these techniques.
Firstly, they proposed the normalized cut,

NCut(A,B) =

∑
xa∈A,xb∈B s(xa, xb)∑

xa∈A,x∈X s(xa, x) +
∑

xb∈B,x∈X s(xb, x)
(3.6)

and showed that it was possible to formulate this problem into a Fiedler problem.
In their work Shi and Malik [2000] prove that the normalized cut is a particular
type of Graph Laplacian and that the cut is obtained by finding the median of the
Fiedler eigenvector and splitting it in the values which are smaller and larger than
its median. Moreover, they applied this algorithm recursively in order to obtain an
arbitrary number of clusters.

More efficient extensions of this algorithm to handle an arbitrary number of
clusters were proposed by Meilă and Shi [2001] and Yu and Shi [2003]. Ng et al.
[2002] improved it in order to handle clusters at different scales. Spectral clustering
quickly became a fertile area with many variants and applications, for a survey on
these techniques we direct the reader to von Luxburg et al. [2005] and Filippone
et al. [2008]. However, there is a main problem with this kind of clustering, a large
eigenproblem must be solved, even if this problem has been addressed [Fowlkes et al.:
2004] the proposed solutions add parameters to the algorithm which have no inter-
pretation regarding the clustering technique but a noticeable effect in the results.

Other Algorithms

More clustering algorithms based on different paradigms exists and have not been
included in this survey. Just to name a few: Tishby and Slonim [2000] used infor-
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mation theoretical methods, Souvenir and Pless [2005], Haro et al. [2006] topology
and distribution mixtures. A more extensive review of clustering algorithms can be
found in Jain [2009] and Duda et al. [2001].

3.3 SUMMARY

In spite of the large number of clustering applications and their success on different
application domains, clustering remains a difficult problem. The vagueness of the
definition of a cluster, changing from one application domain to the other, seems to
be the main cause of this issue. Hence, it is the task of the user to analyse the
dataset, to define the goal to achieve through clustering and to identify the reasonable
hypotheses that can be formulated on the application domain. The result of this
analysis should lead to a similarity or dissimilarity measure and to the selection, or
invention, of a clustering algorithm.

In the particular case of this thesis, we use clustering techniques to develop algo-
rithms which perform automated in vivo dissection of the brain’s white matter struc-
tures. For this, clustering is applied to two types of objects: the voxels of an image
acquired through DMRI [Ziyan et al.: 2006, Wiegell et al.: 1999, Behrens et al.: 2003,
Lenglet et al.: 2006a, Wassermann et al.: 2008] and the fibres obtained using tractog-
raphy algorithms [O’Donnell and Westin: 2007, Maddah et al.: 2008a, Wassermann
et al.: 2010a]. The main issues to solve in these two clustering scenarios are which
features to use for each type of element, how to represent them and how to measure
the proximity between them. Once all of these issues have been solved, it is possible
to choose an appropriate clustering algorithm. In the case of voxel clustering, the
diffusivity profile within each voxel and its position must be taken into account. In
the case of the clustering of white matter fibres, the main features to take into ac-
count are the shape, position and trajectory of a fibre. Further, in some cases it is
useful to take into account the diffusivity information along them. The two subse-
quent parts of this thesis analyse these scenarios and develop clustering algorithms
for DMRI image voxels and fibres obtained from tractography. Consequently, each
one of the following parts of this thesis leads to the automatic identification of white
matter structures in the brain.
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Overview

Part II covers a new clustering algorithm which performs in vivo dissection of
white matter structures by clustering the voxels of a DMRI image. In presenting
this algorithm, we study several characteristics of the elements to cluster and of the
expected clustering output. First, we analyze which diffusivity model, DT or ODF, is
more appropriate for this task and how to measure similarity of the diffusivity profile
among two voxels in both cases. Then, we study how spatial location of the voxels
and their diffusivity information can be integrated in a single similarity measure.
Next, we analyse the available hypotheses about the shape, linear separability and
quantity of the clusters we are expecting to find. Due to the lack of assumptions
about the shape and separability of the clusters that is possible to make, we propose
the use of manifold learning techniques in order to find an appropriate representation
of the elements to cluster. Particularly, we advocate the use of the Diffusion Maps
manifold learning technique which requires a smaller number of hypotheses from the
data to be clustered than current approaches in the literature. Finally, we use the
previous analysis in order to develop an algorithm to cluster the voxels of a DMRI im-
age into white matter structures and we validate this algorithm in synthetic and real
data. The contributions presented in this part have been published in Wassermann
et al. [2008] and Wassermann et al. [2007].

Contributions of this part:
– Definition of a similarity measure for DT and QBall image voxels which com-

bines spatial and diffusivity information at each voxel.
– Development of a new Diffusion Maps-based clustering algorithm which re-

quires a smaller number of hypotheses on the data than current algorithms
in the literature.

– Analysis of the behaviour of this algorithm in synthetic and real data images.
Comparing the results of its DT and QBall versions.
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Introduction

Is it possible to automatically group the voxels of a diffusion magnetic resonance
image such that the results of this grouping are the white matter structures? In this
part of the thesis, we address the problem of in vivo dissection of the white matter by
clustering the voxels of DMRI images, particularly, in the case of DT and QBall im-
ages. In order to develop a DMRI voxel clustering algorithm, three analyses should
be performed, as seen in chapter 3. Firstly, we need to identify which features of
the voxel should be considered. Next, we must select a proximity measure between
the voxels using these features. Finally, we should analyse which hypotheses we can
state about the clusters we expect as an outcome. The development of an appropri-
ate clustering algorithm to identify white matter structures in DMRI images comes
from the detailed analysis of these problems.

In the context of DMRI image clustering, two main features identify each voxel:
the position on the image and the diffusion characteristics. This highlights the need
of a proximity measure between diffusion tensors (DTs) and orientation distribution
functions (ODFs). Examples of such measures have been introduced in chapter 2.
In terms of hypotheses about the clustering outcome, it is difficult to state an as-
sumption about the quantity or shape of the clusters. We can not affirm that the
clusters we are expecting to find are convex or linearly separable. However, this can
be solved by using manifold leaning techniques, introduced in chapter 4, in order to
infer a representation of the elements in which the clusters are convex and linearly
separable. Once an appropriate representation for the voxels has been inferred, it
is feasible to apply a wide range of clustering algorithms in order to identify white
matter structures. In the current part of this thesis, we take into account the previ-
ously stated analysis and develop a clustering algorithm for white matter structure
identification in DMRI images.

We start by reviewing recent literature on DMRI voxel clustering and then stating
our contributions in this area.

State of the Art on DMRI Voxel Clustering

Clustering methods for diffusion MRI have been recently introduced. They typ-
ically rely on some metric between DTs or ODFs and allow us to identify various
fibre bundles or regions of the white matter with different diffusion profiles. While
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many techniques have been proposed to classify the grey matter, white matter and
cerebrospinal fluid from T1-weighted MR images, the literature addressing the clus-
tering of white matter and sub-cortical structures from diffusion MRI is fairly re-
cent. To perform effective clustering, the contribution of the diffusivity and spatial
location features must be carefully exploited. Particularly, the quantification of the
similarity between the diffusion features (tensors, ODFs) is still a subject of current
investigations. In the following we survey recent clustering methods for DMRI im-
ages. For this, we denote the position in the diffusion image by xi and Di stands for
the diffusion characteristic (either the diffusion tensor or some representation of the
ODF).

Methods Based on DTI

The first approach that used DTI to elucidate structure in the brain by means of
clustering was designed to identify the different nuclei of the thalamus by Wiegell
et al. [2003]. It uses a k-means algorithm. The spatial metric is the Mahalanobis
distance with respect to each cluster and the feature metric is the Frobenius norm of
the difference between tensors. The choice of this last metric is crucial and discussed
in the following, where we focus on fibre bundle segmentation.

Zhukov et al. [2003] proposed one of the very first approaches to fibre bundle
segmentation, in this approach he was able to cluster white matter structures by
only using the fractional anisotropy as the diffusion characteristic, in a surface evo-
lution framework (which is well-suited for controlling the shape and smoothness of
the resulting clusters). A 3D surface S is represented by the zero level set of a 4-
dimensional function φ,

S = {x ∈ R3 : φ(x, t) = 0},

and φ is evolved according to the differential equation

∂φ(x, t)/∂t = −F (x)‖∇φ(x, t)‖,

where F is a scalar-valued function which drives the evolution of φ, and implicitly
deforms the surface S along its normals. F is usually made of two terms

F = Fc + βFs.

Fc quantifies characteristics of the regions to segment and Fs drives the smoothness of
the surface; β is a user-selected weight. Fs and Fc can be respectively chosen as the
mean curvature of the surface S and an edge detector function R 7→ [0, 1] applied to
a smoothed FA map [Zhukov et al.: 2003]. To generalize this approach and take ad-
vantage of the full tensor information, [Feddern et al.: 2003] adapted the function Fc

to work on a generalized structure tensor for diffusion tensor fields . This approach
allowed some improvements over the previous work and was among the first to fo-
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cus on the definition of an adequate metric between diffusion tensors. Later, Wang
and Vemuri [2004] introduced a statistical Level-Set segmentation method. In this
method, Fc is based on a regional description of the inner and outer compartments:

Fc = −df (D,Din) + df (D,Dout) = −‖D − Din‖2F + ‖D − Dout‖2F , (3.7)

where Din and Dout are the Fréchet means of tensors inside and outside the surface
S. The Fréchet mean D of a set of N tensors {Di}i=1,...,N is analytically or iteratively
computed as the minimizer of the tensors’ variance, depending on the choice of met-
ric. Such a regional approach allows the tensors in the inner and outer regions to
vary in a piecewise constant manner, contrary to approaches which only search for
sharp variations of the FA, or other anisotropy maps [Zhukov et al.: 2003]. Thus, the
algorithm presented by Wang and Vemuri [2004] is capable of detecting fibre bundles
where the tensor’s shape changes smoothly. However, because of the use of the Eu-
clidean distance df between tensors (Frobenius norm), the Fréchet meanDin/out is not
guaranteed to be positive-definite, thus generating artefacts and incorrect segmenta-
tions in regions where tensors’ variation is large. To overcome this problem, several
authors have studied the influence of the metric. Considering the diffusion tensor
as the covariance matrix of a zero-mean Gaussian distribution, Wang and Vemuri
[2005] proposed the symmetrized Kullback-Leibler divergence or J-Divergence:

dj(D1,D2) =
1

2

√
trace

(
D−1

1 D2 +D1D−1
2

)
− 6,

and used to extend previous work [Wang and Vemuri: 2004]. This is a natural metric
between probability distributions, which turns out to have a closed form expression in
the Gaussian case. It also has a closed form expression for the mean tensor. Next,
Jonasson et al. [2005] proposed two different distances between tensors in a similar
Level-Set formulation . This was later extended by Jonasson et al. [2007] to prevent
overlapping when propagating multiple surfaces for the segmentation, for instance,
of the thalamic nuclei. The first distance, called Integrated Similarity, compares the
diffusion properties from two different voxels. It is expressed as

dis(D1,D2) =
1

4π

∫
S2

min

(
g1(r)

g2(r)
,
g2(r)

g1(r)

)
dr,

where g1(r) is the diffusion coefficient in direction r for the tensor D1. This metric
compares diffusion coefficients over all possible directions and is very sensitive to
small differences between the shapes of the tensors. It has, however, a high com-
putational cost. Another metric is used to calculate the empirical mean of a set of
tensors. It measures the overlap between two tensors and is defined as

do(D1,D2) =
√

trace(D1D2).
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Lenglet et al. [2006a] proposed to use a Riemannian metric derived from the Fisher
information matrix in an extended statistical framework . This metric yields a
geodesic distance on the manifold of zero-mean Gaussian distributions S+(3), as pre-
sented in chapter 2. This distance can also be expressed as

dg(D1,D2) =

√√√√1

2

3∑
i=1

log2(λi)

where the scalars λi are the eigenvalues of the matrix
√
D−1

1 D2

√
D−1

1 . The au-
thors also demonstrated how to approximate a Gaussian distribution on S+(3) and
to exploit this information in the segmentation procedure. To provide comparison
amongst previously mentioned DT approaches, Lenglet et al. [2006a] illustrated the
practical differences of using the three different distances, df/j/g, within his extended
statistical surface evolution framework. Recently, Arsigny et al. [2006] introduced a
distance with similar properties to those of dg. This Log-Euclidean distance

dle(D1,D2) =
√

trace((log(D1)− log(D2))2)

has the advantage to be simple to implement and fast to compute. However, it has
not been extensively studied for segmentation tasks yet, aside from its use in two
recent papers from Weldeselassie and Hamarneh [2007] and Malcolm et al. [2007].
In both works, the image is segmented into two parts by minimizing an energy func-
tional similar to the one of Wang and Vemuri [2005]. A non-parametric approach
relying on the Log-Euclidean distance and a Markov random field framework was
also recently described [Awate et al.: 2007]. Finally, Ziyan et al. [2006] used a graph-
theoretical approach, known as N-Cuts [Shi and Malik: 2000]. This graph partition-
ing technique is based on the link between the second smallest eigenvector of the
Laplacian matrix of a graph and optimal partitions. The nodes of the graph are the
voxel xi of the image and the weights of the edges between those nodes are obtained
from similarities between neighbouring tensors. The similarity between tensors can
be any of the previously described distances or restricted to the directional informa-
tion of the principal eigenvectors. The outline of the procedure proposed by Ziyan
et al. [2006] is as follows: First, a matrix Ws is built to encode local similarity be-
tween tensors. It is only non-zero for neighbouring voxels:

{Ws}ij =

 exp

(
−d

2(Di,Dj)
σ2

)
, if ‖xi − xj‖ ≤ 1

0, otherwise.
(3.8)

σ is a chosen scale parameter. Next, local similarities are propagated to a full affin-
ity matrix W by converting Ws into a one-step transition probability matrix whose
rows and columns sum to one. Markovian relaxation [Tishby and Slonim: 2000] is
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used to generate the n-step transition probability matrix. Finally, this matrix is re-
cursively partitioned in two clusters by using eigenvalue decomposition and thresh-
olding the eigenvector with the second smallest eigenvalue. This produces a hier-
archical clustering. The number of recursions is ultimately chosen to obtain the
desired number of clusters. The main limitation of this algorithm is the need for
a uniform sampling of the (xi,Di) at the end of the Markovian relaxation as it will
become more evident after we expose the basis of manifold learning in chapter 4.As
we are now going to discuss, level set, Markov random fields and graph-theoretic
segmentation frameworks have also recently been extended to HARDI datasets.

Methods based on HARDI

As stated in Section 2, the diffusion tensor model cannot describe complex white
matter fibre configurations, and HARDI techniques like QBI were introduced to over-
come this issue. It is thus natural to exploit this information to improve white mat-
ter segmentation results. The 5D space defined by the location of the ODFs on the
acquisition grid and their orientational information can be used [Hagmann et al.:
2006, Jonasson et al.: 2006]. These segmentation procedures are respectively im-
plemented with a hidden Markov random field or level set framework. McGraw
et al. [2006] proposed to use Mixtures of von Mises-Fisher distributions to model
the ODFs and perform segmentation with a hidden Markov random field scheme in
their work. It is possible to use a spherical harmonics (SH) decomposition of the
ODF at each voxel xi. The diffusion characteristic Di is then replaced by a vector
of SH coefficients. Although the most appropriate metric between ODFs is an open
area of research, the L2 norm can be used and efficiently computed. Two other clus-
tering techniques have been proposed that take advantage of the SH representation.
First, Descoteaux and Deriche [2008], generalized the level set algorithm presented
by Wang and Vemuri [2004] and Lenglet et al. [2006a] to the HARDI case. Equa-
tion (3.7) is modified such that the distance is the L2 norm of the difference of SH
coefficients.

There are common problems to all of these HARDI-based methods. Firstly, all
of these methods are based on Level-Set techniques [Cremers et al.: 2007]. These
techniques are designed to divide the image in two regions, a main object and the
background. When we reviewed the anatomy of the white matter in chapter 2, we
have seen that there is a large quantity of white matter bundles and that identifi-
cation of each one of them on a one-by-one basis might be far away from the users
goals.

Secondly, these techniques work as Gaussian-mixture separation techniques
(chapter 3). They assume that the two regions that will be separated can be mod-
elled as Gaussian distributions and analyse the image in order to find a partition that
optimizes the parameters of these distributions. This mixture separation approach
is not appropriate in the general case of white matter tract segmentation. The main
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reason of this is due to the fact that the previously described algorithms use diffusion
models on each voxel based on the directionality of diffusion. In bundles like the
cortico-spinal tract this seems appropriate. The diffusion along this tract is mostly
on oriented in the superio-inferior direction, hence the distribution of the diffusion
directionality is distinctive. However, if we analyse a C-shaped tract, like the arcu-
ate or the frontal forceps, the diffusion profile of the voxels within this tracts takes, at
least, all the directions within a plane making it difficult to separate this tract from
the rest through mixture-separation.

Our Contribution

In order to improve the previous techniques, we propose a new method that can
segment fibre bundles using QBall images as an input. Moreover, our algorithm
deals with fibre crossings while requiring a minimum number of hypotheses from the
data and a small number of algorithmic parameters.

The first improvement with respect to the HARDI-based techniques that have
been reviewed is the fact that our algorithm is prepared to handle an arbitrary num-
ber of clusters and requires no manual initialization. This is achieved by using the
K-means algorithm presented in chapter 3. In this particular application, the im-
plementation of this algorithm is far from being trivial, in fact it has to deal with two
major problems.

The choice of a proximity measure between ODFs is the first problem to tackle.
Even if the proximity measure presented for this purpose in chapter 2 is general for
all the functions representable by spherical harmonics [Descoteaux et al.: 2007a], it is
not suited for clustering. While these functions are in a high-dimensional space, the
ODFs, a subset of these, are in a subspace which has a smaller number of dimensions.
In order to infer a proper space for the ODFs along with a more appropriate metric
to quantify their similarity, we use manifold learning techniques.

Once we have found a proximity measure that is adjusted to our problem, we must
deal with feature integration. In this application, K-means clustering is expected to
group voxels of the QBall image into white matter fibre bundles. Hence, the algo-
rithm must handle is the integration of the diffusion information inside each voxel
and the location of the voxel in space.

In the following chapters, we present the theoretical basis that our algorithm uses
in order to solve these two problems: the first issue is the modelling of the manifold
which contains the ODFs of the white matter. In order to solve this problem we use
manifold learning techniques. These techniques take as an input the elements of the
manifold we want to cluster and a general proximity measure and learn a proximity
measure which renders the clustering problem simpler. Then, we describe how we
integrate information about the position of the voxel in space and its diffusivity profile
through markovian relaxation.

The two following chapters are as follows: First we review the theoretical basis
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of manifold learning in general and of the manifold technique (Diffusion Maps) we
chose to solve our problem . In the subsequent chapter, we describe our algorithm,
the markovian relaxation and we show results on synthetic images and real data.
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CHAPTER 4

MANIFOLD LEARNING

We have seen in subsection 3.1.1 that one of the main problems in clustering is the
representation of the elements. In several applications these elements are either in
a high dimensional space or in a sub-manifold of the space from which they were sam-
pled. Take for instance the spiral set presented in figure 4.1a. In this set we can
see points drawn from three Gaussian distributions with different parameters. Each
of these distributions has generated a cluster, which should produce a high-density
area in element space. However, the Gaussians are embedded on a spiral and the
isolevels of the estimated density show that there is a high density area around the
centre of the spiral and that it decreases towards the edges of the image. Three ar-
eas with distinctive density can be spotted, one in the centre and two on the lower
right-hand side. None of these areas corresponds to the expected clustering result.
However, if we unroll the spiral and estimate the density on this one-dimensional
function ( figure 4.1b ), it clearly shows the three clusters as expected.

This example highlights the need of working in the right space, or manifold, for
the data. However, it is not always possible to know in advance in which manifold
the objects to cluster lie. This difficulty leads to a set of techniques which aim to
automatically learn the manifold: manifold learning techniques.

4.1 FEATURE MATRIX-BASED TECHNIQUES

4.1.1 Principal Component Analysis

Pearson [1901] proposed the first manifold learning technique, Principal Com-
ponents Analysis (PCA). In the original publication, Pearson stated that “In many
physical, statistical and biological investigations it is desirable to represent a system
of points in plane, three or higher dimensioned space by the best fitting straight line
or plane”. Consequently, the goal of PCA is to find a projection of the dataset into an
orthogonal coordinate system. The first coordinate of this system accounts for the
direction of largest variance, the second for the second largest variance direction and
so on.
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(a) 3 Gaussians, embedded in a spiral.
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Figure 4.1: Importance of working in the right manifold for clustering. Given 3 clusters embedded
in a curve. The clusters have different Gaussian distribution. On the left: density estimation on
the bi-dimensional space enclosing the curve are shown as contour plots. Concentration areas do not
coincide with clusters. On the right kernel density estimation along the curve: peaks coincide with
the clusters.

It is possible to state the PCA algorithm as a maximization problem. The PCA
algorithm takes as an input a set of N elements, more particularly random vectors
x ∈ RD, the elements of the set must be represented as X = [x1, . . . ,xN ] ∈ RD×N ,
its transposed feature matrix. Assuming that these elements are centred,

∑
x = 0,

that N � D, and that U = {u1, . . . ,uD} is an orthogonal set of vectors. The goal of
PCA is to find a projection of X into U ,

P(X, U) =

D∑
k=1

uk〈uk,X〉, (4.1)

such that u1 is aligned with the direction of maximal variance, u2 to the direction of
largest variance orthogonal to u1, and the other orthogonal directions, like the first
two, are chosen in decreasing order of variance.

We start by calculating u1. Due to the previous hypotheses, the linear combina-
tion x = XTu1 must posses maximum variance. Then, finding the direction u1 is
equivalent to calculate the maximum of

ρ = E[xx] = E[uT1 XXTu1] = uT1 E[XXT ]u1 =
uT1 E[XXT ]u1

uT1 u1

where E[·] is the expected value. As X is centred by hypothesis, C = E[XXT ] = XXT

is positive semi-definite and is the covariance matrix of X. Then, the problem is
reduced to finding the maximum of

ρ =
uT1 Cu1

uT1 u1
.
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This can be done by considering the gradient of ρ,

∂ρ

∂u1
=

2

uT1 u1
(Cu1 − ρ)u1.

Setting the gradient to 0 gives
Cu1 = ρu1

which is recognized as the eigenproblem and ρ is maximized when it is the largest
eigenvalue of C. Being positive semi-definite, C admits an eigendecomposition

C =
N∑
i=1

λieie
T
i = VΛVT =

(
V
√

Λ
)(

V
√

Λ
)T

where the eigenvalues λ1 ≥ . . . ≥ λD are positive, their corresponding eigenvectors,
V = [e1, . . . , eD], are orthonormal and Λ = diag(λ1, . . . , λD) . Therefore, the problem
of maximizing the variance is equivalent to calculating the largest eigenvalue of λ1,
λ1, and its corresponding eigenvector since

λ1 = eT1 Ce1 = max
u1

uT1 Cu1

uT1 u1
= max ρ.

Then, the first eigenvector, e1 describes the data in the direction of its maximal vari-
ance. If we are looking for a d-dimensional representation, d < D, of the elements
of X, we still need d− 1 directions. Remove the components of X in the direction of
e1 and calculating a new maximum variance direction, we find that the second eigen-
vector of C, the one which corresponds to λ2, is the best choice. This is because it
indicates a direction, orthogonal to e1, in which there is maximal variance providing
we previously removed the components of the data in the direction of e1. Following
this idea, the basis is given by the eigenvectors of C which correspond to the first d
largest eigenvalues.

The PCA coordinate system is given by the basis U = {e1, . . . , eD} and the projec-
tion of a new element x to this coordinate system is given by

P(x, U) =
(
〈xT , e1〉, . . . , 〈xT , eD〉

)
. (4.2)

Finally, the d-dimensional projection is given by

PPCA
d =

(
〈xT , e1〉, . . . , 〈xT , ed〉

)
(4.3)

An example of a dataset and its projection on a coordinate system obtained
through PCA is shown in figure 4.2. However, as shown in figure 4.3, when the
manifold to learn is not linear, the coordinate system which PCA obtains does not
reflect the implicit coordinate space of the dataset.

Principal Components Analysis performs very well when confronted with datasets
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(a) First coordinate (b) Second coordinate

Figure 4.2: Principal Component Analysis coordinate on a linear dataset. The original dataset is
shown as scattered points. The two directions of the coordinate system are illustrated by the direction
of the grey-coloured degrade. It is noticeable how the coordinate system is aligned with the directions
of maximum and minimum variability of dataset.

which can be projected into a hyperplane by squashing one or various of its dimen-
sions. However, most of the datasets coming from observations of real data do not
have this property. In fact, in a graphical representation where each element is a
point in space, these datasets describe a non-linear shape. We illustrate this in fig-
ure 4.3 where the coordinate system for a “C”-shaped dataset is shown. In this fig-
ure, we observe how the orthogonal coordinate system does not describe the dataset
at all. Scholkopf et al. [1999] proposed an algorithm to solve this problem which
combines kernel methods with PCA (KPCA) extending PCA in order to extend it to
non-linear scenarios. Still, PCA and its variants are designed in order to map ele-
ments from one coordinate system to another, based on projections. In the case of
this thesis, the elements that we analyse, diffusion tensors, white matter fibres, etc.,
are usually not embedded in coordinated spaces, they are just comparable through
proximity measures. For this reason, we focus our attention on manifold learning
techniques apt for this scenario.

4.2 PROXIMITY MATRIX-BASED TECHNIQUES

If the dimensionality of the elements we analyse is large, PCA-based techniques
will end up using huge matrices. Moreover, if the elements are not in RD, these
methods are capable to deal with them. As this is usually the case in diffusion imag-
ing, we direct our attention to methods which are based on proximity matrices.

4.2.1 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) was proposed by Torgerson [1952]. The main
idea was to explain psychometric experiments on people’s perception of the similar-
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(a) First coordinate (b) Second coordinate

Figure 4.3: Principal Component Analysis coordinate on a non-linear dataset. The original dataset is
shown as scattered points. The two directions of the coordinate system are illustrated by the direction
of the grey-coloured degrade. It is noticeable how the orthogonal coordinate system is not adapted to
the dataset.

ities inside classes of objects. The main advantage of MDS over PCA is that it is
based on proximity matrices, hence the elements are inherently represented by a
quantified degree of proximity instead of explicitly through features. The MDS al-
gorithm maps a set of elements represented by its proximity matrix into a set of
D-dimensional vectors in euclidean space.

Starting from a set of elements X = {x1, . . . , xN} and a dissimilarity function
d(·, ·), MDS builds a dissimilarity matrix Dij = d2(xi, xj). From D, a similarity ma-
trix S is obtained by means of H = I− 1

N 11T , the centring matrix:

S = HDH. (4.4)

In this case, Sij is proved to be an inner product whether d(·, ·) is a metric or not [Torg-
erson: 1952]. Then, as S is symmetric positive semi-definite and of full-rank, there
exists a squared, centred, matrix Y such that S = YTY with Sij = YT

i Yj [Torgerson:
1952]. Where Y is a feature matrix such that yi is the result of the MDS mapping
of xi to an N -dimensional space. Consequently, the spectral decomposition of S can
be used to infer Y:

S =YTY = VΛVT

Y =
√

ΛVT

This matrix Y is the transposed feature matrix providing a representation of the
elements of X in euclidean space. Finally, we build the d-dimensional mapping using
the eigendecomposition of S:

PMDS
d (xi) =

(
λ
− 1

2
1 (u1)i, . . . , λ

− 1
2

d (ud)i

)
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Figure 4.4: Isomap idea: subfigure (a) shows a dataset and its extrinsic distance as a blue line;
subfigure (b) shows the previous dataset with red circles showing the limiting neighbourhoods used
to compute the distance; and subfigure (c) shows how computing the distance through partial distances
between nodes within the same neighbourhood produces the intrinsic distance.

The main advantage of MDS is that it produces an embedding into an euclidean
space of any dataset, provided that we have a dissimilarity function or, by skipping
the step in equation 4.4, an inner product function. Moreover, it can be proved that
PCA and KPCA are special cases of MDS [Etynger: 2007].

4.2.2 Isomap

Perhaps the most successful specialization of MDS is Isomap. In order to per-
form non-linear manifold learning, Tenenbaum et al. [2000] proposed to use a pruned
graph to compute the distance between elements. As shown in figure 4.4, by restrict-
ing the distance computations to small distances within the same neighbourhood, the
intrinsic distance can be calculated. The Isomap algorithm is simple and effective
in several scenarios.

Isomap starts with the distance matrix between every pair of elements, Dij =

d(xi, xj), and then it prunes the matrix in one of two ways

ε-neighbours: Dij is set to 0 if Dij > ε

k-neighbours: Dij is set to 0 if Dij > Diik where ik is the kth closest element to i.

The k-neighbours technique does not ensure a symmetric matrix, hence D has to be
symmetrized, for instance by setting Dij = min(Dij ,Dji). Then, we take D as the
connectivity matrix of a graph (where 0 means that the nodes are not connected) and
Dijkstra’s algorithm is executed in order to obtain the distance between each pair of
nodes in the graph. The output of Dijkstra’s algorithm, matrix D′, is fed to the MDS
algorithm and the embedding is obtained.

The core point in this algorithm is the theorem proposed by Bernstein et al. [2000].
This theorem states that the distances obtained by Dijkstra’s algorithm applied to
the pruned graph converge asymptotically to the geodesic distances on the manifold
described by the data, as the number of elements in the sample approaches infin-
ity [Bernstein et al.: 2000]. An example of the Isomap algorithm is shown in fig-
ure 4.5.
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(a) (b) (c)

Figure 4.5: Example of Isomap embedding. From left to right: the input dataset where the intrin-
sic and extrinsic distances are shown; the pruned graph and the geodesic on this graph showing its
similarity with the intrinsic distance; and the dataset embedded in two dimensions where is possible to
observe the edges of the pruned graph, the intrinsic distance and the estimated distance using Dijkstra’s
algorithm. Adapted from [Tenenbaum et al.: 2000]

4.2.3 Laplacian-based methods

The main idea behind these methods is to consider explicitly that the data lies
on a low dimensional manifold embedded in a high dimensional space. Laplacian-
based methods for dimensionality reduction, proposed by Belkin and Niyogi [2003],
construct a map which embeds the original dataset into a low dimensional euclidean
space. This mapping is built such that it preserves local neighbourhood topology and
retains algorithmic simplicity. Instead of performing a global embedding which aims
to preserve the distance relationship between every pair of elements in the manifold,
these techniques maintain the local relationships only. Like the previous methods,
the actual algorithms are reduced to perform certain operations on a similarity ma-
trix and then use its eigendecomposition to construct the mapping. The main ad-
vantage of these methods is their sound mathematical basis in which the projection
to the low-dimensional manifold is justified by the properties of the Laplace-Beltrami
operator.

It is simple to illustrate Laplacian-based methods on sets sampled from an eu-
clidean space. We start by assuming that a set of objects X = {x1, . . . ,xN ⊂ RD} is
sampled from a manifoldM⊂ Rd and that d� D . The idea of these dimensionality
reduction techniques is to construct a mapping

f :M→ Rd

such that three hypotheses are met

1. Preservation of the distance relationship: the learned manifold should pre-
serve the distance relation, two elements which were close in the original setting
should stay close.

2. Uniform sampling of the elements: the manifoldM was uniformly sampled in
order to produce X.

3. Convexity of the sampling: if two elements are in X, the elements between
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those inM have been sampled and those samples are in X.

Using the previous hypotheses, we formulate a mapping between two spaces as
we did for the previous manifold learning techniques. However, instead of finding a
discrete map for a sample of points, we start by obtaining a map between a contin-
uous manifold and an euclidean space. This constitutes the theoretical grounds of
Laplacian-Based methods. Finally, having this map for the continuous case we infer
a mapping for the discrete case.

Finding the mapping for a manifold

In this section, we justify why the eigenvectors of the Laplace-Beltrami operator
have desirable properties for the embedding. Following Belkin [2003], for the sake
of simplicity we illustrate this my mapping a manifold embedded in RD to a line, up to
some technical details, this procedure can be easily generalized to higher-dimensional
mappings.

We start by stating that due to hypothesis 3, convexity, it is possible to bound the
distance on the line with the manifold. For this, we use the previous approximation
and we assume that the mapping f(·) exists and is twice differentiable

|f(x)− f(z)| ≤ ‖∇ f(x)‖ distM(x, z) + o (distM(x, z)) . (4.5)

Then, according to Belkin [2003], hypothesis 1 can be formulated as requiring that
M is isometrically embedded in RD. This leads to state that the geodesic distance
in M can be approximated up to a certain linear error by the euclidean distance in
RD,

distM(x, z) = ‖x− z‖RD + o (‖x− z‖RD) , x, z ∈M.

Merging the previous equation in equation 4.5 we obtain a bound on the mapping in
terms of the original space whereM is embedded

|f(x)− f(z)| ≤ ‖∇ f(x)‖‖x− z‖RD + o (‖x− z‖RD) .

According to the previous equation, the gradient of the mapping, ∇ f(·), is a mea-
sure of how apart f(·) maps nearby points of M. Therefore, the mapping that best
preserves the locality on average reduces the norm of the gradient,

f = argmin
‖f‖L2(M)=1

∫
M
‖∇ f‖2

where the condition on ‖f‖ is stated in order to remove the scale indetermination.

In order to find an explicit expression for f(·) through an eigenvalue problem, we
state the previous equation in terms of the Laplace-Beltrami operator. We start by
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using Stoke’s theorem: if V is a vector field∫
M
< V,∇ f >= −

∫
M

div(V)f,

this takes us to ∫
M
‖∇ f‖2 =

∫
M
< ∇ f,∇ f >=

∫
M
−div(∇ f)f,

where
∆(f) := −div(∇ f)

is called the Laplace-Beltrami operator over the manifoldM.
Hence, the mapping we are looking for is the function that minimizes the Laplace-

Beltrami operator:

f = argmin
‖f‖L2(M)=1

∫
M

∆(f)f, (4.6)

where ∆(f) is positive definite.
Equation 4.6, leads to two useful properties [Rosenberg: 1997]: ifM is compact

and positive semi-definite, ∆(f) has a discrete set of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · ·
with its corresponding eigenfunctions v1(·), v2(·), · · · where vi :M→ R; and the func-
tion f minimizing

∫
M∆(f) is an eigenfunction of ∆. Moreover, if M is connected,

λ1 = 0 and the eigenfunction v1(·) maps the entire manifold to one point. Finally,
applying the same iterative reasoning we used in PCA to obtain an d-dimensional
mapping, we reach our goal: an explicit expression for the d-dimensional mapping
f(·) ofM into the euclidean space of Rd:

f(x) := (λ2v2(x), · · · , λd+1vd+1(x)) = PLBM
d ∈ Rd, x ∈M.

In this mapping, its noticeable that we are using the smallest eigenvalues instead
of the largest, as we do with PCA. This is due to the fact that the mapping f(·),
is the eigenfunction minimizing its product with respect to the Laplacian, as seen
in equation 4.6, while in the PCA setting we look for the maximum solution of the
eigenproblem.

We have just stated that given a manifoldM of dimension d embedded in D, it is
possible to obtain a low dimensional mapping f(·) by calculating the eigenvalues and
eigenfunctions of its Laplace-Beltrami operator, ∆. The following step is to use this
result in order to perform manifold learning on a set of points X.

Discrete Laplace-Beltrami operator

Getting back to the discrete scenario, we assume that we have a set of elements
X = {x1, . . . , xN} and a similarity function between them, s(·, ·), which, for theoreti-
cal correctness should be an inner product function. Providing that the hypotheses
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stated at the beginning of this section are met, we can build a similarity matrix, or
affinity matrix in the Laplace-based manifold learning literature,

Sij = s(xi,xj).

Then, taking S as the connectivity matrix of a graph G(X,E), the Laplacian of that
graph is [Hein et al.: 2007]

L = D− S (4.7)

where D, the degree matrix of the graph G, is defined as the diagonal matrix such
that Dii =

∑
j Sij . Multiplying equation 4.7 by the vector Y = [f(x1), . . . , f(xN )]T ,

we note that the Laplace-Beltrami operator of f(·) for an element of X is approxi-
mated in this case as:

(Lf)(xi) =
N∑
j=1

s(xi,xj)f(xi)−
1

N

N∑
j=1

s(xi,xj)f(xj)

The previous approximation to the Laplacian is known as the unnormalized
Graph Laplacian. In usual literature there are at least two more ways of defin-
ing this approximation: the normalized, Ln, and random walk, Lr, Graph Lapla-
cians [Hein et al.: 2007]:

Ln = I−D−
1
2 SD−

1
2 (Lnf)(xi) =f(xi)−

1

N

N∑
j=1

s(xi,xj)f(xj)√∑N
k=1 s(xi,xk)

√∑N
k=1 s(xj ,xk)

Lr = I−D−1S (Lrf)(xi) =f(xi)−
1

N

∑N
j=1 s(xi,xj)f(xj)∑N

k=1 s(xi,xk)

The difference between these three definitions is their convergence towards the
Laplace-Beltrami operator when the number of sampled elements from the manifold
tends to infinity.

Normalization and convergence

Hein et al. [2007] analysed the convergence of the most usual graph Laplacian
operators, a work that had been started by Lafon and Lee [2006]. The main idea of
this section is to study how the different versions of the graph Laplacian converge
towards the Laplace-Beltrami operator as the sampling of the manifold M which
produces the set of elements to be embedded X, increases.

To study the convergence of the Graph Laplacians, we provide M with a non-
uniform probability measure which represents the density of the manifold sampling,
p(·). Using this measure, Hein et al. [2007], rewrite the Laplace-Beltrami operator
as

∆s =
1

ps
div (ps∇) (4.8)
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they consider that the points X are sampled from M under an unknown density
p(·) and that N ≤ D meaning we have at least as many samples as the number of
dimensions of hasM. Having a Laplace-Beltrami operator depending on a power of
the sampling function, we construct the similarity function such that it is normalized
by the empirical density of the sampling:

s̃β(xi,xj) =
s(xi,xj)

(q(xi)q(xj))β

where the normalizing function q(x) =
∑

y∈X s(x,y) is the Nadaraya-Watson esti-
mate of density p(·) at x and β regulates the decay the similarity measure [Hein
et al.: 2007]. The two scalars β and s are powers of the density function, and can be
linked as β = 1− s/2. Then, density-independent versions of the discrete Laplacian,
L̃, L̃n, L̃r are built by simply changing S by S̃ij = s̃β(xi,xj). Hein et al. [2007] cal-
culated the almost sure convergence of these discrete Laplacians as the quantity of
elements of X, N , tends to infinity:

L̃(x)→ −p(x)1−2β(∆2(1−β)f)(x) (4.9)

L̃n(x)→ −p(x)
1
2
−β

(
∆2(1−β)

f

p(x)
1
2
−β

)
(x) (4.10)

L̃r(x)→ −(∆2(1−β)f)(x) (4.11)

The first observation is that the graph Laplacian converges to the Laplace-Beltrami
operator only when p(·) is constant, or equivalently, when the manifold was sam-
pled uniformly as stated by the hypotheses at the beginning of this section. In the
generic case of manifold learning, when this can not be assured, there are big dif-
ferences among the discretised Laplacian operators. The only one of these which
converges towards a weighted Laplace-Beltrami operator in this case is the random
walk version, L̃r. However, the limit of the unnormalized Laplacian, L̃ is useful in
manifold learning applications: the extra p(·)1−2β actually means that if β < 1

2 , the
distance propagates faster in regions when the density is high and will render them
closer in the embedding. In their work, Hein et al. [2007] could not provide an in-
terpretation or scenario where the normalized Laplacian was useful. However von
Luxburg et al. [2005] proved that in the particular case of clustering, the normalized
Laplacian performs better when the main goal of the embedding is a posterior clus-
tering application, most probably due to its equivalence to the Laplacian operator
proposed by Shi and Malik [2000] to perform Normalized-cuts clustering.

Finally, analysing the convergence of the three versions of the discrete Laplacian
operator it is possible draw conclusions about their uses cases. First, when sampling
density should be reflected by the embedding, the unnormalized Laplacian is appli-
cable, however if no conditions can be assured from the original density and the user
wants the embedding to be independent of this, the random walk version should be
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used.

Laplacian Eigenmaps algorithm

Based on the previous theory, Belkin and Niyogi [2003] proposed to use the graph
Laplacian in order to perform manifold learning. Given a set of elements X and a
dissimilarity function between them, d(·, ·), they proposed to turn the dissimilarity
into a similarity measure using a kernel function:

sσ(xi,xj) = exp

(
d2(xi,xj)

σ2

)
where σ is the kernel bandwidth. Having this done, they compute the similarity
matrix

Sij = sσ(xi,xj)

and use the unnormalized Laplacian, equation 4.7, to perform the embedding. The
technique presented in this section, called Laplacian Eigenmap manifold Learning
(LEM), is described in algorithm 4.1.

In their work, Belkin and Niyogi [2003] show that the graph-theoretic spec-
tral clustering algorithms, described in subsection 3.2.2, are actually performing
Laplacian-based embedding.These algorithms perform the embedding either with
the unnormalized or normalized Laplacian and then applying a clustering algorithm
on the embedded data. Finally, the main advantage with respect to Isomap is the
fact that they preserve local instead of global topology. The advantages of this are
twofold: these embedding techniques tolerate better the curvature on the original
manifold M; they produce sparser matrices reducing the computational cost of the
eigendecomposition.

Diffusion Maps algorithm

Lafon [Lafon: 2004, Lafon and Lee: 2006, Coifman et al.: 2005] proposed the Dif-
fusion Maps (DM) algorithm in order to overcome some shortcomings of the previous
techniques, in particular LEM. The main idea behind Diffusion Maps is to provide
an embedding which is resilient to differences on the sampling density of X fromM.
As we have seen in subsection 4.2.3, this can be done in one of three ways: using the
random walk graph Laplacian, Lr; or setting β to 1

2 and using the normalized Ln or
unnormalized Laplacian, L.

In his work, Lafon explored the use of these three settings and proposed two tech-
niques. The first technique, shown in algorithm 4.2 uses the normalized Laplacian
[Coifman et al.: 2005] and the second one, the random walk Laplacian [Lafon and Lee:
2006], described in algorithm 4.3. As we have seen in subsection 4.2.3, the normal-
ized Laplacian is related to the NCuts segmentation algorithm, chapter 3: having
as a goal the balance of the density of connections in the graph in order to perform
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Algorithm 4.1 Laplacian Eigenmaps manifold learning [Belkin and Niyogi: 2003]

Inputs A set of elements to embed X = {x1, . . . , xN}, a dissimilarity function d(·, ·)
and a bandwidth parameter σ

Outputs A d dimensional map for every element of X.

1: Build the similarity matrix

Sij = exp

(
d2(xi,xj)

σ2

)
2: Optionally, set so zero elements of S (prune the graph) according to the ε or k

neighbours criteria in subsection 4.2.2.
3: Compute the discrete unnormalized Laplacian

L = D− S

where D = diag(
∑

i S1i, . . . ,
∑

i SNi)
4: Perform the eigendecomposition of L in the eigenvalues 0 = λ1 ≤ . . . ≤ λM and

eigenvectors v1, . . . ,vN
5: return the d-dimensional mapping for xi:

PLEM
d (xi) = ((v2)i, . . . , (vd+1)i)

better for clustering algorithms. The version using the random walk Laplacian, Lr

has the advantage which is sustained in the random-walk interpretation of Lr,

Lr = I−D−1S.

In this case, the matrix P = D−1S is called its diagonal dominant and it rows add up
to 1. This leads to the interpretation of the matrix entry Pij as the probability that a
random walker starting from xi ends up in xj after a time step. Moreover, if we note
this probability as P{x1 = xj |x0 = xi} = Pij , then we can measure the probability
after several time-steps as [Lovász: 1993]

P{xt = xj |x0 = xi} = Pt
ij .

From the fact that
P = I− Lr

it is simple to deduce that the i-th eigenvalues of P is 1 − λi, where λi is the i-th
eigenvalue of Lr. Hence, the distance between the mapping

ft(xi) =

(
λt2

(v2)i
(v1)i

, . . . , λtd+1

(vd+1)i
(v1)i

)
of two elements

dDM
t (xi,xj) = ‖ft(xi)− ft(xj)‖2
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Figure 4.6: Laplacian-based manifold learning techniques and sampling-induced effects. From right
to left: the original set to be embedded in a two-dimensional manifold; the empirical sampling density
of the manifold; the embedding obtained by Laplacian-eigenmaps, it is noticeable how the curvature of
the embedding changes in sections of the manifold where the sampling has a local maxima or minima;
and diffusion maps-based embedding where the differences in the sampling had no effect. Adapted
from [Lafon: 2004]

or diffusion distance, can be interpreted as a measure of the connectivity of the ele-
ments xi and xj after a time t. Moreover, the parameter t can be changed in order
to change the scale of the embedding after the embedding was performed.

The goal of this contribution is to develop manifold learning techniques for a pos-
terior clustering of the white matter bundles. Due to this, the version of DM based
on the normalized Laplacian is the one we will chose as a part of our clustering al-
gorithm. The results of an embedding using this technique compared with LEM is
shown in figure 4.6, where we observe that DM is resilient to sampling differences.

4.2.4 Other techniques

Other techniques have been proposed for manifold learning. Roweis and Saul
[2000] proposed the Locally Linear Embedding, which stands in middle ground be-
tween Isomap and the Laplacian Eigenmaps as it performs explicit calculation of the
tangent planes of the manifold instead of the geodesics. This technique was later
extended by Donoho and Grimes [2003] as Hessian Eigenmaps. The main idea of
this technique is to relax the convexity hypothesis by of performing a second order
approximation to the manifold instead of a first order one. Several methods have
been published in the last ten years but without the impact of the ones presented in
this chapter. We refer the reader to computer vision or machine learning literatures
in which new techniques appear frequently.

4.2.5 Estimating the Dimension of the Manifold

The dimension of a manifold is also known as its intrinsic dimension. The chosen
dimension should be the minimal number of parameters necessary to represent the
variability of the dataset up to the point to which the subsequent analysis of the data
needs. For instance, for a clustering technique, a number of dimensions allowing a
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Algorithm 4.2 Diffusion Maps using the normalized Laplacian [Coifman et al.: 2005]

Inputs A set of elements to embed X = {x1, . . . , xN}, a dissimilarity function d(·, ·)
and a bandwidth parameter σ and a diffusion distance t

Outputs A d dimensional map for every element of X.

1: Build the similarity matrix

Sij = exp

(
d2(xi,xj)

σ2

)
2: Normalize S according to its density

P = [D(S)]−1S[D(S)]−1

where D(S) = diag(
∑

i S1i, . . . ,
∑

i SNi)
3: Build the normalized Laplacian of the graph induced by P

Ln = I− [D(P)]−
1
2 P[D(P)]−

1
2

4: Perform the eigendecomposition of Ln in the eigenvalues 0 = λ1 ≤ . . . ≤ λM and
eigenvectors v1, . . . ,vN

5: return the d-dimensional mapping for xi:

PDM
d (xi) =

(
λ2

(v2)i
(v1)i

, . . . , λd+1
(vd+1)i
(v1)i

)

clustering algorithm to find a partition of the data adjusted to the users necessities
is enough.

A first approach to estimate the dimensionality is observing the eigenspectrum,
the spectrum of the eigenvalues output by the eigendecomposition at the final step
of all the algorithms. Take for instance PCA, in this case, the magnitude of each
eigenvalue represents the amount of useful information which corresponds to its the
dimension associated to its eigenvector. Then, in ideal cases, the number of dimen-
sions corresponds to the number of non-zero eigenvalues.

In less trivial scenarios, there are several heuristics that can be used. The most
frequently used is the gap heuristic [Belkin and Niyogi: 2003, Coifman et al.: 2005]:
Consider the eigenvalues sorted in decreasing order of magnitude, λ1 ≥ λ2 ≥ . . ., if
the i-th eigenvalue shows an abrupt change of slope, then the number of dimensions
to use is i. This heuristic formalized by calculating the dimensionality d∗ as

d∗ = arg min
d

∣∣∣∣∣
∑d

i=1 λi∑
i>d λi

− x
∣∣∣∣∣

where x is a cut-off value which must be arbitrarily chosen and quantifies how abrupt
the change of slope must be.

More formal approaches have been developed recently in order to calculate the
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Algorithm 4.3 Diffusion Maps using the random walk Laplacian [Lafon and Lee:
2006]

Inputs A set of elements to embed X = {x1, . . . , xN}, a dissimilarity function d(·, ·)
and a bandwidth parameter σ and a diffusion distance t

Outputs A d dimensional map for every element of X.

1: Build the similarity matrix

Sij = exp

(
d2(xi,xj)

σ2

)
2: Compute the discrete random walk Laplacian

Lr = I−D−1S

where D = diag(
∑

i S1i, . . . ,
∑

i SNi)
3: Perform the eigendecomposition of Lr in the eigenvalues 0 = λ1 ≤ . . . ≤ λM and

eigenvectors v1, . . . ,vN
4: return the d-dimensional mapping for xi:

PDMRW
d,t (xi) =

(
λt2

(v2)i
(v1)i

, . . . , λtd+1

(vd+1)i
(v1)i

)

intrinsic dimensionality of data, for instance Levina and Bickel [2004] and Hein and
Audibert [2005] and the references therein.

Although existing techniques could be used to determine the dimension of our
manifold, we mostly set it as a parameter. Moreover, in the particular application
of clustering it has been argued that the number of clusters to detect in the data
is equal to the number of dimensions which parametrize the manifold where data
lies [Zelnik-Manor and Perona: 2004, Lee and Wasserman: 2009] 1.

4.3 SUMMARY

In section subsection 3.1.1 we had seen that the representation of the proximity is of
great importance for clustering tasks. At the beginning of this chapter, we analysed
the case where an evident proximity measure, or explicit, does not represent accu-
rately the elements to analyse through clustering leading to incorrect results. This
motivated the introduction and analysis of manifold learning techniques, designed
specifically in order to learn an implicit parametrization of the dataset to cluster
hence providing correct clustering methods. In the following chapter we apply man-
ifold learning and clustering techniques in order to identify white matter structures
from dMRI images.

1. Note the lacking n in the second author’s last name, it is not me.



CHAPTER 5

WHITE MATTER STRUCTURE

IDENTIFICATION

Having set the basis for manifold learning and clustering, we proceed to imple-
ment a Diffusion-Maps based algorithm to perform automatic identification of white
matter fibre bundles. This algorithm has several advantages over its predecessors,
We achieve the segmentation through spectral clustering. These techniques have
been successfully applied to image processing since [Shi and Malik: 2000], providing
a method for image processing which involves manifold learning and it is initializa-
tion free. In order to achieve this, a metric between Q-Ball ODFs is needed. Which
metric should be used on Q-Ball image analysis and clustering is still an open metric.

In this chapter, we describe a clustering algorithm that infers an embedding and
a metric to compare ODF images. We derive a similarity measure incorporating the
Euclidean distance and the spatial location distance between ODFs. Then, we show
that the Q-ball ODF clustering using Diffusion Maps can reproduce the DT clustering
on simple synthetic images without crossings. On more complex data with crossings,
we show that our method succeeds to separate fibre bundles and crossing regions on
synthetic data, where the DT-based methods generate artifacts and exhibit wrong
number of clusters. Finally, we successfully segment the fibre bundles in a real hu-
man brain dataset in different regions with fibres crossing.

5.1 SPECTRAL EMBEDDING AND CLUSTERING

As we have seen in subsection 4.1.1, non-linear manifold-learning techniques, more
precisely Diffusion Maps take a similarity matrix as input. Hence, we proceed to
describe the construction of the similarity matrix for white matter bundles segmen-
tation.

5.1.1 Distance Functions Between Elements to Cluster

In order to implement the Diffusion Maps spectral clustering method a distance
function for each data type is chosen. This distance function is used to calculate the
similarity matrix as expressed by algorithm 4.2. In the DT case we use the tensor
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distance shown in equation 2.8. In the ODF case we use the distance shown in equa-
tion 2.16.

5.1.2 Similarity Matrix Construction and Diffusion Maps Embed-
ding

Each element of a DT or a ODF image can be represented as having two compo-
nents. In the DT case (x,D), where x ∈ R3 is the position in the image and D ∈ R3×3

symmetric, positive definite. In the Q-Ball case, (x,Ψ), where Ψ ∈ RL are the spher-
ical harmonic coefficients. In both cases there is two kinds of information to be tak-
ing in account, the positional one and the representing the diffusion at each position.
Both information kinds need to be taking in account differently. In the image seg-
mentation case [Shi and Malik: 2000] propose a solution by taking, as a distance, a
weighted sum of two separate distances, in this case the positional and the diffusivity
one, but this adds a parameter to the algorithm and the way of mixing both distances
is not intuitive. In this work, we chose a random walk based technique. This tech-
nique is more cohesive with the spectral embedding approach, which has been related
with random walks by [Lafon and Lee: 2006]. Following [Tishby and Slonim: 2000,
Ziyan et al.: 2006], we use the similarity between the elements in two neighboring
voxels as a way to calculate the probability of a random walker going from one voxel
to the other. Then a matrix relating only neighboring voxels through its walking
probability can be built as,

{S1}ij =

s(Di,Dj) if ‖xi − xj‖2 ≤ 1

0 any other case

where Di, Dj is the diffusivity part- D or Ψ -of the two elements to be clustered,
s(Di,Dj) is defined as in algorithm 4.2, and xi are spatial coordinates of element Di
in the image. In order to turn the affinities into probabilities, the matrix S1 must be
normalized,

P =
1

maxlD(S1)ll

maxlD(S1)ll −D(S1)ii if i = j

{S1}ij any other case
,

where diagonal adjustment forces the inherent random walk to a uniform steady
state, hence every part of the Markov field will be explored at the same speed. Then,
(Pij)

t, t = {1, 2, . . .} represents the probability of arriving to the voxel xj , starting
from xi through walking t steps.

In order to illustrate this, we show a simple example with a scalar image. The
similarity is calculated as s(Di,Dj), where the distance is the absolute difference
between the intensity on the image. The scalar image is figure 5.1a, the probabilities
of reaching other voxels in the image with one step starting from a voxel in the edge
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(a) scalar image (b) one step probability from (10,4)

(c) eighteen steps probability from
(10,4)

(d) sixty steps probability from (10,4)

Figure 5.1: Markovian relaxation to calculate connectivity in an image. From a scalar image fig-
ure 5.1a, the probabilities of reaching other voxels in the image with one step starting from a voxel in
the edge of the circle are shown in figure 5.1b. Then the probabilities of reaching other voxels in the
image with 18 steps starting from a voxel in the edge of the circle are shown in figure 5.1c and with 60
steps figure 5.1d

of the circle are shown in figure 5.1b. As each voxel is an element of X, this is
equivalent as calculating P for the image and taking Pij as the probability of starting
in i and reaching j, thus figure 5.1b is obtained by mapping the matrix row Pi to a bi-
dimensional image. Finally, the probabilities of reaching every voxels in the image
by taking 18 and 60 steps starting from a voxel in the edge of the circle are shown in
figure 5.1c and figure 5.1d, where the values are taken from the matrix P18 and P60

respectively.
Then, the matrix Pt is taken as the input for the diffusion maps embedding pro-

cess described in algorithm 4.2. We chose the version of diffusion maps based on the
normalized Laplacian due to the studies on its convergence and on the balancing of
cluster size that we described in chapters 3 and 4. The quanta of steps t is chosen to
be the smallest integer where Pt does not have any element with a value of 0, giving
in this way the weakest connected random walk over the whole image.

As an output of the Diffusion Maps algorithm, we obtain a set of elements
Y = {y1, . . . ,yN} ⊂ RD, each element represents a voxel and the euclidean distance
between these elements represents their similarity, taking in account their spatial
and diffusivity information and their dimensionality is left to be chosen in during the
clustering stage, according to subsection 4.2.5.
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5.1.3 Clustering

Once the embedding has been performed, several techniques have been proposed
for the clustering step. Shi and Malik [2000], Belkin and Niyogi [2003], Lafon and
Lee [2006]

The first step in this process is to determine the number of clusters, this can be
done in two ways. The first, as done by [Nadler et al.: 2006], is choosing the number
of clusters according to the “elbow” present in the eigenvalue plot. For instance, if
the slope of the eigenvalue plot changes noticeably at eigenvector λi, the number
of clusters should be i + 1. The second way is re-ordering the affinity matrix rows
and columns following the second eigenvector, as proved by [Fiedler: 1975], which
shows the block structure of the matrix as squared blocks along the matrix diagonal.
Then, the number of clusters is the number of blocks. The recommended number
of dimensions for the embedding is the same as the number of clusters. Finally, the
clustering is performed by running a k-means clustering algorithm on y, an approach
previously taken by Belkin and Niyogi [2003] and Lafon and Lee [2006].

5.2 MATERIALS

5.2.1 Synthetic Data

We generate synthetic HARDI data using the multi-tensor model which is simple
and leads to an analytical expression of the ODF [Descoteaux et al.: 2007a, Tuch:
2004]. For a given b-factor and noise level, we generate the diffusion-weighted signal

S(ui) =
n∑
k=1

1

n
exp(−buTi Dk(θ)ui) + noise (5.1)

where ui is the ith gradient direction on the sphere, n is the number of fibres and 1/n

is the volume fraction of the of each fibre. In practice, we use N = 81 from a 3rd

order tessellation of the icosahedron, b = 3000 s/mm2 and n = 1 or 2. Dk(θ) is the
diffusion tensor with standard eigenvalues [3, 3, 1.7]x10−2 mm2/s oriented in direction
θ, which agree with reported physiological values [Pierpaoli et al.: 1996]. Finally, we
add complex Gaussian noise with standard deviation of 1/35, producing a signal with
signal to noise ratio (SNR) of 35.

We generate three synthetic data example, two simple examples, one with a ring of
sinusoidal shaped fibres, one with fibres with different sizes and scales and the other
with complex crossing areas simulating the ’U’-fibres (cortico-cortical fibres) that can
occur in the brain. These synthetic datasets help understand the behavior of the
different spectral clustering methods when confronted with simple and complex fibre
geometries.
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5.2.2 Human Brain Data

Diffusion weighted data and high-resolution T1-weighted images were acquired
on a whole-body 3 Tesla Magnetom Trio scanner (Siemens, Erlangen) equipped with
an 8-channel head array coil [Anwander et al.: 2007]. The spin-echo echo-planar-
imaging sequence, TE = 100 ms, TR = 12 s, 128 x 128 image matrix, FOV = 220 x
220 mm2, consists of 60 diffusion encoding gradients [Jones et al.: 1999] with a b-
value of 1000 s/mm2. Seven images without any diffusion weightings are placed at
the beginning of the sequence and after each block of 10 diffusion weighted images
as anatomical reference for offline motion correction. The measurement of 72 slices
with 1.7mm thickness (no gap) covered the whole brain. Random variations in the
data were reduced by averaging 3 acquisitions, resulting in an acquisition time of
about 45 minutes. No cardiac gating was employed to limit the acquisition time.
The issue of cardiac gating is discussed by Jones et al. [2002]. Additionally, fat sat-
uration was employed and we used 6/8 partial Fourier imaging, a Hanning window
filtering and parallel acquisition (generalized auto-calibrating partially parallel ac-
quisitions, reduction factor = 2) in the axial plane.

The brain is peeled from the T1-anatomy, which was aligned with the Talairach
stereotactical coordinate system [Talairach and Tournoux: 1988]. The 21 images
without diffusion weightings distributed within the whole sequence were used to
estimate motion correction parameters using rigid-body transformations [Jenkin-
son et al.: 2002], implemented in [FSL: 2006]. The motion correction for the 180
diffusion-weighted images was combined with a global registration to the T1 anatomy
computed with the same method. The gradient direction for each volume was cor-
rected using the rotation parameters. The registered images were interpolated to
the new reference frame with an isotropic voxel resolution of 1.72 mm and the 3 cor-
responding acquisitions and gradient directions were averaged.

5.3 EXPERIMENTS AND RESULTS

5.3.1 Synthetic data experiments

Diffusion Maps vs. N-Cuts

The first experiment shows the difference in performance between the Diffusion
Maps and N-Cuts approach. The N-Cut algorithm does not perform the sampling-
based normalization described in subsection 4.2.3 and is thus sensitive to sampling
frequency differences within the clusters. In order to show this sampling hypothesis
problem, we used a ring fibre bundle with different sampling frequencies. Within
the ring, the fibres have a sinusoidal shape and the frequency of the modulating sine
function is 4 times bigger in the lower half of the ring. More formally, the fibres fol-
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(a) N-Cuts eigenvalue plot (b) N-Cuts, 2 clusters (blue
and black)

(c) N-Cuts, 3 clusters (blue,
orange, black)
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(d) Diffusion Maps eigen-
value plot

(e) Diffusion Maps, 2 clus-
ters (orange and black)

Figure 5.2: N-Cuts generates over-clustering due to sampling frequency variation in ODF images. In
both eigenvalue plots figure 5.2a, figure 5.2d, the slope between the line joining λ0 and λ1 and the line
joining λ1 and λ2 changes drastically, expressing an elbow in λ1, which indicates two clusters. The
clustering results with 2, 5.2b, and 3, 5.2c, clusters are shown. Diffusion Maps correctly finds two
clusters, the object and the background, 5.2e. In the labeling, the ODFs are overlaid on the labels.

low the angular function o(θ) = θ + 1
8π sin(µ · θ), 0 ≤ θ < 2π, where µ = 8 for the

upper half of the ring and µ = 32 for the lower half. Two clusters are expected, the
ring and the background. The results of both clustering techniques are shown in fig-
ure 5.2, where the background has been masked out. Figure 5.2a shows the plot of
the first 10 eigenvalues for the N-Cuts method, shown in figure 5.2b and figure 5.2c.
The slope between the line joining λ0 and λ1 and the line joining λ1 and λ2 changes
drastically. This elbow at λ1 indicates that there are 2 clusters. Figure 5.2d shows
the plot of the first 10 eigenvalues for the Diffusion Maps method whose clustering
results are shown in figure 5.2e. The N-Cuts exhibits frequency-dependent cluster-
ing artifacts while the Diffusion Maps method clearly shows two clusters. In the
Diffusion Maps, the clustering has correctly segmented the background and the ring.

ODF vs. DT images

In figure 5.3, a single fibre scenario with no fibre crossing is shown. The DT-
based and ODF-based image clustering produce the same results. Hence, ODF clus-
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(a) DTI, 3 clusters (purple, green,
black)

(b) ODF, 3 clusters (orange, blue, black)

Figure 5.3: Synthetic image without fibre crossings. The results for the DT and ODF images are
equivalent. The colors behind the DTs and ODFs indicate the clusters.

tering reproduces DT-based results on a simple fibre population example.
Finally, figure 5.4 shows a fibre crossing scenario with two overlapping fibre bun-

dles that have different geometries. Segmentation was performed over the DT and
the ODF image shown in figure 5.5. Note that the cluster number is correctly es-
timated only in the ODF image. Moreover, the ODF N-Cuts segmentation exhibits
artifacts not present in the ODF Diffusion Maps segmentation. The ODF Diffusion
Maps effectively identify the two different fibre bundles as well as the fibre crossing
areas.

5.3.2 Real Data

The real data experiment presented in this section shows the segmentation and la-
beling of a cropped axial and coronal slice. The cropped slices were chosen such that
they contain regions of known fibre crossings where the DT model is normally lim-
ited. The ROIs show intersection of several fibre bundles. Hence, our segmentation
algorithm is confronted with elements that have different orientation and diffusion
characteristics.

In order to show that ODF data segments the white matter fibre bundles better
than the DT data in real cases, we analyse the evolution of the similarity matrix as
the scale space parameter changes. The region where we extract the elements from
is a cropped axial slice shown in figure 5.6. Similarity matrices were computed with
varying scale space parameter between 1

5 , 1
10 , 1

20 and 1
40 of the quantity of elements

(|X|) to cluster respectively. In order to show the block structure of the these ma-
trices, we reordered them using the second (Fiedler) largest eigenvector as explained
in subsection 3.2.2 [Fiedler: 1975]. In figure 5.7 we can note that as the scale di-
minishes, the DT data shows a high correlation between all the elements of the slice.
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(a) DTI ellipsoids (b) ODF spherical functions

Figure 5.4: Synthetic DT and ODF images. The expected number is four, one for each fibre, one for
the crossing between the two fibres and one for the background

This makes clustering very difficult because the blocks are small and highly corre-
lated. On the other hand, the ODF data shows a very clear block structure across
all scales. This structure structure accounts for a high correlation of the elements
within each block and a low inter-block correlation, which indicates that the output of
the manifold learning in this case is a much better input to the clustering algorithm
than the DT data.

Then we apply the algorithm to an axial slice. Figure 5.6 shows the location
of this slice in cropped axial ( figure 5.6a ) and coronal slices ( figure 5.6b ). We
can observe in the segmented and labeled axial slice, figure 5.8, that the segmenta-
tion also succeeds in identifying some of the main white matter structures: Corpus
Callosum (CC), Anterior Corona Radiata (ACR), Forceps Major (fmajor) and Forceps
Minor (fminor).

In figure 5.9, the location of the cropped coronal slice is shown in the axial , fig-
ure 5.9a, and coronal slices, figure 5.9b. In the segmented coronal slice, figure 5.9c,
we observe that the segmentation allows to identify and label main white matter
structures: Corpus Callosum (CC), Cingulum (CG), Corona Radiata (CR), Superior
Longitudinal Fasciculus (SLF). Note that the segmentation is resilient to crossing
areas such as seen at the interface between CR and CC.

5.4 DISCUSSION

Results showed that our diffusion maps-based clustering algorithm for QBall imag-
ing is a fit tool to segment white matter bundles. Firstly, we performed comparisons
against techniques used in previous literature using synthetic images. We showed
that the lack of uniform sampling from the manifold containing the ODFs can gener-
ate artefacts in NCuts-based segmentation while techniques based on diffusion maps
are resilient to this sampling characteristics. Then, we showed that, in simple ar-
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(a) DTI, 4 clusters (purple, green, blue,
black)
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(b) ODF, 4 clusters (black, purple, blue,
green)

Figure 5.5: Clustering results in ODF and DT images, Only ODF show the correct clustering. In
both cases the clustering result and the reordered similarity matrix are shown.

(a) Axial GFA
slice with cropped
region marked.

(b) Coronal GFA
slice with cropped
region marked.

Figure 5.6: Generalized fractional anisotropy axial, 5.6a, and coronal, 5.6b slices in the real dataset.
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Figure 5.7: Plots of DTI and ODF similarity matrices of an axial cropped slice shown in figure 5.6.
The matrices are reordered according to the second (Fiedler) eigenvector. The similarity matrices are
shown in decreasing order of σ, which takes the values 1

5
, 1

10
, 1

20
and 1

40
of the quantity of elements

to cluster. In the DTI case the decreasing on the scale parameter σ leads to a matrix with highly
correlated elements that is very difficult to cluster. In the ODF case, the block structure is clear, hence
better suited to apply a clustering algorithm.

ACRCC

fminor fmajor

Figure 5.8: Our proposed algorithm is able to identify important white matter fibre bundles on an axial
slice of a real dataset. The cropped axial slice shown in figure 5.6 has been segmented. In the labeled
ODF visualization, each color represents one of the clusters found. The white matter labels are CC:
Corpus Callosum, ACR: Anterior Corona Radiata, fmajor: Forceps Major and fminor: Forceps Minor.
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(a) Axial GFA
slice with coronal
slice marked.

(b) Coronal GFA
slice with cropped
region marked.

CG

CR

CC SLF

(c) Labeled ODF visualization of the cropped re-
gion.

Figure 5.9: Our proposed algorithm is able to identify important white matter fibre bundles on a coro-
nal slice of a real dataset. Generalized fractional anisotropy axial, 5.9a, and coronal, 5.9b slices are
shown. Labeled ODF visualization, 5.9c, each color represents one of the 7 clusters found. The white
matter labels are CC: Corpus Callosum, CG: Cingulum, CR: Corona Radiata, SLF: Superior Longitudi-
nal Fasciculus.
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eas the same clustering technique using QBI and DT images perform equivalently.
However, in regions of fibre crossings the same algorithm using DT is clearly outper-
formed by its QBI version.

Having proved the performance of our algorithm in synthetic cases, we proceeded
to deal with real data. We analysed the performance of our algorithm in sections of
the human brain white matter where bundles cross in different directions. For this,
we started by analysing the similarity matrix at different scales, we showed that due
to the lack of orientational information in crossing areas, the DT-based version of our
technique is not able to obtain clear sharp clusters segmenting white matter regions.
Furthermore, as we performed this analysis on a similarity matrix obtained from the
image and not on the clustering outcome, it is likely that this problem will be present
in most clustering algorithms trying to perform the same task. However, the QBI-
based version of our clustering algorithm, not only showed a clear block structure in
its affinity matrices but it segmented successfully white matter tracts.

Limitations

The algorithm presented in this chapter has two main shortcomings. First, it
requires to build a matrix that has as many entries as the squared number of vox-
els to cluster, after building this matrix its eigendecomposition must be performed.
This results in a limitation on the use of the algorithm in large sections of an im-
age. Even if recently there has been research aiming to reduce the computational
and memory cost of these families of algorithms [Dhillon et al.: 2007, Fowlkes et al.:
2004], this adds new parameters to the algorithm which are not related to the clus-
tering problem directly. The second limitation of this algorithm is due to the nature
of the fibre crossings. Due to the fact that fibre crossing areas naturally belong to
different white matter fibre bundles, an algorithm like the one proposed which pro-
duces a hard label for each segmented group of voxels is not appropriate. In fact,
these areas should be labelled as belonging to several bundles at the same time, de-
noting that fuzzy-clustering algorithms, like the one presented by Awate et al. [2007]
might better address the crossing-area problem if applied to QBI images.

5.5 SUMMARY AND CONCLUSION

We have presented an algorithm to perform Q-ball imaging segmentation of white
matter fibre bundles. The proposed method combines state-of-the-art HARDI re-
construction and state-of-the-art spectral clustering techniques. Our algorithm is
initialization-free and has only two parameters: a scale space parameter and the
number of regions (clusters) to be found. Regarding this number of clusters param-
eter, we have proposed to estimate it automatically.

In segmenting the white matter bundles, we have introduced a spectral clustering
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technique that does not require uniform sampling of the elements. The importance
of this characteristic was shown through experiments. To do so, the similarity mea-
sure used incorporates an Euclidean distance measure between the spherical har-
monic coefficients describing the Q-Ball ODFs as well as the spatial location distance
between ODFs. The similarity measure and the metric induced in the embedded
space are then used to cluster Q-Ball ODF images into multi-label segmentation rep-
resenting the fibre bundles. Spectral embedding has already been applied to dMRI
[Ziyan et al.: 2006]. However, to our knowledge, this is the first work using the Dif-
fusion Maps that avoids the high dependence on element sampling. It is also the
first work attempting Q-Ball ODFs.

We have illustrated that the ODFs are the desirable elements to use for cluster-
ing in the white matter because the classical DT model is limited in regions of fibre
crossings. The ODF is even more attractive because of the recent analytical spheri-
cal harmonic solution to the ODF reconstruction [Anderson: 2005, Descoteaux et al.:
2007a, Hess et al.: 2006]. The analytical solution is in fact as fast as a standard DT
least-square estimation. In this work, we believe that we have used the state-of-
the-art ODF reconstruction method [Descoteaux et al.: 2007a], which is regularized,
robust and very simple to implement. Note that some improvements have been pro-
posed in order to estimate a solid angle-based ODF [Aganj et al.: 2009, Tristán-Vega
et al.: 2009].

The spectral embedding performed by the Diffusion Maps technique is at the heart
of our segmentation algorithm. Whereas other spectral embedding techniques have
a tendency to produce artifacts in the presence of different sampling characteristics
within a cluster, the technique used in this work greatly reduces this tendency by
performing the simple linear algebra calculation shown in algorithm 4.2.

Spectral embedding techniques produce a representation of the embedded data
based on element-to-element affinities. This leads to the fundamental issue: how to
choose the similarity measure? It is a challenge to find a measure that incorporates
similarities between elements as well as the spatial location difference between ele-
ments. For similarities between elements, we chose the Euclidean distance between
spherical harmonic coefficients describing the ODFs. This approach is simple and
very efficient because it allows to process the ODFs directly on the SH coefficients.
The Euclidean distance has also been used successfully in a level set segmentation
framework [Descoteaux and Deriche: 2007] and it would be interesting to compare
our spectral clustering approach against it. For spatial location difference, we chose
Markovian Relaxation in order to be consistent with the graph theoretical represen-
tation of the Diffusion Maps technique. Although this way of representing the dis-
tance involves an artificial elimination of all the non-neighboring relations of the
ODF elements in the similarity matrix and an adjustment of the diagonal elements,
we believe that the resulting similarity relations better represent the similarity bet-
ter. The similarity of two neighboring elements at the beginning of the Markovian
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Relaxation algorithm is represented by a function of the Euclidean distance between
them. This similarity can be interpreted as the probability that a random walker
has of going from the first element to the second. The similarity of two elements
at the end of the relaxation is the probability of a random walker starting from one
element and reaching the second in a certain number of steps.

The final step of our algorithm is k-means clustering. We believe that there is
room for improvement in this last part of the algorithm. In the first place, the k-
means algorithm needs an explicit number of clusters to find. This can be heuristi-
cally determined by analysing the eigenvalue plot or the reordered similarity matrix
structure, as shown in this work. However, an automatic method that could find the
number of clusters would considerably improve the algorithm. In the second place,
the k-means algorithm and its variants, for instance, k-medians, k-medioids, search
for isotropic clusters in the embedding space (see chapter 3) are able to perform clus-
tering on convex structures. This could also improve the last clustering phase of our
algorithm

Finally, in order to analyse the importance of the difference between our Diffu-
sion Maps algorithm and the widely used N-Cuts, we used synthetic simulations. In
these simulations, we generated a synthetic image with a single cluster within which
the sampling of the elements changed. We showed that when this sampling changes,
the N-cuts algorithm produces artefacts while our Diffusion Maps method does not.
As uniform sampling within a cluster is a difficult property to guarantee in the white
matter fibre bundles, our Diffusion Maps method is better suited for this task.
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Overview

In the past years, there has been an increase interest in clinical studies and appli-
cations involving DMRI-based fibre tracking . As a consequence, there is a growing
demand for an objective mathematical framework to perform quantitative analysis of
white matter fibre bundles. Part III of this thesis presents such a novel mathemat-
ical framework that facilitates mathematical operations between tracts. Examples
of these operations are: a measure to compare fibres based on their spatial over-
lapping; the combination of fibre tracts into a bundle; and a quantification of the
probability that a tract or voxel belongs to a bundle. Based on these operations,
we developed an algorithm for automated in vivo dissection of white matter bundles.
This algorithm performs unsupervised atlas-based clustering without requiring man-
ual initialization or an a priori knowledge of the number of clusters. Also, using our
novel framework we developed two clinical applications: straightening of the spinal
cord in Spinal cord MRI (SC-MRI); and group statistics to find differences between
healthy controls and schizophrenic subjects.

The mathematical framework introduced in this chapter has been published in
Wassermann et al. [2010a] and Wassermann et al. [2009], its application to spinal
cord MRI straightening in Wassermann et al. [2010c] and Wassermann et al. [2010b]
and its application to statistics on white matter structures in Wassermann et al.
[2010d].

Contributions of This Part:
– Definition of a mathematical framework for white matter bundles which facili-

tates statistical analyses. This framework incorporates spatial and diffusivity
information and spans a metric space between bundles.

– Development of an algorithm to perform in vivo white matter fibre bundle dis-
section based on tractography.

– Development of an algorithm to select the most representative, or prototype,
fibre of a bundle. Application to spinal cord straightening.

– Formulation of usual group statistical analyses in terms of our mathematical
framework in order to find biomarkers for schizophrenia.
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Introduction

In the previous part we have aimed to segment a DMRI image into its white mat-
ter bundles. Even if we had some success in this task, the integration of spatial and
diffusivity information constitutes a challenge. Perhaps the voxel is too localized in
order to be analysed on its own or as a group with the goal of identifying white matter
structures. Having this said, we direct our research towards the analysis of tractog-
raphy results. Diffusion MRI-based tractography provides a more global anatomical
interpretation of the diffusivity on each voxel. By tracing ensembles of axonal path-
ways at a sub-voxel resolution it also provides a solution to some of the problems
arising from partial voluming. Moreover, as seen in chapter 2, there is extensive
proof of the reproducibility and anatomical coherence of tractography-obtained white
matter fibre tracts.

The clustering of different fibre tracts into an anatomically coherent bundle, like
the CC or the CST, is a challenging task for several reasons. In the first place, as
seen in figure 5.10, axons composing a bundle can diverge from it connecting corti-
cal and subcortical areas. This renders approaches that quantify similarity among
white matter fibres using the whole fibre instead of analysing partial overlaps like
shape statistics or rigid transformations [Veltkamp: 2001] unsuited for the cluster-
ing task. Take for instance the cingulum bundle, whose constituent fibres only par-
tially overlap among themselves, with many diverging to innervate the cortex, as
we have seen in chapter 2 and we shown in figure 5.10. These divergent fibres can
have quite different shapes, calling into question the utility of shape-based metrics
for subsequent tensor statistics. Even if current streamline tractography techniques
are reproducible [Wakana et al.: 2007], fibre tracts obtained through tractography do
not recover the whole underlying axonal trajectory [Lenglet et al.: 2009]. This be-
haviour can be observed clearly in complex bundle configurations like crossings or
fannings [Savadjiev et al.: 2008], the crossing area of the CC and the CST for ex-
ample [Wiegell et al.: 2000]. In order to overcome this problem, streamline track-
ing techniques that are more sensitive to complex bundle configurations have been
developed [Qazi et al.: 2009, Descoteaux et al.: 2009a]. These produce better local
approximations of axonal distribution by exploiting more complex models of the un-
derlying water diffusion in a voxel [Tuch: 2004, Peled et al.: 2006, Descoteaux et al.:
2007a]. Still, results are far from being reliable after the streamline tracking pro-
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A
Anatomical region of the cingulum. Axons actually enter and leave.

Figure 2-6: Axons enter and leave some fiber tracts along their course, as seen in
this example of the cingulum bundle. Images courtesy of James Fallon, Professor of
Anatomy and Neurobiology at the University of California, Irvine.

have been reported in schizophrenia [63], and asymmetry of the uncinate fasciculus

across hemispheres was found in a postmortem dissection study [48].

2.2.4 The Inferior Occipitofrontal Fasciculus

The inferior occipitofrontal fasciculus (Figure 2-5) connects occipital and frontal lobes.

It runs from the frontal lobe, through the temporal lobe (passing below the insula),

to the occipital lobe [84].

2.2.5 The Inferior Longitudinal Fasciculus

The inferior longitudinal fasciculus (Figures 2-4 and 2-5) connects occipital and tem-

poral lobes. It is involved in the ventral stream for visual processing, the object

recognition pathway [25]. Its connections have been investigated using DTI tractog-

raphy [25].

34

(a) Cingulum bundle (b) Arcuate fasciculus

Figure 5.10: Axons enter and leave anatomical bundles. Image (a) reproduced from O’Donnell [2006]
with permission of Jimmy Fallon, UCI. Image (b) manually selected Arcuate fasciculus after full brain
tractography.

cedure traverses a region with complex bundle configuration. In clustering tracts
into a bundle, a common workaround for this problem consists of seeding all over the
brain and performing a dense whole brain tractography. This algorithm produces
fibre tracts that could later be grouped through clustering techniques [O’Donnell and
Westin: 2007]. This highlights the need for a similarity metric that can quantify the
closeness of two fibres or the degree to which a tract belongs to a bundle; both of these
are challenging problems, critical to automatic bundle identification.

Quantifying fibre similarity is a fundamental part of fibre clustering that has
been addressed in different ways. Recent works [Batchelor et al.: 2006, Corouge
et al.: 2006, Leemans et al.: 2006] quantify fibre similarity with different flavours
of shape statistics. However, partial overlapping of fibres is not taken into account
as a similarity feature. Thus, the previous approaches are unsuited for automatic
classification of fibres in the brain. There is a separate set of works [Ding et al.:
2003, O’Donnell and Westin: 2007, Wassermann and Deriche: 2008, Maddah et al.:
2008a], which uses different clustering algorithms based on the Hausdorff or Cham-
fer distances among the sequence of points parametrizing each fibre tract. This fam-
ily of similarity metrics deals with sets of points instead of curves, hence they discard
continuity or directionality information. Moreover, similarity tends to decrease very
fast in cases of partial overlapping, failing to include fibres diverging from the bun-
dle in the correspondent cluster. In particular, Ding et al. [2003] only analyse fibres
whose seed points are spatially close together. This is not suited for a whole brain
analysis because different fibre seed points from the same bundle may have been
scattered all over the white matter. This seeding technique is frequently used in
order to overcome limitations of streamline tracking in regions with complex bundle
configurations [O’Donnell and Westin: 2007]. Manifold learning techniques are used
by O’Donnell and Westin [2007] and Wassermann and Deriche [2008] to generalize
these distances from small sets of similar fibres to a bigger more diverse set of fibres.
These approaches embed the fibres into Euclidean or topological spaces that can be
handled more easily.

O’Donnell and Westin [2007] start by generating an atlas of white matter fibres,
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fibres from new subjects are then classified according to this atlas. Even though
these automatically grouped bundles are anatomically coherent, the process to gen-
erate the atlas requires heavy user interaction and fine parameter tuning. The level
of manual interaction needed renders the approach difficult to reproduce. Wasser-
mann and Deriche [2008] use a publicly available anatomical atlas in conjunction
with the fibre similarity metric. This work requires a smaller number of parame-
ters, nevertheless situations of partial fibre overlapping generate non-anatomically
coherent bundles. This strategy has proved to be useful for single individuals but
lacks the necessary parameter stability needed for group studies: the parameters of
the algorithm must be fine-tuned individually for each subject in order to obtain the
same white matter bundle. Maddah et al. [2008a] enhances the Hausdorff similarity
with Mahalanobis distance between fibre points. In order to handle partial overlap-
ping, an ad-hoc penalty term is added to this distance. This approach requires user
initialization, by selecting a fibre which is known to be in the desired bundle. Their
subsequent work [Maddah et al.: 2008b] incorporated atlas information to increase
accuracy, however an initial fibre representing each bundle is still required. Re-
cently, Neji et al. [2009] and Durrleman et al. [2009] proposed mathematical frame-
works to perform statistical analysis of white matter fibre bundles, however the main
idea of these metrics still does not take in account partial fibre overlapping as their
predecessors, putting into question their usability for clustering of human brain’s
white matter fibres. From all the presented approaches, only O’Donnell and Westin
[2007] succeed in the task of semi-automated classification of the whole ensemble of
white matter fibres, however this is achieved with a great deal of user interaction and
parameters tuning.

Once bundles have been found, quantitative analysis can be performed. We de-
scribed in detail some of these studies in chapter 2 but we briefly go over the litera-
ture again. Analysis of DMRI-based tractography is useful to monitor pathological
conditions [Ciccarelli et al.: 2008, Kubicki et al.: 2007]. Most of the works perform-
ing bundle statistics [Goodlett et al.: 2009, Hua et al.: 2008, O’Donnell et al.: 2007,
Maddah et al.: 2008a] rely on the use of medial representations for bundles. These
representations are only appropriate for bundles which can be modelled as convex
envelopes. Thus, their methodology is not entirely appropriate at the extremes of
the bundles, an area where the axons fan-out inervating cortical or subcortical struc-
tures. Other works [Oh et al.: 2007] use a mesh approach over ROIs and perform
statistics on the surface. However, automated transition from a set of fibres to the
mesh is unclear. There is recent evidence that tract probability maps can be used
in order to perform bundle-oriented statistics in diffusion MRI [Hua et al.: 2008] and
histological images [Bürgel et al.: 2006]. However, in these two approaches the pro-
cess to obtain the tract probability maps must be performed manually by experts.
Overall, statistical models of white matter bundles which rely on medial representa-
tions are insufficient. Moreover, for models which are more appropriate for a wider
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spectra of bundles, the transition from automatically obtained bundles to these sta-
tistical models is not straightforward.

OUR CONTRIBUTION

In this part of the thesis, we address the important problem of developing a mathe-
matical framework for the quantitative analysis of fibre bundles. This research area
has recently become very active, with the aim of facilitating subsequent clustering
and group-based statistical analyses on the bundles. These statistical analyses aim
to detect changes in the white matter structures. These changes, as we have seen
in chapter 2, can be evident, as in the case of brain stroke that severs tracts, or sub-
tle, as in the case of neuropsychiatric disorders, such as multiple sclerosis which can
manifest as changes in the tracts.

The mathematical framework we propose in this part aims to set the foundation
for statistical analysis of white matter fibre bundles. Particularly, by providing im-
portant operations among them: combination of white matter fibres into a bundle;
quantification of bundle similarity based on their overlap in space; and the mapping
of a point in space to its probability of belonging to a bundle, the tract probability
map of the bundle. In order to, produce a mathematical formulation of these opera-
tions, white matter fibres and bundles are represented as blurred indicator functions.
These functions are then parametrically represented as Gaussian Processes. This
provides a setting to formulate the previously mentioned operations efficiently on the
parameter space of these processes. Moreover, the Gaussian Processes are a suited
tool to represent white matter bundles integrating spatial and diffusion tensor infor-
mation. Hence, we have a set of operations to analyse white matter bundles, and we
are able to provide an efficient implementation in terms of Gaussian processes.

Finally, we use this framework to develop fibre-analysis applications: a method
for automated clustering of fibres into anatomical bundles like the arcuate fasciculus;
an algorithm to select the prototype fibre of a bundle in the same vein as Corouge
et al. [2006], Maddah et al. [2008a] and O’Donnell et al. [2009]; and a technique to
map bundles to tract probability maps, enabling tract-based statistics on the cerebral
white matter like the ones used to characterize neuropathology effects by Pagani
et al. [2005], Lin et al. [2007] and Hua et al. [2008].

The following chapters are as follows: First we review the Gaussian processes
as a mathematical model to infer functions from samples and to define operations
among bundles which are useful to perform statistical analysis. Then, we use these
Gaussian processes in order to develop a model for the fibres and a tool to perform
automatic identification of the human brain’s white matter structures. Finally, we
develop a prototype fibre selection algorithm and we use it to straighten spinal cord
MRI images.



CHAPTER 6

GAUSSIAN PROCESSES

Map drawing and spatial statistics are disciplines that have been around for a
long time. Every traveler needs to orient himself and every farmer looks for different
ways to manage his crops and animals, distribute them on the terrain and quantify
the results. However, the necessity of reducing these maps to numbers and anal-
yse this synthetic representation is fairly recent. The advent of new technologies,
like remote sensing, capable of numerically quantify terrain characteristics, electro
encephalography and magneto-encephalography, capable of measuring brain activity
on the surface of the scalp, represent different cases of modern scenarios where spa-
tial data analysis is used in order to extract information from a function sampled from
a surface. Recently, spatial statistics have been used in combination with functional
Magnetic Resonance Imaging to assess the significance of apparent signal observed
in noisy difference images [Worsley et al.: 1996].

6.1 NON-LINEAR REGRESSION WITH A BAYESIAN FLAVOUR

When dealing with samples of spatial data, two main tasks arise in the pre-processing
step: smoothing and interpolation: given a set of samples from a function y(·)
whose domain is a line, surface or volume, we want to be able to add a reasonable
set of hypotheses and infer, up to a certain error, the value on the whole domain.
More formally, given N data points X = {xi}Ni=1 sampled from a domain D ⊂ R and
its corresponding sampling of the function values Y = {yi = y(xi)}Ni=1, we want to
be able to predict yN+1 = y(xN+1) for any given xN+1 ∈ D. Using the Bayesian
paradigm, we formulate the inference of y(·) from the given samples as a posterior
probability distribution:

P {y(·)|Y,X} =
P {Y |y(·), X}P {y(·)}

P {Y |X} (6.1)

where the factor P {Y |y(·), X} states the probability of the function values being Y

when the chosen function is y(·) and the domain samples are X; the factor P {y(·)}
states the probability of the function y(·) abiding to some prior on the function charac-
teristics, for instance, smoothness and the dividend P {Y |X} accounts for the reliabil-
ity on the function values Y given the domain points X, hence being able to represent
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noise or uncertainty in the measurements.

6.1.1 A one-dimensional case

As an example, let us state a simple problem. Given samples of an one-
dimensional function and the prior condition that it is least wiggly as it can. We
want to find a function that closely fits the sampled function values and is smooth up
to its second derivative. A function which minimizes the functional

M(y(·)) =
N∑
i=1

(y(xi)− yi)2 + α

∫
dx[y′′(x)]2. (6.2)

where α is a tuning parameter giving more importance to the sample approxima-
tion or to the smoothness hypothesis. The previous formulation can be restated into
the Bayesian paradigm by identifying the second term of M(y(·)) as the prior on the
function y(·). Thereby, we state that y(·) is a more probable representation of the
function we’re looking for if it is less wiggly, and we represent this hypothesis proba-
bilistically as

ln(P {y(·)}) ∝ −α
∫
dx[y′′(x)]2. (6.3)

Having the probabilistic representation, we are able to show that this prior
bounds y(·) to be characterized by a parametric probability distribution. In order
to do this, first we take a set of finite samples on X = {xi}Ni=1 ⊂ R and we rewrite the
prior as a probability over a finite number of random variables:

P
{
{y(xi)}Ni=1

}
∝ exp

(
−α

N∑
i=1

[y′′(xi)]
2

)
. (6.4)

Taking y = [y(xi)]
N
i=1 as a column vector and D as the linear operator mapping y(·) to

its derivative, we write the previous equation in matrix form as

P {y} ∝ exp
(
−α

(
D2y

)T (
D2y

))
= exp

(
−αyT

[(
D2
)T

D2
]

y
)
. (6.5)

This shows that P {y} is proportional to the p.d.f. of a Gaussian distributed random
variable in RN with a mean determined by the first term of equation 6.2 and covari-
ance matrix

C =
[
(D2)TD2

]−1 (6.6)

From this, we infer that, under the prior stated in equation 6.3, for every sampling
on R of size N ≥ 1, the probability of those samples coming from a function which
is a candidate function for our problem follows a multivariate Gaussian p.d.f. . But
a function is an infinite set of values, hence we need to extend the previous reason-
ing from a multivariate p.d.f. to a stochastic process 1. We do this by applying Kol-

1. Or stochastic random field
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mogorov’s Existence Theorem [Kolmogorov: 1956]. This theorem states that if every
finite sample of y(·) follows a Gaussian p.d.f. , then the stochastic process represent-
ing the function y(·) follows Gaussian distribution or, for shorter, y(·) is a Gaussian
Process(GP). Analogously to Gaussian multivariate distributions, Gaussian Processes
can be characterized by their mean and covariance functions:

y∗(x) = E {y(x)} =

∫
y(x)P {x} dx (6.7)

c(s, t) = E {(y(s)− y∗(s))(y(t)− y∗(t))} =

∫∫
y(s)y(t)P {s, t} dsdt− y∗(s)y∗(t), (6.8)

where, in order to be coherent with the previous analysis of the finite sample

c(xi, xj) = Cij .

Thus, as the only restriction on the parameters of the multivariate Gaussian p.d.f.
defined in equations (6.5) and (6.6) is that C must be a symmetric positive semi-
definite matrix, the only restriction is that c(s, t) is a symmetric positive semi-definite
function in s and t.

Characterizing the covariance function

Now that we know that y(·) is characterized by its mean and covariance func-
tions, we calculate the covariance function from the prior given on equation 6.3. For
this we use the prior on a finite sample (equation 6.5), and the matrix form of the
covariance (equation 6.6). We rewrite the latter as[(

D2
)T

D2
]

C = D4C = I. (6.9)

Furthermore, if we rewrite the previous expression as

N∑
k=1

[D4]ikCkj = δij (6.10)

and then reformulate it for the continuous case instead of the finite sampling X we
obtain ∫

R
D4(s, u)c(u, t)du = δ(s− t), (6.11)

we can observe that c(·, ·) is the Green function of the fourth derivative opera-
tor [Wahba: 1990]. When we formulated the smoothness hypothesis, we didn’t make
any statement on the smoothness which was related with the domain of the function.
Consequently, the prior does not change along the domain or, we have what is called a
stationary prior. Knowing that we simplify equation 6.11 by performing a change of
variables, taking d(s− t) := c(s, t) and r := s− t, and rewriting it for a single variable
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r [Duchon: 1977]
∂4

∂4r
d(r) = δ(r). (6.12)

Then, the solution to the previous equation is

d(r) =
1

6
|r|3 + a3r

3 + a2r
2 + a1r + a0. (6.13)

As we previously stated, we want c(s, t) hence d(r), to be the covariance function of
the stochastic process modelling y(·). For this, we need d(r) to be symmetric and
positive-definite or, equivalently, it must abide to

d(s− t) = d(t− s), d(0) > 0 and |d(r)| ≥ d(0). (6.14)

In order to meet the first condition, symmetry, we must eliminate all the odd-powered
terms from equation 6.13. Moreover, the last of the three conditions is not generally
possible in the infinite case, but it is if take a fixed value R ∈ R, restrict r to [−R,R]

and we clamp the function and its derivative:

d(r) = 0 and
∂

∂r
d(r) = 0 when r = R. (6.15)

Solving the differential equation given in equation 6.13 with the conditions given in
equations (6.14) and (6.15) [Duchon: 1977], we find that

d(r) =

 1
12

(
2|r|3 − 3Rr2 +R3

)
|r| ≤ R

0 |r| > R
(6.16)

and our stationary covariance function is

c(s, t) = d(s− t). (6.17)

As this function depends only on the distance between s and t, we can call it a ra-
dial function. There is extensive bibliography on symmetric positive-definite radial
functions and their use for inferring a function from samples, we refer the interested
reader to Buhmann [2004], Wahba [1990], Wendland [1995], Buhmann [1998] and
the references therein.

Finally, we can state that y(·) has a stochastic representation as a GP where pa-
rameters of the distribution are its mean and covariance functions:

y(·) ∼ GP(y∗(·), c(·, ·))
where c(s, t) = d(s− t)

(6.18)

Going back to the Bayesian setting for regression we stated in equation 6.1 and using
the parametric model inferred for y(·), we can model the inference problem as the
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posterior on the parameters of y(·):

P {y∗(·), c(·, ·)|Y,X} =
P {Y |y∗(·), c(·, ·), X}P {y∗(·), c(·, ·)}

P {Y |X} . (6.19)

Inferring arbitrary values of the mean and covariance functions

Up to this point, we know that we are looking for a function y(·), that we have
samples of the values of this function, Y = {yi}ni=1 ⊂ R, corresponding to a sampling
X = {xi}ni=1 ⊂ R on the domain of the function. Also, we know that the function
follows a GP and the formulation for its covariance function. Hence, in order to be
able to compute the value of the function at an arbitrary point of the domain, xN+1,
we need to compute the values of the mean and covariance functions at that point.

In the Bayesian framework we presented, computing the mean and covariance
functions for a given point translates into characterizing the p.d.f. of an arbitrary
value of the function, yN+1, given the sampling X,Y . This p.d.f. is usually called the
predictive distribution and it is equivalent to calculating, given the samplings X,Y ,
the probability that yN+1 has of being a value of the function y(·) at point xN+1 in the
domain which is not necessarily in the original sampling:

P {yN+1|xN+1, X, Y } . (6.20)

We characterize this p.d.f. using properties of the Gaussian Processes, in particular
the one given in equation B.3. First, equivalently to a subset of components of a
multivariate Gaussian, the joint distribution of a sample of y(·) over X ⊂ D follows a
multivariate Gaussian p.d.f. . Due to this, it is possible to use Bayes’ rule to state

P {yN+1|xN+1, X, Y } =
P {yN+1, Y |xN+1, X}

P {Y |xN+1, X}
. (6.21)

where, as a consequence of the previous argument, the two probabilities on the right
hand side are multivariate Gaussian distribution. Hence, by notating X and Y in
vector form as x = [x1, . . . , xN ]T and y = [y1, . . . , yN ]T we are able to define the p.d.f.
of the denominator of equation 6.21

Y |xN+1, X = Y |X = y|x ∼ G (y∗,Cyy) , [Cyy]ij = c(xi, xj) (6.22)

and of its numerator y

yN+1

 ∼ G

 y∗

y∗N+1

 ,


Cyy Cy

CT
y cxN+1



 (6.23)
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Figure 6.1: Gaussian Process-based one dimensional function regression. Four samples, noted as
black crosses, are given as an input. The probabilistic prior on the function to infer is the one in equa-
tion 6.3. From the prior, a covariance function with a parameter R is derived, shown in equation 6.18.
The mean function is inferred from equation 6.25 and plotted in blue. The shading represents the
mean function plus-minus three times the standard deviation function, in equation 6.26, corresponding
to the 3 standard deviations or the 99.7% confidence region.

where Cy = [c(x1, xN+1), . . . , c(xN , xN+1)]T and cxN+1 = c(xN+1, xN+1). Then, by di-
viding the p.d.f. of the two Gaussian distributions of equation 6.21, as stated in equa-
tion B.3, and applying the partitioned inverse equation B.5, we can characterize the
p.d.f. of yN+1 is the univariate Gaussian

yN+1 = y(xN+1) ∼ G
(
y∗N+1, σ

2
N+1

)
, (6.24)

where its mean and variance are inferred from the samplings X and Y as

y∗N+1 = y∗(xN+1) = Cy(xN+1)TC−1
yy y, (6.25)

σ2
N+1 = σ2(xN+1) = cxN+1 − Cy(xN+1)TC−1

yyCy(xN+1). (6.26)

This characterization of yN+1 provides, in fact, an estimation of the function value at
an arbitrary point: first, due to the previous reasoning, we know that yN+1 is the
value of the function y(·) at xN+1, yN+1 = y(xN+1); second, that given xN+1 the most
probable value of y(xN+1) is y∗N+1. In figure 6.1 we show the inferred function y(·),
as a blue line, from a set of four samples, marked as black crosses. Moreover, we also
use a shading in order to illustrate the 99.7% confidence region, or y∗(x) ± 3

√
σ2(x).

It can be seen in this illustration that, through GP-based regression, we were able
to infer a continuous function which is parametrically represented by its mean and
covariance functions.

Finally, it is simple to generalize the GP framework for Bayesian regression to
higher dimensions, what is called Gaussian Random Fields. This is achieved by
solving the integral equation 6.11 for RK , K > 1. For instance, solving it for the
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(a) R = 0.1 (b) R = 0.5 (c) R = 1.0

Figure 6.2: Gaussian Process-based two-dimensional function regression. Five samples, noted as
dots colored by their value, are given as an input. The probabilistic prior on the function to infer is the
one in equation 6.3. From the prior, a covariance function with a parameter R is derived, shown in
equation 6.27. The mean function is inferred by means of equation 6.25 and shown in the same color
code as the colored dots.

two-dimensional case leads to

c(s, t) = d(‖s− t‖),

where d(r) =

2r2 log |r| − (1 + 2 log(R))r2 +R2 |r| ≤ R
0 |r| > R

(6.27)

Then, the same regression procedure we used for the one-dimensional case can be
applied. In figure 6.2 mean functions for a set of 5 samples and different values of R
are shown.

In this section we have derived a stationary covariance function from a smooth-
ness hypothesis. However, this is not the only covariance function available, the
use of different covariance functions has been studied in different fields. Differ-
ent flavours of these functions have emerged from a wide range of hypotheses and
case studies. We refer the interested reader to reviews of its use in Machine Learn-
ing by Rasmussen and Williams [2006] and MacKay [1998] and in spatial statistics
by Cressie [1991] and Stein [1999].

6.2 NON-STATIONARY PRIORS ON FUNCTION REGRESSION

While Gaussian Process-based models of function regression based on stationary
priors have been successfully used in spatial statistics [Stein: 1999], in Machine
Learning [Rasmussen and Williams: 2006] and in statistical analysis of brain func-
tions [Worsley et al.: 1996], these approaches have the weakness of being global mod-
els. In these, the variability of the estimated process is the same throughout the
domain because the covariance function is equal over its whole extension.

This lack of adaptability to variable or heterogeneous scenarios of the under-
lying function is of particular importance in every application field. Take for in-
stance a mountain scenario, typical of the Andes mountains, where beside to rocky



162 CHAPTER 6. GAUSSIAN PROCESSES

and uneven mountains there are cliffs and plain valleys. Recently, spatial statis-
tics researchers made progress in defining and constructing several kinds of non-
stationary covariance functions [Paciorek and Schervish: 2006]. Covariance func-
tions are the way to express prior information on the inferred function, therefore,
from a Bayesian point of view, this is equivalent to proposing non-stationary priors on
the function to be inferred. In order to retain the focus on the tools used in this work,
we solely present the general way of constructing non-stationary covariance func-
tions through convolving spatially varying kernel functions, a technique introduced
by Higdon et al. [1999] and Fuentes and Smith [2001] and generalized by Paciorek
and Schervish [2006]. We refer the interested reader to the works of Rasmussen
and Williams [2006], MacKay [1998] and [Paciorek and Schervish: 2006] for reviews
of non-stationary covariance functions and their applications to different research
fields.

The main result proposed by Higdon et al. [1999] is that given a spatially evolving
kernel K(·;x), the function

cNS(s, t) =

∫
K(u; s)K(u; t)du (6.28)

is the covariance function of a non-stationary Gaussian Process. The fact that
cNS(s, t) is symmetric is simple to verify, therefore we only need to prove that is
positive semi-definite:

N∑
i=1

N∑
j=1

aiaj

∫
K(u; xi)K(u; xj)du = (6.29)

∫ N∑
i=1

aiK(u; xi)

N∑
j=1

ajK(u; xj)du (6.30)

∫ ( N∑
i=1

aiK(u; xi)

)2

du ≥ 0. (6.31)

Then, if w(x) is a white noise Gaussian Process

w(·) ∼ GP(w∗(·), δ(s, t)), (6.32)

the stochastic process

y(x) =

∫
K(u;x)w(u)du (6.33)

has a Gaussian Process p.d.f. and its covariance function is:

E{(y(s)− y∗(s))(y(t)− y∗(t))} = E{y(s)y(t)} − y∗(s)y∗(t) (6.34)
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where [Higdon et al.: 1999, Fuentes and Smith: 2001]

E{y(s)y(t)} =

∫ ∫
K(u; s)K(u′; t)δ(u,u′)dudu′ =

∫
K(u; s)K(u; t)du. (6.35)

This family of covariance functions is able to model spatial functions where the cor-
relation between two data points changes with their location.

6.2.1 A Gaussian example

In order to illustrate an application of non-stationary Gaussian Process, we show
two inferred functions from the same set of samples on a domain D shown in fig-
ure 6.3a. Each inference uses a different covariance function:

Stationary inference The covariance function for this scenario is given by previ-
ously known isotropic Gaussian p.d.f. :

cS(x,y) =
1√

2πσ2
exp

(
−‖x− y‖2

2σ2

)
,

with σ = 0.5. Figure 6.3b shows, for set of points in the domain, the area
comprehended within one standard deviation of the corresponding covariance
function in green.

Non-stationary inference The covariance function for this scenario is given by an
anisotropic Gaussian p.d.f. which depends on the position:

cNS(x,y; z) =
1

2π
√
|A(z)|

exp

(
−1

2
(x− y)TA−1(z)(x− y)

)
,

where A(z = (z1, z2)) = R(− atan2(z1, z2))

(
.5 0

0 .1

)
and R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
.

Figure 6.3c shows, for set of points Z in the domain, the area compre-
hended within one standard deviation of the corresponding covariance function,
A(·, ·; z), z ∈ Z in green.

Then, we perform the inference process described in section 6.1 using the two
covariance functions. For each point in D, we used the set of samples shown in
figure 6.3a and the above described covariance functions to infer the mean function of
the corresponding GP as described in subsection 6.1.1. The resulting function for the
stationary case can be observed in figure 6.3d where it is noticeable how the boundary
exhibits a wiggled behaviour due to the choice of the covariance function. In the non-
stationary case, figure 6.3e, as the covariance function converges to a diagonal at a
location close to the boundary shown by the samples ( figure 6.3a ) it can be observed
that the inferred function (figure 6.3e) shows a straight line corresponding to the
boundary.
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Figure 6.3: Inference of a function given by a set of samples using stationary and non-stationary
covariance functions. Samples are shown in subfigure (a), where it can be noted a boundary at the
diagonal. In order to illustrate the stationary and non-stationary covariance functions, the support
of the covariance functions at a set of sampled points is represented by green circles and ellipsoids,
shown in subfigures (b) and (c). When the prior is stationary, the circles are equal all over the domain
( subfigure (b) ) and the result of the inference process ( subfigure (d) ) shows artifacts at the boundary.
When the prior is non-stationary, converging to a diagonal line at the centre, it can be observed that the
sharpness of boundary is preserved, subfigure (e).

Overall, we have shown that non-stationary covariance functions constitute a flex-
ible tool to include a rich set of hypotheses in GP-based regression. Moreover, we
have also shown that using a non-stationary covariance function does not require
any change in the inference framework, provided that we know it in advance.

6.3 FUNCTION INNER PRODUCT SPACE

In this work, the main goal of using the Gaussian Process framework is to be able
to perform statistical analysis on functions which are inferred from samples. The
main advantage of the GP representation of the functions is its usability as a proper
space to perform statistics: we can build a vector space, and furnish it with an inner
product operation, based on the parameter space of the Gaussian Processes. The
combination of the vector space with an inner product operation results in an inner
product space. Within this space, we can interpolate functions and quantify their
similarity, two fundamental operations for performing statistical analysis. In this
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Figure 6.4: Average of two Gaussian Processes. On the left, in red and blue, we show the mean
function and 99.7% confidence interval of the Gaussian Processes of two functions inferred from samples.
On the right, in purple, is the Gaussian Process of the mean function and its 99.7% confidence interval
calculated by equation 6.44

section, we show how to build a vector space of functions based on the GP.

The main results of this section are the linear combination between two functions
represented as Gaussian processes

αy1(·) + βy2(·) ∼ GP(αy∗1(·) + βy∗2(·), α2c1(·, ·) + β2c2(·, ·)) (6.36)

and an inner product operation

〈y1(·), y2(·)〉 :=

∫
y∗1(x)y∗2(x)dx, . (6.37)

As direct consequence of the previous characteristics, an norm is induced by the inner
product:

‖y(·)‖ := 〈y(·), y(·)〉 (6.38)

These two operations combined with the linear combination form a vector space of
functions represented as Gaussian Processes. This constitutes a comfortable space
to operate and perform statistical analysis of functions inferred from a finite number
of samples and a priori information about their smoothness.

6.3.1 Vector Space

We begin by formulating the vector space properties among functions, meaning
scalar multiplication and addition, in terms of Gaussian processes. It is easy to
prove that the GP representation of the functions can represent these operations in
parameter space as the linear combination of two multivariate Gaussian r.v. is also
representable in terms of their multivariate distribution: being this the case for any
finite sample of the GP, due to Kolmogorov’s consistency theorem, they are valid for
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the GP itself. Then, given two functions represented as GPs

y1(·) ∼ GP(y∗1(·), c1(·, ·)) (6.39)

y2(·) ∼ GP(y∗2(·), c2(·, ·)) (6.40)

the following properties apply

αy1(·) ∼ GP(αy∗1(·), α2c1(·, ·)) (6.41)

y1(·) + y2(·) ∼ GP(y∗1(·) + y∗2(·), c1(·, ·) + c2(·, ·)). (6.42)

The definition of these operations verifies, as with the multivariate Gaussian r.v.
, that functions represented as GPs constitute a vector space. Consequently, lin-
ear combination of functions in terms of the parameters of their corresponding GPs,
shown in equation 6.36, is defined by combining the two previous rules. From the
two operations defined above, it is straightforward to define linear interpolation

αy1(·) + (1− α)y2(·) ∼ GP(y∗α(·), cα(·, ·)), α ∈ [0, 1]

y∗α(·) = αy∗1(·) + (1− α)y∗2(·),
cα(·, ·) = α2c1(·, ·) + (1− α)2c2(·, ·))

(6.43)

and averaging

1

N

N∑
i=1

yi(·) ∼ GP
(

1

N

N∑
i=1

y∗i (·),
1

N2

N∑
i=1

ci(·, ·)
)
. (6.44)

of functions. We illustrate the mean of two GPs in figure 6.4, and in figure 6.5 the
interpolation of the mean functions of two GP is shown. Thus, the functions repre-
sented as GPs form a vector space and the operations of this vector space are defined
in terms of the parameters of the GPs.

6.3.2 Inner product space

Now that we have stated that the functions represented as GPs are a vector space,
and that we can operate on the parameter space their distributions, we proceed to
furnish this vector space with an inner product operation.

We define an inner product operation that accounts for the L2 norm between func-
tions. Moreover, in order to reduce the computational complexity of this operation,
we define a deterministic inner product operation. To provide such operation, we
need to make a decision about the value of y(x) defined in equation 6.25. This is
done by employing decision theory [De Groot: 2004]: to make a decision about the
value of y(x) at x, we use a point-like prediction, y+(x). This prediction is taken
in order to minimise the error in the squared norm induced by our inner product (
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Figure 6.5: Interpolation of two Gaussian Processes. We show the mean function of the Gaussian
Process corresponding to two functions inferred from samples in red and blue. Between both of them,
the mean function of several Gaussian Processes obtained by equation 6.43

equation 6.38 )

argmin
y+(x)

∫ (
y+(x)− y(x)

)2 P {y(x)|y, t, x} dy(x) = y∗(x). (6.45)

Thus letting the mean value of y(x), y∗(x), be an appropriate estimator of the value of
y(x) at x. Then, as y∗(x) is square integrable due to its definition in equation 6.25,

〈y1(·), y2(·)〉 :=

∫
y∗1(·)y∗2(·)dx

is an inner product [Schmidt: 1908]. Furthermore, it can be easily computed by re-
placing equation 6.25 in the previous formula:

〈y1(·), y2(·)〉 :=

∫ (
Cy1(x)TC−1

y1y1
y1

)T (
Cy2(x)TC−1

y2y2
y2

)
dx

=

∫ (
yT1
(
C−1

y1y1

)T)
Cy1(x)Cy2(x)T

(
C−1

y2y2
y2

)
dx.

Moreover, we can simplify the previous expression using that Cy1(x) and Cy2(x) are
the only vectors depending on x:

〈y1(·), y2(·)〉 := yT1
(
C−1

y1y1

)T (∫
Cy1(x)Cy2(x)Tdx

)
C−1

y2y2
y2 (6.46)

where [∫
Cy1(x)Cy2(x)Tdx

]
ij

=

∫
c([y1]i, x)c([y2]j , x)dx. (6.47)

This final expression of the inner product, equation 6.46, can be calculated analyti-
cally whenever there is a closed form solution for equation 6.47.

This not only completes our definition of an inner product space for functions
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represented as GPs but also shows how function interpolation and the calculation of
the inner product between two of them can be carried on within the parameter space
of the GPs.

6.4 SUMMARY

In this chapter, we recalled the basics of Gaussian Processes in order to state function
interpolation within the Bayesian Paradigm. In the following part of this thesis,
Gaussian Processes will play a fundamental role to develop a statistical framework
for white matter fibre tracts calculated from tractography.



CHAPTER 7

GAUSSIAN PROCESS FRAMEWORK

FOR WHITE MATTER BUNDLES

The goal of this chapter is to introduce a novel mathematical framework for per-
forming statistical analysis of fibre tracts and bundles. Our model includes diffu-
sion information and relates the bundles with an ROI in the volume, mapping every
voxel to degree of membership to the bundle, the bundle’s blurred indicator func-
tion. It provides a similarity measure for fibre bundles and fibre tracts, which are
considered as single-fibre bundles. Its linear combination operation between fibre
bundles seamlessly generates new bundle configurations and allows for the volume-
based statistics of fibre bundles. In addition, the similarity measure handles cases
of partial fibre overlap naturally. The previously mentioned characteristics facilitate
statistical analysis and classification/clustering tasks. Finally, we present a cluster-
ing application based on our mathematical framework and on anatomical information
in the shape of a volumetric atlas. The output of this application is a set of automat-
ically obtained white matter bundles like the Arcuate Fasciculus or the Cingulum.
For each bundle, we are also able to produce an ROI which maps every voxel to its
probability of belonging to the bundle, referred in previous work as tract probabil-
ity map [Hua et al.: 2008, Bürgel et al.: 2006]. This map is an appropriate tool to
perform bundle-based statistics on the cerebral white matter. We validate this clus-
tering algorithm by applying it to 68 healthy subjects and then performing statistical
analysis on the results using our mathematical framework.

7.1 INTUITION

The first step in designing our framework is to provide a mathematical model for
white matter fibres. Each fibre tract F is modeled as a blurred indicator function
yF : p∈R3→R. This blurred indicator function has a maximal level set which corre-
sponds to F . Moreover, yF is blurred in accordance with the information provided
by the underlying diffusion tensor field, i.e. along the fibre direction and not across
it. This is illustrated on figure 7.1.

Then, we need to govern the properties of our fibres/functions while subse-
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Figure 7.1: Gaussian Process representation of the fibre: We model each fibre as a blurred indicator
function. Each fibre obtained by tractography is constituted as a sample of points over a line, which is
shown in red line on the left side of the figure, and its corresponding diffusion tensor field, indicated by
the blue tensors over the red fibre. The sampled points are then used to generate a blurred indicator
function with a maximal level set which corresponds to the fibre (central image of the figure). Then,
the fibre is blurred in accordance with the information provided by the underlying diffusion tensor field.
The resulting representation, on the right side of the figure, is a smooth indicator function blurred along
the fibre direction.

quently simplifying a certain number of sophisticated operations between the fibres
like similarity quantification and combination into bundles. Gaussian Processes
(GP) [Seeger: 2004], as we show in chapter 7, provide the right framework to inte-
grate spatial and diffusion tensor MRI information for yF and to perform these op-
erations between the fibres. A Gaussian Process can be seen as a generalization of
the classical Gaussian probability distribution to describe properties of functions and
not only properties of random variables such as scalars or vectors. More precisely,
we model the blurred indicator function yF (p) by the GP

yF (p)∼GP(y∗F (p), cF (p,p′)), (7.1)

where the mean function y∗F (p) and covariance function cF (p,p′) are the parame-
ters of this stochastic process. These two functions are inferred from the tractogra-
phy of each fibre. That is, from the sequence of points f = {f1, . . . , f|f |} estimated
by tractography of the anatomical bundle F and from the corresponding sampling
on its diffusion tensor field Σ(f1), . . . ,Σ(f|f |). The inference process of the GP corre-
sponding to a white matter fibre is developed in subsection 7.2.1. It is important
to point out that such framework provides also adequate computational tractability.
Through closed form operations on the parameters of the GPs, it allows us to measure
bundle similarity with partial fibre overlap without relying on point correspondences
and to combine different fibres into a bundle by simply averaging the fibres’ GPs.
Now that we have a Gaussian Process representation of white matter fibre bundles,
we can express similarity, combination and tract probability maps in terms of this
representation.

Firstly, we implement a similarity measure between bundles. Our measure
quantifies the overlapping as of two bundles as illustrated in figure 7.3. This is done
with an inner product operation developed in detail in subsection 7.2.3. If the mean
function representing a bundle F , y∗F (p), is square integrable and has finite support,
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(a) F1 (b) F2 (c) F3 (d) F4 (e)
∑

i
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4

Figure 7.2: Mean indicator function for four fibre tracts (a-d) and mean indicator function for the
bundle formed by averaging them according to our framework (e). Blue color means that the bundle is
more likely to cross that voxel while red color means it is not likely that the bundle traverses that voxel.
Fibres were manually selected from a full brain tractography and belong to the Cingulate Cortex section
of the Cingulum (CgC).

the inner product between two bundles F and F ′ is defined as

〈F ,F ′〉 :=

∫
R3

y∗F (p)y∗F ′(p)dp, (7.2)

along with its induced norm
‖F‖2 := 〈F ,F〉. (7.3)

Moreover, we can define a similarity measure, bounded by 1 when F and F ′ are ex-
actly the same and by 0 when there is no intersection, as the inner product normalized
by its induced norm,

〈F ,F ′〉N :=
〈F ,F ′〉
‖F‖‖F ′‖ . (7.4)

Examples of these two similarity measures are shown in figure 7.3.
Using our framework, we are able to combine N fibres into a bundle by simply

averaging the GPs corresponding to these fibres. The GP which corresponds to the
indicator function of a fibre bundle B, is obtained through the mean Gaussian Pro-
cesses of single fibres or smaller bundles composing it,

yB(p) =
1

N

N∑
i=1

yFi(p)∼GP
(
y∗B(p); cB(p,p′)

)
,

where y∗B(p) =
1

N

N∑
i=1

y∗Fi
(p) and cB(p,p′) =

1

N2

N∑
i=1

cFi(p,p
′).

(7.5)

An example of this is shown in figure 7.2, where blurred indicator functions for four
fibre tracts and the obtained function for the bundle combining them can be seen.

It is worth noting that the combination of fibres bundles, which is a linear com-
bination operation, and the similarity measure, which is an inner product operation,
constitute an inner product space. As we will show later, this space is an appropriate
support to perform statistical analyses such as clustering of fibre bundles.

We mentioned previously the importance for bundle statistics of the tract proba-
bility map, the probability that a point p in R3 is contained in a bundle B, P {p ∈ B}.
As we show in subsection 7.2.4, having calculated the GP for a bundle B, yB(·), by
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FF & UNC FF & FF FF & FF CgC & CgC

y∗F (p)

y∗F ′(p)

y∗F (p)y∗F ′(p)

〈F ,F ′〉 4.26 115.61 48.03 2089.
〈F ,F ′〉
‖F‖‖F ′‖ 0.093 0.800 0.474 0.600

Figure 7.3: Examples of the product of blurred indicator functions for different fibre pairs, the value
of our inner product operation 〈F ,F ′〉, defined in equation 7.2, and of our inner product normalized
by its natural norm, ‖F‖ =

√
〈F ,F〉 . Inner product quantifies the overlapping of blurred indicator

functions. A larger inner product means that fibres are more similar and relates to the volume of
the overlapping. The inner product normalized by its norm quantifies similarity ranging from 0 when
overlapping is null to 1 when the two fibres are identical. The compared fibres have been extracted
from different anatomical tracts of a diffusion MRI image, the Frontal Forceps (FF), the Uncinate Fas-
ciculus (UNC) and the Cingulate Cortex section of the Cingulum (CgC).

means of equation 7.5, we can define the tract probability map from the parameters
of the GP as

P {p ∈ B}∝ 1

2
√
π(h2 + σ2

B(p))
, (7.6)

where h is a parameter that diffuses the tract probability map in space and σ2
B(p) is

calculated from the parameters of yB(·). In order to illustrate the tract probability
map calculated from a GP for a bundle, color-coded surfaces and a probability map
over an FA image for anatomical bundles are shown in figure 7.4.

Up to this point, we have introduced our GP-based framework for white matter
fibre bundles and its three main operations: combination of fibres into a bundle, sim-
ilarity quantification and calculation of the tract probability map. Thus, in this sec-
tion we provide all the right and necessary tools to perform a quantitative statistical
analysis of white matter fibre bundles. In the following sections, we use these tools
in order to perform automatic white matter bundle identification by means of white
matter fibre clustering and we assess the quality of this clustering by performing
inter-subject statistical analysis of white matter fibre bundles using our framework.

7.2 GAUSSIAN PROCESS FRAMEWORK

Gaussian Processes (GP) have been introduced in chapter 6. In designing a model
for the white matter fibre bundles, we use GPs to produce a parametric representa-
tion. Particularly, we take advantage of its capability to incorporate different types
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(a) B1: right CG (b) B2: right CST (c) B3: left CST (d) B4 : FF

Figure 7.4: Iso-probability surfaces for manually selected fibre bundles, fig. (a-c), and tract probability
map over FA for an automatically obtained bundle, fig. (d), see chapter 3. The probability at each
voxel is calculated using equation 7.6. Color code for fig. (a-c) is as follows, Blue: P {p∈Bi} = .01,
Yellow: P {p∈Bi} = .2, Red: P {p∈Bi} = .6.

of hypotheses into the model. This representation provides a simple way to linearly
combine fibres into bundles and to measure similarity through an inner product oper-
ation which we develop in subsection 7.2.3. Moreover, it provides a natural method
to calculate tract probability maps, developed in subsection 7.2.4.

7.2.1 Single fibres as Gaussian Processes

Our parametric representation of a single fibre bundle is based on two hypotheses.
Firstly, smoothness: due to the fact that fibre bundles in the brain do not have sharp
angles [Basser et al.: 2000], we consider that the least wiggled trajectory joining the
sample points of a fibre represents that fibre in a most probable manner. Secondly,
diffusion associated blurring: The decay of the blurred indicator functions at each
point on the bundle can be modeled using the water diffusion profile at that position.
This relates the width of the bundle with the two smallest eigenvalues and their
eigenvectors.

Using these two hypotheses, we write yF (p), the GP for the indicator function of
fibre F , y(p) for clarity, as the combination of two other GPs, ys(p) and yd(p). The
process ys(p) represents the smoothness of the trajectory in space, its parameters
are inferred from the point sequence obtained through the tractography of a fibre:
f = {f1, . . . , f|f |}⊂R3. The process yd(p) represents the diffusion information, adds a
variability to the fibre at p using full diffusion information and it is inferred from the
tensor field over the fibre Σ(f1), . . . ,Σ(f|f |). We now show that ys(p) and yd(p) can be
modelled as GPs by characterizing them through covariance functions.

Smoothness

In chapter 6 we showed that GPs are a fit parametrical model for smooth func-
tions. Particularly, this is the case of blurred indicator functions. Having stated
that functions abiding to a smoothness constraint are representable by GPs in
the aforementioned chapter, we proceed to fully characterize the GP correspond-
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(a) Blurred indicator function using smooth-
ness only

(b) Blurred indicator function using smooth-
ness and diffusion information

Figure 7.5: Segment of two blurred indicator functions for the same fibre. On the left, the green dots
represent the samples of the fibre f , only the smoothness-related Gaussian Process is used to generate
the blurred indicator function. On the right smoothness and diffusion associated blurring, the green
ellipses denote the diffusion tensors. It can be seen how, the decay from the fibre to the background
is even along the fibre on the left, while on the right depends on the directional diffusion intensity
represented by the diffusion tensors.

ing to the blurred indicator functions, which consists of deriving the appropriate
covariance function. This amounts to find the solution of equation 6.11 for the
three-dimensional case: the solution for the previously mentioned equation inside
a sphere in R3 of radius R is

cs(p,p
′) := ψ(‖p− p′‖),ψ(r) =

2|r|3 − 3Rr2 +R3 r≤R
0 r > R

, (7.7)

where the constants have been chosen such that cs(p,p′) is a positive semi-definite
symmetric function.

Up to this point, we have fully characterized the probabilistic space of functions
which describes the blurred indicator function for a smooth trajectory as the family of
GP whose covariance function is given by equation 7.7. In subsection 7.2.2 we show
how this is useful to infer the value of ys(·) at an arbitrary point in space from a finite
set of samples. The result of this inference process is shown on figure 7.5a.

Diffusion associated blurring

Until now, we have only used the points which constitute a fibre, to build the
blurred indicator function. This function has a maximal value for points with high
probability of being at the fibre and decays to 0, meaning no probability of belong-
ing to the fibre, at an even speed across the fibre as seen in figure 7.5a. Within
this section, we develop the means to perform the blurring using full tensor infor-
mation. This means that on every direction, the intensity of the blurring depends
on the intensity of the diffusion of water molecules. This diffusion is modelled by
the diffusion tensors associated with the fibre which were obtained through diffusion
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tensor MRI. This will enhance the blurring of the blurred indicator function along the
fibre and relate the decay across it to the width of the diffusion tensors as depicted
in figure 7.5b.

We now represent the diffusion information of a point in the trajectory by a blur-
ring GP at that point. The usual practice in GP literature is to perform isotropic
blurring on every sampled point of the function [MacKay: 1998]. In our case, we
use anisotropic blurring at every given point sampled from fibre by means of a sec-
ond covariance function based on diffusion tensor MRI information. This covariance
function is built with convolution kernels as detailed in subsection 6.1.1. More pre-
cisely, the anisotropic that we apply at a point of the blurred indicator fucction at a
point p uses diffusion tensor information. For this, we need to encode DT informa-
tion into a blurring kernel k(·; p): we take the kernel as the probability of a particle
going from p to w in a time τ in terms of the Diffusion Tensor Σ(p) [Basser et al.:
1994b],

k(w; p) = P {w|p, τ,Σ(p)} =

1√
(4πτ)3|Σ(p)|

exp
(
− 1

4τ (w − p)T (Σ(p))−1 (w − p)
)
. (7.8)

Finally, by performing the integral in equation 6.28, we characterize the covariance
function for the anisotropic blurring process as,

cd(p,p
′) = 1√

(4πτ)3|Σ(p)+Σ(p′)|
exp

(
− 1

4τ (p− p′)T
(
Σ(p) + Σ(p′)

)−1
(p− p′)

)
.

To conclude this section, having characterized the covariance function of the
anisotropic blurring process, the blurring at each point is represented by a zero mean
GP,

yd(p) ∼ GP
(
0, cd(p,p

′)
)
.

This GP, as seen on the following section, combined with the GP representing the
smooth blurred indicator function, ys(p), produces a smooth function blurred in ac-
cordance to diffusion tensor MRI information as shown in figure 7.5b.

Gaussian Process Representation of a Fibre

We are now in position to write the GP formulation for the blurred indicator func-
tion of the fibre:

y(p)∼GP
(
y∗(p) = y∗s(p); c(p,p′) = cs(p,p

′) + cd(p,p
′)

)
. (7.9)

Up to this point we have a Gaussian Process-based model for the white matter fi-
bres. This model incorporates spatial and diffusion information. Moreover, within
this model we can linearly combine fibres into bundles as show in equation 7.5 and
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quantify similarity as shown in equation 7.2. In the remainder of this appendix we
show how to characterize the value of the indicator function y(p) at any test point
p ∈ R3, how to effectively calculate the similarity between two fibres and finally, how
to calculate the tract probability map for a bundle.

7.2.2 Calculating the indicator function value distribution for a test
point

We want to calculate a p.d.f. for the value of y(·) at a test point p∈R3. This
is a simple operation as we have a GP representation of the indicator function
y(·) for a trajectory F , see equation 7.9. The p.d.f. of y(p), given the tracked
point sequence f = {f1, . . . , f|f |}⊂R3 and its corresponding diffusion tensor field
Σ = {Σ(f1), . . . ,Σ(f|f |)}⊂SPD(3) are characterized as Gaussian-distributed random
variable. More precisely, y(p) is the Gaussian distribution,

(y(p)|f ,Σ,p)∼G
(
y∗(p), σ2(p)

)
(7.10)

due to marginalization properties of the GPs [MacKay: 1998]. Setting y(p) to take
the constant value l when p is a point that belongs to the fibre trajectory F , the mean
and covariance functions can be calculated in the following way [MacKay: 1998]:

y∗(p) = Sf (p)TC−1
ff 1l σ2(p) = cs(p,p)− Sf (p)TC−1

ff Sf (p), (7.11)

where [Sf (p)]i = [cs(fi,p)]i, [Cff ]ij = [c(fi, fj)]ij with 1 ≤ i, j ≤ |f | and 1 is the vector
with all ones; the functions cs(·, ·) and c(·, ·) were defined in equation 7.7 and equa-
tion 7.9. This formulation is equivalent to “train” a Gaussian Process-based regres-
sion with values l at the sampled fibre points and 0 everywhere else. We set the
parameter R such that we guarantee that the blurred indicator function is compact,
as the maximal distance between two consecutive points in f . The parameter τ mod-
ulates the scale of the diffusion associated covariance function by setting a diffusion
time. We set it as the maximal time needed to traverse the maximal distance be-
tween two consecutive sampled points,R. More precisely, letting λ1(Σ) be the largest
eigenvalue of the tensor Σ, the parameter is

τ = max
i=1..|f |

R√
λ1(Σ(fi))

Examples of blurred indicator functions can be seen in figures 7.2, 7.3 and 7.5.

7.2.3 Inner Product Space of Fibre Bundles

Having the white matter bundles represented as GPs, similarity between two of
them can be measured in terms of the parameters of their GPs using the inner prod-
uct operation defined in subsection 6.3.2. Consequently, due to the fact that GPs
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constitute an inner product space (subsection 6.3.2). An interesting outcome of the
inner product space property of our framework is the simple calculation of similarity
between fibre bundles. We are able to calculate this similarity among two bundles
of white matter fibres, B = {F1, . . . ,FN} and B′ = {F ′1, . . . ,F ′M},

〈B,B′〉 =

〈
1

N

N∑
i=1

yFi(p),
1

M

M∑
j=1

yF ′j (p)

〉
,

by using the linearity and symmetry properties of the inner product operation.
Then, the previous equation becomes

〈B,B′〉 =
1

NM

N∑
i=1

M∑
j=1

〈
yFi(p), yF ′j (p)

〉
. (7.12)

This provides a quick and simple way to calculate the similarity between to fibre
bundles using the fibre-to-fibre similarities. In chapter 7 we use this advantage to
perform clustering of fibre bundles.

7.2.4 Calculation of the Tract Probability Map

Having characterized y(·) as a GP in subsection 7.2.1, we can express the prob-
ability that a point p in R3 is contained in a bundle F , this map is called the tract
probability map. We do this by calculating the probability of y(p) = l or, equivalently
the expected concentration of the random value y(p) around l,

P {p∈F} := P {y(p) = l|f ,Σ,p}∝E[θ(y(p)− l)|f , t,p]. (7.13)

where θ : R→[0, 1] is a symmetric kernel. To ease the equations and the computation
time, we take θ(·) as a Gaussian kernel, with standard deviation h,

θ(y(p)− l) =
1

2
√
πh

exp

(
−
(
y(p)−l
h

)2
)
.

Then, we calculate equation 7.13 as

E[θ(y(p)− l)|f , t,p] =

∫
θ(y(p)− l)P {y(p)|f , t,p} dy(p)

which leads to

P {p∈F}∝E[θ(y(p)− l)|f , t,p] =
1

2
√
π(h2 + σ2(p))

. (7.14)

where h is a bandwidth parameter and σ2(p) is defined in equation 7.11. Then, the
tract probability map for a bundle F on a domain Ω, is calculated by evaluating
P {p ∈ F} at every point p ∈ Ω. In order to illustrate the probabilistic map for a
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Algorithm 7.1 Fibre bundle clustering algorithm
Inputs: a full brain tractography F = {Fi}, with 1 ≤ i ≤ |F |, calculate the set of
stochastic processes representing each fibre Y = {yFi(p)}.
Outputs: A dendrogram T .

1: Initialize the set of edges in the dendrogram: T = ∅
2: while there is a pair of different bundles B,B′ in B, s.t. 〈B,B′〉 > 0 do
3: Select two different bundles B,B′ such that 〈B,B′〉 = maxC,C′∈B〈C, C′〉.
4: Remove the bundles B and B′ from B and add the bundle {B + B′}.
5: Add the edge (B,B′) to the dendrogram T .
6: end while
7: return T

bundle, color-coded surfaces and a probability map over an FA image for anatomical
bundles are shown in figure 7.4. These tract probability maps are highly similar to
the hand-obtained ones by Hua et al. [2008] on DTI images and Bürgel et al. [2006]
by means of chemical staining. These two previous works have shown that these
tract probability maps are an appropriate tool to perform statistics on white matter
fibre bundles.

7.3 CLUSTERING ALGORITHM

Taking advantage of the mathematical framework for fibre bundles presented in
chapter 7, we propose a stochastic process-based agglomerative clustering algorithm
which is a variant of the algorithm presented in chapter 3. This algorithm is exe-
cuted over a full brain tractography, a set of densely sampled fibres from the whole
white matter. Once executed, our algorithm generates a dendrogram, a tree struc-
ture where each joint is a candidate cluster, this is illustrated in figure 7.6. Then,
this dendrogram can be interactively explored in order to choose the desired granu-
larity of the clustering without reprocessing the data. Being a hierarchical agglom-
erative algorithm it has several desirable properties: To begin with, convergence is
guaranteed by the finite number of elements to cluster. Next, the number of clus-
ters does not have to be known a priori. Also, it handles the clustering of outliers.
These are incorporated to clusters during the late stages of the clustering algorithm
if at all, which makes easy to identify them [Jain et al.: 1999]. All of these charac-
teristics make our clustering algorithm effective and robust in order to classify white
matter fibres from a full brain tractography into anatomically coherent bundles.

Our clustering algorithm applied to a full brain tractography is described in algo-
rithm 7.1. The output of this algorithm is a dendrogram T , more precisely a set of
trees where joint edge represents the joining of two bundles such as the one shown in
figure 7.6.

A main advantage of our framework within this clustering algorithm is that the
most important operation in step 2, the inner product among bundles described in
chapter 7, is fast and simple to compute as we show in subsection 7.2.4. Once we
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...

Figure 7.6: Illustration of our clustering algorithm defined in chapter 3. The algorithm starts from
all the single-fibre bundles obtained by a full brain tractography, shown at the bottom of the figure, and
joins them into multi-fibre bundles according to our similarity measure (equation 7.2). This generates
a tree structure called dendrogram. Finally every joint is a candidate cluster. Sample clusters are
shown on the side of the dendrogram and their positions on the dendrogram are marked with red dots.

have calculated the matrix of inner products for every pair of fibres in the full brain
tractography F , the algorithm works by simply performing linear operations on the
rows of this matrix.

7.3.1 Tract Querying: Automatic cluster selection based on anatom-
ical knowledge

Once our clustering algorithm generates the dendrogram for a full brain tractog-
raphy, chapter 3, the main problem is how to select the joints in the dendrogram so
that they are anatomically correct clusters. In order to do this, we introduce a query
system based on volumetric information, the result of this query will be a cluster se-
lected from joints of the dendrogram. In this work we use a publicly available atlas
which has a parcellation of the brain gyri on the grey and white matter [Wakana
et al.: 2004] as anatomically-aware volumetric information. Then, an anatomical
query is defined by a set of grey or white matter regions that the tract must traverse,
for example, the Inferio Fronto Occipital tract must connect the inferio-frontal gyrus
and the medial-occipital gyrus. Images of the white matter atlas parcellation and
queries for various tracts are shown in figure 7.7. After setting an anatomical query
Q traversing K labeled regions on the atlas, Q = {r1, . . . , rK}, we use the tract prob-
ability map of each bundle, equation 7.6, to select the bundle B on the dendrogram T

with maximal joint probability of traversing all the regions:

B = argmax
B′∈T

∏
r∈Q

∫
p∈r

P
{
p ∈ B′

}
dp. (7.15)

The results of queries for 13 different white matter tracts, table 7.1, on 4 subjects are
exhibited in figures 7.9 and 7.9 and tract probability maps of the mean bundles across
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Figure 7.7: Illustration of anatomical queries based on volumetric information. A Fractional
Anisotropy image and an image of a parcellation of the white matter are shown. The colored stars
indicate the anatomical queries. On the left: Purple and red stars tag the inferio-frontal gyrus and
middle-occipital gyrus on the left and right sides respectively, this query corresponds to the inferio-
fronto-occipital fasciculus on the left and right hemispheres. Yellow stars tag the left and right middle-
frontal-orbital gyrus, this query corresponds to the frontal forceps. On the right: white stars tag the
pre and post central gyri, the angular, supra-marginal and superio-temporal gyri, this query corre-
sponds to the arcuate fasciculus. The results of this queries on 4 subjects are exhibited in figures 7.9
and 7.9 and tract probability maps for the mean bundles for every subject are shown in figures 7.10
and 7.11.

subjects are shown in figures 7.10 and 7.11.

7.3.2 Subjects, Imaging and Data Processing

Whole-brain DWI datasets were acquired from 68 healthy volunteers (30.05 +-
7.05 years, 10 Male ) on a Siemens Trio 3T scanner with 1.71× 1.71mm2 in-plane res-
olution, 2mm thick slices, six unweighted images and 64 diffusion weighted images
(b=1000s/mm2) acquired with non-collinear diffusion sensitizing gradients.

DTI images for each subject were computed and deformably registered, using DTI-
DROID [Yang et al.: 2008], to a DTI atlas [Wakana et al.: 2004]. Full brain tractogra-
phy was performed following [O’Donnell and Westin: 2007], streamline tractography
was performed by seeding in sub-voxel resolution by taking every voxel with linear
anisotropy higher than .3, dividing it into 0.25× 0.25× 0.25mm3 sub-voxels and seed-
ing from each sub-voxel. In average, 10.000 fibre tracts where obtained for each
subject. Then, the previously presented clustering algorithm was applied to every
subject individually. In order to extract major white matter tracts on every subject
individually we performed set of queries, shown in table 7.1, over the dendrogram
obtained from the clustering of each subject using the tract querying algorithm we
introduced. The whole process is shown in figure 7.8

7.4 RESULTS

We applied the clustering and tract-querying procedure to a 68 subject database.
In order to provide qualitative assessment, we show the results of our clustering
and tract querying algorithms for 2 different selected subjects in figure 7.9. In this
figures, we note that tracts obtained by means of our clustering-querying proce-
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(a) Superior Longitudinal fasciculus right

(b) Superior Longitudinal fasciculus left

(c) Cingulum right

(d) Cingulum left

Figure 9: White matter fiber bundles automatically clustered from a database of 21 subjects using the clus-
tering algorithm presented in section 2.3. The subjects where previously registered to a white matter fiber
atlas and full brain tractography was performed by densely seeding on the whole cerebral white matter. Four
subjects are shown.

applications like clustering and tract-based quantification of scalar quantities among
others.

Using our new mathematical framework for white matter bundles, we develop a
clustering scheme to perform automatic extraction of white matter fiber bundles across
subjects. Firstly, using our similarity measure we build an algorithm which receives a
full brain tractography as an input and outputs a dendrogram, Figure 5. The dendro-
gram, a precomputed tree structure where each joint is a candidate cluster, is a versa-
tile tool to represent clustering results. Among other advantages, it allows interactive
exploration of the clustering results at different scales and it is resilient to outliers.
Moreover, clusters can be selected at different scales using different postprocessing
methodologies. In particular, we take advantage of this feature using the tract prob-

14

Figure 6: Illustration of anatomical queries based on volumetric information. A Fractional Anisotropy image
and an image of a parcellation of the white matter are shown. The colored stars indicate the anatomical
queries. On the left: Purple and red stars tag the inferio-frontal gyrus and middle-occipital gyrus on the left
and right sides respectively, this query corresponds to the inferio-fronto-occipital fasciculus on the left and
right hemispheres. Yellow stars tag the left and right middle-frontal-orbital gyrus, this query corresponds to
the frontal forceps. On the right: white stars tag the pre and post central gyri, the angular, supra-marginal
and superio-temporal gyri, this query corresponds to the arcuate fasciculus. The results of this queries on 4
subjects are exhibited in Figures 7 to 10 and tract probability maps for the mean bundles for every subject
are shown in Figures 11 and 12.

DTI images for each subject were computed and deformably registered, using DTI-
DROID (Yang et al., 2008), to a DTI atlas (Wakana et al., 2004). Full brain tractogra-
phy was performed following (O’Donnell and Westin, 2007), streamline tractography
was performed by seeding in sub-voxel resolution by taking every voxel with linear
anisotropy higher than .3, dividing it into .25x.25x.25mm3 sub-voxels and seeding
from each sub-voxel. In average, 10.000 fiber tracts where obtained for each subject.
Then, the previously presented clustering algorithm based on our mathematical frame-
work was applied to every subject individually. In order to extract major white matter
tracts on every subject individually we performed set of queries, shown in Table 1, over
the dendrogram obtained from the clustering of each subject using the tract querying
algorithm we introduced.

3. Results

We show the results of our clustering and tract querying algorithms for 4 different
subjects selected from our 21 subject database in Figures 7 to 10. Then, we evaluated
cluster coherence across subjects. Firstly, calculation of the GP representation of the
population-averaged bundle across the 21 subjects for each automatically extracted
tract: For each queried white matter tract, the GP corresponding to the population-
averaged bundle across subjects was calculated using Equation 2. We show the tract
probability map for each population-averaged bundle, calculated with Equation 6, in
Figures 11 and 12. These maps are in atlas space, over fractional anisotropy images.
Finally, in order to provide quantitative evaluation, for each bundle extracted from
each subject we quantified its similarity with respect to the corresponding population-
averaged bundle using the normalized inner product of our mathematical framework,
Equation 2.2. The result is plotted in Figure 13. In this plot, the boxes span between
the second and third quartiles of the similarity with the population-averaged bundle,
the red bar is the median similarity. Moreover, the whiskers indicate the bundles whose

10

(a)CorticoSpinalTractLeft(b)CorticoSpinalTractRight

(c)UncinateFasciculusLeft(d)UncinateFasciculusRight

(e)SuperiorLongitudinalFasciculusLeft(f)SuperiorLongitudinalFasciculusRight

(g)CingulumLeft(h)CingulumRight

(i)InferioFrontoOccipitalLeft(j)InferioFrontoOccipitalRight

Figure12:Tractprobabilitymapsfortheaveragedwhitematterfiberbundlesover21subjects.Thebundles
havebeenautomaticallyextractedfromeachsubjectindividuallyusingtheclusteringalgorithmpresented
insection2.3andthequeriespresentedinTable1.Thesubjectswherepreviouslyregisteredtoawhite
matterfiberatlasandfullbraintractographywasperformedbydenselyseedingonthewholecerebralwhite
matter.Maximumintensityprojectionisusedforthecolorintensity.Colorcoderangesfromred,whenthe
probabilityofthevoxelbelongingtothebundleis1.0toyellow,whentheprobabilityofthevoxelbelonging
tothebundleis0.2.
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Figure 7.8: The procedure used to cluster white matter fibres into anatomical bundles and produce
the tract probability maps for each bundle: We registered 68 Diffusion Tensor MR images using [Yang
et al.: 2008]. We performed full brain tractography obtaining around 10.000 fibres per brain. We pro-
duced the Gaussian Process representation for each fibre as we describe in chapter 7. We identified
anatomical bundles like the arcuate or the uncinate fasciculus by applying our clustering and tract
querying algorithms to each subject individually as we describe in chapter 7. Finally we produced a
population-averaged Gaussian Process for each identified bundle and the corresponding tract probabil-
ity map with the methodology described in chapter 7

dures, are consistent with manually obtained tracts by experts in diffusion MRI im-
ages [Wakana et al.: 2004, Figures 3, 4, and 5] and macroscopical preparations [Lawes
et al.: 2008, Figures 5iii and 6ii]. Furthermore, since our similarity measure han-
dles partial overlap of fibres, we are able to correctly cluster fibres diverging from
complex tracts like the arcuate fasciculus and the cingulum which innervate cortical
and subcortical regions. This is observable in figure 7.9.

Then, we calculated the population-averaged tract probability maps for each
bundle in order to evaluate cluster coherence across subjects. As the first step of
this process we calculated the GP representation of the population-averaged bundle
across the 68 subjects for each automatically extracted tract: For each queried white
matter tract, the GP corresponding to the population-averaged bundle across subjects
was calculated using equation 7.5. Then, we used equation 7.6 to calculate the tract
probability map for each for each population-averaged bundle. We show the results
of this step in figures 7.10 and 7.11, these maps are in atlas space, over fractional
anisotropy images. Visual inspection of these tract probability maps shows that the
population-averaged bundles are in agreement with probability maps obtained by
manual selection of the bundles in Hua et al. [2008, Figure 3] and chemical staining
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White matter tract to extract Tract queries

frontal forceps middle frontal orbital left gyrus,
middle frontal orbital right gyrus

posterior forceps medial occipital left gyrus, medial occipital right gyrus
fornix (left-section) fornix left, medial temporal left gyrus
cortico spinal tract (post-central) midbrain, post central gyrus
uncinate fasciculus middle frontal orbital gyrus, medio temporal gyrus

arcuate fasciculus post central gyrus, pre central gyrus,angular gyrus,
supra marginal gyrus, superio temporal gyrus

cingulum bundle cingulate gyrus
inferio fronto occipital tract medial occipital gyrus, inferio frontal gyrus

Table 7.1: Queries applied to a set of 68 registered subjects in order to automatically extract major
white matter fibre bundles using the algorithm presented in chapter 7. The results of this queries
on 2 subjects are exhibited in figure 7.9 and tract probability maps for the tract probability maps cor-
responding to the population-averaged bundles for every subject are shown in figures 7.10 and 7.11

on post-mortem brains [Bürgel et al.: 2006].

Finally, in order to provide quantitative evaluation, for each bundle extracted from
each subject we quantified its similarity with respect to the corresponding population-
averaged bundle using our normalized similarity metric, equation 7.4. The result is
plotted in figure 7.12. In this plot, the boxes span between the second and third
quartiles of the similarity with the population-averaged bundle, the red bar is the
median similarity. Moreover, the whiskers indicate the bundles whose similarity
value with the population-averaged bundle is the smallest and largest within within
1.5 times the interquartile distance of the population-averaged similarity and the
‘+’ symbols indicate outliers. The high mean similarity with low dispersion on the
cingulum, the cortico spinal tract and the inferior fronto-occipital fasciculus is consis-
tent with histological studies [Bürgel et al.: 2006]. Additionally, the relatively lower
and more disperse mean similarity on the arcuate and uncinate fasciculus is also
consistent with previously cited histological studies.

7.5 DISCUSSION

Results showed that our clustering and tract querying method automatically differ-
entiates white matter fibre bundles consistently across subjects. Furthermore, re-
sults demonstrate that we are able to identify white matter structures that agree
with several works which manually perform white matter fibre bundle identifica-
tion. Firstly, results of individual subjects are consistent with manually obtained
tracts by experts [Wakana et al.: 2004] and macroscopical preparations [Lawes et al.:
2008]. Next, population-averaged tract probability maps match previously reported
results obtained manually [Hua et al.: 2008] and through chemical staining [Bürgel
et al.: 2006]. Finally, inter-subject tract variability measured through similarity
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(a) Frontal Forceps (b) Posterior Forceps

(c) Cortico Spinal Tract right (d) Cortico Spinal Tract left

(e) Uncinate Fasciculus right (f) Uncinate Fasciculus left

(g) Arcuate fasciculus right (h) Arcuate fasciculus left

(i) Cingulum right (j) Cingulum left

(k) Inferio Fronto Occipital fasciculus right (l) Inferio Fronto Occipital fasciculus left

Figure 7.9: White matter fibre bundles automatically clustered from a database of 68 subjects using
the clustering algorithm presented in chapter 7. The subjects where previously registered to a white
matter fibre atlas and full brain tractography was performed by densely seeding on the whole cerebral
white matter. Two subjects are shown.
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(a) Frontal Forceps

(b) Posterior Forceps

(c) Left Fornix

Figure 7.10: Tract probability maps for the averaged white matter fibre bundles over 68 subjects.
The bundles have been automatically extracted from each subject individually using the clustering
algorithm presented in chapter 7 and the queries presented in table 7.1. The subjects where previously
registered to a white matter atlas and full brain tractography was performed by densely seeding on the
whole cerebral white matter. Maximum intensity projection is used for the color intensity. Color code
ranges from red, when the probability of the voxel belonging to the bundle is 1.0 to yellow, when the
probability of the voxel belonging to the bundle is 0.2.
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(a) Cortico Spinal Tract Right (b) Cortico Spinal Tract Left

(c) Uncinate Fasciculus Right (d) Uncinate Fasciculus Left

(e) Arcuate Fasciculus Right (f) Arcuate Fasciculus Left

(g) Cingulum Right (h) Cingulum Left

(i) Inferio Fronto Occipital Right (j) Inferio Fronto Occipital Left

Figure 7.11: Tract probability maps for the averaged white matter fibre bundles over 68 subjects.
The bundles have been automatically extracted from each subject individually using the clustering
algorithm presented in chapter 7 and the queries presented in table 7.1. The subjects where previously
registered to a white matter atlas and full brain tractography was performed by densely seeding on the
whole cerebral white matter. Maximum intensity projection is used for the colour intensity. Color
code ranges from red, when the probability of the voxel belonging to the bundle is 1.0 to yellow, when
the probability of the voxel belonging to the bundle is 0.2.
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Figure 7.12: Quantitative assessment of bundle coherence among subjects. For each automatically
extracted bundle, the similarity between the mean bundle across all subjects and the bundle extracted
from each subject individually was calculated by means of the normalized inner product, equation 7.4.
Similarity ranges from 1, bundles are identical, to 0, bundles are completely different. Boxes span
between the second and third quartiles of the similarity with the mean bundle, the red bar is the
median similarity. Moreover, the whiskers indicate the bundles whose similarity value with the mean
bundle is the smallest and largest within 1.5 times the interquartile distance of the mean similarity
and the ‘+’ symbols indicate outliers.
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with the population-averaged bundle is consistent with histological studies [Bürgel
et al.: 2006]. Thus, thanks to our mathematical framework we are able to build an
algorithm which performs automatic identification of white matter structures given
a full-brain tractography.

In recent years tractography has become a popular means of performing white
matter studies through diffusion MRI [Ciccarelli et al.: 2008]. Tractography results
are visually appealing and recent developments produced means to perform analy-
ses of diffusion-derived measures such as the fractional anisotropy. Still, statisti-
cal analysis on the fibres themselves has not been performed in sound ways due to
the lack of an appropriate mathematical framework. Several examples of statistical
analysis of white matter bundles including fibre clustering [O’Donnell and Westin:
2007, Wassermann and Deriche: 2008, Maddah et al.: 2008a] and tract probability
maps [Hua et al.: 2008] have been reported. However, clustering approaches were
either not suited for large-scale clinical studies or required a great deal of parameter
tuning. With regards to tract probability maps, they were calculated by averaging
binary masks obtained by manually extracted white matter fibres from tractography
or by chemical staining.

This chapter proposes a mathematical framework that provides the necessary
tools to perform automatic clustering and identification of white matter fibres and
subsequent statistics on them. Automatic clustering of white matter fibres into bun-
dles which produces consistent results between subjects is a fundamental tool for
clinical studies. In this work we provide the tools to solve these issues. First, we
develop a mathematical model for handling white matter bundles which includes
spatial and diffusion tensor information and provides the grounds for their statisti-
cal analysis. Finally, we use it to develop a clustering algorithm and automatically
obtain white matter structures which we then applied to 68 subjects.

7.5.1 Mathematical framework for white matter bundles

Our mathematical framework sets the foundation for statistical analysis of white
matter fibre bundles including applications like clustering and tract-based quantifi-
cation of scalar quantities amongst others. We provide three important operations
for white matter bundle statistics: 1) the first operation to linearly combines white
matter fibres into a bundle, see figure 7.2; 2) the second quantifies bundle similarity
based on their overlap in space, see figure 7.3; and 3) the third calculates the proba-
bility that a point in space belongs to a bundle, called the tract probability map of the
bundle.

Within our model, we represent white matter fibres and bundles as blurred indi-
cator functions; Gaussian Processes are a parametrical representation of these func-
tions. It is important to note that any GP representation of the blurred indicator
functions will be able to implement the same operations as ours. These different GP
representations are characterized by their covariance functions, which we present
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in detail in chapter 7. Particularly, our choice of covariance functions contains our
smoothness hypothesis about the fibres and enables us to perform efficient calcu-
lation of bundle similarity and tract probability maps. We chose a combination of
two covariance functions to represent white matter bundles: one representing the
smoothness of the bundles and a second changing blurring characteristics according
to diffusion tensor information.

The smoothness covariance function allows us to infer the value of the blurred
indicator functions from the sequences of points which represent each fibre. Three
main characteristics led us to the choice of this covariance function. To begin with,
it enforces the least wiggled representations of the fibres which has a smoothing
effect on their trajectory. Secondly, it only enforces differentiability up to the sec-
ond derivative, the minimum necessary to perform this smoothing. These charac-
teristics lead to a covariance function equivalent of a compact support thin-plate
spline function, that accurately models smooth spatial data [Wahba: 1990]. Other
choices of smoothing covariance functions, like the widely used squared exponen-
tial function [Rasmussen and Williams: 2006], may lead to infinitely differentiable
blurred indicator functions. It has been argued that covariance functions with
this characteristic have undesirable geometric effects when representing implicit
curves [Williams and Fitzgibbon: 2007] and are unrealistic for modelling many phys-
ical processes [Stein: 1999]. Finally, an important characteristic of our choice of co-
variance function is that it has compact support. This is not only more efficient
computationally, but also leads to compact support blurred indicator functions which
has an important effect on our similarity measure. Our operation quantifies the vol-
ume of the overlapping region between two fibres and can be normalized in order to
provide a similarity index ranging from 1, when fibres overlap completely, to 0, when
they are completely different. Compactness allows the similarity of two blurred in-
dicator function which are sufficiently separated in space to be 0.

We combined the diffusion associated covariance function with that of smooth-
ness in order to alter the blurring of the indicator function. Hence, the blurring is
adapted according to diffusion tensor information without changing the compact sup-
port characteristic. Such covariance function is based on the diffusion tensor model,
however in further work it would be simple to change it in order to make this model
appropriate for more descriptive representations of the diffusion propagator [Tuch:
2004, Descoteaux et al.: 2007a]. This would be done by simply changing equation 7.8
to suit the chosen representation.

As a final word on the covariance functions, it is important to note that this model
is flexible. In further work, a different analysis of white matter fibres and bundles
could require a representation of the white matter bundles with a different set of
hypotheses. In this case, a different set of covariance functions can be chosen or
combined with the ones used in this work in order to retain most of the properties
of our proposed framework while expressing different characteristics of the white
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matter bundles.

7.5.2 Applications

We presented two applications of our Gaussian Process framework: clustering of
white matter bundles and tract probability maps.

With regards to the clustering, we began by creating a dendrogram (see figure 7.6)
from a full brain tractography. The dendrogram is a versatile tool for represent-
ing represent clustering results, given that is a precomputed tree structure where
each joint is a candidate cluster. Among other advantages, it allows for interactive
exploration of the clustering results at different scales and is resilient to outliers.
Moreover, clusters can be selected at different scales using different postprocessing
methodologies. In particular, we take advantage of this feature using the tract prob-
ability map for each cluster and a volumetric atlas with a parcellation of the cerebral
gyri. We combine both of these tools with the dendrogram in order to produce a tract
query algorithm.

Tract probability maps were recently introduced as a tool to perform bundle-
specific quantification of scalar quantities by Hua et al. [2008]. The cited work pro-
vides an example of this by analysing fractional anisotropy (FA) of a multiple sclero-
sis Patient in comparison with a normal population. Another example of this could
be found by calculating the expected FA of a bundle, the weighted average of the
FA using the values of the tract probability map as the weights. Tract probability
maps have a wide range of applications. For instance, in this work we use them to
relate the results of our clustering algorithm to anatomical information given by a
white matter atlas enabling us to perform consistent identification of white matter
structures among subjects. Although the clustering method is fully automated, it
depends on the atlas parcellation and the method used to produce the tracts. We
noticed two cases where non-anatomically coherent low probability regions (yellow)
are present: the left section of the fornix, figure 7.10c, and the left uncinate fascicu-
lus, figure 7.11c. In the case of the left side of the fornix, figure 7.10c, even though
the high probability region (red) is consistent with the previously cited anatomical
studies, there is a low probability region corresponding to the optical nerve that can
be seen in this map. Careful analysis of the clustered fibres generating this region
shows that this artefact comes from the tractography techniques used; these fibres
go all the way from the posterior column of the fornix to the frontal sections of the
optical nerve. This is not anatomically correct and is the source of the high variabil-
ity exhibited by this tract in the quantitative analysis, figure 7.12. In the case of the
left uncinate fasciculus, figure 7.11c, there is a high probability region (red) which
is consistent with the previously cited anatomical studies. There is however, a low
probability region corresponding to a section of the inferior-longitudinal fasciculus.
This increases the variability of the clusters corresponding to the left uncinate fas-
ciculus region, figure 7.12. Analysis of the clustered fibres constituting this bundle
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and the query used to obtain the cluster corresponding to the uncinate fasciculus, ta-
ble 7.1, shows that this artefact is produced by the white matter parcellation used to
create the tracts. The absence of a parcel corresponding to the temporal pole in the
atlas leads us to use the medial temporal gyrus for the corresponding query, shown
in figure 7.7 right side in light green. This allows fibres fully contained within the
medial temporal gyrus to be incorporated in the uncinate fasciculus as a result of the
corresponding query. In the future, we will investigate the use of alternate atlases
or expert-corrected ROIs to remedy this problem.

In further work, we plan to expand the applications of our framework. One of
the most important potential applications is the use of tract probability maps as a
probabilistic prior for streamline tractography. This would take advantage of the
fact that Gaussian Processes are a generative model, thereby recovering tracts in the
case of pathologies where the course of a white matter bundle might be interrupted.
In turn, this would enable the comparison of a white matter structure predicted using
control data to a pathological one.

7.6 CONCLUSION

We presented a mathematical framework to perform statistical operations on white
matter fibres obtained from diffusion tensor MRI tractography. In doing so, we
showed that this framework constitutes an inner product space which is appropri-
ate for performing statistical operations among white matter bundles. We used this
framework to build a clustering algorithm and a tract querying algorithm which al-
low automatic fibre bundle identification with the white matter queries as a sole
parameter. Then, we applied these algorithms to 68 subjects registered to a publicly
available atlas with a parcellation of the white matter gyri that we used as a priori
anatomical information. Finally, we showed that the results of our clustering were
consistent with studies carried by dissection macroscopical preparations and chemi-
cal staining. Thus, our framework has proved suitable to perform group studies of
the cerebral white matter with minimal user interaction.



CHAPTER 8

TRACTOGRAPHY-BASED

SPINAL-CORD STRAIGHTENING

In this chapter we present an application of the Gaussian process framework for
fibre bundles to spinal cord MRI images straightening. Spinal cord MRI (SC-MRI)
is a challenging research field with numerous important clinical and basic research
applications. Some of the SC-MRI applications strongly need to deal with a well
straightened spinal cord either for appropriate methodological developments, for bet-
ter visualization or diagnostic purposes. In this article, we develop an efficient and
automatic method to straighten the spinal cord image and fibres. Diffusion Tensor
MRI is first used to recover by tractography the bundles of fibres related to the spinal
cord. The novel Gaussian process framework proposed in this thesis is then used to
automatically recover in a robust way the most representative fibre which is used to
interpolate and straighten the spinal cord image and fibres. Our method is success-
fully tested on real images of one cat with partial spinal cord injury and two healthy
volunteers. This capability to reliably reconstruct straightened animal and human
spinal cord opens new opportunities for SC-MRI applications.

8.1 INTRODUCTION

Spinal cord magnetic resonance imaging (MRI) has many applications in central ner-
vous system diseases, such as multiple sclerosis and spinal cord injury. In clinical
practice, radiological examinations aim at finding abnormalities through visual as-
sessment. However, the curvature of the spinal cord in the antero-posterior (A-P)
direction makes it difficult to obtain a full coronal or sagittal picture of the spinal
cord which sometimes may hamper the diagnosis. Moreover, the curvatures of the
spinal cord are subject-dependent and therefore group studies are hard to achieve at
the spinal level. These observations highlight the need for a method to straighten
the spinal cord so that individual images can be compared and eventually pooled.

A recent study has proposed a method to straighten the cord [Stroman et al.:
2005]. It is based on a manual delineation of the spinal cord, followed by a 3D re-
construction of the volume by interpolating each slice perpendicular to the curve. Al-

191



192 CHAPTER 8. TRACTOGRAPHY-BASED SPINAL-CORD STRAIGHTENING

though very straightforward, this procedure requires manual delineation of the cord,
which is time consuming and user-dependent. Moreover, only a planar delineation
of the cord is achieved, providing straightening of the cord in only two dimensions
of space, i.e., antero-posterior and rostro-caudal directions. If the subject is not well
positioned or has scoliosis, curvature along the right-left (R-L) direction is likely to
occur. In such case, the manual delineation of the cord becomes even more complex.

In this chapter we propose a fully-automatic method to straighten the spinal cord,
based on diffusion tensor imaging (DTI) tractography and our novel Gaussian pro-
cess framework. We used fibres of the spinal cord to generate a subject-dependant
coordinate system. Hence, a key step in our algorithm is the robust selection of the
most representative, or prototype, fibre from the set of white matter fibres traversing
the spinal cord.

As a result of this work, the proposed method is robust and allows to straighten
the cord in the A-P as well as in the R-L directions simultaneously.

8.2 MATERIAL AND METHODS

8.2.1 Theory

The first step to straighten the spinal cord using DTI tractography in our method
is the selection of a prototype fibre, a representative fibre of the ensemble. This fibre
is then used in order to produce a fibre-based coordinate system for the image.

Selecting the prototype fibre Although intuitively trivial, finding a prototype
fibre describing a path along a large number of fibres is not an easy task. It should
also be realized that fibres along a longitudinal tract may enter or leave the cord at
different levels so that finding a representative tract or fiber bundle is not trivial.
This is mainly due to the lack of a proper space to perform statistics among fibres.
Recently, three methods were proposed to solve this problem: Maddah [Maddah
et al.: 2007] chooses the longest fibre in the bundle, however this method is sensi-
tive to long fibre outliers. To avoid this, Batchelor [Batchelor et al.: 2006] chooses
the fibre with the greatest length weighted by local fibre density which requires cal-
culating as the number of tractography trajectories passing through each voxel and
to integrate this density along each fibre. Finally, O’Donnell [O’Donnell et al.: 2009]
chooses the most representative of the fibres by performing spectral embedding of
the fibres producing a point cloud. Then, the point closest to the mean of the cloud
represents the prototype fibre. These techniques rely on point-to-point correspon-
dences among fibres. Moreover, they require parameter tuning like the integration
step over the fibres [Batchelor et al.: 2006] or scale and number of embedding dimen-
sions [O’Donnell et al.: 2009].

To provide a method which does not rely on point-to-point correspondences, em-
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bedding or parameter tuning, we build on the GP framework for fibre bundles pre-
sented in chapter 7. We represent each fibre F as a parametric stochastic process
y(·) whose realizations are blurred indicator functions on the image space. The value
of these functions, y(p), is 0 when there is no chance that the fibre traverses the point
p and 1 when the fibre surely traverses that point (figure 7.3). Then, if the most
probable realization of y(·), y∗(·), is square integrable and has finite support, we de-
fine the similarity between two fibres, F and F ′ as the inner product

〈F ,F ′〉 :=

∫
R3

y∗F (p)y∗F ′(p)dp,

which roughly represents the volume of the overlapping between two blurred fibres.
Moreover, we derive a fibre bundle norm from this inner product operation:

‖F‖2 := 〈F ,F〉;

using the linear combination operations defined in chapter 7, we define a metric to
measure dissimilarity between two fibre bundles

dist2(F ,F ′) := ‖F − F ′‖2.

To select the prototype fibre from the ensemble we use the previously presented
tools. We start by formulating the median fibre F∗ from an N fibre bundle B in the
presented fibre inner product space:

F∗ = argmin
F∈B

∑
F ′∈B

dist2(F ,F ′).

If we unroll the previous expression using the parallelogram theorem and the law of
cosines

F∗ = argmin
F∈B

∑
F ′∈B

‖F‖2 + ‖F ′‖2 − 2〈F ,F ′〉

it leads to

F∗ = argmin
F∈B

N‖F‖2 +
∑
F ′∈B

‖F ′‖2 −
∑
F ′∈B

2〈F ,F ′〉 = argmin
F∈B

N‖F‖2 −
∑
F ′∈B

2〈F ,F ′〉.

were the choice of the median fibre depends on its volume and overlapping with the
rest of the bundle. From the previous expression we interpret the result of median
operation geometrically: the resulting fibre is the one minimizing its volume, or
length, and maximizing its overlapping with the rest of the fibres in the bundles.
As what we are looking for is a fibre to parametrize the whole spinal cord, we drop
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the volume constraint and we formulate the prototype fibre P of the bundle as

P = argmax
F

∑
F ′∈B
〈F ,F ′〉 (8.1)

The expression to retrieve P, equation 8.1, privileges the selection of a fibre from
a dense pack ruling out fibres which do not have overlapping with the densest pack
of the set. Hence, this selection procedure is robust to false positives in B when they
are small sets located outside the main structure in the same way that the median is
robust to outliers.

8.2.2 Straightening the cord

Following acquisition of diffusion weighted (DW) data, tractography was per-
formed using MedINRIA [?]. The tractography algorithm is based on a standard
streamline algorithm [Mori et al.: 1999] and uses a tri-linear log-Euclidean interpo-
lation method. The tractography procedure is fully automatic, since every voxel of
the reference volume is a seed-point [?]. As a result, most fibres running along the
spinal cord were reconstructed. This method is fairly robust due to the large pres-
ence of longitudinal tracts in the spinal cord.

During the next step, a robust algorithm is launched to retrieve the prototype
fibre running along the spinal cord. This algorithm, described in subsection 8.2.1,
has been designed to retrieve the prototype fibre among all fibres running along the
spinal cord. This fibre is described as a 3D parametric function, allowing to perform
arbitrary re-sampling on it. To compute this prototype fibre, an important concern
was the robustness of the algorithm. It should not be sensitive to false positives,
resulting from fibres located outside the spinal cord. This usually happens when
structures external to the central nervous system are included in the field of view.
Examples are the liver, the heart or the kidney, which are anisotropic structures.
Another source of false positives are N/2 ghosting artefacts, which replicate the im-
age along the phase-encoding direction. These observations highlight the need for
a robust estimation of the prototype fibres using local priors (e.g., smooth curvature,
packed geometry of fibres along the cord). These priors have been described in the
previous section.

Following estimation of the prototype fibre, data are reconstructed by interpolat-
ing every slice perpendicular to this fibre. This is achieved by running an algorithm
which starts at one extremity of the prototype fibre, and iterates by adding one arbi-
trary unit along the curved abscissa defined by the fibre. To reconstruct each slice,
spline interpolation was used. The prototype fibre can be arbitrarily re-sampled.
Therefore, the same non-linear transformation can subsequently be applied to any
data that were acquired during the same scanning session. To achieve this, only in-
formation relative to voxel size and slice positioning are required. Then, a rigid-body
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Figure 8.1: Results of our method to straighten the spinal cord. Top, sagittal slice of an
anatomical image of a cat with the tractography results in green and the prototype fibre P,
selected using equation 8.1, in red. Bottom, straightening results.

transformation is applied to transform the coordinates of the prototype fibre from the
DTI space into the anatomical space.

8.2.3 In vivo experiments

We validated the straightening method in one cat with partial spinal cord in-
jury [Cohen-Adad et al.: 2008] and two healthy volunteers. The experiments were
conducted in accordance with the Local Ethics Committee of the Université de
Montréal (for animal studies) and the Université Paris 6 (for human studies). MRI
acquisitions were carried out using a 3T MRI system (TRIO, 32 channel TIM system,
Siemens) using phased array coils.

Images of the cat were acquired in the thoraco lumbar region (T6-L7). The
anatomical scan consisted of a T2-weighted turbo spin echo (TSE) sequence (turbo
factor of 13), TR/TE = 7490/78ms at 0.55 × 0.55 × 1.1mm3 spatial resolution. DW
data were acquired with a twice refocusing pulse single-shot spin echo echo planar
imaging (EPI) sequence, iPAT=3 (to minimize susceptibility artifacts), sagittal ori-
entation, 2 mm slice thickness, 128 × 128 matrix, 1.5 × 1.5mm2 in-plane resolution,
TR/TE = 9500/109ms, b-value = 1000s/mm2 , 64 directions. We used respiratory
gating to limit motion and susceptibility effects close to the lungs.

In humans, images were acquired in the cervico-thoracic region (C1-T4). The
anatomical scan was a T2-weighted SPACE sequence with TR/TE = 1500/120ms

at 0.9 × 0.9 × 0.9mm3 spatial resolution. The DW sequence was similar to that one
used in the cat, with TR/TE = 3000/85ms, 1.8 × 1.8 × 2mm3 spatial resolution, b-
value=1000s/mm2 and 60 directions, acquisition time <4 minutes. To demonstrate
the robustness of the method, DW data were subsampled at 12 directions and pro-
cessed the same way.
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Figure 8.2: Results of our method to straighten the spinal cord for two human subjects. Left,
sagittal slice of an anatomical image. Right, the straightened images are shown. Top cen-
ter, three axial slices of the straightened image of the top subject shown to exhibit the three-
dimensional alignment.

8.2.4 Data processing

Images were first averaged respectively to their diffusion directions and were
two times interpolated. Series acquired without parallel imaging were corrected for
susceptibility-induced distortions using the method described in [?].

8.3 RESULTS

One motivation of this work was to show that adding a short DW sequence to the
MRI protocol, a fully automated method to straighten the spinal cord is feasible.
This study therefore provides results of cord straightening in a cat and two human
subjects. Figure 8.1 (top) shows a sagittal slice of the T2 image of the cat with the fi-
bres obtained by tractography in green and the prototype fibre retrieved in red. The
bottom row shows the result of the straightening procedure as described in subsec-
tion 8.2.2. Figure 8.2 shows the result for two human subjects: On the left, sagittal
slices of T2 images for two human subjects. Their respective straightened results are
shown on the right. In the case of the top subject, three axial slices of the straight-
ened image are shown in the middle column to demonstrate the three-dimensional
alignment.
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8.4 DISCUSSION AND CONCLUSIONS

We presented a fully automatic method to straighten the spinal cord, allowing better
visualisation of the structure and enabling to conduct group analysis. The method
uses DTI tractography to delineate the spinal cord and an advanced algorithm to
robustly find the central line along the spinal cord. The method has been tested in
humans and cats at 3T, but can be applied to other mammals.

Robustness Here we demonstrated the feasibility of straightening the spinal
cord with 60 directions DW acquisitions acquired in 4 minutes. To study the robust-
ness of the algorithm with lower sampled DTI data, we sub-sampled the human DW
dataset into 12 directions and applied the straightening method. Results showed a
very satisfactory straightening of spinal the cord for both subjects (data not shown).
A DW acquisition in twelve directions takes less than a minute and therefore could
easily be plugged into an imaging protocol.
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CHAPTER 9

STATISTICAL ANALYSES OF THE

WHITE MATTER IN

SCHIZOPHRENIA

9.1 INTRODUCTION

In this chapter we illustrate the applicability of the Gaussian process framework
introduced in chapter 7 to perform group analysis on white matter bundles. In the
cited chapter, we developed techniques to automatically identify white matter struc-
tures for individual subjects and obtain population-averaged tract probability maps.
The aim is to study group differences in white matter between healthy controls and
patients with schizophrenia. This is achieved by using two of the most popular tract-
based analyses in current literature.

In looking for group differences between brains of schizophrenia patients and con-
trols, we perform two types of statistical analyses on a selected set of scalar quantities
measuring different characteristics of the diffusivity profile within a voxel . These
measures were chosen due to their biological interpretation and use in diffusion ten-
sor studies of white matter differences in pathologies [Ciccarelli et al.: 2008, Kubicki
et al.: 2007].

In the two types of statistical analyses, the first is inspired by the works of Pa-
gani et al. [2005] and Lin et al. [2007]. This analysis combines a scalar diffusivity
measure like the FA and the tract probability maps such as the ones we computed
in chapter 7 to obtain a single-scalar diffusivity measure for each tract. The second,
inspired by the popular TBSS methodology [Smith et al.: 2006], uses the tract prob-
ability maps to produce a skeleton 1 of the tract. This provides a tool to search for
differences in specific sections of a white matter structure. The final step of both
techniques relies on hypothesis tests in order to find differences between the controls
and patients.

1. In this work we follow the same definition of skeleton as in Smith et al. [2006] where it can be
shaped as a curve or a sheet.
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9.2 STATISTICAL ANALYSIS ALGORITHMS

In this section we describe the two statistical analysis algorithms presented in chap-
ter 9. Both algorithms are based on the tract probability map (TPM) function (equa-
tion 7.6) which is the probability that a voxel p belongs to the bundle B:

TPM(p) = P{p ∈ B} =
c√

π(h2 + σ2
B(p))

(9.1)

where c is a constant so the TPM integrates to 1, h is a bandwidth parameter and
σ2
B(·) is the variance of the Gaussian process representing the fibre bundle B at p.

9.2.1 Whole Tract Analysis

We analysed changes in scalar diffusivity measures, such as the FA, between con-
trols and patients on the tracts as a whole. For this, we calculated the expectation
of these quantities, according to the TPMs, for each structure in template space. An
example of this is the expected axial diffusivity on the arcuate fasciculus (AF), which
was calculated as

EAFλ‖ =

∫
TPMAF (p)λ‖(p)dp.

In this equation, TPMAF (p) is the probability that the voxel p belongs to the AF and
λ‖(p) is the axial diffusivity at p.

Such an expected value was computed for each of the scalar quantities for WM
structures of choice. Each white matter structure was then analysed using two-
tailed statistical tests on the data: 1) the t-test which assumes normality and 2)
the Mann-Whitney which is non-parametric [Mann and Whitney: 1947]. The Mann-
Whitney test has been extensively used in the community as a replacement of the
t-test when normality can not be assumed [Pagani et al.: 2005, Lin et al.: 2007, Cic-
carelli et al.: 2008].

9.2.2 Tract-Skeleton Analysis

We develop this statistical analysis in order to find differences in precise locations
of the tracts. The algorithm to analyse a particular fibre bundle starts by generat-
ing its TPM as in chapter 7. By construction, the TPM(·) function has a ridge (or
valley) of high probability at the centre of the tract that decays towards the exterior.
Consequently, the main idea is to find a representation of the tract as a sheet or line
and to project diffusivity information on that representation. For this, we adapt the
thinning algorithm of Smith et al. [2006]. Then, we project a scalar diffusivity mea-
sure (e.g. the FA) on the skeleton and perform group analysis on it. This process is
shown in figure 9.3.
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(a) Probability map (b) Gradient (c) Principal direc-
tion of the Hessian

Figure 9.1: Finding the direction perpendicular to the tract probability map skeleton: When the
voxel is far enough from the central ridge or valley, the gradient direction (b) is perpendicular. How-
ever, when it is close enough, the gradient norm is close two zero as shown by the circles in (b). In
these cases, the principal direction of the Hessian indicates the perpendicular direction (c).

Skeleton Calculation

The first step in the algorithm is to obtain the skeleton. For this, we start by
identifying the voxels containing such skeleton. We start by computing the centre of
gravity (CofG) of a sphere of radius r around the voxel p, S(p, r) ∈ R3,

CofG(p; r) =

∫
q∈S(p,r)

q TPM(q)dq. (9.2)

If the centre of gravity is sufficiently close to p we assume that p is very close the ridge
or valley which we will call skeleton from now on. Finally, we extract the skeleton.
We select voxels which are very close to the skeleton as previously defined. Then,
we analyse these voxels in a direction perpendicular to the skeleton. Those being a
local maximum along this direction are assumed to be on it and extracted.

As we have seen previously, to extract the skeleton we need to calculate the di-
rection that is perpendicular to it. If the voxels are sufficiently far away from it,
this direction is provided by the gradient of the TPM. This is due to the fact that the
probability of a voxel belonging to the underlying tract of the TPM decreases when
we move away from the skeleton. However, if we are on the skeleton, meaning on a
ridge or a valley, the gradient will have a 0 norm and no defined orientation. In these
cases it is reasonable to assume that the gradient changes more rapidly in the direc-
tion perpendicular to the skeleton [Lindeberg: 1998]. Thus, we take the eigenvector
corresponding to the largest eigenvalue of the Hessian of the TPM, as the direction
perpendicular to the skeleton. This is illustrated in figure 9.1. Then, the direction
perpendicular to the skeleton at p is given by

skel⊥(p) :=

∇TPM(p)/‖∇TPM(p)‖ if ‖CofG(p; r)− p‖ > ε

e1

(
∇2 TPM(p)

)
if ‖CofG(p; r)− p‖ ≤ ε

. (9.3)
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Figure 9.2: Voxels projected to a point in the skeleton: We show a point on the inferio fronto occipital
tract skeleton in blue. The voxels in the image which are closest to it are colored in a red-yellow scheme
where red is the lowest probability and yellow the largest. The values of these voxels are projected to
the skeleton and averaged according to their probability of being in the bundle.

In this equation ε is taken to be a tenth of the voxel width and e1(M) is the eigenvector
corresponding to the largest eigenvalue of M , and ∇ and ∇2 are the gradient and
the Hessian operators. Moreover, due to the properties of our GP framework, the
gradient and Hessian of the TPM (equation 9.1) can be calculated analytically.

Finally, it is important to emphasize that this is just one technique to calculate
the skeleton. The statistical analysis algorithm is not dependent on it, is general
and can be applied to any skeleton that is constructed. Most of the ridge and valley
calculation algorithms are based on the gradient and Hessian of the analysed func-
tion [Lindeberg: 1998, Kindlmann et al.: 2009], hence it is possible to reformulate
them in terms of the GP framework for white matter bundles.

Voxel Projections and Statistical Analysis

Having created the skeleton for a tract, we project all the voxels within the thresh-
olded TPM to their closest point on the skeleton. This is achieved by starting at
every voxel and following the direction perpendicular to the skeleton at that voxel,
calculated in equation 9.3, until the skeleton is reached. Then, we calculate the ex-
pected scalar diffusivity measure at every point of the skeleton. In figure 9.2, we
show a point on the inferio fronto occipital tract (IFO) skeleton in green and the vox-
els in the image which are closest to it. The values of these voxels are projected to
the skeleton and averaged according to their probability of being in the bundle. This
procedure for the IFO and the fractional anisotropy (FA), is as follows: for each point
in the skeleton of IFO, s, we calculated the set of voxelsN (s) within the TPM having s

as the closest on the skeleton. This is done by following the direction perpendicular
to the skeleton calculated in the previous section. Then, the expected value of FA on
each skeleton voxel s, is the expectation of the value of the FA on N (s) projected to s:

EIFOFA (s) =

∫
N (s) TPMIFO(p) FA(p)dp∫
N (s) TPMIFO(p)dp

(9.4)
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(a) Pyramidal Tract Right(40%–50%–80% thresholds)

(b) Uncinate Fasciculus Right(40%–50%–80% thresholds)

(c) Arcuate Fasciculus Left(40%–50%–80% thresholds)

(d) Fornix Left(40%–50%–80% thresholds)

(e) Inferio Fronto Occipital Right(40%–50%–80% thresholds)

(f) Inferio Fronto Occipital Left(40%–50%–80% thresholds)

Figure 2: Thresholded Tract probability maps for the averaged white matter fiber bun-
dles over 21 subjects. The previously obtained tract probability maps are thresholded
with respect to the maximal value to better localize the analysis. The thresholds on the
left, center and right panel are 40%, 55% and 80% respectively. Maximum intensity
projection is used for the color intensity. Color code ranges from red, when the proba-
bility of the voxel belonging to the bundle is 1.0 to yellow, when the probability of the
voxel belonging to the bundle is 0.2.

4

Starting from the tract probability map It is skeletonized in order to have 2D (or 
1D if it is tubular like the cingulum) 

representation of it

For each patient, the values of the FA(or 
other quantity) around the tract are 

projected to their closest point on the 
skeleton and averaged (with a weight 

according to the tract probability map)

This produces two 
populations of 

projected functions 
on the skeleton, one 
for patients and one 
for healthy subjects

Finally, voxel-wise 
analysis is carried on 
at each voxel. In this 
case Mann-Whitney’s 
U test. The red areas 
have a p-value<.01 

Figure 9.3: Statistical procedure to find differences along the tract: We start from the Tract Proba-
bility Map. The first step is to skeletonize it in order to reduce the dimensionality of the tract represen-
tation. Next, for each voxel in the skeleton, the weighted average of the FA (or other scalar diffusivity
measure) among the voxels which are closer to that point is calculated. This leads us to a different
projected function on the skeleton for each subject. Finally, voxel-based analysis is performed on the
skeleton voxels.

Finally, for each voxel in the skeleton, we perform voxel-based analysis. In this
case we use the Mann-Whitney U test to find voxels where the distribution of the
fractional anisotropy or the axial or radial diffusivities among patients and controls
is different, and we report trends indicated by the analysed t-score.

9.3 DATA

Whole-brain DWI datasets were acquired from 58 volunteers (35.60 ± 10.48 years,
28 Male, 24 healthy, 34 diagnosed with schizophrenia) on a Siemens Trio 3T scanner
with 1.71×1.71mm2 in-plane resolution, 2mm thick slices, six unweighted images and
64 diffusion weighted images (b=1000s/mm2) acquired with non-collinear diffusion
sensitizing gradients.

9.3.1 Data preparation

DTI images for each subject were computed and deformably registered, using DTI-
DROID [Yang et al.: 2008], to a DTI atlas [Wakana et al.: 2004]. Full brain tractogra-
phy was performed following [O’Donnell and Westin: 2007], streamline tractography
was performed by seeding in sub-voxel resolution by taking every voxel with linear
anisotropy higher than .3, dividing it into 0.25×0.25×0.25mm3 sub-voxels and seeding
from each sub-voxel. In average, 10.000 fiber tracts where obtained for each subject.
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(a) Pyramidal Tract Right (b) Pyramidal Tract Left

(c) Uncinate Fasciculus Right (d) Uncinate Fasciculus Left

(e) Arcuate Fasciculus Right (f) Arcuate Fasciculus Left

(g) Cingulum Right (h) Cingulum Left

(i) Inferio Fronto Occipital Right (j) Inferio Fronto Occipital Left

Figure 9.4: Tract probability maps for the averaged white matter fiber tracts over 21 subjects. The
tracts have been automatically extracted using the techniques developed in chapter 7. Maximum in-
tensity projection is used for the color intensity. Color code ranges from red, when the probability of
the voxel belonging to the tract is 1. to yellow when it is 0.2.

9.3.2 White Matter Structure Identification

In order to identify white matter structures, the clustering algorithm presented
in chapter chapter 7 was applied to every subject individually. Population-averaged
tract probability maps for major tracts were obtained for each extracted white matter
structure: on both hemispheres the arcuate, inferio fronto occipital, uncinate and
cingulum fasciculi along with the fornix; also, the frontal and posterior forceps were
extracted. The obtained TPMs are shown in figure 9.4. The TPMs where analysed
at three different scales: they where thresholded and re-normalized in order include
the 40%, 50% and 80% most probable area of each white matter structure respectively.
This is illustrated in figure 9.5.
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9.3.3 Statistical analysis of tracts

To characterize diffusion properties of the white matter structures, four scalar
quantities derived from the diffusion tensors were used: Fractional Anisotropy (FA),
axial diffusivity (λ‖ = λ1) and radial diffusivity (λ⊥ = 1

2(λ2 + λ3)). The FA measure
was used due to its biological interpretation as a measure of tract integrity and its
popularity in the literature. We chose the other two measures for two reasons, firstly
their response to differences on the diffusivity along the eigenvalues of the diffusion
tensor is linear (no clue what this means). Secondly, there are several reports re-
lating differences on axial and radial diffusivity with differences in myelination and
axonal calibre [Song et al.: 2002, 2005, Barazany et al.: 2009, Beaulieu: 2002, Concha
et al.: 2006].

9.4 RESULTS

We performed the “whole tract analysis”, introduced in subsection 9.2.1, at different
thresholds as illustrated in figure 9.5. In doing this using the Mann-Whitney U test,
we detected trends of significant difference ( p-value< 0.01 ) : an increase of λ‖ and
λ⊥ in the left fornix and uncinate fasciculus, the frontal forceps, and the right and
left pyramidal tracts; increased FA in the left inferio fronto occipital fasciculus; and
a decrease of the FA on the left arcuate fasciculus and fornix. 2

We also performed a “tract-skeleton analysis”, introduced in subsection 9.2.2.
Results of this analysis are shown in figure 9.6. In this figure we show tracts where
the number of voxels with a p-value under 0.001 is above the 10% of the number of
voxels in the whole skeleton. For these, we report the trend indicated by the t-score
in order characterize the detected change in diffusivity properties: in the left fornix
there are regions with an increase of λ‖ and λ⊥; the right arcuate fasciculus shows
regions with a decrease of FA; the right inferio fronto occipital fasciculus shows ar-
eas of decreasing λ‖; in the left inferio fronto occipital fasciculus there are areas of
increased axial and λ⊥; the frontal forceps shows areas of decreased λ⊥; the posterior
forceps has areas of increased FA and λ⊥; and the left pyramidal tract exhibits an
increase of λ‖ and λ⊥.

9.5 DISCUSSION

Our results are in agreement with current literature. The predominance of differ-
ences in tracts within the left frontal and temporal lobes has been reported by a
recent meta-analysis of DTI studies in schizophrenia [Ellison-Wright and Bullmore:
2009] and a detailed survey [Kubicki and Shenton: 2009]. Particularly, the decrease
of the FA on the left arcuate fasciculus, shown by both of our analyses was reported
by Burns et al. [2003]. Regarding our studies analysing FA changes in tract skele-

2. Due to data disclosure conditions on the used database, we are not authorized to show quantitative
results
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Tract Name Differences Trend of the difference Studies Agreeing
Left Right

Inferior Fronto Occipital X X λ‖ ↑ left only:λ⊥ ↑ FA ↑ Ashtari et al. [2007]
Arcuate Fasciculus X ×: FA↓ Burns et al. [2003]

Cingulum × ×
Fornix X × λ‖ ↑ λ⊥ ↑ FA ↓ Fitzsimmons et al. [2009]

Uncinate X × λ‖ ↑ λ⊥ ↑
Pyramidal X X λ‖ ↑ λ⊥ ↑

Commisural Tracts
Frontal Forceps X λ⊥ ↓

Posterior Forceps X FA↑ λ⊥ ↑

Table 9.1: Summary of results between controls and schizophrenics. Studies agreeing with our re-
sults are cited. The predominance of the differences in the frontal and temporal lobes of the left hemi-
sphere is in agreement with a recent meta-analysis of DTI studies in schizophrenia [Ellison-Wright and
Bullmore: 2009] and a detailed survey. [Kubicki and Shenton: 2009]

tons, we found an increased FA in left IFO which was previously shown by [Ashtari
et al.: 2007] and decreased FA in the fornix is consistent with Fitzsimmons et al.
[2009]. This agreements show that our statistical analyses are suited for white mat-
ter studies encouraging us to carry on with a more comprehensive study on larger
databases.

Regarding to the analyses of parallel (λ‖) and perpendicular (λ⊥) diffusivities,
even if recent work shows that these measures are more easy to correlate to biological
changes [Beaulieu: 2009], there are no schizophrenia studies using DMRI considering
them [Kubicki and Shenton: 2009, Ellison-Wright and Bullmore: 2009]. However,
our results agree with Ellison-Wright and Bullmore [2009] in that the differences
found are predominantly in the temporal and frontal lobes of the left hemisphere. In
future work, we expect that an in depth study of the differences in these quantities
will shed some light into the biological characteristics of white matter changes in
schizophrenia. The results and comparison with present studies are summarized in
table 9.1.

Finally, none of the methods presented is bounded to a single scalar diffusivity
measure, they are even generalizable to full-tensor studies as done, for instance,
by Yushkevich et al. [2008]. Moreover, it is possible to correlate these changes with
age and cognitive benchmarks in order to better analyse the relation between white
matter changes and the different disorders provoked by schizophrenia.

9.6 SUMMARY

In this chapter we have used our novel GP framework for white matter fibre bun-
dles in order to perform statistical analysis. For this, we have formulated statistical
protocols widely used in the literature in terms of our GP framework. We have ap-
plied the statistical analysis protocols in a small database and showed that we found
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trends of significant group differences. In turn, working on a larger database, our
proposed GP-based analysis will be able to shed some light into group differences
characterizing pathologies.
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(a) Pyramidal Tract Right(40%–50%–80% thresholds)

(b) Uncinate Fasciculus Right(40%–50%–80% thresholds)

(c) Arcuate Fasciculus Left(40%–50%–80% thresholds)

(d) Fornix Left(40%–50%–80% thresholds)

(e) Inferio Fronto Occipital Right(40%–50%–80% thresholds)

(f) Inferio Fronto Occipital Left(40%–50%–80% thresholds)

Figure 9.5: Thresholded Tract probability maps for white matter fiber tracts averaged over 21 subjects.
The previously obtained tract probability maps are thresholded with respect to the maximal value to
better localize the analysis. The thresholds on the left, center and right panel are 40%, 55% and 80%
respectively. Maximum intensity projection is used for the color intensity. Color code ranges from
red, when the probability of the voxel belonging to the tract is 1.0 to yellow, when the probability of the
voxel belonging to the tract is 0.2.



209

(a) Left Fornix areas with an
increase of λ‖

(b) Left Fornix areas with an
increase of λ⊥

(c) Left arcuate fasciculus, ar-
eas with a decrease of FA

(d) Right inferio fronto occip-
ital fasciculus, areas with an
increase of λ‖

(e) Left inferio fronto occip-
ital fasciculus, areas with an
increase of λ‖

(f) Left inferio fronto occipital
fasciculus, areas with an in-
crease ofλ⊥

(g) Frontal forceps, areas with
a decrease of λ⊥

(h) Posterior forceps, areas
with an increase of FA

(i) Posterior forceps, areas
with an increase of λ⊥

(j) Left pyramidal tract, areas
with an increase of λ‖

(k) Left pyramidal tract, areas
with an increase of λ⊥

Figure 9.6: Differences in tract portions: Using the statistical procedure described in subsec-
tion 9.2.2, we show tracts where some sections had differences between controls and patients. Only
tracts which demonstrate a trend towards a significant variation of the diffusivity quantities are shown.
For these, we highlight the areas which show a variation and report the type of change.
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In this thesis, we were interested in proposing methods to analyse the human
brain’s white matter structure using diffusion magnetic resonance imaging (DMRI).
More precisely, in performing automated in vivo dissection of the white matter and
developing statistical tools to analyse it. We started with a biref survey on the history
of neuroscience in order to put our contributions in context. Then, we presented the
technical background common to our methodological contributions: brain anatomy,
DMRI and clustering algorithms (Part I). Next, we proposed two techniques to iden-
tify white matter structures in DMRI images. The first of them, groups DMRI image
voxels into white matter structures (Part II). The second, clusters fibre tracts ob-
tained through DMRI-based tractography (Part III). For the first algorithm, we used
state-of-the-art manifold learning and DMRI techniques. In developing the second,
we proposed a novel mathematical framework for white matter fibre bundles. Fi-
nally, using this framework we developed two clinical applications: one to perform
straightening of the spinal cord using DMRI based tractography (chapter 8); and one
to identify group differences in white matter fibre bundles. We applied the latter
to detect characteristic differences in schizophrenia (chapter 9). In summary, the
contributions of this thesis range from the automatic identification of white matter
structures to its statistical analysis to detect characteristic differences of neurological
disorders.

Along this thesis, we have tried to make the good mathematical and algorithmic
choices to model and solve the problems of interest. This enabled us to propose ade-
quate and efficient algorithms such that we could finally tackle our objective. Briefly,
the important and novel methodological contributions of this thesis are:

In Part II, an algorithm to obtain white matter fibre bundles from HARDI images.
This is done by clustering voxels in which the diffusion is represented as ODFs.
In developing this algorithm we:

1. Developed a technique to perform seamless integration of diffusivity and
spatial features of the image voxels through Markovian relaxation.

2. Applied machine learning techniques in order to infer the manifold where
the voxels of this image lie and improve subsequent statistical analyses.

3. Used Fiedler’s contributions to graph theory in order to identify the number
of bundles in a given image.

4. Performed clustering of several white matter bundles in an image without
the need of user initialization.

In Part III, we developed a mathematical framework for white matter fibre bundles
based on Gaussian processes. This contribution has several statistical applica-
tions in automatic white matter structure identification and statistical compar-
ison:

1. Seamless parametric representation of individual white matter fibres bun-
dles. This representation retains the smoothness and continuity of these
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anatomical structures.

2. Development of operations among fibre bundles: one to combine them,
one to interpolate them and one to quantify their similarity. Moreover, we
showed that these operations constitute an inner product space allowing
optimizations and statistical analyses.

3. Calculation of tract probability maps. These maps quantify the probabil-
ity that a given location in space belongs to a fibre bundle.

4. The use of the aforementioned characteristics and volumetric atlas in order
to automatically identify white matter structures.

5. Effective identification of white matter structures in a database of 68 reg-
istered subject and analysis of the variability of these structures across
them.

6. Application of this mathematical framework to perform spinal cord
straightening.

7. Development of statistical analysis algorithms and their application to de-
tect differences in schizophrenia.

We are confident that these contributions, specially the ones in the third part of this
thesis, meet our initial goal; propose a technique to automatically identify human
brain’s white matter structures in DMRI.

Although our contributions can undoubtedly still be improved, we believe they can
benefit to a wide range of clinical and neuroscience studies. Particularly, through
the statistical analysis of white matter fibre bundles. In these studies, the proper
automatic identification of white matter structures is of utmost importance, specially
on those which use large DMRI databases. In these cases, the manual dissection
of a white matter structure can be tedious and error prone. This is a consequence
of the dependence of the results on the parameters and the human interaction re-
quired to perform the dissection. In order to overcome these problems, we introduce
in this thesis a tract querying algorithm (Part III). Such algortihm performs automat-
ical identification of white matter structures using anatomical knowledge and results
obtained from dense full-brain tractography. Due to the fact that this algorithm is
based on a solid mathematical framework, that it requires minimal parameter tun-
ing and it is based on a dense sampling of the fibres, the resulting dissected white
matter structures are more robust and reliable than the ones obtained by previous
techniques. In what concerns to the detection of biomarkers, it is possible to extend
the presented application on schizophrenia to a larger database or to different neuro-
logical disorders. In doing so, changes induced by these disorders on specific white
matter bundles could be characterized by performing statistical analysis on them.
Our mathematical framework could also be used to define a bundle registration algo-
rithm improving the recent work done by Durrleman et al. [2009]. Hence, providing
the means to quantify their variation in shape and volume. Even more, it is possible
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to use this framework in order to perform statistics on shapes where the volume of
the overlapping constitutes a significant measure of similarity.

Perspectives on Studies Based on DMRI-tractography

To conclude, we give a perspective on the role of DMRI-based tractography in
neuroscience and clinical studies.

A central part of this thesis was about how to integrate the diffusivity and spatial
information on each voxel of the images in order to perform their subsequent anal-
ysis. In doing so, we found that the fibre representation is more suited to identify
the white matter structures than the individual voxels. Tractography integrates dif-
fusivity and spatial information by means of a biologically-oriented physical model.
This provides more accurate depiction of the underlying anatomy than individual
voxels. However, the accuracy and significance of the fibres obtained through this
technique is currently in discussion. On one side, it is argued that tractography is
very limited as a tool to study brain structure. This is due to the resolution of the
DMRI image, due to dependence of the results on the parameter of the algorithms
used to perform this tracing, and due to its incapacity to detect particular anatomical
characteristics like the differentiation of afferent and efferent fibres [Johansen-Berg
and Behrens: 2006]. On the other side, DMRI-based tractography has been proved
to be reproducible [Wakana et al.: 2007, Ciccarelli et al.: 2003], has successfully char-
acterized white matter differences of several neurological disorders [Ciccarelli et al.:
2008] and there has been recent work in rendering more robustly the white matter
structures obtained from tractograpy (Part III). Therefore, we think that tractogra-
phy provides a useful tool to analyse the human brain’s white matter, identify its
structure and characterize neurological disorders.

Recent research contributions will also provide a better support for DMRI-
tractography based studies. There is a large and exciting amount of research that
is currently being performed in order to improve tractography results and reduce its
dependence on algorithmic parameters [Descoteaux et al.: 2009a, Qazi et al.: 2009,
Fillard et al.: 2009b, Malcolm et al.: 2010]. These new techniques along current de-
velopments in the diffusion model within a voxel [Tristán-Vega et al.: 2009, Aganj
et al.: 2009, Ghosh and Deriche: 2009, Descoteaux et al.: 2009b], new MRI scanners
and acquisition protocols [Sarlls and Pierpaoli: 2009, Aso et al.: 2009b] and new scalar
indices which quantify tissue microstructure [Barazany et al.: 2009, Assaf et al.: 2008,
Fritzsche et al.: 2010] should not only open but enlarge the doors to new and exciting
DMRI-based research of central nervous system connectivity.
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Nous avons cherché dans cette thèse à proposer des méthodes permettant
d’anlyser la structure de la matière blanche du cerveau humain, par le bias de
l’Imagerie par Résonance Magnétique de Diffusion (IRMD). Nous nous sommes plus
précisément intéressés à développer une technique de dissection in vivo et automa-
tique de la matière blanche, ainsi qu’à développer des outils d’analyse statistique
pour les structures ainsi mises en évidence. Nous avons en premier lieu présenté
un historique rapide des neurosciences, afin de rappeler le contexte dans lequel se
situent nos contributions. Nous avons ensuite présenté un diaporama du paysage
technique et méthodologique commun à nos contributions : anatomie cérébrale,
IRMD et algorithmes de regroupement de faisceaux (Partie I). Nous avons ensuite
proposé deux techniques afin d’identifier les structures de la matière blanche dans
dans les images IRMD. La première technique consiste à regrouper des voxels d’une
image IRMD en paquets pour retrouver des structures dans la matière blanche (Par-
tie II). La seconde technique quant à elle regroupe des fibres, obtenues par tractogra-
phie IRMD, en faisceaux (Partie III). Le premier algorithme utilise des techniques
récentes d’apprentissage de variétés et de traitement IRMD. En développant la sec-
onde méthode, nous avons proposé un cadre mathématique nouveau pour l’analyse
des faisceaux de fibres de la matière blanche. Ce cadre nous a permis de développer
deux applications cliniques : la première consiste à redresser la moêlle épinière à
partir de tractographie en IRMD ; la seconde permet d’identifier des différences de
faisceaux entre groupes d’individus. Cette deuxième technique a été appliquée pour
détecter des différences caractéristiques chez les patients atteints de schizophrénie
(Chapitre 9). En résumé, les contributions de cette thèse vont de l’identification
des structures de la matière blanche à leur analyse statistique afin de détecter
des différences charactéristiques de certaines anomalies neurologique. Nous nous
sommes efforcés à faire des choix mathématiques et algorithmiques judicieux pour
modéliser et résoudre le problème auquel nous nous intéressions. Cela nous a per-
mis de proposer des algorithmes adaptés et efficaces, si bien que nous sommes par-
venus à atteindre nos objectifs. Pour récapituler, les contributions majeures et orig-
inales de cette thèse sont :

Dans la Partie II un algorithme pour retrouver les faiceaux de fibres à partir
d’images IRMD à haute résolution angulaire. Nous regroupons pour cela des
voxels, où la diffusivité est décrite par une fonction de distribution d’orientation.
Pour développer cet algorithme, nous avons :

1. Mis en oeuvre une technique pour intégrer de façon transparente la diffu-
sivité et les informations spatiales des voxels de l’image par relaxation de
Markov.

2. Appliqué des techniques d’apprentissage pour inférer la variété dans laque-
lle sont définis les voxels de l’image, et améliorer l’analyse statistique qui
en dépend.
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3. Utilisé les travaux de Fiedler en théorie des graphes pour identifier le nom-
bre de faisceaux dans une image donnée.

4. Réalisé le regroupement des fibres en plusieurs faisceaux de la matière
blanche dans une image, sans besoin d’initialisation par l’utilisateur.

Dans la Partie III, nous avons développé un cadre mathématique pour l’étude
des faisceaux de fibres de la matière blanche basé sur la notion de proces-
sus gaussien. Cette contribution a plusieurs applications statistiques pour
l’identification automatique et la comparaison statistique des structures de la
matière blanche :

1. Représentation paramétrique de chaque fibre de la matière blanche.
Cette représentation conserve les propriétés de continuité et de régularité
de ces structures anatomiques.

2. Définitions d’opérations sur les fibres : combinaison, interpolation et
mesure de similarité.entre deux fibres. Nous avons par ailleurs montré
que ces opérateurs définissent un espace à produit interne, ce qui ouvre la
porte à l’optimisation et l’analyse statistique.

3. Calcul de cartes de probabilité d’appartenance à un faisceau. Ces cartes
représentent la probabilité qu’un point donné de l’espace appartienne à un
faisceau de fibre.

4. Utilisation des charactéristiques citées plus haut et d’un atlas
volumétrique pour identifier de façon automatique les structures de la
matière blanche.

5. Identification avec succès des structures de la matière blanche dans une
base de donnée de 68 sujets recalés, et analyse de la variabilité de ces struc-
tures entre sujets.

6. Application de ce cadre mathématique pour redresser la moêlle épinière.

7. Développement d’algorithmes d’analyse statistique et application à la
détection de différences en schizophrénie.

Nous sommes convaincus que ces travaux, en particulier ceux présentés dans la
troisième partie de cette thèse, remplissent l’objectif que nous nous étions fixés : pro-
poser un algorithme qui permette d’identifier de façon automatique les structures
anatomiques de la matière blanche dans le cerveau humain. Bien que, sans nul
doute, nos contributions puissent être encore améliorées, nous croyons qu’elles peu-
vent servir un grand panel d’études cliniques et neurologiques, en particulier grâce à
l’analyse statistique des faisceaux de fibres de la matière blanche. Pour ces applica-
tions en effet, être capable d’identifier de façon fiable et automatique les structures
de la matière blanche est d’une importance capitale, en particulier pour les études
sur des grandes bases de données. Dans ce cas, la dissection manuelle d’une struc-
ture de la matière blanche peut être délicate, et sujette à erreurs. Les résultats
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dépendent en effet des paramètres, et de l’action humaine nécessaire pour faire la
dissection. Afin de dépasser ces problèmes, nous introduisons dans cette thèse un
algorithme de recherche de faisceau (Partie III). Cet algorithme réalise une identifi-
cation automatique des structures de la matière blanche à partir de connaissances
anatomiques et des résultats de la tractographie exhaustive des fibres de la matière
blanche sur le cerveau entier. Étant donné que cet algorithme se base sur un cadre
mathématique solide, qu’il nécessite peu d’ajustements de paramètres, et qu’il se
base sur un échantillonnage fin des fibres, il permet de disséquer de façon plus ro-
buste et fiable les structures de la matière blanche, en comparaison aux techniques
précédentes.

Perspectives sur les Études à base de tractographie en IRMD

En conclusion, nous donnons un point de vue sur le rôle de la tractographie à
base d’IRMD en neurosciences et pour les études cliniques. Une partie importante
de cette thèse a été consacrée au problème de l’intégration des informations de dif-
fusivité et des informations spatiales en chaque voxel des images pour ainsi pou-
voir les analyser. Nous nous sommes aperçus que la représentation sous forme de
fibre est mieux appropriée que le simple voxel à l’identification des structures de
la matière blanche. La tractographie intègre la diffusivité et la géométrie en util-
isant un modèle physique orienté biologie, cela donne une description plus juste
de l’anatomie sous-jacente que les voxels considérés individuellement. Cependant,
la précision et l’interprétation des fibres obtenues à l’aide de cette technique sont
actuellement remises en question. Certains avancent que la tractographie est un
outil très limité pour l’étude de la structure du cerveau ; cela est attribué à la
résolution des images IRMD, au choix déterminant des paramètres pour le résultat
des algorithmes de tractographie, ainsi qu’à l’impossibilité de discerner certaines par-
ticularités anatomiques, comme par exemple discriminer une fibre afférente d’une fi-
bre efférente [Johansen-Berg and Behrens: 2006]. D’un autre côté, il a été montré
que la tractographie IRMD est reproductible [Wakana et al.: 2007, Ciccarelli et al.:
2003], a permis d’identifier avec succès plusieurs anomalies de la matière blanche car-
actéristiques de certaines pathologies neurologiques [Ciccarelli et al.: 2008], et des ef-
forts récents ont été mis en oeuvre pour rendre l’extraction de structures de la matière
blanche à partir de tractographie plus robuste (Partie III). Ainsi nous sommes con-
vaincus que la tractographie apporte un excellent outil pour l’analyse de la matière
blanche du cerveau humain, l’identification de ses structures et la caractérisation des
anomalies neurologiques. Les travaux de recherche les plus récents vont également
apporter une aide supplémentaire pour les études basées sur la tractographie en
IRMD. Il y a un nombre toujours plus important et encourageant de recherches en
cours afin d’améliorer les résultats de la tractographie, et de les rendre au maxi-
mum indépendants des paramètres des algorithmes [Descoteaux et al.: 2009a, Qazi
et al.: 2009, Fillard et al.: 2009b, Malcolm et al.: 2010]. Ces récentes techniques,
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les développements actuels de modèles décrivant la diffusion dans un voxel [Tristán-
Vega et al.: 2009, Aganj et al.: 2009, Ghosh and Deriche: 2009, Descoteaux et al.:
2009b], l’arrivée de nouveaux scanners IRM et protocoles d’acquisition [Sarlls and
Pierpaoli: 2009, Aso et al.: 2009b], ainsi que le développement de nouveaux indices
scalaires qui décrivent de façon quantitative la microstructure des tissus [Barazany
et al.: 2009, Assaf et al.: 2008, Fritzsche et al.: 2010] devraient non seulememt ouvrir,
mais également agrandir les portes vers de nouvelles recherches de la connectivité
dans le système nerveaux central basées sur la tractographie en IRMD.



Appendix

225





APPENDIX A

PUBLICATIONS OF THE AUTHOR

JOURNAL PUBLICATIONS

D. Wassermann, L. Bloy, E. Kanterakis, R. Verma, and R. Deriche. Unsupervised
white matter fiber clustering and tract probability map generation: Applica-
tions of a gaussian process framework for white matter fibers. NeuroImage,
51, 228-241, 2010.DOI: 10.1016/j.neuroimage.2010.01.004.

C. Lenglet, J. Campbell, M. Descoteaux, G. Haro, P. Savadjiev, D. Wassermann, A.
Anwander, R. Deriche, B. Pike, G. Sapiro, K. Siddiqi, and P. Thompson. Mathe-
matical methods for diffusion MRI processing. Neuroimage, 45(1):S111–S122,
2009. DOI:10.1016/ j.neuroimage.2008.10.054.

C. Delmaire, M. Vidailhet, D. Wassermann, M. Descoteaux, R. Valabregue, F. Bour-
dain, C. Lenglet, S. Sangla, A. Terrier, R. Deriche, and S. Lehéricy. Diffusion
abnormalities in the primary sensorimotor pathways in writer’s cramp. Arch
Neurol., 66(4):502–508, 2009.

D. Wassermann, M. Descoteaux, and R. Deriche. Diffusion maps clustering for
magnetic resonance Q-Ball imaging segmentation. International J Biomedical
Imaging, 2008, 2008. DOI: 10.1155/2008/526906

CONFERENCES AND WORKSHOPS WITH PROCEEDINGS

D. Wassermann, E. Kanterakis, R. C. Gur, R. Deriche, and R. Verma. Diffusion-
based population statistics using tract probability maps. In International Con-
ference on Medical Image Computing and Computer Assisted Intervention,
2010.

D. Wassermann, J. Cohen-Adad, S. Lehéricy, H. Benali, S. Rossignol, and R.
Deriche. Straightening the spinal cord using fiber tractography. In Interna-
tional Symposium on Biomedical Imaging, 2010.

227



228 APPENDIX A. PUBLICATIONS OF THE AUTHOR

D. Wassermann, L. Bloy, R. Verma, and R. Deriche. Bayesian framework for white
matter fiber similarity measure. In International Symposium on Biomedical
Imaging, Boston, USA, 2009

D. Wassermann and R. Deriche. Simultaneous manifold learning and clustering:
Grouping white matter fiber tracts using a volumetric white matter atlas. In
MICCAI Workshops, 2008.

D. Wassermann, L. Bloy, R. Verma, and R. Deriche. A Gaussian Process based
framework for white matter fiber tracts and bundles, applications to fiber clus-
tering. In MICCAI Workshops, 2009.

D. Wassermann, M. Descoteaux, and R. Deriche. Diffusion maps segmentation
of magnetic resonance Q-Ball imaging. In IEEE Workshop on Mathematical
Methods in Biological Imaging, 2007.

CONFERENCE ABSTRACTS

D. Wassermann, J. Cohen-Adad, S. Lehéricy, H. Benali, S. Rossignol, and R. De-
riche. Fully automated straightening of the spinal cord using fiber tractogra-
phy. In 18th. International Symposium on Magnetic Resonance in Medicine,
2010.

C. Delmaire, M. Vidailhet, M. Descoteaux, D. Wassermann, F. Bourdain, C.
Lenglet, S. Sangla, A. Terrier, R. Deriche, and S. Lehéricy. Diffusion tensor
imaging of white matter abnormalities in patients with writer’s cramp. In
16th. International Symposium on Magnetic Resonance in Medicine, 2008.

D. Wassermann and R. Deriche. Avoiding artifacts in spectral white matter fiber
clustering and embedding. In Proceedings of the 13th Organization for Human
Brain Mapping Annual Meeting, volume 36 of Neuroimage. Organization for
the Human Brain Mapping, 2007.



APPENDIX B

USEFUL MATHEMATICAL

PROPERTIES

B.1 PROPERTIES OF GAUSSIAN DISTRIBUTIONS

B.1.1 Condition and Marginalization

Let x and y be jointly Gaussian random variables

(
x
y

)
∼ G
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µx
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)
,

(
A C

CT B

))
= G

((
µx
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)
,

(
Ã C̃
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)−1
)

(B.1)

Then, the following properties hold

x ∼G(µx, A) (B.2)

x|y ∼G(µx + CB−1(y − µy), A− CB−1CT ) (B.3)

x|y ∼G(µx + Ã−1C̃(y − µy), Ã
−1) (B.4)

B.2 LINEAR ALGEBRA

Partitioned inverse equation(
A B

C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1
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