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mā karma− phala− hetur bhūr
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Abstract

A thin film of a non-Newtonian flowing down an inclined plane under the action of
gravity is studied focusing on the effects of the fluid rheology on the complex wave dy-
namics that develops at the free surface. In chapter 3, the properties of the solitary
waves, which organize the disordered dynamics of the Newtonian film, are considered.
Direct numerical simulations (DNSs) of purely solitary waves have been performed and
compared to the results from the four-equation model derived in [112]. The evolution of
a power-law laminar film flow is considered in chapter 5 and modeled within the frame of
the lubrication approximation by means of the weighted residual approach. Comparisons
to Orr-Sommerfeld stability analysis and to DNS show convincing agreement in both lin-
ear and nonlinear regimes. A viscoplasctic film is modeled by the Herschel and Bulkley
law and is presented in chapter 6. The elasticity of the pseudo-plug region close to the
interface is taken into account by an elasto-visco-plastic constitutive relation derived by
Saramito [121]. A model is derived in terms of four-equations for the film thickness,
local flow rate and amplitudes of the normal and tangential stresses. A linear stability
analysis gives values of the critical Reynolds number in remarkable agreement with the
Orr-Sommerfeld analysis.
Key words : Non-Newtonian Fluid, Falling Film, Elasto-visco-plastic, Power laws,
Weighted Residuals.

Résumé

On étudie la dynamique d’un film mince d’un fluide non-newtonien s’écoulant sur un
plan incliné sous l’action de la gravité en tenant compte des effets d’une rhéologie complexe
sur la dynamique des ondes de surface. Au chapitre 3, les propriétés des ondes solitaires,
qui organisent la dynamique désordonnée d’un film Newtonien, sont considérées. Des sim-
ulations numériques directes (DNSs) d’ondes solitaires ont été effectués et comparés aux
résultats d’un modèle à quatre équations formulé dans [112]. Au chapitre 5, l’évolution
d’un film de fluide en loi de puissance film est modélisée au moyen de l’approche aux
résidus pondérés. Les comparaisons avec l’analyse de stabilité d’Orr-Sommerfeld et de la
DNS est en bon accord dans les régimes linéaires et non linéaires. Un film de fluide vis-
coplastique est modélisé par la loi Herschel et Bulkley est étudié au chapitre 6. L’élasticité
du pseudo-bouchon à l’interface est pris en compte par une relation constitutive élasto-
visco-plastique proposée par Saramito [121]. Un modèle est formulé en termes de quatre
équations pour l’épaisseur du film, le débit local et les amplitudes des contraintes nor-
males et tangentielles. Une analyse de stabilité linéaire donne des valeurs du nombre de
Reynolds critique en bon accord avec l’analyse d’Orr-Sommerfeld.
Mots clés : fluide non-newtonien, film tombant, élasto-visco-plastique, Loi de puissance,
résidus pondérés.
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angle of inclination β
slope coefficient cot β
density ρ
surface tension σ
kinametic viscosity ν
dynamic viscosity µ0
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For Newtonian fluid:
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Chapter 1

Introduction

In this thesis, the wave dynamics and stability of a falling film over a plane surface is
studied. A thin film flowing down an inclined plane or a vertical wall in the presence of
free surface displays a variety of fascinating dynamical behaviors. The dynamics of thin
film waves has attracted the attention of various industries due to its dramatic effects on
the transport rate of mass, heat and momentum in designing distillation and adsorption
columns, evaporators and condensers, in the modern precision coating of photographic
emulsions, protective paints and so on. Further, the stability of a falling film flow system
along an inclined plane under the action of gravity is a wide research subject. I am mainly
focused on the study of the stability of Newtonian and non-Newtonian falling film in this
thesis.

Falling liquid films have attracted a considerable interest since the pioneering work
by Kapitza & his son [60]. They are examples of open flows for which a sequence of
symmetry breaking can lead to a disordered state organized by dissipative structures in
interaction, i.e. a weakly turbulent state as defined by Manneville [79]. Falling films have
the peculiarity to be low-Reynolds-number flows whose wavy regime is supercritically
triggered by a long-wave instability. Therefore, observed surface waves are much longer
than the typical thickness of the film and a separation of scales can be used with the
introduction of a formal film parameter ǫ ∼ ∂x,t accounting for the slow evolutions in time
and space of the waves when compared to the relatively quick viscous diffusion across the
film layer. Falling films are therefore amenable to a thorough description in terms of low-
dimensional modeling, i.e., a description of the flow in terms of a limited sets of variables
depending on time t and position x on the plane may be substituted to the Navier-Stokes
equation after elimination of the continuous dependency on the cross-stream coordinate
y.

The problem of the stability of the laminar flow of an ordinary viscous fluid film
flowing down an inclined plane under gravity was first formulated and solved numerically
by Yih [147]. Initially proposed by Benney [9], the long-wave expansion of the velocity
field u = u(0) + ǫu(1) + . . . leads to a single evolution equation for the film thickness h.

18
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By essence, such a surface equation is a generalized kinematic wave equations written as
∂th+∂xQ(h) = 0 [146], where the local flow rate q ≡

∫ h

0
udy = Q(h) is an explicit function

of h and its derivatives. It expresses the slaving of the velocity field to the kinematics of the
free surface, an assumption that is sustained only at low Reynolds numbers when inertia
effects are weak. At moderate Reynolds numbers, time-dependent solutions to the Benney
surface equation are known to lead to unphysical blow-up in finite time [103, 123]. This
drawback was cured by Ooshida [93] by introducing a Padé-like regularization, however
at the cost of an underestimation of the wave speed and amplitude.

Another way to remedy to the drawbacks of the long-wave approach is to relax the
strict slaving of the dynamics of the flow to the kinematics of the free surface by intro-
ducing one or several variables, or “degrees of freedom” taking into account the imperfect
slaving of the velocity distribution on the evolution of the free surface. This idea was
initially introduced by Shkadov [126] who proposed to expand the velocity field as

u =
∑

i

ai(x, t)fi(y/h(x, t)) (1.1)

and to truncate the Navier-Stokes equation at order O(ǫ). At that order, the pressure
distribution is the hydrostatic one corrected by the Laplace law. After substitution of the
pressure, one is lead to a streamwise momentum balance analogous to the Prandtl equation
in boundary layer theory, which is thus generally referred to as a boundary layer (BL)
equation. In practice, Shkadov truncated (1.1) to only one test function corresponding to
the parabolic velocity profile of the Nusselt uniform film solution [91] and integrated the
BL equation across the film thickness. Shkadov’s averaged momentum equation coupled
to the exact mass balance ∂th + ∂xq = 0 form a closed system of evolution equations
for the film thickness h and the flow rate q, which may be referred to as the integral
boundary layer (IBL) model. The Shkadov model has been used extensively by Chang
and coworkers at Notre Dame University to study the dynamics of falling films (see [25]
and references therein). Comparisons to experiments show a reasonable agreement in the
nonlinear regime. However, the Shkadov model does not correctly capture the onset of
the primary instability and leads to an erroneous prediction of the instability threshold
ReIBL

c = cot β as function of the inclination angle β, a result that must be contrasted with
the the correct threshold Rec = 5

6
cot β obtained by Benjamin [10].

A number of studies have followed Shkadov’s integral boundary layer approach using
different numbers of degrees of freedom and different choices of the test functions (see for
instance [149, 86, 96, 111, 112, 113] and the review by Craster [30]). One way to avoid
hypotheses on the velocity distribution such as (1.1) is the center manifold approach
developed by Robert [107, 108]. The idea comes from the center manifold analysis of
dynamical systems of finite dimensions. Considering a fixed point and a linear operator L
that governs the evolution of the trajectories in the vicinity of the fixed point, the center
manifold is tangent to the eigenspace spanned by the eigenvectors corresponding to the
eigenvalues of zero real parts.
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In most cases, a system of two evolution equations for the film thickness h and the
flow rate q is obtained. Further, the analysis of the non-linear wave evolution equation
is in general very complicated. So, to extract more results from it, most of the previous
studies on non-linear wave process are based on the assumption of stationary waves which
does not change its phase speed and shape during the course of propagation.

Dandapat & Mukhopadhay [32] analyzed the evolution equation of a power-law film
flow on an inclined plane based on a quasi-stationary wave process. They found that the
non-linear interaction between kinematic, inertial and gravitational waves are responsible
for the formation of waves on a thin film and power-law index n plays a vital role in
the wave formation mechanism. Alekseenko et al. [2] have initiated this analysis to
study the wave formation in a liquid film flow on a vertical wall. It is therefore desirable
to investigate the characteristics of the waves in a large range of parameters for a better
understanding of the physical phenomena observed on a power-law fluid film flowing down
an inclined plane. A power-law model represents a class of generalized Newtonian fluids
which do not exhibit any elastic, yield or stress relaxation properties but these fluids show
the behavior of shear-thinning (pseudo-plastic) or shear-thickening (dilatant) properties
(for details see in chapter 4 and 5). Power-law models have been found to be successful
in describing the behavior of colloids and suspensions and a variety of polymeric liquids
and low molecular weight biological liquids, in the field of glaciology, blood-rheology and
geology. Since this model is different from a Newtonian fluid only in that its viscosity
depends on the symmetric part of the velocity gradient so that in a simple shear flow, the
viscosity depends on the shear rate. To be more precise such effects are inconsequential,
the dominant departure from the Newtonian behavior being shear-thinning or shear-
thickening.

Roll waves, i.e. hydraulic jumps connected by sections of gradually varying flows, are
generally encountered in torrential regimes of river flows and in man-made conducts like
spillways [41, 24, 58]. The possible onset of roll waves was already accounted for in the
design of aqueducts by Roman engineers [45]. The onset of roll waves results from an
instability mechanism that is similar to the formation of teardrop-like solitary waves on
a laminar film falling down an inclined plane. In the latter case surface tension prevents
the wave from breaking and arrests the formation of hydraulic jumps. These waves are
sometimes referred to as ‘capillary roll waves’ [8]. As such, film flows can be viewed as
a toy system whose wavy dynamics is closely related to the torrential regime of rivers at
larger flow rates.

Roll waves can also be observed in overland flows, especially in rill flows, with a
potential increase of the soil erosion [72]. In estuaries, rivers may carry large amount
of clay and the resulting mud flows are frequently pulsating and resemble roll waves in
turbulent flows of clear water [73]. For these two latter examples, interactions between
clay particles create extensive microscopic structures that are deformed and gradually
broken down when a stress is applied. As a consequence the response of the fluid to a
stress is non-linear and mud presents a shear-thinning behavior. Ng & Mei [85] studied the



CHAPTER 1. INTRODUCTION 21

roll waves on a shallow layer of mud modeled as a power-law fluid. The results indicated
that longer roll waves, with dissipation at the discontinuous fronts, cannot be maintained
if the uniform flow is linearly stable, when the fluid is slightly non-Newtonian. However,
when the fluid is highly non-Newtonian, very long roll waves may still exist even if the
corresponding uniform flow is stable to infinitesimal disturbances. Hwang et al. [52]
studied the linear stability of a power-law liquid film flows down an inclined plane by
using the integral method. The results reveal that the system will be more unstable when
power-law index n decreases.

Intermittent surges have been observed in mud flows in flooded rivers and flumes
(Engelund & Wan [43], Coussot [29]). Besides shear-thinning, another important property
of mud is that the interactions between clay particles create an extensive microscopic
structure that withstands a certain stress before deforming and allowing the fluid to flow
i.e., mud has a yield stress. These viscoplastic effects play key roles in the fluid dynamics
of mud and place this fluid in the realm of non-Newtonian fluid mechanics. In fact, certain
stability arguments indicate that roll-wave instability is completely absent in viscoplastic
films [8]. The essence of this argument is associated with how one perturbs the regions of
the flow which are not yet yielded. In uniform viscoplastic films flowing down an inclined
planes, one such region always occurs adjacent to the free surface, forming a rigid plug.
Balmforth & Liu’s [8] concern was the onset of roll waves that are observable in mud
surges. As a consequence they did not consider surface tension nor streamwise viscous
effects. For that reason, small amplitude perturbations of the free surface are sufficient
to trigger the instability and viscosplastic film flows should be conditionally unstable.
In order to describe the dynamics of a viscoplastic film, surface tension and streamwise
viscous diffusion must be accounted for. Therefore the pseudo-plug theory proposed by
Balmforth and Liu [8] need to be extended by introducing for instance the elastic response
of the pseudo-plug region to a free surface deformation.

I will organize my work according to the different problems of increasing complexity
that have been noticed above. First, reconsidering Newtonian film, I will aim at a thorough
analyses of the properties (phase speed, maximum amplitude and shape) of the solitary
waves, which is explored in chapter 3. This part of the thesis will be used as a validation of
the weighted residual technique initiated by Ruyer-Quil & Manneville [111, 112, 113, 114].
In chapter 4 I have mentioned different types of non-Newtonian fluids and its rheological
models which I will consider in chapter 5 and chapter 6 for falling film problems. In
chapter 5, I will consider a power-law film flow applying the weighted residual technique
and focusing on the effect of a shear-thinning an shear-thickening on the stability of
the thin film. In chapter 6, I will present a preliminary study of a viscoplastic film
who’s rheology is governed by an elasto-viscoplastic constitutive relation introduced by
Saramito [121]. A four-equation model is formulated by using the weighted residual
approach and Orr-Sommerfeld problem is derived to study the linear stability analysis.
Finally, chapter 7 presents a summary of this work along with possible perspectives.



Chapter 2

Instability of a Newtonian falling film

2.1 Introduction

The objective of this chapter is to give a short review of the phenomenology of
a Newtonian falling films and to provide a brief description of the modeling attempts
to describe such phenomena. Considering a Newtonian incompressible parallel flow, a
stability analysis leads to the well-known Orr-Sommerfeld equations. The inertia terms
in the Orr-Sommerfeld case is weakly destabilizing only in the sense that large Reynolds
numbers are needed for instability, in practice, once breakdown of symmetric flow occurs,
the periodic disturbances that grow tend themselves to be unstable and so an essentially
random turbulent flow usually develops. For a homogeneous fluid of constant density the
effects of gravity are effectively concentrated at interfaces with other fluids. When these
surfaces are deformable, the possibility of instability arises; a typical example is that of
a uniform flow of a thin liquid layer down an inclined plane (Javdani & Goren [54]). In
practice, gravity forces are usually stabilizing and lead to horizontal interfaces between
fluids of different density, with the heavier fluid underlying the lighter fluid. Genuinely,
the instability usually arises only from a fairly complex interaction of gravity and inertia
forces. Instability in Newtonian fluids also arises from interfacial forces.

Generally, the flows of thin fluid films can be found in several aspects of our daily
lives, even something as trivial as the flow of tears from the eye. It is initially surprising
that the same mathematical frame can be used to model flows on different length scales
such as the fluid film flow from eye and, at the other extreme, large scale lava flow
or continental ice sheet flows. Thin fluid films can generate a host of intriguing and
fascinating behaviors including complex dynamics featuring the formation of regular or
chaotic structures, periodic waves, shocks and fronts, and “fingering” phenomena, this
pattern formation has attracted many physicists, mathematicians, and engineers toward
the field of thin films.

Flows of thin fluid films spreading on solid surfaces have a distinguished history having

22
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Figure 2.1: Experiments of a water-ethanol mixture flowing down an inclined plate with
increasing inertial influence, the Reynolds numbers, Re are 16 and 45 in the
left and right panels, respectively. These results demonstrate the development
of noise-driven large-amplitude three-dimensional waves in falling films. From
Alekseenko et al. [4] and Craster & Matar [30].

been studied since the days of Reynolds, who was among the first to examine lubrication
flows [105]. Since the pioneering experiment by the father-son team of the Kapitza family
during their house arrest in the late forties (Kapitza & Kapitza [60]), wave evolution on a
falling film has intrigued many researchers. One of its main attractions is its simplicity-it
is an open-flow hydrodynamic instability that occurs at very low flow rates. It can hence
be studied with a rather simple experimental apparatus, an obviously important factor
for the Kapitzas. Yet, it yields a rich spectrum of fascinating wave dynamics, includ-
ing a very unique and experimentally well-characterized sequence of nonlinear secondary
transitions that begins with a selected monochromatic disturbance and leads eventually
to non-stationary and broad-banded (in both frequency and wave number) “turbulent”
wave dynamics (turbulence here is used interchangeably with irregular spatio-temporal
fluctuations).

Careful experiments by Beauchamp Towers in 1883 and 1884 prompted Reynolds to
create what is now called as “lubrication theory”, which, subsequently, has been widely
used to study thin film flows. A commonly observed “windscreen flow”, involves a thin
film flowing down an incline at moderate Reynolds number, (see Fig. 2.1, [30]). In this
case, inertia is important and the experiments reports the onset of strongly coherent
structure which further evolution ultimately yield three-dimensional waves. Despite the
highly complex flow structures, recent advances and improvements in both theoretical and
numerical techniques now allow one to capture this complex behavior within the context
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Flat film flow

2D waves

3D waves

Figure 2.2: Shadow images of waves naturally occurring on a film of water flowing along
a vertical plate at Re = 33 by Park & Nosoko [97] (from [59]).

of a thin film model [123]. The instability appears at much lower Reynolds numbers than
those typically required for a transition to turbulence. The wave patterns evolve in the
falling film can show a rich variety of behavior both in space and time.

2.2 Flow evolution on a falling film

The two and three dimensional waves in falling films can be observed on vertical
and nearly-vertical configuration in experiments [1, 4, 71, 89, 90, 97]. Generally a falling
liquid film exhibits a cascade of symmetry-breaking bifurcations leading from the flat-film
flow to a two-dimensional (streamwise dimension and height) periodic wave train, which
eventually evolves into solitary waves and further to three-dimensional (streamwise, span-
wise dimensions and height) solitary waves and complex flows/wave patterns, observed in
experiments as well as predicted by theory. For a two-dimensional flow there is no span-
wise dependence and no spanwise velocity component, while the surface elevation varies
in the streamwise direction only. For a three-dimensional flow there is dependence in all
three directions, while the surface elevation varies in both the streamwise and spanwise
directions (see Fig. 2.2).

I give a short description of the phenomenology observed in experiments based on Liu



CHAPTER 2. INSTABILITY OF A NEWTONIAN FALLING FILM 25

& Gollub [70] work, the review paper by Chang [19] and the book by Kalliadasis et al. [59].
Liu & Gollub considered a moderately inclined plane and its wave dynamics relatively
close to the onset of the instability, Rec = 5 cot β/6, where the sequence of the primary
instability of the Nusselt flat film leading to a primary saturated wavetrain followed by
secondary instabilities of the primary wavetrain, is more easily identified than in the
vertical case for which the flow is always unstable (Rec = 0) and therefore, by definition,
in the experiments one is already far from onset.

The first linear stage is followed by a second stage with non-linear saturation of this
growth. Further downstream the wave loses stability, e.g., as a consequence of interaction
between the wave harmonics, and the wave pattern is altered, embracing a wide spectrum.
This process eventually yields highly asymmetric and nonlinear waves containing most of
the liquid, and each of which consisting of a hump with a long flat tail behind. The front
of the hump is steep and is preceded by small ripples (also denoted radiations) with a
wavelength close to the originally linearly fastest growing wave. These highly asymmetric
and nonlinear waves are what we already referred to as solitary waves and have a velocity
that increases with their amplitude.

The onset of wave patterns at the surface of a falling film can be very sensitive to
the frequency contain of the perturbations applied at the inlet, as shown in Fig. 2.3.
For sufficiently large frequencies, the waves are initially two-dimensional but they easily
become three-dimensional, and exhibit rather irregular patterning, eventually leading to
a seemingly turbulent flow (at a forcing frequency of 100Hz). Various distinct wave flow
features can be identified as the flow rate is increased or the frequency of the forcing at
the inlet is varied, as illustrated in Fig. 2.3. For instance, there is a first region that
corresponds to growing infinitesimal perturbations introduced by a noise near the inlet
that eventually yield a two-dimensional wave of well-defined wavelength downstream.
Without forcing (first panel from the left) the wave selected in the first stage corresponds
to the fastest growing wave according to the linear stability analysis of the uniform laminar
flow. Also, at sufficiently low-frequency of the inlet-forcing, solitary waves appear right
after infinitesimal ones saturate (see, e.g., in Fig. 2.3).

Based on the experimental observations, the different secondary instabilities in film
flows leading to irregular patterns are schematically summarized in Fig. 2.4. The evolu-
tion of film flow along an inclined plane can be broadly distinguished into four regimes,
each corresponding to a different region on the inclined plane. The inception region is
the domain close to the inlet where the primary linear instability of the flat film develops
in space. The observed primary waves are two-dimensional because the fastest growing
perturbations are spanwise-independent, stipulated by Squire’s theorem [147]. The ampli-
tude of the waves saturates and their shape remains practically unchanged over distances
corresponding to a few wavelengths (region II). Subsequent events depend on the forcing
frequency.

It is observed that at large frequencies but below the cut-off frequency, the primary
waves are slow and are characterized by wide bumpy crests and deep thin troughs, whereas
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Figure 2.3: Shadow images of waves in a film of water flowing down a vertical plate at
Re = 52. With the exception of the first panel on the left, the inlet flow rate
is periodically forced at the frequencies indicated in the upper right corner
of each panel (in Hz). The white arrows indicate the appearance of double-
peaked waves. From Nosoko et al. [89] and [59].
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Figure 2.4: Schematic description of the spatial evolution of the film flows (from [59]).
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(a) (b)

Figure 2.5: (a) Synchronous instability; (b) subharmonic instability with herringbone
pattern. From Émery & Brosse [42] and [59].

above the cut-off frequency the system is linearly stable (see in Fig. 2.4(a)). They belong
to the γ1 family following the terminology introduced by Chang [19, 20]. Two different
scenarios are possible for the next evolution, first one can be referred to as a synchronous
instability which is characterized by in-phase deformation of neighboring troughs in the
spanwise direction, whereas the crests remain undisturbed. The second one is less ob-
served, characterized by a phase shift between two successive crests which leads to her-
ringbone patterns, characteristic of a spanwise modulation combined with a streamwise
subharmonic instability, corresponding to a resonance between the frequency f of the
two-dimensional traveling waves and its subharmonic f/2 (of Fig. 2.5). This instability
triggers a doubling of the wavelength of the primary waves. At high enough forcing fre-
quency, the flow becomes disordered before the onset of two-dimensional solitary waves
because three-dimensional instabilities are stronger than two-dimensional, which explains
the absence of region III in the corresponding picture (Fig. 2.4(a)). In Fig. 2.4(b), at low
frequencies, the saturated waves triggered by the flat film primary instability experience a
secondary instability which eventually leads to large amplitude two-dimensional solitary
waves in the form of fast humps preceded by capillary ripples (region III). Such waves
belong to the γ2 family, following the terminology introduced by Chang [19, 20]. They are
generally unstable to transverse perturbations, which leads to the last stage of secondary
three-dimensional instabilities (region IV, see Fig. 2.6). Finally, at very low forcing fre-
quencies, saturated γ1 waves (region II) do not show up and the solitary-like wavetrains
of the γ2 family are directly generated by inlet forcing.

Depending on the flow regime, different levels of reduction can be used to simplify the
governing equations, namely Navier–Stokes equations. Different approximations enable to
perform a “gradient expansion” of the velocity and temperature fields and to subsequently
obtain systems of equations of reduced dimensionality to model the dynamics of the flow.
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(a) (b)

Figure 2.6: (a) Quasi-two-dimensional solitary wave; (b) spanwise instability of a quasi-
two-dimensional solitary wave. From Émery & Brosse [42] and [59].

2.3 Modeling attempts: a short review

In this section, my intention is to enlighten the modeling attempts by many scientists
devoted to the falling film problem in last few decades. The classical modeling approach
for falling film flow is the long-wave theory based on a gradient expansion of the governing
equations with respect to a small parameter ǫ ∼ |∂xh|/h≪ 1, the so-called film parameter
which measures the slow variations of the free surface in time and space. The theory
typically leads to a single evolution equation for the film thickness h which is referred to
as the Benney equation. The problem in isothermal case was first solved by Benney in
1966, later on by several other authors (see the reviews by Oron et al. [94] and Craster
& Matar [30]). The Benney equation can be written as

∂th+
1

3
∂x

(

h3 +
2

5
δh6∂xh− ζh3∂xh+ h3∂xxxh

)

= 0, (2.1)

which describes the evolution of film thickness. Here, δ = 3Re/We
1

3 is a reduced Reynolds
number, ζ = cot βWe1/3 is the reduced slope, Re = h3N/3 and We = Γ/h2N are the Reynolds
and Weber numbers. Since this equation contains the film thickness h and its derivatives,
is also called a surface equation. This scaling is inherent to the falling film problem in the
region of moderate Reynolds numbers due to the separation of scales in the streamwise
and cross-stream directions in this region that is in fact due to the strong effect of surface
tension. It also makes apparent the balance among all forces, i.e., inertia, gravity, viscosity
and surface tension, necessary to sustain strongly nonlinear waves.

Unfortunately, it is valid only close to the instability threshold and fails to reproduce
the behavior of the film outside a close neighborhood of the threshold. The situation is
not improved by pushing the gradient expansion to higher order, which leads to a more
complicated equation with no better properties. The fundamental reason for the inability
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of the Benney equation to describe nonlinear waves far from criticality (even though
departure from the streamwise velocity distribution from the Nusselt flat film parabolic
profile are small) is the slaving of all flow variables to the film thickness h. Benney
equation has its own shortcoming, mainly it shows an unphysical behavior when δ > 1
the drag-inertia regime as nicknamed by Ooshida [93]. In the drag-inertia regime, inertia
plays a significant role, which is opposed to the drag-gravity regime (which corresponds to
a balance between viscous drag on the wall and gravity acceleration) where inertia plays
a perturbative role. It is precisely because inertia terms were considered as first-order
perturbations in the gradient expansion parameter ǫ of the drag-gravity balance, which in
turn corresponds to the Nusselt flat film flow, that the Benney equation can be derived.

Most of the models are based on an in-depth averaging of the original equations, i.e.
averaging of the equations across the film, which require to introduce closure assumptions
on the functional form of the dependence of the velocity on the film thickness. The
procedure generally starts with a gradient expansion for the velocity field which can only
be justified rigorously when inertia plays a weak/perturbative role, that is in the drag-
gravity regime (δ less than unity). Following the long-wave/Benney equation approach,
a nonlinear free-boundary problem is converted into a sequence of solvable problems.
Hence the velocity field is obtained explicitly at each step in terms of functions of h but
with amplitudes which are independent of h (e.g. to leading order, the amplitude of
the velocity field contains the flow rate q). Contrary to the long-wave theory/Benney
equation expansion where all variables are slaved to h, the averaging approach gives a
higher level of flexibility to the velocity thus allowing it to have its own evolution. This
is the fundamental difference between the averaging procedure and classical long-wave
theory. Yet the velocity is described by a limited number of variables. The in-depth
coherence of the flow is ensured by gravity and viscosity with inertia playing a perturbative
role. The aim is to derive the simplest set of equations assuming small inertia effects that
remain accurate when this assumption starts to be violated, i.e. as one proceeds from the
drag-gravity to the drag-inertia regimes.

As a matter of fact, many models have been derived since the pioneering work of
Kapitza [60]. Later on, Shkadov extended to non-stationary two-dimensional flows and
then to three-dimensional ones by Demekhin & Shkadov [34]. In most of the cases found
in literature, surface equations for film flows are based on the mass conservation equation
(5.14) which is rewritten here for clarity

∂th+ ∂xq = 0. (2.2)

The Kapitza-Shkadov approximation leads to two coupled evolution equations for film
thickness h and streamwise flow rate q. Considering boundary-layer equations at lowest
order and assuming that the velocity profile is parabolic, Shkadov’s model is obtained as
follows,

δ∂tq = h− 3
q

h2
− δ

{

12

5

q

h
∂xq −

6

5

q2

h2
∂xh

}

− ζh∂xh+ h∂xxxh = 0, (2.3)
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which is apparently free of finite-time blow-up but fails to give a quantitatively accurate
description of the instability threshold. This model is not good enough to capture inertia
correctly though inertia and surface tension are not considered small. Results for isother-
mal nonlinear waves far from criticality obtained from the Kapitza–Shkadov model are
in quantitative agreement with the boundary layer [35] and full Navier-Stokes equations
for moderate Reynolds numbers [36, 104, 119]. However, the Kapitza–Shkadov approach
does not predict well neutral and critical conditions, except for large inclination angles.
Indeed, it has been shown that for a vertical falling film, the Kapitza–Shkadov model
gives the correct value for the critical Reynolds number, i.e., zero.

This shortcoming has been resolved by Ruyer-Quil & Manneville combining the gra-
dient expansion with a “weighted residual” technique using polynomials as test func-
tions [112, 113]. The resulting models are referred as weighted residual models. A Galerkin
method, leads to a “first-order model” involving two coupled evolution equations for the
film thickness h and the local flow rate q, much like the Kapitza-Shkadov model but with
different numerical coefficients of the terms originating from inertia. The first-order model
predicts the correct linear instability threshold for all inclination angles while at the same
time it also predicts rather well the nonlinear flow features. This is a direct consequence of
using a detailed representation of the velocity field accounting for its deviations from the
semi-parabolic profile. A “second-order model” has also been developed that takes into
account the second-order viscous effects. It involves four equations by allowing the cor-
rections to the semi-parabolic velocity profile to evolve according to their own dynamics.
Further, an approximation to this four-field model, a “simplified second-order model”, has
been proposed involving only two fields, which allows us to check easily the role played
by the second-order viscous effects on wave profiles and stationary wave selection. The
spatial evolution of the solutions of the simplified second-order model in the presence of
noise or periodic forcing agrees rather well with both experiments and direct numerical
simulations of the boundary layer equations.

The simplified second-order model proposed by Ruyer-Quil & Manneville [113] can be
written as

δ∂tq =
5

6
h− 5

2

q

h2
− δ

{

17

7

q

h
∂xq −

9

7

q2

h2
∂xh

}

+
5

6
h∂xxxh− 5

6
ζh∂xh

+η

[

4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+

9

2
∂xxq

]

, (2.4)

The terms within the square brackets are generated by the second-order contributions
originating from the second-order term in the momentum equation and the tangential
stress boundary condition. As such they include the effect of viscous dispersion that was
lacking at first order. Hence, (2.2) and (2.4) will be referred to as the simplified second-
order model (see in [59]). The models derived by Ruyer-Quil & Manneville are capable to
capture the inertia effect in the drag-inertia regime for moderate Reynolds number. These
models will be used in chapter 3 to provide some insight on the solitary wave solutions.
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The results of these models will be compared with DNSs to explain the properties of
solitary wave in drag-inertia regime (δ ≫ 1). In chapter 5 and 6, the weighted residual
technique will be employed to deal with the non-Newtonian film flow problem.



Chapter 3

Solitary waves on a Newtonian falling

film

During my thesis I had the opportunity to spend two months in Volos (January -
February 2011). The material presented in this chapter is a part of collaborative work
with the University of Thessaly, Volos under the direction of Prof. Vasilis Bontozoglou.
This chapter is an extended version of a manuscript in preparation entitled “Extreme
solitary waves down falling film flow” by S. Chakraborty, P.-K. Nguyen, C. Ruyer-Quil
and V. Bontozoglou. My specific contribution to this work is to compute the solitary waves
based on DNS and solutions to the models derived by Ruyer-Quil & Manneville [111, 112,
113, 114]. To this aim, I specifically modified some subroutines of the FORTRAN program
developed in Volos and I computed the solutions to the models using Auto-07p software.

3.1 Introduction

Wave evolution on an inclined or vertical falling film is an open-flow hydrodynamic
instability, which has attracted an extensive study since pioneering work of Kapitza and
his son [61]. Interfacial waves on film flows has been known on one side to enhance heat
and mass transfer rates in process equipment such as condensers, falling film evaporators,
absorption columns, and two-phase flow reactors, and on the other side, they degrade the
quality of films in coating processes. A brief review of some experimental and theoretical
results are referred to the monographs by Alekseenko et al. [3], Chang [21], Craster &
Matar [30], and Kalliadasis et al. [59] for a more detailed information of the relevant
literature and results.

Much of the information available for the problem is based on experiments. From
experimental observations, waves emerge first as short periodic, near sinusoidal waves in
the inception region (near the inlet) and evolve into long solitary type waves, which are
often preceded by one or more small capillary waves (or ripples). These solitary waves

32
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might break up into spatially and temporally irregular three-dimensional waves further
downstream. A technique introduced in the pioneering work of Kapitza & Kapitza [61]
and subsequently adopted by many investigators [3, 70, 138, 144, 68] is to facilitate the
observations of wave development by applying a constant-frequency disturbance at the
inlet. In this way regular waves are produced, whose form depends to a large extent on
the frequency of the forcing. These studies have demonstrated that high-frequency dis-
turbances initially lead to saturated periodic waves, whereas low-frequency disturbances
evolve directly into regularly-spaced solitary waves. The latter are characterized by large
humps with steep wave fronts and gently sloping tails, preceded by front-running ripples
(else called bow waves or precursor waves).

Other investigations have focused on waves that occur naturally, triggered by random
noise [136, 56, 134, 16, 138, 144]. In that case, small-amplitude waves at the inception
region generally correspond to the linearly most unstable mode, and initially evolve into
a multi frequency, complex pattern. It has been demonstrated [70, 138] that, farther
downstream, the film flows produced by either regular high-frequency forcing or by natural
noise are eventually dominated by a small number of irregularly spaced solitary humps,
which emerge through period-doubling and wave merging phenomena. The correlation of
the celerity and the amplitude of solitary waves is documented in a recent experiment on
vertical falling film covering a large range of fluid properties Kapitza number, Γ and flow
rates Weber number, We by Meza & Balakotaiah [81].

Extensive theoretical efforts at the problem of film flow have centered on perturba-
tion expansions in a small parameter proportional to the thickness-over-wavelength ratio
(accompanied by various order-of-magnitude assumptions for the pertinent dimensionless
numbers Re and We). Although natural wave structures resemble the three-dimensional
waves with pronounced transverse variations, the waves travel downstream at a relatively
constant speed without changing their shapes, suggesting that a local two-dimensional
model is sufficient for describing these naturally occurring wave profiles. The purpose of
these models is to obtain a simplified low-dimensional description of the film in terms of the
stream wise coordinate (x) and time (t). They can be a single evolution equation [9, 21] for
the local film thickness h(x, t) or a pair of evolution equations for the local film thickness
h(x, t) and the local flow rate q(x, t) [80, 126, 103, 84, 57, 20, 67, 66, 111, 112, 114, 123, 59],
or a three-equation set based on a cubic stream function for the local film thickness h(x, t),
the local flow rate q(x, t) and the local pressure p(x, t), [86] and even up to a set of four
equations [113].

Simplification of the Navier Stokes equations and analysis of the simplified models
render the development of analytical expressions for predicting and correlating the be-
havior of wavy films. Benney [9] was credited for using a perturbation method to derive
the first simplified model for describing the instantaneous amplitude of surface waves on
liquid films. The model is commonly known as the long wave (LW) equation in the lit-
erature. A weakly nonlinear truncation of the long wave equation gives the Kuramoto
Sivashinsky (KS) equation. Numerical studies of the KS equation by Sivashinsky &
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Michelson [130] showed that solitary waves generated in a bounded domain with peri-
odic boundary conditions travel at the same speed as predicted from the linear theory.
Long-wave-type equations were also derived and analyzed by Frenkel [46, 47] for flows on
cylindrical wires. Shkadov [126, 127] used the integral boundary layer (IBL) method with
a self-similar velocity profile assumption to derive a two-equation model for describing
the dynamics of large-amplitude waves. However, it was shown later that the Shkadov
model does not give correctly the location of Hopf bifurcation in parameter space, a nec-
essary condition for predicting periodic waves in a moving frame of reference. Alekseenko
et al. [3] measured the local velocity components inside the waves and found that they
are not self-similar but are close to the parabolic distribution. They also measured the
wave growth rates, velocities, and amplitudes near inception. Trifonov & Tsvelodub [139]
analyzed the Shkadov model and resolved the problem associated with it by using periodic
boundary conditions. Although their numerical simulations showed reasonable agreement
with experimental data (near the inception region) at low to moderate Reynolds num-
bers, the assumption of periodic boundary conditions was questionable. Applying the
dynamic singularity theory, Chang [21, 23] derived quantitative correlations between the
solitary wave amplitude, velocity, and wavelength and showed that the single frequency
waves first appearing on the smooth film evolve into doubly periodic waves, which may
then become chaotic just before the solitary wave limit is reached. Chang’s work con-
centrated on the LW and the KS equation and was limited to small Reynolds numbers
and high Kapitza (Weber) numbers for which the wave amplitude is very small. Further
efforts to enrich the structure of the wave evolution process by retaining higher-order vis-
cous terms and/or adding a third dimension did not result in significant improvement over
simpler models [102, 20]. Using the boundary collocation method, Yu et al. [148] analyzed
two models, namely the boundary layer(BL) model and the second-order boundary layer
(SBL) model, which were capable of describing the dynamics of large-amplitude waves at
high Reynolds numbers. Both models compared well with the linear stability results of
the OS equation. The SBL model also included a pressure variation across the film and
higher-order viscous terms, which were essential in predicting accurate wall shear stress.
In the traveling coordinate, numerical integration of the BL and SBL models predicted
large-amplitude waves with peak to substrate ratios of 3 to 4 and agreed well with experi-
mental data. Although the numerical computations using these models were much simpler
than the full Navier-Stokes equations, they were still too complicated for general analyt-
ical studies. The resulting approximate evolution equations for the film thickness admit
stationary traveling solutions. They have been analyzed by modern bifurcation theory
and have also been numerically scrutinized to yield a rich variety of solutions, including
limit cycles, homoclinic orbits, and chaotic attractors [26, 102, 37, 139, 140, 141, 148].

Along the line with the need for a low-dimensional but accurate model, Ruyer-Quil &
Manneville [111, 112, 113, 114] have systematically derived several low-dimensional mod-
els based on the weighted residual method and polynomial expansions. Their different
models were gradually improved by including high-order viscous terms and by regular-
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ization. Their most important contribution is a four-equation model which can take into
account all characteristics of the full Navier Stokes equations by resolving on a high-order
polynomial expansion and adding two independent local degrees of freedom to describe
the evolution of finite amplitude waves for a realistic range of parameters.

Computational attempt on the film flow problem through direct computation based
on the full Navier-Stokes equations are not very numerous. One attractive approach is
the numerical integration of the time-dependent equations as an initial-value problem,
because it captures the nonlinear, spatial evolution of a convective instability and is thus
more amenable to a direct comparison with experiments. The earliest numerical study
that has adopted such an approach is the extensive simulation of Ramaswamy et al. [104].
These authors have presented temporal stability results that identify a transition regime
characterized by quasi periodic (instead of fully developed) waveforms, and have also
computed the spatiotemporal evolution of inlet disturbances and compared their predicted
free-surface profiles with the data of Liu & Gollub [70]. An extension of the above study
is the study of solitary wave interaction using free outflow boundary condition [75, 77, 76]
in order to ensure smooth exiting of nonlinear waves from the computational domain.

Due to the cost of the computations of unsteady waves computation, an alternative
DNS can be used with the application of the periodic boundary conditions at the inlet and
outlet of the flow field to capture the fully developed stationary wave. The pioneering work
of Bach & Villadsen [6] was followed by few contributions [64, 50, 88, 119], which obtained
good agreement with data of fully developed nonlinear waveforms. This formulation
overcomes the problem of the outflow boundary condition but excludes by definition non-
stationary dynamics and a periodic phenomena such as chaotic waves. On the contrary,
periodic and fully developed solitary waves are recovered. Thus, the above studies permit
comparisons with stationary solutions, derived from the aforementioned simplified forms
of the Navier-Stokes equations based on long-wave expansion. However, characteristics
of traveling wave was studied in part for short waves and at small Reynolds number, Re
and information about solitary wave in the true solitary limit is not yet documented.

Even though most low-dimensional models predict similar behaviors close to the
threshold, they exhibit differences from each other at intermediate and higher value of
Reynolds number (or reduced Reynolds number δ), i.e. when inertia becomes significant.
These differences have been noted initially by Ooshida [93] who noticed a drastic modifi-
cation of the shape of solitary waves when δ becomes larger than 2. Ooshida nicknamed
drag-gravity and drag-inertia regimes the two different regions (δ ≪ 1 and δ ≫ 1). In
the drag-gravity region, inertia plays only a perturbative role, viscous drag and the grav-
ity force being dominant. The wave front and tail have close typical lengths. In the
drag-inertia regime, inertia become dominant and balance the viscous drag and gravity
acceleration. At the front, the breaking of the wave prompted by inertia is arrested by
surface tension, which generates a large number of capillary waves. These capillary waves
accumulate because of the large scale separation between the length of the wave tails and
the short wavelength of the capillary ripples. Based on two-equation models, Ruyer-Quil
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& Manneville [114] have shown that the solitary-wave speed saturate to an asymptotic
value as δ goes to infinity. Thus saturation is a consequence of the dissymetry between
the front and back of the waves. At the back, viscous drag and gravity acceleration are
balanced by inertia, surface tension being negligible. This saturation is parallel to the
onset of roll waves, i.e., regularly varying section of laminar flow separated by shocks. As
for roll wave, one is led to Thomas condition [137] that fixes the speed of the solitary
wave as δ → ∞. In that limit, solitary waves have a very large amplitude and speed and
we will refer to them as extreme solitary waves.

Crucial test of such models consists in the correct predictions of the properties (shape,
wave speed and wave height) of solitary wave as a functions of the distance from the
instability threshold. Motivated by this fact, our direct numerical simulation (DNS) work
is based on the integration of the full two-dimensional Navier-Stokes equation by the finite
element method with the application of periodic boundary conditions. The important
point in this study is the use of a large enough length of computational domain in order
that periodic waves approach asymptotically the solitary limit. It aims is two-fold, first,
offering numerical predictions of the extreme solitary wave properties, then using these
data to validate the different low-dimensional models found in literature. Among them,
the four-equation model [113] is proved to have am excellent agreement to the DNS results
and to be considered the most accurate available model for further theoretical and applied
study perspectives.

This chapter is organized as follows: Problem formulation and finite-element imple-
mentation are outlined in §. 3.2. In §. 3.3, the fully-developed solitary wave is studied and
its properties are characterized in terms of different parameters. Comparisons of results
from DNS with the different low-dimensional model are made. Finally, the key properties
of extreme solitary wave are summarized in the concluding section 3.6.

3.2 Problem formulation and Computational method-

ology

3.2.1 Governing equations

This study deals with liquid films flowing along an inclined plane under the action
of gravity g with an angle β as sketched in Fig. 3.1. The flow is free of shear force at
the gas-liquid interface. The solitary wave is further assumed to be fully developed and
hence moves at a constant speed and with a constant shape. In this stationary state
and in the co-moving reference frame, the solitary wave can be considered to move on
a base substrate which is undisturbed far away from the main hump. If the solitary
wave hump is placed at the middle point of a sufficiently large domain of length L, the
liquid substrates near inflow and outflow regions are practically undisturbed and the flat
Nusselt flow solution is retrieved so that the periodic boundary can be applied for these
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Figure 3.1: A sketch of the geometry for a Newtonian film flowing down an inclined
plane.

two ends. The problem is modeled as two-dimensional in a Cartesian coordinate system,
with the x-axis pointing in the mean flow direction and the y-axis across the film. The
respective dimensional velocity components are u and v. The liquid is incompressible and
Newtonian, with density ρ, dynamic viscosity µ, and surface tension σ. The primitive
flow input is the volumetric flow rate Q and the location of the free surface is described
at stationary state as y = h(x). The dimensionless governing equations with kinematic
condition at the free surface reads as

∇U = 0 , (3.1a)
∂U

∂T
+ U · ∇U = ∇P +

1

Re
∇2U +

1

Re sin β
g , (3.1b)

∂H

∂T
+ U

∂H

∂X
− V = 0 . (3.1c)

The full Navier-Stokes equations governing the two-dimensional flow are non-
dimensionalized using as characteristic scales the film thickness and the mean velocity

hS =

(

3µQ

ρg sin β

)1/3

and uS =
gh2Sρ sin β

3µ
(3.2)

of the undisturbed substrate far away from the main hump transporting the flow rate Q
along a planar wall. The resulting equations are formulated at stationary state in the
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co-moving frame as follows, with capital letters indicating the respective dimensionless
variables:

C =∇ · U = 0, (3.3)

M =− C
∂U

∂X
+ U · ∇U +∇P

− 1

Re
∇2U − 3

Re sin β
g = 0, (3.4)

coupled with the kinematic equation for free surface evolution

K =− C
∂H

∂X
+ U

∂H

∂X
− V = 0, (3.5)

where the velocity vector is U = [U, V ]T , and time derivatives is replaced by spatial

derivatives in the co-moving frame,
∂

∂T
= −C ∂

∂X
. Moreover, we impose the no-slip and

no-penetration boundary conditions at the wall,

U = V = 0, (3.6)

and the dynamics boundary conditions at the free surface,

n · T = ∆P n+ 31/3 ΓRe−5/3K n. (3.7)

In equation (3.7), T is the stress tensor, n is the normal vector on the free surface and

K =
H ′′

(1 +H ′2)3/2
the surface curvature. We have 6 variables, two velocity components U

and V , pressure P , free surface heightH, pressure jump at a reference point in the liquid to
the supposedly uniform gas pressure ∆P , and phase speed C. But so far it comes up with
four equations: one from equation (3.3), two from Eqs. (3.4), and one from equation (3.5).
Two additional equations need to be established. An additional condition can be obtained
by imposing the phase of a steadily traveling wave by pinning the maximum height of
solitary wave in the middle of domain (this is to avoid a degeneracy) without loss of
generality,

H ′(x = L/2) = 0, (3.8)

Finally, another condition requires to set the thickness of undisturbed substrate far away
from the main hump

H(x = 0) = 1. (3.9)

The dimensionless parameters arising in the governing equations (3.4) are the Reynolds
number

Re =
ρQ

µ
=
ρuShS
µ

, (3.10)
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and the inclination angle, β of the planar wall to the horizontal plane, shown in the unit
vector in the gravity direction g = [sin β,− cos β]T . The Kapitza number depending only
on liquid properties, appears in equation (3.7),

Γ =

(

lc
lv

)2

. (3.11)

The dimensional lengths entering into the above expressions are: viscous length, lv =
(ν2/(g sin β))1/3, capillary length, lc = (σ/(ρg sin β))1/2, and thickness of the undisturbed
substrate, hS, which is far away from main hump, and used as a characteristic scale length.
In the definition of the Kapitza number, we have used the gravity acceleration in the flow
direction g sin β as inferred by the definition of lv and lc. As a consequence, Γ depends
not only on the liquid properties but also on the inclination angle β. It can be useful to
introduce another definition of the Kapitza number, defined as

Γ∗ = Γ(sin β)1/3 =
σ

ρ g1/3ν4/3
, (3.12)

which is only dependent on the fluid properties.
Alternatively, three other dimensionless parameters, a reduced Reynolds number δ, a

viscous dispersion number η, and reduced angle ζ) are often used in the low-dimensional
model analysis [111, 112, 113], and falling film studies [59, 114, 123] and related to the
three conventional parameters as follow.

δ = (3Re)11/9Γ−1/3 =
h
11/3
s

l3ν l
2/3
c

, (3.13)

η = (3Re)4/9Γ−2/3 , (3.14)

ζ = cot β(3Re)2/9Γ−1/3 , (3.15)

Fr−2 =
cot β

3Re
=

√
ghs cos β

(3us)2
=
ζ

δ
, (3.16)

and Γ = σ/(ρν4/3(g sin β)1/3 , (3.17)

where in vertical case, Fr−2 = 0 and instability threshold, Fr−2 = 2/5. To make a
comparison of solitary wave properties given by the low-dimensional models and DNS
computation, we fix the Froude number Fr−2 = 0, two parameters δ and Γ are then
varied. δ and Γ respectively measure the inertial effects and compare surface tension to
viscous dispersion.

Using the Galerkin finite element method on a structured meshing, the system of
governing equations is integrally weighted, particularly with bi-linear Ψi(ξ, η) (i = 1, 9),
bi-quadratic Φi(ξ, η) (i = 1, 9) , and quadratic basic functions Φi(ξ, η = 1) (i = 1, 3) to
produce respectively the residuals of the continuity equation, of the momentum equations,
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and of the kinematic equation,
∫∫

V

C Ψi(ξ, η) dV = 0,
∫∫

V

M Φi(ξ, η) dV = 0,
∫

S

K Φi(ξ, η = 1) dS = 0.

where ξ and η are element wise coordinates in each element of the computational domain.
The flow field variables consisting of velocities U and V , pressure P , and free surface
height H are also interpolated from nodal unknowns using these basic functions.

U =
∑

i=1,9

U i Φ
i(ξ, η),

P =
∑

i=1,4

Pi Ψ
i(ξ, η),

H =
∑

i=1,3

Hi Φ
i(ξ, η = 1).

The element wise integration results in a discretised system of algebraic equations, which
is solved by the Newton-Raphson iterative scheme, using a frontal technique.

The solitary wave resulting from the solution of the above system is typically charac-
terized by:
(a) Wave height, H, which is measured at the peak of solitary wave, and scaled with the
thickness of the undisturbed substrate (with X dependence, the same letter denotes the
free surface height.)

H =
h

hS
= hm,

(b) Phase speed, C, which is a constant value of the stationary solitary wave in the co-
moving frame, and scaled with the three times of the mean velocity of the undisturbed
substrate.

C =
c

3uS
= c.

3.2.2 Finite element formulation

The governing equations are partial non-linear differential equations that cannot be
solved analytically. A numerical solution must be sought if theoretical prediction are
desired. In this work the finite element method is used, often been derived from varia-
tional calculus, that has been established in the last ten years as a prominent method of



CHAPTER 3. SOLITARY WAVES ON A NEWTONIAN FALLING FILM 41

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

Velocity node.

Velocity and pressure node.

Change of phase fronts.

Y

X

Figure 3.2: Sample finite element tessellation of a computational domain [75].

choice [31, 65, 92, 95, 118, 128] in transport phenomena. For this purpose, the computa-
tional domain is discretized into finite elements with often movable coordinates (Xi, Yi)
as shown in the Fig. 3.2.

The primary unknowns of the flow which are the velocities Ui and Vi, the pressure
Pi along with the free surface unknowns Hi are expanded in terms of Galerkin basis
functions,

U =
9
∑

i=1

Uiφ
i , V =

9
∑

i=1

Viφ
i , P =

4
∑

i=1

Piψ
i , H =

3
∑

i=1

Hiφ
i ,

X =
9
∑

i=1

Xiφ
i , and Y =

9
∑

i=1

Yiφ
i (3.18)

where φi are known biquadratic and ψi known bilinear basis functions over a prototype
element shown in Fig. 3.3.

All elements of the computational domain are transformed into the standard bi-
quadratic element of Fig. 3.3 by means of isoparametric transformations [133, 75].



CHAPTER 3. SOLITARY WAVES ON A NEWTONIAN FALLING FILM 42

(−1, 1) (1, 1)

(1, −1)(−1, −1)

η

ξ
φ2

φ4

φ5

φ6

φ8

φ3, ψ2

φ1, ψ1
φ7, ψ3

φ9, ψ4

Figure 3.3: Isoparametic biquadratic element used for the computations
throughout this work. Standard finite element with biquadratic,
φi, and bilinear, ψi, basis functions and Gauss integration points
(0, 0), (0,±0.77), (±0.77, 0), (±0.77,±0.77), (∓0.77,±0.77) [75].



CHAPTER 3. SOLITARY WAVES ON A NEWTONIAN FALLING FILM 43

The biquadratic basis functions are:

φ1 =
1

4
ξ(ξ − 1)η(η − 1) φ5 = (1− ξ2)(1− η2)

φ2 =
1

2
ξ(ξ − 1)(1− η2) φ6 =

1

2
(1− ξ2)η(1 + η)

φ3 =
1

4
ξ(ξ − 1)η(1 + η) φ7 =

1

4
ξ(ξ + 1)η(η − 1)

φ4 =
1

2
(1− ξ2)η(η − 1) φ8 =

1

2
ξ(ξ + 1)(1− η2)

φ9 =
1

4
ξ(ξ + 1)η(η + 1)

The bilinear basis functions are:

ψ1 =
1

4
(1− ξ)(1− η) ψ3 =

1

4
(1 + ξ)(1− η)

ψ2 =
1

4
(1− ξ)(1 + η) φ4 =

1

4
(1 + ξ)(1 + η)

Isoparametric biquadratic element used for the computations throughout this work. The
governing equations, weighted integrally with the basis functions, result in the following
continuity, Ri

C , momentum, Ri
M , and kinematic, Ri

K , residuals:

R
i
C =

∫

V

∇ · UψidV (3.19)

R
i
M =

∫

V

[

−C ∂U
∂X

+ U · ∇U −∇P +
1

Re
∇2U − 1

Re sin β
g

]

φidV (3.20)

R
i
K =

∫

S

[

−C∂H
∂X

+ U
∂H

∂X
− V

]

φidS (3.21)

where the superscript i denotes the i-th node of the computational domain (Fig. 3.3)
over which φi = 1. Thus, the i-th residual equation corresponds to the i-th node where
the unknown variables have values Ui, Vi, Pi, Hi, Xi, Yi to be determined by solving
the resulting algebraic system of equations (3.19), (3.20) and (3.21). Then the values
of the variables elsewhere is computed by means of equation (3.18). Essential boundary
conditions are applied by replacing the entire governing equations along the appropriate
boundary nodes with the corresponding known values of the process variables. For con-
fined flows, the equations (3.19) and (3.20) are integrated numerically by a nine-point
Gaussian quadrature [18]. A system of nonlinear algebraic equation is obtained, which is
solved with Newton-Raphson iteration [53], yielding directly the unknown process vari-
ables at the nodal positions of the computational domain and elsewhere by means of
the equation (3.18). For free surface problem, the kinematic condition, equation (3.5), is
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added to the governing equations in order to calculate the location of the free surface, H,
which is expanded in terms of quadratic basis functions, φ(ξ, η = 1), simultaneously with
the primary unknowns of the flow (U , V , and P ) obtained from equations (3.3)-(3.4).
These are the main features of ordinary Finite Element Methods where the position of
the nodes of the computational domain is set .

3.2.3 Mesh clustering

Following the exponential mesh clustering technique given in the book of Hoffman
and Chiang [51], the meshing of the 2D film flow domain is refined in the vicinity of the
main hump of solitary wave in the streamwise direction. The clustering technique in the
interior of domain is required. In particular, the mesh is clustered around the main hump
and capillary ripples, and relaxed in the nearly flat substrate far away from the main
hump. The following transformations are used

X = L

{

1 +
sinh[β(ξ − A)]

sinh(βA)

}

(3.22)

Y = H(X) η (3.23)

where

A =
1

2β
ln

[

1 + (eβ − 1)(D/L)

1 + (e−β − 1)(D/L)

]

(3.24)

In the equation (3.22), α is the clustering parameter in the range of 0 < α <∞, and L the
length of physical domain. Physical coordinate Y is scaled with the free surface height
H(X) in equation (3.23). In equation (3.24), D is the X coordinate where clustering
is desired, in this case, it is the stream wise location of the maximum height which is
pinned in the middle of domain, D = L/2. The isoparametric mapping from the physical
domain to the rectangular computational domain is done by the transformations (3.22)
and (3.23) where ξ and η (the same notation used also for the element wise coordinates
in each element of computational domain) are the two coordinates of the computational
domain in the range 0 < ξ < 1, 0 < η < 1 and with constant step sizes ∆ξ and ∆η. In
order to capture solitary wave properties in asymptotic limit, the domain length should
be larger than thousand times of Nusselt flat substrate thickness. In this study, the
domain length L = 3000 is sufficient to cover to a wide parametric range up to either
a large flow rate δ = 20 or to a very low viscous liquid of Γ = 104. Accordingly, the
parameter α is defined such that the minimum space step ∆Xmin should be much smaller
than the scaled capillary length, i.e. Nc∆X ≤ lc/hs, where a large factor Nc = 512 is
empirically chosen because a small Nc may cause an overshoot or undershoot of solitary
wave or a failure of numerical convergence due to low meshing resolution. To begin,
the solitary wave is first computed at a small δ with highly clustering mesh intended
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for following computation at higher δ. By parametric continuation, this mesh is fixed
to compute waves at different parameters. It is not necessary to regenerate the mesh in
each computing process, otherwise, the interpolation of nodal unknowns is needed and
may cause significant deviation from the previous result and interrupt the continuation
process.

3.3 DNS results for vertical wall

We first present our computations for a vertical wall, which is the most studied
situation in literature. The reason of this choice is that the number of parameters reduces
to δ and Γ only.

3.3.1 Solitary wave profile and characteristics
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Figure 3.4: Free surface profile of extreme solitary wave and its exponential representation
at δ = 4, Γ = 3400, Fr−2 = 0, and computational domain length L = 3000,
in which the nearly flat substrate far from the main hump is out of window.

In Fig. 3.4, the free surface profile shows an exponential growth upstream and
oscillatory decay downstream of the main hump in the form of preceding ripples. Hence at
a distance far away, the film flow is a nearly flat substrate both upstream and downstream.
The main hump amplitude is determined in terms of parameters δ, Γ, Fr−2, and saturated
on a large-length domain, L, of one single wave, see Fig. 3.5. From numerical experience,
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Figure 3.5: The convergence of extreme solitary wave properties in terms of domain
length at δ = 10, Γ = 104, and Fr−2 = 0 (vertical plane).

the dimensional domain length l should be hundreds to thousands times larger than
(respectively proportional to the order magnitude of Kapitza number, Γ ∼ 100 ÷ 104) the
substrate thickness hs, in order that solitary wave properties converge asymptotically to
true solitary limit. However, the number of elements in the computational domain can
be drastically reduced by the use of a clustering mesh around the main hump and the
ripples, and a relaxed mesh in the nearly flat substrate part of the solitary wave. The
clustering mesh is very useful to capture either a steep front of a solitary wave hump
at small Kapitza number or an increasing number of tightly paced ripples in the drag-
inertia regime (at medium to large reduced Reynolds number). Especially, a clustering
grid effectively helps to resolve a zone of a very tall hump preceded by dense ripples at
large Kapitza number Γ in order to avoid a numerical overshoot or undershoot of solitary
wave peak. It is also noted that no solution can be provided when approaching to the
limit condition where a parameter set of both small Kapitza and large reduced Reynolds
number leads to extremely steep front of solitary wave.

3.3.2 Drag-gravity, transition, and drag-inertia regimes

Effect of flow inertia

In Fig. 3.6, it is observed that both the phase velocity and the wave height exhibit
inflection points in the transition region, then maxima at intermediate values of δ, and
finally a drop to a plateau at high enough δ. In particular, simulations and the above
second-order model agree quantitatively in the drag-gravity regime and the transition
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Figure 3.6: The extreme solitary wave properties interms of δ for different liquid prop-
erties Γ = 193 (solid line), Γ = 3400 (dashed line), Γ = 10000 (dotted line)
flowing along a vertical wall β = 90◦ and the third plot shows the phase
space and the wave height of the solitary wave for different values of Kapitza
numbers, Γ = 193, 3400, 10000.
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Figure 3.7: The extreme solitary wave properties in term of the Kapitza number Γ for
flows in the drag-gravity regime, δ = 1 (solid line in the lower pannel), and
the drag-inertia regime, δ = 8 (dash line in the upper pannel) along a vertical
wall β = 90◦.

region to the drag-inertia regime, but only qualitatively in the drag-inertia regime. The
behavior deep in the drag-inertia regime is found to depend on Γ, which in the present
simulations is varied in the range 200-10000. With increasing Γ, the maxima that occur at
intermediate δ become steeper. However, whereas the high-δ limit of the phase velocity
appears almost unaffected, that of the wave height increases roughly linearly with Γ,
which underlines the stabilizing effect of viscous diffusion at low Kapitza numbers. It is
observed that the maximum height does not necessarily occur at the same condition for
the maximum phase speed. The latter is also found to drop to asymptotic value c ≈ 2.56
in high δ limit. The phase plot shows the linear dependence of phase speed to the low-to-
intermediate range of wave height. Then, the phase hm− c curves make similar-tie profile
in the drag-inertia regime where phase speed is independent of Γ and the dimensionless
wave height continuously drops down a gentle slope.

Effect of viscosity in the drag-gravity, and the drag-inertia regime

From Fig. 3.7, at high δ value in the drag-inertia regime, phase speed is almost
unaffected by Kapitza number, but the wave height increases roughly linearly with Γ
which underlines the stabilizing effect of viscous diffusion at low Γ.

In contrast, in the drag-gravity regime, when the inertia is less important and surface
tension reaches a prominent role, it is observed that the wave height (and also the phase



CHAPTER 3. SOLITARY WAVES ON A NEWTONIAN FALLING FILM 49

speed) decreases with Kapitza number dictating a stabilizing effect of surface tension.

Flow reversal
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Figure 3.8: A close view of the reversal flow at high inertial regime, δ = 10, for water
with Γ = 3400 down a vertical wall. The upper panel plots the boundaries
of flow reversal zone (in dashed lines), and the lower one depicts the velocity
field (in vector) of one reversal zone in reference with the vector of the phase
speed.

Flow reversal is studied for vertically falling film flows (Fr−2 = 0), as typically
shown in Fig. 3.8, where dashed lines (in the upper panel) demarcate the boundaries
(zero velocity) of the downward and upward flow zones. It should be clearly specified
that the upward flow is not a recirculated one because there is no closed streamlines.
The mechanism for this phenomenon can be explained by observing a velocity field of
a typical flow reversal zone between the hump and the first ripple (on the lower panel).
On the downwind side of the main hump or ripples, the velocity vectors point downward
and to the wall (U > 0, V < 0), but on the upwind side, they gradually turn away from
the wall (U > 0, V > 0), with a wall parallel direction at the peak of hump or ripples.
In a high inertia flow, the pressure gradient becomes adverse to the flow direction and
promotes the back flow [38, 39]. From Fig. 3.8, for example, the velocity (U = 8.634650)
at the peak of the hump is larger than the phase speed (3c = 7.694349, the factor 3 is
needed by rescaling with only hs). However, the velocity U is only a local value and varies
along the free surface. In particular, the liquid flow increases speed in downwind side and
decreases speed in upwind side of the hump or ripples. It slowdowns to zero speed until a
flow reversal occurs. In the flow reversal zone which takes place around capillary dimples,
the local U component varies either increasingly or decreasingly by magnitude but take a
reverse direction. The physical mechanism inside the flow is similar to the one on the free
surface but with lower magnitude in approaching to the solid wall. It is observed that
in high inertia flow there is no recirculation in the main hump or in the crest of ripples
but rather several flow reversal zones immediately in front of the high and fast hump and
ripples.
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Figure 3.9: A parametric map of the flow reversal down a vertical wall. (a) δ versus Γ,
(b) η versus Γ, Fr−2 = 0. The occurrence of the back flow phenomenon is
materialized by a lower boundary (solid line) and an upper boundary (dashed
line). Here, δc = 0 and ηc = 0.

At very low inertia with the wave height being very small, there is no flow reversal.
However, its occurrence is not trivial because it is afterwards suppressed further in the
higher inertia regime. A parametric map of flow reversal occurrence is necessarily shown
in Fig. 3.9(a), where the flow reversal takes place in the zone between the two curves: one
for the onset and the other for the suppression of flow reversal. An example for the water-
glycerin solution with Γ = 193 shows the flow reversal emerges at δ = 1.5, then survives
in the higher range of inertia, and finally is suppressed beyond δ = 9.55. It is observed
that the appearance of flow reversal does not depend on liquids and emerges always at the
same δ = 1.5 but its survival and suppression delays to higher inertia for lower viscosity
liquid (with large Γ∗). For water Γ∗ = 3400, the suppression of flow reversal does not
happen in the window of inertia up to δ = 20. The last important remark is that the
onset of flow reversal at δ = 1.5 is a demarcation between the drag-gravity regime with low
wave height and small phase speed to the drag-inertia regime with much larger pertinent
characteristics. We may guess that the onset of the back flow phenomenon is related to
the amplitude of the capillary ripples. Indeed, the adverse pressure gradient that slow
down the flow up to the reversal point has a capillary origins [38]. The surface tension
promotes a strong adverse pressure gradient from the humps to the nearby trough in the
capillary region, gradient that can overcome the gravity acceleration. As a consequence,
flow reversal will not be observed when the capillary waves are damped i.e., when the
viscous dispersion effects become strong enough, which suggest that the disappearance of
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flow reversal correspond to a critical constant value of the viscous dispersion parameter
ηc. In Fig. 3.9(b) the onset of backflow is not observed in the capillary region for the
vertical case at Fr−2 = 0.

3.4 Low-dimensional modeling

3.4.1 Models

Basically three low-dimensional models derived by Ruyer-Quil & Manneville [112]
using a weighted residual technique are considered in this chapter. We have constructed
the one-humped solitary wave solution to these models. Their properties are compared
to the results from DNS in the drag-inertia regime (δ > 1). Although these models shows
similar behavior in the drag-gravity regime.

The modeling strategy is started with an expansion of the velocity field u in terms of
the polynomial function. The first term taken of this expansion is the flat-film parabolic
velocity profile. The first-order corrections to the parabolic velocity distribution is shown
which could be described with the help of polynomials of higher degree [123]. Then
Galerkin technique is used to ensure consistency up to O(ǫ2). Finally, after some calcu-
lations, a system of four evolution equations is formed for four unknowns h, q, s1 and s2
(s1 and s2 are amplitudes of the departure of the velocity profile from the semi-parabolic
Nusselt solution). It is referred as full second order model or four-equation model which
is written in a vector form.

δ

{

∂tA+

(

q∂xh

h2
Mh +

∂xq

h
Mq

)

A+
q

h
MA∂xA+

h

Fr2
∂xhVb

}

= h (1 + ∂xxxh)Vb − h−2MwA (3.25a)

where A = (q, s1, s2) is the amplitude vector and Mh, Mq, MA and Vb are defined by
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(3.25c)

To deal with four-equation model is a difficult task, even if it is simpler for the correspond-
ing study of the full Navier-Stokes problem, or boundary layer formulation, and to obtain
a reliable two-field formulation consistent at O(ǫ2) would be better. Setting s1 ans s2 to
zero lowers the order of approximation. Then this procedure will leads to a simplified
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averaged momentum equation, and the set of this equation with the mass conservation
equation is called the simplified model. It can be written as

∂th = −∂xq , (3.26)

δ∂tq =
5

6
h− 5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh− 17

7

q

h
∂xq

]

− 5

6
ζh∂xh+

5

6
h∂xxxh

+η

[

4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+

9

2
∂xxq

]

. (3.27)

This model predicts the correct linear stability threshold. However, contrary to the gra-
dient expansion of the four-equation model, the gradient expansion of (3.26) failed to
reproduce the exact expression of the flow rate q as function of h at O(ǫ2).

Later on Ruyer-Quil & Manneville have developed a two-equation model by following a
procedure inspired by Ooshida’s work using Padé approximation technique where second-
order inertia terms are canceled. The set of evolution equations can be written as

∂th = −∂xq , (3.28)

δ∂tq = δ
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7

q2
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q
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h∂xxxh
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1− δ

70
q∂xh

]−1

. (3.29)

which is known as regularized model [112, 123]. This set of equations is consistent at O(ǫ2)
and differs from the simplified model (3.26) through the addition of the Padé-like factor
[

1− δ
70
q∂xh

]−1
.

3.4.2 Asymptotes

Considering traveling wave solutions, i.e. waves that travel with a constant shape
and speed c in their moving frame ξ = x − c t, the four-equation system (3.25) can be
recast in a dynamical system of dimension five in a phase space spanned by h, h′ = dh/dξ,
h′′ = d2h/dξ2, s1 and s2. Turning to the extreme solitary waves at large reduced Reynolds
numbers, our computations show that, as for DNSs, solutions to the four-equation models
present a slowly varying tail. From the DNSs, the tail length can be evaluated by finding
the eigenvalues solutions to the Orr-Sommerfeld analysis. The eigenvalue λ1, correspond-
ing to the escape from the flat-film Nusselt solution h = 1 at the back of the waves, varies
as δ−1 so that the length of the back tail 1/λ1 ∼ δ is large. Focusing therefore on the
back tail, let us introduce a slow variable ξ̃ = ξ/δ, the five-dimensional dynamical system
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Figure 3.10: Comparison of convergence of the phase speed c to its asymptotic value
c∞ for the solutions to the four-equation model (3.25) (solid line) and DNS
(thick dotted line) in a vertical plane Fr−2 = 0.
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corresponding to (3.25) then reduces to a three-dimensional one

M
dX

dξ̃
= B+O

(

η/δ2, δ−3
)

(3.30a)

where X = (h, s1, s2)
t, M = [Mi] is a matrix whose column vectors are denoted by Mi.

The vectors Mi and B are given below
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The shape of the back tail of the waves is determined, in the region of the fixed point, by
the eigenvector X1 corresponding to the smallest eigenvalue λ1 solutions to the stability
problem of the fixed point. Numerical computations of X1 show that, for all cases of
interest, this eigenvector is nearly aligned with the unit vector (1, 0, 0)t. We can therefore
approximate the flow corresponding to the back tail of the waves by setting s1 = s2 = 0
in (3.30) which leads to a single ordinary equation

[c− cd+(h, u)] [c− cd−(h, u)]
dh

dξ̃
=

27

28

(3u− h2)

h
(3.31)

where u = q/h is the local mean flow velocity and

cd±(h, u) =
6

5
u± 1

10

√

3

7

√

56u2 + 225
h

Fr2
(3.32)

are the speed of linear dynamic wave speeds traveling on a uniform film of height h and
averaged speed u = c + q0/h [115, 117]. The r.h.s. of equation (3.31) corresponds to
the balance of viscous drag and gravity acceleration, its zeros thus coincide with the
locations of the fixed points in the phase space which are given by hI = 1 and hII =
−1/2+

√

3(c− 1/4). Consequently, as the homoclinic orbit the level h = hII corresponds
to a maximum if the l.h.s. of (3.31) does not go to zero simultaneously, the resulting
orbit being an heteroclinic orbit connecting the two fixed points.As a consequence, the
construction of a one-loop homoclinic orbit then requires that the location of the second
fixed point coincide with the location of a critical layer h = hc at which the phase speed
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of the wave is equal to the speed of the linear dynamic waves cd±(h, u). The asymptotic
speed of the waves is thus given by the solution to

hc(c, Fr
2) = hII(c) (3.33)

which is nothing but the Thomas condition derived in the context of the mathematical
treatment of periodic bores, or roll waves consisting in regular sections of laminar flows
connected by hydraulic jumps [137, 72]. Solving (3.33) gives
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{

39337984 + 1215Fr−2 [−2809856

+81Fr−2(834176Fr−2(−5264 + 6561Fr−2))
]}1/2

(3.34c)

For a vertical plane (Fr−2 = 0), (3.34) simplifies into

c∞(0) = 1 +
1√
6

√

1

2
+

√

2

3
≈ 2.55564 (3.35)

which is in good agreement with the numerical computations (up to the two first digits
after the decimal point).

Now, considering that s1 and s2 are small but not negligible, we can expect from
the previous analysis that the homoclinic orbit departing from the fixed point hI = 1
must encounter a critical surface in the phase space at which the system (3.30) is not
invertible, i.e. detM = 0. On the critical surface, the column vectors Mi are linearly
dependent and thus MdX/dξ̃ is a linear combination of M2 and M3 which yields D ≡
det[B,M2,M3] = O (η/δ2, δ−3). Denoting by Xc the first point of intersection of the
homoclinic orbit with the critical surface and denoting by X∞ its location in the limit
δ → ∞, we have ∂XD · (Xc −X∞) = O (η/δ2, δ−3). Since one-humped homoclinic orbits
are solutions to a nonlinear eigen problem for the phase speed c, |Xc−X∞| ∝ c− c∞ and
we thus get

c− c∞ = O
(

η/δ2, δ−3
)

. (3.36)

Surface tension effects on the shape of the tails of extreme solitary wave is responsible
for the O(δ3) terms at the r.h.s. of (3.36), whereas O(η/δ2) terms come from streamwise
viscous diffusion. Since η/δ2 = 1/(3Re)2Γ−6/11δ−18/11 varies as δ−18/11 for a given Kapitza
number, we expect that the convergence of c to its asymptotic value c∞ is driven by



CHAPTER 3. SOLITARY WAVES ON A NEWTONIAN FALLING FILM 56

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

δ

c

(a)

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

δ

h
m

(b)

Figure 3.11: DNS - Simplified model The phase speed c and the amplitude hm of the
single hump solitary waves as functions of the reduced Reynolds number δ
of simplified model where the thick-solid line, thick-dashed line, thick-dotted
line corresponds to the result from code and thin-solid line, thin-dashed line,
thin-dotted line corresponds to the result of the model for different Kapitza
numbers, Γ = 193 (water-glycerin solution), Γ = 3400 (water), Γ = 10000
respectively.

viscous diffusion terms and not by surface tension. From our numerical computations of
the one-humped solitary-wave solutions to (3.25), we have performed a fit of the phase
speed of the wave assuming that the distance to c∞ varies as ∝ δ−18/11 at large values of
δ. The result is illustrated in Fig. 3.10. We thus get c∞(F−2 = 0) ≈ 2.56403.

3.4.3 Comparison of DNS with the results of low-dimensional
models

In Fig. 3.11 the numerical predictions, the phase speed c and the amplitude hm, of
the simplified model are shown in terms of the reduced Reynolds number δ and validated
with the DNS results. These curves given by the simplified model almost coincide even
for different liquids on a whole range of δ, in disagreement with DNSs in the drag-inertia
regime, where the wave height is affected by the viscosity of liquids. Even if the regular-
ized model can capture some differences of wave heights in terms of different liquids, its
predictions deviate significantly from the prediction of the DNS, as shown by the c and hm
curves in Fig. 3.12. Finally, the predictions given by the four-equation full second-order
model show a commencing agreement with the DNS results for a large range of liquids,
even though some differences may arise as expected for extremely high Kapitza number at
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Figure 3.12: DNS - Regularized model The phase speed c and the amplitude hm of the
single hump solitary waves as functions of the reduced Reynolds number δ of
regularized model where the thick-solid line, thick-dashed line, thick-dotted
line corresponds to the result from code and thin-solid line, thin-dashed line,
thin-dotted line corresponds to the result of the model for different Kapitza
numbers, Γ = 193 (water-glycerin solution), Γ = 3400 (water), Γ = 10000
respectively.
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Figure 3.13: DNS - Full second order model The phase speed c and the amplitude
hm of the single hump solitary waves as functions of the reduced Reynolds
number δ of full second order model where the thick-solid line, thick-dashed
line, thick-dotted line corresponds to the result from code and thin-solid
line, thin-dashed line, thin-dotted line corresponds to the result of the model
for different Kapitza numbers, Γ = 193 (water-glycerin solution), Γ = 3400
(water), Γ = 10000 respectively.
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Γ = 10000, see Fig. 3.13. These are unique characteristics of the full second-order model
by Ruyer-Quil & Manneville [113], whereas all other models predict either a monotonic
increase or a monotonic, asymptotic limit.

3.5 Shape of the solitary wave

The front and back of solitary waves can be approximated by exponentials as h = 1+
ℜ(Aeλξ) and q = 1

3
+ℜ(Beλξ). Determining λ is tantamount to solve the Orr-Sommerfeld

eigenvalue problem for the values of the phase speed c corresponds to the solitary wave
branch of solutions. In Fig. 3.14, 3.15 and 3.16, we solved the Orr-Sommerfeld eigenvalue
problem and calculated the eigenvalues at the tail and at the front of the solitary wave
which reflect the characteristic of their shape. Fig. 3.14 shows the real eigenvalue λ1
corresponding to the unstable manifold and the imaginary part of the complex conjugate
eigenvalues associated with the stable manifold for the single-hump solitary wave solutions
of the full second order model as a function of δ and 1/λ1 provides a measure of the
characteristic scale of the upstream tail of a solitary wave. Let us define ltail = 1/λ1. On
the other hand 1/λ2i is a measure of the characteristic scale of the radiation oscillations
(the oscillations at the front correspond to the balance between the inertia and the surface
tension) in front of the solitary hump. It is indicated that 1/λ2i varies as δ1/2 for both
δ . 1 and δ > 1 so that the characteristic scale of the radiation oscillations varies as δ−1/2.
This scale increases up to δ = 1 and decreases as δ increases from 1. It is also indicated
that for δ . 1, λ1 varies as δ1/2 so that ltail varies as δ−1/2 which is the same with the
characteristic scale of the radiation oscillations at the front, a direct consequence of the
absence of separation of scales between the front and the back of the wave for δ . 1.
On the other hand, for δ > 1, λ1 varies like 1/δ so that ltail varies like δ and increases
as δ increases. Also, the sum of the three eigen values vanishes when η = 0, thus at
Γ = ∞, so that λ2r ≈ −λ1/2 and the characteristic length of the envelope of the radiation
oscillations at the front varies like the scale ltail at the back and increases as δ increases,
whereas at the same time the characteristic length of the radiation oscillations decreases
(due to the δ−1/2 -dependence). As a consequence, the number of radiation oscillations
increases as δ increases. The same operation done on the low dimensional models gives
tail lengths 1/λ1, 1/λ2r and oscillation rate λ2i that are compared to DNSs in Fig. 3.14 to
Fig. 3.18. It is observed from the Fig. 3.14, that the shape of wave is well captured by the
four-equation full second order model. Considering wave front, λ2r seems quite distant
from DNS results. This can be explained by the fact that the amplitude of capillary waves
is incommensurate with the crest of the wave. The interpolation can thus be biased. By
contrary, the frequency of the capillary waves (imaginary part) seems best to approach
the theoretical analytical results. This result only valid for full second order model but if
we observed the figures of the calculation of eigen values for other models seems far from
the theoretical analytical result. The results of eigen values at the back and the front of
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Figure 3.14: DNS - Full second order model (Γ = 193). a) real eigenvalue λ1 where
thin-dotted line refers δ−1 and dashed-dotted line refers δ1/2; (b) and (c)
complex eigenvalues λ2i and λ2r where thin-dotted line refers δ1/2 calculated
at the back and front of the solitary wave as a function of δ, shows comparison
of the full second order model (thick-dotted line) with DNS(solid line).
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Figure 3.15: DNS - Simplified model (Γ = 193). a) real eigenvalue λ1 where thin-
dotted line refers δ−1 and dashed-dotted line refers δ1/2; (b) and (c) complex
eigenvalues λ2i and λ2r where thin-dotted line refers δ1/2 calculated at the
back and front of the solitary wave as a function of δ, shows comparison of
the simplified model(thick-dotted line) with DNS(solid line).
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Figure 3.16: DNS - Regularized model (Γ = 193). a) real eigenvalue λ1 where thin-
dotted line refers δ−1 and dashed-dotted line refers δ1/2; (b) and (c) complex
eigenvalues λ2i and λ2r where thin-dotted line refers δ1/2 calculated at the
back and front of the solitary wave as a function of δ, shows comparison of
the regularized model(thick-dotted line) with DNS(solid line).
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Figure 3.17: DNS - Full second order model (Γ = 3400). a) real eigenvalue λ1 where
thin-dotted line refers δ−1 and dashed-dotted line refers δ1/2; (b) and (c)
complex eigenvalues λ2i and λ2r where thin-dotted line refers δ1/2 calculated
at the back and front of the solitary wave as a function of δ, shows comparison
of the full second order model(thick-dotted line) with DNS(solid line).
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Figure 3.18: DNS - Full second order model (Γ = 10000). a) real eigenvalue λ1 where
thin-dotted line refers δ−1 and dashed-dotted line refers δ1/2; (b) and (c)
complex eigenvalues λ2i and λ2r where thin-dotted line refers δ1/2 calculated
at the back and front of the solitary wave as a function of δ, shows comparison
of the full second order model(thick-dotted line) with DNS(solid line) for
Γ = 10000.
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Figure 3.19: The phase speed a) and the wave height b) with respect to the reduced
Reynolds number δ of one hump solitary wave for vertical wall (1/Fr2 = 0.0)
and inclined walls (1/Fr2 = 0.1, 0.2, 0.3) where the thick-(solid, dashed,
dotted, dash-dotted) line corresponds to the result of DNS and thin-(solid,
dashed, dotted, dash-dotted) line corresponds to the result of the full second
order model for Γ∗ = 193

the solitary waves profile for full second order model by Ruyer-Quil & Manneville [113] for
different values of Kapitza number, Γ = 3400 and Γ = 10000 are shown in the Fig. 3.17
and Fig. 3.18 respectively.

3.5.1 Effect of Froude number to solitary wave properties

Now, extreme solitary waves are studied for film flow not only along vertical wall
but also along inclined wall. Inertia and gravity can be compared in terms of the Froude
number Fr, which compares the speed of “kinematic wave” 3us (linear waves in the limit
k → 0), and the speed of “ surface gravity waves”. Written in terms of the Froude number,
the critical threshold of long wave instability, Rec = 5

6
cot β, that reads Fr−2

c = 2/5. If
the value of Fr−2 varies in the unstable range from zero for vertical wall to the critical
threshold, Fr−2 = 0 ÷ 0.4, the solitary wave properties can be shown for the liquid of
water-glycerin with Γ∗ = 193 in Fig. 3.19 where Γ∗ depending only on liquid properties.
It is observed that for the same δ, the phase speed and wave height get smaller when
approaching the instability threshold or the critical Froude number. The DNS result
also confirms the linear stability theory that there is no more wave above the threshold
Fr−2

c = 2/5. At the other end of the range, speed and amplitude reach their largest values
for a flow along vertical wall, Fr−2 = 0. Again, it is observed that the results given by the
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Figure 3.20: (a) and (b) represents the results from DNS for the extreme solitary wave
properties in terms of (1/Fr2) in the drag-inertia regime at δ = 10 where
dashed line refers Γ∗ = 193 and solid line refers Γ∗ = 3400. (c) thick-solid
line and thick-dashed line refers the result of DNS is compared to the full
second order model results which is represented by thin-solid and thin-dashed
line for Γ∗ = 193 at δ = 10.

full second order model are in excellent agreement with the DNS results, see Fig. 3.19.
Moreover the wave height of solitary wave is observed to not depend on liquids up to
a distance from the critical threshold Fr−2 = 0.4, and departures are more significant
in smaller Fr−2 range, as shown in Fig. 3.20 for two liquids: water-glycerin, and pure
water Γ∗ = 3400 when all other physical parameters δ and Fr are kept the same. On the
other hand, the c curves appear to be insensitive to liquids properties, and nearly linearly
proportional to Fr−2 − Fr−2

c from the criticality.
Noting the high δ limit of the same Fr curve, the phase speed appears to approach

asymptotic value irrespective of flow rate whereas the wave height shows a slight depen-
dence on the δ.

3.6 Summary and Conclusion

Derivation of simplified models, based on long-wave expansions, for the description
of liquid film flow has a long history marked by classical results such as the one-equation
model of Benney and the two-equation model of Shkadov. A crucial test of such models
is the correct prediction of the properties (shape, maximum height, phase velocity) of
solitary waves as a function of the distance from the instability threshold. The latter is
usually quantified in terms of the reduced Reynolds number, δ, where the Reynolds num-
ber is defined in terms of the undisturbed film thickness and mean velocity, Re = ushs/ν,
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Figure 3.21: a) real eigenvalue λ1 where thin-dotted line refers δ−1 and dashed-dotted
line refers δ1/2; (b) and (c) complex eigenvalues λ2i and λ2r where thin-dotted
line refers δ1/2 shows comparison of the full second order model(thick-dotted
line) with DNS(solid line) at Fr−2 = 0.0 for Γ∗ = 193.
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Figure 3.22: a) real eigenvalue λ1 where thin-dotted line refers δ−1 and dashed-dotted
line refers δ1/2; (b) and (c) complex eigenvalues λ2i and λ2r where thin-dotted
line refers δ1/2 shows comparison of the full second order model(thick-dotted
line) with DNS(solid line) at Fr−2 = 0.1 for Γ∗ = 193.
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Figure 3.23: a) real eigenvalue λ1 where thin-dotted line refers δ−1 and dashed-dotted
line refers δ1/2; (b) and (c) complex eigenvalues λ2i and λ2r where thin-dotted
line refers δ1/2 shows comparison of the full second order model(thick-dotted
line) with DNS(solid line) at Fr−2 = 0.2 for Γ∗ = 193.
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Figure 3.24: a) real eigenvalue λ1 where thin-dotted line refers δ−1 and dashed-dotted
line refers δ1/2; (b) and (c) complex eigenvalues λ2i and λ2r where thin-dotted
line refers δ1/2 shows comparison of the full second order model(thick-dotted
line) with DNS(solid line) at Fr−2 = 0.3 for Γ∗ = 193.
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and the Kapitza number, Γ, contains only physical properties and compares capillary and
viscous diffusive effects. Considering a vertical wall and assuming negligible streamwise
viscous diffusion effects, i.e. large Kapitza numbers, δ is the only independent parameter
of the rescaled equations. It is recalled that, though most models predict similar behavior
close to the threshold (onset of drag-gravity regime), they exhibit large differences from
each other at intermediate and large values of δ, i.e. when inertia becomes significant
(transition region and drag-inertia regime). Thus, rigorous simulations emerge as the
only means to resolve this issue. The present work computes accurately the properties
of stationary, traveling wave by solving the Navier-Stokes equation by a finite-element
technique, implemented with periodic boundary conditions and strong mesh refinement
in the vicinity of the solitary wave. Solitary-like waves are derived by considering a long
enough computational domain. However, it is shown that lengths of the order of 103 times
the film thickness are necessary for the properties of the wave to converge asymptotically
to the true solitary limit with accuracy less than 10−3. Both the phase velocity and the
wave height exhibit inflection points in the transition region, then maxima at intermediate
values of δ, and finally a drop to a plateau at high enough δ. These are unique charac-
teristics of the full second-order model by Ruyer-Quil & Manneville, whereas all other
models predict either a monotonic increase or a monotonic, asymptotic limit. In particu-
lar, simulations and the above second-order model agree quantitatively in the drag-gravity
regime and the transition region to the drag-inertia regime, but only qualitatively in the
drag-inertia regime. The behavior deep in the drag-inertia regime is found to depend on
Γ, which in the present simulations is varied in the range 200-10000. With increasing Γ,
the maxima that occur at intermediate δ become steeper. However, whereas the high-δ
limit of the phase velocity appears almost unaffected, that of the wave height increases
roughly linearly with Γ, which underlines the stabilizing effect of viscous diffusion at low
Kapitza numbers.



Chapter 4

Rheology of Non-Newtonian Fluids

4.1 Introduction

Rheology is the study of the flow and deformation of all forms of material. The
main interest in rheology science is to analyze and describe the behavior of relevant
materials. I simply started with the definition of Newtonian fluid which has a simple
linear relation between stress and strain-rate characterized by a constant viscosity. A
simple equation to describe Newtonian fluid behavior is τ = µγ̇ where τ is the shear
stress, µ is the fluid viscosity and γ̇ = du/dy is the strain rate which generally coincides
with the velocity gradient perpendicular to the direction of shear. In common terms, this
means that the fluid continues to flow, regardless of the forces acting on it. For example,
water is Newtonian, because it continues to exemplify fluid properties no matter how
fast it is stirred or mixed. Other examples may be aqueous solutions, emulsions. Apart
from some annoyingly common fluids such as air and water, virtually no fluid is actually
Newtonian. The objective of this chapter is to introduce the different kinds of non-
Newtonian flow characteristics and their characterizations; and to illustrate the frequent
and wide occurrence of non-Newtonian fluid behaviors in a diverse range of applications,
both in nature and in technology.

A non-Newtonian fluid is a fluid whose viscosity is variable based on applied stress or
force. The properties of non-Newtonian fluid flows are not described by a single constant
value of viscosity. Non-Newtonian fluids arise in virtually every environment. Typical
examples within our own bodies are blood and mucus. Many polymer solutions and
molten polymers are non-Newtonian fluids, as are many commonly found substances such
as lava, snow, suspensions of clay, mud slurries, toothpaste, ketchup, starch suspensions,
paint, shampoo, molten rubber and emulsions. In a non-Newtonian fluid, the relation
between the shear stress and the strain rate is nonlinear, and can even be time-dependent.
Therefore, a constant coefficient of viscosity cannot be defined. The simplest possible
deviation from the Newtonian fluid behavior occurs when the simple shear data τ − γ̇
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does not pass through the origin and/or does not result into a linear relationship between
τ and γ̇. Conversely, the apparent viscosity, defined as τ/γ̇, is not constant and is a
function of τ or γ̇. Indeed, under appropriate circumstances, the apparent viscosity of
certain materials is not only a function of flow conditions (geometry, shear rate, etc.),
but it also depends on the kinematic history of the fluid element under consideration. It
is convenient, though arbitrary (and probably unscientific too), to group such materials
into the following categories:

• Systems for which the value of γ̇ at a point within the fluid is determined only by
the current value of τ at that point; these substances are variously known as purely
viscous, inelastic, time-independent or generalized Newtonian fluids (GNF),

• Systems for which the relation between τ and γ̇ shows further dependence on the
duration of shearing and kinematic history; these are called time-dependent fluids,
and finally,

• Systems which exhibit a blend of viscous fluid behavior and of elastic solid-like
behavior. For instance, this class of materials shows partial elastic recovery, recoil,
creep, etc. Accordingly, these are called visco-elastic or elasto-viscous fluids.

In fact, all fluids are non-Newtonian on an appropriate time-scale, though for many
common fluids such as air and water the time-scale is extremely short. When the time-
scale of a flow tf is much less than the relaxation time tr of an elasto-viscous material,
elastic effects dominate. This typically happens when there are abrupt changes in flow
geometry. When on the other hand tf is much greater than tr elastic effects relax quickly
for viscous effects to dominate. This typically happens when there are no abrupt changes
in flow geometry. The ratio of tf to tr is a dimensionless number of particular significance
in the study of flow of non-Newtonian fluids which is called the Deborah Number. If the
Deborah number is small, elastic effects can be neglected and the non-Newtonian fluid
can be treated as a purely viscous material, albeit with a non-constant viscosity. For
Newtonian fluids, the viscosity is independent of the speed at which the fluid is caused
to move. However, for non-Newtonian fluids, the viscosity can change by many orders of
magnitude as the speed (velocity gradient) changes.

The mass and linear momentum conservation equations which govern the flow of any
fluid are respectively [106]:

∂ρ

∂t
+∇ · (ρu) = 0 , (4.1)

ρ
∂ρ

∂t
+ ρu · ∇u = ρg −∇p+∇ · τ . (4.2)

where ρ denotes the density of the fluid, u velocity, p pressure, τ stress tensor, g gravi-
tation acceleration and t time. Notice that it is assumed that τ is a symmetrical tensor,
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Figure 4.1: Rheological tree of non-Newtonian fluids.

thus ensuring that angular momentum is conserved. Determination of the flow of any
fluid requires solution of these conservation equations, subject to appropriate boundary
and initial conditions, together with constitutive equations for the fluid. It is in the con-
stitutive equations that the nature of a given fluid is manifested. The science devoted to
obtaining suitable constitutive equations for description of the behavior of non-Newtonian
fluids is called rheology.

For a given material (fluid, solid, soft solid) the rheological behavior can be expressed
mathematically trough a relation (constitutive equation) between two of its specific physi-
cal quantities. A constitutive equation relates the applied stresses (τ), or forces to strains,
to the rate of deformations (γ̇). Therefore, any decent analysis requires the knowledge
and understanding of some fundamental concepts like viscosity, elasticity, viscoelasticity,
stress, strain. Generally, practical processes consist of complex fluid flows that are dif-
ficult to analyze and describe analytically. Accordingly, the simple motions (like simple
shear or extensional flow) are being used to determine rheological properties of fluids and
soft solids, a common method being the approximation of experimental data obtained
with different constitutive functions describing material behavior. When modeling a flow
through a constitutive equation one important aspect is how the model parameters should
be determined so that they may be suitable to be used in the process. So far no constitu-
tive model has been proposed which is able to describe the fluid behavior in every possible
flow fields. Therefore, any constitutive model has an area of performance within which
the specified flow field may be explained satisfactory. Standard constitutive equations in
literature are usually applied to some simple kinds of flows.

Fig. 4.1 shows a general classification of non-Newtonian fluids. As noted earlier, the
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aforementioned classification scheme is quite arbitrary, though convenient, because most
real materials often display a combination of two or even all these types of features under
appropriate circumstances. For instance, it is not uncommon for a polymer melt to show
time-independent (shear-thinning) and time-dependent behavior simultaneously and for
a china clay (kaolin) suspension to exhibit a combination of shear-thinning and shear-
thickening features at certain concentrations and/or at appropriate shear rates.

The important constitutive equation for fluid mechanics is the one relating the stress
in the fluid to the kinematics of the motion (that is, the velocity, the derivatives of
the velocity with respect to position, and the time history of the velocity). Generalized
Newtonian fluids consist in a class of non-Newtonian fluids defined by the following con-
stitutive equation. They form the first branch of the rheological tree displayed in Fig. 4.1
(time-independent behavior).

τij = µ(γ̇)γ̇ij (4.3)

where γ̇ =
√

γ̇ij γ̇ij/2 and γ̇ij = (∂iuj +∂jui) are called the rate of strain tensor, and µ(γ̇)

is the viscosity as a function of the rate of strain. Here, ui is the ith component of the
velocity vector, and the i are the position coordinates. The generalized Newtonian fluid
constitutive equation is not capable of describing viscoelasticity or any effects of normal
stress differences.

4.2 Generalized Newtonian Fluid

Each type of generalized Newtonian fluid behavior, i.e., shear-thinning, shear-
thickening and visco-plastic fluids, is now dealt with more detail in this section. Fig. 4.2,
shows qualitatively the flow curves of different types of generalized Newtonian fluid.

4.2.1 Shear-thinning fluid

A fluid is shear-thinning when the apparent viscosity µ(defined as τ/γ̇) decreases
with the stress rate. This is also known as pseudoplastic. In daily life, a paper pulp in
water, latex paint, ice, blood, syrup, molasses, etc. are examples of this kind of fluids.
In polymeric systems (melts and solutions), at low shear rates, the apparent viscosity
approaches to a Newtonian plateau where the viscosity is independent of shear rate (zero
shear viscosity, µ0).

lim
γ̇→0

τ

γ̇
= µ0 . (4.4)

Furthermore, only polymer solutions also exhibit a similar plateau at very high shear rates
(infinite shear viscosity, µ∞), i.e.,

lim
γ̇→∞

τ

γ̇
= µ∞ . (4.5)
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Figure 4.2: Summary of the different types of generalized Newtonian fluids.

Typically, the viscosity µ of these fluids is given as a function of the rate of strain γ̇.
A simple and widely used constitutive equation for this type of fluid is the Carreau fluid,

µ = µ∞ + (µ0 − µ∞)[1 + (λrγ̇)
2](n−1)/2 (4.6)

This model involves four parameters: µ0, the viscosity at very small shear rates, µ∞,
the viscosity at very large shear rates; λr, which describes the shear rate at which the curve
begins to decrease; and n, which determines the rate at which viscosity decreases. Fig. 4.3
shows the viscosity for a fluid that is shear-thinning (that is, the viscosity decreases as
the shear rate increases, n < 1, and µ0 is greater than µ∞). For other non-Newtonian
fluids, the viscosity might increase as the shear rate increases (shear-thickening fluids, for
which n is greater than one and µ0 is less than µ∞).

4.2.2 Shear-thickening fluid

A shear thickening fluid (also known as dilatant) is a fluid in which apparent viscosity
increases with the strain rate. This behavior is generally encountered in suspension. It
is only one type of deviation from Newton’s Law, and it is controlled by such factors as
particle size, shape, and distribution. This can readily be seen with a mixture of cornstarch
and water. This class of fluids is similar to pseudo-plastic (shear-thinning) systems in that
it shows no yield stress, but its apparent viscosity increases with the increasing shear rate
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Figure 4.3: Typical dependence of the viscosity (µ) on shear rate (γ̇) for a non-Newtonian
fluid. The functional from shown is called the Carreau model.

and hence the name shear-thickening. Originally, this type of behavior was observed in
concentrated suspensions, and one can qualitatively explain it as follows: at rest, the
voidage of the suspension is minimum and the liquid present in the sample is sufficient to
fill the voids completely. At low shearing levels, the liquid lubricates the motion of each
particle past another thereby minimizing solid–solid friction. Consequently, the resulting
stresses are small. At high shear rates, however, the mixture expands (dilates) slightly
(similar to that seen in sand dunes) so that the available liquid is no longer sufficient
to fill the increased void space and to prevent direct solid–solid contacts (and friction).
This leads to the development of much larger shear stresses than that seen in a pre-
dilated sample at low shear rates. This mechanism causes the apparent viscosity µ to rise
rapidly with the increasing rate of shear. Of the time-independent fluids, this sub-class
has generated very little interest and hence very few reliable data are available. Indeed,
until up to about early 1980s, this type of flow behavior was considered to be rare, but,
however, with the recent growing interest in the handling and processing of systems with
high solids loadings, it is no longer. Typical examples of fluids showing shear-thickening
behavior include thick suspensions and pastes of kaolin, T iO2 and corn flour in water.

4.2.3 Power Law or Ostwald de Waele Equation

A power-law fluid, or the Ostwald–de Waele relationship, is the simplest type of
generalized Newtonian fluid for which the shear stress, τ , is given by

τ = mγ̇n , (4.7)

where m is the flow consistency index, γ̇ is the shear rate or the velocity gradient per-
pendicular to the plane of shear and n is the flow behavior index. The currently available
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limited information (mostly restricted simple shear) suggests that it is possible to approx-
imate τ − γ̇ data for these systems also by the power law model (4.7), with the power-law
index (n) taking on values greater than unity. Notwithstanding the lack of rheological
data on such systems, it is not yet possible to say with confidence whether these materials
also display limiting viscosities in the limits of γ̇ → 0 and γ̇ → ∞.

The quantity
µeff = mγ̇n−1 , (4.8)

represents an apparent or effective viscosity as a function of the shear rate. Also known as
the Ostwald–de Waele power law, this mathematical relationship is useful because of its
simplicity, but only approximately describes the behavior of a real generalized Newtonian
fluid. For example, if n < 1, the power law predicts that the effective viscosity, µeff , would
decrease with increasing shear rate, γ̇ indefinitely, requiring a fluid with infinite viscosity
at rest and zero viscosity as the shear rate approaches infinity, but a real fluid has both
a minimum and a maximum effective viscosity that depend on the concentration and
molecular weight of the polymer, etc. If n = 1 it will show the Newtonian behavior and
the consistency is just the viscosity. However, if n > 1, the viscosity increases with the
amount of shearing, and the fluid has a shear-thickening behavior. Therefore, the power-
law is only a good description of fluid behavior across the range of shear rates to which
the coefficients were fitted. In these equations, m and n are two empirical curve-fitting
parameters.

4.2.4 Viscoplastic fluids

This type of non-Newtonian fluid behavior is characterized by the existence of a
threshold stress (called yield stress or apparent yield stress, τ0), which must be exceeded
for the fluid to deform (shear) or flow. Conversely, such a substance will behave like
an elastic solid (or flow en masse like a rigid body) when the externally applied stress
is less than the yield stress, τ0. Of course, once the magnitude of the external yield
stress exceeds the value of τ0 , the fluid may exhibit Newtonian behavior (constant value
of µ) or shear-thinning characteristics, i.e., µ(γ̇). It therefore stands to reason that, in
the absence of surface tension effects, such a material will not level out under gravity
to form an absolutely flat free surface. Quantitatively, this type of behavior can be
hypothesized as follows: such a substance at rest consists of three-dimensional structures
of sufficient rigidity to resist any external stress less than |τ0| and therefore offers an
enormous resistance to flow, albeit it still might deform elastically. For stress levels above
|τ0|, however, the structure breaks down and the substance behaves like a viscous material.
In some cases, the build-up and breakdown of structure has been found to be reversible,
i.e., the substance may regain its (initial or somewhat lower) value of the yield stress
following a long period of rest. A fluid with a linear flow for |τ | > |τ0| is called a Bingham
plastic fluid, and is characterized by a constant value of viscosity µB. A Bingham plastic
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is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous
fluid at high stress. A common example is mayonnaise and toothpaste, which will not be
extruded until a certain pressure is applied to the tube. It then is pushed out as a solid
plug. The material is rigid for shear stress |τ |, less than a critical value |τ0|. Once the
critical shear stress (or "yield stress") is exceeded, the material flows in such a way that
the shear rate, γ̇, is directly proportional to the amount by which the applied shear stress
exceeds the yield stress. Thus, in one-dimensional shear, the Bingham model is written
as:

τ = τ0
B + µBγ̇ |τ | > |τ0B| ,

γ̇ = 0 |τ | < |τ0B| , (4.9)

The physical reason for this behavior is that the liquid contains particles (e.g. clay) or
large molecules (e.g. polymers) which have some kind of interaction, creating a weak solid
structure, formerly known as a false body, and a certain amount of stress is required to
break this structure. Once the structure has been broken, the particles move with the
liquid under viscous forces. If the stress is removed, the particles associate again.

On the other hand, a visco-plastic material showing shear-thinning behavior at stress
levels exceeding |τ0| is known as a yield-pseudoplastic fluid, and its behavior is frequently
approximated by the so-called Herschel–Bulkley fluid model written for 1-D shear flow as
follows:

τ = τ0
H + µ(γ̇)n |τ | > |τ0H | ,

γ̇ = 0 |τ | < |τ0H | , (4.10)

Probably the most popular model that incorporates both shear thinning or shear thick-
ening and a yield stress is the Herschel–Bulkley model, where τ0 is the yield stress. With
n 6= 1, the Herschel–Bulkley model allows also for shear thinning or thickening beyond
yielding.

Typical examples of yield-stress fluids include blood, yogurt, melt chocolate, tomato
ketchup, cosmetics, nail paint, foams, suspensions, etc. In geophysical context, wet snow
exhibits a yield-pseudoplastic behavior. Debris flows in mountainous area consists in
concentrated suspensions of clay and sand that also exhibit a pseudo-plastic behavior.
Finally, it is appropriate to mention here that it has long been a matter of debate and
discussion in the literature whether a true yield stress exists or not. In experimental view,
the yield stress in terms of a transition from solid-like behavior to fluid-like behavior which
manifests itself in terms of an abrupt decrease in viscosity (by several orders of magnitude
in many substances) over an extremely narrow range of shear rate. Evidently, the answer
to the question whether a substance has a yield stress or not seems to be closely related
to the choice of a time scale of observation. In spite of this fundamental difficulty, the
notion of an apparent yield stress is of considerable value in the context of engineering



CHAPTER 4. RHEOLOGY OF NON-NEWTONIAN FLUIDS 76

applications, especially for product development and design in food, pharmaceutical and
health care sectors. A large number of industrial and geophysical problems involve the
spreading of viscoplastic fluids under gravity over horizontal and inclined surfaces or
within a channel, including certain emplacements of concrete and lava; and the flow
viscoplastic fluid can come to rest under the action of the yield stress.

4.3 Viscoelastic fluids

The aim of this section is to show how the ideas of viscosity and elasticity can be
combined to derive a single constitutive equation describing the viscoelastic effects of
viscoelastic liquids. Viscoelastic fluid is a fluid that behaves like a solid and as well as
viscous behavior. The rheological response of viscoelastic fluids is quite complex, including
combination of viscous and elastic effects. Many materials initially shows viscous behavior
when some shear is applied and then ‘relax’ to elastic behavior. Perhaps the most striking
behavior of non-Newtonian fluids is a consequence of their viscoelasticity. Elastic solids
can be thought of as having perfect memory. If they are deformed through the action
of a force, they return to their original shape when the force is removed. This happens
when a rubber ball bounces, the ball is deformed as it hits a surface, but the rubber
remembers its undeformed spherical shape. Recovery of the shape causes the ball to
bounce back. In contrast, Newtonian fluids have no memory; when a force is removed,
they retain their condition at the time the force is removed (or continue moving as the
result of inertia). When a Newtonian fluid is dropped onto a surface, it does not bounce.
Some non-Newtonian fluids are viscoelastic in the sense that they have fading memory.
If a force is removed shortly after it is applied, the fluid will remember its undeformed
shape and return towards it. However, if the force is applied on the fluid for a long time,
the fluid will eventually forget its undeformed shape. If a sample of a non-Newtonian
fluid is dropped onto a surface, it will bounce like a ball. However, if the fluid is simply
placed on the surface, it will flow smoothly. Viscoelasticity is frequently the cause of many
of the secondary flows that are observed for non-Newtonian fluids. It has elastic nature
and it will regain back when applied stress is removed. Viscous fluids, like honey, resist
shear flow and strain linearly with time when a stress is applied. Viscoelastic fluids have
elements of both of these properties and, as such, exhibit time dependent strain.

The generalized Newtonian fluid model does not incorporate any elastic effects what-
soever, and so is inappropriate for such flows. Instead, it is usually necessary to introduce
the strains as well as strain rates into the constitutive law. This is apparent from the
constitutive law must take in the extreme limits: an incompressible linear elastic material
has a stress that is proportional to the strain, whereas a Newtonian fluid has a stress
proportional to the rate of strain. Thus, for a general viscoelastic fluid, the constitutive
law takes the form of an evolution equation. The appearance of time evolution terms in
the rheology relation reflects the relaxational character of the fluid stresses, and leads to
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the notion of a characteristic relaxation timescale.
One standard experiment is to apply instantaneously a shear at the surface of a sample

material. If the material is linearly elastic the resulting stress is zero before the application
of the shear, and constant immediately afterwards. On the other hand, if the material is a
Newtonian fluid, the stress is infinite at the instant the stress is applied, but thereafter is
zero. Thus elastic and viscous responses are markedly different, and many real materials
have elements of both types of response. A viscoelastic material will have an initially large
stress due to the viscous component, but the stress then decreases over the relaxation
time to a constant value arising due to the intrinsic elasticity. The simplest constitutive
equation that is capable of describing viscoelasticity is the Maxwell model.

If It be assumed that the relation between the deviatoric stress and the strain rates is
purely linear, then a general constitutive law can be stated as

τij =

∫ t

−∞

G(t− τ)γ̇ij(τ)dτ , (4.11)

Here, G(t) is called the relaxation function, and builds in the elastic and viscous behav-
ior. Implicitly, the shape of the function G(t) determines the characteristic relaxation
timescale (or timescales if there are more than one). The relaxation time is important
because it characterizes whether viscoelasticity is likely to be important within an experi-
mental or observational timescale. Many fluids, particularly those in industrial situations
containing polymers or emulsion droplets, exhibit both elastic and viscous responses on
an experimental or observational timescale.

For a Newtonian fluid, G(t) = µδ(t) and relaxation is immediate. If the relaxation
time is denoted by λr then the simplest viscoelastic model, the Maxwell model, has
G(t) = µ exp(−t/λr)/λr and the integral relation above can be recast in the form of a
differential constitutive relation,

τij + λrτ̇ij = µγ̇ . (4.12)

In the Maxwell model, expresses the stresses as time integrals over the history of the ve-
locity derivatives, where G (the shear modulus) and λr (the relaxation time) are material-
dependent constants, and the time integral extends over all past time. It is straightforward
to see how the Maxwell model incorporates the memory of the fluid; the stresses at the
current time depend on the velocity derivatives at past times, and the memory fades be-
cause of the exponential that becomes smaller at more distant past times. For smaller
values of λr the memory fades more rapidly, and for larger values of λr the fluid behaves
more elastically.

Much can be achieved with this simple extension to the Newtonian constitutive model,
and in many circumstances, particularly if one wishes to investigate whether viscoelasticity
can be important, this linear theory suffices. Extensions to multiple relaxation times with
a sequence of relaxation functions are also straightforward.
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Unfortunately, the Maxwell model (4.12) has at least one major failing– it is not frame
indifferent (objective). That is, if a moving coordinate frame change, the equations are also
changed. One crude, effective and ad-hoc cure is to replace the time derivatives in (4.12)
with more complicated operators that build in the convection, rotation and stretching of
the fluid motion. These operators, called either Oldroyd or Jaumann derivatives, render
the equations frame indifferent; in usual tensor notation, the Oldroyd (upper convected)
derivative, ▽

τ , for a tensor τ is

▽

τ = ∂tτ + v∇τ − τ∇vT −∇vτ (4.13)

These derivatives involve the local fluid motion, and so substantially complicate the con-
stitutive law, and therefore computations using them. Although Balmforth & Craster [7]
introduced these derivatives as a mathematical device to improve the linear model.

4.4 Elasto-viscoplastic fluids

A fluid which displays simultaneous elastic, viscous and plastic behaviors is referred
to as elastoviscoplastic or EVP. The Herschel-Bulkley rheological fluid model includes
viscosity and plasticity. In this classical model, under the yield stress the material is
strictly rigid. Complementing this model by including an elastic behavior under the yield
stress leads to a description of elastoviscoplastic (EVP) materials such as suspensions or
liquid foams. Many industrial materials, such as filled polymers, polymer gels, thickeners,
foodstuffs, cosmetics, concentrated mineral suspensions, electro-rheological and magneto-
rheological fluids behave rheologically in a manner that varies between elastic solid and
viscous liquid depending upon the processing conditions. The existence of a “yield stress”
is traditionally recognized to be responsible for the complicated transition between clas-
sical solid-like and liquid-like behavior.

Saramito [120, 121] and Benito et al. [11] derived (independently) tensorial elasto-
viscoplastic models that combine viscoelastic and viscoplastic properties. They satisfy
the second law of thermodynamics and match the behavior of elasto-viscoplastic materials
such as foams and emulsions: elastic solid before yielding and viscoelastic flow after
yielding. The elasto-viscoplastic model presented by Saramito [121] is simple enough to
allow for the numerical resolution of the associated partial differential equations even in
intricate two-dimensional (Cheddadi et al. [27]) and three-dimensional geometries and is
thus suitable for practical and industrial purposes. It is written as

1

G
▽

τ +max

(

0,
|τ | − τ0
K|τ |n

) 1

n

τ − γ̇ = 0 (4.14)

where ▽

τ is defined in equations (4.13), and G is the elastic modulus and K is a consistency
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parameter. When 1/G = 0 we obtain the Herschel–Bulkley model.

τ = K|γ̇|n−1γ̇ + τ0
γ̇

|γ̇| when |γ̇| > 0 (4.15a)

|τ | < τ0 when |γ̇| = 0 (4.15b)

Conversely, when n = 1 and τ0 = 0, we obtain the Oldroyd-B model,

1

G
▽

τ + τ = Kγ̇ . (4.16)

Finally, when both 1/G = 0, τ0 = 0 and n = 1, the Newtonian behavior is recovered.

4.5 Summary and Conclusion

There is a wide range of rheological models available for non-Newtonian fluids. I
have simply focused on the most popular ones. Now, having set the framework of non-
Newtonian fluids, I consider the simplest case of generalized Newtonian falling film prob-
lem modeled by a power-law in Chapter 5, showing the effects of shear-thinning and
shear-thickening fluid close to threshold. In Chapter 6, I introduce the effect of the yield
stress at the free surface using Saramito’s model for elasto-viscoplastic fluid that combines
both the Oldroyd viscoelastic model and the Hershel-Bulkley viscoplastic model with a
power-law index n > 0.



Chapter 5

Generalized Newtonian fluid

This chapter is an extended version of a published paper “Wavy regime of a power-
law film flow” by C. Ruyer-Quil, S. Chakraborty and B. S. Dandapat, Journal of Fluid
Mechanics, vol. 692, pp. 220-256, published on January 2012. My specific contribution to
this work is to perform linear stability analysis with Orr-sommerfeld problem and compute
the nonlinear traveling wave solution by using Gerris and Auto-07p software.

5.1 Introduction

Mud flows are frequently encountered in mountainous regions, especially after torren-
tial rains, and often exhibit a series of breaking waves (roll waves). These type of waves
can also be observed as an event following volcano eruptions. A report on roll waves can
be found in extensive references quoted by Ng & Mei [85]. The roll waves which occur in
inclined open channels are important in drainage problems and have received an extensive
treatment in turbulent regime by Jeffreys [55], Dressler [41], Boudlal & Liapidevskii [13],
among others, and for a laminar sheet flow by considering the flow with quadratic dis-
tribution of velocity profile [4, 17, 58, 14]. The discontinuous waves play an important
role in engineering and geophysical processes. Roll waves consist of a periodic pattern of
bores separated by continuous profiles of free boundary. The transition from uniform flow
to intermittent flow regime is usually tackled by resorting to stability theory. When it
is perturbed, a steady flow becomes unstable, if certain criteria are satisfied, and evolves
towards wave breaking. Dressler has been the first, who gave the analytical solution for
such waves in open channel flows. Based on long wave approximation, Dressler’s the-
ory of roll waves was extended in [85] to a shallow layer of fluid mud, which has been
modeled as a power law fluid. It has been shown, particularly, that if the fluid is highly
non-Newtonian, very long waves may still exist even if the corresponding uniform flow is
stable to infinitesimal perturbations.

The space time evolution of a Newtonian liquid film flowing down an inclined plane

80
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exhibits a very rich phenomenology which has attracted a considerable number of studies
since Kapitza’s experiments in the years 1940s [60]. This is a classical example of a con-
vective primary instability [15] giving way to a sequence of secondary instabilities ending
with teardrop-shape large-amplitude solitary waves (see e.g. [4, 25, 59] for a review of this
complex phenomenology). There is still a renewed interest for falling film wavy dynamics
and, in particular to its spatio-temporal disordered state of solitary waves in interaction,
which is an example of weak turbulence organized by dissipative structures [79]. The
experiments by Liu & Gollub, Vlachogiannis & Bontozoglou [70, 143] have evidenced co-
alescence and repulsion events between waves resulting into a decrease of the number of
solitary waves with the distance at inlet. This coarsening dynamics have been numerically
investigated by Chang et al. [22].

In comparison to the Newtonian case, far less studies have been devoted to generalized
Newtonian film flows for which the effective viscosity µeff(γ̇) is a function of the strain
rate γ̇. Yet, because of the simplicity of the Ostwald-de Waele power-law model

µeff(γ̇) = µnγ̇
n−1 , (5.1)

shear-thinning falling films have recently been the subject of a consequential interest (see
e.g. [32, 33, 129, 5, 44]). These studies are based on the shallow-water averaging of the
primitive equations, also often referred to as the integral boundary layer formulation in
the context of falling films [25]. A scale separation is assumed in the streamwise and cross-
stream directions, the free surface being deformed on a length scale that is much larger
than the film thickness, which enables the introduction of a small film parameter ǫ. The
continuity and momentum equations are integrated in depth and form a closed system
of equations for the film thickness h and the local flow rate q once a closure hypothesis,
generally a self-similar velocity distribution, is made. Amaouche et al. [5] and Fernández-
Nieto et al. [44] have corrected the Kármán-Polhausen averaged momentum equation
derived by Hwang et al. [52] and Ng & Mei [85] and formulated two-equation models
that are consistent up to order ǫ. This consistency enabled them to correctly capture the
instability threshold obtained by Ng & Mei, Miladinova et al. [85, 82].

The two-equation models derived by Amaouche et al. [5] and Fernández-Nieto et al.
[44] are consistent at O(ǫ) but do not account for O(ǫ2) effects such as streamwise viscous
diffusion, which is known to affect wave-to-wave interaction processes and thus the wave
dynamics for Newtonian film flows [62, 63, 101]. In this chapter, a modeling attempt of
power-law falling film flows including second-order viscous diffusion terms in a consistent
way is presented. To account for streamwise viscous diffusion, the effective viscosity µeff(γ̇)
and its derivative dµeff/dγ̇ must be computed at the free surface, where the strain rate γ̇
goes to zero for an unperturbed interface. In the case of the power law (5.1) either µeff(0)
or dµeff/dγ̇(0), or both, are undefined for n < 3 which corresponds to most shear-thinning
and shear-thickening fluids. This calls for a regularization at zero strain rate of the power
law (5.1) which is here accounted for by introducing a Newtonian plateau at low strain
rates.
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Figure 5.1: A sketch of the geometry for a power-law film flowing down an inclined plane.

This chapter is organized as follows: Section 5.2 presents the governing equations. The
weighted-residual modeling approach is detailed in § 5.3 and § 5.4. The linear stability of
the base flow is discussed in § 6.5. Nonlinear traveling waves are obtained and compared
to direct numerical simulations in § 5.6. The conditional stability of a shear-thinning film
is considered in § 5.8. Section 5.9 concludes the present study.

5.2 Governing equations

We consider a power-law fluid flowing down an inclined plane under the action of
gravity as sketched in Fig. 5.1. The flow is assumed to be incompressible and the fluid
properties, density ρ, surface tension σ, viscosity µn and power-law index n are con-
stant. The angle of inclination β and the gravity acceleration g are also constant. The
dimensional governing equations read

∂xu+ ∂yv = 0 , (5.2a)

ρ (∂tu+ u∂xu+ v∂yu) = −∂xp+ ρg sin β + ∂xτxx + ∂yτxy , (5.2b)

ρ (∂tv + u∂xv + v∂yv) = −∂yp− ρg cos β + ∂xτyx + ∂yτyy , (5.2c)

where τij = 2µeffDij (5.2d)

Here u = ui + vj is the velocity field, Dij = (∂iuj + ∂jui)/2 is the rate of strain tensor,
γ̇ =

√
2DklDkl is the strain rate, and µeff is an effective viscosity which is a function of

the strain rate γ̇. Strain to shear relation (5.1) is the Ostwald-de Waele mathematical
modeling of pseudoplastic or shear-thinning fluids (n < 1) and dilatant or shear-thickening
fluids (n > 1). The system of equations is completed by the boundary conditions at the
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free surface y = h
[

1− (∂xh)
2
]

τxy + ∂xh (τyy − τxx) = 0 , (5.3a)

pa − p+
τxx(∂xh)

2 − 2τxy∂xh+ τyy
1 + (∂xh)2

=
σ∂xxh

[1 + (∂xh)2]
3/2

, (5.3b)

∂th+ u∂xh = v , (5.3c)

and at the wall y = 0
u = v = 0 . (5.3d)

The length scale is the uniform film thickness h̄N. The velocity scale V is defined by
balancing viscous friction ∝ µnV

nh̄
−(n+1)
N and streamwise gravity acceleration ∝ ρg sin β

which gives

V =

(

ρgh̄n+1
N sin β

µn

)1/n

(5.4)

such that the Froude number Fr = V/
√

gh̄N cos β, which compares the characteristic
speed of the flow with the speed of the gravity waves propagating at the interface, and
the Reynolds number

Re =
ρV 2−nh̄nN

µn

=
[

(µn/ρ)
−2 (g sin β)2−nh̄n+2

N

]1/n
(5.5)

are related by the relation Re/ cot β = Fr2. Finally, let us note that the Reynolds number
can also be written Re = (h̄N/lν)

(n+2)/n where lν = (µn/ρ)
2/(n+2) (g sin β)(n−2)/(n+2) is the

length scale corresponding to the balance of gravity acceleration and viscous drag. We
may also rewrite the velocity scale V as

V =
lν
tν

(

h̄N
lν

)
n+1

n

where tν =

(

µn

ρ

) 1

n+2

(g sin β)−
2

n+2 (5.6)

tν is the time scale corresponding to the balance of viscosity and gravity acceleration.
With the above choice of scales, the dimensionless equations thus read

∂xu+ ∂yv = 0 , (5.7a)

Re (∂tu+ u∂xu+ v∂yu) = −∂xp+ 1 + ∂xτxx + ∂yτxy , (5.7b)

Re (∂tv + u∂xv + v∂yv) = −∂yp− cot β + ∂xτyx + ∂yτyy , (5.7c)

with boundary conditions
[

1− (∂xh)
2
]

τxy + ∂xh (τyy − τxx) = 0 , (5.7d)

−p+ τxx(∂xh)
2 − 2τxy∂xh+ τyy
1 + (∂xh)2

= We
∂xxh

[1 + (∂xh)2]
3/2

, (5.7e)
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the kinematic condition (5.3c) and the no-slip condition (5.3d) at the wall. The Weber
number is defined by We = σ/(ρg sin βh̄2N). Finally, surface tension, gravity and viscous
drag can be compared by the Kapitza number

Γ = (lc/lν)
2 = (σ/ρ)(µn/ρ)

−4/(n+2)(g sin β)(2−3n)/(n+2) , (5.8)

where lc =
√

[σ/(ρg sin β)] is the capillary length. The Weber and Kapitza numbers are
related one to the other by the relation We = Γ(lν/h̄N)

2.

5.3 Low-dimensional formulation

Let us assume (i) slow space and time evolutions ∂x,t ∼ ǫ where ǫ≪ 1 is a formal film
parameter, (ii) surface deformations induce order-ǫ corrections of the velocity profile from
the flat-film solution. Otherwise stated, assumption (ii) implies that viscosity is strong
enough to ensure the cross-stream coherence of the flow which should be verified for small
to moderate Reynolds numbers.

With the help of the continuity equation, assumption (i) implies that the cross-stream
velocity v = −

∫ y

0
∂xu dy = O(ǫ) so that the cross-stream momentum balance reads

∂yp = − cot β + ∂xτyx + ∂yτyy +O(ǫ2) (5.9)

τyx = (∂yu+ ∂xv)
[

2 (∂xu)
2 + (∂yu+ ∂xv)

2 + 2 (∂yv)
2](n−1)/2

= ∂yu |∂yu|n−1 + n |∂yu|n−1 ∂xv + 2(n− 1)∂yu |∂yu|n−3 (∂xu)
2 +O(ǫ4)

τxx = 2∂xu
[

2 (∂xu)
2 + (∂yu+ ∂xv)

2 + 2 (∂yv)
2](n−1)/2

= 2∂xu |∂yu|n−1 +O(ǫ3)

τyy = 2∂yv
[

2 (∂xu)
2 + (∂yu+ ∂xv)

2 + 2 (∂yv)
2](n−1)/2

= 2∂yv |∂yu|n−1 +O(ǫ3)

and therefore

∂yp = − cot β + ∂x
[

∂yu |∂yu|n−1]+ 2∂y
[

∂yv |∂yu|n−1]+O(ǫ2) . (5.10)

From the continuity of the tangential stress at the free surface, τxy|h = O(ǫ2) and the
Laplace law simplifies into

p|h = −2∂xu|h |(∂yu|h)|n−1 −We∂xxh+O(ǫ2) . (5.11)
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After integration of the truncated cross-stream momentum balance, the pressure distri-
bution reads

p = cot β(h− y)−We∂xxh−
∫ h

y

∂x
[

∂yu |∂yu|n−1] dy − 2∂xu |∂yu|n−1 +O(ǫ2) . (5.12)

Substitution of this expression for the pressure distribution in the streamwise momentum
balance thus gives

Re (∂tu+ u∂xu+ v∂yu) = 1 + ∂y
[

∂yu |∂yu|n−1]− cot β∂xh+We∂xxxh

+∂y
[

n |∂yu|n−1 ∂xv + 2(n− 1)∂yu |∂yu|n−3 (∂xu)
2]

+4∂x
[

|∂yu|n−1 ∂xu
]

+ ∂x

{∫ h

y

∂x
[

∂yu |∂yu|n−1] dy

}

(5.13a)

where the effective viscosity has been Taylor expanded as

γ̇n−1 = |∂yu|n−1 + 2(n− 1)(∂xu)
2|∂yu|n−3 + (n− 1)|∂yu|n−3∂yu∂xv +O(ǫ4) . (5.13b)

Equation (5.13a) is completed by the tangential stress balance at the free surface truncated
at order ǫ2

∂yu |∂yu|n−1 = −n |∂yu|n−1 ∂xv−2(n−1)∂yu |∂yu|n−3 (∂xu)
2+4∂xu |∂yu|n−1 ∂xh , (5.13c)

the no-slip condition (5.3d) at the wall and the kinematic condition (5.3c).
In spite of the elimination of the pressure, solving the boundary-layer equations (5.13)

remain a formidable task. A further simplification can be achieved by taking advantage
of the strong coherence of the velocity distribution across the fluid layer, in which case
the velocity field can be assumed to be slaved to a limited number of unknowns functions
of time t and location x on the plane. The first of these effective degrees of freedom is
necessarily the film thickness h(x, t), for which an evolution equation is easily obtained
after integration of the continuity equation

∂th+ ∂xq = 0 , (5.14)

where q =
∫ h

0
u dy is the local flow rate. Equation (5.14) expresses the mass conservation

equation. In all cases found in literature, surface equations are obtained using a closure
assumption q = Q(h) manifesting the complete slaving of the dynamics of the film to the
evolution of the free surface.

Using Benney expansion of the velocity field u = u0 + u1 assuming Re = O(1), one
obtains at order ǫ0:

u0 =
n

n+ 1
h(n+1)/n

[

1−
(

1− y

h

)(n+1)/n
]

= a0f0(ȳ) (5.15)
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where ȳ ≡ y/h, f0(ȳ) ≡ n
n+1

[

1− (1− ȳ)(n+1)/n
]

and a0 ≡ h(n+1)/n. u0 corresponds to the
velocity distribution under a film of constant thickness h, which we shall refer to as the
Nusselt solution. Integration across the fluid layer gives

q0 =

∫ h

0

u0 dy =
n

2n+ 1
h(2n+1)/n (5.16)

which corresponds to the relation between the film thickness and the flow rate for the
Nusselt solution. This relation gives the film thickness as function of the inlet flow rate:

h̄N =

[

µn

ρg sin β

(

2n+ 1

n
q̄N

)n]1/(2n+1)

. (5.17)

Substitution of (5.16) into the mass balance (5.14) leads to a kinematic-wave equation
[146]:

∂th+ h(n+1)/n∂xh = 0 , (5.18)

which governs the propagation of free surface deformations when the velocity field is
slaved to the film thickness through the mass balance (5.14) or, equivalently the kinematic
boundary condition (5.3c). Infinitesimal waves |h− 1| ≪ 1 thus propagate at speed unity
and the velocity scale V given by (5.4) is the dimensional speed of the linear kinematic
waves in the long-wavelength limit. V is also related to the speed average of the Nusselt
solution since from (5.16) we get q̄N/h̄N = nV/(2n+ 1).

Similarly, one obtains for the order-ǫ correction to the flow rate:

q1 =
1

6n2 + 7n+ 2
h(2n+1)/n

[

2Reh(n+2)/n + (3n+ 2) (− cot β ∂xh+We∂xxxh) .
]

(5.19)

The threshold of the instability is given by Ng & Mei, Miladinova et al. [85, 82]

Re = Rec =
3n+ 2

2
cot β or Fr2 =

3n+ 2

2
(5.20)

The slaving of the velocity to the free surface evolution is verified only at small values
of the Reynolds numbers Re. At moderate Reynolds number, some additional degrees
of freedom must be added to capture the dynamics of the film, which can be done by
projecting the velocity field on a set of chosen test functions. This closure assumption is
generally reduced to the postulate of a self-similar profile [52, 32, 129]:

u = us(x, y, t) ≡
q(x, t)

φ0h(x, t)
f0(y/h(x, t)) , (5.21)

where

φ0 =

∫ 1

0

f0(ȳ)dȳ = n/(2n+ 1) . (5.22)



CHAPTER 5. GENERALIZED NEWTONIAN FLUID 87

We avoid this restrictive closure (5.21) which is known to lead to an incorrect prediction
of the instability threshold [85]. However, since the mass conservation equation (5.14) is
exact, we stick to the derivation of a low-dimensional model consisting of two evolution
equation for the film thickness h and the local flow rate q. Considering that assumption (ii)
holds, i.e. that the velocity distribution across the fluid layer is never far from the flat-
film solution, which enables to separate the streamwise velocity into u = u(0) + u(1)

where u(0) = a0(x, t)f0(ȳ) and u(1) are at least order ǫ terms induced by the free surface
deformations. The amplitude a0 is related to the flow rate through its definition

a0 =
1

φ0h

(

q −
∫ h

0

u(1) dy

)

. (5.23)

u(1) is an order-ǫ term, its integral is again O(ǫ) and it is possible to write instead

u = us(x, y, t) + ũ(1) (5.24)

where us = O(1) is defined in (5.21) and ũ(1) = O(ǫ) with the gauge condition
∫ h

0
ũ(1) dy =

0.
We see that assumption (ii) expressed by (5.24), less restrictive than the classical

assumption of a self-similar profile (5.21) is sufficient to enable the formulation of a coher-
ent model at order ǫ. However, since ∂yus|y=h = 0, the Taylor expansion (5.13b) becomes
invalid whenever n < 3 and my derivation procedure is strictly valid in the case n ≥ 3.

Substitution of (5.24) into the boundary-layer equation truncated at order ǫ leads to

Re (∂tus + us∂xus + vs∂yus) = 1 + ∂y
[

∂yus |∂yus|n−1]− cot β∂xh+We∂xxxh

+∂y
[

n |∂yus|n−1 ∂yũ
(1)
]

, (5.25)

where vs = −
∫ y

0
∂xusdy refers to the normal component of the velocity field. The last

part of (5.25) can be rewritten

∂y
[

n |∂yus|n−1 ∂yũ
(1)
]

=
∣

∣q/(φ0h
2)
∣

∣

n−1
∂y
[

n(f ′
0)

n−1∂yũ
(1)
]

= |q/(φ0)|n−1 h−2n Lũ(1)

where L is the linear operator L ≡ ∂ȳ [n(f
′
0)

n−1∂ȳ· ] . From (5.25) an evolution equation
for q can be obtained by averaging. Let us introduce a weighting function w(ȳ) and the
scalar product 〈·|·〉 =

∫ h

0
·dy. We then have to evaluate 〈Lũ(1)|w〉 = 〈ũ(1)|L+w〉 where L+

is the adjoint operator to L. We can then make use of the zero mean flow condition on
ũ(1), i.e.

∫ h

0
ũ(1)dy = 〈ũ(1)|1〉 = 0, and select w such that L+w = cst

Imposing boundary conditions to the weighting functions w similar to the boundary
conditions truncated at order ǫ, i.e. w(0) = 0 and w′(1) = 0, a straightforward integration
by part shows that 〈Lũ(1)|w〉 = 〈ũ(1)|Lw〉 and therefore that the operator L is self-adjoint.
We show in Appendix A.1 that the solution to Lw = cst is proportional to f0 as a
consequence of the self-similarity of the constant-thickness solution u0. We led to the
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conclusion that an integral momentum balance coherent at order ǫ can be obtained by
averaging and using the weight w = f0 corresponding to the Galerkin weighted residual
method.

Substitution of the ansatz (5.24) into the second-order order momentum balance,
averaging with weight f0(ȳ) and making use of the tangential stress balance (5.13c) to
evaluate

(

∂yu |∂yu|n−1)
∣

∣

h
then gives

Re

∫ h

0

f0(ȳ) (∂tus + us∂xus + vs∂yus) dy +Rin,(2) = (5.26)

φ0h (1− cot β∂xh+We∂xxxh)−
q|q|n−1

(φ0h2)n

∫ 1

0

(f ′
0)

n+1dȳ

−
∫ h

0

f ′
0(ȳ)

h

[

n |∂yus|n−1 ∂xvs + 2(n− 1)∂yus |∂yus|n−3 (∂xus)
2] dy

+

∫ h

0

f0(ȳ)

{

∂x

(∫ h

y

∂x
[

∂yus |∂yus|n−1] dy

)

+ 4∂x
[

|∂yus|n−1 ∂xus
]

}

dy ,

where Rin,(2) stands for the second-order inertial terms generated by the departure ũ(1) of
the velocity profile from the flat-film solution us. As will be verified later on, these terms
do not contribute to the determination of the instability threshold and we dropped them
out.

After some algebra using the definition of us in (5.21) and the equivalence ∂th = −∂xq,
we obtain:

Re∂tq = Re

[

−F (n) q
h
∂xq +G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1− cot β∂xh+We∂xxxh)−
q|q|n−1

(φ0h2)n

]

+

[ |q|
φ0(h2)

]n−1

×
[

J(n)
q

h2
(∂xh)

2 −K(n)
∂xq∂xh

h
− L(n)

q

h
∂xxh

+M(n)∂xxq +N(n)
(∂xq)

2

q

]

, (5.27)

where coefficients F , G, I, J , K, L, M and N are function of the power-law index n given
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below.

F (n) =
11n+ 6

4n+ 3
, (5.28a)

G(n) =
6n+ 3

4n+ 3
, (5.28b)

I(n) = =
3n+ 2

2(2n+ 1)
, (5.28c)

J(n) =
(3n+ 2)(8n4 + 24n3 − 8n2 − n+ 1)

6n(2n− 1)(4n+ 1)
, (5.28d)

K(n) =
(2n+ 1)(2n+ 7)(3n+ 2)

6(4n+ 1)
, (5.28e)

L(n) =
(2n+ 1)(3n+ 2)(12n3 + 36n2 + n− 1)

6n(2n− 1)(3n+ 1)(4n+ 1)
, (5.28f)

M(n) =
(2n+ 1)(2n+ 7)(3n+ 2)

6(4n+ 1)(2n− 1)
, (5.28g)

N(n) =
(2n+ 1)(n− 1)(2n+ 7)(3n+ 2)

12(2n− 1)(4n+ 1)
. (5.28h)

Truncated at first order, i.e. when J , K, L, M and N are all set to zero, the obtained
averaged momentum equation is identical to the one derived by Amaouche et al. [5].

In the Newtonian case n = 1, the averaged momentum equation obtained by Ruyer-
Quil & Manneville [112] is also recovered

Re∂tq = Re

[

−17

7

q

h
∂xq +

9

7

q2

h2
∂xh

]

+
5

6

[

h (1− cot β∂xh+We∂xxxh)− 3
q

h2

]

[

4
q

h2
(∂xh)

2 − 9

2

∂xq∂xh

h
− 6

q

h
∂xxh+

9

2
∂xxq

]

. (5.29)

The momentum balance (5.27) is consistent at order ǫ and consistently accounts for viscous
effects up to O(ǫ2). Our procedure is strictly valid only for n ≥ 3, a situation that arises
from my will to account for the second-order streamwise viscous diffusion effects. Yet, we
note that the second-order viscous terms found in the residual (5.27) remain bounded as
long as n ≤ 2 and the second-order viscous terms of (5.27) therefore may diverge only
when n < 2 and q goes to zero as it is sometimes observed in the Newtonian case at
the front of large-amplitude solitary waves [78, 138, 38]. Moreover, the expressions of
the coefficients (5.28) remain bounded as long as n > 1/2, which reflects the fact that
∫ 1

0
(f ′

0)
n−1dȳ remains bounded for n > 1/2. Finally, truncation at first order (by setting

J , K, L, M and N to zero) gives an averaged momentum equation that is usable for any
values of n in spite of the singularity of the apparent viscosity at the free surface [44].
Thus, we conclude to the regularizing advantage of the averaging process.
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5.4 Beyond: a Newtonian-power-law model

The fact that we end up with a formulation (5.14), (5.27) and (5.28) that is limited to
a certain range of possible values of the index n is not surprising when the linear stability
of the Nusselt solution (5.15) is considered. Indeed, the effective viscosity of a power-law
fluid (see equation (5.1)) diverges when the shear rate γ̇ goes to zero which is precisely
the case at the free surface of the film. As a consequence and for a shear-thinning fluid
(n < 1), a flat interface becomes a rigid boundary and infinitesimal perturbations around
the base flow solution (5.15) cannot deform the interface, which is an essential ingredient
of the instability mechanism of a falling film [131]. Indeed, the transfer of energy from
the base flow to the perturbations is enabled by the deformation of the free interface.

There are different solutions to this problem. The first one is probably to consider that
the interface is already deformed as in the pseudo-plug theory introduced by Balmforth
& Liu [8] to consider viscoplastic flows that are modeled by the Herschel-Buckley law.
Rheological measurements of solutions of semi-flexible rod-like polymer, e.g. xanthan
solutions, show evidence of yield stresses at high concentrations [145, 132]. However, in
the case of dilute xanthan solutions, yield stresses are not observed but shear viscosity
measurements show the presence of a first Newtonian plateau at low strain rate [12, 110].
A second solution to the divergence of the viscosity for the power-law model is therefore
a regularization at low shear rate to recover the Newtonian behavior in that limit. This
is the spirit of a three-parameter Carreau law:

µeff(γ̇) = µ0

[

1 + (γ̇/γ̇c)
2
](n−1)/2

. (5.30)

However, using (5.30) forbids the base flow from being determined analytically and one
can instead introduce a Newtonian plateau:

µeff(γ̇) = µnγ̇
n−1 for γ̇ > γ̇c , (5.31a)

µeff(γ̇) = µ0 for γ̇ ≤ γ̇c . (5.31b)

The continuity of the shear stress at γ̇ = γ̇c requires µnγ̇
n−1
c = µ0. The Carreau law

(5.30) and the Newtonian-plateau model (5.31a) are related one to another by 1/γ̇c. For
example, Fig. 5.2 shows the comparison of Ostwald-de Waele model with a Newtonian
plateau, and Carreau law for shear-thinning (n < 1) and shear-thickening fluid (n > 1).
Table 5.1 presents reasonable values of the zero strain viscosity µ0 and the critical strain
rate γ̇c separating Newtonian and non-Newtonian behavior of shear-thinning xanthan
dilute solutions. Those values are taken from [12, 69, 125]. Noteworthy is that dilute
xanthan solutions do not present yield stresses [28]. The surface tension of xanthan
solutions is assumed here to remain close to that of pure water σ = 65 mN/m [125].
Conversely, table 5.2 presents the properties of three typical shear-thickening solutions
of cornstarch in ethylene glycol. The dynamic viscosity µ0 of the Newtonian plateau is
assumed to correspond to the solvent viscosity. Removing dimensions with the help of
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Figure 5.2: Ostwald-de Waele model (solid line) with a Newtonian plateau and Carreau
law (dash line) for Shear-thinning fluid (I(a) and (b)), n = 0.4 and Shear-
thickening fluid (II(a) and (b)), n = 1.8.
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Figure 5.3: Sketch of a powerlaw fluid falling film with a Newtonian layer close to the
free surface.
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Set number Concentration µn n µ0 γ̇c γ̇ctν Γ
(Pa.sn) (Pa.s) (s−1)

1. 500 ppm 0.04062 0.607 0.08 0.18 1.8× 10−3 378
2. 1500 ppm 0.3592 0.40 1.43 0.1 1.7× 10−3 48.7
3. 2500 ppm 0.9913 0.34 7.16 0.05 1.2× 10−3 13.0

Table 5.1: Parameters from rheological measurements of xanthan gum solutions in water.
Surface tension and density are σ = 65 mN/m and ρ = 995 kg/m3. Values of
the Kapitza number are computed for a moderate inclination β = 15◦. Set 1
corresponds to data from [12, 69]. Sets 2 and 3 refer to the fluids studied by
Seevaratnam [125].

Set number Concentration µn n µ0 γ̇c γ̇ctν Γ
(Pa.sn) (Pa.s) (s−1)

4. 33 % 8 1.3 0.016 10−9 1.3× 10−10 0.01
5. 35 % 6 1.55 0.016 2.1× 10−5 2.8× 10−6 0.0077
6. 38 % 1.8 2.4 0.016 0.034 5.2× 10−3 0.005

Table 5.2: Parameters from rheological measurements of cornstarch dispersions in ethy-
lene glycol [48]. Surface tension and density are σ = 48 mN/m and ρ =
1113 kg/m3. The viscosity µ0 of the Newtonian plateau is assumed to corre-
spond to the solvent viscosity. Values of the Kapitza number are computed for
a moderate inclination β = 15◦.
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the film thickness and the characteristic velocity V defined in (5.4) gives

µeff(γ̇) = γ̇n−1 for γ̇ > s (5.32a)

µeff(γ̇) = r for γ̇ ≤ s (5.32b)

where the dimensionless threshold s and dimensionless maximum effective viscosity r are
defined by s = γ̇ch̄N/V and r = sn−1. The dimensionless Carreau law equivalent to the
Newtonian plateau model (5.32) reads

µeff(γ̇) =
(

s2 + γ̇2
)(n−1)/2

. (5.33)

The advantage of the Newtonian plateau formulation (5.32) over the Carreau law (5.33)
lies in the presence of an analytical solution for the base flow of constant film thickness
h:

u0 = h(n+1)/nf0(ȳ) for ȳ < 1− η̄c (5.34a)

u0 = h(n+1)/nf0(1− η̄c) + sn+1 g0[(ȳ + η̄c − 1)/η̄c] for ȳ > 1− η̄c , (5.34b)

where f0(ȳ) = n/(n + 1)
[

1− (1− ȳ)(n+1)/n
]

, g0(ȳ) = ȳ − (1/2)ȳ2 and η̄c = sn/h is the
fraction of the film thickness for which the fluid is Newtonian. From the uniform-thickness
solution (5.34) we obtain ∂yu0|y=0 = 1 and the dimensional rate of strain at the wall is thus
V/h̄N for the base flow. Therefore, the dimensionless group r can be interpreted as the
ratio r = µ0/µw of the shear viscosities µ0 = µn(γ̇c)

n−1 and µw = µn(V/h̄N)
n−1 at the free

surface and at the wall for the corresponding base flow Nusselt solution. The Newtonian-
plateau model (5.32) thus introduces a fake interface at y = h(1− η̄c) separating a power-
law region and a Newtonian layer at the free surface. This is reminiscent of the pseudo-
plug theory developed by [8, 44], although in that case the fake interface has a different
physical meaning and separates a plastic upper layer from a fluid layer underneath.

In the case of the three shear-thinning xanthan solutions whose properties are listed
in Table 5.1, the approximation of a thin Newtonian layer (η̄c ≪ 1) and a large viscosity
ratio (r ≫ 1) is well verified. Fig. 5.4 presents the relative thickness sn of the Newtonian
layer and the viscosity ratio r for the Nusselt film solution (5.34) at two inclinations
(β = 15◦ and 85◦) and for the three studied xanthan solutions when the Reynolds number
is varied in the interval [Rec, 100]. The instability threshold Rec is here approximated by
the formula (5.20) which corresponds to the Ostwald-de Waele power-law model (5.1).
In each case, the viscosity at the free surface is at least one order of magnitude larger
than at the wall and the Newtonian layer at the free surface has a thickness that is at
least one order of magnitude smaller than the total thickness of the film. Turning to the
cornstarch suspensions (see table 5.2) the Newtonian surface layer is very thin and the
viscosity ratio is very small, sn and r being less than 2× 10−6 and 5× 10−4, respectively
for Re in the range [Rec, 100] and β = 15◦ or 85◦. Then we conclude that a thin Newtonian
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Figure 5.4: Ranges of dimensionless maximum viscosity r = sn−1 and relative thickness
sn of the Newtonian surface layer attained for the Nusselt solution of uniform
thickness (5.34) when the Reynolds number is varied between Rec and 100.
Solid (dashed) lines refer to β = 15◦ (β = 85◦). Labels refer to the shear-
thinning dilute xanthan solutions whose properties are listed in table 5.1.
Crosses (squares) correspond to Re = 100 (Re = Rec).

layer at the free surface (η̄c ≪ 1) can be assumed for typical shear-thinning and shear-
thickening fluids, an assumption that will be useful to drastically simplify the derivation
of the integral models that we detail below.

Finally, let us note that, although not strictly equivalent, the two models (5.33) and
(5.32) of generalized Newtonian fluids will be shown to lead to close results in the linear
and nonlinear regimes whenever s ≪ 1 and we shall consider them equivalent to my
analysis in the limit s → 0 (see § 5.4.1). We first adapt the approach adopted for the
power-law fluid case in § 5.3 by postulating that the velocity distribution is never far from
the flat-film profile (5.34b). This can be expressed by

u = us + ũ(1) where : (5.35a)

us = ūf0(ȳ) for ȳ ≤ 1− η̄c (5.35b)

us = ū
[

f0(1− η̄c) + η̄c
(n+1)/n g0[(ȳ + η̄c − 1)/η̄c]

]

for ȳ ≥ 1− η̄c , (5.35c)

and η̄c is the local relative thickness of the Newtonian layer at the free surface.
The definition of the velocity distribution us is based on the local film thickness h(x, t)

and a local velocity scale ū(x, t) that can be related to the rate of strain at the wall
γ̇(y=0) = ū/h+O(ǫ). ũ(1) accounts for the order-ǫ deviations of the velocity profile induced
by the deformation of the free surface. We can also include in ũ(1) the O(ǫ) corrections of
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the relation between the flow rate q =
∫ h

0
u dy, h and ū provided by the flat-film profile

q =
3n+ (1− n)η̄c

(2n+1)/n

6n+ 3
hū ≡ φ(η̄c)hū , (5.36)

so that
∫ h

0
ũ(1) dy = 0 is assumed without any restrictions.

The local thickness η̄c of the Newtonian layer is defined by γ̇(ȳ = 1 − η̄c) = s, which
reads at order ǫ2

s2 =
{

4 (∂xus)
2 + [∂yus + ∂xvs]

2}

ȳ=1−η̄c
. (5.37)

In the limit η̄c ≪ 1, (5.37) can be further simplified to give

s2 =
4n2

(1 + n)2
(∂xū)

2 + η̄c
2/n ū

2

h2
. (5.38)

Therefore, the Newtonian layer disappears locally if

|∂xū| >
n+ 1

2n
s . (5.39)

Though formally of different orders with respect to the film parameter ǫ, we cannot neglect
(∂xu)

2 in the computation of the strain rate γ̇. Since ∂yu becomes small close to the free
surface, the viscosity at the free surface is then governed by the value of the streamwise
derivative ∂xu|y=h for a thin or vanishing Newtonian layer.

The formulation of an averaged momentum balance in terms of q and h is made difficult
by the impossibility to inverse (5.37) and (5.36) to express ū as function of h and q. We
thus aim at a a three-equation model for the unknowns h, η̄c and ū made of the (exact)
mass conservation equation (5.14), (5.37) and an evolution equation for ū.

A boundary-layer momentum balance consistent at order ǫ2 can be obtained following a
procedure similar to the derivation of (5.13a). Integration of the cross-stream momentum
balance gives the pressure distribution at order ǫ:

if y > yc , p = cot β(h− y)−We∂xxh− r [∂xu|h + ∂xu] , (5.40a)

if y ≤ yc , p = cot β(h− y)−We∂xxh− r
[

∂xu|h + ∂xu|yc+
]

+ 2r∂xu|yc−
−2∂xuγ̇0

n−1 −
∫ yc

y

∂x
[

∂yuγ̇0
n−1
]

dy , (5.40b)

where yc = h(1 − η̄c) defines the location of the fake interface separating the Newtonian
and power-law layers and γ̇0 =

√

(∂yu)2 + 4(∂xu)2. Note that ∂yu and ∂xu must be taken
of the same order of magnitude in the expression of the strain rate.

Substitution of (5.40) into the streamwise momentum balance gives

Re (∂tu+ u∂xu+ v∂yu) = 1 + ∂yτ
(0)
xy +D(2) − cot β∂xh+We∂xxxh (5.41a)
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where the definition of the lowest-order rate of strain τ (0)xy and of the second-order viscous
terms D(2) depend on whether the flow is Newtonian or non-Newtonian. For y > yc they
read

τ (0)xy = r∂yu and D(2) = 2r∂xxu+ r∂x [∂xu|h] (5.41b)

whereas for y ≤ yc we have

τ (0)xy = ∂yuγ̇
n−1
0 ,

D(2) = ∂y
[

∂xv
(

γ̇n−1
0 + (n− 1)(∂yu)

2γ̇n−3
0

)]

+ 4∂x
[

∂xuγ̇0
n−1
]

+∂x

{∫ yc

y

∂x
[

∂yuγ̇0
n−1
]

dy

}

− 2∂x
[

r∂xu|yc−
]

+r∂x
[

∂xu|yc+ + ∂xu|h
]

, (5.41c)

Equation (5.41a) completed by the no-slip condition u = v = 0 at the wall and the
tangential stress continuity at the free surface y = h truncated at order ǫ2:

∂yu = 4∂xh∂xu− ∂xv . (5.41d)

As for the derivation of the averaged momentum balances (5.27) for a power-law fluid,
the weight w must be chosen so that the viscous drag term
∫ yc

0

w(ȳ)∂y
[

n|∂yus|n−1∂yũ
(1)
]

dy +

∫ h

yc

rw(ȳ)∂yyũ
(1)dy ≡ 1

h

∣

∣

∣

ū

h

∣

∣

∣

n−1

〈Lη̄cũ
(1)|w〉+O(ǫ2)

(5.42)
is O(ǫ2). The linear operator is an extension of the operator L introduced in § 5.3 and
Lη̄c is defined by

Lη̄c = ∂ȳ
[

n(f ′
0)

n−1∂ȳ·
]

if 0 6 ȳ 6 η̄c , and Lη̄c = η̄c
(n−1)/n∂ȳȳ · otherwise ,

(5.43)
where the thickness of the Newtonian layer is estimated by η̄c = (sh/ū)n + O(ǫ2). The
deviations ũ(1) of the velocity field verify the no-slip condition ũ(1)|ȳ=0 = 0 at the wall,
∂ȳũ

(1)|ȳ=1 = 0 at the interface and

n∂ȳũ
(1)|ȳ=ȳc− = η̄c

(n−1)/n∂ȳũ
(1)|ȳ=ȳc+ (5.44)

where ȳc = 1 − η̄c, which is a consequence of the continuity of the rate of stress at the
fake interface:

|∂yu|n−1∂yu|ȳ=ȳc− +O(ǫ2) = r∂yu|ȳ=ȳc+ . (5.45)

Two integrations by part of (5.42) show that the linear operator Lη̄c is self-adjoint.
To make use of the definition of the flow rate q, which implied the gauging condition
∫ h

0
u(1)dy = 0, the weight function w must be solution to Lη̄c = cst which gives

if y < yc , w(ȳ) = f0(ȳ) , (5.46a)

if y > yc , w(ȳ) = f0(1− η̄c) + nη̄c
(n+1)/n g0[(ȳ + η̄c − 1)/η̄c] .
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Noteworthy is that the weight w is not proportional to the velocity profile us defined
in (5.35). The adopted weighted residual method is therefore slightly different from the
Galerkin method for which w ∝ us. This discrepancy is an effect of the non-linearity of
the strain to stress relationship which introduces a factor n.

We next proceed to the averaging of the boundary-layer equations (5.41) with appro-
priate weights (5.46). To compute the viscous terms appearing in the boundary-layer
formulation (5.41c), we expand the non-linear constitutive equation:

γ̇0
n−1 = |∂yu|n−1 + 2(n− 1)(∂xu)

2|∂yu|n−3 +O(ǫ4) , (5.47)

and replace r with γ̇0n−1|y=h(1−η̄c).
After some tedious algebra, the resulting averaged momentum equation (5.41) reads

∂tū = −Re
[

G̃
ū2

h
∂xh+ F̃ ū∂xū

]

+ Ĩ

(

1− cot β∂xh+We∂xxxh− ū|ū|n−1

hn+1

)

+J̃
ū

h2
(∂xh)

2 + K̃
∂xū∂xh

h
+ L̃

ū

h
∂xxh+ M̃∂xxū+ Ñ

(∂xū)
2

ū
.

The coefficients F̃ to Ñ of the averaged momentum balance (5.48) are explicit, but cum-
bersome, functions of the power-law index n and of the relative thickness η̄c of the New-
tonian layer. We give in appendix A.3 the full expressions of the coefficients F̃ , G̃, Ĩ of
the terms of orders ǫ0 and ǫ which will be needed to determine the value of the critical
Reynolds number at onset. The system (5.14), (5.37) and (5.48) is consistent up to order
ǫ and accurately accounts for second-order viscous terms. As stated in the introduction,
the derivation of the (5.48) has required a regularization of the power law (5.1) for n < 3
in order to compute both µeff(0) and dµeff/dγ̇(0) in the Taylor expansion (5.47).

5.4.1 Shear-thinning film (n < 1) in the limit of vanishing New-
tonian layer

The system of equations (5.14), (5.37) and (5.48) is still formidable to solve, mainly
because of the dependence of the coefficients (A.2) on the relative thickness η̄c of the
Newtonian layer, which is in turn a nonlinear function of h, ū and their derivatives. For
this reason, we further simplify the formulation by retaining the asymptotic behavior of
the coefficients when the Newtonian layer is very thin (η̄c → 0).
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In this limit, the expressions of the eight coefficients F̃ ,. . . , Ñ simplify to

F̃ ∼ n(7n+ 3)

(4n+ 3)(2n+ 1)
, (5.48a)

G̃ ∼ n2

(4n+ 3)(2n+ 1)
, (5.48b)

Ĩ ∼ 3n+ 2

2n
, (5.48c)

J̃ ∼ (3n+ 2) [n(2n− 3)(n+ 3)− 2]

12n(4n+ 1)

[ |ū|
h

]n−1

, (5.48d)

K̃ ∼ n(n− 1)(3n+ 2)

(n+ 1)2

[

η̄c
1/n |ū|

h

]n−1

(5.48e)

L̃ ∼ K̃/2 (5.48f)

M̃ ∼ −(n− 1)(3n+ 2)

2(n+ 1)

[

η̄c
1/n |ū|

h

]n−1

, (5.48g)

Ñ ∼ (n− 1)(2n+ 1)(2n+ 7)(3n+ 2)

12(2n− 1)(4n+ 1)

[ |ū|
h

]n−1

, (5.48h)

(5.48i)

where we used the relation (5.38) to eliminate the maximum viscosity r = sn−1:

r =

(

η̄c
1/n|ū|
h

)n−3 [
η̄c

2/nū2

h2
+

2n2(n− 1)

(n+ 1)2
(∂xū)

2

]

+O(ǫ2) (5.49)

Finally, we note that φ0 = φ(0) = n/(2n+ 1) and we can substitute q/(φ0h) for ū in the
limit η̄c → 0. We finally obtain:

Re∂tq = Re

[

−F (n) q
h
∂xq +G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1− cot β∂xh+We∂xxxh)−
q|q|n−1

(φ0h2)n

]

+r

[

J0(n)
q

h2
(∂xh)

2 −K0(n)
∂xq∂xh

h
− L0(n)

q

h
∂xxh+M0(n)∂xxq

]

. (5.50)

Coefficients F (n), G(n), I(n), J0, K0, L0, M0 are also functions of the power-law index n
whose expressions are given below:

F =
11n+ 6

4n+ 3
, G =

6n+ 3

4n+ 3
, I =

3n+ 2

2(2n+ 1)
, (5.51a)

K0 = J0 = −(n− 1)(2n+ 1)(3n+ 2)

(n+ 1)2
, (5.51b)

L0 = K0/2 , M0 = −(n− 1)(3n+ 2)

2(n+ 1)
. (5.51c)
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Figure 5.5: Example of viscosity distribution computed using n = 0.4, ū/h = 1, ∂xh = 0.1
and ∂xū = 0.1.

The limit of a very thin Newtonian layer implies that the strain-rate threshold s also goes
to zero. Since we made use of the Taylor expansion (5.47) to obtain (5.48), ǫ = O(s) and
the momentum averaged equation (5.48) completed with (5.48) is formally only relevant
to describe weakly nonlinear waves in the vicinity of the instability threshold.

Yet, (5.50) takes into account the contribution of the effective viscosity µeff(y = h) at
the free surface. For non-infinitesimal deformations, the strain rate at the free surface can
rapidly exceeds s, the Newtonian viscous layer disappears and µeff(y = h) is much below
its maximum r. Let us reconsider the distribution of effective viscosity inside the film.
Whenever q is non zero and the gradient of h and q fulfill the long-wave assumption, the
viscosity distribution can be approached using the Nusselt base flow as

(γ̇)n−1 ≈
[

(∂yus)
2 + 4(∂xus)

2
](n−1)/2

(5.52)

whose maximum is again nearly reached at the free surface. Fig. 5.5 presents an example
of the effective viscosity distribution µeff corresponding to (5.52) with η̄c = 0, ū/h = 1,
∂xh = 0.1 and ∂xū = 0.1. Apart from a nearly constant plateau close to the free surface,
the effective viscosity decreases rapidly. We lead to the previous case of a power-law
fluid with a thin Newtonian layer at the free surface where the ratio of free-surface to
wall viscosities is now given by µeff(y = h). The averaged momentum equation (5.50)
can therefore easily be extended to account for the disappearance of the Newtonian layer
when the effective viscosity µeff(y = h) at the free surface is substituted for r. We thus
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obtain a coherent formulation accounting for streamwise viscous diffusion in the proper
limit within the long-wave assumption, for which the maximum of effective viscosity is
reached at the free surface. We therefore retain only the leading contribution of the free
surface viscosity to the second-order terms with two drawbacks: (i) Second-order viscous
effects are dropped out in the limit n → 1 as J0(1) = K0(1) = L0(1) = M0(1) = 0.
(ii) These effects are underestimated whenever the maximum of effective viscosity is not
reached at the free surface but in the bulk of the film. Indeed, there are evidence that the
maximum of effective viscosity can sometimes be located at the wall. Dietze et al. and
Dietze et al. [38, 39] have pointed out the onset of backflow phenomena at the minimum
thickness of large amplitude solitary waves running on Newtonian falling films. These
backflow phenomena are accompanied by the occurrence of separation points at the wall
where the strain rate necessarily goes to zero. In the case of shear-thinning fluids, the
effective viscosity would be maximum at the wall close to the locations of the separation
points.

To remedy to these drawbacks, one would have to identify the leading order contribu-
tions of the bulk and wall regions to the streamwise viscous diffusion terms in the averaged
momentum equation (5.48), a very difficult task to achieve because of its complexity. A
simple but ad hoc way to proceed is to estimate the effective viscosity in the bulk re-
gion from its value at the wall µeff(y = 0) ≈ [|q|/(φ0h

2)]
n−1

= h(n−1)/n + O(ǫ), assume
a constant viscosity within the layer and compute the O(ǫ2) viscous contribution to the
averaged momentum equation. The contribution of the bulk region of the flow to the
streamwise viscous diffusion terms are evaluated by assuming a constant viscosity µeff .
The second-order boundary-layer equations then read [112]:

Re (∂tu+ u∂xu+ v∂yu) = µeff [∂yyu+ 2∂xxu+ ∂x (∂xu|h)]
+1− cot β∂xh+We∂xxxh , (5.53a)

completed by the tangential stress balance at the free surface

∂yu|h = 4∂xh∂xu|h − ∂xv|h , (5.53b)

the kinematic condition (5.3c) and the no-slip condition (5.3d) at the wall.
Considering the self-similar velocity profile (5.21) and averaging the momentum bal-

ance (5.53a) with the weight f0 then leads to

Re

∫ h

0

f0(ȳ) (∂tus + us∂xus + vs∂yus) dy = µeff

{

f0(1) [4∂xh∂xus|h − ∂xvs|h]
∫ h

0

f ′′
0 (ȳ)us + f0(ȳ) [2∂xxus + ∂x (∂xus|h)] dy

}

. (5.54)
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We then obtain the following averaged momentum equation

Re∂tq = Re

[

−F (n) q
h
∂xq +G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1− cot β∂xh+We∂xxxh)−
q|q|n−1

(φ0h2)n

]

+r(h, q)

[

J0(n)
q

h2
(∂xh)

2 −K0(n)
∂xq∂xh

h
− L0(n)

q

h
∂xxh+M0(n)∂xxq

]

+h(n−1)/n

[

Jw(n)
q

h2
(∂xh)

2 −Kw(n)
∂xq∂xh

h
− Lw(n)

q

h
∂xxh+Mw(n)∂xxq

]

.(5.55)

where Iw = (2n+ 1)/(n+ 2) and Jw, Kw, Lw and Mw are defined by

Jw =
3n2 + 13n+ 8

(n+ 2)(n+ 1)
, Kw =Mw =

5n+ 4

n+ 1
, (5.56a)

Lw =
17n2 + 23n+ 8

2(n+ 1)2
, (5.56b)

and r(h, q) stands for the evaluation of the effective viscosity at the free surface µeff(y = h)
from the model variables h and q:

r(h, q) ≡
[

s2 + ∂xv
2
s + 4(∂xus)

2
](n−1)/2 ∣

∣

y=h
(5.57a)

where

∂xv
2
s + 4(∂xus)

2
∣

∣

y=h
=

[

2(2n+ 1)

n+ 1
∂x

( q

h

)

]2

+

{

2n+ 1

n+ 1

[

−2
∂xh∂xq

h

+q

(

2
(∂xh)

2

h2
− ∂xxh

h

)]

+ ∂xxq

}2

. (5.57b)

We have considered as equivalent the assumption (5.32) of a Newtonian plateau and the
Carreau law (5.33) to express the effective viscosity r(h, q). Our computations show that
this assumption is reasonable in the limit of a vanishing Newtonian layer η̄c ≪ 1 (see § 5.5.1
and § 5.6.3). We note that the O(ǫ2) term ∂xvs has been kept in the expression of the
strain rate at the free surface. Indeed, retaining only the dominant term 4 (∂xus|y=h)

2 ∝
[∂x(q/h)]

2 implies that the effective viscosity spuriously reaches local maxima at crests
and troughs of traveling waves since q is a function of h in that case (cf. section 5.6).

The averaged momentum equation (5.55) retains the contribution to streamwise vis-
cous diffusion from the free surface (second row) and from the bulk (third row). In the
Newtonian limit n→ 1, the averaged momentum equation obtained by [112] is recovered

Re∂tq = Re

[

−17

7

q

h
∂xq +

9

7

q2

h2
∂xh

]

+
5

6

[

h (1− cot β∂xh+We∂xxxh)− 3
q

h2

]

+4
q

h2
(∂xh)

2 − 9

2

∂xq∂xh

h
− 6

q

h
∂xxh+

9

2
∂xxq . (5.58)
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The averaged momentum balance (5.55) accounts for the rapid decrease of the effective
viscosity µeff(y = h) when the interface is disturbed. Consistency is achieved up to O(ǫ)
for inertial terms and up to O(ǫ2) for the contribution of the surface effective viscosity to
the streamwise diffusion terms. The contribution of the bulk to the streamwise viscous
diffusion terms is evaluated in an ad hoc way but ensures consistency with the Newtonian
case in the limit n→ 1.

Truncated at order ǫ, i.e. when the second and third rows are omitted, (5.55) is identical
to the momentum balance derived by Amaouche [5]. Similarly to [85], Amaouche et al.
used the power-law constitutive equation (5.1) without regularization of the effective
viscosity at zero strain rate. As a matter of fact, the divergence of the effective viscosity
does not affect the boundary-layer momentum balance (5.41) when truncated at first
order. Indeed at O(ǫ), viscous contribution comes only through the stress τxy which
remains bounded. As a consequence, a regularization of the effective viscosity at low
strain rate becomes necessary only when streamwise viscous effects are accounted for.

5.4.2 Shear-thickening film (n > 1) in the limit of vanishing New-
tonian layer

Now, turning to the shear-thickening case, the expressions of the coefficients of (5.48)
simplify to the following expressions for 1 < n < 3 are

J̃ ∼ K̃ ∼ (3n+ 2)[n(2n− 3)(n+ 3)− 2]

12n(4n+ 1)

[ |ū|
h

]n−1

(5.59a)

L̃ ∼ −(2n+ 1)(3n+ 2)(3n2 + 8n+ 1)

6n(3n+ 1)(4n+ 1)

[ |ū|
h

]n−1

, (5.59b)

M̃ ∼ (2n+ 1)(2n+ 7)(3n+ 2)

6(2n− 1)(4n+ 1)

[ |ū|
h

]n−1

, (5.59c)

Ñ ∼ (n− 1)(2n+ 1)(2n+ 7)(3n+ 2)

12(2n− 1)(4n+ 1)

[ |ū|
h

]n−1

, (5.59d)

For a shear-thickening fluid, the Newtonian layer at the free surface corresponds to a
minimum of viscosity r = sn−1 that goes to zero in the limit s → 0. The averaged
momentum equation thus reduces to

Re∂tq = Re

[

−F (n) q
h
∂xq +G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1− cot β∂xh+We∂xxxh)−
q|q|n−1

(φ0h2)n

]

+

[ |q|
φ0h2

]n−1

×
[

J1(n)
q

h2
(∂xh)

2 −K1(n)
∂xq∂xh

h
− L(n)

q

h
∂xxh+M(n)∂xxq

]

, (5.60)
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where L and M are defined in (5.28). The set of coefficients is completed by

J1 = −(2n+ 1)(2n+ 7)(3n+ 2)

3(2n− 1)(4n+ 1)
, (5.61a)

K1 = −(3n+ 2)(4n4 − 12n3 − 85n2 − 23n+ 2)

12n(2n− 1)(4n+ 1)
, (5.61b)

L1 =
(2n+ 1)(3n+ 2)(12n3 + 36n2 + n− 1)

6n(2n− 1)(3n+ 1)(4n+ 1)
, (5.61c)

M1 =
(2n+ 1)(2n+ 7)(3n+ 2)

6(4n+ 1)(2n− 1)
. (5.61d)

In the Newtonian limit n → 1, the averaged momentum equation (5.58) derived by
Ruyer-Quil & Manneville [112] is recovered but for the coefficients of the streamwise
viscous diffusion terms (q(∂xh)

2/h2 and ∂xq∂xh/h as K1(1) = 19/2 and J1(1) = 9. We
note that these terms are nonlinear and do not contribute to the linear stability analysis
of the Nusselt base flow so that the dispersion relations of the model (5.14), (5.60) and
(5.14), (5.58) coincide when n = 1. The above discrepancy is a consequence of the Taylor
expansion (5.47) of the effective viscosity γ̇0n−1 which becomes invalid as ∂yus|y=h goes to
zero for n = 1. Yet, the assumption of a vanishing Newtonian layer, necessary to derive
(5.60), is obviously not compatible with the Newtonian limit n→ 1 and a full agreement
of (5.60) with (5.58) is therefore not expected.

Whenever the power law index n ≥ 2, the averaged momentum equation (5.27) and
(5.60) do not either coincide. We note that it is again an effect of the divergence of
the Taylor expansion (5.47) as ∂yus|y=h goes to zero. However, (5.27) and (5.60) differ
only through second-order viscous nonlinear terms which do not contribute to the linear
stability analysis of the flow.

5.5 Linear stability analysis

5.5.1 Orr-Sommerfeld analysis

In this section, we consider the linear stability of the Nusselt uniform film solution.
We first linearize the governing equations (5.7) with a fluid modeled by a power-law and
a Newtonian behavior at low rate of strain (5.31). We thus perturb the basic state (5.34)
with h = 1:

if y < 1− sn , U(y) = f0(y)

otherwise U(y) = f0(1− sn) + sn+1g0
[

s−n(y + sn − 1)
]

, (5.62a)

P (y) = cot β(1− y) . (5.62b)
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We introduce a stream function and proceed to a decomposition on normal modes:

u = U + ℜ
(

ψ′(y)eik(x−ct)
)

, v = ℜ
(

−ikψ(y)eik(x−ct)
)

,

hi = 1− sn + ℜ
(

fie
ik(x−ct)

)

,

where k and c are the wavenumber and phase speed, respectively, and ℜ stands for the
real part; hi refers to the position of the fake interface separating the Newtonian and
non-Newtonian regions of the flow. We thus obtain a Orr-Sommerfeld problem,

if y < 1− sn , ikRe
[

(U − c)(D2 − k2)ψ − ψU ′′
]

=
(

D2 + k2
) [

n(U ′)n−1
(

D2 + k2
)

ψ
]

−4k2D
[

(U ′)n−1Dψ
]

, (5.63a)

otherwise , ikRe
[

(U − c)(D2 − k2)ψ − ψU ′′
]

= r
(

D2 − k2
)2
ψ , (5.63b)

where D ≡ d/dy and again r = sn−1 is the ratio of the viscosity at the free surface and
at the wall. The system of equations (5.63) is completed by the boundary conditions at
the wall and at the interface,

ψ(0) = ψ′(0) = 0 , (5.63c)

k2ψ(1) + ψ′′(1) + U ′′(1)
ψ(1)

c− U(1)
= 0 , (5.63d)

ψ(1)

c− U(1)

(

Wek3 + cot βk
)

+ kRe[U(1)− c]ψ′(1)

+ir
[

ψ′′′(1)− 3k2ψ′(1)
]

= 0 , (5.63e)

The amplitude of the deformation of the fake interface is given by

fi = nsn−1(k2ψ|yc− + ψ′′|yc−) , (5.63f)

where yc = 1− sn refers to the location of the interface for the base flow. The continuity
of the velocity implies the continuity of ψ and ψ′ at y = yc. Writing the continuity of
stresses at the fake interface finally leads to

ψ′′|yc+ =
[

nψ′′ + (n− 1)k2ψ
]

|yc− , (5.63g)

sn [ψ′′′] |yc+ =
{

sn
[

nψ′′′ + (n− 1)k2ψ′
]

− (n− 1)
[

ψ′′ + k2ψ
]}

|yc− (5.63h)

at the fake interface yc = 1− sn.
We solve systems (5.63) by continuation using Auto07p software [40]. We obtain

the spatial long-wave mode (k complex and ω real) starting from its analytical solution
at k = 0. We first present the result obtained for the three shear-thinning fluids whose
properties are detailed in table 5.1. Fig. 5.6(a) shows the behavior of the spatial growth
rate −ki = −ℑ(k) as function of the wavenumber kr = ℜ(k). The Reynolds number



CHAPTER 5. GENERALIZED NEWTONIAN FLUID 105

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

1

1

2

3

kr

−
k
i

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  10  20  30  40  50

1

1

2

3

Re

k

(b)

Figure 5.6: (a) Spatial growth rate −ki versus wavenumber kr at Re = 100. (b) Marginal
stability curves in the plane (Re, k). Inclination angle is β = 15◦. Labels refer
to shear-thinning xanthan gum solutions (cf.Table 5.1). Solid lines refer to
the solutions to the Orr-Sommerfeld problem (5.63). Dashed lines correspond
to the solutions when surface tension is not taken into account (We = 0).

is chosen large (Re = 100) and the inclination moderate (β = 15◦). Similarly to the
Newtonian case [15], the range of unstable wavenumber extend from zero to the cut-off
wavenumber kc. Fig. 5.6(b) presents the marginal stability curve, i.e. cut-off wavenumber
kc versus Reynolds number Re. As the concentration of xanthan gum increases from
500 ppm (set 1) to 2500 ppm (set 3), the instability threshold is displaced to lower values
of the critical Reynolds number whereas the range of unstable wave numbers is decreased.
Shear-thinning effects therefore enhance the primary instability close to threshold [83],
but also tend to stabilize the base flow far from threshold. We have compared the Orr-
Sommerfeld analyses with (We 6= 0) and without surface tension (We = 0). Differences
are important for set 1 but hardly noticeable for the fluid sets 2 and 3, in which case
the cut-off wavenumber is determined by the balance of inertia and viscous damping.
For shear-thinning fluid, viscosity is maximal at the free surface and a competition of
surface tension and viscous damping at the free surface can be evaluated by computing
the Kapitza number Γ0 based on the the maximum viscosity µ0 of the fluid:

Γ0 = (lc/lµ0
)2 = (σ/ρ)(µ0/ρ)

−4/3(g sin β)−1/3 where lµ0
= (µ0/ρ)

2/3 (g sin β)−1/3

(5.64)
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Figure 5.7: Spatial linear stability analysis based on the Orr-Sommerfeld problem (5.63).
(a) Spatial growth rate −ki versus wavenumber kr at Re = 100. (b) Marginal
stability curves in the plane (Re, k). Inclination angle is β = 15◦. Fluid prop-
erties correspond to a shear-thinning xanthan gum solution of concentration
1500 ppm (Set 2 in Table 5.1). Labeled lines 1,2 and 3 refer to γ̇c = 0.1 s−1,
1 s−1 and 0.02 s−1 respectively.

is the length at which viscosity µ0 balances streamwise gravity acceleration. From the
data in 5.1, we get Γ0 = 8.8 for a 500 ppm xanthan solution (set 1) and equal to Γ0 = 0.19
and 0.02 respectively for the two more concentrated solutions corresponding to sets 2 and
3, which explains that for the concentrated xanthan solutions surface tension effects are
rather weak in comparison with the wave damping by the viscosity of the fluid at the free
surface. Fig. 5.7 compares the marginal stability conditions and spatial growth rate for
given fluid properties, flow rate and inclination angle, when the threshold γ̇c separating the
shear-thinning and the Newtonian behavior of the fluid. As expected, both the location
of the marginal stability curve in the plane (Re, kr) and the spatial growth rate −ki varies
significantly with γ̇c which underlines the damping role of the viscosity at the free surface
on the linear stability of the Nusselt film. We therefore conclude that for sufficiently
small power-law index (n = 0.4 for Set 2 and n = 0.34 for Set 3), the marginal stability
conditions and thus the range of unstable wave numbers are governed by the viscous
damping of short waves in the Newtonian layer below the interface, a mechanism which
is more effective than surface tension and the viscous momentum diffusion in the bulk of
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the film.
We have compared the results of the spatial stability analysis obtained with the

Newtonian-plateau regularization (5.32) to the ones from the Carreau law (5.33) (see
Appendix A.4). The two analyses lead to close results as illustrated in Fig. 5.7. We have
checked that it is also the case for the fluid properties listed in table 5.1 and the range of
parameters [Rec, Re] for β = 15◦ and 85◦ for which the thickness of the Newtonian layer
is small (sn ≪ 1). We thus conclude that the results of my linear stability analysis do not
depend on the peculiar choice of regularization of the power law (5.1) at low strain rate.

Turning to the shear-thickening cornstarch solutions, we present the spatial growth
rate −ki versus wavenumber kr at Re = 100 and the marginal stability curves in the plane
(Re, k) in Fig. 5.8. Labels 4, 5 and 6 refer to the parameter sets given in table 5.2. As
the concentration of the cornstarch solution is raised from 33 % (set 4) to 38 % (set 6),
the instability threshold is displaced to larger values of the critical Reynolds number
whereas the range of unstable wavenumber increases. Conversely to what is observed for
shear-thinning fluids, shear-thickening effects stabilize the base flow close to the instability
threshold but are destabilizing farther from threshold. The results presented in Fig. 5.8
are not noticeably modified whenever surface tension in neglected (We = 0) or the critical
strain rate is raised up to γ̇c = 1 s−1, which shows that the range of unstable wave numbers
is determined by the effective viscosity of the non-Newtonian bulk region and not by the
significantly lower viscosity of the Newtonian layer at the free surface or surface tension
effects.

5.5.2 Whitham wave hierarchy

Turning to the stability analysis of the low-dimensional model (5.14), (5.38), (5.48)
and (5.36) leads to the dispersion relation

nĨ(c− 1) + rk2
{

c M̃ + nL̃(2φ− 1) + M̃ [n− 2(n+ 1)φ]
}

−ikRe

{

[

c2 − c(F̃ − n+ 2(n+ 1)φ)) + nG̃(2φ− 1) + F̃ (2(n+ 1)φ− n)
]

+nĨ

(

Fr−2 +
We

Re
k2
)

(2φ− 1)

}

= 0(5.65)

where φ is a function of the relative thickness η̄c of the Newtonian layer and is defined
in (5.36). The coefficients Ĩ, F̃ , G̃, L̃, M̃ and φ are computed for the base state relative
thickness η̄c = sn.

The dispersion relation(5.65) corresponds to a wave hierarchy situation considered by
[146] and can be recast in the canonical form:

c− ck(k)− ikRe [c− cd−(k)] [c− cd+(k)] = 0 . (5.66)
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Figure 5.8: Spatial linear stability analysis based on the Orr-Sommerfeld problem (5.63).
(a) Spatial growth rate −ki versus wavenumber kr at Re = 100. (b) Marginal
stability curves in the plane (Re, k). Inclination angle is β = 15◦. Fluid prop-
erties correspond to the shear-thickening cornstarch solutions whose properties
are listed in table 5.2.
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Each dispersion relation of the form (5.66) can be split into two parts with a π/2 phase
shift, each part corresponding to a different kind of wave. The dispersion relation of the
first kind of waves is obtained by taking the limit Re → 0. In this limit, the velocity
field and thus the flow rate q are utterly slaved to the evolution of the film thickness h
and waves of the first kind are governed by the mass balance (5.14) or equivalently the
kinematic boundary condition (5.3c). These kinematic waves result from the kinematic
response of the free surface to a perturbation and propagate at speed

ck =
nĨ + rk2

{

nL̃(1− 2φ) + M̃ [2(1 + n)φ− n]
}

nĨ + rk2M
. (5.67)

In the limit k → 0 we recover ck = 1 which in dimensional units corresponds to the
velocity scale V as already noticed in § 5.3. Let us stress that the dependence of ck on
the wavenumber k arises from the viscous diffusion of the momentum in the direction of
the flow. This viscous dispersion effect was first noted in [115].

In contrast, waves of the second kind correspond to the limit Re→ ∞. These dynamic
waves are the responses of the film to the variation in momentum, hydrostatic pressure
and surface tension (for bounded Froude number and ratios We/Re) which are induced
by deformations of the free surface. They propagate at speeds

cd± =
1

2

(

F̃ − n+ 2(n+ 1)φ±
√
∆
)

, (5.68)

with ∆ = [F̃ − n+ 2(n+ 1)φ]2

+4{[n− 2(n+ 1)φ]F̃ + n(1− 2φ)G̃}+ 4n(1− 2φ)ĨF̃r
−2
, (5.69)

where the coefficients are again computed at η̄c = sn and F̃r
−2
(k2) = (cot β +Wek2)/Re.

Dispersion of dynamic waves is induced by surface tension.
Considering real wave numbers, the temporal stability condition of the base state can be
written in terms of the speeds ck and cd± of the kinematic and dynamic waves [146]:

cd− 6 ck 6 cd+ (5.70)

which is schematically illustrated in Fig. 5.9. The base state is marginally stable if cd− = ck
or cd+ = ck. In my case, only the latter condition can be achieved. The instability
threshold arises at k = 0 which reflects the long-wave nature of the instability and leads
to

Fr2 =
Re

cot β
=

nĨ

(n+ 1)(1− F̃ )− nG̃
. (5.71)

We present in Fig. 5.10 the variations of the critical Froude number with respect to the
relative thickness sn of Newtonian layer for the base flow for the shear-thinning and shear-
thickening fluids reported in table 5.1 and 5.2. The expression (5.71) is compared to the
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Figure 5.9: Sketch of the spatio-temporal diagram of primary instability.

threshold obtained by solving numerically the Orr-Sommerfeld problem. For all tested
values of sn and n a remarkable agreement is achieved. As for Newtonian film flows
this agreement is related to the consistency of the modeling approach at order ǫ [112].
We have completed Fig. 5.10 with the values of the Froude number at the instability
threshold given by the solution to the Orr-Sommerfeld problem (A.4) when the Carreau
constitutive equation (5.33) is assumed. Whenever the Newtonian layer sn is less than
0.2, the solutions to the Orr-Sommerfeld problem when the regularization of the effective
viscosity at small strain rate is given by (5.33) or (5.32) give close results.

The effect of the Ostwald-de Waele model on the stability of the uniform film Nusselt
solution can be found by comparing kinematic and dynamic wave speeds. We have plotted
in Fig. 5.11 the minimum of the fastest dynamic wave speed cd+ which is reached in the
limit F̃r

−2 → 0 corresponding to a vertical wall and a null wavenumber. The largest is
the interval between the minimum of cd+ and ck, the smallest is the threshold Fr2 of the
instability. Since the minimum of cd+ is always smaller than one, which is the dimen-
sionless value of ck for k = 0, lowering (increasing) the minimum of cd+ is destabilizing
(stabilizing). The decrease of the instability threshold observed for a shear-thinning fluid
(n < 1) in Fig. 5.10 is therefore made clear by the drop of the minimum of the fastest
dynamic wave velocity observed in Fig. 5.11. The same analysis applies conversely for a
shear-thickening fluid (n > 1). Fig. 5.11 has been completed with the fluid velocity at the
interface i.e. ui = u|y=1 for the Nusselt base flow h = 1 (5.34). Interestingly, ui stays close
to the minimum of cd+ whatever are the values of n and sn. Therefore, the variations of
the interval between cd+ and ck follow closely the variations of the interval between ck
and the velocity of the fluid at the interface (which is also the maximum velocity of the
base flow). As noted by [131], the ability of kinematic waves to move faster than any fluid
particles in the key ingredient of the instability mechanism of a falling liquid film. There
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Figure 5.10: Critical Froude number Fr2 = Re/ cot β as function of the relative thickness
sn of the Newtonian layer for the different values of the power-law index
n. The solid lines correspond to (5.71) and crosses refer to the numerical
solutions to the Orr-Sommerfeld problem (5.63).

is a direct correlation between the movement of the threshold Fr2 in Fig. 5.10 and the
variation of the velocity at the interface ui depicted in Fig. 5.11. The smaller the power-
law index n and the thinnest is the Newtonian layer, the smaller is the minimum of cd+
and thus the instability threshold Fr2 [109, 83]. The weak dependence of the maximum
velocity of the base flow ui and the speed cd+ of the fast dynamic waves on the thickness
sn of the Newtonian layer for sn lower than 0.2 makes clear the similar trend observed for
the critical Froude number.

5.5.3 Limit of a vanishing Newtonian layer

Now we turn to the simplified models (5.14), (5.55) and (5.14), (5.60) obtained in
§ 5.4 in the limit of thin Newtonian layers at the free surface (sn → 0).

For a shear-thinning fluid the dispersion relation of model (5.14), (5.55) can be recast
in the canonical form (5.66) where the kinematic wave speed now reads

ck =
n

n+ 1
+

1

1 + n+ (1− n)rk2
(5.72)

so that ck = 1 when the viscous dispersive effect vanishes (r → 0). The dynamic wave
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speed reads

cd± =
1

2
φ0

(

F ±
√
∆
)

, (5.73)

with ∆ = F 2 − 4G+
I

φ2
0F̃r

2 .

where again φ0 = φ(0) = n/(2n+ 1).
Turning to a shear-thickening fluid, the dispersion relation of the two-equation model

(5.14), (5.60) again admits the canonical form (5.66) where kinematic-wave speed is given
by

ck =
nI + φ2

0Lk
2

nI + φ0Mk2
(5.74)

and dynamic-wave speeds remain given by (5.73). For both models (5.14), (5.55) and
(5.14), (5.60), the marginal stability condition ck = cd+ leads to the correct expression
(5.20) of the instability threshold.

We compare in Figs. 5.12 and 5.13 the marginal stability curves obtained with the
two-equation models (5.14), (5.55) and (5.14), (5.60) with the reference results from the
Orr-Sommerfeld stability analysis. A good agreement is obtained for each shear-thinning
and shear-thickening fluid properties listed in tables 5.1 and 5.2. More precisely, the
instability threshold is very well captured for each tested set of parameters although we
assume a negligible thickness of the Newtonian layer at the free surface (sn → 0). The
very weak dependence of the instability threshold on the thickness sn of the Newtonian
layer for sn lower than 0.2 observed in Fig. 5.10 does explain this remarkable agreement.
Note that a better agreement is observed the models and the Orr-Sommerfeld analysis is
achieved in the case of shear-thinning fluids than for shear-thickening fluids. Considering
that the hypothesis sn ≪ 1 is far better achieved in the latter case than in the former
ones, this observed discrepancy must be related to the long-wave assumption sustaining
the derivation of the models. Since the cut-off wave numbers are smaller in the shear-
thinning case, which reflects the stabilizing contribution of streamwise viscous diffusion at
the free surface layer, the long-wave assumption is more easily verified in that case which
explains the observed better agreement with the Orr-Sommerfeld analysis. As for the
Orr-Sommerfeld analysis, we note that the spatial stability analysis of the shear-thinning
model (5.14), (5.55) is strongly dependent on the viscosity contrast r between the wall
and the free surface. Indeed setting r to zero provides much larger values of the cut-off
wavenumber and spatial growth rate as illustrated in Fig. 5.14. Conversely, we have not
noticed significant differences for the stability of a uniform film of shear-thickening fluid
based on the weighted-residual approach when the Newtonian layer viscosity is taken into
account or not (r = 0). We can now make use of the two-wave hierarchy framework to
interpret the displacement with respect to n of the marginal stability curves presented
in Figs. (5.6), (5.8), (5.12) and (5.13) in terms of the variations of the kinematic and
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Figure 5.12: (a) Cut-off wavenumber kc versus Reynolds number Re. (b) Phase speed
c at marginal conditions versus Re. Inclination angle is β = 15◦. Labels
refer to the shear-thinning xanthan gum solutions whose properties are listed
in table 5.1. Solid and dashed lines stand for the solutions to the Orr-
Sommerfeld problem (5.63) and to the dispersion relation of (5.14), (5.55)
respectively.
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Figure 5.13: (a) Cut-off wavenumber kc versus Reynolds number Re. (b) Phase speed
c at marginal conditions versus Re. Inclination angle is β = 15◦. Labels
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respectively.



CHAPTER 5. GENERALIZED NEWTONIAN FLUID 116

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6

12

3

1

2

3

−
k
i

kr

Figure 5.14: Spatial growth rate −ki versus wavenumber kr. Inclination angle is β =
15◦. Labels refer to the shear-thinning fluids whose properties are listed in
table 5.1. Solid and dashed lines correspond to the solutions to the Orr-
Sommerfeld problem (5.63) and to the dispersion relation of (5.14), (5.55).
Dashed-dotted lines stand for the solution to (5.14), (5.55) when viscous
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dynamic wave speeds. In the shear-thinning case, the movement with respect to n of
the curves ck(rk2) and cd+(F̃r

2
) governed by equations (5.72) and (5.73) are illustrated in

Fig. 5.15. Lowering the power-law index enhances the stabilizing decrease of the kinematic
wave speed by the streamwise viscous diffusion as observed in panel a. Since the speed
of kinematic waves is not affected at low values of k, this effect becomes significant only
when k is large that is far from the instability threshold. The reduction of dynamic wave
speed cd+ conversely contributes to maintain the gap between speeds of dynamic and
kinematic waves. The downward movement of the curve cd+(F̃r

2
) is thus accompanied

by a shift to the left of the crossing with the horizontal axis cd+ = 1 signaling a decrease
of the instability threshold Fr2c = Rec/ cot β in agreement with Fig. 5.10. Conversely, for

shear-thickening fluids, the movement of the curves ck(k2) and cd+(F̃r
2
) as depicted in

Fig. 5.16 indicate that increasing n is destabilizing by augmenting the speed of kinematic
waves but also stabilizing by raising simultaneously the speed if dynamic waves. The
crossing of the curves cd+(F̃r

2
) with cd+ = 1 being displaced to the right in Fig. 5.16(b),

the instability is triggered at larger values of the critical Froude number Fr2c again in
agreement with what is observed in Fig. 5.10. The destabilizing increase of the speed
of kinematic waves becomes significant only at large wavenumber whereas the stabilizing
decrease of the dynamic wave speed occurs even at k = 0 which explains the stabilization
of the base flow close to threshold and its destabilization further from threshold by shear-
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Figure 5.15: (a) kinematic wave speed ck as function of rk2 and (b) dynamic wave speed

cd+ as function of F̃r
2

for shear-thinning fluids (n = 0.607, n = 0.4 and
n = 0.34).

thickening effects.

5.6 Traveling waves

5.6.1 Fixed points

In this section we consider the nonlinear solutions to the simplified models (5.14),
(5.55) and (5.14), (5.60) such as traveling waves propagating at constant speed c. In the
a frame of reference moving with the speed of the waves, ξ = x− ct, the flow is stationary
and partial differential equations are converted into ordinary differential equations which
we solved by continuation using Auto07p software [40]. The mass balance (5.14) being
integrated once gives

q − ch ≡ q0 , (5.75)

where q0 is the rate at which the fluid flows under the waves. Denoting by primes the
differentiations with respect to the moving coordinate ξ ,the averaged momentum balances
(5.48), (5.55) and (5.60) can then be recast into the form h′′′ = f(h, h′, h′′) , where f is a
function of the thickness h, its first and second derivatives and the parameters Re, We,
cot β, n and c. We thus end up with a dynamical system of dimension three in the phase
space spanned by h, h′ and h′′. Fixed points of this dynamical system satisfy h′ = h′′ = 0
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Figure 5.16: (a) kinematic wave speed ck as function of k2 and (b) dynamic wave speed
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for shear-thickening fluids (n = 1.3, n = 1.55 and
n = 2.4).

and
n

2n+ 1
h

2n+1

n − ch = q0 . (5.76)

where we made use of φ0 = n/(2n+1). The constant q0 may be determined by demanding
h = 1 to be solution to (5.76) which gives:

q0 =
n

2n+ 1
− c . (5.77)

In addition to the imposed solution h = 1, there is one more real positive solution to (5.76)
with (5.77) and two fixed points UI = (1, 0, 0)t and UII = (hII, 0, 0)

t are found. Their
positions are displayed in Fig. 5.17(a) as functions of the wave speed c and power index
n. As expected, the two fixed points coincide at c = 1 where the traveling-wave speed
equals the speed of the kinematic waves in the zero-wavenumber limit. In the limit n = 1,
we recover the expression hII = −1/2 +

√

3(c− 1/4) corresponding to an inclined plane
[103]. The position hII of the second fixed point can be compared to the corresponding
solution to (5.14), (5.37) and (5.48). For h′ = h′′ = h′′′ = ū′ = ū′′ = 0, (5.37) simplifies
into η̄c = sn/h if sn/h < 1, η̄c = 1 otherwise. We thus obtain

φ(sn/h)h
2n+1

n − ch = q0 if sn/h < 1 ,

r
h3

3
− ch = q0 otherwise (5.78)
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to the Newtonian case n = 1. Dashed lines correspond to n = 0.34, 0.4,
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where q0 is determined by demanding that h = 1 is solution. The solutions to (5.78) for
c = 0.5 are displayed in Fig. 5.17(b). The location hII of the second fixed point varies
weakly for sn < 0.3. A similar trend is found for other values of the the phase speed c.
This observation again supports the idea that the assumption of a negligible Newtonian
layer (sn → 0), necessary to derive (5.55) and (5.60), can be extended up to sn ≈ 0.3.

5.6.2 Bifurcation diagrams

As an alternative to the request that h = 1 is solution, the flow rate q0 in the moving
frame can be adjusted by demanding that the average thickness 〈h〉 = λ−1

∫ λ

0
h dξ or

the average flow rate 〈q〉 remain constant. Here λ = 2π/k refers to the wavelength.
The constraint 〈h〉 = 1 is related to time-dependent computations with spatial periodic
conditions for which the mass of simulated liquid in the computational domain remains
constant as time is passing by. The fluid leaving the numerical domain being re-injected
at inlet, the flow is closed and the constraint 〈h〉 = 1 is referred to as the closed-flow
condition. Conversely, the constraint 〈q〉 = φ0, corresponds to the experimental response
to a time periodic forcing at inlet. Indeed, integration in time of the mass balance (5.14)
gives ∂x〈q〉 = 0 such that the time average flow rate remains equal to its value at inlet.
The constraint 〈q〉 = φ0 will be referred to as the open-flow condition [122].
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Considering first shear-thinning fluids, we have reported in Fig. 5.18 the bifurcation
diagrams in the plane wavenumber versus speed of the traveling wave branches of solutions
to (5.14), (5.55) for the fluid properties of the three xanthan gum aqueous solutions
reported in table 5.1, a moderate inclination angle β = 15◦ and Re = 20. The closed-flow
integral constraint 〈h〉 = 1 has been enforced.

For the most dilute solution (panel a), a first branch of slow-wave solutions arises from
the marginal stability condition k = kc through a Hopf bifurcation. Several secondary
branches are found through period doubling of this first branch. One bifurcates at k ≈
0.55kc and terminates into fast waves. Following [20], we denote by γ1 the principal branch
of slow waves and by γ2 the secondary branch of fast waves. The other secondary waves
bifurcating from the principal γ1 branch are slow.

Traveling waves correspond to limit cycles in the phase space that terminate into
homoclinic trajectories connecting hI to itself as their lengths are augmented. These tra-
jectories correspond to small-wavenumber solitary-like wavetrains. Fig. 5.19 presents the
shapes of slow γ1 and fast γ2 waves at low wave numbers. The γ1 waves are made of a
trough followed by capillary ripples (panel a) whereas γ2 are one-humped waves preceded
by capillary ripples (panel b). The wrinkling of the solution branches in the k-versus-c
diagram in Fig. 5.18(a) and the onset of numerous secondary branches are consequences
of the interaction between the typical length of the capillary ripples preceding or follow-
ing the waves and the wavelength. For the more condensed xanthan gum solutions in
water (parameter sets 2 and 3), we observed a much simpler bifurcation diagram (see
Fig. 5.18(b)). A unique branch of traveling-wave solutions bifurcate from the Nusselt
solutions through a Hopf bifurcation. Secondary bifurcations through period doubling
were not found. The shapes of γ2 solitary-like waves are displayed in Fig. 5.20. The
number and amplitude of the capillary ripples preceding the main hump of the waves
are considerably reduced because of the efficient damping of short waves by viscosity.
This efficient damping of capillary waves is responsible for the drastic simplification of
the bifurcation diagram in Fig. 5.18(b) when compared with Fig. 5.18(a). For each
bifurcation diagram displayed in Fig. 5.18, traveling-wave solutions are found at k larger
than the cut-off wavenumber kc which corresponds to a stable Nusselt uniform film flow.
Traveling waves therefore bifurcate subcriticaly from the Nusselt solution. The range of
subcritical wave numbers [ksub, kc] for which traveling waves coexist with a stable Nusselt
solution tend to increase as the power-law index n is lowered. The onset of subcriticality
is here related to the large viscosity ratio r between the wall and the free surface. Linear
waves are efficiently damped by the free surface viscosity and the cut-off wavenumber is
determined by this effect (see Fig. 5.14 and its discussion in § 5.5.3). Finite-amplitude
disturbances may survive to viscous damping by removing the Newtonian layer and thus
significantly lower the viscosity at the free surface.

Turning to shear-thickening fluids (n > 1), Fig. 5.21 presents the bifurcation diagrams
obtained with model (5.14), (5.60) for the cornstarch solutions whose properties are listed
in table 5.2. The closed-flow constraint 〈h〉 = 1 is again enforced. For each set of fluid
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Figure 5.18: Speed c of traveling-wave solutions as a function of the wavenumber k/kc
normalized by the cut-off wavenumber kc. Hopf bifurcation at k equal to
the cut-off wavenumber kc is indicated by squares. Filled squares refer to
period-doubling bifurcations. Dotted (dashed-dotted) lines refer to the locus
of solutions made of two or four γ1 waves. Re = 20, β = 15◦. (a) 500 ppm
shear-thinning xanthan solution in water (set 1 in table 5.1); (b) solid and
dashed lines refer to 1500 ppm and to 2500 ppm xanthan solutions: set 2
and 3 in table 5.1.
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properties, the Kapitza number Γ is small and capillary waves are effectively damped by
viscous effects so that (i) no capillary ripples are observable at the front of the nearly
solitary waves at small wavenumber and (ii) no secondary branches have been found to
emerge from the principal one through period-doubling bifurcations. Contrary to shear-
thinning fluids, traveling wave solutions are found only when the Nusselt base flow solution
is unstable and the Hopf bifurcation corresponds to a supercritical situation.

5.6.3 Comparisons to direct numerical simulations

Direct numerical simulations (DNSs) of the primitive set of equations (5.7) have been
performed implementing periodic boundary conditions. Initial conditions correspond to
the Nusselt flat-film solution to which a small disturbance has been added. At the final
stage of the computation, nonlinear saturated traveling waves are observed that can be
compared with the traveling-wave solutions to the models (5.14), (5.55) and (5.14), (5.60)
with the closed-flow condition 〈h〉 = 1.

Gerris software developed by [99, 100] enables to implement the Ostwald-de Waele
power-law with a Newtonian plateau (5.31) and has been used extensively for this purpose
1. Gerris uses a multilevel Poisson solver, an approximate projection method and a second-
order accurate upwind scheme to discretized advection terms. Variable spatial resolution
is enabled by a quadtree adaptive refinement method. Interfacial flow phenomena are
captured by means of a generalized Volume of Fluid scheme which allows mesh refinement
along the interface. Gerris software and the numerical procedure that we have followed
are detailed in § 5.7

Refinement of the mesh to the deepest available level is imposed at the free surface in
order to accurately capture the instability of the film. A typical mesh grid is presented
in Fig. 5.22. Gerris automatically adapts the mesh in order to capture velocity variations
as is observable at the liquid-solid interface. Considering first shear-thickening cornstarch
solutions (cf. table 5.2), the free surface elevations corresponding to the final time of
my DNSs are displayed in Fig. 5.23. A striking agreement is obtained with the results
to the weighted-residual model (5.14), (5.60). The amplitude and speed of the waves
are also faithfully captured (see table 5.3). However, for the largest tested numerical
domains, either my DNSs do not lead to permanent waves or wave breaking phenomena
are observed.

Fig. 5.23(c) shows the wave profile corresponding to the final stage of my simulation
for the most concentrated cornstarch solution (set 6). Although a large amplitude front
propagates with a nearly constant speed and shape, small disturbances are continuously
generated and superposed to it. Whether these disturbances are physically relevant or
result from the numerical scheme and the VOF method is a difficult question considering
the large viscosity ratio at the gas-liquid interface. The weighted-residual model (5.14),

1Gerris is a GPL licensed program that freely downloadable from http://gfs.sourceforge.net
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Figure 5.21: Speed c of traveling-wave solutions as a function of the wavenumber k. Solid
line refers to model (5.14), (5.60), crosses and square refers the phase speed
of the wave before and after breaking respectively of DNS result from Gerris
software. Re = 30, β = 15◦. The fluid properties of the shear-thickening
cornstarch solutions are given in table 5.2. Labels a, b, c and d refer to the
wave profiles displayed in Fig. 5.23.
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Figure 5.22: detail of the mesh grid at the end of one Gerris run showing the dynamic
refinement at the interface. The number of cells in the total grid is 15971.
Re = 100, β = 15◦, λ = 80, fluid properties correspond to shear-thinning
1500 ppm xanthan gum solution (Set 2 in table 5.1). The entire wave profile
is displayed in Fig. 5.24(d)

(5.60) does not capture well the amplitude of the nearly permanent traveling-wave. Yet,
the speed of the traveling-wave solutions to the model are in remarkable agreement with
the nearly constant speed of the front in the DNSs as can be observed in Fig. 5.21(c).

For the less concentrated cornstarch solutions (sets 4 and 5), wave breaking have been
observed for the largest tested domains. A snapshot of the free surface elevation just
before the wave breaks is presented in Fig. 5.23(d) and compared with the traveling wave
solution to the weighted-residual model with the same periodicity. If the wave breaking
phenomenon cannot be reproduced by the model, it is however clear that the wave shape
and amplitude predicted by the model are in excellent agreement with the DNSs. The
speeds of the fronts, computed immediately before the breaking of the waves take place,
are indicated by filled squares in Figs. 5.21(a) and 5.21(b). Curiously, the onset of the
wave breaking phenomenon is accompanied by a reduction of the wave speed, a trend
that is reproduced by the traveling wave solutions to the weighted-residual model as the
wavenumber k is lowered. Turning to shear-thinning xanthan gum solutions in water
(cf. table 5.1) the profiles of the traveling waves obtained at the end of the DNSs are
presented in Fig. 5.24. The waves systematically present capillary ripples preceding the
main hump in spite of the very large ratio r of the free surface to wall effective viscosities.
Their shapes are similar to the solitary waves observed experimentally for Newtonian
fluids [70, 25]. If the amplitude of the waves are comparable for the three tested sets of
fluid properties, the phase speed tends to be larger for the most concentrated xanthan
solution (set 3) corresponding to the lowest value of the power-law index (n = 0.34). This
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Figure 5.23: Traveling wave profiles for the shear-thickening fluids (n > 1) whose prop-
erties are listed in table 5.2. Solid lines refer to the DNS results from Gerris
software, whereas dashed lines refer to the solutions to model (5.14), (5.60).

Fluid Re λ c hm
Gerris model Gerris model

Set 4 30 40 0.98 0.92 1.68 1.65
Set 5 30 45 1.01 1.00 1.65 1.65

Table 5.3: Phase speed c and maximum height hm of traveling wave solutions with 〈h〉 =
1. Fluid properties correspond to a shear-thickening cornstarch dispersion in
ethylene glycol and to a 15◦ inclination angle (Table 5.2).
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Fluid Re λ c hm
DNS DNS(CL) model DNS DNS(CL) model

Set 1 50 60 0.86 0.86 0.88 1.65 1.65 1.60
– 100 80 0.81 0.82 0.87 2.19 2.19 1.94
Set 2 50 60 0.92 0.92 1.03 2.07 2.07 1.96
– 100 80 0.76 0.76 0.96 2.20 2.20 2.22
Set 3 50 60 0.93 0.92 1.14 2.02 2.01 2.09
– 100 80 0.75 0.75 1.05 2.07 2.06 2.28

Table 5.4: Phase speed c and maximum height hm of traveling wave solutions with 〈h〉 = 1.
Fluid properties correspond to shear-thinning dilute solutions of xanthan gum
and to a 15◦ inclination angle (see table 5.1). ‘DNS’ and ‘DNS(CL)’ refer to the
results from Gerris using the Newtonian-plateau constitutive equations (5.32)
and (5.33) respectively.

can be understood from the relative positions of the fixed points displayed in Fig. 5.17(a).
For hII > hI, which corresponds to the positive humps of the γ2 waves, we note that
an augmentation of the phase speed c is necessary to conserve a given distance hII − hI
between the fixed points when the power-law index n is lowered. The amplitude of the
waves being related to the distance hII − hI, large amplitude γ2 waves travel faster as n
decreases.

Shapes, speeds and amplitudes are compared with the predictions of the weighted
residual model (5.14), (5.55) in Fig. 5.24 and table 5.4. Good agreement is obtained for
the shape and amplitude. However, the model tends to overestimate the speed of the
waves. A drawback that is more pronounced for concentrated xanthan gum solution for
which the power-law index is already rather low (n = 0.34). We note that the nonlinear
dependence of the effective viscosity (5.57) on the gradients of q and h is necessary to
reproduce the capillary waves observed in the DNSs. Solutions to the two-equation model
(5.14), (5.50) with a constant effective free surface viscosity r do no present capillary
ripples.

Fig. 5.25 presents the distribution of the strain rate under the solitary-like waves
whose profiles are shown in Figs. 5.24(a) and 5.24(c). We limit ourself to consider the
capillary region at the front of the main hump where the free surface is the steepest.
Parameters correspond to the same Reynolds number, inclination and wavelength but
different xanthan-gum solutions. The more dilute one, set 1 in table 5.1 with n = 0.607 is
less shear-thinning that the other one, set 2 with n = 0.4. From the results of the DNSs,
the local maxima of the strain rate are located either at the wall or at the free surface.

Global maxima of the strain rate, maxima along the wall and along the free surface are
compared in table 5.5. For the most dilute xanthan gum solution (set 1 with n = 0.607),
the shear rate is maximum at the wall at a location that is close to the maximum elevation
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Figure 5.24: Travelling wave profiles for shear-thinning xanthan gum solutions in water
(see table 5.1). Solid lines refer to the DNS results from Gerris software,
whereas dashed lines refer to the solutions to model (5.14), (5.55).



CHAPTER 5. GENERALIZED NEWTONIAN FLUID 129

Set 1 (n = 0.607) Set 2 (n = 0.4)
γ̇max max(γ̇y=0) max(γ̇y=h) Γ⋆ γ̇max max(γ̇y=0) max(γ̇y=h) Γ⋆

Gerris 1.6 1.6 0.8 470 4.5 1.8 4.5 380
Model 1.2 1.2 0.6 2.0 2.0 1.6

Table 5.5: Maxima of the strain rate γ̇, global, at the wall and at the free surface corre-
sponding to Fig. 5.25. ‘Gerris’ refers to the final stage of DNSs performed with
Gerris software, whereas ‘Model’ stands for the traveling solutions to (5.14),
(5.55). β = 15◦, Re = 50 and λ = 60. Γ⋆ is the Kapitza number corresponding
to the viscosity minimum at the free surface, i.e. Γ⋆ = Γ0(s/max(γ̇y=h))

4(n−1)/3.

of the free surface as suggested by the leading order term of the gradient expansion
γ̇ = |∂yus|+ O(ǫ) whose maximum |q/(φ0h

2)| = h1/n + O(ǫ) is reached at the wall under
the crest of the wave. Instead, for the less dilute solution (set 2 with n = 0.4), the global
maximum of the strain rate is reached at the free surface at a point where the gradient
of the thickness is the largest, which suggests that the long-wave approximation is not
well verified at the front of the wave. Indeed, the front of the wave quite steep and the
assumption ∂xh ≪ 1 does not hold there. In that region, viscous diffusion and surface
tension effects can be compared by computing the Kapitza number based on the minimum
of viscosity at the free surface, i.e. Γ⋆ = Γ0(s/max(γ̇y=h))

4(n−1)/3. In each case, Γ⋆ is found
to be large which implies that the breaking of the wave is arrested by surface tension and
shows that the observed ripples have indeed a capillary origin.

Fig. 5.25 and table 5.5 have been completed with the corresponding results from the
weighted-residual model (5.14), (5.55). The strain rate distribution has been computed
from the self-similar velocity profile (5.21). In both cases, the model slightly underesti-
mates the amplitude of the capillary ripples and predicts smaller values of the maxima of
the strain rate. However, the locations of the local minima and maxima predicted with
the model are in remarkable agreement with the strain rate distributions found by DNS.
For the 500 ppm solution (set 1, n = 0.607), a convincing agreement is obtained, whereas
for the more concentrated 1500 ppm solution (set 2, n = 0.4) the model fails to locate at
the free surface the maximum of the strain rate. We note that in the latter situation the
long-wave approximation starts to be violated.

5.7 DNS with Gerris

In this section, we give detail on the numerical procedure we have followed to produce
DNSs. These details have been found in Gerris documentation. Interested reader can
find further information in [99] and [100]. To solve the powerlaw problem numerically,
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(a) DNS (b) model (5.14), (5.55)

(c) DNS (d) model (5.14), (5.55)

Figure 5.25: Distribution of the strain rate γ̇ under the waves whose profiles are shown
in Figs. 5.24(a) and 5.24(c). Left: results from DNS. Dark blue (red) regions
correspond to the minimum (maximum) of γ̇. Right: isocontours of the
strain rate corresponding to the weighted-residual model (5.14), (5.55). The
location of the maxima of γ̇ at the wall and at the free surface are depicted
by squares.
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the computer code Gerris, free software under the GNU General Public License 1.2, uses a
type ‘finite volumes’ to solve a system of Navier-Stokes or Euler for incompressible fluids,
with an adaptive mesh of the computational domain, and an approach such as ‘Volume of
Fluid’ to represent the interface between two fluids. In computational fluid dynamics, the
volume of fluid method (VOF method) is a numerical technique for tracking and locating
the free surface (or fluid-fluid interface). It belongs to the class of Eulerian methods which
are characterized by a mesh that is either stationary or is moving in a certain prescribed
manner to accommodate the evolving shape of the interface. As such, VOF is an advection
scheme, a numerical recipe that allows the programmer to track the shape and position
of the interface, but it is not a standalone flow solving algorithm. The Navier-Stokes
equations describing the motion of the flow have to be solved separately. The Volume
of Fluid method is based on earlier Marker-and-Cell (MAC) methods. First accounts of
what is now known as VOF have been given by Noh and Woodward [87], where fraction
function C (see in § 5.7.1) appeared, although first publication was by Hirt and Nichols
[49]. Since, VOF method surpassed MAC by lowering computer storage requirements,
it quickly became popular. First implementations of VOF suffered from imperfect inter-
face description, which was later remedied by introducing a Piecewise-Linear Interface
Calculation (PLIC) scheme. Using VOF with PLIC is a contemporary standard, used in
number of computer codes e.g. Gerris Flow Solver (http://gfs.sourceforge.net), including
commercial ones as ANSYS Fluent.

5.7.1 Method of monitoring interface

The numerical method can be stored in the class of methods for monitoring of interfaces
called Eulerian, i.e., using a fixed mesh on which the interface moves freely(see Fig. 5.26).
In fact, a cell calculation can be crossed by the interface and consequently occupied the
two fluids. The characterization of interfaces leads to a breakdown of eulerian methods,
Gerris ranks in the methods known as tracking volume, and more particularly, ‘Volume
of Fluid’ (VOF) methods. In this type of method, one of the two fluids is marked with a
volume fraction C a calculation cell:

∂C

∂t
+∇ · (Cv) = 0 (5.79)

where v is the velocity of the fluid (see Fig. 5.26, 2D representation). The method is
based on the idea of so-called fraction function C. It is defined as the integral of fluid’s
characteristic function in the control volume (namely, volume of a computational grid
cell). Basically, when the cell is empty, with no traced fluid inside, the value of C is zero;
when the cell is full, C = 1; and when the interface cuts the cell, then 0 < C < 1. C is a
continuous function, its value jumps from 0 to 1 when the argument moves into interior
of traced phase. Gerris belongs to a sub-classification of these methods VOF, those that
provide a reconstruction interface, i.e., a location of this interface, mesh by mesh, to from
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Figure 5.26: Example of an interface on a fixed mesh. The white region shows the
interface separating two fluids like liquid(fluid 1, represents the dark region)
and gas(fluid 2, represents the gray region). The cell contains liquid, then
volume fraction C = 1, otherwise C = 0 and the interface included the cells,
there 0 < C < 1.
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the value of C and the vector normal to the interface ∇C while ensuring the conservation
the mass of each fluid. It is noted that these methods require VOF, in order to prevents
oscillations related to sudden change from C to cross the interface (eddy currents). In
the case of incompressible fluid flow and Newtonian (viscous or not), the system under
consideration is a closed system of three equations (one equation for conservation of mass
and two equations of conservation of momentum) with three unknowns (u(x, y, t), v(x, y, t)
and p(x, y, t)) for a two-dimensional problem. The interface tracking method involves
C(x, t). The change in C is directly related to the displacement of the interface. The
numerical solution of equations of the model of the Navier-Stokes implies a discretization
in time and space. Gerris used ‘Finite Volume’ method for this type of calculation. Here,
second order of the time discretization scheme is used. As an example, for such a scheme,
the approximate value of the time derivative a variable φ can be written, to from a Taylor
expansion to first order:

φ(x, t+∆t) = φ(x, t) + ∆t
∂φ

∂t
+

1

2
∆t2

∂2φ

∂t2
+O(∆t3)

φ(x, t−∆t) = φ(x, t)−∆t
∂φ

∂t
+

1

2
∆t2

∂2φ

∂t2
+O(∆t3)

From difference of the two equations, one can obtain:

∂φ

∂t
=
φ(x, t+∆t)− φ(x, t−∆t)

2∆t
+O(∆t2)

Numerically, an iteration ∆t characterizes time tn to time tn+1. Hence, it can be written
as ∆t = tn+1 − tn and

(

∂φ
∂t

)n
= φn+1−φn−1

2∆t
.

Gerris uses a condition of dynamic stability, denoted CFL(Courant-Friedrich-Levy) to
adjust the time step in the velocity of the fluid, given that ∆x is set at the beginning of
resolution. This condition comes from the stability study of advection equation: CFL =|
c | ∆t

∆x
. By imposing CFL 6 1

2
, it limits the time step as follows:

| c | ∆t

∆x
6

1

2
⇔ ∆t 6

∆x

2 | c |

For example, if min | c |> 1 where c is the speed of the physical phenomenon (thus
max 1

|c|
6 1), then ∆t 6 ∆x

2
. As for time, Gerris uses a discretization scheme for space of

order 2, i.e.,
∂φ

∂x
=
φ(x+∆x, t)− φ(x−∆x, t)

2∆x
+O(∆x2)

Numerically, ∆x characterizes an iteration space of the abscissa xj to xj+1. Hence, it can
be written as ∆x = xj+1 − xj and

(

∂φ
∂x

)

j
=

φj+1−φj−1

2∆x
.

In the same way, an approximate value of the second derivative of φ obtained with a
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Taylor expansion to second order:

φ(x+∆x, t) = φ(x, t) + ∆x
∂φ

∂x
+

(∆x)2

2

∂2φ

∂x2
+

(∆x)3

8

∂3φ

∂x3
+O((∆x)4)

φ(x−∆x, t) = φ(x, t)−∆x
∂φ

∂x
+

(∆x)2

2

∂2φ

∂x2
− (∆x)3

8

∂3φ

∂x3
+O((∆x)4)

Summing these above two equations, one obtains:

∂2φ

∂x2
=
φ(x+∆x, t)− 2φ(x, t) + φ(x−∆x, t)

(∆x)2
+O((∆x)2)

which gives:
(

∂2φ
∂x2

)

j
=

φj+1−2φj+φj−1

(∆x)2
.

Now, it is important to present the steps of calculating the velocity and pressure. In solv-
ing the Navier-Stokes system, there is no explicit equation for calculating the pressure.
The difficulty lies in determining the pressure, while respecting the incompressibility con-
dition expressed by the equation of conservation of mass.
The conservation equation of motion in vector form is:

∂tv + v · ∇v = −1

ρ
∇p+ ν∆2v + g

Consider a finite difference scheme of order 1 and then it comes:

vn+1 − vn

∆t
+

1

ρ
(∇p)n = −(v · ∇v)n + ν(∆2v)n + g

One has to solve in a first approximation v∗ such that:

v∗ − vn

∆t
= −(v · ∇v)n + ν(∆2v)n + g (5.80)

with
vn+1

∆t
+

1

ρ
(∇p)n =

v∗

∆t
(5.81)

By adopting at t = 0, an initial velocity profile v0 as ∇ · v0 = 0, one can calculate v∗ for
all t. But, it is necessary to calculate the pressure before vn+1 can be found. Knowing
that ∇ · vn+1 = 0, equation 5.81 can be written as:

1

ρ
(∇2p)n =

∇ · v∗

∆t

This equation is a Poisson equation which provides the pressure, in accordance with the
normal component of boundary conditions. By solving this equation, one can solve the
equation (5.81) while respecting the kinematic condition. The computational domain is
discretized into a finite number of cells (or control volumes), associated with each point
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Node of the grid pressure
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Figure 5.27: Schematic diagram of staggered grid.
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of the mesh. The equations are integrated on each of the volumes control, focusing on the
points of the mesh. The velocity components are calculated on the side mesh, while the
scalar (pressure, volume fraction) are the nodes of the mesh. For this, the computational
domain is discretized on two types of grids, one for pressure, the other for the velocity
components (see Fig. 5.27). The two types of grids are shifted. Scalar variables (pressure,
volume fraction) are calculated on the main grid, called grid pressure. From this grid, a
grid is constructed to shifted in each direction in space for the grid velocity. The structure
of the staggered mesh facilitates the calculation of the pressure gradient and divergence
of velocity. This avoids some pressure oscillations observed for non-staggered grids. In
Gerris, it is possible to impose a condition of Dirichlet or Neuman at the edges of the
computational domain. Inserting a solid (regardless of its geometry) within the area by
default Gerris imposes a Dirichlet condition.

5.7.2 Adaptive mesh refinement

In Gerris, the strategy of meshing is to divide the computational domain into a
number of meshes defined at the initialization step, on the basis of the finite volume
method. However, this subdivision is not homogeneous, Fig. 5.28 gives an example in two
space dimensions, this type of division called ‘quadtree division’ where the original domain
is divided into four sub-areas, subdomain in the lower left is itself divided into four sub-
domain and so on. The user has the option initially to refine the area differently according
to the regions of interest. Gerris simulation is not yet well resolved therefore it could be
always change the GfsRefine6 line to something bigger but it would not make really
good use of the quadtree approach implemented in Gerris (see Appendix A.5). A code
using a simple regular Cartesian grid approach would be faster and would produce the
same results. Instead one can use dynamic adaptive mesh refinement, where the quadtree
structure of the discretization is used to adaptively follow the small structures of the flow,
thus concentrating the computational effort on the area where it is most needed.

The simplest possible way to refine the initial root cell is to use the syntax Refine 6.
This means to tell the program that we want to keep refining the cell tree (by dividing
each cell in four children cells (in 2D, eight in 3D)) until the level of the cell is equal to
five. The level of the root cell is zero, the level of all its children cells is one and so on
recursively. After this refinement process completes a regular Cartesian grid is created
with 26 = 64 cells in each dimension on the finest level (6).

This is done using yet another object class: Adapt. Various criteria can be used to
determine where refinement is needed. In practice, each criterion will be defined through
a different object derived from Adapt. If several Adapt objects are specified in the same
simulation file, refinement will occur whenever at least one of the criteria is verified. For
example, a simple criterion is used which is based on the local value of the vorticity. A
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Figure 5.28: Type of adaptive mesh ‘quadtree’.

cell will be refined whenever

|∇ × v|∆x
max|v| > s ,

where ∆x is the size of the cell and s is a user-defined threshold which can be interpreted
as the maximum angular deviation (caused by the local vorticity) of a particle traveling
at speed max|v| across the cell. This criterion is implemented by the AdaptVorticity

object. The syntax for an AdaptVorticity which is defined as the norm of the local
vorticity vector multiplied by the cell size and divided by the maximum of the velocity
norm over the whole domain, is written in the simulation file as

AdaptVorticity { istep = 1 } { maxlevel = LEVEL cmax = 1 }

This means we want to refine dynamically the mesh through the AdaptVorticity object
applied every time step {istep=1} . The threshold s (cmax :The maximum cell cost
allowed. If the number of cells is smaller than the maximum allowed and the cost of a cell
is larger than this value, the cell will be refined) is set to 1 and maxlevel (The maximum
number of refinement levels) which is set to 11 in the given simulation program in A.5.

This method is more adaptive dynamically, indeed, the tool can adapt the mesh during
the execution of code, when a condition defined by the user is satisfied. In this strategy
of cutting, we are discussing about ‘deep level’ mesh, which is the finest cut of the com-
putational domain. For a level m for example, the computational domain is divided into
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2m × 2m theoretically cells, 2m intervals and 2m +1 abscissa. A computational domain of
length L, we get ∆x = L

2m
and any abscissa can be written xi = i∆x.

It is noted that a computational domain of length L in Gerris is a square whose
abscissa and ordinates are in the range

[

−L
2
,+L

2

]

. The mesh used the term adaptive,
optimizes the computation time by reducing the number of cells. Take an example of
gravity flow, the discretization of the part of the domain does not contain the fluid can be
neglected. In three-dimensional space, the computational domain is divided theoretically
into 2m×2m×2m cells. The meshing strategy is similar to the case of two space dimensions
and subdivision of a cell increases from 4 in 2D to 8 in 3D. The refinement rules are the
same.

5.7.3 Description of simulations

The code implements the case of a periodic flow in a bounded square computational
domain (L = 60, 80):

• the free surface height h initially set to 1,

• this interface is assessed a sinusoidal perturbation of small amplitude and wavelength
λ equal to the length L of the field, resulting in deformation of a periodic wave,

• the amount of liquid leaving the computational domain is fed back as input to it.

This has the effect of imposing a condition suitable for a periodic flow, which is that any
variable X of the flow satisfies: X |x=−L

2

= X |x=L
2

∀t. This condition indicates that:
〈h〉x = 1 ∀t. Indeed, define the average in space (on the x-axis) of any variable X as:

〈X〉x =
1

L

∫ L
2

−L
2

Xdx

Applied to the kinematic equation of the height (5.14), one obtains

1

L

∫ L
2

−L
2

∂thdx+
1

L

(

q |−L
2

−q |L
2

)

= 0.

However, in a periodic flow, we have: X |x=−L
2

= X |x=L
2

∀t. Therefore, it becomes:

1

L

∫ L
2

−L
2

∂thdx = 0, ∀t ⇔ ∂t〈h〉x = 0, ∀t

Hence, one can conclude that the average height of the film is constant ∀t, thus equal
to its original height at t = 0, whether 〈h〉x = 1 This condition is a necessary condition
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in the case of a periodic flow, so in the numerical solution of the gravity flow and the
fulfillment of this condition will be monitored in order to evaluate the accuracy of the
simulations.

An input file of Gerris consists of three parts (see Appendix A.5 for an example of
Gerris program solving a gravity flow):

• the body of the program that matches the resolution of the system, GfsSimulation
solves the Navier-Stokes and Poisson equation for the calculation of the pressure,

• boxes that correspond to the area of the domain: GfsBox to define the boundary
conditions at the edge,

• edges that define the link between the boxes, GfsGEdge, which allows, in particular,
to connect the output of the last box with the entrance of the first (regular flow).

These blocks can be preceded by the definition of constants, variables or global functions
called ‘macros’ to be interpreted in blocks (variable replaced by its value) beginning of
the program. It includes:

• characteristics of the fluid: Re, We (BOND), ρ (continuous function of a value for the
liquid 1 and 1/100 for gas)r (RATIO),(see in Section 5.2 and 5.4),

• data of the physical problem: β, RADIUS,

• numerical parameters: LENGTH, m.

Gerris defines its own physical parameters:

• the length of the domain: L is initial of the LENGTH,

• gravity: g, by default equal to 1,

• the specific volume ‘alpha’: 1
ρ
.

Gerris also requires the characterization of a T interface, with a radius of curvature
and a function ‘Position’ (y = T (x, t) in 2D). This interface must be initially perturbed
by a periodic function (to meet the conditions for a periodic flow). The gravitational
acceleration of the fluid is accounted for by introducing body forces:

• Fx = 1,

• Fy = −B = −cotβ, where β is the angle in radians.

These forces apply only to the liquid. The program was finally completed with technical
functions to define:
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• in terms of flow Solid,

• the depth level default mesh in the domain Refine, in terms of RefineSolid,

• adaptation of the mesh, running, moving with the movement of the interface
AdaptFunction,

• adaptation of the mesh, running, moving with the vorticity AdaptVorticity,

• numerical results and graphics OutputScalarNorm, OutputScalarSum,
OutputSimulation.

The results of numerical simulations provide data and measures that will ultimately allow
us to calculate the characteristics of a solitary wave (measures observable at the crest of
the wave):

• the phase velocity,

• the maximum amplitude,

for a range of higher Reynolds numbers. In the description of the numerical experiment,
we noted that at the end of a simulation, the wave was saturated and stationary in its
repository moving. It is identified after watching this stationarity, when we have all the
data and measures, we averaged in time in order to smooth the approximation errors.

The initial height of the substrate is fixed at h = 1 in a domain of length L = 60, 80.
Every time tn, for no pre-defined time and small enough (∆t = 5) each resolution provides

us with the average height: 〈h〉n = 1
L

∑

L
2

i=−L
2

hi
n where hi

n is the height of the interface

at the point xi at time tn for i ∈
[

−L
2
,+L

2

]

(there hi = h(xi) = h(i∆x)). We perform an
average 〈h〉 on k successive time steps (k = 5) in order to smooth errors related to the
displacement of the wave on the mesh studied, and thus the variation induced the digital
representation. Then, t = n to n+ k, we get the average height:
〈h〉 = 1

k

∑n+k
n 〈h〉n (〈h〉 average height on k time step).

When there is a stabilization (or saturation) of the solitary wave (either a given time
tn), the ridge provides us with two features that we wish to study:

• the phase velocity on the surface: cn+1 = (xi
max)n+1−(xi

max)n

tn+1−tn
where (xi

max)n and
(xi

max)n+1 are the abscissa, time tn and tn+1, for i ∈
[

−L
2
,+L

2

]

,

• the maximum amplitude of the wave: ‖ h ‖n∞= max | hin | where hi
n denotes, as

before, the height of the interface xi at time tn for i ∈
[

−L
2
,+L

2

]

(note: (ximax)n the
abscissa of max | hin |).
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As with the above measures, we want to smooth the values over several successive time
steps. It is, for t = n to n+ k:
the average phase velocity: 〈c〉 = 1

k−1

∑n+k
n+1〈c〉n

the average maximum amplitude: 〈‖ h ‖∞〉 = 1
k

∑n+k
n 〈‖ h ‖∞〉n.

It must be noted that, by default, Gerris does not introduce parameters. The equations
are written dimensionally so that for instance the Reynolds number is 1/ν, where ν is the
viscosity implemented by the user. Thus, we introduced Fx = 1 and h = 1, initially which
fixes the length scale as L = h̄N (uniform thickness of the film) and the time scale is such

that L
T 2 = g sin β ⇒ T =

√

h̄N

g sinβ
. Now we need to specify the initial conditions which

is a particular type of event happening only once and before any other type of event,
they are all derived from the same parent object GfsInit. After some algebra, the initial
velocity profile (see Section 5.3) is given by

if y < 1 , u(y) =
n

n+ 1

[

1− (1− y)(n+1/n
]
√
Re ,

if y > 1 , u(y) =
n

n+ 1

√
Re .

The velocity field is just chosen to be continuous at the free surface, the gas velocity
being uniform and equal to the velocity at the liquid free surface. This trick enables to
avoid spurous instabilities promoted by a shear at the interface. We add these above
lines to the simulation file ‘filmst.gfs’ (see in Appendix A.5):

Init {} {

U = {

y = y - RADIUS;

if (y < 1.)

return (N/(N+1.))*(1.- exp((N+1.)*log(1- y)/N))*sqrt(REYNOLDS);

else

return sqrt(REYNOLDS)*N/(N+1.);

}

}

By default, the density ρ is unity and the molecular viscosity µ is zero (i.e. there is
no explicit viscous term in the momentum equation). But it does not mean that there is
no viscosity at all however, because in my scheme we explain about the effective viscosity
which is a function of γ̇ (see in Section 5.4) and write the syntax in the simulation file
(see Appendix A.5) as
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SourceViscosity {} {

double mu, mumax;

double m;

mu = exp (-0.5*N*log (REYNOLDS)) ;

mumax = RATIO/sqrt(REYNOLDS) ;

if (D2 > 0.)

m = mu*exp ((N - 1.)*log (sqrt(2.)*D2));

else

m = mumax;

return RHO(T)*MIN(m, mumax);

} {

# Crank-Nicholson does not converge for these cases, we need backward Euler

# (beta = 0.5 -> Crank-Nicholson, beta = 1 -> backward Euler)

beta = 1

}

where γ̇ is mentioned as (sqrt(2.)*D2).
It is necessary to allow the time to compute the numerical solutions. Since, the falling

film problem is not an easy task because in long wave instability with large aspect ratio
of waves, long time needed to develop the instability. Accuracy is needed at the free
surface to capture the instability mechanism and large computational time to see the
development of waves (small growth rate), are also has monitor the mass 〈h〉 that must be
conserved over large number of time steps. In Gerris, the command GfsTime defines the
physical and the computational time (number of time steps performed). By default both
the physical time and the time step number are zero when the program starts and both
end time and end step values are infinite. But the keyword GfsOutputis used to control
any action which needs to be performed at a given time during a simulation. Therefore,
the syntax is OutputSimulation which writes the whole simulation. For example,

OutputSimulation { step = 5 } sim-%lf.gfs

which means that we will write into a file “sim-%lf.gfs” every 5 of physical time starting
from 0, where %lf means (long) floating-point number replaced with the current physical
time.

5.8 Conditional stability of shear-thinning film flows

In section 5.6.2, we have seen that traveling waves may be found for shear-thinning flu-
ids even if the Nusselt flat-film solution is linearly stable. Since infinitesimal perturbations
are then damped, we conclude with a conditional stability of the Nusselt solution.



CHAPTER 5. GENERALIZED NEWTONIAN FLUID 143

DNSs of the temporal response of the film to an initial perturbation of the form
h(x, 0) = 1 + A cos(kx) have been performed to test the conditional stability of the film.
As in § 5.6.3, periodic boundary conditions have been implemented. Fig. 5.29 reports
the amplitude hmax − hmin of the waves observed at the final stage of the simulations.
DNS results are compared with the corresponding bifurcation diagrams of the traveling-
wave solutions to the model (5.14), (5.55) (the speed of these waves is already reported
in Fig. 5.18(b)). At a given wavenumber, larger than the linear cut-off wavenumber kc
but smaller than a limiting values ksub, we expect to find three solutions. For k > ksub ,
only the Nusselt flat-film solution is found. In the range [kc, ksub] the largest-amplitude
traveling wave and the Nusselt flat-film solutions should be stable, whereas the smallest-
amplitude traveling wave is presumed to be unstable. In most of my DNSs, traveling
waves are found to emerge from a transient growth or decay. As expected, at small
amplitude, the initial disturbance relaxes to the linearly stable flat-film solution, whereas
at sufficiently large amplitude, traveling waves are found. Interestingly, the estimation of
ksub from DNS is in remarkable agreement with the bifurcation diagram from the weighted-
residual model. We therefore conclude that the model (5.14), (5.55) accurately capture
the conditional stability of the Nusselt film solution. Some DNSs indicated by double
circles in Fig. 5.29, leads to temporally periodic waves whose amplitude oscillate in time.
This kind of wave is also observable in the DNSs of Newtonian falling films performed by
[104]. They are observed only in few cases and within a quite narrow band of amplitudes
A of the initial perturbation. We presume that these waves result from the instability of
the low-amplitude traveling-wave solutions, which otherwise are not observable. The use
of periodic boundary conditions enables to limit the computational domain to the size
of the waves and thus to drastically reduce the cost of DNSs. An immediate drawback
is that we investigate the temporal response of the film whereas experimental conditions
correspond to the spatial response of the film to periodic forcing at inlet. However, the
weighted-residual model (5.14), (5.55) accurately captures the conditional stability of the
film and drastically reduces the cost of the simulations of extended spatial domains. We
therefore investigate the spatial response of the film to a periodic excitation at frequency
f within the frame of equations (5.14) and (5.55).

Fig. 5.30(a) presents the amplitude hmax − hmin versus the frequency f of the prin-
cipal branch of traveling-wave solutions for a xanthan gum solution (parameter set 2 in
table 5.1), Re = 100 and a moderate inclination angle β = 15◦. The integral constraint
〈q〉 = φ0 has been enforced in order to enable comparisons with the wavetrains emerg-
ing from the time-dependent simulations of the spatial response of the film to a periodic
excitation at frequency f [122].

Traveling waves emerges at the cut-off frequency fc from the Nusselt solution (hmax −
hmin = 0). The control parameter being f , a saddle-node bifurcation is observed at the
frequency fsub. Monitoring fc and fsub in the plane (f , Re) gives the stability diagram
displayed in Fig. 5.30(b). Below the cut-off frequency fc, the flat film is unconditionally
unstable, whereas unconditional stability is expected above fsub. Whenever f lies in the
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Figure 5.29: Amplitude of the waves obtained at the final stage of DNSs. Parameters
correspond to shear-thinning xanthan gum, Re = 20, β = 15◦. Black and
white squares stand for the traveling-wave solutions for parameter sets 2 and
3 respectively. The range of amplitudes achieved for time-periodic solutions
is indicated by double circles. Solid and dashed lines refer to the traveling-
wave solutions to (5.14), (5.55) for sets 2 and 3 respectively.
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Figure 5.30: (a) Amplitude (hmax − hmin) versus frequency at Re = 100 showing the
subcritical onset of traveling waves when frequency is varied from the cut-off
frequency fc. (b) Stability diagram in the plane (R, f). Solid and dashed
lines refers to the marginal stability curve and to the locus of a saddle-node
bifurcation fsub. The unconditionally and conditionally stable regions are
labeled ‘US’ and ‘CS’ respectively. The unconditional instability region is
labeled ‘UI’. Inclination angle is β = 15◦, other parameters correspond to a
shear-thinning xanthan gum solution (Set 2 in Table 5.1). Traveling wave
solutions have been computed enforcing the open-flow condition (〈q〉 = φ0).

interval [fc, fsub], a conditional stability is anticipated. The spatial response of the flat
film to a periodic excitation at inlet then depends on the amplitude of the perturbation.
We next simulate the response in space and time of the Nusselt flat-film solution to a
periodic forcing at inlet. We have imposed a sinusoidal disturbance on the inlet flow rate
q(0, t) = φ0[1 + A cos(2πft)]. Chosen properties correspond to a 1500 ppm xanthan gum
solution (parameter set 2 in table 5.1), Re = 100 and β = 15◦ which corresponds to the
traveling wave branch drawn in Fig. 5.30(a). The chosen dimensional forcing frequency
f = 14 Hz lies in the range [6.5, 16] bounded by fc and fsub. At low values of the
forcing amplitude A, the inlet signal is attenuated as it travels downstream. After A
reaches a certain threshold, inlet perturbations are amplified downstream and give way to
regular trains of traveling waves whose temporal periodicity agrees with the inlet forcing
frequency. Fig. 5.31 presents snapshots of the film thickness at two amplitudes A = 0.08
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Figure 5.31: Snapshots of the free-surface elevation showing the response of the film to
a forcing at inlet with two forcing amplitudes. The simulation is based on
model (5.14), (5.55). The fluid is a xanthan gum solution (set 2 in table 5.1
with n = 0.4). Re = 100, β = 15◦ and the forcing frequency is f = 14 Hz.
Solid and dashed lines refer to forcing amplitudes A = 0.08 and A = 0.1
respectively.

and A = 0.1 chosen slightly below and above the threshold. The damping of the signal
for A = 0.08 and its amplification for A = 0.1 are clearly visible. We have rerun my
simulations with the addition of a small amount of noise to the inlet periodic forcing. The
spatio-temporal diagram displayed in Fig. 5.32(a) gives an illustration of the evolution of
the wave pattern in time and space. The regular wavetrain that emerges at the forcing
frequency close to inlet is quickly disorganized by secondary instabilities, even if the
amplitude A = 0.4 of the forcing signal is already quite large. The primary wavetrain
is disrupted by the onset of larger waves which accelerate and capture the smaller waves
ahead of them. A series of coalescence events then occurs which drastically reduces the
wave density. Fig. 5.32(b) presents a snapshot of the film thickness at the end of the
simulation showing the entire numerical domain. At the downstream end of the flow,
large-amplitude solitary waves in interaction organize the disordered state of the flow.
The resulting wave dynamics is qualitatively similar to the observation of noise-driven
dynamics of a Newtonian falling film [20, 70, 78].

5.9 Summary and conclusion

The evolution of a power-law laminar film flow has been modeled within the frame of
the lubrication approximation by means of the weighted residual approach. The derived
models are made of the exact mass balance (5.14) and an averaged momentum equation,
which form a set of two coupled evolution equations for the film thickness h and the flow
rate q, or equivalently a local velocity amplitude ū. The models consistently account
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Figure 5.32: Simulation of the response of the film to a forcing at inlet with a small
amount of noise. The simulation is based on model (5.14), (5.55). The fluid is
a xanthan gum solution (set 2 in table 5.1 with n = 0.4). Re = 100, β = 15◦.
The forcing frequency and amplitude are f = 14 Hz and A = 0.4. (a)
Spatio-temporal diagram. Light (dark) regions correspond to small (large)
elevations. Vertical and horizontal ranges are 7.5 s and 0.3 m, respectively.
(b) Snapshot of the free-surface elevation at the end of the simulation.
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for inertial terms up to O(ǫ) and to viscous diffusion terms up to O(ǫ2). This choice
has enabled us to limit the number of degrees of freedom to only two and to limit the
complexity of the different averaged momentum equations. It is possible to extent the
present analysis to account for second-order inertia terms but at the cost of an increased
complexity [112, 123]. We expect these terms to play an important role when three-
dimensional wave dynamics are considered.

Consistency at first order of inertial terms is necessary to adequately capture the
onset of the instability, whereas consistency at second order of the viscous terms enables
to accurately account for the damping of the short waves by streamwise viscous diffusion.
Owing of the unphysical divergence of the effective viscosity of power-law fluids as the
strain rate goes to zero, it is not possible to consistently account for the streamwise
viscous diffusion. To avoid this difficulty, we introduce a bound to the effective viscosity
and a Newtonian plateau at low strain rate, or equivalently a Carreau law, and divide
the flow into a Newtonian layer at the free surface and a non-Newtonian bulk separated
by a fake interface. The relative thickness η̄c of Newtonian layer and the local flow rate
q are slaved to the h and ū by the implicit relations (5.37) and (5.36). Application of
the weighted residual approach leads to the evolution equation (5.48) whose coefficients
are functions of η̄c. The two-equation model (5.14), (5.48) is thus formidable to solve.
A drastic simplification is obtained in the limit η̄c → 0 but at the cost of two different
formulations (5.55) and (5.60) of the averaged momentum equation for shear-thinning
fluids (n < 1) and shear-thickening fluids (n > 1) respectively. The momentum balance
(5.55) accounts for the contributions of the free surface and wall regions to the viscous
streamwise diffusion terms. It is consistent with the averaged momentum equation (5.58)
previously derived in the Newtonian case in the limit n→ 1. In the case of equation (5.60),
(5.58) is not recovered as n goes to one. Yet, the dispersion relations corresponding to
the linear stability of the Nusselt flow, and obtained from (5.60) and (5.58), coincide at
n = 1. We note that a full agreement is not required as the limit of a vanishing Newtonian
layer at the free surface is not compatible with the limit n→ 1.

The two-equation models (5.14), (5.55) and (5.14), (5.60) have been validated in the
linear and nonlinear regimes by means of comparisons with the solutions of the primitive
set of equations (5.2), (5.3) and (5.31). A remarkable agreement with the Orr-Sommerfeld
stability analysis has been obtained. In particular, the instability threshold is accurately
recovered. Comparisons to the DNSs of two-phase flows demonstrate that the models
correctly predicts the speed, amplitude and shape of large-amplitude nearly solitary waves.
In particular, the details of the capillary ripples, the capillary shock region, preceding the
main humps are captured correctly.

We have compared the results of Orr-Sommerfeld analyses and DNSs with the only
continuous Newtonian plateau constitutive law (5.32) and with the smooth Carreau law
(5.33). Whenever the thickness of the Newtonian layer is small (sn ≪ 1), which is indeed
the case for the fluids we have considered in my study, the two constitutive laws give very
similar results. This gives us confidence that the results of my study are not dependent



CHAPTER 5. GENERALIZED NEWTONIAN FLUID 149

on a particular regularization at low strain rate of the power law (5.1).
Our linear stability analysis shows that the threshold of the long-wave instability is

weakly dependent on the relative thickness sn of the Newtonian layer at the free surface.
The smaller the power-law index n and the thinner the Newtonian layer, the smaller the
critical Froude number is. For shear-thinning fluids (n < 1) and low-power-law indices,
the range of unstable wavenumbers is governed by the balance of inertia to streamwise
viscous diffusion at the free surface, surface tension and the contribution of the bulk to
viscous diffusion being negligible. Instead, in the case of shear-thickening fluids (n > 1),
viscous diffusion at the free surface is negligible and the range of unstable wavenumbers
is governed by the effective viscosity of the non-Newtonian bulk layer. The influence
of viscoplasticity on the primary instability is shown to be nontrivial. Instead of the
destabilization (stabilization) of the base flow close to threshold in the case of shear-
thinning (shear-thickening) fluids, an unexpected reverse behavior is observed further
from threshold when the viscous damping of short waves becomes dominant. The excellent
agreement between the stability analyses based on the primitive equations and the two-
equation weighted-residual models enables to comprehend these observations within the
framework of Whitham hierarchies. The effect of shear-thinning (shear-thickening) on
the stability threshold is a consequence of the acceleration (deceleration) of the kinematic
waves with respect to the fluid velocity at the interface. Farther from threshold, shear-
thinning (shear-thickening) enhances (slows down) the deceleration of kinematic waves by
viscous dispersion which stabilize (destabilize) the base flow.

Our study of nonlinear waves focuses on the one-humped large-amplitude solitary
waves that are well known to organize the dynamics of a Newtonian film [4]. For shear-
thickening fluids, surface tension is a weak effect as compared to viscous diffusion (Γ ≪ 1)
and traveling waves do not present the capillary ripples observed on shear-thinning and
Newtonian films. Shear thinning accelerates solitary waves and promotes a subcritical
onset of traveling waves at larger wavenumber than the linear cut-off wavenumber kc. A
conditional stability of the base flow is thus observed, the film being able to respond to a
periodic forcing at inlet at k > kc if the amplitude of the perturbations is large enough.
This phenomenon results from the removal of the Newtonian layer, the reduction of the
effective viscosity at the free surface and therefore the attenuation of the damping of short
waves. Comparisons with DNSs show that this phenomenon is accurately captured by the
weighted-residual model (5.14), (5.55). Spatio-temporal simulations reveal that trains of
short waves excited at larger frequencies than the cut-off frequency are quickly disrupted
by secondary instabilities which lead to a disordered state organized around solitary waves
in interaction. The spatio-temporal dynamics of this disordered state is then amenable
to a coherent-structure theory in which the flow is discretized into particle-like solitary
waves. Wave-to-wave interaction of solitary waves in Newtonian flows have been recently
investigated by Pradas [101] who pointed out the role of viscous dispersion effects. An
extension of the theory by Pradas et al. to shear-thinning film flows is currently under
way.
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A natural application of the present modeling effort is the study of roll waves in
overland shallow flows which remain laminar and where clay suspensions present shear-
thinning properties. For such flows, the onset of nonlinear waves in conditions for which
the base flow is linearly stable have also been observed by [85, 98]. Yet, these studies do
not correctly predict the instability threshold, a drawback which prevents quantitative
comparisons with experimental data. The remarkable agreement of the solutions to the
weighted-residual models with DNS suggests that a quantitative representation of the roll
wave dynamics might be achieved within the frame of shallow-water equations similar to
(5.14), (5.55).



Chapter 6

Viscoplastic falling film

In this chapter, I present a preliminary study of a viscoplastic falling film based on the
elasto-viscoplastic constitutive relation introduced by Saramito [121]. The aim of this
work is to extend the pseudo-plug theory formulated by Balmforth & Liu [8] to deal with
viscoplastic films at the moderate values of the Reynolds number.

6.1 Introduction

Balmforth & Liu [8] considered the stability of a viscoplastic fluid layer flowing on an
inclined plane under the action of gravity. Their concern was the onset of roll waves that
are observable in mud surges. As a consequence they did not consider surface tension nor
streamwise viscous effects. Indeed, the structure of the shock separating each gradually
varying laminar regions of the flow is governed by the details of the turbulent flow in the
‘roll’. For that reason, their approach was truncated at first order in the film parameter.
Balmforth & Liu showed that an unyielded plug region laying at the top of a uniform film
forms a lid which forbids the instability to occur. However, as soon as the free surface
is deformed, the plug starts to yield and the instability is possible which assumes that
normal stresses appears instantly in the plug region so that the second invariant of the
stress can exceed the yield stress. In other words, small but finite amplitude perturbations
of the free surface are sufficient to trigger the instability and viscosplastic film flows should
be conditionally unstable. Moreover, in order to describe the dynamics of a viscoplastic
film, surface tension and streamwise viscous diffusion must be accounted for. Balmforth
& Liu considered a viscoplastic fluid modelled by the Herschel and Bulkley law

τ = K|γ̇|n−1γ̇ + τ0
γ̇

|γ̇| when |γ̇| > 0 (6.1a)

|τ | < τ0 when |γ̇| = 0 (6.1b)

151
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where τ and γ̇ are the stress and rate of strain tensors, τ0 is the yield stress and |γ̇| is the
second invariant of the rate of strain. Equation (6.1) can be rewritten as [121]

γ̇ = max

(

0,
|τ | − τ0
K|τ |n

) 1

n

τ ≡ κn(|τ |)τ (6.2)

The viscosity of a viscoplastic fluid modelled by (6.1) is undefined in the unyielded region
and diverges at zero strain rate. In order to take into account viscous effects at the
interface and to capture the conditional stability of the film, one has to describe how the
unyielded plug region is deformed which demands to include the elasticity of the solid-like
behavior of the fluid into the constitutive equation. Recently, Saramito [121] has proposed
an extension of the Herschel-Bulkley law (6.1) including the viscoelastic properties of the
fluid:

1

G
▽

τ + κn(|τd|)τ − γ̇ = 0 (6.3)

where G is th elastic modulus, τd = τ − 1
N
tr(τ)I denotes the deviatoric part of τ and

▽

τ = ∂tτ + v∇τ − τ∇vT −∇vτ (6.4)

is the upper convected time derivative of the stress tensor τ . I propose to extend the
pseudo-plug theory by Balmforth and Liu using the constitutive equation (6.3).

6.2 Governing equations

I consider a viscoplastic fluid flowing down an inclined plane under the action of gravity as
sketched in figure 6.1. The flow is assumed to be incompressible and the fluid properties,
density ρ and surface tension σ are constant. The angle of inclination β and the gravity
acceleration g are also constant. Dimensional quantities will be referred to with a bar
decoration. The length scale is the uniform film thickness h̄N. The velocity scale is
defined by the free surface velocity of the base flow, denoted by V̄N. With the above
choice of scales, the dimensionless equations read

∂xu+ ∂yv = 0 , (6.5a)

Re (∂tu+ u∂xu+ v∂yu) = −∂xp+ Λ + ∂xτxx + ∂yτxy , (6.5b)

Re (∂tv + u∂xv + v∂yv) = −∂yp− Λ cot β + ∂xτxy + ∂yτyy , (6.5c)

De (∂tτxx + u∂xτxx + v∂yτxx − 2τxx∂xu− 2τxy∂yu)

+κBi(|τd|)τxx − 2∂xu = 0 , (6.5d)

De (∂tτyy + u∂xτyy + v∂yτyy − 2τxy∂xv + 2τyy∂xu)

+κBi(|τd|)τyy + 2∂xu = 0 , (6.5e)

De (∂tτxy + u∂xτxy + v∂yτxy − τxx∂xv − τyy∂yu)

+κBi(|τd|)τxy − ∂yu− ∂xv = 0 , (6.5f)
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Figure 6.1: A sketch of the geometry for a viscoplastic film flowing down an inclined
plane.

where Λ = Re/Fr2 and |τd|2 = 1
4
(τxx − τyy)

2 + τ 2xy and

κBi(s) = κ(s;Bi) ≡ max

(

0,
s−Bi

sn

) 1

n

(6.5g)

with boundary conditions at y = h

∂th+ u∂xh = v , (6.5h)
[

1− (∂xh)
2
]

τxy + ∂xh (τyy − τxx) = 0 , (6.5i)

−p+ τxx(∂xh)
2 − 2τxy∂xh+ τyy
1 + (∂xh)2

= We
∂xxh

[1 + (∂xh)2]
3/2

, (6.5j)

and the no-slip condition at the wall

u = v = 0 at y = 0 (6.5k)

The non-dimensionalisation procedure introduces five dimensionless groups in the govern-
ing set of equations (6.5), i.e. a Froude number

Fr = V̄N/

√

gh̄N sin β , (6.6)

which compares inertia and gravity, a Reynolds number

Re =
ρV̄ 2−n

N h̄nN
K

. (6.7)
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a Deborah number

De =
K

G

(

V̄N
h̄N

)n

(6.8)

a Bingham number
Bi =

τ0

K
(

V̄N

h̄N

)n (6.9)

a Weber number
We =

σ

K
h̄n−1
N V̄ −n

N . (6.10)

It is useful to add to this list the Kapitza number

Γ = (σ/ρ)(K/ρ)−4/(n+2)(g sin β)(2−3n)/(n+2) , (6.11)

which compares surface tension, gravity and viscosity and depends only on the fluid
properties and the inclination of the plane. The Kapitza number can be rewritten Γ =
(lc/lν)

2 in terms of the ratio of two length scales, the capillary length lc =
√

[σ/(ρg sin β)]

and the viscous-gravity length lν = (K/ρ)2/(n+2) (g sin β)(n−2)/(n+2) defined by the balance
of gravity acceleration and viscous drag.

Starting from the length scale lν and the time scale tν =
(

K
ρ

) 1

n+2

(g sin β)−
2

n+2 , corre-

sponding to the balance of viscosity and gravity acceleration, it will be useful to introduce
the definitions of Deborah and Bingham numbers that are independent of the flow rate.

Thus I introduce Deν = K
G

(

1
tν

)n

and Biν = τ0
K( 1

tν
)
n , which are related to De and Bi

through the relations De = Deν

(

V̄Ntν
h̄N

)n

and Bi = Biν

(

h̄N

V̄Ntν

)n

.

The uniform film solution to (6.5) is given by

τxx = 2DeΛ2(h− y)2 , τxy = Λ(h− y) , τyy = 0 , (6.12a)

u =

∫ y

0

[

Λ(h− y)
√

1 + Λ2De2(h− y)2 − Bi
]1/n

√

1 + Λ2De2(h− y)2
dy , v = 0 , (6.12b)

p = Λ(h− y) cot β (6.12c)

in the yielded region y ≤ Y ≡ h−
√√

1 + 4De2Bi2 − 1/(
√
2ΛDe). In the unyielded plug

region Y ≤ y ≤ h,

u = u(y = Y ) , v = 0 , τxy = Λ(h− y) , (6.12d)

τxx and τyy are undetermined but verify

p− τyy|y=h = Λ(h− y) cot β , τyy|y=Y = 0 , τxx|y=Y =
−1 +

√
1 + 4Bi2De2

De
(6.12e)
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6.3 Low-dimensional formulation

Let us assume (i) slow space and time evolutions ∂x,t ∼ ǫ where ǫ ≪ 1 is a formal film
parameter, (ii) surface deformations induce order-ǫ corrections of the velocity profile and
stress distribution from the flat film solution, (iii) a weak elastic response of the plug and
we consider small Deborah numbers De = O(ǫ). The dynamics of the film is therefore
assumed to be never far from a truly viscoplastic one governed by the Herschel-Bulkley
law (6.1). In the lubrication limit Re → 0, whenever the film is deformed, the velocity
and stresses are given by Fernández-Nieto et al. [44]

u =
n

Λ(n+ 1)

[

(Λh− Bi)
n+1

n − (Λ(h− y)− Bi)
n+1

n

]

+O(ǫ) , (6.13a)

τ =

(

0 Λ(h− y)
Λ(h− y) 0

)

+O(ǫ) . (6.13b)

In the yielded region y < h−Bi/Λ, and

u =
n

Λ(n+ 1)
(Λh− Bi)

n+1

n +O(ǫ) , (6.13c)

τ =

(
√

Bi2 − Λ2(h− y)2sign(∂xh) Λ(h− y)

Λ(h− y) −
√

Bi2 − Λ2(h− y)2sign(∂xh)

)

+O(ǫn) (6.13d)

in the “pseudo-plug” region y ≥ h−Bi/Λ where the fluid is slightly yielding κBi(|τd|) = O(ǫ)
and consequently the second invariant of the stress is always slightly larger than the yield
stressκBi(|τd|) = O(ǫn) which allows the pseudo-plug to deform [8]. Now, from the velocity
profile (6.13) we can deduce Λ = Re/Fr2. Thus u(y = h;h = 1) = 1 yields the relation

(

n+ 1

n
Λ

) n
n+1

− Λ +Bi = 0 (6.14)

In the limit Bi = 0, we get Λ = [(n+ 1)/n]n as expected for a power-law fluid.
With the help of the continuity equation, assumption (i) implies that the cross-stream

velocity v = −
∫ y

0
∂xu dy = O(ǫ) so that inertia terms can be dropped from the cross-

stream momentum equation. At lowest order the pressure distribution is the hydrostatic
one corrected by capillary effects

p = τyy + Λcot β(h− y)−We∂xxh+O(ǫ) . (6.15)

Substitution of the pressure gradient ∂xp in the streamwise momentum equation then
gives

Re (∂tu+ u∂xu+ v∂yu) = Λ(1− cot β∂xh) +We∂xxxh+ ∂yτxy + ∂x (τxx − τyy) , (6.16)
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which is similar to the Prandtl equation in boundary-layer theory [124] and therefore will
be referred to as a boundary-layer momentum equation. I note that the O(ǫ) contribution
of the normal stresses ∂x (τxx − τyy) was neglected by Balmforth & Liu [8] and their
boundary-layer formulation was therefore inconsistent. Equation (6.16) is consistent at
order ǫ, i.e. all neglected terms are of higher order.

The coupling of the evolution of the velocity field to the stresses arise from the terms
∂yτxy and ∂x (τxx − τyy) and therefore it is sufficient to determine τxx and τyy at O(1)
and τxy at O(ǫ). It is therefore tempting to drop O(ǫ) terms from (6.5d) and (6.5e) and
O(ǫ2) terms from (6.5f). However, κBi(|τd|) is O(ǫ) in the pseudo-plug region and as a
consequence, τxy can be computed up to order ǫ only if second-order terms are retained
in (6.5f). I will also retain the elastic terms (proportional to the Deborah number) in
(6.5d) and (6.5e) because of their role in the damping of short waves. Finally, our system
of boundary-layer equations consists of the continuity equation (6.5a), the momentum
equation (6.16), the constitutive equations (6.5d), (6.5e), (6.5f) from which the O(ǫ3) term
De τxx∂xv is dropped out. This system is completed by (6.5h), (6.5k) and the tangential
stress boundary condition truncated at order ǫ,

τxy = ∂xh(τxx − τyy) at y = h . (6.17)

I shall consider that locally the film is still governed by (6.13) and decompose the
stress and velocity distributions in the form

τ = τ (0) + τ (1) and u = u(0) + u(1) (6.18a)

where τ (0) is defined by

τ (0) =

(

Txx(x, t)
√

B(x, t)2 − η(x, y, t)2 Txy(x, t)η(x, y, t)

Txy(x, t)η(x, y, t) Tyy(x, t)
√

B2 − η(x, y, t)2

)

(6.18b)

if 0 ≤ η ≤ B and

τ (0) =

(

0 Txy(x, t)η(x, y, t)
Txy(x, t)η(x, y, t) 0

)

(6.18c)

when B < η ≤ 1. I have introduced a reduced normal coordinate η = 1 − y/h(x, t) and
a local Bingham number B(x, t) = Bi/|Txy(x, t)|. Notice that the free surface location is
given by η = 0 whereas the wall is located at η = 1 and the fake interface separating the
yielded and pseudo-plug region is given by η = B(x, t).

The leading order streamwise velocity component is assumed of the form:

u(0) =
q(x, t)

h(x, t)φ(B(x, t))
g(η(x, y, t);B(x, t)) (6.18d)
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with a velocity profile g(η;B) given by

g(η;B) =
n

n+ 1

[

(1−B)
n+1

n − (η − B)
n+1

n

]

if B ≤ η ≤ 1 ,

and g(η;B) =
n

n+ 1
(1− B)

n+1

n otherwise (6.18e)

φ(B) is defined by

φ(B) =

∫ 1

0

g(η)dη =
n(1 + n+Bn)

(2n+ 1)(n+ 1)
(1− B)

n+1

n . (6.18f)

The corrections τ (1) and u(1) are assumed small. u(1) is an O(ǫ) term induced by the slow
deformations of the free surface. In the yielded region of the flow, τ (1) corresponds to
the O(ǫ) viscous response of the stress to the strain rate. In the pseudo-plug region, τ (1)

contribute to maintain the second invariant of the deviatoric stress |τd| = Bi+O(ǫ) above
threshold and therefore is an O(ǫn) correction.

Besides the film thickness h, the decomposition (6.18) introduces four amplitudes, or
degrees of freedom, q, Txy, Txx and Tyy depending on x and t. In the limit ∂xh → 0 and
De→ 0, i.e. for a slightly deformed viscoplastic film, the solution (6.13) corresponds to

q = Λ1/nφ(Bi/(Λh))h
2n+1

n , Txy = Λh and Txx = −Tyy = Λh sign(∂xh) .
(6.19)

Whenever the film interface is deformed, q, Txy, Txx and Tyy shall slightly depart from
(6.19) and therefore may include O(ǫ) or O(ǫn) corrections. As a consequence, the de-
composition (6.18) of the stress and velocity fields must be made unique by adding gauge
conditions. The first of these conditions is

∫ h

0
u(1)dy = 0 which implies that q(x, t) is the

volumetric flow rate q =
∫ h

0
udy. This choice is dictated by the fact that integrating the

continuity equation (6.5a) across the film using the kinematic boundary conditions (6.5h)
and the no-slip ones (6.5k) gives a mass balance

∂th+ ∂xq = 0 (6.20)

which is an exact evolution equation for the film elevation.
I apply the weighted residual technique and integrate the boundary-layer momentum

equation (6.16) and the stress-to-strain relations (6.5d)-(6.5f) across the film with weights
wM(η), wxx(η), wxy(η) and wyy(η). Writing formally BL(u, τ) = 0 the boundary-layer set
of four equations (6.16), (6.5d)-(6.5f), we set to zero the four residuals 〈BL(u, τ)|w〉 where
〈·|·〉 =

∫ 1

0
·dη. The weights and the gauging conditions that single out the decomposition

τ = τ (0) + τ (1) are chosen to cancel out the corrective terms induced by the deviations
u(1) and τ (1) from the ansatz (6.18). A suitable choice for the gauging conditions which
single out the decomposition of the normal stresses τxx and τyy is

∫ 1

0

wα(η)κBi(|τd|)ταdη =

∫ 1

0

wα(η)κBi(|τ (0)d |)τ (0)α dη (6.21)
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where α stands for the subscripts xx or yy. The averaged viscoplastic response of the nor-
mal stresses to the shear is therefore assumed to be all contained in τ (0). Considering the
tangential stress τxy, we adopt a gauging condition that is compatible with the modeling
approach of a power-law falling film developed by Ruyer-Quil et al. [116]:

∫ 1

B

wxy(η)κBi(|τd|)τxydη =

∫ 1

B

wxy(η)κBi(|τ (0)d |)τ (0)xy dη (6.22)

The viscous response of shear γ̇xy to the stress in the yielded region is assumed to be all

contained in the definition of τ (0)xy . After linearization,(6.22) can be recast as
∫ 1

B

wxy(η)

{

κB(η) + η
dκB
ds

(s = η)

}

τ (1)xy dη = 0 (6.23)

It is easy to show that the O(ǫ) correction to the strain rate
∫ h

0
wxy∂yu

[1)dy in (6.5f) is
canceled by choosing wxy = η. To achieve consistency at order ǫ of the averaged balance
of the tangential stress (6.5f), the contribution of the deviations τ (1) to the viscoplastic
terms must also be dropped off, which reads

∫ B

0

wxy(η)κBi(|τd|)τxydη =

∫ B

0

wxy(η)κBi(|τ (0)d |)τ (0)xy dη (6.24)

Since wxy = η and τ
(0)
xy = Txyη and κBi(|τd|) = O(ǫ) in the pseudo-plug region, the

following condition
∫ B

0

η2
{

κBi(|τd|)− κBi(|τ (0)d |)
}

dη = 0 (6.25)

can be substituted to (6.24) to achieve consistency at O(ǫ). Considering that τ (0)xx and
τ
(0)
yy ∝

√

B2 − η2, (6.25) and (6.21) are identical up to O(ǫ2) if

wxx = wyy = η2/
√

B2 − η2 when η ≤ B and wxx = wyy = 0 otherwise
(6.26)

However this choice of weight does not lead to convergent integrals when the convected
time derivative of τxx is averaged. Therefore, I choose the simplest uniform weight to
evaluate these terms and define the averaged strain balance as

∫ B

0

De
(

∂tτ
(0)
xx + u(0)∂xτ

(0)
xx + v(0)∂yτ

(0)
xx − 2τ (0)xx ∂xu

(0)
)

dη

+
4

πB

∫ B

0

η2
√

B2 − η2

(

κBi(|τ (0)d |)τ (0)xx − 2∂xu
(0)
)

dη = O(ǫ2) , (6.27)

where ∂yu
(0) = 0 at 0 ≤ η ≤ B has been taken in account. In equation (6.27), the

plastic response of the pseudo-plug to an elongational strain is thus correctly captured
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(corrections to the second row of (6.27) are effectively of higher order than ǫ), yet the
elastic response of the pseudo-plug is not consistently evaluated.

Turning to the averaged momentum balance, consistency at O(ǫ) can be achieved
when the weight wM is chosen to cancel out the O(ǫ) correction from

∫ 1

0
wM(η)∂ητxydη.

An integration by parts gives

∫ 1

0

wM∂ητxydη = [wMτxy]
1
0 −

∫ 1

0

w′
Mτxydη (6.28)

wM(1) can be taken equal to zero and τxy(η = 0) is given by the boundary condition (6.17).
In order to make use of the gauge conditions (6.23), wM must be chosen proportional to

w′
M = ηκB(η) + η2

dκBi
ds

(s = η) , for η > B and w′
M = 0 otherwise

wM(1) = 0 (6.29)

After integration, we obtain

wM(η;B) =
1

n+ 1

[

(nB + 1)(1− B)
1

n − (nB + η)(η −B)
1

n

]

if η > B ,

and wM(η;B) =
1

n+ 1
(nB + 1)(1− B)

1

n otherwise (6.30)

Integrating the boundary layer equations (6.16), (6.5d)-(6.5f) with the weight wM given
by (6.30), wxy = η and wxx = wyy leads to a set of four residuals which are consistent
at order ǫ. However, since τ

(0)
xy ∂yu

(0) = 0 in the pseudo-plug and τ
(0)
yy ∂yu

(0) = 0, the
nonlinear elastic coupling of the normal and tangential stresses are not taken into account
in our derivation. It follows that our system of equations is degenerate. The residual
obtained by averaging (6.5e) is identical to the one corresponding to (6.5d) when −Txx is
substituted for Tyy. Thus Tyy = −Txx and a linear combination of the residuals lead to
system of evolution equations for q, Txx and Txy completed by the mass balance (6.20). I
have further simplified the averaged momentum balance and averaged elongational strain
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balance with the substitution Txy = Λh+O(ǫ).

De∂tTxy = De

(

−Fxy(B)
q

h
∂xTxy +Gxy(B)

Txy
h
∂xq

]

(6.31a)

+
3q

h2
− 3

[

φ(B) +B2+1/nΓ(r)
]

|Txy|1/n−1Txy

De∂tTxx = De

(

−Fxx(B)
q

h
∂xTxx +Gxx(B)

Txx
h
∂xq +Hxx(B)

qTxx
h2

∂xh

]

−16

π2
Bi1/n−1Γ(r)Txx + Lxx(B)

∂xq

h
−Mxx(B)

q

h2
∂xh (6.31b)

Re∂tq = Re

[

−FM(B)
q

h
∂xq +GM(B)

q2

h2
∂xh

]

+IM(B) [Λh(1− cot β∂xh) +Weh∂xxxh− Txy]

+LM(B) [h∂xTxx − Txx∂xh] (6.31c)

where

Γ(r) =

∫ 1

0

(

√

η2 + r(1− η2)− 1
)1/n

√

η2 + r(1− η2)
η2dη (6.31d)

and r = (Txx/Txy)
2 The coefficients entering into (6.31) are functions of B(x, t) = Bi/Txy
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that are listed below:

Fxy =
(1 + n)(1 + 2n)[1 + n(4 + 3B + 3(1 + B)2n)]

(1 + 3n)(1 + 4n)(1 + n+ Bn)2
(6.32a)

Gxy =
n(1− B)(1 + n+ Bn)

(1 + n)(1 + 2n)
Fxy (6.32b)

Fxx =
1 + 2n

1 + n+ Bn
(6.32c)

Gxx =
n(1−B)

1 + n+ Bn
(6.32d)

Hxx =
Bn(1 + 2n)

(1 + n+ Bn)2
(6.32e)

Lxx =
8(1 + 2n)

πB(1 + n+ Bn)
(6.32f)

Mxx =
(8(1 + n)(1 + 2n)

B(1 + n+ Bn)2π
(6.32g)

FM = FMa/FMb (6.32h)

FMa = 144 + (768 + 414B)n+ (1572 + 1971B + 360B2)n2

+(1548 + 3346B + 1691B2)n3 + (732 + 2368B + 2816B2)n4

+(132 + 568B + 1928B2)n5 + 432B2n6 (6.32i)

FMb = 3(2 + n)(3 + 4n)(1 + n+ Bn)

×(4 + 8n+ 10Bn+ 4n2 + 13Bn2 + 9B2n2 + 12B2n3) (6.32j)

GM = GMa/GMb (6.32k)

GMa = (1 + n)(1 + 2n)(72 + (252 + 234B)n

+(324 + 721B + 198B2)n2 + (180 + 694B +

606B2)n3 + (36 + 196B + 564B2)n4 + 144B2n5) (6.32l)

GMb = (1 + n+ Bn)FMb (6.32m)

IM =
2(2 + 3n)(1 + n+ Bn)(1 + n(1 + 2B(1 +Bn)))

(1 + 2n)(4 + n(4(2 + n) + B(10 + n(13 + 3B(3 + 4n)))))
(6.32n)

LM =
B2(2 + 3n)(1 + Bn)(1 + n+ Bn)π

4 + n(4(2 + n) + B(10 + n(13 + 3B(3 + 4n))))
(6.32o)

Consistency of the model is achieved up to O(ǫ), all terms of higher order being omitted.
However, the model does not take into account the elongational viscosity of the yielded
region, i.e., the viscous contribution to (6.31b) from the evaluation of κBi(|τd|)τxx in
the yielded region. A direct consequence is that LM goes to zero when B → 0. The
contribution from the normal stress τxx disappears in the momentum balance when the
pseudo-plug disappears.
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Base flow solutions to (6.31) are given by

Txy = Λh , |Txx| ≤ Λh , q = Λ1/nφ(Bi/(Λh))h
2n+1

n . (6.33)

where Λ is solution to (6.14).

6.4 Linear stability analysis based on the low-

dimensional model

Turning to the stability analysis of the low-dimensional model (6.20, 6.31) leads to the
dispersion relation:

iIMΛ− c2kRe+ cFMkReφ̃−GMkReφ̃
2
+

iIMΛn{c(3 + iDeGxykΛ)− 6φ̃}
−3φ̃+ n{3Bφ′ − iDekΛ(c− Fxyφ̃)}

+k

(

cot βIMΛ +
cLMLxx − LMMxxφ̃

De(c− Fxxφ̃)
+ IMk

2We

)

= 0 .(6.34)

where φ̃ = φΛ1/n and φ is defined in (6.18f) and all the coefficients Fxy, Fxx, Gxy,...,LM are
computed at B = Bi/Λ. The critical Reynolds number of the long-wave instability mode
(k = 0) can be obtained through a long-wave expansion of the phase velocity c = c0+ikc1
where k is real, by requiring that c1 = 0. Thus I get

Rec = Λ−2/nn2Reac/ (3Rebc) (6.35a)

Reac = ΛIM [3 cot β +DeΛ(1 +Gxy)] + 3LMLxxDe
−1

+{De[Fxy − 2(1 +Gxy)]IMΛ2nφ}[nBiφ′ − φ]−1

+{3LM(Mxx − FxxLxx)nφ}{De[−1 + n(Fxx − 2)]φ+ nBDeφ′}−1 ,(6.35b)

Rebc = {1 + n[4− FM + (4− 2FM +GM)n]}φ2

+BΛn[n(FM − 4)− 2]φφ′ + n2B2(φ′)2 . (6.35c)

where φ′ refers to dφ/dB, and all the coefficients are again computed at B = Bi/Λ. In
the limit De≪ 1, Rec simplifies into

Rec = De−1Re−1
bc Λ

2−2/nn2LM

(

Lxx +
φn(Mxx − FxxLxx)

[−1 + n(Fxx − 2)]φ+ nBDeφ′

)

+O(1) (6.36)

In the limit of a negligible elasticity (De = 0) and negligible extensional viscous effects

(LM = 0), the instability threshold can be written in terms of the Froude number F̃r
2
=

Fr2/ cot β as

F̃r
2

c = (n2Λ−2/nIM)
{

[(1 + n(4− FM + n(4− 2FM +GM))]φ2

+nB[n(FM − 4)− 2]φφ′ + n2B2(φ′)2
}−1

(6.37)
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which further reduces to

F̃r
2

c =
n2(3n+ 2)

2(n+ 1)2
(6.38)

in the limit B → 0 which correspond to the instability threshold for a power-law falling
film. The discrepancy between the formula (6.38) and the corresponding one (5.20) in
the chapter 5 originates from slightly different scaling choices (I recall here that the free
surface velocity is the velocity scale).

6.5 Linear stability analysis of the primitive equations

In this section, I consider the linear stability of the Nusselt uniform film solution. I first
linearize the governing equations (6.5). Thus I perturb the basic state (6.12). This base
state corresponds to a “true” solid plug which is not yet yielded. As a consequence, we
expect that in the lim De→ 0, i.e., when the plug has no elastic response, the instability
will be entirely damped out since the plug cannot deformed. Introducing a streamfunction
and decomposition on normal modes:

u = U + ℜ
(

ψ′(y)eik(x−ct)
)

, v = ℜ
(

−ikψ(y)eik(x−ct)
)

,

τxx = Txx + ℜ
(

Axxe
ik(x−ct)

)

, τxy = Txy + ℜ
(

Axye
ik(x−ct)

)

,

τyy = Tyy + ℜ
(

Ayye
ik(x−ct)

)

, τd = Td + ℜ
(

T ′
de

ik(x−ct)
)

,

where k and c are the wavenumber and phase speed, respectively, and ℜ stands for the
real part. Thus I obtain a Orr-Sommerfeld problem,

ikRe
[

(U − c)
(

D2 − k2
)

ψ − ψU ′′
]

=
(

D2 + k2
)

Axy + ik(A′
xx − A′

yy) ,(6.39a)

De
[

ik[(U − c)Axy − T ′
xyψ]− AyyU

′ − k2Txxψ − Tyyψ
′′
]

= ψ′′

+k2ψ − AxyκBi − (Txyκ
′
Bi/4Td) [(Axx − Ayy)Txx + 4AxyTxy] , (6.39b)

De [ik[(U − c)Axx − 2Txxψ
′ − T ′

xxψ]− 2AxyU
′ − 2Txyψ

′′] = 2ikψ′

−AxxκBi − (Txxκ
′
Bi/4Td) [(Axx − Ayy)Txx + 4AxyTxy] , (6.39c)

De
[

ik[(U − c)Ayy + 2Tyyψ
′ − T ′

yyψ]− 2k2Txyψ
]

= −2ikψ′

−AyyκBi − (Tyyκ
′
Bi/4Td) [(Axx − Ayy)Txx + 4AxyTxy] , (6.39d)
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where D ≡ d/dy. The system of equations (6.39) is completed by the boundary conditions
at the wall and at the interface,

ψ(0) = ψ′(0) = 0 , (6.39e)

Axy + T ′
xy(1)

ψ(1)

c− U(1)
= 0 , (6.39f)

ψ(1)

c− U(1)

(

Wek3 + k cot β
)

+ kReU(1)ψ′(1)− kReU ′(1)ψ(1)

−ckReψ′(1) + iA′
xy(1)− k(Axx(1)− Ayy(1)) = 0 , (6.39g)

The system (6.39) can be reset into a dynamical system in a four-dimensional complex
phase space spanned by ψ, ψ′, Axy, A′

xy. I solve the system of equations (6.39) by
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Figure 6.2: (a) Spatial growth rate −ki versus wavenumber kr. (b) Marginal stability
curve in the plane (Re, k). Inclination angle is β = 45◦. The solid line refer
to the solutions to the Orr-Sommerfeld problem (6.39).

continuation using AUTO07p software [40]. I obtain the spatial long-wave mode (k
complex and ω real) starting from the solution k = 0. This result is obtained for a
shear-thinning carbopol fluid whose properties are σ = 0.07Nm−1, n = 0.5, G = 28(Pa),
K = 3.2(Pasn), τ0 = 3.9(Pa) and ρ = 1010(kgm−3) [74]. Fig. 6.2(a) shows the behavior
of the spatial growth rate −ki = −ℑ(k) as a function of the wavenumber kr = ℜ(k).
Reynolds number, Re = 41 and the inclination angle β = 45◦ is chosen. Similarly to
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the Newtonian case [15], the range of unstable wavenumber extend from zero to the
cut-off wavenumber kc = 1.038. Fig. 6.2(b) displays the marginal stability curve in the
cut-off wavenumber kc versus Reynolds number Re plane obtained from solutions to the
Orr-Sommerfeld problem (6.39). The range of unstable wave numbers decreases as the
Reynolds number is decreased. The instability threshold of the long-wave instability is
thus found when the neutral stability curve intenseits the horizontal axis (k = 0).

6.6 Determination of the instability threshold
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Figure 6.3: Critical Reynolds number Rec as a function of the relative thickness Bi/Λ of
the pseudo-plug region. The solid line correspond to the four equation model
(6.31) and squares refer to the numerical solutions to the Orr-Sommerfeld
problem (6.39) of the power-law index n = 0.5 and inclination angle β = 45◦

(see chapter 6)

In Fig. 6.3, shows the critical Reynolds number against the relative thickness of the
pseudo-plug region Bi/Λ. The result of Orr-Sommerfeld problem shows a good agreement
with the result of the four-equation model for critical Reynolds number. As expected,
lowering the Deborah number has a stabilizing effect. Indeed, if De = 0 the plug is
solid and cannot deform, as a consequence the instability threshold Rec → ∞. Yet, the
stabilizing effect of the inelastic plug disappears when Bi → 0. This can be explored
by the disappearance of the plug region. Surprisingly enough, the same removal of this
stabilizing effect also occurs when the plug starts to invade the whole domain.
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6.7 Summary and Conclusion

A viscoplastic falling film over an inclined plane is studied. The effect of the elasticity
of the pseudo-plug region has been introduced at the free surface by using Saramito’s
model for elasto-viscoplastic fluid that combines both the Oldroyd viscoelastic model and
the Hershel-Bulkley viscoplastic model. A four equation model is produced by using the
weighted residual approach for the film thickness h, local flow rate q and amplitudes
of the normal and tangential stresses. Orr-Sommerfeld problem is derived to study the
linear stability analysis. A linear stability analysis gives values of the critical Reynolds
number in remarkable agreement with the Orr-Sommerfeld analysis. A follow-up of this
work would be to compute the non-linear roll-wave solutions and to introduce the viscous
response of the yielded region. Performing DNSs computations of the non-linear waves
will also enable a validation of the modeling approach.



Chapter 7

Conclusion

In this PhD thesis, I have studied the wave dynamics and the stability of a non-
Newtonian film falling on an inclined plane under the action of gravitational forces. To
this aim, three problems have been explored at low to moderate Reynolds numbers.

Newtonian fluid film flows have been studied from a long time, starting with classical
results such as the Benney the equation to two-equation model of Shkadov and so on.
Its main features are sketched in the chapter 2. Since the Benney equation is valid only
close to the instability threshold and fails to get the true solitary waves for large δ.
Kapitz-Shkadov derived a first order model by a uniform averaging, involved a set of two
coupled evolution equations for the film thickness h and the local flow rate q which fails
to capture the effect of inertia terms when δ ≫ 1. It is modified later on by Ruyer-Quil &
Manneville [111, 112, 113, 114] who have derived models by applying the weighted residual
technique using polynomials as a test functions, and including the effect of the second order
viscous dispersion terms. The models, such as full second-order, simplified and regularized
models, exhibit one-humped solitary wave branch of solution whose characteristics (speed,
amplitude etc.) are close in the drag-gravity regime (δ < 1) but depart significantly
one from another in the drag-inertia regime (δ ≫ 1). A fundamental question arises:
how to obtain the inertia terms in a form that accounts accurately for the drag-inertia
regime for the widest possible range of values of the reduced Reynolds number δ? To
answer this question, direct numerical simulations (DNSs) are performed. The solitary
wave can be characterized by its maximum amplitude, and phase speed in terms of the
reduced Reynolds number δ. Solitary-like waves are derived by considering a large enough
computational domain in order that the properties of the wave converge asymptotically
to the true solitary limit. To compute accurately the properties of stationary traveling
wave, Navier-Stokes equations are solved by using the Galerkin finite element method,
implemented with periodic boundary conditions and strong mesh refinement in the vicinity
of the solitary wave. The results of the solitary wave properties are briefly discussed in
chapter 3. A backflow phenomenon is also observed in the origin of capillary ripples at
high inertia value. This reversal phenomenon is related to the amplitude of the capillary

167
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waves which will not be observed when viscous dispersion effects become strong at the
trough of the wave, i.e., when the capillary ripples are damped. The phase speed of
the solitary waves is not affected by the viscosity of the fluid when approaching the
asymptotic limit at δ ≫ 1 whereas the amplitude of the wave is dependent on viscosity
and is stabilized by the viscous diffusion effects at low Γ. In the transition region, both
the height and the phase speed of the wave show maximum inflections at intermediate
values of δ. These are unique characteristics of the four-equation model by Ruyer-Quil &
Manneville [112]. It is also observed that for the same δ, the phase speed and wave height
get smaller when approaching the instability threshold or the critical Froude number. It
is confirmed by DNSs result that there is no more waves above the Fr−2

c = 2/5 and on
the other side, the phase speed and the maximum amplitude of solitary wave reaches
the largest values at Fr−2 = 0 for the flow along the vertical wall. The accuracy of the
four-equation model has been tested with DNSs using periodic boundary conditions for
the solitary wave solutions. The four-equation model captures well the speed, amplitude
and shape of the solitary wave and shows a good agreement with the DNSs result.

In chapter 4, most commonly used rheological constitutive laws are described for non-
Newtonian fluids. These laws have been used in the falling film problem in chapter 5
and 6.

In chapter 5, a power-law falling film flow over an inclined plate is studied. The vis-
cosity of a power-law fluid diverges when the strain rate goes to zero which has been
taken care by introducing a Newtonian plateau at small strain rate. A weighted residual
approach is applied to get a two-equation model within the framework of lubrication the-
ory. The derived model is the combination of the exact mass balance and the averaged
momentum equation, which is a set of two coupled evolution equations for the film thick-
ness h and the local flow rate q. Consistency of the model is achieved up to first order
in the film parameter for inertia terms and up to second order for viscous terms, which
is sufficient to capture the onset of instability and the damping of the short waves. In
the non-linear regime, the amplitude and wave number of both slow γ1 and fast γ2 waves
decreases as the power-law index is decreased. The capillary waves of the traveling wave
are reduced by the damping of viscosity. In the presence of these terms, γ2 waves are
generated from a Hopf bifurcation point and γ1 waves from the γ2 waves through a period
doubling bifurcation.

A remarkable agreement with the Orr-Sommerfeld stability analysis has been obtained
and particularly, the instability threshold is accurately recovered. Comparisons to the
DNSs of two-phase flows demonstrate that the models correctly predicts the phase speed,
maximum amplitude and shape of large-amplitude nearly solitary like waves and partic-
ularly, the details of the capillary ripples, the capillary shock region, preceding the main
humps are captured correctly. Comparisons to Orr-Sommerfeld stability analysis and to
DNS shows convincing agreement in both linear and nonlinear regimes. The mechanisms
of the primary instability have been deciphered within the framework of Whitham wave
hierarchy. The influence of shear-thinning or shear-thickening on the primary instability
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is shown to be non trivial. A destabilization of the base flow close to threshold is pro-
moted by the shear-thinning effect, whereas, far from threshold, it tends to stabilize the
base flow when the viscous damping of short waves becomes dominant. A reverse situa-
tion is observed in the case of shear-thickening fluids. Shear-thinning accelerates solitary
waves and promotes a subcritical onset of traveling waves at larger wavenumber than the
linear cut-off wavenumber. A conditional stability of the base flow is thus observed. This
phenomenon results from a reduction of the effective viscosity at the free surface. When
compared to DNS, simulations of the temporal response of the film based on weighted
residual model satisfactorily capture the conditional stability of the film.

In chapter 6, the stability of a viscoplastic fluid film falling down an inclined plane
is explored, with the aim of determining the critical Reynolds number for the onset of
the instability threshold. A low-dimensional model is derived for this flow based on the
long-wave expansion method. A four equation model is produced by using the weighted
residual approach for the film thickness h, local flow rate q and amplitudes of the normal
and tangential stresses. Orr-Sommerfeld problem is derived to study the linear stabil-
ity analysis. A linear stability analysis gives values of the critical Reynolds number in
remarkable agreement with the Orr-Sommerfeld analysis.

As possible perspectives to this work, I want to mention the importance of the complex
fluid flow phenomena for understanding some geophysical problems such as slurry flows,
debris flow, rill formation and so on. One can include the slip at the wall to simulate real
slurry flow and snow avalanches. One can derive a model for falling film problem by taking
corrugated, rough or non-flat wall to consider secondary instabilities from two-dimensional
to three-dimensional flows.
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A.1 Self-similarity and definition of the weight function

We shall now show that the solution to Lw = cst is proportional to the constant-
thickness velocity profile f0 as a result of the self-similarity of the constant-thickness
solution u0. Consider a film of thickness 1 + ϕ with ϕ ≪ 1, the constant-thickness
solution u0 then writes

u0 = (1 + ϕ)(n+1)/nf0[y/(1 + ϕ)] = [1 + ϕ(n+ 1)/n]f0(Y ) +O(ϕ2)

with Y = y/(1 + ϕ). The change of scales Y = y/(1 + ϕ) gives

dY [(dY u0)
n] = −(1 + ϕ)n+1 = −1− (n+ 1)ϕ+O(ϕ2) .

Using u0 = f0 + ϕ(n+ 1)/nf0 +O(ϕ2) we get

dY [(dY f0)
n] + [ϕ(n+ 1)/n]Lf0 +O(ϕ2) = −1− (n+ 1)ϕ+O(ϕ2)

and finally
Lf0 = −n . (A.1)

A.2 Estimation of the interfacial shear stress

In the present work, we have assumed that the air plays only a passive role in the
development of the liquid film dynamics. We thus have written a one-sided description
of the problem at hand by assuming the gas phase to stay at rest. This one-sided model
relies on the assumption of a negligible friction at the interface between the two phases,
which gives the zero tangential stress condition (5.3a).

A direct consequence of assuming a zero tangential stress at the interface is that the
strain rate also goes to zero at the interface in the case of the basic uniform film solution

170



APPENDIX A. APPENDIX 171

Fluid τi (mPa) τc (mPa)
Set 1 10 14
Set 2 22 140
Set 3 30 360

Table A.1: Interfacial and critical shear stresses τi and τc for Re = 100, β = 15◦ and the
fluid properties given in table 5.1. The gas phase properties correspond to air
νair = 15× 10−6 m2/s and ρair = 1.3 kg/m3.

whose stability has been studied in § 6.5. Because of the divergence of the viscosity in the
zero strain rate limit, we have been led to consider a Newtonian layer at the free surface
whose presence strongly affects the stability of the basic solution and modifies the nature
of the bifurcation of traveling-wave solutions from the marginal stability conditions when
shear-thinning fluids are considered.

The presence of this Newtonian layer in the basic state of a shear-thinning liquid
film should be proved when the friction of the gas phase is considered. We must thus
estimate the shear stress and the strain rates at the interface of the film in the inception
region of the flow prior to the instability onset. The time t0 that is necessary for the
uniform film solution to develop from the injection of the fluid can be estimated by
considering a plug flow at the injection of the liquid, a quasi-constant thickness h̄N of the
film and a gas phase initially at rest, whose density, dynamic and kinematic viscosities
are denoted by ρair, µair and νair. An estimation from below can be reached by assuming
a constant kinematic viscosity in the liquid equals to its maximum ν0 = µ0/ρ. We thus
get t0 ≈ h̄2N/[25ν0] from boundary-layer theory [124]. At this time, the layer of gas that
is dragged by the liquid has a thickness roughly equal to 5

√
νairt0 = h̄N

√

νair/ν0. From
there, we can estimate the strain rate γ̇air in the gas phase from the velocity of the liquid
at the interface which reaches nV/(n+1) for the fully developed basic state solution. We
get γ̇air ∼ nV

√

ν0/νair/[(n+1)h̄N]. The interfacial shear stress is given by τi = µairγ̇air and
shall be compared to the critical shear stress τc = µ0γ̇c above which the fluid rheology is
non-Newtonian. τi and τc are compared in table A.1 in the worst case, i.e. for Re = 100.
In all cases, τi is found to be less than τc (recall that τi is actually estimated from above).
We can therefore conclude that the basic uniform solution should present a Newtonian
layer before it undergoes an instability, the interfacial shear stress being too weak to get
rid of it. We can therefore conclude that taking into account the interfacial shear stress
should not modify the conclusion of this study.
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A.3 Coefficients of the Newtonian-power-law model

The coefficients of the averaged momentum balance (5.48) are given below in a fraction
form X̃ = X̃a/X̃b.

F̃ a = 630n((n+ 1)2(7n+ 3)) + (n− 1)η̄c
2+1/n {105n(4n+ 3)[n(34n+ 35) + 8]

+14(4n+ 3)η̄c
1+1/n[3(2n+ 1)(n(9n(n− 4)− 4) + 6) + 10(n− 1)(n+ 1)2(3n+ 2)η̄c]

+(2n+ 1)η̄c
2+2/n [−15(n− 6)(2n+ 1)(3n+ 2)(4n− 3)

+28(n− 1)(n+ 1)2(3n− 7)(4n+ 3)η̄c
}]

, (A.2a)

F̃ b = 42(n+ 1)(2n+ 1)(4n+ 3)
[

15(n+ 1)

+(n− 1)η̄c
1+1/n

(

30n+ 20 + (2n+ 1)(3n− 7)η̄c
1+1/n

)]

, (A.2b)

G̃a = 630n3(n+ 1) + (n− 1)η̄c
2+1/n

{

105n2(4n+ 3)(10n+ 7) + 14(4n+ 3)η̄c
1+1/n

[

3(2n+ 1){n[n(3n− 25) + 3) + 6}+ 10(n− 1)(n+ 1)2(3n+ 2)η̄c
]

+(2n− 1)η̄c
2+2/n

[

28η̄c(4n+ 3)(3n− 7)(n+ 1)2(n− 1)

−15(4n− 3)(3n+ 2)(2n+ 1)(n− 6)
]}

, (A.2c)

G̃b =
n

n+ 1
F̃ b , (A.2d)

Ĩa = 5(n+ 1)(3n+ 2)
[

3 + 2(n− 1)η̄c
2+1/n

]

, (A.2e)

Ĩb =
1

21(2n+ 1)(4n+ 3)
G̃b , (A.2f)

A.4 Orr-Sommerfeld analysis of Carreau-law films

In this section, we consider the primary stability of a uniform film flow when the
rheological behavior of the liquid is governed by the three-parameter Carreau law (5.30).
The base flow is given by

1− y = (s2 + U ′2)(n−1)/2U ′ (A.3)

with the no slip condition U(0) = 0.
Proceeding to The decomposition in normal modes of infinitesimal perturbations

around the base state leads to the Orr-Sommerfeld equation

ikRe
[

(U − c)(D2 − k2)ψ − ψU ′′
]

=
(

D2 + k2
) [

(s2 + U ′2)(n−3)/2(s2 + nU ′2)
(

D2 + k2
)

ψ
]

−4k2D
[

(s2 + U ′2)(n−1)/2Dψ
]

, (A.4)

where k and c refer again to the wavenumber and phase speed respectively. The boundary
conditions associated with (A.4) are (5.63c), (5.63d) and (5.63e). [109] and [142] have
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considered the stability of a shear-thinning falling film using a four-parameter Carreau law
accounting for Newtonian plateaus at high and low shear rates. The system (A.4), (5.63c),
(5.63d) and (5.63e) corresponds to the Orr-Sommerfeld system of equations derived by
[142] when the influence of the Newtonian plateau at high shear rate is neglected, that is
when the parameter I is set to zero in their formulation.

A.5 Simulation file of Gerris

Gerris is a console-based program. It takes parameter or simulation files called
‘filmst.gfs’ as input and produces various types of files as output.

# case plan with shear-thinning fluid

# pb detected: it lacks a root of 2 in the definition of D2

# values of the parameters

Define REYNOLDS 50.

Define BOND 61.097250694361961

Define RATIO 21.583246059529323

Define N 0.607

# computational domain: length and depth level of mesh

Define LEVEL 11

Define LENGTH 60.

# plan: height and angle of inclination (in degrees)

Define RADIUS 0.5

Define ANGLE 15

# density in the liquid (1) and gas (1 / 100)

Define RHO(T) (T + 1./100.*(1. - T))

# body of the function: Navier-Stokes(a box with a periodicity of flow)

1 1 GfsSimulation GfsBox GfsGEdge {} {

# parameters of the computational domain length, specific volume

# (gravity = 1 by default)

PhysicalParams { L = LENGTH }

PhysicalParams { alpha = 1./RHO(T) }

# refinement default domain

Refine 6
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# refinement for a maximum surface area < 2 times the height of

# the liquid + Plan

Refine (y < 2.*(RADIUS + 1.) ? LEVEL : 6)

Refine (y < RADIUS + 1.1 && y > RADIUS+ 0.9 ? LEVEL+2 : 6)

# definition of map in domain

Solid (y - RADIUS)

# interface definition, the variable ‘radius’ Position and function

VariableTracerVOF T

VariableCurvature K T Kmax

VariablePosition Y T y

# definition of surface tension

SourceTension T BOND K

# initialization of the interface

InitFraction T (1. + RADIUS + 0.1*sin(2.*M_PI/LENGTH*x) - y)

# initialization of the semi-parabolic velocity in the liquid

Init {} {

U = {

y = y - RADIUS;

if (y < 1.)

return (N/(N+1.))*(1.- exp((N+1.)*log(1- y)/N))*sqrt(REYNOLDS);

else

return sqrt(REYNOLDS)*N/(N+1.);

}

}

# definition of volume forces

Source U T

Source V -T/tan(ANGLE*M_PI/180.)

# definition of viscosity

SourceViscosity {} {

double mu, mumax;

double m;

mu = exp (-0.5*N*log (REYNOLDS)) ;

mumax = RATIO/sqrt(REYNOLDS) ;

if (D2 > 0.)
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m = mu*exp ((N - 1.)*log (sqrt(2.)*D2));

else

m = mumax;

return RHO(T)*MIN(m, mumax);

} {

# Crank-Nicholson does not converge for these cases, we need backward Euler

# (beta = 0.5 -> Crank-Nicholson, beta = 1 -> backward Euler)

beta = 1

}

# adaptation of the mesh according to the vorticity

AdaptVorticity { istep = 1 } { maxlevel = LEVEL cmax = 1 }

# adaptation of the mesh in the liquid

AdaptFunction { istep = 1 } { cmax = 0 maxlevel = (LEVEL - 3) } (T > 0.)

# adaptation of the mesh on the free surface

AdaptFunction { istep = 1 } {

cmax = 0.

maxlevel = LEVEL

cfactor = 2

} (T > 0. && T < 1. ? Kmax*dL : 0)

# results: standards enable the position and velocity in the fluid

OutputScalarNorm { istep = 1 } y { v = Y }

OutputScalarNorm { istep = 1 } u { v = U*T }

OutputScalarNorm { istep = 1 } v { v = V*T }

# results: average height of the liquid

OutputScalarNorm { istep = 1 } h { v = T }

# graphical results for Gfsview

OutputSimulation { step = 5 } sim-%lf.gfs

EventScript { step = 5 } { gzip -f -q sim-*.gfs }

# graphical results to form a video

OutputSimulation { step = 0.1 } stdout

EventScript { step = 0.1 } { echo "Save stdout { width = 1024 height = 1024 }" }

}

# boundary condition of the domain (Dirichlet condition on the map)

GfsBox {
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top = Boundary { BcDirichlet U 0 }

}

# periodicity of the flow (from right to left)

1 1 right
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Résumé

Dans cette thèse, la dynamique et la stabilité d’un film mince tombant sur un plan
incliné sous l’action de la pesanteur sont étudiées. Un schéma de la géométrie étudiée est
présenté dans la figure A.1. Un film mince s’écoulant sur un plan incliné ou une paroi
verticale en présence de surface libre présente une variété de comportements fascinants. La
dynamique des ondes à la surface de films minces est important pour nombre d’industries
en raison de ses effets dramatiques sur les transferts de masse, de chaleur et de quantité
de mouvement qui déterminent la conception de colonnes de distillation et d’adsorption,
des évaporateurs et les condenseurs, ainsi que la qualité des revêtements d’émulsions
photographiques, de peintures de protection etc. En outre, la stabilité d’un écoulement
de film tombant le long d’un plan incliné sous l’action de la pesanteur est un sujet de
recherche fondamental. Le travail présenté dans ce manuscrit porte principalement sur
les effets de la rhéologie du fluide sur la dynamique complexe des ondes qui se développent
à la surface libre. Pour cet objectif, trois problèmes ont été explorés pour des valeurs faible
à modérée du nombre de Reynolds.

(I) Ondes solitaires sur un film tombant newtonien où je considère un film
newtonien s’écoulant sur un plan incliné avec pour objectif de décrire les propriétés (vitesse
de phase, amplitude maximale et la forme) des ondes solitaires, voir le chapitre 3. Les
films tombants ont la particularité d’être des écoulements à faible nombre de Reynolds
dont le régime ondulatoire est supercritique et déclenché par une instabilité grande de
longueur d’onde. Par conséquent, les ondes observées à la surface du film sont beaucoup
plus longues que l’épaisseur typique du film et une séparation des échelles peut être utilisé
avec l’introduction d’un paramètre du film ǫ ∼ ∂x,t rendant compte des déformations lentes
en temps et en espace des ondes par rapport à la diffusion rapide au travers de la couche
de film rendue possible par la viscosité. Les films tombants sont donc susceptibles d’une
description détaillée en termes de modèles de faible dimension. Pour être plus précis, une
description de l’écoulement en termes d’un nombre limité de variables fonctions du temps
t et de la position x sur le plan peut être substituée aux équations de Navier-Stokes, après
élimination de la coordonnée normale au plan y.

Le problème de la stabilité d’un écoulement laminaire d’un film fluide visqueux sur un
plan incliné sous l’effet de la gravité a d’abord été formulé et résolu numériquement par
Yih [147]. Les écoulements de films liquides newtoniens ont été étudiées depuis un certain
temps déjà, en commençant avec des résultats classiques tels que l’équation Benney ou le
modèle à deux équations de Shkadov. La phénoménologie d’un tel écoulement est esquissée
au chapitre 2. Le travail présenté au chapitre 3 peut servir de validation à la technique des
résidus pondérés initiée par Ruyer-Quil et Manneville [111, 112, 113, 114]. Un test crucial
pour la validation des modèles consiste en la reproduction des propriétés (forme, vitesse
de phase, amplitude) des ondes solitaires en fonction de la distance au seuil de l’instabilité.
La plupart des modèles prédisent un comportement similaire près du seuil (apparition du
régime visco-gravitaire - ce qui correspond à un équilibre entre la traînée visqueuse sur



�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

g
X

Y

U

V

uN
h N

β

h
(X
,T

)

Figure A.1: Un croquis de la géométrie d’un film mince tombant sur un plan incliné.
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Figure A.2: DNS - modèle au second ordre La vitesse de phase c et l’amplitude
hm des ondes solitaires en fonction du nombre de Reynolds réduit δ. Les
traits épais et les traits minces correspondent à la DNS et au modèle au
second ordre respectivement. Traits pleins Γ = 193 (solution eau-glycérine);
pointillés longs Γ = 3400 (eau), pointillés courts Γ = 10000. Vitesse de phase
asymptotique, c ≈ 2.57.
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Figure A.3: Vitesse de phase a) et b) amplitude des ondes en fonctions de δ pour une
paroi verticale (1/Fr2 = 0.0) et des parois inclinées (1/Fr2 = 0.1, 0.2, 0.3).
Les traits épais et les traits minces correspondent à la DNS et au modèle au
second ordre respectivement. Le fluide correspond à un nombre de Kapitza
Γ∗ = 193.

le mur et l’accélération de la pesanteur, où l’inertie joue un rôle seulement perturbatif)
- mais les résultats présentent de grandes différences dans le régime intermédiaire et aux
grandes valeurs de δ, c’est à dire lorsque l’inertie devient significative (transition et régime
inertiel). Ainsi, une simulation rigoureuse des équations de Navier-Stokes est nécessaire
pour résoudre ce problème.

Dans la figure. A.2 les résultats du modèle du second ordre (vitesse de phase et ampli-
tude maximale de l’onde) sont comparés aux simulations numériques directes DNSs (où
les équations de Navier-Stokes sont résolues en utilisant la méthode des éléments finis et
une projection de Galerkin). Les ondes presque solitaires sont calculées en considérant un
domaine de calcul assez grand afin que les propriétés des ondes convergent asymptotique-
ment vers la limite de ondes solitaires (domaine infini). Un phénomène de formation d’un
contre-écoulement est observé au creux des ondes capillaires lorsque l’inertie est grande.
Puisque l’amplitude des ondes dépend de l’inertie, la formation d’un contre-écoulement
est liée à l’amplitude des ondes capillaires qui ne seront pas observées lorsque les effets
de dispersion visqueuse deviennent forts, c’est à dire, lorsque les ondulations capillaires
sont amorties. La vitesse de phase des ondes solitaires n’est pas affectée par la viscosité
du fluide et elle se rapproche de la limite asymptotique à (δ ≫ 1) alors que l’amplitude
de l’onde dépend de la viscosité et est atténuée à faibles nombres de Kapitza (Γ). On ob-
serve également que, pour une même valeur du nombre de Reynolds réduit δ, la vitesse de
phase et l’amplitude des ondes deviennent plus faibles à l’approche du seuil d’instabilité



correspondant à une valeur constante du nombre Froude. Le seuil de l’instabilité d’onde
longue, Rec = 5 cot β/6 peut en effet se récrire en terme du nombre de Froude Fr−2

c = 2/5.
Les DNSs confirment qu’il n’y a plus d’ondes au-dessus de cette valeur critique et que,
par ailleurs, la vitesse de phase et l’amplitude maximale de l’onde solitaire atteignent les
valeurs les plus élevées à Fr−2 = 0 pour un écoulement le long d’une paroi verticale. Dans
la figure A.3, les résultats du modèle au second ordre et des DNSs sont comparés en ce
qui concerne la vitesse de phase et la hauteur d’onde pour un plan vertical ou incliné. Le
modèle au second ordre prédit correctement la vitesse, l’amplitude et la forme de l’onde
solitaire et présente un bon accord avec les résultats des simulations numériques directes.

Au chapitre 4, je décris différents types de fluides non-newtoniens et de lois de com-
portement que je prends en considération aux chapitre 5 et chapitre 6 dans le contexte
des films tombants.

(II) Fluides newtoniens généralisés où je considère un fluide en loi de puissance
qui coule sur un plan incliné sous l’action de l’accélération gravitationnelle. Un écoulement
de fluide en loi de puissance est modélisé dans le cadre de l’approximation de lubrification
au moyen de la technique des résidus pondérés en termes de l’épaisseur locale du film h
et du débit local q (où q =

∫ h

0
udy). L’étude porte sur les effets d’un fluide rhéofluidifiant

ou rhéoépaississant sur la stabilité de la couche mince de fluide cisaillé. Dandapat et
Mukhopadhay [32] ont étudié les solutions quasi-staionnaires d’une équation d’évolution
modélisant la dynamique d’un film de fluide en loi de puissance. Ils ont constaté que
l’interaction non linéaire entre les ondes cinématiques, inertielles et de gravité était re-
sponsable de la formation des ondes sur un film mince d’un fluide en loi de puissance et
que l’indice n de la loi de puissance joue un rôle essentiel dans le mécanisme de forma-
tion des ondes. Il est donc souhaitable d’étudier les régimes d’ondes qui se forment à la
surface du film en faisant varier les différents paramètres pour une meilleure compréhen-
sion des phénomènes physiques. Un modèle en loi de puissance représente une classe
de fluides newtoniens généralisés qui ne présentent pas de propriétés de relaxation des
contraintes, d’élasticité ou de plasticité. Toutefois, ces fluides exhibent un comportement
rhéofluidifiant (pseudo-plastique) ou rhéoépaississant (dilatant) (pour plus de détails voir
les chapitres 4 et 5). Une loi de comportement en loi de puissance permet de décrire
le comportement des suspensions colloïdes et d’une gamme de liquides polymères et de
liquides biologiques à faible poids moléculaire, est utile pour la glaciologie, restitue la
rhéologie du sang. Cette loi de comportement diffère de celle d’un fluide newtonien en ce
que la viscosité dépend de la partie symétrique du gradient de vitesse de sorte que, sous
un cisaillement simple, la viscosité dépend de la vitesse de cisaillement. Pour être plus
précis de tels effets sont sans conséquence, la principale différence avec le fluide newtonien
étant le comportent rhéofluidifiant ou rhéoépaississant.

Les ondes à rouleaux (ou “roll waves”), c’est-à-dire des ressauts hydrauliques reliés par
des sections d’écoulements laminaires, sont généralement observées en milieu naturel dans
les régimes torrentielles des rivières et aussi dans les conduits faits de main d’homme tels
que les déversoirs [41, 24, 58]. L’apparition possible d’ondes à rouleaux était déjà prise
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en compte dans la conception d’aqueducs par les ingénieurs romains [45]. L’apparition
d’ondes à rouleaux est le résultat d’un mécanisme d’instabilité qui est similaire à la forma-
tion d’ondes solitaires à la surface d’un film liquide laminaire tombant sur un plan incliné.
Dans ce dernier cas, la tension de surface empêche le déferlement de l’onde et arrête la la
formation des ressauts hydrauliques. Ces ondes sont parfois nommées ‘ondes capillaires à
rouleaux’ [8]. En tant que tels, les écoulements de film peuvent être vus comme un sys-
tème miniature dont la dynamique ondulatoire est étroitement liée au régime torrentiel
des cours d’eau à des débits bien plus importants.

Dans la figure. A.9 formation d’ondes de rouleaux observée dans un mélange d’eau et
de kaolinite. Les ondes à rouleaux peuvent également être observées dans les processus
de ruissellement par la pluie avec une augmentation potentielle de l’érosion des sols [72].
Dans les estuaires, les rivières peuvent porter de grande quantité d’argile et les coulées
de boue qui en résultent sont souvent pulsés et ressemblent à des ondes à rouleaux dans
des écoulements turbulents en eau claire [73]. Pour ces deux derniers exemples, les inter-
actions entre les particules d’argile peuvent créer des structures microscopiques étendues
qui sont déformées et peu à peu décomposées quand une contrainte est appliquée. En
conséquence, la réponse du fluide à une contrainte est non linéaire et cette boue présente
un comportement rhéofluidifiant. Ng et Mei [85] ont étudié les ondes à rouleaux à la sur-
face d’une couche mince de boue modélisée par un fluide en loi de puissance. Les résultats
ont montré que les ondes très longues présentant une dissipation au niveau des fronts dis-
continus, ne pouvaient pas être observés si l’écoulement uniforme est linéairement stable
et lorsque le fluide est légèrement non-newtonien. Toutefois, lorsque le fluide présente
un comportement non-newtonien marqué, les ondes à rouleaux de très grandes longueurs
peuvent encore exister, même si l’écoulement uniforme correspondant est stable vis à vis
de perturbations infinitésimales. Hwang et al. [52] ont étudié la stabilité linéaire d’un
film de fluide en loi de puissance tombant sur un plan incliné en utilisant une méthode
intégrale. Les résultats révèlent que le système est plus instable lorsque l’indice n diminue.
Le problème d’Orr-Sommerfel est résolu afin d’étudier l’analyse de stabilité linéaire d’un

film d’épaisseur uniforme. La cohérence du modèle est assurée jusqu’au premier ordre vis
à vis du paramètre du film pour ce qui concerne l’inertie et au second ordre pour les ter-
mes visqueux, ce qui est suffisant pour capturer le seuil de l’instabilité et l’amortissement
des ondes courtes. La figure. A.4(a) illustre le comportement du taux de croissance spa-
tial −ki = −ℑ(k) en fonction du nombre d’onde kr = ℜ(k). La figure. A.4(b) présente
la courbe de stabilité marginale, c.-à-dire le nombre d’onde de coupure kc en fonction
du nombre de Reynolds Re. Comme la concentration en gomme xanthane des solutions
augmente, le seuil d’instabilité est déplacé avec des valeurs du nombre de Reynolds cri-
tique plus basse, tandis que la gamme de nombres d’onde instables est réduite. Les effets
rhéofluidifiants favorisent donc l’instabilité primaire près du seuil [83], mais ont aussi ten-
dance à stabiliser l’écoulement de base loin du seuil. Les analyses d’Orr-Sommerfeld ont
été comparées avec (We 6= 0) ou sans la tension de surface (We = 0). En ce qui concerne
les solutions rhéoépaississantes de fécule de maïs, les courbes de stabilité marginale dans
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le plan (Re, k) sont présentées dans la figure. A.5. Les numéros 4, 5 et 6 se réfèrent aux
propriétés des solutions de fécule de maïs étudiées au chapitre 5. Avec une augmentation
de la concentration en fécule de maïs, le seuil d’instabilité est déplacé vers de plus grandes
valeurs du nombre de Reynolds critique, alors que la gamme des nombre d’onde insta-
bles est élargie. Contrairement à ce qui est observé pour les fluides rhéofluidifiants, les
effets rhéoépaississants défavorisent donc l’instabilité primaire près du seuil [83], mais ont
aussi tendance à déstabiliser l’écoulement de base loin du seuil. Dans la figure. A.6 j’ai
représenté les variations du nombre de Froude critique en fonction de l’épaisseur relative
sn de la région newtonienne près de la surface libre pour l’écoulement de base pour des
fluides rhéoépaissisants et rhéofluidifiants. Le seuil prédit par le modèle à deux équations
est comparé à celui obtenu en résolvant numériquement le problème d’Orr-Sommerfeld.
Un accord remarquable a été obtenu, et en particulier, le seuil d’instabilité est précisément
prédit.

Les comparaisons avec les simulations numériques directes diphasiques montrent que le
modèle prédit correctement la vitesse de phase, l’amplitude maximale et la forme des on-
des périodiques, et en particulier, les détails des ondulations capillaires, la région de choc
capillaire, précédant les fronts principaux sont prédits correctement. Les comparaisons
avec l’analyse de la stabilité d’Orr-Sommerfeld et la DNS présentent un accord convain-
cant dans les régimes à la fois linéaires et non linéaires. Les mécanismes de l’instabilité
primaire ont été étudiés dans le cadre de la hiérarchie d’ondes de Whitham. L’influence des
effets rhéofluidifiants ou rhéoépaissisants sur l’instabilité primaire est non triviale. Dans
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le régime non-linéaire, le nombre d’onde et l’amplitude des ondes lentes γ1 et rapides γ2
diminue à mesure que l’indice n de la loi de puissance est réduit. Les ondes capillaires à
l’avant du front sont atténuées par la viscosité. En présence de ces termes visqueux, les
ondes γ2 apparaissent à partir d’une bifurcation de Hopf (voir fig. A.7) et les ondes γ1 à
partir des ondes γ2 par une bifurcation en doublement de période. Les effets rhéofluid-
ifiants accélèrent les ondes solitaires et favorisent une apparition sous-critique des ondes
non linéaires à un nombre d’onde plus grand que le nombre d’onde de coupure linéaire.
Une stabilité conditionnelle de l’écoulement est ainsi observée. Ce phénomène résulte
d’une réduction de la viscosité effective à la surface libre. En comparaison avec la DNS,
les simulations de la réponse temporelle du film fondé sur le modèle aux résidus pondérés
permet de reproduire de manière satisfaisante la stabilité conditionnelle du film.

(III) Film tombant viscoplastique où je considère un film viscoplastique tombant
sur un plan incliné qui est décrit par une loi de comportement de Herschel-Bukley au
chapitre 6. L’élasticité de la région pseudo-bouchon près de l’interface est prie en compte
par une relation constitutive élasto-viscoplastique formulée par Saramito [121]. Un modèle
est obtenu sous forme de quatre équations d’évolution pour l’épaisseur du film, le débit
local et les amplitudes des contraintes normales et tangentielles. La stabilité d’un film
tombant de liquide viscoplastique est explorée dans ce chapitre, dans le but de déterminer
le nombre de Reynolds critique pour l’apparition du seuil de l’instabilité. En fait, certains
arguments de stabilité indiquent qu’une instabilité interfaciale est absente pour les films
viscoplastiques [8]. L’essence de cet argument est associé à la façon dont on perturbe les
régions de l’écoulement qui ne sont pas encore déformées. Au sein d’un film viscoplastique
d’épaisseur uniforme, une telle région se trouve toujours près de la surface libre, formant
un bouchon rigide. Balmforth et Liu [8] ont d’abord cherché à décrire l’apparition d’ondes
de rouleaux observables dans les coulées de boue. En conséquence, ils ne considèrent pas la
tension de surface, ni les effets visqueux élongationnels. Dans ce cadre, des perturbations
de faible amplitude à la surface libre sont suffisants pour déclencher l’instabilité et les
écoulements de films viscoplastiques devraient être conditionnellement stable. Afin de
décrire la dynamique d’un film viscoplastique, la tension de surface et la diffusion visqueuse
d’origine élongationelle doivent être prises en compte. Par conséquent, la théorie du
pseudo-bouchon proposée par Balmforth et Liu [8] est adaptée à l’aide de la loi constitutive
proposée par Saramito [121] au chapitre 6.

Outre ses propriétés rhéofluidifiantes, une autre propriété importante de la boue est
que les interactions entre les particules d’argile permettent de créer des structures micro-
scopiques qui résistent à un certaine contrainte avant de se déformer et de permettre au
fluide de s’écouler. Ainsi, la boue est un fluide à seuil. Ces effets viscoplastiques jouent
un rôle clé dans la dynamique des écoulements de boue et place ce fluide dans le domaine
de la mécanique des fluides non-newtoniens. Des coulées intermittentes ont été observées
dans les écoulements de boue dans des rivières inondées ainsi que dans des canaux (En-
gelund & Wan [43], Coussot [29]). Une analyse de stabilité linéaire donne des valeurs du
nombre de Reynolds critique en accord remarquable avec l’analyse d’Orr-Sommerfeld. La
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figure A.8 représente le nombre de Reynolds critique en fonction de l’épaisseur relative de
la région pseudo-bouchon Bi/Λ. Le résultat du problème d’Orr-Sommerfeld présente un
bon accord avec le résultat du modèle à quatre équations en ce qui concerne le nombre de
Reynolds critique. Comme prévu, l’abaissement du nombre de Deborah a un effet stabil-
isant. En effet, à la limite De = 0 le bouchon est solide et ne peut plus se déformer, et par
conséquent,le seuil d’instabilité est repoussé à l’infini Rec → ∞. Pourtant, l’effet stabil-
isateur de l’inélasticité du bouchon disparaît lorsque Bi→ 0. Cela peut être expliqué par
la disparition de la région bouchon. Curieusement, une suppression de cet effet stabilisant
est aussi observé lorsque le bouchon commence à envahir l’ensemble du domaine fluide.

Comme perspectives possibles à ce travail, je tiens à mentionner l’importance des
phénomènes d’écoulement de fluides complexes pour comprendre certains problèmes géo-
physiques tels que les laves torrentielles, les écoulements de débris ou le ruissellement
en lien avec les phénomènes d’érosion. Une suite possible de mon travail serait de tenir
compte d’un glissement à la paroi pour simuler des écoulement des boues réels et des
avalanches de neige par exemple. Il est possible d’obtenir un modèle pour un écoulement
de film tombant en tenant compte d’une paroi ondulée, rugueuse ou non-plane, et de
considérer des instabilités secondaires tridimensionnelles.



Figure A.9: Observation d’ondes à rouleaux dans un ecoulement d’un mélange d’eau et
de kaolinite, tiré de Coussot [29].


