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Abstract	
  
	
  

	
  

Ultrafast	
  coherent	
  XUV	
  diffractive	
  imaging	
  at	
  nanometer	
  scale	
  	
  

	
  

Ultrafast imaging of isolated objects with nanometric spatial resolution is a great challenge in 
our time. The lensless imaging techniques have shown great potential to answer this challenge. 
In lensless imaging, one can reconstruct sample images from their diffraction patterns with 
computational algorithms, which replace the conventional lens systems. Using ultrafast and 
coherent light sources, such as free electron laser and high order harmonics, one can 
investigate dynamic phenomena at the femtosecond time scale.  

In this thesis work, I present the lenless imaging experiments using XUV radiation provided 
by a laser driven high order harmonic beamline. The manuscript is composed of an 
introduction, a chapter of theoretical background, three chapters of main research work and a 
general conclusion with perspectives. The first part of this work concerns the development of 
the harmonic beamline to optimize the illumination condition for lensless imaging. The 
second part concentrates on the imaging techniques: the Coherent Diffraction Imaging (CDI), 
the Fourier Transform Holography (FTH) and the Holography using extended references 
(HERALDO). The reconstructions have achieved 78 nm spatial resolution in case of CDI and 
112 nm resolution in case of HERALDO, both in single-shot regime corresponding to a 
temporal resolution of 20 fs. The third part presents the first physical application on the 
harmonic beamline using the lensless imaging. Samples with magnetic nano-domains have 
been studied with sub-100 nm spatial resolution, which paves the way for ultrafast magnetic 
dynamic studies. At the end, single-shot 3D imaging and further beamline development have 
been discussed.     

 

Key-words: Coherent diffraction, Lensless imaging, High order harmonics generation, 
XUV source, Modal filtering, Fourier transform holography, Extended references, 
Signal to noise ratio, Resonant elastic scattering, Single shot probing, Ultrafast 
spectroscopy, Nanomagnetism. 
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Résumé	
  
	
  

	
  

Imagerie	
   ultrarapide	
   à	
   l’échelle	
   nanométrique	
   par	
   diffraction	
   XUV	
  
cohérente	
  

 

Imager des objets apériodiques à une échelle nanométrique et à une échelle femtoseconde est 
un vrai challenge. Les techniques d’imagerie « sans lentille » sont des moyens puissants pour 
répondre à ce besoin. En utilisant des sources ultrarapides (~fs) et cohérentes (e.g. les lasers à 
électron libre ou les harmoniques d’ordres élevés), ces techniques permettent d’imager des 
objets à partir de leurs figures de diffraction, remplaçant les optiques conventionnelles du 
système d’imagerie par un algorithme numérique.  

Dans ce travail de thèse, je présente des expériences d’imagerie en utilisant un rayonnement 
extrême-UV (15~40 nm) produit par la génération d’harmoniques d’ordre élevé d’un laser 
infrarouge puissant. Ce manuscrit est constitué d’une introduction, un chapitre de bases 
théoriques, de trois chapitres expérimentaux et d’une conclusion générale dotée de 
perspectives. La première partie expérimentale de ce travail de thèse porte sur les 
développements et caractérisations de la ligne de lumière avec l’objectif de générer un 
maximum de photons harmoniques cohérents avec un front d’onde plat. La seconde est 
consacrée aux expériences et à l’analyse de trois techniques d’imagerie « sans lentille » : 
imagerie par diffraction cohérente (CDI), holographie par transformée de Fourier (FTH) et 
holographie avec références étendues (HERALDO). Nous avons pu imager des objets avec 
une résolution spatiale de 78 nm en CDI et de 112 nm en HERALDO. Les deux techniques 
permettent toutes deux une résolution temporelle de 20 fs. La troisième partie expérimentale 
est une première application en physique du solide des mesures de diffraction cohérente sur la 
ligne d’harmoniques. Il s’agit d’études statiques et dynamiques de nano-domaines 
magnétiques avec une résolution spatiale sub-100 nm à l’échelle femtoseconde. Des 
perspectives des techniques d’imagerie 3D et des développements potentiels de la ligne 
d’harmoniques sont présentés à la fin.     

 

Mots-clefs : Diffraction cohérente, Imagerie sans lentille, Génération d’harmoniques 
d’ordre élevé, Source UV-X, Filtrage modal, Holographie par transformée de Fourier, 
Références holographiques étendues, Rapport signal sur bruit, Diffusion résonante 
élastique, Mesures simples tirs, Spectroscopie ultrarapide, Nano-magétisme. 
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Introduction	
  
	
  

	
  

	
  

Seeing	
  is	
  believing.	
  
	
  

1639	
  J.	
  Clarke	
  Parœmiologia	
  Anglo-­‐Latina	
  90	
  

 

 

 

Water and oxygen gave us life, and fire lightened the whole world. Since the born of a baby, 
he has eyes to see, ears to hear, a tongue to taste, a nose to smell, hands to touch and a brain 
to think. Among all of the sense organs of a human being, eyes are the most important ones 
for us to perceive the world.  

Since the very beginning of human history, people have seen thousands of natural phenomena. 
Some of them seem “natural” to us, while the others do not. The wise start to think about the 
logic behind those “natural” ones and try to interpret the “unbelievable” ones. Here comes the 
Physics, which means “nature” in ancient Greek. During the development of physics, “seeing 
something new” always leads to big scientific debates and fundamental advances in theory 
and experimental results, which opens gates of many new scientific areas.  For a long time in 
old ages, eyes were the only tools to explore our world. The ability of an eye to distinguish 
fine details is often measured in cycles per degree (CPD), called visual acuity [1]. 50 CPD is 
the maximum theoretical resolution for an eye with excellent vision acuity, which equals to an 
angular resolution of about 1 minute of arc. The spatial resolution of human eye (about 100 
µm at a reading distance of 350 mm) is precise enough in daily life, but far away from 
satisfying in scientific research. 

The invention of optical microscope at the end of sixteenth century  
enables the visualization of objects or structures that are usually 
invisible to the naked eye. Standard microscopes combine convex and 
concave lenses equipped with a light source. As one of its founders, 
Robert Hooke, said, “…by the help of Microscopes, there is nothing so 
small as to escape our inquiry…” [2].      

                                                 

                                             Drawings of instruments used by Robert Hooke. 
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Many scientific theories have been put forward to push the observation of small specimens 
down to micrometer scale. In the following decades, various microscope techniques have 
been developed, such as fluorescence microscope, phase contrast techniques, differential-
interference contrast systems, etc. All of these advancements are improving the resolving 
power of microscopes to their theoretical boarders: the diffraction limit. Ernst Abbe has 
demonstrated mathematically that the spatial resolution of any conventional microscope is 
limited to half of the wavelength of the imaging light source [3]. His landmark article set a 
new spatial resolution barrier of 150-200 nm for human eyes equipped with a microscope, as 
human vision is usually in the 390-750 nm spectral range. This diffraction barrier has been 
impossible to break during most of the twentieth century. Only in recent researches, imaging 
techniques have been proposed to go beyond the diffraction barrier such as stimulated-
emission-depletion microscopy, photo-activated localization microscopy, stochastic optical 
reconstruction microscopy, etc. [2]. However, the “easier” way to get better spatial resolution 
is to use shorter illuminating wavelength, such as X-ray radiation or electron beam.  

The electron microscope is invented in 1930s. Thanks to the short wavelength of electron 
beam (100 000 times shorter than visible light), electron microscopes have a greater resolving 
power than optical microscope. Different types of electron microscope are developed to 
answer to different observation conditions: transmission electron microscope, scanning 
electron microscope, reflection electron microscope and etc. The spatial resolution achieved 
was better than 50 pm (1 pm = 10-12 m) [4]. The development of electron microscope has led 
to various applications in many scientific research areas, such as semiconductor, biology, 
nanotechnology, chemistry, life science and also industry production.       

       
         (1973) Siemens electron microscope         (1948) Kirkpatrick and Baez focusing system 
 
Almost at the same time as the invention of the electron microscope, Paul Kirkpatrick and 
other pioneers brought first X-ray microscopes to the world in the 40s [5]. Crossed-1D-lenses 
focusing system using elliptical profile mirrors was first used to focus the X-ray beam, and 
then zone plates were suggested by Albert Baez to be used as X-ray lenses. With the arrival of 
synchrotron light sources, the first zone plate transmission X-ray microscopes were developed 
at DESY (Deutsches Elektronen-Synchrotron) in Hamburg and at ACO (Anneau de 
Collisions d’Orsay) in Orsay. And a major expansion of X-ray microscope was carried out 
with new light sources, such as ALS (Advanced Light Source) in Berkeley, ESRF (European 
Synchrotron Radiation Facility) in Grenoble, Spring-8 in Japan, Elettra in Trieste, etc. The 
applications of X-ray microscope grew up rapidly to magnetism, polymer science, 
geochemistry, etc. The spatial resolution of X-ray microscope lies between that of the electron 
microscope and the optical microscope.  
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Combining all the microscopy techniques, we have a wide range of spatial resolution to 
investigate and image different distance scale complex systems. Here comes the questions: 
can we see the dynamic of what we are looking at? Can we correctly capture the motion of 
the object that we are studying and understand the causes of its motion? To answer these 
questions, a time-resolved imaging equipment is required. In 1878, Eadweard Muybridge was 
successful to capture the first motion pictures of a galloping horse [6]. His pictures did not 
only answer the famous question: “whether all four feet of a horse were off the ground at the 
same time while trotting”, but also first went beyond the limitation of human eye in time scale. 
Human eye is not able to identify motions that are more fleeting than an eye blink (~0.1 
second). And the galloping horse is moving on a millisecond time scale.  

 

The horse in motion by Eadweard Muybridge in 1878 

 

Science didn’t stop here. In 1950, Ronald Norrish and George Porter (chemistry Nobel prize 
winners in 1967) have investigated the photochemical reactions using flash lamps with 
varying delays in the millisecond to microsecond range [7]. 

The invention of lasers the 60s has revolutionized Science: faster time scales have been 
accessible and new scientific subfields have exploded, such as femto-chemistry and femto-
biology (1 femtosecond = 10-15 second). In the beginning of 21st century, the first 
experimental measurement of a train of 250 attosecond (10-18 second) pulses was 
demonstrated [8,9]. This train of attosecond pulses was a superposition of five consecutive 
harmonics generated by high order harmonic generation (HHG) in an atomic gas jet with an 
infrared pump laser. HHG source appeared to be a promising tool for ultrafast time-resolved 
measurements, down to attosecond time scales which are mostly related to electron motion. 
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Pioneering experiments demonstrated the measurements of electron dynamics with attosecond 
resolution, such as the measurement of the lifetime of M-shell vacancies of krypton [10], the 
intra-atomic transient electron dynamics [11] and the observation of the motion of a D2

+ 
vibrational wave packet with a precision of about 200 attoseconds [12]. In May 2010, a 
German group has demonstrated the new world record for the shortest controllable time of 
light pulse – 12 attoseconds [13], which is half of the atomic unit of time – 24 attoseconds. 
Now people are talking about zeptosecond (10-21 second). However, experimental 
measurement combining atomic distance scale (sub-nanometer resolution) and attosecond 
time resolution is not yet demonstrated. This big challenge will require the invention of new 
imaging techniques with sub-atomic unit resolution simultaneously in space and time. 3D 
motion of electrons would then be accessible. This foreseen revolution will open a new era of 
physics and ultimately influence chemistry, biology and future technologies.  

Free electron laser (FEL) [14] is a candidate with high potential for achieving this big 
challenge. It generates tunable, coherent and high power radiation within a large range of 
wavelengths from millimeter to ultraviolet or even X-ray (XFEL). Recent researches using 
intense FELs have demonstrated the capability of imaging nano-scale objects with a high 
spatial resolution on a femtosecond time scale, using the Coherent Diffractive Imaging (CDI) 
technique. CDI is a new technique that can image non-periodic object with spatial resolution 
down to the diffraction limit. Using ultrafast sources it has great potential to capture transient 
processes down to atomic scales. It can be applied using a wide range of radiation wavelength 
from infrared to X-rays. 

The idea of CDI came from the successful crystallography diffraction methods. David Sayre 
first raised this question that whether a similar diffraction method could be applied to non-
periodic objects in 1952 [15]. J.R. Fienup proposed a phase-retrieval algorithm to solve the 
phase problem in 1978 [16]. His algorithm is a modified version of Gerchberg-Saxton 
algorithm that is originally inspired from ideas used in electron microscopy [17]. For more 
details of the historical development of the phase-retrieval algorithm, please refer to the 
review of Henry Chapman and Keith Nugent [18].  

CDI is a “lens-less”, aberration-free technique, so that the theoretical spatial resolution is only 
limited by the radiation wavelength. In the case of a coherent plane wave illumination, this 
resolution is determined by the maximum scattering angle of the diffraction pattern recorded 
by detector. Since the first demonstration of Miao and colleagues [19], many advances have 
been made using soft or hard X-ray synchrotron radiation or femtosecond soft X-ray free 
electron laser [20-24]. CDI becomes a powerful tool in many scientific areas ranging from 
biology to solid-state physics. The key words for CDI are coherence and diffraction. Indeed, 
the technique uses the measurement of a far field diffraction pattern to retrieve the spatial 
amplitude and phase of a real space object. The large-scale facilities – synchrotron light 
sources and FELs provide a large amount of photons promising a good signal-to-noise ratio in 
CDI. The high coherence of FELs and synchrotrons (using a pinhole in this case) ensures that 
the important phase information can be well “written” in the detected diffraction pattern. 
Moreover, the femtosecond pulse duration of FEL sources promises a bright future for 
ultrafast dynamic imaging at a nanometer or sub-nanometer scale.  
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                FLASH in Hamburg (VUV FEL)                        LCLS in Stanford (X-ray FEL) 

  

However, these large-scale facilities cost expensive resources and have limited access beam 
time. These constraints limit the wide spread of ultrafast coherent diffractive imaging. The 
applications are then restricted. This limits the impact of this research, for example in the 
optimization of ultrafast nanoscale devices in communication, medicine or even in more 
industrial environments. Therefore, an inexpensive source would provide a very interesting 
alternative: high-order harmonic generation (HHG) sources can provide intense highly 
coherent soft X-ray photons with ultrafast pulse duration. The relatively small size and low 
cost of such light source makes the HHG source an ideal alternative to synchrotrons and FELs. 
Up to recently, the limited brightness of HHG source was a key limitation for a table-top 
application of CDI. However in 2007, Richard Sandberg and colleagues have succeeded in 
demonstrating CDI using a kHz table-top laser driven HHG source with a spatial resolution of 
214nm [25]. The brightness of the harmonic beam was still limited, and the exposure time of 
this experiment was on the scale of an hour (up to 106 laser shots!) that is far from reaching 
single-shot ultrafast nanoscale imaging, required in many dynamical studies. In 2009, our 
research group at CEA (Commissariat à l’Energie Atomique et aux l’Energies alternatives) 
has demonstrated the first single-shot CDI using a table-top femtosecond soft X-ray laser 
harmonic source [26]. An isolated test nano-object was reconstructed with 119 nm spatial 
resolution in a single 20 fs-long shot. A spatial resolution of 62 nm was obtained from 
multiple laser shots (40 shots). In this context, I have joined the AttoPhysique group of CEA 
as a PhD student of Dr. Hamed Merdji in 2009. 

  

Motivation	
  and	
  outline	
  of	
  thesis	
  
 

The principle objective of this work is to perform extended developments and applications of 
ultrafast coherent imaging techniques using table-top harmonic source. I present all the efforts, 
either on the source or on the imaging techniques to build a reliable and powerful ultrafast 
microscope with nanometer spatial resolution and femtosecond temporal resolution. I then 
present a characterization of magnetic nano-domains at a sub-100 nm scale in a single 
femtosecond shot. This illustrates the potential of our table-top harmonic beamline for various 
scientific research areas such as material science, biology and chemistry.  

This work is presented in five chapters.   
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Chapter 1 is dedicated to the description of the theoretical background of the lens-less 
imaging (also called coherent imaging). It starts with a presentation of the principle of the 
lens-less imaging. The first part is the mathematical description of diffraction and Fourier 
Transform that are the basics of diffraction pattern formation of the coherent imaging. The 
second part is the description of basic phase-retrieval algorithms and holographic techniques 
that are used in this work. The third part is a discussion of the beam requirements for lens-less 
imaging, followed by a brief description of the HHG process used as light source in this thesis 
work. This chapter should give a clear description of CDI and help to understand the ideas 
and methods used in the following chapters.  

The main work and experimental results are presented respectively in Chapter 2, 3 and 4. 
They are presented around the 6 main publications published during my thesis work. 

Chapter 2 starts with the description of the experimental setup – the table-top high flux 
harmonic beamline at CEA Saclay. The first step of this thesis work has been a complete 
optimization of the harmonic beamline from the very beginning of the infrared pump laser to 
the focusing optics at the end of the imaging setup. The optimization processes and results are 
presented in Paper I and Paper II attached to this chapter. The first one shows the 
optimization of the HHG and the diffraction stages. The objective has been to increase the 
photon flux, the coherence and the wave front quality of the harmonic beam. Statistic studies 
using a Hartmann wave front sensor and Young double slits to characterize the wave front 
and the coherence show the improvement of the harmonic beam and the influence of these 
beam properties on the image reconstruction quality. The second one discusses the 
optimization of the infrared pump laser using a modal filtering hollow core fiber, which leads 
to improvement of the HHG efficiency and stability. After the beamline optimization, 
spectrum and far field studies of HHG in two different gas mediums (argon and neon) are 
presented. The experimental studies of a two-color HHG configuration are also shown here. 
This chapter concludes with the summary of the optimized high flux harmonic beamline and a 
short discussion of a comparison between large-scale facilities sources (synchrotron and FELs) 
and table-top harmonic sources for coherent imaging. 

Chapter 3 presents the second step of the thesis work: the validation of different coherent 
imaging techniques at the table-top harmonic beamline. It starts with experimental results of 
classic CDI and discussion of the spatial coherence implementation in the reconstructions. 
The second part is the experimental results of Fourier Transform Holography (FTH), which is 
a complementary imaging technique to CDI. The limitation in spatial resolution in FTH 
inspired several new imaging techniques such as Holography with Extended Reference by 
Autocorrelation Linear Differential Operation (HERALDO). This non-iterative image 
reconstruction method has been investigated and the experimental results are published in 
Paper III. HERALDO offers an alternative way for ultrafast nanometric imaging, which is 
easy to implement on all kinds of beamline performing coherent imaging. The step-by-step 
analysis of the HERALDO reconstruction process leads to a discussion of the influence of 
reference design and the signal-to-noise ratio issue, which is reported in Paper IV. Indeed, the 
signal-to-noise ratio gives restrictions in both CDI and holographic techniques for our 
experiments. A comparison between CDI, FTH and HERALDO techniques concludes this 
chapter.  

Chapter 4 is the last achievement of this thesis work: the first application of coherent imaging 
techniques in material science using our harmonic beamline. The objective has been to 
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investigate the ultrafast dynamic phenomena of magnetic nano-domains using our table-top 
harmonic beamline. The magnetization dynamic study is of high scientific interest for the 
scientific community. An introduction to magnetism at the beginning of the chapter gives 
some basic knowledge and helps to understand the ideas and methods used in the experiments. 
Different experimental setups have been used here: a pair of toroidal mirror coupled to a 
blazed grating in 4f configuration and the off-axis parabola diffraction stage presented in 
chapter II. Paper V presents the first experimental results of single-shot detection of magnetic 
scattering around resonant edge energy of Cobalt (60eV) using our harmonic beam. This 
experiment shows the potential of studying ultrafast dynamics of irreversible phenomena 
using table-top harmonic sources, which was thought to be only possible on FELs. An 
extensive spectral study of magnetic scattering of different sample series has been conducted 
to identify the best candidate for single-shot imaging. Paper VI presents a part of these results. 
The spectral study provides a scattering efficiency measurement over a 20 eV bandwidth with 
a sampling of 1.5 eV. The single-shot detection shows that imaging of magnetic nanodomains 
with nanometric resolution on femtosecond time scale is possible using the CDI setup. At the 
end, the pump-probe experiment feasibility on our harmonic beamline is discussed for the 
magnetic study. 

Chapter 5 draws the perspectives and gives the general conclusion of this thesis. Some 
undergoing studies are summarized in the first part, such as stereo imaging, 3D ankylography 
imaging and future development of the high energy harmonic beamline, followed by 
conclusions of the harmonic beamline, the investigated imaging techniques (CDI, FTH, 
HERALDO) and the magnetic nano-domains study.   
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Chapter	
  I	
  	
  
Principle	
  of	
  lens-­‐less	
  imaging	
  
 

I.1	
  Principle	
  of	
  lens-­‐less	
  imaging	
  techniques	
  

 
In conventional imaging systems, such as optical microscope and photo camera, a simple lens 
or a group of convex and/or concave lenses are used to form the image of the target object 
that is illuminated by a proper light source (Fig. 1.1). In complicated imaging systems, the 
lens system can also contain other optical elements, such as mirrors, windows, etc. The image 
quality is generally limited by the lens system: the ensemble of each optic’s aberration 
determines the possible alterations of the object image. This imposes strong constraints on 
manufacturing of optical elements and design of lens system. In X-ray microscopy, the 
highest spatial resolution to date has been obtained using zone plate Fresnel optics. The 
constraints on optical elements become more critical.  First, the resolution of such image-
forming optics is limited by the smallest outer feature of the zone plate, which raises a real 
challenge on the optics manufacturing if one would like to reach nanometric resolution. 
Secondly and more fundamentally, the material of such optics has strong photon absorption, 
which limits its efficiency to typically less than 10% and often as low as few percent [1]. The 
latter one is critical for high resolution imaging of certain specimens that are sensitive to 
radiation damage [2,3]. In this context, the lens-less imaging provides an alternative solution 
for high resolution imaging for various applications from biology to solid-state physics.    

 

Fig. 1.1. Scheme of conventional imaging systems. Object image is formed by a lens system. 

 

In lens-less imaging, no optics is required after the illumination of the object. Computation 
algorithms are used to retrieve the object’s image instead of a lens imaging system. The 
isolated object is illuminated by a coherent wave, which ideally has to be monochromatic. 
The object diffracts and induces modifications in magnitude and/or in phase of the incident 
wave. The diffraction pattern is then measured in the far field by a pixel-array detector, which 
is usually a Charge-Coupled Device (CCD) camera (Fig. 1.2). 
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Fig 1.2. Scheme of a lens-less coherent imaging set-up. The computation algorithms replace 
the lens system conventionally used to image the object. 

 

In the Fraunhofer diffraction regime, the diffraction pattern is proportional to the Fourier 
transform of the exit wave in the image plane. Theoretically, a simple inversion of the 
diffraction pattern should give the image of the object. But the pixel-array detector is only 
sensitive to the intensities of the electromagnetic wave field. Therefore, the phase information 
of the wave field is not directly measured by the detector. Infinity of possible solutions of the 
simple inversion can be obtained by applying possible phases to the measured diffraction 
pattern [4]. Here comes the famous “phase problem”, which is the main obstacle to extract 
object information from the measured diffraction pattern. Two main techniques have been 
proposed to overcome the “phase problem”: one uses Phase Retrieval Algorithms [6,7,8] and 
is called Coherent Diffractive Imaging (CDI); the other is Fourier Transform Holography 
(FTH) [5]. 

In CDI, iterative algorithms converge to the spatial phase in the diffraction plane using 
constraints both in real and reciprocal space (the diffraction plane). A scheme of the CDI 
technique is shown in Fig. 1.3. In the reciprocal space, the diffraction pattern recorded by the 
detector is equal to the absolute squared value of the Fourier transform of the exit wave. In 
the real space, the object is contained in a finite dimension (called “support”). The 
autocorrelation defined as the Fourier transform of the measured diffraction pattern will give 
a first constraint to the support (other constraint can be found). The relation of Fourier 
transform links these two constraints between real and reciprocal spaces. In general, most 
phase retrieval algorithms use these two kinds of constraints to reconstruct the “lost phase” in 
the reciprocal space and the object image in the real space. During the detection of the 
diffraction patterns, the coherence of the incident wave plays an important role. It creates a 
characteristic “speckle pattern” in the diffraction plane. The “speckle” is the “phase signature” 
of the diffraction pattern that ensures the convergence of iterative algorithms. The phase 
retrieval algorithms reconstruct simultaneously the phase in reciprocal space and the object 
image in real space. The solution is nearly unique for problems that have more than one 
dimension [9,10].    
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Fig. 1.3. The scheme of CDI can be separated into two steps: the first one is the detection of 
the object’s diffraction pattern. The second step is to use phase retrieval algorithms to 
reconstruct the “lost phase” of the diffraction pattern and the object image. 

 

Fourier Transform Holography (FTH) is another lens-less imaging technique, which has 
almost the same experiment setup as the CDI except that the sample geometry holds a 
holographic reference. The principle of FTH is similar to holography proposed by Dennis 
Gabor in 1948 [11]. The FTH is inspired by this idea of “full recording”: the incident wave is 
simultaneously diffracted by the object and the reference. The detector located in the far field 
records the interference between these two diffracted waves, which is called “hologram”. The 
spatial amplitude and phase of the object are encoded in this hologram and a simple Fourier 
transform is required to reconstruct the object image [12] (Fig. 1.4). The Fourier transform of 
the hologram is the autocorrelation of the sample (object + pinhole). The reconstructed object 
image is the correlation between the object and the pinhole.  

 

Fig. 1.4. Scheme of FTH and HERALDO: We have used the same experimental setup as in 
CDI except the sample geometry. In FTH, the sample consists in the object and a pinhole 
reference in the nearby at a distance that respects the holographic separation given by the size 
of the object. In HERALDO, the arrangement is similar but the reference is large while 
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keeping the holographic separation. The reconstruction step is simple and direct: in FTH, the 
Fourier transform of the hologram gives the object image; in HERALDO, a linear differential 
operation is applied as a post process of the Fourier transform to finally get the object image 
reconstruction.  

 

In my thesis work, I have been focused on an extended reference holographic technique 
initially proposed by S.G. Podorov in 2007 [14], generalized by M. Guizar-Sicairos [13] and 
entitled “Holography with Extended Reference by Autocorrelation Linear Differential 
Operator (HERALDO)”. In HERALDO, the pinhole reference is replaced by extended 
references, such as a slit (1 dimension), a square or a rectangle (2 dimensions), a triangle (2D), 
etc. (Fig. 1.4). The extended references should contain sharp features, such as the two 
extremities of a slit, the corners of a square, a rectangle or a triangle. When applying a 
differential operator to the registered hologram (the autocorrelation of the sample), the 
extended references turn into Dirac delta functions (which correspond to the sharp features at 
the edges of the extended references). Note that the Fourier transform properties of delta 
function ensure a high-resolution reconstruction (Fig. 1.4). By this way, the resolution is no 
longer limited by the reference size, so one can increase the diffraction signal without 
affecting the resolution. Theoretically, the reconstruction resolution is limited by the quality 
of the manufactured references. In particular the sharpness of the edges is crucial.  

 
	
  

I.2	
  Image	
  formation	
  in	
  lens-­‐less	
  imaging	
  
 

The image formation is the fundamental of lens-less imaging and all ideas of reconstruction 
techniques are based on it and inspired by its properties. As mentioned before, CDI, FTH and 
HERALDO have the same experimental setup. The image formation is thus the same for 
these techniques from the incident wave propagation to the Fraunhofer diffraction process, 
except that different sample preparation for CDI and FTH/HERALDO leads to different 
diffraction patterns. Since the wave propagation and Fraunhofer diffraction are well known, I 
present here the relevant equations, formulas and properties in the case of the lens-less 
imaging to give a clear description of theoretical background with non-exhaustive 
mathematics. One can refer to the books of J.W. Goodman [12,30] for detailed mathematical 
and physical deduction of wave propagation and Fraunhofer diffraction in general case. More 
practically, one can also look at some excellent thesis work such as P. Thibault [31], M. 
Guizar-Sicairos [32] or D. Gauthier at Saclay [33] that have well-detailed mathematical 
presentations of the image formation in the case of lens-less imaging.   

 

I.2a	
  Image	
  formation	
  in	
  lens-­‐less	
  imaging:	
  Diffraction	
  
	
  

We usually consider in lens-less imaging an isolated object illuminated by a plane wave (Fig. 
1.5). The exit wave is the wave field transmitted by the object and detected in the far field (by 
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a CCD camera in our case). The propagation of the exit wave behaves according to the 
Helmholtz wave equation: 

𝛻!𝜓 + 𝑘!𝑛!𝜓 = 0 (Eq. 1-1) 

where k = ω/c and n! = c!εµμ. ω is the frequency of the wave 𝜓; 𝜀 and 𝜇 are respectively the 
electric permittivity and the magnetic permeability of the medium.  

 

Fig. 1.5. The wave propagation in lens-less imaging. 

 

Commonly in the X-ray community [35], the refractive index 𝑛 is expressed by its purely 
refractive (real) and absorptive (imaginary) components, 𝛿 and 𝛽:  

𝑛 = 1 + ∆𝑛 = 1 − 𝛿 − 𝑖𝛽 (Eq. 1-2) 

∆𝑛 is non-zero only in a finite region of the space occupied by the object, and when ∆𝑛=0, the 
wave 𝜓 is the solution of the Eq. 1-1 in free-space propagation condition. The Eq. 1-1 has a 
simple form in the Fourier space: 

𝑘! − 𝑞! 𝜓 𝑞 = 0 (Eq. 1-3) 

Obviously, 𝜓 𝑞 = 0 unless 𝑞 = 𝑘, which is called the “Ewald sphere” [36]. In our lens-
less imaging experiments, the detection plane is a plane transverse to the wave propagation 
direction. Thus we can separate the free-space propagating wave field into transverse and 
parallel components, respectively 𝑟! = (𝑥, 𝑦) and 𝑧. The general solution of Eq. 1-1 is then 
obtained in Fourier space as follow: 

𝜓 𝑞!, 𝑧 = 𝜓! 𝑞! 𝑒!!"# + 𝜓! 𝑞! 𝑒!"# (Eq. 1-4) 

where 𝜅 = 𝑘! − 𝑞!!  (Fig. 1.9) and 𝜓± 𝑞!  are two independent functions representing 
forward (+) and backward (-) scattering. In our experiments, back-propagating terms can be 
neglected, therefore the solution is: 

𝜓 𝑟!, 𝑧 = ℱ!! 𝜓    𝑞! 𝑒!"#    (Eq. 1-5) 
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From Eq. 1-5, we can deduce the wave function in far field diffraction (Fraunhofer 
diffraction) [30]: 

𝜓!"#  !"#$% 𝑟!, 𝑧 ∝ 𝑑!𝑞𝜓(𝑞)𝑒!"#( !! !
!

!
!!!∙

!
!) (Eq. 1-6) 

Since 𝑧 → ∞ (far field), the integrand will disappear unless the phase term is stationary, 
which means: 

𝑟!
𝑧
=   

𝑞!
𝑘! − 𝑞!!

=
𝑞!
𝜅

 (Eq. 1-7) 

Therefore, we can get the measured intensity by the detector in the far field: 

𝐼 = 𝜓!"#  !"#$!(𝑟!) ! ∝
1

1 + (𝑟!𝑧 )
!
𝜓(𝑞! = 𝜅

𝑟!
𝑧
)
!
 (Eq. 1-8) 

In our experiments, Eq. 1-6 can be simplified in the case of small-angle scattering (Fig. 1.6), 
which is valid when: 

𝑞!
𝑘
< 1  

𝑟!
𝑧
= tan 𝜃 < 1 (Eq. 1-9) 

 

Fig. 1.6. Representation of the wave vector and the diffraction angle relationship in the Ewald 
sphere.  

 

Applying the paraxial approximation, one can expand 𝜅 to the first non-zero order in 𝑞!, and 
Eq. 1-5 becomes 

𝜓 𝑟!, 𝑧 = ℱ!! 𝜓 𝑞! 𝑒!!"(!!
!!!
!!!)  (Eq. 1-10) 

One gets the small angler scattering version of Eq. 1-8: 

𝐼 ∝ 𝜓(𝑞! = 𝑘
𝑟!
𝑧
)
!
 (Eq. 1-11) 
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Note here that the Fraunhofer diffraction approximation is valid when the Fresnel number 
𝐹𝑁 ≪ 1, which is defined as 

𝐹𝑁 =
𝑎!

𝜆𝑧
 (Eq. 1-12) 

where 𝑎  is the characteristic dimension of the object. Small and large Fresnel number 
correspond to respectively the far field regime and the near field regime. In the Fraunhofer 
diffraction regime (far field), one should have 

𝑎!

𝜆
≪ 𝑧 (Eq. 1-13) 

 

I.2b	
  Image	
  formation	
  in	
  lens-­‐less	
  imaging:	
  Object	
  transmittance	
  
 

As shown in Eq. 1-11, the measured diffraction pattern is proportional to the absolute value of 
the Fourier transform of the exit wave in the transverse plane. The question now is what is the 
relation between the object image and the exit wave that we can reconstruct by computational 
algorithms. For our experiments, we use the projection approximation: the exit wave is the 
product of the incident wave and the object transmittance: 

𝜓!"#$ = 𝜓!"#!$%"&𝑡!"#$%& (Eq. 1-14) 

In this approximation, the object can be treated as a two dimensional plane whose thickness is 
negligible, thus there is no diffraction inside the object. The object transmittance (in two 
dimensions with complex values) represents the projection of the object on a transverse plane 
(object plane in Fig. 1.5), which shows how the object modifies the incident wave both in 
amplitude and in phase. Since we assume that the incident wave is a plane wave, the detected 
wave (diffraction wave) in the far field is then equal to the Fourier transform of the object 
transmittance. The reconstruction image that we get by computational algorithms should then 
reflect the object transmittance. To validate the projection approximation, the object should 
be “optically thin”. If 𝑒 is the object thickness and 𝑑 is the reconstruction resolution that we 
want to attend, then the “optically thin” condition can be described as [37] 

𝑒 <
2𝑑!

𝜆
 (Eq. 1-15) 

The term !!
!

!
 describes the “depth of focus” (DOF), which is also a function of diffraction 

angle 𝜃!"#:  

𝐷𝑂𝐹 =
2𝜆
𝜃  !"#!  (Eq. 1-16) 

When the object thickness is smaller than the DOF, the exit wave is associated to a single 
object plane, which corresponds to the reconstruction plane visualized with computational 
algorithms. Otherwise, there will be more than one object plane, thus more than one possible 
phase associated to the measured diffraction pattern. This can prevent convergence of 
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iterative algorithms. One may need additional constraints on the object support to associate 
one and only one object plane for the reconstruction. In holographic experiments (FTH, 
HERALDO), the phase information is encoded in the hologram. Thus, there is one unique 
solution obtained in the plane of the object and the reference.  

To conclude, in our lens-less imaging experiments, objects are “optically thin” and the 
diffraction wave is detected in the far field regime (Fraunhofer diffraction) in the small angle 
scattering regime.  

 

I.2c	
  Image	
  formation	
  in	
  lens-­‐less	
  imaging:	
  Detection	
  
 

The detection of the diffraction pattern is realized by a CCD camera, which accumulates 
incoming photons (diffraction and noise) during the exposure time. Thus temporal 
information such as the phase of the wave function is lost during the detection. This is the 
phase problem well known in lens-less imaging. The measured term is the photon flux, whose 
unit is 𝐽/𝑚! or 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑚!. Eq. 1-11 becomes (if we omit the constant factors) 

𝐹 = 𝐼 = 𝜓(𝑞! = 𝑘
𝑟!
𝑧
)
!
 (Eq. 1-17) 

The measured diffraction signal (𝐹) is then digitalized with a certain sampling ratio. We can 
use a discrete Fourier transform function to present the numerical data. The one-dimensional 
discrete Fourier transform of a 𝑁 long vector 𝑓! is 

𝑓! =
1
𝑁

𝑓!𝑒!!"#$/!
!!!

!!!

 (Eq. 1-18) 

If a continuous function f(x) is sampled by a sampling interval ∆x, and its discrete Fourier 
transform is also sampled by a sampling interval ∆q, then we have the following relation: 

∆𝑥∆𝑞 =
2𝜋
𝑁

 (Eq. 1-19) 

With a given sampling interval ∆x, the highest frequency present in a discrete Fourier 
transform is the Nyquist frequency: 

𝑞!"#$%&' =
𝑁∆𝑞
2

=
𝜋
∆𝑥

 (Eq. 1-20) 

In our diffraction experiments, when applying the Fourier transform on the detected 
diffraction signal, we get the autocorrelation of the object (or the object transmittance). The 
Eq. 1-19 becomes 

∆𝑘 =
2𝜋
𝑁∆𝑟

 (Eq. 1-21) 

where ∆𝑘 is the pixel size of the CCD camera which contains 𝑁 X 𝑁 pixels, and ∆𝑟 is the 
pixel size of the autocorrelation of the object transmittance. If the object transmittance 
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occupies a region of 𝑛 X 𝑛 pixels in the matrix of 𝑁 X 𝑁 pixels and the object size is 𝑎 X 𝑎, 
we can deduce the relation between real physical terms and the discrete functions: 

𝑎
𝑘
𝑧
= 𝑛∆𝑟 (Eq. 1-22) 

During the phase retrieval reconstruction process, the sampling ratio is a key factor. When the 
sampling interval is too large, frequencies higher than the Nyquist frequency will be wrapped 
and will appear as lower frequencies [31]. This is called “aliasing”. A suitable diffraction 
pattern for the reconstruction should be “oversampled”. The notion of “oversampling” is first 
proposed by D. Sayre in 1952 [38] using the Shannon sampling theorem for the phase 
problem in crystallography. The oversampling is possible only if the object transmittance is 
contained in a “support” (non-zero inside the support and null outside). We can define the 
oversampling ratio [39] as: 

𝑂 =
𝐴!"#
𝐴!"#$%&

=
𝑁!"#$%&"'
𝑁!"#$%&

 (Eq. 1-23) 

where 𝐴!"# is the “field of view” corresponding to the image containing 𝑁!"#$%&"' pixels of 
measured amplitudes, in which the object occupies an area 𝐴!"#$%& of 𝑁!"#$%& pixels. Since the 
object transmittance is a complex-valued, there are 2𝑁!"#$%& real variables to be recovered. 
The whole image provides 𝑁!"#$%&"' equations. By considering the degrees of freedom of 
such a set of equations, one cannot get a unique solution unless: 2𝑁!"#$%& ≤ 𝑁!"#$%&"'. 
Therefore,  

𝑂 ≥ 2 (Eq. 1-24) 

Another approach to the oversampling ratio is based on Nyquist–Shannon sampling theorem 
[40,41]. According the theorem, the sampling interval ∆𝑘 (the pixel size of the CCD camera) 
of the diffraction pattern should obey 

∆𝑘 ≤
2𝜋

2𝑞!"#$%&'
 (Eq. 1-25) 

where 𝑞!"#$%&' is the maximum frequency detected in the diffraction pattern. Since in the 
reciprocal space of the diffraction pattern, the maximum frequency is given by the size of the 
autocorrelation of the object that is the double of the object size, we deduce from Eq. 1-20: 

𝑞!"#$%&' =
2𝑛∆𝑟
2

= 𝑛∆𝑟 (Eq. 1-26) 

Applying Eq. 1-26 to Eq. 1-25, we get 

∆𝑘 ≤
2𝜋
2𝑛∆𝑟

=
𝜆𝑧
2𝑎

 (Eq. 1-27) 
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From Eq. 1-21, Eq. 1-22 and Eq. 1-23, one can get the relation between ∆𝑘  and the 
oversampling ratio: 

𝑂 =
𝜆𝑧
𝑎∆𝑘

 (Eq. 1-28) 

Therefore, we recover the oversampling condition as Eq. 1-24.  

Note that Eq. 1-24 is a necessary condition for solving a unique reconstruction, but in general 
not sufficient. In one dimension case, the uniqueness is never guaranteed [42,43]. Fortunately, 
in case of more than one dimension, the uniqueness is almost guaranteed with an oversampled 
diffraction pattern [9,10]. 

When a diffraction pattern is taken, the theoretical resolution (which is diffraction limited) 
can be calculated as: 

𝑟 =
1

2𝜎!"#
=

𝜆𝑧
𝑁!"#$%𝑃!"#$%

 (Eq. 1-29) 

where σmax is the largest spatial frequency of the diffraction signal recorded by the CCD 
camera, Npixel and Ppixel are respectively the corresponded pixel number and pixel size. This 
equation gives the first insight of the diffraction pattern quality.   

 

 

I.3	
  Reconstruction:	
  Phase	
  retrieval	
  algorithms	
  
 

The phase retrieval algorithms for lens-less imaging are inspired by those used in 
crystallography. The first phase retrieval algorithm is proposed by Gerchberg and Saxton in 
1972 [44]. The Gerchberg-Saxton algorithm can reconstruct an object using two intensity 
measurements (one in Fourier space and one in direct space), which introduced the “modulus 
constraint” notion in the iterative process. In late 70’s, Fienup has improved this algorithm by 
using only one intensity measurement in the Fourier space (the diffraction pattern) to 
reconstruct the object [7,8]. Fienup’s hybrid input-output algorithm (HIO) has a significant 
contribution to the imaging community and is probably the most popular phase retrieval 
algorithm nowadays. In general, there are four steps in the iterative process (Fig. 1.7) 

1) Apply the Fourier transform to the object (𝑔): 𝐺 = 𝐺 𝑒!∅ to get the phase term 𝜙. 
2) Apply the constraint in Fourier space (replace the amplitude by the measured 

diffraction intensity ( 𝐹 ): 𝐺′ = 𝐹 𝑒!∅. 
3) Apply inverse Fourier transform on the 𝐺′ to get 𝑔′. 
4) Apply the constraint in direct space (such as the object support) to get object (𝑔). 
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Fig. 1.7. Scheme of the phase retrieval algorithm. Picture extracted from Ref 6.  

 

To start the iteration, one uses a random phase 𝜙! in step one. During the iterative process, an 
error factor based on the satisfaction of the constraints is calculated. A reconstruction solution 
can be achieved when the error factor is minimized (or under a fixed threshold).  

In 2003, V. Elser has proposed a more general phase retrieval algorithm, the “difference map” 
[45], which is based on the “projections” of solutions on “constraints sets spaces”. The notion 
“constraints sets” (presented by 𝐶!,  𝐶!,  𝐶!,…) are defined as subsets of a finite-dimensional 
Hilbert space (ℰ). The “constraints sets” can have two or more constraints corresponding to 
real physical meanings, such as the measured diffraction pattern intensity, the object support 
in direct space, etc. The goal of the reconstruction algorithm is to find the solution 𝑥 ∈ ℰ, 
which satisfies: 

x ∈ C! ∩ C! ∩ C! ∩ … (Eq. 1-30) 

The notion “projection” (𝑃!  corresponding to a constraint 𝐶) is then defined as: for every 
𝑥 ∈ ℰ returns a point 𝑃! 𝑥 = 𝑦 ∈ 𝐶 and such that 𝑥 − 𝑦  is minimized [31]. The condition 
(1-30) then becomes 

𝑥!"# = 𝑃!! 𝑥!"# = 𝑃!! 𝑥!"# = 𝑃!! 𝑥!"# = ⋯ (Eq. 1-31) 

For a two-constraint problem, the difference map iteration can be defined as: 

𝑥!!! = 𝑥! + 𝛽𝐷(𝑥!) (Eq. 1-32) 

where                     

𝐷 𝑥 = 𝑦! − 𝑦! (Eq. 1-33) 

𝑦! = 𝑃![(1 + 𝛾!)𝑃!(𝑥) − 𝛾!𝑥]  

𝑦! = 𝑃![(1 + 𝛾!)𝑃!(𝑥) − 𝛾!𝑥]  

where 𝛽, 𝛾! and 𝛾! are complex parameters.  
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Note that the HIO is a special case of the difference map when 𝛾! = −1 and 𝛾! = 𝛽!!, which 
can be presented as 

𝑥!!! = 𝑥! + 𝛽[𝑃! 1 + 𝛽!! 𝑃! 𝑥! − 𝛽!!𝑥! − 𝑃! 𝑥! ] (Eq. 1-34) 

where 𝑃! and 𝑃! are respectively the constraints on the object support and the measured 
diffraction signal.  

The Relaxed Averaged Alternating Reflections (RAAR) algorithm is another popular 
algorithm proposed by Russel Luke in 2005 [46]. This algorithm can be defined as 

𝑥!!! = 𝑥! + 𝛽[𝑃! 2𝑃! 𝑥! − 𝑥!) − 𝑃! 𝑥! ] + 1 − 𝛽 (𝑃! 𝑥! − 𝑥!  (Eq. 1-35) 

Note that when 𝛽 = 1, it is equivalent to the HIO.  

During the last decade, many algorithms have been developed (not presented here) and it is 
hard to say which algorithm is the best. Each algorithm is proposed for specific problems and 
applications. The experiments conditions and criterion of constraints for each algorithm is 
hardly the same. Some works [47, 48] comparing different phase retrieval algorithms suggest 
that the HIO is the most efficient algorithm for well-controlled scattering experiments.  

In this thesis work, phase retrieval reconstructions are realized using two computational 
codes: 

1) The “Hawk” code [34] developed by our collaborator Filipe Maia in the research 
group of Professor Janos Hajdu in Uppsala University, Sweden. The code “Hawk” 
contains a set of phase retrieval algorithms, for example HIO and RAAR. I usually 
use the HIO algorithm for preliminary reconstruction of experiment data, and a 
combination of algorithms to get better reconstruction results.  

2) The code “difference map” code developed by Pierre Thibault in the research group 
of Professor Veit Elser in Cornel University, USA. 

Practically, the solution (reconstructed image) is not exactly the same from one iteration to 
the other one. After sufficient iterations (typically several hundreds of iterations), each 
iteration gives a very similar reconstruction solution with a corresponding error factor value. 
The error factor value is calculated based on the measured diffraction pattern and shows how 
“close” the reconstruction is compared to the measured data. One usually averages all 
reconstruction solutions whose error factor values are lower than a defined threshold to get 
the final image of the object. The resolution of reconstructed image is then estimated by the 
Phase Retrieval Transfer Function (PRTF) (Chapter III, section III.4).  

 

I.4	
  Reconstruction:	
  FTH	
  and	
  HERALDO	
  	
  
 

The phase problem is easily solved in FTH, which is a great advantage compared to the phase 
retrieval algorithms. But FTH involves more strict constraints on the sample preparation, 
which is not obvious in certain applications. In FTH, a pinhole (reference) is placed in the 
vicinity of the object at a certain distance (holographic separation) in the same transverse 
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plane (object plane in Fig. 1.5). The entire sample (object + reference) transmittance can be 
defined as 

𝑡 = 𝑜 + 𝑟 (Eq. 1-36) 

where 𝑜  and 𝑟  are respectively the transmittance of the object and the reference. As 
mentioned in the previous section, in Fraunhofer diffraction regime and projection 
approximation, the measured hologram (the diffraction pattern) by CCD camera is the module 
square of the Fourier transform of the sample transmittance: 

𝐻 = ℱ{𝑡} ! (Eq. 1-37) 

The holographic lens-less technique offers a direct and non-ambiguous reconstruction. When 
applying the inverse Fourier transform to the measured hologram, according to the property 
of the autocorrelation (presented at the beginning of the chapter), we get  

ℱ!! 𝐻 = ℱ!! ℱ 𝑡 ! = 𝑡⨂𝑡 (Eq. 1-38) 

Developing this equation, we have 

ℱ!! 𝐻 = 𝑡⨂𝑡 = 𝑜⨂𝑜 + 𝑟⨂𝑟 + 𝑟⨂𝑜 + 𝑜⨂𝑟 (Eq. 1-39) 

The first two terms 𝑜⨂𝑜 + 𝑟⨂𝑟  are the “central” terms, which correspond to the 
autocorrelations of the object transmittance and the reference transmittance. These two terms 
are centered and overlap at the origin.  The last two terms, i.e. the complex conjugates 
𝑟⨂𝑜 + 𝑜⨂𝑟, are the holographic reconstructions located at the opposite sides of the “central” 
terms. Note that they are not two independent reconstructions, since they are complex 
conjugate “mirror” of each other. The FTH reconstruction is not the object transmittance itself 
but the cross-correlation between the object transmittance and the pinhole reference. In 
addition, one should respect the “holographic spatial separation” between the object and the 
reference to avoid the spatial overlap between the reconstruction terms and the “central” 
terms. If 𝑎 is the size of object, then the distance between the object and the pinhole reference 
should be larger than 1.5𝑎.  

The spatial resolution of the object image is limited by the size of the pinhole reference. A 
large reference will lower the resolution whereas a small one will increase it. Since the signal 
quality of the hologram depends also on the reference signal strength, there is a contradictory 
for the choice of the pinhole size [16,17,20]. To optimize the reconstruction quality, the basic 
idea is to find strategies to increase the reference signal while keeping the reference size small. 
Various techniques have been proposed such as multiple references FTH [18], FTH with a 
well-prepared extended reference and deconvolution operator for reconstruction [17], 
massively parallel X-ray holography [19], holography with a well-prepared mask reference 
[16], etc. In addition, running CDI reconstruction algorithms on FTH experiment data can 
also lead to a better performance [15]. 

HERALDO has been proposed to overcome the “paradox” in FTH. The pinhole reference in 
FTH configuration is replaced by an extended reference, such as a slit (1 Dimension), a 
rectangular (2 Dimensions), a triangle (2D), and etc. The extended reference 𝑟(𝑥, 𝑦) is placed 
close to the object 𝑜(𝑥, 𝑦) in the same transverse plane with a given holographic spatial 
separation. The measured hologram 𝐻 has the same equation as Eq. 1-37. A linear differential 
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operator 𝐿(!){∙} is applied to the Fourier transform of the hologram. We then get the sum of a 
point Dirac delta function at (𝑥!, 𝑦!) and some other function 𝑔(𝑥, 𝑦): 

𝐿(!) 𝑟 𝑥, 𝑦 = 𝐴𝛿 𝑥 − 𝑥! 𝛿 𝑦 − 𝑦! + 𝑔(𝑥, 𝑦) (Eq. 1-40) 

where 𝐴 is an arbitrary complex-valued constant, and 𝐿(!) ∙ = 𝑎!
!!

!"!!!!"!
!
!!!  is an n-th 

order linear differential operator and 𝑎!  are constant coefficients. Note that the function 
𝑔(𝑥, 𝑦) can be another Dirac delta function or any extended function.  

Applying such linear differential operator on the autocorrelation (the inverse Fourier 
transform of the measured hologram), we have 

𝐿 ! ℱ!! 𝐻 = 𝐿 ! 𝑡⨂𝑡  
= 𝐿 ! 𝑜⨂𝑜 + 𝐿 ! 𝑟⨂𝑟 + 𝐿 ! 𝑟 ⨂𝑜 + −1 ![𝑜⨂𝐿 ! 𝑟 ] 

(Eq. 1-41) 

According to the relation between cross-correlation and convolution when applying the 
differential operator, one get 

𝐿(!) 𝑓⨂𝑔 = −1 ![𝑓⨂𝐿 ! 𝑔 ] = [𝐿 ! {𝑓}⨂𝑔] (Eq. 1-42) 

Applying this property on Eq. 1-41, we get 

𝐿 ! ℱ!! 𝐻     = 𝐿 ! 𝑡⨂𝑡
= 𝐿 ! 𝑜⨂𝑜 + 𝐿 ! 𝑟⨂𝑟 + −1 !𝑜⨂𝑔 + 𝑔⨂𝑜 

                                                  + −1 !𝐴∗𝑜 𝑥 + 𝑥!, 𝑦 + 𝑦! + 𝐴𝑜∗ 𝑥! − 𝑥, 𝑦! − 𝑦      
(Eq. 1-43) 

As similar to FTH, the last two complex conjugate terms are the reconstructions located at 
opposite sides of the central autocorrelation terms. Unlike FTH, the reconstruction resolution 
is not limited by the reference size. Practically, the resolution is closely dependent on the 
“sharpness” of the reference edge that determines the Dirac delta function. For example, the 
two extremes of slit and the corners of rectangular and triangle, which define respectively 2, 4 
or 3 references.  

The “HERALDO separation conditions” have a similar constraint like the FTH one: the 
features of the extended reference that will “produce” the Dirac delta function should have a 
minimum distance of 2𝑎 to the object, where 𝑎 is the object size. An additional constraint 
should be respected to avoid the overlap between different reconstructions associated to 
different Dirac delta functions when there is more than one Dirac delta function: the distance 
between any pair of two features that “produce” Dirac delta functions should be larger than 
the object size 𝑎.  
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I.5	
  Beam	
  requirements	
  for	
  lens-­‐less	
  imaging	
  
 

CDI and HERALDO are both lens-less imaging techniques. As mentioned before, these two 
techniques can be realized using the same experimental setup, only the sample arrangement 
differs. The image reconstructions are performed separately using either a phase retrieval 
algorithm in CDI or direct mathematical operations in HERALDO. Obviously, high quality 
diffraction pattern is the key factor for both CDI and HERALDO (also for FTH). For a high-
resolution reconstruction, we need a beam with the following requirements:  

• Short wavelength          
• High coherence              
• High beam flux 
• Ultrashort pulse duration 

Short wavelength and ultrashort pulse duration are required to get high spatial resolution 
(nanometric scale or even atomic scale) and to perform dynamic studies on a femtosecond 
scale (or even attosecond scale in a near future). High coherence and beam flux ensure a high 
quality diffraction pattern with a good signal to noise ratio. Free Electron Laser facilities 
(FEL), Synchrotron facilities and High order harmonics beamlines are all qualified sources. In 
this thesis work, I have been interested in lens-less imaging techniques (CDI and HERALDO) 
using bright high order harmonics (HH) beam source. The High flux harmonic beamline 
developed at Saclay can provide intense coherent photons in the soft X-ray region (from 
several nanometers to several tens of nanometers) with brief pulse duration (typically in the 
femtosecond scale or even down to the attosecond scale). Compared to large-scale laser 
facilities, the inexpensive cost and relatively easy construction of harmonic beamline are of 
great advantage. The full control of beam properties makes it accessible to numerous 
applications from physics to biology. It is becoming a powerful imaging tool for users in 
various scientific domains.  

 

I.6	
  High	
  order	
  harmonics	
  generation	
  
 

This section is a brief introduction to the High order Harmonics Generation (HHG) process. 
The purpose is to give few basics to understand the optimization of the source discussed in 
Chapter II. The more fundamental aspects of HHG are not presented here. 

Thanks to the invention and the fast development of the laser, the research of light-matter 
interaction entered into a new era. At the end of the 20th century, powerful lasers can deliver 
peak intensities up to 1018 W/cm2, which makes it possible to realize the frequency up-
conversion from visible to the extreme ultra violet (XUV) domain [23]. The HHG 
phenomenon is first discovered by research groups in Chicago [21] and in Saclay [22] at 
almost the same time (in 1987). They have observed intense harmonic emission by the atoms 
of a rare gas jet of a focused ultra-short infrared laser (Fig. 1.8a). In the studies conducted 
here, Argon (Ar), Krypton (Kr) and Xenon (Xe) gases have been mostly used. A typical 
spectrum is shown in Fig. 1.8b.      
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Fig. 1.8. (a) Scheme of HHG observation, picture extracted from Ref 21. (b) HHG spectrum 
obtained using Xe gas jet, extracted from Ref 22.     

 

The HHG phenomenon can be described in a semi-classic three-step model: tunnel ionization, 
classical acceleration and recombination (Fig. 1.9) [25,26].  

 

Fig. 1.9. Three-step model of high order harmonic generation.     

 

In the first step, when close to the maximum of laser electric field that lowers the potential 
barrier, an electron can go through by tunnel effect. In the second step, the influence of 
atomic Coulomb potential is neglected. The electron is accelerated in the electric field. When 
the sign of the electric field changes, the electron might be driven back towards the ionic core, 
with whom it can recombine in the third step.  

The recombination gives rise to the emission of a burst of soft X-ray light. The photon energy 
is equal to the sum of the electron kinetic energy acquired during its oscillation in the electric 
field and the ionization potential (Ip) of the atom/molecule. The maximum photon energy is 
governed by Eq. 1-44, which is called “cut-off” [24]. Up is the ponderomotive energy -- the 
cycle averaged quiver energy of a free electron in an electric field.  

ℎ𝜐!"# = 𝐼! + 3.17𝑈! (Eq. 1-44) 
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Depending on the different behavior of electrons, there are two trajectories of recombination 
in the plateau: long and short, which contributes differently to HHG. The spatial and spectral 
properties of the harmonic emission differ for each trajectory. 

The spectrum of high order harmonics has a characteristic form, which contains three parts: 
the perturbative region, the plateau and the cut-off (Fig 1.10). It can be well calculated using a 
semi-classical model except the behavior of the cut-off region. Accurate HHG calculations are 
now obtained using a quantum model based on the strong field approximation (Lewenstein 
model) [27]. 

Since the HHG process is trigged by the laser’s electric field, the emitted photons are 
coherent, which is the basic for lens-less imaging. HHG has other advantages, such as the 
attosecond pulse structure, which is demonstrated in form of attosecond pulse train in 2001 
[28]. We can also cite its natural synchronization with the driving infrared laser, which makes 
it suitable for ultrafast dynamics studies in a pump-probe geometry. I also would like to point 
out that the HHG source has been used to seed a soft X-ray FEL resulting in pulse with 
improved temporal coherence [29].   

 

Fig. 1.10. A typical spectrum of HHG with three parts: perturbative region, plateau and cut-
off. The original spectrum is extracted from Ref 22.       

 

Practically, in the context of the application of HHG in lens-less imaging, we usually choose 
the harmonics in the plateau. They are usually more intense and stable than the cut-off 
harmonics. We also select through phase matching the short trajectory that exhibits better 
spatial and spectral coherence properties than the long trajectory. 
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I.7	
  Conclusion	
  
  

This chapter has presented first the principle of lens-less imaging, in which the main obstacle 
for image reconstruction is the phase problem caused by the detection mechanism of the CCD 
camera. The phase retrieval algorithms and the Fourier transform holography are two main 
approaches to solve the phase problem. The former is an iterative process based on 
oversampling and constraints in both Fourier and direct space, while the latter encodes phase 
information into hologram by interference between object and reference. A discussion of the 
requirements of the suitable source for such imaging techniques has shown the potential of 
the high-order harmonic beam source, which provides high coherent and ultrafast 
(femtosecond scale) beam of short wavelength with a sufficient photon flux. A brief 
introduction of HHG is then presented, following by an introduction of the imaging formation 
process that occurs in lens-less imaging experiments. I present then several phase retrieval 
algorithms and the principle of holography style techniques (FTH, HERALDO) that are used 
for the scattering experiments realized during my PhD studies. A suitable source to perform 
ultrafast coherent imaging in the soft X-ray is the high harmonic generation. I briefly recall 
the principle of the source and more details are given about the practical aspects of source in 
the following chapter. 
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Chapter	
  II	
  	
  
High	
  flux	
  harmonic	
  beamline	
  	
  
 

II.1	
  Introduction	
  	
  
 

All the imaging experiments in this thesis work have been accomplished using the High flux 
harmonic beamline at the CEA Saclay research center, France. The harmonic beamline is a 
table-top femtosecond soft X-ray harmonic source driven by the table-top infrared 
femtosecond laser LUCA (Laser Ultra Court Accordable). LUCA is a Ti:sapphire laser 
system, which delivers up to 50 mJ energy pulses at 800 nm with a pulse duration of 50 fs and 
a repetition rate of 20 Hz. The experiment is composed of a lens stage (in air) and three 
experimental chambers (in vacuum). At the lens stage, a long focal length lens (f = 5.56 m) 
focuses the infrared beam into the gas cell located in the first experimental chamber. We can 
adjust the IR beam aperture by a diaphragm located in front of the lens. The lens is motorized 
by a translation stage in the beam propagation direction with a movement range of 15 cm, 
which offers an easy control of the relative position of the beam focus and the gas cell.        

 The three experimental chambers of the High flux harmonic beamline are (Fig. 2.1):  

1) HHG chamber: Up to 50 mJ laser energy can be focused into a gas cell to generate 
harmonics beam. The gas cell is a metal tube with two pinholes at its extremes filled 
with rare gas. We have easy and full motorized control of the gas cell in vacuum: the 
cell length is variable from 0 to 15 cm and its lateral position (y direction) to the beam 
propagation direction (z) is motorized by a translation stage; we can also adjust the 
orientation of the cell in z direction by tilting it in x and y directions (perpendicular to 
z) with precision.  

2) Optics chamber with “imaging configuration”: The harmonics and IR beams 
propagate together into the optics chamber. An IR antireflective mirror separates 
them and sends the harmonics beam to the diffraction chamber. The residual IR is 
then filtered by aluminum filters located between the optics chamber and the 
diffraction chamber.  

3) Optics chamber with “spectrum configuration”: We can also replace the IR 
antireflective mirror by a set of toroidal mirror and plane grating for spectrum studies. 
The thin slit and the photomultiplier tube (PMT) are located at the end of the setup. 
We can also replace the PMT by an XUV camera to measure the harmonic beam 
profile in the far field or even an XUV wave front sensor. 

4) Diffraction chamber (Fig. 2.2): The multilayer parabolic mirror (coated by Institut 
d’Optique) selects one harmonic order (25th harmonic in our experiments) and 
focuses the beam onto the sample located at its focus. The CCD camera behind the 
sample holder detects the diffraction pattern in the far field regime.   

This harmonic beamline has delivered its first photons in 2007. First demonstration of CDI 
reconstructions of a test object has been published in 2009. This has encouraged further 
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studies in lens-less imaging and beamline optimization. This chapter will follow the time line 
to present the High flux harmonic beamline developments. 

    

	
  

Fig. 2.1. Scheme of the High flux harmonic beamline. The red arrow at left bottom indicates 
the beam propagation direction. The infrared beam is first focused into a gas cell in the 
harmonic generation chamber. The optics chamber separates the harmonics beam from the IR 
beam and sends it into the diffraction chamber where the lens-less imaging experiments will 
take place. The optics chamber can also switch to a TM-PGM (Toroidal Mirror-Plane Grating 
Monochromator) type spectrometer for HHG studies. The entire setup is about 5 meters long. 
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Fig. 2.2. Picture of the diffraction chamber. The parabolic mirror focuses the harmonics beam 
onto the sample, and the CCD camera located behind the sample holder detects the diffraction 
pattern.  

 

II.2	
  Historical	
  development	
  of	
  the	
  High	
  flux	
  harmonic	
  beamline	
  
 

At the end of last century, encouraged by the great potential of high-order harmonics (HH) 
source for probing matter with XUV pulses on ultrafast time scales, numerous studies have 
demonstrated significant HHG conversion efficiencies, using ultrashort laser pulses focused 
in gases, in hollow core fibers [1,2,3] and cells [4,5] in a tight focusing geometry. However, 
even they reached the saturation intensities of the generating rare gases, the harmonic 
energies was still low (in the nanojoule range) because of the very low pump laser energies 
(less than 1 mJ). In 2002, the CEA research group has demonstrated higher harmonic energies 
(more than 1 µJ) with a pumping energy of 27 mJ focused into a gas jet by long focal length 
lenses (f = 2 m or 5 m) [6]. The HHG conversion efficiencies in loose focusing geometry have 
been shown to be higher than in the tight focusing geometry by a factor 6. The thorough study 
of HHG in different gases resulted in high harmonic yields are at least one order of magnitude 
higher than previously reported values. A report of HHG optimization in different 
configurations (hollow core fibers, tight focusing in high pressure medium and loose focusing 
in gas cell) presented an interesting discussion about the “absorption limit” concept, phase 
matching, harmonic dipole and conversion efficiency [7]. Conversion efficiencies (at that 
time) of 1.5×10!! for harmonic 21 and 3×10!! for harmonic 23 have been demonstrated in a 
long gas cell of Argon (Ar) and loose focusing geometry. These results have stimulated the 
idea of building a harmonic beamline for single-shot lens-less imaging applications.  
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From 2005 to 2007, various experiments of HHG optimization and beam characterization 
have been accomplished on the harmonic beamline at Saclay. The HHG optimization is a 
complex process with numerous parameters. At the macroscopic level, the interplay between 
phase matching, medium absorption and focusing geometry has to be balanced in the HHG 
optimization process. One of the basic ideas developed at Saclay is to couple the maximum 
energy available at the LUCA laser facility (around 50 mJ/pulse at 800 nm, and up to 100 
mJ/pulse in extreme conditions). The total number of generated harmonic photons will 
increase with the laser intensity until the saturation intensity limit. Note that for 25th harmonic 
generated in Argon gas (the setup for imaging experiments), the intensity saturation is about 
1×10!" W/cm2 [8]. Another basic idea is to use a long cell as generating medium with 
adjustable length and gas density. Increasing the gas density (by increasing the gas pressure) 
seems to be a simple way to increase the harmonic photon number. However the phase 
matching condition and medium reabsorption have to be taken into account. E. Constant et al. 
[2] have established a relationship and criterion between the “coherence length”, the 
“absorption length” and the “useful medium length”. The HHG optimization requires 
optimum values for these three lengths.     

Some important experimental results will be shown here briefly. They are extracted from the 
first part of the thesis of W. Boutu [9]. The experiment setup is a TM-PGM type spectrometer 
(section II.1). First, the effects of the medium density (changed by gas pressure) on HHG are 
studied. Fig 2.3(a) shows the harmonics signal (from 11th to 15th harmonics) generated in 
Xenon with two different cell lengths as a function of the gas pressure. Fig 2.3(b) shows the 
dependence of the harmonics signal with the gas pressure at two different laser intensities. 
There is an optimal pressure value for each curve, after which the harmonic signal decreases. 
In addition, the optimum gas pressure depends on the gas type.   

	
  

Fig. 2.3. Variations of the harmonics signal (from 11th to 15th) generated in Xenon in function 
of the gas pressure: (a) with a laser intensity of 2×10!" W/cm2 and two cell lengths (the red 
line for 12 cm and the black line for 4 cm); (b) with a cell length of 4 cm and two laser 
intensities (the blue line for 5.8×10!" W/cm2 and the black line for 2.8×10!" W/cm2).  

 

A series of HHG experiments with different focal length have been accomplished with the 
aim of increasing the useful pumping energy in the generating medium while keeping the 
laser intensity at the focus close to the saturation limit. The transverse section of the 

CHAPITRE 1. OPTIMISATION DE LA GÉNÉRATION D’HARMONIQUES

Fig. 1.5: Mesure du signal harmonique (H11 à H15) généré (a) dans le xénon
en fonction de la pression, pour un éclairement de 2 10

14 W/cm2 et deux cellules
de longueurs différentes (carrés noirs : cellule de 4 cm, triangles rouges : cellule
de 12 cm) et (b) dans le xénon dans une cellule de 4 cm, pour deux éclairements
différents (carrés noirs : 2.8 10

14 W/cm2 et cercles bleus : 5.8 10

14 W/cm2).

optimale en fonction de l’éclairement de génération (figure (b)).

L’importance de ces conditions d’accord de phase est visible sur la figure 1.6
où est représenté le signal harmonique en fonction de la position relative du jet
et du foyer. Cette courbe présente deux maxima de part et d’autre du foyer,
correspondant aux zones (b) et (d) précédentes (en réalité, l’éclairement au foyer
lors de la mesure atteignant 1.2 10

15 W/cm2 il faut aussi prendre en compte les
effets de défocalisation dus aux électrons libres qui compliquent la distribution
d’éclairement laser, et donc du vecteur ~K).

1.1.2.3 Utilisation de grandes longueurs focales

Tous ces degrés de liberté font de l’optimisation de la génération d’harmoniques un
travail complexe, qu’il est nécessaire de réitérer à chaque nouvelle installation ou
à chaque modification du montage expérimental. Néanmoins, l’équipe de Saclay
a désormais acquis une solide expérience sur ce point, et peut délivrer pour les
utilisateurs une énergie harmonique conséquente. Ainsi Hergott et al. (2002) ont
pu démontrer la génération de deux microJoules sur l’ordre 15 (i.e. 53 nm) dans
le xénon en utilisant une focale de 5 m et 25 mJ d’énergie laser. L’efficacité de
génération est alors de 8 10

�5. Le laser LUCA permet cependant de délivrer

26
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interaction volume between the pump laser and the generating medium is then increased 
leading to a higher harmonic yield. A larger focal volume is obtained with a longer focal 
length. For example, a lens with 2 times longer focal length leads to a 2 times larger beam 
radius and 4 times larger focusing volume, thus 4 times more harmonic photons can be 
potentially generated or even more if phase matching is enhanced. Fig. 2.4a presents the 
variation of the harmonic energy as a function of the focal length generated in different gases. 
The laser energy is 20 mJ for the focal length of 4 m and 38 mJ for the focal length of 7.5 m. 
The harmonic energy values are estimated at the position of the cell exit by taking into 
account of the transmissions of the different optics and filters. Fig. 2.4b presents the 
increments of the harmonic energy with different focal length compared to focal volume 
increment. From 4 m to 7.5 m, the focal volume is increased by a factor of 3.5, while the 
harmonic energy is only increased by a factor of 1.9 for 21th order and 1.5 for 25th order. The 
effect is lower than expected. This can be related to the refraction of the laser beam caused by 
the ionization of the gas, which increases with the focal length. W. Boutu et al. [10] has 
discussed it with both numerical simulations and experimental results. The increment is also 
limited by the laser energy and the spatial mode. Practically, we have to use a diaphragm to 
control the beam focalization and optimize the phase matching conditions.  

	
  

Fig. 2.4. (a) Variations of the harmonic energy as a function of the focal length for different 
harmonic orders generated in different gases (red line: H25 in Argon, green line: H21 in 
Krypton, blue line: H19 in Xenon). (b) Normalized harmonic energies as a function of the 
increment ratio of the interaction volume (green points: H21 in Krypton, blue line: H25 in 
Argon). The red dot line is the normalized increment ratio of IR beam. The black dot line is 
the ideal increment ratio of harmonic energy with the focal volume.  
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Fig. 2.5. Spatial profile of the 25th harmonic generated in Argon with a focal length of 7.5 m 
and a laser energy of 38 mJ detected by a XUV camera in far field. The measured harmonic 
beam has a very low divergence of about 0.4 mrad.  

 

The beam coherence is another important factor, particularly in lens-less imaging. A 
characterization has been realized using a set of Young’s double slits located at 1 m from the 
focus of the toroidal mirror. A CCD camera located at 1.6 m from the slits records the 
interference patterns. Measurements have been performed for the 25th harmonic generated in 
Argon with two different focal lengths (5.5 m and 7.5 m). The spatial coherence is estimated 
from the fringe visibility in the center part of the interference figures. Fig 2.6 shows that the 
coherence degree is at least higher than 0.4 and is relatively independent with respect to the 
focal length.  
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Fig. 2.6. Measured interference figures of the 25th harmonic (generated in Argon) with a set of 
Young’s double slits separated 100 µm, 300 µm and 500 µm. The Young’s double slits are 
located at 1 m from the focus of the toroidal mirror and the XUV camera is placed at 0.6 m 
from the slits.  

 

Thanks to all these optimization and characterization work, a harmonic beamline was finally 
built up to perform single-shot coherent diffractive imaging applications. In 2009, A. Ravasio 
et al. reported the first demonstration of CDI on a test object [11] using a single harmonic 
pulse (20 fs) from a femtosecond table-top HHG source. The images of the test object “music 
note” were reconstructed with a resolution of 119 nm in single-shot regime and 62 nm in 
multiple shots regime (Fig. 2.7).  

	
  

Fig. 2.7. (a) Scanning microscopy image (SEM) of the test object “music note”; (b) 
Reconstructed image from a diffraction pattern accumulated over 40 shots (2s exposure time) 
with 62 nm resolution; (c) Reconstructed image from a single-shot diffraction pattern (20 fs 
exposure time) with 119 nm resolution.     
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This promising image reconstruction of an isolated nanometric object with a single 
femtosecond harmonic pulse opens fascinating perspectives in dynamic studies in many 
scientific areas, such as ultrafast spin reversals of magnetic nanodomains (Chapter IV). The 
HHG pulses are naturally synchronized with the pump laser with sub-femtosecond time jitter. 
This significantly facilitates time resolved studies. Moreover, HHG sources offer an 
inexpensive and compact alternative to FEL facilities. 

 

II.3	
  HHG	
  optimization	
  and	
  beamline	
  standardization	
  	
  
 

I present in this section the effort to build a powerful, stable and reproducible harmonic 
beamline for imaging applications. The main goal is to realize dynamical visualization (2D or 
3D) of ultrafast physical phenomena on a femtosecond scale with nanometric spatial 
resolution. In coherent imaging, the X-ray photon flux on sample (single-shot or multiple 
shots) determines the signal extension on the diffraction pattern (the maximum spatial 
frequency of the diffracted signal). A high signal extension corresponds to a high theoretical 
spatial resolution (Eq. 1-29, Chapter I). Moreover, the radiation damage of samples 
(especially biological ones) limits the maximum pulse energy for each shot, which is an real 
limitation for light sources that provide high average but low peak flux beam, such as 
synchrotrons. However, one can achieve high-resolution imaging with another strategy. The 
idea is to irradiate the sample with a single pulse short enough to capture the image before the 
onset of the radiation damage [12, 13]. The FEL or XFEL facilities can provide such X-ray 
pulses. HHG source has demonstrated such potential however further work was necessary to 
improve the quality of the CDI diffraction patterns. In this thesis work I present the 
optimization of the entire beamline (HHG process and all the optics) to finally get the 
maximum pulse energy available on sample for high-resolution single-shot imaging. It has 
been also important to standardize the beamline to have stable beam performance, which was 
at the very beginning of my work unstable from day to day.  

The harmonic beamline optimization has been realized in two steps:  

1) HHG optimization: As mentioned before, we would like to maximize the harmonic 
pulse energy to get higher reconstruction resolution. However, it is not the only factor 
that influences the reconstruction quality. The wave front, the coherence and the 
spatial distribution of the intensity of the harmonic beam are also critical factors. The 
HHG optimization process conducted here has been to find an optimum compromise 
between all these factors to enhance the quality of diffraction patterns or holograms. 

2) Focusing optimization: The sample is located at the focus of the parabolic mirror. The 
phase retrieval algorithms reconstruct the exit wave at the object plane (Chapter I, 
section I.2) that is equal to the sample transmittance in case of a plane wave 
illumination. Thus the harmonic beam focusing quality has a large influence on the 
reconstruction result. We need a homogenous focal spot and a proper spot size 
compared to samples. 

We have used a Hartmann type wave front sensor to characterize and evaluate the quality of 
the generated harmonics beam before and after focusing optics (the parabolic mirror). The 
wave front sensor measures the wave front and the intensity of the harmonic beam, and 
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reconstructs the beam profile using back-propagation functions. First we place the wave front 
sensor at a distance of 5 m from the gas cell without any focusing optics (Fig. 2.8). We 
measure the direct harmonics beam in far field and optimize the wave front as a function the 
HHG parameters, such as IR laser energy, IR beam aperture, gas cell length, gas pressure and 
etc. Then, we align the wave front sensor after the focus of the parabolic mirror to 
characterize and optimize the focal spot.  

After the optimization process with the wave front sensor, we use a Young’s double slits to 
characterize the harmonic beam coherence, and study the influence of the coherence on phase 
retrieval reconstructions. We measure the variations of the beam coherence using a similar 
process as the HHG optimization with the wave front sensor. The results show that it could be 
an alternative way to optimize the beamline, but less efficient and less accurate than the wave 
front sensor, because one has to check manually the fringe visibility of each interference 
pattern and only a small part of the beam is characterized in each measurement.      

 

Fig. 2.8. Scheme of the optimization experiment setup. 1) HHG optimization configuration: 
Movable mirror 1 (multilayer plane mirror) is in and the wave front sensor is located at 
position 1 to measure the direct harmonics beam. 2) Focusing optimization configuration: 
Movable mirror 1 is out and mirror 2 is in; the wave front sensor is located at position 2 to 
measure the focused harmonic beam by the parabola. 3) Diffraction configuration: Two 
movable mirrors are out and no wave front sensor. The sample (Young’s double slits) is 
located at the focus of the parabola and the XUV camera detects the diffraction pattern (far 
field interference of the slits exit waves). 

      

II.3a	
  HHG	
  optimization	
  and	
  beamline	
  standardization:	
  wave	
  front	
  
sensor	
  
 

The Hartmann type wave front sensor “HASO” (produced by Imagine Optics Corp.) is 
composed of a Hartmann pattern grid and a XUV camera located 20 cm behind the grid (Fig. 
2.9a). The harmonic beam goes through the Hartmann grid, which is an array of holes, and 
projects the “beamlets” sampled by each hole onto the XUV camera. The positions of the 
individual spot centroids are measured (Fig. 2.9c) and compared with reference positions 
(calibrated with perfect wave front, Fig. 2.9b). The measured local shifts of each beamlet can 
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reconstruct the wave front of the harmonic beam. The measured beamlets present also the 
harmonic beam’s intensity profile at a sampling rate of the grid. One can then deduce the 
aberrations of the beam. Using back-propagation functions, the harmonic beam profile at the 
point source can be reconstructed. These numerical calculations are realized within the 
paraxial approximation.  

The wave front sensor is calibrated and provided by the research group of P. Zeitoun at 
Laboratoire d'Optique Appliquée (LOA), France. The Hartmann grid is 19 x 19 mm2 large 
and contains 51 x 51 square holes that each is 80 x 80 µm2 large and separated by 380 µm. 
The back-illuminated CCD camera has 2048 x 2048 pixels of 13.5 x 13.5 µm2 each, operating 
at -40 °C. The typical calibration method is presented in Ref 14. In our case, a 10 µm pinhole 
positioned in the beam propagation path at 1 m from the gas cell output diffracts the beam and 
generates a perfect wave front. The sensor accuracy is then experimentally measured to be 
λ/50 RMS (root mean square) at a wavelength λ = 32 nm, i.e. an accuracy of 0.64 nm RMS [15]. 
Note that an aberration of λ in amplitude corresponds to local phase aberration of 2π. One 
should be careful when using such a sensor to measure a wave front with very strong 
aberrations. The mismatch of beamlets and the reference positions could lead to wrong 
reconstruction of wave front if the aberration exceeds 2π. In our case, the harmonic beam has 
relatively week aberrations so that the sensor is well adapted.      

 

Fig. 2.9. Scheme of the Hartmann type wave front sensor. (a) The target beam goes through 
the Hartmann pattern grid, which is an array of holes, and projects onto the XUV camera 
behind. The XUV camera detects the sampled intensity of the beam. (b) The wave front 
sensor should be calibrated with a perfect beam before first use. The positions of the beamlets 
on the camera will be registered as reference positions (blue points). (c) The wave front is 
reconstructed from the measured local shift (red points) of each beamlet compared to the 
reference positions.   
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II.3b	
  HHG	
  optimization	
  and	
  beamline	
  standardization:	
  HHG	
  
optimization	
  	
  
 

In the first step, we have explored systematically several HHG parameters to optimize the 
harmonic flux and the beam wave front RMS value. The wave front RMS value describes 
how the measured wave front is distorted compared to a plane wave. According to the 
Maréchal’s criterion [16], a beam is diffraction-limited at a given wavelength λ when the 
aberrant wave front amplitude is lower than λ/14 rms. As we assume a plane wave 
illumination in CDI, if the beam is far away from a plane wave, then the reconstruction will 
not correctly represent the sample transmittance but the ensemble exit wave (sample 
transmittance + incident wave). However, we can still extract the sample transmittance if we 
know the incident wave in priori, which requires a measurement of the incident wave front.  

Practically, if the beam is not stable (aberrations change from shot to shot), simultaneous 
measurements of the incident wave and the sample diffraction pattern will be required. If the 
beam is stable that measurements can be achieved in different shots, the relative position of 
the beam when hitting onto the sample should be known for extracting correctly the sample 
transmittance information. 

In our experiment, we have optimized the wave front RMS value to the diffraction-limited 
(λ/14) and maximized the harmonic flux. Some of the experimental results are presented in 
the following figures. Fig. 2.10 to Fig. 2.12 show the variations of harmonic pulses intensities 
(blue curves) and wave front RMS values (red curves) in function of one HHG parameter, 
while others are fixed. The variant parameter and fixed parameters’ values for each figure are 
listed below. 

Curves in Beam aperture Gas pressure Gas cell 
length 

Laser energy 

Fig. 2.10 21 mm 8 mbar Variant ~ 15 mJ 
Fig. 2.11 20 mm Variant 8 cm ~ 15 mJ 
Fig. 2.12 Variant 8 mbar 8 cm Variant 

Table 2.1. Generating parameters’ value range for HHG optimization studies 

 

The initial IR beam has a diameter of about 40 mm and is then limited in aperture by a 
diaphragm located in front of the focusing lens.  The gas pressure is measured at the upper 
stream of the gas cell, which is proportional to the one inside the cell. The laser energy is 
measured behind the diaphragm, which is the effective pulse energy focused into the 
generating medium. For all the measurements presented in these three figures, the beam is 
focused at 2 cm behind the gas cell output by the lens of 5.65 m focal length. All the intensity 
measurements curves are normalized to the maximum value and then rescaled to fit the 
display of the wave front RMS curves.   

During the studies of gas cell length (from 3 to 12 cm, Fig. 2.10) and gas pressure (from 6 to 
10 mbar, Fig. 2.11), the variations of the wave front RMS values are moderate and slow. The 
maximum variations of the two curves are ~ 0.06λ (λ/17) for the gas cell length and ~ 0.05λ 
(λ/20) for the gas pressure. They both have a region of minimum RMS values around 0.1λ 
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(λ/10) for gas cell length from 5 to 8 cm and for gas pressure from 8 to 9 mbar. The two 
intensity curves have similar behavior with relatively fast growths and decays, before and 
after the maxima. The maximum intensities are achieved at gas cell length = 8 cm (Fig. 2.10) 
and at gas pressure = 8 mbar (Fig. 2.11) that are both located in the optimum range of the 
wave front RMS. The variations between maxima and minima of measured intensities in both 

cases are more than 50% (!"#!!"#
!"#

). These intensity curves are similar to the results of 

previous work (Fig. 2.3) of HHG studies.  

The study of beam aperture (from 18 to 26 mm, Fig. 2.12) presents interesting results of wave 
front RMS values, which keep stable around minimum value 0.1λ (λ/10) until beam aperture 
equal to 21 mm and increase rapidly from 22 mm. This dramatic variation can be explained 
by the effects of HHG phase matching. During the study, the laser energy before the 
diaphragm is fixed at 42 mJ, thus the effective laser energy increases with the beam aperture. 
As the size of the laser beam focal spot decreases when we open the diaphragm, the laser 
intensity at the focus increases at the fourth power of the diaphragm radius. When the 
intensity saturation of the generating medium is reached, the ionization occurs and leads to 
destructive effects in phase matching. This affects the harmonic beam quality. The ionization 
also influences the IR laser beam propagation and will significantly degrade the spatial profile 
of the laser beam when the beam aperture is larger than 22 mm (section II.4c). The intensity 
curve has a usual behavior that increases with higher laser energy (larger beam aperture) until 
a maximum at a beam aperture of 21 mm. It then decreases when the ionization occurs.  

 

Fig. 2.10. Generating condition: beam aperture = 21 mm, gas pressure = 8 mbar, laser energy 
= ~15 mJ. The blue and red curves present respectively the variations of harmonic intensity 
and harmonic wave front RMS in function of gas cell length.   
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Fig. 2.11. Generating condition: beam aperture = 20 mm, gas cell length = 8 cm, laser energy 
= ~15 mJ. The blue and red curves present respectively the variations of harmonic intensity 
and harmonic wave front RMS in function of gas pressure.   

 

Fig. 2.12. Generating condition: gas pressure = 8 mbar, gas cell length = 8 cm, laser energy 
before diaphragm = 42 mJ. The blue and red curves present respectively the variations of 
harmonic intensity and harmonic wave front RMS in function of beam aperture. 
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We conclude the optimum parameters’ value range: beam aperture = 20~21 mm, gas pressure 
= 8~9 mbar, gas cell length = 5~8 cm, effective laser energy = 15 mJ and the focus position is 
2 cm behind the gas cell output. The beam aperture of 20~21 mm corresponds to a laser focal 
radius of 137~143 µm and the confocal parameter = 14,7~16 cm. The harmonic flux and the 
wave front RMS share the same optimum value range and are maximized with the same 
parameter values, which agrees with previous work [15,19]. 

The optimum gas pressure values can change slowly after some experimental time, since the 
IR laser ablates the input and output pinholes of the gas cell during the harmonic generation. 
An optimization of the gas pressure by analyzing the far field harmonic beam profile and 
intensity is necessary when installing new pinholes of the gas cell.  

Note that during these studies, we didn’t change the laser focus position because of some 
practical limitations. After setting up the laser modal filtering (section II.4c), we have studied 
the optimization of the laser focus position by analyzing the far field spatial profile of the 
harmonic beam (detected by CCD camera). There is an optimum range of the laser focus 
position from 0 to 5cm behind the gas cell output. If the laser is focused before the gas cell 
output, the intensity and the spatial profile of the harmonic beam become worse while 
approaching the laser focus towards the gas cell input. When the laser focus goes further 
behind the gas cell output (maximum 8 cm behind, limited by the translation stage of the lens), 
the harmonic beam intensity decreases slowly and its spatial profile remains relatively good. 
This phenomena is related to the self-guiding of the laser pulse during the propagation in the 
generating medium. The self-guiding effect can enhance the laser properties (such as the laser 
intensity distribution) and the phase-matching condition. In a previous work [17], it has 
indeed been shown that the laser self-guiding condition strongly depends on the gas cell 
position. When the gas jet (9 mm long) is located before the laser focus, they observed that 
the harmonic beam intensity increases dramatically (two orders of magnitude higher). Our 
experimental results show similar effect on the generated harmonic beam with about three 
times higher intensity. More important, the spatial profile of harmonic beam is more 
homogeneous in the optimum range.      

For each wave front measurement, aberration contributions are calculated with Zernike 
polynomials, which is unstable from shot to shot. There is no obvious relation between 
aberration contributions and the harmonic generating conditions. Previously, two groups 
working on HHG optimization with wave front sensor reports contradictory conclusions of 
harmonic aberrations dependence on pump laser aberrations [15,19]. A further study on the 
aberration dependence of the High flux harmonic beamline is planned and it may lead to new 
HHG optimization.     

The harmonic beam generated with optimum parameters has a wave front RMS of 0.11λ (λ/9), 
compared to a non-optimized harmonic beam whose wave front RMS is 0.79λ (Fig 2.13). 
Meanwhile, the spatial profile of the harmonic beam in far field has also been optimized, 
which is important for coherent imaging. The reconstructions of the harmonic beams at the 
source are shown in the Fig. 1 of Paper I.  
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Fig. 2.13. Generating condition: gas pressure = 8 mbar, gas cell length = 8 cm, laser energy = 
15 mJ, beam aperture = 24 mm for (a) and (b), and 21 mm for (c) and (d). (a) is the measured 
intensity and (b) is the measured phase of the non-optimized harmonic beam by the wave 
front sensor in far field. (c) and (d) are respectively the intensity and the phase of the 
optimized harmonic beam. Note that the absolute phase scales in (b) and (d) are different. 

 

II.3c	
  HHG	
  optimization	
  and	
  beamline	
  standardization:	
  Focusing	
  
optimization	
  	
  
 

In the second step, the wave front sensor is located behind the focus of the parabolic mirror to 
characterize the harmonic focal spot, which represents the illumination condition for coherent 
imaging. In the beam path from the harmonic source (output of the gas cell) to the sample 
(focus of the parabolic mirror), there are only two optics (IR-antireflective mirror and 
parabola) and one aluminum filter. The focusing quality, thus the illumination quality is 
strongly related to the alignment of the parabola. The parabola is motorized by translation 
stages and goniometers. It is initially aligned with residual IR beam as reference. The study 
with a wave front sensor allows direct measurements of the focusing quality with the 
harmonic beam (25th order) in the same condition as the coherent imaging. A fine adjustment 
is then possible for the parabola motorized in all translation and tilt directions to optimize the 
focal spot. Finally, the wave front sensor measurements in this configuration characterize the 
whole harmonic beamline until the diffraction stage by taking account of all elements in the 
beamline except the detection part. The optimization of the detection stage is associated to 
each particular imaging configuration, including sample conditions, imaging technique, final 
resolution, illumination quality, etc. It will be discussed in the following chapter.  

Experimental results show that a fine adjustment of the parabola with the harmonic beam can 
optimize the focal spot’s spatial profile and aberrations. Fig 2.14 shows the enhancement of 
the harmonic beam before and after the fine adjustment of the parabola. We get a harmonic 
beam of 0.154λ (~λ/6) RMS (Fig. 2.14d) instead of 0.326λ (~λ/3) RMS (Fig. 2.14b) measured 
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at the Hartmann grid. Usually, the dominant aberration of the harmonic beam is the coma, 
which should be associated to the miss-alignment of the parabola. It is clearly observed in the 
reconstruction of the focal spot (Fig. 2 in Paper I) before fine adjustment. The focal spot after 
fine adjustment presents a homogenous and quasi-circular beam profile, with reduced coma 
aberration. The beam size (at 1/e2) is optimized from 7.8 µm to 5 µm, which matches better 
our samples (usually within a window of 5 x 5 µm). Compared to the 20 µm focal spot used in 
the previous work of “music note” (also within a window of 5 x 5 µm), the effective harmonic 
photons for diffraction are largely increased. 

 

Fig. 2.14. (a) is the intensity and (b) is the phase of the 25th harmonic beam with initially 
aligned measured by wave front sensor. (c) and (d) are respectively the intensity and the 
phase of the harmonic beam with finely tuned parabola.  

 

In the beam propagation direction (z direction), the focused harmonic spot changes quickly 
before and after the parabola focus position. The evolutions in both conditions (before and 
after fine adjustment) are similar, while the optimum adjustment provides quasi-circular focal 
spot in a range of ±0.5 mm around the focal position, larger than in the other case (Fig. 2.15). 
This range is important for the coherent imaging as it give flexibility in positioning the 
sample. Usually, we use a sharp edge (for example, the edge of the sample membrane) to look 
for the focus position (Fig. 2.16). Typically, we can find the focus position with a precision of 
±0.2 mm, which fits the previous range of ±0.5 mm. Note that a daily alignment of the IR 
laser during the initiating stage of the harmonic beamline is required, which could be critical 
for the harmonic focusing quality. The IR laser should be aligned as it was for the fine 
adjustment with wave front sensor to ensure an optimum focal spot. A permanent installation 
of wave front sensor in focusing optimization configuration could be a precise method for 
daily alignment, especially for experiment projects spanning over months. According to our 
experience, careful daily alignment (without wave front sensor) is sufficient for short-term 
experiments.    
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Fig. 2.15. The top line presents the evolution of the reconstructed harmonic beam spatial 
profile around the focus of the parabola before fine adjustment. The bottom line is for the case 
after fine adjustment.   

 

Fig. 2.16. Practically, to find the focus position of the beam, we move a testing edge (the 
brown squares) from position 1 to position 3 along the beam propagation direction at certain 
step. In position 1 and 2, the beam (blue circles) is cut from one side (for example, the left 
side). When we path the focus position, the beam will be cut from the opposite side (the right 
side in position 3). Then the focus position is fixed in a range and we can get more precise 
position by repeating the process with smaller step 

 

II.3d	
  HHG	
  characterization:	
  spatial	
  coherence	
  at	
  the	
  focus	
  
 

We are now interested in the behavior of the spatial coherence of the harmonic beam 
generated with different HHG conditions. We switch the harmonic beamline to the diffraction 
configuration (Fig. 2.8), and place a double Young slits at the sample position. The double 
slits are 1.5 µm long and 300 nm wide, separated by 4 µm, fabricated by a nano-focused ion 
beam (FIB, CSNSM facility in Orsay University). The CCD camera records the interference 
pattern in the far field (19 mm behind the double slits). We use the similar exploration process 
of the HHG parameters as the optimization with wave front sensor. The studied parameters 
are gas cell length, gas pressure and beam aperture.  

The evolutions of the fringe visibility and the diffraction pattern intensity are compared as a 
function of other generating parameters (Fig. 2.17 to Fig. 2.19). All the measurements are in 
single-shot regime. The measured fringe visibility is up to 0.8 ~ 0.84 in optimum range of 
HHG parameters, and lower than 0.5 in certain conditions. The fringe visibility, thus the 
spatial coherence of the harmonic beam, has the same evolution behavior as the diffraction 
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intensity (which is proportional to the harmonic beam intensity at focus). We conclude that 
the harmonic flux, wave front quality and the spatial coherence can be optimized under the 
same HHG condition. These three factors are essential for coherent imaging. They influence 
the diffracted signal strength (or signal to noise ratio), the illumination wave front and the 
accuracy of the phase information encoded in the diffraction pattern.  

Compared to the harmonic beam size (5 µm), the Young double slits (separated by 4 µm) 
measurements characterize the beam of its outer part. One should use a set of Young double 
slits separated by different distances to have a full characterization of the beam coherence 
(one measurement for one distance). Otherwise, a coherence-testing pattern can be used to 
measure the beam coherence of several different distances within one measurement (Chapter 
5, section V.1).  

 

Fig. 2.17. The black and red curves present respectively the variations of fringe visibility and 
the diffraction pattern intensity as a function of beam aperture. The intensity curve is 
normalized to the maximum intensity detected.   
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Fig. 2.18. The black and red curves present respectively the variations of fringe visibility and 
the diffraction pattern intensity as a function of the gas cell length. The intensity curve is 
normalized to the maximum intensity detected. Note that the diffraction intensity for gas cell 
length = 4 cm is too weak to be detected; however the direct harmonic beam without the 
presence of the double slits can be detected by the CCD camera.     

 

Fig. 2.19. The black and red curves present respectively the variations of fringe visibility and 
the diffraction pattern intensity in function of gas pressure. The intensity curve is normalized 
to the maximum intensity detected.   
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II.4	
  IR	
  Laser	
  Modal	
  Filtering	
  	
  	
  
 

We have shown how the harmonic beamline, optics filters and also wave front and coherence 
can be controlled and improved. Is it possible to accomplish further optimization of the HHG 
properties by improving the driving laser beam? Since the HHG phase matching depends on 
the IR laser focusing quality and its propagation in the generating medium, the wave front and 
the spatial profile of IR laser along with its temporal properties have important roles in the 
HHG process. Some previous studies showed some correlation between the IR laser and the 
generated harmonic pulse of their wave fronts [15,19,20]. Further enhancement of the 
harmonic beam can be expected from spatial and/or temporal improvement of our IR laser 
beam. In practice, the IR beam (LUCA laser described earlier) before and after the temporal 
compression stage looks inhomogeneous with a triangle-like shape in the center part of the 
beam. There is a clear need of improving the spatial profile of the IR beam. The diaphragm 
that we located before the focusing lens to control the beam aperture is somehow a kind of 
spatial filter of the IR beam, which optimizes the HHG by adjusting its focal geometry, 
ionization and harmonic dipole properties [21]. However its application is quite limited. We 
have shown for example during the wave front studies that the HHG beam is strongly affected 
when the diaphragm is too widely opened. Phase matching is in particular destroyed when 
“bad” infrared modes superimposes in the HHG generating media. 

In this section, studies of further improvement of the IR beam before injection into the gas 
cell will be presented, and followed by the results of HHG in condition of these 
improvements.  

 

II.4a	
  Modal	
  Filtering:	
  setup	
  	
  	
  
 

There are various approaches to improve the IR beam quality. We can cite the use of a 
pinhole to filter high spatial frequencies of a focused laser beam [18], or a set of transmission 
phase plates to create a flat-top laser beam to increase the interaction volume and the HHG 
efficiency [22], or using a truncated Bessel beam produced by argon-filled hollow fiber for 
HHG [23], or improving the laser wave front by deformable mirrors and genetic algorithms to 
optimize HHG efficiency [24], and etc. Our approach is inspired by the hollow fiber 
compression technique [25], which generates sub-10 fs laser pulses by a capillary filled with 
gas, called “post compression”. In our case, the fiber will not be filled with gases. We will 
mainly use the coupling between the laser modes and the fiber modes to improve the IR beam. 

In the femtosecond regime, intense laser beam can easily lead to degradation of optical 
elements in the beam path, including the compression gratings. Therefore, we decide to place 
the hollow fiber before the compression stage and after the final amplification stage of LUCA 
laser. We then operate in picosecond regime, where related problems (mainly thermal 
problems) are easy to handle experimentally. The setup is shown in Fig. 2.20. A hollow-core 
fiber in silica of 30cm-long with a core radius a = 125µm is located after the amplification 
stage of LUCA laser, which delivers a laser beam of up to 180 mJ/pulse centered at 795 nm, 
at a repetition rate of 20 Hz, with a pulse duration of about 200 ps. The hollow-core fiber is 
operated in vacuum of about 10-3 mbar. The IR beam is first focused into the hollow-core 
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fiber, then couples with the fiber mode and diverges at the fiber output. A set of lenses located 
after the fiber collimates the filtered IR beam into the compression stage. Finally, the 
compressed femtosecond laser beam (up to 50 mJ/pulse) is used for HHG.    

 

Fig. 2.20. Scheme of the modal filtering. The hollow-core fiber is located between the 
compression stage and the amplification stage of LUCA laser to filter the IR beam.   

 

This scheme of hollow-core fiber is based on the theory of propagation of an electromagnetic 
wave in a cylindrical dielectric waveguide. In theory, the laser beam will be coupled with the 
fundamental mode of the fiber, which is EH11 in our case [26,27]. The reason to choose EH11 
mode is because it has a similar transverse distribution as the Gaussian mode TEM00 in both 
near and far field (Fig. 2 in Paper II). The optimum coupling efficiency of a Gaussian mode is 
about 98%, corresponding a beam waist 𝜔! = 0.65𝑎. It gives a first idea of the beam size at 
the entrance of the fiber. Moreover, the other guided modes are strongly attenuated during the 
propagation in the fiber. Thus, a spatial filter by modes selection of the laser beam is 
established. We call this technique “modal filtering”.  

   

II.4b	
  Modal	
  Filtering:	
  experimental	
  results	
  	
  	
  
 

The modal filtering is tested and quantified by several series of measurements of the laser 
beam by beam profilers and wave front sensor. We are interested in the laser beam’s spatial 
profile, the wave front quality, the modal composition, the pulse energy (energy transmission 
of the modal filtering) and its temporal properties after pulse compression stage, which are 
measured by SPIDER [28]. The wave front sensor used here is a Shack-Hartmann type that 
the grid is an array of micro-lenses, instead of holes in XUV sensor, and using the same 
principle of wave front measurement. We quantify the laser beam at different stages with and 
without the presence of the modal filtering. Fig. 2.21 is an overview of the laser beam quality 
comparison, measured and simulated by wave front sensor.   

1) Before the compression stage: The beam without modal filtering (Fig. 2.21a) has an 
inhomogeneous spatial profile in a triangle-like shape and the wave front RMS is about 
λ/12 (λ = 795 nm). The latter has been improved by a factor of 5 with the modal filtering 
(Fig. 2.21b), which is λ/59, more than 4 times smaller than the Maréchal’s criterion for 
diffraction limited beam, with a central symmetric profile that can be considered as free 
of aberration. Moreover, the M2 factor of the beam [29] has been calculated by the ratio 
of the divergences between the measured laser beam and the Gaussian beam [30]. The 
diminution of the M2 factor (from 2.1 to 1.4) confirms the spatial quality improvement of 
the beam. After the propagation in the hollow-core fiber, the mode EH11 presents about 
95% in the filtered beam with 3% of EH12 and less than 2% of other modes. This high 
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portion of EH11 mode in the output beam is ensured by its coupling efficiency of about 88% 
with a low attenuation of about 2% (corresponding to the fiber length of 30 cm). The 
energy transmission of the modal filtering is in general from 60% to 70% depending on 
the input pulse energy. A maximum transmission of 78% has been observed, compared to 
the theoretical value (83%). The difference between daily experimental value (~70%) and 
the theoretical value is mainly due to the injection of the beam. Indeed, the beam size at 
the entrance of the fiber (radius of ~142 µm estimated from beam profilers measurements) 
is larger than the core radius of the fiber (125 µm), thus about 11% energy of the beam is 
outside the fiber core.  
 

2) After compression stage: The wave front measurements (Fig. 2.21c,d) show some 
degradation of the laser beam after pulse compression. The measurements are realized at 
3.85 m from the focusing lens (focal length of 5.65 m) to adapt the beam size to the 
aperture of the wave front sensor. The non-filtered beam has a wave front RMS of λ/5 
while the filtered one is λ/14. We have still an obvious improvement on the beam quality 
by the modal filtering. The energy transmission of the compression stage is about ~ 40%.  
The pulse durations of the beam with and without the modal filtering are quantified by the 
SPIDER method for three different pulse energies after compression (4 mJ, 18 mJ and 42 
mJ). Compared to the non-filtered beam (45-50 fs pulse duration), the filtered beam’s 
pulse duration is equivalent at 4 mJ (47 fs) and 18 mJ (43 fs) and degrades at 42 mJ (65 
fs). The higher energy density in the central part of the filtered beam could lead to 
compression defects, such as self-phase modulation.  
 

3) At the focus of the lens for HHG: From the wave front measurements, we simulate the 
beam at the focus of the lens by propagation functions. Fig. 2.21e,f present the focal spot 
of the full laser beam without and with modal filtering, and Fig. 2.21g,h for the beam with 
a diaphragm aperture = 22 mm. The Strehl ratio represents the focusing quality by 
calculating the ratio between the reconstructed beam focus and a perfect beam [31]. A 
diffraction-limited beam corresponds to a Strehl ratio of more than 0.8. In our case, the 
ratio for the full beam is equal to 0.83 (with modal filtering) and 0.33 (without), which is 
a strong improvement. The laser beam diameter is about 42 mm for non-filtered case and 
~ 32 mm for filtered one (measured at 1/e2). The diaphragm located before the focusing 
lens plays an important role for the beam’s focal spot. When the diaphragm aperture is 
equal to 22 mm, the beams with and without modal filtering have similar focal spot (Fig. 
2.21g,h), with different energy transmission, ~ 60% for filtered beam and ~ 50% for the 
non-filtered. However, the non-filtered beam’s focal spot degrades quickly when the 
diaphragm opens larger than 22 mm. Note that the reconstructed focal spots do not 
represent the real HHG source size. Nevertheless, the reconstructions give us a first 
insight of the focusing quality for efficient HHG.  

The measurements and simulations have demonstrated the high efficiency of the modal 
filtering on the laser beam quality improvement. The experimental results and theoretical 
predictions agree with each other. A quasi-mono-mode diffraction-limited beam of up to 50 
mJ pulse energy and pulse duration of ~ 50 fs is given after the compression stage. In the 
point of view of laser systems, the modal filtering is a successful system of beam spatial 
quality improvement. With respect to our purpose, the modal filtering is made to increase the 
harmonic phase matching and the harmonic beam quality. Since the filtered beam loses about 
30% pulse energy compared to the non-filtered beam and the highly non-linear property of 
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the HHG process, we are not sure whether this modal filtering can optimize the harmonic 
beam in our generating conditions. A campaign of HHG experiments has taken place to 
compare the harmonic flux and the spatial profile of the harmonic beam in far field with and 
without the modal filtering. Unfortunately, we didn’t have the opportunity to do the complete 
measurements of the harmonic beam with a XUV wave front sensor as presented in the 
previous section. However the previous conclusion shows that when the harmonic flux and 
the beam coherence are optimized, the wave front is not far from optimization. A good 
compromise is then found for coherent imaging.    

 

 

Fig. 2.21. (a-d) Wave front measurements of the beam with and without modal filtering at 
different places on the beam path. Intensity distributions and wave front variations of the 
beam are presented for each position. (e-h) At the lens focus, beam profiles are obtained from 
propagation simulation.    

 

II.4c	
  Modal	
  Filtering:	
  HHG	
  	
  	
  
 

The HHG measurements with and without the modal filtering are realized in the “spectrum 
configuration” of the harmonic beamline (section II.1). A Toroidal mirror and a plane grating 
are located in the optics chamber. We use a thin slit and a photomultiplier tube (PMT) for the 
spectrum measurements and a CCD camera for the harmonic spatial profile measurements. 
The HHG optimization with modal filtering is realized using the same process as presented in 
the section II.3b. We are looking for a good compromise between harmonic flux and the 
spatial profile of the beam by varying different generating parameters, such as gas pressure, 
gas cell length, beam aperture, lens’s focus position and IR pulse energy. The first campaign 
of HHG optimization is done with Argon gas and the optimum parameters’ value range is 
similar to the case without modal filtering: beam aperture = 18~20 mm, gas pressure = 
12~14 mbar, gas cell length = 6~8 cm, effective laser energy = 8~10 mJ and the focus 
position is 2 cm behind the gas cell output.  

As mentioned previously, in the non-filtered beam case, the optimum diaphragm is around 
20~21 mm with maximum laser energy possible. If we want to generate more harmonic 
photons, we have to open the diaphragm to have more laser energy pumped into the 
generating medium. However, a larger diaphragm means a tighter or even a worse focusing 
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quality (see Fig. 2.21e) with more instability. This leads to bad wave front quality of the 
harmonic beam. Fig. 2.22a-d shows the evolution of the harmonic beam’s spatial distribution 
detected by XUV CCD camera in the far field. The harmonic beam is “stretched” into two 
spots as the diaphragm opens from 22 mm to 30 mm. Note that, for a beam aperture larger 
than 23 mm, the stability of the harmonic beam is not ensured. 

When using the modal filtering, the laser energy is in general 30% less than the non-filtered 
one, but with a better spatial profile, especially in the central part of the beam (Fig. 9 in Paper 
II). The experimental results show that less laser energy is required to generate the same 
harmonic flux with the same beam aperture (Fig. 2.22a,h). For a beam aperture = 19.5 mm, 
with a laser energy = 8.5 mJ, we measured 2.4×10!photons/pulse by the CCD camera with 
filtered beam. While the non-filtered beam has 2.2×10!photons/pulse with beam aperture = 
20 mm and laser energy = 20.5 mJ. The other generating parameters are the same in both 
cases. We can conclude that the harmonic conversion efficiency is increased by a factor more 
than 2. The optimized harmonic beam has 2.7×10!photons/pulse obtained with a beam 
aperture = 18.5 mm and a laser energy = 10 mJ (Fig. 2.22g). We can get more photons by 
increasing the laser energy, for example, 3.3×10!photons/pulse with laser energy = 13 mJ 
and beam aperture = 18.5 mm (Fig. 2.22k), but the spatial profile is worse in this case. In the 
case of modal filtering, to get a good compromise between spatial profile and harmonic 
photons, we are forced to reduce the laser energy to avoid the laser intensity saturation in the 
generating medium, which will lead to strong ionization effects and will somehow “distort” 
the generated harmonic beam (Fig. 2.22k-m). An extreme example is the case of full laser 
beam with 23.5 mJ/pulse that the harmonic beam is completely distorted. One solution is to 
close the diaphragm to get a larger focal spot. However experimental results show that simply 
decreasing the beam aperture by closing the diaphragm cuts too much laser energy for the 
harmonic generation (Fig. 2.22e,f). The harmonic photons/pulse is not increased by this way, 
which is limited by the maximum useful laser power. Another solution (not tested here due to 
limited beam time) is to use longer focal length lens have a larger focal spot, thus the laser 
intensity in the generating medium could possibly remain at a correct level when we increase 
the laser energy. Therefore, we can get a bigger interaction volume with sufficient laser 
intensity to generate as more harmonic photons as possible.  

The laser beam filtered by the modal filtering can increase the harmonic conversion efficiency, 
and also improve the spatial profile of the harmonic beam in far field. Note that the elliptical 
shape of the harmonic beam presented in Fig. 2.22 is probably due to the aberrations of the 
toroidal mirror or the grating. Indeed, a circular beam is detected by the CCD camera in the 
diffractive imaging configuration.  

In the second step, spectrum studies and optimization of HHG with Neon are accomplished. 
The goal was to generate efficient harmonics around 20 nm to be applied for an application in 
single-shot imaging of cobalt magnetic nanodomains (Chapter IV). The HHG optimization 
procedure in Neon is similar to that in Argon. As a result, the harmonic photon number 
generated in neon is increased by a factor ~ 4 when using the modal filtering. Fig. 2.23 
presents an example of the 37th harmonic generated in Neon with (a) and without (b) the 
modal filtering. With a beam aperture = 24 mm and a laser energy = 21.5 mJ, 2.9×
10!photons/pulse are measured by the CCD camera with the modal filtering, instead of 
0.8×10!photons/pulse without modal filtering and with a laser energy of 33.5 mJ. This time, 
the harmonic flux (×4) and the HHG efficiency (×6) are both increased. This is related to the 
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fact that the laser intensity saturation in Neon (8.7×10!"W/cm2) is much higher than in 
Argon. In general, the harmonic photon number generated in Neon is about one magnitude 
order less than in Argon. However we are interested in very high orders, not reached in argon 
with our laser, such as the 37th harmonic (57.4 eV) close to the M-edge of Cobalt (60 eV) 
(Chapter IV, section IV.2). The spectrum studies of the HHG in Neon are related to this 
application. The results are presented in Chapter IV.     

 

Fig. 2.22. Spatial profiles of the 25th harmonic generated in Argon detected by the CCD 
camera located in far field, with and without the modal filtering. Generation without (from a 
to d) and with (from e to m) the modal filtering for following parameters: lens’s focus 
position is at 2 cm behind the gas cell output, gas pressure = 14 mbar and gas cell length = 8 
cm. All the measurements are in single-shot regime with a window size of 10.8 x 10.8 mm2. 
The increased gas pressure (compared to 8 mbar before) is due to the laser ablation of the cell 
input hole that gas tends to leak more. However the pressure inside the cell remains constant.  

 

Fig. 2.23. 37th harmonic generated in Neon without (a) and with (b) the modal filtering in 
such conditions: lens’s focus position is at 2 cm behind the gas cell output, gas pressure = 48 
mbar and gas cell length = 7 cm. The measurements are in single-shot within a window of 
3.37 x 3.37 mm2 detected by the CCD camera in the far field.   
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II.4d	
  Modal	
  Filtering:	
  Conclusion	
  	
  	
  
 

The modal filtering is a successful laser beam optimization system by filtering the laser 
modes with a high coupling efficiency. The filtered laser beam is quasi-mono-mode of EH11, 
close to Gaussian beam, and is diffraction-limited before and after the pulse compression 
stage. Meanwhile, the pulse duration after compression remains comparative with non-filtered 
case. In the point of view of HHG, the modal filtering increases the harmonic conversion 
efficiency by a factor of 2.5 in Argon and 6 in Neon. The harmonic flux is increased by a 
factor of 4 in Neon. However, it can be further improved in Argon but we had to cut off a 
large amount of laser energy to have a good spatial profile. To increase the harmonic flux in 
Argon with a proper spatial profile, we should change our experiment setup, for example, 
using a longer focal length lens (>5.65 m) to avoid too high laser intensity in the generating 
medium. 

Another advantage of such device is the stability of the laser beam position on the focusing 
lens and inside the generating medium, which is important for a good alignment between the 
laser beam and the gas cell, and thus a stable HHG during a full day. The harmonic beam 
detected by the CCD camera is more stable in its spatial profile, intensity and position on the 
camera from shot to shot, compared to the case without modal filtering. We have observed a 
slow movement of the beam position in vertical direction after the output of the fiber, which 
is correlated to the working period of the air conditioner in the laser room. This slow 
movement is then corrected by a servomotor mounted on one plane mirror in the beam path 
before injection into the fiber. To have a full vision of the modal filtering system and its 
influence on the HHG, a campaign of wave front measurements in XUV and in IR will take 
place in the near future, along with further studies on the temporal properties of the filtered 
laser beam.  

	
  

II.5	
  Conclusion	
  
 

In this chapter, the High flux harmonic beamline is presented with three main parts, the 
historical development, the optimization with XUV wave front sensor and the modal filtering 
device. The actual setup of the harmonic beamline for coherent imaging applications is 
presented in Fig. 2.24. The hollow-core fiber is installed between the amplification stage and 
the compression stage. The filtered beam is then focused into the gas cell by a lens of 5.65 m 
focal length. The harmonic beam is separated from the IR beam by an IR-antireflective mirror 
and an aluminum filter. A multilayer parabola selects one harmonic order and focuses it onto 
the sample located at the focus of the parabola. The CCD camera detects the diffraction 
pattern of the sample in far field. Note that, we have optimized the harmonic transmission of 
the beamline by using a high-tech aluminum filter (purchased from LUXEL Corp.) of 60% 
transmission for concerned wavelength in our case, compared to previous Al filter of 10% 
transmission (used in Ref. 11).  
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Fig. 2.24. Up-to-date setup of the High flux harmonic beamline for coherent imaging 
applications.  

 

The High flux harmonic beamline is easy to switch to the spectrum configuration for other 
studies than coherent imaging. In both case, a µJ harmonic source (about 1011 photons per 
shot for 25th harmonic, λ = 32 nm) is generated at the output of the gas cell, with a wave front 
RMS of λ/9 before parabola and λ/6 after focusing, which is two times the diffraction-limited 
(λ/14). The combination of the intense harmonic flux and the good wave front quality promise 
high-quality diffraction pattern for coherent imaging. The campaign of harmonic wave front 
measurements result in an optimized HHG and a standardization of the beamline’s daily 
operation conditions. Different generating parameters have been studied in this campaign. 
The finely adjusted parabola offers a focal spot size with a better quality and with a size well 
adapted to our imaging samples. The Young’s double slits study has demonstrated a high 
coherent harmonic beam (fringe visibility more than 0.8 at the focus) and concludes that the 
harmonic flux, the wave front quality and the beam coherence can be optimized at the same 
generating condition. The modal filtering device provides a quasi-mono-mode laser beam for 
HHG and leads to improvement of the harmonic conversion efficiency. Even though we are 
actually not able to focus all the laser energy into Argon to generate much more harmonic 
photons than before, some feasible modifications on the beamline (space needed) can 
potentially resolve the problem. Nevertheless, the harmonic flux in Neon is increased 6 times 
with the modal filtering. In both gases, the spatial profile of the harmonic beam in far field 
and the beam stability from shot to shot are better with the modal filtering. Fig. 2.25 is a 
typical spectrum of the HHG in Argon on the High flux harmonic beamline. The measured 
spectral width of the 25th harmonic (full width at half maximum) is 0.65 nm that the temporal 
coherence (Δλ/λ) is 0.02.    
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Fig. 2.25. The spectrum of the harmonics generated in Argon. 

 

The harmonic beam used for coherent imaging in the Chapter III is summarized below: 

Wavelength 32 nm 
Pulse energy at the focus of the parabola 5×10! photons/pulse, ~ 3 nJ/pulse 
Pulse duration 20 fs 
Repetition rate 20 Hz 
Intensity of the focal spot (5 µm 
diameter) 

~ 1012 W/cm2 

Spatial coherence > 0.8 
Temporal coherence  0.02 

Table 2.2. Summery of the harmonic beam’s properties 

 

This ultrafast and brilliant harmonic source promises high-resolution reconstructions of 
coherent imaging with a femtosecond time scale. The imaging experiments will be presented 
in the following chapter.  

Even though our harmonic beam is 3 to 4 magnitude orders less than the beam delivered by 
the FEL facilities (for example, FLASH at Hamburg and LCLS at Stanford). Our beamline 
facilitates the experimental working conditions, with a relative easy control of the harmonic 
beam. The inexpensive cost and compact dimension of such beamline promises wider 
implementation in the world, thus much more beam time for various applications. Dynamic 
studies can be realized by a simple installation of a pump-probe setup. 
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Paper	
  I	
  
 

This paper consists of three parts: the optimization with the wave front sensor, the coherence 
influence on CDI reconstructions and the demonstration of 78 nm spatial resolution in single-
shot regime (20 fs pulse duration). The optimization and the coherence measurements are 
developed above. The coherence influence on CDI and the experimental results will be 
developed in Chapter 3. 

 

Accepted in Optics Express in October 2012.  
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Abstract: We present single shot nanoscale imaging using a table-top 

femtosecond soft X-ray laser harmonic source at a wavelength of 32 nm. 

We show that the phase retrieval process in coherent diffractive imaging 

critically depends on beam quality. Coherence and image fidelity are 

measured from single-shot coherent diffraction patterns of isolated nano-

patterned slits. Impact of flux, wave front and coherence of the soft X-ray 

beam on the phase retrieval process and the image quality are discussed. 

After beam improvements, a final image reconstruction is presented with a 

spatial resolution of 78 nm (half period) in a single 20 fs laser harmonic 

shot. 
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1. Introduction 

In many scientific areas, imaging with a high spatial and temporal resolution provides 

meaningful ways to study and understand physical, chemical or biological processes. Recent 

advances have been made in combining nanometric resolution to ultrafast time scales. Among 

the advanced imaging techniques, Coherent X-ray Diffractive Imaging (CDI) is a powerful 

tool to investigate single particle with potentially atomic resolution in a femtosecond time 

scale [1,2]. 

CDI uses computation algorithms to reconstruct the object image from its far-field 

diffraction pattern recorded by an X-ray detector. However detectors are only sensitive to field 

intensities, so CDI uses iterative methods based on oversampling [3]. This “lens-less” 

technique is aberration-free so that the theoretical spatial resolution is only limited by the 

radiation wavelength. In the case of a coherent plane wave illumination, the actual resolution 

is determined by the maximum scattering angle of the diffraction pattern recorded by the 



detector. The first demonstration by Miao and coworkers [4] has been followed by many 

convincing experiments using either X-ray synchrotron radiation or femtosecond free electron 

laser (FEL) [5-9]. Thanks to an almost full spatial coherence, high photon flux and ultra-short 

pulse duration, XFELs have been foreseen as of high potential to resolve down to atomic scale 

processes occurring on femtosecond time scale [5,7,10]. Laboratory-scale laser driven 

coherent X-ray sources such as high harmonic generation (HHG) provide now another 

alternative for ultrafast CDI at nanometer resolutions [11-14]. 

However in CDI the reconstructed image quality and resolution are limited by the signal to 

noise ratio (SNR) of the diffraction pattern [15,16] and the beam properties (in particular 

wave front and coherence) [17-20]. The phase retrieval in the CDI algorithm is an iterative 

process seeded with a random initial phase. In the present work the convergence is driven by 

standard constraints: the measured diffraction and a real “support”, usually built from the 

Fourier transform of the measurement (i.e. the autocorrelation of the object) [3]. Although 

those two constraints can be refined, using for instance known properties of the sample, the 

SNR of the diffraction pattern is always a critical factor for the reconstruction algorithm. 

However, a high SNR (high flux) cannot always provide high quality diffraction patterns. 

Since the phase information is encoded in the diffraction pattern by interference from different 

parts of the object, the beam coherence and the wave front quality are the other key factors to 

have high quality diffraction patterns. These issues impose constraints on beamline quality, 

preparation and data collection either on third generation synchrotrons, XFELs or HHG 

beamlines. 

In this letter, we show how the improvement of the beam transport and quality improves 

the CDI image reconstruction of a nano-scale sample. These studies have been conducted in 

single shot using an optimized HHG source with a high photon flux and controlling the beam 

wave front and spatial coherence. In addition, accurate focusing of the soft X-rays onto the 

sample also impacts on the reconstruction quality. 

 

2. Wave front optimization 

The experiments were performed using the table-top infrared femtosecond laser LUCA (Laser 

Ultra Court Accordable) at the CEA Saclay research center, France. It delivers up to 50 mJ 

energy pulses at 800 nm with a pulse duration of 50 fs and a repetition rate of 20 Hz. The 

experimental setup is described elsewhere [13]. 

The beamline characterization and optimization has been done using a Hartmann type 

wave front sensor (EUV HASO, Imagine Optics Corp.) [21]. We used the RMS (root mean 

square) wave front error inferred from the measurements to characterize the quality of the X-

ray beam: a lower RMS value indicates a beam close to the diffraction limit (lambda/14 RMS 

according to the Marechal criterion). The wave front sensor accuracy is /50 RMS. The 

Hartmann sensor was used in two steps; firstly on the direct beam without any focusing optics 

(Fig. 1) and then after the focusing optics (Fig. 2). We recorded both intensity and phase of 

the soft X-ray wave front and reconstructed the harmonics beam profile using back-

propagation functions.  

In a first step, a systematic exploration of the influence of several parameters (gas 

pressure, cell length and IR beam aperture) on the beam quality provided a range of 

generation conditions (beam aperture = 20~21 mm, gas pressure = 8~9 mbar and cell 

length = 5~8 cm) leading to a minimum value of the measured RMS, corresponding to the 

best soft X-ray beam profile. A comparison between the optimized and the non-optimized 

source profiles calculated at the exit of the cell is shown in Figure 1a and b. The latter has a 

low spatial quality with a RMS value of 0.79  (=32 nm) calculated with the entire wave 

front and presents strong astigmatism and coma aberrations. At optimized phase matching 

conditions, we obtain the best beam profile with a quasi-circular shape, little astigmatism 

aberration and a RMS of 0.11  ~/9. Moreover, the central intensity of the optimized beam 



profile is twice higher. The diameter of the optimized spot is 0.07 mm (at 1/e
2
) with 90% of 

the energy in the diffraction-limited (DL) portion. Note that the maximum beam flux is 

obtained at the best RMS value, in agreements with previous results [22,23]. 

 

 
 

Fig. 1. (Color online) Experimental setup for the harmonic beam wave front measurement and 

reconstructed intensity profiles of the beam at the source before (a) and after (b) optimization. 
Generation parameters in (a): cell length = 8 cm, gas pressure = 8 mbar, beam 

aperture = 24 mm and laser energy = 15 mJ, in (b), cell length = 8 cm, gas pressure = 8 mbar, 

beam aperture = 21 mm and laser energy = 15 mJ. 

 

In a second step, the wave front sensor was used to align the off axis parabola and to 

optimize the 25
th

 harmonic (=32 nm) focal spot using the optimized harmonic beam (Fig. 2). 

The sensor is set in the far-field after the parabola. The spatial amplitude and phase at focus 

were reconstructed from the measurements. The RMS value criterion is again used to 

accurately align the parabola. The initial focal spot has a size of 7.6 m (diameter at 1/e
2
) with 

50% of the total energy in the DL portion and an RMS value of /3 (Fig. 2a). After 

optimization the beam has a diameter of 5 m (at 1/e
2
) with 88% of the energy in the DL 

portion and RMS ~/6, i.e. twice the diffraction-limit (Fig. 2b). Compared to the 20 m in 

diameter focal spot reported by Ravasio and coworkers [13], the optimized focal spot better 

matches the objects size (3.2 m x 2 m). We consequently increased the total “useful” flux 

interacting with the object by a factor 25. Finally, we placed a diaphragm 10 cm ahead of the 
parabola. It acts like a spatial filter and removes the boundary wave of the soft X-ray beam. 

This leads to a more homogeneous wave front (Fig. 2c). 

 

 
 



Fig. 2. (Color online) Experimental setup for the off-axis parabola alignment and profiles of 

the X-ray focal spot at different stages: (a) Non-optimized X-ray focal spot, presenting strong 

aberrations. (b) Optimized X-ray focal spot without the pupil. (c) X-ray focal spot after a pupil 

of 3.8 mm in diameter (reconstructed from the measured full beam wave front and a simulated 
pupil). 

 

3. Impact of coherence on coherent diffractive imaging 

We now explore how the spatial coherence of the HHG beam affects image reconstruction. In 

CDI, the phase information is encoded in the diffraction pattern through the interference 

modulations between different parts of the object. Therefore, a high coherence is required to 

ensure the convergence of the phase retrieval algorithm. Here, we use a Young’s double slits 

to quantify the beam coherence necessary for the CDI reconstruction. The slits are produced 

using a nanoscale ion beam focused on a 150 nm thick gold coated silicon nitride membrane. 

They are separated by 4 m and are 1.5 m long by 300 nm wide. We then measured the 

evolution of the beam coherence with respect to several HHG parameters (gas pressure, cell 

length and IR beam aperture). As an illustration, we show in Fig. 3a the beam coherence 

evolution as a function of the gas pressure. The beam coherence is presented as the fringe 

visibility (V) of the Young double slits experiment. The total diffracted photon flux is also 

shown normalized to the maximum measured value for a gas pressure of 13 mbar (backing 

pressure). The fringe visibility varies from 0.45 (non optimized HHG) to 0.84 (optimized 

HHG), and evolves together with the number of diffracted photons.  

 

 
 
Fig. 3. (Color online) (a): Black circles: Evolution of the fringe visibility of Young’s double 

slits with the generating gas pressure. Red triangles: Total photon number diffracted by the 

Young’s double slit, normalized to the maximum value. Blue squares: Spatial resolution of the 
reconstruction of the Young’s double slit. All the points are from single shot data.  (b): 

Reconstructed image of the Young’s double slit for gas pressure = 13 mbar and fringe 

visibility = 0.85 and the corresponding Phase Retrieval Transfer Function. The estimated half 
period resolution is equal to 138 nm. The pressure range used here is different from the one in 

Section 2 due to a change of the cell entrance and exit holes. 

 

A phase retrieval algorithm was then applied to reconstruct the double slits for each fringe 

visibility case. We evaluated the spatial resolution of the reconstructed image using the Phase 

Retrieval Transfer Function (PRTF) criterion as shown in Fig 3b (the double slits image 

reconstruction is also shown). All the results are compiled in Fig. 3a. The best reconstruction 

resolution (138 nm) is achieved for the best fringe visibility (V=0.85) (see PRTF in Fig. 3b), 

while lower fringe visibilities (0.67 and 0.6) lead to resolutions of respectively 173 nm and 

296 nm. Note that we have not been able to observe convergence for fringe visibilities equal 

to or below 0.5. If we now compare the reconstruction at fringe visibilities of 0.85 and 0.67, 

we see that the resolution drops quickly with the coherence even though the photon flux 

remains comparable. The limiting factors for the reconstruction capacity at a given degree of 

spatial coherence are the photon flux and the wave front quality: while for a gas pressure 



equals to 12 mbar and 14 mbar, the fringe visibilities are very close (0.67 and 0.6 

respectively), the obtained spatial resolutions differ by a factor of almost two. We conclude 

that the three-coupled factors (flux, wave front and spatial coherence) have a strong impact on 

the phase retrieval image reconstruction process but they can be optimized simultaneously. 

Note that our experimental observations on the impact of the spatial coherence in CDI confirm 

a previous work based on simulation with partially coherent beams [18]. 

Combining all these improvements, we used the soft X-ray harmonic at 32 nm to image a 

nanometric test sample similar to the one described in ref. [13]. The patterned object “” is 3.2 

m high and 2 m wide with sub-100 nm details (see Fig. 4). The object placed at the focal 

plan of the parabola diffracts the X-ray light collected by a back-illuminated CCD camera 

located 19 mm behind the sample. A single-shot diffraction pattern is shown in Fig. 4a. The 

number of photons diffracted by the sample and detected by the CCD is about ~ 2x10
7
. The 

high contrast in the diffraction pattern indicates a high coherence length. 

By applying an iterative algorithm to the diffraction pattern, we calculated the average 

from 30 best different reconstructions to get the final reconstruction of the object. Each one 

was calculated using the relaxed averaged alternating reflectors (RAAR) algorithm [24] with 

3000 iterations with a starting beta value of 0.9 reduced to 0.6 after 2000 iterations. The initial 

support of the object was determined using the SHRINKWRAP algorithm combined with the 

hybrid input-output (HIO) algorithm. It was updated every 20 iterations using a threshold 

update corresponding to 10% of the maximum pixel intensity [25]. The reconstructed object is 

shown in Fig. 4b. The image quality is good with all the edges of the object clearly 

reconstructed, including small details. We note in the reconstruction image that the upper part 

of lambda is more intense than the bottom part. This is due to the slight misalignment of the 

X-ray beam with respect to the object (the X-rays are focused on the upper part of the 

sample). 

 

 

Fig. 4. (Color online) Single-shot coherent soft X-ray diffraction pattern and the reconstructed 

image. (a) Measured diffracted intensity from the sample (log scale), obtained in single-shot 

(20 fs exposure time). (b) Reconstructed object amplitude with a 56 nm pixel size. On the 
upper left corner is the SEM image of the sample. (c) PRTF of the image reconstructed with a 

half-period resolution of 78 nm, given at 1/e. 

 

The signal far from the center of the pattern corresponds to higher momentum transfer and 

determines the maximum resolution of the reconstructed image, estimated here to 56 nm 

(corresponding to a spatial frequency of 8.88 m
-1

). The effective image resolution is however 

lower than this value depending on how the phase retrieval process can be affected (as 

mentioned in the discussion above). Applying the PRTF criterion leads to a resolution of 

78 nm (see Fig. 4c). Compared to the 119 nm resolution reported in [13], we have largely 

improved the resolution down to 2.5 , bringing it closer to the theoretical resolution. The 

resolution here is still limited by the SNR and the coherence. The blur on the two main 

diffraction directions of the diffraction pattern indicates that the illumination is not fully 

coherent. In the high spatial frequency region (far from the pattern center), the signal drops 



quickly. As discussed above this limits the final resolution of the reconstructed images. 

However some methods have been proposed to improve the reconstruction for a partially 

coherent source, such as using a “Multi-modal propagation” algorithm [19]. 

 

4. Conclusion 

In summary, we have presented the improvement of a soft X-ray laser harmonic beamline and 

how the beam properties can affect the image reconstruction process in coherent diffractive 

imaging. Control over the high harmonic generation source parameters and the focusing of the 

beam has been achieved. A wave front error of /9 has been obtained corresponding to 1.5 

times the diffraction limit according to the Marechal criterion. A regular focal spot of 5 m is 

also obtained using control given by a wave front sensor feedback. We have then investigated 

how CDI phase retrieval convergence depends on the spatial coherence of the HHG source. 

We demonstrated that a substantial degree of coherence is required to ensure an image 

reconstruction. No image has been obtained for a fringe visibility equal to or lower than 0.5. 

Finally, with the highest flux, highest coherence and the best focal spot we have reconstructed 

a nanoscale object with a spatial resolution of 78 nm in a single 20 fs duration shot. These 

results confirm the high potential of the table-top soft X-ray laser harmonic source for 

dynamic studies at a femtosecond temporal scale with a sub-80 nm spatial resolution. Indeed, 

high control of all HHG parameters and pump-probe operation of our table-top source offer a 

good alternative to FEL source for ultrafast imaging of nanoscale objects. 
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This paper presents the modal filtering device from the conception to the characterization. 
Theoretical and experimental studies are discussed. Detailed illustrations of the laser beam in 
different stages of the beamline show the evolution of the filtered beam. Various 
measurements in spatial and temporal domains give us the characterization of the modal 
filtering performance. It is concluded by a short example of the HHG improvement using the 
device.  

 

Submitted. 

  



	
   74	
  

  



Spatial quality improvement of Ti:Sa laser beam by Modal Filtering

B. Mahieua,b,c, D. Gauthiera, M. Perdrixa, X. Gea, F. Lepetita, F. Wanga, W. Boutua, B. Carréa, T. Augustea, O.
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Abstract

The study and characterizations of a setup aimed at spatial quality improvement of an amplified Ti:Sa laser beam are

presented. The technique used, called modal filtering, consists in the selection of the EH11 mode, close to the TEM00

one, by propagating the beam over a short distance in a hollow-core fiber. The output beam exhibits a stable and nearly

gaussian transverse intensity profile and its wavefront is significantly flattened, while the temporal distribution is not

affected. High-order Harmonic Generation in gas, a highly nonlinear process, which is phase matching dependent,

was used to test the effect of the filter and showed a clear improvement of the generation. Overall, the qualities

demonstrated by the beam make the modal filtering technique of prime interest for many other experiments.

Introduction

Laser beams from amplified Ti:Sa chains, commonly used for the production of high peak power femtosecond

pulses, often suffer from bad spatial quality. Aberrations resulting from anisotropic thermal dissipation in the am-

plification media [1], self-phase modulation during propagation of such intense pulses in the air or in materials [2],

intracavity beam distortions [3] and imperfections in optical components involve a deterioration of both wavefront

and transverse intensity profile. Hence the laser beam cannot be considered as a TEM00 mode, the fundamental mode

of a laser cavity [4]. A common technique to recover a good spatial quality is to focus the laser through a pinhole.

The lens used to focus the beam does a Fourier transform of the field in the plane of the pinhole where there is a one

to one mapping between transverse position and spatial frequencies. This allows filtering of high spatial frequencies

[5]. However the beam keeps its low spatial frequencies distortions and a significant amount of energy may be lost.

Moreover, unless specific conic pinhole is used [6], any misalignment of the laser beam can permanently damage

the pinhole. Other or complementary techniques include the use of a saturable absorber [7] or a deformable mirror

[8] and diffraction from Bragg gratings [9]. Moreover, active filtering can be achieved through nonlinear processes

like second harmonic generation via nonlinear crystal [10] or plasma mirror [11] and cross-polarized wave generation

(XPW) [12].

A scheme based on the theory of propagation of an electromagnetic wave in a cylindrical dielectric waveguide is

considered here. In the field of ultrafast lasers, it has been initiated by the post compression technique used to generate

sub-10fs laser pulses, where a mJ-level femtosecond laser beam propagates over a short distance in a capillary filled

with gas [13]. When propagating into the capillary, the electromagnetic field of the laser beam is decomposed on

the modes specific to this waveguide. Choosing appropriate parameters, the beam couples preferentially into the

EH11 mode, very similar to the TEM00 one, and other guided modes suffer from higher attenuation. Therefore, if

the capillary is sufficiently long, a modal filtering is made on the laser beam. The latter keeps the Gaussian shape

of EH11 during subsequent free propagation. Thus a setup aimed at spatial quality improvement of a laser beam can
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be conceived by propagation in a carefully chosen waveguide. Modal filtering techniques have already been used in

other frames than ultrafast lasers, for instance stellar interferometry [14].

A modal filtering setup has been built on the LUCA facility of CEA Saclay (France), a Ti:Sa chirped pulse am-

plified [15] laser source. The chosen cylindrical waveguide has been a straight, 30cm-long hollow-core fiber in silica

with a core radius a = 125µm. The purpose of the article is to provide a comprehensive characterization of this modal

filtering setup and the demonstration of its practical prominence for numerous applications. The initial motivation of

present work was the general optimization of the generation of high-order harmonics (HHG [16]) in loose-focusing

geometry [17] on the beamline dedicated to experiments of coherent diffraction imaging [18, 19]. Thereby, after

a presentation of the theoretical background, a description of the setup and the analysis of the measurements, first

successful results of HHG optimization are also discussed at the end of this article.

1. Propagation and mode-matching in a hollow-core fiber

The equation (in cylindrical coordinates) of propagation of electromagnetic waves in cylindrical structures, such

as the used fiber, has been expressed in [20]. The functions (electric and magnetic field components over each

coordinate) that are solutions of this equation correspond to the modes of propagation into this waveguide. Doing

some approximations, simple analytical solutions are found [21, 22]. These solutions can be divided in three families:

transverse electric TE0m, transverse magnetic TM0m and hybrid EHnm modes. Hybrid modes can also be considered

as transverse, since the longitudinal component of their electric field is negligible. Thus, in the frame of this study,

each mode can be reduced to three main characteristics: a radial and azimuthal equation for the transverse electric

field (depending mainly on Bessel functions), an attenuation coefficient α and a phase constant β. The less attenuated

mode (lowest α) is called the fundamental one. This mode will be the one “selected” by the modal filtering, due to

higher attenuation of other modes. Modes having the same β are degenerate and their linear combinations form other

possible modes, called composite modes, such as EH2m + TM0m or EH2m + TE0m.

The vertical polarization of the laser beam matches vertically polarized waveguide modes, which can be denomi-

nated as follows:

• for n=1: EH1m

• for n=2: EH2m + TM0m and EH2m - TE0m

• for n ≥ 3: EHnm + EH(2−n)m and EHnm - EH(2−n)m

Every linearly polarized electromagnetic wave inside the fiber propagates as a linear combination of these modes [25].

The symmetry of the electric field of composite modes with respect to the transverse vertical axis arises two families:

symmetric (convention of a ”+” sign within the composition) and antisymmetric (”-” sign) modes. Intensity patterns

of some of these modes are plotted in Fig.1. One has to note that, since degenerate modes EH2m, TM0m and TE0m

have different attenuations, the polarization of their composite modes does not remain identical along the waveguide.

In our case, this effect can be neglected.

If the refraction index of the cladding is smaller than 2, EH11 is the fundamental mode. It is around 1.5 for silica,

making EH11 the fundamental mode of the used fiber. This choice is not innocent: the shape of EH11 is similar to a

Gaussian mode both in near and far field (Fig.2). The transverse amplitude of its electric field inside the core of the

fiber is given by the radial-dependent function E(r) = J0(2.405r/a) where J0 is the Bessel function of zeroth order,

a is the radius of the fiber core and r the radial coordinate. For r > a, as for other guided modes, the amplitude is

assumed to be zero, due to the absorption in the silica. Hence the electric field is truncated in r = a, which is also the

first zero of J0. It gives rise, according to the diffraction theory within the paraxial approximation, to a ring in the far

field amplitude profile. The central lobe of the far field profile contains 99.2% of the total energy of the beam.

To favor as much as possible EH11, one also have to optimize the coupling conditions. Indeed, when the laser

beam is injected into the fiber, its energy is distributed between the different modes. The proportion of energy coupled

into a mode depends on the mode-matching at the entrance of the fiber between the injected laser beam and this mode.

For every mode, the quality of this mode-matching can be quantified by the following overlap function [23]:

η =
(
∫∫

E∗
in j

EmodedS )2

∫∫
|Ein j|

2dS ·
∫∫

|Emode|
2dS

(1)

2



Figure 1: Intensity patterns and denomination of linearly polarized modes for n=1,2,3 (respectively first, second and third line) and m=1,2,3. For

n=1, modes are centrosymmetric EH1m. For n>1, two families can be distinguished: modes having their electric field symmetric (left part) or

antisymmetric (right part) with respect to the transverse vertical axis.
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Figure 2: Left side: comparison of radial electric field amplitudes of EH11 (full line) and Gaussian (dotted line) modes inside the fiber for

w0 = 0.65a. Right side: after one meter of propagation in free space.
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η is called the coupling efficiency. The integrals are taken over the whole transverse plane of the fiber entrance,

i.e. where the injected laser beam couples into the fiber modes. Ein j and Emode are the complex electric fields of

respectively the injected laser beam and the considered fiber mode, e.g. EH11. Technically, the shape of the electric

field of the injected laser beam will have to match as much as possible the shape of the mode to couple.

For a Gaussian beam, i.e. Ein j(r) = e
−r2

w2
0 , one can calculate using Eq. 1 the optimal value of the waist size w0 in

order to maximize the coupling efficiency in EH11 (Fig.3). The optimal condition appears to be around w0 = 0.65a,
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Figure 3: Coupling efficiency of a Gaussian beam of radius w0 in the EH11 mode of a fiber of radius a. The maximum is found for w0 = 0.65a.

where the coupling efficiency is close to 98.5%. Moreover, it remains above 80% for w0 > 0.43a. Of course, this

condition is valid only for a perfect Gaussian transverse intensity distribution with a flat phase. Nevertheless it gives

a first insight of the optimum beam size at the entrance of the fiber.

2. Layout of the experiment

In order to reduce nonlinear effects due to the propagation of an intense laser beam in the air, the fiber has been put

under vacuum (∼10−3mbar). For the same reason, the whole modal filtering setup has been placed before the pulse

compression stage of the chirped-pulse amplified Ti:Sa chain, i.e., where the pulse has been stretched to a duration

of about 200 ps. The latter choice is also motivated by the larger incovenience of the femtosecond regime for optical

elements, where higher peak power facilitates their degradation. In the picosecond regime, most troubles are linked

to thermal effects, which can easily be handle experimentally. The central wavelength of the LUCA source is 795 nm,

the repetition rate is 20 Hz and the pulses have a maximum energy of 180 mJ before pulse compression. Such a

high energy per pulse justifies the choice of a hollow-core waveguide, allowing to overcome thermal, dispersion and

nonlinear effects into the core.

Figure 4: Beamline layout with modal filtering setup and three main positions of measurements. The picosecond laser beam, of radius 3.5 mm, is

focused into the fiber with a 750 mm focal-length lens. In order to adjust the coupling conditions, the fiber is mounted on x-y translation stages

and the lens on a z translation stage. A control loop has been implemented for correcting the beam pointing at the fiber entrance. By means of a set

of two lenses, the output beam is collimated to a radius of 16 mm and sent to the compression stage. It is then used for a HHG experiment, being

loosely focused into a gas cell filled with argon.
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Figure 5: Intensity patterns and profiles before (a) and after (b) modal filtering (r≈100 µm).

A maximum fiber transmission of 78% has been measured. Since the transmission of the compression stage is

around 40%, the total energy available for the HHG experiment is of the order of 50mJ, which is enough to generate

a µJ extreme-ultraviolet beam [24].

The characterizations have been performed mainly for 3 different positions: before the modal filtering system

(position 1 Fig.4), after the fiber (position 2), and on the HHG-path, 4 meters downstream the lens of focal 5500 mm

(position 3). Initially, using a beam profiler, intensity patterns have been measured at the focus of a lens of focal

500 mm placed in position 1, and similar measurements have been done after a 4f-system placed in position 2, imaging

the output of the fiber. The purpose of this first set of measurements was to characterize the typical transverse intensity

pattern of the beam at the focus of a short-focal lens and to compare the divergence of the filtered/unfiltered beam.

In a second step, in positions 1, 2 and 3, a Shack-Hartmann sensor has been used to retrieve both the wavefront and

the transverse intensity of the beam, leading to the knowledge on the spatial phase and the amplitude of the transverse

electric field. In position 2, a lens of focal 1000 mm was placed in order to collimate the beam to a diameter smaller

than 1.5cm, which is the size of the entrance pupil of the sensor. The complete information on the transverse electric

field provided by the Shack-Hartmann measurements enables to simulate its propagation for retrieving its properties

in any position along the propagation axis. Especially, it has been done at the input of the fiber, the output of the fiber

and the focal spot in the HHG gas cell.

In addition to these spatial characterizations, SPIDER measurements [26] have also been performed after the

stage of pulse compression, providing a comprehensive information on the spectral and temporal characteristics of the

femtosecond pulses. All these characterizations are described within the two next sections.

3. Modal filtering characterization

3.1. Beam profiler measurements

Before the fiber (Fig.5a), the beam is elliptic, and moreover “twisted” along the longitudinal axis (general astig-

matic beam). After the fiber (Fig.5b), astigmatism and high spatial frequencies are mainly suppressed, so that the

transverse beam profile can be assimilated to a Gaussian one. These first characterizations already show an improve-

ment of the spatial quality of the beam in near-field. Since on Fig.5a (i.e. at the focus of a lens of focal 500 mm) the

mean radius of the beam is measured to be 95 µm, it is estimated to be 1.5 times larger at the entrance of the fiber (i.e.

at the focus of a lens of focal 750 mm), hence 142.5 µm.

Furthermore, such characterizations enable to calculate the M2 factor of the beam [27]. It has been done with

the standard technique which considers the measurements of the second moment widths of the beam [28, 29]. The

second moment width corresponds to 4 times the standard deviation σ of the transverse intensity distribution at a

given position z along the propagation axis. This is the beam diameter definition used in this paper. For a Gaussian

beam, it matches the parameter w (2w = 4σ, including 95% of the beam energy). Fig.6 shows the evolution of the

mean diameter of the beam around the waist and the one of a Gaussian beam with same width at focus. The ratio of

their divergences gives the M2 of the beam: it is equal to 2.1 before the fiber (Fig.6a) and 1.4 after the fiber (Fig.6b).
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Figure 6: Evolution of the beam mean diameter along the propagation axis before (a) and after (b) the fiber. Crosses are experimental values and

full-line curves their interpolations. The dashed curve represents the diameters of a Gaussian beam of same size at focus.

Table 1: Measurements of the wavefront amplitude of the laser beam before and after modal filtering. Peak-to-valley and RMS mean amplitudes

of the wavefront are indicated with the standard deviation of the series of measurements. The central wavelength of the laser beam from the LUCA

source is 795nm.

Wavefront amplitude Before modal filtering After modal filtering

Peak-to-valley (nm) 414.75 ± 17.94 82.84 ± 13.33

RMS (nm) 66.13 ± 2.30 13.80 ± 1.87

This diminution of M2 after the propagation in the fiber is a second clear indication of the enhanced spatial quality of

the laser beam. Using M2 as a correction factor of propagation laws for Gaussian beams, the laser beam radius at the

output of the fiber is found to be 105µm.

3.2. Shack-Hartmann measurements

The Shack-Hartmann wavefront sensor displays a phase map calculated by integration of the local wavefront

tilt. The knowledge of the wavefront gives access to the quantitative phase distortions of the beam in comparison to

the ideal plane wave. This section focuses only on the measurements performed on the collimated beam before the

injection and after the exit of the fiber. At these positions, and thanks to the wavefront knowledge, the efficiency of the

modal filtering setup is clearer. Before the fiber (Fig.7a), the beam is non-circular and the wavefront highly distorted,

whereas a non-aberratic beam should have a flat wavefront when collimated. The transverse intensity is roughly top-

hat with three hot points forming a triangle, corresponding to peaks in the wavefront profile. After filtering (Fig.7b),

the wavefront exhibits no huge aberration any more, and the transverse intensity is closer to that of a Gaussian beam.

The beam is rather circular, only a weak ellipticity is observed making the beam longer in the vertical direction.

Besides, experimentally one can see a ring surrounding the main lobe of the pattern, which is in agreement with the

theory of far-field propagation of EH11 evoked in previous section. Only a small part of the energy is included in

this ring, too small for the sensitivities of both beam profiler and Shack-Hartmann sensor. During the subsequent

propagation, this ring is cut by the mounts of the optics.

The measurements are summarized in Table 1. The amplitude of the wavefront is about 5 times smaller after the

propagation in the fiber. Indeed, considering peak-to-valley values, the amplitude is decreased from more than λ/2 to

λ/8. In addition, the RMS amplitude of the filtered beam is more than 4 times smaller than λ/14, which according

to the Maréchal’s criterion is the value qualifying a diffraction limited beam [30]. Thereby, thanks to the benefit of

modal filtering, the laser beam can be considered as free of aberration.

3.3. Simulation of beam propagation

The back-propagation of the transverse electric field at the focal plane is performed in the paraxial approximation

with diffraction formalism. Data filtering is made to prevent artefact from noise and the 1/e2 intensity cut off of

the wavefront sensor measurements. The simulated intensity patterns and wavefront are presented in Fig.8, at the

entrance of the fiber (a) and at its output (b). The simulated intensity patterns are similar to typical measured ones

(Fig.5). Moreover, as in previous measurements on the collimated beam, the peak-to-valley amplitude of the wavefront

becomes 5 times smaller after the fiber (from 169 nm≈ λ/5 to 34 nm≈ λ/25). It has been measured on the central part
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Figure 7: Reconstructions of the transverse intensity and the wavefront from the measurements performed by the Shack-Hartmann sensor before

(a) and after (b) the fiber on the collimated beam (r ≈ 5mm).

Figure 8: Retrieved transverse intensity and wavefronts at the entrance (a) and at the output (b) of the fiber. The wavefront is displayed only on a

diameter of 190µm.
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Table 2: Mode matching at the fiber input and fiber output. First column: modes of interest; second column: coupling efficiency calculated from

the simulated electric field of the beam at the fiber entrance; third column: output proportion of each mode according to their coupling efficiencies

and attenuation in the fiber; fourth column: output proportion of each mode directly calculated with the electric field at the fiber output simulated

from the wavefronts measurements.

Mode Coupling efficiency (%) Output rate 1 (%) Output rate 2 (%)

EH11 88.64 91.40 95.01

EH12 3.96 3.72 3.15

EH21 + T M01 0.97 0.95 0.45

EH31 + EH−11 1.46 1.39 0.96

EH41 + EH−21 2.03 1.83 0.03

EH21 − T E01 0.24 0.24 0.03

EH31 − EH−11 0.48 0.46 0.01

EH41 − EH−21 0.03 0.03 0.02

of the beam, where the amount of energy is meaningful. From these simulations, one finds that the mean radius of the

beam at the entrance of the fiber is 160 µm. Similarly, at the output of the fiber, the radius is 89 µm. These values are

close to previous estimations (142.5 µm at the fiber entrance and 105 µm at its output).

With the overlap integral defined in Section 1, the full knowledge of the transverse electric field brought by these

simulations enables the calculation of the mode-matching at the entrance and the output of the fiber. The results are

summarized in Table 2. The good coupling proportion into EH11 and its low attenuation (∼2%) regarding higher-order

modes result in an output beam mostly composed of EH11 (>90%). From these results, the theoretical transmission

through the fiber is ∼83%, while a maximum of 78% is found experimentally. The slight difference stems probably

from the uncertainty on the transverse beam position, losses during beam propagation and thermal effects at the

edges of the core of the fiber. Indeed, as stated before, the injected beam is larger than the core of the fiber: relying

on previous simulations, 11.5% of the laser energy is outside the fiber-core radius, which leads to an observable

deterioration of the fiber entrance. Increasing the input power emphasizes these thermal effects and the transverse

beam instability, resulting in a decrease of the energy transmission in the fiber.

Due to the vertical symmetry of the initial beam in the transverse plane, modes having such symmetry are favoured.

Antisymmetric modes could thus be neglected within the decomposition of modes in the fiber. It is worth noting that

high-order modes may be under-valuated, since the Shack-Hartmann measurements do a sharp filtering of the beam

in 1/e2, thus cancelling some high spatial frequencies.

4. Characteristics after pulse compression

4.1. SPIDER characterization

The pulses compressed down to the femtosecond level to reach final beam characteristics have been spectrally

characterized by a SPIDER apparatus. The results are summarized in Table 3. Three measurements have been done,

with respectively 4, 18 and 42 mJ of IR energy after the pulse compression stage. For the two first measurements,

the flatness of the spectral phase leads, in the time domain, to a laser pulse near the Fourier-Transform limit, with

a pulse duration smaller than 50 fs i.e., what was usually reached without modal filtering. In terms of the standard

deviations of the temporal intensity σt and the spectral intensity σω = 2πcσλ/λ
2, this limit is the one of the time-

bandwidth product σtσω which minimizes the pulse duration according to the wideness of the spectrum. This limit

cannot be less than 0.5, accessible to Gaussian intensity shapes. For the spectrum of LUCA laser beam, the limit of

the time-bandwidth product is around 0.6. Increasing the beam energy up to the maximum accessible value results in

a decrease of the spectral beam quality, leading to pulses much farther from the Fourier-transform limit, which is seen

in the last measurement reported in Table 3. This deterioration can be due to a too high fluence on the compression

gratings, inducing self-phase modulation.

4.2. Shack-Hartmann measurements and beam propagation

The wavefront measurements highlight a deterioration of the beam in the compression stage (Fig. 9). Defects in

the gratings induces the presence of a hole in the wavefront of the filtered beam (Fig. 9b). However the non-filtered
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Table 3: Summary of SPIDER measurements. First column: beam energy after pulse compression; second column: full width at half maximum

of the temporal intensity; third column: ratio of the measured time-bandwidth product and its Fourier-transformed limit, calculated with standard

deviations values of the spectral and temporal intensities.

IR energy Pulse duration (FWHM) Ratio vs. Fourier limit

4 mJ 47 fs 1.33

18 mJ 43 fs 1.28

42 mJ 65 fs 2.68

Figure 9: Measured intensity patterns and wavefronts after pulse compression, without (a) and with (b) modal filtering (r≈5 mm). In both cases,

the beam mean intensity is similar (∼15 TW/cm2).

beam remains much more aberrated (Fig. 9a). Obviously, the high laser intensities in these measurements (more than

50 mJ at a femtosecond level in a diameter less than 20 mm) likely instigate spatial distortions.

Hence, the results summarized in Table 4 show that the wavefront amplitude is ∼2.5 times smaller for the filtered

beam after pulse compression, twice less than before pulse compression. Placing an iris on the beam path allows an

improvement of the beam quality by filtering its high spatial frequencies.

For the need of its user’s application, the beam is then focused by a lens of focal f=5500 mm. Relying on the

previous Shack-Hartmann measurements, the beam characteristics have been retrieved at the focal point (Fig. 10).

These simulations show that the modal filtering allows to provide a beam where the astigmatism and the amount

of high spatial frequencies have been strongly reduced, in comparison with the standard setup. This benefit is well

illustrated by the Strehl ratio, which evaluates the beam quality by comparison of the transverse intensity distribution

beside the Airy disk [31]: it is ∼2.5 times better for the benefit of modal filtering (0.83 vs. 0.33). The importance of

this spatial quality improvement for the particular case of our HHG experiment is stressed in the next subsection.

4.3. Application to HHG

On the experimental point of view of HHG, spatial phase is crucial for the macroscopic construction of high-

order harmonics. Moreover, in loose-focusing geometry, the interaction with the gas occurs on a long distance (some

Table 4: Measurements of the wavefront amplitude of the laser beam after the compression stage, with and without modal filtering. Peak-to-valley

and RMS mean amplitudes of the wavefront are indicated with the standard deviation of the series of measurements.

Wavefront amplitude Without filtering With filtering

Peak-to-valley (nm) 681.00 ± 45.19 288.00 ± 49.68

RMS (nm) 146.75 ± 9.71 54.40 ± 11.08
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Figure 10: Retrieved intensity patterns and wavefront at the focus spot of the laser beam in the HHG gas cell, without (a) and with (b) modal

filtering. The wavefront is displayed only on a diameter of 250 µm, on which the peak-to-valley amplitudes are respectively 245 nm and 104 nm.

Figure 11: Spatial profiles of the twenty-fifth harmonic (32 nm) without (a) and with modal filtering (b). In both cases, the iris is closed (respectively

to a diameter of 25 and 19.5 mm) so as to filter the outer part of the beam. Harmonic were generated in a gas cell filled with argon at a backing

pressure of 10 mbars. Patterns are measured on a CCD camera placed at the plane where a 2f-2f system images the XUV beam at the end of the

gas cell. The energy of the drive IR beam is the one after the iris; the number of photons per shot is measured on the CCD.

centimeters) compared to the wavelength of the fundamental beam (795 nm), which makes its spatial quality even

more important. That is why simulations of the transverse electric field at the focal spot in the gas cell, presented

above, are of prime interest. The profile in the case of the unfiltered beam includes a non-negligible amount of high

spatial frequencies (Fig. 10a), which are not engaged in the HHG process and thus represent a waste of IR energy. On

the other hand, the filtered beam is Gaussian-like at its focus (Fig. 10b).

As a consequence, similarly to what was observed by Bandulet et al. [32], the first HHG results show a significant

improvement of the harmonic conversion efficiency (Fig. 11) together with an enhancement of the stability and an

improvement of the spatial quality of the harmonic beam. These advantages make insignificant the drawback of the

loss of ∼30% of IR energy within the modal filtering stage.

Conclusion

We demonstrated, by means of comprehensive characterizations, the significant spatial quality improvement of a

Ti:Sa laser beam using the simple technique of modal filtering. A good agreement has been found between direct

measurements, simulation and theory. The filtered beam can be assimilated to a Gaussian one which, together with its
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stability, makes the setup very attractive for experiments. In particular, using it for driving HHG involves a strong en-

hancement of the process. Further SPIDER measurements on the infrared beam, spatial and spectral characterizations

of high-order harmonics and overall setup improvements will thus be pursued.
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[30] A. Maréchal, Revue d’Optique 26, 257 (1947).

[31] K. Strehl, “Aplanatische und fehlerhafte Abbildung im Fernrohr,” Zeitschrift für Instrumentenkunde 15, 362-370 (1895).

[32] H.-C. Bandulet, D. Comtois, A. D. Shiner, C. Trallero-Herrero, N. Kajumba, T. Ozaki, P. B. Corkum, D. M. Villeneuve, J.-C. Kieffer and F.
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Chapter	
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Coherent	
  Diffractive	
  Imaging	
  and	
  
Holographic	
  imaging	
  
 

III.1	
  Introduction	
  	
  
 

In this chapter, I present the demonstration of different coherent imaging techniques (CDI, 
HERALDO) at our high flux harmonic beamline. The diffraction experiments are 
accomplished after the wave front sensor HHG optimization (Chapter II, section II.3), and 
without the laser modal filter (which was added into the beamline later). CDI and HERALDO 
share the same experimental setup as described in Chapter II (Fig. 2.24 without modal filter). 
Typical image reconstructions in single-shot regime for CDI and HERALDO are respectively 
reported in Paper I and Paper III. The important aspects of coherent imaging, such as the 
beam’s coherence, the signal-to-noise ratio of diffraction patterns, the comparison of different 
extended references in HERALDO, the comparison of CDI and HERALDO are also 
discussed here.   

 

III.2	
  Sample	
  preparation	
  	
  
 

All the test objects presented in this chapter have been fabricated using the focused ion beam 
(FIB) facility at the Centre de Spectromètre Nucléaire et de Spectrométrie de Masse (CSNSM, 
Orsay, France). The silicon nitride membranes are supported by silicon substrate on one side 
(Fig. 3.1), which defines the membranes aperture varying from 150 x 150 µm2 to 500 x 500 
µm2. On such large window, we can fabricate more than 100 objects in one membrane. The 
thickness of the membranes varies from 50 nm to 150 nm to ensure that objects are two 
dimensional for our harmonic beam (Chapter I, section I.2b). Before etching, the membranes 
are covered by a gold layer (around 50 nm thick) whose transmission efficiency is less than 
1.5 x 10-3 (CXRO database) for the 25th harmonic (wavelength of 32 nm). This layer removes 
the direct beam and ensures that we have a pure transmission object for our imaging tests. 
Test objects are designed on 512 x 512 pixels bitmap files, which guide the focused ion beam 
[1] during the drilling process. The object definition is achieved with a precision of about 10 
nm. The fabrication result can then be observed by scanning electron microscope (SEM) 
combined with the FIB (Fig. 3.2). The manipulation of FIB is delicate and one should respect 
strictly the precautions and operation rules. For example, the alignment of the membrane with 
the focal plane of the ion beam and the choice of the parameters to tune the ion beam directly 
influence the fabrication quality.  
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Fig. 3.1. Scheme of test objects fabrication. 

 

 

Fig. 3.2. Example of SEM image of a membrane’s overview after FIB fabrication, with a 
zoon-in on one single object.      

 

As mentioned previously, CDI requires an isolated object located in an extended vacuum 
space to fulfill the oversampling condition. In this case, the measured diffraction pattern is 
composed of the diffracted photons by the object and the direct beam, which is not blocked by 
the object. In our case, the test object acts as an opaque mask with a binary transmission. This 
means that the transmission of etched area is “1” and the membrane is “0”. According to the 
Babinet’s principle [2], the diffraction pattern from an opaque body is identical to that from a 
hole of the same size and shape except for the overall forward beam intensity. Therefore, our 
test objects can be considered as “conjugate” term of a real object, which would be well 
isolated. The direct beam for such objects is composed of the transmitted photons of the 
membrane and the photons going through the object hole without diffraction, which usually 
presents as an intense spot in the center of the measured diffraction pattern. In FEL facilities, 
due to the high intensity of the pulse, the direct beam even in single-shot saturates the CCD 
camera so that one should place a beam stop to block it. However, the beam stop blocks also 
the low frequencies of the object diffraction. Since our harmonic beamline is less intense than 
a FEL, the beam stop is not necessary and the measured diffraction pattern contains all 
information. Note that even if our test objects used here are pure transmission object without 
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phase modulation, CDI is also suitable for resolving objects presenting phase modulation 
(Chapter I, section I.2b).  

	
  

III.3	
  Detection	
  of	
  the	
  diffraction	
  pattern	
  	
  
	
  

During the diffraction experiments, the first difficult task is to find the test objects. The 
objects (having a size smaller than 5 x 5 µm2) are located in a membrane window of hundreds 
µm large, which is held by a sample holder with motorized translation stages. First without 
pumping, we use a HeNe laser, which is pre-aligned with the IR pump laser at a distance of ~ 
8 m, to find the membrane window position by checking the different transmission of the 
silicone nitride membrane and the silicone substrate. Then in vacuum, we use the harmonic 
beam to find the position of the membrane window’s edges. Note that the translation stages of 
the sample holder used in this chapter provide a precision of 1 µm, which has been upgraded 
to 1 nm during my thesis work (new sample holder used in Chapter IV). With the help of the 
SEM image (such as presented in Fig. 3.2), we scan over the possible regions containing 
objects with harmonic beam (size of ~ 5 x 5 µm2) to find one first object. Since the objects 
have been etched in a strict line frame, it is then easy to find other ones with a pre-calculation 
of the objects separation shown in SEM image. At last, we align the object with the harmonic 
focal spot in the beam propagation direction (Chapter II, section II.3c).  

Considering the spectral range (10 – 100 nm) explored during our experiments, we use a UV-
X PI-MTE CCD camera fabricated by Princeton Instruments. It has a chip size of 2048 x 
2048 pixels with a pixel size of 13.5 x 13.5 µm2. The compact CCD camera (about 10 cm in 
the longest direction) can be located inside the experiment chamber and operates with a 
vacuum down to 10-7 mbar. It is then easy to motorize the CCD camera with translation stages. 
The camera can be cooled down to -40°C by water-cooling system to reduce the readout noise. 
The detection efficiency can be presented as: 

𝐼!"# =
𝛾!𝑄
𝐺

𝑁!!!"!# (Eq. 3-1) 

The intensity IADU of the diffraction pattern on each pixel corresponds to the analog-to-digital 
unit (ADU), which is the CCD’s output count. The ADU (or the count) is linearly 
proportional to the incident photon number on each pixel (Nphoton), and has a dynamic range 
from 0 to 65535 encoded on 16 bits. G is the system gain defines the relationship between the 
number of electrons acquired on a CCD and the ADU generated. Q is the quantum efficiency 
of the CCD camera presenting its probability to produce electrons from incident photons, 
Nphoton. 𝛾! is the number of electrons generated by one incident photon, described as: 

𝛾! =
𝑃ℎ𝑜𝑡𝑜𝑛  𝐸𝑛𝑒𝑟𝑔𝑦  (𝑒𝑉)

3.65
 (Eq. 3-2) 

For the 25th harmonic beam (38.74 eV), 10 electrons are generated for one incident photon. 
For the 39th harmonic beam (60.45 eV) used in Chapter IV, 16 electrons are generated. The 
quantum efficiency is ~ 40% for the spectral range from 30 eV to 100 eV. The system gain is 
1.3 electrons/ADU as designed and measured by the manufacturer. The relation can then be 
simplified to IADU = 3Nphoton for H25.           
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III.4	
   Implication	
   of	
   the	
   spatial	
   coherence	
   in	
   the	
   CDI	
  
reconstructions	
  	
  
 

As presented in Chapter II, we have estimated the spatial coherence of our harmonic beam 
using Young’s double slits (fabricated by FIB, Fig. 3.3a). The idea is to optimize the HHG for 
CDI with a good compensation between photon flux, wave front quality and beam coherence. 
Since the Young’s double slits can also be considered as a CDI object, I have tried to 
reconstruct them using diffraction patterns (interferogram) taken under different HHG 
conditions (Fig. 3.3). This procedure will evaluate the sensibility of the CDI reconstruction 
process to the beam coherence. The double slits are 1.5 µm long and 300 nm wide, separated 
by 4 µm which is close to the size of the beam (about 5µm). The measured diffraction 
photons in these single-shot detections range from 105 (Fig. 3.3b,c,g) to 106 (Fig. 3.3d-f). The 
spot in the center is the direct beam transmitted by the membrane, which does not influence 
significantly the CDI reconstruction process.     

 

Fig. 3.3. (a) SEM image of the Young’s double slits. (b) to (g) typical fringes measurements 
corresponding to different HHG conditions presented in Fig. 2.19. The gas pressure varies 
from 11 mbar (b) to 16 mbar (g). All fringes are measured with a window size of 800 x 800 
pixels. Here they are cropped for a better presentation.  
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A reconstruction of the double slits has been possible only in certain cases. In the case of poor 
visibility combined with poor intensity (such as Fig. 3.3g), the iterative process cannot 
converge. Good reconstructions are achieved for HHG conditions combining both intensity 
and visibility optimization (such as Fig. 3.3c-e). Reconstructions are less good for fringes 
with a visibility around 0.5 (such as Fig. 3.3b and f), even for fringes with maximized 
diffraction photons (such as Fig. 3.3f).  The reconstruction with best resolution (138 nm) is 
presented in Fig. 3 of Paper I. Here, Fig. 3.4 presents the two reconstructions for Fig. 3.3c and 
d, corresponding to a fringe visibility respectively 0.6 and 0.67, and the measured diffraction 
intensity of Fig. 3.3d is about 1.3 times higher than the other. Note that Fig. 3.3f has similar 
diffraction intensity as Fig. 3.3d, but a poor fringe visibility of ~ 0.5 makes the iterative 
algorithm not able to identify the two slits. For all slits reconstructions, the initial support is 
calculated by the Fourier transform of the measured diffraction pattern, which correspond to 
the autocorrelation of the double slits (Fig. 3.5). If the beam is totally coherent, based on the 
definition of the autocorrelation, the ratio between the maximums of the center part (green 
circle) and the side part (red circle) should be equal to 2. This ratio is directly related to the 
beam coherence, which becomes smaller when the coherence is limited. During the iterative 
process, the support is refined (reduced in space) for each iteration with a threshold, usually 
defined by its intensity distribution. Thus, for fringes with limited coherence, the side parts 
will have a weak intensity. In such case, the information will be eliminated by the threshold, 
which is set to avoid any unreliable reconstruction. In such case we usually obtain only one 
slit reconstruction, the second slit being missed by the artificially truncated support used in 
the algorithm. This is a standard problem in CDI when using a symmetric object. CDI applies 
better for non-symmetric objects as the support ambiguity is removed. 

 

Fig. 3.4. (a) and (b) are respectively the reconstructions of Fig. 3.3c,e. The resolution 
estimated is 296 nm and 173 nm.  
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Fig. 3.5. Autocorrelation of the Young’s double slits, calculated from a measured diffraction 
pattern.  

 

We estimate the reconstruction resolution in CDI using the phase retrieval transfer function 
(PRTF), which is the ratio between the absolute value of the Fourier transform of the 
reconstruction and the square root the measured diffraction intensity: 

𝑃𝑅𝑇𝐹 𝜈 =
ℱ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝐼!"##$%&'!"#  !"##$%&

 (Eq. 3-3) 

The resolution is given at the ratio of 1/e, according to the PRTF criterion [3]. 𝜈 is the spatial 
frequency of the diffraction pattern, equal to D/λz, where D is the distance of the concerned 
pixel to the center of the diffraction pattern, and z is the distance between the detection plane 
and the object plane.  

 

III.5	
  Experimental	
  results	
  of	
  CDI	
  	
  
 

After the beamline optimization, we have performed CDI experiments using texts objects, 
such as the “lambda” presented in Paper I. We have been able to reconstruct the “lambda” 
(3.2 µm x 2 µm) from a single-shot acquisition (20 fs pulse duration) with a spatial resolution 
of 78 nm (equal to 2.5λ), which is largely improved compared to the 119 nm reported in A. 
Ravasio et al. [4], which was realized with a non-optimized beam and focus. The object “note” 
(3 µm x 2.8 µm) in the latter has been retested and we got a single-shot reconstruction with 75 
nm spatial resolution, which is close to the 40-shot reconstruction reported in previous work. 
The final reconstruction presented in Fig 3.6 is an average of 14 best different reconstructions 
output after 1000 iterations of the RAAR algorithm. The original diffraction pattern is 
recorded in a window size of 2048 x 2048 pixels. It is cut into a size of 848 x 848 pixels and 
then binning 4 x 4 (16 pixels integrated into one large pixel) for the reconstruction to 
accelerate the algorithm calculation. Thus, each pixel of the reconstruction has a size of 53 
nm (pobject), calculated by following equation: 

𝑝!"#$%& =
𝜆𝑧

𝑁!"#$%𝑝!"#$%"
 (Eq. 3-4) 
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where Npixel is the number of pixels of the window size and pcamera is the pixel size of the 
camera. Note that, the oversampling ratio for these CDI objects is about 10, thus the 4 x 4 
binning still qualifies for the oversampling condition. The improvement of the reconstruction 
quality is mainly due to the increased photon flux. Indeed, we have detected a few 107 
diffracted photons in the single-shot measurements of “lambda” and “note”, compared to 5 x 
105 photons in the previous work. Since there is no measurement of the beam’s wave front 
and coherence in the former experiment, the comparison on these aspects is not possible. Note 
that the relative poor reconstruction quality of Young’s double slits (with good coherence) is 
due to the lack of diffracted photons (~ 106 photons are detected in the best case). The low 
diffraction efficiency is caused by the geometry of the double slits, which are situated at the 
edges of the beam when well aligned. On the contrary, our test objects are perfectly aligned 
with the more intense part of the soft X-ray focused beam.        

 

Fig. 3.6. (a) The “note” reconstruction in single-shot detection with a presentation of its SEM 
image. The missing slit is due to the radiation damage after long time exposure. The radiation 
damage is an important constraint on FEL facilities, especially for biological samples. 
Discussions have arisen on this subject [5,6]. (b) and (d) are respectively the autocorrelation 
for “note” and “lambda”. During the iterations, the reconstruction of the object can flip 
horizontally or vertically due to the symmetry of the autocorrelation. Thus non-symmetry 
masks (c and e) are applied to the autocorrelation when calculating the support to avoid the 
flip.  

In fact, the object geometry is another important factor for the CDI reconstruction, beside the 
three-coupled factors of the harmonic beam (wave front, coherence and photon flux). For 
example, “note” and “lambda” are simple objects that present in general two main directions 
of diffraction. Compared to objects that have diffraction signals extended in all directions 
(such as the Airy disk of a circle), the diffraction pattern of objects like “note” and “lambda” 
will have higher photons/pixel values, as the photons are mainly located in the main 
diffraction axes. Thus better signal-to-noise ratio and higher spatial frequencies are obtained 
for the reconstruction under the same illumination condition. Fig. 3.7 illustrates the 
importance of the object geometry for CDI with comparison between objects “note” and 
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“phos”. The latter is composed of 3 Greek letters with a total size of 3.2 µm x 2.5 µm. The red 
rectangles in the diffraction patterns show the spatial extension of the diffracted signal: 1100 
x 850 pixels for “note” and 460 x 460 pixels for “phos”. The maximum spatial frequencies of 
the diffracted photons are ± 12.2 µm-1 and ± 9.4 µm-1 for “note”, and ± 5.1 µm-1 for “phos”. 
The theoretical resolution is then limited to 53 nm for “note” and 98 nm for “phos”. However, 
the measured diffracted photons are the same: 2.8 x 107 for “note” and 2.7 x 107 for “phos”. 
The reconstruction of “phos” is not satisfying: only the “ω” is resolved while the other two 
letters are partially or non-resolved at all. Since the objects have similar size, the poor 
reconstruction should not be related to illumination problem or coherence problem. The 
object geometry could be therefore a constraint for single-shot CDI experiments at our 
harmonic beamline. In multiple-shot regime, we are able to accumulate enough signals to 
have sufficient spatial extension of the diffraction pattern for high-resolution reconstructions, 
as demonstrated in previous work of A. Ravasio et al.. The other method to amplify the 
diffraction signal is to use extended reference, which still keeps the possibility of high-
resolution reconstruction (section III.10). 

 

Fig. 3.7. (a) and (b) Diffraction patterns of “note” and “phos”, displayed with the same color 
scale. The red rectangles present the extension of the diffracted signals. Images are taken with 
a window size of 2048 x 2048 pixels. The two half-circle at the edge of the red rectangle in (a) 
are parasite signals. (c) is a typical reconstruction after 2000 iterations of object “phos”. The 
SEM image of “phos” is on the top corner.  

We have tested another object “Eiffel tower” (Fig. 3.8a), which has a size of 5 µm x 4 µm and 
is more complex than “note” and “lambda”. The single-shot diffraction pattern presented here 
has three main diffraction directions and is more “homogeneous” than “note” and “lambda” 
with signal extension size of 800 x 800 pixels. The maximum spatial frequency is ± 8.88 µm-1, 
corresponding to a theoretical resolution (Chapter I, section I.2c) of 56 nm. The calculated 
autocorrelation (Fig. 3.8b) shows a high agreement with the simulation (Fig. 3.8c). Thanks to 
the presence of the star beside the tower, which acts like a holographic reference in the 
autocorrelation calculation, we can clearly identify the Eiffel tower in the autocorrelation. 
However no FTH or HERLADO reconstructions can be processed, except that applying a 
particular de-convolution operator well adapted to the star shape on the autocorrelation may 
probably lead to reliable reconstruction. Fig. 3.8d is the CDI reconstruction of the single-shot 
diffraction pattern after 3000 iterations, compared to the reconstructions of 400-shots (Fig. 
3.8e) accumulation taken before the harmonic beamline optimization. The single-shot 
reconstruction presents a lack of illumination on the top and the bottom part of the tower, 
which can also be observed in the autocorrelation. The star is blurred which could be related 
to the radiation damage suffered by the object during long time exposure. Due to the 
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instability of the beam before optimization, the reconstruction of the multi-shot detection does 
not show significant improvement, but is in fact more blurred. However, the accumulated 
illumination provides more photons and thus a “clearer” vision over the entire object.              

 

Fig. 3.8. (a) Single-shot detection of the “Eiffel tower” object with its SEM image on the top. 
(b) Autocorrelation calculated from (a), compared to the numerical simulation of the SEM 
image (c). (d) Reconstruction of single-shot detection with a spatial resolution of about 110 
nm. (e) Reconstruction of 400-shots detection obtained before the harmonic beamline 
optimization. The reconstruction has been realized by Pierre Thibault (Cornell Univ. and now 
TU Munchen).  

 

III.6	
  Experimental	
  results	
  of	
  Fourier	
  Transform	
  Holography	
  
 

We have prepared two test objects to perform Fourier Transform Holography (FTH) 
experiments. Object “h” has a size of ~ 1.6 µm x 2.4 µm and the other is a “geometric grid” 
object with a size of 1 µm x 1 µm (Fig. 3.9). For each test object, we have etched two 
identical reference pinholes in vertical and horizontal directions. Different pinhole sizes have 
been combined to the objects: 300 nm or 240 nm (diameter) for “h”; 110 nm or 145 nm for 
“geometric grid”. The FTH experiment will be then confronted to the HERALDO technique 
using different extended references. The comparison of these two techniques is discussed in 
Paper IV. Here, I would like to show some complementary experimental results that are not 
presented in the manuscript.          
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Fig. 3.9. SEM images of holographic objects “h” and “geometric grid”. 

 

The “h” object can be constructed from single-shot detection as shown in Fig. 3.10. The 
diffraction pattern is recorded in a window size of 2048 x 2048 pixels with a signal extension 
of ~ 350 x 350 pixels, corresponding to a maximum spatial frequency of 3.89 µm-1. The 
hologram contains ~ 7 x 106 photons and presents no privilege diffraction directions and 
contains the full speckles that encodes the phase information. Applying a Fourier transform 
on the hologram, we get the two pairs of reconstructions associated to the two pinholes 
references. Note that there are only two independent reconstructions in this case, since the 
reconstructions in opposite positions are the complex conjugates. In the case of Fig. 3.10, the 
images obtained with the vertical pinhole are much intense than the ones by the horizontal 
pinhole. This is due to a misalignment between the object (including the references) and the 
harmonic beam. To estimate the spatial resolution, I plot the profile of the reconstruction 
along the white line (Fig. 3.10). This allows us to visualize the noise and the sharpness of the 
object edges. According to the 10%-90% Rayleigh criterion, the resolution is estimated to be 
around 220 nm, which is close to the resolution limitation defined by the pinhole size of 300 
nm. A low-pass filter (Gaussian filter) has then been applied on the hologram to knock out the 
noise in high frequencies where no diffractive signals are recorded. The width of the Gaussian 
filter is chosen to adapt the maximum diffraction extension and the filtered hologram is 
presented in Fig. 3.10b. The reconstruction of the filtered hologram highly agrees with the 
non-filtered one. The profile plotted at the same position is the smooth “version” of the 
previous one, which is the convolution between the noised profile and the Gaussian filter. The 
two profiles have same contrast of ~ 0.64. In the case of FTH, the low-pass filter only leads to 
a more comfortable vision of the reconstruction, the spatial resolution being the same. But in 
the case of HERALDO of two-dimensional references, the low-pass filter is essential for the 
reconstruction (section III.9). However, in all cases, it imposes a resolution limit related to the 
filter width.   
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Fig. 3.10. (a) A zoom-in (400 x 400 pixels) of the original single-shot detection (2048 x 2048 
pixels) of “h” object with pinholes of 300 nm. (c) Reconstructions from the original data, with 
the profile plotted at the white line position. (b) Hologram filtered by a low-pass filter with 
respect to the diffraction signal extension. (d) Reconstructions of the filtered data, which 
presents the same profile as the previous one.  

The “geometry gird” is also reconstructed from single-shot measurement (Fig. 3.11b). The 
measured diffraction photons is ~ 2 x 106 that is less than the “h” diffraction due to the 
smaller object size and smaller pinholes. The diffraction pattern (Fig. 3.11a) is recorded with 
a binning ratio of 2 (4 pixels integrated into a large one). The signal extension of 320 x 200 
“large” pixels (thus, 640 x 400 normal pixels) corresponds to maximum spatial frequencies of 
7.1 µm-1 and 4.4 µm-1 respectively. A low-pass filter has been applied onto the hologram to 
have a better vision of the reconstruction. All the components of the grid are well 
reconstructed (Fig. 3.11c). The profiles in vertical and horizontal directions show a contrast of 
~ 0.6. Note that the tree horizontal slits have a width of 95 nm and are separated at a center-
to-center distance of 95 nm. Fig. 3.11d is another single-shot diffraction pattern obtained for 
the same object which contains ~ 3.2 x 106 diffracted photons, higher than Fig. 3.11a. 
However, we cannot observe fringes in the speckles in Fig. 3.11d, compared to the clear 
interference signature in Fig. 3.11a. The lack of interference fringes leads to worse 
reconstruction quality so that the components of the gird are “missed” in the reconstructions 
(Fig. 3.11e). The zoom-in of the two independent reconstructions shows that the big circle 
and the three small holes are not resolved in different reconstructions. Moreover, the other 
components are also less resolved, compared to Fig. 3.11c. We can obtain the “missed” 
components by averaging coherently (complex value calculation) the two independent 
reconstructions, as shown in Fig. 3.11f. However, the final reconstruction present a contrast 
of ~ 0.4 in vertical and horizontal profiles, which demonstrates a worse resolution compared 
to that in Fig. 3.11c. The lack of interference fringes should be related to a coherence problem 
of the harmonic beam for this acquisition. Note that these two diffraction patterns were taken 
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before the modal spatial filter upgrade of the harmonic beam (Chapter II, section II.4). Indeed, 
the statistics over ten single-shot acquisitions recorded consecutively for the same object 
show a total of three holograms lacking of interferences. Still, the stability was enough for the 
data recorded during this campaign. The comparison here demonstrates the importance of the 
balance between the photon flux and the beam coherence in coherent imaging. A relatively 
less intense beam but with a higher coherence can lead to a better reconstruction quality than 
a more intense beam with less coherence.  

 

Fig. 3.11. (a) A zoom-in (400 x 400 pixels) of the single-shot acquisition (600 x 600 pixels) 
with clear interference fringes of test object “geometric grid”. (b) Reconstructions of (a) and 
its zoom-in (c). (d) A zoom-in (300 x 300 pixels) of the single-shot acquisition (682 x 682 
pixels) of the same object, with a higher diffraction signal and a lack of interference fringes. 
The signals at the top and bottom corners are parasite light. (e) Reconstructions of (d) with 
non-resolved components of the object. (f) The final reconstruction by coherent averaging of 
the two independent reconstructions in (e).  

 

III.7	
   Experimental	
   results	
   of	
   holography	
   with	
   extended	
  
reference	
  
 

Holography with extended references (HERALDO) has been tested with a linear slit reference. 
In this configuration, the reconstruction resolution is limited by the slit width in the direction 
perpendicular to the slit orientation. By applying a linear differential operator along the slit 
reference shown in Fig. 3.12, we get two Dirac functions that are similar to the pinhole 
reference in FTH at its extremities (Fig. 3.12b). The holographic separation condition requires 
that our test object (letter “φ”) should be separated from the reference slits at a distance at 
least equal to two times the object size (Fig. 3.12d). The object “φ” covers an area of 2 µm x 
1.7 µm and the slit width is 130 nm and 145 nm respectively for horizontal and vertical one 
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with a length slightly longer than the object. The total object and references are within a 
window size of 4.5 µm x 4.5 µm.  

 

Fig. 3.12. (a) Applying linear differential operator (𝛼) on slit reference (at angle α) leads to 
two Dirac functions (b) at the extremities of the slit. (c) The test object “φ” with two slit 
references. (d) The slits’ length and the distance to the object are chosen to satisfy the 
holographic separation condition. There should be no recovery between the blue rectangles, 
which is the object size.  

 

Fig. 3.13 show both single-shot and multiple-shot acquisitions of the HERALDO holograms. 
In Fig.3.14, we see that by applying a linear differential in each direction given by the slits to 
the autocorrelation of the hologram (a) we get four independent reconstructions (b,c). They 
can be averaged to enhance the reconstruction quality. The single-shot reconstructions are 
shown in Fig. 2 and 3 in Paper III. The estimated resolution is 110 nm, corresponding to a 
spatial frequency of 4.55 µm-1, while the multiple-shot (10 shots) reconstructions have a 
resolution of 80 nm (corresponding to 6.25 µm-1 spatial frequency, red circle in Fig. 3.13b), 
which is limited by the width of the slit reference. However, the signal extension in multiple-
shot (yellow circle in Fig. 3.13b) is much larger than the limit given by the spatial resolution 
of the recovered image. Indeed, in the reconstruction process, the spatial resolution is limited 
by the manufactured size and quality of the references. It is possible to estimate this limit by 
applying a linear differential operator to the slits presented in the high resolution SEM image 
(Fig. 3.15). The particular shape of the calculation result is our reference. The deviation from 
a perfect pinhole (or a Dirac function) will affect the final reconstruction resolution. In the 
case of a slit reference, the resolution limit is not uniform for all orientations. The longest side 
of the “point source” imposes a resolution limitation of ~ 85 nm, which agrees with the 
estimated reconstruction resolution.  
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Fig. 3.13. (a) Single-shot diffraction pattern of the HERALDO object “φ”. (b) 10-shot 
diffraction pattern of the same object presented in the same color scale. The signals of two 
half-circle outside the yellow circle are parasite light. Red circles shows the spatial 
frequencies corresponding to the estimated reconstruction resolutions. The yellow circle 
shows the signal extension given by the resolution limit.    

 

 

Fig. 3.14. (a) Autocorrelation for the 10-shot acquisition hologram. (b) is the derivation along 
the horizontal slit (yellow arrow) of the autocorrelation (a). (b) is the derivation along the 
vertical slit (green arrow) of the autocorrelation (a). Each reconstruction (b) and (c) shows 
two independent reconstructions. The crossed terms between the object and the reference 
show already the shape of “φ”. The crossed term between the two references (the square at 
left top and right bottom) shows that the illumination is not uniform for the entire sample. 
This can also be observed in the reconstructions (b, c) where the object “φ” is more intense in 
the inner part.   
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Fig. 3.15. SEM image of the sample. The derivations of the slits are shown in the rectangles at 
the right of the blue arrow. They exhibit four moon shape patterns, which are the deviation 
from an equivalent “point source” of the slit references simulated from the SEM image by 
applying linear differential operator. The green square is the result of vertical linear 
differential operator, and the yellow square is the horizontal one.  

 

III.8	
  Signal-­‐to-­‐noise	
  ratio	
  (SNR)	
  analysis	
  
 

For all the three imaging configurations (CDI, FTH, HERALDO), the signal-to-noise ratio is 
a key factor for the reconstruction quality. In our experimental conditions, the noise can be 
separated into four independent components according to their nature: 

1) The parasite light noise: as shown in the measured diffraction patterns, we have 
sometimes detected parasite light signals, usually at the outer part of the diffraction 
pattern (Fig. 3.13b). It is due to the IR and/or harmonic reflections inside the 
experimental chamber, and/or the transmission of the parasite light through the 
sample holder. 

2) The photon noise: it is directly related to the diffraction signal and obeys to the 

Poisson distribution. The signal-to-noise ratio can be described as 𝑆𝑁𝑅 = !
!
= 𝑁, 

where N is the photon flux (or photon numbers).  
3) The readout noise: it is related to the CCD camera readout quality, which is the 

uncertainty introduced during the process of quantifying the electronic signal. The 
readout noise mainly arises from the on-chip preamplifier [7]. It is characterized by 
its standard deviation 𝜎!"#$%&' (or its variance 𝜎!"#$%&'! ). 

4) The dark noise (dark current): it is introduced by the thermally generated electrons 
within the silicon layers of the CCD. The dark current describes the statistical 
variation of the thermal electrons at a given CCD temperature and a given exposure 
duration, obeying also to the Poisson law. It is characterized by electrons/pixel/sec.   

Practically, the noise reduction has been realized at the detection stage through several steps. 
The parasite light noise can be easily removed after detection, since it is usually located in the 
region without diffraction signal in our experiment. We have also added light shields and 
filters (as what we did for magnetism experiments in Chapter IV) to stop the parasite light 
before detection. We cannot reduce the photon noise due to its nature, but we can increase the 
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associated SNR by increasing the total photon number (beamline output, light transport and 
focus optimization) because of the square root relation of the photon noise SNR. One can also 
bring the CCD camera closer to the object plane to have a higher photons/pixel ratio to 
enhance the SNR associated to the photon noise. Note that, the CCD-object distance should 
always fulfill the sampling ratio for FTH/HERALDO or the oversampling condition for CDI. 
Moreover, multiple-shot accumulation can also enhance the SNR. The dark noise can be 
reduced by cooling down the CCD camera, which is 0.05 electrons/pixel during 100 seconds 
exposure at -40°C, according to the CCD camera fabricant. The readout noise depends on the 
readout frequency of the camera. Our CCD camera has two available readout frequencies: 1 
MHz and 100 kHz. The reference value (standard deviation) given by the CCD camera 
fabricant is 8.8 electrons for 1 MHz and 4 electrons for 100 kHz, corresponding respectively 
to 6.8 ADU and 3.1 ADU. The disadvantage of using 100 kHz is the long CCD readout time, 
which is up to 30 seconds, compared to the 4.5 seconds for 1 MHz. Note that the readout time 
depends on the CCD chip size (or total pixel numbers).The CCD camera offers an option to 
read only a part of the CCD chip defined by users (called region of interest) to reduce the 
readout time. In practice, according to the measurement in dark condition (Fig. 3.16), the 
measured readout noise for 1 MHz and 100 kHz is respectively 9.2 ADU and 3.2 ADU, thus 
~ 12 electrons and ~ 4 electrons. The other option provided by the CCD camera to enhance 
the readout SNR is the hardware binning, which combines charge from adjacent pixels into a 
single large pixel during the readout process. In the ideal case, the enhancement is equal to 
the binning ratio. For example, if each normal (non-binning) pixel has signal of 20 electrons 
and a readout noise of 10 electrons, then a single large pixel of 3 x 3 binning ratio will have a 
signal of 180 electrons and a readout noise of 10 electrons (it is introduced only once during 
the readout process). The SNR of a large pixel is then 9 times larger than that of a basic pixel 
unit. Note that the hardware binning is different to the software (or numerical) binning, 
which combines adjacent pixels after the readout process, thus the software binning does not 
change the SNR associated to the readout noise, but still increases the SNR of photon noise 
for each large pixel. One should again be careful of the sampling ratio when binning the 
pixels. The measured diffraction pattern is the superposition of the diffracted signal and the 
different noises, among which the dark noise and the parasite light noise are easy to handle. 
Usually, with a low diffraction signal, the noise is dominated by the readout noise, which is 
called readout-noise limited; with a high diffraction signal, the photon noise is dominant, 
which is called photon-limited. For the wavelength used in our imaging experiment (H25, 32 
nm), one detected photon generates 10 electrons (Eq. 3-2), which is comparable to the readout 
noise at 1MHz. In our experiment, the measured diffraction patterns are mainly influenced by 
the readout noise and the photon noise. The SNR of the diffraction pattern is then 

𝑆𝑁𝑅!"##$%&'"()  !"##$%& =
𝑁!"#"$#"!  !"#$%&

𝑁!"#"$#"!  !"#$%& + 𝜎!"#$%&'!   
 (Eq. 3-5) 

Overall, we distinguish in our diffraction patterns two regions: the region of low spatial 
frequencies is photon limited and the region of high spatial frequencies is readout-noise 
limited.  
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Fig. 3.16. Measurements in dark condition at 1 MHz (a) and 100 kHz (b) and the respective 
histogram (c) and (d).  

 

III.9	
  HERALDO	
  reconstruction	
  and	
  noise	
  	
  
 

An analysis of the photon noise influence in the HERALDO technique can be found in the 
thesis of M. Guizar-Sicairos ([8], Chapter 5, section 5.6). The SNR is analyzed in photon-
limited statistics with theoretical discussions and numerical simulations. The findings are that 
the HERALDO technique is robust to the photon noise, and the bulk of noise contribution by 
the extended reference is effectively filtered during the reconstruction procedure. However, in 
our experiment, the diffraction patterns are far from photon-limited, due to the harmonic flux 
and its relatively low photon energy. An important step in the HERALDO reconstruction 
process is to apply the linear differential operator associated to the reference shape in the 
object space (the autocorrelation). This step, in practice, is realized by applying a point-by-
point multiplicative filter, 𝑊!,! , in the Fourier domain (the diffraction pattern or the 
hologram), where p and q is the index of the diffraction pattern pixel. Then, the object image 
is reconstructed by applying an inverse Fourier transform on the “filtered” diffraction pattern. 
In fact, 𝑊!,! is a high-pass filter, as presented in Fig. 3.17. This kind of high-pass filter will 
amplify the high spatial frequency region that is dominated by the readout noise. As a 
consequence this will degrade the HERALDO reconstructions of our recorded holograms. To 
eliminate the amplified readout noise, one can apply a low-pass filter, such as a Gaussian 
filter. In Fig. 3.17, the high-spatial-frequency region of the multiplicative filters is eliminated 
by a super Gaussian filter (third order) with a diameter of 2000 pixels (full width at half 
maximum).  The multiplicative filters are calculated in a window size of 2200 x 2200 pixels. 
In the following example of experimental data, I will show that the low-pass filter is essential 
to the HERALDO reconstruction process, especially with diffraction patterns significantly 
influenced by readout noise.  
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Fig. 3.17. Numerical simulation of the multiplicative filters (b and e) associated to one-
dimensional slit reference (a) and two-dimensional square reference (d). The “star” is the 
object. (c) and (f) are the results of applying a super Gaussian filter (third order) on the 
multiplicative filters.  

 

Fig. 3.18. (left) Test object A: SEM image of the geometric grid object with two square 
references. (right) Measured single-shot diffraction pattern of test object A.  

 

The test object A (Fig. 3.18 left) is a geometric grid object (1µm x 1µm) with two square 
references (slightly larger than 1 µm x 1µm). The object-reference distances are slightly larger 
than the object size (holographic separation). The two squares can provide eight independent 
reconstructions (associated to the eight corners of the two squares) in one acquisition. We 
obtained a single-shot diffraction pattern with a readout frequency of 100kHz and within a 
window size of 600 x 600 pixels of 2 x 2 binning ratio (corresponding to 1200 x 1200 non-
binned pixels). The measured diffraction signal is ~ 6 x 107 photons. The readout noise has a 
standard deviation of 4 ADU and an average of 14 ADU, measured in the red square (Fig. 
3.18 right) where there is no diffraction signal. 

Fig. 3.19 presents the effect of the low-pass filter during the reconstruction process. When no 
low-pass filter is used (left column), the high spatial frequencies of the hologram are 
significantly amplified after applying the multiplicative filter. The reconstructions are 
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completely covered by the noise. When applying a low-pass filter, whose diameter is too 
large (800 pixels) to eliminate all the amplified readout noise (middle column), the object is 
reconstructed but with a low quality. Applying a suitable low-pass filter (right column), 
whose diameter (400 pixels) is small enough to eliminate most readout noise at high spatial 
frequencies, the object is then clearly reconstructed. To quantify the noise contribution, we 
can use the power SNR of the reconstructed image [8]: 

𝑆𝑁𝑅! =
𝑜!,!

!!!
!,!

𝑁! 𝜎!,!
!  (Eq. 3-6) 

SNRr is the ratio between the signal energy and the noise energy presented in the 

reconstruction image. The signal energy 𝑜!,!
!!!

!,!   is calculated by integrating the signals 
inside the object region No (bleu square in Fig. 3.19), and the noise energy is the 
multiplication of No and its variance calculated in the region without signals (white square). 
Here, the noise energy is the total contribution of photon noise and readout noise. Note that 
SNRr only accounts for the statistical noise and does not include the effects of resolution loss.        

Fig. 3.19. Influence of the low-pass filter during the reconstruction process. (first row) 
Multiplicative filter with and without Gaussian filter. (second row) Results of the 
multiplication (in Fourier space) of the measured diffraction pattern by the HERALDO 
multiplicative filter with and without Gaussian filter. (third row) Inverse Fourier transform of 
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the second row, giving the reconstructions. The eight independent reconstructions are within 
the green and the yellow square (each associated to a square reference). The bad 
reconstructions in the yellow square should be due to a miss-alignment that one reference has 
not been sufficiently illuminated. Note that the multiplicative filter is slightly tilted to agree 
with the diffraction axis. 

 

I have then reconstructed the object A with different diameter of the low-pass filter (from 200 
to 1000 pixels, every 100 pixels). The reconstructions are shown in Fig. 3.20. When the filter 
diameter increased, it is more difficult to reconstruct the object and more noise appears. We 
also note that the reconstruction is more blurred with smaller filter diameter. To estimate the 
resolution, I have plotted the profile of the reconstruction at the white line position in Fig. 
3.21, and compared it to the calculated SNRr. The SNRr increases with smaller filter diameter 
that high spatial frequencies (dominated by the readout noise) are eliminated. But the 
measured contrast (reflecting the resolution) does not always increase. It is maximized (0.76) 
at a filter diameter = 400 pixels, then decreases quickly at smaller diameters. The 
corresponding theoretical resolution for different filter diameter is presented in Table 3.1. 
Note that the measured contrast for diameter  = 300 pixels (2 x 2 binning) is 0.65 and the 
period of the three horizontal slits of the object is ~ 190 nm. It means that the reconstruction 
resolution is worse than 95 nm, which is not limited by the filter diameter (75 nm). Therefore, 
the contrast decrease should be related to other factor like a loss of constructive diffraction 
signal.  
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Fig. 3.20. Reconstructions with different low-pass filter diameter. (first row from left) 
Diameter = 200, 300 and 400 pixels. (second row from left) Diameter = 500, 600 and 700 
pixels. (third row from left) Diameter = 800, 900 and 1000 pixels. All images are presented 
with the same color scale. 

Filter diameter 

                    Non-binning 
400 600 800 1000 1200 1400 1600 1800 2000 

2 x 2 binning 200 300 400 500 600 700 800 900 1000 

3 x 3 binning 130 200 260 330 400 470 530  600 670 

Theoretical resolution 
(nm) 113 75 56 45 38 32 28 25 23 

Table 3.1. Theoretical resolution for different low-pass filter diameter with different binning 
ratio. 
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Fig. 3.21. (right) For each reconstruction, the measured contrast corresponds to the white line 
position. (left) Evolution of the SNRr and the contrast with different low-pass filter diameter.   

 

Since the readout noise is not correlated from one pixel to another, we can classify the pixels 
of the diffraction pattern by choosing two reasonable thresholds. To simplify the calculation, I 
use the ADU as the signal and noise unit in this section. I assume that for one pixel, it is 
readout-limited when there is no diffraction signal, which means that the ADU count of this 
pixel is within the readout noise distribution. The latter can be measured in a region far away 
from the diffraction signals, such as the red square in Fig. 3.18. A pixel is photon-limited 
when the ADU count of the pixel gives a photon noise 10 times higher than the readout noise. 
For example, with 1MHz readout frequency, the readout noise is equivalent to one photon 
signal (see section…). Moreover, a pixel whose ADU count is between these two thresholds 
is said to be mixed-noise. And a pixel is non-ADU if its ADU count is zero after applying the 
low-pass filter. Therefore, all pixels are classified into four types, among which photon-
limited and mixed-noise pixels provide useful signals for the reconstructions, and non-ADU 
pixels have no contribution to noise or useful signal. Fig. 3.22 presents the evolution of these 
four kinds of pixels when different filter diameters are used. Clearly, tighter low-pass filter 
turns more readout-limited pixels to non-ADU pixels, and that’s the reason why the contrast 
of the reconstruction increases. However, for filter diameter smaller than 600 pixels, the 
photon-limited and mixed-noise pixels begin to decrease (eliminated by the tight filter, turned 
to non-ADU pixels). This can explain why the contrast decreases after the maximum. 
Therefore, one should find a good compromise between eliminating more readout-limited 
pixels and keeping more photon-limited and mixed-noise pixels. Fig. 3.23 shows the three 
kinds of pixels’ distribution for a filter diameter of 400 pixels, where mixed-noise pixels are 
as important as photon-limited pixels for reconstruction. The sum of these two kinds of pixels 
presents almost the entire diffraction signals. The mixed-noise pixels are more influenced by 
the low-pass filter, as we can see in Fig. 3.22 where it decreases two times quicker than the 
photon-limited pixels.     
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Fig. 3.22. Evolution of the four kinds of pixels with different filter diameters. The curves are 
the ratios between each kind of pixel number to the total pixel number. The reconstruction 
contrast curve is also plotted here for comparison.     

 

Fig. 3.23. (Top row) Distribution of readout-limited pixels (left) and mixed-noise pixels 
(right). (Bottom row) Distribution of photon-limited pixels (left) and total pixels (right). 
Images are filtered by a super Gaussian filter of 400 pixels diameter.   



	
   110	
  

I present now another example (test object B), which is a geometric grid (1µm x 1µm) with 
two slits reference (slightly longer than 1µm) separated from the grid far enough to fulfill the 
holographic separation conditions (Fig. 3.24). The presented single-shot diffraction pattern 
(Fig. 3.24) is obtained with a readout frequency of 1MHz and within a window size of 600 x 
600 pixels at a 2 x 2 binning ratio. The measured diffraction signal is ~ 1.2 x 107 photons. The 
readout noise has a standard deviation of 9.8 ADU and an average of 38 ADU.  

 

Fig. 3.24. SEM image of the test object B (left) and the measured diffraction pattern (right).  

 

 

Fig. 3.25. Evolution of the four kinds of pixels with different filter diameters. The curves are 
the ratios between each kind of pixel number to the total pixel number. The reconstruction 
contrast curve is also plotted here for comparison.     
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Fig. 3.26. (left) The blue curve presents the evolution of the ratio between (photon-limited + 
mixed-noise) pixels and the readout-limited pixels. (right) SNRr evolution (blue curve) and the 
reconstruction contrast (red curve).  

 

Using the same analysis method, similar results are obtained for the four kinds of pixels 
evolution (Fig. 2.25). The reconstruction contrast is again maximized (0.8) at a diameter = 
400 pixels. Fig. 2.26 presents the variation of the ratio between (photon-limited + mixed-noise 
pixels) and readout-limited noise. The reconstruction contrast is enhanced to a relatively good 
range (> 0.6) when this ratio begins to increase. And the latter has a good agreement with the 
SNRr in their evolution behavior. It confirms that the noise energy in the reconstruction image 
has a large contribution from the readout noise, which limits the reconstruction quality. Fig. 
3.27 is a reconstruction of object B with filter diameter = 400 pixels. Note that, 
reconstructions without low-pass filter are also resolved (Fig. 3.27 left) for this object due to 
the one-dimensional reference.  The multiplicative filter is order 1 for one-dimensional 
reference and two for two-dimensional references. Therefore, the amplification of the readout 
noise is less important with slit reference than square reference, which is the advantage of 
one-dimensional reference. However, the resolution of the two-dimensional reference is 
theoretically non-limited, compared to the resolution limitation in the perpendicular direction 
of the slit reference.  

 

Fig. 3.27. Reconstruction of test object B without (left) and with (center) a low-pass filter 
diameter of 400 pixels. (right) Profile of the reconstructed object at the white line position.  
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III.9a	
  HERALDO	
  reconstruction	
  and	
  noise:	
  Detection	
  stage	
  
optimization	
  with	
  multiple	
  shot	
  acquisition	
  

	
  
As demonstrated in the previous examples, the reconstruction of our diffraction patterns is 
mainly limited by the amplified readout noise. Therefore, the optimization of the detection 
stage will then focused on the readout noise. First, we can increase the incident harmonic 
beam flux by shots accumulation to have a higher signals/pixel ratio. Thus more pixels are 
then photon-limited or mixed-noise. Fig. 3.28 presents a comparison between single-shot and 
multiple-shot acquisition of the test object C, which is the same geometric grid (1µm x 1µm) 
with two square references (slightly larger than the object) just beside it, which offer four 
independent reconstructions in one acquisition. Please refer to the caption of Fig. 3.28 for the 
detailed explanation of the reconstruction geometry. The measured 5-shot diffraction pattern 
has 2.9 x 108 photons and the single-shot acquisition has 5.9 x 107 photons. The ratio between 
the measured photons is ~ 4.9. The standard deviation of the readout noise is 8.8 ADU and 
9.6 ADU respectively for the single-shot and the 5-shots detections, with a same average of 
33 ADU. Both images are recorded within a window size of 1200 x 1200 non-binning pixels 
and the readout frequency is 1MHz. Comparing the analysis result (Table 3.2) of the 1-shot 
and 5-shot best reconstructions (Fig. 3.28 second row), which correspond to the highest 
reconstruction contrast, the photon-limited and mixed-noise pixels are increased by 3.4 and 
the SNRr is increased by 1.5. Applying the Equation 3-6, we can get following equations: 

𝑆𝑁𝑅!_!"#$%&!!!!" =
𝑆!

𝑃! + 𝐿!
= 2.95 

𝑆𝑁𝑅!_!"#$!!!!" =
𝑆!

𝑃! + 𝐿!
= 4.51 

where S is the signal energy, P and L are noise energy contributed respectively by the photon 
noise and the readout noise. And we have 𝑆! = 5𝑆!  and 𝑃! = 5𝑃! . Since the readout 
frequency and hardware binning ratio is the same, we have 𝐿! = 𝐿!. Thus  

𝑃!
𝐿!
= 1.31 

𝑃!
𝐿!
= 6.55 

The single-shot acquisition has equivalent photon noise and readout noise contributions in its 
reconstruction, while the 5-shot reconstruction is mainly influenced by the photon noise. The 
disadvantage of the accumulation is the eventual blur of the diffraction pattern due to the 
instable beam position, and radiation damage for certain samples.   
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Filter 

diameter 
𝑝ℎ𝑜𝑡𝑜𝑛 +𝑚𝑖𝑥
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

 
𝑝ℎ𝑜𝑡𝑜𝑛 +𝑚𝑖𝑥

𝑡𝑜𝑡𝑎𝑙
 SNRr 

Theoretical 
resolution 

Reconstruction 
contrast 

1-shot 600 pixels 0.12 2.73% 2.95 75 nm 0.61 

5-shot 800 pixels 0.26 9.38% 4.51 56 nm 0.75 

Table 3.2. Analysis results of 1-shot and 5-shot best reconstructions. 
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Fig. 3.28. Diffraction patterns (first row) and best reconstructions (second row) for single-shot 
(left) and 5-shot (right) detections of object C. The SEM image of object C is presented at the 
left-top. (third row) Reconstruction geometry: the yellow, red, blue and green rectangles 
(object with one square reference) are 4 independent reconstructions related to the 4 corners 
of the two orange hollow-squares (object centered on the corner). The orange full-square 
presents the object position. Yellow and red reconstructions are in the same direction, and the 
green and blue ones in the other. There is signal superposition of yellow reference and red 
object at B3, of green reference and blue object at C2, and of red reference and blue reference 
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at C3. Moreover, the C1 and C2 corners are Dirac functions of opposite sign (+ and -) after 
derivation (refer to slit reference). Therefore, we observe the positive and negative 
reconstructions at C1 and C2 in the experimental results.       

 

III.9b	
  HERALDO	
  reconstruction	
  and	
  noise:	
  Detection	
  stage	
  
optimization	
  with	
  hardware	
  binning	
  
 

The detection can also be optimized with the hardware binning option. The test object D (Fig. 
3.29. top left) has the same geometric grid with one square reference close to the object. The 
total test object size is ~ 2µm x 2µm, and the reference can provide three independent 
reconstructions. Considering the sampling ratio limit, I choose the hardware binning ratio of 
1x1, 2x2 and 3x3. The detected diffraction patterns are presented in Fig. 3.29, with a zoom-in 
of a region (white square) where signals are confused with noises in 1x1 binning and are then 
emphasized in 2x2 and 3x3 binning. Note that the measured diffraction signal is 2.7 x 107, 1.5 
x 107 and 1.2 x 107 photons respectively for 1x1, 2x2 and 3x3 binning. With less diffracted 
signals, hardware binning is still able to extract the signal out of the noise, which can then be 
used for the image reconstruction. The readout noise for different hardware binning ratio is 
similar, with measured values of 8.8, 10 and 9.6 respectively for 1x1, 2x2 and 3x3 binning 
ratio.    

 

Fig. 3.29. Diffraction patterns for 1x1, 2x2 and 3x3 binning ratio (from left to right) of the test 
object D (top left). The zoom-in pictures correspond to the white square in each image and the 
red circle indicates the region where signals are extracted using higher binning ratio. The 
window size for each hologram (from left to right) is respectively 1200 x 1200 pixels, 600 x 
600 pixels and 467 x 467 pixels. All the images are presented with the same color scale.  

The reconstructions are realized with the same low-pass filter diameter of 400 pixels for 1x1 
binning, 200 pixels for 2x2 binning and 130 pixels for 3x3 binning. The results (Fig. 3.30) 
present clear improvement of the SNRr when applying a higher binning ratio. Since the SNRr 
does not take account of the resolution, I plot the profile at the white line position for each 
reconstruction to compare the achieved resolution (Table 3.3). The contrast is improved by 
hardware binning but the effect is not dramatic. Comparing the (photon-limited + mixed-
noise)/total pixels percentage, 3x3 binning ratio does not extract more signal from noise and 
in this case, the 2x2 binning is enough. Note that the three horizontal slits of the object are not 
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resolved in any of the three reconstructions. 

 

Fig. 3.30. Reconstructions of the diffraction patterns in Fig. 3.29 with 1x1, 2x2 and 3x3 
binning ratio (from left to right). The plotted profile corresponds to the white line position. 
All images are presented with the same color scale.  

 

  Analysis 

Binning 
Filter 

diameter 
𝑝ℎ𝑜𝑡𝑜𝑛 +𝑚𝑖𝑥
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

 
𝑝ℎ𝑜𝑡𝑜𝑛 +𝑚𝑖𝑥

𝑡𝑜𝑡𝑎𝑙
 SNRr 

Theoretical 
resolution Contrast 

1x1 
400 

pixels 0.11 1.14% 2.55 113 nm 0.64 

2x2 
200 

pixels 0.33 2.76% 4.8 113 nm 0.68 

3x3 
130 

pixels 0.35 2.80% 7.55 113 nm 0.69 

Table 3.3. Analysis results of 1x1, 2x2 and 3x3 binning ratio reconstructions, with the same 
low-pass filter diameter (400 non-binning pixels).        

 

After tuning the different parameters, the best reconstruction is achieved with a filter diameter 
of 200 pixels on 3x3 binning diffraction pattern (Fig. 3.31 white square). The measured 
reconstruction contrast is 0.67 and 0.71 for horizontal and vertical directions, with SNRr = ~ 3. 
All the components of the object is resolved, especially the three slits and the three small 
holes.  

This example shows clearly the signal improvement by using a proper hardware binning. 
Higher binning ratio does not always lead to more signals extracted from noise. And, one 
should always remember to respect the sampling ratio of the diffraction pattern. The other 
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advantage of hardware binning is to reduce the long readout time when using 100kHz readout 
frequency.  

 

 

Fig. 3.31. Best reconstruction (white square) realized with a low-pass filter of 200 pixels 
diameter on the 3x3 binning diffraction pattern.  

 

III.9c	
  HERALDO	
  reconstruction	
  and	
  noise:	
  Detection	
  stage	
  
optimization	
  with	
  the	
  readout	
  frequency	
  
 

We consider now the test object A (Fig. 3.18). The diffraction patterns recorded with 1 MHz 
and 100 kHz readout frequencies are shown in Fig. 3.32. The two diffraction patterns have 
equivalent signals (~ 2 x 107 photons). The readout noise’s standard deviation is 10 ADU and 
4ADU respectively for 1 MHz and 100 kHz, with the same noise average (~ 30 ADU). 
Images are taken with 2x2 binning ratio and a window size of 600 x 600 pixels. 
Reconstructions (Fig. 3.33) are made with a low-pass filter of respectively 300, 400 and 500 
pixels diameter. According to the analysis results (Table 3.4, correspond to the 
reconstructions in the yellow square), SNRr is increased by a factor of ~ 1.4 for 100 kHz 
reconstructions, with about 2 times more photon-limited and mixed-noise pixels. The 
resolution (contrast) is also better with 100 kHz readout frequency. Moreover, the 
reconstructions associated to another reference (in green square), which is difficult to be 
resolved (due to bad illumination of the reference), are better reconstructed at a 100 kHz 
readout frequency.      
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Fig. 3.32. Diffraction patterns taken with 100 kHz (a) and 1 MHz (b) on test object A. 

 

 

Fig. 3.33. Reconstructions of the diffraction patterns obtained at 100 kHz (first row) and 1 
MHz (second row). They are made with filter diameters of 300, 400 and 500 pixels (from left 
to right). Green and yellow squares are associated to different square reference. The 
reconstruction contrast in Table 3.4 is measured at the white line position.  
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  Analysis 

Frequency 
Filter 

diameter 
𝑝ℎ𝑜𝑡𝑜𝑛 +𝑚𝑖𝑥
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

 
𝑝ℎ𝑜𝑡𝑜𝑛 +𝑚𝑖𝑥

𝑡𝑜𝑡𝑎𝑙
 SNRr 

Theoretical 
resolution Contrast 

1 MHz 
300 

pixels 0.36 6.73% 3.83 75 nm 0.66 

100 kHz 
300 

pixels 0.91 11.42% 5.1 75 nm 0.65 

1 MHz 
400 

pixels 0.19 7.24% 2.24 56 nm 0.71 

100 kHz 
400 

pixels 0.47 13.54% 3.33 56 nm 0.76 

1 MHz 
500 

pixels 0.12 7.76% 1.7 45 nm 0.59 

100 kHz 
500 

pixels 0.30 15.25% 2.45 45 nm 0.71 

Table 3.4. Analysis results of the reconstructions. 

 

III.9d	
  HERALDO	
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  and	
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  other	
  reference	
  
configurations	
  	
  
 

We have tested other HERALDO reference configurations. The test object E (Fig. 3.34E) is a 
geometric grid (1 µm x 1 µm) located in a large square (2 µm x 2 µm), which offers three 
independent reconstructions. The test object F (Fig. 3.34F) has the same geometric grid with 
two right-angled and isosceles triangles (1 µm x 1 µm), which also offers three independent 
reconstructions associated to their corners. Note that the reconstruction associated to the right 
angle is the same as the one associated to a square reference. Diffraction patterns of the test 
object E is taken within a window size of 1200 x 1200 pixels without binning (Fig. 3.34a) and 
600 x 600 pixels with a 2x2 binning ratio (Fig. 3.34b). The measured diffractions have a 1.5 x 
107 photons and 2.1 x 107 photons with and without binning, respectively. Reconstructions are 
made with the same low-pass filter diameter: 400 pixels for non-binning and 200 pixels for 
2x2 binning. Similar to previous results, the 2x2 binning provides a better reconstruction 
quality. In fact, two reconstructions of the non-binning diffraction pattern are not clearly 
resolved and the measured contrast of the other one is only 0.48, compared to 0.5 ~ 0.63 for 
the three reconstructions of 2x2 binning. 

The test object F is imaged with a lower flux harmonic beam than that of the object E (Fig. 
3.34) The 10-shot acquisition of the object F contains about 8 x 107 photons. It is due to the 
low optimization of the harmonic generation, probably caused by the position deviation of the 
IR laser beam before the focusing lens. In fact, IR beam properties are influenced by its 
propagation in the air before the focusing lens. The beam position at the lens plane is 
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influenced by the room temperature, which is supposed to remain stable and cool during the 
experimental time. However, sometimes the strong temperature variation outside the building 
influences the room temperature that is tuned by air-conditioners (especially during the 
summer). This problem is later corrected by the laser modal filter with a servo system. The 
diffraction pattern is recorded within a window size of 1300 x 1300 pixels without binning. 
The readout noise is 9.5 ADU (standard deviation). Reconstructions from different references 
(blue and green square) are presented in Fig. 3.34f-g. The reconstruction quality is not 
comparable to the 5-shot acquisition of test object C (Fig. 3.28), probably due to a 
combination effect of low flux and low coherence harmonic beam generated in non-optimized 
conditions.   

 

Fig. 3.34. The test object E is reconstructed from a single-shot acquisition (b). The 
reconstructions (e) of 2x2 binning ratio present better quality than non-binning ones (d). The 
test object F is reconstructed with 10-shot acquisition (c). The reconstructions in green (f,h) 
and blue squares (f,g) are respectively associated to the references in green and blue square in 
the SEM image.  
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III.9e	
  HERALDO	
  reconstruction	
  and	
  noise:	
  conclusion	
  	
  
 

We have first tested HERALDO with one-dimensional reference (slit) and two-dimensional 
reference (square). The step-to-step reconstruction process shows that the main obstacle for 
our experiment is the amplified readout noise located at high spatial frequency region. The 
amplification is introduced by the multiplicative filter applied on the diffraction pattern in the 
Fourier space, which corresponds to a differential operator for the autocorrelation in object 
space. The amplified noise then degrades significantly the reconstructions after the invers 
Fourier transform. Thus, a low-pass filter in the Fourier space is required to eliminate the 
amplified noise. The analysis of different type pixels (photon-limited, mixed-noise and 
readout-limited pixels) presents the effectiveness of the low-pass filter with different diameter 
in Fourier space. In object space, the SNRr and the contrast of the reconstruction characterize 
the reconstruction quality and the resolution. However, the latter is limited by the low-pass 
filter. Secondly, we have investigated the detection parameters (hardware binning, readout 
frequency, accumulation) to reduce the readout noise in the diffraction patterns. Different 
object-reference positions for two-dimensional references have been tested. In summary, the 
square reference does not provide higher reconstruction ability, compared to the slit reference. 
Due to the higher amplification of the readout noise by the former, the slit reference is a better 
choice for HERALDO technique on our harmonic beamline. However, the square or two-
dimensional references are probably better for FEL facilities. Indeed, since the radiation flux 
and the photon energy are much higher, the diffraction pattern will be close to photon-limited. 
Compared to the FTH, which can also be considered as a special case of HERALDO, the 
latter presents higher reconstruction quality due to the signal amplification by the extended 
reference.  

 

III.10	
  CDI	
  reconstructions	
  of	
  HERALDO	
  objects	
  
 

To compare the reconstruction ability of CDI and HERALDO, we have made test objects of 
the geometric grid without any references. The diffraction pattern of such object (Fig. 3.35a) 
has much lower signal (2 ~ 4 x 106 photons) than HERALDO objects, which has additional 
signal contribution from the extended references. The diffraction surface of the CDI 
geometric grid (1 µm x 1 µm) is 8 times smaller than the lambda object (3 µm x 2.8 µm). It 
has similar surface as the Young’s double slits (2 x 1.5 µm x 0.3 µm) but with more complex 
structures. In this case, the phase retrieval code is not able to converge. 

 Meanwhile, the phase retrieval code succeeds in reconstructing the HERALDO geometric 
grid with its references. The test object is similar to object A (the geometric grid is 1 µm x 1 
µm large), but with fabrication default for the square references (the material inside the square 
is not completely removed) (Fig. 3.35d). It limits the HERALDO reconstruction from the 
corner close to it but in principle should not degrade the reconstruction by the phase retrieval 
code. 

Fig. 3.35 presents two reconstructions (e,f) corresponding respectively to single-shot 
diffraction patterns containing 2.3 x 107 photons (b) and 1.1 x 107 photons (c). Diffraction 
patterns are taken within a window size of 2048 x 2048 pixels without binning and at a 
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readout frequency of 1 MHz. The difference of the reconstruction quality is due to the 
different signal strength. In the better reconstruction (Fig. 3.35e), the geometric grid is well 
resolved with a contrast equivalent to HERALDO results, and the defaults of the two 
references has also been reconstructed. Note that the curved edge at the left side of the square 
above the geometric grid is the reconstruction of the fabrication default. The little space 
between the non-removed material and the square edge in the SEM image is not resolved in 
the reconstruction. The noise in the red square of Fig. 3.35f is due to the ambiguity of the 
phase retrieval code. During the iterative process, the reconstructions of each iteration 
switched between three configurations so that the geometric grid is sometimes at right bottom, 
sometimes at left top and sometimes at both positions. With more diffraction signals, the code 
is able to go beyond this problem, as presented in the better reconstruction. Note that both 
CDI reconstructions use high software binning (5x5 for f and 4x4 for e) to get higher SNR 
(associated to the photon noise), which means that the extraction of the diffraction signal is 
more difficult in CDI process.    

 

Fig. 3.35. (a) Single-shot diffraction pattern of CDI geometric grid. (b,c) Single-shot 
diffraction patterns of the HERALDO geometric grid. (d) SEM image of the sample. (e,f) 
reconstructions by phase retrieval code. The reconstruction (e) and (f) are respectively 
coherent averages of 37 and 50 reconstructions after 1000 iterations.  

The following example is another demonstration of the CDI reconstruction of a HERALDO 
object. The test object (Fig. 3.36a) is “lambda” (1.3 µm x 1.8 µm) with two slits slightly 
larger than the lambda. The slit width is 150 nm. The single-shot diffraction pattern has ~ 1.2 
x 107 photons, recorded within a window size of 2048 x 2048 pixels without binning. The 
CDI reconstruction (Fig. 3.36b) shows equivalent quality as the HERALDO reconstructions 
(Fig. 3.36c,d). The former is made with 4x4 software binning and the latter is made with low-
pass filter of 400 pixels diameter. Note that in the CDI reconstruction, the lambda looks like a 
superposition of a vertical slit and itself. This is also due to the ambiguity of the phase 
retrieval code. Indeed, the position of the vertical slit is difficult to identify during the 
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iteration process, since the center part of the lambda has a similar geometry as the vertical slit. 
It has no problem to identify the horizontal slit because no similar structure presents in the 
“lambda” object. The resolution of the CDI reconstruction is estimated to be ~ 115 nm by the 
PRTF, which is equivalent to the HERALDO ones (10%-90% criterion). From these 
examples, we can conclude that extended references amplify the signals diffracted from the 
object that can help the convergence of the phase retrieval code. Moreover, the latter need 
higher SNR of the diffraction pattern to reconstruct the object than the HERALDO process. 
However, CDI does not require a reference, which is an advantage for certain applications.    

 

Fig. 3.36. (a) Single-shot diffraction pattern of the HERALDO object (inset). (b) CDI 
reconstruction result, which is the average of 50 reconstructions after 1000 iterations. (c,d) 
HERALDO reconstructions. 
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III.11	
  Conclusion	
  
         

In this chapter, I have presented the experimental results of CDI, HERALDO and FTH 
techniques. In the CDI section, coherence requirement has been discussed and analyzed 
quantitatively using Young’s double slits diagnostics. I showed that the reconstructions are 
not converging for a contrast of interference fringes lower than 0.5. In the second part, the 
HERALDO process has been investigated step-by-step. Our finding is that the readout noise 
is the main obstacle in our experiments. A low-pass filter is the solution for this problem, 
which compensate the amplification of the readout noise by the multiplicative filter. Various 
demonstrations show that the reconstruction quality can be improved by the optimization of 
the detection stage and a carefully chosen low-pass filter diameter. The comparison between 
FTH, one-dimensional and two-dimensional HERALDO shows that the slit reference is the 
best holographic configuration for our harmonic beam, according to its photon energy and 
photon flux properties. Finally, application of phase retrieval code on the HERALDO samples 
demonstrate that the extended reference amplifies the signals diffracted from the object. It 
also shows the higher requirement of SNR for CDI reconstruction compared to HERALDO. 
In conclusion, both CDI and HERALDO have their own advantage and default depending on 
the experimental conditions. This careful analysis presented here will guide us in choosing the 
best imaging technique for the imaging application of magnetic nano-domains (Chapter IV).    
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Paper	
  III	
  
 

Paper III reports the experimental results and the analysis of the HERALDO test object “φ”. It 
is the first demonstration of the HERALDO using a table-top harmonic source. The spatial 
resolution, around 110nm, is obtained from a single ultrafast shot. The equivalent 
reconstruction capability compared to the CDI gives us an alternative choice for imaging 
applications. The biggest advantage is the non-ambiguous, fast and direct reconstruction from 
the measured diffraction pattern. If we use a two dimensional extended reference the 
resolution is, in theory, no longer limited by the reference size. Our experiment shows that the 
fabrication of the references can limit the quality of holographic reconstruction. Now, we 
have two reliable imaging configurations (CDI and HERALDO) for applications in various 
scientific areas.  
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In the context of x-ray lensless imaging, we present a recent approach for Fourier transform holography

based on the use of extended references. Major advances shown here rely on a high signal efficiency and

on the direct image reconstruction of the object performed by a simple linear derivative. Moreover, the

extended holographic reference is easy to manufacture and can be applied to a variety of imaging

experiments. Here we demonstrate single-shot imaging with a table-top, laser-based coherent soft x-ray

source. A spatial resolution of 110 nm was obtained with an integration time of 20 fs.

DOI: 10.1103/PhysRevLett.105.093901 PACS numbers: 42.40.�i, 42.30.Wb, 87.59.�e

Lensless imaging using coherent x rays has demon-
strated great potential in recent years especially with new
ultrafast coherent x-ray sources, the free electron laser
(FEL) [1–4], and high harmonics generation (HHG)
[5–7]. This technique has attracted much attention due to
its application in ultrafast nanoscale imaging. Indeed, these
bright flashes of x-ray light can capture snapshots of dy-
namical processes even in dense matter and at a meso-
scopic scale [4]. In this context, various lensless coherent
imaging schemes have been explored using x rays, includ-
ing, for example, coherent diffractive imaging [8], keyhole
diffractive imaging [9], and Fourier transform holography
[10–12].

Imaging without image forming optics is based on the
measurement of the intensity diffracted from an object
illuminated by a coherent x-ray beam. In this technique
the two-dimensional complex-valued object transmissivity
can be retrieved from the measured far-field scattered
amplitude using either iterative phase retrieval or direct
holographic techniques. For Fourier transform holography
(FTH) a point source in the vicinity of the object generates
a reference wave that interferes with the object’s scattered
wave at the detector plane [10–13]. Thus, the phase
and amplitude information of the object are encoded in
the intensity of the holographic diffraction pattern, the
hologram.

One advantage of FTH is that the complex-valued image
is retrieved in a noniterative and unambiguous fashion with
a simple reconstruction algorithm, namely, an inverse
Fourier transform of the hologram. This is a valuable
alternative to computationally intensive iterative algo-
rithms which attempt to solve the phase retrieval problem
of reconstructing an image from coherent diffractive
imaging (CDI) data [8,14]. The possibility of reliably
retrieving a closed-form, unique solution makes hologra-
phy an attractive lensless configuration and holds potential
in the recent context of ultrafast single-shot imaging using

an x-ray free electron laser or a table-top high harmonic
source.
In the x-ray regime, various schemes have been pro-

posed to go beyond the limitations imposed in standard
holography, as, for example, the use of complicated refer-
ences [15], large references [16], or multiples referen-
ces [17]. More recently a holographic scheme based on a
uniformly redundant array of references was successfully
demonstrated at the Hamburg FLASH soft x-ray free elec-
tron laser [18]. Although this scheme increases the signal
to noise ratio (SNR) of the reconstruction, the direct in-
version of the hologram relies on quantitative knowledge
of this reference structure. The latter is significantly af-
fected by the difficult manufacturing process. Such an
approach is also difficult to scale down to fine resolution
accessible at hard x-ray wavelengths where a reference and
a reconstruction procedure robust to manufacturing errors
should be used.
In standard FTH there is a compromise in the determi-

nation of the size of the reference point source between the
two requirements: (i) the resolution given by the reference
size, and, (ii) the flux through the reference for observing
interference fringes with a good contrast [15,16]. The
hologram fringe visibility depends on the relative ampli-
tudes of the fields diffracted by the object and the refer-
ence, respectively, and is clearly maximum when these
amplitudes are equal. The use of extended references
allows increasing the fringe visibility, especially at larger
scattering angles (which correspond to higher resolution)
where the scattering signal may be weak. The hologram is
subsequently more efficiently recorded than in standard
FTH. This improves the image reconstruction with sub-
stantially enhanced quality and resolution as compared
with a point source reference.
In this Letter we demonstrate single-shot femtosecond

x-ray holography using a recently developed approach;
holography with extended reference by autocorrelation
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linear differential operation (HERALDO) [19–21]. This
lensless imaging scheme preserves the deterministic recon-
struction properties of FTH. The analytical uniqueness of
the solution directly retrieved as a complex-valued image
from the hologram. HERALDO is a more general approach
to FTH, using boundary waves of more general extended
objects as holographic references. The reconstruction
procedure is robust and simple to implement. It is based
on the application of linear differential operators to the
field autocorrelation, i.e., the inverse Fourier transform of
the hologram. In our setup, the extended references used
around the nanoscale test object ‘‘’’’ are linear slits [see
Fig. 1]. The directional derivative (in the direction of the
slit) is applied during the reconstruction process, which
then provides two independent reconstructions of the ob-
ject ‘‘’’’, each associated with the slit extremities [Figs. 1
and 2]. As in FTH, each reconstruction has an associated
twin image that does not provide additional information.
The HERALDO image processing is indicated by the
d
d!F�1fhologramg symbol in Fig. 1.

The test object and the linear reference slits were pat-
terned using a focused ion beam at a resolution of about 20
nanometers on a freestanding Si3N4 membrane of 225 nm
thickness. A 50 nm layer of gold was deposited on the
membrane so that the sample has a pure amplitude trans-
mittance. The test object ‘‘’’’ has a 2 �m� 1:7 �m over-
all size, with 200 nm to sub-100 nm details [Fig. 2(a)]. The
horizontal and vertical reference slits have a width of,
respectively, 130 and 145 nm. The two slits are slightly

longer than the object dimensions, and they are etched at
sufficient distance from the object to satisfy the separation
conditions for a holographic reconstruction [19]. Each
reference slit has a scattering area of about �0:3 �m2

which is about 1=3 that of the object.
For the experiment, the sample was illuminated with the

25th harmonic (� ¼ 32 nm) of the table-top infrared fem-
tosecond laser LUCA (Laser Ultra Court Accordable) at
the CEA-Saclay research center, France. The source deliv-
ers up to 4� 1010 photons (0:25 �J) per pulse, within a
spectral bandwidth �=�� ¼ 150 and �20 fs pulse dura-
tion [5]. The soft x-ray beam transport and focalization has
been optimized using an x-ray wave front sensor [22].
Typically, 2� 109 photons hit the sample within a focal
spot of 5 �m in diameter, corresponding to an intensity
of �1011 W=cm2. The transverse and longitudinal coher-
ence lengths at the sample are �10 �m and �5 �m,
respectively. These are well within the requirements for
holography.
We measured the far-field diffraction pattern of the

sample exit wave, the hologram, using an x-ray CCD
camera [Fig. 1] placed at a distance z ¼ 20 mm from the
sample. The full CCD chip contains 2048� 2048 square
pixels with a size p ¼ 13:5 �m. The number of incident

FIG. 1 (color online). Schematic view of the HERALDO
experimental setup. Hologram acquisition from sample (‘‘’’’
object þ reference slits) scattering using a soft x-ray coherent
high harmonic beam at 32 nm wavelength. The reconstruction is
straightforwardly obtained by computing the directional deriva-
tive along the reference slit direction (red arrow) of the inverse
Fourier transform of the hologram (i.e., the autocorrelation of the
sample transmission). The reconstruction process is symbolized
by the operator d

d!F�1fhologramg.

FIG. 2 (color online). Image reconstruction. (a) Scanning elec-
tron micrograph (SEM) of the sample showing the ‘‘’’’ test
object and the two references slits (2:1 �m slit length). (b) Field
autocorrelation given by the inverse Fourier transform of the
hologram. The four cross-correlations of the ‘‘’’’ object with
the references surrounds the central part, as well as the cross-
correlation of the two references slits. (c),(d) Numerical deriva-
tives of the field autocorrelation along the two slit directions
(indicated by red dotted and green dashed arrows) which lead to
the reconstruction of the ‘‘’’’ object. We obtain two independent
images from each extremity of the slit references.
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photons diffracted by the sample and detected by the CCD
(quantum efficiency of 40% at 32 nm) is about�2� 107 in
single shot.

A typical measured hologram is shown in Fig. 3(d). We
clearly see the scattering from the two reference slits in the
vertical and horizontal axes of the hologram which shows
coherent interference with the field scattered from the
object. The field autocorrelation [see Fig. 2(b)] is com-
puted from the single-shot hologram through an inverse
Fourier transform. The image reconstructions shown in
Figs. 2(c) and 2(d) are obtained by computing the deriva-
tives of the field autocorrelation. The design with 2 slits,
respectively, horizontal and vertical, provides 4 indepen-
dent reconstructions, one for each slit extremity, and 4 twin
images. Notice that, next to the reconstructed object, each
slit end reconstructs also the other reference slit.

From Figs. 2(c) and 2(d) and the field autocorrelation,
we get insight into the x-ray intensity distribution on the
sample. In particular, the 4 independent reconstructions of
the object and the reference exhibit different contrasts,
higher for derivation along the horizontal than the vertical
slit. Moreover, the references are better illuminated
on their inner part (e.g., right side of horizontal slit).

This inhomogeneous contrast is attributed to the slightly
different patterns (slightly different widths) of the two
slits, and a decreasing x-ray intensity from the center to
the sample periphery. The object however is uniformly
illuminated.
In the reconstruction process the hologram was first

filtered to select the spatial frequencies with sufficient
SNR. A polynomial product was then applied in the
Fourier domain [19,20]. This operation, equivalent to a
directional derivative in the object space, facilitates differ-
entiation at arbitrary angles. The image quality was im-
proved by subpixel registration [23] and by averaging of the
4 individual complex-valued reconstructions to increase the
SNR [17]. Care was also taken to match a global phase
between the reconstructions to maximize the signal con-
structive interference. The final high quality reconstructed
image is shown in Fig. 3(a). Using a 10% to 90% edge
transition criterion on different edges of the object [see
Fig. 3(b) for a typical plot profile], we determined a spatial
resolution of 110 nm (�3:4�) for the single-shot image.
This is in good agreement with the SNR limitation of our
measurement at the high scattering angles. The equivalent
half period resolution of 110 nm corresponds to a maxi-
mum spatial frequency of 4:55 �m�1 in the hologram (i.e.
a half scattering angle of 144 mrad) above which the
scattered signal cannot be extracted due to the noise.
We have performed multishot reconstruction [Fig. 3(c)]

by accumulation of 10 shots of 20 fs duration each (the
x-ray CCD camera exposure was set to half a second)
[see recorded data on Fig. 3(d)]. This was possible because
the single-shot exposure is below the damage threshold of
the sample. We have estimated, with the multishot recon-
struction, the resolution limit given by the manufacturing
of the feature size of the reference structures. Using the
same resolution criteria as the single-shot we obtained
a resolution of 80 nm for the multishot reconstruction
[Fig. 3(c)]. Note that the holographic fringes are well
resolved and that the scattered signal is observed at a
spatial frequency up to 7:63 �m�1. This is above the
spatial frequency of 6:25 �m�1 (equivalent to 80 nm reso-
lution in the object plane). Practically, the manufacture
resolution limit can be estimated by calculating the point
spread function (PSF) of the reconstruction using the de-
rivative of the scanning electron micrograph (SEM) image
of the slit. This gives us an equivalent resolution limit of
80 nm that is the limit imposed by our HERALDO refer-
ence design. We conclude that the resolution for 10 shots
acquisition is limited by the slit width designed for the
single-shot experiment. But this setup is versatile so that,
beyond this experimental demonstration, the width of the
reference slit can be easily adjusted to various experimen-
tal requirements.
This work enables an efficient future use of holography

to capture snapshots of ultrafast phenomena at a nanometer
scale using harder x rays. This technique goes beyond the

FIG. 3 (color online). Modulus of the final reconstructed im-
age obtained by averaging the 4 independent reconstructions of
(a) single shot and (c) 10 shots acquisition. The scale bar is
200 nm and pixel size is 23 nm. (b) Plot profile of the single shot
(red line) and 10 shots (blue line) results showing, respectively, a
resolution of 105 and 74 nm. (d) Measured hologram of the 10
shots acquisition displayed in logarithmic scale on a 720� 720
pixels square which corresponds to 7:63 �m�1 maximum spatial
frequency.
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limitation imposed by conventional Fourier transform ho-
lography, in particular, because of the high signal contri-
bution of the reference and effective noise filtering (espe-
cially for Poisson limited data) from the reconstruction
procedure. The potential for this technique for higher
resolution lies in its ability to be scaled down to shorter
wavelength. Higher resolution can be obtained by using
crystal edges, carbon nanotubes, or metallic nanowires as
references to image viruses, cells or nanostructures. For
these configurations having a method that is robust against
reference defects and nonuniform illumination will be
crucial. Our results show that HERALDO has the required
robustness and gives good quality reconstructions under
significantly inhomogeneous reference illumination and
defects. Moreover, the combination of HERALDO with
the design of a very large scattering reference [19] could be
appropriately used to image weak scatterers such as bio-
molecules [24,25]. The single-shot demonstration of
HERALDO using a soft x-ray femtosecond source also
opens other possibilities. First, our femtosecond x-ray flash
can take a snapshot of the object before radiation damage
occurs. Second, dynamical imaging of nonreproducible
ultrafast phenomena at the nanoscale can be performed.
The noniterative and unambiguous image reconstruction
process makes HERALDO robust to capture space and
time amplitude and phase variations associated to complex
physical or biological processes. Investigation of ultrafast
phase transitions in mesoscopic systems, ultrafast spin
reversals of magnetic nanodomains, or large molecule
rearrangements in biological environments are some ex-
amples of accessible dynamics. Shorter HHG wavelength
down to the water window and magnetic L edges can be
used for such applications [26–28].
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Abstract 
 
We have recently demonstrated single-shot femtosecond x-ray holography of 110 nm spatial 
resolution [1], using a recently developed approach: Holography with extended reference by 
autocorrelation linear differential operation (HERALDO) [2,3]. This lens-less imaging 
technique is a more general approach to the Fourier transform holography (FTH), which 
provides fast, direct and non-ambiguous reconstructions. One of the major advantages is that 
the reconstruction resolution is no longer limited by reference size as in FTH. Moreover, 
HERALDO leads to higher signal efficiency than the classical coherent diffractive imaging 
(CDI) and the FTH due to the signal amplification using extended references. For all the lens-
less imaging techniques, the signal-to-noise ratio (SNR) is one of the main issue for 
reconstruction quality. Due to the noise-amplification by the linear differential operator of 
HERALDO, the SNR has significant influences on the reconstructions of diffraction patterns 
that are readout noise limited, such as single-shot acquisitions on harmonic beamline. Here, 
we demonstrate the step-by-step analysis of the HERALDO reconstruction process, regarding 
the SNR, the different noises and different configurations of the extended references. With the 
comparison between the various configurations of FTH and HERALDO, we conclude that the 
one-dimensional slit reference is the optimized configuration for readout noise limited 
experiments.      
 
[1] D. Gauthier et al., Phys. Rev.Lett. 105 093901 (2010) 
[2] M. Guizar Sicairos and J. R. Fienup, Opt. Express 15 17592 (2007)  
[3] M. Guizar Sicairos and J. R. Fienup, Opt. Lett. 33 2668 (2008) 
 

 

Note 
 

This article is in preparation. The experimental results, analysis and discussions, which will 
be presented in this article, are included in the holographic techniques section of Chapter III. 
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Chapter	
  IV	
  	
  
Application:	
  Magnetic	
  dynamics	
  
 

IV.1	
  Introduction	
  	
  
 

The demonstrations of coherent diffraction imaging techniques (CDI and HERALDO) on 
simple test objects in the previous chapter have shown robust image reconstruction quality 
and the potential of resolving concrete problems in various scientific areas from physics to 
biology. The optimization and standardization of the high flux harmonic beamline (Chapter II) 
provide a reliable high soft X-ray flux with a stable beam quality (intensity, pulse duration, 
spatial profile, beam position, etc.) from shot to shot, all combined with a natural 
synchronization with the IR pump laser. The HHG beamline competes well with FEL 
facilities, which suffer from synchronization jitter and instabilities of the beam quality. We 
present here the first imaging application of our harmonic beamline: the study of 
demagnetization dynamics of ferromagnetic materials with magnetic nanodomains structure.  

The first demonstration of imaging magnetic nanodomain structure using coherent X-rays has 
been achieved by S. Eisebitt and coworkers at the synchrotron facility in DESY, Germany [1]. 
In their work (see Fig. 4.1a), the random (or labyrinthine) magnetic structure was 
reconstructed by FTH technique (see Chapter III, section…) using a soft X-ray beam at 778 
eV photon energy (wavelength = 1.59 nm), which corresponds to the L3 absorption edge of 
Co (Cobalt). Due to the magnetic resonance at this edge, the optical index is a natural contrast 
between spin up and down regions. The small angle scattering of the magnetic structure [2,3,4] 
forms a hologram (diffraction pattern) of a broad ring composed of individual speckles. The 
reconstruction (Fig. 4.1b) was obtained from accumulated diffraction patterns of a total 
exposure time of 500 seconds, having a good agreement with the scanning transmission X-ray 
microscopy (STXM) image. The spatial resolution is estimated to be 50 nm, which is limited 
by the size of the pinhole reference. The authors expected a single-shot imaging of such nano-
magnetic structure with upcoming XFEL facilities, which “will open the door for taking 
ultrafast movies of processes on the nanometer length scale”.     

This fascinating foreseen future of dynamic studies of nano-magnetism can lead to knowledge 
explosion on fundamental physical phenomena (such as spin dynamics and transport in such 
materials) and great technology progress for creating new social benefits (Fig. 4.2).  
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Fig. 4.1. (a) Scheme of the S. Eisebitt et al. experiment setup. The circularly polarized X-ray 
beam was firstly filtered by a pinhole to have sufficient spatial coherence. The light then 
illuminates the Co/Pt multilayer film and a pinhole reference. The diffraction pattern 
(hologram) was detected by the CCD camera located in far field. The STXM image of the 
magnetic sample is shown here. (b) The holographic reconstruction of the hologram. Pictures 
are extracted from Ref. 1.  

 

 

Fig. 4.2. Grand challenges in nano-magnetism related to various issues from new materials to 
computer technology, which can lead to economy boost and military technology enhancement. 
Picture extracted from Ref. 5.  

The nano-magnetism is a new emerging area, specific to magnetic structures having 
dimensions in the submicron range. This new era of research in magnetism, which is one of 
the oldest scientific domains, deals with the behavior of the spin-orbit (SO) interaction and 
exchange (EX) coupling occurring on femtosecond time scale (Fig. 4.3). This is much faster 
than the magnetic field. The study and controlling of such phenomena is thus not possible by 
traditional method (magnetic field). Since the first demonstration of demagnetization of a 
ferromagnetic Nickel film on a sub-picosecond time scale by a 60 fs laser pulse [6], 
manipulation and controlling of magnetization by ultrafast laser pulses has become a hot 
research topic. In 2007, C. Stanciu et al. have demonstrated the all-optical magnetization 
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reversal on a GdFeCo magnetic alloy sample by a single 40 fs laser pulse [7]. This opens up 
new routes in data storage or ultrafast information processing. While the progress made in 
time scale, the spatial resolution is still limited by the wavelength of the probing radiation 
with such visible-wavelength ultrafast laser. X-ray beams provided by synchrotron facilities 
are able to resolve nanometric spatial resolution, but suffered from relative poor time 
resolution (except slicing method which has the drawback of a very low photon number). 
Moreover a high number of X-ray probe photons is required to perform single-shot studies. 
The combination of the time and spatial resolution and high coherent photon flux can be 
achieved on powerful FEL facilities. Recently, nondestructive magnetic resonant scattering 
using single FEL pulse has been reported by C. Gutt et al. in 2010 [9]. The probing pulse 
intensity threshold has been investigated on Co/Pt multilayer samples on magnetic 
nanodomain structure.  

 

Fig. 4.3. Time scale of the magnetic phenomena, compared to magnetic field and ultrafast 
laser pulses. Picture extracted from Ref. 10. 

 

In 2009, C. La-O-Vorakiat et al. have demonstrated the first demagnetization study of a 
magnetic Permalloy grating using a table top HHG source [8]. However the signal had to be 
accumulated over thousands of shots preventing the observation of non-reversible processes. 
Single-shot probe is required to answer intriguing non-reversible phenomena in magnetism. 
Using our high flux harmonic beamline, we expect visualizing in a single flash the magnetic 
dynamic of the nanodomain structure with a high spatial resolution on a femtosecond time 
scale. In this context, three laboratories came together to take the fascinating challenge: the 
research group of J. Luning at Laboratoire de Chimie Physique-Matière et Rayonnement 
(LCPMR, Paris, France) is in charge of the magnetic sample fabrication and provide 
theoretical support of magnetism; the group of P. Zeitoun at Laboratoire d'Optique Appliquée 
(LOA, Palaiseau, France) is focusing on reversible phenomena studies using their high 
repetition but low flux harmonic source; and our research group aims on the single-shot 
magnetic resonant scattering for studying irreversible phenomena taking the benefits of our 
high flux harmonic beamline. This FEMTO-X-MAG project has been financially supported 
by the Agence Nationale de la Recherche (ANR, France).  
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IV.2	
  Magnetic	
  samples	
  
 

The first step in this project is to fabricate the magnetic samples. Since we aim at single-shot 
imaging of nanodomain structure, high flux harmonic beam is required. The L3 absorption 
edge of cobalt (778 eV) where magnetic contrast (about 50%) between spin up and spin down 
magnetic domains is not accessible with our harmonic beamline. Here we chose to probe the 
sample at the cobalt M2,3 absorption edge at 60eV. This photon energy can be easily reached 
with a significant flux using HHG in Argon or Neon gas (see following section).   

The magnetic samples are [Co/Pd] multilayers fabricated by magnetron sputtering technique 
[11] on a thin silicon nitride membrane. The ratio between Co and Pd and the total layer 
number are variable in order to study different combinations on our harmonic beamline 
(section IV.4c). The magnetic nanodomains structure presented on these samples can be 
prepared in two different configurations: labyrinthine or well-aligned stripes (Fig. 4.4), 
depending on the fabrication procedure. The black and white parts of the MFM images 
present nanodomains of opposite magnetic directions (spin up and down), which are normal 
to the film surface. The typical nanodomain width can vary from several tens of nanometers 
to about 100 nm depending on the material composition. We can adapt the sample size for 
different experiment geometry. For example, sample from 250 x 250 µm2 down to 50 x 50 
µm2 size have been tested during our experiments. Since the sample fabrication is 
reproducible, we can prepare numerous samples of same kind for irreversible studies. Note 
that samples can be easily demagnetized when approaching magnetic fields, such as magnet 
and hard disk. In addition, the oxidation of the materials can lead to sample’s deterioration. 
Therefore, the transportation and conservation of such samples should be carefully treated and 
keep in vacuum condition as far as possible.        

 

Fig. 4.4. Magnetic Force Microscopy (MFM, [12]) images of Co/Pd samples. The magnetic 
nanodomain structure can be prepared as labyrinthine (a) or well-aligned stripes (b) using an 
in-plane demagnetization procedure [23, 24].  

 

The origin of the resonant magnetic scattering is based on the interactions (SO and EX) 
occurring between the core levels and the valence bands [14]. As a consequence, the optical 
index (𝑛±) of the two nanodomains (with up and down magnetization directions) around the 
absorption edges of such materials are different, which can be described as:  

𝑛± = 1 − (𝛽 ± ∆𝛽) + 𝑖 𝛿 ± ∆𝛿  (Eq. 4-1) 
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where ∆𝛽 and ∆𝛿 represent respectively the real (dispersion term) and imaginary (absorption 
term) parts of the optical index difference between spin up and down nanodomains. Note that 
this technique is element-specific due its mechanism. The referential values of ∆𝛽 and ∆𝛿 for 
M2,3 edge of Cobalt are extracted from the Ref. 13 and drawn below (Fig. 4.5). It gives us a 
first insight of the target material and helps us for the experimental design.  

 

Fig. 4.5. The left column curves present the 𝛽 and 𝛿 evolutions around M2,3 edge of Cobalt 
for the two kinds of nanodomains. The right column curves are the subtraction results ∆𝛽 and 
∆𝛿 (i.e. the optical index difference). 

 

In the diffraction configuration of the High flux harmonic beamline, only one harmonic order 
can be reflected by the multiplayer coating of the parabola, and changing the harmonic order 
involves making a new parabola coating. Therefore, we have to select the best harmonic order 
for the single-shot imaging, which means having the strongest scattering signal. For this 
purpose, we have first accomplished spectrum studies of HHG in different configurations, and 
secondly magnetic scattering studies within a large spectral bandwidth (about 20 eV). In fig. 
4.6, I have plotted the evolution of the term (∆𝛽! + ∆𝛿!) that reflects the scattering efficiency 
of our sample. We observe that the 37th (57.35 eV) and 39th (60.45 eV) harmonics are close to 
the resonant peak of the cobalt’s M edge. The 35th (54.24 eV) and 41rst (63.55 eV) harmonics 
are already sitting on the sides of the peak and will have a low scattering efficiency.     
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Fig. 4.6. Possible harmonic candidates for single-shot imaging of our Co/Pd samples. The 
black curve is the evolution of the term (∆𝛽! + ∆𝛿!), which presents a peak around 60 eV at 
the M2,3 edge of Cobalt. The closest harmonic orders to this peak are H37 and H39.  

 

IV.3	
  HHG	
  spectrum	
  studies	
  	
  
 

The experimental setup for HHG spectrum studies is presented in Fig. 4.7. The optics 
chamber is switched to the “spectrum configuration” with a set of toroidal mirror (focal 
length of 0.75 m) and a plane grating. A movable photomultiplier tube (PMT) located at 1.5 
m from the Toroidal mirror detects the harmonic signals going through a thin slit. With the 
motorized rotation of the plane grating, we are able to record HHG spectra. When the 
photomultiplier tube is moved out, the XUV CCD camera located at 3.5 m from the toroidal 
mirror can detect the spatial profile of the harmonic pulses in far field. Al filters (150 nm 
thickness) are located at different positions in the beam path to cut the residual infrared light 
and reduce the harmonic beam intensity if necessary.         

 

Fig. 4.7. Experimental setup for HHG spectrum studies. HHG Spectrum and harmonic beam 
spatial profile can be measured respectively by the photomultiplier tube and the XUV CCD 
camera. 
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We first investigate the HHG in Argon gas for H37 and H39. We started with the optimum 
generation condition for H25 (Chapter II, section II.3) with the laser modal filtering. The 
PMT recorded the harmonics spectra by rotating the plane mirror to have a scan over a large 
spectral range from H49 (76 eV) to H13 (20.15 eV). Note that the Al filter transmission has a 
brief cut-off at around 17 nm (corresponding to H47) and a “plateau” from 17 nm to 40 nm 
(see Fig. 4.8). For an Al filter of 150 nm thick, the variation of its transmission from H45 to 
H35 is smaller than 5%. Considering the oxidation of the Al filter, the transmission of Al2O3 
layer also has small variations (less than 10%) for the same spectral range. Thus we can 
neglect the influence of the Al filter during spectrum studies. The following spectra presented 
in this section are either taken with one Al filter or none, which will be specified in the figures’ 
captions.     

 

Fig. 4.8. The transmission curves of an Al filter of 150 nm thick (left side) and an Al2O3 layer 
of 5 nm thick (right side), based on the database of the Center for X-ray Optics.  

In the Argon HHG spectrum, H37 and H39 are located in the cut-off region. The measured 
amplitude for H37 is greatly reduced by a factor more than 10 compared to H25, while H39 is 
in the noise (Fig. 4.9). Optimization of the generation parameters did not improve the signals 
of H37 and H39. Meanwhile, we have investigated the HHG in Neon gas whose harmonic 
conversion efficiency is in general an order of magnitude lower than in Argon, but has a 
farther extension of its plateau region. Fig. 4.10 shows a typical spectrum of HHG in Neon 
from H29 to H49, with generating parameters: gas cell length = 6.5 cm, gas pressure = 50 
mbar, beam aperture = 24 mm, laser energy = 23 mJ. Note that in this spectrum, the harmonic 
generation is not yet optimized for H37 and H39. As the gain coefficient of the PMT is 
different to the one for Argon spectrum, these two spectra are normalized to each other by a 
careful calibration of the PMT. As clearly shown in the comparison between Argon and Neon 
HHG generation (Fig. 4.10), signals of H37 and H39 generated in Neon are at least two times 
stronger than in Argon. Therefore, we decided to use Neon gas as generation medium for 
magnetic experiments.  
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Fig. 4.9. HHG spectrum in Argon (left side) present a cut-off regime. The zoom out of the cut-
off region (right side) shows a low H37 peak and that the H39 is within the noise. Both 
spectra are taken without Al filter. 

 

 

 Fig. 4.10. HHG spectrum in Neon (left side) presents a farther cut-off compared to Argon. 
The comparison between normalized Neon and Argon spectra (right side) shows stronger 
signals of H37 and H39 in Neon.   

 

In fact, neither H37 nor H39 correspond to the top of the resonant peak of the Cobalt M2,3 
edge (Fig. 4.6). The scattering efficiency will double, if H37 or H39 could be shifted to the 
center of the resonant peak. According to previous works, it is possible to blueshift the 
harmonics in the spectrum due to the self-phase modulation of the laser pulse caused by 
ionization in gas medium [15,16,17], and due to the nonadiabatic effect driven by the rapid 
increase in the femtosecond laser electric field [18,19]. Large blueshifts can even cover the 
interval between odd harmonics [18,19]. Several generation parameters can result in a 
blueshift, such as laser intensity, laser pulse duration and gas density. By varying the beam 
aperture, laser energy, gas pressure and the laser pulse duration in our experiment, we have 
taken spectra in different generating conditions to study the possibility of shifting H37 or H39 
to better match the resonant peak. Compared to the initial generating condition, there is no 
spectral shift when changing beam aperture, laser energy or gas pressure (Fig. 4.11a). We 
observed a tiny spectral shift (~ 0.26 eV) to blue or red direction with a harmonic signal 
decreasing when varying the pulse duration (Fig. 4.11b). The initial pulse duration is 50 fs 
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and is stretched up to about 90 fs. Unfortunately, we did not get any significant spectral shift 
to center one harmonic order to the resonant peak. Note that these spectra are taken with one 
Al filter that the peak corresponding to H47 is reduced due to the filter cut-off.   

 

Fig. 4.11. Results of the spectral shift studies by changing beam aperture, gas pressure, laser 
energy (a) and laser pulse duration (b,c). Spectra are taken with one Al filter, normalized and 
compared to the initial generating condition (red curve in a, blue curves in b and c).   

 

Another possible method to reach a photon energy closer to the high scattering efficiency (Co 
M-edge) is to use the even order harmonic H38 (58.89 eV). The latter can be generated in a 
“ω + 2ω” configuration (two-color HHG) that one adds the second harmonic (SH) of the 
driving laser pulse to break the inversion symmetry of Fourier transform in the HHG process 
[20, 21, 22]. In our experiment, we have inserted a 0.2 mm thick Beta Barium Borate (BBO) 
type I non-linear crystal at 1 m before the gas cell to generate the SH. Thus both odd and even 
harmonic are generated by the mixed laser pulse “ω + 2ω”. Note that two-color HHG not only 
provides a possible candidate (H38) for single-shot imaging, but also a finer spectral sampling 
for magnetic scattering experiments. We can reduce the spectral sampling from 3.1 eV (one-
color) to 1.55 eV (two-color HHG). Fig. 4.12b presents the HHG spectrum obtained in the  
“ω + 2ω” generation configuration. The amplitude ratio between odd and even harmonics is 
close to one. In general, the measured harmonic signals in “ω + 2ω” configuration is about 4 
times lower than in one-color configuration. Nevertheless, H38 benefits from a larger 
scattering efficiency compared to H37 and H39. Thus, in the following magnetic scattering 
experiments, we are focused on the behavior of H37 and H39 in the one-color configuration 
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and H38 in the two-color one.      

 

Fig. 4.12. (a) Location of H37, H38 and H39 on the magnetic resonant peak of the Cobalt 
M2,3 edge. (b) Spectrum of two-color HHG, taken without Al filter. 

 

IV.4	
  Scattering	
  experiments	
  of	
  magnetic	
  samples	
  
 

The experimental setup has been changed for the magnetic scattering experiments, as 
presented in Fig. 4.13. The PMT and the thin slit are removed. We have located an IR shield 
with a pinhole to select the desired harmonic order and filter possible IR reflections from the 
optics chamber. Magnetic samples are located on a motorized sample holder at the focus of 
the toroidal mirror where the harmonic beam size is estimated to be around 150 µm. The 
XUV CCD camera is mounted on a translation stage behind the sample holder, thus we can 
change the distance between the CCD camera and the sample from 2 to 5 cm. The CCD 
camera is protected by an Al filter mounted at its entrance window. The transmission of this 
Al filter (150 nm thick) has been measured to be ~ 10%.   

 

Fig. 4.13. Experimental setup for magnetic scattering experiments. 
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Before doing magnetic scattering experiments, we have optimized the one-color and two-
color HHG for H37 to H39 using the same process presented in Chapter II. The optimum 
parameters values for one-color HHG is: beam aperture = 25~27 mm, gas pressure = 
46~50 mbar, gas cell length = 5~6 cm, effective laser energy = 24~28 mJ and the focus 
position is 0 ~ 2 cm behind the gas cell output. The optimum values for two-color HHG are 
slightly different. Fig. 4.14 shows typical images detected by the CCD camera for H37 and 
H39 in one-color generation and H38 in two-color generation. The measured harmonic beams 
have a few 106 photons/pulse for H37 and H39, and ~ 5 x 105 photons/pulse for H38. Since 
the CCD camera is protected by an Al filter, the harmonics photon number is estimated to be 
one order of magnitude higher at the focus of the Toroidal mirror. Note that the harmonics are 
stretched in the spectral direction (horizontal direction in Fig. 4.14) of the grating. It should 
be due to the grating’s aberration, since it is not observed in the diffraction configuration with 
the parabola. The elliptical spatial profile does not have negative influence for magnetic 
scattering experiments in this section, because first the samples are in general much larger 
than the harmonics spots and second we are not in imaging configuration.      

 

Fig. 4.14. Typical harmonic spatial profiles of H37 and H39 in one-color generation and H38 
in two-color generation.  

 

IV.4a	
  Scattering	
  experiments	
  of	
  magnetic	
  samples:	
  first	
  try	
  
 

The first magnetic sample investigated is 250µm x 250µm large, containing 30 layers of 
[Co(4Å)/Pd(6Å)] with labyrinthine nanodomains structure (observed in MFM images after 
fabrication). We have observed a scattering ring due to the labyrinthine structure when 
illuminating the magnetic sample by harmonics from H33 to H42 with 10-shot accumulation. 
In the one-color generation, scattering signals are maximized at H37 and H39, and quickly 
reduced for the other harmonic orders. In two-color generation, scattering signals are 
maximized at H38 and slightly reduced for H37 and H39, then quickly decreased for the other 
ones. Single-shot scatterings are detected only for one-color generation. Fig. 4.15 presents the 
measured scattering rings of the concerned harmonic orders in 1 and 10 shots, with a 10 x10 
binning ratio of the CCD camera detection (signals of 100 pixels are integrated into one large 
pixel). We are surprised by the experiment results that scattering ring can be clearly observed 
for such a large spectral bandwidth. In fact, the resonant peak is quite narrow that scattering 
ring should be hardly observed for harmonics other than H37 ~ H39. It is possible that the 
scattering signal is not purely “magnetic”. But meanwhile, the average radius of the scattering 
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rings varies linearly with the harmonic orders (shorter wavelength got smaller radius). This 
should be related to the magnetic effect, because the sample is “homogenous” for the 
harmonic beam if we neglect the magnetic contribution. This sample has been tested at LOA 
with H37 before we investigate it at CEA. According to their experimental results, the 
scattering efficiency for H37 is ~10-5, which agrees with the values published in Ref. 13. Note 
that the experimental scattering efficiency D is calculated as the ratio between the scattered 
photon number and the incident photon number. In our experiment, the calculated scattering 
efficiency is ~ 10-3 for H37 to H39, and ~ 10-4 for the adjacent harmonic orders. After 
carefully checking our beamline and numerical calculations, we didn't find possible reasons to 
explain this abnormal high scattering efficiency. Moreover, the result has been reproducible 
during the whole experiment run time (about 10 days) both in one-color and two-color 
generations. To clarify the problem, we have sent the sample to LCPMR (team of Prof. Jan 
Lüning) to do again the MFM image scans. Unfortunately, no magnetic nanodomain 
structures were observed. It could be due to demagnetization during transport. After that, we 
have investigated more than 15 magnetic samples with various parameters (sample size, 
multilayer number, ratio between Co and Pd, nanodomains structure organization, etc.), 
among which there is the sample of the same type as the first one. Using exactly the same 
scattering process, we have obtained a lower scattering efficiency that agrees with the 
reference values and the experimental results obtained at LOA. We conclude that the 
abnormal high scattering efficiency of the first sample should be related to the magnetic 
sample itself, but not our beamline or experimental process. The reason for this remains 
unknown, since we have no similar observation on the other magnetic samples.            

 

Fig. 4.15. Measured scattering ring (between the two circles) from H37 to H39 in single-shot 
and 10-shot accumulation. Signals at the left-top and right-bottom corners are background 
noise. The black line at the left-bottom is a line beam blocker in front of the CCD camera, 
which is not served in this experiment. The saturated signal in the center is the transmitted 
harmonic beam. Note that images are obtained using a 10 x 10 binning ratio with the CCD 
camera.  
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IV.4b	
  Scattering	
  experiments	
  of	
  magnetic	
  samples:	
  Paper	
  V	
  and	
  Paper	
  
VI	
  
 

Paper V and Paper VI present the experimental results and analysis of the magnetic scattering 
experiments. The experiments are focused on: 

1) Single-shot detection of magnetic scattering to demonstrate the possibility of single-shot 
imaging of magnetic nanodomains structures using our table-top harmonics beamline. 
Nanometric spatial resolution on a femtosecond flash is obtained. This shows the high 
potential of capturing nanoscale movies of the ultrafast magnetic dynamics for either 
reversible or irreversible ultrafast phenomena. This was previously believed to be 
possible only on large-scale FEL (XFEL) facilities 

2) Spectral studies over a large bandwidth (20 eV) with a sampling step of 1.55 eV (two-
color generation) in both single-shot and multiple-shot regime on various magnetic 
samples. We have been able to identify and discriminate scattering signals of cobalt and 
palladium at different absorption edges. The single-shot spectral study opens the route 
toward the study of a broad range of complex mesoscopic systems, as for example 
nanoscale phase transitions.  

Paper V presents the study of a magnetic sample, which contains 15 layers of 
[Co(4Å)/Pd(8Å)] with aligned nanodomains structure (acting like a transmission grating). 
Two well-defined Bragg peaks are observed in single-shot and multiple-shot regime, from 
which we estimate the nanodomains width to be 62.5 nm with a distribution of ± 7 nm in 
multiple-shot detections and ± 10 nm in single-shot detections. This agrees with the MFM 
measurements of the sample (70 nm ± 5 nm). The comparison between single and multiple 
shot detections demonstrates that single-shot detections are reliable for studies both in 
scattering efficiency measurements and spatial properties of the sample. In addition, 
scattering signals are observed at the palladium N edge, around 51 eV (H33 signal).  

Paper VI presents the study of two samples composed of respectively 20 layers (sample “A”) 
and 30 layers (sample “B”) of [Co(4Å)/Pd(6Å)] with aligned (A) or labyrinthine (B) 
nanodomains structures. Spectral studies are done with two-color generations to refine the 
sampling ratio compared to Paper V. Single-shot detections are realized both for aligned and 
labyrinthine organizations. The nanodomains width in sample B is estimated to be 108 nm ± 
70 nm with measured scattering efficiency in the 10-6 range, which agrees with theoretical 
values. The nanodomains width is reduced to 91 nm ± 6 nm in sample A, due to a better 
alignment organization during the magnetization process. The resonant peak of palladium N 
edge is clearly observed and resolved in all samples.  

 

IV.4c	
  Scattering	
  experiments	
  of	
  magnetic	
  samples:	
  fundamental	
  and	
  
exhaustive	
  studies	
  	
  	
  
 

This campaign was motivated by finding the magnetic nanodomains behavior for various 
sample compositions. It has practical interest to design future imaging and time resolved 
experiments and is of great interests for understanding the fundamental physics of 
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nanomagnetism. The large spectral bandwidth and the fine sampling setup of our harmonic 
beamline are ideal for such experiments. Rich information can be extracted from single and 
multiple shot detections.  

Exhaustive magnetic scattering studies over a large spectral bandwidth are done with 
following sample types, grouped in 5 main series: 

1) SiN(30nm)/Al(10nm)/ [Co(4Å)/Pd(6Å)](N layers)/Al(3nm), where N= 15, 20, 30 and 
40. 

2) SiN(30nm)/Al(10nm)/Pd(1nm)/[Co(4Å)/Pd(2Å)](N layers)/Al(3nm), where N=20, 30 
and 40. 

3) SiN(30nm)/Al(10nm)/ [Co(4Å)/Pd(8Å)](N layers)/Al(3nm), where N=15 and 20. 
4) SiN(30nm)/Al(10nm)/Pd(1nm)/ [Co(2Å)/Pd(2Å)](N layers)/Al(3nm), where N=20, 

30, 40, 50, 60 and 80. 
5) Cobalt and Nickel samples: 

a. SiN(30nm)/Al(10nm)/ [Co(4Å)/Ni(8Å)](10 layers)/ [Co(4Å)/Pd(2Å)](20 
layers)/Al(3nm) 

b. SiN(30nm)/Al(10nm)/Pd(1nm)/ [Co(2Å)/Pd(2Å)](20 layers)/ 
[Co(4Å)/Ni(8Å)](20 layers)/ [Co(2Å)/Pd(2Å)](20 layers)/Pd(2nm) 

In general, magnetic layers (texts in blue) are protected by a thin layer of Al, and held by a 
substrate of SiN and Al. Each membrane contains more than 10 samples of the same type 
with different sample aperture varying from 50 µm to 250 µm. Note that in the fifth group, 
palladium is partially replaced by nickel because of its higher photon transmission in the 
concerned spectral region. The demand of various sample compositions also pushes the 
sample fabrication technique, for example, the magnetic nanodomains in fourth group were 
initially thought to be unstable to remain without external magnetic field.  

In the first step, we have performed the statistical studies. The data analysis and the 
theoretical modeling are on going. The research results will be published in the near future. 
Here we would like to present few experimental results. For each sample series, simple 
demonstrations like scattering efficiency curve or scattering image are shown in Fig. 4.16. 
Note that we have observed the resonant peak of palladium in some cases but not in others. 
As a first interpretation we explain this by the magnetic interaction effect between cobalt and 
palladium, which strongly depends on the composition sample ratio. A theoretical model is 
under progress. In general, we have observed the same magnetic behavior on the same type 
samples that is important for some kind of irreversible studies, in which a new sample is 
required for each shot.   
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Fig. 4.16. (a), (b) and (c) are measured scattering efficiencies respectively for sample series (3) 
with 15 layers, (2) with 40 layers and (1) with 20 layers. (a) and (b) are performed with one-
color generation, and (c) with two-color generation. (d) and (e) are snapshots of scattered 
photons measured by the CCD camera respectively for sample series (4) with 20 layers and 
(5a). Both images are taken with H39 and an exposure time of 300 seconds (6000 shots). The 
center is well saturated. (d) is obtained using a 5 x 5 binning of CCD camera and (e) is 10 x 
10 binning. The signals at the top and the bottom of (e) are background noise.  

 

IV.5	
   Next	
   step:	
   coherent	
   diffractive	
   imaging	
   and	
   time-­‐resolved	
  
pump-­‐probe	
  experiments	
  	
  	
  	
  	
  	
  	
  

 

During my thesis, I have been working on the design of a pump-probe experiment. The 
experiment is undergoing. I detail here the preparatory study.  

Exploring the ultrafast dynamic phenomena of the magnetic samples can be carried out using 
the same experimental setup as in the previous section to benefit from the large spectral 
bandwidth, or we can use the diffraction configuration of our beamline to benefit from higher 
harmonic intensity. In the diffraction configuration, the total beamline transmission (optics + 
filters) is about 10 times higher than in the spectrum configuration. Moreover, the focal spot 
would be 50 times smaller. We can expect a harmonic beam with 3 to 4 orders of magnitude 
more intense. We would also benefit from a better spatial profile and a lower background 
noise.  The actual parabola (for 32 nm) will be replaced by a new one coated with a multilayer 
optimized for H39 (20.5 nm). This choice has been guided by the statistic studies presented 
before, exhibiting a better scattering signal at H39 than at other harmonics. The new parabola 
has already been tested for coherent imaging on test samples (like the “lambda” in Chapter 
III). In the pump-probe experiment, the pump beam will be extracted from the laser beam 
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before the focusing lens and then controlled by a time-delay stage. The entire beam path of 
the pump beam will be enclosed in long tubes to have better stability during propagation and 
for security reasons. 

The coherent imaging of the magnetic nanodomains will be carried out in the diffraction 
configuration, first in single-shot regime of static sample and then in time-resolved 
experiments. Note that in the spectrum configuration, the oversampling ratio has not been 
respected, thus it is impossible to inverse the scattering pattern to get an image. The X-ray 
magnetic scattering is a complex combination of interactions between the X-ray beam and the 
magnetic sample’s electric charge distribution and magnetization density, which is also 
sensitive to the polarization state of the X-ray beam [25,26]. In the transmission geometry of 
our experiment with magnetic multilayers presenting an out-of-plane anisotropy, the light will 
scatter preferentially with circularly polarization states (right or left handed) [4]. Our 
harmonic beam is linearly polarized. This can be considered as a composition of two beams 
with opposite circular polarizations of equal amplitude. In our magnetic scattering studies 
presented in the previous sections, the magnetic properties are deduced by the integral of the 
scattered photons and the spatial distribution of the Bragg peaks or scattering ring. Thus there 
is no problem to use our linearly polarized harmonic beam for such studies. However, neither 
phase retrieval algorithms nor holographic techniques can be simply implemented on 
scattering patterns using linearly polarized light, because of the addition of incoherent 
magnetic and charge scattering photons to the detected signal.  

To overcome the incoherent addition problem, the “simplest” way is to use circularly 
polarized beam for imaging experiments, as the demonstration [1] mentioned at the beginning 
of this Chapter. A recent communication has reported image reconstruction of magnetic 
nanodomains using holography with extended reference technique and circularly polarized 
synchrotron source [30]. Our collaborators from LOA have developed a HHG polarization-
controlling device [27] to modify the linearly polarized harmonic beam to 100% circular 
polarization. Then, imaging reconstruction of magnetic structures can be accomplished by 
CDI or holographic techniques as demonstrated with test objects in Chapter III. However, the 
circular polarization is obtained at the cost of photon flux. Indeed, the total efficiency of the 
polarization-controlling device is estimated to be ~ 3.6%. With the low scattering efficiency 
of the samples, we will probably need multiple-shot accumulation to have enough photons for 
image reconstruction.  

Recently, some approaches using linearly polarized light have been proposed [28,29] for 
magnetic structure imaging. However, two or more detections are required in such approaches. 
Moreover, the principle of these approaches is to separate charge and magnetic scattering 
components by subtraction of two images, and one of that is obtained by saturating the 
magnetic sample with the presence of an external magnetic field. Thus, the magnetic 
nanodomains may be altered within this process [31]. Very recently, a single-shot approach 
based on CDI and magnetic resonant scattering has been proposed for future pump-probe 
experiments of magnetic nanodomains imaging at FEL facilities [32]. In this approach, the 
authors assume that the nondichroic absorption of the magnetic sample is uniform. The 
charge scattering can be modeled as the simple diffraction of the sample aperture (a mask 
covering the magnetic sample to provide isolated object condition for CDI) that varies slowly 
away from its edges. Therefore, the charge scattering can be removed from the scattering 
pattern by “subtracting a smooth surface from the autocorrelation of the object”. This 
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approach can also be applied using our harmonic beamline for single-shot imaging. This is the 
more promising method for single-shot imaging compared to the polarization-controlling 
device. In fact, we can also use holographic techniques with linearly polarized beam, if the 
reference wave is “magnetic”. The latter may be obtained by covering the magnetic samples a 
mask composing of a sample aperture and a reference aperture and assuring that the reference 
aperture selects nanodomains of the same magnetization direction, which is technically 
difficult. Moreover, extended reference is not possible for this configuration, due to the 
nanodomains’ small size (smaller than the size of the reference) and its spatial organization. 
This approach is more suitable at FEL facilities than our harmonic beamline, considering the 
much higher photon flux provided by those large-scale sources. At last, a recent 
demonstration of lens-less X-ray imaging in reflection geometry [33] could be an alternative 
configuration to the widely used transmission geometry. However the inversion problem of 
the oversampled diffraction pattern still need to be generalized. 

 

IV.6	
  Conclusion  

 

In this chapter, I have presented an ongoing imaging application in nanomagnetism in the 
framework of collaboration between three interdisciplinary laboratories. The main research 
goal is to realize the real space imaging of ultrafast phenomena occurring on magnetic 
nanodomain structures with a high spatial and time resolution. The concerned imaging 
methods are the coherent diffractive imaging techniques (CDI, FTH and HERALDO) 
presented in Chapter III. The experiment was or will be realized in four steps: 1) spectral 
studies of the Cobalt absorption edge (M2,3); 2) Magnetic resonant scattering in samples’ 
static states for magnetic properties study (such as scattering efficiency, nanodomains width 
and distribution…) over a large spectral bandwidth, completed by statistic studies of various 
magnetic sample types; 3) Single-shot imaging of magnetic nanodomain structure; 4) pump-
probe experiment for ultrafast magnetic phenomena (reversible and irreversible). The 
experimental results of the first two steps are promising. We aim at capturing the “movie” of 
the magnetic nanodomains modification on femtosecond time scale, which will open new gate 
for understanding the spin-orbital and exchange interactions. From this experiment, we can 
see that the High flux harmonic beamline is a polyvalent and easy-for-manipulation setup 
suitable for a wide range of research applications. Combining with the lens-less imaging 
techniques, we demonstrate a powerful experimental tool for studying ultrafast phenomena in 
various scientific areas.      
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Paper	
  V	
  

 

Paper V presents the study of a magnetic sample, which contains 15 layers of 
[Co(4Å)/Pd(8Å)] with aligned nanodomains structure (acting like a transmission grating). 
Two well-defined Bragg peaks are observed in single-shot and multiple-shot regime, from 
which we estimate the nanodomains width to be 62.5 nm with a distribution of ± 7 nm in 
multiple-shot detections and ± 10 nm in single-shot detections. This agrees with the MFM 
measurements of the sample (70 nm ± 5 nm). The comparison between single and multiple 
shot detections demonstrates that single-shot detections are reliable for studies both in 
scattering efficiency measurements and spatial properties of the sample. In addition, 
scattering signals are observed at the palladium N edge, around 51 eV (H33 signal).  

 

Submitted. 
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Ultra-bright femtosecond X-ray pulses available at free electron lasers enable single 

shot investigations of irreversible ultrafast phenomena with nanometer spatial resolution. 

Here, we demonstrate that intense tabletop soft X-ray laser harmonics allow similar 

studies. We use a single 20 fs laser pulse to measure the spatial arrangement of a 

magnetic nano-domain structure with sub-100 nanometer spatial resolution by resonant 

scattering around the cobalt M-edge. Moreover, the technique being element specific we 

have been able to identify magnetic scattering at the palladium N-edge (around 51 eV), 

which indicates a significant induced magnetization in the Pd layers of our Co/Pd 

multilayer structure. 
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Magnetism is one of the oldest and most intriguing scientific disciplines, which 

macroscopic manifestations have always attracted attention. Its applications are present in 

many aspects of our daily life, from medical imaging to data storage in modern 

microelectronic devices. Driven by the development of nanotechnologies, new 

applications are emerging, such as nano-bio-magnetic sensors or Magnetic Random 

Access Memory.
1
 Current research activities concern control and manipulation of 

magnetization at nanometer length scales.
2
 For instance, the ultimate speed of 

magnetization reversal and the underlying mechanism of ultrafast spin (re-)organization 

have yet to be elucidated. 
3,4

 

New insight into ultrafast dynamics can be expected from time-resolved imaging of a 

sample's magnetization on its relevant nanometer length scale. This requires a technique 

that combines a spatial resolution of a few tens of nanometers with femtosecond time 

resolution. Moreover, understanding how the local scale processes contribute to the 

macroscopic demagnetization imposes to carry out these time-resolved imaging 

experiments over large (micrometer) areas and long time delays from femto- to nano- or 

even microseconds. Such requirements offer a stimulating challenge for the development 

of novel light sources and instrumentations. Here, we demonstrate that table-top ultra-

short soft X-ray laser harmonics allow realizing such experiments.  

X-ray radiation is well suited to characterize magnetic properties since strong magnetic 

contrast is obtained for photon energies matching magnetically dichroic absorption 

resonances.
5
 Sum rules allow inferring from these dichroism spectra quantitative 

information about the spin and orbital moment of the ground state of the magnetic 

sample.
6-8

 Due to their short wavelength and rather large penetration depth, X-rays are 

also ideally suited for coherent diffractive imaging of micrometer sized samples.
9
 In such 

a lensless imaging experiment, a monochromatic and spatially coherent X-ray beam is 

used to illuminate a sample and the resulting (small angle) scattering pattern is recorded 

in the far field. About 10 nm spatial resolution has been demonstrated in several 

experiments,
10

 while the ultimate achievable spatial resolution is in principle only limited 

by the wavelength itself. Lensless microscopy techniques have been applied to image the 
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magnetic domain structure of ferromagnetic materials using photon energies around 

magnetic dichroic resonances.
11,12

  

Initially magnetism experiments were performed using soft X-rays from third generation 

synchrotron radiation sources. However, the pulse duration available at those facilities, 

typically a few tens of picoseconds, prevents their use for the investigation of ultrafast 

(femtosecond) magnetization dynamics. In addition, due to the low number of photons 

per pulse, signal accumulation is required over many X-ray pulses. This excludes in 

particular the investigation of non-reversible phenomena which require single X-ray shot 

data acquisition. 

These limitations can be overcome at XUV/X-ray Free Electron Lasers (XFELs), which 

provide transversely coherent X-ray pulses of femtosecond pulse duration with up to 10
13

 

photons. Indeed, snapshot coherent X-ray diffraction imaging has been demonstrated,
13

 

and recently applied to image a magnetic nano-domain structure.
14

 However, a current 

limitation of XFEL sources is the large shot to shot variation of many beam parameters 

(in particular, intensity, energy and arrival time), which limits the achievable sensitivity 

when following the evolution of a system. These issues may be solved in the next future 

using for example self seeding schemes. However, a more accessible source would offer 

an interesting alternative for realizing such studies. 

Table-top high harmonic generation (HHG) sources, based on an intense commercially 

available femtosecond infrared laser have already demonstrated nanoscale imaging.
15,16

 

Coherent ultra-short (from femtosecond down to attosecond) soft X-ray pulses are 

generated up to hundreds electron volt, covering resonance edges of most magnetic 

elements.
17-19

 They are naturally synchronized with the laser source, thus providing a 

jitter free ultrafast IR pump – X-ray probe set-up. Finally, pulses are intense enough to 

record single shot data.
16,20

 These properties make HHG sources well suited for studying 

irreversible magnetic processes occurring down to nanometer scales. 

First studies of magnetization phenomena using a HHG source have recently been 

reported. La-O-Vorakiat et al. performed XUV transverse magneto-optic Kerr effect (T-

MOKE) experiments to follow the demagnetization dynamics of Permalloy with element 
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sensitivity.
21

 Using resonant magnetic scattering, the capability of HHG source for 

probing magnetization properties with nanometer spatial resolution was demonstrated by 

Vodungbo et al. on Co/Pd sample.
22

 However, all these studies averaged over multiple 

shot exposures, thus revealing only the reproducible part of the investigated 

magnetization phenomenon. 

In this letter, we report the first femtosecond single shot characterization of a magnetic 

nano-domain structure from a table-top soft X-ray laser-harmonic source. We have 

measured from the far field scattering pattern the spatial properties of the magnetic 

domain structure at a sub-100 nm scale. The maximum magnetic scattering efficiency is 

measured close to the cobalt M-edge (60 eV). Multiple laser shot measurements from 45 

to 70 eV have been also conducted. They confirm the single shot observations and 

evidence magnetic scattering signal in the palladium layer at 51 eV (Pd N-edge). The 

results are discussed in details in the following sections. 

The resonant scattering experiment was performed with the table-top infrared 

femtosecond laser LUCA (Laser Ultra Court Accordable at CEA-Saclay research center 

(France)) delivering 50 fs, 50 mJ pulses at 800 nm at a 20 Hz repetition rate. For Co/Pd 

magnetic studies, HHG emission in the 40-70 eV photon energy range has been 

optimized by a systematic study of the generation parameters. A hollow-core fiber is used 

to improve the infrared laser beam profile and wavefront through modal spatial filtering. 

HHG phase matching is thus enhanced, increasing the generation efficiency by about a 

factor 4. The setup of the HHG experiment is depicted in Fig. 1. In brief, soft X-rays are 

generated by focusing the laser beam in a cell of variable-length, which is filled with a 

low-pressure noble gas. With the best parameters (see Fig. 1) we generate high laser 

harmonics up to order 51 with a few times 10
9
 photons/pulse in harmonic 39 (H39), 

which energy is close to the cobalt M2,3 edge (60 eV). The pulse duration is estimated to 

be 20 fs.
16

 The generated XUV pulses are focused onto the sample by a toroidal mirror in 

a 4f configuration to a focal spot diameter of ~250 µm. Harmonic selection is achieved 

with a blazed plane grating and a pinhole (see Fig. 1). The measured flux on the sample is 

~10
7
 photons per pulse for H39 with a pulse duration of ~60 fs due to temporal stretching 
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by the grating monochromator. The scattering patterns are detected in the far field using a 

soft X-ray in-vacuum charge-coupled device (CCD) camera. 

The investigated sample is a ferromagnetic [Co (4 Å)/Pd (8 Å)]15 multilayer film 

exhibiting out-of-plane anisotropy,
22

 which has been grown by magnetron sputtering on a 

30 nm thin silicon nitride membrane. Using an in-plane demagnetization procedure, a 

magnetic domain structure of aligned stripe domains can be prepared as shown by the 

MFM image in Fig. 1. From this image we find a characteristic domain width of 70 nm, 

with a ±5 nm wide domain size distribution. 

The aligned magnetic domains with alternatively up and down magnetization directions 

exhibit a dichroic optical index around the energy of the M2,3 resonance. Thus, the sample 

itself acts on the incident X-ray beam like a transmission grating. To quantify this 

interaction we define the scattering efficiency D as the ratio between the number of 

scattered photons and the number of incident photons on the sample. Under the first-order 

Born approximation, D is expressed as 

D(E) ~ T(E) (Ed)
2 

[Δβ(E)
2
+Δδ(E)

2
] (1) 

where T, d and E stand for the sample's optical transmission, the thickness of the resonant 

material and the photon energy. Δβ and Δδ are the real and imaginary part of the 

difference between the optical indexes of the two opposite magnetization directions, 

respectively. Relation (1) implies that the scattering intensity is proportional to the square 

of the magnetization of the sample, <M
2
>.

23
 One further notes that the efficiency 

increases quadratically with the thickness of the resonant material, but is proportional to 

the sample's transmission, which itself decreases exponentially with the sample thickness. 

Using Eq. (1) and literature values for the optical index of Co around the M2,3 edge,
24

 we 

can estimate the efficiency to be ~10
-5

 at 59 eV. In addition, we calculate that the 

magnetic scattering signal should be detectable in a ~10 eV window around the M-edge. 

The resonant magnetic scattering efficiency has been investigated from multiple laser 

shots in the 45 to 70 eV spectral range in the Fraunhofer regime. Typical scattering 

patterns, accumulated over 400 laser shots, are shown using the same color scale as insets 
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in Fig. 2. We note that the photon flux on sample does not lead to sample damage nor 

modifications of the magnetic domain structure (estimated temperature increase of 10
-1 

K 

in the sampled area).
4
 Studies in the accumulative regime are thus possible and can be 

compared to single shot results without ambiguities due to a deterioration of the sample 

characteristics. As the magnetic nano-domains are aligned, the magnetic grating can be 

considered as monodimensional giving rise to well-defined first diffraction order peaks.
22

 

By integration of the scattering intensity recorded for H29 to H45, we characterize the 

scattering efficiency of the magnetic sample for the 45 to 70 eV photon energy range. 

Measurements are compared with calculated values based on Eq. (1). This comparison is 

shown in Fig 2: Simulations are presented in panel (a) and experimental results are shown 

in (b). Measurements performed for several identical samples and various accumulation 

times lead to similar scattering efficiency values. Finally, we note that our data are in 

good agreement with the calculations and previous estimations.
22

  

One notices that the photon energy of the maximum of the calculated scattering 

efficiency (Fig. 2(a)) deviates by about 1 eV from the position of the highest 

experimental value (Fig. 2(b)). This difference is related to the experimental sampling 

using discrete laser harmonics, as illustrated comparing the plots with symbols in Fig. 

2(a) and (b). Hence, while none of the harmonics matches exactly the maximum of the 

scattering efficiency, the resonance is sufficiently large, ~2.3 eV of full width at half 

maximum (FWHM), so that H39 still exhibits a strong scattering efficiency. We also 

observe a small increase in the experimentally detected scattering efficiency around 

51 eV, i.e using H33, Fig. 2(b). We interpret this observation as an indication of resonant 

scattering at the N3 edge of palladium, which is located at 50.9 eV. This implies that the 

proximity of the ferromagnetic Co layers induces a significant magnetization transfer to 

the Pd layers, which then exhibit the same magnetic domain structure as present in the Co 

layers. However, it could not be simulated on Fig. 2(a) as the complex optical indexes of 

the palladium magnetic domains at the N-edge are not available in the literature. We 

obtain from our measurements a scattering efficiency around the Pd resonance of 

~1.5x10
-6

. 
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We next discuss the resonant magnetic scattering from a single XUV laser harmonic shot 

using H39. Multiple and single shot scattering patterns are compared in Fig. 3(a) and 

3(b), respectively. We note that the scattering signal is well detected in both cases. The 

oversampling ratio related to the experimental arrangement does not allow the numerical 

reconstruction of the image of the sample using phase retrieval algorithms.
10

 However the 

data are rich in information, since such small angle scattering diagrams reveal a statistical 

description of the spatial properties of the sample. Scattering efficiencies are also derived 

from the single shot data. 

The spatial organization of the magnetic domains can be deduced from the integral of the 

scattering intensity as a function of the azimuthal angle . This is plotted in Fig. 3(c) and 

3(d) for multiple and single shot detection, respectively. The two symmetric peaks, 

separated by 180°, exhibit a FWHM of about 8 ± 0.5° in the multiple shot acquisition and 

12 ± 1° in the single shot detection. This value indicates that the nano-domains are well 

oriented (close to the vertical axis), as was previously revealed by the MFM image in 

Fig. 1. The larger angle obtained for the single shot detection is due to a loss of statistics 

related to the reduced number of photons. 

The average size of the nano-domains is inferred from the spatial integration of the 

scattering intensity as a function of the wave vector transfer q. Normalized intensity 

values are presented by the symbols in Fig. 3(e) and 3(f) for multiple and single shot 

detection, respectively. The lines give the result of the best pseudo-Voigt fit of multiple 

(continuous line) and single (dash line) shot data. In both cases the fits reproduce the data 

well, which illustrates the good agreement between the measurements. The maximum of 

the scattering intensity is determined to be in both cases at q = 0.049 ± 2.10
-4

 nm
-1

, which 

corresponds to a real space periodicity of 125 nm. This value corresponds to an average 

nano-domains size of 62.5 nm. The domain size distribution width ± q (inferred from 

the FWHM of the measured scattering intensity) is found to be q = 3.10
-3

 ± 4.10
-4

 nm
-1

 

for multiple shots detection and q = 4.10
-3

 ± 6.10
-4

 nm
-1

 for single shot detection. We 

finally measure nano-domains of 62.5 nm width with a distribution of ±7 nm from 

multiple shots detection and ±10 nm from single shot detection. In both cases, we note a 

good correlation with the MFM measurements.  
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In summary, we report ultrafast single shot investigations of the magnetic nano-domain 

structure of a thin ferromagnetic Co/Pd multilayer film exhibiting out-of-plane 

anisotropy. These studies have been realized using femtosecond soft X-rays from an 

optimized table-top high harmonic generation source. We have accurately measured the 

spectral scattering efficiency of the sample from 45 to 70 eV using multiple shot 

acquisitions. The cobalt M-edge and the palladium N-edge signatures have been detected 

with scattering efficiencies of 10
-5

 and 2x10
-6

, respectively. 

Using the 39
th

 harmonic, which is close in energy to the magnetically dichroic Co M2,3 

absorption edge, we have measured the average size of the magnetic domains to be 

62.5 nm, with a size distribution of ±7 nm in multiple shot and ±10 nm in single shot in 

good agreement with MFM characterization. This validates the single shot capability of 

our table top facility. The next step, under progress, is to obtain images of the magnetic 

domains using a similar set-up as previously used.
16,20

 We note that circularly polarized 

light will not be necessary.
12,25

 Expected numbers in this configuration will allow 

focusing more than 10
8
 photons in a 5 µm diameter spot allowing single shot imaging. 

Using a pump-probe setup, reversible and non-reversible magnetization dynamics will be 

accessed with nanometer length and femtosecond time resolution. 
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Figure captions:  

 

FIG. 1. (Color online) Arrangement of the experimental setup. Optimized HHG 

parameters are obtained for 27 mJ of infrared laser pulse energy (selected by a 27 mm 

aperture in the beam path), focused by a lens of 5.5 m focal length in the center of a 5 cm 

long cell, which is filled with 4.8 Torr of neon. The CCD camera has 13.5x13.5 µm
2
 

pixel size. In order to shield the detector from scattered infrared light to improve the 

signal-to-noise ratio, a 150 nm thick aluminum filter is placed in front of the CCD camera 

using a lightproof holder. The camera chip is operated at 233 K and 10x10 hardware 

binning combined with a high gain is used. A MFM image of the illuminated sample and 

a detected diffusion pattern (from multiple shot exposure) are present in insets.  

FIG. 2. (Color online) Scattering efficiency from 45 to 70 eV (H29 to 45). The expected 

scattering efficiency from Rel. (1) is plotted on Fig. (a). The circles in figure (b) represent 

the measured scattering efficiency on the table-top setup (the dotted line is there to guide 

the eye). Error bars are evaluated from dispersion of several measurements performed 

independently. The star symbols in (a) are positioned at the discrete harmonic photon 

energies. The insets show the corresponding recorded scattering patterns. Well-defined 

Bragg peaks, corresponding to the domain periodicity, are observed. 

FIG. 3. (Color online) Multiple shot (400) vs. single shot detection of the resonant 

magnetic scattering detection at the Co M-edge and measurements of the spatial 

properties of the nano-domains. The multiple shot detection of the magnetic scattering 

resonance is shown on Fig. (a) and the single shot detection is shown on Fig. (b). The 

azimuthal integration as function of the angle φ (arbitrary origin) is shown on Fig. (c) for 

multiple shot detection and Fig. (d) for single shot detection. The radial integration of the 

detection (symbols) as a function of q is presented on Fig. 2(e) (multiple shot detection) 

and 2(f) (single shot detection) with the best pseudo-Voigt fit of the data (continuous and 

dash lines, respectively). The central part of the scattering patterns with the pixels 

saturated because of the direct beam has been removed prior to integrations.  
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Paper	
  VI	
  

 

Paper VI presents the study of two samples composed of respectively 20 layers (sample “A”) 
and 30 layers (sample “B”) of [Co(4Å)/Pd(6Å)] with aligned (A) or labyrinthine (B) 
nanodomains structures. Spectral studies are done with two-color generations to refine the 
sampling ratio compared to Paper V. Single-shot detections are realized both for aligned and 
labyrinthine organizations. The nanodomains width in sample B is estimated to be 108 nm ± 
70 nm with measured scattering efficiency in the 10-6 range, which agrees with theoretical 
values. The nanodomains width is reduced to 91 nm ± 6 nm in sample A, due to a better 
alignment organization during the magnetization process. The resonant peak of palladium N 
edge is clearly observed and resolved in all samples.  
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Sub-100 nanometer lensless probing of Co/Pd magnetic nanodomains 

using a table-top femtosecond soft X-ray harmonic source 

We present recent developments of our table-top femtosecond high flux 

harmonic beamline. High harmonic generation (HHG) optimization in a single and two-

color infrared laser pulse mode is investigated at high laser energy. Up to 109 photons 

are generated between 40 and 80 eV in a single femtosecond laser shot. The soft X-ray 

light is applied to characterize at the nanoscale the magnetic network of Co/Pd 

multilayer samples using small angle scattering. Cobalt and palladium magnetic 

resonant edges, respectively at 60 and 51 eV, are identified and investigated. A two-

color HHG sampling allows to resolve them over a large spectral band. The palladium 

resonance, which was not expected, is attributed to a significant transmission from the 

cobalt magnetic layers to the palladium layers. The phenomenon is investigated in 

various samples, which differs in composition and number of layers. The spatial 

organization of magnetic nano-domains is also inferred with sub-100 nanometers spatial 

resolution from a single femtosecond soft X-ray flash. These results open the gate for 

broad ultrafast dynamics studies in Nanoscience.  

 

 

Keywords: Femtosecond laser, high harmonic generation, resonant elastic 

scattering, single shot probing, ultrafast spectroscopy, nanomagnetism 

 



  

1. Introduction 

The invention of new revolutionary materials always leads to new era of technologies, 

particularly in communication and energy areas. Understanding the properties of these 

materials requires accurate observation of the physical and/or chemical evolution in structure 

(spatial) and in dynamic (temporal) of the studied object on ultrashort time scales (from 

attoseconds down to femtoseconds) and on extremely small space coordinates (from 

angstroms down to nanometers). In nanoscience, there is a clear and pressing need for new 

techniques to track ultrafast processes at a nanometer scale. Ultrafast light pulses of very short 

wavelengths would be ideal to visualize such transient phenomena, such as Free Electron 

Lasers (FELs) or high order harmonics. Spectral studies are also necessary when tracking 

material properties around resonances. A light source tunable over a large spectral bandwidth 

would be advantageous for such studies. Moreover, investigations of irreversible phenomena 

impose single-shot acquisitions which require using a high brightness probe pulse. The 

intense X-ray pulses available at FELs seems to be an ideal source for such studies [1]. 

However, recent demonstrations of single-shot diffractive imaging using table-top high 

harmonic generation (HHG) promise another possible way for ultrafast nanoscale studies [2-

4]. The sub-100 nm spatial resolution obtained in these works is suitable for various 

applications.  

Here, we present recent advances in the characterization of magnetic nano-domains 

using our table-top high flux harmonic beamline. Such convenient and low cost laboratory 

sources are a good alternative to synchrotrons or FELs for numerous studies, from spectral to 

time and spatially resolved measurements. Intense HHG pulses are used here to characterize 

the spatial arrangement of magnetic nanodomains. Moreover, the broadband spectrum of 

HHG facilitates the studies around magnetic resonant edges [5-7]. The tunability of the source 

allows scanning around the different resonance edges. The transfer of magnetism between 

different material layers is observed. In this communication, we also demonstrate that the 

table-top high flux harmonic beamline allows performing single shot characterization of the 

magnetic spatial organization. This opens new routes for the investigations of magnetic 

phenomena such as the ultrafast all optical control of magnetic materials [8,9] giving light 

into the complex interplay of interactions spanning a wide range of degrees of freedom. 

Combining nanometer and femtosecond resolutions in a time resolved imaging investigation 

would certainly provide additional clues. 



  

The first section presents on the development of our high flux harmonic beamline. We 

report our recent effort in tuning the source and pushing its yield for spectral studies and 

single-shot soft X-ray scattering measurements of magnetic nano-domains. The second 

section is dedicated to the description of magnetic samples and the resonant scattering set-up. 

The experimental results of the magnetic measurements are reported in the third section.  

 

2. High flux XUV harmonic beamline 
 2.1 Optical configuration for spectrally resolved magnetic investigations 

Recent demonstrations of single-shot coherent imaging on our table-top harmonic source at 

the CEA Saclay research center (France) have demonstrated a high flux harmonic beamline 

providing intense XUV single pulse available for nanometric imaging with femtosecond time 

resolution [3,4,10]. In these communications, the probing light is the 25th harmonic (λ=32 nm, 

@38.7 eV) of a 800 nm infrared laser, generated in argon gas. Single shot coherent imaging 

has been demonstrated with a sub-100nm spatial resolution mainly limited by the signal and 

the wavelength. Using shorter wavelengths would lead to better spatial resolution, and would 

furthermore allow studies around resonance edges of numerous materials. 

We report here our results on the generation of a high flux harmonic source around the 

cobalt M-edge corresponding to a wavelength of 20 nm (E=60 eV). The experimental setup is 

presented in Fig.1. The optimization of the HHG yield has been performed to fulfill the 

requirements for the magnetic scattering investigation presented in the next sections. We have 

focused on improving the HHG intensity and the spatial profile, and on tuning the spectrum of 

the harmonics to better match the cobalt M-edge. The harmonic beamline is driven by the 

table-top Ti:sapphire laser system LUCA (Laser Ultra Court Accordable), which delivers up 

to 50 mJ energy pulses at 800 nm with a pulse duration of 50 fs and a repetition rate of 20 Hz. 

The beam is then focused using a long focal length lens (f = 5.56 m) into a variable length gas 

cell filled with neon. The motorized gas cell has an adjustable length between 0 cm and 15 cm 

and a gas pressure controller. Phase matching is mainly adjusted by finely tuning the beam 

diameter with a diaphragm set just before the lens. The HHG spectrum is analyzed using a set 

of a toroidal mirror (f = 0.75 m) and a blazed grating arranged in a 4f configuration. A pinhole 

placed after the grating is used to select a single harmonic order. A movable photomultiplier 

placed at 1.5 m from the toroidal mirror detects the harmonic signals going through the 



  

pinhole. When the photomultiplier is moved out, an X-ray charge-coupled device camera 

located at 3.5 m from the toroidal mirror is used to investigate the harmonic far field spatial 

profile. Aluminium filters (150 nm thickness) are located at different positions in the beam 

path to cut the residual infrared light and reduce the harmonic beam intensity to avoid the 

detector saturation. Then, for magnetic investigations, the sample is placed at the focus of the 

toroidal mirror and the scattering patterns are detected using the X-ray CCD camera set in the 

far field. During these measurements, the camera is cooled down to 233 K to reduce the 

detection noise. 

  2.2 Optimization of the high harmonics generation in the 60 eV energy range  

The optimization study of HHG in neon has been carried out for the 37th (57.4 eV) and the 

39th (60.5 eV) harmonics, which are the closest ones to the Cobalt M-edge. First, we have 

upgraded the loose focusing scheme reported in ref. [3] which allows coupling a high amount 

of laser energy (few tens of mJ) in the generating media. Since the HHG phase matching 

depends on the IR laser focusing quality and its propagation in the generating medium, the 

wave front and the spatial profile of the IR laser along with its temporal properties have 

important roles in the HHG process. In order to enhance the HHG yield and the beam 

properties we have used a modal filtering through an optical fibre with an active pointing 

stabilization to optimize the infrared laser beam quality at the focus. This results in a quasi-

Gaussian beam with up to 40 mJ of laser energy. As a result, the HHG signal has been 

strongly improved: the beam is very stable from shot to shot in shape, intensity and position. 

This was also reproducible from one day to the other (which was not the case in our previous 

work).  

Second, we have explored systematically the different parameters: beam aperture, gas 

pressure, cell length, IR laser energy and lens focus position. Following the methodology of 

Ge et al. [10], we looked for HHG conditions that optimize both the harmonic flux and the far 

field spatial distribution of the beam. There is an optimum range of the laser focus between 0 

and 5cm behind the gas cell output. If the laser is focused before the gas cell output, the 

intensity and the spatial profile of the harmonic beam become worse while approaching the 

laser focus towards the gas cell input. When the laser focus goes further behind the gas cell 

output (maximum 8 cm behind, limited by the translation stage of the lens), the harmonic 

beam intensity decreases slowly and its spatial profile remains relatively good. This 

phenomenon is related to the self-guiding of the laser pulse during the propagation in the 



  

generating medium. The self-guiding effect can enhance the laser properties (such as the laser 

intensity distribution) and the phase-matching condition. It has been shown that these 

conditions strongly depend on the gas cell position [11] with respected to the focused laser. 

When the gas jet is located before the laser focus, Kim et al. observed that the harmonic beam 

intensity increases dramatically (two orders of magnitude higher). Our experimental results 

show similar effect on the generated harmonic beam with about three times higher intensity. 

More importantly, the spatial profile of harmonic beam is more homogeneous in the optimum 

range. The best parameters values for the generation of H39 are listed in table 1. The 

harmonic flux of H37 and H39 rise routinely up to 109 photons per pulse after optimization, 

which is one order of magnitude lower than what can be generated in argon at longer 

wavelength (H25, λ=32 nm). It agrees well with the ratio of harmonic generation efficiency 

between argon and neon.  

2.3 High harmonics energy tuning to match the resonances edges of the inspected 

materials 

The purpose of the HHG beam optimization at high laser energy is to perform quantitative 

magnetic scattering studies. However the source has a discrete spectral distribution composed 

of odd harmonic of the driving infrared laser frequency. This prevents an accurate 

characterization of the magnetic resonances. A way to increase the spectral sampling and to 

match the magnetic resonances would be to tune the harmonic beam. Indeed, neither H37 nor 

H39 correspond to the top of the resonant peak of the Cobalt M2,3 edge (see Fig.3). The 

scattering efficiency would double, if H37 or H39 could be shifted to the center of the 

resonant peak. Unfortunately, the fundamental energy of the laser cannot be tuned to get 

harmonics matching the exact value of the cobalt M-edge resonance. 

According to previous works, it is possible to blue-shift the harmonics in the spectrum due to 

the self-phase modulation of the laser pulse caused by ionization in gas medium [12,13,14], 

and due to the nonadiabatic effect driven by the rapid increase in the femtosecond laser 

electric field [15,16]. Large blue-shifts can cover the interval between odd harmonics [15,16]. 

Several parameters can be tuned to induce a blue-shift, such as laser intensity, the laser pulse 

duration and the gas density. We have taken spectra in different generating conditions to study 

the possibility of shifting H37 or H39 to better match the resonant peak. We have been 

varying the beam aperture, the laser energy, the gas pressure but a spectral shift was observed 

only when varying the laser chirp. The recorded shifts are presented in Fig. 2. For each figure, 



  

the plot in line is the same reference (optimized) value of pulse duration, related to the 

optimized distance between the gratings of the laser pulse compressor. On Fig. 2(a), one can 

observe a blue shift with respected to the reference, while on Fig. 2(b) a red shift appears. 

Such variations are related to the laser chirp, negative in Fig. 2(a) and positive in Fig 2(b). In 

all cases, chirping the laser reduces the HHG yield. This is mainly due to the stretch of the 

laser pulse from the initial pulse duration of 50 fs to 90 fs for the higher chirps. Unfortunately, 

we did not get any significant spectral shift to center one harmonic order to the resonant peak 

as the shift is rather small, of about 0.26 eV either to the red or to the blue direction. 

Another possible method to reach a photon energy closer to the high scattering 

efficiency of the cobalt M-edge is to use the even order harmonic H38 (58.89 eV). The latter 

can be generated in a “ω + 2ω” configuration (two-color HHG). By mixing the fundamental 

and its second harmonic, we break the inversion symmetry in the HHG process and generate 

both odd and even harmonics [17]. In the context of magnetic studies, this would give to a 

finer spectral sampling of the scattering properties. Moreover the 38th harmonic order (at an 

energy of 58.9 eV) lies very close to the cobalt maximum scattering efficiency. Fig. 1 presents 

the spectra of one-color (red columns) and two-color (gray columns) generation, obtained by 

inserting a 0.2 mm thick Beta Barium Borate (BBO) type I crystal in the beam path before the 

cell. Note that the two spectra were acquired for different generation conditions, the optimum 

set of parameters being different in each case. The sharp cut-off of the one-color spectrum is 

due to the aluminum filter’s cut-off. The harmonic flux in the two-color generation scheme is 

reduced by a factor of about 4 compared to the one-color geometry. In addition, the cutoff of 

the HHG is shifted towards lower energies (from 70 eV to 62 eV), as previously reported 

[17]. However, the odd and even harmonic orders are efficiently generated around the cobalt 

M-edge. 

 

3. Optical measurements of magnetic networks at the nanoscale  

3.1. Samples and measurement principles 

Our optimized soft X-ray beamline has been used to characterize the scattering from magnetic 

nanodomains. The first samples consisting of [Co/Pd] multilayers are fabricated by magnetron 

sputtering technique on a 30 nm thin silicon nitride membrane [18]. Sample “A” is composed 

of 20 layers of [Co(4Å)/Pd(6Å)] and forms a square membrane of 200x200 µm2. Sample “B” 



  

has 30 layers of [Co(4Å)/Pd(6Å)] on a square membrane of 250x250 µm2. The magnetic 

nano-domains structures presented on these samples are prepared in two different 

configurations: well-aligned stripes (sample “A”) and labyrinthine (sample “B”) (Fig. 3), 

depending on the fabrication procedure. The width of the nanodomains results from the 

balance between magnetostatic energy versus domain walls energy and varies with the film 

thickness [19]. Labyrinth (aligned) stripe domains can be obtained from demagnetization of 

the film with perpendicular (in-plane) external magnetic field. The alignment of the domains 

leads to a size reduced by ~30% compared to a labyrinthine spatial organization [19]. 

The origin of the resonant magnetic scattering is based on the interactions (spin-orbit 

and exchange interactions) occurring between the core levels and the valence bands [20]. As a 

consequence, the optical index (n±) of the two nanodomains (with up and down magnetization 

directions) around the absorption edges of such materials are different, which can be 

described as:  

 n± = 1 – ( β ± Δβ ) + i * ( δ ± Δδ), (Eq. 1) 

where Δβ and Δδ represent respectively the real (dispersion term) and imaginary (absorption 

term) parts of the optical index difference between spin up and down nanodomains. The 

magnetic contrast can be observed at the M2,3 absorption edge of the cobalt at 60eV. Due to 

the optical index difference between the nanodomains having up and down spin states, the 

samples act as a transmission grating for the incoming light. Small-angle scattering (SAXS) 

detection is used to investigate the magnetic properties and the spatial organization of the 

nanodomains. A diffraction pattern will evolve from two well-defined Bragg peaks in the case 

of well-aligned stripes (Fig. 1) to a scattering ring if the structure is completely disordered 

(Fig. 4). Provided that the pattern oversampling conditions are fulfilled, an image of the nano-

domains can be reconstructed using coherent diffractive imaging techniques and phase 

retrieval algorithms [21]. This was not the goal of this experiment. We are concerned here by 

extracting spatial information from the far field scattering pattern. Its efficiency D is defined 

as the ratio between the number of scattered photons with respect to the number of incident 

photons. D can be estimated by the following relation:  

 D(E) ~ T(E) (Ed)2 [Δβ(E)2+Δδ(E)2], (Eq. 2) 

where T, d and E are the sample's optical transmission, the thickness of the resonant material 

and the photon energy. Using the data of cobalt optical index from the literature [22], the 



  

scattering efficiency of the sample is estimated in the 10-8 range for photon energies far away 

from the Co M-edge, and around 10-6 for photon energies close to the resonant edge.  

3.2 Spectral measurement of the magnetic scattering efficiency using the “ω+2 ω” 

high harmonic configuration 

Using both one-color and two-color generation schemes, we have measured the magnetic 

scattering efficiency over a large spectral bandwidth from 45 eV to 70 eV. Magnetic samples 

are located on a nano-motorized holder at the focus of the toroidal mirror where the harmonic 

beam size is estimated to be around 200 µm of diameter. The CCD camera is mounted on a 

translation stage behind the sample holder so that the distance between the detector and the 

sample can be adjusted from 2 to 5 cm. Figure 3 presents the measured scattering efficiency 

diagram of sample “A”. The experimental values (open and full symbols for odd and even 

harmonics, respectively) are mean values over thousands of shots. We observe two scattering 

maxima located at 51 and 60 eV. The results are compared to the simulations (black line) 

extracted from Eq. (2) (note that the simulations include only the cobalt optical indexes). One 

can note the good agreement around the cobalt M-edge resonance. The simulation is adjusted 

to the experiment using a proportionality factor of α=0.8. This value can be related to the 

accuracy of the simulated complex optical indexes [22]. Additional errors come from the 

determination of to the direction of the easy magnetization axis Ms of the sample with respect 

to the incident optical wave vector. Indeed, the easy magnetization axis of the sample results 

from the competition between the magneto-crystalline anisotropy and the shape anisotropy 

[23]. They induce out-of-plane and in-plane easy magnetizations, respectively. Ms can thus be 

tilted with respect to the direction normal to the sample surface. However the measurement 

gives access only to the direction of the incident wave vector ki, as illustrated in inset of 

Fig. 3. Ms should then be located in a 30° cone according to the measurement. 

The fine spectral sampling provided by the two-color HHG source allows us to visualize the 

resonance peaks. The main peak around 60 eV corresponds to the photons scattered by the 

cobalt magnetic layers. At lower photon energies, we also measured a weaker resonance peak, 

not reproduced by the numerical simulation. This peak corresponds to the palladium N-edge, 

at 51 eV. This resonance was not expected, as the magnetization of the palladium was not 

thought to be detectable, i.e. the magneto-optic values of the sample at the Pd N-edge were 

thought negligible. This implies that a significant magnetization has been transmitted in the 

sample from the cobalt to the palladium. Further measurements and analysis are necessary to 



  

understand the physics behind this behavior.  

 3.3 Single-shot measurements of the magnetic nanodomains network 

The low scattering efficiency from the magnetic nanodomains requires intense X-ray pulses to 

reach the single laser shot regime, mandatory for time resolved studies of optically induced 

demagnetization. This would give access to irreversible phenomena occurring for example at 

high energy density excitation. The scattering efficiency of H38 is slightly better than H39. 

However, H39 benefits of 4 times higher incident flux. Because of the tradeoff between flux 

and scattering efficiency, a higher signal to noise ratio has been achieved for H39 than H38, 

which is critical for scattering patterns analysis. H39 is consequently the more suitable order 

for our single-shot experiments. We present in this section the experimental results obtained 

on sample “B”.  

The uniform radial distribution of the scattered photons into a ring centered on the direct 

beam is the signature of the labyrinthine organization of the magnetic network. This is a less 

favorable situation as it leads to a lower signal to noise ratio. According to the transmission 

and the optical index of the sample, the scattering efficiency is estimated to be 1.08x10-6 for 

H37 (57.4 eV) and 1.13x10-6 for H39 (60.5 eV) (see table 2). To compensate for the low 

scattering efficiency, we have pushed the HHG source to its extreme yield (109 photons per 

shot) by coupling the maximum IR laser energy available but at the cost of the shot to shot 

stability. Figure 4 presents two single-shot scattering patterns measured using H37 and H39. 

The scattering rings are clearly visible. We found a good agreement of the scattering 

efficiency in the 10-6 range at both energies. Single-shot scattering signals have only been 

detected for H37 and H39, close to the edge. The center spots corresponding to the direct 

beam saturate the CCD camera and are taken into account during the analysis. The average 

size of the nano-domains is calculated from the spatial integration of the detected scattering 

ring as a function of the wave vector transfer, q. Normalized measurements (symbols) and the 

best pseudo-Voigt fit of the data are presented in Fig. 4. The maximum of the scattering 

intensity is detected at q = 0.029 ± 3x10-4 nm-1. At this position, we calculated the average 

size of the nano-domains, equal to 108 nm. The nano-domains width distribution (±Δq) is 

given by the full width half maximum of the integrated scattering intensity. We measured Δq 

= 0.022 ± 5x10-4 nm-1 for H37 (57.4 eV) and Δq = 0.018 ± 3x10-4 nm-1 for H39 (60.5 eV). 

These two values correspond to a domain width distribution of ± 90 nm and ± 70 nm, 

respectively. We have performed the same analysis for sample “A”, presenting aligned nano-



  

domains. From the measured scattering pattern, we deduced an average nano-domains size of 

91 nm and a width distribution of ± 6 nm, which is significantly lower than sample “B”. This 

difference is related to the thickness of the magnetic sample, and to the difference into the 

spatial organization of the magnetic network, i.e. aligned versus labyrinthine [21,24].  

 3.4 Investigations of various [Co/Pd] magnetic samples around Co M-edge and Pd 

N-edge 

After the single shot demonstrations, we have performed exhaustive studies of different 

magnetic samples. The goal was to optimize the magnetic scattering efficiency by varying the 

sample composition. It has practical interest for the design of future single shot imaging and 

time resolved experiments and, beyond this, it gives insight into the underlying physics of 

magnetism at a nanometer scale.  

Experiments are realized over a large spectral bandwidth using the two colors spectral  

sampling setup. This allows resolving the samples scattering both the palladium N-edge and 

the cobalt M-edge. We have studied various samples that differ in the magnetic layers 

repetition number and in the thickness of one magnetic element with respect to the other. The 

samples are described in table 3. The total thicknesses of the cobalt and of the palladium in 

the inspected samples range from 40 to 160 nm and from 40 to 240 nm, respectively, while 

the layers repetition number varies from 15 to 80. The measurements of the scattering 

efficiency of the samples around the Cobalt M-edge are presented on Fig. 5(a,c) while 

measurements around the palladium N-edge are reported on Fig. 5(b,d). We have also plotted 

the results as a function of the repetition number of the layers (fig. 5(a,b)) and as a function of 

the thickness of the resonant material at the inspected energy (fig. 5(c,d)). As a general 

behavior of the magnetic scattering efficiency, we observed for all the samples that the 

magnetic scattering efficiency decreases when the sample gets thicker. This can be explained 

from Eq. 2: the scattering efficiency increases quadratically with the thickness of the resonant 

material, but is proportional to the sample's transmission, which itself decreases exponentially 

with the sample thickness. In Fig. 5(a,c), a maximum scattering efficiency of 2.4 10-5 at the 

Co M-edge has been measured for a cobalt thickness of 40 nm. This is one order of magnitude 

higher than the value measured for sample B used for the single shot measurements, which 

has a cobalt thickness of 120 nm. Note that, it is impossible to further increase the scattering 

signal by reducing the cobalt thickness below 40 nm. Indeed, a minimum thickness is 

necessary to create an out of plane magnetic anisotropy. This sets a limit to the maximum 



  

scattering efficiency of the magnetic samples. 

In Fig. 5(b,d), we note that the scattering of palladium has not been observed for all the 

samples. Actually, we explain this by the fact that a minimal thickness of cobalt between 

layers of palladium is required to induce a significant transfer of magnetism. Our results show 

that a thickness of 2 Å of cobalt between layers of Palladium is not enough to induce a 

magnetic activity in the palladium layers, as illustrated on fig. 5(b). 4 Å of cobalt between 

layers of Palladium is measured to be the minimum thickness to induce a magnetization of the 

palladium layers. Similarly to cobalt, the magnetic scattering efficiency of palladium 

increases when decreasing the material thickness. At the Pd N-edge, a maximum of 1.5 10-5 

efficiency is measured for a palladium thickness of 40 nm. The high transfer of magnetization 

is ensured for this sample by a cobalt thickness of 80 nm. However for this value, we observe 

a low scattering efficiency at the Co M-edge (Fig 5a,c).    

 

4. Conclusion 

In summary, we have first reported on the optimization of one-color and two-color HHG 

beamline in neon, providing from 108 to 109 photons per pulse. We have presented then single 

and multiple-shot investigations of the X-ray scattering from [Co/Pd] magnetic nano-domains 

of various [Co/Pd] compositions using a table-top high flux harmonic beamline. Using the 

two-color HHG configuration, we have realized spectral studies over a 20 eV bandwidth with 

a sampling step of 1.55 eV that allows resolving both cobalt and palladium magnetic 

resonances, respectively at 60 eV and 51 eV photon energies. Moreover, we have 

demonstrated that spatial information of the magnetic nano-domains organization can be 

extracted from single-shot measurements with nanometric spatial resolution in femtosecond 

flash of light. Note that the single shot studies were performed with a modest scattering 

efficiency of 1x10-6. A study of the magnetic scattering efficiency of various samples, which 

differ in the repetition number of layers and in their composition, has been conducted. We 

have observed a maximum scattering efficiency of 2.4x10-5 at the Co M-edge for a Co 

thickness of 40 nm and 1.5x10-5 at the Pd N-edge for a Pd thickness of 40 nm. In the next 

future, this result will allow improving the scattering signal by one order of magnitude in the 

single shot studies. This is also promising for single shot real-space imaging of the magnetic 

domains using phase retrieval approaches. 



  

These experiments have demonstrated the potential of intense HHG beamlines for physical 

investigation in solid states physics. For instance, the multiple-shot acquisition allows a fine 

spectral study of a physical behavior. The single-shot scattering experiments pave the way for 

future ultrafast dynamic studies, particularly for the observation of irreversible phenomena, 

such as laser-induced demagnetization. More generally, it gives access to studies of a broad 

range of complex mesoscopic systems, as for example nanoscale phase transitions and photo-

chemistry. 
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Figure 1. Schema of the experimental setup. Two HHG spectrums are presents in 

inset. The high intensity spectrum is recorded in a classical HHG scheme and the lower 

intensity spectrum is obtained using a two-color scheme, generating odd and even harmonic 

orders. A typical detected scattering pattern is also presented. (The color version of this figure 

is included in the online version of the journal.) 

Table 1. Optimum value empirically identified to generate around 109 photons per 

pulse at 60 eV. More photons can be generated using different parameters but at the expense 

of the spatial profile and the reproducibility of H39 laser pulse characteristics from shot to 

shot. 

Figure 2. Blue (a) and red (b) shifts of high harmonics with respects to the reference: 

the optimized HHG (line). In both figures, when the pulse duration is increased (by changing 

the distance between the gratings of the optical compressor), the blue/red shift increases. The 

observed shifts are smaller than 0.26 eV. (The color version of this figure is included in the 

online version of the journal.) 

Figure 3. Measured scattering efficiency on the HHG table-top setup (symbols) 

confronted with the theoretical model (continuous line). The experimental data are obtained 

by calculating the ratio between the number of the scattering photons detected on the CCD 

camera with respect to the number of incident photons. The theoretical model is adjusted 

using a scaling factor. This factor can be related to an angle between the incident optical wave 

vector and the magnetization of the sample, as presented in inset. The figure illustrates the 

principle of the inspected sample: it is a multilayer of 20 repetitions of [Co(4 Å)/Pd(6 Å)], 

that forms magnetic nanodomains, as revealed with the MFM image. (The color version of 

this figure is included in the online version of the journal.) 

Table 2. Transmissivity of sample “B” and sum of the square of the real and imaginary 

parts of the optical index difference between spin up and down nanodomains for H37 and 

H39. 

Figure 4. Single-shot magnetic scattering patterns of a multilayer of 30 repetitions of 

[Co(4 Å)/Pd(6 Å)] for two incident photon energies: H37 and H39. The domains in the 

structure have random orientation, leading to the detection of a scattering ring. A radial 

integration of the scattering ring (symbols) as a function of q is presented, with the best 



  

pseudo-Voigt fit of the data (lines). The central part of the scattering patterns with saturated 

pixels caused by the direct beam has been removed before doing integrations. (The color 

version of this figure is included in the online version of the journal.) 

Figure 5. Measured magnetic scattering efficiencies at the Cobalt M-edge (a,c) and at 

the Palladium N-edge (b,d) for various [Co/Pd] samples. Configurations of the samples are 

[Co(2Å)/Pd(2Å)] (squares), [Co(4Å)/Pd(2Å)] (stars), [Co(4Å)/Pd(6Å)] (triangles) and 

[Co(4Å)/Pd(8Å)] (circles). Plots are presented as function of the repetition number of the 

multilayers (a,b), and the cumulate thickness of the resonant material (c,d). (The color version 

of this figure is included in the online version of the journal.) 
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Figure 1 

  



  

Parameters Value 

beam aperture 25~27 mm 

gas pressure 46~50 mbar 

gas cell length 5~6 cm 

laser energy 24~28 mJ 

focus position 

(behind the gas cell output) 

0 ~ 2 cm  

Table 1 

  



  

  

Figure 2 



  

 

Figure 3 

  



  

Energy (eV) 57.4 60.5 

T(E) 0.0518 0.0304 

[Δβ(E)2+Δδ(E)2] 

(x10-6) 
1.08 1.13 

Table 2  

 



  

 

Figure 4   



  

Sample Repetitions 

[Co(2Å)/Pd(2Å)] 20, 40, 50, 60, 80 

[Co(4Å)/Pd(2Å)] 20, 30, 40 

[Co(4Å)/Pd(6Å)] 15, 20, 30, 40 

[Co(4Å)/Pd(8Å)] 15, 20 

Table 3 

  



  

  

  

Figure 5 
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Chapter	
  V	
  	
  
Perspectives	
  and	
  	
  
General	
  Conclusion	
  
 

V.1	
  Perspectives:	
  Source	
  and	
  diagnostics	
  upgrades	
  	
  
 

I summarized here few perspectives studies started during my Ph.D. thesis work. 

 

Harmonic source down to 4nm wavelength 
The experimental results of coherent diffractive imaging presented in Chapter III and the 
application to magnetic scattering from Chapter IV show that the photon flux of our harmonic 
beam is still the main limiting factor, especially for single-shot experiments. Thus, the future 
beamline upgrade will be focused on increasing the photon flux. This may be realized for 
instance by generating harmonics from ions in a pre-formed plasma [1]. Recent researches [1-
3] have demonstrated enhanced HHG in noble gases in a capillary discharge, presenting an 
extended plateau and an increased harmonic flux. For example, the Ar cut-off has been 
extended to 275 eV [2] and the flux around 90 eV from Xe with a discharge is two orders of 
magnitude higher than the one without pre-ionization discharge [1]. This effect relies on the 
plateau extension rule, 

ℎ𝜐!"# = 𝐼! + 3.17𝑈! (Eq. 5-1) 

in which the ionization potential 𝐼! depends on the generation gas. As an example, using our 
beamline, switching from argon (𝐼! = 15.7  𝑒𝑉) to neon (𝐼! = 21.6  𝑒𝑉) moves the cut-off 
position from order 33 to order 61. However, the efficiency of the generation drops by more 
than one order of magnitude. This can be circumvented by using singly ionized argon 
(𝐼! = 27.7  𝑒𝑉), which should push the cut-off well below 10 nm. M. Zepf and colleagues [4] 
have demonstrated phase matched high harmonic generation in argon ions with a significant 
number of photons (up to 109) down to 4 nm. In this work, the argon atoms were ionized 
using the same laser pulse that generates the harmonics. However, several research groups 
have tried to reproduce their results without success. To generate high order harmonics from 
an ionized medium, one can dissociate the ionization step from the harmonic generation step. 
Instead of using a laser, we propose to use a high voltage discharge as in Ref. 1 and 2. The 
timing between the discharge and the femtosecond laser will be controlled to optimize the ion 
population. A capillary will act as a beam guide to compensate for the phase mismatch 
induced by the free electrons. A discharge cell will be developed in collaboration with the 
group of Dr. C. Russo (Grupo de Lasers e Plasmas, Instituto Superior Técnico, Lisboa, 
Portugal) and will be tested at the very end of my thesis work. The main challenge will be to 
deal with the phase mismatch and the loss of the laser intensity due to the laser defocusing. 
The future HHG scheme on our harmonic beamline will probably be the combination of the 
HHG from ions and quasi phase matching [5] to provide higher harmonic beam flux. Single-
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shot studies should then be facilitated. Finally, soft X-ray harmonic pulse of short wavelength 
(4-10 nm) will highly improve the spatial resolution in the coherent imaging. 

 

Complete single-shot coherence characterization 

The beam’s spatial coherence is a key factor for all the coherent imaging techniques, as 
demonstrated in Paper I and in the examples of FTH reconstructions (Chapter III, section 
III.6). However, the Young’s double slits experiment can only measure the spatial coherence 
at one given position of the harmonic beam in one acquisition. Therefore, to characterize the 
entire beam spot, one should combine the measurements of multiple acquisitions from a 
complete set of inter slit distances. This prevents any single-shot characterization of the full 
beam. Single-shot 2D characterization with a single interferogram can be achieved using a 
nonredundant array of apertures (NRA). The NRA proposed and demonstrated with visible 
lasers in Ref. 6 is made of nine pinholes (Fig. 5.1a) in well-chosen positions that create a non-
redundant superposition of the beam spots (Fig. 5.1b) for interference measurement (Fig. 
5.1c). The spatial coherence of the beam (Fig. 5.1d) can then be calculated at the position of 
each spot. Therefore, a more complete characterization of the spatial coherence across the 
beam is achieved. Note that in both Young’s double slits and NRA measurements, the 
knowledge of the beam’s intensity distribution is necessary for calculating the spatial 
coherence, and is usually assumed to be uniform for simplification. Thus, single-shot 
measurement of the spatial coherence will always rely on the statistics of the intensity 
distribution, which introduces a systematic deviation in the measurements. However, it is 
possible to retrieve the spatial coherence from one single acquisition without complementary 
intensity measurement. We have designed and fabricated two “coherence patterns” similar to 
NRA (Fig. 5.2) for our harmonic beamline. Applying the Fourier transform on the diffraction 
pattern of these “coherence patterns”, we can measure the amplitude of each peak (An,m), 
which is associated with a pair of pinholes (n,m) and given by the following equation: 

𝐴!,! = 𝐼!𝐼!𝜇!,! (Eq. 5-2) 

where In and Im are the intensities of the pinholes (n,m), and µn,m is the spatial coherence 
associated to the pair of pinholes. In this equation, we have three unknown variables (In, Im 
and µn,m) and one measured term (An,m). In the NRA experiment, the spatial coherence (µn,m) 
is deduced with In and Im given by the intensity measurement of the beam. Here, we assume 
that the three pinholes in the small area of the beam center (red circles in Fig. 5.2) are 
identical in intensity and each pair of pinholes has the same spatial coherence. For each group 
of four pinholes that has the three pinholes inside the red circle and one outside (Fig. 5.2a), 
we will have a set of six equations of Eq. 5-2 with six variables: I1 = I2 = I3 = Icenter, I4, µ1,4, 
µ2,4, µ3,4 and µ1,2 = µ1,3 = µ2,3 = µcenter. Therefore, we can deduce the intensity and the spatial 
coherence for all the pinholes, and the spatial coherence map of the single harmonic pulse. 
Note that this approximation is true in the case of our harmonic beamline and can be 
generalized to other experimental setups. These “coherence patterns” will be tested in the next 
experiment campaign during the HHG upgrade.  
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Fig. 5.1. Principle and experimental demonstration of the NRA spatial coherent measurement. 
Pictures are extracted from Ref. 6. (a) The NRA is composed of nine pinholes whose 
autocorrelation (b) has equal amplitudes for all autocorrelation peaks (filled circles) except 
the center one (open circle). (c) is the measured interferogram of a diode laser (635 nm) and 
(d) is the deduced spatial coherence of the beam from (b).   

 

Fig. 5.2. SEM images of the “coherence patterns” that will be used for characterizing our 
harmonic beam. The white bar in each image is 1 µm. Note that the images are taken with a 
view angle of about 60 degrees.  

 

V.2	
  Perspectives:	
  3D	
  imaging	
  
 

The imaging techniques presented in this thesis work are two-dimensional reconstruction of 
test objects. For many scientific applications, especially in biology and medical imaging, 3D 
information of the sample is necessary. The typical way to make 3D reconstructions is the 
tomography method [7]. It requires multiple acquisitions of different observation angles to 
records multiple 2D projections, which are assembled in a full 3D image. This could be a 
problem if radiation damages occur during the long acquisition. Another example is given by 
3D dynamic studies. In a pump probe experiment, the object can be irreversibly transformed 
or destroyed after interaction with the pump pulse, preventing any multiple acquisitions 
scheme. It is sometimes possible to prepare multiple identical samples but this is rather 
difficult or even impossible for many systems that cannot be easily duplicated. To overcome 
this problem and to simplify the sample preparation, retrieving 3D information in a single-
shot scheme is necessary.  
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Single-shot stereo imaging 

One possible solution is based on the human vision: stereo imaging. Our right and left eyes 
take two 2D images at different observation angles of the object and the brain combines these 
images to give the perception of 3D depth. This is not real 3D imaging but already provides 
more information about an object than a 2D image. Fig. 5.3 presents stereo imaging examples 
of nanoplankton samples realized with a scanning electron microscope [8]. After the first 
image (photos in gray scale), the biological samples were tilted by about 5 degrees to take the 
second image. These two images are then turned into red and green, and combined by the red-
green anaglyph method [9]. With red-green glasses, one can see 3D planktons from the 
combined image. 

 

Fig. 5.3. Stereo images (red-green photos) of plankton samples made by digital combination 
of SEM images (gray scale) taken at different observation angles. Picture extracted from Ref. 
8. 

 

I have been working in the implementation of the first single-shot stereo imaging using high 
harmonic generation. The idea is to realize two parallel beams that will be focused at the same 
point by the off-axis parabola. The separation of the main beam is realized with two grazing 
incidence silicon mirrors (Fig. 5.4) before the parabolic mirror. Half of the harmonic beam is 
reflected by the “mirror 1” in Fig. 5.4 and the other half goes straight to the parabola. The 
reflected half-beam is then reflected by the “mirror 2” toward the parabola. The two half-
beams are focused by the parabola onto the sample. The distance between the two parallel 
beams is about 20 mm, which is acceptable by the numerical aperture of the parabola. As the 
two beams are parallel they are focus at the same point with an angle of ~ 6°. Note that in this 
geometry the two beams are not synchronized. A new setup with a femtosecond 
synchronization of the two beams is currently under design. 

After interaction with a sample, the two beams generate two diffraction patterns that are 
collected by our CCD camera in a single acquisition (Fig. 5.5a,b). The first test object is 3D 
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HERALDO samples with slit references. We use an up-warped etching process to have 3D 
depth, with different motifs, such as the grid presented in Fig. 5.5a. Since the half-beams have 
lower flux due to the beam separation and additional mirror reflection, we use the slit 
references to increase the reconstruction ability. Fig. 5.5c,d present a preliminary result of 
HERALDO reconstructions associated to the diffraction pattern (Fig. 5.5b). The slit 
references and the borders of the up-warped pattern are well resolved, but the grid motif is not 
clear. Further work on the reconstruction is under progress. Further work on biological 
samples will also be realized (nanoplankton sample have already been prepared).   

Time-resolved three-dimensional imaging studies that are currently limited by the need for 
multiple views of the same sample will be then possible. It is expected to get single-shot 
images with 3D perception down to sub-100 nm spatial resolution. 
 

 

Fig. 5.4. Picture of the experimental setup for stereo imaging. In the left one, blue lines 
indicate the beam propagation and yellow squares are the silicon mirrors installed for beam 
separation. The two-mirror system is also shown in the picture at right (red circles) as well as 
the parabola (yellow circle) and the sample (blue circle). 

      
Fig. 5.5: Stereo-imaging. (a) SEM image of a test sample with two schematized incident XUV 
beams. The two black lines are HERALDO references. (b) First experimental diffraction 
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pattern (September 2012). (c) and (d) Inversion of the holograms. The red squares delimit one 
reconstruction. 

 

Ankylography 

Another solution is a novel imaging concept recently proposed by the research group of J. 
Miao, called ankylography, which “under certain circumstances enables complete 3D 
structure determination from a single exposure using a monochromatic incident beam” [10]. 
Ankylography is a coherent imaging technique based on phase retrieval that uses the same 
experimental setup as CDI. Compared to CDI, Ankylography requires one more oversampling 
condition due to the third dimension (the beam propagation direction) and the phase retrieval 
algorithm processes in three dimensions for the reconstruction. In principle, a finite object 
illuminated by a coherent beam scatters waves on the Ewald sphere. The measured 2D 
diffraction pattern collected by the CCD camera is a projection of that sphere, in which the 
3D structure information of the object is encoded. The 3D reconstruction is then possible by 
turning the measured diffraction pattern into a 3D spherical pattern. Fig. 5.6 shows a 
demonstration of the ankylography on experimental data using a table-top kHz high harmonic 
source [10]. The fabrication defaults observed in the SEM image of the object (Fig. 5.6e) are 
reconstructed by the ankylography technique (Fig. 5.6b,c) using the spherical diffraction 
pattern (Fig. 5.5a) calculated from a multiple-shot acquisition.    

 

Fig. 5.6. Demonstration of ankylography. Picture extracted from Ref. 10.  

 

Single-shot studies of this technique have been launched at our harmonic beamline. While the 
experimental setup and the samples configurations are under continuous improvement, I 
present here only the very first experiment I was part of (Fig. 5.7). The samples are placed on 
a rotation stage, allowing us to study the different 3D imaging techniques (the XUV beam 
splitter was not available at that time). The 3D sample is composed of two opaque membranes 
(the same type as used for CDI and HERALDO in chapter III) separated by about 3 µm, with 
a grid etched using a FIB. By rotating the sample, we could acquire the two views necessary 
for stereo imaging. Single views could also be used for ankylography. Fig. 5.7a is the 2D 
reconstruction of the well-aligned grids (0°), while Fig. 5.7b presents a different view at 
another orientation where the slits of the first membrane are partially covered by the second 
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one. The preliminary results do not have sufficient quality for stereo combination. The 
analysis is under progress to refine the reconstructions. Fig. 5.7.c is the single-shot 
ankylography reconstruction of the diffraction pattern taken at 0° (same as Fig. 5.7a). The 
reconstruction has been performed by researchers of J. Miao’s group. The green part of the 
3D image indicates the volume where photons went through. The shape of the slits of the two 
membranes is clearly reconstructed. New data have since been obtained, using other samples 
and improved experimental conditions. The analysis is under way. Note that the phase 
retrieval process requires a powerful computer cluster and several hours of computing time to 
perform a single reconstruction. This is one disadvantage of ankylography compared to stereo 
CDI. The latter requires only a personal computer. However, the ability to obtain complete 
3D information from single views promises a bright future in various scientific areas.      

 

Fig. 5.7. One of the experimental schemes for stereo and ankylography imaging, and the 
preliminary reconstruction results.  
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The objective of this thesis was to develop and analyze different coherent diffractive imaging 
techniques using an XUV high-order harmonic beam and to implement their first physical 
application.  

The theoretical background of the coherent imaging (or lens-less imaging) was presented in 
Chapter I from the image formation in the Fraunhofer diffraction regime to the different 
reconstruction processes of CDI, FTH and HERALDO. The two main branches of lens-less 
imaging, CDI and holographic techniques, have their own advantages. The latter provides 
quick, direct and non-ambiguous reconstruction of the object, while the iterative algorithms 
usually converge to reliable solutions after thousands of iterations. However, the need of a 
proper reference in holographic techniques limits the field of applications. The reference may 
be technically difficult or even impossible to manufacture or to set at the proper distance from 
the object. However, the spatial coherence of the light source is the key factor for both 
reconstruction processes. A reduced coherence can prevent the phase retrieval algorithms 
convergence. The high-order harmonic source, which I used during this thesis work is 
intrinsically qualified for the coherent requirement and is able to deliver high flux beam 
thanks to the recent development of the High flux harmonic beamline. 	
  

Chapter II introduced the development and progress of the beamline. Using the 25th harmonic 
of the laser (λ = 32 nm) a 120 nm spatial resolution was obtained in the CDI reconstruction of 
a test object from single-shot acquisitions in 2009. This encouraging first lens-less imaging 
demonstrated the relevance of CDI at HHG beamlines. It has been the starting point of this 
thesis work. An extensive study of the harmonic generation beam quality has been carried out 
under various generation conditions. We have used various diagnostics such as wave front 
sensor or Young’s double slits to provide crucial information for coherent imaging such as 
wave front quality, beam flux, spatial coherence and harmonic focal spot profile. The HHG 
parameters have been optimized for a balanced compensation between the 3 key factors: the 
coherence, the flux and the wave front quality. CDI reconstruction analysis of the 
interferogram of the Young’s double slits confirmed the coupled influence of these beam 
characteristics. We also implemented a laser modal filtering system to optimize the IR pump 
laser. The IR laser presents a quasi-Gaussian beam profile after propagation in a hollow core 
fiber, which consequently improved the HHG efficiency by a factor of 2.5 in Argon and 6 in 
Neon. In addition, the filtered laser beam position is thus stabilized, ensuring a continuous 
high HHG quality during day-long experiments. The optimization at each stage of the 
beamline and the standardization of the harmonic generation have been crucial for the success 
of the coherent imaging experiments and the applications performed during my thesis. 
Moreover, this demonstrated that compact and inexpensive HH sources are a very interesting 
alternative to large-scale free electron laser facilities.  

Chapter III presents the demonstrations of single-shot CDI and holographic imaging 
techniques, followed by quantitative analysis. In the CDI section, we have reached sub-80 nm 
spatial resolution from single-shot acquisition (20 fs), which is ~ 2.5λ (λ=32 nm). The 
coherence requirements for CDI have been discussed using a Young’s double slits diagnostic. 
Our finding is that the phase retrieval algorithms do not converge for a contrast of 
interference fringes lower than 0.5. The importance of the coherence has also been 
demonstrated in the FTH reconstructions using a geometric grid test sample.  A high flux low 
coherence beam does not allow the reconstruction of the detail of the sample, while a lower 
beam flux with higher spatial coherence leads to a well-resolved image reconstruction. We 
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conclude that the beam coherence and the beam flux are the key parameters for lens-less 
imaging. In this context, the HERALDO configuration can amplify the diffraction signal 
thanks to the extended references. A “mathematical tricks” is then used to overcome the 
resolution limitation imposed by the reference size. Experimental demonstrations of 
HERALDO with 1D and 2D references have proven the robust reconstruction process. A 
spatial resolution of 110 nm has been achieved with single-shot acquisition for a test object of 
~ 2 x 2 µm². Step-by-step analysis of the reconstruction process shows the significant 
influence of the readout noise, which is amplified by the HERALDO operator in Fourier 
space. A low-pass filter is the solution to overcome this main obstacle. Meanwhile, detection 
stage optimizations, valid for all the coherent imaging techniques, have been discussed. The 
comparison between FTH and HERALDO showed that HERALDO with a slit reference is the 
best holographic configuration for our harmonic beam, since we are mainly limited by the 
beam flux in the single-shot regime. The comparison between CDI and HERALDO 
confirmed the effectiveness of the signal amplification by extended references. It is however 
not possible to say whether one is better than the other since this depends on the given 
experimental conditions. CDI and HERALDO are not only alternative but also 
complementary to each other. The choice of the best imaging technique for a concrete 
application should be based on a careful analysis of experimental conditions.    

Chapter IV presents an application to ultrafast nanomagnetism. This was the first physical 
application realized using the High flux harmonic beamline and coherent imaging techniques. 
The scattering of (Co/Pd) nanodomain magnetic structures has been measured in single-shot. 
HHG spectral optimization has been conducted in argon and neon gases to match the 
requirements for magnetic studies, which required here a work wavelength around the cobalt 
absorption M-edge (around 39th harmonic). A comparison between HHG quality using 
filtered and non-filtered IR laser pump has been carried out in the meantime. The HHG 
optimization procedure and conclusions presented in Chapter II have been applied (except for 
the wave front measurement) to perform the magnetic studies. Measurements of magnetic 
scattering from nanodomain structures have been realized over a large spectral bandwidth in 
both single-shot and multiple-shot acquisitions, from which magnetic properties of the 
nanodomain samples have been deduced. Spectral analysis showed an unexpected resonant 
peak, which corresponds to the palladium component of the sample. Real space image 
reconstructions of the scattering patterns were not possible since the oversampling condition 
was not respected due to experimental constraints. However full statistical information about 
the samples has been inferred. The cobalt M-edge and the palladium N-edge signatures have 
been detected with scattering efficiencies of 10-5 and 2x10-6, respectively. At the 39th 
harmonic, which is close in energy to the magnetically dichroic Co M2,3 absorption edge, we 
have measured an average magnetic domain size of 62.5 nm, with a size distribution of ±7 nm 
in multiple shot and ±10 nm in single-shot, in good agreement with MFM characterization. 
This validates the single-shot capability of the High flux harmonic beamline. The next step, 
under progress, is to obtain images of the magnetic domains using a similar set-up. It also 
paved the way for their dynamical study with the under-construction pump probe experiment 
setup. The combination of dynamic and real space imaging in the near future will open the 
gate for understanding the spin-orbital and exchange interactions.  

This magnetic application also illustrated the recent development of a versatile harmonic 
beamline, which is now a standardized, stable and powerful beamline providing intense soft 
X-ray coherent photons with tunable wavelength from 40 to 15 nm in this work and down to 4 
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nm in the next few years. Combining with the CDI, HERALDO and the under-developing 3D 
imaging techniques, our High flux harmonic beamline is suitable and ideal for a wide range of 
flash imaging applications from physics to biology. We foresee a bright future for ultrafast 
dynamic studies with real space reconstructions of nanometric spatial resolution.      
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