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“All roo often in physics familiarity is a substitute for understanding”

Analysis, Manifolds and Physics, Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick



Abstract

In this thesis, we study the long-range behaviour of polymerized membranes using a non-
perturbative renormalization group (NPRG) approach. We start by presenting the NPRG
after which we introduce membranes systems.

In our work, we concentrate on polymerized membranes of different types: homogeneous,
anisotropic and quench disordered. Moreover as a side project, we work on Lifshitz critical be-
haviour (LCB) in magnetic systems. Our results, both for polymerized membranes and LCB,
compare well with weak-coupling, low-temperature and large-d (or large-n for LCB) pertur-
bative results in the limiting cases. But more importantly the need of a non-perturbative ap-
proach is justified by the fact that the physically interesting have been difficult to compute.

A long-standing question in homogeneous membranes is the order of the transition be-
tween the crumpled and flat phases. Although we do not have a definite answer, our results
seem to indicate that the transition is first order in agreement with recent Monte Carlo simu-
lations. An interesting feature of homogeneous membranes is the existence of the flat phase at
low-temperature with a non-trivial behaviour. This flat phase has shown to correctly describe
the behaviour of graphene although the electronic degrees of freedom are not taken into ac-
count. Another long-standing problem is the negative value of the anomalous dimension for
anisotropic membranes at the crumpled-tubule transition. This negativeness is in contradic-
tion with what is expected from physical grounds. This problem is solved in our approach and
we obtain a positive anomalous dimension.

In LCB,huge technical difficulties du to the anisotropy has plagued the perturbative ap-
proaches and limit their computations to lowest order. We show that our approach is free of
these difficulties and being systematically improvable we can control the convergence of suc-
cessive approximations and thus to get reliable physical quantities in d = 3 for Heisenberg

spinsn = 3.

: Membranes; Non-perturbative renormalization group; Phase transitions; Symmetry break-

ing; Geometry; Anisotropic scale invariance; Lifshitz critical behaviour; Quench disorder.



Resume

Dans cette these, nous étudions le comportement a longue distance des membranes polymé-
risées en utilisant une approche de groupe de renormalization non-perturbative (NPRG). Apres
une présentation du NPRG, nous introduisons les membranes.

Dans notre travail, nous nous concentrons sur diffetents types de membranes polymetisees:
homogehe, anisotrope et avec du deSordre gele! De plus, nous avons aussi etudi'e les points de
Lifshitz dans les systeies magnetiques. Nous resultats, aussi bien pour les membranes que
pour Lifshitz, se comparent bien aux re$ultats perturbatifs dans les diffetents cas limites: cou-
plages faibles, basse temperature et large-d (ou large-n pour Lifshitz). Mais, en utilisant le
NPRG, nous pouvons aller au de-la'de ces cas limites et atteindre les cas qui sont physique-
ment intefessants.

La question de l'ordre de la transition entre la phase froissé et la phase plate dans les mem-
branes homogenes est depuis longtemps sans une réponse définitive. Malgre' que nos résultats
ne permettent pas encore de lever cette question, ils semblent indiquer que la transition est du
premier ordre en accord avec des simulations récentes. Une propriété importante des mem-
branes polymérisées est l'existence d'une phase plate a'basse temperature avec un comporte-
ment non-trivial. Cette phase décrit correctement le comportement du graphene malgre' que
les degrées de liberté €lectroniques ne soient pas pris en compte. Une autre probleme qui date
depuis de nombreuses années est celui de la valeur négative de la dimension anormale dans les
membranes anisotropes dans la transition entre la phase froissé et la phase tubulaire. Cette
valeur négative est en contradiction avec les arguments physiques. Dans notre approche de
NPRG, nous parvenons a résoudre ce probleme et nous obtenons une dimension anormale
positive.

Dans les systeimes de Lifshitz, les approches perturbatifs se sont confrontes a'de grandes
difficulte$ a'cause de I'anisotropie et ceci a'limiter les calculs aux plus bas ordres. Nous mon-
trons que notre approche est libre de ces difficultes et étant 'ameliorable de fagon systematique
nous pouvons controler la convergence et obtenir des reSultats satisfaisants en d = 3 pour les

spins de Heisenberg n = 3.

: Membranes; Groupe de renormalisation non-perturbative; Transitions de phase; Brisure
de symmetry; Geometrie; Invariance d'échelle anisotrope; Comportement critique de Lifshitz;

Désordre trempé.
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Chapter 1

Introduction

A scientific truth does not triumph by convincing its opponents and making them see the light,
but rather because its opponents eventually die and a new generation grows up that is familiar

with it.
Max Planck (1948)

A key concept in physics is that of phase transition. A phase transition is an abrupt change
in the macroscopic behaviour of a system. It is a phenomenon present in different areas of

physics such as condensed matter, particle physics or cosmology.

An example of phase transition that one observes in everyday life is when water is heated
to 100°C. At this temperature and at atmospheric pressure the water boils and changes its state
from liquid to gas. Moreover at a certain critical temperature and pressure the water starts
to look milky and the distinction between liquid and gas states becomes impossible. At this
critical point fluctuations are present at all length scales which means that the characteristic
scale called the correlation length & diverges and as a consequence light is strongly scattered.
This phenomenon is called critical opalescence. It was first observed by the French physicist
Charles Cagniard de la Tour in 1822 [2, 3, 4] while working on alcohol in a sealed glass cell. The
term critical point was introduced by the Irish chemist and physicist Thomas Andrews in 1869

when he observed critical opalescence in carbon dioxide at 31°C and 73 atmospheres pressure

[1].
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Although the observation that matter can change state has been known for centuries, our
understanding of the mechanism behind this phenomena was lacking until the end of nine-
teenth century and the works of Maxwell and Boltzmann. The description of collective phe-
nomena using statistical physics has brought great insight to our understanding of phase tran-
sitions and critical phenomena. All the properties of a system can be obtained from the par-
tition function or its logarithm the free energy. For a finite system, the free energy is always
an analytic function. As a consequence a singularity in the free energy can only appear at the

thermodynamic limit, Z.e. for infinite systems.

From this simple example of water phase transition one can see that there are two types of
transitions. First-order transitions, such as the usual liquid-gas transition, where the correla-
tion length £ remains finite and the fluctuations are of order £ @ where d is the space dimension.
The other type called second-order, or more exactly continuous, transitions occur at a critical

point and the correlation length diverges.

The divergence of the correlation length £ is the signature that an infinite number of de-
grees of freedom are in interaction which leads to scale invariance. The consequence of scale

invariance can be seen on the two-point correlation function < ¢(r)$(0) >= G(r):

—r/¢
G(r) = er)\ (L1)

where \isa power that depends on the system under study. At criticality the correlation length

diverges and as a consequence one obtains a power-law behaviour for the correlation function:
G(r)~ —. (r.2)

Other physical quantities such as the heat capacity C' or the magnetization M will also obey
power laws: C oc |T — T.|= and M o< |T — T,|~? where T.. is the critical temperature
and o and 3 are called the critical exponents. Moreover completely different systems can have
the exact same value for the critical exponents. This is the phenomenon of universality and the
systems are said to belong to the same universality class. Each universality class, except when
marginal operators are present, is determined by the space dimension, the symmetries of the

system and the range of the interactions.

The presence of an infinite number of interacting degrees of freedom makes the study of

critical phenomena very difficult and almost impossible by analytical methods except in some
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special cases like the Onsager solution for the two-dimensional Ising model. New mathemat-
ical methods had to be developed. Kadanoft proposed a way of integrating of the degrees of
freedom step by step. This idea was later enriched by Wilson and lead to the renormaliza-
tion group in critical phenomena. This approach brought new insight to phase transitions
and critical phenomena. It lead to important results such as solving the Kondo problem and
the computation of the critical exponents for various different systems. However although
Wilson derived an exact flow equation it has been mainly used in perturbative expansions
which is not satisfying when the couplings are not small or when the phenomena is genuinely
non-perturbative. A new non-perturbative approach based on Kadanoff's and Wilson's has
been formulated by Wetterich in the early nineties which does not rely on the smallness of a
coupling. This non-perturbative renormalization group offers a more adapted theoretical ap-
proach to critical phenomena far from the upper critical dimension which is the dimension
above which mean field theory is exact. Moreover it gives a direct connection to the usual per-

turbative approaches such as the weak-coupling, the low-temperature and large-d expansions.

In this thesis we present our work on the statistical physics of polymerized membranes.
These systems are fascinating both theoretically and experimentally and they have wide range
of applications. Before presenting membranes and their thermodynamical behaviour, we start
by introducing the non-perturbative renormalization group which is the approach we have
used in our work. Then in the third chapter we present our work on homogeneous polymer-
ized membranes and in the following chapter we see how the behaviour of the membranes

changes when modifications are made on its homogeneity: inclusion of anisotropy and disor-

der.






Chapter 2

Non-Perturbative Renormalization

Group

1 would say that mathematics is the science of skilful operations with concepts and rules invented

Just for this purpose. The principal emphasis is on the invention of concepts.

Eugene P. Wigner (1959)

2.1 A Brief Historical Introduction

In modern theoretical physics the renormalization group occupies a central role in our under-
standing of physical phenomena where many degrees of freedom interact. Before discussing
the technical aspects of the renormalization group (RG), I will start by a small historical intro-
duction of the RG (see [, Part VII] for an interesting discussion on the ideas underlying the
RG).

The need for renormalization arose from the problem of infinities encountered in field
theory in the formal computation of observable quantities. The problem of infinities is not

new to modern physics. It is already present in classical electrodynamics in J. J. Thomson's
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model of the electron when taking the limit of vanishing radius a in the electric field E:

2

e
EFE=_——
2a a—0

(2.1)

But if a stays finite one obtains an unstable configuration. Poincaré's suggestion to solve this
problem is the existence of a non-electromagnetic energy that compensates the Coulomb force
and stabilizes the electron. This idea inspired others such as Ernst Stiickelberg (1938), Fritz
Bopp (1940), Abraham Pais (1945), Shoichi Sakata (1947) for their study of the problem of the

electron self-energy.

In the hydrogen atom the orbitals S /5 and P; /5 should be degenerate, 7.e. have the same
energy, according to the Dirac equation. But an experimental measurement in 1947 by Willis
Lamb and Robert Retherford showed that there is an energy shift between the two levels. This
shift is du to quantum fluctuations which are induced by the interaction of the electron with
the electromagnetic field of the vacuum which is ignored by the Dirac equation. Theoretically
these fluctuations lead to divergences. Including this interaction as a perturbation of the hy-
drogen theory leads to a divergent Lamb shift. To solve this problem Hans Bethe introduced
an upper limit to the energy equal to the electron mass, or precisely equal to mec?, for the
integral involved in the Lamb shift calculation to suppress the shift of the free electron. The
interpretation of this trick is that the observable mass is different from the “bare mass” the elec-
tron would have if there were no fluctuations. This was the beginning of the renormalization.
However the renormalization group as we know it today started with the works of Stiickelberg
& Petermann [6] and Gell-Mann & Low [7]. The starting point was the idea that physical pa-
rameters should depend on the energy scale in quantum field theory whereas physics is scale
independent as suggested by Freeman Dyson in 1951 [8]. Stiickelberg & Petermann [6] intro-
duced a group transformation to suppress the divergences in particle physics by transforming
the physical quantities from bare to renormalized ones. This group transformation shows that
the physics is self-similar when the scale is changed. Independently, Gell-Mann & Low devel-
oped as similar approach and they derived a differential equations with respect to the energy

scale for the interaction coupling, the fine-structure constant cv in quantum electrodynamics

(QED).

In critical phenomena the divergences have their origin in the existence of thermal fluctu-
ations at all length scales which are the classical counterpart of quantum fluctuations. Near a

critical point the size of the fluctuations is proportional to the correlation length up to some
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power: ~ ¢4 where d is the space dimension. And at the critical point the correlation length
diverges (¢ — 00) which leads to an infinite number of interacting degrees of freedom. To
reduce the number of degrees of freedom Kadanoft introduced a scale transformation called
block spin technique which leads to scaling laws. The Kadanoff transformation maps the
Hamiltonian to an effective Hamiltonian at a different scale. While working on continuous
phase transitions Wilson implemented in a infinitesimal manner the Kadanoft idea of elimi-
nating degrees of freedom. This led to the derivation of an evolution equation for the Hamil-
tonian which can have a fixed-point. The existence of a fixed-point was the missing link to
the explanation why different systems had the same critical exponents at a second order phase
transition which is the signature of universaliry, i.e. different systems described by the same

critical behaviour.

The renormalization group has shown to be a powerful method for dealing with some very
difficult problems in statistical and quantum field theory such as quantum electrodynamics,
the unification of electromagnetic and weak interactions, the Kondo problem or second order
phase transition. Albeit the Wilson RG is non-perturbative, for a long time it has shown to
be hard to implement in a non-perturbative manner. Several attempts to overcome the tech-
nical difficulties of the Wilson RG were unsuccessful until the mid 9o's with the approach of

Wetterich which I present in this chapter.

2.2 Wilson Renormalization Group

The Wilsonian RG is a classic in modern lectures in theoretical physics (see [9, 10, 11, 12]). Nev-
ertheless, we recall the basic concepts and ideas of this technique essentially because it serves as

a basis for the non-perturbative renormalization group as implemented by Wetterich [13].

2.2.1  Kadanoff’s Block Spin

The starting point of the renormalization group is the block spin idea introduced by Leo
Kadanoff [14] to eliminate degrees of freedom of small length scales. The Kadanoff transfor-
mation consists in dividing the system into blocks and doing a local average (coarse-graining).
Kadanoff's idea arises from the fact that since the correlation length is very large near the critical
point, neighbouring spins are strongly correlated and one can locally average over them and

obrtain effective spins.



8 Chapter 2 Non-Perturbative Renormalization Group

In his seminal paper, Leo Kadanoff [14] was the first to see the connection between rescal-
ing and scaling properties of a critical point. Kadanoff proved the existence of the scaling laws
postulated by Benjamin Widom and others [15]. Although the block spin idea was introduced
independently by Buckingham a year earlier, Kadanoff was the first to introduce a practical

computational scheme.

X L X X - X X L 4 X
a

X X X X X X X X X
5 S R DR AP I 3a
+ + + X X X X X X X X X
| n : Decimation
\ m \ > X - X X ] X X L 4 X
1 [} 1
T T T X X X X X X X X X
LI LT
+ H 4 X X X X X X X X X
1 1 1
: :: . X XX WX X WX
1 [} 1
To—0 46 0 O, 0 0 0 X X X X X X X X X
L A G L1 A S

Rescalin

FIGURE 2.1: Kadanoff bloc spin procedure. As an example in this figure, we take a square

lattice with Ising spins S; = =1 and lattice spacing a. The initial lattice is divided into

blocks of size 9 (b = 3 and d = 2 in the figure). After the first transformation, we end

up with a new square lattice but with a lattice spacing 3a and a effective spin S4 that is

the average of the previous 9 spins. And to recover the original lattice, we must perform a
rescaling: 3a — a.

As an example we take an Ising spin system on a two-dimensional lattice (see fig. 2.1). The

partition function which encode the thermodynamical behaviour reads:

Z = Z e~ PHIS (2.2)
{Si}

where § = 1/(kpT'), with kp the Boltzmann constant and 7" the temperature. Starting

with a lattice size a, we divide it into blocks of size b% where d is the space dimension (here
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d = 2) and b the spatial rescaling factor. Then we average out the spins of each block. The
new system has N /b? sites and a new lattice size ba. To recover the initial lattice, we must

perform a rescaling ba — a:

Sa=b"">"5 (23)
€A
where S 4 is the average value of the spins in the block A. After summing over the spins in a

block one obtains an effective Hamiltonian related to the original one by:

e~ HerSal — Z H 5 (SA _pd Z Si) e~ HISi] (2.4)

{SI} A i€cA

with:

S T (sA — b‘dZSi> =1 (2.5)

{SA} A icA

which keeps the partition function unchanged:

Z = Z e PHaSal — Z e PAHIS, (2.6)
{Sa} {s:}

This new effective Hamiltonian eff describes the same long-range physics as the initial one.

The renormalization group (RG) consists of iterating this procedure an infinite number
of times. After each step, the Hamiltonian is mapped into a new Hamiltonian at larger scales
and theiteration H(®) — HM) — ... - (1) generates a flow of Hamiltonians. Ata critical
point the system is scale invariant and the RG transformation has a fixed-point Hamiltonian,
i.e. nlem H™) = H*, which explains the scale law behaviour at the second order phase tran-

sition [16]. The existence of a fixed-point is the signature of scale invariance. An important

remark is that the rescaling is necessary in order to find a fixed-point.

The correlation function, which measures how different regions of the system are corre-
lated, changes with the scale. After each RG-step, the correlation length & is reduced by a factor
b: ¢’ = &/b. Therefore at a fixed point £ can either vanish or diverge because of the scale in-

variance. This means that not all fixed-points are critical. If ¢ — 0, the system is either in the
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high- or low-temperature phase and if { — oo, the system is at its critical point:

§ — oo critical fixed-point
(2.7)

§ — 0: trivial fixed-point.
If we start at the critical point, the system will remain critical after any number of iterations
but if we start slightly above or below the critical point, the system will be driven to the high-

or in the low-temperature phase respectively.

This decimation method introduced by Kadanoft ' is hard to use in practice except for
one-dimensional systems. Even if a system has only one interaction over neighbouring spins
like in the Ising model each RG-step introduces new interactions over next-neighbouring spins
and so on. To overcome this difficulty Wilson introduced an new approach in a continuous

theory implemented in the Fourier space.

2.2.2. Wilson Momentum Shell Integration

In critical phenomena, we are interested in low-momentum or long wave-length fluctuations
and it is more convenient to work in momentum space. We can write the Hamiltonian in
Fourier space and carry out the block spin transformation over the momentum. Wilson's ap-

proach is to work with a continuous theory where the partition functions reads:

Z= / DgpTale) (2.8)

where the sum has been replaced by a functional integral, ¢ is the microscopic field and Hx
the Hamiltonian which is also called the Landau-Ginzburg-Wilson action at the lattice scale
A. Since the approach is based on a continuous theory of a lattice model the momenta must
be lower than the inverse lattice size A = a~!. We separate the field into slow modes with
momenta lower than A /b and rapid modes* with momenta between A/band A: ¢ = ¢ +

@ (see figure 2.2). Then we integrate over the rapid modes and we are left with an effective

"There are other ways of performing the block spin transformation such as the Niemeijer and van Leeuwen
majority rule which was derived for a triangular lattice [17], [18] but they will not be presented here.

*Here slow and rapid stand respectively for long and short distance or equivalently for low and high momen-
tum.
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action H 5 /;, which depend only on the slow modes:

e—Hanlo<] — /D¢> eHAalp<+o>] (2.9)

This is called the Wilson momentum shell integration [19].

/)

FIGURE 2.2: Wilson momentum shell integration. The inner zone corresponds to the slow
modes ¢« and the outer region to the rapid modes ¢- .

The Wilson momentum shell is well suited for carrying out the RG procedure with an
infinitesimal transformation. We take A/b = A — dk and now the momenta of the rapid
modes lay between A and A — 6k and the momenta of the slow modes are lower than A — 0k
with 6k < 1 (see fig. 2.2). This way of separating the modes with a sharp boundary induces
non-analyticities that one would like to avoid® and one prefers to avoid this by introducing
smooth boundaries through some smooth cut-off function (which is introduced below). With

this in hand one derives the Wilson equation [19] for the effective action Hy;:

My OMi oM
Sp(=p)op(p)  do(—p) dp(p)

o)
+ ¢<p>5f(1’j) (2.10)

My, — /p Drae(p) [

where ¢ is the RG-“time” ¢ = In k /A, o (p) a cut-off function that separates the rapid modes
from the slow ones in a smooth manner. In [20] Wilson and Kogut used a cut-off function of
the form oy (p) = p*(e?* — 1) + p(t) with p(0) = 0. The function p(t) allows to impose
a normalization condition on the kinetic term of the effective action and thus to define the
anomalous dimension 7). The last term on the right hand side of (2.10) is present since we
are working with dimensionless quantities. This is the equivalent of the rescaling step in the

Kadanoff procedure.

*sharp boundaries result in non-local interactions in position space.
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In addition to this formulation of the RG in the continuum limit and the derivation of a
differential equation (2.10) another of Wilson's great contribution is the introduction of the
anomalous dimension. This is a crucial point if one wants to obtain any fixed-point [19, 21].
The anomalous dimension is an exponent responsible for the change of the dimension of the

field from its canonical value obtained by simple dimensional analysis.

Conceptually this approach is of great importance in critical phenomena. However it has
been hard to implement except in specific cases: numerically to solve the Kondo problem [20]
or with perturbative approximations such as the weak-coupling [22], the large-n and the low-

temperature approximations at leading order of the e-expansion.

One of the origins of the difficulties is that the second term in the r.h.s of eq. (2.10) makes
this equation very hard use. This is a non-local term in direct space which means that it is

difficult to compute the field renormalization or equivalently the anomalous dimension.

The problem with this equation (2.10) is that the effective Hamiltonian H}, does not have
any direct physical meaning since it is the Hamiltonian of modes that have not been integrated
out ¢« and these modes completely disappear in the limit k& — 0, Z.e. when all fluctuations
have been integrated out. Asa consequence, some of the information on the high-momentum
degrees of freedom is lost. However this equation is useful to compute critical exponents at a

given fixed-point.

Various formulation of the Wilson RG have been developed such as the Wegner-Houghton
RG [23] using a sharp cut-off or the Migdal-Kadanoff direct space RG which is difficult to
perform when dealing with more than one dimension because of the accuracy of the approxi-

mation one has to make are difficult to estimate.

2.2.3 Polchinski and Proof of Renormalizability

A regain of interest in the Wilson RG appeared when Polchinski used Eq. (2.10) to prove
the perturbative renormalizability of the ¢ field theory in four dimensions [24]. Since then
the Wilson equation has been mainly used to prove the renormalizability of different theories
([25], [26], [27]). Note that the Wilson equation (2.10) is often incorrectly referred to as the
Wilson-Polchinski or simply the Polchinski equation.
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k
A} T'r=a =H No fluctuations
%
q
<>
b
k Iy

01 T'k=o =T All fluctuations integrated out

F1GURE 2.3: Continuous Interpolation of the Effective Average Action I'y, between the Clas-
sical Action H and the Effective Action I".

2.3 Wetterich Renormalization Group

2.3.1  Effective Average Action

To overcome the problems of the Wilson RG it is preferable to work with quantities with more
physical meaning. Christof Wetterich's idea [13] was to work with the Legendre transform
I' of the free energy InZ = W. More precisely he has introduced a new quantity called
the effective average action I';, which depends on the coarse-grained scale k. This effective
average action interpolates continuously between the Hamiltonian or classical action H when
all the fluctuations are frozen at & = A and the effective action I', i.e. the Gibbs free energy
or the generating functional of the one particle irreducible (1PI) Green functions, when all the
fluctuations have been integrated out at k = 0 (see fig. 2.3). This scheme is still a Wilsonian
type of RG but now we construct running effective actions rather than running Hamiltonians.
Therefore the Kadanoft block spin idea continues to be applicable here and one still separates
the fields into rapid and slow modes. The effective average action generically depends on a scale
k that makes the interpolation between the Hamiltonian and the effective action possible. This

scale also separates the rapid modes with momentum ¢ > k from the slow modes with ¢ < £.

To decouple the slow modes from the rapid modes in the partition function, a large mass

is given to the slow modes and an almost vanishing one to the rapid modes. Thus we modify
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the partition function by adding a scale dependent mass term AHy:

2B = [ Doesp[-1io) - 870061 + [ B0t (e0)

q

where B is an external field, fq = [d%/(2m)? and AHy[¢] = %fq Ri(q)o(q)p(—q)
where R}, is dimensioned like a mass. This cut-off R}, prevents the propagation of fluctuations

with momenta ¢ < k. A typical behaviour of the cut-off function R}, is given by:

Ri(q) ~ k?

(2.12)

Since the effective average action interpolates between the Hamiltonian and the effective
action, some constraints are imposed to the behaviour of the cut-oft function Rj. It must
vanish in the limit of vanishing k and it must diverge when the scale k is equal to the inverse

lattice scale A:

k=0 — Ry—o(q) =0,Yq = Zy=o[B] = Z[B]

k=A — Rp_a(q) = o0, Vq = all the fluctuations are frozen

which must lead to:

Tpon = H.

This said, we can now begin constructing the effective average action I';,.. From the parti-

tion function Zj [ B], we can construct the Helmholtz free energy:
WilB] = In Z4(B) (29)

where we have dropped the minus sign, the temperature 7" and the Boltzmann constants k.

The effective average action, i.e. the Gibbs free energy, is defined as the Legendre transform
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Re(a)

e

k

FIGURE 2.4: Typical cut-off function.

of the free energy:
Eu[M) + WilB) = | Ba)M (@) (2.4

where M (z) = 5‘;‘4&).

Having defined the effective average action, let us see if we recover the required asymptotic
behaviour. When & — 0, the mass term R}, vanishes and the free energy Wj,—g is equal to W
and hence T'j,_o = I'. Now let us see what happens in the other limit & — A. By definition
of the Legendre transform the external field is given by:

6T
B(x) = . .

Therefore substituting this definition in eq. (2.14) we obtain:

T [M] = 5;\5;(’; ) M (z) — Wy[B]. (2.16)

Now we take the exponential of Ty

eff‘k[M] — eWk;[B]e_ fx %M(m) (2.17)
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and using e = Z; we find:

5T

o TRlM] _ / Dep()eHA-AHI ], B@)o(a) o~ [ sty M(@)

_ / Do(z) e MO oy SDRREUOW L, sty G -M@) (o

If we take a cut-off that diverges when k — A for all momentum:

1
op |3 | seicatees] ~o0) (219)

which leads to:
oT s

CooalM] = Hlo =01 + | 57t

M(z). (2.20)

This is not the result we wanted since Ty— [M] # H[¢p = M]. One solves this problem
by subtracting the term § [ , M(z)R(z,y)M(y) in eq. (2.14) which leads to a modified

Legendre transform:

M) = [ B@M@) -5 [ M@R()I) - WilB). )
T z,y

With this change in the definition, the limit & — 0 remains unchanged. And after the

same computation as before, we have:
o TulM] _ / Dp(w)e Mo 5ty (Go=M@) =5 [, (6o M) Ru(o) (64~ M)
(2.22)

Taking the limit k = A we find:

exp [—;/ (o — M(x))Rp=n(z,y)(dy — M (y))dy| ~ 0(¢ — M) (2.23)

)

and this equation with eq. (2.22) lead to:

Tia[M] = H[p = M]. (2.24)
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If the cut-off R}, does not diverge in this limit but is only very large then I'y—x ~ H. This
shows that the form of the cut-off has an influence on the flow at the beginning of the inte-
gration process. However the critical behaviour in principle remains unchanged. Therefore
for critical phenomena we can take a finite cut-off for k = A but if we are interested in non-

universal behaviour we must use have khrrk Ry = 0o (see [28]).
_>

A main difference between the Wilson and the Wetterich pictures is the role played by &.
It is an ultraviolet cut-off in the Wilson approach whereas it is an infra-red one in Wetterich

approach.

2.3.2  The Wetterich Equation

In this section, we derive the Wetterich equation which is the exact evolution equation of the

effective average action. We start by deriving an evolution equation for the partition function

2
azi=-y [6([ oturite-ne,)
x?y

exp [—H[(ﬁ] _! G Ri(x — y)y + /

2 x,y T

-3 </ Ml )y )

from which we deduce the evolution equation of the free energy W:

B(x)qﬁm] (23)

52Wy, oWy oWy )

1
== [ oo (i * smaamy) - 09

Note that this equation is equivalent of the Wilson-Polchinski equation (2.10) and therefore

has the same non-locality problems.

Now we have the evolution equation for W}, we can easily derive the equivalent one for
I'i.. But first we must recall that the derivation Jy, is taken at fixed B. And we need to change
this at some point to derivations at fixed magnetization M. The relation between the two

derivatives is:

o

8k‘]\/[ = ale +/‘TakM($)B(W(:E) . (2..2.7)
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Taking the derivation of the Legendre transform (2.21) with respect to k we find:

oLy, + 00, = [ B@a(e) — 5 [ Mo - ), M)

B 2 x,y (2..2.8)
_/ M (z)Ry.(x — y)3 M (y)),
Y

Substituting 0y, W/, by its result (2.26) together with eq. (2.27) we obtain:

Wy
Ol / M 'BéM / O Re(e <5B( J0B(y)
+5(SBWI€ 5Wk> /B VO M (x / M (z)0 Ry (x — )| M(y) (2.29)

_ / M(:L')Rk(ﬁf — y)akM(y>|B

Replacing B(z) by its expression 537/ M 5+ f Ry (xz — y)M (y) in the previous equation,

we obtain:
1 (52Wk oW, oWy
T — - _
Ol'k,, =5 o K Fi(x =) (53(33)53(3,) T 5B 5B(y)> (2.30)
2.30
1
—3 M (z)0k Ri.(x — y)|, M (y)
zy
and using SB—% = M (x) we find:
1 82W;,
Ol == OpRp(x — YY) ———. 2.31

We are close to the final expression. We just need to express the second functional derivative of
W), as a function of I';, and therefore we again use ;T% = M (x) and derive it with respect
to M:

82W,, / PWi.  6B(y)
6B

5B(x)0M(z) (2)3B(y) M (2) (2:32)
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which is also given by:

(52Wk (SM(.%')
SB0M(z) ~ oM (z) ~Ow ) (233)
The field B can be expressed in terms of T'y;:
Y
@)= syt | Fele—wMW) on

and taking its functional derivative with respect to M (z) we obtain:

0B(z) 82T,
SM(z)  oM(z)on(z) T kE Y- (2.35)

Replacing this equation into eq. (2.33) we find:

52Wk 52rk
ba—2) = / SB(1)5B(y) <5M<:c>5M<z>

T Ry(s - y>) (236)

which means that W]gQ) is the inverse of FS) + Ry:

Wy = (1 + B (9) (237)

which is slightly different from the usual relation W) = (I'?))~1, Injecting this into eq.

(2.31) we finally obtain the Werterich equation:
1 ~1
oruM = [ ki —y) (I +R) @ (239)
x?y

which reads in Fourier space:

ouLeM) = 5 [ kuta) (0 + Re) (0., (239
q

A remarkable feature of this equation is that it does not have the non-local term that plagued
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the Wilson-Polchinski equation (2.10). This evolution equation is an exact functional integro-
differential equation which makes it impossible to solve in general without any approxima-
tion. Before talking about the approximations that one can make while preserving the non-
perturbative character, let us review the properties of this flow equation. Albeit having a one-

loop structure since it involves only one integral which can be seen from a diagrammatic repre-

o'y = % O (2.40)

where ¢ is the RG-“time” ¢ = In k/A and the dot represents 0y Ry, This one-loop structure

sentation it is an exact equation:

gives a direct connection with perturbative RG both in the vicinity of the upper and lower

critical dimension as well as with the large-n expansion at lowest orders (one-loop).

The flow equations for the Green functions are straightforward to derive. We simply need
to take the functional derivatives of the Wetterich equation. The flow equations of ™ and
' are given by:

o, (p) = — / 0 Ri(q)Cr(q1, —2)TP (g2, =43, ) Gilas, —q1) (241

qi

N

o (p1,pa) = / O:Ry(q)Gr(q1, —q2)F;§3)(Q2, —q3,p1)Gr(gs, —q4)F;(€3) (g4, —q5,p2)
o

7

1
X Gr(gs, —q1) — 3 0 Ri(q)Gr(q1, _Q2)F§€4)(927 —q3,01,02)Gr(q3, —q1)
q;

(2.42)

where G}, is th (r@) R)A The di ic forms of &,T"") and &,I'?
k 1St epropagator k "‘ k . (¢ lagrammatlc orms o t k an 't k

show that the one-loop structure is preserved:

1
ot = -5 7’7@ (2.43)
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1 p -p
r=_= - .
8t k ) P —p (2' 44)
where p1 = —p2 = p. Note that these equations are not closed. In particular we that the

flow of I’,(Cl) involve Fl(f) and ng) and the flow of Fl(f) involve ng) and I’,(:l). More generally
the flow of F,(:) involve F,(JLH) and F,(Cn+2).

2.3.3 Approximations

In general the effective average action I'j, involves an infinite number of couplings but since
the Wetterich equation (2.39) cannot be solved exactly some approximations must be made
to close the system and perform actual calculations. However, as the approximations used
do not rely on the smallness of a usual parameter, the approach remains non-perturbative in
essence. In particular, it is not confined to weak-coupling regimes or to the vicinity of critical

dimensions and is therefore suitable to overcome the limitations of perturbative RG schemes.

In the following, I shall present the most used approximations which transform the Wet-
terich equation (2.39) from a functional differential equation to a set of ordinary differential

equations:
e the derivative expansion where the effective action is expanded in power of the deriva-

tives of the fields

o the field expansion, where the effective action is expanded in power of the fields

o the Blaizot-Mendez-Wschebor or BMW approximation where the full momentum de-

pendence is kept.

These approximations are presented with the O(n)-model in mind, which we discuss be-
low as an example, but the generalization to systems with more than one field or with different

symmetries does not pose any conceptual problem.

The choice of the approximations is a very complicated question which depends on the

system at hand.
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2.3.3.1  Derivative Expansion

The derivative expansion is a series expansion in the derivatives of the field and equivalently,
in Fourier space it is an expansion in powers of the momenta. Therefore itis well suited for the
study of phase transitions and critical phenomena where we are interested in the long-distance,

low-momentum, physics. In this approximation the effective average action I'y, reads:

—

ruld) = [ d's {Z’“(q”@a)hy’ff ><ap>2+Uk<cz‘s‘>+o<a4>} (249

2

where ¢ is a n-vector field, p = ¢2/2, Z($) and Y;(¢ ) are the field dependent kinetic
terms and U (¢ ) the potential part of I'x[¢]. This equation can be further simplified by
taking Zj, = 1 and neglecting the function Y},:

. 1 - .
i) = [ ot {3062+ 0id (249
This s called the local potential approximation (LPA) since no field renormalization is included

and thus the anomalous dimension vanishes 7 = 0.

One can improve this approximation by taking into account the field renormalization con-
stant Z, and get the LPA":

rr i) = [ ot {2 0dr 4 o) (47

where we note that Zj, depend only on the scale k but not on the field ¢. This will give a non

trivial anomalous dimension since Z, ~ k™.

This truncation is well suited to the study for the long distance physics. The derivative
expansion has been successfully applied in statistical physics where in the study of critical phe-
nomena we are only interested in the long wave-length physics: O(n)-model [29], the Gross-

Neveu models [30], [31], frustrated magnets [32] and see [33] for other examples.
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2.3.3.2  Field Expansion

In the field expansion we keep all the derivatives but expand the effective average action in

powers of the field:
oo 1 n "
Tile] = n,/ (H d?z; ¢($i)> Iy (@1, 2n) . (2.48)
n=0 i=1

From convergence studies it has been shown ([34], [35]) that expanding the effective aver-
age action around the minimum configuration ¢q of I improves the convergence properties

when one is interested in the critical behaviour. With this I'j, reads:
o0 1 n n
Tyl6] = ZO - / (H da; (¢(ai) ¢0)> T (@1, @), (249)
n= =1

2.3.3.3 Combination of the Derivative Expansion and the Field Expansion

We can of course combine both the derivative and the field expansions. This is probably the
most used truncations and it is the one we have used in our work. The effective potential with

this double truncation reads
Uk(p) =D ank (p—5)" (2.50)
n=0

where p = ¢?/2and k = $3 /2 which correspond to the minimum of the potential U} (p =
k) = 0. The functions Zj and Y}, read:

(2.51)
Yi(p) =2 Y (p—r)".

n=0
Within this expansion we select the couplings depending on their canonical dimension. Now
the flow equation of I';, becomes a set of ordinary differential equations which considerably
simplifies the integration. Although the derivative and field expansion have many advantages,

it still has some drawbacks. The momentum dependence of the Green functions ™ js badly
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truncated at the transition. Moreover the independence of the physical quantities on the cut-
off choice is not preserved and there is no general theorem on the convergence of the derivative
expansion. However, it has been noticed and it is physically reasonable that if there is conver-

gence, hence the dependence upon the cut-oft R}, decreases with the order of the expansion.

Note that an interesting modification to this approximation was been made by Braghin
and Hasselmann [36, 37] where the full momentum dependence of the coupling constants is
kept. This approximation yields closed coupled integro-differential equations which are solve

self-consistently and it allows for investigation beyond the asymptotic ¢ ~ 0 regime.

2.3.3.4 Blaizot-Mendez-Wschebor Approximation

The BMW approximation, developed by Blaizot, Mendez-Galain and Wschebor [38], starts
with the exact equation on the Green functions. In this method one considers that most of the

relevant information is encoded in the two-point correlation function I’,i ) taken in a uniform

field M. The flow equation of I' ,(62) reads:

1
8kF /akRk M)? <—2F§g4)(197 -p,q,—q; M)

(2.52)
+Ty S (p,q,—p — q,M)G(pﬂLq;M)Ff’)(—p,—q,p+q;M))

which is slightly different from the one written previously, because we used the fact that there
are Dirac d-functions in the G's and T'(™)'s. To close this evolution equation we need approx-
imations on Fl(f)) and F](:l). The BMW-approximation consists in taking a vanishing depen-

dence over the internal momenta g and by performing the following replacement:

( 82()

T, —p.g,~ M) =T (p,—p,0,0; M) = ?{W M)
art

g, —p— M) =T (p,0,—p; M) = aM (p; M) (253)
(3) (3) %
| T (=p—.p+ s M) =T (=p,0,p; M) = a]\’} (p; M)
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which leads to:

@ , [ 1021
ol (p§M):/8kRk(Q)Gk(p§M) -5 (p; M)
k . 2 OM?2 »
2.54
or'?
+G(p+q¢;: M) S0 (p; M)

where the ¢ momentum dependence is kept only in the Green functions G. This is a closed
equation since the functions G' are equal to (I’,(f) + Ry) L. Finally one solves this equation

numerically or analytically if possible.

2.3.4 Optimisation and Cut-off Function Choice

After performing approximations, a crucial question is that 1) of the convergence of the results
when the approximation is enriched and 2) the choice of the cut-off function Rj,. Normally the
physical results must be independent on the choice of Iz, But since approximations are made,
this independence of the results ontained is broken. Therefore, an important question is how
to choose the optimal cut-oft? To answer this question one must establish which optimisation
criteria are the most relevant: the speed of convergence of the physical quantities with the order
of the expansion (derivatives and fields), the sensitivity of the results at each order to the cut-off
variation, the accuracy of the results . . . Following Canetet. al [39], we concentrate on the two

latter criteria.

Taking a family of cut-off function Rj} parametrized by o and since the untruncated re-
sults are independent of o we seek a region where the results are less sensitive to the variation
of the parameter o at all orders of the truncation: this is called the principle of minimum sen-

sitivity (PMS). This criterion reads:

dQ(a)
do

CVPMS: O (2’55)
where () can be a critical exponent or any another physical quantity of interest.

Canet et. al [39] computed the correlation length exponent v for the Ising model in three

dimensions. In figure 2.5, we can see the results at different orders of the field expansion where
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two cut-off functions were used, an exponential R,Ei)xp [40] and a theta cut-off R,(fg [41]:

() aq’
k,exp eq2/k2 1 (2.56)

R =a (K —¢%)0(1-2/k) .

The difference between the results corresponding to the two cut-off functions taken at their

PMS value arpps is less than 5% when the field expansion is converged (see fig. 2.5).
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FIGURE 2.5: The correlation length exponent v for different order of the field expansion

from Canetet. al [39]. On the left, we have the results with the theta cut-off and on the right

with the exponential cut-oft. The lower figures correspond to a magnification for the higher
orders.

The choice of the cut-off will depend on the physical system under consideration. And
since the approximations break the cut-off independence, one needs to optimize the cut-off

choice and see how the exponents vary when the cut-off changes.
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2.3.5 The O(n)-model

Toillustrate the ideas we have introduced in this chapter we use the O(n)-model as an example.
The O(n)-model describes systems with a n-vectorial field ¢ with O(n) rotational invariance
in the symmetric high-temperature phase. Lowering the temperature a phase transition occurs

at the critical temperature T}, and the symmetry is broken into O(n — 1).

The O(n)-model is probably the most studied model in theoretical physics because of its
simplicity which is related to the maximal O(n) symmetry but its importance is also related to
the wide range of systems it describes going from the paramagnetic-ferromagnetic transition
in magnetic systems to superfluidity and superconductivity:

e n = 0: polymers

e n = 1: Ising model

o n = 2: XY-model

e n = 3: Heisenberg model

We consider the effective average action with the combination of the derivative and field

expansions and to the lowest order it reads:

N 2
Tuld) = /dda: % (85)2 + % @2 - n) (257)

where Z;, A and & are the running coupling constants. The coupling « is defined as the con-
figuration that minimizes the potential. At the critical temperature the field renormalization

Zy has a power law behaviour:
Zy ~ k7k (2.58)

where 1, is the anomalous dimension.

From the Wetterich equation (2.39) we see that the flow equations depend on the prop-

agator (F,(f) + Ry) L. Therefore it is the first quantity that we compute.
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2.3.5.1 Propagator

The two-point correlation function I ,(62) is computed by taking the second functional deriva-
tive of eq. (2.57) and expressing it in one minimum configuration ¢; = v/2k61;6(p):

F;?)(Phi,pz,j) = 6(p1 + p2) { Zk P} 6ij + 2X\ K 615 615} (259)

min

which is diagonal both in momentum and component space. Therefore the propagator P is

straightforward:

P(p1,i,p2,7); = 0(p1+p2) {Go(p1)(1 — 6i1) + G1(p1)d14} 0ij (2.60)

min

where the functions G are given by:

{ Gop) = (Z* + Ri(p)) ™ (2.61)

Gi(p) = (Zwp® + Ri(p) + 2/\/<;)71 .

These functions describe to the different modes of the system. At the transition the O(n)
symmetry is broken into O(n — 1) therefore in the low-temperature symmetry broken phase
Gy correspond to the n — 1 massless Goldstone modes and Gy to the radial massive mode

with mass 2\k.

2.3.5.2  Definitions of the Coupling Constants

Now we must express the coupling constants in terms of derivatives of the effective average
action in order to find their flow equation. We start with the coupling £ which by definition

of the minimum of T';, is given by:

or

) 1
lim T4 (p, 1) P30 361 (p)

p—0

The coupling A is given by:

1
A= %Z{g}] I (p, 15 —p, 1)

min
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and last but not least the field renormalization Z, is defined by:

Zy = lim irl(f)(pa2v -b, 2)

p—0 dp2 (2.64)

2.3.5.3 Derivation of the Flow Equations

For the derivation of the flow equations it is more convenient to use a different form for the

Wetterich equation (2.39):

OTw[g] = %@Tr / In (Ff) + Rk> (¢, —q) (2.65)

q
where 0; acts only on Ry,.

The flow of  is obtained by deriving eq. (2.62) with respect to ¢:

im0 (T 1) ) = i {ar 1) + ot 1i-p1) |

o (2.66)
=0
which leads to:
V2
Ok = — lim o) " ot )( p, 1) (2.67)
pHOI‘ (p717_p7 1) min
Deriving eq. (2.63) the flow of A reads:
— o lim 4 L 1@ L r® 01 p 1
atA—at’i IEL)H}){ 92 F (pv ; p51)+ (2ﬁ)3/2rk (pvlv palaoal)}
min (2.68)
+ ﬂ hm F( )(pv 7 —Db, 1) .
and the flow of the field renormalization (2.64) reads:
d Ok
0uZy = lim 5 QO (0.2 -p.2) + TP (0,20 20.1) 0 (a69)
0 dp? (2r)
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Computing the functional derivative of the effective action and replacing themin eq. (2.67)

the flow of x reads:

5 15 /{ n—1 n 3 } ( )
K= —— . 2.70
' 27 J O\ Ze® + Ri(a) © Zad® + Rulg) + 20s 7

Similarly from eq. (2.68) we find:

22 - n—1 9
I\ = ——0 2.71
A=y / {<qu2 R (et Re@) +2M>2} C79

and from eq. (2.69) the flow of the field renormalization Zj, is given by:

d - 1
0,7, = —2x\? li a/ .
=TI T a2 ), (Zeg® + Ri(9) (Ze(p + @)% + Ri(p + q) + 27n)

(272)

In order to find a fixed-point we must work with dimensionless coupling. We recall that

this step is equivalent of the rescaling step in the Kadanoff transformation:

y = q¢*/K?

Ri(q) = Za’r(y) = Zk*yr(y)
K = Zkk27d,‘£

= Z, 2k

(2.73)

P

and the running anomalous dimension 7, is given by:

1
= —— 07 . .
Nk 7 L (2.74)

The flow equations of the dimensionless couplings read:

O = —(d—2+1)F + 2vg ((n — 1) 12(0) + 3142 F;))

B s By s (2.75)
DN = (d—4+217) X\ + 2vg A2 ((n—l)lg(o)+9zg(2m>) &

and from the flow of the field renormalization together with eq. (2.74) we find:

16vg _ <~ 5.
e =~ RAm3 5 (2 F) (2:76)




Chapter 2 Non-Perturbative Renormalization Group 31

where vg = 2797 17%/2T[d/2] and the threshold functions I4 and mg’b are given by:

- 1

lg w = —18/

(w) dvg 7t ¢ (Zka® + Ri(q) + w)®

d - 1 (2'77)

d =1 lim —

ma,b(w) - 80,111% dp2 at/q (qu2 + Rk(‘]))a
y )
(Zr(p+)? + Ri(p + q) +w)®

These functions encode the non-perturbative content of the approach. The argument w cor-
respond to the squared masses of the radial and the Goldstone modes which are 2\« and 0

respectively.

From these equations (2.75-2.76) we can find the fixed-points and by linearising in the
vicinity of the fixed-points we find the correlation critical exponent v. The anomalous dimen-
sion is given by eq. (2.76) at the fixed-point. From the one-loop structure of the Wetterich
equation (2.39) one can recover the weak-coupling e-expansion and the low-temperature ex-
pansion as well as the large-n expansion. The other critical exponents can be obtained from

the following scaling relations:

=2—dv
=5(d—=2+n)

=v(2—n)
__ d+2—n
— d—2+n

&2 ™ Q
\

2.3.5.4 Weak-coupling Expansion

In the vicinity of the upper critical dimension dy,.—4 the coupling A is of order € = 4 — d and
the anomalous dimension 7y, is vanishing at order €. Therefore to recover the weak-coupling
results we expand the flow equations (2.75) in the first non-trivial order of A. We start by

expanding the threshold function with non vanishing mass entering the flow of &:

IHw) ~ 154(0) — 2% (2.79)
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Replacing this in eq.(2.75) we find:

(n+2) 1940) — == Mk (2.80)

Ok = (2= R+ T 872

where the last term is only relevant for the calculation of the correlation exponent and not for
the fixed-point coordinate. For the coupling A we consider the threshold 1324(2;\/%) in the

limit of vanishing mass at the lowest order in A since it is multiplied A2 term:
19=4(2)k) — 1974(0) . (2.81)

Moreover the threshold [§=#(0) has a universal cut-off independent value which equals to 1:

gy = [Tay 2 [T AL
0= W)y b [<1+r<y>>2}

_ {mlﬂy))]j 1 (2.82)

since lim 7(y) = Oand lim 7(y) = oo for any cut-off. With this ;) is given by:

Y—00 y—0

(n+8)<

N Y 2
OA = —e\+ 162 A% (2.83)

The coordinates of the fixed-point are given by:

(n+2) 4=

~ %k

< 167>
= €.
n+38

The correlation exponent is obtained by linearising the flow equations in the vicinity of the
fixed-point and we find:
1 (n+2)

= B + me (2.85)

which corresponds to the perturbative result at one-loop order. The anomalous dimension at

this order is vanishing: 77 = o(e).
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2.3.5.5 Low-Temperature Expansion

Thelower-critical dimension dj. corresponds to the dimension below which the ordered phase
disappears for finite temperature and for the O(n)-model it is equal to 2 forn > 2. At d,
the critical exponent v diverges which justifies a low-temperature expansion in the vicinity
of dj.. At low-temperatures the massive modes contribution is vanishing at all order of the
expansion in powers of the temperature T'. Therefore the physics is completely governed by

the Goldstone modes.

In our approach where the temperature dependence is implicit the low-temperature ex-
pansion is equivalent to an expansion in powers of 1 /. This means that we must expand the
threshold functions with non-vanishing mass at dominant order in 1/%. However the contri-
bution of the lowest order in the massive threshold functions entering the flows of < and s

vanishing and in the vicinity of d = 2 these equations read:

Ok = —(e + M)k + 2va(n — 1)1$72(0) (2.86)

I = (€ — 2)A + 20222 (n — 1)I$72(0) (2.87)

and for the anomalous dimension the threshold mg’zf is taken in the infinite mass limit:

20 4o
M= = =mi5*(%0). (2.88)

The threshold functions If=?(0) and mg3? (o) have universal behaviour given by:

1{=2(0) =1 (2.89)
m%?(oo) =1. (2.90)

Replacing this in the flow equations we find:

e = ﬁ (2.91)

o = —ei 4 "= 2) (2.92)
47

I = (e — 2\ + (n 4_ D 1972(0). (2.93)
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Since & ~ 1/T theflow of the temperature isidentical to the one found in perturbative theory.

The coordinates of the fixed-point are given by:

- n—2
R =

ame o (2.94)

(n—1)Ig=2(0)

The anomalous dimension at this fixed-point is given by:

o=

nt = (2.95)

and the correlation exponent is obtained from the linearisation of the flow equation near the

fixed-point:
v=- (2.96)

which agrees with the result of the non-linear o-model.

2.3.5.6 Large-n Expansion

From the NPRG approach we can also recover the result from the large-n expansion. From
the fixed-points of the two previous perturbative approaches egs. (2.84) and (2.94) we suppose
that &* and \* are respectively of order n and 1/n and in the end we verify that this is coher-
ent. At the dominant order of the expansion in powers of 1/n the anomalous dimension is

vanishing and the flow equations read:

Ok = —(d — 2)& + 2n vy 1¢(0) (2.97)
I\ = (d — 4\ + 2nvg \215(0) (2.98)

from which we deduce the coordinates of the fixed-point:

P 2nv414(0)
5 ff _ ?i (2.99)

2nv419(0)
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and the result is coherent with the initial assumption. The correlation exponent v is again

obtained from the linearisation around the fixed-point and we find:
v=—— (2.100)

which agrees with the one-loop perturbative result.

2.3.6 Conclusion

A remarkable property of the NPRG approach is that we can recover the one-loop perturba-
tive results of the weak-coupling, low-temperature and large-n expansions with truncations
at lowest orders. This is a unique property. There is no other approach that we know of
that provides a connection between the various different perturbative results. Moreover the
NPRG allows for an investigation of the physics at any given dimension d and any number of

field components n.

An important result of the NPRG is that one finds accurate results for the XY-model. At
the Berezinskii-Kosterlitz-Thouless transition [ 42, 43] one finds for the anomalous dimension
n = 0.24 at lowest order of the field and derivative expansion [44] and 7 = 0.287 with
higher orders [45] which compare well with the exact result 7 = 0.25. The variation of the
value of 1) between the two NPRG calculations means that the expansion has not converged
yet. These results show that without an explicit investigation of the vortex configuration the
NPRG seems to automatically include these configurations and therefore seems to correctly

describe the topological excitations.

For the three dimensional Ising model, using a derivative expansion at order 0?2 together
with a field expansion to order !0 Canet et al. [39] computed the anomalous dimension
n = 0.04426 and the correlation exponent v = 0.6281. These results are in good agreement
with the 7-loop results [46]: 7 = 0.0335(25) and v = 0.6304(13); and with Monte Carlo
simulations [47]: n = 0.0362(8) and v = 0.6297(5).

The BMW method has been used to compute both universal and non-universal quantities
for the O(n)-model in two and three dimensions [48]. For instance the anomalous dimension

forn = 2ind = 3 equals 7 = 0.041 which is in good agreement with Monte Carlo result
n = 0.0381(2) [46].
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The power of this approach is that one can compute non-universal quantities such as
the critical temperature. Using a local potential approximation Machado and Dupuis [49]
computed the critical temperature for the Ising, XY and Heisenberg models in three dimen-
sions which are respectively given by 4.48, 2.18 and 1.42 and are in very good agreement with
Monte Carlo results to an accuracy of 1%: 4.51 [s0], 2.20 [s1] and 1.44 [s2].

It has been applied with great success to a wide number of systems and situations by several
teams. It is now recognized as a very efficient method that has shown its ability to go beyond
the perturbative approaches and to replace them favorably when they fail to correctly describe
the critical physics. Among many situations we mention the case of frustrated magnets [32],
membranes ([53], [54]), disordered systems [55]), out of equilibrium systems including KPZ
equation [56] , Bose systems ([57], [38]), gravity [58], see [59] and [6o] for reviews. In all these
situations the NPRG has clarified a confused perturbative situation and, in several case, has

revealed intrinsic nonperturbative aspects necessary for a clear understanding of the physics.
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Threshold Functions

To find a fixed-point we must used dimensionless quantities. For the momenta we perform

the change of variable:
q
y=-3 (A)

and the flow derivation 0; is taken at constant ¢. Thus we must express it in terms of the

variable y:
8t‘q2 = 8t|y — 2y 8y (AZ)
This relation serves to calculate explicitly the flow of the cut-off Ry, in terms of 7:

Oy 2 Ri(a) = —Zk* (= yr(y) — 2% ' (y)) (A3)

37
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where we have used 0, Z), = —n Zy, and 1/ (y) = 9yr(y). With this at hand we can express

the threshold functions in a dimensionless form:

[ 1) =_“+5aﬂ/°° y 2 ey r(y) + 2971 (y))
' 2 0 (y(1+7r(y)) +w)et!

md ,(w) = 1/00 y?(+r(y) +yr' (1)
@b 2o (w+yr@w)y+yrly) +w)

/ a b
X {(nkyr(y)erQT () <(y+yr(y)) T (y+yr(y)+w)>

(e (y) + y 7' (y) (e + 4) + 24°7" (y)) }

- At r(w) + 57 ()

(A.4)
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Membranes

Geometry, which should always follow physics when used to describe nature, sometimes com-

mands it.

Jean-Baptiste Le Rond D'Alembert (1752)

3.1 Introduction

One may consider that the first observation of a membrane goes way back to Babylon in the
eighth century B.C. when an oil droplet was put in water (fig. 3.1). But the interest in mem-
branes has its origin in the seventeenth century microscopic observations. In 166s, the English
natural philosopher Robert Hooke made the first observation of a cell (see Fig. 3.2) while
studying cork under a compound microscope [61]. He also observed similar cells in other
plants and animals. But the chemical nature and the structure of these cells was a complete
mystery. It was not until the nineteenth century that new experimental techniques and more
powerful microscopes gave new insight into the nature of membranes. The surgeon and his-
tologist Sir William Bowman gave the first representation of a membrane when he discovered
and described cells of transverse and longitudinal striae of voluntary muscles in 1840 [62]. Sir

William Bowman is better known for the Bowman's membrane which is a smooth layer in the

cyc.

39
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WATER = OIL

F1GURE 3.1: Water-oil interface.

FIGURE 3.2: Observation of cork by Robert Hooke in 1665 [61].

A couple of decades later, the German surgeon and internist Heinrich Quincke observed
how a spherical cell in water forms two separate parts of the same spherical shape when bro-
ken in half. From this observation, he postulated the lipid nature of these cells by analogy to
the behaviour of oil in water. In the 1890's, this lipid nature was confirmed by the indepen-
dent works of Hans Meyer and Ernest Overton [63]. During the same period of time, Ernest

Overton also discovered that cells are encapsulated within a selectively permeable layer while
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studying cells of plant root hairs. This can be considered as the first observation of a membrane

separating the cell's contents from the environment.

In 1905, the American chemist and physicist Irving Langmuir dissolved phospholipids in
benzene and then spread them on a water surface and then evaporated the benzene. He dis-
covered that the molecules of phospholipid membranes have a polar head and tails made of

hydrocarbon chains. He also found that the typical area occupied by a lipid molecule is so AZ.

In the1920's, Fricke [64] measured the capacitance of a cell-membrane. This measurement
indicated that the membrane was only 4 nm thick. A couple of years later, Gorter & Grendel
[65] applied a pressure measurement method developed by Irving Langmuir in 1917 [66], to
lipid extracts of erythrocyte (red blood cell) membranes. They compared the area occupied
by the lipid extracts and the area of the whole erythrocyte and they concluded that plasma
membranes had a bilayer structure (see Fig. 3.3). Albeit Gorter & Grendel made some mistakes
in their experiment, luckily the different errors cancelled out and their conclusion was correct.
Although other experiments confirmed the bilayer structure of plasma membranes and more
generally of all cell-organelle membranes, this bilayer nature was not widely accepted until
X-ray diffraction [67] and new evidence on the physical state of membrane lipids [68] settled

this once and for all.

»~~ Phospholipid Bilayer ———

FIGURE 3.3: Phospholipid bilayer.

In the early membrane models, the membrane was made only of lipids. But experiments
showed that membranes absorbed water faster that a pure phospholipid membrane should.

In 1935, Danielli & Davson's [69] proposed a membrane model where globular proteins lay
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on the surface of the phospholipid bilayer (Fig. 3.4), since proteins are water absorbent. This
model excludes transmembrane proteins based on the previously shown hydrophilic surface
of globular proteins. The Danielli-Davson model suggests that all the membranes are alike and

that the proteins are homogeneously distributed.
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FIGURE 3.4: Original drawing of the Davson-Danielli cell membrane model. The lipids are
sandwiched between two layers of globular proteins [69].

In the1970's, work from laboratories of Harden McConnell and by Dennis Chapman (see
[70] for review) mentioned the possibility that bilayer lipids are asymmetrically distributed, Ze.

that the two membrane layers or leaflets have different lipid composition and fluidity.

The first images of a membrane with an electron micrograph 3.5 showed that the mem-
brane had a three layer structure and this was taken incorrectly as a confirmation of the Davson-
Danielli model until the 1970's. But advances in biology and chemistry were incompatible with
the Davson-Danielli model. A better understanding of proteins showed that most of them
were not hydrophilic as previous thought but rather lipophilic and hydrophobic. In 1972, a
new model by S.J. Singer & G.L. Nicolson came into light [71]. This model takes into account
some of the complexity of the membrane which was not the case in the Davson-Danielli model.
One or more types of lipids may form the bilayer like a mosaic. And the proteins are inserted
within the fluid bilayer in which one can also find cholesterol. Both the proteins and the choles-
terol can diffuse freely within the membrane. This model was named the fluid mosaic model

for obvious reasons.

In all that we have discussed above, we have never mentioned the underlying forces that

hold the bilayer together. The main force that shapes membrane bilayers is the hydrophobic
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FIGURE 3.5: Electron micrography of a cell [72]. The cell membrane has three layers, a light
layer sandwiched between two dark layers.
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FIGURE 3.6: Fluid Mosaic Model [73]. Like a mosaic, the cell membrane is a complex struc-

ture made up of many different parts, such as proteins, phospholipids and cholesterol. The

relative amounts of these components vary from membrane to membrane, and the types of
lipids in membranes can also vary.

force [74]. The lipid molecules are made of a head and one or more tails. The head is made
of glycerol and phosphates and the tail of fatty acid chains which are respectively hydrophilic
(head) and hydrophobic (tail). Therefore, in aqueous solutions the lipids organise so that the
arrangement minimizes its contact with water which explains why the bilayer structure forma-

tion. This principle also applies to the insertion of membrane proteins into the bilayer. The
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proteins are usually arranged so that their hydrophobic surfaces are buried in the lipid.

Cell

Extracellular fluid
Nucleus
Cytoplasm

Cell membrane

Carbohydrate
Glycoprotein

Globular protein

Protein Channel
(Transport protein)

Cholesterol

Glycolipid

Surface protein

Globular protein
(Integral)

Alpha-helix protein
(Integral protein)

Peripheral protein

cytoskeleton

Phospholipid bilayer Phospholipid

(Phosphatidylcholine)

Hydrophilic head

Hydropbobic tail

FIGURE 3.7: Detailed description of a biological cell membrane (Wikipedia).

Biological cell-membranes are considered to be flxid since the molecules are free to diffuse
within the membrane like molecules diffuse in an ordinary fluid. The diffusion coefficient D
is of the order 10~%cm.s™". Therefore there may be no elastic energy. A completely different

type of membranes can be found in biological membranes. For instance, the plasma membrane
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FIGURE 3.8: Membrane basic shapes [75].

of red blood cells has an additional membrane to the fluid lipid bilayer. The second membrane,
which is coupled to the first one, is a spectrin network with fixed-connectivity analogous to a
fishnet (see Fig. 3.9). This spectrin network constitutes the skeleton of the red blood cell and

is therefore called the cytoskeleton.

The connectivity is considered to be fixed since the time-scales for breaking and reassem-
bling the molecular connections of the spectrin network is very large compared with the time-
scales involved in the shape fluctuations [76]. Therefore membrane with fixed-connectivity are

referred to as polymerized membranes since they are a natural extension of one-dimensional
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polymers to higher dimensions. As a consequence, polymerized membranes are regarded as
thin elastic sheets and the thermodynamical fluctuations of these sheets are governed by bend-

ing and elastic energies.

fe==25x =2
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FIGURE 3.9: Red blood cell [77].

Albeit fluid and polymerized membranes are three-dimensional, they are both considered
as two-dimensional surfaces because the aspect ratio, i.e. the ratio of its width to its height, is

very large.

Another important membrane-like system of great importance in condensed matter phy-
sics is graphene. Graphene is a one atom thick layer of carbon atoms in a non-compact honey-
comb lattice (see Fig. 3.10) making it the first truly two-dimensional system. Graphene was
described for the first time by the German chemist Hans-Peter Boehm in 1962 [78] where
he observed free-floating graphene sheets in a dilute alkaline solution. But in his work, the
graphene sheets were not free-standing and were made of several layers. These free-standing
sheets were thought of as a theoretical curiosity impossible to realise in nature because of the
Mermin-Wagner theorem ([79], [80], [81]). This theorem states that one cannot have long
range order or even a crystalline structure for two-dimensional systems with short-range inter-
actions'. For decades, graphene was studied theoretically but not much experimental interest

was given to it. Not until the early twenty first century. In 2004, Andre Geim and Kostya

"More precisely, the Mermin-Wagner theorem states that there is no spontaneous symmetry breaking for sys-
tems with short-range interactions and dimension d < 2. If the symmetry is discrete like in the two-dimensional
Ising-model, this theorem does not hold.
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Novosolev [82] made the first discovery of free-standing graphene. Their production tech-
nique of the graphene sheets is quite amusing. They used adhesive tape on graphite to isolate
graphene layers. This discovery is very important from various aspects. First of all, it is the first
genuinely two-dimensional material. Second, as a consequence of the symmetry of the honey-
comb crystalline structure, the electrons obey the Dirac equation instead of Schrodinger's and
have a linear dispersion relations as if they were massless relativistic particles. Finally, graphene
has some extraordinary properties that seem to be contradictory. For instance, it is stronger
than diamond but displays ripples (see fig. 3.10) which give an effective thickness ranging be-
tween 0.23 A [83]and 3.5 A [84]. Itis a perfect conductor but at the same time optically
transparent. Graphene also display an anomalous quantum Hall effect (QHE) because of the

existence of a zero-energy Landau level.

FIGURE 3.10: Graphene [8s].

From a formal point of view, in high-energy physics, membranes appear as an extension
of the original strings in string theory as shown by Joseph Polchinski in 1995. These mem-
branes are called p-branes for p-dimensional membranes. For example a 1-brane is a string,
a 2-brane is an ordinary membrane sheet etc. The most important p-branes are the Dirich-
let branes or D-branes for short. They were discovered in 1989 by Dai, Leigh & Polchinski
[87] and independently by Horava [88]. In superstring theory, the Calabi-Yau space (see 3.12)
is a six-dimensional membrane that appear as the extra-dimensions of the four-dimensional

space-time ([89], [90]).
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FIGURE 3.11: Graphene oxide [86].

The interest in membranes has been increasing these last years since the discovery of gra-
phene ([91], [92]) and graphene-based sheets like graphene oxides (see Fig. 3.11). Membranes
come in various shapes (see Fig. 3.8), sizes and composition fitting to any particular need and
they display several extraordinary mechanical, optical, thermal and electronic properties that
make them of great interest in bio- and nanotechnology: drug delivery systems, bio-electronic
devices, electrochemical sensors, energy storage, etc. They can act a separators between two
liquids or they can act as filters being permeable for some kind of molecules and not others.
Since 1970, the reverse osmosis membrane technology has been used for water desalination.
Reverse osmosis is a physical separation process in which properly pretreated water is deliv-
ered at moderate pressures against a semi-permeable membrane. The membrane rejects most
solute ions and molecules, while allowing water of very low mineral content to pass through.
This process also works as an absolute barrier for cysts and most viruses. This technology is
also used for the removal of inorganic contaminants such as nitrates, arsenic and pesticides.
Recent experiments have shown that graphene oxide is a perfect water filter [93]. Membranes
can also be used when controlled release is needed such as in drugs and drug delivery systems,
chemicals in agriculture, fertilisers, pheromones, oxygenation etc (see Fig. 3.13). Polymerized
membranes can be fabricated by polymerization of fluid membranes. Several polymerization
methods exist such as a chemical polymerisation, irradiation of thelipid bilayer with ultraviolet

light.

To summarise we have seen in this introduction that membranes play an important role
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FIGURE 3.12: Three-dimensional projection of the Calabi-Yau manifold. Image from the
cover of the November 2007 issue of Scientific American.
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FIGURE 3.13: Applications: Separation (filters) on the right and controlled release (drugs,
drug delivery systems, chemicals in agriculture, fertilisers, oxygenation, pheromones) on the

left.

in many areas in biology and physics, such as cells, material science and even quantum gravity
([94], [95]). Therefore, understanding their structure as well as their long distance behaviour
is crucial. Membranes can be divided in two groups: fluid and polymerized. The first ones
are common objects in biology (lipid bilayers) and the second can be obtained, e.g, by poly-

merization of these cells. Polymerized membranes are a natural extension of one dimensional
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polymers to higher dimensions. In fluid membranes since the atoms or molecules are free to
move, they have no shear modulus. On the contrary, polymerized membranes have a fixed
connectivity. A fundamental problem is to understand the thermodynamical evolution of the
shape of membranes due to fluctuations. As we have seen, membranes are rather complex sys-
tems. Therefore, in the following sections we will introduce the different models that have
been proposed to explained the behaviour of membranes. These models are a simplification

of real membranes but they still give great insight to the behaviour of membranes.

Mathematically, a membrane is a surface, also called a two-dimensional manifold. In math-
ematics, D-dimensional manifolds are generalisations of surfaces to higher dimensions and the
natural language for manifolds is that of differential geometry. In the next section, we will in-

troduce differential geometry and the properties of manifolds.

3.2 Differential Geometry of Membranes

3.2.1  Basic Definitions and Some Fundamental Properties

In this section, we discuss the mathematical description of membranes using differential ge-
ometry. Differential geometry is the branch of mathematics that studies geometrical objects in
an analytical way, using differential and integral calculus (see lectures [96], [97], [98, Ch. 7]).
The development of differential geometry started in the eighteenth and nineteenth centuries
with the study of curves ans surfaces mainly by Gauss, Riemann, Lobachevsky and Bolyai. The
generalisation of the concept of curves and surfaces to higher dimensions is what we call man-
ifolds. The name manifold comes from the German Mannigfaltigkeit which is the name given

by Bernhard Riemann and later translated to manifold by William Clifford.

The concept of manifold is central in physics. Polymer chains on one hand and biologi-
cal membranes and graphene-based sheets on another, which are of great importance in bio-
physics, chemistry, condensed matter physics and material science, are respectively one-dimensional

and two-dimensional manifolds. Even the space-time continuum in general relativity isa Lorentzian®

*The space-time is also called a pseudo-Riemannian manifold, and often incorrectly called 2 Riemannian man-

ifold.
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four-dimensional manifold. Higher dimensional manifolds can also be found in string and su-

perstring theory. In statistical physics where the phase space is a symplectic manifold®.

Mathematically, a D-dimensional manifold is an object that is locally flat (but not glob-
ally). Locally, a D-dimensional manifold is homeomorphic to the Euclidean space R”. There-
fore, the manifold can be covered by patches parametrised in a local coordinate system {x,, }
with p = 1,..., D. The choice of the coordinate system is arbitrary and depends on the
needs. If two neighbouring points on the manifold are parametrised by two different coordi-
nate systems {z, } and {y,, }, then there is a continuous bijection between the two systems in

the region where they overlap.

In this section we are only interested in smooth differentiable manifolds M with an inner
product g on each tangent space 7Tp. M. These manifolds are called Riemannian manifolds.
Manifolds do not need an embedding space. For instance, the space-time continuum is not
a priori considered as embedded in a space of higher dimensions. But fluid and polymerized
membranes, that interest us, do live in R3. From now on, we will only focus on manifolds

embedded in a d-dimensional Euclidean space R?, where d > D.

A D-dimensional manifold M embedded in a d-dimensional Euclidean space can be para-

metrised by a mapping RP — RY.
Flat) = {r'(z")} (3.10)

where x# are the internal coordinates and r; the external ones with the Greek and Latin indices

running respectively from 1 to D and from 1 to d (see Fig. 3.14).

As an example, take a two-dimensional manifold embedded in a three-dimensional Eu-

clidean space with local coordinates:

7(0, ¢) = (sin 0 cos ¢, sin O sin ¢, cos 0) (3.2)
rl =sinfcos ¢
r2 =sin6sin 10} (33)
3 = cosf

’A symplectic manifold is a smooth manifold M, equipped with a closed non-degenerate differential 2-form
w, called the symplectic form.
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FIGURE 3.14: The vector 7" represents the position of a point P of the manifold in the Eu-
clidean space.

The manifold represented by these local coordinates is part of a unit sphere since 7% = 1.
But these coordinates cannot represented correctly the sphere. There are two singularities, the
North (§ = 0) and the South poles (§ = 7). Although a sphere is locally Euclidean, it is still
topologically different. This is the problem one encounters when representing the Earth on a

flat map. Two maps are needed to represent a surface embedded in R3.

The tangent vectors at each point P of the manifold reads:

o
en = ok (3-4)
This vector belongs to the tangent plane 7, M (Fig. 3.15) and they are noted in bold to make the

difference with the vector that live outside of the tangent plane. The union of all the tangents

planes at each point of the manifold is called the tangent bundle 7M.

Since the choice of the coordinates system is not unique, we need to know how to change

the coordinates system. Given a new coordinate system {y, },—1,.. D, the tangent vectors
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local tangent plane

FIGURE 3.15: Tangent plane at the point P [99].

read:

_877’_87_"6:5”_&81:” (55)
Oyt Oxv Oyt VOoyr 35

Fu

With this we can express any given vector ¥ in any coordinate system:

ox”

7 12 v s
v=v"€, =" =U" ——
i .fu Dyt

e, (3.6)

where we have used the Einstein summation rule for repeated indices. We now have the ex-

pression of the new coordinates of the vector ¥/ in terms of the old ones:

Oyt
N 67

This change of coordinates makes possible to connect different neighbouring maps.

From now on, I will concentrate on a two-dimensional manifold in three-dimensional Eu-

clidean space:

Mz,y) = (X(z,9),Y(z,y), Z(z,y)) (3.8)

where the x and ¥ are the internal coordinates and X, Y and Z the external ones.
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The tangent vectors at each point of the manifold reads:

or .

€r = 87; = 0T (3.9)
or .

e, = 8—; = 0yr. (3.10)

Since the manifold is two-dimensional and e, and e,, tangential to the surface, the normal
unit vector at each point P of the manifold can be defined by:

. e:Ne
n= Y

(3.11)

lex A eyl

The distance between two infinitesimally close points with coordinates x and x + dz, the

arc-length ds?:

or or
I Iz
ozt (z%) oxv (=)

= e,.e,dztdr” = g, dxtdz” (3.12)

ds? = (F(a") — F(a* + dat))? = dztda”

where g,,,, is called the first fundamental form or the metric tensor*.

The dual (inverse) tensor g"* is defined such that:

lifu=v
Y= = I
Gup9 u 0if p # v (3.14)
where 5;; is the Kronecker symbol. The position of the indices, up or down, shows on which
space the components live, the tangent space or the cotangent space respectively. The met-

ric tensor defines an isomorphism between the two different spaces and can be used to lower

indices.

*In a more modern way, the first fundamental form is defined as the symmetric bilinear tensor:
g X, Y) =< X,Y > (3-13)

where X and Y are two vector fields in the tangent bundle 7M. The coordinates are said to be locally orthogonal
if the first fundamental form is diagonal.
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The determinant of the first fundamental form reads:
d __1 Ho vp —
et (Qul/) = 55 € "Guvdop = 9 - (3.15)
The determinant g is directly related to the arc-length ds by:
ds = |e1 A ey] = |e2e2 — ey.es|'/?

= (911922 — g12g21)"/* = (df:tg,w)l/2 =.. (3.16)

There is a second fundamental form C,,, which characterize the curvature of the manifold.
Given a curve C on the manifold parametrised by (), the tangent vector ¥(t) at each point

of the curve is given by:

=

4 or _ -
u(t) = i (1) (3.17)
. o ( or Ox* 0 )
u(t) = g (8:3“616) =5 (epyp) (3.18)
_ ey 02¥ ., ot "
= o0 ot ¥ +e, 5 = eunvi'l + eyt (3.19)

Taking the scalar product with the normal unit vector 7i:
U(t).n = ey, nat's” + e, it (3.20)

where the last term in the r.h.s. vanishes by definition of the tangent vector and the normal unit

vector and the term e, ,,.77 is the second fundamental form C),, . Just as the first fundamental
937
OxHoxY

Cw is diagonal, the coordinate lines are said to be conjugate. Moreover if both the first and

form, the second fundamental form is a symmetric tensor since e;, , = = ey If

second fundamental forms are diagonal, the coordinate lines coincide locally with the principal

directions of curvature.
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The first and second fundamental form serve to define the curvature of the manifold. The

eigenvalues C and C of C;j = C,,pg"" are called the principal curvatures:

det [C’Z] = det (Cppg™) = det (Cpp) det (™) (3.21)
_ det(Cp) _ C 's
 der (9pv) g (5:22)

where g and C' are the determinants of the first and second fundamental forms respectively

and the eigenvectors correspond to the principal directions of curvature.

Another expression for the second fundamental form can be derived by differentiating the

scalar product e;,.77 = 0:

0

Ew (ep7) =eu,fi+e,i, =0 (3.23)

which leads to:

—e,.ly, =e€u,.1=C,. (3.24)

Given a point P on the manifold, the tangent vectors at that point constitutes a unique
tangent plane. And there exists an infinite number of planes that are normal to the tangent
plane. These normal planes' intersection with the manifold is a curve with radius of curvature
R(c). The minimum and maximum of the radius of curvature R(cv) are called the principal
radius of curvature Ry and Ry respectively. And the principal curvatures are defined as the

inverse of the principal radius of curvature:
Ci=—. (3.25)

With combinations of the principal curvatures, we can construct two quantities that have a

fundamental geometrical meaning, the mean curvature H and the Gaussian curvature K :

1 1
H = iTr (CZ) =5 (C1+ Cy) (3.26)
K = det (C}) = C1Cy (3.27)
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planes normal
of principal vector
curvatures

tangent
plane

FIGURE 3.16: Image by Eric Gaba (Wikipedia).

From these definitions, we can see that the mean and Gaussian curvatures are invariant
under reparametrisation since they are a trace and a determinant respectively. Note that the

convention regarding the sign of the curvature is arbitrary.

Using the second expression of the second fundamental forms, we get the equations of the

mean and Gaussian curvatures in terms of the normal unit vector:
H=—--Vi (3.28)
K= —%v (7.(V7) — (7.V)7) (3:29)
where Vii = e, 0" 7.

Carl Friedrich Gauss proved that the Gaussian curvature does not depend on the way the
manifold is embedded in the Euclidean space. He called this theorem Theorema Egreginm for

remarkable theorem in Latin. The Gaussian curvature K is an intrinsic property of the surface.

Gauss presented the theorem in this way (translated from Latin):
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Theorem 3.1 (Gauss's Theorema Egregium (translated from Latin)). Thus the formula of the
preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon

any other surface whatever, the measure of curvature in each point remains unchanged.

Theorem 3.2 (Gauss's Theorema Egregium (in modern language)’). The Gaussian curvature
of a surface is an intrinsic property of the manifold and hence does only depend on the first

[fundamental form (and its derivatives).

An explicit expression for the Gaussian curvature in terms of the first fundamental form

is provided by the Brioschi's formula:

C R
K=—= (3:30)
g g
where the fourth rank tensor 12, 5 is the Riemann curvature tensor:
R;U/pa = g,u)\Rz//\pcr (3.31)
0 0
A A A A A
Rypa = OxP Fuo - Ox° Fup + (prrﬁa - Fawrﬁp) (3'32)
where Fﬁp are the Christoffel symbols:
1 0 0 0
A A
F/zfp =g" F)\l/p = 59“ <W9Au + @gAp - M\gl/p) . (3.33)

An important theorem in differential geometry is the Gauss-Bonnet theorem that relates
the geometry of a two-dimensional manifold M to its topology (the total curvature of a com-

pact surface is 27 times its Euler characteristic y)°:

/M ds K = 2my(M) = 47 (1 — g(M)) (3.34)

* In mathematical language, the theorem may be stated as follows: The Gaussian curvature of a surface is in-
variant under local isometry.
®The Gauss-Bonnet theorem is only valid for a two-dimensional compact manifold without any border.
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where x is the Euler characteristic and g the genus of the surface which characterizes the topol-

ogy of the surface, 7.¢.:

g = 0, sphere
g =1, torus

g = 2, double torus.

Sess

FIGURE 3.17: Sphere (g=0), torus (g=1) and double-torus (g=2).

3.2.2  Monge Parametrization

As we have already said different parametrisations can be used to describe a manifold. A very
useful parametrisation when dealing with an almost flat surface is the Monge parametrization.
We take an orthogonal coordinate system {z, y} and the deviation of the manifold from a flat

surface is described by a height function h:

R? — R (3:35)
(z,y) = 7= (2,9, h(z,9)) . (3:36)
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-

FIGURE 3.18: Illustration of the Monge parametrisation [99].

With this parametrisation, the tangent vectors reads:

e; = (1,0,05h)
(337)
e, = (0,1,0,h).
This leads to the following expression for the metric tensor g, :
14 (0,h)%  0,.ho,h
uv = ( P ;La h) 1 ay 9 ) (3.38)
T Y + ( yh)
and its determinant now reads:
det (g;w) =g=1+ |Vh|2 (3-39)

where |Vh|? = (8,h)* + (9,h)°.

From the expressions (3.37) and (3.39) of respectively the tangent vectors and the metric

tensor, we derive the expression of the normal unit vector in the Monge parametrization:

(—=0gh,—0yh,1)  (—0zh,—0yh,1)

e R, 7 G40)
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Now we can derive the expressions of the Mean and Gaussian curvatures by replacing

(3.40) into (3.28) and (3.29):

(14 (@:1)) 0,0,h — 20,h0,10,0,h + (1 + (Dyh)? ) Dy Dy

"= (1+ [Vh]2)* G4

i = 0u0ch0,0yh — (8,0,h)* .
(1+ |Vh|2)?

(3-42)

3.3 Deformations

In addition to the curvature we know from elastic theory that there are two elastic deforma-

tions that may contribute to the energy of a solid: stretching and shearing (see fig. 3.19).

FIGURE 3.19: Deformations from left to right: bending, stretching, shearing (Iamge from the
Thesis of Camilla Barbetta).

Now that we know which contributions may enter the energy of a membrane let us see

how they are implemented depending on which type of membrane we are considering.

3.4 Long-Range Behaviour of Fluid Membranes

3.4.1 'The Model

In 1970, Canham proposed a model for fluid membranes in the special case of red blood cells
[100]. This model was generalised three years later by Helfrich [101]. The Canham-Helfrich

model describes the contribution of the membrane bending to its free energy:
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Fy, = /M ds {2& (H — Cy)* + RK} (3.43)

where H and K are respectively the mean and Gaussian curvatures. Cj is the spontaneous
curvature and  and K are the bending coupling constants or bending rigidities. Note that the
bending coupling constants have the dimension of an energy since the Gaussian curvature and
the square of the mean curvature have the inverse dimension of a surface and with integrate

over a surface.

The spontaneous curvature C translates e.g. the asymmetry between the two leaflets of
the membrane. The spontaneous curvature plays an important role when the membrane has
proteins with a non-symmetric shape which deforms the two leaflets differently. Therefore, the
spontaneous curvature must be included. However, in most cases, the results one obtains with
Co = 0 are accurate in comparison with the experimental data. This justifies the assumption

of a vanishing spontaneous curvature we make in what follows.

The Helrich-Canham free energy without spontaneous curvature is simply:

Fy = / ds{2kH? + RK} . (3.44)
M

The bending rigidity £ must be positive for the stability of the membrane. The Canham-
Helfrich free energies (3.44) is invariant under local reparametrisation, .e. under change of in-
ternal coordinate system, since it contains terms constructed with only geometrical quantities.
This means that the energy of the membrane does only depend on the shape of the membrane
and not on the position of its constituents. The invariance under reparametrisation is directly

connected to the fluid nature of the membrane.

From the Gauss-Bonnet theorem (3.34), we see that the Gaussian bending energy is a con-
stant except if the topology of the membrane changes. The topology may change by fission
or fusion but this is a quite rare event for a phospholipid membrane. The fusion or fission
are controlled by a machinery in biological systems. Therefore the Gaussian bending energy
may be dropped. We are only left with the contribution of the mean curvature to the bending

energy.
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The Helrich-Canham free energy without spontaneous curvature simply reads:

F, = 2,%/ dsH?. (3-45)
M

The contribution to the total energy comes from the bending deformation, a surface term and

self-avoidance:

F = Fb + Ftension + Fself—avoidance
b
= 2/4;/ dsH? + 7'/ ds++- /ds ds's (7(s) — 7(s")) . (3.46)
M M 2
The number of molecules of the membrane being fixed there is no fluctuations in area. There-

fore the tension term vanishes. This is different from the problem of interfaces where the en-

ergy is dominated by surface tension. Self-avoidance term is neglected in what follows.

FIGURE 3.20: Red blood cell's shapes [102].
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3.4.2  Fluid Membranes in Monge Parametrization

To lowest order in the height i, the mean curvature in the Monge Parametrization (3.41) reads:

(02h + 2h) . (3-47)

M\H

With this approximation the free energy reads:

(82h + O;h
= 2/{/d$dy\f)
== / dxdy\/1+(8xh) +(ayh)2 (a§h+a2h)2 (3.48)
/ dady (92h + 92h) / dady (V2h)~ . (3.49)

In Fourier space:
F= [a'hant-a = [ ') (5:50)
q q

where we have used h(—q) = h*(q):

hg) = / W) (.51

Now, we need to calculate the thermal average of the height-height correlation function (in
the following, we will drop the subscript thermal for the average). By definition, this average
reads:

Dhh 2, —F/kgT
<nla(a) > = L RS (552

In the harmonic approximation, this correlation function is easily evaluated because the

free energy is Gaussian:

2
9 fdz:z:%_w B _ﬁ / —an?) L
<" >=r0T—m = 50 In ( dzxe =50 (3.53)

f dre—ax
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The height correlation function reads:

<|h(@))? > =" (3.54)

Each harmonic mode contributes with a term kB% (equipartition theorem). In real space we

find:

< h(0)h(x) > = kBT/ /€1q4 o L?. (3:55)
q

Remark: with a tension term in the free energy F, = fq 7q%|h(q)|?, the height correla-

tion functions reads:

kpT

<|h(Q))? >=—"—
|h(q)| P

(3.56)

The height fluctuations grow linearly with the size of the membrane. This means that
two-dimensional fluid membranes are crumpled at all temperatures 7" # 0. Including higher
order terms in the field & induces a scale dependence in the bending rigidity which is computed

using the renormalization group [103]:

k(L) =K — 31:? In (5) (3.57)

where L is the membrane size and a correspond to a microscopic lattice size. This equation
shows that the bending rigidity decreases with the size of the membrane. Thus the height fluc-
tuations eq. (3.55) grow even faster and the membrane remains crumpled. However, from RG
calculation for any dimension D > 2 a fluid membranes exhibit a phase transition between a

crumpled and a flat phase at finite temperature.

3.5 Polymerized Membranes

3.5.1 The Model

Lets us now consider polymerized membranes. Since the connectivity between the molecules

is fixed a network is formed and shearing and stretching appear which affect the energy of the
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membrane. In this section we show how this in-plane elasticity changes the thermodynamical

behaviour and thus the shape of the membrane.
The bending energy is given by:

K

2 v
Fy =3 / &z ouen. (3.58)

This energy is not coordinate independent because of the fixed connectivity. At rest the posi-

tion of a point on the membrane is described by:

7o(z) = ((2,9,0) = (z (3.59)

where x = (z,y). If ( = 0 the membrane is crumpled and if { # 0 it is flat up to small

fluctuations. The metric tensor reads:
0 — 9,7.0,7 = (%6 6
G = OuT0-0uT0 = ¢ u - (3.60)
Due to fluctuations we have a deviation from the ground state 7 and the position now reads:
@) = (u(x) + (z, h(x)) (3.61)

where w is an in-plane phonon field and h corresponds to out-of-plane beight fluctuations. From

elasticity theory we know that the shearing and stretching contributions are given by:

A
Fasic = /dQ.TJ {/’LO—EMB + Jia} (3'62')

where 1 and A are the Lame’coefficients corresponding respectively to stretching and shearing

deformations and o is the strain tensor given by:
Oop = O0aT-OpT — (Sap - (3.63)

With this contribution in addition to the bending energy and self-avoidance the total free en-

ergy reads:

A b
FIr] = /de {;C’gCg + ,uaiﬁ + 2030} + 3 /de d%y 5(3)(F(w) —(y))

(3.64)
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3.5.2  Mean Field Theory

Since the free energy is not purely geometric we re-write it in a more convenient way using ex-
plicitly the field 7"and generalize it to a D-dimensional membrane embedded in a d-dimensional

space. The free energy is given by:

Flr] = / 472 { 50,0, + ul@u7 - 1) + v(O,T - 07 + L (O 0,7) }

(3.65)

where T is a tension term equivalent of the mass term of the O(n)-model. From this form
of the free energy we see that the equivalent of the order parameter ng of the O(n)-model is
0,7 and there is no term depending directly on 7 without a derivative. This comes from the
translational invariance coupled with the fact that the field 7 lives in the physical Euclidean
space contrary to the field ¢. Therefore membrane theory is a said to be a derivative theory.
As a consequence two terms of order 7% appear in the free energy and we have the constraint

00,7 = 0,0,7. In the ground state 7% we find a mean field effective potential:

UC) = D¢? (% 2 (ut Dv)) (3.66)

and minimizing the potential we find two solutions depending on the sign of 7:

9 0 7 >0
¢ = . (3-67)

Iutpy) T < 0.

When 7 is positive, the membrane s in its high-temperature crumpled phase ¢ = 0. And when
T is negative below T = T¢, the membrane undergoes a phase transition from the crumpled

phase to a low-temperature ordered flat phase ¢ 7# 0 (see fig. 3.21) and we have:
T
5= —2¢ (u+ Dv) (3.68)

and we retrieve Eq. (3.64).

The mean field Landau theory is only valid if we are above the upper critical dimension.
As for the O(n)-model, the upper critical dimension for polymerized membranes is D, = 4

which is far from the physical case D = 2. Since the canonical dimension of the couplings
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t<0=C*#0 t>0=¢*=0

FIGURE 3.21: The mean field potential of polymerized membranes as a function of the order
parameter. On the left, the membrane is in its low-temperature flat phase and on the right
the membrane is in a high-temperature crumpled phase.
and v is:

[u = [v] = D -4 (3.69)

they are of order € = 4 — D in the vicinity of the upper critical dimension. This means that

one can use a weak-coupling perturbative expansion in % and v in the vicinity of Dc.
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3.5.3 Perturbative RG for the Crumpled-to-Flat Transition

From the free energy eq. (3.65) Paczuski e al. [104] derived the flow equations of the couplings

u and v within a weak-coupling e-expansion:

1

— 2 2
,Bu = —€u + M {(d + 21)u + 20uv + 4v } (3.70)
1 d—+15
By = —€v + + u? + (6d + 34)uv + (12d + 14)v* § . (3.71)
4872 2

The stability of the fixed points of these equations depend on the dimension d:

e ford > d.(D = 4) = 219: there is one and only one non-trivial infrared stable fixed
point corresponding to the crumpled-flat transition. The transition is of second order
and we can get the critical exponents at order €. Note that the anomalous dimension 7

is vanishing because it is of order €2,

e ford < dg: the stable fixed point disappears and the transition becomes of first order

induced by fluctuations.

The important question here is whether the crumpled-flat transition of a two-dimensional
membrane in three-dimensional space is a first or a second order transition. This information
cannot be extracted from this computation since taking D = 2 gives an € = 2 which means

that one needs much higher, probably five or six, loop orders to get accurate results.

3.5.4 The normal-normal Correlation Function in the Harmonic Approxima-

tion

Below the critical temperature, the membrane is flat. But unless the membrane is at zero tem-
perature, it is not completely flat because of thermal fluctuations. At finite temperatures, there
is a competition between the energy that flattens the membrane and the entropy that bends
it. This induces ripples. The normal-normal correlation function G, (7)) =< 7(7).7(0) >
characterizes the flatness of the membrane. For a completely flat membrane the correlation is

equal to 1 and for almost flatone 0 < G, < 1.
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We recall that the normal unit vector in the Monge parametrisation is given by:

. (=0zh,—0yh,1)
n = 372’
V14 |Vh[? 572)
and to the second order in h:
— 1 2 3
n = —=0gzh,—0yh,1 — §‘Vh\ + o(h?) (3.73)

In this approximation, the scalar product 7i(r1).7i(r2) reads:

Su

(71).71(r3) = 1 + Oph(1).0ph(x2) + Oyh(x1).0yh(2)
s {@uh@)? + Oh(@) + (Ouh(w2)® + (Oyh(2)*}

=1 {10 (@) — h(@))P +10,(h(m) ~ h(@)P}  (74)

where 0, = (%

In Fourier space, the height function A reads:
h(z) = /Ciq'wh(Q) (3.75)
q

where | = L‘ID with D the membrane dimension (here D = 2). We start with the part
q (2m) b

with derivative over = of eq. (3.74):

Oy (h(@1) — h(2)) = O, / h(g) (691 — a22)

q

- / h()gs (€91 — d92) (376)

q

which leads to:

o) = hz)P = [ hah (¢)aud (¢35 = da) (0o - ea'en)

(3.77)

.4
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The average contains two different averages a spatial and a thermal average. Lets start with

the spatial average:

< 10 (h(@1) — hw2)) > >4= /

Z1,22

% (eiq.ml - eiq.mg) (e—iq’.ml - e—iq’.wg)

= / / M@ (¢ g, (951 — @170} (g’ gmia’ e
z1 Jq,q

M@ (@)@ (179 (10"

5@ — (21 — @) / W@)h* (¢ )aad

q,q’

—
—

r1 Jq,¢

5(q — q"h(q)h*(¢")qzq, (1 _ e*iq'w)) (1 _ eiq’.m)

,q’

h(@)h*(q)gz (1 —e79%) (1 - 9%)

h(q)h*(q)q; {2 — 2cos (q.x)} (3.78)

I
—

Similarly < |9y (h(z1) — h(x2))|? > reads:
< 10, (h(@1) — h(@2))? > = 2 / ha@h* (@ {1 —cos(@a)} . (79)
Replacing these results in the normal-normal correlation function leads to:
< (7)(0) >=1— / < W@ >gema 42 (1 - cos(@.@))  (3.80)

where ¢ = |q].

In the harmonic approximation the height correlation function reads:

kT
< ’h’(q)|2 > thermal = Hq4 (3.81)

which results from the equipartition theorem. The normal-normal correlation function in

direct space is given by:

<7i(r).n(0) >=1-— / sz—f (1 —cos(q.x)) . (3.82)

q K4



72 Chapter 3 Membranes

Polymerized membranes in the harmonic approximation have divergent height fluctua-
tions < |h|? > which means, that the out-of-plane fluctuations grow linearly with the size,
leading to the destruction of any finite size membrane. Similarly, the normal correlation func-
tion behaves as < 7i(r).71(0) >oc In(r). This means that the fluctuations destroy the flat
phase which is in contradiction with the result from the e-expansion. To avoid this divergence,
we need to take into account the coupling between bending and stretching, 7.e. go beyond the
harmonic approximation. This result of the harmonic approximation is just an extension of

the result found by Rudolf Peierls for one-dimensional systems [105].

3.5.5 Self-Consistent Screening Approximation (SCSA)

In the previous section, we saw that in the harmonic approximation, the flat phase cannot ex-
ists because of fluctuations. In this section, we show how this situation changes when we take
into account the coupling between the out-of-plane bending and the in-plane elasticity and
we recover the existence of the phase transition as in the e-expansion. Nelson and Peliti [106]
found that the coupling between the out-of-plane bending and in-plane phonons renormal-
ized the bending rigidity k£ o< ¢~ with an anomalous dimension 17 = 1. The free energy now

reads:
F= / E(Wﬁ)? + ol s+ f)\a2 (3.83)
. 92 af 97 o .

where we have kept only the dominant term in the bending part. Within the Monge parametriza-

tion the strain tensor reads:
T = Oatip + Optte + Oah.Ogh + Oau.Opu (3.84)

where 1 is now a d — D vector field. The last term is of higher order in u and will be neglected
in the following 7. The term aal_i.@/gﬁ couples the out-of-plane bending with the in-plane
elasticity. When this term is neglected, we are in the harmonic approximation. Including this

term makes the problem highly non-linear.

This free energy is quadratic in the phonon modes u,. Hence, we can perform a Gaus-

sian integration to eliminates these modes [106]. The Gaussian integration can be efficiently

7'This term must be included for the second order €2 of the weak-coupling e-expansion.
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performed by observing that 0, h.0gh can be written, as can any symmetric second-rank two-

dimensional tensor, in the form [107]:
Oah.05h = dqvs + Dgva + Payf (3.85)

where v, is a suitable two-dimensional vector field, 730%3 = (Vz)_lemega&yag is the trans-
verse projector and f a scalar function. In Fourier space after integration, the effective free

energy reads:

K 1
Fer = 2/q4|h(q>‘2+4dD/ 0(q1 +q2+q3+q4)
q (d—D) q1,42,43,94 (3.86)
X Rapqs(qr + 42) 410428437415 1(q1)-h(q2) h(gs)-h(qs) -

The four-rank tensor R is transverse to q and can be written as:

R(p) = KoN(q) + pM(q) (3.87)
1 1 pl
Nopns = ﬁfpaﬁp'yé (3.88)
1
Magas = 5 (PPl + PasPay) — Nasas (3.89)
where the transverse projector is expressed in Fourier space Pjﬂ = 008 — q;;—qf and Ky a
combination of the Lame’coefficient K = ’4(22’;7435\)
We are interested in the height correlation function:

< ha(q)hi(q) >= dapGnlq) (3.90)

where G, = kr(q)g* = Gy' + 71, kp is the renormalized bending rigidity, G the
correlation function in the harmonic approximation Gy ' = rq®* and X the self-energy. The

SCSA is determined trough a set of coupled integral equations for the self-energy >:

X(p) = ( d_2 DyPaPsPps /q Raps(2)Gr(p— q) (3.91)

where R is the screened four-rank tensor:

R =R(q) — R(q)II(q)R(q) (3.92)
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where I is the vacuum polarization:

ag~s(q) = / PappPyPsGR(P)Gr(q — P) (3.93)
p

The only contribution of the vacuum polarization comes from the component Iy, that is

proportional to the symmetric tensor S' = 4,305 + 0ay 085 + das0sy:

My = I(q)S (3.94)
I0)= 5 [ *la - pP*Gla)Gla ) 699

and after a bit of calculus we find for the four-rank tensor that obeys:

R(q) = pr(@)M + Kr(q)N (3.96)
where:
o I
pr(q) = m (3.97)
Ky
and the self-energy reads:
K D —
X(p) = 5 _2 D / nla) Zg —3 2ur(e) [1973L(f1)p}2 Gr(q —p) (3.99)

To solve these equations, we start with the correlation function G in the harmonic ap-
proximation (3.81) which we use to compute the integral 1(g) (3.95). Then we injected this
result in the expression of the renormalized couplings pr (3.97) and K (3.98) which serve
to calculate the self-energy (3.99). This in turn is used to compute the new expression of the

correlation function (3.90) and we restart the iteration until convergence is reached.



Chapter 3 Membranes 75

Assuming that G(q) ~ X(q) ~ A/q"*~" in the long-wavelength limit, with A a non-
universal amplitude and 7) the anomalous dimension, these equations (3.97-3.99) admit an an-

alytic solution and we find for the anomalous dimension [108]:

d—D=2pp—1)— LUEn/2AT2=nl+ D)IER = n/2)

U r (@) I'(2—n+D/2)[(n+ D/2)T (W) (3.100)

oo

where I' is the Euler Gamma function I'(z) = [ e~*t*~1dt and the anomalous dimension
0

1y of the phonon modes results from the rotational invariance:

n=4—D—2n. (3.101)

In the physically interesting case D = 2 and d = 3, Le Doussal & Radzihovsky found
n = 0.821 and 7, = 0.358 [108]. This means that the bending rigidity has an upward

renormalization K r(q) ~ ¢~" which stabilizes the flat phase.

3.5.6 Conclusion

In this chapter we have discussed the long-range behaviour of both fluid and polymerized
membranes. More specifically we have shown why fluid membranes are always crumpled and
how the fixed-connectivity enriches the phase diagram of polymerized membranes by the ap-
pearance of a phase transition between the crumpled and flat phases. The existence of this
long-range ordered flat phase seemed to be in apparent violation of the Mermin-Wagner the-
orem [79]. We have shown that the coupling between the out-of-plane bending and in-plane
phonon modes stabilizes the flat phase. This results in the existence of long-range interactions

which is beyond the domain of applicability of the Mermin-Wagner theorem.

We have presented some of the approaches used to tackle the problem of the transition be-
tween the crumpled and flat phases. The weak-coupling e-expansion predicts a second-order
transition for d > d. = 219 in the vicinity of the upper critical dimension D,,. = 4 and be-
low d. the transition becomes first-order. However this leaves open the question for physical
membranes (D = 2 and d = 3) where one has € = 2 which is out-of-reach of a one-loop
computation [104]. Moreover some Monte Carlo simulations predict a second-order transi-
tion (see [98, Ch. 5 and 12] for reviews) whereas more recent simulations predict a first-order

behaviour [109, 110].
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The self-consistent screening approximation has been able to compute the exponents both
at the crumpled-tubule transition and in the flat phase [108]. However the approach relies on
alarge-d expansion makes doubtful the quantitative predictions for small d and impossible the

determination of the d.(D) line.

3.6 NPRG Approach to Polymerized Membranes

To tackle the problem of the order of the phase transition as well as the behaviour in the flat
phase of physical membranes (D = 2 and d = 3) we use a non-perturbative renormalization
group approach. With this approach we are able to compute the critical exponents in the whole
(d, D) plane and more importantly to determine the d.(D) line separating a second-order
transition from a first-order one. In general the effective average action is a functional of all
the invariants of the system. With O(d) rotational and 7'(D) translational invariance I'y, for
polymerized membranes reads in the lowest order of the derivative expansion:

ril = [ a0 {20 0,0, + Ul 100} Gaaon)
where u,,, = 0,7.0,7 is the strain tensor, Z}, corresponds to the field renormalization, U
the running potential and the self-avoidance is neglected again. The tensor structure of u,,
imposes that the potential is a function of an infinite number of invariants which are polyno-
mials of the traces of (u,,,)". The tensor structure of u,,, imposes that the effective potential
depend on a infinite number of invariants which are a polynomial of the trace of (u,,,)". Since
the dimension D of the membrane is finite, one can show that the traces Tr [(u W)D “)] ,with
© > 1, can be written as a combination of the trace with smaller powers of the tensor u,,, e.g.
for D = 2 we have the relation Tt[(u,,)3] = 3Tr[(uu)?]| Trluuw] — (Trlugw])®. With this

simplification, the effective potential reads:

Ulu) = > oo (Te ()™ - (Te () ])"™ (3.103)

ni,...,np>0

Deriving the flow equations for a potential with a large number of invariants can be very com-
plicated, except in some systems like in frustrated magnets [32]. This is even more difficult in
our case of polymerized membranes since we are dealing with a derivative theory. Therefore

in addition to the derivative expansion, we have performed a field expansion of the potential.
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To know which terms one has at each order of the expansion is a bit more complicated than
in usual systems like the O(n)-model where at each order there is only one new term which
is just the field at some even power. To find which term to add at each order we can use the
Cayley-Hamilton theorem that states that every square matrix satisfies its own characteristic

polynomial:

p(A) = det(AMp — upuw) (3.104)

where Ip is the D-dimensional identity matrix. Replacing A by the matrix u,,,, yields the zero

matrix:

p(uw) =0 (3.105)

and taking the trace of this polynomial provides directly the invariants. Indeed each term of
the polynomial corresponds to an invariant. To derive the expression of the characteristic poly-
nomial for a 2 X 2 matrix is straightforward but the greater the size of the matrix the more
complicated and longer it becomes to derive it. Fortunately there exists method, called the

Faddeev-Leverrier algorithm® that considerably simplifies this task (see Appendix B).

The invariants at the second and third order are respectively given by:

Tr[(“uu)ﬂv Tr[(uW)]Q
(3.106)
Tr[(uw)?’}, Tr[(uu,,)2]Tr[(uW)], Tr[(uw/)]g

We start with an ansatz for the effective average action at the lowest order of the field expansion

7’4:

Iylr] = /dDw {Z; (0,0,7)° + u'Tr [(upw)?] + 0 'Tr [UW]Q} (3.107)

We are interested in the critical behaviour of the membrane and for convergence reasons it

is better to expand the potential around the minimum configuration ( instead of the origin.

$The Faddeev-Leverrier algorithm has first discovered by Leverrier in 1840 and has since be re-discovered many
times: Horst (1935), Souriau (1948), Frame (1949), Faddeev and Sorminskii (1949)
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With this change the effective average action reads:

Ly[F] = / dPx {sz (027)% + w (9,700 — 6,,C%)” + v (0707 — D§2)2}
(3.108)

where 9% = 0,0", wand v the elastic coupling constants corresponding respectively to stretch-

ing and shearing. For thermodynamical stability we must have u > 0 and v + Dv > 0.

We want to derive the flow equations of the coupling constants. Therefore we first need
. . . . 2
the expression of the propagator and thus of the two-point correlation function F,(C ). Next

section is dedicated to this task.

3.6.1  The propagator in Fourier Space

For a reason that we will see later the expression of the propagator is derived in a uniform

configuration A different from the minimum configuration ¢:

—

m(xz) = Azt e, (3.109)

which reads in Fourier space:

™(q) = —ile, <£L5(q)> . (3.110)

(2)

The second functional derivative I' i taken in this configuration A reads:

I (q.4, q’,j)| =8(q+ ") {Zrg" + 4> Nub(D — i) + 4¢*(u + vD) (3> = ¢?)
A

+4X* (u 4 2v)qiq; (D — i)0(D — j)}
(3.1m1)

where 6 is the Heaviside step function. The inverse propagator can be written in the form:

(2 + Re) (@i ) = AR )i + B(P))y (s.12)
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where A and B are constants independent on the momenta p and the projectors qu and Pq”

are given by:

bip;
(P )i = 6ij — ;23 (3.113)
DiDj
(Pq”)ij = ﬁ (3.114)
with the following properties:
Pl.Pf =0 (3.15)
Pq” + PqJ‘ =1p (3.116)

where Ip is the D-dimensional identity matrix. A matrix M of the form (3.112) can easily be

inverted and its inverse matrix M 1 is of the same form:

M~'=A'P}+ B'P) (3.117)
with:
1
A==
A
(3.118)
1
B =
B

With this structure of the inverse propagator, the propagator P in Fourier space reads:

Pijla. 4y, = (g + ) {G§ (@), 0 = D= 1)

N o (3.119)
w0 - 000 - (V0 (55 - %) + 6 28 ) )

where:

M) = (Zeg* + Ri(q) + 42 (u+vD) (A2 = ¢2)) "

M) = (Zrg* + Ri(q) + 4¢2X%u + 42 (u+vD) (A2 = ¢2)) "

ANV (@) = (Zug* + Ri(q) +862\2(u + v) + 4¢>(u + vD) (X — ¢2)) "
(3.120)
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The functions (7; are associated to the different excitation modes of the membrane around the

flat phase:

e Go: (d— D) Goldstone or capillary modes propagating outside of the membrane with

a vanishing mass at the minimum A = ¢
e G1: (D — 1) phonon modes inside the membrane with mass m1: m3 = 4¢%u

e G5: one phonon mode inside the membrane with mass ma: m3 = 8¢2(u +v) .

We can now derive the flow equations for the running coupling constants. We start with

the coupling ( in the next section.

3.6.2  The Minimum Configuration ¢

The configuration ¢ that minimizes the effective action is given by:

Tmin(z) = C2t ey (3.121)
and in Fourier space it reads:
Fon(a) = -iCe, (3-000)) 62)
o (q) = — — . 3.122
H dq,u
By definition the first functional derivative of the effective action is vanishing at the minimum:
, 0L (7]
I =k =0 .
k (p7 Z) . 5” (p) (3 12'3)
whose flow equation reads:
8t (F](gl) (p) Z) ) - at D, + Z atrj )(pu 1,4, .])|mm
min min ] q min
d (3‘12’4)
0=0I"(p,i mm+lZ&:C9 /qd '(pi.q,5) ,

where the two terms on the right hand side are both vanishing and we cannot define from this

the flow of ¢. This is completely different from the O(n)-model and is directly related to the
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derivative character of the theory. To overcome this problem we take the effective action in the

configuration A:

Ti[7] = VD(u+ Do) (A% = ¢?)* = VUk(uu,,)’ (3.125)

A

where V' is the volume. In what follow the potential in the configuration A is written Uy ()

for simplicity. Deriving the potential U, with respect to A and taking A = ¢ we find:

oU}, B
W = 0 (3126)
A=¢
which leads to:
oU} o oU, 0%U;,
O DN =0=20 <a)\> + 0 Vi (3.127)
A=¢ A=C A=C

From this we find the formal expression of the flow of ( which reads:

(O\OyUk) = (Ox0:Uk ) 5~
B¢ = — g e = A=¢ (3.128)
(O3Uk) s 8DC? (u + Dv)y_,
Now we have to compute the flow of the potential which reads:
1~
O Uk(N) = §5tTr {/ln (Fg) + Rk) (g —Q)A} (3.129)
q

where 9; = 3&%%«

Taking the derivative of 0;U}, with respect to A we find:

1 - .
8>\8tUk()‘) = iﬁtTr {/ Z (F](f) + Rk) (Q7 1, —4q, l)hakr](f) (Q7 l) _Q7])|)\}
7

(3-130)
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Replacing the expression of the propagator (3.119) in this equation and taking A = ¢ we find

for the flow equation of (:

2Ap
D(u+ Dv)¢

+(D = 1)(2u+ Do) LEE({mi}) + (d = D)(u+ Do) LEE2[{m.}]}

o = {Bu+ (D +2)0) L2 {m}]

(3.131)

LD+a

where is a threshold function and its expression will be given in the next section and

{m;} = m1, ma, m3. Asin the O(n)-model the non-perturbative content is encoded in the

threshold functions.

3.6.3 The Flow Equations of © and v and the Anomalous Dimension 7

The definitions of the coupling constants u and v are given by:

1 0
U= ? p}l_)rrb 87]?2 (2) (p7 D, —p, D)lmin (3-132)
1 9 1o 1
v= gglg}) o5, Iy (0, Dy =p, D))y — 50 (3.133)

We first derive the formal expression of the flow equation of w:

. @
8t‘u :lei)% apQ{C28t (paD —-D, D)\mm <28tCF (p’Da_pv D)\min

1 .
+ a2 Z/3”“]‘(61)mmF;E;S)(p,D,—p7D7q,y)}
7 q

1
lim 8 615 ()(paD paD)

2
= jimos + = 9,((u + Dv) (3.134)

|min C

and similarly for v we find:

1 1 a
(3.135)

0
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(2)

We are left with the computation of the flow of I, that reads in a graphical form:

oy, () D, ‘)—O‘(— Q (3.136)

and after some computation we finally get:

16Ap
0= 5p 1 3y 12030+ 20 LG5 [{mid] + 4Du(u+ o) L [{m ] .
+u?(D? +2D — §)LEF [{my}] + 202 LY [{mi}) |
0 = iy {—dutu+ )L [(mi)
D) (u® +2(D + 2)uv + D(D +2)v°) Ly *[{m:}] (3.38)

+(d -
+ ((3D + 2)u? + (D* + D — 2)(4uwv + Dv?)) LY [{mi}]
+(9u2 + 6(D + 4)uv + (D2 + 6D + 12)v )L(?O;‘*[{mi}]} .

To find a fixed-point we need to work with dimensionless couplings. Therefore we will rescale

the dimensionful couplings:

Zy, ~ kM
<2 — kD*QJF’?kC_Q
u = kP42, (3.139)
— kD74+277k,l—)
2
Ri(¢®) = Ziq'r (y = %) :

We only give the expression of the flow equations at the lowest order of the field expan-

sions. Otherwise, they would be too long to be displayed. The flow equations of (2, u and v
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at the order 7 read (we have dropped the bar over the dimensionless couplings):

4Ap D+2
0(*=—(D—-2+m)*+ —— {(3u + (D +2)v) Loy
D(u+ Dv) (3.140)
+(D —1)(2u + Dv)LEE? + (d — D) (u + DU)L%?}
16A
u= (D —4+2mp)u+ ——>P {2(3u +20)* Ly
D(D +2) (3.141)
+4Du(u+ ) LE T + uA(D? + 2D — LG + 2Lt |
16AD D
v = (D —4+42n)v+ m {_4u(u + U)LOI—{4
B 2 2 D+4
+(d = D) (u” +2(D + 2)uv + D(D + 2)v7) Ly (3.142)

+ (3D + 2)u” + (D* + D — 2)(4uv + Dv?)) Lizt*
+ (9u® 4+ 6(D + 4)uv + (D* + 6D + 12)v°) Léjo?‘}
and the anomalous dimension 7, = —dIn Z, /dt is given by:
2¢2Ap
Mk = m
—4((D*+ D +4)u* + (D*+3D +2) v* + 4(D + 2)uv) L2
+ (3D% — 5D +2) w’L{? + 16 (D? — 3D + 2) ¢t LD
+ (D? = 3D + 2) W’ Ni3d? + (D* + 9D — 10) u? NL§? — 21%(D — 1)BuS LO°
—3x 216¢8(u +v)SLRES 4+ 28¢ (w4 v)3(5(D + 2)u + (D + 14)v) LD+
— 4D —1)u? (M@g‘l + Mﬁg“) ~ 3% 24 (u + v)? (Mfé}f“ + Mgﬁ#)

{Q(D —1)u? (Kﬁg‘* + Kﬁ#) +24(u + v)? (Kll());_4 + KzDoT4)

—27(D = D)¢CANES + 4(u +v)(5(D + 2)u + (D + 14)v) N 5>
—3 x 2 ¢ (u + v) NBI 4+ 4w+ v) (D + 14)u + 5(D + z)u)N2131+2}

(3.143)
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2-P-1x_p/2

D72 and the threshold functions L, M and N read:

where Ap =

D+ 2\ —a
Lgpe®mi=o1,2] = 4ADat/q q* (P +mg)

(3.144)
x (P+¢*m3)~ (P—i—qm2) ¢
1 -
MaDC [mi:(),l 2] =——0, / at2 < ) P+ q m
' 44p ™" J, ( o) (3.145)
(P—|—qm%) b(P—|—qm2) ¢
ND-‘r i oz+2< ) P+ 2 2\—a
e [Mi=0,1,2] 4AD t qq ( q mo) (3.146)
x (P +¢*m3) " (P + ¢?m3)~°

where P = Z.q* + Ry, and m? masses that are given respectively by 0, 4u¢? and 8(u +v)¢2.
The threshold functions control the relative role of the different modes, phonons and capillary
waves, within th RG flow. The vanishing mass mode is associated with the (d — D) transversal
Goldstone capillary modes and the D massive modes split into (D — 1) modes with mass
m1 and one mode with mass mg. The set of equations (3.140 - 3.143) have been derived by
Kownacki and Mouhanna [53]. The results, which we will discuss later, obtained with the
lowest order field expansion still had some unanswered questions. Therefore we decided to
go beyond and do an expansion up to the eight power of the field 7®. The method presented
above becomes to heavy when adding higher orders and we used a different one to derive the

flow equations. This method is presented in the next section.

3.6.4 Derivation of the Flow Equations
3.6.4.1 The Effective Action

To derive the flow equations of the coupling constant at the sixth and eight order we use a gen-
eral configuration A which is given below and we keep the formal expression of the potential

as long as possible. The general effective action in a formal way is given by:
Ofr] = T2 + 1)

where the first term corresponds to the kinetic part and the second term to the potential part.
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As usual we need the propagator and thus the second functional derivative of the effective
average action. Let us start with the kinetic part I'4) whose second functional derivative in

Fourier space reads:

51

6T1(q)57'] (q/) 6(q + q )51] kq (3 147)

Now let us look at the second part. We first calculate it in real space and then in Fourier space.

The first functional derivative reads:

sT(Y) 5 b

5Ti]ZSL') - ori(x) /d y Ux(0r)

sV U

st =~ (o) e

then we derive it again and find:

5211](;]) B (52Uk
Sy e <5 (Oari(x)) 0 (3ﬁ7"j(y))> ot =) (3.149)
2
_ Uk 55 (5(z—1)) .
3 (Oari(x)) 6 (0517 (y))

In fact Uy, is a function of ng = gapg — C25a,3 where the metric is equal to gog = 0a7.05T.

Therefore the first derivative of Uy, with respect to d,,r" is given by:

U, 6Up  Ouag
d (@Lri) 6 (tap) 6 (8“7°i)
= OOk (51 + 5Bt
3 (ugg) * 7 HoCe
:ﬂaarw OUk Ot (3.150)

6 (Upa) 6 (tap)
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and the second derivative reads:

(52Uk 52Uk . . 52Uk ) )
T i 00+ —— U5 g g,
6 (0urt) 6 (0pr7) 6 (ugp) 6 (tao) " d (upug) 0 (tao) ’
+— 070+ —————— 0 0y’ (3.150)
6 (ugy) 6 (uoa) g 6 (upg) 6 (uoa) :
UL UL
+ 0+ 0 -
8 (uap) 7 O (upa)

Now we must take these derivatives egs. (3.150) and (3.151) in the configuration A defined be-

low.

3.6.4.2 The Configuration A
We consider a more general flat phase configuration A given by:

A = AapTaes (3.152)

where Aygisa D x D matrix. This configuration is chosen so that:

OuT = Ayp€3
(9017‘}; = AMH(D — Z)
(3.153)
ugﬁ = (AQ)ocﬁ - Czéaﬁ
0a0sTA =10.
In this configuration the second derivative of Uy, (3.151) reads:
(52Uk 52Uk
. . =AiA0(D—0)0(D —j) —————
<5 (Oar?) d (85r1)> | i ( D6 7) {6 (ugy) 0 (Uao)
A
52Uy 52U 52Uy }
+ + +
6 (uus) 0 (Uao) 0 (upp) 0 (tga) 0 (upp)d (Usa) ‘

OU, oU, }
+5i‘{ +
V5 uap) 5 (upa) S|

(3.154)
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which for the potential part F,(CU) leads to:
52
. . = —A,;iAy0(D —1)0(D — §)0,05 (6(x — X
5(8(17“’(%))(5(857"](y)) ‘ 1) ( ) ( .7) ﬁ( ( y))
A
{ 52U, N 52U N 52U N 52U, }
0 (up) 0 (Uao) 0 (uug) 0 (tag) 6 (ugu) 6 (Uoa) 6 (uup)d (Usa) ’
oUp oUL }
—0;i0,08 (0(x — gy {
J B ( ( )) 5 (uaﬁ) 5 (uﬁa) ‘
(3.155)
and in Fourier space this becomes:
s2r”)
S, T =A,iAs; O(D —1)0(D — §)qq !
(STZ(Q)éTJ(q/) | 12 0( Z)e( j)q Qﬁ 5(Q+q )X
A
{ 52U, N 82U, N 52U, N 52U, }
8 (upp) 0 (Uao) 0 (uug) 0 (tao) 6 (ugu) 6 (Uoa) 0 (uup)d (Usa) |
oUL
+ 204j40qpd(q + ¢') < >
Jaeds 6 (tap) ‘
(3.156)
To simplify the notations in what follow we define:
Uetr = Uy, (Ugg = (A%)ap — (*0agp) - (3.157)

The potential Uy, (uqg) is a function of Tr[u], Tr [u?], ... We can show that, fora (D x D)
matrix v and V¢ > 1 the trace Tr [uD H] is a polynomial function of Tr[u), . . ., Tr [uD ] . The

potential Uy, is then given by:

U (uag) = Y alny,...,np] (Tefu])™ ... (Tr [u”])"”

ni,...,np=>0

= Z afne] Tln1 ... TgD (3.158)

Na
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where a[n,] = alni,...,np|and Tr [u"] = T, and the effective potential Ues reads:
U = Z a[na) ti*(A) .. .trll)D (A) (3.159)

where t,(A) = Tr [(uA)n] =Tr[(A% - C2)n] and where u® is given in eq.(3.153) .
For the potential U}, we need the derivatives of 1}, with respect to the tensor ug:

0T, o

(anzuazas o Uapay)

duag o duag
= Oaa108asUasas - - - Yanar T - - - + Oaan08ay Yaras - - - Uan_1an
n—l]

=n [u e (3.160)

which leads to:

SUx < U 6T,
duag a = 0T, duap

SU., < oU,

_ n—1
Stias = 2. (5Tnn [u ]ﬁa (3.161)

and to:

U, b D%n[unfl]
6uao—6u5ﬂiéuag = 0T, B

D

=n;_ a0 o] 1]
D UL ]
(5T (5uw up
D
52Uk n—1 m—1
— n; i [ [0 e

) (3.162)

Pl (S5, )
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Now that we have the expressions of the derivatives of Uy, we take them in the configura-

tion A which we take as a diagonal matrix:

Aaﬁ = diag ()\1, Ao,y ... ,)\D) (3.163)
which implies:
ulls = diag (A2 — ¢%,..., 03, = (?)
D
W) =2 P ) (3169
Otn(A)

(3.165)

and the second derivative reads:

D 82 Uefr

52U, B
(5%5%) L ;:lnmétm(A)étn(A)

n,

Bus (N = )" 0ar (A = )™

D

5 g n—2 oo
eSS o 03—+

D
Uyt OU .t
"pnzong + 0o 25 14

n=1

(St 02—y

k

= 5040

(3.166)

Now that we have the expressions of the derivative of U}, in the configuration A we com-

pute the expression of the propagator in the minimum configuration ¢.
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3.6.4.3 Propagator at the minimum

The minimum A\, = (, @ = 1, ..., D is implicitly defined by:

(%Z?) - 0, Vo (3.167)
or equivalently by:
< ;i’; > = 0. (3.168)
Foralln > 0 we have:
(A=), = no.- (3.169)

With this, the second derivative of Uy, at the minimum is given by:

0*Uy 0* Ut
(&Lwduﬁu> . n;l <5trnA)6tn(A)> } | 6}/«/860(0'571,,157)1,1
n—2
OUesr
T Z ( ) dapdps Z Ok,00m k+2

) Ueff 5Ueff
— . — 2
50“’5“‘3<6t1<A>6t1<A>)\ e ()

man

min

(3.170)
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Injecting this result into eq. (3.156) leads to:

52Fl(cU) 2 /
51 (q)or9 () = 0j00iC (D — )0(D — j)4aqpd(q + ¢')

52U OU.fr
{4%*‘5“ <5t1(A>6t1<A>> oo <5t2(1\))

oU.
+ 20i5¢i9;0(q + ¢') ((M 1;)

(5a5(sgu + 504M550)}

|min

(3.171)

min

=0

2
= 4C°0(D = )8(D — j)5(q + ¢) {qiqj <5t1(i>(§tfj(A)>

" (gzU(X))

Since we have: (tn(A))k = 00, Vn > 1, the derivatives of the effective potential U

min

(4°6i; + ¢iqj) }

min

are given by:

Ut
Ot (A)

= Z a[ng] ng t7H(A) .. .tzk_l St (3.172)
{na}

and by:

62U
St (NSt (A)
S afnalng mg T (A) TN A) L TN A) P (A) ik £ K

_ {na}
S alna)ng(ng — DA T2 (A) P (A ifk = K
{na}
(3.173)
which become at the minimum:
OUfr
5t (A) =al0,..., 1 ,...,0] (3.174)
k min k;th
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and:
al0,..., 1 ..., 1 ,....0],ifk £k
62 Ueff _ kth k/th (3 175)
/ : — 1/ :
Ot (A)dty, (A)|mm 2a[0,..., 2 ,...,0],ifk =K.
kth
For the propagator we need:
OUeg
=al0,1,0,...,0
5t2<A) v a[ ) ) 9 b ]
e (3.176)
_ U =2a[2,0,...,0]
dt1(A)dti(A) _
and to simplify the expressions we define v and v as:
u =al0,1,0,...,0] (3.177)
I
v =al2,0,...,0]. 77
Injecting this in the second derivative of the potential part F,E:U) we find:
L’(g) =4¢%0(D —1)0(D — §)6(q + ¢') (qig;(u + 2v) + ug®s;;)
ori(g)ori(d) ), ” Y
(3-178)

and finally we find for (I‘fi)m + Rk) :

(f® +Rry)  =dla+d) {6,650~ D—1)
(CRR))

‘min
+0(D — 0)0(D — j) (G;l <5ij _ q;?) + G;lq;gj) }

(3.179)

where:

Go'(9) = Zrg* + Ri(d?)
Gfl(q) = Z1q* + Rk(q2) + 4CPuq? (3.180)
Gy q) = Zrg* + Ri(q?) + 8¢ (u + v)¢?
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and the propagator is straightforward:
Pii(q,d))  =0d(q+q) {0 Go(q)0(i — D — 1)
G 4 (3.181)

This form of the propagator is always the same to all orders of the field expansion. Now we

min

have all we need to derive the flow equations of the coupling constants.

3.6.4.4 Flow Equations of u and v

The effective potential can be written as:

1 §t D [ gy
= L tR a8
U= (n1) ... (np)) <6t?1...5t%’3>‘ LoD (3182)

{TLQ} min

(2)

are the coupling constants. Since I’
ping k

withan, . .np =

1 <5"1+"'"DUeff>

n
(n1!)...(np!) \ 0t ..ot i
in the configuration A is not a function of the trace ¢,, but of the eigenvalues A, it is better to

define the couplings as derivatives in respect to the eigenvalues or more precisely of the square

Pa = Aa-

The first and second derivatives of Ueg with respect to p are respectively given by:

e 2 OUesr Ot

Opa = Oty Opa (3.185)
D
OU .t n—1
:Zn Sty (pO‘_CZ)
n=1
and by:
62Ueff . D 52Ueff oyn—1 oym—1
dpadps Elnmétndtm (pa =) ps = &)
e (3.184)

D OU. -2
+ dap Zn(n -1) 5; (pa — Cz)n .

n=1
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At the minimum the second derivative becomes:

Ut 0*Usty OUest
Opadps|  Ot1(A)oti(A)| dta(A) | (3.185)
=2 (U + 5(16”)

02U )

from which we see that we need the flow of ( 905
PaOpPB

min

DU < O?Uefr ) D Uk 9
19) = {0 + —F— 0 3.186
' (8/)@8/)5 | ) " Opadps ; Dpadpadpy (5186)

min min

where:
o, L Uer - 15 / G [m (P(2)+R )}
"0padps)| 2" Jq \Opadps AV
1~ 9*r® oT'® P (q)
=-0 /Tr ———Palg) + 3.187
27"/, {0p55pa A(4) dpa Opp G187)

where P (¢) is the propagator in the configuration A and since Pa ()P ' (q) = Ip we have:

P oPy?
8/)7;\7)/:1 + Py 8/)/; =0 (3.188)
which leads to:
P or®
78/);\ =—P 8p/; Pa (3.189)

and at the minimum we have:

8PA> or
o = —Pumin | 57— Prin 3.190
(8% ( Ips (3190)

min .
min
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This finally leads to:

O?U.g 1= 82F§\2)
0 = =0 Ti min
( tﬁpaﬁpg) 2 t/q ' <8paapg F

min

or
oy

Now we have all the ingredients to derive the flow equations of u and v we simply need to

min

or?
7Dmin —A& Pmin
Ips

min

(3.191)

min

compute the matrix products in this last equation and take the indices corresponding to each
coupling. This last task is done by computer but the expression are not given here because the
are too long. In the next sections we derive the flow of ¢ with this method and then give the

definition of all the couplings in terms of derivatives of U with respect to p.

3.6.4.5 Flow of ¢?

The flow of ¢? is obtained from the minimum condition:

OU.g
ap (3-192)
We take the derivative with respect to ¢ of this condition:
D D
aUeff> ( O?U.r ) 2
0, + a¢* =0 (3.193)
Oczl < ' 8pa |min aﬂzzl 8po¢8pﬁ |7nin
which leads to:
D oU,
2 agl (8twf) )
(" =—— = (3.194)
Z ( 02Ut )
o1 9padps )|
From eq. (3.185) we find for the denominator:
D
O*Uetr
Z (3 3 > = 2D (u+ Dv) (3.195)
a76:1 pa pﬂ min
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and the numerator is given by:

D D (2)
OUgr 15 ory
> (ag2), =2 [ {2(80)

a=1 min

Pmin] (3-196)

where this last step is again done by computer. In the next section we give the definitions of

the coupling constants.

3.6.4.6  Definitions of the Coupling Constants

The effective average action at the order 8 reads:

POy — €28,,,) (8,7 00T — (%0,0) (DaT-OuF — (*ay)

0,70, 7 — D) 4 Co (0,70, 7 — 6,1,C?)? (0af.Oni — DC?)?

OOy — 0,,C2)2 (D07 — 8apC2)?

+ Cy(8,7. 0,7 — ¢26,) (0700 — (26,0) (DaT-OuF — (200,) (0p7.057 — DC?)
+C5(0u7. 007 — (26,) (0.0 — (*6va) (0aT 057 — (*00p) (05704 — (*05,) }
(3.197)

from which we see that adding two more orders of the field expansions adds eight new coupling

constants labelled Wi=1,2,3 and Ci:1,27374,5.

1 82Ueff
T2 <5P18p2)mm G19%)

" 1 {( O*Uesr > < O*Uesr ) } (3.199)
_ = — I
2 (\9p10p1) i \Op10p2) s i

wy = 1 <83U€ff> (3.200)
31 \0p10p20p3 ) i .
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0°Uesr

1 3

wy = 2{<3p13pw3p2>min_ (
3

>min " 2 <é:)ﬁ71af)28P:3>min} (3'2‘02‘)

MU

O3Uesr

i (aomegm ).~ (oo
wy=— (2o} g (T
3! [\ 9p10p10p1 ) in 0p10p10p2

O3U.sr

aplap2ap3>min}

0°Uesr

i)
YT 41\ 9p10padpsdps ) oy

MU

%= (Gt ) e~ Gttt
27 4\ 0010p20p20p3 )

().
’ 8018,013,023/72 min

i) )
0p10p20p30p4 ) i

Cn = 1 {( MUt
T 9p10p10p10p2

Ut > }
D Y P —
(3ﬂ13023038p4 min

O U

' Uetr > }
Op10p20p30p4 ) i

( O* Ut )
0p10p10p20p3 ) i

< Ut )
0p10p10p20p3 ) 40

O Uesr

1
Cs=— (= ) _y(_T=dfF
Sl {<3P18p18p18p1)mm <8p18p13mam>mm

4
_3 < 0 Uetr > 419 < 0 Uetr
0p10p10p20p2 / i 0p10p10p20p3

) i < O*Uesr
min 0p10p20p30p4

(3.201)

(3.203)

(3.204)

(3.205)

(3.206)

).}

(3.207)

With successive derivatives of the flow of effective potential U (see Appendix) we obtain
the flow equations of the running coupling constants. These equations are too long to be

displayed here.
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3.6.5 Crumpled to Flat Transition

We start with the crumpling transition. From the one loop structure of the Wetterich equa-
tion (2.39) we can recover the perturbative results at the order € from the fourth order of the
field expansion since the other couplings are irrelevant. We expand Eqs. (3.141) and (3.142) in
powers of € = D — 4. The couplings u and v are of order € at any non-trivial fixed-point.
The threshold functions in these flow equations have a universal, cut-off independent, limit

at vanishing masses in D = 4 given by Lgb . = 1. The flow equations in this limit read:

(d + 21)u? + 20uv + 4v?
2472
(d + 15)u® + 4(3d + 17)uv + 4(6d + 7)v?
4872

ou = —eu + (3.208)

O = —ev + (3.209)

These are the equations derived in [104] (up to a change of variable v — v — u/4).

The Crumpled to flat transition can be either first order or second depending on both the
membrane dimension D and the embedding Euclidean space dimension d. What happens
is that above d.(D) there are two fixed-points that are close to each other, one which is the
crumpling transition fixed-point (CTFP) and the other is an unstable fixed point. Lowering
the embedding dimension but staying above d. the two fixed-points come closer and closer.
Atd = d,, the fixed-points collapse on one another and annihilate each other just below d,.
and the transition turns first order. Moreover there is an eigenvalue w that represents how far
the fixed-points are from each other (the sign of the eigenvalue depend on the fixed-point we

are at). Tracking the evolution of the eigenvalue, one can construct the whole d..(D) line [53].

At the lowest order of the field expansion r* with a 6 cut-off, Ry.(q) = (k* — ¢*)0(k? —
q?), Kownacki and Mouhanna [53] found a smooth curve d.(D) which start at d. = 219
for D = 4 and reaches d. = 2 for D = 2 leading to predict a second order phase transi-
tion (see Fig. 3.22). For this transition they found a correlation exponent v = 0.52 and an
anomalous dimension 17 = 0.627 which compares well with another recent NPRG compu-
tation by Braghin and Hasselmann [36], where the full momentum dependence of the elastic
coupling was included and with a different cut-off function, 7 = 0.64(5) as well as with the
large-d result ) = 2/3 ([111], [112]) and with the Monte Carlo simulations = 0.71(5) [113]
but less with the Monte Carlo renormalization group result 7 = 0.85(15) [114] and the self-
consistent screening approximation result 7 = 0.535 [108]. However using another cut-oft

function Ry, = Zxq*/ (exp(q*/k*) — 1), Kownacki and Mouhanna evaluated the error bar
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on d.(D = 2) to be typically of order dd.(D = 2) ~ 1. This means that at a weakly
first-order transition cannot be excluded in agreement with recent Monte Carlo results ([109],

[110]). Therefore we took an effective average action up to the eight order (3.197).

Our results are plotted on Fig. 3.23. We find using the do(D = 2) ~ 6.9 and d.(D =
2) ~ 4.19 for the sixth and eighth orders respectively. This discrepancy between the sixth and
eighth orders in the value of the critical dimension d.. for a two-dimensional means that the
field expansion is not converged yet. Using another cut-off, Rx(q) = Zq*/(exp (¢*/k*) —
1), we find slight variation in the value of d.(D = 2) which are of order ~ 0.5 and ~ 0.1
forr%and r® respectively. Unfortunately going beyond the eight order seems to be impossible
because of the heavy computational resources that are needed. However these results seems to
indicate that the transition is first order in agreement with recent Monte Carlo results ([109],
[110]). We know that higher orders in the field expansion will change the value of d.(D = 2)
but we believe that it will remain between 4 and 7 and hence we have a first order transition.
Since we cannot go beyond the eight order, we are currently concentrating on a full potential

computation.

3.6.6 Symmetry Breaking, Goldstone Bosons and Flat Phase

Two-dimensional polymerized membranes have a stable low-temperature phase. This is re-
lated to the existence of long-range interactions mediated by phonons which makes is outside
of the domain of applicability of the Mermin-Wagner theorem. In the high bending rigidity
phase, Z.e. the flat phase, the coupling between the out-of-plane bending and the in-plane elas-
ticity modes strengthen the bending rigidity and stabilizes the flat phase. In the language of

the renormalization group, we say that the fixed point of the flat phase is attractive.

In addition to avoiding the Mermin-Wagner theorem polymerized membranes are char-
acterized by a quite original Goldstone spectrum. Indeed the Goldstone theorem on internal
symmetry states that if a system is invariant under a global symmetry G’ and is broken down to
agroup H, the number of Goldstone bosons (massless modes) is equal to the number of bro-
ken generators ([115], [116]). However there are some exceptions to the validity of this theorem

like when the global symmetry G'is gauged into a local symmetry group ([117], [118]).

The crumpled phase is symmetric under the Euclidean group E/(d) which corresponds to

translations and rotations. At the transition a symmetry breaking occurs and the membrane is
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FIGURE 3.22: The critical dimension d. as a function of the membrane dimension D. The

transition is 2™ order above the curve and 1°* order below it. This plot corresponds to the

lowest order of the field expansion ri.

not £(d) invariant any more. In the flat phase the membrane is 7'( D) translational invariant

and O(D) and O(d — D) rotational invariant. This corresponds to a symmetry breaking

scheme given by:

(3.210)

The minimum configuration in the low-temperature phase is given by: rmin (2) = ( z'e,,
Cz'e;f(D — i). Let Abean element of O(D) x O(d — D) and it is of the form:

(Bp),; ifi,j <D
Al'j = (Cd*D)ifD,ij if D < 1,7 <d (3.211)
0 else

where Bp and Cyj_ p belong respectively to the O(D) and O(d — D) groups. Therefore there

a(d — D) translational broken generators and nj, the number of O(d) broken generators. To
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find the number of Goldstone modes we need the number of rotational broken generators.

The d(d — 1) /2 generators of O(d) can be expressed as:
(Mpq)ab = i((sapébq - 6aq6bp) (3.2.12,)

with p,g = 1,...,d (p < q) are the indices of the name of the generator and a,b =
1,...,d are the indices of line and column. The broken generators are the M a(D+7) with
a=1,...,Dandj = 1,...,d — D. An excitation §7(c, D + j) around the minimum

generated by a broken generator M a(D+J) reads:

M=

ora(a, D+ j) = f(2) Y (M*P+D)

ab rb\mzn

S

=

— ¢f(z) (MMDH))& 2y0(D — b)

b

o

=iCf(2) ) (baadb.ntj — Oa,04j0ha) T (3213)

1
D
b=1
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with f(x) a function of ,,. In this sum 0y p4; is vanishing since b < D and the excitation

now reads:

ora(a, D +j) =i(f(2)0a,n4j%a (3.214)

or:

0F(a, D + j) = —i(f()zahpis (3.215)

where /i D+; are the (d — D) out-of-plane vectors. We see that this excitation can be written
as generated by the translational broken generators in the directions hpy ;- Since each excita-
tion generated by a rotational broken generator can be written as an excitation generated by a
translational broken generator, the number of independent excitations is equal to the number

of broken translational generators, z.e. (d — D).

In the flat phase, the flow equations of the coupling constants can be obtained simply by
considering the regime ¢ > 1, i.e. a regime where the phonon masses 11 and mso are very

large and dominated by the capillary waves®. In this limit we have for the threshold functions:

0 ifb,c#0
Lbte — ’ 216
abe { L%‘ga else. (3:216)

With this the lows w and v read:

324p 2 1 D+4

815“ = (D —4 + 277]6)“’ + mu 200 (32,1‘7)
16Ap 9 21 7 D44
(3.218)
and for ¢%:
4(d — D)A
3t§2 = — (D — 24+ 77k) CQ - (l)CQ)DLl%J62 . (3.219)

“We recall that the coupling ¢ is taken as dimensionless. The dimensionful coupling is always finite.



104 Chapter 3 Membranes

Using a 6 cut-off, R (q) = (k* — ¢*)0(k* — ¢?), these equations read:

B 256d A pu?
atu_(D_4+2nk)u+D(D+2)(D—I—4)(D+8) (3.220)
B 128d Ap (u? + 2(D + 2)uv + D(D + 2)v?)
Oov=(D—4+2m)v+ DD+ 2D+ 4D +9) (3.221)
16dAp(6 + D —
0% = — (D =24 n,)« p(6+ ) (3.222)

- (2D(D?+8D +12)
withd = (d — D)and Ap = Ap(8 4+ D — ;). The anomalous dimension 7;, now reads:

128Ap(D + 4)(D? — Vu(u + 2v) (3223)
— . 22
k= (D% 1 6D® + 8D2) + 128Ap(D? — L)u(u + 20) 3223

A remarkable fact is that in the flat phase the flow equations of © and v do not depend on
coupling constants associated with higher orders then r®. In the flat phase the anomalous
dimension 7y, correspond to the exponent of the capillary waves and the exponent for the

phonons 7, is obtain from the Ward identity (rotational invariance) , = 4 — D — 1.

The equations (3.220 - 3.223) have three non-trivial fixed-points among which the flat phase
fixed-point (FLFP). This fixed-point is stable in all the directions down to the lower critical
dimension Dj,. In the large-d limit one finds that 7, ~ O(1/d) in agreement with previous
large-d result [112]. From eq. (3.223) we find that the FLFP is stable down to Dj.(d — 00) = 2
as predicted by [112] Dj.(d — 00) = 2 — 2/d + O(1/d?).

In the physically interesting case d = 3 and D = 2, one finds that n* = 0.849 in very
good agreement with another NPRG result 7 = 0.85 [36] as well as with the self-consistent
screening result ) = 0.821 [108] and with numerical simulations where 7 = 0.750(5) [113]
and 77 = 0.81(3) [119] but not with large-d result n = 2/3 [112].

Note that within the NPRG approach by Braghin and Hasselmann [36] where a full mo-
mentum dependence of the couplings was included they were able to compute the height and
normal correlation functions, G5, and Gy,. For small momentum ¢ they retrieved the rela-

tion:

¢*Gni(q) ~ Gn(q). (3.224)
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Furthermore the behaviour of the correlation functions was in good agreement with Monte

Carlo simulations [120, 121, 122, 123].

Last but not least from Eqs. (3.220 - 3.223) one can determine the line D;.. that separates
the regions where the flat can or cannot exist. When we are at D = D, the CTFP and the
FLFP collapse on each other and become unstable. We have the relation 1y, (Djc) = 2 — D,
at the FLFP which give:

_ D} + 6D} —3D2 + 4Dy,

d
2(6 — D7, — Dy.)

(3.225)

and once inverted this equation gives the line D;.(d). With a NPRG approach Kownacki and
Mouhanna obtained the whole Dj.. line (see Fig. 3.22) and they find Dj.(d = 3) = 1.33. This
value is quite stable with respect of cut-off change and compares well with previous results,

large-d Djo(d = 3) = 4/3 [112] and SCSA D;.(d = 3) = 1.5 [108].

3.7 Conclusion

With an non-perturbative approach we are able to tackle the problem of polymerized mem-
branes between the upper critical dimension D, above the critical exponents take their mean
field values, and the lower critical dimension Dj.(d), below which there is no long-range or
crystalline order, for any given Euclidean space dimension d. The results of Kownacki &
Mouhanna are in good agreement with the results of Braghin & Hasselmann which shows
that the momentum dependence is irrelevant for the transition. However our results show
that the lowest order of the field expansion is not sufficient to determine the order of the tran-
sition. Moreover even with an expansion up to the eighth order we do not have convergence
yet but the results seems to indicate that the crumpling transition for polymerized membranes
between a high-temperature crumpled phase and the low-temperature flat phase is first order.
However we need a full potential computation to completely settle this question. The study
of the flat phase has shown that higher order terms are not needed for this phase and the results
are in good agreement with several different approaches. This flat phase is also relevant for the

study of the behaviour of graphene

In our work we have neglected the self-avoidance which must be included to correctly de-

scribe real physical membranes which are not phantom. There is an important controversy on
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the effect of self-avoidance whether it breaks [124, 125, 126] or not the existence of the crum-
pled phase [127] as found in experimentally in graphite oxide [128]. Our aim is to perform
a non-perturbative computation with self-avoidance although it is a complicated task from a

technical point of view.



Appendix B

Cayley-Hamilton Theorem and
Faddeev-Leverrier Algorithm

The Cayley-Hamilton theorem states that any square matrix satisfies its own characteristic

polynomial. Given a n X n matrix M, the characteristic polynomial is given by:

p(A) = det(AI, — M) (B.1)

Replacing A by M in this equation yields the zero matrix:

p(M) =0 (B-2)

The Faddeev-Leverrier algorithm is a method to calculate a matrix's characteristic polyno-

mial. Let M be an X n matrix:

"1
Py(X) = det(XI, — M) =X" - ETr(Mk_l)X”’k (B.3)
k=1
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with :
My=M
1

My = M(My—y = T Te(My-1)In), V1 <k <n—1

Forn = 2:
1
Py(X) = X2 —Tr(My) X — 5 Tr(M)

Forn = 3:

1 1
Py(X) = X3 — Te(My) X? — S Tr(M1) X — gTr(Mg)

If M isa 2 x 2 matrix, then :
3 3 2 1 3
Te(Ms) = Tr(M?) — §Tr(M )Tr(M) + i(Tr(M))
=0
More generally, let M be an X n matrix:

Te(M;) = 0Vi > n

(B.4)

(B.s)

(B.8)

We said before that £ < n — 1 but there is no reason why we can't extend this to any given
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My = M? — MTx(M) (B.9)
My = M3 — M*Te(M) — %MTr(MQ) + %M(Tr(M))2 (B.10)

1 1
Ms = M* — M3Te(M) — 5M?Tr(M?) + 5M2(Tr(M))2

_ % [MTr(M3) - gMTr(Mz)Tr(M) + %M(Tr(M))3 (B
My = M° — M*Te(M) — %M?’Tr(M2) + %M?’(Tr(M))2
- %M2Tr(M3) + %MQTr(M2)Tr(M) - éMQ(Tr(M))3
- i [MTr(M4) - %MTr(M)Tr(M?’) _ %M(Tr(MQ))Q (B2)
FM(T(M)PTr (M) — S M(Te(M)*
and the trace reads:
To(M,) = Te(M2) — (Te(M))? (B.0)
T(My) = TH(M?) — STOMTH(M) + (TH(M))’ (B.)
Tr(My) = Te(M*) — ST (M) Tr(M) — 3 (T(M?))? o
FTHO)(TH(M))? — S(Te(M)* |
T(My) = Te(M?) — TR (MY Tr(M) — JTr(MP)TH(M?) 4 2 (Te(M))*Te (M)

- g(Tr(MZ))2Tr(M) — %Tr(M?)(Tr(M))3 + i(Tr(M))E’

(B.16)






Appendix C

Derivatives of the Flow of Uegr

15t derivative reads:

(2)
aUeff> 1~ / ory
0 =0 [ Tr Py
< tapjl lmin 2 ! q apjl lin
214 derivative reads:
(8 OUr > 1z /Tr 32Ff) Pyt 8F5\2) 0P
= -0
0030032 ) 2 o \ PO T Opiy Opi [
374 derivative reads:
<8t U > 1 g, /Tr 931 - o21'Y) opy
9pj10p5,9p;s lmin 2 q 9pj10p5>0pjs 9pj10pjs Opjs

o1 ap, . ar? 2P,
0pj,9pjs Opj, — Opjy Opjy0pjs

Imin

II1

(C2)
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4" derivative reads:

< U -
' 9pj10pj,0pj50pj, lmin
1~ / { o' #re  op,
-0 | Tr Py +
2 90j10pj20p,;,9pjs 9pj10pj>0p5; Opj,
ot opy 1Y 92p,
9pj0pj0pjs Opjs — Opjdpjs OpjsOpjy (G4
1Y apy 1Y 92py
apﬁ 9pjs0pjs Opj — 0pj10pjs Opj,0pj,
1Y o2py ar®  #3py
9pj10pjs OpjOpjs — Opjr Opj0p450pjs }m
5th derivative reads:
OUeg _
( '0p110p105s0p5. 005 ) |
1 at / {a T - T apy
P11 0Pj20045 0P, Opjs 9pj1 0p5,0pjs0pjs Opjs
T op, Y o92p,
0/)]18/)]23/)333% Opjs  0pj10pj,0pjs Opj,Opys
0T dPy T 82py
0pj,0pj50p;,0pjs Opjs — Opj, 0pjy0pjs OpjyOpjs
83F( ) 52Py 821“( ) Py
8p]18p]28p35 0pj,0pia 8p]18pj2 0pj;0pi,0pjs (Cs)
o) oPy | Ty 2P,
8p]13p;3<9m43pg5 Ipj, 3Pm@pg3 Ipjs Opsr0pjs
r®  o2py 1Y 82py
9pj,0pj30pjs 0pjn0pjy — Opj,Opjy Opj,0pj,Opjs
r®  o2py 1Y 8py
6)0]18/0346/)35 8p32 ap]3 6pj18pj4 8pj2 8/0j3 apjs
o’TY 93Py or?

8PJ1 80]5 ap]2 8/)33 a/)j4

01 Py
apjl apj2 apjs 8pj4 8pj5

|min
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C.x1 Derivative of the Propagator

The product of the propagator with the inverse propagator gives the identity matrix:

PPyt =1Ip (C.6)
whose derivative is vanishing:
OPy _ 4 opP!
P P, =0 C.

Opa ™ 7 Opa (©7)

0P\ oP A 1
=_P, Py C.s8
O e (C.8)

Since the inverse propagator P, - Fg\z) + Ry:

OPy i
= —Py Py (C.9)
apﬁ 8pjl
the second derivative reads:
9%Py op, or? 021 or'? op,
— = Py + Py—F2—Pr+ Pa Co
9pj, Opyja] {6% Ipj, 9pj19pjs Ipjr Opj, (Cre)
the third derivative reads:
9°Py 02py Ty b P 021 b P or'?) op,
a_ a._ a_  — — A A
3pj18pj2 8,0]'3 8,0]'2 apjs 0pjl apjz 0pj18pj3 8pjz 8pj1 8pj3
or, 01 o, 0T Ty P,
S o 1A ANy & o 1A A &
8pj3 8pj18pj2 apjl aij apja 8pj1 8pj2 apja
apy or'?) op, . 02T ap, b or? 2P,
A A
aij apjl apjz apjl apjs apjé 6pj1 apjé 8pj3

(C.n)
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and the 4" derivative reads:

O*Py B
9pj, 005,005,005,
o3py,  ord o2py o1 02py or'Y op,
- {apjﬁpjs@pﬂ Opji " 0pinOpss 0pinOpss " Oppss pj Opjy
02py 021 opy 3T apy or'Y op,

9pj,0pj, Opj Opjy AT Opj, Op;j,0pjs0pj, AT 9pj, Opj, Opjs Opj,
o2py o opy, opy 0T opy opry oY  op,

9pj,0pjy Opj, Opjs — Opjy Opji Opj, Opjy " 9pj, Opjy 02pjs0pj,
02py 021 opy  o’rY opy 0T op,

9pjs0pjy Opj, Opjy st Opjs Opj10pj,0pj, AT Opjs Opj, Opj, Opj,

(Cr2)

SF(2) 84F(2) 83F(2) P
L0098 p oy p, A___p yp s O
8pj4 8pj16pj28pj3 8pj16:0j2 810j36pj4 8pj18pj2 apjs 8pj4

opPy oT'Y op, T op, 0T 2Py

Apjs Opj10pj, Opjs Aapjlapjz 9pjs Opjs Aapjlapjz 9pj30pj,
02py o opry, opy 0T opy opryoTY 92p,

Opjs0pjs Opjy Opj, — Opjs Opj 0pjy Opjy — Opjs Opjy OpjyOpj,

opPy 0T op, T op, o 2Py

Apjs O Opjs Opjs Aapjlapjé Opjs Opys " A@pjlaij dpj,0pj,

0Py 0T 92P, 0T 2Py ol 8P,

Opjs Opjy 0pj,0pjs Aapjlapﬂ 9pj20pjs A 9pj1 Opja0pjs0pj, }




Appendix D

New Definition of the Minimum

Conﬁguration ¢

In this appendix we show that we can define the minimum ¢ by taking the derivative of the
effective action (3.108) with respect to 9,,7; instead of 7;. First let us define the derivation with

respect to O, 7j:

d0,7i(x)
———L = §;:0uyd(r —y D.

00,0,1;(x
O0OTHE) _ 5. 5 (5 — ) + 500, (5L — 1) — 130106z — )

30,15 (y)

(D.2)

In the last equation, there is no summation over the indices even if they are repeated. With

this, the first derivative of the effective action is given by:

_Ow __ —28,8,0,rj + 4u (0y7:0,m:0,) — C20yr;) + 40dyrj (9,70, 7 — DC?)
6 (0y7jy)
(D3)
and by definition of the minimum we have:
o'
——  =0. (D.4)
5(8’Yrj’y) ‘min
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Note that we have changed the notation for simplicity: 7j, y = r;(y). The flow equation of

(D.4), is given by:

5Fk < 5Fk >
T r Y e
t(fs(@wa‘,y)min) N6@yrig) ),

52Ty,
> Joromn ) s s, =

‘min

The term 0;(0a 1,2 |min) gives the flow of ¢: Oy (8047“1,3‘“““) = 0q,10(D —1)0(. The previous

equation becomes:
oy >

"
\0(0r7s)

The first term of the r.h.s. of (D.s) is given by the derivative of the flow equation over

|mm

8Ty,
+Z<5a10 —zatg/( GEY: 8n,z)>|mm_0 (D.6)

047} y. And from the second term of the r.h.s., we see that the second derivative of the effective
action is needed:
52Ty,
3(0y755)0(Bar )
+ 4ud(§ — 2)[0ar0ur10,7j + Oy110a7j + Oy1i0aTi05 — ( daryOj1]
+ 4vd(if — 2)[0ar0j10uTiOur; + 20470071 — D¢? dary0j1]

— 7615160050, (8(§ — 2)) + Dby (6(§ — 2)) — 8ary D20 (8(5 — 2))]

(D.7)

At the minimum:

5Ty,
6(947j,4)0(0ar1,2)

= 28500800~ ) + 000,07~ ) = 800, 21(8(7 - )]

+ 4uC?[00r0;0(D — 1) + 300,110 (F — 2) + 8vC%6(F — 2)8aid+;
(D.8)
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The calculation is easier to do in Fourier space. Therefore we'll need the Fourier transform

of (D.8):

5°Ty,
0(0y7jy)0(0ari z) |

TF

] (ﬁa (f) = 5(ﬁ+ (7) {Z(Slj(éoz'yﬁ2 + Pab~y — 5a'ypg/)

min

+4uC? (8ary01;0(D — 1) + 6510a;7) + 8020016+ }
(D.9)

Finally the r.h.s. of (D.5) becomes:

5%Ty, . .
0¢(Oaryz ) = // e PYe 5 (p + q)
L [0t i sitams,., = =,

[Z61(8arD” + PaDy — Sayp3) + 4uC? (8arG1;0(D — 1) + 65164;)
+ 80¢?5010+100,10(D — )04

(D.10)

and after integration we find:

5Ty,
a aar z |min
; / Gtz )5(67@,@,)5(8&7772) -~

=) "[4u¢?(Gay010(D — 1) + 051005) + 80C?0010+5100,0(D — 1D (Doar)

a,l

= 8¢%0y,j(u +vD)d¢

From the Wetterich equation (2.39) we find for the first term of the r.h.s. of (D.s):

(o) = (o))
td(aﬂyrj’y) ‘min 6(87rj7y) ‘min
(2)
= ) (r® - _ory” (2) =
_Tr/zyszatRk(x z) (Fk +Rk> (x,w)é(avrj’y)(w,z) (Fk —|—Rk) (z,x)
(2)
= @) - — 5F7k _
= Tr g O Ry (q1) (Fk ‘|‘RI<:) (g1, —q2)TF 5(67”7@/)] (g2, —q3,p)

-1
X (F;(f) + Rk) (g3, —q1)
(D.12)
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ST
The Fourier transform of w——%—:
3(0y7j,y)

o
6(0y7y) |min
X O(D — ) + (P + G2,0)* (0,00 + 01,50.0) + 0 (P + d27) (P + g2,)0(D — 1)

+ 81 (py + @2.4) P + 42.,0)0(D — n) + pulga + pu) (20,1005 + 65 i0ns + Snnd;)

= 200,307,107 (024 + Py) + 0n10(D — j)py (g2 + pj) + 01,;6(D — n)py(q2.n + Pn)
_5%n5l,jpv(pv + qu) + (pv + qlw)(%n,jpl@(D =)+ 5n,lpj9(D -J)+ 5l,jpn9(D —n))]
+ 80 (00,104, (D + G2.u)* + 60,50(D — 1) (py + q27) (01 + g2.0) + 61,,0(D — )

X (Py + @2y)(Pn + G2,n) + Py (0,5 (p1 + G2,)0(D — 1) — 60,10, (Py + ¢2,9)

—01,j0n.~(Py + 42,7)) + PP + G2.0) + (Dy + G217) (On1pi0(D — j) + 81,pn8(D — n))]}

TF

] (nya2), (Lg3), (7, 7,p)) = 0(p + g2 + q3) {4u 201 (py + @2,7) (Pj + G2,5)

(D.13)
Using (D.13) in the flow equation (D.12), we find for 0;¢:
B¢ = — 1 / [16u(D —1)¢® + 8vD?%*¢? (3u+ (D + 2)v)g?
- D(u+vD)¢? J, | (Z¢* + Ry 4+ u¢?¢?)? (Zq* + Ry + 8C2(u + v)q?)?
(D.14)

which is the same result as the one found using the configuration A.
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Threshold Functions

The threshold functions L, M and N read:

1 = _ _ _
Lot~ 15 / (P +?md) ™ (Pt Pmd) ™ (Pt qPm3) )
q

4Ap

(E.x)

o 1 Y o 8P —a b e
Mas” = _M[)at/qq " <3q2> {(P+¢2md) ™ (P+¢*m3) ™" (P+¢*m3)~°}

(E.2)
NGz = i [ (30) (P e i) (P gtnd) (P o))
abc 4Ap q 8(]2
(E3)
where Ap = m, P = Z,,¢* + R}, and m? masses that are given respectively by 0,
I'[D/2] i g P y by

4u¢? and 8(u+v)¢2. The threshold functions control the relative role of the different modes,

phonons and capillary waves, within th RG flow.

Zy, ~ kT
¢2 — kD-2m (2
U — kD—4+27]kﬁ
v = kP4 2y
2
Ri(¢®) = Zra'r (y = %)
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8t‘q2 = k’aquz = kakly — 2y0y (E.s)

= 8, R = Zik" (=my’r(y) — 20° () (E6)

The dimensionless threshold functions read:

[D+a _ / a y(PFa)/2=a=b=c (1 (y) + 2yr'(y))
abc - b c
(y+yr(y) +md)* (y+yr(y) + m?)” (y + yr(y) + m3)

b c
‘ { (v + yr(y) Tmd) ) +md) | () + md) }

MP+a — 1/dy y(D+a)/2+27afbfc
2

abce
L 2mer(y) +yr' ()6 + me) + 297" (y)) (24 2r(y) + yr'(y))
(y+yr(y) +m3)* (y +yr(y) +md)" (y +yr(y) +m3)°
1y Dre/2smasbe (9 4 90 (y) ' ()2 (mr(y) + 297 (y) (Y
2 (y+yr(y) +md)® (y +yr(y) +md)" (y +yr(y) +m3)°

a b c
: {(y+yr(y)+m3) Tt md) " el )+m§)}
ND+a B /d y(D+a)/2+1—a—b—c (27]/%7“( )+yr( )(6 Jrnk + 2y2 // )
abc T 2\a 9 c
(y+yr(y) +m2)" (y+yr(y) +m2)" (y + yr(y) + m3)
PRt 4 2r(y) +yr'(y ))( k() + 2yr' ()
(y+yr(y) +m2)* (y+yr(y) +m3)" (y + yr(y) + m3)°

(E.9)

a b c
g { e+ +md)  (yryr@)+md)  (y+yr(y) +md) }



Chapter 4

Anisotropic Membranes

1t seems that if one is working from the point of view of getting beauty in one's equations, and if

one has really a sound insight, one is on a sure line of progress.

Paul A.M. Dirac

4.1 Introduction

A particularly interesting change in the behaviour of polymerized membranes occur when ex-
plicit in-plane anisotropy is included along one direction. Radzihovsky & Toner have shown
that anisotropic membranes have a richer phase diagram than isotropic membranes. In aniso-
tropic membranesa new phase appears between the previously known high-temperature crum-
pled and low-temperature flat phases [129, 130]. In this phase the membrane is flat in one di-
rection and crumpled in the others and is therefore called tubular phase (see Fig. 4.1). The exis-
tence of this phase has been widely studied both experimentally [131] and numerically [132, 133]
while the crumpled-tubule transition still lacks results from these points of view. The reason
behind this is that although it has been largely studied from a theoretical point of view it still

lacks accurate predictions for the critical exponents that we explain in this chapter.

Tubular structures are now well known to display several extraordinary mechanical, opti-
cal, thermal or electronic properties which make them of great interest in bio- and nanotech-

nology like drug delivery devices, sensors field emitters, filters, ezc. Recent proposals consist,

I21
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for instance, to produce carbon nanotubes by folding graphene ribbons [134] or organic nan-
otubes by rolling up two-dimensional anisotropic sheets of amphiphilic rods [131]. In this con-
text there is a clear need for understanding the mechanisms of formation, and more generally,

the underlying physics of tubular structures.

Flat Tubular Crumpled
Phase Phase Phase

M N -

X

FIGURE 4.1: Phase transitions for anisotropic membranes.

In this chapter we are interested in the critical behaviour at the crumpled-tubule transi-
tion. We start by looking at the consequence of the anisotropy on the scaling behaviour. Then
we discuss the problems encountered in perturbative approaches and we show that our non-

perturbative approach is free from these difficulties.

4.2 Anisotropic Scaling Behaviour

We consider a membrane that is anisotropic in one particular direction y and isotropic in the
D — 1 remaining, transverse, directions. We focus on the crumpled-tubule transition which
is described at the lowest order of the field and derivative expansions by the following effective

action:

2
Ly[r] = /lex dy {Zzy ((957?)2 +t (aif) T % (0y7-0yT — Cz?)z} (4.1)
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where Z, t | , uy and ¢, are the running couplings: u,, is a positive elastic moduli, (;, or rather
Ty = Uy CZ , which corresponds to the temperature, parametrizes the approach to criticality. As
a consequence of the anisotropy we see from a power-counting that g ~ QS’ an anisotropic
scaling which characterizes a Lifshirz-type behaviour [135]. Moreover the upper critical dimen-
sion is lowered by the anisotropy from D, = 4, for isotropic membranes, to Dy = 5/2.
The couplings Z, and ¢ | correspond to the field renormalizations in the y-direction and D —1

| -directions respectively and they scale as:

.
{Zy 5 (42)

t, ~k7L

where £ is the running momentum scale along the L-directions and k, the one along the y-
direction. The exponents 77, and 7 are the anomalous dimensions in these directions. The

anisotropy yields, at the transition, the following scale transformations:

) =ka
{ y = ky?j, =Ky (43)

where 2 is an anisotropy scale exponent.

At the fixed-point corresponding to the crumpled-tubule transition the two-point corre-

(2)

lation function I} scale anisotropicaly as (see [136] for review):

T;(f) (gL —0,q,=0) ~g7 ™ (44)
I (g1 =0,gy = 0) ~ gy "

moreover an operator O scales as :

O (k™q1, bk %qy) ~ k20 (q1,qy) (4-5)

where A is the scaling dimension of the operator O. Combining Eqs. (4.4) and (4.5) one gets

an identity between the anisotropy scale exponent z and the anomalous dimensions 7 and 1 :

(4.6)

This scaling behaviour is characteristic of anisotropic systems that are encountered in statisti-

cal physics both in equilibrium and dynamical critical phenomena or in high-energy physics
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where for example anisotropy between spatial and temporal dimensions in quantum field the-

ory improves renormalizability properties and the ultra-violet behaviour (see [137] for review).

Since the different directions are not equivalent the crumpled-tubule transition is charac-

terized by two correlation lengths £ | and &:

{ o i (4.7)

—U.
fy ~ty !

where the correlation exponents are related through the anisotropy scale exponent z by:

Uy = 2V . (4.8)

The lower critical dimension Dj.. is defined as the dimension below which the membrane
remains crumpled. From a calculation of the normal fluctuations in the harmonic approxima-

tion one finds:

2

- _ q
<8hx2>o</dD1qJ_dqy
0,5(x) I

1
x /leqj_ 3 X L3P (4-9)
90
which diverges only for D < 3/2 when L — 00 and hence defines the lower critical dimen-
sion Dj. = 3/2.

4.3 Perturbative RG

From this proximity of physical membranes D = 2 with D, = 2.5 one would expect that
a weak-coupling perturbative approach to yield accurate results. However Radzihovsky and
Toner have shown that the second-order e-expansion [130] gives completely unreliable results.
Among them one finds a negative value for the anomalous dimension 7. But we know from
physical grounds that 7 must be positive. Indeed a negative value for the exponent 7 cor-
responds to a downward renormalization, a decrease, of the bending rigidity rather than an

increase do to fluctuations. Using a perturbative RG computation in the vicinity of D = 2.5
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one finds at the fixed-point the equation for :

2) 2 00
= m x 2%3/4p B] /0 dz 2%/ Y (2)? (4.10)

where the function Y comes from the computation of the correlation function G':

el dL-TLtigyy

Glay,y) = [ &*Pqrdgyq,

1/4
— 9T Ag=8/4y =2 <I§) y (gjé) (4.11)
Yy Yy

and is given by:

Y(z) = /OOO du u1/4J_1/4(xu) e VU2 o5 <\/g + Z) (4.12)

where J is a Bessel function’. The integral of the function Y is negative and thus gives a neg-
ative value to the anomalous dimension which is a rather surprising result. This negativeness

is an artefact related to the computation in a fractional dimension Dy, = 5/2.

This unreliable result from perturbative RG and the absence of an alternative method
such as the self-consistent screening approximation given the complexity of the field theoretical

formulation, is an open door for a non-perturbative investigation.

4.4 Non-Perturbative Approach

We now attack the problem within the NPRG approach in order to clarify the issue of the
value of the anomalous dimension 7 at the crumpled-tubule transition in the presence of a

fractional upper critical dimension.

"The Bessel function Jy is given by:

o —1)"™ z\ 2n+to
Ja(z) = n§=:o m (5) . (4.13)
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4.4.1  The propagator

As usual the starting point is the computation of the propagator P. For the same reason as in
(1)

isotropic membranes, Z.e. translational invariance, we cannot obtain the flow of ¢, from I},

at the minimum and we therefore use a more general configuration A given by:
™= Ayey. (4.14)

(2)
k

From Eq. (4.1)itis easy to derive the second functional derivative I, in this configuration

A:
TP (q,0,d,3)), = 8(a+ 68 { Zyat + 26163 — 2uy@? (= A2 = 2X26:p) } (415)

where we have taken the D™ direction to correspond to the y-direction. Since the two-point

(2)

tunctions I'; is diagonal the expression of the propagator P is straightforward:

P(a,ird', 7)), = (g + ) {655 (1= 00) GV (@) + 0560GP (@)} (416)

where:
GSY = Zyq} + Rilg) +2t1¢3 — 2u,C2 (G2 — A2)
(4.17)
GSY = Zyq} + Rilg) + 26163 — 2u,C2 (G2 — A2 — 2X26p) .

The transition from the crumpled to the tubule phase is accompanied with the breaking of
the O(d) symmetry into O(d — 1) which identical to the symmetry breaking scheme of the
O(n)-model. Taking the trace over the propagator one sees that the functions G correspond

to two different types of modes at criticality:

o d — 1 capillary Goldstone waves with vanishing mass

e one phonon mode with mass mi = 4uyC5 .
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4.4.2 Flow equation of (,,

The effective potential in the configuration A is given by:

, _ u 2
T[] = / 4 ady < (X) = ¢)” = Uer(Ny) (4.18)
and we use the fact that the effective potential U by definition is vanishing at the minimum
Ay = Cy:

OUes
ah,

=0 (4.19)

min

to derive the flow equation of (;;. Now we have the equality:

8Ueff 0 aQUeff
0=0 | — = =—0oU. 19) — .

¢ o, (8/\y ¢ ff> + 0Gy < a2 . (4.20)

where t = In ky/A. From this equation we obtain:

(%@Uefal .
OCy = T iCa, (4.21)
Now we need the flow of U.g which reads:
1 ~ . .

8tUeff = §Tr a1‘, /ln (F](f) + Rk) (qa Z, _q7]) (4'22’)

q

Ay

Finally we need to derive this equation with respect to )\, to obtain the flow equation of (.

This equation is given in the next section.
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4.4.3 Flow equations

The other running coupling constants are defined as follow:

t = ;pljgo (aiirﬁ)(p, D,-p, D>|m> (4.23)
Zy = Jim, (aagr,(f) (p. D, —p, D)mm) - (4.25)
The coupling ¢ | remains unrenormalized, J;t| = 0, because the interaction term

always carries a momentum ¢, with every field 7 in agreement with the perturbative result

at all orders. The anomalous dimension 77, is vanishing implying that the anisotropy scale
. 2 .

exponent z = 3 + O(e?) at order €. From the flow equations of Uegs and of Fl(c ) we derive

the flow equations for (5 and u, which read:

1 .
0 = oyp [ 470 da, AR}

2 2
(Zygt +m2 @ + Ri(q))”  (Zygh +m3 3 +m2q2 + Ri(q))

42

Opuy = (27r)yD /dD_qu_ dgy 8tRk(q)q§

{ (d—1) 9 } (427)
3 3
(Zyay +m3 a7 + Ri(q)) (Zyay +mi i +mia} + Ri(q))

where mi = 2t and mz = 4uyC§. In general the cut-off function Rj, must regularize

both the y-direction and the | -directions. However since the membrane is not critical in the
| -directions we can take a cut-oft only regulates along the y-direction. With this simplification

we can integrate analytically on ¢ :

B 1 \ 2z T [p _ @] 1
L P S <> 2 . 08
/ Tarmg)y T \md Tlp]  pr—25 (+28)
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Injecting this result in the flow equations (4.26) and (4.27) we obtain:

D—1

oci= "y () " TI6-DA [ o)

(2m)P \m?

i 5 (4.29)
(d—1) n _

(Zyq} + Ri(qy) + m2q2) *

5—D

(Zya; + Brlay)) 7

_ 4 /@ \TT T[(7-D)/2
3tuy = ﬁ (mi) T /de qi atRk(Qy)

i 0 (4.30)
( — ) 7T—D + 7T—D

(Zyat + Ri(ay) 2 (Zygt + Rilgy) + m2q2) =

To find a fixed-point we must work with dimensionless coupling:

CZ _ kg_QDZ 3—D)/2tiD—1)/2€5

(4.31)

@~

Uy = k;D_5Z D_5)/2t(ij)/2uy (4.32)

@~

with k, = k?. In terms of these quantities the RG flow equations read (we suppress the bar

over the dimensionless couplings):

D—3
¢ = — <2D—3— — 77) - (d- 1)@;@0 —3@@ (433)
b b 2

2

5-D
Dyuy = — (5—2D—277> uy+(D—3)u§{(d—1)z‘§£)0+9l§,?_]3} _
2 T2

(4.34)
The anomalous dimension p = —(1/Z,)0;Z, can be derived along the same lines:
D=3 5, 2.D 2,D 24,D
n=—ul {—108 f p =120 = )Y, |~ 540(D ~ 5)uy 1y
+(D-5)(D-7) (—288 ul ¢ zg:’;% + 9M§”£TD +(d—1) M@ﬂ (435)

—36u, (I N )}
T2
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where the threshold functions [, M and N are given by:

F(qy)

(4:36)
Pa,)]" [Play) + m2a2]" 2

T%D :Kpét/dqug‘

where Kp = (r/2)(P=V/21((3 — D) /2], P(q,) = Zyq} + R, (qy), m? = 4u,(2 and
Oy = 04Ry,,0/ORy,. The function F(qy) is given by 1, (dP/dg2) and (dP/dg2)? for I, N

and M respectively (for the dimensionless threshold functions see Appendix F).

Before proceeding the physical result, there are two important remarks we want to make.
First we took a cut-off function independent on ¢ since the L-directions are not critical but
we can take a cut-off that does depend on ¢ and not integrate exactly over ¢ . We have
checked that this does not change the physical results as expected. Second the flow equation
have been derived with respect to k,, but again this derivation can also be done with respect to
k. This changes the coordinates of the fixed-points but they are related to the previous ones

through the anisotropy scale exponent .

4.5 Physical Results

Thanks to the one-loop structure of the Wetterich equation (2.39) we recover the one-loop
3 function for u, and t, = uyC§ found in [130] by expanding our flow equations around
D = 5/2 — e. Moreover we recover the large-d results at leading order by assuming that
uy ~ O(1/d) and Cg ~ O(d). We find, using a cut-off function Ry, (q,) = Zy(k:;1 -

q;)@(k; — qz), a stable fixed-point with coordinates:

2.  4dKp(3—D)
v 3(2D-3)
(4.37)
. _ 5Kp(5-2D)
“ T 4d(3-D)5-D)




Chapter 4 Anisotropic Membranes 131

This fixed-point exist for all values of D between the upper critical dimension D,,. = 5/2 and

the lower critical dimension D;. = 3/2. The corresponding critical exponents are given by:

1
(2D -3)

vy =
(438)
n =0(1/d).

Going to finite value of the embedding space dimension d we find a stable fixed-pointatall
d in contrast with the isotropic case where the order of the transition changes at some critical
dimension d.(D) [s3]. Now we concentrate on the case d = 3 where we find a non-trivial
positive anomalous dimension between Dy = 5/2 and Dj, = 3/2 as expected. Our re-
sults for the anomalous dimension 7 and the correlation exponent v/ for a two-dimensional
membrane in three-dimensional space are displayed in Figs. (4.2) and (4.3). They are plotted
as functions of a parameter A which parametrize a cut-oft family. We have used three different

cut-off families R,(;;J):

/

R (ay) = A2, ke /b
Z
2
Rl(cy)(qy) =A eqfﬁ/’f#
(3) —
Ry, =22y (ky—qy) 0 (k—qp) -

We have optimized the critical exponents by varying A and looking for stationary values. For
each cut-off family, we succeed to find a single PMS value for each exponent (see Figs. 4.2 -
4.3). For the correlation exponent along the | -direction we find from this optimization v =
1.213(8) [54] in agreement with Radzihovksy & Toner who found v; =~ 1.227 in [130].
For the anomalous dimension 1 our approach yields a positive value n = 0.358(4) which is
largely different from the value found in [130]: 7 &~ —0.0015. Finally from these results we
deduce the value of the anisotropy scale exponent and the correlation exponent in y-direction:
z = 0.5490(6) and v, = 0.665(5) which is slightly different from v, ~ 0.614 found in
[130]. The insensitivity of our results to both the variations of the parameter \ inside a cut-oft
family and of the family itself constitutes a strong indication of trustability of our results and
validates a posteriori the use of the truncations (4.1). But obviously one has to use a richer

ansatz to be sure that convergence is achieved.
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FIGURE 4.2: Anomalous dimension 7 as function of the cut-off parameter A with different

cut-off functions. Solid line, R,iz); dashed line R](fy) and dot-dashed line R,(:;) [54].
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FIGURE 4.3: Correlation exponent v/ as function of the cut-off parameter A with different

cut-off functions. Solid line, R,(cly); dashed line R,i) and dot-dashed line R,(f;) [54].

4.6  Conclusion

The NPRG approach overcomes the technical difficulties encountered within perturbative
weak-coupling treatment for anisotropic membranes. In particular we do not have to work

in real space and we can integrate exactly over the orthogonal momenta. As we said in the
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introduction there is no numerical simulation for the crumpled-tubule transition and we hope
that our result will be tested through numerical investigation in the near future. The next step
for anisotropic membranes is to take into account of self-avoidance since its effects are believed
to destroy the crumpled phase and one is only left with the transition between the tubular and

flat phases.

Beyond the case of anisotropic membranes our approach is relevant for other systems in-

volving anisotropy like Lifshitz critical behaviour which we discuss in the next chapter.






Appendix F

Threshold Functions

The dimensionless threshold functions read (once more we drop the bar over the dimension-

less coupling):

oD _ (g)”z‘l r {3 — D} /OOOd a1,y (nr(y) + 2y’ (y))

o = (3 (v +yr) (v +yr(y) +m3)"

o ™ [3-D] [ a-1_,
N = (5) T e P [
{zf (mr(y) +2y7r'(y) 2+ 2r(y) + yr'(y)) ( a N b )
(y+yr(y)® (y +yr(y) + mg)b (y+uyr(y)) (3/ +yr(y) + mg)
Y (20r(y) +myr'(y) + 6yr' (y) + 2% () }
(W+yr@)® (y+yr(y) +m2)’

135
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m\ %t - D] [~ a1_,_
u = (3) F[?)z]/o dyy =
{y3 (nr(y) +2y7'(v) 2+ 2r(y) + yr'(v)” ( a
W+yrw)” (y+yr(y) +m2)’ (y+yry)
b
(y+yr(y) +m?)
L 2r(y) +myr'(y) + 6yr'(y) + 29" (y) }
(W+yr®)" (y+yr(y) +m2)’

=27 (2+2r(y) + yr'(y))
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Lifshitz Critical Behaviour

LEvery word or concept, clear as it may seem to be, has only a limited range of applicability.

Werner Heisenberg

5.1 Introduction

In this chapter we leave the membrane systems and concentrate on another type of anisotropic
systems. Similar problems, as those encountered in anisotropic membranes, are present in a
more general case of anisotropic systems. Indeed various physical systems are characterized by
an anisotropic scale invariance (ASI) such as equilibrium critical phenomena of anisotropic sys-
tems, like the Lifshitz critical behaviour or anisotropic membranes, as well as dynamical critical
phenomena in- and out-of-equilibrium [138]. This ASIis also present in quantum field theory
where theories with a broken Lorentz invariance at high-energy, i.e. anisotropy between the
spatial and temporal dimensions, drastically improves the ultra-violet behaviour and renor-
malizability properties (see [137] for review). These ideas have been further extended towards

anisotropic scale invariant gravity, like the Horava-Lifshitz gravity [94], and cosmology [139].

Lifshitz critical behaviour (LCB) [140, 141, 142] which occurs when a disordered phase en-
counters both a spatially homogeneous ordered phase and a spatially modulated ordered phase

with a modulation momentum q,,, .4 # 0 (see Fig. s.1). The spatially homogeneous phase can

37
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be considered as a spatially modulated phase with vanishing momentum. This tricritical point,
the Lifshitz point (LP), was introduced by Hornreich, Luban and Sherikmann in 1975 [135]
and has since dragged a lot of attention in condensed matter and statistical physics. This type
of behaviour may be found in magnetic systems where a competition between ferromagnetic
nearest-neighbour and anti-ferromagnetic next-to-nearest-neighbour interactions leads to the
appearance of modulated phases like in the axial (or anisotropic) next-nearest-neighbour Ising-
and XY-models (ANNNI and ANNNXY). It is also present in liquid crystals [143], high-T¢.
superconductors, polymer mixtures [144, 145], microemulsions, ferroelectrics [146], charge-
transfer salts [147], domain-wall instabilities [148] (see [138, 149] for review). Experimentally
LCB has been observed in manganese phosphide [150, 151, 152, 153, 154, 155] and one can hope
for accurate determinations of the critical quantities in a near future.

T disordered
LP

qg=20

uniform q 7£ U

ordered modulated
ordered

9

FIGURE s5.1: Schematic representation of a phase diagram with a Lifshitz point (LP) as a func-
tion of the temperature 7" and a parameter g which corresponds to the pression or the mag-
netic field depending on the system.

5.2 The Model

In order to see how a LP arises we start with a mean field treatment of the simplest model in
three dimensional space. First we start with the O(n)-model with a small change in the kinetic

part where the different space directions have different couplings. The effective action for this

O(n)-model reads:
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where 7, o; and w are the coupling constants. u and ¢; are positive and 7 may change sign
which indicates a phase transition between a paramagnetic phase (7 > 0) and a ferromagnetic

phase (7 < 0). Butif one of the av;, e.¢. @, becomes negative, we need a higher order derivative

-\ 2
term (83(;5) for thermodynamical stability and we have a tricritical point for 7 = a, = 0.

The new effective action reads:

F[ﬂ:/di”x S %(ai$)2+%(a§$)2+§$2+%$4 L (52)

1=,Y,%
In the following we take o, = vy = . We write the effective action in Fourier space:

Ing 1 /Bz e
3= [{rro valiva) + ot bia,
q

w (5.3)
+ / L Z¢q'¢q’ Pq-O—g—q'~q"
74,9
and the phase transition occurs when the minimum with respect to ¢, of 7(q) = 7+ a.,q2 +
o(@2+q))+ %qﬁ vanishes. We have two possibilities depending on the sign of v, If o, > 0
the minimum is given by:

Tmin = T (5-4)

and the transition occurs at 7 = 0, with ¢ = 0, which corresponds to the paramagnetic-

ferromagnetic transition. Now if o, < 0 we have:

3 4= = 0
a:q:+6:.¢:=0=4¢ o _ (s-5)
9 =7
B
where the minimum Ty, is given by:
o2

Tmin = T —

28,
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In the ordered phase if v, > 0 the equilibrium expression of the order parameter ¢4 is given

by:

N2
beq = () (5.7)

u

which corresponds to a uniform magnetization and if o, < 0:

Peq(q0) = 294, cos(qoz + 0) (5-8)

where ¢g, = —7(qo)/3uand g9 = —cv./,. Now the magnetization is modulated with a

modulation momentum ¢o. When 7 = «, = 0 the system is at the tricritical Lifshitz point.

A particularly interesting feature about the Lifshitz point is its scaling behaviour du to the

spatial anisotropy which we discuss in the next section.

5.3 Anisotropic Scale Invariance

We generalize the study to the previous section to a system in a d-dimensional space with m
anisotropic directions and hence d — m transverse L -directions. The effective average action

with an expansion around the minimum & reads:

= [ {2 () + 2 (ond)

- 2 (5.9)
N2 b2
+ (99) +u (2 - “)

where Z| II> Z 1, po, v and k are the running coupling constants. Depending on the value of m

we have three situations:

e m # d: anisotropic Lifshitz critical behaviour
e m = d: isotropic Lifshitz critical behaviour

e m = 0: isotropic O(n)-model
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The Lifshitz critical behaviour is characterized by an anisotropic scale invariance because

N2
the term (6& qﬁ) isirrelevant at the Lifshitz critical point. Therefore, as for anisotropic mem-

branes, at the LP the two-point correlation function scales as:

I (g1 = 0,q)=0) ~q[™

(s.10)
I'® (qgr=0,q > 0) ~ Qﬁ_m

where 7¢ and 74 are the anomalous dimensions along the orthogonal and parallel directions

respectively. Moreover an operator has the following asymptotic scaling behaviour:

O (lm, ZQQH) ~ 1720 (q1,q)) (5.11)

where A is the scaling dimension of the operator O and 6 an anisotropy scale exponent. From

these scaling behaviours, we deduce the relation:

2 —
0 — Me2

= : 5.12
4 — npa (5.12)

Finally the behaviour near criticality is characterized by two correlation lengths: | ~ 772
and & |~ T~V where the correlation exponents vy and vy are related by the anisotropy

exponent 0: vpy = Ovys.

Pleimling & Henkel have introduced a theory of local scale invariance (LSI) [156, 136] for
both equilibrium and out-of-equilibrium phenomena leading to conjecture exact expressions
for the two-point correlation functions of anisotropic systems. From a Monte Carlo simu-
lation of Lifshitz points [156] Pleimling and Henkel claim to be in agreement with this LSI.
However in [157] Rutkevich et al. found that the e-expansions of some scaling functions ob-
tained from a two-loop expansion about the upper critical dimension seem to be inconsistent
with the predictions of [136] and [156]. This question could be investigated within the NPRG

in the near future using more sophisticated computation than those used here.
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5.4 Critical Dimensions

Going from isotropic to anisotropic magnetic systems shifts the upper and lower critical di-

mension, dy, and d. respectively:

dyc:4 —4+ %

(5.13)
die 2 —2+ %

Since the number of anisotropic directions 1 is lower or equal to the dimension d the region
with non-trivial behaviour is the one sandwiched between the lines d,.(m), djc(m) and d =

m (sees.2).

In the minimal non-trivial case m = 1 we see that the e-expansion around d,,. = 9/2
deals with an € = 3/2 in order to investigate the physical dimension d = 3. Thus to hope
to get reliable results one needs the series to be Borel-summable which is not guaranteed and
one needs to compute at least up to the fourth or fifth loop order. Interestingly in this minimal
m = 1 case the physical dimension d = 3 is close to the lower critical dimension d;. = 2.5 (for
n > 2) and one would hope that an investigation by means of a low-temperature approach
may give accurate results since € = 0.5. However, as for the isotropic O(n)-model, in the
low-temperature approach the series are suspected to be non-Borel summable and therefore

of no practical use.

5.5 Perturbative RG

5.5.1  Weak-Coupling e-Expansion

Using a momentum-shell RG in the vicinity of the upper critical dimension Hornreich, Luban
& Shtrikman calculated the critical exponents for all 7 at order € [135]. Several calculation
to the order €2 have been performed. For instance Mukamel [158] calculated the anomalous
dimension 7y and 1y4 for all m. Hornreich & Bruce [159] also calculated the anomalous di-
mension but only in the case m = 1 and their results agreed with the Mukamel's. However
another calculation by Sak & Grest [160] for the cases m = 2 and m = 6 did not agree with

the results obtained by Mukamel. This disagreement is linked to the different approximations
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FIGURE 5.2: Upper and lower critical dimensions.

used in the momentum-shell integration. This controversy was been long-standing until the
recent works of Shpot & Diehl [161] and Mergulhao & Carneiro [162].

To avoid the approximations of the momentum-shell integration Mergulhao & Carneiro
[162, 163] used a different approach, a dimensional regularization, where the integrations are
over the whole momentum space rather than just over momentum-shells. They used an expan-
sion of the Green functions in the vicinity of the LP in terms of the massless Green functions
calculated at the LP. With this approach Mergulhao & Carneiro recovered Sak & Grest's [160]

results of the anomalous dimensions for m = 2 and m = 6.

The study of the general case was done by Shpot & Diehl [161] in a full two-loop calcula-
tion. To avoid 1) some of the technical difficulties which have their origin in the form of the
propagator at the LP and 2) the renormalization prescriptions used by Mergulhao & Carneiro
[162], Shpot & Diehl [164, 161] found it easier to work is direct space and they showed that
the free propagator G/(x) at criticality is a generalized homogeneous function rather than ho-
mogeneous. This arises from the anisotropic scale invariance of the free theory and the scaling

function is complicated for the general case (d,m, n). The free propagator at the LP is given
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G( ) /- ei(qH.mH—i-qJ_.ml) ( )
)= | —F———5— 5.14
q qﬁ +qt

which can be written in the form:

G(x) = 7‘12+€<I> (33”:1311/2) (5.15)

where ®(v) = ®(v, m, d) is a complicated scaling function. After integration over g, the
scaling function ® can be expressed using generalized hypergeometrics, known as the Fox-
Wright hypergeometric functions [165]. These functions are complicated but reduce to simple
expressions for same special values of d and m such as m = 2 or m = 6 where the integrals

can be performed analytically.

Indeed, these technical difficulties together with the choice of the renormalization pre-
scription explain why it took almost twenty years to go from one-loop [135] to two-loop order

(161, 162, 163] and it is believed that it will take even longer to go beyond.

5.5-2 Large-n Expansion

Similar difficulties as in the weak-coupling expansion appear in the large-n expansion [166, 167]
and it is only recently that consistency between two-loop and large-n has been firmly estab-
lished [165]. A very interesting point of the large-n results is the variation of the anomalous
dimension 74 with the dimension (see fig. 5.3). In the vicinity of the upper critical dimension
dy.c the anomalous dimension 7)¢4 is small and negative. Lowering the space dimension d fur-
ther the anomalous dimension ¢4 vanishes and becomes positive before it decreases again to

zero at the lower critical dimension dj..

An important question for the physical case d = 3 is at which dimension d does the
anomalous dimension 74 change sign? The large-n result indicates that 74 is positive for
d = 3. However this is not conclusive for the physically interesting cases i.e. with finite values

of n.
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FIGURE s5.3: Behaviour of the anomalous dimensions 1¢2 (open circles) and 1¢4 (crosses) in
alarge-n expansion. The thick lines represent the limiting forms ~ € and ~ € [166].

5.6 NPRG Approach

From our work on anisotropic membranes where the NPRG approach was able to correctly
tackle the problem of the crumpled-tubule transition and predict the value of the anomalous

dimension we hped that this approach will again prove to be reliable.

5.6.1  Lowest Order of the Derivative Expansion

We start with the lowest order of the field expansion given by Eq. (5.9). The problem with
the definition of the minimum encountered in membranes is absent in LCB and therefore we
derive the propagator directly in the ground state configuration ¢; min = V' 2k d1;. After two

functional derivatives of I';, Eq. (5.9), we get the two-point correlation function:
2 .
F;(C '(p,i, 350 o = 0(p + 1')di {Zupﬁ +Z.1p% + po Pﬁ +4u msu} (5.16)

where p| = /pupPandp; = \/pyp’ withp = 1,...,mandv = m +1,...,d. The
(2)

two-point correlation function I';” is diagonal and hence the propagator P is given by:

P(pv i7p/?j)‘min = 5(]7 + p,)él] {(1 - 511) Go(p) + 61@G1(p)} (517)
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where:
4 2 2 2\ !
Gi(p) = (Z”p” + Z1p1 + popj + mz> (5.18)

with mg = 0and m? = 4urk. Taking the trace of the propagator we see that the vanishing
mass Mg corresponds to 7 — 1 Goldstone modes in the low-temperature phase and the mass

my to one radial mode.

5.6.2 Flow Equations

To derive the flow equations of the coupling constants we first determine their definitions

from the functional derivatives of the effective action (5.9):

T R E)

min

. 0 L@
ZL_;%@Fk (pvla_pa]-)

) o " (519)
= —IlimT 1,-p,1
U I zllg%) k (p; y =P ) "
po = lim i1“;(42)(19, 1,—p1)
p_>0 apﬁ min
and the anomalous dimensions 774 and 72 are defined as:
1
Nea = —5@ InZ (520)
e =—0nZ, .

The renormalized couplings flow to two different fixed-points depends on whether the
RG transformation is over k| or k:H. However these fixed-points are equivalent and yield the
same results for the critical exponents (this situation is identical to anisotropic membranes).

We recall that we have taken the RG-time to be t = Ink | /A and hence the flow equations
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147
read:
Ok =—(d—m~+0(m+mnu—4))k
+ % {(n - 1)L9n+722—d,0(190, mi) + 3L8,%H(po,m1)} 52
Ou=(d—m+60(m+2nu, —8))u
+ Uz% {(" - 1)L9n+T4—d70(Povml) + 9L87%4_d(p0,m1)} 522

1 m+2—d
Oipn — 0 (nps — 2 r (M}n _ ,
tP0 (4 ) po + odd/2T [%] mw@{ [ 5 ] +2 d70(Po mi)

m+4—d
_Mol7m+22—d (POvm1)> — 2ukl’ [2] (M}n-!—;l—d,o(pOaml)

+Mg7 m+247d (p07 ml)) } .

(5.23)

Similarly the anomalous dimensions are given by:

i = e LB (10, om0 — 29 s, )
? 7 dpd/or 2] k2 \ g oV PO o mpd L PO

T [m+27d

] (524)
72 (Lorn+22—d70(m17 PO) + L87m+22—d (mh PO)) }



148 Chapter s Lifshitz Critical Bebaviour

. 9—d—1,d/2 { [m—|—4—d
4 = -5

m 9 } <5m+4 d o(mbpo) (1]m+247d (mhpo))
2
m+6—d

—2urT |:2:| (Sm+b d O(mla PO) + Sé’%e_d(mh PO)) }

2747dﬂ.7d/2 m+2—d ,
* 3ulRAT [m4] {_QF [2] (Tm+2 a o(m1, po) — TO,%H(thO))
m+4—d
2] (Tm+4 a o(1m1, p0) + T()Q,%H(mlmo))

m—+6—d
- 16U2/€2F {2} (Tm+6 d 0(77117/)0) T(im+2€3—d (ml,po))

m+8—d
+8U3/€3F [2:| (Tm+8 d O(ml, PO) + T(i m+28—d (mla po))}
9—d—2,d/2 { [m +2-4d
T [ 2

m+4—d
+2u kI [2} (Um+4 d O(mla PO) + U& m+247d (mla PO)) }

+ 18u kT [

:| (Um+2 d O(mlv :00) U§7m+22_d (m17 pO))

(5-25)

and the threshold functions are given by:

q” [QH]

P(q +m0> (P aj +m1>

a 1 m
T5y(ma, po) = —Amat/d qll( (5.26)

with P(qﬁ) = Z”q"'l + poqﬁ + Rk(qﬁ) and A,, = 27" 1x="/2 /T[m/2]. The function
Flqy]isgivenby 1, (dP/dqﬁ)Q, (dP/dqﬁ)3, (dP/dqﬁ)4 and (dQP/d(qﬁ)Q)2 for respectively
L, M, S, T and U. Note that, as for anisotropic membranes we can integrate exactly over the
momenta ¢ since they enter quadratically in the effective action I', (5.9) and therefore the

threshold functions are integrals over g| only.

5.6.3 Upper Critical Dimension d,. = 4 + %

From the one-loop structure of the Wetterich equation (2.39) we recover the e-expansion re-

sults at leading order in the vicinity of the upper critical dimension dy.. At dy, the anomalous

dimensions 774 and 7y vanish and the mass m% = 4uk is very small m; < 1. Taking
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d =4+ m/2 we have:

m+2—d :mT_Zl
m+4—d =75
m+6-—d =2

and therefore the threshold functions involved in Egs. (5.21-5.22) become:

L9n+2—d O(mla :00) ~ Lgﬂ;‘l 0(07 O)
2 ) 4
9 ssp-ams, po) = Ty (0,0) B — dur (527)

Lgn+47d 0(m17 pO) ~ Lg m+4—d (m17p0) - Lom 0(07 O) = 1 .
2 o 4

Now the flow equations read:

T m—4
Ok = —(2— )k + —55 [ 4 {(n +2)L% 4 0(0,0) = 3(m —4)u ﬁ} (5.28)
272 7 a I [%] i
n+8)I |2
Opu = —eu + u? 51+6 s 4] . (529)
22 7 a2l [%]
At leading order, the coordinates of the non-trivial fixed-point are:
ot ﬂ'mTMQmT%F[m/Q]e
 (n+8)'[m/4]
. Tlm—4)/4(n+2) , (53
K = mts _mt12 LL*‘l 0( 70)

m 4 27z [m/2] 47

and the critical exponent v/ is deduced from the flow equations by linearising around this

non-trivial fixed point:

Kk = k*+ 0k — Ok = 0ok
u =u*+ou — du = Odu.
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With this the low becomes:

O (0r) = —(2—€)drk — (4 — 2¢)K" + mis [é ] -~ [(n + 2)Lm 4 0(0,0)
" ki (531)
-4
m4 ﬁ*éu]
and the exponent v/ is given by the linear term §x:
1 T m—4 _4
L, S mﬁ[wg} 1282y
vy 2" T [ 4
ooy T[] 12(moa)r T[]
= — € m m m
27T 2] 4 (n+8)I[2]
6e (n+2)e
—9 - -2 .
Ty (n+8) 532)
where we have used the equality I'[z + 1] = 2I'[z]. Finally, the exponent is given by:
. 1
=
(n+2)e
2- (n+8)
1 en+2 9
By a similar procedure v is given by:
1
"= 2(n+2)e
4- (n+8)
1 en+2
==+ O(é .
it gnrs TOE) (534)

and the two correlation exponents are related by the anisotropic scale exponent z = v /v :

(i) 5) o

:§+0w) (5-35)
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The other critical exponents are fined using the generalized scaling relations:

a =2-—my—(d—m)v,
¥ =4 = n)y = (2= ne)ve

8 :%@—a—w

Y
0 =-+1.
B
With the values of v, v/, 1174 and 142 near the upper critical dimension, the critical exponents
become:
4—ne
= ~ 1+ O(e
nrsa T OE)
en+2 5
=14= 0]
i + 2n+8 +0(<)
(5:37)
1 € 3 9
P =5 gnys 1O
6 =1+4c¢€

5.6.4 Lower Critical Dimension d;. = 2 + %

As for the expansion near the upper critical dimension we recover the low-temperature results

from the one-loop structure of the exact evolution equation (2.39).

The lower critical dimension dj.. is the dimension below which there is no phase transition.

In Lifshitz systems, d;. = 2 + % forn > 1, where n is the number of field components.

The only physically interesting case is the one with m = 1 because when m > 1, d;. >
3. Therefore at some point in the calculation, we take m = 1. In our approach since the
temperature dependence is implicit alow-temperature expansion is equivalent to an expansion

in power of 1/k. We start with the flow of the anomalous dimensions 742 and 774 which read



152 Chapter s Lifshitz Critical Bebaviour

to the leading order in 1/k:

1 rm
Ne2 = 2d7rd/2F [%] P Lm+22*d’0(mlap0) (5'38)

1 m+6—d
~ —2 N | ————| SL s
Uz 2d7rd/26m(m+2)r [75]/{{ (m+> [ 2 ] o (5.39)
5-39
m+8—d m+4—d
war [ 1 o [P

where we have taken the threshold functions F7%y (F' = 5, T or U) with non-vanishing pa-
rameter b to zero since where are in the large mass limit mq > 1. Since 7 is of order € it is
taken as vanishing in the threshold functions. Now we evaluate the threshold functions for
d=2+ %:

1 a2 2y7~/ y m+2—d
L9n+2—d 0 = —5 /dyy 2 ( ) 2 7n+2*d+1 . (540)
2 (W (1+7(y) + poy)” 2

The coupling pg is of order 1/k near dj. and is therefore taken as vanishing pg = 0:

m+2-—d mtd (g ' (y
L9n+27d70 — 2/dyy 2 (m+4—d) ( )m+4_d ] (5.41)
2 (L+7(y) 2

Takingd = 2 + % we have:

m+2—d =%
m+4—d :mTH.

Substituting this in the previous equation leads to:

R " W= larr T =1 G

since 7(00) = 0 and 7(0) = oo.
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Now we evaluate the threshold functions entering in 7¢4. First we start with the threshold

S which reads:

m+6 2./ 3
SL oy (m ’p):_m+6—d al r(y)(2y + 2yr() 3{1 ' (y))
Fe0T ./ W1+ ()"
3/dyym/2(2y+2yr( y) +y*r' (y))*(6y ( ) + 2% (y))
(y2(1+7(y)) "%
(5-43)
andwithm +6 —d = mTJrs andm+8—d= m;12 becomes:
1 _ m+8 ' (y) 2+ 2r(y) + v’ (v)?
S%Gfdﬁ(mlapo) = 4 /dy (1+7‘( ))m+12
+3/dy(2+2r(y)yr’y))2(3r (y) +yr"(y))
(1+7(y) ™
d | 2+2ry) +yr'(y)?
= [ dy—
f (14 ()
_ @24 2r(o0) Fyro))t  (2420(0) by ()
(1+7(c0)) 2 (1+7(0)) 4
Similarly the thresholds 7" and U read:
2 - _ (24 2r(00) +yr'(00)t  (242r(0) +yr'(0)"
Tinss—a o(m1, po) = 01 r(o0) 2 01 r(0) = (5-45)
/ 2.1 2
U@p(mhpo) _ (2+ 2r(oozl++4y'(r (c;c;?n;y " (00))
(24 20(0) + 4yr’(0) + y*(0))? (5.46)
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Although 7(0) diverges the numerator with 7(0) in the threshold functions are constant
and therefore the parts with an r(0) vanish (see Appendix). The threshold functions read:
Smio-a, =8
+§ d .0
T2 s 4 o0=12 (5-47)

2

2
Um+4—d0:4~
2 b

Replacing the threshold functions by their value in the anomalous dimensions we find:

Ne2 = L [%]
2T T[] (5-48)
2 [7] '
Ne4 = +4  m+4

Now we have to find the fixed-point value £*. Replacing the threshold functions L by its value

in the flow of k we find:

o, (noor[ o
K= —€K + — 4
t 2 F T [m] i
2
which gives the fixed-point value:
c_ (n-2[7
K = — 5.50
2" " T [2] € (550)
Replacing £* in the anomalous dimensions:
« €
T2 = n—9
. 2% (5:51)
Tea = n—9

which is in agreement with the results found in [168].
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The correlation exponent /| is connected to the linear term 0 in the flow d;x. Linearis-

ing the flow around Kk = k* + Jk we find:

&” = —E(K, + (5&) + m (5.52)
which gives for v :
1
vp=-— 7 o0 (5-53)
€ €00

as in the non-linear o-model.

5.7 Higher Order Expansion and Physical Results

We have computed the critical exponents up to the twelfth order of the field expansion to see
how the exponents evolve with the order of the expansion and to ensure that we have ob-
tained converged results for the physical quantities. An important remark about the cut-oft
functions is that the 8 cut-off cannot be used for the Lifshitz critical behaviour because of the

non-analyticity of its derivatives that enter the threshold functions.

Now we concentrate on the uniaxial Heisenberg case m = 1 and n = 3. We find a non-
trivial fixed-point with two directions of instability, corresponding the Lifshitz point, for any
dimension between the upper and lower critical dimensions dy,. and dj.. The anomalous di-
mensions 7)g2 and 7¢4 are displayed in figure 5.4. This figure calls for two important remarks.
First, one sees that the NPRG approach allows for a smooth interpolation for the critical expo-
nents between dj. and dy,.. Second, from a direct investigation in d = 3 forn = 3 the LCB is
characterized by a negative value for 1g4. This result is in disagreement with the perturbative,

large-n and low-temperature, methods which give a positive value for 74.

For the physical dimension d = 3 we have used a cut-off family parametrize by A:

)\Z”

Ry (q) =15 —
kL(q||) eqﬁ/kiﬁ 1

(5-54)

and by varying the parameter A we seek for stationary values of the critical exponents. Station-

arity is a condition that must necessarily be fulfilled by any putative physical quantity to ensure



156 Chapter s Lifshitz Critical Bebaviour

" T -
0.06 4 . -
/ Il - T2
-» \ -

0.00 —
-0.06 —
-0.12 |
-0.18 —

Te4
I I I |
25 3.0 3.5 4.0 4.5

FIGURE 5.4: Anomalous dimensions 7y2 and 7g4 as functions of the dimension d between
dyc and d; using a field truncation up to ¢ 8forn =3andm = 1.

its quasi-independence with respect to both the cut-oft function and the truncation [39]. We
have studied the convergence of the physical quantities by adding successively powers of the
field up to the twelfth order. We find at almost any order" of the field expansion stationary
values for the critical exponents. This is illustrated in figs. 5.5 and 5.6 which represent respec-
tively the critical exponents 772 and vy in the vicinity of their stationary value for different

truncations of the effective action.

The critical exponents vary very smoothly with the cut-off parameter A which indicates
that the results have a weak dependence on the cut-off function. This fact has been confirmed
by using other cut-off families that lead to the same result. More importantly from figs. 5.5 and
5.6 we can see that we have a rapid convergence when adding higher orders of the field expan-
sion. Between the orders (/;10 and 512 only the third digit of g2 and 3 changes. Thisis a clear
indication of the good convergence of our results, at least with respect to the field expansion.

Indeed higher order derivative terms may change the values of the critical exponents.

-
“The ¢° case seems to be special in the sense that it does not exhibit clear stationary values.
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FIGURE 5.5: The anomalous dimension 72 as function of A for truncations from ¢ 4 (upper

curve) to ¢7 12 (lower curve). Stationary points are indicated by black diamonds.

Our results are summarized in table 5.1 in the column NPRG together with the weak-
coupling [161] and large-n [166, 167] results for comparison. Note that the error bars in our val-
ues are evaluated from the direct analysis of the convergence of the field expansion. From this
table one can see that our results differ heavily from the ones obtained from a weak-coupling
expansion. This discrepancy is not surprising since these perturbative results have been only
obtained at low loop orders. From our convergence study, although based on a different ap-
proximation, one can see the necessity of taking into account several orders to obtain con-
verged values for the critical exponents. Finally, we note, amazingly, that our correlation length
exponents /g4 and vy are close to the values obtained within a very recent large-n expansion
[167], contrary to the anomalous dimension 77¢4 and 772 both quantitatively and qualitatively

(different sign for 1g4).
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FIGURE 5.6: The correlation exponents /g5 as function of A for truncations from ¢ 4 (upper

curve) to ¢7 12 (lower curve). Stationary points are indicated by black diamonds.

NPRG | O(é?) [161] | O(1/n) [166,167]
ves | 0.78(1) 0.392 0.755
Vo | 1.655(5) 0.798 L575
Nea | -0.18(2) -0.021 0.074
Ne2 | 0.075(1) 0.044 0.102

TABLE 5.1: This table shows some data

5.8 Conclusion

We have shown that the NPRG provides convergent values for the critical exponents while
avoiding the technical difficulties of the perturbative approaches. Moreover our approach is
systematically improvable without any difficulty through a field expansion. Although higher
order derivative terms should play a small role they can and should be included to conclude
on their importance in the convergence of the critical exponents. Currently we are performing

a computation with higher derivative terms with a full potential. Finally we hope that our



Chapter s Lifshitz Critical Bebaviour 159

work will stimulate new investigations of the Lifshitz critical behaviour by means of numerical

simulations and experiments to confirm the adequacy of our quantitative predictions.






Appendix G

Threshold Functions

The dimensionless threshold functions are given by:

2a+m—2

e, - _1/dy y~ 2z (Onur(y) + 2yr'(y)))
“ 2 (12(1+ (1)) + poy + m2)* (y2(1 + () + poy +m32)"

(G.a)

a b
{ P+ () + poy+m2) | (P +r(y) + poy + m2) }

m+2a+2

M :—1/d y 2 (977£4T(y)+2y1"/(y))(yQT’(y)+2y+2yr(y)+p0)2
T8 Y R () + oy ) (B (0) + poy + )

a b
{ (y2(1 + r(y)) + poy + m) " (v2(1 4+ r(y)) + poy + m?) }
+ /dy v (V2 () + 29 + 2ur(y) + po)

(202" (y) + yr' (y) (6 + neay + 20mea7(y))
(W21 + (1)) + poy + m3) " (12(1 +7(y)) + poy + m3)"
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m+2a+2

Siv=3 / y* (Bnear(y) + 2yr' (1) (%7 () + 2y + 2y (y) + po)”
T2 @) + oy +mi) (P4 () + poy+ )’

a b
{ P+ () + poy +m2) | P+ () + poy + m2) }
+ E/dy y%m (y27"’(y) + 2y + 2yr(y) + p0)2

(292" (y) + yr' (y) (6 + 0nea) + 20m0ar(y))
(W2(1+ () + poy +m3)" (v2(1+ () + poy + m3)"

(G3)

m+2o¢+2

po _ 1 / yY (9near(y) + 2yr' () (v%7 (y) + 2y + 2yr(y) + po)”
") T () + oy md)” (P14 1) + poy + m3)’

a b
{ (1 +7(y)) + poy +mp) " (y2(1 +r(y)) + poy +m3) }
+2/dyy Ea +2y+2yr()+po)3

(202" (y) + yr' () (6 + npgy + 200047 (y))
(v2(1+ (1)) + poy + m2)* (y2(1 + () + poy +m3)"

(G.4)

m+2a+2

go, _ b / S (Onear (y) + 2u7" () (427" (y) + dyr' (y) + 2r(y) + 2)°
w2 (y2(L +7(y)) + poy +m3)" (2L + () + poy +m3)"

a b
{( 21+ 7y )>+poy+m%) i (y2(1+r(y>)+poy+m%)}
/dyy T (P () + g (y) + 2r(y) + 2)

v’ (y) + 92?””( (12 + gy + 4y’ (y)(0nea + 3) + 20m0a7(y))
21+ () + poy +m3)* (421 + () + poy +m3)"




Chapter 6

Disordered Membranes

6.1 Introduction

In the introduction on membranes in Chapter 2 we have shown how complex these systems
are. Membranes are far from being homogeneous except for specific case like graphene. The
presence of proteins or cholesterol in biological membranes or impurities and defects (discli-
nations and dislocations) induce heterogeneities. Such defects may also appear during the fab-
rication process of polymerized membranes. After the works on homogeneous polymerized
membranes our interest switched to the study of the effects of heterogeneities. In this chapter
we discuss the different types of randomness that can be present in a membrane and we show

how they modify the phase diagram.

Our work on disordered membranes is a work in progress and therefore no results are

presented in this chapter.

6.2 Replica Formalism

There are two types of disorder annealed and quenched. In the first type the disorder and the
degrees of freedom of the system fluctuate together which means that the time scale of vari-
ation of the disorder is equivalent the one of the degrees of freedom. In membranes, as in

spin-glasses, we deal with quenched disorder where the random couplings, corresponding to

163
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the disorder, are constant over the time scale over which the degrees of freedom fluctuate. Con-
sider a Hamiltonian #[S, J] where S are the degrees of freedom and J the random coupling.

For quenched disorder the partition function depend on J:

Z[J] = T e M5 (6.1)
{s}

which means that the free energy I also depend on J. This is not satisfying since it means that
the free energy is different for each realization of the disorder. However in the thermodynamic
limit the free energy does not depend on J and one must average over the disorder and this
free energy is called the guenched average free energy. This makes the computation a little bit
difficult since we must average over the disorder in the free energy and not in the partition
function. To overcome this difficulty in quenched disordered systems, studying the effects of
randomness implies to use the replica formalism (see [169, 170] for lectures). This formalism
consists in replacing the partition function In Z by (Z™ — 1)/n where n corresponds to the

number of replicas of the original system. Then one takes advantage of the relation:

n __
InZ = lim z !
n—0 n

(6.2)

which transforms the task of averaging In Z by Z™. After taking the average over the disorder

one obrtains a replicated free energy which is of the form:

Ri5 = [40] 30 (5052 +U@™) -5 3 V@ +ot 6
a=1 a,B=1

which is an expansion in the number of replicas where o and 3 are replica indices. . The free
energy is O(n) invariant in the replica space as well as under the permutation between replicas.
If the probability distribution is Gaussian the free energy only contains term with up to two

replicas at the beginning of the flow.

In what follow we use the same notations as in ref. [171] where the average over disorder

is noted with square brackets [ | and the thermal average with angle brackets < >.
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6.3 The Model

There are two ways that randomness can appear in the free energy, either in the curvature part
or in the strain part. From a geometric point of view an asymmetry between the two leaflets of
amembrane leads to a spontaneous curvature &which couples to the curvature —9%7(x) .¢(x)

and to a random stress which changes the preferred metric gg g

Radzihovsky & Nelson [172] proposed a modification to the free energy to take into ac-
count of random impurities. One year later Morse & Lubensky showed [171] that starting with
only random spontaneous curvature always generates random stress which means that both
type of disorder must be taken into account. From the free energy of homogeneous mem-

branes they added the two sources of randomness:

2
F[F] = / dPx { g <0277(:U) — C?) + % (97 (x).0;7(x))*
AL L2 , _,
3 (0;7(2).0;7 ()" — 04 (x) 07 (x).0;7(x)
where £ is the usual bending rigidity and 12 and A the elastic moduli and where ¢ is the random

curvature source and o the random stress source. We consider the sources to have a Gaussian

distribution. Therefore their variances are given by:

[ci(z)ej(2)] = Axdio(z —a’)
(6.5)
[Uab(x)o—cd(x/)] = (A)\éabdcd + QA[LIade) 5(-7} - xl)
where:
1
Toped = 3 (0acObd + 0addpe) (6.6)

is the identity in replica space. The variance of ¢; must be positive. Moreover the stress tensor

can be decomposed into a scalar and a symmetric part via 04y = oLéa + 05) where a?;a =0.
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And the variances of o~ and O'Zb must be positive which leads to:

=

> b b
=

AVARAVARLV]
o o

=

(6.7)

[
IS]
>
>

Surprisingly the upper critical dimension remains unchanged with respect to the pure case:
D, = 4. This is different from the situation in the random field O(n) model (RFO(n)M)
where the upper critical dimension is shifted from 4 to 6. Before discussing the critical be-
haviour at this new fixed-point let us see what are the effects of disorder on the flat-phase. In
the Monge parametrization and keeping only the non-linear terms relevant for the flat phase

the free energy is given by:

= 2 -
F=2 / d%{ﬁ <82h(x)> — 28(x).0%h(z) (6.8)
+ )\uaa(f)2 + 2Muab($)2 - 20ab($)uab(x)} (69)

where h is the height field and u,y, the strain tensor. As for homogeneous membranes one can
integrate exactly over the phonon modes and evaluate the effects of disorder [172] through the

height correlation function which is given by:

kpT

D 4

2 —
[<h@P>) = ot

(6.10)

where k2 (g) is the renormalized disorder bending rigidity and the superscript D stands for

disorder and not the membrane dimension and is given by:

D KO 1 2 Kg 1 2
“R(Q) =k + kT W (CIiPij (p)Qj> — Ay W <quij (p)qj‘)
P P

(6.)

where Ko = 4p(p+ M) /(21 + A) and PZJJ‘ = 0,7 — pipj/p* the transverse projection opera-
tor. One sees that the first correction term is temperature dependent and increases the bending

rigidity as in homogeneous membrane. Lowering the temperature the strength of this term
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decreases and lig is dominated by the temperature-independent term which softens the bend-
ing rigidity. Nelson & Radzihovsky found that randomness does not affect the behaviour of
the stable flat phase. However they found another fixed-point corresponding to a random flat
phaseatT” = 0 where the bending rigidity is softened by the randomness. Adding the random

spontaneous curvature changes the renormalized disorder bending rigidity which now reads

[171]:

Ko 2
ki(q) =K+ (kTk+ Ay) / 2la+ P (%‘Pﬁ(p)%)
P

K3 " 2
— A, /p w <QiPij (m%’)

from which we see that the random spontaneous curvature participates to the stiffening of the

(6.12)

bending rigidity through order from disorder. Now at T' = 0 there is a competition between

random curvature and random stress.

The thermal fluctuations are characterized by linear response functions:

Xuaw, (@) =T ([< ua(@)up(—q) >] = [< ualq) >< up(—q) >]) (6.13)
Xhin; (@) = T ([< hi(@)hj(—q) >] — [< hi(q) >< hj(—q) >])
and the disorder-induced fluctuations are given by:
Cuau (@) = [< ua(q) >< up(—q) >] (6.14)
Chini (@) = [< hilq) >< hj(—q) >] .
These functions x and C' are related to the impurity-averaged Green functions through:
Guaub (q) =T Xuaub (q> + Cuaub (q) (6 IS)
Ghin; (@) =T Xnin; (q) + Chyny(q) -
In the long-wave length limit these functions behave as:
Xuauy (@)~ g~ @)
. ~ g (4—mn)
Xhih; (@) ~q (6.6)
( )
( )
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The unprimed and primed critical exponents, which describe respectively the divergences of
the replica diagonal and replica off-diagonal parts of the Green functions, obey the same Ward
identity: 7, +27;, = 4— D atthe non-zero temperature flat phase fixed-pointand 7}, +21m;, =

4 — D at the zero temperature disordered flat phase.

6.4 Perturbative RG

From a weak-coupling e-expansion in the vicinity of D = 4 Nelson & Radzihovsky [172], and
later Morse & Lubensky [171], have found two non-trivial fixed points. The first one corre-
sponds to a homogeneous flat phase at non-zero temperature (1" # 0) and the second non-

trivial fixed-point corresponds to a random flat phase at zero temperature (7" = 0).

Examining the flow equations Morse & Lubensky [173] noted that the study of the fixed-
points can be restricted to an attractive subspace where A/pn = Ay /A, = —1/3. This space

is shown of fig. 6.1.

FIGURE 6.1: Flow diagram in the A/p = A\ /A, = —1/3 subspace. All the fixed-points,

except the T" # 0 fixed-point P4, lie in the 4 = 0 (T" = 0) plane. P1 is the unstable Gaus-

sian fixed-point and P5 is the physical T' = 0 fixed-point. The two unlabeled fixed-points
are non-physical [171].
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Below D = 4 atT" # 0 the couplings are attracted to the fixed-point P4 which corre-
sponds to the homogeneous flat phase where the randomness is irrelevant. When the tempera-
ture is lowered to 7" = 0 the couplings in the plane ;4 = 0 flow to P5 which is the fixed-point
associated with a rough flat phase where the random spontaneous curvature and the random
stress are non-vanishing. The fixed-point P5 is weakly unstable with respect to the tempera-

ture.

At the fixed-points P4 and P5 the unprimed and primed anomalous dimensions 7 are
related by scaling relations. These relations were derived by Morse & Lubensky in [171]. We

start with the homogeneous flat phase fixed-point 4 where the scaling relations are given by:

n+2n =4-D
7' =2 (6.17)
un =0

The first relation is obtained from rotational invariance. The last relation is only valid when

d — D is lower than 24 which is true in the physical case D = 2and d = 3.

At the fixed-point P5 the scaling relations are given by:

n+2n, =4-D
T =, +¢r

where again the first relation is obtained from rotational invariance. The exponent ¢ is an
eigenvalue of the flow equations and corresponds to the scaling of the coupling 1 near the
fixed-point P5: ji ~ k7. The calculation of ¢ to order € gives ¢r = 0 foralld > D. This
is in agreement with a large-d expansion to order 0(1/d) and with numerical simulations for

d=3and D = 2 [174].

From these results Morse & Lubensky conjecture that the exponent ¢ remains vanish-
ing at all orders of the expansions. This is an interesting project to verify under the NPRG
approach. Moreover it is important to go beyond the e-expansion to compute accurate values

for the critical exponents.
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6.5 NPRG

6.s.1 Effective Action

The formalism that we use for disordered membranes is based on the works of Tissier, Mou-
hanna, Vidal & Delamotte [175] and of Tissier & Tarjus [5s, 176]. The effective action is ex-

panded in as a series of free replica:

Mot = Yo Tufe] — 5 3 Tl 0]+ .. (619)
a=1 a,f=1

For disordered polymerized membranes we take a Gaussian distribution and the effective ac-

tion at lowest order of the field and derivative expansions is given by:

N Z/de {g(aiaﬁa(x)f + % (07 () - OiF () — DC2)2
a=1

(07 () - 0;7(x) — C25ij)2} -2 /de {Azﬁ(aiaﬁa(x))(ﬁjaﬁﬁ(@)

a,B=1

+

~=

+ 2 (07 () - 07 (x) - D) (8,7 (w) - 07 () - DE)

F 07 @) 07 ) - by) (07°(0) - 0,70 - )|

wo| P

(6.20)

where Z, A, p1, A, Ay, A, and ( are the running coupling constants. The Latin indices cor-
respond to the membrane internal coordinates and the Greek indices to the replica space. We
must be careful when expanding the expression. The second sum over o and 3 will generate a

n because some terms depend only on o or 3.

The cut-off function Ry, is not diagonal in the replica space in general [s5]:

(Ri(0)5) = (Ri(@)3as + Ri(a)1as) 0 (6.21)

where 1,3 = 1V «, 8. Taking only a diagonal cut-off may violates certain symmetries and in-

duces wrong values for the critical exponents [ss], [177], [178]. For example in [178] Tissier &
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Tarjus showed that taking R}, to zero violates superrotational invariance and the dimensional-
reduction, that occurs in the RFO(n) model, could not be recovered. Moreover the cut-off Ry,

reduces the variance of the random sources, i.e. reduces the fluctuations of the bare disorder:

—J f@f(=a)
P(h)=e A-By (6.22)

where f corresponds to a random source and A its variance. The probability eq. (6.22) means
that R, must stay finite in the limit k& — A or else the probability will not make any sense.
Indeed R, reduces the variance of the random sources which gives an additional condition on

the cut-off at the beginning of the flow:

RA < An
- (6.23)
Ry <A,
6.5s.2 Propagator
The configuration that minimizes the effective action (6.20) si given by:
ré(x) = (xa0(D —a)l, (6.24)

where 1, is equal to 1 for all ov. In this configuration the two-point correlation function reads:

(T + Ra) (p,0,0,5,8) = bad(p + @) { G5 (p)03,0( = D~ 1)

min

+0(D —)8(D — 5) [Gfl(p) (%‘ - p;];j) * Ggl(p)pzigj] }

N (6.25)
+ Lagd(p + ) { G ()06 — D~ 1)
. N | A—1 DiDj ~—1, \PiPj
16(D — 9D — j) [Gl ») (5@ - pz) + 6502 ] }
where:
Gi(p) = (P(p)+m2p?)~" (626)
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with P(p) = Z(p?)? + Ry and P(p) = Ax(p?)? + Ry. The masses m? and 117, with
i =0, 1,2, are respectively given by 0, (? 11, (?(2p1 + ), 0, %CQA# and (2 (A, + A)).

The propagator P is the inverse of (I’](f) + Rk> Therefore, we have:
(I‘,(f) + Rk) P=1 (6.27)
which can be written using indices as:
(T + Re) (i, .. ) P, B,k 0) = Bagti (629)

with Einstein summation rule over (3 and j.

To compute the expression of the propagator we must do the inversion of (Fg) + Rk)

both in the replica and field spaces. We suppose that the propagator is of the form:

P(i, v, j, B) = 6apd(p1 + p2) {a 6;;0(i — D — 1)

-0 -3 o5~ 2) 28]

. . (6.29)
+ Lagd(p1 + p2) {ady0(i — D — 1)
+0(D — )0(D — j) {z} (@-j - p”?’) + apiﬁj] } .
p p
Then, let M be a operator of the form:
Mapij = Xijoap + Yijlag (6.30)

where the Latin and Greek indices correspond to different spacesand 1,3 = 1V ar, .

Mgﬁ{ijMﬁa,jk = daolik (6'31)

We assume that the inverse matrix M ~! is of the form:

M(;ﬁl,ij = X;i0ap + Yi;lap - (6.32)



Chapter 6 Disordered Membranes 173

In what follows, we drop the subscripts ¢ and j but we must keep in mind that we are dealing

with matrices. Therefore:

M;IM/BJ = (X/(sozﬁ + Yllaﬁ)(Xé,Bo + Ylﬂa) (6-33)
=X'X0po + XYoo +Y'X1po +nY'Y1,o (6.34)
which leads to:
X'X =1,
/ / / (6.35)
XY+Y'X+nY'Y =0

and the expressions of X’ and Y are given by:

X/ —_ X71
, . . (6.36)
Y = -X"Y(X +nY)"L.

We do not need an expansion over replicas because we know how to compute the inverse
(X +nY) ! exactly. Replacing X and Y by their expressions, we find (we drop the explicit

momentum dependence of the functions G; but this will be restored in the final expression):

X' = Godij0(i — D — 1) + (D — (D — ) [Gl <5ij - p};’? > + Gzp;;j }

v/ — _ {Go5m19(i —D—-1)+0(D—4)0(D — ay) |:G1 <5ia1 - p;p;1>

2

~— Pai1Pa ~_1PaiPa 5aac9a —D—-1
|:G11<5a1a2_ 122>+G21 122:|}>< 127(11 — )
p p <G0 +nG0)

PaqPa
(5(11&2 - 11)2 2) pialgag

+G2p;pa1:| } X {éaléalage(al - D - ]-) + H(D - al)H(D - a2)

+9(D - a1)9(D — ag)
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with summation over the indices a;. Finally, the propagator at the minimum is given by (we

restore the momenta p):

P(pi,a,q,5,8)) = dapd(p + ¢) {Go(p)di;0(i = D — 1)

+(D - 0D~ ) [G1(0) (85~ 2 ) + a5 |}
Go(p)?
nGo(p) + Go(p)

- 1a,85(p+Q){ 6ij0(i — D — 1)

. . Gi(p)® DDy Ga(p)?
H(D = DD~ ) | e (3= ) + -2

6.s.3 Flow Equations

(p) + Ga(p) P

From the two-point correlation function F,(f) (p,i,a, P, 4, B) we find that the definitions of

the coupling constants are given by:

A, = — lim ir( Yp,D+1,1,—p, D +1,2)
p—>0d4

min

A, = lim ir@)( D+1,1,—p,D+1,1) +A,
pﬁo dp min
A:—hmir“(pD1 —p, D, 2)

a p_>0 dp ’ o ’ min

_ i 4@ Ay

M_;%EF (vavlv p7D71)min+7

A
A :_hmir( )(paDa]-a_vav2) -=F
p—>0 dpD min 2

A

)\:—llmirm)(p,D,l,—p,D,l) +A>\+7“_1UJ

p_)o dpD min 2

(6.43)

(6.44)
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from which we derive the flow equations in similar manner as in the previous chapters. These

flow equations read:
0¢” = sl {a(d— DY(DA+2p) (1520 + I5s3.)
(DX + 241) 0,00 T %200,
(D= 1) ((DA+ 4) (A CPLEES o + 2L8531) + 2LE T3 0(DA = Ay + 411
+2[((D+2)7 + 6) (A + AW IETEo + L85
FLEEo((D +2)A =225 — 28, + 61)] }
(6.45)

4Ap 2 D+4 H
——— _{2%%(d- D)LY+ ———

x (Au ((~D*+ D+ 4) A+ (4 — (D —2)D)p) + (D — 2)(D + 4)p(A + ) L5 L,

D (2u(Axp+ A+ )N +20)) — Ay (A2 + 4hp +242)) (LD+2 e )
CQ()\ + N)Q 0,1,0,0 0,0,1,0

+AC (AN + AN+ 30’ LS o + (D = 2)(D + )AL CRPLYTS

&5# =

2
_ ngfofgp (12 (2(D + 3)(Ax + AL) — 15X) + Au((D + 8)(Ay + Ay) — TA)

2Dp(X +2p)
N (2(Ax+ Ap) — A) — 9p°) + E0d ) (Lg;g,l — Lgfgj;l)

+4pA(d — DYESGH L + 40+ 312 LEGA  + 2D — 2)(D + L3 |
(6.46)
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2A
0N = ip vy 1@ DILERo (DD +2) +4(D + 2)A + 42)

D(D +
+2(d— D)LETS | (D(D + 2)X% + 4(D + 2)Ap + 44°)
+ ALCLYTS o (D (D + D —2) X2 +8(D* + D — 2) Au+4(3D + 2)1°)

1
+ mL{f;gD (=2(D*+ D =2) AN + (A +p) (D (D*+ D —2) \?

+8 (D*+ D —2) A\ +4(3D +2)p?) — 2(D(D + 3) + 4) A p — 4(D + 4) A, 1?)
+2L550, (D (D*+ D —2) X +8(D* 4+ D — 2) Au+4(3D + 2)1°)
+2C3 (AN + A LETE o (D(D + 6) + 12)A% + 12(D + 4) A + 364°)

4
+ mgﬁio (20(Axp + A+ ) (A +20)) — Ay (A2 + 4dp + 2%))

4
- m%ﬁg,g (Ap (N2 44N+ 202) = 20(Axgu+ (A + ) (X + 20)))

1
- mLé),ofél,o (A2((D(D + 6) + 12)A — 4(D + 4)(Ax + Ap)) + 4p*(3(D + 7)A

—2(Ax + AL)) + Au((D(D +18) 4+ 60)A — 4(D + 8)(Ay + A,)) + 364°)

8u(A+21) pro  Bu(A+2u) pyo
CA+p) 002 A4 p) TR0

+2Lé),o+,§,1 ((D(D + 6) + 12)A* + 12(D + 4)Ap + 36,u2)}
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24p
D(D + 2)

F16(Ax + AN+ 30)C% [(Ax+28,) L8580 — (A + 3 L85, |

iy = {=8(a0+ 2,70+ 30)2LE o

+ (D = 2) 8,6 [2D + 6)ALET8, — 4D + YuLIS, — (D + )AmCLELS,
- ()\‘f,U)Q (—6A,1° +2((Ax + AL) (AN +2(D + 1)A,) — TA ) 1
T 2M(2(A5 + AL (Ax + (D +2)AL) = 5A, N+ N2((Ax + AL) (24, + (D +4)A,)
~28,0) L0 + 8(d — D) A [ L5580 + 2553 |
+16(Ax 4 2A,) (A + 3p) Lg g5, — 8(A+3u)*Ld 5
— (Aﬁ"u)Q (=8(D —2)p® + (AuD* + 4(Ax + Ay — 4AN)D — 6A,, + 32)) 12
+2X ((D* = 6) Ay —4(D = 2)A) p+ (D* = 6) AN%) L5 o
+4(D = 2)(D + 6)A,uLdi5, — 4D — 2)(D + L5
BDA, (A + A) N+ 20)(LgH o — LTI o)
(A +p)3¢?

+8(D — d)p* Lo +

1
~ o e D+ 22520+ DANN +ADA + Ay +2DA + Ay )
+((5D + 2)Ax + (9D + 2)A,) ) LET3

2
~ o e (PP D=2 AN+ 2(D(D +2) ~2) A

+(ADAy + (D* + 9D — 2)A,)i?) L5
n AD(A +3p) (2Axp + Ap(A + 4/1))(1151,0,1 - Lgo,l,l)

(A + p)3¢t
4((D+ 1A +22Dp+ p)A+ (65D + 1)) (Lo 00 + L 22)
(A + p)2¢t
8 ((D+1)A2 +2(2Dp + )X + (5D + )p?) (LY 13, — Lo )
+ 36 — =
(A +p)3¢

(6.48)
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BN, = Ap {32AM(A>\ + A)p(A+2p) (LD+2 _ [ D+2 )

2D(D + 2) (A + p)3¢2 0,0,1,0 0,1,0,0
—4(Ax + AL)? ((D(D +6) + 12)A% + 12(D + 4)p + 364°) ¢* L5 5 0

+ A2 (=D (D*+ D —2) N —8(D*+ D —2) ph — 43D + 2)°) C* LSS

+16(Ax + AL)((D(D +5) + 8)AxA + 6(D + 3) Ayt + 24, (D + 4)A + 611))C* L5 S 0
—8(Ax+A) ((D(D + 6) + 12)A° + 12(D + 4)uX + 361%) CCLYTS

+4A, ((D* + D —2) (2DAN +38,)A +2 (4 (D> + D — 2) Ay + (5D +2)A,) 1) (L3 0
+4A, (=D (D*+ D —2) \* =8 (D> + D — 2) pX — 4(3D + 2)ps°) C’LE {0

+ 8 (ANAD? — 2A3D — 2A,\A D + 4A\AD + A AD — 6A3 +4A% — 2AA,

CBALAA T AN | 28BN+ AN piy
A+ p (A + p)? 00,20

+16((D(D + 5) + 8)AxA + 6(D + 3) A + 2A,((D + 4\ + 6) LY
— 4 ((D(D + 6) + 12)A° + 12(D + 4)pX + 36p%) g4

+(Afu)2 (Ay (2 + p)? ((D* + D = 2) A+ 4Dp) — A, ((2D + 3)A\?

+2(2D + 3)pA + (2D — 1)p?)) = 24, ((=D? — D +2) (DA + 4p) (A + p)?

+A, ((D*+D=2) N +2(D*+ D —2) ur+ (D*+ D — 4) 1i?))) L5 06
+8((D*+ D —2) (2DAN +3A,)A +2 (4 (D? + D —2) Ay + (5D +2)A,) p) L3,
+4(-D (D> + D —2) N> —8(D*+ D —2) A — 4(3D + 2)1*) L5

+8(d = D)((D +2)(DA) + DA+ 2((D +2)Ay + A)p) (L8550 + 22553,

FAAGA + AAN + 6((D 4 2) Ay + A,

—4(d— D) (D(D + 2)A% + 4(D + 2)uA + 42) L34,
L8

(A + p)*¢?
+((D +10)Ay + (D + 18)A,)2) L2F2),

4

—————— ((D* + D —2) AuA? +2D(D + 1) A, u)
o e (7 D=2 AN 2D D
+(8Ax+ (D*+ D+ 14) A,) u?) LES2,

16(A + 31) (280 + A (X + 4p))
* (A + p)3¢t - (Loo11 — Lo101)

8 ((D +3)X2 +2(D +5)uA + (D + 11)?) BB
(A + p)2¢t 0,2,0,2 T £0,0,2,2

16 ((D +3)A% +2(D + 5)uX + (D + 11)p?) (LD_2 D2 )
(A =+ p)3¢6 0,0,1,2 0,1,0,2

(D +2)Ax 4+ (D + 4 AN +2((D + 4)Ax + (D + 8)A,) A

(6.49)
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where the threshold function is given by:

1 5 a a a D
D% =10 [0 GO OEDP . (650

The anomalous dimension 7 and the flow 9;A; are not given here since there expressions is

too long to be displayed.

6.s.4 Conclusion

As we have already said in the introduction, our work on disordered membranes is still in
y
progress and therefore we do not present any result. As a consequence there is no conclusion

in this chapter.

The equations have been checked in the limit of vanishing disorder and they are currently

being compared with the weak-coupling perturbative results.






Conclusion

In this thesis we have studied different types of polymerized membranes: homogeneous, aniso-
tropic and with impurities. In addition we have also studied Lifshitz critical behaviour which

occurs in anisotropic systems.

Polymerized membranes are important systems in biology, chemistry and physics which
make the understanding of their behaviour of great importance. While fluid membranes are
always crumpled polymerized membranes exhibit some interesting properties such as the exis-
tence of a flat phase which seems to be in apparent violation of the Mermin-Wagner theorem.
Butas we have seen that the flat phase results from the existence of a coupling between the out-
of-plane bending and in-plane elasticity which induces a long-range interaction and is therefore

beyond the range of applicability of the Mermin-Wagner theorem.

Perturbative approaches have been able to predict qualitatively the behaviour of polymer-
ized membranes. However since the upper critical dimension D,,. = 4 is far from the physical
dimension D = 2 the calculations of the critical exponents are not reliable. We have computed
the critical dimension line d. (D) separating a first-order transition from a second-order transi-
tion which is not possible using neither an € nor a large-d expansion. Albeit we cannot bring a
definite answer to the order of the transition in d = 3 and D = 2, our results seem to indicate

that the transition is of first-order.

For tubular membranes, we managed to calculate the universal critical exponents and more
importantly the anomalous dimension 7 for the transition between the crumpled phase and
the tubular phase. This was not possible using a perturbative approach where the value of n
was qualitatively and quantitatively wrong. This work lead to us to study another anisotropic
system, an anisotropic O(n)-model, where technical difficulties have plagued the perturbative

approaches. An important result of our work is that the non-perturbative renormalization
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group overcomes the technical difficulties present in perturbative approaches such as those in

anisotropic membranes and Lifshitz critical behaviour.

Currently we are finishing our work on disordered membranes and we are studying 1)
anisotropic membranes with higher orders of the derivative and field expansions and 2) Lif-

shitz critical behaviour with a full potential.

In a near future our aim is 1) to use a full potential to completely determine the order of
the phase transition between the crumpled and flat phases in polymerized membranes 2) to

investigate the question of local scale invariance in Lifshitz critical behaviour.

In the long term we hope to be able to study the effects of self-avoidance on the critical
behaviour of polymerized membranes and most importantly to solve the question of the exis-

tence of the crumpled phase.
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