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``All too often in physics familiarity is a substitute for understanding''

Analysis, Manifolds and Physics, Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick



Abstract

In this thesis, we study the long-range behaviour of polymerized membranes using a non-

perturbative renormalization group (NPRG) approach. We start by presenting the NPRG

after which we introduce membranes systems.

Inourwork,we concentrate onpolymerizedmembranes of different types: homogeneous,

anisotropic and quench disordered. Moreover as a side project, wework on Lifshitz critical be-

haviour (LCB) in magnetic systems. Our results, both for polymerized membranes and LCB,

compare well with weak-coupling, low-temperature and large-d (or large-n for LCB) pertur-

bative results in the limiting cases. But more importantly the need of a non-perturbative ap-

proach is justified by the fact that the physically interesting have been difficult to compute.

A long-standing question in homogeneous membranes is the order of the transition be-

tween the crumpled and flat phases. Although we do not have a definite answer, our results

seem to indicate that the transition is first order in agreement with recent Monte Carlo simu-

lations. An interesting feature of homogeneousmembranes is the existence of the flat phase at

low-temperature with a non-trivial behaviour. This flat phase has shown to correctly describe

the behaviour of graphene although the electronic degrees of freedom are not taken into ac-

count. Another long-standing problem is the negative value of the anomalous dimension for

anisotropic membranes at the crumpled-tubule transition. This negativeness is in contradic-

tionwithwhat is expected fromphysical grounds. This problem is solved in our approach and

we obtain a positive anomalous dimension.

In LCB,huge technical difficulties du to the anisotropy has plagued the perturbative ap-

proaches and limit their computations to lowest order. We show that our approach is free of

these difficulties and being systematically improvable we can control the convergence of suc-

cessive approximations and thus to get reliable physical quantities in d = 3 for Heisenberg

spins n = 3.

: Membranes;Non-perturbative renormalizationgroup; Phase transitions; Symmetrybreak-

ing; Geometry; Anisotropic scale invariance; Lifshitz critical behaviour; Quench disorder.



Résumé

Dans cette thèse, nous étudions le comportement à longuedistancedesmembranespolymé-

risées enutilisantune approchede groupede renormalizationnon-perturbative (NPRG).Après

une présentation du NPRG, nous introduisons les membranes.

Dansnotre travail, nousnous concentrons surdifférents types demembranespolymérisées:

homogène, anisotrope et avec du désordre gelé. De plus, nous avons aussi étudi'e les points de

Lifshitz dans les systèmes magnétiques. Nous résultats, aussi bien pour les membranes que

pour Lifshitz, se comparent bien aux résultats perturbatifs dans les différents cas limites: cou-

plages faibles, basse temperature et large-d (ou large-n pour Lifshitz). Mais, en utilisant le

NPRG, nous pouvons aller au de-là de ces cas limites et atteindre les cas qui sont physique-

ment intéressants.

La question de l'ordre de la transition entre la phase froissé et la phase plate dans les mem-

branes homogènes est depuis longtemps sans une réponse définitive. Malgrè que nos résultats

ne permettent pas encore de lever cette question, ils semblent indiquer que la transition est du

premier ordre en accord avec des simulations récentes. Une propriété importante des mem-

branes polymérisées est l'existence d'une phase plate à basse temperature avec un comporte-

ment non-trivial. Cette phase décrit correctement le comportement du graphène malgrè que

les degrées de liberté électroniques ne soient pas pris en compte. Une autre problème qui date

depuis de nombreuses années est celui de la valeur négative de la dimension anormale dans les

membranes anisotropes dans la transition entre la phase froissé et la phase tubulaire. Cette

valeur négative est en contradiction avec les arguments physiques. Dans notre approche de

NPRG, nous parvenons à résoudre ce problème et nous obtenons une dimension anormale

positive.

Dans les systèmes de Lifshitz, les approches perturbatifs se sont confrontés à de grandes

difficultés à cause de l'anisotropie et ceci à limiter les calculs aux plus bas ordres. Nous mon-

trons que notre approche est libre de ces difficultés et étant l'améliorable de façon systématique

nous pouvons controler la convergence et obtenir des résultats satisfaisants en d = 3 pour les

spins de Heisenberg n = 3.

: Membranes; Groupede renormalisationnon-perturbative; Transitions de phase; Brisure

de symmetry; Geometrie; Invariance d'échelle anisotrope; Comportement critique de Lifshitz;

Désordre trempé.





Acknowledgements

First I would like to thank my PhD advisor, Dominique Mouhanna, for giving me the

chance to work with him on this interesting subject. I have learned many things from him

both on the technical and physical aspects. I would also like to thank Jean-Philippe Kownacki

with whom I have collaborated during these three years.

I would like to thank Malte Henkel and Gunnar Pruessner who have accepted to write a

report onmy thesis. And I also thank Vladimir Dotsenko andNils Hasselmann for being part

of my jury.

I would like to thank all the members of the LPTMC and its director Pascal Viot. It has

been a pleasure to work in this lab. The discussions during the coffee and lunch breaks have

always been pleasure. A special thanks to the administrative staff of the lab Sylvie Dalla-Foglia,

Liliane Cruzel and Diane Domand who have always been helpful.

I am also grateful to Julien Vidal for his help withmathematica and his advice in general. I

also would like to thank all the persons that have given me advice and with whom I had some

nice discussions during these three years: ClaudeAslangul,Nicolas Sator, Jean-MarieMaillard,
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Chapter 1

Introduction

A scientific truth does not triumph by convincing its opponents and making them see the light,

but rather because its opponents eventually die and a new generation grows up that is familiar

with it.

Max Planck (1948)

A key concept in physics is that of phase transition. A phase transition is an abrupt change

in the macroscopic behaviour of a system. It is a phenomenon present in different areas of

physics such as condensed matter, particle physics or cosmology.

An example of phase transition that one observes in everyday life is when water is heated

to 100°C. At this temperature and at atmospheric pressure the water boils and changes its state

from liquid to gas. Moreover at a certain critical temperature and pressure the water starts

to look milky and the distinction between liquid and gas states becomes impossible. At this

critical point fluctuations are present at all length scales which means that the characteristic

scale called the correlation length ξ diverges and as a consequence light is strongly scattered.

This phenomenon is called critical opalescence. It was first observed by the French physicist

Charles Cagniard de la Tour in 1822 [2, 3, 4] while working on alcohol in a sealed glass cell. The

term critical pointwas introduced by the Irish chemist and physicist Thomas Andrews in 1869

when he observed critical opalescence in carbon dioxide at 31°C and 73 atmospheres pressure

[1].

1



2 Chapter 1 Introduction

Although the observation that matter can change state has been known for centuries, our

understanding of the mechanism behind this phenomena was lacking until the end of nine-

teenth century and the works of Maxwell and Boltzmann. The description of collective phe-

nomena using statistical physics has brought great insight to our understanding of phase tran-

sitions and critical phenomena. All the properties of a system can be obtained from the par-

tition function or its logarithm the free energy. For a finite system, the free energy is always

an analytic function. As a consequence a singularity in the free energy can only appear at the

thermodynamic limit, i.e. for infinite systems.

From this simple example of water phase transition one can see that there are two types of

transitions. First-order transitions, such as the usual liquid-gas transition, where the correla-

tion length ξ remains finite and the fluctuations are of order ξdwhered is the space dimension.

The other type called second-order, or more exactly continuous, transitions occur at a critical

point and the correlation length diverges.

The divergence of the correlation length ξ is the signature that an infinite number of de-

grees of freedom are in interaction which leads to scale invariance. The consequence of scale

invariance can be seen on the two-point correlation function< φ(r)φ(0) >= G(r):

G(r) =
e−r/ξ

rλ
(1.1)

whereλ is a power that depends on the systemunder study. At criticality the correlation length

diverges and as a consequence one obtains a power-law behaviour for the correlation function:

G(r) ∼ 1

rλ
. (1.2)

Other physical quantities such as the heat capacity C or the magnetizationM will also obey

power laws: C ∝ |T − Tc|−α andM ∝ |T − Tc|−β where Tc is the critical temperature

and α and β are called the critical exponents. Moreover completely different systems can have

the exact same value for the critical exponents. This is the phenomenon of universality and the

systems are said to belong to the same universality class. Each universality class, except when

marginal operators are present, is determined by the space dimension, the symmetries of the

system and the range of the interactions.

The presence of an infinite number of interacting degrees of freedom makes the study of

critical phenomena very difficult and almost impossible by analytical methods except in some
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special cases like the Onsager solution for the two-dimensional Ising model. New mathemat-

ical methods had to be developed. Kadanoff proposed a way of integrating of the degrees of

freedom step by step. This idea was later enriched by Wilson and lead to the renormaliza-

tion group in critical phenomena. This approach brought new insight to phase transitions

and critical phenomena. It lead to important results such as solving the Kondo problem and

the computation of the critical exponents for various different systems. However although

Wilson derived an exact flow equation it has been mainly used in perturbative expansions

which is not satisfying when the couplings are not small or when the phenomena is genuinely

non-perturbative. A new non-perturbative approach based on Kadanoff's and Wilson's has

been formulated by Wetterich in the early nineties which does not rely on the smallness of a

coupling. This non-perturbative renormalization group offers a more adapted theoretical ap-

proach to critical phenomena far from the upper critical dimension which is the dimension

above which mean field theory is exact. Moreover it gives a direct connection to the usual per-

turbative approaches such as the weak-coupling, the low-temperature and large-d expansions.

In this thesis we present our work on the statistical physics of polymerized membranes.

These systems are fascinating both theoretically and experimentally and they have wide range

of applications. Before presentingmembranes and their thermodynamical behaviour, we start

by introducing the non-perturbative renormalization group which is the approach we have

used in our work. Then in the third chapter we present our work on homogeneous polymer-

ized membranes and in the following chapter we see how the behaviour of the membranes

changes when modifications are made on its homogeneity: inclusion of anisotropy and disor-

der.





Chapter 2

Non-Perturbative Renormalization

Group

I would say that mathematics is the science of skilful operations with concepts and rules invented

just for this purpose. The principal emphasis is on the invention of concepts.

Eugene P. Wigner (1959)

2.1 A Brief Historical Introduction

In modern theoretical physics the renormalization group occupies a central role in our under-

standing of physical phenomena where many degrees of freedom interact. Before discussing

the technical aspects of the renormalization group (RG), I will start by a small historical intro-

duction of the RG (see [5, Part VII] for an interesting discussion on the ideas underlying the

RG).

The need for renormalization arose from the problem of infinities encountered in field

theory in the formal computation of observable quantities. The problem of infinities is not

new to modern physics. It is already present in classical electrodynamics in J. J. Thomson's

5



6 Chapter 2 Non-Perturbative Renormalization Group

model of the electron when taking the limit of vanishing radius a in the electric fieldE:

E =
e2

2a
→
a→0

∞ . (2.1)

But if a stays finite one obtains an unstable configuration. Poincaré's suggestion to solve this

problem is the existence of a non-electromagnetic energy that compensates the Coulomb force

and stabilizes the electron. This idea inspired others such as Ernst Stückelberg (1938), Fritz

Bopp (1940), Abraham Pais (1945), Shoichi Sakata (1947) for their study of the problem of the

electron self-energy.

In the hydrogen atom the orbitals S1/2 andP1/2 should be degenerate, i.e. have the same

energy, according to the Dirac equation. But an experimental measurement in 1947 by Willis

Lamb andRobert Retherford showed that there is an energy shift between the two levels. This

shift is du to quantum fluctuations which are induced by the interaction of the electron with

the electromagnetic field of the vacuumwhich is ignored by theDirac equation. Theoretically

these fluctuations lead to divergences. Including this interaction as a perturbation of the hy-

drogen theory leads to a divergent Lamb shift. To solve this problem Hans Bethe introduced

an upper limit to the energy equal to the electron mass, or precisely equal to mec
2, for the

integral involved in the Lamb shift calculation to suppress the shift of the free electron. The

interpretation of this trick is that the observablemass is different from the“baremass” the elec-

tron would have if there were no fluctuations. This was the beginning of the renormalization.

However the renormalization group aswe know it today startedwith theworks of Stückelberg

&Petermann [6] andGell-Mann&Low [7]. The starting point was the idea that physical pa-

rameters should depend on the energy scale in quantum field theory whereas physics is scale

independent as suggested by Freeman Dyson in 1951 [8]. Stückelberg & Petermann [6] intro-

duced a group transformation to suppress the divergences in particle physics by transforming

the physical quantities frombare to renormalized ones. This group transformation shows that

the physics is self-similar when the scale is changed. Independently, Gell-Mann & Low devel-

oped as similar approach and they derived a differential equations with respect to the energy

scale for the interaction coupling, the fine-structure constant α in quantum electrodynamics

(QED).

In critical phenomena the divergences have their origin in the existence of thermal fluctu-

ations at all length scales which are the classical counterpart of quantum fluctuations. Near a

critical point the size of the fluctuations is proportional to the correlation length up to some
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power: ∼ ξd where d is the space dimension. And at the critical point the correlation length

diverges (ξ → ∞) which leads to an infinite number of interacting degrees of freedom. To

reduce the number of degrees of freedom Kadanoff introduced a scale transformation called

block spin technique which leads to scaling laws. The Kadanoff transformation maps the

Hamiltonian to an effective Hamiltonian at a different scale. While working on continuous

phase transitions Wilson implemented in a infinitesimal manner the Kadanoff idea of elimi-

nating degrees of freedom. This led to the derivation of an evolution equation for the Hamil-

tonian which can have a fixed-point. The existence of a fixed-point was the missing link to

the explanation why different systems had the same critical exponents at a second order phase

transition which is the signature of universality, i.e. different systems described by the same

critical behaviour.

The renormalization grouphas shown tobe a powerfulmethod for dealingwith some very

difficult problems in statistical and quantum field theory such as quantum electrodynamics,

the unification of electromagnetic and weak interactions, the Kondo problem or second order

phase transition. Albeit the Wilson RG is non-perturbative, for a long time it has shown to

be hard to implement in a non-perturbative manner. Several attempts to overcome the tech-

nical difficulties of the Wilson RG were unsuccessful until the mid 90's with the approach of

Wetterich which I present in this chapter.

2.2 Wilson Renormalization Group

TheWilsonianRG is a classic inmodern lectures in theoretical physics (see [9, 10, 11, 12]). Nev-

ertheless, we recall the basic concepts and ideas of this technique essentially because it serves as

a basis for the non-perturbative renormalization group as implemented byWetterich [13].

2.2.1 Kadanoff's Block Spin

The starting point of the renormalization group is the block spin idea introduced by Leo

Kadanoff [14] to eliminate degrees of freedom of small length scales. The Kadanoff transfor-

mation consists in dividing the system into blocks and doing a local average (coarse-graining).

Kadanoff's idea arises from the fact that since the correlation length is very large near the critical

point, neighbouring spins are strongly correlated and one can locally average over them and

obtain effective spins.
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In his seminal paper, Leo Kadanoff [14] was the first to see the connection between rescal-

ing and scaling properties of a critical point. Kadanoff proved the existence of the scaling laws

postulated by BenjaminWidom and others [15]. Although the block spin idea was introduced

independently by Buckingham a year earlier, Kadanoff was the first to introduce a practical

computational scheme.
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Figure 2.1: Kadanoff bloc spin procedure. As an example in this figure, we take a square
lattice with Ising spins Si = ±1 and lattice spacing a. The initial lattice is divided into
blocks of size 9 (b = 3 and d = 2 in the figure). After the first transformation, we end
up with a new square lattice but with a lattice spacing 3a and a effective spin SA that is
the average of the previous 9 spins. And to recover the original lattice, we must perform a

rescaling: 3a → a.

As an example we take an Ising spin system on a two-dimensional lattice (see fig. 2.1). The

partition function which encode the thermodynamical behaviour reads:

Z =
∑
{Si}

e−βH[Si] (2.2)

where β = 1/(kBT ), with kB the Boltzmann constant and T the temperature. Starting

with a lattice size a, we divide it into blocks of size bd where d is the space dimension (here
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d = 2) and b the spatial rescaling factor. Then we average out the spins of each block. The

new system has N/bd sites and a new lattice size ba. To recover the initial lattice, we must

perform a rescaling ba → a:

SA = b−d
∑
i∈A

Si (2.3)

where SA is the average value of the spins in the block A. After summing over the spins in a

block one obtains an effective Hamiltonian related to the original one by:

e−Heff[SA] =
∑
{Si}

∏
A

δ

(
SA − b−d

∑
i∈A

Si

)
e−H[Si] (2.4)

with:

∑
{SA}

∏
A

δ

(
SA − b−d

∑
i∈A

Si

)
= 1 (2.5)

which keeps the partition function unchanged:

Z =
∑
{SA}

e−βHeff[SA] =
∑
{Si}

e−βH[Si]. (2.6)

This new effective Hamiltonian eff describes the same long-range physics as the initial one.

The renormalization group (RG) consists of iterating this procedure an infinite number

of times. After each step, the Hamiltonian is mapped into a new Hamiltonian at larger scales

and the iterationH(0) → H(1) → · · · → H(n) generates a flowofHamiltonians. At a critical

point the system is scale invariant and the RG transformation has a fixed-point Hamiltonian,

i.e. lim
n→∞

H(n) = H∗, which explains the scale law behaviour at the second order phase tran-

sition [16]. The existence of a fixed-point is the signature of scale invariance. An important

remark is that the rescaling is necessary in order to find a fixed-point.

The correlation function, which measures how different regions of the system are corre-

lated, changeswith the scale. After eachRG-step, the correlation length ξ is reduced by a factor

b: ξ′ = ξ/b. Therefore at a fixed point ξ can either vanish or diverge because of the scale in-

variance. This means that not all fixed-points are critical. If ξ → 0, the system is either in the
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high- or low-temperature phase and if ξ → ∞, the system is at its critical point:{
ξ → ∞: critical fixed-point

ξ → 0: trivial fixed-point.
(2.7)

If we start at the critical point, the system will remain critical after any number of iterations

but if we start slightly above or below the critical point, the system will be driven to the high-

or in the low-temperature phase respectively.

This decimation method introduced by Kadanoff 1 is hard to use in practice except for

one-dimensional systems. Even if a system has only one interaction over neighbouring spins

like in the Isingmodel eachRG-step introduces new interactions over next-neighbouring spins

and so on. To overcome this difficulty Wilson introduced an new approach in a continuous

theory implemented in the Fourier space.

2.2.2 WilsonMomentum Shell Integration

In critical phenomena, we are interested in low-momentum or long wave-length fluctuations

and it is more convenient to work in momentum space. We can write the Hamiltonian in

Fourier space and carry out the block spin transformation over the momentum. Wilson's ap-

proach is to work with a continuous theory where the partition functions reads:

Z =

∫
Dφ eHΛ[φ] (2.8)

where the sum has been replaced by a functional integral, φ is the microscopic field andHΛ

the Hamiltonian which is also called the Landau-Ginzburg-Wilson action at the lattice scale

Λ. Since the approach is based on a continuous theory of a lattice model the momenta must

be lower than the inverse lattice size Λ = a−1. We separate the field into slow modes with

momenta lower thanΛ/b and rapid modes2 with momenta betweenΛ/b andΛ: φ = φ< +

φ> (see figure 2.2). Then we integrate over the rapid modes and we are left with an effective

1There are other ways of performing the block spin transformation such as the Niemeijer and van Leeuwen
majority rule which was derived for a triangular lattice [17], [18] but they will not be presented here.

2Here slow and rapid stand respectively for long and short distance or equivalently for low and high momen-
tum.
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actionHΛ/b which depend only on the slow modes:

e−HΛ/b[φ<] =

∫
Dφ> e

HΛ[φ<+φ>]. (2.9)

This is called theWilson momentum shell integration [19].

•
Λ/b

Λ

Figure 2.2: Wilson momentum shell integration. The inner zone corresponds to the slow
modes φ< and the outer region to the rapid modes φ>.

The Wilson momentum shell is well suited for carrying out the RG procedure with an

infinitesimal transformation. We take Λ/b = Λ − δk and now the momenta of the rapid

modes lay betweenΛ andΛ− δk and the momenta of the slowmodes are lower thanΛ− δk

with δk � 1 (see fig. 2.2). This way of separating the modes with a sharp boundary induces

non-analyticities that one would like to avoid3 and one prefers to avoid this by introducing

smoothboundaries through some smooth cut-off function (which is introducedbelow). With

this in hand one derives the Wilson equation [19] for the effective actionHk:

∂tHk =

∫
p
∂tαt(p)

[
δ2Hk

δφ(−p)δφ(p)
− δHk

δφ(−p)

δHk

δφ(p)
+ φ(p)

δHk

δφ(p)

]
(2.10)

where t is the RG-“time” t = ln k/Λ,αt(p) a cut-off function that separates the rapidmodes

from the slow ones in a smoothmanner. In [20]Wilson and Kogut used a cut-off function of

the form αt(p) = p2(e2t − 1) + ρ(t) with ρ(0) = 0. The function ρ(t) allows to impose

a normalization condition on the kinetic term of the effective action and thus to define the

anomalous dimension η. The last term on the right hand side of (2.10) is present since we

are working with dimensionless quantities. This is the equivalent of the rescaling step in the

Kadanoff procedure.

3sharp boundaries result in non-local interactions in position space.
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In addition to this formulation of the RG in the continuum limit and the derivation of a

differential equation (2.10) another of Wilson's great contribution is the introduction of the

anomalous dimension. This is a crucial point if one wants to obtain any fixed-point [19, 21].

The anomalous dimension is an exponent responsible for the change of the dimension of the

field from its canonical value obtained by simple dimensional analysis.

Conceptually this approach is of great importance in critical phenomena. However it has

been hard to implement except in specific cases: numerically to solve the Kondo problem [20]

or with perturbative approximations such as the weak-coupling [22], the large-n and the low-

temperature approximations at leading order of the ε-expansion.

One of the origins of the difficulties is that the second term in the r.h.s of eq. (2.10) makes

this equation very hard use. This is a non-local term in direct space which means that it is

difficult to compute the field renormalization or equivalently the anomalous dimension.

The problemwith this equation (2.10) is that the effective HamiltonianHk does not have

any direct physical meaning since it is theHamiltonian ofmodes that have not been integrated

out φ< and these modes completely disappear in the limit k → 0, i.e. when all fluctuations

have been integrated out. As a consequence, some of the information on the high-momentum

degrees of freedom is lost. However this equation is useful to compute critical exponents at a

given fixed-point.

Various formulationof theWilsonRGhavebeendeveloped such as theWegner-Houghton

RG [23] using a sharp cut-off or the Migdal-Kadanoff direct space RG which is difficult to

perform when dealing with more than one dimension because of the accuracy of the approxi-

mation one has to make are difficult to estimate.

2.2.3 Polchinski and Proof of Renormalizability

A regain of interest in the Wilson RG appeared when Polchinski used Eq. (2.10) to prove

the perturbative renormalizability of the φ4 field theory in four dimensions [24]. Since then

theWilson equation has been mainly used to prove the renormalizability of different theories

([25], [26], [27]). Note that the Wilson equation (2.10) is often incorrectly referred to as the

Wilson-Polchinski or simply the Polchinski equation.
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k

-0 Γk=0 = Γ All fluctuations integrated out

-k Γk

-Λ Γk=Λ = H No fluctuations

Figure 2.3: Continuous Interpolation of the Effective Average ActionΓk between the Clas-
sical ActionH and the Effective Action Γ.

2.3 Wetterich Renormalization Group

2.3.1 Effective Average Action

Toovercome the problems of theWilsonRG it is preferable toworkwith quantitieswithmore

physical meaning. Christof Wetterich's idea [13] was to work with the Legendre transform

Γ of the free energy lnZ = W . More precisely he has introduced a new quantity called

the effective average action Γk which depends on the coarse-grained scale k. This effective

average action interpolates continuously between theHamiltonian or classical actionHwhen

all the fluctuations are frozen at k = Λ and the effective action Γ, i.e. the Gibbs free energy

or the generating functional of the one particle irreducible (1PI) Green functions, when all the

fluctuations have been integrated out at k = 0 (see fig. 2.3). This scheme is still a Wilsonian

type ofRGbut nowwe construct running effective actions rather than runningHamiltonians.

Therefore the Kadanoff block spin idea continues to be applicable here and one still separates

the fields into rapid and slowmodes. The effective average action generically depends on a scale

k thatmakes the interpolationbetween theHamiltonian and the effective actionpossible. This

scale also separates the rapidmodes withmomentum q > k from the slowmodes with q ≤ k.

To decouple the slow modes from the rapid modes in the partition function, a large mass

is given to the slow modes and an almost vanishing one to the rapid modes. Thus we modify
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the partition function by adding a scale dependent mass term∆Hk:

Zk[B] =

∫
Dφ exp

[
−H[φ]−∆Hk[φ] +

∫
q
B(−q)φ(q)

]
(2.11)

where B is an external field,
∫
q =

∫
ddq/(2π)d and ∆Hk[φ] = 1

2

∫
q Rk(q)φ(q)φ(−q)

whereRk is dimensioned like amass. This cut-offRk prevents the propagation of fluctuations

with momenta q < k. A typical behaviour of the cut-off functionRk is given by:
Rk(q) ∼

q→0
k2

Rk(q) ∼
q→∞

0 .

(2.12)

Since the effective average action interpolates between the Hamiltonian and the effective

action, some constraints are imposed to the behaviour of the cut-off function Rk. It must

vanish in the limit of vanishing k and it must diverge when the scale k is equal to the inverse

lattice scaleΛ:
k = 0 → Rk=0(q) = 0, ∀ q =⇒ Zk=0[B] = Z[B]

k = Λ → Rk=Λ(q) = ∞, ∀ q =⇒ all the fluctuations are frozen

which must lead to: 
Γ̃k=0 = Γ

Γ̃k=Λ = H.

This said, we can now begin constructing the effective average action Γk. From the parti-

tion functionZk[B], we can construct the Helmholtz free energy:

Wk[B] = lnZk[B] (2.13)

where we have dropped the minus sign, the temperature T and the Boltzmann constants kB .

The effective average action, i.e. the Gibbs free energy, is defined as the Legendre transform
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k
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k
2

RkHqL

Figure 2.4: Typical cut-off function.

of the free energy:

Γ̃k[M ] +Wk[B] =

∫
x
B(x)M(x) (2.14)

whereM(x) = δWk
δB(x) .

Having defined the effective average action, let us see if we recover the required asymptotic

behaviour. When k → 0, the mass termRk vanishes and the free energyWk=0 is equal toW

and hence Γ̃k=0 = Γ. Now let us see what happens in the other limit k → Λ. By definition

of the Legendre transform the external field is given by:

B(x) =
δΓ̃k

δM(x)
. (2.15)

Therefore substituting this definition in eq. (2.14) we obtain:

Γ̃k[M ] =

∫
x

δΓ̃k

δM(x)
M(x)−Wk[B] . (2.16)

Now we take the exponential of Γ̃k:

e−Γ̃k[M ] = eWk[B]e
−

∫
x

δΓ̃k
δM(x)

M(x)
(2.17)
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and using eWk = Zk we find:

e−Γ̃k[M ] =

∫
Dφ(x)e−H[φ]−∆Hk[φ]+

∫
x B(x)φ(x)e

−
∫
x

δΓ̃k
δM(x)

M(x)

=

∫
Dφ(x) e

−H[φ]− 1
2

∫
x,y φ(x)Rk(x,y)φ(y)+

∫
x

δΓ̃k
δM(x)

(φ(x)−M(x))
. (2.18)

If we take a cut-off that diverges when k → Λ for all momentum:

exp

[
−1

2

∫
x,y

φxRk=Λ(x, y)φy

]
∼ δ(φ) (2.19)

which leads to:

Γ̃k=Λ[M ] = H[φ = 0] +

∫
x

δΓ̃k

δM(x)
M(x) . (2.20)

This is not the result we wanted since Γ̃k=Λ[M ] 6= H[φ = M ]. One solves this problem

by subtracting the term 1
2

∫
x,y M(x)R(x, y)M(y) in eq. (2.14) which leads to a modified

Legendre transform:

Γk[M ] =

∫
x
B(x)M(x)− 1

2

∫
x,y

M(x)Rk(x, y)M(y)−Wk[B] . (2.21)

With this change in the definition, the limit k → 0 remains unchanged. And after the

same computation as before, we have:

e−Γk[M ] =

∫
Dφ(x)e

−H[φ]+
∫
x

δΓk
δM(x)

(φx−M(x))
e−

1
2

∫
x,y(φx−M(x))Rk(x,y)(φy−M(y)) .

(2.22)

Taking the limit k = Λwe find:

exp

[
−1

2

∫
x,y

(φx −M(x))Rk=Λ(x, y)(φy −M(y))φy

]
∼ δ(φ−M) (2.23)

and this equation with eq. (2.22) lead to:

Γk=Λ[M ] = H[φ = M ] . (2.24)
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If the cut-off Rk does not diverge in this limit but is only very large then Γk=Λ ∼ H. This
shows that the form of the cut-off has an influence on the flow at the beginning of the inte-

gration process. However the critical behaviour in principle remains unchanged. Therefore

for critical phenomena we can take a finite cut-off for k = Λ but if we are interested in non-

universal behaviour we must use have lim
k→Λ

Rk = ∞ (see [28]).

A main difference between the Wilson and the Wetterich pictures is the role played by k.

It is an ultraviolet cut-off in the Wilson approach whereas it is an infra-red one in Wetterich

approach.

2.3.2 TheWetterich Equation

In this section, we derive the Wetterich equation which is the exact evolution equation of the

effective average action. We start by deriving an evolution equation for the partition function

Zk:

∂kZk =− 1

2

∫
Dφ

(∫
x,y

φx∂kRk(x− y)φy

)
exp

[
−H[φ]− 1

2

∫
x,y

φxRk(x− y)φy +

∫
x
B(x)φx

]
=

1

2

(∫
x,y

∂kRk(x− y)
δ

δB(x)

δ

δB(y)

)
eWk

(2.25)

from which we deduce the evolution equation of the free energyWk:

∂kWk = −1

2

∫
x,y

∂kRk(x− y)

(
δ2Wk

δB(x)δB(y)
+

δWk

δB(x)

δWk

δB(y)

)
. (2.26)

Note that this equation is equivalent of the Wilson-Polchinski equation (2.10) and therefore

has the same non-locality problems.

Now we have the evolution equation forWk, we can easily derive the equivalent one for

Γk. But first we must recall that the derivation ∂k is taken at fixedB. And we need to change

this at some point to derivations at fixed magnetization M . The relation between the two

derivatives is:

∂k|M
= ∂k|B

+

∫
x
∂kM(x)|B

δ

δM(x)
. (2.27)
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Taking the derivation of the Legendre transform (2.21) with respect to k we find:

∂kΓk|B
+ ∂kWk|B

=

∫
x
B(x)∂kM(x)∣∣

B

− 1

2

∫
x,y

M(x)∂kRk(x− y)|BM(y)

−
∫
x,y

M(x)Rk(x− y)∂kM(y)|B .

(2.28)

Substituting ∂kWk by its result (2.26) together with eq. (2.27) we obtain:

∂kΓk|M
+

∫
x
∂kM(x)|B

δΓk

δM(x)
− 1

2

∫
x,y

∂kRk(x− y)

(
δ2Wk

δB(x)δB(y)

+
δWk

δB(x)

δWk

δB(y)

)
=

∫
x
B(x)∂kM(x)|B − 1

2

∫
x,y

M(x)∂kRk(x− y)|BM(y)

−
∫
x,y

M(x)Rk(x− y)∂kM(y)|B .

(2.29)

ReplacingB(x) by its expression δΓk
δM(x) +

∫
y Rk(x− y)M(y) in the previous equation,

we obtain:

∂kΓk|M
=

1

2

∫
x,y

∂kRk(x− y)

(
δ2Wk

δB(x)δB(y)
+

δWk

δB(x)

δWk

δB(y)

)
− 1

2

∫
x,y

M(x)∂kRk(x− y)|BM(y)

(2.30)

and using δWk
δB(x) = M(x)we find:

∂kΓk|M
=

1

2

∫
x,y

∂kRk(x− y)
δ2Wk

δB(x)δB(y)
. (2.31)

We are close to the final expression. We just need to express the second functional derivative of

Wk as a function of Γk and therefore we again use
δWk
δB(x) = M(x) and derive it with respect

toM :

δ2Wk

δB(x)δM(z)
=

∫
y

δ2Wk

δB(x)δB(y)

δB(y)

δM(z)
(2.32)
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which is also given by:

δ2Wk

δB(x)δM(z)
=

δM(x)

δM(z)
= δ(x− z) . (2.33)

The fieldB can be expressed in terms of Γk:

B(x) =
δΓk

δM(x)
+

∫
y
Rk(x− y)M(y) (2.34)

and taking its functional derivative with respect toM(z)we obtain:

δB(x)

δM(z)
=

δ2Γk

δM(x)δM(z)
+Rk(z − y) . (2.35)

Replacing this equation into eq. (2.33) we find:

δ(x− z) =

∫
y

δ2Wk

δB(x)δB(y)

(
δ2Γk

δM(x)δM(z)
+Rk(z − y)

)
(2.36)

which means thatW
(2)
k is the inverse of Γ

(2)
k +Rk:

W
(2)
k (x, y) =

(
Γ
(2)
k +Rk

)−1
(x, y) (2.37)

which is slightly different from the usual relationW (2) = (Γ(2))−1. Injecting this into eq.

(2.31) we finally obtain theWetterich equation:

∂kΓk[M ] =
1

2

∫
x,y

∂kRk(x− y)
(
Γ
(2)
k +Rk

)−1
(x, y) (2.38)

which reads in Fourier space:

∂kΓk[M ] =
1

2

∫
q
∂kRk(q)

(
Γ
(2)
k +Rk

)−1
(q,−q) . (2.39)

A remarkable feature of this equation is that it does not have the non-local term that plagued



20 Chapter 2 Non-Perturbative Renormalization Group

the Wilson-Polchinski equation (2.10). This evolution equation is an exact functional integro-

differential equation which makes it impossible to solve in general without any approxima-

tion. Before talking about the approximations that one can make while preserving the non-

perturbative character, let us review the properties of this flow equation. Albeit having a one-

loop structure since it involves only one integral which can be seen from a diagrammatic repre-

sentation it is an exact equation:

∂tΓk =
1

2
• (2.40)

where t is the RG-“time” t = ln k/Λ and the dot represents ∂tRk. This one-loop structure

gives a direct connection with perturbative RG both in the vicinity of the upper and lower

critical dimension as well as with the large-n expansion at lowest orders (one-loop).

The flow equations for theGreen functions are straightforward to derive. We simply need

to take the functional derivatives of the Wetterich equation. The flow equations of Γ(1) and

Γ(2) are given by:

∂tΓ
(1)
k (p) = −1

2

∫
qi

∂tRk(q)Gk(q1,−q2)Γ
(3)
k (q2,−q3, p)Gk(q3,−q1) (2.41)

∂tΓ
(2)
k (p1, p2) =

∫
qi

∂tRk(q)Gk(q1,−q2)Γ
(3)
k (q2,−q3, p1)Gk(q3,−q4)Γ

(3)
k (q4,−q5, p2)

×Gk(q5,−q1)−
1

2

∫
qi

∂tRk(q)Gk(q1,−q2)Γ
(4)
k (q2,−q3, p1, p2)Gk(q3,−q1)

(2.42)

whereGk is the propagator
(
Γ
(2)
k +Rk

)−1
. The diagrammatic forms of ∂tΓ

(1)
k and ∂tΓ

(2)
k

show that the one-loop structure is preserved:

∂tΓ
(1)
k = −1

2 p
• (2.43)
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∂tΓ
(2)
k = −1

2

p −p
•

−
p −p

•

(2.44)

where p1 = −p2 = p. Note that these equations are not closed. In particular we that the

flow of Γ
(1)
k involve Γ

(2)
k and Γ

(3)
k and the flow of Γ

(2)
k involve Γ

(3)
k and Γ

(4)
k . More generally

the flow of Γ
(n)
k involve Γ

(n+1)
k and Γ

(n+2)
k .

2.3.3 Approximations

In general the effective average action Γk involves an infinite number of couplings but since

the Wetterich equation (2.39) cannot be solved exactly some approximations must be made

to close the system and perform actual calculations. However, as the approximations used

do not rely on the smallness of a usual parameter, the approach remains non-perturbative in

essence. In particular, it is not confined to weak-coupling regimes or to the vicinity of critical

dimensions and is therefore suitable to overcome the limitations of perturbative RG schemes.

In the following, I shall present the most used approximations which transform the Wet-

terich equation (2.39) from a functional differential equation to a set of ordinary differential

equations:

• the derivative expansion where the effective action is expanded in power of the deriva-

tives of the fields

• the field expansion, where the effective action is expanded in power of the fields

• the Blaizot-Mendez-Wschebor or BMW approximation where the full momentum de-

pendence is kept.

These approximations are presented with theO(n)-model in mind, which we discuss be-

low as an example, but the generalization to systemswithmore than one field or with different

symmetries does not pose any conceptual problem.

The choice of the approximations is a very complicated question which depends on the

system at hand.
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2.3.3.1 Derivative Expansion

The derivative expansion is a series expansion in the derivatives of the field and equivalently,

in Fourier space it is an expansion in powers of themomenta. Therefore it is well suited for the

study of phase transitions and critical phenomenawherewe are interested in the long-distance,

low-momentum, physics. In this approximation the effective average action Γk reads:

Γk[~φ ] =

∫
ddx

{
Zk(~φ )

2
(∂~φ )2 +

Yk(~φ )

4
(∂ρ)2 + Uk(~φ ) + o(∂4)

}
(2.45)

where ~φ is a n-vector field, ρ = ~φ 2/2, Zk(~φ ) and Yk(~φ ) are the field dependent kinetic

terms and Uk(~φ ) the potential part of Γk[~φ ]. This equation can be further simplified by

takingZk = 1 and neglecting the function Yk:

ΓLPA
k [~φ ] =

∫
ddx

{
1

2
(∂~φ )2 + Uk(~φ )

}
. (2.46)

This is called the local potential approximation (LPA) since nofield renormalization is included

and thus the anomalous dimension vanishes η = 0.

One can improve this approximationby taking into account the field renormalization con-

stantZk and get the LPA':

ΓLPA′
k [~φ ] =

∫
ddx

{
Zk

2
(∂~φ )2 + Uk(~φ )

}
(2.47)

where we note thatZk depend only on the scale k but not on the field φ. This will give a non

trivial anomalous dimension sinceZk ∼ k−η .

This truncation is well suited to the study for the long distance physics. The derivative

expansion has been successfully applied in statistical physics where in the study of critical phe-

nomena we are only interested in the long wave-length physics: O(n)-model [29], the Gross-

Neveu models [30], [31], frustrated magnets [32] and see [33] for other examples.
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2.3.3.2 Field Expansion

In the field expansion we keep all the derivatives but expand the effective average action in

powers of the field:

Γk[φ] =

∞∑
n=0

1

n!

∫ ( n∏
i=1

ddxi φ(xi)

)
Γ
(n)
k (x1, . . . , xn) . (2.48)

From convergence studies it has been shown ([34], [35]) that expanding the effective aver-

age action around the minimum configuration φ0 of Γ improves the convergence properties

when one is interested in the critical behaviour. With this Γk reads:

Γk[φ] =

∞∑
n=0

1

n!

∫ ( n∏
i=1

ddxi (φ(xi)− φ0)

)
Γ
(n)
k (x1, . . . , xn) . (2.49)

2.3.3.3 Combination of the Derivative Expansion and the Field Expansion

We can of course combine both the derivative and the field expansions. This is probably the

most used truncations and it is the one we have used in our work. The effective potential with

this double truncation reads

Uk(ρ) =
m∑

n=0

an,k (ρ− κ)n (2.50)

where ρ = φ2/2 and κ = φ2
0/2which correspond to the minimum of the potentialU ′

k(ρ =

κ) = 0. The functionsZk and Yk read:
Zk(ρ) =

m∑
n=0

Z
(n)
k (ρ− κ)n

Yk(ρ) =
m∑

n=0
Y

(n)
k (ρ− κ)n .

(2.51)

Within this expansion we select the couplings depending on their canonical dimension. Now

the flow equation of Γk becomes a set of ordinary differential equations which considerably

simplifies the integration. Although the derivative and field expansion have many advantages,

it still has some drawbacks. Themomentum dependence of the Green functionsΓ(n) is badly
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truncated at the transition. Moreover the independence of the physical quantities on the cut-

off choice is not preserved and there is no general theorem on the convergence of the derivative

expansion. However, it has been noticed and it is physically reasonable that if there is conver-

gence, hence the dependence upon the cut-offRk decreases with the order of the expansion.

Note that an interesting modification to this approximation was been made by Braghin

and Hasselmann [36, 37] where the full momentum dependence of the coupling constants is

kept. This approximation yields closed coupled integro-differential equations which are solve

self-consistently and it allows for investigation beyond the asymptotic q ≈ 0 regime.

2.3.3.4 Blaizot-Mendez-Wschebor Approximation

The BMW approximation, developed by Blaizot, Mendez-Galain and Wschebor [38], starts

with the exact equation on theGreen functions. In thismethod one considers thatmost of the

relevant information is encoded in the two-point correlation functionΓ
(2)
k taken in a uniform

fieldM . The flow equation of Γ
(2)
k reads:

∂kΓ
(2)
k (p;M) =

∫
q
∂kRk(q)G(p;M)2

(
−1

2
Γ
(4)
k (p,−p, q,−q;M)

+Γ
(3)
k (p, q,−p− q;M)G(p+ q;M)Γ

(3)
k (−p,−q, p+ q;M)

) (2.52)

which is slightly different from the one written previously, because we used the fact that there

are Dirac δ-functions in theG's and Γ(n)'s. To close this evolution equation we need approx-

imations on Γ
(3)
k and Γ

(4)
k . The BMW-approximation consists in taking a vanishing depen-

dence over the internal momenta q and by performing the following replacement:
Γ
(4)
k (p,−p, q,−q;M) → Γ

(4)
k (p,−p, 0, 0;M) =

∂2Γ
(2)
k

∂M2
(p;M)

Γ
(3)
k (p, q,−p− q;M) → Γ

(3)
k (p, 0,−p;M) =

∂Γ
(2)
k

∂M
(p;M)

Γ
(3)
k (−p,−q, p+ q;M) → Γ

(3)
k (−p, 0, p;M) =

∂Γ
(2)
k

∂M
(p;M)

(2.53)
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which leads to:

∂kΓ
(2)
k (p;M) =

∫
q
∂kRk(q)Gk(p;M)2

{
−1

2

∂2Γ
(2)
k

∂M2
(p;M)

+G(p+ q;M)

(
∂Γ

(2)
k

∂M
(p;M)

)2


(2.54)

where the q momentum dependence is kept only in the Green functions G. This is a closed

equation since the functionsG are equal to (Γ
(2)
k + Rk)

−1. Finally one solves this equation

numerically or analytically if possible.

2.3.4 Optimisation and Cut-off Function Choice

After performing approximations, a crucial question is that 1) of the convergence of the results

when the approximation is enriched and2) the choice of the cut-off functionRk. Normally the

physical resultsmust be independent on the choice ofRk. But since approximations aremade,

this independence of the results ontained is broken. Therefore, an important question is how

to choose the optimal cut-off? To answer this question onemust establish which optimisation

criteria are themost relevant: the speedof convergence of the physical quantitieswith the order

of the expansion (derivatives andfields), the sensitivity of the results at each order to the cut-off

variation, the accuracy of the results . . . FollowingCanet et. al [39], we concentrate on the two

latter criteria.

Taking a family of cut-off function Rα
k parametrized by α and since the untruncated re-

sults are independent of α we seek a region where the results are less sensitive to the variation

of the parameter α at all orders of the truncation: this is called the principle of minimum sen-

sitivity (PMS). This criterion reads:

dQ(α)

dα
|αPMS= 0 (2.55)

whereQ can be a critical exponent or any another physical quantity of interest.

Canet et. al [39] computed the correlation length exponent ν for the Ising model in three

dimensions. In figure 2.5, we can see the results at different orders of the field expansion where
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two cut-off functions were used, an exponentialR
(α)
k,exp [40] and a theta cut-offR

(α)
k,θ [41]:

R
(α)
k,exp =

αq2

eq
2/k2 − 1

R
(α)
k,θ = α

(
k2 − q2

)
θ
(
1−2 /k2

)
.

(2.56)

The difference between the results corresponding to the two cut-off functions taken at their

PMS value αPMS is less than 5%when the field expansion is converged (see fig. 2.5).

Figure 2.5: The correlation length exponent ν for different order of the field expansion
fromCanet et. al [39]. On the left, we have the results with the theta cut-off and on the right
with the exponential cut-off. The lower figures correspond to a magnification for the higher

orders.

The choice of the cut-off will depend on the physical system under consideration. And

since the approximations break the cut-off independence, one needs to optimize the cut-off

choice and see how the exponents vary when the cut-off changes.
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2.3.5 TheO(n)-model

To illustrate the ideaswehave introduced in this chapterweuse theO(n)-model as an example.

TheO(n)-model describes systems with a n-vectorial field ~φwithO(n) rotational invariance

in the symmetric high-temperature phase. Lowering the temperature a phase transition occurs

at the critical temperature Tc and the symmetry is broken intoO(n− 1).

TheO(n)-model is probably the most studied model in theoretical physics because of its

simplicity which is related to themaximalO(n) symmetry but its importance is also related to

the wide range of systems it describes going from the paramagnetic-ferromagnetic transition

in magnetic systems to superfluidity and superconductivity:

• n = 0: polymers

• n = 1: Ising model

• n = 2: XY-model

• n = 3: Heisenberg model

We consider the effective average action with the combination of the derivative and field

expansions and to the lowest order it reads:

Γk[~φ] =

∫
ddx

Zk

2

(
∂~φ
)2

+
λ

2

(
~φ2

2
− κ

)2
 (2.57)

where Zk, λ and κ are the running coupling constants. The coupling κ is defined as the con-

figuration that minimizes the potential. At the critical temperature the field renormalization

Zk has a power law behaviour:

Zk ∼ k−ηk (2.58)

where ηk is the anomalous dimension.

From the Wetterich equation (2.39) we see that the flow equations depend on the prop-

agator (Γ
(2)
k +Rk)

−1. Therefore it is the first quantity that we compute.
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2.3.5.1 Propagator

The two-point correlation function Γ
(2)
k is computed by taking the second functional deriva-

tive of eq. (2.57) and expressing it in one minimum configuration φi =
√
2κδ1iδ(p):

Γ
(2)
k (p1, i, p2, j)∣∣

min

= δ(p1 + p2)
{
Zk p

2
1 δij + 2λκ δ1i δ1j

}
(2.59)

which is diagonal both in momentum and component space. Therefore the propagator P is

straightforward:

P(p1, i, p2, j)∣∣
min

= δ(p1 + p2) {G0(p1)(1− δi1) +G1(p1)δ1i} δij (2.60)

where the functionsGi are given by:{
G0(p) =

(
Zkp

2 +Rk(p)
)−1

G1(p) =
(
Zkp

2 +Rk(p) + 2λκ
)−1

.
(2.61)

These functions describe to the different modes of the system. At the transition the O(n)

symmetry is broken intoO(n− 1) therefore in the low-temperature symmetry broken phase

G0 correspond to the n − 1 massless Goldstone modes and G1 to the radial massive mode

with mass 2λκ.

2.3.5.2 Definitions of the Coupling Constants

Now we must express the coupling constants in terms of derivatives of the effective average

action in order to find their flow equation. We start with the coupling κ which by definition

of the minimum of Γk is given by:

lim
p→0

Γ
(1)
k (p, 1)∣∣

min

= lim
p→0

δΓk

δφ1(p)
∣∣
min

= 0 (2.62)

The coupling λ is given by:

λ =
1

2κ
lim
p→0

Γ
(2)
k (p, 1;−p, 1)∣∣

min

(2.63)



Chapter 2 Non-Perturbative Renormalization Group 29

and last but not least the field renormalizationZk is defined by:

Zk = lim
p→0

d

dp2
Γ
(2)
k (p, 2;−p, 2)∣∣

min

. (2.64)

2.3.5.3 Derivation of the Flow Equations

For the derivation of the flow equations it is more convenient to use a different form for the

Wetterich equation (2.39):

∂tΓk[φ] =
1

2
∂̃tTr

∫
q
ln
(
Γ
(2)
k +Rk

)
(q,−q) (2.65)

where ∂̃t acts only onRk.

The flow of κ is obtained by deriving eq. (2.62) with respect to t:

lim
p→0

∂t

(
Γ
(1)
k (p, 1)∣∣

min

)
= lim

p→0

{
∂tΓ

(1)
k (p, 1) +

1√
2κ

∂tκΓ
(2)
k (p, 1;−p, 1)

}∣∣
min

= 0

(2.66)

which leads to:

∂tκ = − lim
p→0

√
2κ

Γ
(2)
k (p, 1;−p, 1)∣∣

min

∂tΓ
(1)
k (p, 1)∣∣

min

. (2.67)

Deriving eq. (2.63) the flow of λ reads:

∂tλ = ∂tκ lim
p→0

{
− 1

2κ2
Γ
(2)
k (p, 1;−p, 1) +

1

(2κ)3/2
Γ
(3)
k (p, 1;−p, 1; 0, 1)

}∣∣
min

+
1

2κ
lim
p→0

Γ
(2)
k (p, 1;−p, 1)∣∣

min

(2.68)

and the flow of the field renormalization (2.64) reads:

∂tZk = lim
p→0

d

dp2

{
∂tΓ

(2)
k (p, 2;−p, 2) +

∂tκ

(2κ)1/2
Γ
(3)
k (p, 2;−p, 2; 0, 1)

}
∣∣
min

. (2.69)
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Computing the functional derivative of the effective action and replacing them in eq. (2.67)

the flow of κ reads:

∂tκ = −1

2
∂̃t

∫
q

{
n− 1

Zkq2 +Rk(q)
+

3

Zkq2 +Rk(q) + 2λκ

}
. (2.70)

Similarly from eq. (2.68) we find:

∂tλ = −λ2

2
∂̃t

∫
q

{
n− 1

(Zkq2 +Rk(q))
2 +

9

(Zkq2 +Rk(q) + 2λκ)2

}
(2.71)

and from eq. (2.69) the flow of the field renormalizationZk is given by:

∂tZk = −2κλ2 lim
p→0

d

dp2
∂̃t

∫
q

1

(Zkq2 +Rk(q)) (Zk(p+ q)2 +Rk(p+ q) + 2λκ)
.

(2.72)

In order to find a fixed-point we must work with dimensionless coupling. We recall that

this step is equivalent of the rescaling step in the Kadanoff transformation:
y = q2/k2

Rk(q) = Zkq
2r(y) = Zkk

2yr(y)

κ̃ = Zkk
2−dκ

λ̃ = Z−2
k kd−4λ

(2.73)

and the running anomalous dimension ηk is given by:

ηk = − 1

Zk
∂tZk . (2.74)

The flow equations of the dimensionless couplings read:

∂tκ̃ = −(d− 2 + η) κ̃+ 2vd

(
(n− 1) ld1(0) + 3 ld1(2λ̃ κ̃)

)
∂tλ̃ = (d− 4 + 2 η) λ̃+ 2vd λ̃

2
(
(n− 1) ld2(0) + 9 ld2(2λ̃ κ̃)

) (2.75)

and from the flow of the field renormalization together with eq. (2.74) we find:

ηk =
16vd
d

κ̃λ̃2md
2,2(2λ̃ κ̃) (2.76)
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where vd = 2−d−1πd/2Γ[d/2] and the threshold functions lda andm
d
a,b are given by:

lda(w) = − 1
4vd

∂̃t

∫
q

1

(Zkq2 +Rk(q) + w)a

md
a,b(w) = − 1

8vd
lim
p→0

d

dp2
∂̃t

∫
q

1

(Zkq2 +Rk(q))a

× 1

(Zk(p+ q)2 +Rk(p+ q) + w)b
.

(2.77)

These functions encode the non-perturbative content of the approach. The argumentw cor-

respond to the squared masses of the radial and the Goldstone modes which are 2λκ and 0

respectively.

From these equations (2.75-2.76) we can find the fixed-points and by linearising in the

vicinity of the fixed-points we find the correlation critical exponent ν. The anomalous dimen-

sion is given by eq. (2.76) at the fixed-point. From the one-loop structure of the Wetterich

equation (2.39) one can recover the weak-coupling ε-expansion and the low-temperature ex-

pansion as well as the large-n expansion. The other critical exponents can be obtained from

the following scaling relations: 
α = 2− dν

β = ν
2 (d− 2 + η)

γ = ν(2− η)

δ = d+2−η
d−2+η

(2.78)

2.3.5.4 Weak-coupling Expansion

In the vicinity of the upper critical dimension duc=4 the coupling λ̃ is of order ε = 4− d and

the anomalous dimension ηk is vanishing at order ε. Therefore to recover the weak-coupling

results we expand the flow equations (2.75) in the first non-trivial order of λ̃. We start by

expanding the threshold function with non vanishing mass entering the flow of κ̃:

l41(w) ≈ ld=4
1 (0)− 2λ̃κ̃ . (2.79)
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Replacing this in eq.(2.75) we find:

∂tκ̃ = −(2− ε)κ̃+
(n+ 2)

16π2
ld=4
1 (0)− 3

8π2
λ̃κ̃ (2.80)

where the last term is only relevant for the calculation of the correlation exponent and not for

the fixed-point coordinate. For the coupling λ̃ we consider the threshold ld=4
2 (2λ̃κ̃) in the

limit of vanishing mass at the lowest order in λ since it is multiplied λ̃2 term:

ld=4
2 (2λ̃κ̃) → ld=4

2 (0) . (2.81)

Moreover the threshold ld=4
2 (0) has a universal cut-off independent value which equals to 1:

ld=4
2 (0) = −

∫ ∞

0
dy

2 r′(y)

(1 + r(y))3
=

∫ ∞

0
dy

d

dy

[
1

(1 + r(y))2

]
=

[
1

(1 + r(y))

]∞
0

= 1 (2.82)

since lim
y→∞

r(y) = 0 and lim
y→0

r(y) = ∞ for any cut-off. With this ∂tλ̃ is given by:

∂tλ̃ = −ελ̃+
(n+ 8)

16π2
λ̃2 . (2.83)

The coordinates of the fixed-point are given by:
κ̃∗ =

(n+ 2)

32π2
ld=4
1 (0)

λ̃∗ =
16π2

n+ 8
ε .

(2.84)

The correlation exponent is obtained by linearising the flow equations in the vicinity of the

fixed-point and we find:

ν =
1

2
+

(n+ 2)

4(n+ 8)
ε (2.85)

which corresponds to the perturbative result at one-loop order. The anomalous dimension at

this order is vanishing: η = o(ε).
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2.3.5.5 Low-Temperature Expansion

The lower-critical dimensiondlc corresponds to the dimensionbelowwhich the ordered phase

disappears for finite temperature and for the O(n)-model it is equal to 2 for n ≥ 2 . At dlc

the critical exponent ν diverges which justifies a low-temperature expansion in the vicinity

of dlc. At low-temperatures the massive modes contribution is vanishing at all order of the

expansion in powers of the temperature T . Therefore the physics is completely governed by

the Goldstone modes.

In our approach where the temperature dependence is implicit the low-temperature ex-

pansion is equivalent to an expansion in powers of 1/κ̃. This means that we must expand the

threshold functions with non-vanishing mass at dominant order in 1/κ̃. However the contri-

bution of the lowest order in the massive threshold functions entering the flows of κ̃ and λ̃ is

vanishing and in the vicinity of d = 2 these equations read:

∂tκ̃ = −(ε+ ηk)κ̃+ 2v2(n− 1)ld=2
1 (0) (2.86)

∂tλ̃ = (ε− 2)λ̃+ 2v2λ̃
2(n− 1)ld=2

2 (0) (2.87)

and for the anomalous dimension the thresholdmd=2
2,2 is taken in the infinite mass limit:

ηk =
2v2
κ

md=2
2,2 (∞) . (2.88)

The threshold functions ld=2
1 (0) andmd=2

2,2 (∞) have universal behaviour given by:

ld=2
1 (0) = 1 (2.89)

md=2
2,2 (∞) = 1 . (2.90)

Replacing this in the flow equations we find:

ηk =
1

4πκ̃
(2.91)

∂tκ̃ = −εκ̃+
(n− 2)

4π
(2.92)

∂tλ̃ = (ε− 2)λ̃+
(n− 1)

4π
ld=2
2 (0) . (2.93)
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Since κ̃ ∼ 1/T the flowof the temperature is identical to the one found inperturbative theory.

The coordinates of the fixed-point are given by:
κ̃∗ =

n− 2

4πε

λ̃∗ =  
8π

(n− 1)ld=2
2 (0)

.
(2.94)

The anomalous dimension at this fixed-point is given by:

η∗ =
ε

n− 2
(2.95)

and the correlation exponent is obtained from the linearisation of the flow equation near the

fixed-point:

ν =
1

ε
(2.96)

which agrees with the result of the non-linear σ-model.

2.3.5.6 Large-n Expansion

From the NPRG approach we can also recover the result from the large-n expansion. From

the fixed-points of the twoprevious perturbative approaches eqs. (2.84) and (2.94)we suppose

that κ̃∗ and λ̃∗ are respectively of order n and 1/n and in the end we verify that this is coher-

ent. At the dominant order of the expansion in powers of 1/n the anomalous dimension is

vanishing and the flow equations read:

∂tκ̃ = −(d− 2)κ̃+ 2n vd l
d
1(0) (2.97)

∂tλ̃ = (d− 4)λ̃+ 2n vd λ̃
2 ld2(0) (2.98)

from which we deduce the coordinates of the fixed-point:
κ̃∗ =

2n vdl
d
1(0)

d− 2

λ̃∗ =
4− d

2n vdl
d
2(0)

(2.99)
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and the result is coherent with the initial assumption. The correlation exponent ν is again

obtained from the linearisation around the fixed-point and we find:

ν =
1

d− 2
(2.100)

which agrees with the one-loop perturbative result.

2.3.6 Conclusion

A remarkable property of the NPRG approach is that we can recover the one-loop perturba-

tive results of the weak-coupling, low-temperature and large-n expansions with truncations

at lowest orders. This is a unique property. There is no other approach that we know of

that provides a connection between the various different perturbative results. Moreover the

NPRG allows for an investigation of the physics at any given dimension d and any number of

field components n.

An important result of the NPRG is that one finds accurate results for the XY-model. At

the Berezinskii-Kosterlitz-Thouless transition [42, 43] one finds for the anomalous dimension

η = 0.24 at lowest order of the field and derivative expansion [44] and η = 0.287 with

higher orders [45] which compare well with the exact result η = 0.25. The variation of the

value of η between the two NPRG calculations means that the expansion has not converged

yet. These results show that without an explicit investigation of the vortex configuration the

NPRG seems to automatically include these configurations and therefore seems to correctly

describe the topological excitations.

For the three dimensional Ising model, using a derivative expansion at order ∂2 together

with a field expansion to order φ10 Canet et al. [39] computed the anomalous dimension

η = 0.04426 and the correlation exponent ν = 0.6281. These results are in good agreement

with the 7-loop results [46]: η = 0.0335(25) and ν = 0.6304(13); and with Monte Carlo

simulations [47]: η = 0.0362(8) and ν = 0.6297(5).

The BMWmethod has been used to compute both universal and non-universal quantities

for theO(n)-model in two and three dimensions [48]. For instance the anomalous dimension

for n = 2 in d = 3 equals η = 0.041 which is in good agreement with Monte Carlo result

η = 0.0381(2) [46].



36 Chapter 2 Non-Perturbative Renormalization Group

The power of this approach is that one can compute non-universal quantities such as

the critical temperature. Using a local potential approximation Machado and Dupuis [49]

computed the critical temperature for the Ising, XY and Heisenberg models in three dimen-

sions which are respectively given by 4.48, 2.18 and 1.42 and are in very good agreement with

Monte Carlo results to an accuracy of 1%: 4.51 [50], 2.20 [51] and 1.44 [52].

It has been appliedwith great success to awide number of systems and situations by several

teams. It is now recognized as a very efficient method that has shown its ability to go beyond

the perturbative approaches and to replace them favorably when they fail to correctly describe

the critical physics. Among many situations we mention the case of frustrated magnets [32],

membranes ([53], [54]), disordered systems [55]), out of equilibrium systems including KPZ

equation [56] , Bose systems ([57], [38]), gravity [58], see [59] and [60] for reviews. In all these

situations the NPRG has clarified a confused perturbative situation and, in several case, has

revealed intrinsic nonperturbative aspects necessary for a clear understanding of the physics.



Appendix A

Threshold Functions

To find a fixed-point we must used dimensionless quantities. For the momenta we perform

the change of variable:

y =
q2

k2
(A.1)

and the flow derivation ∂t is taken at constant q. Thus we must express it in terms of the

variable y:

∂t|q2 = ∂t|y − 2y ∂y (A.2)

This relation serves to calculate explicitly the flow of the cut-offRk in terms of r:

∂t|q2Rk(q) = −Zkk
2
(
−ηk y r(y)− 2y2 r′(y)

)
(A.3)
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where we have used ∂tZk = −ηkZk and r
′(y) = ∂yr(y). With this at hand we can express

the threshold functions in a dimensionless form:

lda(w) = −a+ δa,0
2

∫ ∞

0
dy

yd/2−1
(
ηk y r(y) + 2y2 r′(y)

)
(y(1 + r(y)) + w)a+1

md
a,b(w) =

1

2

∫ ∞

0

yd/2(1 + r(y) + y r′(y))2

(y + y r(y))a(y + y r(y) + w)b

×
{(

ηk y r(y) + y2 r′(y)
)( a

(y + y r(y))
+

b

(y + y r(y) + w)

)

−2
(ηkr(y) + y r′(y)(ηk + 4) + 2y2r′′(y))

(1 + r(y) + y r′(y))

}
(A.4)
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Membranes

Geometry, which should always follow physics when used to describe nature, sometimes com-

mands it.

Jean-Baptiste Le Rond D'Alembert (1752)

3.1 Introduction

One may consider that the first observation of a membrane goes way back to Babylon in the

eighth century B.C. when an oil droplet was put in water (fig. 3.1). But the interest in mem-

branes has its origin in the seventeenth century microscopic observations. In 1665, the English

natural philosopher Robert Hooke made the first observation of a cell (see Fig. 3.2) while

studying cork under a compound microscope [61]. He also observed similar cells in other

plants and animals. But the chemical nature and the structure of these cells was a complete

mystery. It was not until the nineteenth century that new experimental techniques and more

powerful microscopes gave new insight into the nature of membranes. The surgeon and his-

tologist Sir William Bowman gave the first representation of a membrane when he discovered

and described cells of transverse and longitudinal striae of voluntary muscles in 1840 [62]. Sir

William Bowman is better known for the Bowman's membrane which is a smooth layer in the

eye.

39
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Figure 3.1: Water-oil interface.

Figure 3.2: Observation of cork by Robert Hooke in 1665 [61].

A couple of decades later, the German surgeon and internist Heinrich Quincke observed

how a spherical cell in water forms two separate parts of the same spherical shape when bro-

ken in half. From this observation, he postulated the lipid nature of these cells by analogy to

the behaviour of oil in water. In the 1890's, this lipid nature was confirmed by the indepen-

dent works of Hans Meyer and Ernest Overton [63]. During the same period of time, Ernest

Overton also discovered that cells are encapsulated within a selectively permeable layer while
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studying cells of plant root hairs. This can be considered as the first observation of amembrane

separating the cell's contents from the environment.

In 1905, the American chemist and physicist Irving Langmuir dissolved phospholipids in

benzene and then spread them on a water surface and then evaporated the benzene. He dis-

covered that the molecules of phospholipid membranes have a polar head and tails made of

hydrocarbon chains. He also found that the typical area occupied by a lipid molecule is 50 Å2.

In the 1920's, Fricke [64]measured the capacitance of a cell-membrane. Thismeasurement

indicated that the membrane was only 4 nm thick. A couple of years later, Gorter & Grendel

[65] applied a pressure measurement method developed by Irving Langmuir in 1917 [66], to

lipid extracts of erythrocyte (red blood cell) membranes. They compared the area occupied

by the lipid extracts and the area of the whole erythrocyte and they concluded that plasma

membranes had a bilayer structure (see Fig. 3.3). AlbeitGorter&Grendelmade somemistakes

in their experiment, luckily the different errors cancelled out and their conclusion was correct.

Although other experiments confirmed the bilayer structure of plasma membranes and more

generally of all cell-organelle membranes, this bilayer nature was not widely accepted until

X-ray diffraction [67] and new evidence on the physical state of membrane lipids [68] settled

this once and for all.

Figure 3.3: Phospholipid bilayer.

In the early membrane models, the membrane was made only of lipids. But experiments

showed that membranes absorbed water faster that a pure phospholipid membrane should.

In 1935, Danielli & Davson's [69] proposed a membrane model where globular proteins lay
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on the surface of the phospholipid bilayer (Fig. 3.4), since proteins are water absorbent. This

model excludes transmembrane proteins based on the previously shown hydrophilic surface

of globular proteins. TheDanielli-Davsonmodel suggests that all themembranes are alike and

that the proteins are homogeneously distributed.

Figure 3.4: Original drawing of the Davson-Danielli cell membrane model. The lipids are
sandwiched between two layers of globular proteins [69].

In the 1970's, work from laboratories of HardenMcConnell andbyDennisChapman (see

[70] for review)mentioned the possibility that bilayer lipids are asymmetrically distributed, i.e.

that the two membrane layers or leaflets have different lipid composition and fluidity.

The first images of a membrane with an electron micrograph 3.5 showed that the mem-

branehad a three layer structure and thiswas taken incorrectly as a confirmationof theDavson-

Daniellimodel until the 1970's. But advances in biology and chemistrywere incompatiblewith

the Davson-Danielli model. A better understanding of proteins showed that most of them

were not hydrophilic as previous thought but rather lipophilic and hydrophobic. In 1972, a

newmodel by S.J. Singer&G.L. Nicolson came into light [71]. This model takes into account

someof the complexity of themembranewhichwasnot the case in theDavson-Daniellimodel.

One or more types of lipids may form the bilayer like a mosaic. And the proteins are inserted

within thefluidbilayer inwhichone can alsofind cholesterol. Both theproteins and the choles-

terol can diffuse freely within the membrane. This model was named the fluid mosaic model

for obvious reasons.

In all that we have discussed above, we have never mentioned the underlying forces that

hold the bilayer together. The main force that shapes membrane bilayers is the hydrophobic
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Figure 3.5: Electron micrography of a cell [72]. The cell membrane has three layers, a light
layer sandwiched between two dark layers.

Figure 3.6: Fluid Mosaic Model [73]. Like a mosaic, the cell membrane is a complex struc-
ture made up of many different parts, such as proteins, phospholipids and cholesterol. The
relative amounts of these components vary frommembrane to membrane, and the types of

lipids in membranes can also vary.

force [74]. The lipid molecules are made of a head and one or more tails. The head is made

of glycerol and phosphates and the tail of fatty acid chains which are respectively hydrophilic

(head) and hydrophobic (tail). Therefore, in aqueous solutions the lipids organise so that the

arrangementminimizes its contact with water which explains why the bilayer structure forma-

tion. This principle also applies to the insertion of membrane proteins into the bilayer. The



44 Chapter 3 Membranes

proteins are usually arranged so that their hydrophobic surfaces are buried in the lipid.

Figure 3.7: Detailed description of a biological cell membrane (Wikipedia).

Biological cell-membranes are considered to be fluid since the molecules are free to diffuse

within the membrane like molecules diffuse in an ordinary fluid. The diffusion coefficientD

is of the order 10−6cm.s−1. Therefore there may be no elastic energy. A completely different

type ofmembranes canbe found inbiologicalmembranes. For instance, the plasmamembrane
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Figure 3.8: Membrane basic shapes [75].

of redblood cells has an additionalmembrane to the fluid lipid bilayer. The secondmembrane,

which is coupled to the first one, is a spectrin network with fixed-connectivity analogous to a

fishnet (see Fig. 3.9). This spectrin network constitutes the skeleton of the red blood cell and

is therefore called the cytoskeleton.

The connectivity is considered to be fixed since the time-scales for breaking and reassem-

bling the molecular connections of the spectrin network is very large compared with the time-

scales involved in the shapefluctuations [76]. Thereforemembranewithfixed-connectivity are

referred to as polymerized membranes since they are a natural extension of one-dimensional
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polymers to higher dimensions. As a consequence, polymerized membranes are regarded as

thin elastic sheets and the thermodynamical fluctuations of these sheets are governed by bend-

ing and elastic energies.

Figure 3.9: Red blood cell [77].

Albeit fluid and polymerized membranes are three-dimensional, they are both considered

as two-dimensional surfaces because the aspect ratio, i.e. the ratio of its width to its height, is

very large.

Another important membrane-like system of great importance in condensed matter phy-

sics is graphene. Graphene is a one atom thick layer of carbon atoms in a non-compact honey-

comb lattice (see Fig. 3.10) making it the first truly two-dimensional system. Graphene was

described for the first time by the German chemist Hans-Peter Boehm in 1962 [78] where

he observed free-floating graphene sheets in a dilute alkaline solution. But in his work, the

graphene sheets were not free-standing and were made of several layers. These free-standing

sheets were thought of as a theoretical curiosity impossible to realise in nature because of the

Mermin-Wagner theorem ([79], [80], [81]). This theorem states that one cannot have long

range order or even a crystalline structure for two-dimensional systems with short-range inter-

actions1. For decades, graphene was studied theoretically but not much experimental interest

was given to it. Not until the early twenty first century. In 2004, Andre Geim and Kostya

1More precisely, the Mermin-Wagner theorem states that there is no spontaneous symmetry breaking for sys-
tems with short-range interactions and dimension d ≤ 2. If the symmetry is discrete like in the two-dimensional
Ising-model, this theorem does not hold.
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Novosolev [82] made the first discovery of free-standing graphene. Their production tech-

nique of the graphene sheets is quite amusing. They used adhesive tape on graphite to isolate

graphene layers. This discovery is very important from various aspects. First of all, it is the first

genuinely two-dimensional material. Second, as a consequence of the symmetry of the honey-

comb crystalline structure, the electrons obey the Dirac equation instead of Schrodinger's and

have a linear dispersion relations as if they weremassless relativistic particles. Finally, graphene

has some extraordinary properties that seem to be contradictory. For instance, it is stronger

than diamond but displays ripples (see fig. 3.10) which give an effective thickness ranging be-

tween 0.23 Å [83] and 3.5 Å [84]. It is a perfect conductor but at the same time optically

transparent. Graphene also display an anomalous quantumHall effect (QHE) because of the

existence of a zero-energy Landau level.

Figure 3.10: Graphene [85].

From a formal point of view, in high-energy physics, membranes appear as an extension

of the original strings in string theory as shown by Joseph Polchinski in 1995. These mem-

branes are called p-branes for p-dimensional membranes. For example a 1-brane is a string,

a 2-brane is an ordinary membrane sheet etc. The most important p-branes are the Dirich-

let branes or D-branes for short. They were discovered in 1989 by Dai, Leigh & Polchinski

[87] and independently by Horava [88]. In superstring theory, the Calabi-Yau space (see 3.12)

is a six-dimensional membrane that appear as the extra-dimensions of the four-dimensional

space-time ([89], [90]).
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Figure 3.11: Graphene oxide [86].

The interest in membranes has been increasing these last years since the discovery of gra-

phene ([91], [92]) and graphene-based sheets like graphene oxides (see Fig. 3.11). Membranes

come in various shapes (see Fig. 3.8), sizes and composition fitting to any particular need and

they display several extraordinary mechanical, optical, thermal and electronic properties that

make them of great interest in bio- and nanotechnology: drug delivery systems, bio-electronic

devices, electrochemical sensors, energy storage, etc. They can act a separators between two

liquids or they can act as filters being permeable for some kind of molecules and not others.

Since 1970, the reverse osmosis membrane technology has been used for water desalination.

Reverse osmosis is a physical separation process in which properly pretreated water is deliv-

ered at moderate pressures against a semi-permeable membrane. The membrane rejects most

solute ions and molecules, while allowing water of very low mineral content to pass through.

This process also works as an absolute barrier for cysts and most viruses. This technology is

also used for the removal of inorganic contaminants such as nitrates, arsenic and pesticides.

Recent experiments have shown that graphene oxide is a perfect water filter [93]. Membranes

can also be used when controlled release is needed such as in drugs and drug delivery systems,

chemicals in agriculture, fertilisers, pheromones, oxygenation etc (see Fig. 3.13). Polymerized

membranes can be fabricated by polymerization of fluid membranes. Several polymerization

methods exist such as a chemical polymerisation, irradiationof the lipid bilayerwithultraviolet

light.

To summarise we have seen in this introduction that membranes play an important role
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Figure 3.12: Three-dimensional projection of the Calabi-Yau manifold. Image from the
cover of the November 2007 issue of Scientific American.

Figure 3.13: Applications: Separation (filters) on the right and controlled release (drugs,
drug delivery systems, chemicals in agriculture, fertilisers, oxygenation, pheromones) on the

left.

in many areas in biology and physics, such as cells, material science and even quantum gravity

([94], [95]). Therefore, understanding their structure as well as their long distance behaviour

is crucial. Membranes can be divided in two groups: fluid and polymerized. The first ones

are common objects in biology (lipid bilayers) and the second can be obtained, e.g, by poly-

merization of these cells. Polymerized membranes are a natural extension of one dimensional
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polymers to higher dimensions. In fluid membranes since the atoms or molecules are free to

move, they have no shear modulus. On the contrary, polymerized membranes have a fixed

connectivity. A fundamental problem is to understand the thermodynamical evolution of the

shape of membranes due to fluctuations. As we have seen, membranes are rather complex sys-

tems. Therefore, in the following sections we will introduce the different models that have

been proposed to explained the behaviour of membranes. These models are a simplification

of real membranes but they still give great insight to the behaviour of membranes.

Mathematically, amembrane is a surface, also called a two-dimensionalmanifold. Inmath-

ematics,D-dimensionalmanifolds are generalisations of surfaces to higher dimensions and the

natural language for manifolds is that of differential geometry. In the next section, we will in-

troduce differential geometry and the properties of manifolds.

3.2 Differential Geometry ofMembranes

3.2.1 Basic Definitions and Some Fundamental Properties

In this section, we discuss the mathematical description of membranes using differential ge-

ometry. Differential geometry is the branch ofmathematics that studies geometrical objects in

an analytical way, using differential and integral calculus (see lectures [96], [97], [98, Ch. 7]).

The development of differential geometry started in the eighteenth and nineteenth centuries

with the study of curves ans surfacesmainly byGauss, Riemann, Lobachevsky andBolyai. The

generalisation of the concept of curves and surfaces to higher dimensions is what we call man-

ifolds. The namemanifold comes from the GermanMannigfaltigkeitwhich is the name given

by Bernhard Riemann and later translated to manifold byWilliam Clifford.

The concept of manifold is central in physics. Polymer chains on one hand and biologi-

cal membranes and graphene-based sheets on another, which are of great importance in bio-

physics, chemistry, condensedmatter physics andmaterial science, are respectively one-dimensional

and two-dimensionalmanifolds. Even the space-time continuum ingeneral relativity is aLorentzian2

2The space-time is also called a pseudo-Riemannianmanifold, and often incorrectly called a Riemannianman-
ifold.
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four-dimensional manifold. Higher dimensional manifolds can also be found in string and su-

perstring theory. In statistical physics where the phase space is a symplectic manifold3.

Mathematically, aD-dimensional manifold is an object that is locally flat (but not glob-

ally). Locally, aD-dimensionalmanifold is homeomorphic to the Euclidean spaceRD. There-

fore, the manifold can be covered by patches parametrised in a local coordinate system {xµ}
with µ = 1, . . . , D. The choice of the coordinate system is arbitrary and depends on the

needs. If two neighbouring points on the manifold are parametrised by two different coordi-

nate systems {xµ} and {yµ}, then there is a continuous bijection between the two systems in
the region where they overlap.

In this section we are only interested in smooth differentiable manifoldsMwith an inner

product g on each tangent space TPM. These manifolds are called Riemannian manifolds.

Manifolds do not need an embedding space. For instance, the space-time continuum is not

a priori considered as embedded in a space of higher dimensions. But fluid and polymerized

membranes, that interest us, do live in R3. From now on, we will only focus on manifolds

embedded in a d-dimensional Euclidean space Rd, where d > D.

AD-dimensionalmanifoldM embedded in a d-dimensional Euclidean space can be para-

metrised by a mapping RD → R
d:

~r(xµ) = {ri(xµ)} (3.1)

wherexµ are the internal coordinates and ri the externaloneswith theGreek andLatin indices

running respectively from 1 toD and from 1 to d (see Fig. 3.14 ).

As an example, take a two-dimensional manifold embedded in a three-dimensional Eu-

clidean space with local coordinates:

~r(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) (3.2)
r1 = sin θ cosφ

r2 = sin θ sinφ

r3 = cos θ

(3.3)

3A symplectic manifold is a smooth manifoldM, equipped with a closed non-degenerate differential 2-form
ω, called the symplectic form.
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�r(xµ)

x1

x2

r3

r2

r1

Figure 3.14: The vector ~r represents the position of a point P of the manifold in the Eu-
clidean space.

Themanifold represented by these local coordinates is part of a unit sphere since ~r 2 = 1.

But these coordinates cannot represented correctly the sphere. There are two singularities, the

North (θ = 0) and the South poles (θ = π). Although a sphere is locally Euclidean, it is still

topologically different. This is the problem one encounters when representing the Earth on a

flat map. Twomaps are needed to represent a surface embedded in R3.

The tangent vectors at each point P of the manifold reads:

eµ =
∂~r

∂xµ
. (3.4)

This vector belongs to the tangentplaneTpM (Fig. 3.15) and they are noted inbold tomake the

difference with the vector that live outside of the tangent plane. The union of all the tangents

planes at each point of the manifold is called the tangent bundle T M.

Since the choice of the coordinates system is not unique, we need to know how to change

the coordinates system. Given a new coordinate system {yµ}µ=1,...,D, the tangent vectors
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Figure 3.15: Tangent plane at the point P [99].

read:

fµ =
∂~r

∂yµ
=

∂~r

∂xν
∂xν

∂yµ
= eν

∂xν

∂yµ
. (3.5)

With this we can express any given vector ~v in any coordinate system:

~v = vµeµ = v′µfµ = v′µ
∂xν

∂yµ
eν (3.6)

where we have used the Einstein summation rule for repeated indices. We now have the ex-

pression of the new coordinates of the vector ~v in terms of the old ones:

v′µ = vν
∂yµ

∂xν
. (3.7)

This change of coordinates makes possible to connect different neighbouring maps.

Fromnow on, I will concentrate on a two-dimensionalmanifold in three-dimensional Eu-

clidean space:

~r(x, y) = (X(x, y), Y (x, y), Z(x, y)) (3.8)

where the x and y are the internal coordinates andX , Y andZ the external ones.
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The tangent vectors at each point of the manifold reads:

ex =
∂~r

∂x
= ∂x~r (3.9)

ey =
∂~r

∂y
= ∂y~r . (3.10)

Since themanifold is two-dimensional andex andey tangential to the surface, the normal

unit vector at each point P of the manifold can be defined by:

~n =
ex ∧ ey
|ex ∧ ey|

. (3.11)

The distance between two infinitesimally close points with coordinates x and x+ dx, the

arc-length ds2:

ds2 = (~r(xµ)− ~r(xµ + dxµ))2 = dxµdxν
∂~r

∂xµ
(xµ)

∂~r

∂xν
(xµ)

= eµ.eνdx
µdxν = gµνdx

µdxν (3.12)

where gµν is called the first fundamental form or themetric tensor4.

The dual (inverse) tensor gµν is defined such that:

gµρg
ρν = δνµ =

{
1 if µ = ν

0 if µ 6= ν
(3.14)

where δνµ is the Kronecker symbol. The position of the indices, up or down, shows on which

space the components live, the tangent space or the cotangent space respectively. The met-

ric tensor defines an isomorphism between the two different spaces and can be used to lower

indices.

4In a more modern way, the first fundamental form is defined as the symmetric bilinear tensor:

g(X,Y ) =< X,Y > (3.13)

whereX andY are two vector fields in the tangent bundleT M. The coordinates are said to be locally orthogonal
if the first fundamental form is diagonal.
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The determinant of the first fundamental form reads:

det (gµν) =
1

2
εµσενρgµνgσρ ≡ g . (3.15)

The determinant g is directly related to the arc-length ds by:

ds = |e1 ∧ e2| = |e21e22 − e1.e2|1/2

= (g11g22 − g12g21)
1/2 = (det gµν)

1/2 =
√
g . (3.16)

There is a second fundamental formCµν which characterize the curvature of themanifold.

Given a curve C on the manifold parametrised by x(t), the tangent vector ~v(t) at each point
of the curve is given by:

~v(t) =
∂~r

∂t
≡ ~̇r(t) (3.17)

~̇v(t) =
∂

∂t

(
∂~r

∂xµ
∂xµ

∂t

)
=

∂

∂t
(eµẋµ) (3.18)

=
eµ
∂xν

∂xν

∂t
ẋµ + eµ

∂ẋµ

∂t
= eµ,ν ẋ

µẋν + eµẍ
µ . (3.19)

Taking the scalar product with the normal unit vector ~n:

~̇v(t).~n = eµ,ν .~n ẋµẋν + eµ.~n ẍµ (3.20)

where the last term in the r.h.s. vanishes bydefinitionof the tangent vector and thenormal unit

vector and the term eµ,ν .~n is the second fundamental formCµν . Just as the first fundamental

form, the second fundamental form is a symmetric tensor since eµ,ν = ∂2~r
∂xµ∂xν = eν,µ. If

Cµν is diagonal, the coordinate lines are said to be conjugate. Moreover if both the first and

second fundamental forms are diagonal, the coordinate lines coincide locallywith the principal

directions of curvature.



56 Chapter 3 Membranes

The first and second fundamental form serve to define the curvature of themanifold. The

eigenvaluesC1 andC2 ofC
ν
µ = Cµρg

ρν are called the principal curvatures:

det
[
Cν
µ

]
= det (Cµρg

ρν) = det (Cµρ) det (g
ρν) (3.21)

=
det (Cµρ)

det (gρν)
=

C

g
(3.22)

where g and C are the determinants of the first and second fundamental forms respectively

and the eigenvectors correspond to the principal directions of curvature.

Another expression for the second fundamental form can be derived by differentiating the

scalar product eµ.~n = 0:

∂

∂xν
(eµ.~n) = eµ,ν .~n+ eµ.~n,ν = 0 (3.23)

which leads to:

−eµ.~n,ν = eµ,ν .~n = Cµν . (3.24)

Given a point P on the manifold, the tangent vectors at that point constitutes a unique

tangent plane. And there exists an infinite number of planes that are normal to the tangent

plane. These normal planes' intersection with the manifold is a curve with radius of curvature

R(α). The minimum and maximum of the radius of curvatureR(α) are called the principal

radius of curvature R1 and R2 respectively. And the principal curvatures are defined as the

inverse of the principal radius of curvature:

Ci =
1

Ri
. (3.25)

With combinations of the principal curvatures, we can construct two quantities that have a

fundamental geometrical meaning, the mean curvatureH and the Gaussian curvatureK :

H =
1

2
Tr
(
Cν
µ

)
=

1

2
(C1 + C2) (3.26)

K = det
(
Cν
µ

)
= C1C2 (3.27)
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Figure 3.16: Image by Eric Gaba (Wikipedia).

From these definitions, we can see that the mean and Gaussian curvatures are invariant

under reparametrisation since they are a trace and a determinant respectively. Note that the

convention regarding the sign of the curvature is arbitrary.

Using the second expression of the second fundamental forms, we get the equations of the

mean and Gaussian curvatures in terms of the normal unit vector:

H = −1

2
∇~n (3.28)

K = −1

2
∇ (~n.(∇~n)− (~n.∇)~n) (3.29)

where∇~n = eµ∂
µ~n.

Carl Friedrich Gauss proved that the Gaussian curvature does not depend on the way the

manifold is embedded in the Euclidean space. He called this theoremTheorema Egregium for

remarkable theorem inLatin. TheGaussian curvatureK is an intrinsic property of the surface.

Gauss presented the theorem in this way (translated from Latin):
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Theorem 3.1 (Gauss's Theorema Egregium (translated from Latin)). Thus the formula of the

preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon

any other surface whatever, the measure of curvature in each point remains unchanged.

Theorem 3.2 (Gauss's Theorema Egregium (in modern language)5). The Gaussian curvature

of a surface is an intrinsic property of the manifold and hence does only depend on the first

fundamental form (and its derivatives).

An explicit expression for the Gaussian curvature in terms of the first fundamental form

is provided by the Brioschi's formula:

K =
C

g
=

R1212

g
(3.30)

where the fourth rank tensorRµνρσ is the Riemann curvature tensor:

Rµνρσ = gµλR
λ
νρσ (3.31)

Rλ
νρσ =

∂

∂xρ
Γλ
νσ − ∂

∂xσ
Γλ
νρ +

(
Γλ
ρωΓ

ω
νσ − Γλ

σωΓ
ω
νρ

)
(3.32)

where Γµ
νρ are the Christoffel symbols:

Γµ
νρ = gµλΓλνρ =

1

2
gµλ

(
∂

∂xρ
gλν +

∂

∂xν
gλρ −

∂

∂xλ
gνρ

)
. (3.33)

An important theorem in differential geometry is the Gauss-Bonnet theorem that relates

the geometry of a two-dimensional manifoldM to its topology (the total curvature of a com-

pact surface is 2π times its Euler characteristic χ)6:∫
M

dsK = 2πχ(M) = 4π(1− g(M)) (3.34)

5 In mathematical language, the theorem may be stated as follows: The Gaussian curvature of a surface is in-
variant under local isometry.

6The Gauss-Bonnet theorem is only valid for a two-dimensional compact manifold without any border.
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whereχ is the Euler characteristic and g the genus of the surface which characterizes the topol-

ogy of the surface, i.g.: 
g = 0, sphere

g = 1, torus

g = 2, double torus .

Figure 3.17: Sphere (g=0), torus (g=1) and double-torus (g=2).

3.2.2 Monge Parametrization

As we have already said different parametrisations can be used to describe a manifold. A very

useful parametrisationwhen dealing with an almost flat surface is theMonge parametrization.

We take an orthogonal coordinate system {x, y} and the deviation of the manifold from a flat

surface is described by a height function h:

R
2 → R

3 (3.35)

(x, y) 7→ ~r = (x, y, h(x, y)) . (3.36)
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2. Some important parameterizations of surfaces

In order to actually describe a surface, one has to give a parameterization, which is a concrete version of the
mapping (1.1). In this chapter we study a few frequently encountered parameterizations.

2.1. Monge parameterization

2.1.1. Definition and properties

The Monge parameterization is the most straightforward one: A surface is defined by giving its height h over some
plane (usually) as a function of orthonormal coordinates x and y in the plane:

h :

{

R2 ⊃ U → R3

(x, y) #→ h(x, y)
. (2.1)

An illustration is given in Fig. 2.1.
One disadvantage of the Monge parameterization is that it is unable to describe “overhangs”. However, if

one is predominantly interested in describing surfaces which deviate only weakly from a flat plane, then this
parameterization is very useful, particularly because of the existence of a simple small gradient expansion (see
Sec. 2.1.3).

The position vector !r and the two tangent vectors ex and ey are given by

!r =





x
y

h(x, y)



 , ex =
∂!r

∂x
=





1
0
hx



 , ey =
∂!r

∂y
=





0
1
hy



 ,

where an index “x” or “y” on h means partial differentiation of h with respect to this index. Hence, the metric
and its determinant are given by

gij =

(

1 + h2
x hxhy

hxhy 1 + h2
y

)

⇒ g =
∣
∣gij

∣
∣ = 1 + h2

x + h2
y . (2.2)

Note that even though the coordinates in the underlying plane are orthogonal, the metric is generally not diagonal,
and hence the coordinate curves on the surface are generally not orthogonal.

The inverse metric is then

gij =
1

1 + h2
x + h2

y

(

1 + h2
y −hxhy

−hxhy 1 + h2
x

)

.

h

x

y

U

S

Figure 2.1.: Illustration of the Monge
parameterization.

12

Figure 3.18: Illustration of the Monge parametrisation [99].

With this parametrisation, the tangent vectors reads:

ex = (1, 0, ∂xh)

ey = (0, 1, ∂yh) .
(3.37)

This leads to the following expression for the metric tensor gµν :

gµν =

(
1 + (∂xh)

2 ∂xh∂yh

∂xh∂yh 1 + (∂yh)
2

)
(3.38)

and its determinant now reads:

det (gµν) = g = 1 + |∇h|2 (3.39)

where |∇h|2 = (∂xh)
2 + (∂yh)

2.

From the expressions (3.37) and (3.39) of respectively the tangent vectors and the metric

tensor, we derive the expression of the normal unit vector in the Monge parametrization:

~n =
(−∂xh,−∂yh, 1)√

g
=

(−∂xh,−∂yh, 1)√
1 + |∇h|2

. (3.40)
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Now we can derive the expressions of the Mean and Gaussian curvatures by replacing

(3.40) into (3.28) and (3.29):

H =

(
1 + (∂xh)

2
)
∂y∂yh− 2∂xh∂yh∂x∂yh+

(
1 + (∂yh)

2
)
∂y∂yh

(1 + |∇h|2)3/2
(3.41)

K =
∂x∂xh∂y∂yh− (∂x∂yh)

2

(1 + |∇h|2)2
. (3.42)

3.3 Deformations

In addition to the curvature we know from elastic theory that there are two elastic deforma-

tions that may contribute to the energy of a solid: stretching and shearing (see fig. 3.19).

CHAPTER 1. INTRODUCTION

Figure 1.18: Three mesoscopic elastic deformations used to characterize a thin interface:
bending, stretching and shearing.

In liquid interfaces, such as membranes in the liquid state, molecules are free to
move. Consequently, there is no resistance to shearing and we will not study this
kind of deformation. The resistance to stretching is measured by the compression
modulus K. It is defined by the amount of energy EK per unit area needed to
increase a piece of surface A0 of ∆A:

EK =
K

2

(
∆A

A0

)2

. (1.1)

Similarly, the capacity of bending is measured by the bending rigidity modulus
κ and the Gaussian curvature modulus κG defined by

Ecurv = Eκ + EκG = 2κ (H − H0)
2 +

κG

R1R2
, (1.2)

where Ecurv is the energy per unit area needed to bend, R1 and R2 are the two
principal curvature radii seen on Fig. 1.19, H is the mean curvature, given by

H =
1

2

(
1

R1
+

1

R2

)
, (1.3)

and H0 is the spontaneous mean curvature. Due to the liquidity, the spontaneous
mean radius R0 is isotropic and H0 = 1/R0.

1.2. MODEL MEMBRANES AND MECHANICAL PROBING 17

Figure 3.19: Deformations from left to right: bending, stretching, shearing (Iamge from the
Thesis of Camilla Barbetta).

Now that we know which contributions may enter the energy of a membrane let us see

how they are implemented depending on which type of membrane we are considering.

3.4 Long-Range Behaviour of FluidMembranes

3.4.1 TheModel

In 1970, Canham proposed a model for fluid membranes in the special case of red blood cells

[100]. This model was generalised three years later by Helfrich [101]. The Canham-Helfrich

model describes the contribution of the membrane bending to its free energy:
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Fb =

∫
M
ds
{
2κ (H − C0)

2 + κ̄K
}

(3.43)

where H and K are respectively the mean and Gaussian curvatures. C0 is the spontaneous

curvature and κ and κ̄ are the bending coupling constants or bending rigidities. Note that the

bending coupling constants have the dimension of an energy since theGaussian curvature and

the square of the mean curvature have the inverse dimension of a surface and with integrate

over a surface.

The spontaneous curvature C0 translates e.g. the asymmetry between the two leaflets of

the membrane. The spontaneous curvature plays an important role when the membrane has

proteinswith anon-symmetric shapewhichdeforms the two leaflets differently. Therefore, the

spontaneous curvaturemust be included. However, inmost cases, the results one obtainswith

C0 = 0 are accurate in comparison with the experimental data. This justifies the assumption

of a vanishing spontaneous curvature we make in what follows.

The Helrich-Canham free energy without spontaneous curvature is simply:

Fb =

∫
M
ds
{
2κH2 + κ̄K

}
. (3.44)

The bending rigidity κ must be positive for the stability of the membrane. The Canham-

Helfrich free energies (3.44) is invariant under local reparametrisation, i.e. under change of in-

ternal coordinate system, since it contains terms constructed with only geometrical quantities.

This means that the energy of themembrane does only depend on the shape of themembrane

and not on the position of its constituents. The invariance under reparametrisation is directly

connected to the fluid nature of the membrane.

From the Gauss-Bonnet theorem (3.34), we see that the Gaussian bending energy is a con-

stant except if the topology of the membrane changes. The topology may change by fission

or fusion but this is a quite rare event for a phospholipid membrane. The fusion or fission

are controlled by a machinery in biological systems. Therefore the Gaussian bending energy

may be dropped. We are only left with the contribution of the mean curvature to the bending

energy.
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The Helrich-Canham free energy without spontaneous curvature simply reads:

Fb = 2κ

∫
M
dsH2 . (3.45)

The contribution to the total energy comes from the bending deformation, a surface term and

self-avoidance:

F = Fb + Ftension + Fself−avoidance

= 2κ

∫
M
dsH2 + τ

∫
M
ds++

b

2

∫
ds ds′δ

(
~r(s)− ~r(s′)

)
. (3.46)

The number ofmolecules of themembrane being fixed there is no fluctuations in area. There-

fore the tension term vanishes. This is different from the problem of interfaces where the en-

ergy is dominated by surface tension. Self-avoidance term is neglected in what follows.

(a) (b)

Figure 1.4: Physical modelling of red blood cells. (a) The equilibrium shapes of
red blood cells as a function of area difference between the two monolayers of the
lipid bilayer. Electron micrographs on the left fit nicely to theoretical results on
the right. (b) Typical shapes of red blood cells in hydrodynamic shear flow as
simulated with multiple particle collision dynamics.

In fact such a system exists in nature, namely the red blood cell, which has
lost most of its intracellular inventory when converted into the transporter
vehicle as which it is used in the body. In Fig. 1.4 we show results from
the physical modelling of red blood cell shape both in equilibrium and in
shear flow. These results demonstrate that the physical principles for cell
shape and mechanics are indeed amendable to theoretical analysis. One of
the purposes of this text is to introduce the concepts required to deal with
these issues.

1.3 Further reading

For the theory of soft matter physics, there are several excellent books avail-
able, including

• SA Safran, Statistical thermodynamics of surfaces, interfaces, and mem-

10

Figure 3.20: Red blood cell's shapes [102].
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3.4.2 FluidMembranes inMonge Parametrization

To lowest order in the heighth, themean curvature in theMonge Parametrization (3.41) reads:

H =
1

2

(
∂2
xh+ ∂2

yh
)
. (3.47)

With this approximation the free energy reads:

F = 2κ

∫
dxdy

√
g

(
∂2
xh+ ∂2

yh
)2

4

=
κ

2

∫
dxdy

√
1 + (∂xh)

2 + (∂yh)
2 (∂2

xh+ ∂2
yh
)2

(3.48)

≈ κ

2

∫
dxdy

(
∂2
xh+ ∂2

yh
)2

=
κ

2

∫
dxdy

(
∇2h

)2
. (3.49)

In Fourier space:

F =

∫
q
q4h(q)h(−q) =

∫
q
q4|h(q)|2 (3.50)

where we have used h(−q) = h∗(q):

h(q) =

∫
x
h(x)eiq.x . (3.51)

Now,weneed to calculate the thermal average of theheight-height correlation function (in

the following, we will drop the subscript thermal for the average). By definition, this average

reads:

< h(q)h∗(q) > =

∫
Dh |h(q)|2e−F/kBT∫

Dh e−F/kBT
. (3.52)

In the harmonic approximation, this correlation function is easily evaluated because the

free energy is Gaussian:

< x2 > =

∫
dxx2e−αx2∫
dxe−αx2 = − ∂

∂α
ln

(∫
dxe−αx2

)
=

1

2α
. (3.53)
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The height correlation function reads:

< |h(q)|2 > =
kBT

κq4
. (3.54)

Each harmonic mode contributes with a term kBT
2 (equipartition theorem). In real space we

find:

< h(0)h(x) > = kBT

∫
q

1

κq4
∝ L2 . (3.55)

Remark: with a tension term in the free energy Fτ =
∫
q τq

2|h(q)|2, the height correla-
tion functions reads:

< |h(q)|2 > =
kBT

κq4 + τq2
(3.56)

The height fluctuations grow linearly with the size of the membrane. This means that

two-dimensional fluid membranes are crumpled at all temperatures T 6= 0. Including higher

order terms in the fieldh induces a scale dependence in the bending rigiditywhich is computed

using the renormalization group [103]:

κ(L) = κ− 3kBT

4π
ln

(
L

a

)
(3.57)

where L is the membrane size and a correspond to a microscopic lattice size. This equation

shows that the bending rigidity decreases with the size of themembrane. Thus the height fluc-

tuations eq. (3.55) grow even faster and themembrane remains crumpled. However, fromRG

calculation for any dimensionD > 2 a fluid membranes exhibit a phase transition between a

crumpled and a flat phase at finite temperature.

3.5 PolymerizedMembranes

3.5.1 TheModel

Lets us now consider polymerized membranes. Since the connectivity between the molecules

is fixed a network is formed and shearing and stretching appear which affect the energy of the
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membrane. In this section we show how this in-plane elasticity changes the thermodynamical

behaviour and thus the shape of the membrane.

The bending energy is given by:

Fb =
κ

2

∫
d2xCν

µC
µ
ν . (3.58)

This energy is not coordinate independent because of the fixed connectivity. At rest the posi-

tion of a point on the membrane is described by:

~r0(x) = ζ(x, y, 0) = ζx (3.59)

where x ≡ (x, y). If ζ = 0 the membrane is crumpled and if ζ 6= 0 it is flat up to small

fluctuations. The metric tensor reads:

g0µν = ∂µ~r0.∂ν~r0 = ζ2δµν . (3.60)

Due to fluctuations we have a deviation from the ground state ~r0 and the position now reads:

~r(x) = (u(x) + ζx, h(x)) (3.61)

whereu is an in-plane phononfield andh corresponds to out-of-plane height fluctuations. From

elasticity theory we know that the shearing and stretching contributions are given by:

Felastic =

∫
d2x

{
µσ2

αβ +
λ

2
σ2
αα

}
(3.62)

where µ and λ are the Lamé coefficients corresponding respectively to stretching and shearing

deformations and σαβ is the strain tensor given by:

σαβ = ∂α~r.∂β~r − ζδαβ . (3.63)

With this contribution in addition to the bending energy and self-avoidance the total free en-

ergy reads:

F [~r ] =

∫
d2x

{
κ

2
Cβ
αC

α
β + µσ2

αβ +
λ

2
σ2
αα

}
+

b

2

∫
d2x d2y δ(3)(~r(x)− ~r(y))

(3.64)
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3.5.2 Mean FieldTheory

Since the free energy is not purely geometric we re-write it in a more convenient way using ex-

plicitly thefield~r andgeneralize it to aD-dimensionalmembrane embedded in ad-dimensional

space. The free energy is given by:

F [r] =

∫
dDx

{κ
2
(∂µ∂µ~r )

2 + u(∂µ~r · ∂ν~r )2 + v(∂µ~r · ∂µ~r )2 +
τ

2
(∂µ~r · ∂µ~r )

}
(3.65)

where τ is a tension term equivalent of the mass term of the O(n)-model. From this form

of the free energy we see that the equivalent of the order parameter ~φ of the O(n)-model is

∂µ~r and there is no term depending directly on ~r without a derivative. This comes from the

translational invariance coupled with the fact that the field ~r lives in the physical Euclidean

space contrary to the field ~φ. Therefore membrane theory is a said to be a derivative theory.

As a consequence two terms of order ~r 4 appear in the free energy and we have the constraint

∂µ∂ν~r = ∂ν∂µ~r. In the ground state ~r0 we find a mean field effective potential:

U(ζ) = D ζ2
(τ
2
+ ζ2 (u+Dv)

)
(3.66)

and minimizing the potential we find two solutions depending on the sign of τ :

ζ2 =

{
0 : τ ≥ 0

−τ
4(u+Dv) : τ < 0 .

(3.67)

When τ is positive, themembrane is in its high-temperature crumpledphase ζ = 0. Andwhen

τ is negative below T = Tc, the membrane undergoes a phase transition from the crumpled

phase to a low-temperature ordered flat phase ζ 6= 0 (see fig. 3.21) and we have:

τ

2
= −2ζ (u+Dv) (3.68)

and we retrieve Eq. (3.64).

The mean field Landau theory is only valid if we are above the upper critical dimension.

As for theO(n)-model, the upper critical dimension for polymerized membranes isDuc = 4

which is far from the physical caseD = 2. Since the canonical dimension of the couplings u
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UU

t < 0 ⇒ ζ2 �= 0 t ≥ 0 ⇒ ζ2 = 0

Figure 3.21: Themean field potential of polymerizedmembranes as a function of the order
parameter. On the left, the membrane is in its low-temperature flat phase and on the right

the membrane is in a high-temperature crumpled phase.

and v is:

[u] = [v] = D − 4 (3.69)

they are of order ε = 4 −D in the vicinity of the upper critical dimension. This means that

one can use a weak-coupling perturbative expansion in u and v in the vicinity ofDuc.
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3.5.3 Perturbative RG for the Crumpled-to-Flat Transition

From the free energy eq. (3.65) Paczuski et al. [104] derived the flow equations of the couplings

u and v within a weak-coupling ε-expansion:

βu = −εu+
1

48π2

{
(d+ 21)u2 + 20uv + 4v2

}
(3.70)

βv = −εv +
1

48π2

{
d+ 15

2
u2 + (6d+ 34)uv + (12d+ 14)v2

}
. (3.71)

The stability of the fixed points of these equations depend on the dimension d:

• for d > dc(D = 4) = 219: there is one and only one non-trivial infrared stable fixed

point corresponding to the crumpled-flat transition. The transition is of second order

and we can get the critical exponents at order ε. Note that the anomalous dimension η

is vanishing because it is of order ε2.

• for d < dc: the stable fixed point disappears and the transition becomes of first order

induced by fluctuations.

The important question here iswhether the crumpled-flat transition of a two-dimensional

membrane in three-dimensional space is a first or a second order transition. This information

cannot be extracted from this computation since takingD = 2 gives an ε = 2 which means

that one needs much higher, probably five or six, loop orders to get accurate results.

3.5.4 The normal-normal Correlation Function in the Harmonic Approxima-

tion

Below the critical temperature, the membrane is flat. But unless the membrane is at zero tem-

perature, it is not completely flat because of thermal fluctuations. At finite temperatures, there

is a competition between the energy that flattens the membrane and the entropy that bends

it. This induces ripples. The normal-normal correlation functionGn(~r ) =< ~n(~r ).~n(0) >

characterizes the flatness of the membrane. For a completely flat membrane the correlation is

equal to 1 and for almost flat one 0 < Gn < 1.
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We recall that the normal unit vector in the Monge parametrisation is given by:

~n =
(−∂xh,−∂yh, 1)√

1 + |∇h|2
(3.72)

and to the second order in h:

~n =

(
−∂xh,−∂yh, 1−

1

2
|∇h|2

)
+ o(h3) (3.73)

In this approximation, the scalar product ~n(r1).~n(r2) reads:

~n(~r1).~n(~r2) = 1 + ∂xh(x1).∂xh(x2) + ∂yh(x1).∂yh(x2)

− 1

2

{
(∂xh(x1))

2 + (∂yh(x1))
2 + (∂xh(x2))

2 + (∂yh(x2))
2
}

= 1− 1

2

{
|∂x(h(x1)− h(x2))|2 + |∂y(h(x1)− h(x2))|2

}
(3.74)

where ∂x = ∂
∂x .

In Fourier space, the height function h reads:

h(x) =

∫
q
eiq.xh(q) (3.75)

where
∫
q =

∫ dDq
(2π)D

withD the membrane dimension (hereD = 2). We start with the part

with derivative over x of eq. (3.74):

∂x(h(x1)− h(x2)) = ∂x

∫
q
h(q) (eiq.x1 − eiq.x2)

=

∫
q
h(q)qx (e

iq.x1 − eiq.x2) (3.76)

which leads to:

|∂x(h(x1)− h(x2))|2 =
∫
q,q′

h(q)h∗(q′)qxq
′
x (e

iq.x1 − eiq.x2)
(
e−iq

′.x1 − e−iq
′.x2

)
(3.77)
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The average contains two different averages a spatial and a thermal average. Lets start with

the spatial average:

< |∂x(h(x1)− h(x2))|2 >x=

∫
x1,x2

δ(x− (x1 − x2))

∫
q,q′

h(q)h∗(q′)qxq
′
x

× (eiq.x1 − eiq.x2)
(
e−iq

′.x1 − e−iq
′.x2

)
=

∫
x1

∫
q,q′

h(q)h∗(q′)qxq
′
x

(
eiq.x1 − eiq.(x1−x)

)(
e−iq

′.x1 − e−iq
′.(x1−x)

)
=

∫
r1

∫
q,q′

h(q)h∗(q′)qxq
′
xe

i(q−q ′).x1

(
1− e−iq.x)

)(
1− eiq

′.x
)

=

∫
q,q′

δ(q − q ′)h(q)h∗(q′)qxq
′
x

(
1− e−iq.x)

)(
1− eiq

′.x
)

=

∫
q
h(q)h∗(q)q2x

(
1− e−iq.x

)
(1− eiq.x)

=

∫
q
h(q)h∗(q)q2x {2− 2 cos (q.x)} (3.78)

Similarly< |∂y(h(x1)− h(x2))|2 >x reads:

< |∂y(h(x1)− h(x2))|2 >x = 2

∫
q
h(q)h∗(q)q2y {1− cos (q.x)} . (3.79)

Replacing these results in the normal-normal correlation function leads to:

< ~n(~r).~n(0) >= 1−
∫
q
< |h(q)|2 >thermal q

2 (1− cos (q.x)) (3.80)

where q = |q|.

In the harmonic approximation the height correlation function reads:

< |h(q)|2 >thermal=
kBT

κq4
(3.81)

which results from the equipartition theorem. The normal-normal correlation function in

direct space is given by:

< ~n(r).~n(0) >= 1−
∫
q

kBT

κq2
(1− cos(q.x)) . (3.82)
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Polymerized membranes in the harmonic approximation have divergent height fluctua-

tions < |h|2 > which means, that the out-of-plane fluctuations grow linearly with the size,

leading to the destruction of any finite size membrane. Similarly, the normal correlation func-

tion behaves as < ~n(r).~n(0) >∝ ln(r). This means that the fluctuations destroy the flat

phase which is in contradictionwith the result from the ε-expansion. To avoid this divergence,

we need to take into account the coupling between bending and stretching, i.e. go beyond the

harmonic approximation. This result of the harmonic approximation is just an extension of

the result found by Rudolf Peierls for one-dimensional systems [105].

3.5.5 Self-Consistent Screening Approximation (SCSA)

In the previous section, we saw that in the harmonic approximation, the flat phase cannot ex-

ists because of fluctuations. In this section, we show how this situation changes when we take

into account the coupling between the out-of-plane bending and the in-plane elasticity and

we recover the existence of the phase transition as in the ε-expansion. Nelson and Peliti [106]

found that the coupling between the out-of-plane bending and in-plane phonons renormal-

ized the bending rigidityκ ∝ q−η with an anomalous dimension η = 1. The free energy now

reads:

F =

∫
x

{
κ

2
(∇2~h)2 + µσ2

αβ +
λ

2
σ2
αα

}
(3.83)

wherewehavekept only thedominant term in thebendingpart. Within theMongeparametriza-

tion the strain tensor reads:

σαβ = ∂αuβ + ∂βuα + ∂α~h.∂β~h+ ∂αu.∂βu (3.84)

where~h is now a d−D vector field. The last term is of higher order inu andwill be neglected

in the following 7. The term ∂α~h.∂β~h couples the out-of-plane bending with the in-plane

elasticity. When this term is neglected, we are in the harmonic approximation. Including this

termmakes the problem highly non-linear.

This free energy is quadratic in the phonon modes uα. Hence, we can perform a Gaus-

sian integration to eliminates these modes [106]. The Gaussian integration can be efficiently

7This termmust be included for the second order ε2 of the weak-coupling ε-expansion.
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performed by observing that ∂α~h.∂β~h can be written, as can any symmetric second-rank two-

dimensional tensor, in the form [107]:

∂α~h.∂β~h = ∂αvβ + ∂βvα + P⊥
αβf (3.85)

where vα is a suitable two-dimensional vector field,P⊥
αβ = (∇2)−1εαγεβσ∂γ∂σ is the trans-

verse projector and f a scalar function. In Fourier space after integration, the effective free

energy reads:

Feff =
κ

2

∫
q
q4|h(q)|2 + 1

4(d−D)

∫
q1,q2,q3,q4

δ (q1 + q2 + q3 + q4)

×Rαβ,γδ(q1 + q2) q1αq2βq3γq4δ
~h(q1).~h(q2)~h(q3).~h(q4) .

(3.86)

The four-rank tensorR is transverse to q and can be written as:

R(p) = K0N(q) + µM(q) (3.87)

Nαβ,γδ =
1

D − 1
P⊥
αβP⊥

γδ (3.88)

Mαβ,γδ =
1

2

(
P⊥
αγP⊥

βδ + P⊥
αδP⊥

βγ

)
−Nαβ,γδ (3.89)

where the transverse projector is expressed in Fourier space P⊥
αβ = δαβ − qαqβ

q 2 and K0 a

combination of the Lamé coefficientK0 =
µ(2µ+Dλ)
(2µ+λ) .

We are interested in the height correlation function:

< hα(q)h
∗
β(q) >= δαβGh(q) (3.90)

where G−1
h = κR(q)q

4 = G−1
0 + Σ−1, κR is the renormalized bending rigidity, G0 the

correlation function in the harmonic approximationG−1
0 = κq4 andΣ the self-energy. The

SCSA is determined trough a set of coupled integral equations for the self-energyΣ:

Σ(p) =
2

(d−D)
pαpβpγpδ

∫
q
R̃αβ,γδ(q)Gh(p− q) (3.91)

where R̃ is the screened four-rank tensor:

R̃ = R(q)−R(q)Π(q)R̃(q) (3.92)
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whereΠ is the vacuum polarization:

Παβ,γδ(q) =

∫
p
pαpβpγpδGh(p)Gh(q − p) (3.93)

The only contribution of the vacuum polarization comes from the component Πsym that is

proportional to the symmetric tensor S = δαβδγδ + δαγδβδ + δαδδβγ :

Πsym = I(q)S (3.94)

I(q) =
1

8

∫
p
p2(q − p)2G(q)G(q − p) (3.95)

and after a bit of calculus we find for the four-rank tensor that obeys:

R̃(q) = µR(q)M +KR(q)N (3.96)

where:

µR(q) =
µ

1 + 2µI(q)
(3.97)

KR(q) =
K0

1 + (D + 1)K0I(q)
(3.98)

and the self-energy reads:

Σ(p) =
2

d−D

∫
q

KR(q) + (D − 2)µR(q)

D − 1

[
pP⊥(q)p

]2
Gh(q − p) (3.99)

To solve these equations, we start with the correlation function G0 in the harmonic ap-

proximation (3.81) which we use to compute the integral I(q) (3.95). Then we injected this

result in the expression of the renormalized couplings µR (3.97) and KR (3.98) which serve

to calculate the self-energy (3.99). This in turn is used to compute the new expression of the

correlation function (3.90) and we restart the iteration until convergence is reached.
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Assuming that G(q) ≈ Σ(q) ≈ A/q4−η in the long-wavelength limit, with A a non-

universal amplitude and η the anomalous dimension, these equations (3.97-3.99) admit an an-

alytic solution and we find for the anomalous dimension [108]:

d−D =
2

η
D(D − 1)

Γ(1 + η/2)Γ(2− η)Γ(η +D)Γ(2− η/2)

Γ
(
D+η
2

)
Γ(2− η +D/2)Γ(η +D/2)Γ

(
D+4−η

2

) (3.100)

where Γ is the Euler Gamma function Γ(z) =
∞∫
0

e−ttz−1dt and the anomalous dimension

ηu of the phonon modes results from the rotational invariance:

ηu = 4−D − 2η . (3.101)

In the physically interesting case D = 2 and d = 3, Le Doussal & Radzihovsky found

η = 0.821 and ηu = 0.358 [108]. This means that the bending rigidity has an upward

renormalization κR(q) ∼ q−η which stabilizes the flat phase.

3.5.6 Conclusion

In this chapter we have discussed the long-range behaviour of both fluid and polymerized

membranes. More specifically we have shown why fluid membranes are always crumpled and

how the fixed-connectivity enriches the phase diagram of polymerized membranes by the ap-

pearance of a phase transition between the crumpled and flat phases. The existence of this

long-range ordered flat phase seemed to be in apparent violation of the Mermin-Wagner the-

orem [79]. We have shown that the coupling between the out-of-plane bending and in-plane

phononmodes stabilizes the flat phase. This results in the existence of long-range interactions

which is beyond the domain of applicability of the Mermin-Wagner theorem.

We have presented some of the approaches used to tackle the problem of the transition be-

tween the crumpled and flat phases. The weak-coupling ε-expansion predicts a second-order

transition for d > dc = 219 in the vicinity of the upper critical dimensionDuc = 4 and be-

low dc the transition becomes first-order. However this leaves open the question for physical

membranes (D = 2 and d = 3) where one has ε = 2 which is out-of-reach of a one-loop

computation [104]. Moreover some Monte Carlo simulations predict a second-order transi-

tion (see [98, Ch. 5 and 12] for reviews) whereas more recent simulations predict a first-order

behaviour [109, 110].
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The self-consistent screening approximationhas been able to compute the exponents both

at the crumpled-tubule transition and in the flat phase [108]. However the approach relies on

a large-d expansionmakes doubtful the quantitative predictions for smalld and impossible the

determination of the dc(D) line.

3.6 NPRGApproach to PolymerizedMembranes

To tackle the problem of the order of the phase transition as well as the behaviour in the flat

phase of physical membranes (D = 2 and d = 3) we use a non-perturbative renormalization

group approach. With this approachwe are able to compute the critical exponents in thewhole

(d,D) plane and more importantly to determine the dc(D) line separating a second-order

transition from a first-order one. In general the effective average action is a functional of all

the invariants of the system. WithO(d) rotational and T (D) translational invariance Γk for

polymerized membranes reads in the lowest order of the derivative expansion:

Γk[~r] =

∫
dDx

{
Zk(uµν)

2
(∂µ∂µ~r)

2 + U(uµν) + o(∂6)

}
(3.102)

where uµν = ∂µ~r.∂ν~r is the strain tensor, Zk corresponds to the field renormalization, U

the running potential and the self-avoidance is neglected again. The tensor structure of uµν

imposes that the potential is a function of an infinite number of invariants which are polyno-

mials of the traces of (uµν)
n. The tensor structure of uµν imposes that the effective potential

depend on a infinite number of invariantswhich are a polynomial of the trace of (uµν)
n. Since

the dimensionD of themembrane is finite, one can show that the tracesTr
[(
uµν)

D+i
)]
, with

i ≥ 1, can be written as a combination of the trace with smaller powers of the tensor uµν , e.g.

forD = 2 we have the relation Tr[(uµν)
3] = 3Tr[(uµν)

2]Tr[uµν ] − (Tr[uµν ])
3. With this

simplification, the effective potential reads:

U(uµν) =
∑

n1,...,nD≥0

an1,...,nD (Tr [(uµν)])
n1 . . .

(
Tr
[
(uµν)

D
])nD

. (3.103)

Deriving the flow equations for a potential with a large number of invariants can be very com-

plicated, except in some systems like in frustrated magnets [32]. This is even more difficult in

our case of polymerized membranes since we are dealing with a derivative theory. Therefore

in addition to the derivative expansion, we have performed a field expansion of the potential.
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To know which terms one has at each order of the expansion is a bit more complicated than

in usual systems like the O(n)-model where at each order there is only one new term which

is just the field at some even power. To find which term to add at each order we can use the

Cayley-Hamilton theorem that states that every square matrix satisfies its own characteristic

polynomial:

p(λ) = det(λID − uµν) (3.104)

where ID is theD-dimensional identity matrix. Replacing λ by the matrix uµν yields the zero

matrix:

p(uµν) = 0 (3.105)

and taking the trace of this polynomial provides directly the invariants. Indeed each term of

the polynomial corresponds to an invariant. Toderive the expression of the characteristic poly-

nomial for a 2 × 2 matrix is straightforward but the greater the size of the matrix the more

complicated and longer it becomes to derive it. Fortunately there exists method, called the

Faddeev-Leverrier algorithm8 that considerably simplifies this task (see Appendix B).

The invariants at the second and third order are respectively given by:
Tr[(uµν)

2], Tr[(uµν)]
2

Tr[(uµν)
3], Tr[(uµν)

2]Tr[(uµν)], Tr[(uµν)]
3

(3.106)

We start with an ansatz for the effective average action at the lowest order of the field expansion

r4:

Γk[~r ] =

∫
dDx

{
Zk

2
(∂µ∂µ~r )

2 + uTr
[
(uµν)

2
]
+ v Tr [uµν ]

2

}
(3.107)

We are interested in the critical behaviour of the membrane and for convergence reasons it

is better to expand the potential around the minimum configuration ζ instead of the origin.

8The Faddeev-Leverrier algorithm has first discovered by Leverrier in 1840 and has since be re-discoveredmany
times: Horst (1935), Souriau (1948), Frame (1949), Faddeev and Sorminskii (1949)
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With this change the effective average action reads:

Γk[~r ] =

∫
dDx

{
Zk

2

(
∂2~r

)2
+ u

(
∂µ~r.∂ν~r − δµνζ

2
)2

+ v
(
∂µ~r.∂µ~r −Dζ2

)2}
(3.108)

where∂2 = ∂µ∂
µ,u andv the elastic coupling constants corresponding respectively to stretch-

ing and shearing. For thermodynamical stability we must have u > 0 and u+Dv > 0.

We want to derive the flow equations of the coupling constants. Therefore we first need

the expression of the propagator and thus of the two-point correlation function Γ
(2)
k . Next

section is dedicated to this task.

3.6.1 The propagator in Fourier Space

For a reason that we will see later the expression of the propagator is derived in a uniform

configuration λ different from the minimum configuration ζ:

~rλ(x) = λxµ eµ (3.109)

which reads in Fourier space:

~rλ(q) = −iλ eµ

(
d

dqµ
δ(q)

)
. (3.110)

The second functional derivative Γ
(2)
k taken in this configuration λ reads:

Γ
(2)
k (q, i, q′, j)∣∣

λ

= δ(q + q′)
{
Zkq

4 + 4q2λ2u θ(D − i) + 4q2(u+ vD)
(
λ2 − ζ2

)
+4λ2(u+ 2v)qiqj θ(D − i)θ(D − j)

}
(3.111)

where θ is the Heaviside step function. The inverse propagator can be written in the form:(
Γ
(2)
k +Rk

)
(q, i, q′, j) = A(P⊥

q )ij +B(P ‖
q )ij (3.112)
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whereA andB are constants independent on the momenta p and the projectors P⊥
q and P

‖
q

are given by:

(P⊥
q )ij = δij −

pipj
p 2

(3.113)

(P ‖
q )ij =

pipj
p 2

(3.114)

with the following properties:

P ‖
q .P

⊥
q = 0 (3.115)

P ‖
q + P⊥

q = ID (3.116)

where ID is theD-dimensional identity matrix. A matrixM of the form (3.112) can easily be

inverted and its inverse matrixM−1 is of the same form:

M−1 = A′P⊥
q +B′P ‖

q (3.117)

with: 
A′ =

1

A

B′ =
1

B

(3.118)

With this structure of the inverse propagator, the propagatorP in Fourier space reads:

Pij(q, q
′)|λ = δ(q + q′)

{
G

(λ)
0 (q)δij θ(i−D − 1)

+θ(D − i)θ(D − j)

(
G

(λ)
1 (q)

(
δij −

qiqj
q2

)
+G

(λ)
2 (q)

qiqj
q2

)} (3.119)

where:
G

(λ)
0 (q) =

(
Zkq

4 +Rk(q) + 4q2(u+ vD)
(
λ2 − ζ2

))−1

G
(λ)
1 (q) =

(
Zkq

4 +Rk(q) + 4q2λ2u+ 4q2(u+ vD)
(
λ2 − ζ2

))−1

G
(λ)
2 (q) =

(
Zkq

4 +Rk(q) + 8q2λ2(u+ v) + 4q2(u+ vD)
(
λ2 − ζ2

))−1
.

(3.120)
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The functionsGi are associated to the different excitationmodes of themembrane around the

flat phase:

• G0: (d−D)Goldstone or capillary modes propagating outside of the membrane with

a vanishing mass at the minimum λ = ζ

• G1: (D − 1) phonon modes inside the membrane with massm1: m
2
1 = 4ζ2u

• G2: one phonon mode inside the membrane with massm2: m
2
2 = 8ζ2(u+ v) .

We can now derive the flow equations for the running coupling constants. We start with

the coupling ζ in the next section.

3.6.2 TheMinimumConfiguration ζ

The configuration ζ that minimizes the effective action is given by:

~rmin(x) = ζ xµ eµ (3.121)

and in Fourier space it reads:

~rmin(q) = −i ζ eµ
(

d

dqµ
δ(q)

)
. (3.122)

By definition the first functional derivative of the effective action is vanishing at theminimum:

Γ
(1)
k (p, i)∣∣

min

=
δΓk[~r ]

δri(p)
∣∣∣
min

= 0 (3.123)

whose flow equation reads:

∂t

(
Γ
(1)
k (p, i)∣∣

min

)
= ∂tΓ

(1)
k (p, i)∣∣

min

+
∑
j

∫
q
∂trj(q)∣∣

min

Γ
(2)
k (p, i, q, j)|min

0 = ∂tΓ
(1)
k (p, i)∣∣

min

+ i
∑
j

∂tζ θ(D − j)

∫
q

d

dqj
Γ
(2)
k (p, i, q, j)∣∣

min

(3.124)

where the two terms on the right hand side are both vanishing and we cannot define from this

the flow of ζ . This is completely different from theO(n)-model and is directly related to the
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derivative character of the theory. To overcome this problemwe take the effective action in the

configuration λ:

Γk[~rλ] = V D(u+Dv)
(
λ2 − ζ2

)2
= V Uk(uµν)

∣∣
λ

(3.125)

where V is the volume. In what follow the potential in the configuration λ is written Uk(λ)

for simplicity. Deriving the potentialUk with respect to λ and taking λ = ζ we find:

∂Uk

∂λ
∣∣∣
λ=ζ

= 0 (3.126)

which leads to:

∂t

∂Uk

∂λ
∣∣∣
λ=ζ

 = 0 = ∂t

(
∂Uk

∂λ

)∣∣∣
λ=ζ

+ ∂tζ
∂2Uk

∂λ2
∣∣∣
λ=ζ

. (3.127)

From this we find the formal expression of the flow of ζ which reads:

∂tζ = −
(∂λ∂tUk)λ=ζ(
∂2
λUk

)
λ=ζ

= −
(∂λ∂tUk)λ=ζ

8Dζ2 (u+Dv)λ=ζ

. (3.128)

Now we have to compute the flow of the potential which reads:

∂tUk(λ) =
1

2
∂̃tTr

{∫
q
ln
(
Γ
(2)
k +Rk

)
(q,−q)|λ

}
(3.129)

where ∂̃t = ∂tRk
∂

∂Rk
.

Taking the derivative of ∂tUk with respect to λwe find:

∂λ∂tUk(λ) =
1

2
∂̃tTr

{∫
q

∑
l

(
Γ
(2)
k +Rk

)−1
(q, i,−q, l)|λ∂λΓ

(2)
k (q, l,−q, j)|λ

}
(3.130)
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Replacing the expression of the propagator (3.119) in this equation and taking λ = ζ we find

for the flow equation of ζ:

∂tζ =
2AD

D(u+Dv)ζ

{
(3u+ (D + 2)v)LD+2

001 [{mi}]

+(D − 1)(2u+Dv)LD+2
010 [{mi}] + (d−D)(u+Dv)LD+2

100 [{mi}]
} (3.131)

where LD+α
abc is a threshold function and its expression will be given in the next section and

{mi} = m1,m2,m3. As in theO(n)-model the non-perturbative content is encoded in the

threshold functions.

3.6.3 The Flow Equations of u and v and the Anomalous Dimension ηk

The definitions of the coupling constants u and v are given by:

u =
1

ζ2
lim
p→0

∂

∂p2
Γ
(2)
k (p,D,−p,D)|min (3.132)

v =
1

ζ2
lim
p→0

∂

∂p2D
Γ
(2)
k (p,D,−p,D)|min −

1

2
u (3.133)

We first derive the formal expression of the flow equation of u:

∂tu = lim
p→0

∂

∂p2

{
1

ζ2
∂tΓ

(2)
k (p,D,−p,D)|min −

2

ζ2
∂tζ Γ

(2)
k (p,D,−p,D)|min

+
1

ζ2

∑
j

∫
q
∂trj(q)|minΓ

(3)
k (p,D,−p,D, q, j)

}

=
1

ζ2
lim
p→0

∂

∂p2
∂tΓ

(2)
k (p,D,−p,D)|min +

2

ζ
∂tζ(u+Dv) (3.134)

and similarly for v we find:

∂tv = −1

ζ
∂tζ(u+ (D + 3)v) +

1

8ζ2

{
lim
p→0

∂

∂p2D
∂tΓ

(2)
k (p,D,−p,D)|min

− lim
p→0

∂

∂p2
∂tΓ

(2)
k (p,D,−p,D)|min

}
.

(3.135)
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We are left with the computation of the flow of Γ
(2)
k that reads in a graphical form:

∂tΓ
(2)
k (p,−p) = −1

2

p −p
•

−
p −p

•

(3.136)

and after some computation we finally get:

∂tu =
16AD

D(D + 2)

{
2(3u+ 2v)2LD+4

002 [{mi}] + 4Du(u+ v)LD+4
011 [{mi}]

+u2(D2 + 2D − 8)LD+4
020 [{mi}] + 2u2LD+4

200 [{mi}]
} (3.137)

∂tv =
16AD

D(D + 2)

{
−4u(u+ v)LD+4

011 [{mi}]

+ (d−D)
(
u2 + 2(D + 2)uv +D(D + 2)v2

)
LD+4
200 [{mi}]

+
(
(3D + 2)u2 + (D2 +D − 2)(4uv +Dv2)

)
LD+4
020 [{mi}]

+
(
9u2 + 6(D + 4)uv + (D2 + 6D + 12)v2

)
LD+4
002 [{mi}]

}
.

(3.138)

To find a fixed-point we need to work with dimensionless couplings. Therefore we will rescale

the dimensionful couplings:

Zk ∼ k−ηk

ζ2 = kD−2+ηk ζ̄2

u = kD−4+2ηk ū

v = kD−4+2ηk v̄

Rk(q
2) = Zkq

4r
(
y = q2

k2

)
.

(3.139)

We only give the expression of the flow equations at the lowest order of the field expan-

sions. Otherwise, they would be too long to be displayed. The flow equations of ζ2, u and v
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at the order r4 read (we have dropped the bar over the dimensionless couplings):

∂tζ
2 = −(D − 2 + ηk)ζ

2 +
4AD

D(u+Dv)

{
(3u+ (D + 2)v)LD+2

001

+(D − 1)(2u+Dv)LD+2
010 + (d−D)(u+Dv)LD+2

100

} (3.140)

∂tu = (D − 4 + 2ηk)u+
16AD

D(D + 2)

{
2(3u+ 2v)2LD+4

002

+4Du(u+ v)LD+4
011 + u2(D2 + 2D − 8)LD+4

020 + 2u2LD+4
200

} (3.141)

∂tv = (D − 4 + 2ηk)v +
16AD

D(D + 2)

{
−4u(u+ v)LD+4

011

+ (d−D)
(
u2 + 2(D + 2)uv +D(D + 2)v2

)
LD+4
200

+
(
(3D + 2)u2 + (D2 +D − 2)(4uv +Dv2)

)
LD+4
020

+
(
9u2 + 6(D + 4)uv + (D2 + 6D + 12)v2

)
LD+4
002

}
(3.142)

and the anomalous dimension ηk = −d lnZk/dt is given by:

ηk =
25ζ2AD

D(D + 2)

{
2(D − 1)u2

(
KD+4

120 +KD+4
210

)
+ 24(u+ v)2

(
KD+4

102 +KD+4
201

)
− 4

((
D2 +D + 4

)
u2 +

(
D2 + 3D + 2

)
v2 + 4(D + 2)uv

)
LD+2
101

+
(
3D2 − 5D + 2

)
u2LD+2

110 + 16
(
D2 − 3D + 2

)
ζ4u4LD+4

120

+
(
D2 − 3D + 2

)
u2ND+2

120 +
(
D2 + 9D − 10

)
u2ND+2

210 − 210(D − 1)ζ8u6LD+6
130

− 3× 216ζ8(u+ v)6LD+6
103 + 28ζ4(u+ v)3(5(D + 2)u+ (D + 14)v)LD+4

102

− 4(D − 1)u2
(
MD+4

130 +MD+4
310

)
− 3× 24(u+ v)2

(
MD+4

103 +MD+4
301

)
− 27(D − 1)ζ4u4ND+4

130 + 4(u+ v)(5(D + 2)u+ (D + 14)v)ND+2
102

−3× 211ζ4(u+ v)4ND+4
103 + 4(u+ v)((D + 14)u+ 5(D + 2)v)ND+2

201

}
(3.143)
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whereAD = 2−D−1π−D/2
Γ[D/2] and the threshold functionsL,M andN read:

LD+α
abc [mi=0,1,2] = − 1

4AD
∂̃t

∫
q
qα
(
P +m2

0

)−a

×
(
P + q2m2

1

)−b (
P + q2m2

2

)−c
(3.144)

MD+α
abc [mi=0,1,2] = − 1

4AD
∂̃t

∫
q
qα+2

(
∂P

∂q2

)(
P + q2m2

0

)−a

×
(
P + q2m2

1

)−b (
P + q2m2

2

)−c
(3.145)

ND+α
abc [mi=0,1,2] = − 1

4AD
∂̃t

∫
q
qα+2

(
∂P

∂q2

)2 (
P + q2m2

0

)−a

×
(
P + q2m2

1

)−b (
P + q2m2

2

)−c

(3.146)

whereP = Zkq
4+Rk andm

2
i masses that are given respectively by 0, 4uζ

2 and 8(u+v)ζ2.

The threshold functions control the relative role of the differentmodes, phonons and capillary

waves, within thRGflow. The vanishingmassmode is associatedwith the (d−D) transversal

Goldstone capillary modes and the D massive modes split into (D − 1) modes with mass

m1 and one mode with massm2. The set of equations (3.140 - 3.143) have been derived by

Kownacki and Mouhanna [53]. The results, which we will discuss later, obtained with the

lowest order field expansion still had some unanswered questions. Therefore we decided to

go beyond and do an expansion up to the eight power of the field r8. The method presented

above becomes to heavy when adding higher orders and we used a different one to derive the

flow equations. This method is presented in the next section.

3.6.4 Derivation of the Flow Equations

3.6.4.1 The Effective Action

To derive the flow equations of the coupling constant at the sixth and eight order we use a gen-

eral configuration Λ which is given below and we keep the formal expression of the potential

as long as possible. The general effective action in a formal way is given by:

Γk[~r] = Γ
(Z)
k [r] + Γ(U)[r]

where the first term corresponds to the kinetic part and the second term to the potential part.
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As usual we need the propagator and thus the second functional derivative of the effective

average action. Let us start with the kinetic part Γ(Z) whose second functional derivative in

Fourier space reads:

δ2Γ
(Z)
k

δri(q)δrj(q′)
= δ(q + q′)δijZkq

4 . (3.147)

Now let us look at the second part. We first calculate it in real space and then in Fourier space.

The first functional derivative reads:

δΓ
(U)
k

δri(x)
=

δ

δri(x)

∫
dDy Uk(∂r)

δΓ
(U)
k

δri(x)
= −∂α

(
δUk

δ (∂αri(x))

)
(3.148)

then we derive it again and find:

δ2Γ
(U)
k

δri(x)δrj(y)
= −∂α

(
δ2Uk

δ (∂αri(x)) δ (∂βrj(y))

)
∂β (δ(x− y))

− δ2Uk

δ (∂αri(x)) δ (∂βrj(y))
∂α∂β (δ(x− y)) .

(3.149)

In factUk is a function of uαβ = gαβ − ζ2δαβ where the metric is equal to gαβ = ∂α~r.∂β~r.

Therefore the first derivative ofUk with respect to ∂µr
i is given by:

δUk

δ (∂µri)
=

δUk

δ (uαβ)

δuαβ
δ (∂µri)

=
δUk

δ (uαβ)

(
δαµ∂βr

i + δµβ∂αr
i
)

=
δUk

δ (uµα)
∂αr

i +
δUk

δ (uαµ)
∂αr

i (3.150)
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and the second derivative reads:

δ2Uk

δ (∂µri) δ (∂βrj)
=

δ2Uk

δ (uβµ) δ (uασ)
∂µr

j∂σr
i +

δ2Uk

δ (uµβ) δ (uασ)
∂µr

j∂σr
i

+
δ2Uk

δ (uβµ) δ (uσα)
∂µr

j∂σr
i +

δ2Uk

δ (uµβ) δ (uσα)
∂µr

j∂σr
i

+
δUk

δ (uαβ)
δij +

δUk

δ (uβα)
δij .

(3.151)

Now we must take these derivatives eqs. (3.150) and (3.151) in the configuration Λ defined be-

low.

3.6.4.2 The ConfigurationΛ

We consider a more general flat phase configurationΛ given by:

~rΛ = Λαβxαeβ (3.152)

whereΛαβ is aD ×Dmatrix. This configuration is chosen so that:
∂α~r = Λαβ~eβ

∂αr
i
Λ = Λαiθ(D − i)

uΛαβ = (Λ2)αβ − ζ2δαβ

∂α∂β~rΛ = 0 .

(3.153)

In this configuration the second derivative ofUk (3.151) reads:(
δ2Uk

δ (∂αri) δ (∂βrj)

)∣∣
Λ

= ΛµjΛσiθ(D − i)θ(D − j)

{
δ2Uk

δ (uβµ) δ (uασ)

+
δ2Uk

δ (uµβ) δ (uασ)
+

δ2Uk

δ (uβµ) δ (uσα)
+

δ2Uk

δ (uµβ) δ (uσα)

}∣∣
Λ

+ δij

{
δUk

δ (uαβ)
+

δUk

δ (uβα)

}∣∣
Λ

(3.154)
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which for the potential part Γ
(U)
k leads to:(

δ2Γ
(U)
k

δ (∂αri(x)) δ (∂βrj(y))

)
∣∣
Λ

= −ΛµjΛσiθ(D − i)θ(D − j)∂α∂β (δ(x− y))×

{
δ2Uk

δ (uβµ) δ (uασ)
+

δ2Uk

δ (uµβ) δ (uασ)
+

δ2Uk

δ (uβµ) δ (uσα)
+

δ2Uk

δ (uµβ) δ (uσα)

}∣∣
Λ

− δij∂α∂β (δ(x− y))

{
δUk

δ (uαβ)
+

δUk

δ (uβα)

}∣∣
Λ

(3.155)

and in Fourier space this becomes:(
δ2Γ

(U)
k

δri(q)δrj(q′)

)
|Λ

= ΛµjΛσi θ(D − i)θ(D − j)qα qβ δ(q + q′)×

{
δ2Uk

δ (uβµ) δ (uασ)
+

δ2Uk

δ (uµβ) δ (uασ)
+

δ2Uk

δ (uβµ) δ (uσα)
+

δ2Uk

δ (uµβ) δ (uσα)

}∣∣
Λ

+ 2δijqαqβδ(q + q′)

(
δUk

δ (uαβ)

)∣∣
Λ

.

(3.156)

To simplify the notations in what follow we define:

Ueff = Uk

(
uΛαβ = (Λ2)αβ − ζ2δαβ

)
. (3.157)

The potentialUk (uαβ) is a function of Tr[u], Tr
[
u2
]
, . . .We can show that, for a (D ×D)

matrix u and ∀i ≥ 1 the trace Tr
[
uD+i

]
is a polynomial function of Tr[u], . . ., Tr

[
uD
]
. The

potentialUk is then given by:

Uk (uαβ) =
∑

n1,...,nD≥0

a[n1, . . . , nD] (Tr [u])
n1 . . .

(
Tr
[
uD
])nD

=
∑
nα

a[nα]T
n1
1 . . . TnD

D (3.158)
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where a[nα] = a[n1, . . . , nD] and Tr [u
n] = Tn and the effective potentialUeff reads:

Ueff =
∑
nα

a[nα] t
n1
1 (Λ) . . . tnD

D (Λ) (3.159)

where tn(Λ) = Tr
[(
uΛ
)n]

= Tr
[(
Λ2 − ζ2

)n]
and where uΛ is given in eq.(3.153) .

For the potentialUk we need the derivatives of Tn with respect to the tensor uαβ :

δTn

δuαβ
=

δ

δuαβ
(ua1a2ua2a3 . . . uana1)

= δαa1δβa2ua2a3 . . . uana1 + . . .+ δαanδβa1ua1a2 . . . uan−1an

= n
[
un−1

]
βα

(3.160)

which leads to:

δUk

δuαβ
=

D∑
n=1

δUk

δTn

δTn

δuαβ

δUk

δuαβ
=

D∑
n=1

δUk

δTn
n
[
un−1

]
βα

(3.161)

and to:

δ2Uk

δuασδuβµ
=

δ

δuασ

(
D∑

n=1

δUk

δTn
n
[
un−1

]
µβ

)

=

D∑
n,m=1

nm
δ2Uk

δTmδTn

[
un−1

]
µβ

[
um−1

]
σα

+

D∑
n=1

n
δUk

δTn

δ

δuασ

[
un−1

]
µβ

=

D∑
n,m=1

nm
δ2Uk

δTmδTn

[
un−1

]
µβ

[
um−1

]
σα

+

D∑
n=1

n
δUk

δTn

(
n−2∑
k=0

[
uk
]
µα

[
un−2−k

]
σβ

) (3.162)
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Now that we have the expressions of the derivatives ofUk we take them in the configura-

tionΛwhich we take as a diagonal matrix:

Λαβ = diag (λ1, λ2, . . . , λD) (3.163)

which implies: 
uΛαβ = diag

(
λ2
1 − ζ2, . . . , λ2

D − ζ2
)

tn(Λ) =
D∑

α=1

(
λ2
α − ζ2

)n
∂tn(Λ)

∂λ2
α

= n
(
λ2
α − ζ2

)n−1
.

(3.164)

With this, the first derivative ofUk in the configurationΛ is given by:

(
δUk

δuαβ

)
|Λ

=

D∑
n=1

n

(
δUk

δTn

)
|Λ
δαβ

(
λ2
α − ζ2

)n−1

= δαβ

D∑
n=1

δUeff

δtn(Λ)

∂tn(Λ)

∂λ2
α

= δαβ
∂Ueff

∂λ2
α

(3.165)

and the second derivative reads:(
δ2Uk

δuασδuβµ

)
|Λ

=

D∑
n,m=1

nm
δ2Ueff

δtm(Λ)δtn(Λ)
δµβ

(
λ2
β − ζ2

)n−1
δασ

(
λ2
α − ζ2

)m−1

+

D∑
n=1

n
δUeff

δtn(Λ)

(
n−2∑
k=0

δαµ
(
λ2
α − ζ2

)k
δβσ

(
λ2
β − ζ2

)n−2−k

)

= δασδβµ
∂2Ueff

∂λ2
α∂λ

2
β

+ δαµδβσ

D∑
n=1

n
δUeff

δtn(Λ)

×

(
n−2∑
k=0

δαµ
(
λ2
α − ζ2

)k
δβσ

(
λ2
β − ζ2

)n−2−k

)
(3.166)

Now that we have the expressions of the derivative ofUk in the configurationΛwe com-

pute the expression of the propagator in the minimum configuration ζ .
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3.6.4.3 Propagator at the minimum

The minimum λα = ζ , α = 1, . . . , D is implicitly defined by:(
∂Ueff

∂λ2
α

)∣∣
min

= 0 , ∀α (3.167)

or equivalently by: (
δUk

δuαβ

)∣∣
min

= 0 . (3.168)

For all n ≥ 0we have:

(
λ2
α − ζ2

)n
|min

= δn,0 . (3.169)

With this, the second derivative ofUk at the minimum is given by:

(
δ2Uk

δuασδuβµ

)∣∣
min

=

D∑
n,m=1

nm

(
δ2Ueff

δtm(Λ)δtn(Λ)

)∣∣
min

δµβδασδn,1δm,1

+
D∑

n=1

n

(
δUeff

δtn(Λ)

)∣∣
min

δαµδβσ

n−2∑
k=0

δk,0δn,k+2

= δασδµβ

(
δ2Ueff

δt1(Λ)δt1(Λ)

)∣∣
min

+ 2δαµδβσ

(
δUeff

δt2(Λ)

)∣∣
min

.

(3.170)
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Injecting this result into eq. (3.156) leads to:(
δ2Γ

(U)
k

δri(q)δrj(q′)

)
∣∣
min

= δµjδσiζ
2θ(D − i)θ(D − j)qαqβδ(q + q′)

{
4δβµδασ

(
δ2Ueff

δt1(Λ)δt1(Λ)

)
|min

+ 4

(
δUeff

δt2(Λ)

)
|min

(δαβδσµ + δαµδβσ)

}

+ 2δijqiqjδ(q + q′)

(
δUk

δuαβ

)∣∣
min︸ ︷︷ ︸

=0

= 4ζ2θ(D − i)θ(D − j)δ(q + q′)

{
qiqj

(
δ2Ueff

δt1(Λ)δt1(Λ)

)∣∣
min

+

(
δUeff

δt2(Λ)

)∣∣
min

(
q2δij + qiqj

)}

(3.171)

Since we have: (tn(Λ))
k = δk,0 , ∀n ≥ 1, the derivatives of the effective potential Ueff

are given by:

δUeff

δtk(Λ)
=
∑
{nα}

a[nα]nk t
n1
1 (Λ) . . . tnk−1

k . . . tnD
D (3.172)

and by:

δ2Ueff

δtk(Λ)δtk′(Λ)

=


∑
{nα}

a[nα]nk nk′t
n1
1 (Λ) . . . tnk−1

k (Λ) . . . t
nk′−1
k′ (Λ) . . . tnD

D (Λ) , if k 6= k′∑
{nα}

a[nα]nk(nk − 1)tn1
1 (Λ) . . . tnk−2

k (Λ) . . . tnD
D (Λ) , if k = k′

(3.173)

which become at the minimum:

δUeff

δtk(Λ)
∣∣
min

= a[0, . . . , 1︸︷︷︸
kth

, . . . , 0] (3.174)
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and:

δ2Ueff

δtk(Λ)δtk′(Λ)
∣∣
min

=


a[0, . . . , 1︸︷︷︸

kth

, . . . , 1︸︷︷︸
k′th

, . . . , 0] , if k 6= k′

2 a[0, . . . , 2︸︷︷︸
kth

, . . . , 0] , if k = k′ .
(3.175)

For the propagator we need:
δUeff

δt2(Λ)
∣∣
min

= a[0, 1, 0, . . . , 0]

δ2Ueff

δt1(Λ)δt1(Λ)
∣∣
min

= 2 a[2, 0, . . . , 0]
(3.176)

and to simplify the expressions we define u and v as:{
u = a[0, 1, 0, . . . , 0]

v = a[2, 0, . . . , 0] .
(3.177)

Injecting this in the second derivative of the potential part Γ
(U)
k we find:(

δ2Γ
(U)
k

δri(q)δrj(q′)

)
|min

= 4ζ2θ(D − i)θ(D − j)δ(q + q′)
(
qiqj(u+ 2v) + uq2δij

)
(3.178)

and finally we find for
(
Γ
(2)
|min

+Rk

)
:

(
Γ
(2)
|min +Rk

)
(q,i,q′,j)

= δ(q + q′)
{
δijG

−1
0 θ(i−D − 1)

+θ(D − i)θ(D − j)

(
G−1

1

(
δij −

qiqj
q2

)
+G−1

2

qiqj
q2

)}
(3.179)

where: 
G−1

0 (q) = Zkq
4 +Rk(q

2)

G−1
1 (q) = Zkq

4 +Rk(q
2) + 4ζ2uq2

G−1
2 (q) = Zkq

4 +Rk(q
2) + 8ζ2(u+ v)q2

(3.180)



94 Chapter 3 Membranes

and the propagator is straightforward:

Pij(q, q
′)∣∣

min

= δ(q + q′) {δij G0(q) θ(i−D − 1)

+θ(D − i)θ(D − j)

(
G1(q)

(
δij −

qiqj
q2

)
+G2(q)

qiqj
q2

)}
.
(3.181)

This form of the propagator is always the same to all orders of the field expansion. Now we

have all we need to derive the flow equations of the coupling constants.

3.6.4.4 Flow Equations of u and v

The effective potential can be written as:

Ueff =
∑
{nα}

1

(n1!) . . . (nD!)

(
δn1+...nDUeff

δtn1
1 . . . δtnD

D

)∣∣
min

tn1
1 . . . tDD (3.182)

withan1,...,nD =
1

(n1!) . . . (nD!)

(
δn1+...nDUeff

δtn1
1 . . . δtnD

D

)
|min

are the coupling constants. SinceΓ
(2)
k

in the configurationΛ is not a function of the trace tn but of the eigenvalues λα it is better to

define the couplings as derivatives in respect to the eigenvalues or more precisely of the square

ρα = λα.

The first and second derivatives ofUeff with respect to ρ are respectively given by:

∂Ueff

∂ρα
=

D∑
n=1

δUeff

δtn

∂tn
∂ρα

(3.183)

=
D∑

n=1

n
δUeff

δtn

(
ρα − ζ2

)n−1

and by:

∂2Ueff

∂ρα∂ρβ
=

D∑
n,m=1

nm
δ2Ueff

δtnδtm

(
ρα − ζ2

)n−1 (
ρβ − ζ2

)m−1

+ δαβ

D∑
n=1

n(n− 1)
δUeff

δtn

(
ρα − ζ2

)n−2
.

(3.184)
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At the minimum the second derivative becomes:

∂2Ueff

∂ρα∂ρβ
∣∣
min

=
δ2Ueff

δt1(Λ)δt1(Λ)
∣∣
min

+ 2δαβ
δUeff

δt2(Λ)
∣∣
min

= 2 (v + δαβu)

(3.185)

from which we see that we need the flow of
(

∂2Ueff
∂ρα∂ρβ

)∣∣
min

:

∂t

 ∂2Ueff

∂ρα∂ρβ
∣∣
min

 =

(
∂t

∂2Ueff

∂ρα∂ρβ

)∣∣
min

+
D∑

γ=1

∂3Ueff

∂ρα∂ρβ∂ργ
∣∣
min

∂tζ
2 (3.186)

where:(
∂t

∂2Ueff

∂ρα∂ρβ

)∣∣
min

=
1

2
∂̃t

∫
q

(
∂2

∂ρα∂ρβ
Tr
[
ln
(
Γ
(2)
Λ +Rk

)])∣∣
min

=
1

2
∂̃t

∫
q
Tr

{
∂2Γ(2)

∂ρβ∂ρα
PΛ(q) +

∂Γ(2)

∂ρα

∂PΛ(q)

∂ρβ

}
∣∣
min

(3.187)

wherePΛ(q) is the propagator in the configurationΛ and sincePΛ(q)P−1
Λ (q) = ID wehave:

∂PΛ

∂ρβ
P−1
Λ + PΛ

∂P−1
Λ

∂ρβ
= 0 (3.188)

which leads to:

∂PΛ

∂ρβ
= −PΛ

∂Γ
(2)
Λ

∂ρβ
PΛ (3.189)

and at the minimumwe have:(
∂PΛ

∂ρβ

)∣∣
min

= −Pmin

(
∂Γ

(2)
Λ

∂ρβ

)
∣∣
min

Pmin (3.190)
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This finally leads to:

(
∂t

∂2Ueff

∂ρα∂ρβ

)∣∣
min

=
1

2
∂̃t

∫
q
Tr


(

∂2Γ
(2)
Λ

∂ρα∂ρβ

)
∣∣
min

Pmin

−

(
∂Γ

(2)
Λ

∂ρα

)
∣∣
min

Pmin

(
∂Γ

(2)
Λ

∂ρβ

)
∣∣
min

Pmin

 .

(3.191)

Now we have all the ingredients to derive the flow equations of u and v we simply need to

compute the matrix products in this last equation and take the indices corresponding to each

coupling. This last task is done by computer but the expression are not given here because the

are too long. In the next sections we derive the flow of ζ with this method and then give the

definition of all the couplings in terms of derivatives ofUeff with respect to ρ.

3.6.4.5 Flow of ζ2

The flow of ζ2 is obtained from the minimum condition:

∂Ueff

∂ρα
∣∣
min

= 0 . (3.192)

We take the derivative with respect to t of this condition:

D∑
α=1

(
∂t
∂Ueff

∂ρα

)
|min

+
D∑

α,β=1

(
∂2Ueff

∂ρα∂ρβ

)
|min

∂ζ2 = 0 (3.193)

which leads to:

∂tζ
2 = −

D∑
α=1

(
∂t

∂Ueff
∂ρα

)∣∣
min

D∑
α,β=1

(
∂2Ueff
∂ρα∂ρβ

)∣∣
min

. (3.194)

From eq. (3.185) we find for the denominator:

D∑
α,β=1

(
∂2Ueff

∂ρα∂ρβ

)∣∣
min

= 2D (u+Dv) (3.195)
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and the numerator is given by:

D∑
α=1

(
∂t
∂Ueff

∂ρα

)∣∣
min

=
1

2
∂̃t

∫
q
Tr

 D∑
α=1

(
∂Γ

(2)
Λ

∂ρα

)
∣∣
min

Pmin

 (3.196)

where this last step is again done by computer. In the next section we give the definitions of

the coupling constants.

3.6.4.6 Definitions of the Coupling Constants

The effective average action at the order r8 reads:

Γk[~r ] =

∫
dDx

{
Zk

2

(
∂2~r
)2

+ u(∂µ~r.∂ν~r − ζ2δµν)
2 + v(∂µ~r.∂µ~r −Dζ2)2

+ w1(∂µ~r.∂µ~r −Dζ2)3 + w2(∂µ~r.∂ν~r − ζ2δµν)
2(∂α~r.∂α~r −Dζ2)

+ w3(∂µ~r.∂ν~r − ζ2δµν)(∂ν~r.∂α~r − ζ2δνα)(∂α~r.∂µ~r − ζ2δαµ)

+ C1(∂µ~r.∂µ~r −Dζ2)4 + C2(∂µ~r.∂ν~r − δµνζ
2)2(∂α~r.∂α~r −Dζ2)2

+ C3(∂µ~r.∂ν~r − δµνζ
2)2(∂α~r.∂β~r − δαβζ

2)2

+ C4(∂µ~r.∂ν~r − ζ2δµν)(∂ν~r.∂α~r − ζ2δνα)(∂α~r.∂µ~r − ζ2δαµ)(∂β~r.∂β~r −Dζ2)

+C5(∂µ~r.∂ν~r − ζ2δµν)(∂ν~r.∂α~r − ζ2δνα)(∂α~r.∂β~r − ζ2δαβ)(∂β~r.∂µ~r − ζ2δβµ)
}

(3.197)

fromwhichwe see that adding twomoreorders of thefield expansions adds eight newcoupling

constants labelledwi=1,2,3 andCi=1,2,3,4,5.

v =
1

2

(
∂2Ueff

∂ρ1∂ρ2

)
min

(3.198)

u =
1

2

{(
∂2Ueff

∂ρ1∂ρ1

)
min

−
(

∂2Ueff

∂ρ1∂ρ2

)
min

}
(3.199)

w1 =
1

3!

(
∂3Ueff

∂ρ1∂ρ2∂ρ3

)
min

(3.200)



98 Chapter 3 Membranes

w2 =
1

2

{(
∂3Ueff

∂ρ1∂ρ1∂ρ2

)
min

−
(

∂3Ueff

∂ρ1∂ρ2∂ρ3

)
min

}
(3.201)

w3 =
1

3!

{(
∂3Ueff

∂ρ1∂ρ1∂ρ1

)
min

− 3

(
∂3Ueff

∂ρ1∂ρ1∂ρ2

)
min

+ 2

(
∂3Ueff

∂ρ1∂ρ2∂ρ3

)
min

}
(3.202)

C1 =
1

4!

(
∂4Ueff

∂ρ1∂ρ2∂ρ3∂ρ4

)
min

(3.203)

C2 =
1

4

{(
∂4Ueff

∂ρ1∂ρ2∂ρ2∂ρ3

)
min

−
(

∂4Ueff

∂ρ1∂ρ2∂ρ3∂ρ4

)
min

}
(3.204)

C3 =
1

8

{(
∂4Ueff

∂ρ1∂ρ1∂ρ2∂ρ2

)
min

− 2

(
∂4Ueff

∂ρ1∂ρ1∂ρ2∂ρ3

)
min

+

(
∂4Ueff

∂ρ1∂ρ2∂ρ3∂ρ4

)
min

} (3.205)

C4 =
1

3!

{(
∂4Ueff

∂ρ1∂ρ1∂ρ1∂ρ2

)
min

− 3

(
∂4Ueff

∂ρ1∂ρ1∂ρ2∂ρ3

)
min

+2

(
∂4Ueff

∂ρ1∂ρ2∂ρ3∂ρ4

)
min

} (3.206)

C5 =
1

4!

{(
∂4Ueff

∂ρ1∂ρ1∂ρ1∂ρ1

)
min

− 4

(
∂4Ueff

∂ρ1∂ρ1∂ρ1∂ρ2

)
min

−3

(
∂4Ueff

∂ρ1∂ρ1∂ρ2∂ρ2

)
min

+ 12

(
∂4Ueff

∂ρ1∂ρ1∂ρ2∂ρ3

)
min

− 6

(
∂4Ueff

∂ρ1∂ρ2∂ρ3∂ρ4

)
min

}
(3.207)

With successive derivatives of the flow of effective potential Ueff (see Appendix) we obtain

the flow equations of the running coupling constants. These equations are too long to be

displayed here.
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3.6.5 Crumpled to Flat Transition

We start with the crumpling transition. From the one loop structure of the Wetterich equa-

tion (2.39) we can recover the perturbative results at the order ε from the fourth order of the

field expansion since the other couplings are irrelevant. We expand Eqs. (3.141) and (3.142) in

powers of ε = D − 4. The couplings u and v are of order ε at any non-trivial fixed-point.

The threshold functions in these flow equations have a universal, cut-off independent, limit

at vanishing masses inD = 4 given byL8
abc = 1. The flow equations in this limit read:

∂tu = −εu+
(d+ 21)u2 + 20uv + 4v2

24π2
(3.208)

∂tv = −εv +
(d+ 15)u2 + 4(3d+ 17)uv + 4(6d+ 7)v2

48π2
(3.209)

These are the equations derived in [104] (up to a change of variable v → v − u/4).

The Crumpled to flat transition can be either first order or second depending on both the

membrane dimension D and the embedding Euclidean space dimension d. What happens

is that above dc(D) there are two fixed-points that are close to each other, one which is the

crumpling transition fixed-point (CTFP) and the other is an unstable fixed point. Lowering

the embedding dimension but staying above dc the two fixed-points come closer and closer.

At d = dc, the fixed-points collapse on one another and annihilate each other just below dc

and the transition turns first order. Moreover there is an eigenvalue ω that represents how far

the fixed-points are from each other (the sign of the eigenvalue depend on the fixed-point we

are at). Tracking the evolution of the eigenvalue, one can construct the whole dc(D) line [53].

At the lowest order of the field expansion r4 with a θ cut-off,Rk(q) = (k4 − q4)θ(k2 −
q2), Kownacki and Mouhanna [53] found a smooth curve dc(D) which start at dc = 219

for D = 4 and reaches dc = 2 for D = 2 leading to predict a second order phase transi-

tion (see Fig. 3.22). For this transition they found a correlation exponent ν = 0.52 and an

anomalous dimension η = 0.627 which compares well with another recent NPRG compu-

tation by Braghin and Hasselmann [36], where the full momentum dependence of the elastic

coupling was included and with a different cut-off function, η = 0.64(5) as well as with the

large-d result η = 2/3 ([111], [112]) and with the Monte Carlo simulations η = 0.71(5) [113]

but less with the Monte Carlo renormalization group result η = 0.85(15) [114] and the self-

consistent screening approximation result η = 0.535 [108]. However using another cut-off

functionRk = Zkq
4/
(
exp(q4/k4)− 1

)
, Kownacki andMouhanna evaluated the error bar
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on dc(D = 2) to be typically of order δdc(D = 2) ∼ 1. This means that at a weakly

first-order transition cannot be excluded in agreement with recentMonte Carlo results ([109],

[110]). Therefore we took an effective average action up to the eight order (3.197).

Our results are plotted on Fig. 3.23. We find using the dc(D = 2) ≈ 6.9 and dc(D =

2) ≈ 4.19 for the sixth and eighth orders respectively. This discrepancy between the sixth and

eighth orders in the value of the critical dimension dc for a two-dimensional means that the

field expansion is not converged yet. Using another cut-off,Rk(q) = Zkq
4/(exp (q4/k4)−

1), we find slight variation in the value of dc(D = 2) which are of order ∼ 0.5 and ∼ 0.1

for r6 and r8 respectively. Unfortunately going beyond the eight order seems to be impossible

because of the heavy computational resources that are needed. However these results seems to

indicate that the transition is first order in agreement with recent Monte Carlo results ([109],

[110]). We know that higher orders in the field expansion will change the value of dc(D = 2)

but we believe that it will remain between 4 and 7 and hence we have a first order transition.

Since we cannot go beyond the eight order, we are currently concentrating on a full potential

computation.

3.6.6 Symmetry Breaking, Goldstone Bosons and Flat Phase

Two-dimensional polymerized membranes have a stable low-temperature phase. This is re-

lated to the existence of long-range interactions mediated by phonons which makes is outside

of the domain of applicability of the Mermin-Wagner theorem. In the high bending rigidity

phase, i.e. the flat phase, the coupling between the out-of-plane bending and the in-plane elas-

ticity modes strengthen the bending rigidity and stabilizes the flat phase. In the language of

the renormalization group, we say that the fixed point of the flat phase is attractive.

In addition to avoiding the Mermin-Wagner theorem polymerized membranes are char-

acterized by a quite original Goldstone spectrum. Indeed the Goldstone theorem on internal

symmetry states that if a system is invariant under a global symmetryG and is broken down to

a groupH , the number of Goldstone bosons (massless modes) is equal to the number of bro-

ken generators ([115], [116]). However there are some exceptions to the validity of this theorem

like when the global symmetryG is gauged into a local symmetry group ([117], [118]).

The crumpled phase is symmetric under the Euclidean groupE(d)which corresponds to

translations and rotations. At the transition a symmetry breaking occurs and themembrane is
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3

where Pi(q) = Z q4 + Rk(q) + m2
i q2, i = 0, 1, 2 and

∂̂/∂t only acts on Rk. These so-called ”threshold func-
tions” (see [19, 20]) control the relative role of the differ-
ent modes, phonons and capillary waves, within the RG
flow. In Eq.(4), the mass m0 = 0 is associated to the
d−D transversal, capillary, modes while m2

1 ≡ 4ζ2u and
m2

2 ≡ 8ζ2(u+ v) are masses associated to the D phonons
modes that split up into D− 1 modes with mass m1 and
one mode with mass m2.

– The crumpling transition – Let us first consider the
crumpling transition. To recover the RG equations de-
rived perturbatively in [7] one expands Eq.(3) in powers
of both ε = 4 − D and the couplings u and v that are
of order ε at any putative nontrivial FP. This also corre-
sponds to an expansion in powers of the phonon masses,
which are small at the crumpling transition FP. Using
the fact that the threshold functions entering in the flow
of u and v have a universal, cut-off independent, limit at
vanishing masses in D = 4 given by l8abc = 1, one obtains:

∂tu = −εu +
(d + 21)u2 + 20vu + 4v2

24π2
(5)

∂tv = −εv +
(d + 15)u2 + 4(3d + 17)vu + 4(6d + 7)v2

48π2
.

Up to a change in variable (v → v − u/4) these are
the equations derived in [7]. We recall that, at suffi-
ciently high values of d, i.e., d > dcr = 219, just be-
low D = 4, the sets of Eqs.(3) and (5) admit a sta-
ble (in the u and v directions) FP associated to the
crumpling transition, called crumpling transition fixed
point (CTFP). Still at d > dcr, there exists another FP,
close to the CTFP, which is unstable and that, when
the dimension d is lowered to dcr, annihilates with the
CFTP, defining the curve dcr(D). A large-d analysis
of Eqs.(3) can be also easily done. The leading contri-
butions come from the capillary modes which enter in
Eq.(3) through the terms proportional to d − D. With
our cut-off function lD100 = 4/D and lD200 = 8/D so
that the coordinates of the CTFP are given by ζ2

cr =
16AD/D(D2 − 4), ucr = (16 − D2)D(2 + D)/(256dAD)
and vcr = −(16 − D2)D/(256dAD). The correspond-
ing critical exponents are: ν = 1/(D − 2) + O(1/d) and
η = O(1/d) in agreement with [6] and [10].

To tackle with the physics below D = 4 we have nu-
merically solved the FP equations between D = 4 and
D = 2, a dimension in which the effects of truncation
start to be important. The right part of Fig.1 summa-
rizes our results: one finds a smooth curve dcr(D) which
starts at dcr = 219 in D = 4 and reaches dcr $ 2 in
D = 2 leading to predict a second-order phase transition
for physical membranes. In this last case one finds, at the
CTFP, a thermal exponent ν = 0.52 and η = 0.627 which
compares well with the results provided by the large-d ex-
pansion η = 2/3 [6, 10] and MC results η = 0.71(5) [23]
but less with the Monte Carlo Renormalization Group
η = 0.85(15) [24] and the SCSA η = 0.535 [16]. At our

level of approximation, our results display a weak de-
pendence with respect to the cut-off function Rk(q) that
induces an error on the curve dcr(D). Using another
cut-off, Rk(q) = Zq4/(exp(q4/k4) − 1), we have evalu-
ated the error bar on dcr(D = 2), which is typically of
order δdcr ∼ 1. This means that one cannot exclude
dcr(D = 2) to be close to, or even slightly above, d = 3
so that the crumpling transition for genuine membranes
would be predicted to be of weak first-order in agreement
with recent MC results [13, 14]. This point will be further
analyzed in the near future [22].
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FIG. 1: On the right part, the curve dcr(D) which separates
the region with a CTFP and without a CTFP. On the left
part, the lower critical dimension Dlc(d).

– The flat phase – The equations relevant to study
the flat phase are easily obtained in our formalism by
considering the regime ζ & 1 in the RG flow Eqs.(3),
which corresponds to a regime where the phonon masses
are very large and thus to a regime dominated by the
fluctuations of the capillary waves, as expected in the
deep flat phase. Setting d̃ = d − D one gets:

∂tu = (D − 4 + 2ηt) u +
256 d̃ u2 ÃD

D(D + 2)(D + 4)(D + 8)

∂tv = (D − 4 + 2ηt) v +

128 d̃ (u2 + 2(D + 2)uv + D(D + 2)v2)ÃD

D(D + 2)(D + 4)(D + 8)

(6)

ηt =
128(D + 4)(D2 − 1)u(u + 2v)AD

(D4 + 6D3 + 8D2)(u + v) + 128(D2 − 1)u(u + 2v)AD

with ÃD = AD(8 + D − ηt) and, for α = 1/ζ2:

∂tα = (D − 2 + ηt)α −
16 d̃(6 + D − ηt)α2AD

D(D2 + 8D + 12)
(7)

an equation which generalizes, to any value of D and d,
the one obtained in the limit of large elastic constants,
D = 2 and large-d, in [6]. Note that the function ηt in
Eqs.(6) and (7) determines, at a FP, the exponent η of the

Figure 3.22: The critical dimension dc as a function of the membrane dimensionD. The
transition is 2nd order above the curve and 1st order below it. This plot corresponds to the

lowest order of the field expansion r4.

notE(d) invariant any more. In the flat phase the membrane is T (D) translational invariant

and O(D) and O(d − D) rotational invariant. This corresponds to a symmetry breaking

scheme given by:

O(d)

O(D)×O(d−D)
(3.210)

Theminimumconfiguration in the low-temperaturephase is givenby: ~rmin(x) = ζ xµeµ =

ζ xieiθ(D − i). LetA be an element ofO(D)×O(d−D) and it is of the form:

Aij =


(BD)ij if i, j ≤ D

(Cd−D)i−D,j−D if D < i, j ≤ d

0 else

(3.211)

whereBD andCd−D belong respectively to theO(D) andO(d−D) groups. Therefore there

a (d−D) translational broken generators and nb the number ofO(d) broken generators. To
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Figure 3.23: The critical dimension dc as a function of the membrane dimensionD. The
transition is 2nd order above the curve and 1st order below it. plot at orders r4, r6 and r8

find the number of Goldstone modes we need the number of rotational broken generators.

The d(d− 1)/2 generators ofO(d) can be expressed as:

(Mpq)ab = i (δapδbq − δaqδbp) (3.212)

with p, q = 1, . . . , d (p < q) are the indices of the name of the generator and a, b =

1, . . . , d are the indices of line and column. The broken generators are theMα,(D+j) with

α = 1, . . . , D and j = 1, . . . , d − D. An excitation δ~r(α,D + j) around the minimum

generated by a broken generatorMα,(D+j) reads:

δra(α,D + j) = f(x)

d∑
b=1

(
Mα,(D+j)

)
ab
rb|min

= ζf(x)
d∑

b=1

(
Mα,(D+j)

)
ab
xbθ(D − b)

= i ζf(x)

D∑
b=1

(δaαδb,D+j − δa,D+jδbα)xb (3.213)



Chapter 3 Membranes 103

with f(x) a function of xµ. In this sum δb,D+j is vanishing since b ≤ D and the excitation

now reads:

δra(α,D + j) = i ζf(x)δa,D+jxα (3.214)

or:

δ~r(α,D + j) = −i ζf(x)xα~hD+j (3.215)

where ~hD+j are the (d −D) out-of-plane vectors. We see that this excitation can be written

as generated by the translational broken generators in the directions~hD+j . Since each excita-

tion generated by a rotational broken generator can be written as an excitation generated by a

translational broken generator, the number of independent excitations is equal to the number

of broken translational generators, i.e. (d−D).

In the flat phase, the flow equations of the coupling constants can be obtained simply by

considering the regime ζ � 1, i.e. a regime where the phonon massesm1 andm2 are very

large and dominated by the capillary waves9. In this limit we have for the threshold functions:

LD+α
abc =

{
0 if b, c 6= 0

LD+α
a00 else.

(3.216)

With this the flows u and v read:

∂tu = (D − 4 + 2ηk)u+
32AD

D(D + 2)
u2 LD+4

200 (3.217)

∂tv = (D − 4 + 2ηk)v +
16AD

D(D + 2)

{
u2 + 2(D + 2)uv +D(D + 2)v2

}
LD+4
200

(3.218)

and for ζ2:

∂tζ
2 = − (D − 2 + ηk) ζ

2 − 4(d−D)AD

Dζ2
LD+2
100 . (3.219)

9We recall that the coupling ζ is taken as dimensionless. The dimensionful coupling is always finite.
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Using a θ cut-off,Rk(q) = (k4 − q4)θ(k2 − q2), these equations read:

∂tu = (D − 4 + 2ηk)u+
256d̃ÃDu

2

D(D + 2)(D + 4)(D + 8)
(3.220)

∂tv = (D − 4 + 2ηk) v +
128d̃ ÃD

(
u2 + 2(D + 2)uv +D(D + 2)v2

)
D(D + 2)(D + 4)(D + 8)

(3.221)

∂tζ
2 = − (D − 2 + ηk)α− 16d̃ÃD(6 +D − ηk)

ζ2D(D2 + 8D + 12)
(3.222)

with d̃ = (d−D) and ÃD = AD(8 +D − ηk). The anomalous dimension ηk now reads:

ηk =
128AD(D + 4)(D2 − 1)u(u+ 2v)

(D4 + 6D3 + 8D2) + 128AD(D2 − 1)u(u+ 2v)
. (3.223)

A remarkable fact is that in the flat phase the flow equations of u and v do not depend on

coupling constants associated with higher orders then r4. In the flat phase the anomalous

dimension ηk correspond to the exponent of the capillary waves and the exponent for the

phonons ηu is obtain from theWard identity (rotational invariance) ηu = 4−D − ηk.

The equations (3.220 - 3.223) have three non-trivial fixed-points amongwhich theflat phase

fixed-point (FLFP). This fixed-point is stable in all the directions down to the lower critical

dimensionDlc. In the large-d limit one finds that ηk ∼ O(1/d) in agreement with previous

large-d result [112]. Fromeq. (3.223)wefind that the FLFP is stable down toDlc(d → ∞) = 2

as predicted by [112]Dlc(d → ∞) = 2− 2/d+O(1/d2).

In the physically interesting case d = 3 andD = 2, one finds that η∗ = 0.849 in very

good agreement with another NPRG result η = 0.85 [36] as well as with the self-consistent

screening result η = 0.821 [108] and with numerical simulations where η = 0.750(5) [113]

and η = 0.81(3) [119] but not with large-d result η = 2/3 [112].

Note that within the NPRG approach by Braghin andHasselmann [36] where a full mo-

mentum dependence of the couplings was included they were able to compute the height and

normal correlation functions, Ghh and Gn. For small momentum q they retrieved the rela-

tion:

q2Ghh(q) ∼ Gn(q) . (3.224)



Chapter 3 Membranes 105

Furthermore the behaviour of the correlation functions was in good agreement with Monte

Carlo simulations [120, 121, 122, 123].

Last but not least from Eqs. (3.220 - 3.223) one can determine the lineDlc that separates

the regions where the flat can or cannot exist. When we are atD = Dlc the CTFP and the

FLFP collapse on each other and become unstable. We have the relation ηk(Dlc) = 2−Dlc

at the FLFP which give:

d =
D4

lc + 6D3
lc − 3D2

lc + 4Dlc

2(6−D2
lc −Dlc)

(3.225)

and once inverted this equation gives the lineDlc(d). With aNPRG approach Kownacki and

Mouhanna obtained thewholeDlc line (see Fig. 3.22) and they findDlc(d = 3) = 1.33. This

value is quite stable with respect of cut-off change and compares well with previous results,

large-dDlc(d = 3) = 4/3 [112] and SCSADlc(d = 3) = 1.5 [108].

3.7 Conclusion

With an non-perturbative approach we are able to tackle the problem of polymerized mem-

branes between the upper critical dimensionDuc, above the critical exponents take theirmean

field values, and the lower critical dimension Dlc(d), below which there is no long-range or

crystalline order, for any given Euclidean space dimension d. The results of Kownacki &

Mouhanna are in good agreement with the results of Braghin & Hasselmann which shows

that the momentum dependence is irrelevant for the transition. However our results show

that the lowest order of the field expansion is not sufficient to determine the order of the tran-

sition. Moreover even with an expansion up to the eighth order we do not have convergence

yet but the results seems to indicate that the crumpling transition for polymerizedmembranes

between a high-temperature crumpled phase and the low-temperature flat phase is first order.

However we need a full potential computation to completely settle this question. The study

of the flat phase has shown that higher order terms are not needed for this phase and the results

are in good agreement with several different approaches. This flat phase is also relevant for the

study of the behaviour of graphene

In our work we have neglected the self-avoidance which must be included to correctly de-

scribe real physical membranes which are not phantom. There is an important controversy on
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the effect of self-avoidance whether it breaks [124, 125, 126] or not the existence of the crum-

pled phase [127] as found in experimentally in graphite oxide [128]. Our aim is to perform

a non-perturbative computation with self-avoidance although it is a complicated task from a

technical point of view.



Appendix B

Cayley-HamiltonTheorem and

Faddeev-Leverrier Algorithm

The Cayley-Hamilton theorem states that any square matrix satisfies its own characteristic

polynomial. Given a n× nmatrixM , the characteristic polynomial is given by:

p(λ) = det(λIn −M) (B.1)

Replacing λ byM in this equation yields the zero matrix:

p(M) = 0 (B.2)

The Faddeev-Leverrier algorithm is a method to calculate a matrix's characteristic polyno-

mial. LetM be a n× nmatrix:

PM (X) = det(XIn −M) = Xn −
n∑

k=1

1

k
Tr(Mk−1)X

n−k (B.3)
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with :

M0 = M

Mk = M(Mk−1 −
1

k
Tr(Mk−1)In), ∀ 1 ≤ k ≤ n− 1

(B.4)

For n = 2:

PM (X) = X2 − Tr(M0)X − 1

2
Tr(M1) (B.5)

For n = 3:

PM (X) = X3 − Tr(M0)X
2 − 1

2
Tr(M1)X − 1

3
Tr(M2) (B.6)

IfM is a 2× 2matrix, then :

Tr(M2) = Tr(M3)− 3

2
Tr(M2)Tr(M) +

1

2
(Tr(M))3

= 0 (B.7)

More generally, letM be a n× nmatrix:

Tr(Mi) = 0 ∀ i ≥ n (B.8)

We said before that k ≤ n−1 but there is no reasonwhywe can't extend this to any given

k.
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M1 = M2 −MTr(M) (B.9)

M2 = M3 −M2Tr(M)− 1

2
MTr(M2) +

1

2
M(Tr(M))2 (B.10)

M3 = M4 −M3Tr(M)− 1

2
M2Tr(M2) +

1

2
M2(Tr(M))2

− 1

3

[
MTr(M3)− 3

2
MTr(M2)Tr(M) +

1

2
M(Tr(M))3

] (B.11)

M4 = M5 −M4Tr(M)− 1

2
M3Tr(M2) +

1

2
M3(Tr(M))2

− 1

3
M2Tr(M3) +

1

2
M2Tr(M2)Tr(M)− 1

6
M2(Tr(M))3

− 1

4

[
MTr(M4)− 4

3
MTr(M)Tr(M3)− 1

2
M(Tr(M2))2

+M(Tr(M))2Tr(M2)− 1

6
M(Tr(M))4

]
(B.12)

and the trace reads:

Tr(M1) = Tr(M2)− (Tr(M))2 (B.13)

Tr(M2) = Tr(M3)− 3

2
Tr(M2)Tr(M) +

1

2
(Tr(M))3 (B.14)

Tr(M3) = Tr(M4)− 4

3
Tr(M3)Tr(M)− 1

2
(Tr(M2))2

+ Tr(M2)(Tr(M))2 − 1

6
(Tr(M))4

(B.15)

Tr(M4) = Tr(M5)− 5

4
Tr(M4)Tr(M)− 5

6
Tr(M3)Tr(M2) +

5

6
(Tr(M))2Tr(M3)

+
5

8
(Tr(M2))2Tr(M)− 5

12
Tr(M2)(Tr(M))3 +

1

24
(Tr(M))5

(B.16)





Appendix C

Derivatives of the Flow ofUeff

1st derivative reads: (
∂t
∂Ueff

∂ρj1

)
|min

=
1

2
∂̃t

∫
q
Tr

{
∂Γ

(2)
Λ

∂ρj1
PΛ

}
|min

(C.1)

2nd derivative reads:(
∂t

∂Ueff

∂ρj1∂ρj2

)
|min

=
1

2
∂̃t

∫
q
Tr

{
∂2Γ

(2)
Λ

∂ρj1∂ρj2
PΛ +

∂Γ
(2)
Λ

∂ρj1

∂PΛ

∂ρj2

}
|min

(C.2)

3rd derivative reads:(
∂t

∂Ueff

∂ρj1∂ρj2∂ρj3

)
|min

=
1

2
∂̃t

∫
q
Tr

{
∂3Γ

(2)
Λ

∂ρj1∂ρj2∂ρj3
PΛ +

∂2Γ
(2)
Λ

∂ρj1∂ρj2

∂PΛ

∂ρj3

+
∂2Γ

(2)
Λ

∂ρj1∂ρj3

∂PΛ

∂ρj2
+

∂Γ
(2)
Λ

∂ρj1

∂2PΛ

∂ρj2∂ρj3

}
|min

(C.3)
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4th derivative reads:(
∂t

∂Ueff

∂ρj1∂ρj2∂ρj3∂ρj4

)
|min

=

1

2
∂̃t

∫
q
Tr

{
∂4Γ

(2)
Λ

∂ρj1∂ρj2∂ρj4∂ρj3
PΛ +

∂3Γ
(2)
Λ

∂ρj1∂ρj2∂ρj3

∂PΛ

∂ρj4

+
∂3Γ

(2)
Λ

∂ρj1∂ρj2∂ρj4

∂PΛ

∂ρj3
+

∂2Γ
(2)
Λ

∂ρj1∂ρj2

∂2PΛ

∂ρj3∂ρj4

+
∂3Γ

(2)
Λ

∂ρj1∂ρj3∂ρj4

∂PΛ

∂ρj2
+

∂2Γ
(2)
Λ

∂ρj1∂ρj3

∂2PΛ

∂ρj2∂ρj4

+
∂2Γ

(2)
Λ

∂ρj1∂ρj4

∂2PΛ

∂ρj2∂ρj3
+

∂Γ
(2)
Λ

∂ρj1

∂3PΛ

∂ρj2∂ρj3∂ρj4

}
|min

(C.4)

5th derivative reads:(
∂t

∂Ueff

∂ρj1∂ρj2∂ρj3∂ρj4∂ρj5

)
|min

=

1

2
∂̃t

∫
q
Tr

{
∂5Γ

(2)
Λ

∂ρj1∂ρj2∂ρj3∂ρj4∂ρj5
PΛ +

∂4Γ
(2)
Λ

∂ρj1∂ρj2∂ρj3∂ρj4

∂PΛ

∂ρj5

+
∂4Γ

(2)
Λ

∂ρj1∂ρj2∂ρj3∂ρj5

∂PΛ

∂ρj4
+

∂3Γ
(2)
Λ

∂ρj1∂ρj2∂ρj3

∂2PΛ

∂ρj4∂ρj5

+
∂4Γ

(2)
Λ

∂ρj1∂ρj2∂ρj4∂ρj5

∂PΛ

∂ρj3
+

∂3Γ
(2)
Λ

∂ρj1∂ρj2∂ρj4

∂2PΛ

∂ρj3∂ρj5

+
∂3Γ

(2)
Λ

∂ρj1∂ρj2∂ρj5

∂2PΛ

∂ρj3∂ρj4
+

∂2Γ
(2)
Λ

∂ρj1∂ρj2

∂3PΛ

∂ρj3∂ρj4∂ρj5

+
∂4Γ

(2)
Λ

∂ρj1∂ρj3∂ρj4∂ρj5

∂PΛ

∂ρj2
+

∂3Γ
(2)
Λ

∂ρj1∂ρj3∂ρj4

∂2PΛ

∂ρj2∂ρj5

+
∂3Γ

(2)
Λ

∂ρj1∂ρj3∂ρj5

∂2PΛ

∂ρj2∂ρj4
+

∂2Γ
(2)
Λ

∂ρj1∂ρj3

∂2PΛ

∂ρj2∂ρj4∂ρj5

+
∂3Γ

(2)
Λ

∂ρj1∂ρj4∂ρj5

∂2PΛ

∂ρj2∂ρj3
+

∂2Γ
(2)
Λ

∂ρj1∂ρj4

∂3PΛ

∂ρj2∂ρj3∂ρj5

+
∂2Γ

(2)
Λ

∂ρj1∂ρj5

∂3PΛ

∂ρj2∂ρj3∂ρj4
+

∂Γ
(2)
Λ

∂ρj1

∂4PΛ

∂ρj2∂ρj3∂ρj4∂ρj5

}
|min

(C.5)
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C.1 Derivative of the Propagator

The product of the propagator with the inverse propagator gives the identity matrix:

PΛP
−1
Λ = ID (C.6)

whose derivative is vanishing:

∂PΛ

∂ρα
P−1
Λ + PΛ

∂P−1
Λ

∂ρα
= 0 (C.7)

⇒ ∂PΛ

∂ρα
= −PΛ

∂P−1
Λ

∂ρα
PΛ (C.8)

Since the inverse propagator P−1
Λ = Γ

(2)
Λ +Rk:

∂PΛ

∂ρj1
= −PΛ

Γ
(2)
Λ

∂ρj1
PΛ (C.9)

the second derivative reads:

∂2PΛ

∂ρj1∂ρ[j2]
= −

{
∂PΛ

∂ρj2

∂Γ
(2)
Λ

∂ρj1
PΛ + PΛ

∂2Γ
(2)
Λ

∂ρj1∂ρj2
PΛ + PΛ

∂Γ
(2)
Λ

∂ρj1

∂PΛ

∂ρj2

}
(C.10)

the third derivative reads:

∂3PΛ

∂ρj1∂ρj2∂ρj3
= −

{
∂2PΛ

∂ρj2∂ρj3

∂Γ
(2)
Λ

∂ρj1
PΛ +

∂PΛ

∂ρj2

∂2Γ
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Λ
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PΛ +
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∂Γ
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∂ρj3

+
∂PΛ
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}
(C.11)
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and the 4th derivative reads:
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Λ
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NewDefinition of theMinimum

Configuration ζ

In this appendix we show that we can define the minimum ζ by taking the derivative of the

effective action (3.108) with respect to ∂µri instead of ri. First let us define the derivation with

respect to ∂γrj :

δ∂µri(x)

δ∂γrj(y)
= δijδµγδ(x− y) (D.1)

δ∂ν∂µri(x)

δ∂γrj(y)
= δijδµγ∂µ(δ(x− y)) + δijδγν∂ν(δ(x− y))− δijδµνδνγ∂µ(δ(x− y)) .

(D.2)

In the last equation, there is no summation over the indices even if they are repeated. With

this, the first derivative of the effective action is given by:

δΓk

δ (∂γrj,y)
= −Z∂γ∂ν∂νrj + 4u

(
∂γri∂νri∂νrj − ζ2∂γrj

)
+ 4v∂γrj

(
∂µ~r∂µ~r −Dζ2

)
(D.3)

and by definition of the minimumwe have:

δΓk

δ(∂γrj,y) |min
= 0 . (D.4)
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Note that we have changed the notation for simplicity: rj, y = rj(y). The flow equation of

(D.4), is given by:

∂t

(
δΓk

δ(∂γrj,y) |min

)
= ∂t

(
δΓk

δ(∂γrj,y)

)
|min

+
∑
α,l

∫
z
∂t(∂αrl,z|min )

δ2Γk

δ(∂γrj,y)δ(∂αrl,z) |min
= 0 .

(D.5)

The term ∂t(∂αrl,z|min) gives the flow of ζ: ∂t(∂αrl,z|min ) = δα,lθ(D− l)∂tζ . The previous

equation becomes:

∂t

(
δΓk

δ(∂γrj,y)

)
|min

+
∑
α,l

δα,lθ(D − l)∂tζ

∫
z

(
δ2Γk

δ(∂γrj,y)δ(∂αrl,z)

)
|min

= 0 (D.6)

The first term of the r.h.s. of (D.5) is given by the derivative of the flow equation over

∂γrj,y . And from the second termof the r.h.s., we see that the second derivative of the effective

action is needed:

δ2Γk

δ(∂γrj,y)δ(∂αrl,z)
= −Zδlj [δαγ∂ν∂ν(δ(~y − ~z)) + ∂α∂γ(δ(~y − ~z))− δαγ∂γ∂γ(δ(~y − ~z))]

+ 4uδ(~y − ~z)[δαγ∂µrl∂µrj + ∂γrl∂αrj + ∂γri∂αriδjl − ζ2δαγδjl]

+ 4vδ(~y − ~z)[δαγδjl∂µri∂µri + 2∂γrj∂αrl −Dζ2δαγδjl]

(D.7)

At the minimum:

δ2Γk

δ(∂γrj,y)δ(∂αrl,z) |min
= −Zδlj [δαγ∂ν∂ν(δ(~y − ~z)) + ∂α∂γ(δ(~y − ~z))− δαγ∂γ∂γ(δ(~y − ~z))]

+ 4uζ2[δαγδjlθ(D − l) + δαjδγl]δ(~y − ~z) + 8vζ2δ(~y − ~z)δαlδγj

(D.8)



Appendix D New Definition of the Minimum Configuration ζ 117

The calculation is easier to do in Fourier space. Therefore we'll need the Fourier transform

of (D.8):

TF

[
δ2Γk

δ(∂γrj,y)δ(∂αrl,z) |min

]
(~p, ~q) = δ(~p+ ~q)

{
Zδlj(δαγ~p

2 + pαpγ − δαγp
2
γ)

+4uζ2(δαγδljθ(D − l) + δγlδαj) + 8vζ2δαlδγj
}

(D.9)

Finally the r.h.s. of (D.5) becomes:

∑
α,l

∫
z
∂t(∂αrl,z|min )

δ2Γk

δ(∂γrj,y)δ(∂αrl,z) |min
=
∑
α,l

∫
z

∫
q,p

e−ip·ye−iq·zδ(p+ q)

[Zδlj(δαγ~p
2 + pαpγ − δαγp

2
γ) + 4uζ2(δαγδljθ(D − l) + δγlδαj)

+ 8vζ2δαlδγj ]δα,lθ(D − l)∂tζ

(D.10)

and after integration we find:

∑
α,l

∫
z
∂t(∂αrl,z|min)

δ2Γk

δ(∂γrj,y)δ(∂αrl,z)

∣∣∣
min

=
∑
α,l

[4uζ2(δαγδljθ(D − l) + δγlδαj) + 8vζ2δαlδγj ]δα,lθ(D − l)∂tζ

= 8ζ2δγ,j(u+ vD)∂tζ

(D.11)

From theWetterich equation (2.39) we find for the first term of the r.h.s. of (D.5):(
∂t

δΓk

δ(∂γrj,y)

)
|min

=

(
δ(∂tΓk)

δ(∂γrj,y)

)
|min

= Tr

∫
x,z,w

∂tRk(x− z)
(
Γ
(2)
k +Rk

)−1
(x,w)

δΓ
(2)
k

δ(∂γrj,y)
(w, z)

(
Γ
(2)
k +Rk

)−1
(z, x)

= Tr

∫
qi

∂tRk(q1)
(
Γ
(2)
k +Rk

)−1
(q1,−q2)TF

[
δΓ

(2)
k

δ(∂γrj,y)

]
(q2,−q3, p)

×
(
Γ
(2)
k +Rk

)−1
(q3,−q1)

(D.12)
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The Fourier transform of
δΓ

(2)
k

δ(∂γrj,y)
:

TF

[
δΓ

(2)
k

δ(∂γrj,y) |min

]
((n, q2), (l, q3), (γ, j, p)) = δ(p+ q2 + q3) {4u [2δn,l(pγ + q2,γ)(pj + q2,j)

× θ(D − j) + (pµ + q2,µ)
2(δn,jδγ,l + δl,jδγ,n) + δn,j(pγ + q2,γ)(pl + q2,l)θ(D − l)

+ δl,j(pγ + q2,γ)(pn + q2,n)θ(D − n) + pµ(q2,µ + pµ)(2δγ,lδn,j + δγ,jδn,l + δn,γδl,j)

− 2δn,jδγ,lpγ(q2,γ + pγ) + δn,lθ(D − j)pγ(q2,j + pj) + δl,jθ(D − n)pγ(q2,n + pn)

−δγ,nδl,jpγ(pγ + q2,γ) + (pγ + q2,γ)(2δn,jplθ(D − l) + δn,lpjθ(D − j) + δl,jpnθ(D − n))]

+ 8v
[
δn,lδγ,j(pµ + q2,µ)

2 + δn,jθ(D − l)(pγ + q2γ)(pl + q2,l) + δl,jθ(D − n)

× (pγ + q2γ)(pn + q2,n) + pγ(δn,j(pl + q2,l)θ(D − l)− δn,lδγ,j(pγ + q2,γ)

−δl,jδn,γ(pγ + q2,γ)) + pµ(pµ + q2,µ) + (pγ + q2,γ)(δn,lpjθ(D − j) + δl,jpnθ(D − n))]}
(D.13)

Using (D.13) in the flow equation (D.12), we find for ∂tζ:

∂tζ = − 1

D(u+ vD)ζ2

∫
q

[
16u(D − 1)q2 + 8vD2q2

(Zq4 +Rk + uζ2q2)2
+

(3u+ (D + 2)v)q2

(Zq4 +Rk + 8ζ2(u+ v)q2)2

]
(D.14)

which is the same result as the one found using the configuration λ.
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Threshold Functions

The threshold functionsL,M andN read:

LD+α
abc = − 1

4AD
∂̃t

∫
q
qα
{(

P + q2m2
0

)−a (
P + q2m2

1

)−b (
P + q2m2

2

)−c
}

(E.1)

MD+α
abc = − 1

4AD
∂̃t

∫
q
qα+2

(
∂P

∂q2

){(
P + q2m2

0

)−a (
P + q2m2

1

)−b (
P + q2m2

2

)−c
}

(E.2)

ND+α
abc = − 1

4AD
∂̃t

∫
q
qα+2

(
∂P

∂q2

)2 {(
P + q2m2

0

)−a (
P + q2m2

1

)−b (
P + q2m2

2

)−c
}

(E.3)

whereAD = 2−D−1π−D/2
Γ[D/2] ,P = Zkq

4 +Rk andm
2
i masses that are given respectively by 0,

4uζ2 and 8(u+v)ζ2. The threshold functions control the relative role of the differentmodes,

phonons and capillary waves, within th RG flow.



Zk ∼ k−ηk

ζ2 = kD−2+ηk ζ̄2

u = kD−4+2ηk ū

v = kD−4+2ηk v̄

Rk(q
2) = Zkq

4r
(
y = q2

k2

)
(E.4)
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∂t|q2 = k∂k|q2 = k∂k|y − 2y∂y (E.5)

⇒ ∂t|q2Rk = Zkk
4
(
−ηky

2r(y)− 2y3r′(y)
)

(E.6)

The dimensionless threshold functions read:

LD+α
abc = −1

2

∫
dy

y(D+α)/2−a−b−c (ηkr(y) + 2yr′(y))(
y + yr(y) +m2

0

)a (
y + yr(y) +m2

1

)b (
y + yr(y) +m2

2

)c
×

{
a(

y + yr(y) +m2
0

) + b(
y + yr(y) +m2

1

) + c(
y + yr(y) +m2

2

)}

(E.7)

MD+α
abc =

1

2

∫
dy y(D+α)/2+2−a−b−c

×
(
2ηkr(y) + yr′(y)(6 + ηk) + 2y2r′′(y)

)
(2 + 2r(y) + yr′(y))(

y + yr(y) +m2
0

)a (
y + yr(y) +m2

1

)b (
y + yr(y) +m2

2

)c
− 1

2

y(D+α)/2+3−a−b−c (2 + 2r(y) + yr′(y))2 (ηkr(y) + 2yr′(y))(
y + yr(y) +m2

0

)a (
y + yr(y) +m2

1

)b (
y + yr(y) +m2

2

)c
×

{
a(

y + yr(y) +m2
0

) + b(
y + yr(y) +m2

1

) + c(
y + yr(y) +m2

2

)}
(E.8)

ND+α
abc =

∫
dy

y(D+α)/2+1−a−b−c
(
2ηkr(y) + yr′(y)(6 + ηk) + 2y2r′′(y)

)(
y + yr(y) +m2

0

)a (
y + yr(y) +m2

1

)b (
y + yr(y) +m2

2

)c
− yD/2+2−a−b−c (2 + 2r(y) + yr′(y)) (ηkr(y) + 2yr′(y))(

y + yr(y) +m2
0

)a (
y + yr(y) +m2

1

)b (
y + yr(y) +m2

2

)c
×

{
a(

y + yr(y) +m2
0

) + b(
y + yr(y) +m2

1

) + c(
y + yr(y) +m2

2

)}
(E.9)



Chapter 4

Anisotropic Membranes

It seems that if one is working from the point of view of getting beauty in one's equations, and if

one has really a sound insight, one is on a sure line of progress.

Paul A.M. Dirac

4.1 Introduction

A particularly interesting change in the behaviour of polymerized membranes occur when ex-

plicit in-plane anisotropy is included along one direction. Radzihovsky & Toner have shown

that anisotropic membranes have a richer phase diagram than isotropic membranes. In aniso-

tropicmembranes anewphase appears between thepreviously knownhigh-temperature crum-

pled and low-temperature flat phases [129, 130]. In this phase the membrane is flat in one di-

rection and crumpled in the others and is therefore called tubular phase (see Fig. 4.1). The exis-

tence of this phase has beenwidely studied both experimentally [131] and numerically [132, 133]

while the crumpled-tubule transition still lacks results from these points of view. The reason

behind this is that although it has been largely studied from a theoretical point of view it still

lacks accurate predictions for the critical exponents that we explain in this chapter.

Tubular structures are now well known to display several extraordinary mechanical, opti-

cal, thermal or electronic properties which make them of great interest in bio- and nanotech-

nology like drug delivery devices, sensors field emitters, filters, etc. Recent proposals consist,
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for instance, to produce carbon nanotubes by folding graphene ribbons [134] or organic nan-

otubes by rolling up two-dimensional anisotropic sheets of amphiphilic rods [131]. In this con-

text there is a clear need for understanding the mechanisms of formation, and more generally,

the underlying physics of tubular structures.

Figure 4.1: Phase transitions for anisotropic membranes.

In this chapter we are interested in the critical behaviour at the crumpled-tubule transi-

tion. We start by looking at the consequence of the anisotropy on the scaling behaviour. Then

we discuss the problems encountered in perturbative approaches and we show that our non-

perturbative approach is free from these difficulties.

4.2 Anisotropic Scaling Behaviour

We consider a membrane that is anisotropic in one particular direction y and isotropic in the

D − 1 remaining, transverse, directions. We focus on the crumpled-tubule transition which

is described at the lowest order of the field and derivative expansions by the following effective

action:

Γk[~r] =

∫
dD−1x dy

{
Zy

2

(
∂2
y~r
)2

+ t⊥

(
∂⊥
µ ~r
)2

+
uy
2

(
∂y~r.∂y~r − ζ2y

)2}
(4.1)
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whereZy , t⊥, uy and ζy are the running couplings: uy is a positive elastic moduli, ζy or rather

ty = uyζ
2
y , which corresponds to the temperature, parametrizes the approach to criticality. As

a consequence of the anisotropy we see from a power-counting that q⊥ ∼ q2y , an anisotropic

scaling which characterizes aLifshitz-type behaviour [135]. Moreover the upper critical dimen-

sion is lowered by the anisotropy fromDuc = 4, for isotropic membranes, toDuc = 5/2.

The couplingsZy and t⊥ correspond to the field renormalizations in they-direction andD−1

⊥-directions respectively and they scale as:{
Zy ∼ k−η

y

t⊥ ∼ k−η⊥
(4.2)

where k is the running momentum scale along the ⊥-directions and ky the one along the y-
direction. The exponents η⊥ and η are the anomalous dimensions in these directions. The

anisotropy yields, at the transition, the following scale transformations:{
x⊥ = kx′⊥
y = kyy

′ = kzy′
(4.3)

where z is an anisotropy scale exponent.

At the fixed-point corresponding to the crumpled-tubule transition the two-point corre-

lation function Γ
(2)
k scale anisotropicaly as (see [136] for review):{

Γ
(2)
k (q⊥ → 0, qy = 0) ∼ q2−η⊥

⊥
Γ
(2)
k (q⊥ = 0, qy → 0) ∼ q4−η

y

(4.4)

moreover an operatorO scales as :

O
(
k−1q⊥, k

−zqy
)
∼ k∆O (q⊥, qy) (4.5)

where∆ is the scaling dimension of the operatorO. Combining Eqs. (4.4) and (4.5) one gets
an identity between the anisotropy scale exponent z and the anomalous dimensions η and η⊥:

z =
2− η⊥
4− η

. (4.6)

This scaling behaviour is characteristic of anisotropic systems that are encountered in statisti-

cal physics both in equilibrium and dynamical critical phenomena or in high-energy physics
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where for example anisotropy between spatial and temporal dimensions in quantumfield the-

ory improves renormalizability properties and the ultra-violet behaviour (see [137] for review).

Since the different directions are not equivalent the crumpled-tubule transition is charac-

terized by two correlation lengths ξ⊥ and ξy:{
ξ⊥ ∼ t−ν⊥

y

ξy ∼ t
−νy
y

(4.7)

where the correlation exponents are related through the anisotropy scale exponent z by:

νy = zν⊥ . (4.8)

The lower critical dimensionDlc is defined as the dimension below which the membrane

remains crumpled. From a calculation of the normal fluctuations in the harmonic approxima-

tion one finds:

< |∂y~h(x)|2 > ∝
∫
dD−1q⊥ dqy

q2y
Zq4y + t⊥q

2
⊥

∝
∫
dD−1q⊥

1

q
1/2
⊥

∝ L3/2−D (4.9)

which diverges only forD ≤ 3/2 when L → ∞ and hence defines the lower critical dimen-

sionDlc = 3/2.

4.3 Perturbative RG

From this proximity of physical membranesD = 2 withDuc = 2.5 one would expect that

a weak-coupling perturbative approach to yield accurate results. However Radzihovsky and

Toner have shown that the second-order ε-expansion [130] gives completely unreliable results.

Among them one finds a negative value for the anomalous dimension η. But we know from

physical grounds that η must be positive. Indeed a negative value for the exponent η cor-

responds to a downward renormalization, a decrease, of the bending rigidity rather than an

increase do to fluctuations. Using a perturbative RG computation in the vicinity ofD = 2.5
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one finds at the fixed-point the equation for η:

η =
(d+ 2)ε2

8(d+ 8)2
× 223/4Γ

[
3

4

] ∫ ∞

0
dxx5/4 Y (x)3 (4.10)

where the function Y comes from the computation of the correlation functionG:

G(x⊥, y) =

∫
d3/2q⊥ dqy q

2
y

ei q⊥.x⊥+i qy y

q2⊥ + q4y

= 2−7/4π−3/4y−2

(
x⊥
y2

)1/4

Y

(
x⊥
y2

)
(4.11)

and is given by:

Y (x) =

∫ ∞

0
duu1/4J−1/4(xu) e

−
√

u/2 cos

(√
u

2
+

π

4

)
(4.12)

where J is a Bessel function1. The integral of the function Y is negative and thus gives a neg-

ative value to the anomalous dimension which is a rather surprising result. This negativeness

is an artefact related to the computation in a fractional dimensionDuc = 5/2.

This unreliable result from perturbative RG and the absence of an alternative method

such as the self-consistent screening approximation given the complexity of thefield theoretical

formulation, is an open door for a non-perturbative investigation.

4.4 Non-Perturbative Approach

We now attack the problem within the NPRG approach in order to clarify the issue of the

value of the anomalous dimension η at the crumpled-tubule transition in the presence of a

fractional upper critical dimension.

1The Bessel function Jα is given by:

Jα(x) =

∞∑
n=0

(−1)n

n! Γ[n+ α+ 1]

(x
2

)2n+α

. (4.13)
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4.4.1 The propagator

As usual the starting point is the computation of the propagatorP . For the same reason as in
isotropic membranes, i.e. translational invariance, we cannot obtain the flow of ζy from Γ

(1)
k

at the minimum and we therefore use a more general configuration λ given by:

~rλ = λyey. (4.14)

FromEq. (4.1) it is easy to derive the second functional derivativeΓ
(2)
k in this configuration

λ:

Γ
(2)
k (q, i, q′, j)|λ = δ(q + q′)δij

{
Zyq

4
y + 2t⊥q

2
⊥ − 2uyq

2
y

(
ζ2y − λ2

y − 2λ2
yδiD

)}
(4.15)

where we have taken theDth direction to correspond to the y-direction. Since the two-point

functions Γ
(2)
k is diagonal the expression of the propagatorP is straightforward:

P(q, i, q′, j)|λ = δ(q + q′)
{
δij (1− δiD)G

(λ)
0 (q) + δijδiDG

(λ)
y (q)

}
(4.16)

where:
G

(λ)
0 = Zyq

4
y +Rk(q) + 2t⊥q

2
⊥ − 2uyζ

2
y

(
ζ2y − λ2

y

)
G

(λ)
y = Zyq

4
y +Rk(q) + 2t⊥q

2
⊥ − 2uyζ

2
y

(
ζ2y − λ2

y − 2λ2
yδiD

)
.

(4.17)

The transition from the crumpled to the tubule phase is accompanied with the breaking of

the O(d) symmetry into O(d − 1) which identical to the symmetry breaking scheme of the

O(n)-model. Taking the trace over the propagator one sees that the functionsG correspond

to two different types of modes at criticality:

• d− 1 capillary Goldstone waves with vanishing mass

• one phonon mode with massm2
y = 4uyζ

2
y .
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4.4.2 Flow equation of ζy

The effective potential in the configuration λ is given by:

Γk[~rλ] =

∫
dD−1x dy

uy
2

(
λ2
y − ζ2y

)2
= Ueff(λy) (4.18)

and we use the fact that the effective potential Ueff by definition is vanishing at the minimum

λy = ζy:

∂Ueff

∂λy

∣∣∣
min

= 0 (4.19)

to derive the flow equation of ζy . Now we have the equality:

0 = ∂t

∂Ueff

∂λy

∣∣∣
min

 =

(
∂

∂λy
∂tUeff

)∣∣∣
min

+ ∂tζy

(
∂2Ueff

∂λ2
y

)
|min

(4.20)

where t = ln ky/Λ. From this equation we obtain:

∂tζy = −

(
∂

∂λy
∂tUeff

)
|min

4ζ2yuy
. (4.21)

Now we need the flow ofUeff which reads:

∂tUeff =
1

2
Tr

∂̃t

∫
q
ln
(
Γ
(2)
k +Rk

)
(q, i,−q, j)∣∣∣

λy

 . (4.22)

Finally we need to derive this equation with respect to λy to obtain the flow equation of ζy .

This equation is given in the next section.
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4.4.3 Flow equations

The other running coupling constants are defined as follow:

t⊥ =
1

2
lim

p⊥→0

(
∂

∂p2⊥
Γ
(2)
k (p,D,−p,D)|min

)
(4.23)

uy =
1

4ζ2y
lim
py→0

(
∂

∂p2y
Γ
(2)
k (p,D,−p,D)|min

)
(4.24)

Zy = lim
py→0

(
∂

∂p4y
Γ
(2)
k (p,D,−p,D)|min

)
. (4.25)

The coupling t⊥ remains unrenormalized, ∂tt⊥ = 0, because the interaction term uy

always carries a momentum qy with every field ~r in agreement with the perturbative result

at all orders. The anomalous dimension η⊥ is vanishing implying that the anisotropy scale

exponent z = 1
2 + O(ε2) at order ε. From the flow equations of Ueff and of Γ

(2)
k we derive

the flow equations for ζ2y and uy which read:

∂tζ
2
y =

1

(2π)D

∫
dD−1q⊥ dqy ∂tRk(q)q

2
y{

(d− 1)(
Zyq4y +m2

⊥q
2
⊥ +Rk(q)

)2 +
3(

Zyq4y +m2
⊥q

2
⊥ +m2

yq
2
y +Rk(q)

)2
} (4.26)

∂tuy =
4u2y

(2π)D

∫
dD−1q⊥ dqy ∂tRk(q)q

2
y{

(d− 1)(
Zyq4y +m2

⊥q
2
⊥ +Rk(q)

)3 +
9(

Zyq4y +m2
⊥q

2
⊥ +m2

yq
2
y +Rk(q)

)3
} (4.27)

where m2
⊥ = 2t⊥ and m2

y = 4uyζ
2
y . In general the cut-off function Rk must regularize

both the y-direction and the⊥-directions. However since the membrane is not critical in the
⊥-directionswe can take a cut-offonly regulates along they-direction. With this simplification

we can integrate analytically on q⊥:

∫
dD−1q⊥

1(
A+m2

⊥q
2
⊥
)p =

(
π

m2
⊥

)D−1
2 Γ

[
p− D−1

2

]
Γ[p]

1

Ap−D−1
2

. (4.28)
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Injecting this result in the flow equations (4.26) and (4.27) we obtain:

∂tζ
2
y =

1

(2π)D

(
π

m2
⊥

)D−1
2

Γ [(5−D)/2]

∫
dqy q

2
y ∂tRk(qy) (d− 1)(

Zyq4y +Rk(qy)
) 5−D

2

+
3(

Zyq4y +Rk(qy) +m2
yq

2
y

) 5−D
2


(4.29)

∂tuy =
4u2y

(2π)D

(
π

m2
⊥

)D−1
2 Γ [(7−D)/2]

Γ[3]

∫
dqy q

2
y ∂tRk(qy) (d− 1)(

Zyq4y +Rk(qy)
) 7−D

2

+
9(

Zyq4y +Rk(qy) +m2
yq

2
y

) 7−D
2


(4.30)

To find a fixed-point we must work with dimensionless coupling:

ζ̄2y = k3−2D
y Z(3−D)/2

y t
(D−1)/2
⊥ ζ2y (4.31)

ūy = k2D−5
y Z(D−5)/2

y t
(1−D)/2
⊥ uy (4.32)

with ky = kz . In terms of these quantities the RG flow equations read (we suppress the bar

over the dimensionless couplings):

∂tζ
2
y = −

(
2D − 3− D − 3

2
η

)
ζ2y − (d− 1) l2,D3−D

2
,0
− 3 l2,D

0, 3−D
2

(4.33)

∂tuy = −
(
5− 2D − 5−D

2
η

)
uy + (D − 3)u2y

{
(d− 1) l4,D5−D

2
,0
+ 9 l4,D

0, 5−D
2

}
.

(4.34)

The anomalous dimension η = −(1/Zy)∂tZy can be derived along the same lines:

η =
D − 3

3
u2yζ

2
y

{
−108 l2,D

0, 5−D
2

− 12(d− 1) l2,D5−D
2

,0
− 540(D − 5)uy ζ

2
y l

4,D

0, 7−D
2

+ (D − 5)(D − 7)

(
−288u2y ζ

2
y l

6,D

0, 9−D
2

+ 9M6,D

0, 9−D
2

+ (d− 1)M6,D
9−D
2

,0

−36uy ζ
2
y N

6,D

0, 9−D
2

)} (4.35)
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where the threshold functions l,M andN are given by:

Tα,D
a,b = KD ∂̃t

∫
dqy q

α
y

F (qy)

[P (qy)]
a [P (qy) +m2

yq
2
y

]b (4.36)

whereKD = (π/2)(D−1)/2Γ[(3 − D)/2], P (qy) = Zyq
4
y + Rky(qy),m

2
y = 4uyζ

2
y and

∂̃t = ∂tRky∂/∂Rky . The function F (qy) is given by 1, (dP/dq2y) and (dP/dq2y)
2 for l,N

andM respectively (for the dimensionless threshold functions see Appendix F).

Before proceeding the physical result, there are two important remarks we want to make.

First we took a cut-off function independent on q⊥ since the⊥-directions are not critical but
we can take a cut-off that does depend on q⊥ and not integrate exactly over q⊥. We have

checked that this does not change the physical results as expected. Second the flow equation

have been derived with respect to ky but again this derivation can also be done with respect to

k. This changes the coordinates of the fixed-points but they are related to the previous ones

through the anisotropy scale exponent z.

4.5 Physical Results

Thanks to the one-loop structure of the Wetterich equation (2.39) we recover the one-loop

β function for uy and ty = uyζ
2
y found in [130] by expanding our flow equations around

D = 5/2 − ε. Moreover we recover the large-d results at leading order by assuming that

uy ∼ O(1/d) and ζ2y ∼ O(d). We find, using a cut-off function Rky(qy) = Zy(k
4
y −

q4y)θ(k
2
y − q2y), a stable fixed-point with coordinates:

ζ2∗y =
4 dKD(3−D)

3 (2D − 3)

u∗y =
5KD (5− 2D)

4 d (3−D)(5−D)
.

(4.37)
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This fixed-point exist for all values ofD between the upper critical dimensionDuc = 5/2 and

the lower critical dimensionDlc = 3/2. The corresponding critical exponents are given by:
νy =

1

(2D − 3)

η = O (1/d) .

(4.38)

Going to finite value of the embedding space dimensiondwefind a stable fixed-point at all

d in contrast with the isotropic case where the order of the transition changes at some critical

dimension dc(D) [53]. Now we concentrate on the case d = 3 where we find a non-trivial

positive anomalous dimension between Duc = 5/2 and Dlc = 3/2 as expected. Our re-

sults for the anomalous dimension η and the correlation exponent ν⊥ for a two-dimensional

membrane in three-dimensional space are displayed in Figs. (4.2) and (4.3). They are plotted

as functions of a parameter λwhich parametrize a cut-off family. We have used three different

cut-off familiesR
(i)
ky
:



R
(1)
ky

(qy) = λZy k
4
ye

−q4y/k
4
y

R
(2)
ky

(qy) = λ
Zy

eq
4
y/k

4
y − 1

R
(3)
ky

= λZy

(
k4y − q4y

)
θ
(
k2y − q2y

)
.

We have optimized the critical exponents by varying λ and looking for stationary values. For

each cut-off family, we succeed to find a single PMS value for each exponent (see Figs. 4.2 -

4.3). For the correlation exponent along the⊥-directionwe find from this optimization ν⊥ =

1.213(8) [54] in agreement with Radzihovksy & Toner who found ν⊥ ≈ 1.227 in [130].

For the anomalous dimension η our approach yields a positive value η = 0.358(4) which is

largely different from the value found in [130]: η ≈ −0.0015. Finally from these results we

deduce the value of the anisotropy scale exponent and the correlation exponent in y-direction:

z = 0.5490(6) and νy = 0.665(5) which is slightly different from νy ≈ 0.614 found in

[130]. The insensitivity of our results to both the variations of the parameter λ inside a cut-off

family and of the family itself constitutes a strong indication of trustability of our results and

validates a posteriori the use of the truncations (4.1). But obviously one has to use a richer

ansatz to be sure that convergence is achieved.
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4.6 Conclusion

The NPRG approach overcomes the technical difficulties encountered within perturbative

weak-coupling treatment for anisotropic membranes. In particular we do not have to work

in real space and we can integrate exactly over the orthogonal momenta. As we said in the
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introduction there is no numerical simulation for the crumpled-tubule transition andwe hope

that our result will be tested through numerical investigation in the near future. The next step

for anisotropicmembranes is to take into account of self-avoidance since its effects are believed

to destroy the crumpled phase and one is only leftwith the transition between the tubular and

flat phases.

Beyond the case of anisotropic membranes our approach is relevant for other systems in-

volving anisotropy like Lifshitz critical behaviour which we discuss in the next chapter.





Appendix F

Threshold Functions

The dimensionless threshold functions read (once more we drop the bar over the dimension-

less coupling):

lα,Da,b =
(π
2

)D−1
2

Γ

[
3−D

2

] ∫ ∞

0
dy y

α+1
2

−a−b (η r(y) + 2y r′(y))

(y + y r(y))a
(
y + y r(y) +m2

y

)b{
a

(y + y r(y))
+

b(
y + y r(y) +m2

y

)}
(F.1)

Nα,D
a,b =

(π
2

)D−1
2

Γ

[
3−D

2

] ∫ ∞

0
dy y

α−1
2

−a−b{
y2 (η r(y) + 2y r′(y)) (2 + 2r(y) + yr′(y))

(y + y r(y))a
(
y + y r(y) +m2

y

)b
(

a

(y + y r(y))
+

b(
y + y r(y) +m2

y

))

−
y
(
2ηr(y) + ηyr′(y) + 6yr′(y) + 2y2r′′(y)

)
(y + y r(y))a

(
y + y r(y) +m2

y

)b
}

(F.2)
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Mα,D
a,b =

(π
2

)D−1
2

Γ

[
3−D

2

] ∫ ∞

0
dy y

α−1
2

−a−b{
y3 (η r(y) + 2y r′(y)) (2 + 2r(y) + yr′(y))2
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(
y + y r(y) +m2
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)b (
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(
2 + 2r(y) + yr′(y)

)
×
(
2ηr(y) + ηyr′(y) + 6yr′(y) + 2y2r′′(y)

)
(y + y r(y))a

(
y + y r(y) +m2

y

)b
}

(F.3)



Chapter 5

Lifshitz Critical Behaviour

Every word or concept, clear as it may seem to be, has only a limited range of applicability.

Werner Heisenberg

5.1 Introduction

In this chapter we leave themembrane systems and concentrate on another type of anisotropic

systems. Similar problems, as those encountered in anisotropic membranes, are present in a

more general case of anisotropic systems. Indeed various physical systems are characterized by

an anisotropic scale invariance (ASI) such as equilibriumcritical phenomenaof anisotropic sys-

tems, like the Lifshitz critical behaviour or anisotropicmembranes, as well as dynamical critical

phenomena in- and out-of-equilibrium [138]. This ASI is also present in quantumfield theory

where theories with a broken Lorentz invariance at high-energy, i.e. anisotropy between the

spatial and temporal dimensions, drastically improves the ultra-violet behaviour and renor-

malizability properties (see [137] for review). These ideas have been further extended towards

anisotropic scale invariant gravity, like the Horava-Lifshitz gravity [94], and cosmology [139].

Lifshitz critical behaviour (LCB) [140, 141, 142] which occurs when a disordered phase en-

counters both a spatially homogeneous ordered phase and a spatiallymodulated ordered phase

with amodulationmomentum qmod 6= 0 (see Fig. 5.1). The spatially homogeneous phase can

137
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be considered as a spatiallymodulated phasewith vanishingmomentum. This tricritical point,

the Lifshitz point (LP), was introduced by Hornreich, Luban and Shtrikmann in 1975 [135]

and has since dragged a lot of attention in condensed matter and statistical physics. This type

of behaviour may be found in magnetic systems where a competition between ferromagnetic

nearest-neighbour and anti-ferromagnetic next-to-nearest-neighbour interactions leads to the

appearance ofmodulated phases like in the axial (or anisotropic) next-nearest-neighbour Ising-

and XY-models (ANNNI and ANNNXY). It is also present in liquid crystals [143], high-Tc

superconductors, polymer mixtures [144, 145], microemulsions, ferroelectrics [146], charge-

transfer salts [147], domain-wall instabilities [148] (see [138, 149] for review). Experimentally

LCB has been observed in manganese phosphide [150, 151, 152, 153, 154, 155] and one can hope

for accurate determinations of the critical quantities in a near future.

Figure 5.1: Schematic representation of a phase diagramwith a Lifshitz point (LP) as a func-
tion of the temperature T and a parameter g which corresponds to the pression or the mag-

netic field depending on the system.

5.2 TheModel

In order to see how a LP arises we start with a mean field treatment of the simplest model in

three dimensional space. First we start with theO(n)-model with a small change in the kinetic

part where the different space directions have different couplings. The effective action for this

O(n)-model reads:

Γ
[
~φ
]
=

∫
d3x

 ∑
i=x,y,z

αi

2

(
∂i~φ
)2

+
τ

2
~φ 2 +

u

4
~φ 4

 (5.1)
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where τ , αi and u are the coupling constants. u and αi are positive and τ may change sign

which indicates a phase transition between a paramagnetic phase (τ > 0) and a ferromagnetic

phase (τ < 0). But if oneof theαi, e.g. αz , becomesnegative, weneed ahigher order derivative

term
(
∂2
z
~φ
)2

for thermodynamical stability and we have a tricritical point for τ = αz = 0.

The new effective action reads:

Γ
[
~φ
]
=

∫
d3x

 ∑
i=x,y,z

αi

2

(
∂i~φ
)2

+
βz
4

(
∂2
z
~φ
)2

+
τ

2
~φ 2 +

u

4
~φ 4

 . (5.2)

In the following we take αx = αy = α. We write the effective action in Fourier space:

Γ[~φ ] =
1

2

∫
q

{
τ + αzq

2
z + α

(
q2x + q2y

)
+

βz
2
q4z

}
|~φq|2

+

∫
q,q′,q′′

u

4
~φq.~φq′

~φq′′ .~φ−q−q′−q′′

(5.3)

and the phase transition occurs when theminimumwith respect to qz of τ(q) = τ +αzq
2
z +

α(q2x+q2y)+
βz

2 q4z vanishes. We have two possibilities depending on the sign ofαz . Ifαz > 0

the minimum is given by:

τmin = τ (5.4)

and the transition occurs at τ = 0, with q = 0, which corresponds to the paramagnetic-

ferromagnetic transition. Now if αz < 0we have:

αzqz + βzq
3
z = 0 ⇒

 qz = 0

q2z = −αz

βz

(5.5)

where the minimum τmin is given by:

τmin = τ − α2
z

2βz
. (5.6)
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In the ordered phase ifαz > 0 the equilibrium expression of the order parameter φeq is given

by:

φeq =

(
−τ

u

)1/2

(5.7)

which corresponds to a uniformmagnetization and if αz < 0:

φeq(q0) = 2φq0 cos(q0z + θ) (5.8)

where φq0 = −τ(q0)/3u and q0 = −αz/βz . Now the magnetization is modulated with a

modulation momentum q0. When τ = αz = 0 the system is at the tricritical Lifshitz point.

A particularly interesting feature about the Lifshitz point is its scaling behaviour du to the

spatial anisotropy which we discuss in the next section.

5.3 Anisotropic Scale Invariance

We generalize the study to the previous section to a system in a d-dimensional space withm

anisotropic directions and hence d −m transverse⊥-directions. The effective average action
with an expansion around the minimum κ reads:

Γk[~φ] =

∫
dd−mx⊥ d

mx‖

{
Z‖

2

(
∂2
‖
~φ
)2

+
Z⊥
2

(
∂⊥~φ

)2
+
ρ0
2

(
∂‖~φ
)2

+ u

(
~φ 2

2
− κ

)2


(5.9)

whereZ‖,Z⊥, ρ0, u and κ are the running coupling constants. Depending on the value ofm

we have three situations:

• m 6= d: anisotropic Lifshitz critical behaviour

• m = d: isotropic Lifshitz critical behaviour

• m = 0: isotropicO(n)-model
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The Lifshitz critical behaviour is characterized by an anisotropic scale invariance because

the term
(
∂2
⊥
~φ
)2

is irrelevant at the Lifshitz critical point. Therefore, as for anisotropicmem-

branes, at the LP the two-point correlation function scales as:
Γ(2)

(
q⊥ → 0, q‖ = 0

)
∼ q2−η`2

⊥

Γ(2)
(
q⊥ = 0, q‖ → 0

)
∼ q4−η`4

‖

(5.10)

where η`2 and η`4 are the anomalous dimensions along the orthogonal and parallel directions

respectively. Moreover an operator has the following asymptotic scaling behaviour:

O
(
lq⊥, l

θq‖

)
∼ l−∆O

(
q⊥, q‖

)
(5.11)

where∆ is the scaling dimension of the operatorO and θ an anisotropy scale exponent. From

these scaling behaviours, we deduce the relation:

θ =
2− η`2
4− η`4

. (5.12)

Finally the behaviour near criticality is characterized by two correlation lengths: ξ⊥ ∼ τ−ν`2

and ξ‖ ∼ τ−ν`4 where the correlation exponents ν`2 and ν`4 are related by the anisotropy

exponent θ: ν`4 = θν`2.

Pleimling &Henkel have introduced a theory of local scale invariance (LSI) [156, 136] for

both equilibrium and out-of-equilibrium phenomena leading to conjecture exact expressions

for the two-point correlation functions of anisotropic systems. From a Monte Carlo simu-

lation of Lifshitz points [156] Pleimling and Henkel claim to be in agreement with this LSI.

However in [157] Rutkevich et al. found that the ε-expansions of some scaling functions ob-

tained from a two-loop expansion about the upper critical dimension seem to be inconsistent

with the predictions of [136] and [156]. This question could be investigatedwithin theNPRG

in the near future using more sophisticated computation than those used here.
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5.4 Critical Dimensions

Going from isotropic to anisotropic magnetic systems shifts the upper and lower critical di-

mension, duc and dlc respectively:
duc : 4 → 4 + m

2

dlc : 2 → 2 + m
2 .

(5.13)

Since the number of anisotropic directionsm is lower or equal to the dimension d the region

with non-trivial behaviour is the one sandwiched between the lines duc(m), dlc(m) and d =

m (see 5.2).

In the minimal non-trivial casem = 1 we see that the ε-expansion around duc = 9/2

deals with an ε = 3/2 in order to investigate the physical dimension d = 3. Thus to hope

to get reliable results one needs the series to be Borel-summable which is not guaranteed and

one needs to compute at least up to the fourth or fifth loop order. Interestingly in thisminimal

m = 1 case the physical dimensiond = 3 is close to the lower critical dimensiondlc = 2.5 (for

n > 2) and one would hope that an investigation by means of a low-temperature approach

may give accurate results since ε = 0.5. However, as for the isotropic O(n)-model, in the

low-temperature approach the series are suspected to be non-Borel summable and therefore

of no practical use.

5.5 Perturbative RG

5.5.1 Weak-Coupling ε-Expansion

Using amomentum-shell RG in the vicinity of the upper critical dimensionHornreich, Luban

& Shtrikman calculated the critical exponents for all m at order ε [135]. Several calculation

to the order ε2 have been performed. For instance Mukamel [158] calculated the anomalous

dimension η`2 and η`4 for allm. Hornreich & Bruce [159] also calculated the anomalous di-

mension but only in the casem = 1 and their results agreed with the Mukamel's. However

another calculation by Sak & Grest [160] for the casesm = 2 andm = 6 did not agree with

the results obtained byMukamel. This disagreement is linked to the different approximations
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Figure 5.2: Upper and lower critical dimensions.

used in the momentum-shell integration. This controversy was been long-standing until the

recent works of Shpot &Diehl [161] andMergulhao & Carneiro [162].

To avoid the approximations of the momentum-shell integrationMergulhao & Carneiro

[162, 163] used a different approach, a dimensional regularization, where the integrations are

over thewholemomentumspace rather than just overmomentum-shells. Theyused an expan-

sion of the Green functions in the vicinity of the LP in terms of the massless Green functions

calculated at the LP.With this approachMergulhao&Carneiro recovered Sak&Grest's [160]

results of the anomalous dimensions form = 2 andm = 6.

The study of the general case was done by Shpot & Diehl [161] in a full two-loop calcula-

tion. To avoid 1) some of the technical difficulties which have their origin in the form of the

propagator at the LP and 2) the renormalization prescriptions used byMergulhao&Carneiro

[162], Shpot & Diehl [164, 161] found it easier to work is direct space and they showed that

the free propagatorG(x) at criticality is a generalized homogeneous function rather than ho-

mogeneous. This arises from the anisotropic scale invariance of the free theory and the scaling

function is complicated for the general case (d,m, n). The free propagator at the LP is given
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by:

G(x) =

∫
q

ei(q‖.x‖+q⊥.x⊥)

q4‖ + q2⊥
(5.14)

which can be written in the form:

G(x) = r−2+ε
⊥ Φ

(
x‖x

−1/2
⊥

)
(5.15)

where Φ(v) = Φ(v,m, d) is a complicated scaling function. After integration over q⊥, the

scaling function Φ can be expressed using generalized hypergeometrics, known as the Fox-

Wright hypergeometric functions [165]. These functions are complicated but reduce to simple

expressions for same special values of d andm such asm = 2 orm = 6 where the integrals

can be performed analytically.

Indeed, these technical difficulties together with the choice of the renormalization pre-

scription explain why it took almost twenty years to go from one-loop [135] to two-loop order

[161, 162, 163] and it is believed that it will take even longer to go beyond.

5.5.2 Large-n Expansion

Similar difficulties as in theweak-coupling expansion appear in the large-n expansion [166, 167]

and it is only recently that consistency between two-loop and large-n has been firmly estab-

lished [165]. A very interesting point of the large-n results is the variation of the anomalous

dimension η`4 with the dimension (see fig. 5.3). In the vicinity of the upper critical dimension

duc the anomalous dimension η`4 is small and negative. Lowering the space dimension d fur-

ther the anomalous dimension η`4 vanishes and becomes positive before it decreases again to

zero at the lower critical dimension dlc.

An important question for the physical case d = 3 is at which dimension d does the

anomalous dimension η`4 change sign? The large-n result indicates that η`4 is positive for

d = 3. However this is not conclusive for the physically interesting cases i.e. with finite values

of n.
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Figure 3. Behaviour of the 1/n coefficients η
(1)
L2 (1, d) (open circles) and η

(1)
L4 (1, d) (crosses) as

functions of d. The four points displayed for each one of them correspond to results described
in section 7. The thick lines near the upper and lower critical dimensions represent the limiting
forms ∼ε2 and ∼ε#, which the dimensionality expansions mentioned in sections 5 and 6 yield. The
widely or densely dotted lines serve to guide the eyes. The exponent η

(1)
L4 (1, d) has a small negative

value beneath the upper critical dimension d∗(1) = 9/2 and appears to change sign somewhat
below d = 4.

For example, depending on whether m = 2 or m > 2, the lower critical dimension d# is d# = 3
or d# > 3, respectively, whenever n ! 2. Hence, unless the O(n) symmetry is explicitly
broken, no m-axial LPs are expected to occur at nonzero temperatures for d = 3, which leaves
us with the case of uniaxial LPs in three dimensions. On the other hand, contributions to the
Hamiltonian that break the O(n) symmetry are generically expected, for example, for magnetic
crystals. An analysis of such spin anisotropies can be found in Hornreich (1979).

For m ! 2, one must also worry about anisotropies of another type: space anisotropies
breaking the isotropy in the m-dimensional subspace. These give rise to corresponding
anisotropic terms quadratic in ∂2φ/∂zα∂zα′ , which we also have not taken into account here.
Their effects have been investigated recently within the framework of the ε expansion (Diehl
et al 2003b).

Last, but not least, let us mention that the technique of matching asymptotic scaling forms,
on which our above analysis was based, can be extended to determine the O(1/n) corrections
of the thermal exponents νL2, νL4, γL and αL for m-axial LPs (Shpot et al 2005).
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Figure 5.3: Behaviour of the anomalous dimensions η`2 (open circles) and η`4 (crosses) in
a large-n expansion. The thick lines represent the limiting forms∼ ε and∼ ε2 [166].

5.6 NPRGApproach

From our work on anisotropic membranes where the NPRG approach was able to correctly

tackle the problem of the crumpled-tubule transition and predict the value of the anomalous

dimension we hped that this approach will again prove to be reliable.

5.6.1 Lowest Order of the Derivative Expansion

We start with the lowest order of the field expansion given by Eq. (5.9). The problem with

the definition of the minimum encountered in membranes is absent in LCB and therefore we

derive the propagator directly in the ground state configuration φi,min =
√
2κ δ1i. After two

functional derivatives of Γk Eq. (5.9), we get the two-point correlation function:

Γ
(2)
k (p, i, j, p′)|min = δ(p+ p′)δij

{
Z‖p

4
‖ + Z⊥p

2
⊥ + ρ0 p

2
‖ + 4uκδ1i

}
(5.16)

where p‖ =
√
pµpµ and p⊥ =

√
pνpν with µ = 1, . . . ,m and ν = m + 1, . . . , d. The

two-point correlation function Γ
(2)
k is diagonal and hence the propagatorP is given by:

P(p, i, p′, j)|min = δ(p+ p′)δij {(1− δ1i)G0(p) + δ1iG1(p)} (5.17)
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where:

Gi(p) =
(
Z‖p

4
‖ + Z⊥p

2
⊥ + ρ0p

2
‖ +m2

i

)−1
(5.18)

withm0 = 0 andm2
1 = 4uκ. Taking the trace of the propagator we see that the vanishing

massm0 corresponds to n− 1Goldstone modes in the low-temperature phase and the mass

m1 to one radial mode.

5.6.2 Flow Equations

To derive the flow equations of the coupling constants we first determine their definitions

from the functional derivatives of the effective action (5.9):

Z‖ = lim
p→0

∂

∂p4‖
Γ
(2)
k (p, 1,−p, 1)∣∣

min

Z⊥ = lim
p→0

∂

∂p2⊥
Γ
(2)
k (p, 1,−p, 1)∣∣

min

u =
1

4κ
lim
p→0

Γ
(2)
k (p, 1,−p, 1)∣∣

min

ρ0 = lim
p→0

∂

∂p2‖
Γ
(2)
k (p, 1,−p, 1)∣∣

min

(5.19)

and the anomalous dimensions η`4 and η`2 are defined as: η`4 = −1

θ
∂t lnZ‖

η`2 = −∂t lnZ⊥ .
(5.20)

The renormalized couplings flow to two different fixed-points depends on whether the

RG transformation is over k⊥ or k‖. However these fixed-points are equivalent and yield the

same results for the critical exponents (this situation is identical to anisotropic membranes).

We recall that we have taken the RG-time to be t = ln k⊥/Λ and hence the flow equations
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read:

∂tκ = − (d−m+ θ(m+ η`4 − 4))κ

+
Γ
[
m+2−d

2

]
2dπd/2Γ

[
m
2

] {(n− 1)L0
m+2−d

2
,0
(ρ0,m1) + 3L0

0,m+2−d
2

(ρ0,m1)
} (5.21)

∂tu = (d−m+ θ(m+ 2η`4 − 8))u

+ u2
Γ
[
m+4−d

2

]
2d−1πd/2Γ

[
m
2

] {(n− 1)L0
m+4−d

2
,0
(ρ0,m1) + 9L0

0,m+4−d
2

(ρ0,m1)
} (5.22)

∂tρ0 = θ (η`4 − 2) ρ0 +
1

2dπd/2Γ
[
m
2

]
muκ2

{
Γ

[
m+ 2− d

2

](
M1

m+2−d
2

,0
(ρ0,m1)

−M1
0,m+2−d

2

(ρ0,m1)
)
− 2uκΓ

[
m+ 4− d

2

](
M1

m+4−d
2

,0
(ρ0,m1)

+M1
0,m+4−d

2

(ρ0,m1)
)}

.

(5.23)

Similarly the anomalous dimensions are given by:

η`2 =
1

2dπd/2Γ
[
m
2

] {−Γ
[
m−d
2

]
2uκ2

(
L0

m−d
2

,0
(m1, ρ0)− L0

0,m−d
2

(m1, ρ0)
)

+
Γ
[
m+2−d

2

]
κ

(
L0

m+2−d
2

,0
(m1, ρ0) + L0

0,m+2−d
2

(m1, ρ0)
)} (5.24)
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η`4 =
2−d−1πd/2

3muκ2Γ
[
m
2

] {Γ [m+ 4− d

2

](
S1

m+4−d
2

,0
(m1, ρ0)−1

0,m+4−d
2

(m1, ρ0)
)

−2uκΓ

[
m+ 6− d

2

](
S1

m+6−d
2

,0
(m1, ρ0) + S1

0,m+6−d
2

(m1, ρ0)
)}

+
2−4−dπ−d/2

3u3κ4Γ
[
m+4
2

] {−9Γ

[
m+ 2− d

2

](
T 2

m+2−d
2

,0
(m1, ρ0)− T 2

0,m+2−d
2

(m1, ρ0)
)

+ 18uκΓ

[
m+ 4− d

2

](
T 2

m+4−d
2

,0
(m1, ρ0) + T 2

0,m+4−d
2

(m1, ρ0)
)

− 16u2κ2Γ

[
m+ 6− d

2

](
T 2

m+6−d
2

,0
(m1, ρ0)− T 2

0,m+6−d
2

(m1, ρ0)
)

+8u3κ3Γ

[
m+ 8− d

2

](
T 2

m+8−d
2

,0
(m1, ρ0) + T 2

0,m+8−d
2

(m1, ρ0)
)}

− 2−d−2πd/2

uκ2Γ
[
m+4
2

] {−Γ

[
m+ 2− d

2

](
U2

m+2−d
2

,0
(m1, ρ0)− U2

0,m+2−d
2

(m1, ρ0)
)

+2uκΓ

[
m+ 4− d

2

](
U2

m+4−d
2

,0
(m1, ρ0) + U2

0,m+4−d
2

(m1, ρ0)
)}

(5.25)

and the threshold functions are given by:

Tα
a,b(m1, ρ0) = − 1

Am
∂̃t

∫
dmq‖

q2α‖ F [q‖](
P (q2‖) +m2

0

)a (
P (q2‖) +m2

1

)b (5.26)

with P (q2‖) = Z‖q
4
‖ + ρ0q

2
‖ + Rk(q

2
‖) and Am = 2−m−1π−m/2/Γ[m/2]. The function

F [q‖] is given by 1, (dP/dq2‖)
2, (dP/dq2‖)

3, (dP/dq2‖)
4 and (d2P/d(q2‖)

2)2 for respectively

L,M , S, T andU . Note that, as for anisotropic membranes we can integrate exactly over the

momenta q⊥ since they enter quadratically in the effective action Γk (5.9) and therefore the

threshold functions are integrals over q‖ only.

5.6.3 Upper Critical Dimension duc = 4 + m
2

From the one-loop structure of the Wetterich equation (2.39) we recover the ε-expansion re-

sults at leading order in the vicinity of the upper critical dimension duc. At duc the anomalous

dimensions η`4 and η`2 vanish and the mass m
2
1 = 4uκ is very small m1 � 1. Taking
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d = 4 +m/2we have: 
m+ 2− d = m−4

2

m+ 4− d = m
2

m+ 6− d = m+4
2

and therefore the threshold functions involved in Eqs. (5.21-5.22) become:

L0
m+2−d

2
,0
(m1, ρ0) ≈ L0

m−4
4

,0
(0, 0)

L0
0,m+2−d

2

(m1, ρ0) ≈ L0
m−4

4
,0
(0, 0)− 3(m− 4)uκ

L0
m+4−d

2
,0
(m1, ρ0) ≈ L0

0,m+4−d
2

(m1, ρ0) = L0
m
4
,0(0, 0) = 1 .

(5.27)

Now the flow equations read:

∂tκ = −(2− ε)κ+
Γ
[
m−4
4

]
2

m+8
2 π

m+8
4 Γ

[
m
2

] {(n+ 2)L0
m−4

4
,0
(0, 0)− 3(m− 4)uκ

}
(5.28)

∂tu = −εu+ u2
(n+ 8)Γ

[
m
4

]
2

m+6
2 π

m+8
4 Γ

[
m
2

] . (5.29)

At leading order, the coordinates of the non-trivial fixed-point are:

u∗ =
π

m+8
4 2

m+6
2 Γ[m/2]ε

(n+ 8)Γ[m/4]

κ∗ =
Γ[(m− 4)/4](n+ 2)

π
m+8

4 2
m+12

2 Γ[m/2]
L0

m−4
4

,0
(0, 0)

(5.30)

and the critical exponent ν⊥ is deduced from the flow equations by linearising around this

non-trivial fixed point: {
κ = κ∗ + δκ → ∂tκ = ∂tδκ

u = u∗ + δu → ∂tu = ∂tδu .
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With this the flow becomes:

∂t(δκ) = −(2− ε)δκ− (4− 2ε)κ∗ +
Γ
[
m−4
4

]
π

m+8
4 2

m+8
2 Γ

[
m
2

] [(n+ 2)L0
m−4

4
,0
(0, 0)

−12
m− 4

4
u∗δκ− 12

m− 4

4
κ∗δu

] (5.31)

and the exponent ν⊥ is given by the linear term δκ:

1

ν⊥
= 2− ε+

Γ
[
m−4
4

]
π

m+8
4 2

m+8
2 Γ

[
m
2

]12m− 4

4
u∗

= 2− ε+
Γ
[
m−4
4

]
π

m+8
4 2

m+8
2 Γ

[
m
2

] 12(m− 4)

4

π
m+8

4 2
m+6

2 Γ
[
m
2

]
ε

(n+ 8)Γ
[
m
4

]
= 2− ε+

6ε

(n+ 8)
= 2− (n+ 2)ε

(n+ 8)
(5.32)

where we have used the equality Γ[z + 1] = zΓ[z]. Finally, the exponent is given by:

ν⊥ =
1

2− (n+2)ε
(n+8)

=
1

2
+

ε

4

n+ 2

n+ 8
+O(ε2) . (5.33)

By a similar procedure ν‖ is given by:

ν‖ =
1

4− 2(n+2)ε
(n+8)

=
1

4
+

ε

8

n+ 2

n+ 8
+O(ε2) (5.34)

and the two correlation exponents are related by the anisotropic scale exponent z = ν‖/ν⊥:

z =

(
1

4
+

ε

8

n+ 2

n+ 8

)(
2− (n+ 2)ε

(n+ 8)

)
+O(ε2)

=
1

2
+O(ε2) (5.35)
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The other critical exponents are fined using the generalized scaling relations:

α = 2−mν‖ − (d−m)ν⊥

γ = (4− η`4)ν‖ = (2− η`2)ν⊥

β =
1

2
(2− α− γ)

δ =
γ

β
+ 1 .

(5.36)

With the values of ν‖, ν⊥, η`4 and η`2 near the upper critical dimension, the critical exponents

become: 

α =
4− n

n+ 8

ε

2
+O(ε2)

γ = 1 +
ε

2

n+ 2

n+ 8
+O(ε2)

β =
1

2
− ε

2

3

n+ 8
+O(ε2)

δ = 1 + ε

(5.37)

5.6.4 Lower Critical Dimension dlc = 2 + m
2

As for the expansion near the upper critical dimension we recover the low-temperature results

from the one-loop structure of the exact evolution equation (2.39).

The lower critical dimensiondlc is the dimensionbelowwhich there is nophase transition.

In Lifshitz systems, dlc = 2 + m
2 for n > 1, where n is the number of field components.

The only physically interesting case is the one withm = 1 because whenm > 1, dlc >

3. Therefore at some point in the calculation, we take m = 1. In our approach since the

temperature dependence is implicit a low-temperature expansion is equivalent to an expansion

in power of 1/κ. We start with the flow of the anomalous dimensions η`2 and η`4 which read
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to the leading order in 1/κ:

η`2 ≈
1

2dπd/2Γ
[
m
2

] Γ [m+2−d
2

]
κ

L0
m+2−d

2
,0
(m1, ρ0) (5.38)

η`4 ≈
1

2dπd/26m(m+ 2)Γ
[
m
2

]
κ

{
−2(m+ 2)Γ

[
m+ 6− d

2

]
S1

m+6−d
2

,0

+4Γ

[
m+ 8− d

2

]
T 2

m+8−d
2

,0
− 12Γ

[
m+ 4− d

2

]
U2

m+4−d
2

,0

} (5.39)

where we have taken the threshold functions Fα
a,b (F = S, T orU ) with non-vanishing pa-

rameter b to zero since where are in the large mass limitm1 � 1. Since η is of order ε it is

taken as vanishing in the threshold functions. Now we evaluate the threshold functions for

d = 2 + m
2 :

L0
m+2−d

2
,0
= −1

2

∫
dy y

m+2
2

2yr′(y)m+2−d
2

(y2(1 + r(y)) + ρ0y)
m+2−d

2
+1

. (5.40)

The coupling ρ0 is of order 1/κ near dlc and is therefore taken as vanishing ρ0 = 0:

L0
m+2−d

2
,0
= −m+ 2− d

2

∫
dy y

m+4
2

−(m+4−d) r′(y)

(1 + r(y))
m+4−d

2

. (5.41)

Taking d = 2 + m
2 we have: {

m+ 2− d = m
2

m+ 4− d = m+4
2 .

Substituting this in the previous equation leads to:

L0
m+2−d

2
,0
= −m

4

∫
dy

r′(y)

((1 + r(y)))
m+4

4

=
[
(1 + r(y))−

m
4

]∞
0

= 1 (5.42)

since r(∞) = 0 and r(0) = ∞.
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Nowwe evaluate the threshold functions entering in η`4. First we start with the threshold

S which reads:

S1
m+6−d

2
,0
(m1, ρ0) = −m+ 6− d

2

∫
dy

y
m+6

2 r′(y)(2y + 2yr(y) + y2r′(y))3

(y2(1 + r(y)))
m+8−d

2

+
3

2

∫
dy

ym/2(2y + 2yr(y) + y2r′(y))2(6y2r′(y) + 2y3r′′(y))

(y2(1 + r(y)))
m+6−d

2

(5.43)

and withm+ 6− d = m+8
2 andm+ 8− d = m+12

2 becomes:

S1
m+6−d

2
,0
(m1, ρ0) = −m+ 8

4

∫
dy

r′(y)(2 + 2r(y) + yr′(y))3

(1 + r(y))
m+12

4

+ 3

∫
dy

(2 + 2r(y)yr′y))2(3r′(y) + yr′′(y))

(1 + r(y))
m+8

4

=

∫
dy

d

dy

[
(2 + 2r(y) + yr′(y))3

(1 + r(y))
m+8

4

]

=
(2 + 2r(∞) + yr′(∞))3

(1 + r(∞))
m+8

4

− (2 + 2r(0) + yr′(0))3

(1 + r(0))
m+8

4

. (5.44)

Similarly the thresholds T andU read:

T 2
m+8−d

2
,0
(m1, ρ0) =

(2 + 2r(∞) + yr′(∞))4

(1 + r(∞))
m+12

4

− (2 + 2r(0) + yr′(0))4

(1 + r(0))
m+12

4

(5.45)

U2
m+4−d

2
,0
(m1, ρ0) =

(2 + 2r(∞) + 4yr′(∞) + y2r′′(∞))2

(1 + r(∞))
m+4

4

−
(
2 + 2r(0) + 4yr′(0) + y2r′′(0)

)2
(1 + r(0))

m+4
4

.

(5.46)
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Although r(0) diverges the numerator with r(0) in the threshold functions are constant

and therefore the parts with an r(0) vanish (see Appendix). The threshold functions read:

S1
m+6−d

2
,0
= 8

T 2
m+8−d

2
,0
= 12

U2
m+4−d

2
,0
= 4 .

(5.47)

Replacing the threshold functions by their value in the anomalous dimensions we find:

η`2 =
Γ
[
m
4

]
2

m+4
2 π

m+4
4 Γ

[
m
2

]
κ

η`4 =
2Γ
[
m
4

]
2

m+4
2 π

m+4
4 Γ

[
m
2

]
κ

(5.48)

Nowwehave to find the fixed-point valueκ∗. Replacing the threshold functionsLby its value

in the flow of κwe find:

∂tκ = −εκ+
(n− 2)Γ

[
m
4

]
2

m+4
2 π

m+4
4 Γ

[
m
2

] (5.49)

which gives the fixed-point value:

κ∗ =
(n− 2)Γ

[
m
4

]
2

m+4
2 π

m+4
4 Γ

[
m
2

]
ε
. (5.50)

Replacing κ∗ in the anomalous dimensions:

η∗`2 =
ε

n− 2

η∗`4 =
2ε

n− 2

(5.51)

which is in agreement with the results found in [168].
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The correlation exponent ν⊥ is connected to the linear term δκ in the flow ∂tκ. Linearis-

ing the flow around κ = κ∗ + δκwe find:

∂tκ = −ε(κ∗ + δκ) +
(n− 2)Γ

[
m
4

]
2dπd/2Γ

[
m
2

] (5.52)

which gives for ν⊥:

ν⊥ =
1

ε
→

ε→∞
∞ (5.53)

as in the non-linear σ-model.

5.7 Higher Order Expansion and Physical Results

We have computed the critical exponents up to the twelfth order of the field expansion to see

how the exponents evolve with the order of the expansion and to ensure that we have ob-

tained converged results for the physical quantities. An important remark about the cut-off

functions is that the θ cut-off cannot be used for the Lifshitz critical behaviour because of the

non-analyticity of its derivatives that enter the threshold functions.

Now we concentrate on the uniaxial Heisenberg casem = 1 and n = 3. We find a non-

trivial fixed-point with two directions of instability, corresponding the Lifshitz point, for any

dimension between the upper and lower critical dimensions duc and dlc. The anomalous di-

mensions η`2 and η`4 are displayed in figure 5.4. This figure calls for two important remarks.

First, one sees that theNPRG approach allows for a smooth interpolation for the critical expo-

nents between dlc and duc. Second, from a direct investigation in d = 3 for n = 3 the LCB is

characterized by a negative value for η`4. This result is in disagreement with the perturbative,

large-n and low-temperature, methods which give a positive value for η`4.

For the physical dimension d = 3we have used a cut-off family parametrize by λ:

Rλ
k⊥

(q‖) =
λZ‖

e
q4‖/k

2θ
⊥ − 1

(5.54)

and by varying the parameterλwe seek for stationary values of the critical exponents. Station-

arity is a condition thatmust necessarily be fulfilled by any putative physical quantity to ensure
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Figure 5.4: Anomalous dimensions η`2 and η`4 as functions of the dimension d between
duc and dlc using a field truncation up to ~φ

8 for n = 3 andm = 1.

its quasi-independence with respect to both the cut-off function and the truncation [39]. We

have studied the convergence of the physical quantities by adding successively powers of the

field up to the twelfth order. We find at almost any order1 of the field expansion stationary

values for the critical exponents. This is illustrated in figs. 5.5 and 5.6 which represent respec-

tively the critical exponents η`2 and ν`2 in the vicinity of their stationary value for different

truncations of the effective action.

The critical exponents vary very smoothly with the cut-off parameter λ which indicates

that the results have a weak dependence on the cut-off function. This fact has been confirmed

by using other cut-off families that lead to the same result. More importantly fromfigs. 5.5 and

5.6 we can see that we have a rapid convergence when adding higher orders of the field expan-

sion. Between the orders ~φ10 and ~φ12 only the third digit of η`2 and ν`2 changes. This is a clear

indication of the good convergence of our results, at least with respect to the field expansion.

Indeed higher order derivative terms may change the values of the critical exponents.

1The ~φ6 case seems to be special in the sense that it does not exhibit clear stationary values.
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Figure 5.5: The anomalous dimension η`2 as function ofλ for truncations from ~φ 4 (upper

curve) to ~φ 12 (lower curve). Stationary points are indicated by black diamonds.

Our results are summarized in table 5.1 in the column NPRG together with the weak-

coupling [161] and large-n [166, 167] results for comparison. Note that the error bars in our val-

ues are evaluated from the direct analysis of the convergence of the field expansion. From this

table one can see that our results differ heavily from the ones obtained from a weak-coupling

expansion. This discrepancy is not surprising since these perturbative results have been only

obtained at low loop orders. From our convergence study, although based on a different ap-

proximation, one can see the necessity of taking into account several orders to obtain con-

verged values for the critical exponents. Finally, wenote, amazingly, that our correlation length

exponents ν`4 and ν`4 are close to the values obtained within a very recent large-n expansion

[167], contrary to the anomalous dimension η`4 and η`2 both quantitatively and qualitatively

(different sign for η`4).
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Figure 5.6: The correlation exponents ν`2 as function ofλ for truncations from ~φ 4 (upper

curve) to ~φ 12 (lower curve). Stationary points are indicated by black diamonds.

NPRG O(ε2) [161] O(1/n) [166, 167]

ν`4 0.78(1) 0.392 0.755

ν`2 1.655(5) 0.798 1.575

η`4 -0.18(2) -0.021 0.074

η`2 0.075(1) 0.044 0.102

Table 5.1: This table shows some data

5.8 Conclusion

We have shown that the NPRG provides convergent values for the critical exponents while

avoiding the technical difficulties of the perturbative approaches. Moreover our approach is

systematically improvable without any difficulty through a field expansion. Although higher

order derivative terms should play a small role they can and should be included to conclude

on their importance in the convergence of the critical exponents. Currently we are performing

a computation with higher derivative terms with a full potential. Finally we hope that our
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workwill stimulate new investigations of the Lifshitz critical behaviour bymeans of numerical

simulations and experiments to confirm the adequacy of our quantitative predictions.





Appendix G

Threshold Functions

The dimensionless threshold functions are given by:

Lα
a,b = −1

2

∫
dy

y
2α+m−2

2 (θη`4r(y) + 2yr′(y)))(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b{
a(

y2(1 + r(y)) + ρ0y +m2
0

) + b(
y2(1 + r(y)) + ρ0y +m2

1

)} (G.1)

Mα
a,b = −1

2

∫
dy

y
m+2α+2

2 (θη`4r(y) + 2yr′(y))
(
y2r′(y) + 2y + 2yr(y) + ρ0

)2(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b{
a(

y2(1 + r(y)) + ρ0y +m2
0

) + b(
y2(1 + r(y)) + ρ0y +m2

1

)}

+

∫
dy y

m+2α
2
(
y2r′(y) + 2y + 2yr(y) + ρ0

)
×

(
2y2r′′(y) + yr′(y)(6 + η`4) + 2θη`4r(y)

)(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b
(G.2)
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Sα
a,b = −1

2

∫
dy

y
m+2α+2

2 (θη`4r(y) + 2yr′(y))
(
y2r′(y) + 2y + 2yr(y) + ρ0

)3(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b{
a(

y2(1 + r(y)) + ρ0y +m2
0

) + b(
y2(1 + r(y)) + ρ0y +m2

1

)}

+
3

2

∫
dy y

m+2α
2
(
y2r′(y) + 2y + 2yr(y) + ρ0

)2
×

(
2y2r′′(y) + yr′(y)(6 + θη`4) + 2θη`4r(y)

)(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b
(G.3)

Tα
a,b = −1

2

∫
dy

y
m+2α+2

2 (θη`4r(y) + 2yr′(y))
(
y2r′(y) + 2y + 2yr(y) + ρ0

)4(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b{
a(

y2(1 + r(y)) + ρ0y +m2
0

) + b(
y2(1 + r(y)) + ρ0y +m2

1

)}

+ 2

∫
dy y

m+2α
2
(
y2r′(y) + 2y + 2yr(y) + ρ0

)3
×

(
2y2r′′(y) + yr′(y)(6 + η`4) + 2θη`4r(y)

)(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b
(G.4)

Uα
a,b = −1

2

∫
dy

y
m+2α+2

2 (θη`4r(y) + 2yr′(y))
(
y2r′′(y) + 4yr′(y) + 2r(y) + 2

)2(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b{
a(

y2(1 + r(y)) + ρ0y +m2
0

) + b(
y2(1 + r(y)) + ρ0y +m2

1

)}

+

∫
dy y

m+2α−2
2

(
y2r′′(y) + 4yr′(y) + 2r(y) + 2

)
×
(
2y3r′′′(y) + y2r′′(y)(12 + η`4) + 4yr′(y)(θη`4 + 3) + 2θη`4r(y)

)(
y2(1 + r(y)) + ρ0y +m2

0

)a (
y2(1 + r(y)) + ρ0y +m2

1

)b
(G.5)



Chapter 6

DisorderedMembranes

6.1 Introduction

In the introduction on membranes in Chapter 2 we have shown how complex these systems

are. Membranes are far from being homogeneous except for specific case like graphene. The

presence of proteins or cholesterol in biological membranes or impurities and defects (discli-

nations and dislocations) induce heterogeneities. Such defects may also appear during the fab-

rication process of polymerized membranes. After the works on homogeneous polymerized

membranes our interest switched to the study of the effects of heterogeneities. In this chapter

we discuss the different types of randomness that can be present in a membrane and we show

how they modify the phase diagram.

Our work on disordered membranes is a work in progress and therefore no results are

presented in this chapter.

6.2 Replica Formalism

There are two types of disorder annealed and quenched. In the first type the disorder and the

degrees of freedom of the system fluctuate together which means that the time scale of vari-

ation of the disorder is equivalent the one of the degrees of freedom. In membranes, as in

spin-glasses, we deal with quenched disorder where the random couplings, corresponding to

163
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the disorder, are constant over the time scale overwhich the degrees of freedomfluctuate. Con-

sider a HamiltonianH[S, J ]where S are the degrees of freedom and J the random coupling.

For quenched disorder the partition function depend on J :

Z[J ] = Tr
{S}

e−H[S,J ] (6.1)

whichmeans that the free energyF also depend onJ . This is not satisfying since it means that

the free energy is different for each realization of the disorder. However in the thermodynamic

limit the free energy does not depend on J and one must average over the disorder and this

free energy is called the quenched average free energy. This makes the computation a little bit

difficult since we must average over the disorder in the free energy and not in the partition

function. To overcome this difficulty in quenched disordered systems, studying the effects of

randomness implies to use the replica formalism (see [169, 170] for lectures). This formalism

consists in replacing the partition function lnZ by (Zn − 1)/n where n corresponds to the

number of replicas of the original system. Then one takes advantage of the relation:

lnZ = lim
n→0

Zn − 1

n
(6.2)

which transforms the task of averaging lnZ byZn. After taking the average over the disorder

one obtains a replicated free energy which is of the form:

Fn[~φ
α] =

∫
ddx


n∑

α=1

(
1

2
(∂~φ α)2 + U(~φ α)

)
− 1

2

n∑
α,β=1

V (~φ α, ~φ β) + . . .

 (6.3)

which is an expansion in the number of replicas where α and β are replica indices. . The free

energy isO(n) invariant in the replica space as well as under the permutation between replicas.

If the probability distribution is Gaussian the free energy only contains term with up to two

replicas at the beginning of the flow.

In what follow we use the same notations as in ref. [171] where the average over disorder

is noted with square brackets [ ] and the thermal average with angle brackets< >.
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6.3 TheModel

There are twoways that randomness can appear in the free energy, either in the curvature part

or in the strain part. From a geometric point of view an asymmetry between the two leaflets of

amembrane leads to a spontaneous curvature~cwhich couples to the curvature−∂2~r(x).~c(x)

and to a random stress which changes the preferred metric g0αβ .

Radzihovsky & Nelson [172] proposed a modification to the free energy to take into ac-

count of random impurities. One year laterMorse&Lubensky showed [171] that startingwith

only random spontaneous curvature always generates random stress which means that both

type of disorder must be taken into account. From the free energy of homogeneous mem-

branes they added the two sources of randomness:

F [~r ] =

∫
dDx

{
κ

2

(
∂2~r(x) − ~c(x)

2

)2

+
µ

4
(∂i~r(x).∂j~r(x))

2

+
λ

8
(∂i~r(x).∂i~r(x))

2 − σij(x)∂i~r(x).∂j~r(x)

} (6.4)

whereκ is the usual bending rigidity andµ andλ the elasticmoduli andwhere~c is the random

curvature source and σ the random stress source. We consider the sources to have a Gaussian

distribution. Therefore their variances are given by:
[ci(x)cj(x

′)] = ∆κδijδ(x− x′)

[σab(x)σcd(x
′)] = (∆λδabδcd + 2∆µIabcd) δ(x− x′)

(6.5)

where:

Iabcd =
1

2
(δacδbd + δadδbc) (6.6)

is the identity in replica space. The variance of ci must be positive. Moreover the stress tensor

can be decomposed into a scalar and a symmetric part via σab = σLδab+σT
ab where σ

T
aa = 0.
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And the variances of σL and σT
ab must be positive which leads to:

∆κ ≥ 0

∆µ ≥ 0

∆µ ≥ −D
2 ∆λ .

(6.7)

Surprisingly the upper critical dimension remains unchangedwith respect to the pure case:

Duc = 4. This is different from the situation in the random fieldO(n)model (RFO(n)M)

where the upper critical dimension is shifted from 4 to 6. Before discussing the critical be-

haviour at this new fixed-point let us see what are the effects of disorder on the flat-phase. In

the Monge parametrization and keeping only the non-linear terms relevant for the flat phase

the free energy is given by:

F =
1

2

∫
dDx

{
κ
(
∂2~h(x)

)2
− 2~c(x).∂2~h(x) (6.8)

+ λuaa(x)
2 + 2µuab(x)

2 − 2σab(x)uab(x)

}
(6.9)

where~h is the height field anduab the strain tensor. As for homogeneousmembranes one can

integrate exactly over the phononmodes and evaluate the effects of disorder [172] through the

height correlation function which is given by:

[
< |h(q)|2 >

]
=

kBT

κDR (q)q
4

(6.10)

where κDR (q) is the renormalized disorder bending rigidity and the superscriptD stands for

disorder and not the membrane dimension and is given by:

κDR (q) = κ+ kBT

∫
p

K0

κ|q + p|4
(
qiP

⊥
ij (p)qj

)2
−∆κ

∫
p

K2
0

κ|q + p|4
(
qiP

⊥
ij (p)qj

)2
(6.11)

whereK0 = 4µ(µ+λ)/(2µ+λ) andP⊥
ij = δij −pipj/p

2 the transverse projection opera-

tor. One sees that the first correction term is temperature dependent and increases the bending

rigidity as in homogeneous membrane. Lowering the temperature the strength of this term
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decreases andκDR is dominated by the temperature-independent termwhich softens the bend-

ing rigidity. Nelson & Radzihovsky found that randomness does not affect the behaviour of

the stable flat phase. However they found another fixed-point corresponding to a random flat

phase atT = 0where the bending rigidity is softened by the randomness. Adding the random

spontaneous curvature changes the renormalized disorder bending rigidity which now reads

[171]:

κDR (q) = κ+ (kBTκ+∆κ)

∫
p

K0

κ2|q + p|4
(
qiP

⊥
ij (p)qj

)2
−∆κ

∫
p

K2
0

κ|q + p|4
(
qiP

⊥
ij (p)qj

)2 (6.12)

fromwhichwe see that the random spontaneous curvature participates to the stiffening of the

bending rigidity through order from disorder. Now at T = 0 there is a competition between

random curvature and random stress.

The thermal fluctuations are characterized by linear response functions:{
χuaub

(q) = T−1 ([< ua(q)ub(−q) >]− [< ua(q) >< ub(−q) >])

χhihj
(q) = T−1 ([< hi(q)hj(−q) >]− [< hi(q) >< hj(−q) >])

(6.13)

and the disorder-induced fluctuations are given by:{
Cuaub

(q) = [< ua(q) >< ub(−q) >]

Chihj
(q) = [< hi(q) >< hj(−q) >] .

(6.14)

These functions χ andC are related to the impurity-averaged Green functions through:{
Guaub

(q) = T χuaub
(q) + Cuaub

(q)

Ghihj
(q) = T χhihj

(q) + Chihj
(q) .

(6.15)

In the long-wave length limit these functions behave as:
χuaub

(q) ∼ q−(2+ηu)

χhihj
(q) ∼ q−(4−ηh)

Cuaub
(q) ∼ q−(2+η′u)

Chihj
(q) ∼ q−(4−η′h) .

(6.16)
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The unprimed and primed critical exponents, which describe respectively the divergences of

the replica diagonal and replica off-diagonal parts of the Green functions, obey the sameWard

identity: ηu+2ηh = 4−D at the non-zero temperature flat phase fixed-point andη′u+2η′h =

4−D at the zero temperature disordered flat phase.

6.4 Perturbative RG

From aweak-coupling ε-expansion in the vicinity ofD = 4Nelson&Radzihovsky [172], and

later Morse & Lubensky [171], have found two non-trivial fixed points. The first one corre-

sponds to a homogeneous flat phase at non-zero temperature (T 6= 0) and the second non-

trivial fixed-point corresponds to a random flat phase at zero temperature (T = 0).

Examining the flow equationsMorse & Lubensky [173] noted that the study of the fixed-

points can be restricted to an attractive subspace where λ/µ = ∆λ/∆µ = −1/3. This space

is shown of fig. 6.1.

Figure 6.1: Flow diagram in the λ/µ = ∆λ/∆µ = −1/3 subspace. All the fixed-points,
except the T 6= 0 fixed-point P4, lie in the µ = 0 (T = 0) plane. P1 is the unstable Gaus-
sian fixed-point and P5 is the physical T = 0 fixed-point. The two unlabeled fixed-points

are non-physical [171].



Chapter 6 Disordered Membranes 169

BelowD = 4 at T 6= 0 the couplings are attracted to the fixed-point P4 which corre-

sponds to the homogeneous flat phasewhere the randomness is irrelevant. When the tempera-

ture is lowered to T = 0 the couplings in the planeµ = 0 flow toP5which is the fixed-point

associated with a rough flat phase where the random spontaneous curvature and the random

stress are non-vanishing. The fixed-point P5 is weakly unstable with respect to the tempera-

ture.

At the fixed-points P4 and P5 the unprimed and primed anomalous dimensions η are

related by scaling relations. These relations were derived by Morse & Lubensky in [171]. We

start with the homogeneous flat phase fixed-pointP4where the scaling relations are given by:
η + 2ηu = 4−D

η′ = 2η

η′u = 0 .

(6.17)

The first relation is obtained from rotational invariance. The last relation is only valid when

d−D is lower than 24which is true in the physical caseD = 2 and d = 3.

At the fixed-point P5 the scaling relations are given by:
η′ + 2η′u = 4−D

η = η′ − φT

ηu = η′u + φT

(6.18)

where again the first relation is obtained from rotational invariance. The exponent φT is an

eigenvalue of the flow equations and corresponds to the scaling of the coupling µ near the

fixed-pointP5: µ ∼ kφT . The calculation of φT to order ε gives φT = 0 for all d > D. This

is in agreement with a large-d expansion to order o(1/d) and with numerical simulations for

d = 3 andD = 2 [174].

From these results Morse & Lubensky conjecture that the exponent φT remains vanish-

ing at all orders of the expansions. This is an interesting project to verify under the NPRG

approach. Moreover it is important to go beyond the ε-expansion to compute accurate values

for the critical exponents.



170 Chapter 6 Disordered Membranes

6.5 NPRG

6.5.1 Effective Action

The formalism that we use for disordered membranes is based on the works of Tissier, Mou-

hanna, Vidal & Delamotte [175] and of Tissier & Tarjus [55, 176]. The effective action is ex-

panded in as a series of free replica:

Γ[φα] =
n∑

α=1

Γ1[φ
α]− 1

2

n∑
α,β=1

Γ2[φ
α, φβ] + . . . (6.19)

For disordered polymerized membranes we take a Gaussian distribution and the effective ac-

tion at lowest order of the field and derivative expansions is given by:

Γ[~r ] =

n∑
α=1

∫
dDx

{
Z

2
(∂i∂i~r

α(x))2 +
λ

8

(
∂i~r

α(x) · ∂i~r α(x)−Dζ2
)2

+
µ

4

(
∂i~r

α(x) · ∂j~r α(x)− ζ2δij
)2}−

n∑
α,β=1

∫
dDx

{
∆κ

2
(∂i∂i~r

α(x))(∂j∂j~r
β(x))

+
∆λ

8

(
∂i~r

α(x) · ∂i~r α(x)−Dζ2
) (

∂j~r
β(x) · ∂j~r β(x)−Dζ2

)
+
∆µ

8

(
∂i~r

α(x) · ∂j~r α(x)− ζ2δij
) (

∂i~r
β(x) · ∂j~r β(x)− ζ2δij

)}
(6.20)

whereZ , λ, µ,∆κ,∆λ,∆µ and ζ are the running coupling constants. The Latin indices cor-

respond to the membrane internal coordinates and the Greek indices to the replica space. We

must be careful when expanding the expression. The second sum overα and β will generate a

n because some terms depend only on α or β.

The cut-off functionRk is not diagonal in the replica space in general [55]:

(Rk(q))
αβ
ij =

(
Rk(q)δαβ + R̃k(q)1αβ

)
δij (6.21)

where 1αβ = 1 ∀ α, β. Taking only a diagonal cut-offmay violates certain symmetries and in-

duces wrong values for the critical exponents [55], [177], [178]. For example in [178] Tissier &
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Tarjus showed that taking R̃k to zero violates superrotational invariance and the dimensional-

reduction, that occurs in theRFO(n)model, could not be recovered. Moreover the cut-off R̃k

reduces the variance of the random sources, i.e. reduces the fluctuations of the bare disorder:

P(h) = e
−

∫ f(q)f(−q)

∆−R̃k (6.22)

where f corresponds to a random source and∆ its variance. The probability eq. (6.22) means

that R̃k must stay finite in the limit k → Λ or else the probability will not make any sense.

Indeed R̃k reduces the variance of the random sources which gives an additional condition on

the cut-off at the beginning of the flow:{
R̃Λ ≤ ∆κ

R̃Λ ≤ ∆λ .
(6.23)

6.5.2 Propagator

The configuration that minimizes the effective action (6.20) si given by:

rαa (x) = ζxaθ(D − a)1α (6.24)

where 1α is equal to 1 for allα. In this configuration the two-point correlation function reads:(
Γ
(2)
k +Rk

)
(p, i, α, q, j, β)∣∣

min

= δαβδ(p+ q)
{
G−1

0 (p)δijθ(i−D − 1)

+θ(D − i)θ(D − j)

[
G−1

1 (p)

(
δij −

pipj
p 2

)
+G−1

2 (p)
pipj
p 2

]}
+ 1αβδ(p+ q)

{
G̃−1

0 (p)δijθ(i−D − 1)

+θ(D − i)θ(D − j)

[
G̃−1

1 (p)

(
δij −

pipj
p 2

)
+ G̃−1

2 (p)
pipj
p 2

]}
(6.25)

where:  Gi(p) =
(
P (p) +m2

i p
2
)−1

G̃i(p) = −
(
P̃ (p) + m̃2

i p
2
)−1 (6.26)
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with P (p) = Z(p 2)2 + Rk and P̃ (p) = ∆κ(p
2)2 + R̃k. The massesm

2
i and m̃

2
i , with

i = 0, 1, 2, are respectively given by 0, ζ2µ, ζ2(2µ+ λ), 0, 12ζ
2∆µ and ζ

2(∆µ +∆λ).

The propagatorP is the inverse of
(
Γ
(2)
k +Rk

)
. Therefore, we have:

(
Γ
(2)
k +Rk

)
P = 1 (6.27)

which can be written using indices as:(
Γ
(2)
k +Rk

)
(i, α, j, β)P(j, β, k, σ) = δασδik (6.28)

with Einstein summation rule over β and j.

To compute the expression of the propagator we must do the inversion of
(
Γ
(2)
k +Rk

)
both in the replica and field spaces. We suppose that the propagator is of the form:

P(i, α, j, β) = δαβδ(p1 + p2) {a δijθ(i−D − 1)

+θ(D − i)θ(D − j)

[
b

(
δij −

pipj
p 2

)
+ c

pipj
p 2

]}
+ 1αβδ(p1 + p2) {ã δijθ(i−D − 1)

+θ(D − i)θ(D − j)

[
b̃

(
δij −

pipj
p 2

)
+ c̃

pipj
p 2

]}
.

(6.29)

Then, let M be a operator of the form:

Mαβ,ij = Xijδαβ + Yij1αβ (6.30)

where the Latin and Greek indices correspond to different spaces and 1αβ = 1 ∀α, β.

M−1
αβ,ijMβσ,jk = δασδik (6.31)

We assume that the inverse matrixM−1 is of the form:

M−1
αβ,ij = X ′

ijδαβ + Y ′
ij1αβ . (6.32)
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In what follows, we drop the subscripts i and j but we must keep in mind that we are dealing

with matrices. Therefore:

M−1
αβMβσ = (X ′δαβ + Y ′1αβ)(Xδβσ + Y 1βσ) (6.33)

= X ′Xδασ +X ′Y 1ασ + Y ′X1ασ + nY ′Y 1ασ (6.34)

which leads to: {
X ′X = 1,

X ′Y + Y ′X + nY ′Y = 0
(6.35)

and the expressions ofX ′ and Y ′ are given by:{
X ′ = X−1

Y ′ = −X−1Y (X + nY )−1 .
(6.36)

We do not need an expansion over replicas because we know how to compute the inverse

(X + nY )−1 exactly. ReplacingX and Y by their expressions, we find (we drop the explicit

momentum dependence of the functionsGi but this will be restored in the final expression):

X ′ = G0δijθ(i−D − 1) + θ(D − i)θ(D − j)

[
G1

(
δij −

pipj
p 2

)
+G2

pipj
p 2

]
Y ′ = −

{
G0δia1θ(i−D − 1) + θ(D − i)θ(D − a1)

[
G1

(
δia1 −

pipa1
p 2

)
+G2

pipa1
p 2

]}
×
{
G̃−1

0 δa1a2θ(a1 −D − 1) + θ(D − a1)θ(D − a2)[
G̃−1

1

(
δa1a2 −

pa1pa2
p 2

)
+ G̃−1

2

pa1pa2
p 2

]}
×

δa1a2θ(a1 −D − 1)(
G−1

0 + nG̃−1
0

)
+θ(D − a1)θ(D − a2)


(
δa1a2 −

pa1pa2
p 2

)
(
G−1

1 + nG̃−1
1

) +

pa1pa2
p 2(

G−1
2 + nG̃−1

2

)


(6.37)
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with summation over the indices ai. Finally, the propagator at the minimum is given by (we

restore the momenta p):

P(p, i, α, q, j, β)∣∣
min

= δαβδ(p+ q) {G0(p)δijθ(i−D − 1)

+θ(D − i)θ(D − j)

[
G1(p)

(
δij −

pipj
p 2

)
+G2(p)

pipj
p 2

]}
− 1αβδ(p+ q)

{
G0(p)

2

nG0(p) + G̃0(p)
δijθ(i−D − 1)

+θ(D − i)θ(D − j)

[
G1(p)

2

nG1(p) + G̃1(p)

(
δij −

pipj
p 2

)
+

G2(p)
2

nG2(p) + G̃2(p)

pipj
p 2

]}
(6.38)

6.5.3 Flow Equations

From the two-point correlation function Γ
(2)
k (p, i, α, p′, j, β)we find that the definitions of

the coupling constants are given by:

∆κ = − lim
p→0

d

dp4
Γ
(2)
k (p,D + 1, 1,−p,D + 1, 2)∣∣

min

(6.39)

∆κ = lim
p→0

d

dp4
Γ
(2)
k (p,D + 1, 1,−p,D + 1, 1)∣∣

min

+∆κ (6.40)

∆µ = − lim
p→0

d

dp2
Γ
(2)
k (p,D, 1,−p,D, 2)∣∣

min

(6.41)

µ = lim
p→0

d

dp2
Γ
(2)
k (p,D, 1,−p,D, 1)∣∣

min

+
∆µ

2
(6.42)

∆λ = − lim
p→0

d

dp2D
Γ
(2)
k (p,D, 1,−p,D, 2)∣∣

min

− ∆µ

2
(6.43)

λ = − lim
p→0

d

dp2D
Γ
(2)
k (p,D, 1,−p,D, 1)∣∣

min

+∆λ +
∆µ

2
− µ (6.44)
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fromwhich we derive the flow equations in similar manner as in the previous chapters. These

flow equations read:

∂tζ
2 =

2AD

D(Dλ+ 2µ)

{
2(d−D)(Dλ+ 2µ)

(
LD+2
1,0,0,0 + LD+2

2,0,0,1

)
+ (D − 1)

(
(Dλ+ 4µ)(∆µζ

2LD+4
0,2,0,0 + 2LD+2

0,2,0,1) + 2LD+2
0,1,0,0(Dλ−∆µ + 4µ)

)
+ 2

[
((D + 2)λ+ 6µ)

(
ζ2(∆λ +∆µ)L

D+4
0,0,2,0 + LD+2

0,0,2,1

)
+LD+2

0,0,1,0((D + 2)λ− 2∆λ − 2∆µ + 6µ)
]}

(6.45)

∂tµ =
4AD

D(D + 2)

{
2µ2(d−D)LD+4

2,0,0,0 +
µ

λ+ µ

×
(
∆µ

((
−D2 +D + 4

)
λ+ (4− (D − 2)D)µ

)
+ (D − 2)(D + 4)µ(λ+ µ)

)
LD+4
0,2,0,0

+
D
(
2µ(∆λµ+ (λ+ µ)(λ+ 2µ))−∆µ

(
λ2 + 4λµ+ 2µ2

))
ζ2(λ+ µ)2

(
LD+2
0,1,0,0 − LD+2

0,0,1,0

)
+ 4ζ2(∆λ +∆µ)(λ+ 3µ)2LD+6

0,0,3,0 + (D − 2)(D + 4)∆µζ
2µ2LD+6

0,3,0,0

− 2

λ+ µ
LD+4
0,0,2,0

(
µ2(2(D + 3)(∆λ +∆µ)− 15λ) + λµ((D + 8)(∆λ +∆µ)− 7λ)

+λ2(2(∆λ +∆µ)− λ)− 9µ3
)
+

2Dµ(λ+ 2µ)

ζ2(λ+ µ)

(
LD+2
0,2,0,1 − LD+2

0,0,2,1

)
+4µ2(d−D)LD+4

3,0,0,1 + 4(λ+ 3µ)2LD+4
0,0,3,1 + 2(D − 2)(D + 4)µ2LD+4

0,3,0,1

}
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∂tλ =
2AD

D(D + 2)

{
(d−D)LD+4

2,0,0,0

(
D(D + 2)λ2 + 4(D + 2)λµ+ 4µ2

)
+ 2(d−D)LD+4

3,0,0,1

(
D(D + 2)λ2 + 4(D + 2)λµ+ 4µ2

)
+∆µζ

2LD+6
0,3,0,0

(
D
(
D2 +D − 2

)
λ2 + 8

(
D2 +D − 2

)
λµ+ 4(3D + 2)µ2

)
+

1

λ+ µ
LD+4
0,2,0,0

(
−2
(
D2 +D − 2

)
∆µλ

2 + (λ+ µ)
(
D
(
D2 +D − 2

)
λ2

+8
(
D2 +D − 2

)
λµ+ 4(3D + 2)µ2

)
− 2(D(D + 3) + 4)∆µλµ− 4(D + 4)∆µµ

2
)

+ 2LD+4
0,3,0,1

(
D
(
D2 +D − 2

)
λ2 + 8

(
D2 +D − 2

)
λµ+ 4(3D + 2)µ2

)
+ 2ζ2(∆λ +∆µ)L

D+6
0,0,3,0

(
(D(D + 6) + 12)λ2 + 12(D + 4)λµ+ 36µ2

)
+

4

ζ2(λ+ µ)2
LD+2
0,0,1,0

(
2µ(∆λµ+ (λ+ µ)(λ+ 2µ))−∆µ

(
λ2 + 4λµ+ 2µ2

))
+

4

ζ2(λ+ µ)2
LD+2
0,1,0,0

(
∆µ

(
λ2 + 4λµ+ 2µ2

)
− 2µ(∆λµ+ (λ+ µ)(λ+ 2µ))

)
+

1

λ+ µ
LD+4
0,0,2,0

(
λ2((D(D + 6) + 12)λ− 4(D + 4)(∆λ +∆µ)) + 4µ2(3(D + 7)λ

−2(∆λ +∆µ)) + λµ((D(D + 18) + 60)λ− 4(D + 8)(∆λ +∆µ)) + 36µ3
)

+
8µ(λ+ 2µ)

ζ2(λ+ µ)
LD+2
0,0,2,1 −

8µ(λ+ 2µ)

ζ2(λ+ µ)
LD+2
0,2,0,1

+2LD+4
0,0,3,1

(
(D(D + 6) + 12)λ2 + 12(D + 4)λµ+ 36µ2

)}
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∂t∆µ =
2AD

D(D + 2)

{
−8(∆λ +∆µ)

2(λ+ 3µ)2LD+8
0,0,4,0ζ

4

+ 16(∆λ +∆µ)(λ+ 3µ)ζ2
[
(∆λ + 2∆µ)L

D+6
0,0,3,0 − (λ+ 3µ)LD+6

0,0,4,1

]
+ (D − 2)∆µµζ

2
[
2(D + 6)∆µL

D+6
0,3,0,0 − 4(D + 4)µLD+6

0,4,0,1 − (D + 4)∆µµζ
2LD+8

0,4,0,0

]
− 4

(λ+ µ)2
(
−6∆µµ

3 + 2((∆λ +∆µ)(∆λ + 2(D + 1)∆µ)− 7∆µλ)µ
2

+ 2λ(2(∆λ +∆µ)(∆λ + (D + 2)∆µ)− 5∆µλ)µ+ λ2((∆λ +∆µ)(2∆λ + (D + 4)∆µ)

−2∆µλ))L
D+4
0,0,2,0 + 8(d−D)∆µµ

[
LD+4
2,0,0,0 + 2LD+4

3,0,0,1

]
+ 16(∆λ + 2∆µ)(λ+ 3µ)LD+4

0,0,3,1 − 8(λ+ 3µ)2LD+4
0,0,4,2

− ∆µ

(λ+ µ)2
(
−8(D − 2)µ3 +

(
∆µD

2 + 4(∆λ +∆µ − 4λ)D − 6∆µ + 32λ
)
µ2

+2λ
((
D2 − 6

)
∆µ − 4(D − 2)λ

)
µ+

(
D2 − 6

)
∆µλ

2
)
LD+4
0,2,0,0

+ 4(D − 2)(D + 6)∆µµL
D+4
0,3,0,1 − 4(D − 2)(D + 4)µ2LD+4

0,4,0,2

+ 8(D − d)µ2LD+4
4,0,0,2 +

8D∆µ(∆λ +∆µ)µ(λ+ 2µ)(LD+2
0,1,0,0 − LD+2

0,0,1,0)

(λ+ µ)3ζ2

− 4

(λ+ µ)2ζ2
(
((D + 2)∆λ + 2(D + 1)∆µ)λ

2 + 4(D∆λ +∆λ + 2D∆µ +∆µ)µλ

+((5D + 2)∆λ + (9D + 2)∆µ)µ
2
)
LD+2
0,0,2,1

− 2

(λ+ µ)2ζ2
((
D2 +D − 2

)
∆µλ

2 + 2(D(D + 2)− 2)∆µµλ

+(4D∆λ + (D2 + 9D − 2)∆µ)µ
2
)
LD+2
0,2,0,1

+
4D(λ+ 3µ)(2∆λµ+∆µ(λ+ 4µ))(LD
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0,0,1,1)

(λ+ µ)3ζ4
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4
(
(D + 1)λ2 + 2(2Dµ+ µ)λ+ (5D + 1)µ2
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(LD
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0,0,2,2)
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8
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}
(6.48)



178 Chapter 6 Disordered Membranes

∂t∆λ =
AD

2D(D + 2)

{
32∆µ(∆λ +∆µ)µ(λ+ 2µ)

(λ+ µ)3ζ2
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LD+2
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2
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where the threshold function is given by:

LD+α
a0,a1,a2,b

= − 1

4AD
∂̃t

∫
dDq qα Ga0

0 (q)Ga1
1 (q)Ga2

2 (q)P̃ b . (6.50)

The anomalous dimension η and the flow ∂t∆κ are not given here since there expressions is

too long to be displayed.

6.5.4 Conclusion

As we have already said in the introduction, our work on disordered membranes is still in

progress and therefore we do not present any result. As a consequence there is no conclusion

in this chapter.

The equations have been checked in the limit of vanishing disorder and they are currently

being compared with the weak-coupling perturbative results.





Conclusion

In this thesiswe have studied different types of polymerizedmembranes: homogeneous, aniso-

tropic and with impurities. In addition we have also studied Lifshitz critical behaviour which

occurs in anisotropic systems.

Polymerized membranes are important systems in biology, chemistry and physics which

make the understanding of their behaviour of great importance. While fluid membranes are

always crumpled polymerizedmembranes exhibit some interesting properties such as the exis-

tence of a flat phase which seems to be in apparent violation of theMermin-Wagner theorem.

But as we have seen that the flat phase results from the existence of a coupling between the out-

of-plane bending and in-plane elasticitywhich induces a long-range interaction and is therefore

beyond the range of applicability of the Mermin-Wagner theorem.

Perturbative approaches have been able to predict qualitatively the behaviour of polymer-

izedmembranes. However since the upper critical dimensionDuc = 4 is far from the physical

dimensionD = 2 the calculations of the critical exponents are not reliable. Wehave computed

the critical dimension linedc(D) separating a first-order transition from a second-order transi-

tion which is not possible using neither an ε nor a large-d expansion. Albeit we cannot bring a

definite answer to the order of the transition in d = 3 andD = 2, our results seem to indicate

that the transition is of first-order.

For tubularmembranes, wemanaged to calculate theuniversal critical exponents andmore

importantly the anomalous dimension η for the transition between the crumpled phase and

the tubular phase. This was not possible using a perturbative approach where the value of η

was qualitatively and quantitatively wrong. This work lead to us to study another anisotropic

system, an anisotropicO(n)-model, where technical difficulties have plagued the perturbative

approaches. An important result of our work is that the non-perturbative renormalization
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group overcomes the technical difficulties present in perturbative approaches such as those in

anisotropic membranes and Lifshitz critical behaviour.

Currently we are finishing our work on disordered membranes and we are studying 1)

anisotropic membranes with higher orders of the derivative and field expansions and 2) Lif-

shitz critical behaviour with a full potential.

In a near future our aim is 1) to use a full potential to completely determine the order of

the phase transition between the crumpled and flat phases in polymerized membranes 2) to

investigate the question of local scale invariance in Lifshitz critical behaviour.

In the long term we hope to be able to study the effects of self-avoidance on the critical

behaviour of polymerized membranes andmost importantly to solve the question of the exis-

tence of the crumpled phase.
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[31] F. Höfling, C. Nowak, and Christof Wetterich. Phase transition and critical behavior

of the d=3 Gross-Neveu model. Physical Review B, 66(20), November 2002.

[32] Bertrand Delamotte, Dominique Mouhanna, and Matthieu Tissier. Nonpertur-

bative renormalization-group approach to frustrated magnets. Physical Review B,

69(13):134413, April 2004.

[33] Jan Pawlowski. Aspects of the functional renormalisation group. Annals of Physics,

322(12):2831--2915, December 2007.

[34] Ken-Ichi Aoki, KeiichiMorikawa,Wataru Souma, Jun-Ichi Sumi, andHaruhikoTerao.

Rapidly ConvergingTruncation Scheme of the Exact RenormalizationGroup. Progress

of Theoretical Physics, 99(3):451--466, March 1998.

[35] Tim R. Morris and John F. Tighe. Convergence of derivative expansions of the renor-

malization group. Journal of High Energy Physics, 1999(08):007--007, August 1999.

[36] F. Braghin and Nils Hasselmann. Thermal fluctuations of free-standing graphene.

Physical Review B, 82(3):5, July 2010.

[37] Nils Hasselmann. Effective Average Action Based Approach to Correlation Functions

at Finite Momenta. arXiv, 2012.



186 BIBLIOGRAPHY

[38] Jean-Paul Blaizot, Ramón Méndez-Galain, and Nicolás Wschebor. Nonperturbative

renormalization group and momentum dependence of n-point functions. I. Physical

Review E, 74(5):48, November 2006.
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