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Abstract 

Optical coherence tomography (OCT) is now an established technique for visualizing the 

internal morphology of the eye. In the last decade, the aim has been to achieve similar results in 

highly scattering tissues. One limitation of previous studies with OCT has been the low resolution 

compared to the gold standard of histology. Full-field optical coherence tomography (FFOCT), a 

variant of OCT also based on low-coherence interferometry, generates micron-scale images over a 

large field of  view by simply using a camera as an array detector and a tungsten-halogen light 

source. 

In  this  work,  a  compact  FFOCT  system  has been tested  under  clinical  conditions  for 

imaging breast lesions up to 1 cm² as well as core-needle biopsies. A set of diagnostic criteria have 

been identified to differentiate benign from malignant tissues with encouraging preliminary results, 

nonetheless endogenous contrast enhancements are necessary. Attenuation maps were shown to 

be limited by the high heterogeneity of  tissues  within  only a  few micron  depth.  An alternative 

approach, based on the elastic properties of tissues, has been demonstrated to be feasible and 

could  hold  greater  prospects.  In  addition,  the  penetration  depth  of  the  instrument  has  been 

improved by a minimum of a factor two with an InGaAs camera system operating in the infrared 

region and using silicone oil as immersion medium. 

Finally,  three-dimensional  imaging  in-vivo  was  demonstrated  during  the  4  days  of 

metamorphosis of a Drosophila melanogaster. The FFOCT system was able to record each organ 

growth  at  a  depth of  80  µm  with  an  isotropic  micron  resolution.  This  marks  progress  toward 

potential applications in developmental biology.

Keywords: FFOCT, Tomography,  Breast Cancer, Attenuation, Elasticity, Developmental Biology.



 

Résumé 

La tomographie optique cohérente (OCT) est maintenant une technique établie permettant 

de visualiser  la morphologie interne de l’œil.  Au cours de la dernière décennie, l'objectif  a été 

d'atteindre des résultats similaires dans des tissus fortement diffusants.  Une limite  des études 

précédentes en OCT s'avère être la faible résolution en comparaison des techniques d'histologie 

traditionnelle.  La tomographie  optique cohérente  plein-champ (FFOCT),  une variante  de l'OCT 

également  basée  sur  l'interférométrie  en  lumière  faiblement  cohérente,  produit  des  images  à 

l'échelle du micron sur un large champ de vue en utilisant une simple camera et une lampe à  

incandescence halogène pour l'illumination.

Dans ce manuscrit, un système FFOCT compact a été testé en conditions cliniques afin 

d'examiner de larges lésions mammaires, jusqu'à 1 cm², ainsi que des microbiopsies. Un ensemble 

de critères diagnostics ont pu être identifiés pour différencier tissus bénins de malins, avec des 

premiers résultats encourageants; toutefois des méthodes d'améliorations du contraste endogène 

s'avèrent nécessaires. Une méthodologie basée sur les coefficients d'atténuation du flux lumineux 

s'est montré limitée du fait de la forte hétérogénéité des tissus sur une profondeur de quelques 

microns. La faisabilité d'une approche alternative, exploitant les propriétés élastiques des lésions 

cancéreuses,  a  été  réalisée  et  offre  de  meilleures  perspectives.  En  outre,  la  profondeur  de 

pénétration de la technique a pu être  améliorée au moyen d'un système utilisant  une caméra 

InGaAs opérant dans l'infrarouge et d'une huile de silicone en tant que liquide d'immersion.

Finalement, l'imagerie tridimensionnelle in-vivo a été démontrée pendant les 4 jours de la 

métamorphose de Drosophila melanogaster. Le dispositif d'OCT plein champ a ainsi pu suivre la 

croissance de chaque organe à une profondeur de près de 80 µm avec une résolution isotrope à 

l'échelle du micron, ouvrant ainsi des perspectives d'applications en biologie du développement.

Mots-clés  :  FFOCT,  Tomographie,  Cancer  du  Sein,  Atténuation,  Élasticité,  Biologie  du  

Développement.
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Introduction

One of the core purpose of the art and science of medicine can be formulated in simple 

terms: “first, do not harm”. A whole new branch of medicine has been set up around the central idea 

of avoiding invasive surgical procedures. At first, with the broader use of X-rays, medical imaging 

has  long  been  focused  on  obtaining  a  visual  result  and  less  concerned  with  its  hazardous 

consequences over the long term1. Gradually, with the development of novel techniques such as 

magnetic resonance imaging (MRI) and miniaturized components, less invasive approaches were 

made possible. 

In  that  context,  light-based  imaging  appears  as  the  natural  continuity  of  this  process;  

towards  limited side  effects  and higher  resolution.  In  the last  three decades,  it  has  led to  an 

increasing number  of  optical  methods in  clinical  medicine including,  for  example,  fluorescence 

techniques,  non-linear  optical  imaging  (e.g.  multiphoton  microscopy,...)  or  ultra-high  resolution 

techniques (4pi or structured illumination microscopy,...). Within the setting of this larger revolution 

in optical imaging, optical coherence tomography (OCT) has emerged since the early 90's as a 

versatile but powerful method. Several variants have been proposed, all based on the core principle 

of interferometric microscopy. FFOCT for Full-field Optical Coherence Tomography is one of these 

variants, with the difference of producing “en-face” images without the need for scanning a beam 

over the field of view by using a camera as an array detector and a simple tungsten-halogen light  

source.

The underlying idea is to emulate the time-tested gold standard methods of histopathology 

and  to  provide  a  valid  diagnostic  complement.  Compared  to  other  high-resolution  microscopy 

techniques,  FFOCT's main benefit is to be able to image subsurface biological specimen over a 

large area of up to 1 cm2 with an isotropic micron-scale resolution; and without the need for staining 

or  external  contrast  agents.  The  instrument  initially  conceived  and  developed  at  the  ESPCI2 

laboratory has been further expanded by the laboratory spin-up LLTech in the past 3 years. This  

work has been performed in close collaboration with the engineering team of LLTech, researchers 

from Institut Langevin, ESPCI and clinicians.

1 It is more a demographic issue than an individual one – as far as adult patients are concerned [1].
2 ESPCI stands for Ecole Supérieure de Physique et Chimie Industrielles de la ville de Paris.
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Introduction

Statement of work

The aims of this thesis were to fully explore the clinical and research applications of the 

technique and to demonstrate the validity or non-validity of its technological improvements under 

the constraint of a realistic implementation in clinic and to propose innovative approaches towards 

that direction.

The  written  thesis  in  composed  of  six  individual  chapters.  Chapter  1  introduces  the 

biomedical context of this work in relation to other imaging techniques, and in particular the parent 

technique of conventional OCT. The second part of the chapter frames the basic theoretical tools to 

understand the interaction of light with biological tissues. Chapter 2 presents the compact setup 

used in this work with a focus on the new fine adjustments implemented to obtain the most resolved 

and contrasted images for a potential use in clinical routine.

However, a medical image is only as good as its ability to be interpreted by a clinician. An 

important focus of this thesis has been to initiate the long process of novel images interpretation. In  

particular, breast lesions for the medical aspects of this work (Chapter 3), and in biology, the in-vivo 

organogenesis of Drosophila melanogaster (Chapter 5).

Novel contrast techniques have been examined in an attempt to quantitatively assess these novel 

images. Chapter 4 investigates a method based on attenuation maps and its major limitation; the 

second  part  demonstrates  the  feasibility  of  a  new  full-field  optical  elastography  method  and 

identifies several pitfalls for further investigation.

Finally, the last chapter compares and demonstrates the performance of a novel FFOCT 

instrument in the near-infrared region aimed at increasing the penetration depth achieved with a 

particular interest on the nature of photons in highly scattering biological tissues. 

The general conclusion provides a brief summary of results and an overall discussion on 

the methodology as well as perspectives for future studies.

2



Chapter I. Principles and context of OCT imaging 

in biological tissues.

This chapter briefly presents the basic principles of Optical Coherence Tomography (OCT) 

and compares the two major OCT techniques: Time-domain OCT (TD-OCT) and Fourier-Domain 

OCT (FD-OCT). A review of the current literature and perspectives in OCT are also discussed. In a 

second section, the theoretical tools used to analyse the interaction of light with biological tissues is 

detailed.

I.1 Conventional  OCT  and  biomedical  imaging 
context 

I.1.1 OCT versus other imaging modalities

There are several ways to differentiate optical imaging techniques. One is based on the 

source of contrast as the determining criteria. OCT and FFOCT or Full-field Optical Coherence 

Tomography  can  be  qualified  as  an  endogenous  anatomical  imaging  method  in  contrast  to 

exogenous  approaches.  By  exogenous,  one  implies  a  method  that  requires  the  addition  of 

molecular agents to characterize a particular  tissue or a cellular mechanism (e.g.  fluorescence 

microscopy or immunohistology techniques). In contrast, the endogenous approach solely relies on 

the optical properties of the tissue under investigation, such as differences in refractive indexes or 

scattering variations and, to a lower extent, differences in absorption. 

Other non-invasive endogenous anatomical imaging techniques rely on radically different 

principles,  such  as  magnetic  resonance  imaging  (MRI)  or  computed  tomography (CT).  Their 

extensive use in clinical settings is essentially due to the penetration depth achieved when the need 

for a micron-scale resolution is not deemed necessary. In comparison,  microscopic techniques 

3



Principles and context of OCT imaging in biological tissues.

(FFOCT included) can achieve resolutions 10 to 100 times greater than these methods. Figure I.1 

presents  an overview of  the most  common biomedical  imaging techniques with  corresponding 

resolution and penetration depth.

As shown, optical coherence tomography (OCT and FFOCT) fills a gap in medical imaging 

techniques. Ultrasound can achieve a penetration depth of several centimetres with the restriction 

of low resolution (high frequency ultrasound still limited to a 50 µm resolution); and on the other end 

confocal microscopy with high resolution but shallow imaging depth (~100 µm). OCT and confocal  

microscopy are however different in many respects as detailed further in this chapter.

Confocal fluorescence microscopy is now a well-established method in research and is 

extensively used for ex-vivo cellular imaging, living cells, and even 3-D study of cell dynamics [3–6]. 

Its  use  in  clinical  settings  has  nonetheless  been  limited  for  several  reasons.  The  need  for 

intravenous  and  topically  applied  stains  with  potential  toxicity  have  thus  not  yet  been  widely 

accepted. Other limitations include photo-bleaching of fluorescent probes and limited penetration 

depth. Image contrast is significantly reduced after 100 µm in depth. Since low numerical aperture 

objectives  are  commonly used,  the limited  field  of  view makes  difficult  to  image large  clinical 

samples (< 1 cm²). Photodamage remains a critical issue in most applications when fluorescent  

staining is required.

Alternative microscopic techniques address to some extent those limitations. Multiphoton 

microscopy has  been shown to  perform  imaging on unstained tissues.  Although to  date most 

multiphoton microscopy has used with conventional fluorescent proteins or other fluorophores, a 

4
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Principles and context of OCT imaging in biological tissues.

few studies have successfully tested intrinsic molecule contrast. For example NAD(P)H and flavins 

with two-photon excitation [7–9], or second-harmonic generation (SGH) of retina pigment epithelial 

cells (mostly collagen) or muscle fibres [10–12].

Reflectance confocal microscopy is another technique that can be performed without the 

need  for  molecular  staining  agents.  It  uses  the  endogenous  contrast  provided  by  tissue 

heterogeneity. This technique has been developed by Dr. Rajadhyaksha's group at Memorial Sloan-

Kettering,  NYC,  with  a  particular  focus  on  skin  lesions.  They performed  nuclear  and  cellular 

morphology images in large areas of  surgically excised tissues  [13],  [14].  Confocal  reflectance 

microscopy has also been applied to ex-vivo breast lesions and small-animal models  [15], [16]. 

Although contrast enhancers such as acetic acid or aluminium chloride (AlCl3) are routinely used, 

those  results  are  promising  to  establish  correlation  tests  with  gold  standard  histology.  This 

technique allows the imaging of large field of views with the implementation of rapid mosaicing or 

stitching of individual tiles. This approach can thus be performed in-vivo but remains limited to more 

accessible body areas (e.g. forearms or the abdomen). 

I.1.2 Principles of traditional OCT 

 Overview  

Optical  Coherence  Tomography  can  be  compared  to  an  optical  analogue  of  B-mode 

ultrasound3. As for sound waves, light is echoed back with a time delay depending on the tissue 

structure  being  probed  [17].  For  ultrasound,  the  velocity  of  sound  is  well  within  the  limits  of 

electronic  detectors,  for  light  however,  it  requires  a  temporal  resolution  of  the  order  of  

femtoseconds. Presently, no detector is able to directly measure such ultra-fast oscillations.  In 

OCT, the echo delay is measured via an interferometric technique whereby the slight difference 

between the light  coming from the specimen  and light  back-reflected  from  a  reference  mirror 

generates an interference at each pixel on the detector.

OCT  principle  is  thus  based  on  low-coherence  interferometry  and  its  most  common 

configuration is a Michelson interferometer  [18–20]. Typically, the incident light beam is split into 

two identical beams by a reference mirror. One beam is directed to the tissue sample and the other 

focused onto a reference arm. Each of these beams will travel an “approximately” similar distance 

within the coherence length before recombining at the beam splitter. 

Therefore,  interferences only occur when the distance travelled in both arms is lower than the 

coherence length of the light source. The aim is to use sources with spectrum as large as possible 

in order to obtain the shortest coherence length. Polychromatic light sources are particularly well 

suited and have a sectioning ability of a few microns. Typical broadband light sources used in OCT 

3 For brightness-mode and commonly used for prenatal diagnosis.
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Principles and context of OCT imaging in biological tissues.

are superluminescent diodes, superbright LEDs, or a simple white light source. Alternatively,  laser 

with extremely short  pulses can also achieve a broad bandwidth  (e.g. femtosecond lasers).  A 

particularity and advantage of  OCT is the decoupling of  axial and lateral resolution. The z-axis 

resolution is directly correlated to the coherence length of the light source and along the x-,y- axis it 

is imposed by the optics. In this work, any reference to traditional or conventional OCT imaging 

refers to the following imaging techniques.

 Time-domain OCT   

This is the method used in this work whereby the mechanism of OCT interferometry relies 

upon the displacement of the reference arm. This mechanical translation fulfils two purposes: to 

probe the sample in depth and to generate a Doppler shift. To obtain a 2-D or 3-D image (sum of A-

scans), the sample is still raster-scanned laterally (x-,y- axis) to display series of cross sections over 

time as shown on figure I.2. This approach is now commonly referred to time domain OCT in the 

literature [19], [21–24]. 

This method of acquisition was first applied to retinal imaging by a group at MIT led by Pr.  

Fujimoto and published in the landmark paper of OCT in 1991[25].  However, the first biological 

application of time-domain low-coherence interferometry was demonstrated by Fercher et al. three 

years  earlier  in  1988  in  a  publication  entitled "Eye-length  measurement  by interferometry  with 

6

Figure I.2: Schematic of conventional OCT – Time-Domain acquisition mode. A-scan or Axial-scan obtained  
is directly related to the tissue internal optical variations. Adapted from [82]
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partially coherent light”. Time-domain OCT has initially known a fast commercial development in 

ophthalmology before being replaced by a Fourier-domain approach. 

 Fourier or Frequency-domain OCT   

It  was then shown that  solely extracting the individual frequency components could be 

sufficient. The initial image could be directly reconstructed by Fourier transform from the spectrum 

of  the  interference  signal  without  any mechanical  displacement.  For  a  fixed  reference  arm,  a 

specific  frequency is generated in the interference spectrum.  Put simply,  the single interference 

signal is analysed by wavelength and results in a spectral interferogram as shown in the diagram of 

figure I.3.

From the resulting frequency map, the position of each extracted intensity maxima informs about 

the  depth  of  the  different  back-scattering  structures  and  the  amplitude  about  their  respective 

coefficient of reflection.

Recent developments in Frequency or Fourier Domain OCT have demonstrated novel variants with 

spectrometer-based detections or wavelength-swept laser sources [26–29]. For the latter, a range 

of  different  wavelengths  are  emitted over  time and a frequency difference will  depend on the 

position  of  the  structures  and  thus  producing  distinct  modulation  periods.  While  this  process 

achieves gain in signal-to-noise ratio, nonlinearities in the wavelength and aliasing artefacts are still 

present as in Time-Domain OCT.

7

Figure I.3: Schematic of Fourier or Frequency Domain OCT image acquisition (FDOCT). BS: beam splitter.  
Specimen: human retina.  Adapted from [81].
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 Comparative advantages of OCT systems  

The major advantage of the frequency approach is the gain in time (or signal-to-noise ratio 

for a fixed time) since the acquisition of each layer is made simultaneously and no mechanical  

displacement is required (i.e. reference arm and mirror  are fixed).  The acquisition time gain is  

significant and of the order of 20–30 times faster than Time-Domain OCT (e.g 10,000 vs >200,000 

depth scans/sec). In addition, FDOCT has also demonstrated larger sensitivity advantage of the 

order of 20–30 dB over TDOCT for a similar acquisition time [30], [31]  

For those reasons, Fourier-Domain OCT has become the commercial method of choice for clinical  

applications.  For  example,  Zeiss®  Cirrus  OCT  for  ophtalmology,  Volcano®  for  cardiology  or 

Michelsons Diagnostics® in dermatology. Nonetheless, time-domain commercial equipments claim 

some advantages in contrast to noise ratio in comparison to Fourier-domain and FDA-approved 

systems are now been used on patients (e.g. Lightlab Imaging/ St Jude Medical®). 

I.1.3 Performances of conventional OCT 

In  contrast  to  other  optical  techniques  (e.g.  confocal  microscopy),  the  axial  resolution 

achieved is independent of the numerical aperture (NA). Resolution in depth is directly determined 

by the source coherence length which determines the full-width half maximum of the interferogram 

(i.e. signal envelope). Standard axial resolution achieved are now around 7-10 µm, and by using 

novel  generation  femtosecond  lasers,  ultra-high  axial  resolutions  of  2-3  µm  have  been 

demonstrated [32], [33].

Penetration depth is, with axial resolution decorrelation, a major difference and advantage 

of  OCT  imaging  in  comparison  to  traditional  microscopic  or  confocal  techniques.  Principal 

wavelength ranges used are centred around 800 nm and 1300 nm (see chapter on the near-

infrared setup and next  section on light-tissue interaction for  more details).  Typical  penetration 

depth at 1300 nm wavelength with small numerical aperture is around 1–2 mm before loss of useful 

single backscattered signal. In practice, the valuable penetration depth is rather 0.5–1 mm due to a 

rapid increase of incoherent light collected (i.e. multi-scattered photons overshooting ballistic ones).

Transverse resolution, as with conventional microscopy, is mainly dictated by the objective 

numerical aperture. For deep cross-sectional imaging, a large depth of field is required and thus low 

numerical aperture objectives are used. This highly limits the transverse or lateral resolution to the 

order of 10 µm. Unless a dynamic focusing is applied, but slows down the acquisition process, the 

depth of field must be approximately equal to the axial  depth scan (e.g. 15 µm lateral resolution 

corresponds to about 0.8 mm depth of field).

8
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I.1.4 Selected applications

Optical coherence tomography is now an established medical imaging technique. Its initial 

and most extensive use is in ophthalmology, in particular to image the back of the eye or the retina. 

It  allows  for  example,  the  assessment  of  axonal  integrity  in  multiple  sclerosis  or  to  measure 

changes in retinal nerve fibre layer as indication of treatment outcomes [34–38]. 

Another major  application is  in-vivo endoscopic OCT, in particular  for coronary arteries 

defects  or  lesions  of  the  upper-aerodigestive  tract.  For  vascular  diseases,  OCT  has  been 

investigated to detect vulnerable lipid-rich plaques since OCT can achieve high penetration depth 

underneath the epithelial layer  [39–43].  Likewise,  suspicious lesions of  the oral cavity could be 

potentially detected early or follow-up progress more precisely monitored in conditions such as 

Barrett's oesophagus [44–50]. 

Cancer detection and tumour margin assessment are also a major focus of research, and 

techniques are now entering the stage of sensitivity and specificity measurements in comparison to 

the gold standard of histology. Organs mostly tested ex-vivo include skin, breast and breast lymph 

nodes  [51–57]. 

The  addition  of  new contrasts,  endogenous  or  exogenous  (e.g.  nanoparticles,  optical 

elastography), multi-modality combinations (e.g. OCT and multiphoton microscopy or fluorescence) 

and functional imaging are progressively appearing as the most active areas of research in OCT 

[58–63]. A variety of non-medical applications can be found in the literature. However, the most 

predominant fields of study are in art restoration and archaeology  [64–72].

I.1.5 Conclusion

This brief overview of OCT, the parent technique of FFOCT highlights its potential forfilling 

in a gap between ultrasound and confocal microscopy in terms of resolution and penetration depth. 

The principles of the two main approaches have been described and it is important to note that 

FFOCT is based on a time-domain approach. 

9



Principles and context of OCT imaging in biological tissues.

I.2  Optical properties of biological tissues 

 Improving light's penetration through turbid media with minimum loss of resolution is an 

essential goal in biomedical optics. Several limiting factors due to the nature of a biological tissue 

and its interaction with light are presented along with notations used.

I.2.1 Light – tissue interaction.

Tissue  heterogeneity  constitutes  a  major  challenge  in  the  tomographic  imaging  of  a 

biological tissue. This heterogeneity also provides a characteristic information that can be optically 

extracted.  Such properties  are  as  much related  to  the specific  absorption  and scattering at  a 

macroscopic level (tissue refractive index inhomogeneities) than the individual cell's constituents at 

a  microscopic  level.  In  addition,  visible  and  near-infrared  wavelengths  regions  provide  the 

advantage of being non-ionizing and potentially extremely fast.

However,  those  properties  and heterogeneities  are  also  major  limitations  for  achieving 

sufficiently resolved images at a given optical plane underneath the surface. The difficulty of several 

microscopic techniques is therefore to extract the signal from the optically sliced plane and filtering 

out  unwanted  information  from  surrounding  layers.  In  this  process,  photons  undergo  several 

interactions that alter and attenuate the signal detection from a particular plane. When an incident 

light wave interacts with a single particle, part of its energy is absorbed and another part scattered.  

Both phenomenon follow a similar mechanism, in that sense that energy is removed from a 

beam of  light  traversing  a  medium:  here  the  beam is  attenuated  by the  biological  tissue.  As 

commonly used, the attenuation µt  is defined as the sum of scattering and absorption (µt = µs + µa ). 

Nonetheless, for biological tissues, scattering has been extensively shown to constitute the major 

limiting factor [73], [74].

 Absorption, therapeutic window and wavelength dependence.  

This work explores two different wavelength regions with significant differences in terms of 

light absorption and consequently penetration depth. The first FFOCT system is centred around 715 

nm in the visible wavelength portion of the spectrum and a full width half maximum (FWHM) of 

approximately 125 nm. The second setup operates in the near infra-red with a central peak around 

1225 nm and FWHM of 600 nm.

 The absorption phenomenon is due to the fact that part of the incident energy emitted by a 

source of illumination is not scattered but transferred into an other form of energy such as thermal  
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energy. An absorption coefficient, µa  can be defined as the probability of incident light absorbed by 

tissue per  unit  length [cm-1  or mm-1  ].  This  macroscopic  coefficient  is  due to the vibration and 

change of  electron states in response to light.  When a collimated plane wave propagates in a 

homogeneous medium with only absorption without any scattering, with a length, L, the intensity 

variation as function of the pathlength is given by the Beer-Lambert's law  (valid in a homogeneous 

medium):

I t=I 0 e−µa . L  (1)

with I0  the incident light's intensity and I the signal intensity collected at the detector and µa the 

absorption factor. 

In  biological  tissues,  three  main  molecules  are  responsible  for  the  absorption  of  light: 

haemoglobin,  water  and  melanin. Their  respective  absorption  spectra  define  a  window of  low 

absorption of light and it is known as the optical therapeutic window. As shown on figure I.4, this 

window extends from 0.6 µm to 1.3 µm. Below 0.6 µm, blood is the principal absorber and water 

from 1.3 µm onwards towards higher wavelengths.

Absorption only contributes to a fraction of photons loss at the detector but increases with 

higher  wavelength.  For  deep  red  or  near-infrared  light,  it  only  constitutes  a  negligible  factor 

compared to  scattering effects  in  a  biological  tissue.  The  other  light  attenuation phenomenon, 

scattering, being therefore predominant.

 Scattering mechanisms in tissues.  

For biological tissues, and breast tissues in particular, scattering accounts for 10 to 100 

times more than absorption to the attenuation of incident light [73]. As for absorption, the scattering 

properties of a medium can be described by µs., the scattering coefficient.  It can also be shown that 
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Figure  I.4: Absorption spectra of the main constituent of tissues in the visible and near-
infrared, namely oxy-haemoglobin (HbO2), deoxy-haemoglobin (Hb), and water (H2O). The  
spectra are obtained from compiled absorption data for water and haemoglobin.
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the reciprocal  of  the scattering coefficient  1/µs  or the mean free path which defines the mean 

distance  between scattering events.   This  mean distance  is  of  the  order  of  10  to  100 µm  in 

biological tissues. 

Light scattering is  simply another  description for  the  propagation of  an electromagnetic  

wave in matter. When a wave is propagating in a medium, its electric field excite electron clouds 

from  its  constituent  atoms  and  molecules.  In  tissues,  it  can  be  postulated  that  when  an 

electromagnetic  wave  interacts  with  tissue  constituents  (e.g.  a  cell's  nuclei,  mitochondria  or 

haemoglobin molecules), particles induced dipoles or multipoles oscillate with the frequency of the 

incident light wave.  Electromagnetic energy is therefore re-emitted and its resulting intensity is 

therefore the coherent superposition of each individual sources and therefore its angular distribution 

depends upon the size, shape and gradient index of those tiny scatterers. When a collimated plane 

wave propagates in a non-absorbing homogeneous medium of length, L and filled with scattering 

particles, the exponential decrease of the collimated light's intensity that is traversing the medium is 

also given by the Beer-Lambert law, such that:

I τ= I 0 e−µs . L  (2)

where µa is the scattering coefficient in [cm-1 or mm-1], where It is the incident light or non-scattererd 

component of light after traversing a non-absorbing medium of thickness L. 

In  a  tissue,  light  interacts  with  structures  with  a  large  variety of  size and shapes,  therefore  a 

macroscopic scattering coefficient is generally defined by:

µa=∑
j

N j σα.j  (3)

where Nj is the number of particles j per unit volume and  σa.j the corresponding scattering cross 

section4.  Frequently, a dimensionless phase function f(p,q) is used instead of the cross section, σ 

as represented in figure  I.5. It represents the fraction of incident energy from the direction p and 

scattered in the direction q. 

4 Scattering cross section is defined as the probability that the incident beam will be scattered per unit time 
(normalized to one particle per unit time crossing a unit area perpendicular to the direction of incidence) 
[2]
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The flux increase in the second direction is due to scattering between the two events. In a 

random and isotropic media, it  is assumed that the phase function is only dependent upon the 

angle between the incident and scattered light and therefore independent of the orientation of the 

scatterer  (i.e.  independent  of  p).  The  phase function  can  therefore  be  expressed  as  a  scalar 

product f(p,q) = f(p.q), which is equal to the cosine of the scattering angle cos (θ). The anisotropy 

factor g, is then defined as the amount of forward direction retained after a single scattering event  

or the mean cosine of the deflection angle θ. For a g factor of 1, the scatter is entirely in the forward 

direction, and for g = 0, scattering is isotropic. 

Light scattering in most biological tissues is generally forward concentrated (i.e. anisotropic) 

with g factors usually found in the literature varying from about 0.69 to 0.99 [73]. It is more generally 

centred around an average scattering angle of 25° (i.e. a scattered photon deviates from its initial 

direction of flight by only 25° or a g factor of 0.9)[75]. The anisotropy factor is therefore dependent 

on  the  size,  shape and  the  microscopic  refractive  index  mismatch  of  the  scattering  particles. 

Several approximation models attempt to describe those interactions of biological tissues with light.

 Geometrical optics approximation:     

Geometrical optics provide sufficient tools to describe the interaction of large particles with 

light and each particle can be envisioned as a thick lens. The light beam is therefore focused in a  

forward direction. However, geometrical optics concepts do not adequately describe the interaction 

of particles with light when the particle size is comparable to the wavelength of the light source.

 The Mie solution to Maxwell's equations:   

In that case, Mie theory (developed in 1908 by Gustav Mie) provides rigorous solutions to 

Maxwell equations for light scattering by an isotropic sphere in a homogenous medium. Mie theory 

takes into consideration the phase difference between dipoles, which receive a different incident 

field at a given instant. The resulting scattering is therefore predominantly forward directed in the 

same direction as the incident beam of light.

13
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 The Rayleigh solution to Maxwell's equations:   

When the particle size is much smaller than the wavelength (typically the upper limit is taken 

to be about 1/10 the wavelength diameter), and then Mie theory turns into Rayleigh scattering theory. 

For a fixed, unpolarised incident wavelength, the intensity of the scattered wave is proportional to 

(1+cos² θ), as a function of the scattering angle θ, or more simply put, equally distributed in all 

directions (see figure I.6).

Wavelength dependence is another fundamental result of both Rayleigh and Mie theories 

and it  has been shown that the intensity of the scattered wave is proportional to 1/λk,  where k 

depends upon the size of the scatterers as shown on figure I.7. 

 

For  small  particles  (Rayleigh scattering  regime),  the intensity of  the scattered  wave  is 

approximately  proportional  to  1/λ4.  Therefore,  when the  wavelength  of  the  illumination  source 

increases, scattering decreases faster than for Mie scattering. Isotropic scattering is mainly due to 
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Figure I.6:  schematic representation of scattering possibilities as a function of particle's size.

Figure  I.7: Scattering regime relative to the size of  the particle  in  
biological specimens.
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smaller organelles, such as mitochondria, while scattering at small angles are largely due to the cell  

membrane whereas nuclei have been found to be responsible for scattering at larger angles or Mie 

scattering regime  [76–78].

I.2.2 Conclusion

Only  inhomogeneities  affect  light  scattering.  If  a  light  beam  traverses  a  perfectly 

homogeneous medium it is not scattered. Both refraction at tissue interface and at a microscopic 

level are affecting light's propagation in tissues. Refraction  effects  are  usually  small  in  biological 

tissues, as tissue refractive indexes are generally similar. A common index range varies between, 

n=[1.35:1.45] in the visible wavelengths, 1.35 for high water content tissues and up to 1.45 for  

adipose  tissues  [79],  [80].   At  633  nm  wavelength,  the  typical  decrease  trend  relative  to  the 

wavelength is 1% in average per 100 nm decrease in wavelength in the visible range.

However, divergence in refractive index measurements have been reported in the literature 

as cited by Bolin et  al.  [79].  In practice,  light  scattering models often omit  the refractive index 

approximation.   For  this  thesis,  all  measurements  performed in  biological  samples  have been 

adjusted with an average refractive index of 1.40 for defocus correction as a function of depth. For 

small  animal  imaging,  specific  refractive  index  have  been  applied  (e.g  n=1.55  for  Drosophila 

melanogaster due to its high content in chitin).

In summary, spatially coherent optical imaging in biological tissues faces the exponential 

loss of useful photons due to scattering events taking place as light travels through a particular 

tissue. Absorption has only a limited effect compared to scattering. Since scattering events redirect 

photons  randomly,  the  amount  of  useful  light  or  ballistic  photons  collected  by  the  camera  is 

significantly reduced causing blurring and reduced contrast. In addition, an appropriate wavelength 

selection allows to manipulate two critical criteria which are penetration depth and resolution.
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Chapter II. Full-Field OCT system: design 

principles and performance

As presented in the introductory chapter, previous work in OCT have been performed with 

beam scanning techniques over the volume of interest. Full-field OCT (FFOCT) is based on a Time-

Domain approach and acquires an entire field of view by using a Linnik configuration coupled with 

an image detector such as a CCD camera. This parallel approach is usually referred to “en-face” 

OCT as opposed to a cross-sectional view in traditional OCT imaging. While conventional OCT is  

often compared to the optical analogue of B-mode ultrasound, FFOCT would be conceptually closer 

to a depth resolved microscopy technique. The transverse resolution achieved is indeed similar to a 

low or medium power microscope with the ability to image inside a biological sample without any 

staining  or  specimen  fixation.  Potential  end-users  would  therefore  be  predominantly  in 

histopathology and biology laboratories in comparison to traditional OCT which is more aimed at  

surgical settings or for screening purposes.

After  a presentation of  the principles of  full-field OCT,  its  design and performance are 

described.  Then the clinical  setup developed by the laboratory spin-off  (LLTech) will  be briefly 

presented.  Finally,  the  main  advantages  and  drawbacks  of  the  technique  are  discussed. 

Throughout the chapter technical considerations of the system and image acquisition methods are 

also analysed.

The  contribution  of  several  members  of  the  laboratory  and  LLTech  team  must  be 

appropriately acknowledged in advance. This presentation involves the previous work of Laurent 

Vabre,  Gael  Moneron  and  Arnaud  Dubois  under  the  direction  of  Claude  Boccara  at  ESPCI 

laboratory;  and  the  more  recent  contribution  of  Fabrice  Harms,  Eugénie  Dalimier  and  Franck 

Martins from LLTech. Charles Brossolet has been instrumental in all the software related issues of  

this work. The basic principles of the technique have been previously detailed [1–2], while recent  

results and developments in relation to this chapter were reported in two publications [3–4].
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II.1 Full-field OCT: basic principles

II.1.1 Description of the FF-OCT setup

The full-field OCT experimental setup is based on a Michelson interferometer with identical 

water-immersion objectives in both arms. It  is commonly referred to a Linnik configuration  [5], 

[6]  as shown on figure II.1.  

FFOCT is based on low-coherence interferometry as conventional OCT. However, here a 

white-light halogen lamp is used as a spatially incoherent source and the entire field of view of each 

microscope objectives is illuminated after passing through a beam splitter. The tungsten filament 

lamp  is  incorporated  in  a  classical  Köhler  configuration  to  achieve  the  most  homogeneous 

illumination.

A broadband beam splitter separates the light beam onto a mirror (reference arm) and onto 

the specimen imaged (sample arm). A silicone-based wafer mirror is placed in the reference arm at  

the focus of the microscope objective. The initial silicon-based wafer used for the experimental  

setup and providing a reflectivity of 17.5% in silicone oil for the wavelength region of interest (600-
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Figure  II.1:  Experimental  set-up  of  the  full-field  OCT developed  at  ESPCI/Institut  Langevin.   Pair  of  
microscope objectives (water or oil immersion – 10X, 0.3 NA, Olympus), bs: beam-splitter (broadband, non  
polarizing), Lens: achromatic doublet, Reference mirror: 1-10% reflectivity, PZT: oscillating piezoelectric 
stage  actuator  ,  CCD: charged  coupled  device  camera   or  CMOS camera  complementary metal-oxide 
semiconductor. Glass plates can be added within the path of both objectives for dispersion balance.
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800 nm) was later adjusted in the clinical setup developed by LLTech to match the reflectivity of 

biological tissues (around 2-3%). A YAG crystal rod (Yttrium Aluminium Garnet) can also be used 

due to its low reflectivity in the visible and in water immersion (reflectivity close to 2-3%). The major 

downside of a water-based medium (e.g. echographic gel) is its instability and low resistance to 

evaporation. Despite having both arms sealed, gel dehydration can still occur and cause irreversible 

blurring on the objectives. For the clinical setup, silicone oil was therefore determined more adapted 

as immersion liquid for both arms with similar optical properties if not improved (see chapter VI).

II.1.2 Temporal low-coherence and slice sectioning in FFOCT

Axial scanning is performed via a motorized translation stage allowing sequential image 

acquisition with slices as thin as 1 micron. The setup sectioning ability is directly related to the low 

temporal coherence of the light source. Interferences occur only when the light from both arms has  

travelled a nearly identical “optical distance” as shown on figure II.2.

The low temporal coherence gate therefore allows only interferences within half of the coherence 

length.  Consequently, only a  slight  difference in pathlength travelled causes the interferometric 

image to be blurred by background noise. When light reflected by the reference mirror interferes 

with  the  light  reflected  or  backscattered  by the  sample,  micro-structures  contained  within  the 

volume are filtered out from the specimen. This virtual zone is a slice orthogonal to the objective 

axis, located at a depth inside the object defined by an optical path length difference of zero. If the 
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figure  II.2: interferogram example of a low-coherence illumination source; hence its  
micron-scale sectioning ability .
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object arm is moved forward or backward, a different sectioning volume is imaged. The sectioning 

thickness is determined by the width of the fringe envelope amplitude. This is commonly measured 

by the full-width at half maximum (FWHM) of the signal amplitude and is equivalent to the axial  

resolution  as  detailed  further  in  this  chapter.  The  tomographic  image  is  finally  obtained  by 

combining interferometric images with a phase shift accomplished by displacement of the reference 

mirror with a piezoelectric translation stage.

II.1.3 Image acquisition method

The full-field “en-face” tomographic image is obtained via a phase-shift method in order to 

extract  the coherent  interferometric  signal  from the specimen. The backscattered light  intensity 

received by each pixel  (x,y)  of  the CCD camera over time can be expressed by the following 

equation (interference signal of two waves):

I ( x , y , t )=
I 0

4
[Rinc(x , y)R ref (x , y)+ 2√ Robj(x , y )×Rref (x , y)cos(Φ( x , y )+ Ψ)]  (4)

where I0 is the photon flux at the entrance of the interferometer,  R inc(x, y) is the proportion 

of light reflected by the object that does not interfere, due to other reflectors in the sample arm path 

combined  with  external  signal  noise  from  the  instrument;  R ref  represents  the  homogeneous 

reference mirror reflectivity, since the system is illuminated via a Khöler illuminator providing a quasi 

uniform beam of  light.  Within the interference term,  Robj(x,  y) represents the proportion of  light 

reflected by the object that interferes with the reference mirror and more precisely, R obj(x, y) is the 

reflectivity distribution from structures contained in the sample's coherence volume and thus the “en 

face”  tomographic  image that  actually needs to be extracted.  As the result  of  the interference  

pattern, the cosine term is composed of the unknown phase difference, Φ  between the reference 

mirror and the object signal; and the additional term Ψ  accounts for the phase-shift induced by the 

displacement of the reference mirror.

A phase-shift method is used to reduce the amount of incoherent signal and to extract the 

amplitude of the interference (the fringe envelope) from the sample (i.e. Robj(x, y)). Practically, only 

two to four images are sufficient to reduce the incoherent signal. For example, by acquiring four  

successive values of  Ψ :  0, π/2,  π, 3π/2, and by computing the squared difference of  shifted 

frame,  it  becomes  possible  to  isolate  the  term:   √ Robj (x , y )×Rref ( x , y) ,   proportional  to 

Robj (x , y)×R ref (x , y ) or √ Robj (x , y ) , the amplitude of the backscattered signal intensity. 

Alternative phase-shifting methods have been suggested with steps and sinusoidal phase 

modulations  from 2 to  7  successive  phase-shifts  [1],  [7–9].   However,  if  only two  images are 
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acquired (with an incrementation of π between the two phases), the squared difference of these two 

images do not completely eliminate the phase difference term. 

Nonetheless, the acquisition of  two rather than four or more frames should not alter the signal 

collected.  FFOCT  and  OCT  images  in  general  always  display  a  speckle  pattern  due  to  the 

interference  of  light  backscattered  by  the  distribution  of  micro-structures  located  inside  the 

coherence volume. Thus, it suggests that the backscattered signal amplitude and phase are both 

random. Ultimately, it is mostly dependent upon the acquisition speed desired. This time is simply 

doubled with four successive phase-shifts. 

After  the  extensive  number  of  images  analysed and  a  large  number  with  diagnostic  intent,  it  

appeared that the additional incoherent signal collected with a two-phase acquisition mode did not 

prevent the image interpretation by histopathologists or researchers.

As previously detailed, the computing processes involves basic image subtraction and can 

therefore  be  rapidly  computed.  Data  were  acquired  via  a  software  developed  in  LabVIEW™ 

(National Instruments Corporation, Austin, Texas),  and the resulting tomographic image could be 

visualized in quasi real-time with the home-made interface (see figure II.3).
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figure  II.3: image acquisition graphical interface showing the tomographic image (on the right) and the  
direct  image (on the left).  Imaging depth is  already 20µm underneath  the surface,  which explains  the  
blurring and low signal from the direct image. Software developed in LabVIEW by Ch.Brossolet.
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The presence of signal (in white) shows that an element in the specimen is backscattering 

light to the camera whereas absence of signal or a weak signal (in “black”) does not necessarily 

imply that photons are not being backscattered at this particular pixel within the coherence plane. 

Several aspects are to be considered: the absence of signal does not equate absence of structure 

but absence of backscattering structures within the coherence plane and it is directly related to the 

light  source  spectrum.  It  generally  means  that  the  structure  is  either  fluid-filled  or  out  of  the 

coherence depth of field (owing that defocus has been corrected), due to micro riddles or cavities  

on the sample surface; and more rarely due to high absorption of the emitted light.

Although scattering effects from small-size refractive index heterogeneities are limited with 

FFOCT approach (below the size of a micron), larger refractive index heterogeneities are however 

present  in  biological  tissues  (e.g  collagen fibres,  organelles,...)  and also concur  to the loss  of 

contrast  as  imaging  goes  deeper  into  the  sample.  It  has  been  shown  that  adaptive  optics 

corrections are not necessary for the penetration depth (up to 200 μm) since defocus effects are  

dominant as detailed in the following section.

II.1.4 Tomography  and  coherence  plane  dynamic 
adjustment

A 3-D tomographic image is acquired by displacement of the focal plane at different depths 

below the surface and a stack of “en-face” images is thus collected. As the objective is displaced 

along the z-axis, the focus is shifted forward whereas the coherence plane is moved backward as 

shown on figure II.4. 

This characteristic can benefit refractive index measurements –and has been used for that purpose 

in highly scattering tissues  [10]. For the purpose of imaging deep within a specimen, a dynamic 

adjustment is necessary to compensate for the loss in resolution in relation to depth. In this setup, it  

is done by aligning the coherence plane with the objective focal plane during the scanning process.  

The following compensation factor is applied to the reference arm as detailed in [11] :
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figure II.4: focal and coherence plane mismatch  
with  depth  penetration  inside  a  sample.  From 
[11]



Full-Field OCT system: design principles and performance

δ(z )=2z
(n ' ²−n²)

n
 (5)

where δ(z ) is the optical path difference or phase shift between the object and the reference arm, a 

difference induced by the mismatch of refractive index between the biological sample n', and the 

immersion medium n (water or silicone oil) and dependent upon the depth being probed.  The plane 

of zero path difference or coherence plane is therefore aligned with the focal plane by displacing the 

reference arm -the objective and reference mirror are then kept in focus. The cut-off depth at which 

the adjustment is necessary is highly dependent upon the biological sample being imaged. This 

limit can be approximated by comparing the ratio  δ(z )/2n ' relative to the depth of field. For the 

microscope objectives used during this work, mainly 10X 0.3 NA water immersion, the depth of field  

is  typically around 8.5  µm (wavelength centred at  700 nm and Δλ=125 nm).  According to  the 

refractive index of the specimen studied, the following table provide a summary of the threshold 

depth at which defocus correction is deemed necessary:

 

Specimen refractive index, n' 1.37 1.4 1.45 1.5 1.55

Depth threshold (in µm)

Water immersion (n=1.33)
145 85 50 36 28

Depth threshold (in µm)

Oil immersion (n=1.40)
115 60 40

The average refractive index in biological tissues is around 1.377 and does not require a 

specific adjustment up to 145 µm in depth. However, for small animal studies (see chapter on in-

vivo imaging of drosophila growth), the main constituent of insects' external coating is characterized 

by a refractive index around 1.55 (e.g.  chitin component of  the cuticle or pupal case).  Thus, a 

dynamic focus adjustment is relevant and ought to be applied from the imaging onset.

II.1.5  Image post-processing

Post-processing  filters  are  particularly  mild  and  limited  to  basic  smoothing  operations. 

Images always contain some form of speckle due probably to backscattered photons interference 

following the interaction with different tissue micro-structures located inside the coherence volume. 

Yet, speckle is both a source of noise and a carrier of information. Numerous methods have been 

proposed for reducing speckle noise in coherent imaging systems. Among the most popular post-

processing methods are median and Wiener filtering, smoothing, and wavelet analysis [12–15]. In 
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the current configuration, experimental data did not require any of those post-processing methods. 

For the clinical work performed the aforementioned filters were seldom used, except for a Gaussian 

smoothing  whereby  each  pixel  it  replaced  with  the  average  of  its  3×3  neighbourhood  pixels. 

Otherwise, a Gaussian blur convolution for smoothing was applied with the image viewing software 

imageJ. The Gaussian function applied was generally between 1 to 3 standard deviation (i.e. radius 

of 1.0 to 3.0). 

II.2 System performance: spatial resolution

As previously seen, the transverse and axial resolution in FFOCT are uncorrelated. The 

sectioning ability along the z-axis is solely dependent upon the light source temporal coherence: a 

low-coherence or a large spectrum allows a highly resolved sectioning.  In contrast to the spectrum 

of ultra-short femtosecond lasers, a thermal light source provides a particularly smooth and stable 

spectrum. It avoids emission lines spikes, bumps or ripples that could potentially cause side lobes 

in the coherence function and creates artefacts. 

Nonetheless,  the effective  spectrum is  actually limited  by the spectral  response  of  the 

camera (CCD or CMOS5).   With a CMOS image sensor camera (Photonfocus®),  the effective 

spectrum  is  centred  at  λ=700 nm  and provides  a  bandwidth  of  ∆λ=125 nm  at  full  width  half 

maximum (FWHM), following the usual formula (valid for a Gaussian spectral profile):

d z=
2ln2
nπ

( λ
2

Δ λ
)  (6)

Thus, the theoretical axial resolution achieved in a medium is below 1 µm with (dz = 0.8 µm) 

with a refractive index n= 1.377 for a typical biological sample.  Experimental results show rather an 

axial resolution in the range of 1.1–1.4 µm depending on the camera and setup configuration. This 

loss in resolution is certainly due to dispersion occurring in one of both arms; a slight mismatch 

from the ideal zero path difference can also easily deteriorate the point spread function along the z-

axis.  As detailed in the previous section,  several  compensation methods can be implemented. 

Since water is the main constituent of biological tissues, the use of water-immersion microscope 

objectives help to minimize dispersion mismatch. In addition, for the experimental setup, thin glass 

plates,  placed  in  both  arms  of  the  interferometer,  can  be  tilted  to  compensate  for  residual  

dispersion. 

In the x-y axis, the transverse or lateral resolution is in fact similar to traditional microscopy 

with  the  objective  numerical  aperture  (NA)  as  determining  factor.  For  a  focused  beam,  the 

transverse spot can therefore be determined by the Airy function: 

5 CMOS stands for Complementary Metal–Oxide–Semiconductor and CCD for Charge-Coupled Device.
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d x=
1.22λ

2 NA
 (7)

For a central  wavelength around 700 nm and a numerical  aperture of  0.3 [NA],  the theoretical 

transverse resolution achieved is approaching 1.4 µm. 

In  comparison,  traditional  cross-sectional OCT systems  are highly limited in  transverse 

resolution since probing the entire depth of field in the axial plan is required. To generate an image, 

the focus is fixed at a specific depth in the sample and then the coherence gate is scanned along 

the z-axis. A larger depth of field is therefore required to avoid dynamic focusing as the coherence 

gate is being scanned. Only low NA lenses are then used to obtain a large depth of field, which  

consequently limits the transverse resolution. Obviously it  is a trade-off  between resolution and 

depth penetration if one compares to traditional OCT systems.

II.3 Compact clinical setup

In 2008, a spin-up from the ESPCI laboratory has been set-up to develop the potential 

clinical applications of FFOCT.  A photograph of the prototype and a “pre-commercial” setup is 

shown on figure II.5 and II.6. 

The  design  of  a  clinical  setup  has  involved  a  number  of  fine  adjustments  from  the 

experimental configuration. For instance, the replacement of the reference arm immersion medium 

by silicone oil. Initially, the immersion medium for both arms was a water-based gel (similar to those 

used for ultrasound echography) frequently turning opaque and highly scattering if exposed to air or  
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Figure II.5: FFOCT prototype – 
Light-CT– developed by 
LLTech®.

Figure  II.6: fully operational clinical setup with description of the  
assembled components.
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high temperatures. Silicone oil provides a stable alternative as immersion medium and minimizes 

the dispersion mismatch due to a refractive index closer to the average index for biological samples 

(i.e. n'=1.40). 

For convenience, the thermal light source is powered by a compact halogen fibre-bundle filtered in 

the red and near-infrared providing an intensity of 1–2 mW/mm2. Another example of fine-tuning is 

the  addition  of  a  synchronized  snapshot  camera  which  enables  a  co-localization of  the  direct 

sample image with the tomographic area as illustrated on figure II.7.

Software developments are also crucial  for end-user  usage. The implementation of  the 

dynamic adjustment has been added to automatically adapt to the tissue refractive index. Likewise, 

large  field  of  views  are  constantly  required  since  clinical  specimen  often  measure  several 

millimetres. 

Fast stitching of individual images is therefore crucial and for an approximate field of view of 1 cm 2, 

the LightCT stitching algorithm enables for example 144 individual tiles of 1 mm² each to be cross-

correlated in less than 3 minutes for a total surface of  1cm2  (with an overlap of  20% between 

individual tiles).

In  addition  to  the  two  clinical  studies  performed  at  Institut  Curie  during  this  work,  an 

additional collaboration was initiated at Tenon Hospital, Paris with a grant from the French institute 

for Cancer (INCa). More recently, several hospitals and medical centre in the United-Stated have 

launched research projects with the pre-commercial version of the equipment. In particular, a study 
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figure  II.7:  field  of  view  of  1x1  mm²  and  corresponding  tomographic  image  at  glass  slide-specimen  
interface. 
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on small-animal imaging was recently performed on organs and tissues of  rat  models  at  Weill  

Cornell Medical College, New-York, USA [3]. 

 

II.4 Conclusion

  

The Full-Field OCT system presented in this chapter offers the advantage of simplicity and 

high-resolution with parallel image acquisition of a large field of view compared to traditional cross-

sectional OCT techniques. In addition, FFOCT produces three-dimensional “en-face” images with 

unmatched isotropic resolution of approximately 1.5 µm. This chapter also detailed the algorithm 

used for the dynamic adjustment of the reference arm as a function of depth and tissue refractive 

index. The adaptation of the system for a clinical application required a number of fine adjustments 

implemented by the team from LLTech, including among others, thermostability of the immersion 

medium and selection of compact components. 

FFOCT  is  inherently  a  versatile  technique  since  transverse  and  axial  resolution  are 

independent from each other. This provides a crucial advantage compared to other tomographic 

methods such as confocal microscopy. For example, the light source can successfully be replaced 

by a multi-LED fibre bundle instead of a tungsten-halogen lamp  [16]. Likewise, objectives can be 

replaced  by higher  numerical  aperture  or  magnification  objectives  although some  adjustments 

would  be necessary.  One can also envision coupling fluorescence detection with  FFOCT  high 

sectioning  ability.  A  research  project  in  collaboration  with  LLTech  is  currently  investigating  its 

feasibility. Nonetheless, FFOCT in its current configuration, is limited for an adaptation to higher 

axial scanning speed because of its inherent sensitivity to motion. The number of accumulated 

images  required  scale  inversely  with  the  minimum  contrast  necessary  to  extract  a  valuable 

diagnostic  information.  Innovative approaches have been recently proposed to overcome those 

limitations and to incorporate a similar configuration into miniaturized or endoscopic probes [17–19].
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Chapter III. Breast ex-vivo imaging: from 

laboratory to clinical setting

This chapter describes ex-vivo studies performed with a compact FFOCT system. The 

objective of  this work was to assess the ability  of the technique to visualize morphological and 

cellular  features  of  normal,  benign  and  malignant  lesions  of  breast  tissue.  The  two  studies 

presented here provide a broad assessment of characteristic features of malignancy as identified 

by FFOCT. Large field specimen and core-needle biopsies are being systematically compared to 

gold standard histology. In addition, this work expands previous ex-vivo work with Full-Field OCT 

and provides insight into the relative advantage and disadvantage of this approach.

Clinical work was performed with the help of clinicians from two institutions in Paris. Dr. 

Brigitte Sigal from Institut Curie and Dr. Martine Antoine from Tenon hospital made possible the 

collection  of  specimens  in  the  pathology  laboratory  and  the  diagnostic  evaluation  of  both 

tomographic images and corresponding histology. Likewise, Dr. Vincent Servois, radiologist was 

instrumental in facilitating the needle biopsy study within the imaging unit at Institut Curie, Paris.

III.1 Large field imaging of ex-vivo breast tissues.

III.1.1 Background

To date, only a few studies have been reported about the capability of high-resolution OCT 

to aid in the visualization of normal and pathologic breast structures at the micron scale  [1].  An 

isotropic resolution up to 3 µm is commonly referred to high-resolution or ultra high-resolution in 

optical  coherence tomography literature[2–4].   As a comparison,  a similar  level  of  resolution is 

provided by low or medium power microscopy (4X magnification). According to histopathologists 

consulted, a majority of common pathologies could potentially be detected and assessed with low 
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power magnification on stained histological slides. A morphological assessment could therefore in 

theory  be  sufficient  for  most  pathologies.  This  work  attempts  to  address  this  hypothesis  by 

methodically comparing tomographic information with gold standard histology. 

Despite advances in early detection of breast cancers through breast imaging techniques 

such as ultrasound, mammography or CT scans, breast cancer remains among women the most  

prevalent cancer worldwide [5]. In addition, the increase of more sensitive screening techniques for 

breast cancer has lead to a rise in surgical procedures. However, 14–40% of patients still require a 

second surgical procedure due to positive or close margins  [6], [7]. Positive margins are defined as 

tumour cells appearing directly at the cut edge of the excised specimen. Residual tumour left bear 

the risk of local recurrence and require additional surgery for the patient  [8-11]. 

Among the  intra-operative  margin  assessment  techniques,  frozen  section  analysis  has 

been shown to reduce the rate of second operations to about 20% [12], however its rationale in 

clinical  routine is being questioned in the literature  [13],  [14].  Although the accuracy of  frozen-

section is very high [13], [15–18], it has been suggested inappropriate with very small tumours (<1 

cm)  [19]  and may also compromise final diagnosis by leaving insufficient material for permanent 

paraffin embedding or for tumour markers in molecular analysis. 

A second issue with frozen-section analysis is the cost benefit rationale. Initially, it was used 

during surgery with a diagnostic purpose and dictated further tumour removal if repetitive positive 

margins were found during surgery. Cost-benefit was evident as immediate diagnosis could avoid a 

potential  second  operation  for  the  patient.  As  E.Singletary  pointed  out:  “in  theory,  a  patient 

scheduled for  lumpectomy who is  found to have repeatedly  positive  margins after  multiple  re-

excisions would be a candidate for an immediate mastectomy6.  However, many institutions are 

reluctant to perform the mastectomy in the same surgery under these circumstances”[20] .

The main reasons are the psychological effects for the patient of not expecting major surgery such 

as  a  mastectomy and the lack  of  preparation  regarding a  breast-conserving  surgery.  Patients 

scheduled  for  a  mastectomy are  now widely  offered  immediate  reconstruction.  Likewise  such 

procedure  also  requires  extensive  time  and  coordination  among  specialists  and  cannot  be 

immediately scheduled without a minimum notice. Therefore, the cost-benefit of frozen-section with 

treatment intend has altered. 

In addition, with the development of less invasive biopsy and imaging techniques, primary intent of 

surgical  procedures  have  shifted from  diagnosis  to  treatment.  As  diagnostic  has  already been 

confirmed, surgery is now primarily intended to remove a tumour (lumpectomy) or the entire breast  

(mastectomy). Consequently, intraoperative frozen-section analysis has become largely restricted 

to margin assessment whereby the edges of the lesion are inspected to determine if the excised 

lesion is free from residual tumour. While studies have shown a fewer number of second operations 

to about 20% [20], several drawbacks have been reported such as a high rate of false negatives 

(around 20% of patients required additional operation). It must be noted that the vast majority of  

6Surgical removal of one of both breasts. 
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hospitals in the United States do not rely on intraoperative margin assessment by pathologists [22]. 

According to pathologists interviewed, a similar trend is observed in France, with some exceptions.  

Therefore, an imaging technique that could reliably and rapidly assess surgical margins 

would be of a great aid to limit the number of re-operations. Optical coherence tomography (OCT) 

and  full-field  optical  coherence  tomography  (FFOCT)  offer  high-resolution  and  relatively  fast 

assessment of pathologies. OCT has been previously investigated in a variety of tissues, such as 

the upper aero-digestive tract  [23–26], gastrointestinal tract  [27–29], and breast tissue as well as 

lymph nodes invasion  [1], [3], [30–35]. Conventional OCT systems are not able to reliably image 

cellular features due to limitations in transverse imaging resolution as described previously. Full-

field optical coherence tomography overcomes those limitations by acquiring images in an «en-

face» plane.

The present study is designed to evaluate whether full-field OCT images can be accurately 

read for presence or absence of relevant features of malignancy compared to the gold standard of  

histology. It consists of a broad imaging survey of fixed ex-vivo breast tissues whereby images are 

precisely correlated with histology to provide a basis for future interpretation and in-vivo studies. 

III.1.2 Material and method

 Study design and imaging protocol  

Tests performed were designed as pilot study to evaluate the capacity of FFOCT to perform 

images of fresh and fixed samples of breast tissues. Throughout the imaging process, tissues were  

immersed in isotonic phosphate-buffered saline to prevent dehydration. Fixed tissues were kept 

either in a formaldehyde solution or in a mixture of acetic acid, formaldehyde and alcohol (AFA). 

Imaging was performed on fixed tissues of discarded portions not needed for diagnosis. In addition, 

the light-CT technique of  imaging has been demonstrated not to interfere with any subsequent 

histological or immunhistological assessment [36].

 Specimen selection and preparation  

Tissues were selected based on the potential presence of different diagnostic features for  

presentation. As previously detailed, fresh tissues show similar contrast and morphological features 

of malignancy and could therefore be readily compared and applied to the results presented here. A 

lower contrast has been seen in some cases if fresh tissues were imaged.  

Tissue excisions from surgery are of irregular shape and geometry. To enable imaging of a surface 

comparable to histology slides (~1cm²) a special sample-holder has been developed in order to 

rapidly position the tissue and control the pressure applied in order to obtain a homogeneous flat 
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surface. The sample-holder is placed on a three-axis stage to allow rapid translation with respect to 

the microscope optics.

Imaging was performed through a 1 mm silica coverslip and water immersion microscope objective 

were  immersed  in  an ultrasound gel  (Aquasonic  Clear,  Parker  Laboratories  Inc.,  Fairfield,  NJ, 

USA).  Water-based gels  have excellent  optical  properties and are commonly used in confocal 

microscopy as an immersion medium for objectives lens [37], [38].

 Instrument   

A description of  the full-field compact OCT system has been detailed in the preceding 

chapters.  In  brief,  a  white-light  halogen  lamp  illumination  source  is  fibred  to  a  beam  splitter 

(interferometric principle of OCT). At one end, a silicon crystal mirror is cadenced by a piezoelectric  

stage  actuator  (reference  arm)  and the sample being imaged at  the other  end.    A standard 

microscope objective (10X/0.3 numerical aperture, UMPLAN FLN, Olympus) is mounted on both 

extremities. 

A high-speed CMOS camera is synchronized with the piezoelectric oscillations and captures each 

destructive or constructive interference generated by micron scale refractive index differences from 

the biological sample. The tungsten-halogen light source provides an effective camera response 

centred around 710 nm (near infrared) with a >125 nm bandwidth, thus achieving on optical section 

around 1.5 µm (axial resolution) and the diffraction limited lateral resolution close to 1.5 µm. At this  

resolution, the maximum penetration depth routinely used was around 100 µm, but only 20 to 50 

µm in depth were necessary during this study.

 Data analysis  

In this observational study, assessment  focused on qualitative image interpretation and 

correlation with the gold standard histology. A database of several images per sample was collected 

at different depths or different areas in the sample.  The whole database was first reviewed, and 

representative normal, benign and malignant specimens were selected for further comparison with 

histology.   Image  selection  was  based  on  several  factors  including  possible  correlation  with 

histology slides, overall image quality, and ratio of pathologic to non-pathologic specimens. 

For this thesis, FFOCT images are displayed on an inverse or negative grayscale colormap 

(unless otherwise mentioned) with bright corresponding to low signal and black corresponding to 

strong signal. This type of representation is consistent with representations used in the literature for 

OCT images but the opposite of what is commonly used for confocal microscopy or ultrasound 

imaging.  One  would  expect  that  either  representation  is  equally  representative.  However, 

observations have shown that both grayscale colormap are actually complementary.  In addition, a 

negative grayscale colormap replicates histology slides appearance whereby adipose tissue appear 

bright and fibrous tissue, dark. 
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III.1.3 Results 

Figure III.1 shows the characteristic features of normal breast tissue as seen on FFOCT.

(for a schematic diagram of the three main tissue areas of a female breast see figure  III.2).  A 

general  morphological  assessment  clearly  shows  a  mixing  of  adipose  tissue  (adipocytes)  and 

surrounding  fibrous  stroma.  Organized  structures  with  well-circumscribed  contours  are  clearly 

distinguishable, such as lobules and milk ducts. A characteristic tree-shape structure of a terminal 

duct lobular unit (TDLU) is clearly visible in the centre of the tomographic images. By inverting the 

grayscale  map,  ductal  and lobular  tissue appear bright  due to hypo-scattering as confirmed in 

subsequent FFOCT images.
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Figure III.1: FFOCT image of healthy breast tissue a) and corresponding histology slide b). A cauliflower-
like  structure  characteristic  of  a  terminal  duct  lobular  unit  (TDLU) can  be  seen  in  the  center  of  the  
tomographic image c). The corresponding lobular structure is not visible on histology due to a probable  
difference of section depth or a different angle of slicing. Scale bar: 250µm.
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In contrast, figure III.3 shows a direct tomographic image – without look-up table inversion. 

Fatty tissue or adipocytes appear dark due to lower scattering and higher absorption properties 

compared to highly scattering surrounding structures (e.g. epithelial layers) or fibrous tissue. 
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Figure  III.2:  Schematic  of  female  breast  tissues:  mainly  
 lobules (milk-producing  glands), ducts (tubes that  carry the milk  
from  the  lobules  to  the  nipple),  and  stroma (fatty  tissue  and 
connective tissue surrounding the ducts and lobules, blood vessels,  
and lymphatic vessels.  From Cancer.org 
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Figure III.4 presents distinct features of a ductal carcinoma in situ (DCIS) showing enlarged 

lobules – clusters of distended acini – and ductal structures with narrow lumen. The magnified view 

in figure  III.5 confirms the presence of multiple distended acini (grape-like shape). In the ductal 

structure a narrow lumen (white area) is clearly distinguished and the remaining part of the duct is 

therefore  packed  with  suspicious  material.  Those  abnormal  features  (i.e.  enlarged  lobule  and 

narrow duct’s lumen) indicate a suspicion of malignancy. 
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Figure III.3:  Direct tomographic grayscale colormap of the same healthy breast tissue.  
The terminal duct lobular unit c) appears more distinctively compared to an inverse  
colormap. At the opposite, fatty tissue or adipocytes are dark on inverse grayscale map. 
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Figure  III.4:  ductal  carcinoma in  situ  (DCIS).  FFOCT image  (bottom)  along  with  
corresponding histology (top).  Enlarged lobules (clusters of distended acini) (lb) and,  
ducts with narrow lumen (dt) are readily distinguished. Scale bar: 250µm. 

Figure III.5: zoomed view of an enlarged lobule and individual acini a) and galactophorus ducts  
filled by cell proliferation b). 



Breast ex-vivo imaging: from laboratory to clinical setting

A second example of  ductal Carcinoma in situ (DCIS) is shown in figure  III.6 and  III.7. 

Lobular and ductal structures appear highly enlarged due to a proliferation of malignant cells within 

each structures.
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Figure  III.6:  Ductal  Carcinoma  in  situ  (DCIS).  Tomographic  image  a)  and  corresponding  
histology section b).  Lobular (lb) and ductal  (du) structures appear highly enlarged due to a  
proliferation of malignant cells.
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Figure  III.7 shows  a  zoomed  view on  the  enlarged  ducts.  The  increase  in  size  is  an 

indication of abnormal cell growth. In addition, the narrow lumen, thin whitish area inside the duct is 

filled with suspicious material. All those criteria are converging towards a diagnosis of malignancy.

Figure III.8 presents an invasive ductal carcinoma observed in the FFOCT image. Notably 

the overall architecture appears clearly disorganized. Circular shape is characteristic of a nodule 

pushing border and is clearly visible on FFOCT imaging.  Large clusters of glandular tumour cells 

are  invading surrounding stroma with  irregular  borders.  Adipocytes within  the infiltrated stroma 

appear significantly reduced in size compared to larger adipose cells seen at the top left of the 

FFOCT image. 
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Figure  III.7: zoomed view of figure  III.6 showing a duct filled with suspicious material (grey area) and a  
narrow lumen (white area) a); and a duct filled  with a possible calcification or necrosis b). 
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A breast nipple tissue, which is not comparable to any previous tissue described as far, is 

shown in figure  III.9. Breast nipples are composed of several layers with distinctive architectural 

structures.  Linear  structures  positioned  in  the  centre  of  both  images  are  lactiferous  or 

galactophorous ducts with surrounding epithelial layers appearing bright in contrast to the darker 

duct lumen (inverse grey scale map). 
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Figure III.8: Invasive breast carcinoma. FFOCT image (left) and  corresponding histology (right). Adipose  
tissue (ad) present different sizes depending on tumor invasion. Glandular invaded fibrous tissue (gl) seen as  
dark purple on histology appear compressed and packed in clusters with a loss of regular shape on OCT.  
Bar scale: 250 µm.
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At the external border of the nipple, the skin and sub-cutaneous covering appear as a thin 

dark layer. Underneath, sebaceous glands can be identified as round hypo-scattering glandular 

structures. Circular bands of muscle tissue are readily distinguished in the FFOCT image. 

III.2 Core-needle biopsy study

III.2.1 Background

Needle  biopsy  of  breast  masses  as  alternative  to  open  surgical  biopsy  is  a  widely 

performed procedure. It is recognized as highly accurate and cost-saving when tissue sampling is 

possible.  Core-needle  biopsy (CNB)  or  fine-needle  biopsy (FNAB)  are  the  two  main  methods. 

Difference between FNAB and CNB is needle's diameter (<0.8mm vs 2.1mm respectively). Usually 

if  the lump is palpable, a fine-needle biopsy is sufficient in most cases.  Otherwise,  if  there is  

suspicion of a solid or cloudy fluid, a core-needle biopsy is preferred under image-guidance using 

either stereotactic mammography or ultrasound. 
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Figure  III.9: Breast nipple. FFOCT image (left) along with corresponding histology (right). Distinctive  
features of breast nipple tissues are readily distinguishable: sebaceous glands (se); milk ducts (d), muscle  
fibers (ms).
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Due  to  the  size  of  the  sample,  FNA's  investigation  is  solely  done on  cellular  level  in 

cytopathology7 as no tissue structure  is  preserved after  aspiration.  Larger  CNB allows a more 

accurate assessment because it removes a sufficient area of tissue for the pathologist to evaluate 

suspicious  cells  by maintaining surrounding tissue  structure.  As  FNA samples  are  not  directly 

comparable with FFOCT imaging due to a loss of tissue architecture after needle aspiration, we 

have therefore focused the comparison with core-needle biopsies in this study.

Both procedures, however, suffer from significant “non-diagnostic sampling” rates. While 

the term “non-diagnostic” has been reserved for cases where relevant material has been missed, a 

wider definition includes cases in which representative material has been obtained yet ambiguities 

remain [5].

For  core-needle biopsies,  non-diagnostic  samples occur  in 8–12% of  image-guided procedures 

when non-palpable lesions are targeted [40–43]. Multipasses are often necessary to obtain relevant 

material.  These difficulties lead to re-biopsies in approximately 4% of  the patients who undergo 

percutaneous procedures [37,38]. When repeated biopsies need to be performed, it not only adds 

to the overall cost of diagnosis, but to the discomfort of the patient. In addition, with the growing use 

of  highly sensitive  techniques such  as  digital  mammography and breast  MRI,  needle  biopsies 

procedures performed on small non-palpable lesions is likely to rise.

III.2.2 Method and protocol

The compact FFOCT system was set up within the senology unit at Institut Curie and close 

to the radiology unit. Imaging was conducted within 15-25 minutes after excision on fixed tissues.  

No additional consent was required since FFOCT imaging was performed for research purposes on 

fixed tissue and the technique has been demonstrated not to interfere with subsequent histology 

staining. To prevent tissue degradation, samples were immersed in phosphate-buffered saline as 

soon as they were received for imaging. A schematic of the protocol is presented in figure III.10. 

7Cytopathology is generally used on samples of free cells or tissue fragments and based on DNA activity in 
the cell's nucleus ; in contrast to histopathology which investigates whole tissues. 

49



Breast ex-vivo imaging: from laboratory to clinical setting

Images were acquired with the FFOCT system through a 1mm thick coverslip (sample-

holder) and objectives were immersed in ultrasound gel (Olympus, 10x/0.3 NA). 16 specimens from 

13 patients were scanned and imaging was performed at two different depths. Most of biopsies 

were breast samples but kidney and other organs were also imaged under the same protocol (see 

final section).

III.2.3 Results

A benign breast lesion is shown on figure  III.11. In this fibroadenoma, fibrous and fatty 

border is clearly visible. Lobules and acini can be differentiated from surrounding stroma as round 

globular structures. Before biopsy, a benign lesion was suspected; it could then confirm that the 

biopsy has been performed within the targeted area for further analysis.
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Figure III.10: Protocol flow chart for the compact OCT study under clinical conditions with core-needle  
biopsies.
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Figure III.12 demonstrates FFOCT features observed in malignant breast lesions. Although 

invading tumour cells are not clearly distinguished, architectural aspect appears disorganized and 

adipocytes reduced in diameter.  Furthermore,  no distinct  structures are visible,  which indicates 

suspicion of malignancy. 
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Figure  III.11: FFOCT image and  histology of breast fibroadenoma  
from a core-needle  biopsy.   Individual   lobules'  acini  (ac)  can  be  
readily distinguished.
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Figure III.13 presents an infiltrative ductal carcinoma with large clusters of infiltrating cells 

appearing dark purple on histology. Although individual invasive cells are not directly seen in the 

tomographic  image,  clusters  of  proliferating  tumour  cells  appear  darker  on  OCT  with  stroma 

disorganization (wave-like appearance) and no normal mammary structures.  All  these elements 

indicate a high suspicion for malignancy.
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Figure  III.12:  Invasive  breast  carcinoma.  FFOCT image  a)  and  corresponding  histology  b).  Although  
invading tumorous cells (inv) are not clearly distinguished, architectural aspect appears disorganized and  
adipocytes(ad) reduced in diameter. Furthermore, no distinct structures such as lobules or ducts are visible  
which indicates suspicion of malignancy. Scale bar 250µm. 
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 Other organ:  kidney lesion  

In figure III.14, a core-needle biopsy from a suspicious kidney shows clusters of circular and 

oviform cells clearly delineated. It corresponds to renal tubules as seen on histology (H&E). The 

magnified view allows us to differentiate individual proximal tubules characterized by round hypo-

scattering lumina and hyperscattering brush borders.
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Figure III.13: core-needle biopsy of infiltrative breast carcinoma. FFOCT a) and corresponding histology  
b). Large clusters of infiltrating cells (inv)  appear dark purple on histology and can be readily distinguished  
on OCT by the a wave-like appearance and disorganization of the stroma. In addition, no normal mammary  
structure can be found such as round-shaped lobules or ducts. Scale bar: 250µm



Breast ex-vivo imaging: from laboratory to clinical setting

54

Figure III.14: FFOCT (a,d,e,f) and corresponding histological images (b,c) part of an adenomatous kidney  
biopsy  (benign  lesion).  Structures  shown here  are  normal  elongated  and  convoluted  tubules  (t)  readily  
distinguished on FFOCT images.   Glomeruli  (g) seen on the histological  image are not  present on the  
tomographic  image  at  this  particular  position  or  depth.  Dark  bands  on  the  FFOCT image  are  due  to  
individual tiles stitching. FFOCT cross-section (f) with a depth field of view of 150µm.  Individual renal  
tubules (t) can be distinguished up to 80-100 µm in depth. Scale bar: 250 µm (a,b) and 70 µm (c,d,e,f).
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III.3 Discussion and Conclusion

In this study, full-field optical coherence tomography was investigated for ex-vivo imaging 

following breast  resection and core-needle biopsies.  The initial  study assessed the capacity of 

FFOCT to image large zones (> 1cm²) and to accurately read for presence of relevant features of 

malignancy compared to the gold standard of histology. The biopsy study explored the feasibility of 

the compact system under clinical routine and tight time limitations. 

The  resolution  achieved,  predominantly  along  the  x-,y-axis,  enables  tumour  margin 

assessment by revealing features of malignancy; notably, loss of organized structures, change in 

shapes and scattering intensity variations.  The  reduced size of  adipocytes appears  as  a  valid 

indicator of tumorous cell  proliferation, in particular accompanied with absence of well-delimited 

structures such as lobules or galactophorous ducts. Similarly, enlarged lobules and ducts tend to 

provide additional features of a benign lesion if cells have not invaded surrounding stroma. Such 

proliferation presented, for example, a wave-like appearance for the surrounding fibrous tissue and 

thus pointing out towards suspicion of higher grade malignancy. 

As far as technical considerations are concerned, the equipment appeared to be reliable, 

making it suitable for clinical investigation outside the laboratory. Contrast is, however, affected by 

several optical factors related to the structures imaged such as multiple scattering effects and low 

index  heterogeneities. A  major  advance  however,  compared  to  previous  studies  with  optical 

coherence microscopy [1], [3] or confocal reflectance microscopy [44–48], is the large field of view 

achieved. Tiles stitching algorithm (LightCT) enabled the agglomeration of large areas of 10×10 

mm² in less than 2 minutes for a field of view of 1 cm².  With further increase in imaging speed 

towards  real-time  imaging,  FFOCT  would  have  the  potential  to  serve  as  complement  for 

intraoperative assessment of tumour margins during breast-conserving surgery. 

One limitation of this study is the image correspondence between FFOCT and histology 

slides. The literature is abundant about those difficulties. Several factors can prevent exact image 

registration such as depth difference or a tilted slicing. For example, a few microns difference in  

slicing depth can already show new structures; likewise a slight angular difference during paraffin 

embedding or slicing generates a completely different  plane. In addition, sample dehydration is 

performed  prior  to  paraffin  embedding.  Such  procedure  modifies  the  chemical  properties  and 

therefore  the  architectural  aspect  of  the  specimen.  Hematoxylin  and  eosin  (H&E)  images  are 

generally slightly reduced in size compared to fresh or fixed tissue imaged with FFOCT.

The study presented here is a preliminary investigation and the relatively small sample size 

prevents any statistical analysis of sensitivity and specificity for malignancy. As with any other novel 

imaging technique, prospective studies with larger sample size would be needed to confirm these 

early findings. Yet, a calibrated grid of reading (e.g. specific malignancy features)  has to be tested 
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on larger samples before attempting to measure the diagnostic efficacy for biopsies. Biopsies are 

by definition only a small portion of a larger specimen, only if reliable criteria can be found on larger  

samples then more studies would become pertinent for biopsies.

Finally, an important but lengthy phase in the introduction of a new type of images is the 

learning process from the medical community. In parallel to this work, it was carried out the first  

prospective  study of  FFOCT  and it  has  shown encouraging  results.  The  two histopathologists 

involved in this work (Drs. Sigal and Antoine) from two different hospitals were first shown a training 

set of FFOCT images with corresponding histology, followed by a “blinded” phase whereby two 

predefined criteria were assessed: normal vs. malignant. Results have shown a sensitivity of 93.5% 

(actual presence of a malignant lesion) and a specificity of 75.5% (actual absence of a malignant 

lesion).  However,  further  clinical  studies are essential  in  order  to  confirm  those specificity and 

sensitivity rates.  As with  any novel  imaging technique,  these results  and feedback  will  provide 

essential information regarding the potential of the technique over the long term as an aid or not for  

histopathologists.
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Chapter IV. Contrast enhancement strategies: 

assessment and validation

Traditional histology or intraoperative frozen section provide colour maps of tissues based 

on their chemical or biological properties. Obtaining a similar type of mapping based on the optical 

or elastic properties of a tissue would complement the FFOCT image without having to alter tissue 

DNA  or  molecular  content.  This  approach  would  prove  valuable  for  subsequent 

immunohistochemical  staining  or  targeted  biobanking;  notably with  the  advent  of  personalized 

medicine and genomic analysis [1–3].

In this chapter, the diagnostic feasibility, validity and limits of optical and elastic mapping is 

examined. The first  section  investigates a contrast  enhancement method based on attenuation 

coefficients of large sample areas and in the second part, a proof of concept of optical elastography 

in ex-vivo breast tissues is presented.

IV.1 Assessment of mapping optical attenuation 
coefficients in breast tissues.

IV.1.1 Context and background 

For histopathologists, tissue specific coloration constitutes the first visual assessment tool 

along with tissue architecture. This step is generally performed at low magnification (4X objectives).  

The examination of cell internal structures (e.g. nuclei shapes or nucleus to cytoplasm ratio) only 

comes as a confirmation step in the diagnostic process. A professor of histology interviewed during 

this  work,  confidently  stated  that  90%  of  pathology  assessment  could  be  performed  at  low 

magnification.  It  thus  highlights  the  importance  of  tissue  coloration  and  architecture  in  any 

diagnostic process. Since the early 90's, a variety of optical techniques have been tested in order to 
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extract  the  optical  properties  of  tissues  based  on  light  propagation  models.  The  goal  was  to 

measure the attenuation of the reflected signal in order to provide a diagnostic information about 

about the severity of tumour invasion. 

 Those techniques were mainly involving solutions to the radiative transfer equation [4] using 

diffusion theory approximations [5]  and Monte Carlo simulations for describing light propagation in 

biological tissues  [6–10]. Based on those models, Cheong et al. have compiled reference tables for 

attenuation  coefficients  for  a  large  number  of  animal  and  human  tissues.  Optical  properties 

measured for similar tissues show a wide variation of results that can be attributed to the different 

experimental  methods  employed.  Major  differences  lies  within  tissue  preparation,  optical  and 

experimental technique, theoretical model and data post-processing methods used [11].One major 

advantage of  OCT is that optical  parameters can directly be extracted from clinical  specimens 

either ex-vivo or in-vivo.

The first attenuation measurements based on OCT data were demonstrated by Levitz et al 

on ex-vivo tissues by comparing normal and atherosclerotic human aortic samples [12]. Attenuation 

coefficients compared favourably with the theoretical model used, which takes into account multiple 

scattering effects.

Clark et al. at MD Anderson Cancer centre, compared the optical properties to distinguish 

normal from neoplastic oral mucosa [13]. Although some trends can be extracted, a wide variation 

in scattering coefficients was necessarily present. This difficulty can be addressed by averaging 

over a selected region within the en face plane (x-,y- axis). However such hand picking can lead to 

further ambiguity for a widespread use of this approach.

The issue has since been addressed by two groups that obtained a full “en-face” map of the 

attenuation coefficients.  They have spatially mapped the entire specimen in an “en-face” view to 

generate  an  attenuation  cartography based  on  the  scattering  properties  over  a  3-dimensional 

section by fitting the slope of the line of best fit. Maclaughlin et al. directly applied an attenuation 

extraction method and algorithm onto ex-vivo breast lymph nodes with a traditional swept source 

OCT model. They estimated tissue malignancy or cluster of metastatic cells based on attenuation 

coefficients extracted over a depth of 2 mm. They found that surrounding healthy stroma tissue 

appeared highly scattering compared to areas of cancerous cells. Malignant areas were found to 

have higher attenuation coefficients compared to residual non-involved area of the lymph cortex 

[14].

Recently,  Tomlins  et  al.  used  a  similar  technique  to  characterize  the  severity  of  oral 

epithelial  dysplasia  with  a  commercially  available  swept  source  OCT model  (Michelsons 

Diagnostics). The method termed scattering attenuation microscopy (SAM) provides an “en-face” 

view of  attenuation coefficients.  It  was shown that  mild/normal  oral  epithelial  tissues  display a 

characteristic  Gaussian  like  distribution  of  values  with  a  peak  centred  differently  than  for 

moderate/severe regions. And as stated, consistency in results among samples and patients seems 

to further confirm that attenuation coefficients were dominated by tissue heterogeneity rather than 

measurement noise. However, a substantial limitation of  the study is that the signal magnitude 
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appears to highly fluctuate even in a logarithmic scale  and the “average” slope or best fit appears 

hardly representative as shown on figure IV.1.

In the present feasibility study, measurements were limited to depths up to 100 µm, typically 

where multiple scattering starts to dominate for highly anisotropic tissues such as the breast [15], 

[16]. The aim of such an approach is to assess the feasibility and diagnostic validity of mapping 

optical attenuation coefficients in normal, benign and malignant breast tissues at shallow depths 

compared to traditional OCT.

IV.1.2 Material and methods 

 Specimen selection and instrument.  

Tissues were selected based on the potential presence of diagnostic features for inclusion 

in the study and scanned at two different depths (e.g. healthy, benign or malignant tissue). The 

image  acquisition  was  performed  through  a  1  mm  silica  coverslip  immersed  in  water-based 

ultrasound gel. 7 different structures representing 41 cellular zones were examined.

A description of the full-field compact OCT system has been previously detailed. In brief, a 

white-light  halogen  lamp  illumination  source  is  fibred  to  a  beam  splitter  (i.e.  low  coherence 

interferometry). At one end, a silicon crystal mirror is cadenced by a piezoelectric stage actuator 
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Figure IV.1: Described in this reference [52] as a typical A-scan, including the region of interest (red solid  
line), to which a straight line is fitted to estimate the scattering gradient µ. The slope of linear fit could  
potentially be quite different hence leading to a completely distinct estimate of its scattering gradient, µ.  
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(reference arm) and the sample being imaged at the other end.   A standard microscope objective  

(10X/0.3  NA,  UMPLAN  FLN,  Olympus) is  mounted  on  both  extremities.  A  high-speed 

CMOS camera is synchronized with the piezoelectric oscillations and captures each destructive or 

constructive interference generated by micron scale refractive index differences and scattering from 

the probed volume of coherence within the specimen. The tungsten halogen light source provides a 

160 nm bandwidth centred around 710 nm which determines the optical section achieved.  Thus the 

axial and diffraction limited lateral resolution are approximately similar around 1.5 µm. In addition, 

the maximum penetration depth routinely used was around 100 µm, but only 20 to 50 µm in depth 

were necessary for measuring the attenuation coefficients over a homogeneous cross section.

 Scattering coefficient analysis  

The interaction of light with biological tissues is dominated by the optical properties of large 

scattering  sites  within  the  biological  specimen (e.g.  cell  nuclei  or  mitochondria).  In  the  single-

scattering model of light propagation, it is assumed that only one back-scattering event occurs (i.e. 

only ballistic photons are collected). The scattering cross section is affected by the size and shape 

of each scattering centres and this gives rise to attenuation changes of light propagation.

Several  studies have used this model to measure the optical  attenuation either ex-vivo 

[17–21] or in-vivo  [22–24].  In  the  OCT  literature,  this  model  is  the  most  widely  employed  in 

comparison  to  multiple  scattering  models  and  was  used  in  this  work  for  its  simplicity  and 

robustness.  The  exponential  attenuation  of  the  OCT  signal  can  therefore  be  modelled  in 

accordance with the Beer-Lambert law. The returning power fraction or signal intensity I (z) at a given 

depth z can be expressed as follows:

I (z)=I 0e−µ(λ )z  (8)

where I0 is the incident light's intensity and I the reflected intensity. In this experiment, the measured 

attenuation coefficient µt has therefore been extracted with the following equation: 

µt=
[ln ( I 1)−ln( I 2)]

(z1−z 2)
 (9)

whereby I1 et I2 are the signal intensity from the two different depths z1 and z2  (with z1>z2), and µt  is 

the observed attenuation coefficient of the tissue. A factor of 2 should appear in equation (8) since 

the pathlength has to be doubled to take into account the return path of light from the tissue to the  

detector. However, the amplitude signal not the intensity is being measured with the equipments 

and thus the overall  signal actually follows the decay indicated in (8) with  I(z) representing the 

recorded signal.

In the experiment, µ(λ) is the attenuation coefficient, which is the sum of the absorption and 

scattering coefficients. However, measurements were taken in the near-infrared region around 700 

nm (Δλ=125 nm), and scattering coefficient is significantly higher than the absorption coefficient for 
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biological tissues at this wavelength. The attenuation coefficient was therefore assumed to equal 

the scattering coefficient.

 Image acquisition and processing  

Images at two different depth-of-focus were saved as floating point numbers with Image J 

software and translated into 32-bit format after subtraction of the two images and before applying a  

10log format scale. A linear coefficient was applied onto the resulting image in order to display a 

map of mean free path values (l) or the attenuation coefficient, µ in mm -1. 

 Additional post-processing was performed on each map by applying convolution presets 

with a Gaussian function for smoothing. A sigma of 5 for the Gaussian standard deviation was 

applied. Brightness and contrast were enhanced by an automatic updating of  the look-up table 

(LUT), without altering pixel values. 

IV.1.3 Results

Out  of  the 41 different  cellular  areas  within  the 7  specimens  analysed,  no  statistically 

significant  differences  were  found between healthy and benign  or  malignant  breast  tissues.  A 

similar finding was found by another researcher in the laboratory on a different set of specimens. 

Attenuation coefficients were in the range of 10 to 30 mm -1, however the results did not show any 

statistically  significant  variation  within  each  structure  examined  (e.g.  duct,  lobule,  surrounding 

fibrous tissue,...) and possible explanations are discussed below.

One exception worth noticing is the attenuation difference between normal and malignant 

breast  lobules  (the  terminal  gland  responsible  for  milk  secretion).  Lobules  exhibit  a  more 

homogeneous packed structure than other regions and an increase in the average attenuation 

coefficient as the epithelial  surface progresses from healthy to lobular carcinoma (i.e. tumorous cell 

invasion within the lobule) as shown on figure IV.2.
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The mean attenuation coefficient from normal lobules was 12±3.5 mm -1 compared to 37±3.5 mm-1 

for a specimen with intraductal invasion (p-value <0.5).

However, a major result  of  this investigation is the high heterogeneity of  tissues over a 

range of only a few microns as illustrated by figure IV.3.

Numerous  new  epithelial  structures  appear  over  a  range  of  15  µm  in  depth.  More 

importantly,  those structures show a high variation of mean attenuation coefficients (e.g. highly 

scattering fibrous stroma replaced by highly attenuating lobules). Over larger penetration depths, 

there  are  therefore  increased  chances  to  come  across  similar  tissue  heterogeneity  when  the 

analysis is performed with a micron-scale resolution as it is the case for FFOCT.

66

Figure  IV.2:  Comparison  of  attenuation  coefficients  between  healthy  and  invaded  breast  lobule  
(carcinoma in situ); p-value <0.5 using a one-sided student t-test.

Figure IV.3: Breast ductal hyperplasia at 10 and  25 µm; images a) and b), respectively.
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IV.1.4 Discussion

These  results  illustrate  the  ability of  high  resolution  full-field  OCT  to  extract  additional 

information without any particular tissue preparation or staining. The results are in line with the 

range of attenuation coefficients found in the literature for human breast tissues [25]. However, no 

clear  difference  in  attenuation  coefficients  has  been  found  between  normal  and  malignant 

structures. The only statistically significant increase in attenuation found was in a lobular carcinoma 

in situ (LCIS) but this finding is highly undermined by the rare occurrence of this type of lesion [26] 

and the limited sample number used in this study.

In  addition, the  methodology  employed  is  based  on  significant  assumptions. 

Measurements assume that only a single structure or tissue type is sampled over the scanning 

range.  However, these results highlights the limits of this hypothesis. The high resolution imaging 

method allowed to pinpoint the important heterogeneity with a range of a few microns. For example, 

a highly scattering structure at a given depth can be averaged by a less scattering structure (e.g.  

adipocytes or tumorous cells). 

Previous studies  on cervical  tissues  suggested that  single  layer  models  that  assume tissue  is 

homogeneous  are  not  well  suited  to  describe  light  propagation  in  vivo  because  of  the  large 

difference  in  scattering  between  epithelium  and  stroma  [27].  Results  reported  here  further 

emphasize this point by identifying potential separate layers within a few microns and with different 

scattering properties.

A recent study on ex-vivo urothelial tissues also confirmed this conclusion. Cauberg et al. used a 

conventional OCT to scan over 1-2 mm bladder biopsies but could not determine a quantitative 

criteria to differentiate healthy tissues from urothelial carcinoma. They nonetheless attributed those 

results to the experimental conditions of ex-vivo tissue scanning; yet mentioning that this hypothesis 

would only be confirmed with the future in-vivo study planned [28]

McLaughlin et al. have suggested that image segmentation techniques would be required to 

identify regions of homogeneous tissue so as to separately calculate the attenuation coefficient. A 

similar issue exist  in medical  imaging such as MRI,  PET or CT scans and is known as partial 

volume effect (PVE), though mostly resolved by increasing the sectioning resolution. In OCT or 

FFOCT, a similar approach would not deem appropriate as most systems are constantly scanning 

at the maximum axial and lateral resolution possible. 

Moreover,  measurements  assume  that  backscattered  light  is  solely  based  on  ballistic 

photons, ignoring multiple scattering effects from surrounding tissues. More sophisticated models 

have proposed to include the shower curtain effect or the heterogeneity of size, shape and density 

of the scatterers [29], [30].  However, these models seem to have a seldom implementation in the 

last decade. 

Finally, the small number of patients included in the study is evidently an important limiting 

factor of these results. Nonetheless, the trend seems to show the limits of this approach to extract  

valuable information for the clinician
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The  attempt  to  accurately  model  micro-anatomical  features  of  tissues  based  on  their 

scattering  properties  is  an  appealing  idea  since  it  could  be  readily  implemented  for  in-vivo 

measurements. The downside is its lack of solid criteria to accurately identify a potentially malignant 

area or at least a suspicion of abnormal structures. Those shortcomings are mainly due to the 

similarity in optical  properties among inherently diverse tissues and distant  by a few microns.  

Recent studies have nonetheless used the same methodology to extract a colourful map for 

human axillary lymph nodes and obtained contrast enhancements. The essential criteria is less the 

feasibility of such approach but its sensitivity and specificity in comparison to the gold standard of 

histology [31].

IV.2 Feasibility of an experimental setup to measure 
the static elastic properties of a breast tissue.

IV.2.1 Background and context.

Faced  with  the  shortcomings  of  the  attenuation  map  approach,  alternative  quantitative 

diagnostic criteria were explored. Over the past two decades, research on the elastic properties of 

tissue as contrast mechanism has received increasing interest for medical applications [32–35]; and 

is now know as elastography. Originally ultrasounds and MRI have been the method of choice to 

understand  and  quantify  the  mechanical  properties  of  tissues.  Its  implementation  has  been a 

success  and  several  commercial  systems  are  now  available  (e.g.  Fibroscan®  (Echosens), 

Aixplorer® (Supersonic Imagine) or Arfi® (Siemens)).

More recently, the optical variant or optical elastography has been tested with OCT as its 

underlying optical imaging modality [36–38]. Despite improvement in spatial resolution achieved by 

MRI (<1 mm) or high-frequency ultrasound ( 50-70 µm)∼ [39], the gain in resolution offered by OCT 

(3-15 µm) or high-resolution OCT ( 1 µm) provide new capabilities to measure elastic changes at∼  

the cellular level. The goal is to quantify micron-scale strain induced inside a tissue by applying a 

load or stress externally. This approach has been investigated for medical applications, such as 

skin stiffness [36], [40–42], atherosclerosis plaque [43–45]and breast tissues [46]. The underlying 

hypothesis is that tissue stiffness is strongly related to pathological change. 

FFOCT takes advantage of a broadband light source and a short coherence length to track 

the relative motion of individual internal structures of a tissue under an external load. The micron-

scale deformation or relative strain distribution of individual tissue elements can recorded before 

and after applying an external force. The traditional assumption in elastography of biological tissues 

is that the resulting map is equivalent to a modulus image. By applying a known force or stress and 

by extracting the strain from the OCT map, then the Young's modulus can be estimated. It requires 
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to consider the biological tissue as an incompressible, homogeneous, and isotropic linear elastic 

material.  If  a  uniform  stress  is  applied  in  the  axial  direction,  the  local  stress  then  becomes 

equivalent to the applied stress (and constant throughout the sample). For a homogeneous sample, 

one can therefore extract the Young's modulus following this linear relationship:

E=σ
ε ,  (10)

where E is the Young's modulus, σ the stress, and ɛ the strain. Since a quasi-static measurement is 

performed as opposed to a dynamic or harmonic approach, the strain image is usually considered 

to approximate the modulus distribution. This simple, direct linear elastic and isotropic methodology 

is  generally favoured since elasticity values can be assigned to individual structures within the 

tissue and a map can be readily generated with fairly simple image processing.

 However, most biological soft tissue do not exhibit a truly homogeneous elastic response 

due to the heterogeneity of the individual structures targeted which exhibit anisotropic, viscoelastic 

and incompressible properties. So several conditions must be fulfilled so that linear elasticity or 

Hooke's  law can  be  a  valid  approximation.  The  non-linearity  of  the  elastic  constants  can  be 

neglected under the assumptions that a small deformation is applied (<1%)  [47]. In addition, the 

tissue is assumed to be uniform, linearly elastic, isotropic and subject to a constant stress field. The 

strain  map  can  then  reflect  the  relative  measure  of  elasticity  distribution,  whereby  a  small  

displacement implies a rigid tissue and a large strain a more compliant (soft) tissue [48]. 

In  this  experiment,  the  aim  was  to  assess  whether  a  quasi-static  strain  mapping  is 

achievable  while  maintaining  the  micron-scale  resolution  of  FFOCT.  A  doctoral  project  has 

subsequently been initiated to further expand this preliminary study.

IV.2.2 Experimental setup 

In order to obtain a strain map of displacement, a rotating sample holder inducing gradual 

loads  was  mounted  on  a  customized  platform  directly  onto  the  FFOCT  system.  A  schematic 

diagram of the system is presented on figure IV.4. 
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Figure  IV.4:  sample-holder  schematic  diagram.  
Arrows indicate direction of load. Pressure could  
also  be  applied  from  the  top  to  bottom  (glass  
window).
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The specimen was brought into contact with the glass window before applying a uni-axial 

compressive loading. With the sample-holder used, pressure could be applied either from the same 

side as the illumination beam (top) or from the bottom side.

cross-correlation-based method 

 Image stacks were acquired before and after uni-axial load. From the resultant deformation 

pattern, strain maps are obtained by numerically differentiating the axial displacement component 

assuming the applied stress was uniform. A particle image velocimetry program (PIV) developed in 

Matlab® was used (PIVLab [49])to generate strain maps. As previously described strain image is 

considered to approximate the modulus distribution for individual structures in the tissue.

A 2-D cross-correlation coefficient can be determined by examining pixel-intensity array 

subsets on two subsequent corresponding images. A crucial aspect is the size of the correlation 

window and the interrogation area chosen in order to extract a 2-D correlation. This aspect will be 

discussed further in the discussion section. In the result presented, the interrogation window was 5 

µm² with a displacement of approximately 9.5 µm.

IV.2.3 Results

These are only sample results to show the feasibility of the methodology. As stated earlier,  

since the beginning of this work, a full-time thesis project has been initiated to fully explore the 

addition of an elasticity map.

The specimen is a breast fibroadenoma which is commonly considered a benign lesion 

formed of duct-like spaces surrounded by a fibroblastic stroma. The load was applied from the 

bottom side of the sample. Figure  IV.5 shows the FFOCT axial scan over a depth of 75µm with 

maps of axial and lateral displacement and its strain component map.
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Figure  IV.5:  a) FFOCT original image after load. b) vertical displacement map. c) lateral displacement  
map. d) strain component map. Color scale: from blue to red. Red indicates high magnitude in displacement.  
z-axis depth: 75µm. 
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The strain map shows the high elastic heterogeneity of individual elements in the tissue. 

Some red zones indicates structures with higher magnitudes of displacement within the window of 

interrogation.  A  possible  hypothesis  would  be  to  correlate  those  areas  with  more  rigid  tissue 

structures. This assumption is discussed in more details in the discussion section.

In this first feasibility tests, the piston or the sample-holder was not equipped with pressure 

sensors which limits any numerical data. The relative displacement was measured by measuring 

the piston length and monitored via the acquisition software. It was later found that the Young's 

modulus of breast tissues is highly dependent on the level of tissue pre-load.  

IV.2.4 Discussion

This study shows the feasibility of a FFOCT setup to obtain micron-scale strain maps of 

tissues.  In  order  to  fully  characterize  the  biomechanical  properties  of  tumorous  cells,  several 

aspects need to be taken into consideration. 

As mentioned, biological tissues are anisotropic and their response to an external load has 

both an elastic and a viscous component. A possible way of solving this problem, as suggested by 

Sun et al., would require to determine in advance both the elastic and viscoelastic properties of soft  

tissues.  And  more  generally,  it  would  require  to  describe  the  behaviour  of  individual  tissues 

depending  on  the  conditions  of  interest  such  as  parameters  of  the  loading  profile,  material  

properties, geometric feature of the structure, boundary conditions, and/or a combination of these 

behaviours[48].

Understanding the properties of individual cancerous cells at the micron-scale is of great 

importance.  Several  studies  have  reported  considerably  lower  viscoelasticity  of  tumour  cells 

compared to normal tissue  [50], [51]. Cell  lines examples include breast,  bladder or pancreatic 

cancer. These findings appear consistent with their ability to move through tissue, to intravasate into 

the blood and lymph systems, and finally to form metastases. The highly heterogeneous strain map 

presented  in  the  results  could  potentially  illustrate  this  aspect.  Therefore,  the  micron-scale 

resolution is both an advantage and a major limitation of optical-coherence elastography compared 

to traditional elastography techniques.

In  addition,  an  important  criteria  in  the  correlation-based  algorithm  is  the  size  of  the 

interrogation window. A too small window may induce inaccurate strain maps. Likewise, too large 

windows tend to average out displacement differences of small structures and would lose in precise 

displacement tracking. From this preliminary experiment, this has been one of the major difficulty 

encountered. Thus far, strain map are calculated from the gradient of displacement fields but the 

differentiation calculation is highly sensitive to local errors. Examples can include excessive surface 

displacement (e.g. in-plane, out-of-plane or rotational) or excessive surface tilt.
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Kirkpatrick et al. proposed two separate methods for small and large deformation. For large 

tissue  displacement,  an  approach  based on  the  Doppler  effect  was  used,  while  a  maximum-

likelihood  estimation  method was  implemented for  small  deformations.  A mask  or  convolution 

kernel was directly generated from the grey values of  a small background region of  the strain-

encoded map;  and then convolved with this kernel in 2 dimensions to display the local  strain 

magnitude [38].

Finally, a 3-D correlation approach should be considered since 2-Dimension correlation do 

not take into consideration out of plane displacements in the x,y direction (or x-,z- axis if “en-face”  

view). Recently, Optical-coherence elastography with 3-D maps have been performed on in-vivo 

skin specimen [42]. 

Additional applications are expected to be explored due to the high resolution offered by 

full-field optical coherence elastography in areas such as tissue engineering or to measure the 

biomechanical properties of large cancer cell models in-vivo.

IV.2.5 Conclusion

Results presented here demonstrate that the optical scattering properties of a biological 

tissue  may be obtained with  full-field  optical  coherence  tomography.  Further  studies  are  often 

warranted to define the validity of the proposed methodology for potential diagnostic use. However,  

in this case, several limits have been highlighted, such as inhomogeneous structures over only a 

few microns and a variety of conflicting attenuation coefficients for a specific tissue.

On  the  other  hand,  Optical-coherence  elastography  holds  greater  prospects  for 

characterizing tissue internal structure at the micron-scale level and imaging the spatial distribution 

of  tissue  elasticity.  However,  cancerous  cells  biomechanical  properties  need  to  be  more  fully 

understood in order  to extract  valuable diagnostic  information.  Micron-scale resolution provides 

both advantages and limitations compared to traditional ultrasound or MRI elastography which can 

assess larger areas and focus on large cluster of tumorous cells. At the cellular-level, malignant 

cells have highly heterogeneous viscoelastic properties that need to be taken into consideration.
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Chapter V. Advances in biology:  in-vivo imaging 

of Drosophila melanogaster

Visualizing  the  dynamic  formation  of  organs  is  the  overarching  goal  in  developmental 

biology. In order to elucidate underlying mechanisms that lead to form and function, the ability to 

image a developing embryo in three-dimension is essential.  In small vertebrates or insects, the 

embryonic development has been extensively studied by imaging the embryo from the outside. 

However, mechanisms taking place underneath have so far been limited to tedious reconstruction 

of histology slides performed on postmortem specimens. Despite recent progress to achieve in-vivo 

imaging,  an  accurate  understanding  of  the  morphological  changes  happening  inside  a  fully 

functioning living organism, such as insects, is still not well understood. This study on Drosophila 

melanogaster  shows  the  feasibility  of  FFOCT  to  perform  high-resolution  imaging  on  living 

specimens during the transitional pupal phase of larva to adult fly, also known as metamorphosis.  

To our knowledge, these are the first images able to visualize the dynamic series of events of organ 

formation with a micron resolution in a living pupa.

V.1 Background

Attempts to perform in-vivo measurements with high resolution optical imaging techniques 

have so far been limited. Confocal microscopy is not particularly adapted for imaging embryos in-

vivo over an extended period of time. The limiting factors include for example: vast amounts of 

laser light, photo-bleaching, photo-damage and heat. Recently introduced techniques have shown 

major improvements in the case of thin cultured cells or fixed and cleared tissues. These methods 

are  yet  still  inadequate  for  large  scattering  objects.  This  incompatibility  is  particularly  true  for  

techniques that depend upon the interference or overlap of two laser beams or the projection of  

patterns; such as structured illumination, 4Pi or stimulated emission depletion. Aberrations occur 

due to the distortion of the intended pattern caused by scattering of the living specimen [1], [2]. 
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Recently, a different  approach has been demonstrated and shows promising results.  It 

consists of  recording the scattered light and then use an advance inversion scheme to reconstruct  

the fluorescence structure. The research group of Claudio Vinegoni in Boston, MA have been able 

to  reconstruct  green  fluorescent  protein  (GFP)  from  a  developing  pupa  by  applying  Fermi 

simplification of the Fokker-Planck solution of photon transport theory, which operates in a highly 

forward-scattering regime [3]. They succeeded to follow the morphogenesis of a pupa's wings in-

vivo for six consecutive hours in three-dimension. In the study published in Nature Methods, they 

emphasize  on  the  practical  difficulties  encountered  by  imaging  opaque  structures  such  as  a 

developing Drosophila melanogaster. The prowess here is the penetration depth achieved, up to a 

few millimetres, associated with the ability to perform measurements on a living organism for a few 

hours.  Nonetheless,  this  method called mesoscopic  fluorescence tomography (MFT)  is  the still 

trading resolution for penetration depth [4].

An optical techniques offering higher resolutions (e.g. <5 µm) such as Born normalized 

Optical Projection Tomography (OPT) encounter difficulties associated with photon scattering within 

the tissue. In addition, the method requires having the sample made optically transparent through a 

chemical clearing process By doing so, scattering and absorption from the specimen are highly 

reduced, therefore making the diffuse light negligible [5],[6]. However, chemical treatment applied 

prevent any imaging in living organisms. Its major advantage is the possibility to track molecular  

contrast agents, which makes it a promising tool in combination with in-vivo imaging techniques.

 Other non-optical methods have to be cited as alternatives for the imaging of in-vivo small  

animals and insects such as fruit flies. To this end, Magnetic resonance imaging (MRI) best known 

for anatomical imaging in clinical applications, has made tremendous progress towards microscopic 

imaging [7], [8].  Resolution of 100 µm in all dimensions is now routinely attained in living animals, 

and now 10 µm3 is feasible in fixed specimens[9]. Likewise, microscopic CT imaging that depends 

on spatial differences in absorption of X-rays can also image the interior of small vertebrates and 

insects [10], [11]. Although studies with these two techniques have demonstrated key achievements 

bolstering their potential value, several limitations remain. Both techniques suffer from the necessity 

to use contrast agents which often lack flexibility or specificity (i.e. non-targetable) to monitor a 

particular organ growth or gene expression. 

As far as the drosophila model is concerned, MRI appear to have taken a step ahead. A 

research group in Stanford have recently been able to reconstruct the inside of a living pupa and of 

an adult fly with high-field MRI of 18.8 Tesla [12]. This approach is potentially appealing to image 

larger embryo specimens such as mouse embryos or other vertebrates since the penetration depth 

achieves several centimetres in depth. However, the technique suffers a number of downsides. 

Although the magnet strength is strongly increased, the spatial resolution achieved is still in the 

region of 30 to 40 µm, a value not sufficient to identify and differentiate structures at the cellular-

level during embryogenesis or morphogenesis.

In addition, the equipment cost of high field magnets or CT scanners dedicated to small  

animals can be rebutting for most laboratories, particularly if no specific staining can be visualized. 

Yet recent combinations of CT or MRI with PET or SPECT can now track specific contrast agents  
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over time. Such alternatives remain far from being applied to small-animal development imaging, 

mainly for cost and resolution limitations.

 Drosophila melanogaster model  

The fruit  fly is  one of  the most  studied eukaryote organism and a model  of  choice  in  

genetics and medicine. Genes in Drosophila melanogaster are surprisingly and fortuitously very 

similar to humans. Closely related genes working in highly conserved regulatory networks are used 

to extrapolate findings for other species and humans in particular. Current knowledge about the 

molecular pathways of animal and human development comes from studies of model systems such 

as the fruit fly. 

It is also a powerful model organism for developmental biologists. Larval development or 

embryogenesis has been extensively studied.  However little  is know about the development of 

organs  taking  place  during  metamorphosis  (i.e.  pupal  stage).  This  phase  of  development  is 

particularly poor in visual data and void of any in-vivo imaging of the dynamic mechanisms taking 

place  underneath  the  cuticle  –the  brown  protective  outer  covering  surrounding  the  larva.  The 

different  phases  of  development  are  summarized  in  figure  V.1 showing  the  two  phases  of 

metamorphosis: prepual and pupal stage.

Once  inside  the  pupal  case,  the  larvae  undergo  dramatic  changes  in  its  body  plan 

organization. This process takes about 96 to 100 hours to complete (i.e. approximately 4 days).  

Juvenile larval tissue disintegrates and are replaced through a rapid proliferation and differentiation 

of the cells that lead to the adult structure. 
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Figure  V.1:  Drosophila  melanogaster  life  cycle.  The  pupa  and  
prepupa phases are the focus of this study. Adapted from [25]. 
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The adult fly emerges mainly from clusters of cells called imaginal discs. Contained within 

the body of the larva, there are pairs of apparently undifferentiated nests of cells that will form, for 

instance, the legs or antennae or other structures in the adult fly [13]. Thus, within any larva, there 

are two distinct populations of cells: the larval cells, which are used for the functions of the juvenile 

insect, and the thousands of imaginal cells, which lie in clusters, awaiting the signal to differentiate. 

There are 9 pairs of these, placed on either side of the larva body as shown on figure V.2.

Figure V.2: The locations and developmental fates of the imaginal discs in Drosophila  
melanogaster. After[26] ,[23] 

Imaginal discs are shaped like flattened balloons and will extend and differentiate during 

metamorphosis. For example, the eyes and antennae develop from one pair of discs, the wings part 

of the thorax from another, the same holds true for the first pair of legs, and so on [14–16]. The 

dynamic  processes taking place inside the pupa is  the subject  of  the current  study –from the 

prepupal stage up to eclosion.

In  brief,  the  transformation  of  the  larval  cuticle  into  a  puparium  marks  the  onset  of 

metamorphosis. The puparium is initially soft and whitish yellow but very soon hardens, turning tan 

and eventually forms a protective yet brittle case.
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V.2 Material and method 

 Instrument  

A description of the full-field compact OCT system has been detailed in previous chapters.  

In brief, a white-light low-coherence halogen lamp illumination source is fibred to a beam splitter 

(interferometric principle of OCT). At one end, a silicon crystal mirror is cadenced by a piezoelectric  

stage  actuator  (reference  arm)  and the sample being imaged at  the other  end.    A standard 

microscope objective (10X/0.3 numerical aperture, UMPLAN FLN, Olympus) is mounted on both 

extremities.  A high-speed CMOS camera is  synchronized with the piezoelectric  oscillations and 

records the interference pattern at each pixel.

For this particular experiment, the objectives were immersed in silicon oil. The difference in 

refractive index between oil (n=1.40) and water does not induce significant spherical aberrations on 

the image output with our full-field OCT system. It must be noted that silicon oil is the immersion 

medium in both arms which also limits the consequence of the index mismatch. 

 Image acquisition  

Series of 100 optical sections distant by 1 μm (z-axis) were acquired with a field of view 

800×800 µm² at 16-bit colour depth. For each image, a smooth blurring and summation of 2 to 5 

consecutive z-stack was applied. Stack of images were stored as TIFF files but JPEG format are  

presented (85% compression). 

During the 4 days of recording (i.e. 96 h), an illumination timer was automatically activated every 6 

hours  for  a  duration  of  45  minutes  to  avoid  dehydration of  the insect.  The  number  of  image 

accumulation was set to 250 images for each section of 100 µm z-stacks. With a camera frequency 

of 130Hz, one field of view of 800×800 µm² takes around 4 seconds per image and the overall  

acquisition time took approximately 7 minutes. 

A depth-related index correction was applied by assuming a refractive index of 1.55 for the chitin 

[17–19]. As derivative of glucose, chitin is one of the main component of the larval cuticle with 

proteins [20], [21].

 Pupa preparation  

Pupa strains were a mutant W118 with white eyes phenotype. An early pupa (prepual stage 

P0/P1), still white-yellowish (end of larval phase) was selected for the experiment. The pupa was 

delicately placed onto a glass slide (size adapted to the sample holder) within a drop of olive oil. A 

thin foil of olive oil has been shown to improve the signal to noise ratio as it matches the refractive 

index of the silicone window. Olive oil is also a crucial aid to allow respiration and maintain the 

insect alive during the entire metamorphosis. The pupa and the glass slide were then placed into 

the sample holder and maintained slightly compressed by the piston. Such manipulation allows to 
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be as close as possible from the pupa's cuticle and to slightly flatten the ovoid shape of the pupa in 

order to maintain an adequate signal up to 80—100 µm in depth.

Nonetheless, since our study focuses on pupal development over an extensive period of 

time (i.e. 96h), it is imperative to keep the pupal case intact throughout the measurements. As 

mentioned by Vinegoni et al. with mesoscopic imaging, even a minor resection significantly alter the 

mechanical strength of  the pupa, resulting in loss of  internal fluids,  change of  shape, size and 

eventually leading to a death of the insect. Another crucial factor was to maintain the environment at 

a relative high humidity. It was done so via the use of olive oil and by constant aeration through air  

holes present all around the sample holder. Although a tungsten halogen lamp is relatively harmless 

(2 mW/mm²), the heat generated can still cause an environment not supported by the insect and 

was therefore only activated every 6 hours.

 Major steps of the pupal phase  

An outline synopsis of the 15 key pupal stages used in this work are summarized in figure 

V.3 with a selection of 6 characteristic photographs (figure V.4).
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Figure V.3: The 15 stages of pupation (prepupal and pupal phase). P1 starts approximately four days after  
the larval cycle and is characterized by a still white larva yet no longer able to crawl. Timing is variable  
among individuals, and hours given are a simplification from the reference paper of Bainbridge et al.  and  
adapted from [21].
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Figure V.4: photographs of different stages of pupation [24] 

Stage 
Time 
(hours) Developmental event

P1 0–1 White puparium: wriggling stops completely

P2 1–3 
Brown puparium: oral armature stops moving permanently, heart stops pumping, gas bubble 
becomes visible within abdomen

P3 3–6.5 

Bubble prepupa: puparium becomes separated from underlying epidermis; bubble in 
abdominal region is large, causing prepupa to become positively buoyant at end of this stage 
(it floats)

P4 6.5–12.5 

Buoyant and moving bubble: prepupa is buoyant, and bubble moves, first appearing in the 
posterior of the puparium, displacing pupa anteriorly, and then appearing in the anterior, 
displacing the pupa posteriorly. Imaginal head sac is everted and oral armature of larva is 
expelled

P5 12.5–25 
Malpighian tubules migrating and white: legs and wings extend; Malpighian tubules move 
from thorax to abdomen and become visible as white structures in dorsal anterior abdomen

P6 25–43 
Green Malpighian tubules: Malpighian tubules turn green, and dark green “yellow body” 
appears between the anterior ends of the two Malpighian tubules

P7 43–47 

“Yellow body”: “yellow body” (actually dark green) moves back between the Malpighian 
tubules; transparent pupal cuticle separates from underlying epidermis; eye cup becomes 
yellow at its perimeter

P8 47–57 Yellow-eyed: eyes become bright yellow
P9 57–69 Amber: eyes darken to deep amber
P10 69–73 Red-eye Bald: eyes become bright red; orbital and ocellar bristles and vibrissae darken
P11 73–78 Head and thoracic bristles: head bristles, followed by thoracic bristles, darken
P12 73–78 Wings grey: wings become gray; sex comb darkens
P13 78–87 Wings black: wings become black; tarsal bristles darken and claws become black

p 14 87–90 
Mature bristles: green patch (the meconium–waste products of pupal metabolism) appears 
dorsally at posterior tip of abdomen

P15 90–103 
Meconium and eclosion: tergites become tan, obscuring Malpighian tubules and “yellow 
body”; legs twitch; flies able to walk prematurely if puparium removed; eclosion completed



Advances in biology:  in-vivo imaging of Drosophila melanogaster

V.3 Results 

A series of 3-D stacks of images has been recorded at high resolution and a sample of the 

results  is  presented.  It  should  be  underlined  that  three-dimensional  data  are  obviously  more 

adapted to a video mode to appreciate the dynamics of the changes taking place. Nonetheless the 

development of the pupa can still be tracked by following organs' growth in each individual images. 

Figure V.5 shows a picture of the pupa at the start of the experiment while still at prepupal stage 

(P0/P1) before turning darker for the following 96 hours of metamorphosis.

Figure  V.6 highlights  four  critical  stages  of  pupa  metamorphosis.  The  ovoid  shapes 

corresponds to undifferentiated nests of cells -the imaginal discs- in preparation of future organs. 

Those organs distinctly appear towards the end of pupation before eclosion as adult fruit fly.
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Figure V.7 exhibits the same four stages of development at three different depths (25, 40 

and 65 µm) for  each phase. The display starts  from the early pupa at  the top left  to the fully 

developed insect at the bottom right. 
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As mean of  comparison, a sample of  traditional photographs taken from the outside of 

pupae at different stages of development are shown in figure V.8.
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Figure V.7: 72 hours development: from early pupa at the top row (P0/P1), 24 h, 48 h  
and the fully developed pupa at the bottom-72 hours later (P11/P12).  Different depth  
from the same hour of development are displayed vertically for the respective depths of:  
27, 44 and 62µm.
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Figure  V.8: examples of six stages from the pupal phase. Images taken after dissection of the puparium.  
From [24]

Imaginal discs present at the early stage of metamorphosis are undifferentiated nests of  

cells that will ultimately become a portion of the outside of the adult insect (e.g. legs, antennae, 

eyes, etc...). Two of these pairs are shown on figure V.7.

Figure  V.9: Prepupa at 2 h (P1 stage) showing the imaginal discs (i.e. the undifferentiated nests of  
cells) responsible for the formation of a particular organ (e.g. legs, antenna, eyes, etc...).
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Figure V.9 provides a series of images extracted from 10 to 50 µm in depth with an interval 

of  2 µm between each individual image. The list of images is taken at the median phase of the  

pupal development at the P8/P9 stage or approximately at 54 hours after the end of larval stage. 

Figure V.10 shows a focus at approximately 25 µm in depth. 

A  3-Dimensional  profile  allows  to  differentiate  the  relative  position  of  each  organs  in 

formation. For example, the head positioned underneath the eye bulbs, which are placed under the 

oral armature in the puparium. 

 Adult fruit fly   

Figure  V.11 shows an adult fruit fly performed ex-vivo conditions. In this case, the insect 

was anaesthetized in ice and the  head segment was imaged into an echographic gel. The image 

shows a sum of 30 z-stacks taken slightly from the top of the adult fly with its proboscis pointing 

towards the back (i.e. the mouthpiece of Drosophila melanogaster).
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Figure V.11: Frontal view of a cutaway fly head by summation of 30 FFOCT z-stack images. It shows the  
main elements  of  the visual,  sensory and olfactory systems: a) eyes  with the hundreds of  unit  eyes  or  
ommatidia; b) antenna pairs and c) the proboscis, the fly elongated mouthpiece.  1,024 × 1,024 pixels at  
16-bit color depth. 

V.4 Discussion 

The conditions of  the experiment were particularly challenging and notably the intricate 

balance for maintaining the fly alive during the four days of measurement. The combination of a thin 
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layer of olive oil and an appropriate pressure were the key factors to maintain the insect growth and 

stable during the four  days of  measurements.  In comparison,  ultrasonic  gel  turns into a highly 

scattering white jelly after several hours of exposition to air. In addition, a precise control of the 

lightning was crucial to avoid any overexposure to light and heat. Although the beam projects only 2 

mW/mm2  of light power intensity (i.e. approximately equivalent to sunlight), a prolonged exposure 

lead to a complete dehydration of the insect. 

The circadian cycle of the fly was not particularly monitored yet this parameter seemed not 

to interfere with the experiment. In several insect species, adult eclosion commonly occurs during a 

narrow  window  of  time,  generally  around  dawn  when  environmental  humidity  is  as  its  peak. 

However, studies have shown contradicting results regarding the correlation between periodicity of 

the environment (day or night)  and/or the periodicity of  eclosion rhythm  [22].  In this study, full 

development  was  achieved  and  monitored  throughout  the  median  duration  metamorphosis.  In 

addition,  image  interpretation  can  be  subject  to  errors  since  no  other  studies  has  shown  the 

development of fruit flies organs underneath the surface with this resolution. 

Nonetheless,  the role of  full-field  OCT is  not  likely to supersede traditional microscopy 

techniques  (e.g.  confocal  microscopy  or  two-photons  microscopy),  but  to  serve  as  potential 

complement.  Microscopy  techniques  remain  inadequate  to  monitor  the  evolution  of  a  living 

drosophila in 3-D with a micron-scale resolution. Recent studies with high-field MRI (i.e. 18.8 T)  

show great progress for imaging the entire specimen [12],however the resolution remains 20 times 

lower  than  FFOCT  (~20  µm).  Regarding  applications  of  3-D  in-vivo  FFOCT for  drosophila,  a 

potential area of interest would be the analysis of altered phenotypes in mutant flies. A variety of  

mutant genotypes could be monitored during metamorphosis for example drosophila models of 

muscular dystrophy or particular anatomical areas such as the eye-antenna imaginal discs.

V.5 Conclusion

This study marks progress toward the development of  a potential novel  in-vivo imaging 

technique for developmental biology. FFOCT as a non-destructive optical method offer the ability to 

image the organ formation of a living organism at a depth of 80 -100 µm with an isotropic resolution 

of 1 µm. This method could allow to overcome the limitations of traditional microscopy techniques 

such as laser damage or postmortem slice reconstruction in the imaging of specific organs of small 

animals.
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Chapter VI. Infrared Full-Field OCT and 

penetration depth improvement

As presented in preceding chapters,  OCT and FFOCT imaging for biological tissues is 

highly dependent upon scattering events. A general  trend for the scattering coefficient,  µ s is to 

decrease with increasing wavelength. Therefore, a longer wavelength would potentially be more 

advantageous for deeper imaging. 

However,  there  are  two  limitations  to  consider  for  the  evaluation  of  imaging  depth  in 

biological tissues. The first one is the FFOCT setup detection sensitivity limit. The minimum signal 

detectable determines the maximum probing depth. The second and more crucial limit is the depth 

threshold at which contrast and image resolution degrade to a point were no useful information is 

provided. Such degradation has been hypothesized to result  from multiple scattered light.   For  

standard OCT that operates with a low numerical aperture beam (typically 10 times smaller than 

FFOCT), contrast loss due to deeper imaging should not be affected by the loss of focusing ability 

as it  is the case with FFOCT or confocal microscopy, mostly using medium or large numerical 

apertures.  In this work, the wavelength dependence of the scattering component was evaluated by 

comparison of penetration depth at lower wavelength ranges. This is detailed in the second part of  

the chapter while the first part presents the experimental system and its performance.

As with the other experimental work in this thesis, the contribution of several persons must 

be appropriately acknowledged in advance. In particular, Osnath Assayag, post-doctoral fellow and 

Sylvie Nadolny whose collaboration on the infrared setup made possible the results presented here. 

Florian Poisson, a graduate student at ESPCI Paristech who carried out several measurements 

shown in this chapter. Contributions from Fabrice Harms and Franck Martins from LLTech has also 

been crucial regarding machinery improvements and immersion medium properties. As far as the 

software and technical aspects are concerned, Charles Brossolet has been instrumental in all the 

related issues of this work. 
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VI.1 InGaAs FFOCT setup

VI.1.1 Background and objectives

As stated previously, two objectives were sought:  first  to improve the imaging depth in 

biological tissues and secondly to evaluate the variation in scattering level with regards to depth. 

The second objective will be discussed in the last part of this chapter.

For traditional OCT, longer wavelength systems operating in the 1050 nm and 1300 nm 

spectral bands were introduced soon after the first generation of systems operating in the visible 

range. Initially, the 700-850 nm range was particularly adapted to retinal examination since any 

larger wavelengths would have been restricted by the water dominant fluid-filled gap between the 

cornea and the retina. Above the 1100 nm wavelength the penetration restriction is imposed by the 

steep increase in the optical absorption of liquid water [1], [2]. With the first investigation of epithelial 

tissues  (e.g.  skin,  oral  mucosa,  etc...),  an  improved  penetration  depth  was  demonstrated  by 

Brezinski et al. in 1996. In the early experiment, a 1300 nm wavelength was employed on ex-vivo 

vascular tissues (i.e. atherosclerotic plaques). 

In  order  to  extend  the  capabilities  of  the  full-field  OCT  technique  and  to  improve  the 

penetration  depth  without  a  loss  in  resolution,  an  infrared  InGaAs  FFOCT  system  has  been 

developed for this purpose. As detailed in the introduction, imaging depth can be improved by using 

a detector optimized for a particular wavelength range. A general trend in biological tissues is a  

decrease in scattering coefficient with increasing wavelength. Therefore, a longer wavelength is 

potentially more advantageous for deeper imaging. 

For  FFOCT  systems,  the  camera  detection  sensitivity  range  is  the  limiting  factor  and 

therefore  silicone-based  (Si)  cameras  are  more  commonly  used  to  probe  the  600-1000  nm 

wavelength region. Whereas for longer wavelengths (>1000 nm) Si cameras are advantageously 

replaced by Indium Gallium Arsenide (InGaAs) chips with a detection range in the 900-1700 nm 

band as shown in this work. Performance results presented here have been carried out in silicone 

oil  immersion  instead  of  liquid  water.  This  type  of  configuration,  according  to  the  authors 

knowledge, has not been used in the past.

VI.1.2 Material and method 
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 Infrared system  

An indium gallium arsenide detector camera (InGaAs) has been used since its spectral quantum 

efficiency in the near-infrared ranges from 0.9 µm to 1.7 µm. As previously described, in FFOCT a 

low coherent light source illumination is used and therefore the effective spectrum output is limited 

by camera sensitivity response and the transmission of the optics. A coated infrared beamsplitter 

was used but microscope objectives were not optimized for this particular wavelength range (see 

discussion  section).  The  InGaAs  camera  (Xeva-1.7-640c,  Xenic,  Leuven,  Belgium)  has  been 

mounted onto a full-field OCT configuration as shown on figure VI.1. 

The InGaAs camera full-well  capacity or the largest charge that the camera can hold per pixel  

before saturation is approximately 3 million e- with and a frame rate of 25 Hz. Since silicone-based 

reflectors are transparent in the infrared, a Germanium rod was used instead for the reference arm. 

Its  refractive  index  at  1100nm  wavelength  is  n=  4.4  giving  a  reflectivity  ratio  of  27%.  This 

configuration is noted as “IR” or infrared configuration in the text.
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 Si camera system.  

This system configuration has been detailed in the previous chapter, here a fibre-bundle halogen 

light source has been used instead (Schott KL 1500).  Measurements in the visible range were 

performed  with  a  CMOS detector  array (complementary metal  oxide  semiconductor  –  Photon 

Focus, MV-D1024E-160). The camera full well capacity (FWC) is around 0.2 million e -. As far as 

speed considerations are concerned,  the 15x lower full  well  capacity compared to  the InGaAs 

camera is compensated by a frame rate of 150 Hz (6x higher).   The effective spectrum of the 

system has been measured to peak at 710 nm with a bandwidth of approximately 125 nm.  The 

reference mirror is a silicon wafer (n=3.42); within silicone oil immersion medium, a reflectivity  

of  17.5% has been measured.  This  configuration  is  noted  as “visible”  system in  the  text. 

Similar objectives (10x, 0.3NA, Olympus) were used in both configurations. 

VI.1.3 Performance comparison

Measurements were performed at two distinct spectrum range: around 700 nm (visible) and 

1100-1200 nm (near-infrared range or NIR) and by replacing the water-based immersion medium 

(echographic  gel)  by silicone oil  (n=1.40-1.41).  As previously discussed,  this  change has been 

dictated by practical considerations (dehydration, increase stability,...) but also appeared to increase 

the spectral bandwidth and the penetration depth, particularly in the near-IR range. The absorption 

spectrum of water is indeed a major limiting factor when imaging at higher wavelengths. The light 

beam has to cross over a 5 mm-thick layer of water, twice the objective working distance adjusted 

to  n',  the  refractive  index  of  the  biological  specimen  (e.g.  n'=1.37-1.40),  and  this  cannot  be 

neglected. Figure VI.2 shows the lower number of fringes when measurements are performed in oil 

immersion for the near-infrared setup (InGaAs) in comparison to water immersion.
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One can see the increased number of fringes with water immersion medium despite a thin 

layer of water (1 mm overall) compared to 6.6 mm in the case of silicone oil (2×3.3 mm). Silicone oil 

refractive  index  is  about  1.41 which  limits  its  usage to  medium  numerical  aperture  objectives 

(typically NA <0.35). Nonetheless it allows a quasi full transmission from 0.9 µm up to 1.6 μm (or 

6250 cm-1) except for two absorption bands as shown on figure I.3.
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Silicone-oil immersion medium can thus be used as an alternative immersion liquid for both 

visible (Si camera) and near-infrared systems (InGaAs). 

Figure VI.4 shows the effective spectrum deduced from inverse Fourier transform out of the 

interferograms for both the Si system in the visible range and the InGaAs setup with silicone oil 

immersion medium. The wings in the InGaAs effective spectrum are due to the dips from silicone oil 

absorption, in particular near 1200 nm.
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figure  VI.3: Silicone oil transmission spectrum measured in a 1cm-thick cuvette. Note the two  
major dips near 1200 nm and 1400 nm wavelengths. Under experimental conditions, those two  
absorption dips are almost halved since only ~0.5 cm of silicone-oil is passed through – the  
frontal distance of the objective in water is 3.5 mm and 3.7 mm in silicone-oil, thus the beam path  
is about 5.4 mm or 0.54 cm (by subtracting the double pathlength of1 mm for the microscopic  
glass slide).
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In comparison to a configuration with silicone-oil in the visible range (i.e. CMOS camera), 

the spectral bandwidth achieved by the InGaAs setup is significantly larger (i.e. ~ 600 nm vs. 150-

200 nm) as seen on figure VI.5. For this bandwidth, the theoretical axial resolution is approximately 

similar  in  both  configuration  (around  1  µm).  However,  the  gain  lies  in  the  effective  spectrum 

achieved with silicone-oil immersion and therefore a gain in penetration depth. The high absorption 

of water above 1100 nm is thus drastically reduced by the oil immersion medium in both arms,  

allowing to fully benefit  from the near-infrared part  of  the polychromatic  light  source.  Recently, 

Dubois’s group compared two similar FFOCT configurations (both silicon and InGaAs cameras) but 

within a water immersion medium showing the limitations of the water spectrum in the near-infrared 

range [5]. 

Thus, by replacing the immersion medium with silicone oil, results obtained in this study 

suggest that this approach takes full advantage of the possibilities offered by the infrared spectral  

response of the InGaAs camera. 

VI.2 Penetration  depth  assessment  in  biological 
tissues.

VI.2.1 Background

Biological  tissues are characterized by scatterers randomly distributed over the volume of 

interest  or focal plane – under the condition of alignment with the coherence plane. As wavelength 

increases the damping of ballistic photons intensity in a scattering media decreases linearly in OCT 

[6], [7]. Within biological tissues, the mean free path of photons varies as λ4 in the case of Rayleigh 

scattering (particle size much smaller than the wavelength)  to  λn (with n<4)  in Mie scattering 

regime (particles larger than the wavelength).

In  comparison  to  confocal  microscopy,  the  penetration  depth  achieved  with  an 

interferometric technique such as FFOCT should in theory be improved. With a dual confocal and 

high-resolution OCT system (often referred as OCM for optical coherence microscopy), Aguirre et 

al. found that the confocal response alone degrades deep in tissue leading to loss of resolution [8]. 

This loss of resolution appears to be caused by a decreased ability to focus in tissue as confirmed 

by the widening confocal  response profile.  As the confocal  signal would be the integral  of  the 

response profile over all  depths, it  confirms the hypothesis that the ratio of  light detected from 

outside the focal plane to light returning from the focal plane increases and that signal to noise ratio  

limit is reached. 

In contrast, the FFOCT approach used with the algorithm developed allows to maintain a 

constant focus with increased penetration into the tissue, by dynamic adjustment of the coherent 
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plane (see chapter on FFOCT instrument). However,  contrast in FFOCT (and OCT) also degrades 

with depth. 

The most probable hypothesis for this result is an increasing amount of multiple scattered 

light and not geometrical aberrations from the focus plane. These results are confirmed in this work 

for measurements performed within the 700-800 nm range (visible range) while the infrared part of  

the spectrum appears significantly less disrupted by multiple scattering events.

VI.2.2 Material and method

 FFOCT system  

Three different full-field OCT systems have been employed. Two systems in the visible 

range, with high-pass filters at 600 and 650 nm and the infrared system centred around 1200 nm. 

Each configuration was described earlier in this chapter.  Measurements were performed under 

similar conditions by averaging 50 “en-face” scans from the same biological sample area.

 Specimen properties  

In the near-infrared spectrum, absorption by freshly excised breast tissues is mainly caused 

by oxy-  and  deoxy-  haemoglobin,  water  and  lipids.  Figure  VI.6 shows  a  modelled  absorption 

spectrum for a water concentration of 70% and 30% of fat content. In fixed tissues, these are the  

two  most  absorbing  chromophores  which  greatly  influence  the  effective  spectrum  output  (in 

particular above 1100 nm).

Figure VI.6: Absorption spectrum of a typical breast tissue obtained by calculating the  
absorption spectra of the contributing chromophores. A water concentration of 70%, a  
fat concentration of 30% and oxy-and deoxy-haemoglobin concentrations of 20µM and  
10µM respectively. From (Eker, 1999).
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VI.2.3 Results

 Images comparison  

Figures  VI.7 and  VI.8 show a  cross  section  comparison  for  the  breast  fibroadenoma8 

sample obtained in each wavelength ranges.

figure  VI.8: Same sample cross-sectional view imaged with the infrared configuration (InGaAs camera).  
Image depth : 300µm.

A qualitative assessment confirms the expected increase in penetration depth in the near-

infrared range (InGaAs camera) in comparison to the Si-camera based configurations.

 OCT     signal attenuation and penetration depth  

8 benign lesion (noncancerous) characterized by fibrous and glandular tissue forming a lump.
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As expected a significant increase in photons' mean free path is observed with the InGaAs 

configuration as shown on figure  VI.9. The linear attenuation measure shows an approximately 

three-fold  increase  in  penetration  depth  for  the  infrared  system  (red  curve)  in  comparison  to 

systems in the visible (blue and green curves). By replicating this measurement, a similar increase 

in penetration depth is observed with at least  a factor two gain. For this particular tissue  (i.e.  

fibroadenoma), the multiple scattering shown by the divergence from the linear signal attenuation 

[7], is quasi absent from the infrared curve up to 250 µm in depth while it already occurs at around 

70 µm for  the two systems in the visible range.  From this  result,  a power law expressing the 

wavelength dependence can be extracted. The broadness of both spectra require the use of each 

central spectrum resulting in a power law dependence of λ2  (2 order of magnitude) typical of Mie 

scattering regime.

VI.2.4 Discussion 

The  second  part  of  this  study  aimed  at assessing  the  penetration  depth  with  an  oil 

immersion medium and to evaluate the scattering components of the signal as a function of depth. 

As expected, results tend to show an increased penetration depth with the infrared configuration 

(InGaAs camera) compared to the two systems in the visible range (silicon cameras).  However, 
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Figure VI.9: signal attenuation comparison relative to the spectral response of different detectors measured  
with fixed human breast tissue (fibroadenoma lesion). Divergence from the exponential attenuation indicates  
a multiple scattering regime according to the model demonstrated by Thrane [7].
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this can lead to an overestimate of the usable depth since resolution and contrast are critical factors 

in this assessment. In traditional OCT, imaging depth is usually perceived based on the sensitivity 

limit  in  which  the signal  falls  to  the noise floor.  For  the configuration in  the visible  range,  the 

transition to the multiple scattering regime appears before the noise floor and therefore limits the 

depth at which ballistic, single scattering light can be probed. For the infrared setup, those results 

suggest a lesser proportion of multiple scattering and a predominance of ballistic photons detected 

with an almost factor 3 increase.  While measurements among the three systems have not been 

adjusted to the relative full-well capacity and frame rate difference, the increased full-well capacity 

of the InGaAs camera is compensated by a higher frame rate for the Si-cameras. Furthermore,  

such difference does not influence the overall  shape of  the linear  fit  and therefore no specific 

adjustment was implemented.

Some technical conditions could be improved to fully benefit from the infrared spectrum.  

For example, the microscope objectives used in the experiment (10×, 0.3 NA, Olympus) were not 

optimized for the 1200 nm wavelength region. The transmission drops from 81% at 800 nm to 59% 

at 1200 nm.  In addition, optical aberrations are corrected for visible light range, image contrast and 

resolution are therefore not optimal for higher wavelengths. 

Finally, a major downside remains the cost of the gallium arsenide detector chip (InGaAs) 

compared to silicon-based detectors  (e.g. CCD or CMOS sensors). An InGaAs camera, as the one 

used in this work, costs around 30,000 USD (approximately 25,000 EUR), five to ten-fold higher 

than silicon-based cameras. 

VI.3 Conclusion

This study has been conducted to test the performance of an InGaAs camera optimized for 

imaging in the infrared region (900 – 1700 nm) and mounted onto a full-field OCT setup. This work  

confirms  the  increase  in  penetration  depth  achieved  into  biological  tissues  in  comparison  to 

traditional  FFOCT  imaging  usually  performed  in  the  visible  range.  Measurements  showed  a 

minimum of  a factor  two increase in penetration depth with the near-infrared configuration and 

reduced multiple scattering effects. In addition, the replacement of water as immersion medium by 

silicone oil significantly lowers the absorption above the wavelength threshold of 1000–1100 nm. 

This allows to take full advantage of the near-infrared part of the polychromatic light source.  
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General Conclusion

This thesis reports a combination of ex-vivo clinical studies, in-vivo biological imaging, and 

technological  developments  of  a  full-field  OCT  system.  Overall,  these  studies  demonstrated 

unprecedented image quality and resolution. 

A major part of this work was to adapt a laboratory instrument to the clinical setting (from 

“bench to bedside”) by enabling a dialogue between clinicians, engineers and researchers. The 

initial study on ex-vivo breast lesions assessed the capability of FFOCT to image large areas (up to  

1 cm²) and to accurately read for presence of relevant features of malignancy compared to the gold  

standard of histology. The biopsy study explored the feasibility of a compact prototype under clinical 

routine and time limitations. Both results highlighted the capacity to reveal tumour margin based on 

specific criteria such as loss of organized structures, change in shapes and scattering intensity 

variations. It also revealed the limitations of the technology. Despite an isotropic resolution close to 

1.5 µm, important features for histopathologists were not visible such as individual nuclei usually 

revealed by staining. In addition, the learning process of image interpretation was underestimated 

though the first prospective and blinded study showed encouraging results for the accuracy of the 

technique.

A second aspect of this work was the improvement of the technique through new contrasts 

methods.  To  address  the limitation of  a  weak  endogenous cellular  contrast,  attenuation maps 

based on the scattering properties of a tissue would be an appealing idea but results suggest the 

opposite. The accuracy of attenuation coefficients is highly undermined by the heterogeneity of a 

biological tissue when examined at the micron-scale level. The difference of attenuation between 

normal, benign or malignant lesions appeared highly unreliable, although in part,  this may have 

been due to the limited number of samples investigated.  These results, although negative, should 

perhaps have  been published to  help  future  work  to  explore  this  more  fully.  This  would  have 

required a stronger statistical significance against the hypothesis that attenuation maps could be a 

relevant diagnostic criteria for tumour assessment. This is unfortunately a frequent bias [1–3]. As 

far  as  the  second  methodology  is  concerned,  optical  elastography  holds  greater  prospects. 

However,  individual  cancerous  cells  and  their  biomechanical  properties  need to  be more  fully 

understood in order  to extract  valuable diagnostic  information.  Micron-scale resolution provides 
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both advantages and limitations compared to ultrasound or MRI elastography which can assess 

larger areas. At the cellular-level, malignant cells have highly heterogeneous viscoelastic properties 

that need to be taken into consideration.

A third aspect of this work was to improve the performance of the FFOCT system. This was 

done by implementing a new camera operating in the near-infrared range (900–1600 nm).  The 

immersion medium was also replaced by silicone oil instead of water-based gel. This setup was 

shown to take full advantage of the large spectrum of the polychromatic light source by increasing 

the penetration depth by a minimum of a factor two. This gain was in accordance with diffusion  

models and showed a power law dependence of λ2  (2 order of magnitude) typical of Mie scattering 

regime.

Finally, the in-vivo imaging capability of the technique was demonstrated during the four-

days  of  metamorphosis  of  a  Drosophila  melanogaster.  FFOCT  was  able  to  image  the  organ 

formation of a living organism at a depth of 80–100 µm with a micron-scale isotropic resolution. As 

a  non-destructive  optical  method,  the  instrument  overcomes  the  limitations  of  traditional  high-

resolution  microscopy techniques  which  require  either  post-mortem  slice  reconstruction  or  can 

induce laser damage if performed in-vivo. This study marks progress toward potential applications 

in developmental biology.

 Future perspectives  

For  now,  FFOCT  in  its  current  configuration,  presents  a  higher  potential  for  research 

purposes. As shown in this work, research applications could include the in-vivo tracking of organ 

formations in small-animals. A variety of mutant phenotypes could be monitored during embryonic 

development or metamorphosis as demonstrated with Drosophila melanogaster. The aim would be 

to gain an in-vivo understanding of the dynamic processes taking place at the anatomical level of an 

organ. Smaller cluster of cells offering high inherent contrast (e.g. collagen filaments, chitin-protein 

matrix,...) could also be potential targets of in-vivo 3-D imaging.

Another potential area to explore include bio-banking applications from human biopsies. It 

could allow a swift  triage of  specimen collected without the need for  time-consuming histology 

process or chemical staining. In general, the conservation of tissues in bio-banks seeks to avoid the 

destructive process of tissue staining and paraffin embedding for subsequent genetic exploration. 

Similarly, some tiny fragments extracted from fine-needle biopsies cannot risk the chemical staining 

process for conservation and further analysis.

Concerning a traditional clinical  application, including tumour margin assessment during 

surgery or the replacement of frozen-sections analysis; additional specificity and sensitivity studies 

are needed. Despite the research interest that a new tool could provide or the high expectations 

hold by its promoters, objective criteria appear critical to measure a potential diagnostic utility. One 

such criteria could include the time required to enter a double-blinded study or to measure the 

sensitivity and specificity of the technology in comparison to the gold standard (e.g. histopathologic 
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diagnosis).  Preliminary results detailed here are encouraging, but only repeated and concordant 

results by different research groups can ultimately lead to a wider adoption. 

As of to date (early 2012), the commercial and clinical success of the parent technique,  

OCT, has only been achieved in the medical field of ophthalmology. This success is primarily due to 

the unique possibility offered by OCT to visualise the back of the eye in-vivo. For turbid media, the 

tremendous  challenge  encountered  over  the  past  10  years  to  provide  a  pertinent  diagnostic 

information to clinicians should raise concern about the current trend in OCT and FFOCT. In other 

words, is this trend technology-driven or problem-driven? In ophthalmology, the medical community 

needed a tool able to quantitatively measure the retinal nerve thickness, an information not provided 

by any other techniques. 

Contrary to ex-vivo image acquisition, in-vivo probes or endoscopic approaches are clearly 

problem-driven improvements, since no 3-D information is available with confocal microscopy or 

with  camera-based techniques.  Naturally,  the parent  technique,  OCT tend to shift  its  research 

priorities towards this goal. In that context, FFOCT could provide a remarkable advantage thanks to 

its high resolution and larger scanning surface. Innovative approaches have recently been tested at 

the laboratory with a rigid endoscopic probe  [4].  Similarly, a dual fluorescence-FFOCT system is 

also under investigation and could prove an ideal instrument for research applications.

In  definitive,  for  non-transparent  biological  tissues,  it  is  essentially in  the  context  of  a 

problem-driven approach that research in FFOCT could provide a real medical advance. For now, 

applications for small animal imaging and in developmental biology hold greater prospects.
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Cette annexe constitue un résumé des principaux résultats de ces travaux de thèse. Il en 

demeure néanmoins volontairement à un niveau essentiellement déductif car le lecteur intéressé 

par plus de détails est invité à se reporter au chapitre correspondant du manuscrit.

 Contexte et problématique  

La tomographie par cohérence optique ou OCT (pour Optical Coherence Tomography) est 

devenue en moins d'une quinzaine d'années une technique incontournable pour le diagnostic des 

pathologies de la rétine. Le succès médical et commercial obtenu pour un tissu transparent comme 

le globe oculaire s'est naturellement accompagné du même espoir pour les tissus diffusants, et ce 

dès  les  premiers  pas  de  l'OCT  dans  les  années  90  [1–5].  Dès  lors,  l'OCT  a  connu  une 

effervescence  exponentielle,  et  n'a  cessé  de  voir  de  nouvelles  approches  et  variantes  se 

développer.  La  technique  d'OCT plein-champ  issue  du  laboratoire  d'optique  de  l'ESPCI9 et 

développée depuis une dizaine d'années s'inscrit dans ce contexte avec pour but d'apporter une 

9 Pour École Supérieure de Physique et Chimie de Paris.

111



Annexe: Résumé en Français

information diagnostique pertinente: un véritable défi pluridisciplinaire pour opticiens, ingénieurs et 

médecins.

Au  cours  de  ces  travaux  de  thèse  nous  avons  ainsi  cherché  à  nous  affranchir  des 

mécanismes physiques qui limitent la qualité des images comme la diffusion des tissus, à optimiser 

les dispositifs existants, à en  développer de nouveaux et en améliorer les performances à partir de 

données obtenues en conditions opératoires. Ces travaux ont contribué à initier la phase clinique 

de la tomographie par cohérence optique plein champ (FFOCT) et à la situer avec plus de précision 

dans le contexte de l'imagerie biomédicale.

 Principes et État de l'art en OCT dans les milieux biologiques  

Le premier chapitre situe les deux techniques  d'OCT (conventionnel et plein-champ) par 

rapport aux méthodes d'imagerie médicales existantes, entre d'une part l'imagerie à ultrasons et la 

microscopie confocale à haute résolution. L'OCT peut être comparé à une échographie optique, or 

pour s'affranchir de la limite mécanique imposée par la vitesse de la lumière, le faisceau incident 

est  séparé  en  deux,  au  moyen  d'un  montage  reproduisant  un  interféromètre  de  Michelson. 

L'information utile est ainsi fournie en modulant la différence de marche entre le bras de référence 

et le bras objet. Cette méthode d'acquisition est communément appelé Time-Domain OCT (TD-

OCT) du fait du balayage temporel du miroir référence. Une variante permet d'éviter ce balayage 

mécanique en se plaçant dans l'espace de Fourrier conjugué par une mesure parallèle du signal 

interférométrique.  En effet,  les différences d'indices sont  déjà incluses dans les fréquences du 

spectre  du  signal  d’interférence,  on  parle  alors  de   Spectral  ou  Fourrier-Domain  OCT  dont 

l'avantage principal est le gain en temps lors de l’acquisition [6–8].

Dû fait de la faible résolution de l'OCT traditionnel (2–15 µm),  une tendance actuelle est le 

retour  aux méthodes d'OCT à haute résolution (OCM ou Optical  Coherence Microscopy, OCT 

"plein-champ")  [9–13].   Pour les applications biomédicales, il s'agit essentiellement de montages 

endoscopiques ou par sondes  [14–24], d'avancées en Doppler-OCT [25–27] ou bien encore les 

tentatives de couplage acousto-optiques  [28],  [29],  et d'amélioration du contraste au moyen de 

nanoparticules magnétiques [30–33], ou par élastographie optique [34–38]. 

Nous décrivons  ensuite  les outils  nécessaire  à la  compréhension de l'interaction de la 

lumière avec les tissus biologiques, en fonction de la taille des structures rencontrées. Dans un 

milieu biologique, les photons sont principalement atténués par la diffusion, µ s. L'autre composante, 

l'absorption,  µa ne  contribue  que  pour  une  fraction  de  l'atténuation  du  faisceau  incident  mais 

augmente  fortement  avec  la  longueur  d'onde,  du  fait  notamment  des  bandes d'absorption  du 

spectre de l'eau, constituant principal des tissus biologiques.
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 Dispositifs d'OCT «     plein-champ     »  

Contrairement à l'OCT classique, l'approche plein-champ évite tout balayage mécanique du 

faisceau par une acquisition parallèle de l'image au moyen d'un détecteur de type caméra CCD ou 

CMOS10. De plus, une simple lampe halogène à filament de tungstène est utilisée comme source 

d'illumination, un avantage notable par rapport aux systèmes lasers complexes et coûteux souvent 

utilisés en OCT traditionnel.

Une  autre  particularité  est  que  deux  objectifs  sont  montés  sur  chaque  bras  de 

l'interféromètre afin d'améliorer la résolution latérale du dispositif, qui dépend ainsi directement de 

l'ouverture  numérique  et  de  la  longueur  d'onde  employée.  Et  contrairement  à  la  microscopie 

confocale, où la résolution axiale est dictée par l'ouverture numérique des objectifs, ici la résolution 

en profondeur est  essentiellement  déterminée par  la  largeur du spectre  effectif  et  la  longueur 

d'onde centrale de la source lumineuse. L'image finale correspond en chaque voxel à une tranche 

de  virtuelle  résultant  des  interférences  des  photons  balistiques  ou  mono-diffusés,  volume 

inversement  proportionnel  à  la  la  largeur  du  spectre  de  la  source,  à  une  demi-longueur  de 

cohérence près.  Une lumière polychromatique dite  faiblement cohérente, permet par  exemple 

d'extraire une tranche virtuelle,  Δz de l'ordre du micron pour un spectre effectif centré autour de 

700-800 nm et une largeur de bande d'environ 125-150 nm. Il faut souligner que le spectre effectif  

est essentiellement limité par la réponse spectrale de la caméra CCD ou CMOS en Silicium (pour 

des capteurs en Arséniure de Gallium et d'Indium, voir dispositif infrarouge plus bas).

Le second chapitre détaille ainsi le dispositif d'OCT "plein-champ" utilisé au cours de ces 

travaux et inclus les ajustements techniques apportés afin d'aboutir à un système robuste pour une 

utilisation en routine clinique sous différentes contraintes,  notamment de temps et  de praticité. 

Cette  phase a surtout  été menée en collaboration avec l'équipe de LLTech, start-up issue du 

laboratoire, dont le plein démarrage a eu lieu en même temps que cette thèse. Une part notable de 

la conduite du projet de recherche a ainsi consisté à établir un dialogue entre cliniciens, ingénieurs 

et chercheurs, sans oublier les décideurs. L'aspect technique s'avère parfois être le plus simple à 

résoudre si les attentes de chaque interlocuteur coïncident. Il a donc fallu cadrer les attentes des 

cliniciens, participer aux réunions internes et éclairer sur les pistes à fort potentiel, ou au contraire 

moins  réalistes.  Cet  aspect  central  du  projet  de  recherche  doctoral  a  contribué  en  partie  à 

l'amélioration de l'interface utilisateur du logiciel de contrôle, à fournir des idées pour la conception 

d'un porte-échantillon adapté à une routine clinique, ou bien encore à la réalisation d'un projet de 

recherche innovant en biologie du développement (application non envisagée en début de thèse) et 

détaillé  plus  bas.  Finalement,  une  innovation simple  mais  critique  au  prototype  clinique  fut  le 

remplacement du gel échographique par une huile de synthèse (silicone) offrant une plus grande 

résistance à l'évaporation tout en maintenant un indice proche de celui des lames de silices (n = 

1.40–1.41);  le mérite revient à l'équipe de LLTech. 

10CMOS pour Complementary Metal–Oxide–Semiconductor et CCD pour Charge-Coupled Device.
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Le chapitre 6 présente un nouveau dispositif expérimental développé en vue d'améliorer la 

profondeur de pénétration et d'étudier l’influence de la gamme spectrale du proche infrarouge dans 

des  milieux  biologiques  fortement  diffusants.  L'objectif  étant  de  tirer  pleinement  avantage  du 

spectre effectif de la lampe halogène en élargissant la réponse spectrale par le remplacement d'un 

capteur caméra non plus en Silicium mais en Arséniure d'Indium et de Gallium (InGaAs). 

Le spectre effectif obtenu atteint une largeur de bande, Δλ de 600 nm centrée au voisinage 

de 1225 nm, et permet ainsi, au minimum un doublement de la profondeur de pénétration dans les 

tissus par rapport aux dispositifs opérants dans le visible comme le montrent les figures 2,3 et 4.
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Ce gain en profondeur de pénétration, d'au minimum un facteur deux, est en accord avec 

les modèles de diffusion et met en évidence une diffusion caractéristique du régime de Mie pour  

des tissus biologiques. Le coût de la caméra InGaAs demeure néanmoins une limitation majeure 

pour une utilisation clinique et commerciale. 

Étant donné la maturité de la technique sur le plan de l'instrumentation, l'enjeu du projet de 

recherche s'est porté sur la phase d'application clinique et l'évaluation d'outils quantitatifs innovants.

 E  tudes cliniques sur lésions mammaires et biopsies  

Deux études collaboratives ont été menées au cours de ces travaux,  l'une réalisée en 

laboratoire sur tissus frais et fixés et la seconde en conditions de routine clinique. Les résultats 

présentés se concentrent essentiellement sur les lésions de tissus mammaires et une analyse de 

biopsies rénales (voir figure  5 et 6).  

L'objectif initial était d'établir une grille d'analyse diagnostique  des images OCT à partir de 

lames  histologiques  du  même échantillon.  Le  second objectif  visait  à  évaluer  la  faisabilité  du 

dispositif  en véritables conditions de routine clinique. Un protocole de préparation et de fixation 

des tissus a ainsi été établi et validé.  
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De  même,  une  première  grille  d'analyse  des  images  OCT  a  pu  être  constituée  en 

collaboration avec les anatomopathologistes de l'institut Curie et de l'hôpital Tenon à Paris. Les 

résultats ont mis en évidence la capacité du système à scanner une large surface d'environ 1 cm2 

au moyen d'un algorithme optimisé pour l'assemblage des images.

Les résultats des deux études ont permis de révéler les zones tumorales selon des critères 

tels que la forme et l'architecture interne du tissu ou les variations d'intensité de diffusion. De plus, 
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Figure  6: Images OCT plein-champ d'une biopsie d'adénome rénal (a,d,e,f) et images histologiques  
correspondantes  (lésion  bénigne).  Les  structures  de  formes  ovoide  (t)  sont  des  sections  de  tubes  
proximaux et distaux en section transversale. Seule l'image FFOCT (f) représente une coupe axiale sur  
une profondeur de 150 µm. Les tubes rénaux sont visibles jusqu'à une profondeur d'environ 80-100 µm.  
Les  glomérules  (g)  visibles  en  coupe  histologiques  ne  sont  pas  présents  sur  les  sections  
tomographiques.  Les  bandes  noires  sont  dues  à  l'algorithme  d'assemblage  (stiching)  des  vignettes  
individuelles. Barres d'échelles: 250 µm (a,b) et 70 µm (c,d,e,f).
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le dispositif s'est avéré fiable et adapté à une acquisition d'image en moins de 20 minutes (délai 

total  entre  le  prélèvement  et  l'affichage  final  à  l'écran).  Délais  comparables  à  l'examen  en 

extemporanée (ou « frozen-section»)11 pratiqué par certains centres dans les cas notamment de 

lésions opérables du sein.   

Toutefois plusieurs limitations subsistent comme par exemple un contraste structurel faible 

en dépit des inhomogénéités multiples des tissus biologiques, limitant ainsi la distinction précise 

entre  tissu  sain,  bénin  ou  malin.  Néanmoins,  ces  travaux  ont abouti  à  la  première  étude 

multicentrique en OCT plein champ. Après une phase d'apprentissage, où images OCT et coupes 

histologiques correspondantes sont passées en série, la phase "en aveugle" a abouti à des taux 

moyens de sensibilité (lésion maligne véritablement présente) de 93.5% et à une spécificité de 

75.5% (lésion maligne véritablement absente). 

 Pistes d'amélioration du contraste endogène  

Le  quatrième  chapitre  explore  deux  voies  possibles  d'amélioration  du  contraste,  l'une 

basée  sur  le  contraste  d'atténuation  et  l'autre  à  partir  des  propriétés  d'élasticité  du  tissu. 

L'hypothèse se fonde sur le principe qu'un tissu tumoral ou fibreux doit plus fortement atténuer le  

faisceau de photons reçu qu'un tissu sain. En théorie, l'idée semble attrayante et quelques résultats 

encourageants apparaissent dans la littérature en OCT traditionnel [39–44]. Toutefois, les résultats 

obtenus dans notre étude, et répliqués par un autre chercheur, tendent à indiquer le contraire en 

OCT plein-champ. 

La méthode employée se base sur la loi de Beer-Lambert de décroissance exponentielle de 

l'intensité  du  flux  lumineux  rétrodiffusé  par  l'échantillon.  Or,  la  différence  de  coefficients 

d’atténuation entre tissus sain, bénin et tumoral s'avère ne pas fournir un critère quantitatif fiable. 

Par  exemple,  les  écarts  types  de  plusieurs  catégories  de  tissus  ou  de  lésions  se  recouvrent 

fréquemment, limitant de ce fait toute tentative de cartographie d'une pathologie spécifique. Un des 

facteur mis en évidence dans cette étude est la très forte hétérogénéité du tissu à l'échelle de 

quelque microns de profondeur comme le montre la figure 7.

11 procédé qui permet une mise en lame en moins de 30 minutes en cours d'opération chirurgical  et qui 
conditionne l'attitude thérapeutique immédiate pendant l'anesthésie du patient. 
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Des structures différentes en terme de coefficient d’atténuation apparaissent en l'espace de 

quelques microns. Cette situation pourrait s'assimiler aux cas de "volume partiel" que l'on rencontre 

pour d'autres techniques d'imagerie telles que l'IRM ou le Scanner X et qui peuvent induire en 

erreur  lors  du  diagnostic.  Pour  une  obtenir  une  carte  d'atténuation,  cela  nécessite  une 

automatisation des mesures, or comme le montre la figure  7, les coefficients de diffusions des 

structures  épithéliales  sont  très  différentes  du tissu  de soutien faussant  ainsi  la  précision  des 

mesures. Une solution qui pourrait être envisagée serait l'application d'algorithmes de segmentation 

afin de différencier l'interface entre deux tissus au micron près, cette option risque toutefois d'être 

confrontée aux contraintes de temps d'une utilisation clinique. Cette étude semble ainsi indiquer 

que la haute résolution axiale fournit par l'OCT plein champ peut apparaître en pratique comme  un 

avantage  limitant  au  détriment  de  l'OCT  classique  offrant  une  plus  grande  profondeur  de 

pénétration et donc une mesure moins bruitée par des variations de l'ordre du micromètre. Une 

limite de cette étude reste néanmoins la taille réduite de l'échantillonnage qui peut diminuer la 

fiabilité statistique des résultats. 

Le second contraste intrinsèque examiné apparaît plus prometteur, même s'il s'agit que 

d'une première étude de faisabilité. La méthodologie se base quant à elle sur l'hypothèse d'une 

différence de dureté ou d'élasticité entre tissus sains et malins [45–49]. L'objectif est de transposer 

à l'optique la méthode d'élastographie utilisée avec succès en ultrasons et  cela à  l'échelle du 

micron. Une plate-forme spécifique a été conçue afin de pouvoir appliquer différentes déformations 

aux tissus imagés et ainsi mesurer une élastographie statique après retour à l'état transitoire. Une 

cartographie des déplacements induits pour chaque structure interne a pu ainsi être obtenue. Les 

premiers résultats s'avèrent prometteurs et un nouveau projet de recherche doctoral a pris le relais 

pour approfondir cette piste. L'objectif est notamment d'évoluer vers une méthodologie dynamique 
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Figure 7: Lésion mammaire à 10 et 25 µm en profondeur images a) and b) respectivement.  
Plusieurs structures épithéliales et canaux hyperplasiés apparaissent en l'espace de 15 µm.
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ou élastographie  transitoire  en  appliquant  une  source  vibratoire  continue. Plusieurs  limites  ont 

toutefois  été  clairement  identifiées  lors  de ces  travaux.  Les  tissus  biologiques  présentent  une 

combinaison  de  composants  élastiques  et  visqueux  qui  nécessitent  une  cartographie  3D  des 

déformations et non de simples carte 2D comme dans la présente étude. De même, une meilleure 

compréhension  des  propriétés  visco-élastiques  des  cellules  cancéreuses  individuelles  s'avère 

nécessaire  en  vue  d'une  application  clinique.  A  l'échelle  du  micron,  de  nombreuses  cellules 

présentent  des  propriétés  bioméchaniques  inattendues,  telles  qu'une  viscoelasticité 

considérablement réduite qui pourrait s'expliquer par la nécessité d'infiltrer le tissu de soutien et se 

répandre vers le système circulatoire [50], [51].

Quant aux méthodes de corrélations employées, ces travaux ont révélé la complexité du 

choix de la fenêtre d'interrogation pour les mesures de variance. Une fenêtre trop large fausse les 

corrélations et inversement. Ce critère pourrait être lié au paramètre précédent, à savoir, le type de 

cellules  cancéreuses  observées  et  fonction  affine  de  la déformation  appliquée.  Comparé  aux 

méthodes d'élastographie par ultrasons ou IRM sur des zones de plusieurs centimètres, à l'échelle 

cellulaire,  nous avons montré  que de nouvelles contraintes apparaissent  qui  nécessitent  d'être 

prises en compte.

 Avancées en biologie     : imagerie in-vivo du cycle d'une métamorphose  

Finalement, nous avons réalisé une application unique à l'OCT plein champ : le suivi de 

l'organogenèse de la Drosophila melanogaster et ceci sur l'ensemble des 100h de métamorphose. 

Les techniques comparables sont soient limitées par la résolution spatiale (IRM du petit animal à 

haut champ) ou soit par la complexité de maintenir l'insecte vivant sur une telle durée. L'approche  

traditionnelle requiert de ce fait la fixation en résine de l'insecte à chaque étape du développement,  

procédure particulièrement astreignante [52–54]. 

Afin d'aboutir à une imagerie in-vivo de l'insecte, plusieurs facteurs déterminants ont pu 

être identifiés, tels que la préparation de l'animal au moyen d'une fine couche d'huile d'olive ou bien 

encore  la  pression  du  porte-échantillon  pour  maintenir  une  aération  adéquate.  De  même,  un 

contrôle précis de l'illumination a permis d'éviter toute déshydratation pendant les 4 jours de la 

métamorphose. Les résultats ont ainsi pu mettre en évidence l'évolution au cours du temps des 

disques imaginaux de la pupe (fin de stade larvaire) jusqu'à la formation finale de la mouche adulte 

avant  son  éclosion.  La  figure  8 montre  cette  évolution  sur  une  période  de  72h  pour  trois 

profondeurs différentes. 
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Une  application  potentielle  serait  le  suivi  de  phénotypes  mutants  afin  d'évaluer,  par 

exemple, l'organogenèse de modèles de dégénérescence musculaire ou de mutations du système 
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Figure  8:  Evolution sur 72h de la formation d'organes d'une drosophile melanogaster à trois  
profondeurs différentes (en colonne). Jeune pupe en fin de phase larvaire (haut) jusqu'à la pupe  
quasi  adulte  avant  éclosion  (bas).  On  distingue  la  différentiation  des  disques  imaginaux  en  
organes complètement développés. La partie supérieure montre l'évolution du disque oeil-antenne  
(visible  à  62µm),  et  la  partie  inférieure  correspond   aux  disques  imaginaux  des  membres  
inférieurs.
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optique chez la  Drosophile melanogaster.  Toutefois,  la profondeur de pénétration reste  limitée 

(environ 100-150 µm) et cela sur les deux dispositifs (visible et proche infrarouge) excluant tout 

imagerie du système nerveux (situé au-dessous du système optique). De plus, un suivi par agents 

de contraste en fluorescence serait un développement essentiel pour une adoption plus large de la  

technique en vue d'une application de routine en biologie. A ce titre, un projet de recherche doctoral 

étudie actuellement la possibilité de combiner imagerie de fluorescence et OCT plein-champ.

Ce manuscrit présente ainsi l'essentiel des projets de recherche menés au cours de cette 

thèse et visant à améliorer les performances diagnostiques de l'OCT plein champ en vue d'une 

application  clinique.  L'apport  de ces  travaux  est  d'avoir  à  la  fois  fourni  de  nouveaux champs 

d'applications mais aussi d'avoir développé et mis en évidence la validité ou non des améliorations 

proposées.
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