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Abstract

With the rapid growth of wireless technologies, devices and mobile applications, the quest of
high throughput and ubiquitous connectivity in wireless communications increases rapidly
as well. Relaying is undoubtedly a key concept to provide coverage extension and capacity
increase in wireless networks. Network coding, which allows the intermediate nodes to share
their computation capabilities in addition to their resource and their power, has grabbed
a significant research attention since its inception in information theory. It has become
an attractive candidate to bring promising performance improvement, especially in terms
of throughput, in relay-based cellular networks. Substantial research efforts are currently
focused on theoretical analysis, implementation and evaluation of network coding from a
physical layer perspective. The question is, what is the most efficient and practical way to
use network coding in wireless relay-based networks, and whether it is beneficial to exploit
the broadcast and multiple-access properties of the wireless medium to perform network
coding. It is in such a context, that this thesis proceeds.

In the first part of the thesis, the problem of Joint Network-Channel Coding (JNCC) for
a Multiple Access Relay Channel (MARC) is investigated in the presence of multiple access
interferences and for both of the relay operating modes, namely, half-duplex and full-duplex.
To this end, three new classes of MARC, referred to as Half-Duplex Semi-Orthogonal
MARC (HD-SOMARC), Half-Duplex Non-Orthogonal MARC (HD-NOMARC), and Full-
Duplex Non-Orthogonal MARC (FD-NOMARC) have been introduced and studied. The
relaying function in all of the classes is based on a Selective Decode-and-Forward (SDF)
strategy, which is individually implemented for each source, i.e, the relay forwards only a
deterministic function of the error-free decoded messages. For each class, an information-
theoretic analysis is conducted, and practical coding and decoding techniques are proposed.
The proposed coding schemes, perform very close to the outage limit for both cases of HD-
SOMARC and HD-NOMARC. Besides, in the case of HD-NOMARC, the optimal allocation
of the transmission time to the relay is considered. It is also verified that exploiting multiple
access interferences, either partially or totally, results in considerable gains for MARC
compared to the existing interference-avoiding structures, even in the case of single receive
antenna.

In the second part of the thesis, the network model is extended by considering multiple
relays which help multiple sources to communicate with a destination. A new class of Multi-
ple Access Multiple Relay Channel (MAMRC), referred to as Half-Duplex Semi-Orthogonal
MAMRC (HD-SOMAMRC) is then proposed and analyzed from both information theo-
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ABSTRACT

retic and code design perspective. New practical JNCC schemes are proposed, in which
binary channel coding and non binary network coding are combined, and they are shown to
perform very close to the outage limit. Moreover, the optimal allocation of the transmission
time to the sources and relays is considered.

Finally, in the third part of the thesis, different ways of implementing cooperation,
including practical relaying protocols are investigated for the half-duplex MARC with semi-
orthogonal transmission protocol and in the case of JNCC. The hard SDF approach is
compared with two Soft Decode and Forward (SoDF) relaying functions: one based on log
a posterior probability ratios (LAPPRs) and the other based on Mean Square Error (MSE)
estimate. It is then shown that SDF works well in most of the configurations and just
in some extreme cases, soft relaying functions (based on LAPPR or MSE estimate) can
slightly outperform the hard selective one.
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1 Un canal à accès multiple avec relais (MARC) et un canal à accès multiples
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Résumé Détaillé de la Thèse

Communications coopératives et codage réseau

Les communications au sein d’un réseau gagnent en fiabilité et en efficacité quand les utili-
sateurs (ou noeuds) partagent leurs ressources et leur budget de puissance pour transmettre
des données. Une telle coopération conduit dans de nombreux cas à des économies de res-
sources et d’énergie dans l’ensemble du réseau. On conçoit aisément que la coopération
n’intervient qu’à partir de trois noeuds. Ainsi, le modèle du réseau à trois terminaux ini-
tialement introduit et étudié par Van der Meulen [2], en constitue certainement la brique
fondamentale. Depuis, la littérature sur le sujet a connu une croissance régulière, notam-
ment dans le domaine de la théorie de l’information, où l’idée de coopération a été formalisée
au travers du modèle de canal à relais et de ses multiples variantes (canal à relais multiples,
canal à relais bi-directionnel, etc.). En marge de ses travaux, Sendonaris et al. ont imaginé
une forme de coopération entre utilisateurs, où chaque utilisateur joue le rôle de relais pour
les autres [3] [4].

Le modèle de canal à relais :

L’étude du canal à relais remonte à [5], où les auteurs ont présenté de nombreux schémas
de codage aléatoires et comparé les rendements atteignables correspondants avec la borne
supérieure sur la région de capacité donnée par le théorème du flot-maximal/coupe-minimale
(min-cut max-flow). Dans le schéma de coopération [5, Théorème 1], le relais décode le mes-
sage de la source et coopère avec elle pour aider la destination à décoder. Cette stratégie de
coopération, appelée stratégie de coopération par “décodage-et-retransmission” (Decode-
and-Forward ou DF), permet d’atteindre la capacité d’un canal à relais dégradé. Dans
le schéma d’observation [5, Théorème 6], le relais transmet à la destination une estima-
tion (ou une version quantifiée) de ses observations du message source en utilisant les
outils du codage de source avec information adjacente [6,7]. Cette stratégie de coopération
stratégie est appelée stratégie de coopération par compression-et-retransmission (Compress-
and-Forward ou CF) [8]. Un théorème a aussi été présenté dans [5, Théorème 7] pour le canal
à relais général, qui combine coopération et observation. D’autres stratégies de coopération,
comme le décodage partiel (Partial Decoding ou PD) ou l’amplification-et-retransmission
(Amplify-and-Forward ou AF) ont aidé à élargir les analyses [9–13]. Plusieurs contributions
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incluant de nouvelles bornes, des stratégies de contrôle d’énergie, et plusieurs résultats va-
lables pour les relais en mode half-duplex, ont été proposés dans [14].

Les canaux à relais multiples, qui consistent en une seule source, une seule destination
et plus d’un relais, ont été étudié dans différents travaux [15–17], et leurs taux atteints
avec DF, PD et CF ont été présentés dans [17]. Le relayage a été traité avec une attention
particulière dans les environnements sans fil. Parmi les contributions importantes, nous
pouvons citer celles de Laneman et Wornell étudiant les performances des protocoles de
relayage importants dans les environnements sans fil [18–20]. Un certain nombre de proto-
coles de relayage intéressants ont été proposés et analysés dans [21–23] incluant le codage à
répétition et la coopération via le codage espace-temps (space-time coded cooperation) [24].
D’autres contributions complémentaires viennent de résultats novateurs en théorie de l’in-
formation, ainsi que de nouvelles idées en codage aléatoire pour les relais par Kramer et
al. [25] et Chong et al. [26].

Extension du modèle à plusieurs sources ou destinataires :

L’extension des résultats précédents aux schémas multi-accès et diffusion avec plusieurs
sources ou destinataires, ont été traités dans plusieurs travaux :

• Premièrement, un canal à accès multiples avec relais (MARC) a été présenté dans
[8, 27, 28], et les régions des taux atteints correspondantes avec AF, DF, et PD ont
été déduites. Les bornes de capacité pour le MARC avec un relais half-duplex et les
taux atteints correspondants avec AF, DF, et PD ont été étudiés dans [29]. En outre,
un protocole de relayage linéaire appelé AF multi-accès est analysé dans [30] pour le
MARC, et montre qu’il est optimal dans le régime à fort gain de multiplexage.

• D’autre part, le canal à diffusion avec relais (broadcast relay channel ou BRC) a
tout d’abord été étudié dans [31, 32]. Les auteurs ont considéré un réseau avec une
seule source et deux destinataires, et ont introduit deux modèles de canaux, nommés
BRC partiellement coopératif (un seul destinataire agit comme un relais pour les
autres) et BRC pleinement coopératif (chaque destinataire agit comme un relais pour
l’autre). Ils ont ainsi extrait et comparé les régions des taux atteints correspondantes
en considérant DF. Le BRC partiellement coopératif fut davantage étudié dans [33]
pour le cas de plus d’une destination. Un troisième modèle BRC fut introduit et étudié
dans [8,34], où un relais additionnel a été inséré dans le canal de diffusion avec pour
seule fonction le relayage. Les régions des taux atteints et les bornes supérieures de
la capacité pour RBC ont été davantage développées dans [35, 36]. En parallèle, AF
pour le canal à accès multiples (MAC) multi sauts (multihop MAC) et pour le canal
à diffusion (sans liens directs entre les sources et les destinataires) ont été étudiés
dans [37], où l’allocation optimale de puissance au niveau des relais a été présentée,
tout comme la dualité MAC-BC pour le relais AF.

• Finalement, l’idée principale du canal à relais bidirectionnel (two-way relay channel
ou TWRC) a été d’abord présentée dans [38] pour les canaux non-bruités. Dans
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TWRC, deux noeuds échangent leurs informations via un relais. La transmission
par diffusion et à accès multiple simultané peuvent tous deux être considérés dans
ce modèle de canal, et ont été l’objet de plusieurs travaux de recherche. Dans [39–
41], les auteurs extraient les taux atteints en considérant les noeuds full-duplex, la
transmission par diffusion à chaque noeud et l’accès multiple simultané de tous les
noeuds. Dans [39, 40], les taux atteints ont été calculé pour AF, DF, et CF, alors
que dans [41], la région des taux atteints pour la stratégie de relayage calcul-et-
retransmission (compute-and-forward ou CoF) a été extraite. Dans la stratégie CoF
[42, 43], le relais calcule (ou décode) une combinaison linéaire des messages transmis
du MAC noeuds-vers-relais. Davantage de contributions sont basées sur les prémices
des noeuds half-duplex, pour lesquelles nous distinguons deux catégories principales :
(i) le canal à relais bidirectionnel à deux phases avec le protocole de diffusion multi-
accès dans lequel les deux noeuds communicants transmettent simultanément au relais
pendant la première phase, et le relais diffuse aux deux pendant la seconde phase.
Dans ce modèle, il n’y a pas de lien direct entre les noeuds communicants ; (ii) le canal
à relais bidirectionnel à trois phases avec transmission par diffusion à tous les noeuds
et sans accès multiples. Le premier modèle de canal a été considéré dans [44–48] où
les auteurs ont extrait les taux atteints en considérant différents schémas de relayage
(AF, DF, PD, CF, et CoF). De plus, la région de capacité du canal à diffusion
(broadcast channel capacity region) a été extraite dans [49], où chaque destinataire
connait parfaitement le message adressé à l’autre noeud. La conception de code et les
taux atteints pour le second modèle ont été étudiés dans [50,51]. Plusieurs stratégies
de relayage et leurs taux atteints correspondants ont également été présentés dans [52]
pour les deux catégories.

Codage réseau pour canal à accès multiple avec relais :

Dans un réseau multi-terminaux général avec plusieurs paires source-destination, les noeuds
intermédiaires n’ont pas besoin de traiter séparément et indépendamment chaque flux de
données entrant. Il existe plusieurs façons d’effectuer des opérations algébriques sur l’en-
semble des flux entrants. C’est le concept fondamental de codage réseau, qui a été initia-
lement proposé par Ahlswede, Cai, Li, et Yeung in [53], et a suscité une intense activité
de recherche. Il est important de souligner que de nombreux schémas coopératifs qui ont
déjà été mentionnés, notamment pour MARC et TWRC, peuvent être placés dans le cadre
du codage réseau. Ahlswede et al. ont démontré dans [53] que pour les configurations
“multicast”, seule une stratégie de codage réseau pouvait atteindre la région de capacité
du flot-maximal-coupe minimale (min-cut max-flow capacity region). Cette publication
majeure a très vite suscité une intense activité de recherche tant sur le plan théorique
que pratique, afin d’étendre ce concept aux communications sans fil, qui, bien qu’ayant
des pertes de transmission, facilite largement son application. Par exemple, la diffusion
est garantie sans frais. L’application du concept de codage réseau aux réseaux sans fil à
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paquets a donné lieu à de nombreuses études. Le codage réseau déterministe a été intro-
duit dans [54], ce qui nécessite une connaissance complète de l’ensemble du réseau. Les
auteurs de [54] ont démontré que le codage réseau linéaire d’un alphabet de taille finie
peut atteindre la région de capacité min-cut max-flow. Cet aspect a été davantage analysé
dans [55, 56]. Cependant, une connaissance complète des réseaux de paquets de grandes
tailles ne sont en général pas disponibles, ce qui explique l’intérêt particulier d’effectuer le
codage réseau aléatoire [57, 58]. Dans ce cas, les opérations du codage réseau sont choisies
de manière aléatoire et indépendante à chaque noeud. Comme il est démontré dans [58],
les codes linéaires et aléatoires de grands longueurs peuvent asymptotiquement atteindre
la région de capacité min-cut max-flow. Ces contributions, conjointement avec [59,60], ont
également démontré l’efficacité du codage réseau aléatoire distribué sur un réseau constitué
des sources corrélées (par exemple, réseaux de capteurs), où une compression distribuée est
nécessaire. Le caractère asymptotiquement optimal du codage réseau aléatoire (distribué) a
été établi en l’absence et en présence de paquets de données effacés dans [61–63]. Parmi les
autres contributions, [38, 64, 65] se focalisent sur les canaux sans erreurs, et [66] considère
les canaux d’effacement avec erreurs dans les réseaux de capteurs. Finalement, la nécessité
de codage bout en bout dans les réseaux multi-terminaux a été étudiée dans [67], où les
auteurs ont démontré que seule une approche unifiée qui traite conjointement le codage
source, codage canal et codage réseau, peut atteindre la région capacité min-cut max-flow.

Du point de vue de la couche physique, le codage réseau sans fil peut être utilisé dans
une variété de contextes, en combinaison avec le codage canal et le codage source. Dans
les réseaux multi-terminaux densément déployés (par exemple, réseaux de capteurs), où il
existe une corrélation entre les sources, les noeuds doivent combiner le codage source, le
codage canal, et le codage réseau. Plusieurs idées et contributions ont été proposées à ce
sujet dans le but d’introduire certaines conceptions de code dans un cadre unifié [68–70].
Toutefois, dans le cas des sources indépendantes et incompressibles, la combinaison du
codage réseau et du codage canal a suscité une intense activité de recherche, et diverses
contributions dans le cadre de MARC [71, 72], de TWRC [73–75], de la coopération entre
utilisateurs [76–79] ou du codage entre paquets pour les systèmes ARQ hybrides (crosspa-
cket channel coding for hybrid ARQ systems) [80], ont été proposés au cours des dernières
années. Ici, l’objectif principal du codage réseau est de fournir une transmission fiable et
spectralement efficace sur le réseau. D’un point de vue purement codage, le défi est de par-
venir à la diversité pleine et de maximiser le gain de codage. Il est important de souligner
que la diversité pleine ne peut être atteinte qu’avec des limitations sur le débit de transmis-
sion. De plus, assurer la diversité pleine (en espace) n’est pas nécessairement le critère de
conception le plus important dans les environnements sans fil réalistes, car de nombreuses
autres sources de diversité existent (diversité fréquentielle, diversité spatiale par les an-
tennes de réception, etc.). Il existe deux approches radicalement différentes pour combiner
le codage canal et le codage réseau : le codage canal réseau séparé (separate network co-
ding coding ou SNCC) et le codage conjoint canal réseau (joint network channel coding
ou JNCC). Dans le SNCC, le codage de canal est effectué localement et séparément pour
chaque transmission afin de convertir les canaux bruités en liens à effacements. Le codage
réseau est effectué sur les canaux à effacements fournis par les couches inférieures [81]. Le
décodage canal réseau procède également par étapes successives (separate network channel
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decoding ou SNCD) : le décodage canal préalablement effectué au niveau de chaque lien
physique fournit une estimation des messages au décodeur réseau. L’approche JNCC, quant
à elle, utilise la redondance du codage réseau pour renforcer le codage canal afin d’améliorer
le gain de codage du système. Elle fait appel à un décodage conjoint canal et réseau (joint
network channel decoding ou JNCD) à la destination, dans lequel les informations souples
sont échangées entre le décodeur réseau et les décodeurs canaux.

Aspects pratiques du codage réseau dans les environnements
sans fil

Cette partie donne un aperçu de l’état de l’art des conceptions pratiques de codage réseau
pour la communication sans fil avec codage canal. Les contributions sont divisées en deux
catégories : (i) codage réseau basé sur le protocole DF dans lequel nous revenons à l’espace
des messages à tous les noeuds intermédiaires pour construire le message réseau codé, ou
(ii) codage réseau dans lequel le message réseau codé est construit sans revenir à l’espace
des messages, i.e., serait une fonction arbitraire d’une estimation des combinaisons des mots
de code transmis par les sources.

1) Stratégie de coopération DF

Hausl et al. semblent avoir été les premiers à proposer des mises en oeuvre pratiques de co-
dage canal réseau à base de codes LDPC [71] ou de turbo codes [72]. Les hypothèses adoptées
par ces travaux précurseurs sont en général : (i) le mode half-duplex pour le fonctionne-
ment du relais ; (ii) pas d’interférence grâce à l’orthogonalité des liens ; (iii) une stratégie
de relayage de type décodage conjoint et retransmission conditionnelle (joint selective DF),
c.-à-d., le relais coopère si et seulement si il parvient à décoder sans erreurs l’ensemble
des messages des sources. Concernant la première hypothèse, nous savons de la théorie de
l’information que le mode half-duplex est fondamentalement sous-optimal par rapport au
mode full-duplex, mais souvent retenu pour des raisons pratiques. Les contraintes physiques
(une très forte atténuation sur le canal sans fil, une isolation électrique insuffisante entre
les circuits de transmission et de réception, etc.), la complexité et le coût, expliquent très
probablement l’intérêt modéré pour le mode de fonctionnement full-duplex. Concernant
la seconde hypothèse, comme nous l’avons déjà souligné, le canal radio offre une diffusion
naturelle des signaux. Toutefois, cette diffusion naturelle a un prix : la superposition des
signaux ou interférence au niveau de tous les noeuds intermédiaires et aussi à la destina-
tion. Pour lutter contre cette interférence, un accès orthogonal (en temps, en fréquence, en
codes, etc.) est très souvent supposé dans les systèmes de communications avec coopération.
Si l’orthogonalité simplifie la conception du codage conjoint canal réseau, son analyse et
le décodage associé, elle a aussi pour conséquence de réduire significativement l’efficacité
spectrale des systèmes, surtout en présence d’antennes de réceptions multiples. En effet,
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on peut montrer théoriquement que l’accès orthogonal n’est pas optimal pour les canaux
MACs à évanouissements lents (slow fading MAC), bien qu’il puisse conduire à des per-
formances proches de l’optimal dans les régions de rapports signal-à-bruit (signal-to-noise
ratio ou SNR) très faibles. De plus, les auteurs de [71] prennent pour hypothèse des liens
sources vers relais sans erreurs. Pour justifier cette hypothèse, on pourrait imaginer des
scénarii de communications où les sources sont très proches du relais et en vue directe.
Cependant même dans ce cas, des erreurs de décodage seront possibles car, en pratique,
il n’existe pas de schéma de modulation et de codage parfait (au sens de la théorie de
l’information). D’autre part, les codes des références précitées ne garantissent pas structu-
rellement une diversité pleine. Plus récemment, dans le même contexte, Duyck et al. ont
proposé un JNCC à base de codes LDPC, prenant comme hypothèses les liens orthogonaux
et les liens sources-relais sans erreurs [82]. Leur but est de construire un JNCC garantis-
sant la diversité pleine, ce qui, en effet, conduit à un raisonnement analytique asymptotique
(valable à SNR infini) et le durcissement des canaux à évanouissements lents aux canaux à
effacement par bloc. Dans cette perspective, la diversité atteintes par le JNCC proposé ne
dépend pas de la qualité des liens source-relais, et pour des raisons de simplicité, les auteurs
ont supposé des liens source-relais sans erreur. Malheureusement, la conception proposée
n’est pas générique en terme de choix de codage et de nombre de sources. De plus, les
performances s’écroulent dès que les liens sources-relais deviennent imparfaits, même si la
propriété de diversité pleine est préservée. L’application du JNCC en présence d’erreurs de
décodage au niveau du relais a été traité dans [83]. Les auteurs supposent que les signaux
transmis du relais vers la destination sont de nature analogique, et le JNCC qu’ils emploient
est extrêmement simpliste comparé à [71, 72, 82]. De plus, pour transmettre efficacement
les signaux analogiques du relais de façon efficace dans une bande passante donnée, il est
nécessaire de recourir à des opérations de quantification/compression [84, 85] nécessitant
une connaissance à priori au relais de l’état du canal relais-destination. En outre, dans
toutes ces contributions, les sources et le relais n’interfèrent pas. Des conceptions JNCC
similaires ont également été proposées dans le cas d’un TWRC avec un accès multiple
orthogonal par répartition en temps (time division multiple access ou TDMA) [73,74].

Dans l’ensemble, les schémas mentionnés ci-dessus sont conçus pour les réseaux sans fil
de petite taille, avec des topologies spécifiques, qui ne peuvent être facilement appliquées
aux grands réseaux multi-terminaux sans fil. Pour le MARC avec M sources, M > 2, plu-
sieurs schémas de codage ont été récemment proposés, parmi lesquelles se trouvent [86]
qui est basé sur les codes linéaires des produits, et [87] qui est basé sur les codes LDPC
multi-arête (multi edge type LDPC). Plusieurs conceptions de code ont également été pro-
posées dans le cas où M sources, M > 2, communiquent avec une destination commune et
chaque source peut relayer l’information pour les autres [88–90]. Dans [88], un cadre pour
la coopération réseau adaptative a été proposée dans lequel l’adaptation en temps réel
des codes réseau à la qualité variable des liens a été principalement abordée. Ce schéma
a été davantage étudié dans [89] en prenant en compte les défaillances des liens de com-
munications. En parallèle, un certain nombre de contributions étudient l’application de
codage réseau dans un canal à accès multiples avec des relais multiples (multiple access
multiple relay channel ou MAMRC) constitué de M sources, L relais et une destination
(M,L ≥ 2), ce qui est une extension naturelle du MARC. Parmi les premières contributions
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se trouvent [81, 91] avec ces hypothèses communes : (i) l’orthogonalité entre tous les liens
radio ; (ii) des liens sources-relais sans erreur ; (iii) le schéma SNCC ; (iv) les schémas de
codage réseau binaire. Le codage réseau binaire basé sur l’addition modulo 2 (XOR) n’est
pas optimal pour les réseaux avec des relais multiples en terme de gain de diversité. Cet
aspect a été initialement adressé dans [92] pour le cas de MAMRC, et dans [93] pour le cas
d’un réseau coopératif avec deux utilisateurs. Les auteurs ont démontré, grâce à des calculs
de probabilité de coupure, que la diversité pleine ne peut être atteinte qu’en utilisant les
codes réseau algébriques ou non binaires. Ils ont également examiné les différentes situa-
tions possibles des canaux source-relais (en coupure ou non) et ils ont prouvé qu’il existe
des schémas de codage réseau dans les alphabets d’ordres suffisamment élevés pouvant at-
teindre la diversité pleine. Leur travail dans [93] a ensuite été généralisé dans [94] pour le
cas d’un réseau coopératif avec M utilisateurs, où les auteurs ont proposé une conception
équivalente, mais en tenant compte des codes en blocs linéaires sur un corps fini non binaire.
Ils ont ensuite démontré que le schéma proposé est optimal en terme de métrique de Ham-
ming et peut augmenter l’ordre de diversité sans sacrifier le débit du système. Cependant,
dans l’ensemble des contributions susmentionnées, les sources et les relais n’interfèrent pas,
et les bénéfices d’un JNCC efficace n’ont pas été explorés. Récemment, une conception
JNCC/JNCD basée sur les codes LDPC a été proposée dans [95] pour le MAMRC, où les
auteurs ont considéré des liens orthogonaux et des codes canal/réseau non binaire. Ils ont
montré que leur schéma a de meilleures performances par rapport au JNCC/JNCD binaire
dans lequel toutes les opérations de codage sont basées sur XOR. Toutefois, celui-ci est déjà
connu pour être sous-optimal lorsque le nombre de relais est supérieure à un. L’efficacité
de leur approche par rapport à une conception JNCC/JNCD dans laquelle les codes canal
binaires et les codes réseau non binaires sont employés, n’a pas été étudiée.

Un codage réseau opérant sur le corps des nombres complexes a été proposé dans [96],
différent du codage réseau dans le corps Galois qui était la base de tous les schémas ci-
dessus. Celui-ci est basé sur l’utilisation de vecteurs de précodage linéaire tirés du corps
des nombres complexes, et une fonction de relayage particulière consistant à pondérer en
puissance les estimées des symboles transmis par les sources en fonction de la qualité (en
moyenne) des liens sources-relais et relais-destination. Les auteurs ont considéré des liens
non parfaits et ont démontré que leur schéma garantie la diversité pleine dans les cas de
MARC et de MAMRC. Le gain de codage d’une telle approche reste cependant à clarifier
par rapport à une approche basée sur le corps de Galois.

2) Autres stratégies de coopération

Lorsque le relais ne peut pas décoder correctement les messages des sources, la stratégie
de coopération DF conduit à la propagation d’erreurs vers la destination, tandis que la
stratégie de coopération DF adaptative (par exemple DF sélectif conjoint) contraint le
relais à rester silencieux. La stratégie de coopération DF souple (Soft DF ou SoDF) fondée
sur le décodage souple des messages des sources et sur un JNCC souple, est une approche
alternative à la stratégie de coopération DF adaptative. Elle pourrait donner de meilleures
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performances par rapport à la stratégie de coopération DF adaptative. Notons que le relais
peut faciliter le décodage à la destination en transmettant une fonction arbitraire des
combinaisons linéaires et bruitées des mots de code transmis par les sources sans recourir
au décodage dur ou souple de chaque message des sources. Cet aspect a été abordé dans
plusieurs contributions et différents schémas de relayage ont été proposés.

Dans [97], les auteurs ont considéré un MARC avec des liens orthogonaux, et ont proposé
de conjointement quantifier les signaux reçus au niveau du relais, opération suivie par un
codage source et canal. Cela nécessite également la connaissance de l’état du canal relais-
destination au relais.

L’avantage potentiel du codage réseau basé sur l’estimation-et-transmission et tenant
compte des caractéristiques du MAC remonte à [42–44, 52, 75, 98–101]. Dans [44, 98], la
stratégie AF a été introduite pour le TWRC à deux phases, où le relais diffuse le signal
superposé qu’il a reçu après l’amplification. Cette stratégie a été mise en oeuvre dans [99]
sous le nom de codage réseau analogique. Exploiter la fonction naturelle d’un MAC pour
calculer la fonction de codage réseau, en utilisant des signaux transmis simultanément,
semble être proposé indépendamment par plusieurs groupes de recherche en 2006 [75, 100,
101]. Dans [100], les auteurs ont démontré les avantages d’exploiter des interférences en
utilisant les codes structurés pour le réseau papillon. Ceci a été davantage étudié dans [42],
et une nouvelle stratégie de coopération a été introduite, basée sur l’utilisation de réseaux
de points et de codes en treillis. Plusieurs autres schémas ont ensuite été suggérés dans
[43,48,102] en utilisant le codage basé sur le treillis et de différentes techniques de décodage.
Dans [52,101], les auteurs ont proposé le protocole de relayage débruitage-et-retransmission
(denoise-and-forward ou DNF) pour le TWRC à deux phases, qui a été davantage étudié
dans [103], en mettant l’accent sur la conception des constellations, représentant la fonction
de codage réseau. La même idée a également été proposée dans [75] sous le nom de codage
réseau au niveau physique (physical layer network coding ou PNC). Les auteurs de [75]
ont considéré un TWRC à deux phases, dans lequel le relais transforme directement les
paquets superposés qu’il a reçus au paquet XOR par un mapping adapté (mapping PNC).
DNF et PNC peuvent être considérés comme des cas particuliers de la stratégie CoF. La
PNC a été davantage développée dans plusieurs contributions en utilisant des schémas
de codage canal différents. Parmi les contributions importantes sont [104] avec les codes a
répétition-accumulation (repeat accumulate codes) [105] avec les codes LDPC, et [106] avec
les codes convolutifs. Différentes façons d’intégrer le décodage canal et le mapping PNC
au relais (une conception séparée ou conjointe) ont également été discutées et comparées
dans [104,107]. Toutefois, comme illustré dans [48,52,108,109], l’utilisation de DNF, PNC
ou CoF, ne peut s’approcher de la borne supérieure de la capacité du TWRC que dans le
régime à fort SNR.

Récemment, différentes stratégies de décodage au relais, afin d’obtenir la séquence du
message réseau codé, ont été comparées dans [110], en considérant PNC pour le TWRC à
deux-phases. Les auteurs ont démontré qu’une détection et décodage conjointe de la paire
des mots de code transmise, a des performances similaires au schéma de décodage en liste
sur un canal sélectif en fréquence. L’algorithme de décodage en liste est une mise en oeuvre
approximative de la stratégie de décodage optimal pour trouver la séquence réseau codée
la plus probable à partir des signaux reçus superposés, et a été discuté dans [110]. Des
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résultats similaires ont également été déduits dans [111] dans le cas du canal AWGN sans
interférence entre symboles.

Dans l’ensemble, une étude plus approfondie devrait être menée pour étendre l’approche
PNC, qui a été principalement étudiée dans le cas du TWRC, aux autres topologies de
réseau, et afin de circonscrire les configurations dans lesquelles le PNC donne de meilleures
performances par rapport aux autres solutions.

Hypothèses et scénarii retenus dans la thèse

Cette thèse étudie les performances de plusieurs réseaux multi-terminaux coopératifs, et vise
à concevoir des schémas de codage appropriés et à trouver un moyen efficace de mettre en
oeuvre la coopération dans un environnement sans fil. La conception comprend également
le codage réseau à tous les noeuds intermédiaires. Nous considérons les deux réseaux multi-
terminaux qui sont représentés dans la Fig. 1.1.

1. Un MARC avec M sources indépendantes (M ≥ 2), un relais et une destination.

2. Un MAMRC qui est une extension naturelle du MARC avecM sources indépendantes,
L relais et une destination (M,L ≥ 2).

Figure 1 – Un canal à accès multiple avec relais (MARC) et un canal à accès multiples
avec relais multiples (MAMRC)

Tout au long de la thèse, nous supposons que tous les liens du réseau sont bruités et
sujets à des évanouissements lents. Les deux modes de fonctionnement du relais, à savoir,
half-duplex et full-duplex sont considérés. L’hypothèse d’orthogonalité entre les liens radio
est partiellement ou totalement enlevée. Cela signifie que les noeuds dans le réseau sont
autorisés à transmettre simultanément en même temps ou dans la même bande de fréquence.
Les sources et le(s) relais sont en mouvement et ne sont pas en vue directe. Tous les noeuds
sont parfaitement synchronisés. La destination sait toujours si le(s) relais coopèrent ou non,
mais les sources peuvent être ou ne pas être informées de la coopération. Ni les sources ni
le relais, lorsqu’il transmettent, n’ont d’information sur l’état des canaux, par exemple au
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moyen d’une voie de retour. La connaissance du canal en réception est supposée parfaite
au niveau du relais et de la destination. Finalement, la métrique de performance utilisée
dans la thèse est soit la probabilité de coupure conjointe, soit la probabilité de coupure
individuelle.

Principales contributions

Les principales contributions de cette thèse peuvent être divisées en cinq chapitres :

Chapitre 2 : JNCC pour le MARC half-duplex semi-orthogonal

Dans ce chapitre, on propose une nouvelle classe de MARC (dans la suite : HD-SOMARC
ou SOMARC) définie comme suit :

• les sources indépendantes communiquent avec la destination aidées par un relais ;

• le relais travaille en mode half-duplex et applique une stratégie de coopération de
type décodage-et-retransmission sélective (selective decode and forward ou SDF) dans
laquelle il transmet une fonction déterministe des messages qu’il a pu décoder sans
erreurs ;

• les sources peuvent transmettre simultanément pendant la phase d’écoute du relais
(phase 1) mais restent silencieuses pendant sa phase de transmission (phase 2).

Le fait de permettre des collisions au niveau du relais et de la destination exploite au
mieux le caractère de diffusion du canal radio. De plus, la fonction de relayage SDF du
SOMARC évite la propagation d’erreurs du relais vers la destination tout en diminuant le
taux d’erreurs par bloc (BLER) et par utilisateur.

Puisque le SOMARC se décompose en deux MAC au relais et à la destination (phase 1)
et un canal mono-utilisateur du relais vers la destination (phase 2), sa région de coupure est
parfaitement connue pour un état du canal donné. On exprime la probabilité de coupure
(outage probability) ou les rendements atteignables pour un taux de coupure ǫ (ǫ-outage
achievable rates) du SOMARC par utilisateur pour le JNCC et le SNCC. Les probabilités de
coupure sont détaillées sous l’hypothèse d’entrées indépendantes, gaussiennes ou discrètes,
et sont comparées à celles obtenues pour un protocole d’accès orthogonal (OMARC). On
propose ensuite un JNCC basé sur l’emploi de codes convolutifs et de turbo codes qui
garantit la propriété de diversité pleine, dans le sens où il atteint la même diversité que le
cas d’un seul utilisateur (sans interférence). En effet, dans l’annexe A, nous prouvons que
la probabilité de coupure d’un canal MAC à évanouissements lents de M utilisateurs est
la même que celle d’un canal MAC orthogonal, pour le cas d’une antenne de réception et
des canaux indépendants de Rayleigh pour tous les liens. Suite à l’argument de [82], nous
voyons qu’à fort SNR γ, les MAC au relais et à la destination ainsi que le canal mono-
utilisateur du relais vers la destination deviennent 2M + 1 canaux à effacement par bloc
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(block erasure channel ou BEC) indépendants. Nous affirmons que notre design JNCC ga-
rantit la propriété de diversité pleine, quand la probabilité d’erreur par source se comporte
en ǫ2, où ǫ est la probabilité d’effacement de chaque lien. Par ailleurs, les implémentations
pratiques proposées de codage canal et réseau ainsi que leurs décodages itératifs associés
pour le SOMARC donnent des performances très proches de la probabilité de coupure (no-
tamment d’environ 1 dB pour l’efficacité spectrale η = 4/3 b./c.u.) dans les cas d’une seule
antenne et d’antennes multiples en réception. On montre également que pour les efficacités
spectrales η = 4/3 b./c.u. et η = 8/3 b./c.u., nos schémas proposés sont plus efficaces que
(1) les schémas JNCC distribués pour OMARC ; (2) les schémas SNCC. Finalement, on
vérifie que SOMARC est toujours plus performant que OMARC tant sur le plan théorique
que pratique. Ceci montre qu’au détriment des architectures de réception plus complexes,
l’application de la non-orthogonalité est plutôt un avantage.

Chapitre 3 : JNCC pour le MARC half-duplex non-orthogonal

Dans HD-SOMARC, les sources doivent rester silencieuses pendant la durée de transmis-
sion du relais. Ceci nécessite des signalisations supplémentaires pour informer les sources
de la coopération. Cependant, si nous permettons aux sources de transmettre, seule la des-
tination doit être informée de la coopération, ce qui réduit considérablement la surcharge
de signalisation de contrôle. En même temps, les sources peuvent utiliser de meilleurs codes
(bits de parité supplémentaires), mais étant donné que les signaux des sources interfèrent
avec le signal du relais pendant la deuxième phase, un décodage conjoint plus complexe est
nécessaire à la destination. Ce que nous gagnons d’un point de vue codage pur pourrait être
perdu en raison de la sous-optimalité du décodage itératif. L’autre problème intéressant est
de concevoir des codes qui ont de bonnes performances dans leurs versions partielles sur
les liens source-relais, et aussi dans leur versions complètes à la destination (c.à.d, compte
tenu des bits de parité supplémentaires des sources au cours de la deuxième phase et ceux
du relais en cas de coopération).

Motivé par les points mentionnés ci-dessus, nous proposons dans ce chapitre une nou-
velle classe de MARC (dans la suite : HD-NOMARC ou NOMARC) définie comme suit :

• les sources indépendantes communiquent avec la destination aidées par un relais ;

• le relais travaille en mode half-duplex et applique la stratégie SDF dans laquelle il
transmet une fonction déterministe des messages qu’il a pu décoder sans erreurs ;

• les sources peuvent transmettre simultanément pendant les deux phases d’écoute et
de transmission du relais.

Au cours de la première phase de transmission, les sources diffusent simultanément la
première partie de leurs messages, interférant au relais et à la destination. Pendant la
deuxième phase, ils continuent à transmettre la deuxième partie de leurs messages, et
donc interfèrent avec le relais en cas de transmission, mais, en même temps, la destina-
tion bénéficie des codes plus puissants pour effectuer la détection et le décodage conjoint.
C’est en effet la forme la plus générale de relayage half-duplex où l’accès n’est pas or-
thogonal [112, 113]. Concernant le protocole SDF, ses intérêts théoriques et pratiques ont
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été confirmés dans le chapitre 2 pour HD-SOMARC. Cependant, de nombreuses questions
doivent encore être abordées, y compris l’impact de l’interférence d’accès multiples au cours
des deux phases de transmission sur la probabilité de coupure. En se basant sur une ana-
lyse minutieuse des événements de coupure, on exprime la probabilité de coupure ou les
rendements atteignables pour un taux de coupure ǫ du HD-NOMARC par utilisateur pour
le JNCC et le SNCC. Les probabilités de coupure sont détaillées sous l’hypothèse d’entrées
indépendantes, gaussiennes ou discrètes. Elle sont également utilisées pour optimiser de
façon numérique la fraction des utilisations de canal disponible au cours desquelles le relais
écoute et celles pendant lesquelles les sources et le relais transmettent, pour une efficacité
spectrale fixe. Cette allocation optimale est ensuite appliquée à nos conceptions pratiques.
Les probabilités de coupure sont également comparées à celles obtenues pour un protocole
d’accès orthogonal (OMARC), en considérant un budget énergétique fixe par source (par
les dimensions disponibles). On propose ensuite un JNCC basé sur l’emploi de turbo codes
qui garantit la propriété de diversité pleine, et est flexible en terme de nombre de sources
et de schémas de codage et modulation (modulation coding scheme ou MCS). La justifica-
tion de notre construction de code a été déjà discutée dans le chapitre 2. Par ailleurs, les
implémentations pratiques proposées de codage canal et réseau ainsi que leurs décodages
itératifs associés pour le HD-NOMARC donnent des performances très proches de la pro-
babilité de coupure, dans les cas d’une seule antenne et antennes multiples en réception,
et pour l’efficacité spectrale η = 4/3 b./c.u.. On montre également que pour les efficacités
spectrales η = 4/3 b./c.u. et η = 8/3 b./c.u., nos schémas proposés sont plus efficaces
que (1) les schémas JNCC distribués pour OMARC ; (2) les schémas SNCC. Finalement,
l’avantage d’utiliser la nature de diffusion de l’environnement sans fil est confirmé par des
simulations.

Chapitre 4 : JNCC pour le MARC full-duplex non-orthogonal

Dans les chapitres précédents, nous avons introduit et analysé deux classes différentes de
MARC avec un relais half-duplex. Comme déjà mentionné, un relais full-duplex peut at-
teindre une capacité supérieure à celle d’un relais half-duplex, d’un point de vue théorique.
En outre, l’application des relais full-duplex est de plus en plus faisable en pratique. Cela
inspire une analyse théorique plus approfondie et la conception des schémas JNCC pra-
tiques pour le MARC avec un relais full-duplex.

Dans ce chapitre, nous prenons un pas de plus et nous enlevons la contrainte half-duplex
du MARC. Nous proposons une nouvelle classe de MARC (dans la suite : FD-NOMARC)
définie comme suit :

• les sources indépendantes communiquent avec la destination aidées par un relais ;

• le relais travaille en mode half-duplex et applique la stratégie SDF dans laquelle il
transmet une fonction déterministe des messages qu’il a pu décoder sans erreurs ;

• les sources et le relais peuvent transmettre simultanément.

Un nouveau protocole de transmission adapté à cette classe de MARC est proposé, qui
combine plusieurs idées trouvées dans [5] [114] [112] [71]. Suivant [5], nous considérons un
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codage de type block Markov superposition coding. Pendant la transmission du premier
bloc (bloc initial), les sources diffusent simultanément leurs messages, interférant au ni-
veau des relais et de la destination. La destination stocke simplement les signaux reçus.
Le relais décode conjointement les messages des sources, et combine linéairement les mes-
sages correctement décodés pour produire son propre message à transmettre au cours de
la transmission de bloc suivant. Notez que le délai de traitement au niveau du relais est
généralement négligé dans notre modèle du système. En cas d’échec de décodage de tous
les messages, il ne fait rien et reste silencieux lors de la transmission de bloc suivant. Au
cours de la transmission du deuxième bloc, les sources diffusent des nouveaux messages à la
fois au relais et à la destination. Le relais décode conjointement les messages des sources et
applique la même procédure que précédemment. En même temps, si le décodage sélectif au
cours de la transmission du bloc précédent a réussi, le relais transmet le message produit à
la destination. La destination continue de stocker tous les signaux reçus qui interfèrent. Le
processus est répété pour les blocs suivants. Une fois que tous les blocs ont été reçus, la des-
tination commence à décoder. Ce type de décodage peut introduire des retards importants,
mais offre les meilleures performances. Il est important de souligner que la destination sait
toujours si le relais coopère ou non, mais en fonction de la stratégie de codage, les sources
peuvent être ou ne pas être informées de la coopération. Concernant le protocole SDF, ses
intérêts théoriques et pratiques ont été confirmés dans le chapitre 2 pour HD-SOMARC et
dans le chapitre 3 pour HD-NOMARC. Bien que ces analyses théoriques du protocole SDF
a permis de mieux comprendre le comportement du système, en particulier en présence
d’interférences d’accès multiples, de nombreuses questions doivent encore être abordées, y
compris l’impact d’un relais full-duplex. En se basant sur les taux atteints par un MARC
utilisant un relais full-duplex et le protocole DF dans [8,27,115], on exprime la probabilité
de coupure conjointe ou les rendements atteignables pour un taux de coupure conjointe ǫ
du FD-NOMARC avec JNCC, block Markov superposition coding, et au décodage bloc par
bloc à la destination. Les probabilités de coupure sont détaillées sous l’hypothèse d’entrées
indépendantes, gaussiennes ou discrètes, et comparées à celles obtenues pour un protocole
d’accès orthogonal (OMARC), en considérant un budget énergétique fixe par source (par
les dimensions disponibles). Nous proposons ensuite un JNCC basé sur l’emploi de turbo
codes qui garantit la propriété de diversité pleine, et est flexible en terme de nombre de
sources et de MCS. La justification de notre construction de code a été déjà discutée dans
le chapitre 2. En outre, contrairement au décodage bloc par bloc, notre approche proposée
pour le décodage fonctionne sur tous les blocs transmis. Les performances des schémas
proposés sont ensuite comparés avec les probabilités de coupure extraites, qui peuvent être
considérées comme des bornes inférieures sur les performances théoriques de nos concep-
tions. On montre également que pour les efficacités spectrales η = 4/3 b./c.u. et η = 8/3
b./c.u., nos schémas proposés sont plus efficaces que les schémas JNCC existants pour
OMARC.

Chapitre 5 : JNCC pour le MAMRC half-duplex semi-orthogonal

Dans ce chapitre, nous étendons le modèle de réseau en tenant compte de plusieurs relais
qui aident les sources pour communiquer avec une destination. Les relais fonctionnent en
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mode half-duplex. Tous les noeuds du réseau sont informés qu’ils coopèrent. Nous proposons
une nouvelle classe de MAMRC (dans la suite : HD-SOMAMRC ou SOMAMRC) définie
comme suit :

• les sources indépendantes communiquent avec la destination aidées par de multiples
relais ;

• les relais travaillent en mode half-duplex et appliquent la stratégie SDF dans laquelle
ils transmettent une fonction déterministe des messages qu’ils ont pu décoder sans
erreurs ;

• les sources peuvent transmettre simultanément pendant la phase d’écoute des relais
(phase 1) mais restent silencieuses pendant leur phase de transmission (phase 2). Les
relais peuvent transmettre simultanément pendant la phase 2.

Autoriser les collisions au niveau du relais et la destination restitue la réalité des envi-
ronnements sans fil et exploite mieux l’aspect diffusion du canal radio que le MAMRC
orthogonal (OMAMRC). Concernant le protocole SDF, ses intérêts théoriques et pratiques
ont été confirmés dans le chapitre 2 pour HD-SOMARC, dans le chapitre 3 pour HD-
NOMARC, et dans le chapitre 4 pour FD-NOMARC. Bien que ces analyses théoriques du
protocole SDF ont fourni un aperçu du comportement du système, de nombreuses questions
doivent encore être abordées dans le cas du MAMRC, y compris l’impact du JNCC et des
interférences d’accès multiple.

En se basant sur une analyse minutieuse des événements de coupure, on exprime la
probabilité de coupure ou rendements atteignables pour un taux de coupure ǫ du HD-
SOMAMRC par utilisateur pour le JNCC et le SNCC. Les probabilités de coupure sont
détaillées sous l’hypothèse d’entrées indépendantes, gaussiennes ou discrètes. Elle sont
également utilisées pour optimiser de façon numérique la fraction des utilisations de ca-
nal disponible au cours desquelles les relais écoutent et ceux pendant lesquelles les relais
transmettent, pour une efficacité spectrale fixe. Cette allocation optimale est ensuite ap-
pliquée à nos conceptions pratiques. Les probabilités de coupure sont également comparées
à celles obtenues pour un protocole d’accès orthogonal (OMAMRC), en considérant un
budget énergétique fixe par source (par les dimensions disponibles). Pour exploiter efficace-
ment la diversité maximale disponible, le codage XOR est généralisé aux alphabets d’ordre
supérieur. On propose ensuite des schémas pratiques de JNCC, dans lesquels le codage ca-
nal binaire et le codage réseau non binaire sont combinés. Notre schéma garantit également
la propriété de diversité pleine. Comme nous avons déjà vu dans le chapitre 2, à fort SNR,
les MAC aux relais et à la destination deviennent ML+M +L BEC indépendants (corres-
pondant auxML liens source-relais etM+L liens source-destination et relais-destination).
Nous affirmons que notre design JNCC garantit la propriété de diversité pleine, quand la
probabilité d’erreur par source se comporte en ǫL+1, où ǫ est la probabilité d’effacement
de chaque lien. Finalement, les analyses théoriques et les simulations ont démontré que le
HD-SOMAMRC/JNCC proposé peut pleinement exploiter la diversité spatiale, et a des
bénéfices significatifs comparés aux schémas existants. De plus, il donne des performances
très proches de la limite de coupure pour les cas d’une seule ou de multiples antennes de
réception à la destination, et pour l’efficacité spectrale η = 4/3 b./c.u..
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Chapitre 6 : Stratégies de coopération pour le MARC half-duplex semi-
orthogonal

Dans HD-SOMARC, comme l’interférence générée par le relais à la destination n’impacte
pas les performances globales (contrairement à HD-NOMARC, FD-NOMARC, ou HD-
SOMAMRC), le choix de la fonction de relayage est un degré de liberté intéressant qui
reste à être exploité et optimisé. Dans ce chapitre, nous étudions l’approche JNCC et nous
comparons le relayage SDF avec deux fonctions de relayage s’appuyant sur le décodage-et-
retransmission souple (SoDF) : l’une basée sur les rapports logarithmiques de probabilité
à posteriori (log a posteriori probability ratios ou LAPPRs) [116], et l’autre basée sur l’es-
timation d’erreur quadratique moyenne (mean square error ou MSE) [117]. En effet, SoDF
peut être considérée comme une approche alternative à SDF. Le JNCC que nous proposons
est générique et peut être facilement étendu à des constellations arbitraires, permettant
ainsi d’améliorer l’efficacité spectrale du système. Les résultats de simulation montrent que
SDF fonctionne bien dans la plupart des configurations ; et seulement dans certains cas
extrêmes, SoDF (basées sur LAPPR ou sur estimation MSE) peut légèrement surpasser
SDF en terme de performance. Les résultats de simulation confirment également que l’es-
timation MSE est une fonction de compression des LAPPRs efficace pour les modulations
d’ordre élevé.

Perspectives

Comme perspectives pour les travaux futurs, nous proposons les directions suivantes :

• Nous avons montré que nos conceptions proposées pour les HD-SOMARC, HD-
NOMARC et HD-SOMAMRC ont des performances qui sont très proches de la proba-
bilité de coupure pour l’efficacité spectrale η = 4/3 b./c.u.. Cependant, l’optimisation
de gain de codage devrait encore être faite pour les constellations d’ordres plus élevés.
Dans le cas du FD-NOMARC, les probabilités de coupures individuelles doivent être
dérivées dans un première temps, conditionnées au décodage conjoint de tous les
blocs transmis. Cela nous permet de mesurer l’écart entre nos schémas proposés et
les limites exactes de coupure, et ainsi nous pousse à atteindre les limites théoriques
par l’optimisation de gain de codage.

Afin d’optimiser le gain de codage, il est également important de calculer les bornes
supérieures sur les performances d’erreurs en utilisant des codes spécifiques, qui pour-
raient ensuite servir de base pour trouver le code optimal. Ces bornes sont connues
pour être serrées dans le régime des SNRs moyens à grands. À cette fin, des outils et
des techniques de [118–120] doivent être utilisées conjointement avec les connaissances
sur les fonctions énumératrices des poids complètes (weight enumerating function ou
WEF) des codes convolutifs et sur les fonctions énumératrices des poids entrées-
sorties moyennes (average input-output weight enumerating functions ou IOWEF)
des turbo codes [121, 122]. Une telle analyse est effectuée pour OMARC avec BPSK
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et pour un canal AWGN dans [123]. Cependant, l’analyse des performances pour le
cas de la transmission non-orthogonale et pour des canaux à évanouissements lents
restent une question ouverte pour les travaux futurs. Les limites extraites seraient
également utilisées pour prédire les performances du système à très faible taux d’er-
reur binaire ou taux d’erreur par bloc, et pourraient également servir de référence
pour les algorithmes de décodage itératif sous-optimaux.

• En ce qui concerne le MAMRC, le codage canal non binaire au niveau des sources et
des relais pourrait être étudié, notamment en cas de JNCC. Dans ce cas, comme les
schémas du codage et de la modulation aux sources et aux relais sont définis dans le
corps non-binaire, où les coefficients du codage réseau sont choisis, il n’y a plus besoin
d’utiliser la conversion ”bit à symbole” ou ”symbole à bit”. Cela peut améliorer les
performances, mais en même temps, il pourrait être restrictif en terme d’efficacité
spectrale. Une conception possible basée sur les codes LDPC a été traitée dans [95]
pour OMAMRC. D’autres conceptions basées sur les turbo codes non-binaires pour-
raient être étudiées dans le futur.

• Dans cette thèse, nous n’avons considéré que le HD-SOMAMRC. Toutefois, il se-
rait utile d’examiner des conceptions pratiques et des limites théoriques de schémas
plus complexes comme MAMRC non-orthogonale avec un relais half-dupelx (HD-
NOMAMRC) ou Full-Duplex (FD-NOMAMRC). Dans HD-NOMAMRC, la contrainte
que les sources restent silencieuses durant la phase d’émission des relais est enlevée,
et dans FD-NOMAMRC, la contrainte half-duplex des relais est aussi supprimée. Ce
travail ne sera pas une simple généralisation des résultats actuels.

• Il n’est pas clair qu’il existe une meilleure fonction de relayage pratique que SDF dans
le cadre du HD-NOMARC, FD-NOMARC et HD-SOMAMRC. Toutefois, d’autres
fonctions de relayage pouvant donner de meilleures performances que le SDF ou l’es-
timation MSE, pourraient être explorées dans le cadre du MARC half-duplex avec un
protocole de transmission semi-orthogonal. Une perspective possible est de considérer
l’approche PNC. Comme déjà mentionné, le PNC a surtout été étudié dans le cas du
TWRC à deux-phases, où les deux sources agissent également en tant que destina-
tion, et une destination distincte est absente. Ainsi, l’un des messages réseaux codés
est parfaitement connu à chaque source. De plus, puisqu’il n’y a pas de lien direct
entre les sources, elles ne reçoivent que les informations diffusées de la part du relais
pendant la deuxième phase, ce qui conduit à une diversité d’ordre un (comme dans le
cas des réseaux multi-sauts). Par conséquent, l’étude du PNC dans des situations où
la diversité coopérative peut être exploitée, tel que MARC, reste un sujet d’intérêt.
En utilisant l’approche PNC, le relais décode l’addition modulo 2 des messages des
sources à partir du signal reçu superposé. Pour réduire encore la propagation d’erreur
du relais vers la destination, nous pouvons considérer le PNC avec DF conjoint ; ici,
le relais transmet s’il peut décoder avec succès le XOR des messages. La probabi-
lité de celui-ci est toujours plus grande que la probabilité de succès de décodage des
messages de tous les sources. Par conséquent, le relais est plus souvent actif, ce qui
peut améliorer les performances globales par rapport au DF conjoint classique. Les
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avantages par rapport à SDF restent discutables. Cependant, cette approche semble
difficile à mettre en oeuvre du point de vue pratique. La raison réside dans le fait que
le relais ne décode pas individuellement chaque message des sources, et il ne peut pas
utiliser les codes CRC (cyclic redundancy check) utilisés en détection d’erreurs inclus
dans les messages des sources, pour effectuer le PNC sélectif conjoint. Le relayage
souple peut résoudre ce problème : le relais peut calculer directement les informa-
tions souples sur le message réseau codé pour construire l’estimation MSE. Ce der-
nier, s’il est combiné avec le décodage ML à la destination tenant compte l’estimation
MSE [124], semble être une solution prometteuse. Toutefois, dans les travaux futurs,
nous pouvons tenter d’identifier les configurations où le PNC souple peut donner de
meilleurs performances que l’approche SDF dans le cadre du MARC half-duplex avec
le protocole de transmission semi-orthogonal. Finalement, il est intéressant de mettre
au point une stratégie de coopération et une conception de code appropriée, qui su-
perpose les deux approches du SDF et du PNC souple, ou plus généralement, du SDF
et du CoF.

• Nous avons montré par des analyses théoriques et des schémas de codage pratiques
qu’exploiter partiellement ou totalement la structure de l’interférence, est presque
toujours bénéfique par rapport au protocole de transmission orthogonal. Cependant,
le choix entre le protocole de transmission semi-orthogonal et non-orthogonal dans les
cas de MARC ou MAMRC dépend de la configuration et reste une question ouverte.
L’objectif serait d’identifier en fonction du scénario le protocole réalisant le meilleur
compromis performance/complexité et d’adapter d’une façon dynamique le codage et
le décodage.
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Chapter 1

Introduction

Cooperative communications and network coding

Communications in multi-terminal networks become more reliable and efficient when nodes

share their resource and power to transmit data with the hope that such a cooperative

approach leads to savings for the overall network resources and power consumption. Ob-

viously, user cooperation in networks can potentially take place whenever the number of

communicating nodes exceeds two. Therefore, the three-terminal network, first introduced

by Van der Meulen in 1968 [2], certainly constitutes a fundamental unit in user cooperation.

A vast portion of the literature, especially in the realm of information theory, has already

been devoted to the relay channel and its multiple variants such as multiple relay channels

or two-way relay channels, which can be seen as special cases. Moreover, Sendonaris et

al. have proposed user cooperation as a form of diversity in a cellular uplink scenario and

show its benefit under various metrics [3] [4].

The study of relay channels dates back to [5], where the authors presented several

structurally different random coding schemes and compared their achievable rates with the

min-cut max-flow capacity upper bounds. In the cooperation scheme [5, Theorem 1], the

relay decodes the source message and cooperates with the source to help the destination

in decoding. This has given rise to Decode-and-Forward (DF) relaying protocol. In the

observation scheme [5, Theorem 6], the relay transmits an estimate (or quantized version)

of its observation of the source message to the destination, using ideas from source coding

with side information [6,7]. This scheme has more often been referred to as Compress-and-

Forward (CF) strategy [8]. A general theorem was also presented in [5, Theorem 7] that

combines cooperation and observation in a single coding scheme in order to maximize the

achievable rates. Other relaying strategies such as Partial Decoding (PD) and Amplify-and-

Forward (AF) helped to widen the analysis [9–13]. Furthermore, a variety of contributions
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including new bounds, power control strategies and some results on half-duplex relaying

were proposed in [14].

Multiple relay channels, consisting of single-source, single-destination, and more than

one relay, were studied in different contributions [15–17], and their achievable rates with

DF, PD and CF were presented in [17]. Relaying have also grabbed particular attention

in wireless environments. Among the important contributions are those of Laneman and

Wornell addressing the performance of important relaying protocols in wireless environ-

ments [18–20]. A number of interesting relaying protocols are also proposed and analyzed

in [21–23] including repetition coding, and in [24] including space time coded cooperation.

Other complementary contributions come in the form of novel information-theoretic results

and new insights into information theoretic (random) coding for relays by Kramer et al. [25]

and Chong et al. [26].

The extension of the previous results to multiple-access and broadcast schemes, where

multiple sources or multiple receivers are present, has been considered in a variety of

contributions:

First, a Multiple Access Relay Channel (MARC) was presented in [8, 27, 28], and the

corresponding rate regions with AF, DF and CF were derived. Capacity bounds for the

MARC with a half-duplex relay and the corresponding achievable rates with AF, DF, and

PD were also investigated in [29]. Additionally, a linear relaying protocol called multi-access

AF is analyzed in [30] for the MARC, and shown to be optimal at the high multiplexing

gain regime.

On the other hand, a cooperative Relay Broadcast Channel (RBC) has first been studied

in [31, 32]. The authors considered a network with a single source and two receivers, and

introduced two channel models, namely, partially cooperative RBC (only one receiver act

as a relay for the other) and fully cooperative RBC (both receivers act as relay nodes for

each other). They then derived and compared the corresponding achievable rate regions

considering DF. The partially cooperative RBC was further studied in [33] for the case of

more than one destination. A third RBC model, called dedicated RBC was introduced and

studied in [8, 34], where an additional relay node was inserted into the broadcast channel

with the sole function of relaying. Rate regions and upper bounds for the cooperative

RBC were further developed in [35, 36]. In parallel, AF for the multi-hop Multiple Access

Channel (MAC) and Broadcast Channel (BC) (i.e., no direct links between the sources and

the receivers) has been studied in [37], where the optimal power allocation on the relays

were presented, as well as the AF relay MAC-BC duality.

Finally, the basic idea of the bidirectional or Two-Way Relay Channel (TWRC) was first

presented in [38] for noiseless channels. In TWRC, two nodes exchange their information
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with the help of a relay. Both broadcast transmission and simultaneous multiple access

can be considered in this channel model which have been the subject of several research

efforts. In [39–41], the authors derived the achievable rates considering full-duplex nodes,

broadcast transmission at all nodes and simultaneous multiple-access of all nodes. In

[39, 40] the achievable rates were derived for AF, DF, and CF, while in [41], an achievable

rate region for Compute-and-Forward (CoF) relaying strategy was derived. In the CoF

strategy [42, 43], the relay computes (or decodes) a linear combination of the transmitted

messages from the nodes-to-relay MAC. Further contributions are based on the premise of

half-duplex nodes, for which we distinguish two main categories: (i) two phase bidirectional

relay channel with Multiple Access Broadcast protocol in which the two communicating

nodes transmit simultaneously to the relay node during the first phase, and the relay

broadcasts to both of them during the second phase. In this model there is no direct

link between the two communicating nodes; (ii) three phase bidirectional relay channel

with broadcast transmission at all nodes and without multiple access. The first channel

model has been considered in [44–48] where the authors derived achievable rates considering

different relaying schemes (AF, DF, PD, CF, and CoF). Moreover, the broadcast capacity

region was derived in [49], where each receiver node knows perfectly the message intended

for the other node. Code design and achievable rates for the second model have been

considered in [50, 51]. Several relaying strategies and their corresponding achievable rates

were also discussed in [52] for both categories.

In a general multiterminal network with multiple source-destination pairs, the interme-

diate nodes do not need to process separately and independently each incoming data flow,

and there exist several ways to perform algebraic operations on all the incoming flows. This

is the fundamental concept of network coding, which was initially proposed by Ahlswede,

Cai, Li, and Yeung in [53], and has motivated intensive research. We note that many of the

cooperative schemes that have already been mentioned, especially for MARC and TWRC,

can be cast into the framework of network coding. By applying network coding in multicast

transmission with a single source and lossless links, the authors of [53] have proved that

the network throughput could achieve the min-cut max-flow capacity between the source

and the sinks. This remarkable result has motivated further theoretical and practical re-

search to extend network coding to wireless media, which, albeit lossy, greatly facilitate its

application, for broadcast is guaranteed at no cost. The application of network coding to

wireless packet networks has been investigated from a network perspective in a variety of

contributions. Deterministic network coding was introduced in [54], which necessitates a

complete knowledge of the whole network. The authors of [54] showed that the linear net-

work coding with finite alphabet size can achieve the min-cut max-flow capacity. This issue
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was further analyzed in [55, 56]. However, a complete knowledge of the large packet net-

works are in general not available, which explains the particular interest to perform random

network coding [57, 58]. In this case, the network coding operations are chosen randomly

and independently at each node. As shown in [58], random linear codes can asymptotically

achieve the min-cut max-flow capacity for large code lengths. These contributions together

with [59,60] also demonstrated the effectiveness of distributed random network coding over

a network with correlated sources (e.g. sensor network) where distributed compression is

required. The asymptotic optimality of random distributed network coding for wireless

networks with or without packet erasures has also been demonstrated in [61–63]. Among

the other contributions are [38,64,65] which focus on lossless channels, and [66] which con-

siders lossy erasure channels in sensor networks. Finally, the need for end-to-end coding in

multiterminal networks has been investigated in [67], where the authors showed that only

a unified approach which jointly treats source coding, channel coding, and network coding

can achieve the capacity.

From a physical layer perspective, wireless network coding can be used in a variety of

contexts, in conjunction with channel coding and source coding. In densely deployed multi-

terminal networks (e.g. sensor networks) where correlation exists between the sources, the

nodes need to combine source coding, channel coding, and network coding. Several ideas

and contributions have been proposed in this matter with the aim of introducing some code

designs in a unified framework [68–70]. However, in the case of independent incompressible

sources, the combination of network coding and channel coding has received particular re-

search attention, and various contributions in the context of MARC [71,72], TWRC [73–75],

user cooperation [76–79] or cross-packet coding for hybrid ARQ systems [80], have been

proposed over the last few years. Here, the primary goal of network coding is to provide

reliable and spectrally-efficient transmission over the network. From a pure coding perspec-

tive, the challenge is to achieve full diversity and to maximize the coding gain. It is worth

stressing that full diversity cannot be achieved without limitations on the transmission rate.

Moreover, ensuring full (space) diversity is not necessarily the most critical design criterion

in realistic wireless environments since many other sources of diversity exist (multipath di-

versity, receive antenna diversity, etc.). There are essentially two ways to combine network

coding and channel coding: Separate Network Channel Coding (SNCC) and Joint Network

Channel Coding (JNCC). In SNCC, channel coding is performed locally and separately for

each transmission to transform the noisy channels into erasure-based links. On the network

layer, network coding is performed for the erasure-based networks which are provided by

the lower layers [81]. SNCC requires Separate Network Channel Decoding (SNCD) at the

destination, in which channel decoding is first performed at the physical layer and outputs
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the estimates to the network decoder. However, in JNCC, we exploit the redundancy of

the network code to support the channel code, which can finally improve the coding gain

of the system. A Joint Network Channel Decoding (JNCD) is then performed at the des-

tination, in which soft information between the network decoder and the channel decoders

is exchanged.

Practical network coding in wireless environments

This part gives an overview of the state of the art of practical network coding designs

for wireless communication together with channel coding. The contributions are divided

into two main categories, namely, DF based network coding in which we come back to

the message space at all intermediate nodes to construct the network coded message, and

estimate-and-forward based network coding in which the network coded message is con-

structed without returning to the message space, i.e., it would be an arbitrary function of

the noisy linear combinations of the codewords transmitted by the sources.

1) DF based network coding

Hausl et al. were amongst the first to describe efficient JNCC for MARC based on Low-

Density Parity Check (LDPC) codes [71] or turbo codes [72]. Common to this set of

contributions are the hypotheses of (i) time-division half-duplex mode for relaying oper-

ation; (ii) orthogonality between all the radio links; (iii) joint selective DF strategy, i.e.,

the relay cooperates if and only if all the decoded messages are error-free. Concerning

the first hypothesis, we know from information theory that half-duplex relaying is basi-

cally sub-optimal with respect to full-duplex one, but often retained for practical reasons.

Physical constraints (severe attenuation over the wireless channel, insufficient electrical iso-

lation between the transmit and receive circuitry, etc.), complexity and cost considerations,

most likely explain the moderate interest for the full-duplex relaying schemes. Concerning

the second hypothesis, we have already pointed out that wireless media naturally offer

broadcast without an additional cost. This intrinsic property comes at the price of signal

superposition (i.e. interference) at all intermediate nodes and at the destination. In or-

der to fight back this impediment, orthogonal medium access (in time, frequency or code

space) is often assumed in cooperative communications. If orthogonality greatly simplifies

the design of JNCC/JNCD and the performance analysis, it also substantially reduces the

spectral efficiency of the proposed systems. Indeed, from an information-theoretic point
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of view, orthogonal multiple-access is, in general, not optimal for the slow fading (quasi-

static) channel, although it may be close to optimal at a very low Signal-to-Noise Ratio

(SNR). In [71], the authors also assumed error-free source-to-relay links. To justify this

hypothesis, we could imagine a restrictive communication scenario where the relay is very

close to, and in line of sight with, the two sources. But even in this case, some decoding

errors would occur at the relay, since, in practice, constituent codes used on point-to-point

links are never perfect. Furthermore, neither of the above code designs guarantee full diver-

sity. More recently, JNCC based on LDPC codes were presented in [82] where the authors

also elaborate on orthogonal links and error-free source-to-relay links. Their purpose is to

construct JNCC guaranteeing full diversity, which, in essence, leads on an asymptotical

analytical reasoning (with respect to the SNR) and the hardening of slow-fading channels

into block erasure channels. In this perspective, the achieved diversity of the proposed

JNCC does not depend on the quality of the source-to-relay links and, for the sake of

simplicity, the authors assumed error free source-to-relay links. However, their proposed

JNCC is not generic in terms of coding choice and the number of sources. Moreover, its

coding gain decreases enormously for the case of error-prone source-to-relay links, even if

its full diversity structure is maintained. The benefit of JNCC in situations where the relay

is not able to decode reliably, has also been addressed in [83]. But the authors assume

that the signals transmitted from the relay to the destination are analog, and the coding

scheme that they employ is oversimplistic compared to [71, 72, 82]. To forward the analog

information at the relay in a bandwidth efficient manner, the quantization (or compression)

of the log a posteriori ratios of the relay parity bits, has been investigated in [84,85], which

requires the knowledge of the relay-to-destination channel state at the relay. Besides, in all

these contributions, the sources and the relay do not interfere. Similar JNCC designs were

also proposed in the case of TWRC with time division multiple-access [73, 74].

Overall, the aforementioned schemes are designed for small wireless networks with spe-

cific topologies, which cannot be easily applied to large multi-terminal wireless networks.

For the MARC with M sources, M > 2, several coding schemes have been recently pro-

posed, among which are [86] which is based on linear product codes, and [87] which is based

on multi-edge type LDPC codes. Several code designs have also been presented in the case

where M sources, M > 2, communicate with a common destination and each source can

relay information for the others [88–90]. In [88], a framework for adaptive network coded

cooperation was proposed in which the real-time adaptation of network codes to variant

link qualities was mainly addressed. This scheme was further investigated in [89] by taking

into account the communication link failures. In parallel, a number of contributions study

the application of network coding in Multiple Access Multiple Relay Channel (MAMRC)

with M sources, L relays and one destination (M,L ≥ 2), which is a natural extension
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of a MARC. Among the first contributions are [81, 91] with the common hypotheses of (i)

orthogonality between all the radio links; (ii) error-free source-to-relay links; (iii) separate

network channel coding and decoding; (iv) binary network coding schemes. Binary network

coding, based on the addition modulo 2 (XOR), is not optimal for networks with multiple

relays in terms of diversity gain. This issue has initially been addressed in [92] in the case

of MAMRC, and in [93] in the case of two-user cooperative network. The authors demon-

strated, through outage probability calculations, that the full diversity can only be achieved

by using the algebraic or non-binary network codes. They also considered different possible

source-to-relay channel situations (outage or not) and they proved the existence of the full

diversity achieving network coding schemes in sufficiently high order alphabets. Their work

in [93] has then been generalized in [94] for the case of M -user cooperative network, where

the authors proposed an equivalent design, but by considering linear block codes over a non

binary finite field. They then demonstrated that their proposed scheme is optimal in terms

of the Hamming metric and can increase the diversity order without sacrifice in the system

rate. However, in all of the above contributions, the sources and the relays do not interfere

and the benefit of efficient JNCC has not been explored. Recently, a JNCC/JNCD design

based on LDPC code has been proposed in [95] for MAMRC where the authors consid-

ered orthogonal links and non-binary channel and network codes. Their proposed scheme

was shown to outperform binary JNCC/JNCD in which all network coding operations are

binary XOR. However, the latter is already known to be suboptimal when the number of

relays exceeds one. The efficiency of their approach compared to a JNCC/JNCD design

in which binary channel codes and non binary network codes are employed, has not been

investigated.

Different from Galois-field network coding which was the basis of all the above schemes,

a complex-filed network coding has been proposed in [96]. The latter is based on the

use of linear constellation precoding vectors drawn from complex-field, and Link-Adaptive

Regenerative (LAR) relaying scheme in which the detected symbols at the relay are scaled

in power according to the SNR of the source-to-relay and the intended relay-to-destination

channels. The authors assumed error-prone links and showed that their proposed scheme

guarantee the full diversity in the case of MARC and MAMRC. However, the benefit of

their proposed complex-field network coding compared to Galois-field network coding in

terms of coding gain remains unclear.

2) Estimate-and-forward based network coding

When the relay cannot decode successfully the source messages, DF strategy leads to

error propagation towards the destination, while adaptive DF (such as joint selective DF),
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constrain the relay to remain silent. Soft DF (SoDF), conditional on soft-in soft-out channel

decoding of the source signals and soft-in soft-out JNCC, is an alternative approach to

adaptive DF, which may perform better than the latter, if it does not negatively impact

the decoding at the destination when the source-to-relay link is error-prone. However, the

relay can facilitate the decoding at the destination by transmitting an arbitrary function

of the noisy linear combinations of the codewords transmitted by the sources, without

invoking the hard or soft decoding of each source message. This issue was addressed in a

variety of contributions and different relaying schemes were proposed.

In [97], the authors considered a MARC with orthogonal links, and proposed to jointly

quantize the received signals at the relay, which was then followed by source and channel

coding. This also requires the knowledge of the relay-to-destination channel state at the

relay.

The potential benefit of estimate-and-forward based network coding taking into account

the characteristics of the MAC dates back to [42–44,52,75,98–101]. In [44,98], the AF strat-

egy was introduced for the two-phase TWRC, where the relay broadcasts the superimposed

received signal after amplification. This strategy has been implemented in [99] under the

name of analog network coding. Exploiting the natural function of a MAC to compute the

desired network coded function from simultaneously transmitted signals appears to be pro-

posed independently by several research groups in 2006 [75,100,101]. In [100], the authors

demonstrated the benefits of exploiting interference using structured codes for butterfly

network. This was further studied in [42], and a new relaying strategy called CoF was in-

troduced based on the use of lattice codes. Several other schemes have then been suggested

in [43,48,102] using lattice based coding and different decoding techniques. In [52,101], the

authors proposed DeNoise-and-Forward (DNF) relaying protocol for a two phase TWRC,

which was further studied in [103] with the focus on the design of constellations and maps,

representing the network coding function. The same idea was also proposed in [75] under

the name of Physical Layer Network Coding (PNC). The authors of [75] considered a two

phase TWRC in which the relay directly transforms the superimposed received packets to

the XOR (network-coded) packet by a suitable mapping (PNC mapping). DNF and PNC

can be seen as special cases of CoF strategy. PNC was further developed in a variety of

contributions using different channel coding schemes. Among the important contributions

are [104] with repeat accumulate codes, [105] with low density parity check codes, and [106]

with convolutional codes. Different ways of integrating channel-decoding and PNC map-

ping at the relay (separate or joint design) were also discussed and compared in [104,107].

However, as demonstrated in [48,52,108,109], the use of the DNF, PNC or CoF, could only

approach the upper bound on the capacity of the TWRC at the high SNR regime.

Recently, different decoding strategies at the relay, in order to obtain the network coded
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message sequence, have been compared in [110] considering PNC for a two-phase TWRC.

The authors showed that jointly detecting and decoding the pair of the transmitted code-

words, has a performance similar to the list decoding scheme over a frequency selective

channel. The list decoding algorithm is an approximate implementation of the optimal

decoding strategy to find the most likely network coded sequence from the superimposed

received signals, and is discussed in [110]. Similar results have also been deduced in [111]

in case of an Additive White Gaussian Noise (AWGN) channel with no Inter-Symbol In-

terference (ISI).

Overall, further investigation should be conducted to extend the PNC approach, which

has been mainly studied in the case of TWRC, to other network topologies and to circum-

scribe the configurations in which PNC outperforms other solutions.

Assumptions and Considered Scenarios

This thesis studies the performance of multiterminal cooperative networks and aims to

design appropriate coding scheme and to find an efficient way to implement cooperation in

a realistic wireless environment. The design also includes network coding at all intermediate

nodes. We consider the following two multiterminal networks which are depicted in Fig.

1.1.

1. A MARC with M independent sources (M ≥ 2), one relay and one destination.

2. A MAMRC which is a natural extension of a MARC with M independent sources, L

relays and one destination (M,L ≥ 2).

Figure 1.1: A multiple access relay channel (MARC) and a multiple access multiple relay
channel (MAMRC)
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Throughout the thesis, we assume that all links of the network are subject to slow fading

and additive white Gaussian noise. Both operation modes of the relay, namely, half-duplex

and full-duplex are considered. The hypothesis of orthogonality between the radio links

is partially or totally relaxed. This means that the nodes in the network are allowed to

transmit simultaneously during the same time in the same frequency band. The sources

and the relays move and are not in line of sight. All nodes in the network are perfectly

synchronized. The destination always knows whether the relay(s) cooperate or not, but

the sources may or may not be informed of the cooperation. Neither the sources nor

the relays when they transmit have channel state information, e.g., by means of feedback

channels. The relays, when they listen and decode, and the destination have perfect channel

state information. Finally, the performance metric used in the thesis is either the joint or

individual information outage probability.

Thesis Contributions and Outline

The main contributions of this thesis can be divided in five chapters:

In Chapter 2, a new class of MARC, called Half-Duplex Semi-Orthogonal MARC

(HD-SOMARC or SOMARC) is proposed. In HD-SOMARC, (1) the relay operates in

half-duplex mode; (2) the signals of the sources interfere at the relay and destination

during the listening phase of the relay, while during the transmission phase of the relay, it

transmits alone; (3) a Selective Decode and Forward (SDF) relaying approach is applied

which depends on the number of correctly decoded messages. We derive the HD-SOMARC

individual information outage probability, conditional on JNCC and SNCC, and we present

different full diversity JNCC schemes which are flexible in terms of number of sources,

encoders and modulations. These new JNCC schemes are shown to perform close to the

outage limit in a variety of simulation scenarios. We also demonstrate, theoretically and

in practice, that at the expense of more complex reception architectures, the applied non-

orthogonality is rather an advantage.

This chapter has led to the following publications:

- A. Hatefi, R. Visoz, A.O. Berthet, Joint Network-Channel Coding for the Semi-

Orthogonal MARC: Theoretical Bounds and Practical Design, submitted to the IEEE

Trans. on Wireless Communication, 2012.

- A. Hatefi, R. Visoz, A.O. Berthet, Near Outage Limit Joint Network Coding and

Decoding for the Semi-Orthogonal Multiple-Access Relay Channel, Proc. International

Symposium on Network Coding (NETCOD’12), Boston, MA, USA, Jul. 2012.
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- A. Hatefi, R. Visoz, A.O. Berthet, Full diversity distributed coding for the multiple

access half-duplex relay channel, Proc. International Symposium on Network Coding

(NETCOD’11), Beijing, China, Jul. 2011.

- A. Hatefi, R. Visoz, A.O. Berthet, Joint channel-network coding for the semi-orthogonal

multiple access relay channel, Proc. IEEE VTC’10 Fall, Ottawa, Canada, Sep. 2010.

two patent filings:

- A. Hatefi, R. Visoz, A.O. Berthet, Method for transmitting a digital signal in a MARC

system ensuring full diversity, and corresponding program product and relay device,

World Patent Application, Publication Number: WO 2011/051893, Issue Date: 09-

08-2011, Filed on 19-08-2010 by France Telecom.

- A. Hatefi, R. Visoz, A.O. Berthet, Method for transmitting a digital signal in a

semi-orthogonal frame system having a half-duplex relay, and corresponding pro-

gram product and relay device, World Patent Application, Publication Number: WO

2011/067534, Issue Date: 09-06-2011, Filed on 01-12-2010 by France Telecom.

and a book chapter:

- A. Hatefi, R. Visoz, A.O. Berthet, Joint Network-Channel Coding for the Semi-

Orthogonal MARC: Theoretical Bounds and Practical Design, chapter 7 in “Network

Coding,” Ed. Wiley-ISTE, ISBN: 978-1-84821-353-1, April, 2012.

In Chapter 3, the constraint that the sources remain silent during the transmission

phase of the relay is removed, and a new class of MARC, called Half-Duplex Non-orthogonal

MARC (HD-NOMARC or NOMARC) is proposed. In this class of MARC, only the desti-

nation node should be informed of the cooperation, which reduces significantly the number

of control signaling. At the same time, HD-NOMARC would be interesting in the context

of a dynamic random access environment, since the sources are not required to be aware

of the existence of a potential relay. Furthermore,, it allows the sources to use additional

parity bits, but since the source signals interfere with the relay signal, a more complex

processing is required at the destination. Individual information outage probability are

derived for HD-NOMARC, conditional on JNCC and SNCC. Using the outage analysis,

the optimization of the fraction of available channel uses during which the relay listens and

those during which the sources and the relay transmit, is performed numerically for a fixed

spectral efficiency. Practical JNCC schemes are proposed and are shown to perform close

to the outage limit. Finally, the advantage of using the broadcast nature of wireless media

is reconfirmed through a variety of simulations.

This chapter has led to the following publications:
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- A. Hatefi, R. Visoz, A.O. Berthet, Joint Network-Channel Coding for the Non-

Orthogonal MARC: Theoretical Bounds and Practical Design, submitted to the IEEE

Trans. on Wireless Communication, 2012.

- A. Hatefi, R. Visoz, A.O. Berthet, Near Outage Limit Joint Network Coding and De-

coding for the Non-Orthogonal Multiple-Access Relay Channel, Proc. IEEE PIMRC’12,

Sydney, Australia, Sep. 2012.

- A. Hatefi, R. Visoz, A.O. Berthet, Joint channel-network turbo-coding for the non-

orthogonal multiple access relay channel, Proc. IEEE PIMRC’10, Istanbul, Turkey,

Sep. 2010.

and a patent filing:

- A. Hatefi, R. Visoz, A.O. Berthet, Method for transmitting a digital signal in a MARC

system with a half-duplex relay, and corresponding program product and relay device,

World Patent Application, Publication Number: WO 2011/033239, Issue Date: 24-

03-2011, Filed on 17-09-2010 by France Telecom.

In Chapter 4, the half duplex constraint of the relay is also relaxed, and a new class

of MARC, called Full-Duplex Non-orthogonal MARC (FD-NOMARC) is proposed. Joint

information outage probability are derived for FD-NOMARC, conditional on JNCC, su-

perposition block Markov encoding and block by block decoding. Then, practical JNCC

designs are presented together with advanced receiver architectures at the destination,

which, contrary to block by block decoding, operate over all the transmitted blocks. The

performance of the proposed designs are then compared with the derived information out-

age probabilities, which can be considered as lower bounds on the theoretical performance

of our designs.

This chapter has led to the following publication:

- A. Hatefi, R. Visoz, A.O. Berthet, Joint network-channel distributed coding for the

multiple access full-duplex relay channel, Proc. IEEE ICUMT’10, Moscow, Russia,

Oct. 2010.

and a patent filing:

- A. Hatefi, R. Visoz, A.O. Berthet, Method for transmitting a digital signal in a MARC

system with a full-duplex relay, and corresponding program product and relay device,

World Patent Application, Publication Number: WO 2011/033237, Issue Date: 24-

03-2011, Filed on 17-09-2010 by France Telecom.
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Chapter 5 extends the network model by considering multiple relays which help multi-

ple sources to communicate with a destination. A new class of MAMRC, called Half-Duplex

Semi-Orthogonal MAMRC (HD-SOMAMRC or SOMAMRC) is proposed, in which (1) the

relays operate in half-duplex mode; (2) During the listening phase of the relays, the sources

transmit simultaneously, but they remain silent during their transmission phases. The re-

lays are also allowed to transmit simultaneously all together; (3) an SDF relaying approach

is applied which depends on the number of correctly decoded messages. Individual informa-

tion outage probability are derived for HD-SOMAMRC, conditional on JNCC and SNCC.

Using the outage analysis, the optimization of the fraction of available channel uses during

which the relays listen and those during which the relays transmit, is performed numeri-

cally for a fixed spectral efficiency. To efficiently exploit the maximum available diversity,

the XOR-coded concept is generalized to higher order alphabets. Practical JNCC schemes

are proposed and are shown to perform close to the outage limit. Finally, the advantage of

the proposed scheme is explored through a variety of simulations.

This chapter has led to the following publication:

- A. Hatefi, R. Visoz, A.O. Berthet, Joint Network-Channel Coding for the Semi-

Orthogonal MAMRC: Theoretical Bounds and Practical Design, to be submitted to

the IEEE Trans. on Wireless Communication, 2012.

and a patent filing:

- M. Benammar, A. Hatefi, R. Visoz, Method for transmitting a digital signal in a

multi-source, multi-relay network with a semi-orthogonal transmission protocol and a

half-duplex relay, Filed as a European patent application by France Telecom.

In HD-SOMARC, since the interference generated by the relay at the destination does

not impact the overall performance (contrary to HD-NOMARC, FD-NOMARC, or HD-

SOMAMRC), the choice of the relaying function is an interesting degree of freedom that

remains to be exploited and optimized. Accordingly, Chapter 6 studies different (digi-

tal or analog) relaying functions. The SDF function proposed in preceding chapters are

compared with two analog relaying functions: one based on log a posterior probability ra-

tios (LAPPR) and the other based on Mean Square Error (MSE) estimate. The proposed

JNCC scheme based on MSE estimate is generic and can be easily extended to arbitrary

signal constellations. It can also be considered as an efficient LAPPR compression function

for high order modulation.

This chapter has led to the following publication:
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- A. Hatefi, R. Visoz, A.O. Berthet, Relaying functions for the multiple access relay

channel, Proc. 6th International Symposium on Turbo Codes, Brest, France, Sep.

2010.

Finally, conclusions and some perspectives for future works are given in Chapter 7.



Chapter 2

Joint Network-Channel Coding for
the Half-Duplex Semi-Orthogonal
MARC

In this chapter, we revisit the field of JNCC for the MARC with a half-duplex relay.

To implement the half-duplex constraint, we split the duration of transmitted codewords

into two orthogonal transmission phases, the processing delay at the relay being typically

neglected. The sources and the relay move and are not in line of sight. All nodes in the

network are informed that they cooperate and are perfectly synchronized. All links of the

network are subject to slow fading and additive white Gaussian noise. Neither the sources

nor the relay when it transmits has channel state information, e.g., by means of feedback

channels. The relay, when it listens and decodes, and the destination have perfect channel

state information.

As a first contribution, we propose a new class of MARC that we call Half-Duplex Semi-

Orthogonal MARC (HD-SOMARC or SOMARC) and is defined as follows: (1) Independent

sources communicate with a single destination in the presence of a relay; (2) The relay is

half-duplex and applies a Selective Decode and Forward (SDF) relaying strategy, i.e, it

forwards only a deterministic function of the messages that it can decode without errors;

(3) The sources are allowed to transmit simultaneously during the listening phase of the

relay, but are constrained to remain silent during its transmission phase. Allowing collisions

at the relay and the destination renders the reality of wireless environments and leverages

better the broadcast nature of the radio channel than the Orthogonal MARC (OMARC).

The proposed SDF in SOMARC is a modification of the relaying protocol presented in [125]

The work presented in this chapter is submitted to IEEE Transaction on Wireless Communication.

It was presented in part at IEEE VTC Fall 2010, in part at IEEE NETCOD 2011, and in part at IEEE

NETCOD 2012. It has also been published as a chapter of the book “Network Coding,” Ed. Wiley-ISTE,

ISBN: 978-1-84821-353-1, April, 2012.
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so as to allow partial cooperation if some of the sources are successfully decoded at the

relay and the others are not. Thus, it not only prevents the error propagation from the

relay to the destination, but also decreases the individual Block Error Rate (BLER), i.e.,

the BLER for each source. This SDF approach is theoretically analyzed in [126] for the

OMARC/SNCC, and is shown to have a good information outage probability, when the

quality of source-to-relay links is poor. For the case of JNCC, the information outage

probability of OMARC is analyzed in [82] conditional on the error-free source-to-relay links,

and can be easily generalized to the case of selective relaying. While information-theoretic

analysis of OMARC with selective relaying has provided insight into the behavior of the

system, many issues need to be addressed, including the impact of the non-orthogonality

and the multiple access interference. Based on a careful outage analysis, the SOMARC

individual information outage probability (e.g., for S1) is derived for both JNCC or SNCC.

The individual information outage probability and the individual ǫ-outage achievable rate

(e.g., for S1) are then numerically evaluated assuming independent Gaussian inputs or

discrete independent identically and uniformly distributed inputs and compared with the

ones of a OMARC at fixed energy budget per source (per available dimensions). As a

second contribution, we propose practical JNCC designs for SOMARC that are flexible in

terms of number of sources and Modulation Coding Scheme (MCS). Our designs are built

on convolutional codes and turbo codes, and rely on advanced (iterative) joint detection

and decoding receiver architectures. We further demonstrate that they also guarantee the

full diversity in the sense that they achieve the same diversity gain as the single-user case,

even in the case of one receive antenna. The rationale behind our code construction is

the following: In the large SNR regime and for the special case of one receive antenna, the

outage probability of an M-user slow fading MAC behaves as the one of an orthogonal MAC.

Besides, a necessary condition for JNCC to achieve full diversity in the critical case of just

one receive antenna, is that it achieves full diversity over the Block Erasure Channel (BEC)

defined as an abstraction of the original channel in which the fading gains belong to the set

{0,∞}. This corresponds to the large SNR regime (see [82] and the references therein). As

a result, in the large SNR regime, the MACs at the relay and at the destination and the

point-to-point channel from relay to destination turn into 2M + 1 independent BECs. We

claim that our proposed JNCC schemes are full diversity since the BLER of each source

decays as ǫ2 where ǫ is the probability of each link to be in erasure.

2.1 System Model

The M statistically independent sources S1, . . . ,SM want to communicate with the desti-

nation D in the presence of a relay R. In order to create virtual uplink Multiple-Input,
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Multiple-Output (MIMO) channels and to benefit from spatial multiplexing gains, we as-

sume that the relay R and the destination D are equipped with NR and ND receive an-

tennas. We consider that the baud rate of the sources and relay is D = 1/Ts and the

overall transmission time is fixed to T , thus the number of available channel uses to be

shared between the sources and the relay is N = DT . We consider the case of Nyquist rate

and cardinal sine transmission pulse shape, i.e., N = DT is the total number of available

complex dimensions and D is the total bandwidth of the system. Our channel models are

inspired by the following assumptions: (1) The delay spreads of the radio channels from

the sources to the relay and the destination as well as from the relay to the destination are

much lower than Ts ensuring no frequency selectivity; (2) the coherence time of all the afore-

mentioned radio channels are supposed to be much larger than T . The Semi-orthogonal

transmission protocol is considered. The N available channel uses are divided into two suc-

cessive time slots corresponding to the listening phase of the relay, say N1 = αN channel

uses, and to the transmission phase of the relay, say N2 = ᾱN channel uses, with α ∈ [0, 1]

and ᾱ = 1 − α. Each source i broadcasts its messages ui ∈ F
K
2 of K information bits

under the form of a modulated sequence during the first transmission phase. Without loss

of generality, the modulated sequences are chosen from the complex codebooks ζi of rate

K/(αN) and take the form of sequences xi ∈ ζi ⊂ X αN
i , i ∈ {1, . . . ,M}, where Xi ⊂ C

denote a complex signal set of cardinality |Xi| = 2qi , with energy normalized to unity. The

corresponding received signals at the relay and destination are expressed as

y
(1)
R,k =

M∑

i=1

√
PiRhiRxi,k + n

(1)
R,k (2.1)

y
(1)
D,k =

M∑

i=1

√
PiDhiDxi,k + n

(1)
D,k (2.2)

for k = 1, . . . , αN . In (2.1) and (2.2), the channel fading vectors hiR ∈ C
NR , and hiD ∈

C
ND , i ∈ {1, . . . ,M} are mutually independent, constant over the transmission of x1, . . .,

xM and change independently from one transmission of the sources to the next. The

channel fading vectors hiR, i ∈ {1, . . . ,M}, are identically distributed (i.d.) following

the probability density function (pdf) CN (0NR
, INR

). The channel fading vectors hiD,

i ∈ {1, . . . ,M}, are i.d. following the pdf CN (0ND
, IND

). The additive noise vectors

n
(1)
R,k and n

(1)
D,k are independent and follow the pdf CN (0NR

, N0INR
) and CN (0ND

, N0IND
),

respectively. Pij ∝ (dij/d0)
−κPi, i ∈ {1, . . . ,M}, j ∈ {R,D} is the average received energy

per dimension and per antenna (in Joules/symbol), where dij is the distance between the

transmitter and receiver, d0 is a reference distance, κ is the path loss coefficient, with values
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typically in the range [2, 6], and Pi is the transmit power (or energy per symbol) of Si. Note

that the shadowing could be included within Pij . To fairly compare the performance with

respect to α, we fix the total energy per available dimensions NP0,i (recall that N is the

number of available dimensions or channel uses) spent by Si, i.e., Pi = P0,i/α. During the

second phase, the sources are silent. The relay uses a SDF approach, which depends on the

number of correctly decoded messages. Let J = {j1, j2, . . . , j|J |}, |J | ≤ M denote the set

of message indices with cardinality |J | that have been successfully decoded. If J = ∅, the
relay remains silent. Otherwise, according to the number of correctly decoded messages

and the chosen network coding scheme, it transmits a modulated sequence of the form

xR ∈ X ᾱN
R , where XR ⊂ C is a complex constellation of order |XR| = 2qR with energy

normalized to unity. The modulated sequence xR is chosen such that (xj1 , . . . ,xj|J|
,xR) is

a codeword on message (uj1 , . . . ,uj|J|
) belonging to a codebook ζJ,R of rate |J |K/N . The

received signal at the destination is expressed as

y
(2)
D,k = θ

√
PRDhRDxR,k + n

(2)
D,k (2.3)

for k = 1, . . . , ᾱN . In (2.3), the channel fading vector hRD ∈ C
ND follows the pdf

CN (0ND
, IND

), is independent of hiD, i ∈ {1, . . . ,M}, constant over the transmission of

xR and changes independently from one transmission of the relay to another. The additive

noise vector n
(2)
D,k is independent of n

(1)
R,k and n

(1)
D,k, and follows the pdf CN (0ND

, N0IND
).

PRD ∝ (dRD/d0)
−κPR, with PR the transmit power of the relay, is the average received

power per dimension and per antenna at the destination. Here again, we fix the total en-

ergy per available dimensions NP0,R spent by the relay, i.e., PR = P0,R/ᾱ. The parameter

θ is a discrete Bernoulli distributed random variable: θ = 1 if the relay successfully decodes

at least one source message, and θ = 0 otherwise.

Concerning the relay functionality, we distinguish the two cases of JNCC and SNCC:

• JNCC: The relay interleaves each message uj , j ∈ J , by π and applies a function

ΘR,|J |
ΘR,|J | : F

K
2 × F

K
2 × . . .× F

K
2︸ ︷︷ ︸

|J |

→ C
ᾱN (2.4)

to obtain the modulated sequence xR. In general, the function ΘR,|J | is not a bijection

on the interleaved correctly decoded messages. In practice, the relay would add some

in-band signaling to make the destination aware of the set J. Finally, the relay signal,

together with the source signals, forms a distributed joint network-channel codebook.

The block diagram of the system model is depicted in Fig. 2.1 for the case of M = 2.
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Figure 2.1: System model (relay cooperates)

• SNCC: the relay sums the correctly decoded messages using XOR (or the addition in

F2). The resulting vector uR ∈ F
K
2 is then mapped to xR using the codebook ζR of

rate K/ᾱN .

In the rest of the chapter, for the sake of notational simplicity, we consider M = 2

sources that transmit with an overall spectral efficiency r = K/N . For the specific case

of SNCC, we can associate the same spectral efficiency r to the relay transmission. The

generalization to the cases of M > 2 sources is straightforward.

2.2 Information-theoretic Analysis

The SOMARC breaks down into two MACs at the relay and destination, and one classical

single user channel from the relay to the destination thanks to the SDF relaying func-

tion. Thus, its outage region is perfectly known conditional on a given channel state H =[
h1R h2R h1D h2D hRD

]
. Let us define the independent input random variables

x1 ∼ p(x1), x2 ∼ p(x2) and xR ∼ p(xR) and the associated independent output random vec-

tors y
(1)
D , y

(2)
D and y

(1)
R whose channel transition conditional pdfs are p

(
y
(1)
D | x1, x2,H

)
=

CN
(√
P1Dh1Dx1 +

√
P2Dh2Dx2, N0IND

)
, p
(
y
(2)
D | xR,H

)
= CN

(
θ
√
PRDhRDxR, N0IND

)

and p
(
y
(1)
R | x1, x2,H

)
= CN

(√
P1Rh1Rx1 +

√
P2Rh2Rx2, N0INR

)
. It follows that the mu-

tual informations I(x1, x2;y
(1)
D ), I(xR;y

(2)
D ) and I(x1, x2;y

(1)
R ) are perfectly defined by the

pdfs p(x1), p(x2), p(xR) and the aforementioned channel transition probabilities. It is clear

from our context that the mutual information conditional on any given channel state is
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maximized for the pdfs p(x1), p(x2), p(xR) being circularly symmetric complex Gaussian

pdfs. As a result, the latter pdfs minimize the information outage probabilities. However,

in practice, p(x1), p(x2), p(xR) are uniformly distributed pmfs (dirac comb pdfs) over the

chosen constellation alphabets. That is why both cases are investigated in the following.

We recall that in our analysis:

1. The theoretical bounds are derived conditional on both JNCC and SNCC.

2. The SDF relaying function is used under the hypothesis that all the links are prone

to errors.

3. The sequences x1 , x2 and xR are the outcomes of independent discrete time i.i.d.

processes whose associated pdfs are p(x1), p(x2) and p(xR) and their respective length

is infinite (N → ∞) such that the Asymptotic Equipartition Property (AEP) holds.

4. The outage limit is either the individual information outage probability or the individ-

ual ǫ-outage achievable rate (e.g., for S1). The efficiency of our proposed JNCC/JNCD

is evaluated in terms of gap to the information outage probability, keeping in mind

that the information outage probability remains a relevant measure of the best pos-

sible BLER even for finite code lengths [119].

2.2.1 Outage analysis of SOMARC/JNCC

As the relay uses a SDF approach, an evaluation of the source-to-relay channel quality

has first to be processed. Let ER(H) denote the outage event of the source-to-relay MAC

conditional on H. It corresponds to the case where the relay cannot decode both messages

correctly, and can be expressed as

ER(H) = ER,1|2(H) ∪ ER,2|1(H) ∪ ER,1,2(H) (2.5)

where ER,i|j(H), i, j ∈ {1, 2}, j 6= i is the outage event of Si if the information of Sj is

known, and ER,1,2(H) is the outage event of both sources at the relay. The three possible

outage events are then given by

ER,i|j(H) =
{
αI(xi;y

(1)
R | xj) < r

}
(2.6)

ER,1,2(H) =
{
αI(x1, x2;y

(1)
R ) < 2r

}
(2.7)
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When the outage event ER(H) holds, in order to verify whether only one of the messages

xi can be successfully decoded or not, we define the following outage event

ER,i(H) =
{
αI(xi;y

(1)
R ) < r

}
(2.8)

in which the relay treats the signal xj as interference. Thus, the relay outage events

for the SDF approach can be summarized as follows: (1) In case of Q(1)
R (H) = ĒR(H),

which indicates the complement of the outage event ER(H), the relay cooperates with both

sources; (2) In case of Q(2)
R (H) = ER(H) ∩ ĒR,1(H) the relay cooperates only with S1; (3)

In case of Q(3)
R (H) = ER(H)∩ ĒR,2(H) the relay cooperates only with S2; (4) Otherwise, in

case of Q(4)
R (H) = ER(H)∩ER,1(H)∩ER,2(H) the relay does not cooperate. Now, depending

on the relay transmission, we distinguish four outage events at the destination:

Case 1: The relay cooperates with both sources. The destination always receives the

cooperative information from the relay during the second phase. Since the relay transmits

over orthogonal parallel channel with respect to the source-to-destination MAC, the outage

at the destination occurs if the target rate exceeds the sum of the mutual informations of the

two parallel channels. Let E(1)
D (H) denote the outage event at the destination conditional

on H. It can be expressed as

E(1)
D (H) = E(1)

D,1|2(H) ∪ E(1)
D,2|1(H) ∪ E(1)

D,1,2(H). (2.9)

where

E(1)
D,i|j(H) =

{
αI(xi;y

(1)
D | xj) + ᾱI(xR;y

(2)
D ) < r

}
(2.10)

for i, j ∈ {1, 2} and j 6= i, and

E(1)
D,1,2(H) =

{
αI(x1, x2;y

(1)
D ) + ᾱI(xR;y

(2)
D ) < 2r

}
. (2.11)

In (2.10), E(1)
D,i|j(H), i ∈ {1, 2} is the outage event of Si if the information of Sj , j 6= i, is

known. In this case, xR can be considered as a part of the codeword of Si. Typically, this

is the case when xR is a codeword representing the XOR of the two source messages. The

outage event in (2.11) corresponds to the constraint that the total throughput cannot exceed

the sum of the mutual informations of (1) a point-to-point channel with the aggregate

received signals of the two sources, and (2) the relay-to-destination channel. When E(1)
D (H)

holds, the destination cannot decode both source messages correctly. As we are interested
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in calculating the outage event of S1, we define the following event

E(1)
D,1(H) =

{
αI(x1;y

(1)
D ) < r

}
(2.12)

in which the destination treats the signal x2 as interference. It is worth noting that the

relay transmission in this case cannot help S1 as it contains the interference from S2. Thus,

it is considered as interference as well. Finally, the outage event of S1 is calculated as

O(1)
D,1(H) = E(1)

D (H) ∩ E(1)
D,1(H).

Case 2: The relay cooperates with S1. The outage event at the destination E(2)
D (H) is

calculated as

E(2)
D (H) = E(2)

D,1|2(H) ∪ E(2)
D,2|1(H) ∪ E(2)

D,1,2(H). (2.13)

where

E(2)
D,1|2(H) =

{
αI(x1;y

(1)
D | x2) + ᾱI(xR;y

(2)
D ) < r

}
(2.14)

E(2)
D,2|1(H) =

{
αI(x2;y

(1)
D | x1) < r

}
(2.15)

E(2)
D,1,2(H) =

{
αI(x1, x2;y

(1)
D ) + ᾱI(xR;y

(2)
D ) < 2r

}
(2.16)

In order to calculate the outage event of S1, we define the following event

E(2)
D,1(H) =

{
αI(x1;y

(1)
D ) + ᾱI(xR;y

(2)
D ) < r

}
(2.17)

in which the destination treats the signal x2 as interference during the first transmission

phase. Finally, the outage event of S1 is calculated as O(2)
D,1(H) = E(2)

D (H) ∩ E(2)
D,1(H).

Case 3: The relay cooperates with S2. Swapping the roles of S1 and S2, the outage

event at the destination E(3)
D (H) is identical to the previous case. In order to calculate the

outage event of the source S1, we define the event E(3)
D,1(H) as in (2.12). Thus, the outage

event of S1 is calculated as O(3)
D,1(H) = E(3)

D (H) ∩ E(3)
D,1(H).

Case 4: The relay does not cooperate. The outage at the destination E(4)
D (H) occurs if

the source-to-destination MAC is in outage which is calculated similar to (2.5). The outage

event of S1 can also be derived as O(4)
D,1(H) = E(4)

D (H) ∩ E(4)
D,1(H), with E(4)

D,1(H) calculated

as in (2.12).

Finally, the outage event of S1 in the error-prone SOMARC/JNCC, can be expressed

as

OD,1(H) =
4⋃

i=1

(
Q(i)
R (H) ∩ O(i)

D,1(H)
)
. (2.18)
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The above outage event is conditional on the channel state H. The information outage

probability for S1 is then obtained as

Pout,1 =

∫

H

[OD,1(H)] p(H)d(H) (2.19)

where p(H) is the pdf of H. The ǫ-outage achievable rate of S1 is defined as the largest rate

of S1 such that its corresponding information outage probability for a given transmission

protocol, is smaller than or equal to ǫ.

2.2.2 Outage analysis of SOMARC/SNCC

In the case of SNCC/SNCD, we still have two MACs at the relay and destination corre-

sponding to the first time slot, and a point-to-point channel corresponding to the second

time slot. The outage event analysis at the relay remains the same as in (2.2.1). However,

the received signals at the destination from the sources and the relay are now decoded sep-

arately. Therefore, the outage event analysis at the destination related to the first time slot

exactly follows the one of the relay. More specifically, the outage events ED(H), ED,1(H),

ED,2(H) are defined similarly to ER(H), ER,1(H), ER,2(H) (by replacing the subscript R by

D). Let also ERD(H) denote the outage event of the relay-to-destination channel:

ERD(H) =
{
ᾱI(xR;y

(2)
D ) < r

}
(2.20)

where r bits per channel use is recalled to be the spectral efficiency of the relay transmis-

sion. Depending on the relay transmitted signal, we distinguish four different cases at the

destination:

Case 1: The relay cooperates with both sources. If the message of S1 cannot be cor-

rectly decoded from the MAC, it can be recovered, provided that the destination can decode

successfully the message of S2 during the first time slot, and the relay message during the

second time slot. Thus, the outage event of S1 is calculated as

O(1)
D,1(H) = (ED(H) ∩ ED,1(H) ∩ ERD(H)) ∪

(
ED(H) ∩ ED,1(H) ∩ ĒRD(H) ∩ ED,2(H)

)
.

(2.21)

Case 2: The relay cooperates with S1. The outage event of S1 is expressed as

O(2)
D,1(H)=(ED(H) ∩ ED,1(H) ∩ ERD(H)) . (2.22)
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Case 3: The relay cooperates with S2. If the message of S2 is decoded successfully

from the relay transmission, the interference of it could be removed from the source-to-

destination MAC, which becomes then a point-to-point channel. Let denote by ED,1|2(H)

the outage event corresponding to S1 if the message of S2 is known, i.e. x2 and xR are

both known. The outage event of S1 can be expressed as

O(3)
D,1(H) = (ERD(H) ∩ ED(H)∩ED,1(H)) ∪

(
ĒRD(H) ∩ ED,1|2(H)

)
. (2.23)

Case 4: The relay does not cooperate. The outage event of S1 is calculated as

O(4)
D,1(H) = (ED(H) ∩ ED,1(H)) . (2.24)

Finally, the outage event of S1 in the error-prone SOMARC/SNCC can be expressed as

OD,1(H) =
4⋃

i=1

(
Q(i)
R (H) ∩ O(i)

D,1(H)
)
. (2.25)

Here again, the outage event OD,1(H) is conditional on the channel state H, and the

information outage probability for S1 is derived as

Pout,1 =

∫

H

[OD,1(H)] p(H)d(H). (2.26)

2.2.3 Types of input distributions

Gaussian i.i.d. inputs maximize the mutual information. In this case, all the mutual

information can be calculated using the expressions given in Appendix B. However, the

assumption of Gaussian inputs can only be justified in the case of large signal constellations.

In practical systems, the channel inputs are selected from a finite and discrete alphabet

(typically QPSK or 16QAM). Thus, to make fair outage comparisons, discrete i.i.d. channel

inputs should be chosen from the constellations Xi of order 2
qi , i ∈ {1, 2, R}. In this case,

we compute numerically the mutual information assuming uniform input distributions. The

expressions are given in Appendix B.
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2.2.4 Information outage probability achieving codebooks

To achieve the information outage probability bounds, the codebooks ζ1, ζ2, ζ1R, ζ2R and

ζ12R should be universal codebooks. As defined in [127], a universal codebook of a given

rate is a codebook that simultaneously achieves reliable communication over every channel

that is not in outage for the chosen rate. Finally, it is worth stressing that, in practice,

there exist codebooks with finite lengths whose performance are very close to the ones of

universal codebooks. The simulation Section 2.5 exemplifies such codebook constructions

based on convolutional or turbo codes.

2.3 Joint Network Channel Coding and Decoding

In this section, we make explicit our proposed JNCC/JNCD approach. We explain the

structure of the encoders, when and how JNCC is performed, and the structure of the

corresponding multiuser receivers.

2.3.1 Coding at the sources

The messages of the two sources are binary vectors u1 ∈ F
K
2 and u2 ∈ F

K
2 of length K.

Each source employs a Bit-Interleaved Coded Modulation (BICM) [128]. Binary vectors

are first encoded with linear systematic binary encoders Ci : F
K
2 → F

ni

2 , i = {1, 2} into

binary codewords ci ∈ F
ni

2 of respective lengths ni. The codes ζi are in general punctured

turbo codes, consisting of two Recursive Systematic Convolutional (RSC) encoders, denoted

by RSCi,1 and RSCi,2, concatenated in parallel using optimized semi-random interleavers

π0,i. The coded bits are then interleaved using interleavers Πi and reshaped as two binary

matrices Vi ∈ F
αN×qi
2 . Memoryless modulators based on one-to-one binary labeling maps

φi : F
qi
2 → Xi transform the binary arrays Vi into the complex vectors xi ∈ X αN

i . For φi,

we choose Gray labeling. In the sequel, we denote by vi,k,ℓ = φ−1
i,ℓ (xi,k) the ℓ-th bit of the

binary labeling of each symbol xi,k for i ∈ {1, 2} and k = 1, · · · , αN .

2.3.2 Relaying Function

Relay processing is divided in two steps, as shown in Fig. 2.2. During the first time slot,

based on (2.1), the relay performs a joint detection and decoding procedure to obtain the

hard binary estimation of the information bits, ûi ∈ F
K
2 . Based on this estimation, the

relay chooses a SDF approach for cooperation. Different cases can then be distinguished,

depending on the number of successfully decoded messages. In the sequel, first, we briefly
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Figure 2.2: Block diagram of the sequential processing at relay

describe the relay detection and decoding algorithm, and then, we detail our proposed

JNCC scheme.

2.3.2.1 Relay detection and decoding

The joint detection and decoding is performed in a suboptimal iterative way [129]. An

inner Soft-In Soft-Out (SISO) Maximum A Posteriori (MAP) detector generates extrinsic

information on coded bits using the received signal (2.1) and a priori information coming

from the outer SISO decoders SISO1 and SISO2 (referring to the decoding of ζ1 and ζ2).

For the general case of turbo codes at the sources, the outer SISO decoder of Si generates

extrinsic information on both systematic and coded bits of Si by activating the SISO

decoder SISOi,1 corresponding to RSCi,1, and then SISOi,2 corresponding to RSCi,2. It is

important to remember that each SISO decoding stage takes into account all the available

a priori information on systematic bits [130] (and Algorithm 1 of Section 2.3.3.2). The

extrinsic information on both source codewords is then interleaved and fed back to the

detector, which in turn employs it as a priori information for the next iteration. It is worth

noting that the proper (de)multiplexing and (de)puncturing are also performed if needed.

The process is repeated until convergence. For the representation of the input/output soft

information, we use log ratios of probabilities. The Log A Posterior Probability Ratio
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(LAPPR) on bit vi,k,ℓ = φ−1
i,ℓ (xi,k) delivered by the SISO MAP detector is defined as

Λ(vi,k,ℓ) = log
P (vi,k,ℓ = 1|y(1)

R,k)

P (vi,k,ℓ = 0|y(1)
R,k)

(2.27)

and, in practice, evaluated as

Λ(vi,k,ℓ) ≃ log

∑
a∈Xi:φ

−1
i,ℓ

(a)=1,b∈Xj
P (y

(1)
R,k|xi,k = a, xj,k = b)eξ(a)+ξ(b)

∑
a∈Xi:φ

−1
i,ℓ

(a)=0,b∈Xj
P (y

(1)
R,k|xi,k = a, xj,k = b)eξ(a)+ξ(b)

(2.28)

for i, j ∈ {1, 2}, i 6= j, with,

ξ(a) =

log2|Xi|∑

ℓ′=1

φ−1
i,ℓ′(a)E(vi,k,ℓ′) (2.29)

ξ(b) =

log2|Xj |∑

ℓ′=1

φ−1
j,ℓ′(b)E(vj,k,ℓ′) (2.30)

where {E(vi,k,ℓ)} and {E(vj,k,ℓ)} are Log A Priori probability Ratios (LAPRs) on bits vi,k,ℓ

and vj,k,ℓ provided by the SISO decoders SISO1 and SISO2. The extrinsic information on

bit vi,k,ℓ is given by L(vi,k,ℓ) = Λ(vi,k,ℓ) − E(vi,k,ℓ), and after de-interleaving, feeds the

corresponding outer SISO decoder.

2.3.2.2 JNCC

As previously mentioned, the relay chooses a SDF approach for cooperation, which is

based on the number of successfully decoded messages, the knowledge of which being

ensured by using Cyclic Redundancy Check (CRC) codes for each source message. Let

J = {j1, . . . , j|J |}, |J | ≤ 2 denote the set of message indices that have been successfully

decoded. For the case where J = ∅, the relay does not cooperate. Otherwise, it interleaves

each message uj , j ∈ J by π. The interleaved binary streams are then linearly combined

over F2 using binary linear encoders

{
CR,1 : F

K
2 → F

2K
2

CR,2 : F
K
2 × F

K
2 → F

3K
2

(2.31)
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for J 6= ∅. For CR,|J |, we choose an RSC encoder of rate |J |
|J |+1 defined by the generator

matrix

GR,|J |(D) =


 I|J |

p1(D)
q(D)
...

p|J|(D)

q(D)


 (2.32)

where pi(D), i ∈ {1, ..., |J |}, and q(D) are the generator polynomials of the encoder CR,|J |.

This yields the binary vector cR ∈ F
K(|J |+1)
2 . A linear transformation Ω : F

K(|J |+1)
2 → F

K
2

is then applied which selects only the parity bits of cR to obtain the new vector c′R ∈ F
K
2 .

As all the systematic bits are removed, this structure maximizes the spectral efficiency.

The vector c′R is bit interleaved using the interleaver ΠR and reshaped as a binary matrix

VR ∈ F
ᾱN×qR
2 . Finally, a memoryless modulator based on a one-to-one binary labeling

map φR : FqR2 → XR transforms the binary array VR into the complex vector xR ∈ X ᾱN
R .

XR ⊂ C is a complex constellation of order |XR| = 2qR with energy normalized to unity.

For φR, we choose Gray labeling. In the sequel, we denote by vR,k,ℓ = φ−1
R,ℓ(xR,k) the

ℓ-th bit of the binary labeling of each symbol xR,k for k = 1, · · · , ᾱN . Finally, to let the

destination detect which of the messages are included in the relay signal, the relay transmits

side information (additional bits) to indicate its state to the receiver.

The proposed coding scheme entails the need of a decoder corresponding to the code of

rate |J |
|J |+1 , which increases the complexity while |J | becomes larger. Furthermore, it does

not guarantee the full diversity for low memory orders, as shown in [131]. But if we assume

that all the feedforward generators of GR,|J |(D) are the same, i.e., pi(D) = p(D), we obtain

an equivalent model, as depicted in Fig. 2.2, which ensures full diversity and simplifies the

decoder structure. In this model, the relay combines all the correctly decoded messages by

XOR, i.e., uR = uj1⊕. . .⊕uj|J|
, and interleaves the resulting vector by π. Interestingly, the

interleaver commutes with the XOR. The interleaved vector is then encoded to cR using

a binary linear encoder CR : FK2 → F
2K
2 . For CR, we choose the RSC encoder defined by

the generator matrix GR(D) =
[
1 p(D)

q(D)

]
. The selection function Ω then removes the

systematic bits. The rest of the operations remains the same. The XOR operation ensures

full diversity for the OMARC using SNCC [126] or JNCC [82]. As shown in Appendix A,

the high SNR slope of the outage probability of MAC versus SNR (in dB scale), for the

critical case of just one receive antenna, is the same as the one of the orthogonal MAC.

Thus, the full diversity design for OMARC remains valid when we have collisions at the

relay and destination.
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2.3.3 JNCD at the Destination

The JNCD at the destination depends on the side information received from the relay: In

case 1, where the relay has successfully decoded both source messages, two distributed turbo

codes are formed at the destination. In case 2 (case 3), where the relay has successfully

decoded the information of S1 (S2), one distributed turbo code is formed at the destination

corresponding to S1 (S2), and a separate decoder corresponding to C2 (C1) is used to decode

the information of the other source. In these cases, at the end of the second transmission

time slot, the destination starts to detect and decode the original data, processing the

received signals (2.2) and (2.3). Finally, in case 4, where the relay does not cooperate, the

destination applies iterative detection and decoding, processing the received signal (2.2),

and using the two separate decoders corresponding to C1 and C2. Here again, we resort to

a suboptimal iterative procedure. Extrinsic information on coded bits circulates between

SISO MAP detector and demapper corresponding to two transmission time slots and the

outer decoders, while, at the same time, extrinsic information on systematic bits circulates

between the SISO decoders of each code.

2.3.3.1 SISO MAP Detector and Demapper

The SISO MAP detector computes the LAPPR Λ(vi,k,ℓ) with vi,k,ℓ = φ−1
i,ℓ (xi,k), i ∈ {1, 2},

using the received signal (2.2) and a priori information coming from the outer SISO de-

coders. Expression is similar to (2.28) substituting y
(1)
D,k for y

(1)
R,k. We now turn to the SISO

MAP demapper which delivers soft information on the additional relay parity bits in case

of relay cooperation (successful selective relaying). The LAPPR on bit vR,k,ℓ = φ−1
R,ℓ(xR,k)

is defined as

Λ(vR,k,ℓ) = log
P (vR,k,ℓ = 1|y(2)

D,k)

P (vR,k,ℓ = 0|y(2)
D,k)

. (2.33)

and evaluated as

Λ(vR,k,ℓ) ≃ log

∑
c∈XR:φ−1

R,ℓ
(c)=1 P (y

(2)
D,k|xR,k = c)eξ(c)

∑
c∈XR:φ−1

R,ℓ
(c)=0 P (y

(2)
D,k|xR,k = c)eξ(c)

(2.34)

with

ξ(c) =

log2|XR|∑

ℓ′=1

φ−1
R,ℓ′(c)E(vR,k,ℓ′) (2.35)
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Figure 2.3: JNCD at the destination (relay cooperates with both sources)

where {E(vR,k,ℓ)} is the LAPR on bit vR,k,ℓ provided by the SISO decoder SISOR cor-

responding to the relay joint network-channel encoder (CR,|J | or XOR followed by CR).

Finally, the extrinsic information on vR,k,ℓ is given by L(vR,k,ℓ) = Λ(vR,k,ℓ)−E(vR,k,ℓ) and,

after de-interleaving, feeds SISOR.

2.3.3.2 Message-Passing Schedule

A recapitulative block diagram of the JNCD is depicted in Fig. 2.3. In this paragraph, we

detail the message-passing for the case where the relay cooperates with both sources using a

XOR followed by a linear encoding. We also consider the case of turbo codes at the sources,

i.e., each Ci, i ∈ {1, 2} consists of two RSC encoders separated by π0,i. The generalization

to other cases is straightforward. The SISO decoder SISOi corresponds to Ci, i ∈ {1, 2},
and SISOR corresponds to the relay encoder (XOR followed by CR). Each SISOi, i ∈ {1, 2},
is made up of the two SISO decoders SISOi,1 and SISOi,2. Let Lsi , Lpi , and LpR , i ∈ {1, 2},
denote respectively the soft information of the systematic and parity bits of the two sources

and the relay, obtained from the channel MAP detector and demapper. It is worth noting

that the proper (de)multiplexing and (de)puncturing are also performed if needed. In Fig.

2.3, the (de)puncturing is included in the blocks corresponding to (de)multiplexing. Let

also denote by Esi(j), Epi(j), and EpR(j) the extrinsic information generated by SISOj ,

j ∈ {1, 2, R}. Similarly, let Lpi,1 and Lpi,2 denote respectively the soft information of the

parity bits corresponding to SISOi,1 and SISOi,2 obtained from the MAP detector, Esi(i,1)

and Esi(i,2) denote respectively the extrinsic information on systematic bits generated by

SISOi,1 and SISOi,2, and Epi(i,1) and Epi(i,2) denote respectively the extrinsic information

on parity bits generated by SISOi,1 and SISOi,2.
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Figure 2.4: SISO decoder SISOi in case of compound codes at sources

The SISO MAP detector generates the LAPPRs for the systematic and parity bits

in V1 using Es1(1) + π−1(Es1(R)) and Ep1(1), respectively (after proper multiplexing in-

terleaving). It also generates the LAPPRs for the systematic and parity bits in V2

using Es2(2) + π−1(Es2(R)) and Ep2(2), respectively. It is worth stressing that Es1(1) =

Es1(1,1) + π−1
0,1(Es1(1,2)), and Es2(2) = Es2(2,1) + π−1

0,2(Es2(2,2)), as depicted in Fig. 2.4. The

MAP demapper generates the LAPPRs for the parity bits in VR using EpR(R). Then, the

two distributed decoders are activated and calculate the extrinsic information for both the

systematic and parity bits which are fed back to the SISO MAP detector and demapper.

In the case of an XOR encoding scheme (full diversity by construction), we detail in Fig.

2.5 and hereafter, the low complexity implementation of SISOR. As depicted in Fig. 2.5,

the SISO decoder corresponding to CR (DECR) should collect all the a priori information

LuR on uR. Denoting L1 = π(Ls1 +Es1(1)) and L2 = π(Ls2 +Es2(2)), it yields, taking into

account the XOR constraint node (see, e.g., [132]),

LuR,k = L1,k ⊞ L2,k = log
eL1,k + eL2,k

1 + e(L1,k+L2,k)
. (2.36)

Note, that independency between messages should hold in order to apply (2.36). Finally,

SISOR computes at its output, the extrinsic information Esi(R) from Lj and EuR(R), i, j ∈
{1, 2}, i 6= j, where EuR(R) is the extrinsic information on uR computed by the decoder

corresponding to CR. The message-passing schedule for the JNCD at each iteration, and

the final hard decisions are recapitulated in the Algorithm 1.
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Figure 2.5: XOR decoder

Algorithm 1 : JNCD at the destination

(Initialization)
Set all the a priori information to zero.

(Iterations)
Iterate until convergence:

1. Activate the SISO MAP detector using the received signal Y
(1)
D , and the messages

Es1(1)+π
−1(Es1(R)), Ep1(1) and Es2(2)+π

−1(Es2(R)), Ep2(2), where Esi(i) = Esi(i,1)+

π−1
0,i (Esi(i,2)).

2. Activate the SISO MAP demapper using the received signal Y
(2)
D , and the message

EpR(R).

3. Activate simultaneously the SISO decoders SISO1 and SISO2

(a) Activate simultaneously SISO1,1 and SISO2,1 with the messages Ls1 , Lp1,1 and

Ls2 , Lp2,1 provided by the MAP detector, and π−1
0,1(Es1(1,2))+π

−1(Es1(R)) and

π−1
0,2(Es2(2,2)) + π−1(Es2(R)), which are derived from the previous iteration.

(b) Activate simultaneously the SISO1,2 and SISO2,2 with, respectively, the mes-
sages π0,1(Ls1), Lp1,2 and π0,2(Ls2), Lp2,2 provided by the MAP detector, and
π0,1(Es1(1,1)) + π0,1 ◦ π−1(Es1(R)) and π0,2(Es2(2,1)) + π0,2 ◦ π−1(Es2(R)).

4. Activate the SISO decoder SISOR with the messages LpR provided by the MAP
demapper, and L1 = π(Ls1 +Es1(1)) and L2 = π(Ls2 +Es2(2)).

(Hard decisions)
Combine all the available information on the systematic bits u1 and u2:

Ls1 +Es1(1,1) + π−1
0,1(Es1(1,2)) + π−1(Es1(R)) → û1

Ls2 +Es2(2,1) + π−1
0,2(Es2(2,2)) + π−1(Es2(R)) → û2
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2.4 Separate Network Channel Coding and Decoding

As previously mentioned, the SNCC scheme is based on the XOR operation at the relay,

and the network-coded signal is separately decoded at the destination. Thus, in case of

SOMARC/SNCC, a joint detection and decoding procedure similar to section (2.3.2.1) is

performed at the destination on the signal received during the first transmission phase, and

a separate decoding is performed on the relay signal received during the second phase. The

channel decoders make hard decisions and output the estimates to the network decoder.

When the relay cooperates with both sources, if at least two out of three channel output

estimates are error-free, the network decoder can retrieve both source messages.

2.5 Numerical Results

In this section, we provide some numerical results to evaluate the effectiveness of our

approach. In our comparisons, we consider both SOMARC and OMARC using JNCC

or SNCC. We also consider the MAC reference system in which both sources transmit

simultaneously to the destination during the available number of channel uses N . We

start by detailing the topology of the network. For the sake of simplicity, we consider a

symmetric MARC and MAC, i.e., d1R = d2R and d1D = d2D. The average energy per

available dimension allocated to the two sources is the same, i.e., P0,1 = P0,2 = P0. We fix

the same path loss factor, i.e., κ = 3, free distance, i.e., d0 = 1 and noise power spectral

density, i.e., N0 = 1, for all links. In the case of relay assisted communication schemes,

due to the half-duplex nature of the relay, the transmission time slot of the sources and the

relay are separated in time. We fix α = 2/3 for SOMARC, which yields P1 = P2 = 3/2P0.

In OMARC, the two sources transmit in consecutive, equal duration, time slots. Thus,

the first two time slots are dedicated to the sources, and the third to the relay. It comes

that P1 = P2 = 3P0 for OMARC. The relay, in case of cooperation, transmits always

at PR = 3P0,R for both OMARC and SOMARC. For MAC, since the sources are active

during both transmission phases, we have P1 = P2 = P0. For simulation purposes, two

different configurations are considered: In the first configuration, we fix the number of

receive antennas to one both at the relay and destination, i.e., NR = ND = 1. The

geometry is chosen such that dij = dRD = d which yields Pi,j = PRD = γ for SOMARC,

Pi,j = 2γ, PRD = γ for OMARC, and PiD = 2/3γ for MAC, i ∈ {1, 2}, j ∈ {R,D}
where γ is the received SNR per symbol or dimension. In the second configuration, we

increase the number of receive antennas at the destination to 4, i.e. , NR = 1 and ND = 4.

The geometry is chosen such that diR = d1 and diD = dRD = d with (d1/d)
−3 = 100,

i ∈ {1, 2}. It yields PiR = 100γ (or γ +20 in dB) and PiD = PRD = γ for SOMARC which
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translates into PiR = 200γ, PiD = 2γ and PRD = γ for OMARC, i ∈ {1, 2}. PiD in case of

MAC remains unchanged. Each message of the sources has length K = 1024 information

bits. In our proposed JNCC, the complex signal sets X1, X2, and XR used in BICM are

either QPSK or 16QAM constellation (Gray labeling) and their corresponding sum rates

are η = 4/3 bits per channel use (b./c.u.) and η = 8/3 b./c.u., respectively.

2.5.1 Information-theoretic comparison of the protocols

2.5.1.1 Individual ǫ-outage achievable rate with Gaussian inputs

In the first set of simulations, we consider the ǫ-outage achievable rate of S1, and we compare

the individual ǫ-outage achievable rate Cǫ(γ) of JNCC and SNCC for the SOMARC and the

OMARC. We also compare the individual ǫ-outage achievable rate of the aforementioned

schemes with that of the MAC. In our analysis, we fix ǫ = 10−2. The number of receive

antennas at the destination is either ND = 1 or ND = 4. The corresponding results are

depicted in Fig. 2.6. As we can see, the ǫ-outage achievable rate for the SOMARC is

always higher than the ǫ-outage achievable rate for the OMARC regardless of the network

channel coding strategy (i.e., JNCC or SNCC); Especially, in the case of ND = 4, JNCC

with orthogonal multiple access (OMARC/JNCC) is strictly suboptimal and the ǫ-outage

achievable rate gain of SOMARC/JNCC versus OMARC/JNCC for individual rates above

2b./c.u. is more than 5 dB. This results from the fact that, in the presence of multiple

receive antennas, a non-orthogonal MAC can better exploit the available degrees of freedom.

Moreover, even in the case of ND = 1 which is not a priori favorable for a MAC, we see

that SOMARC/JNCC can provide an ǫ-outage achievable rate gain of approximately 4 dB

for data rates above 2 b./c.u.. In Fig. 2.6, we also see that the JNCC schemes outperform

the SNCC ones for both transmission protocols. For the data rate of 2 b./c.u., the ǫ-outage

achievable rate gains are about 5 dB in case of SOMARC for both ND = 1 and ND = 4,

3 dB and 4 dB in case of OMARC with respectively ND = 1 and ND = 4. Finally, it is

interesting to see that, beyond a certain threshold for γ, the individual ǫ-outage achievable

rate of MAC becomes higher than that of SOMARC or OMARC using either JNCC or

SNCC. This is certainly due to the non-usage of all the available number of channel uses

by the sources in SOMARC and OMARC.

2.5.1.2 Individual information outage probability with discrete inputs

In the second set of simulations, our purpose is first to compare the individual outage

probability of SOMARC/JNCC and OMARC/JNCC, and for the fixed sum rates of η = 4/3

and η = 8/3 b./c.u.. In order to achieve the same spectral efficiency as the SOMARC, we
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Figure 2.6: Individual ǫ-outage achievable rate - ǫ = 10−2 - SOMARC vs. OMARC - JNCC
vs. SNCC

consider two approaches for OMARC: (1) We impose on the transmitters to use the same

input alphabet as in the case of SOMARC, which makes sense if we want to preserve the

same level of peak-to-average power ratio (PAPR); (2) We employ constellation expansion

for the sources in OMARC. In the first approach, the two sources have no other choice but

to transmit their information symbols without any coding, and thus, from a theoretical

perspective (N → ∞), the system is always in outage. In the second approach, the sources

increase the cardinality of their modulation while preserving the same spectral efficiency,

which makes room for coding. Thus, the information outage probability of SOMARC with

QPSK is compared with the information outage probability of OMARC with 16QAM at the

sources and QPSK at the relay. Similarly, the information outage probability of SOMARC

with 16QAM is compared with the information outage probability of OMARC with 64QAM

at the sources and 16QAM at the relay. The corresponding results are depicted in Fig. 2.7

for the sum rate of η = 4/3 b./c.u. and in Fig. 2.8 for the sum rate of η = 8/3 b./c.u., for

both ND = 1 and ND = 4. As we can see, in all cases, the information outage probability

of SOMARC is smaller than the one of OMARC. Considering the second approach, for

η = 8/3 b./c.u., and at the BLER of 10−2, the power gain is approximately equal to 2.5 dB

for ND = 1 and becomes even larger for ND = 4, attaining 3.5 dB at the BLER of 10−2,

which reconfirms the sub-optimality of the orthogonal multiple access in case of multiple

receive antennas.
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Figure 2.7: Individual outage probability (e.g., for S1) - SOMARC/JNCC vs.
OMARC/JNCC - η = 4/3 b./c.u.
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Figure 2.8: Individual outage probability (e.g., for S1) - SOMARC/JNCC vs.
OMARC/JNCC - η = 8/3 b./c.u.
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To pursue our analysis, we compare the individual information outage probabilities of

SOMARC/JNCC and SOMARC/SNCC. Here again, to keep the same spectral efficiency

for the SNCC case, we have the aforementioned two approaches. Using the first approach,

the relay-to-destination channel is always in outage in the case of SOMARC/SNCC, and

thus it leads to the performance of a MAC corresponding to the first transmission time slot.

This explains the difference of slopes between the two curves in the corresponding figures.

In the second approach, constellation expansion is employed for the relay-to-destination

channel. Thus, in SOMARC/SNCC, the relay uses 16QAM for η = 4/3 b./c.u., and

64QAM for η = 8/3 b./c.u.. The corresponding results are depicted in Fig. 2.9 and Fig.

2.10 for both ND = 1 and ND = 4. As we can see, the SOMARC/SNCC has always a

performance loss compared to the SOMARC/JNCC. In the case of constellation expansion

and ND = 1, at the BLER of 10−2, the loss is around 2 dB for η = 4/3 b./c.u., and 3 dB

for η = 8/3 b./c.u.. The loss is much higher when we consider ND = 4, attaining 3 dB for

η = 4/3 b./c.u., and 4 dB for η = 8/3 b./c.u..
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Figure 2.9: Individual outage probability (e.g., for S1) - SOMARC/JNCC vs. SO-
MARC/SNCC - η = 4/3 b./c.u.

2.5.2 Performance of practical code design

In the sequel, the number of iterations I is set to 5 at the relay and to 10 (for ND = 1) or 3

(for ND = 4) at the destination. These numbers of iterations ensure convergence and allow
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Figure 2.10: Individual outage probability (e.g., for S1) - SOMARC/JNCC vs. SO-
MARC/SNCC - η = 8/3 b./c.u.

to very closely approach the performance of a Genie Aided (GA) receiver at sufficiently

high SNR for the selected modulation and coding schemes, the Genie Aided (GA) receiver

corresponding to the ideal case where the interference is known and perfectly removed.

2.5.2.1 Comparison of JNCC functions: XOR versus general scheme

In this section, we compare the performance of the two JNCC functions introduced in

section (2.3.2.2) for SOMARC. The first one is based on GR,|J |, and the second one is

based on XOR followed by GR. This experiment is carried out with NR = ND = 1 and

with NR = 1 and ND = 4, and for the sum rate of η = 4/3 b./c.u.. As we are interested in

comparing the JNCC functions, we assume that the source-to-relay links are error-free in

this set of simulations. In our comparisons, we consider also two different coding schemes at

the sources: (1) The two sources use identical turbo codes of rate-1/2 made of two 4-state

rate-1/2 RSC encoders with generator matrix G1 = [ 1 5/7 ] in octal representation,

whose half of the parity bits are punctured; (2) The two sources use identical 64-state rate-

1/2 RSC encoder with generator matrixG2 = [ 1 117/147 ] [133]. Exhaustive simulations

showed that those numbers of states yield the best performance/complexity trade-off. In

both of the above schemes, the relay employs 4-state, 16-state or 64-state RSC encoders.
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Figure 2.11: Joint BLER performance - error-free S-R links - Turbo Code (TC) at sources -
JNCC based on XOR vs. JNCC based on double input binary linear code - η = 4/3 b./c.u.

These RSC encoders are defined by [ 1 p/q ] and

[
1 0 p1/q
0 1 p2/q

]
for respective cases of

XOR and general scheme, and in octal notation. In the case of 4-state RSC encoder, p = 5

and q = 7 for the XOR scheme, and p1 = 7, p2 = 2, and q = 3 for the general scheme.

In the case of 16-state RSC encoder, p = 21 and q = 37 [133] for the XOR scheme, and

p1 = 27, p2 = 33 , and q = 31 for the general scheme. In the case of 64-state RSC encoder,

p = 117 and q = 147 for the XOR scheme, and p1 = 52, p2 = 36, and q = 115 for the

general scheme. The SISO decoders implement the BCJR algorithm [134]. The system

performance is measured in terms of joint BLER which is defined as the probability to

have at least one erroneously decoded information bit in either of the decoded blocks at

the destination.

The simulation results for the first scheme (with turbo codes at sources) are depicted

in Fig. 2.11. As we have seen that the performance of JNCC based on XOR is not affected

by the memory order of the RSC encoder at the relay, only the joint BLER results for the

memory order of 4 are depicted. As we see, the JNCC scheme based on XOR achieves the

promised full diversity by construction, whatever the memory order of the RSC encoder.

The general JNCC scheme also becomes full diversity for a sufficient memory order, but is

not as good as the XOR scheme, especially in the case of ND = 1.

Now, we analyze the joint BLER of the second scheme (with RSC encoders at sources).

The simulation results are depicted in Fig. 2.12. Since the JNCC based on XOR performs
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Figure 2.12: Joint BLER performance - error-free S-R links - Convolutional Code (CC)
and Turbo Code (TC) at sources - JNCC based on XOR vs. JNCC based on double input
binary linear code - η = 4/3 b./c.u.

slightly better when the memory order of the RSC encoder increases, only the joint BLER

results for the memory order of 64 are depicted. As we see, here again, the JNCC scheme

based on XOR achieves full diversity, whatever the memory order of the RSC encoder. The

general JNCC scheme also becomes full diversity for a sufficient memory order and would

exhibit better coding gain for less severe fading distribution (e.g., with receive antenna

diversity) at the expense of more complex decoding. For comparison purposes, we have

also plotted the best choice of the first scheme, which is the JNCC based on XOR with

turbo codes and RSC encoder of memory order 4 at respectively the sources and the relay.

Simulation results show that this scheme exhibits the best performance.

2.5.2.2 Gap to outage limits

Here, we first evaluate the gap between the individual BLER of practical designs for SO-

MARC/JNCC and that of their corresponding information outage probability. The exper-

iment is carried out for η = 4/3 b./c.u. and with the best coding schemes analyzed in

section (2.5.2.1) for both cases of turbo codes and RSC encoders at the sources. Thus, in

the first case, the sources use punctured turbo codes made of 4-state RSC encoders, and

the relay uses JNCC based on XOR and an RSC encoder of memory order of 4. In the

second case, the sources use 64-state RSC encoders, and the relay uses JNCC based on
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Figure 2.13: Individual BLER (e.g., for S1) - Practical SOMARC/JNCC vs. outage limit
- η = 4/3 b./c.u.

the double input 64-state RSC encoder. The corresponding results are demonstrated in

Fig. 2.13. As expected, the JNCC scheme based on turbo codes provides the best results

and performs 1 dB and 1.5 dB away from the information outage probability for respective

cases of ND = 1 and ND = 4.

Next, we compare the individual BLER of practical designs for SOMARC/SNCC with

their corresponding information outage probability. The experiment is carried out for

η = 4/3 b./c.u. and for both cases of turbo codes and RSC encoders at both sources and

the relay. In the first case, the sources and the relay use the punctured turbo codes made of

4-state rate-1/2 RSC encoders with generator matrix G1. In the second case, the sources

and the relay employ rate-1/2 4-state, 16-state or 64-state RSC encoders with generator

matrices G1, G3 = [ 1 21/37 ] and G2, respectively. The constellation expansion is also

performed at the relay. The simulation results are plotted in Fig. 2.14 for both ND = 1

and ND = 4. As we see, increasing the memory order of the RSC encoder improves the

individual BLER of the second case. However, the turbo code remains the best choice

which performs 1 dB away from the individual outage probability for both ND = 1 and

ND = 4.
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Figure 2.14: Individual BLER (e.g., for S1) - Practical SOMARC/SNCC vs. outage limit
- η = 4/3 b./c.u. - constellation expansion at the relay

2.5.2.3 Comparison of the different protocols

In this section, we first compare the individual BLER of practical code design for SO-

MARC/JNCC with that of the OMARC/JNCC. The JNCC in both protocols is based on

XOR. In SOMARC/JNCC, the two sources use the punctured turbo codes made of 4-state

rate-1/2 RSC encoders with generator matrix G1, and the relay uses the same RSC en-

coder. For OMARC/JNCC, we first imposed on the sources the use of same signal sets.

In this case, the two sources transmit their information symbols without any coding, while

the relay uses the 4-state rate-1/2 RSC encoder. The corresponding results demonstrated

considerable gains in favour of our approach. We next carried out another experiment,

where constellation expansion is employed for OMARC, as explained in the outage com-

parisons. Thus, in the case of OMARC with η = 4/3 b./c.u., both sources use the same

turbo code as the SOMARC with 16QAM modulation, and the relay uses the 4-state rate-

1/2 RSC encoder with QPSK constellation. Similarly, in the case of η = 8/3 b./c.u., both

sources use the turbo code made of 4-state rate-1/2 RSC encoders with generator matrix

G1, whose parity bits are punctured to result in a code of rate 2/3. They use then 64QAM

constellation. The relay uses the same RSC encoder as the previous case with 16QAM

modulation. The corresponding results are depicted in Fig. 2.15 for the spectral efficiency

of η = 4/3 b./c.u., and in Fig. 2.16 for the spectral efficiency of η = 8/3 b./c.u., for

both ND = 1 and ND = 4. Here again, the SOMARC outperforms the OMARC in most

cases and the performance gains are considerable for ND = 4. The exception is the case of
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η = 8/3 b./c.u. and for ND = 1, where the SOMARC starts to outperform the OMARC

with constellation expansion at a relatively high SNR (γ = 24 dB).
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Figure 2.15: Individual BLER (e.g., for S1) - SOMARC/JNCC vs. OMARC/JNCC -
η = 4/3 b./c.u.
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Figure 2.16: Individual BLER (e.g., for S1) - SOMARC/JNCC vs. OMARC/JNCC -
η = 8/3 b./c.u.

To pursue our comparison of practical designs, we compare the individual BLERs of
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SOMARC/JNCC and SOMARC/SNCC. In SOMARC/SNCC, both sources use the same

punctured turbo code as the SOMARC/JNCC, and the relay, as previously mentioned,

has two choices: (1) It uses the same input alphabet as the case of SOMARC/JNCC

and transmits its information symbols without any coding; (2) It performs constellation

expansion. In case (2), for η = 4/3 b./c.u., the relay uses the same punctured turbo code as

the sources with 16QAM modulation, and for η = 8/3 b./c.u., it uses the punctured turbo

code of rate 2/3 made of 4-state rate-1/2 RSC encoders with generator matrix G1. It then

uses 64QAM constellation. The corresponding results are depicted in Fig. 2.17 for the

spectral efficiency of η = 4/3 b./c.u., and in Fig. 2.18 for the spectral efficiency of η = 8/3

b./c.u., for both ND = 1 and ND = 4. As we see, the SOMARC/JNCC outperforms the

SOMARC/SNCC, and the power gains are approximately the same as the ones predicted

by theoretical bounds.
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Figure 2.17: Individual BLER (e.g., for S1) - SOMARC/JNCC vs. SOMARC/SNCC -
η = 4/3 b./c.u.

2.6 Conclusion

In this chapter, we have studied JNCC for a new class of MARC, referred to as SOMARC,

from both an information-theoretic and a practical code design perspective. We have

derived the SOMARC individual information outage probability, conditional on JNCC

(and SNCC used as a reference). We have also presented new JNCC schemes flexible in
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Figure 2.18: Individual BLER (e.g., for S1) - SOMARC/JNCC vs. SOMARC/SNCC -
η = 8/3 b./c.u.

terms of number of sources, encoders and modulations. For the 2-source symmetric case

and targeted sum rates η = 4/3 b./c.u. and η = 8/3 b./c.u., we have shown that our

proposed schemes are more efficient than (1) conventional distributed JNCC for OMARC;

(2) conventional SNCC schemes. Moreover, the proposed SOMARC/JNCC performs very

close to the outage limit (within 1.5 dB) for both cases of single and multiple receive

antennas at the destination, and for the fixed sum rate of η = 4/3 b./c.u.. We have

verified that the semi-orthogonal multiple access exhibits considerable gains over orthogonal

multiple access, even in the case of a single receive antenna at the destination.





Chapter 3

Joint Network-Channel Coding for
the Half-Duplex Non-Orthogonal
MARC

In the previous chapter, we evaluated the performance of HD-SOMARC in which the

sources were constrained to remain silent during the transmission phase of the relay. This

necessitates extra signaling to inform the sources of the cooperation. However, if we allow

the sources to transmit, only the destination node should be informed of the cooperation,

which reduces significantly the control signaling overhead. At the same time, the sources

can use better codes (additional parity bits), but since the source signals interfere with

the relay signal, a more complex multiuser joint decoding is required at the destination.

What we gain from a pure coding perspective could be lost due to the sub-optimality of

iterative decoding. The other challenging problem is to design the codes able to perform

well for the source-to-relay links in their partial version, and also to perform well at the

destination in their full version (i.e., considering the additional parity bits of the sources

during the second phase and those of the relay in case of cooperation). Motivated by the

aforementioned points, we propose in this chapter a new class of MARC that we call Half-

Duplex Non-Orthogonal MARC (HD-NOMARC or NOMARC) and is defined as follows:

(1) Independent sources communicate with a single destination in the presence of a relay;

(2) The relay is half-duplex and applies a Selective Decode and Forward (SDF) relaying

strategy, i.e, it forwards only a deterministic function of the messages that it can decode

without errors; (3) The sources are allowed to transmit simultaneously during both the

listening phase and the transmission phase of the relay. During the first transmission

phase, the sources simultaneously broadcast the first part of their messages, interfering at

The work presented in this chapter is submitted to IEEE Transaction on Wireless Communication. It

was presented in part at IEEE PIMRC 2010, and in part at IEEE PIMRC 2012.
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the relay and destination. During the second phase, they continue to transmit the second

part of their messages, and thus interfere with the relay in case of transmission, but, at

the same time, the destination benefits from stronger codes to perform joint detection and

decoding. This is indeed the most general form of half-duplex relaying where the medium

access is not orthogonal [112, 113]. Allowing collisions at the relay and the destination

renders the reality of wireless environments and leverages better the broadcast nature of

the radio channel than the OMARC. The proposed SDF in NOMARC is a modification of

the relaying protocol presented in [135] so as to allow partial cooperation if some of the

sources are successfully decoded at the relay and the others are not. Thus, it not only

prevents the error propagation from the relay to the destination, but also decreases the

individual BLER, i.e., the BLER for each source. As already mentioned in Chapter 2, this

SDF approach has been analyzed in a variety of contributions for the OMARC using either

JNCC [82] or SNCC [126]. Its theoretical and practical interests have also been confirmed

in Chapter 2 for the HD-SOMARC. However, many issues need still to be addressed,

including the impact of the multiple access interference during both transmission phases

on the information outage probability. Based on a careful outage analysis, the NOMARC

individual information outage probability (e.g., for S1) is derived for both JNCC or SNCC.

The individual information outage probability and the individual ǫ-outage achievable rate

(e.g., for S1) are then numerically evaluated assuming independent Gaussian inputs or

discrete independent identically and uniformly distributed inputs and compared with the

ones of a OMARC at fixed energy budget per source (per available dimensions). As a

second contribution, we propose practical JNCC designs for NOMARC that are flexible

in terms of number of sources and MCS. Our designs are built on turbo codes, and rely

on advanced (iterative) joint detection and decoding receiver architectures. We further

demonstrate that they also guarantee the full diversity in the sense that they achieve the

same diversity gain as the single-user case. The rationale behind our code construction has

already been discussed in Chapter 2.

3.1 System Model

The M statistically independent sources S1, . . . ,SM want to communicate with the desti-

nation D in the presence of a relay R. In order to create virtual uplink MIMO channels and

to benefit from spatial multiplexing gains, we assume that the relay R and the destination

D are equipped with NR and ND receive antennas. We consider that the baud rate of

the sources and relay is D = 1/Ts and the overall transmission time is fixed to T , thus

the number of available channel uses to be shared between the sources and the relay is

N = DT . We consider the case of Nyquist rate and cardinal sine transmission pulse shape,
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i.e., N = DT is the total number of available complex dimensions and D is the total band-

width of the system. Our channel models are inspired by the following assumptions: (1)

The delay spreads of the radio channels from the sources to the relay and the destination

as well as from the relay to the destination are much lower than Ts ensuring no frequency

selectivity; (2) the coherence time of all the aforementioned radio channels are supposed

to be much larger than T . The Non-orthogonal transmission protocol is considered. The

N available channel uses are divided into two successive time slots corresponding to the

listening phase of the relay, say N1 = αN channel uses, and to the transmission phase of the

relay, say N2 = ᾱN channel uses, with α ∈ [0, 1] and ᾱ = 1− α. Each source i broadcasts

its message ui ∈ F
K
2 of K information bits under the form of a modulated sequence during

both transmission phases. Without loss of generality, the modulated sequences are chosen

from the complex codebooks ζi of rate K/N and take the form of sequences xi ∈ ζi ⊂ X N
i ,

i ∈ {1, . . . ,M}, where Xi ⊂ C denote a complex signal set of cardinality |Xi| = 2qi , with

energy normalized to unity. During the first phase, the sources transmit the first part of

their modulated sequences denoted by x
(1)
i ∈ X αN

i which belongs to a complex codebook

ζ
(1)
i of rate K/(αN). The corresponding received signals at the relay and destination are

expressed as

y
(1)
R,k =

M∑

i=1

√
PiRhiRx

(1)
i,k + n

(1)
R,k (3.1)

y
(1)
D,k =

M∑

i=1

√
PiDhiDx

(1)
i,k + n

(1)
D,k (3.2)

for k = 1, . . . , αN . In (3.1) and (3.2), the channel fading vectors hiR ∈ C
NR , and hiD ∈

C
ND , i ∈ {1, . . . ,M} are mutually independent, constant over the transmission of x1, . . .,

xM and change independently from one transmission of the sources to the next. The

channel fading vectors hiR, i ∈ {1, . . . ,M}, are i.d. following the pdf CN (0NR
, INR

). The

channel fading vectors hiD, i ∈ {1, . . . ,M}, are i.d. following the pdf CN (0ND
, IND

). The

additive noise vectors n
(1)
R,k and n

(1)
D,k are independent and follow the pdf CN (0NR

, N0INR
)

and CN (0ND
, N0IND

), respectively. Pij ∝ (dij/d0)
−κPi, i ∈ {1, . . . ,M}, j ∈ {R,D} is the

average received energy per dimension and per antenna (in Joules/symbol), where dij is the

distance between the transmitter and receiver, d0 is a reference distance, κ is the path loss

coefficient, with values typically in the range [2, 6], and Pi is the transmit power (or energy

per symbol) of Si. Note that the shadowing could be included within Pij . To fairly compare

the performance with respect to other classes of MARC, in which the sources transmit only

over a fraction of the available dimensions or channel uses N , we fix the total energy per

available dimensions NP0,i spent by Si, i.e., Pi = P0,i/β. Here, β denotes the fraction
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of N over which each source transmits. Thus, β = 1 in the case of NOMARC, β = α

in the case of HD-SOMARC [136], and β = α/M in the case of OMARC supposing that

the sources transmit in consecutive, equal duration, time slots. During the second phase,

the sources continue to transmit the second part of their modulated sequences denoted

by x
(2)
i ∈ X ᾱN

i , i ∈ {1, . . . ,M}. The relay uses a SDF approach, which depends on the

number of correctly decoded messages. Let J = {j1, j2, . . . , j|J |}, |J | ≤ M denote the set

of message indices with cardinality |J | that have been successfully decoded. If J = ∅, the
relay remains silent. Otherwise, according to the number of correctly decoded messages

and the chosen network coding scheme, it transmits a modulated sequence of the form

x
(2)
R ∈ X ᾱN

R , where XR ⊂ C is a complex constellation of order |XR| = 2qR with energy

normalized to unity. The modulated sequence x
(2)
R is chosen such that (xj1 , . . . ,xj|J|

,xR) is

a codeword on message (uj1 , . . . ,uj|J|
) belonging to a codebook ζJ,R of rate |J |K/N . The

received signal at the destination is expressed as

y
(2)
D,k =

M∑

i=1

√
PiDhiDx

(2)
i,k + θ

√
PRDhRDx

(2)
R,k + n

(2)
D,k (3.3)

for k = 1, . . . , ᾱN . In (3.3), the channel fading vector hRD ∈ C
ND follows the pdf

CN (0ND
, IND

), is independent of hiD, i ∈ {1, . . . ,M}, constant over the transmission of

x
(2)
R and changes independently from one transmission of the relay to another. The additive

noise vector n
(2)
D,k is independent of n

(1)
R,k and n

(1)
D,k, and follows the pdf CN (0ND

, N0IND
).

PRD ∝ (dRD/d0)
−κPR, with PR the transmit power of the relay, is the average receive

power per dimension and per antenna at the destination. Here again, we fix the total en-

ergy per available dimensions NP0,R spent by the relay, i.e., PR = P0,R/ᾱ. The parameter

θ is a discrete Bernoulli distributed random variable: θ = 1 if the relay successfully decodes

at least one source message, and θ = 0 otherwise. Channel model (3.3) can be regarded as

a family of MACs indexed by θ ∈ {0, 1} also called a two-state compound MAC [137].

Concerning the relay functionality, we distinguish the two cases of JNCC and SNCC:

• JNCC: The relay interleaves each message uj , j ∈ J , by π and applies a function

ΘR,|J |
ΘR,|J | : F

K
2 × F

K
2 × . . .× F

K
2︸ ︷︷ ︸

|J |

→ C
ᾱN (3.4)

to obtain the modulated sequence x
(2)
R . In general, the function ΘR,|J | is not a bijec-

tion on the interleaved correctly decoded messages. In practice, the relay would add

some in-band signaling to make the destination aware of the set J. Finally, the relay

signal, together with the source signals, forms a distributed joint network-channel
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Figure 3.1: System model (relay cooperates)

codebook. The block diagram of the system model is depicted in Fig. 3.1 for the case

of M = 2.

• SNCC: the relay sums the correctly decoded messages using XOR (or the addition in

F2). The resulting vector uR ∈ F
K
2 is then mapped to xR using the codebook ζR of

rate K/ᾱN .

In the rest of the chapter, for the sake of notational simplicity, we consider M = 2

sources that transmit with an overall spectral efficiency r = K/N . For the specific case

of SNCC, we can associate the same spectral efficiency r to the relay transmission. The

generalization to the cases of M > 2 sources is straightforward.

3.2 Information-theoretic Analysis

The NOMARC breaks down into two MACs at the relay and destination corresponding to

the first transmission phase, and one MAC at the destination corresponding to the second

phase thanks to the SDF relaying function. Thus, its outage region is perfectly known

conditional on a given channel state H =
[
h1R h2R h1D h2D hRD

]
. Let us define

the independent input random variables x
(1)
1 ∼ p(x

(1)
1 ), x

(2)
1 ∼ p(x

(2)
1 ), x

(1)
2 ∼ p(x

(1)
2 ),

x
(2)
2 ∼ p(x

(2)
2 ), and x

(2)
R ∼ p(x

(2)
R ) and the associated independent output random vectors

y
(1)
D , y

(2)
D and y

(1)
R whose channel transition conditional pdfs follows the ones associated to

(3.2), (3.3) and (3.1), respectively. It follows that the mutual informations I(x
(1)
1 , x

(1)
2 ;y

(1)
D ),

I(x
(2)
1 , x

(2)
2 , x

(2)
R ;y

(2)
D ) and I(x

(1)
1 , x

(1)
2 ;y

(1)
R ) are perfectly defined by the pdfs p(x

(1)
1 ), p(x

(2)
1 ),

p(x
(1)
2 ), p(x

(2)
2 ), p(x

(2)
R ) and the aforementioned channel transition probabilities. It is clear
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from our context that the mutual information conditional on any given channel state is

maximized for the pdfs p(x
(1)
1 ), p(x

(2)
1 ), p(x

(1)
2 ), p(x

(2)
2 ), p(x

(2)
R ) being circularly symmetric

complex Gaussian pdfs. As a result, the latter pdfs minimize the information outage

probabilities. However, in practice, p(x
(1)
1 ), p(x

(2)
1 ), p(x

(1)
2 ), p(x

(2)
2 ), p(x

(2)
R ) are uniformly

distributed pmfs (dirac comb pdfs) over the chosen constellation alphabets. That is why

both cases are investigated in the following. We recall that in our analysis:

1. The theoretical bounds are derived conditional on both JNCC and SNCC.

2. The SDF relaying function is used under the hypothesis that all the links are prone

to errors.

3. The sequences x
(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 , and x

(2)
R are the outcomes of independent discrete

time i.i.d. processes whose associated pdfs are p(x
(1)
1 ), p(x

(2)
1 ), p(x

(1)
2 ), p(x

(2)
2 ), p(x

(2)
R )

and their respective length is infinite (N → ∞) such that the AEP holds.

4. The outage limit is either the individual information outage probability or the individ-

ual ǫ-outage achievable rate (e.g., for S1). The efficiency of our proposed JNCC/JNCD

is evaluated in terms of gap to the information outage probability, keeping in mind

that the information outage probability remains a relevant measure of the best pos-

sible BLER even for finite code lengths [119].

3.2.1 Outage analysis of NOMARC/JNCC

As the relay uses a SDF approach, an evaluation of the source-to-relay channel quality

has first to be processed. Let ER(H) denote the outage event of the source-to-relay MAC

conditional on H. It corresponds to the case where the relay cannot decode both messages

correctly, and can be expressed as

ER(H) = ER,1|2(H) ∪ ER,2|1(H) ∪ ER,1,2(H) (3.5)

where ER,i|j(H), i, j ∈ {1, 2}, j 6= i is the outage event of Si if the information of Sj is

known, and ER,1,2(H) is the outage event of both sources at the relay. The three possible

outage events are then given by

ER,i|j(H) =
{
αI(x

(1)
i ;y

(1)
R | x(1)j ) < r

}
(3.6)

ER,1,2(H) =
{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
R ) < 2r

}
(3.7)
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When the outage event ER(H) holds, in order to verify whether only one of the messages

x
(1)
i can be successfully decoded or not, we define the following outage event

ER,i(H) =
{
αI(x

(1)
i ;y

(1)
R ) < r

}
(3.8)

in which the relay treats the signal x
(1)
j as interference. Thus, the relay outage events

for the SDF approach can be summarized as follows: (1) In case of Q(1)
R (H) = ĒR(H),

which indicates the complement of the outage event ER(H), the relay cooperates with both

sources; (2) In case of Q(2)
R (H) = ER(H) ∩ ĒR,1(H) the relay cooperates only with S1; (3)

In case of Q(3)
R (H) = ER(H)∩ ĒR,2(H) the relay cooperates only with S2; (4) Otherwise, in

case of Q(4)
R (H) = ER(H)∩ER,1(H)∩ER,2(H) the relay does not cooperate. Now, depending

on the relay transmission, we distinguish four outage events at the destination:

Case 1: The relay cooperates with both sources. The destination always receives the

cooperative information from the relay during the second phase. Since the source-to-

destination and the source-and-relay-to-destination MACs are non-interfering, they can

be seen as two parallel MACs1. As a result, the outage at the destination occurs if the

target rate exceeds the sum of the mutual informations of the two parallel MACs. Let

E(1)
D (H) denote the outage event at the destination conditional on H. It can be expressed

as

E(1)
D (H) = E(1)

D,1|2(H) ∪ E(1)
D,2|1(H) ∪ E(1)

D,1,2(H). (3.9)

where

E(1)
D,i|j(H) =

{
αI(x

(1)
i ;y

(1)
D | x(1)j ) + ᾱI(x̃

(2)
i ; ỹ

(2)
D | x(2)j ) < r

}
(3.10)

for i, j ∈ {1, 2} and j 6= i, and

E(1)
D,1,2(H) =

{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
D ) + ᾱI(x

(2)
1 , x

(2)
2 , x

(2)
R ;y

(2)
D ) < 2r

}
. (3.11)

In (3.10), E(1)
D,i|j(H), i ∈ {1, 2} is the outage event of Si if the information of Sj , j 6= i, is

known, i.e., x
(1)
j and x

(2)
j are both known. In this case, x

(2)
R can be considered as a part

of the codeword corresponding to Si. Typically, this is the case when x
(2)
R is a codeword

representing the XOR of the two source messages. Since the signals of Si and the relay are

independent (thanks to the JNCC interleaver π), the second term of the sum in (3.10) can

1Note that, on the other hand, their respective channel statistics are highly correlated, i.e., the source-

to-destination channels remain static during the two transmission phases.
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be derived from the equivalent MIMO channel

ỹ
(2)
D = H̃i Ki x̃

(2)
i + n

(2)
D (3.12)

where ỹ
(2)
D = y

(2)
D −

√
PjDhjDx

(2)
j , x̃

(2)
i =

[
x
(2)
i x

(2)
R

]⊤
, H̃i = [hiD hRD], and Ki =

diag(
√
PiD,

√
PRD). The outage event in (3.11) corresponds to the constraint that the

total throughput cannot exceed the sum of the mutual information of (1) a point-to-point

MIMO channel with the aggregate received signals of the two sources which corresponds to

the first phase, and (2) a point-to-point MIMO channel with the aggregate received signals

of the two sources and the relay which corresponds to the second phase. When E(1)
D (H)

holds, the destination cannot decode both source messages correctly. As we are interested

in calculating the outage event of S1, we define the following event

E(1)
D,1(H) =

{
αI(x

(1)
1 ;y

(1)
D ) + ᾱI(x

(2)
1 ;y

(2)
D ) < r

}
(3.13)

in which the destination treats the signals x
(1)
2 , x

(2)
2 and x

(2)
R as interferences. It is worth

noting that the relay transmission in this case cannot help S1 as it contains the interference

from S2. Finally, the outage event of S1 is calculated as O(1)
D,1(H) = E(1)

D (H) ∩ E(1)
D,1(H).

Case 2: The relay cooperates with S1. The outage event at the destination E(2)
D (H) is

calculated as

E(2)
D (H) = E(2)

D,1|2(H) ∪ E(2)
D,2|1(H) ∪ E(2)

D,1,2(H). (3.14)

where

E(2)
D,1|2(H) =

{
αI(x

(1)
1 ;y

(1)
D | x(1)2 ) + ᾱI(x̃

(2)
1 ; ỹ

(2)
D | x(2)2 ) < r

}
(3.15)

E(2)
D,2|1(H) =

{
αI(x

(1)
2 ;y

(1)
D | x(1)1 ) + ᾱI(x

(2)
2 ;y

(2)
D | x(2)1 , x

(2)
R ) < r

}
(3.16)

E(2)
D,1,2(H) =

{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
D ) + ᾱI(x

(2)
1 , x

(2)
2 , x

(2)
R ;y

(2)
D ) < 2r

}
(3.17)

In (3.15), ỹ
(2)
D = y

(2)
D −√

P2Dh2Dx
(2)
2 , x̃

(2)
1 =

[
x
(2)
1 x

(2)
R

]⊤
, and the second term of the sum

is deduced from an equivalent MIMO channel as in (3.12) with i = 1 and j = 2. Note that

in (3.16), since the information of S1 is supposed to be known and the relay cooperates only

with S1, the relay transmitted signal is known as well. Thus, there is no interference on

the signal transmitted by S2 during both transmission phases. Now, in order to calculate
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the outage event of S1, we define the following event

E(2)
D,1(H) =

{
αI(x

(1)
1 ;y

(1)
D ) + ᾱI(x̃

(2)
1 ;y

(2)
D ) < r

}
(3.18)

in which the destination treats the signals x
(1)
2 and x

(2)
2 as interferences during the first and

second transmission phases. The second term of the sum is deduced from the equivalent

MIMO channel

y
(2)
D = H̃1K1x̃

(2)
1 + n(2)

eq (3.19)

where n
(2)
eq =

√
P2Dh2Dx

(2)
2 + n

(2)
D , x̃

(2)
1 =

[
x
(2)
1 x

(2)
R

]⊤
, H̃1 = [h1D hRD], and K1 =

diag(
√
P1D,

√
PRD). Finally, the outage event of S1 is calculated as O(2)

D,1(H) = E(2)
D (H) ∩

E(2)
D,1(H).

Case 3: The relay cooperates with S2. Swapping the roles of S1 and S2, the outage

event at the destination E(3)
D (H) is identical to the previous case. In order to calculate the

outage event of the source S1, we define the event E(3)
D,1(H) as in (3.13). Thus, the outage

event of S1 is calculated as O(3)
D,1(H) = E(3)

D (H) ∩ E(3)
D,1(H).

Case 4: The relay does not cooperate. The outage at the destination E(4)
D (H) occurs

if the target rate exceeds the sum of the mutual informations of the two parallel MACs. It

yields

E(4)
D (H) = E(4)

D,1|2(H) ∪ E(4)
D,2|1(H) ∪ E(4)

D,1,2(H). (3.20)

where

E(4)
D,i|j(H) =

{
αI(x

(1)
i ;y

(1)
D | x(1)j ) + ᾱI(x

(2)
i ;y

(2)
D | x(2)j ) < r

}
(3.21)

for i, j ∈ {1, 2} and j 6= i, and

E(4)
D,1,2(H) =

{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
D ) + ᾱI(x

(2)
1 , x

(2)
2 ;y

(2)
D ) < 2r

}
. (3.22)

The outage event of S1 is then O(4)
D,1(H) = E(4)

D (H) ∩ E(4)
D,1(H), where E(4)

D,1(H) is calculated

as in (3.13) without the interference from the relay.

Finally, the outage event of S1 for NOMARC based on JNCC, can be expressed as

OD,1(H) =
4⋃

i=1

(
Q(i)
R (H) ∩ O(i)

D,1(H)
)
. (3.23)

The above outage event is conditional on the channel state H. The information outage
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probability for S1 is then obtained as

Pout,1 =

∫

H

[OD,1(H)] p(H)d(H) (3.24)

where p(H) is the pdf of H. The ǫ-outage achievable rate of S1 is defined as the largest rate

of S1 such that its corresponding information outage probability for a given transmission

protocol, is smaller than or equal to ǫ.

3.2.2 Outage analysis of NOMARC/SNCC

In the case of SNCC/SNCD, we still have two MACs at the relay and destination cor-

responding to the first time slot, and one MAC at the destination corresponding to the

second time slot. The outage event analysis at the relay remains the same as in (3.2.1).

However, the SNCD strategy imposes a separate decoding of the relay and the sources.

Thus, we end up with a three user MAC when the relay transmits.

Case 1: The relay cooperates with both sources. The source signals transmitted during

the second phase are decoded jointly with those transmitted during the first phase, and the

relay signal is decoded separately. If the message of S1 cannot be correctly decoded, it can

be recovered, provided that the destination can decode successfully the message of S2 and

the relay message during the second time slot (thanks to the Separate Network Coding).

Let S = {1, 2, R} stand for the set of transmitted signals with 1 for S1, 2 for S2, R for the

relay. For simplicity, we adopt the convention that R is an index greater than 2. Let the

overall three user MAC outage event conditional on H be E(1)
D (H), it can be expressed as:

E(1)
D (H) =

⋃

∀ I⊂S
E(1)
D, I|Ic(H) (3.25)

where Ic the complement of the subset I in S. Clearly, E(1)
D, I|Ic(H), for all I ⊂ S, is the

outage event of the transmit signals of subset I conditional to the perfect knowledge of the

signals of subset Ic. As a result, it yields

E(1)
D,i|j,R(H) =

{
αI(x

(1)
i ;y

(1)
D | x(1)j ) + ᾱI(x

(2)
i ;y

(2)
D | x(2)j , x

(2)
R ) < r

}
(3.26)

E(1)
D,i,R|j(H) =

{
αI(x

(1)
i ;y

(1)
D | x(1)j ) + ᾱI(x

(2)
i , x

(2)
R ;y

(2)
D | x(2)j ) < 2r

}
(3.27)
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for i, j ∈ {1, 2}, i 6= j, and

E(1)
D,R|1,2(H) =

{
ᾱI(x

(2)
R ;y

(2)
D | x(2)1 , x

(2)
2 ) < r

}
(3.28)

E(1)
D,1,2|R(H) =

{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
D ) + ᾱI(x

(2)
1 , x

(2)
2 ;y

(2)
D | x(2)R ) < 2r

}
(3.29)

E(1)
D,1,2,R(H) =

{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
D ) + ᾱI(x

(2)
1 , x

(2)
2 , x

(2)
R ;y

(2)
D ) < 3r

}
. (3.30)

In the case that E(1)
D (H) holds, the destination cannot decode all the three messages

correctly. Thus, in order to calculate the outage event of S1, we need to check the possibility

of decoding error-free two messages out of three, considering the third one as interference.

The corresponding outage events are derived in the sequel for each case.

• Treating x
(2)
R as interference:

E(1)
D,1−2(H) = E(1)

D,1|2(H) ∪ E(1)
D,2|1(H) ∪ E(1)

D,1,2(H) (3.31)

with

E(1)
D,i|j(H) =

{
αI(x

(1)
i ;y

(1)
D | x(1)j ) + ᾱI(x

(2)
i ;y

(2)
D | x(2)j ) < r

}
(3.32)

for i, j ∈ {1, 2}, i 6= j, and

E(1)
D,1,2(H) =

{
αI(x

(1)
1 , x

(1)
2 ;y

(1)
D ) + ᾱI(x

(2)
1 , x

(2)
2 ;y

(2)
D ) < 2r

}
. (3.33)

• Treating x
(1)
j and x

(2)
j , j ∈ {1, 2} as interferences:

E(1)
D,i−R(H) = E(1)

D,i|R(H) ∪ E(1)
D,R|i(H) ∪ E(1)

D,i,R(H) (3.34)

for i ∈ {1, 2}, i 6= j, and with

E(1)
D,i|R(H) =

{
αI(x

(1)
i ;y

(1)
D ) + ᾱI(x

(2)
i ;y

(2)
D | x(2)R ) < r

}
(3.35)

E(1)
D,R|i(H) =

{
ᾱI(x

(2)
R ;y

(2)
D | x(2)i ) < r

}
(3.36)

E(1)
D,i,R(H) =

{
αI(x

(1)
i ;y

(1)
D ) + ᾱI(x

(2)
i , x

(2)
R ;y

(2)
D ) < 2r

}
. (3.37)



58 3.2. INFORMATION-THEORETIC ANALYSIS

Finally, assuming that the outage events in (3.25), (3.31), and (3.34) hold, the message of S1

is in outage if it can not be decoded correctly considering x
(1)
2 , x

(2)
2 and x

(2)
R as interferences.

We denote by E(1)
D,1(H) the corresponding outage event which is given in (3.13). Finally,

the outage event of S1 is calculated as

O(1)
D,1(H) =


E(1)

D (H) ∩




⋂

(i,j)∈S2

i<j

E(1)
D,i−j(H)


 ∩ E(1)

D,1(H)


 . (3.38)

Case 2: The relay cooperates with S1. All the definitions of the outage events do no

change, they are simply obtained by replacing the superscript (1) by (2). On the other hand,

we need to define the following outage event E(2)
D,R(H) that is expressed as

E(2)
D,R(H) =

{
ᾱI(x

(2)
R ;y

(2)
D ) < r

}
(3.39)

considering x
(2)
1 and x

(2)
2 as interferences. Finally, the outage event of S1 is calculated as:

O(2)
D,1(H) =


E(2)

D (H) ∩




⋂

(i,j)∈S2

i<j

E(2)
D,i−j(H)


 ∩ E(2)

D,1(H) ∩ E(2)
D,R(H)


 . (3.40)

Case 3: The relay cooperates with S2. We use the same approach as in Case 2. We

should just take into account that, if the message of S2 is decoded successfully, the inter-

ference of it could be removed during both transmission phases. Thus, the outage event of

S1 can be expressed as

O(3)
D,1(H) =

(
E(3)
D (H) ∩ E(3)

D,1−2(H) ∩ E(3)
D,1−R(H) ∩ Ē(3)

D,2−R(H) ∩ E(3)
D,1|2,R(H)

)
∪


E(3)

D (H) ∩




⋂

(i,j)∈S2

i<j

E(3)
D,i−j(H)


 ∩ (A ∪ B ∪ C)


 (3.41)
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where

A = E(3)
D,1(H) ∩ E(3)

D,2(H) ∩ E(3)
D,R(H)

B = E(3)
D,1(H) ∩ Ē(3)

D,2(H) ∩ E(3)
D,R(H) ∩ E(3)

D,1|2,R(H)

C = E(3)
D,1(H) ∩ E(3)

D,2(H) ∩ Ē(3)
D,R(H) ∩ E(3)

D,1|2,R(H). (3.42)

Case 4: The relay does not cooperate. The outage event of S1 is denoted by O(4)
D,1(H),

and is calculated as explained in Case 4 of section (3.2.1).

Finally, the outage event of S1 in the error-prone NOMARC/SNCC can be expressed

as

OD,1(H) =
4⋃

i=1

(
Q(i)
R (H) ∩ O(i)

D,1(H)
)
. (3.43)

Here again, the outage event OD,1(H) is conditional on the channel state H, and the

information outage probability for S1 is derived as

Pout,1 =

∫

H

[OD,1(H)] p(H)d(H). (3.44)

3.2.3 Types of input distributions

We consider both Gaussian i.i.d. inputs and discrete i.i.d. inputs (for practical considera-

tions as explained in Chapter 2) to calculate the mutual information. The corresponding

expressions are given in Appendix B.

3.2.4 Information outage probability achieving codebooks

To achieve the information outage probability bounds, the codebooks ζ1, ζ2, ζ
(1)
1 , ζ

(1)
2 ,ζ1R,

ζ2R and ζ12R should be universal codebooks. As defined in [127], a universal codebook

of a given rate is a codebook that simultaneously achieves reliable communication over

every channel that is not in outage for the chosen rate. Finally, it is worth stressing that,

in practice, there exist codebooks with finite lengths whose performance are very close to

the ones of universal codebooks. The simulation Section 3.5 examplifies such codebook

constructions based on convolutional or turbo codes.
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3.3 Joint Network Channel Coding and Decoding

In this section, we make explicit our proposed JNCC/JNCD approach. We explain the

structure of the encoders, when and how JNCC is performed, and the structure of the

corresponding multiuser receivers.

3.3.1 Coding at the sources

The messages of the two sources are binary vectors u1 ∈ F
K
2 and u2 ∈ F

K
2 of lengthK. Each

source employs a BICM [128]. Binary vectors are first encoded with linear binary encoders

Ci : FK2 → F
ni

2 , i ∈ {1, 2} into binary codewords c1 ∈ F
n1
2 and c2 ∈ F

n2
2 of respective

lengths n1 and n2. The codes ζ1 and ζ2 are turbo codes. Each turbo code consists of

two RSC encoders, concatenated in parallel using optimized semi-random interleavers π0,1

and π0,2. Let RSCi,1 and RSCi,2 denote the two RSC encoders of ζi, i ∈ {1, 2}, defined
by the generator matrices Gi,1(D) and Gi,2(D). Let Ai ∈ F

3×P
2 denote the puncturing

matrix associated to ζi, with P the puncturing period, and ai;j,ℓ ∈ {0, 1} where 0 implies

puncturing. We assume that ∀ℓ = 1, . . . , P , ai;1,ℓ = 1 which means that the systematic bits

are not punctured. Let also Āi denote the complement of Ai, i.e., Āi+Ai is a matrix filled

with 1. The coded bits ci are first punctured following the puncturing matrix Ai. The

resulting bits are then bit-interleaved using the interleavers Π
(1)
i and reshaped as binary

matrices V
(1)
i ∈ F

αN×qi
2 . Memoryless modulators based on one-to-one binary labeling maps

φi : F
qi
2 → Xi transform the binary arrays V

(1)
i into the complex vectors x

(1)
i ∈ X αN

i . For

φi, we choose Gray labeling. For the second transmission phase, the coded bits that are

punctured during the first phase (or equivalently, the coded bits ci that are punctured

following the puncturing matrix Āi) are bit-interleaved using the interleavers Π
(2)
i and

reshaped as two binary matrices V
(2)
i ∈ F

ᾱN×qi
2 . The same memoryless modulators based

on labeling maps φi transform the binary arrays V
(2)
i into the complex vectors x

(2)
i ∈ X ᾱN

i .

In the sequel, we denote by v
(τ)
i,k,ℓ = φ−1

i,ℓ (x
(τ)
i,k ), τ ∈ {1, 2}, the ℓ-th bit of the binary labeling

of each symbol x
(τ)
i,k , i ∈ {1, 2}, with k = 1, · · · , αN for τ = 1, and k = 1, · · · , ᾱN for τ = 2.

3.3.2 Relaying Function

Relay processing is divided into two steps: During the first time slot, based on (3.1),

the relay performs a joint detection and decoding procedure to obtain the hard binary

estimation of the information bits, ûi ∈ F
K
2 . Based on this estimation, the relay chooses

a SDF approach for cooperation. Different cases can then be distinguished, depending on

the number of successfully decoded messages. In the sequel, first, we briefly describe the

relay detection and decoding algorithm, and then, we detail our proposed JNCC scheme.
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3.3.2.1 Relay detection and decoding

The joint detection and decoding is performed in a suboptimal iterative way [129]. An

inner SISO MAP detector generates extrinsic information on coded bits using the received

signal (3.1) and a priori information coming from the outer SISO decoders SISO1 and SISO2

(referring to the decoding of ζ1 and ζ2). For the general case, the outer SISO decoder of Si

generates extrinsic information on both systematic and coded bits of Si by activating the

SISO decoder SISOi,1 corresponding to RSCi,1, and then SISOi,2 corresponding to RSCi,2.

It is important to remember that each SISO decoding stage takes into account all the

available a priori information on systematic bits [130] (and Algorithm 2 of Section 3.3.3.2).

The extrinsic information on both source codewords is then interleaved and fed back to the

detector, which in turn employs it as a priori information for the next iteration. It is worth

noting that the proper (de)multiplexing and (de)puncturing are also performed if needed.

The process is repeated until convergence. For the representation of the input/output

soft information, we use log ratios of probabilities. The LAPPR on bit v
(1)
i,k,ℓ = φ−1

i,ℓ (x
(1)
i,k )

delivered by the SISO MAP detector is defined as

Λ(v
(1)
i,k,ℓ) = log

P (v
(1)
i,k,ℓ = 1|y(1)

R,k)

P (v
(1)
i,k,ℓ = 0|y(1)

R,k)
(3.45)

and, in practice, evaluated as

Λ(v
(1)
i,k,ℓ) ≃ log

∑
a∈Xi:φ

−1
i,ℓ

(a)=1,b∈Xj
P (y

(1)
R,k|x

(1)
i,k = a, x

(1)
j,k = b)eξ(a)+ξ(b)

∑
a∈Xi:φ

−1
i,ℓ

(a)=0,b∈Xj
P (y

(1)
R,k|x

(1)
i,k = a, x

(1)
j,k = b)eξ(a)+ξ(b)

(3.46)

for i, j ∈ {1, 2}, i 6= j, with,

ξ(a) =

log2|Xi|∑

ℓ′=1

φ−1
i,ℓ′(a)E(v

(1)
i,k,ℓ′) (3.47)

ξ(b) =

log2|Xj |∑

ℓ′=1

φ−1
j,ℓ′(b)E(v

(1)
j,k,ℓ′) (3.48)

where {E(v
(1)
i,k,ℓ)} and {E(v

(1)
j,k,ℓ)} are LAPRs on bits v

(1)
i,k,ℓ and v

(1)
j,k,ℓ provided by the SISO

decoders SISO1 and SISO2. The extrinsic information on bit v
(1)
i,k,ℓ is given by L(v

(1)
i,k,ℓ) =

Λ(v
(1)
i,k,ℓ)−E(v

(1)
i,k,ℓ), and after de-interleaving, feeds the corresponding outer SISO decoder.
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3.3.2.2 JNCC

As previously mentioned, the relay chooses a SDF approach for cooperation, which is based

on the number of successfully decoded messages, the knowledge of which being ensured by

using CRC codes for each source message. Let J = {j1, . . . , j|J |}, |J | ≤ 2 denote the set of

message indices that have been successfully decoded. For the case where J = ∅, the relay

does not cooperate. Otherwise, it combines all the correctly decoded messages by XOR,

i.e., uR = uj1 ⊕ . . . ⊕ uj|J|
, and interleaves the resulting vector by π. Interestingly, the

interleaver commutes with the XOR. The interleaved vector is then encoded to cR using a

binary linear encoder CR : FK2 → F
nR

2 . For CR, we choose an RSC encoder defined by the

generator matrix GR(D), referred to as RSCR. A linear transformation Ω : FnR

2 → F
n′
R

2 is

applied which selects the parity bits of cR to obtain the new vector c′R ∈ F
n′
R

2 , n′R < nR.

The vector c′R is bit-interleaved using the interleaver Π
(2)
R and reshaped as a binary matrix

V
(2)
R ∈ F

ᾱN×qR
2 . Finally, a memoryless modulator based on a one-to-one binary labeling

map φR : FqR2 → XR transforms the binary array V
(2)
R into the complex vector x

(2)
R ∈ X ᾱN

R .

For φR, we choose Gray labeling. In the sequel, we denote by v
(2)
R,k,ℓ = φ−1

R,ℓ(x
(2)
R,k) the ℓ-th

bit of the binary labeling of each symbol x
(2)
R,k for and k = 1, · · · , ᾱN . Finally, to let the

destination detect which of the messages are included in the relay signal, the relay transmits

side information (additional bits) to indicate its state to the receiver.

The proposed coding scheme which is based on XOR operation, ensures full diversity

for the OMARC using SNCC [126] or JNCC [82]. As shown in Appendix A, the high SNR

slope of the outage probability of MAC versus SNR (in dB scale), for the critical case of just

one receive antenna, is the same as the one of the orthogonal MAC. Thus, the full diversity

design for OMARC remains valid when we have collisions at the relay and destination.

Furthermore, the proposed design simplifies the decoder structure, and is optimal in terms

of diversity and coding gain whatever the memory order of the RSC encoder [131,136,138].

3.3.3 JNCD at the Destination

The JNCD at the destination depends on the side information received from the relay: In

case 1, where the relay has successfully decoded both source messages, the combination of

the systematic and parity bits of the two sources and of the additional joint network-channel

parity bits forwarded by the relay form two distributed turbo codes. In case 2 (case 3),

where the relay has successfully decoded the information of S1 (S2), one distributed turbo

code is formed at the destination corresponding to S1 (S2), and a separate turbo decoder

corresponding to C2 (C1) is used to decode the information of the other source. In these

cases, at the end of the second transmission phase, the destination starts to detect and

decode the original data, processing the received signals (3.2) and (3.3), with θ = 1 in
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(3.3). To accomplish this, we again resort to a suboptimal iterative procedure. Extrinsic

information on coded bits circulates between two SISO MAP detectors corresponding to two

transmission phases and the outer decoders, while, at the same time, extrinsic information

on systematic bits circulates between the SISO decoders of each turbo code. Finally, in

case 4, where the relay does not cooperate, the destination applies iterative detection and

decoding, processing the received signal (3.2) and (3.3), with θ = 0 in (3.3), and using

the two separate turbo decoders corresponding to C1 and C2. The destination knows

whether the relay transmits or not. This knowledge may come from an in-band dedicated

control signal. Otherwise, this knowledge should be learned by means of advanced multiuser

detection methods, e.g., [139]. This last topic is out of the scope of this thesis.

3.3.3.1 SISO MAP Detectors

The first SISO MAP detector computes the LAPPR Λ(v
(1)
i,k,ℓ) with v

(1)
i,k,ℓ = φ−1

i,ℓ (x
(1)
i,k ), i ∈

{1, 2}, using the received signal (3.2) and a priori information coming from the outer SISO

decoders. Expression is similar to (3.46) substituting y
(1)
D,k for y

(1)
R,k. We now turn to the

second SISO MAP detector. If the relay stays silent, the second SISO MAP detector

computes the LAPPR Λ(v
(2)
i,k,ℓ) with v

(2)
i,k,ℓ = φ−1

i,ℓ (x
(2)
i,k ), i ∈ {1, 2}, using the received signal

(3.3) with θ = 0, and a priori information coming from the turbo decoders corresponding

to C1 and C2. Expression is similar to (3.46) substituting y
(2)
D,k for y

(1)
R,k. If the relay

cooperates (successful selective relaying), the second SISO MAP detector must also deliver

soft information on the additional relay parity bits. The LAPPR on bit v
(2)
R,k,ℓ = φ−1

R,ℓ(x
(2)
R,k)

is defined as

Λ(v
(2)
R,k,ℓ) = log

P (v
(2)
R,k,ℓ = 1|y(2)

D,k)

P (v
(2)
R,k,ℓ = 0|y(2)

D,k)
(3.49)

and, in practice, evaluated as

Λ(v
(2)
R,k,ℓ) ≃ log

∑
c∈XR:φ−1

R,ℓ
(c)=1,a∈X1,b∈X2

P (y
(2)
D,k|x

(2)
1,k = a, x

(2)
2,k = b, x

(2)
R,k = c)eξ(a)+ξ(b)+ξ(c)

∑
c∈XR:φ−1

R,ℓ
(c)=0,a∈X1,b∈X2

P (y
(2)
D,k|x

(2)
1,k = a, x

(2)
2,k = b, x

(2)
R,k = c)eξ(a)+ξ(b)+ξ(c)

(3.50)

with

ξ(a) =

log2|X1|∑

ℓ′=1

φ−1
1,ℓ′(a)E(v

(2)
1,k,ℓ′) (3.51)
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Figure 3.2: JNCD at the destination (relay cooperates with both sources)

where {E(v
(2)
1,k,ℓ)} is the LAPR on bit v

(2)
1,k,ℓ provided by SISO1,

ξ(b) =

log2|X2|∑

ℓ′=1

φ−1
2,ℓ′(b)E(v

(2)
2,k,ℓ′) (3.52)

where {E(v
(2)
2,k,ℓ)} is the LAPR on bit v

(2)
2,k,ℓ provided by SISO2, and

ξ(c) =

log2|XR|∑

ℓ′=1

φ−1
R,ℓ′(c)E(v

(2)
R,k,ℓ′) (3.53)

where {E(v
(2)
R,k,ℓ)} is the LAPR on bit v

(2)
R,k,ℓ provided by the SISO decoder SISOR corre-

sponding to the relay joint network-channel encoder (XOR followed by CR). The LAPPRs

Λ(v
(2)
i,k,ℓ), i ∈ {1, 2} are evaluated in the same manner. The extrinsic information on v

(2)
1,k,ℓ is

given by L(v
(2)
1,k,ℓ) = Λ(v

(2)
1,k,ℓ)−E(v

(2)
1,k,ℓ) and, after de-interleaving, feeds SISO1. The extrin-

sic information on v
(2)
2,k,ℓ is given by L(v

(2)
2,k,ℓ) = Λ(v

(2)
2,k,ℓ)−E(v

(2)
2,k,ℓ) and, after de-interleaving,

feeds SISO2. The extrinsic information on v
(2)
R,k,ℓ is given by L(v

(2)
R,k,ℓ) = Λ(v

(2)
R,k,ℓ)−E(v

(2)
R,k,ℓ)

and, after de-interleaving, feeds SISOR.
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Figure 3.3: SISO decoder SISOi

3.3.3.2 Message-Passing Schedule

A recapitulative block diagram of the JNCD is depicted in Fig. 3.2. In this paragraph,

we detail the message-passing for the case where the relay cooperates with both sources.

The SISO decoder SISOi corresponds to Ci, i ∈ {1, 2}, and SISOR corresponds to the

relay encoder (XOR followed by CR) which is viewed as a systematic encoder on the two

source messages [131]. Each SISOi, i ∈ {1, 2}, is made up of the two SISO decoders SISOi,1

and SISOi,2. Let L
(τ)
si , L

(τ)
pi , i ∈ {1, 2, R} and τ ∈ {1, 2}, denote the soft information

of the systematic and parity bits of transmitter i obtained from the activation of SISO

MAP detector τ (related to transmission phase τ). We now come to description of the

SISOi, i ∈ {1, 2} inputs and outputs. Let denote by L
(τ)
pi,1 , L

(τ)
pi,2 the soft information of

the parity bits transmitted during phase τ related to SISOi,1 and SISOi,2. These soft

information are derived from L
(τ)
pi after proper demultiplexing as depicted in Fig. 3.3.

Following the puncturing pattern Ai, L
(1)
pi,1 and L

(2)
pi,1 are multiplexed to form the parity

bits soft information Lpi,1 corresponding to SISOi,1. The same operation is carried out on

L
(1)
pi,2 and L

(2)
pi,2 to obtain Lpi,2 . After the activation of SISOi,1 and SISOi,2, two extrinsic

information on the systematic bits corresponding to Ci are available, namely, Esi(i,1) and

Esi(i,2). They are summed up after proper (re)-interleaving of Esi(i,2) to get the total

extrinsic information E
(1)
si(i)

= Esi(i,1)+π
−1
0,i (Esi(i,2)) as depicted in Fig. 3.3. It is important

to stress that the systematic bits are not punctured and belongs to the first transmission

phase. On the other hand, the two extrinsic information on parity bits Epi(i,1) and Epi(i,1),

obtained from SISOi,1 and SISOi,2, respectively, need to be punctured and multiplexed to

obtain the extrinsic information on the parity bits corresponding to the transmission phases
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Figure 3.4: XOR decoder

1 and 2. More specifically, applying the puncturing pattern Ai on
[
E

(1)⊤
si(i)

E⊤
pi(i,1)

E⊤
pi(i,2)

]⊤

followed by multiplexing, it yields E
(1)
si(i)

and E
(1)
pi(i)

which is the extrinsic information on

the parity bits related to the first transmission phase. Similarly, by applying Āi followed

by multiplexing, it yields E
(2)
pi(i)

which is the extrinsic information on the parity bits related

to the second transmission phase. Finally, we define E
(1)
si(R) and E

(2)
pR(R) as the extrinsic

information on the systematic and parity bits generated by SISOR, respectively. We now

have defined all the messages involved in our message passing schedule. The first SISO

MAP detector generates the LAPPRs for the systematic and parity bits in V
(1)
1 using

E
(1)
s1(1)

+π−1(E
(1)
s1(R)) and E

(1)
p1(1)

, respectively (after proper multiplexing interleaving). It also

generates the LAPPRs for the systematic and parity bits in V
(1)
2 using E

(1)
s2(2)

+π−1(E
(1)
s2(R))

and E
(1)
p2(2)

, respectively. The second MAP detector generates the LAPPRs for the parity

bits in V
(2)
1 using E

(2)
p1(1)

, for the parity bits in V
(2)
2 using E

(2)
p2(2)

, and for the parity bits

in V
(2)
R using E

(2)
pR(R) (after proper interleaving). Then, the two distributed turbo decoders

are activated and calculate the extrinsic information for both the systematic and parity

bits which are fed back to the SISO MAP detectors. Let us now detail the decoding of

SISOR which is depicted in Fig. 3.4. The SISO decoder corresponding to CR (DECR)

must collect all the a priori information L
(1)
uR on uR. Denoting L

(1)
1 = π(L

(1)
s1 + E

(1)
s1(1)

)

and L
(1)
2 = π(L

(1)
s2 + E

(1)
s2(2)

), it yields, taking into account the XOR constraint node (see,

e.g., [132]),

L
(1)
uR,k

= L
(1)
1,k ⊞ L

(1)
2,k = log

eL
(1)
1,k + eL

(1)
2,k

1 + e(L
(1)
1,k+L

(1)
2,k)

. (3.54)

Note, that the independence between the messages should hold in order to apply (3.54).

Finally, the SISOR computes at its output, the extrinsic information E
(1)
si(R) from L

(1)
j and

E
(1)
uR(R), i, j ∈ {1, 2}, i 6= j, where E

(1)
uR(R) is the extrinsic information on uR computed by

the SISO decoder corresponding to CR. The message-passing schedule for the JNCD at
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each iteration, and the final hard decisions are recapitulated in the Algorithm 2.

Algorithm 2 : JNCD at the destination

(Initialization)
Set all the a priori information to zero.

(Iterations)
Iterate until convergence:

1. Activate the first SISO MAP detector using the received signal Y
(1)
D and the mes-

sages E
(1)
s1(1)

+ π−1(E
(1)
s1(R)), E

(1)
p1(1)

and E
(1)
s2(2)

+ π−1(E
(1)
s2(R)), E

(1)
p2(2)

.

2. Activate the second SISO MAP detector using the received signal Y
(2)
D and the

messages E
(2)
p1(1)

, and E
(2)
p2(2)

, and E
(2)
pR(R).

3. Activate simultaneously the SISO decoders SISO1 and SISO2

(a) Activate simultaneously the SISO1,1 and SISO2,1 with the messages L
(1)
s1 ,

Lp1,1 and L
(1)
s2 , Lp2,1 provided by the MAP detectors, and π−1

0,1(Es1(1,2)) +

π−1(E
(1)
s1(R)) and π

−1
0,2(Es2(2,2))+π

−1(E
(1)
s2(R)), which are derived from the pre-

vious iteration.

(b) Activate simultaneously the SISO1,2 and SISO2,2 with, respectively, the mes-

sages π0,1(L
(1)
s1 ), Lp1,2 and π0,2(L

(1)
s2 ), Lp2,2 provided by the MAP detectors,

and π0,1(Es1(1,1)) + π0,1 ◦ π−1(E
(1)
s1(R)) and π0,2(Es2(2,1)) + π0,2 ◦ π−1(E

(1)
s2(R)).

4. Activate the SISO decoder SISOR with the message L
(2)
pR provided by the second

MAP detector, and L
(1)
1 = π(L

(1)
s1 +E

(1)
s1(1)

) and L
(1)
2 = π(L

(1)
s2 +E

(1)
s2(2)

).

(Hard decisions)
Combine all available information concerning systematic bits u1 and u2:

L(1)
s1 +Es1(1,1) + π−1

0,1(Es1(1,2)) + π−1(E
(1)
s1(R)) → û1

L(1)
s2 +Es2(2,1) + π−1

0,2(Es2(2,2)) + π−1(E
(1)
s2(R)) → û2

3.4 Separate Network Channel Coding and Decoding

As previously mentioned, the SNCC scheme is based on the XOR operation at the relay,

and the network-coded signal is separately decoded at the destination. Thus, in case of

NOMARC/SNCC, a joint detection and decoding procedure similar to section (3.3.3) is

performed at the destination, with the exception that the SISOi and SISOR do not exchange
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information. We use the same notations as in section (3.3.3.2), and we further denote by

L
(2)
cR and L

(2)
sR the soft information of the coded bits and the systematic bits of the relay

generated by the second MAP detector, and by E
(2)
cR(R) and E

(2)
sR(R) the extrinsic information

on the coded bits and the systematic bits generated by the SISO decoder corresponding

to CR. For the case where the relay cooperates with both sources, the message-passing

schedule for the SNCD at each iteration and the final hard decisions are recapitulated in

the Algorithm 3. Finally, the hard decisions of channel decoders are given to the network

decoder. If at least two out of three channel output estimates are error-free, the network

decoder can retrieve both source messages.

3.5 Numerical Results

In this section, we provide some numerical results to evaluate the effectiveness of our

approach. In our comparisons, we consider both NOMARC and OMARC using JNCC

or SNCC. We also consider the MAC reference system in which both sources transmit

simultaneously to the destination during the available number of channel uses N . We

start by detailing the topology of the network. For the sake of simplicity, we consider a

symmetric MARC and MAC, i.e., d1R = d2R and d1D = d2D. The average energy per

available dimension allocated to the two sources is the same, i.e., P0,1 = P0,2 = P0. We fix

the same path loss factor, i.e., κ = 3, free distance, i.e., d0 = 1 and noise power spectral

density, i.e., N0 = 1, for all links. In the case of relay assisted communication schemes, due

to the half-duplex nature of the relay, the listening and the transmission time slots of the

relay are separated in time. For NOMARC, we have P1 = P2 = P0 (since the sources are

active during the two transmission phases) and PR = P0,R/ᾱ. For OMARC, the two sources

transmit in consecutive, equal duration, time slots occupying αN/2 channel uses while the

relay keeps ᾱN channel uses. It comes that P1 = P2 = 2P0/α and PR = P0,R/ᾱ. For

MAC, we have again P1 = P2 = P0. Let us choose α = α0 = 2/3 and P0,R = ᾱ0
α0
P0 = 1/2P0

as references in order to compare our results with [136]. For simulation purposes, two

different configurations are considered: In the first configuration, we fix the number of

receive antennas to one both at the relay and destination, i.e., NR = ND = 1. The

geometry is chosen such that dij = d which yields, taking [136] as a reference, PRD = ᾱ0
ᾱ γ,

Pij = α0γ for NOMARC, PRD = ᾱ0
ᾱ γ, Pij =

2α0
α γ for OMARC, and PiD = α0γ for MAC,

i ∈ {1, 2}, j ∈ {R,D}, where γ is the received SNR per symbol or dimension for α = 2/3 in

the case of SOMARC [136]. In the second configuration, we increase the number of receive

antennas at the destination to 4, i.e., NR = 1 and ND = 4. The geometry is chosen such

that diR = d1 and diD = dRD = d with (d1/d)
−3 = 100, i ∈ {1, 2}. It yields PiR = 100α0γ

(or γ+20+10 log10(α0) in dB), PiD = α0γ and PRD = ᾱ0
ᾱ γ for NOMARC which translates
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Algorithm 3 : SNCD at the destination

(Initialization)
Set all the a priori information to zero.

(Iterations)
Iterate until convergence:

1. Activate the first SISO MAP detector using the received signal Y
(1)
D and the mes-

sages E
(1)
s1(1)

, E
(1)
p1(1)

and E
(1)
s2(2)

, E
(1)
p2(2)

.

2. Activate the second SISO MAP detector using the received signal Y
(2)
D and the

messages E
(2)
p1(1)

, and E
(2)
p2(2)

, and E
(2)
cR(R).

3. Activate simultaneously the SISO decoders SISO1, SISO2, and the one correspond-
ing to CR

(a) SISO1 and SISO2:

i. Activate simultaneously the SISO1,1 and SISO2,1 with the messages

L
(1)
s1 , Lp1,1 and L

(1)
s2 , Lp2,1 provided by the MAP detectors, and

π−1
0,1(Es1(1,2)) and π−1

0,2(Es2(2,2)), which are derived from the previous
iteration.

ii. Activate simultaneously the SISO1,2 and SISO2,2 with, respectively, the

messages π0,1(L
(1)
s1 ), Lp1,2 and π0,2(L

(1)
s2 ), Lp2,2 provided by the MAP

detectors, and π0,1(E
(1)
s1(1,1)

) and π0,2(E
(1)
s2(2,1)

).

(b) SISO decoder corresponding to CR: Activate the SISO decoder with L
(2)
cR

provided by the second MAP detector (in the case of turbo codes at the
relay, this SISO decoder is composed of two inner SISO decoders that should
be activated one after another by taking into account all the available a priori
information on systematic bits).

(Hard decisions)
Combine all available information concerning systematic bits u1, u2, and uR:

L(1)
s1 +E

(1)
s1(1,1)

+ π−1
0,1(E

(1)
s1(1,2)

) → û1

L(1)
s2 +E

(1)
s2(2,1)

+ π−1
0,2(E

(1)
s2(2,2)

) → û2

L(2)
sR

+E
(2)
sR(R) → ûR

(Network Decoding)
If one out of the two source messages, let’s say ûi, is detected with errors and ûR is error
free, then

ui = uj ⊕ uR, i 6= j



70 3.5. NUMERICAL RESULTS

into PiR = 200α0
α γ, PiD = 2α0

α γ and PRD = ᾱ0
ᾱ γ for OMARC, i ∈ {1, 2}. PiD in case of

MAC remains unchanged. Each message of the sources has length K = 1024 information

bits. In our proposed JNCC, the complex signal sets X1, X2, and XR used in BICM are

either QPSK or 16QAM constellation (Gray labeling) and their corresponding sum rates

are η = 4/3 bits per channel use (b./c.u) and η = 8/3 b./c.u, respectively.

3.5.1 Optimization of the parameter α

In the first set of simulations, we consider the ǫ-outage achievable rate Cǫ(γ) of S1 to

optimize the parameter α in NOMARC/JNCC, i.e., the fraction of time that the relay

should listen. In our analysis, we consider Gaussian i.i.d. inputs and we fix ǫ = 10−2. Both

cases of ND = 1 and ND = 4 are also considered. We choose α = 2/3 as a reference to

calculate the values of Pij and PRD, i ∈ {1, 2}, j ∈ {R,D}. The corresponding results

are depicted in Fig. 3.5 and Fig. 3.6 for the respective cases of ND = 1 and ND = 4.

Obviously, the optimum α depends on the overall spectral efficiency of interest. When α is

too small, the relay may not be able to decode the messages correctly and thus it does not

cooperate with the sources during the second phase. On the other hand, the transmission

of the sources during the second phase does not suffer from the interference due to the

relay. However, if α is too large, the relay cannot help much to the transmission of the

source signals even if it acquires a lot of information during the first phase. The simulation

results show that, for the data rates of 0.2 b./c.u and higher in the case of ND = 1, and

0.1 b./c.u and higher in the case of ND = 4, α = 2/3 gives the best performance. It is

worth noting that this optimum value for α may change for other network topologies and

configurations. In the sequel, we fix α = α0 = 2/3 for simulation purposes.

3.5.2 Information-theoretic comparison of the protocols

3.5.2.1 Individual ǫ-outage achievable rate with Gaussian inputs

In the second set of simulations, we consider the ǫ-outage achievable rate of S1, and we

compare the individual ǫ-outage achievable rate Cǫ(γ) of JNCC and SNCC for the NO-

MARC and the OMARC. We also compare the individual ǫ-outage achievable rate of the

aforementioned schemes with that of the MAC. In our analysis, we fix ǫ = 10−2. The num-

ber of receive antennas at the destination is either ND = 1 or ND = 4. The corresponding

results are depicted in Fig. 3.7. As we can see, the ǫ-outage achievable rate for the NO-

MARC is always higher than the ǫ-outage achievable rate for the OMARC regardless of the

network channel coding strategy (i.e., JNCC or SNCC); Especially, in the case of ND = 4,

JNCC with orthogonal multiple access (OMARC/JNCC) is strictly suboptimal and the
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Figure 3.5: Individual ǫ-outage achievable rate for different values of α - ǫ = 10−2 - NO-
MARC/JNCC - NR = 1, ND = 1
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Figure 3.6: Individual ǫ-outage achievable rate for different values of α - ǫ = 10−2 - NO-
MARC/JNCC - NR = 1, ND = 4

ǫ-outage achievable rate gain of NOMARC/JNCC versus OMARC/JNCC for individual

rates above 2b./c.u. is more than 6 dB. This results from the fact that, in the presence of

multiple receive antennas, a non-orthogonal MAC can better exploit the available degrees
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of freedom. Moreover, even in the case of ND = 1 which is not a priori favorable for a

MAC, we see that NOMARC/JNCC can provide an ǫ-outage achievable rate gain of ap-

proximately 4 dB for data rates above 2 b./c.u., and more than 6 dB for the data rates

above 3 b./c.u.. In Fig. 3.7, we also see that the JNCC schemes outperform the SNCC

ones for both transmission protocols. For the data rate of 2 b./c.u., the ǫ-outage achievable

rate gains are about 5 dB and 3 dB in case of NOMARC for the respective cases of ND = 1

and ND = 4, 3 dB and 4 dB in case of OMARC with respectively ND = 1 and ND = 4.

Finally, it is interesting to see that only NOMARC/JNCC always outperforms MAC. This

is not the case for NOMARC/SNCC or OMARC, whose individual ǫ-outage achievable rate

becomes lower than that of the MAC, beyond a certain threshold for γ, as can be seen in

Fig. 3.7. As our last experiment in this section, we consider the NOMARC/JNCC and

we apply a slight modification on the SDF relaying strategy: we assume that the relay

transmits only if both source messages are correctly decoded. This approach can possi-

bly reduces the number of interfering signals during the second transmission phase. The

corresponding ǫ-outage achievable rate Cǫ(γ) results are depicted in Fig. 3.7 under the

caption of NOMARC/JNCC/Joint selection. As expected, the ǫ-outage achievable rate of

NOMARC/JNCC/Joint selection performs very close to that of the NOMARC/JNCC at

high SNR. But in the case of ND = 1, and for low data rates and low to medium SNR, it

has a loss of around 1 dB with respect to NOMARC/JNCC. The performance gap between

the two approaches is less obvious in the case of ND = 4, since the SNRs of source-to-relay

links are quite large and the relay decodes both messages correctly almost all the time.

3.5.2.2 Individual information outage probability with discrete inputs

In the third set of simulations, our purpose is first to compare the individual outage prob-

ability of NOMARC/JNCC and OMARC/JNCC, and for the fixed sum rates of η = 4/3

and η = 8/3 b./c.u.. In order to achieve the same spectral efficiency as the NOMARC, we

consider two approaches for OMARC: (1) We impose on the transmitters to use the same

input alphabet as in the case of NOMARC, which makes sense if we want to preserve the

same level of PAPR; (2) We employ constellation expansion for the sources in OMARC.

In the first approach, the two sources have no other choice but to transmit their informa-

tion symbols without any coding, and thus, from a theoretical perspective (N → ∞), the

system is always in outage. In the second approach, the sources increase the cardinality

of their modulation while preserving the same spectral efficiency, which makes room for

coding. Thus, the information outage probability of NOMARC with QPSK is compared

with the information outage probability of OMARC with 16QAM at the sources and QPSK

at the relay. Similarly, the the information outage probability of NOMARC with 16QAM
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Figure 3.7: Individual ǫ-outage achievable rate - ǫ = 10−2 - NOMARC vs. OMARC -
JNCC vs. SNCC

is compared with the the information outage probability of OMARC with 64QAM at the

sources and 16QAM at the relay. The corresponding results are depicted in Fig. 3.8 for

the sum rate of η = 4/3 b./c.u. and in Fig. 3.9 for the sum rate of η = 8/3 b./c.u., for

both ND = 1 and ND = 4. As we can see, in all cases, the information outage probability

of NOMARC is smaller than the one of OMARC. Considering the second approach, for

η = 8/3 b./c.u., and at the BLER of 10−2, the power gain is approximately equal to 3 dB

for ND = 1 and becomes even larger for ND = 4, attaining 4 dB at the BLER of 10−2,

which reconfirms the sub-optimality of the orthogonal multiple access in case of multiple

receive antennas.

To pursue our analysis, we compare the individual information outage probabilities of

NOMARC/JNCC and NOMARC/SNCC. Here again, to keep the same spectral efficiency

for the SNCC case, we have the aforementioned two approaches. Using the first approach,

the outage events corresponding to the relay-to-destination channel always hold in the case

of NOMARC/SNCC. This explains the difference of slopes between the two curves in the

corresponding figures. In the second approach, constellation expansion is employed for the

relay-to-destination channel. Thus, in NOMARC/SNCC, the relay uses 16QAM for η = 4/3

b./c.u., and 64QAM for η = 8/3 b./c.u. The corresponding results are depicted in Fig.

3.10 and Fig. 3.11 for both ND = 1 and ND = 4. As we can see, the NOMARC/SNCC has

always a performance loss compared to the NOMARC/JNCC. In the case of constellation
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Figure 3.8: Individual outage probability (e.g., for S1) - NOMARC/JNCC vs.
OMARC/JNCC - η = 4/3 b./c.u.

−5 0 5 10 15 20

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

γ (dB)

B
LE

R
 1

 

 

NOMARC/JNCC − 16QAM
OMARC/JNCC − constellation expansion
OMARC/JNCC − 16QAM

N
R
=1

N
D

=4

N
R
=1

N
D

=1

Figure 3.9: Individual outage probability (e.g., for S1) - NOMARC/JNCC vs.
OMARC/JNCC - η = 8/3 b./c.u.
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Figure 3.10: Individual outage probability (e.g., for S1) - NOMARC/JNCC vs. NO-
MARC/SNCC - η = 4/3 b./c.u.

expansion and ND = 1, at the BLER of 10−2, the loss is around 1.5 dB for η = 4/3 b./c.u.,

and 3 dB for η = 8/3 b./c.u.. The loss is much higher when we consider ND = 4, attaining

3 dB for η = 4/3 b./c.u., and 3.5 dB for η = 8/3 b./c.u..

3.5.3 Performance of practical code design

In the sequel, the number of iterations I is set to 5 at the relay and to 10 (for ND = 1) or 3

(for ND = 4) at the destination. These numbers of iterations ensure convergence and allow

to very closely approach the performance of a Genie Aided (GA) receiver at sufficiently

high SNR for the selected modulation and coding schemes, the Genie Aided (GA) receiver

corresponding to the ideal case where the interference is known and perfectly removed.

3.5.3.1 Gap to outage limits

In this section, we first evaluate the gap between the individual BLER of practical designs

for NOMARC/JNCC and that of their corresponding information outage probability. The

experiment is carried out for η = 4/3 b./c.u.. In our comparisons, we assume that both

sources use identical turbo codes of rate-1/3 made of two 4-state rate-1/2 RSC encoders

with generator matrices Gi,1 = Gi,2 = [ 1 5/7 ], i ∈ {1, 2}, in octal representation. We

also consider two different puncturing matrices at the sources: (1) A1 = A2 =

[
1 1
1 0
0 1

]
;
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Figure 3.11: Individual outage probability (e.g., for S1) - NOMARC/JNCC vs. NO-
MARC/SNCC - η = 8/3 b./c.u.

(2) A1 = A2 =

[
1 1
1 1
0 0

]
. The two coding schemes corresponding to the above puncturing

matrices are denoted respectively by TC 1 and TC 2. In both schemes, the JNCC at

the relay is based on XOR followed by a 4-state rate-1/2 RSC encoder with generator

matrix GR = [ 1 5/7 ]. Exhaustive simulations showed that those numbers of states

yield the best performance/complexity trade-off. The corresponding simulation results are

demonstrated in Fig. 3.12. As we can see, the JNCC scheme based on TC 1 provides the

lower individual BLER, since it results in a turbo code even during the first transmission

phase. Thus, in TC 1, the relay can also benefit from the error correction of the turbo

code. The gap between TC 1 and TC 2 is less obvious in the case of ND = 4, which is

probably due to the high SNRs of the source-to-relay links. Finally, we see that the JNCC

scheme based on TC 1 performs only about 0.5 dB and 2 dB away from the information

outage probability for the respective cases of ND = 1 and ND = 4.

Next, we compare the individual BLER of practical designs for NOMARC/SNCC versus

their corresponding information outage probability. The experiment is carried out for

η = 4/3 b./c.u. and for the case of TC 1 at both sources. The relay also uses a turbo code

of rate-1/2 made of two identical 4-state rate-1/2 RSC encoders with generator matrix GR,

whose half of the parity bits are punctured. The constellation expansion is then performed

at the relay. The simulation results are plotted in Fig. 3.13 for both ND = 1 and ND = 4.

As we can see, with the chosen coding schemes, the individual BLER of practical design
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Figure 3.12: Individual BLER (e.g., for S1) - Practical NOMARC/JNCC vs. outage limit
- η = 4/3 b./c.u.

for NOMARC/SNCC is only about 1 dB and 1.5 dB away from the individual outage

probability for the respective cases of ND = 1 and ND = 4.
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Figure 3.13: Individual BLER (e.g., for S1) - Practical NOMARC/SNCC vs. outage limit
- η = 4/3 b./c.u. - constellation expansion at the relay
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Figure 3.14: Individual BLER (e.g., for S1) - NOMARC/JNCC vs. NOMARC/JNCC/Joint
selection - η = 4/3 b./c.u.

3.5.3.2 Comparison of the different protocols

In this section, we first compare the individual BLER of practical code design for NO-

MARC/JNCC with that of the NOMARC/JNCC/Joint selection. In both protocols, the

sources use the coding scheme of TC 1 and the relay uses XOR and a 4-state rate-1/2 RSC

encoder with generator matrix GR. The corresponding results are depicted in Fig. 3.14

for the spectral efficiency of η = 4/3 b./c.u., and in Fig. 3.15 for the spectral efficiency of

η = 8/3 b./c.u., for both ND = 1 and ND = 4. As we can see, in the case of η = 4/3 b./c.u.

and for ND = 1, NOMARC/JNCC outperforms NOMARC/JNCC/Joint selection and the

power gain is around 1 dB which is the same as the one predicted by the theoretical bounds

for low data rates.

As a second step in our comparisons of practical designs, we compare the individual

BLER of NOMARC/JNCC with that of the OMARC/JNCC. For OMARC/JNCC, we

first imposed on the sources the use of the same signal sets. In this case, the two sources

transmit their information symbols without any coding, while the relay uses the 4-state

rate-1/2 RSC encoder with generator matrix GR. The corresponding results demonstrated

considerable gains in favour of our approach. We next carried out another experiment,

where constellation expansion is employed for OMARC, as explained in the outage com-

parisons. Thus, in the case of OMARC with η = 4/3 b./c.u., both sources use a turbo

code of rate-1/2 made of two 4-state rate-1/2 RSC encoders with generator matrices Gi,1

and Gi,2, i ∈ {1, 2}, whose half of the parity bits are punctured. They use then 16QAM
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Figure 3.15: Individual BLER (e.g., for S1) - NOMARC/JNCC vs. NOMARC/JNCC/Joint
selection - η = 8/3 b./c.u.
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Figure 3.16: Individual BLER (e.g., for S1) - NOMARC/JNCC vs. OMARC/JNCC -
η = 4/3 b./c.u.

constellation. The relay uses the 4-state rate-1/2 RSC encoder with generator matrix GR

and it uses QPSK constellation. Similarly, in the case of η = 8/3 b./c.u., both sources use

the same turbo code as the previous case, but with the parity bits that are punctured to

result in a code of rate 2/3. They use then 64QAM constellation. The relay uses the same

RSC encoder as the previous case with 16QAM modulation. The corresponding results are
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Figure 3.17: Individual BLER (e.g., for S1) - NOMARC/JNCC vs. OMARC/JNCC -
η = 8/3 b./c.u.

depicted in Fig. 3.16 for the spectral efficiency of η = 4/3 b./c.u., and in Fig. 3.17 for

the spectral efficiency of η = 8/3 b./c.u., for both ND = 1 and ND = 4. Here again, the

NOMARC outperforms the OMARC in most cases and the performance gains are consid-

erable for ND = 4. The exception is the case of η = 8/3 b./c.u. and for ND = 1, where the

NOMARC starts to outperform the OMARC with constellation expansion at a relatively

high SNR (γ = 24 dB).

To pursue our comparison of practical designs, we compare the individual BLERs of

NOMARC/JNCC and NOMARC/SNCC. In NOMARC/SNCC, both sources use the cod-

ing scheme of TC 1, and the relay, as previously mentioned, has two choices: (1) it uses the

same input alphabet as the case of NOMARC/JNCC and transmits its information sym-

bols without any coding; (2) it performs constellation expansion. In case (2), for η = 4/3

b./c.u., the relay uses a turbo code of rate-1/2 made of two identical 4-state rate-1/2 RSC

encoders with generator matrix GR, whose half of the parity bits are punctured. It uses

then 16QAM modulation. For η = 8/3 b./c.u., the relay uses the same turbo code as the

previous case but with the parity bits that are punctured to give the code rate of 2/3. It

then uses 64QAM constellation. The corresponding results are depicted in Fig. 3.18 for the

spectral efficiency of η = 4/3 b./c.u., and in Fig. 3.19 for the spectral efficiency of η = 8/3

b./c.u., for both ND = 1 and ND = 4. As we see, the NOMARC/JNCC outperforms the

NOMARC/SNCC, and the power gains are approximately the same as the ones predicted

by theoretical bounds.
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Figure 3.18: Individual BLER (e.g., for S1) - NOMARC/JNCC vs. NOMARC/SNCC -
η = 4/3 b./c.u.
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Figure 3.19: Individual BLER (e.g., for S1) - NOMARC/JNCC vs. NOMARC/SNCC -
η = 8/3 b./c.u.

3.6 Conclusion

We have studied JNCC for a new class of MARC, referred to as NOMARC, from both

an information-theoretic and a practical code design perspective. We have derived the

NOMARC individual information outage probability, conditional on JNCC (and SNCC
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used as a reference). We have also presented new JNCC schemes flexible in terms of number

of sources, encoders and modulations. For the 2-source symmetric case and targeted sum

rates η = 4/3 b./c.u. and η = 8/3 b./c.u., we have shown that our proposed schemes

are more efficient than (1) conventional distributed JNCC for OMARC; (2) conventional

SNCC schemes. Moreover, the proposed NOMARC/JNCC performs very close to the

outage limit (within 2 dB) for both cases of single and multiple receive antennas at the

destination, and for the fixed sum rate of η = 4/3 b./c.u.. We have verified that the

non-orthogonal multiple access exhibits considerable gains over orthogonal multiple access,

even in the case of a single receive antenna at the destination.



Chapter 4

Joint Network-Channel Coding for
the Full-Duplex Non-Orthogonal
MARC

In previous chapters, we introduced and analyzed two different classes of MARC with a

half-duplex relay. As already mentioned, a full-duplex relay can achieve a higher capacity

than its half-duplex counterpart from a theoretical point of view. Besides, full-duplex relays

were shown to be feasible recently. This inspires further theoretical analysis and design of

practical JNCC schemes for the full-duplex MARC. In this chapter, as a first contribution,

we propose a new class of MARC that we call Full-Duplex Non-Orthogonal MARC (FD-

NOMARC) and is defined as follows: (1) Independent sources communicate with a single

destination in the presence of a relay; (2) The relay is full-duplex and applies a Selective

Decode and Forward (SDF) relaying strategy, i.e, it forwards only a deterministic function

of the messages that it can decode without errors; (3) The sources and relays are allowed

to transmit simultaneously. A new transmission protocol adapted to this class of MARC

is proposed which combines several ideas found in [5] [114] [112] [71]. Following [5], we

consider superposition block Markov encoding. During the first (initial) block transmission,

the sources simultaneously broadcast their messages, interfering at the relay and at the

destination. The destination simply stores the received interfering signals. The relay jointly

decodes the messages of the sources, and linearly combines the correctly decoded ones to

produce its own message to be transmitted during the next block transmission. Note

that the processing delay at the relay is typically neglected in our system model. In

case of unsuccessful decoding of all the messages, it does nothing and will remain silent

during the next block transmission. During the second block transmission, the sources

broadcast new messages to both the relay and the destination. The relay jointly decodes

This chapter was presented in part at IEEE ICUMT 2010.
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the messages of the sources and applies the same procedure as before. At the same time, if

selective decoding was successful during the previous block transmission, the relay transmits

its produced message to the destination. The destination continues to store all received

interfering signals. The process is repeated for subsequent blocks. Once all blocks have

been received, the destination starts to decode. This type of decoding may introduce

significant delays but provides the best performance. It is worth noting that, the destination

always knows whether the relay cooperates or not, but depending on the coding strategy,

the sources may or may not be informed of the cooperation. Allowing collisions at the

relay and the destination renders the reality of wireless environments and leverages better

the broadcast nature of the radio channel than the OMARC. The proposed SDF in FD-

NOMARC is a modification of the relaying protocol presented in [140] so as to allow

partial cooperation if some of the sources are successfully decoded at the relay and the

others are not. Thus, it not only prevents the error propagation from the relay to the

destination, but also decreases the individual BLER, i.e., the BLER for each source. As

already mentioned in Chapter 2, this SDF approach has been analyzed in a variety of

contributions for the OMARC using either JNCC [82] or SNCC [126]. Its theoretical

and practical interests have also been confirmed in Chapter 2 for the HD-SOMARC, and in

Chapter 3 for the HD-NOMARC. While these information-theoretic analyses with selective

relaying has provided insight into the behavior of the system, especially in the presence of

multiple access interferences, many issues need still to be addressed, including the impact

of a full-duplex relay. Based on the achievable rates in [8, 27, 115] for full-duplex MARC

with decode and forward relaying protocol, the FD-NOMARC joint information outage

probability is derived conditional on JNCC, superposition block Markov encoding, and

block by block decoding (or backward decoding) at the destination. The joint information

outage probability and the joint ǫ-outage achievable rate are then numerically evaluated

assuming independent Gaussian inputs or discrete independent identically and uniformly

distributed inputs and compared with the ones of a OMARC at fixed energy budget per

source (per available dimensions). As a second contribution, we propose practical JNCC

designs for FD-NOMARC that are flexible in terms of number of sources and MCS. Our

designs are built on turbo codes, and rely on advanced (iterative) joint detection and

decoding receiver architectures. Furthermore, contrary to block by block decoding, the

proposed decoding approach operates over all the transmitted blocks. The performance of

the proposed designs are then compared with the derived information outage probabilities,

which can be considered as lower bounds on the theoretical performance of our designs.

Finally, we demonstrate that our designs also guarantee the full diversity in the sense that

they achieve the same diversity gain as the single-user case. The rationale behind our code

construction has already been discussed in Chapter 2.
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4.1 System Model

The M statistically independent sources S1, . . . ,SM want to communicate with the desti-

nation D in the presence of a relay R. In order to create virtual uplink MIMO channels

and to benefit from spatial multiplexing gains, we assume that the relay R and the des-

tination D are equipped with NR and ND receive antennas. We consider that the baud

rate of the sources and relay is D = 1/Ts and the overall transmission time is fixed to

T , thus the number of available channel uses to be shared between the sources and the

relay is N = DT . We consider the case of Nyquist rate and cardinal sine transmission

pulse shape, i.e., N = DT is the total number of available complex dimensions and D

is the total bandwidth of the system. Our channel models are inspired by the following

assumptions: (1) The delay spreads of the radio channels from the sources to the relay

and the destination as well as from the relay to the destination are much lower than Ts

ensuring no frequency selectivity; (2) the coherence time of all the aforementioned radio

channels are supposed to be much larger than T . Following [5], we consider superposition

block Markov encoding. The number of block transmission is fixed, say B + 1. Assume

that, in each block transmission b = 0, · · · , B − 1, the sources have K information bits

to transmit over N channel uses, and during the last block transmission B, the sources

remain silent. This necessitates extra signaling to inform the sources of the cooperation.

Each source i broadcasts its message u
(b)
i ∈ F

K
2 of K information bits under the form of a

modulated sequence. Without loss of generality, the modulated sequences are chosen from

the complex codebooks ζi of rate K/N and take the form of sequences x
(b)
i ∈ ζi ⊂ X N

i ,

i ∈ {1, . . . ,M}, where Xi ⊂ C denote a complex signal set of cardinality |Xi| = 2qi , with

energy normalized to unity. At the relay, the received signal is expressed as

y
(b)
R,k =

M∑

i=1

√
PiRh

(b)
iRx

(b)
i,k + n

(b)
R,k (4.1)

for k = 1, . . . , N . The received samples form the matrix Y
(b)
R ∈ C

NR×N . In (4.1), the

channel fading vectors h
(b)
iR ∈ C

NR , i ∈ {1, . . . ,M} are mutually independent, constant over

the transmission of x
(b)
1 , . . ., x

(b)
M and change independently from one block transmission of

the sources to the next. The channel fading vectors h
(b)
iR , i ∈ {1, . . . ,M}, are identically

distributed (i.d.) following the pdf CN (0NR
, INR

). The additive noise vectors n
(b)
R,k are

independent and follow the pdf CN (0NR
, N0INR

). PiR ∝ (diR/d0)
−κPi, i ∈ {1, . . . ,M}

is the average received energy per dimension and per antenna (in Joules/symbol), where

diR is the distance between the transmitter and receiver, d0 is a reference distance, κ is

the path loss coefficient, with values typically in the range [2, 6], and Pi is the transmit
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power (or energy per symbol) of Si. Note that the shadowing could be included within

Pij . To fairly compare the performance with respect to other classes of MARC, in which

the relay operates in half-duplex mode and the number of available dimensions or channel

uses is N ′, and in order to take into account the number of block transmissions in case of

FD-NOMARC during which the sources transmit their information, we fix: (1) the sum

rate of the system, i.e., η = MK
N ′ = MKB

N(B+1) which yields N
N ′ =

B
B+1 ; (2) the total energy per

available dimensions N ′ and transmitted blocks (B+1)N ′P0,i spent by Si, i.e., Pi = P0,i/β.

Here, β takes into account both the fraction of N ′ and the fraction of B+1 over which each

source transmits. Thus, β = N
N ′ · B

B+1 =
(

B
B+1

)2
in the case of FD-NOMARC, β = 1 in the

case of HD-NOMARC [141], β = α in the case of HD-SOMARC [136], where α represents

the fraction of N ′ corresponding to the listening phase of the relay, and β = α/M in the

case of OMARC supposing that the sources transmit in consecutive, equal duration, time

slots. Let us now consider the received signals at the destination. During the first block

transmission, the received signal at the destination is expressed as

y
(0)
D,k =

M∑

i=1

√
PiDh

(0)
iDx

(0)
i,k + n

(0)
D,k (4.2)

for k = 1, · · · , N . For subsequent block transmissions, the relay uses a SDF approach and

can either transmit or stay silent, depending on the number of correctly decoded messages

during the previous block transmission. Let J (b−1) ⊂ {1, . . . ,M} denote the set of message

indices with cardinality |J (b−1)| ≤M that have been successfully decoded during the block

transmission (b−1). If J (b−1) = ∅, the relay remains silent during the block transmission b.

Otherwise, according to the number of correctly decoded messages and the chosen network

coding scheme, it transmits a modulated sequence of the form x
(b)
R ∈ X N

R , where XR ⊂ C

is a complex constellation of order |XR| = 2qR with energy normalized to unity. The

modulated sequence x
(b)
R is chosen such that

({
x
(b−1)
j , j ∈ J (b−1)

}
,x

(b)
R

)
is a codeword

on message
{
u
(b−1)
j , j ∈ J (b−1)

}
belonging to a codebook ζJ(b−1),R of rate |J (b−1)|K/N .

The received signals at the destination during the block transmissions b ∈ {1, . . . , B} are

expressed as

y
(b)
D,k =

M∑

i=1

√
PiDh

(b)
iDx

(b)
i,k + θ(b)

√
PRDh

(b)
RDx

(b)
R,k + n

(b)
D,k (4.3)

y
(B)
D,k = θ(B)

√
PRDh

(B)
RDx

(B)
R,k + n

(B)
D,k (4.4)

for k = 1, . . . , ᾱN . In (4.2), (4.3) and (4.4), the channel fading vectors h
(b)
iD ∈ C

ND ,

i ∈ {1, . . . ,M} are mutually independent and follow the pdf CN (0ND
, IND

). They are



CHAPTER 4. JNCC FOR THE FD-NOMARC 87

Figure 4.1: System model (relay cooperates)

constant over the transmission of x
(b)
1 , . . ., x

(b)
M and change independently from one block

transmission of the sources to the next. The channel fading vector h
(b)
RD ∈ C

ND follows

the pdf CN (0ND
, IND

), is independent of h
(b)
iD, i ∈ {1, . . . ,M}, constant over the trans-

mission of x
(b)
R and changes independently from one block transmission of the relay to

another. The additive noise vector n
(b)
D,k is independent of n

(b)
R,k and n

(b)
D,k, and follows the

pdf CN (0ND
, N0IND

). PiD ∝ (diD/d0)
−κPi, i ∈ {1, . . . ,M}, and PRD ∝ (dRD/d0)

−κPR,

with PR the transmit power of the relay, are the average received power per dimension

and per antenna at the destination. Here again, we fix the total energy per available di-

mensions N ′ and transmitted blocks (B + 1)N ′P0,R spent by the relay, i.e., PR = P0,R/ρ,

where ρ = N
N ′ · B

B+1 =
(

B
B+1

)2
in the case of FD-NOMARC, and ρ = ᾱ for all the cases

of OMARC, HD-SOMARC, and HD-NOMARC. The parameter θ(b) is a discrete Bernoulli

distributed random variable: θ(b) = 1 if the relay successfully decodes at least one source

message during the previous block transmission, and θ(b) = 0 otherwise. Channel model

(4.3) can be regarded as a family of MACs indexed by θ(b) ∈ {0, 1} also called a two-

state compound MAC [137]. Concerning the relay functionality, the relay interleaves each

message u
(b−1)
j , j ∈ J (b−1), b ∈ {1, . . . , B}, by π and applies a function ΘR,|J(b−1)|

ΘR,|J(b−1)| : F
K
2 × F

K
2 × . . .× F

K
2︸ ︷︷ ︸

|J(b−1)|

→ C
N (4.5)

to obtain the modulated sequence x
(b)
R . In general, the function ΘR,|J(b−1)| is not a bijection

on the interleaved correctly decoded messages. In practice, the relay would add some

in-band signaling to make the destination aware of the set J . Finally, the relay signal,



88 4.2. INFORMATION-THEORETIC ANALYSIS

together with the source signals, forms a distributed joint network-channel codebook. The

block diagram of the system model is depicted in Fig. 4.1 for the case of M = 2. In the

rest of the chapter, for the sake of notational simplicity, we consider M = 2 sources that

transmit with an overall spectral efficiency r = K/N . The generalization to the cases of

M > 2 sources is straightforward.

4.2 Information-theoretic Analysis

The achievable rates for full-duplex MARC with decode and forward relaying strategy

was derived in [8,27,115] conditional on JNCC, superposition block Markov encoding and

backward decoding. Here, we extend the results to the case of FD-NOMARC in which the

SDF relaying strategy is applied. Thus, the outage region of FD-NOMARC is perfectly

known conditional on a given channel state H =
[
h1R h2R h1D h2D hRD

]
. Let us

define the independent input random variables x1 ∼ p(x1), x2 ∼ p(x2), and xR ∼ p(xR) and

the associated independent output random vectors yR and yD whose channel transition

conditional pdfs follow the ones associated to (4.1) and (4.3), respectively. It is clear

from our context that the mutual information conditional on any given channel state is

maximized for the pdfs p(x1), p(x2), p(xR) being circularly symmetric complex Gaussian

pdfs. As a result, the latter pdfs minimize the information outage probabilities. However,

in practice, p(x1), p(x2), p(xR) are uniformly distributed pmfs (dirac comb pdfs) over the

chosen constellation alphabets. That is why both cases are investigated in the following.

We recall that in our analysis:

1. The theoretical bounds are derived conditional on JNCC, superposition block Markov

encoding and backward decoding.

2. The SDF relaying function is used under the hypothesis that all the links are prone

to errors.

3. The sequences x1, x2, and xR are the outcomes of independent discrete time i.i.d.

processes whose associated pdfs are p(x1), p(x2), p(xR) and their respective length is

infinite (N → ∞) such that the AEP holds.

4. The outage limit is either the joint information outage probability or the joint ǫ-outage

achievable rate. The efficiency of our proposed JNCC/JNCD is evaluated in terms

of gap to the information outage probability, keeping in mind that the information

outage probability remains a relevant measure of the best possible BLER even for

finite code lengths [119].
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4.2.1 Outage analysis of FD-NOMARC/JNCC

As the relay uses a SDF approach, an evaluation of the source-to-relay channel quality

has first to be processed. Let ER(H) denote the outage event of the source-to-relay MAC

conditional on H. It corresponds to the case where the relay cannot decode both messages

correctly, and can be expressed as

ER(H) = ER,1|2(H) ∪ ER,2|1(H) ∪ ER,1,2(H) (4.6)

where ER,i|j(H), i, j ∈ {1, 2}, j 6= i is the outage event of Si if the information of Sj is

known, and ER,1,2(H) is the outage event of both sources at the relay. The three possible

outage events are then given by

ER,i|j(H) = {I(xi;yR | xj) < r} (4.7)

ER,1,2(H) = {I(x1, x2;yR) < 2r} (4.8)

When the outage event ER(H) holds, in order to verify whether only one of the messages

xi can be successfully decoded or not, we define the following outage event

ER,i(H) = {I(xi;yR) < r} (4.9)

in which the relay treats the signal xj as interference. Thus, the relay outage events

for the SDF approach can be summarized as follows: (1) In case of Q(1)
R (H) = ĒR(H),

which indicates the complement of the outage event ER(H), the relay cooperates with both

sources; (2) In case of Q(2)
R (H) = ER(H) ∩ ĒR,1(H) the relay cooperates only with S1; (3)

In case of Q(3)
R (H) = ER(H)∩ ĒR,2(H) the relay cooperates only with S2; (4) Otherwise, in

case of Q(4)
R (H) = ER(H)∩ER,1(H)∩ER,2(H) the relay does not cooperate. Now, depending

on the relay transmission, we distinguish four outage events at the destination:

Case 1: The relay cooperates with both sources. The destination always receives the

cooperative information from the relay. Following [115], the outage at the destination occurs

if the target rate exceeds the mutual informations of the source-and-relay-to-destination

MAC. Let E(1)
D (H) denote the outage event at the destination conditional on H. It can be

expressed as

O(1)
D (H) = E(1)

D,1|2(H) ∪ E(1)
D,2|1(H) ∪ E(1)

D,1,2(H). (4.10)
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where

E(1)
D,i|j(H) = {I(xi, xR;yD | xj) < r} (4.11)

for i, j ∈ {1, 2} and j 6= i, and

E(1)
D,1,2(H) = {I(x1, x2, xR;yD) < 2r} . (4.12)

In (4.11), E(1)
D,i|j(H), i ∈ {1, 2} is the outage event of Si if the information of Sj , j 6= i,

is known, i.e., xj is known. In this case, xR can be considered as a part of the codeword

corresponding to Si. Typically, this is the case when xR is a codeword representing the

XOR of the two source messages. The outage event in (4.12) corresponds to the constraint

that the total throughput cannot exceed the sum of the mutual information of a point-to-

point MIMO channel with the aggregate received signals of the two sources and the relay.

When O(1)
D (H) holds, the destination cannot decode both source messages correctly, which

corresponds to the joint outage event at the destination.

Case 2: The relay cooperates with S1. The joint outage event at the destination

O(2)
D (H) is calculated as

O(2)
D (H) = E(2)

D,1|2(H) ∪ E(2)
D,2|1(H) ∪ E(2)

D,1,2(H). (4.13)

where

E(2)
D,1|2(H) = {I(x1, xR;yD | x2) < r} (4.14)

E(2)
D,2|1(H) = {I(x2;yD | x1, xR) < r} (4.15)

E(2)
D,1,2(H) = {I(x1, x2, xR;yD) < 2r} . (4.16)

Case 3: The relay cooperates with S2. Swapping the roles of S1 and S2, the joint outage

event at the destination O(3)
D (H) is identical to the previous case.

Case 4: The relay does not cooperate. The joint outage at the destination O(4)
D (H)

occurs if the target rate exceeds the sum of the mutual informations of the source-to-

destination MAC. It yields

O(4)
D (H) = E(4)

D,1|2(H) ∪ E(4)
D,2|1(H) ∪ E(4)

D,1,2(H). (4.17)

where

E(4)
D,i|j(H) = {I(xi;yD | xj) < r} (4.18)
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for i, j ∈ {1, 2} and j 6= i, and

E(4)
D,1,2(H) = {I(x1, x2;yD) < 2r} . (4.19)

Finally, the joint outage event for FD-NOMARC based on JNCC, can be expressed as

OD(H) =
4⋃

i=1

(
Q(i)
R (H) ∩ O(i)

D (H)
)
. (4.20)

The above outage event is conditional on the channel state H. The joint information outage

probability is then obtained as

Pout =

∫

H

[OD(H)] p(H)d(H) (4.21)

where p(H) is the pdf of H. The joint ǫ-outage achievable rate is defined as the largest

rate of each source (e.g. S1) such that the joint information outage probability for a given

transmission protocol, is smaller than or equal to ǫ.

As already mentioned, the above outage analysis is conditional on the backward de-

coding at the destination, which is different from our proposed practical decoding for FD-

NOMARC (see Section 4.3.3). Thus, the resulting theoretical bounds can be viewed as

lower bounds to the exact outage limits of our proposed designs for FD-NOMARC. The

latter may be obtained by taking into account the joint decoding of the all transmitted

blocks, and is left for future work.

4.2.2 Types of input distributions

We consider both Gaussian i.i.d. inputs and discrete i.i.d. inputs (for practical considera-

tions as explained in Chapter 2) to calculate the mutual information. The corresponding

expressions are given in Appendix B.

4.2.3 Information outage probability achieving codebooks

To achieve the information outage probability bounds, the codebooks ζ1, ζ2,ζ1R, ζ2R and

ζ12R should be universal codebooks. As defined in [127], a universal codebook of a given

rate is a codebook that simultaneously achieves reliable communication over every channel

that is not in outage for the chosen rate. Finally, it is worth stressing that, in practice,
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there exist codebooks with finite lengths whose performance are very close to the ones of

universal codebooks. The simulation Section 4.4 examplifies such codebook constructions

based on convolutional or turbo codes.

4.3 Joint Network Channel Coding and Decoding

In this section, we make explicit our proposed JNCC/JNCD approach. We explain the

structure of the encoders, when and how JNCC is performed, and the structure of the

corresponding multiuser receivers.

4.3.1 Coding at the sources

There are two different approaches for the transmission of source messages. The sources

can either (1) transmit their messages in each block b = 0, · · · , B, as in [114] [112], or

(2) transmit only in blocks b = 0, · · · , B − 1, and stay silent during the last transmission

block. In this case, the block B received at the destination, corresponds only to the

relay transmitted symbols. Concerning the first approach, there is no rate loss but the

last messages of both sources cannot benefit from the relay cooperation. Moreover, the

sources do not need to be informed of the cooperation. In the second approach, all the

source messages benefit from the relay cooperation, but it implies a rate loss of 1
B+1 which

approaches 0 as B increases. This second approach also reduces the delay processing of

the last received block at the destination. However, extra signaling is needed to inform the

sources of the cooperation. Here, we consider the second approach. Thus, in each block

transmission b = 0, · · · , B−1, the messages of the two sources are binary vectors u
(b)
1 ∈ F

K
2

and u
(b)
2 ∈ F

K
2 of length K. Each source employs a BICM [128]. Binary vectors are first

encoded with linear binary encoders Ci : F
K
2 → F

ni

2 , i ∈ {1, 2} into binary codewords

c
(b)
1 ∈ F

n1
2 and c

(b)
2 ∈ F

n2
2 of respective lengths n1 and n2. The codes ζ1 and ζ2 are in

general punctured turbo codes, consisting of two RSC encoders, denoted by RSCi,1 and

RSCi,2, i = {1, 2}, concatenated in parallel using optimized semi-random interleavers π0,i.

The coded bits c
(b)
1 and c

(b)
2 are then interleaved using interleavers Π1 and Π2, and reshaped

as two binary matrices V
(b)
1 ∈ F

N×q1
2 and V

(b)
2 ∈ F

N×q2
2 . Memoryless modulators based on

one-to-one binary labeling maps φ1 : Fq12 → X1 and φ2 : Fq22 → X2 transform the binary

arrays V
(b)
1 and V

(b)
2 into the complex vectors x

(b)
1 ∈ X N

1 and x
(b)
2 ∈ X N

2 . For φ1 and φ2,

we choose Gray labeling. In the sequel, we denote by v
(b)
i,k,ℓ = φ−1

i,ℓ (x
(b)
i,k) the ℓ-th bit of the

binary labeling of each symbol x
(b)
i,k for i ∈ {1, 2} and k = 1, · · · , N .



CHAPTER 4. JNCC FOR THE FD-NOMARC 93

4.3.2 Relaying Function

During each block transmission b = 0, · · · , B − 1, relay processing is divided in two steps:

During the first time slot, based on (4.1), the relay performs a joint detection and decoding

procedure to obtain the hard binary estimation of the information bits, û
(b)
i ∈ F

K
2 . Based

on this estimation, the relay chooses a SDF approach for cooperation. Different cases can

then be distinguished, depending on the number of successfully decoded messages. In the

sequel, first, we briefly describe the relay detection and decoding algorithm, and then, we

detail our proposed JNCC scheme.

4.3.2.1 Relay detection and decoding

The joint detection and decoding is performed in a suboptimal iterative way [129]. An

inner SISO MAP detector generates extrinsic information on coded bits using the received

signal (4.1) and a priori information coming from the outer SISO decoders SISO1 and SISO2

(referring to the decoding of ζ1 and ζ2). For the general case, the outer SISO decoder of Si

generates extrinsic information on both systematic and coded bits of Si by activating the

SISO decoder SISOi,1 corresponding to RSCi,1, and then SISOi,2 corresponding to RSCi,2.

It is important to remember that each SISO decoding stage takes into account all the

available a priori information on systematic bits [130] (and Algorithm 4 of Section 4.3.3.2).

The extrinsic information on both source codewords is then interleaved and fed back to the

detector, which in turn employs it as a priori information for the next iteration. It is worth

noting that the proper (de)multiplexing and (de)puncturing are also performed if needed.

The process is repeated until convergence. For the representation of the input/output

soft information, we use log ratios of probabilities. The LAPPR on bit v
(b)
i,k,ℓ = φ−1

i,ℓ (x
(b)
i,k)

delivered by the SISO MAP detector is defined as

Λ(v
(b)
i,k,ℓ) = log

P (v
(b)
i,k,ℓ = 1|y(b)

R,k)

P (v
(b)
i,k,ℓ = 0|y(b)

R,k)
(4.22)

and, in practice, evaluated as

Λ(v
(b)
i,k,ℓ) ≃ log

∑
ai∈Xi:ϕ

−1
i,ℓ

(ai)=1,aj∈Xj
P (y

(b)
R,k|x

(b)
i,k = ai, x

(b)
j,k = aj)e

ξ(ai)+ξ(aj)

∑
ai∈Xi:ϕ

−1
i,ℓ

(ai)=0,aj∈Xj
P (y

(b)
R,k|x

(b)
i,k = ai, x

(b)
j,k = aj)eξ(ai)+ξ(aj)

(4.23)
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for i, j ∈ {1, 2}, i 6= j, with,

ξ(a1) =

log2|X1|∑

ℓ′=1

φ−1
1,ℓ′(a1)E(v

(b)
1,k,ℓ′) (4.24)

ξ(a2) =

log2|X2|∑

ℓ′=1

φ−1
2,ℓ′(a2)E(v

(b)
2,k,ℓ′) (4.25)

where {E(v
(b)
i,k,ℓ)} and {E(v

(b)
j,k,ℓ)} are LAPRs on bits v

(b)
i,k,ℓ and v

(b)
j,k,ℓ provided by the SISO

decoders SISO1 and SISO2. The extrinsic information on bit v
(b)
i,k,ℓ is given by L(v

(b)
i,k,ℓ) =

Λ(v
(b)
i,k,ℓ)−E(v

(b)
i,k,ℓ), and after de-interleaving, feeds the corresponding outer SISO decoder.

4.3.2.2 JNCC

As previously mentioned, the relay chooses a SDF approach for cooperation, which is based

on the number of successfully decoded messages, the knowledge of which being ensured by

using CRC codes for each source message. Let J (b) ⊂ {1, 2}, |J | ≤ 2 denote the set of

message indices that have been successfully decoded during the block transmission b. For

the case where J (b) = ∅, the relay does not cooperate during the block transmission b+ 1.

Otherwise, it combines all the correctly decoded messages by XOR, i.e., u
(b+1)
R =

⊕
j∈J(b)

u
(b)
j ,

and interleaves the resulting vector by π. Interestingly, the interleaver commutes with the

XOR. The interleaved vector is then encoded to c
(b+1)
R using a binary linear encoder CR :

F
K
2 → F

nR

2 . For CR, we choose an RSC encoder defined by the generator matrix GR(D),

referred to as RSCR. A linear transformation Ω : FnR

2 → F
n′
R

2 is applied which selects the

parity bits of c
(b+1)
R to obtain the new vector c̄

(b+1)
R ∈ F

n′
R

2 , n′R < nR. The vector c̄
(b+1)
R is

bit-interleaved using the interleaver ΠR and reshaped as a binary matrix V
(b+1)
R ∈ F

ᾱN×qR
2 .

Finally, a memoryless modulator based on a one-to-one binary labeling map φR : FqR2 → XR

transforms the binary array V
(b+1)
R into the complex vector x

(b+1)
R ∈ X ᾱN

R . For φR, we

choose Gray labeling. In the sequel, we denote by v
(b+1)
R,k,ℓ = φ−1

R,ℓ(x
(b+1)
R,k ) the ℓ-th bit of the

binary labeling of each symbol x
(b+1)
R,k for and k = 1, · · · , ᾱN . Finally, to let the destination

detect which of the messages are included in the relay signal, the relay transmits side

information (additional bits) to indicate its state to the receiver.

The proposed coding scheme which is based on XOR operation, ensures full diversity

for the OMARC using SNCC [126] or JNCC [82]. As shown in Appendix A, the high SNR

slope of the outage probability of MAC versus SNR (in dB scale), for the critical case of just

one receive antenna, is the same as the one of the orthogonal MAC. Thus, the full diversity
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design for OMARC remains valid when we have collisions at the relay and destination.

Furthermore, the proposed design simplifies the decoder structure, and is optimal in terms

of diversity and coding gain whatever the memory order of the RSC encoder [131,136,138].

4.3.3 JNCD at the Destination

Once the destination has received the B+1 transmission blocks, it starts to detect/decode

the original data u
(b)
i , i ∈ {1, 2}, b = 0, · · · , B − 1. To accomplish this, we again resort to

a suboptimal iterative procedure, where B SISO MAP detectors and one SISO demapper

(corresponding to the last received block from the relay) are activated in parallel. Two

consecutive MAP detectors b and b+ 1 are potentially involved in decoding one particular

information block of each source depending on whether the relay transmits at block b+1 or

not. The destination has access to this knowledge, which may either come from an in-band

dedicated control signal, or be learned by means of advanced multiuser detection methods,

e.g., [139]. This last topic is out of the scope of this thesis.

4.3.3.1 SISO MAP Detectors

For the first block transmission, the SISO MAP detector computes the LAPPR Λ(v
(0)
i,k,ℓ)

with v
(0)
i,k,ℓ = φ−1

i,ℓ (x
(0)
i,k ), i ∈ {1, 2}, using the received signal (4.2). Expression is similar

to (4.23) substituting y
(0)
D,k for y

(0)
R,k. For subsequent block transmissions b = 1, . . . B − 1,

the SISO MAP detector computes the LAPPR Λ(v
(b)
i,k,ℓ) with v

(b)
i,k,ℓ = φ−1

i,ℓ (x
(b)
i,k), i ∈ {1, 2},

using the received signal (4.3). If the relay stays silent, the SISO MAP detector computes

Λ(v
(b)
i,k,ℓ) using the received signal (4.3) with θ(b) = 0, and a priori information coming from

the turbo decoders corresponding to C1 and C2. If the relay transmits, the SISO MAP

detector not only computes Λ(v
(b)
i,k,ℓ), but also the LAPPR Λ(v

(b)
R,k,ℓ) with v

(b)
R,k,ℓ = φ−1

i,ℓ (x
(b)
i,k),

using the received signal (4.3) with θ(b) = 1, and a priori information coming from SISO1,

SISO2 and SISOR which corresponds to the relay joint network-channel encoder (XOR

followed by CR). The LAPPR on bit v
(b)
R,k,ℓ = φ−1

R,ℓ(x
(b)
R,k) is defined as

Λ(v
(b)
R,k,ℓ) = log

P (v
(b)
R,k,ℓ = 1|y(b)

D,k)

P (v
(b)
R,k,ℓ = 0|y(b)

D,k)
(4.26)

and, in practice, evaluated as

Λ(v
(b)
R,k,ℓ) ≃
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log

∑
aR∈XR:φ−1

R,ℓ
(aR)=1,a1∈X1,a2∈X2

P (y
(b)
D,k|x

(b)
1,k=a1, x

(b)
2,k=a2, x

(b)
R,k=aR)e

ξ(a1)+ξ(a2)+ξ(aR)

∑
aR∈XR:φ−1

R,ℓ
(aR)=0,a1∈X1,a2∈X2

P (y
(b)
D,k|x

(b)
1,k=a1, x

(b)
2,k=a2, x

(b)
R,k=aR)e

ξ(a1)+ξ(a2)+ξ(aR)

(4.27)

with

ξ(a1) =

log2|X1|∑

ℓ′=1

φ−1
1,ℓ′(a1)E(v

(b)
1,k,ℓ′) (4.28)

where {E(v
(b)
1,k,ℓ)} is the LAPR on bit v

(b)
1,k,ℓ provided by SISO1,

ξ(a2) =

log2|X2|∑

ℓ′=1

φ−1
2,ℓ′(a2)E(v

(b)
2,k,ℓ′) (4.29)

where {E(v
(b)
2,k,ℓ)} is the LAPR on bit v

(b)
2,k,ℓ provided by SISO2, and

ξ(aR) =

log2|XR|∑

ℓ′=1

φ−1
R,ℓ′(aR)E(v

(b)
R,k,ℓ′) (4.30)

where {E(v
(b)
R,k,ℓ)} is the LAPR on bit v

(b)
R,k,ℓ provided by SISOR. The LAPPRs Λ(v

(b)
i,k,ℓ),

i ∈ {1, 2} are evaluated in the same manner. The extrinsic information on v
(b)
1,k,ℓ is given

by L(v
(b)
1,k,ℓ) = Λ(v

(b)
1,k,ℓ) − E(v

(b)
1,k,ℓ) and, after de-interleaving, feeds SISO1. The extrinsic

information on v
(b)
2,k,ℓ is given by L(v

(b)
2,k,ℓ) = Λ(v

(b)
2,k,ℓ)− E(v

(b)
2,k,ℓ) and, after de-interleaving,

feeds SISO2. The extrinsic information on v
(b)
R,k,ℓ is given by L(v

(b)
R,k,ℓ) = Λ(v

(b)
R,k,ℓ)−E(v

(b)
R,k,ℓ)

and, after de-interleaving, feeds SISOR. Obviously, for the last transmission block B, if the

relay transmits, the LAPPRs Λ(v
(B)
R,k,ℓ) should be calculated by using a SISO demapper.

4.3.3.2 Message-Passing Schedule

A recapitulative block diagram of the JNCD is depicted in Fig. 4.2. In this paragraph,

we detail the message-passing for the case where the relay cooperates with both sources,

and for b = 1, . . . B − 1. We also consider the case of turbo codes at the sources, i.e., each

Ci, i ∈ {1, 2} consists of two RSC encoders separated by π0,i. The generalization to other

cases is straightforward. The SISO decoder SISOi corresponds to Ci, i ∈ {1, 2}, and SISOR

corresponds to the relay encoder (XOR followed by CR) which is viewed as a systematic

encoder on the two source messages [131]. Each SISOi, i ∈ {1, 2}, is made up of the two

SISO decoders SISOi,1 and SISOi,2. Channel detectors and decoders exchange iteratively
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Figure 4.2: JNCD of the block b at the destination (relay cooperates with both sources)

the extrinsic soft information. Two consecutive MAP detectors are involved in decoding one

particular block of each source. Let L
(b)
si , L

(b)
pi , and L

(b+1)
pR (i ∈ {1, 2}) denote respectively

the soft information of the systematic and parity bits of the two sources and the relay,

obtained from the two consecutive channel MAP detectors b and b+ 1. It is worth noting

that the proper (de)multiplexing and (de)puncturing are also performed if needed. In Fig.

4.2, the (de)puncturing is included in the blocks corresponding to (de)multiplexing. Let

also denote by E
(b)
si(j)

, E
(b)
pi(j)

, and E
(b+1)
pR(j) the extrinsic information generated by the SISOj ,

j ∈ {1, 2, R}. Similarly, let L
(b)
pi,1 and L

(b)
pi,2 denote respectively the soft information of the

parity bits corresponding to SISOi,1 and SISOi,2 obtained from the MAP detector b, E
(b)
si(i,1)

and E
(b)
si(i,2)

denote respectively the extrinsic information on systematic bits corresponding

to the block b of each source, and generated by SISOi,1 and SISOi,2, and E
(b)
pi(i,1)

and E
(b)
pi(i,2)

denote respectively the extrinsic information on parity bits corresponding to the block b of

each source, and generated by SISOi,1 and SISOi,2.

First, the channel MAP detectors generate the LAPPRs for the coded bits by using the

a priori information from the B decoders. The MAP detectors b and b+ 1 are involved in

decoding the block b of each source. They take respectively E
(b)
s1(1)

+ π−1(E
(b)
s1(R)), E

(b)
p1(1)

,

E
(b)
s2(2)

+π−1(E
(b)
s2(R)), E

(b)
p2(2)

, and E
(b+1)
pR(R) as the a priori knowledge about the systematic and

parity bits from the decoder b. It is worth stressing that E
(b)
s1(1)

= E
(b)
s1(1,1)

+ π−1
0,1(E

(b)
s1(1,2)

),
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Figure 4.3: SISO decoder SISOi

and E
(b)
s2(2)

= E
(b)
s2(2,1)

+ π−1
0,2(E

(b)
s2(2,2)

), as depicted in Fig. 4.3. Then, the two distributed

turbo decoders of decoder b are activated and calculate the extrinsic information for both

the systematic bits and the parity bits which are fed back to the MAP detectors b and

b+ 1.

In the case of an XOR encoding scheme (full diversity by construction), we detail in Fig.

4.4 and hereafter, the low complexity implementation of SISOR. As depicted in Fig. 4.4,

the SISO decoder corresponding to CR (DECR) should collect all the a priori information

L
(b+1)
uR on u

(b+1)
R . Denoting L

(b)
1 = π(L

(b)
s1 + E

(b)
s1(1)

) and L
(b)
2 = π(L

(b)
s2 + E

(b)
s2(2)

), it yields,

taking into account the XOR constraint node (see, e.g., [132]),

L
u
(b+1)
R

,k
= L

(b)
1,k ⊞ L

(b)
2,k = log

eL
(b)
1,k + eL

(b)
2,k

1 + e(L
(b)
1,k+L

(b)
2,k)

. (4.31)

Note, that independency between messages should hold in order to apply (4.31).

Figure 4.4: XOR decoder
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Finally, SISOR computes at its output, the extrinsic information E
(b)
si(R) from L

(b)
j and

E
(b+1)
uR(R), i, j ∈ {1, 2}, i 6= j, where E

(b+1)
uR(R) is the extrinsic information on u

(b+1)
R computed

by the decoder corresponding to CR. The succession of the decoding procedure of block b

at each iteration, and the final hard decisions are detailed in the Algorithm 4.

4.4 Numerical Results

In this section, we provide some numerical results to evaluate the effectiveness of our

approach. In our comparisons, we consider both FD-NOMARC and OMARC using JNCC.

We start by detailing the topology of the network. For the sake of simplicity, we consider

a symmetric MARC, i.e., d1R = d2R and d1D = d2D. The average energy per available

dimension allocated to the two sources is the same, i.e., P0,1 = P0,2 = P0. We fix the same

path loss factor, i.e., κ = 3, free distance, i.e., d0 = 1 and noise power spectral density, i.e.,

N0 = 1, for all links. We fix B = 5 for FD-NOMARC, which yields P1 = P2 = 36/25P0, and

PR = 36/25P0,R. In OMARC, the two sources transmit in consecutive, equal duration, time

slots occupying αN ′/2 channel uses while the relay, which operates in half-duplex mode,

keeps ᾱN ′ channel uses, where N
N ′ =

B
B+1 = 5

6 . We choose α = 2/3 and P0,R = ᾱ
αP0 = 1/2P0

as references in order to compare our results with [136,141]. It comes that P1 = P2 = 3P0

and PR = 3P0,R for OMARC. For simulation purposes, two different configurations are

considered: In the first configuration, we fix the number of receive antennas to one both at

the relay and destination, i.e., NR = ND = 1. The geometry is chosen such that dij = d

which yields, taking [136] as a reference, PRD = ᾱ
(
B+1
B

)2
γ = 12/25γ , Pij = α

(
B+1
B

)2
γ =

24/25γ for FD-NOMARC and PRD = γ, Pij = 2γ for OMARC, i ∈ {1, 2}, j ∈ {R,D},
where γ is the received SNR per symbol or dimension for α = 2/3 in the case of HD-

SOMARC [136]. In the second configuration, we increase the number of receive antennas

at the destination to 4, i.e., NR = 1 andND = 4. The geometry is chosen such that diR = d1

and diD = dRD = d with (d1/d)
−3 = 100, i ∈ {1, 2}. It yields PiR = 100α

(
B+1
B

)2
γ = 96γ

(or γ + 10 log10(96) in dB), PiD = 24/25γ and PRD = 12/25γ for FD-NOMARC which

translates into PiR = 200γ, PiD = 2γ and PRD = γ for OMARC, i ∈ {1, 2}. Each message

of the sources has length K = 1024 information bits. In our proposed JNCC, the complex

signal sets X1, X2, and XR used in BICM are either QPSK or 16QAM constellation

(Gray labeling) and their corresponding sum rates are η = 4/3 b./c.u and η = 8/3 b./c.u,

respectively.
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Algorithm 4 : JNCD at the destination

(Initialization)

1. Start when all the B + 1 transmitted blocks have been received.

2. Set all the a priori information to zero.

(Iterations)
Iterate until convergence:

1. Activate in parallel, the B SISO MAP detectors and the SISO MAP demapper:

(a) Activate the first SISO MAP detector using Y
(0)
D , and the messages E

(0)
s1(1)

+

π−1(E
(0)
s1(R)), E

(0)
p1(1)

and E
(0)
s2(2)

+π−1(E
(0)
s2(R)), E

(0)
p2(2)

, where E
(b)
si(i)

= E
(b)
si(i,1)

+

π−1
0,i (E

(b)
si(i,2)

).

(b) Activate each SISO MAP detector b, b ∈ {1, . . . , B − 1} using Y
(b)
D , and the

messages E
(b)
s1(1)

+ π−1(E
(b)
s1(R)), E

(b)
p1(1)

and E
(b)
s2(2)

+ π−1(E
(b)
s2(R)), E

(b)
p2(2)

and

E
(b)
pR(R).

(c) Activate the SISO MAP demapper B using Y
(B)
D , and the message E

(B)
pR(R).

2. Activate the B parallel decoders. At each decoder b, b ∈ {0, . . . , B − 1}:

(a) Activate simultaneously the SISO decoders SISO1 and SISO2

i. Activate simultaneously SISO1,1 and SISO2,1 with the messages

L
(b)
s1 , L

(b)
p1,1 and L

(b)
s2 , L

(b)
p2,1 provided by the MAP detector b, and

π−1
0,1(E

(b)
s1(1,2)

) + π−1(E
(b)
s1(R)) and π

−1
0,2(E

(b)
s2(2,2)

) + π−1(E
(b)
s2(R)), which are

derived from the previous iteration.

ii. Activate simultaneously the SISO1,2 and SISO2,2 with, respectively, the

messages π0,1(L
(b)
s1 ), L

(b)
p1,2 and π0,2(L

(b)
s2 ), L

(b)
p2,2 provided by the MAP

detector b, and π0,1(E
(b)
s1(1,1)

) + π0,1 ◦ π−1(E
(b)
s1(R)) and π0,2(E

(b)
s2(2,1)

) +

π0,2 ◦ π−1(E
(b)
s2(R)).

(b) Activate the SISO decoder SISOR with the messages L
(b+1)
pR provided by the

MAP detector b+1 (or by the MAP demapper for the last transmitted block),

and L
(b)
1 = π(L

(b)
s1 +E

(b)
s1(1)

) and L
(b)
2 = π(L

(b)
s2 +E

(b)
s2(2)

).

(Hard decisions)

Combine all the available information on the systematic bits u
(b)
1 and u

(b)
2 :

L(b)
s1 +E

(b)
s1(1,1)

+ π−1
0,1(E

(b)
s1(1,2)

) + π−1(E
(b)
s1(R)) → û

(b)
1

L(b)
s2 +E

(b)
s2(2,1)

+ π−1
0,2(E

(b)
s2(2,2)

) + π−1(E
(b)
s2(R)) → û

(b)
2
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Figure 4.5: Joint ǫ-outage achievable rate - ǫ = 10−2 - FD-NOMARC/JNCC vs.
OMARC/JNCC

4.4.1 Joint ǫ-outage achievable rate comparison of the protocols

In the first set of simulations, we consider the joint ǫ-outage achievable rate Cǫ(γ), under

Gaussian i.i.d. inputs, and we compare the Cǫ(γ) of FD-NOMARC/JNCC conditional on

backward decoding and the Cǫ(γ) of OMARC/JNCC. In our analysis, we fix ǫ = 10−2.

The number of receive antennas at the destination is either ND = 1 or ND = 4. The

corresponding results are depicted in Fig. 4.5. As we can see, the joint ǫ-outage achievable

rate for the FD-NOMARC/JNCC is always higher than the joint ǫ-outage achievable rate

for the OMARC/JNCC; Especially, in the case of ND = 4, JNCC with half-duplex relay

and orthogonal multiple access (OMARC/JNCC) is strictly suboptimal and the joint ǫ-

outage achievable rate gain of FD-NOMARC/JNCC versus OMARC/JNCC for individual

rates above 2b./c.u. is more than 14 dB. This results from the fact that, in the presence of

multiple receive antennas, a non-orthogonal MAC can better exploit the available degrees

of freedom. Moreover, even in the case of ND = 1 which is not a priori favorable for a MAC,

we see that the use of full-duplex relay and backward decoding in FD-NOMARC/JNCC

can provide an ǫ-outage achievable rate gain of more than 9 dB for data rates above 2

b./c.u..
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Figure 4.6: Joint BLER - Practical FD-NOMARC/JNCC vs. lower bound of outage limit
- η = 4/3 b./c.u.

4.4.2 Performance of practical code design

In the sequel, the number of iterations I is set to 5 at the relay and to 10 (for ND = 1) or 3

(for ND = 4) at the destination. These numbers of iterations ensure convergence and allow

to very closely approach the performance of a Genie Aided (GA) receiver at sufficiently

high SNR for the selected modulation and coding schemes, the Genie Aided (GA) receiver

corresponding to the ideal case where the interference is known and perfectly removed.

4.4.2.1 Gap to outage limits

In this section, we evaluate the gap between the joint BLER of practical designs for FD-

NOMARC/JNCC and that of the lower bounds on their corresponding information outage

probability. Here, the joint information outage probabilities are computed under discrete

independent identically uniformly distributed inputs. Joint BLER is defined as the prob-

ability to have at least one erroneously decoded information bit in either of the decoded

blocks at the destination. The experiment is carried out for η = 4/3 b./c.u.. In our

comparisons, we assume that both sources use identical turbo codes of rate-1/3 made of

two 4-state rate-1/2 RSC encoders with generator matrices Gi,1 = Gi,2 = [ 1 5/7 ],

i ∈ {1, 2}, in octal representation, whose one quarter of the parity bits are punctured. The

JNCC at the relay is based on XOR, followed by a 4-state rate-1/4 RSC encoder with



CHAPTER 4. JNCC FOR THE FD-NOMARC 103

generator matrix GR = [ 1 5/7 4/7 6/7 ] [142] whose one sixth of the parity bits are

punctured. Exhaustive simulations showed that those numbers of states yield the best per-

formance/complexity trade-off. The corresponding results are demonstrated in Fig. 4.6. As

we see, there is around 5 dB gap between the proposed JNCC designs and the lower bounds

on the information outage probability for both ND = 1 and ND = 4. This is mainly due to

the difference between the decoding strategies in practical designs and theoretical bounds.

The backward decoding which is used in theoretical analyses, can not be implemented in

practice.

4.4.2.2 Comparison of the different protocols

In this section, we compare the individual BLER (e.g. for S1) of FD-NOMARC/JNCC with

that of the OMARC/JNCC. In FD-NOMARC/JNCC, the two sources use the punctured

turbo codes made of 4-state rate-1/2 RSC encoders with generator matrices Gi,1 and Gi,2,

and the relay uses the RSC encoder with generator matrix GR whose one sixth of the

parity bits are punctured. For OMARC/JNCC, we first imposed on the sources the use

of the same signal sets. In this case, the two sources transmit their information symbols

without any coding, while the relay uses the 4-state rate-1/2 RSC encoder with generator

matrix G′
R = [ 1 5/7 ]. The corresponding results demonstrated considerable gains in

favour of our approach. We next carried out another experiment, where constellation

expansion is employed for OMARC. In this approach, the sources increase the cardinality

of their modulation while preserving the same spectral efficiency, which makes room for

coding. Thus, in the case of OMARC with η = 4/3 b./c.u., both sources use a turbo

code of rate-1/2 made of two 4-state rate-1/2 RSC encoders with generator matrices Gi,1

and Gi,2, i ∈ {1, 2}, whose half of the parity bits are punctured. They use then 16QAM

constellation. The relay uses the 4-state rate-1/2 RSC encoder with generator matrix G′
R

and it uses QPSK constellation. Similarly, in the case of η = 8/3 b./c.u., both sources use

the same turbo code as the previous case, but with the parity bits that are punctured to

result in a code of rate 2/3. They use then 64QAM constellation. The relay uses the same

RSC encoder as the previous case with 16QAM modulation. The corresponding results

are depicted in Fig. 4.7 for the spectral efficiency of η = 4/3 b./c.u., and in Fig. 4.8 for

the spectral efficiency of η = 8/3 b./c.u., for both ND = 1 and ND = 4. Here again,

the FD-NOMARC outperforms the OMARC in most cases and the performance gains are

considerable for ND = 4. The exception is the case of η = 8/3 b./c.u. and for ND = 1,

where the FD-NOMARC starts to outperform the OMARC with constellation expansion

at a relatively high SNR (γ = 28 dB). This is certainly due to the sub-optimality of the

MAP detectors in FD-NOMARC.
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Figure 4.7: Individual BLER (e.g., for S1) - FD-NOMARC/JNCC vs. OMARC/JNCC -
η = 4/3 b./c.u.
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4.5 Conclusion

We have studied JNCC for a new class of MARC, referred to as FD-NOMARC, from both

an information-theoretic and a practical code design perspective. We have derived the FD-

NOMARC joint information outage probability, conditional on JNCC, superposition block

Markov coding, and backward decoding. This provides lower bounds on the information

outage probability of our practical designs. We have also presented new JNCC schemes flex-

ible in terms of number of sources, encoders and modulations. For the 2-source symmetric

case and targeted sum rates η = 4/3 b./c.u. and η = 8/3 b./c.u., we have shown that our

proposed schemes are more efficient than conventional distributed JNCC for OMARC. We

have also verified that the non-orthogonal multiple access exhibits considerable gains over

orthogonal multiple access, even in the case of a single receive antenna at the destination.





Chapter 5

Joint Network-Channel Coding for
the Half-Duplex Semi-Orthogonal
MAMRC

In this chapter, we extend the network model by considering multiple relays which help

multiple sources to communicate with a destination. The relays operate in half-duplex

mode. All nodes in the network are informed that they cooperate. We propose a new

class of MAMRC that we call Half-Duplex Semi-Orthogonal MAMRC (HD-SOMAMRC or

SOMAMRC) and is defined as follows: (1) Independent sources communicate with a single

destination in the presence of multiple relays; (2) The relays are half-duplex and apply a

Selective Decode and Forward (SDF) strategy, i.e, each relay forwards only a deterministic

function of the messages that it can decode without errors; (3) The sources are allowed

to transmit simultaneously during the listening phase of the relays, but are constrained

to remain silent during their transmission phases. The relays are also allowed to transmit

simultaneously all together. Allowing collisions at the relay and the destination renders

the reality of wireless environments and leverages better the broadcast nature of the radio

channel than the Orthogonal MAMRC (OMAMRC). Furthermore, the proposed SDF in

SOMAMRC not only prevents the error propagation from the relay to the destination, but

also decreases the individual BLER, i.e., the BLER for each source. As already mentioned

in Chapter 2, this SDF approach has been analyzed in a variety of contributions for the

OMARC using either JNCC [82] or SNCC [126]. Its theoretical and practical interests

have also been confirmed in Chapter 2 for the HD-SOMARC, in Chapter 3 for the HD-

NOMARC, and in Chapter 4 for the FD-NOMARC. It has also been studied in [92] for

OMAMRC/SNCC. While these information-theoretic analyses have provided insight into

the behavior of the system, many issues need still to be addressed in case of MAMRC,

The work presented in this chapter will be submitted to IEEE Transaction on Wireless Communication.

107
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including the impact of JNCC and the multiple access interferences. Based on a careful

outage analysis, the SOMAMRC individual information outage probability (e.g., for S1) is

derived for both JNCC or SNCC. The individual information outage probability and the

individual ǫ-outage achievable rate (e.g., for S1) are then numerically evaluated assuming

independent Gaussian inputs or discrete independent identically and uniformly distributed

inputs and compared with the ones of a OMAMRC at fixed energy budget per source (per

available dimensions). As a second contribution, we propose practical JNCC designs for

SOMAMRC that are flexible in terms of number of sources and relays, and MCS. Our

designs are built on convolutional codes and turbo codes, and rely on advanced (iterative)

joint detection and decoding receiver architectures. We further demonstrate that they also

guarantee the full diversity in the sense that they achieve the same diversity gain as the

single-user case. As already discussed in Chapter 2, in the large SNR regime, the MACs at

the relays and at the destination turn into ML+M +L independent BECs (corresponding

toML source-to-relay links andM+L source-to-destination and relay-to-destination links).

We claim that our proposed JNCC schemes are full diversity since the BLER of each source

decays as ǫL+1 where ǫ is the probability of each link to be in erasure.

5.1 System Model

The M statistically independent sources S1, . . . ,SM want to communicate with the desti-

nation D in the presence of L relays R1, . . . , RL. In order to create virtual uplink MIMO

channels and to benefit from spatial multiplexing gains, we assume that the relays Rℓ,

ℓ ∈ {1, . . . , L} and the destination D are equipped with NRℓ
and ND receive antennas. We

consider that the baud rate of the sources and relays is D = 1/Ts and the overall transmis-

sion time is fixed to T , thus the number of available channel uses to be shared between the

sources and the relays is N = DT . We consider the case of Nyquist rate and cardinal sine

transmission pulse shape, i.e., N = DT is the total number of available complex dimen-

sions and D is the total bandwidth of the system. Our channel models are inspired by the

following assumptions: (1) The delay spreads of the radio channels from the sources to the

relay and the destination as well as from the relay to the destination are much lower than

Ts ensuring no frequency selectivity; (2) the coherence time of all the aforementioned radio

channels are supposed to be much larger than T . The Semi-orthogonal transmission pro-

tocol is considered. The N available channel uses are divided into two successive time slots

corresponding to the listening phase of the relays, say N1 = αN channel uses, and to the

transmission phase of the relays, say N2 = ᾱN channel uses, with α ∈ [0, 1] and ᾱ = 1−α.

Each source i broadcasts its messages ui ∈ F
K
2 of K information bits under the form of

a modulated sequence during the first transmission phase. Without loss of generality, the
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modulated sequences are chosen from the complex codebooks ζi of rate K/(αN) and take

the form of sequences xi ∈ ζi ⊂ X αN
i , i ∈ {1, . . . ,M}, where Xi ⊂ C denote a complex

signal set of cardinality |Xi| = 2qi , with energy normalized to unity. The corresponding

received signals at the relays and destination are expressed as

y
(1)
Rℓ,k

=
M∑

i=1

√
PiRℓ

hiRℓ
xi,k + n

(1)
Rℓ,k

(5.1)

y
(1)
D,k =

M∑

i=1

√
PiDhiDxi,k + n

(1)
D,k (5.2)

for ℓ ∈ {1, . . . , L} and k = 1, . . . , αN . In (5.1) and (5.2), the channel fading vectors

hiRℓ
∈ C

NRℓ , and hiD ∈ C
ND , i ∈ {1, . . . ,M} are mutually independent, constant over

the transmission of x1, . . ., xM and change independently from one transmission of the

sources to the next. The channel fading vectors hiRℓ
, i ∈ {1, . . . ,M}, ℓ ∈ {1, . . . , L},

are identically distributed (i.d.) following the pdf CN (0NRℓ
, INRℓ

). The channel fading

vectors hiD, i ∈ {1, . . . ,M}, are i.d. following the pdf CN (0ND
, IND

). The additive

noise vectors n
(1)
Rℓ,k

and n
(1)
D,k are independent and follow the pdf CN (0NRℓ

, N0INRℓ
) and

CN (0ND
, N0IND

), respectively. Pij ∝ (dij/d0)
−κPi, i ∈ {1, . . . ,M}, j ∈ {R1, · · · , RL, D},

is the average received energy per dimension and per antenna (in Joules/symbol), where

dij is the distance between the transmitter and receiver, d0 is a reference distance, κ is the

path loss coefficient, with values typically in the range [2, 6], and Pi is the transmit power

(or energy per symbol) of Si. Note that the shadowing could be included within Pij . To

fairly compare the performance with respect to α, we fix the total energy per available

dimensions NP0,i (recall that N is the number of available dimensions or channel uses)

spent by Si, i.e., Pi = P0,i/α. During the second phase, the sources are silent. Each relay

uses a SDF approach, which depends on the number of correctly decoded messages. Let

Jℓ ⊂ {1, · · · ,M} denote the set of message indices with cardinality |Jℓ| ≤ M that have

been successfully decoded at Rℓ. If Jℓ = ∅, Rℓ remains silent. Otherwise, according to the

number of correctly decoded messages and the chosen network coding scheme, it transmits

a modulated sequence of the form xRℓ
∈ X ᾱN

Rℓ
, where XRℓ

⊂ C is a complex constellation

of order |XRℓ
| = 2qRℓ with energy normalized to unity. The modulated sequences xRℓ

are

chosen such that ({xi, i ∈ Jℓ},xRℓ
) is a codeword on message ({ui, i ∈ Jℓ}) belonging to a

codebook ζJℓ,Rℓ
of rate |Jℓ|K/N . The received signal at the destination is expressed as

y
(2)
D,k =

L∑

ℓ=1

θℓ
√
PRℓDhRℓDxRℓ,k + n

(2)
D,k (5.3)
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Figure 5.1: System model (relay cooperates)

for k = 1, . . . , ᾱN . In (5.3), the channel fading vectors hRℓD ∈ C
ND are mutually inde-

pendent and follow the pdf CN (0ND
, IND

). They are independent of hiD, i ∈ {1, . . . ,M},
constant over the transmission of xRℓ

and changes independently from one transmission

of the relays to another. The additive noise vector n
(2)
D,k is independent of n

(1)
Rℓ,k

and n
(1)
D,k,

and follows the pdf CN (0ND
, N0IND

). PRℓD ∝ (dRℓD/d0)
−κPRℓ

, with PRℓ
the transmit

power of Rℓ, is the average received power per dimension and per antenna at the desti-

nation. Here again, we fix the total energy per available dimensions NP0,Rℓ
spent by Rℓ,

i.e., PRℓ
= P0,Rℓ

/ᾱ. The parameter θℓ is a discrete Bernoulli distributed random variable:

θℓ = 1 if the relay Rℓ successfully decodes at least one source message, and θℓ = 0 otherwise.

Concerning the relay functionalities, we distinguish the two cases of JNCC and SNCC:

• JNCC: The relay Rℓ interleaves each message ui, i ∈ Jℓ, by πℓ and applies a function

ΘRℓ,|Jℓ|
ΘRℓ,|Jℓ| : F

K
2 × F

K
2 × . . .× F

K
2︸ ︷︷ ︸

|Jℓ|

→ C
ᾱN (5.4)

to obtain the modulated sequence xRℓ
. In general, the function ΘRℓ,|Jℓ| is not a

bijection on the interleaved correctly decoded messages. In practice, each relay would

add some in-band signaling to make the destination aware of the set Jℓ. Finally,

the relay signals, together with the source signals, form a distributed joint network-

channel codebook. The block diagram of the system model is depicted in Fig. 5.1 for

the case of M = L = 2.

• SNCC: The relay Rℓ combines linearly the messages ui, i ∈ Jℓ in Fq, which is then

mapped to xRℓ
using the codebook ζRℓ

of rate K/ᾱN .
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5.2 Information-theoretic Analysis

In this section, for the sake of notational simplicity, we consider M = 2 sources and L = 2

relays. The sources transmit with an overall spectral efficiency r = K/N . For the specific

case of SNCC, we can associate the same spectral efficiency r to the relay transmissions.

The generalization to the cases of M,L > 2 is straightforward. The SOMAMRC breaks

down into three MACs at the relays and destination corresponding to the first transmission

phase, and one MAC at the destination corresponding to the second phase, thanks to

the SDF relaying function. Thus, its outage region is perfectly known conditional on a

given channel state H =
[
h1R1 h1R2 h2R1 h2R2 h1D h2D hR1D hR2D

]
. Let us

define the independent input random variables xi ∼ p(xi) and xRi
∼ p(xRi

), i ∈ {1, 2},
and the associated independent output random vectors y

(1)
D , y

(2)
D and y

(1)
Ri

whose channel

transition conditional pdfs follow the ones associated to (5.2), (5.3), and (5.1), respectively.

It follows that the mutual informations I(x1, x2;y
(1)
D ), I(xR1 , xR2 ;y

(2)
D ) and I(x1, x2;y

(1)
R )

are perfectly defined by the pdfs p(xi), p(xRi
) and the aforementioned channel transition

probabilities. It is clear from our context that the mutual information conditional on any

given channel state is maximized for the pdfs p(xi), p(xRi
) being circularly symmetric

complex Gaussian pdfs. As a result, the latter pdfs minimize the information outage

probabilities. However, in practice, p(xi), p(xRi
) are uniformly distributed pmfs (dirac

comb pdfs) over the chosen constellation alphabets. That is why both cases are investigated

in the following. We recall that in our analysis:

1. The theoretical bounds are derived conditional on both JNCC and SNCC.

2. The SDF relaying function is used under the hypothesis that all the links are prone

to errors.

3. The sequences xi and xRi
, i ∈ {1, 2}, are the outcomes of independent discrete time

i.i.d. processes whose associated pdfs are p(xi) and p(xRi
) and their respective length

is infinite (N → ∞) such that the AEP holds.

4. The outage limit is either the individual information outage probability or the individ-

ual ǫ-outage achievable rate (e.g., for S1). The efficiency of our proposed JNCC/JNCD

is evaluated in terms of gap to the information outage probability, keeping in mind

that the information outage probability remains a relevant measure of the best pos-

sible BLER even for finite code lengths [119].
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5.2.1 Outage analysis of SOMAMRC/JNCC

As each relay uses a SDF approach, an evaluation of the source-to-relay channel qualities

has first to be processed. Let ERℓ
(H) denote the outage event of the MAC between the

sources and the relay Rℓ, ℓ ∈ {1, 2}, conditional on H. It corresponds to the case where Rℓ

cannot decode both messages correctly, and can be expressed as

ERℓ
(H) = ERℓ,1|2(H) ∪ ERℓ,2|1(H) ∪ ERℓ,1,2(H) (5.5)

where ERℓ,i|j(H), i, j ∈ {1, 2}, j 6= i is the outage event of Si if the information of Sj is

known, and ERℓ,1,2(H) is the outage event of both sources at Rℓ. The three possible outage

events are then given by

ERℓ,i|j(H) =
{
αI(xi;y

(1)
Rℓ

| xj) < r
}

(5.6)

ERℓ,1,2(H) =
{
αI(x1, x2;y

(1)
Rℓ

) < 2r
}

(5.7)

When the outage event ERℓ
(H) holds, in order to verify whether only one of the messages

xi can be successfully decoded or not, we define the following outage event

ERℓ,i(H) =
{
αI(xi;y

(1)
Rℓ

) < r
}

(5.8)

in which Rℓ treats the signal xj as interference. Thus, the outage events of Rℓ for the

SDF approach can be summarized as follows: (1) In case of Q(1)
Rℓ

(H) = ĒRℓ
(H), which

indicates the complement of the outage event ERℓ
(H), Rℓ cooperates with both sources;

(2) In case of Q(2)
Rℓ

(H) = ERℓ
(H) ∩ ĒRℓ,1(H), Rℓ cooperates only with S1; (3) In case

of Q(3)
Rℓ

(H) = ERℓ
(H) ∩ ĒRℓ,2(H), Rℓ cooperates only with S2; (4) Otherwise, in case of

Q(4)
Rℓ

(H) = ERℓ
(H)∩ ERℓ,1(H)∩ ERℓ,2(H), Rℓ does not cooperate. Now, depending on both

relay transmissions, sixteen different outage events can be distinguished at the destination.

In the sequel, Case m,n corresponds to the case of having the outage event Q(m)
R1

at R1

and Q(n)
R2

at R2, m,n ∈ {1, · · · , 4}.

Case 1,1: Both relays cooperate with both sources. The destination always receives

the cooperative information from both relays during the second phase. Since the source-

to-destination and the relay-to-destination MACs are orthogonal, they can be seen as two

parallel MACs. As a result, the outage at the destination occurs if the target rate exceeds

the sum of the mutual informations of the two parallel MACs. Let E(1,1)
D (H) denote the
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outage event at the destination conditional on H. It can be expressed as

E(1,1)
D (H) = E(1,1)

D,1|2(H) ∪ E(1,1)
D,2|1(H) ∪ E(1,1)

D,1,2(H). (5.9)

where

E(1,1)
D,i|j(H) =

{
αI(xi;y

(1)
D | xj) + ᾱI(x̃;y

(2)
D ) < r

}
(5.10)

for i, j ∈ {1, 2} and j 6= i, and

E(1,1)
D,1,2(H) =

{
αI(x1, x2;y

(1)
D ) + ᾱI(xR1 , xR2 ;y

(2)
D ) < 2r

}
. (5.11)

In (5.10), E(1,1)
D,i|j(H), i ∈ {1, 2} is the outage event of Si if the information of Sj , j 6= i, is

known. In this case, xR1 and xR2 can be considered as part of the codewords of Si. Since

the signals of R1 and R2 are independent (thanks to the JNCC interleavers π1 and π2), the

second term of the sum in (5.10) can be derived from the equivalent MIMO channel

y
(2)
D = H̃ K x̃+ n

(2)
D (5.12)

where x̃ = [xR1 xR2 ]
⊤, H̃ = [hR1D hR2D], and K = diag(

√
PR1D,

√
PR2D). The outage

event in (5.11) corresponds to the constraint that the total throughput cannot exceed the

sum of the mutual informations of (1) a point-to-point MIMO channel with the aggregate

received signals of the two sources corresponding to the first phase, and (2) a point-to-point

MIMO channel with the aggregate received signals of the two relays corresponding to the

second phase. When E(1,1)
D (H) holds, the destination cannot decode both source messages

correctly. As we are interested in calculating the outage event of S1, we define the following

event

E(1,1)
D,1 (H) =

{
αI(x1;y

(1)
D ) < r

}
(5.13)

in which the destination treats the signal x2 as interference. It is worth noting that the

relay transmissions in this case cannot help S1 as they contain the interference from S2.

Finally, the outage event of S1 is calculated as O(1,1)
D,1 (H) = E(1,1)

D (H) ∩ E(1,1)
D,1 (H).

Case 1,2 - Case 2,1: One of the relays cooperates with both sources and the other

cooperates only with S1. Let first consider the Case 1,2. The outage event at the destination

E(1,2)
D (H) is calculated as

E(1,2)
D (H) = E(1,2)

D,1|2(H) ∪ E(1,2)
D,2|1(H) ∪ E(1,2)

D,1,2(H). (5.14)
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where

E(1,2)
D,1|2(H) =

{
αI(x1;y

(1)
D | x2) + ᾱI(x̃;y

(2)
D ) < r

}
(5.15)

E(1,2)
D,2|1(H) =

{
αI(x2;y

(1)
D | x1) + ᾱI(xR1 ;y

(2)
D | xR2) < r

}
(5.16)

E(1,2)
D,1,2(H) =

{
αI(x1, x2;y

(1)
D ) + ᾱI(xR1 , xR2 ;y

(2)
D ) < 2r

}
(5.17)

In (5.15), x̃ = [xR1 xR2 ]
⊤, and the second term of the sum is deduced from an equivalent

MIMO channel as in (5.12). Note that in (5.16), since the information of S1 is supposed

to be known and R2 cooperates only with S1, the transmitted signal from R2 is known

as well. Thus, there is no interference on the signal transmitted by R1 during the second

transmission phase. Now, in order to calculate the outage event of S1, we define the

following event

E(1,2)
D,1 (H) =

{
αI(x1;y

(1)
D ) + ᾱI(xR2 ;y

(2)
D ) < r

}
(5.18)

in which the destination treats the signal x2 and xR1 as interferences during the first and

second transmission phases. Finally, the outage event of S1 is calculated as O(1,2)
D,1 (H) =

E(1,2)
D (H) ∩ E(1,2)

D,1 (H). The outage event O(2,1)
D,1 (H) is calculated in a similar manner, by

swapping the roles of R1 and R2.

Case 1,3 - Case 3,1: One of the relays cooperates with both sources and the other

cooperates only with S2. Let first consider the Case 1,3. Swapping the roles of S1 and

S2, the outage event at the destination E(1,3)
D (H) is identical to the Case 1,2. In order to

calculate the outage event of the source S1, we define the event E(1,3)
D,1 (H) as in (5.13). Thus,

the outage event of S1 is calculated as O(1,3)
D,1 (H) = E(1,3)

D (H)∩E(1,3)
D,1 (H). The outage event

O(3,1)
D,1 (H) is calculated in a similar manner, by swapping the roles of R1 and R2.

Case 2,2: Both relays cooperate only with S1. The outage event at the destination

E(2,2)
D (H) is calculated as

E(2,2)
D (H) = E(2,2)

D,1|2(H) ∪ E(2,2)
D,2|1(H) ∪ E(2,2)

D,1,2(H). (5.19)

where

E(2,2)
D,1|2(H) =

{
αI(x1;y

(1)
D | x2) + ᾱI(x̃;y

(2)
D ) < r

}
(5.20)

E(2,2)
D,2|1(H) =

{
αI(x2;y

(1)
D | x1) < r

}
(5.21)

E(2,2)
D,1,2(H) =

{
αI(x1, x2;y

(1)
D ) + ᾱI(xR1 , xR2 ;y

(2)
D ) < 2r

}
. (5.22)
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In (5.20), x̃ = [xR1 xR2 ]
⊤, and as already mentioned, the second term of the sum is deduced

from an equivalent MIMO channel. In order to calculate the outage event of S1, we define

the following event

E(2,2)
D,1 (H) =

{
αI(x1;y

(1)
D ) + ᾱI(x̃;y

(2)
D ) < r

}
(5.23)

in which the destination treats the signal x2 as interference during the first transmission

phase. Finally, the outage event of S1 is calculated as O(2,2)
D,1 (H) = E(2,2)

D (H) ∩ E(2,2)
D,1 (H).

Case 3,3: Both relays cooperate only with S2. Swapping the roles of S1 and S2, the

outage event at the destination E(3,3)
D (H) is identical to the Case 2,2. In order to calculate

the outage event of the source S1, we define the event E(3,3)
D,1 (H) as in (5.13). Thus, the

outage event of S1 is calculated as O(3,3)
D,1 (H) = E(3,3)

D (H) ∩ E(3,3)
D,1 (H).

Case 2,3 - Case 3,2: One of the relays cooperates only with S1 and the other coop-

erates only with S2. Let first consider the Case 2,3. The outage event at the destination

E(2,3)
D (H) is calculated as

E(2,3)
D (H) = E(2,3)

D,1|2(H) ∪ E(2,3)
D,2|1(H) ∪ E(2,3)

D,1,2(H). (5.24)

where

E(2,3)
D,1|2(H) =

{
αI(x1;y

(1)
D | x2) + ᾱI(xR1 ;y

(2)
D | xR2) < r

}
(5.25)

E(2,3)
D,2|1(H) =

{
αI(x2;y

(1)
D | x1) + ᾱI(xR2 ;y

(2)
D | xR1) < r

}
(5.26)

E(2,3)
D,1,2(H) =

{
αI(x1, x2;y

(1)
D ) + ᾱI(xR1 , xR2 ;y

(2)
D ) < 2r

}
. (5.27)

In order to calculate the outage event of S1, we define the following event

E(2,3)
D,1 (H) =

{
αI(x1;y

(1)
D ) + ᾱI(xR1 ;y

(2)
D ) < r

}
(5.28)

in which the destination treats the signal x2 and xR2 as interferences during the first and

second transmission phases. Finally, the outage event of S1 is calculated as O(2,3)
D,1 (H) =

E(2,3)
D (H) ∩ E(2,3)

D,1 (H). The outage event O(3,2)
D,1 (H) is calculated in a similar manner, by

swapping the roles of R1 and R2.

Case m,4 - Case 4,n: In these cases, at least, one of the relays does not cooperate, and

thus, the SOMAMRC becomes HD-SOMARC. The outage events O(m,4)
D,1 (H) and O(4,n)

D,1 (H),

m,n ∈ {1, · · · , 4}, are calculated as in the case of HD-SOMARC/JNCC [136].
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Finally, the outage event of S1 in the error-prone SOMAMRC/JNCC, can be expressed

as

OD,1(H) =
4⋃

m,n=1

(
Q(m)
R1

(H) ∩ Q(n)
R2

(H) ∩ O(m,n)
D,1 (H)

)
. (5.29)

The above outage event is conditional on the channel state H. The information outage

probability for S1 is then obtained as

Pout,1 =

∫

H

[OD,1(H)] p(H)d(H) (5.30)

where p(H) is the pdf of H. The ǫ-outage achievable rate of S1 is defined as the largest rate

of S1 such that its corresponding information outage probability for a given transmission

protocol, is smaller than or equal to ǫ.

5.2.2 Outage analysis of SOMAMRC/SNCC

In the case of SNCC/SNCD, we still have three MACs at the relays and destination cor-

responding to the first time slot, and one MAC at the destination corresponding to the

second time slot. The outage event analysis at the relays remains the same as in (5.2.1).

However, the received signals at the destination from the sources and the relays are now

decoded separately. Therefore, the outage event analyses at the destination related to the

first and second time slots exactly follows the one of the relays. More specifically, the out-

age events ED(H), ED,1(H), ED,2(H) are defined similarly to ERℓ
(H), ERℓ,1(H), ERℓ,2(H)

(by replacing the subscript Rℓ by D). ERD(H), ERD,1(H), ERD,2(H) which correspond to

the relay-to-destination MAC, are also defined similarly to ERℓ
(H), ERℓ,1(H), ERℓ,2(H), i.e.,

by replacing y
(1)
Rℓ

by y
(2)
D , xi by xRi

, and α by ᾱ. Now, depending on the relays transmitted

signals, we distinguish the following cases at the destination:

Case 1,1: Both relays cooperate with both sources. If the message of S1 cannot be cor-

rectly decoded from the source-to-destination MAC, it can be recovered, provided that the

destination can decode successfully, at least, two out of the three messages corresponding

to S2, R1 and R2. Thus, the outage event of S1 is calculated as

O(1,1)
D,1 (H) =


ED(H) ∩



⋂

i=1,2

ED,i(H)


 ∩ ERD(H)




∪


ED(H) ∩ ĒD,2(H) ∩ ERD(H) ∩



⋂

i=1,2

ERD,i(H)




 . (5.31)
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Case 1,2 - Case 2,1: One of the relays cooperates with both sources and the other

cooperates only with S1. Let first consider the Case 1,2. The outage event of S1 is calculated

as

O(1,2)
D,1 (H) =


ED(H) ∩



⋂

i=1,2

ED,i(H)


 ∩ ERD(H) ∩ ERD,2(H)




∪


ED(H) ∩ ĒD,2(H) ∩ ERD(H) ∩



⋂

i=1,2

ERD,i(H)




 . (5.32)

The outage event O(2,1)
D,1 (H) is calculated in a similar manner, by swapping the roles of R1

and R2.

Case 1,3 - Case 3,1: One of the relays cooperates with both sources and the other

cooperates only with S2. Let first consider the Case 1,3. If the message of S2 is decoded

successfully from one of the two MACs corresponding to the first or second time slot, the

interference of it could be removed from the other MAC which becomes then a point-to-

point channel. Let denote by ED,1|2(H) and ERD,1|2(H) the outage events corresponding

to S1 and R1 if the message of S2 is known, i.e. x2 and xR2 are both known. The outage

event of S1 is then derived as

O(1,3)
D,1 (H) =

(
ED(H) ∩ ĒD,2(H) ∩ ERD,1|2(H)

)
∪
(
ERD(H) ∩ ĒRD,2(H) ∩ ED,1|2(H)

)

∪


ED(H) ∩



⋂

i=1,2

ED,i(H)


 ∩ ERD(H) ∩ ERD,2(H)


 (5.33)

The outage event O(3,1)
D,1 (H) is calculated in a similar manner, by swapping the roles of R1

and R2.

Case 2,2: Both relays cooperate only with S1. We define

E
R̃D

(H) =
{
ᾱI(x̃;y

(2)
D ) < r

}
(5.34)

which is derived from an equivalent MIMO channel as in (5.12) with x̃ = [xR1 xR2 ]
⊤. The

outage event of S1 is then calculated as

O(2,2)
D,1 (H) =

(
ED(H) ∩ ED,1(H) ∩ E

R̃D
(H)

)
. (5.35)
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Case 3,3: Both relays cooperate only with S2. We define E
R̃D

(H) as in (5.34). The

outage event of S1 is then calculated as

O(3,3)
D,1 (H) =

(
ED(H) ∩ ED,1(H) ∩ E

R̃D
(H)

)
∪
(
Ē
R̃D

(H) ∩ ED,1|2(H)
)
. (5.36)

Case 2,3 - Case 3,2: One of the relays cooperates only with S1 and the other coop-

erates only with S2. Let first consider the Case 2,3. The outage event of S1 is calculated

as

O(2,3)
D,1 (H) =


ED(H) ∩



⋂

i=1,2

ED,i(H)


 ∩ ERD(H) ∩



⋂

i=1,2

ERD,i(H)






∪
(
ERD(H) ∩ ĒRD,2(H) ∩ ED,1|2(H)

)

∪
(
ED(H) ∩ ĒD,2(H) ∩ ERD,1|2(H)

)
. (5.37)

The outage event O(3,2)
D,1 (H) is calculated in a similar manner, by swapping the roles of R1

and R2.

Case m,4 - Case 4,n: In these cases, at least, one of the relays does not cooperate, and

thus, the SOMAMRC becomes HD-SOMARC. The outage events O(m,4)
D,1 (H) and O(4,n)

D,1 (H),

m,n ∈ {1, · · · , 4}, are calculated as in the case of HD-SOMARC/SNCC (see Section 2.2.2

of Chapter 2).

Finally, the outage event of S1 in the error-prone SOMAMRC/SNCC can be expressed

as

OD,1(H) =

4⋃

m,n=1

(
Q(m)
R1

(H) ∩ Q(n)
R2

(H) ∩ O(m,n)
D,1 (H)

)
. (5.38)

Here again, the outage event OD,1(H) is conditional on the channel state H, and the

information outage probability for S1 is derived as

Pout,1 =

∫

H

[OD,1(H)] p(H)d(H). (5.39)

5.2.3 Types of input distributions

We consider both Gaussian i.i.d. inputs and discrete i.i.d. inputs (for practical considera-

tions as explained in Chapter 2) to calculate the mutual information. The corresponding

expressions are given in Appendix B.
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5.2.4 Information outage probability achieving codebooks

To achieve the information outage probability bounds, the codebooks ζi, ζiRj
, ζ12Rj

, i, j ∈
{1, 2}, should be universal codebooks. As defined in [127], a universal codebook of a given

rate is a codebook that simultaneously achieves reliable communication over every channel

that is not in outage for the chosen rate. Finally, it is worth stressing that, in practice,

there exist codebooks with finite lengths whose performance are very close to the ones of

universal codebooks. The simulation Section 5.5 exemplifies such codebook constructions

based on convolutional or turbo codes.

5.3 Joint Network Channel Coding and Decoding

In this section, we make explicit our proposed JNCC/JNCD approach. We explain the

structure of the encoders, when and how JNCC is performed, and the structure of the

corresponding multiuser receivers.

5.3.1 Coding at the sources

The messages of the sources are binary vectors ui ∈ F
K
2 of length K, i ∈ {1, · · · ,M}. Each

source employs a BICM [128]. Binary vectors are first encoded with linear systematic binary

encoders Ci : FK2 → F
ni

2 , i = {1, · · · ,M} into binary codewords ci ∈ F
ni

2 of respective

lengths ni. The codes ζi are in general punctured turbo codes, consisting of two RSC

encoders, denoted by RSCi,1 and RSCi,2, concatenated in parallel using optimized semi-

random interleavers π0,i. The coded bits are then interleaved using interleavers Πi and

reshaped as two binary matrices Vi ∈ F
αN×qi
2 . Memoryless modulators based on one-to-

one binary labeling maps φi : F
qi
2 → Xi transform the binary arrays Vi into the complex

vectors xi ∈ X αN
i . For φi, we choose Gray labeling. In the sequel, we denote by vi,k,m =

φ−1
i,m(xi,k) the m-th bit of the binary labeling of each symbol xi,k for i ∈ {1, · · · ,M} and

k = 1, · · · , αN .

5.3.2 Relaying Functions

The processing at each relay is divided in two steps: During the first time slot, based on

(5.1), each relay performs a joint detection and decoding procedure to obtain the hard

binary estimation of the information bits, ûi ∈ F
K
2 . Based on this estimation, each relay

chooses a SDF approach for cooperation. Different cases can then be distinguished, depend-

ing on the number of successfully decoded messages. In the sequel, first, we briefly describe
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the detection and decoding algorithm at each relay, and then, we detail our proposed JNCC

scheme.

5.3.2.1 Relay detection and decoding

The joint detection and decoding is performed in a suboptimal iterative way [129]. An

inner SISO MAP detector generates extrinsic information on coded bits using the received

signal (5.1) and a priori information coming from the outer SISO decoders SISOi (referring

to the decoding of ζi, i ∈ {1, · · · ,M}). For the general case of turbo codes at the sources,

the outer SISO decoder of Si generates extrinsic information on both systematic and coded

bits of Si by activating the SISO decoder SISOi,1 corresponding to RSCi,1, and then SISOi,2

corresponding to RSCi,2. It is important to remember that each SISO decoding stage takes

into account all the available a priori information on systematic bits [130] (and Algorithm

5 of Section 5.3.3.2). The extrinsic information on the source codewords is then interleaved

and fed back to the detector, which in turn employs it as a priori information for the next

iteration. It is worth noting that the proper (de)multiplexing and (de)puncturing are also

performed if needed. The process is repeated until convergence. For the representation of

the input/output soft information, we use log ratios of probabilities. At Rℓ, ℓ ∈ {1, · · · , L},
the LAPPR on bit vi,k,m = φ−1

i,m(xi,k) delivered by the SISO MAP detector is defined as

Λ(vi,k,m) = log
P (vi,k,m = 1|y(1)

Rℓ,k
)

P (vi,k,m = 0|y(1)
Rℓ,k

)
(5.40)

and, in practice, evaluated as

Λ(vi,k,m) ≃ log

∑
b1∈X1,··· ,bM∈XM :φ−1

i,m(bi)=1 P (y
(1)
Rℓ,k

|x1,k = b1, · · · , xM,k = bM )e
∑M

j=1 ξ(bj)

∑
b1∈X1,··· ,bM∈XM :φ−1

i,m(bi)=0 P (y
(1)
Rℓ,k

|x1,k = b1, · · · , xM,k = bM )e
∑M

j=1 ξ(bj)

(5.41)

for i, j ∈ {1, · · · ,M}, ℓ ∈ {1, · · · , L} , with,

ξ(bj) =

log2|Xj |∑

m′=1

φ−1
j,m′(bj)E(vj,k,m′) (5.42)

where {E(vj,k,m)} is LAPR on bit vj,k,m provided by the SISO decoders SISOj . The

extrinsic information on bit vi,k,m is given by L(vi,k,m) = Λ(vi,k,m) − E(vi,k,m), and after

de-interleaving, feeds the corresponding outer SISO decoder.



CHAPTER 5. JNCC FOR THE HD-SOMAMRC 121

5.3.2.2 JNCC

As previously mentioned, each relay chooses a SDF approach for cooperation, which is based

on the number of successfully decoded messages, the knowledge of which being ensured by

using CRC codes for each source message. Let Jℓ ⊂ {1, · · · ,M}, |Jℓ| ≤ M denote the set

of message indices that have been successfully decoded at Rℓ, ℓ ∈ {1, · · · , L}. For the case

where Jℓ = ∅, Rℓ does not cooperate. Otherwise, it interleaves each message ui, i ∈ Jℓ, by

πℓ. Memoryless bit to algebraic symbol converter

ψ : F2 × F2 × · · · × F2︸ ︷︷ ︸
log2(q)

→ Fq, q > 2 (5.43)

transforms the interleaved binary vectors into the symbols wi ∈ F
W
q with W =

⌈
K

log2(q)

⌉
,

supposing that each symbol in Fq has a binary representation containing log2(q) bits. The

symbols wi are then combined linearly in Fq. Let a
Jℓ
ℓ =

[
a1,ℓ a2,ℓ · · · aM,ℓ

]⊤
with

ai,ℓ ∈ Fq and {ai,ℓ = 0}i/∈Jℓ , denote the vector of network coding coefficients associated to

Rℓ. It follows that wRℓ
=
∑

i∈Jℓ ai,ℓwi. The vector uRℓ
∈ F

K
2 is then obtained from wRℓ

by

applying ψ−1. In the sequel, we denote by bi = ψ−1
i (w), bi ∈ F2, the binary representation

of each symbol w ∈ Fq, for w = ψ(b1, · · · , blog2(q)). The vector uRℓ
is then encoded to

cRℓ
using a binary linear encoder CRℓ

: FK2 → F
nRℓ

2 . For CRℓ
, we choose an RSC encoder

defined by the generator matrix GRℓ
(D), referred to as RSCRℓ

. A linear transformation

Ω : F
nRℓ

2 → F
n′
Rℓ

2 is applied which selects the parity bits of cRℓ
to obtain the new vector

c′Rℓ
∈ F

n′
Rℓ

2 , n′Rℓ
< nRℓ

. The vector c′Rℓ
is bit-interleaved using the interleaver ΠRℓ

and

reshaped as a binary matrix VRℓ
∈ F

ᾱN×qRℓ

2 . Finally, a memoryless modulator based on

a one-to-one binary labeling map φRℓ
: F

qRℓ

2 → XRℓ
transforms the binary array VRℓ

into

the complex vector xRℓ
∈ X ᾱN

Rℓ
. For φRℓ

, we choose Gray labeling. In the sequel, we

denote by vRℓ,k,m = φ−1
Rℓ,m

(xRℓ,k) the m-th bit of the binary labeling of each symbol xRℓ,k

for k = 1, · · · , ᾱN and ℓ = 1, · · · , L. Finally, to let the destination detect which of the

messages are included in relay signals, each relay transmits side information (additional

bits) to indicate its state to the receiver.

As already mentioned, the vectors aℓ should be chosen such that the maximum available

diversity which is equal to L + 1 can be attained. In other words, the following property

should hold: if any L links, between the ML source-to-relay links and M + L source-to-

destination and relay-to-destination links, are in outage, it should always be possible to

retrieve the M source messages. In general, in order to find the network codes meeting the

above property, all the possible outage configurations of theML source-to-relay links should

be considered. Let consider an outage configuration of the source-to-relay links containing



122 5.3. JOINT NETWORK CHANNEL CODING AND DECODING

Q ∈ {0, 1, · · · , L} links in outage. The systematic generator matrix T = [IM G], with G

representing the L vectors aℓ, ℓ ∈ {1, · · · , L}, corresponding to each relay, should satisfy

the following condition: If any L−Q columns of the matrix T are eliminated, the remaining

M +Q columns have a rank of at least equal to M . The existence of such network coding

vectors has been proved in [92] for finite fields of sufficiently high cardinality. However,

for large M and L, the exhaustive research becomes extremely complicated. One of the

solutions that is usually adopted is to choose a sufficiently high order field and to randomly

and independently draw the network coding components. The maximum diversity is not

ensured in this case, but the diversity order is in general close to optimal.

In the rest of the chapter, we are interested in small structures and for the sake of

notational simplicity, we consider M = 2 sources and L = 2 relays. Therefore, the network

coding vectors that are chosen (in GF(4)) ensure the maximum diversity. This is verified

in [92] for the OMARC using SNCC. As shown in Appendix A, the high SNR slope of the

outage probability of MAC versus SNR (in dB scale), for the critical case of just one receive

antenna, is the same as the one of the orthogonal MAC. Thus, the full diversity design for

OMARC remains valid when we have collisions at the relay and destination. Furthermore,

as we show later by numerical results, the proposed design ensures full diversity in the case

of JNCC.

5.3.3 JNCD at the Destination

The JNCD at the destination depends on the side information received from each relay. As

already explained in Section 5.2, sixteen different cases can happen, depending on the error-

free decoded messages at each relay. Here, we distinguish six representative scenarios which

lead to a change in the JNCD approach. (i) In the case where both relays have successfully

decoded both source messages, two distributed turbo codes are formed at the destination,

in which the decoders corresponding to C1 and C2 exchange information with both of

the decoders corresponding to CR1 and CR2 . (ii) In the case where Rℓ has successfully

decoded both source messages and Rm has successfully decoded the information of Si,

i, ℓ,m ∈ {1, 2}, ℓ 6= m, we still have two distributed turbo codes at the destination, but the

decoder corresponding to CRm exchange information only with the decoder corresponding

to Ci. (iii) In the case where Rℓ has successfully decoded the information of Si and Rm

has successfully decoded the information of Sj , i, j, ℓ,m ∈ {1, 2}, i 6= j, ℓ 6= m, we still

have two distributed turbo codes at the destination, in which the decoder corresponding

to CRℓ
exchange information only with the decoder corresponding to Ci, and the decoder

corresponding to CRm exchange information only with the decoder corresponding to Cj .

(iv) In the case where both relays has successfully decoded the information of Si, one
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distributed turbo code is formed at the destination in which the decoders corresponding

to Ci, CR1 and CR2 exchange information, and a separate decoder is used to decode the

information of the other source. (v) In the case where one of the relays, say Rℓ, does

not cooperate, the system is equivalent to HD-SOMARC [136]. In all of these cases, at

the end of the second transmission time slot, the destination starts to detect and decode

the original data, processing the received signals (5.2) and (5.3) (with θ1 = θ2 = 1 for the

scenarios 1, · · · , 4, and θℓ = 0 for the scenario 5). (vi) Finally, in the case where both relays

do not cooperate, the destination applies iterative detection and decoding, processing the

received signal (5.2), and using the two separate decoders corresponding to C1 and C2.

Here again, we resort to a suboptimal iterative procedure. Extrinsic information on coded

bits circulates between SISO MAP detectors corresponding to both transmission phases

(or between SISO MAP detector and demapper in case of θℓ = 0) and the outer decoders,

while, at the same time, extrinsic information on systematic bits circulates between the

SISO decoders of each code.

5.3.3.1 SISO MAP Detector and Demapper

The first SISO MAP detector computes the LAPPR Λ(vi,k,m) with vi,k,m = φ−1
i,m(xi,k),

i ∈ {1, 2}, using the received signal (5.2) and a priori information coming from the outer

SISO decoders. Expression is similar to (5.41) substituting y
(1)
D,k for y

(1)
Rℓ,k

. We now turn

to the second SISO MAP detector or demapper (depending on the relays cooperation). If

both relays cooperate, the second SISO MAP detector should deliver soft information on the

additional parity bits coming from both relays. Thus, it computes the LAPPR Λ(vRℓ,k,m)

with vRℓ,k,m = φ−1
Rℓ,m

(xRℓ,k), ℓ ∈ {1, 2}, using the received signal (5.3) with θℓ = 1, and a

priori information coming from the SISO decoders SISOR1 and SISOR2 corresponding to

the relays joint network-channel encoders (network codes in F4 followed by CR1 and CR2).

Expression is similar to (5.41) substituting y
(2)
D,k for y

(1)
Rℓ,k

. If just one of the relays, say

R1, cooperates, instead of a SISO MAP detector, a SISO MAP demapper is used which

delivers soft information on the additional parity bits coming from R1. The LAPPR on bit

vR1,k,m = φ−1
R1,m

(xR1,k) is defined as

Λ(vR1,k,m) = log
P (vR1,k,m = 1|y(2)

D,k)

P (vR1,k,m = 0|y(2)
D,k)

. (5.44)
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and evaluated as

Λ(vR1,k,m) ≃ log

∑
c∈XR1

:φ−1
R1,m

(c)=1 P (y
(2)
D,k|xR1,k = c)eξ(c)

∑
c∈XR1

:φ−1
R1,m

(c)=0 P (y
(2)
D,k|xR1,k = c)eξ(c)

(5.45)

with

ξ(c) =

log2|XR1 |∑

m′=1

φ−1
R,m′(c)E(vR1,k,m′) (5.46)

where {E(vR1,k,m)} is the LAPR on bit vR1,k,m provided by the SISO decoder SISOR1

corresponding to the relay joint network-channel encoder (network codes in F4 followed by

CR1). Finally, the extrinsic information on vR1,k,m is given by L(vR1,k,m) = Λ(vR1,k,m) −
E(vR1,k,m) and, after de-interleaving, feeds SISOR1 .

5.3.3.2 Message-Passing Schedule

A recapitulative block diagram of the JNCD is depicted in Fig. 5.2. In this paragraph, we

detail the message-passing for the case where both relays cooperate with both sources. We

also consider the case of turbo codes at the sources, i.e., each Ci, i ∈ {1, 2} consists of two

RSC encoders separated by π0,i. The generalization to other cases is straightforward. The

SISO decoder SISOi corresponds to Ci, i ∈ {1, 2}, and SISORi
corresponds to the relay en-

coder (network codes in F4 followed by CRi
). Each SISOi, i ∈ {1, 2}, is made up of the two

SISO decoders SISOi,1 and SISOi,2. Let Lsi , Lpi , and LpRi
, i ∈ {1, 2}, denote respectively

the soft information of the systematic and parity bits of the sources and relays, obtained

from the channel MAP detectors corresponding to both transmission phases. It is worth

noting that the proper (de)multiplexing and (de)puncturing are also performed if needed.

In Fig. 5.2, the (de)puncturing is included in the blocks corresponding to (de)multiplexing.

Let also denote by Esi(j), Epi(j), and EpRi
(j) the extrinsic information generated by SISOj ,

j ∈ {1, 2, R1, R2}. Similarly, let Lpi,1 and Lpi,2 denote respectively the soft information

of the parity bits corresponding to SISOi,1 and SISOi,2 obtained from the first MAP de-

tector, Esi(i,1) and Esi(i,2) denote respectively the extrinsic information on systematic bits

generated by SISOi,1 and SISOi,2, and Epi(i,1) and Epi(i,2) denote respectively the extrinsic

information on parity bits generated by SISOi,1 and SISOi,2.

The first SISO MAP detector generates the LAPPRs for the systematic and parity

bits in V1 using Es1(1)+π
−1
1 (Es1(R1))+π

−1
2 (Es1(R2)) and Ep1(1), respectively (after proper

multiplexing interleaving). It also generates the LAPPRs for the systematic and parity

bits in V2 using Es2(2) + π−1
1 (Es2(R1)) + π−1

2 (Es2(R2)) and Ep2(2), respectively. It is worth
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Figure 5.2: JNCD at the destination (both relays cooperate with both sources)

stressing that Es1(1) = Es1(1,1) + π−1
0,1(Es1(1,2)), and Es2(2) = Es2(2,1) + π−1

0,2(Es2(2,2)), as

depicted in Fig. 5.3. The second SISO MAP detector generates the LAPPRs for the parity

bits in VR1 and VR2 using EpR1
(R1) and EpR2

(R2). Then, the two distributed decoders are

activated and calculate the extrinsic information for both the systematic and parity bits

which are fed back to the SISO MAP detectors.

Hereafter, we detail the low complexity implementations of SISORi
. Let first introduce

some definitions and notations which will be used to detail the structure of SISORi
.

• A bit to symbol or symbol to bit soft conversion:

Let w be a random symbol taking values in Fq and w = ψ(b1, · · · , bM ), M = log2(q),

bi ∈ F2. We define

La(w) = log
P (w = a)

P (w = 0)
, ∀a ∈ Fq

L(bi) = log
P (bi = 1)

P (bi = 0)
, i ∈ {1, · · · ,M} (5.47)
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We first consider the bit to algebraic symbol conversion. We have

P (w = a) = P (b1 = ψ−1
1 (a), · · · , bM = ψ−1

M (a))

=
M∏

i=1

P (bi = ψ−1
i (a))

=
exp

(∑M
i=1 ψ

−1
i (a)L(bi)

)

∏M
i=1 (1 + exp (L(bi)))

(5.48)

Thus, we conclude

La(w) =
M∑

i=1

ψ−1
i (a)L(bi). (5.49)

Now, we consider the algebraic symbol to bit conversion. Let j ∈ {0, 1}, we have

P (bi = j) =
∑

a∈Fq

P (bi = j, w = a)

=
∑

a∈Fq

P (bi = j|w = a)P (w = a)

=
∑

a∈Fq ,ψ
−1
i (a)=j

P (w = a)

=
∑

a∈Fq ,ψ
−1
i (a)=j

exp (La(w))P (w = 0) (5.50)

Thus, we conclude

L(bi) = log

(∑
a∈Fq ,ψ

−1
i (a)=1 exp(L

a(w))
∑

a∈Fq ,ψ
−1
i (a)=0 exp(L

a(w))

)
. (5.51)

• Algebraic constraint node:

Let w1, · · · , wM+1 be arbitrary symbols in Fq and let consider the function

f(w1, · · · , wM+1) =

[
M∑

k=1

akwk = wM+1

]
, ak ∈ Fq. (5.52)

Let also i ∈ {1, · · · ,M + 1} and J = {1 ≤ j ≤M + 1; j 6= i}.
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Figure 5.3: SISO decoder SISOi in case of compound codes at sources

We define
∑

a1,··· ,aM ;i : R
q × R

q × · · ·Rq︸ ︷︷ ︸
M

→ R such that

∑
a1,··· ,aM ;i

(
{Lrk(wk)}k∈J

)
= log

P
(∑M

k=1 akwk = wM+1|wi = s
)

P
(∑M

k=1 akwk = wM+1|wi = 0
)

= log



∑

({rk∈Fq}k∈J)
e
∑

k∈J L
rk (wk)f ({wk = rk}k∈J , wi = s)

∑
({rk∈Fq}k∈J)

e
∑

k∈J L
rk (wk)f ({wk = rk}k∈J , wi = 0)


 (5.53)

where rk, s ∈ Fq.

SISORi
corresponds to the network coding vector a1,2i =

[
a1i a2i

]⊤
. For the case of

M = 2 sources and L = 2 relays, we choose a
1,2
1 =

[
1 1

]⊤
and a

1,2
2 =

[
1 2

]⊤
whose

coefficients are defined in F4. As depicted in Fig. 5.4, the SISO decoders corresponding

to CRi
(DECRi

) should collect all the a priori information LuRi
on uRi

, i ∈ {1, 2}. Let

L1Ri
= πi(Ls1 + Es1(1) + π−1

j (Es1(Rj))) and L2Ri
= πi(Ls2 + Es2(2)) + π−1

j (Es2(Rj))), j ∈
{1, 2}, j 6= i. Let Ls1Ri,k′

and Ls2Ri,k′
, s ∈ F4, denote the soft information in F4 which is

derived from the a priori information L1Ri,k and L2Ri,k using (5.49). Taking into account

the algebraic constraint node and using (5.53), we have

LsuRi
,k′ =

∑
a1,i,a2,i;3

(
Lr11R2,k′

, Lr22R2,k′

)
, ∀r1, r2 ∈ F4 (5.54)

LuRi
,k is then calculated using (5.51) which feeds DECRi

. Let denote by EuRi
(Ri),k the
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Figure 5.4: Algebraic decoder

Figure 5.5: Equivalent XOR decoder for SISOR1

extrinsic information on uRi
computed by the decoder corresponding to CRi

. After proper

bit to symbol soft conversions, Ess1(Ri),k′
and Ess2(Ri),k′

are obtained as

Ess1(Ri),k′
=

∑
a1,i,a2,i;1

(
Lr22Ri,k′

, Er3uRi
(Ri),k′

)
, ∀r2, r3 ∈ F4

Ess2(Ri),k′
=

∑
a1,i,a2,i;2

(
Lr11Ri,k′

, Er3uRi
(Ri),k′

)
, ∀r1, r3 ∈ F4 (5.55)

Finally, Es1(Ri) and Es2(Ri) are derived after symbol to bit soft conversions. It is worth

noting that, interestingly, SISOR1 which corresponds to a
1,2
1 =

[
1 1

]⊤
can also be

implemented as in Fig. 5.5, where ⊞ denote the XOR constraint node.

The message-passing schedule for the JNCD at each iteration, and the final hard deci-

sions are recapitulated in the Algorithm 5.
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Algorithm 5 : JNCD at the destination

(Initialization)
Set all the a priori information to zero.
(Iterations)
Iterate until convergence:

1. Activate the first SISO MAP detector using the received signal Y
(1)
D , and the

messages Es1(1) + π−1
1 (Es1(R1)) + π−1

2 (Es1(R2)), Ep1(1) and Es2(2) + π−1
1 (Es2(R1)) +

π−1
2 (Es2(R2)), Ep2(2), where Esi(i) = Esi(i,1) + π−1

0,i (Esi(i,2)).

2. Activate the second SISO MAP detector using the received signal Y
(2)
D , and the

messages EpR1
(R1) and EpR2

(R2).

3. Activate simultaneously the SISO decoders SISO1 and SISO2

(a) Activate simultaneously SISO1,1 and SISO2,1 with the messages Ls1 , Lp1,1
and Ls2 , Lp2,1 provided by the first MAP detector, and π−1

0,1(Es1(1,2)) +

π−1
1 (Es1(R1))+π

−1
2 (Es1(R2)) and π

−1
0,2(Es2(2,2))+π

−1
1 (Es2(R1))+π

−1
2 (Es2(R2)),

which are derived from the previous iteration.

(b) Activate simultaneously the SISO1,2 and SISO2,2 with, respectively, the
messages π0,1(Ls1), Lp1,2 and π0,2(Ls2), Lp2,2 provided by the first MAP

detector, and π0,1(Es1(1,1)) + π0,1 ◦ π−1
1 (Es1(R1)) + π0,1 ◦ π−1

2 (Es1(R2)) and

π0,2(Es2(2,1)) + π0,2 ◦ π−1
1 (Es2(R1)) + π0,2 ◦ π−1

2 (Es2(R2)).

4. Activate the SISO decoder SISOR1 with the messages LpR1
provided by the second

MAP detector, and L1R1 = π1(Ls1 + Es1(1) + π−1
2 (Es1(R2))) and L2R1 = π1(Ls2 +

Es2(2) + π−1
2 (Es2(R2))).

5. Activate the SISO decoder SISOR2 with the messages LpR2
provided by the second

MAP detector, and L1R2 = π2(Ls1 + Es1(1) + π−1
1 (Es1(R1)) and L2R2 = π2(Ls2 +

Es2(2) + π−1
1 (Es2(R1))).

(Hard decisions)
Combine all the available information on the systematic bits u1 and u2:

Ls1 +Es1(1,1) + π−1
0,1(Es1(1,2)) + π−1

1 (Es1(R1)) + π−1
2 (Es1(R2)) → û1

Ls2 +Es2(2,1) + π−1
0,2(Es2(2,2)) + π−1

1 (Es2(R1)) + π−1
2 (Es2(R2)) → û2
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5.4 Separate Network Channel Coding and Decoding

As previously mentioned, in the SNCC scheme, the network-coded signals provided by the

relays are separately decoded at the destination. Thus, in case of SOMAMRC/SNCC, a

joint detection and decoding procedure similar to section (5.3.2.1) is performed at the des-

tination on the signal received during the first transmission phase, and a separate decoding

is performed on the signal received from the the relays during the second phase. If both re-

lays transmit, the latter would be done similar to section (5.3.2.1). It is worth noting that,

when one of the relays cooperates with just one source whose message is retrieved error-free

from either of the transmission phases, the interference corresponding to this message can

then be removed during the decoding procedure corresponding to the other transmission

phase. Finally, the channel decoders make hard decisions and output the estimates to the

network decoder. When both relays cooperate with both sources, if at least two out of

four channel output estimates are error-free, the network decoder can retrieve both source

messages.

5.5 Numerical Results

In this section, we provide some numerical results to evaluate the effectiveness of our

approach. In our comparisons, we consider both SOMAMRC and OMAMRC using JNCC

or SNCC. We start by detailing the topology of the network. For the sake of simplicity,

we consider a symmetric MAMRC, i.e., d1R1 = d2R1 = d1R2 = d2R2 , dR1D = dR2D, and

d1D = d2D. The average energy per available dimension allocated to the two sources is the

same, i.e., P0,1 = P0,2 = P0. We fix the same path loss factor, i.e., κ = 3, free distance,

i.e., d0 = 1 and noise power spectral density, i.e., N0 = 1, for all links. Due to the half-

duplex nature of the relays, the transmission time slot of the sources and the relay are

separated in time. For SOMAMRC, we have P1 = P2 = P0/α and PR1 = PR2 = P0,R/ᾱ.

In OMAMRC, the two sources and the relays transmit in consecutive, equal duration, time

slots. Thus, the first two time slots are dedicated to the sources, and the last two time

slots are dedicated to the relays. It comes that P1 = P2 = 2P0/α and PR1 = PR2 =

2P0,R/ᾱ. Let us choose α = α0 = 2/3 and P0,R = ᾱ0
α0
P0 = 1/2P0 as references in order to

compare our results with [136, 141]. For simulation purposes, two different configurations

are considered: In the first configuration, we fix the number of receive antennas to one both

at the relays and destination, i.e., NR1 = NR2 = ND = 1. The geometry is chosen such

that dij = dR1D = dR2D = d which yields Pij =
α0
α γ, PR1D = PR2D = 2ᾱ0

ᾱ γ for SOMAMRC

and Pij =
2α0
α γ, PR1D = PR2D = ᾱ0

ᾱ γ for OMAMRC, i ∈ {1, 2}, j ∈ {R1, R2, D} where γ

is the received SNR per symbol or dimension. In the second configuration, we increase the
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number of receive antennas at the destination to 4, i.e. , NR1 = NR2 = 1 and ND = 4. The

geometry is chosen such that diRℓ
= d1, i, ℓ ∈ {1, 2}, and diD = dR1D = dR2D = d with

(d1/d)
−3 = 100. It yields PiRℓ

= 100α0
α γ (or γ + 20 + 10 log10(

α0
α ) in dB), PiD = α0

α γ and

PR1D = PR2D = ᾱ0
ᾱ γ for SOMAMRC which translates into PiRℓ

= 200α0
α γ, PiD = 2α0

α γ and

PR1D = PR2D = 2ᾱ0
ᾱ γ for OMAMRC, i ∈ {1, 2}. Each message of the sources has length

K = 1024 information bits. The network coding vectors are chosen as a
1,2
1 =

[
1 1

]⊤
,

and a
1,2
2 =

[
1 2

]⊤
. In our proposed JNCC, the complex signal sets X1, X2, XR1 and

XR2 used in BICM are either QPSK or 16QAM constellation (Gray labeling) and their

corresponding sum rates are η = 4/3 b./c.u. and η = 8/3 b./c.u., respectively.

5.5.1 Optimization of the parameter α

In the first set of simulations, we consider the ǫ-outage achievable rate Cǫ(γ) of S1 to

optimize the parameter α in SOMAMRC/JNCC, i.e., the fraction of time that the relays

should listen. In our analysis, we consider Gaussian i.i.d. inputs and we fix ǫ = 10−2. Both

cases of ND = 1 and ND = 4 are also considered. We choose α = 2/3 as a reference to

calculate the values of Pij and PRiD, i ∈ {1, 2}, j ∈ {R1, R2, D}. The corresponding results

are depicted in Fig. 5.6 for the case of ND = 1. Obviously, the optimum α depends on the

overall spectral efficiency of interest. When α is too small, the relays may not be able to

decode the messages correctly and thus they do not cooperate with the sources during the

second phase. However, if α is too large, the relays cannot help much to the transmission

of the source signals even if they acquire a lot of information during the first phase. The

simulation results show that, in the case of ND = 1 and for the data rates in the range of

[0.1, 2] b./c.u., α = 2/3 gives the best performance. However, the best choice of α becomes

α = 0.8 for the the data rates of 2.5 b./c.u. and higher. In the case of ND = 4 and for the

data rates of 0.1 b./c.u and higher α = 2/3 remains the optimal choice. It is worth noting

that this optimum value for α may change for other network topologies and configurations.

In the sequel, we fix α = α0 = 2/3 for simulation purposes.

5.5.2 Information-theoretic comparison of the protocols

5.5.2.1 Individual ǫ-outage achievable rate with Gaussian inputs

In the first set of simulations, we consider the ǫ-outage achievable rate of S1, and we compare

the individual ǫ-outage achievable rate Cǫ(γ) of JNCC and SNCC for the SOMAMRC and

the OMAMRC. In our analysis, we fix ǫ = 10−2. The number of receive antennas at

the destination is either ND = 1 or ND = 4. The corresponding results are depicted in

Fig. 5.7. As we can see, the ǫ-outage achievable rate for the SOMAMRC is always higher
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Figure 5.6: Individual ǫ-outage achievable rate for different values of α - ǫ = 10−2 - SO-
MAMRC/JNCC - NR = 1, ND = 1

than the ǫ-outage achievable rate for the OMAMRC regardless of the network channel

coding strategy (i.e., JNCC or SNCC); Especially, in the case of ND = 4, JNCC with

orthogonal multiple access (OMAMRC/JNCC) is strictly suboptimal and the ǫ-outage

achievable rate gain of SOMAMRC/JNCC versus OMAMRC/JNCC for individual rates

above 2.5 b./c.u. is more than 5 dB. This results from the fact that, in the presence of

multiple receive antennas, a non-orthogonal MAC can better exploit the available degrees

of freedom. Moreover, even in the case of ND = 1 which is not a priori favorable for

a MAC, we see that SOMAMRC/JNCC can provide an ǫ-outage achievable rate gain of

approximately 3 dB for data rates above 2 b./c.u.. Finally, the JNCC schemes outperform

the SNCC ones for both transmission protocols. For the data rate of 2 b./c.u., the ǫ-outage

achievable rate gains are about 9 dB and 6 dB in case of SOMAMRC for respectively

ND = 1 and ND = 4, 10 dB and 9 dB in case of OMAMRC with respectively ND = 1 and

ND = 4.

5.5.2.2 Individual information outage probability with discrete inputs

In the second set of simulations, our purpose is first to compare the individual outage

probability of SOMAMRC/JNCC and OMAMRC/JNCC, and for the fixed sum rates of η =

4/3 and η = 8/3 b./c.u.. In order to achieve the same spectral efficiency as the SOMAMRC,
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Figure 5.9: Individual outage probability (e.g., for S1) - SOMAMRC/JNCC vs.
OMAMRC/JNCC - η = 8/3 b./c.u.

we consider two approaches for OMAMRC: (1) We impose on the transmitters to use the

same input alphabet as in the case of SOMAMRC, which makes sense if we want to preserve

the same level of PAPR; (2) We employ constellation expansion for the sources and relays in

OMAMRC. In the first approach, the two sources have no other choice but to transmit their

information symbols without any coding, and thus, from a theoretical perspective (N →
∞), the system is always in outage. In the second approach, the sources and relays increase

the cardinality of their modulation while preserving the same spectral efficiency, which

makes room for coding. Thus, the information outage probability of SOMAMRC with

QPSK is compared with the information outage probability of OMAMRC with 16QAM at

both sources and relays. Similarly, the information outage probability of SOMAMRC with

16QAM is compared with the information outage probability of OMAMRC with 64QAM

at the sources and relay. The corresponding results are depicted in Fig. 5.8 for the sum rate

of η = 4/3 b./c.u. and in Fig. 5.9 for the sum rate of η = 8/3 b./c.u., for both ND = 1 and

ND = 4. As we can see, in all cases, the information outage probability of SOMAMRC is

smaller than the one of OMAMRC. Considering the second approach, for η = 8/3 b./c.u.,

and at the BLER of 10−2, the power gain is approximately equal to 2 dB for ND = 1 and

becomes even larger for ND = 4, attaining 2.5 dB at the BLER of 10−2, which reconfirms

the sub-optimality of the orthogonal multiple access in case of multiple receive antennas.

To pursue our analysis, we compare the individual information outage probabilities
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Figure 5.10: Individual outage probability (e.g., for S1) - SOMAMRC/JNCC vs. SO-
MAMRC/SNCC - η = 4/3 b./c.u.

of SOMAMRC/JNCC and SOMAMRC/SNCC. Here again, to keep the same spectral

efficiency for the SNCC case, we have the aforementioned two approaches. Using the

first approach, the relay-to-destination channel is always in outage in the case of SO-

MAMRC/SNCC, and thus it leads to the performance of a MAC corresponding to the

first transmission time slot. This explains the difference of slopes between the two curves

in the corresponding figures. In the second approach, constellation expansion is employed

for the relay-to-destination channel. Thus, in SOMAMRC/SNCC, the relays use 16QAM

for η = 4/3 b./c.u., and 64QAM for η = 8/3 b./c.u.. The corresponding results are de-

picted in Fig. 5.10 and Fig. 5.11 for both ND = 1 and ND = 4. As we can see, the

SOMAMRC/SNCC has always a performance loss compared to the SOMAMRC/JNCC.

In the case of constellation expansion and ND = 1, at the BLER of 10−2, the loss is around

4 dB for η = 4/3 b./c.u., and becomes much higher and attains 7 dB for η = 8/3 b./c.u.. In

the case of ND = 4, the loss is around 5 dB for both η = 4/3 b./c.u., and η = 8/3 b./c.u..

5.5.3 Performance of practical code design

In the sequel, the number of iterations I is set to 5 at the relays and to 10 (for ND = 1) or 3

(for ND = 4) at the destination. These numbers of iterations ensure convergence and allow

to very closely approach the performance of a Genie Aided (GA) receiver at sufficiently
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Figure 5.11: Individual outage probability (e.g., for S1) - SOMAMRC/JNCC vs. SO-
MAMRC/SNCC - η = 8/3 b./c.u.

high SNR for the selected modulation and coding schemes, the Genie Aided (GA) receiver

corresponding to the ideal case where the interference is known and perfectly removed.

5.5.3.1 Gap to outage limits

Here, we evaluate the gap between the individual BLER of practical designs for SO-

MAMRC/JNCC and that of their corresponding information outage probability. The ex-

periment is carried out for η = 4/3 b./c.u.. The two sources use identical turbo codes of

rate-1/2 made of two 4-state rate-1/2 RSC encoders with generator matrix G1 = [ 1 5/7 ]

in octal representation, whose half of the parity bits are punctured. The JNCC at the relays

is based on the network coding vectors a
1,2
1 and a

1,2
2 in F4, followed by a 4-state rate-1/2

RSC encoder with generator matrix GR = [ 1 5/7 ]. Exhaustive simulations showed that

those numbers of states yield the best performance/complexity trade-off. The correspond-

ing results are demonstrated in Fig. 5.12. As we see, the proposed JNCC scheme performs

1.5 dB and 2.5 dB away from the information outage probability for respective cases of

ND = 1 and ND = 4.
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Figure 5.12: Individual BLER (e.g., for S1) - Practical SOMAMRC/JNCC vs. outage limit
- η = 4/3 b./c.u.
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Figure 5.13: Individual BLER (e.g., for S1) - SOMAMRC/JNCC vs. OMAMRC/JNCC -
η = 4/3 b./c.u.
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Figure 5.14: Individual BLER (e.g., for S1) - SOMAMRC/JNCC vs. OMAMRC/JNCC -
η = 8/3 b./c.u.

5.5.3.2 Comparison of the different protocols

In this section, we compare the individual BLER of practical code designs for the SO-

MAMRC/JNCC with that of the OMAMRC/JNCC. The JNCC in both protocols is based

on the vectors a
1,2
1 and a

1,2
2 . In SOMAMRC/JNCC, the two sources use the punctured

turbo codes made of 4-state rate-1/2 RSC encoders with generator matrix G1, and the

relays use the same RSC encoder. For OMAMRC/JNCC, we first imposed on the sources

and the relay the use of same signal sets. In this case, the two sources transmit their

information symbols without any coding, while the relays use the 4-state rate-1/2 RSC en-

coder whose half of the parity bits are punctured. The corresponding results demonstrated

considerable gains in favour of our approach. We next carried out another experiment,

where constellation expansion is employed for OMAMRC, as explained in the outage com-

parisons. Thus, in the case of OMAMRC with η = 4/3 b./c.u., both sources use the same

turbo code as the SOMAMRC with 16QAM modulation, and the relays use the 4-state

rate-1/2 RSC encoder with 16QAM constellation. Similarly, in the case of η = 8/3 b./c.u.,

both sources use the turbo code made of 4-state rate-1/2 RSC encoders with generator

matrix G1, whose parity bits are punctured to result in a code of rate 2/3. They use then

64QAM constellation. The relays use the same RSC encoder as the previous case whose 1/4

of the parity bits are punctured. They also use 64QAM constellation. The corresponding

results are depicted in Fig. 5.13 for the spectral efficiency of η = 4/3 b./c.u., and in Fig.



CHAPTER 5. JNCC FOR THE HD-SOMAMRC 139

5.14 for the spectral efficiency of η = 8/3 b./c.u., for both ND = 1 and ND = 4. Here again,

the SOMAMRC outperforms the OMAMRC in most cases and the performance gains are

considerable for ND = 4. The exception is the case of η = 8/3 b./c.u. and for ND = 1,

where the SOMAMRC performs around 1 dB worse than the OMAMRC. This is probably

due to the multiuser detectors in SOMAMRC which suffer from high order modulations.

5.6 Conclusion

We have studied JNCC for a new class of MAMRC, referred to as SOMAMRC, from both

an information-theoretic and a practical code design perspective. We have derived the

SOMAMRC individual information outage probability, conditional on JNCC (and SNCC

used as a reference). We have also presented new JNCC schemes flexible in terms of number

of sources, encoders and modulations. For the 2-source symmetric case and targeted sum

rates η = 4/3 b./c.u. and η = 8/3 b./c.u., we have shown that our proposed schemes

are more efficient than (1) conventional distributed JNCC for OMAMRC; (2) conventional

SNCC schemes. Moreover, the proposed SOMAMRC/JNCC performs very close to the

outage limit for both cases of single and multiple receive antennas at the destination, and

for the fixed sum rate of η = 4/3 b./c.u.. We have verified that the semi-orthogonal

multiple access exhibits considerable gains over orthogonal multiple access, even in the

case of a single receive antenna at the destination.





Chapter 6

Relaying Functions for the
Half-Duplex Semi-Orthogonal
MARC

In Chapter 2, we evaluated the performance of HD-SOMARC, in which the sources were

constrained to remain silent during the transmission phase of the relay, and the relay

employed an SDF relaying approach. However, since the interference generated by the relay

at the destination does not impact the overall performance (contrary to HD-NOMARC,

FD-NOMARC and HD-SOMAMRC), the choice of the relaying function is an interesting

degree of freedom that remains to be exploited and optimized. In this chapter, we consider

the JNCC approach and we compare the SDF relaying with two Soft Decode and Forward

(SoDF) relaying functions: one based on log a posterior probability ratios (LAPPRs) [116]

and the other based on Mean Square Error (MSE) estimate [117]. In fact, SoDF can be

considered as an alternative approach to SDF, which does not need any signal overhead.

Our proposed JNCC is generic and can be easily extended to arbitrary signal constellations,

so as to enhance the system spectral efficiency.

6.1 System Model

The M statistically independent sources S1, . . . ,SM want to communicate with the desti-

nation D in the presence of a relay R. We assume that the relay R and the destination D

are equipped with NR and ND receive antennas. Let N be the total number of available

complex dimensions to be shared between the sources and the relay. The semi-orthogonal

transmission protocol is considered. The N available channel uses are divided into two suc-

This chapter was presented in part at IEEE ISTC 2010.
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cessive time slots corresponding to the listening phase of the relay, say N1 = αN channel

uses, and to the transmission phase of the relay, say N2 = ᾱN channel uses, with α ∈ [0, 1]

and ᾱ = 1 − α. Each source i broadcasts its messages ui ∈ F
K
2 of K information bits

under the form of a modulated sequence during the first transmission phase. Without loss

of generality, the modulated sequences are chosen from the complex codebooks ζi of rate

K/(αN) and take the form of sequences xi ∈ ζi ⊂ X αN
i , i ∈ {1, . . . ,M}, where Xi ⊂ C

denote a complex signal set of cardinality |Xi| = 2qi , with energy normalized to unity. The

corresponding received signals at the relay and destination are expressed as

y
(1)
R,k =

M∑

i=1

√
PiRhiRxi,k + n

(1)
R,k (6.1)

y
(1)
D,k =

M∑

i=1

√
PiDhiDxi,k + n

(1)
D,k (6.2)

for k = 1, . . . , αN . In (6.1) and (6.2), the channel fading vectors hiR ∈ C
NR , and hiD ∈

C
ND , i ∈ {1, . . . ,M} are mutually independent, constant over the transmission of x1, . . .,

xM and change independently from one transmission of the sources to the next. The

channel fading vectors hiR, i ∈ {1, . . . ,M}, are identically distributed following the pdf

CN (0NR
, INR

). The channel fading vectors hiD, i ∈ {1, . . . ,M}, are i.d. following the pdf

CN (0ND
, IND

). The additive noise vectors n
(1)
R,k and n

(1)
D,k are independent and follow the pdf

CN (0NR
, N0INR

) and CN (0ND
, N0IND

). Pij ∝ (dij/d0)
−κPi, i ∈ {1, . . . ,M}, j ∈ {R,D} is

the average received energy per dimension and per antenna (in Joules/symbol), where dij is

the distance between the transmitter and receiver, d0 is a reference distance, κ is the path

loss coefficient, with values typically in the range [2, 6], and Pi is the transmit power (or

energy per symbol) of Si. Note that the shadowing could be included within Pij . To fairly

compare the performance with respect to α, we fix the total energy per available dimensions

NP0,i (recall that N is the number of available dimensions or channel uses) spent by Si,

i.e., Pi = P0,i/α. During the second phase, the sources are silent. The relay can either use

an analog transmission scheme or a digital one. Therefore, in the most general case, the

transmitted signals from the relay could be of the form x̃R ∈ C
ᾱN with energy normalized

to unity. The received signal at the destination is expressed as

y
(2)
D,k =

√
PRDhRDx̃R,k + n

(2)
D,k (6.3)

for k = 1, . . . , ᾱN . In (6.3), the channel fading vector hRD ∈ C
ND follows the pdf

CN (0ND
, IND

), is independent of hiD, i ∈ {1, . . . ,M}, constant over the transmission of
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xR and changes independently from one transmission of the relay to another. The additive

noise vector n
(2)
D,k is independent of n

(1)
R,k and n

(1)
D,k, and follows the pdf CN (0ND

, N0IND
).

PRD ∝ (dRD/d0)
−κPR, with PR the transmit power of the relay, is the average received

power per dimension and per antenna at the destination. Here again, we fix the total

energy per available dimensions NP0,R spent by the relay, i.e., PR = P0,R/ᾱ. In the rest of

the paper, for the sake of notational simplicity, we consider M = 2 sources that transmit

with an overall spectral efficiency r = K/N . The generalization to the cases of M > 2

sources is straightforward.

6.2 Joint Network Channel Coding and Decoding

In this section, we discuss different relaying schemes for MARC, in the context of JNCC and

for the semi-orthogonal transmission protocol. We explain the structure of the encoders,

how JNCC is performed for each relay functionality, and the structure of the corresponding

multiuser receiver.

6.2.1 Coding at the Sources

The messages of the two sources are binary vectors u1 ∈ F
K
2 and u2 ∈ F

K
2 of lengthK. Each

source employs a BICM [128]. Binary vectors are first encoded with linear systematic binary

encoders Ci : F
K
2 → F

ni

2 , i = {1, 2} into binary codewords ci ∈ F
ni

2 of respective lengths

ni. The codes ζi are punctured turbo codes, consisting of two RSC encoders, denoted

by RSCi,1 and RSCi,2, concatenated in parallel using optimized semi-random interleavers

π0,i. The coded bits are then interleaved using interleavers Πi and reshaped as two binary

matrices Vi ∈ F
αN×qi
2 . Memoryless modulators based on one-to-one binary labeling maps

φi : F
qi
2 → Xi transform the binary arrays Vi into the complex vectors xi ∈ X αN

i . For φi,

we choose Gray labeling.

6.2.2 JNCC and Relaying Functions

Relay processing is divided in two steps: During the first transmission phase, based on (6.1),

the relay performs an iterative MAP detection and turbo-decoding procedure. Depending

on the relaying function, it obtains either the real-valued vectors λi∈R
K representing the

LAPPRs on ui,k, i ∈ {1, 2}, k = 1, · · · ,K, or the hard binary estimation of the latter,

ûi ∈ F
K
2 . Note that such iterative procedure is detailed in [131] for convolutional codes

at the sources, and in the previous chapters for the general case of turbo codes which is

inspired from [130]. At the second phase, the relay interleaves the derived values using an
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interleaver π, constructs and forwards the signal x̃R to the destination. The determination

of x̃R depends on the relaying function and will be detailed in the sequel. Now, let us

define the relay coding and modulation scheme. It is based on an interleaver π followed by

the XOR operation and a binary linear encoder CR : FK2 → F
nR

2 which yields the binary

vector cR ∈ F
nR

2 , a linear transformation Ω : FnR

2 → F
n′
R

2 which selects the n′R ≤ nR entries

of cR to obtain the new vector c′R ∈ F
n′
R

2 (Ω typically removes the systematic bits), a

bit interleaver ΠR which reshapes the vector c′R into a binary matrix VR ∈ F
ᾱN×qR
2 , and

finally, a memoryless modulator based on a one-to-one binary labeling map φR : FqR2 → XR

which transforms the binary array VR into the modulated vector xR ∈ X ᾱN
R . XR ⊂ C

is a complex constellation of order |XR| = 2qR with energy normalized to unity. For φR,

we choose Gray labeling. In the sequel, we denote by vR,k,ℓ = φ−1
R,ℓ(xR,k) the ℓ-th bit of

the binary labeling of each symbol xR,k for k = 1, · · · , ᾱN . For CR, we choose the RSC

encoder defined by the generator matrix GR(D) =
[
1 p(D)

q(D)

]
.

6.2.2.1 Digital Selective Relaying

The relay makes hard decision to obtain the estimates of the information bits, i.e., ûi,

i ∈ {1, 2}. It interleaves by π all the correctly decoded messages, the knowledge of which

being ensured in practice by using two CRC codes for each source message. It then adds

them together (XOR operation). Using the aforementioned coding and modulation scheme,

it yields then the symbol sequence x̃R = xR ∈ X ᾱN
R to be transmitted to the destination.

6.2.2.2 Analog Soft Information Relaying

In the soft relaying scheme, the relay makes use of the derived LAPPRs on the informations

bits, i.e., λi ∈ R
K for i ∈ {1, 2}, interleaves them by π, and combines them, taking into

account the XOR constraint node (see, e.g., [132]),

λuR,k = λ1,k ⊞ λ2,k = log
eλ1,k + eλ2,k

1 + e(λ1,k+λ2,k)
. (6.4)

Note, that the independence between the messages should hold in order to apply (6.4). It

then performs a soft encoding by applying the sum-product algorithm [143] to the code

CR. The latter (followed by the linear transformation Ω) yields the LAPPRs on the parity

bits c′R,k, which should be transmitted to the destination (after being interleaved by ΠR)

in a proper way. Hereafter, we denote by λR,k ∈R
qR , k = 1, . . . , ᾱN , the LAPPRs on the

interleaved parity bits vR,k,ℓ at the relay.

One approach of soft relaying, is to transmit the LAPPRs λR,k,ℓ (two LAPPRs can be
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transmitted for one channel use through in phase and quadrature branches). The LAPPRs

are assumed at the destination to be observations of a binary input AWGN channel as

in [116]. Clearly they should be normalized to ensure a given transmission power PRD.

Another approach, based on MSE estimate, is proposed in [117] which is proved to

be the optimal relay function in terms of SNR in the uncoded case. Interestingly, this

approach needs the same number of channel uses from the relay to destination as the

selective relaying (independently of the modulation order). Here, we apply this approach

to the coded case. Let xR,k be the unknown symbols that would result from the genie

aided knowledge of u1 and u2 within the selective relaying framework. Clearly, minimizing

the Signal to Interference Ratio (SINR) at the destination, where the interference is simply√
PRDhRD(x̃R,k−xR,k), comes down to minimizing the MSE E{|x̃R,k−xR,k|2|Y(1)

R }. Since,
this is not tractable, we rather consider the MSE E{|x̃R,k−xR,k|2|λR,k} which should be a

good approximation of the optimal solution. Therefore, the chosen relay function (whose

energy is normalized to unity) is given by

x̃R,k =
1√
σ̃2

E{xR,k|λR,k} (6.5)

with

σ̃2 =
1

ᾱN

ᾱN∑

k=1

|E{xR,k|λR,k}|2. (6.6)

Let vj,ℓ = φ−1
R,ℓ(xj), xj∈XR, j = 0, · · · , |XR| − 1. Then, assuming perfect interleaving ΠR,

we have

E{xR,k|λR,k} =

|XR|−1∑

j=0

xj

(
qR∏

ℓ=1

evj,ℓλR,k,ℓ

1 + eλR,k,ℓ

)
. (6.7)

The signals transmitted from the relay x̃R,k, can then be viewed as an estimation followed

by a normalizing energy factor as in [117]. Thus, their corresponding received signals at

the destination can be expressed as

y
(2)
D,k =

√
PRDhRDx̃R,k + n

(2)
D,k

=
√
PRDhRD(βxR,k + eu,k) + n

(2)
D,k

=
√
PRDhRDβxR,k + neq,k (6.8)

where neq,k =
√
PRDhRDeu,k + n

(2)
D,k are considered as i.i.d. random complex circularly

symmetric Gaussian noise samples at the destination and eu,k is the uncorrelated estimation
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error with respect to xR,k. It is straight forward to calculate β2 = σ̃2, as well as the error

variance E{|eu|2} = 1− σ̃2 . Finally, we have

y
(2)
D,k =

√
PRDhRDσ̃xR,k + neq,k (6.9)

with E{neq} = 0ND
, and

Req = E{neqn†
eq} = PRD(1− σ̃2)hRDh

†
RD +N0IND

. (6.10)

6.2.3 JNCD at the destination

The JNCD at the destination is conditional to the relay functionality. In the case of

selective relaying, the JNCD is already discussed in Chapter 2 (Section 2.3.3). In the case

of soft relaying, the combination of the systematic and parity bits of both sources, and of

the additional JNC parity bits forwarded by the relay form two distributed codes. Thus, at

the end of the second transmission phase, the destination starts to detect and decode the

original data, processing the received signals (6.2) and (6.3). To accomplish this, we again

resort to a suboptimal iterative procedure. Extrinsic information on coded bits circulate

between SISO MAP detector and demapper corresponding to two transmission phases

and the outer decoders, while, at the same time, extrinsic information on systematic bits

circulate between the SISO decoders of each distributed code. The reader is referred to

Chapter 2 for the SISO MAP detector and demapper key equations (Section 2.3.3.1), the

overall receiver architecture details and the message-passing schedule (Section 2.3.3.2). We

should just point out that the calculation of P (y
(2)
D,k|xR,k = c) in the selective relaying is

according to

P (y
(2)
D,k|xR,k = c) ∝ e

−
‖y

(2)
D,k

−
√

PRDhRDc‖2

N0 (6.11)

while in the soft MSE estimate relaying, based on the equivalent model of y
(2)
D,k in (6.9), we

have

P (y
(2)
D,k|xR,k = c) ∝ e−(y

(2)
D,k

−
√
PRDhRDσ̃c)

†R
−1
eq (y

(2)
D,k

−
√
PRDhRDσ̃c). (6.12)

6.3 Performance Evaluation

In this section, we provide some numerical results to compare different relaying functions

(SDF, LAPPR transmission, and MSE estimate) in the half duplex MARC with semi-

orthogonal transmission protocol. It is worth noting that in [144], we showed that SoDF
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could outperform by around 2 dB the joint selective DF in some extreme cases. Here, we

want to verify if it can outperform the SDF approach as well. For the sake of simplicity,

we consider a symmetric MARC, i.e., d1R = d2R and d1D = d2D. The average energy

per available dimension allocated to the two sources is the same, i.e., P0,1 = P0,2 = P0.

We fix the same path loss factor, i.e., κ = 3, free distance, i.e., d0 = 1 and noise power

spectral density, i.e., N0 = 1, for all links. Due to the half-duplex nature of the relay,

the transmission time slot of the sources and the relay are separated in time. We have

P1 = P2 = P0/α. The relay, in case of cooperation, transmits always at PR = P0,R/ᾱ. Each

message of the sources has length K = 1024 information bits. The system performance is

measured in terms of individual BLER (for example for S1). For simulation purposes, two

different configurations are considered:

(1) In the first configuration, we fix α = 2/3. The number of receive antennas is fixed to

one both at the relay and destination, i.e., NR = ND = 1. The geometry is chosen such that

dij = dRD = d which yields Pi,j = PRD = γ, i ∈ {1, 2}, j ∈ {R,D} where γ is the received

SNR per symbol or dimension. The two sources use identical turbo codes of rate-1/2 made

of two 4-state rate-1/2 RSC encoders with generator matrix G1 = [ 1 5/7 ] in octal

representation, whose half of the parity bits are punctured. The relay uses XOR followed

by the 4-state rate-1/2 RSC encoder. The complex signal sets X1, X2, and XR used in

BICM are either QPSK or 16QAM constellations (Gray labeling) and the corresponding

sum rates are η = 4/3 b./c.u. and η = 8/3 b./c.u., respectively. The number of iterations

I is set to 5 at the relay and to 10 at the destination. These numbers of iterations ensure

convergence and allow to very closely approach the performance of a Genie Aided (GA)

receiver at sufficiently high SNR for the selected modulation and coding schemes, the Genie

Aided (GA) receiver corresponding to the ideal case where the interference is known and

perfectly removed. The corresponding results are depicted in Fig. 6.1. As we see, with the

chosen coding schemes, the SDF relaying performs slightly better than the soft relaying

functions. The exception is the case of 16QAM and for the SNRs beyond 22 dB, where SoDF

slightly outperforms the SDF. It is worth stressing that in the case of LAPPR transmission

for 16QAM, twice as much channel uses are dedicated to the relay-to-destination link.

Moreover, interestingly, the LAPPR transmission for 16QAM performs very close to the

MSE estimate which tends to confirm that the MSE estimate relaying function is efficient

for high order modulations.

(2) To pursue our comparison analysis, we then consider another somehow extreme case

in which the two sources transmit directly their uncoded information symbols, and the relay

uses XOR followed by the 4-state rate-1/2 RSC encoder. It yields α = 1/2. The sum rates

for QPSK and 16QAM modulation becomes respectively η = 2 and η = 4 b./c.u.. We

increase the number of receive antennas at the destination to 2, i.e., NR = 2 and ND = 2.
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Figure 6.1: Individual BLER (e.g., for S1) - Different relaying functions in semi-orthogonal
half-duplex MARC - NR = 1, ND = 1 - α = 2/3

The value of PRD is fixed to 25 dB. The geometry is chosen such that dij = d which yields

Pi,j = γ, i ∈ {1, 2}, j ∈ {R,D}. There is no iteration at the relay, and we fix the number

of iterations at the destination to 10. The corresponding results showed the same trends

as the previous case.

Clearly, the performance gap between the soft and hard selective relaying depends on

the coding schemes used at the sources and the relay, as well as, the characteristics of the

radio links. However, according to the simulation results, it seems that soft relaying cannot

do much better compared to the SDF one, even if it remains an interesting approach in

comparison to the Detect-and-Forward relaying considering both the uncoded [117] and

coded performance [124].

6.4 Conclusions

In this chapter, we discussed different relaying functions in the context of JNCC for the

half duplex MARC with semi-orthogonal transmission protocol, and for a given spectral

efficiency. Simulation results showed that SDF works well in most of the configurations and

just in some extreme cases, SoDF relaying functions (based on LAPPR or MSE estimate)

can slightly outperform the hard selective one. The potential gains then highly depend on
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the chosen configurations. They also tend to confirm that the MSE estimate is an efficient

LAPPR compression function for high order modulation.





Chapter 7

Conclusions and Research

Perspectives

In regards to the emerging interest for cooperative communication and network coding, this

thesis was initiated with the goal of study and design of practical network coding schemes

for different scenarios of wireless communication and from the physical layer perspective.

Contrary to the traditional literature, the superposition and broadcast nature of wireless

medium have both been exploited in our studies, and they have enlightened the potential

benefits of interference management in spite of the practical considerations. Furthermore,

different ways of implementing cooperation, including practical relaying protocols have

been investigated in a realistic wireless environment. In the following, we highlight the

main contributions that have been achieved in this thesis:

• We tackled, theoretically and in practice, the problem of JNCC for a MARC in the

presence of multiple access interferences, and for both of the relay operating modes,

namely, half-duplex and full-duplex. To this end, we have introduced and studied

three new classes of MARC, referred to as HD-SOMARC, HD-NOMARC, and FD-

NOMARC:

- HD-SOMARC: The sources transmit simultaneously during the listening phase

of the relay, but are constrained to remain silent during the relay transmission

phase; The relay is half-duplex and applies an SDF strategy, i.e, it forwards only

a deterministic function of the error-free decoded messages. We have derived the

HD-SOMARC individual information outage probability, conditional on JNCC

151
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(and SNCC used as a reference). We have also presented new JNCC schemes

flexible in terms of number of sources, encoders and modulations. For the 2-

source symmetric case and targeted sum rates η = 4/3 b./c.u. and η = 8/3

b./c.u., we have shown that our proposed schemes are more efficient than (1)

conventional distributed JNCC for OMARC; (2) conventional SNCC schemes.

Moreover, the proposed HD-SOMARC/JNCC performs very close to the outage

limit for both cases of single and multiple receive antennas at the destination,

and for the fixed sum rate of η = 4/3 b./c.u.. We have also verified that the semi-

orthogonal multiple access exhibits considerable gains over orthogonal multiple

access, even in the case of a single receive antenna at the destination.

- HD-NOMARC: We removed the constraint of SOMARC in which the sources

remain silent during the transmission phase of the relay. This class of MARC

reduces significantly the number of signaling, since only the destination node

should be informed of the cooperation. We have derived the HD-NOMARC

individual information outage probability, conditional on JNCC and SNCC. Us-

ing the outage analysis, we have optimized the fraction of available channel uses

during which the relay should listen and those during which the sources and the

relay should transmit. The optimal allocation was then applied to our practical

designs. We have presented new JNCC schemes flexible in terms of number

of sources, encoders and modulations, and we have shown that they are more

efficient than (1) conventional distributed JNCC for OMARC; (2) conventional

SNCC schemes. Moreover, the proposed HD-NOMARC/JNCC performs very

close to the outage limit for both cases of single and multiple receive antennas

at the destination, and for the fixed sum rate of η = 4/3 b./c.u..

- FD-NOMARC: Full-duplex relays were shown to be feasible recently, and thus,

as a last step, we relaxed the half duplex constraint of the relay. We have derived

the FD-NOMARC joint information outage probability, conditional on JNCC,

superposition block Markov coding, and backward decoding. This provides lower

bounds on the information outage probability of our practical designs. We have

also presented new JNCC designs together with advanced receiver architectures

at the destination, which, contrary to block by block decoding, operate over all

the transmitted blocks. For the 2-source symmetric case and targeted sum rates

η = 4/3 b./c.u. and η = 8/3 b./c.u., we have shown that our proposed schemes

are more efficient than conventional distributed JNCC for OMARC.

• We extended the network model by considering multiple relays which help multi-

ple sources to communicate with a destination. A new class of MAMRC, referred
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to as HD-SOMAMRC was then proposed, in which (1) the relays operate in half-

duplex mode; (2) During the listening phase of the relays, the sources transmit si-

multaneously, but they remain silent during their transmission phases. The relays

are also allowed to transmit simultaneously all together; (3) the relays apply an

SDF relaying approach. We then studied JNCC for HD-SOMAMRC from both an

information-theoretic and a practical code design perspective. We have derived the

HD-SOMAMRC individual information outage probability, conditional on JNCC and

SNCC. Using the outage analysis, we have optimized the fraction of available channel

uses during which the relays should listen and those during which the relays should

transmit. We have also presented new practical JNCC schemes, in which binary

channel coding and non binary network coding were combined. The appropriate re-

ceiver architectures were also derived. Both theoretic analyses and simulations have

demonstrated that the proposed HD-SOMAMRC/JNCC can fully exploit the spatial

diversity, and have significant benefits compared to the existing schemes. Moreover,

the proposed HD-SOMAMRC/JNCC performs very close to the outage limit for both

cases of single and multiple receive antennas at the destination, and for the fixed sum

rate of η = 4/3 b./c.u..

• Finally, different relaying functions were discussed in the context of HD-SOMARC

with JNCC. In HD-SOMARC, contrary to other classes of MARC, the relaying func-

tion is an interesting degree of freedom to be optimized, thanks to the interference free

transmission of the relay. We have compared the SDF function proposed in preceding

parts of the thesis with two analog relaying functions: one based on LAPPR and the

other based on MSE estimate. The simulation results showed that SDF works well

in most of the configurations and just in some extreme cases, soft relaying functions

(based on LAPPR or MSE estimate) can slightly outperform the hard selective one.

They also tend to confirm that the MSE estimate is an efficient LAPPR compression

function for high order modulation.

To conclude, some possible directions for future research are listed below:

• We have shown that our proposed designs for HD-SOMARC, HD-NOMARC and

HD-SOMAMRC perform very close to the outage limit for the fixed sum rate of

η = 4/3 b./c.u.. However, coding gain optimization should still be carried out for

large signal constellations. In the case of FD-NOMARC, the individual information

outage probabilities should first be derived, conditional on joint decoding of all the

transmitted blocks. This allows us to measure the gap between our proposed schemes
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and the exact outage limits, and to strive to achieve the theoretical limits by further

coding gain optimization.

In order to optimize the coding gain, it is also important to compute the union

(upper) bounds on the error performance using specific codes, which would then

serve as a basis to find the optimal code. These bounds are known to be tight for

medium to large SNR. To this end, tools and techniques from [118–120] should be used

together with the knowledge on the exact Weight Enumerator Functions (WEFs) of

convolutional codes and the average WEFs of turbo codes [121,122]. Such analysis is

conducted for OMARC with BPSK and under AWGN channel in [123]. However, the

performance analysis in case of non-orthogonal transmission and under slow fading

channels remain an open issue for future works. The derived bounds would also be

used to predict the performance of the system at very low bit or block error rates and

could also serve as a benchmark for sub-optimal iterative decoding algorithms.

• Regarding the MAMRC, non-binary channel coding at the sources and relays could

be investigated, especially in case of JNCC. In this case, as the coding and modulation

schemes at the sources and relays are defined in the non-binary field where the network

coding coefficients are chosen, there is no more need to employ the bit to symbol or

symbol to bit conversion. This may improve the performance, but at the same time it

could be restrictive in terms of spectral efficiency. A possible design based on LDPC

code was treated in [95] for OMAMRC. Further code design could be conducted based

on non binary turbo coding.

• In this thesis, we have only considered the HD-SOMAMRC. However, it would

be worth investigating practical designs and theoretical bounds for the more com-

plex Half-Duplex Non-Orthogonal MAMRC (HD-NOMAMRC) and Full-Duplex Non-

Orthogonal MAMRC (FD-NOMAMRC). In HD-NOMAMRC, the constraint that the

sources remain silent during the transmission phase of the relays, is removed, and in

FD-NOMAMRC, the half duplex constraint of the relays is also relaxed. The task is

not a straightforward generalization of the current results.

• It remains unclear if there exists a better practical relaying function than SDF in

the context of HD-NOMARC, FD-NOMARC, and HD-SOMAMRC. However, better

relaying functions than the proposed SDF or MSE estimate could be explored in

the context of half-duplex MARC with semi-orthogonal transmission protocol. A

possible perspective is to consider the PNC approach. As already mentioned, PNC

has mainly been studied in the case of two-phase TWRC, where both sources also

act as a destination, and a separate destination is absent. Thus, one of the network-

encoded messages is perfectly known at each source. Moreover, since there is no direct
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link between the sources, they only receive the broadcast transmission of the relay

during the second phase, which leads to a diversity order of one (as in the case of

multi-hop networks). Hence, studying PNC in situations where cooperative diversity

can be exploited, such as MARC, remains a subject of interest. Using the PNC

approach, the relay decodes the addition modulo 2 of the source messages from the

superimposed received signal. To further reduce the error propagation from the relay

to the destination, we can consider joint decode-and-forward PNC; here, the relay

transmits if it can successfully decode the XOR of the messages. The probability of

the latter is always greater than the probability of joint successful decoding of each

source message. Therefore, the relay is more often active which may improve the

overall performance with respect to the classical joint DF. The advantages over SDF

remain disputable. However, this approach seems difficult to implement from the

practical point of view. The reason lies in the fact that the relay does not decode

individually each source message, and it can not use the CRC included in source

messages to perform joint selective PNC. Soft relaying can remove this problem:

the relay can directly derive the soft information on the network-coded message to

construct the MSE estimate. The latter, if combined with the ML decoding at the

destination under MSE estimate [124], seems to be a promising solution. However,

in future works, one may try to circumscribe the configurations where soft PNC

could outperform the SDF approach in the context of half-duplex MARC with semi-

orthogonal transmission protocol. Finally, it is interesting to develop a cooperative

strategy and a proper code design, which superimpose the SDF and Soft PNC, or

more generally, SDF and CoF.

• We have shown through theoretical analyses and practical designs that partially or

totally exploiting interference is almost always beneficial with respect to the orthog-

onal transmission protocol. However, the choice between semi-orthogonal and full

non-orthogonal transmission protocol in either MARC or MAMRC depends on the

configuration and remains an open issue. The goal would be the identification of

the scenarios in which each protocol can significantly outperform the other one, and

dynamically adapt the appropriate code design.





Appendix A

MAC outage performance at high

SNR

We want to prove that, in the large SNR regime, and for the special case of one receive

antenna, the outage probability of an M-user slow fading MAC (with Gaussian signaling)

behaves as the one of an orthogonal MAC. Here, we refer to as outage probability of an

M users’ MAC, the probability that at least one user out of M is in outage. The M users

are transmitting at the same rate R b./c.u., and the received instantaneous SNR of user i,

i ∈ {1, . . . ,M}, is |hi|2P/N0, where hi are independent channel fading coefficients following

the pdf CN (0, 1). The outage probability of the considered MAC is defined as

pMAC
out = Pr

{
log

(
1 +

P
∑

i∈S |hi|2
N0

)
< |S|R, for at least one S ⊆ {1, . . . ,M}

}
. (A.1)

where |S| is the cardinality of the set S. Under independent Rayleigh fading, h =
∑

i∈S |hi|2,
is a sum of |S| i.i.d exponential random variables with parameter 1 and is distributed as

f(h) =
1

(|S| − 1)!
h|S|−1e−h , h ≥ 0. (A.2)

For a fixed R and very high γ = P/N0, Pr{h < 2|S|R−1
γ } is always inferior to that of the

case |S| = 1. Thus, at very high γ, the dominating events for pMAC
out are for |S| = 1, which
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corresponds to an orthogonal MAC outage event. Thus,

pMAC
out ≃ Pr

{
log

(
1 +

P |hi|2
N0

)
< R, for at least one i ∈ {1, · · · ,M}

}

= M Pr

{
|h1|2 <

2R − 1

γ

}
, (A.3)

where the equality in (A.3) follows from the fact that the exponential random variables

|hi|2, i ∈ {1, · · · ,M}, are independent and have the same Cumulative Distribution Function

(CDF). Since, h = |h1|2 is distributed as f(h) = e−h for h ≥ 0, it yields

pMAC
out ≃M

(
1− exp

(−(2R − 1)

γ

))
(A.4)

which can be approximated at high SNR as

pMAC
out ≃M

2R − 1

γ
. (A.5)

It confirms that the MAC outage probability at high SNR decays as 1/γ similarly to the case

of orthogonal MAC or single-user interference free channels. As a results, the probability

of having n users (1 ≤ n ≤M) in outage decays as γ−n.



Appendix B

Mutual information calculation for

different types of input

distribution

We consider an M -user slow fading MAC with ND receive antennas at the destination.

Let define the independent input random variables xi ∼ p(xi), i ∈ {1, · · · ,M} and the

associated independent output random vector y, whose channel transition conditional pdf

is p (y | x1, · · · , xM ,H) = CN
(∑M

i=1

√
Pihixi, N0IND

)
with H =

[
h1 · · · hM

]
. Here,

hi are independent channel fading coefficients following the pdf CN (0ND
, IND

), and Pi

is the average received energy per dimension and per antenna at the destination from

each user. It follows that the mutual information I(x1, · · · , xM ;y) is perfectly defined

by the pdfs p(x1), · · · , p(xM ) and the aforementioned channel transition probability. Let

S =
{
s1, s2, · · · , s|S|

}
⊆ {1, · · · ,M}, and xS and xS̄ denote respectively {xsi}si∈S and

{xs̄i}s̄i∈S̄ . In the following, we derive the mutual informations I(xS ;y|xS̄) and I(xS ;y) for
two different types of input distribution: Gaussian i.i.d. inputs and discrete i.i.d. inputs.

B.1 Gaussian i.i.d. inputs

In this case, the mutual information is given by

I(xS ;y|xS̄) = log det

(
IND

+
1

N0
HsKsH

†
s

)
(B.1)
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where Hs =
[
hs1 hs2 · · · hs|S|

]
, and Ks = diag

(
Ps1 , · · · , Ps|S|

)
, and

I(xS ;y) = log det
(
IND

+HsKsH
†
sV

−1
s̄

)
(B.2)

where

Vs̄ = N0IND
+Hs̄Ks̄H

†
s̄ (B.3)

for Hs̄ =
[
hs̄1 hs̄2 · · · hs̄|S̄|

]
, and Ks̄ = diag

(
Ps̄1 , · · · , Ps̄|S̄|

)
.

B.2 Discrete i.i.d. inputs

In this case, discrete channel inputs xi are chosen from the constellations Xi of order 2
qi .

We assume uniform input distributions. Thus, p(xi) = 2−qi . The mutual information is

derived numerically [145] as

I(xS ;y|xS̄) = H(xS)−H(xS |y,xS̄)
=

∑

i∈S
qi + E [log2 p(xS |y,xS̄)]

=
∑

i∈S
qi + E


log2

p(y|xS ,xS̄)p(xS ,xS̄)∑
x̃s1∈Xs1

. . .
∑

x̃s|S|
∈Xs|S|

p(y|x̃S ,xS̄)p(x̃S ,xS̄)




=
∑

i∈S
qi − E

[
log2

∑
x̃s1∈Xs1

. . .
∑

x̃s|S|
∈Xs|S|

p(y|x̃S ,xS̄)
p(y|xS ,xS̄)

]
(B.4)

where the expectation is with respect to p(xS ,xS̄ ,y) = 2−
∑M

i=1 qip(y|x1, · · · ,xM ). Simi-

larly, we have

I(xS ;y) = H(xS)−H(xS |y)
=

∑

i∈S
qi + E [log2 p(xS |y)]

=
∑

i∈S
qi + E

[
log2

∑
x̃s̄1∈Xs̄1

. . .
∑

x̃s̄|S|
∈Xs̄|S|

p(y|xS , x̃S̄)p(xS , x̃S̄)
∑

x̃1∈X1
. . .
∑

x̃M∈XM
p(y|x̃1, · · · , x̃M )p(x̃1, · · · , x̃M )

]

=
∑

i∈S
qi − E


log2

∑
x̃1∈X1

. . .
∑

x̃M∈XM
p(y|x̃1, · · · , x̃M )

∑
x̃s̄1∈Xs̄1

. . .
∑

x̃s̄|S|
∈Xs̄|S|

p(y|xS , x̃S̄)


 (B.5)
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where the expectation is with respect to

p(xS ,y) = 2−
∑

i∈S qip(y|xS) = 2−
∑M

i=1 qi
∑

x̃S̄

p(y|xS , x̃S̄).





Bibliography

[1] R. Graham, D. Knuth, and O. Patashnik, “Concrete mathematics,” Reading, MA:

Addison-Wesley, 1989.

[2] E. V. der Meulen, “Transmission of information in a t-terminal discrete memory-

less channel,” Ph.D. dissertation, Department of Statistics, University of California,

Berkeley, 1968.

[3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, part I: System

description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.

[4] ——, “User cooperation diversity, part II: Implementation aspects and performance

analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[5] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans.

Inf. Theory, vol. 25, no. 5, pp. 572–584, Sep. 1979.

[6] A. Wyner, “On source coding with side information at the decoder,” IEEE Trans.

Inf. Theory, vol. 21, no. 3, pp. 294–300, May 1975.

[7] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side in-

formation at the decoder,” IEEE Trans. Inf. Theory, vol. 22, no. 1, pp. 1–10, Jan.

1976.

[8] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems

for relay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3027–3063, Sep. 2005.

[9] R. Nabar, H. Bolcskei, and F. Kneubohler, “Fading relay channels: performance

limits and space-time signal design,” IEEE J. Sel. Areas Commun., vol. 22, no. 6,

pp. 1099–1109, Aug. 2004.



164

[10] A. Host-Madsen and J. Zhang, “Capacity bounds and power allocation for wireless

relay channels,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2020–2040, Jun. 2005.

[11] A. E. Gamal and S. Zahedi, “Capacity of a class of relay channels with orthogonal

components,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1815–1817, May 2005.

[12] Y. Liang and V. Veeravalli, “Gaussian orthogonal relay channels: optimal resource

allocation and capacity,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3284–3289, Sep.

2005.

[13] A. E. Gamal, M. Mohseni, and S. Zahedi, “Bounds on capacity and minimum energy-

per-bit for awgn relay channels,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1545–

1561, Apr. 2006.

[14] M. Khojastepour, “Distributed cooperative communications in wireless networks,”

Ph.D. dissertation, Rice University, 2004.

[15] M. Gastpar and M. Vetterli, “On the capacity of large gaussian relay networks,”

IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 765–779, Mar. 2005.

[16] A. Dana and B. Hassibi, “On the power efficiency of sensory and ad-hoc wireless

networks,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2890–2914, Jul. 2006.

[17] A. del Coso, “Achievable rates for gaussian channels with multiple relays,” Ph.D.

dissertation, Universitat Politecnica de Catalunya, Spain, 2008.

[18] J. Laneman, “Cooperative diversity in wireless networks: Algorithms and architec-

tures,” Ph.D. dissertation, MIT, 2002.

[19] J. Laneman and G. Wornell, “Distributed space-time coded protocols for exploiting

cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, no. 10,

pp. 2415–2425, Oct. 2003.

[20] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks:

Efficient protocols and outage behaviour,” IEEE Trans. Inf. Theory, vol. 50, no. 12,

pp. 3062–3080, Dec. 2004.

[21] T. E. Hunter and A. Nosratinia, “Cooperative diversity through coding,” in Proc.

IEEE ISIT’02, Lausanne, Switzerland, Jul. 2002, p. 220.



165

[22] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wireless

networks,” IEEE Communication Magazine, vol. 42, no. 10, pp. 74–80, Oct. 2004.

[23] T. E. Hunter and A. Nosratinia, “Diversity through coded cooperation,” IEEE Trans.

Wireless Commun., vol. 5, no. 2, pp. 283–289, Feb. 2006.

[24] M. Janani, A. Hedayat, T. Hunter, and A. Nosratinia, “Coded cooperation in wire-

less communications: Space-time transmission and iterative decoding,” IEEE Trans.

Signal Process., vol. 52, no. 2, pp. 362–371, Feb. 2004.

[25] G. Kramer, “Distributed and layered codes for relaying,” in Asilomar Conference on

Signals, Systems and Computers, Oct. 2005.

[26] H. Chong, M. Motani, and H. Garg, “New coding strategies for the relay channel,”

in Proc. IEEE ISIT’05, Adelaide, Australia, Sep. 2005, pp. 1086–1090.

[27] G. Kramer and A. J. van Wijngaarden, “On the white gaussian multiple access relay

channel,” in Proc. IEEE ISIT’00, Sorrento, Italy, Jun. 2000.

[28] L. Sankaranarayanan, G. Kramer, and N. Mandayam, “Capacity theorems for the

multiple-access relay channel,” in Proc. Annual Allerton Conference on Communica-

tion, Control and Computing, Monticello, IL, Sep. 2004.

[29] ——, “Hierarchical sensor networks: capacity bounds and cooperative strategies using

the multiple-access relay channel model,” in Proc. SECON’04, Oct. 2004, pp. 191–

199.

[30] D. Chen, K. Azarian, and J. Laneman, “A case for amplify-forward relaying in the

block-fading multiaccess channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3728–

3733, Aug. 2008.

[31] Y. Liang and V. Veeravalli, “Cooperative relay broadcast channels,” in Proc. Interna-

tional Conference on Wireless Networks, Communications and Mobile Computing’05,

Jun. 2005, pp. 1449–1454.

[32] ——, “Cooperative relay broadcast channels,” IEEE Trans. Inf. Theory, vol. 53,

no. 3, pp. 900–928, Mar. 2007.

[33] A. Reznik, S. Kulkarni, and S. Verdu, “Broadcast-relay channel: capacity region

bounds,” in Proc. IEEE ISIT’10, Adelaide, Australia, Sep. 2005.



166

[34] Y. Liang and V. Veeravalli, “The impact of relaying on the capacity of broadcast

channels,” in Proc. IEEE ISIT’04, Chicago, IL, Jun. 2004.

[35] Y. Liang and G. Kramer, “Rate regions for relay broadcast channels,” IEEE Trans.

Inf. Theory, vol. 53, no. 10, pp. 3517–3535, Oct. 2007.

[36] S. I. Bross, “On the discrete memoryless partially cooperative relay broadcast channel

and the broadcast channel with cooperative decoders,” IEEE Trans. Inf. Theory,

vol. 55, no. 5, pp. 2161–2182, May 2009.

[37] S. Jafar, K. Gomadam, and C. Huang, “Duality and rate optimization for multiple

access and broadcast channels with amplify-and-forward relays,” IEEE Trans. Inf.

Theory, vol. 53, no. 10, pp. 3350–3370, Oct. 2007.

[38] Y. Wu, P. A. Chou, and S. Y. Kung, “Information exchange in wireless networks

with network coding and physical-layer broadcast,” in Proc. 39th Annual Conference

on Information Sciences and Systems (CISS), Baltimore, MD, USA, Mar. 2005.

[39] B. Rankov and A. Wittneben, “Achievable rate regions for the two way relay channel,”

in Proc. IEEE ISIT’06, Seattle, Washington, Jul. 2006.

[40] L. Xie, “Network coding and random binning for multi-user channels,” in Proc. Cana-

dian Workshop on Information Theory’07, Jun. 2007, pp. 85–88.

[41] Y. Song and N. Devroye, “List decoding for nested lattices and applications to relay

channels,” in Proc. Annual Allerton Conf.’10, Sep. 2010.

[42] B. Nazer and M. Gastpar, “Lattice coding increases multicast rates for gaussian

multiple-access networks,” in Proc. Annual Allerton Conf.’07, Seattle, Washington,

Sep. 2007, pp. 1089–1096.

[43] K. Narayanan, M. P. Wilson, and A. Sprintson, “Joint physical layer coding and

network coding for bi-directional relaying,” in Proc. Annual Allerton Conf.’07, Sep.

2007.

[44] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex relay chan-

nels,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 379–389, Feb. 2007.



167

[45] T. Oechtering, C. Schnurr, I. Bjelakovic, and H. Boche, “Achievable rate region of

a two-phase bidirectional relay channel,” in Proc. 41st Conference on Information

Sciences and Systems (CISS)’07, Mar. 2007.

[46] C. Schnurr, T. J. Oechtering, and S. Stanczak, “Achievable rates for the restricted

half-duplex two-way relay channel,” in Proc. 41st Asilomar Conf. on Signals, Systems

and Computers’07, Nov. 2007, pp. 1468–1472.

[47] S. J. Kim, N. Devroye, P. Mitran, and V. Tarokh, “Achievable rate regions and per-

formance comparison of half-duplex bi-directional relaying protocols,” IEEE Trans.

Inf. Theory, vol. 57, no. 10, pp. 6405–6418, Oct. 2011.

[48] M. P. Wilson, K. Narayanan, H. Pfister, and A. Sprintson, “Joint physical layer

coding and network coding for bi-directional relaying,” IEEE Trans. Inf. Theory,

vol. 56, no. 11, pp. 5641–5654, Nov. 2010.

[49] T. J. Oechtering, C. Schnurr, I. Bjelakovic, and H. Boche, “Broadcast capacity region

of two-phase bidirectional relaying,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 454–

458, Jan. 2008.

[50] P. Larsson, N. Johansson, and K.-E. Sunell, “Coded bi-directional relaying,” in Proc.

IEEE VTC Spring’06, Melbourne, Australia, May 2006.

[51] S. J. Kim, P. Mitran, and V. Tarokh, “Performance bounds for bidirectional coded

cooperation protocols,” IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 5235–5241, Nov.

2008.

[52] P. Popovski and H. Yomo, “Physical network coding in two-way wireless relay chan-

nels,” in Proc. IEEE ICC’07, Glasgow, Scotland, Jun. 2007, pp. 707–712.

[53] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”

IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216, Jul. 2000.

[54] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inf.

Theory, vol. 49, no. 2, pp. 371–381, May 2003.

[55] R. Koetter and M. Medard, “An algebraic approach to network coding,” IEEE/ACM

Transactions on Networking, vol. 11, no. 5, pp. 782–795, Oct. 2003.



168

[56] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen, “Poly-

nomial time algorithms for multicast network code construction,” IEEE Trans. Inf.

Theory, vol. 51, no. 6, pp. 1973–1982, Jun. 2005.

[57] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits of coding

over routing in a randomized setting,” in Proc. IEEE ISIT’03, Yokohama, Japan,

Jul. 2003, p. 442.

[58] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong, “A

random linear network coding approach to multicast,” IEEE Trans. Inf. Theory,

vol. 52, no. 10, Oct. 2006.

[59] T. Ho, M. Medard, M. Effros, and R. Koetter, “Network coding for correlated

sources,” in Proc. 38th Annual Conference on Information Sciences and Systems

(CISS)’04, Princeton, NJ, Mar. 2004.

[60] J. Barros and S. Servetto, “Network information flow with correlated sources,” IEEE

Trans. Inf. Theory, vol. 52, no. 1, pp. 155–170, Jan. 2006.

[61] D. Lun, M. Medard, and M. Effros, “On coding for reliable communications over

packet networks,” in Proc. Annual Allerton Conference on Communication, Control

and Computing’04, Monticello, IL.

[62] D. Lun, M. Medard, and R. Koetter, “Efficient operation of wireless packet networks

using network coding,” in Proc. International Workshop on Convergent Technologies

(IWCT)’05, Jun. 2005.

[63] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “On the benefits of random lin-

ear coding for unicast applications in disruption tolerant networks,” in Proc. IEEE

NETCOD’06, Boston, Massachusetts, Apr. 2006.

[64] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance of being

opportunistic: Practical network coding for wireless environments,” in Proc. 43rd

Allerton Conference’05, Sep. 2005.

[65] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “Xors in the air:

Practical wireless network coding,” in Proc. SIGCOMM’06, Pisa, Italy, Sep. 2006.



169

[66] Z. Guo, B. Wang, and J.-H. Cui, “Efficient error recovery using network coding in

underwater sensor networks,” in Proc. 6th international IFIP-TC6 conference on

Networking’07, Atlanta, Georgia, USA, May 2007, pp. 227–238.

[67] M. Effros, M. Medard, T. Ho, S. Ray, D. Karger, R. Koetter, and b. Hassibi, “Linear

network codes: A unified framework for source, channel, and network coding,” in

Proc. DIMACS Works. on Network Information Theory, 2003.

[68] J. D. Ser, P. Crespo, B. Khalaj, and J. Gutierrez-Gutierrez, “On combining dis-

tributed joint source-channel-network coding and turbo equalization in multiple ac-

cess relay networks,” in Proc. IEEE International Conf. on Wireless and Mobile

Computing, Networking and Communications (WiMOB)’07, Oct. 2007.

[69] F. Luus and B. Maharaj, “Joint source-channel-network coding for bidirectional wire-

less relays,” in Proc. IEEE ICASSP’11, Prague, Czech Republic, May 2011.

[70] S. Feizi and M. Medard, “A power efficient sensing/communication scheme: joint

source-channel-network coding by using compressive sensing,” in Proc. Allerton Con-

ference on Communication, Control and Computing, 2011.

[71] C. Hausl, F. Schreckenbach, I. Oikonomidis, and G. Bauch, “Iterative network and

channel coding on a tanner graph,” in Proc. Annual Allerton Conference on Com-

munication, Control and Computing, Monticello, IL, Sep. 2005.

[72] C. Hausl and P. Dupraz, “Joint network-channel coding for the multiple access relay

channel,” in Proc. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc

Communications and Networks, vol. 3, Sep. 2006, pp. 817–822.

[73] C. Hausl and J. Hagenauer, “Iterative network and channel decoding for the two-

way relay channel,” in Proc. IEEE ICC’06, vol. 4, Istanbul, Turkey, Jun. 2006, pp.

1568–1573.

[74] C. Hausl, “Improved rate-compatible joint network-channel code for the two-way re-

lay channel,” in Proc. Joint Conference on Communications and Coding (JCCC)’06,

Solden, Austria, Mar. 2006.

[75] Z. Zhang and S. L. P. Lam, “Physical layer network coding,” in Proc. ACM MOBI-

COM’06, Sep. 2006.



170

[76] A. Sendonaris, E. Erkip, and B. Aazhang, “Increasing uplink capacity via user coop-

eration diversity,” in Proc. IEEE ISIT’98, Aug. 1998, p. 156.

[77] L. Xiao, T. Fuja, J. Kliewer, and D. Costello, “Cooperative diversity based on code

superposition,” in Proc. IEEE ISIT’06, Seattle, Washington, Jul. 2006, pp. 2456–

2460.

[78] ——, “A network coding approach to cooperative diversity,” IEEE Trans. Inf. The-

ory, vol. 53, no. 10, pp. 3714–3722, Oct. 2007.

[79] ——, “Algebraic superposition of ldgm codes for cooperative diversity,” in Proc.

IEEE ISIT’07, Nice, France, Jun. 2007.

[80] C. Hausl and D. Capirone, “Turbo code design for H-ARQ with cross-packet channel

coding,” in Proc. ISTC’10, Brest, France, Sep. 2010, pp. 112–116.

[81] Y. Chen, S. Kishore, and J. Li, “Wireless diversity through network coding,” in Proc.

IEEE WCNC’06, vol. 3, Monticello, IL, Apr. 2006, pp. 1681–1686.

[82] D. Duyck, D. Capirone, M. Moeneclaey, and J. Boutros, “Analysis and construction of

full-diversity joint network-LDPC codes for cooperative communications,” EURASIP

Journal on Wireless Communications and Networking, vol. 2010, pp. 1–16, 2010.

[83] S. Yang and R. Koetter, “Network coding over a noisy relay: A belief propagation

approach,” in Proc. IEEE ISIT’07, Nice, France, Jun. 2007.

[84] G. Zeitler, R. Koetter, G. Bauch, and J. Widmer, “Design of network coding functions

in multihop relay networks,” in Proc. 5th International Symposium on Turbo Codes

and Related Topics, Lausanne, Switzerland, Sep. 2008.

[85] ——, “On quantizer design for soft values in the multiple access relay channel,” in

Proc. IEEE ICC’09, Lausanne, Switzerland, Sep. 2009.

[86] R. Pyndiah, F. Guilloud, and K. Amis, “Multiple source cooperative coding using

turbo product codes with a noisy relay,” in Proc. ISTC’10, Brest, France, Sep. 2010,

pp. 98–102.

[87] J. Li, M. Azmi, R. Malaney, and J. Yuan, “Design of network-coding based multi-

edge type ldpc codes for a multi-source relaying system,” in Proc. ISTC’10, Brest,

France, Sep. 2010, pp. 414–418.



171

[88] X. Bao and J. Li, “Adaptive network coded cooperation (ancc) for wireless relay

networks: matching code-on-graph with network-on-graph,” IEEE Trans. Wireless

Commun., vol. 7, no. 2, pp. 574–583, Feb. 2008.

[89] K. Pang, Z. Lin, Y. Li, and B. Vucetic, “Joint network-channel code design for real

wireless relay networks,” in Proc. ISTC’10, Sep. 2010.

[90] R. Zhang and L. Hanzo, “Multiple source cooperation: from code division multiplex-

ing to variable-rate network coding,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp.

1005–1015, Mar. 2011.

[91] M. Xiao and T. Aulin, “Optimal decoding and performance analysis of a noisy channel

network with network coding,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1402–1412,

May 2009.

[92] M. Xiao and M. Skoglund, “Design of network codes for multiple-user multiple-relay

wireless networks,” in Proc. IEEE ISIT’09, Seoul, Korea, Jun. 2009.

[93] ——, “Multiple-user cooperative communications based on linear network coding,”

IEEE Trans. Commun., vol. 58, no. 12, pp. 3345–3351, Dec. 2010.

[94] J. Rebelatto, B. Uchoa-Filho, Y. Li, and B. Vucetic, “Generalized distributed network

coding based on nonbinary linear block codes for multi-user cooperative communica-

tions,” in Proc. IEEE ISIT’10, Austin, TX, Jun. 2010.

[95] Z. Guo, J. Huang, B. Wang, S. Zhou, J.-H. Cui, and P. Willett, “A practical joint

network-channel coding scheme for reliable communication in wireless networks,” to

appear in IEEE Trans. Wireless Commun.

[96] T. Wang and G. Giannakis, “Complex field network coding for multiuser cooperative

communications,” IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 561–571, Apr.

2008.

[97] G. Zeitler, R. Koetter, G. Bauch, and J. Widmer, “An adaptive compress-and-forward

scheme for the orthogonal multiple-access relay channel,” in Proc. IEEE PIMRC’09,

Tokyo, Japan, Sep. 2009.

[98] P. Popovski and H. Yomo, “Bidirectional amplification of throughput in a wireless

multi-hop network,” in Proc. IEEE VTCSpring’06, Melbourne, Australia, May 2006,

pp. 588–593.



172

[99] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog

network coding,” in Proc. ACM SIGCOMM’07, Kyoto, Japan, Aug. 2007.

[100] B. Nazer and M. Gastpar, “Computing over multi-access channels with connections

to wireless network coding,” in Proc. IEEE ISIT’06, Seattle, Washington, Jul. 2006,

pp. 1354–1358.

[101] P. Popovski and H. Yomo, “The anti-packets can increase the achievable throughput

of a wireless multihop network,” in Proc. IEEE ICC’06, Istanbul, Turkey, Jun. 2006,

pp. 11–15.

[102] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through

structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct.

2011.

[103] T. Koike-Akino, P. Popovski, , and V. Tarokh, “Optimized constellations for two-

way wireless relaying with physical network coding,” IEEE J. Sel. Areas Commun.,

vol. 27, no. 5, pp. 773–787, Jun. 2009.

[104] Z. Zhang and S. Liew, “Channel coding and decoding in a relay system operated

with physical-layer network coding,” IEEE J. Sel. Areas Commun., vol. 27, no. 5,

pp. 788–796, Jun. 2009.

[105] D. Wubben and Y. Lang, “Generalized joint channel coding and physical network

coding for two-way relay systems,” in Proc. IEEE VTC Spring’10, Taipei, Taiwan,

May 2010.

[106] D. To and J. Choi, “Convolutional codes in two-way relay networks with physical-

layer network coding,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2724–2729,

Sep. 2010.

[107] S. Liew, S. Zhang, and L. Lu, “Physical-layer network coding: tutorial, survey, and

beyond,” to appear in Elsevier Physical Communication Journal, 2012.

[108] S. Zhang, S. C. Liew, H. Wang, and X. Lin, “Capacity of two-way relay channel,” in

Proc. 4th International Conference on Access Networks’09, Nov. 2009.

[109] W. Nam, S. Chung, and Y. Lee, “Capacity of the gaussian two-way relay channel to

within 1/2 bit,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5488–5495, Nov. 2010.



173

[110] U. Bhat and T. M. Duman, “Decoding strategies for physical-layer network coding

over frequency selective channels,” in Proc. IEEE WCNC’12, Paris, France, Apr.

2012.

[111] U. Bhat, “Practical coding schemes for multi-user communications,” Ph.D. disserta-

tion, Arizona State University, 2011.

[112] J. Hu and T. Duman, “Low density parity check codes over wireless relay channels,”

IEEE Trans. Commun., vol. 6, no. 9, pp. 3384–3394, Sep. 2007.

[113] Z. Zhang and T. Duman, “Capacity approaching turbo coding for half-duplex relay-

ing,” IEEE Trans. Commun., vol. 55, no. 10, pp. 1895–1906, Oct. 2007.

[114] ——, “Capacity approaching turbo coding and iterative decoding for relay channels,”

IEEE Trans. Commun., vol. 53, no. 11, pp. 1895–1905, Nov. 2005.

[115] G. Kramer, P. Gupta, and M. Gastpar, “Information-theoretic multi-hopping for

relay networks,” in International Zurich Seminar on Communications, ETH Zurich,

Switzerland, Feb. 2004.

[116] H. Sneessens and L. Vandendorpe, “Soft decode and forward improves cooperative

communications,” in Proc. IEEE 3G’05, London, UK, Nov. 2005.

[117] K. S. Gomadam and S. A. Jafar, “Optimal relay functionality for snr maximization

in memoryless relay networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 390–401,

Feb. 2007.

[118] J. W. Craig, “A new, simple, and exact result for calculating the probability of error

for two-dimensional signal constellations,” in Proc. IEEE MILCOM’91, Oct. 1991,

pp. 571–575.

[119] E. Malkamaki and H. Leib, “Coded diversity on block-fading channel,” IEEE Trans.

Inf. Theory, vol. 45, no. 2, pp. 771–781, Mar. 1999.

[120] M. K. Simon and M. S. Alouini, “Digital communication over fading channels: A

unified approach to performance analysis,” New York: Wiley.

[121] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes,”

IEEE Trans. Commun., vol. 44, no. 5, pp. 591–600, May 1996.



174

[122] H. Jin and R. J. McEliece, “Coding theorems for turbo code ensembles,” IEEE Trans.

Inf. Theory, vol. 48, no. 6, pp. 1451–1461, Jun. 2002.

[123] A. G. i Amat and I. Land, “Bounds of the probability of error for decode-and-forward

relaying with two sources,” in Proc. ISTC’10, Sep. 2010.

[124] P. Weitkemper and G. Dietl, “Maximum likelihood receiver for mmse relaying,” in

Proc. IEEE ICC’11, Kyoto, Japan, Jun. 2011.

[125] A. Hatefi, R. Visoz, and A. Berthet, “Joint channel-network coding for the semi-

orthogonal multiple access relay channel,” in Proc. IEEE VTC-Fall’10, Ottawa,

Canada, Sep. 2010.

[126] D. H. Woldegebreal and H. Karl, “Multiple-access relay channel with network cod-

ing and non-ideal source-relay channels,” in Proc. 4th International Symposium on

Wireless Communication Systems, Trondheim, Norway, Oct. 2007.

[127] D. Tse and P. Viswanath, “Fundamentals of wireless communication,” Cambridge

University Press, 2005.

[128] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE

Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.

[129] J. Hagenauer, “The turbo principle: Tutorial introduction and state of the art,” in

Proc. 1st International Symposium on Turbo Codes, Brest, France, Sep. 1997, pp.

1–12.

[130] D. Raphaeli and Y. Zarai, “Combined turbo equalization and turbo decoding,” IEEE

Commun. Lett., vol. 2, pp. 107–109, Apr. 1998.

[131] A. Hatefi, R. Visoz, and A. Berthet, “Full diversity distributed coding for the multiple

access half-duplex relay channel,” in Proc. IEEE Netcod’11, Beijing, China, Jul. 2011.

[132] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and con-

volutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, Sep. 1996.

[133] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” IEEE Trans. Commun., vol. 49, pp. 1727–1737, Oct. 2001.



175

[134] L. Bahl, J. Cocke, F. Jelinek, and R. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20, pp. 284–286, Mar.

1974.

[135] A. Hatefi, R. Visoz, and A. Berthet, “Joint channel-network turbo coding for the

non-orthogonal multiple access relay channel,” in Proc. IEEE PIMRC’10, Istanbul,

Turkey, Sep. 2010.

[136] ——, “Near outage limit joint network coding and decoding for the semi-orthogonal

multiple-access relay channel,” in Proc. IEEE Netcod’12, Boston, MA, USA, Jul.

2012.

[137] A. Lapidoth and P. Narayan, “Reliable communication under channel uncertainty,”

IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2148–2177, Oct. 1998.

[138] A. Hatefi, R. Visoz, and A. Berthet, “Network coding,” Wiley-ISTE, Apr. 2012,

Chapter 7.

[139] E. Biglieri and M. Lops, “Multiuser detection in a dynamic environment. part i:

User identification and data detection,” IEEE Trans. Inf. Theory, vol. 53, no. 9, pp.

3158–3170, Sep. 2007.

[140] A. Hatefi, R. Visoz, and A. Berthet, “Joint network-channel distributed coding for

the multiple access full-duplex relay channel,” in Proc. IEEE ICUMT’10, Moscow,

Russia, Oct. 2010.

[141] ——, “Near outage limit joint network coding and decoding for the non-orthogonal

multiple-access relay channel,” in Proc. IEEE PIMRC’12, Sydney, Australia, Sep.

2012.

[142] S. Benedetto, R. Garello, and G. Montorsi, “A search for good convolutional codes

to be used in the construction of turbo codes,” IEEE Trans. Commun., vol. 46, no. 9,

pp. 1101–1105, Sep. 1998.

[143] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[144] A. Hatefi, R. Visoz, and A. Berthet, “Relaying functions for the multiple access relay

channel,” in Proc. ISTC’10, Brest, France, Sep. 2010, pp. 364–368.



176

[145] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf.

Theory, vol. 28, pp. 55–67, Jul. 1982.


