
HAL Id: tel-00828443
https://theses.hal.science/tel-00828443v1

Submitted on 31 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of a Software Defined Radio
multi-standard system using Graph Theory.

Patricia Kaiser

To cite this version:
Patricia Kaiser. Optimization of a Software Defined Radio multi-standard system using Graph The-
ory.. Other. Supélec; Université Libanaise, 2012. English. �NNT : 2012SUPL0025�. �tel-00828443�

https://theses.hal.science/tel-00828443v1
https://hal.archives-ouvertes.fr

 N
o
 ordre : 2012-25-TH

THESE EN CO-TUTELLE

Pour obtenir le grade de Docteur délivré par

L’Ecole Doctorale des Sciences et Technologie

Université Libanaise

Spécialité : Mathématiques

SUPELEC
Spécialité : Traitement du Signal et Télécommunications

Equipe d’accueil : Institut d’Electronique et de télécommunications de Rennes

Ecole Doctorale : MATISSE

Composante universitaire : S.P.M.

Présentée et soutenue publiquement par

Patricia KAISER

Le 20 Décembre 2012

Optimization of a Software Defined Radio multi-standard system using

Graph Theory

Directeurs de thèse : Profs. Yves LOUËT et Amine EL SAHILIProfs. Yves LOUËT et Amine EL SAHILIProfs. Yves LOUËT et Amine EL SAHILIProfs. Yves LOUËT et Amine EL SAHILI

Membres du Jury

Stéphane Pérennes, Professeur ,INRIA ,Université de Nice Rapporteur

Francis Lau Professeur,Université de Hong Kong Rapporteur

Samer Lahoud, Maîtres de Conférences, Université de Rennes 1 Examinateur

Oussama Bazzi, Professeur, Université Libanaise Examinateur

Ali Al Ghouwayel, Maîtres de Conférences, Lebanese International University Examinateur

Yves Louët, Professeur ,SUPELEC Co-Directeur de thèse

Amine El Sahili, Professeur, Université Libanaise Co-Directeur de thèse

Dedications

To my parents

i

Acknowledgments

First of all, I want to thank God for giving me the patience, will, and courage to finish
this thesis and has bestowed upon me his blessings all along these years.

Many have provided me with help and encouragement during this thesis and it is my plea-
sure to acknowledge their guidance and support.
I would like to begin by conveying my deep and sincere gratitude to my devoted supervi-
sors, Professor Amine EL SAHILI and Professor Yves LOUET for their continuous help
and understanding, and for always believing in my capabalities especially when I was lost
for a while. With all their support, I started an exciting research journey and was able to
draw a map of this journey, hoping that it can lead the way for useful results in the future.

I wish to express my warmest thanks to my parents who have given me endless love and
support in all my decisions, and for all their understanding and patience throughout my
educational life.

I am very thankful to Professor Francis LAU and Professor Stphane PERENNES for first
having accepted to review my thesis, and then their precious time for reading and evaluat-
ing the work. I am grateful to Professor Oussama BAZZI for honoring me by accepting to
be the chair person of my committee. I would like to further thank Dr. Samer LAHOUD
and Dr. Ali AL GHOUWAYEL for accepting to participate to my committee and their
valuable remarks.

I want to thank Dr. Ali AL GHOUWAYEL for having presented my supervisors one to
another, thus participating to create this successful joint Ph.D work between the two uni-
versities; the Lebanese University (Hadath Campus) and Suplec (Rennes campus).

I wish to thank all my friends for their friendship and the pleasant atmosphere that they
have created inside and outside the SCEE lab. I particularly want to thank my dear friend
and colleague Salma BOURBIA for her major contribution to practice and improve my
French language, as well as her availability and help concerning any queries or problems
that I have faced in the programming field during my thesis work.

Finally, I would like to acknowledge the financial support provided by EGIDE (Centre
franÃ§ais pour l’Accueil et les changes internationaux) and the AUF (Agence Universi-
taire de la Francophonie) during some periods of my Ph.D studies.

Patricia (Kaiser) Maatouk December 20, 2012.

iii

Abbreviations

ADC Analog-to-Digital Converter
AFE Analog Front End
AGC Automatic Gain Control
ASIC Application Specific Integrated Circuit
B-arc Backward hyperarc
BC Building Cost
BFS Breadth-First Search
BP Break-down Part
BPF Band Pass Filter
CC Computational Cost
CF Cost Function
CO Common Operator
DAC Digital-to-Analog Converter
DFE Digital Front End
DFS Depth-First Search
DFT Discrete Fourrier Transform
DMFFT Dual Mode FFT
DP Duplicated Part
DSP Digital Signal Processor
DTM Deterministic Turing Machine
DUP DP+UP
DUPB DUP+BP
ER-LFSR Extended Reconfigurable LFSR
ES Exhaustive Search
F-arc Forward hyperarc
FFT Fast Fourrier Transform
FPGA Field Programmable Gate Array
GNG Generated Graph
GSM Global System for Mobile communication
HC Hamiltonian Cycle problem
IF Intermediate Frequency
LFSR Linear Feedback Shift Register
LNA Low Noise Amplifier
LO Local Oscillator
LUT LookUp Table
MCD Minimum Cost Design algorithm
MST Minimum Spanning Tree

v

vi

NDTM Non-Deterministic Turing Machine
NoCs Number of Calls
NP NonDeterministic Polynomial time problem
OFDM Orthogonal Frequency Division Multiplexing
P Polynomial-time problem
PE Processing Element
R-LFSR Reconfigurable LFSR
RF Radio Frequency
SA Simulated Annealing
SAT Satisfiability Problem
SBT Shortest B-Tree
SDR SoftWare-Defined Radio
SWR SoftWare Radio
TSP Traveling Salesman Problem
UMTS Universal Mobile Telecommunication System
UP Unduplicated Part
Wifi Wireless - Fidelity
2G 2nd Generation
3G 3rd Generation
4G 4th Generation

Math Notations

V (G) Set of vertices of G
E(G) Set of edges (hyperedges, arcs, or hyperarcs) of G
υ(G) Number of vertices in G
e(G) Number of edges (or arcs) of G
n(H) Number of vertices in H
m(H) Number of hyperedges (or hyperarcs) in H
G\e edge-deleted subgraph
G− v vertex-deleted subgraph
Kn complete graph of order n
NG(v) Neighborhood of v in G
dG(v) degree of v in G
l(P) length of path P
∆(G) maximum degree of a vertex in G
dG(u, v) distance between u & v in G
α(G) stability number of G
Kr,s complete bipartite graph partitioned into X,Y, with |X| = r and |Y | = s
C(G) closure of graph G
χ(G) chromatic number of G
G(D) Underlying graph of digraph D
~G an orientation of graph G
N−

D (u) in-neighborhood of u in D
N+

D (u) out-neighborhood of u in D
d−D(u) in-degree of u in D
d+D(u) out-degree of u in D
∆−(D) maximum in-degree of a vertex in D
∆+(D) maximum out-degree of a vertex in D
S(x) star of center x in hypergraphs
r(H) maximum size of a hyperedge in a hypergraph H
Kr

n complete r-uniform hypergraph of order n
T (E) tail set of hyperarc E
H(E) head set of hyperarc E
FSH(v) Forward Star of v in H
BSH(v) Backward Star of v in H
s−(H) maximum in-size of directed hypergraph H
s+(H) maximum out-size of directed hypergraph H
L(v) level of block (or vertex) v

vii

viii

BFP (eij) BF-reduction of eij via P
w(P) weight of path P
wE(x, y) Number of calls (or weight) on the BF-reduction (x, y) of hyperarc E
GF Galois Field
C Complex Field

Contents

Contents ix

I Résumé en français 1

Résumé en Français 3
0.1 Techniques de paramétrisation pour la radio logicielle restreinte 5

0.1.1 Emergence de la radio logicielle restreinte 5
0.1.2 Les techniques de paramétrisation 5

0.1.2.1 L’approche pragmatique de la paramétrisation 6
0.1.2.2 L’approche théorique de la paramétrisation 6

0.2 La théorie des graphes et ses applications 9
0.2.1 Définitions nécessaires de la théorie des graphes 9
0.2.2 La théorie de la complexité . 12

0.2.2.1 La classe P . 12
0.2.2.2 La classe NP . 13
0.2.2.3 Problèmes NP-complet . 13

0.2.3 Applications de la théorie des graphes 14
0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétri-

sation . 15
0.3.1 Un modèle formel pour les différents aspects d’un équipement multi-

standards . 15
0.3.1.1 Un modèle mathématique de la structure graphique d’un

équipement multi-standards 15
0.3.1.2 Une représentation d’une option de mise en œuvre 18
0.3.1.3 Description de l’hypergraphe orienté multi-standards à par-

tir de l’hypergraphe mono-standard 19
0.3.1.4 L’équation formelle de la fonction de coût 20

0.3.2 Une borne supérieure du nombre d’options de mise en œuvre 21
0.3.3 La complexité de notre problème d’optimisation 23

0.4 Une technique d’optimisation des équipements multi-standards utilisant la
notion d’hypergraphes orientés . 27
0.4.1 Exclusion de certaines configurations pour la recherche du coût min-

imal . 27
0.4.1.1 Un exemple . 27
0.4.1.2 Généralisation du principe l’exclusion 28

ix

x contents

0.4.2 Un algorithme de recherche de configuration à coût minimal 30
0.4.3 Complexité de calcul de l’algorithme MCD 33

0.5 Conclusion . 34

II Ph.D. Dissertation 37

General Introduction 39

1 Parametrization technique for Software-Defined Radio 45
1.1 SoftWare Radio . 46
1.2 Conventional transceiver architecture . 47
1.3 The Feasible SoftWare Radio design . 49

1.3.1 Emergence of Software-Defined Radio 49
1.3.2 Challenges imposed by the ADC and DAC 50
1.3.3 The Software-defined Radio architecture 51

1.4 Parametrization technique . 52
1.4.1 The Common Operators technique 53
1.4.2 The Pragmatic approach of parametrization 54
1.4.3 The Theoretical approach of parametrization 55

1.4.3.1 Graph Modeling of SDR systems 56
1.4.3.2 An Objective Cost Function 59

1.5 Conclusions . 66

2 Graph theory and its applications 67
2.1 Graphs . 68

2.1.1 Subgraphs . 68
2.1.2 Various definitions and particular graphs 69

2.2 Digraphs . 75
2.2.1 Different interesting definitions and types of digraphs 75

2.3 Hypergraphs . 78
2.3.1 Subhypergraphs . 79
2.3.2 Basic definitions and particular cases concerning hypergraphs 80

2.4 Directed Hypergraphs . 83
2.4.1 Important directed hypergraphs’ definitions and notations 84

2.5 The theory of complexity . 86
2.5.1 Deterministic Turing Machine and the class P 88
2.5.2 Nondeterministic Turing Machine . 90

2.5.2.1 The class NP . 90
2.5.2.2 Polynomial transformation 92
2.5.2.3 NP-complete problems . 94

2.6 Graph theory applications . 95
2.6.1 Graph and digraph problems . 95
2.6.2 Hypergraph and directed hypergraph problems 100

2.7 Conclusions . 102

contents xi

3 A theoretical study of the problem related to SDR multi-standard sys-
tems 103
3.1 A formal model for different aspects of the SDR multi-standard terminal . . 104

3.1.1 A mathematical model of the graph structure of the SDR multi-
standard system . 104

3.1.2 A representation of one option of implementation 107
3.1.3 Describing the Multi-Standard Directed Hypergraph from Mono-

Standard Directed Hypergraphs . 108
3.1.4 A formal cost function equation . 111

3.2 An upper bound for the number of options of implementation 114
3.2.1 The computational cost vector Xv 114

3.2.1.1 Example . 116
3.2.1.2 Generalization . 116

3.2.2 An upper bound for |Xv| . 117
3.3 Complexity of our optimization problem . 119
3.4 Conclusions . 123

4 An Optimization technique for Multi-Standard SDR equipment using
Directed Hypergraphs 125
4.1 Some state-of-the-art techniques of optimization 126
4.2 Excluding certain designs when searching for the one with minimum cost . . 128

4.2.1 An example . 128
4.2.2 Generalization . 131

4.3 A Minimum Cost Design (MCD) Algorithm 135
4.4 Computational Complexity of the MCD algorithm 140

4.4.1 The maximum number of hyperarcs in a G-path 141
4.4.2 An upper bound for the total number of G-paths 141
4.4.3 An upper bound for the dimension of kv 142
4.4.4 The worst case complexity analysis 144

4.5 Application . 145
4.6 Conclusion . 151

Conclusions and Perspectives 153

Appendix 157

159

A The source code 159
A.1 Structures and Functions for the input . 159
A.2 Remaining Structures and Functions for our program code 163

A.2.1 Remaining structures . 163
A.2.2 Remaining functions . 165

A.3 The main code . 179

List of Figures 185

xii contents

Publications 197

Part I

Résumé en français

Résumé en français

Introduction

Dans le domaine des télécommunications, ces dernières années ont connu une prolifération
de normes et standards, en particulier dans les communications sans fil (téléphonie mobile,
diffusion de données, réseaux locaux, etc.) pour n’en citer que quelques-uns. La nécessité
d’un terminal adaptable, flexible et universel capable de prendre en compte les change-
ments (de zones géographiques, de service, de fonctionnalités) de façon transparente pour
l’utilisateur est apparue progressivement comme une nécessité.

Au début des années 90, J. Mitola a introduit la notion de radio logicielle (SoftWare
Radio - SWR) [6] comme une architecture utilisant un matériel générique qui peut être
programmé ou reconfiguré en "software" [2], afin de supporter de nombreuses normes de
transmission sur une plateforme unique. Cela a été considéré comme une façon d’apporter
de la flexibilité en pouvant ainsi traiter un grand nombre de signaux et services à coût
et complexité raisonnables. Ces équipements pouvant supporter plusieurs normes seront
alors qualifiés de "multi-standards". Une des idées clés du concept de SWR est d’exploiter
les opérations de traitement communs entre les différentes normes qui sont destinées à être
mises en œuvre sur une plate-forme commune. Dans ce contexte, la technique appelée la
paramétrisation a été introduite [35, 36]. Cette approche permet à plusieurs normes d’
utiliser les mêmes éléments de traitement et de partager leurs coûts.
Deux approches ont été dégagées dans le contexte de la paramétrisation, l’approche théori-
que et l’approche pragmatique. La première approche, sur laquelle ce travail de cette thèse
se base, permet de trouver des éléments communs en utilisant une structure graphique d’un
système multi-standards suggéré dans [49, 50] pour aboutir à des équipements optimisés
et mutualisés. En ce qui concerne l’approche pragmatique, elle identifie les opérateurs
communs en fusionnant des architectures proches les unes des autres, comme cela a été
fait pour créer le mode dual de l’opérateur FFT dans [46] et les opérateurs communs basés
sur Linear Feedback Shift Register (LFSR) dans [47] et [48].

Une approche graphique pour concevoir un équipement multi-standards flexible ("flex-
ible" dans le sens où il pourra basculer d’une norme à une autre de façon transpar-
ente pour l’utilisateur) est proposée dans [50]. Cette approche décrit, selon un dia-
gramme, les relations entre les différents blocs de traitement du système, en utilisant
une décomposition par niveaux de granularité. Cette approche s’inscrit dans la technique
théorique de la paramétrisation. Il s’agit d’un modèle mathématique dans lequel il est
nécessaire d’effectuer les ajustements de granularité nécessaires, en résolvant un problème

4 Résumé en Français

d’optimisation associé au digramme. Des approches stochastiques donnant des solutions
proches de l’optimum ont été proposées dans [60] pour résoudre ce problème, plutôt que
d’utiliser des techniques déterministes, ce problème d’optimisation ayant été intuitivement
considéré comme trop complexe. Puisque le problème a été formulé sous forme d’un di-
agramme dans [50], notre objectif est d’abord de le modéliser théoriquement en utilisant
la théorie des graphes. Cette modélisation va ensuite nous permettre d’étudier et de créer
un nouvel outil d’optimisation pour résoudre ce problème.

Le diagramme caractérisant les appels de fonctions à fonctions d’ un équipement multi-
standards permet de mettre à jour toutes les possibilités de réalisation possibles. Parmi
toutes ces possibilités, seules quelques unes répondent à des critères précis associés dans
notre travail au coût et au temps d’exécution. Une fonction de coût, exprimant les con-
traintes vis à vis de ces critères doit donc être minimisée permettant d’identifier les con-
figurations optimales et ainsi les opérateurs communs entre standards.
Notre objectif est donc de choisir la configuration permettant d’optimiser le coût im-
posé par la fonction (de coût) suggérée dans [49]. Dans ce cas, il est dans un premier
nécessaire d’étudier la complexité de ce problème d’optimisation afin de sélectionner les
outils de la théorie des graphes permettant de résoudre ce problème. Une fois la tech-
nique d’optimisation appropriée proposée, une configuration optimale d’un système multi-
standards peut être suggérée.

L’articulation du travail est alors la suivante:
Le chapitre 1 présente les principes de la radio logicielle et les défis qui y sont associés,
ce qui entraîne l’émergence de sa version pratique appelée la radio logicielle restreinte
(Software-Defined Radio-SDR). Les deux approches de la paramétrisation sont ensuite in-
troduites, en insistant plus particulièrement sur l’approche théorique. Dans cette dernière
technique, l’approche graphique d’un système multi-standards est détaillée ainsi que la
fonction de coût proposée [49, 50].

Le chapitre 2 présente en détails deux théories nécessaires pour notre travail : la théorie
des graphes et la théorie de la complexité.

Le chapitre 3 fournit un modèle théorique du problème lié à la conception d’un système
multi-standards, en utilisant la théorie des graphes et plus précisément les hypergraphes
orientés. Ensuite, dans ce chapitre, une étude de complexité est menée afin d’estimer le
nombre total de possibilités engendrées par la conception d’un système multi-standards.
On montre que ce problème est complexe sous une condition particulière et bien identifiée.

Dans le chapitre 4, l’étude se porte sur les différentes options de mise en œuvre et on montre
que certaines d’entre elles peuvent être ignorées en résolvant notre problème d’optimisation.
Cela a permis de proposer un nouvel algorithme (en utilisant des notions de modélisation
différentes liées aux hypergraphes orientés) dont la complexité de calcul est ensuite dé-
taillée. Après avoir développé un code pour notre algorithme en langage C, on a utilisé
cet algorithme pour résoudre notre problème d’optimisation sur plusieurs exemples, afin
d’etablir ses performances. La différence entre cet algorithme et ceux précédemment pro-
posés pour ce problème est aussi soulignée. Au contraire des techniques heuristiques,

0.1 Techniques de paramétrisation pour la radio logicielle restreinte 5

l’algorithme proposé est capable de fournir la solution exacte (et non approchée) associée
au coût minimal imposé par la fonction de coût.

0.1 Techniques de paramétrisation pour la radio logicielle
restreinte

0.1.1 Emergence de la radio logicielle restreinte

Les concepteurs des radiocommunications concentrent aujourd’hui leur attention sur le
développement d’ équipements flexibles multi-standards (capables de supporter plusieurs
normes) s’affranchissant autant que possible des normes de télécommunications afin de
faire face à l’innovation technologique toujours croissante. La radio logicielle regoupe un
ensemble de techniques visant à répondre à ces évolutions.

Un émetteur-récepteur sera considéré comme "radio logicielle" si ses fonctions de commu-
nication sont réalisées sous forme de programmes exécutés sur un processeur approprié. La
radio logicielle idéale a pour principe de numériser le signal reçu directement au niveau de
la sortie de l’antenne. Cependant, de nombreux obstacles ne permettent pas aujourd’hui
d’envisager une telle approche surtout au niveau de la partie analogique [1, 4] et des conver-
tisseurs de traitement numérique [25, 26]. Ainsi, une version pratique de la radio logicielle,
appelée la radio logicielle restreinte (Software-Defined Radio (SDR)) a été présentée dans
[3]. Elle est basée sur le principe d’ une numérisation en fréquence intermédiaire (IF).
Cette fréquence intermédiaire (IF) est plus faible que la fréquence radio (RF).

Pour réaliser un équipement supportant plusieurs normes, une approche naturelle consiste
à juxtaposer les chaînes de traitement dédiées à chaque standard. C’est ce que l’on appelle
l’approche Velcro [41], où le passage d’une norme à l’autre (ou d’un service à l’autre)
s’effectue par un simple switch. Cependant, cette approche n’est pas optimale car non
évolutive du fait de l’augmentation progressive des normes supportées que l’équipement
devra être amené à supporter. De plus, elle n’exploite pas du tout les aspects communs
entre les standards qui peuvent permettre de gagner en complexité de réalisation. Cette
dernière approche s’appelle la paramétrisation [35], développée dans la partie suivante.

0.1.2 Les techniques de paramétrisation

Le principe de la paramétrisation est de rechercher les caractères communs entre les traite-
ments de différents standards puis d’en proposer des architectures communes et flexibles. Il
peut être considéré comme un processus d’optimisation préliminaire incontournable pour
concevoir des systèmes multi-standards flexibles. Cette approche vise à concevoir des
systèmes multi-standards basés sur un jeu d’opérateurs opérateurs (ou fonctions) dans
lesquels leur exécution est pilotée par un simple passage de paramètres, d’où le nom de
paramétrisation [37].

La paramétrisation se décline selon deux approches: l’approche théorique et l’approche
pragmatique. L’approche théorique consiste à lister de façon hiérarchique tous les appels de
fonctions possibles dans un terminal pouvant supporter plusieurs normes. Ensuite, un pro-
cessus d’optimisation est lancé afin d’identifier les niveaux de granularité optimaux (selon

6 Résumé en Français

une fonction de coût), à partir desquels des composants peuvent être considérés comme des
«blocs communs de communication» permettant leurs réutilisations par plusieurs applica-
tions. Les opérateurs ainsi identifiés seront alors considérés comme communs (CO pour
Common Operators). En revanche, l’approche pragmatique est une approche plus réal-
iste et pratique conçue pour identifier ou créer des opérateurs communs possibles à partir
des briques de bases déjà existantes. L’approche pragmatique, contrairement à l’approche
théorique adopte la démarche suivante : on essaie d’adapter un traitement donné (initiale-
ment prévu pour une fonction ou un standard donné) à d’autres traitements de façon à
les rendre communs.

0.1.2.1 L’approche pragmatique de la paramétrisation

L’approche pragmatique consiste dans un premier temps à identifier dans la littérature
les traitements proches (tant au niveau algorithmique qu’architectural), puis dans un sec-
ond temps à réaliser un opérateur générique qui devra alors être reconfigurable. A titre
d’exemple, une architecture reconfigurable d’une transformée de Fourier rapide (FFT) a
été crée dans [46]. Un autre opérateur a été proposé dans [51] mutualisant deux algo-
rithmes largement utilisés dans les systèmes de communication sans fil: ceux de Viterbi et
de FFT. Leurs similitudes fonctionnelles et architecturales ont été décrites dans [51].

0.1.2.2 L’approche théorique de la paramétrisation

C’est cette approche qui a été privilégiée dans ce travail. Dans ce contexte, l’ensemble
des fonctions réalisées par un terminal multi-standards est représenté par un diagramme
[49, 50] dont chaque sommet représente un élément de traitement (Processing Element
- PE) fonctionnel qui occupe un niveau de granularité donné . Chacun de ces éléments
de traitement peut soit être directement mis en œuvre dans le système, ou représente une
fonctionnalité obtenue en appelant des éléments de traitement de niveaux inférieurs. Deux
dépendances de sommets, le "OU" et le "ET", ont été nécessaires pour illustrer clairement
les besoins d’implémentation de chaque bloc et pour décrire le type de connexions entre
les blocs de niveaux supérieurs et ceux de niveaux inférieurs.
Une dépendance de type "OU" (partie gauche de la figure 1) signifie qu’un seul des som-
mets descendants, appelé plusieurs fois, est nécessaire pour mettre en œuvre le sommet
parent ((B ou C sont chacun capable de mettre en œuvre A). Une dépendance de type
"ET" (partie droite de la figure 1) signifie que tous les sommets descendants sont néces-
saires pour mettre en œuvre le sommet parent (B et C sont nécessaires tous les deux pour
mettre en œuvre le bloc A, B et C étant "appelés" indifféremment pour réaliser A).
Notons que le même processus peut être effectué par le bloc A de niveau n, au lieu d’utiliser
B ou C (partie gauche de la figure 1) ou de mettre en œuvre B et C à la fois (partie droite de
la figure 1) qui sont des blocs de niveaux inférieurs. Cela se fera avec des temps d’exécution
plus faibles mais avec un coût beaucoup plus élevé. Par contre, le fait d’utiliser les blocs
de niveau n−1 va diminuer le coût, mais augmenter le temps d’exécution du système. Un
compromis entre temps d’exécution et complexité est donc à trouver et c’est tout l’objectif
des études liées à la paramétrisation.

En utilisant les deux dépendances "ET" et "OU", on peut illustrer une structure graphique
d’un système multistandards comme celui de la figure 1.6 supportant deux normes dif-

0.1 Techniques de paramétrisation pour la radio logicielle restreinte 7

Figure 1: "OU" et "ET" dépendance

férentes (Wifi et UMTS). Il représente à titre d’illustration une version simplifiée du sys-
tème complet (le graphe complet d’un système mutli-standard serait énorme à réaliser.
Cela n’est pas l’objet de cette thèse de développer les graphes complets). Dans tous
nos travaux, nous allons simplement présenter des illustrations graphiques réalisables ou
quelques figures fournies par d’autres études antérieures.

Figure 2: Structure simplifiée d’un système multi-standards (supportant Wifi et UMTS)

Cette approche fournit au concepteur toutes les options possibles afin de sélectionner un
ensemble d’opérateurs pour réaliser une fonctionnalité donnée. Notre objectif est d’aider
le concepteur à déduire un jeu d’opérateurs communs (COs) les plus adaptés d’un système
multi-standards donné en recherchant le meilleur compromis entre flexibilité et efficacité
et ceci en optimisant une fonction de coût donnée. .

La structure graphique du système multi-standards que l’on vient de présenter fournit
toutes les options capables pour mettre en œuvre les différentes normes présentes dans le
diagramme [50]. Une fonction de coût, une fonction, qui calcule le coût de ces options,
a été proposée [49]. Cette fonction de coût, lorsqu’elle est optimisée, aidera à choisir

8 Résumé en Français

l’option ayant le coût minimal et de sélectionner ensuite les opérateurs communs associés.
Les paramètres utilisés dans la fonction de coût incluent à la fois la notion de flexibilité et
d’efficacité de l’implémentation.

Il a été associé à chaque élément de traitement du système, un coût de fabrication (Build-
ing Cost - BC) et un coût de calcul (Computational Cost - CC), et sur chaque arc du
diagrame le nombre d’appels (Number of Calls - NoC). Dans le détail :

• Le coût de fabrication correspond au coût d’un élément de traitement capable
d’exécuter une fonction donnée. Ce coût est "payé" juste une fois, indépendamment
du nombre de fois où cet élément de traitement sera appelé. La réutilisation des
éléments de traitement fournit ainsi une idée sur la réduction de coût.

• Le coût de calcul est associé au temps pris par un élément de traitement pour
calculer une fonction donnée. Ce coût doit être calculé à chaque fois qu’un élément
de traitement est appelé par ceux de niveaux supérieurs.

• Le nombre d’appels représente le nombre nécessaire de fois que des blocs de
niveaux inférieurs seront appelés par leur sommet parent. Il s’agit d’un facteur mul-
tiplicatif qui sera associé aux arcs.

Dans la suite, nous allons décrire le développement de la fonction de coût proposé. Sur la
base des paramètres introduits précedemment (BC et CC), notre objectif est de minimiser
le coût total de fabrication du système ainsi que son coût total de calcul (en terme de temps
d’exécution). Dans ce contexte, notre fonction de coût sera une fonction à deux objectifs
: réduction du coût de fabrication d’un terminal multi-standards en proposant des opéra-
teurs communs, tout en assurant des temps d’exécution raisonnables. Ces deux objectifs
sont souvent en opposition : en effet la réduction du coût de fabrication augmentera le coût
total de calcul et vice versa. Remarquons que plus un opérateur sera commun (à plusieurs
standars) et plus il sera amené à être exécuté souvent. Plus un opérateur sera commun
et plus il devra se "partager" entre un grand nombre de traitements, ce qui complexifie le
problème du cadencement des taches (non abordé dans cette thèse).

Minimiser le coût de fabrication s’écrit alors :

min
∑

i

BCi.Ni (1)

où
∑

i

BCi.Ni est le coût total de fabrication de tous les éléments de traitement qui sont

présents dans l’équipement multi-standards. Ni ∈ {0, 1} indique si le ith sommet est
présent ou pas dans l’équipement.

0.2 La théorie des graphes et ses applications 9

Maintenant, considérons le second objectif qui consiste à minimiser le coût de calcul. Il
peut s’écrire ainsi:

min
∑

n

∑

k

CCk((Sn)n∈{1,2··· ,N}), (2)

où

•
∑

k

CCk((Sn)n∈{1,2,··· ,N}) représente le coût de calcul total pour chaque standard Sn.

•
∑

n

∑

k

CCk((Sn)n∈{1,2,··· ,N}) est le coût de calcul total pour tous les N standards Sn.

Ce problème est un problème d’optimisation multi-objectifs. Les fonctions "objectif"
de ce problème sont incommensurables comme la plupart des problèmes d’optimisation
d’ingénierie. L’approche "somme pondérée" [58, 59], a été considérée dans [60] pour
définir la fonction de coût en raison de sa simplicité. Elle consiste à regrouper les fonctions
d’optimisation différentes dans une seule fonction, accompagnée des coefficients de poids
associés à chaque fonction objectif. Ainsi, la fonction de coût bi-objectifs qui combine la
fonction à deux objectifs incommensurables des équations 1.1 et 1.2 aura la forme :

Cout = (w
∑

i

BCi.Ni +
∑

n

∑

k

wnCCk((Sn)n∈{1,2··· ,N})), (3)

où w est le poids octroyé au coût de fabrication de l’équipement, et wn est le poids d’un
seul standard Sn. En effet, un seul standard doit pouvoir s’exécuter à un instant donné.
Notre contribution doit aider à concevoir un terminal multi-standards, en minimisant cette
fonction de coût.
La résolution de ce problème d’optimisation apportera alors une solution assurant le com-
promis entre la complexité et l’efficacité. Bien que cette fonction de coût semble évidente,
le problème n’en reste pas moins très difficile. Dans notre travail, les poids w et wn dans
la fonction de coût de l’equation 3 seront neutralizés à 0.5 sauf si le contraire est indiqué,
car ils peuvent varier en fonction des préoccupations de chaque concepteur.
L’intérêt de réduire la consommation d’énergie, le coût et la taille du système radio tout
en atteignant les performances attendues et en profitant des améliorations technologiques,
a été une motivation pour rechercher des aspects d’optimisation afin de concevoir des sys-
tèmes de radiocommunications flexibles. L’objectif de cette thèse est de se concentrer sur
les aspects de la radio logicielle globale et de trouver de nouvelles techniques d’optimisation
théoriques des équipement de la radio logicielle restreinte flexibles, en utilisant la théorie
des graphes. Ainsi, dans le chapitre suivant, nous allons présenter des définitions fonda-
mentales de la théorie des graphes ainsi que quelques définitions de base liées à la théorie
de la complexité, qui seront ensuite utilisées pour étudier la complexité de notre problème
d’optimisation.

0.2 La théorie des graphes et ses applications

0.2.1 Définitions nécessaires de la théorie des graphes

Ce paragraphe présente quelques définitions nécessaires à la compréhension de la suite du
document.

10 Résumé en Français

Graphe Un graphe G est une paire ordonnée (V (G), E(G)) comprenant l’ensemble fini,
non-vide V (G) dont les éléments sont appelés des sommets et l’ensemble E(G) de
paires non ordonnées de sommets V (G) (pas nécessairement distincts), appelées des
arêtes. Une arête avec des extrémités identiques est appelée une boucle. Deux arêtes
ou plus ayant la même paire d’extrémités sont appelés des arêtes multiples. Un
multigraphe G est un graphe qui admet des arêtes multiples. Un graphe G compor-
tant des arêtes multiples et des boucles est appelé un pseudographe. A l’opposé, un
graphe simple n’admets ni boucles, ni arêtes multiples. [62].

Graphe orienté Un graphe orienté D est défini par une paire ordonnée d’ensembles
(V (D), A(D)), où V (D) est un ensemble fini, nonvide de sommets et A(D) est un
ensemble des paires ordonnées des sommets de V (D) (pas nécessairement distincts)
appelés des arcs. D’une façon analogue aux graphes, on peut définir des multigraphes
orientés, des pseudographes orientés et des graphes orientés simples.

Hypergraphe Un hypergraphe [68] est une généralisation d’un graphe où une arête peut
être connectée à n’importe quel nombre de sommets. Formellement, un hypergraphe
H est défini par une paire (V (H), E(H)), où V (H) est un ensemble de sommets non-
vide et E(H) est un ensemble fini de sous-ensembles de V (H) (pas nécessairement
nonvide) nommé des hyperarêtes.

Soit H = (V (H), E(H)) un hypergraphe et x ∈ V (H).

Sous-hypergraphe Un sous-hypergraphe de H est un hypergraphe H ′ = (X ′, D′)
tel que X ′ ⊆ V (H) et D′ ⊆ E(H).

Etoile de centre x : l’étoile S(x) de centre x est l’ensemble des hyperarêtes con-
tenant x, c-à-d S(x) = {E ∈ E(H), x ∈ E}.

Degré d’un sommet Le degré de x dans H, noté dH(x), est le nombre d’hyperarêtes
dans E(H) comprenant x, c-à-d dH(x) = |S(x)|.

Hypergraphe orienté C’est une généralisation d’un graphe orienté. Un hypergraphe
orienté est un hypergraphe avec des hyperarêtes orientées (aussi appelées des hy-
perarcs) où un hyperarc E est une paire ordonnée E = (X,Y) de sous-ensembles
disjoints de sommets; X est l’ensemble d’origines de E notée T (E) et Y est son
ensemble d’extrémités notée H(E) [69]. La figure 3 donne un exemple d’un hyper-
graphe orienté H = (V,E) tel que:

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

E = {E1, E2, E3, E4, E5, E6} où:
E1 = ({x1, x2}, {x3})
E2 = ({x3}, {x7})
E3 = ({x3, x4}, {x5, x6})
E4 = ({x7}, {x1})
E5 = ({x7}, {x8})

0.2 La théorie des graphes et ses applications 11

Figure 3: Un hypergraphe orienté H = (X,E)

E6 = ({x9}, {x8})

Soit H = (V (H), E(H)) un hypergraphe orienté et v ∈ V (H).

Sous-hypergraphe orienté Un hypergraphe orienté H ′ = (V (H ′), E(H ′)) est ap-
pelé un sous-hypergraphe orienté de H si V (H ′) ⊆ V (H) et E(H ′) ⊆ E(H).

B-hypergraphe et F-hypergraphe [69] Un hyperarc retour, abrégé par B-arc,
est un hyperarc E = (T (E), H(E)) où |H(E)| = 1; un hyperarc devant, abrégé
par F-arc, est un hyperarc E tel que |T (E)| = 1.
Un B-hypergraphe (ou simplement B-graphe) est un hypergraphe orienté dont
ses hyperarcs sont tous des B-arcs; De même, un F-hypergraphe (ou simplement
F-graphe) est un hypergraphe dont tous les hyperarcs sont F-arcs.

BF-réductions d’un hyperarc [69] Soit E = (T (E), H(E)) un hyperarc dans un
hypergraphe orienté H. Une BF-réduction de E est un hyperarc ({x}, {y}) où
x ∈ T (E) et y ∈ H(E). Par exemple, ({x1}, {x3}) et ({x2}, {x3}) sont des
BF-réductions de l’hyperarc E1 dans la figure 3.
Chaque BF-réduction de E est appelée un arc de E.

Etoile devant et Etoile retour [69] L’étoile devant (FS pour Forward Star) et
l’étoile retour (BS pour Backward Star) du sommet v sont respectivement
définies par:
FS(v) = {E ∈ E(H), v ∈ T (E)} et BS(v) = {E ∈ E(H), v ∈ H(E)}.
Si X = (V (X), E(X)) est un sous-hypergraphe orienté de l’hypergraphe ori-
enté H, alors l’étoile devant et retour dans X du sommet v (v ∈ V (X)) seront
définies comme suit:
FSX(v) = {E ∈ E(X); v ∈ T (E)} et BSX(v) = {E ∈ E(X); v ∈ H(E)}.

Chemins orienté dans les hypergraphes orientés [69] Dans un hypergraphe
orienté H, un chemin de r à n (r, n ∈ V (H)) est défini par une séquence de
sommets et d’ hyperarcs P = (v1 = r, Ei1, v2, Ei2 , v3, · · · , Eiq , vq+1 = n) où:
r ∈ T (Ei1) , n ∈ H(Eiq) et vj ∈ H(Ei(j−1)) ∩T (Eij) j = 2, · · · , q.

Ce chemin est appelé un rn-chemin, où r est son origine et n son extrémité.
On désigne V (P) et E(P) par l’ensemble des sommets et d’hyperarcs traversés
via P et l(P) par le nombre des hyperarcs dans le chemin, appelé la longueur

12 Résumé en Français

du chemin. On peut donc écrire V (P) = {v1, v2, · · · , vq+1}, E(P) ={Ei1 , Ei2 ,
· · · , Eiq} et l(P) = q. Par exemple, dans l’hypergraphe orienté de la figure 3,
on a Q = (x2, E1, x3, E2, x7, E5, x8) un chemin orienté de x2 à x8 de longueur
3, où V (Q) = {x2, x3, x7, x8} et E(Q) = {E1, E2, E5}.

Degré d’un sommet Le degré intérieur de v, noté par d−H(v), représente le nom-
bre d’hyperarcs qui contient v dans leur ensemble d’extrémités, tandis que le
degré extérieur de v est le nombre d’hyperarcs contenant v dans leur ensemble
d’origines, noté par d+H(v). Par conséquent, on peut écrire: |BS(v)| = d−H(v) et
|FS(v)| = d+H(v).

Théorème 1. Pour un hypergraphe orienté H = (V (H), E(H)), on a
∑

x∈V (H) d
+
H(x) =

∑

E∈E(H) |T (E)|.

De même, on a
∑

x∈V (H) d
−
H(x) =

∑

E∈E(H) |H(E)|.

0.2.2 La théorie de la complexité

Un problème de décision Π est un problème qui n’a que deux solutions possibles, soit
la réponse «oui» soit la réponse «non». De nombreux problèmes qui se posent dans
la pratique sont des problèmes d’optimisation plutôt que des problèmes de décision.
Néanmoins, tout problème d’optimisation (de minimisation ou de maximisation)
peut être transformé en un problème de décision en se fixant un borne B ≥ 0, la
question suivante est alors formulée : Peut-on trouver une solution qui satisfasse
la condition du problème, mais dont le coût ne dépasse pas B (dans le cas d’un
problème de minimisation)?

0.2.2.1 La classe P

Un algorithme a une définition formelle basée sur la Machine de Turing, qui est
utilisé comme un modèle de calcul par l’ordinateur en raison de sa simplicité.

De manière informelle, la complexité d’un algorithme est une fonction C qui représente
le nombre maximum d’étapes de calcul de base nécessaires pour son exécution
(comme les opérations arithmétiques et les comparaisons), prise sur toutes les vari-
ances(1) du problème possibles dont la taille est s (C est une fonction de s). C’est
ce que l’on appelle la complexité du pire des cas. On dira qu’une fonction f a un
ordre ne dépassant pas celui de g (notation f = O(g)), s’il existe deux constantes
k et n0 tel que f(n) ≤ kg(n), ∀ n ≥ n0. Un algorithme est dit polynomial (resp.
exponentiel) si sa fonction de complexité C est O(f) avec f une fonction polynomi-
ale (resp. exponentielle). La classe P regroupe l’ensemble de tous les problèmes qui
peuvent être résolus dans un temps polynomial. Formellement, la classe P est un
ensemble qui comprend tous les problèmes dont les algorithmes sont réalisés par un
programme sur la machine de Turing déterministe de temps polynomial.

(1)une variance du problème est aussi appelée une instance du problème (In English: instance of a
problem)

0.2 La théorie des graphes et ses applications 13

Un problème pour lequel aucun algorithme n’est trouvé pour le résoudre dans un
temps polynomial est considéré comme un problème difficile.

0.2.2.2 La classe NP

Un algorithme non déterministe est un algorithme qui comporte deux étapes, nommé
l’étape de recherche et l’étape de vérification. Etant donnée une variance I d’un prob-
lème, la première étape "recherche" une solution S. Ensuite I et S sont les données
d’entrée de l’étape de vérification qui calcule de manière déterministe classique, en
renvoyant soit la réponse «oui», soit la réponse «non», soit en calculant sans ja-
mais s’arrêter. Un algorithme non déterministe est dit polynomial si pour toutes les
variances I de taille s dont la réponse est «oui», on peut trouver une solution qui
termine l’étape de vérification après un nombre d’étapes de calcul de base qui est
une fonction polynomiale de s.

La classe NP est définie par l’ensemble des problèmes de décision qui peuvent être
résolus par un algorithme non-déterministe polynomial. Pour résumer, un problème
de décision est un problème NP si pour une variance I dont la réponse est «oui»,
et après avoir identifié une certaine solution S, on peut vérifier que la réponse pour
I et S est «oui» en temps polynomial. Formellement, la classe NP est définie par
l’ensemble des problèmes de décision dont les programmes sont réalisés par une ma-
chine de Turing non-déterministe de temps polynomial.

L’une des questions ouvertes les plus fondamentales dans toutes les mathématiques
est la conjecture de Cook-Edmond-Levin: P 6= NP. Si P est différent de NP, alors la
distinction entre P et NP-P est importante. Dans ce contexte, nous allons fournir
dans la suite de ce chapitre une caractérisation des problèmes les plus difficiles dans
NP-P, appelés problèmes NP-complet.

0.2.2.3 Problèmes NP-complet

Transformation polynomiale Une transformation polynomiale d’un problème de
décision Π1 en un problème de décision Π2, noté Π1 ∝ Π2, est une fonction
f : DΠ1 → DΠ2 qui satisfait les deux conditions suivantes:

1. f est calculable par un algorithme à temps polynomial.
2. f transforme une variance I de Π1 en une variance f(I) de Π2 tel que la

réponse pour I par rapport à Π1 est «oui» si et seulement si la réponse
pour f(I) par rapport à Π2 est «oui».

Lemme 1. Si Π1 ∝ Π2, alors Π2 ∈ P implique Π1 ∈ P [63, 61].

Notez que la relation «transformabilité polynomiale "∝" est réflexive. En effet, elle
est particulièrement utile car il a été prouvé que c’est une relation transitive [63, 61].
Cela signifie que si Π1 ∝ Π2 et Π2 ∝ Π3, alors Π1 ∝ Π3.

Définition 1. Un problème de décision Π est dit NP-complets si:

14 Résumé en Français

• Π ∈ NP.

• ∀ Π′ ∈ NP, Π′ ∝ Π.

Théorème 2. Π est NP-complet (NPC) s’il satisfait :

1. Π ∈ NP.

2. ∃ Π′ ∈ NPC, tel que Π′ ∝ Π.

Notez qu’un problème de décision est dit NP-dur s’il ne satisfait que la deuxième
propriété, c’est à dire qu’il diffère des problèmes NP-complets par le seul fait qu’il
n’a pas besoin d’être un problème NP.

Dans ce cas, on a encore besoin d’un premier problème NP-complet. Ce premier
problème est celui de "Satisfaisabilité" (voir [101, 63])).

Les problèmes NP-complet sont considérés difficiles tant qu’aucun algorithme de
temps polynomial n’a pas été trouvé pour résoudre l’un d’eux. La plupart de ces
problèmes sont généralement résolus par des méthodes approximatives, appelées des
heuristiques. Une classe particulièrement simple et naturelle de ces heuristiques est
la classe d’algorithmes gloutons [72].

0.2.3 Applications de la théorie des graphes

Presque toutes les questions sur les graphes (ou graphes orientés) nécessitent une
étude de chaque arête (et dans le processus chaque sommet) au moins une fois.
Les approches DFS (Depth-first search) et BFS (Breadth-First search) cherchent
respectivement les arêtes d’un graphe quand ils se déplacent d’un sommet à un
autre. Les deux techniques de recherche s’exécutent en temps polynomial.

• méthodologie BFS : une fois au sommet v de G, il examine toutes les arêtes (ou
arcs) avec l’extrémité v, puis passe à un autre sommet de G qui est adjacent à
v.

• méthodologie DFS: une fois au sommet v de G, il examine une seule arête (ou
arc) avec l’extrémité v, puis passe à l’autre extrémité de cette arête (ou arc).

L’approche BFS est l’archétype de nombreux algorithmes de graphes importants, y
compris celui de Prim [75] pour trouver un arbre couvrant de poids minimal (Min-
imum Spanning Tree - MST) et l’algorithme de Dijkstra [78, 62] pour chercher les
plus court chemins d’un sommet unique (single-source-shortest-path problem) etc
· · · . DFS semble également être une approche utile, pour vérifier par exemple la
connectivité dans les graphes, isomorphisme, etc · · · . (voir [61] pour de plus amples
renseignements).

La théorie des graphes a été utilisée pour résoudre d’autres problèmes d’optimisation,
comme celui du voyageur de commerce (Traveling Salesman Problem - TSP) [71] qui
cherche à optimiser la distance à parcourir pour visiter tous ses clients. Ce problème
a été modélisé par un graphe pondéré et s’avère être un problème NP-complet [63].
Plusieurs méthodes heuristiques ont été proposées, donnant une route très proche

0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétrisation 15

de la plus courte, mais ne la garantissent pas ([73, 82]).

Diverses problématiques du domaine des télécommunications et des réseaux ont été
formulés soient selon des modèles de graphes théoriques, soient des hypergraphes,
des graphes orientés ou des hypergraphes orientés. On peut mentionner le prob-
lème d’affectation de canal (channel assignment problem) décrit comme suit : une
zone de couverture est divisée en cellules autour de chaque émetteur. Les canaux
sont assignés aux différentes cellules, dans lesquelles le même canal peut être util-
isé simultanément par plusieurs cellules, dans la mesure où elles sont suffisamment
séparées pour éviter les interférences. L’objectif est de trouver une affectation des
canaux aux différentes cellules telle que l’interférence correspondant est acceptable
(en dessous d’un niveau donné), tout en utilisant le nombre minimum de canaux.
Ce problème est un problème NP-dur [83], parce que l’un de ses cas particuliers est
formulé selon le problème de coloration des graphes qui est connu pour être NP-dur
[63]. Un algorithme exponentiel général a été proposé pour ce problème dans [84].
D’autres problèmes comme des problèmes de réseaux ont été modélisés par des hy-
pergraphes [64] et des hypergraphes orientés [65].

0.3 Apport de la théorie des graphes dans l’approche
théorique de la paramétrisation

Dans le premier chapitre, nous avons introduit une approche graphique fournissant
une illustration de toutes les options pour réaliser un équipement supportant plusieurs
normes (dit multi-standards). Nous avons aussi présenté une formulation de la fonc-
tion qui calcule le coût de chaque alternative de mise en œuvre sélectionnée. Dans ce
chapitre, on va modéliser tous ces aspects et d’autres théoriquement en utilisant la
théorie des graphes ou plus précisément, en utilisant les hypergraphes orientés. Ceci
constituera la première partie de ce chapitre. Dans la deuxième partie, on menera
une étude sur le nombre total d’ options capables de mettre en œuvre un système
multi-standards, ce qui donnera une idée très précise sur la difficulté du problème
posé. Ensuite dans la troisième partie, on étudiera la complexité de notre problème
d’optimisation.

0.3.1 Un modèle formel pour les différents aspects d’un équipement

multi-standards

0.3.1.1 Un modèle mathématique de la structure graphique d’un
équipement multi-standards

La figure 4 fournit l’ exemple d’un système à deux standards (notés S et T). Dans
cette figure, des valeurs numériques sont associés aux sommets qui représentent le
BC/CC du noeud, et d’autres associés aux arcs représentant le nombre d’appels des
blocs (NoC).

16 Résumé en Français

Figure 4: Structure globale d’un système multi-standards illustrant la décomposition des
standards S et T sur 4 niveaux

La structure graphique de l’approche théorique de la paramétrisation présentée
dans le chapitre 1 peut être représentée de manière formelle. En effet, la struc-
ture graphique du système multi-standards peut être décrite comme un hypergraphe
orienté, indispensable pour représenter les deux dépendances "OU" et "ET". Cet
hypergraphe orienté est défini par le couple (V,E), où l’ensemble de sommets V
comprend les blocs (fonctions et opérateurs) présents dans la figure, et où l’hyperarc
e ∈ E contient le sommet parent comme un sommet d’origine; quant aux sommets
descendants capables d’effectuer la tâche du bloc parent, ils constituent l’ensemble
d’extrémités de e.
A chaque fois que l’on est confronté à une dépendance de type "ET", l’hyperarc sera
formé de telle sorte que le sommet parent soit le sommet d’origine, et tous les som-
mets descendants via ce "ET" forment les sommets dans l’ensemble d’extrémités de
l’hyperarc. Par contre, lorsque l’on est confronté à une dépendance de type "OU",
le sommet parent forme le sommet d’origine de l’hyperarc tandis que le seul sommet
descendant nécessaire via cette dépendance "OU" forme le sommet d’extrémité de
l’hyperarc.

Par exemple, ({S}, {A1, A2, A3}), ({B4}, {C2}), ({B4}, {C3}),
({A2}, {B1}), ({A2}, {B2, B3}), · · · etc appartiennent à l’ensemble E d’hyperarcs
de l’hypergraphe orienté dans la figure 4.
Remarquons que cette représentation du système multi-standards par un hyper-
graphe orienté est en fait un F-graphe puisque chaque hyperarc ne contient qu’un
seul sommet d’origine qui est le sommet parent.

Chaque élément de traitement inclu dans la structure graphique d’un système multi-
standards (représenté par un F-graph H) occupe un certain niveau. Ce qui suit est
une remarque sur le niveau attribué à chaque élément de traitement. Supposons que
l’on décompose les normes prises en charge sur n − 1 niveaux différents (donc au

0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétrisation 17

total, on aura n niveaux, y compris le plus haut niveau des normes). Le niveau d’un
bloc v dans la représentation d’un système multi-standards comme un hypergraphe
orienté, noté L(v), est défini par:

L(v) = n− max
x/d−

H
(x)=0

(max
P : xC−chemin

(l(P))), (4)

où l(P) représente la longueur du chemin P .
Le niveau de chaque bloc dans la figure 4 est identifié à droite de la figure.

Dans ce qui suit, on définit ℑ par l’ensemble des normes dans le système multi-
standards qui occupent le plus haut niveau. Ainsi, ℑ = {S, T} dans le cas de la
figure 4.

La structure graphique du système multi-standards nous informe sur toutes les op-
tions possibles pouvant mettre en œuvre sa conception. Avant d’expliquer comment
chacune de ces options peut être représentée graphiquement, on va proposer quelques
définitions nécessaires pour le reste de notre travail concernant les hypergraphes ori-
entés.

Définition 2: Poids d’un chemin dans un hypergraphe orienté
Poids d’un chemin dans un hypergraphe orienté
Soit P = Prn = (v1 = r,ei1 , v2, ei2 , v3, · · · , eiq , vq+1 = n) un rn-chemin et
eij∈ E(P). On définit la BF-réduction via le chemin P de eij par sa BF-réduction
particulière obtenue en sélectionnant le sommet précédant de eij dans le chemin P
afin qu’il soit le sommet queue et le sommet suivant de eij afin qu’il soit le sommet
tête. On désigne par BFP (eij) la BF-réduction de eij via P . Ainsi, selon cette
définition, on obtient: BFP (eij) = ({vj}, {vj+1}) j = 1, 2, · · · , q.

Supposons que l’on ait un hypergraphe orienté H = (V (H), E(H)) dans lequel un
poids entier positif soit attribué à chaque arc de H. Pour tout chemin P entre r et
n, on définit le poids de P par le produit des poids des BF-réductions via P de tous
les hyperarcs dans E(P). Ainsi, on peut écrire:

w(P) =
∏

eij∈E(P)

w(BFP (eij)) (5)

où w(P) désigne le poids du chemin P et où w(BFP (eij)) représente le poids de
BFP (eij) en H.

Par exemple, le poids du chemin allant de S à C1 dans la figure 4 (en passant par
A2 et B2) est w({S}, {A2})× w({A2}, {B2})× w({B2}, {C1}) = 7× 2× 5 = 70.

Définition 3. Ajout d’un hyperarc

18 Résumé en Français

Soit X un sous-hypergraphe orienté d’un hypergraphe orienté H tel que E(X) 6=
E(H) et soit e appartenant à E(H) mais n’appartenant pas à E(X). En ajoutant e
à X, on obtient un sous-hypergraphe orienté X

′

de H, noté X + e, défini par :

V (X
′

) = V (X) ∪ H(e) ∪ T (e) et E(X
′

) = E(X) ∪ {e}.
X + e est appelé sous-hypergraphe orienté de H induit par X et e.

Définition 4. un G-chemin

Soit H un hypergraphe orienté et N ⊆ V (H).
On dit qu’un sous-hypergraphe orienté X est un G-chemin de H de racine N s’il
satisfait:

1. d+X(u) ∈ {0, 1} ∀ u ∈ V (X)

2. N ⊆ V (X)

3. ∀ u ∈ V (X), il existe un chemin de v à u pour un sommet v ∈ N

0.3.1.2 Une représentation d’une option de mise en œuvre

On a illustré chaque option de mise en œuvre choisie par un hypergraphe orienté
obtenu à partir de la structure graphique d’origine du système SDR multi-standards,
appelé graphe généré (GNG). Il est défini de telle sorte que les opérateurs choisis
dans la conception soient illustrés avec une étoile devant vide et on montre toutes
les fonctions nécessaires que les blocs installés construisent, étape par étape, jusqu’à
ce qu’ils atteignent les fonctionnalités des normes de plus haut niveau.

La figure 3.2 montre les graphes générés (obtenus à partir de la figure 4) de deux
options différentes de mise en œuvre capables de réaliser S et T . Dans la première
option, les opérateurs choisis sont D2, D3, D4, C1,&B3 et le GNG correspondant
est illustré sur la partie gauche de la figure 3.2. Quant à la deuxième option, les
opérateurs choisis sont D2, D3, D4, C1, B3&B4 et la représentation GNG de cette
option est celle représentée sur la partie droite de la figure 3.2.
La seule différence entre ces deux options est que dans la première, les blocs D2, D3,&
D4 sont utilisés pour mettre en œuvre les fonctionnalités de A1&A3 passant à la fois
par les blocs C2&B4 alors que dans le deuxième choix, D2, D3,&D4 sont utilisés
pour réaliser bloc A3 mais le bloc B4 pour réaliser A1. Le cas de la deuxième op-
tion représente une alternative dans laquelle certains blocs de niveaux inférieurs sont
installés dans la conception, ainsi que ceux de niveaux supérieurs qui peuvent être
construits par ceux de niveaux inférieurs. (car les opérateurs D2, D3 et D4 seront
installés dans la conception ainsi que B4 qui lui-même peut être réalisé par D2, D3
et D4).

Cependant, il faut noter que le GNG de la première option est un G-chemins de racine
ℑ, contrairement à la seconce option. Les graphes générés des options ressemblant
à la seconde option ont toujours une partie dédoublée, ce qui contredit l’illustration

0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétrisation 19

Figure 5: Les graphes générés (obtenus de la figure 4) de deux options de mise en œuvre
différentes

d’un sous-hypergraphe orienté et donc ne correspondent pas à des G-chemins. Par
conséquent, les options de mise en œuvre peuvent être divisées en celles dont les
graphes générés sont des G-chemins de racine ℑ, et en celles où l’on trouve une par-
tie dédoublée dans leur graphes générés.

0.3.1.3 Description de l’hypergraphe orienté multi-standards à partir de
l’hypergraphe mono-standard

Dans cette partie, on va expliquer théoriquement comment arriver à la structure
graphique des alternatives capables de mettre en œuvre le terminal multi-standards,
étant donné les structures graphiques de chacun des standards. Par exemple, la
décomposition du Wifi et UMTS montrée dans la figure 1.6 est obtenue à partir des
structures graphiques distinctes qui représentent les différentes alternatives à mettre
en œuvre pour le Wifi et l’UMTS seuls.

Soit T1 = (V (T1), E(T1)) un hypergraphe orienté représentant toutes les options de
mise en œuvre pouvant implémenter un seul standard S1 et T2 = (V (T2), E(T2)) un
hypergraphe orienté illustrant les différentes alternatives capables d’implémenter un
autre standard S2. On note T l’hypergraphe orienté illustrant les options de mise en
œuvre pour les deux standards S1 et S2.

Il y aura fort probablement des opérateurs qui pourront être utilisés dans
l’implémentation des deux standards. En conséquence ∃V ⊆ V (T1) & ∃U ⊆ V (T2)
tel que :

V = U au sens de l’opérateur.

20 Résumé en Français

Quand on dit "au sens de l’opérateur ", cela signifie en tenant compte des éléments
de U & V comme des opérateurs fonctionnels tels que FFT, additionneurs , multi-
plieurs, etc.
Par exemple, si la FFT est un opérateur qui peut être utilisé dans les deux standards
S1 & S2, elle pourrait être le sommet v5 dans V (T1) et le sommet u3 dans V (T2).
On écrit alors u3 = v5 au sens de l’opérateur.

On définit la fonction f : V −→ U tel que:
∀v ∈ V f(v) = u⇔ v = u au sens de l’opérateur .
Notons que f est une application bijective.

Définition 5. Soit e ∈ E(T2). Un hyperarc e′ est défini par:

• ∀ r ∈ T (e) ∩ U(resp. r ∈ H(e) ∩ U), f−1(r) ∈ T (e
′

) (resp. f−1(r) ∈ H(e
′

))

• ∀ r ∈ T (e)\U (resp. r ∈ H(e)\U), r ∈ T (e
′

) (resp. r ∈ H(e
′

)).

Dans l’hypergraphe orienté T , les opérateurs communs (entre V (T1) et V (T2)) qui
sont les éléments des ensembles U et V seront introduits juste une fois, et tous les
hyperarcs dans E(T1) et E(T2) qui utilisent un opérateur commun donné le parta-
gent. Par conséquent, l’hypergraphe orienté T sera défini par le couple (V (T), E(T))
tel que:

• V (T) = V (T1) ∪ (V (T2)\U).

• E(T) = E(T1) ∪ {e
′

/e ∈ E(T2)}.

Une fois que T est donné, et étant donné un autre hypergraphe orienté T3 qui illustre
toutes les alternatives capables d’implémenter un autre standard S3, on peut alors
établir un hypergraphe orienté T

′

représentant les différentes alternatives capables
de mettre en œuvre les 3 standards S1, S2 & S3.
Il est alors évident que l’on peut définir un hypergraphe orienté pour un équipement
multi-standards supportant n’importe quel nombre de standards.

0.3.1.4 L’équation formelle de la fonction de coût

Dans cette partie, on va établir une expression théorique alternative de la fonction
de coût dans l’équation 3, qui évalue le coût de chaque option de mise en œuvre
sélectionnée.

Dans la suite, on va noter w(A,B) le nombre de fois que le bloc A appelle le bloc B.
Considérons à nouveau le premier choix de mise en œuvre exposé dans la partie 3.1.2
(en choisissant les opérateurs D2, D3, D4, C1,&B3) pour implementer les normes S
et T de la figure 4. Le coût de la mise en œuvre via ce choix (selon l’équation 3) est

0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétrisation 21

calculé comme suit:

Coût = (((CC(D2)×w(C2, D2)+CC(D3)×w(C2, D3)+CC(D4)×w(C2, D4))×
w(B4, C2))×w(A3, B4))×w(S,A3)+(((CC(D2)×w(C2, D2)+CC(D3)×w(C2, D3)+
CC(D4)×w(C2, D4))×w(B4, C2))×w(A1, B4))×w(S,A1)+((CC(C1)×w(B2, C1))×
w(A2, B2)+CC(B3)×w(A2, B3))×w(S,A2)+(((CC(D2)×w(C2, D2)+CC(D3)×
w(C2, D3)+CC(D4)×w(C2, D4))×w(B4, C2))×w(A3, B4))×w(T,A3)+BC(D2)+
BC(D3) +BC(D4) +BC(C1) +BC(B3)

= (((1×10+2×20+3×30)×4)×5)×8+(((1×10+2×20+3×30)×4)×4)×6+
((10×5)×2+11×3)×7+(((1×10+2×20+3×30)×4)×5)×3+10+5+6+100+150

Après avoir développé l’équation ci-dessus et avoir effectué certaines factorisations,
on obtient une expression générale de la forme :

Cout =
∑

y/d−
GNG

(y)=0

(
∑

x/d+
GNG

(x)=0

∑

P : yx−chemin

CC(x)× w(P)) +
∑

x/d+
GNG

(x)=0

BC(x)

(6)

où:

•
∑

x/d+
GNG

(x)=0

BC(x) est le coût total de fabrication des blocs (BC) x satisfaisant

d+GNG(x) = 0, ce qui représente les blocs installés dans la conception.

•
∑

P : yx−path

CC(x) × w(P) est le coût de calcul (CC) imposé par le bloc installé

x, responsable de la réalisation du standard y.

•
∑

x/d+
GNG

(x)=0

∑

P : yx−path

CC(x)× w(P) représente le coût total de calcul imposé

par tous les éléments de traitement x installés dans la conception pour effectuer
la fonctionnalité de la norme y.

•
∑

y/d−
GNG

(y)=0

(
∑

x/d+
GNG

(x)=0

∑

P : yx−path

CC(x)× w(P)) représente le coût total de

calcul pour réaliser tous les standards considérés.

0.3.2 Une borne supérieure du nombre d’options de mise en œuvre

On va associer un vecteur Xv à chaque sommet v dans l’hypergraphe orienté H d’un
système multi-standards qui contient L niveaux. Chaque entrée de Xv représentera
le coût total de calcul résultant d’un choix particulier de mise en œuvre choisi pour
implémenter le bloc v, où le coût est calculé via la fonction de coût de l’équation 3.
Ce vecteur contient toutes les implémentations possibles de v. La dimension de Xv

est donc exactement égale au nombre total d’ options capables de réaliser v.

22 Résumé en Français

Dans le reste de cette partie, on note: |Xv| = dim(Xv).
Les paramètres dont on a besoin pour former les entrées du vecteur Xv seront le coût
de fabrication (BC), le coût de calcul (CC) et le nombre d’appels (NoCs).

Le vecteur Xv va être défini de façon récursive à partir des blocs de plus bas niveaux
jusqu’à ceux de niveaux les plus élevés. Pour les blocs v dans le niveau 1, on a
|Xv| = 1, parce que ces blocs peuvent être uniquement mis en œuvre en les installant
eux-mêmes. Cette seule entrée dans Xv sera le CC du bloc v, ce qui représente le
CC total imposé quand le bloc est installé lui-même. Après avoir défini Xv pour
tous les blocs v tels que l(v) ≤ i, le vecteur Xv où l(v) = i+1 est défini comme suit:

• Si l’on rencontre un hyperarc de type «OU» e ∈ FS(v) et en supposant que
H(e) = {r} (donc e = (T (e), H(e)) = ({v}, {r})), alors chaque entrée dans Xr

multipliée par w(v, r) sera une entrée en Xv décrivant le coût total de calcul
(CC) de l’une des options capable d’implementer v via r.

• Si l’on rencontre un hyperarc de type «ET» e ∈ FS(v) et en supposant que
H(e) = {si1, si2, · · · , sin} (donc e = (T (e), H(e)) = ({v}, {si1, si2, · · · , sin})),
alors : on choisit une entrée de chacun de Xsik , k ∈ {1, 2, · · · , n}, on la mul-
tiplie par le nombre de fois que v appelle sik (ce qui est w(v, sik)), puis on
ajoute toutes les réponses obtenues pour tous k ∈ {1, 2, · · · , n}. Cela formera
une entrée de Xv. Par conséquent, il est évident que cet hyperarc impose
|Xsi1 | × |Xsi2 | × · · · × |Xsin | options capables de réaliser v.

• Une option de plus est à considérer pour l’installation du bloc v lui-même.

On note Zv le multi-ensemble obtenu à partir de Xv en listant simplement ses com-
posantes.

Soit H un hypergraphe orienté d’un système multi-standards et v ∈ V (H). ∀ e ∈
FS(v), on pose Ue =

∏

r∈H(e)

Zr.

Les composants de Xv seront alors identifiées par :

• ∀e ∈ FS(v), ∀a = (ar)r∈H(e) ∈ Ue ,
∑

r∈H(e)

w(v, r).ar est une entrée en Xv.

• Une entrée supplémentaire dans Xv est le CC de v, qui représente l’installation
directe du bloc v lui-même.

La dimension de Xv, |Xv|: D’après ce qui précède, on peut définir |Xv| par:

|Xv| =
∑

e∈FS(v)

∏

r∈H(e)

|Zr| + 1, (7)

défini de façon récurrente du plus bas au plus haut niveau.

0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétrisation 23

On note ui une borne supérieure de |Xv| pour tout bloc v occupant le niveau i,
c-à-d: ∀ v / l(v) = i, |Xv| ≤ ui. Une expression de ui sera notre borne supérieure
souhaitée. ui sera ainsi définie récursivement du plus bas au plus haut niveau.
Les deux paramètres suivants seront utilisés:

M = max
v∈V (H)

(|FS(v)|+ 1),

r = max
e∈E(H)

(|H(e)|).

On peut déduire une relation de récurrence comme suit:

{ u1 = 1,

us+1 = M(us)
r ∀ 1 ≤ s < L.

(8)

Supposons que l’on veuille trouver us une borne supérieure de |Xv| où l(v) = s. On
peut alors faire les remarques suivantes :

• Il y a M − 1 hyperarcs tels que v soit le sommet parent (par définition de M).

• Chacun de ces hyperarcs contient un maximum de r sommets d’extrémités.

• Le pire des cas est réalisé lorsque tous les r sommets d’extrémités d’un hyperarc
e ∈ FS(v) sont dans le niveau s− 1, ce qui imposera une borne supérieure plus
large.

Il est à noter que la relation de récurrence de l’équation 3.6 peut être facilement
résolue avec un simple induction sur s. On obtient alors : us = M rs−2+rs−3+···+r+1

ou encore :

us = M
1−rs−1

1−r ; s > 1, r 6= 1. (9)

Dans la partie suivante, nous allons exposer notre problème d’optimisation dont le
but est de trouver l’une des options de mise en œuvre d’un terminal multi-standards
ayant un coût minimum. A priori ce problème est un problème complexe en raison
de la borne supérieure exponentielle atteinte pour le nombre total d’alternatives vu
ci-dessus.

0.3.3 La complexité de notre problème d’optimisation

Notre objectif est d’identifier les opérateurs communs (COs) les plus appropriés
permettant de mettre en œuvre un terminal multi-standards donné, et dont le coût
(donné par la fonction de coût expliquée dans 0.3.1.4) est minimum. Ainsi, notre
problème d’optimisation peut être décrit selon :

Une description générale des paramètres: Les paramètres d’une variance de
notre problème doivent représenter une structure graphique H d’un système
multi-standards. Ce qui suit est une liste des variables de notre problème
d’optimisation.

24 Résumé en Français

1. une liste de tous les n sommets dans V (H).
2. une liste de tous les m hyperarcs dans E(H).
3. le nombre de niveaux L.
4. le nombre de blocs dans chaque niveau. Soient a1, a2, · · · , aL le nombre de

blocs dans les niveaux 1, 2, · · · , L.
5. Une liste des blocs occupant le niveau le plus haut (niveau L) qu’il est

nécessaire d’implémenter.
6. Les valeurs numériques "CC & BC" de chaque bloc et le nombre d’appels

(NoCs) sur chaque arc.

Question : Trouvez l’ensemble d’opérateurs U ⊆ V (H) capables de mettre en œu-
vre le terminal multi-standards et dont le coût d’implémentation (donné par la
fonction de coût) est minimum.

Rappelons qu’un problème d’optimisation peut être transformé en un problème de
décision et qu’il n’est pas plus difficile que le problème d’optimisation correspondant.
Le problème de décision correspondant à notre problème d’optimisation est formulé
comme suit:

Une description générale des paramètres : • les points de 1 à 6 dans la de-
scription des paramètres du problème d’optimisation (voir ci-dessus).

• une constante B ≥ 0.
Le problème de décision se formule alors de la façon suivante :

Question : Peut-on trouver un ensemble d’opérateurs U ⊆ V (H) capables d’implé-
menter les standards mis en jeu et dont le coût d’implémentation (donné par
la fonction de coût) soit inférieur ou égal à B?

Nous avons alors établi le théorème suivant :

Théorème 3. Le problème de décision précédemment décrit est un problème NP à
condition que le nombre de niveaux L du graphe représentant l’équipement multi-
standards soit majoré par une constante i, c-à-d L ≤ i pour i ≥ 0.

Preuve. Considérons une variance I de notre problème. L’objectif est de rechercher
une solution S pour cette variance, puis d’essayer de déduire une relation polyno-
miale du nombre d’opérations nécessaires pour vérifier si la réponse pour I et S est
«oui». Ceci implique l’étude du pire des cas qui correspond au nombre d’opérations
maximum. Cependant, comme il est généralement impossible de déterminer exacte-
ment le pire des cas exact, on va examiner des scénarios qui sont pire que le pire des
cas.
Considérons une structure graphique H d’un système multi-standards avec tous les
paramètres nécessaires (la variance I) contenant L niveaux. Recherchons une solu-
tion S (une solution pour notre problème est un ensemble U ⊆ V (H)) et supposons
que |U | = k (c-à-d que l’on choisit k blocs par hasard). On devra alors vérifier les
trois points suivants:

0.3 Apport de la théorie des graphes dans l’approche théorique de la paramétrisation 25

• Tout d’abord, il faut vérifier si la solution S peut mettre en œuvre l’équipement
multi-standards: on montre qu’un maximum de m(L−1) opérations est requis.

• Ensuite, il faut calculer le coût de l’option choisie, qui est caractérisée par les
blocs sélectionnés dans U ;
Dans cette étape, on doit trouver le nombre de multiplications et d’additions
requis dans le calcul de la fonction de coût. Un graphe généré (GNG) ressem-
blant à celui de la figure 3.7, noté WGNG, correspondant au pire des cas de mise
en œuvre:

1. les k blocs choisis dans U occupent le plus bas niveau (niveau 1), ce qui
génère les chemins les plus longs du niveau le plus élevé au niveau le plus
bas.

2. une connexion de type "ET" entre chaque bloc v et tous les blocs qui
occupent un niveau inférieur de celui de v correspond au pire des cas, car
elle impose un nombre de chemins maximum des niveaux les plus hauts
aux blocs choisis dans U .

Dans notre cas, nous sommes sûrs que la réalisation pratique ne sera pas plus
complexe que le cas de la figure 3.7 considérée. C’est pourquoi on peut dire que
c’est un cas encore plus complexe que le pire des cas.

Figure 6: Graphe WGNG généré représentant le pire des choix de mise en œuvre

Soit v un sommet de WGNG tel que l(v) = i. On peut toujours trouver un
chemin allant de tout sommet de ℑ à v traversant n’importe quelle combi-
naison et n’importe quel nombre de sommets de niveaux L − 1 jusqu’à i + l
(probablement aucun sommet du tout), occupant tous des niveaux différents. Il
faut noter que les chemins traversent les sommets dans l’ordre décroissant des
niveaux du graphe que chaque sommet occupe. Soit v un sommet de niveau i
dans WGNG. On note ni une borne supérieure du nombre de chemins de ℑ à v.
On peut obtenir la relation de récurrence suivante:

26 Résumé en Français

{ nL−1 = aL

nL−i = nL−(i−1)(aL−(i−1)) + nL−(i−1)

(10)

Soit s = max{a2, · · · , aL}. Par induction, on peut facilement conclure que
nL−i est de l’ordre de O(si). Par conséquent n1 = nL−(L−1), qui représente une
borne supérieure du nombre total de chemins de ℑ à un sommet de niveau 1
dans WGNG, est de l’ordre de O(sL−1). Il faut noter que le nombre total de
chemins de ℑ à tous les k blocs installés dans niveau 1 est au plus kn1.

Le calcul des poids de chacun de ces kn1 chemins est nécessaire (la longueur
d’un tel chemin est au plus L− 1) et ceci en cohérence avec la fonction de coût
de l’équation 3.4. Ensuite son poids est multiplié par le coût de calcul (CC) du
bloc correspondant installé. Ainsi, nous pouvons conclure que chaque chemin
est associé au plus à L multiplications.
Puisque l’on a besoin d’une addition entre le poids d’un chemin et un autre, on
aura kn1 − 1 nombre d’additions dans le pire des cas.
Ainsi, au total, le nombre de multiplications et d’additions nécessaires pour
calculer le coût correspondant sera inférieur à: kLn1 + (kn1 − 1).

• Ensuite, il faut comparer le coût trouvé dans la deuxième étape avec B: une
seule opération est alors nécessaire.

Le nombre total d’opérations requises pour vérifier la réponse «oui» de la variance
I et la solution S sera donc :

m(L− 1) + [kLn1 + kn1 − 1] + 1. (11)

Si on désigne par b le max{s, k,m}, alors le nombre d’opérations nécessaires associées
à l’équation 3.9 est une fonction en O(bL) (rappelons que n1 ∈ O(sL−1) et L ≤ i).
En outre, puisque L ≤ i, on conclut que l’équation 3.9 est une fonction en O(bi),
nécessitant ainsi un temps polynomial.

�

Puisque l’on sait maintenant que notre problème d’optimisation n’est pas un prob-
lème facile, il est nécessaire d’étudier des façons de le simplifier. Une possibilité
réside dans l’exclusion d’un certain nombre de configurations permettant de réaliser
l’équipement multi-standards. Ce point fera l’objet du chapitre suivant. Ensuite,
nous proposerons un nouvel algorithme pour résoudre ce problème d’optimisation,
en utilisant différentes notions de modélisation liées aux hypergraphes orientés, qui
ne prennent en compte que les alternatives de mise en œuvre non-ignorées. Une
analyse de complexité de cet algorithme par le pire des cas sera ensuite présentée.

0.4 Une technique d’optimisation des équipements multi-standards utilisant la notion

d’hypergraphes orientés 27

0.4 Une technique d’optimisation des équipements multi-
standards utilisant la notion d’hypergraphes orientés

Des travaux ont été menés par S. Gul [60] afin de résoudre ce problème d’optimisation.
Etant donné la complexité du problème (dont la preuve a été apportée ensuite dans
la section 0.3.3), une technique sous optimale (de type heuristique) a été à l’époque
retenue. En effet, toutes les méthodes optimales connues nécessitent un effort de
calcul dont la complexité augmente de façon exponentielle avec la taille du graphe.
Cependant, dans ce travail, nous avons proposé un nouvel algorithme qui fournit la
solution optimale. Sa complexité sera ensuite étudiée.

0.4.1 Exclusion de certaines configurations pour la recherche du

coût minimal

Il a été mis en évidence dans la section 3.1.2 qu’il existe certaines alternatives ca-
pables de mettre en œuvre la conception pour lesquelles un bloc donné est installé
avec quelques autres qui peuvent le construire.

Dans cette partie on va prouver que de telles configurations, dont les graphes générés
ne correspondent pas à des G-chemins de la structure graphique d’un système mutli-
standards, ne peuvent avoir le coût minimal. En effet, après avoir effectué les
développements nécessaires, nous montrons que d’autres configurations moins coû-
teuse existent. Cela sera illustré sur un exemple et ensuite une généralisation sera
fournie.

0.4.1.1 Un exemple

Un exemple est donné sur la figure 4.1. La configuration (1) représente un GNG
d’une conception où l’implémentation de D et F est faite par les blocs de hauts
niveaux H&I (par rapport à J,K,L,&I), alors que dans configuration (2), les blocs
de niveaux plus bas J,K,L,&I seront installés pour réaliser à la fois D et F . Quant
au GNG de la troisième configuration, le choix est d’implémenter F en utilisant
J,K,L,&I mais aussi d’installer les blocs de niveaux plus élevés H&I (qui peuvent
être mis en œuvre par les blocs de niveaux inférieurs J,K,L,&I) pour réaliser les
fonctionnalités de D.

Remarquons que, dans la troisième configuration de la figure 4.1, il y a une partie
dédoublée (DP) (qui comprend les fonctions A&H) qui est utilisée par un chemin qui
a besoin de ses fonctionnalités (le chemin traversant bloc D). Le deuxième chemin
atteignant DP (traversant bloc F) considère plus de décompositions de certaines des
fonctions à l’intérieur de DP (la décomposition de l’élément de traitement H).

On note d’autre part qu’il y a une partie non-dédoublée (UP) (la fonction I dans la
figure 4.1) qui partage dans le calcul de CC(A), où A est le seul bloc de plus haut
niveau dans DP.

28 Résumé en Français

Figure 7: Trois configurations possibles

La question se porte maintenant vers les coûts de chacune de ces configurations. Le
but est de démontrer que la configuration (3) ne peut en aucun cas avoir un coût
minimum. Cela se démontre de la façon suivante. Tout d’abord, nous avons supposé
que le coût de la configuration (2) était inférieur ou égal au coût de la configuration
(1). En conséquence, nous avons alors démontré que le coût de la configuration (2)
était obligatoirement inférieur au coût de la configuration (3). Ainsi, la configuration
(2) est celle dont le coût est minimal. L’autre possibilité était de supposer que la
configuration (2) avait un coût plus élevé que les configurations (1) et (3), et de
prouver alors que, dans ce cas, la configuration (1) était la moins coûteuse.

0.4.1.2 Généralisation du principe l’exclusion

Dans cette partie, nous avons généralisé notre étude sur les possibilités de concevoir
un design de coût minimum. En plus des parties dédoublées et non-dédoublées
désignées par DP et UP, les notations suivantes ont été utilisées dans la généralisa-
tion: DUP désigne la combinaison de DP et UP; DUBP est une combinaison des
fonctions de DUP avec la décomposition (désignées par BP) de quelques opérateurs
dans DP. Par exemple dans le cas de la figure 4.1, nous pouvons remarquer que
DUP est constitué des blocs A,H et I alors que A,H, I, J,K, et L forment ceux
dans DUPB. Notons que H et I sont les blocs de DUP de plus bas niveaux; J,K,L
et I sont ceux de plus bas niveaux en DUPB.

Ainsi pour généraliser, on va se référer aux trois configurations de la figure 4.2.
D’une manière analogue à l’exemple précédent, la configuration (1) consiste en deux
chemins realisés par les blocs de DUP de plus bas niveaux, tandis que la deuxième
configuration comprend deux chemins mis en œuvre par les blocs de plus bas niveaux

0.4 Une technique d’optimisation des équipements multi-standards utilisant la notion

d’hypergraphes orientés 29

de DUPB. Quant à la troisième configuration, l’un des deux chemins est mis en œuvre
en utilisant les fonctions installées de DUP, et l’autre est réalisé par les opérateurs
installés de DUPB. Nous avons alors démontré le théorème suivant:

Figure 8: Les trois configurations dans la cas général

Théorème 4. Une option de mise en œuvre d’un système multi-standards, dont le
graphe généré comprend une partie dédoublée, ne peut jamais avoir un coût minimum.

Pour le prouver, nous avons suivi la même démarche que celle utilisée dans l’exemple
précédent.
Nous avons tout d’abord supposé que DP contient un seul bloc de plus haut niveau.
La deuxième étape consiste à considérer que DP contient deux blocs de plus haut
niveau. Dans ce cas, on a divisé DP en deux parties dédoublées dans lesquelles cha-
cune contient exactement un seul bloc de plus haut niveau. Ensuite on a travaillé
sur chaque DP séparément. On a remarqué que par induction, on peut étendre la
preuve aux parties dédoublées contenant n’importe quel nombre de blocs dans le
plus haut niveau.

Il faut noter que les deux premières configurations des figures 4.1 et 4.2 sont des
G-chemins, ce qui n’est pas le cas pour la troisième. En conclusion, un concep-
teur recherchant une configuration de coût minimal peut ignorer toutes celles dont
les graphes générés contiennent une partie dédoublée. Ainsi, il peut restreindre
son étude aux configurations de mise en œuvre dont les graphes générés sont des
G-chemins de racine ℑ. Cette idée sera exploitée dans la partie suivante, où l’on
propose un nouvel algorithme (en utilisant la théorie des graphes) qui peut résoudre
le problème d’optimisation posé précédemment en ne traitant que les options de mise
en œuvre dont les graphes générés sont des G-chemin de racine ℑ, au lieu de traiter
toutes les alternatives possibles.

30 Résumé en Français

0.4.2 Un algorithme de recherche de configuration à coût minimal

Notre algorithme de conception à coût minimal est noté MCD (Minimum Cost De-
sign). Soit H un hypergraphe orienté représentant la décomposition d’un système
multi-standards. On va définir l’entrée de notre algorithme par Hr l’hypergraphe ori-
enté obtenu à partir de H en ajoutant un sommet r imaginaire à V (H) et l’hyperarc
Er à E(H), où {r} est l’ensemble d’origine de Er et ℑ représente son ensemble
d’extrémités. Le sommet r joue le rôle d’un standard imaginaire qui occupe seul le
niveau le plus haut. Les paramètres assignés aux entités de Hr seront:

• In english: CC, BC and NoCs for the entities of the directed hypergraph Hr

(on the blocks and the arcs) remain the same for all the similar entities of the
directed hypergraph H.

• CC, BC et NoCs pour les entités de l’hypergraphe orienté Hr (sur les blocs et
les arcs) restent les mêmes pour toutes les entités similaires de l’hypergraphe
orienté H].

• wEr(r, v) = 1 ∀ v ∈ ℑ

Dans notre algorithme lorsque l’on évalue le coût imposé par un G-chemin, on a
besoin de rechercher tous les chemins de H allant de tous les standards de ℑ (blocs
de plus hauts niveaux) à tous les blocs installés dans la configuration sélectionnée.
Cela correspond à la recherche de tous les chemins du sommet r dans Hr aux blocs
installés de la configuration donnée.

L’algorithme fonctionne de la façon suivante. Il sélectionne une option (illustrée
comme un G-chemin), calcule son coût en utilisant la fonction de coût de l’équation
3.4, puis il le compare avec les autres coûts calculés précédemment, afin de le met-
tre à jour au cas où il serait inférieur à tous les coûts calculés jusque là. Ensuite,
l’algorithme génère plusieurs configurations qui émergent à partir de celle finalement
sélectionnée. La même procédure est suivie pour chaque configuration sélectionnée.

Le résultat de l’algorithme MCD correspond au G-chemin de coût minimal ainsi que
son coût correspondant. A partir de ce G-chemin, on peut extraire les opérateurs
communs qui doivent être installés dans la conception en sélectionnant simplement
les blocs qui ont une étoile devant vide, donc atteignant notre objectif de trouver les
opérateurs communs les plus adaptés qui permettront d’optimiser le coût.

Au cours des itérations de l’algorithme on va introduire, pour chaque G-chemin X
sélectionné, un vecteur kv associé à chaque sommet v ∈ V (X) défini récursivement
des sommets de plus hauts niveaux dans X vers ceux de plus bas niveaux où:

{ dim kv = 1; v = r;

dim kv =
∑

e ∈ BSX(v)

∑

w ∈ T (e)

dim kw; v 6= r; (12)

Chaque composante de kv représentera le poids d’un chemin de r à v, et la dimension
de kv dim kv correspondra au nombre de ces chemins.

0.4 Une technique d’optimisation des équipements multi-standards utilisant la notion

d’hypergraphes orientés 31

Plusieurs variables ont été introduites dans l’algorithme. On va expliquer l’intérêt
de quelques unes d’entre elles.

• Q est un ensemble dans lequel les sommets de l’option sélectionée X seront
appelés progressivement, en traversant les boucles de l’algorithme. A chaque
étape, l’algorithme sélectionne un élément u dans Q qui satisfait l(u) =
max{l(w);w ∈ Q}, en raison de la façon selon laquelle le vecteur kv est
défini.

• M est un ensemble dans lequel les G-chemins générés de Hr de racine {r} seront
appelés.

• Une variable RP est introduite pour contenir le coût total du p−ieme G-chemin
sélectioné.

• S est une variable dans laquelle on accumule le coût d’un certain G-chemin de
Hr de racine {r}.

• A est un ensemble qui contiendra tous les sommets v de degré extérieur zéro
dans le G-chemin X sélectionné.

• SMin est une variable entière qui contiendra le plus faible coût d’un G-chemin.

• K est une variable qui contiendra le G-chemin de Hr de racine {r} ayant le
coût le plus faible parmi ceux testés.

Voici les étapes complètes de l’algorithme "MCD":
Procedure(Hr, CC(v), BC(v), NoC(v))
begin
M = {({r}, φ)}, Rp := 0, p := 1, D := φ;
repeat

select and remove X ∈ M
if X = ({r}, φ)

go to step U
end-if

1 :Skip the cost evaluation of this imaginary option X

S := 0, A := φ ;
kr := k1r := 1 dim kr := 1;
for each v ∈ V (X)\{r} do
kv = 0 vector, dim kv := 0;

end-for

2 :Initialization of kv vectors for X

Q = {r};
repeat
select and remove v ∈ Q
for each E ∈ FSX(v) do
begin

for each h ∈ H(E) do
begin
Q := Q ∪ {h}

3

32 Résumé en Français

i := 1
repeat
if kih 6= 0
i := i+ 1

end-if
until kih = 0

4: Indicate the index i of the first 0 component of kh

if v 6= r
for each E ∈ BSX(v)
for each w ∈ T (E)
dim kv := dim kv + dim kw

end-for
end-for

end-if

5 : Compute dim kv using eq. 12

j := 0
repeat
k(i+j)h = k(j+1)v × wE(v, h)

j := j + 1
until j := dim kv

6 :Find weight of each rh-path via E

if d+X(h) = 0
l := i
repeat
S := S + CC(h)× klh
l := l + 1

until l = i + dim kv
A := A ∪ {h}

end-if

7 :Multiply found weights in step 6 by CC(h)

end-for
end-for

until Q = φ
repeat
select and remove v ∈ A
S := S +BC(v)

until A = φ

8:Add BC of all installed blocks to total CC

Rp := S

if p = 1
SMin := Rp

K := X
end-if

9:R1=the first cost found, indicated to be so far the least

p := p+ 1
Rp := 0

10:Initialize Rp variable to 0, which will include next cost

if p > 2
if Rp−1 < SMin

SMin := Rp−1

K := X
end-if

end-if

11:Update SMin & K to associated least cost option

0.4 Une technique d’optimisation des équipements multi-standards utilisant la notion

d’hypergraphes orientés 33

STEP U
for each u ∈ V (X) / d+X(u) = 0 do
begin

for each E ∈ FSHr(u) do
M := M ∪ {X + E}

end-for
end-for

12:Generate G-paths of Hr from X

until M = φ
end-procedure.

Dans la partie suivante, nous allons procéder à une analyse du pire des cas de cet
algorithme pour estimer sa complexité. Cette analyse de la complexité de calcul
donnera une borne supérieure pour les ressources requises par l’algorithme.

0.4.3 Complexité de calcul de l’algorithme MCD

Soit Hr l’hypergraphe orienté (une donnée de l’algorithme contenant L niveaux, sans
tenir compte du niveau r, avec |V (Hr)| = n et |E(Hr)| = m. Soit ak le nombre de
sommets qui occupent le niveau k dans Hr. Considérons de plus les paramètres
suivants:

• Ei =
⋃

v∈l(L−i+1)

FS(v); Evidemment EL = φ.

• t = max
i=1,··· ,L−1

|Ei|.

• W = {v/d+Hr
(v) = 0}.

• s = max
i=2,··· ,L

ai.

• d =
∑

v∈V (Hr)
d−Hr

(v) =
∑

e∈E(Hr)
|H(e)|

Dans la thèse, nous avons démontré les points suivants:

1. Le nombre maximum d’hyperarcs que n’importe quel G-chemin de Hr de racine
{r} peut comprendre n’exède pas n− |W |.

2. Le nombre total de G-chemins de Hr de racine {r}, contenant au plus k hyper-
arcs chacun, est une fonction de l’ordre de O(tk−1). Par conséquent, le nom-
bre total des d’options générées par l’algorithme sera de l’ordre O(tn−|W |−1),
puisque chaque G-chemin de Hr de racine {r} contient au plus n− |W | hyper-
arcs.

3. Une borne supérieure de la dimension de n’importe quel vecteur kv est de l’ordre
de O(sL−1). Ceci avait déjà été prouvé en utilisant un raisonnement similaire
à celui similaire à celui du deuxième point de la preuve de la section 0.3.3.

Il est clair que le coût de l’initialisation à l’étape 2 de l’algorithme est de l’ordre
O(n). On suppose que chaque opération de sélection et d’élimination des ensembles
M,Q, ou A ainsi que d’insertion dans M,Q, ou A a un coût unitaire.

34 Résumé en Français

Chaque sommet est inséré et retiré de l’ensemble Q au plus une fois, parce que la
sélection d’un élément u de Q satisfait l(u) = max{l(w);w ∈ Q}. Donc, on peut
conclure que dans la troisième étape de l’algorithme, chaque hyperarc de X ne sera
examiné qu’une seule fois (c-à-d la première fois que l’hyperarc est sélectionné) et
à chaque fois qu’il est sélectionné, tous ses sommets d’extrémités seront examinés.
Ainsi, les étapes 4 à 7 de l’algorithme seront exécutées

∑

e∈E(Hr)
|H(e)| = d fois.

Les étapes 4, 6 et 7 ont des complexités de l’ordre O(sL−1) chaque fois que l’on
entre dans la boucle "répéter · · · jusqu’à Q = φ", car dans toutes ces étapes on
a besoin d’explorer les composantes d’un certain vecteur kv. Au contraire, l’étape
5 sera exécutée

∑

v∈V (Hr)
d−Hr

(v) = d fois tout au long des itérations de la boucle
"répéter · · · jusqu’à Q = φ", puisque la dimension de chaque sommet dans X sera
calculée seulement une fois.

L’étape 8 a une complexité de l’ordre O(n), car un maximum de n sommets existent
dans A. Les étapes 9, 10 et 11 sont d’ une complexité négligeable (juste quelques
affectations et comparaisons). L’étape 12 a une complexité de l’ordre O(m), car
l’un de m hyperarcs au maximum peut être chaque fois ajouté à l’option selectionée.
Toutes les étapes de 1 à 12 ont une complexité de l’ordre O(tn−|W |−1).

Finalement, on peut conclure que la complexité de l’algorithme MCD est de l’ordre
O((dsL−1 + d + n + m)tn−|W |−1) ce qui est équivaut une complexité de l’ordre
O(an−|W |+L−1). Ainsi, une borne supérieure exponentielle est atteinte pour les
ressources requises par l’algorithme MCD. Notons que ceci est une analyse du pire
des cas et ne représente pas nécessairement le nombre exact atteint en pratique.

L’algorithme MCD a été implémenté en langage C. Nous l’avons appliqué sur plusieurs
exemples afin d’établir ses performances. Nous avons commencé par un exemple
d’un hypergraphe orienté et puis nous l’avons complexifié en ajoutant au fur et à
mesure un hyperarc. Nous avons remarqué que le nombre d’options de mise en œuvre
(et par conséquent le temps d’exécution) augmente rapidement avec l’augmentation
du nombre d’hyperarcs, et cette augmentation diffère en fonction de l’endroit où
l’hyperarc est ajouté. Enfin, il était évident que notre approche est plus complexe
que la technique stochastique précédemment sélectionnée par S.Gul (qui ne nécessite
pas beaucoup de temps d’exécution puisque c’est une technique heuristique). Mais
cependant l’algorithme MCD est évidemment capable de fournir une solution ex-
actement optimale au contraire des techniques heuristiques qui donnent une solution
proche de l’optimum.

0.5 Conclusion

Ce travail se situe dans le domaine de la radio logicielle et plus précisement dans
l’identification de structures communes pouvant aboutir à la réalisation de terminaux
reconfigurables et flexibles. Cette approche appelée paramétrisation peut être abor-
dée de façon théorique ou pragmatique. Seule la déclinaison théorique a été étudiée
dans ce manuscrit. Il s’agit d’un travail de recherche sur l’optimisation d’équipements

0.5 Conclusion 35

SDR multi-standards en utilisant la théorie des graphes.

Nous avons commencé le manuscrit en présentant le problème de conception lié au
domaine de la radio logicielle restreinte dans le chapitre 1. L’approche de type
Velcro encore majoritairement utilisée ne sera bientôt plus viable. D’où la néces-
sité d’introduire de nouvelles méthodes d’optimisation de conception, en particulier
d’équipements multi-standards, qui vont se généraliser. Partant de ce constat, nous
introduisons l’approche de conception par paramétrisation et en particulier son ap-
proche théorique . Cette approche consiste à étudier tous les appels de fonctions
du système selon plusieurs niveaux de granularité en utilisant une représentation du
problème sous forme d’un diagramme [50]. Cette approche graphique a été ensuite
associée à un problème d’optimisation en proposant une fonction de coût [49] qui doit
être minimisée. Cette fonction de coût évalue le coût de chaque option de mise en
œuvre sélectionnée parmi toutes les configuration possibles d’ un équipement SDR
multi-standards.

Des techniques stochastiques donnant des solutions proches de l’optimum ont été
proposées dans [60] pour résoudre ce problème d’optimisation, car il a été intuitive-
ment considéré comme un problème complexe.

Dans le chapitre 2 les deux théories, essentielles pour la suite de notre travail, à
savoir celle des graphes et de la compléxité, ont été présentées en détail.

La structure graphique d’un système SDR multi-standards introduite dans le pre-
mier chapitre a été dans un premier temps modélisée comme un hypergraphe orienté
dans le chapitre 3. Nous avons ensuite fourni une suggestion graphique d’une option
de mise en œuvre comme un hypergraphe orienté obtenu à partir de la structure
graphique d’origine, appelé un graphe généré. En outre, nous avons proposé une
forme alternative de la fonction de coût présentée dans le premier chapitre en util-
isant différentes définitions des hypergraphes orientés. Ensuite, nous avons menée
une étude dans le but d’estimer le nombre de configurations possibles décrites par
l’hypergraphe orienté associé au système multi-standards. Nous avons montré que
ce nombre atteint une borne supérieure exponentielle, caractéristique d’un problème
très complexe. Enfin, nous avons présenté une preuve détaillée démontrant que notre
problème d’optimisation est NP mais à condition que le nombre de niveaux dans la
structure graphique ne dépasse pas une certaine constante, ce qui est généralement
considéré le cas.

Dans le chapitre 4 nous avons prouvé que lorsque l’on cherche une configuration de
coût minimum, il est possible d’ ignorer celles dans lesquelles on trouve une dupli-
cation dans leurs graphes générés. Nous pouvons restreindre notre recherche aux
configurations ou modèles dont les graphes générés sont des G-chemins. Cela nous a
permis de proposer un nouvel algorithme à coût minimal (MCD) pour résoudre notre
problème d’optimisation, en utilisant des notions de modélisation liées aux hyper-
graphes orientés. L’algorithme fournit le G-chemin correspondant à une configura-
tion à coût minimum, à partir duquel nous pouvons extraire les opérateurs communs

36 Résumé en Français

destinés à être installés dans l’équipement multi-standards mutualisé. Nous avons
analysé la complexité de calcul de l’algorithme MCD ; sa borne supérieure est expo-
nentielle, signifiant que le problème reste complexe.

Comme il s’agit d’une analyse du pire des cas, il semble évident que dans la plupart
des cas pratiques, une complexité moindre sera nécessaire. C’est pour cela nous
avons appliqué notre algorithme MCD à divers exemples pour illustrer l’évolution de
sa complexité, après avoir développé un code pour MCD en langage C. Les résultats
montrent que MCD nécessite un effort de calcul important qui augmente rapidement
au fur et à mesure que l’on augmente le nombre d’hyperarcs dans l’hypergraphe ori-
enté. Bien que notre algorithme nécessite une plus grande complexité que les tech-
niques heuristiques stochastiques, MCD est capable de fournir une solution optimale.
Enfin, il est important de noter que le temps d’exécution de l’algorithme MCD n’est
pas un obstacle car il est exécuté une seule fois avant de concevoir l’équipement
multi-standards .

Les perspectives de ce travail de thèse sont les suivantes :

• La solution proposée vise à partager des opérateurs communs entre plusieurs
stnandards. Par conséquent, le problème d’ordonnancement et d’allocation des
ces opérateurs est primordial. Pour cela, une démarche méthodologique doit
être proposée pour organiser les exigences de l’utilisation de chaque opérateur
commun. Il pourrait être nécessaire de dupliquer certains opérateurs dans la
conception.

• La complexité du problème d’optimisation presenté dans ce manuscrit peut
être enrichie pour savoir si le problème est encore plus complexe, c’est à dire
en prouvant qu’il s’agit d’un problème NP-complet (si possible).

• L’exclusion de certaines options de mise en œuvre a certainement réduit la
complexité de notre problème d’optimisation. Une question malgré tout se
pose : dans quelle mesure la complexité de notre problème a été réduite en
supprimant ces options.

• L’idée d’ignorer certaines options de mise en œuvre, dont les graphes générés ne
correspondent pas à des G-chemins, peut être exploitée sur toute autre solution
trouvée dans l’avenir pour notre problème, que ce soit déterministe ou bien un
outil d’optimisation heuristique, aboutissant à une technique moins complexe
en examinant un moins nombre d’alternatives capables de mettre en œuvre le
système multi-standards.

Part II

Ph.D. Dissertation

General Introduction

1 Background and context

The recent years have witnessed an enormous proliferation of standards especially
in wireless communications and broadcast television, just to mention few. These
standards form just the basis for a sophisticated electronic device which will keep
on evolving with technology innovation, each with the potential to sell in very high
volume. Thus, radio system designers nowadays focus their attention on developing
multi-standard systems that can successfully communicate with different systems
using different air-interfaces.

Current habit is to support several communication standards through dedicated
self-contained complex components, known as the Velcro approach [1, 41], which is
however difficult to be updated with changes in the standards. The need for an
adaptable and flexible terminal which is capable of being upgraded with the latest
innovations, as well as to operate with all supported standards in different geograph-
ical regions of the world, is ever increasing.

In the beginning of the 90’s, Mitola introduced the concept of SoftWare Radio (SWR)
[6] as an architecture which uses general-purpose hardware that can be programmed
or reconfigured in software [2], to support many different transmission standards on
a common platform. It emerged from demonstrations in military research to become
a cornerstone of the third generation for ubiquitous global communications. SWR
technology allows to roam over various networks in different geographical environ-
ments supporting multiple heterogeneous applications. It was considered to afford
more flexibility in accepting multiple waveforms and services at a reasonable cost
and complexity. Such reconfigurable architectures are able to support new stan-
dards and to add new functionalities as soon as they are discovered because they
possess sufficient flexibility, instead of the frequent redesign imposed by non-flexible
equipments which is definitely costly and time consuming.

One key idea of the SWR concept is to exploit the common signal processing op-
erations between the different standards which are intended to be implemented on
a common platform. In order to attain higher flexibility and adaptability, it was
necessary to first identify the most appropriate commonalities between the various
applications to be supported, and then to find the optimal way to reuse some hard-

40 Introduction

ware and software modules without affecting the system’s performances. In this
sense, a technique called parametrization is introduced [35, 36]. It relies on the com-
mon operator’s approach which allows several standards to use the same components
and share their cost, where the behavior of the common aspects can be modified by
a simple parameter adjustment imposed by a software module [37]. Parametrization
represents a methodology to design SWR and is considered to be a crucial optimiza-
tion process to design flexible multi-standard systems.

Two approaches are considered in the context of parametrization, namely the Theo-
retical approach and the Pragmatic approach, which are complementary approaches
to identify the most appropriate common operators inside and between the different
standards. The former approach, which forms the keystone of this work, helps find
the global optimality using a suggested graph structure of multi-standard systems
in [49, 50] to construct an optimal design. As for the pragmatic approach, it identi-
fies and forms common operators from the architecture point of view, which can be
invoked in the graph structure of the theoretical approach. It creates common op-
erators by merging like-looking architectures, as was done to create the Dual Mode
FFT operator in [46] and the common operators based on the Linear Feedback Shift
Register (LFSR) in [47] and [48]. The next section describes the scope and the main
objectives of this thesis.

2 Scope and objectives

A graphical approach for designing flexible multi-standard radio systems is proposed
in [50] which describes in a diagram the interrelationships between the different com-
ponents in the system, by decomposing the communication blocks into different gran-
ularity levels. This approach lies within the theoretical technique of parametrization.
It’s a mathematical model in which it’s required to perform the necessary granular-
ity adjustments, by solving the optimization problem associated with it. In fact, a
cost function is formulated in [49] using two selected parameters; the Building cost
which is the cost of a Processing Element (PE) paid only once, and the Compu-
tational cost which is the time taken by a PE to perform a certain function and
is paid every time it’s called. This cost function is required to be optimized to its
minimum value possible by using appropriate optimization techniques. Stochastic
search optimization approaches which give near-optimal solutions were selected in
[60] to solve this problem instead of using deterministic search techniques, because
the related optimization problem was intuitively considered to be a complex one.
Since the problem is formulated in a graphical diagram in [50], our aim is first to
reformulate and model it theoretically using graph theory. In light of this modeling
comes our second objective aiming to find or create a new optimization tool to solve
this optimization problem.

Graph theory [62] is rapidly moving into the mainstream of mathematics mainly be-
cause of its applications in diverse fields which include telecommunication (Viterbi
DEcoding, radio channel assignment, · · ·), biochemistry & biology topics, electrical

Introduction 41

engineering (communication networks), as well as computer science (algorithms and
computation). It is the study of graphs used to model pairwise relations between el-
ements from a certain collection. There might be no distinction between the related
elements in a graph. However, elements of a graph may be directed from one ele-
ment to another in which case it is called a digraph. Hypergraphs [68] and directed
hypergraphs [69] are generalizations of graphs and digraphs respectively.

The task of providing a theoretical characterization using graph theory for the var-
ious notions of the multi-standard system helps to explore the system’s different
design possibilities that the corresponding graphical diagram exhibits. Our final ob-
jective in this thesis is to choose the most convenient design that optimizes the cost
imposed by the proposed cost function in [49]. In this case it is necessary to study
the complexity of our optimization problem, which was not studied or examined
except in this work, to guide us in the search for the most adequate graph theo-
retical tools capable of solving it. Once an appropriate optimization technique is
proposed, which is certainly preferred to yield an exact-optimal solution instead of a
near-optimal one, an optimal multi-standard design can be constructed by choosing
the most adequate common operators in the most convenient granularity levels from
the associated graphical diagram.

3 Thesis outline

This thesis is composed of four chapters. In chapter 1, we introduce the SWR tech-
nology in general and outline some of the challenges associated with it, especially
those imposed by the digital processing converters, which entail the emergence of its
feasible practical version called the Software-defined Radio (SDR) presented next in
this chapter. In addition, we highlight an important area for designing SDR equip-
ments which is the parametrization technique that fits in the common operator’s
approach for identifying processing commonalities between the different standards
to be supported in the design. We will present the two categories of the parametriza-
tion technique where we briefly present the pragmatic approach with some examples,
and then introduce the theoretical approach in some details. In the theoretical ap-
proach of parametrization, we explain first how SDR multi-standard systems are
explored at different levels of granularity in a diagram which provides all the design
alternatives. Then, we present a cost function equation suggested in [49, 50] which
evaluates the cost of one specific design. Accordingly, we state an optimization prob-
lem of minimizing the cost, where our final objective will be to solve this problem.
To do this, we will need to study its complexity after having theoretically modeled
the problem using graph theory, which steps will be accomplished in the following
chapters.

Chapter 2 mainly presents two necessary theories for our work; graph theory and
the theory of complexity. It consists of three parts. In the first part, we define
the different aspects of graphs (whether directed -called digraphs- or not) with their
particular and generalized versions (hypergraphs and directed hypergraphs), as well

42 Introduction

as present some of the definitions and theorems associated with each. Afterwards,
we introduce the theory of complexity which helps in evaluating the computing ef-
fort associated with problems and algorithms. In this context, we explain different
classes of problems classified as P, NP, or NP-complete problems according to their
solvability conditions. The final part looks for some graph theory problems and
applications to different real-world situations and highlight the complexity imposed
by each. This part will provide several examples on graph-theoretical modeling to
different network connection and telecommunication topics.

Chapter 3 is responsible of providing a theoretical model for the various aspects
related to the problem of designing an SDR multi-standard system, we mention
modeling the graph structure of an SDR multi-standard system and providing a for-
mal expression of the previously introduced cost function using graph theory and
more precisely, using directed hypergraphs. As our final aim is to choose one of the
combinations of common operators from different granularity levels which optimizes
the cost, so the second point in this chapter is to explore the number of possibilities
to design an SDR multi-standard system. In fact, we find an upper bound for the
total number of alternatives capable of implementing the standards to be supported
in the design in order to have an idea of the complexity of the problem we’re deal-
ing with. This complexity issue is studied and examined afterwards in this chapter.
Even though it seemed that our optimization problem is complex, we didn’t have a
precise idea of its complexity in the general case. However, we were able to prove
that this problem is a Nondeterministic Polynomial-time (NP) problem but under a
certain identified condition on the number of decomposition levels in the suggested
graph structure of an SDR multi-standard system.

In chapter 4, we first present a quick view on two previously highlighted optimization
techniques in [60] to solve our optimization problem; the exhaustive search which
provides an exact-optimal solution and the simulated annealing which selects a near-
optimal one, where the latter approach was considered to be a better technique for
the problem in hand because it requires much less computing effort. After having
proved in chapter 3 that our optimization problem is NP under a certain specified
constraint, we perform in this chapter an exploration on the various options of im-
plementation and prove that some of them can be ignored or skipped when trying
to find a solution for this problem. This helped to propose a new algorithm as a
next step in this chapter, using different modeling notions related to directed hy-
pergraphs, which examines all the options of implementation for designing an SDR
multi-standard system except the ones lately excluded. This algorithm gained im-
portance being an approach which provides an exact-optimal solution, unlike the
heuristic techniques. Afterwards, a computational complexity analysis of this al-
gorithm is performed yielding an upper bound on its time execution requirements,
where it seemed that our proposed algorithm needs a non-negligible computing ef-
fort. After having developed a code for our algorithm in C language, we used this
algorithme to solve the optimization problem for several generic examples with the
costs being arbitrarily chosen, in order to explore its performance skills. The differ-
ence between our algorithm and the previously suggested ones for this problem is

Introduction 43

finally highlighted.

Finally, we end this thesis with a summary of the achieved results and an outline of
the possible future work in this field.

Chapter 1

Parametrization technique for

Software-Defined Radio

Contents

1.1 SoftWare Radio . 46

1.2 Conventional transceiver architecture 47

1.3 The Feasible SoftWare Radio design 49

1.3.1 Emergence of Software-Defined Radio 49

1.3.2 Challenges imposed by the ADC and DAC 50

1.3.3 The Software-defined Radio architecture 51

1.4 Parametrization technique 52

1.4.1 The Common Operators technique 53

1.4.2 The Pragmatic approach of parametrization 54

1.4.3 The Theoretical approach of parametrization 55

1.4.3.1 Graph Modeling of SDR systems 56

1.4.3.2 An Objective Cost Function 59

1.5 Conclusions . 66

This chapter presents the SoftWare Radio (SWR) technology developed for design-
ing flexible multi-standard terminals, where a terminal in this thesis is considered
as a mobile station or a basestation. However, SWR raises an important number of
challenges from the design point of view which entails the emergence of the Software-
Defined Radio (SDR) system, the feasible version of SWR.
Parametrization is a proposed design methodology for SDR terminals, which relies
on the concept of exploring common aspects inside and between the different sup-
ported standards. Parametrization can be tackled from two different approaches:
the theoretical and pragmatic approach. Both approaches have the same objective
of identifying the appropriate set of cohabiting commonalities, but only contradict
in the way of dealing with the problem. All these ideas will be elaborated in the
present chapter. The theoretical approach of parametrization, however, constitutes
the keystone of our work.

45

46 Parametrization technique for Software-Defined Radio

1.1 SoftWare Radio

The tremendous development of the wireless communication is driven by the accel-
erating rate of emergence of new standards and protocols. In order to comply to the
accelerating rate of technology innovation and the predicted technological change,
wireless system manufacturers nowadays should focus on providing systems that can
adapt to the changes as they occur by upgrading them to the latest innovations as
soon as they are discovered. This is a more favorable solution than changing the
whole design with every new development, since frequent redesign is so expensive
and time consuming.

A challenge is to create future-proof radios whose hardware and software combina-
tions are capable of being updated with the proliferation of new standards, tech-
niques, and technologies. This is achieved by exploiting the commonalities among
different standard modules, which entails the replacement of the analog modules by
digital ones. A main reason for replacing analog with digital signal processing is the
possibility to reconfigure the system "softly", thereby enabling the implementation
of different air interfaces on a given platform. This yields an open-architecture based
radio system whose most of the dedicated functions are executed by software.

The current implementation of wireless communication equipments completely in
hardware faces several problems. One of these problems is that there is a significant
difference between each generation of network (from second generation 2G to 3G
then further onto 4G) and thus legacy handsets may be incompatible with newer
generation network. Indeed, the difference in the air interface and protocols across
various geographical regions form another problem, as it inhibits the deployment of
global roaming facilities causing great inconvenience to users who travel frequently
from one continent to another.

The SWR concept was first introduced in the literature around the 1990’s by Joe
Mitola [6] to refer to the class of radios which extend the evolution of programmable
hardware, increasing flexibility via increased programmability. This is accomplished
by a complex interaction between a number of common issues in the radio design.
In this context, the same piece of hardware would be able to perform different func-
tionalities at different times.
SWR technology has generated tremendous interest in the wireless industry, military
implementations as well as in commercial and civil applications [4, 38, 39].

SWR was introduced as a solution to the dedicated hardware problem enabling the
implementation of radio functions in networking equipment and user terminal as
software modules running on a generic hardware platform. Such implementation
helps reduce the cost and the size of systems which are required to support a wide
range of existing and future wireless technologies [5]. The SWR system has the
following features:

1.2 Conventional transceiver architecture 47

Reconfigurability: SWR architectures are reconfigurable terminals [3, 4] that are
able to adapt to changes. They allow implementation of different standards
on the same terminal, where multiple software modules exist and the required
standard is run by just downloading the suitable software module.

Global connectivity: The software implementation of the different air interface
standards helps in realizing global roaming facility. In this case, the terminal
can be upgraded, whenever it’s incompatible with the available network tech-
nology in a particular region, by a simple download for an appropriate software
module [1].

The possibilities to design software radio architectures range from "Velcro" approach
to the "Very Fine Grain" approach. The so known "Velcro" approach is to real-
ize a juxtaposition of several standards and the reconfiguration is simply realized
by a switch from one to another, headed by a set of parameters [41]. In such ap-
proaches there’s no share of common resources between the standards which opposes
the flexibility concept, and the complexity increases with the increase in number of
standards. On the contrary, a design following the "Very Fine Grain" approach is
based on manipulating small size operators (which will be invoked several times)
to support different standards. This design is flexible but its drawbacks are that
it’s highly sequential and time consuming. However, an optimal way of realizing a
multi-standard terminal is to identify the appropriate common functions and opera-
tors inside and between the standards, referred to the "parametrization" approach.
The parametrization technique will be tackled in details in this chapter.

SWR has several beneficial and interesting characteristics since it can be:

1. a multi-band system which supports more than one frequency band used by a
wireless standard (e.g., GSM 900, GSM 1800, · · ·),

2. a multi-standard system that supports more than one standard.

3. a multi-service system which provides different services (e.g., voice, data, video
streaming, television broadcast, · · ·).

4. a multi-channel system that simultaneously supports two or more independent
transmission and reception channels.

SWR imposes several software realization requirements on the different functions of
a transceiver communication chain. This entails some modifications on the nature
of the different stages of a transceiver architecture, which face various challenges
and obstacles. These obstacles will be highlighted in the next section after having
introduced the different stages of a conventional transceiver architecture.

1.2 Conventional transceiver architecture

Fig. 1.1 represents a conventional transceiver terminal. It consists of four stages
namely Data processing, Baseband processing, digital processing conversion, and
Radio Frequency (RF) front-end. The following includes several words on some of
these stages.

48 Parametrization technique for Software-Defined Radio

• Data processing is responsible of manipulating the data packets, i.e analyzing
the input data and synthesizing the ones to output.

• The baseband system, which precedes the RF front-end, is responsible for end-
user data encoding/decoding.

• Digital processing conversion constitutes both forms of conversion tools; The
Analog to Digital Converter (ADC) which encodes analog signals into digital
ones, and the Digital to Analog Converter (DAC) which performs the reverse
process.

• The main functions of the RF front-end include down and up conversion, chan-
nel selection, interference rejection and amplification. More precisely, the func-
tionalities of each of the receiver and transmitter side of the RF front-end are
summarized by the following:

Transmitter side of the RF-front end takes the signal from the DAC, con-
verts it to the transmission radio frequency, amplifies the signal to a desired
level, limits the bandwidth of the signal by filtering in order to avoid inter-
ference and feeds the signal to the antenna [37].

Receiver side of the RF-front end converts the signal from the antenna to
a lower center frequency (using the RF Band Pass Filter (BPF)) such that
the new frequency range is compatible with the ADC, filters out noise and
undesired channels (by the Low Noise Amplifier (LNA)), and amplifies the
signal to the level suitable for the ADC (using the Automatic Gain Control
(AGC)).

Figure 1.1: Conventional Transceiver

A transceiver is referred to as a software radio if its communication functions are
realized as programs running on a suitable processor. This ideal SWR directly sam-
ples the antenna output. However, many challenges raise in such designs especially
on the level of the RF front-end and the digital processing convertors. The RF front
end should be directly suitable for different frequencies and bandwidths required by
the different standards that the SWR equipment is intended to support. A main
objective during the design of an optimal RF-front end is to attain a trade-off be-
tween power consumption and dynamic range. Challenges imposed by the digital
processing convertors will be addressed in the next section. Thus, a practical version
of SWR, called Software-Defined Radio (SDR) was presented in [3]. SWR is defined

1.3 The Feasible SoftWare Radio design 49

for comparison purposes only. In an SDR system, the received signals are sampled
after a suitable band selection filtering, i.e employing Intermediate Frequency (IF)
sampling, thus incorporating some Analog Front End (AFE). This feasible SWR
version will be presented in details in the following section.

1.3 The Feasible SoftWare Radio design

The radio communication system has witnessed several major evolutions during the
last century. In this section, we highlight the emergence of the SDR systems and
afterwards stress on the challenges imposed by the digital processing convertors,
which form some of the major obstacles for the creation of the ideal SWR design.
Finally, we will describe and analyze the SDR architecture.

1.3.1 Emergence of Software-Defined Radio

Nowadays, radio system designers aim to develop flexible multi-standard terminals
that support as much air interface standards as possible in order to cope with the
daily accelerating rate of technology innovation. For this purpose, many standards
are involved and realizing the several analog components (associated to each of the
supported standards) becomes a very challenging task. As a simple example, in
the receiver side of a multi-standard system, the down conversion from the RF to
the baseband requires several Local Oscillators LOs, each associated to a certain
carrier frequency compatible with the relative frequency of the selected standard.
This imposes the presence of several dedicated analog parts, thus occupying a huge
complexity.

As a solution, the researchers have proposed to digitize the analog signal in RF in-
stead of digitizing after the conventional conversion done from RF to baseband. In
other words, in the receiver side, the signal has to be directly digitized by an ADC
and then fed to low complexity, high speed and reconfigurable channelizers which
extract the digital signal as dictated by one’s needs. Thus, in such architectures,
the convertors are set right beside the antenna [29] with all the filtering and most
of the signal gain being done in a digital signal processor, thus increasing the digital
processing to enhance the reconfiguration attained by software. This is what is called
the ideal SWR illustrated in Fig. 1.2a. However, the need for this software radio
architecture raises a number of technical challenges. Most important of these chal-
lenges are related to ADC and DAC and most particularly, the receiver ADC forms
the most challenging component limiting the choice of the RF front-end architecture
[1]. The digitizing of the received signal has to be achieved with a high performance
and wide-band ADC. The major problem that the SWR technology faces is that the
actual ADCs are not able to cope with that very high frequency signals. So, a more
realistic SWR architecture is illustrated in Fig. 1.2b, where the digital part of the
transceiver is placed as close as possible to the antenna but some RF front-end still
remains crucial, at least for amplifying and filtering. In this case, the ADC and DAC
are placed between the stages of channel modulation, at an IF and the digitization is

50 Parametrization technique for Software-Defined Radio

done at IF instead of RF (IF < RF). This is the feasible SWR case referred to as SDR.

ADC

DSP

LNA

Duplexer
A/D

DSP DSP

DACAMP

Duplexer
D/A

DSP

(a) (b)

Figure 1.2: a.) Ideal SWR transceiver architecture b.) SDR realistic transceiver archi-
tecture

Software-defined and hardware reconfigurable radio systems have attracted more
and more attention recently because they are expected to come to the market in the
context of dramatic changes in the worlds’ information technology and usage envi-
ronments. Important work has been done on software-defined radio in [3, 4, 7, 27],
and on the reconfigurability issue of SDR in [9, 10, 11, 12, 13]. Expertice are required
for each particular aspect of the signal processing chain of SDR. Thus, separate work
is achieved on each of the sample rate adaptation in [14, 15, 16], the RF-front end
design in [17, 18, 19, 20, 21], and the channel coding in [22, 23, 24]. In an SDR de-
sign, the receiver section is more complex than the transmitter. The ADC conquers
an important area in SDR receivers, where the work concentrates on digitizing the
analog signal in the receiver as close to the antenna as possible. The state-of-the-art
in ADC technology can be found in [25, 26].

1.3.2 Challenges imposed by the ADC and DAC

The ADC and DAC are among the key components for the SWR design [30]. They
identify the bandwidth, the dynamic range (1) and have a deep impact on the power
consumption of the radio. However, the ADC is one of the most critical part in
a software radio design. The number of bits in the ADC specifies the upper limit
for achievable dynamic range. The physical upper bound for capabilities of ADCs
particularly can be derived from Heisenberg’s uncertainty principle [6]. The state of
the art ADCs for wireless radios sample at rates of about 100 million samples per
second and quantize the signal with 14-bit resolution. These performances don’t ful-
fill the desired level of the required wide dynamic range mainly when the ADCs have
to cope with signals with large bandwidth. Besides, according to Nyquist-Shannon
sampling theorem, the sampling rate must be at least two times the highest fre-
quency component of the analog signal to avoid the loss of information [31], which

(1)The ratio of a specified maximum level of voltage to the minimum detectable value.

1.3 The Feasible SoftWare Radio design 51

imposes stringent requirements on the highest frequency to digitize by the ADCs.

In conventional radio architectures, the conversion from analog to digital signals is
done at the baseband. However, the closer are the digital processing blocks (i.e the
ADC and DAC) to the antenna, the more flexible is the architecture to accepting the
desired multiple frequency and multiple channel bands. An ideal SWR consists of
digital processing blocks placed as close as possible to the antenna, but any practical
implementation still needs some analog parts of RF front end, and the design of a
reconfigurable RF part remains a very complicated issue [1, 4].
So, to be transformed into an ideal SWR architecture, it must employ the digital
processing blocks right beside the antenna which is currently feasible for very low
centered frequency band, but rather impossible at a low cost and a low power con-
sumption for higher RF frequencies. Thus for the feasible SDR architecture, the
typical place for the ADC and DAC is between the stages of channel modulation, at
an intermediate frequency.

1.3.3 The Software-defined Radio architecture

The SDR design is split into two parts, one digital part referred to as Digital Front
End (DFE) and one analog called an Analog Front End (AFE). The receiver of an
SDR design, is illustrated in Fig. 1.3. The AFE selects a continuous signal and
shifts all its bandwidth from the high frequency (RF) to some lower frequency (IF)
which is suitable for the available ADC. As for the DFE, this is a part of the receiver
which realizes functionalities on a processor digitally (using a Digital Signal Proces-
sor (DSP)) that were initially realized by means of analog signal processing. This
includes channelization, sample rate conversion, etc. Channelization performs all
the necessary tasks to select the desired channel, including conversion to baseband,
channel filtering, etc. Sample rate conversion is done digitally by generating the
clock which changes the sample rate to adapt to the multiples of symbols dictated
by the different standards. This is just to mention few.

To conclude, we can say that the stringent requirements imposed by SWR are relaxed
by SDR. The today’s attained system has to be at half digitized and the second half
can’t be digitized at low cost and low power consumption before having available
advanced ADCs able to provide an extreme dynamic range and very high sample
rate, in order to digitize the bandwidth of all the supported bands and directly after
the antenna.

The interest to reduce the power consumption, the cost, and the size of the radio
while reaching the expected performances and taking full advantage of technology
improvements was a motivation to search for optimization aspects for flexible radio
system designs. The goal of this thesis is to focus on the global SWR issues and to
develop new theoretical techniques of optimization of the SDR multi-standard flexi-
ble systems using Graph Theory. This will provide the options to the SDR designer

52 Parametrization technique for Software-Defined Radio

Figure 1.3: The Software-Defined radio receiver architecture

to orient his design either towards Velcro or gate level primitive elements.

In this work, the SWR’s problematic will be tackled from the viewpoint of a research
of the appropriate commonalities inside and between the different standards. In this
context, an important technique called parametrization was introduced in [35] as a
methodology to design SDR, which aims to optimize the resources use in the SDR
system. This technique will be highlighted in the next section. The parametrization
approach is divided into two approaches, namely the theoretical and the pragmatic
approach, which can describe the conception and the realization of a parameterizable
SWR system. The theoretical approach forms the foundation of this thesis.

1.4 Parametrization technique

The conventional approach to the implementation of multi-standard systems is to
realize a juxtaposition of several transceiver chains each dedicated to an individual
standard and the reconfiguration is simply realized by a switch from one to another.
This conventional approach called Velcro approach [1] is not flexible as most of the
hardware needs to be replaced whenever the characteristics of the interface change.
Indeed, this approach doesn’t exploit any common resources between the supported
standards and thus the complexity increases as the number of standards increases.
On the contrary, an approach which exploits the commonalities among various signal
processing operations for different standards offers a promising solution to the de-
sign of an optimal multi-standard architecture which balances between flexibility and
complexity. In this context, the parametrization technique is introduced in [35, 36],
whose concept is to reuse some hardware and software modules without affecting

1.4 Parametrization technique 53

the system’s performances. According to the methodology of parametrization, the
common aspects of the different standards become one common processing element
which could be installed in the device and executed by a simple call.

Parametrization represents a methodology to design SWR. It can be considered as a
crucial optimization process to design flexible multi-standard systems. This approach
aims at designing multi-standard systems made of certain operators (or functions) in
which their behavior can be simply adjusted by a simple parameter modification [37].

A very promising procedure is to consider parametrization as a technique based on
two approaches which are the theoretical and the pragmatic approach. In the the-
oretical approach of parametrization, the different modules of the several standards
intended to support in the design are illustrated in a diagram that represents the
hierarchical level of each module functionality. Afterwards, an optimization process
has to be proposed in order to identify optimal levels of granularity, from which
components can be considered as "common communication blocks" enabling their
reuse by several applications. It’s in this context where the theoretical approach
tackles the discussion of the Common Operators (COs) approach.

In contrast, the pragmatic approach is a practical approach developed to identify
or create possible COs that will be, nevertheless, invoked in the theoretical graph
illustration. Thus, both approaches converge to the same objective i.e to identify
the best set of commonalities among the different standards, leading to a flexible
reconfigurable multi-standard conception. They are considered to be complementary
approaches to one another. In this section, we will highlight the COs approach, then
provide a quick view on the pragmatic approach and a long detailed discussion on the
theoretical approach of parametrization. However, the foundation of our thesis is in
the theoretical parametrization approach context, where we use graph theory in order
to identify the most appropriate COs from the most convenient granularity levels of
the graph illustration. Various necessary graph theory definitions and notations will
be detailed in the next chapter.

1.4.1 The Common Operators technique

The common operator technique consists in identifying common elements based on
structural aspects. In reference to the definition of the pragmatic approach pre-
sented in 1.4.2, it’s intended to design COs independently of the calling functions
and thus of the supported standards. These designed COs might be called by distinct
functions several times all along the SDR terminal. The COs technique is therefore
considered to be an open technique [36] for the creation and development of the com-
mon aspects, since they are defined without any previous knowledge on the set of
transmission modes and standards to be realized by the conception. In other words,
a CO can be defined by an operator which can be reused by each function or pro-
cessing requiring its functionality, independently of the application context.

54 Parametrization technique for Software-Defined Radio

As an example, the Fast Fourier Transform (FFT) has been considered as a CO in
[42, 43], since it was shown that many important tasks of a communication equip-
ment, such as filtering, channelization, Orthogonal Frequency Division Multiplexing
(OFDM) modulation, etc, can be implemented through FFT. Indeed, frequency
domain implementations for different families of algorithms which have the same
performances as the time domain ones could also be investigated. This FFT CO can
be used by any function that necessitates the use of Fourier transform which is what
the concept of common operator is about.

Now we’ll refer to the common operators technique from the theoretical approach
view. Let’s consider the graphical breakdown of the transmission chain of the multi-
standard terminal introduced in [41] and developed in the discussion provided in
1.4.3, where some processing blocks are achieved by lower level processing opera-
tions and the granularity level of the considered components is decreased step by
step up until the level of primitive operators e.g. adders, multipliers, etc. The goal
is to identify a level of granularity at which common operators could be selected to
implement the processing elements of the communication standards. The idea is not
to select the maximum number of common elements, because the latency of systems
would exceed certain limitations in such cases [40]. In fact, the optimization in terms
of hardware or software resources depends on the performance in terms of delay or
execution time and thus what we seek is the best cost-performance trade-off. In
this context, it’s important to determine the ideal levels of granularity to design a
multi-standard equipment, neither the Velcro approach which employs complex ded-
icated communication components (but is highly parallel), nor the basic logic cells
implementation which is very sequential (but has lower complexity and thus higher
flexibility).

As a consequence of the CO technique, common parts will be reused several times
which imposes scheduling issues at run time. Some scheduling considerations have
been partially addressed in [?] and other relevant work can be found in [44, 45].
However, we don’t go into the details of scheduling in this thesis as it is a major
research topic by itself and might be further addressed by other PhD students in the
future.

1.4.2 The Pragmatic approach of parametrization

The pragmatic approach is a technique which identifies and creates COs. It’s divided
into two stages. The first stage, called the Existing Search, consists in identifying in
literature and from previous work some operators potentially recognized to be com-
mon. The second stage is the Constructive Search, which consists in the handmade
building of COs. In this stage, one tries to merge like-looking architectures step by
step to form common operators of higher levels.

1.4 Parametrization technique 55

As explained in 1.4.1, FFT was considered as a promising CO. Under the pragmatic
approach concept, a reconfigurable architecture of a common FFT operator able to
operate over two different domains (Complex field (C) and Galois Field (GF)) was
designed in [46]. This dual mode FFT, called DMFFT operator, which is used in
different contexts, is able to reconfigure its hardware for the several required mode
of operation. In other words, this operator needs to be parameterized by appropri-
ate parameters (for example the length of the transform, the base of the discrete
transform (exponential, etc · · ·)) in order to perfectly meet the requirements of each
application. This is exactly what the origin of the "parametrization" term is about.

Another strong candidate for the common operators is the Linear Feedback Shift
Register (LFSR). Two developed LFSRs architectures namely the Reconfigurable
LFSR (R-LFSR) and Extended Reconfigurable LFSR (ER-LFSR) were presented in
[47] and [48] respectively. These two architectures were developed from an improved
classical LFSR structure. They were able to replace several functions (filtering func-
tions, etc · · ·) that can be derived from LFSR operations.

Another pragmatic approach design is suggested in [51] which merges two widely
used algorithms in wireless communication systems: Viterbi and FFT algorithms.
The performance of this common FFT/Viterbi operator considering various tradeoffs
as complexity and power consumptions is also discussed in [52]. Notice that although
FFT and Viterbi algorithms seemed to be completely different when comparing their
performed functions but however, when explored in the parameterization context,
functional and architectural similarities were pointed out in [51].

Note that the exploration and selection of the different COs like FFT and LFSR is
based on a formal approach detailed in [49, 50]. It’s this theoretical formal approach
which we seek to improve in our thesis work using Graph Theory.

1.4.3 The Theoretical approach of parametrization

A theoretical approach for designing flexible multi-standard radio systems is pro-
posed, which consists in exploring such designs at different levels of granularity and
selects the convenient level depending on each designer’s needs. This is translated
into a graph structure of the multi-standard system to be introduced in 1.4.3.1,
which describes the interrelationships between the different components in the sys-
tem. This graph representation provides all the options of implementation capable of
realizing the multi-standard system. However, a cost function which calculates the
cost of any selected one of these options is suggested in [49], and will be presented
in 1.4.3.2.

56 Parametrization technique for Software-Defined Radio

1.4.3.1 Graph Modeling of SDR systems

The first step in the theoretical approach consists in elaborating a model for an SDR
system intended to support several standards as a diagram representing the step by
step breakdown of the different modules at different levels. This SDR multi-standard
system’s graphical representation, called the graphical approach, is introduced in
[49, 50]. Each node in the figure represents a block or an elementary Processing
Element (PE). In order to perform the functionalities of this PE, it can be installed
by itself in the design, as a unified non divisible block, or it can be realized by some
lower-level building blocks. It’s necessary in such approaches to distinguish between
the different dependencies of the nodes of different levels. For this two node depen-
dencies, the "OR" and the "AND" dependencies, are essential to clearly illustrate
the implementation needs of each block and describe the type of connection between
blocks of higher levels and others in lower levels.

A node of a higher level, called a parent node, may have dependencies with nodes of
underlying levels, called descendant nodes. An "OR" dependency (left part of fig.
1.4, direct arrow) means that only one of the descendant nodes (B or C) called several
specific times is necessary to implement the parent node (A). On the contrary, an
"AND" dependency (right part of fig. 1.4, inverted Y connection), signifies that all
the descendant nodes via the "AND" dependency (B & C) are needed to implement
the parent node (A) accompanied with certain number of calls. The concept of num-
ber of calls will be further explained in 1.4.3.2. These higher to lower dependencies
mean that we can perform the required task of block A using block A itself in level
n (realized as a dedicated block whether an Application Specific Integrated Circuit
(ASIC) or a program) instead of using blocks in level n−1 which needs less time but
has much higher building cost. On the contrary, realizing the functionalities of block
A using blocks of lower levels (block(s) B or/and C) will decrease the installation
cost but increase the execution time of the system. It should be noted that until
this point, no strict assignment of level exists and the only important information is
the relative level between nodes that are interconnected, rather than their absolute
level. However, we will provide a formal definition of the notion of an absolute level
of a block in chapter 3.

Figure 1.4: "OR" and "AND" dependency

In this way and using these two node dependencies, a generalized figure example can
be drawn corresponding to a conceivable multi-standard system as shown in Fig. 1.5.

1.4 Parametrization technique 57

Such figures describe the various functionalities of the top level block standards to
be supported in the design passing through several granularity levels (two standards
denoted by S & T in the case of Fig. 1.5).
In Fig. 1.5, the "OR" dependency from B4 shows that it can be implemented
through any one of C2 or C3. An "AND" dependency, as the one pointing from S
to A1, A2, & A3, means that all the three descendent nodes are needed to imple-
ment the functionality of the parent node S. Note that in some cases, a parent node
may have both "AND" and "OR" dependencies with its descendants, like the ones
pointing from the block A2.

As a concrete example of the use of common operators, to realize an equipment that
supports the standard S, it is possible to implement it as a unified non-divisible
block. When all the standards intended to support are built in this manner, then
this will correspond to the Velcro solution, where in order to change the standard
it will be necessary to completely switch to another block for all the processing as-
sociated with the other standard. Another possibility to implement the standard
S is to install nodes A1, A2, & A3 in the terminal. We can notice that now if the
equipment wants to switch to standard T , A3 may be retained and thus save a lot
in terms of reconfiguration compared to Velcro case. This is the primary interest of
the theoretical approach of parametrization to be proposed in this thesis. One can
even use lower level blocks to build the functionalities of S and T .

Figure 1.5: Generalized figure corresponding to a conceivable breakdown of two standards
S & T

A more realistic simplified graphical structure of an SDR multi-standard system is
shown in Fig. 1.6 supporting two different air interface standards. It represents a
simplified version of the complete graph with only few important building blocks
from transmitter side only, shown for illustration purposes. Of course, the complete
graph would be huge showing all the nodes. Note that the building of the figure
is a task in itself as researchers always try to identify new operators that could be

58 Parametrization technique for Software-Defined Radio

common to several communication "blocks" within a given standard, or across sev-
eral standards (using pragmatic approach). These newly developed common blocks
would be invoked in the figure and thus lead to its modification. It is not in the pur-
pose of this thesis to develop complete graphs. In all our work, we will just present
conceivable graph illustrations or some figures provided by other previous studies.

First selected standard in Fig. 1.6 is the Wireless-Fidelity (Wifi), used for wireless
connection and now almost all laptops and other handheld devices come with Wifi
built-in. Second selected standard is the Universal Mobile Telecommunications Sys-
tems (UMTS). It’s a third-generation (3G) broadband, packet-based transmission of
text, digitized voice and video.

Figure 1.6: Global structure of a multi-standard graph (supporting Wifi and UMTS) -
transmitter side

The roots of this diagram at the top level/coarsest grain level, represent the func-
tions which realize the physical layer processing of the different standards to be
supported by the radio (Wifi and UMTS in the case of Fig. 1.6). Each processing
element (PE) occupies a certain layer depending upon its granularity level, where
more complex PEs have higher granularity levels than less complex ones that can
form their functionalities. As we move down to further lower levels in the figure, we
pass through various granularity levels and finally reach at the primitive elements
level (the lowest level). There might be many intermediate levels in between the top
level and the very lowest. The tasks of some of the blocks in Fig. 1.6, including

1.4 Parametrization technique 59

randomizer(2), convolutional coder(3), Flip Flop(4), constellation mapper(5), inter-
leaver(6), FFT-N(7), LUT(8), scrambler(9), & spreader(10) are highlighted.

This diagram offers a pictorial view of the numerous alternatives that are able to do
the same task. One trivial alternative of implementation is to install in the design
all the primitive operators occupying the lowest level (NAND, NOT, XOR, AND &
OR), but such a design isn’t flexible (requires huge amount of time as will be noticed
later in this chapter) and thus we aim to increase the granularity level of the selected
operators to intermediate levels. The goal of this approach is to provide the options
to the designer, to select a set of operators each of which occupies a certain level
of granularity, as dictated by his needs. Now the questions that come to mind are:
Which one of these different alternatives of implementation of the multi-standard
system is the best? Best according to which criteria? To answer these questions,
first we need to assign weights i.e costs to the different entities of the diagram and
then derive a cost function which gives a cost value for any possible option of im-
plementation. Afterwards, certain optimization tools should be selected in order to
choose the alternative which has the minimum cost.
A cost function is suggested in [49]. In the next subsection, we’ll explain this pro-
posed cost function and provide an example to illustrate its calculation process. As
for the optimization process, the state-of-the-art selected optimization algorithms as
well as our new optimization tools will be presented in following chapters.

1.4.3.2 An Objective Cost Function

In order to characterize a "quality" to any required solution, one needs to have some
criteria to evaluate it. These criteria are expressed as some functions of the decision
variables, which are called objective functions. In an analogous way, we will need
first to identify the variables (or the parameters) of our problem, and then state our

(2)"A randomizer is a device used to invert the sense of pseudorandomly selected bits of a bit stream to
avoid long sequences of bits of the same sense.

(3)"A convolutional coder is a type of error-correcting code in which (a) each m-bit information symbol
(each m-bit string) to be encoded is transformed into an n-bit symbol, where m/n is the code rate (n ≥ m)
and (b) the transformation is a function of the last k information symbols, where k is the constraint length
of the code.

(4)"Flip Flop is an electronic circuit that can assume either of two stable states
(5)"A constellation diagram is a graphical representation of the symbols used to encode digital data on

a communication channel, particularly in phase- or quadrature-amplitude modulation systems
(6)"The Interleaver transmits multiple independent data streams over a single circuit, where one byte

from each input stream is taken at one time and framed in a time-division sequence.
(7)"A Fast Fourier Transform (FFT-N) is an efficient algorithm to compute the Discrete Fourrier Trans-

form (DFT) and its inverse. N stands for the number of inputs
(8)"Lookup Tables (LUT) is an array or matrix of data that contains items that are searched. Lookup

tables may be arranged as key-value pairs, where the keys are the data items being searched (looked up)
and the values are either the actual data or pointers to where the data are located.

(9)"Scrambler is an electronic device that scrambles telecommunication signals to make them unintelli-
gible to anyone without a special receiver.
(10)"Spreader is a telecommunication system that transmits images of objects (stationary or moving)
between distant points.

60 Parametrization technique for Software-Defined Radio

objective function(s).

A. Cost Parameters

There can be many cost parameters to assign to an SDR multi-standard system
equipment. Among them, the two selected cost parameters in [49] to be associated
with PEs of the graphical representation of an SDR multi-standard system are the
Building Cost (BC) and the Computational Cost (CC), where:

• The BC stands for the cost of the building PE capable of computing a function.
It is just paid once during the useful life of the radio system. This means that
even if it is required to call a PE several times in the equipment, the BC
associated with element will not be multiplied. Re-use of PEs thus provides an
idea of cost reduction.

• The CC is considered to be the time taken by a PE to compute a function.
This cost has to be calculated every time a PE is invoked or called by higher
level PEs.

In this context, it is necessary to tag one more parameter to the arrows in the fig-
ure, called the Number Of Calls (NoCs), which is a multiplicative factor needed to
represent the number of times a descendent module is called. In fact, the graph
representation of any system consists of various granularity levels [53]. The task at
higher granularity level can be performed with the help of components that are at
lower granularity level but associated with certain number of calls. These necessary
number of times a processing element B at lower granularity level will be called to
perform the task of the component A at higher granularity will be a number attached
to the arrow joining the two blocks, denoted by NoC(B).

Indeed, some communications between components may be also needed, including
an additive communication cost. In this parameters’ suggestion, the communication
cost was not considered and was neglected.

Note that the BC can stand for the number of multiplications, number of additions,
number of gates, number of execution cycles, area, etc · · · . All depends on the con-
cerns of the designer of the SDR system. As for the CC, usually it’s referred to the
execution time required by a PE, since this is a cost that has to be paid every time
the block is incurred.

In general, a block having higher granularity level has a higher manufacturing or
building cost than the ones with lower hierarchy that it calls. On the contrary, the
execution time of a node with higher hierarchy is usually less than all the executions
needed to be done to make the same calculation using the lower hierarchy nodes.
As a simple example, we consider the concrete case of a hardware implementation (a
Field Programmable Gate Array (FPGA) or an ASIC implementation) concerning

1.4 Parametrization technique 61

the filter processing, which can be performed in many design options. Some designers
might choose to parallelize their architectures in order to gain in speed of execution
but at the cost of an additional area (building cost). This is the cost of the higher
granularity level element. However, in order to save in terms of area, it is possible
to call several times a single PE that maybe has lower hierarchy, with a much lower
area cost and may also have a lower CC but which has to be called several times.
The resulting CC might become more expensive accompanied with the several calls.
Hence, it’s evident that what we need is a compromise between fine and coarse granu-
larity in the figure in order to attain the best complexity-speed of execution trade-off.

Fig. 1.7 is a very simple figure representing the breakdown of a block S up to two
lower levels. PEs are tagged with BC/CC e.g. block A is tagged with 50/20 i.e BC
of A is 50 while its CC is 20. Arrows are tagged with NoCs e.g the ×30 entity on the
arrow between block A and block B means that the functionality of A requires 30
times that of B. It’s to be noted that these numerical values are arbitrarily chosen
and follow a certain logic on relationships between BCs and CCs of higher to lower
hierarchy blocks (as highlighted previously).
In Fig. 1.7, we see that block A can be used for a BC of 50 and a CC of 20, or an
alternative design to realize A is to implement the three blocks B,D,&E for a total
BC of 5 + 10 + 20 = 35 and a CC of 1 + 2 + 10 = 13 (if we consider a sequential
execution only one time). But, since it’s necessary to call each of B,D,&E 30, 20,&5
times respectively to perform the functionality of A, then we get a total CC equal
to 1× 30 + 2× 20 + 10× 5 = 120.

Figure 1.7: A simple figure showing the break-down of block S up to 2 lower levels

B. A Cost Function equation

In this section, we will describe the development of the suggested objective cost
function. Based on the parameters already introduced (BC and CC), it’s obvious
that our aim is to minimize the total building cost of the system as well as the total
computational cost. In this context, our cost function will be a bi-objective function.

62 Parametrization technique for Software-Defined Radio

These two objectives are conflicting in nature because reducing the BC will increase
the total CC and vice versa. By associating the costs to the blocks and arrows, the
problem turns into an optimization problem.

The first objective is to minimize the total building cost. This can be written as:

min
∑

i

BCi.Ni (1.1)

where
∑

i

BCi.Ni represents the total Building Cost of all the nodes implemented in

the design, and Ni ∈ {0, 1} depending on whether block Bi is installed in the design
or not.

As for the second objective, i.e to minimize the total computational cost of a multi-
standard SDR system containing N standards, it can be expressed as:

min
∑

n

∑

k

CCk((Sn)n∈{1,2··· ,N}) (1.2)

where

•
∑

k

CCk((Sn)n∈{1,2,··· ,N}) stands for the total CC imposed by one of the N

standards, Sn.

•
∑

n

∑

k

CCk((Sn)n∈{1,2,··· ,N}) is the total CC of all the N standards together.

This problem enters the family of multi-objective optimization problems. A multi-
objective optimization typically arises in various engineering modeling problems,
financial applications, and other problems where the decision maker chooses among
several competing objectives to satisfy [54]. A multi-objective optimization problem
can be written in the following form:

min{f1(x), f2(x), · · · fk(x)} s.t x ∈ Ω

where fi : R
n → R are (possibly) conflicting objective functions and Ω ∈ R

n is
the feasible region. These objective functions may be commensurable (measured in
the same units) or incommensurable (measured in different units). In general, the
objective functions related to engineering optimization are incommensurable.
For consistency, all the maximization problems of the type max fi are transformed
into equivalent minimization problems min(−fi). The goal of multi-objective opti-
mization is to simultaneously minimize all of the objective functions.

Since it is often assumed that objective functions compete (or conflict) with each
other, it is possible that there is no unique solution that optimizes all objectives at
the same time. Indeed, in most cases there are infinitely many optimal solutions.

1.4 Parametrization technique 63

An optimal solution in the multi-objective optimization context is the one where
there exists no other feasible solution that improves the value of at least one objec-
tive function without deteriorating any other objective. This is the notion of Pareto
optimality [54, 55, 56, 57].

The easiest and perhaps most widely used method to handle a multi-objective opti-
mization problem, is the weighted sum approach. Initial work on the weighted sum
method can be found in [58] by Zadeh (1963) with many subsequent applications.
Heuristic methods are also used for multi-objective optimization; Suppapitnarm et al.
applied simulated annealing to multi-objective optimization [59], and multi-objective
optimization by Genetic Algorithms can be found in Goldberg (1989), Fonseca and
Fleming (1995), and Tamaki et al. (1996) among others.

The weighted sum approach was considered in [60] to define the objective cost func-
tion because of its popularity and simplicity. It consists in aggregating the differ-
ent optimization functions in a single function. This method takes each objective
function and multiplies it by a fraction of one, the "weighting coefficient" which is
represented by wi. The modified functions are then added together to obtain a single
cost function, which can be easily solved using any method which can be applied for
single objective optimization. Mathematically, the new function is written as:

min
k∑

i=1

wifi(x) s.t x ∈ Ω

where wi ≥ 0, ∀i = 1, 2, · · · , k, &
∑k

i=1wi = 1.

The weighted sum approach does nevertheless possess some disadvantages. It is an
approach particularly sensitive to the setting of the weights. Thus, one needs to
determine the appropriate weights, which requires enough information about the
problem when usually this is not the case. The optimal solution will depend on the
relative values of the weights specified. For example, if one is trying to maximize the
strength of a machine component and minimize the production cost, and if a higher
weight is specified for the cost objective compared to the strength, the solution will
be one that favors lower cost over higher strength. Despite its disadvantages, the
weighted sum approach proved to be an efficient and promising method in many
applications of multi-objective optimization problems.

Returning back to our problem and as we previously mentioned using the weighted
sum method, our bi-objective cost function which combines the two incommensurable
objective functions of equations 1.1 and 1.2 will have the form:

Cost = (w
∑

i

BCi.Ni +
∑

n

∑

k

wnCCk((Sn)n∈{1,2··· ,N})) (1.3)

where w stands for the weight given to the total BC of the system while wn is the
weight associated to the CC of executing standard n. wn may refer to the cost of a

64 Parametrization technique for Software-Defined Radio

communication standard in function of its rate of activation compared to the other
standards supported by the SDR system, as it’s assumed that the standards sup-
ported by the design are not executing simultaneously.
Note that it’s up to the designer to select the weights that suit his interests. For
example, for some designers BC is more significant than other designers who are
more concerned with the CC.

Finally, and after specifying the number of standards to be supported by the multi-
standard SDR system, the solution for an optimal design consists in minimizing:

CSDR = min
bool(Sn)n

(w
∑

i

BCi.Ni +
∑

n

∑

k

wnCCk((Sn)n∈{1,2··· ,N})) (1.4)

where the constraint bool(Sn)n∈{1,2··· ,N} checks that all the standards can be imple-
mented in the corresponding SDR design.

Solving our problem will make us achieve our goals of finding a solution that balances
between economy and computing efficiency. Although this cost function seems to be
simple and straightforward, the problem still remains very difficult and complicated
in practice. In all our following work, the weights w and wn in the cost function
of equation 1.3 will be neutralized to 0.5 unless otherwise stated, because they can
vary according to the concerns of each designer.

In the rest of this part, we will explain the computation process of the cost function
in equation 1.3. Let’s reconsider the simple graph structure of Fig. 1.7 and compute
the implementation cost of block S at different levels of implementation. As a first
choice, suppose that S is going to be installed by itself in the design as a unique
nondivisible block (Velcro approach). Then the cost to be paid to perform the
functionality of S in this case will be:

Cost(Using S) = BC(S) + CC(S)

= 300 + 30 = 330.
(1.5)

Now, suppose that a designer chooses to use a block of lower level than S (the A
block) to implement the block’s S functionality. Block A will be installed in the
design and will be invoked NoC(A) times (2 times) in order to perform the required
tasks. Consequently, the cost becomes:

Cost(Using A) = CC(A)×NoC(A) +BC(A)

= (20× 2) + 50 = 90.
(1.6)

The task of S can be performed with the aid of components that are at even lower
granularity level, lower than that of A. Here we have two options: either use B, D,
& E or select the operators D, E, & F .

1.4 Parametrization technique 65

First we’ll consider the former case. The total CC to perform the functionality of
one A block using this option will be:

CC(A)(Using B,D,E) = CC(B)×NoC(B) + CC(D)×NoC(D) + CC(E)×NoC(E)

= 1× 30 + 2× 20 + 10× 5 = 120.

Now since we need to call the tasks similar to those of A twice, then the total CC
that has to be paid to realize S from B, D, & E operators will be:

CC(S)(Using B,D,E) = CC(A)(Using B,D,E) ×NoC(A)

= 120× 2 = 240.

The final total cost of this choice will be to add the total CC of S (using B, D, &
E) with the BC of each of B, D, & E only once. So:

Cost(Using B,D,E) = CC(S)(Using B,D,E) +BC(B) +BC(D) +BC(E)

= 240 + 5 + 10 + 20 = 275.
(1.7)

In an analogous way, we can calculate the cost of realizing S via D, E, & F (again
according to equation 1.3) where we get:

Cost(Using D,E,F) = (CC(D)×NoC(D) + CC(E)×NoC(E) + CC(F)×NoC(F))

×NoC(A) +BC(D) +BC(E) +BC(F)

= (2× 15 + 10× 7 + 10× 8)× 2 + 10 + 20 + 15

= (30 + 70 + 80)× 2 + 45 = 405.

(1.8)

The following summarizes all the attained costs to implement S:

Cost(Using S) = 330
Cost(Using A) = 90.

Cost(Using B,D,E) = 275.
Cost(Using D,E,F) = 405.

As you can see in this example, there were four options capable of realizing the
functionalities of the S block. If for instance a designer seeks a least cost design
to implement S, then he will be choosing the A operator to be installed inside the
terminal because realizing S using the A operator yielded the minimum cost (90)
among all the four possible options of implementation.

66 Parametrization technique for Software-Defined Radio

1.5 Conclusions

In this chapter, we have traced the evolution of the SDR technology. We further
highlighted one approach for designing an SDR system, called the parametrization
approach, which consists of software components whose behavior can be changed by
reconfiguration procedure. The two approaches of parametrization were explained
but more details were exploited in the theoretical approach of parametrization, as it
forms the foundation of this thesis subject.

In the theoretical context of parametrization, first an oriented graph that shows the
interrelationship between various components of the system was illustrated, which
exhibits all the possible options of implementing an SDR multi-standard system.
Then, a suggested cost function equation which provides a cost value for any selected
alternative was presented and elaborated in details. The goal is to help choose
one of the plenty options of implementation, which has the minimum cost, and
thus solving the optimization problem that finds balance between flexibility and
computing efficiency. Many optimization techniques were previously proposed in
this context and will be addressed in following chapters but however, our aim in
this thesis is to explore new theoretical tools for solving this optimization problem,
particularly by using Graph Theory. Hence in the next chapter, we will introduce
various fundamental and necessary definitions and applications in graph theory as
well as present some basic definitions related to the complexity theory, which will be
later exploited to study the complexity of our optimization problem.

Chapter 2

Graph theory and its applications

Contents

2.1 Graphs . 68

2.1.1 Subgraphs . 68

2.1.2 Various definitions and particular graphs 69

2.2 Digraphs . 75

2.2.1 Different interesting definitions and types of digraphs . . 75

2.3 Hypergraphs . 78

2.3.1 Subhypergraphs . 79

2.3.2 Basic definitions and particular cases concerning hypergraphs 80

2.4 Directed Hypergraphs . 83

2.4.1 Important directed hypergraphs’ definitions and notations 84

2.5 The theory of complexity 86

2.5.1 Deterministic Turing Machine and the class P 88

2.5.2 Nondeterministic Turing Machine 90

2.5.2.1 The class NP . 90

2.5.2.2 Polynomial transformation 92

2.5.2.3 NP-complete problems 94

2.6 Graph theory applications 95

2.6.1 Graph and digraph problems 95

2.6.2 Hypergraph and directed hypergraph problems 100

2.7 Conclusions . 102

Many real-world situations can suitably be described by means of a diagram consist-
ing of a collection of points together with sets combining some of the related points.
Graph theory emerged in order to theoretically model such problems and study their
properties and characteristics. In chapter one, we showed how the problem of de-
signing an optimal SDR multi-standard system can be represented by means of a
graphical structure. However, our aim in this work is to provide a theoretical model
of this graphical representation using graph theory.

This chapter is divided into three major parts. The first part, which constitutes
the first four sections, introduces some fundamental aspects and theorems related

67

68 Graph theory and its applications

respectively to graphs and digraphs along with their generalization versions, hyper-
graphs and directed hypergraphs. In section 5 which forms the second part of this
chapter, some basic definitions of the theory of complexity are presented in some
depth. In this part, we present different classes of problems, namely the class P, NP,
and NP-complete, in order to introduce the notion of polynomially solved problems
versus intractable ones. This theory will be later exploited in subsequent chapters
to theoretically state and study the complexity of our emerging optimization prob-
lem related to the SDR multi-standard design. Finally, section 6 which forms the
third and last part of this chapter provides some examples of the numerous realized
problems and applications of graph theory, especially to network connection and
telecommunication problems, as well as discuss the complexity associated with each.

2.1 Graphs

A graph G is an ordered pair (V (G), E(G)) consisting of the finite, non-empty set
V (G) whose elements are termed vertices (or nodes) and the set E(G) of unordered
pairs of vertices in V (G). When there is no scope for ambiguity, the letter G is omit-
ted from graph-theoretic symbols, for example we write V and E instead of V (G)
and E(G). Each element e = {u, v} ∈ E(G) (u, v ∈ V (G)) is called an edge and is
said to join the vertices u and v; u and v are called the ends of e. For simplicity, the
edge {u, v} is sometimes written as uv. The ends of an edge are said to be incident
with the edge, and vice versa. Two vertices which are incident with a common edge
are said to be adjacent, as are two edges which are incident with a common vertex
[62].
The number of vertices and edges in G are denoted by υ(G) and e(G); these two
basic parameters are called the order and size of G, respectively.

An edge with identical ends is called a loop, and an edge with distinct ends is called
a link. Two or more links with the same pair of ends are said to be multiple edges.
Fig. 2.1 represents diagrams of several types of graphs. "Dots" are used to represent
vertices of a graph and "lines" are used to denote its edges. In Fig. 2.1.b one can
find multiple edges with ends v1 and v2, which are plot as lines with the same ends,
and a loop joining the vertex v3 to itself. Such a graph G which allows both loops
and multiple edges is called a pseudograph. A graph which allows only multiple
edges, like the one in Fig. 2.1.a, is called a multigraph. On the contrary, a simple
graph doesn’t accept neither loops nor multiple edges, as the graph of Fig. 2.1.c.

2.1.1 Subgraphs

Let G be a graph. H is said to be a subgraph of G if simply V (H) ⊆ V (G) and
E(H) ⊆ E(G). In the following, we will present some particular types of subgraphs.

Edge-deleted and Vertex-deleted subgraph let e ∈ E(G). A subgraph of G of
size e(G)− 1, called an edge-deleted subgraph and denoted by G\e, is obtained

2.1 Graphs 69

Figure 2.1: Types of graphs: a) multigraph, b) pseudograph and c) simple graph

by deleting e from G but leaving the vertices and the remaining edges intact.
Similarly, if υ is a vertex of G, we may obtain a subgraph on υ(G)− 1 vertices,
called a vertex-deleted subgraph and denoted by G− v, by deleting from G the
vertex v together will all the edges incident with v. These subgraphs represent
respectively the operations of an edge deletion (sometimes called weak edge
deletion) and a vertex deletion (sometimes called strong vertex deletion) in a
graph G.

Spanning subgraph A subgraph of G obtained by successive edge deletion is called
a spanning subgraph. In other words, a subgraph whose vertex set is the entire
vertex set of G.

Induced subgraph An induced subgraph is a subgraph obtained by successive ver-
tex deletions. In other words, if U ⊆ V (G) is the vertex set of the induced
subgraph, its edge set will comprise all the edges of E(G) which join vertices
in U . Such a subgraph is called a subgraph of G induced by U .

2.1.2 Various definitions and particular graphs

In this subsection, we will present various definitions and notations concerning graphs
which play prominent roles in graph theory. Note that we will say graph to mean a
simple graph unless otherwise stated.

Independent graph An independent graph is one in which no two vertices are
adjacent, i.e a graph whose edge set is empty.

Complete graph A complete graph is a graph in which any two vertices are adja-
cent. A complete graph of order n is denoted by Kn. The complete graph K4

is illustrated in Fig. 2.3.a.

Neighbors and Degrees Let G = (V,E) be a graph (where G is not necessarily a
simple graph) and let v ∈ V . A vertex adjacent to v is called a neighbor of v.
The neighborhood of v, denoted by NG(v), is the set of all neighbors of v.
The degree of v in a graph G, denoted by dG(v), is the number of edges of G
incident with v, each loop counting as two edges. In particular, if G is a simple

70 Graph theory and its applications

graph, dG(v) is the number of neighbors of v in G. When G is clear from the
context, we just write d(v). A vertex of degree zero is called an isolated vertex.
The maximum degree of a vertex in G is denoted by ∆(G). The following
theorem, the handshaking theorem, establishes a fundamental identity relating
the degrees of the vertices of a graph and the number of its edges.

Theorem 1. For any graph G,
∑

v∈G

dG(v) = 2e(G)

Proof. The proof is done by induction on e(G) = m. The equality holds trivially
for m = 0. Suppose that the equality holds for m and let G be a graph such
that e(G) = m + 1. Select an arbitrary edge e = xy of G, with x 6= y. The
theorem holds for the edge-deleted subgraph G′ = G\e whose size is m. So we
have,

∑

v∈G′

dG′(v) = 2e(G′) = 2m. Then:

∑

v∈G

dG(v) =
∑

v 6=x,y

dG(v) + dG(x) + dG(y)

=
∑

v 6=x,y

dG′(v) + dG′(x) + dG′(y) + 2

=
∑

v∈G′

dG′(v) + 2

= 2m+ 2 = 2(m+ 1) = 2e(G)

In a similar reasoning, the equality still holds when the selected edge e = xx is
a loop, since this edge contributes twice to the degree of x.

Path A path is a graph P whose vertices can be arranged in a linear sequence in such
a way that two vertices are adjacent if they are consecutive in the sequence,
and are nonadjacent otherwise. The number of edges in the path is the length
of the path, denoted by l(P), which is evidently equal to υ(P)− 1.

Cycle A cycle, on three or more vertices, is a graph whose vertices can be arranged
in a cyclic sequence in such a way that two vertices are adjacent if they are
consecutive in the sequence and are nonadjacent otherwise. In multigraphs or
pseudographs, a cycle on one vertex forms a loop, and a cycle on two vertices
consists of a pair of multiple edges. The length of a cycle is the number of
its edges (and necessarily number of its vertices), denoted by l(C). A cycle is
termed even if its length is even, and odd otherwise.
A graph G is said to be acyclic if it contains no cycles; otherwise, it’s called
cyclic.

Walk and Trail A walk W in a graph G is a finite alternating sequence of vertices
and edges (not necessarily distinct), W = v0e1v1 · · · vp−1epvp such that vi−1

and vi are the ends of ei, 1 ≤ i ≤ p. When there is no ambiguity, the walk is
denoted by W = v0v1 · · · vp−1vp. The integer p (number of edges) is the length
of W , denoted by l(W). The vertices v0 and vp are called the ends of W , v0
being its origin vertex and vp its destination vertex. A walk is termed closed
if v0 = vp, and open otherwise. A walk is termed a trail if all of its edges are

2.1 Graphs 71

distinct.
Remark that a path (resp. cycle) is nothing but an open walk (resp. closed
walk) whose vertices (and necessarily all edges) are distinct. If v0 = x and
vp = y, we call the walk W (path and trail respectively) an xy−walk (xy−path
and xy − trail respectively). If an xy − path exists in a graph G, then we say
that x is reachable from y (and vice versa) and that x and y are connected in
G. A path, cycle and trail are pictured in Fig 2.2.

Figure 2.2: a) path of length 4, b) cycle of length 5 and c) trail of length 8

Connection A graph G (not necessarily simple) is said to be connected if there
exists at least one path between every pair of vertices in G; otherwise, the
graph is disconnected. Alternatively, we say that a graph G is connected if for
every partition of its vertex set into two nonempty sets X and Y , there is an
edge with one end in X and one end in Y . In fact, we can prove the equivalence
between these two definitions as follows:
Consider a partition X,Y of V (G) (X,Y 6= φ) and let u ∈ X, v ∈ Y . By
hypothesis, there exists at least one path between u and v in G. Such a path
contains an edge with one end in X and the other end in Y .
Conversely, let u, v ∈ V (G). Set X = {x ∈ V (G);G contains a ux−path} and
Y = V (G)\X. If v ∈ Y then X,Y forms a partition of V (G) and by hypothesis,
∃ an edge ww′ ∈ E(G) with w ∈ X and w′ ∈ Y . Consequently, G contains a
uw′ path which forms a contradiction. Thus v ∈ X.
A connected component of a graph G is a maximal (with respect to inclusion
(⊆)) connected subgraph of G. Obviously, any connected graph contains only
one connected component which is the graph itself.
As an example, one can remark that Figures 2.1.a and 2.1.b are connected
graphs while Fig. 2.1.c is not connected, containing two connected components;
one induced by the set S1 = {v1, v2, v3, v4, v5} and the other induced by the set
S2 = {v6, v7, v8}

Distance The distance between two vertices u and v in a graph G, denoted by
dG(u, v), is the length of a shortest uv − path. A shortest path joining u and
v is called a uv − geodesic. If there is no such path connecting u and v (i.e if
u and v lie in two distinct connected components of G), then dG(u, v) is set to
∞.

72 Graph theory and its applications

Cut Edges An edge e is said to be a cut edge of a connected graph G if its deletion
results in a disconnected graph, i.e if G\e is a disconnected subgraph. We have
the following characterization of cut edges, whose proof is straightforward [62]:

Theorem 2. An edge e of a graph G is a cut edge if and only if e doesn’t belong
to any cycle in G.

Stable set A stable set S of a graph G is a subset of V (G) in which no two of its
vertices are adjacent in G. In other words, the subgraph of G induced by S is
an independent graph.
The largest cardinality of a stable in a graph G is called the stability number, de-
noted by α(G). Simply, α(G) is the maximum number of pairwise nonadjacent
vertices.

Bipartite graphs A graph G = (V,E) is called n-partite, n > 1, if V can be par-
titioned into n stables, V1, V2, · · · , Vn called its parts; such that every edge in
E joins a vertex of Vi to a vertex of Vj , with i 6= j. When n = 2, the n-partite
graph is called a bipartite graph. A characterization of a bipartite graph was
possible. In fact, König proved in 1928 that a graph is bipartite if and only if
it contains no odd cycles [62].

When the vertex set of a bipartite graph G is partitioned into the two parts
X and Y in which every vertex in X is joined to every vertex in Y , then G is
called a complete bipartite graph. If |X| = r and |Y | = s, then G will be denoted
by Kr,s. The number of edges in Kr,s clearly equals rs. A star is a complete
bipartite graph with |X| = 1 or |Y | = 1. Figues 2.3.a and 2.3.b and 2.3.c show
diagrams of the complete graph of order 4 (K4), the complete bipartite graph
K2,3, and the star K1,5 respectively.

Figure 2.3: a) The complete graph K4, b) the complete bipartite graph K2,3, c) the star
K1,5, and d) a tree

Trees and Forests A connected acyclic graph is called a tree. In an acyclic graph,
each connected component is a tree. For this reason, acyclic graphs are usually
called forests. It’s possible to specify a number of alternative definitions of a
tree proved all to be equivalent:

• A tree is a graph in which any pair of its vertices is connected by a unique
path.

2.1 Graphs 73

• A tree is a connected graph G with υ(G) = e(G) + 1.
• A tree is an acyclic graph G with υ(G) = e(G) + 1.
• A tree is an acyclic graph which has the property that if any two of its

vertices which are not adjacent are joined directly by an edge then the
resulting graph possesses exactly one cycle.

An example of a tree is illustrated in Fig. 2.3.d.
A rooted tree T (r) is a tree T with a specified vertex r, called the root of T .
A subtree of a graph G is a subgraph which is a tree. If this tree is a spanning
subgraph, it is called a spanning tree of G. A characterization of connected
graphs by means of spanning trees is stated as follows: a graph is connected
if and only if it contains a spanning tree. In fact, if a graph G has a spanning
tree T , then any two vertices of G are connected by a path in T , and hence in
G. Conversely, if G is connected but is not a tree and e is an edge of a cycle in
G, then G\e is a spanning subgraph of G which is also connected because, by
theorem 2, e is not a cut edge of G. By repeating this process of deleting edges
in cycles until every edge which remains is a cut edge, we obtain a spanning
tree of G.

Hamiltonian graphs A graph G is said to be Hamiltonian if it contains a cycle
passing by all the vertices of G, i.e if it contains a spanning subgraph which is
a cycle. Such a cycle, when it exists, is called a Hamiltonian cycle.
Many mathematicians over the decades have unsuccessfully attempted to find
an elegant characterization of Hamiltonicity. However, sufficient conditions for
a graph to be Hamiltonian were attained. We start by the following theorem
(whose proof can be found in [61]) before discussing some of these sufficient
conditions.

Theorem 3. Consider a connected graph G of order n (n > 2) and let u and
v be a pair of distinct nonadjacent vertices of G such that d(u) + d(v) ≥ n.
Then G+ uv is Hamiltonian if and only if G is Hamiltonian.

The concept discussed in this theorem of adding an edge leads to a useful
definition concerning Hamiltonicity.
Definition 1. The closure of a graph G of order n, denoted by C(G), is the
graph obtained from G by successively joining pairs of nonadjacent vertices
whose degree sum is at least n (in the graph obtained at each step of joining),
until it is not possible to join any further pairs [61].
A closure operation example is illustrated in Fig 2.4 The next theorem is re-
quired to establish a sufficient condition for Hamiltonicity, whose proof is a
direct result of theorem 3 and the definition of closure.

Theorem 4. A graph is Hamiltonian if and only if its closure is Hamiltonian.

Theorem 5. Let G be a graph with at least three vertices. If C(G) is complete,
then G is a Hamiltonian graph.

Proof. The proof of this theorem is immediate by theorem 4 and the fact that
each complete graph with at least 3 vertices is Hamiltonian.

74 Graph theory and its applications

Figure 2.4: A complete closure operation

Many corollaries rise from theorem 5 which also provide sufficient conditions
for Hamiltonicity, although are weaker than theorem 5 itself. We mention only
two of them.

Corollary 1. If G = (V,E) is a graph of order n, where n ≥ 3, such that any
two distinct nonadjacent vertices u and v in V satify that d(u)+d(v) ≥ n, then
G is Hamiltonian (Ore’s theorem).

Corollary 2. If G = (V,E) is a graph of order n (n ≥ 3) such that d(v) ≥ n
2

for every vertex v of G, then G is Hamiltonian (Dirac’s theorem).

Weighted Graphs and Subgraphs A graph G = (V,E) (not necessarily simple)
is termed weighted if there exists a function w : E → R which assigns a real
number, called weight, to each edge of E. The weighted graph G is denoted by
(G,w). In some very particular cases, it would be necessary to assign a real
weight vector to each edge.
Usually, the weight of an edge represents how unfavorable it is. Sometimes, the
word cost, or length, or capacity is used instead of weight. Many real-world
situations ultimately reduce to some kind of weighted graph problems. In a
communication network, for example, one might consider the cost of transmit-
ting data along a link or of constructing a new link between communication
centres.

If F = (V (F), E(F)) is a subgraph of a weighted graph, the weight w(F) of
F is defined to be the sum of the weights on its edges,

∑

e∈E(F)w(e). Many
optimization problems amount to finding, in a weighted graph, a subgraph of
a certain type with minimum or maximum weight, whether a tree or a path or
etc · · · . Note that the distance between two nodes u and v in a weighted graph
(G,w), also denoted by dG(u, v), is the minimum weight of a uv − path.

Graph coloring and Chromatic number A graph G is said to be m-colorable if
the vertices of G can be colored by means of m colors in such a way that 2 ad-
jacent vertices have 2 distinct colors. In other words, V (G) can be partitioned
into m stables S1, S2, · · · , Sm, i.e V (G) = S1 ∪ S2 ∪ · · · ∪ Sm with Si ∩ Sj = φ
∀ i 6= j. The chromatic number χ(G) is by definition the minimal number m
such that G is m-colorable. For example, the chromatic number of a bipartite

2.2 Digraphs 75

graph is 2, that of an odd cycle is 3, and that of Kn is n.

Let G be a graph. Then we have α(G)χ(G) ≥ υ(G). This is straightforward
because V (G) can be partitioned into χ(G) stables Si, with |Si| ≤ α(G) ∀ i.
It has been proved that χ(G) ≤ ∆(G) + 1, and Brooks further proved in 1941
that if G is indeed neither complete nor an odd cycle, then χ(G) ≤ ∆(G) [93].

2.2 Digraphs

In graphs, edges were unordered pairs of vertices of V . Sometimes, it’s useful to give
each edge an orientation or a direction. When dealing with problems of traffic flow,
for example, it is necessary to know which roads in the network are one-way, and in
which direction traffic is permitted. In this context, a graph in which each link has
an assigned orientation is introduced.

A directed graph D (or digraph for short) is defined to be an ordered pair of sets
(V,A), where V is a finite, non-empty set of vertices and A is a set of ordered pairs
of (not necessarily distinct) vertices of V . The elements of A are called arcs. If
a = (u, v) is an arc in A, then a is said to join u to v; one also says that u dominates
v or v is dominated by u. The vertex u is the tail of a while v is its head; they are the
two ends of a. The number of arcs in D is denoted by a(D). Note that the definition
of a digraph doesn’t avoid oppositely directed pair of arcs joining the same pair of
vertices.
An arc of the form (v, v), v ∈ V is termed a loop. Parallel arcs are ones with the
same tail and the same head. In a similar manner to graphs, a simple digraph is
one with no loops or parallel arcs. A digraph which relaxes the constraint in the
definition that no parallel arcs are allowed is called a multidigraph, while that which
in addition accepts loops is called a pseudodigraph.

With any digraph D, one can associate a graph G by just replacing each of its arcs
by an edge with the same ends (i.e by ignoring the orientation of the arcs); this graph
is called the underlying graph of D, denoted by G(D). Conversely, one may obtain a
digraph from a graph G by replacing each edge by just one of the two possible arcs
with the same ends. Such a digraph is called an orientation of G, denoted by ~G.
An orientation of a simple graph is referred to as an oriented graph. One particular
interesting orientation is that of a complete graph. Such an oriented graph is called
a tournament. A bipartite digraph is an orientation of a bipartite graph.
Various variants of digraphs are illustrated in Fig. 2.5.

2.2.1 Different interesting definitions and types of digraphs

As in graphs, various appealing definitions and theorems can also be associated to
digraphs. In this subsection, we will mention some of the most important of these
aspects.

76 Graph theory and its applications

Figure 2.5: Various types of digraphs: a) multidigraph, b)pseudodigraph, c) simple di-
graph, and d) oriented graph

Subdigraph A digraph D′ = (V ′, A′) is a subdigraph of a digraph D = (V,A) if
V ′ ⊆ V and A′ ⊆ A.

Neighbors and degrees in digraphs Let D = (V,A) be a digraph and u ∈ V .
The vertices which dominate a vertex u in a digraph D are its in-neighbors,
those which are dominated by the vertex u are its out-neighbors. These sets are
denoted by N−

D (u) and N+
D (u) respectively.

The indegree d−D(u) of vertex u in D is the number of arcs with head u, and
the outdegree d+D(u) of u in D is the number of arcs with tail u (loops counting
twice). In particular, d−D(v) = |N

−
D (v)| and d+D(v) = |N

+
D (v)| in simple digraphs

and oriented graphs. As usual, the index D can be omitted if this evidently
doesn’t lead to misunderstanding. The maximum indegree and outdegree of D
are denoted by ∆−(D) and ∆+(D) respectively.

The degree of a vertex u in a digraph D is simply the degree of u in G(D). In
other words, the degree of u in D is the sum of its indegree and outdegree in
D.

The handshaking theorem stated for graphs can also be stated for digraphs in
terms of the indegrees and outdegrees of vertices as follows:

Theorem 6. Let D = (V,A) be a digraph. Then

∑

v∈D

d+D(v) =
∑

v∈D

d−D(v) = e(D) =
1

2

∑

v∈D

dD(v)

.

The proof can also be done by induction on e(D) just in a similar way to that
used in graphs, but here considering the outdegrees and indegrees of the vertices
instead of the degrees.

Source and Sink A vertex of indegree zero is called a source. A sink, on the
contrary, is a vertex whose outdegree is zero.

Directed walks, trails, paths and cycles Let D = (V,A) be a digraph. A di-
rected walk W in D is an alternating sequence of vertices and arcs of D (not

2.2 Digraphs 77

necessarily distinct) W = v0a1v1 · · · vl−1alvl such that vi−1 and vi are the tail
and head of ai respectively, 1 ≤ i ≤ l. A directed walk is termed a directed
trail if all of its arcs are distinct, a directed path if all of its vertices are distinct,
and a directed cycle or circuit if all its vertices are distinct as well, except for
the fact that v0 = vl. If x and y are the origin and destination vertices of
W , the directed walk W (respectively directed trail, directed path) is called an
(x, y)-walk (respectively (x, y)-trail, (x, y)-path). If x, y ∈ V and there exists an
(x, y)-path, then y is said to be reachable from x.

Semiwalk, Semitrail, Semipath and Semicycle A semiwalk [61] W is an alter-
nating sequence of vertices and arcs (not necessarily distinct)
W = v0a1v1 · · · vl−1alvl where either one of vi−1 or vi is the tail of ai while the
other is its head, ∀ 1 ≤ i ≤ l. A semiwalk is termed a semitrail if all of its arcs
are distinct, a semipath if all of its vertices are distinct, and a semicycle if also
all of its vertices are distinct except that we have v0 = vl. Fig. 2.6 presents
examples of a directed path, directed cycle, semipath, and semicycle.

Figure 2.6: a) directed path, b) directed cycle or circuit, c) semipath, and d) semicycle

Connection in Digraphs Many types of connections appear in digraphs; we will
define a digraph as being strongly connected, unilaterally connected, or con-
nected as follows: A digraph D = (V,A) is said to be strongly connected if every
two of its distinct vertices, say u and v, are such that u is reachable from v
and v is reachable from u, i.e ∀ u, v ∈ V , ∃ a (u, v) path. By contrast, D is
unilaterally connected if either u is reachable from v or v is reachable from u.
However, we say that a digraph is connected (some books use the term weakly
connected) if any two distinct vertices of V are joined by a semipath. This
is equivalent to saying that the underlying graph of D, G(D), is a connected
graph. Clearly, we have:
D is strongly connected ⇒ D is unilaterally connected ⇒ D is connected.
For example, one can easily notice that the digraph of Fig. 2.5.c is strongly
connected, while that of Fig. 2.5.d is not because we can’t find any (v4, v1)
path. However, Fig. 2.5.d represents a unilaterally connected digraph, unlike
the connected digraph of Fig. 2.5.b which doesn’t contain neither a (v2, v4)
path, nor a (v4, v2) path. Finally, remark that Fig. 2.5.a is not connected in
any type of connection in digraphs.

78 Graph theory and its applications

Components Just as there are three concepts of connectivity in digraphs, there
are also three kinds of components. A strong component (respectively unilat-
eral component, connected component) in a digraph D is a maximal (with re-
spect to inclusion (⊆)) strongly connected (respectively unilaterally connected,
connected) subdigraph of D.

Out-branching and in-branching An out-branching T is an orientation of a
rooted tree, called oriented tree, in which all the vertices have indegree 1 unless
exactly the root vertex which is a source. Similarly, an in-branching is an
oriented tree, where the outdegree of all its vertices is 1 except for the root
vertex which is a sink. Fig. 2.7 provides a pictorial view of an out-branching
and in-branching.

Figure 2.7: a) An out-branching and b) an in-branching

Weighted digraphs As for weighted graphs, a weighted digraph is a couple (D,w)
where D = (V,A) is a digraph and w : A→ R is a function which assigns real
number weights to each arc of D.

2.3 Hypergraphs

The basic idea of the hypergraph concept is to consider a generalization of a graph in
which any subset of a given set may be an edge rather than two-element subsets. A
hypergraph H in this context (sometimes called a set-system) is a pair (V (H), E(H))
of sets, with V (H) is a non-empty set of vertices and E(H) is a finite set of subsets
of V (H) (not necessarily non-empty) called hyperedges. Some hyperedges may be
subsets of some others, in which case they are called included. Other hyperedges may
coincide; this is when they are called multiple hyperedges. A hyperedge of cardinality
1 is called a loop.
A simple hypergraph (also known as Sperner families) is a hypergraph which con-
tains no included edges, and thus has no empty or multiple hyperedges [68]. A simple
graph is a simple hypergraph each of whose hyperedges is of cardinality 2.

Let H = (V (H), E(H)) be a hypergraph. The order of a hypergraph is the number
of its vertices, denoted by n(H), while the number of hyperedges in H is denoted by

2.3 Hypergraphs 79

m(H). Two vertices are said to be adjacent in H if there is a hyperedge in E(H) that
contains both vertices, and two hyperedges of H are adjacent if their intersection is
not empty. If a vertex x ∈ V (H) belongs to a hyperedge E ∈ E(H), then they are
said to be incident to each other. It’s always the case in graph theory where the
notion of adjacency is referred to the elements of the same kind (vertices vs vertices,
or edges vs edges), while the incidence is referred to the elements of different kind
(vertices vs edges).

Hypergraphs can model concepts in different sciences in a much more general set-
ting than graphs do. In addition, they help to find optimal solutions for many new
optimization problems. Example, a hypergraph modeling in computer science is one
in which the vertices are computers in a network and the hyperedges are the sub-
sets of computers with devices from different manufacturers, one subset for every
manufacturer; another is in broadcasting where the vertices are radio transmitters
in a region and the hyperedges are the subsets of transmitters which transmit on the
same frequency right now, one subset for each frequency; in healthcare for example,
the vertices can represent illnesses and the hyperedges will be the subsets of illnesses
which can be treated by some medicines, one hyperedge for each medicine, just to
mention few.

A hypergraph H = (V (H), E(H)) is given another pictorial representation as a
bipartite graph B(H) = (V1(B) ∪ V2(B), E(B)), called the bipartite representation
graph [66], as follows:

• V1(B) = V (H), V2(B) = E(H).

• An edge in B(H) between x ∈ V1(B) and E ∈ V2(B) is drawn if and only if
x ∈ E in H.

Fig. 2.8 is an example of a hypergraph H = (V (H), E(H)) together with its bipartite
representation B(H) where:

V (H) = {x1, x2, x3, x4, x5, x6}, E(H) = {E1, E2, E3, E4},

E1 = {x1}, E2 = {x1, x2}, E3 = {x1, x2, x4}, E4 = {x2, x3, x5}

AND

V1(B) = {x1, x2, x3, x4, x5, x6} and V2(B) = {E1, E2, E3, E4}.

E(B) = {x1E1, x1E2, x1E3, x2E2, x2E3, x2E4, x3E4, x4E3, x5E4}

2.3.1 Subhypergraphs

In this subsection, we will introduce two basic hypergraph operations which allow to
obtain one hypergraph from another and to create various types of subhypergraphs
[67]. Let H = (V (H), E(H)) be a hypergraph.

80 Graph theory and its applications

Figure 2.8: Example of a hypergraph H and its bipartite representation graph B(H)

vertex deletion Let x ∈ V (H). A deletion of x (sometimes called strong vertex
deletion) from H is obtained by removing all the hyperedges containing x from
E(H) and removing of x from V (H). The obtained hypergraph is denoted by
H − x.

hyperedge deletion This is the simplest operation of deletion, where a hyperedge
E is just removed from the list of hyperedges E(H) (sometimes called weak
hyperedge deletion). Such edge-deleted hypergraph is denoted by H\E.

A subhypergraph of H is any hypergraph H ′ = (X ′, D′) such that X ′ ⊆ V (H) and
D′ ⊆ E(H). Evidently, H ′ can be obtained from H by deleting the vertices from
the set V (H)\X ′ and further hyperedge deletion of the remaining hyperedges from
E(H)\D′. Accordingly H − x and H\E are subhypergraphs of H. The following
includes two particular types of subhypergraphs.

Induced subhypergraphs A hypergraph H ′ = (X ′, D′) is called an induced sub-
hypergraph of a hypergraph H = (X,D) if X ′ ⊆ X and all hyperedges of H
which are subsets of X ′ form the family D′. In other words, X ′ is obtained
from H by the vertex deletion of all the vertices in V (H)\X ′. We say that H ′

is a subhypergraph of H induced by X ′.

Partial or Spanning subhypergraphs For a hypergraph H = (X,D), any sub-
hypergraph H ′ such that H ′ = (X,D′) is called a partial or spanning subhyper-
graph; i.e a spanning subhypergraph of H has the same vertex set as that of H
and is obtained by just deleting the hyperedges in D\D′.

2.3.2 Basic definitions and particular cases concerning hypergraphs

Let H = (V (H), E(H)) be a hypergraph and x ∈ V (H). Some basic definitions and
notations of hypergraphs will be presented hereby.

2.3 Hypergraphs 81

Empty hypergraph An empty hypergraph H is one whose hyperedge set is empty,
i.e E(H) = φ.

Neighbor and Neighborhood A vertex adjacent to x in H is called a neighbor of
x. The neighborhood of x, denoted by N(x), is the set containing all neighbors
of x.

Star with center x The star S(x) with center x is the set of hyperedges containing
x, i.e S(x) = {E ∈ E(H), x ∈ E}.

Vertex degree The degree of x in H, denoted by dH(x), is the number of hyper-
edges in E(H) incident with x; i.e dH(x) = |S(x)|. If x is incident to no
hyperedge in H, i.e dH(x) = 0, it’s called an isolated vertex. The maximum
degree of a vertex in V (H) is denoted by ∆(H). The following theorem gen-
eralizes the handshaking theorem to hypergraphs which establishes an equality
between the sum of all vertex degrees and the sum of all edge cardinalities [67].

Theorem 7. For a hypergraph H,
∑

x∈V (H) dH(x) =
∑

E∈E(H) |E|.

Proof. Consider the bipartite represetation graph of H, B(H) = (V1(B) ∪
V2(B), E(B)). We have

∑

x∈V1(B) dB(H)(x) =
∑

x∈X dH(x) and
∑

x∈V2(B) dB(H)(x) =
∑

E∈E(H) |E|. Evidently
∑

x∈V1(B) dB(H)(x) =∑

x∈V2(B) dB(H)(x), because both sums represent the number of edges in B(H).

Hyperedge size Let E ∈ E(H). The number |E| is called the size of the hyperedge
E. The rank of a hypergraph H is the maximum size of a hyperedge in E(H),
denoted by r(H). A hypergraph in which all hyperedges have the same size
r ≥ 0 is called an r-uniform hypergraph. Thus, a simple graph is a 2-uniform
hypergraph.

Complete hypergraphs A simple hypergraph H of order n is called a complete r-
uniform hypergraph, denoted by Kr

n, when E(H) coincides with all the r-subsets
of X. Thus a complete graph on n vertices is a complete 2-uniform hypergraph
K2

n.

Walk, trail, path and cycle in Hypergraphs In a hypergraph H, a sequence
of nodes and hyperedges W = x0E1x1 · · ·xl−1Elxl satisfying xi−1, xi ∈ Ei,
1 ≤ i ≤ l is called a walk connecting the vertices x0 and xl, or, equivalently,
x0xl-walk; it’s called an x0xl-trail if all hyperedges are distinct. Indeed, if all
nodes x0, x1, · · · , xl are distinct, it will be called an x0xl-path. If in addition we
have xl ∈ E1, then W is called a cycle (denoted x0xl-cycle); this is in particular
true when x0 = xl. The value l denotes the length of the walk, trail, path or
cycle.

Connection in hypergraphs As in graphs, a hypergraph H is called connected
if for any pair of its vertices, there is a path connecting them. A connected
component of H is a maximal connected suhypergraph (w.r.t ⊆) of H.

Stable sets in hypergraphs [67] A set S ⊆ V (H) is said to be a stable if it
doesn’t contain any hyperedge E with |E| > 1. The largest size of a stable set
over all maximal by inclusion stable sets is called the stability number, denoted
by α(H).

82 Graph theory and its applications

Bipartite hypergraphs [67] A hypergraph H is called bipartite if its vertex set
can be partitioned into two disjoint sets X1 and X2 (called parts) in such a
way that each hyperedge of cardinality ≥ 2 contains vertices from both parts,
meaning that there is no such hyperedge completely inside X1 or X2.

Weighted hypergraphs [69] A weighted hypergraph is one in which each hyper-
edge E is assigned a real weight vector w(E), i.e there exists a function w which
maps each hyperedge of H to a real vector. Depending on the particular ap-
plication, the components of w(E) may represent costs, lengths, capacities, etc.
For the sake of simplicity, only scalar weights are usually considered.

Hypergraph coloring and Chromatic number [68] Let k be an integer ≥ 2.
A k-coloring of the vertices of H is a partition (S1, S2, · · · , Sk) of the set of
vertices V (H) into k stables such that every hyperedge which is not a loop has
intersections with at least two classes of the partition; i.e E ∈ E(H) s.t |E| > 1
⇒ E isn’t a subset of Si ∀ i = 1, 2, · · · , k. A vertex in Si is said to be a
"vertex of color i" and Si is called "the color set i", where Si may possibly be
empty; the only monochromatic edges are therefore the loops.
The chromatic number of H, denoted χ(H), is the smallest integer k such that
H admits a k-coloring.
For example, if H is the hypergraph whose vertices are the different waste
products in a chemical production factory, and in which the hyperedges are the
dangerous combinations of these waste products, the chromatic number of H
will represent the smallest number of waste disposal sites that the factory needs
in order to avoid any hazardous situation.

If H is a hypergraph of order n with stability number α(H), then α(H)χ(H) ≥
n (exactly as in graphs).

Mixed hypergraph and its proper coloring [67] A hypergraph
H = (V (H), E(H)) is called a mixed hypergraph if its set of hyperedges E(H)
is partitioned into two sets C and D (also denoted by C(H) and D(H) respec-
tively), where the elements in C are called C-hyperedges and those in D are
called D-hyperedges. In this case, the hypergraph H will be denoted by the
triple
H = (V (H), C(H), D(H)) or simply H = (V,C,D). This splitting manner
is useful in many cases when some hyperedges in a hypergraph have common
aspects (or are required to have) and the rest have something else in common.
A new beneficial notion of coloring was introduced, called proper coloring of
mixed hypergraphs.

A proper coloring of a mixed hypergraph H = (V,C,D) is a mapping c : V →
{1, 2, · · ·λ} satisfying the following two conditions:

1. every C-hyperedge has at least two vertices of a common color.
2. every D-hyperedge has at least two vertices of different colors.

Definition 3. A mixed hypergraph H is called colorable if it admits at least
one proper coloring; otherwise it’s called uncolorable.

2.4 Directed Hypergraphs 83

In graphs and hypergraphs, we can always find a coloring. On the contrary, it
is easy to remark that not every mixed hypergraph is colorable [67].

2.4 Directed Hypergraphs

In hypergraphs, a hyperedge was a subset of the vertex set. However, in many
applications, it might be sometimes useful to consider some of the elements of a
hyperedge directed or oriented towards others. A directed hyperedge, in this context,
is an ordered pair (X,Y) of disjoint subsets of the vertex set in which the elements
of X are directed towards the elements in Y . A directed hypergraph is a hypergraph
but with directed hyperedges.

Formally, a directed hypergraph H is a pair (V (H), E(H)), where V (H) is a non-
empty set of elements (called vertices or nodes) and E(H) is a set of ordered pairs of
disjoint subsets of V (H) (called directed hyperedges or hyperarcs) [69]. If E = (X,Y)
is a hyperarc in E(H), then X & Y are called the tail set and head set of E respec-
tively, denoted by T (E) and H(E).
The hyperarc E is said to join the vertices of T (E) to the vertices of H(E). The
vertices of T (E) are said to be incident to the hyperarc E and the vertices of H(E)
are said to be incident from E. The vertices of T (E) are adjacent to the vertices of
H(E), and the vertices of H(E) are adjacent from the vertices of T (E).
As in hypergraphs, n(H) and m(H) denote the number of vertices and number of
hyperarcs of H respectively.
It’s not necessary to present neither the definitions of multiple hyperarcs, loops, · · ·
nor the different types of directed hypergraphs, as they can be easily deduced in
exactly the same way we have moved from graphs to digraphs.

In a similar manner to hypergraphs, a directed hypergraph H = (V (H), E(H)) can
be represented by a bipartite digraph R(H) = (V1(R) ∪ V2(R), E(R)) called the
bipartite representation digraph of H [65] such that:

• V1(R) = V (H), V2(R) = E(H)

1. an arc in E(R) is drawn directed from x ∈ V1(R) to E ∈ V2(R) if and only
if x ∈ T (E) in H.

2. an arc in E(R) is drawn directed from E ∈ V2(R) to x ∈ V1(R) if and only
if x ∈ H(E) in H.

Fig. 2.9 represents an example of a directed hypergraph H = (V (H), E(H)) along
with its bipartite representation R(H) = (V1(R) ∪ V2(R), E(R)) where:

V (H) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, E(H) = {E1, E2, E3, E4, E5, E6},

E1 = ({x1, x2}, {x3}), E2 = ({x3}, {x7}), E3 = ({x3, x4}, {x5, x6}),
E4 = ({x7}, {x1}), E5 = ({x1, x7}, {x8}), E6 = ({x9}, {x8});

AND

84 Graph theory and its applications

V1(R) = {x1, x2, x3, x4, x5, x6, x7, x8, x9} and V2(R) = {E1, E2, E3, E4, E5, E6}.

E(R) =
{(x1, E1), (x1, E5), (E4, x1), (x2, E1), (x3, E2), (x3, E3), (E1, x3), (x4, E3), (E3, x5), (E3, x6),

(x7, E4), (x7, E5), (E2, x7), (E5, x8), (E6, x8), (x9, E6)}

Figure 2.9: Example of a directed hypergraph H and its bipartite representation digraph
R(H)

2.4.1 Important directed hypergraphs’ definitions and notations

Let H = (V (H), E(H)) be a directed hypergraph and v ∈ V (H). Following consists
of several important and necessary definitions and aspects of directed hypergraphs,
which will represent the keystone of our research work in this thesis.

Subdirected-hypergraph A directed hypergraph H ′ = (V (H ′), E(H ′)) is called
a subdirected hypergraph of H if simply V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H).

B-hypergraph and F-hypergraph [69] A Backward hyperarc, or simply B-arc,
is a hyperarc E = (T (E), H(E)) with |H(E)| = 1; a Forward hyperarc, or
simply F-arc, is a hyperarc E such that |T (E)| = 1.
A B-hypergraph (or simply B-graph) is a directed hypergraph whose hyperarcs
are B-arcs; Similarly, a F-hypergraph (or simply F-graph) is a directed hyper-
graph of which all the hyperarcs are F-arcs.

BF-reductions of hyperarcs [69] Let E = (T (E), H(E)) be a hyperarc in H. A
BF-reduction of E is a hyperarc ({x}, {y}) where x ∈ T (E) and y ∈ H(E).
For instance, we have ({x1}, {x3}) and ({x2}, {x3}) are BF-reductions of the
hyperarc E1 in Fig. 2.9.

2.4 Directed Hypergraphs 85

Forward and Backward star [69] The Forward Star and the Backward Star of
node v are respectively defined by:
FS(v) = {E ∈ E(H), v ∈ T (E)} and BS(v) = {E ∈ E(H), v ∈ H(E)}.
If X = (V (X), E(X)) is a subdirected-hypergraph of a directed hypergraph H,
then the forward and backward stars in X of node v (v ∈ V (X)) will be defined
as:
FSX(v) = {E ∈ E(X); v ∈ T (E)} and BSX(v) = {E ∈ E(X); v ∈ H(E)}.

Hyperarc sizes [65] If E is a hyperarc in a directed hypergraph H, then |T (E)|
is the in-size of E while |H(E)| is its out-size. The maximum in-size and the
maximum out-size of H are denoted by s−(H) and s+(H) respectively. Note
that a digraph is a directed hypergraph D = (V (D), E(D)) with s−(D) =
s+(D) = 1.

Neighbor and Neighborhood The vertices adjacent from v in a directed hyper-
graph H are the out-neighbors of v, those which are adjacent to v are its
in-neighbors. The set of in-neighbors and out-neighbors of v are denoted by
N−

D (v) and N+
D (v) respectively.

Vertex degrees The in-degree of v, denoted by d−H(v), stands for the number of
hyperarcs that contain v in their head set, while the out-degree of v is the number
of hyperarcs that contain v in their tail set, denoted by d+H(v). Consequently, we
can write: |BS(v)| = d−H(v) and |FS(v)| = d+H(v). (When H is clear from the
context, we will simply write d−(v) and d+(v) respectively). The maximum in-
degree and the maximum out-degree of H are ∆−(H) and ∆+(H) respectively.
The next theorem is the handshaking theorem’s version extended to directed
hypergraphs, which builds equations between the degrees of the vertices and
the hyperarcs’ sizes.

Theorem 8. For a directed hypergraph H = (V (H), E(H)), the sum of the
out-degrees of all the vertices in V (H) is equal to the sum of the in-sizes of all
the hyperarcs in E(H), i.e

∑

x∈V (H) d
+
H(x) =

∑

E∈E(H) |T (E)|.

Similarly, we have
∑

x∈V (H) d
−
H(x) =

∑

E∈E(H) |H(E)|.

Proof. Consider the bipartite representation digraph
R(H) = (V1(R)∪V2(R), E(R)) of the directed hypergraph H = (V (H), E(H)).
According to the bipartite digraph definition R(H), we can remark that:
∑

x∈V (H) d
+
H(x) =

∑

x∈V1(R) d
+
R(H)(x) =

∑

E∈V2(R) d
−
R(H)(E) =

∑

E∈E(H) |T (E)|.

Similarly, we have :
∑

x∈V (H) d
−
H(x) =

∑

x∈V1(R) d
−
R(H)(x) =

∑

E∈V2(R) d
+
R(H)(E)

=
∑

E∈E(H) |H(E)|.

Directed walk, trail, path and cycle in directed hypergraphs [69] A directed
walk from vertex r to vertex n in a directed hypergraph H = (V,E) is an alter-
nating sequence of nodes and hyperarcs P = (v1 = r, Ei1 ,v2, Ei2 , v3, · · · , Eiq ,
vq+1 = n) where: vertex vj ∈ T (Eij) and vj+1 ∈ H(Eij) for each 1 ≤ j ≤ q.
Such a walk is called an (r, n)-walk, where r is its origin and n is its destination.
If all hyperarcs are distinct, P will be a directed trail (called (r, n)-trail); if in
addition all the vertices were distinct, then P is called a directed path from r
to n (called (r, n)-path). Suppose that indeed n ∈ T (Ei1), then P is said to be

86 Graph theory and its applications

a directed cycle (or circuit); this is in particular true when r = n. The length
of P is equal to the number of hyperarcs on it, denoted by l(P). Moreover,
we’ll denote V (P) and E(P) by the set of vertices and hyperarcs respectively
traversed via P . For example, in the directed hypergraph of Fig. 2.9, we have
Q = (x2, E1, x3, E2, x7, E5, x8) is a directed path from x2 to x8 of length 3,
where V (Q) = {x2, x3, x7, x8} and E(Q) = {E1, E2, E5}. If a directed path
exists from r to n in a directed hypergraph H (i.e an (r, n)-path exists), we say
that n is connected to r in H.

B-connection and B-path [70] The concept of B-connection in directed hyper-
graphs is captured by the following definition.

Definition 2. B-connection to v in H.

1. Vertex v is B-connected to itself;
2. If for some E ∈ E(H) all the vertices in T (E) are B-connected to v, then

each vertex u ∈ H(E) is B-connected to v.

A B-hyperpath, or simply B-path, from node v to node x in a directed hypergraph
H is a minimal (with respect to inclusion) subdirected-hypergraph of H where
x is B-connected to v according to definition 2. A B-path can be defined as a
sequence of hyperarcs used to prove that x is B-connected to v. The concept
of a B-path generalizes the notion of a directed path in digraphs.
As an example, a B-path which B-connects vertex x8 to vertex x3 in the directed
hypergraph of Fig. 2.9 is the subdirected-hypergraph H ′ defined by the vertex
set V (H ′) = {x1, x3, x7, x8} and the set of hyperarcs E(H ′) = {E2, E4, E5}.

Cuts and Cutsets Let s, t ∈ V (H). A cut Tst of H is a partition of V (H) into
two subsets X and Y such that s ∈ X and t ∈ Y . Given the cut Tst, its cutset
Est is the set of all hyperarcs satisfying that T (E) ⊆ X and H(E) ⊆ Y . The
cardinality of a cut is the cardinality of its cutset. The same definition of cuts
and cutsets applies to digraphs.

weighted directed hypergraphs A weighted directed hypergraph H is termed
weighted if there is a real weight vector w(E) assigned to each hyperarc E of
H (via a real vector function w). Such a directed hypergraph is denoted by
(H,w). Usually, scalar weights are considered for the sake of simplicity.

2.5 The theory of complexity

Any posed problem possesses a certain complexity imposed when trying to solve it.
In this section, we introduce different notions to evaluate and estimate the complex-
ity of a problem, discover the level of its difficulty, and construct the most adequate
solution methods compatible with the relative complexity of the problem.

A problem is characterized by a general representation of the parameters and vari-
ables whose values are left unspecified, and a statement of what properties its so-
lution is required to satisfy. An instance of a problem is obtained by specifying
particular values for all the problem parameters. As an example, we’ll introduce

2.5 The theory of complexity 87

the Traveling Salesman Problem (TSP) whose parameters consist of: a finite set
C = {c1, c2, · · · , cm} of cities, the distance d(ci, cj) between each pair of cities ci, cj
in C, and a certain starting point (say city c1). A solution of TSP is an ordering
< c1, cΠ(2), · · · , cΠ(m) > of the given cities that minimizes the weight of the cycle or
tour (passing by all the cities once) imposed by this ordering, i.e which minimizes
d(c1, cΠ(2)) +

∑m−2
i=1 d(cΠ(i), cΠ(i+1)) + d(cΠ(m), c1). One instance of TSP is given

by C = {c1, c2, c3, c4}, d(c1, c2) = 3, d(c1, c3) = 1, d(c1, c4) = 6, d(c2, c3) = 4,
d(c2, c4) = 2, d(c3, c4) = 5 and the starting point c1. The ordering < c1, c3, c4, c2 >
is the solution of this instance (min tour of length 11).

A decision problem Π is a problem which has only two possible solutions, either the
answer "yes" or the answer "no". Abstractly, a decision problem Π consists simply
of a set DΠ of instances and a subset YΠ ⊆ DΠ of yes-instances.
Many problems that arise in practice, such as TSP, are optimization problems rather
than decision problems. Nonetheless, each problem implicitly includes an infinitude
of decision problems. In fact, any optimization problem, whether a minimization
or a maximization one, can be transformed into a decision problem by the use of
a bound B ≥ 0, then asking if we can find a solution which satisfies the problem’s
statement but whose cost doesn’t exceed B in case the problem was a minimization
one (or if the cost is at least as large as B in case we were dealing with a maximiza-
tion problem). The optimization problem can be solved by repeatedly solving its
decision problem version, by incrementally decreasing (resp. increasing) the value of
B if the optimization problem version is a minimization problem (resp. maximiza-
tion problem). The benefit of using decision problems will be highlighted later after
having introduced some additional topics.

Accordingly, the decision problem version of TSP, for instance, can be stated as
follows:

INSTANCE A finite set C = {c1, c2, · · · , cm} of cities, a distance d(ci, cj) ∈ Z+

for each pair of cities ci, cj ∈ C, a starting point, and a bound B ∈ Z+.

STATEMENT Is there a tour passing by all the cities in C exactly once and re-
turning back to the starting point, and whose total length is no more than B?

An algorithm, which consists of step-by-step procedures for solving problems and is
written in some precise computer language, is said to solve a problem Π if it can
be applied to any instance I of Π and is always guaranteed to produce a solution
for that instance. For example, an algorithm doesn’t solve TSP unless it always
constructs an ordering that gives a minimum length tour.
We shall start by a formal definition of the concept of an algorithm based on what
is known as a Turing machine, which is used as a computer model of computation
because of its simplicity.

88 Graph theory and its applications

2.5.1 Deterministic Turing Machine and the class P

First, we’ll begin by what’s called a Deterministic Turing Machine (DTM). It consists
of an infinite tape that is divided lengthwise into cells on which the input will be
written, and a read-write head. Note that the description of a problem instance that
is provided as input to the computer is a single finite string of symbols chosen from
a finite input alphabet, denoted by Σ. An additional symbol is required to form
the symbols written on the DTM tape which is a distinguished blank symbol b. A
program for a DTM specifies the following information:

• The finite set Γ = Σ ∪ {b} of tape alphabet.

• A finite set of states Q, with a specification of the initial state q0 as well as the
halting state(s) (forming set Qh).

• A transition function δ : (Q−Qh)× Γ → Q× Γ× {−1,+1}.

Each cell of the tape accepts exactly one symbol of Γ. Input to the machine com-
prises a tape which is blank except for a finite number of neighboring filled cells. The
program starts its operation in state q0 with the read-write head scanning the first
non-blank symbol from Σ of the input’s string. The computation proceeds then in a
step-by-step manner. If the current state belongs to Qh (i.e is a halting state), then
the computation has terminated. Otherwise, the current state q belongs to Q−Qh,
some symbol s ∈ Γ in a cell of the tape is read by the read-write head, and the value
δ(q, s) = (q′, s′,∆). The tape’s read-write head then erases s and writes s′ in its
place, changes the state of computation from q to q′, and moves one square to the
left if ∆ = −1 or one square to the right if ∆ = +1, thus completing one step. In
this way, the computation of DTM is carried out in a cyclic manner. So, from any
pair of (i) a present state and (ii) a symbol just read, DTM can determine exactly
one new state, one symbol to be written, and one direction of movement. It’s in this
sense that the Turing machine is said to be deterministic.

The output of the calculations is provided by either the symbols printed on the
tape when entering a final state (excluding the blank symbols from both sides of
the tape) or the final state itself, or both. Normally for decision problems, a typical
final state is either yes or no, represented by the states qY and qN respectively (i.e
Qh = {qY , qN}). For further details and examples, see [63].
We point out that a DTM program can be used to implement functions. Note that
the set of all finite strings of symbols from Σ (resp. Γ) is denoted by Σ∗ (resp. Γ∗).
Suppose M is a DTM program with input alphabet Σ and tape alphabet Γ that halts
for all input strings from Σ∗. Then M is said to compute the function f : Σ∗ → Γ∗

if for each x ∈ Σ∗, f(x) is defined to be the string output of M .

Now we’ll introduce the notion of efficiency of an algorithm, called computational
complexity (complexity for short). In fact, different algorithms possess different com-
plexities and the characterization of which of these are "efficient enough" and which
are too "inefficient" conquers a wide importance. Usually, complexity expresses

2.5 The theory of complexity 89

the time requirements resource as it often represents a dominant factor determining
whether a particular algorithm is efficient or not.

Informally, the complexity of an algorithm is a function C which represents the
maximum number of basic computational steps (such as arithmetical operations and
comparisons) required for its execution, taken over all possible problem instances of
a given problem size s (C is a function of s). This is known as the worst-case com-
plexity. In graph theoretic algorithms and away from the Turing machine’s concept,
problem size can be for example a function of the number of vertices in the graph or
the number of edges or both. When considering the turing machine’s computation,
the size of a problem instance is defined by the number of symbols in the string rep-
resenting it, which reflects the amount of input data needed to describe the instance.
The size of an instance is also called the input length.

We say that a function f has order no greater than that of g, and write f = O(g), if ∃
two constants k and n0 such that f(n) ≤ kg(n), ∀ n ≥ n0. Informally, an algorithm
is said to be polynomial (resp. exponential) if its complexity function C is O(f) for
some polynomial (resp. exponential) function f . A polynomial-time algorithm is
further qualified as linear-time if the polynomial is a linear function, quadratic-time
if it is a quadratic function, etc · · · . Polynomial algorithms are considered to be
efficient algorithms, unlike the problems for which it is conjectured that no polyno-
mial algorithm exists (called intractable problems). This is because as problem size
increases, the number of steps required by a polynomial-order algorithm (as opposed
to exponential-order ones) grows relatively slowly. Indeed, algorithms whose com-
plexity is exponential in the size of the input have running times which render them
unusable even on inputs of moderate size and even by using the fastest computers
available. By definition, the class P is the set of all problems which can be solved
by a polynomial-time algorithm.

A formal definition of the complexity of an algorithm and the class P can be provided
using the turing machine’s representation. The time used in the computation of a
DTM program M on an input is the number of steps occurring in that computation
up until a halt state is entered. For a DTM program M that halts for all input
strings, the complexity function C is the maximum time (i.e number of steps) re-
quired when applied to all instances of a given input size s (i.e C(s) = max{m\ there
is an input string of size s which requires time m}). A DTM program is called a
polynomial time DTM program if ∃ a polynomial p such that the complexity function
C is O(p). Finally, the class P is a set which includes all problems whose algorithms
are realized by a polynomial time DTM program.

Another type of a turing machine was also defined, called the Non-Deterministic
Turing Machine (NDTM). It’s not an existing computing machine, but it was mostly
used to describe intractable problems. All the aspects of this machine and the
notion of it "solving" an intractable problem will be presented right in the following
subsection.

90 Graph theory and its applications

2.5.2 Nondeterministic Turing Machine

In this part, we’ll confine ourselves to the decision problem version of optimization
problems which is useful especially when dealing with intractable problems. This
is because the decision problem is no harder than the corresponding optimization
problem. For example, if one can find a minimum tour for TSP in polynomial time,
then the associated decision problem can be solved in polynomial time. All is needed
is to find the minimum length tour, compute its length, and finally compare it with
the given bound B. Consequently, if the decision problem was intractable, as is
actually the case of TSP, then so will be its at least as hard associated optimization
problem. Thus, even though the theory of intractability restricts attention to only
decision problems, one can extend the implications of the theory to optimization
problems.
A new class of problems, called Nondeterministic Polynomial-time (NP) problems,
will be defined right next from both the formal and informal aspects.

2.5.2.1 The class NP

We start by a simple example to refer to the class NP. Consider again the previously
presented TSP decision problem version. There is no far a reported polynomial time
algorithm for solving this problem. However, consider a problem instance in which
a particular ordering of the cities was produced for which it was claimed that it
represented a hamiltonian cycle whose weight was less than the given bound B (i.e
the answer to the decision problem for this particular instance is yes). It’s straight-
forward to devise a polynomial verification algorithm to check whether or not the
provided ordering is actually a spanning tour and, if so, compute its length and
compare that quantity to the given bound B. It is in this sense when the problem is
said to be polynomial-time verifiable. Notice that polynomial time verifiability does
not imply polynomial time solvability. In saying that we can verify a "yes" answer
for TSP instance in polynomial time, one is not counting the time one might have
to spend in searching among the exponentially many possible tours.

Before considering the formal turing machine’s computation process to represent this
new class of problems, we’ll provide an informal view.
A nondeterministic algorithm is an algorithm which consists of two stages, namely
the guessing and the checking stage. Given a problem instance I, the first stage
"guesses" some structure S, then both I and S are provided as inputs to the check-
ing stage which proceeds to compute in a normal deterministic manner, either halt-
ing with answer "yes", or with answer "no", or computing forever without halting.
Such an algorithm is said to be polynomial if for all yes-instances I of size s in YΠ,
there is a guess that causes the verification stage to terminate in a number of basic
computational steps which is a polynomial function of s. For example, a polynomial
nondeterministic algorithm for TSP could be constructed using a guessing stage that
simply guesses an arbitrary ordering of the given cities and a checking stage that is
identical to the aforementioned polynomial time verification for TSP.
Finally, the class NP is defined to be the set of decision problems which can be

2.5 The theory of complexity 91

solved by a polynomial nondeterministic algorithm. As a summary, one can prove
that a decision problem is an NP-problem if for a given "yes" instance I and after
guessing a certain solution S, it can be verified that the answer for I and S is "yes"
in polynomial time.
We’ll introduce a new type of a turing machine called the Nondeterministic Turing
Machine (NDTM). We will present a slightly non-standard NDTM model. More
standard versions are described in [99, 100]. It has the same structure as a DTM
(including an infinite tape and read-write head), except that it is in addition aug-
mented with what is referred to the guessing module having its own write-only head.
An NDTM program is specified in exactly the same way as a DTM program, includ-
ing the tape alphabet Γ, input alphabet Σ, state set Q indicating the initial state q0
and the halting states qY and qN , and a transition function δ. A problem instance
is assumed written in the cells in the same input convention recorded for DTM. The
computation of an NDTM program differs from that of a DTM in that it takes place
in two distinct stages. The first stage, known as the guessing stage, constructs a
guess (sometimes called succinct) using the write-only head and records it in the
cells according to the same input convention. This construction is nondeterministic
in the sense that it’s completely chosen in an arbitrary manner. The computation
in the second stage, called the checking stage, proceeds solely under the direction of
the NDTM program according to exactly the same rules as for a DTM and verifies
deterministically whether the answer is yes or no for both the guess and the input
problem instance. Remark that in the checking stage (i) the guessing module and its
write-only head are no longer involved, having fulfilled their role of constructing the
guess (ii) the guess is examined. The program eventually halts at either state qY or
qN , or need not halt at all. Thus in an NDTM, instead of having just one possible
computation on a given input, it has many different ones, one for each possible guess.

For an NDTM program, the time required to compute a yes-instance I of a decision
problem Π is defined to be the minimum number of steps (over all computations halt-
ing at qY for I, called accepting computations) occurring in the guessing and checking
stages up until the halt state qY is entered. The complexity function C : Z+ → Z+

for an NDTM program M is defined such that C(s) = max{{1}∪{m\ there is an in-
put string of size s which requires time m}}. This time complexity function depends
only on the number of steps occurring in accepting computations and by convention,
C(s) is set equal to 1 whenever no inputs of size s halt at the state qY . We say
that an NDTM program M runs in polynomial time if there exists a polynomial p
such that C = O(p). Finally, the class NP is formally defined as the set of decision
problems whose algorithms can be realized by a polynomial time NDTM program.

In an analogous way, a decision problem Π is said to belong to the class co-NP (in-
formally) if: For any instance I of Π whose answer is "no" (i.e I ∈ DΠ\YΠ), there is
a succinct (or guess) which confirms that this is so, and can be verified in "polyno-
mial" time. Following is an example of a problem which is both NP and co-NP, but
note that decision problems need not always be both.

92 Graph theory and its applications

Consider the problem of determining whether a graph is bipartite, call it Π1. Clearly,
an instance of such a problem is a graph G, and the yes-no question which needs to
be solved is to determine if G is bipartite or not. We have:

1. Π1 ∈ NP. In fact, a bipartition of G constitutes the succinct in this case: Given
a bipartition (X,Y) of a bipartite graph G (i.e the answer is "yes" for G), it is
easy to check (in polynomial time) if each edge of G has one end in X and one
end in Y . If so, then we can answer yes; otherwise, a new guess is constructed
which is also checked in turn.

2. Π1 ∈ co-NP. In this case, the succinct or the guess is an odd cycle: since every
non-bipartite graph contains an odd cycle, then given a cycle of a non-bipartite
graph G (i.e an instance whose answer is "no"), one can easily check its length
in polynomial time. If the length is odd, then we have the "no" answer. Oth-
erwise, a new cycle in G is selected.

One can draw the following relationship between P, NP and co-NP written as: P ⊆
NP ∩ co-NP. In fact, if Π is a decision problem in the class P and M is a polynomial
time deterministic algorithm for Π, we can obtain a polynomial time nondetermin-
istic algorithm for Π merely by using M as the checking stage and ignoring the
succinct (guessing stage).

Note that if a decision problem Π belongs to NP (or co-NP), this means that no one
was able so far to find a polynomial time algorithm for Π and that only nondetermin-
istic polynomial algorithms were successfully constructed. Probably, a polynomial
time algorithm could be found one day for such a problem, as there is no proof
yet that it doesn’t exist. From this viewpoint rises one of the most fundamental
open questions in all of mathematics, the Cook-Edmond-Levin conjecture: P 6= NP.
If P differs from NP, then the distinction between P and NP-P is meaningful and
important. In this context, we will provide right next a characterization for the
hardest intractable problems in NP-P, called NP-complete problems. But first, we
will introduce a necessary common approach of problem-solving which describes a
polynomial transformation from a problem to another.

2.5.2.2 Polynomial transformation

A polynomial transformation from a decision problem Π1 to a decision problem Π2,
denoted as Π1 ∝ Π2, is a function f : DΠ1 → DΠ2 that satisfies the two conditions:

1. f is computable by a polynomial time algorithm.

2. f transforms an instance I of Π1 to an instance f(I) in Π2 such that the answer
corresponding to I with respect to Π1 is yes if and only if the answer corre-
sponding to f(I) with respect to Π2 is yes (i.e I ∈ YΠ1 if and only if f(I) ∈ YΠ2).

Here is an example to obtain a more concrete idea of what this definition means.
Consider the Hamiltonian cycle (HC) problem stated as follows:

2.5 The theory of complexity 93

INSTANCE A graph G = (V,E).

STATEMENT Does G contain a Hamiltonian cycle?

We shall show that HC ∝ TSP. The function f is defined quite simply. Let a graph
G = (V,E) of order m be an instance of HC. The corresponding instance of TSP is
defined by f as follows:

• The vertices of G constitute the set of cities C.

• Any vertex is the starting point, say vertex v1.

• For any two cities vi, vj ∈ C, set d(vi, vj) = 0 if {vi, vj} ∈ E, and 1 otherwise.

• The bound B is equal to 0.

In an informal sense and away from the turing machine’s computation, it’s easy to
see that this transformation f can be computed by a polynomial time algorithm since
for each of the m(m− 1)/2 distances d(vi, vj) that must be specified, it’s necessary
to examine G to see whether or not {vi, vj} is an edge in E. Thus the first condition
is satisfied.
For the second property, we need to prove that G contains a Hamiltonian cycle ⇔
f(G) admits a tour of all the cities which has length no more than B = 0. First,
suppose that v1v2 · · · vm is a Hamiltonian cycle of G. Then < v1, v2, · · · , vm > is also
the desired ordering of f(G) which has total length no more than 0, because each
intercity distance traveled in the ordering corresponds to an edge of G and hence has
weight 0. Conversely, suppose that < v1, v2, · · · , vm > is an ordering of all the cities
in f(G) with total length no more than B. The fact that B = 0 implies that each
pair of successively visited cities must be exactly distance 0 apart. By the definition
of f(G), it follows that {vi, vi+1} (1 ≤ i < m), and {vm, v1} are all edges of G and
hence v1v2 · · · vm forms a Hamiltonian cycle of G.

The significance of polynomial transformation comes from the fact that if Π1 ∝ Π2,
then a polynomial time algorithm for solving Π2 can be converted into a polynomial
time algorithm for solving Π1, stated as the following lemma:

Lemma 1. if Π1 ∝ Π2, then Π2 ∈ P implies Π1 ∈ P.

Proof. see [63, 61]

Consequently and since HC ∝ TSP, we can deduce that if TSP can be solved in
polynomial time, then so can be HC and if HC is intractable, then so is TSP. Thus
Π1 ∝ Π2 means that Π2 is "at least as hard" as Π1.
Note that the "polynomial transformability" relation "∝" is reflexive. Indeed, it’s
especially useful because it’s proved to be a transitive relation [63, 61]. This means
that if Π1 ∝ Π2 and Π2 ∝ Π3, then Π1 ∝ Π3.

Two decision problems Π1 and Π2 are said to be polynomially equivalent if Π1 ∝ Π2

and Π2 ∝ Π1. In fact, the class P forms an equivalence class under this order and can
be viewed as consisting of the computationally "easiest" problems. On the contrary,
the class of NP-complete problems, denoted by NPC, forms another such equivalence
class, distinguished by the property that it contains the "hardest" decision problems
in NP. In the next part, we will introduce the class of NP-complete problem in some
more details.

94 Graph theory and its applications

2.5.2.3 NP-complete problems

Definition 3. A decision problem Π is said to be NP-complete if:

• Π ∈ NP.

• ∀ Π′ ∈ NP, Π′ ∝ Π.

Lemma 1 leads to specify the NP-complete problems as the "hardest problems in
NP". If any NP-complete problem can be solved in polynomial time, then all prob-
lems in NP can be analogously solved. Indeed, if any problem in NP is intractable
(i.e no polynomial time algorithm can ever be found for this problem), then so are
all NP-complete problems. An NP-complete problem Π has therefore the property
that if P 6= NP, then Π ∈ NP-P or alternatively Π ∈ P if and only if P = NP.

These requirements we have just described are rather too demanding to prove that a
problem Π is NP-complete. One must show that every problem in NP transforms to
Π which doesn’t seem at all to be a feasible way of proof. However, if one possesses
just one problem that is known to be NP-complete, an immediate consequence of
the just stated definition and the transitivity of ∝ can be deduced to prove that a
problem Π is NP-complete, in the following manner:

1. Π ∈ NP.

2. ∃ Π′ ∈ NPC, such that Π′ ∝ Π.

Note that a decision problem is said to be NP-hard if it satisfies only the second
property, i.e it differs from NP-complete problems by just the fact that it doesn’t
need to be an NP problem. Hence, all NP-complete problems are also NP-hard.

Thus, we still need some first NP-complete. This honor goes to the "Satisfiability"
problem, for short SAT, which is defined as follows: Let P be a set of n Boolean
variables. A truth assignment for P is a function t : P → {T, F}, which assigns
either the value true or false for each Boolean variable in P . A clause L is of the
form: p1 ∨ p2 ∨ · · · ∨ pr ← pr+1 ∧ pr+2 ∧ · · · ∧ pq where pi ∈ P for all i = 1, · · · , q.
This clause is true if at least one of the variables p1, · · · , pr is true when all the
variables pr+1, · · · , pq are true, and it’s false otherwise (i.e p1, · · · , pr are all false,
and pr+1, · · · , pq are all true). Clause L can be alternatively expressed in a disjunctive
form as p1 ∨ p2 ∨ · · · ∨ pr ∨¬pr+1 ∨¬pr+2 ∨ · · · ∨ ¬pq. A collection U of clauses over
P is said to be satisfiable if and only if there exists a truth assignment for P which
makes all the clauses in U true; otherwise, it is unsatisfiable. The decision problem
version of satisfiability is:

INSTANCE A set P of n Boolean variables, and a set U of m clauses over P .

STATEMENT Is there a satisfying truth assignment for U?

Theorem 9. SAT is NP-complete.

2.6 Graph theory applications 95

Proof. It’s easy to see that SAT ∈ NP. A polynomial nondeterministic algorithm
for it needs only guess a truth assignment for P and verify to see whether that
assignment satisfies all the clauses in the collection C, which can be easily done in
polynomial time. The rest of the proof involves the notion of a Turing machine
(Cook 1971), which proof can be found in [101] or [63].

Starting from SAT and transforming one NP-complete problem to another, it has
been demonstrated that the previously presented problem HC is NP-complete [61,
63]. Since HC ∝ TSP (see 2.5.2.2), then we deduce that TSP is also an NP-complete
problem.

Many of the best algorithms (in terms of complexity) for solving intractable prob-
lem, the NP-complete problems for example, include a number of polynomial-order
sub-algorithms. However, they are inefficient because these sub-algorithms must be
used a number of times, where this number is of exponential order. An example of
such an algorithm can be found in [61], chapter 9.

Hence, most intractable problems are usually solved by rather using approximate
methods, called heuristics. A heuristic is a computational procedure based on the
simple rule that one should usually yield a good approximate solution to the problem
at hand rather than the best solution ever. One particularly simple and natural
class of heuristics is the class of greedy heuristics. This is a simple-minded strategy
of progressively building up a solution, one element at a time, by choosing the best
current option at each iteration without regard to future consequences. This means
that they make locally optimal choices, assuming optimal sub-solutions are always
part of the globally optimal solution [72]. If this was the case, the procedure is
called greedy algorithm. You will find examples of such an approach and others in
the next section, in which we will exhibit several major graph theory applications.
We will present various problems which were modeled either as graphs, digraphs,
hypergraphs or directed hypergraphs. Indeed, we will provide the attained results
on the complexity of each of these problems and accordingly, present their associated
proposed algorithms and possible solutions (if any).

2.6 Graph theory applications

In this section, we will first start presenting some problems related to graphs and
digraphs, and then move to others which were modeled as either hypergraphs or
directed hypergraphs.

2.6.1 Graph and digraph problems

Traveling Salesman Problem (TSP) [71] This is the most famous "optimiza-
tion problem". It’s a problem closely related to the question of Hamiltonian
cycles stated again as follows: a salesman wants to travel a set of cities during
the trip. Given the distances between the cities, in what order should he travel

96 Graph theory and its applications

so as to visit every city precisely once and returns to the starting point, with
the minimum total distance?
This problem can be formulated as a graph theoretic model by a complete
weighted graph (Kn, w), devised with vertices, edges and weights representing
the cities, the roads between them, and a real number weight (say the distance
in miles) respectively. The question is to find a Hamiltonian cycle C in Kn s.t
w(C) is minimum.

It’s clear that there are (n − 1)! cycles in Kn from a specific starting point.
More precisely, we can only consider (n− 1)!/2 cycles, since the same distance
can be traveled in a reverse order.
The straight forward way to solve an instance of TSP is to examine all the
(n− 1)!/2 possible Hamiltonian cycles and then select the one which has min-
imum weight. However, finding such a cycle usually involves great labor when
the number of vertices is large; for instance, for n = 25, a total of 24!/2 (approx-
imately 3.1 × 1023) different Hamiltonian cycles would have to be considered
and if it just takes one nanosecond (10−9 seconds) to examine each, a total
of ten million years would be required to find the desired cycle by exhaustive
search technique. Thus, several heuristic methods of solution were proposed in-
stead that give a route very close to the shortest one, but do not guarantee the
shortest (see [73, 82]). The simplest and most obvious construction heuristic is
the nearest neighbor. The nearest neighbor is a greedy algorithm which builds
a cycle by always choosing as the next vertex to visit, one that is nearest to the
last one visited.

Depth-First Search (DFS) and Breadth-First Search (BFS) [62] These are
the
two most important search methods which methodologically explore the edges
of a given graph (resp. digraph) such that every edge (resp. arc) and each ver-
tex is visited at least once. It’s evident that almost any graph question requires
examination of every edge (and in the process every vertex) at least once. For
example, before declaring a graph G to be disconnected we must have visited
every edge in G for otherwise, it might happen that the one ignored edge could
have made the graph connected.
DFS and BFS trace each connected component of a graph or digraph G. Both
search techniques run in polynomial time. They search respectively the edges
of a graph as they move from one vertex to another as follows:

• BFS methodology: once at vertex v of G, examine all the edges (or arcs)
incident with v and then pass to another vertex of G which is adjacent to
v.

• DFS methodology: once at vertex v of G, scan a single edge (or arc) incident
with v (which possibly still has unscanned edges) and then pass to the other
vertex in G which is incident with this edge (or arc).

DFS is sometimes also called backtracking. This is because if it falls at a vertex
v where at least one of its neighbors exists such that it is not yet examined by
this technique, then it passes to one of these neighbors. If not, it backtracks to

2.6 Graph theory applications 97

the vertex which was just examined before v and again checks its neighbors,
and so on. DFS is studied in some depth by Tarjan in [77].

The BFS approach is the archetype for many important graph algorithms, in-
cluding Prim’s minimum-spanning-tree and Dijkstra’s single-source-shortest-
path algorithms (introduced later in this section) etc · · · . DFS appears also to
be a useful approach, for example to check connectivity in graphs, isomorphism,
planarity etc · · · . See [61] for further information.

Minimum Spanning Tree (MST) A railway network connecting a number of
cities is to be set up with the objective of making it possible to travel by
some path between every pair of cities. Given the cost of construction wij of
linking cities vi and vj , the connector problem involves designing the network
with the minimum possible construction cost. The problem can be formu-
lated as a graph theoretic model in which a weighted graph G is devised with
vertices, edges, and weights representing cities, feasible connections, and con-
struction costs respectively. The connector problem is equivalent to finding a
minimum weight spanning tree of G [61], which problem is described right next.

The MST problem amounts to finding, in a weighted connected graph G, a
connected spanning subgraph of minimum weight. If the weights are positive,
this subgraph will be a spanning tree [62] (Note that a spanning tree T is a
minimal connected spanning subgraph of a graph G, because every edge which
remains in T is a cut edge). Thus, MST is stated as follows:
Given: a weighted connected graph G,
Find: a minimum-weight spanning tree T in G.

Several methods were proposed to solve the MST problem, both by hand and
by computer. We will briefly present the two most famous polynomial time
algorithms, namely Kruskal [74] and Prim [75] algorithms. Although they are
both greedy algorithms and are thus not supposed to guarantee finding globally
optimal solutions, but however, it has been proved that in fact they do yield a
spanning tree with minimum weight [62, 71].
These two algorithms exploit two different ways to form a desired minimum
spanning tree. In Kruskal’s algorithm, all the edges of the graph G are listed
in order of nondecreasing weight. At each successive step, it selects (from the
remaining unselected edges of G) the smallest weight edge that makes no cycle
with the previously selected edges, up until n − 1 edges have been selected,
which will constitute the desired minimum-weight spanning tree. As for Prim’s
algorithm, the tree starts from a certain specified vertex of the graph G to
which is added, in a successive manner, a least-weight edge (not previously
added) connecting the so far attained tree to a vertex not in the tree.

Minimal spanning tree has been found quite useful in providing a lower bound
on the length of the traveling salesman’s route in [76].

Shortest path problem A shortest-path tree T in a graph G (resp. digraph) is
a tree (resp. out-branching), rooted at a vertex s (resp. with source s), that

98 Graph theory and its applications

contains all the vertices in G which are reachable from s [82]. Indeed, T is
described such that the path in T from s to any vertex x in T is a shortest path
in G, i.e dG(s, x) = dT (s, x).
The BFS method is capable of finding shortest-path trees in graphs (it might
also build a forest in case the graph was disconnected). Similarly, directed BFS
is a straightforward analog of BFS for finding shortest-path trees in digraphs
[62]. Both methods require polynomial time of execution.

Now we’ll move to the weighted version of the shortest-path problem [71]. Let
(G,w) be a weighted graph or digraph. There are different types of shortest-
path problems. Most frequently encountered include (i.) shortest path between
two specified vertices (ii.) shortest paths from a specific vertex to all others
(iii.) shortest paths between all pairs of vertices, just to mention some. A good
comparative study of various shortest-path algorithms through the year 1968
can be found in [79].
Among several algorithms that were proposed for the shortest path between a
specified pair of vertices, the most efficient one is an algorithm due to Dijkstra
introduced in [78, 71], whose computation time is proportional to (|V (G)|)2.
An algorithm (by Dijkstra as well) solves the shortest path problem from a
specific vertex to all others but assumes that all edge (resp. arc) weights in
the input graph (resp. digraph) are nonnegative. Others, such as the Bellman-
Ford algorithm, allow negative-weight edges (resp. arcs) and hence cycles (resp.
circuits) of negative weight in the input graph (resp. digraph) [62]. Both algo-
rithms run in polynomial time but Dijkstra’s algorithm is faster than that of
Bellman-ford.
Sometimes one is interested in finding the shortest paths between all n(n− 1)
ordered pairs of vertices in a digraph (or n(n − 1)/2 unordered pairs of ver-
tices in a graph). The two polynomial algorithms considered to be the best for
such a problem include one which is due to Dantzig [80] (which allows negative
edge weights) and another due to Floyd [81, 71] (which doesn’t allow cycles of
negative weight). Both algorithms require computation time proportional to
(|V (G)|)3.
In almost all these cases, the presented algorithms generate rooted minimum-
weight trees (or out-branchings) also can be called shortest-path trees.

Many real-world problems can be modeled as shortest path problems. For
instance, one might wish to determine a shortest route between two specified
locations in a city. This amounts to finding a path (resp. directed path) of
minimum weight connecting two specified vertices in a weighted graph (resp.
digraph), whose vertices are the road junctions and whose edges (resp. arcs)
are the roads linking these junctions.

Graph coloring problem This problem is stated as follows: Given a graph G =
(V,E), find a function f : V → {1, 2, · · · , k} such that f(u) 6= f(v) whenever
{u, v} ∈ E and such that k is as small as possible. This problem is proved
to be an NP-hard problem (see for example [63]). However, several efficient
variants of greedy heuristic coloring algorithms were proposed. We mention

2.6 Graph theory applications 99

the "one-pass" method, in which one runs through the vertices in order and
always assigns the smallest possible color. As for the "many-passes" method, it
runs through the vertices assigning color 1 whenever possible, then repeat with
color 2 and so on. Both methods can verify that χ(G) ≤ ∆(G) + 1 [83].

Channel assignment problem This is a telecommunication problem which
can be reduced in some particular cases to the graph coloring problem. The
radio channel assignment problem is the final stage in the design of a cel-
lular radio communication system, described as follows: The service region
is divided into cells around each transmitter (or base station). Channels
are assigned to the different cells, in which the same radio channel can be
used simultaneously in many cells, as long as they are sufficiently well sep-
arated to avoid interference. Since the radio spectrum is a finite resource
which is heavily in demand, the question is to assign the channels to the
transmitters carefully in order to take maximum advantage of this re-use
possibility. Thus, the aim is to find an assignment of channels to the dif-
ferent transmitters such that the corresponding interference is acceptable,
while using the minimum number of channels possible. Interference can be
viewed as the difference between two channels; the smaller the difference,
the greater the interference. For each pair u, v of distinct transmitters,
there is a set Tuv of forbidden differences |i − j| for channel i at u and
channel j at v. The minimum distance for which interference is considered
to be acceptable between transmitters u and v is denoted by muv.

This problem can be theoretically modeled as a weighted graph G. It as-
signs a vertex for each transmitter and distinct vertices u and v are adjacent
if Tuv is a non-empty set; the weight assigned to each uv edge is muv. If
the interference increases with the proximity between two channels, then ∀
e ∈ E(G), Te is of the form {0, 1, · · · ,me − 1}.
A channel assignment is a mapping φ : V (G)→ {1, · · · , t}. It’s said to be
a feasible assignment if |φ(u)−φ(v)| ≥ muv for every uv edge. The span of
the problem, denoted by span(G,m), is the least integer t such that there
is a feasible channel assignment. For example, if G is the triangle K3 with
each edge of weight 3, then the span is 7. The assignment problem states to
determine or approximate the span, and to find corresponding assignments.

It has been noted that when the weights assigned to all the edges e of G
are the same, the problem is almost back to coloring [83]. In particular,
if muv = 1 ∀ e ∈ E(G), then span(G,m) (also denoted by span(G,1))
equals the chromatic number χ(G). Thus, this special case returns exactly
to the graph coloring problem, which is NP-hard as indicated before. Con-
sequently, we can not expect an easy ride to solve the assignment problem,
since the general case is harder than graph coloring. A general exponential
algorithm for the channel assignment problem was proposed in [84]. How-
ever, determining the span and finding an associated assignment is proved
to be easy in some particular cases, i.e when the graph is bipartite or an
odd cycle [83].

100 Graph theory and its applications

2.6.2 Hypergraph and directed hypergraph problems

An application of proper coloring for mixed hypergraphs [67] For cellular
telephones, each zone is assigned a certain frequency selected from a specific list
of frequencies associated to the zone. If two zones interfere, they can’t use the
same frequency at any time. Suppose we have n zones z1, z2, · · · , zn and n lists
of frequencies L1, L2, · · ·Ln for the n zones respectively. First, begin by con-
structing a graph G with n vertices z1, z2, · · · , zn and in which two vertices are
adjacent if the respective zones interfere. Now, the problem is formulated as fol-
lows: In which ways can the vertices of G be colored such that adjacent vertices
have different colors and each vertex is assigned a color from its list? To lose am-
biguity, colors are named the same way as the existing frequencies. Such graph
coloring is called the list coloring. Now in turn, this list coloring problem can be
reformulated in terms of the proper coloring of a mixed hypergraph H, defined
as follows: the set of vertices V (H) include the n zones together with all the al-
lowed frequencies in the n zones (i.e V (H) = {z1, z2, · · · , zn}∪L1∪L2∪· · ·∪Ln).
The D-hyperedges of H include all edges of G, plus all edges (i.e two-element
subset hyperedges) forming a complete graph on the vertices L1∪L2∪ · · ·∪Ln.
As for the C-hyperedges, they include hyperedges of the form {zi} ∪ Li, ∀
i = 1, · · ·n.

One can easily see that G admits at least one list coloring if and only if the
associated mixed hypergraph H admits a proper coloring. In fact, since each
D-hyperedge must have at least two vertices of different colors and since the
D-hyperedges on L1∪L2∪· · ·∪Ln form a complete graph, then this means that
no two vertices in this complete graph will be assigned the same color. More-
over, since every C-hyperedge must have at least two vertices of the same color,
then each zi vertex will be obligatory assigned one color (i.e one frequency)
already assigned to one vertex in the list Li. Finally, the edges of G which
are D-hyperedges in H guarantee that no two interfering zones have the same
color.
A greedy algorithm has been presented concerning the colorability of mixed
hypergraphs and some work was done on special cases of colorable and uncol-
orable ones in [66].

Note that this problem is a particular case of the lately described channel as-
signment problem, in which a certain list of channels (or frequencies) is assigned
to each cell (or zone) representing the channels that are allowed to be used in the
cell, and where the interference between two cells, when it exists, only occurs
if they are assigned the same channel (i.e at distance zero).

Directed hypergraph problems and some of their applications First, some
problems related to visiting a directed hypergraph starting from an origin node
r were worked out in [69]. By visiting it’s meant finding all the nodes which
are connected (resp. B-connected) to r. The algorithm Visit (resp. B-Visit)
finds all such nodes and returns a set of paths connecting (resp. B-connecting)
them to r. These paths developped by this algorithm define what’s called a tree

2.6 Graph theory applications 101

(resp. B-tree) rooted at r. Both Visit and B-Visit run in linear time.
Next, we will highlight the problem of finding minimum weight B-paths in a
weighted directed hypergraph. For this, we will need to introduce some new
aspects.

Let (H,w) be a weighted directed hypergraph and let Π = (VΠ, EΠ) be a B-
path B-connecting vertex t to vertex s in V (H). A weighting function of Π is
a node function WΠ which assigns weights to all its nodes depending on the
weights of its hyperarcs. WΠ(t) represents the weight of the B-path Π under the
chosen weighting function. Usually, the weighting functions are defined such
that WΠ(s) = 0 and WΠ(y) depends only on the hyperarcs preceding y in the
B-path Π, ∀ y 6= s. A typical example of this kind of weighting functions is
the Cost, CΠ, defined as the sum of the weights of all the hyperarcs preceding
node y in Π, i.e CΠ(s) = 0 and CΠ(y) =

∑

E∈EΠsy
w(E) for y ∈ VΠ\{s}, where

Πsy is the B-path in Π B-connecting y to s (note that CΠ(t) =
∑

E∈EΠ
w(E)

is the cost of Π). A special class of such weighting functions, called additive
weighting functions, is defined such that the weight of node y can be written as
a function of both the weights of the hyperarcs entering into y and that of the
nodes in their tails, i.e:

• WΠ(y) = min{w(E) + F ({WΠ(x) : x ∈ T (E)}) : E ∈ EΠ ∩ BS(y)},
y ∈ VΠ\{s},

where F is a non-decreasing function of WΠ(x) for each x ∈ T (E).

Unfortunately, at least in general, the problem of finding a minimum weight B-
path in a weighted directed hypergraph is NP-hard because Italiano and Nanni
[85] showed that the particular problem of finding minimum cardinality B-paths
in a B-graph is NP-hard. Nevertheless, many particular cases exist for which
the problem is easy to solve. One example is when the weighting functions are
additive, for instance see [86]. We will exhibit right next one example of such
a case, presented in [69].

An algorithm, called Shortest B-Tree SBT, solves the problem of finding a set of
minimum weight B-paths from origin r to all the nodes y which are B-connected
to r, which is related to the problem of finding a solution to the Generalized
Bellman’s Equations (defining an additive weighting function) written as:

W (r) = 0

W (y) = min{w(E) + F ({W (x) : x ∈ T (E)}) : E ∈ BS(y)} y 6= r
(2.1)

This is in fact a generalization of the well known shortest path tree problem
in weighted digraphs. Procedure SBT finds a solution of 2.1 and returns what
is called a minimum weight B-tree rooted at r. If y is not B-connected to r,
SBT returns W (y) = +∞. SBT runs in polynomial time in all of its 3 variants
discussed in [69].

Several directed hypergraph applications naturally arise. We will briefly men-
tion some of them:

102 Graph theory and its applications

Satisfiability To a given instance Π ∈ SAT one can associate the directed
hypergraph HΠ, with one node for each element in the set P of Boolean
variables and one hyperarc E with H(E) = {p1, p2, · · · , pr} and T (E) =
{pr+1, pr+2, · · · , pq} for each clause p1∨p2∨· · ·∨pr ← pr+1∧pr+2∧· · ·∧pq.
A theorem proved in [69] gives a characterization of a satisfiable instance
Π of SAT related to cuts of the associated directed hypergraph HΠ. Recall
that SAT is an NP-complete problem.

A particularly important case is when a clause is such that r ≤ 1, i.e the
clause is of the form p1 ← p2 ∧ p3 ∧ · · · ∧ pq. Such clause is called a Horn
clause. HORN-SAT is a particular case of SAT problem, in which all the
clauses of its instances are Horn clauses. Clearly from the definition, if
Π ∈ HORN − SAT then HΠ is a B-graph. This particular satisfiability
HORN-SAT problem is polynomial since it can be solved in linear time
[91, 92]. Indeed, HORN-SAT is shown to be equivalent to the problem of
finding a B-path in a B-graph in [69]. Then, B-Visit can solve any instance
of HORN-SAT in linear time which was another way to prove that HORN-
SAT can be easily solved.

Relational data bases A substantial amount of research has been devoted to
the analysis of relational data bases some of which directed hypergraphs
provided a natural and unifying formalism [69, 94, 95, 96].

Urban transit application The analysis of passenger distribution in an ur-
ban transit system was shown to be an interesting application of F-graphs
in [97, 98].

2.7 Conclusions

In this chapter, we have introduced two major theories: graph theory and the theory
of complexity. Both theories render importance to our work; the first in order to
supply a theoretical graphical modeling to the problem of designing an optimal SDR
multi-standard system, and the second to explore and estimate the complexity of
the problem we’re dealing with. This will form a new application of graph theory
to our stated telecommunication problem, where our final objective is to find new
appropriate theoretical tools capable of solving it. All these topics will be examined
and detailed in the subsequent chapters.

Chapter 3

A theoretical study of the problem

related to SDR multi-standard

systems

Contents

3.1 A formal model for different aspects of the SDR multi-
standard terminal . 104

3.1.1 A mathematical model of the graph structure of the SDR

multi-standard system . 104

3.1.2 A representation of one option of implementation 107

3.1.3 Describing the Multi-Standard Directed Hypergraph from

Mono-Standard Directed Hypergraphs 108

3.1.4 A formal cost function equation 111

3.2 An upper bound for the number of options of imple-
mentation . 114

3.2.1 The computational cost vector Xv 114

3.2.1.1 Example . 116

3.2.1.2 Generalization 116

3.2.2 An upper bound for |Xv| 117

3.3 Complexity of our optimization problem 119

3.4 Conclusions . 123

In chapter one, we have introduced a graphical approach of the SDR multi-standard
system which provides a pictorial view of all the options capable of implementing the
multi-standard design, as well as presented a cost function equation which calculates
the cost of any selected alternative of implementation. However, in this chapter,
we will model all these aspects and others theoretically using graph theory or more
precisely, using directed hypergraphs. This will constitute the first section of this
chapter.
Our aim is to help extract the most suitable COs inside and between the standards,
which guarantee the best trade-off between flexibility and efficiency. This can be
done by optimizing the proposed cost function in order to find the option that has

103

104 A theoretical study of the problem related to SDR multi-standard systems

a minimum cost. This optimization problem was tackled previously by other PhD
students but its complexity was neither examined nor studied. Thus in the second
section of the present chapter, we perform an exploration of the total number of
options that are capable of implementing the multi-standard system, which will rep-
resent an inspiration for the difficulty of the problem we’re dealing with. Afterwards
in the third section, we study the complexity of our optimization problem. In fact,
we prove that the decision problem version of this optimization problem is an NP-
problem under a certain specified constraint. Finally, a conclusion’s section ends this
chapter.

3.1 A formal model for different aspects of the SDR
multi-standard terminal

In this section, we will present various theoretical aspects related to the SDR multi-
standard design. More precisely, we first model the graph structure of the SDR
multi-standard system (explained in chapter one) as a directed hypergraph, and
then present a suggestion for a graphical representation of any selected option of
implementation. Afterwards, we provide an explanation of the theoretical multi-
standard graphical illustration which actually results from the theoretical graphical
break-down of each of the supported standards separately. Finally, we derive an
alternative formal theoretical expression of the proposed cost function (presented
in chapter one) as function of various definitions and notations concerning directed
hypergraphs.

3.1.1 A mathematical model of the graph structure of the SDR

multi-standard system

Fig. 3.1 (previously introduced in chapter one), which represents the graph structure
of the multi-standard system supporting S & T , is reconsidered here on which we
additionally associate numerical values to some nodes which represent the BC/CC
of the node, and others associated with the BF-reductions standing for the NoCs.
All the blocks and arcs in the figure are associated with these numerical parameter
values but only some of them are indicated in Fig. 3.1 for simplicity reasons. Note
that these numerical values are arbitrarily chosen and follow a certain logic on rela-
tionships between BCs and CCs of higher to lower hierarchy blocks (as explained in
chapter 1).

The graph structure of the theoretical approach of parametrization presented in
chapter 1 can be given a formal approach. Formally speaking, the graph struc-
ture of a multi-standard system can be theoretically modeled as a directed hy-
pergraph H defined by the couple (V,E), where the set of vertices V includes
the blocks (functions and operators) present in the graph structure (example V =
{S, T,A1, A2, A3, B1, · · · , D4, D5} in the graph structure of Fig. 3.1). As for the
set of hyperarcs E, it is formed such that a directed hyperedge e ∈ E includes a
parent node as the only tail node while all the necessary descendent node(s) capable

3.1 A formal model for different aspects of the SDR multi-standard terminal 105

Figure 3.1: Global structure of a multi-standard system showing the break-down of stan-
dards S and T up to 4 lower levels

of performing this parent’s node task constitute the head node(s) of e. This means
that whenever we have an "AND" dependency, the corresponding hyperarc is formed
such that the parent node constitutes the tail node while all the descendent nodes
via this "AND" dependency form its head nodes. Whereas when faced with an "OR"
dependency, the hyperarc will as well have the parent node as the only tail node,
while only one of its descendent nodes (if more than one exists) via the corresponding
"OR" dependency will constitute the hyperarc’s head node. In this way, we form
the set of hyperarcs E including all the "OR" and "AND" dependencies present
in the corresponding graph structure. For instance, we have ({S}, {A1, A2, A3}),
({B4}, {C2}), ({B4}, {C3}), ({A2}, {B1}), ({A2}, {B2, B3}), · · · etc belong to the
set of hyperarcs E of the directed hypergraph of Fig. 3.1.
Remark that this directed hypergraph representation of the multi-standard system
is in fact an F-graph since each hyperarc contains only one tail node which is the
parent node.

Some numerical values are indeed associated with different entities of such a directed
hypergraph representation H = (V,E). There are the BC and CC parameters asso-
ciated with each vertex x ∈ V , and NoC associated with each BF-reduction of any
hyperarc e ∈ E, called an arc of e. We’ll refer to these positive values as weights
associated with the nodes and the arcs of H. However, note that H doesn’t corre-
spond to a weighted directed hypergraph because the weights are associated with
the arcs instead of the hyperarcs of the directed hypergraph, and indeed weights are
associated with the nodes (check the definition of weighted directed hypergraphs in
chapter 2).

Each PE included in the graph structure of a multi-standard system (represented as
an F-graph H) occupies a certain absolute level. The following is a small remark
on the level assignment of each PE. Suppose that we’re decomposing the supported

106 A theoretical study of the problem related to SDR multi-standard systems

standards up to n − 1 different lower levels (thus as a whole, we’ll have a total of
n levels including the top level standards). The level of a block v in the directed
hypergraph representation of a multi-standard system, denoted by L(v), is defined
by:

L(v) = n− max
x/d−

H
(x)=0

(max
P : xC−path

(l(P))), (3.1)

where l(P) stands for the length of the path P .

As an example, we will identify the level of the "C1" block in Fig. 3.1, where we
have n = 5 levels in this figure (because the decomposition is up to 4 = n− 1 lower
levels break-down of the supported standards S and T). The level of the "C1" block
is equal to 2 because:
We choose a block x whose in-degree is zero (which stands for one of the top level
standard blocks), say we select S. Then find the maximum length among all the
paths from S to C1. In this case we only have one (passing through A2 & B2),
whose length is 3. Select another block x of in-degree zero (the remaining block to
choose is T) and again find the maximum length among all paths from T to C1, in
which case we have no such path. Finally the maximum length of all these paths
will be 3, and so L(C1) = 5 − 3 = 2 according to the definition of equation 3.1.
The level of each block in Fig. 3.1 is identified on the right side of the figure.

For all what follows, we’ll write an xy-path to mean (x, y)-path which is a directed
path from x to y in a directed hypergraph H. Moreover, we’ll denote ℑ by the set
of the top level standards in the multi-standard system. So, ℑ = {S, T} in the case
of Fig. 3.1.

The graph structure of the multi-standard system supplies us with all the options
that can implement the design. Next, we are going to explain how any one of these
options of implementation can be graphically illustrated. But before, we will in-
troduce several necessary definitions for the rest of our work concerning directed
hypergraphs.

Definition 4. Weight of a path
Let P = Prn = (v1 = r, ei1 , v2, ei2 , v3, · · · , eiq , vq+1 = n) be an rn-path and let
eij ∈ E(P). We’ll define the BF-reduction of eij via the path P by its particular
BF-reduction obtained by selecting the predecessor vertex to eij in the path P as
its specific tail node and the successor vertex to eij in P as its head node. Denote
BFP (eij) by this BF-reduction of eij via P . Then according to the definition, we
get: BFP (eij) = ({vj}, {vj+1}), j = 1, 2, · · · , q.
Suppose that we have a directed hypergraph H = (V (H), E(H)) in which a positive
integer weight is assigned to every BF-reduction of any hyperarc in E(H). For every
P a path from r to n, we’ll denote the weight of P by the product of the weights of
the BF-reductions via P of all the hyperarcs in E(P). So we can write:

3.1 A formal model for different aspects of the SDR multi-standard terminal 107

w(P) =
∏

eij∈E(P)

w(BFP (eij)), (3.2)

where w(P) denotes the weight of the path P and w(BFP (eij)) stands for the weight
of BFP (eij) in H.

For example, the weight of the only path from S to C1 in Fig. 3.1 (passing through
A2 and B2) is w({S}, {A2})× w({A2}, {B2})× w({B2}, {C1}) = 7× 2× 5 = 70.

Definition 5. Hyperarc addition
Let X be a subdirected-hypergraph of a directed hypergraph H s.t E(X) different
than E(H), and let e be a hyperarc in E(H) but not in E(X). By adding e to X
we obtain a subdirected-hypergraph X

′

of H, denoted by X + e, defined such that:

V (X
′

) = V (X) ∪ H(e) ∪ T (e) and E(X
′

) = E(X) ∪ {e}.
X + e is called a subdirected-hypergraph of H induced by X and e.

Definition 6. G-path
Let H be a directed hypergraph and N ⊆ V (H).
We say that a subdirected-hypergraph X is a G-path of H with root N if it satisfies:

1. d+X(u) ∈ {0, 1} ∀ u ∈ V (X)

2. N ⊆ V (X)

3. ∀ u ∈ V (X), ∃ a path from v to u for some v ∈ N

3.1.2 A representation of one option of implementation

Recall that a certain selected option is characterized by the chosen common oper-
ators to install inside the design. A pictorial view of a specific realized option of
implementation will be defined by a generated graph (GNG), which is a graphi-
cal illustration of one alternative capable of implementing the SDR multi-standard
system. It is obtained from the directed hypergraph representation of the graph
structure of a multi-standard system by plotting the node blocks chosen to install in
the design such that they have empty forward stars, along with all the operators that
they build, step by step, until we reach the functionalities of the top level standards.
Consequently, the out-degree of the common operators X which are chosen to be
installed in the terminal will be zero in the associated generated graph, while the
out-degree of the remaining operators that they build will be exactly one.

Fig. 3.2 shows the generated graphs (obtained from Fig. 3.1) of two different op-
tions of implementation capable of realizing S and T . In the first option, the chosen
operators are D2, D3, D4, C1,&B3 and the corresponding GNG is illustrated on the
left side of Fig. 3.2. As for the second option, the chosen operators to install inside
the design are D2, D3, D4, C1, B3&B4 and the GNG representation of this option

108 A theoretical study of the problem related to SDR multi-standard systems

is the one pictured on the right side of Fig. 3.2. We’ll explain how the first choice
is capable of implementing S and T technically. Blocks C1 and B3 are installed to
establish the functionality of block A2. Actually, we can get the B2 functionality
from the C1 block by calling it a certain number of times (5 times in our case),
and then calling this attained functionality of B2 many times (2 times), together
with block B3 (called 3 times), can perform some specific tasks similar to the ones
executed by block A2. In an analogous way, we see that blocks D2, D3 and D4 can
perform the tasks of A1 and A3 via the C2 and then the B4 functionalities, where
we have to multiply the computational costs of D2, D3, and D4 by the correspond-
ing number of calls. Finally, having realized the functionalities of A1, A2, and A3,
we can achieve the S block’s functionality by calling them a NoCs times (6, 7, &
8 times respectively). However, only the A3 functionality is required to realize the
functionalities of T . In a similar manner, one can deduce from the technical point
of view how the second choice is intended to implement the multi-standard system
supporting S and T .

The only difference between these two choices is that in the first, blocks D2, D3,&D4
are used to implement the functionalities of both A1&A3 passing through the C2&B4
blocks while in the second choice, D2, D3,&D4 are used to realize block A3 but the
B4 block to realize A1. The second case option represents an alternative in which
certain lower level blocks are installed in the design, together with higher level ones
which can be built by these of lower level (as B4 is installed in the design along
with D2, D3,&D4 which themselves can implement the functionalities of B4). You
can see that in the GNG of the second choice, B4 is duplicated. The first B4 is
installed in the design to achieve the functions of A1 (where FS(B4) = φ as you
can see in ⋆ on the right side of Fig. 3.2). The second B4 is built up by the in-
stalled D2, D3, & D4 blocks to perform the A3 functionality, in which case B4 is
uninstalled in the design so FS(B4) in not empty (see ⋆⋆ on the right side of Fig.
3.2).

However, notice that the GNG of the first option is a G-path with root ℑ while
that of the second is not. The generated graphs of options resembling to the sec-
ond choice always have a duplicated part, which contradicts to the illustration of a
subdirected-hypergraph and thus don’t correspond to G-paths. Consequently, the
options of implementation can be split into those whose generated graphs are G-
paths with root ℑ, and those in which duplication occurs in their generated graphs.

3.1.3 Describing the Multi-Standard Directed Hypergraph from

Mono-Standard Directed Hypergraphs

The graph representation of the multi-standard SDR system can be deduced from
those of the single standards. Theoretically, we can explain how we can plot the
directed hypergraph representation of the multi-standard system from the directed
hypergraphs representing the break-down of each of the supported standards sepa-
rately. We will use the following as an example to clarify things, in which we deduce

3.1 A formal model for different aspects of the SDR multi-standard terminal 109

Figure 3.2: The generated graphs (obtained from Fig. 3.1) of two different options of
implementation

the graph structure of the multi-standard system supporting both Wifi & UMTS,
from the graph structure of each of Wifi and UMTS alone.

A graphical representation related to each of the two standards Wifi and UMTS is
shown in figures 3.3 and 3.4 respectively. They are partial versions of the complete
figures with only few important building blocks from transmitter side only.

Figure 3.3: Global graphical structure for Wifi standard - transmitter side (up to 4 lower
levels break-down) with the labeling of the vertices.

110 A theoretical study of the problem related to SDR multi-standard systems

Figure 3.4: Global graphical structure for UMTS standard - transmitter side (up to 4
lower levels break-down) with the labeling of the vertices and the hyperarcs

Let T1 = (V (T1), E(T1)) be the directed hypergraph representing all the alternatives
to implement a single standard S1 (as an example let S1 be Wifi of Fig. 3.3) and
T2 = (V (T2), E(T2)) be the directed hypergraph that illustrates the different alter-
natives to implement another single standard S2 (let S2 be UMTS of Fig. 3.4 as an
example). Our objective is to represent graphically all the alternatives capable of
implementing the multi-standard terminal supporting both S1 and S2. Let T be this
directed hypergraph that illustrates the multi-standard implementation alternatives
supporting S1 and S2.

Most probably, there are some operators that can be used in the implementation of
both standards. Accordingly, most likely, ∃ V ⊆ V (T1) and ∃ U ⊆ V (T2) such that:

V = U in the operator’s sense

When we say "in the operator’s sense" this means by considering the elements of U
and V as functional operators and functions like FFT, adder, multiplier operators
etc.
For example, Convolutional Coder is an operator that can be used in the implemen-
tation of both standards Wifi and UMTS, it is vertex v3 in V (T1) (of Fig. 3.3) and
vertex u2 in V (T2) (of Fig. 3.4) so we write v3 = u2 in the operator’s sense.
Similarly we have: v4 = u3, v5 = u4, v7 = u7, v9 = u10, v12 = u11, v13 = u12,
v14 = u13 in the operator’s sense.
So we have:
V = {v3, v4, v5, v7, v9, v12, v13, v14}, & U = {u2, u3, u4, u7, u10, u11, u12, u13}.
and we write V = U in the operator’s sense.

3.1 A formal model for different aspects of the SDR multi-standard terminal 111

We define the function f : V −→ U such that
∀ v ∈ V f(v) = u⇔ v = u in the operator’s sense.
f is a bijective mapping.

Definition 7. Let e ∈ E(T2). Define the hyperarc e′ such that:

• ∀ r ∈ T (e) ∩ U(resp. r ∈ H(e) ∩ U), f−1(r) ∈ T (e
′

) (resp. f−1(r) ∈ H(e
′

))

• ∀ r ∈ T (e)\U (resp. r ∈ H(e)\U), r ∈ T (e
′

) (resp. r ∈ H(e
′

)).

For example, let’s find e
′

1 and e
′

2 for hyperarcs e1 and e2 of Fig. 3.4. According to
definition 7 we get:
e
′

1 = ({u1}, {v3, v4, v5, u5, u6}) & e
′

2 = ({v3}, {v9, v12})

In the multi-standard hypergraph T , the common operators (between V (T1) and
V (T2)) which are the elements in the sets U and V will only be introduced once, and
all hyperarcs in E(T1) and E(T2) which use a certain common operator will share it.
Consequently the directed hypergraph T will be defined by the couple (V (T), E(T))
such that:

• V (T) = V (T1) ∪ (V (T2)\U).

• E(T) = E(T1) ∪ {e
′

/e ∈ E(T2)}.

Fig. 3.5 represents the Wifi-UMTS multi-standard SDR directed hypergraph which
can be deduced from the recent definitions of V (T) and E(T).

Once T is defined and given a third directed hypergraph T3 that illustrates all the
alternatives that are able to implement a single standard S3, we can, in an analo-
gous way, draw a directed hypergraph T

′

which represents the different alternatives
capable of implementing all the three standards S1, S2 and S3.
Thus by induction, we can define a directed hypergraph for a multi-standard terminal
supporting any number of standards.

3.1.4 A formal cost function equation

Consider again the cost function introduced in chapter 1, which evaluates the cost
of any selected option of implementation, duplicated below:

CF = (
∑

i

BCi.Ni +
∑

n

∑

k

CCk((Sn)n∈{1,2··· ,N})) (3.3)

In this part, we are going to derive an alternative theoretical formal expression of
this cost function using definitions and notations of directed hypergraphs [88].

112 A theoretical study of the problem related to SDR multi-standard systems

Figure 3.5: Global structure of the graph for multi standards (supporting Wifi and UMTS)
- transmitter side (up to 4 lower levels break-down of the 2 standards) with the labeling
of the vertices and their levels on the right of the figure.

For all what follows, we will use the term weight to mean the NoCs associated to
any BF-reduction of a hyperarc in the directed hypergraph. This means that the
number of times block x calls block y (which will be a number attached on the BF-
reduction ({x}, {y}) of a certain hyperarc e) will be denoted by we(x, y). Sometimes
for simplicity, we write w(x, y) instead of we(x, y) when the hyperarc e is clear or if
it’s the only one which admits such a BF-reduction.

Consider again the first choice of implementation in 3.1.2 (choosing the operators
D2, D3,
D4, C1,&B3) to implement the standards S and T of Fig. 3.1, whose GNG is pic-
tured on the left side of Fig. 3.2. Then the cost of implementation via this choice
(according to equation 3.3) is calculated as follows:

Cost = (((CC(D2)×w(C2, D2)+CC(D3)×w(C2, D3)+CC(D4)×w(C2, D4))×
w(B4, C2))×w(A3, B4))×w(S,A3)+(((CC(D2)×w(C2, D2)+CC(D3)×w(C2, D3)+
CC(D4)×w(C2, D4))×w(B4, C2))×w(A1, B4))×w(S,A1)+((CC(C1)×w(B2, C1))×
w(A2, B2)+CC(B3)×w(A2, B3))×w(S,A2)+(((CC(D2)×w(C2, D2)+CC(D3)×
w(C2, D3)+CC(D4)×w(C2, D4))×w(B4, C2))×w(A3, B4))×w(T,A3)+BC(D2)+
BC(D3) +BC(D4) +BC(C1) +BC(B3)

= (((1×10+2×20+3×30)×4)×5)×8+(((1×10+2×20+3×30)×4)×4)×6+
((10×5)×2+11×3)×7+(((1×10+2×20+3×30)×4)×5)×3+10+5+6+100+150

3.1 A formal model for different aspects of the SDR multi-standard terminal 113

If we expand and factorize the above factors we’ll get:

= CC(D2) [w(C2, D2) × w(B4, C2) × w(A3, B4) × w(S,A3) + w(C2, D2) ×
w(B4, C2)×w(A1, B4)×w(S,A1)] + CC(D3) [w(C2, D3)×w(B4, C2)×w(A3, B4)×
w(S,A3) + w(C2, D3)×w(B4, C2)×w(A1, B4)×w(S,A1)] + CC(D4) [w(C2, D4)×
w(B4, C2) × w(A3, B4) × w(S,A3) + w(C2, D4) × w(B4, C2) × w(A1, B4) ×
w(S,A1)] +
CC(C1) [w(B2, C1)×w(A2, B2)×w(S,A2)] + CC(B3) [w(A2, B3)×w(S,A2)] +
CC(D2) [w(C2, D2)×w(B4, C2)×w(A3, B4)×w(T,A3)] + CC(D3) [w(C2, D3)×
w(B4, C2)×w(A3, B4)×w(T,A3)] + CC(D4) [w(C2, D4)×w(B4, C2)×w(A3, B4)×
w(T,A3)] +BC(D2) +BC(D3) +BC(D4) +BC(C1) +BC(B3)

= CC(D2) [
∑

P : SD2−path

w(P)] + CC(D3) [
∑

P : SD3−path

w(P)] + CC(D4)

[
∑

P : SD4−path

w(P)] + CC(C1) [
∑

P : SC1−path

w(P)] + CC(B3) [
∑

P : SB3−path

w(P)] +

CC(D2) [
∑

P : TD2−path

w(P)] + CC(D3) [
∑

P : TD3−path

w(P)] +

CC(D4) [
∑

P : TD4−path

w(P)] +BC(D2) +BC(D3) +BC(D4) +BC(C1) +BC(B3)

=
∑

P : SD2−path

CC(D2) × w(P) +
∑

P : SD3−path

CC(D3) × w(P) +
∑

P : SD4−path

CC(D4) × w(P) +
∑

P : SC1−path

CC(C1) × w(P) +
∑

P : SB3−path

CC(B3) × w(P)

+
∑

P : TD2−path

CC(D2) × w(P) +
∑

P : TD3−path

CC(D3) × w(P) +

∑

P : TD4−path

CC(D4) × w(P) + BC(D2)+BC(D3)+BC(D4)+BC(C1)+BC(B3)

=
∑

x/ d+
GNG

(x)=0

∑

P : Sx−path

CC(x) × w(P) +
∑

x/ d+
GNG

(x)=0

∑

P : Tx−path

CC(x) ×

w(P) +
∑

x/d+
GNG

(x)=0BC(x)
.

So generally, we can write the cost function (CF) as follows:

CF =
∑

y/d−
GNG

(y)=0

(
∑

x/d+
GNG

(x)=0

∑

P : yx−path

CC(x)× w(P)) +
∑

x/d+
GNG

(x)=0

BC(x)

(3.4)

where:

•
∑

x/d+
GNG

(x)=0

BC(x) represents the total sum of BCs of the blocks x such that

d+GNG(x) = 0, which stand for the installed blocks in the design.

114 A theoretical study of the problem related to SDR multi-standard systems

•
∑

P : yx−path

CC(x) × w(P) is the necessary CC imposed by the installed block

x responsible for realizing the standard y (y is a highest level block standard
since d−GNG(y) = 0).

•
∑

x/d+
GNG

(x)=0

∑

P : yx−path

CC(x) × w(P) stands for the total CC imposed by all

the installed PEs x in the design to perform the functionality of the standard
y.

•
∑

y/d−
GNG

(y)=0

(
∑

x/d+
GNG

(x)=0

∑

P : yx−path

CC(x) × w(P)) represents the total CC

paid for all the standards.

The calculation process of the above cost function is as follows: select a top level
standard y and one installed block x, then search for all paths P (in the GNG associ-
ated to the choice of implementation) from y to x (i.e yx-paths) in order to multiply
the weight of each such paths by the CC of the installed block x. Repeat the same
operation for each y standard and x installed block. In this way, we get the total
CC of the system. Finally, we have to add the BC of each installed block.

In the next section, we will provide an exploration of the total number of options
capable of implementing the functionalities of the multi-standard system. More
precisely, we will find an upper bound for this number, providing and explaining all
the necessary derivations.

3.2 An upper bound for the number of options of imple-
mentation

In this section, we will provide an upper bound for the total number of options that
are capable of implementing the multi-standard system [89]. This is done by first
introducing a computational cost vector Xv on each vertex v in the graph struc-
ture of the multi-standard system, whose dimension (dim(Xv)) will represent the
total number of options that can realize block v. Then, we find an upper bound for
dim(Xv), thus achieving our goal.

3.2.1 The computational cost vector Xv

We’ll associate a vector Xv with each vertex v in the directed hypergraph H of a
multi-standard system containing L levels. Each entry of Xv will represent the total
CC resulting from one particular choice of implementation chosen to realize block v,
where this cost is calculated via the cost function of equation 3.3. This vector will
include all the possible implementations of v and thus the dimension of Xv will be
exactly equal to the total number of options capable of realizing v.

3.2 An upper bound for the number of options of implementation 115

For all the rest, we’ll denote the dimension of the vector Xv by |Xv|, i.e |Xv| =
dim(Xv). The parameters that we need to form the entries of the Xv vector will be
the BC, CC and the NoCs.

The vector Xv is defined recursively from the lowest level blocks up until those of
highest levels. This means that first we have to find Xv for all v block in level 1,
then Xv for all v block in level 2, · · · .
For each block v in level 1 (d+(v) = 0 in this case), we have only one entry in Xv (i.e
|Xv| = 1), since the only choice of implementation of such a block is by installing it.
This only entry in Xv will be the CC of block v, which will represent the total CC
imposed when the block is installed by itself.
Having defined Xv for all the blocks v such that L(v) ≤ i, the vector Xv where
L(v) = i+ 1 is formed as follows:

• If we face an "or" hyperarc e ∈ FS(v) (recall that an "or" hyperarc means that
|H(e)| = 1) and suppose that H(e) = {r} (so e = (T (e), H(e)) = ({v}, {r})),
then this means that v can be realized by r associated with certain number
of calls. Since r can be implemented in |Xr| ways, then this will impose |Xr|
choices capable of realizing v by using r because the total CC of any option that
implements r, multiplied by the number of times v calls r (w(v, r)), represents
the total CC of an option that realizes v. In other words, any entry in Xr

multiplied by w(v, r) will be an entry in Xv describing the total CC of one of
the options of implementation of v via r.

• If an "and" hyperarc e ∈ FS(v) is encountered, then v will need the func-
tionalities of all the blocks in H(e) to be implemented. Suppose that H(e) =
{si1, si2, · · · , sin} (so e = (T (e), H(e)) = ({v}, {si1, si2, · · · , sin})). In this
case, the calculation of the total computational cost of an option chosen to
implement v via this hyperarc e will be:
choose one entry from each of Xsik , k ∈ {1, 2, · · · , n} (which represents the
total CC of one of the options that can realize the functionalities of sik), mul-
tiply it by the number of times v calls sik (which is w(v, sik)), and then add all
the answers obtained for all k ∈ {1, 2, · · · , n}. This will form an entry of Xv,
because this is the way how the total CC of an option that can realize v will
be calculated when facing an "and" connection (as indicated in equation. 3.3).
Consequently, it’s obvious that this hyperarc imposes |Xsi1 |×|Xsi2 |×· · ·×|Xsin |
options capable of realizing v.

• One more option of implementation which is worth mentioning is characterized
by using v itself as a unified nondivisible block. This adds one more entry to
the vector Xv which is the CC of block v.

To make things clearer, we’ll start with a simple example before providing a gener-
alization.

116 A theoretical study of the problem related to SDR multi-standard systems

3.2.1.1 Example

Fig. 3.6 shows an "or" (e1 = ({v5}, {v1})) and an "and" (e2 = ({v5}, {v2, v3, v4}))
connection related to the implementation of block v5.

Figure 3.6: two alternatives to implement v5

Suppose that:

Xv1 = (x1, x2, · · · , xm) ; |Xv1 | = m
Xv2 = (y1, y2, · · · , yn) ; |Xv2 | = n
Xv3 = (z1, z2, · · · , zp) ; |Xv3 | = p
Xv4 = (l1, l2, · · · , lq) ; |Xv4 | = q

We’ll denote Zv by the multiset obtained from Xv by just listing its components.
So, for example, we have Zv1 = {x1, x2, · · · , xm}, Zv2 = {y1, y2, · · · , yn}, · · · .

Set Ue1 = Zv1 (related to the "or" connection)
and Ue2 = Zv2 × Zv3 × Zv4 (concerning the "and" connection).

In this case, Xv5 will be a vector of dimension m+ n× p× q + 1 where:

• The m entries which result from Ue1 are:
w(v5, v1)× xi ∀i = 1, · · · ,m.

• The n× p× q entries which result from Ue2 are:
w(v5, v2)× a+ w(v5, v3)× b+ w(v5, v4)× c ∀(a, b, c) ∈ Ue2

(where |Ue2 | = n× p× q).

• The remaining entry is the result of the direct implementation of block v5 itself.
This entry, as mentioned before, is equal to the CC of block v5.

3.2.1.2 Generalization

Let H be a directed hypergraph of a multi-standard system and v ∈ V (H). ∀
e ∈ FS(v), set Ue =

∏

r∈H(e)

Zr.

The components of Xv will be found as follows:

3.2 An upper bound for the number of options of implementation 117

• ∀e ∈ FS(v), ∀a = (ar)r∈H(e) ∈ Ue we have:
∑

r∈H(e)

w(v, r).ar is an entry in Xv.

• One more entry of Xv is the CC of v which, as mentioned before, presents the
direct installation of block v itself.

3.2.2 An upper bound for |Xv|

The dimension of Xv, |Xv|: Based on all what’s explained and discussed previ-
ously in this section, we can easily conclude that :

|Xv| =
∑

e∈FS(v)

∏

r∈H(e)

|Zr| + 1 (3.5)

defined recursively from lowest to highest levels.

We’ll denote ui by an upper bound for |Xv|, for any v block occupying the ith level,
i.e: ∀ v / L(v) = i, |Xv| ≤ ui. An expression of ui will be our desired upper bound.
ui will be, as well, defined recursively from lowest to highest levels.
The following two parameters will be used:

M = max
v∈V (H)

(|FS(v)|+ 1).

r = max
e∈E(H)

(|H(e)|).

We can deduce a recurrence relation as follows:

{ u1 = 1,

us+1 = M(us)
r ∀ 1 ≤ s < L

(3.6)

Here is a brief explanation. Suppose that we want to find us, which is an upper
bound for the number of options that can realize block v or an upper bound for
|Xv|, where L(v) = s. One can notice the following remarks to obtain the recurrence
relation of 3.6:

• We have a maximum of M − 1 hyperarcs such that v is the parent tail node
(by the definition of M).

• Each one of these hyperarcs contains a maximum of r head nodes.

• The worst case is that all the r head nodes of a hyperarc e ∈ FS(v) are in level
s− 1, which will impose a larger upper bound.

We can conclude from equation 3.5 that each one of these (maximum) M − 1 hy-
perarcs imposes a maximum of (us−1)

r options, and thus the M − 1 hyperarcs all
together will yield a maximum of (M −1)(us−1)

r options. It remains to add the last
option of implementation characterized by using the block v by itself. So as a whole,

118 A theoretical study of the problem related to SDR multi-standard systems

we get a maximum of (M − 1)(us−1)
r + 1 alternatives of implementation which is

obviously less than or equal to M(us−1)
r = us.

Thus we can obtain the following:

u1 = 1

u2 = M(u1)
r = M

u3 = M.(u2)
r = M(M)r = M r+1

u4 = M.(u3)
r = M(M r+1)r = M r2+r+1 · · ·

Notice that the recurrence relation of equation 3.6 can be easily solved with a simple
induction on s and we obtain: us = M rs−2+rs−3+···+r+1 or alternatively:

us = M
1−rs−1

1−r ; s > 1, r 6= 1 (3.7)

As an example, we will find the exact number of options to implement the multi-
standard system of Fig. 3.1 as well as our attained upper bound for this number.
Applying equation 3.5, we can deduce that:
|XD1| = |XD2| = |XD3| = |XD4| = |XD5| = |XC1| = |XC3| = |XB3| = 1,
|XC2| = 3, |XB1| = |XB2| = 2, |XB4| = 5, |XA1| = |XA3| = 6, |XA2| = 10,
|XS | = 361, |XT | = 7. Consequently, the exact number of options capable of im-
plementing the multi-standard design consisting of the standards S and T will be
|XS | × |XT | = 361× 7 = 2527.

In this same figure, we can notice that M = max
v∈V (H)

(|FS(v)| + 1) = 4 and r =

max
e∈E(H)

(|H(e)|)

= 3, and thus u5 = 4
1−35−1

1−3 = 440 is an upper bound for the total number of options
to implement each of S and T blocks in level 5. Consequently u5× u5 = 440× 440 is
our attained upper bound for the number of options to implement the multi-standard
design.

In this section we have found an exponential upper bound, as function of the selected
parameters M and r, for the total number of options that can implement any PE
in the design. Consequently, we derived an upper bound for the total number of
alternatives capable of implementing all the top level standards to be supported,
and thus have presented an exploration of the number of options that can realize
the multi-standard design. In the following section, we will exhibit our optimization
problem that states to find one of these options of implementation having a mini-
mum cost. This problem is expected to be a complex problem due to the attained
exponential upper bound for the total number of alternatives of a multi-standard
design. In this context, the complexity of this optimization problem will be further
examined and elaborated.

3.3 Complexity of our optimization problem 119

3.3 Complexity of our optimization problem

Our objective is to optimize the cost function introduced in 3.1.4 to its minimum
cost possible and thus solving the optimization problem that finds balance between
efficiency and flexibility. This will enable us to extract the most appropriate COs
from the most convenient granularity levels leading to the construction of an optimal
SDR multi-standard design which takes advantage of the common aspects in use. In
this section, we will give a formal description of our optimization problem and study
its complexity [90].

Our optimization problem can be described as follows:

A general description of the parameters: The parameters of an instance of our
problem must represent a graph structure H of a multi-standard system. The
following is a list of the variables of our optimization problem.

1. a list of the n vertices in V (H).
2. a list of the m hyperarcs in E(H).
3. the number of levels L.
4. the number of blocks in each level. Let a1, a2, · · · , aL denote the number

of blocks in levels 1, 2, · · · , L respectively.
5. A list of the highest level blocks (occupying the Lth level) which are required

to implement.
6. The numerical values "CC & BC" of each block, the NoCs on each arc

(which are the weights on the BF-reductions of all the hyperarcs).

Statement: Find the set of operators U ⊆ V (H) which is capable of implementing
the multi-standard terminal and that has a minimum cost.

Recall that any optimization problem, whether a minimization or a maximization
one, can be transformed into a decision problem (yes-no question) by just introducing
a new constant parameter B ≥ 0 (see section 2.5). Accordingly, the decision problem
version of our optimization problem will be stated as follows:

The general description of the parameters: • points 1 to 6 in the parame-
ters’ description of the optimization problem.

• a constant B ≥ 0.

Statement: Can we find a set of operators U ⊆ V (H) which implements the design
and whose cost doesn’t exceed B?

Recall again that a decision problem is said to be an NP-problem if any "yes"-
instance of the problem can be decided in polynomial time by a Nondetermin-
istic Turing Machine (NDTM). An NDTM is said to operate in "polynomial
time" if there exists a polynomial p s.t, for every yes-instance I, there is some
guess S that leads the deterministic checking stage to respond "yes" for I and S
within time p(Length[I]), where Length is a function which maps an instance

120 A theoretical study of the problem related to SDR multi-standard systems

I to the number of symbols in the string by which it’s represented.

In an equivalent way to the Turing Machine’s proof process, one can prove that
a decision problem is an NP-problem if for a given "yes" instance I and a cer-
tain guess S, a polynomial equation of the required operations can be derived
to verify that the answer for I and S is "yes". All the details can be found in
chapter 2. We will exploit this idea in the following theorem to prove that our
decision problem version is an NP-problem but under a specific stated condi-
tion. Consequently, the optimization problem will be an NP-problem under the
same condition as well, since it’s at least as hard as its decision problem version.

Theorem 10. The previously described decision problem is an NP-problem on
condition that the number of levels L of a multi-standard graph structure is up-
per bounded by a non-negative constant i, i.e L ≤ i for some i ≥ 0.

Proof. In our proof, we will follow the previously explained strategy. We will
consider an instance I of our problem and a certain guess solution S for this
instance, then try to derive a polynomial equation for the number of operations
required to check if the answer for I and S is "yes". This imposes considering
worst case situations which require maximum number of operations. However,
since it’s generally impossible to determine an exact worst case, we are going
to determine scenarios that are worse than the worst case.
Consider any graph structure H of a multi-standard system with all the nec-
essary parameters (instance I), containing L levels. Guess a certain solution S
(a solution to our problem is a set U ⊆ V (H)) and suppose that |U | = k (i.e
we have chosen some k blocks randomly), we will have to check the following
three points:

• First, verify if the guess S can implement the design:
We propose one way for doing this. Let e ∈ E(H). If H(e) ⊆ U , then
update U by adding T (e) to U . In fact, if all the head nodes of e are in
U , then the blocks in U are capable of realizing the parent node in T(e)
accompanied by the necessary number of calls. Consequently, the function-
ality of the "T(e)" node can be attained and is thus added to the set U
to mean that this corresponding block can be built by the elements in U .
This is applied to all the hyperarcs in E(H).

The worst case is to consider that the k chosen blocks are in the lowest
level (level 1) and thus passing by all the hyperarcs in E(H) once might,
in the worst case, form some blocks in level 2 (or more but we’re consider-
ing the worst case). Now U is updated in the way explained before (new
blocks might be added to U). Passing by all the hyperarcs another time
and considering the updated U set shall, in the worst case as well, form
some blocks in level 3 which have to be added to U . Clearly, we need to
check the m hyperarcs in E(H) at most L− 1 times in order to reach the
functionalities of the highest level blocks in level L.

3.3 Complexity of our optimization problem 121

After the maximum of m(L − 1) searches in the hyperarcs, if all the top
level standards were in the latest updated set U , then this will mean that
the initial guess of U ⊆ V (H) is a choice which can implement the design.
Otherwise, the guessed solution will be considered incapable of implement-
ing the multi-standard system.

As a conclusion, we need a maximum of m(L− 1) operations to check this
point.

• Second, calculate the cost of the chosen option which is characterized by
the selected blocks in U :
In this step, we have to find the number of multiplications and number of
additions required in the calculation process of the cost function. A GNG
resembling to that in fig. 3.7, call it WGNG, corresponds to a worst choice
of implementation because:
1. The k chosen blocks occupy the lowest level (level 1) which yield the

longest paths from the top level standards to the chosen blocks in level
1, thus maximizing the number of multiplications when finding the
weight of the paths.

2. An "and" connection between any block v and all the blocks which
occupy a lower level than v corresponds to a worst case, since it imposes
a maximum number of paths from the standards to the chosen installed
blocks in U .

In our case, we are sure that a practical realization of an SDR multi-
standard system won’t be more complex than the case of Fig. 3.7. That’s
why we can consider it to be worse than the worst case.

Figure 3.7: WGNG, a worst case GNG of a choice of implementation.

In the following, we will explore the total number of paths in WGNG from
ℑ to a vertex in level 1.

122 A theoretical study of the problem related to SDR multi-standard systems

Let v be a vertex in WGNG with L(v) = i. We can always find a path
from any vertex in ℑ to v traversing any combination and any number of
vertices from levels L− 1 till i+ l (probably no vertex at all) all occupying
different levels than each other. Note that the paths traverse the vertices
in a decreasing order of the level that each vertex occupies.

Obviously, all the nodes in WGNG occupying a certain level are connected
to ℑ by the same number of paths. Let v be a vertex in level i. We’ll
denote ni by an upper bound for the number of paths from ℑ to v.

We can easily remark that a vertex in level L− 1 is connected to ℑ by at
most aL paths in WGNG, thus nL−1 = aL.
Let y be a vertex in level L− i in WGNG. The value nL−i is equal to
nL−(i−1)(aL−(i−1)) + nL−(i−1). In fact, each path from a vertex u in ℑ to
a vertex x in level L − (i − 1) in WGNG (where the total number of such
paths is at most nL−(i−1)) can be extended to a path from u to y via a hy-
perarc E ∈ FS(x)

⋂
BS(y). This makes at most nL−(i−1)(aL−(i−1)) paths,

traversing all the vertices x in level L − (i − 1) in WGNG. The remaining
paths which don’t traverse a vertex in level L− (i−1) are at most nL−(i−1)

paths, since any path from ℑ to a vertex x in level L− (i−1) in WGNG can
be transformed into a path from ℑ to y by just replacing the destination x
of each path by y.

So, we can attain the following recurrence relation:

{ nL−1 = aL

nL−i = nL−(i−1)(aL−(i−1)) + nL−(i−1)

(3.8)

Let s = max{a2, · · · , aL}. By a simple induction process, we can easily
conclude that nL−i belongs to O(si). Consequently n1 = nL−(L−1), which
stands for an upper bound of the total number of paths from ℑ to one ver-
tex in level 1 in WGNG, belongs to O(sL−1). Note that the total number
of paths from ℑ to all the k installed blocks in level 1 is at most kn1.

The calculation of the weight of each of these kn1 paths is required, ac-
cording to the cost function of equation 3.4. A maximum of L−1 multipli-
cations is needed to calculate the weight of any one of these paths, because
the longest of these paths is of length L − 1. One more multiplication is
associated to each of these paths since we have to multiply its weight by
the CC of the corresponding installed block. So, we can conclude that each
path is associated with at most L multiplications. Consequently, the max-
imum number of multiplications required will be at most kLn1.

As for the maximum number of additions imposed by the cost function, we
need one addition between the weight of a path and another. Since there
exists a maximum of kn1 paths, then we’ll get kn1−1 number of additions

3.4 Conclusions 123

in the worst case.

Thus as a whole, the total number of multiplications and additions neces-
sary to calculate the cost will be less than: kLn1 + (kn1 − 1).

• The third and last necessary point is to compare the cost (found in the
second step) with B. This will just be a matter of one operation.

Finally, the total number of operations which are required to verify a "yes"
answer for the instance I and the guess S will be:

m(L− 1) + [kLn1 + kn1 − 1] + 1. (3.9)

If we set b to denote max{s, k,m}, then we get that the number of operations
obtained in equation 3.9 is a function in O(bL) (recall that n1 ∈ O(sL−1) and
L ≤ i). In this case where a non-negative constant i upper bounds L (as
hypothesized in the theorem), we’ll get that equation 3.9 is a function in O(bi),
thus requiring polynomial time.

3.4 Conclusions

First in this chapter we have explored various theoretical aspects concerning
the SDR multi-standard design, from which we mention modeling the graph
structure of a multi-standard system as a directed hypergraph and deriving a
formal cost function equation. Afterwards, we have provided an upper bound
for the total number of options capable of realizing the multi-standard design.
The fact that this attained upper bound is exponential was a clue that our
optimization problem, which states to select the minimum cost option capable
of implementing the design, is an NP-problem. This is true on condition that
the number of levels in the graph structure of the SDR multi-standard system
doesn’t exceed a certain constant, which usually is a logical condition from the
technical point of view.

Since we now know that the optimization problem we’re dealing with is a com-
plex problem, then one idea is to try to examine the different alternatives
of implementation of an SDR multi-standard system in order to exclude or
disregard some of them which have certain identified characteristics, if possi-
ble. This point is studied in the next chapter before we propose a new al-
gorithm, which exploits various definitions and notations concerning directed
hypergraphs. This algorithm checks each possible option of implementation but
ignores some of them, and then returns the minimum cost option of implemen-
tation. The difference between our algorithm and the previously suggested ones
for this problem will further be highlighted.

Chapter 4

An Optimization technique for

Multi-Standard SDR equipment

using Directed Hypergraphs

Contents

4.1 Some state-of-the-art techniques of optimization . 126
4.2 Excluding certain designs when searching for the

one with minimum cost 128
4.2.1 An example . 128

4.2.2 Generalization . 131

4.3 A Minimum Cost Design (MCD) Algorithm 135
4.4 Computational Complexity of the MCD algorithm 140

4.4.1 The maximum number of hyperarcs in a G-path . . 141

4.4.2 An upper bound for the total number of G-paths . . 141

4.4.3 An upper bound for the dimension of kv 142

4.4.4 The worst case complexity analysis 144

4.5 Application . 145
4.6 Conclusion . 151

In the previous chapters, we presented a suggested cost function equation. Our
objective is to optimize the proposed cost function to its minimum value pos-
sible, using graph theoretical tools, by choosing the most adequate option of
implementation having the minimum cost. We showed in chapter 3 that this
optimization problem is an NP-problem if the number of levels doesn’t exceed a
certain constant, thus concluding that this is a complex problem. Consequently,
this problem is related to determining an optimal or near-optimal resource shar-
ing for multi-standard systems which is faced with a complex objective cost
function.

We start this chapter in section 4.1 with an overview of some state-of-the-art
previous elaborated optimization techniques to solve our optimization problem,
where the best chosen method was one which gives a near optimal solution.
Afterwards in this chapter, we study the characteristics of the different op-

125

126 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

tions of implementation and prove in 4.2 that some specific alternatives can
be excluded if one is searching for a minimum cost design. We propose a new
algorithm in section 4.3 to solve the optimization problem, using different pro-
posed modeling notions related to directed hypergraphs, which only examines
the unexcluded alternatives of implementation in section 4.2. The significance
of this algorithm lies in the fact that, on the contrary to heuristic techniques,
it is capable of providing an exact optimal solution. A worst-case analysis of
this algorithm is further presented in 4.4, which yields an upper bound on the
resources required by the algorithm. Finally, we apply our suggested algorithm
on several generic design examples in 4.5 in order to explore its performance,
before we end this chapter with a conclusion’s section.

4.1 Some state-of-the-art techniques of optimization

To determine a solution to our optimization problem, one has the choice be-
tween techniques that give an exact-optimal solution or those that provide a
near-optimal solution in less computing time. All exact methods for determin-
ing an optimal solution require a computing effort which increases exponentially
with the instance’s size (if one is dealing with intractable problems), so that
in practice exact solutions can be attempted only on instances with small size.
We start in this section with a brief overview of one exact-optimal and another
near-optimal technique, which were among the examined techniques by a pre-
vious PhD student in [60] to solve our optimization problem.

Exhaustive search (ES) is a technique which finds the best global solution af-
ter checking each and every solution in the search space, i.e it provides an
exact-optimal solution. It is the simplest technique in its implementation; it
only requires to generate every possible solution to the problem systematically.
In the case of high-dimensional, NP-complete, or multi-modal, · · · etc prob-
lems, this method becomes impractical or even infeasible as the search space
becomes larger. Since the size of the search space of real world problems is
usually enormous, then it requires centuries or more to find optimal solutions
for such problems. Thus, for intractable problems, ES can only be applied to
instances with a relative small size.

Simulated annealing (SA) [103] is one of the most applicable heuristics, that
provides near-optimal solutions, in the optimization community. It is a stochas-
tic search strategy which exploits the analogy between the way in which metal
cools and freezes into a minimum energy crystalline structure and the search
for a minimum in a more general system.
In fact, Metropolis et al. [104] proposed an algorithm to find the equilibrium
configuration of a collection of atoms at a given temperature, but the connec-
tion between this algorithm and mathematical minimization was first noted in
[105]. However, it was Kirkpatrick et al. [106] who proposed that this algorithm
forms the basis of an optimization technique for many problems.

4.1 Some state-of-the-art techniques of optimization 127

SA algorithm employs a random search which not only accepts changes that
decrease the objective function value, but also some changes that increase it.
The latter are accepted with a certain probability p < 1 which exponentially
decreases either with time or with the amount by which the current optimum
is worsened [107]. It’s this property which makes SA powerful, i.e its ability to
escape from being trapped in local minima by accepting worse moves through
a probabilistic procedure especially in the earlier stages of the search. If the
metal temperature is decreased slowly enough, then metal cools and freezes
into a minimum energy crystalline strucure; the analogy for SA is that if the
move probability decreases slowly enough, then the global optimum is attained.

To solve our optimization problem, S. Gul [60] has applied some selected op-
timization techniques to a small generic example and finally deduced that SA
was the best among them, since it finds the optimum solution in less number
of iterations than the rest. He validated the results of the selected stochastic
techniques by comparing them to the results obtained by ES, and that’s why he
was restricted to a simple case example which contains few nodes (less than 10).
Certainly, he couldn’t have chosen the ES technique as a tool of optimization
for our problem because of its exponential growth in terms of number of iter-
ations and consequently the time required with the increase in the considered
PEs. Moreover, S. Gul was intuitively convinced that the problem is a complex
one, but the proof of this was not done till now, which can be found in section
3.3 of chapter 3 of this thesis.

However, S. Gul was aware of the fact that SA need not necessarily be the best
possible optimization technique, but this selection perfectly met his needs for
the different case studies that he presented in his thesis. In our work, we need
to find new tools of optimization with the use of graph theory. It would have
been a good idea if we could have found a modeling of our optimization problem
to a previously graph-theoretical solved one (like shortest path problem, MST
problem, · · · etc) but our problem was kind of different and more complicated
and thus this wasn’t possible to our best knowledge. So, we have created our
own modeling and solution for this problem. The first step was the graphical
approach of the SDR multi-standard system modelized as a directed hypergraph
as well as the derivation of a formal theoretical expression of the proposed
cost function, presented in chapter 3. Since indeed we have proved that our
optimization problem, which states to minimize the cost function, is an NP-
problem (under a certain constraint), then we thought of trying to examine the
options of implementation to check if some of them can be ignored in order
to reduce the complexity. This will constitute the work presented in the next
section.

128 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

4.2 Excluding certain designs when searching for the
one with minimum cost

It has been highlighted in 3.1.2 of chapter 3 that there are certain alternatives
of implementation of a multi-standard system in which a certain block is in-
stalled along with some others which can build it, all in the same design. In
this section, we’re going to prove that such designs whose generated graphs
don’t correspond to G-paths of the graph structure of the SDR multi-standard
system, don’t have the minimum cost [90]. We’ll prove this first on an example
and then provide a generalization. In both cases, three designs will be exhib-
ited. Design (1) will represent a GNG obtained by realizing the multi-standard
system using higher level blocks than in the case of design (2), where lower
level blocks will be used to realize all the above necessary functions which they
are capable of building. On the contrary, design (3) will exploit the lower level
blocks to implement a certain function but the higher ones (which can be built
by these low level ones) to perform some other function. The aim is to prove
that design (3), whose GNG admits a duplicated part, will never correspond to
a design with minimum cost.
In our demonstration, first we’ll assume that cost (design (2)) doesn’t exceed
cost (design (1)) and accordingly, prove that cost (design (2)) will be less than
cost (design (3)). As a result, design (2) will be the cheapest among the three in
this case. The other possibility that will need a proof is to suppose that design
(2) is more expensive than both designs (1) & (3), in which case design (1)
will be found to be a cheaper design than the third, thus proving that the first
design is the cheapest. Consequently, we conclude that in all possible cases,
either the first or second design will have the minimum cost among the three
designs. This will be enough to support our claim that the cost of a third design
case can never be minimum and that we can always find a design which has a
lower cost.

4.2.1 An example

An example is pictured in Fig. 4.1. In concurrence to what’s mentioned right
before, design (1) represents a design in which the implementation of the blocks
D and F is achieved by the high level blocks H & I while in design (2), the
lower level blocks J,K,L, & I will be installed to realize both D and F . As for
the third design, the choice is to implement F using J,K,L, & I while to use
the higher level blocks H & I (which can be implemented by the lower level
blocks J,K,L, & I) to realize the functionalities of D.
Note that all the three designs represent the GNG of a certain choice of imple-
mentation and are obtained from some directed hypergraph representation of
an SDR multi-standard system.

Remark that in design(3) of Fig. 4.1, there is a Duplicated Part (DP) (includ-
ing the A & H functions) in which one of them is traversed by one of the paths

4.2 Excluding certain designs when searching for the one with minimum cost 129

Figure 4.1: A 3 designs example

needing its functionalities (the path passing through D). The second path
reaching the DP (passing through F) considers further break-down of some of
its functions (see the Break-down Part (BP) of the H processing element in
Fig. 4.1).
Inside the DP of Fig. 4.1, only one highest level block exists which is A. Note
that there is an Unduplicated Part (UP) (the I function) which will be sharing
in the CC of the highest level block A of the DP.

In fact, the only difference between the three designs lies in whether further
breakdown of the DP is considered or not. Later in this subsection, we will
demonstrate that among the three designs in Fig. 4.1, either design(1) or
design(2) can have the minimum cost but never design(3), where the cost is
evaluated via the cost function introduced in chapter 1 (whose alternative is
presented in chapter 3).
Remark the following:

CC(A)(with no further break-down) = CC(A)(using H & I)

= CC(H)× w(A,H) + CC(I)× w(A, I)

(4.1)

CC(A)(with further break-down) =CC(A)(using J,K,L & I)

=(CC(J) ×w(H, J)+ CC(K)× w(H,K)

+ CC(L)× w(H,L))× w(A,H) + CC(I)× w(A, I)

(4.2)

130 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

In both equations 4.1 and 4.2, there is a part sharing in the CC(A) imposed by
the UP, which is CC(I)×w(A, I). The other part in 4.1 (denoted by a) will be
sharing in the CC(A) imposed by the DP with no further breakdown, while
that in 4.2 (denoted by r) will be sharing in CC(A) imposed by the DP with
further breakdown, i.e we have:

• a = CC(H)× w(A,H)

• r = (CC(J)×w(H, J)+CC(K)×w(H,K)+CC(L)×w(H,L))×w(A,H)

Now, we’ll calculate the cost of each design in Fig. 4.1. We’ll denote Cost(design
i) by Cost(i). Then we get:

• Cost(1) = (a + CC(I) × w(A, I)) × w(F,A) × w(C,F) + (a + CC(I) ×
w(A, I))×w(D,A)×w(C,D)+CC(E)×w(C,E)+BC(E)+BC(H)+BC(I)

• Cost(2) = (r + CC(I) × w(A, I)) × w(F,A) × w(C,F) + (r + CC(I) ×
w(A, I)) × w(D,A) × w(C,D) + CC(E) × w(C,E) + BC(E) + BC(J) +
BC(K) +BC(L) +BC(I)

• Cost(3) = (r + CC(I) × w(A, I)) × w(F,A) × w(C,F) + (a + CC(I) ×
w(A, I))× w(D,A)× w(C,D) + CC(E)× w(C,E) + BC(E) + BC(H) +
BC(I) +BC(J) +BC(K) +BC(L)

The procedure followed to prove that the third design can never be the mini-
mum cost design has been lately presented.
The first case proof is as follows:
Suppose we were in the case where Cost(2) ≤ Cost (1). Then, we will prove
that Cost(2) is strictly less than Cost(3).

Assume to the contrary that Cost(3) ≤ Cost(2).

=⇒
(a+ CC(I)× w(A, I))× w(D,A)× w(C,D) +BC(H) ≤

(r + CC(I)× w(A, I))× w(D,A)× w(C,D)
•

=⇒ (a+ CC(I)× w(A, I))× w(D,A)× w(C,D) < (r + CC(I)× w(A, I))×
w(D,A)× w(C,D) (because BC(H) > 0)
=⇒ a + CC(I) × w(A, I) < r + CC(I) × w(A, I) (the weights are always
positive).
=⇒ a < r. (1)

But we have Cost(2) ≤ Cost(1).
=⇒ (r + CC(I) × w(A, I)) × w(F,A) × w(C,F) ≤ (a + CC(I) × w(A, I)) ×
w(F,A)× w(C,F)−BC(J)−BC(K)−BC(L) +
[(a+ CC(I)× w(A, I))× w(D,A)× w(C,D) +BC(H)]
︸ ︷︷ ︸

− [(r + CC(I)× w(A, I))× w(D,A)× w(C,D)]
︸ ︷︷ ︸

≤ 0 by •

=⇒ (r + CC(I) × w(A, I)) × w(F,A) × w(C,F) < (a + CC(I) × w(A, I)) ×
w(F,A)× w(C,F) (since BC(v) > 0 ∀ v block)

4.2 Excluding certain designs when searching for the one with minimum cost 131

=⇒ r < a (2) contradiction of (1)

Thus, the assumption that Cost(2) ≥ Cost(3) is proved to be wrong leading
to the conclusion that Cost(2) is in fact less than Cost(3). So in this case, a
minimum cost design choice will be the second one.

Suppose we are in a different case where Cost(2) > Cost(1) & Cost(3) > Cost(2).
Under these inequalities, it’s obvious that among the three designs, design(1)
has the least cost, which makes it the minimum cost design in this case.

Now consider the last possibility, where we are given that Cost(2) > Cost(1)
but Cost(3) ≤ Cost(2). We will prove that Cost(3) is certainly strictly greater
than Cost(1), thus proving that the minimum cost design in this case will be
the first design form. Actually, the first condition (Cost(2) > Cost(1)) will be
useless in this proof because in fact, the condition Cost(3) ≤ Cost(2) is alone
sufficient to conclude that Cost(3) exceeds Cost(1).

Suppose the contrary, i.e Cost(3) ≤ Cost(1).
=⇒ (r + CC(I) × w(A, I)) × w(F,A) × w(C,F) < (a + CC(I) × w(A, I)) ×
w(F,A)× w(C,F)
=⇒ r < a (3)
And we have Cost(3) ≤ Cost(2)
=⇒ a < r. (4-done before in 1) which contradicts inequality 3.

So, you can notice that in all possible cases, either design(1) or design(2) is the
minimum cost design and there is no possibility that the third one admits the
least cost.

4.2.2 Generalization

In this subsection, we will generalize our study of the possibilities for designing a
minimum cost design. The duplicated and unduplicated parts (denoted by DP
and UP) speak of their names, where indeed the previous example illustrates
a pictorial view for each one of them. Recall that the DP and UP can only
be recognized from the third design form. We will further need to consider the
following two notations:

• DUP denotes the combination of both DP and UP.
• DUPB is a combination of the DUP functions along with the break-down

part (BP) of some of the operators in DP.

For example in the case of Fig. 4.1, we can remark that DUP consists of the
blocks A,H & I while A,H, I, J,K, & L form those in DUPB. Note that H &
I are the lowest level blocks in DUP; J,K,L & I are the lowest level blocks in
DUPB.
The three designs are generally illustrated as in Fig. 4.2. .

132 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

Figure 4.2: The three designs generalization case

In an analogous way to the example in 4.2.1, design (1) consists of two paths
both realized by the lowest level blocks in DUP, while the second design (de-
sign (2)) includes two paths both implemented by the lowest level blocks in
DUPB. As for design (3), one of the two paths is implemented using the high
level installed functions from DUP, and the other is realized by the lower level
installed operators from DUPB. We will prove the following theorem.

Theorem 11. An option of implementation of an SDR multi-standard system
whose GNG admits a duplicated part can never have the minimum cost.

Proof. To prove this theorem, it’s enough to demonstrate that design(3) of Fig.
4.2 doesn’t correspond to a minimum cost design and that we can always find
another design possessing a lower cost.
Suppose that the DP contains one highest level block inside it, block A for
example. Recall the following notations:

• a = CC(A) imposed by the DP with no further break-down.
• r = CC(A) imposed by the DP with further break-down.

As in 4.2.1, the CC(A) can be divided into 2 parts, one imposed by the DP
and the other by the UP as follows:

• CC(A)(with no further break−down) = CC(A) imposed by the DP with no
further break-down + CC(A) imposed by the UP
= a+ CC(A) imposed by the UP.

• CC(A)(with further break−down) = CC(A) imposed by the DP with further
break-down +CC(A) imposed by the UP
= r + CC(A) imposed by the UP.

4.2 Excluding certain designs when searching for the one with minimum cost 133

Since the DP and UP can contain any number of blocks distributed on different
possible levels, then it’s impossible to provide a precise equation of the cost of
each of the three designs as was done in the previous example, where the DP
and UP were a concrete distribution of blocks. However, we can easily conclude
that when we settle comparison inequalities between the costs of two design
forms, the cost imposed by the UP cancel from both sides of the inequalities.
Afterwards, factorizing some costs originating from the paths reaching DUP
and DUPB leaves us with only expressions comparing between the parameters
r and a. After having understood these concepts which were detailed in the
previous example, it will be easy to conclude what follows.

Suppose that Cost(2) ≤ Cost(1). Then we get Cost(2) < Cost(3) because if we
assume to the contrary that Cost(3) ≤ Cost(2) we get a < r, when in fact
Cost(2) ≤ Cost(1) implies that r < a thus leading to a contradiction.

The remaining possibility to consider is to suppose that Cost(2) > Cost(1) &
Cost(3) ≤ Cost(2) and then conclude that Cost(3) exceeds Cost(1) in this case.
In fact, a contradiction can be attained since the assumption that Cost(3) is
less than or equal to Cost(1) yields that r < a while Cost(3) ≤ Cost(2) implies
that a < r.

Now, suppose that the DP contains more than one highest level block, two as
a beginning (for instance, the DP in Fig. 4.3 includes two highest level blocks
A&B). We will tackle a discussion to prove that the theorem holds in this case
as well.

In fact, we will split the DP into several DPs in which each one of them contains
exactly one highest level block, and then work on each DP separately. For ex-
ample, the DP (A,C,D,B,&E) in Fig. 4.3 can be split into two different DPs,
(A,C,D) & (B,E), in which the former includes only one highest level block
which is A and similarly for the latter in which the only highest level block is
B.
We can consider first the break-down of A in the three design forms while fixing
in all of them a certain form of the break-down of B. Three break-down forms
of B exist, where all the three cases are successively considered. In each of the
three cases, the DP will only have one highest level block A, thus returning
to the case presented in the beginning of this subsection. Accordingly, we can
conclude that we should consider the break-down of A based on either the first
or second design form when searching for a minimum cost design no matter
how was the break-down of B. Again, performing the same operation on the
break-down of B in the 3 design forms while fixing in all of them a certain
form of the break-down of A will yield the same result, that is B should be
broke-down either with a design similar to design (1) or (2) when a designer
seeks a minimum cost system no matter how was the break-down of A.

134 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

Figure 4.3: Example of three designs case where the DP contains two highest level blocks

Figure 4.4: The four combinations of break-down of A&B that should be tested when
searching for minimum cost designs, thus excluding the rest which include duplication of
either the break-downs of A and/or B

As a conclusion, we can remark that there will be four combinations, illustrated
in Fig. 4.4, that should be examined if we seek a design with minimum cost.
The first combination involves using the break-downs of A and B, both based
on the first design form (with no further break-down of both A&B), while
the second combination illustrates the break-down of A and B based on the

4.3 A Minimum Cost Design (MCD) Algorithm 135

second design form (with further break-down of both A&B). As for the two
remaining combinations, they are both formed such that one of the blocks (A
or B) is realized with no further break-down, while the other block (A or B) is
implemented by considering further break-downs.
We can recognize that the third design case of Fig. 4.3 can be excluded with
complete safety if one seeks a minimum cost design, as this case is not among
the four considered possibilities of Fig. 4.4.
By a simple induction process, we can extend the proof to a DP containing any
number of highest level blocks, starting from 3 blocks and above.

This completes our proof. As a conclusion, we can say that a designer searching
for a minimum cost design can ignore all those in which duplication occurs in
their corresponding generated graphs.

Notice that the generated graphs of design(1) & design(2) are G-paths with
root ℑ while that of the third design is not. This is because, as highlighted
before in chapter 3, the GNG of options resembling to the third design form
admit a duplicated part, and thus are not subdirected-hypergraphs of the SDR
multi-standard’s graph structure.
We can remark that the options of implementation can be split into those whose
generated graphs are G-paths with root ℑ, and those in which duplication oc-
curs. However, we have just proved in this section that the options which admit
a duplication part can’t in any way correspond to minimum cost designs and
that we can always find ones having lower costs. Consequently, since our aim
is to find the design with minimum cost, where the cost is calculated via the
cost function presented in 3.1.4 in chapter 3, then we can restrict our study to
the options whose generated graphs are G-paths with root ℑ. This idea will be
exploited in the next section, where we will propose a new algorithm that can
solve our optimization problem by only examining each option whose generated
graph is a G-path of root ℑ, instead of checking all the possible options of im-
plementation. It’s an algorithm which exploits the different proposed modeling
notions related to directed hypergraphs.

4.3 A Minimum Cost Design (MCD) Algorithm

In this section, we will propose an algorithm which is capable of solving our
optimization problem [102]. We will restrict our search to the options that are
illustrated as G-paths with root ℑ, which we proved in the previous section to
be enough when seeking minimum cost designs.

Let H be a directed hypergraph representing the break-down of a multi-standard
SDR system. We will define Hr, the directed hypergraph obtained from H, as
follows:

• V (Hr) = V (H) ∪ {r}.

136 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

• E(Hr) = E(H) ∪ {Er} where Er = ({r},ℑ).

In fact, Hr is obtained from H by adding an imaginary top level vertex r to
V (H) and the hyperarc Er to E(H), where {r} is the tail set of Er and ℑ is
that of its head.
Since the vertex r plays the role of an imaginary highest level standard, so this
changes the graph structure of the multi-standard system H, which possibly
contains several top level blocks, into Hr which only contains one.

The parameters assigned to the entities of Hr will be:

• CC, BC and NoCs for the entities of the directed hypergraph Hr (on the
blocks and the arcs) remain the same for all the similar entities of the
directed hypergraph H.

• wEr(r, v) = 1 ∀ v ∈ ℑ

Remark that it will be unnecessary to assign neither a BC or CC to r, nor a
level that it occupies since it is an imaginary block.

In our algorithm when calculating the cost of an option, we will need to search
for all the paths in H from each of the standards in ℑ to all the installed blocks
in a selected option. This will be equivalent to searching for all the paths
from only the vertex r in Hr to the same installed blocks in the option, thus
reducing some steps of the algorithm. Besides, note that the weights on all
BF-reductions of the Er hyperarc are set to 1, in order to ensure that a path
from r to an installed block will have the same weight as that of the associ-
ated path from a certain vertex in ℑ to the same installed block. Consequently,
the cost of the design will not be influenced by the insertion of the new vertex r.

Our algorithm is called the Minimum Cost Design (MCD) algorithm. The only
input that it needs will be the directed hypergraph Hr obtained from H (where
H represents the graph structure of a multi-standard system), together with the
parameter entities of Hr. We will also need to enter the level of each block in H.

This algorithm will find all G-paths of Hr with root {r} (representing certain
options of implementation) in a step by step manner, generating options from
others. It will compute the cost of every selected option to be tested (using the
cost function explained in subsection 3.1.4 of chapter 3), compare its cost to
the previously examined G-paths by the algorithm, and then generate several
options (pictured as G-paths) that emerge from this selected one. The same
procedure will be followed for any other selected option. Finally, it will exhibit
as an output the G-path of Hr with root {r} which has the minimum cost,
together with its corresponding cost found. Once we have this G-path as out-
put, we can extract the blocks which are to be installed in the design by just
identifying the vertices with zero out-degree, thus achieving our goal of finding
the most suitable common operators that will optimize the cost.

4.3 A Minimum Cost Design (MCD) Algorithm 137

During the iterations of the algorithm we will introduce, for each selected G-
path X, a vector kv associated to every vertex v ∈ V (X) defined recursively
from the highest level nodes in X to the lowest. The dimension of this vector
will be evaluated as follows:

{ dim kv = 1; v = r;

dim kv =
∑

e ∈ BSX(v)

∑

w ∈ T (e)

dim kw; v 6= r; (4.3)

Note that r will be the top level vertex of every G-path found.
The kv vector can be denoted by (k1v, k2v, k3v, · · · , k(dim kv)v), where each com-
ponent of kv will represent the weight of a path from r to v, and dim kv will
correspond to the number of such paths.

Furthermore in the algorithm, we will introduce a set Q in which the vertices of
the option X in hand will be invoked gradually while traversing the associated
algorithm’s loops. However, a vertex to select at each step from Q will be that
occupying the highest level among those present in Q, which was imposed by
the recursive definition of the vectors kv from higher level to lower level ver-
tices. Thus, the algorithm selects an element u in Q at every step satisfying
that: L(u) = max{L(w);w ∈ Q}.

Many variables have been introduced in the algorithm. We will explain the
benefit of some of them.

• M is a set in which the generated G-paths of Hr with root {r} will be
invoked.

• A variable RP is introduced to occupy the total cost of the p− th selected
G-path.

• S is a variable in which we accumulate the cost of a certain G-path of Hr

with root {r}.
• A is a set which will contain all vertices v in the selected G-path X with

out-degree zero in X.
• SMin is an integer variable which will include the least cost of a G-path

obtained so far.
• K is a variable in which we reserve the G-path of Hr with root {r} having

the least cost among those tested so far.

Here are the complete steps of the "MCD" algorithm:
Procedure(Hr, CC(v), BC(v), NoC(v))
begin
M = {({r}, φ)}, Rp := 0, p := 1, K := φ;
repeat

select and remove X ∈ M
if X = ({r}, φ)

go to step U
end-if

1

S := 0, A := φ ;

138 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

kr := k1r := 1 dim kr := 1;
for each v ∈ V (X)\{r} do
kv = 0 vector, dim kv := 0;

end-for

2

Q = {r};
repeat
select and remove v ∈ Q
for each E ∈ FSX(v) do
begin

for each h ∈ H(E) do
begin
Q := Q ∪ {h}

3

i := 1
repeat
if kih 6= 0
i := i+ 1

end-if
until kih = 0

4

if v 6= r
for each E ∈ BSX(v)
for each w ∈ T (E)
dim kv := dim kv + dim kw

end-for
end-for

end-if

5

j := 0
repeat
k(i+j)h = k(j+1)v × wE(v, h)

j := j + 1
until j := dim kv

6

if d+X(h) = 0
l := i
repeat
S := S + CC(h)× klh
l := l + 1

until l = i + dim kv
A := A ∪ {h}

end-if

7

end-for
end-for

until Q = φ
repeat
select and remove v ∈ A
S := S +BC(v)

until A = φ

8

Rp := S

4.3 A Minimum Cost Design (MCD) Algorithm 139

if p = 1
SMin := Rp

K := X
end-if

9

p := p+ 1
Rp := 0

10

if p > 2
if Rp−1 < SMin

SMin := Rp−1

K := X
end-if

end-if

11

STEP U
for each u ∈ V (X) s.t d+X(u) = 0 do
begin

for each E ∈ FSHr(u) do
M := M ∪ {X + E}

end-for
end-for

12

until M = φ
end-procedure.

Each of the 12 statements shown in the algorithm has its own significance. We’ll
briefly highlight the role of some of them.

1. Step 1 ensures that if X = ({r},φ) is the selected G-path from M , then
we have to skip the calculation of the cost of X and go to Step U. This is
because this G-path X has no technical significance for the implementation
of the multi-standard SDR system, as r is an imaginary vertex added to
H.

2. In step 2, as an initialization for the calculation of the cost of the G-path
X, we fix kr = (1) and kv = 0 vector ∀ v 6= r. Note that kv (v 6= r) is a
vector with unknown dimension at this step.

3. The role of step 4 is to identify the index i of the first zero component
kih of vector kh so that we can update it after, rather than updating on
previously settled components of kh.

4. Step 5 is the one in which we compute dim kv, which will be required for
the next steps. This computation follows the equations in 4.3. Remark that
if v = r, then there will be no need to compute dim kr, as it is initialized
to 1 in step 2.
Note that since in this step we calculate the dimension of the selected
vertex v from Q, then all the entries of kv should be already found and
this is what imposed choosing the highest level block from Q every time we
want to select a vertex. In fact, if we select a vertex v from Q which doesn’t
occupy the highest level among those in Q, it might happen that its vector
kv isn’t fully completed, as for example a higher level unselected vertex t
from Q might impose new entries in kv (if ∃ E ∈ FSX(t) and v ∈ H(E)).

140 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

5. The sixth step consists in multiplying all the components of kv by wE(v, h)
in order to obtain the weight of all the paths from r to h passing through v
via the hyperarc E. However, we’ll fill these new components of kh starting
from kih.

6. Step 7 is accessed only if d+X(h) = 0 (i.e if h is an installed block) obeying
the calculation of the cost via the proposed cost function. In such cases,
we multiply the newly calculated components of kh in step 6 by CC(h) and
add each one of them in the variable S. Moreover, the vertex h is added
to the set A.

7. After having calculated the total CC S of the G-path X, we still have to
add the BCs of all the installed blocks (present in the set A) into S. This
is achieved in step 8.

8. Step 9 consists in just assigning the cost "R1" of the first selected option
X in the variable SMin, with its corresponding G-path X assigned in K,
as this will be the first and only option tested so far and thus will represent
the option with the least cost.

9. The tenth step is responsible of initializing the next RP to zero, in which
we will be associating later the cost of the following G-path chosen from
M .

10. In step 11 we update SMin to the possible lower cost found (if it was less)
and update K to the corresponding lower cost G-path.

11. The final step generates G-paths of Hr from the G-path X. It searches for
all vertices u with out-degree zero in X and for each, find the hyperarcs
E ∈ FSHr(u) in order to add the generated option X + E to M . It can
be easily concluded that such generated options are also G-paths.

A flowchart diagram of the MCD algorithm is pictured in Fig. 4.5.

The MCD algorithm clearly doesn’t seem to be a fast algorithm due to the large
number of instructions and loops it involves. In the following section, we will
perform a worst case analysis to this algorithm. However, since it’s typically
impossible to determine an exact worst-case scenario (as in most worst case
analysis problems), we will consider scenarios that are worse than the worst
case. This computational complexity analysis will yield an upper bound on the
resources required by the algorithm.

4.4 Computational Complexity of the MCD algorithm

Let Hr be an input directed hypergraph which contains L levels (disregarding
the level of r as previously mentioned), with |V (Hr)| = n and |E(Hr)| = m.
We’ll consider the following parameters:

• Ei =
⋃

v/ L(v)=L−i+1

FS(v); Obviously EL = φ.

• t = max
i=1,··· ,L−1

|Ei|.

• W = {v/d+Hr
(v) = 0}.

4.4 Computational Complexity of the MCD algorithm 141

Figure 4.5: Structure of the Minimum Cost Design algorithm

A series of different steps are necessary to analyze the computational complexity
of the MCD algorithm, which will be consecutively presented in this section
[102].

4.4.1 The maximum number of hyperarcs in a G-path

We’ll explore the maximum number of hyperarcs that any G-path of Hr with
root {r} can ever include. Let X be such a G-path. Since the out-degree of
each vertex in X is either 0 or 1, and the tail set of any hyperarc in X is
a non-empty set, then it can be easily concluded that |E(X)| ≤ |V (X)|. As
|V (X)| ≤ n (since V (X) ⊆ V (Hr)), so |E(X)| ≤ n. More precisely, X contains
at most n − |W | hyperarcs because the vertices of out-degree zero in Hr will
never contribute to add hyperarcs to any G-path.

4.4.2 An upper bound for the total number of G-paths

In this part, we will find an upper bound for the total number of possible G-
paths of Hr with root {r}. For this, we adopt the same SDR option’s generation
concept described by the algorithm (step 12) to estimate this number of gen-
erated G-paths. As an initialization we have the option X = ({r}, φ), which

142 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

generates only one option from Hr defined by the G-path ({r} ∪ ℑ, {Er}), and
contains only one hyperarc. Obviously, this last option generates |E1| G-paths
of Hr with root {r}, each of which contains exactly 2 hyperarcs. In turn, each
of these |E1| options generates less than ct G-paths for some c constant, each
containing exactly 3 hyperarcs. As an example, one of these |E1| options might
generate less than |E1| + |E2| G-paths with root {r}; another might form less
than |E1| + |E2| + |E3|, · · · depending on the existing levels of vertices in the
selected G-path from the |E1| formed ones. As a conclusion, we can remark
that the total number of generated G-paths of Hr with root {r}, which contain
at most 3 hyperarcs each, will be a function in O(t2).

Proceeding in the same manner, we can remark that the total number of G-
paths of Hr with root {r} containing at most k hyperarcs will be a function
which belongs to O(tk−1). Consequently, the total number of options generated
by the algorithm will be a function in O(tn−|W |−1), since any G-path of Hr with
root {r} contains at most n− |W | hyperarcs (explained in subsection 4.4.1).

4.4.3 An upper bound for the dimension of kv

In some steps of our algorithm, we need to check all the components of a kv
vector for a certain task. In this subsection, we will find an upper bound for the
dimension of such a vector in order to estimate the number of times we enter
such loops.

Since the dimension of a kv vector stands for the number of paths from the
vertex r to v in a G-path with root {r}, we will have to investigate a vertex v
which is connected to r by the maximum number of paths. Recall that a G-
path with root {r} is a directed hypergraph obtained from Hr whose vertices’
out-degrees is either zero or one.

We’ll introduce a particular G-path with root {r}, obtained from an input di-
rected hypergraph Hr containing L levels, call it Gmax. It is defined such that:
it contains at least one vertex in level 1, the out-degree of each vertex v s.t
L(v) = i (i 6= 1) is 1 where FS(v) = {Ev} with Ev = ({v}, {x/L(x) < L(v)}),
and the out-degree of r is 1 with FS(r) = {Er} (where Er = ({r},ℑ) as defined
in 4.3). It’s clear that the out-degree of the vertices in level 1 can’t be except
zero, like it’s the case in any input directed hypergraph.
In other words, Gmax is defined such that an "and" connection exists between
any block v 6= r and all the blocks which occupy a lower level than v. A picto-
rial view example of this particular defined G-path is illustrated in Figure 4.6.
Note that the level of any vertex in a G-path of Hr with root {r} is the same
as that in Hr.

Let v be a vertex in Gmax s.t v 6= r and L(v) = k. A path from r to v travers-
ing any combination and any number of vertices from levels L till k + l, all

4.4 Computational Complexity of the MCD algorithm 143

Figure 4.6: A particular illustration of the defined G-path of Hr with root {r}, "Gmax"

occupying different levels than each other, can be found. Note that the paths
traverse the vertices in a decreasing order of the level that each vertex occupies.

Obviously, all the nodes in Gmax occupying a certain level are connected to r
by the same number of paths. Let v be a vertex in level k. We’ll denote an
upper bound for the dimension of kv in Gmax by nk and the number of vertices
occupying level k in Hr by ak.

It’s clear that nL is equal to 1, since any vertex x in level L in Gmax can be
reached from r by only 1 path which is (r, Er, x). However, a vertex in level
L − 1 is connected to r by at most aL paths, each one traversing one of the
nodes in level L in Gmax, thus nL−1 = aL.
Let y be a vertex in level L− k in Gmax. The value nL−k is equal to
nL−(k−1)(aL−(k−1)) + nL−(k−1). In fact, a path from r to a vertex x in level
L− (k− 1) (which are at most nL−(k−1) paths) can be extended to a path from
r to y via a hyperarc E ∈ FS(x)

⋂
BS(y). This makes an upper bound of

nL−(k−1)(aL−(k−1)) paths, traversing all the vertices x in level L − (k − 1) in
Gmax. The remaining paths which don’t traverse a vertex in level L− (k − 1)
are at most nL−(k−1) paths, since the nL−(k−1) paths from r to a vertex x in
level L − (k − 1) in Gmax can be transformed into paths from r to y by just
replacing the destination x of each path by y.

144 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

So we can write the following recurrence relation:

{ nL = 1 nL−1 = aL

nL−k = nL−(k−1)(aL−(k−1)) + nL−(k−1)

(4.4)

It’s true that Gmax doesn’t represent a logical choice of implementation from
the technical point of view but however, a vertex v occupying the first level in
one of these G-paths can be connected to r by the largest number of paths,
because all possible combinations of vertices to form a path from r to a vertex
v in level 1 can be considered in Gmax.

Let s = max
i=2,··· ,L

ai. By a simple induction process, we can easily conclude that

nL−k belongs to O(sk). Consequently, n1 = nL−(L−1) which stands for an up-
per bound of the dimension of any kv vector ever, belongs to O(sL−1).

Remark that a similar reasoning has been used in this subsection as well as in
section 3.3 of chapter 3.

4.4.4 The worst case complexity analysis

We have showed in chapter 2 that
∑

v∈V (Hr)
d−Hr

(v) =
∑

e∈E(Hr)
|H(e)|. In this

part, we will denote both sums by d. Consider again our MCD algorithm for
which we will find an expression of the computational complexity. It’s clear
that the cost of the initialization in step 2 of the algorithm is O(n) time. We’ll
assume that each operation of selection and removal from sets M,Q, or A as
well as insertion into M,Q, or A has unit cost.

Now, since each vertex is inserted and removed from the set Q at most once
(because the selection of an element u from Q satisfies L(u) = max{L(w);w ∈
Q}), we can conclude that in step 3 of our algorithm, each hyperarc in X will
be examined only once (i.e the first time the hyperarc is selected) and at each
time selected, all its head nodes will be examined in turn. Thus steps 4 till 7
of the algorithm will be executed

∑

e∈E(Hr)
|H(e)| = d times inside the loop

"repeat · · · until Q = φ".
Steps 4, 6 and 7 run in O(sL−1) each time we enter the loop "repeat · · · until
Q = φ", as we need in all these steps to explore the components of a certain kv
vector, whose dimension is upper bounded by a function in O(sL−1) (explained
lately in subsection 4.4.3). On the contrary, step 5 will be executed a total of
∑

v∈V (Hr)
d−Hr

(v) = d times all along the repeated iterations of the "repeat · · ·
until Q = φ" loop, since the dimension of each vertex in X will be calculated
only once.

Step 8 runs obviously in O(n) time, as a maximum of n vertices exist in A. Steps
9, 10, and 11 require negligible execution, just a couple of assignments and com-
parisons. Step 12 runs in O(m) time, as a maximum of m hyperarcs would be

4.5 Application 145

added to the existing option in hand. All steps 1 till 12 run in O(tn−|W |−1)
time, since the loop "repeat · · · until M = φ" is executed a "number of op-
tions" times, which is a function in O(tn−|W |−1) (as derived in subsection 4.4.2).

Eventually, we can conclude after combining all the required time executions
that the MCD algorithm runs in O((dsL−1+d+n+m)tn−|W |−1) or equivalently
O(dtn−|W |−1sL−1) time. For a more compressed form, consider the parameter
a = max(d, t, s). Then, the MCD algorithm runs in O(an−|W |+L−1) time. Thus,
an exponential upper bound is attained for the resources required by the MCD
algorithm.

This computational complexity analysis gives an idea that the time required
by this algorithm might grow fast with the growth of the graph structure of
the SDR multi-standard system, but still this is a worst-case analysis for the
resources’ requirments and need not necessarily represent the exact number in
most of the cases. In the next section, we will exhibit some examples on which
we will apply our algorithm, in order to highlight how its complexity actually
might evolve.

4.5 Application

The MCD algorithm has been implemented by using C language. Details of the
coding methods, functions and structures related to nodes, hyperarcs, directed
hypergraphs, and other necessary definitions and relations can be found in the
Appendix. In this section, we show the results of running this program code
on several examples to give an idea of its performance, starting by one directed
hypergraph example and evolving it by always adding one more hyperarc. For
each one of these examples, we will state the attained output minimum cost
design with its associated cost, the total number of options examined by the
algorithm (i.e the total number of G-paths), and the execution time required
to get the output.

Let’s start with the directed hypergraph example of Fig. 4.7 which contains 26
nodes and 28 hyperarcs and on which we associate cost parameters with nodes
and BF-reductions of all the hyperarcs. Recall that parameters associated with
nodes are building cost/computational cost (BC/CC), while those associated
to the BF-reduction of a hyperarc represent the number of calls (NoCs). It’s to
be noted that the values of all parameters are arbitrarily chosen. After entering
this instance of a directed hypergraph to our program code, we got the following
results:

• The minimum cost option of implementation is the one whose GNG is
pictured in Fig. 4.8, characterized by installing in the design the operators
W,Y,K,&R.

• The cost of this option is 170.
• The number of G-paths examined by the algorithm are 99,190.

146 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

Figure 4.7: A directed hypergraph example containing 26 nodes and 28 hyperarcs

• The output was returned after about 95.8 minutes.

Note that the machine on which we were running our code has the following
CPU and RAM characteristics: Genuine Intel(R) CPU with frequency 1.83
GHz, 2.00 GB of RAM.
The other directed hypergraphs examples on which we applied our algorithm
were formed from the example of Fig. 4.7, each time adding one more hyper-
arc. We added consecutively the hyperarcs ({I}, {S}), ({U}, {X}), ({E}, {K}),
({I}, {O,P,Q}), ({M}, {T}), and ({O}, {T, U}) to form the examples illus-
trated in Figures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 respectively. The minimum
cost option of implementation selected by our program code was the same in
all examples, pictured by the GNG of Fig. 4.8 and whose corresponding cost
is 170. The number of options and time required for each one of these generic
design examples are hereby stated.

Example 2 of Fig. 4.9:

• The number of options checked by the program code are 143,640.
• The output was returned after about 188 minutes.

Example 3 of Fig. 4.10:

• The algorithm checks 168,936 G-paths.
• The output was returned after about 258 minutes.

4.5 Application 147

Figure 4.8: The GNG of the minimum cost option of implementation of the graph structure
of Fig. 4.7

Example 4 of Fig. 4.11:

• The program examines all the 226,224 G-paths.
• The output was returned after about 7.83 hours.

Example 5 of Fig. 4.12:

• The number of options checked are 350,712.
• The time required was about 19 hours.

Example 6 of Fig. 4.13:

• The number of G-paths that our algorithm examines is 499,518.
• The output was returned after about 38 hours.

Example 7 of Fig. 4.14:

• The program examines all the 1,395,648 options of implementation.
• It required around 13 days of execution before returning the output.

148 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

Figure 4.9: Example 2: adding one more hyperarc to the directed hypergraph of Fig. 4.7

Figure 4.10: Example 3: adding two more hyperarcs to the directed hypergraph of Fig.
4.7

4.5 Application 149

Figure 4.11: Example 4: adding three more hyperarcs to the directed hypergraph of Fig.
4.7

Figure 4.12: Example 5: adding four more hyperarcs to the directed hypergraph of Fig.
4.7

150 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

Figure 4.13: Example 6: adding five more hyperarcs to the directed hypergraph of Fig.
4.7

Figure 4.14: Example 7: adding six more hyperarcs to the directed hypergraph of Fig. 4.7

4.6 Conclusion 151

It’s obvious that the number of options is growing fast with the increase in the
number of hyperarcs, and this growth differs depending on the location of the
added hyperarcs. So, it seems clear that our algorithm is a more complex tech-
nique than the previously selected SA technique (which doesn’t require much
time of execution since it’s a heuristic) but however, the MCD algorithm is
obviously capable of providing an exact-optimal solution unlike the SA tech-
nique which yields a near-optimal one. Thus, the designer has a choice of either
choosing our more reliable technique which gives the best possible solution but
needs more time (but still is less complex than the ES technique since we have
ignored some options of implementation in our search), or to accept good solu-
tions which are not necessarily the very best (especially for large space inputs)
but require less computing effort.
It’s important to note that a long time of execution of an algorithm need not
pose a problem in such kind of research, because the algorithm is run only
for once before forming the design and afterwards the system will be designed
based on the result of the chosen algorithm.

In the example that we exhibit in this section, we evolved the directed hyper-
graph representation of the multi-standard system by adding hyperarcs to the
directed hypergraph. One might ask: why not add nodes or even increase the
number of levels in the figure? In fact, adding nodes might most probably yield
an increase in the number of hyperarcs of the directed hypergraph, and adding
more levels to the figure will certainly increase both its number of nodes and
number of hyperarcs. So, one can notice that finally all ends at adding more
hyperarcs to the directed hypergraph to make it more complicated, which cer-
tainly increases the number of options of implementation for a multi-standard
system design.

4.6 Conclusion

Our research dwells with the optimization of the SDR multi-standard system, in
order to construct an optimal design, using graph theory. After having proved
in the previous chapter that our stated optimization problem is an NP-problem
under a certain constraint, we had to find some way to reduce its complexity.
For this reason, we have performed in this chapter an exploration on the vari-
ous types of options of implementation and proved that those whose generated
graphs are not G-paths don’t contribute for minimum cost designs. Thus, we
were able to restrict our study to only the alternatives whose generated graphs
are G-paths. This was the first step. Afterwards, we adopted various defini-
tions and notations of directed hypergraphs to exhibit a new algorithm whose
role is to identify the G-path of a multi-standard system having the minimum
cost. A computational complexity analysis of our algorithm showed that its re-
sources use is exponentially upper bounded and thus, we have presented several
examples on which we applied our algorithm in order to give a brief idea on
the evolution of its complexity. Although it seemed to require a non-negligible
amount of computing time as the directed hypergraph input grows (by adding

152 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

more and more hyperarcs for instance) as compared with a near-optimal tech-
nique which normally requires negligible computing effort, yet our proposed
algorithm gained importance as it provides the best and exact-optimal solution
unlike the heuristic tools.

Conclusions and prospects

This thesis has addressed the problem of designing an optimal SDR multi-
standard system which balances between flexibility and computing efficiency
in the context of the theoretical approach of the parametrization technique,
for identifying the most appropriate Common Operators (CO) to be installed
in the system supporting several communication standards. Our work was to
theoretically model the graphical approach of the multi-standard equipment as
well as the optimization problem associated with it using graph theory, and
select or develop new theoretical tools to solve it.

General Conclusions

We began this dissertation by describing the evolution of the SoftWare Ra-
dio (SWR) technology which was driven by the accelerating rate of standards’
emergence, as a replacement of the conventional "Velcro" approach which will
become obsolete very soon. This technology, which tends to move the data
conversion right next to the antenna and to do all signal processings in the
digital domain, is faced with several obstacles related to the RF-front end and
the Analog-to-Digital converters which are not able to cope with such high
frequencies. To overcome these challenges came the Software-Defined Radio
(SDR), the practical version of SWR, which employs Intermediate Frequency
(IF) sampling. The parametrization technique was proposed as a methodology
to design such SDR systems which consists in selecting the COs, inside and
between the different supported standards in the system, whose operations can
be modified by a simple parameter adjustment. All these ideas were highlighted
in Chapter 1 but indeed, we have further presented two approaches to identify
and develop COs. However, the theoretical approach was explored in greater
details as it represents the foundation of this thesis subject.

In the theoretical approach, we discuss the idea of decomposing the supported
standards into several layers by a graphical illustration, which provides a picto-
rial view of all the design alternatives of the multi-standard system. In order to
find the best of the available options of implementation, the graphical approach
was turned into an optimization problem by stating a cost function which is
required to be minimized. There are many cost parameters which can be asso-
ciated to this problem but among them, we mentioned the BC, CC and NoC
which were previously considered to form the suggested objective function. The

153

154 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

BC can represent the number of logic gates, number of execution cycles, area
· · · in an FPGA or a DSP implementation or in a heterogeneous design con-
sisting of both DSPs and FPGAs. CC can be considered in terms of execution
time. Based on these cost parameters we presented the cost function using the
weighted sum approach, because of its popularity and effectiveness in many
multi-objective problems, to aggregate both objectives of minimizing the total
BC and total CC. Our objective in this thesis was to optimize this suggested
cost function using graph theoretical models and characterizations of different
aspects of the problem. This formed our optimization problem, where stochastic
techniques which give a near-optimal solution were selected by a previous PhD
student to solve it because he was intuitively convinced that it’s a hard problem.

In Chapter 2, we started with the fundamentals of graph theory by stating
various definitions and theorems related to graphs, digraphs, hypergraphs and
finally directed hypergraphs. This part provided a clear idea of the different
notions and types of graphs, which enabled us later to choose the most adequate
modeling variants for our problem. We also presented in this chapter various
applications and problems arising in graph theory to highlight some examples
of such theoretical modelings. The theory of complexity was further introduced
in some details as it was used to study the complexity imposed by our optimiza-
tion problem. We presented the class of polynomially solved problems, the class
P, along with the problems considered to be intractable in NP-P, and finally
highlighted the notion of the hardest solvable problems called NP-complete.

The graphical structure of the SDR multi-standard system introduced in chap-
ter one was modeled as a directed hypergraph in chapter 3, which was neces-
sary to represent both the "OR" and "AND" dependencies, accompanied with
numerical values associated to its different nodes and arcs. This directed hy-
pergraph representation provided all the alternatives capable of implementing
the multi-standard system but however, we explained how we can obtain from
it our graphical suggestion for any one of these design alternatives, also illus-
trated as a directed hypergraph and called a generated graph. Moreover, we
have formulated in this chapter the cost function presented in chapter one in
an alternative equation form as function of the weights of paths in a directed
hypergraph using the generated graph of each option. All these theoretical
modelings and others have given the problem a formal form stated in a theo-
retical manner.
Our aim is to select the option of implementation which possesses the least
cost imposed by the proposed cost function and thus, we have performed an
exploration to find how huge is the number of alternatives from which we are
supposed to choose the best one. In fact, we were able to attain an exponen-
tial upper bound for this number as function of some considered parameters of
the directed hypergraph representation of a multi-standard system. This was
a clue that our optimization problem is not an easy one and thus came the
idea of proving that it’s an NP-problem. For this, we changed it into a decision
problem since any optimization problem is at least as hard as its corresponding

4.6 Conclusion 155

decision problem version. Then we presented a detailed proof demonstrating
that the associated decision problem to our optimization problem is NP but
on condition that the number of levels in the graph structure doesn’t exceed a
certain constant, which is considered to be usually the case.

After having proved that our optimization problem is complex, we thought of
a way to try to reduce the number of options necessary to be tested. In fact
we realized that the options of implementation can be divided into those whose
generated graphs admit a duplicated part and those illustrated as G-paths. In
Chapter 4 we have proved that when searching for a minimum cost design,
we can disregard the alternatives in which duplication occurs in their generated
graphs, because we can always find a lower cost design whose generated graph
is a G-path. This helped us propose a new Minimum Cost Design (MCD)
algorithm to solve our optimization problem, using various modeling notions
concerning directed hypergraphs, which examines only the G-path options of
implementation instead of testing all of them. The algorithm returns as output
the G-path corresponding to a design possessing the minimum cost, from which
we can extract the common operators to be installed in the design being the
block vertices with out-degree zero. We analyzed the computational complexity
of MCD and found out that the resources’ requirement is exponentially upper
bounded and thus the problem still remains a complex one. In our complexity
analysis, we have attained a bound which is worse than the worst case and
that’s why we considered that we have found an upper bound for the execution
time of the algorithm and not the exact one.

Since this was a worst-case analysis, we were convinced that this need not
be the required computing effort in most of the cases and so we have applied
our algorithm on various generic examples to discover its complexity evolution
after having developed a program code for MCD using C language. Results
show that MCD does actually require an important computing effort which
increases rapidly as we increase the number of hyperarcs in the directed hyper-
graph representation of a multi-standard system, due to the huge increase in
the tested options of implementation. Although our algorithm requires more
computing effort than stochastic heuristic techniques which usually need a neg-
ligible amount of execution time but however, MCD is capable of providing an
exact optimal solution and not a near-optimal one. So, the designer has the
choice of either choosing a technique which needs a non-negligible amount of
time but provides a more reliable solution, or choosing one which gives a good
solution (maybe not the best especially for big size instances) but needs much
less time. It’s important to highlight the point that time requirements might
not constitute a huge restriction behind choosing our technique. Some might
for example sacrifice months to get an answer but then design the best optimal
multi-standard system.

156 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs

Prospects

• In this approach common operators will be re-used by several communica-
tion blocks, thus imposing scheduling issues at run time. A methodological
procedure has to be proposed to arrange the over-use demands of each
common block in the design, in which it might be necessary to duplicate
certain operators.
• The complexity of the presented optimization problem in this dissertation

can be further examined to discover if it is even more complex, i.e by
proving it to be an NP-complete problem if possible.
• The cost function was formulated using the weighted sum approach. How-

ever, other techniques can be used for such multi-objective optimization
problems which can be investigated. In addition, one possibility might be
to combine scheduling issues with the current graph optimization problem
by adding more objectives to the formulated cost function.
• Our algorithm which gives an exact-optimal solution will be a better tool

than the Exhaustive search technique to validate and compare the results of
various heuristic tools, if a certain designer insists on using a fast stochastic
search technique.
• The exclusion of some of the options of implementation has definitely re-

duced the complexity of our optimization problem. One question arises
which is to explore the amount by which the number of examined options
of implementation is reduced, and consequently by how much the complex-
ity of our problem is improved.
• The idea of ignoring the options of implementation whose generated graphs

don’t correspond to G-paths can be exploited on any other future proposed
solution for our problem, whether a deterministic or a heuristic optimiza-
tion tool, leading to a less complex technique by investigating a less number
of alternatives capable of implementing the multi-standard system.

Appendix

Appendix A

The source code

This appendix presents the C program source code for the proposed Minimum
Cost Design (MCD) algorithm.

A.1 Structures and Functions for the input

Each node in the figure is represented by an element of type "Node" character-
ized by its name, BC, CC and the level that it occupies. A linked list structure
representing the vertices in the graph is defined as follows:
typedef struct node
{

char name;
int BC;
int CC;
int level;
struct node *nxt;

}Node;

Hyperarcs in the associated directed hypergraph are as well represented by a
linked list. Each element in this linked list contains another linked list responsi-
ble for creating the unknown number of head nodes in a hyperarc. Both linked
lists are introduced hereby. Note that there was no need for a linked list repre-
sentation of the tail set of the hyperarcs because there is exactly one tail node
(the parent node) in each hyperarc.

typedef struct HeadNoC
{

char head;
int NoC;
struct HeadNoC *nxt;

}HeadNoC;

159

160 The source code

typedef struct Hyperarc
{

char tail;
HeadNoC* hNoC;
struct Hyperarc *nxt;

}Hyperarc;

Fig. A.1 shows a sequence of elements each representing one hyperarc in the
multi-standard graph structure.

Figure A.1: An illustration of the linked list of type "Hyperarc" creating a set of hyperarcs

The input was created by a structure (called "Graph") that contains the two
linked lists, structure "Node" and structure "Hyperarc", as follows:

typedef struct graph
{

Node *N;
Hyperarc *H;

}Graph;

The following three functions develop the three introduced linked list chains.
All of them return a pointer which points to the first element of the created
linked list.

• Node* CreationListNode(int NumberOfNodes); Creates a chain of elements
corresponding to the nodes in the graph. Note that we choose to enter
the node r in Hr before any other node in the graph structure of an SDR
multi-standard system.

• HeadNoC* CreationHeadNoC(int NumberOfHeads); Develops the list of
head nodes of a certain hyperarc.

• Hyperarc* CreationListHyperarc(int NumberOfHyperarcs); Forms a sequence
of elements representing the hyperarcs in the input directed hypergraph.
The function "CreationHeadNoC" is used inside this function.

The details of the code of each of these functions include:

• Node* CreationListNode(int NumberOfNodes)
{

int i;
Node *FirstNode, *aux, *new;

A.1 Structures and Functions for the input 161

FirstNode=malloc(sizeof(Node));
printf("Enter the BC, CC, level and name of the first node:

");
scanf("%d %d %d", &FirstNode->BC, &FirstNode->CC,

&FirstNode->level);
while(getchar() != ’\n’);
FirstNode->name=ReadCharacter();
aux=FirstNode;
for(i=1; i<NumberOfNodes; i++)
{

new=malloc(sizeof(Nodes));
printf("Enter the BC, CC, level and name of the %d th node:

",i+1);
scanf("%d %d %d", &new->BC, &new->CC, &new->level);
while(getchar() != ’\n’);
new->name=ReadCharacter();
aux->nxt=new;
aux=aux->nxt;

}
aux->nxt=NULL;
return(FirstNode);

}

• HeadNoC* CreationHeadNoC(int NumberOfHead)
{

int i;
Node *FirstHeadNoC, *aux, *new;
FirstHeadNoC=malloc(sizeof(HeadNoC));
printf("Enter the name of the first node in the head set of the

hyperarc ");
while(getchar() != ’\n’);
FirstHeadNoC->head=ReadCharacter();
printf("Enter the NoC associated with the first head in the

head set of the hyperarc ");
scanf("%d", &FirstHeadNoC->NoC);
aux=FirstHeadNoC;
for(i=1; i<NumberOfHead; i++)
{

new=malloc(sizeof(HeadNoC));
printf("Enter the name of the %dth node in the head set of

the hyperarc: ",i+1);
while(getchar() != ’\n’);
new->head=ReadCharacter();
printf("Enter the NoC associated with the %dth head in the

head set of the hyperarc ");
scanf("%d", &new->NoC);

162 The source code

aux->nxt=new;
aux=aux->nxt;

}
aux->nxt=NULL;
return(FirstHeadNoC);

}

• Hyperarc* CreationListHyperarc(int NumberOfHyperarcs)
{

int i, NumberOfHead;
Hyperarc *FirstHyperarc, *aux, *new;
FirstHyperarc=malloc(sizeof(Hyperarc));
printf("Enter the name of the tail of the first hyperarc: ");
while(getchar() != ’\n’);
FirstHyperarc->tail=ReadCharacter();
printf("Enter the number of the head nodes of the first hyper-

arc: ");
scanf("%d", &NumberOfHead);
FirstHyperarc->hNoC=CreationHeadNoC(NumberOfHead);
printf("\n \n");
aux=FirstHeadNoC;
for(i=1; i<NumberOfHyperarcs; i++)
{

new=malloc(sizeof(Hyperarc));
printf("Enter the name of tail of %dth hyperarc: ",i+1);
while(getchar() != ’\n’);
new->tail=ReadCharacter();
printf("Enter the number of the head nodes of the %dth

hyperarc: ",i+1);
scanf("%d", &NumberOfHead);
new->hNoC=CreationHeadNoC(NumberOfHead);
printf("\n \n");
aux->nxt=new;
aux=aux->nxt;

}
aux->nxt=NULL;
return(FirstHyperarc);

}

Note that characters were entered in a different way than integers since the
enter ’\n’ is considered as a character. To avoid this, we were in need of the
following function called "ReadCharacter" to input characters (instead of using
the scanf command) preceded by the code "while (getchar() != ’\n’);":

char ReadCharacter();
{

A.2 Remaining Structures and Functions for our program code 163

char character;
character=getchar();
character=toupper(character);
while(getchar() != ’\n’);
return character;

}

A.2 Remaining Structures and Functions for our pro-
gram code

A.2.1 Remaining structures

• Any option of implementation generated by the algorithm is of the form
of a G-path. In our program code, it is necessary to provide a logical rep-
resentation of an option of implementation. Our choice was to consider
that every G-path is sufficiently characterized by the set of hyperarcs that
it occupies. The following is a linked list structure, called "ListOptions",
corresponding to a set of G-paths:

typedef struct ListOptions
{

Hyperarc* A;
struct ListOptions *nxt;

}ListOptions;

It contains only one element, which is a pointer (called "A") to the first
element of a linked list of type "Hyperarc", which corresponds to the group
of hyperarcs that the option possesses. As an example, fig. A.2 illustrates
a sequence of elements of type "ListOptions" each representing one option
of implementation.

Figure A.2: An illustration of the linked list of type "ListOptions" creating a set of options
of implementation

• This linked list structure, called "LetterOnly", reserves the character names
of certain desired nodes in the figure and is defined as follows:

164 The source code

typedef struct letteronly
{

char chr;
struct letteronly* nxt;

}LetterOnly;

• In our algorithm, for every selected option of implementation ”X”, we have
introduced a vector "kv" on every vertex v of X, which is exploited to cal-
culate the cost of the option ”X”.
The vector "kv" will be represented in the code by a linked list called "Vec-
tor" which only contains an integer variable called "val". Each element of
this list will correspond to an entry in the vector "kv". This linked list
structure is defined as:

typedef struct vector
{

int val;
struct vector *nxt;

}Vector;

• Each vertex in the set Q of the algorithm, in which all the vertices in the
selected G-path "X" will be invoked step by step, is represented by an
element in the linked list called "Letter", defined as follows:

typedef struct letter
{

char chr;
int BC;
int CC;
int level;
Vector *V;
struct letter *nxt;

}Letter;

For each node v which will be invoked in the set Q, we will return to the
input linked list of nodes (of type "Nodes") and get all the information
about this node including its character name, BC, CC, & level. Still, we
need to create the vector "kv" and thus we include a pointer to the first
element of the recently introduced linked list of type "Vector", correspond-
ing to the vector "kv".

• During the calculation process of the cost, we introduced in the algorithm
a set A in which we reserve the nodes which have out-degree zero in the
option ”X” in hand, in order to finally add their BCs to the cost S (ac-
cording to step 8 of the algorithm). Thanks to the linked list structure,
as we will once again use it to create the last structure in our program

A.2 Remaining Structures and Functions for our program code 165

corresponding to the set A in the algorithm. Each element in this list will
include a character representing the name of the node along with the only
necessary information in this case which will be the BC of the vertex. This
linked list structure (called "LetterBC") will be defined by the following:

typedef struct letterBC
{

char chr;
int BC;
struct letterBC *nxt;

}LetterBC;

A.2.2 Remaining functions

1. ListOptions * CopyOption(ListOptions *X); Creates a copy of a certain se-
lected G-path X. It needs only one input parameter, which is a pointer to
the option that needs to be copied. It returns a variable of type "ListOp-
tion *", corresponding to a pointer to the newly created copy of the option.
Code details of this function are presented hereby.

ListOptions * CopyOption(ListOptions *X)
{

ListOptions *perm=malloc(sizeof(ListOptions));
perm->A=malloc(sizeof(Hyperarc));
Hyperarc *perm1=perm->A;
Hyperarc *tmp1=X->A;

1
2
3
4

perm1->tail=tmp1->tail;
perm1->hNoC=malloc(sizeof(HeadNoC));
HeadNoC *perm2=perm1->hNoC;
HeadNoC *tmp2=tmp1->hNoC;
perm2->head=tmp2->head;
perm2->NoC=tmp2->NoC;
tmp2=tmp2->nxt;
while(tmp2 != NULL)

5
6
7
8
9

10
11
12

{
HeadNoC *new=malloc(sizeof(HeadNoC));
new->head=tmp2->head;
new->NoC=tmp2->NoC;
tmp2=tmp2->nxt;
perm2->nxt=new;
perm2=new;

13
14
15
16
17
18

}
perm2->nxt=NULL;
tmp1=tmp1->nxt;
while(tmp1 != NULL)

19
20
21

{

166 The source code

Hyperarc *new1=malloc(sizeof(Hyperarc));
new1->tail=tmp1->tail;
new1->hNoC=malloc(sizeof(HeadNoC));
HeadNoC *perm2=new1->hNoC;
HeadNoC *tmp2=tmp1->hNoC;
perm2->head=tmp2->head;
perm2->NoC=tmp2->NoC;
tmp2=tmp2->nxt;
while(tmp2 != NULL)

22
23
24
25
26
27
28
29
30

{
HeadNoC *new=malloc(sizeof(HeadNoC));
new->head=tmp2->head;
new->NoC=tmp2->NoC;
tmp2=tmp2->nxt;
perm2->nxt=new;
perm2=new;

31
32
33
34
35
36

}
perm2->nxt=NULL;
tmp1=tmp1->nxt;
perm1->nxt=new1;
perm1=new1;

37
38
39
40

}
perm1->nxt=NULL;
perm->nxt=NULL;
return(perm);

41
42
43

}

Lines 1 till 42 of the code perform a copy of the option pointed by X and
in line 43, we return this copy.

2. void AddHyperarcToOption(ListOptions *Option, Hyperarc *perm); adds a
certain selected hyperarc to the group of hyperarcs already existing in a
specific option of implementation. This function needs two input parame-
ters; one is a pointer to an element of type "ListOptions" representing the
associated option of implementation, & the other is a pointer to an element
of type "Hyperarc" corresponding to the hyperarc that will be copied. This
function’s code details involve:
void AddHyperarcToOption(ListOptions *Option, Hyperarc *perm)
{

Hyperarc *copy=malloc(sizeof(Hyperarc));
copy->tail=perm->tail;
copy->hNoC=malloc(sizeof(HeadNoC));
HeadNoC *copy1=copy->hNoC;
HeadNoC *perm1=perm->hNoC;
copy1->head=perm1->head;
copy1->NoC=perm1->NoC;
perm1=perm1->nxt;
while(perm1 != NULL)

1
2
3
4
5
6
7
8
9

{

A.2 Remaining Structures and Functions for our program code 167

HeadNoC *new=malloc(sizeof(HeadNoC));
new->head=perm1->head;
new->NoC=perm1->NoC;
perm1=perm1->nxt;
copy1->nxt=new;
copy1=new;

10
11
12
13
14
15

}
copy1->nxt=NULL;
copy->nxt=Option->A;
Option->A=copy;

16
17
18

}

Lines 1 till 16 of the code perform a copy of the hyperarc pointed by "perm".
This new copy will be added to the beginning of the linked list of hyperarcs
present in the option pointed by "Option", which is done in lines 17 and
18.
This function, along with the "CopyOption" function, will be able to form
the generated G-path ”X + E” of the algorithm.

3. int CheckIfNodeHasEmptyForwardStar(ListOptions *Y, char vertex); its
role is to check whether a specific selected vertex has out-degree zero (in
which case the function returns ”1”) or not (then the function returns ”0”)
in a certain selected G-path. It will be used for step 12 of the algorithm as
well as to check the condition of step 7. It needs two input parameters; the
first parameter being a pointer to an element of type "ListOptions" which
stands for a certain option of implementation, while the second parameter
will be a character that represents the name of the node that is going to
be checked for emptiness of its forward star in the corresponding G-path.
Details of its code statements include:

int CheckIfNodeHasEmptyForwardStar(ListOptions *Y, char ver-
tex)
{

int a=1;
Hyperarc *U=Y->A;
while((U != NULL) && (a == 1))

1
2
3

{
if(U->tail == vertex) 4

{
a=0; 5

}
U=U->nxt; 6

}
return(a); 7

}

In fact, in the statements of this function, we verify if the character node
"vertex" is a tail node of any of the hyperarcs present in the option of imple-

168 The source code

mentation pointed by Y (see condition of line 4). If so, then "vertex" clearly
doesn’t have an empty forward star in this option and we shall return ”0”
as an integer (line 5). But if after having examined all the hyperarcs we
found out that "vertex" isn’t a tail node of any, then we would conclude
that its forward star in this option is empty and thus return the integer ”1”.

4. Deletion of an option of implementation: Our aim is to accomplish the
"remove X ∈ M" part of the statement "select and remove X ∈ M"
of the algorithm. However, we will need to invoke one function inside
another. Accordingly, we will use the function EraseElements inside the
DeleteOption function.

• void EraseElement(ListOptions *X); erases the elements of the option
(using the library function free), element by element, from the elements
of type HeadNoC up to those of type Hyperarc and finally up to the
element of type ListOption pointed by X. It only needs as input pa-
rameter a pointer to the element of type "ListOptions" which we desire
to delete. It includes the following code statements:

void EraseElement(ListOptions *X)
{

Hyperarc *Q1=X->A;
Hyperarc *Q2=X->A;
while(Q1 != NULL)

1
2
3

{
HeadNoC *P1=Q1->hNoC;
HeadNoC *P2=Q1->hNoC;
while(P1 != NULL)

4
5
6

{
P2=P2->nxt;
free(P1);
P1=P2;

7
8
9

}
Q2=Q2->nxt;
free(Q1);
Q1=Q2;

10
11
12

}
free(X);

A.2 Remaining Structures and Functions for our program code 169

13
}

• void DeleteOption(ListOptions **FirstOption, ListOption *X); tests if
the option that we want to remove is the first element in the linked
list of options (of type "ListOptions") or not, where different deleting
strategies will be used in either cases. It requires two input parameters;
one is a pointer to the element from the linked list of type "ListOptions"
which we want to delete. The other parameter is of type "ListOptions
**" which corresponds to the first element of this linked list. Remark
that the passage by address strategy is used for this parameter by
referring to the address of a pointer (pointer to a pointer) instead of
the pointer itself, which is required since the first element in the linked
list of options might change (which is the case when it deletes the first
element of the chain). Hereby are the code details of this function:

void DeleteOption(ListOption **FirstOption, ListOption *X)
{

if(X == *FirstOption)

1
{

*FirstOption=(*FirstOption)->nxt;
EraseElement(X);

2
3

}

else
4

{
ListOptions *tmp=*FirstOption;
while(tmp->nxt != X)

5
6

{
tmp=tmp->nxt;

7
}
tmp->nxt=X->nxt;
EraseElement(X);

8
9

}
}

In this function, if the option we desire to delete was the first one, we
advance the pointer to the next element before erasing it (lines 1 till
3). Otherwise, we search for the element just preceding that pointed

170 The source code

by X and link it to the element following that at which X points (lines
4 till 9), and finally erase it.

5. int NotRepetition(LetterOnly **L, char name); This function was devel-
oped because in the code, we face situations where we need to test all the
head nodes of all the hyperarcs in a certain option of implementation. This
possibly imposes multiple tests for the same vertex. The "NotRepetition"
function checks if a specific node has already been selected or not in order
to avoid repeating certain required tasks. In fact, after having reserved the
character names of all the selected vertices so far in a linked list of type
LetterOnly, the "NotRepetition" function checks if the character name of
the node in hand is an element in this list. If it wasn’t, it adds it to this
linked list indicating that this vertex has been selected and there will be
no need to test it again if it was selected later on (see lines 8 till 17 of
the code). This function returns an integer value, which is either ”0” or
”1” respectively depending on whether the node we’re testing has already
been selected before or not. It accepts two input parameters; the first is a
pointer to a pointer of type "LetterOnly **", which will correspond to
the first element in a linked list of type "LetterOnly". The second input
parameter for this function is of type "char" and represents the name of
the node which is desired to check for repeatidness. The statements of this
function include:

int NotRepetition(LetterOnly **L, char name);
{

int a=1;
LetterOnly *P1=*L, *P2=*L;
while((P1 != NULL) && (a == 1))

1
2
3

{
if(P1->chr == name) 4

{
a=0; 5

}
P2=P1;
P1=P1->nxt;

6
7

}
if(a == 1) 8

{
if(*L == NULL) 9

{
*L=malloc(sizeof(LetterOnly));
(*L)->chr=name;
(*L)->nxt=NULL;

10
11
12

}

else 13
{

A.2 Remaining Structures and Functions for our program code 171

LetterOnly *new=malloc(sizeof(LetterOnly));
new->chr=name;
P2->nxt=new;
new->nxt=NULL;

14
15
16
17

}
}
return(a); 18

}

6. Deletion of a vertex v from the set Q: in the MCD algorithm, we will
need at some point to eliminate a selected element v from Q (the "se-
lect & remove v ∈ Q" statement). This will be done using the function
"DeleteVertex" which calls another function called "EraseElementVertex".
The two functions resemble to the previously explained "DeleteOption"
and "EraseElement" functions respectively, so we will present right next
their code statements without providing any explanation.

void EraseElementVertex(Letter *selectedQ)
{

Vector *Q1=selectedQ->V;
Vector *Q2=selectedQ->V;
while(Q1 != NULL)
{

Q2=Q2->nxt;
free(Q1);
Q1=Q2;

}
free(selectedQ);

}

void DeleteVertex(Letter **Q, Letter *selectedQ)
{

if(selectedQ == *Q)
{

*Q=(*Q)->nxt;
EraseElementVertex(selectedQ);

}
else
{

Letter *tmp1=*Q;
while(tmp1->nxt != selectedQ)
{

tmp1=tmp1->nxt;
}
tmp1->nxt=selectedQ->nxt;
EraseElementVertex(selectedQ);

}

172 The source code

}

7. void WorkInCost(ListOptions *Option, Letter *selectedQ, Letter *Q, Graph
G,

int *D, LetterBC ** A): performs the tasks of steps 3 till
7 of the algorithm. It needs six input parameters which include:

• a pointer of type "ListOptions *" pointing to the selected option of
implementation ”X”.

• a pointer of type "Letter *" called "selectedQ", pointing to the element
associated to the selected vertex v in Q.

• another pointer of type "Letter *" called "Q", pointing to the first
element in the linked list of type "Letter" (where this linked list corre-
sponds to the vertices present in the set Q).

• a variable of type "Graph", representing the input linked lists of nodes
and hyperarcs.

• a pointer to an integer value (of type int *) which stands for the variable
S in which the cost of the selected G-path will be accumulated.

• a pointer to a pointer of the first element in the linked list of type
"LetterBC" (where this linked list corresponds to the vertices in the
set A).

Note that in the last two parameters, we use a pointer to the desired values,
where the desired values include an integer corresponding to the cost S &
a pointer to the first element in the linked list of type "LetterBC". This
is because if we send the desired values by themselves into the function,
then a copy of these values will be realized which will be different than the
ones in the main code. These copy values will be destroyed at the end of
the function and will be deleted. While, by using a pointer to them, the
desired values will be preserved after leaving the function and this is what
we actually needed.
The code statements of the WorkInCost function are presented as follows:

void WorkInCost(ListOptions *Option, Letter *selectedQ,
Letter *Q, Graph G, int *D, LetterBC ** A)

{
Hyperarc *prm1=Option->A;
while(prm1 != NULL)

1
2

{
if(prm1->tail == selectedQ->chr) 3

{
HeadNoC *prm2=prm1->hNoC;
while(prm2 != NULL)

4
5

{
int a=1;
Letter *Q2=Q, *Q3=Q;
while((Q2 != NULL) && (a == 1))

6
7
8

{

A.2 Remaining Structures and Functions for our program code 173

if(Q2->chr == prm2->head) 9
{

a=0; 10
}
Q3=Q2;
Q2=Q2->nxt;

11
12

}
if(a == 1) 13

{
Node *Gn=G.N;
while(Gn->name != prm2->head)

14
15

{
Gn=Gn->nxt; 16

}
Letter *new=malloc(sizeof(Letter));
new->chr=Gn->name;
new->BC=Gn->BC;
new->CC=Gn->CC;
new->level=Gn->level;
new->V=NULL;
Q3->nxt=new;
new->nxt=NULL;
Q3=new;

17
18
19
20
21
22
23
24
25

}
Vector *ax1, *ax2;
if(a=0)

26
27

{
ax2=Q3->V;
while(ax2->nxt != NULL)

28
29

{
ax2=ax2->nxt; 30

}
ax1=ax2; 31

}
Vector *variable=selectedQ->V;
while(variable != NULL)

32
33

{
if(Q3->V == NULL) 34

{
Q3->V=malloc(sizeof(Vector)); 35
Q3->V->val=(variable->val)*

(prm2->NoC);
36

Q3->V->nxt=NULL;
ax1=Q3->V, ax2=Q3->V;

37
38

}

else 39
{

Vector *new1=malloc(sizeof(Vector)); 40

174 The source code

new1->val=(variable->val)*
(prm2->NoC);

41

ax1->nxt=new1;
new1->nxt=NULL;
ax1=new1;

42
43
44

}
variable=variable->nxt; 45

}
if(CheckIfNodeHasEmptyForwardStar(Option,

prm2->head))
46

{
if(a == 0) 47

{
ax2=ax2->nxt; 48

}
while(ax2 != NULL) 49

{
*D=*D+(ax2->val)*(Q3->CC);
ax2=ax2->nxt;

50
51

}
int b=1;
LetterBC *Y=*A, *Z=*A;
while((Y != NULL) && (b == 1))

52
53
54

{
if(Y->chr == prm2->head) 55

{
b=0; 56

}
Z=Y;
Y=Y->nxt;

57
58

}
if(b == 1) 59

{
if ((*A) == NULL) 60

{
(*A)=malloc(sizeof(LetterBC));
(*A)->chr=Q3->chr;
(*A)->BC=Q3->BC;
(*A)->nxt=NULL;

61
62
63
64

}

else 65
{

LetterBC *new2=
malloc(sizeof(LetterBC));

66

new2->chr=Q3->chr;
new2->BC=Q3->BC;
Z->nxt=new2;
new2->nxt=NULL;

67
68
69
70

}

A.2 Remaining Structures and Functions for our program code 175

}
DeleteVertex(&Q, Q3); 71

}
prm2=prm2->nxt; 72

}
}
prm1=prm1->nxt; 73

}
}

Consider the following notes:

• In this function, ”Q3” is made to point to the element of type "Letter"
associated to the "h" vertex in the algorithm, while "selectedQ" points
to that associated to the selected vertex "v" from the set Q. ”Q3−>V ”
points to the first element in the linked list corresponding to the kh
vector, while "selectedQ−>V ” points to the first element in the linked
list corresponding to the kv vector.

• "prm1" points to the hyperarc in the G-path pointed by "Option"
whose tail node is "v", and "h" is one of this hyperarcs’ head nodes
which is pointed by "prm2".

• The statement Q = Q ∪ {h} in the algorithm is performed in lines 6
through 25 in this function. Note that if the head node ”h” pointed by
"prm2" was already an element in the linked list representing the set
Q, then the variable a becomes 0. Otherwise, a remains equal to 1 and
”h” will be added to the list.

• Lines 27 till 31 execute step 4 in the algorithm of searching for the
last filled element in the list of kh. This step is accessed only if a = 0
because otherwise, "Q3−>V " will be made to point to "NULL" (as
indicated in line 22 of the code), and thus will have to start filling
entries starting from the beginning (as in fact there are no elements
yet).

• Steps 5 & 6 of the algorithm are accomplished in lines 32 till 45.
Note that "variable->val" corresponds to an entry in "kv" and "prm2-
>NoC" stands for the weight on the (v, h) arc.

• The tasks of step 7 of the algorithm are accomplished in lines 46 through
71. This step is accessed only if the vertex h associated to the head
node pointed by "prm2" has out-degree zero in the G-path "Option" in
hand, which condition is verified in line 46. Note that the variable "ax2-
>val" corresponds to a newly created entry in "kh" and "Q3−>CC"
stands for the CC of the "h" vertex associated to that pointed by ”Q3”.
The final task in step 7 of the algorithm will be to add the vertex "h"
to the set A, in case it doesn’t already exist. This is performed in lines
52 till 70.

• In order to save a little bit in the execution, we choose to delete the
"h" vertex from the set Q directly inside the function (in line 71) and

176 The source code

not outside in the main code after we select it from Q. This is because
in this case, the vertex "h" will have an empty forward star in this
option (pointed by "Option") and thus the first statement of step 3 of
the algorithm won’t be satisfied.

8. void DisplayOption(ListOptions *K); Displays an option of implementation
as an output. It only requires one input parameter which is a pointer to
the option to be displayed. This function’s code statements are as follows:

void DisplayOption(ListOptions *K)
{

int i=1;
Hyperarc *tmp=K->A;
while(tmp != NULL)
{

printf(" Tail of %dth hyperarc in this option is %c \n: ",i,
tmp->tail);

HeadNoC *perm=tmp->hNoC;
while(perm != NULL)
{

printf("%c ",perm->head);
perm=perm->nxt;

}
printf("\n \n");
tmp=tmp->nxt;
i++;

}
}

In this function, we access each hyperarc in the option and print its tail,
then we print all its head nodes by accessing the linked list of head nodes
of this hyperarc. Once a list of the tail and head nodes of the hyperarcs in
the minimum cost option is displayed (using the "DisplayOption" function),
one can plot the G-path whose set of hyperarcs includes these ones. This
will enable to identify the common operators to install in the design, which
will be the blocks with out-degree zero in this illustrated G-path.

9. int NotRepetitionOption(ListOptions *AllOptions, ListOptions *Y); Checks
if a generated option pointed by "Y " is one of the previously generated op-
tions whose first element in the associated linked list is pointed by the
pointer called "AllOptions". If so, it returns the integer "0"; otherwise,
this function returns "1".
The code statements of the NotRepetitionOption function include:

int NotRepetitionOption(ListOptions *AllOptions, ListOptions *
Y)
{

A.2 Remaining Structures and Functions for our program code 177

Hyperarc *U=Y->A;
ListOptions *O=AllOptions;
int c=1;
while((O != NULL) && (c == 1))

1
2
3
4

{
Hyperarc *W = O->A;
int b=1;
while((W != NULL) && (b == 1))

5
6
7

{
if(U->tail == W->tail); 8

{
b=0;
HeadNoC *U1=U->hNoC, *W1=W->hNoC;
int a=1;
while((U1 != NULL) && (a == 1))

9
10
11
12

{
if(U1->head == W1->head) 13

{
U1=U1->nxt;
W1=W1->nxt;

14
15

}

else 16
{

a=0; 17
}

}
if(a == 1) 18

{
U=U->nxt; 19

}

else 20
{

if(O->nxt != NULL) 21
{

O=O->nxt;
U=Y->A;

22
23

}
}

}

else 24
{

W=W->nxt; 25
}

}
if(b == 1); 26

{
if(O->nxt != NULL) 27

{

178 The source code

O=O->nxt;
U=Y->A;

28
29

}

else 30
{
O=O->nxt; 31

}

}
if(U == NULL) 32

{
Hyperarc *R=Y->A, *S=O->A;
int i=0, j=0;
while(R != NULL)

33
34
35

{
i++;
R=R->nxt;

36
37

}
while(S != NULL) 38

{
j++;
S=S->nxt;

39
40

}
if(i == j) 41

{
c=0;
EraseElement(Y);

42
43

}

else 44
{

if(O->nxt != NULL) 45
{

O=O->nxt;
U=Y->A;

46
47

}
}

}
}
return(c); 48

}

The hyperarcs in the option pointed by "Y " are accessed using the pointer
"U". We check if the hyperarc pointed by "U" is also a hyperarc in the
option pointed by "O". For this, we access to the head nodes of all the
hyperarcs in "O" whose tail nodes are the same tail node of the hyperarc
pointed by "U" (if any), to verify if one of them is the same hyperarc. This
is done in lines 4 till 31.
Lines 32 to 47 are accessed only if all the hyperarcs in the option pointed

A.3 The main code 179

by "Y " are found in the option currently pointed by "O". In this case,
we verify if they do possess the same number of hyperarcs to avoid the
possibility that the option pointed by "O" contains more than that pointed
by "Y " and thus will correspond to different options.

A.3 The main code

void main()
{

int nbn, nbh, NumberOfLevels, SMin;
int NumberOfOptions=1;
ListOptions *K;
Graph G;
printf("enter the number of nodes, number of hyperarcs,

and number of levels in the graph: ");
scanf("%d %d %d" &nbn, &nbh, &NumberOfLevels);
G.N=CreationListNode(nbn);
G.H=CreationListHyperarc(nbh);

1
2
3
4
5
6
7
8

ListOptions *FirstOption=malloc(sizeof(ListOptions));
FirstOption->A=malloc(sizeof(Hyperarc));
FirstOption->A->tail=G.H->tail;
FirstOption->A->hNoC=malloc(sizeof(HeadNoC));
HeadNoC *H1=G.H->hNoC;
HeadNoC *H2=FirstOption->A->hNoC;
H2->head=H1->head;
H2->NoC=H1->NoC;
H1=H1->nxt;
while(H1 != NULL)

9
10
11
12
13
14
15
16
17
18

{
HeadNoC *new=malloc(sizeof(HeadNoC));
new->head=H1->head;
new->NoC=H1->NoC;
H1=H1->nxt;
H2->nxt=new;
H2=new;

19
20
21
22
23
24

}
H2->nxt=NULL;
FirstOption->A->nxt=NULL;
FirstOption->nxt=NULL;

25
26
27

ListOptions *H;
H=CopyOption(FirstOption);
H->nxt=NULL;

28
29
30

while(FirstOption != NULL) 31

180 The source code

{
int S = 0;
LetterBC *A=NULL;
Letter *Q=malloc(sizeof(Letter));
Q->chr=G.N->name;
Q->BC=G.N->BC;
Q->CC=G.N->CC;
Q->level=G.N->level;
Q->V=malloc(sizeof(Vector));
Q->V->val=1;
Q->V->nxt=NULL;
Q->nxt=NULL;

32
33
34
35
36
37
38
39
40
41
42

while(Q != NULL) 43
{

Letter *Q1=Q;
while(Q1 != NULL)

44
45

{
if(Q1->level == NumberOfLevels) 46

{

Letter *selectedQ=Q1; 47
WorkInCost(FirstOption, selectedQ, Q,

G, &S, &A);
48

Q1=Q1->nxt;
DeleteVertex(&Q, selectedQ);

49
50

}

else 51
{

Q1=Q1->nxt; 52
}

}

NumberOfLevels−−; 53
}
while(A != NULL) 54

{
S=S+(A->BC);
A=A->nxt;

55
56

}
if(FirstOption->A->nxt == NULL) 57

{
SMin=S;
K=CopyOption(FirstOption);

58
59

}

else 60
{

if(S < SMin) 61
{

SMin=S;
K=CopyOption(FirstOption);

62
63

A.3 The main code 181

}
}
ListOptions *X=FirstOption;
Hyperarc *T=X->A;
LetterOnly *L=NULL;
while(T != NULL)

64
65
66
67

{
HeadNoC *tmp=T->hNoC;
while(tmp != NULL)

68
69

{
if((CheckIfNodeHasEmptyForwardStar

(X,tmp->head)) &&
(NotRepetition(&L,tmp->head)))

70

{
Hyperarc *perm=G.H;
while(perm != NULL)

71
72

{
if(perm->tail == tmp->head) 73

{
int d;
ListOptions *Y;
Y=CopyOption(X);
AddHyperarcToOption(Y,perm);
d=NotRepetitionOption(H,Y);
if(d == 1);

74
75
76
77
78
79

{
Y->nxt=FirstOption;
FirstOption=Y;
NumberOfOptions++;
ListOptions *Y1;
Y1=CopyOption(Y);
Y1->nxt=H;
H=Y1;

80
81
82
83
84
85
86

}
}
perm=perm-> nxt; 87

}
}
tmp=tmp->nxt; 88

}
T=T->nxt; 89

}
DeleteOption(&FirstOption,X); 90

}

182 The source code

DisplayOption(K);
printf("The cost of the minimum cost design is %d \n",

SMin);
printf("The number of options tested is %d",

NumberOfOptions);

91
92
93

}

We will highlight some points of this code.

• Lines 1 till 8 initialize some variables and are statements to help enter the
input.

• As an initialization in the algorithm, we start with the G-path consisting of
only the imaginary top vertex r and no hyperarcs (M = {({r}, φ)}). This
will be the first option that will be tested, from which all the remaining op-
tions will be generated. However, this option has no technical significance,
as selecting the imaginary vertex r is not an option of implementation. The
option ({r}, φ) generates one option, which is ({r}∪ℑ, Er) (call it X1), due
to the way by which the directed hypergraph Hr is defined. The option X1

corresponds to a logical option of implementation which is to install the
top level standards in the design (corresponding to the "Velcro" approach).
In our program code, we start with the logical X1 option to stand for an
initialization of the options of implementation, instead of starting from the
imaginary option ({r}, φ). Lines 9 through 27 perform this initialization,
where the option corresponding to X1 will be pointed by "FirstOption".
Note that "FirstOption" will point to the first element in the linked list of
options of implementation of type "ListOptions" all along the code.

• The initialization in the statement Q = {r} of the algorithm is performed
in lines 32 till 42 of the main code. Recall that since we agreed to enter
the node r before any other node in the graph structure of an SDR multi-
standard system, then G.N (which will be a pointer to the first entered
element of type "Node"), will be pointing to the element corresponding to
the node r.

• Lines 43 through 53 do the tasks of steps 3 till 7 of the algorithm along
with the statement "select and remove v ∈ Q". Recall that among these
lines, we choose the vertices from Q from those of highest levels in Q till
those of lowest levels as required.

• Lines 31 and 43 assure the conditions "until M = φ" and "until Q = φ" of
the algorithm.

• lines 54, 55, & 56 perform step 8 of the algorithm. Steps 9, 10 and 11 of
the algorithm are accomplished in lines 57 till 63. Note that the condition
of step 9 is applied in line 57 because the first selected option of implemen-
tation is the one which contains only one hyperarc (hyperarc Er, and thus
"FirstOption->A->nxt == NULL") while all the rest contain at least 2
hyperarcs.

• "H" is a pointer to the first element in a linked list of options in which all G-
paths attained so far are linked. Any generated option will be compared to
all the options present in this list in order to verify if it has been generated

A.3 The main code 183

before, so that we can avoid examining it several times. If not, it will be
added to this list.

• Lines 64 till 90 perform the task of generating G-paths from a selected one,
as required in step 12 of the algorithm. Finally, the output is printed in
lines 91, 92, and 93 by displaying the minimum cost option pointed by the
pointer "K" along with its minimum cost in the variable "SMin", as well
as the total number of G-paths generated.

• Note that in our code, we form two linked lists of type "ListOptions" repre-
senting options of implementation. The first is the one whose first element
is pointed by "FirstOption" and which represents a list of options that are
generated but not yet examined (because any completely examined option
will be deleted from this list in line 90). As for the second, its first element
is pointed by the pointer H and this list is formed to reserve all the options
already generated, used only for comparison purposes.

List of Figures

1 "OU" et "ET" dépendance . 7
2 Structure simplifiée d’un système multi-standards (supportant

Wifi et UMTS) . 7
3 Un hypergraphe orienté H = (X,E) 11
4 Structure globale d’un système multi-standards illustrant la dé-

composition des standards S et T sur 4 niveaux 16
5 Les graphes générés (obtenus de la figure 4) de deux options de

mise en œuvre différentes . 19
6 Graphe WGNG généré représentant le pire des choix de mise en

œuvre . 25
7 Trois configurations possibles 28
8 Les trois configurations dans la cas général 29

1.1 Conventional Transceiver . 48
1.2 a.) Ideal SWR transceiver architecture b.) SDR realistic

transceiver architecture . 50
1.3 The Software-Defined radio receiver architecture 52
1.4 "OR" and "AND" dependency 56
1.5 Generalized figure corresponding to a conceivable breakdown of

two standards S & T . 57
1.6 Global structure of a multi-standard graph (supporting Wifi and

UMTS) - transmitter side . 58
1.7 A simple figure showing the break-down of block S up to 2 lower

levels . 61

2.1 Types of graphs: a) multigraph, b) pseudograph and c) simple
graph . 69

2.2 a) path of length 4, b) cycle of length 5 and c) trail of length 8 71
2.3 a) The complete graph K4, b) the complete bipartite graph K2,3,

c) the star K1,5, and d) a tree 72
2.4 A complete closure operation 74
2.5 Various types of digraphs: a) multidigraph, b)pseudodigraph,

c) simple digraph, and d) oriented graph 76
2.6 a) directed path, b) directed cycle or circuit, c) semipath, and

d) semicycle . 77

185

186 list of figures

2.7 a) An out-branching and b) an in-branching 78
2.8 Example of a hypergraph H and its bipartite representation

graph B(H) . 80
2.9 Example of a directed hypergraph H and its bipartite represen-

tation digraph R(H) . 84

3.1 Global structure of a multi-standard system showing the break-
down of standards S and T up to 4 lower levels 105

3.2 The generated graphs (obtained from Fig. 3.1) of two different
options of implementation . 109

3.3 Global graphical structure for Wifi standard - transmitter side
(up to 4 lower levels break-down) with the labeling of the vertices.109

3.4 Global graphical structure for UMTS standard - transmitter side
(up to 4 lower levels break-down) with the labeling of the vertices
and the hyperarcs . 110

3.5 Global structure of the graph for multi standards (supporting
Wifi and UMTS) - transmitter side (up to 4 lower levels break-
down of the 2 standards) with the labeling of the vertices and
their levels on the right of the figure. 112

3.6 two alternatives to implement v5 116
3.7 WGNG, a worst case GNG of a choice of implementation. . . . 121

4.1 A 3 designs example . 129
4.2 The three designs generalization case 132
4.3 Example of three designs case where the DP contains two highest

level blocks . 134
4.4 The four combinations of break-down of A&B that should be

tested when searching for minimum cost designs, thus excluding
the rest which include duplication of either the break-downs of
A and/or B . 134

4.5 Structure of the Minimum Cost Design algorithm 141
4.6 A particular illustration of the defined G-path of Hr with root

{r}, "Gmax" . 143
4.7 A directed hypergraph example containing 26 nodes and 28 hy-

perarcs . 146
4.8 The GNG of the minimum cost option of implementation of the

graph structure of Fig. 4.7 . 147
4.9 Example 2: adding one more hyperarc to the directed hyper-

graph of Fig. 4.7 . 148
4.10 Example 3: adding two more hyperarcs to the directed hyper-

graph of Fig. 4.7 . 148
4.11 Example 4: adding three more hyperarcs to the directed hyper-

graph of Fig. 4.7 . 149
4.12 Example 5: adding four more hyperarcs to the directed hyper-

graph of Fig. 4.7 . 149

list of figures 187

4.13 Example 6: adding five more hyperarcs to the directed hyper-
graph of Fig. 4.7 . 150

4.14 Example 7: adding six more hyperarcs to the directed hyper-
graph of Fig. 4.7 . 150

A.1 An illustration of the linked list of type "Hyperarc" creating a
set of hyperarcs . 160

A.2 An illustration of the linked list of type "ListOptions" creating
a set of options of implementation 163

Bibliography

[1] J. H. Reed, "Software Radio: A modern Approach to Radio Engineering",
Prentice Hall PTR, 2002.

[2] PB. Kenington, "Emerging technologies for software radio", Electronics &
Communication Engineering Journal April 1999; 69-73.

[3] IEEE Communications Magazine, Special Issue on Software Radio, vol.
37.1999.

[4] J. Mitola III, "The software radio architectures", IEEE Communications
Magazine, vol. 33, pp. 26-38, May 1995.

[5] M. Woh, S. Seo, H. Lee, Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, and
F.K., "The next generation challenge for Software Defined Radio", Springer-
Verlag Berlin Heidelberg, vol. LNCS 4599, pp. 343-354, 2007.

[6] J. Mitola III, "Software Radio Architecture: Object Oriented Approaches to
Wireless Systems Engineering." John Wiley and Sons, Inc., 2000.

[7] IEEE Commun. Mag., vol. 37, no. 2, 1999, Special Issue on Software Radio.

[8] W.H.W.Tuttlebee, "Software Defined Radio- Baseband Technology for 3G
Handsets and Basestations [Book Review]," Communications Engineer,
vol.2, pp. 46-47, April-May 2004.

[9] A. Ivers and D. Smith, " A practical approach to the implementation of
multiple radio configurations utilizing reconfigurable hardware and software
building blocks ", in Proc. IEEE Military Communications Conference (MIL-
COM 97), vol. 3, pp. 1327-1332, IEEE, Monterey, Calif, USA, November
1997.

[10] A. Kountouris, C. Moy, L. Rambaud, and P. Le Corre, " A reconfigurable
radio case study: a software based multistandard transceiver for UMTS,
GSM, EDGE and Bluetooth, in Proc". IEEE Vehicular Technology Con-
ference (VTC 01), vol. 2, pp. 1196-1200, Atlantic City, NJ, USA, October
2001.

[11] O. Faust, B. Sputh, D. Nathan, S. Rezgui, A. Weisensee, and A. Allen, "
A single-chip supervised partial self-reconfigurable architecture for software
defined radio ", in Proc. 17th International Symposium on Parallel and
Distributed Processing (IPDPS 03), IEEE, Nice, France, April 2003.

189

190 BIBLIOGRAPHY

[12] H. Miranda, P. Pinto, and S. Silva, "A self-reconfigurable receiver architec-
ture for software radio systems", in Proc. IEEE Radio and Wireless Con-
ference (RAWCON 03), pp. 241-244, IEEE, Boston, Mass, USA, August
2003.

[13] A. Pacifici, C. Vendetti, F. Frescura, and S. Cacopardi, "A reconfigurable
channel codec coprocessor for software radio multimedia applications", in
Proc. International Symposium on Circuits and Systems (ISCAS 03), vol.
2, IEEE, Bangkok, Thailand, May 2003.

[14] T. Hentschel and G. Fettweis, "Sample rate conversion for software radio",
IEEE Commun. Mag., vol. 38, no. 8, pp. 142-150, 2000.

[15] W. Abu-Al-Saud and G. Stuber, "Efficient sample rate conversion for soft-
ware radio systems " , in Proc. IEEE Global Telecommunications Conference
(GLOBECOM 02), vol. 1, pp. 559-563, IEEE, Taipeh, Taiwan, Republic of
China, November 2002.

[16] W. Abu-Al-Saud and G. Stuber, " Modified CIC filter for sample rate
conversion in software radio systems, IEEE Signal Processing Lett "., vol.
10, no. 5, pp. 152-154, 2003.

[17] J.Ming, H. Y. Weng, and S. Bai, " An efficient IF architecture for dual-
mode GSM/W-CDMA receiver of a software radio, in Proc. IEEE Interna-
tional Workshop on Mobile Multimedia Communications" (MoMuC 99), pp.
21-24, IEEE, San Diego, Calif, USA, November 1999.

[18] J. Dodley, R. Erving, and C. Rice, " In-building software radio architec-
ture, design and analysis, in Proc. IEEE 11th International Symposium on
Personal, Indoor, andMobile Radio Communications (PIMRC 00)", vol. 1,
pp. 479-483, IEEE, London, UK, September 2000.

[19] W. Schacherbauer, A. Springer, T. Ostertag, C. Ruppel, and R. Weigel, "
A flexible multiband frontend for software radios using high IF and active
interference cancellation ", in Proc. IEEE MTT-S International Microwave
Symposium Digest (IMS 01), vol. 2, pp. 1085-1088, IEEE, Phoenix, Ariz,
USA, May 2001.

[20] A. Wiesler, " Parameter gesteuertes Software Radio fur Mobilfunksysteme,
Ph.D. dissertation, Forschungsberichte aus dem Institut fur Nachrichten-
technik, Universitat Karlsruhe (TH)", Karlsruhe, Germany, May 2001.

[21] M. Beach, J. MacLeod, and P. Warr, "Radio frequency translation for
software defined radios", in Software Defined Radio: Enabling Technologies,
W. Tuttlebee, Ed., pp. 25-78, John Wiley & Sons, London, UK, 2002.

[22] G. Ahlquist, M. Rice, and B. Nelson, "Error control coding in software
radios: an FPGA approach, IEEE Personal Communications" , vol. 6, no.
4, pp. 35-39, 1999.

BIBLIOGRAPHY 191

[23] M. Valenti, " An efficient software radio implementation of the UMTS turbo
codec, in Proc. IEEE 12th International Symposium on Personal, Indoor,
and Mobile Radio Communications" (PIMRC 01), vol. 2, pp. G108-G113,
IEEE, San Diego, Calif, USA, September 2001.

[24] V. Thara and M. Siddiqi, " Power efficiency of software radio based turbo
codec, in Proc. IEEE Region 10 Conference on Computers, Communica-
tions, Control, and Power Engineering (TENCON 02)", vol. 2, pp. 1060-
1063, IEEE, Beijing, China, October 2002.

[25] P. B. Kenington and L. Astier, " Power consumption of A/D converters for
software radio applications," IEEE Trans. Vehicular Tech.,vol.49, pp.643-
650, March 2000.

[26] J. Singh, "High speed analog-to-digital converter for software radio applica-
tions ", in Proc. IEEE 11th International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC 00), vol. 1, pp. 39-42, IEEE,
London, UK, September 2000.

[27] W. H. W. Tuttlebee, "Software Defined Radio - Baseband Technology for
3G Handsets and Basestations," Communications Engineer, vol.2, pp. 46-
47, April-May 2004.

[28] W. H. W. Tuttlebee, "Software Defined Radio: Enabling Technologies",
John Wiley and Sons Ltd. UK, 2002.

[29] W. H. W. Tuttlebee, " Software-defined radio: facets of a developing tech-
nology", IEEE Personal Communications, pp.38-44, April 1999.

[30] R. H. Walden, "Performance trends for analog to digital converters", IEEE
Communications Magazine, vol. 37, pp. 96-101, February 1999.

[31] J. A. Wepman, " Analog-to-digital converters and their applications in
radio receivers", IEEE communication magazines, pp. 39-45,May 1995.

[32] H. Tsurumi and Y. Suzuki, Broadband RF stage architecture for software-
defined radio in handheld terminal applications", IEEE Communications
Magazine, vol. 37, pp. 90-95, Feb. 1999.

[33] A. Hairapetian, "An 81 MHz IF receiver in CMOS, IEEE J. J. of Solid
State Circuits, vol.31, pp. 1981-1996, December 1996.

[34] R. G. Vaughan, N. L. Scott, and D. R. White, "The theory of bandpass
sampling, IEEE Trans. Signal Processing", vol. 39, no. 9, pp.1973 1984,
Sept. 1991.

[35] F. Jondral, "Parametrization- a technique for SDR implementation", chap-
ter 8 of Software-defined Radio Enabling technologies edited by W. Tuttle-
bee, Wiley 2002.

192 BIBLIOGRAPHY

[36] Alaus L, Palicot J, Roland C, Louet Y and Noguet D, " Promising Tech-
nique of Parameterization For Recongurable Radio, the Common Operators
Technique : Fundamentals and Examples" , march 2009, Revue Journal of
Signal Processing Systems, Springer New York.

[37] Arnd-Ragnar Rhiemeier, "Benefits and Limits of Parmetrized Channel
Coding for Software Radio," in Proceedings of 2nd Karlsruhe Workshop on
Software Radios, Germany, March 2002.

[38] R. I. Lackey and D. W. Upmal. " Speakeasy: the military software radio".
33(5): 56-61, 1995. ISSN 0163-6804. doi: 10.1109/35.392998.

[39] R. Baines. The dsp bottleneck. 33(5): 46-54, May 1995. doi:
10.1109/35.392999.

[40] V. Rodriguez, C. Moy, J. Palicot, "An optimal architecture for a multi-
standard reconfigurable radio: Cost-minimizing common operators under la-
tency constraints," in 15th European Information Society Technologies (IST)
Summit, June 2006.

[41] V. Rodriguez, C. Moy, J. Palicot, "Install or Invoke?: The optimal trade-
off between performance and cost in the design of multi-standard reconfig-
urable radios," Wiley InterScience, Wireless Communications and Mobile
Computing Journal, vol. 7, pp. 1143-1156, November 2007.

[42] J. Palicot, C. Roland, " FFT: a basic function for a Reconfigurable Re-
ceiver, ICT, Feb. 2003, Papeete", Tahiti.

[43] A. Pacifici, C. Vendetti, F. Frescura, and S. Cacopardi, "A reconfig-
urable channel codec coprocessor for software radio multimedia applica-
tions". In Proc. International Symposium on Circuits and Systems IS-
CAS, volume 2, Chapter 2, pages 41-44, 25-28 May 2003. doi: 10.1109/IS-
CAS.2003.1205881.

[44] Alaus L, Noguet D, Palicot J," A Common Operator Bank to Re-
solve Scheduling Issue on a Complexity Optimized SDR Terminal", Sixth
Advanced International Conference on Telecommunications", AICT 2010
Barcelona, Spain,May 2010.

[45] Naoues, Malek; Noguet, Dominique; Louet, Yves; Grati, Khaled; Ghazel,
Adel; ,"An Efficient Flexible Common Operator for FFT and Viterbi Algo-
rithms," Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd
, vol., no., pp.1-5, 15-18 May 2011.

[46] A. Al Ghouwayel, Y. Louet, and J. Palicot, " A reconfigurable architecture
for the FFT operator in a software radio context," in Proc. IEEE Interna-
tional Symposium on Circuits and systems ISCAS, 2006

[47] L. Alaus, D. Noguet and J. Palicot, "A Reconfigurable Linear Feedback
Shift Register Operator for Software-defined Radios Terminal," ISWPC,
Santorini, Greece, May 2008

BIBLIOGRAPHY 193

[48] L. Alaus, D. Noguet, and J. Palicot, "Extended Reconfigurable Linear Feed-
back Shift Register Operator for Software Defined Radio Terminal," ISSSTA
Bologna, Italy, August 2008.

[49] C. Moy, J. Palicot, V. Rodriguez, D. Giri, "Optimal Determination of Com-
mon Operators for Multi-Standard Software-Defined Radio," in Proceeding
of 4th Karlsruhe Workshop on Software Radios, Germany, March 2006.

[50] Sufi Tabassum Gul, Christophe Moy, Jacques Palicot: "Graphical Modeling
and Optimization of Air Interface Standards for Software-Defined Radios"
SCEE Research team, SUPELEC/ IETR, campus of Rennes 12th IEEE In-
ternational Multitopic conference-INMIC2008, karachi, Pakistan, December
2008.

[51] M. Naoues, L. Alaus, D. Noguet, "A Common Operator for FFT and
Viterbi algorithms", The 13th Euromicro Conference on Digital System De-
sign (DSD), 2010.

[52] Naoues M., Noguet D., Louët Y., Grati K., Ghazel A, "An Efficient flexible
common operator for FFT and Viterbi Algorithms in Proceedings of the
C2POWER Workshop - VTC 2011 - C2POWER Workshop - VTC 2011,
Hongrie (2011) [hal-00657436 - version 1]

[53] S. T. Gul, C. Moy and J. Palicot, "Two Scenarios of Flexible Multi-
Standard Architecture Designs using a Multi-Granularity Exploration", in
Proceeding IEEE 18th International Symposium on Personal, Indoor and
Mobile Radio Communications PIMRC, pp. 1-5, 3-7 Sept. 2007.

[54] R. Timothy Marler. "A Study of Multi Objective Optimization Methods for
Engineering Applications", PhD thesis, The University of Iowa.

[55] R. Kahraman and M. Sunar , "A comparative study of multiobjective op-
timization methods in structural design" ., Turkish Journal of Engineering
and Environmental Sciences 25: 69-78, 2001.

[56] I. Y. Kim and O. De Weck , " Adaptive weighted sum method for bi-objective
optimization" Structural and Multidisciplinary Optimization 29.2:149-158,
2005.

[57] P. Korhonen .1998), "Multiple objective programming support. Technical
Report" IR-98-010, International Institute for Applied Systems Analysis,
Laxenburg, Austria.

[58] L. Zadeh, " Optimality and non-scalar-valued performance criteria", IEEE
Trans. Autom. Control 8 (1963) 5960.

[59] Suppapitnarm et al, "Heuristicly refined multiobjective random search",
Songklanakarin J. Sci. Technol., 2005, 27(2): 301-312.

[60] Sufi T. Gul, "Optimization of Multi-Standards Software Defined Radio
Equipments : A Common Operator’s Approach", PhD thesis, november
2009.

194 BIBLIOGRAPHY

[61] L.R. Foulds, " Graph Theory Applications", 1992 Springer-Verlag New
York, Inc.

[62] J.A Bondy & U.S.R. Murty, "Graph Theory, Graduate Texts in Mathemat-
ics", Springer 2008.

[63] Garey, M.R. and D.S Johnson: "Computers and Intractability: A Guide to
the Theory of NP-completeness", W.H.Freeman, San Francisco, CA (1979).

[64] J.C. Bermond and F.O. Ergincan, "Bus Interconnection Networks", Dis-
crete Applied Mathematics, 68:1-15, 1996.

[65] J.C. Bermond, R. Dawes, and F.O. Ergincan, "De Bruijn and Kautz bus
networks", Networks, 30:205-218, 1997.

[66] V. Voloshin, " Coloring Mixed Hypergraphs: theory, algorithms and appli-
cations". AMS, Providence, 2002.

[67] V. Voloshin, "Introduction to Graph and Hypergraph theory", New York,
2009.

[68] C. Berge: "Hypergraphs: combinatorics of finite sets", North-Holland Am-
sterdam, 1989.

[69] G. Gallo, G. Longo, S. Pallottino, and Sang Nguyen, "Directed hypergraphs
and applications. Discrete applied mathematics", 1993.

[70] Lars Relund Nielsen, Daniele Pretolani: " A remark on the definition of
B-hyperpath", 2001.

[71] Narsingh DEO "Graph Theory with Applications to Engineering and Com-
puter Science", 1974 by Prentice-Hall, Inc., Englewood Cliffs, N. J.

[72] G. Brassard and P. Bratley, " Algorithmics: Theory and Practice, Prentice
Hall Englewood Cliffs", 1st Edition, New Jersey, 1988.

[73] LIN, S., "Computer Solution of the Travaling Salesman Problem", BSTJ,
Vol. 44, 1965, 2245-2269.

[74] Kruskal, J. B., Jr,. "On the Shortest Spanning Subtree of Graph and the
Traveling Salesman Problem", Proc. Am. Math. Soc., Vol. 7, 1956, 48-50.

[75] Prim, R. C., "Shortest Connection Networks and Some Generalizations",
Bell System Tech. J., Vol. 36, Nov. 1957, 1389-1401.

[76] Held, M. and R. M. Karp, "The Traveling-Salesman Problem and Minimum
Spanning Trees: Part II", Mathematical programming, Vol. 1, 1971, North-
Holland Publishing Company, 6-25.

[77] Tarjan, R., "Depth-First Search and Linear Graph Algorithms," SIAM J.
Comput., Vol. 1, No. 2, June 1972, 146-160.

BIBLIOGRAPHY 195

[78] Dijkstra, E. W., "A note on two problems in connection with Graphs,"
Numerische Math, Vol. 1, 1959, 269-271.

[79] Dreyfus, S. E., "An Appraisal of some Shortest-Path Algorithms," J. Op-
erations Research, Vol. 17, No. 3, 1969, 395-412.

[80] Dantzig. G. B, "All Shortest routes in a graph," Proceedings of the Interna-
tional Symposium on Graph theory, Rome, Italy, July 1966, 91-92 Published
by Dunod Editeur, Paris.

[81] Floyd. R. W., "Algorithm 97: Shortest path," Comm, ACM, Vol. 5, 1962,
345.

[82] J. L. Gross and J. Yellen, "Handbook of Graph Theory (Discrete Mathe-
matics and its Applications)". CRC Press, New York, USA., 2004.

[83] F. Havet, "channel assignment and (weighted coloring)," Ubiquitous Net-
works - algorithms for telecommunication.

[84] C. McDiarmid. "On the span in channel assignment problems: bounds,
computing and counting", Discrete Math. 266:387-397, 2003.

[85] Italiano , G.F. and U. Nanni, "On line maintenance of minimal directed
hypergraphs, Proc. 3◦ Convegno Italianodi Informatica Teorica, Mantova,
World Science Press (1989), 335-349.

[86] Jeroslow, R.G., R.K. Martin, R.R. Rardin and J. Wang, "Gainfree Leon-
tiev flows problems, Tech. Rept., School of Business, University of Chicago
(1989).

[87] Cook, S., "The complexity of theorem-proving procedures", Proc. 3-th ACM
Symp. on Theory of Computing (1971), 151-158.

[88] P. Maatouk Kaiser, Y. Louët, A. El Sahili, "A cost function expression
for SDR multi-standard systems design using directed hypergraphs", URSI,
Istanbul, Turkey, August 2011.

[89] P. Maatouk Kaiser, A. El Sahili, Y. Louët, "An upper bound for the total
number of options to implement an SDR multi-standard system", Inter-
national Conference on Telecommunications (ICT), Beirut, Lebanon, April
2012.

[90] P. Maatouk Kaiser, A. El Sahili, Y. Louët, "Complexity analysis for an
optimization problem of an SDR multi-standard system", in preparation.

[91] Dowling, W. and J. Gallier, "Linear-time algorithms for testing the satisfi-
ability of propositional Horn formulae," J. of Logic Programming 3 (1984),
267-284.

[92] Itai, A. and J. Makowsky, "On the complexity of Herbrand’s theorem",
Tech. Rept. 243, Dept. Comp. Sci., Israel Inst. of Technology (1982).

196 BIBLIOGRAPHY

[93] R. Diestel, "Graph theory", Springer-Verlag Heidelberg, New York 2006.

[94] Ausiello, G., A. D’Atri and D. Saccà, "Strongly equivalent directed hyper-
graphs, in: Analysis and Design of Algorithms for combinatorial problems,"
Annals of Discrete Mathematics, 25 (1985), 1-25.

[95] Ausiello, G., A. D’Atri and D. Saccà, "Minimal representation of directed
hypergraphs," SIAM J. Comput., 15 (1986), 418-431.

[96] Ausiello, G., G.F. Italiano and U. Nanni, "Dynamic maintenance of di-
rected hypergraphs," Theor. comp. Sci. 72 (1990), 97-117.

[97] Nguyen, S. and S. Pallottino, "Equilibrium traffic assignment for large scale
transit network," Eur. J. of Oper. Res., 37 (1988), 176-186.

[98] Nguyen, S. and S. Pallottino, "Hyperpaths and shortest hyperpaths, in:
Combinatorial Optimization (B. Simeone, ed.)," Lecture notes in mathe-
matics, 1403, Springer-Verlag, Berlin (1989), 258-271.

[99] Hopcroft, J. E., and J. D. Ullman, "Formal languages and their relation to
Automata," Addison-Wesley, Reading, MA (1.3; 2.2; 2.3; 7.4; 7.5; 7.6; A4.2;
A10.1; A10.2), 1969.

[100] Aho, A. V., J. E. Hopcroft, and J. D, Ullman, "The design and analysis
of computer algorithms " Addison-Wesley, Reading, MA (1.3; 2.3; 4.0; 6.1;
7.4), 1974.

[101] Cook, S. A., "The complexity of theorem-proving procedures", Proc. 3rd

Ann. ACM Symp. on Theory of Computing, Association for Computing
Machinery, New York, 151-158 (1.5; 2.6; 3.1.1; 5.2; A1.4; A9.1), 1971.

[102] P. Maatouk Kaiser, A. El Sahili, Y. Louët, "An optimization algorithm
for SDR multi-standard systems using Directed Hypergraphs", Frequenz,
issn 2191-6349 vol. 66, issue 9-10, pp. 251-260, 2012 ; [hal 00735069].

[103] B. Hajek, "A tutorial survey of theory and applications of simulated an-
nealing," 24th IEEE Conference on Decision and Control, Dec 1985, pp.755-
760.

[104] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, " Equations of state calculations by fast computing machines,"
Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.

[105] M. Pincus, "A Monte Carlo method for the approximate solution of certain
types of constrained optimization problems," Opertaions Research, vol. 18,
pp. 1225-1228, 1970.

[106] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simu-
lated Annealing," Science Journal, vol. 220, pp. 671-680, May 1983.

[107] S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach",
Prentice Hall, Upper Saddle River, New Jersey, 1995.

Publications

International Journal Papers

1. P. Maatouk Kaiser, A. El Sahili, Y. Louët, "An Optimization Algorithm
for SDR Multi-Standard systems Using Directed Hypergraphs", Frequenz,
issn 2191-6349 vol. 66, issue 9-10, pp. 251-260, 2012 ; [hal 00735069].

2. P. Maatouk Kaiser, A. El Sahili, Y. Louët, "Complexity analysis for an
optimization problem of an SDR multi-standard system", in preparation.

3. P. Maatouk Kaiser, A. El Sahili, Y. Louët, "A program code for a Minimum
Cost Design algorithm of SDR multi-standard systems using graph theory",
in preparation.

International Conference Papers

1. P. Maatouk Kaiser, Y. Louët, A. El Sahili, "A cost function expression for
SDR multi-standard systems design using directed hypergraphs", URSI,
Istanbul, Turkey, August 2011.

2. P. Maatouk Kaiser, A. El Sahili, Y. Louët, "An upper bound for the
total number of options to implement an SDR multi-standard system",
International Conference on Telecommunications (ICT), Beirut, Lebanon,
April 2012.

International Conference Workshops

1. P. Maatouk Kaiser, S. T. Gul, C. Moy, Y. Louët, "Graph theory approach
for optimization of multi-standards software defined radio equipements",
European Reconfigurable Radio Technologies (ERRT) Conference, Mainz,
June 2010.

2. P. Maatouk Kaiser, Y. Louët, A. El Sahili, "An algorithm proposal for a
minimum cost SDR multi-standard system using graph theory", Workshop
on Software Radio, Karlsruhe, Germany, March 2012.

3. P. Maatouk Kaiser, Y. Louët, A. El Sahili, "An NP optimization problem
related to a software-defined radio (SDR) design", DIMACOS, Lebanese
University â Hadath Lebanon, November 2012.

197

The Software-Defined Radio (SDR) concept is emerging as a potential and efficient solution for

designing flexible future-proof multi-standard systems. A way of realizing a multi-standard terminal is to

identify the appropriate common functions and operators inside and between the standards. This is what's

called the parametrization approach, which can be divided into two categories: the pragmatic approach

which is a practical version to create and develop common operators, and the theoretical approach which

represents a graphical exploration of the SDR multi-standard system at different levels of granularity

accompanied with an optimization problem. It’s in this last approach where our thesis subject dwells. In

this context, a suggested cost function (in previous work) has to be optimized in order to select the

convenient common operators between the different standards, enabling to construct an optimal design. In

our work, we theoretically model a previously proposed graph structure of an SDR multi-standard system

as a directed hypergraph as well as provide an alternative mathematical formal expression of the

suggested cost function, using various graph theoretical definitions and notations. Afterwards, we prove

that the associated optimization problem is an NP-problem under a certain constraint, which entails a

proof of exclusion of some particular design options when searching for a minimum cost design. This was

the second contribution in this thesis before we finally present a new algorithm (which exploits various

modelization aspects of directed hypergraphs) that can solve the optimization problem, whose interest is

in it giving an exact-optimal solution to our problem instead of a near-optimal one provided by heuristics.

A program code for this algorithm was developed in C-language, and then it was applied on several

generic case examples in order to explore its performance skills.

Keywords: Software-defined Radio, Graph Theory, Directed Hypergraph, Optimization, NP-problem,

Minimum Cost Design Algorithm, Computational Complexity.

Le concept de radio logicielle (SDR) apparaît comme une solution pertinente pour concevoir des

équipements multi-standards. Une façon de réaliser de tels équipements est d'identifier les fonctions et

opérateurs communs entre les standards. Cette approche s’appelle la paramétrisation, qui peut être

divisée en deux catégories : l'approche pragmatique qui est une version pratique pour créer et

développer des opérateurs communs à partir d’opérateurs existants, et l'approche théorique dont

l’objectif est de réaliser une exploration graphique d’un équipement multi-standards selon différents

niveaux de granularité, accompagnée d’un problème d'optimisation. C’est cette dernière approche qui a

constitué le sujet de base de cette thèse. Dans ce contexte, une fonction de coût doit être optimisée afin

de sélectionner les opérateurs communs entre les différentes normes, ce qui permet de proposer une

configuration optimale à partir de laquelle sont déduits les opérateurs communs. Dans notre travail,

nous avons dans un premier temps modélisé théoriquement la structure graphique d’un système multi-

standards par un hypergraphe orienté. En outre, nous avons fourni une expression mathématique

alternative de la fonction de coût suggérée, en utilisant des définitions propres à la théorie des graphes.

Ensuite, nous avons montré que le problème d'optimisation associé était un problème NP sous une

certaine contrainte, ce qui a entraîné une preuve d'exclusion de certaines configurations dont les coûts

ne peuvent être minimaux. Ceci a constitué la deuxième contribution de cette thèse. Enfin, nous avons

proposé un nouvel algorithme (exploitant les concepts des hypergraphes orientés) permettant de

résoudre le problème d'optimisation donné, et dont l'intérêt est de donner une solution optimale du

problème au lieu d’une solution approchée fournie par les méthodes heuristiques classiques. Un

programme associé à cet algorithme a été développé en langage C, puis appliqué à plusieurs exemples

de cas génériques afin d’en étudier les performances.

Mots-clés : La Radio Logicielle Restreinte (SDR), La théorie des graphes, hypergraphe orienté,

optimisation, problème NP, algorithme de configuration à coût minimal, complexité de calcul.

	Contents
	I Résumé en français
	Résumé en Français
	0.1 Techniques de paramétrisation pour la radio logicielle restreinte
	0.1.1 Emergence de la radio logicielle restreinte
	0.1.2 Les techniques de paramétrisation
	0.1.2.1 L'approche pragmatique de la paramétrisation
	0.1.2.2 L'approche théorique de la paramétrisation

	0.2 La théorie des graphes et ses applications
	0.2.1 Définitions nécessaires de la théorie des graphes
	0.2.2 La théorie de la complexité
	0.2.2.1 La classe P
	0.2.2.2 La classe NP
	0.2.2.3 Problèmes NP-complet

	0.2.3 Applications de la théorie des graphes

	0.3 Apport de la théorie des graphes dans l'approche théorique de la paramétrisation
	0.3.1 Un modèle formel pour les différents aspects d'un équipement multi-standards
	0.3.1.1 Un modèle mathématique de la structure graphique d'un équipement multi-standards
	0.3.1.2 Une représentation d'une option de mise en œuvre
	0.3.1.3 Description de l'hypergraphe orienté multi-standards à partir de l'hypergraphe mono-standard
	0.3.1.4 L'équation formelle de la fonction de coût

	0.3.2 Une borne supérieure du nombre d'options de mise en œuvre
	0.3.3 La complexité de notre problème d'optimisation

	0.4 Une technique d'optimisation des équipements multi-standards utilisant la notion d'hypergraphes orientés
	0.4.1 Exclusion de certaines configurations pour la recherche du coût minimal
	0.4.1.1 Un exemple
	0.4.1.2 Généralisation du principe l'exclusion

	0.4.2 Un algorithme de recherche de configuration à coût minimal
	0.4.3 Complexité de calcul de l'algorithme MCD

	0.5 Conclusion

	II Ph.D. Dissertation
	General Introduction
	1 Parametrization technique for Software-Defined Radio
	1.1 SoftWare Radio
	1.2 Conventional transceiver architecture
	1.3 The Feasible SoftWare Radio design
	1.3.1 Emergence of Software-Defined Radio
	1.3.2 Challenges imposed by the ADC and DAC
	1.3.3 The Software-defined Radio architecture

	1.4 Parametrization technique
	1.4.1 The Common Operators technique
	1.4.2 The Pragmatic approach of parametrization
	1.4.3 The Theoretical approach of parametrization
	1.4.3.1 Graph Modeling of SDR systems
	1.4.3.2 An Objective Cost Function

	1.5 Conclusions

	2 Graph theory and its applications
	2.1 Graphs
	2.1.1 Subgraphs
	2.1.2 Various definitions and particular graphs

	2.2 Digraphs
	2.2.1 Different interesting definitions and types of digraphs

	2.3 Hypergraphs
	2.3.1 Subhypergraphs
	2.3.2 Basic definitions and particular cases concerning hypergraphs

	2.4 Directed Hypergraphs
	2.4.1 Important directed hypergraphs' definitions and notations

	2.5 The theory of complexity
	2.5.1 Deterministic Turing Machine and the class P
	2.5.2 Nondeterministic Turing Machine
	2.5.2.1 The class NP
	2.5.2.2 Polynomial transformation
	2.5.2.3 NP-complete problems

	2.6 Graph theory applications
	2.6.1 Graph and digraph problems
	2.6.2 Hypergraph and directed hypergraph problems

	2.7 Conclusions

	3 A theoretical study of the problem related to SDR multi-standard systems
	3.1 A formal model for different aspects of the SDR multi-standard terminal
	3.1.1 A mathematical model of the graph structure of the SDR multi-standard system
	3.1.2 A representation of one option of implementation
	3.1.3 Describing the Multi-Standard Directed Hypergraph from Mono-Standard Directed Hypergraphs
	3.1.4 A formal cost function equation

	3.2 An upper bound for the number of options of implementation
	3.2.1 The computational cost vector Xv
	3.2.1.1 Example
	3.2.1.2 Generalization

	3.2.2 An upper bound for |Xv|

	3.3 Complexity of our optimization problem
	3.4 Conclusions

	4 An Optimization technique for Multi-Standard SDR equipment using Directed Hypergraphs
	4.1 Some state-of-the-art techniques of optimization
	4.2 Excluding certain designs when searching for the one with minimum cost
	4.2.1 An example
	4.2.2 Generalization

	4.3 A Minimum Cost Design (MCD) Algorithm
	4.4 Computational Complexity of the MCD algorithm
	4.4.1 The maximum number of hyperarcs in a G-path
	4.4.2 An upper bound for the total number of G-paths
	4.4.3 An upper bound for the dimension of kv
	4.4.4 The worst case complexity analysis

	4.5 Application
	4.6 Conclusion

	Conclusions and Perspectives

	Appendix
	
	A The source code
	A.1 Structures and Functions for the input
	A.2 Remaining Structures and Functions for our program code
	A.2.1 Remaining structures
	A.2.2 Remaining functions

	A.3 The main code

	List of Figures
	Publications

