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General introduction

The semiconductor technology is actually scaling down the feature size of transistors towards the nanometer regime to continue increasing the density of devices on a single chip. This strategy has been very effective and successful in the past to improve the overall performance of circuits. However, the power density per unit volume tends to be dependent on the channel length L g and proportional to L g -1.7 [START_REF] Rowlette | Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs[END_REF]; which raises new problems:

For a 20 nm channel length device, the power density is in the order of 10 TW/cm 3 . Hence, the high current densities flowing in active areas of such small devices generate significant local heating due to phonon emission by hot carriers leading to reductions in performance and even to failures. This phenomenon, called self-heating effect, is identified as one of the most critical for the continued increase in the integration density of circuits.

At this scale, the transport of both electrons (charge) and phonons (heat) are ballistic or quasi-ballistic, accordingly both heat and charge transports are non-stationary.. In addition, the thermal conductivity of semiconductor thin films, in particular silicon (Si) films, is significantly reduced because of the boundary and surface scattering. It is therefore appropriate to model not only the electron transport and the generation of phonons, but also the transport of non-equilibrium phonons and the coupling of the two non-equilibrium populations of particles to evaluate the electro-thermal effects in nanoscale devices.

In this context, the aim of this thesis is to study (i) the heat transport in Silicon nanostructures and in short channel Si MOSFET (Metal-Oxide-Semiconductor Field-Effect

Transistor), and (ii) the coupling of non-equilibrium electron and phonon transport in this transistor.

In the first chapter, we review the models that can be used to study the transport of electrons and phonons at deep sub-micron dimensions, for which the Boltzmann transport equation (BTE) describes well the transport of both electrons and phonons, together with their coupling in view of electro-thermal simulation.

In the second chapter, a new algorithm to solve the steady-state phonon Boltzmann transport equation (pBTE) under relaxation time approximation is presented. The relaxation time set in this work is validated by the comparison of calculated and experimental thermal conductivity of bulk Si. Both analytic and numerical calculations have been implemented and performed. The analytic model can predict the thermal conductivity for various geometries at different scales by including the phonon-boundary scattering, as well as the roughness scattering.

The novelty in the numerical BTE algorithm is the introduction of the scattering temperature at which the relaxation time is calculated and injected in the steady-state pBTE.

This scattering temperature is given by the heat diffusion equation. The results on the thermal conductivity of Si bulk are presented as a validation of this algorithm which allows us to describe all transport regimes in Si and their physical origin, from diffusive to ballistic regimes. Then, the same procedure is used to analyse the thermal conductivity of GaAs ballistic point contacts.

In chapter 3, we study the self-heating effects in a 20 nm-channel length double-gate MOSFET. The phonon generation in Si bulk and in Si DG-MOSFET is extracted from electron Monte Carlo (eMC) simulation and compared to the simple macroscopic evaluation of the Joule heating. The generation term is used as an input for steady state pBTE solver in this DG-MOSFET. The temperatures, thermal flux and the non-equilibrium transport are investigated for different bias conditions.

The procedure of coupled non-equilibrium electro-thermal simulation in this transistor is finally presented in this chapter. The resulting ballisticity, electron velocity, energy and potential are compared with these of the isothermal eMC simulation. The degradation of drain current is estimated as a function of the source-drain bias and the surface roughness.

Etude numérique des effets thermoélectriques dans les nanodispositifs silicium

Introduction

Le développement des technologies de composants pour les filières CMOS ultimes à grille ultra-courte (L < 20 nm) se heurte à de nombreuses difficultés technologiques, mais également à des limites thermiques qui perturbent notablement les règles de mise à l'échelle communément employées jusqu'à présent. Les fortes densités de courant obtenues dans des zones actives aussi réduites génèrent un important échauffement local (par effet Joule), lié à l'émission de phonons par les porteurs chauds, qui peut conduire à des réductions très sensibles des performances, voire à des défaillances. Ce phénomène est identifié comme un des plus critiques pour la poursuite de l'augmentation de la densité d'intégration des circuits.

Cela est particulièrement crucial dans les technologies SOI (silicium sur isolant), où la présence de l'isolant enterré constitue un frein à l'évacuation de la chaleur.

À l'échelle nanométrique, l'étude théorique de ces phénomènes d'échauffement n'est plus possible par des modèles macroscopiques (coefficient de diffusion de la chaleur) mais nécessite une description microscopique détaillée des transferts de chaleur qui sont localement hors équilibre. Il s'agit donc de modéliser de façon appropriée, non seulement le transport électronique et la génération de phonons, mais aussi le transport de phonons hors équilibre et les interactions phonons-phonons et électrons-phonons.

Le formalisme de l'équation de transport de Boltzmann (BTE) est très bien adapté à l'étude de ce problème. En effet, il est largement utilisé avec succès depuis des années pour l'étude du transport des particules chargées dans les composants semi-conducteurs. Ce formalisme est cependant beaucoup moins commun pour étudier le transport des phonons bien qu'il soit en principe très approprié. La difficulté provient du couplage de la BTE des électrons et celle des phonons.

Au cours de ce travail de thèse, un algorithme de calcul du transport de phonons par résolution directe de la BTE a été développé. Ce modèle est présenté au chapitre 1. Ensuite, le chapitre 2 décrit le couplage au transport électronique simulé par le logiciel "MONACO", basé sur une résolution statistique (ou Monte Carlo) de la BTE, développé dans l'équipe.

Finalement, ce nouveau simulateur électro-thermique a été utilisé pour étudier les effets d'auto-échauffement dans les nano-transistors. L'intérêt principal de ces travaux est de permettre une analyse du transport électro-thermique au-delà du formalisme de Fourier. En effet, il donne accès aux distributions locales de phonons dans le dispositif pour chaque mode de phonon. En particulier, ce simulateur apporte une meilleure compréhension des effets des électrons chauds au niveau des points chauds et leur relaxation dans les accès. 

Chapitre 1 : Introduction

Dans ce chapitre, nous passons en revue les modèles qui peuvent être utilisés pour étudier le transport des électrons et des phonons dans des structures submicroniques en utilisant l'équation de transport de Boltzmann (BTE). On détaille en particulier les modèles de la littérature couplant les deux équations, en vue de simuler le transport électro-thermique [START_REF] Sadi | Monte Carlo study of self-heating in nanoscale devices[END_REF][START_REF] Vasileska | Inclusion of phonon dispersion and its influence on electrical characteristic degradation due to heating effects in nanoscale DSOI devices[END_REF][START_REF] Kamakura | Coupled Monte Carlo Simulation of Transient Electron-Phonon Transport in Nanoscale Devices[END_REF][START_REF] Ni | Coupled electro-thermal simulation of MOSFETs[END_REF].

Parmi les principales méthodes de résolution de la BTE, une résolution statistique de type Monte-Carlo a été retenue pour résoudre le transport électronique. Cette méthode éprouvée permet de décrire rigoureusement le transport d'électrons hors d'équilibre qui a lieu dans les dispositifs réels de taille nanométrique. Nous avons donc utilisé le simulateur MONACO développé dans l'équipe [START_REF] Dollfus | Etudes théoriques de structures pour l'électronique rapide et contribution au développement d'un simulateur particulaire Monte Carlo[END_REF]. Pour le transport des phonons, notre choix s'est porté sur une résolution directe de la BTE, dans l'approximation du temps de relaxation. Nous avons développé un nouveau modèle à cet effet, couplé ensuite à MONACO.

Chapitre 2 : Modèles de transport de phonons et conductivités thermiques des nanostructures

Dans ce chapitre, nous détaillons les modèles utilisés pour décrire le transport thermique dans cette thèse. L'équation de transport de Boltzmann (BTE) est utilisée pour décrire le transport des phonons dans des structures submicroniques. Les modèles utilisés pour décrire les différents mécanismes d'interactions sont présentés. Le modèle numérique de résolution de la BTE est également détaillé. Ensuite, des conductivités thermiques dans des nanostructures (Films, fil Si, GaAs) sont calculées. Enfin, on illustre les différents régimes de transport de phonons du diffusif au balisitique.

Modèle de transport

Formalisme de Boltzmann

Les modèles utilisés dans cette thèse sont basés sur l'équation de transport de Boltzmann (BTE) qui est l'équation d'évolution de la fonction de distribution ( )

, , f r k t . Cette fonction décrit la densité de probabilité d'une particule d'être à la position r et d'avoir un vecteur d'onde k à l'instant t. La connaissance de cette fonction permet de calculer toutes les grandeurs physiques pertinentes liées à la population de phonons : énergies, vitesse… De façon très générale, la BTE s'écrit comme :

r k coll f F f v f f t t ∂ ∂ + ⋅∇ + ⋅∇ = ∂ ∂ ℏ
où r , k et t sont la position, le vecteur d'onde et le temps. v est la vitesse de particule, F r est la force externe appliquée aux particules et h est la constante de Planck réduite. Pour les phonons, il n'y a pas de force appliquée et le terme correspondant disparaît de l'équation.

La détermination l'intégrale du terme de collision coll f t ∂ ∂ est une difficulté majeure dans la résolution de la BTE, spécialement pour les phonons.

Aussi, l'intégrale de collision est souvent simplifiée en écrivant la fonction de distribution hors-équilibre comme :

S coll f f f t τ - ∂ = - ∂
Où τ est un temps de relaxation qui décrit comment la fonction de distribution relaxe vers f S qui est la distribution d'équilibre. Cette simplification est appelée l'approximation du temps de relaxation (RTA). Cette approximation est valable lorsque la diffusion est isotrope. Le temps caractéristique τ peut être vu comme un temps moyen entre deux collisions.

Relation de dispersion des phonons

Dans ce travail, nous utilisons la dispersion isotrope et quadratique proposé par Pop et al. [START_REF] Pop | Monte Carlo simulation of Joule heating in bulk and srained silicon[END_REF]. Cette dispersion donne une bonne approximation dans la direction cristalline (100).

Elle s'écrit sous la forme :

2 0 s s s s v q c q ω ω = + ⋅ + ⋅

Mécanismes d'interaction des phonons

Les interactions à trois-phonons liés aux effets anharmoniques sont de deux types : Normal et Umklapp. Le modèle utilisé dans cette thèse provient du modèle de Holland [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF].

Le temps de relaxation pour les phonons optiques dans le Silicium a été fixé à 3.5 ps [START_REF] Menéndez | Temperature dependence of the fisrt-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects[END_REF].

( ) 

2
U TU B B k T ω ω τ ω ω ω ω - <   =    >       h où 1/ 2
ω est la fréquence qui correspond à q/q max = 0.5, et B L , B TN et B TU sont des paramètres empiriques [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF].

Pour les interactions avec les impuretés, nous avons utilisé le modèle développé par [START_REF] Asheghi | Thermal conduction in doped single-crystal silicon films[END_REF], avec un temps de relaxation qui s'écrit sous la forme ;

( )

1 4 impurity M R x A A A δ δ τ ω - = + + ⋅ , Où M A δ , R A δ et x
A sont de paramètres empiriques décrivant l'influence respectivement de la différence de masse M δ entre une impureté et un atome du cristal, de la différence R δ entre la distance impureté-atome et la distance atome-atome dans le cristal, et enfin du niveau de dopage et de la nature du dopant.

Pour décrire les interactions aux frontières du cristal, nous utilisons le modèle de Holland avec un temps de relaxation de la forme [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] :

1 g b v LF τ = , 1 2 2 L l l π =
Où L est la section de l'échantillon et F est un facteur représentant la correction liée à la rugosité de la surface et au rapport longueur/épaisseur de l'échantillon.

Conductivités thermiques analytiques

Dans le formalisme de Boltzmann la conductivité thermique s'écrit :

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 , 0 exp 1 . . 3 2 exp 1 G s s s s s s LA TA B s X q dq K v q q q k T X ω τ π = = ⋅ ⋅ - ∑ ∫ ℏ . ( 2.17) 
En utilisant les temps de relaxation présentés précédemment, les conductivités thermiques dans des barreaux massifs de silicium ont été calculées pour valider l'approche. Ensuite, des conductivités thermiques dans des nanofilms de Si et des nanofils de Si et de GaAs ont été évaluées. En particulier, les estimations de ce modèle ont été comparées avec succès avec des mesures sur des fils réalisé dans le laboratoire dans le groupe MicroNanoBio. Ces résultats pour des fils de section rectangulaire d'épaisseur 160 nm et de largeurs 80 nm, 140 nm, 200 nm et 260 nm sont rappelés ci-dessous.

Les valeurs de rugosité qui donnent les meilleurs résultats sont raisonnables par rapport à la technologie utilisée.

Résolution numérique de la BTE

Pour aller au-delà de la résolution de la BTE en situation de quasi équilibre (modèle précédent de conductivité thermique), une méthode numérique originale pour résoudre l'équation de Boltzmann stationnaire pour les phonons est présentée.

Ce modèle comprend les phonons LA et TA avec la relation de dispersion quadratique (voir chapitre I) et le modèle modifié de Holland pour les interactions dans l'approximation du temps de relaxation. La solution de l'équation de la chaleur de Fourier est couplée pour estimer la température intervenant dans le terme d'interaction, c'est à dire la température T scatt dans les équations suivantes :

Pour les modes optiques, l'équation de transport s'écrit:

( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , s g s LTO q s s s Tscatt e LTO LTO v q q N r q N r q N r q G q r q τ τ -   ⋅ ⋅ ∇ = - -   + ⋅
Pour les modes acoustiques, l'équation de transport s'écrit:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , g s 
s q s s s Tscattering e LTA LTO LTA s s s s v q N r q N r q N r q G q r q G q r q τ τ τ - →   ⋅ ⋅ ∇ = - -   + ⋅ + ⋅
Le terme G LTO->LTA est un terme calculé selon une approche similaire à celle de [START_REF] Rowlette | Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs[END_REF] afin de prendre en compte la relaxation des modes optiques en modes acoustiques tout en essayant de garantir la conservation de l'énergie.

Les équations sont discrétisées en utilisant l'approche des différences finies. Les températures à chaque extrémité sont fixées. Le transport le long des dispositifs est supposé adiabatique.

Validation et conductivités thermiques. 

Nanofils de GaAs

Par cette approche les conductances thermiques de nanofils de GaAs ont aussi été évaluées.

Une dispersion sinusoïdale et des paramètres d'interaction spécifiques au matériau GaAs massif ont été ajustés. Des conductances thermiques de nano-piliers de 4 nm et 6 nm de diamètre en bon accord avec les valeurs mesurées ont été obtenues. Notre approche montre que pour des piliers nanométriques (6 nm de long) fonctionnent très probablement en régime balistique pour des températures inférieures à 100 K.

Chapitre 3 : Génération de phonons et effet d'auto-échauffement dans les dispositifs de Si

Dans ce chapitre, nous nous concentrons sur la génération de phonons dans le matériau Si massif puis dans des nano-transistors SOI, en particulier dans un MOSFET à double-grille (DG-MOSFET). Puis, nous étudions le transport de phonons dans un tel dispositif grâce au modèle présenté dans le chapitre précédent.

Enfin, le couplage entre les transports d'électrons et de phonons est réalisé. Les effets électro-thermiques sont analysés. 

Génération de phonons

Transport de phonons

Notre modèle inclut la décroissance des phonons optiques vers les modes acoustiques.

Notre étude a mis en évidence deux populations de phonons hors équilibre. L'une est généré par les électrons chauds, l'autre par la décroissance des modes optiques. On constate néanmoins que cet écart est relativement faible et que l'utilisation de la distribution de Bose-Einstein dans ces dispositifs reste globalement pertinente. Le courant est aussi diminué, avec une dégradation de courant qui peut atteindre 8.1% à la polarisation de V g = 0.5V, V ds = 1.5V, comme on peut le voir sur la figure ci-dessous. Il s'avère également que le profil de température et la dégradation de courant dépendent de la rugosité de l'interface silicium/oxyde.

Conclusion

Au cours de ce travail de thèse nous avons développé un algorithme de calcul du transport Numerical simulation can greatly reduce the design cost of new devices. That is mandatory not only for the device engineering, but also for the understanding of underlying fundamental physics. At the beginning, analytical MOS models were relevant in device modeling. But when the gate length was scaled down to the submicron-scale short channel and hot-electron effects became a problem and analytical modeling had to be backed by more advanced models [START_REF] Jungeman | Hierarchical device simulation: the Monte Carlo perspective[END_REF].

The main approaches in ultra-scale semiconductor simulation (for electron and also for phonon transport) is solving the semi-classical Boltzmann equation (BTE), the balance equations derived for different moments of the BTE, the hydrodynamic (HD) models [START_REF] Jungeman | Hierarchical device simulation: the Monte Carlo perspective[END_REF] and the drift-diffusion (DD) one that is the most commonly used and the simplest. Despite their limitations, the two former models are still frequently used in They showed that the DD currents are in good agreement with the MC results for the long single-gate device. For the 20-nm gate transistor, however, DD underestimates the on-current by about 25% due to the increasing role of non-stationary carrier transport and ballistic effects [START_REF] Granzner | Simulation of nanoscale MOSFETs using modified driftdiffusion and hydrodynamic models and comparison with Monte Carlo results[END_REF].

As the size of the device still decreases, quantum models for electron and phonon transport are necessary to include and explain quantum effects such as quantum interference, size quantization and tunneling current. Such attempts make use of the Wigner function In this work, we focus on devices with sizes comparable to the mean free path of electrons and phonons, in which the BTE describes well enough the transport of electrons and phonons.

We describe the electron transport models in section 2 and phonon transport modes in section 3. The main electro-thermal models for transistors are reviewed in section 4. Finally, the aim of the present work will be presented in section 5.

ELECTRON TRANSPORT MODELS

In this subsection, a brief introduction into semi-classical transport models: BTE, driftdiffusion and Monte Carlo is presented. These models are well described in many textbooks and reviews ([Jungeman03], [START_REF] Lungstrom | Fundamentals of carrier transport[END_REF], [START_REF] Vasileska | Semicondutor device modeling[END_REF]). Several parts of this section are inspired by these references.

Boltzmann transport equation

The distribution function ( )

, , f r k t gives the probability of finding carriers at time t, located at a position r , with a wave vector k . The BTE accounts for all possible mechanisms by which f may change [START_REF] Lungstrom | Fundamentals of carrier transport[END_REF]. Here, we represent the BTE in terms of trajectories in position-momentum spaces.

• The phase space and density function

The set of all possible positions r and wave vector k is called the phase space of the system; in other words a set of three coordinates for each position coordinate x, y, z, and three more for each momentum component k x , k y , k z . The entire space is 6-dimensional: a point in this space is ( ) ( ) , , , , , ,

x y z r k x y z k k k =
, and each coordinate is parameterized by time t. The small volume ("differential volume element") is written 3 3 x y z d r d k dx dy dz dk dk dk = .

Since the probability of N particles which all have r and k within 3 3 d r d k is in question, at the heart of the equation is a quantity f which gives this probability per unit phase-space volume, or probability per unit length cubed per unit momentum cubed, at an instant of time t. This is a probability density function: ( )

, , f k r t , defined so that, ( ) , , dN f k r t drdk = (1.1)
is the number of particles which all have positions lying within a volume element d 3 r about r and wave vector lying within a wave vector space element d 3 k about k , at time t.

Integrating over a region of position space and momentum space gives the total number of particles which have positions and momenta in that region:

( )

( ) 3 3 
, , , , , , , ,

x y z x y z positions wave vector

N d r d k f r k t f x y z k k k t dxdydzdk dk k = = ∫ ∫ ∫∫∫ ∫∫∫ . (1.2)
• General equation (principal form)

The general equation can be written such as

force diff coll df f f f dt t t t ∂ ∂ ∂ = + + ∂ ∂ ∂ (1.3)
where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term -accounting for the forces acting between particles in collisions. Expressions for each term on the right side are provided below.

• The force and diffusion terms

Consider particles described by f, each of them experiencing an external force F not due to other particles (see the collision term for the latter treatment).

Suppose at time t some particles have energy ε, position r within element d 3 r and wave vector k within d 3 k . Note that some authors use the particle velocity 

+ ∆ k = k + F ℏ ∆t.
Then, in the absence of collisions, f must satisfy ( )

3 3 3 3 , , , , F f r v t k t t t d rd k f r k t d rd k   + ∆ + ∆ + ∆ =       ℏ (1.4)
Note that the phase space volume element 3 3 d rd k is constant. However, since collisions do occur, the particle density in the phase-space volume 3 3 d rd k changes, so ( )

3 3 3 3 3 3 3 3 , , , , coll coll f dN t d r d k t F f r v t k t t t d r d k f r k t d r d k f d r d k ∂   = ∆   ∂     = + ∆ + ∆ + ∆ -       = ∆ ℏ (1.5)
where ∆f is the total change in f.

Dividing (1.5) by 3 3 d r d k t ∆ and taking the limits ∆t → 0 and ∆f → 0, we have

coll df f dt t ∂ = ∂ (1.6)
The total difference of f is:

( ) ( ) ( ) , , . , , . 
, ,

x y z x y z r k r k f f f f f f f df dt dx dy dz dk dk dk G r k t dt t x y z k k k f dt f dr f dk G r k t dt t f F dt f v dt f dt G r k t dt t     ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂     ∂ = + ∇ ⋅ + ∇ + ∂ ∂ = + ∇ ⋅ + ∇ + ∂ ℏ (1.7)
Where ( ) , , G r k t is the generation rate, r ∇ , k ∇ are the spatial and reciprocal gradient operator, respectively and "⋅" is the dot product.

• General equation (stronger form)

Dividing (1.7) by dt and substituting into (1.6) gives the stronger form of the equation:

r k coll f F f v f f t t ∂ ∂ + ⋅∇ + ⋅∇ = ∂ ∂ ℏ (1.8)
The term on the right hand side is added to describe the effect of collisions between particles; if it is zero then the particles do not collide.

This equation is more useful than the principal one above, yet still incomplete, since f cannot be solved unless the collision term in f is known. This term cannot be found as easily or generally as the others -it is a statistical term representing the particle collisions, and requires knowledge of the statistics the particles obey, like the Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein distributions.

• Integral of the collision term -Relaxation Time Approximation

Determining the integral of the collision term coll f t ∂ ∂ is one major difficulty in the resolution of BTE. The net rate of increase of ( ) , , f k r t due to collisions is a result of the competition between the in-scattering process (carriers at ' k could be scattered to k thereby increasing f) and out-scattering process (carriers at k could scatter out decreasing f) and is given by

( ) ( ) ( ) ( ) ' ' ' ', , ' coll k k f f k S k k f k S k k t ∂ = - ∂ ∑ ∑ (1.9)
The transition rate ( ) ', S k k is the probability per second that a carrier at ' k will scatter to k (assuming that the state ' k is occupied and that state k is empty).

The collision integral is commonly simplified by writing the non-equilibrium distribution function as

S coll f f f t τ - ∂ = - ∂ (1.10)
Where τ is a characteristic time which describes how the distribution function relaxes and f S is a symmetric equilibrium distribution. This approach is called the relaxation time approximation (RTA). This approximation is valid when the scattering is isotropic. The characteristic time, τ, is just the average time between collisions.

In what follows it is better to use the velocity v than / k m ℏ , which is only true for a parabolic band and is not applicable for the full-band simulation. We will use v in the formulas below.

Drift-diffusion model

The widely used drift-diffusion (DD) current equations can be easily derived from the BTE by considering moments of the BTE. For simplicity, a 1-D geometry is considered at the steady state. With the use of the RTA, the BTE may be written as

0 f f f eE f f v x k τ - ∂ ∂ + = ∂ ∂ ℏ (1.11)
The charge e has to be taken with the proper sign of the particle (positive for holes and negative for electrons). The current density is defined as

( ) ( ) , v J x e vf v x dv = ∫ (1.12)
Here, to make easier the access to this definition, the distribution function f is rewritten as a function of position x and velocity v . Note that in the case of a parabolic energy band of effective mass m, or in the so-called effective mass approximation, the velocity v and the wave vector k are related by p mv k = = ℏ . Then, the Eq. 1.11 is rewritten such as

( ) 0 , f f v x eE f f v m v x τ - ∂ ∂ + = ∂ ∂ (1.13)
The definition of current density can be related to Eq. 1.13 after multiplying both sides of Eq.1.13 by v and integrating over v . From the right-hand-side of Eq. 1.13, we get

( ) ( ) 0 1 , v v J x vf dv vf v x dv e τ τ   - = -     ∫ ∫ (1.14)
The equilibrium distribution function is symmetric in v , and hence the first integral is zero.

Therefore, we have

( ) ( ) 2 * , v v e f d J x e E v dv e v f v x dv m v dx τ τ ∂ = - - ∂ ∫ ∫ (1.15)
Integrating by parts, we have

( ) ( ) ( ) , , v v f v dv vf v x f v x dv n x v ∞ -∞ ∂   = - = -   ∂ ∫ ∫ (1.16)
And we can write

( ) ( ) 2 2 
, 

v v f v x dv n x v = ∫ (1.
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n p p p dn x J x q n x E x q D dx dp x J x q p x E x q D dx µ µ = + = - , (1.18) 
respectively, where q is used to indicate the absolute value of the electron charge.

For the 3D geometry and at stationary state, Eq. 1.19 can be extended under the form

( ) ( ) ( ) ( ) , , ( , ) , , ( , ) 
n n n p p p J r t q n r t E q D n r t J r t q p r t E q D p r t

µ µ = + ∇ = - ∇ (1.19) With B n n k T D q µ = and B p p k T D q µ = .
The complete DD model is based on the Eq. 1.19 and the following set of equations Continuity equations:

( ) ( ) ( ) ( ) ( ) ( ) , 1 , , , 1 , 
, In the approach of the DD model, the carrier temperatures are assumed to be in equilibrium with the lattice temperature that is T C = T L . However, in the presence of a strong electric field, electrons gain energy from the field and the temperature T n of the electron gas is elevated. To inform about the average carrier energy is available in form of carrier temperature, the hydrodynamic (HD) model is introduced. Many parameters in this model depend on this average carrier energy, e.g., the nobilities and the energy relaxation times. In the computational electronics community, the necessity for the HD transport model is normally checked by comparison of simulation results for HD and DD simulations [START_REF] Vasileska | Semicondutor device modeling[END_REF].

n n p p n r t G r t J r t t q p r t G r t J r t t q ∂ = + ∇ ∂ ∂ = -∇ ∂ (1.20) Poisson's equation: ( ) ( ) ( ) , , D A E q p r t n r t N N ε   ∇ = - + +   ( 

Particle based Monte Carlo method

In the previous sub-section, we have considered the drift-diffusion model that was derived from the BTE. This approximation of the BTE, at some limit, becomes inaccurate or fails completely. In these cases, the Monte Carlo (MC) method is widely used. The MC method solves the BTE by simulating the trajectories of individual carriers. They move through a device under the influence of an electric field and random scattering forces. If the number of simulated particle trajectories is large enough, the average results are a good approximation of the behavior of the device. By using a large ensemble of particles, the time-dependent evolution of electron and hole distributions may be simulated.

To simulate a single free flight stopped by a scattering event, a sequence of random numbers is generated. The first number quantifies the free-flight duration. This duration is determined by a random number r varying from 0 and 1, and by the sum of all scattering rates at a given energy Γ 0 . To simplify the treatment, we introduce a fictitious scattering mechanism whose scattering rate always adjust itself in such a way that the total rate is a constant in time. Hence, the free flight duration is given by

0 ln r r t = - Γ . (1.22)
During the free flight the carrier moves in accordance with the Newton's law. At the end of the free flight, the carrier's position and momentum are updated according to the following equations ( ) ( )

0 F k t k t = + ℏ and ( ) ( ) ( ) 0 0 ' ' t r t r v t dt = + ∫ (1.24)
According to the scattering effects, we calculate the magnitude and direction of the wave vector after the scattering event. In this step, two more random numbers are then generated to specify the polar and azimuthal angles after scattering.

We assume that the interaction process is instantaneous, which is valid as the interaction time is very small compared to the free flights duration. After the interaction, a new free flight in real and reciprocal spaces occurs. To determine the electrostatic field which governs the particle motion during the free flight, the MC simulator is self-consistently coupled with Then, the contribution of each carrier to the electronic concentration n e is weighted by the time t m passed in each mesh, such that n e = n e + t m /∆t. The solution of the Poisson's equation is performed periodically to update the electric field within the device. The time step δt between two solutions is adjusted according to the dielectric relaxation time. The processes are iterated until the stationary state is reached, i.e. when the carrier flux becomes constant.

For moderate and high carrier energies, where MC simulations are typically employed, the energy bands are considered within the non-parabolic approximation, this is frequently used as the model for conduction bands.

For extremely high energies, particularly in the presence of strain, the transport properties in realistic Si devices are affected by a strong anisotropy of the valence band [START_REF] Thompson | Uniaxial-process-induced srained-Si : extending the CMOS roadmap[END_REF], and a full-band description is necessary.

In the next paragraphs, we describe the general principle of our particular simulator MONACO. MONACO has been developed by our group for 30 years [Hesto84, Galdin92, Brisset94, HDRDollfus99, SaintMartin04, HDRBournel06, Huet08, Querlioz08]. A nonparabolic band structure is used for electrons, while a full-band description is used for hole transport in double gate MOSFETs.

Analytic band structure -Conduction band

The electronic band structures are generally described by an analytic approach based on the effective mass approximation, which provides a direct relationship between wave vector and energy.

The minimum of the conduction band in Si is made of six ellipsoidal valleys which are along the three principal axes and are centered at 85% of the X-Γ distance. These valleys, called ∆ valleys, are characterized by a longitudinal effective mass m l and a transverse effective mass m t . Taking into account the non-parabolicity coefficient α, leads to energy dispersion is written as [START_REF] Dollfus | Etudes théoriques de structures pour l'électronique rapide et contribution au développement d'un simulateur particulaire Monte Carlo[END_REF] ( ) ( ) ( ) ( ) ( )

2 2 2 0 1 2 l t l t k k E k E k m m m α   + ⋅ = +     ℏ (1.
exp nk nk ik r u r Φ = ⋅ , (1.26)
where n is the band number, k the reciprocal lattice vector and r the (real space) position vector of the atoms.

Using the Bloch theorem and assuming that eigenfunctions (wave functions) and eigenvalues (energies) at state k = 0 are known, the Schrödinger equation writes:

2 2 0 0 0 2 k nk nk nk nk k H u H k p u E u m m     = + ⋅ + =       ℏ ℏ (1.27)
where H 0 is the Hamiltonian at k = 0, m 0 the free carrier mass, p the carrier momentum and E nk the energy associated with a carrier wave vector k and a band n.

The Hamiltonian H is projected on a truncated basis, here the Zinc-Blende Γ-centered

Bloch functions. The resulting matrix is diagonalized to obtain the eigenenergies and wave functions. Adding spin-orbit interaction gives a better description of the band structure but doubles the size of H. The matrix elements of H depend on interband coupling parameters and eigenenergies at k = 0. The matrix elements are adjusted to fit the band gap and the effective masses around specific k-points. The accuracy of the resulting band structure depends on the number of bands that are taken into account (i.e. the number of Bloch functions of the truncated basis). When "full-zone" k . p methods are considered, a great number of interband coupling parameters is needed. In this work, the k . p approach with 30 bands and spin-orbit coupling is used. Due to the lack of experimental data, they are determined thanks to ab initio calculations. To include mechanical strain in the calculation, the other band calculation methods (EPM, TB) treat the strained crystal as a new system. However, taking strain into account in the k . p formalism, as first introduced by Bir and Pikus [Bir & Pikus74], is straightforward using correctly adjusted deformation potentials [START_REF] Rideau | Strained Si, Ge and Si 1-x Ge x alloys modeled with a fisrtprincibles-optimized full-zone k.p method[END_REF].

The influence of biaxial strain, extracted from [Aubry-Fortuna11] can be seen on Fig. 1.3.

For unstrained Si, the "heavy hole" band (hereafter called the 1st band) shape is very anisotropic and the "light hole" band (hereafter called the 2nd band) shape is more isotropic.

Under strain, the degeneracy at the Γ point is lifted. For compressive strain, the nature of the bands is similar to the unstrained case. For tensile strain, the nature of the bands is inverted at low energy and returns to the unstrained case shape at higher energies. For the 2nd band, the effective mass in the [100] direction does not vary significantly with strain. For the 1st band, it shows a 20% decrease under compressive strain and a 3% decrease under tensile strain. 

PHONON AND PHONON TRANSPORT MODELS

In this subsection, we summarize briefly the basic notions related to heat conduction in a crystalline material. The main vailable models to study the thermal transport in Si such as

Fourier model and BTE model (pBTE) will be described. In particular, we will focus on the different approaches to solve the pBTE.

Lattice vibrations -phonons

The fundamentals of the lattice dynamic properties of a crystal have been widely described [START_REF] Ziman | Principles of the theory of solids[END_REF], [START_REF] Kittel | Introduction to solid state physics[END_REF], [START_REF] Yu | Fundamentals of semiconductors-Physics and materials properties[END_REF].

A crystal may be treated as a three dimensional array of massive particles interacting with each other through interatomic forces. For simplicity, a one dimensional chain with two atoms per unit cell is considered (as illustrated in Fig. 1.4). These atoms which are treated like hard spheres have masses M 1 and M 2 , connected by springs with the spring constant C. The lattice constant is a. The equations of motion for this atomic chain can be written in the form of coupled oscillators as:

( ) ( ) 2 1 1 2 2 2 1 2 2 2 n n n n n n n n d u M C v v u dt d v M C u u v dt - +  = + -     = + -   (1.28) M 1 5x 10 1 Spring constant C a/2 +u n -v n-1 a/2 +v n -u n
Where u n , u n+1 are the displacement from the equilibrium positions of n th and (n+1) th particles of mass M 1 ; v n and v n-1 are the deviations from the equilibrium positions of n th and (n-1) th particles of mass M 2 .

By considering that the plane waves of these oscillators propagate as:

inqa i t s inqa i t s u u e e v v e e ω ω - -  = ⋅ ⋅   = ⋅ ⋅   (1.29),
The dynamic matrix governing the dispersion behavior of the system is: 

( ) ( ) 2 1 2 2 2 1 0 1 2 iqa iqa C M C e u v C e C M ω ω - -   - - +     ⋅ =     - + -     . ( 1 
1 3 i G -periodic where ( ) 1 3 i
G -are the reciprocal lattice vectors. The dispersion relationships for the optical and acoustic branches are given by: ( )

2 2 2 1 2 1 2 1 2 4sin 1 1 1 1 qa C C M M M M M M ω +     = + + + -         (optical branch), (1.31) ( ) 2 2 2 1 2 1 2 1 2 4 sin 1 1 1 1 qa C C M M M M M M ω -     = + - + -        
(acoustic branch).

(1.32)

These vibrational branches are illustrated in Fig. 1.5. The group velocity is the velocity of a wave packet and is defined as

g k v ω = ∇ (1.33)
If there are p atoms in the primitive cell, there will be 3p branches in the phonon dispersion . In the case of isotropic three-dimensional crystal (V = L 3 ), we will have:

( ) 2 2 2 s s g Vq d D d v ω ω ω π = , (1.34) 
where g s is the degeneracy of the considered branch (g s = 1 for LA and 2 for TA). The isotropic dispersion relation in Si has been proposed by E. Pop [START_REF] Pop | Monte Carlo simulation of Joule heating in bulk and srained silicon[END_REF], and coworkers in 2004 by using quadratic polynomials, which offers a good fit in the (100) crystal direction. These quadratic dispersions are written as:

2 0 s s s s v q c q ω ω = + ⋅ + ⋅ . (1.35)
The quadratic dispersion coefficients are represented in Table 1.1. The resulting dispersions are plotted in Fig. 1.7a and the group velocity as a function of frequency in Fig. This approximation is frequently used to treat the phonon transport (

[Pop05], [Lacroix05], [Lacroix06], [Sinha06], [Rowlette08], [Martin09], [Terris09], [Mittal10],[ Vasileska10] 
[Ramayya12]).

Phonon distribution and related quantities

The vibrational energy can be described by the quantum theory of phonons [START_REF] Kittel | Introduction to solid state physics[END_REF].

Phonons are quanta of the lattice vibrational energy. The energy of a vibrational mode can be written as:

1 2 n ε ω   = +     h , (1.36)
where n is the phonon occupation number, h is the Planck constant and ħω/2 is the zero point energy of the mode.

The equilibrium distribution of phonons at a temperature T is given by the Bose-Einstein distribution ( )

1 exp 1 B E B f k T ω ω - =   -     h , (1.37) 
where k B is the Boltzmann constant.

The phonon density corresponding to all phonons of all polarizations is obtained by integrating over all phonon modes ( ) ( )

s B E s s N D f g d ω ω ω ω - = ⋅ ⋅ ⋅ ∑ ∫ (in m -3 ) (1.38)
where s is the polarization mode. The phonon density as a function of energy for each phonon mode is plotted in Fig. 1.8. The total lattice energy corresponding to all phonons of all polarizations is obtained by integrating over all phonon modes ( ) ( )

s B E s s E D f g d ω ω ω ω ω - = ⋅ ⋅ ⋅ ⋅ ∑ ∫ h , (1.39) 
The volumic phonon heat capacitance ( )

, C T ω is defined by ( ) 2 2 1 X B X E X e C k T e ∂ = = ∂ - , (1.40) where / B X k T ω = h .
The conductivity coefficient K is also defined with respect to the steady-state flow of heat across a long bar with temperature gradient dT/dz:

dT J K dz = - , (1.41) 
Where J is the flux of thermal energy (energy transmitted across unit area per unit time).

In the next subsections, we will focus on some common models used to describe for the phonon transport, such as the heat diffusion model and BTE model for phonon (pBTE). We will review the main dispersion relationships that are used: gray model, semi-gray model and non-gray model. Then the main resolution methods will be presented: analytical solution, the discrete ordinate method and statistical model (Monte Carlo).

Heat diffusion equation and Fourier's law

The phonons travel through the seconductor and could engage anharmonic interactions with another phonon (phonon-phonon interaction), with electrons, with impurities or with geometric boundaries. Phonon-phonon scattering helps to restore the thermodynamic equilibrium. If the characteristic size is much larger than the mean free path of phonons (the mean distance between two scattering events), the number of scattering events is large. A local thermodynamic equilibrium is achieved and the heat transport occurs within the diffusion regime [MazumderJHT01]. Under these conditions, the heat transport is governed by the standard Fourier heat equation (or diffusion equation)

( ) / T T t K T ∂ ∂ = ∇ ⋅ ∇ , (1.42) 
Where K T is the thermal conductivity that depends on the "local" temperature.

When the temperature difference is small (i.e. K T = K is assumed uniform), the equation can be simplified into:

/ T t K T ∂ ∂ = ∆ . (1.43)
If the characteristic size of the device is smaller than the phonon mean free path, which is approximately 300 nm in Si at room temperature [START_REF] Ju | Phonon scattering in silicon films with thickness of order 100nm[END_REF], scattering events are rare, and then a thermodynamic equilibrium even local may not exist in the active region of the semiconductor device. That is the length scale limitation of this model.

Models based on Boltzmann transport equation (BTE)

The general form of the BTE is described in subsection 1.2.1 (Eq. 1.8). For phonons which are quasi-particles and have no charge, i.e. there is no force term in the BTE becomes

g r coll f f v f t t ∂ ∂ + ⋅∇ = ∂ ∂ , (1.44) 
where f = f( r , k ,t) is the distribution function of phonons. The space and momentum dependences make the equation very expensive to solve in terms of computation time. A number of approximations have been developed to make it tractable.

As the scattering term is very complex (like in the BTE for electrons), it is common to introduce the relaxation time approximation (RTA) to solve the pBTE:

( ) ( ) ( ) , , , , , eq g f r k t f T f r k t v f t ω τ ∂ - + ⋅ ∇ = ∂ . (1.45)
Here, f eq is the equilibrium Bose-Einstein distribution function and it depends on both frequency and temperature. The time τ is the effective relaxation time associated with all scattering processes.

Approximation of the dispersion relationship

3.4.1a. Non gray model

The complete details of this model have been described in [START_REF] Narumanchi | Submicron heat transport model in Silicon accouting for phonon dispersion and polarization[END_REF]Narumanchi05]. The acoustic branches are divided into (N bands -1) frequency bands of spread ∆ω i centered around ω i . The number and spread of the bands are chosen to satisfactorily compute the dispersion curve.

In this model, the pBTE is written for the energy density associated with each band in each angular direction e ω (J/m 3 ). 

( ) ( ) ( ) ( ) " "' " 0 " 4 4 ˆ"' , , ; , 1 1 ; 4 4 
= = = Ω = Ω = ∫ ∫ ∫ ℏ , (1.46) 
Where "' e ω is the volumetric energy density per unit frequency per unit solid angle (Js/(m 3 .sr.rad)), " e ω is the volumetric energy density per unit solid angle (Js/m 3 sr) for a given frequency band, r is the position vector, and ŝ is the unit direction vector, 0 e ω is the angular average of the volumetric energy density e ω . The frequency integration is done over a discrete frequency band ∆ω i .

The optical mode for Si has a negligible group velocity ( )

0 g v ≈
and therefore the pBTE for this mode can be written as

1 0 0 1 oj bands ref T N o oj vol j T e C dT e q t γ - =   ∂   = - +   ∂   ∑ ∫ , ( 1.47) 
where

o ref T o o T e C dT = ∫ , ( ) 
0 0 1 1 1/ oj oj oj d ω γ τ ω ω τ = =

∫

is the band-averaged inverse relaxation time for the interaction between the optical phonons and the j th band of an acoustic branch, and C o is the optical mode specific heat. The interaction temperature T oj is defined below in Eq. 1.49. The term q vol is the volumetric heat generation. In microelectronic applications, it would represent the transfer of energy from the energetic electrons to the optical phonons.

The pBTE for the i th frequency band of the acoustic branches (valid for both LA and TA)

in the direction ŝ is written as

( ) ( ) " " 0 " " 1 1 1 ˆ4 ij bands ref T N i i i i i ii i i ij j T j e v se e e C dT e t γ γ π = ≠     ∂     + ∇ = - + -     ∂       ∑ ∫ (1.48) 1 i i i v v d ω ω ω ω ∆ = ∆ ∫ ; i i i C C d ω ω ω ∆ = ∫ ; ( ) " i i e f D d ω ω ω ω ω ∆ = ∫ ℏ ; ( ) 1 1 1 / i ii ii i ii d ω γ τ ω ω τ ∆ = = ∆ ∫ ; ( ) 1 1 1 / i ij ii i ij d ω γ τ ω ω τ ∆ = = ∆ ∫ ;
Where v i is the band-average group velocity, C ωi is the specific heat per unit frequency in band i, C i is the band-integrated specific heat, " i e is the band-integrated energy density per unit solid angle, ii γ is the band-averaged inverse relaxation time for interaction time for interaction of band i with itself, and ij γ is the band-averaged inverse relaxation time for interaction time for interaction of band i and band j. T ij is an interaction temperature between the two bands i and j. In order to satisfy energy conservation, the scattering terms on the right hand side of the pBTE (Eq. 1.47) must cancel out the sum over all bands. This requirement leads to

ij ji T T = ; and 1 1 i i ij ji d d ω ω ω ω τ τ ∆ ∆ = ∫ ∫ (1.49)
Where i is any frequency band in a given phonon branch and j is any other band, in the same or different branch, with which energy is being exchanged.

The equilibrium energy density is defined as

0 " 4 1 1 4 4 4 i ref T i i i i T e e e d C dT π π π π = Ω = = ∫ ∫ (1.50)
Where T i is the temperature associated with the i th band of the branch considered.

To satisfy energy conservation [START_REF] Narumanchi | Submicron heat transport model in Silicon accouting for phonon dispersion and polarization[END_REF], the following condition is also required:

ij j i ref ref ref T T T j j i i i j i j T T T C C C C dT dT dT ω ω ω ω   + = +     ∆ ∆ ∆ ∆   ∫ ∫ ∫ (1.51)
This is satisfied for all i and j band combinations (with i ≠ j) including the optical phonon band. Eq. 1.51 serves as the definition of the interaction temperature T ij . An overall lattice temperature T L may be defined as follows [START_REF] Narumanchi | Submicron heat transport model in Silicon accouting for phonon dispersion and polarization[END_REF] 1

1 o i L bands ref ref ref T T T N total o i i T T T e CdT C dT C dT - =     = = +     ∑ ∫ ∫ ∫ (1.52)
Where C is the total specific heat of the solid, and e total energy density.

This model has been checked [START_REF] Narumanchi | Submicron heat transport model in Silicon accouting for phonon dispersion and polarization[END_REF]. It recovers the bulk thermal conductivity of Si at different temperatures [Narumanchi05].

3.4.1b. Gray model

In this approach, all phonons are assumed to have the same group velocity and relax to equilibrium with the same relaxation time τ. The pBTE becomes ( )

" 0 " " ˆvol e e e vze q t τ ∂ - + ∇ = + ∂ (1.53) ( ) 0 " 4 1 1 4 4 L ref e e d C T T π π π = Ω = - ∫ (1.54)
Where e " is the energy density per unit solid angle, e 0 is the equilibrium energy density, C

is the total specific heat, and T L is the lattice temperature. The value of v for Si is chosen to be 6400 m/s [Klemens69], while C is 1.66×10 6 J/m 3 K at 300 K. The relaxation time of τ = 6.28 ps is obtained from the relation K = 1/3Cv 2 τ, where K = 142.3 W/mK for Si.

3.4.1c. Semi-Gray model

The next modeling approach is a semi-gray model proposed in [START_REF] Sverdrup | Sub-continuum thermal simulation of deep sub-micron devices under ESD conditions[END_REF][START_REF] Sverdrup | Sub-continuum thermal simulation of heat conduction in silicon-on-insulator transistors[END_REF] and it is compared with other approaches in the work of S. V. J. Narumanchi et al. [Narumanchi05]. In this approach, the phonons are divided into propagating and reservoir modes. Propagating mode phonons are responsible for transporting energy while the reservoir mode phonons are purely capacitive which means that they are only involved in energy storage. Longitudinal acoustic phonons are considered to be propagating modes, while the transverse acoustic and optical phonons are lumped together in the reservoir mode. The pBTE is written as

( ) ( ) " " " 1 4 ˆP L ref p p p p C T T e e v se t π τ - - ∂ + ∇ = ∂ (1.55) ( ) ( ) ( ) R ref R L ref R R ref R vol T T C T T C T T C q t τ ∂ - - - - = + ∂ (1.56) ( ) " 4 
P P ref P C T T e d π - = Ω ∫ (1.57) R R P P L R P C T C T T C C + = + (1.58)
Where T L is the lattice temperature, T P is the propagating mode phonon temperature, T R is the reservoir mode phonon temperature, C P and C R are the propagating and reservoir mode specific heats, respectively, τ is the relaxation time, v P is the propagating mode group velocity, " P e is the propagating mode energy density per unit solid angle (J/m 3 sr). T L is the overall lattice temperature and is to be interpreted as an average value of the propagating and reservoir mode temperatures as expressed in Eq. 1. 58. The value of

C P is 0.32×10 6 J/m 3 K, τ is 74.2 ps, v P is 4240 m/s [S. Sverdrup00, Sverdrup01].
The semi-gray model captures some of the complexities of the phonon dispersion curves at a relatively low cost. Since the reservoir mode equation does not involve direction, it is relatively inexpensive to compute, even if the cost of the propagating mode computation is similar to that of the gray model. However, the value of τ Ycomputed using this model is typically far larger than the value of typical optical-to-acoustic relaxation times, leading to temperature overestimation in FET simulations [Narumanchi03].

The different approaches to solve the pBTE

In the previous subsection, we have presented different models based on the dispersion relationship approximations. In this subsection, we present three models to solve BTE:

analytical model, the discrete ordinate method (DOM) and the Monte Carlo (MC) model.

3.4.2a. Analytic model -Kinetic theory of gases

Pioneer works by Klemens [Klemens51], Callaway [START_REF] Callaway | Model for lattice thermal conductivity at low temperatures[END_REF] and Holland [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] have used analytical solution as they assume a single relaxation time approximation. Within this formalism, boundary and impurity scattering as well as three-phonon processes (Normal and Umklapp) contributions to phonon scattering can be described by a single relaxation time.

The resulting models have successfully predicted the bulk thermal conductivity for various semiconductors (Si, Ge, with several dopant concentrations) at low and high temperatures.

These models are derived from the pBTE under the relaxation time approximation (RTA).

The steady-state pBTE for the mode s (Eq. 2.11) in direction x can be reduced to

( ) ( ) ( ) ( ) , scatt s s T s x s n n n v x ω ω ω τ ω - ∂ = ∂ , (1.59) or to ( ) ( ) ( ) ( ) ( ) , , . . scatt s s s T s s x n n n v x ω ω ω τ ω ω ∂ = + ∂ . (1.60) By writing ( ) ( ) s s n n T x T x ω ω ∂ ∂ ∂ = ⋅ ∂ ∂ ∂ , we have ( ) ( ) ( ) ( ) ( ) , , . . scatt s s s T s s x n T n n v T x ω ω ω τ ω ω ∂ ∂ = + ⋅ ∂ ∂ (1.61).
The heat flux is calculated as:

( ) ( ) , .
.

s x x s j v n d ω ω ω ω ω = ∫ h . (1.62)
By substituting Eq. 1.61 in Eq. 1.62, the heat flux becomes We rewrite here the expression of the phonon number (Eq. 1.38)

( ) ( ) , , , 
s symmetric s x s x s x n j j v d T ω ω ω ω ω ∂ = + ⋅ ⋅ ⋅ ∂ ∫ h , ( 1 
( ) ( ) ( ) ( ) 3 3 1 1 2 exp exp B B dq n d DOS d q k T k T ω ω ω ω ω ω π = ⋅ = ⋅             ∫∫ ℏ ℏ .
In the spherical coordinates, the term

3 dq is 2 sin q dq d d θ θ ϕ , with [ ] 0, θ π = , [ ] 0, 2 ϕ π = .
By subtitling this term and integrating over θ andϕ , and using the Fourier's law / x j K R x = ⋅ ∂ ∂ , we obtain the common thermal conductivity formula as

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 , 0 exp 1 . . 3 2 exp 1 G s s s s s s LA TA B s q X dq K v q q q k T X ω τ π = = ⋅ ⋅ - ∑ ∫ ℏ .
(1.64)

3.4.2b. The Discrete Ordinate method

In the phonon transport problem, this numerical tool is frequently used to solve the BTE in a form similar to the radiative heat transfer equation (RTE) which was originally proposed by Majumdar [Majumdar93]. In this method, a set of discrete directions (or ordinates) is chosen and directional fluxes are evaluated for these directions.

A specific spectral intensity 

( ) ( ) 2 , 0 , 2 2 , , 2 exp / 1 4 g p p p g p B v d I T v v k T ω ω ϕ ω ω ω ω ω π ω π = ⋅ ⋅ - h h , (1.66) 
where , g p v ω is the group velocity and , p v ϕ ω is the phase velocity.

In complete generality, the reflexion conditions at a point r on the wall, in the direction u can be written

( ) ( ) ( ) , , , ' 0 , , ' ' ' , d s p p p u n I r u I r u u n d I r u ω ω ω ρ ρ π ⋅ < = ⋅ Ω + ∫ , (1.67)
where û is the incident specular direction relatively to u and ' u is the other incident direction. d ′ Ω is an infinitesimal part of the solid angle associated to the direction ' u . ρ d is the diffusive reflectivity and ρ s corresponds to specular reflectivity.

In the in-plane configuration, with three direction cosines (µ, η, ξ), the discretized equation in rectangular mesh in the (x, z) plane reads , ,

p p p I I I I x z ω ω ω ω ω ω µ ξ κ κ ∂ ∂ + + = ∂ ∂ (1.68) 0 , , , , p p p 
To obtain the intensity field, one can use the following iterative integration procedure. The equation is solved by starting from one of the surfaces on which the temperature is imposed.

This solution is worked out given the initial temperature field in the medium. It is then solved in the same way starting from the second surface. The new temperature field is calculated at the end of the iteration by expressing the conservation of the heat flux in the steady-regime ( 0 q ∇ = ). The integral phonon intensity equation over the frequencies and solid angles is then [START_REF] Volz | Thermal nanosystems and nanomaterials[END_REF] 0

I d d I d ω ω ω ω κ ω κ Ω = Ω ∫ ∫ (1.69)
At each point, the temperature satisfies the previous relationship. The iterative process is continued until both the intensity and temperature fields converge, in accordance with a previously specified criterion [START_REF] Volz | Thermal nanosystems and nanomaterials[END_REF]. Majumdar [Majumdar93] used this method to study the steady-state heat transport in diamond thin films. By including the quadratic dispersion for Si (Eq. 1.35) Terris et al.

[Terris09-1, Terris09-2] obtained the thermal conductivity of Si bulk and of Si nanowires in good agreement with the experimental data.

3.4.2c. Monte Carlo method

As described in subsection 2.3, as in most statistical techniques, the accuracy of the results is related number of particles in the sample. This method (MC) is widely used to solve the Using this method, H. Hamzeh and F. Aniel [Hamzeh11] calculated the scattering rates for all individual three-phonon processes with only one adjustable parameter. They also studied the zone-centre LO lifetimes and the decay dynamics, the distributions evolution with time in GaAs and InP.

COUPLED ELECTRON-PHONON TRANSPORT IN SI-FET AND SI-MOSFET

As mentioned at the beginning of this chapter, electro-thermal simulation of sub-micron electron devices is of great interest for both academia and industry, due to the fact that self-heating may cause device performance degradation in submicron devices [START_REF] Ni | Coupled electro-thermal simulation of MOSFETs[END_REF]. When the transistor dimensions become sub-micron, the thermal model should be carefully chosen.

As the MC method can capture the complexities of electron transport in real device and gives electrical characteristics extremely close to experimental results, we review the coupled electron-phonon transport simulation of Si transistors by using the MC method for electrons and various thermal models. 

INTRODUCTION

In this chapter, we will summarize the basic notions related to the phonon heat conduction in a crystalline material. The phonon dispersion and phonon scattering mechanisms will be described. We will focus on the particular case of Silicon (Si). By using an isotropic and quadratic dispersion approximation, a new set of scattering parameters will be introduced and implemented to reproduce the thermal conductivity of bulk Si.

In equilibrium conditions (300K), the quasi-equilibrium heat conduction is principally carried by acoustic phonons in a sample where a small temperature gradient is forced. In out of equilibrium, a situation that occurs in conventional operation of transistors, the decay of hot optical phonons into acoustic phonons plays an important role too. A model of this decay mechanism is proposed and used to simulate realistic devices. As mentioned in the first chapter, at the micro-and nano-scales, the phonon transport can be well described by the BTE. An analytic model is presented to adjust the scattering rates and to evaluate the dependence of the thermal conductivity on the size and the geometry of the sample. This model is also used to interpret recent measurements in silicon nanowires.

In the third part of this chapter, we present a numerical algorithm developed in the present work and specially dedicated to directly solve the steady-state BTE under the relaxation time approximation considering the quadratic phonon dispersion. The main advantage of this method is its ability to point out the local thermodynamics of phonons along the sample. After having validated the model for Si bulk, different phonon transport regimes are investigated, from the diffusive regime to the ballistic regime.

SCATTERING MECHANISMS

Phonons in a crystal are scattered according to a variety of mechanisms, including threephonon interactions, scattering on lattice imperfections as vacancies and impurities, and boundary scattering [START_REF] Murthy | Review of multi-scale simulation in sub-micron heat transfer[END_REF]. Scattering mechanisms are either elastic when the energy (or frequency) of the phonon remains unchanged, or inelastic when the energy (or frequency) are changed during the scattering event. Scattering due to impurities are considered to be elastic [Klemens58]. Boundary scattering is an important type of scattering encountered in microand nano-structures that induces phonon reflection at sample boundaries with a fraction of specular/diffusive reflections. The two main types of inelastic scattering processes for phonons are normal (N) and Umklapp (U) phonon-phonon scattering processes that are described below. The decay of optical phonons into acoustic modes is also included.

Three-phonon scattering for acoustic phonon

The three-phonon scattering processes are related to the anharmonic nature of the interatomic forces and the discrete nature of the lattice structure. Phonon-phonon scattering involving four or more phonons is important only at temperature much higher than the Debye temperature (645K for silicon) [START_REF] Murthy | Review of multi-scale simulation in sub-micron heat transfer[END_REF] and are not considered here since 645K is higher than the operating temperature of most electronic devices.

Both Normal (N) and Umklapp (U) processes are governed by energy and momentum conservation rules

' " ω ω ω + ↔ (Normal and Umklapp) (2.1a) ' " q q q + ↔ (Normal) (2.1b) ' " q q q G + ↔ + (Umklapp) (2.1c)
Where ω, ω' and ω" are the angular frequencies of the interacting phonons, q , ' q and " q are their wave vectors and G is a reciprocal lattice vector.

In normal processes the total wave vector is conserved (Eq. 2.1b). In Umklapp processes (or U processes) that is not the case. A typical Umklapp process is shown in Fig. 2.1 for a linear lattice. After a U process two phonons, both having a positive q x , may generate a phonon with a negative q x [START_REF] Kittel | Introduction to solid state physics[END_REF]. N processes do not impact the heat transfer because they conserve the momentum. However, they can change the frequency distribution of phonons, and hence indirectly affect other scattering processes that depend on frequency. U scattering do not conserve the crystal momentum directly, but must satisfy Eq. 2.1c. U processes create a resistance to heat transfer and must be modeled carefully. Some three-phonon interactions are listed in the Table 2 Using a perturbative approach in combination with calibration to experimental data, Holland [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] developed frequency and temperature dependent expressions for the relaxation time of scattering for LA and TA phonons as ( )

2 3 LA, + NU L B T Normal Umklapp τ ω = (2.2a) ( ) 1 4 TA, N TN B T Normal τ ω -= (2.2b) ( ) ( ) 1/2 1 2 1/2 0 TA, ω < ω / sinh TA, ω > ω , U TU B Normal for B Umklapp for k T τ ω ω -   =          ℏ (2.2c)
where 1/ 2 ω is the frequency corresponding to q/q max = 0.5, and B L , B TN and B TU are empirical parameters [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF], that need to be calibrated against experimental data.

Holland made two important assumptions for calculating these time-scales: (1) only high frequency TA phonons undergo U processes and (2) LA phonons do not undergo U processes at all. Despite these strong assumptions, the expressions provided by Holland continue to be popular because of their simplicity and the ease of their implementation. It has been checked by A. Mittal [START_REF] Mittal | Monte Carlo study of phonon heat conduction in Si thin films including contributions of optical phonons[END_REF] from detailed MC simulation that these parameters give reasonable results.

By using this model with a linear dispersion, Holland [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] obtained the thermal conductivity of Si bulk in good agreement with the experimental one. The linear dispersion is expressed as [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] ( ) , if 

2 s g s G q v q q ω = ⋅ ≤ (2.3a) ( ) ' , if 2 2 2 S gs g s G G G q v v q q G ω   = ⋅ + ⋅ - < ≤     . ( 2 
( ) ( ) 1 1 2 FWHM cm cm - - Γ = .
(2.4)

The mean lifetime of optical phonons can be estimated as At 300 K, the lifetime of optical phonon is estimated to be 3.5 ps, while at 400 K, its value drops to about 2.7 ps. By using molecular dynamic and lattice dynamic simulations, and taking into account the normal mode decay, A.S. Henry and G. Chen have found that the relaxation time of these phonon modes varies very weakly, in the order of some picoseconds.

( ) ( ) 1 1 1 / 2 rad s c cm τ π - = = Γ × Γ . ( 2 
In addition, the group velocity of LTO modes is noticeably smaller than the one of acoustic phonons. Therefore, we use a relaxation time of 3.5 ps for the LTO modes in this work.

Phonon mode coupling -Optical phonon decay into acoustic phonon

The anharmonic decay of phonons into vibrations of lower frequency is a crucial mechanism for energy relaxation in semiconductors as it controls the formation and time evolution of non-equilibrium (hot) phonon populations, which are emitted by high-density hot carriers when they decay towards their ground state [START_REF] Debernardi | Anharmonic phonon lifetimes in semiconductors from Density-Funtional Perturbation theory[END_REF]. Based on the simple lattice model consisting of a linear chain of atoms, lifetimes of optical phonons were first considered by Klemens [START_REF] Klemens | Anharmonic decay of optical phonons[END_REF]. Klemens assumed that the optical phonons decay into a pair of acoustic phonons on the same branch but with opposite momenta. In contrast to Klemens, based on DFT calculation, Debernardi et al [START_REF] Debernardi | Anharmonic phonon lifetimes in semiconductors from Density-Funtional Perturbation theory[END_REF] showed that in silicon the zone-center optical phonons mainly decay into pairs of acoustic phonons involving one phonon of the longitudinal branch and another one of the transverse branch.

If only three-phonon processes are considered, energy and momentum must be conserved.

That means 0 1 2 q q q G = + + and 0 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 2 1 2 1 2 1 2 1 2 2 3 1 2 2 3 , , , 0 1 2 1 2 1 2 1 16 
, s s q q s s LTO s s s s LTO LTO s s n q n q E N M u q u q u q q q q q q q π ω ω ω δ ω ω ω

  + + ∂ Γ = ×     ∂ ∂ ∂   × - - ∑ ℏ (2.6)
where N is the number of unit cells in the crystal, M is the atomic mass, ω s are the phonon frequencies, n is the thermal occupation numbers, s indicates the phonon branch (s = LA and TA in bulk semiconductors), E is the crystal energy, and u s ( q ) is the amplitude of the s phonon of wave vector q .

Rowlette et al. [START_REF] Rowlette | Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs[END_REF] made the calculation by using the full phonon dispersion and assuming that the third-order matrix elements are equal to a constant deformation potential U 0 which is fitted to the Raman line width data of [Menendez84]. The expression for the transition rate in this case is given by

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 2 1 2 1 2 1 2 2 0 1 2 1 2 0 , , , 0 1 2 1 2 1 2 , , 1 , , 
.

s s q q s s s s LTO LTO s s q q q n q n q U s s s q q q q q q ω ω ω δ ω ω ω

+ +     Γ ∝ ×         × - - ∑ (2.7)
To be consistent with the isotropic phonon dispersion considered in this work (Eq.1.35, chapter 1) which is more complex than that used by Klemens but simpler than those of Rowlette, Eq. 2.7 is computed with only two branches LA and TA. Only third-order processes in which the initial optical phonons decay into two lower energy modes are considered.

Thus, in this work, the density g 2 (ω,ω LTO -ω) of final states for pairs of phonons which conserve both energy ( ( ) ( ) ( )

0 1 2 0 1 2 s s s q q q ω ω ω = +
) and crystal momenta ( 0 1 2 q q q G = + + ) for an optical phonon with initial wave vector 0 q and branch index s 0 were calculated considering a parabolic dispersion. We restrict our calculations to normal process, i.e. 0 G = . The results for LO phonons with the initial wave vector

[ ] 0 0, 0, q G α = ×
, where α = 0, 0.3, 0.5, 0. Then, the total phonon density of the final state considering the anharmonic LTO-phonons decay is calculated by computing the decay of 3000 optical phonons uniformly distributed along the optical branches. The frequency final state spectrum, i.e. the probability per unit time that LTO phonon decays into one mode of given frequency ω and one of frequency ω LTO -ω, is obtained by restricting the sum over branch s and q in Eq. 2.7 to those values for which ( ) 

s q ω ω = ,

Impurity scattering

The impact of impurity scattering on the thermal conductivity has been carefully studied by Fortier and Suzuki for low Phosphorus doping [START_REF] Fortier | Effect of P donors on thermal phonon scattering in Si[END_REF] and by Asheghi et al.

[Asheghi02] for high doping. They measured the thermal conductivity of 3 µm-thick films in the temperature range of 15-300 K. By varying the doping concentration, the thermal conductivity of this film is reduced. This effect is more important at low temperature, in particular below 100 K.

The ( )

1 4 impurity M R x A A A δ δ τ ω - = + + ⋅ , (2.8) 
where ω is the angular frequency in rad s -1 .

The average sound velocity is defined as 1 1 1 2 3 Here, we suppose that for each doping type (P or B) the A x varies linearly with doping density, while A δR and A δM are proportional to the doping density as indicated in Table 2.4. 2.5. Boundary and roughness scattering

s L T v v v   = ⋅ +     ,

Boundary scattering in Si bulk

Boundary scattering is important at low temperature due to the "freezing out" of threephonon processes. The corresponding increase in the phonon mean free path implies that interaction with the boundaries becomes the dominant scattering mechanism at temperatures below 50 K for silicon [START_REF] Ni | Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics[END_REF]. Holland modelled the relaxation time of this mechanism in the form [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] 1

g b v LF τ = , 1 2 2 L l l π = , (2.9) 
where l 1 l 2 is the sample cross section, F is a factor representing the correction due to both the smoothness of the surface and the finite length/thickness ratio of the sample.

Boundary and roughness scattering in nano-structure

It's well known that the roughness of interfaces is an important element which influences strongly the thermal conductivity in two-and one-dimensional structures. Generally, the surface of bulk materials is very rough and the boundary scattering is considered to be 

B P R n A δ = ×
completely diffusive. However, at other interfaces, as in nanostructures, the surface roughness may be much smaller, and specular scattering may take place [START_REF] Baillis | Prediction of thermal conductivity of nanostrucutres : Influence of phonon dispersion approximation[END_REF].

Each boundary is assumed to be rough with a deviation from an ideal surface characterized by surface-roughness height ( ) When a particle of wave vector q hits a rough surface with the incident angle B θ , the reflected wave contains a specular component and a diffusive component. In the case of weak correlation of autocovariance function of Si surface, the surface roughness scattering can be effectively characterized by a specularity parameter ( )

p q [START_REF] Soffer | Statistical model for the size effect in electrical conduction[END_REF] with dependence as ( ) ( )

2 2 2 exp 4 cos B p q q θ = -∆ . ( 2 

.10)

The specular parameter ( ) p q is used to model the different values of the thermal conductivity measured experimentally. If the interface Si-SiO 2 is perfect (∆=0), i.e. ( )

p q =1,
each collision between phonon and boundary will be specular. Hence, the transport is the same as in bulk material. In the case of very rough Si-SiO 2 interface, ( ) p q tends to 0, the phonon-boundary scattering is completely diffusive.

The phonon-boundary scattering rate can be written in the following form [Berman1953] ( )

( ) ( ) , , 1 min . 
i s B s i L q v q F q τ     =       , (2.11) 
where i refers to the direction (x, y or z) and the form factor ( )

F q is ( ) ( ) ( ) 1 1 1 p q F q p q + = - (2.12)
We calculate the specular parameter p for LA and TA modes in a typical film of 20 nm thickness and roughness of ∆ = 5 Å. The evolution of this parameter as a function of the frequency ω is shown in Fig. 2.5. For both modes, the phonon-boundary scattering part is rather specular for 9 2.5 10 q < × m -1 . This corresponds to ). At high q , diffusive scattering is dominant for both LA and TA modes.

The specular parameter s p for the LA and TA branches with various ∆ value, is averaged over all phonon wave vectors as The TA phonon scattering is more diffusive than the LA scattering. As expected, the diffusive scattering probability is more important in rough films, i.e. when ∆ is greater. In addition, the specular-to-diffusive transition occurs at lower temperature for TA modes than for the LA branch. The temperature dependence of the phonon population explains this phenomenon. The frequency of TA modes is almost constant at large q, where the diffusive scattering occurs; in contrast, for LA modes, the frequency increases with q (see Fig. 1.7chapter I). In addition, as seen in Fig. 2.6a, the higher the temperature is, the more diffusive is the phonon-boundary scattering. Above discussed average specular parameters are in good agreement with the work of Aksamija and Knezevic [Aksamija10-1] and that of Duda et al.

( ) ( ) ( ) ( ) ( ) 3 3 s s s p q N q dq p N q dq ω ω = ∫ ∫ , ( 2 
[Duda00].

ANALYTIC MODEL OF THERMAL CONDUCTIVITY

In the relaxation time approximation (RTA), the stationary Boltzmann Transport equation (BTE) for the mode s (Eq. 2.23) in direction x can be reduced to τ is the phonon-boundary interaction one.

( ) ( ) ( ) ( ) , scatt s s T s x s n n n v x ω ω ω τ ω - ∂ = ∂ , ( 2 
At equilibrium, the number of phonon is

( ) ( ) ( ) ( ) ( ) 3 3 1 1 2 exp exp q d B B dq n d DOS d q k T k T ω ω ω ω ω ω ω ω ω ω π < < + = ⋅ = ⋅             ∫∫∫ ℏ ℏ . ( 2 

.16)

In spherical coordinates, the thermal conductivity formula can be written as

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 , 0 exp 1 . . 3 2 exp 1 G s s s s s s LA TA B s q X dq K v q q q k T X ω τ π = = ⋅ ⋅ - ∑ ∫ ℏ .
(2.17)

Adjustment of scattering rate for bulk Si

The Holland's model [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF] gives thermal conductivities of bulk Si in a good agreement with experimental data. However this model was developed for a linear phonon dispersion. When using a quadratic dispersion, the resulting conductivity is significantly shifted relatively to the experimental curve. Terris et al. [START_REF] Terris | Modeling semiconductor nanostructures thermal properties : The dispersion role[END_REF] have modified the Holland's scattering parameter, B L and B TU to fit better the experimental conductivity as shown in Fig. 2.7, but they still over-estimate the conductivity [START_REF] Lacroix | Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms[END_REF]. In our scattering model, we take the same B L , B TU as in Terris's model (see Table 2.5, in green); the parameter B T and the geometric factor F are modified (see Table 2.5, in red).

Model 10.5×10 -13 K -3 0 2.89×10 -18 s - We compared the thermal conductivity obtained by combining different sets of scattering parameters with the quadratic dispersion. The results are shown in Fig. 2.7. The thermal conductivity calculated using our set of scattering parameters and the quadratic dispersion fits very well the experimental curve, not only at high temperature, but also at very low temperature. In this study, we use this set of parameters for Si. 

B τ I τ , N T τ (B T ) , U T τ (B TU )

Cartesian coordinates:

If we use the discretization in the ensemble of Cartesian coordinates, the elementary volume 3 dq r takes the form 3

x y z dq dq dq dq = r . Then, the thermal conductivity is:

( ) ( ) ( ) ( ) ( ) ( ) 2 2 , 2 2 3 , , , exp 1 . 
, , . , ,

3 8 exp 1 G G G s x y z x y z s g s x y z s x y z s LA TA B G G G s q q q dq dq dq X K v q q q q q q k T X ω τ π = --- = ⋅ - ∑ ∫ ∫ ∫ ℏ .(2.18)
Here we consider a spherical Brillouin zone, so a wave vector of this zone satisfies the condition 2 2 2 2 x y z q q q G + + ≤ , where G = 2×π/a is the reciprocal vector and a is the crystal parameter.

The important parameter to check is the minimum number of discretization steps N q on each axis q x , q y , q z to have a good physical description. The cell number in the Brillouin zone is proportional to N q 3 . If N q = 50, the Brillouin zone is divided in about 125.000 cells. In Fig. 2.9a, we plot the bulk conductivity as a function of the number of discretization cells at 300 K and 400 K. We see that the conductivity reaches quickly the expected value when increasing the number of cells. When the cell number is high enough, i.e. the cells are sufficiently small, the bulk conductivity reaches the value of 149 Wm -1 K - 1 . In what follows, we discretize the q-space with N q = 120 (~10 6 cells).

The calculated thermal conductivity is plotted as a function of the temperature in Fig. 2.9b.

It's seen that the conductivity obtained varying Eq. 2.18 is close enough to that obtained using Eq. 2.17, and also to the experimental ones [START_REF] Glassbrenner | Thermal conductivity of silicon and germanium from 3°K to the melting point[END_REF]; this validates our approach. (triangle), from Eq. 2.16 (dashed red line) and from Eq. 2.17 (dotted square line).

Thermal conductivity in nanostructure (Analytical approach)

In this sub-section, a model of thermal conductivity, derived from simple physical considerations, is developed to include easily the influence of the sample geometry and of the interface roughness with the scattering parameters validated above.

While at 300 K optical phonons can contribute up to 20 % to the thermal conductivity in nanostructures (10-20 nm film-thicknesses or wire diameters) [Tian11], but only up to 4 % in bulk materials [Broido05], therefore we will ignore them here to preserve the simplicity of the model.

We intend to calculate the conductivity for films and wires schematized in Fig. 2.15. L x is the length, L z is the thickness and the L y is the width. The scattering rate takes into account all the previously mentioned scattering via the Matthiessen's rule , ,

1 1 1 s s bulk s B τ τ τ = + , (2.19) 
where τ s,B is the boundary scattering of mode s (s = LA, TA), defined as in Eq. 2.11.

Thermal conductivity in Si films

For the film (2D structure), L x and L y are equal to 10 m, and the film thickness L z is much smaller than L x and L y . The phonon-boundary scattering time in the purely diffusive case The model prediction is in good agreement with experimental data of five independent studies, in particular in the thin-film thickness zone from 20 nm to 100 nm. We obtain a conductivity value of 29.1 Wm -1 K -1 for 20 nm-film thickness -the minimum measured film thickness available in the literature, for which the experimental value is about 24.6 Wm -1 K -1 in Liu et al. [START_REF] Liu | Phonon-boundary scattering in ultrathin single-crystal silicon layers[END_REF] and about 29.7 Wm -1 K -1 [START_REF] Ju | Phonon heat transport in silicon nanostructures[END_REF]. For 100 nm-thickness films, the conductivity obtained from our model is 62.5 Wm -1 K -1 , which is very close to the experimental data of Liu et al. [START_REF] Liu | Thermal conduction in ultrathin pure and doped singlecrystal silicon layers[END_REF]. Above this zone, there are some discrepancies between our model predictions and measured values, but the model captures the experimental trend. The highest error at 1.6 µm-thickness film is about 12 Wm -1 K -1 , which is about 8 % of error in comparison with the measured data. In Fig. 2.12, we plot the thermal conductivity as a function of the roughness height ∆ at the Si-SiO 2 interface for various thicknesses. Our simple approach predicts a strong impact of ∆ on thermal conductivity.

(specular parameter 0 p = ) is Z b gz L V τ = . ( 2 

Thermal conductivity in Si wires

3.2.2a. Circular and square cross-section wires

In this section, we compare the thermal conductivity between circular cross-section and square cross-section Si wires.

For a circular-section wire, the in-plane group velocity is defined as

2 2 in plane y z v v v = + . (2.21)
Then, in the purely diffusive case, the related lifetime is ( )

, , b x y z in plane D q q q v τ = . ( 2 

.22)

Where D is the wire diameter. The phonon-boundary lifetime in the square wire is extracted from Eq.2.32, as ( )

, , min , b x y z gy gz A A q q q V V τ     =       . ( 2 

.23)

In Fig. 2.20, we compare the different kinds of wires with the same cross-sectional area, so we have At the same wire size, the measured conductivity of Hochbaum is much lower than that of Li, due to the fact that the surface roughness in Hochbaum's wires (~ 3 nm) is greater than in Li's wires (~0.3 nm) [START_REF] Martin | Impact of phonon-surface roughness scattering on thermal conductivity of thin silicon nanowires[END_REF]. In these wires, the full phonon dispersion and the phonon confinement should be included. The discrepancy for small diameters may be due to the phonon dispersion confinement and the surface roughness [Balandin98, Chen08, Martin09]. If the two effects were included, the lattice thermal conductivity would decrease.

3.2.2b. Rectangular cross-section wire

In this sub-section, we investigate the dependence of the thermal conductivity on the geometry of rectangular cross-section Si wire. Using the 3ω method, the experimental measurements have been performed by P. Allain (MicroNanoBio research group, IEF)

[Allain12] to determine the thermal conductivity of several rectangular wires. The wires have the same thickness of 160 nm, while the widths are 80 nm, 140 nm, 200 nm and 260 nm. 

3.2.2c. Transition between wires and films

Here we analyze the transition between wires and films. The wire thickness L z is fixed to be 100 nm, while the width L y varies from 0.05 L z to 100 L z .

In Fig. 2.16, the thermal conductivity is plotted as a function of the width/thickness ratio for different thicknesses. The dashed lines are the values for the film of the same thicknesses.

There is no longer any size effect of the width (film-like behavior) when the width is about ten times greater than the thickness. 

Conclusion

In conclusion, we have presented a new set of scattering parameters for bulk silicon with a quadratic dispersion relation for phonons in the direction [100]. We have obtained thermal conductivities for bulk silicon in good agreement with experimental data.

For 3D (bulk), 2D (film) and 1D (wire) Si structures, the results capture well the experimental trends of thermal conductivity as a function of film thickness or of wire size expected. The accuracy of results for nanowires of small diameters (below 50 nm) could be improved by taking into account the phonon confinement effect. Then, by tuning the values of the roughness, we have found an excellent agreement between the calculated and the measured [START_REF] Allain | Etudes des proprieties électro-thermo-mécaniques de nanofils en silicium pour leur integration dans les microsystems[END_REF] thermal conductivity as a function of temperature for various rectangular cross-section nanowires of different dimensions. Fitting the experimental data with the model allows us to predict realistic values of the roughness of these wires.

NUMERICAL SOLUTION OF BTE

Until now we have considered the set of scattering parameters and the phonon dispersion in bulk Si, and also the phonon-boundary scattering and the roughness effects in Si nanostructures. This set of parameters is used to solve numerically the stationary BTE for phonons under the relaxation time approximation (RTA).

In this section, we will describe the algorithm, the discretization and initialization processes, and the boundary conditions used to solve the BTE. The validation will be carried out via the thermal conductivity in bulk Si and in Si films. Then, we will study the heat transport in Si bars from diffusive to ballistic transport regimes.

General algorithm

We propose to solve numerically the stationary BTE under the RTA which writes

( ) ( ) ( ) , , , | , s g s r s scatt dN r q v N r q G r q dt ⋅ ∇ = - + , (2.25a) 
where

( ) ( ) ( ) ( ) ( ) , , , , | , s s Tscatt s scatt s scatt N r q N r q dN r q dt T r q τ - ≈ - (2.25b)
is the scattering term in the RTA approximation and ( ) , G r q is the phonon generation term.

Fourier equation

The first step of the algorithm is to find a good approximation of the scattering term. Indeed, the RTA requires the knowledge of the temperature T scatt which characterizes the quasi equilibrium phonon distribution N s,Tscatt . Unfortunately, the ambient temperature T amb is not a good approximation for T scatt in the presence of high temperature gradients. Thus, the scattering temperature T scatt is evaluated by solving the macroscopic Fourier heat equation by considering a uniform thermal conductivity

K T = K T (T amb ) ( ) 0 K T G r ∆ + = (2.26)
In the following, T scatt will be referred as T Fourier . Next, if the temperature differences in the device are higher than 10 K, the dependence of the thermal conductivity on the temperature

(K T -T relation) is taken into account.
Then, the heat equation (Eq. 2.27) with non-uniform K T is solved iteratively to the temperature T Fourier (particular analytical solutions of this equation are described in appendix A.):

( ) ( ) 0 T K T G r ∇ ∇ + = (2.27)

BTE for each phonon mode

For optical phonons, the BTE becomes: ( ) , g s v q is the group velocity of the mode s for the wave vector q .

( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , s g s 
LTO s s s TFourier q e LTO LTO v q q N r q N r q N r q G q r q τ τ -   ⋅ ⋅ ∇ = - -   + ⋅ , ( 2 
For acoustic phonons, considering electron-phonon scattering and the decay of LTO modes as a source of acoustic phonons, the BTE can be written as (

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , g s s 
s s s TFourier q e LTA LTO LTA s s s s v q N r q N r q N r q G q r q G q r q τ τ τ - →   ⋅ ⋅∇ = - -   + ⋅ + ⋅ (2.
( ) ( ) ( ) ( ) ( ) ' ' , , LTO s s LTO LTA s s LTO LTA e LTO s LTO q q q q P q G q r G q r N ω ω ω → → - =   = ⋅     ∑ , ) 
where ( )

, LTO e LTO LTO q G q r - ∑
is the total generation rate of LTO modes extracted from MC simulation (which, in stationary regime is exactly the number of optical phonons that decay to generate acoustic phonons). The probability of final states for each acoustic mode is normalized to ensure that the total probability is unity.

( ) ( ) ' ' s s q q q N ω ω =
is the number of wave vectors '

q satisfying the condition ( ) ( )

' s s q q
ω ω = . Indeed, the optical phonons are generated by hot electrons, so they can have various wave vectors. Since one optical phonon mode with a given wave vector can decay into LTA modes with large spreading in wave vectors, we assume that at a given frequency ω, LTA phonons due to the LTO decay can have any wave vector '

q that satisfies the condition ( ) ( )

' s s q q ω ω = .
The probability to have an acoustic phonon with wave vector q , which satisfies this condition, is then

( ) ' ' 1 s q q N ω ω = .
The scattering rate τ s includes the phonon-phonon, phonon-impurity and phonon-boundary (as in Eq. 2.15).

Discretization and initialization

Discretization

Consider a film oriented so that the cross-plane direction and the thermal gradient are along the z-direction. For this one-dimensional (space coordinates) system, the Eq. 2.25a can be written as (

s s Tscatt T r q v q N z q N z q G z q z τ ∂   ⋅ ⋅ + = +   ∂   . ( ) ( ) ( ) ( ) ( ) ( ) , , , 1 , , , s z s 
The group velocity v and its projection v z are defined by the following expressions:

s s v q ω ∂ = ∂ , , z z s s q v v q = ⋅ .
(2.32)

The derivative term / s N z ∂ ∂ at point j is approximated by using the finite difference method. The positive direction (along the z axis) is from left to right. Phonons which have a positive group velocity can only travel from the left to the right and the others can only go from the right to the left. So, this derivative term is considered differently in the two cases. • If the group velocity is positive:

1 i i i s s s i i N N N z z + ∂ - = ∂ ∆ z i i+1 i-1 v gx >0 v gx <0 •
If the group velocity is negative:

1 i i i s s s i i N N N z z - ∂ - = ∂ ∆ .
The interval z ∆ must be equal to or smaller than the mean free path to ensure that the solution is exact.

Discretization in reciprocal space

The first step of the simulation procedure is the choice of geometry and mesh.

The choice of the step number N q along q x , q y and q z axes is important. After having investigated the effect of the step number and therefore of the number of bins in the first Brillouin zone, we have chosen a discretization by 100 steps along each axis, i. e. about 5×10 5 bins in ω.

The density of phonon at the boundaries is fixed at equilibrium as:

( ) ( )

3 3 3 1 ( , ) 8 exp 1 s s s B Fourier dq N r q dq g q k T r π ω = × ×   -       ℏ . (Rewritten from Eq. 2.16)
The first cell is raised to the hot temperature T h , the last one to the cold temperature T c .

At a given position, it is required that the distribution of initialized phonon obeys the occupation in energy at a given temperature, which can be calculated from the following expression:

( ) ( ) ( ) ( ) 2 2 1 1 , 2 exp 1 exp 1 s s s s s s s B B K N r D g d g d v k T r k T r ω ω ω ω π ω ω = ⋅ = ⋅     - -             ℏ ℏ . ( 2 

.33)

The LA and TA phonon occupation densities are plotted in Fig. 2.18a as a function of ω at 300 K and 500 K and compared with the theoretical curves, showing an excellent agreement.

Phonon occupations in a wave vector projection (for example, q z ) that are meaning with the theoretical calculations are shown in Fig. 

Boundary condition

At the two contacts, the boundary condition consists in fixing the temperature and thus in fixing the phonon number according to the corresponding Bose-Einstein distribution. This boundary condition ensures that all phonons scatter diffusively when they interact with the system boundaries [Sellan10].

Matrix form

As seen previously, the derivative in the left-hand-side is discretized differently in two cases of v gz .

+ If the group velocity projection v gz is positive:

1 i i i s s s i i N N N z z + ∂ - = ∂ ∆
.

So, we obtain the following numerical scheme:

( ) ( ) ( ) ( ) , 1 1 1 , 1 , i i i s scatt z s s i i i i T r q v q N z q A N B N z τ +   ∂ ⋅ ⋅ + → ⋅ + ⋅   ∂   , (2.34) where ( ) ( ) , 1 , 1 i s scatt i z s i i T z q v A z τ ⋅ = + ∆ and ( ) ( ) , 1 , i s scatt i z s i i T z q v B z τ ⋅ = - ∆ .
By fixing the temperature at the two contacts, we can write the transport equation under the following matrix form:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 1 1 1 2 1 1 1 , 1 0 0 0 0 0 , 0 0 0 0 0 0 0 0 , 0 0 0 0 0 1 , scatt scatt scatt Nz scatt Nz s scatt i T i i s scatt i T i i Nz s scatt i T Nz s scatt i T N G T z q N N G T z q A B N N A B N G T z q N N G T z q τ τ τ τ - -   + ⋅             + ⋅             =       + ⋅                  + ⋅   ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮  . ( 2 

.35)

+ If the group velocity projection v gz is negative:

1 i i i s s s i i N N N z z - ∂ - = ∂ ∆ . ( ) ( ) ( ) ( ) , 2 1 2 
, 1 ,

i i s scatt z s s i i T r q v q N z q A N B N z τ - ∂   ⋅ ⋅ + → ⋅ + ⋅   ∂   , (2.36) where ( ) ( ) , 2 , i s scatt i z s i i T z q v A z τ ⋅ = ∆ and ( ) ( ) , 2 1 1 i s scatt i z s i i T z q v B z τ - ⋅ = - ∆ .
Similarly, this schema under the matrix form is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 1 2 2 2 1 2 2 , 1 0 0 0 0 0 , 0 0 0 0 0 0 0 0 , 0 0 0 0 0 1 , Fourier Fourier Fourier Nz Fourier Nz s Fourier i T i i s Fourier i T i i Nz s Fourier i T Nz s Fourier i T N G T z q N N G T z q B A N N B A N G T z q N N G T z q τ τ τ τ - -  + ⋅          + ⋅         =     + ⋅             + ⋅  ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮                  . ( 2 
.37)

Effective temperature

At the nanoscale and/or for non-equilibrium phonon distribution, the concept of temperature is meaningless. Considering the phonon distribution, a "phonon distribution field" is more relevant than using a temperature field. Nevertheless, the information on distribution of phonons can be reduced to an "equivalent temperature" field by using the local phonon energy resulting from the actual phonon distribution (which may be out of equilibrium). Thus, an equilibrium phonon distribution following the Bose-Einstein distribution thermalized at the effective temperature provides the same local energy density [START_REF] Pop | Heat generation and transport in nanometer-scale transistor[END_REF].

The equilibrium local phonon energy density is obtained by

( ) ( ) ( ) ( ) 3 3 3 1 ( , ) , . . 8 , exp 1 
s s s s s B dq E r E r q dq r q g r q k T r ω π ω = =   -       ∫ ∫ ∫ ∫ ∫ ∫ ℏ ℏ . ( 2 

.38)

The temperature evolution of the energy density is plotted in Fig. 2.19 for each mode of bulk Si. and T TO ) and the total temperature (T eff ) can be defined.

Validation -Thermal conductivity

In this sub-section, we validate the algorithm implemented to solve the steady-state BTE for phonons by calculating the thermal conductivity in bulk Si and Si films and comparing our simulation results with the experimental ones. Only the LA and TA modes are considered here. We solve Eq. 2.56 in a Si bar at quasi-equilibrium state with a small gradient of temperature, and without the generation term. The cold temperature along the bars and also at the right contact is T c , while at left contact, the temperature is raised to T h (T h > T c ). The thermal conductivity is extracted from the phonon heat flux along the sample, according to

( ) ( ) ( ) ( ) , ,
, , ,

z s z s z s q J r q r v q r N q r ω = × × ∑∑ ℏ , (2.39)
where J z is the z component of the heat flux in the structure.

( )

, s z v q is the z component group velocity of s-mode phonons.

From Eq.1.41 (Chapter I), if the thermal conductance K is constant, it can be deduced from the slope of flux J as a function of the temperature difference ∆T for a sample of length L z as

( ) 0 z z T dJ K L d T ∆ = ⋅ ∆ ≃ .
(2.40)

Thermal conductivity in bulk Si

As described in section 4.1, we solve the Fourier equation (Eq. 2.26) by assuming that the thermal conductivity is uniform (small gradient of temperature ∆T).

We plot in Fig. Because the two ends are fixed at 300 K as the boundary condition, there is no heat which flows inside these contacts. Therefore, for the continuity condition, the values of heat flux near the contacts are close to zero. The shorter the length is, the stronger the heat flux is. That is due to the fact that the flux is proportional to the gradient of temperature dT/dx (see Eq. To evaluate the length over which the flux can reach its equilibrium value, the derivation of the heat flux is calculated and divided by the value of flux in the middle of the structure.

These quantities along the bar for different lengths are displayed in Fig. 2.21b. For all the considered bar, except the 2 µm-bar, the curves haves a flat shape in the centre of the structure, at about 2 µm, which is about 2 times greater than the mean free path of acoustic phonons (see Fig. 2.8d). We assume that the heat transport in Si reaches the equilibrium regime when phonons undergo a sufficient amount of collisions through the distance as long as about two times the average mean free path or more, from the contacts.

The heat flux is plotted in Fig. 2.22a as a function of temperature difference in 6 µm, 8 µm, 10 µm and 12 µm-length films together with the linear fitting-curves. This fitting-curves are obtained with two constraints: they must pass through the zero point and fit well the slope of J x (dT) near the zero point (∆T from 0 to 5 K). Fig. 2.22b shows the thermal conductivity of silicon at 300 K and 400 K for a film length ranging from 10 nm to 12 µm. It is observed that for a length smaller than 4 µm, the thermal conductivity of silicon deviates significantly from (its bulk value, which is 148.8 Wm -1 K -1 at 300K) in our model. That is coherent with the above analysis for the flux profiles in different lengths. As shown in this figure, conductivities obtained from BTE are in agreement with the experimental data at high temperature ( 150 K T ≥

). For low temperature (lower than 150 K), the discrepancies between experimental data and numerical calculation increase. This difference can be explained by the fact that when the temperature decreases the mean free path of phonons rises strongly, and it becomes larger than the length of the structure.

We fit the evolution of the experimental conductivity as a function of temperature with an expression form C×T α , i. e. 3.09 10

T K T × = , (2.43) 
This is very close to Eq. 2.41 for experimental data. This expression will be used in the next section to solve the non-linear conductivity effect when the temperature difference is high.

Thermal conductivity in Si films

In this sub-section, the phonon-boundary scattering is taken into account in the BTE to evaluate the in-plane (diffusive regime occurring in long bar) and cross-plane (ballistic regime in ultra-short bar) thermal conductivities in silicon thin-films at 300 K.

4.6.2a. In-plane conductivity

The same procedure of thermal conductivity calculation as in sub-section 4.6.1 is used but including roughness. Our results are plotted in Fig. 2.24 and compared to results from Discrete Ordinate Method (DOM) [START_REF] Terris | Modeling semiconductor nanostructures thermal properties : The dispersion role[END_REF] and to experimental data.

It is seen that the thermal conductivity achieved by our model is in very good agreement with that of the conductivity model (it was described in the previous chapter). Even if both theoretical results match quite well the experimental results for all film thicknesses ranging from 20nm to 10µm. The predictions of our model are more accurate than that of the DOM that underestimates the thermal conductivity by at least 20% [START_REF] Terris | Modeling semiconductor nanostructures thermal properties : The dispersion role[END_REF]. 

4.6.2b. Cross-plane conductivity

To measure the cross-plane conductivity, a gradient of temperature is applied between the two surfaces of a short (but large) bar. The heat transport in this cross-plane direction is Their results, which are reported in Fig. 2.25a, are quite close to the experimental values.

Our model considers the phonon-boundary diffusive scattering in the cross-plane direction which is defined as the time needed for a phonon to hit one of two sides, so that

if 0 if 0 B gz gz B gz gz L z v v z v v τ τ -  = >     = <   (2.44)
The cross-plane conductivity results at 300 K are plotted in Fig. 2.25a as a function of the film thickness. The measured data are also indicated. For a 500 nm-thick film, our calculated result is 54.3 Wm -1 K -1 , while the measured value is 39.2±4.8 Wm -1 K -1 [Hopkins12]. The Monte Carlo method and DOM calculations of Terris and coworkers [START_REF] Terris | Modeling semiconductor nanostructures thermal properties : The dispersion role[END_REF] for the cross-plane conductance at 400 K are shown in Fig. 2.31b.

For film thicknesses at the micro scale, the results of the three models are quite close. At smaller sizes, our results are smaller than that of DOM and MC methods.

Study of heat transport in Si bars

By solving BTE for phonons in a Si bar of different lengths, we can study different transport regimes and also the transition from the diffusive to the ballistic regime. The nonlinear conductivity effect observed when we apply high gradients of temperature is also discussed.

Heat transport regimes

We solve the BTE for various 1D-sample lengths, from 2 nm to 4 µm with different temperatures on both sides: T h = 310 K and T c = 290 K. The temperature in these samples is plotted in Fig. 2.26 and compared with diffusive equation results and with the ballistic temperature which is derived from the Stefan-Boltzmann law [START_REF] Heasler& | Radiative transport and wall temperature slip in an absorbing planar medium[END_REF].

1/4 4 4 2 h c bal T T T   + =     . (2.45)
With the above temperatures T h and T c , the ballistic one is 300.5 K. To analyze the phonon transport, we will calculate the phonon occupation of the phonon as a function of the wave vector q by the following expression:

( ) ( ) 3 1 , 8 exp 1 x y z s z s q q B dq N r q g q k T π ω = ⋅ ⋅   -     ∑∑ ℏ (2.46)
This expression can be deduced from the Eq. 2.16.

The distribution obtained from Eq. 2.45 is called phonon occupation in wave vector q , and is displayed in Fig. 2.27 for various bar lengths. 

4.7.1a. Diffusive regime

The normalized phonon occupations at 400K along the sample are shown in Fig. 2.27a for a 2µm-long sample with T h = 400 K and T c = 300 K. The arrow is to show the direction from left (400 K -red continuous line) to right (300 K-blue continuous line). The occupations for both LA and TA phonons are symmetric, as a function of wave vector projection q z , which is proportional to the group velocity projection v gz (see Eq. 2.32). It's well known that the phonon occupation depends on temperature: the higher the temperature is, the more phonon states are occupied. In this case of quasi-diffusive regime, the local thermodynamic equilibrium is established for both LA and TA.

4.7.1b. Ballistic regime

The ballistic transport regime occurs in small size samples or/and at low temperature. In this sub-section, to examine the size effect, we focus on the case of a 2 nm-long sample. The effective temperature profile has been plotted in Fig. 2.26.

The evolution of phonon occupations along the sample in this case is plotted. In Fig. 2.

26d, we can clearly see that the LA and TA occupations are strongly dissymmetric. Indeed, if these phonons travel without scattering, the distribution of these positive-velocity phonons remains unchanged along the device. The same mechanism explains the result for phonons flowing from the right to the left. Therefore, the phonon occupation is divided in two separated populations: phonons with positive velocity coming from the left contact at 400 K and phonons with negative velocity coming from the right contact at 300 K. This ballistic regime can also be reached in a long sample at very low temperature. We solve the BTE in a sample of 10 µm with T h = 20 K and T c = 10 K. The temperature profile is plotted in Fig. 2.28. The phonon distributions in this case are shown in Fig. 2.27e. The temperature obtained at very low temperature follows the Stefan-Boltzmann law.

4.7.1c. Intermediate regime

When the sample thickness increases, the intermediate regime dominates -see the case of 20 nm and 200 nm-long Si bar in Fig. 2.26. In this regime, the mixture of diffusive and ballistic transport is observed also in the phonon occupation in Fig. 2.27a and Fig. 2.27c, due to the increasing influence of phonon scattering.

Non-linear conductivity effect

As seen previously, the thermal conductivity depends on temperature according to Eq.

2.42. If the temperature gradient ∆T is high, the spatial evolution of temperature can differ from the linear shape to show this effect.

Temperatures T h = 500 K and T c = 250 K are applied at the two contacts of a 5 µm-long Si bar. The temperature profiles obtained using our method and solving of the Fourier heat equation (considering a non-uniform conductivity) are plotted in Fig. 2.29. There are a slight differences between the numerical method (BTE) and the analytical result (Fourier law) at the two contacts, in particular at the cold side (see Fig. 2.29). That is observed also by using the Monte Carlo method [START_REF] Lacroix | Monte Carlo transient phonon transport in silicon and germanium at nanoscale[END_REF][START_REF] Wong | A Monte Carlo for phonon transport within silicon structures at nanoscales with heat generation[END_REF]. This could be due to boundary effects since the mean free path at 250K is quite significant. This can be seen in 

Doping effect

We use the three parameters of scattering by doping impurities (see Eq. When the numbers of impurities increase with the same temperature difference, the phonon transport becomes more diffusive: as expected, the temperature dropping across the film increases. This dropping temperature changes significantly when the doping concentration is 10 22 cm -3 and above, both with B and P doping atoms. For GaAs films of 400 nm-thickness, the doping concentration which influences the phonon transport are above 10 20 cm -3 [START_REF] Mazumder | Monte Carlo study of phonon transport in solid thin films including dispersion and polaeization[END_REF].

Normally, the doping in a device is not as high as 10 22 cm -3 . In addition, it is seen experimentally that this effect is smaller at high temperatures (room temperature and above)

[Ashghi02]. In the transport of phonons in devices that will be described in the following chapter, this effect will not be included.

Conclusion

An original numerical method to solve the stationary Boltzmann equation for phonons has been presented. This model includes the LA and TA phonons with a quadratic dispersion relation and modified Holland's model for scattering in the RTA approximation. A solution of the Fourier heat equation is coupled to estimate the scattering terms.

The model is used to compute the thermal conductivity in silicon films in the temperature range of [100 K -600 K]. Numerical results are in very close agreement with experimental data for pure silicon until 150 K. Then, the phonon-boundary scattering is taken into account to predict in-plane and cross-plane conductivity. In-plane thermal conductivities match very well the experimental data. In addition, the cross-plane conductivity which is until now difficult to measure experimentally is investigated with our BTE model. The resulting conductivity is closer to experiment than the one obtained by other theoretical approaches.

Our numerical model has been successfully assessed in different heat transfer regimes, from diffusive to ballistic. Our method's results agree with the Stefan-Boltzmann law at the ballistic limit and with the Fourier law in the diffusive limit. The LA and TA phonon occupations are obtained by our method clarify the physics in each regime.

ANALYSIS OF THERMAL CONDUCTANCE OF BALLISTIC POINT CONTACT OF GA-AS

In Section 3, we have presented the algorithm and the results of the steady state BTE for phonons in silicon to studying the heat transport. In this section, we will follow the same procedure to analyze the thermal conductance in ballistic point contacts of GaAs which are short enough to achieve quasi-ballistic or even ballistic heat transport.

Recently, in 2011, Bartsch et al.

[Bartsch11] demonstrated the fabrication of air-gap heterostructures for GaAs ultra short pillars with a diameter of 100 nm. The lengths of these pillars, between GaAs substrate and the capping layers, are 4 nm and 6 nm. They measured a thermal conductance reduced by several orders of magnitude with respect to the bulk value in GaAs. They explained these results by assuming that the phonon current through the pillars is not influenced by phonon scattering, as in perfect ballistic point contacts.

In this section, by solving numerically the BTE we will compare the results obtained depending on whether scattering mechanisms are included or not. Realistic acoustic phonon dispersion in GaAs is included. The scattering parameters are tuned to fit the thermal conductivity in bulk GaAs. In order to investigate the thermal conductance of nanometer long pillars, LA and TA phonon occupations at different temperatures are considered. We show that at ambient temperature, some scattering events occur even in 4 nm long pillars. This reduces the thermal conductance of pillar as measured in the ref.

[Bartsch12], which overestimates the ballistic prediction at high temperature.

Dispersion relation and scattering parameters

In this work, we use the sine type approximation for acoustic phonon dispersion in bulk GaAs cf. ref. [START_REF] Strauch | Phonon dispersion in GaAs[END_REF]. The considered dispersion is:

( ) max sin 4 s s qa q ω ω   =     , (2.47) 
where ω is the pulsation, q is wave vector norm, a is the lattice constant and the maximum phonon frequency is ω s max . The values of ω s max are taken from ref. [START_REF] Blakemore | Semiconducting and other major properties of gallium arsenide[END_REF]. The optical phonons are neglected because of their low velocities and high activation energies [START_REF] Chen | Thermal conductivity and ballistic phonon transport in the cross-plane direction of superlattices[END_REF] as in Bartsch et al.

For bulk GaAs samples, the RTA is employed. Using the same scattering model proposed by Holland as in the Si case, we describe scattering mechanisms as [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF]:

• For LA:

( ) 2 3 
LA, Umklapp + Umklappp processes

NU L B T τ ω = • For TA: o ( ) 1 4 
TA, Normal process

N TN B T τ ω -= o ( ) 1 2 1/2 
/ sinh TA, Umklapp process for

U TU B B k T ω τ ω ω ω -   = >     ℏ • Point defect scattering: 1 4 i A τ ω -= .
• Crystalline boundary scattering:

( ) 1 / B g v L F τ -= × B L , B TN , B TU , A, L
and F are adjusted to match the measured data for bulk samples in ref. [START_REF] Holland | Phonon scattering in semiconductors from thermal conductivity studies[END_REF]. Here, the parameter set is: B L = 6.8×10 -24 sK -3 , B T = 1.98×10 -11 K -4 , B TU = 4.58×10 -18 s, A = 1.25×10 -44 s -3 , L = 0.51×10 -2 m and F = 0.68. As seen in Fig. 2.32, the fit matches very well the experimental data from 2 K to 300 K. Where the pillar diameter D pillar = 100 nm [Bartsch12] and v cross-plane is the in-plane group velocity defined as

2 2 cross plane gx gy v v v - = +
. The total relaxation time is given by the Matthiessen's rule.

Results and discussion

To discuss the hypotheses of purely ballistic thermal conductance at point contacts in ref.

[Bartsch12], the thermal conductance per unit area is calculated for several cases: (i) fully ballistic and (ii) ballistic in the in-plane direction with cross-plane boundary scattering because D pillar is much longer than L pillar . Both 4 nm-and 6 nm-long nanopillars are investigated. It is clear that the area conductance in the pure ballistic case is the highest and the cross-plane boundary scattering in these quite large diameter pillars (D = 100 nm) slightly influences the heat conduction. In all cases below 100K all models are equivalent in terms of conductance, see Fig. 2.34 (with the same cross section) as the transport is quasi-ballistic and length-independent. At higher temperature, the difference can be explained by difference in phonon transport regime (diffusive effects rise). The corresponding thermal conductivities (normalized by length) are shown in Fig. 2.34b for these pillars. These conductivities are much smaller than the GaAs bulk value of 46 Wm -1 K -1 . Fig. 2.36 shows the simulated thermal conductance of a single pillar and the data from Ref.

D

[Bartsch12]. For a 4 nm-long pillar, the calculated conductance matches very well the experimental one. Even at ambient temperature, the ballistic regime is dominant. 6 nm-long pillars. Those obtained by using the sine-type phonon dispersion and the quasiballistic model in ref. [Jeong12] give respectively the densities of 3.7 µm 2 and 2.5 µm 2 . In our work, in the model with all scattering mechanisms, the extracted densities are 6.4 µm 2 for 4 nm-long pillars and 4.2 µm 2 for 6 nm-long pillars. The slight difference is due to the nonnegligible presence of scattering over the distance of 6 nm.

Conclusion

In this section, we showed that our BTE solver using the RTA approximation with sine type phonon dispersion and relevant set of scattering parameters could be used successfully to predict the thermal conductance in ultrashort GaAs nano-pillars. The ballistic phonon transport dominates clearly the thermal conductivity in nanometer-long pillars, additionally the thermal conductivity is slightly affected by scattering at temperatures higher than 100 K.

CONCLUSIONS OF CHAPTER

In this chapter, a relevant set of scattering parameters and phonon dispersions have been introduced to reproduce the thermal conductivity of Si and GaAs bulk material. Normal and Umklapp phonon-phonon, impurity and boundary scatterings have been described. Our own model of optical phonon's decay into acoustic phonons was established.

Besides, an analytic model has been used to fit the thermal conductivity and tune the scattering parameters. The phonon-boundary scattering in various device geometries can be easily included in our model. Our results capture well the trend of thermal conductivity in films and in square and circular cross-section wires. Finally, our analytical model was successfully used to fit experimental thermal conductivities in square wires by using realistic roughness.

Next, an original numerical method to solve the stationary BTE for phonons under RTA has been presented. All heat transport regimes can be investigated with our versatile numerical solver: diffusive, quasi-ballistic and ballistic regimes. Numerical predictions of heat conduction coefficient exhibit a very close match with experimental data for silicon and GaAs. The in-plane and cross-plane conductivities in Si thin films are also calculated. The results are in good agreement with the experimental measurements and other theoretical approaches.

GENERATION OF PHONON

To simulate the electronic transport in Silicon, an analytic band approximation is used for the electron dispersion in this version of our simulator MONACO, as described in chapter 1.

Electron -phonon scattering

The electron-phonon scattering is separated into two of type interactions: intra-valley and inter-valley. In this work, we assume intra-valley scattering to be elastic (i.e. without energy exchange), while inter-valley phonon scattering is considered to be inelastic, i.e. electrons gain or loss the energy of the phonon exchanged at each event depending on whether the phonon is absorbed or emitted.

Intra-valley scattering

If the final and initial states, electrons are in the same band minimum and the energy exchange between two electron states ∆ε is very small in comparison with the mean electron energy k ε at room temperature, we can neglect this energy exchange and consider this scattering mechanism to be elastic.

We take the isotropic approximation for the deformation potential D ac [START_REF] Conwell | High field transport in semiconductors[END_REF] and the average longitudinal velocity u l corresponding to the spherical symmetry. The scattering rate writes [HDRDollfus99]:

( )

3/2 2 7/ 2 4 2 2 B D ac ac p k Tm D q v λ ε ε ρ π = ℏ . ( 3.1) 
where is k B the Boltzmann constant, 

Inter-valley scattering

Because of the location of the conduction-band minima in the Brillouin zone, there are two types of inter-valley transitions: scattering between valleys of axes perpendicular to each other (f-process) and between valleys on the same axis (g-process). The full spectrum of intervalley phonons has been established by Asche et Sarbei [START_REF] Asche | Electron-phonon interactions in n-Si[END_REF]. The phonon involved in g-scattering has its wave vector g q along a direction [100] and the phonon involved in f-scattering has its wave vector f k about 11° off the direction [100]

[Long60].

1.1.2a. Zero-order scattering

In most cases the transition matrix element is proportional to D iv = D 0 , where D 0 has the dimension of energy per unit of length and is independent of the phonon wave vector. The corresponding zero-order scattering rate writes [START_REF] Dollfus | Etudes théoriques de structures pour l'électronique rapide et contribution au développement d'un simulateur particulaire Monte Carlo[END_REF]:

( ) ( ) ( ) 3/2 2 3/2 0 0 2 1 2 2 2 1 1 2 iv D iv p iv iv iv iv iv Z m D q i N i i i λ ε ε ω ε ρ ω π α ε ω ε α ε ω ε   = + - + + ∆     × + + + ∆ + + + ∆     ℏ ℏ ℏ ℏ ℏ , (3.2) 
where i =1 for one absorption, i = -1 for one emission, and N p is the phonon occupation.

Under equilibrium conditions, this term is governed by the Bose-Einstein statistic. Z iv is the number of available final valleys (4 for f-type and 1 for g-type scattering). ε is the energy of final state and ∆ε iv is the energy difference between initial and final valleys. [Jørgensen78]. To reconcile these points, it has been suggested that these processes may be described by a transition matrix element in first order of the phonon wave vector [START_REF] Ferry | First order optical and intervalley scattering in semiconductor[END_REF].

We follow this approach in MONACO.

In this case, the transition matrix element is proportional to D iv = D 1 ×q, where D 1 has energy unit and q is the phonon wave vector. The first-order scattering writes [HDRPhi99]:

( ) ( ) ( ) ( ) ( ) 5/2 2 5/2 1 1 4 2 1 1 2 ' ' 1 ' ' 1 ' 1 2 2 iv D iv p iv Z m D q i N λ ε αε ε αε ε αε ε αε π ρ ω   = + -× + + + + +         ℏ ℏ , (3.3) 
where '

iv iv i ε ε ω ε = + + ∆ ℏ
. (i=1 for an absorption, i=-1 for an emission).

All points of the iso-energy surface in the final ellipsoid are equally probable.

Finally, the six ∆-∆ intervalley phonons identified in [START_REF] Asche | Electron-phonon interactions in n-Si[END_REF] are taken into account [START_REF] Dollfus | Etudes théoriques de structures pour l'électronique rapide et contribution au développement d'un simulateur particulaire Monte Carlo[END_REF]. The energy of these phonons is listed in Table 3.1 together with the corresponding deformation potentials [START_REF] Dollfus | Etudes théoriques de structures pour l'électronique rapide et contribution au développement d'un simulateur particulaire Monte Carlo[END_REF]. Note that the set of deformation potentials is empirically determined to fit experimental results and is not unique: a wide range of values have been reported over the past four decades. Our phonon energies set is illustrated in Fig. 3.1a. In the simulation, when the type of intervalley scattering mechanism is selected, the state of the electron in the final valley is chosen randomly.

Transition

Symbol Value Units

1.1.2b. Phonon dispersion

As in traditional MC model, the phonon dispersions used to efficiently compute the scattering rates are wave vector independent as seen in Fig. 3.1a and are reported in Table 3.1.

The phonon wave vector involved in the transition can be calculated as ' q k k = -, where k and ' k are the electron wave vector in the initial and final states, respectively.

In this work, the phonon energy is afterward computed by using the previous wave vector ' q k k =but by considering in the first Brillouin zone the quadratic dispersion ℏ ω(q) plotted in Fig. 3.1b (cf. Eq. 2.8). This procedure is applied for both acoustic and optical phonons. The resulting phonon energies are spread around the phonon energy implemented in the MC code. This approach does not intrinsically ensure energy conservation between electrons and phonons; this point must be checked later. n correspond to the density of emitted and absorbed phonons of mode s and wave vector q , respectively.

Then, the total heat generation rate is obtained by summing the contribution of all modes as ( ) ( ) The number of acoustic phonons generated at low energy via intravalley process is small because the density of state of these phonons vanishes near the centre of Brillouin zone.

, , q s q s G r G r = ∑ . ( 3 
Obviously, the strongest peaks of these spectra occur due to the g-type intervalley phonons at 30% of the BZ edge and to the f-type phonons at BZ edge. The relative magnitude of these peaks depends obviously on the choice of deformation potentials. the dissipation process are LA and TO, up to more than 40% for all electric field. In addition, in steady-state regime, the sum of the four phonon mode contributions corresponds exactly to the Joule heating calculated as the scalar product of the current density J and the electric field E within the drift-diffusion approach. Thus, energy conservation is conserved in spite of our non-rigorous approach of the phonon dispersion. The electrical characteristics as potential energy (bottom of conduction-band) and effective electron temperature of electrons along this device at the steady-state for V ds = 0.5 V are shown in Fig. 3.5. The net phonon generation rates in this device for each phonon mode can be extracted from MONACO simulations. To extract the net number of generated phonons during the electron transport, simulations of 1 picosecond are made for various bias conditions V gs and V ds . The phonon scattering rate for each phonon branch obviously depends on these two external bias that control the distribution of the electric field in the device. As seen in Fig. 3.6, the stronger electric field is (V ds or/and V g are more important), the more phonons are generated and the more is noticeably the "hot spot" point. For all biases, LA is the most frequently generated phonon, followed by TO. At low field (V ds = 0.5 V), the TA and LO scattering rates are close, while under higher field (V ds = 1.5 V), at the hotspot, TA scattering is more frequent than LO.

Heat generation in DG-MOSFETs

Obviously, for a given gate potential V gs , the power density resulting from the total electron-phonon scattering rate depends on V ds . In Fig. 3.7, with V gs = 0.5 V, nearly all the power generation in this device structure occurs within the drain access, which is a common characteristic for transistor operating in the quasi-ballistic transport. In order to ensure the energy conservation in the device, the drain has been extended to allow the full electron energy relaxation within the drain, before reaching the contact. That is the reason behind the structure dissymmetry. Now, we compare the heat dissipation obtained in this short device with the Joule heating extracted from the conventional macroscopic law J E ⋅ . In what follows, Joule heating or Joule effect will refer to the macroscopic quantities calculated through the product J E ⋅ , as opposed to the quantities calculated from the MC generation of phonons. The comparison of these power densities is shown in Fig. 3.9a for V gs = 0.5 V and V ds = 0.5 V, V ds = 1.5 V.

( The discrepancy between the macroscopic and MC heat generation profiles is clear. While the macroscopic calculation leads to a maximum of dissipated heat at the drain-end of the channel where the field is high, the MC simulation shows that electrons lose their energies gradually in the drain extension after having been accelerated by the electric field in the channel. Therefore, the peak heating rate predicted by MC simulation occurs far into the drain extension, in contrast with the macroscopic prediction. For the sake of information, some drain current characteristics are shown in Fig. 3.9c, while the corresponding total generated power density is plotted in Fig. 3.9d. Interestingly, Fig. 3.9d shows that even when nonequilibrium transport is strong the total MC heating and Joule heating are very close, i.e. the total electronic energy given gained in the electric field during the transport and transformed into phononic energy is the same in both cases. This means that the total energy in the system under simulation by our simulator is conserved. However, the MC heat generation model is clearly essential for accurate prediction of the mixture of electrons and phonons inside the drain "hot spot," which will be used in the next section as an input to a phonon transport model (p-BTE) at the sub-micron scale.

PHONON TRANSPORT IN 20NM-THICKNESS FILM DG-MOSFETs

In this Section, by using inputs from e-MC simulation, we investigate the thermal transport in the DG-MOSFET with the specific thickness of 20 nm as illustrated in Fig. 3.4 by solving the steady-state BTE described in Chapter 2 (Section 3).

This section is organized as follows: First, the evolution of the thermal conductivity of 20 nm-thickness films is extracted thanks to the p-BTE. Second, using this thermal conductivity evolution (for the evaluation of T scatt , see chapter 2) and including the power dissipation and the LTO decay in the steady-state BTE, the temperature of the four phonon modes and also the effective temperature are obtained. Next, by comparing these temperatures and the diffusion temperature, we point out the limit of the macroscopic model, particularly at the hotspot. Additionally, we investigate the impact of Si-SiO 2 interface roughness on thermal transport in the device. Finally, the non-equilibrium phonon transport is evidenced.

Thermal conductivity of 20 nm-thick Si films

To inject consistent thermal conductivities as a function of temperature in the BTE model (evaluation of T scatt , see Chapter 2, Section 3), the in-plane thermal conductivity of 20 nmthick film is calculated preliminary by solving the pBTE including the roughness of the interface Si-SiO 2 , as described in Chapter 2. In Fig. 3.10, the evolutions of the thermal conductivity with temperature from 300K to 800K for several roughness parameters are shown. As expected, when increasing the temperature and the roughness, the thermal conductivity decreases. We suppose that the conductivity variation as a function of temperature is in the form C T α × , like in the bulk case (see numerical BTE results of chapter 2). These evolution curves are illustrated in Fig. 

Heat transport: Results and discussions

In this sub-section, we investigate the heat transport in the above DG-MOSFET structure at various bias conditions and with different roughness parameters. As shown in sub-Section 2.1, the thermal conductivity depends not only on the temperature but also on the roughness at the oxide-semiconductor interface that generates an additional component to the phononboundary scattering rate to be used to solve the pBTE in thin devices (see chapter 2, section 2.4.5). To solve the diffusive equation, the conductivity -temperature relations in the form C×T α determined in the previous sub-section for different roughness parameters are used.

First, we analyze the behavior of the effective temperature and of the temperature of four phonon modes (as defined in chapter 2, section 3.5). The temperature profiles in the DG-MOSFET under the bias condition V gs = 0.5 V, V ds = 1.2 V with the roughness ∆ = 30 Å are displayed in Fig. 3.11. Let us to point out the difference between phonon modes and also between the effective and diffusive (Fourier) temperatures, a zoom of the hotspot is also presented in Fig. The phonon-modes and effective temperatures in this out of equilibrium regime are different in the channel-drain region where many phonons are generated by hot electrons. The LTO temperatures are slightly higher than the diffusion temperature in this region. However, the LTA phonon temperatures are very high because these phonons are generated simultaneously by electron -phonon scattering and by optical phonon decay, the latter mechanism being an important source of LTA phonons. Note that with our set of deformation potentials, the power density of LTO is up to about 50% of the total one (see Fig. 3.

3). With

the hypothesis that at steady-state, all LTO phonons decay into LA and TA phonons, the density of LA and TA phonons produced by this process is comparable to the density of LTO phonons (see Chapter 2, sub-section 2.3). In addition, the number of LTA phonons generated by LTO phonon decay is equally distributed between LA modes and TA modes, but at a given temperature the equilibrium phonon occupation number of TA modes is smaller than that of LA modes. Hence, the impact of LTO decay is stronger for TA phonons than for LA phonons, which manifests through the TA temperature that is much higher than the LA temperature. This is the origin of the strong enhancement of the TA temperature in the hot spot region. The diffusive model underestimates the temperature (482.0 K at X = 91 nm) in the hotspot region compared to the effective temperature obtained by the BTE model (491.3 K at X = 86 nm).

Along the transistor, this difference is visible in the zone from 70 nm (drain-end of the channel) to 95 nm where most of the power dissipation is produced (see Fig. 3.9).

Discontinuities of temperature near the isothermal boundaries are visible in Fig. 3.11a.

These discontinuities were also seen in the Si bars (see Chapter 2, Section 4.7). The shorter the device is, the stronger the discontinuities at the boundaries are. This is in agreement with the work of Wong et al [START_REF] Wong | A Monte Carlo for phonon transport within silicon structures at nanoscales with heat generation[END_REF]. They used Monte Carlo simulation for the phonon transport in silicon structures with heat generation in Gaussian form for films of length ranging from 10 nm to 5 µm and with a constant temperature of 300 K applied at both ends.

They showed that the discontinuity was increased when the film was reduced below 100 nm due to the decreasing of thermal conductance. Fig. 3.12 shows that these discontinuities are increased when increasing the drain bias, i.e when increasing the power dissipation. At the source contact, the discontinuity of the effective temperature reaches 3.1 K at V ds = 0.5 V, 7.8 K at V ds = 1.0 V and 9.7 K at V ds = 1.2 V. In addition, at high V ds , the shift between the two temperatures increases in the hotspot.

roughnesses of 3.5 Å, 10 Å and 30 Å are compared. When increasing the roughness, the heat conduction is reduced, so that the highest hotspot temperature is observed in the roughest Si-SiO 2 interface case. For V gs = 0.3 V (power density of about 10 14 W/cm 3 ), the difference between the maximal values of effective temperature (position X max ) between the two cases of roughness 30 Å and 3.5 Å is 14.3 K (346 K vs. 332 K, respectively). For higher V gs values of 0.5 V and 0.7 V (power density in the order of 10 15 W/cm 3 ), the difference between 3.5 Å and 30 Å cases reaches 47.9 K and 97.2 K, respectively. Hence, the roughness effect plays a significant role at high power densities. Finally, we discuss the non-equilibrium aspects of phonon transport by investigating the non-symmetric phonon density distributions at the position X max = 86 nm, i.e. in the hot spot, for V gs = 0.5 V, V ds = 1.2 V and ∆ = 30Å. We consider, successively, the cases of LA phonons, TA phonons, LO phonons and TO phonons in Fig. 3.15, Fig. 3.16, Fig. 3.17 and Fig. 3.18, respectively.
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Here, to have the distribution as a function of energy, we have defined the phonon density distribution. As the phonon distribution in an interval of frequency [ω, ω+dω] depends on the width of this interval, following the Eq. 2.16 in chapter 2:

( ) ( ) ( ) ( ) ( ) 3 3 1 1 2 exp exp q d B B dq n d DOS d q k T k T ω ω ω ω ω ω ω ω ω ω π < < + = ⋅ = ⋅             ∫∫∫ ℏ ℏ (Eq. 2.16)
The phonon density distribution is defined as:

( ) ( ) ( ) ( ) ( ) 3 3 1 2 exp q d B dq q k T n d n d d ω ω ω ω ω π ω ω ω ω ω < < + ⋅       = = ∫∫∫ ℏ (3.6)
Hence, this density distribution is unchanged with the interval dω.

In Fig. 3.15a we plot the density excess of LA phonon density distribution deduced from the eMC results. For LO and TO modes, there is only one generation term resulting from electron-phonon scattering (see Eq. 2.53-chapter 2). The LO mode generation and transport are analyzed in Fig. 3.17. As previously seen in Fig. 3.3, the excess of LO phonons contributes only to about 10% of the total dissipated power. Additionally, most of LO phonons are generated in the energy range 60 meV -65 meV, where the equilibrium phonon distribution is small (see The TO mode transport is analyzed in Fig. 3.18. Regarding the TO mode, it is worth noting that the excess generated phonon distribution is limited to 4%. Hence, though this f-type generation occurs around 57 meV, at which the TO phonon distribution is high, its effect on the temperature is small and the TO mode temperature remains close to the Fourier temperature T diff , as we have seen previously in Fig. 3.11. 

SELF-HEATING IN DG-MOSFET WITH COUPLED NON-EQUILIBRIUM ELECTRON-PHONON TRANSPORT

Description of coupled electron-phonon transport simulation

To model the effects of self-heating in transistors, the electron and phonon transport must be coupled together. The coupled non-equilibrium electron-phonon transport in the studied DG-MOSFETs and its effects on the transport of each type of particle will be described in this section. simulator. As seen in the previous Section, each mode has its own temperature and the phonon distribution of each mode can be quite well approximated by the equilibrium distribution at temperature T = T eff . Hence, we make this approximation for the lattice temperature. All electron scattering rates, as electron-phonon and electron-impurity scattering rates (see in ref.

[Aubry-Fortuna04]), are re-calculated in each cell according to the positiondependent T eff . Thus, the MC simulation is performed by taking into account the temperature effect. The electronic transport is modified through this field of temperature. Once the system reaches the stationary regime, the net phonon generation rates are extracted again and sent to the p-BTE solver. This two-step process, that successively includes an electron and a phonon transport simulation, is called a loop. After each loop, the potential, the drain current, the average velocity, the average energy of electrons and also the phonon generation rates are examined and compared with the previous loops until the convergence is reached. We have been empirically that by using this procedure, the convergence is reached after only three loops.

Then, the impact of self-heating on the electron transport in the 20 nm DG-MOSFET will be analyzed, through e.g. the drain current, the scattering location and the ballisticity.

Regarding the effects on phonon transport, we will analyze mainly the temperature profiles.

Finally, the effect of changing the roughness parameters (from 3.5Å to 30Å) in the phonon scattering rates will be analyzed too. From the open loop to the 1 st loop, the phonon generation rates, or in other words, the electron-phonon scattering rates, are increased because of the temperature effect (see Eqs. 3.3 and 3.4). Then, from the 1 st to the last loop (4 th loop), these scattering rates are almost stable.

Hence, the lattice temperature from the 3 rd and 4 th loop remains almost unchanged. In order to see clearly the convergence of the temperature, the Fourier and effective temperatures at V gs = 0.5 V, V ds = 1.0 V are put together in Fig. In the coupled simulation, although the hot spot still exists, its magnitude is smaller when the self-heating is included. It induces smaller temperatures in the hotspot: the maximal value of the effective temperature in the 1 st loop is 440.9 K, while this maximal value in the last loop (convergence value) is only 433. It is interesting to examine also the evolution of the potential. Fig. 3.22 displays the potential profile at V gs = 0.5 V and V ds = 1.0 V along the source-drain direction after different loops. The electrical resistances of the two accesses are increased in self consistent simulations due to the temperature increase in these regions. The inset shows the zoom of this potential from 0 nm to 60 nm (mid-channel). As the temperature rises, the electrical resistance increases, the potential is modified. We can see that a good convergence is reached after the first loop.

In addition, because of the raised of temperatures throughout the transistor, electrons are slowed down by scattering. To identify the most important scattering mechanisms, the number of electron interactions with impurities, intravalley acoustic and inter-valley phonons and roughness have been collected during 10,000 iterations of e-MC simulation in two cases:

isothermal and electro-thermal case. In Fig. 3.23, we plot these interaction numbers in arbitrary units along the channel for V gs = 0.5 V and V ds = 1.0 V. The inter-valley interaction is the most increased scattering type. In particular, at the channel drain-end, this scattering type in coupled simulation is enhanced by 45.6 % in comparison with the case of isothermal simulation. The B int reduction is present at all positions along the channel. The higher the drain bias, the stronger is the reduction of the ballisticity. At the drain-end of the channel, the difference of ballisticity between the isothermal and electro-thermal cases is about 2.8 % for V ds = 0.5 V and 7.4% for V ds = 1.0 V.

Until now, we have quantitatively analyzed the scattering events that slow down electrons and increase the electrical resistance. Consistently, taking into account the thermal effects tends to reduce the average velocity and kinetic energy of electrons. The results are shown in V ds = 0.5 V and 1.0 V in the isothermal case and in two self-consistent cases.

The velocity is slightly reduced when self-heating is included in particular in the middle of the channel, where the maximum velocity is reached. After the drain-end of the channel the overshoot velocity is rapidly relaxed in the drain extension. The situation is different regarding the average kinetic energy. It should be noted that a much greater length is needed to relax the kinetic energy in the drain extension than to relax the velocity. The self-heating effects influence mainly the energy in the two accesses that is increased due to higher temperatures. This is, of course, more visible when the drain bias is higher.

We plot in Fig. 3.27.a the evolution of the drain current for three bias points as a function of the number of loops. We can see again that the convergence can be reached after only 1 or 2 iterations whatever the drain bias value. The evolution of the I d -V ds characteristics at V gs = 0.5 V is shown in Fig. 3.27b. Relative degradations of 6.9% and 8.1% of the drain current are observed for V ds = 0.5 V and 1.0 V, respectively, for a roughness of 30 Å. The increase of this degradation as a function of the drain bias is shown in Fig. 3.28. We have seen in sub-section 2.2 of the present chapter that, for given conditions of electronic transport, the more the Si-SiO 2 interface is rough, the more the temperature is raised in the transistor. Here, we analyze the effect of interface roughness on the final temperature, the intrinsic ballisticity and the drain current. The effective temperatures of the 1 st loop and of the last loop with different roughness parameters (∆ = 3.5 Å, 10 Å and 30 Å)

for V ds = 1.0 V and V gs = 0.5 V are plotted in Fig. 3.29. Note that the change of roughness parameters is considered here only for the phonon boundary scattering. As discussed in the sub-Section 2.2, the more the heat transport is impeded by the rough Si-SiO 2 interface, the more the system is hot. This is observed not only for the temperature of the 1 st loop but also for the temperature obtained after the self-consistent simulation.

The effective temperatures reach their maximal value always in the same region. With all roughness parameters, the final effective temperature is reduced (by about 8K-9K) in comparison with the corresponding temperature in the 1 st loop. This reduction occurs principally in the drain-end of the channel and in the drain extension. Indeed, by taking into account the thermal effects, electrons are less accelerated and less energetic (see Figs. 3.25 and 3.26) in the drain region than in the isothermal case; consequently, the number of generated by electron scattering events is smaller.

Finally, the degradation of drain current as a function of roughness parameter for two bias conditions is displayed in Fig. 3.30. Even if the effective temperatures are very different when changing the roughness (see Fig. 3.27), the drain current degradation varies slightly. For V gs = 0.7 V, V ds = 1.0 V, this degradation is 12.5% with ∆ = 3.5 Å and 13.5% with ∆ = 30 Å. The variation of this quantity for V gs = 0.5 V, V ds = 1.0 V is about 8%. Hence, if the influence of roughness is limited to the phonon transport through the change of phonon boundary scattering rate (without changing the scattering rate of electrons) the influence on the current through the change of temperature is very small.

Conclusions

In this chapter, by using a typical Monte Carlo simulator (MONACO) and considering quadratic phonon dispersion, we take out the phonon generation due to electron scattering in silicon device. The LA and TO generation are the main contributions. This dissipation has been compared with a macroscopic approach (of the Joule effect) derived from the driftdiffusion approach. A discrepancy between these two models is observed at the drain end where the electric field is strong and where the majority of phonons is generated.

Furthermore, in our simulator, the energy conservation is ensured, i.e. the electron energy gained during the carrier's acceleration by the electric field is transformed into phononic energy.

Our model includes the decay of optical phonons into the acoustic modes and a generation term from e-MC simulation that is used in the solution of the Boltzmann equation. The profile temperature per mode and the comparison between diffusion temperature and the effective temperature are presented. Our results show the significant role of LTO decay in heat transport, particularly at the hotspot region. One of the main advantages in our model is its capacity to take into account rough interface. The temperature in the device is dependent on the roughness of the Si-SiO 2 interface. In order to reduce the self-heating effect, it is required to fabricate transistors with Si-SiO 2 interface as smooth as possible. The phonon densities for each mode at the hotspot position are shown as an evidence of non-equilibrium phonon transport.

Finally, we have coupled the non-equilibrium transport of electrons and phonons in the 20nm-long DG-MOSFETs by taking into account in the electron scattering rates the effective

GENERAL CONCLUSION

In the context of VLSI (Very Large Scale Integration) circuits and the continuation of downscaling, self-heating effects are identified as one of the most critical issue. In ultra-short transistors, the high power density generated during the working operation is related to the emission of phonons by hot electrons at the microscopic scale. As the transistor dimensions and the Si film thickness are scaled down to the order of ten nanometers, which is much less than the phonon mean free path, non-equilibrium effects will take place. However, it is difficult to study experimentally the heat transport in transistors, in particular during the device operation. Therefore, the simulation of coupled electron and phonon transports to evaluate the electro-thermal effects in nanoscale devices is of great interest for both academia and industry.

In this context, the present work has investigated and estimated theoretically the thermal transport in different regimes and in structures of various geometries. In particular, the heat generation and transport in bulk Si and the local heating in ultra-short Si devices have been studied. Finally, a fully coupled self-consistent electro-thermal simulation has been performed.

In chapter II, a new set of scattering parameters has been introduced to reproduce the thermal conductivity in bulk Si and GaAs materials. A model of optical phonon's decay into acoustic phonons was established. Then, an analytical model has been presented to calculate the thermal conductivity. By using our set of scattering parameters adjusted for a quadratic phonon dispersion and including the phonon-boundary scattering in various device geometries, our results capture well the trend of the thermal conductivity in thin films and in different kinds of wires. In addition, our analytic model is successfully used to fit the experimental thermal conductivities in rectangular cross-section wires by using realistic roughness parameters.

Next, an original numerical method to solve the stationary BTE for phonons under RTA for phonons has been presented. A solution of the Fourier heat equation is coupled to the BTE to estimate the scattering terms properly. Our method gives the good predictions of thermal conductivity for pure Si bulk at 150K and higher temperatures. Then, to predict the thermal conductivity of Si nano-structures, the phonon-boundary scattering is taken into account. Inplane conductivities match very well with the experimental data. In addition, the cross-plane conductivity, which is until now difficult to measure experimentally, is investigated with our BTE model. The resulting conductivity is in better agreement with the experiment than other theoretical approaches.

For GaAs nano-pillars, with sine type phonon dispersion and an appropriate set of scattering parameters, our BTE solver in the RTA has been used successfully to reproduce the thermal conductance in ultra-short GaAs nano-pillars. The ballistic phonon transport is clearly dominant though the thermal conductivity in nanometer-long pillars is slightly affected by scattering at temperatures higher than 100 K.

Furthermore, our numerical results have been successfully assessed in all heat transfer regimes: diffusive, intermediate and ballistic regimes. Our method is consistent with the Stefan-Boltzmann law at the ballistic limit and with the Fourier law in the diffusive limit. The LA and TA phonon occupations are analyzed from our simulations to make clear the physics in each regime.

In chapter III, by using the analytical model for electron dispersion in MONACO and by employing the quadratic and isotropic phonon dispersion, we showed out the phonon generation by electron scattering during the electronic transport in bulk silicon. It appears that the highest contribution to the phonon generation comes from LA and TO modes (about 40% each), while the TA and LO contributions are smaller. The resulting exact dissipation is compared with the Joule heating estimated using conventional macroscopic calculations in bulk Si and also in a DG-MOSFET of 20 nm gate length under several bias conditions. In the latter case, a strong discrepancy between the two approaches is observed at the drain-end of the channel and in the drain extension where almost all phonons are generated by hot electrons which relax their energy by emitting phonons.

Next, we have investigated the heat transport in this transistor by taking into account the phonon generation obtained from MONACO as an input in the pBTE solver. The profile temperature per mode and the comparison between diffusion temperature and the effective temperature are pointed out. The TA and LA mode temperatures are higher than that of the LO and TO modes which are higher than the diffusion temperature. The contribution to the total heat transport of each mode has been discussed through the analysis of the thermal flux.

Then, we have studied the dependence on the Si-SiO 2 roughness of the temperature profile.

As expected, it appears that to reduce the self-heating effect under strong electric field, it is required to fabricate the transistors with a Si-SiO 2 interface as smooth as possible. Finally, the phonon occupation densities for each mode at the hotspot region are shown as an evidence of non-equilibrium phonon transport.

Finally, we have coupled the non-equilibrium transport of electrons and phonons in a 20 nm-channel DG-MOSFET by taking into account the effective temperature obtained from the steady-state pBTE in the update of phonon-electron scattering rates. The convergence is reached after only 3 or 4 loops. The influence of electro-thermal effects on the electron and phonons transport in DG-MOSFETs is analyzed in terms of effective temperature, thermal flux, electronic potential, electron velocity and energy… Because of the raised temperatures throughout the transistor, all types of electron interaction are significantly increased in the coupled electro-thermal simulation with respect to the isothermal simulation. In particular, at channel drain-end, the inter-valley scattering in the coupled simulation is enhanced by 23 % for the bias conditions V gs = 0.5 V, V ds = 1.0 V. As a consequence, the intrinsic ballisticity, velocity and kinetic energy of electrons obtained from electro-thermal simulation are reduced.

Consistently, the drain current is also reduced in comparison with the isothermal simulation.

This current degradation is discussed as a function of the bias voltage and of the surface roughness.

Suggestion for the future work

1. Development the RTA for each phonon mode

As seen in chapter III, we coupled the non-equilibrium electron and phonon transport in transistor with the assumption that the lattice temperature is the effective one obtained from pBTE and all electron scattering rates are updated at this temperature. At this point, we can extend the model for each electron-phonon mode scattering: electrons should scatter with a phonon at the temperature T mode of the phonon. Other scattering mechanisms, such as the electron-impurity and alloy scattering could be dependent on the lattice temperature.

Extension of the BTE simulation to two dimensions and improved treatment of interfaces

In this work, we solved the pBTE in one dimension to reduce the calculation time for the long-drain transistor. For shorter devices and other device architectures, it would be relevant to implement the 2D-BTE.

Then, the energy transmission at the Si-SiO 2 interfaces could be taken into account to evaluate better the role of SiO 2 . In addition, with 2D simulation, we could investigate the phonon temperature with different boundary conditions (Neumann/Dirichlet).

effect of stress on the surface potential is applied on both sides of the nano-layer. The effect of stress on the surface potential is applied on both sides of the nano-layer, as illustrated in In nanostructures, the size quantization effects may be very important. Several works on silicon nanowires have shown that these effects may substantially influence their electrical and mechanical properties. In particular, for diameter smaller than 20 nm, many physical quantities such as the Young's modulus, the Poisson ratio, the electron and hole effective mass, the band gap and the mobility are strongly affected with respect to bulk data [START_REF] Leu | Surface chemical control of the electronic structure of silicon nanowires: Density functional calculations[END_REF][START_REF] Leu | Ab initio calculations of the mechanical and electronic properties of strained Si nanowires[END_REF][START_REF] Ghetti | Coupled Mechanical and 3-D Monte Carlo Simulation of Silicon Nanowire MOSFETs[END_REF]. However, in this study, to compare with available experimental data, we simulated structures with minimum thicknesses of 80 nm that are much larger than the critical size above mentioned. Thus, though our model is able to include them [StMartin06], quantization effects may be neglected here.

All simulated structures had an effective length of 500 nm. The thicknesses were 80 nm, 100 nm, 150 nm or 200 nm. The p-type Si layer was doped to 10 18 cm -3 , 2.7×10 17 cm -3 or 1.49×10 16 cm -3 , which correspond to bulk resistivities of 0.044 Ωcm, 0.1 Ωcm and 1 Ωcm, respectively. At both ends, the Si layer is overdoped to 10 19 cm -3 and contacted by an Ohmic contact which injects/detects the flux of particles flowing through the structure. An uniaxial stress was uniformly applied along the <110> transport direction y. The surface potential ϕ was defined as the difference in the top of valence band between the surface and the volume of the material where neutrality was assumed to be recovered. The effect of stress was modeled along the line proposed by Rowe who investigated the giant piezoresistance effect in For higher resistivity (ρ = 0.1 Ω.cm and 1 Ω.cm), the current is much lower and controlled by the height of the potential barrier in the center of the structure, which leads to a quasiexponential dependence of the current with the stress. Piezoresistive coefficient ( x 10 

+ Current

+ Variation of conductivity

Conclusion on the simulation of giant piezoresisitif effect

Using 2D MC simulation, we have been able to reproduce the giant piezoresistance in silicon nano-layers with thickness of 80-200 nm which are assumed to behave as nanowires.

Taking into account the effects of stress on both the surface potential and the valence bands make it possible to modulate the depletion depth and the conductivity of the structure. The effective conduction area, wide in the case of compression, becomes much narrower in the case of tensile strain. The relative variation of conductivity and the piezoresistive coefficient show a strong dependence on both the thickness and the resistivity. Our results are in satisfying agreement with experimental data available for nanowires.

Where F(z) is a linear function of z.

For a bar with temperatures at the two extremities are T h and T c , the limit conditions are ( ) ( ) The analytic solution is easily obtained as ( )

1/ 1 1 1 1 c h z z T T T L L α α α + + +     = ⋅ + - ⋅         .
(B-10)
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  En utilisant le simulateur Monte Carlo (MONACO) et en tenant compte de la dispersion quadratique pour les phonons, nous obtenons les phonons générés par les interactions électron-phonon dans les dispositifs de Si. Le transistor étudié est le suivant : Le drain est étendu pour que les électrons puissent relaxer totalement leur énergie avant d'atteindre le contact. Comme illustré sur la figure ci-dessus, la dissipation thermique (principalement composé de LA et TA) a été comparée à une approche macroscopique(J.E). Un grand écart est observé entre ces deux modèles à la fin du canal. En effet, ce n'est pas là où le champ électrique est le plus fort que la majorité des phonons est réellement générée. Cela est en contradiction avec l'approche macroscopique qui localise mal la génération thermique.

3

 3 Transport couplé des électrons et des phonons -Auto-échauffementEnfin, nous avons couplé le transport des électrons et phonons dans les DG-MOSFET.Comme schématisé ci-dessous, une boucle de simulation comprend une résolution e-MC suivis par une résolution pBTE. Au début de chaque boucle, les taux d'interaction des électrons dans le simulateur Monte Carlo sont modifiés pour tenir compte de la température effective obtenue à partir de la solution de la BTE pour les phonons. La convergence est atteinte après seulement 3 ou 4 boucles. effets électro-thermiques dans les DG-MOSFET ont été analysés : on observe notamment une modification de la température effective, du flux thermique, du potentiel électronique, de la vitesse des électrons et de leur énergie.Les effets électro-thermiques augmentent le nombre d'interactions subies par les électrons le long du dispositif, et diminue donc la balisticité. Par conséquent, la vitesse et l'énergie des électrons sont réduites par rapport au cas de la simulation isotherme à 300K.

  de phonons par résolution directe de la BTE des phonons. Ce modèle a ensuite été couplé au le logiciel "MONACO" de transport électronique basé sur une résolution statistique (Monte Carlo) de la BTE, développé auparavant dans l'équipe. Finalement, ce nouveau simulateur électro-thermique a été utilisé pour étudier les effets d'auto échauffement dans les nanotransistors. L'intérêt principal de ces travaux est de permettre une analyse du transport électro-thermique au-delà du formalisme de Fourier. En effet, il donne accès aux distributions locales de phonons dans le dispositif, et ce pour chaque mode de phonon. En particulier, ce simulateur apporte une meilleure compréhension des effets des électrons chauds au niveau des points chauds et leur relaxation dans les accès.1. INTRODUCTION TO MOSFETsSilicon (Si) based integrated circuits (ICs) have become the pivot of today's semiconductor world[Slisher12]. The heart of the Si based ICs is the transistor, dominated by CMOS (Complementary Metal Oxide Semiconductor)[Thompson] which makes use of both nchannel and p-channel MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).The semiconductor technology is actually scaling down the feature size of transistors towards the nanometer regime to continue increasing the density of devices on a single chip. This strategy has been very effective for many years to improve the overall performance of circuits. The size of device is governed by the Moore's law which predicts that the number of transistors per integrated circuit doubles every 24 months. In 2012, the 22 nm is introduced as the next CMOS step following the 32nm step on the International Technology Roadmap for Semiconductor (ITRS).The short channel effects, such as threshold voltage roll-off and drain-induced-barrierlowering[START_REF] Kumar | Diminished Short Channel Effects in Nanoscale Double-Gate Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect-Transistors due to Induced Back-Gate Step Potential[END_REF], increase significantly as the gate length of semiconductor devices is reduced to the nanometer scale. In short channel devices, electron transport can be quasiballistic or even ballistic with a ballisticity up to 65% [StMartin04-1, StMartin04-2]. In a quasi-ballistic and ballistic channel, electrons injected from the source region to the drain region do not undergo or undergo few scattering when they cross the channel. Their energy gained in the electric field cannot be relaxed efficiently along their trajectory via the lattice through electron-lattice collisions. Therefore, a non-equilibrium situation occurs, referred as hot electron transport. An over-population of phonons is emitted in the drain extension beyond the gated region of the channel, which induces local heating. Hot electron phenomena have become an important issue for the understanding of modern ultra-scale semiconductor devices[START_REF] Young | Short-channel effect in fully depleted SOI MOSFETs[END_REF] Balkan99,[START_REF] Vitusevich | Separation of hot-electron and self-heating effects in two-dimensional AlGaN/GaN-based conduting channels[END_REF]. This unwelcome effect gives rise to a degradation of transistor characteristics and may lead to circuit failure.

"Fig. 1 .

 1 Fig. 1.1. (a) Cross-section of the double gate MOSFETs structure studied. The source and drain regions are doped to 10 20 cm -3 . (b) The drain current as a function of gate voltage for MOSFET of 20nm-and 100nm-gate length obtained using the three models: DD, HD, MC [Granznier06].

[

  Querlioz10] or the Green function [Anantram08, HVNguyen09, Mazzamutto11, Mazzamuto12]. An illustration of the hierarchy of transport models is represented in Fig. 1.2.

Fig. 1 . 2 .

 12 Fig. 1.2. Illustration of the hierarchy of transport models [Vasileska08].

  k ; in the case of parabolic energy band of effective mass m, they are related in the definition of momentum by p mv k = = ℏ . If a force F instantly acts on each particle, then at time t + ∆t their position will be r + ∆ r = r + k ℏ ∆t/m and wave vector k

  Poisson equation solver. The boundary conditions to the Poisson equation are carefully studied by the group of J.E. Velázquez-Perez [Volovichev08].

  states effective mass per valley m D is defined as ( )

Fig. 1 . 3 .

 13 Fig. 1.3. Si bandstructures obtained using 30 band k.p method with and without strain. On the left: constant energy surface at 40 meV from band edge for the 1st hole band (heavy holes). On the right: corresponding E(k) (eV) in [100] and [110] directions for the 1st (HH) and 2 nd (LH) bands. (a) Compressive strain -2 GPa, (b) unstrained, (c) tensile strain + 2 GPa.

Fig. 1 . 4 .

 14 Fig. 1.4. Schema of a 1D chain with two atoms per unit cell.

Fig. 1 . 5 .

 15 Fig.1.5. Optical and acoustic phonon branches of the dispersion relation for a diatomic linear lattice, showing the limiting frequency at 0 q = and / q a π =

relation: 3

 3 acoustic branches and 3p-3 optical branches. Thus silicon with two atoms in a primitive cell has six phonon branches: one longitudinal acoustic mode (LA), one longitudinal optical mode (LO), two transverse acoustic modes (TA) and two transverse optical modes (TO). The Fig.1.6 illustrates this relation in Si. The number of vibration modes in the frequency range [ω, ω+dω] for polarization s (s = LA, TA) is D s (ω) dω where D s is the density of states (DOS). The DOS D s (ω) of mode s can be derived from the dispersion ( ) q ω

Fig. 1 . 6 .

 16 Fig. 1.6. Phonon dispersion curves in Si along high-symmetry axes, taken from [Yu&Cardona95]. The circles are data points from [Nilsson72]. The continuous curves are calculated with the adiabatic bond charge model of Weber ([Weber90]).

Fig. 1 .

 1 Fig. 1.7. (a) Phonon dispersion in silicon along the (100) direction from quadratic approximation. (b) Group velocity of the four phonon modes as a function of frequency from quadratic approximation.

Fig. 1 .

 1 Fig. 1.8. Phonon distribution as a function of energy for four phonon modes: LA, TA, LO and TO.

κ

  depends on the angular frequency ω, on the polarization branch p, on the location r and on the direction u is introduced. Under the RTA and in steady-state, the pBTE reads[START_REF] Terris | Modeling semiconductor nanostructures thermal properties : The dispersion role[END_REF] is an equivalent phonon absorption coefficient which can be expressed in terms of relaxation times ω is an equilibrium phonon specific intensity which is written as

Fig. 1 .

 1 Fig. 1.10. (a) Steady-state temperature for Si, influence of the slab thickness; comparison to the analytical solution in the diffusive and ballistic limits (taken from [Lacroix05]). (b) Nanowire thermal conductivity;comparison between MC simulations -solid lines, experimental data (taken from[START_REF] Lacroix | Monte Carlo simulation of phonon confinement in nanostructures: Application to the determination of the thermal conductivity of Silicon nanowires[END_REF]).

Sadi

  et al. used a 2D electron Monte Carlo (eMC) simulation coupled with a 2D solution of the heat diffusion equation to study the electro-thermal phenomena in SOIFETs and in Silicon-Germanium-on-Insulator metal-oxide FETs[START_REF] Sadi | Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on insulator metal-oxide field-effect transistors[END_REF]. They highlighted the electron velocity and the drain current degradations in a 0.1µm-long-channel transistor. Then, the coupled simulations are extended to study the self-heating effect in InGaAs channel highelectron mobility transistor (HEMT) at nanoscale by the group of T. Sadi and J-L. Thobel[START_REF] Sadi | Monte Carlo study of self-heating in nanoscale devices[END_REF].Ravela, Vasileska and Goodnick [Raleva08, Vasileska09, Vasileska10, Raleva12] coupled eMC simulation with transport equations for optical and acoustic energy transfer derived from the BTE which has been developed by[Lai96]. They defined three temperatures in the device: electron temperature T e , optical temperature T O and acoustic temperature T A that was assumed to be the lattice temperature T L . A constant energy transfer rate for the optical-acoustic phonon of 10 ps was used. The temperature profile was changed when different boundary conditions were applied (Neumann/Dirichlet). They showed that the drain current is degraded by the heating. Furthermore, it was obtained that this degradation depends on the thermal conductivity of thin Si film that was introduced analytically in the model[START_REF] Vasileska | Inclusion of phonon dispersion and its influence on electrical characteristic degradation due to heating effects in nanoscale DSOI devices[END_REF].Although they solved the equations for optical and acoustic energy transfer derived from pBTE, the transfer model used was too simplistic model which might not be able to capture detailed physics of phonon transport in sub-micron devices[START_REF] Ni | Coupled electro-thermal simulation of MOSFETs[END_REF]. They studied the selfheating with channel lengths devices in the range from 25 nm to 180 nm. Hatakeyama and Fushinobu [Hatakeyma08] employed this model to study the thermal cross-talk between the nMOS and pMOS FETs that were set side-by-side to design a CMOS device. The channel length of the two MOSFETs was 90 nm while their entire length is 680 nm.More complex, Kamakura et al.[START_REF] Kamakura | Coupled Monte Carlo Simulation of Transient Electron-Phonon Transport in Nanoscale Devices[END_REF] coupled the MC method to solve the transient BTE for both electrons and phonons. They simulated a simple 1D n-i-n Si device.The contribution of optical phonons was neglected, while the heating modes can only be dissipated through the conversion into acoustic modes with a relaxation time of 10 ps. The acoustic phonons were approximated by the Debye approximation with a constant velocity of v ac = 5.9 km/s. The solution of transient pBTE was validated by calcultating the thermal conductivity obtained for some temperatures. The temperatures of both acoustic and optical modes were estimated.To build a better thermal transport model in submicron devices, it is necessary to take into account the phonon dispersion. Pop et al.[START_REF] Pop | Analytic band Monte Carlo model for electron transport in silicon including acoustic and optical phonon dispersion[END_REF] proposed an isotropic and quadratic relationship for Si in the [100] direction. The frequency-dependent net phonon generation was exploited [Pop05, Pop10] by using the eMC simulation. That is an important point to study the heat transport at the submicron scale. Rowlette and Goodson [Rowlette08] coupled the eMC model of Pop et al. [Pop04] with the split-flux model for phonon transport to perform a self-consistent simulation of nonequilibrium transport in Si-FETs. Their coupled simulation begun with an isothermal eMC simulation at 300 K, and then the net phonon generation rates as a function of position and phonon frequency were collected and used as an input for the split-flux phonon transport model. The solution gives an updated distribution of phonons at each spatial position. The simulator iterates until satisfactory convergence is reached. The model was used to study a 1D 20 nm-long-n-region in a n + -n-n + Si diode. They emphasized the role of g-LO and the phonon bottleneck effect. More recently, Ni et al. [Ni12] estimated the hotspot temperature in a MOSFET device by using an anisotropic relaxation time in a pBTE solver. The phonon generation spectrum obtained via eMC simulation was incorporated into the anisotropic relaxation time pBTE model of [Ni09]. The phonon dispersion includes six branches (TA1, TA2, LA, TO1, TO2and LO). A fully anisotropic Brillouin zone is also taken into account. However, the computational cost of this model is expensive[START_REF] Ni | Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics[END_REF].
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 21 Fig.2.1. Illustrations of Normal and Umklapp phonon-phonon scattering mechanism.

. 5 )Fig. 2 . 2 .

 522 Fig. 2.2. Raman linewidth (full width at half maximum -FWHM) in Si, taken from [Lang99]. The diamond symbols are experimental data after [Menéndez84], the continuous curve is the calculated result.

  The inverse lifetime Γ of the LO and TO modes (LTO) writes as[Klemens66] [Debernardi95] 

7 and 1 .

 1 0 are shown in Fig. 2.3. The TA+LA decay channel is illustrated by the green curve, the LA+LA one by the red curve.
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 23 Fig. 2.3. g 2 (E,E 0 -E) for an LO phonon of initial energy and wave vector at the point G×[0,0,α], where α = 0, 0.3, 0.5, 0.7 and 1, decaying into two lower energy phonons.

g 2 (

 2 ω,ω LTO -ω) spectra are always symmetric with respect to ω=ω LTO /2 (in order to achieve energy conservation). The ω 0 value in each case is indicated by a straight line. As expected, the Klemens channel, presented by a central peak is relatively weak. These results are consistent with the DFT calculation of Debernardi et al.[START_REF] Debernardi | Anharmonic phonon lifetimes in semiconductors from Density-Funtional Perturbation theory[END_REF] and the work of Rowlette et al.[START_REF] Rowlette | Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs[END_REF].

Fig. 2 . 4 .

 24 Fig. 2.4. Energy distribution of the phonons generated by the anharmonic decay of g-type longitudinal optical by using a) our calculation: LA-blue curve; TA green curves; LA+TA red curve b) results from [Aksamija10]: LA blue curve; TA red curve; dot full phonon dispersion.

  mass difference M δ between an impurity and a crystal atom of mass M and the interatomic difference of distance R δ between the defect-crystal atom distance and the atomatom distance are involved in the impurity-phonon scattering mechanism. The imperfections and unintentional impurities are modeled in doped samples by a term A x ω 4[START_REF] Asheghi | Thermal conduction in doped single-crystal silicon films[END_REF]. The corresponding scattering rate is[START_REF] Klemens | The scattering of low-frequency lattice waves by static imperfections[END_REF][START_REF] Asheghi | Thermal conduction in doped single-crystal silicon films[END_REF] 
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 2 z r . Goodnick et al. demonstrated experimentally by using high-resolution transmission electron microscopy that the surface roughness ( ) z r is a random variable with a Gaussian distribution so that the average value 0 z = and 2 = ∆ , where ∆ is the root mean square height of the surface roughness. They showed that for the interface Si(100) -SiO 2 , ∆ ranges from 1.33 to 50 Å [Goodnick87]. Recently, Park et al. have measured the average roughness of single-crystal VLS-grown (vapor-liquid-solid) Si nanowires in the <111> direction, which is from 2Å to 36Å [Park11].
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 25 Fig.2.5. Specular parameter vs. angular frequency for LA and TA modes in an Si film of thickness 20 nm and roughness 5 Å.

Fig. 2 . 6 .

 26 Fig. 2.6. Average specular parameter for LA (solid red line) and TA (dashed green line). (a) Temperature dependence of the parameters s p for surface roughness ∆ of 1 A and 5 A. (b) Roughness surface dependence of s p at 300 K and 50 K.
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 22 Fig. 2.7. Influence of the dispersion and time relaxation on the silicon bulk thermal conductivity calculation. Triangles are experimental data after [Glassbrenner64] full blue line is for Holland's scattering model with Holland's dispersion, black dashed line for Holland's scattering model with Pop's dispersion, green dashed line for Terris's scattering model with Pop's dispersion, red dashed line for our scattering model with Pop's dispersion.
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 2 Fig.2.9. (a) Thermal conductivity of bulk silicon as a function of step number in our calculation for 300 K and 400 K. (b) The thermal conductivity from Glassbrenner & Slack's experience [Glassbrenner64]
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 2 Fig.2.10. The 3D-schematic and 2D-side view of the device geometry considered in this sub-section.

Fig. 2 .

 2 Fig.2.11. Comparison of our thermal conductivity model w/o specular parameter and experimental data for Si films.

Fig. 2 .

 2 Fig.2.12. Thermal conductivity as a function of the roughness ∆ for film of 20 nm, 50 nm, 100 nm and 1.6 µm thickness; symbols with same colours are the experimental data. (20 nm from [Ju05], 50 nm from [Ju05], 100 nm from [Liu04] and 1.6 µm from [Asheghi97]).

Fig. 2 .

 2 Fig.2.13. Circular section wire structure and coordinates used in this work.

  the experimental trend. As expected, it is close to the experimental data for large wires. It should be mentioned that there is a large spreading among available experimental data. For 50 nm-diameter wires, the calculated conductivity is 47.3 Wm -1 K -1 , while the experimental values are 41.3 Wm -1 K -1 [Li03] and 8.75 Wm -1 K -1[START_REF] Hochbaum | Enhanced thermoelectric performance of rough silicon nanowires[END_REF].

Fig. 2 .

 2 Fig. 2.14. Comparison of the calculated thermal conductivity with experimental data for circular and square cross-section Si wires.

2 Å, 5 Å

 25 The measured and calculated results in the temperature range from 200 K to 450 K are put together in Fig.2.15. The calculation was made for several cases: roughness of 0.5Å, 1 Å, and purely diffusive phonon -boundary collisions. The measured values are in circles, with error bars representing an error of 25 %.

Fig. 2 .

 2 Fig.2.15. Thermal conductivity of four rectangular wires: 80 nm×160 nm, 140 nm×160 nm, 200 nm× 160 nm and 260 nm×160 nm in the temperature range from 200 K to 450 K. ∆ is the roughness standard deviation.

Fig. 2 .

 2 Fig.2.16. Thermal conductivity as a function of the width/thickness ratio for thickness of 40 nm (blue line), 50 nm (green line) and 100 nm (red line). The related film values for each thickness are in dashed lines, respectively.

  .28) where the average lifetime τ LTO takes the value of 3.5 ps[START_REF] Menéndez | Temperature dependence of the fisrt-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects[END_REF], of LTO phonons resulting from electron-phonon scattering.

  29)where the generation terms includes the contribution of electron-phonon scattering LTA phonon resulting from LTO decay as presented in sub-section 2.3 (cf. Fig.2.4).
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 2 Fig. 2.17. Diagram of discretization.
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 2 Fig. 2.18. (a) Theoretical and sampled frequency phonon distribution at 300K and 500K for silicon. (b) Normalized LA and TA occupations at 300K and 500K as a function of wave vector projection.

Fig. 2 .

 2 Fig. 2.19. Phonon energy density as a function of the temperature for each phonon mode. . By using this definition of the effective temperature four mode temperatures (T LA , T TA , T LO

Fig. 2 .

 2 Fig. 2.20. Schema of the simulated Si bar.

Fig. 2 .

 2 Fig. 2.21. (a) Heat flux along Si bars of different lengths with a temperature difference of 2K, centered at 300K. (b) Derivative of the heat flux divided by the corresponding flux at the middle of Si bars of different lengths with the same conditions. Inset: zoom in the range 0-2 µm

2 .Fig. 2 .

 22 Fig. 2.22. (a) The heat flux at 300 K as a function of temperature difference ∆T in 6µm, 8µm, 10µm and 12µ length samples and the correspondent linear fit curves, respectively. (b) The thermal conductivity inside silicon films as a function of film length.

Further, simulations have

  been carried out in the temperature range from 100 K to 600 K on 12 µm-thick samples. The comparison of the thermal conductivities obtained from our numerical method for BTE with our analytic model and the experimental data of Glassbrenner & Black [Grassbrenner64] is shown in Fig.2.23.

Fig. 2 .

 2 Fig. 2.23. Comparison of the thermal conductivity obtained from the numerical method, our analytic model and experimental data from [Grassbrenner64].

  using the Monte Carlo method to solve the BTE, Lacroix et al. found:[START_REF] Lacroix | Monte Carlo transient phonon transport in silicon and germanium at nanoscale[END_REF] 

Fig. 2 .

 2 Fig. 2.24. Thermal conductivity of silicon thin-films at 300 K: our model of BTE (full line), our model of thermal conductivity calculation (crosses), DOM model (dashed line and circles), and experimental data by : Asheghi et al.[Asheghi97] (squares), Ju and Goodson[Ju99] [Ju05] (blue triangle and red triangles), Liu and Asheghi [Liu04] [Liu05](red circles and blue quadrangle)

  ballistic. Until now, there is only one experimental cross-plane value for 500 nm-thick silicon film obtained by Hopkins and co-workers in 2012 [Hopkins12]. The analytical model of McGaughey et al. [McGaughey11] predicts better the experimental trends than the models of Flik [Flik90] and Majumdar [Majumdar93]. However, this analytical model over-estimates by more than 2 times the experimental data. More recently, in 2012, Jeong, Datta and Lundstrom [Jeong12] used the Landauer approach and took into account a surface roughness of 0.5 nm.

Fig. 2 .

 2 Fig. 2.25. (a) Cross-plane conductivity versus film thickness at 300K: this work (continued curve) and the experimental data [Hopkins11]. (b) Cross-plane thermal conductance of Si film for various thicknesses at 400K: our work (red curve), DOM (blue curve) and MC method (green curve) [Terris09].
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 2 Fig. 2.26. Effective temperature profile for different sample lengths and for diffusive and ballistic limits.The heat transport is very different for different bar lengths. For a quite long bar, the diffusive regime is obtained at ambient temperature and the temperature profile is quite linear and consistent with the Fourier law. While in very short bars, as for the 2 nm-length are, the transport is very close to the ballistic case (see Fig. 2.26). The transition between both regimes -referred as the intermediate regime-can be seen in the 20 nm and 200 nm-long Si bars.
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 2 Fig. 2.27. LA (left) and TA (right) phonon occupations at different positions for different sample lengths 2 µm(a), 200 nm(b), 20 nm(c) and 2 nm(d) with T h = 400 K and T c = 300 K. The occupations in a 10 µm long sample of with T h = 20 K and T c = 10 K are in (e). The arrow is to indicate the position from left contact (T = T h ) to right contact (T = T c ).
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 2 Fig. 2.28. Temperature profile in 10 µm sample with T h = 20 K and T c = 10 K (full line) and the ballistic temperature (dashed line) given by the Stefan-Boltzmann law (Eq. 2.68).

Fig. 2 .

 2 Fig. 2.29. Space distribution temperatures obtained from numerical BTE and from the analytical solution of the heat equation (temperature dependent conductivity).

Fig. 2 .Fig. 2 .

 22 Fig.2.30, in which the LA and TA occupations are shown.

Fig. 2 .

 2 Fig. 2.30. Temperature profiles in 100 nm-thick film with different the doping concentration. (a) Phosphorus. (b) Boron.

Fig. 2 .Fig. 2 .

 22 Fig.2.32. Thermal conductivity as a function of the temperature in bulk GaAs. Our scattering parameters (continued curve). Measurement from ref.[START_REF] Holland | Phonon scattering in semiconductors from thermal conductivity studies[END_REF].

Fig. 2 .Fig. 2 .

 22 Fig. 2.34. (a) Thermal conductance per area in various cases: pure ballistic, ballistic in the in-plane direction with the cross-plane boundary scattering and for 4 nm-and 6 nm long pillars with realistic scattering for LA and TA. (b) Thermal conductivities in 4nm-and 6nm-long with and without the cross-plane boundary scattering.

Fig. 2 .

 2 Fig. 2.36. Thermal conductance of single pillar: pure ballistic (continued green line), only with cross-plane boundary scattering (dashed green line), with scattering in 4 nm (red line) and 6 nm (blue line) long pillars in comparing with the experimental data for 4 nm (red circles) and 6 nm (blue triangles) long pillars.At ambient temperature [310 K, 290 K], some diffusive effects take place, but the conductance remains very close to the ballistic one.

  mass in the final valley, v p is the longitudinal (or transverse) wave velocity, ρ is the mass density, ε is the electron kinetic energy.

  lead to a final k outside the initial Brillouin zone, i.e. they are Umklapp processes. Taking the Umklapp reciprocal lattice vectors 2

  Some zero-order intervalley processes with low-energy phonons are forbidden by selections rules [Streitwolf70][START_REF] Lax | Intervalley scattering selection rules for Si ang Ge[END_REF]. However, many works have shown that such intervalley processes with these phonons actually occur[START_REF] Long | Scattering of conduction electron by lattice vibrations in Silicon[END_REF] [Canali75][START_REF] Ferry | First order optical and intervalley scattering in semiconductor[END_REF] 

Fig. 3 .

 3 Fig.3.1. (a) Intervalley phonon energies used in MONACO. (b) Quadratic and isotropic phonon dispersion proposed by Pop et al. [PopJAP04]. Dashed lines indicate the energy and wave vector of the 6 types of scattering.
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 5332 Fig. 3.2 illustrates the generated phonon spectra under low field (5 kV/cm) and high field (50 kV/cm).

Fig. 3 .

 3 Fig. 3.3 shows the integrated net energy dissipations of each branch at various electric fields. With the set of deformation potential used here, the most important modes involved in

Fig. 3 . 3 .

 33 Fig. 3.3. Heat dissipation per mode as a function of electric field (TA: green line and circles, LA: blue line and stars, LO: red purple line and triangles, and TO: light blue line and diamonds) and comparison of total MC heat (purple symbols) with Joule effect (top red line).

Fig. 3 .

 3 Fig. 3.4 shows a 2D cross-section of a Si DG-MOSFET that has been used extensively in previous works based on the e-MC method [StMartin06, StMartin-Thesis05]. The device consists of three regions: the two access regions (source/channel) and the channel one. The source and drain extensions are doped to 5×10 19 cm-3 . The source length is 50 nm, while the drain length is 150 nm. They are separated by a 20 nm lightly-doped (10 15 cm -3 ) channel region. The thickness of the Si-film is 20 nm. The dissymmetry of the device will be explained afterward.

Fig. 3 . 4 .

 34 Fig. 3.4. Simulated device with three regions: source-channel-drain, which are doped uniformly of 5×1019cm-3, 1015cm-3 and 5×1019cm-3, respectively.

Fig. 3 . 5 .

 35 Fig. 3.5. Electrical characteristics in DG-MOSFET. (a) Potential energy (b) Effective electron temperature for various V ds at V gs = 0.5 V.

Fig. 3 . 6 .

 36 Fig. 3.6. Electron-phonon scattering-induced phonon generation rate per mode along the device for V gs = 0.5 V and V ds = 0.5 V (left) and V ds = 1.5 V (right).

Fig. 3 .

 3 Fig. 3.7. (a) Total phonon generation rate vs. V ds for V gs = 0.5 V. (b) Power density for various V ds at V gs = 0.5 V.

Fig. 3 .

 3 Fig.3.8 shows the spectrum of the energy distribution of the net phonon energy generation rate along the device with the bias conditions of V gs = 0.5 V and V ds = 1.5 V. Under high field, electrons can reach high energy and, then experience intervalley scattering. The phonon wave vectors resulting are in quite large range. As described above, the phonon energy is obtained here by using the quadratic dispersion, so the phonon are extended over a quite large range energy in the hot spot region.

Fig. 3 .

 3 Fig.3.8. Energy distribution of phonon energy generation rate along the device with V gs = 0.5 V and V ds = 1.5 V.

Fig. 3 .

 3 Fig.3.9. (a,b) MC power density and Joule effect at V gs = 0.5 V, V ds = 0.5 V (a) and V ds = 1.5 V (b). (c) Drain current as a function of V ds for V gs = 0.3 V (blue line), V gs = 0.5 V (green line) and V gs = 0.7 V. (d) Comparison between total MC power density (lines) and integrated Joule heating (symbols) at various bias conditions.

Fig. 3 .

 3 Fig. 3.10. Evolution of the thermal conductivity as a function of temperature in Si films of thickness 20 nm. The calculated conductivities are in symbols of the same colors as fitting curves C T α × for several roughness parameters: ∆ = 3.5 Å (blue), 5 Å (green), 10 Å (purple) and 30 Å (red).

Fig. 3 .

 3 Fig. 3.11. (a)Temperature profiles along the DG-MOSFET under the bias condition V gs = 0.5 V, V ds = 1.2 V with roughness ∆ = 30 A°. (b) Zoom to point out the phonon-mode-temperature in the hotspot: LA (blue dashed line), TA (green dashed line), LO (azure dashed line), TO (purple dashed line); diffusion (scattering) temperature T Fourier (blue solid line) and effective temperature T eff (red solid line). The same colors are used in the two graphs.

Fig. 3 .

 3 Fig.3.12. (a) Bias dependence of temperature discontinuities at two ends and of temperature profiles with roughness ∆ = 30 Å and V g = 0.5 V. Temperatures T Fourier and T eff are plotted in dashed and solid lines, respectively at V ds = 0.5 V (blue curves), V ds = 1.0 V (green curves) and V ds = 1.2 V (red curves). (b) Zoom at the right contact.

Fig. 3 .

 3 Fig. 3.14. Impact of roughness on the heat transport in the 20-nm-thick-Si-DG-MOSFET. (a) Total power density extracted from MC simulation (same as Fig. 3.9.d). (b,c,d) Effective temperature T eff in solid lines, and "Fourier" temperatures T Fourier for different roughness parameters ∆ and bias conditions.

Fig. 3 .

 3 Fig. 3.15. Density distributions of LA phonons at the maximal temperature position X max for V gs = 0.5 V, V ds = 1.2 V. (a) Distributions deduced from the eMC results with both contributions of e-ph scattering and optical phonon decay. The inset is the zoom from 38meV to 51meV. (b) Distribution obtained after solving the pBTE (red solid line), compared to the equilibrium density distribution at Fourier, effective and LA mode temperature. (c) Fraction (in %) of excess phonon distribution (from eMC) with respect to the equilibrium distribution at T = T eff . (d) Difference between the pBTE distribution and the equilibrium distributions previously mentioned in (b).

Fig. 3 .

 3 Fig. 3.16. Density distributions of TA phonons at the maximal temperature position X max for V gs = 0.5 V, V ds = 1.2 V. (a) Distributions deduced from the eMC results with both contributions of e-ph scattering and optical phonon decay. (b) Distribution obtained after solving the pBTE (red solid line), compared to the equilibrium density distribution at Fourier, effective and TA mode temperature. (c) Fraction (in %) of excess phonon distribution (from eMC) with respect to the equilibrium distribution at T = T eff . (d) Difference between the pBTE distribution and the equilibrium distributions previously mentioned in (b).

Fig. 3 .Fig. 3 .

 33 Fig. 3.17b). Therefore, though the LO phonon excess reaches about 15%, the LO mode temperature remains close to the Fourier temperature.

Fig. 3 .

 3 Fig. 3.18. Density distributions of TO phonons at the maximal temperature position X max for V gs = 0.5 V, V ds = 1.2 V. (a) Distributions deduced from the eMC simulation via e-ph scattering. (b) Distribution obtained after solving the pBTE (red solid line), compared to the equilibrium density distribution at Fourier, effective and TO mode temperature. (c) Fraction (in %) of excess phonon distribution (from eMC) with respect to the equilibrium distribution at T = T eff . (d) Difference between the pBTE distribution and the equilibrium distributions previously mentioned in (b).

Fig. 3 .

 3 Fig. 3.19. Schema of the coupled electro-thermal simulation.

3. 2 .Fig. 3 .

 23 Fig. 3.20. Illustration of the coupled electron-phonon transport process in 20 channel length DG-MOSFET : net phonon generation rate and Fourier, effective temperature of each loop. First, we analyze the convergence through the evolution of the temperature and the phonon generation rates after each loop for the 20 nm long channel DG-MOSFET. The results are summarized in Fig. 3.20.

Fig. 3 .

 3 Fig.3.21. (a) Fourier (dashed lines) and effective (continued curves) temperatures along the device as a function of loop's number. (b) Thermal flux of each phonon mode and the total fluxes in the 1 st and 4 th loop.

  4 K. In addition, the thermal fluxes of each phonon mode and the total one in the last loop slightly decrease in comparison with the ones obtained in the open loop. This is due to the reduced temperatures of the 4 th loop of the coupled simulation in comparison with the isothermal simulation (open-loop).

Fig. 3 .

 3 Fig. 3.22. Potential profile along the DGMOS for open loop (blue curve), 1 st loop (green curve) and the last (4 th ) loop (red curve) at V gs = 0.5 V, V ds = 1.0 V.

Fig. 3 .

 3 Fig. 3.23. Distribution of interaction number along the channel as a function of interaction types in DG-MOSFET at V g =0.5V, V ds =1.0V in both isothermal and electro-thermal case. The increased scattering numbers along the device reduce the fraction of ballistic electrons that is quantified by the intrinsic ballisticity B int . B int corresponds to the percentage of purely ballistic electrons at the drain-end of the channel. The definition and the counting procedure in e-MC simulation are well detailed in ref. [StMartin04],[StMartin05]. In Fig. 3.24a, we plot the evolution of the percentage of ballistic electrons along the channel in two simulation cases

Figs. 3 .

 3 Figs.3.25 and 3.26 as a function of the number of loops. It illustrates once again the rapid convergence: after the 1 st loop, the velocity and the kinetic energy of electrons are very close to that obtained after the 4 th loop.

Fig. 3 .Fig. 3 .

 33 Fig.3.25. Evolution of average velocity of electron along the channel for V gs = 0.5 V, and for different drain biases V ds = 0.5 V and1.0 V in the isothermal case and in two self-consistent cases.

Fig. 3 .Fig. 3 .

 33 Fig. 3.27. (a) Current convergence as a function of the loop number for three drain bias V ds = 0.3 V, 0.5 V and 1.0 V. (b) I-V ds curves for V gs = 0.5 V after open loop, the 1 st loop, the 2 nd loop and the last loop (4 th loop) for the roughness of 30 Å.

Fig. 3 .

 3 Fig.3.29. Roughness dependence of effective temperature in DGMOS for V gs = 0.5 V, V ds = 1.0 V.

Fig. 3 .

 3 Fig.3.30. Roughness dependence of current degradation in DGMOS for V gs = 0.5 V, V ds = 1.0 V and for V gs = 0.7 V, V ds = 1.0 V.

Fig. A. 1

 1 Fig. A.1 that schematizes the simulated structures. They consist of p-type silicon layers of different thicknesses and resistivities (i.e. doping density).

Fig. A. 1 .

 1 Fig. A.1. Schematic cross-section of simulated structures.

Fig. A.

  Fig. A.2a shows the typical potential profile in the middle of the device along the transverse direction for three values of stress and a small resistivity ρ = 0.044 Ω.cm. The stress essentially modulates the depth of the surface depleted region, while the potential in the center of the structure remains unchanged and equal to its equilibrium position. Accordingly, the maximum hole density remains equal to the impurity concentration in the central region. The stress controls only the width of this neutral region, i.e. the conductive area, as shown in Fig. A.2b.

Figure A. 3

 3 Figure A.3 shows the current as a function of stress in the nano-layers for a thickness of 100 nm and various resistivity values. In the low-resistivity (ρ = 0.044 Ω.cm) structure, the current is controlled by the width of the conductive area and is linearly dependent on stress.

Fig. A. 3 .

 3 Fig. A.3. Currents versus stress in nano-layers of 100 nm-thickness for (a) resistivity of 0.044 cm; (b) resistivity of 1 cm. The solid lines are exponential fitting curves.

Fig. A. 4 .

 4 Fig. A.4. Relative variation of conductivity ∆σ/σ 0 as a function of stress with (solid lines) and without (dashed lines) inclusion of changes in band-structure for a resistivity of 0.1 Ω.cm.

Table 1 .

 1 1.7b. Within this approximation, the Brillouin zone is generally assumed to be a sphere of

	diameter 2π/a.			
		ω 0 10 13 rad/s	v s 10 5 cm/s	c 10 -3 cm 2 /s
	LA	0	9.01	-2.00
	TA	0	5.28	-2.26
	LO	9.88	0.00	-1.60
	TO	10.20	-2.57	1.11

1. Quadratic phonon dispersion coefficients cf. Eq 1.46. [Pop05],

Table 2 .

 2 

	.1 [Mittal10].

1. Main three-phonon scattering mechanism

[START_REF] Mittal | Monte Carlo study of phonon heat conduction in Si thin films including contributions of optical phonons[END_REF]

.

Table 2 .

 2 

	.3b)

2. Parameters of the dispersion model: (a) for

cutS ω ω ≤ , (b) for cutS ω ω > . Velocity is in [ms -1 ], frequency in [rads -1 ]. [Holland63]

2.2. Relaxation time of optical phonon

The lifetime, as well as the relaxation time, of LO and TO (LTO) modes have been calculated and measured from the Raman spectra

[Menéndez84] [Lang99]

. The calculated and Raman linewidth which have been compared in

[START_REF] Menéndez | Temperature dependence of the fisrt-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects[END_REF]

,

[START_REF] Lang | Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors[END_REF]

, are reported in Fig.

2

.2.

The frequency at the half maximum is

Table 2 .

 2 

	where L v and T v are the

By evaluating the reduction in thermal conductivity near the maximum of conductivity, Asheghi et al.

[START_REF] Asheghi | Thermal conduction in doped single-crystal silicon films[END_REF] 

proposed the three parameters of doping scattering (see Eq. 2.8) for Boron (B) and Phosphorus (P) are reported in Table

2

.3. 3. Values of three parameters A x , A δR and A δM obtained by Asheghiet al.

[START_REF] Asheghi | Thermal conduction in doped single-crystal silicon films[END_REF] 

Table 2 .

 2 4. Doping density-dependence of impurity scattering parameters A x , A δR and A δM assumed in this work.

Table 2 .

 2 

5. Relaxation time parameters: (a) for cutS ω ω ≤ , (b) for cutS ω ω > . (F is defined in Eq. 2.6)

Table 3 .

 3 1. Characteristics of electrons intervalley ∆-∆ transitions in Si used in this work [HDRPhi99].

Monte Carlo generation vs. Joule effect

  

	The heat generation rate per unit volume for each mode can be expressed as
				( ) G r , q s	=	e p sim N dt ω -ℏ	(	, em q s n	-	, ab q s n	)	r	(W/cm 3 ),	(3.4)
	where	ℏ	e p ω -	is the energy of the phonon involved in the scattering process, N sim is the
	number of simulated time steps, dt is the time step duration and , em q s n and , ab q s
	1.2. Phonon generation in bulk material
	1.2.1. Here, simulations of electron transport in Silicon bulk material under uniform field are
	performed to compute the heat dissipation. During the simulation, all absorbed and emitted
	phonons are recorded. The net emitted phonon number is the difference between the numbers
	of emitted and absorbed phonons.					

  3.10 with the calculated thermal conductivities in symbols. The values of C and α for each roughness are reported in table 3.2.

	Parameters\Roughness	3.5Å	5Å	10Å	20Å	30Å
	C (x10 4 )	5.7693	4.1645	2.3766	1.6253	1.7432
	α	-1.2053	-1.1689	-1.1006	-1.0511	-1.0684
	Table 3.2. Parameters of the function C T α ×	used to fit the conductivity-temperature pBTE results for different
		roughness parameters.			

Table A .

 A -11 Pa -1 ) 1. Piezoresistive coefficient in p-type <110> oriented Si nano-layers for different thicknesses and resistivities (values given in 10 -11 Pa -1 ).The results obtained are quite consistent with experimental results of He and Yang. For instance, they obtained a first order piezoresistive coefficient of 660×10 -11 Pa -1 for a 75 nm thick <110> oriented nanowire with a resistivity of 0.3 Ω.cm[START_REF] He | Giant piezoresistance effect in silicon nanowires[END_REF]. Reck et al. obtained 455×10 -11 Pa -1 for a 140×200 nm 2 wire of resistivity 0.4 Ω.cm[START_REF] Reck | IEEE 21st International Conference on Micro Electro Mechanical Systems[END_REF]. The highest piezoresistive coefficient measured was 3100×10 -11 Pa -1 for a nanowire with resistivity of 10 2 Ω.cm. Accurate MC calculation in such a high resistivity layer is very difficult because of very small current level.

	Thickness d (nm)	ρ= 0.044 Ω.cm	ρ =0.1 Ω.cm	ρ = 1 Ω.cm
	80	141	842	1750
	100	111	420	1589
	150	80	149	1564
	200	60	105	1505

PURPOSE OF THIS WORK

This chapter highlighted the importance of studying the self-heating of nano-scale devices.

Various models for electron and phonon transports were presented. The BTE appears of great interests for studying non-equilibrium thermal effects at the nanoscale.

In Chapter 2, the numerical pBTE solver developed in this thesis is described in detail and validated against experimental results. Next in Chapter 3, the coupling with this new pBTE solver and our eMC (MONACO) simulator will be presented and discussed. Fully selfconsistent Electro-thermal simulations in nano-scale DG-MOSFET were performed and deeply investigated in terms of microscopic (non-equilibrium transport) and macroscopic effects (current degradation).

Second, we analyze the heat flux which is expressed by Eq. 2.38 (see chapter 2, section 4.6). Here, we rewrite the flux expression in the form:

v q r and ( ) , s x N q are, respectively, the group velocity and the phonon density of the mode s with angular frequency ω at position x. ħ is the reduced Planck constant. The convention of group velocity sign is as follows: if the phonon travels from source (left side) to drain (right side), ( ) , s x v q takes the positive sign, and it takes the negative sign if the phonon comes from drain to source. The heat flux profile which corresponds to the above case (V gs = 0.5 V, V ds = 1.2 V and ∆ = 30 Å) is shown in Fig. 3.13. According to the expression (Eq. 1.41) of the thermal flux, these curves behaves like the gradient of the temperature (-dT/dx). Due to the fixed temperature of 300K at two ends and the isotropic hypothesis of phonon distribution, the heat fluxes at these points are zeros. When phonons reach the boundaries, they take immediately the velocity values at 300K. Therefore, the thermal flux falls very quickly to the zero value. In our model, the contribution of LO and TO modes to the heat transport is included by taking into account their group velocity. Hence, their fluxes are much smaller than that of the acoustic modes. Since the group velocity of LA mode is the highest, the heat carried by this mode is the most important.

Third, we investigate the impact of roughness on thermal transport. In Fig. 3.14, the power density is represented to highlight the relation between this quantity and the effective temperature. The total power density extracted from MC is shown (same as Fig. 3.9d). Three

We separate the distribution in two parts, one corresponding to the LA phonons due to electron-phonon scattering, and the other are corresponding to LA phonons resulting from LTO phonon decay (see sub-Section 2.3). The latter takes the form of a peak at E = 43 meV (see also Fig The piezoresistance is defined as the change in electrical resistance under the effect of mechanical stress [START_REF] Smith | Piezoresistance effect in germanium and silicon[END_REF]. Indeed, depending on its orientation with respect to the crystallographic direction, strain can induce major changes in the band structure of semiconductors and therefore in the carrier mobility [Leu08, Shiri08, Maegawa09, Huet08-1].

This effect has been reported for the first time in the 50s by the group of Smith [START_REF] Smith | Piezoresistance effect in germanium and silicon[END_REF].

Recently, He and Yang have reported measurements of giant piezoresistance in p-type silicon nanowires, for diameters ranging from 50 to 350 nm. High piezoelectric coefficients (up to about 3500×10 -11 Pa -1 ) were obtained for structures of high resistivity (i.e. lightly doped) and small diameter [START_REF] He | Giant piezoresistance effect in silicon nanowires[END_REF]. It opens the way to the design and implementation of very small piezoresistive sensors, 5 to 10 times smaller than current MEMS components, with performance at least equal or even superior to those of the state of the art. For this purpose, the theoretical understanding of this phenomenon by means of accurate simulation is of practical importance is necessary.

Some studies have attempted to explain the origin of this giant piezoresistivity effect [START_REF] Cao | Giant piezoresistance and its origin in Si (111) nanowires: Firstprinciples calculations[END_REF][START_REF] Nakamura | First-Principles Simulation on Orientation Dependence of Piezoresistance Properties in Silicon Nanowires[END_REF] which, at the microscopic level is not fully understood yet. In the study presented here, we investigate the effect of piezoresistivity in thin silicon layers using the particle Monte Carlo (MC) method to solve the Boltzmann transport equation within a "fullband" description of the band structure [START_REF] Huet | Modélisation du transport sous contrainte mécanique dans les transistors sub-65nm pour la microélectronique CMOS[END_REF]. The model proposed by Rowe is used to model the effect of stress on the surface potential [START_REF] Rowe | Silicon nanowire feel the pinch[END_REF].

Model and simulated structures

A nanowire is essentially a three-dimensional object. However, in a first approach to the problem of giant piezoresistance and to reduce the computation time, we restricted ourselves to the consideration of silicon nano-layers of infinite width described in 2D real space. The Si nanowires using a very simple approach of transport [START_REF] Rowe | Silicon nanowire feel the pinch[END_REF]. For a uniaxial stress X, the surface potential is assumed to vary according to the law

considering that for unstrained Si, 0 ϕ = 0.54 eV. The nano-layers were simulated under a bias voltage of 0.5 V for stresses ranging from 0 to ± 200 MPa (the sign "+" for a tensile stress, the "-" for a compressive stress).

Simulation results

+ Potential and hole density

According to Eq. A-1, the surface potential is reduced under tensile strain while it is enhanced under compressive strain. 

+ Piezoresistive coefficient

The corresponding piezoresistive coefficients were calculated around X = 0 using the following expression

where σ 0 is the conductivity under zero stress. The resulting piezoresistive coefficients are summarized in Table A.1. As expected, they are strongly dependent on the nano-layer thickness and resistivity. A large piezoresistive coefficient of 1750×10 -11 Pa -1 is obtained for a 80 nm thick layer with resistivity of 1 Ω.cm.

APPENDIX B: Solution of diffusive equation

The diffusive equation is written as ( )

Where K T is the thermal conductivity that depends on temperature T and P is the power in system. In the steady-state, without power P, the above equation is reduced in form like

The temperature dependence of silicon thermal conductivity K T can be described by

Where C and α are constant.

By replacing (B-3) in (B-2), we have

Then, the use of Numerical solution of (B-6) can be easily obtained, then the temperature T is ( )

Analytic solution

The equation (B-5) for one direction is