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Sujet de la thèse :
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Acronyms

2DEG Two-dimensional electron gas
AC Alternative current
AFM Atomic force microscope
CNT Carbon nanotube
CPW Coplanar waveguide
CVD Chemical vapour deposition
DC Direct current
EM Electromagnetic
IF Intermediate frequency
IPA Isopropanol
LO Local oscillator
MIBK Methyl-iso-butyl ketone
PMMA Poly methyl methacrylate
QD Quantum dot
QED Quantum electrodynamics
CQED Cavity quantum electrodynamics
cQED circuit quantum electrodynamics
RF Radio frequency
SEM Scanning electron microscope
SWNT Single wall carbon nanotube
TLS Two-level system

Notations

k or kB Boltzmann constant. Usually written k unless confusion is
possible with an index

g or λ Electron-photon coupling
Vg Gate voltage
Vsd Source-drain or bias voltage
VAC High frequency voltage, associated to the resonator voltage





Introduction

In the last years, two particular fields of mesoscopic physics have been developed and

studied independently. These are circuit quantum electrodynamics (cQED) and quan-

tum dots (QD) devices. The former is a solid state implementation of cavity quantum

electrodynamics (CQED) which studies the light matter interaction at its most elemen-

tary level, down to single atom and photon [1]. The dipole interaction between the

atom and the photon field induces entanglement between the two systems. This entan-

gled state, which constitutes one of the most intriguing aspect of quantum mechanics,

is in principle controllable by adjustment of either the atom or photon field properties.

Increase of the coupling strength between the two involved systems is achieved by con-

fining the photon field inside a high finesse cavity, leading to the so-called Cavity QED

(CQED). A scheme of such optical CQED experiment [2] is presented in figure 1.'

&
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gωge κ

γ ttransit
Figure 1: Scheme of an optical CQED experiment. An optical field single mode is
formed inside a laser driven cavity with damping rate κ. Atoms fall inside the cavity
during a transit time ttransit and interacts with the cavity mode with a coupling

strength g. The excited state of the atomic system has a decay rate γ.

A laser drives an optical cavity while atoms are sent into the cavity. The atom, which

can be seen as a two-level system (TLS) is coupled to the cavity photon field by a cou-

pling strength g. The presence of the atom in the cavity induces a modification of the

electromagnetic (EM) mode. This change is monitored via the field transmitted out of

the cavity. In this situation, the state of the atom is determined by the modifications of

3
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the optical field. It can also be performed the other way round, as detecting the state

of the outgoing atom can give information on the photon state inside the cavity[3].

Recently, CQED experiments have found a new playground with on-chip electrical cir-

cuits, leading to circuit QED (cQED) [4]. The optical 3D cavity and atom are respec-

tively replaced by coplanar waveguide (CPW) resonator in the microwave range (∼GHz)

and superconducting circuits behaving as artificial atoms as depicted in figure 2. The

pioneer work in this field has been performed at Yale in 2004 [5] and has opened a new

field of investigation in condensed matter and mesoscopic physics. The generated keen

interest of cQED comes from the relatively small size of the resonator (of the order of

1cm) and the possibility to scale up the devices with many artificial atoms. These sys-

tems allow to play with the most uncanny aspects of quantum mechanics [6, 7], but also

offer a practical way to perform quantum computing [4, 8, 9]. Today, this architecture

is seen as one of the most promising to produce the highly desired quantum computer.'

&

$

%

Figure 2: Scheme of a cQED device. The superconducting coplanar waveguide
resonator is represented in blue. It consists of a transmission line cut at two ends
which creates the confined mode of the EM field (in pink), in regard with the ground
plane. A superconducting circuit behaving as an artificial atom is placed in the gap
of the resonator, at an anti-node of the electric field. The typical characteristic
length of such device are labelled on the structure. The equivalent lumped element

description of the device is depicted as well. This figure is taken from [4].

The objective of this thesis is to replace the superconducting circuit behaving as artifi-

cial TLS by a QD device, in a cQED architecture. QD studies started in the late 80’s

[10, 11], and have undergone a vivid development thanks to progress in nanofabrication

techniques. They are made of confined electronic islands where strong electronic inter-

actions occur, and as such, can be seen as complex artificial atoms. Contrarily to atoms,

the properties of QD’s discrete spectrum are tunable in-situ via external parameters ap-

plied by local electrodes. By monitoring the current passing through such structures, one

can have access to the spectroscopy and microscopic aspect of this complex electronic

system. Such studies have been extensively carried out since the mid 90’s, primarily
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in two-dimension electronic gases (2DEG) [12]. Different new host materials have been

developed, such as carbon nanotubes (CNT) [13] or single molecules like C60 fullerenes

[14]. The strong electronic interactions of QD systems gives rise to an intrinsic wealth

of behaviour that explains the wide success that they have met since their first studies.'
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Figure 3: Scheme of a CQED experiment with QD devices inside the cavity. The
quantum dot is represented by its intrinsic discrete energy levels (in green) coupled
to source and drain electrodes (in orange) by tunnel barriers. Current can passe
through the QD when a finite bias voltage is applied between the source and drain
electrodes. Similarly, the electronic levels energies can be adjusted by tuning the
potential of a gate electrode. The transmitted EM field of the cavity is affected both

in amplitude and phase by the state of the QD.

Interestingly, most studies have focused on the DC behaviour of QD devices. The merge

of such systems with cQED architectures, as depicted in figure 3, would give a tool to

probe the strong electronic interactions at higher frequencies. In particular, the quan-

tum capacitance of the quantum dot, which is not accessible by conventional transport

measurement, is directly read out via the dispersive shift of the cavity. The applications

of such hybrid device mixing cQED with QD are twofold. On the one hand, it offers

a new device to perform quantum computation (CNT based spin qbit coupled to mi-

crowave cavity for example [15]). On the other hand it offers a playground to simulate

on-chip condensed matter situations where electronic degrees of freedom are coupled to

a bosonic bath. In both cases, the cavity can play the role of a quantum bus to couple

distant QDs.

In this thesis, the material that has been chosen to make QD is the single wall car-

bon nanotube (SWNT). The versatility of SWNT QD devices makes them particularly

good candidates for leading to both quantum computation and purely condensed mat-

ter experiments. Indeed, these devices allow to easily reach the three transport regimes

available in QDs : Fabry-Perot [16], Coulomb blockade [17, 18] and Kondo [19]. Fur-

thermore, different kind of electrodes can be used to form hybrid devices, extending the

range of applications of SWNT QDs. For example, they can be contacted with supercon-

ducting electrodes to create Cooper pair splitters [20, 21], with ferromagnetic electrodes

for spintronic purposes [22–24] or for making spin qbits [15]. It should be noted that
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simultaneously to the work that is presented in this manuscript, other groups have

been working on similar hybrid device architecture, with 2DEG QDs [25, 26], with InAs

nanowire [27], or with lumped element resonator and SWNT double QD [28]. This shows

the growing interest for such hybrid devices in the mesoscopic community.

The implementation of SWNT QD inside superconducting coplanar resonator meets

major nanofabrication challenges. First of all, superconductivity, especially at finite fre-

quency, and SWNT growth by CVD are rather incompatible. Furthermore, compared

to cQED with superconducting circuits that are fully designed by lithography, SWNT

processes require a lot of post selection. However, this last point is compensated by the

much smaller size of SWNT QD (∼ 1µm) compared to standard superconducting qbits

like transmon (∼ 100µm [29]). This allows a priori for contacting more QDs in a single

cavity.'
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Figure 4: a : photograph of a CPW resonator in Nb/Pt or Al. b : optical
micrograph close up in false colors of the ground plane openings where the SWNT
QDs are contacted. The superconductor is in blue and the dielectric in green. c :
SEM micrograph in false colors of the contacted QD with source, drain and gate
electrodes. The blue represent the superconductor (transmission line and ground
plane), the yellow is for the Pd electrodes, the SWNT is in red and the dielectric in

green.

The samples made in this thesis all share the same typical pattern shown in figure 4. The

centimetric superconducting CPW resonator is presented in figure 4 (a). It consists of a

meander transmission line facing a ground plane. The left and right pads consist of the

RF pads that connect the resonator to the external drive and read-out lines. 4 sets of 3

DC lines with their contacting pads are also visible, allowing to connect and measure up

to 4 QDs inside one single cavity. These QD devices lie in the 5 µm gap of the resonator,

as shown in figure 4 (c). SWNT are grown by chemical vapour deposition. Post selected

tubes (considering their orientation relative to the transmission line as well as their

thickness) are contacted in the standard 3 electrodes geometry : source, drain and gate

electrodes, similarly to single electron transistors [30, 31]. Here the contacting metal is
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palladium (Pd), which is a normal metal offering good contact to the SWNT. It is thus

straightforward to make similar samples with different kind of electrodes, ferromagnetic

or superconducting as mentioned above. This constitutes a substantial advantage for

exploring a wide variety of physics situations with only one device pattern.

The experimental results that have been obtained in this thesis concern normal metal

to SWNT hybrid structures, coupled to microwave resonators. The first objective was

to investigate the coupling between the two systems and to probe afterwards with the

microwave field the strong electronic interactions taking place in QDs. The first sample

giving results was generous enough to provide both, as shown in figure 5 [32]. The

DC spectroscopy (differential conductance) of figure 5 (a) exhibits Coulomb diamonds

in the gate voltage VG bias voltage Vsd plane. Kondo effect is also observable, as the

zero bias bright line in the middle of a Coulomb diamond is a clear signature of such a

phenomenon. The rich physics of the Kondo effect in QDs [33] constitutes the epitome of

electronic interactions. Indeed, this effect arises due to many body interactions, and as

such has become a breeding ground for both theoretical developments and experimental

investigations.'
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Figure 5: a : Color scale plot of the differential conductance of the SWNT QD
NTRES33bZ4D in units of 2e2/h in the gate/bias voltages plane. Three Coulomb
diamonds are visible and a Kondo ridge at zero bias is observed in the middle
diamond. b : Color scale plot of the phase of the microwave field transmitted
through the cavity at f = 4.976GHz taken simultaneously with (a). In both plots,
the dashed red line is a cut at zero bias. From the phase signal, the electron-photon

coupling strength is estimated to be g ∼ 100MHz (see details in chapter 4).

Simultaneously to the low frequency measurements, the phase of the RF signal transmit-

ted through the cavity is measured, as showed in figure 5 (b). The RF phase spectroscopy
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strikingly shows the same behaviour as the standard low frequency spectroscopy, indi-

cating that the cavity is well coupled to the QD. One could argue that the phase spec-

troscopy is redundant with the differential conductance as in the RF SET setup [34].

But contrarily to the latter setup where the SET is galvanically coupled to a lumped

element resonator, the SWNT QD here is capacitively coupled to the CPW resonator.

The information acquired in the phase is thus directly related to the QD quantum ca-

pacitance, giving therefore insights on the interactions taking place in the system, at

GHz frequency. It was especially found that the quantum capacitance does not drop on

the Kondo ridge contrarily to what was commonly expected [35].

The coupling g between the cavity and the QD can be estimated from such measure-

ments. However, a more straightforward way to observe and determine g is achieved

by studying the QD levels evolution with the number of photons in the cavity. This

AC-Stark shift-like experiment is presented in figure 6 for a Fabry-Perot QD (a) and a

Coulomb blockaded QD (b). The electronic levels of the QDs split in a funnel shaped

pattern. This indicates a direct coupling of the cavity mode to the QD levels, similarly

to what is observed in standard cQED, even though the microwave power involved here

is much higher [29].'
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Figure 6: Energy level splitting versus power at the input port of the microwave
cavity for a Fabry-Perot QD (a) and a Coulomb blockade QD (b). The color code
is the differential conductance of the measured QD. c and d : Energy level spacing
respectively taken from (a) and (b), plotted versus the square root of the mean
number of photons in the cavity. The linear dependence fit of the data (in red) gives

the coupling parameter g as its slope.
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The spacing ∆E between the split levels behaves as ∆E = 2g
√
n̄ (see figure 6 (c)

and (d)). Therefore, this measurement is a direct read-out of the coupling g, found to

be of about 100MHz for all the devices that have been studied. This measurement is

consistent with the estimations that have been done in the case of the Kondo QD [32].

Furthermore, this rather high value is comparable to the couplings observed in standard

cQED [4]. It indicates that the strong coupling regime is achievable for such devices as

it requires g > [κ, γ], with κ and γ the decoherence rates of the cavity mode and the

“atomic” system (see figure 1). Reaching this regime is necessary to perform coherent

manipulations of the atom-photon coupled system. Therefore, the results obtained in

this thesis pave the way to cQED manipulation of QD devices, especially awaited for

the spin qbits architecture [15]. The experimental setup of this thesis is however not

suitable for reaching the quantum limit for cavity photons, hence coherent manipulation.

Nevertheless, it allows to explore other aspects of this rich architecture.'
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Figure 7: a : Scheme of two separate QDs interacting inside a microwave cavity.
Both QDs are independently tuned and interact with the cavity mode. A distant
interaction between the QDs can be mediated via the cavity photons. b : Optical
micrograph in false colors of a device showing 2 QDs (yellow electrodes) embedded
inside the same CPW superconducting resonator (in blue). The 2 QDs share the

same anti-node of the electric field and are separated by about 80µm.

As shown by the photograph of figure 4 (a), the devices have been designed from the

beginning to host up to 4 QDs. The interaction between multiple controlled electronic

systems in a microwave cavity pushes a step further the applications of such hybrid

devices. It is fundamental for quantum computation perspectives where, among other
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things, several qbits are needed to perform gate operations [36, 37]. It also constitutes

an effective on-chip quantum simulator of condensed matter situations. Figure 7 (a)

presents a scheme depicting a cQED experiment with two QDs. As both QDs are

coupled to the microwave field, they should also interact via cavity photons. The concept

of photons is used for commodity here, like phonons in condensed matter. The field is

indeed classical. Once again, the independent tunability and standard low frequency

measurements of each QD will reveal itself a crucial aspect of the setup to decipher the

mechanisms involved in this coupling at distance.

The experimental realization of 2 QDs cQED device is shown in figure 7 (b). Two SWNT

QDs are embedded inside a superconducting CPW resonator, separated by about 80 µm.

Even tough they share the same anti-node of the electric field, they are separated by

roughly 200 times their own characteristic lengths. It must be emphasized that the two

QDs are made of two different SWNTs, both being contacted independently. As such,

contrarily to double QD devices, they should be considered as independent systems in

the absence of cavity. The most direct and intuitive way to probe the distant interaction

between the two QDs is by independently tuning their respective gates and monitor the

differential conductance of each. Figure 8 (a) shows such a spectroscopy for one of the

two QDs of the device. The electronic levels of this QD exhibit non trivial behaviours

as they encounter crossings and anticrossings when driving the gate of the other QD.

This allows to assess that the interaction between the two QDs is not a direct crosstalk

as every energy level would behave similarly in this case. It can be shown that the

slope of QD2 levels is the signature of the distant interaction between the two QDs,

and more precisely is explained by a polaronic shift. Such a model, taking into account

both the polaronic shift and the levels splitting is presented in figure 8 (b). Most of the

spectroscopic features observed in (a) are reproduced, indicating that the mechanisms

involved are understood.

This general introduction addressed the main ideas and challenges that have been treated

in this thesis. The main results have been presented as well in order to beckon the in-

terested reader to go further into the technical details discussed in the main text. It is

divided in six chapters :

In chapter 1, the two different “tools” used in this thesis are introduced. They consist

of SWNT QDs and microwave CPW resonator. They respectively can be thought of

being an electron box and a photon box. The basic knowledge necessary to understand

the present work are addressed. In particular, the three different electronic transport

regimes observable in SWNT QDs. For the microwave resonator part, the discussion

will focus on the lumped element description as it is essential for latter understanding

of the coupling between the QD and the cavity.
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Figure 8: a : Differential conductance spectroscopy of one of the two QDs em-
bedded inside the microwave cavity. The measurement is performed versus the
independent gate voltages of each QD, Vg1 and Vg2. QD2 levels undergo a slope
versus Vg1 and crossing levels are visible as well. b : Modelling of (a), using the

theoretical model developed in chapter 5.

In chapter 2, a brief theoretical description of the AC response, which probes the quan-

tum capacitance of QDs, is addressed. In the first place, the discussion will focus on

the non-interacting case, corresponding to the Fabry-Perot regime. In this situation,

the Landauer-Büttiker formalism and scattering theory is used. In the second part, the

interacting case of Coulomb blockade is treated. It relies there on the equation of motion

(EOM) of the Green function treatment. Although it allows for treating the Coulomb

blockade regime precisely, it cannot treat the Kondo effect.

In chapter 3, the experimental realization of the experiment is developed. In a first

part, the nanofabrication and clean room processes to make the device are detailed. In

a second part, the measurement setup is described with details.

In chapter 4, the coupling of the QD to the cavity is discussed. The nature and strength

of the coupling will be addressed. The three different transport regimes (Fabry-Perot,

Coulomb blockade and Kondo) are studied. The Kondo situation is particularly inves-

tigated, as the measurement of the quantum capacitance of the QD in this regime is

particularly new.

In chapter 5, the distant interaction between QDs circuits is discussed. The photon me-

diated interaction between the two artificial atoms is several orders of magnitude higher

than what could be expected from direct coupling. The origin of the distant coupling,

relying on polaronic shifts, will be discussed in details.

In chapter 6, preliminary results about quantum capacitance in the out of equilibrium

regime are presented. Although incomplete, these show a peculiar behaviour that needs

further study.





Chapter 1

Electron box and photon box

The purpose of this chapter is to briefly present the basic concepts of both SWNT

electronic transport and CPW resonator properties. These two systems are the two

tools that we will use to probe the physics of electron-photon coupling in stronlgy cor-

related electronic systems. They have been independently extensively studied. Works

on electronic transport through quantum dot (QD) structures started in the mid 90’s

with two-dimensional electronic gases (2DEG) quantum dot [38]. QD devices consist

of model systems to probe mesoscopic physics where quantum effects become dominant

for electronic transport. Thanks to their tunability, these systems are ideally suited to

confront theory and experiments. It is thus relatively easy to test theoretical results with

experiments. Various transport regime can be observed in these systems. Fabry-Perot

(2DEG [39], CNT [16]) where electronic interactions are neglected but correction to

current is due to quantum interferences, Coulomb blockade (2DEG [38], CNT [17, 18])

where electronic interactions dominate transport and Kondo physics (2DEG [40], CNT

[19]) where many-body interactions emerge.

Superconducting CPW resonators have been developed and studied for resonant detec-

tion since the mid 90’s [41]1. However, it is relatively recently that the quantum limit

has been reached. The field of quantum electrodynamics (QED) was boosted by the

possibility to perform quantum computing. Cavity QED (CQED) was first developed

with Rydberg atoms and optical cavities [3]. The need for small and possible scalable

devices lead to the development of circuit QED (cQED) where superconducting two-level

systems (TLS) are embedded in CPW resonator. The first notable step in this way was

done at Yale in 2004 [5] where the strong coupling regime between a single microwave

photon and a TLS was observed. In this thesis, the dispersive read-out technique offered

by such device is used to probe new dynamical aspects of CNT QDs.

1The principle of resonant detection has a wide range of applications in various field, as for atomic
force microscope (AFM) or electron spin resonance (ESR) for example.

13
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1.1 Electronic transport through carbon nanotube quan-

tum dots

Mesoscopic physics was first developed on the study of low dimensionality disordered

medium at low temperature where weak localization occurs for example. Quantum

corrections to classical transport laws become relevant in such systems. Thanks to the

arrival of nanostructures such as 2DEGs or CNTs, a second generation of mesoscopic

systems could be studied which offers the tunability. Classical laws of transport as

Ohm’s law or Drude’s model of a diffusive conductor do not apply. Indeed, at these

scales, the phase coherence of electrons cannot be neglected. This introduces dominant

quantum contribution to the conduction of the device, due to electronic interferences.

1.1.1 Characteristic lengths of CNT QDs

A carbon nanotube is a nanostructure characterized by its diameter and its length. The

former is of the order of one nanometer for a single wall carbon nanotube (SWNT)

which are the nanostructures that we will study in this thesis. The comparison to the

Fermi wavelength of SWNT electrons (λF ∼ 0.74nm for an armchair CNT, see [42])

justifies the one dimensional character of CNTs. The two other relevant lengths are the

mean free path lm and the phase coherence length lφ. As mentioned above, lφ is to be

compared to the length of the nanostructure L to assess its mesoscopic behaviour. It

represents the length over which the electron is coherent and is thus subject to electronic

interferences. Quantum effects are observed when L ≤ lφ at low temperature, which is

easily accessible in CNT as their phase coherence length is of the order of few microns.

The mean free path characterizes the distance between two elastic collisions. These do

not affect the phase coherence, hence the mesoscopic behaviour of the conductor. The

comparison of the mean free path to the length of the conductor gives two kinds of

transport regimes. When lm < L, the conductor is diffusive and when L < lm, it is

ballistic. Diffusive mesoscopic conductors lead to correction of the conductance such

as Aharonov-Bohm ring experiment [43]. For QDs systems, the quantum effects are

dominant as the correction to the conductance is inversely proportional to the number

of conduction channel δG ∝ G0/N . It becomes particularly important in the case of

CNTs that only have 4 conduction channels.

1.1.2 Energy scales

Electronic properties and transport of QD devices result from the interplay between

several energy scales. The confinement of the system gives rise to a discrete particle
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spectrum. For CNT, already confined in two directions, this can be obtained by con-

tacting the CNT with electrical contacts along the 1D direction on a length L < lφ

[17, 18]. The resulting level spacing ∆ is directly given by the interference condition

∆ = hvF /L. This is referred as the orbital energy of the QD in reference to atomic

orbitals. Indeed, this energy quantization gives QDs the behaviour of artificial atoms.

The charging energy EC is the second important energy scale of QDs. It is related to

electronic interactions due to Coulomb interaction and represents the energy cost to

add an electron on the electronic island that is the QD. Geometrical capacitances of the

device characterize the charging energy as EC ∼ e2/C. The third important energy in

these systems is the energy level broadening Γ due to the coupling to the leads. It is

related to the overlapping of electronic bands of the leads and the quantum dot spec-

trum. It is also directly related to the transmission rate Γ/~, thus the transparency of

the tunnel barriers that couple the QD to the leads. The last energy scale involved is

temperature T . The level separation and electronic interactions can only be observed

if kT is lower than ∆ or EC . It is thus remarkable that QD devices allow for such

studies with temperature reachable in the lab. For 2DEG QDs, the energies involved

require dilution fridge temperature range (T ∼20 mK) while for CNT QDs, a simple

4He refrigerator (T ∼ 1.4 - 4.2K) is enough to observe the emergence of the quantum

world.

The interplay between these different energy scales gives rise to a rich set of various

transport regimes [44]. The typical energies that we observe in our CNT QDs are ∆ ∼
5 meV (L ≈ 500 nm, vF ≈ 8.105m.s−1), EC ≤ 10 meV, Γ .1 meV. The temperature is

an extrinsic parameter, which in the case of this thesis is 1.5K, corresponding to kT ≈
130µeV.

1.1.3 From two-level system to complex artificial atoms

cQED was developed for coupling of a TLS to a microwave cavity in order to reproduce

in condensed matter what had already been done in atomic physics and CQED. The

TLS behaviour of the superconducting circuit allows for qbit operations, hence quantum

computation2. QD devices, by the natural quantization of their energy levels, can also

behave as TLS. More importantly, they present a rich spectrum similar to atoms, which

parameters such as interactions, spin degree of freedom [22] or orbital degree of freedom

[46] can be controlled in situ via external parameter like voltage sources or magnetic field.

Therefore, the combination of cQED techniques with the manipulation of these complex

artificial atoms offer the possibility to simulate on-chip the light-matter interaction.

2Superconducting circuit acting as TLS qbit rely on Josephson junctions circuits, like in the flux qbit
[45] or transmon qbit [29]. The TLS behaviour is obtained thanks to the non-linearity of the Josephson
inductance.



Chapter 1. Electron box and photon box 16

1.1.4 Three different transport regimes

In this subsection, the basics concepts of the three different transport regimes that

have been studied in this thesis are addressed. First, two regimes are separated by

the presence or not of electronic interactions. This gives the limit between coherent

transport and Coulomb blockaded transport. The former arises when the transmission

Γ from lead to QD is high and the charging energy EC is much smaller than all other

energies involved in the following sequence EC � kT � Γ . ∆. On the other hand,

Coulomb blockade regime appears when the charging energy becomes dominant over Γ

and kT in the following sequence Γ, kT � EC . ∆. An interesting way of viewing

the separation between the two different regimes is given in [11] : to observe Coulomb

blockade, thus discrete charges on the QD, the quantum fluctuations in the number of

charges due to tunnelling events must be much smaller than one over the time scale

of measurements. This can be translated in the Heisenberg uncertainty relation as

∆E∆t = (e2/C)RtC > h, with, Rtthe tunnel resistance of the barrier related to Γ. To

observe discrete charge, Rt must be much larger than h/e2 =25.8 kΩ in addition to

e2/C � kT .

A valuable property of SWNT QDs is that they offer the possibility to reach these

different regimes. Semiconductor SWNTs push this even further as it is even possible

to observe them in one sample by only varying the gate voltage electrode VG as shown

in figure 1.1. Both Γ and EC are affected by the variation of VG. The wave vector ~k

is modified by the modification of the energy of the QD3. The transmission coefficient

from one medium to another can be written t12 = 2
√
k1k2

k1+k2
, which is directly related to

Γ. The charging energy is also affected by a variation of VG as it modifies the density

of states/number of charges on the dot, hence the capacitance of the electronic island

towards source and drain electrodes. Self consistent calculations ([48–50]) show a gradual

decrease of EC with increasing VG, and an especially sharp dependence near the zero

charge occupancy4. Semiconductor SWNTs present a gap with a really low density of

states, thus a low capacitance in regard of the leads resulting in a high charging energy.

This region is therefore suitable for observing Coulomb blockade regime. On the other

hand, the high density of states available out of the gap leads to a small charging energy

that can be overcome by kT and Γ, thus providing Fabry-Perot physics.

3The dispersion relation at low energy for a SWNT, near dirac points is given by [47] Ek =

±
√

(hvF k)2 +
(
E
g
i

2

)2

, with Egi the energy separation for each sub band.

4Such strong variation of EC has been observed in QDs close to zero charge filling, see e.g. [38].
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Figure 1.1: Semiconductor SWNT QD spectroscopy taken in the lab by T. De-
lattre. Fabry-Perot regime is observed at low gate voltage while Coulomb blockade
regime is observed at higher gate voltage. In between appears a Kondo ridge, sig-

nature of many-body effect in the system.'
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Figure 1.2: Semiconductor SWNT QD current versus gate voltage VG taken at
room temperature T=300K. A gap is observed for VG ≥ 0V. In this region, the

electronic gas of the QD is depleted of charge carriers.

Fabry-Perot regime

The Fabry-Perot regime can be observed when the following hierarchy of energy is es-

tablished in the system

EC � kT � Γ . ∆ (1.1)

which is represented in figure 1.3.

As already mentioned, in this regime, electronic interactions, being the smallest energy

of the system are neglected. The problem reduces to quantum scattering by a coherent

mesoscopic conductor. However, the finite temperature is crucial here to overcome

interactions. In principle, at zero temperature, interactions are always present and can

even dominate the transport in the system, as emphasized by the Kondo effect.
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Figure 1.3: Scheme of the different energy scales involved the Fabry-Perot regime.
Orbitals are separated by the level spacing ∆. The level broadening Γdue to the
coupling of the QD to the leads is much larger than the charging energy and tem-

perature.

Landauer-Büttiker formalism The Landauer-Büttiker approach of electronic trans-

port for mesoscopic conductors is based on a scattering approach. It is particularly well

suited to understand the transport in the Fabry-Perot regime. The transport properties

are related to the scattering properties of the system, which are assumed to be known

from a quantum-mechanical calculation. This methods applies to non-interacting sys-

tems in the stationary regime but it is possible to extend it to interacting systems in

the case of finite frequency study (see [51, 52]). The strength of this theory is that the

system may be either at equilibrium or in a non-equilibrium state, which is encoded via

the Fermi-Dirac distribution of the contacts of the conductor. The trick developed by

Büttiker is to consider the potential created by the island capacitance not as interactions

but as a global constant potential that shift the energy of the QD.

Two reservoirs are connected by a mesoscopic conductor. These two reservoirs, labelled

α = L, R, are large enough so they can be described by degenerated Fermi gases from

their Fermi-Dirac distribution at temperature Tα and chemical potential µα

fα(E) =
1

e
E−µα
kTα + 1

(1.2)

Current through a single scatterer A quantum coherent, perfect, one-dimensional

conductor of infinite length is considered. The density of state for spinless electrons of

velocity v, per unit of length and energy is g(E) = 2/(hv(E)). The number of electrons

passing through the conductor per unit of time and energy is thus g(E)×v(E)/2 = 1/h.

Under voltage polarization V , the resulting current through the system is then
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I = e× 1

h
× (µL − µR) =

e2

h
V (1.3)

The conductance of such system is G = I/V = e2/h = G0 which is the conductance

quantum G0 ≈ 38.7µ S≈ 25.8kΩ−1. The conductance of a quantum wire is thus the

conductance quantum multiplied by the number of conduction channel. For SWNTs,

the spin and valley degeneracies lead to a conductance 4G0.

The presence of a diffusive impurity on the conductor is now considered. The probability

for an electron of energy E to pass through the impurity is D(E). The Pauli exclusion

principle is intrinsically taken into account in the problem via the Fermi distribution of

the reservoirs that enclose the impurity. The probability for an electron from the left

reservoir to pass through the impurity into the right reservoir is D(E)fL(E)(1− fR(E))

and reciprocally for an electron coming from the right. Thus the Landauer formula for

the current through the impurity

I =
e

h

∫ (
D(ε)fL(ε)(1− fR(ε))−D(ε)fR(ε)(1− fL(ε))

)
dε

=
e

h

∫
D(ε)(fL(ε)− fR(ε))dε (1.4)

When taking D(E) = 1, the result for a perfect conductor is recovered. The treatment

of several impurities on the conductor is made easier by using a second quantization

formalism, which is particularly useful for treating many body problems. This is en-

closed in the scattering matrix formalism which offers a useful tool for multiple impurity

problems.'

&
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aL bR

aRbL

Figure 1.4: Two reservoirs L and R coupled by a mesoscopic conductor represented
by its scattering matrix

As shown in figure 1.4, the scattering matrix S links the incoming waves function to

the outgoing waves function (from the conductor point of view). These wave functions

are here represented by creation and annihilation operators of electron with energy E,

a†(E) and a(E) (resp. b†(E) and b(E)) for incoming waves (resp. outgoing). The

relation between all these operators is the following
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(
bL

bR

)
= S

(
aL

aR

)
with S =

(
r t′

t r′

)
(1.5)

In the case of multichannel transport, each creation and annihilation operator is in fact

an array of Nα operators of the same type (considering that there are Nα channel for

reservoir α), and the coefficient of the scattering matrix are block diagonal of dimension

the number of channels. The coefficients r and r’ describe electron reflection back to the

left and right reservoirs, respectively, while the off-diagonal coefficients t and t’ describe

the transmission through the conductor. The unitarity of the S-matrix guarantees the

current conservation. The current operator in lead α can be written within the second

quantification formalism as [53]

Îα(t) =
e

h

∑
n

∫
dEdE′(â†α(E)âα(E′)− b̂†α(E)b̂α(E′))e(E−E′)t/~ (1.6)

The multi terminal case will be studied in more details in chapter 2. Using equation

1.1.4 and some calculation steps (see Appendix ??), the average current writes

〈IL〉 =
e

h

∫
Tr(s†RL(E)sRL(E))(fL(E)− fR(E))dE (1.7)

with sRL the block matrix corresponding to b̂L = sLLâL + sRLâR. The average current

in this situation expressed in terms of transmission coefficient as

〈IL〉 =
e

h

∑
n

∫
Dn(E)(fL(E)− fR(E))dE (1.8)

where the Dn(E) are the eigenvalues of s†RL(E)sRL(E). At zero temperature, the dif-

ferential conductance of the system is thus

Gdiff =
∂〈IL〉
∂V

∣∣∣∣
V=0,T=0

=
e2

h

∑
n

Dn (1.9)

Electronic Fabry-Perot The SWNT QD is geometrically designed to behave as an

electronic cavity. In the non-interacting regime where electrons are well represented

by wave functions, the source and drain contacts can be thought as electronic mirrors.
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These actually must be described as diffusive scatterers with transmission D, which is

encoded in the following scattering matrix

sα =

(√
1−Dαe

iφα −i
√
Dα

−i
√
Dα

√
1−Dαe

−iφα

)
(1.10)

where α represent either the left or right contact and φα is the phase acquired by an

electron during reflection. This matrix is unitary, as required by current conservation

law. For the sake of simplicity, only one channel of conduction is considered. The two

spin channels can be considered degenerate while the orbital channels should be treated

independently. Indeed, defects in the atomic structure of the SWNT generate an finite

coupling between the K and K ′ orbitals which are thus usually non-degenerate [54]. The

SWNT is here described by a purely coherent conductor with no dissipation and only a

propagation term

sSWNT =

(
0 eiδ

eiδ 0

)
(1.11)

where δ is the classical phase acquired during propagation δ = kL = E/(hvF )L. The

calculation relies on the combination of these three scattering matrices. Unfortunately,

this formalism does not allow for direct multiplication of matrices and one must either

transform each matrix in a transfer matrix or simply solve the system. The calculation

details are given in appendix A. The overall transmission coefficient of the system is

found to be

sRL =

√
TLTRe

iδ

1− ei(2δ−φL−φR)
√

(1− TL)(1− TR)
(1.12)

This expression shows a Fabry-Perot like behaviour with an interference condition being

2δ− φL − φR = 2nπ. By developing near a resonance δn = nπ+ (δL + δR)/2 with small

transmissions Tα, the scattering matrix simply rewrites as

sαβ = ei
φα+φβ

2

(
δαβ − i

√
ΓαΓβ

∆E

)
(1.13)

with ∆E = E − En + iΓ/2, E − En = (~vF )/L(φ − φn), Γ = ΓL + ΓR and Γα =

Tα(~vF )/(2L). This simplified S matrix (1.13) is going to be useful for evaluating the

quantum capacitance of the device investigated in this thesis. This will be developed

with more details in chapter 2. The calculation of the transmission coefficient in energy
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D = s†RLsRL has a Lorentzian expression which gives nothing else than the Breit-Wigner

formula. While this development is useful for understanding the behaviour of the system

close to a level resonance, it implies very small transmission of the tunnel barriers. In the

previous discussion about energy scales in the QD and the different transport regime,

it has been pointed out that the Fabry-Perot regime required, to be observed, to have

large tunnelling transmission to overcome interactions in the QD.

With this expression, the differential conductance of the system under gate and bias

voltage can be calculated. The problem is made easier by considering a symmetric

bias with respect to both contact as VL/R = ±V/2. The SWNT chemical potential is

supposed to be at equilibrium with the chemical potentials of the leads, thus remains

unchanged due to symmetric bias. Spin degeneracy is also assumed. In this situation,

equation 1.8 rewrites

〈IL〉 =
2e

h

∑
n

∫
Dn(E + αVG)(fL(E + αVG +

eV

2
)− fR(E + αVG −

eV

2
))dE (1.14)

with α = CG/CΣ the capacitance lever arm of the gate electrode. For T=0, the Fermi

distribution derivative is ∂V fα(E + αVG − eVα) = e∂V (Vα)δ(E + αVG − eVα). The

differential conductance is thus

∂〈I〉
∂V

=
2e2

h

∑
n

1

2
Dn(αVG +

eV

2
) +

1

2
Dn(αVG −

eV

2
) (1.15)

The differential conductance of such a device is shown in figure 1.5. It exhibits the

typical checkerboard pattern of Fabry-Perot interferometer. The orbital spacing of the

QD is directly readable from the spacing between two resonances in bias voltage.

Coulomb blockade regime

When the charging energy becomes dominant in the problem, transport through the

device exhibits charge discretization. The energy hierarchy is now kT, Γ < EC , ∆. In

this regime, transport is governed by the addition energy Ea needed to add or remove

an electron from the electronic island formed by the QD. This addition energy consists

of two contributions which are the charging energy and the orbital spacing Ea = EC +∆

with EC = e2/CΣ and ∆ = (hvF )/(2L).
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Figure 1.5: Colorplot of the differential conductance of a SWNT QD in the Fabry-
Perot regime. The spin and orbital channels are degenerate and the transmission
coefficient of each contact is taken to be Tα = 0.7. The differential conductance is
expressed in unit of 4e2/h, the maximum possible value for four conduction channels.
The energy separation between two resonances in bias voltage directly gives the

orbital spacing of the QD.'
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%Figure 1.6: Scheme of the different energy scales involved the Coulomb blockade
regime.

QD in the Coulomb blockade regime offers a rich experimental and theoretical play-

ground. Indeed, such device acts as a tunable impurity with strong electronic interac-

tions. The total Hamiltonian

H = HD +Hα +Hα
T (1.16)

with the dot Hamiltonian HD

HD =
∑
κ,σ

ξκσd̂
†
κσd̂κσ + Un̂κ,σ(n̂κ,σ − 1) (1.17)
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, the lead α Hamiltonian Hα

Hα =
∑
kα,σ

(εkα,σ − µα)ĉ†kα,σ ĉkα,σ (1.18)

and the tunnelling Hamiltonian from one lead α to the dot Hα
T

Hα
T =

∑
kα,κ,σ

tkα,κ,σd̂
†
κσ ĉkα,σ + t?kα,κ,σ ĉ

†
kα,σ

d̂κσ (1.19)

can be simplified to a single impurity level in the Anderson model [55]

H =
∑
σ

ξdd̂
†
σd̂σ + Un̂d↑n̂d↓ +HL +HR +

∑
kασ

tkα d̂
†
σ ĉkα,σ + h.c (1.20)

The competition between the different energies involved in the problem is adjustable

by varying external parameter such as gate voltage or temperature. Being a simple

model, the Anderson Hamiltonian is before hand a rich model that can account for

many different situations. Each situation requires special care and hypothesis. In the

current chapter, the discussion will focus on the sequential tunnelling regime where

Γ � kT . This situation is useful for understanding the transport mechanism in this

regime as well as the spectroscopic pattern of differential conductance. Chapter two will

address the treatment of the Anderson model with the equation of motion technique

(EOM). This method is more rigorous but diverges at half filling for Γ � kT . This

divergence is due to the emergence of Kondo physics. Interestingly, Meir and Wingreen

[56] derived a Landauer formula for the current and conductance of this impurity with

electronic interactions.

Master equation treatment The sequential tunnelling regime is well suited for a

master equation approach. In this regime, Γ � kT so that the charge is strongly

localized on the QD. The current thus only happens via sequential hopping events from

the leads to the QD and from the QD to the leads.

Similarly to the Landauer-Büttiker formalism, a strength of the master equation ap-

proach is the possibility to treat the out-of equilibrium regime, when applying bias

voltage. It consists of solving an equation of conservation for probabilities of levels oc-

cupation in the QD. The case of one orbital is treated, with double occupancy. The

levels are thus {0, ↑, ↓, ↑↓}. The master equation is
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d~P

dt
= M ~P (1.21)

with

~P =


p0

p↑

p↓

p↑↓

 and M =


−(Γ+

↑ + Γ+
↓ ) Γ−↑ Γ−↓ 0

Γ+
↑ −(Γ−↑ + Γ̃+

↓ ) 0 Γ̃−↓

Γ+
↓ −(Γ−↓ + Γ̃+

↑ ) 0 Γ̃−↑

0 Γ+
↓ Γ+

↑ −(Γ̃−↑ + Γ̃−↓ )

 (1.22)

with Γ±ασ = γαf
±
α with α = L/R, Vα the potential applied on the lead, thus f±α =

f(±ξ + Vα). The plus or minus upper script represents tunnelling events that increase

or decrease the charge on the QD by one unit. Finally, Γ̃ represents events involving the

double occupancy level so that their energy is ξ + U . The current is given by

Iα = e
∑
σ

Γ̃+
αpσ̄︸ ︷︷ ︸

N→N+1

+ Γ+
αp0︸ ︷︷ ︸

N−1→N

− Γ−αpσ︸ ︷︷ ︸
N→N−1

− Γ̃+
αp↑↓︸ ︷︷ ︸

N+1→N

(1.23)

Solving the stationary system dt ~P = ~0, the expression of the current writes (see appendix

B for details)

I =
2e

h

γLγR
γL + γR

Γ+
[
f̃+
L f̃
−
L − f̃

+
R f̃
−
R

]
+ Γ̃−

[
f+
L f
−
L − f

+
R f
−
R

]
Γ+ + Γ̃−

(1.24)

with VL/R = ±V/2. The current and differential conductance through such a single

level QD is represented in figure 1.7. In the linear regime when eV/2 � kT , the Fermi

distribution expands as

f(x± eV

2
) = f(x)± eV

2

1

4kT cosh2 x
2kT

(1.25)

the current can be rewritten as

I =
2e2

h

γLγR
γL + γR

V

[
Γ+

Γ+ + Γ̃−
1

4kT cosh2 ξ+U
2kT

+
Γ̃−

Γ+ + Γ̃−
1

4kT cosh2 ξ
2kT

]
(1.26)

and the corresponding linear conductance
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Glinear =
2e2

h

γLγR
γL + γR

[
Γ+

Γ+ + Γ̃−
1

4kT cosh2 ξ+U
2kT

+
Γ̃−

Γ+ + Γ̃−
1

4kT cosh2 ξ
2kT

]
(1.27)
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%Figure 1.7: single level QD with double occupancy current (a) and differential
conductance (b) in the gate/bias voltages plane. U=10 meV, γ=100µeV and T=5K.

As shown in figure 1.7 (b), the conductance of the QD in the Coulomb blockade regime

exhibits a diamond pattern known as the Coulomb diamond pattern. The expression

1.1.4 shows that the conductance peak height scales as 1/kT . The smaller kT , the

thinner and higher the peaks. One can read off the spectrum from the gate/bias voltage

plane conductance map. The height of a diamond in bias voltage gives two times the

charging energy U and the width of the diamond edges gives kT 5. In each diamond, the

current is constant and the conductance zero. A number of charges N is localized on the

QD and one charge is added or removed when crossing from one diamond to the next.

Only one single orbital has been considered here on the QD, thus the number of charge

varies from 0 to 2 as shown on the figure. To visualize the addition energy spectrum

that comprises both U and ∆, is is instructive to compute the same approach with two

orbitals. This situation is represented in figure 1.8. The QD state can be expressed with

two numbers (Θ, NΘ), with Θ the orbital and NΘ the number of charges on this orbital.

The diamond pattern shows a new periodicity as every time we pass to a new orbital,

the addition energy is ∆ + U , thus forming wider Coulomb diamonds.

The spectroscopy calculation for figure 1.8 shows the richness of QD devices. The inner

quantum structure of the energy levels is directly observable with simple measurements

of current and/or conductance6.

5This apply for true sequential tunnelling situation. Experimentally the width of the diamond edge
is max(Γ, kT ).

6Single electron transistor SET for their part also exhibits Coulomb diamonds. However, the elec-
tronic island being metallic has a high density of states available, thus a level separation δs � EC . The
inner level structure and its richness is out of reach for laboratory temperature.
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%Figure 1.8: two levels QD with double occupancy differential conductance (b) in
the gate/bias voltages plane. ∆= 5meV, U=10 meV, γ=100µeV and T=5K.

Beyond sequential tunnelling The transport through the QD in the sequential

regime has been addressed. In this regime, the couplings from the leads to the QD levels

Γ are small,compared to the charging energy EC . When the tunnel couplings becomes

higher and closer to the charging energy, the transport can happen via virtual states.

This regime is called the co-tunnelling regime because two electrons are involved. These

co-tunnelling events, resulting from quantum virtual states consist of one single quantum

process. During this process, an excess electron lies on the QD for a short time7. Elastic

co-tunneling and inelastic co-tunnelling (see [33]) can be observed. In the first case,

the incoming electron arrives on the outgoing electron level. In the second case, the

incoming electron arrives on a level with excess energy ∆E and the observation of such

process requires to overcome ∆E by applying a finite bias voltage eV > ∆E.

Kondo physics

A special case of co-tunnelling is when the QD has a non zero spin in its fundamental

state. This happens e.g. when only one electron stands on the last occupied level of the

QD. This leads to the spin S = 1/2 Kondo effect. In this situation, the virtual quantum

process involved is a spin-flip of the spin of the last electron of the dot. During this

event, there is no charge fluctuation on the QD.

First experimental signatures of the Kondo effect where found in 1930 on metallic alloys

with magnetic impurities [57]. It was only thirty years later in 1964 that Jun Kondo gave

a theoretical description and understanding of the phenomenon [58]. The resistivity of

metals drops with temperature, due to the freezing of electron-phonon interaction first

7this time is related to the Heisenberg relation ∆E∆t > h with ∆E the excess energy of this process.
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Figure 1.9: One of the possible process involved in Kondo S=1/2 effect for QD.
The process starts in the real state (a) with one electron on the dot with spin up and
one conduction electron on the left electron with spin down. Step (b) is a virtual
state with double occupancy of the dot. In the final step (c), one electron leaves the
QD and the remaining electron on the dot is spin down. The overall process results

of a spin-flip of the electron spin on the QD

and elelctron-electron interaction at lower temperature. The resistivity then saturates to

a value that depends on the number of residual defects of the crystal. In the presence of

magnetic impurities, the resistivity increases again under a certain temperature around

10K [57, 59]. The solution proposed by Kondo relies on an anti-ferromagnetic coupling

between the conduction electron and the magnetic impurities. He found that the resis-

tance should diverge logarithmically as the temperature decreases. Only the emergence

of renormalization group theory could remove this divergence behaviour, as was done

by Wilson in 1975 [60]. One important feature of Kondo physics is its universality with

respect to only one characteristic energy, the Kondo temperature TK (see e.g. [61]). It

means that whatever the device, only TK governs its dependence. Another important

aspect of this phenomenon is the concept of Kondo cloud, formed by the conduction

electrons that screen the magnetic impurity. Up to now, there exists no experimental

observation of the existence of the Kondo cloud. It would especially be important to

measure the dynamic of the cloud to have access to the microscopic establishment of the

regime.

The problem is old and seems closed. However, the development of QD devices lead

to what has been called the “Kondo revival” [62]. The spin of the QD, which in the

simplest case is S = 1/2, can be considered as a magnetic impurity toward the conduction

electrons of the leads. In these devices, the current is blocked and the screening of the

spin impurity by the Kondo cloud leads to an increase of conductance instead. The

success of this revival relies for one part on the vast variety of possible device, such

as magnetic adatoms on metallic surfaces [63], GaAlAs/GaAs 2DEG QDs [40], C60

molecules [14] and CNTs [19]. The other strength of the QD devices is the tunability of

magnetic impurity in situ. This allow to study the Kondo effect at the single impurity
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Figure 1.10: a : Temperature evolution of the resistance of a normal metal (blue),
superconductor (green) and alloy with magnetic impurities (red).b : Temperature
evolution of the conductance of a QD device when a magnetic impurity is localized
on the QD, e.g. in the case of spin 1/2 when the number of electron is even (blue)
or odd (red) nd Kondo effect appear. c : Scheme of the QD associated with the
density of states (d). A sharp peak appears in the density of state at the chemical

potential of the leads.

level and control the different parameters of the problem.

Success of Kondo physics is made by both its many-body and universal behaviour. It

is hard to solve theoretically and a large amount of publications has been produced on

the topic [33, 64]. The influence of AC-field has has been treated theoretically in some

works like [35, 65]. Although the success of Kondo physics in nanostructures, only few

attempts to measure the effects of AC field have been undertaken. Kogan measured

satellite Kondo peaks at bias voltages corresponding to the frequency of the AC field

ε = ±hν [66]. The quantum quench of Kondo correlations in optical QD was studied

in [67]. The Kondo resonance disappears with the detuning of the laser frequency with

respect to TK , in an universal way (it only depends on ∆ν/TK). In both of these
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works, the problem is treated as a photo-assisted process. Recently, the noise of a

Kondo dot, made of CNT, has been measured at finite frequency, of the order of the

Kondo temperature [68]. In this thesis, the cQED architecture allowed for dispersive

measurements of the AC microwave field. This will give new information compared to

low frequency measurements as we shall detail in chapter 4.

1.2 circuit Quantum Electrodynamics in the dispersive

regime

In this thesis, measurements in the dispersive regime are performed. In this regime the

cavity frequency is far detuned from the energy level separations in the artificial atom.

The two systems thus do not exchange energy but only shift their respective energy.

The information on the interactions between the two systems is usually read from the

frequency shift of the cavity, also called the cavity pull. The coupling between the arti-

ficial atom and the microwave field is a dipole coupling. A change in the electronic state

of the artificial atom modifies its polarizability, thus shift the frequency of the cavity.

In the case of TLS, the treatment of this effect is easily done quantum mechanically,

leading to the expression of both the cavity pull and AC-stark shift which describes the

shift of the TLS resonance. In this work, it is more appropriate to describe the coupling

of the QD and the cavity in a classical way. There are two reasons for that :

1. As in this thesis, the working temperature is rather high (T ∼ 1.5K8) as well as

the power excitation, the microwave field can be treated classically. The resonator

itself can be described by classical lumped elements related to the geometrical

properties of the cavity.

2. The coupling between the cavity and the QD is a priori a capacitive coupling. The

electronic state and interactions of the QD are related to the quantum capacitance

CQ of the QD. This quantum capacitance, which varies with the different param-

eters that control the QD such as the gate and bias voltage, can thus be directly

added in the classical description of the resonator.

The result are the same and the cavity frequency shift is interpreted as a capacitance

shift of the QD. Note that in contrast to standard cQED where the artificial TLS is non

dissipative9, QDs offer a dissipative channel for the microwave field. In result, the cacity

frequency shift is due both to a capacitive and a dissipative effect, as it will be discussed

in greater details in chapter 4.

8the thermal occupation of a 6GHz resonator at 1.5K is about 5 photons
9the TLS is made of lossless superconducting circuit.
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1.3 On-chip superconducting microwave resonator

1.3.1 Transmission line resonator

On-chip superconducting resonators are the electronic counterpart of optical cavity.

They can be formed using a transmission line in which an electromagnetic field prop-

agates. The CPW geometry allows to confine the electric ~E and magnetic ~B fields in

the dielectric gap separating the transmission line and the ground plane, as shown in

figure 1.11 (b). Within the gap, the electric field is within the plane while the magnetic

field is perpendicular to the plane. Cuts in the transmission line act as electronic coun-

terparts to optic mirrors. They are capacitive elements10 which impedance is strongly

mismatched from the transmission line impedance. This results in transmission and

reflection of the microwave field at these coupling gaps. When cut at two ends, a trans-

mission line will thus behave as a microwave Fabry-Perot with high quality factor due

to the low loss of superconducting materials11.'
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Figure 1.11: Schematics of an on-chip CPW geometry. (a) view from the top
showing the central conductor λ/2 transmission line of width s separated from the
ground plane by a gap of width w. The coupling capacitances that play the role of
electronic mirrors in our cavity are also represented as gaps in the central conductor
of width wg. (b) view from the side of the chip showing the dielectric substrat
which is usually oxidized (Si/SiO2). Both electric and magnetic field distribution
are represented in the vicinity of the central conductor, respectively in blue and

yellow.

1.3.2 Lumped elements approximation

A capacitively coupled CPW transmission line is schematically represented in figure 1.11

(a). The resulting resonator’s fundamental frequency is given by

10the two sides of the transmission line in regard of each other’s are two metallic plates that form a
capacitance.

11Superconductor are lossless in the DC regime. However, under AC drive, quasiparticles lying in
the gap of the superconductor are accelerated, opening a dissipative channel in parallel to the lossless
superconducting channel of cooper pairs. The imaginary part of this new channel is a kinetic inductance,
which study can be found in appendix C for a particular sample, while the real part is a dissipative
channel.
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f0 =
c

√
εeff

1

2l
(1.28)

with c the speed of light in vacuum, εeff the effective permittivity of the CPW line and

l the length of the resonator. The phase velocity of the CPW line is given by vph =

c/
√
εeff = 1/

√
LlCl where Ll and Cl are respectively the inductance and capacitance per

unit length of the resonator as described in figure 1.12. Considering only the geometric

contribution to these quantities, one finds [69]

Ll =
µ0

4

K(k′0)

K(k0)
, Cl = 4ε0εeff

K(k0)

K(k′0)
.

where K is the complete elliptic integral of the first kind with the geometric arguments

k0 =
w

w + 2s
k′0 =

√
1− k2

0.

Using conformal mapping theory, one can determine the characteristic impedance Z0 of

the line

Z0 =
30π
√
εeff

K(k′0)

K(k0)
=

√
Ll
Cl

The main properties of the resonator are thus only determined by the geometric pattern

of the CPW12.

RLC model'
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%Figure 1.12: Schematics of a transmission line model with lumped elements in
units per length.

12These expressions will reveal useful for determining the resonator’s gap capacitance from SEM
micrograph.
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The resonator can be described by a RLC equivalent circuit. A transmission line of

length l = λ0/2, open at both ends, is considered. The impedance of the line is thus

given by [70]

ZTL = Z0
1 + i tan(βl) tanh(αl)

tanh(αl) + i tan(βl)
(1.29)

≈ Z0

αl + π
ω0
i(ω − ω0)

(1.30)

where α is the attenuation constant related to the losses in the material, β is the propa-

gation constant and Z0 is the transmission line impedance. Equation (1.30) holds in the

vicinity of cavity resonance ω = ω0 + ∆ω with ∆ω � ω0, and also αl � 1 as the losses

are negligible. The addition of coupled capacitance to both ends of this transmission

line will form the cavity. For practical use, a RLC equivalent circuit to this transmission

line can be found, if the latter approximation is valid :

ZRLC =

(
1

iωLn
+ iωC +

1

R

)−1

(1.31)

=
R

1 + iRCω0

(
ω
ω0
− ω0

ω

)
≈ R

1 + i2RC(ω − ω0)
(1.32)

with the following expressions for the circuit elements

Ln =
2Lll

n2π2
C =

Cll

2
R =

Z0

αl
(1.33)

Here n refers to the cavity mode. The resonator frequency is adjusted with the induc-

tance element as ωn = nω0 = 1/
√
LnC. In the following, only the first mode n = 1

is treated, so that the inductance of the line is L = 2Lll/π
2. Note that the exact ex-

pression of the resonator’s impedance (1.31) will be useful afterwards to properly take

into account the coupling of the resonator to the QD. This point will be addressed with

details in chapter 4.
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Figure 1.13: a : Equivalent RLC circuit of the resonator transmission line (red)
coupled to the environnement via coupling capacitance Cκ and loaded impedance RL
(green). b : Same circuit with Norton equivalent lumped elements for the coupling

impedance.

Quality factor

Equations (1.30) and (1.32), obtained for ω ≈ ω0 and small losses have a Lorentzian

lineshape. This expression form is very convenient to express the resonator frequency

and quality factor. The latter reads

Qint =
π

2αl
= ω0RC (1.34)

which directly gives R = 2Z0Qint
π . As mentioned above, the transmission line resonator

is coupled to the environment via two capacitances acting as highly reflective mirrors.

The environment is made out of two RF transmission lines (input and output) that are

adapted to an usual impedance of 50Ω. The presence of the coupling capacitance Cκ in

series with the load resistance RL = 50Ω will slightly shift the resonance frequency of

the resonator as well as introduce an external quality factor to the whole. In order to

easily find these new expressions, it is useful to transform the coupling impedance from

serie connection to parallel connection as shown in figure 1.13

Zcoupling = RL +
1

iωCκ
=

(
1

R?L
+ iωC?κ

)−1

(1.35)

with

R?L = RL
1 + ω2

0C
2
κR

2
L

ω2
0C

2
κR

2
L

and C?κ = Cκ
1

1 + ω2
0C

2
κR

2
L

(1.36)
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Now that all the elements of the circuit are in parallel, the capacitance and resistance

of the RLC circuit are modified as follow

1

R′
=

1

R
+

2

R?L
C ′ = C + 2C?κ (1.37)

The resonance frequency is thus shifted as

ω′0 =
1√
LC ′

=
1√

L(C + 2C?κ)
≈ ω0

(
1− Cκ

C

1

1 + ω2
0C

2
κR

2
L

)
(1.38)

The coupling capacitance is in the range of fF while the resonator capacitance is in the

range of pF, hence the last approximation. For typical resonators as the one used in this

thesis, C ≈ 0.8pF and Cκ ≈ 4fF yielding a frequency shift of −30MHz. The measured

quality factor of the coupled resonator is then the loaded quality factor

QL = ω′0R
′C ′ = ω0

1√
1 + Cκ

C
2

1+ω2
0C

2
κR

2
L

C + 2C?κ
1
R + 2

R?L

≈ Qint
1

1 + 2 R
R?L

(1.39)

Thus, within the same approximation as above, an external quality factor Qext can be

defined by the following relation

1

QL
≈ 1

Qint
+

1

Qext
(1.40)

with

Qint = ω0RC and Qext =
ω0R

?
LC

2
(1.41)

The measured quality factor deviates from the internal quality factor due to the coupling

capacitances. This will be investigated in more details in the following section.
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Furthermore, the shape of the behaviour of the loaded impedance is well approximated

by the following Lorentzian

Z?RLC ≈
R′

1 + i2R′C ′(ω − ω′0)
≈ R′

1 + i2QL
ω−ω′0
ω′0

(1.42)

1.3.3 Scattering theory approach
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Figure 1.14: Schematics scattering theory model. The scattering element S is
connected to the environnement via N ports containing both inputs ai and outputs

bi.

The transmitted field is the measured quantity in the experiments of this thesis. It

is therefore necessary to express the output field as a function of the input field that

is applied at the input port of the resonator. The problem is properly described by

considering propagating waves. Scattering theory allows to find the transmissions and

reflections parameters of a system as the coefficients of the so called scattering matrix.

This theory allows to take into account an arbitrary number of ports n connecting the

system to the environment. In order to achieve this, the voltage and current at port i

read


Vi = g(ai + bi)

Ii =
1

g
(ai − bi)

(1.43)

with g =
√
RL. The ai and bi coefficients are respectively the input and output coeffi-

cients at each port i, with respect to the scattering theory conventions. For the coupled

RLC resonator, the following S matrix is found
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Sres =
1

(g2 + Zκ)(g2 + Zκ + ZRLC)

(
Z2
κ + 2ZRLCZκ − g4 2g2ZRLC

2g2ZRLC Z2
κ + 2ZRLCZκ − g4

)

with Zκ = 1/iωCκ. The transmission from port 1 to port 2 is

S21 =
2

2 + 2
iωCκRL

+ 1
RLZRLC

(
1+iωCκRL

iωCκ

)2 (1.44)

It is convenient to express S21 with a simple Lorentzian expression, function of the

coupled resonator impedance Z?RLC . (cf equation (1.42)) The calculation is made easier

by considering Y ?
RLC = 1

Z?RLC
and replacing Cκ = C?κ

1+ω2
0C

?2
κ R?2L

ω2
0C

?2
κ R?2L

and RL = R?L
1

1+ω2
0C

?2
κ R?2L

for the simplifications. Finally,

S21 = Z?RLC
2

R?L

(
−1 + ω′20 C

2
κR

2
L

1 + ω′20 C
2
κR

2
L

+ i
ω′0CκRL

1 + ω′20 C
2
κR

2
L

)
≈ −Z?RLC

2

R?L

≈ − QL/Qext

1 + 2iQL
ω−ω′0
ω′0

(1.45)

The last approximation holds for Cκ � 1/ω′0RL which is satisfied for Cκ ≤ 100fF with

the parameters of our resonators.

Here it has been showed that the transmission of the system is proportional to the

coupled impedance of the resonator, as long as the coupling capacitance is not too high.

It is much more convenient to calculate the impedance than the scattering matrix of the

system. Thus, every element that can be model by electronic lumped elements, inserted

inside the cavity will directly add up in parallel to the resonator impedance. It allows to

very quickly understand the effect of any coupling between the cavity and this external

system on the transmitted field.

1.3.4 Coupling regimes

Equation (1.40) shows that the loaded quality factor can be expressed as the internal

quality factor and an external quality factor added in parallel. As ω2
0C

2
κR

2
L � 1, the

external quality factor can be simplified as
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Qext ≈
C

2ω0RLC2
κ

∝ C−2
κ (1.46)

Following this, the value of the coupling capacitance strongly affects the value of Qext.

Thus, the choice of the coupling parameter is crucial to determine the regime of the

device. Indeed, the resonator can either be dominated by the coupling quality factor

or the internal quality factor. A critical behaviour is obtained for Qint = Qext which is

obtained for

C(c)
κ =

1

ω0

√
RL(2R−RL)

(1.47)

The behaviour of the transmitted signal and loaded quality factor in the three different

regime is depicted in figure 1.15.'
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Figure 1.15: Loaded quality factor QL (red) and transmission amplitude |S21|
(blue) of the coupled resonator of internal quality factor Qint = 105 versus the
coupling capacitance Cκ. The loaded quality factor and the transmission amplitudes

undergo an opposite variation versus Cκ giving rise to a critical coupling value C
(c)
κ .
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• Over coupled regime

When Qext � Qint, the loaded quality factor is approximatively Qext. This

regime is obtained for high coupling capacitance Cκ � C
(c)
κ . The trans-

mission tends to reach unity on resonance as Cκ increases while the quality

factor of the resonance decreases. The Lorentzian approximation doesn’t

hold for too high coupling capacitances.

• Critically coupled regime

For Cκ = C
(c)
κ , Qext = Qint = 2QL. The transmission is exactly 1/2 at the

resonance.

• Under coupled regime

When Qint � Qext, the loaded quality factor is approximatively Qint. This

regime is reached for Cκ � C
(c)
κ . The transmission decreases towards zero

as Cκ decreases while the quality factor asymptotically tends to Qint. Note

that the devices of this thesis are this regime.

Coupling regimes

1.3.5 Quantum description

The classical description of CPW resonator is well adapted to quickly understand the

behaviour of such cavities with an intuitive point of view. However, as the temperature

and the excitation of the device are lowered, a quantum description is needed to properly

describe its properties. Even tough the quantum limit for the cavity is not reached in

this thesis, it is important to briefly describe it for two reasons :

1. like for phonons in solids, the quantum language is practical.

2. this description allows to determine the number of photons in the cavity. This will

be particularly useful in the discussion of chapter 4.

LC harmonic oscillator

As superconducting transmission line are considered here, the losses can be neglected in

the system. It is model by an LC circuit as described in figure 1.16. The losses will be

introduced after as damping terms. It is convenient to use the phase φ =
∫ t
−∞ V (τ)dτ

for the description of the system. The corresponding Lagrangian of the circuit reads
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Figure 1.16: LC cirucuit under a voltage V (t). The useful parameters to describe
its behavior are the charge q on the condensator plates and the phase φ of the

inductance.

L =
Cφ̇2

2
− φ2

2L
(1.48)

The charge on the capacitor’s plate reads q = C ∂φ
∂t . Replacing φ and q respectively by

phase and charge operators φ̂ and q̂, the Hamiltonian writes

H =
q̂2

2C
+
φ̂2

2L
(1.49)

q̂ and φ̂ are conjugate operators and play the role of the position x̂ and momentum p̂

of a mechanical oscillator, therefore [φ̂, q̂] = i~. This Hamiltonian can be written in the

canonical form of a harmonic oscillator

H = ~ω0(â†â+ 1/2) (1.50)

with â = Z0q̂−iφ̂√
2~Z0

the annihilation operator in the mode ω0 = 1√
LC

and Zc =
√

L
C is the

characteristic impedance of the line. A useful representation of the field is a phase plane

representation for any polar angle θ as

X̂θ =
âe−iθ + â†eiθ

2
(1.51)

Given two angles separated by π/2, this defines the in-phase and out-of-phase quadra-

tures I and Q which obey [I,Q] = i/2.
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Input/Output theory

The input/output theory is a quantum version of the scattering theory previously used

to determine the cavity transmission. The input and output coefficients in the different

ports of the system of equation (1.43) are replaced by creation and annihilation operators

of bosonic modes. The full description of the quantum input/output theory can be found

in [71] and the interested reader should refer to this review for more details. Here only

the main results, that will reveal useful later, are discussed. The overall system can be

described by the following Hamiltonian

H = Hsys +Hbath +Hint (1.52)

Hsys describes the cavity, Hbath describes the field outside the cavity and Hint describes

the coupling between the external field and the internal field of the cavity.

Hsys = ~ω(1/2 + â†â)

Hbath = ~
∫
dωb̂†(ω)b̂(ω)

Hint = i~
∫
κ(ω)[b̂†(ω)â− â†b̂(ω)]

Operators â and b̂ are bosonic creation and annihilation (â† and â†) operators respec-

tively for the cavity mode ω0 and the environment bath. The interaction Hamiltonian

describes the coupling between the external bath and the cavity via a coupling param-

eter κ(ω). The cavity is coupled to the environment by several ports. The input and

output ports are two of them which are designed to address and drive the cavity, thus

two couplings κin and κout. The losses are taken into account by considering a third

port κL. With respect to the cavity, these couplings describe the rate at which photons

are lost via the different ports, thus are related to damping of the cavity. The damping

can be assumed to be due to markovian processes, thus independent of the frequency

and can be written κi(ω) =
√
γi/(2π).

The equation of motion (EOM) of operator â gives

˙̂a(t) = −iω0â(t)−
∑
i

γi
2
â(t)−

∑
i

√
γib̂in,i(t) (1.53)

and for each ports
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b̂out,i(t)− b̂in,i(t) =
√
γia(t) (1.54)

In order to express the output mode from the input mode directly, in the case of two

ports plus one port for losses (γL), the signal is considered to come to the cavity via port

1, and to be transmitted via port 2 (meaning that b̂in,2(t) = 0). The previous equations

are solved with the help of Fourier transform and give

â(ω) = −
2
√
γ1

γ1 + γ2 + γL − 2i(ω − ω0)
b̂in,1(ω) (1.55)

b̂out,2(ω) = −
2
√
γ1γ2

γ1 + γ2 + γL − 2i(ω − ω0)
b̂in,1(ω) (1.56)

Equation (1.56) has the same structure as the classical equation (1.45). This shows the

direct parallel between the classical and quantum description of the system. The average

intra-resonator number of photon, at resonance is found to be

n̄ =
4γ1

~ω0(γ1 + γ2 + γL)2
Pin (1.57)

where Pin/out(ω) = ~ω|βin/out|2 with β the amplitude of the microwave field associated

to b̂. Assuming that the dampings of ports 1 and 2 are identical, equation (1.57) rewrites,

with experimental relevant parameters, as

n̄ =
2
√
PinPout
hf0∆f

(1.58)

1.3.6 Link between classical and quantum description

As expected, both the electronic and quantum treatments lead to Lorentzian cavity

transmission expressions close to resonance. The first approach gives a classical picture

of the cavity behaviour via electronic lumped elements. The second approach allows

to treat the problem in term of photons and is useful when the cavity is driven in the

quantum regime (10 mK range temperature and low excitation power) or when one

wants to express parameters in terms of photons number. Both approach rely on the

same concept of a coupled transmission line to environment. The coupling capacitance

and the coupling parameter γi are thus linked. The coupling constant γi is the ratio

between the power dissipated in the coupling capacitance and the energy stored in the

transmission line [72]
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γi =
Pdiss,i
Estored

=
1/2|Vi|2<(1/Zi)

1/4Cres|Vi|2
=

2ω3
0Z

2
0C

2
κ

π(1 + ω2
0Z

2
0C

2
κ)

=
ω0

2Qext
(1.59)

As the external quality factor has been defined with the two symmetric coupling ca-

pacitance of the cavity (Cκ,L = Cκ,R), one finds that γL + γR = ω0/Qext as expected.

We then also find γL = 1/(RC). The damping inside the resonator is due to resistive

losses through the capacitance of the transmission line. To thermally set the cavity in

its ground state |0〉, it is necessary to cool it down to millikelvin range temperatures.

Now, it is possible to estimate the power needed to add one photon to this state. Con-

sidering standard parameters; a coupling capacitance Cκ = 4fF , a resonance frequency

ω0 = 6GHz, a characteristic line impedance Z0 = 50Ω and a loaded quality factor

QL = 10000, with the help of equation (1.57) Pin,1 photon = −125dBm corresponding to

an excitation amplitude of V = 100nV .





Chapter 2

Dynamical response of a quantum

dot

This chapter addresses the dynamical response of single QDs in different situations. As

it will be emphasized, this dynamical response is related to the quantum capacitance

of the dot. It is particularly necessary as it will be confronted to the experimental

results later. Carbon nanotubes allow for studying different transport regimes with no

electronic interactions (Fabry-Perot) or with electronic interactions (Coulomb blockade).

In the first section, the non-interacting case is discussed. It offers the possibility to

solve the problem exactly. In the second section, the interacting case is developed.

It is particularly important as experiments are performed in this situation. Only the

Coulomb blockade is treated, with an equation of motion (EOM) technique applied to

the electronic Green’s functions. This allow for an acute description of this regime but

do not describe the Kondo physics.

2.1 Non interacting case

In this section, the non-interacting case is discussed . This situation allows for under-

standing the behaviour of the QD in the Fabry-Perot regime. The problem is treated

by adapting the work of Prêtre, Thomas and Büttiker [52] with the Landauer-Büttiker

formalism.

45
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2.1.1 Dynamical conductance

With the help of the scattering matrix S, it is possible to express the current and the

conductance of the system. The multi-terminal case is considered. The expression of

the conductance is derived from the expression of the current operator

Îα(t) =
e

h

∫
dEdE′(â†α(E)âα(E′)− b̂†α(E)b̂α(E′))e(E−E′)t/~ (2.1)

The current is expressed as the difference between the occupation number of the incident

carriers in the conductor α and the occupation number of outgoing carriers in the same

conductor (this expression can be found by carrying out the integral with E′ = E + ~ω
and setting n̂+

α = â†α(E)âα(E) and n̂−α = b̂†α(E)b̂α(E)). The conductance writes

g
(m)
αβ (ω) =

e2

h

∫
dE

f
(m)
β (E)− f (m)

β (E + ~ω)

~ω

(
δαβ − s?αβ(E)sαβ(E + ~ω)

)
(2.2)

which is the expression of the external conductance in conductor m from reservoir β

to reservoir α. This expression shows that only carriers close to the Fermi surface

participate to conduction of current. The conductance is now expanded up to second

order for small ω which is justified by the fact that the working frequency is f0 ≈6GHz,

which is negligible compared to the energies in the QD (∆ ∼5meV ≡ 1.2 THz). One

finds

g
(m)
αβ (ω) = g

(m)
αβ (0)− iωe2dNαβ

dE
+ ω2e4

(dNαβ

dE

)2
Rαβ (2.3)

with g
(m)
αβ (0),

dN
(m)
αβ

dE and R
(m)
αβ respectively given by equations (??), (??) and (??). Here

dNαβ
dE is a partial density of states, so that e2 dNαβ

dE has the dimension of a capacitance

which is called the quantum capacitance Cq. Rαβ, having the dimension of a resistance

is related to the charge relaxation resistance of the system. These notations are helpful

for the construction of an electronic equivalent circuit.

2.1.2 Electronic equivalent circuit

The system

The studied system is represented in figure 2.1. A CNT based QD is connected to two

electrodes and capacitively coupled to a gate.
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Figure 2.1: The physical system. A nanotube NT is connected to two reservoirs
L and R via two tunnel barriers ΓL et ΓR, in parallel with two capacitance CR and

CL. The CNT is also capacitively coupled to a gate G.

The conductance matrix Gαβ allows one to calculate the current at a contact (reservoir)

α with the applied potentials to contacts β via

Iα =
∑
β

GαβδVβ (2.4)

Here the contacts α are the left, right and gate electrodes. Nevertheless, it is necessary

first to determine what is called the true conductance of the system including inter-

actions (see [52]). This true conductance is determined self consistently, considering

the geometry of the system. The following expression, which is fully derived in [52], is

necessary

g
(mn)
αβ (ω) = δmng

ext(m)
αβ (ω)−

[∑
γ

gext(m)
αγ (ω)

]
(M−1)mn(ω)

[∑
δ

g
ext(n)
δβ (ω)

]
(2.5)

The conductance with superscript ext is the external conductance previously determined

and the M matrix is Mmn(ω) = δmn
∑

αβ g
ext(m)
αβ (ω)−iωCmn where Cmn is the geometric

capacitance matrix. This description accounts for the displacement currents that re-

equilibrates the charge distribution in the system. The capacitance matrix writes

C =


CΣ −CL −CR −CG
−CL CL 0 0

−CR 0 CR 0

−CG 0 0 CG


NT

L

R

G
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with CΣ = CL + CR + CG. M takes into account both the geometric and the quantum

capacitance. Equation (2.5), shows that the response of the conductor contains the

contribution of charge carriers coming from reservoir β through conductor n and entering

reservoir α from conductor m. Indeed, the two partial sums in the expression, linked by

the matrix M mixes the different conductances with coupling capacitances between the

different conductors.

In order to account correctly for the screening, it is necessary to consider additional

conductors independently from the reservoirs. The three reservoirs L, R and G are

linked to the nanotube via wires L, R and G with a capacitances in between. Reservoirs

L and R are also linked to each other via the nanotube itself, which has been previously

determined by the Fabry-Perot scattering matrix. Figure 2.1 has to be modified into

figure 2.2.'
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Figure 2.2: Equivalent circuit

Thus, when the conductor superscript is NT, equation (1.13) linking L and R only is

used. When the conductor superscript is L, R or G, a simple scalar phase factor eiφR ,

eiφL and eiφG being due to total reflection at the conductor interface is used. The model

has been settled and each term has been defined. The dynamical response of the system

is now calculated.

Solving the system

In order to determine the conductance matrix, the expression of current in each contact

(or reservoir) is needed. It is obtained with the following expression

Iα =
∑
n

∑
βm

g
(mn)
αβ δV

(n)
β (2.6)
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where δV
(n)
β is the potential applied to the contact between reservoir β and conductor

n. This expression corresponds to intuition as the total current in a reservoir is the sum

of all the currents (conductance × potential) that reach this reservoir. The sum over

the conductor n is separated from the sum over the conductor m in order to make the

next step clearer. Then, as already mentioned, the conductance matrix will be derived

from

Iα =
∑
β

GαβδVβ (2.7)

From this point, a first approximation has to be made, which is not too restrictive

as it is to consider that the conductors L, R and G being macroscopic, they possess

many conducting channels N. This number of channels being a prefactor of the partial

density of state of eq. (2.3), it is reasonable to state that all the terms containing this

partial density of state
dNm 6=NT

dE � 1. This will greatly simplify every further expression.

Moreover, due to the trivial scattering matrices of L, R and G, many contributions will

be zero and for example, the determination of IL only requires IL = I(NT )

L + I(L)

L with

I(NT )

L = (g(NT,NT )

LL + g(NT,L)

LL )δV (NT )

L + (g(NT,NT )

LR + g(NT,R)

LR )δV (R)

R + g(NT,G)

LG δV (G)

G

I(L)

L = (g(L,L)

LL + g(L,NT )

LL )δV (NT )

L + (g(L,R)

LR + g(L,NT )

LR )δV (R)

R + g(NT,G)

LG δV (G)

G

Thus, G is built up to the second order in ω, coefficient by coefficient. This conductance

matrix shows several physical aspects that are expected. First, there are non zero terms

at first order only between reservoirs L and R, via the tunnelling resonant barriers.

Indeed, the capacitive coupling between the gate and the nanotube prevents from any

current propagation at zero frequency. Second, it is found that the geometric capaci-

tances of the circuit are modified by a quantum correction proportional to the density

of states inside the carbon nanotube. The charges in the nanotube create a screening

effect that acts as a capacitive effect and adds up parallel to the other capacitances of

the system.

Note that the final expression must fulfil current conservation (
∑

α Gαβ = 0) and gauge

invariance (
∑

β Gαβ = 0) that states that an overall potential shift does not affect the

behaviour of the system. One can check that these two properties are fulfilled in the

expression of G
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The main result of this calculation is the expression of the finite frequency conductance

of the SWNT QD due to the gate electrode

GGG = −iωCµ + ω2RqC
2
µ (2.8)

An expression of the form of equation (2.3) is found, as expected. Cµ is the total elec-

trochemical capacitance of the wire vis-a-vis the gate G and Rq is the charge relaxation

resistance. The electrochemical capacitance Cµ is defined by the sum of the mean orbital

level spacing ∆ and the charging energy as e2/Cµ = ∆ + e2/C. This energy corresponds

to the energy one needs to add a charge in the nanotube. The other important result is

the value of the CNT QD quantum capacitance which is found to be

CQ =
2e2

πΓ
(2.9)

which is consistent with the result found in [52]. In the simple case where CL = CR = 0

and the system is at resonance so that ∆(E) = iΓ/2 in equation (1.13), Cµ is equal to

CG in parallel with CQ, and Rq = h
2e2

, which is half the quantum of resistance.

Equivalent circuit

From the expression of G, it is possible to fully determine the equivalent electronic circuit

of our system. However this circuit is only valid up to second order in ω. A triangle

circuit (as shown in figure 2.3 (a)) is considered. By successively turning on one potential

(and letting the other two being equal to zero), a relation between the current at each

contact and the different impedances for this potential is obtained. This leads to the

expression of the three impedances of the circuit.'
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a b

Figure 2.3: Intermediate equivalent circuits. a : Triangle equivalent circuit of the
system. b : detail of Z3.
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The impedances Z1 and Z2 have the same structure of a resistance proportional to Rq

in series with a capacitance proportional to Cµ

1

Z1(2)
=

1

A1(2)Rq
+ jωCµB1(2) (2.10)

while the impedance Z3 has the structure shown in figure 2.3 (b) where L = R2
qCµ.

For the sake of simplicity, the case at zero temperature with symmetric barriers (ΓL =

ΓR = Γ/2) is now considered. Moreover, the two reservoirs L and R are taken at the

same chemical potential µL = µR = 0, meaning that the system is not biased. Being at

T=0 induces
df

(NT )
L
dE =

df
(NT )
R
dE = −δ(E), which in combination with non resonant regime

introduces Lorentzian terms in all the coefficients of G

λ(E0,Γ) = λ =
Γ2/4

E2
0 + Γ2/4

which is equal to unity at resonance. Then, by considering the ratio of the geometric

capacitance over the nanotube quantum capacitance, balanced with the resonance weight

λ,

χi =
1

λ

πΓCi
2e2

=
1

λ

Ci
CQ

(2.11)

with i =L, R, G. The total electrochemical capacitance Cµ, the relaxation resistance Rq

and the Luttinger parameter g of the system write

Cµ = CG
1 + χL + χR

1 + χL + χR + χG
(2.12)

Rq =
h

2e2

1

1 + χL + χR
(2.13)

1

g2
=

1 + χL + χR + χG
χG(1 + χL + χR)

(2.14)

The Luttinger parameter g reflects the interactions of the Luttinger liquid. It ranges

from 1 (no interactions) to 01 and is related to the density of states of the conductor

[73]. It gives direct information on the electron-electron interaction strength and has

been measured in CNT [74]. In order to evaluate the orders of magnitude, numerical

1g can be re-expressed in the more common expression g = 1√
1+

CQ
CG

.
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values consistent with the experiments are taken, CG = 4aF, CΣ = 8aF and Γ = 1meV.

In order to visualize the effects of asymmetries of the lateral capacitances CL and CR,

they are respectively set to 2.1aF and 2aF. The behaviours of Rq and Cµ are shown in

figure 2.4.'

&

$

%
Figure 2.4: Simulation of the value of resistances RL (black) and RR (red) (a) and
capacitances CL (black) and CR (red) (b), as defined in figure ?? in appendix ??
section ??. CL=2.1aF, CR=2aF, CG=3.9aF, Γ=1meV and E0 ranges from -10meV

to 10meV.

2.2 Interacting case with EOM

In this section, interactions are considered in the problem in order to treat Coulomb

blockade regime. In the non-interaction situation, it has been shown that the quantum

capacitance of the QD is CQ = 2e2

πΓ . The electronic interactions affect significantly

this quantity. The calculation is performed by using the equation of motion (EOM)

technique applied to the electronic Green’s function. This technique allows for treating

the Coulomb blockade regime rigorously, even for Γ & kT . Therefore it covers the

non-interacting case (U = 0) as well as the sequential regime where Γ � kT . The

latter has been treated in chapter 1 to describe the Coulomb blockade pattern, with a

master equation approach. The quantum capacitance of the QD in this regime can be

calculated2 to be CQ ∝ e2

kT . However, the EOM technique does not allow for treating

the Kondo regime.

2.2.1 Model and Hamiltonian

The CNT is contacted by two source drain electrodes and is driven by a gate electrode

in a SET configuration. It is also capacitively coupled to an AC voltage source which

2Considering a single occupation level, one finds CQ = e2

kT
eε/kT

(2+eε/kT )2 . This peaks to CQ(max) = e2

8kT
.
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is the CPW resonator. In the Coulomb blockade regime, the charge on the island is

quantized as Qisland = −ne where n is the number of electrons on the dot and e is the

absolute value of electronic charge as shown in figure 2.5.'

&

$

%

Figure 2.5: Quantum Dot circuit considered in this paper. The CNT contacted
by two source-drain Pd electrodes (red) and capacitively coupled to a gate electrode
(blue) forms an electronic island (green). It is also coupled to an AC voltage source
which is the CPW resonator (purple). The charge on the island is quantized as
Qisland = −ne where n is the number of electrons on the dot. The island potential

is Visland = Q+
∑
CiVi

CΣ
, redistributing the charge on the different electrodes as Qi =

−αien+ ViCi + αi(
∑
j CjVj). Here αi = −Ci/CΣ

One single orbital level d of the dot is taken into account. To correctly express the dot

Hamiltonian, the electrostatic energy on the dot must be properly defined

E =
1

2
CΣV

2
island =

(Q+
∑

iCiVi)
2

2CΣ
(2.15)

If n0 is the number of charges on the dot when Vi = 0 ∀i and N = n−n0, then Q = −Ne
is the number of charges on the island compared to the electrostatic equilibrium. By

choosing E(n0) = 0, one gets

E(N) = Ec

(
N2 −

2N
∑

iCiVi
e

)
= EcN

2 + eN
∑
i

αiVi (2.16)

where the charging energy Ec = e2

2CΣ
. The Hamiltonian of the system writes H =

HD +HL(R) +HT,L(R) with
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HD =
∑

σ={↑,↓}

ξ̃dσc
†
dσcdσ + Und↓nd↑

HL(R) =
∑

k∈νL(R),σ={↑,↓}

ξkσc
†
kσckσ

HT,L(R) =
∑

k∈νL(R),σ={↑,↓}

tkσc
†
dσckσ + t∗kσc

†
kσcdσ

with ndσ = c†dσcdσ and ξ̃dσ = ξdσ +e
∑
αiVi. Here, αi = −Ci/CΣ and Vα is the potential

on the reservoir α. νL(R) is the ensemble of electronic states in lead L(R). The energies

ξdσ and ξkσ are defined with respect to the Fermi energies of the dot and lead respectively.

The conductance of the circuit can be calculated as [75]

G = −e
2

h

∑
σ

∫ +∞

−∞

dξ

~
ΓLσ(ξ)ΓRσ(ξ)

ΓLσ(ξ) + ΓRσ(ξ)
A(dσ, ξ)

∂f(ξ)

∂ξ
(2.17)

with, for l ∈ {L,R}

Γlσ(ξ = ξkσ) = 2π |tkσ|2N l
F (2.18)

and N l
F the density of states at the Fermi level in lead l. The spectral density A is3

A(dσ, ω) = −2 Im[Gdσ(ω)] (2.19)

with


Gdσ(ω) =

∫ +∞

−∞
Gdσ(t)eiωtdω

Gdσ(t) = −iθ(t)
〈{
cdσ(t), c†dσ(0)

}〉

2.2.2 Equation of motion theory

For T � TK , one can neglect electronic correlations between the dot and the leads 4.

Then, the equation of motion technique leads to (see Appendix D for details)

3with the conventions of [75]. Usually, it is defined as A = − 1
π

Im[G].
4The following approximations are made 〈{c†kσ(t)ck′σ(t)cdσ(t), c†dσ}〉=δk,k′f(ξkσ)〈{cdσ(t), c†dσ}〉,

〈{c†dσ(t)ck′σ(t)ckσ(t), c†dσ}〉=0,〈{c†k′σ(t)ckσ(t)cdσ(t), c†dσ}〉=0. This means that the Green’s function ex-
pansion is up to first order in cdck. Therefore, this calculation cannot treat Kondo correlations which
require the summation over all correlation terms.
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Gdσ(ω)/~ =
1− 〈ndσ〉

~ω − ξdσ − ΣS
σ(ω)

+
〈ndσ〉

~ω − ξdσ − ΣD
σ (ω)

(2.20)

with

ΣS
σ(ω) = Σ0

σ − UΣ1
σ

[
~ω − ξdσ − U − Σ0

σ − Σ3
σ

]−1
(2.21)

ΣD
σ (ω) = U + Σ0

σ + UΣ2
σ

[
~ω − ξdσ − Σ0

σ − Σ3
σ

]−1
(2.22)

with 〈ndσ〉 the average occupation of orbital d by spins σ . Assuming that Γlσ is en-

ergy independent (broad band approximation) and using (2.18), the self energy terms

occurring at the right hand side of (2.21) and (2.22) are (see Appendix D)

Σ0
σ = −iΓσ/2 (2.23)

Σ1
σ(ω) = −iΓσ

2
[f(ξdσ + ξdσ + U − ~ω) + f(~ω + ξdσ − ξdσ)]

+
Γσ
2π

Re

[
Ψ(

1

2
+ iβ

ξdσ + ξdσ + U − ~ω
2π

)

]
− Γσ

2π
Re

[
Ψ(

1

2
+ iβ

~ω + ξdσ − ξdσ
2π

)

]
(2.24)

Σ3
σ = −iΓσ (2.25)

Σ2
σ(ω) = −iΓσ − Σ1

σ(ω) (2.26)

with Γσ = ΓLσ + ΓRσ and Ψ(z) =
(∑+∞

k=1
1
k −

1
k+z−1

)
− γ the digamma function. The

self-energy Σ1 is the result of the EOM refinements. It gives corrections to the Lorentzian

approximation that can be done for the energy levels. In the following section, this will

be emphasized by comparing the predictions for both models. However, as already

mentioned, this EOM description is an approximation which is not perfectly controlled

as it diverges at half-filling, which is a signature of the appearing Kondo effect 5. It can

nevertheless be expanded to the description of the Kondo physics, as it has been done

in [76].

The density of states Adσ(ω) can be calculated from equation(2.20) as

Adσ(ω) = (1− 〈ndσ〉)ASσ(ω) + 〈ndσ〉ADσ (ω) (2.27)

5Note that limβ→0(Re[Ψ( 1
2

+ iβ ξdσ+ξdσ+U−~ω
2π

)]−Re[Ψ( 1
2

+ iβ ~ω+ξdσ−ξdσ
2π

)]) = log[
∣∣∣ ξdσ+ξdσ+U−~ω

~ω+ξdσ−ξdσ

∣∣∣].
At T = 0, this limit diverges for ξdσ + ξdσ + U − ~ω = 0 or ~ω + ξdσ − ξdσ = 0.
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with, for j ∈ {S,D}

Ajσ(ω)/~ =
−2 Im[Σj

σ]

(~ω − ξdσ − Re[Σj
σ])2 + Im2[Σj

σ]

This allows to find a self-consistency equation to calculate the average occupation of the

QD 〈ndσ〉

〈ndσ〉 =
〈nSσ〉 (1− 〈nSσ〉) + 〈nSσ〉 〈nDσ〉

1− (〈nDσ〉 − 〈nSσ〉)(〈nDσ〉 − 〈nSσ〉)
(2.28)

with, for j ∈ {d, S,D},

〈njσ〉 =

∫ +∞

−∞

dω

2π
f(~ω)Ajσ(ω) (2.29)

Spin degenerate situation

in the case where the spins are degenrate, the expression of 〈nd〉 and Ad(ω) can be

simplified. This is especially useful for numerical calculations. The summation over σ

directly gives

〈nd〉 =
2nS

1 + nS − nD
(2.30)

and the spectral density of states can be written

Ad(ω) = (1− 〈nd〉
2

)AS(ω) +
〈nd〉

2
AD(ω) (2.31)

2.2.3 Occupation of the QD

In this section, the occupation number of the dot is evaluated as a function of the

applied gate voltage bias. At this point, it has been calculated within the frame of a

full EOM development. While being rigorous, the results are obtained only through

numerical evaluations. It is therefore instructive to look at a simpler version of the

EOM technique in which the self-energies Σ1 and Σ2 are removed. This is equivalent to

consider Lorentzian line-shape levels. The conductance of the QD therefore writes

G±(ω) =
1− 〈n∓〉

~ω − ε± + iΓ/2
+

〈n∓〉
~ω − ε± − U + iΓ/2

(2.32)
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The self-consistency equation on the occupation number of the QD, arising from the

direct combination of equations (2.5) and (2.29) is

〈n±〉 = − 1

π

∫ +∞

−∞
dωf(ω)ImG±(ω) (2.33)

Equation (2.33) is analytically solvable and the mean occupation number of the QD

within this approximation at T=0 is (for details, see appendix D section D.4)

〈n±〉 =

1
2 −

1
π arctan

(
2ε±
Γ

)
+ β±

π

(
1
2 −

1
π arctan

(
2ε∓
Γ

))
1− β+β−

π2

(2.34)

with β± = arctan
(

2ε±
Γ

)
−arctan

(
2ε±+2U

Γ

)
. Equation (2.34) is particularly useful for fast

computations and will be used later on in chapter 5 in the distant interaction model.

In order to evaluate these quantities, experimentally relevant values are taken, Γ =

1meV, U = 10meV and T = 5K. Therefore Γ/U = 0.1 and U/kT = 23 which is in

agreement with the working hypothesis of EOM. As εd is tuned from 10mV to -20mV,

the dot is successively filled with one electron at εd = −U/2 and two electrons at

εd = −3U/2.'
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Figure 2.6: a : Scheme of the single orbital dot, with tunnel barriers and Fermi seas
at Fermi energy on both sides. The energy between the single occupied and double
occupied dot is the Coulomb energy U. b : Number of electron on the dot with
regard to the dot energy ξ̃d/U . Full EOM calculation using numerical evaluation of
equation (2.28) (black curve), EOM with Lorentzian approximation at T=0, using
analytical expression (2.34) (blue dashed curve) and sequential tunnelling regime

using master equation approach (red dashed curve).

Figure 2.6 (b) shows the mean average occupation of the QD as a function of the gate

voltage. Three different evaluations are shown. The black curve corresponds to the
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full EOM calculation using numerical evaluation of equation (2.28). The blue dashed

curve corresponds to the EOM with Lorentzian approximation at T=0, using analytical

expression (2.34). Finally, the red dashed curve corresponds to the sequential tunnelling

situation Γ � kT solved with master equation technique for double occupancy single

orbital (as treated in chapter 1). For this last case, the number of charges on the QD is

directly given by

〈n〉 =
∑

nipi (2.35)

with pi defined by equations (B.3). The results presented here highlight the role of

the full EOM treatment as the steps of the QD occupation are significantly smoothed,

especially around n = 1.

2.2.4 Capacitance of the QD

'
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Figure 2.7: Mesoscopic capacitance of the QD responding to the AC voltage source
in the three different situations addressed in this chapter. Full EOM calculation
using numerical evaluation of equation (2.28) (black curve), EOM with Lorentzian
approximation at T=0, using analytical expression (2.34) (blue dashed curve) and
sequential tunnelling regime using master equation approach (red dashed curve).

Now that the average occupation number 〈nd〉 on the QD versus the gate voltage has been

determined, the effective capacitance of each capacitor due to the charge redistribution

can be calculated. The average charge distribution on each capacitor plate reads
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〈Qi〉 = −αie〈n〉+ ViCi + αi(
∑
j

CjVj) (2.36)

from which we it is easy to calculate the effective capacitance as

C̃i =
∂〈Qi〉
∂Vi

= −αie
∂〈n〉
∂ξ̃d

∂ξ̃d
∂Vi

+ Ci(1 + αi)

= −(αie)
2∂〈n〉
∂ξ̃d

+ Ci(1 + αi) (2.37)

The mesoscopic capacitance responding to the AC voltage source is then as shown in

figure 2.7 in the three different situations already discussdd in figure 2.6 for αAC = 0.3

and CAC = 2aF. The height of the capacitance peaks, their width and positions are

all affected by the considered model. As expected, for the full EOM treatment, the

peaks are wide and small compared to the Lorentzian approximation and the sequential

tunnelling regime.

It is important to compare the behaviour of the capacitance and of the differential

conductance of the system, as both quantities are measured in the experiments performed

in this work. Such study is presented in figures 2.8 and 2.9 for two sets of temperature

T = 2K and T = 5K. The behaviour of the AC capacitance is similar to the one of the

differential conductance. Nevertheless, by scaling the mesoscopic capacitance and the

differential conductance, several differences in the two line shapes are visible, as shown

in figure 2.9. First there is a significant difference between the relative peak heights. The

peaks are also slightly shifted in eαVg/U between dI/dV and C̃. Indeed at T=2K, the

peaks are respectively found at −U ± 0.475U and −U ± 0.45U for the capacitance and

the differential conductance, and at T=5K, −U ± 0.505U and −U ± 0.48U respectively.

2.2.5 Non-interacting limit and link between the capacitance and the

spectral density

The EOM description is actually exact only in the non-interacting case U = 0. In this

situation, the conductance simply writes

G±(ω) =
1

~ω − ε± + iΓ/2
(2.38)
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Figure 2.8: a : mesoscopic capacitance in regard with the AC voltage source versus
eαVg/U for two different temperatures T = 2 (black) and 5K (red). b : differential

conductance through the dot in the same conditions in units of 2e2/h.'
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Figure 2.9: Comparison of the mesoscopic capacitance and the differential con-
ductance with two different scales, C (black, left scale) and dI/dV (red, right scale).

a : 2K and b : 5K.

which gives the following spectral density

A(ω) =
Γ

2π

1

(~ω − ε±)2 + Γ2/4
=

2

πΓ

1

1 +
(

2ε
Γ

)2 (2.39)

Following the calculation steps detailed in appendix D.4, the average number of electron

on the QD in the spin degenerate situation is

〈n〉 = 1− 2

π
arctan

(
2ε

Γ

)
(2.40)

which finally gives a quantum capacitance (following equation (2.37))
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CQ(U = 0) =
2e2

πΓ

1

1 +
(

2ε
Γ

)2 (2.41)

One directly see that the non-interacting capacitance CQ(U = 0) is equal to the spectral

density A(ω = 0) (when proper dimension has been reintroduced inG). The introduction

of interactions in the system, will make the weight of the capacitance to be less than the

spectral density. Therefore, the full spectral density of a level constitutes an upper bound

to the quantum capacitance value. As the spectral density of a level can be evaluated

from its width from a spectroscopic measurement, it is straightforward to estimate this

upper bound. This will be used in chapter 4 for the estimation of the electron-photon

coupling in the Kondo regime.





Chapter 3

Experimental setup

3.1 Nanofabrication

An important part of the experimental work of this thesis is devoted to sample fabri-

cation. Most of it has been done done in the clean room of the ENS and some thin

film depositions were done at the clean room of the ESPCI (SBPC). As already empha-

sized, the challenge of the experiment was to combine two fields of mesoscopic physics,

hence two different types of nanofabrication processes. On the one hand, there is the

fabrication of superconducting coplanar waveguide resonators. On the other hand, the

growth and contacting of carbon nanotubes. As we will see in this section, the merge

of these two processes has been challenging as they are not really compatible. Indeed,

superconducting films are not robust against the heating temperatures required to grow

the carbon nanotubes by CVD. For their part carbon nanotubes are fragile to the usual

etching techniques of superconducting resonators. The first process that we have devel-

oped was based on growing the carbon nanotubes inside the cavity, leading to the first

sample we could measure, NTRES33a. The unreliable AC properties of the supercon-

ducting resonator and the low yield of contacted carbon nanotubes lead us to develop

a reversed process where the quantum dots are done first, and the cavity is built as

the last step. While challenging, this process lead to better success rates of functional

quantum dots and the resonator suffered no alterations. In this section I will describe

the different fabrication processes that I used to make the samples and I will detail the

two different processes developed in my thesis.

63
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3.1.1 Substrates

Choice of the substrate

The first stone of a nanodevice is the substrate on which the nano circuit is built. In our

case, the choice of the substrate was determined by the resonator properties constrains.

In order to achieve high quality factors, one must use highly resistive substrate to avoid

at most dielectric losses. It has been recently demonstrated that internal quality factors

between 106 at single photon level and 107 at high power are achievable with Al based

CPW resonators on sapphire [77]. The other widely used substrate is passivated Si wafer

with high resistivity. This kind of substrate allows lower quality factors resonator but

still up to several 105 [78]. We chose to use the latter one as it is easier to manipulate and

to perform e-beam lithography with reasonably small charging effects. Indeed, sapphire

is so highly resistive that there is very little contrast in a scanning electron microscope

(SEM) as the charges cannot escape through it, rendering every e-beam lithography

difficult.

Characteristics and preparation of the wafers

Our wafer is 500µm thick highly resistive Si (ρ ≈ 10kΩ.cm) with 500nm of thermally

activated silicon oxyde SiO2. Four inches wafers are diced in 10 × 10 square chips on

which two devices will be processed. Every chip is labelled NTRES# and each of the

two devices on a chip is labelled a or b. The CPW resonator is a macroscopic structure

of several millimeters that requires the least amount of defects. It is thus important to

first properly clean the substrate. It is done by cleaning the chips with the following

recipe

Acetone 10 min in ultrasonic bath

IPA 10 min in ultrasonic bath

Piranha acid (H2SO4/H2O2 with ratio 3:1) 15 min

Wafer cleaning

3.1.2 Lithographies

The main purpose of nanofabrication is to make metallic structures that will define

the device. In order to draw the device pattern, we use either electronic or optical
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lithography. Although they technically differ, both relies on the same concept and the

main steps of creating this metallic pattern with lithographies is schemed in figure 3.1.

The polymeric bonds of the resists are altered either with an electron beam or by UV

on specifically patterned regions. These exposed regions can then be removed with a

specific developer, while the unexposed resist remains on the wafer.'
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Figure 3.1: Nanofabrication processes. a: resist deposition on the substrate, b:
spin coating of the resist to form an uniform layer of resist, c: exposure of the
resist with either electron beam or UV, d: development of the resist to remove the
exposed pattern, e: thin metallic film deposition on the sample, f: lift off to remove

the unexposed resist and the metallic film upon it.

e-beam lithography

E-beam lithography is usually used for making nanometer to micrometer range structures

as it offers a resolution close to few nanometers. We use it to build the quantum dot

on carbon nanotube where electrodes of few hundreds of nanometer are made with a

precision of fifty nanometer. In a first process, we also use e-beam lithography to build

the resonator, even though this structure is millimetric in size. The resist that we use is

poly-methyl-methacrylate (PMMA) diluted in anisol. It is an electronic positive resist,

which means that what is exposed is being removed at the development step. We prepare

the PMMA layer by depositing two to three drops of PMMA on the chip and spin coating

it at 4000 rounds.min−2× 4000 rounds.min−1 during 30s. It is then baked at 165°C for

15 minutes. This makes a PMMA layer of 500nm. It can also be useful for some steps

to make thicker PMMA layer. It is achieved by repeating this process one more time,

which leads to a 1000 µm layer.

Different parameters can be tuned to adapt the e-beam writing to one needs. They

consist in the acceleration voltage of the gun, the aperture size of the beam, the dose

of exposure and the step size of the beam. We use an acceleration voltage of 20kV for

writing purposes and 2kV for observation of carbon nanotubes. The latter is necessary
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in order to avoid damaging the nanotubes. The aperture size is an important parameter

for writing speed. The smaller the size of the aperture, the more resolution we get but

the longer the lithography will take. The exposure dose, expressed in µC.cm−2 reflects

the amount of charges that is injected in the resist per area unit. For every couple of

parameters of acceleration voltage and aperture size, the electronic current of the beam

is measured. Then a step size is set, defining the resolution of the structure as the

minimal area. Finally, the dwell time of the beam on each minimal area is calculated,

knowing the beam current and the required dose. This exposure dose is actually a critical

parameter of the e-beam lithography. Indeed, too small a dose results in a pattern that

will not be developed due to under exposure. On the other hand, too high dose will

result in enlarged structures that can overlap. It is thus advised to perform a dose test

for every new process. Finally, the exposed pattern is removed by developing it in a

methyl-isobutyl-ketone:isopropanol (MIBK ratio 1:3) solution during 2 minutes.

UV lithography

UV lithographies are usually used for large structure and offer a maximum resolution of

1µm. The main advantage of UV lithography over e-beam lithography is that it is much

faster and can be operated easily on large wafers up to 4 inches. Once the process is

optimized, it takes about 15 minutes to obtain a developed resist pattern. For example,

writing a resonator with e-beam lithography takes about one hour while it takes only

15 minutes to write up to 50 resonators at with UV lithography. In the second device

recipe, we used UV lithography to make the resonator as the final step of the process.

The resist we use is the AZ5214E, which can be used as both positive (what is exposed

is removed) or negative (what is exposed remains) resist. The process differs for each

use. We use the same parameter for spin coating this resist on the sample but only

cook it 1’30” at 120°C and obtain a 1200nm thick layer of resist. To draw the desired

pattern, we need a mask that blocks up the UV except where we want to expose the

resist. The pattern of the mask is made of chromium, which is put in contact with the

resist of the sample. We use the AZ5214E resist as a negative resist and thus must

perform several steps to obtain the desired result. First there is an exposition of the

resist that breaks the bondings between the polymeric chains of the resist. The sample

is then baked again for 1’30” at 125°C. New bonds are formed between the resist chains

in these exposed regions. These are actually stronger than the unexposed ones. Then

the sample is flooded with UV on all its surface in order to break the polymeric chains

of the unexposed regions. Thus after development, only the resist where we first made

make the exposure with the chromium mask remains.
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1. 1.2µm thick AZ5214E resist : 4000/4000/30 spin coating + 1’30” of baking

at 120°C).

2. UV exposure during 3s with hard contact (5s).

3. baking at 125°C for 1’30”.

4. UV flooding during 30s.

5. development : MIF 746 for 15s

UV lithography for resonator

3.1.3 Thin films deposition

After lithography is done and the sample is developed, we usually deposit a metal layer

on the sample as shown in figure 3.1 (e). This allows to create the metallic structures

of the device. This is done in an evaporator where a metal ingot is heated above its

melting temperature, creating a conical jet of atoms that deposits on the surface of the

sample above. The thickness of the layer is controlled via a quartz inside the evaporator

that lies within the evaporation cone. The sharp resonance of the quartz is modified

by the mass of the evaporated layer, giving a precision on the evaporation rate up to

0.1Å.s−1. The heating of the metal ingot can be achieved by either Joule effect or with

an electron beam. Joule effect evaporator are usually small and easy to manipulate but

only usable for metal with low melting point like gold or aluminium. For higher melting

point metal like niobium, palladium or titanium, we use an electron beam evaporator

at the ESPCI (SBPC).

The key point of evaporating thin films layer is to obtain the purest layers. To achieve

this, we need high vacuum or even ultra high vacuum (UHV) in order to avoid at most

the number of impurities in the layer. Heating the metal ingot induces desorption of

impurities lying in the evaporator and increases the pressure inside it. It is therefore

a competition between a high enough evaporating rate and a low enough pressure to

ensure good thin films quality. The vacuum of the Joule evaporator of the ENS is made

by a turbo molecular pump (TMP) and we usually reach 10−6 to 10−5 mbar during

evaporation, which is enough for gold. On the other hand, some materials like niobium

require sharper conditions. The value of the Tc and the residual resisitivity ratio (RRR)

of niobium1 depend strongly on the number of impurity in the layer. A rate of few Å.s−1

1These two parameters are crucial to ensure good superconducting properties.
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at around 10−7mbar is needed. We achieve these constrains with a TMP, an ion pump

and titanium sublimation to get a base vacuum of the order of 10−8mbar.

3.1.4 Reactive ion etching

A fast and convenient method to make CPW resonator is reactive ion etching (RIE). Dry

chemical etching of the metal layer is done by a plasma. The plasma is made with various

different gases, depending on the metallic layer. For this process, the metallic layer is

usually deposited on all the wafer’s surface and lithography is done on top of it. The

success of this process is that the metallic layer is etched faster than the resist layer. As

niobium is easily etched by SF6 plasma (200 nm in approximately 30 s). However, this

technique is limited to a restricted number of metals as for example aluminium cannot

be etched with it. O2 plasma RIE is also widely used to clean samples by removing all

organic deposit on the surface. It is often use to remove resist remains on the sample

and especially in the gaps of the resonators. Carbon nanotubes thus do not resist this

treatment and it is impossible to clean the gaps of the resonator with this technique. SF6

plasma should not destroy CNTs in principle but can affect their atomic structure by

adding defects or inclusions. This explains why the first process was based on growing

the CNTs inside the already etched resonator.

3.1.5 Carbon nanotubes growth

The key ingredient of our devices is the carbon nanotube. Ijima in 1991 [79] was the

first to control the growth and characterize carbon nanotubes. This material exhibits

good physical, electrical and chemical properties. This work by Ijima initiated the

development of various methods to produce carbon nanotubes such as arc discharge,

laser ablation or chemical vapour deposition, boosted by the wide range of interest of

this material. We use a chemical vapour deposition (CVD) technique based on methane

and molybdenum oxide catalyst. We need single wall carbon nanotubes (SWNT) with

semiconductor behaviour and the recipe we use was purposely developed to favour the

synthesis of such.

Catalyst

The first ingredient we need is the catalyst. It is made of nanoparticles of three different

types of oxides in solution. The exact composition is 39mg of Fe(NO3)3-H2O, 7.9mg of

MoO2 and 32mg of Al2O3 diluted in 30mL of methanol. CNTs will actually grow from

the nanoparticles deposited on the sample’s surface. Where we want CNTs to grow, we
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make square holes of 1µm are made by e-beam lithography in the resist. One to two drops

of catalyst are deposited on the sample and it only remains on the surface where the

square windows were made. It is important here to have two-layer thickness of PMMA

in order to obtain well defined catalyst spots. Otherwise, the catalyst solution can leak

near the hole, ending with a wide area of catalyst on the sample as shown in figure

(3.2). Then lift-off is proceeded to remove the PMMA. In order to avoid redeposition of

catalyst on the surface, the lift-off is made with several beaker of acetone. The overall

detailed process is described in box (3.1.5).'
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Figure 3.2: Catalyst deposition with (a) one layer of PMMA (500nm thickness)
and (b) two layers of PMMA (1µm thickness). Catalyst spread away from the
lithographied hole in the case of one layer of PMMA on an area up to 10µm×µm.

Resist : 1µm thick layer of PMMA (two layers technique)

e-beam lithography : 1µm square holes. Acceleration voltage : 2kV, aperture

: 10 µm, XY step size : 20nm, exposure dose : 300 µC.cm−2. MIBK

development : 2 minutes.

Catalyst solution : 1h of ultrasonics to break the particles clusters, then 45

min of settling.

Catalyst deposition : 1 or 2 drops of the upper part of the catalyst solution

is deposited on the surface of the sample and is immediately dried with

nitrogen flow.

Lift off : 4 successive beakers filled with acetone : 30”/60”/90”/180”. The sam-

ple is then cleaned in IPA.

Catalyst deposition
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Step Time
(min)

Temperature
(°C)

Ar
(mL/min)

H2

(mL/min)
CH4

(mL/min)

purge 3 20 1500 220 1100

heating ∼ 20 20 to 900 1500 0 0

H2 flash 8 900 0 220 0

growth 10 900 0 220 1100

cooling (1st step) ∼ 180 900 to ∼ 300 1500 220 0

cooling (2nd step) ∼ 60 to 20 1500 0 0

Table 3.1: Carbon nanotube CVD growth process.

Chemical vapour deposition

Once catalyst is deposited on the sample, the growth of CNTs can be performed. The

sample is put in an oven that reach 900°C. We use three different gases. Argon (Ar) as

a neutral gas, hydrogen (H2) as a reducer for catalyst nanoparticles and methane (CH4)

as the carbon source. The protocol for the growth is described in table (3.1).

Issues with superconducting resonators

As already mentioned, superconducting resonators and CNTs are quite incompatible.

We first thought that growing CNTs inside the resonators would be the easiest way

of making the device and we thus focused on this process. first, the high temperature

required for CVD limits the type of superconductor that we can use. Aluminium films

would indeed be severely altered as their melting point is 660°C. On the contrary, Nio-

bium with its high melting point seems perfectly suited for this. Unfortunately, niobium

does not resist CVD growth and even becomes non metallic after the process. The film is

matted and looks greyish. To overcome this, we protect niobium with platinum (usually

30nm of Pt over 200nm of Nb). The interest of this process is that Pt becomes super-

conductor by proximity effects and the layer doesn’t look altered after the growth. DC

measurements of the Tc of the superconducting thin film shows a drop from 9.2K before

the growth to 8K after the growth as shown in figure (3.3). However, the AC properties

of the film turn out to be severely altered probably by the formation of grain boundaries

at temperature above 600°C in the presence of impurities. These grain boundaries acts

as scatterers that dissipates the AC excitations. This resulted in relatively low quality

factors of our resonators, below 1000, compared to the expected 10000.
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Figure 3.3: Van der Pauw measurement of Nb/Pt (200nm/30nm) thin films critical
temperature before CNT growth (black line) and after CNT growth (red curve).
The ratio between the resistance before transition R0 and the measured resistance

is plotted. The Tc drops from 9.2K to 8K after the CVD growth.

3.1.6 Contacting carbon nanotubes

The confinement of CNT to form the QD is achieved by contacting it with metallic

electrodes. This step breaks the atomic structure of CNT at the contacts points, cre-

ating tunnel barriers from the electrodes to the CNT. This step is thus critical because

the lithography parameters and choice of electrodes metal will ensure the best contact

possible from the CNT QD to the external world.

Localizing carbon nanotubes

After the growth, a first observation of CNTs is made with the SEM (EHT : 2kV,

aperture : 10µm, magitude ≤ 2k). The purpose of this step is to quickly take pictures

of the different growth zone of each resonators and then determine which CNT will be

contacted in each of the four available areas (see figure 3.4 a). Once this choice is made,

precontacts and alignment crosses defining a 100µm×100µm are made in gold for each

of the four chosen CNTs (see figure 3.4 b). Finally, by aligning with the SEM on these

crosses, precise pictures of the CNTs are taken. These SEM micrograph are inserted in

the mask editor at the right coordinates and the electrodes are then directly drawn on

top of the imaged CNTs as shown in figure 3.5.

Fine structures

Alignment of the e-beam writer is made on the same crosses as in the localization step

in order to be in the same coordinate. To avoid any overlap between the 500 nm wide
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Figure 3.4: SEM observation of the CNTs. a : first rough observation of the
CNTs after the CVD growth. We see CNTs grown from catalyst inside the gap of
the CPW resonator. b : Fine localization of the CNT of the chosen zone. The
localization is made by aligning on the gold alignment marks on each corner. The

gold precontacts are also visible.

electrodes separated by 500 nm, the exposition dose must be of 250µC.cm−2. However,

all the resist must be removed on the CNT itself to ensure good galvanic contact. It is

achieved by significantly increasing the exposition dose to 360µC.cm−2 at the contact

point of each electrodes. The fine structures are made with standard parameters (EHT

: 2kV, aperture : 10µm, XY step size : 20nm). CNTs are then contacted with Pd

electrodes which provides the best coupling between the two structures (need ref here

!). Once a CNT is contacted, it is exposed to electrostatic shocks and the greatest care

must be undertaken to avoid damaging the CNTs.'
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Figure 3.5: Fine structure contacting the CNT. a : mask drawing directly on the
localization SEM micrograph. b : Pd fine structures after lithography, evaporation

and lift-off.



Chapter 3. Experimental setup 73

3.1.7 Two recipies

As mentioned at the beginning of this section, two different processes where developed

to make the devices. Although the second method we developed gave better quality

samples, it is important to report both. Indeed, the first process was easier to implement

with our initial knowledge and the first working sample we made that lead to the first

measurement of the coupling of a CNT QD to a microwave resonator was made with it.

First recipe : Resonator before CNT growth

The major difficulty of this process was to make the superconducting film survive the

CVD growth (at least in DC). It was requested that the protection layer can endure the

high temperature without diffusing as well as it should not alter the superconductivity

of the niobium. Several candidates were tried. We first tried to protect niobium with

palladium but it acted as a catalyst for CNT growth and the CNT density was too high.

Titanium was also tried but was similarly altered. The solution was found in platinum

which becomes a superconductor by proximity effect and cannot be corroded.

1. Wafer cleaning : as described on page 64.

2. Resonator

(a) e-beam resonator

i. 1µm thick PMMA : 2 times (4000/4000/30 spin coating + 15 min of

baking at 165°C).

ii. e-beam lithography : voltage 20kV, aperture 120µm, XY step size 200nm,

curve step size : 140nm, dose : 300µC.cm−2.

iii. development : MIBK:IPA (1:3) for 2 min.

(b) UV lithography resonator

i. 1.2µm thick AZ5214E resist : 4000/4000/30 spin coating + 1’30” of

baking at 120°C).

ii. UV exposure during 3s with hard contact (5s).

iii. re baking at 125°C for 1’30”.

iv. UV flooding during 30s.

v. development : MIF 746 for 15s

(c) Nb/Pt evaporation : electron gun evaporation. 200nm of Nb at 2Å.s−1 and

pressure P= 10−7mbar. 30nm of Pt at 2Å.s−1 and pressure P= 10−7mbar.
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(d) RIE : SF6/O2 (25sccm/2sccm) plasma. It takes approximatively 3 min to

remove the Pt layer and 30s to remove the Nb layer.

3. CNT growth : catalyst deposition as described on page 69 and CVD growth as

described in table 3.1.

4. CNT observation : SEM imaging. voltage 2kV, aperture 10 µm, maximum

magnification 1.5k.

5. Precontacts and alignment marks (100µm × 100µm field)

(a) 500nm thick PMMA : 4000/4000/30 spin coating + 15 min of baking at

165°C.

(b) e-beam lithography : voltage 20kV, aperture 10µm, XY step size 20nm, dose

250µm.cm−2.

(c) development : MIBK:IPA (1:3) for 2 min.

(d) chromium/gold evaporation : Cr/Au (1.5nm/50nm). Chromium is used as

an adhesion layer. Evaporation is performed in a joule effect evaporator.

PCr ≈ 10−5mbar and PAu ≈ 10−6mbar.

(e) lift off in acetone at T=45°C.

6. CNT localization : SEM imaging with fine alignment on the alignment marks.

voltage 2kV, aperture 10 µm, magnification 1k.

7. Fine structures :

(a) 500nm thick PMMA : 4000/4000/30 spin coating + 15 min of baking at

165°C.

(b) e-beam lithography : voltage 20kV, aperture 10µm, XY step size 20nm, dose

360µm.cm−2 on the CNT, 250µm.cm−2 elsewhere.

(c) development : MIBK:IPA (1:3) for 2 min. It is critical to develop at least 2

min to be sure to remove all the resist on the CNT.

(d) Pd evaporation : electron gun evaporation of 100nm of Pd at P≈ 10−7mbar.

(e) lift off in acetone at T=45°C.

Second recipe : CNT growth before resonator

It turns out that CVD significantly alters the AC properties of superconductor thin

films. Better results can be obtained by reversing the process. The issue then is that we

must align the contacted CNT with the resonator at micrometric precision. Since growth
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is done before, RIE can’t be used since it could damage the SWNTs. This constrain

lead to the choice of a lift-off technique to make the resonator. UV lithography has

been chosen to do so, as it is convenient for quickly developing a process. The quantum

dot is built first (CNT + fine structures + precontacts) and is aligned it in the gap

of the resonator. The choice of a negative UV process allows to see the QD structure

inside the gap of the resonator during the alignment procedure. Then the tricky part

is the lift off of Nb thin films. Indeed, the high temperature of Nb evaporation “bakes”

the resist on the sample during deposition, hardening the resit. The lift-off becomes

impossible, even with smooth evaporations. Thus, Al thin film resonators have been

developed first because they are easily lifted. With this process, sample NTRES52a has

been produced, in which two quantum dots where “alive” in the cavity and which results

will be discussed in chapter. As the cryostat in use for this experiment is a VTI with

a base temperature of 1.4K, and as aluminium Tc=1.19K, we continued to work on Nb

and it was found that sputtered Nb thin film can be lifted with the right sputtering

parameters.

1. Wafer cleaning : as described on page 64.

2. Large alignment marks (1000µm × 1000µm field)

(a) 500nm thick PMMA : 4000/4000/30 spin coating + 15 min of baking at

165°C.

(b) e-beam lithography : voltage 20kV, aperture 120µm, XY step size 200nm,

dose : 300µC.cm−2.

(c) development : MIBK:IPA (1:3) for 2 min.

(d) Ti evaporation. Ti has a good adhesion on Si/SiO2 substrate and survives

CVD.

(e) lift off in acetone at T=45°C.

3. CNT growth : catalyst deposition as described on page 69 with alignment on

the Ti marks and CVD growth as described in table 3.1.

4. CNT observation : SEM imaging. voltage 2kV, aperture 10 µm, maximum

magnification 1.5k. To find the CNTs, it is necessary to find the Ti marks. The

contrast between Ti and Si/SiO2 substrate is very low. Nevertheless, the marks

can easily be found by using looking at the secondary electron detector of the

SEM.

5. Precontacts and alignment marks (100µm × 100µm field)
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(a) 500nm thick PMMA : 4000/4000/30 spin coating + 15 min of baking at

165°C.

(b) e-beam lithography : alignment on the Ti marks with the secondary electron

detector. voltage 20kV, aperture 10µm, XY step size 20nm, dose 250µm.cm−2.

(c) development : MIBK:IPA (1:3) for 2 min.

(d) chromium/gold evaporation : Cr/Au (1.5nm/50nm). Chromium is used as

an adhesion layer. Evaporation is performed in a joule effect evaporator.

PCr ≈ 10−5mbar and PAu ≈ 10−6mbar.

(e) lift off in acetone at T=45°C.

6. CNT localization : SEM imaging with fine alignment on the gold alignment

marks. voltage 2kV, aperture 10 µm, magnification 1k.

7. Fine structures :

(a) 500nm thick PMMA : 4000/4000/30 spin coating + 15 min of baking at

165°C.

(b) e-beam lithography : voltage 20kV, aperture 10µm, XY step size 20nm, dose

360µm.cm−2 on the CNT, 250µm.cm−2 elsewhere.

(c) development : MIBK:IPA (1:3) for 2 min. It is critical to develop at least 2

min to be sure to remove all the resist on the CNT.

(d) Pd evaporation : electron gun evaporation of 100nm of Pd at P≈ 10−7mbar.

(e) lift off in acetone at T=45°C.

8. resonator

(a) UV lithography resonator aligned on the contacts

i. 1.2µm thick AZ5214E resist : 4000/4000/30 spin coating + 1’30” of

baking at 120°C).

ii. UV exposure during 3s with hard contact (5s). At this step, the align-

ment and overlap between precontacts and DC lines is made with the

microscope of the UV masker.

iii. re baking at 125°C for 1’30”.

iv. UV flooding during 30s.

v. development : MIF 746 for 15s

(b) Al evaporation

i. Al evaporation : 330nm at 10Å.−1 at P ≈ 10−6mbar.

ii. lift off in hot acetone T=45°C.
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(c) Nb sputtering

i. Nb sputtering (150nm) with Ar (5.5) : Pbefore = 4.10−7mbar, Psputtering =

10−2mbar, rate = 20Å.−1. Power supply : I=1.02A, V=328V.

ii. lift off in hot acetone T=45°C.

3.1.8 Typical sample

The samples fabricated and measured in this thesis present the same geometry and

features, as presented in figure 3.6. The two antinodes regions of the CPW resonator

present opening in the ground plane which are presented in 3.6 (b). For each region, 3

DC lines are lithographied in order to contact the SWNT. Therefore, up to 4 QDs can

be contacted in the same cavity. Each antinode area presents 4 CNT growth windows

on each side of the resonator’s transmission line. In order to locate each contacted

SWNT in a resonator, they are numbered by the window number, starting from the

left of the resonator (ranging from 1 to 8) and by the side of the transmission line they

lie (G for “gauche” - left- and D for “droite” -right). This leads to samples name like

NTRES33bZ4D for example.'
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Figure 3.6: a : photograph of a CPW resonator in Nb/Pt or Al. b : optical
micrograph close up in false colors of the ground plane openings where the SWNT
QDs are contacted. The superconductor is in blue and the dielectric in green. c :
SEM micrograph in false colors of the contacted QD with source, drain and gate
electrodes. The blue represent the superconductor (transmission line and ground
plane), the yellow is for the Pd electrodes, the SWNT is in red and the dielectric in

green.

The coupling gaps of the resonator, as shown in figure 3.6 (b), are finger gaps, of length

100µm. They define a coupling capacitance of about 4fF, leading theoretically to quality

factors up to 12000. Quality factors up to 8000 have been measured in raw resonators in

Nb without any CNT growth as shown in figure 3.7. The cavity spectrum of complete

devices with SWNT QDs will be presented in the following chapter.
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Figure 3.7: Amplitude of the transmitted microwave field through a Nb CPW
resonator that did not get altered by CVD. In the insert is a zoom on the resonance,
in units of transmission coefficient S21. The arrows shows the width of the resonance

at -3dB, giving a quality factor of about 8000.

The SWNT are contacted within 5µm of the transmission line, in the gap of the CPW

resonator, as shown in the SEM micrograph of figure 3.6 (c).

3.2 Measurement techniques

3.2.1 Low noise measurements

We are interested in measuring the electronic properties of carbon nanotube based qua-

tum dots (CNT QD). Thus we need to measure the current flowing through the system.

As already described in chapter 1, driving the QD requires three electrodes. Source

and drain electrodes to bias the QD and a gate electrode to tune its energy. The CNT

is usually voltage biased and the generated current is measured. It is possible to ei-

ther measure the current or the differential conductance directly. In this thesis, the

measurement of the differential conductance was performed. It is done with a lock in

demodulation technique that allows to significantly reduce the noise of the signal. The

CNT is biased by a combination of a DC voltage Vsd and a low frequency AC signal

VAC � Vsd, VG at frequency ωAC generated by the lock in as shown in figure 3.8. The

resulting bias is

Vbias =
Vsd
10k + VAC

100k
1

100 + 1
10k + 1

100k

≈ Vsd
100

+
VAC
1000

(3.1)
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The current I through the CNT can be expanded as

I(VG, Vbias) = I(VG, Vsd + VAC cos(ωACt))

= I(VG, Vsd) + VAC cos(ωACt)
∂I

∂Vbias

∣∣∣∣
VG,Vsd

+O(V 2
AC cos2(ωACt))

= I(VG, Vsd) + VAC cos(ωACt)δG(VG, Vsd) +O(V 2
AC cos2(ωACt)) (3.2)

with δG the differential conductance of the system. The homodyne demodulation of

the lock-in removes all term that are not in cos(ωACt) and we end measuring only

VACδG(VG, Vsd). VAC is set to 100 mV so that the effective AC excitation of the system

is 100µV.

We know that the conductance quantum corresponding to one electronic channel with

unitary transmission is G0 = 2e2

h ≈ 77µS. One channel accounts for the spin degree of

freedom. In CNT, there are four conduction channels, two for spin and two for orbital

valleys. The maximum reachable conductance is then Gmax = 4e2

h . considering our

AC drive, the maximum possible current through the QD Imax ≈ 15 nA. The current

of small coupled CNT QD exhibiting strong Coulomb blockade regime can drop below

1pA. It is thus necessary to properly amplify this current with a transimpedance ampli-

fier as shown in figure 3.8. The amplification is directly given by the negative feedback

resistor Ra, converting a current I in a voltage −RaI. To avoid the noise, the amplifier

is connected the closest possible to the sample, at the cryostat head. It is also power

supplied by battery to avoid the electrical network noise or power cut. We use a com-

mercial amplifier DL Instrument 1211 preamplifier set on a transimpedance gain 106 as

well as a homemade amplifier based on the OPA657. This setup allows to measure pico

amps with noise of about 100 femto amps.

The gate voltage line is noise filtered by a high impedance resistor as shown in figure

3.8. This resistor in parallel with the capacitance of the DC line makes a RC filter with

frequency cut at fc = 1
2πRC ≈ 80Hz. It is important to place it on the cryostat head in

order to filter the noise that has been caught by the BNC cable from the voltage source

to the cryostat.

3.2.2 Microwave techniques

Simultaneously to the low frequency measurement of the differential conductance of the

QD, the transmitted microwave signal through the CPW cavity is measured. This is
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cryostat T = 1.5K

2MΩ

-
+

1MΩ

yokogawa 7651

100Ω

10kΩ

100kΩ

yokogawa 7651

SR 7265

Lock in

Osc Out

Signal Input

cryostat head measurement rack

Figure 3.8: Low frequency measurement setup. The gate voltage line is
represented in blue, the source and drain lines are respectively represented in red
and green. The bias excitation (red) is the addition of a DC voltage source (yokogawa
7651) and a low frequency AC voltage from a lock-in amplifier. This bias creates
a current in the CNT that is amplified by a trans-impedance amplifier at room
temperature that converts current into voltage (green). The signal is demodulated

in the lock-in. The gate voltage line (blue) is filtered by a 2MΩ resistance.

done with commercial microwave devices in a measuring chain that can be considered the

electronic counterpart of optic tables. The RF measurement setup is presented in figure

3.9. The measurement principle is based on signal modulation and demodulation in order

to extract both the in-phase (I) and out-of-phase (Q) quadratures of the transmitted

microwave field. The up and down conversions are done with double balanced mixers.

We use a signal generator (Agilent E8257D) to generate the local signal at frequency

ωLO ∈ [4;8] GHz at a power Pin =18dBm

ALO = ALO cos(ωLOt+ φLO) (3.3)

The output power of the RF source is adjusted to adapt to the input power working

points of the both the up-converter mixer and the IQ mixer2. This signal is mixed with

a low frequency signal coming from a lock-in amplifier at frequency ωIF =777.77Hz in

an up-converter.

AIF = AIF cos(ωIF t+ φIF ) (3.4)

with AIF=0.5V. The resulting RF two-tone sideband signal is

2respectively [7;10] dBm and [10:13] dBm
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Figure 3.9: RF measurement setup. The RF local signal at 4GHz≤ ωLO ≤
8GHz generated by an Agilent source E8257D is mixed with the AC signal of a lock-
in amplifier at ωIF =777.77Hz in a two side band up converter setup (dashed pink
square). This generates a RF signal, modulated in amplitude at ωRF = ωLO ± ωIF .
The superconducting cavity in the cryostat is driven by this signal (dashed red
square) at T=1.5K. At the output of the cavity is a cryogenic isolator that reduce the
back action noise of the first amplifier by 18dB. The transmitted signal is amplified
in an amplification chain of G=82dB (dashed blue square). A 3dB attenuator is
put between every amplifier to kill resonant modes. The amplified signal is down
converted with the RF local signal in an IQ mixer. The two in-phase (I) and out-of-
phase (Q) quadratures of the field at frequency ωIF are demodulated in the lock-in

amplifier.

ARF =
ALOAIF

2

[
cos((ωLO−ωIF )t+φLO−φIF )+cos((ωLO+ωIF )t+φLO+φIF )

]
(3.5)

The power is then adjusted with attenuators in order to drive the resonator at the

desired input power. We work with no cryogenic amplifier and at a rather high tem-

perature of 1.5K. Therefore the signal we can measure is limited by the thermal noise

of the measurement chain as well as the back action noise of the first amplifier. The

room temperature attenuators of the setup generate a noise level equivalent to a 50Ω

resistor. The bandwidth of the attenuator is B = 20GHz, leaving a noise level of

NV,V =
√

4kBTroomRB ≡ −65dBm. For the excitation line, this noise level is attenuated



Chapter 3. Experimental setup 82

by the 20dB attenuator at 1.5K to -85dBm. This attenuator gives itself a noise level of

NV,V =
√

4kBTsampleRB ≡ −88dBm. The resulting noise level at the input port is then

NV,V,in = −83dBm.

Amplification chain

The transmitted signal through the cavity is then amplified at room temperature by an

amplification chain. Between the first amplifier and the cavity output port is a cryogenic

circulator with a 50Ω resistor on the third port, in an isolator configuration. Amplifiers

have a back action noise which is usually expressed as an effective temperature. This

back action noise is thus absorbed by the 1.5K resistor. Nevertheless, the isolator is not

perfect and the output port of the resonator sees the back action noise of the amplifier

attenuated by 18dB in addition to the noise of the 1.5K resistor. It is important that the

first amplifier of the chain has the least input noise. The first amplifier of our chain has

a noise temperature of 51K. With the same reasoning that in the previous paragraph,

the noise that enters the output port is fixed by the 1.5K thermalized 50Ω resistance of

the isolator in addition to the back action noise of the first amplifier attenuated by the

18dB of the cryogenic circulator from port 2 to port 1. The overall is attenuated by the

3dB XMA attenuator between the isolator and the cavity. This gives a total noise level

on the output port NV,V,out = −82dBm3. The resonant modes that could arise between

two amplifiers are destroyed with 3dB attenuators. Amplifiers are only linear up to a so

called 1dB compression point at which they start to saturate. It usually happens around

10dBm. It is thus important to estimate the signal level as well as the noise level at

the end of the amplification chain to avoid saturating it. We see from these noise level

calculation that the driving power of the cavity cannot be less than roughly -80 dBm.

IQ demodulation

The amplified RF signal is down converted in an IQ mixer. The purpose of this device

is to extract the two quadratures of the EM field as described in figure 3.10. The

transmitted amplified signal AoutRF (ωLO ± ωIF , φout) = GτAinRF (ωLO ± ωIF , φin) is down

converted by the local oscillator signal. In the IQ mixer, both, AoutRF (ωLO ± ωIF , φout)
and AoutRF (ωLO ± ωIF , φout + π

2 ) are down converted, to ωIF . These two signals are then

demodulated in two lock-in synchronized at ωIF . We directly read the amplitudes of

the in-phase and out-of-phase of the EM field with this technique.

3The bandpass of the isolator is 4GHz, thus the overall noise at the output port is NV,out =

10 log
(
SV V (51K,4GHz)“−3dB“+SV V (1.5K,4GHz)“−3dB“+SV V (1.5K,20GHz)

1mW

)
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Figure 3.10: a : the electromagnetic field complex representation. The in-phase
(I) and out-of-phase (Q) quadratures are respectively the real and imaginary parts
of the EM field. b : IQ mixer principle. The RF signal enters a hybrid coupler that
generates 0°and 90°phase shifted RF signals. Both are down converted and low-pass

filtered, directly giving the amplitude of both quadratures.

The whole demodulation setup is calibrated by connecting the output of the up-converter

to the amplification chain. The RF power entering the amplification is adjusted to not

saturate the last amplifier nor the IQ down-converter. The calibration is made over the

whole frequency span available on the microwave table f ∈ [4.5;8]GHz. The amplitude

and phase are extracted from the in-phase and out-of-phase quadratures as shown in

figure 3.11. The amplitude is -12.5±1 dBm and the phase varies of 0.1 rad over the

whole span.'
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Figure 3.11: Calibration of the microwave table. Amplitude (a) and phase (b)
of the RF demodulation setup vs frequency of the local oscillator with P=-87dBm
entering the amplification chain. The output of the up-converter (dashed pink square
of figure 3.9) is directly connected to the input of the amplification chain (dashed

blue square of figure 3.9).



Chapter 3. Experimental setup 84

Phase drift compensation

The microwave phase is extremely sensitive to any external perturbation4. We will use it

to probe the QD inside the cavity and as we will see in the following chapter, we measure

∆φ ∈ [0.1; 3] mrad. We thus need to have the most stable phase possible. The two main

sources of variations of the phase are the temperature (cryostat and room) and the

current drifts of the RF amplifiers power supply. The latter can be reduced by properly

grounding the setup. However, the smallest temperature variations of the experimental

room will make the phase to drift, as schemed in figure 3.12. Data acquisition is rather

long on CNT devices, especially with lock-in techniques and phase drifts need to be

compensated.'
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Figure 3.12: Scheme of the drift of the phase of the RF signal during a measure-
ment. The drift of the phase is cancelled by defining a reference phase at a working
point φ0(0). At step n of the measurement, the phase φn(0) is measured at the same

working point and the angle ∆φn is added to the signal to compensate the drift.

The phase drift compensation is done by choosing a reference phase φ0 at a particular

working point ~V0 at the beginning of the measurement. Then each time it is necessary,

usually at the beginning of each new sweep, the phase φn is measured again at ~V0 and

a rotation angle ∆φ = φn − φ0 is made. The phase drift protocol is detailed in the

following box.

4e.g. the phase is sensitive to 10mK oscillations of the 1K pot
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1. sweep 0 : reference phase determination I0( ~V0)

Q0( ~V0)
=⇒

A0( ~V0)

φ0( ~V0)

2. sweep n  In( ~V0)

Qn( ~V0)
=⇒

An( ~V0)

φn( ~V0)

3. sweep n : drift compensation∆An = A0( ~V0)−An( ~V0)

∆φn = φ0( ~V0)− φn( ~V0)
=⇒

Acaln (~V ) = Acaln (~V ) + ∆An

φcaln (~V ) = φcaln (~V ) + ∆φn

Phase drift compensation





Chapter 4

Coupling a quantum dot to a

microwave cavity

The coupling between SWNT QD devices and a microwave CPW resonator is discussed

in this chapter. In this thesis, the measured samples exhibited the three different regimes

observable in such systems. Thus the discussion will cover the coupling of the cavity to

QDs in these three situations.

4.1 Quantum dot spectroscopy in the resonator’s phase

As emphasized in section 2 of chapter 3, the two quadratures of the transmitted mi-

crowave field are measured simultaneously with the low frequency differential conduc-

tance of the QD. Measurements of both differential conductance and microwave field

will be described in this section.

4.1.1 Three regimes

Fabry-Perot regime

The Fabry-Perot regime has been observed in sample NTRES52aZ7D as shown in figure

4.1 (a) where the differential conductance is represented in color scale plot, in the gate

voltage VG bias voltage Vsd plane. The Fabry-Perot pattern described in chapter 1 is

observable, with a level spacing ∆ ≈ 5mV corresponding to a QD length of approxima-

tively 350nm. We can note the non regularity of the pattern, especially in terms of level

spacing. That could be attributed to a more complex situation than exposed in chapter

1, where orbital K and K ′ are differently coupled to the leads.

87



Chapter 4. Coupling a quantum dot to a microwave cavity 88

Figure 4.1 (b) and (c) shows the phase and amplitude variations of the transmitted

microwave field simultaneously taken with 4.1 (a), at the resonance frequency of the

cavity, f = 5.75GHz. Essentially all the spectroscopic features observed in the differen-

tial conductance are visible in both the phase and the amplitude spectroscopies. The

phase spectroscopy evolves similarly to the conductance while the amplitude evolves op-

positely. The latter can be easily understood as the conductance of the QD corresponds

to a dissipative channel for the microwave field. Thus, the more the conductance, the

more dissipation in the system and the less amplitude of the RF transmitted field.'
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Figure 4.1: a : Color scale plot of the differential conductance of the SWNT QD
NTRES2aZ7D in units of 2e2/h in the gate/bias voltages plane in the Fabry-Perot
regime. b(c) : Colour scale plot of the phase (amplitude) of the microwave field
transmitted through the cavity at f = 5.75GHz taken simultaneously with (a). d
: Color scale plot of the differential conductance of the SWNT QD NTRES2aZ6G
in units of 2e2/h in the gate/bias voltages plane in the Coulomb blockade regime.
Excited states are visible as well as negative differential conductance peaks in red.

Coulomb blockade

The Coulomb blockade regime has been observed in two different devices, NTRES33bZ4D

and NTRES52aZ6G. The conductance in one particular region of the latter is presented

in figure 4.1 (d). A Coulomb diamond is visible, as well as excited states. These states

are observed as parallel lines to the diamonds edges, at finite bias voltage. Negative

differential conductance (NDC) zones are also visible in red. They can be explained for
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example by a strong difference in the couplings Γ between the excited states and the

leads (see e.g. [80]). Unfortunately, no phase nor amplitude spectroscopy were measured

in this regime for the different considered here, at the time this manuscript has been

written.

Kondo

Finally, Kondo effect was also measured, in sample NTRES33bZ4D. The corresponding

differential conductance color scale plot is presented in figure 4.2 (a). Three Coulomb

diamonds are visible and a Kondo ridge at zero bias is observed in the second diamond,

for VG between -2.5V and -2.0V. In the center of this Coulomb diamond, the Kondo

ridge reaches 0.75×(2e2/h), close to the maximum possible value of 1. This indicates

a well-developed Kondo resonance. A fit of this resonance in Vsd with the formula

G = G0(1 − (eV/kTK)2) gives a Kondo temperature TK ≈ 2.9K. The corresponding

phase spectroscopy is shown in figure 4.2 (b). As in the case of Fabry-Perot, all the

features observed in the conductance are visible in the phase spectroscopy. In particular,

a finite ridge is visible at zero bias, corresponding to the Kondo ridge. Contrary to

sample NTRES52a, the transmission of the cavity of sample NTRES33b was low (S21 ≈
−45dBm at resonance). The result of this is too small a signal-to-noise ratio of the

transmitted RF signal amplitude variations, making such information not usable.'
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Figure 4.2: a : Color scale plot of the differential conductance of the SWNT QD
NTRES33bZ4D in units of 2e2/h in the gate/bias voltages plane. Three Coulomb
diamonds are visible and a Kondo ridge at zero bias is observed in the middle
diamond. b : Color scale plot of the phase of the microwave field transmitted
through the cavity at f = 4.976GHz taken simultaneously with (a). In both colour

scale plot, the dashed red line is a cut at zero bias.
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An exotic Kondo effect region has also been observed in NTRES33bZ4D as shown by

the differential conductance spectroscopy of figure 4.3 (a). A local fourfold degeneracy

is visible, which is a signature of the two spins and two orbital channels available in

SWNT. Kondo ridges are observable at zero bias in the three last Coulomb diamonds,

corresponding to occupation of one, two or three electrons in the orbital being filled. This

is consistent with SU(4) Kondo effect (see e.g. [46, 81]). Again, the phase spectroscopy of

the same region (figure 4.3) exhibits the same features. Unfortunately, the spectroscopy

of this region underwent irreversible modifications1 before any precise study of this SU(4)

Kondo could be undertaken.'
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Figure 4.3: a : Colour scale plot of the differential conductance of a SWNT
QD NTRES33bZ4D in units of 2e2/h in the gate/bias voltages plane. The fourfold
degeneracy of SWNT is visible in this spectroscopy. Four Coulomb diamonds are
visible showing the filling of an orbital with 4 electrons. Kondo ridges are visible
in three consecutive diamonds, suggesting both spin and orbital Kondo effect. b :
Colour scale plot of the phase of the microwave field transmitted through the cavity

at f = 4.976GHz taken simultaneously with (a).

4.1.2 Other possibilities

It should be possible with this device architecture to observe RF signal modulation while

no differential conductance is observable. This could happen for example as in the situa-

tion depicted in figure 4.4. One of the leads is not contacted to the SWNT, or too weakly

coupled. In this case, tunnelling from the QD to the right lead is impossible, therefore

no signal can be measured in the standard low frequency differential conductance setup.

However, Charge fluctuations between the left lead and the QD are possible, governed

1The spectroscopy can change after large gate sweeps which empty or fill charge traps in the oxide
substrate.
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by ΓL. In the case of couplings ΓL comparable with the frequency of the resonator f0
2,

different couplings from one level to another should leave a phase variation. Indeed, a

effective capacitance can be attributed to the QD, taking into account both ΓL and f0

(see [28, 82]). The phase of the RF signal which is sensitive to the quantum capacitance

associated to the electronic levels of the QD would thus show variations relative to the

discrete spectrum of the QD.'
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Figure 4.4: Scheme of a situation where the QD is contacted to one lead only.
Charge fluctuations (represented by black arrows) from the contacted lead to the

dot are possible, affecting the cavity field.

4.2 Cavity-Dot coupling

The observation of the QDs spectroscopies in the phase of the microwave signal implies

that the QDs and the microwave field are coupled. In this section, the nature and

strength of this coupling is discussed.

4.2.1 Capacitive coupling

“Photonic” Anderson-Holstein Hamiltonian

The cavity is capacitively coupled to the QD and interacts with it in two ways. The AC

modulation of the cavity “shakes” both the leads and the energy levels of the QD. This

coupling is represented in figure 4.5 where both coupling are respectively represented

with red and blue capacitances.

The geometry of the QD with respect to the resonator transmission line is defined by the

CNT growth direction. Hence the coupling of the leads to the cavity is asymmetric in

most cases. This results in an asymmetric modulation of the chemical potential of both

2f0 ∼ 6GHz≡25 µeV, so ΓL should be less than 250µeV.
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Figure 4.5: Scheme of the capacitive coupling of the QD to the cavity. Both the
leads and the levels of the QD are coupled to the cavity (red and blue respectively).
The dashed areas represent the “shaking” of the leads and energy level due to the

AC modulation.

leads, and thus generates a finite current through the dot. This coupling is therefore

responsible for dissipation in the cavity. There is a fundamental difference between this

device and a standard cQED device. Here the electronic system is inherently an open

quantum system as the Fermi seas of the leads are part of it. Photons are thus coupled

to this open quantum system and can leak from the cavity through it3. This adds a new

damping term to the cavity photons, which depends on the QD state.

The coupling of the cavity to the energy levels of the QD is a capacitive coupling related

to a dipole-dipole coupling. The first dipole is the transmission line of the resonator

facing the ground plane. The QD dipole is made by the charge of the QD in regard

with the ground plane as well. Any change in the charge density of the QD modifies

this dipole, thus the microwave field. This can be formulated by a photonic version of

the Anderson-Holstein model

H = Hdot +Hcav +
∑

k=K,K′

λkn̂k(â+ â†) (4.1)

with λk and n̂k, respectively, the electron-photon coupling and the number of electrons

for each orbital k = K,K ′ of the SWNT QD. â and â† are the annihilation and creation

operators of the photon field. In general, λK 6= λK′ due to disorder [83]. This model

actually is an extension of the Anderson model discussed in chapter 1 and 2. The purpose

of this Hamiltonian is to treat the case of quantum impurities coupled to phonons. This

model leads to effects known as the Franck-Condon effect [84, 85]. The current of the

QD drops when the level separation matches the characteristic energy of the involved

phonons, as in a dynamical Coulomb blockade effect. The phonon bath here can be

3Note that even in the case of a coupling purely on the QD level, the relaxation resistance of the QD
is a damping for the photons as well.
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replaced by any boson bath, and in particular photons in the situation of this thesis.

The coupling involved in equation (4.1) is a capacitive coupling as the term λkn̂k(â+ â†)

can be classically seen as a charge times a potential QdotVfield, therefore a capacitance

of the QD towards the resonator.

The QD is spatially small compared to the leads to which it is contacted. One can

therefore argue that the coupling to the electronic levels of the QD might be vanishingly

small compared to the coupling to the leads. However, the coupling to the levels can be

indirect. It is indeed equivalent to modulate the energy of the QD and to symmetrically

modulate the chemical potential of the leads. In this picture, the capacitive coupling

CAC of figure 4.5 is the common mode of CL and CR. This point will reveal relevant

when analysing the data.

Mapping onto Jaynes-Cummings Hamiltonian

While the model of equation (4.1) describes the coupling as a capacitive coupling, it

is important to find a description equivalent to the one used in standard QED. This

gives a mean of comparison between the different approaches. The usual description

of the coupling relies on the Jaynes-Cumming Hamiltonian. In equation (4.1), the

orbital degree of freedom is taken into account. Disorder in the SWNT structure can

induce time-dependant valley mixing, thus orbital hybridization, as described in [83] and

depicted in figure 4.6 (a) as a Bloch sphere with |K〉 and |K ′〉 at each poles.'
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Figure 4.6: a : Bloch sphere of a two-level system |K〉 and |K ′〉. This situation
is possible in SWNT QD if the two orbital K and K ′ are hybridized. b : Energy
dispersion of the TLS in presence of a bosonic bath. The level avoiding distance is

related to the coupling g between the TLS and the bosonic bath.

It is therefore natural to consider both orbitals to be differently affected by the AC field.

In this situation, Hdot of equation (4.1) writes as
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Hdot =
∑

k=K,K′

εkd̂
†
kd̂k + Un̂↑n̂↓ + ∆KK′ d̂

†
K d̂K′ + ∆?

KK′ d̂
†
K′ d̂K (4.2)

with ∆KK′ the orbital hybridization strength and d̂k(d̂
†
k) the annihilation(creation) op-

erator of an electron in orbital k on the QD. To simplify the calculations to the most,

the case of a closed quantum dot with fixed number of electron n = 1 will be consid-

ered. This is implemented by taking U = ∞. The total Hamiltonian rewrites in the

{|K〉, |K ′〉} basis

Hφ = Hcav+
∑

k=K,K′

|k〉〈k|+∆KK′ |K〉〈K ′|+∆?
KK′ |K ′〉〈K|+

∑
k=K,K′

λk|k〉〈k|(â†+â) (4.3)

Defining
εK+εK′

2 as the energy origin, the Hamiltonian can be diagonalized as

Hdot =

(
εK−εK′

2 ∆?
KK′

∆KK′ − εK−εK′
2

)
=
√
E2 + ∆2

(
cos θ sin θeiφ

sin θe−iφ cos θ

)
(4.4)

with E =
εK−εK′

2 , ∆2 = ∆?
KK′∆KK′ , φ = arg(∆KK′) and tan(θ) = 2|∆|

εK−εK′
. The

eigenvalues and corresponding eigenvectors in the {|K〉, |K ′〉} basis are



E± = ±1

2

√
(εK − εK′)2 + ∆2

|+〉 = cos

(
θ

2

)
|K〉+ sin

(
θ

2

)
eiφ|K ′〉

|−〉 = − sin

(
θ

2

)
e−iφ|K〉+ cos

(
θ

2

)
|K ′〉

(4.5)

The Energy spectrum of such a TLS system exhibits the standard avoiding levels as

shown in figure 4.6 (b). The total Hamiltonian rewrites in the {|+〉, |−〉} basis

Hφ = Hcav +
E+ − E−

2
σ̂z + (λK′ − λK) cos

(
θ

2

)
sin

(
θ

2

)
(σ̂+â+ â†σ̂−) (4.6)

with the σ matrices defined as


σ̂+ = e−iφ|+〉〈−|

σ̂− = e+iφ|−〉〈+|

σ̂z = |+〉〈+| − |−〉〈−|

(4.7)
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To obtain equation (4.6), the rotating wave approximation (RWA) has been done. It

removes all non-resonant terms in the system. The standard Jaynes-Cumming Hamil-

tonian describing the coupling of a two-level system and a mode of an electromagnetic

field is written

HJC = HC + E0σz + ~g(σ̂+â+ â†σ̂−) (4.8)

Equations (4.6) and (4.8) have the same structure and direct comparison between the

different terms is thus relevant. The coupling parameter g of the Jaynes-Cumming

Hamiltonian describes the coupling strength between the EM mode and the TLS. In the

situation considered here, with orbital hybridization in the SWNT QD, the correspond-

ing coupling factor g is thus

g = (λK′ − λK) cos

(
θ

2

)
sin

(
θ

2

)
(4.9)

The strength of the coupling, as shown in equation (4.9), depends on the parameter

θ which is related to the hybridization amplitude ∆KK′ . For a maximal hybridization

when εK = εK′ , corresponding to θ = π/2, the coupling is also maximum and is g =
1
2(λK′ − λK). This mapping of the Anderson-Holstein Hamiltonian onto the Jaynes-

Cumming Hamiltonian is important as it gives a mean to compare the results of this

thesis to cQED experiments. Indeed, one of the goals of the experiments that have been

performed in this thesis is to characterize the coupling strength between the QD device

and the superconducting resonator in order to implement cQED-like manipulation of

QD devices in the future.

Classical field description

As already mentioned, the quantum regime for photons is not achieved in this thesis, as

the base temperature of the experiments is 1.5K4. The excitation power of the resonator

is also big (Pin ≥ −80dBm), and the number of photons in the cavity is large and far from

the single photon regime. Furthermore, the QD is adiabatically driven by the resonator

as the resonator’s frequency is much smaller than all energies involved in the QD. Thus,

it is relevant to treat the coupled system with classical electrodynamics. The overall

equivalent electronic circuit of the device is presented in figure 4.7. The QD circuit (in

blue) is in parallel of the equivalent RLC circuit of the resonator. The finite conductance

41.5K corresponds to a mean thermal occupation of 5 photons in a 6GHz cavity. However, the cavity
is also connected to the external world and noise to the ports of the cavity determined in chapter 3
section 2 gives an average photon number of roughly 1000!
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of the QD is described by a resistance Rdot = 1/(dI/dV ). Capacitances CL/R take into

account both geometrical capacitance of the lead and quantum capacitance of the QD

as CL/R = CgeomL/R +CQL/R. Both Rdot and CQ are variable lumped elements, as they are

related to the QD states, thus to bias and gate voltages.'
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Figure 4.7: Equivalent electronic circuit of the QD coupled to a microwave res-
onator. The QD circuit (blue) is in parallel to the RLC equivalent circuit of the
resonator (red). Rdot represents the dissipative channel of the SWNT QD (finite
conductance) while CL and CR represents both geometrical and quantum capaci-

tance from the QD and leads toward the cavity.

The QD admittance writes

Ydot ≈
α

Rdot
+ jωCdot (4.10)

with

α =

(
CL

CL + κL
− CR
CR + κR

)2

(4.11)

Cdot =
CLκL
CL + κL

+
CRκR
CR + κR

(4.12)

Expression (4.10) holds for (CL/R + κL/R)Rdotω � 1 and κL/RRdotω � 1. Expression

(4.11) is consistent with the previous symmetry argument about the dissipative effect

of the QD as only an asymmetric coupling of the leads to the cavity makes the resistive

term of the dot non-zero. The two different contributions of the QD admittance to the

coupling in equation (4.10) are dissipative and dispersive. They respectively correspond

to the in-phase and out-of-phase response of the QD. By adding this admittance in

parallel to the RLC model of the resonator developed in chapter 1 section 2, the effective

resonator’s impedance Zeff writes

Z−1
eff = jωC ′ +

1

jωL
+

1

R′
+

α

Rdot
+ jωCdot (4.13)
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The poles of Zeff gives both the resonance frequency and width of the resonator. The

positive pole is

z0 = ω0 + j
1

2R′C ′
− Cdot

2C ′
ω0 + j

(
α

2C ′Rdot
− ω0

2QL

Cdot
C ′

)
(4.14)

In equation (4.14), ω0 + j 1
2R′C′ corresponds to the resonator alone, describing the res-

onance frequency and the finite width of its mode. It is interesting to note that the

system resonance is given by the real part of the pole z0 while the quality factor is given

by the ratio of the real part and twice the imaginary part QL = Re(z0)
2Im(z0) . The two other

terms are related to the QD and operate a dispersive shift

δfR = −Cdot
2C ′

f0 (4.15)

and a dissipative shift

δfD =
α

2C ′
dI

dV

1

2π
− f0

2QL

Cdot
C ′

(4.16)

of the cavity mode. Note that the capacitive contribution to the dissipative shift be-

haves in 1/QL so that it is negligible for any large QL. Considering these dispersive

and dissipative frequency shifts, the new frequency resonance and quality factor of the

resonator write

f̃0 = f0 + δfR (4.17)

Q̃L =
f0 + δfR

2
(

1
2R′C′ + δfD

) = QL
1 + δfR

f0

1 + 2QLδfD
f0

(4.18)

4.2.2 Disentangling dispersive and dissipative contributions

The QD has a double effect on the microwave field. One is purely related to the conduc-

tance of the QD, and so its information is somehow redundant with the low frequency

differential conductance measurements (in the case of large quality factors). The dis-

persive effect of the QD related to its out-of-phase response consists however of a new

information related to the capacitance of the QD. In general, both contributions are

mixed in the amplitude and phase variation of the RF transmitted signal. The purpose

of this subsection is to show how to extract these quantities from the measurements of

the transmitted RF signal.
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Phase signal only

First, the case of a low transmission cavity will be discussed as it was encountered in the

first measured sample, NTRES33bZ4D. In this situation, the signal to noise ratio is too

small to properly measure modulations in the RF signal amplitude. Thus only the phase

of the RF signal is available for disentangling dispersive and dissipative contributions.

Figure 4.8 (a) shows the theoretical phase variation of the transmitted RF signal through

a cavity across the resonance, in different situations. The dashed black line is the case of

a raw resonator with frequency resonance f0 and width κ. This phase variation is defined

as the reference phase. When applying a purely dispersive (resp. dissipative) shift to

the cavity, the phase undergo a shift δfR (resp. a broadening δfD) as represented by the

blue (resp. red) curve. The difference between both curves with the reference phase is

defined as the phase contrast. Thise phase contrast is represented in figure 4.8 (b) with

the same color code as in (a). The dispersive phase contrast presents a resonance shape

centered on f0 and is an even function. The dissipative phase contrast presents an odd

function behaviour, centered as well on f0.'
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Figure 4.8: a : Phase of the transmitted microwave field through a CPW resonator
versus frequency. The resonator’s frequency is denoted f0. The dashed black curve
is the phase for a resonator alone. When coupled to a purely dispersive (resp.
dissipative) system, the phase undergo a frequency shift in blue (resp. broadening
in red). b : The phase contrast between purely dispersive (resp. dissipative) effect
on the phase and the reference phase are represented versus frequency. A dispersive
phase contrast shows a resonance (blue curve) centered on f0 with same quality
factor as the resonator mode. A dissipative phase contrast (red curve) shows an odd

behaviour, centered on f0.

The cavity transmission coefficient and phase write
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τ = − QL/Qext

1 + 2iQL

(
f−f0

f0

) (4.19)

φ = − arctan

[
2QL

(
f − f0

f0

)]
(4.20)

Adding dispersive and dissipative frequency shifts with the conventions of equations

(4.14), (4.15) and (4.16), the transmission coefficient writes

τ ′ = −
Q̃L
Qext

1 + 2iQ̃L

(
f−f̃0

f̃0

)

= −

QL
Qext

1+
δfR
f0

1+
2QLδfD

f0

1 + 2i QL

1+
2QLδfD

f0

(
f−f0−δfR

f0

) (4.21)

The phase follows as

φ′ = − arctan

[
2QL

1 + 2QLδfD
f0

(
f − f0 − δfR

f0

)]
(4.22)

Up to first order in δf , the resulting phase contrast thus reads

δφ =
2QL/f0

1 + 4Q2
L

(
f−f0

f0

)2

(
δfR + 2QL

f − f0

f0
δfD

)
+O(δf2) (4.23)

Equation (4.23) shows the contributions of dispersion and dissipation on the phase con-

trast, as an even and odd contribution respectively, with respect to f0. The plot of both

contributions is represented in figure 4.8 (b). The phase contrast is thus measured versus

frequency as shown for example in figure 4.9 (a). The black curve is the phase contrast

at one particular gate voltage along the Kondo ridge of figure 4.2. The extraction of

the even and odd part with respect to f0 = 4.976GHz is shown in figure 4.9 (b). The

even, or dispersive contribution is represented by blue dots while the odd, or dissipative

contribution is represented by red dots. There is a qualitative agreement between the

raw data and the theoretical prediction of formula (4.23). The dispersive part exhibits

a resonance shape with a width ∆f ≈ 33MHz corresponding to a quality factor of 150
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as measured in the cavity transmission. The dissipative contribution however exhibits

residual bumps due to imperfections in the amplification chain.'
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Figure 4.9: a : Phase contrast (black curve) along the Kondo ridge of figure 4.2.
The phase reference is taken in the empty orbital at VG = −1.85V. Red curve, model
of a QD coupled to the cavity with Fabry-Perot mode to account for the modulations
of the experimental data. b : even (blue curve) and odd (red curve) parts of the

phase contrast in (a) in qualitative agreement with 4.8 (b).

Dispersive and dissipative frequency shifts are directly related to the area under respec-

tively the even and odd contributions as

∫ f0(1+1/Q)

f0(1−1/Q)

2QL/f0

1 + 4Q2
L

(
f−f0

f0

)2 δfRdf = 2 arctan(2)δfR (4.24)

∫ f0(1+1/Q)

f0

2QL/f0

1 + 4Q2
L

(
f−f0

f0

)2 2QL
f − f0

f0
δfDdf =

ln 5

2
δfD (4.25)

The integration is centered on the resonance frequency with a width corresponding to

2 times the width of the resonance5. One important aspect of this method is that the

integration acts as an averaging, thus removes the defects of the measurements such as

these residual bumps. This allows one to obtain reliable values for δfR and δfD even

with low quality resonators as it will be shown in the following.

5A more general integral between f0 − f1 and f0 + f1 respectively gives 2 arctan
(

2QL
f1
f0

)
δfR and

1
2

ln
(

1 + 4Q2
L
f2
1

f2
0

)
δfD.
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Phase and amplitude signal

When amplitude variations of the RF transmitted signal are measurable 6, the full

phase contrast method described above is not necessary to determine the dispersive and

dissipative contributions of the QD. Indeed, while this technique is powerful, it takes

long time to acquire data sets. The output amplitude of the RF signal is measured,

which is expressed from the transmission coefficient as

A = Ain|τ |G (4.26)

with G the gain of the amplification chain and Ain the microwave field amplitude at

the input port of the cavity. As Ain and G are difficult to calibrate, it is convenient to

remove them by considering the relative variation of the amplitude which is thus directly

related to the relative variation of the transmission coefficient

δA
A

=
δ|τ |
|τ |

(4.27)

From equation (4.19) and (4.21), relative variation of the amplitude can thus be written

up to first order as

δA
A

=
2QL/f0

1 + 4Q2
L

(
f−f0

f0

)2

(
−δfD + 2QL

f − f0

f0
δfR

)
+
δfR
f0

+O(δf2) (4.28)

Equation (4.28) is similar to equation (4.23), with inverted contribution for dispersive

and dissipative contributions. As both δφ and δA
A are measured, δfR and δfD are directly

obtained by inverting the system. By considering that the measurements are done at

the frequency resonance f = f0, one gets

δfR =
f0

2QL
δφ (4.29)

δfD = − f0

2QL

δA
A

+
f0

4Q2
L

δφ (4.30)

The phase contribution to the dissipative shift is in 1/QL. These expressions confirm

the intuitive picture of the dispersive and dissipative shifts respectively related to phase

6i.e when the resonator’s transmission is high enough so that the signal-to-noise ratio is good enough.
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and amplitude variations. They are also useful within the frame of this thesis as the

first order expansion is valid because of the small quality factors, hence relative cavity

pull that is measured. However, it is possible to directly express both frequency shifts

from the raw expression of δA
A and δφ. One finds

δfR =
f0 sin(δφ)

2QL(1 + δA
A )− sin(δφ)

(4.31)

δfD = − f0

2QL
+

f0 cos(δφ)

2QL(1 + δA
A )− sin(δφ)

(4.32)

4.2.3 Coulomb blockade peaks : a control experiment

For this subsection and the following, the discussion will treat sample NTRES33bZ4D

where only the phase signal has been acquired. The dispersive and dissipative shifts

are extracted from the phase contrast versus frequency. Color scale plots of the even

and odd parts of the phase contrast are respectively presented in figure 4.10 (a). The

measurement has been performed at zero bias along two Coulomb peaks. The even

phase contrast plot exhibits two peaks, corresponding to the two Coulomb peaks in the

conductance.'
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Figure 4.10: a : even and odd phase contrast versus gate voltage and frequency
in a Coulomb blockade regime. b : dispersive (blue dots) and dissipative (red
dots) frequency shifts extracted from (a). Light blue (resp. light orange) curves
corresponds to the differential conductance expressed in units of dispersive (resp.
dissipative) frequency shifts. The dashed green curve corresponds to a fit with the

EOM model of chapter 2.

Frequency shifts are extracted from the area under each row of the even and odd color

scale plots, with the help of equations (4.24) and (4.25). The extracted values are
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represented by blue and red dots respectively, on figure 4.10 (b). δfR and δfD range

from 0 to 17kHz and 7kHz respectively, so that the approximation δf � f0 is satisfied.

It is also noticeable that both contributions behaves like the conductance, represented by

cyan and light orange curves. It was expected for the dissipative shift as δfD ∝ dI/dV

from equation (4.16). For the dispersive shift, an empirical formula fitting the data with

the differential conductance can be written as

δfR =
C0

2C ′
f0

h

2e2

dI

dV
(4.33)

This allows to find an effective capacitance C0 = 18aF of the QD in this region. The

purpose of this measurement in the Coulomb blockade regime is that it can be compared

to the EOM theory developed in chapter 2 section 2. The result of equation (2.37) is

recalled

Cdot = −(αACe)
2∂〈n〉
∂ξ̃d

+ CAC(1 + αAC) (4.34)

where −(αACe)
2 ∂〈n〉
∂ξ̃d

corresponds to the variation of the capacitance of the QD ∆Cdot

and CAC(1 + αAC) corresponds to a geometric invariant capacitance. Thus, the EOM

prediction for the dispersive shift reads

δfR = (αACe)
2∂〈n〉
∂ξ̃d

1

2C ′
f0 (4.35)

To fit data with the theoretical model (4.35), only one fitting parameter has to be ad-

justed, α, the geometrical factor of the device. Indeed, the other parameters necessary to

compute EOM are known by the spectroscopy and consist of U = 7meV and Γ = 1meV.

C ′ = 0.7pF on its part is defined by the CPW design and thus, lithography. Equation

(4.35) shows that the dispersive frequency shift should be negative, as ∂〈n〉
∂ξ̃d
≤ 0, in

contrast with the positive frequency shift observed in the measurements. However, as

previously mentioned, the variation of ξ̃d can be effective and do to the common mod-

ulation of the chemical potential of the leads. As one have ξ̃d + µL+µR
2 = cte, therefore

∂ξ̃d = −∂
(µL+µR

2

)
, which explains the observed sign of the dispersive frequency shift.

The fit to the data, shown as a dashed green curve on figure 4.10 (b), agrees quantita-

tively with αAC = 0.3. The couplings λK/K′ of the Anderson-Holstein Hamiltonian, in

equation (4.1), can be calculated from

λK/K′ = eαACVrms (4.36)
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with Vrms the root mean square voltage of a single photon in the cavity mode Vrms =√
~ω0/2C ′ (see [4, 5]). From this, one can obtain a coupling of λK/K′ ≈ 111MHz.

This unexpectedly high value of the coupling is similar to the value obtained in cQED

experiments with superconducting circuits [4]7

4.2.4 A Kondo impurity coupled to a microwave cavity

The same method has then been applied to the Kondo ridge of figure 4.2. Color scale

plots of the phase contrast versus gate voltage and frequency at zero bias are represented

in figure 4.11 (a) for the even and odd contributions. A first observation can be done

on the even phase contrast. It shows that, like for Coulomb blockade regime, the even

phase contrast modulates similarly to the conductance. Indeed, the two Coulomb peaks

are visible, with a finite contrast in between them, corresponding to the Kondo ridge.'
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Figure 4.11: a : even and odd phase contrast versus gate voltage and frequency
on the Kondo of figure 4.2. b : dispersive (blue dots) and dissipative (red dots) fre-
quency shifts extracted from (a). Light blue (resp. light orange) curves corresponds
to the differential conductance expressed in units of dispersive (resp. dissipative)

frequency shifts.

Figure 4.11 (b) shows the frequency shifts extracted from the integration of each row

of figure 4.11 (a). Dispersive and dissipative frequency shifts are represented by blue

and red dots respectively. They both modulate up to 60kHz and 30kHz. From δfR

and equation (4.15), the QD capacitance on the Kondo ridge is found to be CKondo =

16aF. This value is taken at VG = −2.32V, exactly in the middle of the two Coulomb

peaks. Similarly to the Coulomb blockade case, it is possible to find an estimation of the

7In the paper related to this work [86], the coupling is strength is 140MHz as Vrms is considered to be
2µV, as in [4]. The resonator’s capacitance, defined geometrically via finite elements theory in chapter
1 is C′ = 0.72 ± 0.04pF (The needed geometric parameters are extracted from the SEM micrograph of
figure 3.4 (b) for example). The error on the parameter αAC can be estimated to be of the order of 0.02.
The ensued error on the coupling estimation is thus ∆λ = 10MHz.
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electron-photon coupling from this value. This “with the hands” argument relies on the

estimation of the capacitance of the Kondo peak and the comparison to the measured

value. The quantum capacitance associated to an electronic level is related to its spectral

function. In the case of non-interacting QD, the quantum capacitance is given by the

full spectral function (see [52] and chapter 2 section 1) as CK = 4e2/πΓK ≈ 200 aF.

Here ΓK ≈ 1meV, corresponding to a frequency of 250GHz, well above the frequency

mode of the resonator. This allows us to provide an estimate of the electron-photon

coupling in the Kondo regime as

λK,K′ = eVrms

√
Cdot
CK

≈ 102MHz (4.37)

This coupling consist of the lower bound possible as we considered the theoretical value

to be the maximum possible. It is nevertheless consistent with the value that has been

found in the Coulomb blockade regime.

Another aspect of figure 4.11 (b) data is that both dissipative and dispersive shifts

modulates like the conductance, like in the case of Coulomb blockade regime. While

this remains expected for the former, it is more intriguing for the latter. The use of the

empirical formula (4.33) gives an effective QD capacitance Cdot = 22aF. This observation

seems seems counter intuitive at first glance. Indeed, the charge on the QD is fixed in

the Kondo regime. This is expressed as a zero charge susceptibility χC = 0 at the half-

filling point, between the two Coulomb peaks. As the quantum capacitance is primarily

related to χC , it could be expected that it also drops near to zero on the Kondo ridge.

However, spin and orbital susceptibilities are not equal to zero8. While the spin degree

of freedom is weakly coupled to the EM field via spin-orbit effects, it is not the case for

the orbital degree of freedom. The orbital susceptibility χθ behaves like χC with a factor

being roughly 1/16 (see [87]) and participate in Cdot as well. The relatively high Kondo

temperature observed in this sample is compatible with the participation of orbital

susceptibility in a SU(4) or SU(2)×SU(2) Kondo effect [46, 88]. This interpretation is

reinforced by the probability to have orbital valley mixing in SWNT due to disorder,

as developed in [83]. Therefore, even tough the information of the dispersive shift is

different than the information contained in the conductance, its behaviour is similar

with respect to the gate voltage.

8spin-flip processes only in the SU(2) situation, spin-filp and orbital “flips” for the SU(4) problem
and they participate in the conductance.
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4.2.5 Energy levels splitting : a direct observation of the coupling to

the electronic states

The measurements presented in the precedent subsection have made it possible to es-

timate the coupling of the QD to the cavity mode. However, this estimation is rather

indirect, especially compared to standard cQED experiments9.

In this section, the effect of strong microwave power on the QD spectroscopy is studied.

The discussion will focus on the closed QD in the Coulomb blockade regime NTRES52a-

Z6G, which spectroscopy in one particular region of the gate voltage bias voltage plane

is shown in figures 4.1 (d) and 4.12 (a), in the absence of microwave power. As the

microwave power at the input port of the cavity is increased to -45dBm and -35dBm,

energy levels split as shown in figures 4.12 (b) and (c) respectively.'
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Figure 4.12: Evolution of a Coulomb diamond with increasing power at the input
port of the microwave cavity. Input power is Off in a, -45dBm in b and -35dBm
in c. d : scheme of the capacitive coupling action of the microwave field on the
electronic level of the QD. The electronic level oscillates around its position without
EM field E0 with an amplitude λ. The averaging of this oscillation gives rise to two
splitted levels at positions E0 ± λ. e and f : simulations of the averaged oscillation

of the electronic level respectively for -45dBm and -35dBm.

This splitting, e.g. at VG2 = −11.7V, is 3meV at -45dBm and increases up to 10meV

at -35dBm. This observation can firstly be explained classically by the “shaking” of the

electronic levels at the cavity frequency, as already described in figure 4.5 and developed

again in figure 4.12 (d). The QD electrons have a relaxation rate related to their coupling

to the leads Γ. As Γ ∼ 1meV corresponding to 250GHz, this relaxation rate is about

40 times higher than the microwave frequency of the cavity. Under this condition, the

observed dynamical splitting can be explained by an averaging of the electronic level

9even tough as demonstrated formerly in this chapter, the Anderson-Holstein Hamiltonian maps onto
the Jaynes-Cumming Hamiltonian.



Chapter 4. Coupling a quantum dot to a microwave cavity 107

position over several cycle of the microwave signal. The conductance of the QD under

RF excitation of the cavity, GRF=ON can be written as

GRF=ON = f0

∫ 1/f0

0
GRF=OFF (VG + λVAC cos(2πf0t), Vsd)dt

=
1

2π

∫ 2π

0
GRF=OFF (VG + λVAC cos(θ), Vsd)dθ (4.38)

This transformation is applied to the spectroscopy of figure 4.12 (a), measured without

microwave drive, respectively for -45dBm and -35dBm, as represented in figure 4.12 (e)

and (f). simulations reproduces data with α = 15.5. The dynamical splitting and, in

particular, the peculiar diamond emerging at the charge degeneracy point is well re-

produced by this procedure. However, not all the spectroscopic feature of figures 4.12

(b) and (c) are reproduced. In particular, an excited states is observable in this newly

formed diamond at VG2 = −11.7V, which is not visible in the simulation. The evolution

of the Coulomb diamond bottom-left side (shaped as a triangle) is also not reproduced.

Some of the excited states might thus have a different coupling mechanism to the pho-

tons than the ground state. The conclusion of this analysis is that the cavity mode

couples mainly (but not only) to the electronic levels of the QD. This ensures that the

phase measurements of the previous section [86] are not just another way to measure

the conductance, even tough they both look similar.

A more specific way to decipher the origin of the coupling is to study the dependence of

the level spacing with respect to the average number of photons dwelling in the cavity.

Cuts at fixed gate voltage VG2 = −1.8V are done versus the input power of the cavity

plane . This allows to directly read the energy level spacing without the capacitive lever

arm of the gate voltage. The corresponding measurements are presented in figure 4.13 (a)

and (b), respectively corresponding the Fabry-Perot QD NTRES52aZ7D (which spec-

troscopy is presented in figure 4.1 (a)) and the Coulomb blockaded QD NTRES52aZ6G.

A characteristic funnel shape is observed for the energy level splitting, as the input

microwave power is increased. With the help of equation (1.58) and cavity parameters

extracted from figure 4.3, one can express the input power in terms of mean number of

photons.

As shown in figure 4.13 (c) and (d), the splitting ∆E is linear with respect to the

square root of the average number of photons
√
n̄. This behaviour is reminiscent of the

AC-Stark shift observed in cQED [3, 89], thus the observed splitting should read



Chapter 4. Coupling a quantum dot to a microwave cavity 108

'

&

$

%
Figure 4.13: Energy level in bias voltage Vsd splitting versus RF power input Pin,
in the case of Fabry-Perot (a) and Coulomb blockade (b) of figure 4.1. c and d,
extracted energy level separation of respectively (a) and (d) versus VAC . The linear

dependence is directly related to the coupling g between the QD and the cavity.

∆E = 2g
√
n̄ (4.39)

The fit of the linear dependence of ∆E with equation (4.39) gives g = 97MHz±22MHz

and g = 98MHz±22MHz respectively. The relatively high uncertainty in the determi-

nation of g is due to systematic errors made in the exact determination of the power at

the input port of the cavity, as well as the amplification chain10. This observation fully

confirms the Anderson-Holstein vision of the problem, with the coupling g here being

the formerly used parameter λ (in equation (4.1)). On an additional point, it should be

noted that the parameter λ of equation (4.38) can be related to the coupling g. Indeed,

the level splitting ∆E is also related to λVAC of equation (4.38) as ∆E/2 = λVAC . The

coupling g in this case writes g = λe
h
VAC√
n̄
CG
CΣ

. The capacitive lever arm of this QD is

extracted from the slope of one edge of the Coulomb diamond of figure 4.12 (a) and is
CG
CΣ

= 0.125. The resulting coupling strength is g = 97MHz, in agreement with the fit of

the AC-Stark shift fit.

The fact that the electron-photon couplings of the 3 different QDs measured are similar

can be puzzling at first. As already discussed, the coupling to the electronic levels can

10They have been respectively estimated to ∆Pin = ±3dBm and ∆G = ±3dB.
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be indirect via the common mode of the leads. All devices have basically the same de-

sign, especially the size of the electrodes and their positions in the gap of the resonator.

Therefore, the coupling to the leads must be of the same magnitude for all samples. This

is consistent with the sign of the dispersive frequency shift and the dynamical splitting

model which showed that the cavity mode is coupled to the electronic levels of the QD.

Checking that the QDs are coupled to the cavity mode

To ensure that the QDs in which the level splitting is observed are coupled to the cavity

mode, the splitting is measured versus frequency. The input power of the cavity is set to

-45dBm, at which the splitting is already well developed, as shown in figure 4.13 (a) and

(b) for both QDs. The frequency sweep associated to this splitting is shown in figure

4.14 for the QD in the Fabry-Perot regime (a) and the QD in the Coulomb blocakde

regime (b). The data clearly show that the splitting occur at the cavity mode frequency

f0 = 5.75GHz in both case (see section Samples IDs). This additional observation gives

thus a new clue that the QDs are indeed coupled to the resonator mode.'
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Figure 4.14: Splitting of the QD’s energy levels versus frequency at a fixed input
power of -45dBm. a : for the QD in the Fabry-Perot regime, corresponding to
the splitting of figure 4.13 (a). b : for the QD in the Coulomb blockade regime,

corresponding to the splitting of figure 4.13 (b).
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4.3 Samples IDs

Nanofabrication process First recipe, as described in chapter 3. Nb/Pt

(200nm/30nm) CPW resonator etched by RIE first, then CNT growth by

CVD inside the gaps of the resonator.

Cavity properties

Resonance frequency : f0 = 4.976GHz

Quality factor : Q=150
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Nanofabrication process Second recipe, as described in chapter 3. CNT

growth by CVD and QD device fabrication first. UV lithography of Al

(200nm) CPW resonator with optical alignment.

Cavity properties

Resonance frequency : f0 = 5.75GHz

Quality factor : Q=40
φ

 (
u

n
it

s 
o

f 
π

)

−0.5

0

0.5

 T
ra

n
sm

it
te

d
 A

m
p

lit
u

d
e

 (
V

)

0

0.05

0.1

f (GHz)

5 5.5 6 6.5

NTRES52aZ6G spectroscopy Coulomb blockade up to 0.03 ×2e2/h. Excited

states observable. Charging energy U ≈ 12meV.

V
sd

2
 (

m
V

)

−10

−5

0

5

10

 d
I/

d
V

 N
T2

 (
2

e
²/

h
)

0

0.01

0.02

0.03

Vg2 (V)

−12.2 −12 −11.8 −11.6

Electron-photon coupling λ ≈ 100MHz.

NTRES52aZ7D spectroscopy Fabry-Perot regime with conductance up to

1.5× 2e2/h. Level spacing ∆ ≈ 7meV.

V
sd

 (
m

V
)

−10

0

10

d
I/

d
V

 (
2

e
2
/h

)

0.5

1

1.5

Vg (V)

−10 −5 0

V
sd

 (
m

V
)

−10

0

10

A
m

p
lit

u
d

e
 (

m
V

)

30.5

30.55

30.6

Vg (V)

−10 −5 0

V
sd

 (
m

V
)

−10

0

10

φ
 (

m
ra

d
)

0

0.5

1

1.5

Vg (V)

−10 −5 0

Electron-photon coupling λ ≈ 100MHz.

NTRES52a





Chapter 5

Interaction between two

Quantum Dots

5.1 Embedding two quantum dots in one microwave cavity

As emphasized in chapter 4, the device architecture that has been developed in this thesis

allows for coupling QD circuits to a microwave cavity. The electron-photon coupling

strength g is of the order of the coupling found in superconducting circuits cQED [4, 36].

This is motivating enough to push a step further the investigation of such complex

systems. One possible way was to reach the quantum limit for the microwave field. This

regime should allow for studying the interaction between the two systems at the single

photon level, as well as for performing coherent manipulations. This requires a dilution

refrigerator in order to reach the millikelvin temperature range needed for it. However,

there are also quantum features that can be investigated at moderate temperatures.

Among the possible methods for coupling quantum dots [90–92], the use of photons

is particularly attractive because they can mediate a potentially coherent interaction

over macroscopic distances. In this sense, the direction that as been taken is to add

another QD in the cavity and therefore investigate the interaction between the two QD

devices, via the cavity photons, as schematically depicted in figure 5.1 (a). This has two

potential applications. First, it provides a scalable architecture for performing quantum

computation with spin qbit [15, 93]. Second, it also allows to simulate on-chip condensed

matter situations like polaronic shifts, in a direct manner.

Thanks to the developed device architecture, it has been possible to make a device with

2 QDs embedded in a single microwave cavity, as shown in figure 5.1 (b). The sample

(NTRES52a) has been made with the reversed process described in chapter 3 (second

recipe). The resonator is made of aluminium (blue color in figure 5.1 (b)). While the

113
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Figure 5.1: a : Scheme of two separate QDs interacting inside a microwave cavity.
Both QDs are independently tuned and interact with the cavity mode. A distant
interaction between the QDs can be mediated via the cavity photons. b : Optical
micrograph in false colors of a device showing 2 QDs (yellow electrodes) embedded
inside the same CPW superconducting resonator (in blue). The 2 QDs share the

same anti-node of the electric field and are separated by about 80µm.

experiments are performed at temperature above its TC ≈ 1.19K, the cavity exhibits a

resonance mode at f0 = 5.75GHz with a quality factor Q = 40, as shown in chapter 4,

in the samples IDs (see figure 4.3).

The 2 QDs, defined by the 3 contacting electrodes in Pd (yellow structures in figure 5.1

(b)) share the same anti-node of the EM field. In addition, they are separated by 80 µm,

which is about 200 times their own size1. Therefore they constitute two independent

QD circuits without direct tunnelling nor direct gate coupling from one QD to the other

: the lever arm between a QD and the central conductor of the resonator is of the

order of CG/Cres ≈1aF/1pF≈ 10−5. Each QD is contacted in the standard source-

drain-gate electrodes geometry, allowing to measure them independently. This point

is important and leads to two direct observations : first, this system is different from

double QDs coupled to microwave cavities [25–27] as the 2 QDs here are neither tunnel

1The QDs are lithographically designed to measure 400nm, which yields a scaling factor of 200.
Nevertheless, from the spectroscopy of the Fabry-Perot QD (figure 4.3), the length of this QD can be
estimated to be of the order of 220nm. Therefore the scaling factor between the inter-dot distance and
their size could be estimated to be about 350.
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nor electronically coupled, and second, the independent tunability of each QD gives a

mean to map the interaction between them.

5.2 Probing the distant interaction

As discussed in chapter 4, both the 2 QDs of this sample are coupled to the microwave

field with electron-photon couplings g1, g2 ≈ 100MHz. As both are coupled to the same

EM field, they can a priori be coupled to each other, as depicted in figure 5.1 (a). In order

to probe the coupling of the states of QD1 and those of QD2, QD2 is used as a detector2

to measure the evolution of its energy levels via transport spectroscopy as its own gate,

Vg2, and the distant gate of QD1, Vg1, are swept. Such a mapping is presented in figure

5.2, for a large span over each gate voltages. QD2’s levels exhibit a strong dependence

with respect to the gate voltage of the distant QD1. Level crossings (as in the region

(Vg1, Vg2) ≈ (11V,−14V )) and anticrossings (as in the region (Vg1, Vg2) ≈ (9.5V,−14V ))

are visible and will be studied in more details below. The strong slope of QD2’s levels,

of the order of 4V/V should also be noted.

Two points, already mentioned in the previous paragraph, find here their full meaning.

First, the spectroscopy shown here suggest a strong interaction between the QDs circuits.

Direct capacitive crosstalk between the two is vanishingly small thanks to the vanishingly

small lever arm already discussed. Furthermore, any direct crosstalk should lead to

QD2’s levels to behave similarly with the same slope in the Vg1 − Vg2 plane3. As QD2’s

levels undergo crossings and anticrossings, this possibility is thus eliminated. Secondly,

crossings and anticrossings of levels could be reminiscent, at first, of the honeycomb

structure of double QD devices spectroscopies [94]. However the system is made of two

independent SWNT, therefore the situation investigated here is clearly different.

5.3 Polaronic shift

Trivial mechanisms that could explain the dispersion of QD2’s levels have been removed.

Therefore, the interaction should be mediated by the cavity photons, thanks to the

couplings g1 and g2. A natural mechanism implying these couplings is the polaronic

shift. A polaron is an electron system coupled to a phonon bath, but as usual this

can be extended to the situation of an electron system coupled to any bosonic modes.

The presence of a bosonic bath at frequency ω0 coupled to the electronic system with a

strength g shifts the energy levels of the electronic systems by [95]

2QD2 is in a Coulomb blockade regime with small energy levels broadening Γ.
3they should be on lines Vg2 + αVg1 with α the lever arm between the to distant circuits.
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Figure 5.2: Color scale plot in the gate voltage of QD1 Vg1 gate voltage of QD2
Vg2 of the differential conductance of QD2. The energy levels of QD2 exhibits a

strong dependence versus Vg1, showing anticrossings and crossings.

∆ε = −2g

ω0
n̂ (5.1)

with n̂ the operator number of electron of the electronic system. This shift is called the

polaronic shift. In this section, the situation is extended to 2 QDs coupled to a photonic

mode.

5.3.1 Theoretical approach with Green’s functions

The effect of thermal and virtual photons from perturbation theory is investigated here.

To help the reader not to be lost, QD2 refers to the coulomb blockaded QD, which is

used as a detector, and QD1 refers to the Fabry-Perot QD. The theoretical approached

that will be detailed here relies on Green’s functions, as in chapter 2 section 2.

Renormalized photon Green’s function

First, the renormalized interaction for QD2 as a consequence of QD1, using random

phase approximation (RPA) is considered. The renormalized photon Green’s function
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D(iωn) can be found to be [15]

D−1(iωn) = D
−1(iωn)
0 − g2

1Π1(iωn) (5.2)

with D0(iωn) the free photon Green’s function

D0(iωn) =
2ω0

(iωn)2 − ω2
0

(5.3)

and Π1(iωn) the charge susceptibility of QD1. The renormalized photon Green’s function

thus writes

D(iωn) =
2ω0

(iωn)2 − ω2
0 − 2g2

1ω0Π1(iωn)
(5.4)

Here, the term Ω2 = ω2
0 + 2g2

1ω0Π1(iωn) refers to the photon mode frequency square. It

can be re-expressed as Ω ≈ ω0(1+g2
1/ω0Π1(iωn)). One can recognize here the expression

of the dispersive frequency shift δfR, which is of the order of 100kHz, much smaller than

the mode frequency which is about 6GHz. Therefore expansion with respect to this term

is used.

Distant QDs direct interaction

The first process that can be thought of is the direct interaction between the 2 QDs,

via a cavity photon. A photon at frequency iωn is emitted by QD2, interacts with QD1

and is re-absorbed by QD2 at the same frequency iωn, as diagrammatically represented

in figure 5.3.'
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Figure 5.3: Diagrammatic representation of the distant interaction between QD1
and QD2 without photon renormalization. The plain lines with arrows refers to elec-
tronic propagators of QDs. The whirly line refers to photon propagator at frequency

iωn.



Chapter 5. Interaction between two Quantum Dots 118

The corresponding self energy writes

D1 = −kT
∞∑

n=−∞

∑
j

(
−g1g2D(0)

1

iωn − ε1,j + iΓ1,j

)
(5.5)

Here ωn refers to the fermionic Matsubara frequencies (2n + 1)πkT , and j refers to

the states of QD1 with energy ε1,j and coupling Γ1,j to the leads. The photon Green’s

function is taken for iωn = 0 as the re-absorbed photon is at the same frequency as the

emitted photon. QD1 is assumed to be a non interacting QD, which is a reasonable

hypothesis considering its Fabry-Perot behaviour. The sum kT
∑

n(iωn− ε1,j + iΓ1,j)
−1

is the Fermi-Dirac distribution f(ε1,j − iΓ1,j). One thus gets

D1 = −g1g2
2

ω0 + 2g2
1Π1(iωn)

∑
j

f(ε1,j − iΓ1,j) (5.6)

By considering the atomic limit Γ1,j = 0 and lowest order in g1, the standard polaronic

shift is recovered

D1 = −2
g1g2

ω0
N1,tot (5.7)

with N1,tot the total number of electrons on QD1. Note here that this is a perturbation

theory approach. However, it recovers the results that can be found by using an exact

calculation relying on the Lang-Firsov transformation (see appendix E). Indeed, as it

will be shown later, N1,tot can be very large, leading to non-perturbative corrections.

5.3.1.1 Photon renormalization of QD2

The second process that must be considered is similar to the first one, except that

the photon is renormalized by QD1 before being re-absorbed by QD2. Therefore, the

emitted and re-absorbed photon have a different frequency. This is diagrammatically

depicted in figure 5.4.

The corresponding self energy writes

D2 = kT

∞∑
n′=−∞

∑
j

−g2
2D(iωn′)

1

iωn − iωn′ − ε2,j + iΓ2,j
(5.8)

As ω0/(2π) ≈ 6GHz and ε2,j ,Γ2,j ≈ 1meV≡ 250GHz, therefore ω0 � ε2,j ,Γ2,j and it is

reasonable to omit the Matsubara frequency in the electron propagator of QD2. The
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QD2 QD2iωn QD2 iωn'

Figure 5.4: Diagrammatic representation of the distant interaction between QD1
and QD2 with photon renormalization. The plain lines with arrows refers to elec-
tronic propagators of QD2. The whirly double line refers to renormalized photon

propagator, corresponding to equation eq (5.4).

sum over Matsubara frequencies is then just on the renormalized photon propagator D

:

D2 ≈ kT
∑
j

1

iωn − ε2,j + iΓ2,j
(−g2

2)

∞∑
n′=−∞

2ω0

(i2πn′kT )2 − Ω2
(5.9)

where Ω2 = ω2
0 + 2g2

1ω0Π1(0). In the expression of Ω, the charge susceptibility of QD1

is taken at ωn = 0 for the same reasons as above. Equation (5.9) rewrites

D2 =
∑
j

1

iωn − ε2,j + iΓ2,j

2g2
2ω0

4π2kT

∞∑
n′=−∞

1

n′2 +
(

Ω
2πkT

)2
= g2

2

ω0

Ω
(1 + 2nB(Ω))

∑
j

1

iωn − ε2,j + iΓ2,j
(5.10)

To obtain the last expression (5.10), the following relations are needed :
∑∞

n=0
1

n2+α2 =
πα coth(πα)+1

2α2 ,
∑∞

n=−∞
1

n2+α2 = 2
∑∞

n=0
1

n2+α2 − 1
α2 and coth

(
Ω

2kT

)
= 1 + 2nB(Ω), with

nB the Bose-Einstein distribution. Note here that the term 1 + 2nB(Ω) is made of two

different contributions. The term “1” consists of a virtual process that involves a virtual

photon, while the term “2nB” refers to thermal photons processes. In the following,

the case of a single orbital of QD2 will be considered. Furthermore, as the real Green’s

function is needed, analytical continuity ωn = −iω + 0+ is performed, leaving

D2(ω) = g2
2

ω0

Ω
(1 + 2nB(Ω))

1

ω − ε2 + iΓ2
(5.11)

Renormalized QD2’s Green’s function

The new electronic Green’s function of QD2 for one orbital writes
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G−1(ω) = G−1
0 (ω)−D2(ω) (5.12)

with G−1
0 (ω) = (ω − ε̃2 + iΓ2) the free electronic Green’s function of QD2, where the

polaronic shift has been taken into account in ε̃2 = ε2 − D1(ω) = ε2 − 2g1g2/ω0N1,tot.

Equation (5.12) rewrites

G(ω) =
G0(ω)

1− α2G0(ω)2
(5.13)

with α2 = g2
2(1 + 2nB(Ω)). As α ∈ R+, the electronic Green’s function rewrites

G(ω) =
1

2

(
1

G−1
0 (ω) + α

+
1

G−1
0 (ω)− α

)
(5.14)

Finally, from equation (5.14), the renormalized states of QD2 up to first order in g1, g2

write

ε̃2,+/− = ε0 + α0Cg2Vg2︸ ︷︷ ︸
term 1

− 2
g1g2

ω0

[
N0,QD1 +

Cg1Vg1
e

]
︸ ︷︷ ︸

term 2

±g2

√
1 + 2nB(ω0)︸ ︷︷ ︸
term 3

(5.15)

In the last expression, all parameters have been expressed in terms of experimental pa-

rameters. Expression (5.15) is made of three different terms that need some explanation.

term 1 : this term has been previously noted ε2. It is the standard QD2’s levels modulation

thanks to the external gate voltage Vg2 applied to it with a lever arm α0, with

respect to an energy origin ε0.

term 2 : this term is the polaronic shift of QD2’s energy levels. It is the signature of the

interaction between the two QDs, mediated via the cavity. The total number of

electrons on QD1 has been expressed by the number of electrons due to electro-

chemical doping N0,QD1 in addition to the number of electrons added when tuning

the gate voltage Vg1. QD2’s levels thus undergo a global shift due to its distant

interaction with QD1.

term 3 : this term corresponds to a splitting of QD2’s levels that were originally degenerate.

Contrarily to the splitting discussed in chapter 4, which is a dynamical splitting,

here it is due to exchange processes with the cavity photons. Both virtual and
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thermal photons are involved in the mechanism. The relative slope between split

levels is thus directly related to the coupling g2 of QD2 to the microwave cavity.

Orders of magnitude and confrontation with experiment

'

&

$

%

Figure 5.5: a : Close-up on one particular region of figure 5.2 where QD2’s levels
cross. QD2’s levels are subject to 2 different slopes with respect to Vg1, in an
alternate pattern. b : Simulation of (a) using equation (5.15) with the following
parameters : : α0 = 0.3, Cg2 = 1aF g1 = 100(1 − 0.25V1), g2 = 100(1 − 0.25V2),

N0,QD1 = 106, term 3 = g2 = 100(1− 0.25V2)× 4meV.

Figure 5.5 (a) presents a close-up in one particular region of figure 5.2 where levels

crossings are observed, as well as an alternation of levels getting closer and away from

each other. Figure 5.5 (b) presents a simulation of this spectroscopy using equation (5.15)

in the presence of interactions. Interactions has been accounted for by using Lorentzian

shape of width Γ for the levels, shifted by U for the two levels +/− of one orbital, at

T = 0. Similarly to the EOM description detailed in chapter 2, the self-consistency

equations set


G+/− =

1− 〈n−/+〉
ω − ε̃2,+/− + iΓ/2

+
〈n−/+〉

ω − ε̃2,+/− − U + iΓ/2

〈n+/−〉 = − 1

π

∫
dεf(ε)Im[G+/−(ε)]

(5.16)

yields

〈n+/−〉 =

1
2 −

1
π arctan

2ε̃2,+/−
Γ +

β+/−
π

(
1
2 −

1
π arctan

2ε̃2,−/+
Γ

)
1− β+β−

π2

(5.17)

with
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β+/− = arctan
2ε̃2,+/−

Γ
− arctan

2ε̃2,+/− + 2U

Γ
(5.18)

QD2 spectral function is calculated from the expression of 〈n+/−〉 for several orbital

(this is taken into account by changing the energy origin ε0), which is shown in figure

5.5 (b). To recover the levels behaviour observed in figure 5.5 (a), several assumptions

and orders of magnitude must be clarified.

electron-photon coupling dependence with the gate voltage To correctly ac-

count for the strong slope dependence of QD2’s levels versus Vg1 as well as the increasing

splitting, it is necessary to consider that the electron-photon coupling of both QDs g1 and

g2 are dependent on their own respective gate. This is taken into account by considering

a linear dependence over a small span of Vg : g1(2)(Vg1(2)) = g1(2)(1− α1(2)Vg1(2)). This

assumption is reasonable considering the standard spectroscopies of each QD. Indeed, in

the classical picture, the electron-photon coupling is the ratio between the capacitance

of the QD to the resonator and the total capacitance of the island : CAC/CΣ. In chap-

ter 4, in the discussion about sample NTRES33b, the effective capacitance of the QD

varies from 18aF in the Coulomb blockade region to 22aF in the Kondo region. This

corresponds to a change of about 22% of the coupling, induced by a change of the gate

voltage. For the samples that are discussed here, this variation can be estimated from

the standard spectroscopies by evaluating the ratio Cg/CΣ from the slope of Coulomb

diamonds edges or the slope between two bright spots of the Fabry-Perot checker board.

As Cg is a geometric quantity, it does not vary, hence a variation of Cg/CΣ indicates a

change in CΣ, therefore a change of the electron-photon coupling g. To reproduce the

slope of figure 5.5 (a), both g1 and g2 need to vary of about 25% over the considered

span. Both QD’s spectroscopies indicate that such variations are reasonable. Further-

more, this dependence of g1(2) accounts well for the wide change of slope that is visible

in figure 5.2. A dynamical splitting measurement of QD1 for several Vg1 has shown a

variation of more than 10% of g1 over the range where the observed QD2 levels slope

is the largest. Before and after this region, g1 seems to be more or less constant. This

feature thus reproduces the observed pattern. To properly simulate the data with good

orders of magnitude, one needs to evaluate the other involved quantities.

Electron number on QD1 The global slope of 4V/V observed for QD2 levels is

accounted for by considering a very large number of electrons on QD1 : N0,QD1 ≈ 106.

This value, while being huge, is compatible with the experiment. Indeed, QD1 is made

out of a SWNT that is metallic4. The Fermi level of such metallic SWNT can a priori be

4No band-gap has been observed and only Fabry-Perot regime is accessible.
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very high and could explain this large number of electrons on QD1. Note however that,

like for a classical metal, these electrons do not contribute to the transport through the

QD.

Thermal photons The second and last quantity to evaluate is the number of thermal

photons in the cavity. A first contribution to this quantity comes from cavity mode

population at the experiment temperature T = 1.5K. It reads n1 = nB(~ω0/kT ) ≈ 5

photons5. The second contribution comes from the fact that the cavity is not isolated

from the world but connected to input and output lines which brings thermal noise

through thermalized attenuators. The calculation of the noise level of these attenuators

has been performed in chapter 3 section 2. The number of corresponding photons is

the integral of the spectral noise density at each port of the cavity over the the cavity.

Equations (1.53), (1.54) and (1.56), are rearranged considering that power input at the

2 ports of the cavity, yielding

〈nth〉 =

∫ ω2

ω1

4γ

(γ + γL)2 + 4(ω − ω0)2

SV V,in + SV V,out
~ω

dω (5.19)

The integration boundaries are respectively taken to 4GHz and 8GHz as they define

the overall bandpass of the RF setup6. This term is temperature dependent via the

attenuators that are thermalized at the sample temperature. The calculation gives

n2 ≈ 33 photons at T = 1.5K. Therefore, the total number of thermal photons in the

cavity is Nth = n1 +n2 ≈ 38 photons. It is therefore better to speak in term of effective

temperature for the cavity population7, which in this case is Teff = 10K.

This makes a level splitting g2

√
1 + 2Nth ≈ 3µeV, three orders of magnitude smaller

than what is observed in figure 5.5. Actually, considering this contribution only, 5.106

thermal photons are needed to give the required 4meV splitting. However, as it will be

discussed in the following section, an additional parameter can be added in the splitting

term. It will reveal compatible with the observed orders of magnitude and the photonic

processes will reveal negligible.

5This definition gives the number of photons at frequency ω0, that dwell in the cavity for a time
2π/∆ω. This constitutes a basis for photons in the frequency-time plane. The previous result can be
found differently by integrating the Bose-Einstein distribution times the spectral density of the cavity
over all frequencies

∫
nB(ω)χ(ω)dω with χ(ω) the spectral density of the cavity.

6Note that in chapter 3, the noise power at the input and output port where calculated by integrating
the noise spectral density over a flat band pass. This point is reasonable as the RF setup is basically
flat over the 4GHz - 8GHz frequency span.

7It is possible to extrapolate a linear expression for the effective temperature Teff ≈ 4.4 + 4.2Texp.
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5.3.2 Energy level splitting

To make the splitting picture complete, it is important to look at the energy diagram

presented in figure 5.6 (a). Energy levels of QD2 are schematically represented versus

the energy of QD1 ε1 and energy of QD2 ε2. 2 orbitals are pictured, respectively in red

and blue. The 2 spin degenerate levels are separated by U inside an orbital and two

orbitals are separated by ∆ + U . The split levels must fulfil the Coulomb repulsion,

therefore, inside an orbital, two levels cannot be separated by less than U . This avoids

levels to come closer inside an orbital, as depicted by the crosses. However, between two

orbitals, levels can come closer and even cross. Depending on the hybridization between

orbitals, these levels can cross or anticross, as observed in the spectroscopy of figure 5.2

and 5.5. The resulting alternation of levels getting closer and away from each others

is well observed in the measurements. Figure 5.6 (b) presents such measured diagram,

extracted from figure 5.2. The position of each level in the plane (Vg1, Vg2) ≡ (ε1, ε2) is

reported. The overall slope is removed by taking one level as a reference (ε2 = 0, black

level). Dashed levels are taken at T = 1.5K while plain levels are taken at T = 3K. The

experimental diagram is in good qualitative agreement with the theoretical picture.

As previously discussed, the thermal photons term cannot explain the observed orders

of magnitude. The difference in the slopes of the splitted levels at T = 1.5K and T = 3K

(dashed and plain lines respectively), which is of the order of a factor 4 is not accounted

by the estimation of thermal photons as well. Indeed, a Nth(3K) ≈ 1.6Nth(1.5K),

therefore the slope variation should be around 30%. Nevertheless, it has already been

mentioned that orbital levels can split in CNTs coupled to AC field, due to disorder

valley mixing [83]. In this work, Palyi et al. describe this splitting by the following

Hamiltonian (using the notation of this thesis)

H =

(
ε2 g2∆KK′

g2∆?
KK′ ε2

)
(5.20)

where ∆KK′ is the valley mixing, or orbital hybridization term. The two eigenstates

of such Hamiltonian are ε+/− = ε2 ± g2|∆KK′ |. The splitting term of equation (5.15)

rewrites ±g2(
√

1 + 2Nth+ |∆KK′ |). It is reasonable to say that ∆KK′ can be of the order

of few meV. In addition, it should also be dependent with temperature via fluctuations

of impurities, as this valley mixing term is due to disorder on the CNT. However, this

issue is still open and needs more investigations, both theoretical and experimental, to

settle it.

A closer inspection of one of the observed anti-crossings is presented in figure 5.7. Along

the white dashed line following the anti-crossing (figure 5.7(a)), the corresponding QD2’s
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Figure 5.6: a : Energy levels diagram of a Coulomb blockaded QD, when there is
a splitting. 2 orbitals are represented in red and blue. Inside an orbital, the energy
levels are separated by the charging energy U . Two orbitals are separated by the
level separation in addition to the charging energy ∆ + U . Inside an orbital, levels
separated by less than U due to the splitting are forbidden (crossed levels). Levels
from different orbitals can cross or anticross, depending on the hybridization between
the orbitals levels. b : Experimental data showing the alternation of crossing or
anticrossing levels depicted in (a). Data are taken from figure 5.2 at T = 1.5K
(dashed lines) and T = 3K (plain lines). By increasing the temperature, the slope

of the splitted levels increases roughly by a factor 4.

Coulomb diamond is measured. The cut in Vsd2 in the middle of the diamond is reported

in figure 5.7 (b), versus the gate voltage Vg1 of QD1. The distance between the two peaks

directly gives the level splitting ∆E in meV, which is reported in figure 5.7 (c). The

data are well fitted with an avoided crossing expression

∆E/2 =
√
ε1 + ∆ + ∆0 (5.21)

with ∆ = 1.8meV and ∆0 = 1.8meV. This confirms the mechanism of figure 5.6 in which
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split levels from different orbitals can cross or anticross, depending on the hybridization

between them. In the situation presently discussed, a finite coupling between the two

measured orbital levels is responsible for the avoided crossing.'
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Figure 5.7: a : Close-up on one particular region of figure 5.2 where QD2’s levels
anticross. b : Color scale plot of the energy level splitting along the white dashed
line of (a). For every gate voltage Vg1, a differential conductance scan in the gate
voltage of QD2 Vg2 bias voltage of QD2 Vsd2 is taken. The cut in the middle of the
corresponding Coulomb diamond is reported in (b). The red curves correspond to
equation. c : Energy level separation ∆E extracted from (b) (black dots) and fit

with equation (red curve).

5.3.3 Summary

The distant interaction between the 2 QDs, embedded inside the microwave cavity,

has been investigated in this section. Figure 5.2, which gives a direct insight of it,

seemed rather difficult to be interpreted at first. However, a picture has emerged and 3

mechanisms can explain it.

1. The overall slope of QD2’s levels in the Vg1 − Vg2 plane is due to a polaronic shift

−2g1g2/ω0Ntot,QD1, involving the coupling of both QDs to the microwave cavity.

The number of electrons on the distant QD is a crucial parameter that explains
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the large shift which is observed.

2. QD2’s states, initially degenerates, undergo a splitting due to a renormalization

by the cavity photons. The slope of the splitting, relative to the polaronic shift, is

proportional to the coupling g2 between QD2 and the cavity field.

3. The crossings or anticrossings of the different orbital levels gives an insight on the

hybridization between these levels8. This last contribution is thus related to the

inner structure of the QD discrete spectrum.

5.4 Joint read-out

In the previous section, the differential conductance of QD2 has allowed for probing the

distant interaction between the 2 QDs. As they are both coupled to the cavity, they

should both modulate the phase of the microwave field. The transmitted RF phase is

thus measured in one particular region of the Vg1 − Vg2 plane, where the anti-crossings

are observed. Figure 5.8 shows such measurement. Levels of both QDs are visible, as

indicated by the green arrows. The previously measured levels of QD2 are thin and

undergo a strong slope with respect to Vg1, as previously seen. QD1’s levels are also

visible, large (due to the large Γ of the Fabry-Perot regime) and with a very small slope

with respect to Vg2. This small slope can be interpreted by a much smaller number of

electrons on QD2 compared to QD19.

The second observation to be made is that levels of both QD cross and show no avoided

crossing. This is expected as the electronic and photonic systems are far detuned10. It

has however the same origin as the mechanism leading to coherent SWAP manipulations

for Rydberg atoms or superconducting qbits [3, 36, 96]. These coherent manipulations

of qbits are essential for quantum computation purposes.

5.5 Tunable coupling

Electron-photon coupling of a QD modulates with its own gate voltage. This has been

discussed in this chapter as a consequence of the QD’s quantum capacitance variation

8No hybridization between 2 crossings levels and finite hybridization between anti-crossing levels.
9QD2 is way more blocked than QD1, therefore the number of electrons on the QD should be much

smaller than on QD1.
10Let’s recall that the characteristic frequency for the electronic system is of the order of 250GHz

(1meV) while it is 6GHz for the cavity.
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Figure 5.8: Joint Read-out of the energy levels of QD1 and QD2 (indicated by
green arrows) in the phase of the transmitted microwave field.

with the gate voltage. This can be observed in the conductance spectroscopy as the

pattern ratio between gate and bias voltage changes. Here the influence of the distant

QD on the coupling is investigated.

5.5.1 Distant quantum dot as a “knob”

Figure 5.9 shows the relative value g2/g0 (with g0 = 111MHz) versus the differential con-

ductance of QD1. The value of the coupling g2 is extracted from a dynamical splitting,

as discussed in chapter 4. Such measurement has an uncertainty of the order of 20MHz,

due to the uncertainty on the number of resident photons in the cavity. However, as

it is a systematic error, the ratio between two couplings g has an uncertainty of about

2% only. The gate of QD1 is tuned between 9V and 14V. For each gate voltage Vg1,

Vg2 is adjusted in order to follow the same Coulomb diamond in QD2, the one studied

in chapter 4 and shown in figure 4.12 for example. This allows to stay in the same

spectroscopic region of QD2 and removes any influence of the inner variation of g2.

The dashed blue line is a guide to the eye that shows the presumably linear dependence

of g2 with respect to G1 = dI/dV (QD1). Each black symbol is a measurement at zero

bias at a different gate voltage Vg1. The green and red symbols represent two data sets

where QD1 is biased, for two different Vg1. These ensure that the observed trend is

effectively related to the conductance of QD1 and not to a trivial capacitive mechanism

involving Vg1. The data suggest a linear dependence with a variation of about −28% of

g2 for a QD1’s conductance variation of 2e2/h. This system thus controllably tune the
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Figure 5.9: Variation of the coupling strength g2 of QD2 to the microwave field,
as a function of the differential conductance of QD1. g2 is extracted from a power
dependence of the energy level splitting, as described in chapter 4. The systematic
error on the determination of g2 is removed by plotting g2/g0, with g0 = 111MHz.
Black dots indicate coupling g2 measured at different gates voltages Vg1. Green
squares and red triangles indicate measurements at two data sets at finite bias voltage
Vsd1 for two particular gate voltages Vg1. The dashed blue line is a guide to the eye for
a possible linear dependence g2/g0 ∝ dI/dV QD1. The proportionality coefficient is
-0.28, corresponding to a variation of 28% of g2 when the conductance of QD1 varies
of 2e2/h. Bottom left inset : Level spacing for the two extremal values of the main
figure, dI/dV QD1 = 1.13 × 2e2/h (dots, red fit) and dI/dV QD1 = 0.28 × 2e2/h

(triangles, green fit).

coupling between a QD and the photon field with significant magnitude. However, at

this point, the mechanism explaining this behaviour has yet to be found.

5.5.2 Spectroscopic read-out of the tunable coupling

One way to confirm the previous measurement is to directly probe the tunability of

g2 from the spectroscopy of QD2. The cavity is driven with a power at its input port

Pin = −40dBm. It induces a dynamical splitting of the QD’s levels. As QD2’s level

separation writes

∆E2 = 2g2

√
n̄ (5.22)
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if g2 varies with G1, therefore, at a fixed value of the number of photons n̄ (hence Pin),

∆E2 should vary similarly. Measurement of QD2’s conductance in the Vsd1−Vsd2 plane

for Pin = −40dBm is presented in figure 5.10 (a), and the corresponding phase joint

read-out in (b). Two levels are visible as horizontal lines, corresponding to a split level

of QD2. The joint-read out measurement allows to simultaneously see QD1’s levels as

vertical broad lines.'

&

$

%

Figure 5.10: a : Color scale plot of QD2’s differential conductance in the bias
voltage of QD1 Vsd1 bias voltage of QD2 Vsd2 plane. Two peaks in the conductance
are visible, as emphasized by the red curve which is a cut at Vsd2 = −4.8mV . The
power at the input port of the cavity is Pin = −42dBm. b : Corresponding joint

read-out of the 2 QDs in the phase of the transmitted microwave field.

QD2’s levels separation is presented in figure 5.11 as a red curve (right axis). Each

point of the curve is measured independently on the spectroscopy of figure 5.10 (a). The

corresponding differential conductance of QD1, G1 is represented as a black curve (left

axis), showing a variation of about 0.35×2e2/h. Even though the measurement shows

a lot of uncertainty (the spectroscopy is already the results of 5 global averages), the

proportionality between ∆E2 and G1 is visible. The dependence extracted from the

previous measurement presented in figure 5.9 is applied on the current differential con-

ductance of QD1 and shown by the blue curve, which accounts well for the observations.

For comparison, the green dashed curve corresponds to the linear fit of ∆E2 ∝ G1 for

the current measurement. The coherence between the two experiments gives credit to

the picture of a tunable electron-photon coupling at distance.
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Figure 5.11: Energy level separation ∆E (red curve) between the two peaks of fig-
ure 5.10 (a) as a function of the bias voltage Vsd1applied on QD1. The corresponding
QD1’s differential conductance is shown as a black curve. The expected dependence
∆E(G1) = 2g1(G1)

√
n̄ with g1(G1) extracted from figure 5.9 is represented as a

blue curve. The dashed green curve corresponds to the same formula with the linear
regression taken from ∆E (red curve) as a function of G1 (black curve).





Chapter 6

Quantum capacitance out of

equilibrium : preliminary

measurements

Up to this point, measurements of the quantum capacitance have been performed at

zero bias. The QD’s capacitance is properly defined at equilibrium only. It is related

to the charge susceptibility of the electronic system. At finite bias voltage drive, finite

current passes through the QD. Therefore charges enter and exit the electronic island

continuously. Definition of a QD’s capacitance becomes thus less intuitive. New in-

sights on QDs physics not accessible to conventional transport can be awaited from such

regime investigations. In this chapter, preliminary results of such measurements are

presented, obtained in sample NTRES33bZ4D. They already show a peculiar behaviour

of the quantum capacitance out of equilibrium. Further investigations are required how-

ever, especially in a transport regime different than Kondo regime, where theoretical

predictions can be more easily obtained.

6.1 Fourfold degeneracy playground

The spectroscopic region in which these preliminary measurements have been undertaken

is presented in figure 6.1 (a). The differential conductance in units of 2e2/h is shown

in the gate voltage Vg bias voltage Vsd plane. It ranges from 0.2 to 0.8 ×2e2/h and

exhibits a typical fourfold degeneracy pattern. Two Kondo ridges are especially visible

in the Coulomb diamonds corresponding to N = 1 and N = 3 electrons in the concerned

orbital. In the N = 2 Coulomb diamond, conductance ridges are visible at finite bias

voltage, corresponding to inelastic co-tunnelling. The interest of this region is that due

133
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to the fourfold degeneracy, the electronic state within the orbital is well defined and

known.'
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Figure 6.1: a : color scale plot of the differential conductance in unit of 2e2/h in
the gate voltage Vg bias voltage Vsd plane. Fourfold degeneracy is observable, with 2
Kondo ridges (orange arrows) corresponding to fillings N=1 and N=3 in the orbital.
b : color scale plot of the transmitted RF signal’s phase, simultaneously taken with

(a).

As for the measurements presented in chapter 5, the phase of the transmitted RF signal is

taken simultaneously, and gives a phase spectroscopy of the QD. It is presented in figure

6.1 (b). Similarly, the phase shows the same behaviour as the differential conductance,

as every feature of the latter is visible in the former. First, a phase contrast measurement

method is done at zero bias (as described in chapter 5 section 4.2.2). The dispersive

and dissipative frequency shifts δfR and δfD obtained are presented in figure 6.2 with

blue and red dots respectively. They respectively modulate up to 60kHz and 20kHz.

The fits of δR and δfD, using equations (4.33) and (4.16) gives an effective capacitance

C0 = 22.8aF and an asymmetry factor α = 0.004, similar to the values obtained on the

previous Kondo ridge study in chapter 5.

6.2 Out of equilibrium effective QD capacitance

The same kind of measurements is then performed versus bias voltage at fixed gate

voltages. Out of equilibrium excursions are thus performed, as shown in figure 6.3 (a).

The dispersive frequency shift and the differential conductance are represented on the

same plot. The Vsd excursion is close to the equilibrium regime, as it spans from -400µV

to 400µV. Once more, the frequency shift modulates like the conductance, which could

be expected considering the phase spectroscopy of figure 6.1 (b) relative to the transport

spectroscopy.

The linear dependence of δfR with respect to the differential conductance dI/dV is shown

in figure 6.3 (b) for two different gate voltages Vg. It is unambiguous that the slope of the
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Figure 6.3: Out of equilibrium dispersive frequency shift δfR measurements. a
: dispersive frequency shift of the cavity (black squares, left axis) and differential
conductance (red dots, right axis) versus the bias voltage Vsd at a particular gate
voltage Vg = −1.41V of figure 6.1 (a). b : dispersive frequency shift versus differ-
ential conductance for 2 different gate voltages Vg = −1.41V (blue dots) and -1.29V
(red squares). Linear fits with the formula (4.33) are represented for both data with

blue and red lines respectively.

linear dependence is clearly different for the two considered gate voltages. Two different

values of an effective capacitance are thus obtained, C ′0(Vg = −1.29V ) = 18 ± 1aF and

C ′0(Vg = −1.41V ) = 25±1aF. Not only these values differ from each other by more than

the uncertainty estimation, but they also deviate from the value obtained at zero bias.

It is thus a clear signature of the system behaving differently in the out of equilibrium

situation. To have a clear vision of the whole evolution of the out of equilibrium effective
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capacitance C ′0, the measurements are performed along the whole fourfold degeneracy

region, as showed in figure 6.4. The differential conductance at zero bias is represented

as a red curve and the effective capacitance C0 = 22.8aF found in this situation is

represented by a blue horizontal line. The out of equilibrium effective capacitance C ′0

has been measured via phase contrast protocol every 0.03V along Vg, as showed in figure

6.4 by the black squares.'
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Figure 6.4: Effective QD capacitance C ′
0 (black squares, left axis) in the out of

equilibrium regime. The value of C0 is extracted from the linear dependence of δfR
versus the differential conductance, as shown in figure 6.3 (b). The corresponding
differential conductance at zero bias is represented as a red curve (right axis). The
value of C0 = 22.8aF, at equilibrium, extracted from figure 6.2 is represented by the

horizontal blue line.

C ′0(Vg) shows a non trivial behaviour. For the first time, the capacitance of the QD does

not modulate like the conductance. This result confirms the conclusion of chapter 4 that

the cavity is coupled to the electronic levels of the QD. The measurement of the phase

(and indirectly of δfR) is clearly here not redundant with the differential conductance.

More specifically, C ′0 evolves around the value C0 = 22.8aF found at equilibrium. The

uncertainty on the value of C ′0 is less than its variation1. Therefore it is possible to try

finding a pattern in the evolution of C ′0. The most straightforward observation that can

be done is that C ′0 undergoes a drop of about 7aF (corresponding to a drop of 30%) in

the N = 2 Coulomb diamond. It corresponds to the electron-hole symmetry point of

the orbital. It is thus reasonable to cautiously say that the evolution of C ′0 is related to

the orbital filling.

1For the two first points, the error bars are big, which is due to the low differential conductance and
thus low phase variation at these gate voltages. The linear regression between two signals with low SNR
is inevitably very uncertain.
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These preliminary results need to be complemented by more experimentation and the-

oretical modelling. It is therefore necessary to reproduce these measurements in differ-

ent samples. Investigating less complex transport regime, and particularly Fabry-Perot

regime, would allow to properly understand the behaviour of the system in the out of

equilibrium regime. Furthermore, samples with better cavity allowing both the phase

and amplitude of the RF signal to be measured will make it possible to acquire more

rapidly new data.





Conclusion

This manuscript has addressed the development and study of microwave cavity embed-

ded QDs, in a cQED architecture. Single wall carbon nanotubes have been chosen as

the QD material because they offer a great versatility and a wide range of applications.

Other groups have decided to study similar QD based cQED architecture with 2DEG

[25, 26] or nanowires [27]. Several important results have been found during this work.

First, a strong electron-photon coupling between SWNT QD devices and microwave cav-

ities has been measured, of the order of 100MHz [86]. This high value is comparable with

superconducting circuits based cQED. It is therefore a promising platform for develop-

ing quantum computation with QDs based Qbits. This point has been reinforced by the

demonstration of the distant interaction between two QDs embedded inside the same

microwave cavity. This should allow to perform gate operations which are necessary for

quantum computing. Finally, the dispersive shift read-out technique used in this work

gives a new probe to study new aspects of QDs. It especially allows for accessing their

dynamic response and gives a direct way to measure the quantum capacitance of such

systems.

The studied QD could be considered as charge Qbit. The charge having a very small

coherence time, it is illusory to perform coherent manipulation of any charge state with

the microwave field, hence quantum computation operations. However, QDs devices are

suitable for making spin qbits [15, 90, 97] which have coherence times compatible with

cQED. Reaching the strong coupling regime with such device is therefore the next and

most important step. Nevertheless, this only constitutes one of the promising aspects

of such architecture.

Both the measurements of the quantum capacitance in the Kondo regime and the distant

interaction polaronic shift have shown that condensed matter situation are addressed

with these devices. A wide variety of experiments can be performed with this cQED

architecture. One can think of measuring the dynamics of the Kondo cloud, which

experimental signature still remains to be demonstrated. This could be achieved by

measuring a Kondo ridge of temperature around 300mK, corresponding to the 6GHz of
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the resonator. Similarly, if the characteristic energy of the electronic system is compa-

rable with the resonator frequency, one should be able to observe dynamical Coulomb

blockade effect [98]. It should particularly address the non perturbative regime in the

case of a single mode of the environment. Measurement of such situation has been re-

cently done with an ohmic impedance [99].

Another promising aspect of such architecture is the recently predicted [21] possibility

to probe the coherence of split Cooper pair. Such splitter can be made with CNTs

[20] or nanowires [100]. Embedding such device in a microwave cavity of few thousand

quality factor would reveal the coherence via a sub-radiance effect. Within the current

keen interest for Majorana fermions, it has also been proposed to embed a Kitaev chain

device (see e.g [101]) inside a microwave cavity [102]. This would allow for observing the

topological transition and witness the signature of these particles. These few proposals

show how rich the physics of this cQED with QD architecture is.



Appendix A

Scattering matrix in the

Fabry-Perot regime

A.1 Scattering matrix of the Fabry-Perot

We start with the system described in the paragraph about Fabry-Perot regime with

SWNT on page 20. We need to solve the system shown in figure A.1 (in order to lighten

the notations, the subscript SWNT used in the main text is replaced by W here)'

&

$

%Figure A.1: Model of the system representing left (L) and right (R) contacts
connnected by a wire (W) being the nanotube.

bWR = eiδaWL

= eiδ(−i
√
TL aL + e−iφL

√
1− TL bWL)

= eiδ(−i
√
TL aL + ei(δ−φL)

√
1− TL aWR)

= eiδ(−i
√
TL aL + ei(δ−φL)

√
1− TL(e−iφR

√
1− TR bWR − i

√
TR aR))

so that
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bWR =
−ieiδ

√
TL aL − iei(2δ−φL)

√
(1− TL)TR aR

1− ei(2δ−(φR+φL))
√

(1− TL)(1− TR)

we then get

bR =
−eiδ
√
TLTR aL − ei(2δ−φL)

√
1− TLTR aR

1− ei(2δ−(φR+φL))
√

(1− TL)(1− TR)
+ eiφR

√
1− TR aR

This equation structure will be useful later. But for now, we will reduce to the same

denominator to get

bR = − eiδ
√
TLTR

1− ei(2δ−(φR+φL))
√

(1− TL)(1− TR)
aL +

eiφR
√

1− TR − ei(2δ−φL)
√

1− TL
1− ei(2δ−(φR+φL))

√
(1− TL)(1− TR)

aR

We get the same expression for bL by inverting indexes R and L. Finally the full matrix

reads

sTot =
1

D


eiφL
√

1− TL − ei(2δ−φR)
√

1− TR −eiδ
√
TLTR

−eiδ
√
TLTR eiφR

√
1− TR − ei(2δ−φL)

√
1− TL


with D = 1− ei(2δ−(φR+φL))

√
(1− TL)(1− TR)

We note that the denominator becomes very small for specific phase value and that there

is resonance phenomenon for the following condition

2δ = φL + φR + 2πn

Assuming a weak coupling limit Tα ≈ 0

ei(2δ−(φR+φL)) ' 1 + i(2δ − (φR + φL))√
(1− TR)(1− TL) ' 1− 1

2
(TR + TL) +

TRTL
4
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Keeping only first order terms, we get

D ' 1

2
(TR + TL)− i(2δ − (φR + φL))

Moreover, δ is the detuning due to the optical path in the cavity, so that we can express

the excited energy levels with the help of the resonance condition

δ =
EL

~vF
(A.1)

En =
~vF
2L

(2πn+ φL + φR) (A.2)

Introducing the notation Γα = ~vF
2L Tα and Γ = ΓR + ΓL, the prefactor becomes

1

1− ei(2δ−(φR+φL))
√

(1− TL)(1− TR)
=

1
1
2(TR + TL)− i(E − E0) 2L

~vF

=
i

∆(E)

~vF
2L

with ∆(E) = E − E0 + iΓ/2.

We then find for transmission terms

s = −ieiδ
√

ΓRΓL
∆(E)

and reflection terms

sR/L = eiφR/L
(

1− i
ΓR/L

∆(E)

)

So that we find the final result

sαβ = ei
φα+φβ

2

(
δαβ − i

√
ΓαΓβ

∆(E)

)
(A.3)





Appendix B

Master equation solution of the

double occupancy coulomb

blockade regime

B.1 Probabilities in the stationary regime

We solve equation (1.21) for the stationary condition d~P
dt = ~0. A additional equation

must be added to make the system soluble, the sum of all probabilities is equal to one∑
n pn = 1. We consider spin degeneracy so that p↑ = p↓ = p. The system becomes



0 = −2Γ+p0 + 2Γ−p

0 = Γ+p0 − (Γ− + Γ̃+)p+ Γ̃−p↑↓

0 = 2Γ̃+p− 2Γ̃−p↑↓

1 = p0 + 2p+ p↑↓

(B.1)

Solving the system we find

p =
Γ+

Γ−
p0, p↑↓ =

Γ̃+Γ+

Γ̃−Γ−
p0, p0

[
1 + 2

Γ+

Γ−
+

Γ̃+Γ+

Γ̃−Γ−

]
= 1 (B.2)

By noting that f(ξ) + f(−ξ) = 1, we have Γ+
α + Γ−α = Γ̃+

α + Γ̃−α = γα. We recall here

that Γ±α = γαf
±
α (ξ + Vα). The symmetrization of the problem is taken into account

in writting Γ± = Γ±L + Γ±R and γ = γL + γR. The expression of the levels occupancy

probabilities becomes
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

p0 =
Γ̃−Γ−

γ(Γ̃− + Γ+)

p =
Γ̃−Γ+

γ(Γ̃− + Γ+)

p↑↓ =
Γ̃+Γ+

γ(Γ̃− + Γ+)

(B.3)

B.2 Expression of the current

The current is given by the following equation

I = 2e
[
Γ̃+
Lp+ Γ+

Lp0 − Γ−Lp− Γ̃+
Lp↑↓

]
(B.4)

By re-expanding the expressions of the Γ, many terms get simplified and one ends with

the following compact expression

I = 2e
Γ+(Γ̃+

L Γ̃−R − Γ̃−L Γ̃+
R) + Γ̃−(Γ+

LΓ−R − Γ−LΓ+
R)

γ(Γ̃− + Γ+)
(B.5)

This last expression can be expressed in terms of Fermi distribution as

I =
2e

h

γLγR
γL + γR

Γ+
[
f̃+
L f̃
−
L − f̃

+
R f̃
−
R

]
+ Γ̃−

[
f+
L f
−
L − f

+
R f
−
R

]
Γ+ + Γ̃−

(B.6)

B.3 Linear regime

The linear regime is obtained for eV/2� kT . In this situation, the Fermi distributions

can be expanded as

f(x± eV

2
) = f(x)± eV

2

1

4kT cosh2
(

x
2kT

) +O

((
eV

2

)2
)

(B.7)

and the product of Fermi distributions of equation (B.6) are expanded as
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f(x± eV

2
)f(−x± eV

2
) = f(x)f(−x)± eV

2

1

4kT cosh2
(

x
2kT

) (f(x) + f(−x))) +O

((
eV

2

)2
)

= f(x)f(−x)± eV

2

1

4kT cosh2
(

x
2kT

) +O

((
eV

2

)2
)

(B.8)

To first order in V , the current thus writes

I =
2e

h

γLγR
γL + γR

V
1

Γ+ + Γ̃−

Γ+ 1

4kT cosh2
(
ξ+U
2kT

) + Γ̃−
1

4kT cosh2
(

ξ
2kT

)
 (B.9)

=
2e

h

γLγR
γL + γR

V
1

f(ξ) + f(−ξ − U)

f(ξ)
1

4kT cosh2
(
ξ+U
2kT

) + f(−ξ − U)
1

4kT cosh2
(

ξ
2kT

)


(B.10)

Note that a new definition for γ has been used here in order to make the planck constant

appear γ → γ/h. It now represent a tunnelling rate. On an additional note, it is not

possible here to find an exact maximum peak height for the conductance.





Appendix C

Kinetic inductance

In the main text, we basically neglected losses in the superconductor in a microscopic

point of view. They were actually introduced artificially as a damping port to the en-

vironment in the quantum description or as a resistive lumped element in the classical

description. Superconductors are indeed not dissipation-less at AC frequencies. A sim-

ple vision of superconductors is the two fluids vision where both superconducting charge

carriers (Cooper pairs) and normal charge carriers (quasiparticles excitations) coexist.

Under DC excitation, only the superconducting charges contributes to the current, giv-

ing a lossless behaviour. To drive an AC current, an AC electric field is applied on the

superconductor. While it generates an AC supercurrent, it also accelerates the normal

charge carriers which scatter from impurities. This can be model as a complex conduc-

tivity σ = σ1 − iσ2. The superconducting channel behaves as a pure inductance while

the dissipative channel is ohmic. This treatment is valid in the limit ~ω � ∆ where ∆

is the gap of the superconductor. We can also add here that the dissipation is lowered

by lowering the temperature as the density of normal charge carriers decreases exponen-

tially nn ∝ e−∆/kT .

Mattis and Bardeen found an analytical solution of this two fluids vision with the help

of the BCS theory [103].

σ1

σn
=

2

~ω

∫ ∞
∆

(f(E)− f(E + ~ω))g(E)dE

σ2

σn
=

2

~ω

∫ ∞
(max(∆−~ω,−∆))

(1− 2f(E + ~ω))g(E)dE

with σn the normal state conductivity, f(E) the Fermi-Dirac distribution, ∆ the super-

conductor’s gap and
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g(E) = i
E(E + ~ω) + ∆2√

(E + ~ω)2 −∆2
√

∆2 − E2

As describe above, the surface impedance of the superconducting film is composed of an

inductive and a resistive part. We have Zs = Rs + iωLs, which for a film of thickness d

is given by

Zs =

√
iµ0ω

σ1 − iσ2
coth

(
d

λ

√
1 + i

σ1

σ2

)

with λ the magnetic penetration depth λ(ω, T ) = 1√
µ0ωσ2

. Typically, we have σ1 � σ2,

giving

Rs = µ0ωλ
σ1

2σ2
β coth

(
d

λ

)
Ls = µ0λ coth

(
d

λ

)

where β = 1 + 2d/λ
sinh(2d/λ) varying from 2 for a very thin film (d � λ) and 1 for bulky

material. Therefore, we wee that this kinetic inductance term will add to the geometric

inductance term of our transmission line. We have Lκ = gCPWLs with gCPW a factor

taking into account the particular geometry of the CPW. Considering our CPW geome-

try, we can estimate Lκ ≈ 8nH.m−1, corresponding to a variation of 2% to the geometric

inductance Lres. The treatment made by Watanabe [104] gives Lκ = 7.8nH.m−1 in good

accordance. However, it is not advised to rely on the geometry of the CPW to precisely

evaluate the kinetic inductance. It is much more appropriate to measure it from the

behaviour of the resonator. We have

ω0 =
1

l
√

(Lres + Lκ)Cres

which relative variation is given by
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δω0

ω0
=
αβ

4

δσ2

σ2

with α = Lκ/(Lres + Lκ). By integrating we find

ω0(T )

ω0(0)
=

(
σ2(T )

π∆(0)/(~ω)

)αβ
4

(C.1)

Figure C.1: Frequency resonance dependence versus temperature of a typical CPW
superconducting on-chip resonator versus. The data (black dots) are well fitted with

the Mattis-Bardeen theory (red line) giving α = 7%.

The resonator is made of a thin film of 150 nm of niobium topped with 25 nm of plat-

inum. Platinum is not a superconductor but undergo a superconducting behaviour via

proximity effect. Thus we chose ∆(0) = 1.4meV as it is the value of the superconducting

gap of pure niobium. To take into account the presence of platinum, we add its height

to the penetration length λ. The remaining two parameters are the normal state con-

ductance σn and α. σn is bounded between 1/100µS.cm−1 and 1/22µS.cm−1 which are

typical value for thin films which height vary from few angströms to bulk respectively

(see [105]). In fact, the value of σn does not seem to affect the dependence of ω0(T )

significantly ans is then set to σn = 1/22µS.cm−1 which is the bulk limit. As shown in

figure C.1, the behaviour of the resonator is well fitted with the Mattis-Bardeen theory,

and we find α = 7%, slightly higher than expected from geometric considerations but in
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good accordance with usual value [72, 106]. This can be explained by both the impreci-

sion of geometric dimensions during the process of nano fabrication and also the effect

of CVD carbon nanotube growth that can alter significantly the physical properties of

the film.



Appendix D

Equation of motion

D.1 Different Green Functions

This appendix gives the derivation of formulas (??,2.21,2.22,2.24). Due to the hybridiza-

tion terms HT,L and HT,L, the Hamiltonian H is not diagonal and the equations of

motion couple GRσ (d, t) to other Green’s functions like

Gkdσ (t) = −iθ(t)
〈{
ckσ(t), c†dσ

}〉

Dd
σ(t) = −iθ(t)

〈{
ndσ(t)cdσ(t), c†dσ

}〉

F kdσ (t) = −iθ(t)
〈{
ndσ(t)ckσ(t), c†dσ

}〉

Jkdσ (t) = −iθ(t)
〈{
c†dσ(t)ckσ(t)cdσ(t), c†dσ

}〉
and

Kkd
σ (t) = −iθ(t)

〈{
c†kσ(t)cdσ(t)cdσ(t), c†dσ

}〉
with k ∈ νL(R).
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D.2 Equations of Motion

The exact equations of motions for Gdσ, Gkdσ and Dd
σ write

(~ω + i0+ − ξdσ)Gdσ(ω) = ~ + UDd(ω)
σ +

∑
k∈νL(R)

tkσG
kd
σ (ω),

(~ω + i0+ − ξkσ)Gkdσ (ω) = t∗kσG
d
σ(ω)

(~ω+i0+−ξdσ−U)Dd
σ(ω) = ~ 〈ndσ〉+

∑
k∈νL(R)

tkσF
kd
σ (ω)+

∑
k∈νL(R)

tkσJ
kd
σ (ω)−

∑
k∈νL(R)

t∗kσK
kd
σ (ω),

For T � TK , one can neglect Kondo correlations. Then, the equations of motion for

F kdσ , Jkdσ and Kkd
σ write

(~ω + i0+ − ξkσ)F kdσ (ω) = t∗kσD
d
σ(ω)

(~ω + i0+ − ξdσ + ξdσ − ξkσ)Jkdσ (ω) =
∑

k∈νL(R)

t∗kσ

[
Dd
σ(ω)− f(ξkσ)Gdσ(ω)

]
,

and

(~ω + i0+ − ξdσ − ξdσ + ξkσ − U)Kkd
σ ω) =

∑
k∈νL(R)

tkσ

[
f(ξkσ)Gdσ(ω)−Dd

σ(ω)
]

,

D.3 Different Self Energies

Combining the different equations of motion leads to formulas (2.20,2.21,2.22), with

self-energy terms

Σ0
σ(ω) =

∑
k∈νL(R)

|tkσ|2

~ω − ξkσ + i0+

and, for i ∈ {1, 2, 3}
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Σi
σ(ω) =

∑
k∈νL(R)

µi(ξkσ) |tkσ|2 (
1

~ω − ξdσ + ξdσ − ξkσ + i0+
+

1

~ω − ξdσ − ξdσ − U + ξkσ + i0+
)

Here, one has µ1(ξ) = f(ξ), µ2(ξ) = 1− f(ξ) and µ3 = 1. Using (2.18), the self energies

can be expressed using continuous sums as

Σ0
σ(ω) =

∫ +∞

−∞

dξ

2π

Γσ(ξ)

~ω − ξ + i0+

and, for i ∈ {1, 2, 3}

Σi
σ(ω) =

∫ +∞

−∞

dξ

2π
µi(ξ)(

Γσ(ξ)

~ω − ξdσ + ξdσ − ξ + i0+
+

Γσ(ξ)

~ω − ξdσ − ξdσ − U + ξ + i0+
)

with Γσ(ξ) = ΓLσ(ξ) + ΓRσ(ξ). If we eventually assume that Γkσ = Γσ is energy

independent, we find the expressions of the self energies indicated below Eq. (2.22).

D.4 Lorentzian approximation situation at T=0

The self consistency system between the the conductance and the average occupation of

the dot is considered

G± =
1− 〈n∓〉

ω − ε± + iΓ/2
+

〈n∓〉
ω − ε± − U + iΓ/2

(D.1)

〈n±〉 = − 1

π

∫ +∞

−∞
dωf(ω)ImG±(ω) (D.2)

Considering T=0, one has

〈n±〉 = − 1

π

∫ 0

−∞
dωImG±(ω) (D.3)

and that

∫ 0

−∞
dω

1

A2 + (ω − ω0)2
=

π

2A
− 1

A
arctan

(ω0

ω

)
(D.4)
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it gives

〈n±〉 =
1

π
(1− 〈n∓〉)

[
π

2
− arctan

(
2ε±
Γ

)]
+

1

π
〈n∓〉

[
π

2
− arctan

(
2ε± + 2U

Γ

)]
(D.5)

By defining β± = arctan
(

2ε±
Γ

)
− arctan

(
2ε±+2U

Γ

)
, one has


〈n+〉 −

β+

π
〈n−〉 =

1

2
− 1

π
arctan

(
2ε+
Γ

)
−〈n+〉

β+

π
+ 〈n−〉 =

1

2
− 1

π
arctan

(
2ε−
Γ

) (D.6)

Finally the system is solved and gives

〈n±〉 =

1
2 −

1
π arctan

(
2ε±
Γ

)
+ β±

π

(
1
2 −

1
π arctan

(
2ε∓
Γ

))
1− β+β−

π2

(D.7)
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Lang-Firsov transformation

E.1 Definitions

The following Hamiltonian is considered

H = H0 +Hc (E.1)

H0 = ~ωra†a+
∑
dσ

εdσc
†
dσcdσ +Hint (E.2)

Hc =
∑
dσ

λd(a
† + a)c†dσcdσ (E.3)

with d the orbitals of either QDs in the problem. The electron photon couplings λd are

orbital dependant as the two QDs are at different positions.

E.2 Canonical Lang-Firsov transformation

E.2.1 Definition

Following the transformation found in [107], third edition, page 228, for every operator

A, one defines

Ã = eSAe−S (E.4)

with

S =
∑
dσ

λd
~ωr

(a† − a)c†dσcdσ (E.5)

157



Appendix E. Equation of motion 158

By using the following relation

Õ = O + [S,O] +
1

2!
[S, [S,O]] +

1

3!
[S, [S, [S,O]]] + .... (E.6)

it is possible to evaluate this transformation.

E.2.2 Boson and electron operators transformation

[S, a] =
∑

dσ
λd
~ωr c

†
dσcdσ

(
(a† − a)a− a(a† − a)

)
=
∑

dσ
λd
~ωr c

†
dσcdσ

(
a†a− aa†

)
= − 1

~ωr
∑

dσ λdc
†
dσcdσ

[S, [S, a]] = 0

[S, a†] =
∑

dσ
λd
~ωr c

†
dσcdσ

(
(a† − a)a† − a†(a† − a)

)
=
∑

dσ
λd
~ωr c

†
dσcdσ

(
−aa† + a†a

)
= − 1

~ωr
∑

dσ λdc
†
dσcdσ

[S, [S, a†]] = 0

[S, c†dσcdσ] = 0

where ndσ =
∑
σ
c†dσcdσ

ã = a− 1

~ωr

∑
dσ

λdndσ

ã† = a† − 1

~ωr

∑
dσ

λdndσ = ã†

ñdσ = ndσ

[S, cdσ] = 1
~ωr (a† − a)

∑
d′σ′ λd′

(
c†dσ′cdσ′cdσ − cdσc

†
dσ′cdσ′

)
= − λd

~ωr (a† − a) (cdσ)

[S, [S, cdσ]] = − λd
~ωr (a† − a)2

∑
d′σ′

λd′
~ωr

(
c†dσ′cdσ′cdσ − cdσc

†
dσ′cdσ′

)
=
(
λd
~ωr

)2
(a† − a)2cdσ

[S, [S, [S, cdσ]]] = −
(
λd
~ωr

)3
(a† − a)3cdσ

c̃dσ = cdσ(1− λd
~ωr (a† − a) + 1

2!

(
λd
~ωr

)2
(a† − a)2 − 1

3!

(
λd
~ωr

)3
(a† − a)3cdσ + ....

c̃dσ = cdσ exp(− λd
~ωr (a† − a))

c̃dσ = cdσX (E.7)

Xd = exp(− λd
~ωr

(a† − a)) (E.8)
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[S, c†dσ] = 1
~ωr (a† − a)

∑
d′σ′ λd′

(
c†dσ′cdσ′c

†
dσ − c

†
dσc
†
dσ′cdσ′

)
= λd

~ωr (a† − a)c†dσ

[S, [S, c†dσ]] = λd
~ωr (a† − a)2

∑
d′σ′

λd′
~ωr

(
c†dσ′cdσ′c

†
dσ − c

†
dσc
†
dσ′cdσ′

)
=
(
λd
~ωr

)2
(a† − a)2cdσ

[S, [S, [S, c†dσ]]] =
(
λd
~ωr

)3
(a† − a)3cdσ

c̃†dσ = c†dσ(1 + λd
~ωr (a† − a) + 1

2!

(
λd
~ωr

)2
(a† − a)2 + 1

3!

(
λd
~ωr

)3
(a† − a)3cdσ + ....

c̃†dσ = c†dσ exp( λd~ωr (a† − a))

X†d = exp(− λd
~ωr (a− a†)) = exp( λd~ωr (a† − a))

c̃†dσ = c†dσX
†
d (E.9)

One can verify that

X†dXd = XdX
†
d = 1

E.3 Hamiltonian transformation

ã = a− 1

~ωr

∑
σ

λdndσ

ã† = a† − 1

~ωr

∑
σ

λdndσ = ã†

H̃ = ~ωrã†ã+
∑
dσ

εdσ c̃
†
dσ c̃dσ + H̃int +

∑
dσ

λd(ã
† + ã)c̃†dσ c̃dσ

= ~ωr

(
a† − 1

~ωr

∑
dσ

λdndσ

)(
a− 1

~ωr

∑
dσ

λdndσ

)

+
∑
σ

εdσc
†
dσcdσ +Hint +

∑
dσ

λd(a
† + a− 2

~ωr

∑
d′σ′

λd′ndσ′)ndσ

= ~ωra†a−
∑
dσ

λdndσ(a† + a) +
1

~ωr

(∑
dσ

λdndσ

)2

+
∑
σ

εdσc
†
dσcdσ +Hint +

∑
dσ

λd(a
† + a)ndσ −

2

~ωr

∑
dσ

λd
∑
d′σ′

λd′ndσ′ndσ

= ~ωra†a−
1

~ωr

(∑
dσ

λdndσ

)2

+
∑
σ

εdσndσ +Hint
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The interesting point here is that H̃ is diagonal with respect to operators a†a and ndσ.

E.4 Transformed operators commutators

[ã†, ã] = [a† − 1

~ωr

∑
dσ

λdc
†
dσcdσ, a−

λ

~ωr

∑
dσ

λdc
†
dσcdσ]

= [a†, a]− 1

~ωr
[a†,

∑
dσ

λdc
†
dσcdσ]− 1

~ωr
[
∑
dσ

λdc
†
dσcdσ, a] +

(
1

~ωr

)2

[
∑
σ

λdc
†
dσcdσ,

∑
σ

λdc
†
dσcdσ]

= −1

{c̃†dσ, c̃dσ} = {c†dσX
†
d, cdσXd} = c†dσX

†
dcdσXd+cdσXdc

†
dσX

†
d = c†dσcdσX

†
dXd+cdσc

†
dσXdX

†
d = c†dσcdσ+cdσc

†
dσ = 1
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