
HAL Id: tel-00827163
https://theses.hal.science/tel-00827163

Submitted on 28 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Level Hardware Synthesis of RVC Dataflow
Programs
Khaled Jerbi

To cite this version:
Khaled Jerbi. High Level Hardware Synthesis of RVC Dataflow Programs. Signal and Image Process-
ing. INSA de Rennes, 2012. English. �NNT : �. �tel-00827163�

https://theses.hal.science/tel-00827163
https://hal.archives-ouvertes.fr

Dedications

For the souls of my grand parents

For my Father Abdelaziz and my mother Salwa because of your invaluable love,
help and encouragements during all my studies to make this PhD grade a reality, I

wish you prosperity and god bless you

For my brother Malek who has been always there to support me and give me a
smile at tough moments, I wish you all the best

For my aunt Sabeh because she never let me down and I know she will never do, I
hope you will be always somewhere in my life

For my aunts Monia and Wahida for you supporting messages and for thinking of
me as a son of you, I wish you long life and prosperity

For all my friends allover the world who cared about me and with whom I shared
great moment outside my professional life

For my whole family

For everyone who cares about me

i

Acknowledgments

I would like to thank every person who contributed directly or indirectly to make
this thesis achieved.

I would like to express my deep gratitude to all the jury members who accepted
to evaluate my thesis: Mr Adel ALIMI for the honor he gave me to preside my PhD
defense. I sincerely thank Mr Marco MATTAVELLI, Mr Adel GHAZEL, and Mr
Jean-Philippe DIGUET for accepting to examine my research work and to partici-
pate to the to my PhD defense.

I would like to express my very great appreciation to Professor Mohamed ABID,
my PhD director who offered to me this wonderful research opportunity

I would like to offer my special thanks to Professor Olivier DEFORGES, also my
PhD director in France, for accepting me in his laboratory and for all these years of
scientific and human exchange

I am particularly grateful for my co-director Mickaël RAULET for his exemplary
supervising during the master and the PhD research and for all the techniques he
taught me

I wish to acknowledge the help provided by Jocelyne TREMIER our assistant in
the INSA of Rennes.

I am so thankful for Matthieu WIPLIEZ and Hervé YVIQUEL for their help on
the source code of Orcc compiler.

My special thanks are extended to the staff of the CESLab and the IETR for all
the great moments I had in Sfax and Rennes.

iii

Table of contents

I State Of The Art 1

1 Introduction 3
1.1 General context . 4
1.2 Objectives and scientific contributions 5
1.3 Outline . 5

2 Electronic System Level Design 9
2.1 Introduction . 10
2.2 State of the art on digital signal processing conception methods . . . 11
2.3 Overview on the Electronic System Level Design conception method 15

2.3.1 The software-oriented architecture 15
2.3.2 The hardware-oriented architecture 17
2.3.3 The Hardware Software Codesign 21

2.4 High Level Synthesis (HLS) from high level to RTL level 23
2.5 Existing HLS tools . 25
2.6 Conclusion . 25

3 RVC: methodology and framework 28
3.1 MPEG RVC standard . 30
3.2 RVC-CAL language . 35
3.3 RVC Models of Computation . 42

3.3.1 Overview . 44
3.3.2 The Dataflow Process Network MoC and derived MoCs . . . 46

3.3.2.1 RVC modeling of the DPN 48
3.3.2.2 RVC modeling of the SDF 49
3.3.2.3 RVC modeling of the CSDF 50
3.3.2.4 RVC modeling of the QSDF 50

3.4 Compilation and simulation of RVC-CAL designs 52
3.4.1 RVC-CAL compilation . 53

3.4.1.1 Code parsing . 53
3.4.1.2 Control Flow Graph 54
3.4.1.3 The Intermediate Representation (IR) 54

v

3.4.2 Generation of HW/SW implementations with OpenDF 56
3.4.3 Open RVC-CAL Compiler (Orcc) 58

3.4.3.1 The front-end . 59
3.4.3.2 The middle-end . 62
3.4.3.3 Orcc back-ends . 63

3.5 Hardware compilers limitation: the multi-token case 65
3.6 Conclusion . 66

II Proposed Techniques And Methodologies 68

4 A methodology for fast validation of RVC-CAL programs 70
4.1 Fast validation approach principle . 71

4.1.1 Existing validation methods . 71
4.1.2 Functional validation in a software platform 73

4.2 Automatic generation of test benches and stimulus files 80
4.3 Pipeline methods . 81
4.4 Comparison with manual flow . 83
4.5 Conclusion . 84

5 Automatic hardware generation from RVC-CAL 86
5.1 Introduction . 87
5.2 Localization of the automatic transformation 87
5.3 Actor behavior . 88
5.4 Transformation overview . 89

5.4.1 Actions and variable creation 89
5.4.2 FSM creation cases . 94

5.5 Transformation steps and optimizations 98
5.6 Validation and Miscellaneous transformations 99
5.7 Written code reduction . 103
5.8 Conclusion . 103

III Experiments And Results 106

6 Technological solutions of MPEG-RVC decoders 108
6.1 MPEG-4 part 2 Simple Profile . 109

6.1.1 The hardware oriented architecture 109
6.1.2 Parallel architecture . 111
6.1.3 Serialized architecture . 114

6.2 MPEG-4 part 10 Profiles . 115
6.3 Implementation and results . 119

6.3.1 Functional validation . 119

6.3.2 Hardware implementation . 119
6.4 Conclusion . 122

7 Still image case of study: the LAR codec 124
7.1 LAR principle . 125

7.1.1 FLAT LAR . 126
7.1.1.1 Partitioning . 127
7.1.1.2 Block mean values computation process 129
7.1.1.3 The DPCM . 129

7.1.2 Spectral coder: The Hadamard transform 131
7.1.3 Entropic coder: The Golomb Rice bitstream 134

7.2 Achieved architectures . 134
7.3 Design implementation . 141
7.4 Conclusion . 143

8 Conclusion and perspectives 146
8.1 Summary . 147
8.2 Perspectives . 149

A Frensh resume 151
A.1 Le modèle de calcul flot de données 153
A.2 La méthodologie de validation rapide 155
A.3 La transformation automatique du code 157
A.4 Application sur le décodeur vidéo MPEG 4 SP Part 2 161
A.5 Application sur le codec d’images fixes LAR 164
A.6 Conclusion et perspectives . 165

Part I

State Of The Art

1

C h a p t e r 1

Introduction

1.1 General context . 4

1.2 Objectives and scientific contributions 5

1.3 Outline . 5

4 Introduction

1.1 General context

In the 50 last years, the human race has seen an amazing evolution in technology.
From the black and white television till the sophisticated tablets and smart phones,
the most considerable revolution rose with the emergence of embedded systems.
These systems made technology very close and present in our everyday life. Nowa-
days, most people around the world carry on phones, smart phones, tablets and
laptops. Our houses are equipped with televisions, video and music players, broad-
band Internet connection, alarm systems, smart washing machines etc. Our cars are
fitted with GPS connection, position radar, smart weather and luminosity sensors ...
This wide spread of embedded systems is firstly due to the increasing requirement
of computation units and secondly to the prices proposed by the companies. In this
context, the semiconductor industry association (SIA) announced that worldwide
semiconductor sales in 2011 reached a record of $299.5 billion [71] with an increase
of 0.4% from the $298.3 billion recorded in 2010.

All these progresses were possible thanks to the outstanding increase of the inte-
gration of transistors in the Silicon. Indeed, the number of transistors implemented
on the Silicon rose from thousands to billions. For example, the number of transis-
tors implemented on the GT200 graphic processor of Nvidia reached the 1.4 billions
on a surface of 600mm2. Even if this high level of integration made processors very
powerful with high frequencies, the sequential way of execution of processors re-
mained a continuous limitation. Therefore, designers were looking for new meth-
ods to enhance the execution performances especially with parallel architectures
that can be affordable with hardware circuits. In 1987, the VHSIC Hardware De-
scription Language (VHDL) [35] was standardized by the IEEE as a language that
describes at high level parallel behaviors. This language is associated with compil-
ers that synthesize the code into an ASIC (Application-Specific Integrated Circuit).
VHDL, and also Verilog [36], are offering a powerful implementation solution to
processors.

The increase of the number of transistors integrated in the Silicon allowed the
developers to integrate heterogeneous architectures -processors, memories, acceler-
ators and other hardware accelerators or IPs (intellectual Properties)- in the same
chip, and the era of the System On Chip (SoC) started. These innovative architec-
tures of the SoC allowed the developers to create complete systems on the same
microscopic chip, but they rose questions about conception complexity, energy con-
sumption, real-time performance and time to market. Consequently, designers are
looking for new methods to master the complexity while keeping acceptable energy
consumption and execution performances. For that purpose, the Electronic System
Level design (ESLD) methodology of conception was introduced as new method-
ology to conceive systems in very high level called system level using virtual plat-
forms that enable the simulation of the application at the system level. The ESLD
aims to be an efficient solution to design signal processing applications at system

1.2 Objectives and scientific contributions 5

level and automatically generate implementations at low level.

1.2 Objectives and scientific contributions

This thesis is a joint work between the Computers and Embedded Systems laboratory
(CES Lab) from the National School of Engineers of Sfax (ENIS Sfax, Tunisia) and
the Institute of Electronic and Telecommunications of Rennes (IETR) from the National
Institute of Applied Sciences of Rennes (INSA Rennes, France). The CES Lab main
research axes are co-design, sensor nets and image processing. The IETR province in
about image processing and rapid prototyping using Dataflow programming. Our
research focuses on using Dataflow as a high level conception model to automati-
cally generate hardware implementations.

A Dataflow program can be defined as a directed graph which vertices repre-
sent the execution processes and the edges represent communication FIFO channels
between these processes. The data exchanged through FIFOs is called token. This
concept makes the processes totally independent from each other and only the pres-
ence of tokens in the FIFOs is responsible of firing them. To transform the model
of the Dataflow into a functional description, a domain specific language called Cal
Actor Language (CAL) is considered in this work. A subset of this language is also
standardized by the MPEG community as a part of the new Reconfigurable Video
Coding (RVC) standard and, thus, called RVC-CAL. This standard is supported by a
complete infrastructure for designing and compiling RVC-CAL programs into hard-
ware and software implementations. However, the existing hardware generation
flow presents many limitations especially for the validation and the compilation
of RVC-CAL high level structures related to multi-token behavior. Indeed, for the
validation, we propose a functional methodology that helps the validation of the
correctness of algorithms in several steps of the conception flow. We show in this
document the important impact of this methodology on the conception time.

For the hardware compilation limitations, we introduce an automatic transfor-
mation integrated in the core of an RVC-CAL compiler called Orcc (Open RVC-CAL
Compiler). This transformation detects the non-compliant features for hardware
compilers and makes the required changes in the intermediate representation of
Orcc to obtain a synthesizable code while keeping the same global application be-
havior. This transformation resolved the main issue of the hardware generation
from Dataflow programs.

1.3 Outline

This document is composed of three main parts:

6 Introduction

I The state of the art This part contains an introduction to the global notions
and research problems discussed in this thesis and the previous works that lead to
our work. It contains:

• In Chapter 1 a global introduction of the motivations of this work, the objec-
tives and the scientific contributions.

• In Chapter 2, a presentation of signal processing architectures and platforms.
The methodologies to design architectures and in particular the ESLD concep-
tion methodology. The chapter ends with an overview of the existing tools for
High Level Synthesis.

• In Chapter 3, an introduction to the Reconfigurable Video Coding standard
and the motivation of MPEG behind this standard. It also presents the main
notions and structures of the RVC-CAL language and the Model of Computa-
tion used in RVC. The last part of this Chapter is reserved for the presentation
of the existing tools for the design and the compilation of RVC-CAL programs
and the limitations before our contributions. It will focus especially on the ex-
planation of the tools used during this thesis: the hardware compiler called
OpenForge and the new multi-back-end compiler Orcc.

After the presentation of the state of the art and the problematic, Part II contains
the main contributions and proposed techniques of this work. It contains:

• In Chapter 4, a detailed explanation of an original methodology for fast val-
idation of RVC-CAL designs during the hardware generation. This Chapter
presents also a rapid way for automatic generation of test benches and stim-
ulus files using a software platform. This methodology is compared to the
traditional flow in terms of conception duration and revealed to have an im-
portant impact on this crucial conception criterion.

• In Chapter 5, a description of the mechanisms of the automatic transformation
of the high level features of RVC-CAL starting from the fundamental math-
ematic formalism of the actor behavior. This transformation behaves in dif-
ferent ways depending on the structure on the MoC of the actor, its FSM and
several cases of firing rules. Therefore, all these cases are discussed and ex-
plained. To close this chapter, some miscellaneous transformations necessary
for correct hardware generation and some optimizations are detailed.

The last part of the document contains the experiments and results of the ap-
plication of the methodology and the automatic transformation on two application
examples.

• The first technical context to test our contributions is the MPEG-4 part 2 Simple
Profile video decoder. In chapter 6, the different MPEG-4 decoders available

1.3 Outline 7

in the RVC library are presented such as MPEG-4 part 2 SP and MPEG-4 part
10 (AVC) profiles. For MPEG-4 part2 SP, we present the serialized MVG de-
sign, the parallelized Ericsson design mainly used for hardware implementa-
tion and the Xilinx hardware oriented design. For MPEG-4 part 10, we define
the different profiles (main, extended, FREXT, PHP ...) and the techniques
they encapsulate. Then, an overview on the different RVC-CAL actors of these
decoders is presented. Finally, the different implementation and simulation
results of area consumption and time performance are summarized and com-
pared with a reference hardware design, with an exiting IP and also with an
academic hardware generation tool from C language.

• After testing a video decoder, the different methodologies are tested on a
still image codec called LAR (Local Adaptive Resolution). Idem for the LAR,
Chapter 7 presents the main notions and novelties of this codec and presents a
set of comparison studies between the hardware generation from VHDL and
the generation using RVC-CAL Dataflow programs.

Finally, Chapter 8 concludes this thesis by summarizing the scientific contribu-
tions of this thesis and discussing the perspectives and potential research activities
that can be launched in the light of this work.

8 Introduction

C h a p t e r 2

Electronic System Level Design

2.1 Introduction . 10

2.2 State of the art on digital signal processing conception methods . 11

2.3 Overview on the Electronic System Level Design conception
method . 15

2.3.1 The software-oriented architecture 15

2.3.2 The hardware-oriented architecture 17

2.3.3 The Hardware Software Codesign 21

2.4 High Level Synthesis (HLS) from high level to RTL level 23

2.5 Existing HLS tools . 25

2.6 Conclusion . 25

10 Electronic System Level Design

In this thesis, we present a research work within the Reconfigurable Video Cod-
ing (RVC) framework defined under the MPEG-RVC standard. The purpose of
this framework is to find solutions for the compilation and the implementation of
Dataflow programs on embedded systems. RVC provides a domain specific lan-
guage (DSL) called RVC-CAL and based on Dataflow syntax and semantics to fa-
cilitate the development of any video processing algorithm at the system level. The
RVC-CAL algorithm is compiled using a compilation infrastructure into hardware
and software descriptions and this methodology of conception is called Electronic
System Level Design (ESLD). This Dataflow aspect substitutes the monolithic and
sequential describing way of classic languages. In addition to video processing,
RVC-CAL was used for still image codecs and even for network protocol IPs (In-
tellectual Properties) which makes it a general describing language for most signal
processing contexts.

This Chapter starts with a general introduction on signal processing and more
particularly on image processing. Section 2.2 presents the state of the art of the
methods used by digital signal processing designers. The importance of the ESLD
methodology and the related implementation techniques are illustrated in Section
2.3. The ESLD methodology enables the generation of a behavioral representation
that has to be synthesized into a description of basic operations. This step is called
the High Level Synthesis (HLS) and it is detailed in Section 2.4. The last Section (2.5)
presents a set of tools used in the HLS.

2.1 Introduction

The digital signal processing field contains several applications such as sensor nets,
radars, sonars, GPS, image etc. In the following, we will focus on the image and
video processing field. This processing domain is currently omnipresent in our ev-
eryday life through television, phones, Internet ... So what is image processing and
why? In 1840, William Henry Fox invented the calotype, a process that enables the
manufacturing of light sensitive film called negative film. This film is etched by the
photons (subatomic light particles) allowing the storage of the image. After that, a
chemical process allows the extraction of the final photo on papers and the era of
photography started. With the evolution of digital sensors in 1975, Kodak engineer
Steven Sasson built the first digital camera using an array of photosensitive diodes
called photosites that capture photons and converts them to electrons, much such as
solar panels convert light to energy. Every diode transforms the received light into
an electronic signal proportional to the light intensity and constitutes a pixel of the
image. An analog to digital converter transforms these electronic signals into digital
values that can be stored in memories. But what is the memory occupation of this
image on the disk? Let us consider for example a matrix of sensors composed of
300x300 pixels which means 90 Kilo pixels to save. If the converter creates a digital

2.2 State of the art on digital signal processing conception methods 11

signal coded on 8 bits, the image size is 90 Kilo bytes. For a color image, the sensors
are multiplied by three to capture the three coordinates of a color image (Red Green
Blue or Red Yellow Blue) and the size is multiplied by three and reaches 270 Kilo
bytes. For a video stream of one hour using the European system of 25 images/sec-
ond, the size is 270× 25× 3600 = 4050000 Kilo bytes or 4 Gigabytes! The dilemma
is that the higher is the number of pixels the better is the quality of the image, but
also the larger is the consumed memory. Consequently, it was necessary to find so-
lutions to reduce the image and video size before storing them. Many algorithms
have been developed to exploit the redundancy of pixels, the human eye capacities
and other findings to reduce the image and video size. These techniques are called
image and video compression or coding. An image may undergo other treatments
for example in the medical field to extract the contours of specific anatomies or in
Tele-monitoring to extract the plate number of a car etc. Therefore, we use “image
processing” a more generalized word to design all these pre and post treatments.

The algorithms used for image processing are very complex and we currently
speak about Intensive Signal Processing (ISP). These algorithms are executed on
computing units that have three main ways to be designed: software, hardware or
mixed. These architectures are explained below.

2.2 State of the art on digital signal processing concep-
tion methods

Since the second half of the 20th Century, electronic systems have progressively in-
vaded our everyday lives after the discovery of the first transistor in 1948. Later, the
evolution of the semiconductors has exploded and Dr.Gordon E. Moore, co-founder
of Intel, has predicted that in 1965 when he said, in “Electronic Magazine”, that the
number of transistors in the same silicon area will double every two years. This
evolution is presented in Figure 2.1.

It is noticeable that the most performing circuit in 1965 contained 64 transistors.
When the number of transistors in the same integrated circuit is counted by thou-
sands, we began speaking about the Large-Scale Integration (LSI) and later about
the Very Large-Scale Integration (VLSI). A VLSI device may be a simple processor
or a complete processing unit with a processor and all the required memories and
buses. Today’s integrated circuits contain billions of transistors and the Ultra Large-
Scale Integration (ULSI) word is introduced.

I Embedded systems and Systems on Chip In accordance with Moore’s law,
the increasing integration rate allowed the integration of several components, repre-
senting a complete system, in only one chip. This evolution introduced the notion of

12 Electronic System Level Design

Figure 2.1: Evolution of transistors integration following Moore’s law

System on Chip (SoC). The SoC technologies enable the development of application
specific architectures that are optimized in terms of energy consumption, cost and
performances. Consequently, such systems can be easily integrated in houses, cars
or phones and the area of embedded systems has started.

On the contrary of Application Specific Integrated Circuits (ASICs), the SoC tech-
nology is able to integrate predefined blocks called (IPs) from Intellectual Properties.
An IP is a circuit realizing a certain process or algorithm and that has been devel-
oped, tested and validated. The notion of collecting IPs in a SoC is very important
to reduce the time to market, a criterion that revealed to be the most crucial for
technology industries.

I Parallel architectures During many decades, the technology innovations
aimed at reducing the processing time by increasing the frequency to make the sys-
tem execute more statements for a given period of time. The frequency has also a

2.2 State of the art on digital signal processing conception methods 13

physical limit due to heat dissipation so efforts were directed in duplicating the pro-
cessing units to process more data in one clock period. Others split the process to
make a maximum of independent statements process in parallel. Such architectures
made a revolution for ISP systems that are getting more and more sophisticated.

I Conception methods To master the increasing complexity of systems, many
conception methods have been introduced:

• The waterfall approach has been elaborated in 1970 by Winston W. Royce [68].
This top-down approach considers a sequential order of development phases.
To start, a set of specifications is fixed according to the needs of users. Then, an
architecture is conceived and followed by implementations and assessments
tests. Such organization has shown many drawbacks later. Indeed, the fact of
fixing all the specifications is almost impossible because a client has generally
an idea about the final product but not a detailed description of its behavior.
Moreover, the complexity that appeared later made it impossible to split tasks
as presented by the waterfall approach.

• The spiral model is defined in 1986 by Barry Boehm [9]. The principle of this
approach (Figure 2.2) is to combine advantages of both top-down and bottom-
up methodologies using incremental refinement.

Figure 2.2: The spiral approach principal

It allows, using feedbacks when necessary (bug or system update), to realize

14 Electronic System Level Design

tests. Such flexibility of development has proved a considerable gain of time
to market while keeping an excellent quality of the product. The limitation of
this methodology is the fact that it is impossible to estimate the duration of the
project at an advanced stage, especially for complex applications.

• The V model represents a sequence of steps of the project life. As presented
in Figure 2.3, the main requirements are placed at the left side and their
associated validation procedures at the right side. This model is a mixture of
the incremental approach used for the development steps and the spiral ap-
proach used for the validation. This model is currently used in management,
business, computer sciences and many other fields.

Validate
requirements

Verify
design

Requirements
Engeneering

System
validation

Requirements
Engineering

Application
design

Application
verification

System
verification

Coding

Trace
 implementation

Trace
 implementation

Figure 2.3: The V-Model principal

All the previously presented models continue to be used with the domination
of the V-model. However, the continuously increase of applications complexity
made designers think of new methods with high level of abstraction to master this
complexity. In the following, we introduce the Electronic System Level Design as a
methodology of conception at the system level.

2.3 Overview on the Electronic System Level Design conception method 15

2.3 Overview on the Electronic System Level Design
conception method

The term ESLD methodology appeared early 21st century in a semi-conductor
consulting Company called Gartner Dataquest [58]. This term has been later
formalized in 2007 by B.Bailey et. al in [3]. The principle is to set the conception
problem of very complex applications in the highest possible abstraction level. This
high level specification is then followed by High Level Synthesis (HLS) to automat-
ically obtain a target implementation. There are two possible target architectures,
software or hardware, summarized in Figure2.4 and explained below.

Precacterized

circuits

Prediffused

circuits
Custom

circuits

Sea of

gates

ASIC
(Application Specific

Integrated Circuit)

Programmable

circuit

ASIP
(Application Specific

Instruction set Processor)

Programmable

machine

FPGA

EPLD

PLA

Custom
Semi-

Custom

Gate

array

DSP

mC

General
processors

DSP

mC

Multimedia
processors

Full

Custom

Standart

cell

VLIW

RISC

Software hardware

Figure 2.4: Hardware and software different targets

2.3.1 The software-oriented architecture

This architecture is based on the execution of statements on micro-processors in-
cluded in architectures such as:

• general processor that we can find in any computer and it can be RISC (Re-
duced instruction set computing) based on simplified instructions or Very

16 Electronic System Level Design

long instruction word (VLIW) based on more complex Instruction Level Par-
allelism,

• DSP (Digital Signal Processor) which is a powerful processor designed for in-
tensive computations,

• micro-controller which is a simple processor dedicated for specific simple ap-
plications,

• multimedia processor used for video display, sound treatments etc,

• the ASIP (Application Specific Instruction-set Processor) which is a full custom
processor dedicated for a specific application.

The advantage of using a processor is the use of very familiar and advanced lan-
guages such as C, C++ or Java, which has a direct impact on the reduction of the
development time. These languages allow also mastering very high complex ap-
plications especially the object-oriented languages. To run a program on a software
target it is necessary to achieve a certain number of compilations that enable moving
from the specification language to a binary code understandable by the processors.
For example, the execution of a C code follows the compilation of C into assembly
code then hexadecimal code and finally the binary code (see Figure 2.5).

Binary executable code

Hexadecimal code

compilation

Assembly code

compilation

C code

compilation

Figure 2.5: Example of C code compilation steps

2.3 Overview on the Electronic System Level Design conception method 17

Moreover, the algorithm implemented in a processor can be saved in a Read Only
Memory (ROM), and almost all processors offer a way to flash this memory and put
another application. This feature of software architecture is very important because
it insures the flexibility and the re-usability of the target. Nevertheless, this type of
circuits does have some drawbacks. They concern especially the energy consump-
tion, the logical occupation and the performances. More precisely, a processor can
never execute more than one instruction per cycle and so all statements are executed
sequentially. Currently, some solutions of multi-core architectures are in progress
but there is a major problem of scheduling statements into a set of processors with-
out losing the global behavior of the application.

2.3.2 The hardware-oriented architecture

The hardware solution offers a circuit composed only of logical gates that execute
basic functions directly with interconnected transistors. The revolution of hardware
conception started by the appearance of languages such as VHDL and Verilog for
the description of a circuit using lines of code. These languages were fist devel-
oped for military purposes but they have been later standardized and published. A
hardware circuit does not encapsulate a processor. Therefore, it is possible to design
parallel treatments allowing very fast architecture solutions. Moreover, many opti-
mizations can be automatically added to reduce the area occupation. The limitations
of these circuits are especially about the development time and cost, the difficulty to
design very complex applications and non re-usability of the targets. These limita-
tions are getting resolved especially with the appearance of reconfigurable circuits
explained below.

The physical execution of a software program is related to the compilation and
the simulation of a software language (C or Java for example) on its associated com-
piler. However, for hardware, things are different. The hardware implementation is
finally a VHDL or a Verilog code that is going to be synthesized into a lower level
code in the Register Transfer Level (RTL) that can be later transformed into transis-
tors connections as presented in Figure 2.6 where we present the different steps of
the implementation generation of an addition block.

The RTL level is a representation of the behavior using basic operations (addition,
assign ...). This level very strategic and important because when the behavior is
correct the derived circuit implementation is also correct. From this level, it is just
necessary to realize the placement and Root (P&R) in the target architecture. So how
to get a circuit with that code? For this purpose and as presented in Figure 2.7, hard-
ware compilers use a library of components that allow describing any RTL (Register
Transfer Level) component into a connection of logical gates and this step is called
the logic synthesis. Finally, gates are automatically transformed into a connection of
transistors transformed by the Silicon compiler into a mask pattern.

18 Electronic System Level Design

SUM :=

A1+B1

Algorithm RTL Gates

Transistors

+

Figure 2.6: The hardware conception evolution of an addition operation block

The mask pattern is used in the Silicon foundry to create an ASIC (Application Spe-
cific Integrated Circuit) using microscopic silicon doping and etching techniques.
The ASIC is the most custom hardware architecture. However, the foundry cost
of ASICs creation is very high and this finding used to be the main drawback of
hardware generation until the advent of the programmable circuits such as SPLD
(Simple Programmable Logic Device), CPLD (Complex Programmable Logic De-
vice) and the most recent FPGA (Field-Programmable Gate Array).

I The SPLD This family is one of the oldest and most basic programmable
technologies. It contains architectures such as the PAL (Programmable Array logic),
GAL (Generic Array Logic), PLA (Programmable Logic Array) and PLD (Pro-
grammable Logic Device). They are the smallest and the cheapest programmable
logic which present simple operations such as sum and product. Their technology
is similar to the PROM one. The SPLD uses fuses such as PROM to describe the
logical operations which makes them non-re-programmable.

I The CPLD The CPLD extended the PLD concept to a higher integration level
for a better system performance. It represents the equivalent of the connection of 2
to 64 SPLDs. The logical blocks communicate via programmable inter-connections
presented as a matrix of programmable switches. The transistor technology usually

2.3 Overview on the Electronic System Level Design conception method 19

The mask pattern

Physical level

Silicon compilation

Logic level

Physical synthesis

RTL level (Register transfer description)

Logical synthesis

Behavioral level (VHDL or Verilog)

RTL synthesis

Figure 2.7: The hardware conception flow from VHDL or Verilog programs

used is the CMOS and the memory cells are EPROMs EEPROMs or Flash. The CPLD
present many advantages such as:

• possible integration of complex operations,

• constant and consequently predictable propagation time,

• their macro-cells have more inputs than outputs which makes them apt for
decoding operations and FSM implementations.

They also present drawbacks as:

• slow programming time,

• limited programming instructions,

• designers have to disconnect the component from the card to program the
appropriate hardware.

20 Electronic System Level Design

I The FPGA This is the most sophisticated programmable circuits and they
continue their progress thanks to the Altera and Xilinx semi-conductor companies.
An FPGA is composed of logical blocks, input/output blocks and programmable
inter-connections as presented in Figure 2.8. New FPGAs may contain integrated
memory cells and PLL blocks (Phase-Locked Loop).

Figure 2.8: General architecture of an FPGA

The main logical blocks of an FPGA are the LUTs (Look-Up Tables) that allow the
implementation of any truth table of a logical function. Every function generator
behaves as a little ROM which output is selected by the input signal. The realization
of a logical function with N variables requires 2N configuration bits. As presented
in Figure 2.9, a multiplexer is used later to select an output from the configuration
memory.

With LUTs, we can find FPGAs with DSP blocks to perform multiplication opera-
tions.

To make the connections between the matrix of LUTs for example, the FPGAs are
equipped with a memory that transforms a specific program called Netlist into a set
of signals that control the inter-connections to make any wanted circuit. This prop-
erty is very interesting since it allows the prototyping of hardware circuits before
looking for Silicon foundries. The FPGA has revolutionized the world of hardware
implementations and recently the software implementations. Indeed, new FPGA
cards are able to integrate several embedded processors and to connect them to
hardware components. For example Xilinx Company provides its tools and cards
customers with processors such as Power PC or Micro Blaze. Altera Company
allows users to implement software component using the NIOS processors. Re-
searchers and industrials are now using the reconfigurable aspect of FPGAs using

2.3 Overview on the Electronic System Level Design conception method 21

Configuration
memory

MUX

Inputs Output

Figure 2.9: LUT architecture principle

multi-Netlist components which internal behavior change completely every config-
uration clock period. This reconfiguration frequency is increasing and passing over
200MHz which means 200 million circuits every second. The reconfigurable aspect
is strongly related to the RVC standard, the main context of this thesis.

2.3.3 The Hardware Software Codesign

It is clear that the hardware and software architectures have both advantages and
drawbacks, as summarized in Table 2.1.

Hardware Software
Performances + −
Logic occupation + −
Energetic efficiency + −
Development time and cost − +
complexity management − +
Flexibility − +

Table 2.1: Advantages and drawbacks of HW and SW architectures

Thus, an alternative to these two approaches have been later proposed: the
Hardware Software Codesign (HSC) as an alternative trying to combine both ar-
chitectures and exploit their advantages. The first attempts of HSC faced a major

22 Electronic System Level Design

problem of data communication. Indeed, software designers conceived the pro-
cessors and hardware designers developed the hardware IPs separately, and they
finally made the connection. Such conception flow is very time consuming due to
communication and synchronization problems that involve many feedbacks. The
solution was to unify the programming language and/or the conception platform
[69]. For that purpose, SystemC was introduced as an extension of the famous C
language to support hardware structures such as concurrent threads or new types
(time, bit, bit vector, logic etc.). This solution was followed by original methods
such as Dataflow programming with new languages and platforms to generates
mixed architectures. Test and validation platforms followed this evolution. Such
well known design environments and simulators are Ptolemy [12], Vulcan [65],
Cosyma [28], SynDEx, GCLP, COSYN etc. These infrastructures and platforms re-
solved many codesign limitations. However, the main limitation persisting is the
Design Space Exploration (DSE). This codesign step consists of choosing which pro-
cess is going to be implemented in hardware, and which one is going to be imple-
mented in software. Theoretically, in the first hand, a control based algorithm that
contains many statements such as If, While or For, should be developed in software
because a For loop is executed sequentially and can never be parallelized. So there
is no gain to use hardware for that, while a processor can execute it. On the other
hand, in supercomputing, algorithms just execute very intensive computations with
logical and arithmetic operators. In that case, a hardware architecture would offer
very fast circuits. Nevertheless, things are not in practice as easy because the system
implies more constraints. For example, if we consider a process P1 with intensive
computations that sends data to a process P2 consuming that data and executing a
control-based algorithm, then we speak about two strongly linked processes (Figure
2.10). The fact of implementing P1 in hardware and P2 in software has no sense be-
cause, whatever the execution rapidity of P1, the output of P2 depends only on the
execution frequency of P2. Consequently, it could be easier to merge both processes
into the same software algorithm.

This is not the only problem to mention since many other communication limita-
tions persist. Sometimes, in the same type of architecture, there may be a conflict
for example a software task may be executed by a Digital Signal Processor (DSP),
a micro-controller, a multi-core platform etc. The compromise flexibility VS per-
formance is not easy the resolve manually. Many automatic tools were developed
to automatically explore the design space and try to find the best compromise, but
current results are not considered enough satisfying.

2.4 High Level Synthesis (HLS) from high level to RTL level 23

P1 P2

P3 P4

P5

SW
P1,P2

HW
P3,P4

HW
P5

Figure 2.10: Space exploration of the design

2.4 High Level Synthesis (HLS) from high level to RTL
level

The role of High Level Synthesis (HLS) tools is to transform a behavioral description
(code or algorithm) into a Register Transfer Level (RTL) description. This synthesis
realizes the assignment of the circuit functions to the operators so called resources,
the connection between these operators and the moment each operation is executed
during time intervals (called “control steps”). The synthesis can be done with two
main exclusive considerations: a minimum of surface consumption or a maximum
of execution speed. Let us consider a simple operation of Y = A+ B+C + D. In the
first case, the synthesis tool is going to look for the minimum of processing blocks
and create the necessary scheduling to have the correct result after a set of control
steps. Figure 2.11 presents one possible implementation in which one addition block
is created.

The behavior is the following: a decoder in the scheduler fixes the multiplexer so
that the first output is B and so the result of the addition block is A + B. The next
control step, the MUX outputs the C and finally D. Every addition result is stored
in the buffer so that the next operation is performed between the old result and
the new value. After the necessary time, the result in Y is exactly A + B + C + D.
At that time, the scheduler can send a signal to alert the presence of the correct

24 Electronic System Level Design

A

B

D

C

Y

+

B
u

ffe
r

M
U

X

Scheduler

Figure 2.11: HLS with limited area constraint

result to be used for the rest of the application. It is also possible to parallelize the
operations in case of data independence as presented in Figure 2.12.

A

B

D

C

Y

+

+

+

Figure 2.12: HLS with unbounded area and parallelism

The evolutions of HLS started with research tools that tried to explore a max-
imum of generation concepts. Later, industrials such as Mentor Graphics or Syn-
opsys were involved but their results were not satisfying for most users because
the generated code is a very low-level one, hard to debug or to optimize. After a
combined effort between researchers and industrials, the third generation of tools
was more successful and it is currently increasing in the market. These tools are
discussed in the next section.

2.5 Existing HLS tools 25

2.5 Existing HLS tools

Currently, the most famous HLS tools used by industrials are Catapult-C from Men-
tor Graphics [57], C-To-Silicon from Cadence, Symphony-C from Synopsys [75] and
C2H from Altera [50], [61]. In the research field, we cite the tool GAUT [18], [17] in
development in the Sticc-lab. These tools, especially the industrial ones, can gen-
erate excellent implementations from high level specification. However, the main
limitation is that they cannot handle with a complete system. A partial generation
applied on a simple functional block is possible but when the system gets complex,
none of these tools is able to generate a correct implementation. This limitation is
due to the fact that these tools take sequential codes such as C as an input. The C lan-
guage has been conceived for sequential process and not hardware one. The extrac-
tion of parallelism from a code developed with a sequential philosophy can never
be optimal, the generated code also. Moreover, such tools cannot accept all kinds
of C code. They put many restrictions on how the C has to be written (pointers,
constants, functions and main declaration). In fact, if the user intends to generate an
implementation for a large application such as MPEG-AVC decoder, he is going to
spend a large amount of time refactoring the code to match the specifications of the
tool.

Considering this fact, new axes of research are currently oriented to the use of
Domain specific Languages (DSL) that substitute C, VHDL, SystemC etc. These lan-
guages are associated with advanced design environments dedicated for codesign.
In this thesis, we adopted the Cal Actor Language (CAL) and its associated com-
pilation infrastructure for the generation of hardware and/or software implemen-
tations. This choice is explained by the fact that the CAL associated infrastructures
are able to manage a complex system such as MPEG-4 Simple Profile decoder which
implementation work is presented in [40]. In addition, all the tools used for graph
edition, compilation and pretty printing are Open-source.

2.6 Conclusion

This chapter Introduced the Electronic System Level Design methodology. First, we
presented the state of the art of the methods used for digital signal processing. These
methods are not very efficient to manage the conception of a full complex applica-
tion in the system level. For this reason, the ESLD is introduced as an alternative
conception methodology. This methodology has to be followed by a High Level
Synthesis to obtain the Register Transfer Level. Therefore, we presented the HLS
techniques and a set of existing HLS tools for automatic generation of implementa-
tions from high level languages.

This work is located in the framework of the ESLD. Indeed, the main contri-
butions of the thesis focused on finding solutions for hardware generation from

26 Electronic System Level Design

Dataflow programs. Before explaining these contributions in Part II, next Chapter
introduces the Reconfigurable Video Coding standard and Dataflow compiling in-
frastructures.

2.6 Conclusion 27

C h a p t e r 3

RVC: methodology and framework

3.1 MPEG RVC standard . 30

3.2 RVC-CAL language . 35

3.3 RVC Models of Computation . 42

3.3.1 Overview . 44

3.3.2 The Dataflow Process Network MoC and derived MoCs . . 46

3.4 Compilation and simulation of RVC-CAL designs 52

3.4.1 RVC-CAL compilation . 53

3.4.2 Generation of HW/SW implementations with OpenDF . . . 56

3.4.3 Open RVC-CAL Compiler (Orcc) 58

3.5 Hardware compilers limitation: the multi-token case 65

3.6 Conclusion . 66

29

In 1984, the CCITT, known currently as ITU Telecommunication Standardization
Sector (ITU-T), published the first digital video decoder as H.120 based on the
”COST 211” project of the Queen Mary University of London. H.120 proposed
several coding methods like scalar quantization, variable length coding, differential
pulse code modulation and conditional replenishment. Some advanced compres-
sion methods like motion compensation and background prediction were added in
1988. The spatial resolution results were quite satisfying but temporal performance
was poor. The limitation of this codec is that it applies most algorithms using a
pixel-per-pixel scan which led to the solution of block-based codecs such as H.261,
considered as the pioneer of practical video coding. Later, and since the beginning
of ISO/IEC/WG11 (MPEG) in 1988 with the advent of MPEG-1, many video codecs
have been developed (MPEG-4 part2, MPEG-4 AVC, MPEG-4 SVC, HEVC etc.) as
presented in Figure 3.1.

1980 1985 1990 1995 2000 2005 2010 2015

0

2

4

6

8

10

12

14

H.120

H.261

MPEG-1

MPEG-2

H.263

MPEG-4 part 2

H.264

Theora

VC-1

SVC

MVC

VP8

High Efficiency Video Coding

Video standards

Year of publication

N
u

m
b

e
r

o
f s

ta
n

d
a

rd
s

p
u

b
lis

h
e

d

Figure 3.1: Video codecs timeline

These codecs are increasing in complexity since they proposed advanced meth-
ods for texture and motion coding and so they require larger design time. Conse-
quently, it became a tough task for standard communities to develop, test and stan-
dardize a decoder at any given time. In addition, every standard has a set of coding
techniques depending on the implementation target or the user specifications (pro-
fessional or consumer) so it is not possible to implement all of them in the same

30 RVC: methodology and framework

coder. That is why, standards define some algorithm subsets so called ”profiles”. A
profile may encapsulate another profile or they can be completely different.

Moreover, all the previously presented standards are developed in a monolithic
way making it harder to generate hardware implementations, and also to reuse or
update some existing algorithms. Indeed, several standards are sharing many al-
gorithms like a Discrete Cosine Transform (DCT) [1] or quantization but these com-
monalities can neither be directly exploited at the specification step, nor at the low
level implementation one because of the monolithic structure of algorithms. Conse-
quently, the whole old standards have unfortunately to be substituted by the new
ones which involves also to change the player device. Such a change involves a
costly replacement of users decoding multimedia devices to follow the evolution of
the standards which is annoying for both users and professionals (Figure 3.2(a)).
These facts originated a new conception methodology standard called Reconfig-
urable Video Coding (RVC) introduced by MPEG. Unlike all the other MPEG stan-
dards, RVC does not standardize algorithms to encode data but instead it standard-
izes the way an algorithm has to be written to conserve an independent behavior
and consequently the re-usability. Thus, whatever the future video coding standard,
the same multimedia support is able to decode the information as presented in Fig-
ure 3.2(b). MPEG-RVC principles and main notions are detailed in the following
Section.

Figure 3.2: Objective of the MPEG RVC standard

3.1 MPEG RVC standard

The MPEG-RVC framework is an ISO/IEC standard under development aiming at
replacing the monolithic representations of video codecs by a library of components.
For that reason RVC is based on two standards:

3.1 MPEG RVC standard 31

I ISO/IEC23001-4 or MPEG-B pt. 4 [37] which defines the framework and the
standard languages to develop any RVC decoder.

I ISO/IEC23002-4 or MPEG-C pt. 4 [38] which represents the set of employed
tools.

As presented in Figure 3.3, MPEG-B is used to transform a decoder description
into an abstract decoder model designed with the standardized languages (algo-
rithms and network). It possible to use algorithms defined in the tool library of
MPEG-C. This standard description represents the normative part. In the infor-
mative part, compilation solutions are used to transform the RVC design into an
implementation that represents the decoding solution.

Figure 3.3: RVC framework components

RVC presents a modular library of elementary components (actors). The most
important and attractive features of RVC are reconfigurability and flexibility. An
RVC design is a Dataflow directed graph with actors as vertices and unidirectional
FIFO channels as edges. An example of a graph is shown in Figure 3.4. This figure
is an RVC description of MPEG-4 AVC decoder. The directed graph contains actors

32 RVC: methodology and framework

(demux, select, add), FIFO channels (such as the FIFO x between select and add) and
also directed graphs that contain actors and FIFO channels (texture decoding, intra
predictions ...). Every directed graph executes an algorithm on sequences of tokens
read from the input ports (mv, mb type, coe f) and produces sequences of tokens in
the output ports (out).

INTER_P
Prediction

INTRA_16x16
Prediction

INTRA_4x4
Prediction

Select

MV

RD PRED

PRED

PRED

X0

X1

X2

X
RD

RD

COEF Texture decoding

Deblocking
Filter

MBType

MV

MB OUT

COEF

MBType

Decoded Picture
Buffer

MBType

MV

MB

RD

OUT OUT

Add
X

Y
Z

Demux
MbType

X0

X1

X2

X

MBType

MV

MBType

Prediction modes

Figure 3.4: Graph example: Dataflow diagram of the MPEG-4 part 10 AVC decoder

Actually, defining several implementations of video processing algorithms using
elementary components is very easy and fast with RVC since every actor is com-
pletely independent from the rest of the other actors of the network. Every actor
has its own scheduler, variables and behavior. The only way of communication of
an actor with the rest of the network are its input ports connected to the FIFO chan-
nels to check the presence of tokens. Then, an internal scheduler enables or not the
execution of elementary functions called actions depending on their corresponding
firing rules (see Section 5.3). Thus, RVC insures concurrency, modularity, reuse, scal-
able parallelism and encapsulation. In [40] Janneck et. al. shows that, for hardware
designs, RVC standard allows a gain of 75% of development time for hardware
design compared to existing HDLs, and also considerably reduces the number of
lines of code. To manage all the presented concepts of the standard, RVC presents a
framework based on the use of:

• RVC-CAL a subset of the CAL actor language called RVC-CAL that describes
the behavior of the actors (detailed below in Section 3.2).

• FNL a language describing the network called FNL (Functional unit Network
Language) that lists the actors, the connections and the parameters of the
network. FNL is an XML dialect that allows a multi level description of
actors hierarchy. It means that a functional unit can be a composition of other
functional units connected in another network. For the network example of
Figure 3.5, we have 3 actors data, process and storage with simple connections
using two FIFOs. The FNL code is presented in Figure 3.6.

3.1 MPEG RVC standard 33

Data Process Storage o2 o1 i2 i1

Figure 3.5: RVC network example

1 <XDF name=" Example">

2 <Instance id=" Process">

3 <Class name=" Algo_process "/>

4 </Instance >

5 <Instance id="Data">

6 <Class name=" Algo_Data "/>

7 </Instance >

8 <Instance id=" Storage">

9 <Class name=" Algo_Storage "/>

10 </Instance >

11 <Connection dst="Data" dst -port="o1" src=" Process" src -port="i1"/>

12 <Connection dst=" Process" dst -port="o2" src=" Storage" src -port="i2"/>

13 </XDF >

Figure 3.6: FNL code of Figure 3.5

• BDL bitstream Syntax Description Language (BSDL) [41, 55] to describe the
structure of the bitstream.

• VTL an important Video Tool Library (VTL) of actors containing MPEG stan-
dards. This VTL is under development and it already contains 3 profiles of
MPEG 4 decoders (MPEG-4 part 2 Simple Profile, MPEG-4 part 10 Progressive
High Profile and MPEG-4 part 10 Constrained Baseline Profile).

• Tools around RVC for edition, simulation, validation and automatic genera-
tion of implementations:

34 RVC: methodology and framework

- OpenDF framework [7]: is an interpreter infrastructure for the simulation of
hierarchical actors network.

- OpenForge: is a hardware compiler called OpenForge1 [34] to generate HDL
implementations from RVC-CAL designs.

- Open RVC-CAL Compiler (Orcc)2 [41]: Orcc is an RVC-CAL compiler un-
der development. It compiles a network of actors and generates code for both
hardware and software targets. Orcc is based on works on actors and actions
analysis and synthesis [67, 81]. In the front-end of Orcc, RVC-CAL actors are
parsed into an abstract syntax tree (AST), and then transformed into an inter-
mediate representation (IR) that undergoes typing, semantic checks and sev-
eral transformations in the middle-end and in the back-end. Finally, a code
generation process is applied on the resulting IR to generate a chosen imple-
mentation language (C, Java, XLIM, LLVM etc.).

I The importance of RVC-CAL At this level, the question is: why RVC-CAL
and not C? Actually, a C description involves not only the specification of the algo-
rithms but also the way inherently parallel computations are sequenced, the way
data are exchanged through inputs and outputs, and the way computations are
mapped. Recovering the original intrinsic properties of the algorithms by analyzing
the software program is impossible. In addition, the opportunities for restructur-
ing transformations on imperative sequential code are very limited compared to the
parallelization potential available on multi-core platforms. For these reasons, RVC
adopted the CAL language for actors specification.

I The reconfigurable aspect of RVC-CAL The previously presented aspect of
RVC is the automatic generation of hardware and software implementations using
compilation infrastructures like OpenDF or Orcc. Another very important aspect of
the standard is the reconfigurability. Indeed, the RVC representation of a decoder
clears interoperability problems between algorithms providers and receivers. It is
also possible to use proprietary Video Tool Libraries containing functional units that
are not specified in MPEG-C part 4. Thus, it is possible to apply run-time dynamic
reconfigurations just by modifying the topology of the network. Indeed, all MPEG
decoders are based on the same hybrid decoding schemes including intra and inter
predictions with more or less actors. The objective of MPEG-B part 4 is to provide
a decoder for any bitstream coded with RVC specification using this specification,
the hybrid decoder and actors from the VTL of MPEG-C and the proprietary VTL

1Available at http://openforge.sf.net
2Available at http://orcc.sf.net

3.2 RVC-CAL language 35

of the intended decoder as presented in Figure 3.7. The modular representation of
networks facilitates such operation.

Proprietary VTL
Standardized VTL

(MPEG-C)

MPEG-C decoder

Proprietary decoder

Hybrid decoder

RVC decoder
specification

Bitstream
Decoded video

Figure 3.7: Reconfigurable principle of RVC

3.2 RVC-CAL language

RVC-CAL is a language standardized by MPEG as part of the RVC standard, and it
is a restricted subset of the CAL Actor Language that was created in the Ptolemy II
Project [11] by Janneck and Eker who detailed the rationale of the language in the
CAL white paper [27] and the technical report [26]. In the following, we present the
main notions of RVC-CAL:

I Global structure of an actor An RVC-CAL code is the description of func-
tional unit called ”actor”. Like the notion of ”Entity” in hardware development,
an actor definition begins with a header containing the specification of a box in a
macroscopic way by presenting the name of the actor, parameters, ports (inputs
and outputs) and their types. Figure ?? presents an actor called ”example” with a

36 RVC: methodology and framework

parameter ”m” of type integer, two input ports ”IN1” and ”IN2” of type integer
coded on 8 bits and one output port ”OUT” of type integer coded on 13 bits.

1 actor example (int m)

2 int (size=8) IN1 , uint (size=12) IN2 ==> int(size=13) OUT :

3

4 // algorithm

5

6 end

Figure 3.8: RVC-CAL actor header

The execution of an RVC-CAL code is based on the exchange of data tokens between
actors. Each actor is independent from the others since it has its own parameters
and finite state machine if needed. Actors are connected to form an application or a
design, this connection is insured by FIFO channels. Executing an actor is based on
firing elementary functions called actions. This action firing may change the state of
the actor. An RVC-CAL Dataflow model is shown in the network of Figure A.1.

FIFO Actor

Consume/produce tokens

FIFO

Consume/produce tokens

and modify internal states

FIFO

Actions

State

ActorActor

Actions are implemented

sequentially and they can

be sequenced

FIFO

Actor

be sequenced

FIFO

Figure 3.9: CAL actor model

Figure ?? presents an example of a CAL actor realizing the sum between two
tokens read from its two input ports.

In the “sum” actor, the internal scheduler allows action “add” only when there is
at least one token in the FIFO of port “INPUT1” and one token in the FIFO of port
“INPUT2”. This unique dependency from the presence of data in the FIFOs explains
the fact that an actor can neither read nor modify the state of any other actor.

I Variables Before starting the micro-definition of an actor process, it is pos-
sible to declare state variables that may be shared by all the actions of this actor.

3.2 RVC-CAL language 37

1 actor sum ()

2 (int size=8) INPUT1 , (int size=8) INPUT2 ==> int(size=8) OUTPUT:

3

4 add: action INPUT1:[i1], INPUT2:[i2] ==> OUTPUT:[s]

5 var

6 int s

7 do

8 s:= i1 + i2 ;

9 end

10 end

Figure 3.10: Example of sum actor

Of course, actions may have their own local variables. As presented in Figure 3.11,
variables may be integers (line 1), unsigned (line 2), boolean (line 3) or lists (line
4). A list in CAL is an array of elements of the same type (int, uint or bool). As it
is intended for both hardware or/and software implementations, it is necessary to
specify the exact dynamic of variables and ports (line 5).

1 int var1 := 0;

2 uint var2;

3 bool var3 := true;

4 List (type:int , size = 10) var4;

5 int (size=12) var5;

Figure 3.11: Example of variables declaration

I Expressions Like any programming language, RVC-CAL uses a set of ex-
pressions that can be mathematical (Figure 3.12.line 1) or binary (Figure 3.12.line 2).
The only restriction is that these expressions are side-effect free which means that
they are idempotent, and consequently they cannot change the value of external el-
ements like state variables.

1 x:= a + 5;

2 y:= a & 7;

Figure 3.12: Examples of expressions in RVC-CAL

Expressions are used to form the statements of an algorithm. RVC-CAL presents
five types of statements:

• The assignment: an expression may be assigned to a variable (local or global).
It is also possible to assign it to a list index in case of lists.

38 RVC: methodology and framework

• The call: this statement is used when functions or procedures are used in the
algorithm. The call of a function is accompanied with an assignment of the
result of this function to a state or local variable.

• The While loop: for an unknown or infinite number of executions. The loop
continues the execution while a conditional expression is true.

• The foreach loop: for a finite number of executions.

• The ”if .. then .. else”: for a conditional execution of the statements.

I RVC-CAL action An action represents the microscopic representation of
the behavior. Every action is related to a firing rule which is the rule that specifies
the necessary conditions that allows the action to be executed. These conditions
represent the schedulability and they concern especially the number of available
tokens in the input FIFOs. Other conditions on the value of input tokens or
the value of a state variable may be added using the ”guard” instruction. The
importance of this additional condition is that it is tested before consuming data
from the FIFOs. As shown in Figure 3.13, the firing rule is presented in the header
of the action followed by the body. The header may also contain the declaration of
local variables.

Scheduling condition

1 action_name: action IN1:[in1], IN2:[in21 , in22] ==> OUT:[o]

2 var

3 int o := 0

4 guard

5 in1 > 0,

6 in21 = counter

Body
1 do

2 o := counter +1;

3 end

Figure 3.13: Action main parts: scheduling condition and body

To be executed, the action of Figure 3.13 has to satisfy the scheduling condition of:
presence of one positive token at least in the FIFO of Port ”IN1”, two tokens in the
FIFO of port ”IN2” such as the first of them equals the value of a state variable
”counter”. When the scheduling conditions are true, the action consumes the 3
tokens from the FIFOs, executes the body and outputs the value of ”o” in the FIFO
of port ”OUT”. Now, if we substitute the guard condition by a conditional block,
the algorithm becomes:

1 action_name: action IN1:[in1], IN2:[in21 , in22] ==> OUT:[o]

2 do

3 if in1 > 0 && in21 = counter

4 then

3.2 RVC-CAL language 39

5 o := counter + 1;

6 end

7 end

In this case, the presence of tokens is enough to fire the action which means that
the three tokens are already consumed before the ”if” test. If the ”if” condition is
false, the action is not going to execute any statement and the output in the port
”OUT” will be the old value of the variable ”o”. The consumed tokens cannot be
used anymore by any another action.

I Functions The body of an action or even the ”guard” condition may call a
set of expressions located in a function. The function is considered as an expression
which type is the type of its return. Consequently, it is also side-effect free. A
function header (line 1 of Figure 3.14) presents the tag, the parameters and the type
of the result; then follows the body containing the algorithm.

1 function divroundnearest(int i, int iDenom) --> int :

2 if (i >= 0) then

3 (i + (iDenom >> 1)) / iDenom

4 else

5 (i - (iDenom >> 1)) / iDenom

6 end

7 end

Figure 3.14: Example of a function in RVC-CAL

I Procedures Concerning the procedure and like many other imperative
languages, it represents a set of side-effect instructions that can be called at any time
by an action or a function or another procedure. The RVC-CAL code of a procedure
has the form shown in Figure 3.15.

1 procedure procedure_tag(parameters)

2 begin

3 // instructions

4 end

Figure 3.15: Example of a procedure in RVC-CAL

40 RVC: methodology and framework

I Actions priority The behavior of an actor is managed by a global action
scheduler that detects the schedulability of all actions and allows the firing of the ac-
tion which firing rule is true. Nevertheless, it is possible to have two or more schedu-
lable actions at the same time and the question is which action will be allowed by the
global scheduler? If the choice is random, we will have a non-deterministic behav-
ior of the actor. For this purpose, the notion of priority has been added to RVC-CAL
using the following structure of Figure 3.16:

1 priority

2 action1 > action2;

3 action3 > action4 > action2;

4 end

Figure 3.16: Example of a priority in RVC-CAL

More details are presented in section 5.3.

I Finite state machine (FSM) For more complex actors, RVC-CAL offers the
possibility to use an FSM scheduler to add more restrictions on the actions that can
be scheduled at a given state. An FSM has an initial state and every state presents
a set of actions that may let the actor in the same state or that may change the
actor state. In case of conflicted actions in the same state, it is necessary to add a
priority. Figure 3.17 shows an RVC-CAL declaration example of an FSM that can
be represented graphically by the schema of Figure A.3 where states are presented
with vertices and the transitions with edges. This type of representation will be
adopted for the rest FSM related figures.

1 schedule fsm init_state:

2 init_state (action1) --> state10;

3 state10 (action2) --> state10;

4 state10 (action3) --> state11;

5 state11 (action4) --> init_state;

6 end

7

8 priority

9 action3 >action2;

10 end

Figure 3.17: Example of an FSM in RVC-CAL

3.2 RVC-CAL language 41

init state

state10

state11

action1

action2

action3

action4

Figure 3.18: FSM graph representation

I The untagged actions An action may be included in a finite state machine
or outside the FSM when it has no label. An action in the FSM is fired when its
schedulability is true and when it is in the list of the executable actions of the
current state of the FSM. Whereas, the action outside the FSM, so called untagged,
fires when the schedulability is true whatever the current state of the FSM. The
untagged action is not called in the FSM but it is considered with higher priority by
the actor scheduler. In the example of Figure 3.19, the actor A presents an untagged
action. The FSM starts at the state S0. If there is no token in the port I then the
process action fires and the FSM state is updated to S1. At this state, the action
write writes the 64 tokens of the table tab in the port O, but, if at any moment, a
sequence of tokens is present in the port I then the write action is not executed and
the untagged action fires.

Generally, this kind of actions is used when the execution of an action is crucial
whatever the state of the FSM. The equivalent of an untagged action a is to create for
each state s of the FSM a transition s(a)−− > s; and to set a with a higher priority
than the rest of the actions. These properties of the untagged action revealed to be
very important in the contribution of Chapter 5.

I Software and hardware RVC-CAL-oriented implementation For the same
behavior, an actor may be defined in different ways. Let us consider the “sum-
5” actor of Figure ?? that reads 5 tokens in a port “IN”, computes their sum and
produces the result in a port “OUT”.

In Figure ??(a), the required algorithm is defined in only one action. The condi-
tion of 5 required tokens is expressed by the instruction “repeat 5”. Action “add”
fires by consuming the 5 tokens from the FIFO into an internal buffer “i”. After data
storage, the algorithm of the action is applied. Finally the action firing finishes by

42 RVC: methodology and framework

1 actor A () int I, bool S ==> int O :

2

3 bool s := false ;

4 int data := 0;

5 List (type: int , size = 64) tab;

6 int counter := 0;

7

8 action I:[input] ==>

9 guard counter < 64

10 do

11 tab[counter] := input ;

12 counter := counter + 1;

13 end

14

15 process: action ==>

16 do

17 f(tab); \\ f a considered function

18 end

19

20 write: action O:[tab] repeat 64

21 do

22 counter := 0;

23 end

24

25 schedule FSM S0:

26 S0(process)-->S1;

27 S1(write)-->S0;

28 end

29

30 end

Figure 3.19: RVC-CAL example of an actor with an untagged action

writing the result in the port “OUT”. Such description is very fast to develop and im-
plement on software targets but for hardware implementations a multi-token read
is not appropriate. This is the reason of developing the equivalent mono-token code
of Figure ??(b). In this description, we use a finite state machine to lock the ac-
tor in the state “state0”. While counter < 5, only the action “read” can be fired to
store tokens one per one in “data” buffer. Once the condition of action “read done”
(counter = 5) is true, both of “read” and “read done” actions are fireable. This is
why the priority “read done � read” is important to keep the determinism of the
actor. Finally, the firing of “read done” action involves an FSM update to “state1”
where only “process” action can be fired and the actor is back to the initial state.

3.3 RVC Models of Computation

The Dataflow model represents the main line of research of this thesis. As a defini-
tion, a Dataflow program is a conception method for signal processing units. Unlike
the imperative programming that considers that the exchanged data between op-
erations is secondary to the behavior of the operations themselves, the Dataflow

3.3 RVC Models of Computation 43

1 actor sum-5 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 add: action IN:[i] repeat 5

5 ==> OUT:[s]

6 var

7 int s := 0

8 do

9 foreach int k in 0 .. 4 do

10 s := s + i[k] ;

11 end

12 end

13 end

(a) SW oriented definition

1 actor sum-5 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 List (type: int (size=8), size = 5) data;

5 int counter :=0 ;

6

7 read: action IN:[i] ==>

8 do

9 data[counter] := i ;

10 counter := counter + 1 ;

11 end

12

13 read_done: action ==>

14 guard

15 counter = 5

16 do

17 counter := 0 ;

18 end

19

20 process: action ==> OUT:[s]

21 var

22 int s := 0

23 do

24 foreach int k in 0 .. 4 do

25 s := s + data[k] ;

26 end

27 end

28

29 schedule fsm state0:

30 state0 (read) --> state0;

31 state0 (read_done) --> state1;

32 state1 (process) --> state0;

33 end

34

35 priority

36 read_done > read;

37 end

38

39 end

(b) HW oriented definition

Figure 3.20: Two-way definition example of sum-5 actor behavior

presents a model that puts independent operations (processes) in the first concern
and the connections in a secondary importance. This type of designs is very impor-
tant for parallel programming. The first who introduced this model is Bert Suther-
land in his Thesis in 1966 [74] with the idea that the fact of changing the value of
a variable during the process involves the update of all variables values related to
that changed variable. Later many research laboratories were interested like Super-
computer Labs and Lawrence Livermore National Laboratory where the most popular
Dataflow language (at that time) called SISAL [49] is developed. To make the pro-
gramming more popular SAC (Single Assignment C) language [63] is developed to
design Dataflow as close a possible to the C language. In early 1990s, a revolutionary
tool called Prograph [20] is introduced as a visual, object-oriented, Dataflow, multi-

44 RVC: methodology and framework

paradigm programming language that uses iconic symbols to represent actions to
be taken on data. Late 1990s, rose the National Instruments LabVIEW language which
was intended to connect laboratory equipments but finally it was generalized for all
signal processing. Another tool designed for digital sensors and equipments called
VEE [33] was introduced in 1991 and continues progressing until the 9.3 version of
Nov 2011.

In the beginning of the 21st century, an important research project in the univer-
sity of Berkeley, introduced the Cal Actor Language and proposed a set of tools to
automatically generate software and hardware architectures. This infrastructure has
an important impact on this thesis and will be detailed later in this chapter.

3.3.1 Overview

A Model of Computation (MoC) is defined in the literature of the computability
theory as the set of operations allowed to describe an algorithm. MoCs can be
related to Turing machines, lambda calculus or Dataflow. In this thesis, we consider
only the Dataflow MoC since it meets the needs of the RVC standard. The Dataflow
graph is a directed graph defined by a couple G = (V, E) where V is the set
of vertices and E ⊆ V × V is the set of edges. An edge is a couple e = (i, j)
such as i is the initial extremity of e and j in the final extremity of e. We define
src(e) = i and dst(e) = j. The set of predecessors of a vertex j is defined with
pred(j) = {i ∈ V | (i, j) ∈ E}. Mutually, the set of successors of a vertex i is defined
with succ(i) = {j ∈ V | (i, j) ∈ E}. A Dataflow graph of an operation ” (a+b)x(a-b)
” is presented in Figure 3.21.

+
a

−
b

×
•

•

a2 − b2

Figure 3.21: Dataflow graph of operation y = (a + b)× (a− b)

RVC standard is based on a Dataflow MoC called Dataflow Process Network
(DPN) [53] related to the Kahn Process Network (KPN) [48]. In [48], Kahn intro-
duced the KPN as a distributed Dataflow MoC which is a common model for de-
scribing signal processing systems and modeling distributed systems and parallel
programming. In this model, the vertices are a set of deterministic processes and
the edges are unbounded FIFO channels (Figure 3.22).

3.3 RVC Models of Computation 45

Process 1

Process 3

Process 2

Process 1 FIFO A

FIFO C

FIFO B

Figure 3.22: KPN example of three processes and three FIFOs

A KPN is a continuous and deterministic network. The execution of the KPN model
is generally divided into a set of threads. The execution of any thread consists of
three main parts: a blocking read of the required data of a process in the input FI-
FOs, an execution of the process and a write of the results in the output FIFOs. All
these steps can be interrupted by other actors at any time. Figure 3.23 presents an
FSM representation of the behavior of a thread executed in a KPN. The thread starts
at the state wait f or data to read the necessary number of tokens from the input
FIFOs. When the required number is obtained, it is possible to move to the state
execution, realize the process computations and then write the results in the output
ports and go back to the state wait f or data to read new tokens.

Execution

Wait For Data

Compute

Write

Need Data

Read

Enough Data

Figure 3.23: The FSM representation of every process behavior in a KPN model

To understand the limitation of this MoC, Figure 3.24 shows the Petri Net represen-
tation of the behavior of process3 already presented in Figure 3.22. The execution
starts by reading from FIFOA. When the required number of tokens from that FIFO
is obtained, the network moves to reading from FIFOB. After that, the process is

46 RVC: methodology and framework

able to be executed as explained above. It is obvious in the Petri net representation
that KPN threads assume an unlimited stream of data to avoid being deadlocked
because if there is no more tokens in ”FIFO A” or in ”FIFO B” then the state ”exe-
cution” is never reached. As the execution is based on multiple threads, the global
execution of the design continues by firing other threads. But, the threads switch in-
volves a very costly context switch and so it has to be avoided. So how is it possible
to ensure that the read is no more “blocking”?

resource
FIFO A

FIFO B

Read A

Read B

Write CCompute

FIFO C

Figure 3.24: The Petri net representation of KPN mechanism

In the Following, we present an answer to this question by introducing the formal-
ism of the DPN as a general MoC of RVC and we explain the principle of some
derived MoCs with more restrictions than the DPN.

3.3.2 The Dataflow Process Network MoC and derived MoCs

The network deadlock problematic was resolved when Dennis [53] and Lee [52]
extended the KPN model by introducing the concept of firing rules. The process -
henceforth called actor- may be triggered by several combinations of data sequences
from the input ports. Each actor triggering, so-called firing, is related to a condition
of presence of a data sequence and this condition is called a firing rule. These notions
originated the Dataflow Process Network (DPN). The DPN model allows actors to
test an input port for absence or presence of data. Consequently, when no more
data is available the KPN must wait because it is blocked in a reading state while
the DPN spies on the FIFO and reads data only if enough data is present. The DPN
represents the most general Dataflow MoC. Many restrictions on the dependencies
may be added to the model for an easier analysis which involved other Dataflow

3.3 RVC Models of Computation 47

MoCs: the quasi-static Dataflow (QSDF), the cyclo-static Dataflow (CSDF) and the
most restricted one the Synchronous Dataflow (SDF). The classification of the RVC-
CAL actors is based on state dependence and data dependence. A state dependent
actor is an actor which behavior is controlled by a Finite State Machine. For this
type of actors, every state presents a set of actions that realize transitions from that
state to another one or to the same state. A state dependent actor fires only when
a transition action of the current state of the FSM is fireable. Concerning the data
dependent actors, the firing rules control the value of the tokens and the fireable
action is selected depending on that value. As shown in Figure 3.25, the most ex-
pressive MoC is the DPN. By adding restrictions of data or state dependence, the
expressiveness decreases but, inversely, the analyzability increases.

DPN

QSDF

CSDF

SDF

Expressiveness Analysability

Figure 3.25: Dataflow MoCs

The classification of MoCs can be summarized in Table 3.1.

Data dependent Data independent
State dependent DPN CSDF

State independent QSDF SDF

Table 3.1: Actors classification in MoCs

The important property of the RVC-CAL language is the ability to manage all these
MoCs.

48 RVC: methodology and framework

3.3.2.1 RVC modeling of the DPN

Let Ω be the universe of all tokens values exchanged by the actors and S=Ω* the
set of all finite sequences in Ω. We denote the length of a sequence s ∈ Sk by |s|
and the empty sequence by λ. Considering an actor with m inputs and n outputs,
Sm and Sn are the set of m-tuples and n-tuples consumed and produced. For ex-
ample, s0=[λ,[t0,t1,t2]] and s1=[[t0],[t1]] are sequences of tokens that belong to S2

and we have |s0|=[0,3] and |s1|=[1,1]. The only information that fires an actor is the
presence of enough data to satisfy one of its firing rules. Once a rule is satisfied, a
corresponding local function called action is executed by consuming tokens from the
input FIFO and producing others on the output FIFO. This action firing may change
the state of the actor.

A Dataflow actor is defined with a pair < f , R > such as:

* f : Sm → Sn is the firing function
* R ⊂ Sm are the firing rules
* For all r ∈ R, f (r) is finite

An actor may have N firing rules which are finite sequences of m patterns, one
per input port. A pattern is an acceptable sequence of tokens for an input port. It
defines the nature and the number of tokens necessary for the execution of at least
one action. RVC-CAL also introduces the notion of guard as additional conditions
on token values. An example of firing rule rj in S2 is:{

gj,k : [x]|x < 0
rj = [t0 ∈ gj,k, [t1, t2]] (1)

which means that if there is a negative token in the FIFO of the first input port and
2 tokens in the FIFO of the second input port then the firing rule is satisfied and
therefore an action is fireable. An action is fireable or schedulable i f f :

• The execution is possible in the current state of the FSM (if an FSM exists)

• There are enough tokens in the input FIFO

• A guard condition returns true

It is very important to notice that there are two types of the dynamic actors: the
time-dependent and the time-independent. The time-independent case is determin-
istic which means that, for some sequences of tokens in the input ports, it is possible
to predict the behavior and consequently the outputs of the actor what ever the or-
der or the instant token arrive to the port. However, for the time-dependent case,
the instant tokens arrive to the FIFO can change the behavior of the actor which
involves a non-deterministic behavior. In the example of the actor of Figure 3.26,

3.3 RVC Models of Computation 49

the firing rule of the action ”read signed” is the presence of a token in the FIFO of
port ”S” and the firing rule of action ”read data” is the presence a token in the FIFO
of port ”I”. But, it is notable that the body of the second action uses the last saved
value of the first action which means that, for the same state and at the same time,
the actor can behave in a different way depending on what happens first: the arrival
of a token in ”S” or in ”I”.

1 actor time_dependent () int(size=10) I, bool S ==> int(size=9) O :

2

3 bool s := false ;

4

5 read_signed : action S:[signed] ==>

6 do

7 s := signed ;

8 end

9

10 read_data: action I:[i] ==> O:[f(i,s)]

11 end

12

13 priority

14 read_signed > read_data ;

15 end

16

17 end

Figure 3.26: RVC-CAL example of time-dependent actor

The example of figure 3.26 illustrates also a case that can be modeled by the DPN
MoC and not by the KPN one. Indeed, in the KPN case, we have a reading state that
expects to find the necessary tokens in ”S” and ”I” in a first step before the execution
of the adequate action and the write of token in the output FIFOs. This execution or-
der may deadlock the thread associated to this actor if it does not receive any more
tokens in one of its input ports.

3.3.2.2 RVC modeling of the SDF

If an actor has a systematic behavior without an FSM and the nature of the data
does not change the number of tokens consumed or produced the it is considered
as an SDF actor [51]. In other terms, an actor is classified SDF if it has only one
firing rule or if all firing rules consume and produce the same amount of data:

If R is the set of all firing rules then ∀ri, rj ∈ R : |ri| = |rj|

SDF is obviously the easiest MoC to be analyzed. An SDF graph can be mapped on
multi-core architectures because the schedulability and the memory consumption
can be computed at the compilation step using bounded FIFO memories. The actor
of Figure 3.27 presents an example of SDF MoC in RVC-CAL. Despite the presence

50 RVC: methodology and framework

of two different actions (”rule1” and ”rule2”), the firing rules of both actions use
the same input and output patterns which means that it is possible to use only one
action with an ”‘if” statement that replaces the ”guard”.

1 actor sdf ()

2 int (size=8) INPUT1 , int (size=8) INPUT2 ==> int(size=8) OUTPUT:

3

4 rule1: action INPUT1:[i1] repeat 5 , INPUT2:[i2] repeat 10 ==> OUTPUT:[o]

5 var

6 int o

7 guard

8 i1>0

9 do

10 o := f1(i1 ,i2); \\ f1 and f2 considered functions

11 end

12

13 rule2: action INPUT1:[i1] repeat 5 , INPUT2:[i2] repeat 10 ==> OUTPUT:[o]

14 var

15 int o

16 guard

17 i1<=0

18 do

19 o := f2(i1 ,i2);

20 end

21

22 end

Figure 3.27: Example of modeling SDF MoC in RVC-CAL

3.3.2.3 RVC modeling of the CSDF

For the CSDF[8], the process is composed of a set of actions that have completely
different behavior, but, the global macro-behavior is static. The CSDF MoC extends
the SDF by adding an FSM that loops in a static sequence of states. Therefore, the
memory consumption and the scheduling information remain the same for the
compile-time properties. In the example of Figure 3.28, the actions ”firstAction”
and ”secondAction” are completely different in the schedulability and in the body.
Nevertheless, the FSM makes always that the actor executes ”firstAction” and then
”secondAction” which is a global cyclo-static behavior.

3.3.2.4 RVC modeling of the QSDF

A quasi-static (QSDF) actor [5, 13, 6, 10, 16] presents a mutually exclusive subsets
of static processes. Depending on the value of the input data the actor is going
to execute one of these subsets as presented in Figure 3.29 where the data in port

3.3 RVC Models of Computation 51

1 actor csdf ()

2 int (size=8) INPUT1 , int (size=8) INPUT2 ==> int (size=8) OUTPUT:

3

4 firstAction: action INPUT1:[i1] repeat 5 , INPUT2:[i2] repeat 10 ==> OUTPUT:[o]

5 var

6 int o

7 do

8 o := f1(i1 ,i2);

9 end

10

11 secondAction: action INPUT1:[i1] repeat 30 ==> OUTPUT:[o]

12 var

13 int o

14 do

15 o := f2(i1);

16 end

17

18 schedule fsm s0:

19 s0 (firstAction) --> s1;

20 s1 (secondAction) --> s0;

21 end

22

23 end

Figure 3.28: Example of modeling CSDF MoC in RVC-CAL

”C” is going to determine the process to execute among processes (A,B and C) and
these processes consume data from ports ”I1” and ”I2” and produce in port ”O”. If
the type of the conditional data is a Boolean, we speak about a subset of the QSDF
called Boolean Dataflow (BDF) MoC analogical to a multiplexer (MUX) in the elec-
tronic field.

C Cond

EXE C

EXE B

EXE A

I1

I2

O

Figure 3.29: Conditional process execution in the QSDF MoC

The example of Figure 3.30 shows an example of RVC-CAL code of the PDSF ex-
plained above in Figure 3.29.

52 RVC: methodology and framework

1 actor QuasiStatic () int C, int I1, int I2 ==> int O :

2

3 cond.a: action C:[c] ==> guard c = 1 end

4 cond.b: action C:[c] ==> guard c = 2 end

5 cond.c: action C:[c] ==> guard c = 3 end

6

7 A: action I1:[i] repeat 2 ==> O:[f(i[0] + i[1])]

8 end

9

10 B: action I1:[i1], I2:[i2] ==> O:[f(i1), f(i2)]

11 end

12

13 C: action I2:[i0, i1 , i2 , i3] ==>

14 O:[f(i0), f(i1), f(i2), f(i3)]

15 end

16

17 schedule fsm cond :

18 cond (cond.a) --> exec_a;

19 cond (cond.b) --> exec_b;

20 cond (cond.c) --> exec_c;

21 exec_a (A) --> cond;

22 exec_b (B) --> cond;

23 exec_c (C) --> cond;

24 end

25

26 end

Figure 3.30: RVC-CAL example of the QSDF MoC

3.4 Compilation and simulation of RVC-CAL designs

Two important tools have been proposed to manage Dataflow designs: the first
tool is Open Dataflow (OpenDF) [7] for CAL edition, simulation and also for the
generation of C implementations or XLIM (XML Language Independent Model) [4]
representations. The second tool is OpenForge [34] for the generation of hardware
implementations using the XLIM representation of OpenDF. In 2008, Wipliez et al.
proposed the first tool (called Cal2C [79]) that allowed a software simulation of CAL
actors by translating them to C. Later CAL2C evolved to Orcc [80] with new and
faster compilation approaches. Moreover, this tool uses a very clear intermediate
representation allowing many developers to create several code generators from
RVC-CAL like C, LLVM or Promela using this IR, some transformations and pretty
printer. This flexibility in the IR was the major motivation of this thesis to use Orcc
for the resolution of hardware generation from RVC. In this section, we present the
main compilation steps of an RVC-CAL code and the existing tools (simulators and
compilers): OpenDF [7], OpenForge and Orcc. Later, we explain the limitation of

3.4 Compilation and simulation of RVC-CAL designs 53

these tools concerning the hardware generation. Finally, an overview of the thesis
work is presented as a solution for those limitations.

3.4.1 RVC-CAL compilation

A compiler, in definition, is a program that transforms a source code written in
a source language into a semantically equivalent target language. Generally, the
source language is used for describing a high level algorithm and the target lan-
guage is a lower-level description used for the execution of this algorithm. Cur-
rently, compilers realize the transition from a source to a target language using the
following main steps:

• syntax analysis and checking so called code parsing,

• generation of the intermediate representation for an easier management and
control,

• analysis and optimization of the generated IR,

• creating and optimizing an abstract representation of the target language,

• printing the target language using the abstract representation and pretty print-
ing techniques.

3.4.1.1 Code parsing

The code parsing is a conversion of a code into a structured representation. Every
code respects the grammar of the language and this grammar generates two main
components:

• The lexer: Recognizes the tokens defined as a set of meaningful sequences of
characters, so called lexemes, that make words in the language.

• The parser: Groups the tokens into meaningful structures. The output of a
parser is a representation of variables, constants, operators and statements in
a tree of nodes. The most used are the AST (Abstract Syntax Tree) and the CST
(Concrete Syntax Tree). The best suited for manipulating source programs is
the AST. An example of AST representation is shown in Figure 3.31.

The AST is very important but not sufficient since it is very complex for optimiza-
tions and data analysis. It has also many similar forms. For example the ”FOR”, the
”WHILE” and the ”REPEAT .. UNTIL” are represented in the same way. Idem for
the ”if” and the ”switch”. Moreover, some expressions have a very complex AST

54 RVC: methodology and framework

x:= a + b ;

y:= c x d ;

While (y>x) {

a:= a – 5 ;

x:= a + C ;

}

program

:=

x +

a b

:=

y x

c d
while

>

y x

Then blockElse block

:=

a -

a 5

:=

x +

a c

Figure 3.31: AST representation of an algorithm

representation especially for nested structures. Consequently, a simpler representa-
tion is required to explicitly represent control flow and Dataflow information. The
solution is the use of Control Flow Graphs (CFG) explained below.

3.4.1.2 Control Flow Graph

A CFG is a graph composed of nodes that represent a block of statements and di-
rected edges that represent the control flow. The same example of Figure3.31 is
represented in the CFG of Figure 3.32.

This representation is very accessible and enables many optimizations such as dead
code detection and removal [19], constants propagation [77], loops optimization [15]
and many other optimizations detailed in the reference book of compilation called
”Dragon book” [2].

3.4.1.3 The Intermediate Representation (IR)

An AST is very important for the parsing and the analysis of the code. However, it
is not able to encapsulate compilation information and other important aspects of
the RVC-CAL language. The abstract tree, for example, cannot detect information
about the actions order and priorities nor about tokens dependencies located in
a ”guard”. This crucial information can be added to the AST but they make it
very complex especially for analysis. Consequently, the notion of Intermediate

3.4 Compilation and simulation of RVC-CAL designs 55

x:= a + b ;

y:= c x d ;

While (y>x) {

a:= a – 5 ;

x:= a + C ;

}

x:= a + b ;

y:= c x d ;

y>x

a:= a – 5 ;

x:= a + C ;

Figure 3.32: CFG representation of an algorithm

Representation is added to the new compilers. Unlike the AST, an IR is a readable
data structure that contains all necessary information and details about variables,
operations, FSM, priorities etc. Moreover, the IR is generally very close to the target
language as the example of the Register Transfer Language (RTL) which is an IR
very close to the assembly language. Currently, there are many IR used by the
compilers like Low Level Virtual Machine (LLVM) [31], GIMPLE the IR of GCC, the
Three Address Code or the Static Single Assignment (SSA) form which is used by
the tools presented in the remaining of this thesis. The SSA representation allows
easier and faster optimizations since it insures that every variable is assigned only
once, and so, the constraint is single. We consider, for example, the following
example of code containing a conditional statement ”if” (Figure3.33):

1 if (condition) then

2 var := 0;

3 else

4 var := 1;

5 end

6 x := var;

Figure 3.33: Example of an algorithm with a conditional statement

The associated SSA form is presented in the graph of Figure 3.34. It uses a

56 RVC: methodology and framework

new variable for every assignment of the variable ”VAR” creating, thus, different
branches that have to be merged later when the branches are joined. For that pur-
pose we use the ”PHI” function which considers the value of the variable that has
to be used for the rest of the algorithm.

VAR1 := 0 VAR2 := 1

VAR3 := PHI (VAR1,VAR2)

X := VAR3

Condition ?

true false

Figure 3.34: SSA representation of the example of Figure3.33

At this level, we have presented the most important notions related to the com-
pilation of RVC-CAL programs. In the following, we present the tools used in the
RVC-CAL framework for compilation and simulation.

3.4.2 Generation of HW/SW implementations with OpenDF

CAL is supported by an interpreter infrastructure able to simulate actors network.
Moses [29] was the first tool that used this interpreter for the simulation of net-
works by featuring a graphical network editor. During the simulation it was pos-
sible to watch the evolution of states and tokens values. Because of the lack of
maintenance, the project was substituted by the OpenDF environment based on the
Ptolemy project [11]. In addition to the simulation, OpenDF is also able to gener-
ate an XLIM IR based on a Static Single Assignment form (SSA). In this step, the
compiler parses the RVC-CAL actors and transforms them into a set of threads in
the SSA form and thus creates the XLIM files for each actor. This transformation

3.4 Compilation and simulation of RVC-CAL designs 57

encapsulates: code analysis, type checking, constant propagation and several other
precompilation transformations.

As presented in Figure 3.35, there are two possible forms of XLIM:

• the software-oriented XLIM used by a tool called XLIM2C [67] to generate a C
implementation of the design. This IR supports all RVC-CAL structures.

• the hardware-oriented XLIM which is the front-end of OpenForge which com-
piles this XLIM into a Verilog implementation. The hardware generator trans-
lates the SSA threads into elementary operation circuits. In addition, it man-
ages the data exchange by creating local referees and schedulers. The System-
Builder library is used to define the required type of FIFOs (synchronous or
asynchronous). The final output of the compiler is a Verilog file for each actor
and a VHDL top file of the design. However, OpenForge compiles only a sub-
set of RVC-CAL structures. This limitation (detailed later) revealed to be the
core of this thesis.

RVC-CAL OpenDF

XLIM SW

XLIM HW Open-
Forge

XLIM2C C impl.

Verilog
impl.

Figure 3.35: OpenDF implementations

This infrastructure was very successful in 2008 when it allowed the development
and the automatic generation of software and hardware implementations of MPEG4
simple profile decoder [40]. To go further with RVC, many improvements had to be
added especially for more optimizations and faster compilation. To begin, OpenDF
uses the XLIM as an intermediate representation which is a very low level IR making

58 RVC: methodology and framework

the generation of implementations a very long task especially for hardware. More-
over, the interpreter uses directly the AST which is different from the representation
used for code generation. Moreover, the code has not been maintained for years.
All these drawbacks originated the new Open RVC CAL compiler (Orcc) as a new
infrastructure for the compilation of RVC-CAL. This compiler is detailed below.

3.4.3 Open RVC-CAL Compiler (Orcc)

Orcc is an integrated infrastructure for creating, editing and compiling RVC-CAL
Dataflow applications. As presented in Figure 3.36, the principle of Orcc is to trans-
form a high level RVC-CAL design into an equivalent description in a usual lan-
guage (C, C++, java ...).

XDF
graph

RVC-CAL
actors

C VHDL

Xlim

LLVM

…

Front-end

Middle-end

Back-end

Figure 3.36: Orcc compilation flow

An RVC-CAL design is defined using XDF networks that can be managed with a
network editor called Graphiti 3. In the following, we present the compilation in-
frastructure of Orcc, more particularly the IR, the front-end, the middle-end and the
back-ends.

3Available at: graphiti-editor.sf.net

3.4 Compilation and simulation of RVC-CAL designs 59

3.4.3.1 The front-end

As all compilers, Orcc has a front-end that transforms RVC-CAL actors into an Inter-
mediate Representation which is an abstract representation of all the nodes, expres-
sions and variables of the code. Orcc uses the Eclipse Modeling Framework (EMF)
to build a meta-model IR of the different structures of the RVC-CAL language. The
meta-model provides a formal relationship between classes which makes the visits
and the relationship analysis between any two objects easier and faster. The control
of object containment is also insured by the meta-model. Thus, it is impossible that
an object o contained in an object O1 can never be contained at the same time in an
object O2. Moreover, the EMF provides a set of methods to move or to copy objects
from a model to another one. In the following, we present the most important tasks
of this front-end:

I Code parsing As shown in Figure 3.37, the front-end begins by parsing the
actors to create the AST. This parsing is insured by an open source framework called
Xtext [25]. After the specification of the grammar of a domain specif language (DSL),
Xtext uses a tool called ANTLR (ANother Tool for Language Recognition) 4 to auto-
matically generate the parser and the lexer. Moreover, the Eclipse Modeling Frame-
work (EMF) [24] is used by Xtext to generate a meta-model of the AST which is
easier to manage. Xtext facilitates the development of the compiler and the Eclipse
environment of the DSL (key word coloration, syntax analysis etc.).

I Expression evaluation The front-end of Orcc contains an expression evalua-
tor necessary for compile-time constants when generating the IR from the AST. The
evaluator returns the compile time constant or an error if the constant is not defined
for example.

I Variables typing After the parsing, the AST undergoes a typing step, as pre-
sented in Table 3.2, which is the transformation of types to those of the IR system.
For example, the integer type is transformed into a 32-bits wide integer. This step
contains also an evaluation of the expressions.

I Type checking Unlike the OpenDF compiler, Orcc is able to detect typing
errors in the front-end. As presented in Table 3.3, a while condition for instance
must be a Boolean and variable assignment has to be type compatible.

4Available at www.antlr.org

60 RVC: methodology and framework

XDF
graph

RVC-CAL
actors

C VHDL

Xlim

LLVM
…

Parsing

Typing

Semantic checks

transformations

Middle-end

Back-end

Figure 3.37: The front-end of Orcc

RVC-CAL type Condition IR type
bool/float/String bool/float/String
int/uint int(size=32)/uint(size=32)
int(size=e) eval(e) ∈N int(size=eval(e))
uint(size=e) eval(e) ∈N uint(size=eval(e))
List(type=t, size=e) eval(e) ∈N List(type=conv(t), size=eval(e))

Table 3.2: RVC-CAL type system conversion to IR type system

I Scheduling and priority information The FSM information about tran-
sitions and priorities are collected into a tag association table containing the list
of actions and their associated tags. Each transformed action is referenced in
this table with all the existing tags then added to the table. When all actions
are added, the total order can be established from the partial order of tags with
the creation of a directed graph. This graph is defined with G = (V, E) where
V is the set of vertices representing the tags and E ⊆ V × V is the set of edges
representing the priorities. Figure 3.38 represents the directed graph of the priority
action1 > action2 > action3.1 > action3.2.

3.4 Compilation and simulation of RVC-CAL designs 61

AST node Condition
if(e) typeo f (e) = bool

while(e) typeo f (e) = bool

t := e typeo f (t) ∩ typeo f (e) 6= ∅
p(e1, ..., en) ∀pi ∈ params(p), typeo f (pi) ∩ typeo f (ei) 6= ∅

Table 3.3: Type checking of AST statements.

action1 action2

Action3.1

Action3.2

Figure 3.38: Example of priority directed graph

I Action structure The transformation of an action is characterized by the cre-
ation of two main parts:

• the body of the action that contains the processing algorithm.

• the scheduling condition so called is schedulable which is a set of expressions
that test the “guard” condition. The result of the is schedulable procedure is
a Boolean that will be used later by the scheduler.

If an action execution is dependent from a data in an input FIFO, then an input
pattern is created to define the amount a required data, the name of the port and its
associated local variables in the action. The required data is tested with a FIFO spy
using the Peek statement to respect the principle of the DPN MoC.

I Semantic transformations The only transformation left is the statements
one. All variables are transformed so that the access is exclusive to avoid conflicts
of values. The For, If and While statements are transformed into a call to IR blocks
called NodeWhile and NodeI f . Idem for expressions: after the classification of the
expression (unary, binary or ternary), each expression is mapped to its equivalent
representation in the IR.

62 RVC: methodology and framework

3.4.3.2 The middle-end

XDF
graph

RVC-CAL
actors

C VHDL

Xlim

LLVM
…

Front-end

Classification

Normalisation

Merging

Back-end

Figure 3.39: The middle-end of Orcc

After the semantic an type checking in the front-end, further analysis (Figure
3.39) can be achieved in the middle-end concerning the behavior of the actors.

The main contribution of the middle-end is the classification. The classification
of the MoC of the actor (DPN,SDF,CSDF or QSDF) is important to optimize the FIFO
management. As presented previously in Section 3.3.2, the SDF actor behavior can
be fixed at the compilation time as they always consume and produce the same
number of tokens. In the other side, the behavior of the dynamic actors and espe-
cially the time-dependent ones can never be determined at the compilation time.
When the classifier detects a set of static actors, it is able to merge some of them
in the same actor. This merging has a very important impact on the performance
of the design especially the memory consumption and FIFO management. Before
the classification, all actors are considered as dynamic ones. The scheduler has to
always compute the number of present tokens in the input FIFOs and the number
of empty cells in the output FIFOs. However, after the classification, the number of
executions of an actor is known so the read and write processes can be replaced by
data storage in tables.

3.4 Compilation and simulation of RVC-CAL designs 63

3.4.3.3 Orcc back-ends

XDF
graph

RVC-CAL
actors

C VHDL

Xlim

LLVM
…

Front-end

Middle-end

Translation out of SSA

Broadcast addition

Network flattening

IR transfo

Figure 3.40: The back-ends of Orcc

The last compilation step of Figure 3.40 is the back-end ending in the generation
of the target languages.

I Existing back-ends For a target language X, the generated code with Orcc is
called the X back-end. The back-ends have many different properties depending on
their abstraction level (high or low level). Consequently, every back-end has a set of
specific transformations that have to be applied before code generation. Of course,
it is not necessary to provide all existing languages simply because C, XLIM, VHDL
and LLVM can cover over 99% of existing target architectures. Currently, many
back-ends are developed in Orcc. The first one is the C back-end [79],[66], [78] as
a programming reference. It has been followed by other targets like C++, VHDL,
XLIM, Promela, Java and LLVM. The LLVM (Low Level Virtual Machine) is a low
level language like the Assembly but with high level type in- formation for compiler
analysis and optimization. It catches the main operations of ordinary processors
and avoids machine specific constraints such as physical registers or pipelines These
features of the LLVM back-end [31] make it very important for the reconfigurability

64 RVC: methodology and framework

aspect of the RVC-CAL designs. Using the LLVM it is possible to load the networks
on demand at the compile-time using the just-in-time (JIT) of the adaptive decoder
(Jade) [32]. Indeed, LLVM is itself a low level IR that can be executed on the fly on
different architectures using JIT engines. Jade generates an LLVM representation of
the MPEG Video Tool Library and calls them on demand during the network instan-
tiation and this characteristic enables the dynamic reconfiguration. Concerning the
VHDL back-end [72], as we were looking for solutions to hardware generation, this
back-end had the same limitations as OpenForge when it came to handling loops
and multi-token reads/writes. The approach we propose in this thesis to handle
multi-token data exchange and loops can be used with both the VHDL back-end
and OpenForge. A tool called Synflow Studio5 integrates a VHDL code generator
that is loosely based on the former VHDL back-end from Orcc to generate hardware
from DPN actors. The most important back-end for this thesis is the XLIM one. As
presented previously, OpenDF generates XLIM as a specific IR which is difficult to
modify. However with Orcc, it is possible to add transformations to the IR before
generating the XLIM. XLIM has a lower level than the IR of Orcc and the XLIM
associated transformations realize this passage to low level. We notice:

• the inlinement of functions and procedures,

• the conversion of actors to Single Static assignment form,

• the transformation of multi-dimensional list into a single dimension one,

• the initialization of lists and variables,

• ...

In Chapter 5, we present a set of transformations we added to resolved the main
limitations of the hardware generation from RVC-CAL designs.

I Code printing After all the common transformations of the front-end and
the middle-end, and after the target specific transformations in the back-end, the
last step is to print the final code. For that purpose, Orcc uses the string template
approach [59]. Unlike the programmatic approaches that require very long pro-
grams, the template approach enforces the separation between the model and the
view [60]. This approach reduces significantly the redundancy bugs. Figure 3.41
presents an example of the C-back-end string template code for the constants.

5Available at www.synflow.com

3.5 Hardware compilers limitation: the multi-token case 65

Constant(constant) ::= <<

<if (constant.exprBool)><printBool(constant)><

elseif (constant.exprInt)><printInt(constant)><

elseif (constant.exprFloat)><printFloat(constant)><

elseif (constant.exprList)><printList(constant)><

elseif (constant.exprString)><printString(constant)><

elseif (constant.exprVar)><printVar(constant)><

endif>

>>

printVar(var) ::= <<

<var.use.variable.name>

>>

printBool(constant) ::= <<

<if (constant.value)>1<else>0<endif>

>>

printInt(number) ::= <<

<number>

>>

printFloat(number) ::= <<

<number>

>>

// the values of a list: {val1, val2, ..., valn}

printList(constant) ::= <<

{<constant.value: Constant(); wrap, separator=", ">}

>>

printString(constant) ::= <<

<constant>

>>

Figure 3.41: Constants string template code of the C back-end

3.5 Hardware compilers limitation: the multi-token
case

In the previous sections, we presented the existing tools and compilation infras-
tructures of RVC, notably OpenDF, OpenForge and Orcc. Currently, the software
generation presents very efficient implementations whether with the XLIM2C of
OpenDF or the software back-ends of Orcc. On the contrary, the hardware genera-
tion presents many limitations related to especially to the reading and the writing
of tokens. Indeed, RVC-CAL allows the description of actions that consume and
produce more than one token per execution, which is not acceptable in hardware

66 RVC: methodology and framework

because a physical memory is a set of cells that can be accessed by one or two buses
once a clock period. So it is impossible to read or to write a set of data at the same
time. In some specific applications where the number of exchanged data and the
dynamic are small (1 to 4 bits), it is possible to consider a concatenation. However,
in the video coding field, many actors present a huge amount of data so this so-
lution is not acceptable. The only solution left is to transform an action that reads
a multi-token sequence of data into a set of actions that read in a mono-token way
and execute the body of the action once the necessary tokens are present. This trans-
formation involves the addition of an FSM to properly manage this sequencing. In
chapter 4, we present examples of manual transformations of RVC-CAL to get the
mono-token presentation. This manual transformation, despite the fact that it is a
tough task especially for complex actors, allowed us to collect much information
about the final modified code to be compliant with OpenForge. In Chapter 5, we
used all these information to achieve a robust automatic transformation of all RVC-
CAL actors from multi-token to mono-token description.

3.6 Conclusion

This chapter, presented the fundamental part of this thesis which is the RVC stan-
dard and its associated compilations infrastructures. This standard has revolution-
ized the MPEG standards since it is the first standard that does not specify a coding
algorithm but a way of coding. MPEG-RVC intends to replace the monolithic classic
description of decoders into a set of functional units (actors) connected graphically
and respecting the DPN Model of Computation. Thus, it is easily possible to reuse
existing algorithms (collected into a Video Tool Library) when designing a new stan-
dard. RVC presents a domain specific language called RVC-CAL for the actors spec-
ification and also some frameworks to automatically generate hardware or software
implementations like OpenDF OpenForge and recently Orcc compiler. The existing
tools are able to compile all RVC-CAL actors in the software field but the hardware
generation has many bottle-necks and limitations related especially to multi-token
read and/or write. After the exposition of the state of the art and the localization
of the problematic of this thesis, Part II presents the main contributions in terms of
methodologies and techniques to resolve the problematic. The first chapter presents
a methodology to accelerate the validation of hardware generation from Dataflow
programs and the second details an automatic transformation inserted in the core of
Orcc to resolve the limitations of hardware compilers.

3.6 Conclusion 67

Part II

Proposed Techniques And
Methodologies

C h a p t e r 4

A methodology for fast validation of
RVC-CAL programs

4.1 Fast validation approach principle 71

4.1.1 Existing validation methods 71

4.1.2 Functional validation in a software platform 73

4.2 Automatic generation of test benches and stimulus files 80

4.3 Pipeline methods . 81

4.4 Comparison with manual flow . 83

4.5 Conclusion . 84

4.1 Fast validation approach principle 71

To maximize market opportunity, a project must minimize the amount of time
spent validating the hardware design without negatively impacting the quality of
the validation. This validation is insured with simulations after the compilation and
the synthesis of the design. If some errors occur, which is often the case, designers
have to debug the circuit by checking the time evolution of all signals and memory
states. This debugging is a very long and tough task. Since RVC-CAL is target ag-
nostic, we proposed a methodology that allows a maximum of functional validation
in a software platform before testing in the hardware one. This methodology is first
based on the generation of a software implementation of the RVC-CAL code. Then
this implementation is rapidly tested, corrected and validated using a test software
platform. Once the design is valid, the new correct RVC-CAL code can be used for
hardware generation.

In the following, we present the new global method for functional validation and
assessment of an RVC-CAL code.

4.1 Fast validation approach principle

As presented in Figure 4.1, the design algorithm is described at a high level with
RVC-CAL language. Orcc is used to generate a software implementation of the
algorithm using its C language generator. We chose the C language because it is the
most known and consequently the easiest to manage and debug. Then a software
platform is used for functional validation and FIFO sizing. Once the code is correct,
it undergoes a modification to be synthesizable with a hardware compiler, called
OpenForge, by unrolling the loops and the repeat structures. The validation of this
code is realized with the same software platform. The implementation is finally
insured using a hardware synthesis and prototyping platform.

4.1.1 Existing validation methods

As seen before, RVC-CAL code used originally to be validated with the OpenDF
simulator. This plug-in simulates the behavior of an RVC-CAL design and displays
any required information using the ”println” command. The stimulus stream has to
be manually written using another actor as presented in Figure 4.2.

We can have in the display window a trace of the ”println” command such as:

data 0 = 4
data 1 = 11
...
data 9 = 19

72 A methodology for fast validation of RVC-CAL programs

High level
RVC-CAL

Low level
RVC-CAL

C

Orcc

C Compiler

Debug
Errors

High level OK

Code
modification

Cal2HDL

VHDL/ Verilog

Hardware
sythesis tool

Results

Software validation Hardware synthesis

Low level OK

Cal2HDL feedback

Figure 4.1: Method overview

4.1 Fast validation approach principle 73

1 actor data () ==> int(size=13) OUT :

2

3 List(type: int(size=9), size=10) data := [4, 11, 4, 2, 16, 15, 8, 3, 11, 19];

4

5 int inc := 0;

6

7 int out := 0;

8

9 increment: action ==> OUT:[out]

10 guard

11 inc < 10

12 do

13 out := data[inc];

14 println("data" + inc + "=" + data[inc]);

15 inc := inc + 1;

16 end

17

18 end

Figure 4.2: Stimulus data actor example

It is also possible to check the evolution of FSM states, variable value, table con-
tent etc. Moreover, the simulator elaborates and parses the actors and the associated
graph providing a feedback about connection errors like type mismatching in the
case of a connection between two ports with different types. It can also detect dead
states in an FSM or an uninitialized variable. This simulator remains satisfying for
simple actors, but drawbacks appear when testing a multi-port actor with a specific
scheduling, or for instance with actors that have to test a huge amount of data to be
validated. Effectively, as presented in Figure 4.2 the stimulus actor is itself an addi-
tional algorithm to be developed. In case of multi-port actors to test, we have to pre-
pare the required stimulus lists and to write correctly the data actor. Consequently
it is, paradoxically, equivalent to validating a validation platform! In addition, for a
great amount of data to test, large tables have to be created with thousands of values
that have to be correctly written in a manual way which is a difficult task. Finally,
there is no automatic comparison solution for output data, so it is impossible to val-
idate for example the over 100.000 pixels of a processed CIF image. Considering
the video processing context, we noted the drawback of using such simulator and
the necessity to find new solutions able to handle both of complexity and huge data
amount of the validation process. Below, we present the advantages of using Orcc
compiler as a solution for the limitations of OpenDF simulator. The use of Orcc for
a preliminary validation of the RVC-CAL design before hardware generation repre-
sents the originality of the approach [45], [46].

4.1.2 Functional validation in a software platform

As introduced above, the novelty of this work is the use of Orcc for a maximum
validation steps in a software context. For an RVC-CAL design, Orcc is able to gen-

74 A methodology for fast validation of RVC-CAL programs

erate a C code for each actor and a top file that manages these actors. An important
library of functions necessary for the compilation is developed and contains very
useful functions especially for scheduling, threads management and FIFO manage-
ment. The library contains also a set of functions that allow reading/writing data
from/into images and videos files, comparing output data with a given correct file,
and displaying the resulting data. Considering the fact that we dispose of such
potent tool and libraries, we present in the following the main steps of the new
validation process.

I Step1: High-level development and software generation As presented in
Figure 4.3, the objective is to get a fast validation of the algorithm using the simplest
description way which is the high level one.

High level
RVC-CAL

C

Orcc

C Compiler

Debug
Errors

No Errors

step2

Figure 4.3: Step1: High-level validation

For example, to write 16 tokens in an output port, we use the high level struc-
ture of Figure 4.4 rather than directly using the more complex low level structure of
Figure 4.5.

1 write: action ==> OUT:[tab] repeat 16

2 end

Figure 4.4: High level RVC-CAL example

4.1 Fast validation approach principle 75

1 write: action ==> OUT:[out]

2 do

3 out := tab[counter];

4 counter := counter + 1;

5 end

6

7 write_done: action ==>

8 guard

9 counter = 16

10 do

11 counter := 0;

12 end

13

14 schedule fsm write:

15 write (write) --> write;

16 write (write_done) --> nextState;

17 ...

18 end

Figure 4.5: Low level RVC-CAL example

Figure 4.6: Source and display connection for MPEG4 decoder design

Once the design is completed, we add the source and the display actors already
proposed in the VTL of MPEG RVC (see Figure 4.6).

Orcc is launched using the C backend of the list of Figure 4.7 and generates the
C files for each actor. The generated C files of the source and the display call the
required functions of the Orcc library later in the compilation step.

Finally, a solution is built and a C compiler is used to compile and debug this
solution. We use configuration instructions to specify the input video file that will
be handled with Orcc library functions. The output video can also be compared with
a given correct one. If the algorithm is correct, we can see a display of the required
video (Figure 4.8). Otherwise (Figure 4.9), we debug the solution. Of course, the
software debug is very less-time consuming than hardware one. Once the RVC-
CAL code is checked, so that it generates a correct software implementation, the first
validation step is achieved. Some optimizations can be added since Orcc allows the
specification of FIFO sizes. Therefore, it is interesting to look for the minimal FIFO
size that keeps a correct video display, as this size has a direct impact on the memory
consumption of the intended hardware implementation. As Orcc applied the same
size on all FIFOs of the design, it is possible to use Graphiti to set the size of a specific
FIFO. At this level, the RVC-CAL errors are easier detected and faster corrected.

76 A methodology for fast validation of RVC-CAL programs

XDF
graph

RVC-CAL
actors

C

VHDL

Xlim

LLVM

Promela
Cpp Java Embedded C TTA

…

Orcc

Figure 4.7: Orcc list of backends

Figure 4.8: Correct video display

I Step2: From high to low level This description step presented in Figure 4.10
contains the most important change in the RVC-CAL code. As explained in Section
3.5, each actor of the design, already validated in a high level description, has to
be changed into low level to suit the transformation process of hardware compilers.
An explosion of the number of code lines is possible.

As we can see in the examples of Figures 4.4 and 4.5, for a multi-token write
on only one port, the number of code lines increases from 2 to 18. This difference
generally implies errors since there are additional actions, states and variables asso-
ciated with algorithms and tests on counters. These additional algorithms have to
be tested to check if the behavior of the actor is still correct. Concerning the FIFO

4.1 Fast validation approach principle 77

Figure 4.9: Wrong video display

High-level
RVC-CAL

Low-level
RVC-CAL

C

Orcc

C Compiler

Debug
Errors

High-level OK

Code
modification

Low-level OK

Step2

Figure 4.10: Step2: Low-level validation

size, it is possible to have further optimizations since in the mono-token case, data
are stored into internal buffers and all the firing rules verify the existence of only
one token in the FIFO. Therefore, all FIFO sizes may be set to the value ”1”. Nev-
ertheless, there exist some cases for which it is necessary to set other values than
”1” and it concerns especially the broadcast FIFOs. Actually, a FIFO may be broad-
cast to many ports that belong to different actors and, as presented previously in
the Dataflow MoC, actors are independent from each other so they have different
processing cadences. Consequently, if an actor execution is too much faster than
another one while they are sharing the same FIFO, the internal buffer of the slower
actor will be full at a certain time so it is necessary to increase the FIFO size of this
actor to avoid the blocking of the network.

This second step is achieved when the RVC-CAL code of the mono-token case
generates a software implementation that behaves correctly and produces the re-

78 A methodology for fast validation of RVC-CAL programs

quired data stream. The obtained design is now ready for hardware generation.

I Step3: Hardware generation Writing and validating a low level RVC-CAL
in the software platform is a very important step since it guarantees that the global
algorithm is correct. However, there may be other source of errors while generating
hardware implementations. These errors are especially related to types and dynam-
ics of the different variables. Actually, in the software platform, all types of integer
with a dynamic between 2 and 16 bits are set to short (i16) and those between 17 and
32 bits are set to integer (i32). Consequently all type-related errors are automatically
avoided but this is not the same case for hardware compilers. In the algorithm ex-
ample of Figure 4.11, the variable ”i” is defined as a signed variable with a dynamic
range of 8 bits involving a maximum value of ”127” while the algorithm uses a loop
expecting ”i” to reach the value of 600. In this case, the software implementation is
going to behave correctly but a hardware compiler will detect a bit-width problem
since it would synthesize a register with the same type of ”i” (8 bits) to contain the
comparison value of 600 which is not supported by this register.

1 int (size=8) i;

2

3 example: action ==>

4 foreach i in 0 .. 600 do

5 //(instructions)

6 end

7 end

Figure 4.11: Type-error algorithm example

A wrong dynamic may also induce a value change and errors. This may happen
for example when assigning a token value from a variable of 8 bits type to a variable
of 7 bits type. In this case the most significant bit (MSB) is lost. So if the variable
is signed, the value will be inversed and if it is unsigned the value is divided by
”2”. The previous case can scarcely happen but it cannot be detected during the
hardware generation. It can be considered as a last source of errors that can only be
detected and debugged in the hardware simulation step.

Practically now, we have a set of low level RVC-CAL actors connected in a di-
rected graph and validated in the previous steps. The hardware generator consid-
ered is OpenForge as presented in Chapter 2, and the front-end of this compiler is
the XLIM format. For recall, OpenDF is the tool that compiles RVC-CAL actors to
output a back-end in the XLIM format. For hardware generation, this XLIM is the
front-end of the hardware compiler OpenForge (see Figure 4.12). The XLIM format
is a set of Static Single Assignment threads transformed by the compiler into an in-
termediate format called SLIM which is a template language whose goal is reduce
the syntax to the essential parts without becoming cryptic. The SLIM is then trans-
formed into circuits based on basic operators. The final generation outputs a Verilog

4.1 Fast validation approach principle 79

file for each actor and a VHDL top file that connects the ports of these actors, so con-
sidered as components, with the adequate FIFOs (synchronous or asynchronous).
Since OpenForge is developed by Xilinx Inc Company, developers created all the
functions and components required for defining the FIFO architectures into a special
library called SystemBuilder. This library contains the entity definition and the be-
havior of many useful VHDL entities: RAM (RAM bool, RAM int, RAM dualclock),
FIFO controllers, FIFOs (synchronous FIFO, asynchronous FIFO). We use the gen-
erated Verilog files, the top file and the SystemBuilder libraries to make projects for
hardware simulation. For this step, stimulus files called ”test bench” are required.
In the Section 4.2, we present an original method for automatic generation of both
stimulus files and test benches using Orcc.

OpenForgeOpenDF

Figure 4.12: OpenForge compilation steps

Another novelty of using Orcc is the fact that we can generate an XLIM code using
an associated back-end and this XLIM is compatible with OpenForge. We explained
in 3.4.2 the reasons of dropping out the SSA generator of OpenDF in the favor of the
XLIM generator of Orcc.

80 A methodology for fast validation of RVC-CAL programs

4.2 Automatic generation of test benches and stimulus
files

In the hardware simulation field, a test bench is a special HDL file that calls the Top
file of the design to be tested as a component. In the test bench, we define the clock
frequency and the Offset duration. For each input or output port, the test bench
defines an associated signal. These signals are used for input ports to set stimulus
values and for output ports to display them in a time line graph containing the
evolution of each signal at any specific time of the simulation process. The stimulus
is set using two methods:

I Direct assignment inside the code

signal <= ’value0’;

wait for period ;

signal <= ’value1’;

etc ...

This solution is used for simple simulation cases when the number of ports and
stimulus values is reduced.

I Data reading from files

In case of complex components with a large number of token to be tested, we use
stimulus files since it is possible for the test bench file to read values from some text
format files using the following instructions:

file sim_file_in : text is "decoder_in.txt"; -- file definition

readline(sim_file_in, line_number); -- pointing at a given line number

read(line_number, signal); -- value assigning to a stimulus signal

Concerning the output signals, in the case of a simple test without an important
number of data to check, it is possible to simply check the evolution of the signal in
the simulation environment. Otherwise, the test bench is able to read a reference file
and to automatically compare all the generated values with those of the reference
using the instructions:

4.3 Pipeline methods 81

file sim_file_in : text is "decoder_out.txt"; -- file definition

readline(sim_file_out, line_number); -- pointing at a given line number

read(line_number, out_signal); -- value assigning to a stimulus signal

assert (out_signal = test_signal) -- condition to check

report "on port out incorrectly value computed :

’test_signal’ instead of : ’out_signal’" -- report if condition is false

severity error;

Since the format of a test bench is predefined, it is possible to generate an automatic
file for each actor or network of an RVC-CAL design. The required information is
the names and the types of all ports which is simply accessible in the Intermediate
Representation of Orcc. Therefore, we developed pretty printing files called ”String
templates” that allow using compiler IR and simple algorithms to automatically
write a correct test bench.

At this level, only one thing is missing: the automatic generation of the stimulus
files. For that purpose, Orcc presents an interesting option while generation the C
implementation which is the ”trace” option. This functionality adds lines to define
and fill a new file with all data values that passed through a FIFO. Every port is now
connected to a test file that is going to save values during the software simulation
step. Consequently, after a correct software simulation we can find the trace files
and use them later for hardware generation.

4.3 Pipeline methods

In [45, 46],we present further optimization solutions can be added using a ping-
pong data management algorithm [14]. The principle of this algorithm is to avoid
the repetitive latency caused by data storage, while reading tokens, by combining
the reading and the writing of the tokens in the same action. The idea is to first write
the input data in the half part of a memory, and then to use this data while writing
in the other part. Finally it only consists on switching the reading and the writing
pointers in opposite from a half memory part to the other. An example of ping-pong
memory management of a 4 buffers memory is presented in Figure 4.13.

In RVC-CAL language, the solution is to use pointer functions such as ra() and
wa() in the example of figure 4.14. After reading and filling the half of the memory,
a Boolean flag half changes the read and the write pointers represented by ra() and
wa(). Thus, an alternation of read and write is created in action gradient. Conse-
quently, while writing tokens, that actor is reading new ones for the next process
which decreases considerably the processing time.

82 A methodology for fast validation of RVC-CAL programs

Data1

Data1 Data2

Data1 Data2 Data3

1st clock event

Storage of the 1st token in the 1st buffer

2nd clock event

Storage of the 2ond token in the 2nd buffer

3rd clock event

Data1 Data2 Data3 Data4

Storage of the 3rd token in the 3rd buffer & use of data1 and data2

4th clock event

Storage of the 4th token in the 4th buffer & use of data1 and data2

Data5 Data2 Data3 Data45th clock event

Storage of the 5th token in the 1st buffer & use of data3 and data4

Figure 4.13: Ping pong example of a 4-buffer size memory management

Using such algorithms has considerably increased the performances. We no-
tice that for some actors, we obtained a throughput every clock period. Tests have
shown later that OpenForge generates a BRAM for internal buffers with two R/W
buses. So for actions presenting more than two memory accesses, it is logically im-
possible to have the results in only one clock period. Another case causes the delay
when, in the same instruction of the body of an action, an operator is repeated sev-
eral times. To run this instruction process in only one clock period, OpenForge has to
synthesize a hardware block for each operation. If the number of operators exceeds
the synthesis constraint of ”performance VS area” then the compiler cannot gener-
ate all the required hardware blocks Thus the instruction cannot process in only one
clock period. We can go further in the optimization of the pipelined design to solve
the cases above. Indeed, it is possible to anticipate the computation and create more
internal buffers for customized pipeline, but this way of designing architectures is
contradictory to the motivation of using MPEG-RVC standard. The purpose is still
to write in high level and to reach a valid implementation the fastest possible. So
such deep optimizations make the design very low level and as complex as writing
directly in HDL.

Once the design is transformed to low level, validated, optimized and compiled
to hardware it is necessary to simulate the hardware for the final validation. In the
following, we present an automatic method for generating test benches and stimu-
lus vectors using Orcc pretty printings and generation options.

4.4 Comparison with manual flow 83

1

2 bool half := false;

3 function wa() --> int :

4 bitor(bitand(cnt ,BLK_SZ*BLK_SZ -1),

5 if half then BLK_SZ*BLK_SZ else 0 end)

6 end

7

8 function ra() --> int :

9 bitor(bitand(cnt ,BLK_SZ*BLK_SZ -1),

10 if half then 0 else BLK_SZ*BLK_SZ end)

11 end

12

13 read_bloc_size : action BLK_SZ_IN:[size_in] ==>

14 do

15 sz_in[cnt]:=size_in;

16 cnt:=cnt+1;

17 end

18

19 done : action MAX:[max], MIN:[min] ==>

20 guard cnt= BLK_SZ*BLK_SZ

21 do

22 max_tmp:=max;

23 min_tmp:=min;

24 half := not half;

25 cnt:=0;

26 end

27

28 gradient : action BLK_SZ_IN:[size_in] ==> BLK_SZ_OUT:[out]

29 var

30 int out

31 do

32 sz_in[wa()] := size_in;

33 if (max_tmp - min_tmp <GRADSTEP) then

34 out:=BLK_SZ;

35 else

36 out:=sz_in[ra()];

37 end

38 cnt:=cnt+1;

39 end

40

41 schedule fsm read :

42 read(read_bloc_size)--> read;

43 read(done) --> read_write;

44 read_write(gradient)--> read_write;

45 read_write(done) --> read_write;

46 end

47

48 priority

49 done > read_bloc_size;

50 done > gradient;

51 end

Figure 4.14: Ping-Pong memory management example

4.4 Comparison with manual flow

The RVC methodology enables a very important gain in development time since an
RVC-CAL code is dedicated to the internal behavior of the actor and all communica-
tion issues are managed automatically by the libraries of compilers. Moreover, this

84 A methodology for fast validation of RVC-CAL programs

standard enables an easy reuse of existing functional units which decreases even
more the development time of new designs. Currently, with our methodology, we
reduce also the validation time which is an important step. To test the impact of our
work, we applied the method while developing a baseline of the LAR codec (de-
tailed in Chapter 7). The development, validation and test of the LAR took about
2,5 month-man while in direct VHDL it took over 8 month-man. It is very important
to mention that over 90% of the conception time was achieved in the open source
software platform where the debug and the validation are easier and faster.

4.5 Conclusion

This chapter presented an overview of the hardware generation flow from RVC-
CAL designs. The classic generation and validation method is based, in a first step,
on the use of OpenDF for the edition of low level RVC-CAL code, the simulation of
the code, and the generation of the XLIM intermediate representation then, in a sec-
ond step, the use of OpenForge for the transformation of the SSA threads into low
level HDL implementations. The originality of our work resides in the introduction
of a functional methodology that allows multi-level validation of the design using
a software platform. This methodology consists of using the Open RVC-CAL Com-
plier tool to generate a software code in every level of RVC-CAL descriptions. This
code is compiled and simulated with many videos. At the low level RVC-CAL de-
scription, this validation ensures that the algorithms are correct and generally the
hardware generated files are correctly implemented. In some cases, the hardware
circuits present errors but they are not related to the algorithm. Most of them are
resolved with a good FIFO sizes corrections. This global framework introducing a
software functional checking before the synthesis process is significantly faster than
a hardware implementation directly from the RVC-CAL description.

The most time-consuming part of the flow remains the manual transformation
of the RVC-CAL from high to low level. This can be explained by the fact the code
is longer and consequently harder to debug because of the inaccurate feedback of
OpenForge. This problem may be resolved by improving OpenForge Java source
code, but the very complex source of OpenForge and the low level of the XLIM In-
termediate representation make this task almost impossible. The solution is to use
the intermediate representation of Orcc to generate an XLIM compatible with Open-
Forge and to add automatic transformations to the intermediate representation of
Orcc while generating the XLIM. The next chapter presents a set of automatic trans-
formations introduced in the IR of Orcc during the XLIM generation that transforms
the high level features into low level ones allowing the hardware generation with
OpenForge.

4.5 Conclusion 85

C h a p t e r 5

Automatic hardware generation from
RVC-CAL

5.1 Introduction . 87

5.2 Localization of the automatic transformation 87

5.3 Actor behavior . 88

5.4 Transformation overview . 89

5.4.1 Actions and variable creation 89

5.4.2 FSM creation cases . 94

5.5 Transformation steps and optimizations 98

5.6 Validation and Miscellaneous transformations 99

5.7 Written code reduction . 103

5.8 Conclusion . 103

5.1 Introduction 87

5.1 Introduction

The hardware conception flow from RVC-CAL designs consists of two main parts:
the CAL development and the hardware generation using compilers. As presented
previously, hardware compilers have the limitation that they cannot compile multi-
token features of the language. Indeed, a processor is preconceived to automati-
cally manage sequential multi-read or multi-write from a memory. However, in a
hardware implementation, we have to explicitly define this sequencing using a state
machine as presented in Chapter 4. This task is very time-consuming if it is done
manually and represents the main bottleneck of the conception flow. Consequently,
the proposed solution was to insert an automatic transformation in the compiler
core to detect the non-compliant features and make the necessary changes [43].

This chapter presents the main contribution of our work which is an automatic
transformation that transforms high level features of RVC-CAL into low-level equiv-
alent structures that are compliant with hardware compilers.

5.2 Localization of the automatic transformation

As introduced above, the idea of an automatic transformation in the core of an RVC-
CAL compiler is the best solution for a general and target agnostic transformation.
Currently, the best existing hardware compiler for RVC-CAL is OpenForge (so called
Cal2HDL). As a reminder, the compilation process has two main processing steps:
the XLIM generation using OpenDF and the Hardware generation with OpenForge.

The hardware generator translates the SSA threads of the XLIM file into elemen-
tary operation circuits. In addition, it manages the data exchange by creating local
referees and schedulers. The SystemBuilder library is used to define the required
type of FIFO (synchronous or asynchronous). The final output of the compiler is
a Verilog file for each actor and a VHDL top file of the design. The limitation of
OpenForge is that it cannot compile multi-token rules which are omnipresent in
most actors since they make the high level development easier and faster. Our work
focuses on how to automatically transform the data consumption from multi-token
to mono-token while preserving the same actor behavior.
The drawback of adding transformation directly to OpenForge is the fact that its
IR is very low-level and its interpreter uses directly the AST which has a different
scope from code generators one. Consequently, we adopted Orcc which is a new
RVC-CAL compiler that offers a clear IR and visitor design pattern. The motiva-
tion behind this choice is also because there are ongoing works on XLIM back-end
in Orcc [4]. Therefore, the SSA generator of OpenForge can be replaced by the Xlim
generator of Orcc and all required transformations are developed in the core of Orcc.
The resulting conception flow is summarized in Figure 5.1.

After the localization of the transformation in the conception flow, it is impor-

88 Automatic hardware generation from RVC-CAL

Open
Forge

HW
lib

C

VHDL

LLVM

…

IR
transfo

XDF
graph

RVC
CAL

Back-ends

•Other

backends:

Java, C++,

Promela, TTA

…

•Not mature for

all RCV-CAL

structures

Automatic HW

generation

HDL files

Orcc OpenForge

Figure 5.1: New conception flow with Orcc

tant to introduce the mathematical formalism of the model of computation before
detailing the transformation process. In the following section, we present the most
important mathematical notions and equations related to the model of computation,
and we will rely on them to better explain the transformation mechanism.

5.3 Actor behavior

A presented in Section 3, RVC-CAL language is the transformation of the Dataflow
Process Networks (DPN) model of computation into an executable or imple-
mentable language. This model of computation is based on the exchange of data
tokens between functional entities called actors. The only information that fires an
actor is the presence of enough data to satisfy one of its firing rules. Once a rule
is satisfied, a corresponding local function called action is executed by consuming
tokens from the input FIFO and producing others on the output FIFO.

A Dataflow actor is defined with a pair < f , R > such as:
* f : Sm → Sn is the firing function,
* R ⊂ Sm are the firing rules,
* For all r ∈ R, f (r) is finite.

An actor defines a set of firing rules that precise the necessary conditions that
make this actor consume and produce tokens. An action is fireable or schedulable

5.4 Transformation overview 89

i f f : the execution is possible in the current state of the FSM (if an FSM exists), there
are enough tokens in the input FIFO, and a guard condition returns true. An action
may be included in a finite state machine or untagged making it higher priority than
FSM actions.

The FSM transition system of an actor is defined with < σ0, Σ, τ,≺> where Σ is
the set of all the states of the actor, σ0 is the initial state, ≺ is a priority relation and
τ ⊆ Σ× Sm × Sn × Σ is the set of all possible transitions. A transition from a state
σ to a state σ′ with a consumption of sequence s ∈ Sm and a produced sequence
s′ ∈ Sn is defined with (σ, s, s′, σ′) and denoted:

σ
s 7→s′−−→

τ
σ′ (1)

To solve the problem of the existence of more than one possible transition in
the same state, RVC-CAL introduced the notion of priority relation such as for the
transitions t0, t1 ∈ τ, t0 a higher priority than t1 is written t0 � t1. A transition

σ
s 7→s′−−→

τ
σ′ is enabled i f f :

¬∃σ
p 7→q−−→

τ
σ′′ ∈ τ : p ∈ S∧ σ

s 7→s′−−→
τ

σ′′ � σ
s 7→s′−−→

τ
σ′ (2)

5.4 Transformation overview

Let us consider an actor with a multi-token firing rule:

r ∈ Sk such as |r| = [r0, r1, .., rk−1]

This rule fires a multi-token action a realizing the transition source a−→
τ

target and I

the set of all input ports. The idea of the intended transformation is to separate the
input and output patterns from the action and create mono-token actions that use
these patterns. In the following, we detail the required variables and actions to be
added and we explain the way this transformation copes with the all existing cases
of finite state machines.

5.4.1 Actions and variable creation

I Multi-token read transformation The transformation creates for every in-
put port an internal buffer to store data and behave as a local FIFO. To manage the
data transfer in a FIFO, it is necessary to create counters called indexes for reading
and writing. Thus, every time we write n data in the FIFO the write index incre-
ments (IdxWrite := IdxWrite + n) and ditto for the read index when a set of data

90 Automatic hardware generation from RVC-CAL

is definitely consumed. Consequently and as presented in Figure 5.2, at any given
time, bu f f er[IdxWrite] is the last input, bu f f er[IdxRead] is the first input and the
difference (IdxWrite − IdxRead) represents the number of available tokens in the
FIFO. The token bu f f er[IdxRead − 1] is the last used token. It exists physically in
the FIFO but it cannot be used anymore.

used … used

Tk Tk+2

empty …

empty

IdxRead = k IdxWrite = k+3

Idx = 0 Idx = size -1

Figure 5.2: Example of buffer indexes

We explain later the importance of this index difference in the schedulability of
the created actions. The indexation presented above is enough for the unlimited
FIFO case which is not realizable especially for hardware implementations. So what
happens when (IdxWrite = Size − 1) ? To solve this problem, we implemented a
circular FIFO. This type of FIFO is based on the idea that data contained in the reg-
isters from buffer[0] until buffer[IdxRead -1] are used and so they can be erased and
overwritten by new data. Thus, the token received when the buffer is full can sim-
ply be placed in the first cell of the buffer (bu f f er[0]). At the same time, it would
be an error if we set the value of the write index to zero because the difference
(IdxWrite− IdxRead), that represents the number of available tokens, will be neg-
ative. As shown in Figure 5.3, the solution is to use the modulo operator with the
indexes and thus when IdxWrite = size, we have (IdxWrite mod size) = 0. For an
easier mask computation, we use a power of 2 buffer size. If the number of tokens
to read in the multi-token rule is not a power of 2, the size will be the closest one.
Therefore, the bitand operator is used instead of the modulo one.

Actually, data storage in the created buffers have to be mono-token. So a new ac-
tion is created for that purpose. This action has to be independent from the process
actions, and then we consider the untagged actions since they are outside the FSM.
Such action is defined in Figure 5.4. The input pattern of the port is now located in
the untagged action and an important guard condition is added to check the avail-
ability of at least one available cell in the buffer. In fact, as the buffer is circular, it is
very important to verify that (IdxWrite− IdxRead) < size. To resume, the transfor-
mation creates for every input port an internal buffer with read and write indexes
and clips r into a set R of k firing rules so that:

5.4 Transformation overview 91

used … used

Tk

…

Tsize-1

IdxRead = k

buffer[IdxWrite mod size] = buffer[0]

Idx = 0 Idx = size -1

IdxWrite = size

Figure 5.3: Circular FIFO management

∀i ∈ I, ∃!ρ ∈ R :


ρ : S1 → S0

|r| = 1
gρ : IdxWritei − IdxReadi ≤ sizei (3)

with ρ a mono-token firing rule of an untagged action untaggedi, gρ is the guard
of ρ and sizei the size of the associated internal buffer defined as the closest power
of 2 of ri.

1 action PORT:[token] ==> // untagged action

2 guard

3 IdxWrite - IdxRead < size

4 // condition that at least one cell is erasable

5 do

6 buffer[IdxWrite & (size-1)] := token ;

7 // masked read index

8 IdxWrite := IdxWrite + 1 ;

9 end

Figure 5.4: Untagged action for mono-token read

I Actions transformation For each port i ∈ I, an untagged action is created
associated with read/write indexes and a buffer. The indexes and the buffer are
created as global variables so they can be used by other actions. Indeed, if the actor
contains another firing rule (multi-token or mono-token) that uses a port which is

92 Automatic hardware generation from RVC-CAL

already connected to a buffer, when this rule fires it has to consume the tokens in
the buffer and not those in the FIFO. Consequently, all input patterns related to this
port are deleted and replaced by a read instruction from the associated buffer. Let us
consider a firing rule r ∈ S2 with a guard condition on the first port with a positive
token. We suppose |r|=[1,2]. This rule is defined by:{

g : [x]|x > 0
r = [t0 ∈ g, [t1, t2]] (4)

After creating the untagged actions for both ports, we have two buffers (bu f f er1
and bu f f er2) with their indexes (IdxRead1, IdxRead2, IdxWrite1, IdxWrite2). This
rule has to be transformed into r? such as:

g1 : IdxWrite1− IdxRead1 ≥ 1
g2 : IdxWrite2− IdxRead2 ≥ 2
g3 : bu f f er1[IdxRead1] > 0
r = [λ, λ] (5)

where g1 and g2 are the conditions that there are enough data in the buffers to fire
the action and g3 is the translation of the original guard g of r in the new created
context.

Concretely, if we consider the basic example of action sum-5 of Section 3.2, the
transformation outputs the code of Figure 5.5.

I Multi-token write transformation An action may have the multi-token
structures in the input pattern and/or the output pattern. While reading data, there
is no problem of skipping the FSM to fire an untagged action that reads a token
from the FIFO. However, creating untagged actions for writing data involves sev-
eral problems since the data transfer from an actor to the FIFO has to be completely
done after the execution of the body of the transformed action. Therefore, if this ac-
tion restarts before the drain of the output buffer, then some tokens will be crushed.
The solution is to add a mono-token write action for each port managed by a new
FSM branch. In this paragraph, we explain the created FSM macro-block separately
and in Section 5.4.2 we detail the way this branch is inserted depending on the ex-
isting actor scheduling.

Analogically to the multi-token read transformation, the output pattern is re-
moved from the action and affected to a mono-token-write one. This mono-token
action requires a buffer to store data. This buffer is not shared by other processes so
we can use a single index that increments while draining data and resets at the end.
While writing tokens another firing rule may be validated and causes the firing of
an unwanted action. To avoid the non-determinism of such a case, we use an FSM
to put the actor in a writing loop so it can only write tokens. In a general case, we

5.4 Transformation overview 93

1 actor sum-5 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 add: action IN:[i] repeat 5

5 ==> OUT:[s]

6 var

7 int s := 0

8 do

9 foreach int k in 0 .. 4 do

10 s := s + i[k] ;

11 end

12 end

13 end

(a) High-level algorithm

1 actor sum-5 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 List (type: int (size=8), size = 8) buffer;

5 // size = 8 is the closest_power_of_2 (5)

6 int IdxWrite := 0;

7 int IdxRead := 0;

8

9 action IN:[i] ==>

10 guard

11 IdxWrite - IdxRead < 8

12 do

13 buffer[IdxWrite & 7] := i ;

14 IdxWrite := IdxWrite + 1 ;

15 end

16

17 process: action ==> OUT:[s]

18 guard

19 IdxWrite - IdxRead > 5

20 var

21 int s := 0

22 do

23 foreach int k in 0 .. 4 do

24 s := s + buffer[k + (IdxRead &7)] ;

25 end

26 IdxRead := IdxRead + 5;

27 // update IdxRead

28 end

29

30 end

(b) automatically generated low-level algorithm

Figure 5.5: Automatic transformation of the Sum-5 actor

suppose that the multi-token action to transform realizes the transition:

texisting = source state action−−−→
τ

target state of Figure 5.6

The new FSM loop is entered using the transition:

twrite = source state
trans f ormed action−−−−−−−−−−→

τ
write state.

The write action loops in the write state with the transition:

tloop = write state write−−→
τ

write state.

When all necessary tokens are written, the loop is exited using a write done action
and a transition to the target state defined with:

tend loop = write state write done−−−−−→
τ

target state � tloop.

94 Automatic hardware generation from RVC-CAL

Multi-token action

target

source

Figure 5.6: Existing FSM transition of the transformed action

For example, the actor A of Figure 5.7 is defined with

f : S0 → S2

1 actor A () ==> int OUT1 , int OUT2:

2 a: action

3 ==>

4 OUT1:[out1], OUT2:[out2] repeat 2

5 do

6 {treatment}

7 end

8 end

Figure 5.7: RVC-CAL code of actor A

The transformation creates the FSM macro-block of Figure 5.8.
The actor of Figure 5.7 is then transformed as shown in Figure 5.9.

5.4.2 FSM creation cases

We consider an example of an actor defined as:
f : S3 → S2

containing the actions a1..a5 such as a3 is the only action applying a multi-token

5.4 Transformation overview 95

writeWrite_done

write2
write1

Transformed_Action

target

source

Figure 5.8: Created FSM macro-block

firing rule r ∈ S3. If there is no multi-token structure in the output pattern then
the FSM is not going to be changed since the untagged actions related to the multi-
token read are added outside FSM. In the case of multi-token write, the previously
explained FSM macro-block has to be inserted. Two cases may be encountered:

I The actor does not have an FSM In this situation, all the actions are un-
tagged. Consequently, the fact of simply adding the FSM branch is not correct be-
cause this macro-block is a substitution of the transformed action and the existence
of untagged actions (a1, a2, a4, a5) will distort the priority order of the original ac-
tion.

The solution is to create an initial state containing all the actions and add the
created FSM macro-block of a3 (previously presented in Figure 5.8). The resulting
FSM is presented in Figure 5.10 where:
∀i ∈ [1..5], ∃!τi : τi = init state

ai−→
τ

init state.

Once all actions are set into an FSM, it is possible to add the transformed action and
its associated FSM branch without disturbing the behavior of the actor.

I The actor has already an FSM We now suppose the same actor scheduled
with an initial FSM as shown in Figure 5.11.

In this case there is no need to create an initial state because there is no risk
of losing a priority or any other behavior specification. Therefore, the transition

96 Automatic hardware generation from RVC-CAL

1 actor A () ==> int OUT1 , int OUT2:

2

3 int Idx1 := 0;

4 int Idx2 := 0;

5 List(type:int , size=1} buffer1;

6 List(type:int , size=2} buffer2;

7

8 a: action

9 ==>

10 // output pattern deleted

11 do

12 {treatment}

13 end

14

15 write1: action ==> OUT1:[out1]

16 var

17 int out1

18 do

19 out1 := buffer1[Idx1];

20 Idx1 := Idx1 + 1;

21 end

22

23 write2: action ==> OUT2:[out2]

24 var

25 int out2

26 do

27 out2 := buffer2[Idx2];

28 Idx2 := Idx2 + 1;

29 end

30

31 write_done: action ==>

32 guard

33 Idx1 = 1,

34 Idx2 = 2

35 //check data is fully drained

36 do

37 Idx1 := 0;

38 Idx2 := 0;

39 //reset counters

40 end

41

42 schedule fsm source_state:

43 source_state(a) --> write_state;

44 write_state(write1) --> write_state;

45 write_state(write2) --> write_state;

46 write_state(write_done) --> target_state;

47 end

48

49 priority

50 write_done > write1;

51 write_done > write2;

52 end

53

54 end

Figure 5.9: RVC-CAL code of transformed multi-token write

t = S1 s 7→s′−−→
τ

S2 is substituted with the FSM macro-block of a3 as shown in Figure
5.12.

5.4 Transformation overview 97

write

Write_done

write2 write1

init

a1a2
a4

a5>
Untagged_IN1

Untagged_IN2

Untagged_IN3

Transformed
Action (a3*)

Figure 5.10: FSM with created initial state

S0
S1

S2

a1

a4

a3

a5

a2

Figure 5.11: Initial FSM of an actor

This section presented a general transformation that can be applied on any RVC-
CAL actor. The transformation detects the multi-token patterns of the actor and au-
tomatically substitutes them with a set of actions. All necessary states, transitions,
state variables and buffers are automatically created. In some cases, the actor may
have multi-token read and/or multi-token write but it is not very complicated to un-
dergo a general transformation. In the next Section, we present some optimization
solutions for these actors.

98 Automatic hardware generation from RVC-CAL

S0 S1

S2

a1

a4

a5

a2

write
write_done

write2write1

>
Untagged_IN1

Untagged_IN2

Untagged_IN3

Transformed
Action (a3*)

Figure 5.12: Resulting FSM transformation

5.5 Transformation steps and optimizations

To improve the transformation, some optimization solutions were added [47]. In the
previously presented transformation method, we used the untagged actions to store
data in the internal buffers. Consequently, all buffer accesses for reading and writing
have to use masks (modulo or bitand operators). These masks involve more logic
components and obviously more latency than a direct memory access. The crucial
point of using internal buffers is the guard condition on FIFO tokens. Indeed, let us
consider the example of this action:

1 a: action INPUT:[i] repeat 10 ==>

2 guard

3 i[9] > 0

4 do

5 {instructions}

6 end

This action fires when there are at least 10 tokens in FIFO and the 10th token is
positive. If we use a mono-token read action that stores data in a specific buffer of
this action, then we create a problem of lost data if the condition (i[9] > 0) is not true.
In fact, the tokens not used by action a are not any more in the FIFO and if another
action will fire using the same port it will use tokens of the FIFO while it had to
use those in the buffer of action a. The optimization step is consequently based on
an actor analysis. Data conflict cases are avoided if there is no guard checking FIFO
tokens values, or if actions do not share ports. If such cases are detected it is possible
to use read and read done actions exactly like explained above in Section 5.4.1 for the

5.6 Validation and Miscellaneous transformations 99

multi-token write case.
Let us reconsider the basic example of the “clip” actor of Figrue 5.13(a). The op-

timized transformation of this actor is presented in Figure 5.13(b). It is notable that
the two indexes of the circular buffer are replaced by a simple counter and thus, all
masking operations are avoided.
In a general case of an actor defined with: f : S3 → S2 the created FSM macro-
block is shown in Figure 5.14.
It is possible to go further in the actor analysis and remark that the process of any to-
ken is independent from the others. Indeed, to clip a token value, the only required
information is that value and none of the other 255. The optimal transformation
is consequently a simple mono-token action that reads a token, clips the value and
writes the result (see Figure 5.15).

5.6 Validation and Miscellaneous transformations

To test and validate the automatic transformation, it was necessary to continue us-
ing the approach of Chapter 4 which means that the validation is performed first
in a software platform before moving to the hardware one. We considered exist-
ing designs of several decoders already presented in the VTL of MPEG-RVC and
we applied the transformation using the C back-end of Orcc. The transformation
performed correctly for MPEG4 simple profile decoder (see Chapter 6), MPEG AVC
decoder and JPEG codec. It was also successfully applied on some newly developed
RVC-CAL designs of still image codecs: the accordion-JPEG [42] and the LAR [23]
detailed later in Chapter 7. After the software validation step, the hardware gen-
eration is applied using OpenForge and we faced two major hardware-generation-
specific problems:

I The local array
Variables of type array can never be synthesized to hardware if they are defined
locally in an action. Indeed, the hardware generators consider a memory block for
each HDL component and not for each function of a component. Since every ac-
tor is transformed into a component, all memories used by its actions have to be
defined outside the actions procedures. In addition, every memory is managed
by a memory controller that induces an important area consumption. That is why
hardware compiler may assign several lists to a single memory block with a single
memory controller as an optimization step. Therefore, we developed a new trans-
formation that visits all the actor local variables, detects the presence of type list,
removes the variable and creates a new global one with the same type. Of course,
all uses and definitions of the list in the SSA form are set to the new variables.

100 Automatic hardware generation from RVC-CAL

1 actor clip () int (size=9) IN

2 ==> int(size=9) OUT:

3

4 clipper: action IN:[i] repeat 256

5 ==> OUT:[i] repeat 256

6 do

7 foreach int k in 0 .. 255 do

8 if (i[k]<0) then i[k]:=0;

9 else

10 if (i[k]>255) then i[k]:=255;

11 end;

12 end;

13 end

14 end

15 end

(a) Clip actor CAL code

1 actor clip () int (size=9) IN

2 ==> int(size=9) OUT:

3

4 List (type: int (size=9), size = 256) data;

5 int counter :=0 ;

6

7 read: action IN:[i] ==>

8 do

9 data[counter] := i ;

10 counter := counter + 1 ;

11 end

12

13 done: action ==>

14 guard

15 counter = 256

16 do

17 counter := 0 ;

18 end

19

20 process: action ==>

21 do

22 foreach int k in 0 .. 255 do

23 if (data[k]<0) then data[k]:=0;

24 else

25 if (data[k]>255) then data[k]:=255;

26 end;

27 end;

28 end

29 end

30

31 write: action ==> OUT:[out]

32 var

33 int out := 0;

34 do

35 out := data[counter] ;

36 counter := counter + 1 ;

37 end

38

39 schedule fsm state0:

40 state0 (read) --> state0;

41 state0 (done) --> state1;

42 state1 (process) --> state2;

43 state2 (write) --> state2;

44 state2 (done) --> state0;

45 end

46

47 priority

48 done > read;

49 done > write;

50 end

51

52 end

(b) Optimized CAL code

Figure 5.13: Original and optimized clip actor

I The integer division
The division operation is one of the major bottle-necks of hardware generation. It
is recommended for hardware developers to find solutions while writing an algo-

5.6 Validation and Miscellaneous transformations 101

writeWrite_done

write2
write1

process
target

read

read2 read1source

proc

read_doneread3

transition

Figure 5.14: FSM created macro-block for optimal transformation

1 actor clip () int (size=9) IN

2 ==> int(size=9) OUT:

3

4 clipper: action IN:[i]

5 ==> OUT:[i]

6 do

7 if (i<0) then i:=0;

8 else

9 if (i>255) then i:=255;

10 end;

11 end;

12 end

13 end

Figure 5.15: Further optimization of the clip actor

rithm to avoid the divisions and use shifts instead. However, in RVC-CAL context,
such specification cannot be considered because the language aims at writing in a
target agnostic way. However, we can substitute an integer division by an equiva-
lent function that uses Euclidean division which is a set a repetitive basic operations
applied on all the bits of the dividend and the divisor as explained in the following
algorithm example of (short/short) Euclidean division:

short divSS(short num, short den)

{

short result = 0;

int i;

/* If true, then the result must be negative. */

int flipResult = 0;

short remainder;

int denom;

102 Automatic hardware generation from RVC-CAL

int mask;

int numer;

if (num < 0)

{

num = -num;

flipResult ^= 1;

}

if (den < 0)

{

den = -den;

flipResult ^= 1;

}

remainder = num;

/* Cast the denominator to a long so that MIN_INT looks like

a positive number.(We need 33 bits to represent -(MIN_INT)).

*/

denom = ((int)den) & 0x0000FFFF;

mask = 0x8000;

for (i=0; i < 16; i++)

{

/* Cast the numerator to a long so that -(MIN_INT) appears as

a positive value (we need 33 bits to represent it). */

numer = ((int)(((int)remainder & 0x0000ffff) >> (15 - i)));

if (numer >= denom)

{

result |= mask;

remainder = (remainder - (den << (15 - i)));

}

mask = (mask >> 1) & 0x7fffffff;

}

/* If the signs of the inputs did not agree, then make the result

negative. */

if (flipResult != 0){result = -result;}

return result;

}

The algorithm above has been implemented in a DIV function and a new
transformation is developed to detect division operations and replace them with
this function as follows:

1 a: action ==>

2 do

3 result := dividend/divisor;

4 end

is transformed to:

5.7 Written code reduction 103

1 function DIV (int (size=16) dividend , int (size=16) divisor) --> int (size=16) result:

2 {Euclidean division algorithm}

3 end

4 a: action ==>

5 do

6 result := DIV(dividend ,divisor);

7 end

This transformation resolves the problem of integer divisions but it creates a con-
siderable latency in the process that cannot be avoided. All these implementation
details are later discussed in Chapter 6.

5.7 Written code reduction

Another very important aspect of the transformation is the time saved for not writ-
ing long codes. The multi-token structures are omnipresent in advanced video
coders and their presence in an action multiplies the number of code lines by 8
times for multi-token write (Figures 5.7 and 5.9) and over 2 times for multi-token
read. Generally a factor of 7 is often noted as presented in the following table 5.1
that contains a comparison of code lines numbers of some developed actors.

High-level Low-level
DPCM 74 523

Management blocks 2x2 27 167
Max 2x2 8 50

Table 5.1: Code lines Comparison

5.8 Conclusion

In this chapter, we introduced a general automatic transformation of RVC-CAL al-
gorithms from high level to low-level. This transformation creates the necessary ac-
tions, states and variables to make a new algorithm that contains only mono-token
firing rules with a similar global behavior of the original actor. This transformation
is applied in the core of Orcc compiler and makes changes directly in the intermedi-
ate representation. This aspect of the transformation localization in the conception
flow is very important since it can be applied on any back-end of Orcc. This property
proved to be crucial for the validation of the transformation itself. Indeed, even if

104 Automatic hardware generation from RVC-CAL

the resulting changes in the IR are intended for hardware generation, it was possible
to use a software platform to validate the transformation. To perform correctly, we
added miscellaneous transformations to manage some hardware specific problems
namely the local lists and the integer division. It is noticeable that actor analysis can
lead to optimize the transformation of some actors that contain multi-token firing
rules but they are enough complex to undergo the general transformation.

The whole methodology functional validation and hardware generation intro-
duced in Chapter 4 associated with the transformation detailed in this Chapter for
high level transformation, is applied on the MPEG 4 Simple Profile video decoder
and the LAR still image codec. In the next Chapters, we present the design of the
two applications platforms, we expose the implementation results and we discuss
the differences with reference implementations.

5.8 Conclusion 105

Part III

Experiments And Results

C h a p t e r 6

Technological solutions of
MPEG-RVC decoders

6.1 MPEG-4 part 2 Simple Profile . 109

6.1.1 The hardware oriented architecture 109

6.1.2 Parallel architecture . 111

6.1.3 Serialized architecture . 114

6.2 MPEG-4 part 10 Profiles . 115

6.3 Implementation and results . 119

6.3.1 Functional validation . 119

6.3.2 Hardware implementation 119

6.4 Conclusion . 122

6.1 MPEG-4 part 2 Simple Profile 109

To assess the performances of the previously presented transformations, we
started a functional validation in a software platform of some RVC-CAL designs
such as MPEG-4 part 2 simple profile Decoder, MPEG-4 part 10 FREXT design, JPEG
etc. For the hardware implementation, we synthesized the design of MPEG-4 part
2 SP. This choice is explained by the fact that it has a stable design in the Video Tool
Library (VTL). It also includes various image processing algorithms with more or
less complexity. Moreover, the VTL contains a reference hardware oriented design
(presented below) which is very important to assess the importance of this work. In
the following we present an overview of the MPEG-4 part 2 and part 10 decoders ar-
chitectures already developed in the Video Tool Library of MPEG-C. We also present
the implementation results of the MPEG-4 part 2 Simple Profile and a comparison
with an academic high level synthesis tool called GAUT [18],[17].

6.1 MPEG-4 part 2 Simple Profile

MPEG decoders have almost a common design. It starts with a parser that extracts
motion compensation and texture reconstruction data from the bitstream generated
by the Huffman encoding. The parser is then followed by reconstruction blocks
for texture/motion and a merger. In the following, we present the main existing
RVC-CAL designs of MPEG-4 part 2 Simple Profile decoder.

6.1.1 The hardware oriented architecture

This is a low level architecture designed by Xilinx for automatic hardware genera-
tion with OpenForge. All actors have mono-token firing rules and some algorithms
are pipelined. For example, the IDCT2D is decomposed into a set of 12 actors such
as rowsort, transpose, retranspose etc. This pipelined architecture is presented in
Figure 6.1.

The IDCT1D is also split into pipelined actors (scale, combine, shuffle ...) as pre-
sented in Figure 6.2.

This decoder design generated the fastest hardware implementation using RVC-
CAL. Consequently, it will be considered as a reference for the next implementa-
tions using the automatic transformation of Chapter 5. In [39], Jörn Janneck pre-
sented the implementation comparison results of Table 6.1 between two hardware
implementations of the MPEG-4 part 2. The first one is the generated implementa-
tion from the Xilinx design and the second one is a manual directly written VHDL
(http://www.xilinx.com/bvdocs/ipcenter/data sheet/ds520 prod brf.pdf). It is
noticeable that the 26 BRAMs, a 16 bytes memory block with two input and out-
put ports, of the VHDL IP are limited to 4-CIF image size while the 22 BRAMs of

110 Technological solutions of MPEG-RVC decoders

Figure 6.1: Pipelined architecture of the IDCT2D

Figure 6.2: Pipelined architecture of the IDCT1D

the hardware generated from RVC-CAL support HD image size and they can be re-
duced to 16 for 4-image CIF size. The VHDL IP performs only a 4-CIF image size,
with 180K macroblocks/s at 100MHz. However, the CAL decoder manages HD
image size and performs 243K macroblocks/s at 120 MHz.

6.1 MPEG-4 part 2 Simple Profile 111

Criterion VHDL IP CAL
Slice 4637 3872
LUT 7923 7720
FF 2637 3576

BRAM 26 22
Mult 34 7

Lines of code 15000 4000

Table 6.1: MPEG-4 part 2 SP implementation comparison: CAL VS VHDL

6.1.2 Parallel architecture

Figure 6.3 shows one of the first architectures for MPEG-4 part 2 SP, designed in
a parallel way by the EPFL of Lausanne and optimized by Ericsson 1 company
during “ACTORS” project. It is characterized by a parallelization of the decoding
of Y, Cb and Cr.

Parser

Y Decoding

Cb Decoding

Cr Decoding

BITS

COEFFY

COEFFY

COEFFCb

COEFFCr

MV

MV

COEFFCb

COEFFCr

MV

PRED

PRED

PRED

MV

PRED
OUT

OUT

OUT

Y

Cb

Cr

YUV YUVMerger 420

Figure 6.3: MPEG-4 part 2 Simple Profile architecture

The simple profile is a full example of decoding techniques that encapsulates
predictions, scan, quantization, IDCT transform, buffering, interpolation, merging
and especially the very complex step of parsing. An actor may be instantiated
more than one time, so for 27 FU there are 42 actor instantiations. The detailed
subnetwork of the synoptic graph of Figure 6.3 is presented in Figure 6.4.

1www.ericsson.com

112 Technological solutions of MPEG-RVC decoders

P
A
R
S
E
R

M
E
R
G
E

TEXTURE DECODING

[01111001...]

BITSTREAM DECODED DATA

MOTION COMPENSATION
DC
addr

DC
split

DC
pred-1

Scan-1
AC

pred-1
Quant-
ize-1

DCT-1

Addr

Bu�er
Interpo-
late

Add

DC
addr

DC
split

DC
pred-1

Scan-1
AC

pred-1
Quant-
ize-1

DCT-1

Addr

Bu�er
Interpo-
late

Add

DC
addr

DC
split

DC
pred-1

Scan-1
AC

pred-1
Quant-
ize-1

DCT-1

Addr

Bu�er
Interpo-
late

Add

Figure 6.4: MPEG-4 part 2 SP detailed architecture

I The parser The parser is the actor that understands the grammar of the com-
pressed data (bitstream) and is responsible of interpreting and extracting the neces-
sary information for the next actors. This information represents a stream of control
tokens, block type information and Video Object Planes (VOP) which are the ele-
mentary units of the compressed video with MPEG4. The bitstream is sequentially
decoded, explaining the very long code of the corresponding FSM. The behavior
of the parser is considered as the most complex of the whole decoder. Table 6.2
gives an idea about the complexity of parsers in MPEG 4 Simple Profile and MPEG
Advanced Video Coding (AVC).

Actors Levels Parser size Decoder size
kSLOC kSLOC

MPEG-4 SP 27 3 9.6 2.9

Table 6.2: Composition of MPEG-4 Simple Profile RVC-CAL description

I The texture decoder This part, detailed in Figure 6.5, is responsible of the
intra decoding which is the inverse of the frequency domain transformation (DCT).
It is composed of:

• a DC/AC splitter,

• the addressing: an actor that computes the addresses of the three neighbor
blocks of a given 8x8 block (current block),

• the DC inverse prediction: an actor that computes a gradient between the al-
ready calculated neighbor blocks DCf coefficients, This gradient is used for the
reconstruction of the DC coefficient of the current block. This actor is associ-
ated with the addressing actor to form the DC reconstruction unit,

6.1 MPEG-4 part 2 Simple Profile 113

• the AC inverse scan: depending on the value of the AC prediction calculated
in the DC reconstruction unit, this actor inverts the one dimensional array of
coefficients in zigzag or alternate the vertical or horizontal scan to 2D raster
order,

• the inverse AC prediction: some specific AC coefficients already flagged in the
bitstream are decoded in this actor,

• the inverse quantization: an algorithm realizing the inverse of the quantization
table of the encoder,

• the inverse DCT2D: also an inverse algorithm of the DCT applied in the en-
coder.

Figure 6.5: MPEG-4 part 2 texture decoder with RVC actors

I The motion decoder So called the inter decoder, this unit reconstructs the
blocks of the frames using the motion vectors. This is the inverse algorithm of mo-
tion estimation and compensation used in the encoder. As presented in Figure 6.6,
it consists of:

• a management address actor that generates the frame buffer addresses for mo-
tion compensation,

• a framebuffer actor: this actor stores the frames necessary for the motion com-
pensation, It reads the “Btype” information in the input, This information in-
dicates to the actor whether to read a new VOP or to read a motion vector or

114 Technological solutions of MPEG-RVC decoders

to store a block. This actor is the most memory consuming of the MPEG-4 part
2 design,

• an interpolation actor,

• an addition actor that merges the texture and the motion decompressed data
to form the final pixel values.

Figure 6.6: MPEG-4 part 2 motion decoder with RVC actors

I The merger This is the final step of the decoding process. The merger reads
the separated Y, U an V decoded blocks (16x16 block size of Y, 8x8 block size of U
and 8x8 block size of V) and merges them into a unique image signal YUV that can
be displayed as the original video.

The MPEG-4 part 2 Simple Profile has been developed with different architectures
and different abstraction levels, all realizing the same algorithm.

6.1.3 Serialized architecture

This architecture is very similar the Ericsson one but the algorithms are changed
so that they do not contain the parallelism between the luminance and the chromi-
nances decoding blocks. The texture and motion decoding actors are programmed

6.2 MPEG-4 part 10 Profiles 115

to process successive streams of four blocks Y, one block Cr and one block Cb. This
design reduces considerably the area consumption of the design implementation.

Figure 6.7: Serialized architecture of MPEG-4 part 2 decoder

6.2 MPEG-4 part 10 Profiles

The MPEG-4 part 10, so called MPEG-AVC, was established in 2003. Since, several
profiles have been developed to deal with different coding contexts. Figure 6.8 il-
lustrates the different functionalities and techniques existing in the standard and the
way they are shared between profiles. AVC contains two entropy encoding modes:

• the Context-adaptive variable-length coding (CAVLC) used by all profiles,

• the Context-adaptive binary arithmetic coding (CABAC) used by the PHB, the
FREXT and the main profile.

The most reduced profile is the CBP. The main profile includes the CBP functional-
ities added to the “weighted prediction” that computes the motion vectors and the
“B slice” which is a technique that searches the predicted block in previous (back-
ward) and future (forward) frames. The PHP extends the main profile with the
“Intra 8x8” coding and the “customized quantization scaling matrices”. The FREXT

116 Technological solutions of MPEG-RVC decoders

extends the PHP with the “interlaced” coding techniques. Mainly, we notice four
interlacing types:

• the full interlaced when all frames get interlaced,

• the paff which is a mix of progressive and interlaced frames,

• the mbaff a mix of interlaced and progressive macro blocks in each frame,

• a mix of interlaced and mbaff.

Data partition

SI Slice

SP Slice

Arbitrary slice order

Flexible macroblock order

Redundant slice

I slice
P slice
CAVLC

B slice

Weighted prediction

CABAC

Adaptive transform block size
Quantization scaling matrices

Extended Profile Fidelity Range EXTension (FREXT)

Baseline Profile

Progressive High Profile

Constrained Baseline Profile

Intra 8x8

Interlaced

MainProfile

Figure 6.8: MPEG-4 part 10 profiles

In the VTL of MPEG-C part 4, three profiles are in development: the CBP (Con-
strained Baseline Profile), the Frext (Fidelity Range EXTension) and the PHP (Pro-
gressive High Profile) which is similar to the FREXT but it does not support field
coding features. All MPEG-AVC decoders are very complex as presented in the

6.2 MPEG-4 part 10 Profiles 117

Actors Levels Parser size Decoder size
kSLOC kSLOC

MPEG-4 SP 27 3 9.6 2.9
MPEG-4 AVC 45 6 19.8 3.9

Table 6.3: Composition of MPEG-4 Simple Profile and MPEG-4 Advanced Video
Coding RVC-CAL description

comparison table with MPEG-4 part 2 SP 6.3.

Consequently, we present in the following the relatively simplest profile: the CBP.
The CBP is very similar to MPEG-4 part 2 Simple Profile. It is designed with

a maximum of parallelism such as the Ericsson architecture presented above. As
presented in Figure 6.9, this profile encapsulates three main parts:

 CONSTRUCTION
 AND

 BUFFERING
 INVERSE

 TRANSFORMEE
PREDselect

COEF
RES

MBpred

MV

RES

MMCO
OUT

RD

Figure 6.9: The CBP main decoding blocks

I The prediction For the prediction, the CBP insures the intra (spatial) and
the inter (temporal) prediction modes. In figure 6.10, we can see that the designed
architecture promotes a maximum of parallelism by launching the Intra 4x4, Intra
16x16 and the inter predictions simultaneously and using a selection actor to extract
only the useful data depending on the value of the “MBType” signal. The RD
signal contains already decoded data that is useful to reconstitute 4x4 or 16x16
blocks necessary for the extrapolation algorithms and the prediction. For the Inter
prediction, the RD signal contains information from other reference frames. To get
the prediction mode of the FREXT, it is just necessary to add the prediction Intra
8x8. Such operation is very easy using the graphs of MPEG-C part 4 designs.

118 Technological solutions of MPEG-RVC decoders

PREDselect

MV

RD

INTRA_4x4
Prediction

INTRA_16x16
Prediction

INTER_P
Prediction

Mgnt_select_3

PREDselect

PREDselect

PREDselect

MV

RD PREDinter_P

PREDintra_16x16

PREDintra_4x4

MbType

X0

X1

X2

X MBPRED

RD

RD

Figure 6.10: Design of the prediction block of the CBP profile

I The inverse transformation This part of the decoder is responsible of the
reconstruction of the DC coefficients followed by the inverse quantization as pre-
sented in Figure 6.11.

DCR
COEF

QP
DC

Algo_Merge
_4x4_to_

16x16

RD
Y

COEF

PREDselect

RESIQDC
QP

RES_4x4 X
AC

Figure 6.11: The texture decoder network of MPEG-AVC

This inverse transformation is unique for all AVC profiles since it is applied only on
4x4 blocks. The DCR block is the networks that reads the residual of the encoded
data and produces the reconstructed DC coefficients in the output. The IQ block ap-
plies the inverse quantization and then a merger reconstructs the 16x16 blocks from
the stream of 4x4 blocks.

I The buffering and image reconstruction Figure 6.12 illustrates the internal
architecture of the construction block. The “add” actor is responsible of the addi-
tion of the residual with the the predicted coefficients to restitute the original image
block. These blocks undergo a filtering process to delete the block effect that always
appears in such block based coding processes. The last element of the network is
the buffer block that stores the image for a later use during the Inter prediction.

6.3 Implementation and results 119

DCR
COEF

QP
DC

Algo_Merge
_4x4_to_

16x16

RD
Y

COEF

PREDselect

RESIQDC
QP

RES_4x4 X
AC

Figure 6.12: Architecture of the construction and buffering block in the CBP

6.3 Implementation and results

6.3.1 Functional validation

To remain faithful to our approaches, we started testing the transformations in the
software platform. The first step was to validate the transformed mono-token code
of some RVC-CAL designs and the second step was to generate the hardware. The
tested designs are summarized in Table 6.4.

SW verification HW verification
MPEG-4 part 2 SP (Ericsson design) X X

MPEG-4 part 2 SP (MVG design) X X
MPEG-4 part 10 FREXT X x

LAR X X
JPEG X x

ACC-JPEG [42] X x

Table 6.4: RVC-CAL designs tested in software and hardware platforms

All the designs that have been tested were transformed correctly to low level as
checked in the software platform. The very high complexity of MPEG-4 part 10
FREXT profile proves the robustness of this work. The hardware implementation is
restricted to MPEG-4 part 2 SP and the LAR and it is explained by the fact that, for
both designs, we have a reference hardware oriented design. These references are
very important to make comparisons and assess our methodologies.

6.3.2 Hardware implementation

We used the automatic transformations presented in Chapter 5 in Orcc to transform
the multi-token firing rules of the MPEG-4 part 2 Ericsson design explained above.
In our first tests, we omitted the inter decoder part because it is very memory con-
suming and the hardware generator is unable to manage it. The HDL generated

120 Technological solutions of MPEG-RVC decoders

designs of the automatically transformed code and the optimized code were imple-
mented on a Virtex4 (xc4vlx160-12ff1148) FPGA. This FPGA encapsulates several
logical architectures such as Slices, LUTs and DSP blocks. The Slice is composed of
two look up tables (LUT) and a flip-flop which is a sequential logical circuit that has
two stable states used to store state information. The Virtex 4 contains also logical
circuits dedicated for input and output ports (IOB) and also BRAM memory blocks.
The obtained area consumption results presented in Table 6.5. The removal of read
actions buffers and process actions had an important impact on the area consump-
tion since it has decreased about 50%.

Criterion Transformed design Optimized design
Slice Flip Flops 21,624/135,168 (15%) 13,575/135,168 (10%)
Occupied Slices 45,574/67,584 (67%) 18,178/67,584 (26%)

4 input LUTs 68,962/135,168 (51%) 34,333/135,168 (25%)
FIFO16/BRAM16s 14/288 (4%) 14/288 (4%)

Bonded IOBs 107/768 (13%) 107/768 (13%)

Table 6.5: MPEG4 decoder area consumption

After the synthesis of the design, we applied a simulation stream of compressed
videos. Table ?? below presents the timing results of a CIF (352x288) image size
video.

Criterion Transformed design Optimized design
Maximum frequency (MHz) 26.4 26.67

Latency (µs) 381,8 306,4
Cadency (MHz) 1,9 2.33

Processing time (ms/image) 13,55 11,01
Throughput frequency (MHz) 1,8 2,2
Global image processing (FPS) 73,8 90,82

Table 6.6: MPEG4 decoder timing results

We notice that timing results were partially improved. This is due to the pres-
ence of division operations in some actors. In our transformation we replaced di-
visions by an Euclidean division which is very costly and time consuming. The
impact is noticeable since these divisions reduced the maximum frequency by 60%.
Therefore, we applied the transformation on the inverse discrete cosine 2D trans-
form (IDCT2D). We chose this actor because it contains very complex algorithm,
functions and procedures. We tried to compare with an optimal low level architec-
ture designed by Xilinx experts and also with an existing implementation study of
a direct VHDL written algorithm in [56]. For a significant comparison, we used the

6.3 Implementation and results 121

same implementation target of the study which is the Xilinx Spartan 3 XC3S4000.
Timing and area consumption results comparison are presented in tables 6.7 and
6.8.

Criterion Xilinx design Transformed Optimized VHDL
design design design

Maximum frequency (MHz) 37 37 43 41
Latency (µs) 11.52 82.7 28.4 *

Cadency (MHz) 30 18.49 21.7 71
Processing time (µs/64Tokens) 1.99 3.4 2.8 0.89
Throughput frequency (MHz) 26.62 0.72 2.43 62.4
Global image processing (FPS) 1064 31 101 2518

Table 6.7: IDCT2D timing results

Criterion Xilinx Transformed Optimized VHDL
design design design design

Slice Flip Flops 1415/55296(2%) 4002/55296(7%) 2113/55296(3%) *
Occupied Slices 1308/27648(4%) 5238/27648(18%) 2523/27648(9%) 3571/27648(12%)

4 input LUTs 2260/55296(4%) 9861/55296 17%) 4777/55296(8%) 4640/55296(8%)
Bonded IOBs 48/489(9%) 49/489(10%) 49/489(10%) *

Table 6.8: IDCT2D area consumption

Obviously, Table 6.8 reveals that area results for the optimized design are very
close to those of the Xilinx low level design. This property is noted for all actors con-
taining more computing algorithms than data control and management algorithms.
Concerning the area consumption of the VHDL design, it is expectable to find re-
sults nearby the optimal design and clearly worse than the Xilinx design. This is
due to the synthesis constraints indicated in [56] that favor treatment speed in spite
of the surface. This is what explains also the very high FPS rate of the design pre-
sented in Table 6.7. Timing results of the other designs show that the optimized
design performances are far from the optimal Xilinx design. This is due to the low
level architecture made by Xilinx experts which is completely different and oriented
for hardware generation. This architecture is a pipelined set of actors realizing the
IDCT2D (rowsort, fairmerge, IDCT1D, seperate, transpose, retranspose and clip)
which is a relatively complex design compared with the high level IDCT2D code
used for the transformation.

After comparing with the Xilinx design and a VHDL directly written design, we
compared our results with existing generation tools and we considered GAUT hard-
ware generator. This tool is an academic high level synthesizer from C to VHDL. It

* Not mentioned in the literature

122 Technological solutions of MPEG-RVC decoders

extracts the parallelism and creates a scheduled dependency graph made of ele-
mentary operators. Potentially, GAUT synthesizes a pipelined design with memory
unit, communication interface and a processing unit. However, such as most exist-
ing hardware generators, GAUT is not able to manage a system level design with
very high complexity and a variety of processing algorithms. Moreover, there are so
many restrictions on the C input code to have a functioning design. As it was im-
possible to test the whole MPEG 4 decoder, we restricted the choice to the IDCT2D
algorithm to have a comparison with previously presented results.

The IDCT2D is so generated with GAUT and we obtained the results of table 6.9
below:

Criterion GAUT design Optimized design
Slice Flip Flops 2,080/135,168 (2%) 1,988/135,168 (2%)
Occupied Slices 2,477/67,584 (3%) 2,353/67,584 (3%)

4 input LUTs 4,243/135,168 (3%) 4,458/135,168 (3%)
Bonded IOBs 627/768 (81%) 49/768 (6%)

Table 6.9: IDCT2D area consumption with GAUT

Results show that the optimized transformation generates a better design even
for the specific case of study of the IDCT2D. The important logic consumed by the
IOBs implementation generated with GAUT can be explained by the fact that the
synthesizer of GAUT generates a port for each input data. In the case of the IDCT2D,
GAUT’s implementation includes 64 input ports and 64 output ports.

6.4 Conclusion

This chapter presented the main decoding techniques and profiles of MPEG-4. It
also presented an overview of the existing decoders architectures of MPEG-4 part 2
(Ericsson, Xilinx and MVG). These decoders are already developed with RVC-CAL
in the VTL of the RVC standard. The Ericsson design is considered as a complete
algorithm example to test the performance of the methodology and the transfor-
mation, explained in chapters 4 and 5. The generated and the optimized hardware
designs are implemented on Xilinx FPGA target and the results revealed to be very
interesting compared to the hardware reference design of Xilinx and also to existing
academic tools such as GAUT.

This test of the automatic transformation concerns a video decoder. In the next
chapter, the transformation will be applied on a still image coder called LAR.

6.4 Conclusion 123

C h a p t e r 7

Still image case of study: the LAR
codec

7.1 LAR principle . 125

7.1.1 FLAT LAR . 126

7.1.2 Spectral coder: The Hadamard transform 131

7.1.3 Entropic coder: The Golomb Rice bitstream 134

7.2 Achieved architectures . 134

7.3 Design implementation . 141

7.4 Conclusion . 143

7.1 LAR principle 125

7.1 LAR principle

The LAR (Local Adaptive Resolution) coder is developed at the IETR/ INSA of
Rennes laboratory. It is based on the idea that the coding process can be adapted
to the local activity of the image. In the still image classic coding methods like JPEG,
an image is divided into a set of fixed size macro blocks (8x8 or 16x16) and all the
coding algorithms are applied similarly on these blocks. Consequently, the image
coding process is going to be applied the same way on regions containing an impor-
tant activity (black block of Figure 7.1) and regions containing a very low variation
(white block of Figure 7.1). Thus, it is possible to lose some details of the image
especially in the contours where the correlation decreases.

Figure 7.1: Monotonic blocks decomposition

The LAR coder uses a morphological gradient, explained later, to detect the unifor-
mity or the variation of the local luminance. This gradient outputs a map of variable
size blocks such as the higher the activity the lower the size [23].

Another aspect of the LAR coding is based on the consideration that an image
is a superposition of a global information image (mean blocks image), and the local
texture image, which is given by the difference between the original image and the
global one. This principle is modeled by:

I = I + (I − I︸ ︷︷ ︸
E

)

Where I is the original image, I is the global information image and I − I is the
error image E. The dynamic range of the error image is consequently dependent on
the local activity. In uniform regions, I values are close or equal to I consequently
I − I values are around zero with a low dynamic range.

Considering these principles, the LAR coder concept (Figure 7.2) is composed
of two parts: the FLAT LAR [21] which is the part insuring the global information

126 Still image case of study: the LAR codec

coding and the spectral part which is the error spectral coder.

Original

image

Low

resolution

image

FLAT

decoder

FLAT

coder

transmission

Spectral

decoder

Spectral

coder

Middle/high

resolution

image

transmission

Figure 7.2: LAR baseline concept

Different profiles have been designed to fit with different types of application
as presented in Figure 7.3. After the baseline, a pyramidal profile was added to
encapsulate the context classification, the rate control etc. The extended profile
adds the scalability, the region of interest, the cryptography etc. In this thesis, we
focused on the baseline coder. Its mechanisms are detailed in the following.

7.1.1 FLAT LAR

As shown in Figure 7.4, the Flat LAR is the spatial coder of the LAR. It is composed
of three main parts: the partitioning, the block mean value computation and the
DPCM (Differential Pulse Coding Modulation).

7.1 LAR principle 127

Extended profile

Scalable color region
representation Scalable color region

coding

Pyramidal profile
Baseline profile

QT partitioning

Spectral

Golomb-Rice

Arithmetic coder

Spatial
DPCM

Context classification

Interleaved S+P

RWHat+P

Rate control

Data hiding

cryptography

Wireless UEPIP UEP

Figure 7.3: LAR profiles

DPCM
Adapt. Quant.

~

Partitioning

Post-processing

Size

Mean block
values

Coder
P [16,..2]

LR

LR

Image
Original

Flat Coder

Low resolution
image

Figure 7.4: FLAT LAR architecture

7.1.1.1 Partitioning

To have a variable block size representation, it is necessary to adopt a partition topol-
ogy. The LAR considers the Quadtree partition. A Quadtree partitioning is defined
with P[Nmax..Nmin] where Nmax and Nmin are the maximum and minimum of per-

128 Still image case of study: the LAR codec

mitted block size. These size are equal to a power of 2. The Quadtree starts by
clipping the image into blocks of NmaxXNmax size. It applies a homogeneity test
[70, 73] on these blocks. If the homogeneity is not met then the block is divided into
son blocks. Otherwise, it stops the division and considers the current size block.
The Quadtree process of the LAR is based on a morphological gradient that checks
if the activity is important in that block of the image. The criterion test consists of
comparing the difference between the maximum (MAX) and the minimum (MIN)
luminance values of the block with a threshold THD as explained in the algorithm
below:

If (MAX - MIN) > THD then

size = actual_size;

else

size = actual_size / 2;

-- the considered block size is now: actual_size / 2 squared

end

This process is recursively applied on the whole image blocks and the output of
the overall is the block size image presented in Figure 7.5. The block size image is
necessary for the remaining coding processes.

Figure 7.5: Block size image example

7.1 LAR principle 129

7.1.1.2 Block mean values computation process

This process generates the low resolution image (LRy : LRCr : LRCb). Figure 7.6
shows an original image and the corresponding low resolution image. For each
block, the mean value is computed and put in the block as presented in the example
of Figure 7.7. For each pixel p with coordinates (x, y), the algorithm is defined as:
LR(x, y) = 1

N2 ∑N−1
k=0 ∑N−1

m=0 I([x
N]× N + k, [y

N]× N + m)

such as N = size(x, y), the size of the block containing the pixel.

Figure 7.6: Low resolution image example

7.1.1.3 The DPCM

The Quadtree partitioning and the block mean value involve a non-uniform
sub-sampling of the image which has an important impact not only on the com-
pression rate but also on the global bit rate that decreases during the prediction and
quantization presented in Figure 7.8.

I Prediction of luminance block The observation that a pixel value is mostly
equal to a neighbor one led to the following estimation algorithm. If we consider
the pixels in Figure 7.9, X value is estimated with the algorithm:

130 Still image case of study: the LAR codec

11 10 . . 25 25 29 30

10 9 . . 26 27 36 40

. . . . 39 39 41 40

. . . . 25 20 28 30

.

.

.

.

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

4 4 4 4 2 2 2 2

4 4 4 4 2 2 2 2

4 4 4 4 2 2 2 2

4 4 4 4 2 2 2 2

Original image Block size image

Quad-Tree

10 10 . . 31 31 31 31

10 10 . . 31 31 31 31

. . . . 31 31 31 31

. . . . 31 31 31 31

.

.

.

.

Original image Block size image

Block mean value image

Block mean value

process

Figure 7.7: Block mean value process example

Figure 7.8: The DPCM principle

X =

{
A I f |B− C| < |A− B|
C else

7.1 LAR principle 131

B C

A XA X

Figure 7.9: DPCM prediction of neighbor pixels

I Quantization Experiments on the eye perception proved that we are less
sensitive to the variation of luminance and color in contours zones also called high
visual frequency areas [76, 54]. Other studies show that the block degradation dur-
ing the linear quantization of a block is inversely proportional to its size. Based on
these facts, the LAR applies quantization on the mean block values as presented in
table 7.1.

Size 16 8 4 2
qN 2 4 8 16

Table 7.1: Quantization according to the block size

Finally, the outputs of the FLAR are the quantized image and the error image
explained above as the difference between the original image and the quantized
one. Both images have low dynamics which is very important in the compression
performances of the LAR. Some optimizations have been added for the design by
introducing pipeline in the DPCM as presented in Figure 7.10.

In the following, we present the frequency (or spectral) coder which is the second
compression level.

7.1.2 Spectral coder: The Hadamard transform

The spectral coder presented in Figure 7.11, also called the frequency coder, is com-
posed of a variable block size Hadamard transform [62] and the Golomb-Rice [30]

132 Still image case of study: the LAR codec

Figure 7.10: DPCM pipelined architecture

[64] entropy coder. The Hadamard transform derives from a generalized class of the
Fourier transform. It consists in a multiplication of a 2mx2m matrix by an Hadamard
matrix (Hm) that has the same size.

The transform is defined as follows:
H0 is the identity matrix so H0 = 1. For any m>0, Hm is then deducted recur-

sively by:

Hm = (1√
2
)m
∣∣∣∣ Hm−1 Hm−1

Hm−1 -Hm−1

∣∣∣∣
Here are examples of Hadamard matrices:

H0 = 1 ,

7.1 LAR principle 133

Image
Original Flat Coder

FDCT
2x2 blocks

Quant. coef. AC

FDCT
16x16 blocks

Image
Texture

Spectral Coder

+-

P[2]

~LR

2x2 blocks

16x16 blocks
Quant. coef. AC

P[16]

Figure 7.11: LAR spectral coder architecture

H1 = 1√
2

∣∣∣∣ 1 1
1 -1

∣∣∣∣ ,

H2 = 1
2

∣∣∣∣∣∣∣∣
1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

∣∣∣∣∣∣∣∣ , etc ...

The Hadamard transform resulting operations are simple additions and subtrac-
tions. Therefore, it is very easy to be implemented in hardware circuits compared
with the matrix multiplication of the Discrete Cosine Transform (DCT) of the JPEG
or MPEG coders. Moreover, the Hadamard matrix is symmetric and reversible. This
property is very important for the decoding step because it is possible to use the
same encoding block for the decoding one. It is important to take in consideration
the accumulation of the 1√

2
. When an hadamard Hn is applied and n is an odd num-

ber , the 1√
2

can cause many problems of computations. Consequently, the proposed
solution of the LAR consists in realizing a double multiplication by the Hadamard
matrix and its transpose, such as: for each matrix Mn
Hadamard(M) = transpose(M ∗ H)) ∗ H
and the divider is always a power of 2 and the problem can be solved using simple
right shifts and this division is called a normalization.

134 Still image case of study: the LAR codec

7.1.3 Entropic coder: The Golomb Rice bitstream

The Golomb Rice coder is a bitstream generator that uses a tunable parameter k > 0
as a divisor and thus transforms an input value into a quotient q and a remainder
r. The quotient is transformed using a unary coding and the remainder is encoded
with truncated binary encoding, with a zero bit separating the two parts. The length
of the quotient cannot be fix but the remainder length never exceeds the log2(k).
If k = 1 then (input div k = input), the Golomb Rice is equivalent to a unary coder.

Let us consider a coding using a parameter k = 4. For an input value I = 15, we
have q = 15 div 4 = 3 and so coded into 111 or 1110 with the separation zero bit. For
the remainder, r = 3 and coded into 11. I is consequently transformed into 111011.

It is clear that the parameter k is crucial for the length of the bitstream because
the increase of k involves a quotient decrease but also a remainder increase. This
dilemma can be satisfied by choosing the best k value. Nevertheless, this choice
depends on the tokens values. So the LAR proposes a visitor that peeks a sample
of tokens (one token per 10 for example), computes the length of their encoding
output using a set of k parameters and keeps the best parameter that allows the
shortest output.

7.2 Achieved architectures

The LAR coding is dependent from the content of the image. It applies in the Quad-
Tree a morphological gradient to extract information about the local activity on the
image. The output is the block size image represented by variable size blocks: 2x2,
4x4 or 8x8. Using the block size image, the Hadamard transform applies the ad-
equate transform on the corresponding block [45, 46]. It means that if we have a
block size of 2x2 in the size image this block will undergo a 2x2 Hadamard (H1) and
a normalization specific to the 2x2 blocks. This process is identically applied for 4x4
and 8x8 blocks. A quantization step, adapted to current block size, is applied on the
Hadamard output image. For each block size, a quantization matrix is predefined.
Practically, the normalization during the Hadamard transform is postponed to be
achieved with the quantization step so that to decrease the noise due to successive
divisions.

The implemented LAR is presented in Figure 7.12. As a first step, the memory
management block stores the pixels values of the original image line by line. Once
an 8x8 block is obtained, the actor divides it into sixteen 2x2 blocks and sends them
in a specific order as presented in Figure 7.13. This order is very important to im-
prove the performance of remaining actors. In fact, considering the Figure 7.13,
when the tokens are so ordered the first 4 tokens correspond to the first 2x2 block,
the first 16 tokens to the first 4x4 block etc ... Consequently, and as presented in

7.2 Achieved architectures 135

H1 H2 H3

Quad tree

Memory
management

Block size

Image

2x2
blocks

Norm.
&

Quant.

Figure 7.12: LAR baseline developed model

1 2 5 6

3 4 7 8

2x2 Block

9 10 13 14

11 12 15 16

Figure 7.13: Memory management unit output order

Figure 7.15, the output of the H1 is automatically the input of the H2 and the output
of the H2 is automatically the input of the H3.

In the Quad-Tree, this order is also crucial. As presented in Figure 7.14, the
superposition of the same actor (max for example) three times provides in the output
of the first actor the maximum values of 2x2 blocks, in the output of the second actor
the maximum values of 4x4 block and finally the maximum values of 8x8 blocks in

136 Still image case of study: the LAR codec

the output of the third one. Using the maximum values and the minimum ones,
the morphological gradient in the Gradstep actors can process to extract the block
size image [45, 44]. The same tip is used to calculate the block sums with three
superposed sum actors. The block mean value actor considers the sums and the
sizes to build the block mean value image.

Max

2x2

Max

8x8

Max

4x4

Min

2x2

Min

8x8

Min

4x4

Gradstep

process

Input

image

Sum

2x2

Sum

8x8

Sum

4x4

Block mean

value process

Block mean

size image

Figure 7.14: Quad-Tree design

In the spectral coder, this scan order is decisive. Indeed, let us consider an (H1)

transform applied on a 2x2 size matrix: M2 =

∣∣∣∣ x1 x2
x3 x4

∣∣∣∣.
The application of the equation (1) outputs the matrix:

M′2 =

∣∣∣∣∣∣
x1 + x2 + x3 + x4 x1− x2 + x3− x4

x1 + x2− x3− x4 x1− x2− x3 + x4

∣∣∣∣∣∣.
If we apply the same equation now on a 4x4 size matrix:

M4 =

∣∣∣∣∣∣∣∣
x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12
x13 x14 x15 x16

∣∣∣∣∣∣∣∣

7.2 Achieved architectures 137

we obtain the matrix: M′4 =

∣∣∣∣∣∣∣∣
h1 h2 h3 h4
h5 h6 h7 h8
h9 h10 h11 h12

h13 h14 h15 h16

∣∣∣∣∣∣∣∣
such as:
h1 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16
h2 = x1 + x2 + x3 + x4− x5− x6− x7− x8 + x9 + x10 + x11 + x12− x13− x14− x15− x16
...

which can be seen also like:

h1 = X1 + X2 + X3 + X4
h2 = X1− X2 + X3− X4
...

where

X1 = x1 + x2 + x3 + x4
X2 = x5 + x6 + x7 + x8
X3 = x9 + x10 + x11 + x12
X4 = x13 + x14 + x15 + x16

It is obvious that the H2 is a double reproduction of the H1 with a certain data man-
agement and so (H2) transform can be achieved using the (H1) results of the four
2x2 blocks constituting the 4x4 block. The same observation can be made for the
(H3) one. This ascertainment is very important to decrease the complexity of the
process. In fact, the Hadamard transform of the LAR applies an (H1) transform for
the whole image then it applies the (H2) transform only for the 4x4 and 8x8 blocks
and the (H3) transform only for the 8x8 blocks. The (H2) and the (H3) transforms
are different from the full transforms as they are much less complex. Consequently,
as shown in Figure 7.15, we designed the H2 and the H3 using H1 actors associated
with memory management units. They sort tokens in the adequate order and, con-
sidering the block size, whether the block is going to undergo the transform or not.
It is very important to mention that almost actors have been developed with generic
variables for memory sizes or gradsteps which means that the design are flexible for
easy transformation from an image size to another or for adding higher Hadamard
sizes (H4, H5 ...).

Moreover, other architectures have been designed for the Hadamard transform:

I The multi-port design The token per token data transfer is one of the most
time consuming features of the developed design. A first idea to reduce this time

138 Still image case of study: the LAR codec

H1 H2 H3

Quad tree

Memory
management

Block size

Image

2x2
blocks

Norm.
&

Quant.

H2 input
Memory

Management

H1 H1
H2 output
Memory

management

H3 output
Memory

management

H3 input
Memory

management

Figure 7.15: Hadamard hardware architecture

consumption was to parallelize the transfer using a multi-port design (Figure 7.16).
It is like we unroll the repeat structures into a set of ports. However, it was neces-
sary to add more complexity in the algorithms to make the actors write correctly in
the adequate ports and thus we lose the advantage of using the data management.
Besides, such a design is very consuming in terms of memory since it exceeds the
available number of FIFOs in some FPGA.

I The concatenation design To reduce the number of FIFOs, we proposed to
concatenate the data in a larger FIFO size (Figure 7.17). The principle is to replace
the repeat into a bus containing a set of concatenated data. In spite of producing
token per token, the data management concatenates every 4 tokens into a 4xdata size
bus. The H1 block concatenates every 16 tokens into a 16xdata size bus etc . The
drawback of such architecture is the fact it is necessary to add the concatenation
and the deconcatenation algorithms in the input and the output of each actor which
is also time consuming compared with a token per token data transfer. Another
problem appeared later concerning the hardware synthesizers that are not able to
compile a very large FIFO. The ISE tool of Xilinx, for example, cannot exceed a
threshold of 32 bits.

I The full Hadamard design The parallelism of the design was a subject of
study. Indeed, the use of the results of an Hk to rapidly make an Hk+1 involves
a sequential design since we create a data dependence. We designed the architec-

7.2 Achieved architectures 139

H1 H2 H3

Quad tree

Memory
management

Block size

Image

Norm.
&

Quant.
4

ports
16

ports
64

ports

Figure 7.16: Hadamard multi-port architecture

H1 H2 H3

Quad tree

Memory
management

Block size

Image

2x2
Blocks

concatenated

Norm.
&

Quant.

8x4
bus

8x64
bus

8x16
bus

4x4
Blocks

concatenated

8x8
Blocks

concatenated

Figure 7.17: Hadamard concatenation architecture

140 Still image case of study: the LAR codec

ture of Figure 7.18 where every Hk block is a full treatment block. A sorting actor
was added to collect data from all Hadamard actors and puts the correct data in
the correct place of the output image depending on the size image. Theoretically,
this method is faster that a sequential one and logically more area consuming but
simulations shown an important latency that decreases the performance compared
with the expected one. This latency is, in fact, due to the type of memory created
by the Xilinx synthesizer. These memories are BRAM with two read/write buses.
So an H2 block for example is designed to read 16 tokens in a local buffer and pro-
cess them with an algorithm that uses all of them in a set of instructions. Indeed,
the hardware design requires at least 8 clock periods to read the 16 tokens from the
BRAM to execute the algorithm. That is why the resulting design performance is so
close to the sequential one.

H1

H2

H3

Quad tree

Memory
management

Block size

Image

2x2
blocks

Norm.
&

Quant.
Sorting

Figure 7.18: Hadamard parallel architecture

I The sequential and no-conditional Hadamard design In this design, we
considered the same treatment blocks of Figure 7.15 but we eliminated the condi-
tional structures of the Hadamard blocks and we added the sorting actor for that
purpose. Consequently, Hadamard actors are going to behave the same way on ev-
ery block of the input image which means that the H2 is applied on all 4x4 blocks,
and the H3 is applied on the 8x8 blocks in an automatic way. Finally, the sorting ac-

7.3 Design implementation 141

tor collects all results and fills in the output image using the size image as presented
in Figure 7.19 This architecture is very interesting in terms of global compromise
between area and time performance.

H1 H2 H3

Quad tree

Memory
management

Block size

Image

2x2
blocks

Norm.
&

Quant.
Sorting

Figure 7.19: Hadamard sequential architecture with sorting actor

Among all the presented architectures, we adopted the one of Figure 7.15 because it
is the easiest to develop and because it reuses many actors for different algorithms.
These aspects match the fact of using the MPEG-RVC standard that recommends
the easiest development solution, the highest level and the reusability of actors. For
the same reasons, we neglected an optimized design using the ping-pong pipeline
algorithm explained in Section 4.3. The considered architecture is the subject of the
implementation study of the next Section.

7.3 Design implementation

The architecture presented above is developed with RVC-CAL using the methodol-
ogy of Chapter 4 where a software platform is used for the validation of the high and
low level designs. The transition from high level to low level is done using both of
manual transformations and automatic transformation presented in Chapter 5. The

142 Still image case of study: the LAR codec

hardware generation process was applied on the 23 actors of the LAR using Orcc.
The HDL generated code was implemented on a virtex4 (xc4vlx160-12ff1148). The
area consumption results obtained are presented with those of manual transforma-
tion in Table 7.2.

Transformation Automatic Manual
Slice Flip Flops 20,452/135,168 (15%) 12,157/135,168 (8%)
Occupied Slices 47,576/67,584 (70%) 43,602/67,584 (67%)

4 input LUTs 59,868/135,168 (44%) 53,417/135,168 (39%)
Bonded IOBs 41/768 (5%) 41/768 (5%)

Table 7.2: LAR coder area consumption

After the synthesis of the design, we applied a simulation stream of compressed
videos. Table 7.3 below presents the timing results of a CIF (352x288) image size
video.

Transformation Automatic Manual
Development time 30% 100%

Maximum frequency (MHz) 61,43 85,27
Latency (ms) 0,42 0,12

Throughput frequency (MHz) 3,5 5,6
Processing time (ms/image) 35 19

Global image processing (FPS) 34 53

Table 7.3: LAR timing results

Concerning the area consumption, the occupied Slices and LUTs are almost equal
which is a very satisfying result. The Slice Flip Flop difference can be explained by
the fact of adding untagged actions which increases the complexity of the global
FSM behavior. Flip Flops can be also used for local registers as bits memories and
so it is a source of increase since the automatic transformation adds several inter-
mediate registers for the treatment. The reason is that the transformation applies a
general modification whatever the complexity of the actor.

Concerning the timing results, the automatic and the manual transformed de-
signs performances remain close and acceptable. The latency difference is explained
by the fact that the untagged actions, as always given priority over the rest of ac-
tions, promote the data reading. It means that, as long as there is data in the FIFO,
the untagged action fires even if there are enough data to fire the processing ac-
tions. Nevertheless, it is very important to note the development time reduction

7.4 Conclusion 143

using high level description followed by the automatic transformation which can
decrease the time to market by over 70%.

To have another aspect of the assessment of the used methodology, we consid-
ered a manually developed VHDL design of the FLAT LAR introduced in [22]. In
the following, we present in Table 7.4 the area and timing performances compared
with those of an RVC-CAL design.

Source code VHDL RVC-CAL
64x64 352x288 64x64 352x288

Development time (man/month) 4 1
Internal memory (byte) 684 3470 3168 13088

4inputs LUTs for logical operations 1166 2463 7423 7423
Frequency (MHZ) 45.8 33 8.5 8

Processing time (ms) 0.09 3.1 0.33 11.7
Latency time (µs) 18.6 75 26.6 27.8

Global image processing (FPS) 9200 314 2804 85

Table 7.4: FLAT LAR: VHDL VS CAL comparison

As expected, the design directly written in VHDL has clearly better performance.
We also note that the VHDL code was developed using a dedicated and pipelined
architecture different from the Dataflow philosophy used in the RVC-CAL design
but realizing the same global behavior. Nevertheless, RVC-CAL results remain ac-
ceptable for real time display.

7.4 Conclusion

In this chapter we presented the main notions of the LAR coder as a new context of
the RVC-CAL applications for still image coders. To satisfy the algorithm specifica-
tions of the LAR, many architectures were developed whether to add more paral-
lelism or to reduce the complexity using smart data management or a profit from
already processed data. The architecture that have been adopted for the rest of
the implementation is the highest-level and the simplest one which is an impor-
tant property of the MPEG-RVC standard. Staying faithful to the conception flow,
the considered design was developed and validated in a software platform before
applying transformations to low level for hardware generation. We achieved the
same design of the baseline of the LAR coder using a manual transformation and
the automatic transformation in the IR of Orcc explained in Chapter 5. The im-
plementation results were very interesting since the difference between the auto-
matically and the manually transformed designs was not important and exactly as

144 Still image case of study: the LAR codec

we expected. The most important conclusion is that we implemented correctly the
first still image coder developed in the VTL of MPEG-RVC using our approach and
transformations. Of course, further optimizations in the transformation process can
reveal better results. Some pipeline algorithms can be added to make performance
close to those of the VHDL design.

7.4 Conclusion 145

C h a p t e r 8

Conclusion and perspectives

8.1 Summary . 147

8.2 Perspectives . 149

8.1 Summary 147

8.1 Summary

This thesis was motivated by the increasing demand on rapid prototyping solutions
for embedded systems. Indeed, the growing complexity of applications related to
digital signal processing involves a considerable conception time. To manage this
complexity and reduce the time-to-market of implementations, the Electronic Sys-
tem Level Design methodology was introduced to design the very complex appli-
cations at a high level description so called system level. This description is insured
using Models of Computation related to Domain Specific Languages and graphs.
This thesis work adopted the Dataflow MoC and a description language called RVC-
CAL. This high level language is associated with a compilation platform that gen-
erates hardware and software implementations. The problem is that the existing
hardware generation infrastructure presents several limitations related to slow ex-
isting procedures of validation. Moreover, some high level features of RVC-CAL
that are omnipresent in video decoders codes but are not compliant with hardware
compilers. The work achieved during this thesis aims to solve the limitations of
hardware generation from Dataflow programs.

This document starts with the state of the art of our research activities. This
part starts with a presentation of the state of the art of the conception methods of
digital signal processing circuits. Considering the limitations of the existing meth-
ods to manage complex applications, we introduced the Electronic System Level
Design methodology that allows the automatic generation of software and hard-
ware codes using high level descriptions. We demonstrate the main advantages
and drawbacks of the hardware and the software platforms to conclude with the
importance of mixed architectures. These codes have to be synthesized into Reg-
ister Transfer Level by applying high level synthesis techniques. That is why we
presented some HLS techniques and tools.

After the state of the art, Chapter 3 presents the Reconfigurable Video Coding
standard and explains the motivations behind this standard to improve the design
of video decoders. This chapter details also the Dataflow Process Network MoC,
adopted by the RVC standard, and its derived MoCs. The RVC-CAL language is
presented later as the Domain Specific Language that translates an algorithm into
a source code that respects the RVC MoCs. An RVC-CAL code needs, later, to be
compiled to obtain a lower-level implementable representation in a software (C,
Java) or hardware (VHDL, Verilog) code. Chapter 3 presents some existing tools
for compiling RVC-CAL Dataflow programs: OpenDF and Orcc. This Chapter ends
with the localization of the problematic of this thesis by showing the limitations of
these tools in terms of hardware generation.

The first point to study is presented in chapter 4 and it concerns the validation
of hardware implementations. We introduced a functional validation methodol-
ogy that takes benefit of the software implementation generated with Orcc. Indeed,
RVC-CAL is a target agnostic language and the software implementation associated

148 Conclusion and perspectives

to an RVC-CAL design can be used to validate the correctness of the global algo-
rithm. Moreover, the software debug speed in is much higher than the hardware
one. This principle is applied on the high level RVC-CAL, then, after a manual
transformation of the algorithm to low level, the software validation is used again
because transforming high to low level involves the addition of algorithms, states
and transitions that may generate new errors. Once the low level RVC-CAL is val-
idated, the design is synthesizable using hardware compilers and, generally, the
generated hardware implementation behaves correctly. This methodology showed
very interesting results to accelerate the tough validation step. For the MPEG-4 Part
2 Simple Profile, we notice a gain in the conception time of more than 30%.

After the positive assessment of the functional verification, the last limitation
of hardware generation from high level RVC-CAL is located in the transition from
high to low level RVC-CAL that used to be manual before our work. The solution
of improving the hardware compiler is quickly excluded since the source code of
the compiler is very complicated and its intermediate representation is very low
level and hard to be explored. Consequently, we considered Orcc compiler as a
new and evolved compiler with a clear Intermediate Representation that allows eas-
ily adding automatic transformations. The objective was to use Orcc and generate
an XLIM code directly synthesizable with OpenForge. After the elaboration of the
XLIM back-end of Orcc by the Orcc team, we intervened by adding automatic trans-
formation that detects the non-compliant features and transforms them while keep-
ing the global behavior of the process. Later, this transformation was considerably
optimized. This achievement has solved the main issue of the hardware generation
flow from Dataflow programs. Indeed, the time we save when we develop applica-
tions using RVC-CAL can be lost during the process of manual modification from
high to low level. The use of such automatic transformation keeps the important
gain of 30% in the time to market. In addition, results show that the infrastructure
generates an implementation with performances obviously lower than VHDL IPs
but they remain close and acceptable.

We applied this automatic transformation on two different applicative contexts:
the MPEG-4 Part 2 SP video decoder already present in the Video Tool Library
of RVC and a still image codec called LAR that we developed during this thesis.
This choice is considered because these two applications present available reference
hardware implementations necessary for the assessment of our work. Chapter 6
presents an overview on the existing MPEG-4 decoders in the VTL of RVC. The
RVC-CAL actors of the MPEG-4 part 2 SP decoder and MPEG-4 part 10 decoder
are also illustrated. This chapter gives also a full comparative study between au-
tomatically generated, optimized and hardware reference decoders. The specific
IDCT2D actor was tested separately to compare the transformation with an existing
equivalent IP. The generated implementation of this actor is also compared with an
automatic generation using an academic tool that transforms C to VHDL. The last
Chapter 7, presents the LAR image coder principle and the design solutions we de-

8.2 Perspectives 149

veloped. We present also in this Chapter a comparative study between a VHDL IP
and the automatically generated IP using our transformation.

8.2 Perspectives

The achievements of this thesis resulted in the resolution of the main limitations of
the hardware generation flow using RVC standard. Currently, many other aspects
of the developed automatic transformations are not yet tested.

I Power consumption
Till now, our validation stops at the correct simulation of of the implementation. It
is necessary to study the impact of the transformations on the power consumption
of the generated circuits and to achieve a comparison with reference IPs. Indeed,
the way an algorithm is written may have an important impact on the power
consumption. Such study may provide information on the optimal type or size of
the created variables during the transformation step.

I Toward more and more complex applications
The VTL presents currently more complex designs such as the MPEG-4 AVC de-
coder which is much more complex than MPEG-4 part 2 Simple Profile decoder and
it is possible that it reveals new cases of conflict or errors that have to be managed
by the transformation. So it would be very important to test a hardware implemen-
tation of the MPEG-4 AVC FREXT profile as a more complex context.

With the experience we acquired through this thesis, it is possible to look for
hardware implementation of the new emerging HEVC decoder. Currently, many
parts of this decoder are in development with RVC specifications in IETR and EPFL.
HEVC presents an important compression rate compared to MPEG-4 AVC while
keeping approximatively the same complexity. This finding is very motivating
since we already made a successful functional verification of the MPEG-4 FREXT
profile. The objective would be to look for an efficient co-design implementation by
finding a compromise between hardware and software available solutions.

I From general to customized transformation
Other improvements of the transformation can be added concerning the customiza-
tion of the transformation process. For the moment, the transformation applies
a general modification whatever the complexity of the actor. The use of internal
buffers and indexes to store data is explained by the fact that many actions may

read from the same port. Every action has to read enough tokens and then check
the guard condition. If this condition is wrong then the read data is lost. So the
use of shared buffers resolves this problem. Consequently, the transformation can
further be optimized by making more actor analysis to detect actors with simple
FSM or actions reading exclusively from ports. These actors will be transformed
into mono-token actions reading directly from the FIFOs. Moreover, the analysis
can lead also to the integration of ping-pong algorithms for the SDF and CSDF
actors that have the same number of tokens to read and to write. The ping-pong
algorithm requires only to double the size of read/write internal buffers and a
function that switches indexes from the first index to the half index and inversely.

I Co-designing with Orcc
In the field of ESLD, the solutions we present can open several perspectives for
future works. Indeed, This transformation enables Orcc to generate mixed archi-
tectures. The hardware generation can be insured automatically using our transfor-
mation. For software generation, the Transport Triggered Architecture (TTA) pro-
cessors are a potential solution. These processors have the particularity to apply
computations as side effects of data transports which means that the data in the
buses control the behavior of the processor. This property is totally compatible with
the Dataflow Model of Computation we use in RVC. More interesting, a TTA based
back-end [82] is in development by PhD student (IRISA/INSA of Rennes) and Orcc
development team member Hervé Yviquel. The tests applied by Yviquel et.al on the
MVG design of MPEG-4 part 2 SP decoder are successful and very promising.

The strength of this work lies in the combination of software validation and
hardware implementation. The multiple Orcc backends open many perspectives of
system enhancement. In addition to the TTA back-end, Orcc development team is
improving the Promela back-end analyzing the schedulability, the LLVM back-end
offering a software reconfiguration and the embedded C back-end targeting multi-
core DSPs.

I To finish
More generally, we participated to resolve important limitations in the generation
of hardware implementations from high level Dataflow programs. This work im-
proved an existing compilation framework of RVC and can be used by any research
group. All the approaches that we proposed are based on Opensource programs
and softwares. Therefore researchers interested in this infrastructure can legally
reuse the framework.

Appendix A

Frensh resume

Résumé en Français
I Préface Cette thèse entre dans le cadre d’une cotutelle entre l’Institut Na-

tional des Sciences Appliquées de Rennes (INSA Rennes) et l’école Nationale
d’Ingénieurs de Sfax (ENIS) de l’Université de Sfax. Le but des travaux de la thèse
est de résoudre les problèmes existant de la génération hardware à partir des pro-
grammes flot de données et haut niveau.

I Introduction et état de l’art Les algorithmes de traitement de signal sont
désormais de plus en plus complexes notamment dans le domaine du traitement
de l’image et de la vidéo. L’évolution des algorithmes de compression ainsi que
les architectures matérielles pouvant les supporter ont impliqué l’émergence de
plusieurs standards de compression vidéo. Il faut noter que ces standards com-
prennent beaucoup de points communs mais les développeurs ne parviennent que
difficilement à exploiter ces redondances de part la description monolithique des
logiciels de référence associés à ces normes. Pour résoudre cette problématique, la
norme RVC [55] a été introduite par la communauté MPEG pour répondre à ces lim-
itations. Contrairement aux autres normes MPEG qui présentaient de la technologie
de décodage (algorithmes, techniques de compressions), MPEG-RVC présente plutt
une méthodologie de conception des systèmes de traitement du signal basée sur les
modèles de calcul flot de données. Un design flot de données (voir Figure A.1) est
un réseau de processus appelés acteur . Chaque acteur possède son propre état et
il est complètement indépendant de l’état des autres acteurs du réseau. L’exécution
d’un acteur est basée sur l’exécution des fonctions élémentaires appelées action .

Pour transformer le modèle présenté ci-dessus en un code fonctionnel, la norme
MPEG-RVC a standardisé le langage CAL Actor Language (CAL) sous la norme
MPEG-B [37]. Ce langage a été introduit lors du projet Ptolemy II à l’université
de Berkeley. Ce langage est indépendant de la cible matérielle (hardware ou soft-

152 Frensh resume

FIFO Actor

Consume/produce tokens

FIFO

Consume/produce tokens

and modify internal states

FIFO

Actions

State

ActorActor

Actions are implemented

sequentially and they can

be sequenced

FIFO

Actor

be sequenced

FIFO

Figure A.1: Le modèle RVC

ware) et répond par conséquent à la méthodologie de conception ESLD (Elec-
tronic System Level Design) [58]. Cette méthodologie consiste à monter en niveau
d’abstraction lors du développement d’une norme en utilisant des langages de
domaine spécifique qui seront par la suite synthétisés automatiquement dans
différents langages cibles (hardware ou software) puis compilés pour le compila-
teur de la cible visée. Pour le CAL, la norme RVC propose tout un framework pour
la conception, la validation et la compilation des programmes. Nous étudions plus
particulièrement dans ce travail l’outil de génération hardware appelé OpenForge
[34]. Ce dernier prend en entrée (front-end) des acteurs CAL et un réseau, puis
génère dans une première étape une description sous la forme Single Static Assign-
ment (SSA) [19] proche des descriptions hardwares sous forme de fichier représenté
sous une forme XML appelée Xlim [4]. Dans une deuxième étape, il transforme le
code Xlim généré en Verilog synthétisable (voir Figure A.2).

La limitation d’OpenForge vient du fait qu’il n’est pas capable de synthétiser cer-
taines structures de haut niveau du langage CAL. Le but de cette thèse est donc de
trouver des solutions pour résoudre les problèmes de génération hardware des pro-
grammes flot de données haut niveau et aussi de trouver des méthodes rapides pour
la validation des designs générés. Dans la suite de ce document, nous reviendrons
sur l’explication de l’essentiel du langage CAL, nous préciserons les structures non
compilables avec OpenForge. Dans la partie des réalisations, nous expliquerons
une méthodologie de conception et de validation rapide des programmes CAL et
nous détaillerons le processus de transformation des structures non compilables.
Les réalisations étant testées sur des exemples d’applications de traitement vidéo
et image, nous présenterons l’essentiel des résultats d’implémentation du décodeur
MPEG4 Simple Profile Part 2 et du codec d’images fixes LAR.

A.1 Le modèle de calcul flot de données 153

OpenForgeOpenDF

Figure A.2: Etapes de compilation de l’outil OpenForge

A.1 Le modèle de calcul flot de données

La norme RVC est basée sur le modèle de calcul DPN (Dataflow Process Network)
[53]. Ce modèle fixe le comportement des acteurs de faon à ce que chaque exécution
est relative à l’exécution d’une action. Toute action est déclenchée suite à la valida-
tion de sa règle de tir ou firing rule . La règle de tir précise le nombre de jetons
que l’action demande pour s’exécuter ce qui en résulte que le fonctionnement de
l’acteur globalement est dépendant seulement de la présence des jetons suffisants
pour exécuter ses actions. Un acteur est défini de la syntaxe suivante où on définit
son tag, ses entrées/sorties et leur dynamique :

1 actor example (int m)

2 int (size=8) IN1 , uint (size=12) IN2 ==> int(size=13) OUT :

3

4 // algorithm

5

6 end

Une action est définie comme suit :
La précision des ports utilisés par l’action et le nombre de jetons à consommer

sont définis dans la syntaxe (ligne 4). Si le nombre de jetons consommés est inférieur
ou égal à 1 alors on appelle l’action action mono-token sinon on l’appelle ac-
tion multi-token . Un acteur peut éventuellement contenir une machine d’état finie
(FSM) pour gérer certains cas ne pouvant pas être décrits avec seulement des ap-

154 Frensh resume

1 actor sum ()

2 (int size=8) INPUT1 , (int size=8) INPUT2 ==> int(size=8) OUTPUT:

3

4 add: action INPUT1:[i1], INPUT2:[i2] ==> OUTPUT:[s]

5 var

6 int s

7 do

8 s:= i1 + i2 ;

9 end

10 end

pels d’actions. La machine d’état de la Figure A.3 est présentée par la syntaxe CAL
suivante :

1 schedule fsm init_state:

2 init_state (action1) --> state10;

3 state10 (action2) --> state10;

4 state10 (action3) --> state11;

5 state11 (action4) --> init_state;

6 end

init state

state10

state11

action1

action2

action3

action4

Figure A.3: Exemple d’un graphe d’une FSM

Si deux actions ont leurs règles de tirs validées en même temps, le langage CAL
n’en sélectionnera qu’une. Il propose des priorités pour fixer l’action à choisir en
cas de conflit et éviter par la suite un choix aléatoire qui impliquerait un comporte-
ment non déterministe. Il existe aussi la notion des actions non tagguées. Ces ac-
tions n’ont pas de tag et ne Figurent pas dans la machine d’états. Leur propriété la
plus importante est qu’elles sont prioritaires en exécution par rapport à toutes les
autres actions. Par conséquent, si l’acteur est dans un état courant et que l’action
non tagguée et validée, cette action sera exécutée ensuite l’acteur revient à sont état
et continue les transitions de la FSM. La problématique de génération de code hard-
ware est essentiellement liée à la forme multi-token des actions. En effet, les multi-
read ne peuvent être instanciés en hardware à l’image de ce qui est possible de
réaliser simplement en software. Par conséquent il est nécessaire de transformer du
code multi-token aboutissant ainsi à du CAL bas niveau. Notre objectif est donc

A.2 La méthodologie de validation rapide 155

de définir le mécanisme de transformation automatique. L’exemple suivant mon-
tre dans la partie (a) un code multi-token et son équivalent en mono-token dans la
partir (b). L’idée de la transformation de code est de créer une action mono-token
pour la lecture et la faire boucler dans un état read le nombre de read nécessaire
de fois pour arriver au nombre souhaité de jetons. Ce ci permet ensuite de passer à
l’exécution du code du corps de l’action lorsqu’une action possède une règle de tir
valide.

1 actor sum-5 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 add: action IN:[i] repeat 5

5 ==> OUT:[s]

6 var

7 int s := 0

8 do

9 foreach int k in 0 .. 4 do

10 s := s + i[k] ;

11 end

12 end

13 end

(a)

1 actor sum-5 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 List (type: int (size=8), size = 5) data;

5 int counter :=0 ;

6

7 read: action IN:[i] ==>

8 do

9 data[counter] := i ;

10 counter := counter + 1 ;

11 end

12

13 read_done: action ==>

14 guard

15 counter = 5

16 do

17 counter := 0 ;

18 end

19

20 process: action ==> OUT:[s]

21 var

22 int s := 0

23 do

24 foreach int k in 0 .. 4 do

25 s := s + data[k] ;

26 end

27 end

28

29 schedule fsm state0:

30 state0 (read) --> state0;

31 state0 (read_done) --> state1;

32 state1 (process) --> state0;

33 end

34

35 priority

36 read_done > read;

37 end

38

39 end

(b)

A.2 La méthodologie de validation rapide

Pour transformer le code CAL du haut vers le bas niveau, nous avons proposé une
transformation automatique dans le cur d’un compilateur des programmes CAL.

156 Frensh resume

Nous avons choisi un compilateur en cours de développement au sein de l’équipe
IETR à l’INSA appelé Orcc [41]. Cet outil est capable de générer plusieurs lan-
gages à l’aide de back-ends (un par langage) pour un même code CAL initial
comme présenté dans la Figure A.4. Orcc parse le CAL et crée une représentation
intermédiaire (IR) qui dérive d’un arbre abstrait de type AST (Abstract Syntax Tree).

XDF
graph

RVC-CAL
actors

C

VHDL

Xlim

LLVM

Promela
Cpp Java Embedded C TTA

…

Orcc

Figure A.4: Les back-ends de Orcc

Pour arriver à valider rapidement un design durant la conception de
l’implémentation hardware, nous avons proposé une méthodologie fonctionnelle de
validation [45]. Le but est de valider à chaque étape du flot de conception. Le design
commence par une description haut niveau permettant l’obtention d’une solution le
plus rapidement possible. Ce design sera validé sur une plateforme software en
générant un code C à partir du CAL via l’outil Orcc. Une fois le design haut niveau
validé, une transformation du code en mono-token est réalisée. Le design obtenu
est de même compilé en C et validé par la suite avec un debugger C. Finalement
le design mono-token est utilisé avec OpenForge pour obtenir une implémentation
hardware. Voir résumé de la méthodologie dans la Figure A.5.

L’avantage de cette démarche est qu’elle nous laisse un maximum de temps de
conception dans un contexte fonctionnel software. Le débogage dans une plate-
forme software est nettement plus rapide que celui dans un synthétiseur hardware.
En outre, cette méthodologie permet de limiter beaucoup d’erreurs qui mènent à
l’échec de la génération hardware avec OpenForge. Nous avons démontré avec des
tests sur des design CAL du LAR que cette méthodologie nous assure un gain de 40

A.3 La transformation automatique du code 157

High level
RVC-CAL

Low level
RVC-CAL

C

Orcc

C Compiler

Debug
Errors

High level OK

Code
modification

Cal2HDL

VHDL/ Verilog

Hardware
sythesis tool

Results

Software validation Hardware synthesis

Low level OK

Cal2HDL feedback

Figure A.5: Principe de la méthodologie

A.3 La transformation automatique du code

La phase de transformation du code du haut vers le bas niveau reste le goulot
d’étranglement majeur de la synthèse haut niveau des programmes flot de données.
Nous avons donc pensé à automatiser cette transformation. Dans les outils exis-
tants, Orcc est un compilateur capable de générer du Xlim. Ce dernier représente
le front-end d’OpenForge. L’idée de notre contribution est de faire une transforma-
tion dans le cur de Orcc pour générer un code Xlim compatible et synthétisable avec
OpenForge comme présenté dans la Figure A.6.

Le processus de transformation [43] [47] commence par la détection des lectures
multi-token. Une fois trouvées, on supprime l’input pattern de l’action pour qu’il
ne comporte plus de lecture. Une action non tagguée est par la suite créée pour faire
des lectures mono-token comme présenté dans le code suivant où on remarque que
l’action non tagguée est en train de lire un seul jeton pour le mettre dans un buffer
(Figure A.7).

Le buffer en question est lui aussi créé durant la phase de transformation en
lui associant les deux indexes IdxW et IdxR qui s’incrémentent respectivement lors
d’une lecture d’un jeton et lors de la fin des lectures des jetons (voir Figure A.8).

158 Frensh resume

Open
Forge

HW
lib

C

VHDL

LLVM

…

IR
transfo

XDF
graph

RVC
CAL

Back-ends

•Other

backends:

Java, C++,

Promela, TTA

…

•Not mature for

all RCV-CAL

structures

Automatic HW

generation

HDL files

Orcc OpenForge

Figure A.6: Nouveau flot de conception avec Orcc

1 action fifo1:[t] ==>

2 guard

3 idxW - idxR < size

4 do

5 buffer[idxW] := t;

6 idxW := idxW + 1;

7 end

Figure A.7: Exemple d’une action non-taggée

Le buffer est aussi conu d’une faon circulaire ce qui veut dire que lorsque la
dernière case est occupée il continue à enregistrer dans la première case. Pour cela
nous avons ajouté des modulos pour gérer les indexes de lecture et d’écriture. Bien
évidemment, le buffer ne doit pas enregistrer une nouvelle valeur dans une case
comportant une donnée qui n’est pas encore utilisée sinon elle sera à jamais écrasée
et perdue. C’est ce qui explique la condition guard (IdW-IdxR ¡ size) dans le code de
l’action non tagguée. Le code de l’action sum4 de la Figure A.9.a est remplacé donc
par le code la Figure A.9.b :

Pour les écritures multi-tokens, la solution retenue est de créer un état dans la
machine d’états dans lequel l’acteur bloque pendant l’exécution d’action d’écriture
mono-token. Une autre action détecte que le nombre de jetons écrits est atteint et
change l’état de l’acteur pour exécuter d’autres actions. Dans la représentation in-
termédiaire de Orcc nous créons les actions les actions mono-token d’écriture, les
tableaux et indexes nécessaires ainsi que les transitions dans la FSM. L’action de la
Figure A.10.a est replacée par le code de la Figure A.10.b et la machine d’état est
présentée dans la Figure A.11.

A.3 La transformation automatique du code 159

used … used

Tk

…

Tsize-1

IdxRead = k

buffer[IdxWrite mod size] = buffer[0]

Idx = 0 Idx = size -1

IdxWrite = size

Figure A.8: structure du buffer créé avec ses indexes d’écriture et de lecture

1 actor sum4 () int (size=8) IN

2 ==> int(size=10) OUT:

3

4 add: action IN:[i] repeat 4

5 ==> OUT:[s]

6 var

7 int s := 0

8 do

9 foreach int k in 0 .. 3 do

10 s := s + i[k] ;

11 end

12 end

13 end

(a) Action multi-token à trans-
former

1 actor sum4 () int (size=8) IN

2 ==> int(size=10) OUT:

3

4 List (type: int (size=8), size = 5) data;

5 int index := 0;

6

7 action IN:[i] ==>

8 guard

9 index < 4

10 do

11 data[index] := i ;

12 index := index + 1 ;

13 end

14

15 add: action ==> OUT:[s]

16 var

17 int s := 0

18 do

19 foreach int k in 0 .. 3 do

20 s := s + data[k] ;

21 end

22 end

23

24 end

(b) action mono-token après transformation

Figure A.9

Si l’acteur ne présente pas une FSM, on crée un état init dans le quel on boucle
toutes les actions. Ensuite on ajoute le macro bloc d’écriture de la manière suivante
(Figure A.12):

Si une FSM existe déjà (Figure A.13) alors on insère le macro bloc comme indiqué
dans la Figure A.14.

Après avoir terminé la transformation, il était nécessaire de réaliser d’autres
transformations qui remplacent les tableaux locaux dans les actions par des tableaux

160 Frensh resume

1

2 actor duplic4 () int (size=8) IN

3 ==> int(size=8) OUT:

4

5 duplicata: action IN:[i]

6 ==> OUT:[tab] repeat 4

7 var

8 List (type: int , size = 4) tab;

9 do

10 foreach int k in 0 .. 3 do

11 tab[k] := i;

12 end

13 end

14 end

1 actor sum4 () int (size=8) IN

2 ==> int(size=8) OUT:

3

4 List (type: int (size=8), size = 5) tab;

5 int counter := 0;

6

7 duplicata: action IN:[i] ==>

8 do

9 foreach int k in 0 .. 3 do

10 tab[k] := i;

11 end

12 end

13

14 write: action ==> OUT:[s]

15 var

16 int s := 0

17 do

18 s := tab[counter];

19 counter := counter + 1;

20 end

21

22 write_done: action ==>

23 guard

24 counter = 4

25 do

26 counter := 0;

27 end

28 end

Figure A.10:
(a) Action d’écriture multi-token à transformer
(b) Action d’écriture multi-token transformée

A.4 Application sur le décodeur vidéo MPEG 4 SP Part 2 161

writeWrite_done

write2
write1

Transformed_Action

target

source

Figure A.11: Macro bloc FSM créé pour les écritures multi-token

en tant que variables d’état. Ceci est d au fait que les générateurs hardware ne sup-
portent pas des listes locales. Nous avons aussi réalisé une nouvelle transformation
qui transforme une division entière en une division euclidienne compatible avec
les opérations réalisables en hardware. Nous avons aussi utilisé la représentation
intermédiaire de Orcc pour créer des testbenchs automatiques en utilisant des
méthodes de pretty printing tel que le générateur de code Xtend ou string tem-
plate . Ce test bench pointe directement sur des vecteurs de test créés lors des
simulations software.

A.4 Application sur le décodeur vidéo MPEG 4 SP Part
2

Pour tester notre méthodologie nous avons choisi comme premier contexte appli-
catif le décodeur MPEG4 Simple Profile Part 2 [39]. Le choix est expliqué par le fait
que ce décodeur est parmi les architectures les plus stables dans la librairie RVC. De
plus nous avons des designs de référence notamment une IP VHDL et une descrip-
tion bas niveau orientée hardware et développée par Xilinx. Le design du décodeur
est présenté dans la Figure A.15. Il est composé de trois étages de décodage pour
chaque composante luminance et chrominances pour la texture et la compensation
du mouvement.

Après avoir utilisé notre méthodologie, nous avons obtenu les résultats des

162 Frensh resume

write

Write_done

write2 write1

init

a1 a2

Transformed
Action (a3*)

Figure A.12: Bloc FSM ajouté à l’état init

S0

S1

S2

a1

a4

a3

a5

a2

Figure A.13: FSM initiale avec action a3 multi-tokens

tableaux suivants sur une FPGA virtex 4 xc4vlx160-12ff1148:

implémentation
Slice Flip Flops 13,575/135,168 (10%)
Occupied Slices 18,178/67,584 (26%)

4 input LUTs 34,333/135,168 (25%)
FIFO16/BRAM16s 14/288 (4%)

Bonded IOBs 107/768 (13%)

Nous remarquons certes une différence de 75Pour se comparer aussi par rapport
aux outils existants, nous avons choisi l’outil académique GAUT [18] [17] qui est un
générateur automatique de code hardware à partir du C et qui est très performant
sur les architectures de traitement massif des données. GAUT étant incapable de
transformer un design au niveau système, nous avons choisi de comparer seulement

A.4 Application sur le décodeur vidéo MPEG 4 SP Part 2 163

S0 S1

S2

a1

a4

a5

a2

write
write_done

write2write1

>
Untagged_IN1

Untagged_IN2

Untagged_IN3

Transformed
Action (a3*)

Figure A.14: FSM résultante après l’ajout du macrobloc

performances
Maximum frequency (MHz) 26.67

Latency (µs) 306,4
Cadency (MHz) 2.33

Processing time (ms/image) 11,01
Throughput frequency (MHz) 2,2
Global image processing (FPS) 90,82

La comparaison avec l’IP VHDL et le design Xilinx est présentée dans le tableau
suivant:

P
A
R
S
E
R

M
E
R
G
E

TEXTURE DECODING

[01111001...]

BITSTREAM DECODED DATA

MOTION COMPENSATION
DC
addr

DC
split

DC
pred-1

Scan-1
AC

pred-1
Quant-
ize-1

DCT-1

Addr

Bu�er
Interpo-
late

Add

DC
addr

DC
split

DC
pred-1

Scan-1
AC

pred-1
Quant-
ize-1

DCT-1

Addr

Bu�er
Interpo-
late

Add

DC
addr

DC
split

DC
pred-1

Scan-1
AC

pred-1
Quant-
ize-1

DCT-1

Addr

Bu�er
Interpo-
late

Add

Figure A.15: Architecture du design du décodeur MPEG 4 SP Part 2

164 Frensh resume

Design automatique VHDL IP CAL
Slice 18,178 (26%) 4637 (7%) 3872 (6%)
LUT 34,33 (25%) 7923 (6%) 7720 (6%)

les performances sur l’IDCT2D dans le tableau suivant :

Design GAUT Design transformé
Slice Flip Flops 2,080/135,168 (2%) 1,988/135,168 (2%)
Occupied Slices 2,477/67,584 (3%) 2,353/67,584 (3%)

4 input LUTs 4,243/135,168 (3%) 4,458/135,168 (3%)
Bonded IOBs 627/768 (81%) 49/768 (6%)

Nous remarquons que les résultats obtenus en terme de surface sont meilleures
que ceux générés par GAUT sur tous les critères.

A.5 Application sur le codec d’images fixes LAR

Un autre contexte applicatif choisi pour expérimenter les travaux de cette thèse
qui est le codec d’images fixes LAR Locally Adaptive Resolution [23]. Ce
codec se compose de deux parties essentielles : le codage/décodage spatial et le
codage/décodage de texture voir Figure A.16.

L’originalité du LAR est qu’il présente un codage adaptatif selon l’activité sur
l’image. Donc au lieu de décomposer l’image sur un ensemble de blocs uniformes
comme JPEG par exemple, le LAR va décomposer l’image en appliquant un gradi-
ent morphologique qui détecte l’activité sur l’image et considère des blocs de grande
taille quand l’activité est faible et des blocs de petite taille quand l’activité est impor-
tante (voir Figure A.17). Ce ci est appliqué utilisant un processus de décomposition
de l’image appelé Quadtree .

Nous avons développé en CAL une baseline du LAR composée d’une partie de
codage spatial appelé aussi FLAT LAR (Figure A.18) et une partie de codage et
décodage de texture basée sur la transformée Hadamard (Figure A.19).

Le LAR est synthétisé en hardware en utilisant la méthodologie de transforma-
tion automatique du code et nous présentons les résultats de comparaison entre le
design transformé manuelle et celui transformé automatiquement.

Les résultats montrent une grande similitude en consommation de surface. La
différence en termes de performances temporelles est tout à fait logique vu la
manière optimisée avec la quelle le design manuel a été réalisé. Cependant on note
que cette méthodologie est trois fois plus rapide en termes de temps de conception.

A.6 Conclusion et perspectives 165

Original

image

Low

resolution

image

FLAT

decoder

FLAT

coder

transmission

Spectral

decoder

Spectral

coder

Middle/high

resolution

image

transmission

Figure A.16: Schémas de codage et décodage du LAR

Transformation Automatique Manuelle
Slice Flip Flops 20,452/135,168 (15%) 12,157/135,168 (8%)
Occupied Slices 47,576/67,584 (70%) 43,602/67,584 (67%)

4 input LUTs 59,868/135,168 (44%) 53,417/135,168 (39%)
Bonded IOBs 41/768 (5%) 41/768 (5%)

Transformation Automatique Manuelle
Development time 30% 100%

Maximum frequency (MHz) 61,43 85,27
Latency (ms) 0,42 0,12

Throughput frequency (MHz) 3,5 5,6
Processing time (ms/image) 35 19

Global image processing (FPS) 34 53

A.6 Conclusion et perspectives

Cette thèse a pour objectif d’automatiser la génération des architectures hard-
ware à partir des programmes flot de données. Le but était de garder un niveau
d’abstraction assez élevé pour rester dans le niveau système et satisfaire par
conséquent le contexte ESLD. Nous avons présenté les modèles flot de données ainsi
que le framework RVC. Par la suite nous avons localisé le goulot d’étranglement

166 Frensh resume

Figure A.17: Image des tailles résultante du gradient morphologique

dans le flot de génération hardware et nous avons développé une transformation
automatique du code dans le cur du compilateur Orcc pour détecter les structures
non compilables et les transformer en leur équivalent de structures compilables tout
en gardant le même comportement global de l’application. Les travaux comportent
aussi une méthodologie de conception rapide des systèmes flot de données avec une
approche de validation fonctionnelle qui valide une grande partie de la conception
sur une plateforme logicielle rapide et plus facile à déboguer. Les méthodologies
ont été finalement appliquées sur des applications de traitement video et image et
des études comparatives ont été réalisées pour montrer l’intérêt de cette recherche.
Dans nos futurs travaux nous comptons appliquer la transformation du code sur
des applications plus complexes de traitement vidéo tel que MPEG AVC et HEVC.
Il est aussi possible de créer une transformation personnalisée puisque l’actuelle
transformation est générale sur tous les acteurs et dans des cas simples d’acteur sta-
tiques par exemple il est préférable d’optimiser le circuit avec une transformation
moins compliquée mais dédiée. La possibilité de faire du Co-design est une autre
perspective à nos travaux surtout avec l’apparition d’un nouveau back-end de Orcc
qui génère une implémentation vers des processeurs TTA (softcores embarqués
dans un FPGA) qui ont une architecture qui répond parfaitement au modèle de cal-
cul flot de données. Nous notons que tous les codes de notre recherche sont libres
de droit comme tous les outils utilisés lors de cette thèse ce qui offre la possibilité à
tous les chercheurs de profiter de notre étude.

A.6 Conclusion et perspectives 167

Max

2x2

Max

8x8

Max

4x4

Min

2x2

Min

8x8

Min

4x4

Gradstep

process

Input

image

Sum

2x2

Sum

8x8

Sum

4x4

Block mean

value process

Block mean

size image

Figure A.18: Architecture développée pour le codage spatial

168 Frensh resume

H1 H2 H3

Quad tree

Memory
management

Block size

Image
2x2

blocks

H2 input
Memory

Management

H1 H1
H2 output
Memory

management

H3 output
Memory

management

H3 input
Memory

management

Figure A.19: Architecture développée pour le codage de fréquence

List of Figures

2.1 Evolution of transistors integration following Moore’s law 12
2.2 The spiral approach principal . 13
2.3 The V-Model principal . 14
2.4 Hardware and software different targets 15
2.5 Example of C code compilation steps 16
2.6 The hardware conception evolution of an addition operation block . 18
2.7 The hardware conception flow from VHDL or Verilog programs . . . 19
2.8 General architecture of an FPGA . 20
2.9 LUT architecture principle . 21
2.10 Space exploration of the design . 23
2.11 HLS with limited area constraint . 24
2.12 HLS with unbounded area and parallelism 24

3.1 Video codecs timeline . 29
3.2 Objective of the MPEG RVC standard 30
3.3 RVC framework components . 31
3.4 Graph example: Dataflow diagram of the MPEG-4 part 10 AVC decoder 32
3.5 RVC network example . 33
3.6 FNL code of Figure 3.5 . 33
3.7 Reconfigurable principle of RVC . 35
3.8 RVC-CAL actor header . 36
3.9 CAL actor model . 36
3.10 Example of sum actor . 37
3.11 Example of variables declaration . 37
3.12 Examples of expressions in RVC-CAL 37
3.13 Action main parts: scheduling condition and body 38
3.14 Example of a function in RVC-CAL . 39
3.15 Example of a procedure in RVC-CAL 39
3.16 Example of a priority in RVC-CAL . 40
3.17 Example of an FSM in RVC-CAL . 40
3.18 FSM graph representation . 41
3.19 RVC-CAL example of an actor with an untagged action 42

170 LIST OF FIGURES

3.20 Two-way definition example of sum-5 actor behavior 43
3.21 Dataflow graph of operation y = (a + b)× (a− b) 44
3.22 KPN example of three processes and three FIFOs 45
3.23 The FSM representation of every process behavior in a KPN model . 45
3.24 The Petri net representation of KPN mechanism 46
3.25 Dataflow MoCs . 47
3.26 RVC-CAL example of time-dependent actor 49
3.27 Example of modeling SDF MoC in RVC-CAL 50
3.28 Example of modeling CSDF MoC in RVC-CAL 51
3.29 Conditional process execution in the QSDF MoC 51
3.30 RVC-CAL example of the QSDF MoC 52
3.31 AST representation of an algorithm . 54
3.32 CFG representation of an algorithm 55
3.33 Example of an algorithm with a conditional statement 55
3.34 SSA representation of the example of Figure3.33 56
3.35 OpenDF implementations . 57
3.36 Orcc compilation flow . 58
3.37 The front-end of Orcc . 60
3.38 Example of priority directed graph . 61
3.39 The middle-end of Orcc . 62
3.40 The back-ends of Orcc . 63
3.41 Constants string template code of the C back-end 65

4.1 Method overview . 72
4.2 Stimulus data actor example . 73
4.3 Step1: High-level validation . 74
4.4 High level RVC-CAL example . 74
4.5 Low level RVC-CAL example . 75
4.6 Source and display connection for MPEG4 decoder design 75
4.7 Orcc list of backends . 76
4.8 Correct video display . 76
4.9 Wrong video display . 77
4.10 Step2: Low-level validation . 77
4.11 Type-error algorithm example . 78
4.12 OpenForge compilation steps . 79
4.13 Ping pong example of a 4-buffer size memory management 82
4.14 Ping-Pong memory management example 83

5.1 New conception flow with Orcc . 88
5.2 Example of buffer indexes . 90
5.3 Circular FIFO management . 91
5.4 Untagged action for mono-token read 91

LIST OF FIGURES 171

5.5 Automatic transformation of the Sum-5 actor 93
5.6 Existing FSM transition of the transformed action 94
5.7 RVC-CAL code of actor A . 94
5.8 Created FSM macro-block . 95
5.9 RVC-CAL code of transformed multi-token write 96
5.10 FSM with created initial state . 97
5.11 Initial FSM of an actor . 97
5.12 Resulting FSM transformation . 98
5.13 Original and optimized clip actor . 100
5.14 FSM created macro-block for optimal transformation 101
5.15 Further optimization of the clip actor 101

6.1 Pipelined architecture of the IDCT2D 110
6.2 Pipelined architecture of the IDCT1D 110
6.3 MPEG-4 part 2 Simple Profile architecture 111
6.4 MPEG-4 part 2 SP detailed architecture 112
6.5 MPEG-4 part 2 texture decoder with RVC actors 113
6.6 MPEG-4 part 2 motion decoder with RVC actors 114
6.7 Serialized architecture of MPEG-4 part 2 decoder 115
6.8 MPEG-4 part 10 profiles . 116
6.9 The CBP main decoding blocks . 117
6.10 Design of the prediction block of the CBP profile 118
6.11 The texture decoder network of MPEG-AVC 118
6.12 Architecture of the construction and buffering block in the CBP . . . 119

7.1 Monotonic blocks decomposition . 125
7.2 LAR baseline concept . 126
7.3 LAR profiles . 127
7.4 FLAT LAR architecture . 127
7.5 Block size image example . 128
7.6 Low resolution image example . 129
7.7 Block mean value process example . 130
7.8 The DPCM principle . 130
7.9 DPCM prediction of neighbor pixels 131
7.10 DPCM pipelined architecture . 132
7.11 LAR spectral coder architecture . 133
7.12 LAR baseline developed model . 135
7.13 Memory management unit output order 135
7.14 Quad-Tree design . 136
7.15 Hadamard hardware architecture . 138
7.16 Hadamard multi-port architecture . 139
7.17 Hadamard concatenation architecture 139

172 LIST OF FIGURES

7.18 Hadamard parallel architecture . 140
7.19 Hadamard sequential architecture with sorting actor 141

A.1 Le modèle RVC . 152
A.2 Etapes de compilation de l’outil OpenForge 153
A.3 Exemple d’un graphe d’une FSM . 154
A.4 Les back-ends de Orcc . 156
A.5 Principe de la méthodologie . 157
A.6 Nouveau flot de conception avec Orcc 158
A.7 Exemple d’une action non-taggée . 158
A.8 structure du buffer créé avec ses indexes d’écriture et de lecture . . . 159
A.9 . 159
A.10 (a) Action d’écriture multi-token à transformer (b) Action d’écriture

multi-token transformée . 160
A.11 Macro bloc FSM créé pour les écritures multi-token 161
A.12 Bloc FSM ajouté à l’état init . 162
A.13 FSM initiale avec action a3 multi-tokens 162
A.14 FSM résultante après l’ajout du macrobloc 163
A.15 Architecture du design du décodeur MPEG 4 SP Part 2 163
A.16 Schémas de codage et décodage du LAR 165
A.17 Image des tailles résultante du gradient morphologique 166
A.18 Architecture développée pour le codage spatial 167
A.19 Architecture développée pour le codage de fréquence 168

LIST OF FIGURES 173

List of Tables

2.1 Advantages and drawbacks of HW and SW architectures 21

3.1 Actors classification in MoCs . 47
3.2 RVC-CAL type system conversion to IR type system 60
3.3 Type checking of AST statements. 61

5.1 Code lines Comparison . 103

6.1 MPEG-4 part 2 SP implementation comparison: CAL VS VHDL . . . 111
6.2 Composition of MPEG-4 Simple Profile RVC-CAL description 112
6.3 Composition of MPEG-4 Simple Profile and MPEG-4 Advanced

Video Coding RVC-CAL description 117
6.4 RVC-CAL designs tested in software and hardware platforms 119
6.5 MPEG4 decoder area consumption . 120
6.6 MPEG4 decoder timing results . 120
6.7 IDCT2D timing results . 121
6.8 IDCT2D area consumption . 121
6.9 IDCT2D area consumption with GAUT 122

7.1 Quantization according to the block size 131
7.2 LAR coder area consumption . 142
7.3 LAR timing results . 142
7.4 FLAT LAR: VHDL VS CAL comparison 143

LIST OF TABLES 175

Personal publications

• Khaled Jerbi, Mickaël Raulet, Olivier Déforges, and Mohamed Abid. “Design
of an Embedded Low Complexity Image Coder using CAL language”. DASIP
2009 proceedings, September 2009.

• Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Marie Babel, Olivier Déforges,
and Mohamed Abid. “Fast hardware implementation of an Hadamard trans-
form using RVC-CAL dataflow programming”. In proceedings of IEEE EMC, 9
2010.

• Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Marie Babel, Olivier Déforges,
and Mohamed Abid. “Automatic method for efficient hardware implementa-
tion from RVC-CAL dataflow: A LAR coder baseline case study”. Journal Of
Convergence, 1(1):8592, 12 2010.

• Khaled Jerbi, Mickaël Raulet, Olivier Déforges, and Mohamed Abid. “Auto-
matic generation of synthesizable hardware implementation from high level
RVC-CAL design”. In ICASSP 2012: Proceedings of the 37th International Confer-
ence on Acoustics Speech and Signal Processing, pages 15971600, 2012.

• Khaled Jerbi, Mickaël Raulet, Olivier Déforges, and Mohamed Abid. “Au-
tomatic generation of optimized and synthesizable hardware implemen-
tation from high level dataflow programs”. VLSI Design, 2012:14, 2012.
10.1155/2012/298396.

• Khaled Jerbi, Tarek Ouni, and Mohamed Abid. “A dataflow description of
acc-jpeg coder”. In the proceedings of 2012 International Conference on Signal Pro-
cessing and Multimedia Application (SIGMAP 2012).

References

[1] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transfom. IEEE Trans-
actions on Computers, 23:90–93, 1974.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: principles, techniques, and
tools. Reading, MA,, 1986.

[3] B. Bailey, G.E. Martin, and A. Piziali. ESL design and verification: a prescrip-
tion for electronic system-level methodology. The Morgan Kaufmann series in
systems on silicon. Morgan Kaufmann, 2007.

[4] E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli. A unified hardware/-
software co-synthesis solution for signal processing systems. In Design and
Architectures for Signal and Image Processing (DASIP), 2011 Conference on, pages
1 –6, nov. 2011.

[5] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. Quasi-static
scheduling of reconfigurable dataflow graphs for dsp systems. In Proceed-
ings of the 11th IEEE International Workshop on Rapid System Prototyping (RSP
2000), RSP ’00, pages 84–, Washington, DC, USA, 2000. IEEE Computer Soci-
ety.

[6] Bishnupriya Bhattacharya, Shuvra S. Bhattacharyya, and Senior Member. Pa-
rameterized Dataflow Modeling for DSP Systems. IEEE Transactions on Signal
Processing, 49:2408–2421, 2001.

[7] S Bhattacharyya, G Brebner, J Eker, J Janneck, M Mattavelli, C von Platen,
and M Raulet. OpenDF - A Dataflow Toolset for Reconfigurable Hardware
and Multicore Systems. First Swedish Workshop on Multi-Core Computing,
MCC , Ronneby, Sweden, November 27-28, 2008, 2008.

[8] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static
dataflow. Signal Processing, IEEE Transactions on, 44(2):397 –408, feb 1996.

[9] B Boehm. A spiral model of software development and enhancement. SIG-
SOFT Softw. Eng. Notes, 11:14–24, August 1986.

178 REFERENCES

[10] J. Boutellier, C. Lucarz, S. Lafond, V.M. Gomez, and M. Mattavelli. Quasi-
static scheduling of CAL actor networks for reconfigurable video coding.
Journal of Signal Processing Systems, pages 1–12, 2008.

[11] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng (eds.).
PtolemyII - heterogeneous concurrent modeling and design in java (volume
1: Introduction to ptolemyII). Technical Memorandum UCB/ERL M04/27,
University of California, Berkeley, CA USA 94720, July 2004.

[12] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A Framework
for Simulating and Prototyping Heterogeneous Systems. International Journal
of Computer Simulation, 4:155–182, 1994.

[13] J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. Acoustics, Speech, and Signal Processing,
IEEE International Conference on, 1:429–432, 1993.

[14] Chang-Hsuan Chang, Ming-Hung Chang, and Wei Hwang. A flexible two-
layer external memory management for h.264/avc decoder. In SOC Confer-
ence, 2007 IEEE International, pages 219 –222, sept. 2007.

[15] C. Click. Global code motion/global value numbering. ACM SIGPLAN No-
tices, 30(6):246–257, 1995.

[16] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watan-
abe. Quasi-static scheduling of independent tasks for reactive systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(10):1492–1514, 2005.

[17] P. Coussy, D.D. Gajski, M. Meredith, and A. Takach. An introduction to high-
level synthesis. Design Test of Computers, IEEE, 26(4):8 –17, july-aug. 2009.

[18] Philippe Coussy, C. Chavet, Pierre Bomel, D. Heller, E. Senn, and E. Mar-
tin. GAUT: A High-Level Synthesis Tool for DSP applications. In Philippe
Coussy & Adam Morawiec, editor, High-Level Synthesis: From Algorithm to
Digital Circuits, pages 147–170. Springer, June 2008.

[19] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Effi-
ciently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems (TOPLAS),
13(4):490, 1991.

[20] D. Dearman, A. Cox, and M. Fisher. Adding control-flow to a visual data-
flow representation. In Program Comprehension, 2005. IWPC 2005. Proceedings.
13th International Workshop on, pages 297 – 306, may 2005.

REFERENCES 179

[21] Olivier Déforges and Marie Babel. Lar method: from algorithm to synthesis
for an embedded low complexity image coder. IEEE 3rd International Design
and Test Workshop, 2008.

[22] Olivier Déforges and Marie Babel. LAR method: from algorithm to synthesis
for an embedded low complexity image coder. IEEE 3rd International Design
and Test Workshop, IDT’08, 2008.

[23] Olivier Déforges, Marie Babel, Laurent Bédat, and Joseph Ronsin. Color
LAR Codec: A Color Image Representation and Compression Scheme Based
on Local Resolution Adjustment and Self-Extracting Region Representation.
IEEE Trans. Circuits Syst. Video Techn., 17(8):974–987, 2007.

[24] Eclipse Foundation. Eclipse Modeling Framework (EMF).

[25] S. Efftinge and M. Völter. oAW xText: A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, 2006.

[26] J. Eker and J. Janneck. CAL Language Report. Technical Report ERL Techni-
cal Memo UCB/ERL M03/48, University of California at Berkeley, December
2003.

[27] Johan Eker and Jörn W. Janneck. An introduction to the Caltrop actor lan-
guage, September 2001.

[28] R. Ernst, J. Henkel, and T. Benner. Hardware-Software Cosynthesis for Mi-
crocontrollers. IEEE Des. Test, 10:64–75, October 1993.

[29] ETH Zrich. Moses project: http: // www. tik. ee. ethz. ch/ ~ moses/ .

[30] S. W. Golomb. Run length codings. IEEE Transactions on Information Theory,
pages 12(7): 399–401, 1966.

[31] J. Gorin, M. Wipliez, J. Piat, F. Preteux, and M. Raulet. An LLVM-based
decoder for MPEG reconfigurable video coding. In Signal Processing Systems
(SIPS), 2010 IEEE Workshop on, pages 81 –86, oct. 2010.

[32] J. Gorin, M. Wipliez, F. Preteux, and M. Raulet. LLVM-based and scalable
MPEG-RVC decoder. Journal of Real-Time Image Processing, pages 1–12, 2010.
10.1007/s11554-010-0169-2.

[33] Steven Greenbaum and Stanley Jefferson. A compiler for hp vee. Hewlett
Packard Journal, 49:98–99, 1998.

http://www.tik.ee.ethz.ch/~moses/

180 REFERENCES

[34] Ruirui Gu, Jörn W. Janneck, Shuvra S. Bhattacharyya, Mickaël Raulet,
Matthieu Wipliez, and William Plishker. Exploring the concurrency of an
MPEG RVC decoder based on dataflow program analysis. Circuits and Sys-
tems for Video Technology, IEEE Transactions on, 19(11):1646–1657, 11 2009.

[35] IEEE Std 1076-1993. IEEE Std 1076 - IEEE Standard VHDL Language Reference
Manual, 1993.

[36] IEEE Std 1364-2001. IEEE Std 1364-2001 - IEEE Standard verilog Language Ref-
erence Manual, 2001.

[37] ISO/IEC FDIS 23001-4: 2009. Information Technology - MPEG systems tech-
nologies - Part 4: Codec Configuration Representation, 2009.

[38] ISO/IEC FDIS 23002-4: 2009. Information Technology - MPEG video tech-
nologies - Part 4: Video tool library, 2009.

[39] J. Janneck. Notes on an actor language, 7th Ptolemy Miniconference. Techni-
cal report, University of California at Berkeley, February 2007.

[40] Jörn Janneck, Ian Miller, David Parlour, Ghislain Roquier, Matthieu Wipliez,
and Mickaël Raulet. Synthesizing hardware from dataflow programs. Journal
of Signal Processing Systems, pages 1–9, 2009. 10.1007/s11265-009-0397-5.

[41] Jörn W. Janneck, Marco Mattavelli, Mickaël Raulet, and Matthieu Wipliez.
Reconfigurable video coding a stream programming approach to the speci-
fication of new video coding standards. In MMSys ’10: Proceedings of the first
annual ACM SIGMM conference on Multimedia systems, pages 223–234, New
York, NY, USA, 2010. ACM.

[42] Khaled Jerbi, Tarek Ouni, and Mohamed Abid. A dataflow description of
acc-jpeg coder. 2012. Accepted for the proceedings of 2012 International Con-
ference on Signal Processing and Multimedia Application (SIGMAP 2012).

[43] Khaled Jerbi, Mickaël Raulet, Olivier Déforges, and Mohamed Abid. Auto-
matic generation of synthesizable hardware implementation from high level
RVC-CAL design. In ICASSP’12: Proceedings of the 37th International Confer-
ence on Acoustics Speech and Signal Processing, pages 1597–1600, 2012.

[44] Khaled Jerbi, Mickaël Raulet, Olivier Déforges, and Mohamed Abid. Design
of an Embedded Low Complexity Image Coder using CAL language. DASIP
2009 proceedings, September 2009.

[45] Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Marie Babel, Olivier
Déforges, and Mohamed Abid. Automatic method for efficient hardware
implementation from RVC-CAL dataflow: A lar coder baseline case study.
Journal Of Convergence, 1(1):85–92, 12 2010.

REFERENCES 181

[46] Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Marie Babel, Olivier
Déforges, and Mohamed Abid. Fast hardware implementation of an
hadamard transform using RVC-CAL dataflow programming. In proceedings
of IEEE EMC, 9 2010.

[47] Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet, Marie Babel, Olivier
Déforges, and Mohamed Abid. Automatic generation of optimized and
synthesizable hardware implementation from high level dataflow programs.
VLSI Design, 2012:14, 2012. 10.1155/2012/298396.

[48] G. Kahn. The Semantics of a Simple Language for Parallel Programming.
In J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP
Congress, pages 471–475. North-Holland, New York, NY, 1974.

[49] The SISAL language web site. http://www.physics.nmt.edu/raymond
/software/sisal/sisal.html.

[50] D. Lau, O. Pritchard, and P. Molson. Automated generation of hardware ac-
celerators with direct memory access from ansi/iso standard c functions. In
Field-Programmable Custom Computing Machines, 2006. FCCM ’06. 14th Annual
IEEE Symposium on, pages 45 –56, april 2006.

[51] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235 – 1245, sept. 1987.

[52] Edward A. Lee. A denotational semantics for dataflow with firing, January
1997.

[53] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceed-
ings of the IEEE, 83(5):773–801, 1995.

[54] M.A. Losada and K.T. Mullen. The spatial tuning of chromatic mechanisms
identified by simultaneous masking. Vision Research, 34(3):331 – 341, 1994.

[55] Marco Mattavelli, Jörn W. Janneck, and Mickaël Raulet. MPEG Reconfig-
urable Video Coding. In Shuvra S. Bhattacharyya, Ed F. Deprettere, Rainer
Leupers, and Jarmo Takala, editors, Handbook of Signal Processing Systems,
Date-Modified = 2010-10-29 01:40:00 +0200, pages 43–67. Springer US, 2010.
WOS - ISBN: 978-1-4419-6344-4.

[56] R.K. Megalingam, K.B. Venkat, S.V. Vineeth, M. Mithun, and R. Srikumar.
Hardware Implementation of Low Power, High Speed DCT/IDCT Based
Digital Image Watermarking. In International Conference on Computer Tech-
nology and Development (ICCTD), volume 1, pages 535 –539, nov. 2009.

[57] Mentor Graphics. Catapult c. 2010.

182 REFERENCES

[58] G. Moretti. System-level design merits a closer look: the complexity of to-
day’s designs requires system-level design, but EDA-tools development is
lagging behind the needs of semiconductor and system companies. EDA
tools must support system-level design. (design feature). Electronics Design
Strategy, News (EDN), 2002.

[59] T. Parr. A functional language for generating structured text. URL http://www.
cs. usfca. edu/˜ parrt/papers/ST. pdf, 2006.

[60] T.J. Parr. Enforcing strict model-view separation in template engines. In
WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 224–233, New York, NY, USA, 2004. ACM.

[61] F. Plavec, Z. Vranesic, and S. Brown. Towards compilation of streaming pro-
grams into fpga hardware. In Specification, Verification and Design Languages,
2008. FDL 2008. Forum on, pages 67 –72, sept. 2008.

[62] Jacques Poncin. Utilisation de la transformation de hadamard pour le codage
et la compression de signaux d’images. In Springer-Annals of telecommunica-
tions, pages 235–252, 1971.

[63] The SAC project home page. http://www.sac-home.org.

[64] R. F. Rice. Some practical universal noiseless coding techniques. Technical
Report 79-22, 1979.

[65] Gupta R.K. and De Micheli G. Hardware-Software Cosynthesis for Digital
Systems. IEEE Design and Test of Computers, 10:29–41, 1993.

[66] G. Roquier, M. Wipliez, M. Raulet, J.W. Janneck, I.D. Miller, and D.B. Parlour.
Automatic software synthesis of dataflow program: An MPEG-4 simple pro-
file decoder case study. In IEEE workshop on Signal Processing Systems (SiPS),
pages 281–286, 2008.

[67] Ghislain Roquier, Matthieu Wipliez, Mickaël Raulet, Jörn W. Janneck, Ian D.
Miller, and David B. Parlour. Automatic software synthesis of dataflow pro-
gram: An MPEG-4 Simple Profile decoder case study. In Proceedings of 2008
IEEE Workshop on Signal Processing Systems (SiPS 2008), pages 281–286, Wash-
ington, DC, USA, 2008. IEEE.

[68] W.W. Royce. Managing the Development of Large Software Systems. In IEEE
proceedings, pages 1–9. IEEE WESCON, 1970.

[69] P.R. Schaumont. A Practical Introduction to Hardware/Software Codesign.
Springer, 2010.

REFERENCES 183

[70] Clifford A Shaffer and Hanan Samet. Optimal quadtree construction algo-
rithms. Computer Vision, Graphics, and Image Processing, 37(3):402 – 419, 1987.

[71] SIA. Global sales report 2011: http://www.sia-
online.org/news/2012/02/06/global-sales-report-2012/semiconductor-
industry-posts-record-breaking-revenues-despite-2011-challenges/. Febru-
ary 2012.

[72] N. Siret, M. Wipliez, J. Nezan, and A. Rhatay. Hardware code generation
from dataflow programs. In Design and Architectures for Signal and Image Pro-
cessing (DASIP), 2010 Conference on, pages 113 –120, oct. 2010.

[73] P. Strobach. Tree-structured scene adaptive coder. IEEE Trans. commun.,
38(4):477 – 486, 1990.

[74] W.R Sutherland. On-Line Graphical Specification Of Computer Procedures.
Technical report, MIT, 1966.

[75] Synopsys. Synphony c compiler.

[76] Michael A. Webster, Karen K. De Valois, and Eugene Switkes. Orientation
and spatial-frequency discrimination for luminance and chromatic gratings.
J. Opt. Soc. Am. A, 7(6):1034–1049, Jun 1990.

[77] M.N. Wegman and F.K. Zadeck. Constant propagation with condi-
tional branches. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(2):181–210, 1991.

[78] M. Wipliez, G. Roquier, and J.F Nezan. Software Code Generation for the
RVC-CAL Language. Journal of Signal Processing Systems, 2009.

[79] M. Wipliez, G. Roquier, M Raulet, J.F. Nezan, and O. Déforges. Code gen-
eration for the MPEG Reconfigurable Video Coding framework: From CAL
actions to C functions. In IEEE International Conference on Multimedia and Expo
(ICME), pages 1049–1052, 2008.

[80] Matthieu Wipliez. Compilation Infrastructure of Dataflow Programs. PhD thesis,
IETR, INSA Rennes, 35043 Rennes, France, December 2010.

[81] Matthieu Wipliez, Ghislain Roquier, and Jean-François Nezan. Software code
generation for the RVC-CAL language. Journal of Signal Processing Systems,
63(2):203–213, May 2011.

[82] Hervé Yviquel, Jani Boutellier, Mickaël Raulet, and Emmanuel Casseau. Au-
tomated design of networks of Transport-Triggered Architecture processors
using Dynamic Dataflow Programs. Signal Processing Image Communication,
Special issue on Reconfigurable Video Coding, 2013.

	I State Of The Art
	Introduction
	General context
	Objectives and scientific contributions
	Outline

	Electronic System Level Design
	Introduction
	State of the art on digital signal processing conception methods
	Overview on the Electronic System Level Design conception method
	The software-oriented architecture
	The hardware-oriented architecture
	The Hardware Software Codesign

	High Level Synthesis (HLS) from high level to RTL level
	Existing HLS tools
	Conclusion

	RVC: methodology and framework
	MPEG RVC standard
	RVC-CAL language
	RVC Models of Computation
	Overview
	The Dataflow Process Network MoC and derived MoCs
	RVC modeling of the DPN
	RVC modeling of the SDF
	RVC modeling of the CSDF
	RVC modeling of the QSDF

	Compilation and simulation of RVC-CAL designs
	RVC-CAL compilation
	Code parsing
	Control Flow Graph
	The Intermediate Representation (IR)

	Generation of HW/SW implementations with OpenDF
	Open RVC-CAL Compiler (Orcc)
	The front-end
	The middle-end
	Orcc back-ends

	Hardware compilers limitation: the multi-token case
	Conclusion

	II Proposed Techniques And Methodologies
	A methodology for fast validation of RVC-CAL programs
	Fast validation approach principle
	Existing validation methods
	Functional validation in a software platform

	Automatic generation of test benches and stimulus files
	Pipeline methods
	Comparison with manual flow
	Conclusion

	Automatic hardware generation from RVC-CAL
	Introduction
	Localization of the automatic transformation
	Actor behavior
	Transformation overview
	Actions and variable creation
	FSM creation cases

	Transformation steps and optimizations
	Validation and Miscellaneous transformations
	Written code reduction
	Conclusion

	III Experiments And Results
	Technological solutions of MPEG-RVC decoders
	MPEG-4 part 2 Simple Profile
	The hardware oriented architecture
	Parallel architecture
	Serialized architecture

	MPEG-4 part 10 Profiles
	Implementation and results
	Functional validation
	Hardware implementation

	Conclusion

	Still image case of study: the LAR codec
	LAR principle
	FLAT LAR
	Partitioning
	Block mean values computation process
	The DPCM

	Spectral coder: The Hadamard transform
	Entropic coder: The Golomb Rice bitstream

	Achieved architectures
	Design implementation
	Conclusion

	Conclusion and perspectives
	Summary
	Perspectives

	Frensh resume
	Le modèle de calcul flot de données
	La méthodologie de validation rapide
	La transformation automatique du code
	Application sur le décodeur vidéo MPEG 4 SP Part 2
	Application sur le codec d’images fixes LAR
	Conclusion et perspectives

