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Abstract 
 
The pathogenesis of most neurodegenerative diseases, including 
transmissible diseases like prion encephalopathies, inherited 
disorders like Huntington’s disease, and sporadic diseases like 
Alzheimer’s and Parkinson’s diseases, appear to be directly linked 
to the formation of fibrillar protein aggregates. For many years, 
the concept of aggregate spreading and infectivity has been 
confined to prion diseases. However, recent evidence indicate 
that both extracellular (e.g. amyloid-β) and intracellular (α-
synuclein, tau, huntingtin) amyloidogenic protein are able to 
move (and possibly replicate) within the brains of affected 
individuals, thereby contributing to the spread of pathology in a 
prion-like manner (Brundin et al., 2010; Jucker and Walker, 2011; 
Aguzzi and Rajendran, 2009). Recently another intriguing 
connection has been made between prions and other aggregation 
proteinopathies, as it was suggested that the cellular prion 
protein, PrPC, whose pathological counterpart is responsible for 
prion diseases, possibly mediates the toxicity of Aβ, the 
pathogenic protein in Alzheimer’s disease, and of other β-
conformers independently of the propagation of infectious prions 
(reviewed in Biasini et al., 2012). However, despite the intense 
research, many questions in prion and non-prion 
neurodegenerative diseases are still open regarding both the 
mechanism of protein aggregate spreading and the mechanism of 
toxicity.  
In the first part of my thesis, I contributed to investigate the role 
of DCs (dendritic cells) in the spreading of prion infection to 
neuronal cells. I demonstrated that the transfer of PrPSc from 
DCs (loaded with prion infected brain homogenate) to primary 
neurons was triggered by direct cell–cell contact and resulted in 
transmission of infectivity to the co-cultured neurons. These data 
confirm the possible role of DCs in prion spreading from the 
periphery to the nervous system. I also provided a plausible 
transfer mechanism of PrPSc through tunneling nanotubes (TNTs) 
shown to connect DCs to primary neurons and excluded the 
involvement of PrPSc secretion in our system.  
In the second part of my thesis, I investigated the mechanisms of 
the spreading and toxicity of Htt aggregates and the possible role 
of PrPC in these events. I demonstrated that Htt aggregates 
transfer between neuronal cells and primary neurons and that 
cell-cell contact is required. I also showed the involvement of 
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TNTs in the transfer and reported the aggregation of endogenous 
wild-type Htt in primary neurons, possibly following the transfer 
of Htt aggregates. Finally, the last part of my results provides 
evidences that PrPC is involved in the spreading of the toxicity 
mediated by mutant Htt in primary neuronal cultures. 
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1. Neurodegenerative diseases: protein conformational 
disorders 
 
In 1997 Carrel and Lomas put forward the concept that many 
disorders, which appeared to be unlinked, arose from the same 
general mechanism that involved the abnormal folding and 
aggregation of various proteins (Carrell and Lomas, 1997). 
Neurodegenerative diseases such as Alzheimer’s disease, 
Parkinson’s disease, Huntington’s disease and prion disorders are 
characterized by progressive accumulation of protein aggregates 
in selected brain regions. In each disorder, aggregates results 
from the misfolding of a specific protein or proteins: amyloid-β 
and tau in Alzheimer’s disease, α-synuclein in Parkinson’s disease, 
huntingtin in Huntington’s disease and the prion protein (PrP) in 
prion disorders (reviewed in Ross and Poirier, 2004). Although 
the disease-associated proteins are very diverse in their primary 
sequence, they all share a common property: they are soluble and 
benign for decades but misfold and assemble in amyloid-like 
deposits in aged neurons.  
 

1.2 Commonalities in amyloid structure 
 
Depending on the disease, amyloid assemblies can be 
intranuclear, cytoplasmic or extracellular, but they all have a 
similar tertiary structure, known as cross-β spine or amyloid, that 
consists of an ordered arrangements of β-sheets (Lührs et al., 
2005; Sunde et al., 1997) . Indeed, amyloid deposits are typically 
composed of 6-10 nm cross-β fibrils in which the polypeptide 
chain arranged in β-sheets is perpendicular to the long axis of the 
fibrils and hydrogen bonding is parallel (Figure 1A and B). 
Originally, the term amyloid was used exclusively to describe 
extracellular amyloid deposits (i.e., amyloid-β) that could be 
stained with histological dyes such as Congo red (Figure 1C). 
Now it is recognized that many cytoplasmic (i.e., synuclein) (Vilar 
et al., 2008) and even intranuclear inclusions (i.e., polyglutamine 
huntingtin) (Thakur and Wetzel, 2002; Ross et al., 2003), which 
do not necessarily stain with these dyes, are composed of 
ordered fibrillar structures enriched in β-sheets, similar to those 
of “classical” amyloids. Thus, there seem to be considerable 
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similarities among the structures of different kinds of disease-
related amyloids. 

 
Figure 1 Properties of amyloid fibers. Amyloid-forming proteins are all thought to 
form similar tertiary structures when aggregated, known as a cross-" spine. (A) The 
characteristic cross-" diffraction pattern observed when X-rays are directed on 
amyloid fibers reveals an intersheet spacing of 10 Ä (horizontal) and an interstrand 
spacing of 4,8 Ä (vertical).(B) Ribbon diagrams of the three-dimensional structure of 
amyloid-" (A"42) (residues 17–40). The cross-" spine consists of an ordered 
arrangement of "-sheets (thick coloured arrows). (C) Congo red-stained sections of 
human kidney affected by amyloidosis. The cross-" spine structure is able to 
intercalate with molecules of the azo-dye Congo red and cause them to emit a 
characteristic apple-green birefringence upon exposure to polarized light163. This 
unique feature of amyloids has historically been used to identify them histologically. 
Modified from Eisenberg and Jucker, 2012 and Aguzzi and O’Connor, 2010 

 

1.3 The mechanism and intermediates of protein misfolding 
 
Fibril formation requires considerable structural rearrangements 
need and implies misfolding of the related native proteins. Protein 
misfolding can occur because of several reasons (reviewed in 
Moreno-Gonzalez and Soto, 2011) (i) somatic mutations in the 
gene sequence leading to the production of a protein unable to 
adopt the native folding; (ii) errors in the processes of 
transcription or translation leading to the production of modified 
proteins unable to properly fold; (iii) failure of the folding and 
chaperone machinery; (iv) mistakes in the post-translational 
modifications or trafficking of proteins; (v) structural 
modification produced by environmental changes and finally (vi) 
induction of protein misfolding by seeding and cross-seeding 
mechanisms. The most frequent destiny for misfolded proteins is 
self-aggregation because the exposure to the solvent of 
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fragments that are normally buried inside the protein leads to a 
high degree of stickiness. The β-sheet structural motif offers the 
most favorable organization for these intermolecular aggregates 
(Nelson et al., 2005). As result misfolded proteins exist as a large 
and heterogeneous continuum of polymeric sizes, from soluble 
oligomers to disordered aggregates to fibrils (ordered aggregated 
species) (reviewed in Caughey and Lansbury, 2003). Soluble 
oligomers are small assemblies of misfolded proteins that are 
present in the soluble fraction of tissue extracts and usually 
include structures ranging in size from dimers to 24-mers 
(reviewed in Glabe, 2006). The mechanism of protein misfolding 
and aggregation follows the so-called “seeding-nucleation” model 
(reviewed in Soto et al., 2006). In this process, the initial steps 
of misfolding are thermodynamically unfavorable and progress 
slowly, until the minimum stable oligomeric unit is formed, and 
then grows exponentially at a fast speed. There are two kinetic 
phases in the seeding-nucleation model of polymerization (Figure 
2).  

 

 
Figure 2 Nucleation-dependent polymerization model of amyloid aggregation. Amyloid 
formation consists of two phases: (i) a nucleation phase/lag phase, in which 
monomers undergo conformational change/misfolding and associate to form 
oligomeric nuclei, and (ii) a elongation phase/growth phase, in which the nuclei rapidly 
grow by further addition of monomers and form larger polymers/fibrils until saturation. 
The ‘nucleation phase‘, is thermodynamically unfavourable and occurs gradually, 
whereas ‘elongation phase’, is much more favourable process and proceeds quickly. 
Thus, kinetics of amyloid formation is well represented by a sigmoidal curve with a lag 
phase followed by rapid growth phase (green curve). The rate limiting step in the 
process is the formation of nuclei/seeds to promote aggregation. Thus, amyloid 
formation can be substantially speedup by the addition of preformed seeds (nuclei). 
The addition of seeds reduces the lag time and induces faster aggregate formation 
(red curve). From Kumar and Walker, 2011  
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Firstly, during the lag phase, a low amount of misfolded and 
oligomeric structures are produced in a slow process, generating 
seeds for the next step. Once nuclei are formed, the elongation 
phase takes place and results in fast growing of the polymers. 
The addition of pre-formed seeds can reduce the length of the 
lag phase, accelerating the exponential phase. Oligomers are 
perhaps the best seeds to propagate the misfolding process in an 
exponential manner. However, larger structures like fibrils could 
be as important to propagate this event in vivo, due to their 
higher resistance to biological clearance than smaller aggregates 
(reviewed in Moreno-Gonzalez and Soto, 2011). 
 

1.4 A brief overview of some neurodegenerative diseases 

 
In this paragraph, some neurodegenerative diseases are briefly 
described.  
Huntington’s disease and prion disorders, also mentioned here, 
will be described and discussed more extensively in chapter 2 and 
3 (prion diseases) and in chapter 5 (Huntington’s disease) as 
they are related to the subject of my PhD work. 
 

1.4.1 Alzheimer's disease  
 
Alzheimer's disease (AD) is a late-onset dementing illness, with 
progressive loss of memory, task performance, speech, and 
recognition of people and objects (Thies and Bleiler, 2011). 
There is degeneration of neurons particularly in the basal 
forebrain and hippocampus. AD involves two major kinds of 
protein aggregates. Extracellular aggregates known as neuritic 
plaques contain as their major constituent the amyloid-β peptide 
(Aβ), which is derived from proteolytic processing of the amyloid 
precursor protein (APP) (Figure 3). The Aβ-containing aggregates 
have β-sheet structure and Congo red reactivity characteristic of 
amyloid (Thies and Bleiler, 2011). There are also intracellular 
aggregates of the microtubule-associated protein tau, called 
neurofibrillary tangles (Selkoe, 2001). The pathogenesis of AD 
has been greatly clarified by the identification of genetic 
mutations responsible for rare familial forms of the disease. 
These mutations occur in APP gene itself and also in the 
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presenilin genes, which are involved with the cleavage of APP 
(Goate, 1997).  

1.4.2 Parkinson's disease  
 
Parkinson's disease (PD) is characterized by resting tremor, 
rigidity, slow movements and other features such as postural and 
autonomic instability. It is caused by degeneration of 
dopaminergic neurons in the substantia nigra of the midbrain and 
other monoaminergic neurons in the brain stem (Forno, 1996). 
The discovery of several genes in which mutations cause early-
onset forms of PD has greatly accelerated research progress 
(Dawson and Dawson, 2003). Point mutations or increased gene 
dosage of the α-synuclein gene cause autosomal dominant PD via 
a gain-of-function mechanism. Recessive early-onset PD can be 
caused by mutations in the genes encoding parkin, DJ-1 or PINK1 
(Valente et al., 2004), presumably by a loss-of-function 
mechanism. The pathological hallmark of adult-onset PD is the 
Lewy body, an inclusion body found in the cytoplasm of neurons, 
often near the nucleus (Figure 3). Lewy bodies are densest in the 
substantial nigra but can also be present in monoaminergic, 
cerebral cortical and other neurons. Aggregates can be found 
also in neurites, which are referred to as Lewy neurites. A major 
constituent of Lewy bodies is aggregated alpha-synuclein protein. 
Lewy bodies can also be labeled for ubiquitin, a synuclein 
interactor termed synphilin-1, proteasome proteins, and 
cytoskeletal and other proteins (Ross and Poirier, 2004). 
 

1.4.3 Huntington’s disease 
 
Huntington’s disease (HD) is a progressive neurodegenerative 
disorder caused by expansion of a CAG repeat coding for 
polyglutamine, in the N-terminus of the huntingtin protein (Htt) 
(HD collaborative group, 1993). Because it is caused by a 
mutation in a single gene, HD has emerged as a model for 
studying neurodegenerative disease pathogenesis (Ross and 
Poirier, 2004). There is a remarkable threshold effect, in the 
length of the CAG expansion able to cause the disease with 
polyglutamine stretches of 36 in huntingtin causing disease, 
whereas 35 do not. In addition, within the expanded range, longer 
repeats cause earlier onset. Furthermore, the threshold for 
aggregation in vitro correlates well with the threshold for disease 
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in humans, consistent with the idea that Htt aggregation is 
related to pathogenesis (Davies et al., 1997; Scherzinger et al., 
1999). Indeed, inclusions containing huntingtin are present in 
regions of the brain that degenerate. However, the neurons with 
inclusions do not correspond exactly to the neurons that 
degenerate. For instance, inclusions are present in the striatum, 
which is most affected (Vonsattel et al., 1985), but they are 
more enriched in populations of large interneurons, which are 
spared, than in medium spiny projection neurons, which are 
selectively lost (Kuemmerle et al., 1999). Nevertheless, there is a 
good correlation between the length of the CAG repeat and the 
density of inclusions (Vonsattel et al., 1985; Kuemmerle et al., 
1999; Myers et al., 1988; Becher et al., 1998; Gutekunst et al., 
1999). Huntingtin aggregates can be labeled with antibodies 
against the N-terminus of huntingtin or antibodies anti ubiquitin, 
a marker for misfolded proteins, and a signal for proteasomal 
degradation (Figure 3). Defect in the proteasome functions might 
lead to their accumulation (Venkatraman et al., 2004). The 
huntingtin aggregates contain fibers and appear to have β-sheet 
structure characteristic of amyloid (Davies et al., 1997). 
 

 
Figure 3 Characteristic neuropathological lesions involve deposition of 
abnormal proteins, which can be intranuclear, cytoplasmic or extracellular. (a) 
HD, intranuclear inclusion labeled for ubiquitin (cerebral cortex) (b) HD, intranuclear 
inclusion labeled for huntingtin (cerebral cortex). (c) AD, neuritic plaque labeled for 
Abeta (cerebral cortex). (d) AD, neuritic plaque, silver stained. (e) PD, Lewy bodies 
labeled for alpha-synuclein (fine granular brown label in this and the next panel 
represent neuromelanin) (substantial nigra). (f) PD, Lewy body labeled for 
phosphorylated alpha-synuclein (substantia nigra). Modified from Ross and Poirier, 
2004 
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1.4.4 Prion disease 
 
Neurodegenerative diseases caused by prions can be sporadic or 
acquired either by environmental transmission or via genetic 
mutations (Prusiner, 1998). Environmental pathways include 
eating prion particles derived from infected brain tissue or 
surgical implantation by contaminated instruments. Prion disease 
can also be caused by point mutations in the gene of PrPC, the 
cellular prion protein, leading to its alterations and misfolding. 
Pathology can include amyloid plaques that appear similar to 
those of AD and that can be labeled with PrP antibodies. Prion 
disease is a prototypical protein conformation disease, in that 
highly sophisticated studies have shown that it is caused by 
abnormal protein structure and not by an infective viral agent. 
Prion aggregation can take place both extracellularly and 
intracellularly (Ma et al., 2002; Ma and Lindquist, 2002) 
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2. Infectious amyloids: the prion diseases  
 
Transmissible spongiform encephalopathies (TSE) also known as 
Prion diseases, are fatal neurodegenerative disorders present 
both in human and animals which can occur genetically, 
spontaneously or by infection (Prusiner 1998). Among 
neurodegenerative diseases, prion disorders are unique because 
they are infectious, meaning that transmission of the pathology 
occurs among individuals and across species (reviewed in Aguzzi 
and Calella, 2009). It is now widely accepted that the infectious 
agent consists of proteinacious aggregates, called ‘prions’, derive 
from a conformational change of a native protein, the cellular 
protein (PrPC), into its pathological counterpart, PrPSc (Scrapie 
prion protein) (Prusiner 1998). The nature of the agent has been 
highly debated for many years (Collinge, 2001). Alper and Griffith 
developed the theory that some transmissible spongiform 
encephalopathies were caused by an infectious agent consisting 
solely of proteins (Alper and Griffith 1967). This hypothesis was 
formulated to explain the fact that the mysterious infectious 
agent causing scrapie in sheep and goats and Creutzfeldt-Jacob 
(CJD) disease in humans resisted to ionizing radiation and 
nucleases treatments, thus excluding the possibility that the it 
had a viral origin (Alper and Griffith 1967)(Alper et al., 1967). As 
a follow up, in 1982 Stanley B. Prusiner and its team at the 
University of California in San Francisco purified the infectious 
agent claiming that it consisted only of proteins. They named it 
“prions” from “proteinaceous infectious particles” that are 
“resistant to inactivation by most procedures that modify nucleic 
acid’ (Prusiner 1998; Nobel Price in Medicine in 1997). Over the 
years, compelling evidence has accumulated to support the 
“protein-only” hypothesis (Prusiner, 1998) that states that the 
infectious agent associated with TSE is a self-propagating protein 
in an aberrant or 'misfolded' conformation (Diaz-Espinoza and 
Soto, 2012). An important proof for this theory was provided by 
the study of Weissmann and co-workers, which showed that PrP 
knockout mice are completely resistant to prion infection (Büeler 
et al., 1992). Consistently, all inherited cases of prion diseases 
are linked with mutations in the prion protein gene (PRNP) and 
usually have an earlier onset and more severe phenotype than the 
sporadic forms (Aguzzi and Calella, 2009). Other supporting 
evidence came from experiments showing that transgenic mice 
expressing human PrP mutations develop spontaneous diseases 
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that can be transmissible to wild-type animals with some clinical 
and neuropathological features of the associated human disease 
(Jackson et al., 2009; Sigurdson et al., 2009). Furthermore, 
PrPSc is able to induce misfolding of PrPC in vitro by cyclic 
amplification of protein misfolding (PMCA), resulting in generation 
of prion infectious material in the test tube in the absence of 
living cells (Castilla et al., 2005). One argument often used 
against the protein only hypothesis is the existence of many 
phenotypic TSE variants, termed prion strains, with typical 
features, such as incubation period, clinical signs, characteristic 
pattern of neuropathological lesions, and specific PrPSc 
biochemical features, a phenomenon difficult to reconcile with an 
exclusively proteinaceous infectious agent (Soto and Castilla, 
2004). However, recent findings have shown that strain 
properties can be reproduced during in vitro replication by PMCA, 
suggesting that all elements enciphering prion strains are 
encoded in the PrPSc structure (Castilla et al., 2008).  
 

2.1 Human and animal prion diseases: a brief overview 
 
As already mentioned above, transmissible spongiform 
encephalopathies (TSE) affect both human and animals. They can 
occur genetically, spontaneously or by infection (Prusiner 1998) 
(Table1).  
 

 
Table 1 Human and animals prion diseases 
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Both animal and human conditions share common 
histopathological features that include spongiform vacuolation of 
the gray matter, astrogliosis and neuronal loss with deposition of 
amyloid plaques (Beck et al., 1982) (Figure 4). 
 

 
Figure 4 Histopathological features associated with TSEs showing spongiform 
degeneration and astrocytic gliosis . Analysis of grey matter from brain sections of (A) 
a BSE-infected cow, (B) an individual affected from CJD, (C) sheep and (D) kuru-
affected individual. Modified from http://www.biophys.uni-
duesseldorf.de/research/prions/index.html 

 
Also, no infiltration of lymphocytes and macrophages has been 
detected due to the absence of the immune response (Collinge 
2001). TSE are characterized by a long pre-symptomatic period 
followed, after the appearance of the first symptoms, by a rapid 
progression that leads inevitably to death. Specific clinical signs 
are associated with each type of TSE but all include perturbations 
of the locomotor and sensory system, lack of coordination and 
progressive dementia (Collinge 2001). 
 

2.1.1 Animal 
 
Prion diseases occur in many animals and more frequently as 
infectious disorders (Table 1). The most known are scrapie in 
sheep and goat, bovine spongiform encephalopathy (BSE) in 
cattle, transmissible mink encephalopathy (TME) (Marsh et al., 
1991), chronic wasting disease (CWD) of mule deer and elk 
(Williams & Young 1980) and the more recently described feline 
spongiform encephalopathy (Wyatt et al., 1991). 
- Scrapie  
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Scrapie is the prototype of prion diseases. Its name originates 
from the main clinical symptom, an itching sensation caused by 
the disease that induces the animal to scrape its fleece off 
(Figure 2). The work of Cuillé and Chelle in 1936 provided the 
demonstration that scrapie can be transmitted to goats upon 
injection with scrapie infected brain homogenate. (La maladie dite 
tremblante du mouton est-elle inocuable? C. R. Acad. Sci. 203, 
1552-1554.). Since then, scrapie has effectively been 
transmitted experimentally into sheep (Gordon, 1946) and other 
species including laboratory mice (CHANDLER, 1961), 
demonstrating that it can cross the ‘species barrier‘ and it is 
currently used as model in prion research. To date, scrapie has 
never been shown to pose a threat to human health (Brown and 
Bradley, 1998). 
- Bovine Spongiform encephalopathy 
BSE, also known as ‘Mad Cow disease’ (‘la vache folle’), has raised 
the attention of the public for the first time in 1986 in Great 
Britain where it appeared like an epidemic disease in which nearly 
one million cows were infected with prions (Anderson et al., 
1996). Clinical symptoms include changes in temperament and 
movement disorders. Since the incubation time for BSE is around 
5 years, infected cattle slaughtered at 2 or 3 years of age were 
in a pre-symptomatic phase and therefore not recognized as 
afflicted by BSE (Stekel et al., 1996). The disease is caused by 
meat and bone meal (fed primarily to dairy cows) derived from 
offal of sheep, cattle (probably affected by a rare sporadic BSE), 
pigs and chickens as they represent high sources of nutrients 
(Wilesmith et al., 1991; Nathanson et al., 1997). Changes in the 
feeding system eradicated the epidemic that reached its peak in 
1992, but sporadic cases can still arise occasionally (Colby and 
Prusiner, 2011). 
Brain extracts derived from prion-infected cows can transmit the 
disease to mice, cattle, sheep and pigs after intracerebral 
inoculation (Dawson et al 1990a; Dawson et al 1990b; Fraser et 
al., 1988 Aguzzi and Calella 2009). More importantly, and 
differently from scrapie, BSE can be transmitted to humans 
resulting in a new variant of the disease, vCJD, by ingestion of 
contaminated food (see below, section 2.1.2). In 1994, the first 
cases of vCJD in teenagers and young adults occurred in Britain 
(Will et al., 1996) and in 1996 one case presenting unusual 
neuropathological features that did not match with CJD cases 
(Prusiner 1998), was recognized in France (Chazot et al., 1996).  
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2.1.2 Human 
 
Human prion diseases, traditionally classified into Creutzfeldt-
Jakob disease (CJD), Gerstmann-Straüssler-Scheinker disease 
(GSS) and Kuru, have been subsequently divided into three 
etiological categories: sporadic, acquired, and inherited (Table 1). 
- Sporadic prion diseases 
The sporadic forms (sCJD) were the first to be described by 
Creutzfeldt-Jakob in 1920. They are the most frequent among 
CJD forms, accounting for 80 to 90% of the cases, and present 
worldwide without sexual preference with an annual incidence of 
one per million (de Pedro-Cuesta et al 2006). The causes of sCJD 
are not known and probably derive from a spontaneous 
misfolding of PrPC into PrPSc (Hsiao et al., 1989; Prusiner, 
1989). Alternatively, it has been proposed that the disease could 
be due to a somatic mutation of the prion protein gene, PRNP, or 
infrequent amplification of low levels of PrPSc that are part of 
“normal” protein homeostasis (Colby and Prusiner 2011). 
Susceptibility to sCJD disease is influenced by a polymorphism at 
residue 129 of PRNP (Meade, 2006) and homozygosity 
predisposes not only to sporadic but also the acquired forms of 
CJD.  
The typical onset of the disease is at ~ 60 years old which 
quickly progresses in 4-5 months leading to death (Johnson and 
Gibbs, 1998). The pathology is limited to the central nervous 
system, where neuronal loss occurs with progressive 
vacuolization in the absence of amyloid plaques (Spero and 
Lazibat, 2010). Infected sCJD brains can transmit the disease to 
experimental animals by intracerebral injection (Brown et al., 
1994).  
- Inherited prion diseases 
Around 15% of human prion disease is inherited and in all cases 
to date over 40 different mutations in PRNP are associated with 
genetic forms of prion disease (Maeda et al 2006). According to 
the clinical symptoms, they have been classified as Gerstmann-
Straüssler-Scheinker syndrome (GSS) (MASTERS et al., 1981), 
familiar (f) CJD and fatal familiar insomnia (FFI) (Lugaresi et al., 
1986).  
The first reports of PRNP mutations described insertion and 
missense mutations in families with dominantly inherited 
neurodegenerative diseases (Owen et al., 1989; Hsiao et al., 
1989). Over 40 different types of PRNP mutations have been 
found and PRNP analysis allows for pre-symptomatic diagnosis of 
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inherited prion disease (Collinge, 2005). They include point 
mutations leading to amino acid substitutions or premature stop 
codons mostly affecting the region between the second and the 
third helix of the carboxy-terminus and octapeptide repeat 
insertions (OPRI) (Figure 5). 
 

 
Figure 5 The human PrPC protein and its mutants. The mature human PrPC 
protein contains 208 amino acid residues. It features two positively charged amino 
acid clusters denoted CC1 and CC2 (blue boxes), an octapeptide repeat region (OR) 
(green boxes), a hydrophobic core (HC) (gray box), three #-helixes (H1-H3) (red 
boxes), one disulphide bond (S–S) between cysteine residues 179 and 214, and two 
potential sites for N-linked glycosylation (red forks) at residues 181 and 197. A 
glycosylphosphatidylinositol anchor (GPI) (yellow box) is attached to the C-terminus of 
PrP. This figure indicates in black framed boxes point mutations and insertions found 
in the human PRNP gene in patients with prion disease. The associated 
polymorphisms of codon 129 (methionine M or valine V) are indicated. Amino acids 
are given in single-letter code. The asterisk indicates a stop codon; therefore, this 
mutation results in a truncated protein. From Aguzzi et al 2008 

 
The pathology of this group of prion diseases can vary depending 
on the actual mutation, as well as on the polymorphisms at codon 
129, that represent a key determinant of genetic susceptibility 
to acquired and sporadic prion diseases (Collinge 2001). Also, 
given the heterogeneity in clinical signs, the effects of 
unidentified cellular modifiers and environmental factors should 
be taken into account (Kovacs and Budka, 2008). 
- Acquired prion diseases 
Infectious forms of prion diseases include kuru, iatrogenic CJD 
(iCJD) and variant CJD (vCJD).  
Kuru was firstly described in the ’60s by Gajdusek and Zigas 
(Gajdusek and Zigas, 1957) as an endemic disease among some 
aborigines tribes of New Guinea, particularly in the Fore Tribe and 
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neighboring tribes. The route of transmission was attributed to 
the cannibalistic rituals through ingestion of the brains of their 
dead relatives in an attempt to immortalize them. The typical 
progression for kuru is progressive cerebellar ataxia, evolving in 
few months with a very broad incubation period of 4 to 40 years. 
With the end of cannibalism in Papua New Guinea, kuru is now 
eliminated (Aguzzi et al., 2008).  
Iatrogenic CJD is a rare form of prion disease deriving from 
accidental transmission during the course of medical or surgical 
procedures. In 1974, the first case of iCJD caused by corneal 
transplantation of a graft derived from a patient suffering from 
sCJD was reported (Duffy et al., 1974). Later on, other routes of 
transmission derived from prion-tainted human growth hormones 
and gonadotropin, dura mater grafts and blood transfusion were 
also reported. The incubation period ranges between 1 and 15 
years and death occurs around 15 months from the onset of the 
symptoms (Colby and Prusiner, 2011; Prusiner, 1998).  
Among the infectious forms of prion diseases, the variant form 
(vCJD) is the one that has caught the attention of the public the 
most. Indeed, in 1996 a major epidemic of vCJD appeared in 
different countries, particularly in the UK, where the number of 
reported cases had the highest incidence (about 150) (Will et al., 
1996). Patients are generally young at the onset of the disease 
(average onset is at 29 years), have a significant longer disease 
course, present florid plaque deposits (vacuolization) in the brain 
and are homozygous for methionine at position 129 in the PRNP 
gene that suggests a genetic susceptibility for vCJD. 
Interestingly, in experimentally infected mice, prions from 
patients with vCJD and prions from BSE-cattle gave similar 
pathological and biochemical characteristics (i.e., incubation 
period and localization in brain), leading researchers to conclude 
that the most likely cause for vCJD in humans is the consumption 
of BSE-contaminated food (Bruce et al., 1997; Hill et al., 1997) . 
A single case of vCJD in a patient heterozygous at codon 129 
has also been reported, raising the possibility of a second wave 
(with late onset) of “mad cow”–related deaths (Kashi et al 
2009). 
 

2.2 Prion protein gene  
 
The prion protein gene (PRNP) belongs to the PRN gene family 
that consists of PRND, encoding the Doppel protein (Moore et al., 
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1999), and SPRN, encoding Shadoo (Watts and Westaway, 
2007). PRNP is located in the short arm of the chromosome 20 
in humans and in a homologous region in mouse chromosome 2 
(Sparkers et al 1986). The open-reading frame (ORF), responsible 
for the transduction of the PrPC protein, resides in a single exon 
in all known mammalian prions and avian genes PRNP (Basler et al 
1986) (Westaway et al., 1987). However, the gene itself 
comprises two to three exons that contain untranslated 
sequences including the promoter and termination sequence 
(Hsiao et al., 1989; Gabriel et al., 1992). The PrP promoter 
contains multiple copies of GC-rich repeats that represent a well-
known binding site for the transcription factor Sp1 site driving 
expression in many different tissues (McKnight and Tjian, 1986). 
PRNP transcript is constitutively expressed in different tissues 
and especially within the brain of different animals, but is highly 
regulated during development (Chesebro et al., 1985; Oesch et 
al., 1985). In addition, PRNP mRNA does not increase during the 
course of prion disease (Oesch et al 1985).  
Furthermore, high levels of similarities in the PRNP sequence have 
been found by aligning more than 40 translated sequences from 
different species (Colby and Prusiner 2011). This highlights the 
importance of PrPC protein functions and explains why the gene 
has been conserved through evolution. However, variations in PrP 
sequences exist both between species and between individuals 
within species (Figure 6), thus affecting their susceptibility to 
prion, as mentioned above in section 2.1.2. 
 

 
Figure 6 Variation of in the prion protein gene. Species variations of the prion 
protein gene. The x-axis represents the human PrP sequence, with the five 
octarepeats and H1–H4 regions of the putative secondary structure shown, as well as 
the three #-helices A, B, and C and the two "-strands S1 and S2 as determined by 
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NMR. Vertical bars above the axis indicate the number of species that differ from the 
human sequence at each position. Below the axis, the length of the bars indicates the 
number of alternative amino acids at each position in the alignment. From Colby and 
Prusiner, 2011 

Knock-out mice for PRNP gene (as Prnp 0/0, Zürich I and Prnp -/-
, Edinburgh) have been generated from different laboratories 
(Bueler et al 1992; Manson et al 1994). These mice are vital, do 
not show particular signs of alterations and develop normally. In 
contrast, other mice models ablated of PRNP (Ngsk Prnp 0/0 and 
Rcm0 Prnp 0/0) did show some dysfunction, afterwards 
attributed to abnormal expression of Doppel and due to the 
technique used to engineer these mice (Sakaguchi et al., 1996; 
Moore et al., 1999). But, in agreement with the ‘prion-only’ 
hypothesis all these mice are resistant to prion infection (Aguzzi 
et al 2008).  
 

2.3 The cellular prion protein: structure and function 
 
PrPC is a ubiquitous glycoprotein expressed early in 
embryogenesis and present in high levels in the central nervous 
system in adult, particularly in neurons but also in glial cells 
(Manson et al 1992; Harris et al 1993; Moser et al 1995; Ford et 
al 2002). PrPC normally localizes on the extracellular leaflet of 
the plasma membrane where it associates with cholesterol-
enriched lipid rafts. In neurons, PrPC is predominant in axons and 
dendrites (Mironov et al., 2003). It seems to be excluded from 
synaptic vesicles but present within the synaptic specialization 
and perisynaptically, so its role at the level of the synapse is still 
controversial (Fournier et al., 1995; Laine et al 2002; Vassallo 
and Herms, 2003). In addition, PrPC is widely expressed in the 
immune system, in hematopoietic stem cells and mature 
lymphoid and myeloid compartments (Isaacs et al., 2006). Also, 
many other tissues and organs like the spleen, intestines, the 
skin, muscles and the heart have been found positive for PrPC 
expression. The PrPC precursor is a protein of 254 amino acids 
(Figure 7A).  
After cleavage of a 22 amino acids signal peptide in the 
endoplasmic reticulum (ER), a glycosylphosphatidilinositol (GPI) 
anchor, which mediates its anchoring to the membrane, is 
attached to the C-terminus of the protein (Stahl et al., 1987). 
The two Cys residues 179 and 214 are engaged in the formation 
of a disulphide bond essential for the stability of the protein. The 
protein exists as un-, mono- or di-glycosylated, as one or two 



 27 

oligosaccharidic chains can be linked to two asparagines (N) 
(residues 181 and 197 in humans) in the C-terminal part of PrPC 
in the Golgi apparatus during the journey of the protein to the 
plasma membrane.  
At the structural level, PrPC has a long, flexible N-terminal tail 
(residues 23-128) that is present in all the animal species studied 
(Prusiner 1998). It contains an octarepeat region (OR) consisting 
of 5 repeats of the sequence PHGGGWGQ (major binding site for 
divalent cations), a basic charged region (CC) important for PrPC 
trafficking and an hydrophobic domain (HR) that can be used by 
PrPC to assume different transmembrane topologies. Indeed, 
PrPC presents at least three distinct topological orientations: the 
fully extracellular form (or (sec)PrP) which is GPI anchored and 
two transmembrane isoform (called Ntm-PrP and Ctm-PrP) with 
opposite sequence orientations with respect to the lumen of the 
endoplasmic reticulum (Nicolas et al., 2009). Following the 
unstructured N-terminus is a globular C-terminal domain 
consisting of three α-helices interspersed with two-stranded 
antiparallel β-sheets that flank the first α-helix. (Figure 7B) (Zahn 
et al., 2000; Hornemann et al., 2004). 
 

 
Figure 7 (A) PrPC primary structure and (B) tertiary structure of PrPC. The 
numbers describe the position of the respective amino acids. CC (red) defines the 
charged cluster. HR (orange) defines the 'hydrophobic region'. S-S indicates the single 
disulfide bridge. OR, octarepeat region. Modified from Lewis and Hooper 2011 and 
Aguzzi and Heikenwalder 2006 

 
The structure of several mature PrPC proteins in mice, cattle, 
humans and Syrian hamsters is very similar (Lysek et al., 2005; 
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Calzolai et al., 2005), thus suggesting a relevant evolutionary 
conserved function for this protein. 
 
A plethora of cellular functions have been attributed to PrPC but 
as already mentioned above its physiological role appears to be 
redundant, since PrP knock-out mice are vital and do not present 
severe abnormalities (Bueler et al 1992; Manson et al., 1994a). 
However, a growing number of studies implicate PrPC in diverse 
cellular processes (Nicolas et al., 2009) as cellular resistance to 
oxidative stress (Milhavet and Lehmann, 2002), cell signalling 
(Mouillet-Richard et al., 2000), copper and zinc metabolism 
(Pauly and Harris, 1998; Watt and Hooper, 2003), synaptic 
transmission (Collinge et al., 1994) and cytoprotection through 
anti-apoptotic activity (Kuwahara et al., 1999; Bounhar et al., 
2001). Recently, it has been shown that PrPC is required for the 
maintenance of myelin sheath around peripheral nerves (Bremer 
et al., 2010; Benvegnù et al., 2011). In addition, a role for PrPC 
as cellular receptor of oligomeric forms of amyloid-β, mediating 
its toxic effect in Alzheimer's disease, has been described by 
Lauren and co-workers (Lauren et al., 2009). In contrast, other 
reports have shown that amyloid-β toxicity is independent from 
PrPC (Balducci et al., 2010; Calella et al., 2010; Kessels et al., 
2010). Therefore, its role in Alzheimer's disease is still 
controversial (see paragraph 6.5). Besides, it has been shown 
that PrPC is implicated in cell adhesion (Málaga-Trillo et al., 
2009), focal adhesion formation and filopodia extention (Schrock 
et al 2008) . These findings point out towards an additional role 
of PrPC in cytoskeleton dynamic and remodeling and cell-to-cell 
communication.  
The identification of interacting partners of PrPC is of 
fundamental importance not only to provide new insights into its 
role in physiological conditions but also to better understand the 
basic mechanism of PrPC-PrPSc conversion that leads to 
neuropathology (see paragraph 6.4). In a recent report, a series 
of interacting partners for PrPC has been found by using a 
proteomics approach (Zafar et al., 2011). The results have 
confirmed 15 interacting partners already shown to interact with 
both PrPC and PrPSc but 28 new proteins were also identified. A 
functional categorization of these proteins (Figure 8) confirmed 
many of the assigned roles for PrPC in highlighting its multi-
faceted functionality and involvement as a biological platform for 
diverse cellular processes. 
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Figure 8 Functional categorization of putative PrPC binding partners. Modified from 
Zafar et al 2011. 

 

2.4 Biochemical and structural properties of PrPSc 

 
Purified full-length PrPSc is insoluble in non-ionic detergents and 
is partially resistant to proteolytic cleavage. Indeed, proteinase K 
treatment removes a fragment of about 12 kDa from the N 
terminus of PrPSc (Parchi et al., 1996) leaving a protease-
resistant core that retains infectivity (Cronier et al., 2008) and is 
referred to as PrP res orPrP27-30 because of the apparent size 
of the monomer in western blots. Limited protease digestion has 
been a convenient tool to detect PrPSc because the same 
treatment fully hydrolyzes the cellular protein PrPC thus allowing 
the discrimination between the two forms (Figure 9A and B). 
Furthermore, these observations suggest that the N-terminal 
region of PrP (up to around amino acid 90) is not essential for 
self-propagation. Experiments using transgenic mice expressing 
different PrP truncations confirmed that the minimal region 
required for sustaining PrPSc in vivo propagation starts from 
residue ~90 all the way up to the C-terminal part of PrP 
(Supattapone et al., 1999). Also, it has been shown that 
cathepsin D digestion of the C-terminus of PrPSc and liberation of 
the glycosylphosphatidylinositol (GPI) anchor results in a 
fragment that retains prion infectivity (Lewis et al., 2006). 
Moreover, recently, transgenic mice expressing PrPC lacking a GPI 
anchor, which normally attaches PrP to the membrane (see 
paragraph above 2.3), can propagate prions and produce 
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infectious anchorless PrPSc that is mostly non-glycosylated 
(Chesebro et al., 2005), thereby suggesting that both GPI anchor 
and glycans are not a prerequisite component of the infectious 
prion.  
 
 

 
Figure 9 (A) Schematic representation of hamster Prnp gene and PrP isoforms. 
The Prnp ORF encodes a protein of 254 residues, which is shortened to 209 residues 
during posttranslational processing. PrPSc is an alternate conformation of PrPC with 
identical primary structure. Limited proteolysis of PrPSc cleaves the amino terminus 
and produces PrP 27-30, composed of approximately 142 residues. (B) Western 
blotting of cell lysates from prion-infected (lane 2) and uninfected  (lane 3) CAD cells. 
Samples in lanes 2 and 3 were digested with 50 $g/$l proteinase K for 30 min at 37°C, 
completely hydrolyzing PrPC , thus allowing to discriminate between the two isoforms 
of PrP. Blot developed with anti-PrP monoclonal antibody Sha31. Modified from 
Prusiner 2004. (C) Schematic representation of the structures of PrPC and PrPSc 
(Picture from http://healthmad.com/conditions-and-diseases/scientists-suspect-a-
spontaneous-prion-brain-in-contact-with-the-metal/) 

 
Unlike PrPC, which can be readily cleaved from membranes by 
treatment with phosphatidylinositol-specific phospholipase C 
(PIPLC) (Stahl et al., 1987), PrPSc is resistant to such treatment 
(Caughey et al., 1990; Borchelt et al., 1993) suggesting that a 
conformational change prevents accessibility of PIPLC. Therefore, 
limited proteolysis and biochemical techniques also provided 
structural information on PrPSc. As an alternative, several groups 
have used low-resolution biophysical techniques to gather 
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structural information on PrPSc because for high-resolution 
techniques like X-ray crystallization and NMR the properties of 
prion aggregates pose serious challenges, which are similar for 
most amyloids.  
Initial structural studies by Fourier Transform Infrared 
Spectroscopy (FTIR) and circular dichroism have demonstrated 
that unlike PrPC, which is predominantly α-helical, PrPSc isolated 
from diseased brains is highly enriched in β-sheets (45% 
compared to 3% in PrPC) (Gasset et al., 1992; Pan et al., 1993) 
(Figure 9C). Transmission electron microscopy (TEM) (McKinley 
et al., 1991; Merz et al., 1981) and more recently atomic force 
microscopy (Sim and Caughey, 2009) studies revealed that brain-
isolated PrPSc molecules usually appear as amorphous aggregates 
of heterogeneous sizes. Upon exhaustive purification procedures, 
including prolonged protease treatment, the aggregates acquire 
more defined structures called prion rods. Rods are typically in 
the range of 10- to 100-nm long and 5-nm wide and are usually 
shorter than classical amyloid fibrils (Colby et al., 2009). 
Interestingly, PrPSc deposits are stained with congo red and show 
green-gold birefringence, typical of amyloids (Prusiner et al., 
1983) (see chapter 1, paragraph 1.2 and figure 1). Although 
PrPSc isolated from the brain of diseased animals does not form 
crystals amenable to X-ray crystallography, low-resolution 
diffraction patterns can be obtained by X-ray fiber diffraction 
(Eanes and Glenner, 1968). This technique has been widely used 
to study the organization of amyloids, and has revealed the 
typical motif called cross–β-sheet (see chapter 1 paragraph 1.2 
and figure 1). Indeed, a similar motif was identified in PrPSc 
(PrP27-30) with a typical meridional 4.72 Å cross–β-reflection, 
whereas the equatorial 10 Å reflection, typical of amyloids, was 
replaced by 8-Å signal (Wille et al., 2009). Overall, these data 
suggest that PrPSc has a structure with cross–β-packing similar 
to that of amyloid fibrils. On the basis of the informations 
obtained from low-resolution biophysical studies, several 
structural models of PrPSc have been proposed in the last 
decade. Among them the β-helix, the β-spiral and the exended in-
register β-sheet model (Figure 10). An important difference in 
these models is the structural fate of the C-terminal domain, 
which is globular in PrPC, with well-defined and stable α-helices 
(Figure 7B). In both the β-helical and the β-spiral models, the C-
terminal domain retains most of its structure upon misfolding 
(Figure 10A and B) whereas in the extended in-register-β-sheet 
model, the entire protein refolds into a mainly β-sheet 
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conformation, thus explaining the high resistance to proteolytic 
degradation of the C-terminal part of PrPSc buried inside the 
polymer (Figure 10C). It is difficult to determine which of these  
 

 
Figure 10 Alternative models proposed for the structure of PrPSc. (A) The "-
helical model. (B) The "-spiral model. (C) The parallel in-register extended "-sheet 
model. The C-terminal region (residues 178–230) is depicted in dark green in the 
three models. From Diaz-Espinoza and Soto, 2012. 

 
models is a closer representation of the PrPSc structure due to 
the lack of high-resolution biophysical experiments. Furthermore, 
although the structure of the self-propagating infectious agent is 
unknown, recent studies have demonstrated that small PrP 
oligomers of 14-28 molecules are more infective then monomeric 
or fibrillar PrP (Silveira et al., 2005; Tixador et al., 2010). More 
recent reports have described the isolation of partially detergent-
soluble infectious PrPSc oligomers that are markedly more 
protease sensitive than classical prions (Pastrana et al., 2006). 
Solving the structure of PrPSc will provide a major step in 
understanding how proteins can propagate biological information. 
 
 
 
 

2.5 Prion replication 
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Two different conformational conversion models have been 
proposed to explain the phenomenon of prion replication: the 
‘template-directed refolding’ model (Prusiner, 1998) and the 
‘seeded nucleation’ model (Jarrett and Lansbury, 1993). In the 
‘template-directed refolding’ PrPC to PrPSc conversion would 
occur through “instructions” given by PrPSc to PrPC in order to 
change the structure of the latter in to the pathological 
conformer of the protein (Figure 11A). On the other hand, the 
‘seeded nucleation’ model proposes that PrPSc could exist 
together with PrPC with the equilibrium shifted towards PrPC 
under physiological conditions. However, the intrinsic instability 
of PrPSc could lead to aggregation of this conformer in more 
stable ‘seeds’ that are prone to incorporate other monomers, 
thus shifting the equilibrium towards an accumulation of the 
pathological isoform PrPSc (Jarrett and Lansbury, 1993; Soto et 
al., 2006; Caughey et al., 2009) (Figure 11B). Most likely prion 
replication follows the seeding-nucleation model and the 
spontaneous (unseeded) formation of PrPSc, which would be 
thermodynamically unfavourable, may explain the low frequency 
of sporadic disease. 

 
Figure 11 Model of prion replication. (A) The 'refolding' or template-directed 
assistance model postulates an interaction between exogenously introduced disease-
associated prion protein (PrPSc) and endogenous cellular prion protein (PrPC), which 
is induced to transform itself into more PrPSc. A high-energy barrier might prevent the 
spontaneous conversion of PrPC to PrPSc. (B) The 'seeding' or nucleation–
polymerization model proposes that PrPC and PrPSc are in a reversible 
thermodynamic equilibrium. So, only if several monomeric PrPSc molecules are 
mounted in a highly ordered seed can more monomeric PrPSc be recruited and 
eventually aggregate to form amyloid. In such a crystal-like seed, PrPSc becomes 
stabilized. Fragmentation of PrPSc aggregates increases the number of nuclei, which 
can recruit more PrPSc, and so seems to result in replication of the agent. In sporadic 
prion disease, fluctuations in the local PrPC concentration might (exceptionally rarely) 
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trigger spontaneous seeding and self-propagating prion replication. From Aguzzi et al 
2001 

 
However, a precise knowledge of both PrPC and PrPSc structural 
features is necessary to support one or the other hypothesis. 
Recently, the development of an efficient prion-replication 
system in vitro, termed the protein misfolding cyclic amplification 
(PMCA) assay had become a powerful tool to provide information 
on the nature of the infectious agent (Castilla et al., 2008; 
2005). In this system, prions are replicated by mixing minute 
amounts of brain homogenates containing PrPSc with healthy 
brain homogenates harboring PrPC. The replication of PrPSc can 
be amplified exponentially, as PrPSc polymers are fragmented by 
sonication, multiplying the number of seeds for conversion (Soto 
et al., 2006). Importantly, the newly converted PrPSc has 
physicochemical properties identical to those of brain-derived 
PrPSc and is also highly infectious in wild-type animals (Castilla et 
al., 2005). PMCA allows faithful replication of prion strain 
properties (Castilla et al., 2008), including complex 
characteristics such as species barrier (see below pararagraph 
2.6) (Figure 12). 
 

 
Figure 12 In vitro generation of infectious prions. Subjecting a solution of highly 
diluted brain-derived PrPSc in an excess of PrPC to many cycles of protein misfolding 
cyclic amplification (PMCA) resulted in amplification of the amount of PrPSc at the 
expense of the normal protein (A) . When the in vitro generated PrPSc was inoculated 
into wild-type hamsters, all of the hamsters developed a disease with clinical, 
histological and biochemical characteristics typical of scrapie. Control hamsters 
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inoculated with the original diluted material (B) without amplification remained free of 
the disease. From Soto et al 2006 

 
Nevertheless, the use of brain homogenates limits the usefulness 
of the PMCA assay in understanding the mechanism of prion 
replication.  
It has been long postulated the possibility that one or more 
additional factors (generally termed as protein X) are required for 
the conversion process (Prusiner 1998). Indeed, incubation of 
purified PrPC and PrPSc does not allow prion replication (Saborio 
et al 1999) and addition of the bulk of cellular protein, restore 
the conversion process (Saborío et al., 1999), therefore 
providing direct evidence that other factors present in the brain 
are essential to catalyze prion propagation (Soto et al., 2002). 
Supattapone and colleagues generated infectious prions by using 
purified PrPC from healthy brains as substrate for PMCA with the 
addition of synthetic polyanions and the presence of co-purifying 
lipids (Deleault et al., 2007) . Recently, Wang and co-workers 
have reported the formation of infectous prions from 
recombinant PrP in the presence of synthetic lipids and RNA  
(Wang et al., 2012; Kim et al., 2010). Altogether, these findings 
clearly indicate that non-protein components participate in prion 
replication, at least in vitro, pointing towards a role for 
polyanionic molecules. Indeed, negatively charged molecules 
(particularly nucleic acids, lipid particles and heparin sulfate 
proteoglycans) have long been proposed as PrP partners during 
conversion (Deleault et al., 2007; Cordeiro and Silva, 2005; 
Caughey, 1994). Cofactor molecules can influence PrP misfolding 
through at least two different mechanisms (Diaz-Espinoza and 
Soto, 2012). In the first model, the cofactor may act as a 
catalytic molecule that binds both the normal and misfolded PrP 
forms and brings them together, lowering the activation energy 
for the conversion process (Figure 13A). Upon binding, the 
cofactor may also induce conformational changes in PrPC and/or 
PrPSc that facilitate the interaction and conversion process. In 
the second model, the infectious PrPSc conformation would be 
stabilized by the cofactor (Figure 13B). 
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Figure 13 Potential roles of non-PrP cofactor molecules during conversion of 
PrPC into PrPSc. (A) Template-based conversion of PrPC (blue triangles) into PrPSc 
(red triangles) requires surpassing a large energetic barrier that may preclude efficient 
misfolding during experimental timescales. In the presence of certain cofactor 
molecules (red line), the conversion will be greatly enhanced by reduction in the free 
energy of activation (%%G‡), as in typical surface-catalyzed chemical reactions. (B) 
The formation of an infection-competent misfolded PrP conformation depends on 
permanent binding of a cofactor molecule (blue hexagon) to PrPSc, leading to the 
stabilization of this structure. The resulting complex is able to propagate and produce 
disease upon in vivo transmission, whereas in the absence of this molecule, PrPSc-
only aggregates (blue trapezoids) are unable to propagate in vivo. From 

 
In biological terms, the main difference is whether the cofactor is 
a molecule provided by the host or a component of the infectious 
particle. In the latter case, the infectious agent would not be 
‘protein-only’ but rather would consist of a complex between 
PrPSc and the cofactor. Indeed, PrPSc-templated conversion of 
pure PrPC by PMCA in the presence of light-cleavable nucleotides 
generated infectious PrP that showed no differences in titer and 
strain properties when the nucleotides were hydrolyzed after 
conversion (Piro et al., 2011), suggesting that polyanions act 
during conversion and do not need to be part of the infectious 
agent. It is therefore likely that polyanionic molecules act as two-
dimensional catalytic scaffolds that efficiently gather PrPC and 
PrPSc, increasing the likelihood of conversion (Cordeiro, 2005). 
Finally, though many molecules can be found associated with 
PrPSc particles, no specific molecules are present in high quantity 
in the infectious material and amyloid forms of PrP generated 
from solely recombinant protein can induce transmissible 
neurodegenerative disease upon inoculation into transgenic mice 
that overexpress PrP (Colby et al., 2009; Legname et al., 2004) 
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In addition, differences in the amino acidic sequence can influence 
the conversion efficiency (Scott et al., 1989) . Also different 
levels of PrPC can be directly proportional to the rate of PrPSc 
formation and inversely correlated to the length of the incubation 
time (Bueler et al 1994). In some cases, the conversion process 
itself is impaired, a phenomenon known as ‘transmission barrier’ 
(see below in paragraph 2.6).  
Taken together, these findings support the ‘protein-only’ 
hypothesis and highlight the strong identity of the different prion 
strains that characterized by their diverse biochemical, structural 
and biological properties (Castilla et al 2008). Still, the lack of 
high-resolution structural data makes it impossible to rule out the 
stabilizing role of a cofactor as an integral part of the infectious 
agent. 
 

2.6 Strains and transmission barrier 
 
Prion strains represent one of the most intriguing features of 
prion diseases. They are defined as infectious isolates that, when 
transmitted to identical host, exhibit distinct prion-disease 
phenotypes that are maintained unaltered for several passages 
(Aguzzi and Calella 2009). Phenotypic traits associated with 
different strains include distinct patterns of protein aggregate 
deposition, incubation times, histopathological lesion profiles and 
specific neuronal targets. The phenomenon was first noticed 
when goats where inoculated with “hyper” and “drowsy” isolates 
from sheep. Indeed, two different phenotypic traits of the 
disease were observed accordingly with the inoculated isolate 
derived from infected animals with characteristic disease-
associated traits (Pattinson and Millson 1961). On SDS-PAGE, 
prion strains exhibit specific migration profiles of PrPSc fragments 
following PK-assay highlighting their conformational diversity 
(Parchi et al 1999). Also, they can be associated with different 
glycosylation patterns resulting in different ratios between the 
glycosylated forms (Prusiner 1998; Collinge 2001). Both PrPC 
and PrPSc exist in three different glycosylated forms: 
unglycosylated, mono-glycosylated and di-glycosylated. For 
example, PrPSc fraction in immunoblots of brain extracts after 
digestion with PK deriving from individuals affected by variant 
CJD lead to a specific glycosylation pattern (type 4 pattern), 
similar to the one given by bovine spongiform encephalopathy- 
(BSE) affected brains and different to the one deriving from 
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sporadic CJD and iatrogenic CJD (Type 1, 2 or 3 patterns) (Hill et 
al., 2000; Parchi et al., 1999) (Figure 14). 
 

 
Figure 14 Representation of the three glycosylated PrPSc moieties (un-, mono-, 
and diglycosylated PrPSc) in immunoblots of brain extracts after digestion with 
proteinase K. Different inocula result in specific mobilities of the three PrP bands as 
well as different predominance of certain bands (top panel). These characteristic 
patterns can be retained, or changed to other predictable patterns after passage in 
wild-type mice (bottom panel). On the basis of the fragment size and the relative 
abundance of individual bands, three distinct patterns (PrPSc types 1–3) were defined 
for sCJD and iCJD cases. In contrast, all cases of vCJD and of BSE displayed a novel 
pattern, designated as type 4 pattern. From Aguzzi et al 2009 

 
It has been proposed that the prevalence of distinct glycoforms 
may determine the structure of infectious PrP seeds and thereby 
determine strain properties (Collinge, 2005). However, 
transmission electro microscopy studies (TEM) analyses do not 
show appreciable differences between distinct strains (Diaz-
Espinoza and Soto, 2012). Instead, sedimentation velocity 
experiments have shown that size-distribution patterns differ 
between distinct strains, and the size of the polymers tends to 
correlate with infectivity properties (Tixador et al., 2010). A 
plausible interpretation is that prion strain differences lay within 
unique secondary and/or tertiary structural elements that give 
rise to strain-specific quaternary arrangements upon in vivo 
spreading (Diaz-Espinoza and Soto, 2012). Therefore, the size 
distribution of a particular strain will be faithfully recovered upon 
injection and replication even with low amounts of highly 
disrupted starting material (Diaz-Espinoza and Soto, 2012). 
Recent work in mouse models indicate that unique prion strains 
correlate with the sensitivity of the associated fibrils to in vitro 
denaturation with less stable prions able to replicate and kill the 
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host more rapidly (Legname et al., 2006). Prion strains display 
different organ tropisms. Some of them preferentially propagate 
in the central nervous system, as bovine prion causing BSE and 
some others are also detected in secondary lymphoid organs as 
many scrapie and vCJD strains (Aguzzi and Calella 2009). Yet, 
this different tropism suggests that cell-specific co-factors, such 
as RNA species, chaperones or lipids, are required for replicating 
prion in different physiological environment (Aguzzi and Calella 
2009). 
‘Strain mutations’ are also observed upon transmission of prions 
to the same species carrying a different polymorphism in PRNP, 
or to different species (Wadsworth et al., 2004; Bruce, 1993). 
Also, many of the inoculated animals have a delay in developing 
or do not develop the disease (Carlson et al., 1989; Telling et al., 
1995, 1994; Tateishi et al., 1996) . This phenomenon is referred 
to as the ‘transmission barrier’ and was first noted by Ian 
Pattison in 1965 (Colby and Prusiner, 2011).  
It seems that the most important factor regulating the 
transmission barrier is the sequence homology between PrPC in 
the inoculum and PrPC expressed by the host. In fact, mice 
resistant to a different species prion strain became susceptible to 
the infection if artificially expressing PrPC of that species 
(Prusiner et al., 1990). For example, transmission studies of 
human prion diseases have shown that while classical CJD prions 
may be efficiently transmitted to transgenic mice expressing 
human PrPC, they encounter a significant barrier for transmission 
to wild-type mice. On the other hand, vCJD prions transmit 
readily to wild-type mice, whereas their transmission to 
transgenic mice expressing human PrPC is relatively inefficient 
(Collinge 2001; Collinge and Clarke, 2007). 
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3. Invasion and Spreading: PrPSc lethal journey to the 
brain 
 
TSEs as variant of Creutzfeldt-Jacob disease, scrapie or chronic 
wasting disease can be acquired from consumption of 
contaminated food. Understanding how exposure to TSE agents, 
present in the environment, leads to invasion and spreading to 
the brain of a particular host is of fundamental importance in 
many different aspects of prion diseases, including the control of 
the infection, diagnosis, prophylaxis and identification of 
therapeutic approaches. 
From several studies, it is now well accepted that prion infection 
starts mainly with the uptake of prions by the alimentary tract or 
through scarification of gums, skin and conjunctiva (Beekes and 
McBride, 2007). It is interesting to note that the spreading of 
prions may also depend on their site of entry, strain and species, 
as well as dose and PrPC genotype of the host (Kovacs and 
Budka, 2008). Despite the number of variables involved in prion 
spreading, from substantial data present in the literature 
reviewed in great detail by Beekes and McBride (2007), it is 
possible to dissect the routing of TSE agents through the body in 
precise characteristic stages, summarized in Figure 15. 
Particularly: (A) accumulation of prions in lymphoid tissues; (B) 
neuroinvasion, consisting in the spread from the lymphoid tissues 
to the peripheral nervous system (PNS); (C) dissemination within 
the brain and spinal cord (central nervous system, (CNS)) and, 
(D) centrifugal spread from the CNS to further peripheral sites 
such as muscles (Beekes and Mc Bride 2007).  



 41 

 
Figure 15 Different stages of prion infection. 1) accumulation of prions in lymphoid 
tissues; (2) neuroinvasion, consisting in the spread from the lymphoid tissues to the 
peripheral nervous system (PNS); (3) dissemination within the brain and spinal cord 
(central nervous system, (CNS)) and, (4) centrifugal spread from the CNS to further 
peripheral sites such as muscles. This figure was kindly provided by L. Marzo 

 
 

3.1 From the periphery to the central nervous system: which is 
the route to follow? 
 
Following oral exposure, prions enter the host organism through 
the gut before invasion of the draining lymphoid tissues where 
the first amplification of PrPSc (e.g. prion replication) takes place 
(Andréoletti et al., 2000; Heggebø et al., 2002; Aguzzi, 2003). 
The mechanism by which prions spread from the gastrointestinal 
tract to the lymphoid tissues is still not well understood but 
different players with specific roles have been identified. 
From early studies in mice fed with scrapie or BSE agent, it was 
observed that the first prion deposition may occur in Peyer’s 
patches and mesenteric lymph nodes prior to infection to other 
lymphoid tissues (Kimberlin and Walker, 1989) and that the 
spleen does not play a major role in neuroinvasion (Maignien et 
al., 1999). Instead, gut-associated lymphoid tissue (GALT) and 
GALT-draining lymph nodes appear to play a more significant role 
in early pathogenesis (Beekes and Mc Bride 2007).  
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Different cell types have been implicated in prion transport and 
replication in lymphoid follicles such as microfold cells (M cells), 
follicle-associated epithelium (FAE), follicular dendritic cells 
(FDCs), dome and tangible body macrophages (TBMs) and 
dendritic cells (DCs) (Beekes and McBride, 2000). In addition, it 
has been shown that B cells and complement system can have a 
supporting role that appears not to be essential (Klein et al., 
1997, 2001; Mabbott et al., 2001). Also, at later stages of 
infection, lympho-reticular system (LRS) components seem to 
accumulate the scrapie agent (Beekes et al., 1996; McBride et 
al., 2001). A schematic representation with the main players that 
are thought to be involved in the uptake of prion from the gut to 
the lymphoid tissues is depicted in figure 16. 
 

 
Figure 16 Possible cells involved in the uptake of prion from the gut to the 
lymphoid tissues. The intestinal epithelium is protected by a single layer of epithelial 
cells bound by tight junctions. How TSE agents cross this protective barrier is not 
known, but several mechanisms. have been proposed. Within the epithelium, 
microfold (M) cells are specialized for the transepithelial transport of macromolecules 
and particles. One study suggests that M cells are also plausible sites for the transport 
of TSE agents across the intestinal epithelium. TSE agent transport across the 
intestinal epithelium might also occur independently of M cells. Alternatively, dendritic 
cells (DCs) can also acquire antigens directly from the intestinal lumen by opening up 
the tight junctions that join the epithelial cells and inserting their dendrites between 
them. Once across the intestinal epithelium, current data suggest that the TSE agent 
might be acquired by migratory DCs and macrophages. Although DCs are plausible 
candidates or the delivery of TSE agents to lymphoid tissues, macrophages seem to 
phagocytose and sequester them (Mabbott and McPherson 2006). Adapted from 
Beekes and McBride, 2007 

 
A consistent number of studies have shown that mainly GALT 
and, in minor part, other lymphoid tissues play a pivotal role in 
amplifying prions and acting as a bridge towards the CNS (Aguzzi 
and Calella 2009). Nevertheless a direct infection of the 
peripheral nervous system could also take place after oral 
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exposure, as observed in rodent models lacking a detectable 
lymphoid infection (Fraser et al., 1996; Race et al., 2000; 
Oldstone et al., 2002; Bartz et al., 2005). 
Of particular interest, a number of studies suggest a major 
involvement of FDCs, as GALT components, in prion replication 
(Montrasio et al., 2000; Mabbott et al., 2003, 2000). However, 
the mechanisms by which prions would spread from the 
gastrointestinal tract to the FDCs and from lymphoid tissues to 
the CNS are still undetermined (Mabbott et al 2000; Montrasio et 
al 2000; Mabbott et al 2003;). FDCs are immobile stromal-
differentiated cells that express high levels of PrPC (Brown et al., 
1999). They reside in the follicles and germinal centres and 
possess many fine dendrite processes used for the trapping and 
retention of antigen in a native state (Imazeki et al., 1992; 
Kapasi et al., 1993; Shortman and Liu, 2002). 
But how can immobile FDCs allow the passage of PrPSc from the 
intestinal barrier to the peripheral nerves? 
Indeed, prion neuroinvasion is initiated in the enteric nervous 
system and followed by a retrograde transport along the 
sympathetic and parasympathetic nerve fibers (Kimberlin and 
Walker, 1989; Beekes and McBride, 2000). Because of the 
absence of neuroimmune synapses between resident FDCs and 
nerve fibers, direct prion transfer mechanisms between this two 
cell types can be excluded (Defaweux et al., 2007; von Poser-
Klein et al., 2008; McGovern et al., 2009). FDCs might transfer 
prion to proximal cells or nerve endings through exosomes or 
vescicle secretion (von Poser-Klein et al., 2008; Prinz et al., 
2003). Alternatively, based on in vitro studies it has been 
hypothesized that M cells and mobile haematopoietic dendritic 
cells (DCs) might transfer prions from the intestinal barrier to 
FDCs and from FDCs to the nerve endings (Mabbott and 
MacPherson, 2006) 
Heppner and colleagues (Heppner et al., 2001) have shown in an 
in vitro system, consisting of a CaCo-2 epithelial cells monolayer, 
that microfold cells (M cells) are able to actively transcytose the 
scrapie agent through the basolateral site of the epithelium like in 
the case of some pathogenic microorganisms (Neutra et al., 
1996). M cells are localized between the villus epithelium and the 
follicle-associated epithelium of the Peyer’s patches and are 
specialized in transcytosis of macromolecules and particles. 
Therefore, PrPSc can cross the gut epithelium by this particular 
cell type, even if this is not the exclusive route. 
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Dendritic cells (DCs) are situated beneath the M cells in the 
intraepithelial pocket where they can uptake antigens that has 
been transcytosed by the M cells; therefore they are specialized 
in the capture of antigens in the periphery, followed by delivery 
to the lymphoid organs (Shortman and Liu 2002). Alternatively, 
DCs can directly uptake antigens from the intestinal lumen by 
opening the tight junctions of the intestinal barrier and 
interpolating their dendrites (Rescigno et al., 2001). Huang and 
co-workers (2002) have shown that DCs are indeed able to 
transport PrPSc from the gut to the prion-replicative lymphoid 
tissue. Also, PrPSc deposits have been detected in DCs from 
Peyer's patches, mesenteric lymph nodes or spleen, after oral 
exposure to prions (Defaweux et al., 2005; Dorban et al., 2007). 
Moreover, in mice lacking DCs, neuroinvasion is partially impaired 
because accumulation of PrPSc in lymphoid tissues does not take 
place following peripheral prion infection (Aucouturier et al., 
2001; Raymond et al., 2007; Cordier-Dirikoc and Chabry, 2008). 
In addition, DCs can potentially transfer prions to nerve cells both 
through direct contact with nerve fibers (Defaweux et al., 2005; 
Dorban et al., 2007) or trough Tunneling Nanotubes (TNTs) (see 
paragraph below) (Gousset et al., 2009; Dorban et al., 2007). 
Indeed, Gousset and co-workers from our lab demonstrated that 
bone-marrow-derived DCs (BMDCs) were able to transfer prions 
to primary neurons in co-culture condition, resulting in infection 
(e.g., prion replication) of the neuronal cultures. The authors also 
showed that BMDCs contacted co-cultured neurons through TNT-
like structures (Gousset et al., 2009). Overall, these data indicate 
that BMDCs can be possible candidates for the passage of PrPSc 
to FDCs and from FDCs to the PNS (Figure 17) (Gousset and 
Zurzolo, 2009).  
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Figure 17 Schematic representation of the passage of TSE agent from the gut lumen 
to the PNC. Migratory bone-marrow dendritic cells (DC) can then be possible 
candidates for the passage of PrPSc to FDCs in lymphoid tissues and from FDCs to 
the PNS. This figure was a kindly provided by L. Marzo. 

 
A further characterization of the role and the mechanisms of 
BMDCs-mediated prion transfer to primary neurons came from a 
first part of my PhD work in collaboration with Dr Langevin, 
(former post-doc in Dr Zurzolo’s lab) and resulted in a publication 
(Langevin et al., 2010) that is described and appended at the 
end of the session “Results 1”.  
 
On the way to the CNS, from the lymphoid tissues, PrPSc get 
access to the peripheral nerves prior to reaching the brain.  
Studies from McBride and co-workers (McBride et al., 2001) 
suggest that efferent fibres of both sympathetic (as the 
splanchnic nerve) and parasympathetic nerves (as the vagus 
nerve) can direct prions to the CNS in a retrograde direction from 
the enteric nervous system. In the case of parasympathetic 
nerves, the entry in the CNS occurs independently from the spinal 
cord highlighting the fact that different routes may be 
responsible for prion spreading to the CNS (Baldauf et al., 1997).  
Once the infection has reached the brain, it can spread along it in 
both anterograde and retrograde directions (Beekes et al., 
1996). For example, from a study in hamsters orally challenged 
with scrapie, it was observed that substantial amount of PrPSc 
was present in different muscles, including the tongue, providing 
the first evidence of a centrifugal spread of infection from the 
CNS to peripheral locations (Bosque et al., 2002).  
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3.2 Cell-to-cell spreading   
 
At the different stages of its lethal journey to the CNS (Figure 
17), PrPSc is transferred from one cell to another and this 
passage can involve several mechanisms (not mutually exclusive) 
probably depending on cell types, strains infecting and hosts.  
As depicted in figure 18, prion transmission may occur (A) by 
cell-to-cell contact through the conversion of recipient PrPC on 
the cell surface without internalization of donor PrPSc; (B) in 
association with secreted exosomes; (C) through the release in 
the medium of a C-terminal truncated form of PrPSc followed by 
uptake in the recipient cell; (D) by “GPI-painting” and, (E) by 
spreading through tunneling nanotubes (TNTs).  
 

 
Figure 18 Proposed mechanisms of cell-to- cell spread of prion infectivity. (A) 
Prion transmission through direct cell-to-cell contact(conversion of recipient PrPC 
without internalization of donor PrPSc). (B) Transmission of prions through exosomal 
PrPSc association; both a direct interaction of exosome-associated PrPSc with cell-
associated PrPC and incorporation of exosomal membrane with recipient cell 
membrane are represented. (C) C-terminal truncation of PrPSc allowing release from 
an infected cell and movement to an uninfected recipient cell. (D) "GPI-painting" mode 
of prion transfer. (E) PrPSc spread through tunnelling nanotubes, in association with 
small vesicles of lysosomal origin. Mode (A) is represented by lipid raft associated 
PrP, but could involve non-raft associated PrP. Mode (D) is depicted by transfer of cell 
surface PrPSc, but could potentially occur with exosomal PrPSc. From Lewis and 
Hooper 2011. 

 
A brief description of the different means of PrPSc transmission 
is presented below:  
- Cell-to-cell contact 
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From the works of Kanu and co-workers (2002) and Paquet and 
colleagues (2007), it has been shown that prion transmission 
needs a close cell-to-cell contact to occur and that infection can 
not be transmitted by infected cells when a physical separation 
between infected and uninfected cells occurs. However, in both 
reports, the authors have not postulated a model of 
transmission. The mechanism could involve, for example, PrPC 
conversion in trans in the recipient cell by contact with PrPSc 
present on the plasma membrane of an infected cell. Moreover, a 
transfer of infected apoptotic bodies in uninfected cells could not 
be totally excluded since dead infected cells are still able to pass 
the infectivity to naïve cells (Kanu et al., 2002). 
- Exosomes 
Exosomes are small vesicular carriers with a diameter of 40-100 
nm generated by invagination of the limiting membranes of 
cytoplasmic organelles known as multivesicular bodies (MBVs) 
and they are released in the extracellular space following the MVB 
fusion with the plasma membrane. These vesicles are involved in 
intercellular communication by transferring not only 
transmembrane proteins but also nucleic acids and other 
cytosolic components (Simons and Raposo, 2009). It has been 
shown that cells can release prions in association with exosomes 
(Vella et al., 2007; Fevrier et al., 2004), moreover, intracerebral 
injection of purified prion-containing exosomal particles resulted 
in the infection of healthy mice (Fevrier et al., 2004).  
-Microvesicles 
Besides vesicles of exosomal origin, a recent report describes the 
involvement of microvesicles (MVs) in prion spreading (Mattei et 
al., 2009). MVs are sub-micron membrane-bound vesicles 
released by healthy or damaged cells, whose number can increase 
upon injury, apoptosis or inflammation and are normally present 
in the blood (Ratajczak et al., 2006). Mattei and colleagues 
(2009) have shown that PrPSc is released from infected murine 
neuronal cell in association with MVs, resulting in infection both in 
vitro and in vivo. Moreover, it has been demonstrated that blood 
as well as plasma of animals experimentally infected with TSEs 
can transmit TSE infection by transfusion (Cervenakova et al., 
2003; Ludlam and Turner, 2006). In these cases, MVs could be 
the vehicles for prion transmission through infected blood.  
-Shedding 
Alternatively, it has also been reported that around 15% of PrPSc 
is present in a C-terminal truncated form in hamster brains (Stahl 
et al., 1990). This form results from the cleavage at the level of 
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Gly228, part of sequence Gly-Arg-Arg that is a target for 
proteolysis and release of bioactive peptides (Stahl et al 1990). 
The presence of this C-terminal truncated form of PrPSc in the 
medium following the actions of a phospholipase- or protease-like 
activity could also allow the spreading of PrPSc in neighboring 
uninfected cells (Lewis and Hooper, 2011). 
-GPI painting 
GPI painting phenomenon consists in the transfer from one cell to 
another by re-insertion of a functional GPI-anchored protein in the 
plasma membrane of the recipient cell and seems to occur both 
in vitro and in vivo (Kooyman et al., 1995; Legler et al., 2005). 
Baron and co-workers (2002) have suggested that GPI-painting 
could be one of the possible mechanisms of PrPSc transfer 
between cells, as described for PrPC in a co-culture system using 
a PrPC expressing cell line (M17-PrP) and the cell line IA lacking 
PrPC (Liu et al., 2002). 
-Tunneling nanotubes (TNTs)  
TNTs and their role in prion spreading are described and 
discussed largely in the next paragraphs (paragraph 3.3 and 
3.3.1) as I focused on this mechanism of intercellular 
communication in my PhD work to study first the spreading of 
prions and then spreading of polyglutamine aggregates. 
 

3.3 Tunneling nanotubes (TNTs): structure and function 
 
TNTs were discovered only a few years ago as a novel form of 
cell-to-cell communication (Rustom et al., 2004). They were first 
recognized in cultured PC12 neuronal cells as long thin actin-
containing bridges that do not contact the substratum and 
extend up to 100 μm in length with diameters ranging from 50-
200 nm (Rustom et al., 2004) (Figure 19A). TNTs have been 
found in many cell types, from neuronal cells and primary cells to 
immune and epithelial cells in culture, acting as conduits for the 
exchange of cytosolic and membrane-bound molecules, organelles 
and for the spreading of pathogens (Abounit and Zurzolo, 2012; 
Marzo et al., 2012). In PC12 neuronal cells, two different 
mechanisms of TNT formation have been described: i) de novo 
actin-driven formation from directed filopodia-like protrusions (in 
the majority of the cases) and ii) formation after cell dislogement 
between cells previously in contact (7% of the cases) (Rustom et 
al., 2004; Bukoretshliev et al., 2009; Abounit and Zurzolo, 2012) 
(Figure 19B).  
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Figure 19 (A) Three-dimensional reconstruction of a network of TNTs in CAD cells 
(modified from Gousset et al 2009). (B) Model of TNT formation. One cell forms an 
actin-driven protrusion directed towards the target cell (a). TNTs may form between 
adjacent cells, which subsequently diverge (b). Red line, F-actin; arrows indicate 
direction of filopodium in a and cell movement in b. Modified from Gerdes et al 2007 

 
In the mouse neuronal CAD cell line, both types of TNT formation 
were observed (Gousset et al., 2009 data not shown) and, as 
previously described in PC12 cells (Rustom et al., 2004), they 
contained actin filaments but no microtubules (Gousset et al., 
2009). Recently Wang et al. (2011) have shown that TNT-like 
structures formed between primary rat astrocytes and neurons 
contain actin as major cytoskeleton component. As mentioned 
above, the majority of neuronal TNTs arise from filopodia-like 
structures, detached from the substratum, suggesting that actin 
plays an important role in this type of TNT formation. This is also 
supported by the finding that treatment with the F-actin 
depolymerizing drug latrunculin abolish neuronal TNTs in PC12 
cells (Rustom et al., 2004) and CAD cells (Gousset et al., 2009). 
Indeed, treatment with latrunculin or Cytochalasin D (another 
actin-depolymerizing drug) abrogated neuronal TNT formation 
also in primary cells (Wang et al., 2011). However, differently 
from filopodia, once formed, TNTs are no longer sensitive to low 
levels of Cytochalasin D, demonstrating that TNTs are distinct 
from filopodia in both structure and function (Bukoreshtliev et al., 
2009). While filopodia have a major role in sensing the 
enviroment and in cell motility, TNTs act as conduits for cell-to-
cell communication by connecting the cytosol distant cells (for 
review see Abounit and Zurzolo, 2012; Marzo et al., 2012). In 
non neuronal cells, in particular immunological and epithelial cells, 
TNTs were found to contain only actin or both F-actin and 
microtubules or to be composed of cytokeratin filaments in the 
case of epithelial cells (for review see Marzo et al., 2012). 
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Different from neuronal TNTs, formation of TNT-like structures in 
immune cells relays primarily on detachment after cell-to-cell 
contact (Davis and Sowinski, 2008). Therefore there is a large 
disparity both in the cytoskeleton components and mechanisms 
of formation as well as in the diameter and length in naturally 
occurring TNT-like structures in neuronal, immunological or 
epithelial cells (for review see Abounit and Zurzolo, 2012; Marzo 
et al., 2012). 
Together with structural differences, Tunneling nanotubes have 
revealed a high degree of heterogeneity also from a functional 
point of view. As reviewed in great details by Abounit and 
Zurzolo, (2012) and Marzo et al. (2012) different components 
seems to be selectively transferred via TNTs by different cell 
types including signals (calcium mediated signals and death 
signals), organelles and pathogens.  
Cargoes can be uni-directionally or bi-directionally transported 
insides TNTs. Uni-lateral transfer occurs when a donor cell 
(usually the cell that initiated TNT formation in the case of 
neuronal TNTs) transfers material to an acceptor cell, whereas bi-
lateral transfer happens when both cells mutually exchange 
materials (found mainly in non neuronal cells). The reasons for 
these different transport mechanisms can depend on TNTs 
structural components (actin-only versus both actin- and 
microtubules). Indeed, unidirectional transfer is found when only 
actin is present whereas transfer appears to be bi-directional in 
the presence of both actin and microtubules (for review see 
Marzo et al., 2012). Tunneling nanotubes have been shown in 
certain cases to be highways for pathogens transfer, leading to 
the spreading of infection. Hijacking of these structures can be 
preceded by induction of TNT formation, as it has been shown for 
HIV particles, thus optimizing pathogen transfer and spreading. In 
particular the HIV virus has been shown to spread through TNTs 
in primary macrophages both surfing on the membrane (Eugenin 
et al., 2009) or traveling inside associated with endocytic 
compartments (Kadiu and Gendelman, 2011). Furthermore, 
Onfelt and colleagues (2006) have shown that M. bovis BCG or 
clusters of several bacteria can surf on thin membrane nanotubes 
between macrophages before being internalized by receptor-
mediated endocytosis, pointing towards a possible role of these 
structures in concentrating the pathogen on the entry site for a 
more efficient bacterial invasion. 
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3.3.1 TNTs and prion spreading 
 
As described above, the mechanisms of prion spreading from the 
periphery to the central nervous system (CNS), and subsequently 
within the CNS, are not completely understood and a number of 
mechanisms for the intercellular spreading of prions, such as cell-
to-cell contact, exosomes and GPI-painting, has been proposed 
(Kanu et al., 2002; Fevrier et al., 2004; and Baron et al., 2006). 
Recently, our lab has shown that TNTs formed in neuronal CAD 
cells were able to transfer the cellular GPI-anchor prion protein 
PrPC, as well as fluorescently labeled infectious prion particles, 
PrPSc (e.g. exogenous prions) (Gousset et al., 2009). Moreover, 
by co-culturing chronically prion infected CAD cells (ScCAD cells) 
and naïve neuronal CAD cells, we were able to show that 
endogenous PrPSc is also found in TNTs and that these infectious 
particles were efficiently transferred from Sc CADs to non-
infected cells only in the case where the two cell populations 
were connected by means of TNT structures (Gousset et al., 
2009). In addition, the use of nanomolar concentration of 
latrunculin blocked TNT formation and abolished the transfer of 
PrPSc particles in the same experimental setting described above, 
further demonstrating that TNTs are an efficient route for PrPSc 
spreading in neuronal cells (Gousset et al., 2009). Since the prion 
protein is a GPI-anchored protein, it has the possibility of 
traveling via TNTs either at the surface or within vesicular 
structures. Further studies in our laboratory have shown that a 
major fraction of PrPSc (50%) within TNTs colocalize with 
markers of the endocytic recycling compartment (ERC) in ScCAD 
cells (Marzo and Zurzolo, unpublished data). Remarkably, the ERC 
has been shown to be one intercellular site of PrPC-PrPSc 
conversion (Marijanovic et al., 2009). Moreover, similar to what it 
has been shown for HIV particles (see paragraph 3.3 above), 
PrPSc infection per se induces TNT formation as demonstrated by 
the increased number (about 20%) of TNT-connected cells in 
ScCAD cells compared to naïve CADs (Marzo and Zurzolo, 
unpublished data). In addition, the transfer of infectious prion 
particles via TNTs is not confined to neuronal co-cultures but is 
also occurring between loaded Bone-Marrow Dendritic Cells 
(BMDCs) and primary neurons (Gousset et al., 2009). Finally, co-
culture of primary neurons with prion-infected BMDCs resulted in 
the transfer of infectivity to the recipient cells. Altogether these 
studies suggested that TNTs might play a critical role in vivo in 
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the spreading of prions within the central nervous system (CNS) 
and at the periphery (Gousset and Zurzolo, 2009)(Figure 20).  
 

 
Figure 20 Transport of PrPSc via TNTs, an alternative spreading mechanism 
during neuroinvasion. Studies in our laboratory suggest that TNTs allow for the 
intracellular transport of PrPSc between dendritic cells and neurons and between 
neurons (see inset). The exact mechanism of transport remains to be determined. For 
instance, it is still not clear, whether PrPSc is strictly transported within endocytic 
vesicles, or whether it can slide along the surface or be transported as aggregosomes 
within the tubes. Similarly, the types of motors used, as well as the possible gated 
mechanisms to enter the recipient cells are not known. Because of the high propensity 
of DCs to form TNTs with different cell types, we propose that TNTs could play 
important roles in delivering PrPSc to the proper cell types along the neuroinvasion 
route. For instance, DCs could deliver PrPSc from the peripheral entry sites to FDCs 
in the secondary lymphoid tissues (2) or in a less efficient manner, they might 
occasionally directly transport PrPSc to the PNS (1). They could also bridge the 
immobile FDC networks and the PNS (3), since we have shown that DCs can form 
TNTs with nerve cells. Finally, once PrPSc has reached its final destination within the 
CNS, TNTs might play a final role in the spreading of PrPSc within the brain between 
neurons and possibly between neuronal cells and astrocytes (4). From Gousset and 
Zurzolo, 2009 

 
Similar to prion diseases, neurodegenerative diseases such as 
Alzheimer, Parkinson and Huntington appear to be the result of 
protein misfolding and aggregation, therefore it is tempting to 
speculate that these diseases might also share some common 
mechanisms of spreading. Recently, Wang and colleagues have 
analyzed whether intracellular Aβ particles could spread through 
TNTs in astrocytes and neurons (Wang et al., 2011). 
Microinjection experiments demonstrated that intracellular Aβ-
fusion proteins were indeed able to quickly spread from cell-to-
cell via TNT-like structures. In addition, they looked at the 
transfer of Aβ toxicity in co-cultures of infected astrocytes and 
neurons.  They showed that increasing the number of TNTs 
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between the cells by H2O2 treatment led to an increase in 
neuronal cell death in co-cultures with infected astrocytes 
compared to the control GFP or non-stressed cells.  Thus they 
speculate that Aβ particle spreading via TNTs within the cultures 
resulted in an increase in neuronal toxicity leading to cell death.  
Such observations are very similar to what we found regarding 
the spreading and infectivity of PrPSc and suggest that prion 
diseases and other neurological diseases might use TNTs as 
mechanism of intercellular spreading. If these types of studies 
can be further extended to Parkinson or Huntington, they might 
open up new ways of looking at these neurodegenerative 
diseases and could lead to new strategies to fight them. This has 
been one of the subject of study of my PhD (see “Results 2”). 
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4. Generalizing the prion principle 
 
Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, 
Huntington’s disease and prion disorders are associated with the 
deposition of amyloidogenic protein aggregates in the 
intracellular and/or extracellular space (see chapter 1 of the 
introduction). Although protein misfolding and aggregation are 
common features in neurodegenerative diseases, the concept of 
spreading and infectivity of aggregates in the central nervous 
system has, until recently, been confined to prion diseases (Lee 
et al., 2010; Brundin et al., 2010). Indeed, among the diverse 
neurodegenerative disorders, the uniqueness of prion diseases 
relays on their infectivity as transmission of the pathology occurs 
between individuals and across species through exposure in the 
natural enviroment (e.g. variant CDJ is transmitted from cow to 
human) (Aguzzi and Calella, 2009). As previously discussed, the 
molecular mechanism underlying prion infectivity is the ability of 
prions to self-propagate via PrPSc-templated conversion of 
endogenous PrPC molecules (Prusiner, 1998).  
Like most cases of prion diseases, non-prion neurodegenerative 
disorders are mainly sporadic with a small percentage being 
inherited (Prusiner, 1994; Hardy and Orr, 2006). With the 
exception of AA amyloidosis that has been shown to be 
transmitted via feces among cheetahs (Zhang et al., 2008), so 
far inter-organism spread of non-PrP misfolding diseases has not 
been observed (Guest et al., 2011). The reason may be in the 
remarkable stability of the cross-β prion form which resists to 
harsh environments like heat denaturation, detergents and 
proteases, while most protein aggregates are more fragile and 
therefore may not be preserved in the external environment 
(Guest et al., 2011; Miller, 2009; Cushman et al., 2010). Even if 
most neurodegenerative diseases are not transmitted from one 
individual to another like true prions, they might propagate in 
analogous way within a single organism. Indeed, recent studies 
suggest that intercellular prion-like transmission mechanisms may 
be responsible for propagation of protein misfolding in non-prion 
neurodegenerative disorders, involving both secreted proteins 
such as amyloid-β and cytosolic proteins such as tau, huntingtin 
and α-synuclein, suggesting the existence of a general 
pathogenic principle in neurodegenerative proteinopathies (Frost 
and Diamond, 2010, 2009). These findings blur the distinction 
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between transmissibility and infectivity and therefore between 
prion and amyloids (Cushman et al., 2010). Transmissibility, 
referred to as host-to-host transmission, up to date remains 
peculiar property of prion diseases while infectivity seems to be a 
general property of amyloids (Moreno-Gonzales and Soto, 2011). 
Misfolded protein aggregates are “infectious” if they propagate 
from one cell to another and, in the recipient cell, they act as a 
“seed” initiating aggregate formation by recruiting additional 
unfolded or oligomeric species of the same protein (Brundin et 
al., 2010).  
In addition, prions themselves encode many phenotypic TSE 
variants, termed prion strains. Prion strains, after inoculation into 
distinct hosts, cause infection with typical features, such as 
incubation period, clinical signs, characteristic pattern of 
neuropathological lesions, and specific PrPSc biochemical features 
(Aguzzi et al., 2007). Other neurodegenerative diseases also 
exhibit phenotypic variation (Frost and Diamond, 2010). As the 
prion strain phenomenon relays on the existence of different 
conformers of prion fibrils, non prion-aggregates also exhibit 
conformational diversity as it has been shown in vitro in the case 
of amyloid-β (Petkova et al., 2005), in vitro and in mouse models 
in the case of polyglutamine huntingtin (Nekooki-Machida et al., 
2009) and in vitro as well as in patients for tau (Frost et al., 
2009; Goedert et al., 1992). However, in contrast to PrP 
(Legname et al., 2004), it has not been possible to induce a 
transmissible neurodegenerative disease by intracranial injection 
of pure polyglutamine, amyloid-β, α-synuclein or tau conformers. 
Auxiliary factors might be more crucial for these amyloid forms 
to transfer from cell-to-cell and gain access to the native 
substrate (Cushman et al., 2010). 
Neverthless, some features of prions can be extended to other 
protein conformational disorders. In particular, on the basis of 
recent evidences described in the next paragraphs, the prion-like 
phenomenon in other neurodegenerative diseases can be 
regarded at different levels: (i) tissue level: progressive spreading 
of the pathology throughout the affected tissue; (ii) intercellular 
level: propagation of the aggregates between affected cells and 
their neighbors; (iii) molecular level: seeded aggregation and self-
propagation of the aggregates. (Table 2)  
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Table 2 Prion-like features of protein misfolding in other 
neurodegeneratives diseases(modified from Guest et al. 2011) 

 

4.1 Patterns of neuropathology spread 
 
Neuropathologies of Alzheimer’s, Parkinson’s, Huntington’s 
disease spread progressively from an initial affected region to 
other distant areas of the brain following predictable anatomical 
pathways that are specific for each disorder (Brundin et al., 
2010; Frost and Diamond, 2010). This supports the hypothesis 
that different proteinaceous aggregates can transfer between 
cells, thus contributing to the spreading of the pathology in the 
healty tissue (Brundin et al., 2010; Moreno-Gonzales and Soto, 
2011) (see paragraph 4.2) (Figure 21).  
 

 
Figure 21 Principles for progression of neuropathological changes. Three 
drawings propose principles for how neuropathological changes in Parkinson’s, 
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Alzheimer’s and Huntington’s diseases spread spatiotemporally during disease 
progression. The earlier the neuropathology develops in a given brain region, the 
darker the shading in the diagram. As only one view (mid-sagittal for Parkinson’s and 
Alzheimer’s diseases; lateral for Huntington’s disease) of the brain is depicted for each 
disorder, not all relevant anatomical structures and details of the spreading patterns 
(indicated by arrows) are presented. See text for details. Modified from Brundin et al., 
2010. 

 
-Parkinson’s disease 
Braak and co-workers proposed that brainstem and anterior 
olfactory structures are afflicted by the deposition of α-synuclein 
aggregates several years before involvement of the substantia 
nigra (Braak et al., 2004, 2006) and suggested that α-synuclein 
aggregates spread in a topographically predictable manner as the 
pathology progresses, following anatomical connections 
throughout the brainstem, limbic and autonomic systems and 
neocortex (Braak et al., 2004, 2006).  
-Alzheimer’s disease 
In Alzheimer’s disease neurofibrillary tangles have been proposed 
to spread throughout the brain in a stereotypical manner. Some 
of the first affected areas include the hippocampus, the basal 
nucleus of Meynert and the brainstem whereas the neocortex 
appears to be involved only in advanced stage of the disease 
(Braak and Braak, 1991; Delacourte et al., 2002). The deposition 
of intracellular aggregates of hyperphosphorylated tau is 
suggested to follow anatomical connection (Lace et al., 2009). 
By contrast the deposition of extracellular amyloid-β seems not 
to follow anatomical patterns and correlates poorly with the level 
of cognitive decline (Nelson et al., 2009; Arriagada et al., 1992). 
-Huntington’s disease 
Brain imaging studies showed that cortical degeneration in HD 
follows a topologically predictable pattern (Rosas et al., 2008) 
and precedes degeneration in the striatum (Vonsattel and 
DiFiglia, 1998, Brundin et al 2010). Within the striatum, 
degeneration progresses following two defined anatomical 
direction (Vonsattel and DiFiglia, 1998) and striatal projecting 
neurons are among the first one to be affected (Deng et al., 
2004). Inclusions containing huntingtin are present in the regions 
of the brain that degenerate, although the presence of visible 
aggregate does not always correlate with cell death (Kuemmerle 
et al., 1999). 
Furthermore, as previously described, prions can disseminate 
beyond the tissue where they are produced and spread through 
the entire organism in a peripheral and systemic transmission 
thanks to cells of the immune system, peripheral nerves and 
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bloodstream (see chapter 3 of the introduction). Remarkably, 
most of the disease-associated misfolded proteins are found 
circulating in the cerebrospinal fluid and plasma, which could 
facilitate their spread through the body as it has been reported 
for amyloid-β (Hampel et al., 2004), α-synuclein (Tokuda et al., 
2010; El-Agnaf et al., 2003) huntingtin (Weiss et al., 2009) and 
A amyloid (Tasaki et al., 2010). 
 

4.2 Cell-to-cell aggregate transmission 
 
Recent experimental findings and clinical observation shave 
shown that cell-to-cell transfer of protein aggregates is occurring 
in non-transmissible neurodegenerative disorders and this might 
contribute to the anatomical spreading of the pathology in a 
prion-like manner (Brundin et al., 2010; Frost and Diamond, 
2010). 
-Parkinson’s disease 
Postmortem analysis of Parkinson’s disease patient who had 
received a transplant of healthy embryonic neurons one decade 
earlier, revealed that grafted neurons were positive for Lewy 
bodies and Lewy neurites, thus indicating that misfolded α-
synuclein was transmitted from the host to the graft cells (Allan 
et al., 2010; Li et al., 2010, 2008). To further investigate this 
possibility, Desplats and collaborators injected GFP-labeled mouse 
stem cells in transgenic mice overexpressing human α-synuclein. 
One week later intracellular α-synuclein immunoreactivity and 
occasionally inclusion bodies could be detected within GFP-labeled 
cells, suggesting that host-graft transfer of α-synuclein had 
occurred (Desplats et al., 2009). Also, in α-synuclein transgenic 
mice where expression of α-synuclein was restricted to neurons, 
prominent accumulation of α-synuclein was detected in glial cells 
and transmission of α-synuclein from neurons to astroglia was 
further confirmed in co-culture experiments (Lee et al., 2010). 
Several in vitro studies have supported the hypothesis that α-
synuclein can transfer between neurons. Indeed, exogenous 
fluorescently tagged α-synuclein is internalized in cultured cells 
(Desplats et al., 2009; (Lee et al., 2008a) and intracellular 
human α-synuclein is transferred to GFP-labelled stem cell in co-
culture condition (Desplats et al., 2009; Lee et al., 2008). 
Furthermore, extracellular GFP-α-Synuclein when internalized in 
primary cortical neurons is seeding polymerization of an 
intracellular red fluorescent tagged version of the protein 
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resulting in the formation of double positive aggregates (Danzer 
et al., 2009, 2007). Moreover, Hansen et al (2011) showed that 
transmitted α-synuclein interacts with α-synuclein expressed in 
the recipient cell and forms aggregates. Taken together, these 
findings suggest that α-synuclein spreads from one cell to 
another, throughout the CNS, during the course of Parkinson’s 
disease in accordance with the stereotypical progression of the 
pathology described by Braak.  
-Alzheimer’s disease 
Injection of mouse brain homogenates containing aggregates of a 
human disease-associated mutant tau in to transgenic mice 
expressing wild-type human tau (Clavaguera et al., 2009) induced 
misfolding and aggregation of the intracellular, otherwise soluble 
protein. Moreover, the aggregates appearance increases over 
time and they spread to anatomically connected regions 
(Clavaguera et al., 2009), consistent with the stereotypical 
progression of neurofibrillary tangles in Alzheimer’s disease 
patients (Guest et al., 2011; Cushman et al., 2010; Brundin et 
al., 2010). Recently, it has been shown in cell culture 
experiments that externally applied tau aggregates once 
internalized can induce the seeded polymerization of intracellular 
tau (Frost et al., 2009; Nonaka et al., 2010; Guo and Lee, 2011). 
Furthermore, intracellular tau aggregates can transfer from cell to 
cell in co-culture experiments (Frost et al., 2009). Recently, two 
independent studies provided evidences for a trans-synaptic 
spreading of tau pathology in transgenic mouse models 
selectively expressing a pathological human tau in the entorhinal 
cortex (Liu et al., 2012; de Calignon et al., 2012). Indeed, human 
tau immunoreactivity was detected over time along synaptically 
connected neuronal circuits (Liu et al., 2012; de Calignon et al., 
2012) and was found to co-aggreagate with endogenous mouse 
tau (de Calignon et al., 2012). 
Intracerebral injection of brain extracts from alzheimer’s disease 
patients in transgenic mice expressing human amyloid precursor 
protein induced deposition of extracellular amyloid-β plaques, 
suggesting that amyloid-β has “infectious” properties and is 
capable of seeding Alzheimer’s pathology in mouse models 
(Meyer-Luehmann et al., 2006; Kane et al., 2000). Recently, 
Wang and colleagues demonstrated that intracellular amyloid-β 
fusion proteins were able to quickly spread from cell-to-cell in 
cultured primary rat astrocytes and neurons (Wang et al., 2011). 
In addition, extracellular amyloid-β is uptaken by astrocytes and 
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transferred to primary neurons in co-culture conditions (Wang et 
al., 2011). 
-Huntington’s disease. 
In the case of Huntington’s disease (HD), cell culture experiments 
have shown that synthetic polyglutamine peptides or 
recombinant fragments of mutant Htt when applied externally to 
cultured cells are readily taken up (Yang et al., 2002; Ren et al., 
2009) and they can seed polymerization of a soluble huntingtin 
reporter (Ren et al., 2009). Moreover, these assemblies persist 
for over 80 generation in prolonged cell culture, despite their 
dilution in dividing cells, suggesting a self-sustaining seeding and 
fragmentation process similar to prion replication (Ren et al., 
2009). Currently, the relevance of these observations in HD 
pathogenesis is unclear. Indeed, fetal grafts of striatal tissue in 
HD patients brains have shown, upon autopsy, to be susceptible 
of disease-like neurodegeneration, but abnormal huntingtin 
aggregation was not observed within a decade from the 
transplant (Cicchetti et al., 2009), contrary to what has been 
found in grafted cells from Parkinson’s disease patients (Allan et 
al., 2010; Li et al., 2008). In addition, Ren and colleagues 
reported that natural cell-to-cell transmission of Htt, measured 
indirectly from the seeded-polymerization of a cytoplasmic 
huntintin reporter, was rather inefficient in co-cultured HEK293 
cells, and could be drastically increased by selective lysis of the 
donor cells (Ren et al., 2009). Yet, it is unknown whether and 
how huntingtin misfolding progresses through the brain, in order 
to explain the topologically predictable progression of HD. A 
contribution in evaluating the occurrence and the mechanisms of 
polyglutamine huntingtin transfer between intact neuronal cells 
came from one part of my PhD work and is described in the 
results section (Result 2, Article 2). 
 

4.3 Mechanisms of aggregates release and uptake 
 
All the evidences reported above for the different disease-
associated protein aggregates suggest a prion-like process in the 
propagation of the underlying neurodegenerative disorders, 
putting them in the same framework of canonical prions. Since I 
have already described (see chapter 3 of the introduction) the 
mechanisms of intercellular prion spreading, here I provide a brief 
insight in the mechanisms of intercellular transfer of these prion-
like aggregates based on the evidences currently available in the 
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literature. Cell-to-cell transfer of protein aggregates requires two 
consecutive steps: (i) exit from the donor cell, (ii) entry in the 
recipient cell. 
(i) Aggregates can be passively released from degenerating 
neurons upon cell death in a non specific manner as a result of 
the toxicity of protein aggregation (Brundin et al., 2010). For 
example, as discussed above, it seems that polyglutamine 
huntingtin can induce nucleation of a soluble huntingtin reporter 
in co-cultured cells only upon selective induced donor cell lysis 
(Ren et al., 2009). Alternatively, cells can release aggregates via 
exocytosis, exosomes or trans-synaptic transmission at the 
axonal terminals (Brundin et al., 2010). As an exemple, α-
synuclein can be secreted via a non-classical vesicle-mediated 
exocytic mechanism (Lee et al., 2005; Jang et al., 2010) and in 
association with exosomes (Emmanouilidou et al., 2010) (Figure 
22) 
 

 
Figure 22 Models of cell-to-cell transmission of misfolded and aggregated 
proteins. Proteins might be released from neurons via vesicle-mediated exocytosis 
(1) or leakage through damaged membranes (2) and be internalized into neighboring 
neurons via endocytosis or direct membrane penetration. Alternatively, proteins could 
be transmitted to neighboring neurons by packaging into exosomes (3) or through 
tunneling nanotubes (4). Different mechanisms might work simultaneously, with 
specific proteins preferring certain pathways. Mechanisms might act between the cell 
bodies or trans-synaptically (5). Internalized aggregates (pink) might act as seeds for 
aggregation of endogenous native proteins (green). Seeded aggregation may produce 
toxic aggregate species, leading to formation of pathological inclusion bodies. From 
Lee et al., 2010 

 
(ii) Entry in the recipient cell can relay on passive diffusion 
through the plasma membrane, endocytosis and exosome-
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mediated transfer or TNTs (Figure 2). Internalized tau was found 
to localize with dextran, implying an endocytic method of entry 
rather then direct penetration of the membrane (Frost et al., 
2009). Similarly α-synuclein aggregates internalization 
differentiated SH-SY5Y cells has been reported to be sensitive to 
temperature and to require dynamin-1 pointing towards a role for 
the endocytic pathway in the entry mechanism (Desplats et al., 
2009). Thus, internalized aggregates of α-synuclein and tau are 
likely packaged into membrane-bound vesicles from where they 
have to escape to gain access to the cytoplasm with mechanisms 
that are not yet understood. However, α-synuclein seems also to 
be able to breach the plasma menbrane upon passive diffusion 
(Lee et al., 2008b; Park et al., 2009). Deep-etch electron 
microscopy of exogenous synthetic polyQ aggregates uptaken in 
HEK293 cell culture revealed no evidence of surrounding 
membranous structure, suggesting the absence of a vesicular 
uptake and therefore direct penetration of the plasma membrane 
(Ren et al., 2009). 
PrPSc like HIV was reported to use tunneling nanotubes (TNTs) as 
infection highways to transfer from one cell to another (Gousset 
et al., 2009; Gousset and Zurzolo, 2009; Davis et al., 2008; 
Sowinski et al., 2008). Of interest, recently Wang et al. (2011) 
have shown that extracellular amyloid-β once internalized in 
primary astrocytes is found in TNTs established with co-cultured 
neurons. Therefore, it is important to investigate whether other 
self-templating aggregates could also spread from cell-to-cell via 
this route. However, the different nature of the disease-
associated proteins should be taken in to account: while PrPSc 
and amyloid-β are anchored to membranes, α-synuclein, tau and 
huntingtin are cytosolic. In the case of α-synuclein and tau, after 
uptake endocytic vesicles could shuttle these aggregates in 
TNTs. Then once the aggregate reach the recipient cell, they 
should escape from vesicles in order to seed the misfolding of 
endogenous cytosolic proteins (Marzo et al., 2012). On the other 
hand, a cytosolic passage as aggresomes through TNTs could 
also be envisaged (Marzo et al., 2012). Interestingly α-synuclein 
and huntingtin can interact with acidic phospholipids enriched on 
the cytoplasmic membrane leaflet (Kegel et al., 2005, 2009; van 
Rooijen et al., 2008) suggesting the additional possibility of a 
“surfing” process along the inside of TNT membranes (Marzo et 
al., 2012). 
In both inherited neurodegenerative disorder and in the more 
common idiopathic ones, the low probability of spontaneous 
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misfolding and aggregation might explain the mid-life or later 
onset of these disorders. Once misfolding and aggregation are 
initiated in a stochastic manner in a subpopulation of cells, prion 
like-transmission mechanisms seems likely to contribute to the 
gradual spreading of the neuropathological changes in the brain 
of afflicted individuals (Brundin et al., 2010; Guest et al., 2011). 
In this frame, aggregation and progression of the disease in the 
brain can be non-cell autonomous. Therefore the current data 
indicate that the classic model of cell autonomous disease in 
which protein misfolding arises separately but simultaneously in a 
large population of cells is less likely (Brundin et al., 2010; Guest 
et al., 2011). Furthermore, if misfolded proteins seed themselves 
through the central nervous system, they satisfy the molecular, 
cellular and tissue definition of prions so that we could state that 
“the uniqueness of prions is diminished, but their importance has 
never been greater” (cit. Guest et al., 2011)  
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5. Huntington’s disease 
 
Huntington’s disease (HD) is a fatal neurodegenerative disorder 
with an autosomal dominant mode of inheritance. It progresses 
slowly over years with symptoms beginning typically, but not 
always, in midlife between the ages of 35 and 50. Although 
relatively rare, juvenile cases, before age 20 and later-onset 
cases, after age 65, are also described. Death occurs from 15 to 
20 years after the onset of the symptoms. HD is caused by the 
expansion of a CAG repeat in the exon 1 of the huntingtin gene, 
resulting in an expanded polyglutamine (polyQ) tract in the N-
terminal part of the encoded protein. 
In population of European descent, the prevalence of HD is 
approximately 4-9/100,000. Although HD is relatively 
uncommon, the economical and social impact of HD is 
disproportioned to its prevalence because of the middle age 
onset and the slow progression of the disease.  
 

5.1 Symptoms and Neuropathology 
 
In 1872, physician George Huntington reported a familial form of 
chorea noted previously in Long Island by his father and 
grandfather, also physicians. Huntington described chorea as “the 
dancing propensity of those… affected”, in whom there “seems 
to exist some hidden power… upon the will” (Huntington 1973; 
reprinted in Huntington 2003) 
The clinical features of the disease, now carrying his name, can 
be resumed in HD clinical triad (Figure 23)  
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Figure 23 Progression of Huntington's disease over a patient's lifespan.Subtle signs 
and symptoms of Huntington's disease begin years before a motor diagnosis can be 
made, and correlate with neurobiological changes such as striatal atrophy, giving rise 
to the concept of a Huntington's disease prodrome. Chorea is often the earliest motor 
feature noted clinically, but motor impairment or bradykinesia and incoordination are 
more disabling. Early in the disease course, neuronal dysfunction is likely to be 
important, but later, neuronal cell death in vulnerable regions of the brain is 
predominant and correlates with motor impairment and functional disability. From 
Ross and Tabrizi, 2011 

 
-Disturbances in motor function 
Chorea is the classic motor sign of HD. Derived from the Greek 
word for “dance”, it consists of involuntary movements of the 
proximal and distal muscles of the body. Together with chorea, 
that by itself it is not greatly disabling, HD patients develop 
progressive impairment of coordination of voluntary movements. 
The inability to sustain voluntary muscular efforts contributes 
mainly to the physical disability of individuals affected by HD. In 
patients with juvenile HD, motor symptoms are somewhat 
different; they include bradykinesia (slowness of the 
movements), rigidity and dystonia (involuntary contraction of the 
muscles) and chorea may be completely absent. Epileptic 
seizures are also common in affected children.  
-Cognitive disturbances  
The cognitive difficulties usually begin with a slowing of 
intellectual processes and can be present much before the first 
motor symptoms appear (Aylward et al., 2004, 2000). HD is 
classified as a subcortical dementia characterized by difficulty in 
initiating thought processes, difficulties with executive functions, 
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although memory in general is well preserved (Paulsen et al., 
1995; Rohrer et al., 1999) 
-Behavioral disturbances 
Behavioural disturbances include most notably depression and 
apathy (Paulsen et al., 2001) but also obsessive-compulsive 
behaviors and irritability (Duff et al., 2007). These symptoms are 
present already at the moment of the diagnosis but they evolve 
and worsen in the course of the disease (Duff et al., 2007)  
HD is characterized by a massive loss of GABAergic medium spiny 
neurons in the striatum (caudate nucleus and putamen) of the 
basal ganglia, which is responsible for the typical symptoms of 
the disease (Reiner et al., 1988). However, it is now well 
established that a more widespread degeneration occurs in the 
diseased brains and progresses in a topological predictable 
manner involving cortical structures even before the onset of 
clinical symptoms (see paragraph 4.1). In the late stages, globus 
pallidus, thalamus, subthalamic nucleus, substantia nigra, white 
matter and the cerebellum are markedly affected (Vonsattel and 
DiFiglia, 1998). 
 

5.2 The huntingtin gene 
 
From the first description of HD in 1987, the identification of the 
causative gene and related mutation arrived only in 1993 and 
required the effort of a collaborative group of scientists for over 
10 years. They found that the disease was linked to the IT15 
gene that contained in the exon 1 a polymorphic repetitive 
trinucleotide element: C (cytosine) A (adenine) G (guanine). 
Indeed, in non-HD controls the number of CAG repeats varied 
from 6 to 35, a phenomenon that was described as “instability of 
the trinucleotide repeat”. In HD patients, the number of CAG 
repeats was always 40 or more indicating that the expansion of 
the trinucleotide repeat in the IT15 gene, now renamed the 
huntingtin gene, was responsible for HD (HD collaborative 
research group, 1993; Gusella et al., 1983)(A novel gene 
containing a trinucleotide repeat that is expanded and unstable 
on Huntington’s disease chromosomes. The Huntington’s Disease 
Collaborative Research Group, 1993; Gusella et al., 1983). 
Further studies revealed that some individuals with no symptoms 
had “intermediate-size repeats” ranging from 27 to 35 and were 
at risk of transmitting the disease to their children with a risk 
that was higher if the intermediate allele was inherited from the 
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father (Ranen et al., 1995). This phenomenon is known as 
“genetic anticipation” and relays on the fact that the expanded 
CAG triplets are not stable and tend to further expand from one 
generation to another, probably because of replication slippage 
during mitosis (Pearson, 2003). Therefore, the risk of expansion 
is more frequent in spermatogenesis then oogenesis and 
individuals that inherit the disease gene from the father may have 
a longer CAG tract and develop symptoms at an earlier age 
(Ranen et al., 1995). Indeed, there is a positive correlation 
between the length of the CAG repeat (within the expanded 
range) and the onset of the disease with longer repeats causing 
early onset of HD (Duyao et al., 1993). Consistently, extremely 
large CAG repeats from 60 on are often associated with juvenile 
HD (Andrew et al., 1993).  
The gene encoding for huntingtin in vertebrates is composed of 
67 exons and covers a region of about 170 kb. It is highly 
conserved among all animals from sea urchin to insect and 
mammals with 80% conservation among the most divergent 
vertebrate species (i.e., Homo sapiens and the Fugu fish) 
(reviewed in Cattaneo et al., 2005; Zuccato et al., 2010). 
Remarkably, the N-terminal fragment of the protein containing 
the polyglutamine (polyQ) tract encoded by the CAG repeats, is 
the most recently evolved part of huntingtin, and seems to have 
appeared for the first time in fishes and it has been maintained 
during vertebrate evolution becoming highly polymorphic only in 
humans (Tartari et al., 2008). Therefore, it has been 
hypothesized that the N-terminal domain may be endowed with 
newly acquired neuronal activities while the C-terminal domain 
may be endowed with primordial activities in non neuronal tissues 
(Tartari et al., 2008). 
 

5.3 Huntingtin Structure 
 
Huntingtin is a 348-kDa protein. A schematic of the amino acid 
sequence of the protein is depected in Figure 24 
The polyQ stretch in the human protein begins at the 18th amino 
acid and, as previously described, in unaffected individuals 
contains up to 35 glutamine residues (HD collaborative group, 
1993). In 1994 the Nobel Laureate Max Perutz showed that the 
polyQ forms a polar zipper structure and suggested that its 
physiological function was to bind transcription factors also 
containing a polyQ region (Perutz et al., 1994). Since then, it has 
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been shown that huntingtin interacts with a large number of 
partners and that the polyQ tract is a key regulator of huntingtin 
binding to its interactors (Harjes and Wanker, 2003). In addition, 
X-ray crystallography at atomic resolution has shown that the 
polyQ region adopts multiple flexible conformations (a-helix, 
random coil and extended loop) (Kim et al., 2009). Therefore, 
huntingtin might be able to assume specific conformation and 
activities depending on its binding partners, subcellular 
localization, cell type and tissue, and, serving as a scaffold 
protein, the binding of different set of interactors may account 
for wild-type huntingtin function during development and in 
adulthood (Zuccato et al., 2010). 
In higher vertebrates and therefore in mammals, the polyQ region 
is followed by a polyproline (polyP) stretch that has evolutionary 
emerged in concomitance with longer polyQ tracts (Steffan et al., 
2004). Structural studies have suggested that the polyP domain 
may function in stabilizing the polyQ tract by preventing its 
conformational collapse and keeping it soluble (Kim et al., 2009). 
Downstream the polyQ, three main different clusters of HEAT 
repeats have been identified (MacDonald, 2003). They are about 
40 amino acids long sequence that usually occur multiple time 
with in a protein and are involved in protein-protein interactions 
(Andrade and Bork, 1995), further suggesting that huntingtin 
may exert its physiological function by binding different protein 
partners (see paragraph 5.4) 
Huntingtin contains well-defined consensus sites for proteolytic 
cleavage of different enzymes, such as caspases (caspase 3 and 
7, caspase 6 and caspase 2), calpain and aspartyl proteases, that 
generate a wide-range of protein fragments. The different 
cleavage sites and respective amino acid positions are depicted in 
Figure 2. The exact contribution of wild-type huntingtin 
proteolysis to cell functioning is still not clear. However, as 
discussed in the next section, reduction of mutant huntingtin 
proteolysis by caspases and calpains also diminish toxicity of the 
mutant protein and delay disease onset and progression 
(reviewed in Zuccato et al., 2010). 
At the C-terminal of the protein both a nuclear export signal 
(NES) and a nuclear localization signal (NLS) are present, 
indicating that the protein shuttles between the nucleus and the 
cytosol and might be involved in transporting molecules from the 
nucleus to the cytoplasm (Xia et al., 2003). Moreover, the first 
17 N-terminal amino acids before the polyQ stretch do form an 
amphipatic a-helical membrane-binding domain that is necessary 



 69 

and sufficient for huntingtin association to mitocondria and for 
its colocalization with Golgi and endoplasmic reticulum, therefore 
regulating its subcellular localization. This sequence also 
enhances aggregate formation and promotes disregulation of 
calcium homeostasis (Atwal et al., 2007; Rockabrand et al., 
2007)(see paragraph 5.4). 
Huntingtin is subjected to several post-translational 
modifications. The protein is ubiquitinated at the N-terminal 
lysines K6, K9 and K15 and targeted to the proteasome (Figure 
24) (DiFiglia et al., 1997; Kalchman et al., 1996). 
 

 
Figure 24 Schematic diagram of the huntingtin amino acid sequence. (Q)n 
indicates the polyglutamine tract, which is followed by the polyproline sequence (P)n; 
the red emptied rectangles indicate the three main groups of HEAT repeats (HEAT 
group 1, 2, 3). The small green rectangles indicate the caspase cleavage sites and 
their amino acid position (513, 552, 586), while the small pink triangles indicate the 
calpain cleavage sites and their amino acid positions (469, 536). Boxes in yellow: B, 
regions cleaved preferentially in the cerebral cortex; C, regions of the protein cleaved 
mainly in the striatum; A, regions cleaved in both. Posttranslational modifications: 
ubiquitination (UBI) and/or sumoylation (SUMO) sites (green); palmitoylation site 
(orange); phosphorylation at serines 13, 16, 421, and 434 (blue); acetylation at lysine 
444 (yellow). NES is the nuclear export signal while NLS is the nuclear localization 
signal. The nuclear pore protein translocated promoter region (TPR, azure) is 
necessary for nuclear export. Htt, huntingtin. ER, endoplasmic reticulum. From 
Zuccato C et al. Physiol Rev 2010;90:905-981 
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In the presence of mutant huntingtin this process is impaired 
causing proteasomal dysfunction and accumulation of toxic 
huntingtin fragments. Phosphorylation of specific serine residues 
(depicted in figure 24), seems to confer neuroprotective 
properties to wild-type huntingtin and is responsible for 
huntingtin mediated transport of vesicles in neurons. 
Furthermore, phosphorylation of mutant huntingtin on different 
serine residues has been shown to reduce caspase and calpain-
mediated cleavage resulting in reduced toxicity (reviewed in 
Zuccato et al., 2010). 
 

5.4 Huntingtin functions and mutant huntingtin “disfunctions” 
 
Huntingtin is ubiquitously expressed in humans and rodents, with 
the highest level in the CNS. It has a widespread subcellular 
distribution and associates to a variety of organelles including the 
nucleus, Golgi complex, endoplasmic reticulum and mitocondria. It 
is found within neurites and at the synapses where it is 
associated with different vesicular structures such as clathrin-
coated vesicles, caveolae, endosomal compartments as well as 
microtubules. 
Several studies reviewed in great details by Zuccato and 
colleagues (Zuccato et al., 2010) indicate that huntingtin has a 
variety of cell functions that are impaired and disregulated in 
presence of the mutant protein. 
 

5.4.1 Embrionic development and prosurvival functions 
 
Huntingtin is required at different steps of the embryonic 
development as total absence or a reduction of more that 50% 
generates very early phenotypes in mice. Knock out mice are not 
viable with death occurring at embryonic day 7.5 (before 
gastrulation and the formation of the nervous system) due to 
defects in the organization of extraembrionic tissues (Dragatsis 
et al., 1998). With the progression of embryonic development, in 
addition to its early extraembrionic functions, huntingtin becomes 
important for the formation of the CNS as shown by the fact that 
more then 50% reduction of the protein after gastrulation results 
in defects of the epiblast (the structure that will give rise to the 
neural tube) (Auerbach et al., 2001). In particular huntingtin 
seems critical for establishing and maintaining cortical and striatal 
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neuronal identity (Reiner et al., 1988; Godin et al., 2010) Human 
mutant huntingtin (e.g. via transgenic expression) can 
complement loss of function of endogenous huntingtin (e.g. via 
knockout) during development rescuing embryonic lethality, 
suggesting that huntingtin’s function during development is 
independent of the polyQ length. HD patients, indeed, develop 
normally with the disease arising only in adulthood, however, it is 
not possible to exclude that a transient developmental defects 
might rend cortical and striatal neurons more vulnerable to the 
toxic effect of the mutant protein (Godin et al., 2010; Ross and 
Tabrizi, 2011) . 
In post-mitotic cells and in adulthood wild-type huntingtin has a 
prosurvival role. In vitro studies have shown that overexpression 
of huntingtin confers protection against toxic stimuli whereas its 
depletion results in an increased sensitivity to apoptotic cell 
death with higher levels of caspase 3 activity (Zuccato et al., 
2010). Indeed, it has been shown that huntingtin physically 
interacts with active caspase 3, thereby inhibiting its proteolytic 
activity (Zhang et al., 2003). In addition, neuronal inactivation of 
the huntingtin gene in adult mice caused apoptotic neuronal 
degeneration in different brain regions and the appearance of a 
phenotype (e.g. limb clasping upon tail suspension) that 
resembles the one of HD mouse models (Dragatsis et al., 2000). 
Also, Huntingtin seems to activate prosurvival pathways 
controlled by the serine/threonine kinase Akt (Humbert et al., 
2002). 
 

5.4.2 Gene regulation 
 
Huntingtin directly interacts with protein of the transcriptional 
machinery and enzyme involved in chromatin remodeling. In HD 
the presence of mutant huntingtin results in a large number of 
gene expression changes (reviewed in Zuccato et al., 2010). A 
schematic of wild-type huntingtin interactions and of their dys-
regulation in HD is proposed in figure 25. 
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Figure 25 Transcription factors, DNA target sequences, and chromatin structure 
in HD. A: expanded polyQ in huntingtin represses transcription of Sp1-dependent 
promoters (i.e., D2R gene) by abnormally interacting with specific transcription 
cofactors such as Sp1 itself, TFIIF, and TFII130. B: the transcription factor cAMP-
responsive element (CRE)-binding protein (CREB) binds to DNA elements that 
contain a CRE sequence, as in the promoter of the PGC1-# gene, a master regulator 
of genes involved in mitochondrial function and energy metabolism. Mutant huntingtin 
interferes with CREB and TFIID, leading to reduced activation of PGC1-# gene, 
reduced PGC1-# protein levels, and consequently, downregulation of its mitochondrial 
target genes. C: the transcription factor REST/NRSF binds to RE1/NRSE elements in 
neuronal gene promoters such as in the BDNF gene. Wild-type huntingtin sustains the 
production of BDNF by interacting with REST/NRSF in the cytoplasm, thereby 
reducing its availability in the nucleus to bind to RE1/NRSE sites. Under these 
conditions, transcription of BDNF and of other RE1/NRSE regulated neuronal genes is 
promoted. Mutant huntingtin fails to interact with REST/NRSF in the cytoplasm, which 
leads to increased levels of REST/NRSF in the nucleus. Under these conditions, 
REST/NRSF binds avidly to the RE1/NRSE sites, suppressing the transcription of 
BDNF and of other RE1/NRSE regulated neuronal genes. D: SREBP binds to SRE to 
regulate the transcription of genes involved in the cholesterol biosynthesis pathway. 
Under physiological conditions, SREBP is transported from the endoplasmic reticulum 
to the Golgi region, where it is cleaved to obtain a fragment that enters the nucleus 
and activates cholesterogenic genes. In the presence of mutant huntingtin, this 
mechanism is impaired, which leads to the reduced expression of SREBP-dependent 
genes and decreases the biological effects of cholesterol biosynthesis. E: levels of 
histone acetylation at specific lysine residues are determined by concurrent reactions 
of acetylation (Ac) and deacetylation, which are mediated by histone acetylases 
(HATs) and histone deacetylases (HDACs). Histone acetylation is vital for establishing 
the conformational structure of DNA-chromatin complexes suitable for transcriptional 
gene expression. Mutant huntingtin leads to disruptions in HAT and HDAC balance, 
leading to general transcriptional repression. wtHtt, wild-type huntingtin; muHtt, mutant 
huntingtin. From Zuccato C et al. Physiol Rev 2010;90:905-981 
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5.4.3 Regulation of BDNF production and vesicle transport 
 
Brain-derived neurotrofic factor (BDNF) is a neurotrophin that is 
particularly important for the survival of striatal neurons and of 
the cortico-striatal synapses (Zuccato and Cattaneo, 2007). Most 
of the striatal BDNF is produced in the cerebral cortex and 
delivered to the striatal neurons via anterograde transport along 
the cortico-striatal afferents (Fusco et al., 2003; Baquet et al., 
2004).  
As depicted above in figure 25B, wild-type huntingtin promotes 
the expression of BDNF by acting at the level of BDNF gene 
transcription, thereby stimulating cortical BDNF protein 
production. In 2004 the group of Frederic Saudou proposed that 
huntingtin has also a role in promoting BDNF vesicles transport 
along the cortical-striatal afferents (Gauthier et al., 2004). 
Indeed, huntingtin was found to be part of the motor complex 
that drives anterograde and retrograde transport of BDNF 
vesicles along microtubules. In particular, huntingtin by forming a 
molecular complex with the huntingtin associated-protein 1 
(HAP1) interacts with the p150Glued subunit of dynactin, 
thereby promoting retrograde transport, or alternatively with 
kinesin, thereby promoting anterograde transport of BDNF 
vesicles (Gauthier et al., 2004). The phosphorylation of 
huntingtin at serine-421 by Akt Kinase seems to be a crucial 
factor in the regulation of BDNF movement. Indeed, when 
phosphorylated at this position, huntingtin promotes anterograde 
transport whereas BDNF vesicles are more likely to undergo 
retrogade transport when huntingtin is not phosphorylated (Colin 
et al., 2008). In HD cortical BDNF is reduced both in mRNA and 
protein levels indicating a reduced production of the 
neurotrophin. As depicted in figure 25B, mutant huntingtin fails 
to sequester REST/NRSF (repressor element 1 silencing 
transcription factor/neuron-restrictive silencing factor) in the 
cytoplasm leading to its translocation in the nucleus and thereby 
activating the RE1/NSRE silencer with a consequent reduction of 
BDNF gene transcription. Moreover, mutant huntinting binding to 
HAP1 reduce HAP1/p150Glued association and affects also the 
complex with Kinesin resulting in a reduced BDNF vesicle 
transport (reviewed in Zuccato et al., 2010). In contrast with the 
report of Gauthier and colleagues, a recent study suggests that 
the alteration of BDNF vesicles transport in HD is not attributable 
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to a disruption of these motor protein complexes but rather may 
result from altered regulation of the intact compexes (Her and 
Goldstein, 2008). Regardless of the exact mechanisms, the 
reduction of BDNF synthesis and transport in HD is a fact and 
because of the importance of BDNF for medium spiny neurons in 
the striatum (the most affected population in HD) it has been 
proposed that loss of BDNF in the cerebral cortex may contribute 
to the striatal (and cortical) vulnerability in HD (see also chapter 
6, paragraph 6.3). 
 

5.4.4 Synaptic activity 
 
Huntingtin is involved in the cell machinery that controls synaptic 
transmission interacting with a number of cytoskeletal and 
synaptic vesicle proteins that are essential for exo and 
endocytosis at synaptic terminals (Smith et al., 2005). One key 
molecule in synaptic transmission is PSD95 (postsynaptic density 
protein 95), a member of the membrane associated guanylate 
kinase family of proteins that binds the NMDA (N-methyl-D-
aspartate) and kynate receptors at the postsynaptic density 
(Sheng and Kim, 2002). Wild-type huntingtin directly binds 
PSD95 (Leavitt et al., 2001). The decreased interaction of 
mutant huntingtin with PSD95 indicates that more PSD95 is 
released in HD, thus affecting the activity of NMDA receptor 
leading to their over activation or sensitization and exitotoxicity 
(Leavit et al., 2001). In addition mutant huntingtin has been 
reported to induce phosphorylation of the NR2B subunit of the 
NMDA receptor (NMDAR), promoting its overactivation. NR2B 
subunits are particularly abundant in the striatum and this may be 
one part of the preferential vulnerability of these cells in HD. 
Indeed, excitotoxicity was the first identified pathogenic 
mechanism proposed to explain the selective striatal vulnerability 
in HD. Excitotoxicity is defined as an excessive stimutation of 
excitatory amino acid receptors, expecially NMDAR, that leads to 
cell death. In the context of HD, excititoxicity results from 
processes that take place in the degenerating neurons due to the 
expression of the mutant protein (as discussed above), but also 
from dysfunction of neuronal interaction and circuits at the 
corticostrial synapse due to increased glutamate release from 
cortical afferents or reduced uptake of glutamate by glia 
(reviewed in Zuccato et al., 2010). This non-cell autonomous 
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pathogenic mechanism will be discussed in more details in the 
next chapter. 
A schematic of the altered signaling pathways that results from 
cell autonomous and non cell autonomous overactivation of 
NMDARs is proposed in figure 26. They include alteration in 
calcium homeostasis, mitochondrial disfunctions, and activation 
of apoptotic pathways. 
 

 
Figure 26 Dysfunction of Ca2+ signaling in HD. Mutant huntingtin causes cytosolic 
and mitochondrial Ca2+ overload and apoptosis of HD MSN. Mutant huntingtin 
perturbs Ca2+ signaling by enhancing NMDAR function, possibly through decreased 
interaction with the PSD95-NR1A/NR2B complex. Moreover, mutant huntingtin binds 
strongly to InsP3 R1, causing Ca2+ release through the InsP3 R1. Dopamine (DA) 
released from midbrain dopaminergic neurons stimulates D1 and D2 receptors (D1R, 
D2R). D1R are coupled to activation of adenyl cyclase, increase in cAMP levels, and 
activation of PKA. PKA potentiates glutamate-induced Ca2+ signals by facilitating the 
activity of NMDAR and InsP3 R1. D2R are coupled directly to InsP3 production and 
activation of InsP3 R1. Supranormal Ca2+ signals activate calpain, which cleave 
huntingtin and other substrates. Excessive cytosolic Ca2+ signals result also in 
mitochondrial Ca2+ uptake, which eventually triggers mtPTP opening and apoptosis. 
The mitochondrial Ca2+ handling is further destabilized by direct association of mutant 
huntingtin with mitochondria. muHtt, mutant huntingtin; MCU, mitochondrial calcium 
uniporter; mtPTP, mitochondrial permeability transition pore; VGCC, L-type voltage-
gated calcium channel. From Zuccato C et al. Physiol Rev 2010;90:905-981 

 

5.5 The process of aggregate formation 
 
The pathological hallmark of HD is the formation of intracellular 
aggregates of mutant huntingtin called inclusion bodies (IBs). 
They occur both in the nucleus and the cytoplasm of affected 
neurons and show ubiquitin immoreactivity (Davies et al., 1997). 
The role of inclusion bodies as well as of protein aggregates in 
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other neurodegenerative disease is debated and will be discussed 
in chapter 6. 
Two major aggregation pathways are in competition with each 
other and explain how the polyQ expansion can facilitate 
aggregation (Figure 27). 
 

Figure 27 The process of aggregate formation. Two major aggregation pathways 
are in competition with each other and explain how the polyQ expansion can facilitate 
aggregation. A: in the first pathway, mutant huntingtin undergoes covalent 
modifications (posttranslational modification or cleavage), determining the conversion 
of the protein to an abnormal conformation. The mutant protein forms oligomer 
intermediates that then give rise to globular intermediates from which protofibrils are 
generated. Protofibril intermediates associate to produce amyloid like structures, 
resulting in aggregates or inclusions. B: in the second pathway, oligomers having the 
first 17 amino acids of the protein in its core and polyQ sequences exposed on the 
surface are formed. As the polyQ increases, the structure decompacts and oligomers 
or protofibrils rearrange into amyloid-like structures capable of rapidly propagating via 
monomer addition and producing aggregates. From Zuccato C et al. Physiol Rev 
2010;90:905-981 

 
 The first pathway, described almost 10 years ago, is mediated 
by aggregation of the polyQ stretch (Bates, 2003; Ross et al., 
2003) (Figure 27A). PolyQ aggregation displays kinetics of 
nucleated-growth polymerization with a prolonged lag-phase 
required for forming an aggregation nucleus, followed by a fast 
extension phase during which additional polyglutamine monomers 
rapidly join the growing aggregate. The aggregates consist of β-
sheet-rich fibrils aligned side-by-side to form ribbonlike structures 
and exhibit several defining features of amyloid, such as binding 
to thioflavin T, Congo red birefringence, and reactivity with a 
generic antiamyloid antibody (reviewed in Zuccato et al., 2010). 
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The second pathway, recently elucidated by Ron Wetzel's group 
at the University of Pittsburgh (Thakur et al., 2009), depends on 
the first 17 NH2-terminal amino acids and involves intermediate 
structures. It is characterized by the formation of oligomers 
having the first 17 amino acids of the protein in its core and 
polyQ sequences exposed on the surface. As the polyQ increases, 
the structure decompacts and oligomers or protofibrils rearrange 
into amyloid-like structures capable of rapidly propagating via 
monomer addition (Thakur et al., 2009) (Figure 27B). 
Cells have compensatory mechanisms against unfolded and 
abnormal proteins (Figure 28). 
 

 
Figure 28 Cellular pathways possibly used as compensatory mechanisms in 
Huntington’s disease. Cells can clear mutant HTT by proteasomal degradation, 
chaperone-mediate refolding, chaperone-mediated autophagy, and macro-autophagy. 
Active transport of aggregated HTT leads to inclusions in the cytoplasm; the 
mechanism of nuclear inclusion formation is less well understood. From Ross and 
Tabrizi, 2011. 

 
Misfolded and aggregated proteins are recognized and coupled to 
the retrograde microtubule motor dynein for transport to a 
perinuclear aggresome (Kopito, 2000). Two major cellular 
pathways for degradation of misfolded proteins are the ubiquitin-
proteasome system and autophagy (Kaganovich et al., 2008). 
Researchers have postulated that a toxic effect of mutant HTT 
could be to compromise ubiquitin-proteasome activity, thus 
leading to inclusion bodies formation (Bennett et al., 2005). 
Indeed, changes in the ubiquitin system in Huntington's disease 
mouse model and human post-mortem brain tissue have been 
reported (Bennett et al., 2007). Autophagy is a bulk degradation 
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process in which a portion of the cytosol and its content is 
enclosed by double-membrane structures called 
autophagosomes/autophagic vacuoles, which ultimately fuse with 
lysosomes for the degradation of the contents. It has been 
shown that mutant HTT can also interfere with target recognition 
and compromise autophagic clearance (Martinez-Vicente et al., 
2010). Molecular chaperones can promote refolding of misfolded 
proteins. Indeed, overexpression of one or both of the 
chaperones HSP104 and HSP27 can suppress mutant HTT-
mediated neurotoxicity in mouse and rat models of Huntington's 
disease (Perrin et al., 2007; Vacher et al., 2005).   
 
In conclusion the current data indicate that wild-type huntingtin 
has beneficial activities in mature brain. It is therefore possible 
that its loss in HD reduces the ability of neurons to survive and 
counteract the toxic effects of the mutant protein. Loss of 
function (of the normal protein) as well as gain of function (of 
the mutant protein) are involved in HD pathogenesis. A 
schematic recapitulation of mutant huntingtin disfunction is 
presented in figure 29. 
 

 
Figure 29 Key cellular pathogenic mechanisms in Huntington's disease (HD). 
Multiple cellular pathways have been implicated in the pathogenesis of HD. These 
mechanisms could be exclusive or, more likely, have a high degree of cross-talk. A: 
the mutation in huntingtin causes a conformational change of the protein that leads to 
partial unfolding or abnormal folding of the protein, which can be corrected by 
molecular chaperones. Full-length mutant huntingtin is cleaved by proteases in the 
cytoplasm. In an attempt to eliminate the toxic huntingtin, fragments are ubiquitinated 
and targeted to the proteasome for degradation. However, the proteasome becomes 
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less efficient in HD. Induction of the proteasome activity as well as of autophagy 
protects against the toxic insults of mutant huntingtin proteins by enhancing its 
clearance. B: NH2-terminal fragments containing the polyQ strech accumulate in the 
cell cytoplasm and interact with several proteins causing impairment of calcium 
signaling and homeostasis (C) and mitochondrial dysfunction (D). E: NH2-terminal 
mutant huntingtin fragments translocate to the nucleus where they impair gene 
transcription or form intranuclear inclusions. F: the mutation in huntingtin alters 
vesicular transport and recycling. muHtt, mutant huntingtin. From Zuccato C et al. 
Physiol Rev 2010;90:905-981 
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6. From protein aggregation to neurotoxicity: an 
imperfect fit 
 
The concept of spreading and infectivity of protein aggregates in 
the central nervous system has been recently extended beyond 
prion diseases (for review see Lee et al., 2010; Brundin et al., 
2010; Cushman et al., 2010; Frost and Diamond, 2010). As 
previously described in chapter 4, recent studies suggest that 
intercellular prion-like transmission mechanisms may be 
responsible for propagation of protein misfolding in non-prion 
neurodegenerative disorders. This might involve both secreted 
proteins such as amyloid-β and cytosolic proteins such as tau, 
huntingtin and alpha sinuclein, suggesting the existence of a 
general pathogenic principle in neurodegenerative 
proteinopathies. Yet, whether and how the propagation of protein 
aggregates is linked to neurotoxicity is not completely 
understood (Brundin et al., 2010; Lee et al., 2010). In 
Alzheimer’s, Parkinson’s, Huntington’s disease and prion disorder 
neurodegeneration affects distinct regions of the brain reflecting 
a disease-specific vulnerability of particular neurons (reference 
from Ellison et al., 2004). However, in all the diseases mentioned 
above, the correlation between the brain regions that degenerate 
and the presence of protein aggregates deposition is weak (Lee 
et al., 2010; Treusch et al., 2009). Indeed, the presence of 
visible aggregates does not always correlate with cell death (Ross 
and Poirier, 2004, Treusch et al., 2009). For the purpose of this 
section, that is to introduce the second part of my PhD work, I 
will focus mainly on Huntington’s disease and prion disorders. I 
will discuss the role of inclusion bodies and the mechanisms of 
toxicity. 
 

6.1 Aggregates: toxic or protective species? 
 
Studies in Huntington’s disease brains have revealed a surprising 
discrepancy between the vulnerability of specific subsets of 
neurons and the localization of inclusion bodies (IBs) containing 
aggregated huntingtin. Indeed, it has been reported that at early 
stage of the disease, when cortical neuronal loss is low but 
striatal degeneration is already significant, IBs are much more 
common in the cerebral cortex then in the striatum (Gutekunst et 
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al., 1999). Furthermore, within the striatum, which is the most 
affected brain region IBs are enriched in the population of the 
large interneurons, which are spared, rather than in the medium 
spiny projecting neurons (MSNs) that are selectively lost 
(Kuemmerle et al., 1999). Therefore, neurons with inclusions do 
not correspond exactly to the neurons that degenerate. In 
addition, post-mortem autopsy of transplanted HD patients 
revealed that fetal grafts of striatal tissue were susceptible to 
neurodegeneration displaying increased caspase-3 activation, 
vacuolization and decreased structural integrity in the absence of 
abnormal huntingtin aggregation (Cicchetti et al., 2009). Thus, it 
appears that IB formation is dissociated from the vulnerability of 
different neuronal types and affected regions of HD brains 
(Arrasate and Finkbeiner, 2005; Ross and Poirier, 2004). 
However, in HD there is a positive correlation between the length 
of the CAG repeat and the density of the aggregates 
(Scherzinger et al., 1999) and within the expanded range, longer 
repeats cause early onset (Duyao et al., 1993), consistent with 
the hypothesis that aggregation of the protein is related to 
pathogenesis.  
Which is then the role of inclusion bodies in HD? Are IBs toxic, 
incidental or the result of a beneficial coping response of affected 
cells?  
One argument in favor of the toxic function of huntingtin (and in 
general of protein aggregates) is that they can physically 
sequester proteins critical for cell homeostasis that consequently 
may lose their physiological function (Preisinger et al., 1999). In 
particular IBs of mutant huntingtin have been shown to sequester 
transcriptional factors (McCampbell et al., 2000; Nucifora et al., 
2001; Steffan et al., 2000), proteasomes or other ubiquitin-
proteasome system (UBS) components (Donaldson et al., 2003). 
However, several studies reported that the extent of 
sequestration of these components into IBs was not biologically 
significant (Bennet et al., 2005; Yu et al., 2002) and that 
functional sequestration of transcription factor and UPS 
impairment can occur prior to IB formation (Bennet et al., 2005; 
Mitra et al., 2009; Schaffar et al., 2004) due to the presence of 
soluble mutant huntingtin (see chapter 5). 
Moreover, several studies suggest that the formation of IBs is 
beneficial for cell survival. In primary striatal neurons, the 
formation of IBs was not sufficient to induce apoptosis. On the 
contrary, inhibition of the ubiquitinylation of mutant huntingtin 
prevented IB formation and actually increased cell death (Saudou 
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et al., 1998). Also, in a study by Steven Finkbeiner's group 
(Arrasate and Finkbeiner, 2005; Finkbeiner et al., 2006) a robotic 
microscope was used to follow the fate over time of thousands 
of individual primary neurons expressing the exon 1 fragment of 
huntingtin fused to GFP. It was shown that neurons bearing 
aggregates survived significantly longer than those without 
aggregates. In addition, studies in mouse model of HD expressing 
a CAG expanded huntingtin gene truncated after intron II, called 
Short-Stop mice, showed a widespread and frequent IB formation, 
but no evidence of neuronal dysfunction and degeneration (Slow 
et al., 2005), further confirming that huntingtin aggregation and 
toxicity are not connected.  
 

6.2 Where does the toxicity come from? Is there a particular 
toxic structure?   
 
Recent evidences coming from several independent studies of 
different proteins indicate that oligomers might be the most toxic 
species in pathogenesis (reviewed in Caughey and Lansbury, 
2003; Glabe, 2006; Walsh and Selkoe, 2007). Soluble oligomers 
are small assemblies of misfolded proteins that are present in the 
soluble fraction of tissue extracts and usually include structures 
ranging in size from dimers to 24-mers (Glabe, 2006). Indeed, 
both synthetic and natural oligomers have been shown to induce 
apoptosis in cell cultures at very low concentrations (Demuro et 
al., 2005; Bucciantini et al., 2005; Simoneau et al., 2007), block 
long term potentiation in brain slice cultures (Wang et al., 2002) 
and impair synaptic plasticity and memory in animals (Cleary et 
al., 2004; Shankar et al., 2008). Fibrils can also elicit toxicity in 
cultured cells, but usually at much higher concentrations than 
oligomers and protofibrils (Caughey and Lansbury, 2003). 
In the case of HD, in the same studies mentioned above by 
Steven Finkbeiner's group (Arrasate and Finkbeiner, 2005; 
Finkbeiner et al., 2006) the authors demonstrated that diffuse 
(soluble) form of mutant huntingtin (and not IBs) predicted 
neuronal death. Moreover, a decrease in soluble huntingtin was 
observed upon IB formation, suggesting that IBs may be a 
beneficial coping response that reduces the levels of toxic 
misfolded proteins in the soluble fraction by sequestering them in 
insoluble aggregates. Consistently, as mentioned above, the 
neurons bearing IBs had significant longer survival compared to 
those without aggregates (Arrasate and Finkbeiner, 2005; 
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Finkbeiner et al., 2006). Other studies also supported the 
hypothesis that small aggregates or even aberrantly folded 
monomeric forms of mutant huntingtin are toxic to cells 
(Arrasate et al., 2004; Bennett et al., 2007). The two possible 
pathways leading to aggregation of mutant huntingtin have been 
described before (see paragraph 5.5). They both involve the 
formation of intermediate globular assemblies that likely 
correspond to the toxic species (Zuccato el al., 2010).  
Analysis of IBs purified from HD brains demonstrated the 
presence of a broad range of N-terminal fragments of mutant 
huntingtin (DiFiglia et al., 1997; Hoffner et al., 2005). Indeed, 
huntingtin is a substrate of proteolytic cleavage of several 
proteases including caspase-3, caspase-6 and calpain (see 
paragraph 5.3). The cleavage event generates specific N-terminal 
fragments containing the expanded polyQ tract that localize 
either in the nucleus or the cytoplasm (Lunkes et al., 2002). 
Biochemical analyses of nuclear and cytoplasmic inclusions 
showed that nuclear aggregates are composed mostly by the 
NH2 terminus of mutant huntingtin fragments (Hackam et al., 
1998; Martindale et al., 1998; Cooper et al., 1998). On the other 
hand, extranuclear neuronal inclusions contain both full-length 
mutant and truncated huntingtin (Cooper et al., 1998; Hackam et 
al., 1998; Martindale et al., 1998). Interestingly, caspase 6 
mediated cleavage seems to be a crucial event in HD 
pathogenesis. Transgenic mice expressing a full-length mutant 
huntingtin resistant to caspase 6 cleavage do not develop striatal 
atrophy (Graham et al., 2006). Accordingly to the toxic fragment 
hypothesis, the activation of caspase 6 may be a primary event 
in the proteolytic process of mutant huntingtin leading to the 
production of toxic fragments and to the activation of additional 
proteolytic caspase activities (e.g; activation of caspase 2 and 3) 
in a vicious cycle that exacerbate neurodegeneration and 
contribute to the appearance of the disease phenotype (Zuccato 
et al., 2010).  
Conformational diversity of polyQ aggregates has been shown in 
a mouse model of HD (Nekooki-Machida et al., 2009). Aggregates 
purified from different brain regions showed distinct 
conformation once propagated in vitro by seeding reactions. 
Moreover, distinct conformers showed distinct toxicity when 
introduced in neuronal cells stably expressing a soluble expanded-
polyQ fragment with conformers coming from the most affected 
brain regions (e.g. striatum) showing the higher toxicity 
(Nekooki-Machida et al., 2009). Interestingly, microarray 
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experiments showed that mRNA levels of chaperones and 
transcription factors that bind to expanded-polyQ htt are 
different between distinct brain regions (Hodges et al., 2006). 
Therefore, it is possible that different expression levels and types 
of chaperones and htt-interacting proteins modulate the extent 
of folding and dynamics of htt in distinct brain regions (Hodges 
et al., 2006). These differences, in turn, could lead to a range of 
htt conformations that have distinct cytotoxicity when htt 
protein misfolds. Taken together, these findings suggest that 
conformational differences of htt amyloids or most likely of 
soluble aggregated species may dictate the regional specificity of 
HD.  
 

6.3 Cell autonomous and non cell autonomous degeneration 
 
Besides the specific role of large visible protein aggregates, 
protein misfolding is a critical step in neurodegeneration. Indeed, 
once the capacity of neurons to handle misfolded protein species 
is exceeded, protein misfolding initiate a cascade of pathological 
events that includes mitochondrial disfunction, increase oxidative 
stress, alteration in calcium homeostasis and result in cell death 
(Saxena and Caroni, 2011; Williams and Paulson, 2008). As 
mentioned before, mutant proteins are ubiquitously expressed by 
neurons and non neuronal cells in the CNS, yet for each disorder 
neurodegeneration occurs in selective vulnerable cell population. 
Furthermore, mutant proteins are expressed throughout the 
patient’s lifetime, but the related disease develops mainly in 
middle life or adulthood.  
For many years, the events leading to neurodegeneration were 
believed to be entirely cell-autonomous, that is occurring 
independently in many cells (reviewed in Brundin et al., 2010; 
Garden and La Spada, 2012). However, the current hypothesis is 
that the disease-associated mutant proteins “result in cell-type 
specific dysfunction which individually do not cause the full 
spectrum of disease symptoms, but in concert and over time will 
result in the distinct patterns of neurological dysfunction and/or 
neurodegeneration that characterize a given disorder” (cit. 
Garden and La Spada, 2012). This synergistic form of cellular 
dysfunction via cell-cell interaction may account for both 
selective neuron loss and age dependence for a given disorder. 
This hypothesis is supported by numerous studies suggesting 
that the pathogenesis of neurodegenerative diseases involves 
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(mis)communication between different cell type and is consistent 
with the recent evidence of prion-like spreading of pathogenic 
misfolded proteins from cell-to-cell (Garden and La Spada, 2012). 
In this frame, prion like-transmission of protein misfolding (e.g 
toxic soluble oligomers) might contribute to the gradual 
spreading of the pathology in the brain of afflicted individuals 
leading to cell-type specific dysfunctions that in concert will 
determine the selective pattern of neurodegeneration 
characteristic for each disorder. When cell types other then the 
dying neurons themselves are critically involved in the 
degenerative process we are indeed in presence of a non-cell 
autonomous degeneration (Figure 30).  
 

 
Figure 30 A variety of non-cell autonomous factors influence neuronal survival 
Neurons receive synaptic input (1), delivering both neurotransmitters and neurotrophic 
factors (2) that sustain neuronal survival. Neurodegenerative diseases can alter 
synaptic input by inhibiting anterograde axonal transport (3) and/or axon degeneration 
(4), resulting in decreased release of transmitters and neurotrophic peptides. (5) 
Failed retrograde transport as well as molecular dysfunction in target neurons or in 
non-neural target organs (e.g., muscle and blood vessels) can also damage 
presynaptic neurons, mimicking events that occur during development, when 
pathways of target-dependent neuronal survival are active. From Garden and La 
Spada, 2012. 

 
Indeed, when the expression of a disease-associated protein was 
restricted to the respective vulnerable neuron population, the 
respective mouse models did not develop the complete disease 
phenotype (Brown et al., 2008; Yvert et al., 2000; Gu et al., 
2005). On the contrary, widespread expression of the disease 
genes in mouse models recapitulates the features of the human 
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diseases, sometimes even when the disease gene is not 
expressed in the vulnerable neuronal population (Garden and La 
Spada, 2012). In the specific case of HD, when mutant huntingtin 
protein was expressed in a cell-type specific manner, cortical 
degeneration could not be achieved in a cell-autonomous manner 
(Gu et al., 2005).  
Different types of interaction occur between neurons involving 
presynaptic input from one population of neurons to the 
postsynaptic target cells. Presynaptic inputs influence the 
funcion and health of their target neurons in a variety of ways 
including delivery of neurotrophic factors and regulation of 
synaptic activity. In the case of HD, neuronal interaction and 
circuits at the corticostriatal synapse are dysfunctional. Striatal 
neurons, the most affected neuronal population in HD, depend for 
their survival and activity on BDNF and glutamate release from 
the cortical afferents (Figure 31).  
 

 
Figure 31 Neurotransmitter systems and growth factors that are dysfunctional at 
the corticostriatal pathway. Neuronal death may depend on excitotoxicity that 
results from increased glutamate (Glu) release from cortical neurons and increased 
activity of the glutamate receptor (NMDAR). In addition to glutamate, other 
neurotransmitter systems that control the activity of the corticostriatal synapse can 
contribute to render striatal neurons more sensitive to excitotoxic stimuli. Adenosine 
A2 receptors (A2AR) and cannabinoid receptors (CB1R) are particularly abundant on 
the corticostriatal terminals, where, when activated, they increase glutamate release. 
A crucial input to the striatum comes from the substantia nigra pars compacta, whose 
fibers represent the main striatal source of dopamine. Dopamine can directly regulate 
glutamate release from corticostriatal terminals by stimulating the D2 receptors (D2R) 
located on the cortical afferents. Glial cells may also play important roles through cell-
cell interactions. For example, decreased glutamate uptake in glial cells by GLT-1 
contributes to increased neuronal vulnerability and neuronal excitotoxicity in neurons. 
Reduced BDNF production and release from the cortical afferents contribute to 
neuronal death. Striatal BDNF is produced in the cortex where its transcription is 
downregulated in the presence of mutant huntingtin. In addition, mutant huntingtin 
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reduces BDNF vesicle transport. Both mechanisms result in loss of BDNF trophic 
support to striatal neurons. From Zuccato C et al. Physiol Rev 2010;90:905-981 

As mentioned before (see paragraph 5.3), most of the striatal 
BDNF is produced in the cerebral cortex and delivered to the 
striatal neurons via the cortico-striatal afferents. Both HD 
patients and mouse models demonstrate reduced BDNF in the 
caudate and putamen (Canals et al., 2004; Ferrer et al., 2000), 
which result from the effect of mutant huntingtin on BDNF gene 
trascription and/or the anterograde transport of BDNF to the 
presynaptic terminal (Gauthier et al., 2004; Zuccato et al., 
2001). A dysfunctional synaptic activity at the corticostriatal 
synapse, result in excessive activation of glutamate receptor, a 
phenomenon known as excitotoxicity, due to an increase 
glutamate release from cortical neurons and increased activity of 
the glutamate receptor (NMDAR) (Zuccato et al., 2010; Garden 
and La Spada, 2012) (Figure 31). 
In the CNS non neuronal cell are also present and is now well 
established that astrocytes are not only support cells but they 
can sense and respond to neuronal activity as they possess 
receptor for neurotransmitters (Jourdain et al., 2007) and they 
facilitate rapid and efficient removal of neurotransmitters from 
the synaptic clefts. In particular, astrocytes play a role during 
glutammatergic transmission (Rossi and Volterra, 2009). Indeed, 
GLT1, the glial Na+-dependent transporter of glutamate is 
responsible for the removal of most extracellular glutamate, and 
there is mounting evidence that GLT1 actively participates in the 
regulation of synaptic transmission (Tzingounis and Wadiche, 
2007). Decreased GLT1 mRNA and deficient glutamate uptake 
has been reported in post mortem brain tissues taken from HD 
patients (Arzberger et al., 1997; Hassel et al., 2008) as well as 
mouse models of HD (Behrens et al., 2002; Estrada-Sánchez et 
al., 2009; Shin et al., 2005). Therefore, aside from altered 
glutamate release from cortical afferents, impaired clearance of 
glutamate from glial cells at the synaptic cleft may contribute to 
enhance excitotoxic neurodegeneration in HD. A schematic of the 
non-cell autonomous mechanism responsible for selective neuron 
vulnerability in HD is proposed in figure 31. 
 
6.4 From PrPC – PrPSc conversion to neurotoxicity: what is the 
link? 
 
Plaque deposition may also be beneficial in the case of prion 
disease. Indeed, PrPres isoforms, the protease resistant forms of 
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PrP that include amyloid, are not toxic on their own (Brandner et 
al., 1996). PrPC knockout (Prnp0/0) mice are completely 
resistant to prion infection upon intracerebral injection of even 
very high doses of PrPSc from infected brain homogenate (Bueler 
et al., 1993). Equally striking, in early studies transgenic (Tg) 
mice expressing low levels of a secreted form of PrP, GPI anchor-
less PrP(ΔGPI) did not develop signs of spontaneous neurologic 
illness, but accumulated massive plaque-like amyloidogenic 
PrP(ΔGPI) deposits after exposure to prions in absence of any 
clinical manifestations of prion disease (Chesebro et al., 2005). 
Notably, it has been recently shown that Tg mice expressing high 
levels of PrP(ΔGPI) (almost 2 folds compared with PrPC 
expression in wild-type mice) develop a late onset, spontaneous 
neurologic illness accompanied by widespread amyloid deposition 
in the brain and disease is accellerated by co-expression of full-
length wild-type PrPC, with incubation times inversely correlated 
to PrPC expression levels (Stöhr et al., 2011). Furthermore, using 
human tissue samples, the Baron laboratory showed that the 
accumulation of certain forms of PrPSc did not result in 
spongiform degeneration (Piccardo et al., 2007). Brain extracts 
from two cases of familial prion disease were used to test the 
transmission of disease to transgenic mice. One of the samples 
exhibited PrPSc deposits and spongiform changes, while the other 
presented PrPSc deposits and no spongiform changes. Brain 
extract from the patient without spongiform degeneration did 
not result in disease transmission but elicited PrPSc deposition in 
large multicentric plaques. Based on these evidences, the author 
concluded that PrPres was rendered nonpathogenic by its 
sequestration in amyloid plaques (Piccardo et al., 2007). Thus, as 
for Huntington’s diseases and other non-prion neurodegenerative 
disorders also in prion diseases the presence of large amyloid 
deposits is distinct from neuronal degeneration with prion toxicity 
possibly linked to a heterogeneous “toxic cloud” of oligomeric 
species (Aguzzi and Falsig, 2012). 
Understanding how PrPSc actually leads to neurodegeneration 
following neurotoxicity is still an open question in prion biology 
(Aguzzi and Falsig, 2012). Despite the fact that apoptosis and 
oxidative stress have been shown to contribute to TSE pathology 
(Milhavet and Lehmann, 2002), little is known about primary 
events causing damage (Aguzzi et al., 2008). Indeed, PrPSc 
requires physiologically active PrPC on the cell membrane to exert 
his toxicity (Harris and True, 2006). Thus, PrPC has a dual role in 
the pathogenesis of prion diseases by virtue of its ability to be 
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required both for the generation of PrPSc molecules and for 
PrPSc-induced neurodegeneration. Moreover, it is still unclear 
weather PrPSc toxicity is the result of a gain of function of PrPSc 
or of a loss of function of PrPC and which is the responsible 
factor for the neuropathological changes induced by prions. Some 
reports that have addressed this question rather support a loss 
of PrPC function (Nazor et al., 2007). But, based on the mild 
phenotype of PrPC knockout mice, other groups belive that a gain 
of function is more conceivable (Westergard et al 2007; Aguzzi 
et al., 2008). A possibility is also that the normal neuroprotective 
role for PrPC would be needed during brain damage and therefore 
could be missing in prion diseases due to PrPC conversion in the 
pathological counterpart. A third possibility could be that in 
presence of PrPSc, the cellular PrPC function is subverted and it 
could trigger toxic signals through pathways not related with its 
physiological function (subversion of function) (Figure 32). 
 

   
Figure 32 PrP-mediated neurotoxicity. (A) Toxic gain-of-function mechanism. PrPSc  
possesses a novel neurotoxic activity that is independent of the normal function of 
PrPC. (B) Loss-of-function mechanism. PrPC possesses a normal, physiological 
activity, in this case neuroprotection, that is lost upon conversion to PrPSc. (C) 
Subversion-of-function mechanism. The normal, neuroprotective activity of PrPC is 
subverted by binding to PrPSc . Modified from Harris and True 2006 

 
To date, several reports suggest that these three possibilities 
might co-exist to different extent in the diverse forms of prion 
diseases and they all lead to neurodegeneration. 
 
 
 



 90 

6.4.1 Gain of function through formation of PrPSc 
 
Although the presence of PrPSc is the hallmark of prion diseases, 
it is highly debated whether prion pathology could really be 
attributed only to a toxic gain of function. In this context, newly 
formed PrPSc presents novel properties unrelated with the 
physiological role of PrPC and PrPSc deposits might interfere with 
synaptic transmission or block of the axonal transfer (Westergard 
et al 2007). Some reports have suggested that both full-length 
PrPSc (Hetz et al., 2003) and shorter PrP peptides are toxic to 
primary neuronal cultures in vitro (Forloni et al., 1993), but their 
relevance to in vivo pathogenesis is under debate. Nonetheless, 
from other experimental evidences it is unlikely that accumulation 
of extra-neuronal PrPSc aggregates is the only responsible factor 
for neurotoxicity. Indeed, when neural tissue over-expressing WT 
PrPC is grafted into mice lacking PrP, prion infection of the mice 
leads to increase in PrPSc levels and neurodegeneration only in 
the PrPC-expressing graft (Brandner et al., 1996). Furthermore, 
acute ablation of endogenous PrPC in prion-infected mice has 
been demonstrated to reverse early spongiform change 
preventing neuronal loss and progression to clinical disease, even 
in presence of extra-neuronal PrPSc (Mallucci et al., 2003). 
Moreover, as mentioned before, prion-infected transgenic mice 
expressing PrPC without a GPI anchor produce infectious prions, 
accumulate extracellular PrP amyloid plaques, but do not 
succumb to the disease (Chesebro et al., 2005), while Tg mice 
expressing high level of anchor-less PrP developed a spontaneous 
neurological illness that is accelerated by co-expressing full-
length wild-type PrPC (Stöhr et al., 2011). Finally, it has also 
been described that in some cases PrPSc accumulation does not 
lead to clinical symptoms (Hill et al., 2000; Race et al., 2002; Hill 
and Collinge, 2003). 
 

6.4.2 Loss or subversion of PrPC function 
 
A plethora of cellular functions have been attributed to PrPC but 
its physiological role appears to be redundant, since PrP knock-
out mice are vital and do not present severe abnormalities 
(Bueler et al., 1993; Manson et al., 1994b). However, a growing 
number of studies implicates PrPC in diverse cellular processes 
(Nicolas et al., 2009) like cellular resistance to oxidative stress 
(Milhavet and Lehmann, 2002) and cytoprotection through anti-
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apoptotic activity (Kuwahara et al., 1999; Bounhar et al., 2001) 
involving both its N terminal and central regions. PrPC has also 
been involved in cell signalling (Mouillet-Richard et al., 2000), 
copper and zinc metabolism (Watt and Hooper, 2003; Pauly and 
Harris, 1998), synaptic transmission (Collinge et al., 1994), 
myelin homeostasis (Bremer et al., 2010; Benvegnù et al., 2011) 
and in cytoskeleton dynamic and remodeling and in cell-to-cell 
adhesion (Malaga-Trillo 2009; Schrock et al., 2009; Chiesa and 
Harris, 2009). This is in agreement with previous observations 
made for mammalian PrPC in which a role for this protein in 
neurite outgrowth and cell-cell interaction, respectively in 
hippocampal neurons and neuroblastoma cells has been reported 
(Schmitt-Ulms et al., 2001; Santuccione et al., 2005). 
A loss in any of these functions could theoretically lead to 
neurodegeneration. In particular, loss of its anti-apoptotic role 
could directly be related to toxicity and neuronal death. For 
example, neurons derived from mice lacking PrPC were originally 
reported to be more susceptible to apoptosis mediated by serum 
deprivation and this phenotype could be rescued by over-
expressing either PrPC or B-cell lymphoma protein 2 (Blc2) 
(Kuwahara et al., 1999). Also, overexpression of Bax, a 
stimulator of the apoptotic pathway, together with PrPC leads to 
a decrease in the rate of apoptosis in human neurons (Bounhar et 
al 2001). 
A third possibility is that alteration in PrPC normal function is 
achieved by contact with PrPSc, thus leading to a toxic signal 
cascade and inducing a subversion of its normal activity. 
Consistent with this hypothesis, cross-linking of PrPC at the cell 
surface with anti-PrP antibodies induces apoptosis of the CNS 
neurons in vivo (Solforosi et al 2004). Additionally, binding of 
PrPSc could interact with specific region of PrPC necessary for its 
normal function, thus stimulating altered activities. Accordingly, 
transgenic mice overexpressing PrP harboring a deletion in a 
portion in the N-terminal tail (Tg(PrPΔ105-125)) exhibit a severe 
neurodegenerative illness that is lethal within one week of birth 
(Li et al 2007). This toxic PrPC mutant (PrPΔ105-125) has been 
shown to induce a nonselective transmembrane ion current in 
HEK293 cells that was suppressed by coexpression of full-length 
PrPC or by co-deletion of the N-terminal charged domain 
(PrPΔ23-32) (Solomon et al., 2010). Indeed, the N-terminal 
polybasic domain (residues 23-31) has been implicated in the 
neurotoxicity of PrP mutants (Biasini et al., 2012). Ion currents 
were induced by PrP mutants in cells of many different species, 
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suggesting the formation of PrP-mediated pores across 
membranes that may account for neurotoxicity (Solomon et al., 
2011, 2012). Yet currently no evidence exists that PrP can 
induce pore formation in vivo following prion infections. It is 
interesting to notice that a common feature of transgenic mice 
expressing PrP deletion mutant is that co-expression of wild-type 
PrPC abrogates clinical symptoms and neuropathology with more 
toxic mutations requiring higher doses of wild-type PrPC to 
rescue the phenotype (Biasini et al., 2012). Indeed, given that 
PrPC is an extracellular GPI-anchored protein, this highly 
conserved region could be an important binding site for a 
putative cell-surface interactor mediating PrPC function that in 
presence of PrPSc is masked or subverted (Westergard et al 
2007) (Figure 33).  
 

 
Figure 33 PrP-mediated neurotoxicity.(A) Toxic gain-of-function mechanism. PrPSc  
possesses a novel neurotoxic activity that is independent of the normal function of 
PrPC. (B) Loss-of-function mechanism. PrPC possesses a normal, physiological 
activity, in this case neuroprotection, that is lost upon conversion to PrPSc. (C) 
Subversion-of-function mechanism. The normal, neuroprotective activity of PrPC is 
subverted by binding to PrPSc . Modified from Harris and True 2006 

 
Interaction of PrP with a number of proteins have been described 
including NMDA and GABA receptor subunits (Aguzzi and Calella 
2009; Khosravani et al., 2008; You et al., 2012) et al., 2008; 
You et al., 2012). Although none of these proteins were proven 
to be involved in prion-induced neurodegeneration (Aguzzi and 
Falsig, 2012), some of them might have a role in PrPC-mediated 
toxicity in non-prion neurodegenerative diseases (You et al., 
2012) (see below, paragraph 6.5). Many of the alleged interactor 
partners localize to different cellular compartments, suggesting 
that atypical PrP topologies may participate to the pathogenesis 
(Aguzzi and Falsig, 2012). Indeed, abnormal topology or altered 
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trafficking of PrPC could in part explain PrP-related neuronal 
toxicity in the absence of PrPSc formation (Aguzzi and Calella, 
2009). For example, targeting of PrPC to the cytosol results in 
rapid lethal neurodegeneration (in the absence of PrPSc) and 
proteasome inhibition induces a slightly protease-resistant PrP 
species in cultured cells (Ma and Lindquist, 2002; Ma et al., 
2002). Moreover, two topological variants of PrPC have been 
described, designated CtmPrP and NtmPrP, with their N- or C- 
termini respectively on the extracellular side of the membrane 
(Hegde et al., 1998; Stewart and Harris, 2003). Expression of 
these mutants in transgenic mice induces neurodegenerative 
phenotypes (Stewart and Harris, 2003; Rane et al., 2008) 
Interestingly, the phenotype associated with one of these 
mutants is dependent on the co-expression of wild-type PrPC, 
suggesting that CtmPrP subverts the normal function of PrPC 
function to generate toxicity (Stewart et al., 2005). Although 
numerous studies have provided important information about the 
function of PrPC, this issue has not been clarified. Until we have a 
clear understanding of the function of PrPC it will be difficult to 
understand the mechanism that leads to the pathogenesis of the 
disease. Therefore more studies at single cell level to understand 
the cell biology of PrPC and PrPSc are needed.  
 

6.5 Is PrP the road to ruin? Lesson from β -Amyloid 
 
Recent data have suggested that PrPC is a receptor for β-
amymoid (Aβ) oligomers and may also mediate the toxic effects 
of these assemblies (rewied in Biasini et al., 2012). In the initial 
study by Lauren and coworkers (Lauren et al., 2009), PrPC was 
identified from an expression cloning screening as a high 
(nanomolar) affinity receptor for Aβ oligomers. Interestingly, PrPC 
binding was specific for oligomers since was not observed with 
Aβ monomers or fibrils. Importantly, PrPC was also found to be a 
mediator of Aβ-induced totoxicity. Indeed, hippocampal slices 
derived from PrPC knockout mice did not develop Aβ oligomer-
induced suppression of long-term potentiation (LTP), a 
characteristic feature of amyloid-β toxicity. The same group 
moved from in vitro and ex vivo approaches to in vivo study by 
crossing PrPC knockout mice with a transgenic mouse model AD 
(Gimbel et al., 2010). The authors showed that PrPC was 
required for both the cognitive deficits and reduced survival in 
AD mice, although the presence of PrPC did not influence the 
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rate of Aβ plaque formation in the brain. Together these findings 
further support the distinction between protein aggregates 
deposition and toxicity with the latter being dependent on small 
olygomeric assemblies rather then large amyloids (Benilova et al., 
2012). In addition, the cellular prion protein appears to be an 
essential mediator of the Aβ neurodegenerative process upon 
binding of the toxic oligomeric species.  
Several studies confirmed the initial finding that PrPC plays a role 
in mediating the toxicity (e.g. suppression of LTP) induced by Aβ 
oligomers (Bate and Williams, 2011) and have provided additional 
evidence showing that immunotargeting PrPC in vitro or in vivo 
can rescue Aβ-dependent toxic effects (Chung et al., 2010; Freir 
et al., 2011; Barry et al., 2011). Interestingly one of the 
proposed mechanisms by which Aβ oligomers induce PrP-
mediated toxicity is by crosslinking PrPC molecules similarly to 
what is found in prion diseases (Bate and Williams, 2011).  
By contrast, several other studies reported opposite results. In 
particular, Forloni and colleagues showed that synthetic Aβ 
oligomers injected intraventricularly into mice impaired 
consolidation of long-term recognition memory regardless of the 
expression of PrPC (Balducci et al., 2010). In two other recent 
studies, genetic ablation of PrPC had no effect on Aβ-induced 
inhibition of hippocampal LTP in brain slices (Calella et al., 2010) 
or learning and memory deficits in a line of AD transgenic mice 
expressing mutant APP (reviewed in Biasini et al., 2012) 
 
Several possibilities may explain the contrasting data emerging 
from these studies. First the preparation of synthetic Aβ 
oligomers is notoriously challenging and the product obtained can 
differ from one laboratory to another (Rahimi et al., 2008; Finder 
and Glockshuber, 2007). It is possible that only a specific 
conformation or size of synthetic oligomers operates through a 
PrPC-dependent mechanism and only same preparation, but not 
others, may contain the toxic species. Regarding the in vivo 
results the use of different transgenic models of AD might 
explain the contrasting results. Given these uncertainties, the role 
of PrPC in mediating the synaptic toxicity of Aβ requires further 
clarification (Biasini et al., 2011; Benilova et al., 2012).  
Neverthless, all the studies mentioned above confirmed the 
ability of synthetic Aβ oligomers to bind PrPC with high affinity. 
Based on deletion analysis, antibody inhibition and biophysical 
techniques, two distinct Aβ oligomer binding sites have been 
identified on PrPC corresponding respectively to the residues 95–
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105, the central domain, and 23–27, the N-terminal polybasic 
domain (Lauren et al., 2009). Remarkably, these two sites are 
coincident with or included in the regions that are important 
determinants of PrPC activity and toxicity (as discussed above in 
paragraph 6.4.2). Moreover, the N-terminal polybasic domain has 
been implicated in internalization of PrP via clathrin-mediated 
endocytosis (Taylor et al., 2005). Indeed, the same structural 
domains that govern PrPC function, cellular trafficking and 
toxicity are also involved in the binding to Aβ oligomers (Figure 
33). Interestingly, another recent study showed that Aβ 
oligomers can affect the localization of PrPC by increasing the 
formation of clusters of PrPC on the cell surface (Caetano et al., 
2011). 
Furthermore, a recent study provided evidence that PrPC could 
mediate not only the toxicity of Aβ oligomers, but also of other 
β-sheet-rich protein conformers and that toxicity was prevented 
by NMDA receptor antagonists (Resenberger et al., 2011) (Figure 
34). 
 

 
Figure 34 PrP-mediated amyloid toxicity (a) Potentially toxic ligands of PrPC 
binding to amino acids 95–105 (letters highlighted in red). PrP%GPI, GPI-deficient 
PrP. (b) Possible mechanism of PrP toxicity. (1) PrP-mediated pore formation leading 
to nonselective conductance of ion across neuronal membrane. (2) CtmPrP spanning 
the lipid bilayer, resulting in the corruption of the normal function of cytosolic proteins 
by aberrant PrP interactions. (3) Specific modulation by PrP of NMDA receptor 
function, leading to excitotoxicity. (4) Hydrophobic, nonselective interactions of 
amyloids of undefined length with membrane proteins and lipids leading to a general 
corruption of membrane homeostasis. From Aguzzi and Falsig, 2012. 
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As discussed before (see chapter 1), different unrelated disease-
assosiated protein aggregates share similar conformation 
properties consistent in ordered assemblies of β-sheets or cross- 
β spine. Moreover, the most toxic species appear to be small 
oligomeric assemblies rather than large fibrils (reviewed in 
Caughey and Lansbury, 2003; Glabe, 2006; Walsh and Selkoe, 
2007). Therefore it is tempting to speculate the existence of a 
common mechanism for toxicity with PrPC functioning as a 
“danger sensor” (Aguzzi and Falsig, 2012). Indeed, it is possible 
that oligomeric forms of several different neurotoxic proteins 
could exert their effects by blocking, enhancing or subverting the 
normal function of PrPC as its pathogenic counterpart, PrPSc, 
does. Thus, binding of either oligomeric Aβ or PrPSc or other 
pathogenic aggregates to cell-surface PrPC may initiate toxic 
signals that lead to neuronal loss and/or synaptic dysfunction 
(Aguzzi and Falsig, 2012) (Figure 34). 
 
In this scenario, two different studies from Zamponi’s group have 
recently demonstrated the functional and physical interaction 
between PrPC and NMDA receptors (NMDARs) (Khosravani et al., 
2008; You et al., 2011). Indeed, excessive NMDAR activity 
resulting in calcium overload and excitotoxicity, has been 
implicated in the pathophysiology of several neurodegenerative 
disorders including Huntington’s disease (as described above in 
paragraph 6.3) and Alzheimer’s disease (Lipton and Rosenberg, 
1994; Kalia et al., 2008). In particular, hippocampal neurons from 
PrP knockout mice were found to display enhanced NMDA-
induced currents, an effect that was reversed by overexpression 
of PrPC (Khosravani et al., 2008). Indeed, PrPC has been shown 
to co-immunoprecipitate with the NRD2 subunits of NMDARs 
(which are enriched in the striatum) as well as with NR1 subunits 
(which are common to all subtypes of NMDARs) suggesting a 
direct modulation of NMDA receptors by PrPC and the existence 
of an NMDAR–PrPC-signaling complex. (Khosravani et al., 2008; 
You et al., 2011). It appears that under physiological conditions, 
PrPC, in its copper-loaded state, reduces glycine affinity for the 
NMDA receptor complex, thus enhancing NMDAR desensitization 
and limiting calcium flux through the receptor. When copper is 
chelated or when PrPC is absent or functionally compromised by 
binding to Aβ oligomers for exemple, glycine affinity is enhanced, 
reducing receptor desensitization and producing pathologically 
large, steady-state currents that contribute to neuronal damage 
(You et al., 2011). Therefore a physiological role for PrPC may be 
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to limit excessive NMDAR activity preventing neuronal damage. 
This findings provides a molecular mechanism whereby toxic 
oligomeric species mediate neuronal and synaptic injury, at least 
in part, by disrupting the normal copper-mediated, PrPC 
dependent inhibition of excessive activity of this highly calcium 
permeable glutamate receptor. 
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Aims of the study 
 
The pathogenesis of most neurodegenerative diseases, including 
transmissible diseases like prion encephalopathies, inherited 
disorders like Huntington’s disease, and sporadic diseases like 
Alzheimer’s and Parkinson’s diseases, is intimately linked to the 
formation of fibrillar protein aggregates. For many years, the 
concept of spreading and infectivity of the aggregates has been 
confined to prion diseases. Misfolded protein aggregates are 
“infectious” if they propagate from one cell to another and if in 
the recipient cell they act as “seeds” initiating aggregate 
formation by recruiting additional unfolded or oligomeric species 
of the same protein (Brundin et al., 2010). Both these 
characteristics are typical of prions and are essential for the self-
replication (Caughey and Lansbury, 2003). For example, 
spreading of the misfolded prion protein PrPSc from the gut to 
the brain and within the brain is required for prion replication and 
diffusion of spongiform pathology (Prusiner 1994; Aguzzi and 
Calella, 2009). It is becoming increasingly appreciated that both 
extracellular (e.g. amyloid-β) and intracellular (α-synuclein, tau, 
huntingtin) protein amyloids are able to move and possibly 
replicate within the brains of affected individuals thereby 
contributing to the spread of pathology in a prion-like manner 
(Brundin et al., 2010; Jucker and Walker, 2011, Aguzzi and 
Rajendran, 2009; Soto et al., 2006).  
Recently another intriguing connection has been made between 
prions and other aggregation proteinopathies as it was suggested 
that the cellular prion protein, PrPC, whose pathological 
counterpart is responsible for prion diseases, possibly mediates 
the toxicity of Aβ, the pathogenic protein in Alzheimer’s disease, 
and of other β-conformers independently of infectious prion 
propagation (Biasini et al., 2011; Bate and Williams, 2011; 
Resenberger et al. 2011). 
Despite the intense research, many questions in prion and non-
prion neurodegenerative diseases are still open regarding both 
the mechanism of protein aggregate spreading and the 
mechanism of toxicity. Furthermore, exploring some of these 
aspects in prion biology could also provide a better 
understanding of non prion neurodegenerative disorders. 
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My PhD work has been focused on two major parts concerning 
respectively the mechanism of spreading and toxicity of prion 
and Huntington’s disease as follows: 
 
 
PART 1 Characterization of the role of dendritic cells in prion 
transfer to primary neurons: an insight in the mechanisms of 
prion spreading. 
 
 
PART 2 

• Project 1: Characterization of the mechanisms of 
polyglutamine aggregates transfer in neuronal cells and 
primary neurons 

• Project 2: Role of the cellular prion protein in the 
pathogenic pathways of Huntington’s disease. 

 
 
PART 1:  
Characterization of the role of dendritic cells in prion 
transfer to primary neurons: an insight in the 
mechanisms of prion spreading 
 
After oral exposure, PrPSc accumulates into lymphoid tissues, 
such as the spleen, lymph nodes or Peyer’s patches, prior to 
neuroinvasion (Beekes and McBride, 2000; Prinz et al., 2003). 
The exact mechanisms and specific cell types involved in the 
spreading from the gastrointestinal track to the lymphoid system 
and to the peripheral nervous system (PNS), leading to 
neuroinvasion of the CNS are not completely understood. A 
number of studies have demonstrated that FDCs play a critical 
role during spreading of infection (reviewed in Mabbott and 
MacPherson, 2006). However, because FDCs are immobile cells, it 
is not clear how they may acquire PrPSc and how it could spread 
from the FDCs to the PNS, since there is no physical contact 
between the gut and FDCs and between FDCs and nerve 
periphery (Defaweux et al., 2005). Dendritic cells (DCs) have 
been proposed to play a critical role in the transport of PrPSc 
from the gut to FDCs (Huang et al., 2002). In addition, DCs might 
also be able to promote prion transfer to nerve cells by direct 
contact with peripheral nerve fibers (Defaweux et al., 2005; 
Dorban et al., 2010) or through tunneling nanotube (TNT)-like 
structures (Gousset et al., 2009; Dorban et al., 2010). 
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In this context, in the first part of my PhD work, I pursued three 
specific objectives in order to better understand whether and by 
which mechanisms DCs would contribute to prion spreading: 
 

a. To characterize the kinetic of prion uptake and degradation 
in bone-marrow-derived DCs (BMDCs) 

b. To investigate the mechanisms by which BMDCs can 
transfer PrPSc to primary neurons 

c. To examine whether BMDCs efficiently transfer prion 
infectivity to primary neurons  

 
This first part of my results have been performed in collaboration 
with Dr Langevin, a former post-doc in Dr Zurzolo’s lab and 
resulted in a publication in Biochemical Journal that is described 
and appended (Langevin et al., 2010) in the session “Results 1”. 
 
 
PART 2:  
 
Huntington’s disease (HD) belongs to a family of dominantly 
inherited neurodegenerative diseases and it is caused by 
expansion of CAG tracts in the exon 1 of the huntingtin gene. 
The mutant gene encodes a variant of the huntingtin (htt) 
protein containing a homopolymeric tract of polyglutamine 
(polyQ) in excess of the pathogenic threshold of ~35Q (HD 
collaborative research group, 1993) (see chapter 5 of the 
introduction).  
 
In the second part of my PhD, I have worked on two distinct but 
closely related projects in order to understand the mechanisms of 
Htt aggregates spreading and toxicity and the possible role of 
PrPC in these events. 
 
Project 1: Characterization of the mechanisms of 
polyglutamine aggregates transfer in neuronal cells and 
primary neurons 
 
Despite the rapidly accumulating evidence supporting a role for 
intercellular transmission of protein aggregates in the 
pathological spread of neurodegeneration in animal and cell 
culture disease models, little is known about whether and how 
huntingtin misfolding progresses through the brain. One 
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possibility to explain the topologically predictable progression of 
HD (see chapter 4 of the introduction) is through the spreading 
of the aggregated forms of the pathogenic protein, polyQ 
aggregates that must be released from and taken up by 
neighbouring cells in the brain. 
Interestingly, uptake of externally applied synthetic polyQ 
peptides and recombinant fragments of mutant huntingtin has 
been reported in cell cultures (Yang et al., 2002; Ren et al., 
2009) as well as the ability of the internalized aggregates to 
seed polymerization of a soluble huntingtin reporter, a phenotype 
that persisted in prolonged cultures of dividing cells (Ren et al., 
2009). However, cell-to-cell transmission of mutant Htt was only 
measured indirectly by analyzing the seeded-polymerization of a 
cytopasmic huntintin reporter and it was suggested to be rather 
inefficient in co-culture experiments (Ren et al., 2009). 
Therefore, a direct evaluation of the capacity of intracellular 
polyQ aggregates to transfer from one cell to another and of the 
underling mechanisms is needed to allow a better understanding 
of the stereotypical spread of HD pathology within the brain of 
affected individuals and also for developing potential 
therapeutical approaches. 
 
To this aim, I divided this project in the following objectives: 
 

a. To investigate whether spontaneous cell-to-cell transfer of 
polyQ aggregates occurs in co-cultured neuronal cells and 
primary neurons. 

b. To characterize the mechanism of intercellular transfer and 
evaluate a possible role for Tunneling nanotubes (TNTs). 

c. To examine whether cell-to-cell transfer of polyQ Htt 
induces nucleation and aggregation of endogenous wild-
type Htt.  

 
This part of my PhD work has been appended as manuscript in 
which I am the first author (see “Results 2”) and will be 
submitted for publications at beginning of September 2012.  
 
Project 2: Role of the cellular prion protein in the 
pathogenic pathways of Huntington’s disease. 
 
Whether and how the propagation of protein aggregates is linked 
to neurotoxicity is not completely understood (Brundin et al., 
2010; Ross and Poirier, 2004). Recent studies provided evidence 
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that PrPC could mediate the toxicity of Aβ oligomers and other β-
sheet-rich protein conformers by acting as a receptor for soluble 
ligands (Biasini et al., 2011; Bate and Williams, 2011; 
Resenberger et al. 2011) (see introduction, paragraph 6.5). It is 
possible that oligomeric forms of several different neurotoxic 
proteins could exert their effects by blocking, enhancing or 
subverting the normal function of PrPC as it has been suspected 
for its pathogenic counterpart, PrPSc (Westergard et al., 2007). 
Thus, binding of either oligomeric Aβ or PrPSc or other 
pathogenic aggregates to PrPC at cell-surface may initiate toxic 
signals that may lead to neuronal loss and/or synaptic 
dysfunction (Aguzzi and Falsig, 2012). Contrasting data are 
present in the literature on the possible role of PrPC in HD 
pathogenesis (see “Results 3”, paragraph 3.2). Therefore, a more 
systematic analysis of the role of the cellular prion protein in 
other aggregated proteinopathies is needed as it tempting to 
speculate the existence of a common mechanism for toxicity with 
PrPC functioning as a “danger sensor” (Barton and Caughey, 
2011; Aguzzi and Falsig, 2012).  
 
In this context, I divided this project in the following objectives: 
 

a. To Evaluate the effect of PrPC on polyQ-huntingtin 
aggregation and cell-to-cell transfer 

b. To Evaluate the effect of PrPC on the toxicity induced by 
mutant huntingtin 

 
These two objectives are described and discussed in the last part 
of this thesis (“Results 3”). 
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Materials and methods 
 
Cell lines, mouse lines, primary cell cultures 
 
CAD cells (mouse catecholaminergic neuronal cell line, Cath.a-
Differentiated) were a gift of Dr. Laude H. (Institut National de la 
Recherche Agronomique, Jouy-en-Josas, France) and were 
cultured in Opti-MEM (Gibco) with the addition of 10% FBS (fetal 
bovine serum). Primary cultures were established from C57BL/6J 
mice provided by Charles River Laboratories and from the 
transgenic mouse lines PrP0/0 [PrP-KO (knockout) mice] (Zurich 
I) (Bueler et al., 1992) and tga20 (mouse Prnpa allele) (Fischer et 
al., 1996) provided by the CDTA (Cryopréservation, Distribution, 
Typage et Archivage animal). All experiments were performed 
according to national guidelines. 
Primary cultures of CGNs (cerebellar granule neurons) were 
established as previously described (Cronier S. et al., 2004). 
CGNs were cultured for the indicated time on poly-D-lysine (10 
ug/ml; Sigma) pre-coated coverslips at a density of 400 000 
cells/coverslip in DMEM (Dulbecco's modified essential medium; 
Gibco) supplemented with 10% (v/v) FBS, 20 mM KCl, penicillin 
(50 units/ml), streptomycin (50 μg/ml; Gibco) and 
complemented with B27 and N2 supplement (Gibco).  
Primary astrocytes were prepared from 1-day-old C57BL/6J mice 
following a previously described procedure for primary cultures of 
rat astroglia cells (Kaech and Banker, 2006). Briefly, astrocytes 
were isolated from the cortices of newborn mouse pups by 
enzymatic and mechanical dissociation. They were plated at a 
density of 7.5 × 106 cells per 75-cm2 flask coated with 0.1 
mg/ml poly-L-lysine (Sigma) and cultivated in MEM containing 
10% horse serum (v/v; Gibco), glucose (0,6% w/v), penicillin (50 
units/ml) and streptomycin (50 μg/ml). 
All cultures were incubated at 37°C in a humidified atmosphere 
with 5% CO2.   
 
Plasmids and transfection procedures 
 
GFP-HttQ68 and GFP-HttQ17 were a kind gift of Dr. Humbert S. 
(Institut Curie - UMR 146 du CNRS, Centre Universitaire Orsay, 
France). pGFP vector and mCherry vector were from Clontech.  
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CAD cells were transfected at 50% confluence with the indicated 
construct using Lipofectamine 2000 (Invitrogen), according to 
the producer’s protocol. 
CGNs were transfected with the appropriate construct in 
suspension immediately after isolation using the Amaxa 
nucleofector system and the amaxa electroporation transfection 
reagent VPG-1001 (Lonza) according to the manufacturer’s 
procedure.  
 
Western Blots 
 
Following incubation for the times indicated, CGN were washed in 
PBS before lysis in TL1 buffer [50 mM Tris/HCl (pH 7.4), 0.5% 
sodium deoxycholate and 0.5% Triton X-100]. 
CAD cells were seeded 1.000.000 in 25 cm flasks. The following 
day, cells were transfected with 4 μg of GFP-HttQ68 or GFP-
HttQ17 as described above. After 48 h, cells were washed in D-
PBS and lysed in 0.5% Triton X-100, 0,5% sodium deoxycholate, 
100 mM NaCl, 10mM Tris-HCl (pH 8). After a short centrifugation 
(3000g for 5min), 40 μg of cell lysate were resolved by SDS-
PAGE either on a 7,5% acrylamide gel and Western blot with 
MAB2166 anti-huntingtin antibody (1:5000) or on a 12% 
acrylamide gel and probed with antibodies against cleaved 
caspase 3 [(Asp175) (5A1E); Millipore] and cleaved PARP 
[(Asp214) (7C9); Millipore], as markers of apoptosis. Blots were 
stripped and re-probed with mouse anti-tubulin (mouse 
monoclonal antibody, 1:5000) (Sigma). HRP-conjugated 
secondary antibodies and ECL TM reagents from Amersham (GE 
Healthcare) were used for detection. 
 
Flow Cytometry 
 
CAD cells were transfected separately with GFP-HttQ68, GFP-
HttQ17, and mCherry constructs in 25 cm flasks as descrided 
above.   
For co-culture experiments, 1-day after transfection, mCherry-
expressing CAD cells were co-cultured with cells expressing either 
GFP-HttQ68 or GFP-HttQ17 at a ratio 1:1 in 35 mm dishes. After 
24h co-cultures, cells were scraped in D-PBS plus 1% FBS, passed 
through 40 μm nylon cell strainers and fixed in 2% 
paraformaldehyde overnight prior to flow cytometry analysis (BD 
Biosciences LSRFortessa cell analyzer) Each experiment was 
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performed in triplicate and repeated three times. 10.000 cells 
were counted each time. 
GFP-HttQ68 or GFP-HttQ17 expressing cells were also plated on 
0.4 μm filters (Costar) placed on top of mCherry expressing cells 
in order to inhibit cell-cell contact. After 24h co-cultures, the 
filters were removed and the mCherry expressing cells were 
analyzed by flow cytometry as described above. 
In order to test supernatant involvement in transfer, CAD cells 
were transfected separately with GFP-HttQ68 and GFP-HttQ17. 
After 24h, cells were gently washed with D-PBS and fresh 
medium was added for additional 24h. Then, GFP-HttQ68 or GFP-
HttQ17 CADs medium was used to culture mCherry expressing 
CAD (transfected the day before). After 24h incubation, mCherry 
expressing cells were analyzed by flow cytometry as described 
above. 
 
CGN co-cultures 
 
For co-culture experiments, CGNs transfected with mCherry 
construct were mixed with GFP-HttQ68 transfected neurons at a 
ratio 1,5:1 immedialely after nucleofection and plated on 
coverslips as described above. For CGN-astrocytes co-cultures, 
astrocytes were harvested as previously described (Kaech and 
Bancher., 2007) an plated on on poly-D-lysine (10 ug/ml; Sigma) 
pre-coated coverslips at a density of 80 000 cells/coverslip. 
When astrocytes reached 40-70% confluence, fresh CGNs were 
prepared and plated on the astrocyte layer as described above.  
 
Immunofluorescence  
 
At the indicated times post-transfection, cells were washed in D-
PBS (Dulbecco's Phosphate Buffered Saline; Gibco) and fixed in 
4% paraformaldehyde (Electron Microscopy Sciences) The cells 
were permeabilized with 0.1% Triton X-100 and labeled with 
mouse anti-huntingtin antibody (1:300, for 18 h at 4°C) 
(MAB2166; Millipore). The Alexa Fluor® 633 secondary antibody 
was purchased from Invitrogen. When indicated, CAD cells were 
stained with HCS CellMask" Blue (1:10 000, for 20 minutes at 
R.T.) (Invitrogen), Wheat Germ Agglutinin (WGA)-rhodamine or 
WGA-Alexa Fluor® 350 conjugate (1:300, for 20 minutes at R.T) 
(Invitrogen). CGNs were also stained with DAPI (1:5000) (Sigma). 
The cells were washed and mounted with Aqua-Poly/Mount 
(Polysciences).  
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Images were acquired with a wide-field microscope (Zeiss 
Axiovert 200M) controlled by Axiovision software. All Z-stacks 
were acquired with Z-steps of 0.4 μm. When indicated, random 
mosaics of (3 × 3 fields) were obtained using a 63× objective 
Plan-Apochromat objective [1.4 NA (numerical aperture)]. 
Representative tiles are presented.  
For CAD cells, the HCS CellMask" staining was used to set the 
autofocus module, providing single focal plane images. Images of 
CAD cells used for 3D reconstruction and TNTs (tunneling 
nanotubes) detection were acquired with an optimal Z-step of 
0.25 μm covering the whole cellular volume.  
 
TNTs (Tunneling nanotubes) detection 
 
CAD cells were transfected with the indicated constructs in 25 
cm flasks. The following day or 12 h post-transfection, cells were 
plated on μ-Dish35 mm, high (Ibidi #) and fixed at the indicated 
time with a solution of 2% paraformaldehyde, 0.05% 
gluteraldehyde and 0.2 M Hepes in D-PBS for 20 min, followed by 
a second 20 min fixation with 4% paraformaldehyde and 0.2 M 
Hepes in D-PBS. Then cells were gently washed in D-PBS and 
stained as indicated. In order to detect TNTs in CGNs, they were 
co-cultured with astrocytes as described above. 
 
Image processing and quantification 
 
Raw data were processed with Axiovision 4.8 software. The auto-
scaling (min/max) of signal detection was applied to all images. 
When indicated, images were deconvolved using 3D Huygens 
Deconvolution software and three-dimensional reconstructions 
were performed with Imaris software. 
To quantify the percentage of CAD cells with huntingtin 
aggregates and to evaluate the number of TNT-connected cells, a 
manual analysis was performed as previously shown (Gousset et 
al., 2009). Experiments were made in triplicate and repeated 
three times. 
FACS raw data were analyzed by Kaluza® Flow Cytometry 
software (Beckman Coulter, Inc.). 
 
Image Analysis using Acapella™ software 
 
In order to evaluate and quantify the transfer of polyQ 
aggregates from donor (GFP-HttQ68 transfected) to acceptor 
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(mCherry transfected) CGN in co-culture experiments, we used 
the Acapella™ image analysis software (version 2.3 - Perkin Elmer 
Technologies) provided by the Plate-forme Imagerie Dynamique 
(Institut Pasteur) that allowed detecting in an automated manner 
Htt aggregates (GFP-tagged) in mCherry labeled neurons. 
The script is subdivided in four object segmentation subroutines 
and required the setting of several input parameters:  
 

• Segmentation of the nuclei in the channel 305 (DAPI 
staining) (nuclei_detection) 

• Automated detection of the cell body of acceptor cells 
(mCherry labeled neurons) in the channels 305 (nuclei, 
DAPI staining) and 546 (mCherry signal) by applying a 
mask that allowed to select only the cell bodies labeled in 
both channels (DAPI/mCherry overlap). 

• Neurite detection. Starting from the selected cell bodies, 
the application of a specific module of the Acapella 
software (neurite_detection) allowed to automatically draw 
the neuritic arborization corresponding to each cell body 
that, at this stage, appeared as “lines” in the 546 channel 
(mCherry signal). Then, to gain the thickness, a dilatation 
filter (radius = 3) was applied to the neuritic arbors. 

• Spot and small object detection. In order to detect Htt 
aggregates two different algorithms were applied: spots 
and small object detection in both 488 (GFP-HttQ68 
signal) and 633 (anti-Htt MAB2166) channels. While the 
spot detection is based on a local intensity analysis with 
each spot corresponding to a local intensity maximum, the 
small object detection takes in to account not only the 
global intensity but also shape and size. Spot and small 
objects were scored as “within neurite” only in presence of 
a shape overlap with the neurite of at least 70%. We 
consider only spot and small object that were positive in 
both 488 (GFP-HttQ68 signal) and 633 (anti-Htt 
MAB2166) channels (based on a shape overlap) and we 
reported the presence within neurites of spots and small 
object detected only in the 633 channel (not GFP positive), 
thus indicating aggregation of the endogenous protein. 

The input parameters were optimized with feasibility studies in 
collaboration with image analysis experts at Plate-forme Imagerie 
Dynamique (Institut Pasteur). Different versions of the script 
corresponding to parameter adjustment were validated and 
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included the use of GFP vector transfected neurons (versus GFP-
HttQ68) as negative control. 
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RESULTS AND DISCUSSION 
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Results 1:  

Characterization of the role of dendritic cells in prion 
transfer to primary neurons: an insight in the 
mechanisms of prion spreading. 
 

1.1 Objectives: 
 

a. To characterize the kinetic of prion uptake and degradation 
in bone-marrow-derived DCs (BMDCs) 

b. To investigate the mechanisms by which BMDCs transfer 
PrPSc to primary neurons 

c. To examine whether PrPSc transferred from BMDCs to 
primary neurons results in prion infection  

 

1.2 Summary of the results and discussion  
 
TSEs (transmissible spongiform encephalopathies) are 
neurodegenerative diseases caused by pathogenic isoforms 
(PrPSc) of the host-encoded PrPC (cellular prion protein) 
(Prusiner, 1998). After consumption of contaminated food, 
prions enter the host organism trough the gut and rapidly 
accumulate in lymphoid tissues before invasion of the CNS 
(central nervous system) (Andreoletti et al., 2000, Heggebo et 
al., 2002, Aguzzi 2003). However, the mechanisms of prion 
spreading from the periphery to the nervous system are still 
unclear. A number of studies suggest that FDCs could play an 
important role in prion replication, the mechanisms of prion 
spreading from the gastrointestinal tract to the FDCs and from 
lymphoid tissues to the CNS are still undetermined (Mabbott et 
al., 2000; Montrasio et al., 2000; Mabbott et al., 2003) and 
there is a lack of physical contact between the gut and FDCs and 
between FDCs and nerve periphery (Defaweux et al., 2005). 
Dendritic cells (DCs) have been proposed to play a critical role in 
the transport of PrPSc from the gut to FDCs (Huang et al., 
2002). In addition, DCs could promote prion transfer to nerve 
cells by direct contact with nerve fibers (Defaweux et al., 2005; 
Dorban et al., 2010) or through tunneling nanotube (TNT)-like 
structures (Gousset et al., 2009). 
In the first part of my PhD in collaboration with Dr Langevin, I 
have investigated the role of DCs (dendritic cells) in the 
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spreading of prion infection to neuronal cells. First, using 
immunofluorescence analysis and three-dimensional 
reconstruction, we characterized prion uptake by BMDCs (bone-
marrow-derived DCs) challenged with scrapie brain homogenate. 
We observed prion internalization between 2 and 18 h post-
exposure resulting in a progressive shift of localization of PrPSc 
from the plasmamembrane to the cytosol. Next, we observed a 
progressive degradation of the internalized prion aggregates, 
leading to the disappearance of PrPSc signal between 96 and 168 
h post-exposure. Similar experiments performed with BMDCs 
isolated from KO (knockout) mice or mice overexpressing PrP 
(tga20) indicate that both PrPSc uptake and catabolism are 
independent of PrPc expression in these cells. Then, using an in 
vitro approach, we characterized the transfer of PrPSc from 
BMDCs to primary neurons and the resulting infection of the 
neuronal cultures. Interestingly, the transfer of PrPSc was 
triggered by direct cell–cell contact when prion-loaded BMDCs 
were co-cultured with cerebellar primary neurons (CGN). As a 
consequence, BMDCs retained the prion protein when cultured 
alone, and no transfer to the recipient neurons was observed 
when a filter separated the two cultures or when neurons were 
exposed to the BMDC-conditioned medium, thus excluding the 
involvement of PrPSc secretion in our condition (e.g short co-
culture time low BMDC/CGN ratios). Additionally, fixed BMDCs 
also failed to transfer prion infectivity to neurons, suggesting an 
active transport of prion aggregates. Furthermore, by microscopy 
approaches we could show that after overnight co-cultures 
BMDCs were either in close contact with dendrites or directly 
linked to neurons via TNTs. In addition because at the time of the 
co-cultures (after 18 h uptake) all of PrPSc aggregates are in the 
cytosol of BMDCs and not at the cell surface, these data suggest 
a transfer from the cytosol possibly via TNTs, while a transfer 
through plasma membrane to neighbouring cells is unlikely. Of 
interest, a parallel and independent study also suggested prion 
transfer through TNT-like structures shown to connect BMDCs to 
dorsal root ganglia and excluded the involvement of PrPSc 
secretion (Dorban et al., 2010). Consistent with the transfer 
experiments, when we followed up the neuronal cultures, we 
found that prion replication in the recipient neurons (infection) 
was only detected after direct co-culture conditions and did not 
occur if cells were separated by filters or when co-cultures were 
performed with aldehyde-fixed BMDCs. In conclusion, data 
suggests that DCs could be important players during prion 
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spreading. Furthermore our co-culture system will allow further 
characterization of prion spreading from the periphery to the 
nervous system of different scrapie strains, which could lead to a 
better understanding of the species barrier phenomenon. 
 
The publication on “Biochemical Journal” related to this first part 
of my PhD work in collaboration with Dr Langevin is appended at 
the end of this section. 
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Characterization of the role of dendritic cells in prion transfer to primary
neurons
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TSEs (transmissible spongiform encephalopathies) are neuro-
degenerative diseases caused by pathogenic isoforms (PrPSc) of
the host-encoded PrPc (cellular prion protein). After consumption
of contaminated food, PrPSc deposits rapidly accumulate in
lymphoid tissues before invasion of the CNS (central nervous
system). However, the mechanisms of prion spreading from
the periphery to the nervous system are still unclear. In the
present study, we investigated the role of DCs (dendritic cells)
in the spreading of prion infection to neuronal cells. First, we
determined that BMDCs (bone-marrow-derived DCs) rapidly
uptake PrPSc after exposure to infected brain homogenate. Next,
we observed a progressive catabolism of the internalized prion
aggregates. Similar experiments performed with BMDCs isolated
from KO (knockout) mice or mice overexpressing PrP (tga20)
indicate that both PrPSc uptake and catabolism are independent

of PrPc expression in these cells. Finally, using co-cultures of
prion-loaded BMDCs and cerebellar neurons, we characterized
the transfer of the prion protein and the resulting infection
of the neuronal cultures. Interestingly, the transfer of PrPSc was
triggered by direct cell–cell contact. As a consequence, BMDCs
retained the prion protein when cultured alone, and no transfer
to the recipient neurons was observed when a filter separated
the two cultures or when neurons were exposed to the BMDC-
conditioned medium. Additionally, fixed BMDCs also failed to
transfer prion infectivity to neurons, suggesting an active transport
of prion aggregates, in accordance with a role of TNTs (tunnelling
nanotubes) observed in the co-cultures.

Key words: cerebellar granule neuron, dendritic cell, intercellular
transfer, prion infection, tunnelling nanotube.

INTRODUCTION

TSEs (transmissible spongiform encephalopathies) as variant of
Creutzfeldt–Jakob disease, scrapie or chronic wasting disease
can be acquired from the consumption of contaminated food.
Following oral exposure, prions enter the host organism through
the gut before invasion of the draining lymphoid tissues,
where the first prion amplification takes place [1–3]. Prions
subsequently spread to the CNS (central nervous system),
where a characteristic neurodegeneration process is engaged
concomitantly with the prion aggregate deposition in the brain
[4–6]. Prior to prion neuroinvasion, PrP (prion protein) deposits
are mainly visualized in tangible body macrophages and FDCs
[follicular DCs (dendritic cells)] of the secondary lymphoid
tissues (Peyer’s patches, mesenteric lymph nodes, spleen) [7–12].

Although a number of studies suggest that FDCs could play
an important role in prion replication, the mechanisms of prion
spreading from the gastrointestinal tract to the FDCs and from
lymphoid tissues to the CNS are still undetermined [13–15].
Prion neuroinvasion is initiated in the enteric nervous system
and followed by retrograde transport along the sympathetic and
parasympathetic nerve fibres [16–18]. Because of the absence
of neuroimmune synapses between resident FDCs and nerve
fibres, direct prion transfer mechanisms between these two cell
types can be excluded [19–22]. Based on in vitro studies of
intercellular prion transfer mechanisms, different hypotheses have
been suggested. FDCs might passively transfer prion to proximal
cells or nerve endings through exosomes or vesicle secretion

[21,23]. Alternatively, mobile haematopoietic DCs might transfer
PrPSc (pathological form of PrP) from the gut to FDCs, or
possibly directly to nerve fibres. Indeed, different studies have
characterized the role of DCs in the prion infection process [24–
27]. DCs are mobile cells, which can directly uptake antigens by
insertion of dendrites through the tight junctions of the intestinal
epithelium cells [28] or after prion transepithelial migration
through microfold cells [29,30]. Following antigen capture, DCs
can retain proteins in native form for a sufficient time to facilitate
their subsequent migration to the targeted lymphoid tissues [31].
Furthermore, after TSE infection by the oral route, PrPSc deposits
have been identified in DCs from Peyer’s patches, mesenteric
lymph nodes or spleen [32,33]. Finally peripheral prion infection
performed in mice devoid of DCs failed to accumulate PrPSc in
lymphoid tissues and the subsequent neuroinvasion was partially
impaired [24,27,34]. Overall, these data strongly point to DCs as
potentially important candidates in prion transport from the gut to
the lymphoid tissues, even though the subsequent neuroinvasion
mechanisms are still undetermined. In addition, in contrast with
FDCs, DCs can theoretically promote prion transfer to nerve cells
by direct contacts with nerve fibres [32,33,35,36] or through TNT
(tunnelling nanotube)-like structures [37,38]. Indeed BMDCs
(bone-marrow-derived DCs) are able to form TNT-like structures
in vitro when co-cultured with primary neurons, and can transfer
PrPSc and infection to these cultures [37,38].

In the present study, we have characterized the role of BMDCs
in the transfer of prions to primary neurons using an in vitro
approach. First, we analysed the uptake and the fate of scrapie

Abbreviations used: BMDC, bone-marrow-derived dendritic cell; CGN, cerebellar granule neuron; CNS, central nervous system; DC, dendritic cell;
ECL, enhanced chemiluminescence; FCS, fetal calf serum; FDC, follicular DC; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HRP, horseradish
peroxidase; KO, knockout; NA, numerical aperture; PK, proteinase K; PrP, prion protein; PrPc, cellular PrP; PrPres, protease-resistant PrP; PrPSc,
pathological form of PrP; TNT, tunnelling nanotube; TSE, transmissible spongiform encephalopathy.
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homogenate in BMDC cultures. We demonstrated that BMDCs
rapidly internalize PrPSc aggregates and retain them for several
hours, independently of the PrPc (cellular PrP) expression levels.
Next, we characterized the transfer of PrPSc from prion-loaded
BMDCs to primary neurons using short-time co-cultures. We
found that BMDCs begin to transfer PrPSc as early as 4 h after cell
cultures have been established and that this transfer is triggered by
cell–cell contact. Furthermore, we show that PrPSc transfer results
in prion infection (e.g. prion replication) of primary neurons.
Overall, the present study demonstrates that DCs can discharge
prions to target cells upon direct cell–cell contact, and confirms
that TNTs could be a major transfer mechanism in the passage of
prions from the periphery to the CNS.

EXPERIMENTAL

Mouse lines

Primary cultures were established from C57BL/6J mice provided
by Charles River Laboratories or the transgenic mouse
lines PrP0/0 [PrP-KO (knockout) mice] (Zurich I) [39] and
tga20 (mouse Prnpa allele) [40] provided by the CDTA
(Cryopréservation, Distribution, Typage et Archivage animal). All
experiments were performed according to national guidelines.

Cell culture

CGNs (cerebellar granule neurons)

Primary cultures of CGNs were established as described
previously [41]. Briefly, CGNs were extracted from brains
of 6-day-old C57BL/6 mice by enzymatic and mechanical
dissociations. They were plated at a density of 800000 cells/well
in 12-well plates coated with 10 µg/ml poly-D-lysine (Sigma)
and cultivated in DMEM (Dulbecco’s modified Eagle’s medium;
Gibco) containing 10% FCS (fetal calf serum), 20 mM KCl,
penicillin (50 units/ml), streptomycin (50 µg/ml; Gibco) and
complemented with B27 and N2 supplement (Gibco). Cultures
were incubated at 37 ◦C in a humidified atmosphere with 5%
CO2 and were complemented weekly with 1 mg/ml glucose
and 10 µM of the anti-mitotics uridine and fluorodeoxyuridine
(Sigma) to avoid proliferation of astrocytes. As negative controls,
CGN cultures were established from PrP0/0 mice.

BMDCs

BMDCs were differentiated from bone marrow cells from 6–
8-week-old C57BL/6 mice according to a method adapted
from Méderlé et al. [42]. Briefly, bone marrow cells
were seeded at 5 × 106 cells per 100 mm diameter Petri
dish (Falcon, Becton Dickinson Labware) in 10 ml of
Iscove’s modified Dulbecco’s medium (RPMI 1640; Gibco)
supplemented with 10% heat-inactivated FCS, 20 ng/ml GM-
CSF (granulocyte/macrophage colony-stimulating factor; R&D
Systems), penicillin (50 units/ml), streptomycin (50 µg/ml) and
50 µM 2-mercaptoethanol. Cultures were incubated at 37 ◦C in
a humidified atmosphere with 5 % CO2. On day 3, 10 ml of
complete RPMI 1640 was added. On day 6, cells in suspension and
loosely adherent cells were harvested. The recovered cells were
further cultured under the same conditions as described above. On
day 10, cells were harvested with EDTA as above and distributed
in CellBIND six-well plates (Corning) at a concentration of
1 × 106 cells/well in 3 ml of complete RPMI 1640.

moRK13 cells were provided by Dr Andrew Hill (Bio21
Institute, University of Melbourne, Melbourne, Australia). Cells
were maintained at 37 ◦C in 5 % CO2 in Opti-MEM medium

(Gibco) supplemented with 10% FCS, penicillin (50 units/ml)
and streptomycin (50 µg/ml).

Prion loading of BMDCs

Brain homogenates were prepared from the brains of mice
terminally affected with the mouse 139A strain, from an original
139A-affected brain provided by Dr M. Baier (Robert Koch
Institute, Berlin, Germany). Homogenates were diluted to a final
concentration of 20 % (w/v) in a 5% (w/v) glucose solution,
sonicated in RPMI 1640 medium and a suspension equivalent to
2.5 mg of infected brain tissue was added to the wells of BMDCs
for the times indicated.

BMDC–CGN co-cultures

BMDCs were loaded with the equivalent of 2.5 mg of infected
brain tissue for 18 h. At 2 days after plating, CGNs were co-
cultured with prion-loaded BMDCs overnight (CGN/BMDC,
4:1). BMDCs were removed from the CGN cultures by extensive
washing before analyses of PrPres (protease-resistant PrP) in
CGNs after short times (30 min–4 h) or after 2 and 3 weeks
post-co-culture. Then, 50 µg of protein was treated with 0.5
µg of PK (proteinase K) for 30 min at 37 ◦C before methanol
precipitation. Samples were then subjected to SDS/PAGE and
Western blot analysis with the Sha31 anti-PrP antibody (SPI-
Bio). The same amounts were methanol-precipitated without PK
treatments and analysed by SDS/PAGE and Western blot analsyis
using an M5/114 antibody (directed against MHC class II proteins
specifically expressed in BMDCs) or GAPDH (glyceraldehyde-
3-phosphate dehydrogenase) antibody.

moRK13 cells were co-cultured with prion-loaded BMDCs for
18 h at a 4:1 ratio. After overnight co-cultures, BMDCs were
removed from the moRK13 cells by extensive washes. Then,
20 µg of protein from BMDC or moRK13 cell extracts was
treated with 0.5 µg of PK for 30 min at 37 ◦C before methanol
precipitation. Samples were then subjected to SDS/PAGE and
Western blot analysis with the Sha31 anti-PrP antibody.

Co-incubations with fixed BMDCs were performed as
indicated above after BMDC fixation with a solution of 2 %
paraformaldehyde, 0.05 % gluteraldehyde and 0.2 M Hepes in
PBS for 20 min, followed by a second 20 min fixation with 4%
paraformaldehyde and 0.2 M Hepes in PBS. The cells were then
washed thoroughly and added to the neuronal cells.

For the filter experiments, BMDCs were plated on 0.4 µm filters
(Costar) on top of CGN cultures at 2 days post-plating. After
overnight co-cultures, the filters were removed and the neuronal
cultures were analysed at different time points post-incubation.
For the supernatant experiments, BMDCs were loaded with the
equivalent of 2.5 mg of infected brain tissue as described above
overnight. Loaded BMDCs were centrifuged at 1440 g in RPMI
1640 and the supernatant was added to CGN cultures 2 days post-
plating. After overnight incubations with the supernatant, CGNs
were lysed and analysed as described above.

Imaging prion uptake in BMDCs

At 10 days post-dissection, 1 × 106 BMDCs were plated overnight
on Ibidi dishes (Biovalley) coated with fibronectin (Sigma). Cells
were then exposed to 2.5 mg of 139A scrapie brain homogenate
for the times indicated, washed thoroughly in RPMI 1640 and
fixed in 4% paraformaldehyde. The cells were permeabilized
with 0.1% Triton X-100, treated with 3 M guanidium thiocyanate
to expose the PrPSc epitopes and labelled with the Sha31

c© The Authors Journal compilation c© 2010 Biochemical Society



Role of dendritic cells in prion transfer to neurons 191

anti-PrP antibody and with the cytosolic dye HCS CellMask Blue
(1:5000) (Invitrogen). The cells were washed and mounted with
Aqua-Poly/Mount (Polysciences). Images were acquired with an
epifluorescence microscope (Zeiss Axiovert 200M) controlled
by Axiovision software. Random mosaics (3 × 3 fields) were
obtained using a 63× objective Plan-Apochromat objective
[1.4 NA (numerical aperture)]. All Z-stacks were acquired with
Z-steps of 0.4 µm. Representative tiles are presented. For higher-
magnification representations of the internalization process, a
confocal microscope Andor Revolution Nipkow spinning-disc
imaging system was used. The Andor technology was installed
on a Zeiss Axiovert 200M microscope, equipped with an Andor
EMCCD DV885 camera, three diode-pumped solid-state lasers
with excitation at 405, 488 and 560 nm, a piezo mono-objective for
fast three-dimensional acquisitions, and a confocal head spinning-
disc Yokogawa CSU22. Images were acquired with an oil 63×
Plan-Apochromat objective (1.4 NA). All Z-stacks were acquired
at maximum speed of the microscope with Z-steps of 0.250 µm.

For wide-field analysis, cells were fixed with 4%
paraformaldehyde for 10 min. Phase-contrast images were then
acquired by high-resolution wide-field microscope Marianas
(Intelligent Imaging Innovations) using a 63× oil objective. All
Z-stacks were acquired with Z-steps of 0.4 µm.

PK digestion

Prion detection in BMDCs

Following incubation for the times indicated, cells were washed
in PBS before lysis in TL1 buffer [50 mM Tris/HCl (pH 7.4),
0.5% sodium deoxycholate and 0.5% Triton X-100]. After a
short centrifugation (3000 g for 5 min), 50 µg of cell lysates
were treated with 2 µg of PK for 30 min at 37 ◦C. Next, the
proteins were methanol-precipitated for 1 h at −20 ◦C before
centrifugation at 13000 g for 30 min. Pellets were resuspended
in sample buffer before analysis by SDS/PAGE (12% acrylamide
gels) and Western blotting with the Sha31 antibody and
secondary anti-mouse antibody coupled to HRP (horseradish
peroxidase). Immunoreactivity was visualized by ECL (enhanced
chemiluminescence; Amersham).

Prion detection in CGNs

The accumulation of PrPSc was analysed in neuronal cultures at
different times post-infection. Neuron lysates performed in TL1
buffer were pre-cleared by centrifugation at 3000 g for 5 min.
Then, 50 µg of cell lysates were treated with 0.5 µg of PK for
30 min at 37 ◦C before stopping the digestion with 5 mM PMSF.
Proteins were methanol-precipitated for 1 h at −20 ◦C before
centrifugation at 13000 g for 30 min. Pellets were resuspended
in sample buffer and denatured before analysis by SDS/PAGE
(12% acrylamide gels) and Western blotting with the Sha31
antibody and secondary anti-mouse antibody coupled to HRP.
Immunoreactivity was visualized by ECL.

Prion detection in moRK13 cells

The accumulation of PrPSc was analysed in moRK13 cells after
18 h of co-culture. Lysates were performed in TL1 buffer after
pre-clearing by centrifugation at 3000 g for 5 min. Then, 20 or
200 µg of cell lysates were treated with 0.5 µg or 5 µg of PK
for 1 h at 37 ◦C before methanol precipitation (1 h at −20 ◦C).
Proteins were then centrifuged at 13000 g for 30 min. Pellets
were resuspended in sample buffer and denatured before analysis

by SDS/PAGE (12% acrylamide gels) and Western blotting with
the Sha31 antibody and secondary anti-mouse antibody coupled
to HRP. Immunoreactivity was visualized by ECL.

RESULTS

Characterization of prion uptake in BMDCs

We first analysed the rate of internalization of PrPSc by
BMDCs after in vitro exposure to infected brain homogenate.
At 10 days post-plating, BMDCs were exposed to 139A
infected brain homogenate for 30 min, 1 h, 2 h or 18 h,
fixed, treated with guanidium and labelled with the Sha31
antibody to detect PrPSc. Mosaics of different fields were
obtained to analyse the overall spreading and endocytosis
of PrPSc aggregates in BMDCs. Z-stacks were acquired to
encompass all of the homogenate signals (see the Experimental
section). In contrast with control BMDCs where no signal was
observed after guanidium treatment (Supplementary Figure S1
at http://www.BiochemJ.org/bj/431/bj4310189add.htm), large
fields of view show that PrPSc aggregates are well spread and
associated with the majority of the BMDCs exposed to the infected
brain homogenate (Figure 1A). Whereas most of the aggregates
were outside the cells at the early time points (Figure 1A; 30 min–
1 h), over time PrPSc aggregates were progressively internalized
(Figure 1A; 2–18 h). After 18 h, the PrPSc aggregates were found
inside the cells, as shown by the perfect focus of both BMDCs
and PrPSc aggregates (Figure 1A; 18 h). Detailed confocal
analyses and three-dimensional reconstructions of the PrPSc
aggregates associated with BMDCs confirmed their localization
at the cell surface and outside the cells after 30 min or 1 h
of exposure (Figure 1B; 30 min–1 h, Supplementary Movies
S1–S4 at http://www.BiochemJ.org/bj/431/bj4310189add.htm).
After 2 h, some PrPSc was still visualized at the level of the
plasma membrane, but could also be detected in the cytosol
of most cells (Figure 1B; 2 h, Supplementary Movies S5
and S6 at http://www.BiochemJ.org/bj/431/bj4310189add.htm).
Finally, after 18 h of exposure, the localization of PrPSc was
drastically shifted and entirely restricted to the cytosol of the
BMDCs (Figure 1B; 18 h, Supplementary Movies S7 and S8
at http://www.BiochemJ.org/bj/431/bj4310189add.htm). At this
time point, no free PrPSc aggregates could be detected outside
the BMDCs (Figure 1).

These data demonstrate the rapid uptake of PrPSc homogenate
by BMDCs after in vitro exposure. The kinetics of internalization
observed are in accordance with the results previously described
in rat BMDCs and Langherans cells [43,44]. Additionally,
biochemical analyses of PrPSc internalization performed
on BMDCs derived from KO or PrP-overexpressing mice
(tga20) showed a similar increase in PrPSc internalization
up to 18 h post-exposure, indicating that prion uptake is
independent of the levels of PrPc (Supplementary Figure S2 at
http://www.BiochemJ.org/bj/431/bj4310189add.htm).

Characterization of PrPSc degradation in BMDCs

Next, we wanted to investigate the fate of PrPSc once internalized
by BMDCs. In vivo studies have identified DCs as important
candidates during prion spreading from the periphery to the
peripheral nervous system [24,43]. However, subsequent in vitro
experiments have indicated that the rapid uptake of PrPSc is
progressively followed by prion degradation in various subsets
of DCs [43–46]. Because a rapid degradation of PrPSc would be
inconsistent with a role of DCs in prion spreading, we investigated
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Figure 1 Time course of PrPSc internalization by BMDCs

BMDCs plated on fibronectin-coated Ibidi dishes were loaded with 139A brain homogenate for 30 min, 1 h, 2 h or 18 h. The cells were then washed, fixed, denatured with guanidine hydrochloride
and immunolabelled with the Sha31 anti-PrP antibody and Alexa-Fluor®-546-conjugated secondary antibody. HCS CellMask Blue was used to label the cytosol of the BMDCs (blue). The brain
homogenate revealed a punctate PrPSc pattern (red). (A) Mosaics (3 × 3 fields) were acquired by wide-field microscopy. For the acquisitions, Z-stacks (0.4 µm) were taken to visualize all of the
PrPSc aggregates. In the early time points (30 min–1 h) PrPSc aggregates are found on top of the cells, as determined by the different focal planes acquired. Over time, the cells come into focus (2 h)
as the aggregates start to be internalized. After 18 h, all of the aggregates appear to be inside the cells. (B) High-magnification acquisitions using an Andor spinning-disc confocal microscope confirm
the internalization of PrPSc aggregates over time (2–18 h). Three-dimensional reconstructions were obtained for selected cells (insets) in both x–y and x–z axis planes using OsiriX software. Scale
bars represent 10 µm.

whether and how PrPSc was processed in BMDCs by analysing
the levels of PrPres over time following the uptake of prion
homogenate (Figure 2A).

At 10 days post-plating, 106 BMDCs were subjected to
2.5 mg of brain homogenate (obtained from terminally infected
mice injected with the 139A scrapie strain) for the duration of
the experiment (Figure 2A). Alternatively, the cells were first
allowed to internalize PrPSc for 18 h, then washed and replated
before performing the PK assay (Supplementary Figure S3 at

http://www.BiochemJ.org/bj/431/bj4310189add.htm). Following
prion capture, BMDCs isolated from wild-type mice progressively
degraded 139A prion aggregates as determined by the decrease
in PrPres signal between 24 and 168 h (C57Bl/6) (Figure 2A
and Supplementary Figure S3). These results show a progressive
clearance of prion aggregates by DCs. However, it is also clear
that, following prion uptake, BMDCs are able to carry infectious
PrPSc for up to 4 days. This is consistent with a dual role of
DCs both in the transfer of prions to other cells and in prion
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Figure 2 Time course of PrPSc degradation in BMDCs

BMDC cultures were established from C57BL/6 (left-hand panel), tga20 (middle panel) or KO (right-hand panel) mice. At 10 days post-plating, cells were exposed to 139A brain homogenate for the
times indicated. (A) Cells were lysed and PK-treated before analysis of PrPres expression by immunoblotting using the Sha31 antibody. Western blot analysis indicated a progressive decrease in
the PrPres signal between 24 and 96 h of exposure preceding total disappearance of the signal at 168 h. The molecular mass in kDa is indicated on the left-hand side of the blots. (B) PrPSc
degradation follows similar kinetics in BMDCs isolated from C57BL/6, tga20 or KO mice, suggesting that the PrPSc catabolism we observed is independent of PrPc expression. The
relative degradation of PrPSc in prion-loaded BMDCs was quantified from two independent experiments for C57BL/6 and tga20 and from one experiment for KO cells.

clearance over time. This hypothesis is also supported by previous
work indicating that, in mice models, DCs with a high content of
cytoplasmic PrPSc aggregates could be detected in the lymph
nodes from 8 to 16 h post-peripheral inoculation [43].

In order to understand whether PrPc had a role in PrPSc
catabolism, we repeated the same experiments using BMDCs
isolated either from KO mice or from tga20 mice, which
express 10-fold more PrPc than wild-type mice (Figure 2
and Supplementary Figure S3; tga20 and KO). Western blot
quantification of the PrPres signal indicated that 139A brain
homogenate was catabolized over time with similar kinetics as
BMDCs isolated from KO, wild-type or tga20 mice (Figure 2B).
Overall, these data indicate that both PrPSc uptake and
degradation are independent of PrPc expression.

BMDCs transfer PrPSc to neuronal cells

Having established that BMDCs retained PrPSc for at least 96 h
after its uptake (Figure 2A), we further investigated their ability
to transfer PrPSc to primary cultures of neurons using in vitro co-
cultures. To detect PrPSc transfer, BMDCs were loaded with 139A
scrapie brain homogenate for 18 h in order to allow complete
PrPSc internalization (see Figure 1). Cells were then extensively
washed before addition to the CGN primary cultures.

As described previously, co-cultures were established at a
4:1 ratio between neuronal cells and DCs [37]. After overnight
incubation, BMDCs were removed from the CGN cultures by
extensive washes. The lysates of both removed BMDCs and
neuronal cells were analysed for the presence of PrPres by Western
blotting after PK treatment. Interestingly, under these conditions
PrPres was detected only in the neurons and not in the BMDCs
removed from the co-cultures, indicating that a large amount of
PrPSc had been transferred from the BMDCs to the neurons
(Figure 3A, co-culture). We could exclude prion transfer from
membrane-associated PrPSc aggregates, since we demonstrated
that at the time of the co-cultures with the primary neurons the
PrPSc aggregates were localized exclusively inside the cytosol

of BMDCs (see Figure 1, 18 h). Therefore transfer could have
occurred either through the secretion of PrPSc in the medium or
through direct passage from the cystosol of BMDCs to the cytosol
of the neurons, possibly via TNTs as we had suggested previously
[37].

To evaluate the possible role of the secretory pathway, and more
specifically of exosomal release [47–50], we examined whether
prion transfer could occur through filters, which would allow the
passage of secretory vesicles and exosomes. Quantification of the
PrPres signals demonstrated that the transfer efficiency is reduced
by more than 98% when filters were used to separate the cultures,
compared with direct co-cultures (Figure 3A). This suggested
that PrPSc secretion was not involved in the transfer (Figure 3A,
filter). However, to rule out the possibility that the filters could
trap PrPSc aggregates, we analysed whether prion transfer could
be mediated by the supernatant of the scrapie-loaded BMDCs.
To this aim, neurons were exposed to the supernatant of BMDCs
loaded with 139A brain homogenate collected after 24 h. After
18 h of exposure to the conditioned medium, neurons were washed
and analysed for PrPres. Similar to the filter conditions, neurons
exposed to the supernatant of BMDCs did not contain high PrPres
signals as compared with the signal obtained from the direct co-
culture experiments (Figure 3B; supernatant), further suggesting
that PrPSc secretion was not the main transfer mechanism.

Finally, to ensure that the PrPres signal observed in CGNs were
not the result of BMDCs left in the cultures, we analysed, by
Western blotting, the presence of BMDCs in the CGN co-cultures
using the BMDC-specific MHC class II antibody. BMDCs and
non-exposed CGN cell extracts were used as positive and negative
controls respectively (Figure 3C). As expected, a very strong
signal for MHC class II proteins was detected in BMDC extracts,
but not in non-exposed CGNs (NI) or in CGNs exposed to BMDCs
through filter (filter) (Figure 3C). Interestingly, only a very faint
signal was detected in CGNs directly exposed to BMDCs (co-
culture) (Figure 3C), indicating that the BMDCs were efficiently
removed from the CGNs. This also excluded the possibility that
the PrPres signals detected in CGN post co-cultures could be
derived from prion-loaded BMDCs.
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Figure 3 Characterization of PrPSc transfer from prion-loaded BMDCs to CGNs

(A and B) Cell–cell contact is required for PrPSc transfer from BMDCs to neurons. BMDCs were exposed in vitro to 139A brain homogenate for 18 h. (A) Prion-loaded BMDCs were co-cultured
with neurons directly (co-culture) or through filters (filter). After 18 h BMDCs were removed from the CGNs with extensive washes. The lysates of both the removed BMDCs and of the CGNs were
PK-treated to evaluate PrPSc transfer by immunoblotting using the Sha31 antibody. PrPres is only detected in neurons after direct co-culture, suggesting that intercellular prion transfer cannot occur
in the absence of cell–cell contact. On the other hand, prion protein is only visualized in BMDCs removed from filters, suggesting that direct contact triggers the prion discharge from BMDCs. The
PrPSc signal in CGNs and BMDCs was quantified from Western blot analysis from three different experiments and are presented as relative percentages (lower panels). (B) To determine the impact
of PrPSc present in the supernatant (e.g. exosomal release, vesicle secretion), prion-loaded BMDCs were co-cultured with neurons directly (co-culture), through filters (filter) or the neurons were
exposed to the conditioned medium of loaded BMDCs (supernatant). Similar to what was found in (A), PrPres was only detected in neurons after direct co-cultures. (C) To evaluate the efficiency
of removal of BMDCs in CGN cultures, we evaluated the presence of MHC class II proteins in CGN lysates after co-cultures through filters (filter), direct exposure to BMDCs (co-cultures) or in
non-exposed CGNs (NI). Protein (50 µg) from BMDCs or CGNs were analysed by Western blot with MHC class II and GAPDH antibodies for normalization. Whereas a strong MHC class II signal is
detected in BMDC cell extracts, a faint signal is observed in CGNs only after direct exposure. (D) To assess the types of contact between the two cell populations in our co-cultures, prion-loaded
BMDCs were co-cultured with CGNs 2 days post-plating for 18 h before fixation. Wide-field acquisitions were performed using a Marianas microscope (TripleI) and selected frames of two different
Z-stack acquisitions (0.4 µm steps) are shown. BMDCs (indicated by an asterisk) are in close contact with dendrites (arrow, upper panel) or neuronal cell bodies (arrow, lower panel). The scale bar
represents 10 µm. In (A and C), the molecular mass in kDa is indicated on the left-hand side of the blot.

Overall, these data demonstrate that efficient PrPSc transfer
from BMDCs requires cell–cell contact and does not appear
to be associated with PrPSc secretion. In order to quantify the
amount of PrP discharged by BMDCs, we analysed the amount
of PrPres remaining in BMDCs co-cultured directly or through
filters with primary neurons (Figure 3A). Interestingly, different
levels of PrPres could be detected in an equivalent number of

BMDCs from the different co-culture conditions (Figure 3A).
Indeed, by normalizing the gel loading to 50 µg of protein
of the different BMDC lysates, we found that BMDCs seeded
on to filters contained much higher levels of PrPres compared
with BMDCs seeded directly on top of CGNs (Figure 3A).
Quantification of PrPres signals indicated that direct co-cultures
triggered 97 % of PrPSc release as compared with filter conditions
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(Figure 3A). These data clearly indicate that the transfer of
PrPSc from BMDCs to the primary neurons was triggered by
direct cell–cell contact. Similar experiments were performed
with epithelial moRK13 cells, which can be infected after prion
transfer from BMDCs [37]. As in the case of primary neurons,
moRK13 cells contained PrPres after 18 h of direct co-culture with
loaded BMDCs, but not if the cells were separated by filters or
exposed to the supernatants of BMDCs (Supplementary Figure S4
at http://www.BiochemJ.org/bj/431/bj4310189add.htm). Interest-
ingly, the amount of PrPres found in moRK13 was equivalent to
one-quarter of the total amount of PrPres found in loaded BMDCs,
and was comparable with the amount left in the BMDCs that
were co-cultured through a filter. Therefore these data highlight
the important role of direct cell contact in the stimulation of prion
discharge by BMDCs.

Furthermore, we observed that, upon co-culture, BMDCs were
able to interact with both the dendrites (Figure 3D, upper panels)
and the cell bodies (Figure 3D, lower panels) of neuronal cells.
These observations are in agreement with in vivo results [20,32],
which show close contact between DCs and nerve fibres in lymph
nodes of scrapie-infected animals.

BMDCs efficiently transfer prion infectivity to neuronal cells

Because we have previously shown that PrPSc transfer from
BMDCs could result in de novo infection of primary neurons
[37], we decided to further characterize the cellular mechanisms
involved in the transfer of infectivity.

To this aim, after 12 h of co-culturing with loaded BMDCs,
we analysed the evolution of PrPres signals in primary neurons
over time, up to 3 weeks of culture. Direct co-cultures established
between 139A-loaded BMDCs and CGNs from wild-type
C57BL/6 mice gave rise to neuronal infection, as demonstrated
by the progressive increase in PrPres signal observed from
7 to 21 days post-co-culture (Figure 4A). On the other hand,
similar experiments performed with CGNs derived from PrP
KO mice did not show any PrPres signal even after 3 weeks
of culture (Figure 4A). Since PrPSc transfer is similar in KO
neurons compared with wild-type neurons (results not shown),
these data show that the PrPres signal observed in wild-type
neurons derives from PrPSc neo-synthesis and is not the result
of remnant PrPSc from BMDCs. Next, we analysed whether
there was transfer of infectivity from loaded BMDCs to neurons
in co-cultures separated through filters. As expected from the
observed lack of transfer under these conditions (Figure 3A
and Supplementary Figure S4), we were unable to detect newly
synthesized PrPSc in primary neurons maintained in culture
up to 3 weeks after overnight filter co-culture with loaded
BMDCs (Figure 4B). Finally, in order to analyse whether
infection was due to an active transfer mechanism, we decided to
alter our co-culture experiments in order to inhibit membrane
remodelling. To this aim, loaded BMDCs were fixed (with
paraformaldehyde/gluteraldehyde solutions) before exposure to
neuronal cultures. These treatments strongly inhibited the plasma
membrane plasticity, blocking both TNT formation and PrPSc
secretion. Similar to the results obtained after co-culture through
filters, fixation of BMDCs prior to the co-cultures did not result in
neuronal infection, as indicated by the absence of PrPres signals
in the co-cultured neurons (Figure 4B). These data indicate that
PrPSc infection results from an active process, which cannot
occur upon fixation in a short 12 h co-culture and requires cell–
cell contact. Because in our experiments we excluded that prion
transfer could occur via secretion, all our data are consistent with a
role of TNT in intercellular spreading from BMDCs to neurons, as

Figure 4 Characterization of the transfer of prion infectivity from BMDCs to
CGNs

(A) Kinetics of PrPSc accumulation in neuronal cells directly exposed to 139A-loaded BMDCs.
C57BL/6 or KO CGNs were directly exposed to prion-loaded BMDCs (co-culture) or to 0.01 %
of 139A brain homogenate (homogenate) as a control. The PrPres signal is detected in neuronal
cell lysates by immunoblot using the Sha31 antibody. PrPSc amplification is observed in C57
CGNs after exposure to 139A brain homogenate or prion-loaded BMDCs. No PrPres is detected
in KO CGNs even after 21 days of culture. (B) Co-cultures were performed through filters or
after fixation of BMDCs. Under these conditions, PrPSc amplification cannot be observed over
time. The molecular mass in kDa is indicated on the left-hand side of the blots. (C) Prion-loaded
BMDCs were co-cultured with CGNs 2 days post-plating for 18 h before fixation and microscopic
observations. Wide-field acquisitions were performed using a Marianas microscope (TripleI).
Selected frames of Z-stack acquisitions (0.4 µm steps) are shown. BMDCs (indicated with an
asterisk) are connected to neurons via TNTs (arrows). The scale bar represents 10 µm.

we have proposed previously [37] (see also Supplementary Movie
S9 at http://www.BiochemJ.org/bj/431/bj4310189add.htm).

DISCUSSION

In the present study, we investigated the role of BMDCs in the
processing and spreading of prions. To this aim, we developed
an in vitro approach in which prion-loaded BMDCs were co-
cultured with cerebellar primary neurons. First, we characterized
the prion uptake by BMDCs exposed to scrapie brain homogenate
over time by immunofluorescence analyses and three-dimensional
reconstructions (Figure 1 and Supplementary Figure S2). While
prion aggregates were mainly associated with the cell surface up
to 2 h post-incubation, prion internalization was detected between
2 and 18 h post-exposure resulting in a progressive shift of
localization of PrPSc from the plasma membrane to the cytosol.

Following scrapie uptake, we also demonstrated that BMDCs
progressively degraded PrPSc between 24 and 72 h post-exposure.
After 72 h, we observed higher PrPSc catabolism leading to
the rapid disappearance of PrPSc signal between 96 and 168 h,
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consistent with what was previously determined in other models
[43,44,46,51].

The fact that we have been able to detect consistent amounts of
PrPres up to 72 h post-loading indicates that, after uptake, BMDCs
could present native prion proteins to other cell types during
this time frame, before starting massive protein degradation.
Furthermore, complementary experiments performed in BMDCs
isolated from KO or PrP-overexpressing mice indicated that
neither the uptake, as recently shown [38], nor the degradation of
PrPSc was influenced by PrPc expression. Interestingly, similar
experiments performed with different prion strains (22L and Me7)
showed similar kinetics of uptake and catabolism of PrP (results
not shown), suggesting that both mechanisms are not influenced
by the different prion strains.

Next, we analysed whether and how BMDCs transferred
PrPSc to primary neurons. In these experiments, neurons
were co-cultured with BMDCs 2 days post-plating, a stage of
differentiation that we found facilitates the establishment of TNTs
between neurons and BMDCs. We characterized our co-cultures
by microscopic approaches and showed that after overnight co-
cultures BMDCs were either in close contact with dendrites
or directly linked to neurons via TNTs (Supplementary Movie
S9). Recently, similar connections have been observed between
BMDCs and peripheral neurons isolated from the dorsal root
ganglia [38]. Having established the presence of such cell–
cell contacts, we turned our attention to the characterization of
intercellular prion transfer mechanisms. According to previous
models of prion transfer, prion-loaded BMDCs could transfer
prions to neuronal cells by excreting PrPSc in the medium [41,52–
54], by secretion of membrane exovesicles [43–46] or by direct
cell–cell transfer [37,55].

Direct co-cultures from BMDCs and neurons established for
18 h allowed us to detect prion transfer to neuronal cells. However,
when cells were co-cultured through filters, no detectable transfer
was observed, arguing against the involvement of secreted PrPSc.
To rule out the possibility that prion aggregates were retained
on the filters, we also exposed neuronal cultures to medium
conditioned by prion-loaded BMDCs. These experiments did
not show significant prion transfer, as PrPres signal observed in
neurons was much lower compared with the signal observed
in the cases of direct cell–cell contact (Figure 3). We also
determined the kinetics of prion transfer establishing short
time co-cultures (from 30 min to 4 h), and demonstrated that
efficient transfer required as little as 4 h of co-culture, which
is consistent with the time necessary for the establishment
and transfer via TNTs in cell cultures (Supplementary Fig-
ure S5 at http://www.BiochemJ.org/bj/431/bj4310189add.htm)
[37,56].

Overall, our results indicate that prion-loaded BMDCs are able
to transfer PrPSc to neuronal cells upon direct and relatively short
cell–cell contact. Although BMDCs could secrete prion-enriched
exosomes, we have been unable to show the involvement of the
secretory pathway in the PrPSc transfer to neuronal cells under
our particular culturing conditions (e.g. short incubation time and
one-quarter cell dilution). Thus although we cannot rule out other
manners of transfer, our data indicate that the transfer mediated
by direct cell–cell contact is very efficient.

Interestingly, no PrPres signal can be detected in BMDCs
removed from direct contact with the neuronal cells, whereas
PrPres was still present in BMDCs exposed to neurons through
filters. These data strongly support the hypothesis that prion
transfer from BMDCs to neurons is strongly induced upon cell–
cell contact. Furthermore, because at the time of co-cultures (after
18 h of uptake), all of the PrPSc aggregates are in the cytosol of
BMDCs (Figure 1) and not at the cell surface, these data suggest a

transfer from the cytosol possibly via TNTs, excluding a transfer
through plasma membrane to neighbouring cells. Interestingly,
the transfer of PrPSc from Me7-loaded BMDCs to dorsal root
ganglion neurons has recently been examined [38]. In this study,
experimental conditions also suggested prion transfer through
TNT-like structures shown to connect BMDCs to dorsal root
ganglia and excluded the involvement of PrPSc secretion.

Since we have previously shown that co-cultures with prion-
loaded BMDCs results in infection of primary neurons, we next
followed up the cultures to determine the requirements for prion
infection of the targeted neurons. Consistent with the transfer
experiments, we found that prion infection is only detected
after direct co-culture conditions and does not occur if cells
are separated by filters or when co-cultures were performed
with aldehyde-fixed BMDCs. These experiments indicate that
the transfer is an active mechanism requiring remodelling of the
plasma membrane. Interestingly, a similar experiment performed
by Kanu et al. [55] had shown a reduction of 75% in the efficiency
of transfer of infection from fixed scrapie SMB (Scrapie mouse
brain) cells co-cultured with targeted HMH (cells expressing a
chimaeric mouse and hamster PrPc) cells, as opposed to live cell
co-cultures. These data are in agreement with our conclusion
that efficient transfer requires an active membrane remodelling,
although it is clear that infection can be acquired via different
mechanisms in less efficient manners (e.g. long co-cultures with
fixed cells) [47–50,55].

In the present study, using a number of restrictive experimental
conditions such as short co-culture times, low BMDC/CGN ratios,
physical separation and pre-fixation of cells, we were able to
show that direct cell–cell transfer of PrPSc between these two
cell types occurs in a PrPc-independent manner. Interestingly,
having excluded transfer from the cell surface and by secretion,
all of our data point towards a role of TNT-like structures
in the intercellular transfer of PrPSc from BMDCs to CGNs,
similar to what was recently shown with dorsal root ganglion
neurons [38]. Finally, our system of co-cultures suggests that
DCs could be important players during prion spreading in vivo
and will allow further characterization of prion spreading from
the periphery to the nervous system of different scrapie strains,
which could lead to a better understanding of the species barrier
phenomenon.
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Figure S1 No PrPSc signal is detected in control BMDCs

BMDCs plated on fibronectin-coated Ibidi dishes were washed, fixed and immunolabelled
with the Sha31 anti-PrP antibody and Alexa-Fluor®-546-conjugated secondary antibody. HCS
CellMask Blue was used to label the cytosol of the BMDCs (blue). No PrPSc punctate (red)
can be detected. Mosaics (3×3 fields) were acquired by wide-field microscopy. The scale bar
represents 10 µm.

Figure S2 PrPSc endocytosis in BMDCs is independent of PrPc expression

BMDC cultures isolated from KO or tga20 mice, were exposed to 139A brain homogenate for the
times indicated. Cells were washed, lysed and 50 µg of proteins were treated with PK prior to
immunoblot analysis with the Sha31 antibody. PrPres is progressively internalized by BMDCs
with a peak between 6 and 18 h. Identical kinetics of internalization were observed for KO and
tga20 mice. The molecular mass in kDa is indicated on the left-hand side of the blots.

Figure S3 Time course of PrPSc degradation in BMDCs

BMDC cultures were established from C57BL/6 (left-hand panel) or tga20 (right-hand panel)
mice. At 10 days post-plating, cells were exposed to 139A brain homogenate for 18 h. The
cells were washed three times by centrifugation and plated for the times indicated. Cells were
lysed and PK-treated before analysis of PrPres expression by immunoblotting using the Sha31
antibody. Western blot analysis indicates a progressive decrease in the PrPres signal between
24 and 96 h of exposure. The molecular mass in kDa is indicated on the left-hand side.

Figure S4 Cell–cell contact is required for PrPSc transfer from BMDCs to
moRK13

Similar to CGNs, prion-loaded BMDCs were co-cultured with moRK13 cells directly (co-culture),
through filters (filter) or moRK13 cells were exposed to the conditioned medium of BMDCs
(supernatant). After 18 h BMDCs were removed and the moRK13 cells were extensively washed.
Then a PK assay was performed on BMDCs 24 h post-loading (input). Prion transfer was
evaluated by detection of PrPres in moRK13 cells and prion-loaded BMDCs after the co-cultures.
Similar to CGNs (Figure 3A of the main text), PrPres is only detected in moRK13 cells after direct
co-culture, whereas it stays in BMDC cultures separated by a filter, confirming that cell–cell
contact is a prerequisite for the discharge of BMDCs and prion transfer to the recipient cells.
Several dilutions of the original input show that one-quarter of the original PrPSc is discharged
from BMDCs to the recipient cells. The molecular mass in kDa is indicated on the left-hand side
of the blot.

1 To whom correspondence should be addressed (email zurzolo@pasteur.fr).
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Figure S5 Kinetics of PrPSc transfer from prion-loaded BMDCs to neurons

Following BMDC exposure to 139A brain homogenate, co-cultures were established with CGNs
for the times indicated. BMDCs were removed and neuronal cell extracts were analysed to
detect PrPres by immunoblot using the Sha31 antibody. PrPres was detected as early as 4 h of
co-culture, suggesting a rapid mechanism of transfer. The molecular mass in kDa is indicated
on the left-hand side.
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RESULT 2:  

Characterization of the mechanisms of polyglutamine 
aggregates transfer in neuronal cells and primary 
neurons 
 

2.1 Objectives 
 

a. To investigate whether spontaneous cell-to-cell transfer of 
polyQ aggregates occurs in co-cultured neuronal cells and 
primary neurons. 

b. To characterize the mechanism of intercellular transfer and 
evaluate a possible role for Tunneling nanotubes (TNTs). 

c. To examine whether cell-to-cell transfer of polyQ Htt 
induces nucleation of endogenous wild-type Htt (e.g. 
seeding).  

 

2.2 Summary of the results and discussion 
 
Huntington’s disease (HD) is a dominant inherited 
neurodegenerative disorder caused by the expansion of a CAG 
repeat in the exon 1 of the huntingtin gene, resulting in an 
expanded polyglutamine (polyQ) tract in the N-terminal part of 
the encoded protein. PolyQ stretches above a threshold of 35-40 
Q cause misfolding and aggregation of huntingtin (or of a 
fragment of the protein) (Davies et al., 1997; Di Figlia et al., 
1997) 
The hallmark of HD is the presence of inclusion bodies both in the 
cytoplasm and nucleus of affected cells (Gutekunst et al., 1999). 
HD is mainly characterized by the selective loss of medium spiny 
projection neurons in the striatum (Vonsattel and DiFiglia, 1998), 
although the pathology spreads progressively to other areas of 
the brain, following topologically predictable patterns (Walker, 
2007; Rosas et al., 2008). Yet, it is unknown whether and how 
Htt misfolding progresses through the brain, contributing to the 
anatomical spreading of the pathology.  
In this part of my PhD work, I explored the occurrence and the 
mechanisms of polyQ Htt transfer between neuronal cells and 
primary neurons. 
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First, I directly investigated the capacity of intracellular 
aggregates of a mutant Htt fragment of transferring between 
neuronal cells (CAD cell) and between primary neurons (CGN). 
I set up an in vitro approach that allowed distinguishing donor 
cells, transfected with a GFP-tagged mutant Htt fragment (GFP-
HttQ68) from acceptor cells expressing a cytosolic mCherry 
construct. 
Interestingly, using flow cytometry and microscopy analysis, I 
found that the transfer of polyQ aggregates was triggered by 
direct cell–cell contact, as it occurred when GFP-HttQ68 cells 
(donor) were co-cultured with acceptor cells both in the case of 
neuronal cells and primary CGN. As a consequence, no transfer to 
mCherry labeled cells was observed in CAD cells when a filter 
separated the two cultures or when acceptor cells were exposed 
to the conditioned medium of GFP-HttQ68 cultures. These data 
exclude the involvement of polyQ aggregate secretion as an 
efficient transfer mechanism in our condition. Similarly no 
transfer was observed in primary neurons when they were only 
allowed to share the medium in the absence of cell-cell contact 
between donor and acceptor cells. Additionally, we could not 
detect an increased rate of cell death in neuronal cells upon 
transfection with GFP-HttQ68 (up to 48 h post transfection), 
suggesting that in our system aggregate transfer is an active 
mechanism that does not rely on passive release upon cell death. 
In addition, when I characterized CAD co-cultures by microscopy I 
found that a relevant percentage of mCherry cells containing 
multiple aggregates were either in close contact or directly linked 
to GFP-HttQ68 donor cells via TNTs. By performing three-
dimensional reconstruction, I demonstrated the presence of GFP-
HttQ68 inside TNTs connecting the two cell populations. Because 
polyQ aggregates are either cytosolic or nuclear and are not at 
the cell surface, these data suggest a transfer from the cytosol 
possibly via TNTs, excluding a transfer through plasma membrane 
to neighbouring cells. Of interest, TNT-like structures have been 
shown to efficiently transfer PrPSc in neuronal cells (Gousset et 
al., 2009) and between BMDCs and primary neurons (Langevin et 
al., 2010; Dorban et al., 2010). Recently, Aβ particles have also 
been shown to transfer via TNTs between primary neurons and 
astrocytes (Wang et al., 2011). Interestingly, I also reported the 
formation of aggregates of endogenous huntingtin within neurites 
of mCherry labeled primary neurons upon direct co-culture with 
GFP-HttQ68 expressing neurons, suggesting that, following 
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transfer, polyQ aggregates are able to seed misfolding of 
endogenous wild-type Htt. 
In conclusion, using a number of restrictive experimental 
conditions, I provided the first direct demonstration (to my 
knowledge) that polyQ aggregates formed within a cell (and not 
exogenously added to the cell culture) can efficiently transfer to 
neighbouring cells, possibly via TNTs and can seed misfolding of 
endogenous protein. This can contribute to the early stage of HD 
pathogenesis and to the progression of the disease in the brain. 
 
This work is now ready for submission and is appended as 
manuscript below. 
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Abstract  

 

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease 

caused by expansion of a CAG tract in the exon 1 of the huntingtin gene. The mutant 

gene encodes a variant of the huntingtin (Htt) protein containing a homopolymeric 

tract of polyglutamine (polyQ) in excess of the pathogenic threshold of ~35Q.  

Despite the rapidly accumulating evidence supporting a role for intercellular 

transmission of protein aggregates in the pathological spread of neurodegeneration in 

animal and cell culture disease models, little is known about whether and how 

huntingtin misfolding progresses through the brain. Uptake of externally applied 

synthetic polyQ peptides and recombinant fragments of mutant huntingtin has been 

reported in cell cultures as well as the ability of the internalized aggregates to seed 

polymerization of soluble huntingtin. In the present study we directly investigated 

the capacity of intracellular polyQ aggregates to transfer from one cell to another in 

neuronal cells and primary neurons. Using both flow cytometry and microscopy 

analysis, we determined that Htt aggregates spontaneously transfer between neuronal 

cells and in primary neurons. We demonstrated that in both neuronal cells and 

primary neurons it requires cell-cell contact and does occur upon aggregates 

secretion in the culture medium. Furthermore, we show that Tunneling nanotubes 

(TNTs) provide an efficient transfer mechanism in neuronal cells. Finally, we 

reported aggregation of wild-type Htt in primary neurons upon direct co-culture with 

mutant Htt expressing neurons, suggesting that, following transfer, polyQ aggregates 

possibly stimulates further misfolding of the endogenous protein. To our knowledge, 

this study represents the first direct demonstration that polyQ aggregates formed 

within a cell (and not exogenously added to the cell culture) can efficiently transfer 

to neighbouring cells, possibly via TNT structures and seed misfolding of the wild-

type protein. 
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Introduction 

 

Huntington’s disease (HD) is a dominant inherited neurodegenerative disorder 

caused by the expansion of a CAG repeat in the exon 1 of the huntingtin gene, 

resulting in an expanded polyglutamine (polyQ) tract in the N-terminal part of the 

encoded protein. PolyQ stretches above a threshold of 35-40 Q cause misfolding and 

aggregation of huntingtin (or of a fragment of the protein) (DiFiglia et al., 1997; 

Davies et al., 1997) with a positive correlation between the length of the CAG repeat 

and the amount of the aggregates (Scherzinger et al., 1999). Within the expanded 

range, longer repeats cause early onset (Andrew et al., 1993), consistent with the 

hypothesis that aggregation of the protein is related to pathogenesis. Indeed, HD 

belongs to the group of “protein conformational disorders” that include, among 

systemic and organ-specific amyloidosis, Alzeimer’s disease, Parkinson’s disease 

and prion disorders (Carrell and Lomas, 1997). Although the disease-associated 

proteins are very diverse in their primary sequence, when it cames to aggregation, all 

of them form insoluble, fibrillar, !-sheet rich aggregates, termed amyloid, that 

accumulate either in the cytoplasmic or extracellular space (Ross and Poirier, 2004).  

The hallmark of HD is the presence of inclusion bodies both in the cytoplasm and 

nucleus of affected cells (Gutekunst et al., 1999). HD is mainly characterized by the 

selective loss of medium spiny projection neurons in the striatum (Vonsattel and 

DiFiglia, 1998), although the pathology spreads progressively to other areas of the 

brain (Walker, 2007). Brain imaging studies showed that cortical degeneration in HD 

follows a topologically predictable pattern (Rosas et al., 2008) and precedes 

degeneration in the striatum (Vonsattel and DiFiglia, 1998; Brundin, Melki, et al., 

2010) . Inclusions containing huntingtin are present in the regions of the brain that 

degenerate, although the presence of visible aggregate does not always correlate with 

cell death (Kuemmerle et al., 1999). 

Yet, it is unknown whether and how Htt misfolding progresses through the brain. Of 

interest, many protein conformational neurodegenerative disorders have been shown 

to begin in a specific area of the brain and extend along predictable anathomical 

paths (Brundin, Melki, et al., 2010). A growing amount of literature, has suggested 

that disease-associated protein aggregates can transfer between cells contributing to 

the anatomical spreading of the underlying pathology, a prerogative that, until 
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recently, was confined to infectious prions (Brundin, Melki, et al., 2010; Lee et al., 

2010). Furthermore, prion-like transmission mechanisms may be responsible for 

propagation of protein misfolding in non-prion neurodegenerative disorders, 

suggesting the existence of a general pathogenic principle in neurodegenerative 

proteinopathies (Frost and Diamond, 2010). In the specific case of HD, cell culture 

experiments have shown that synthetic polyQ peptides or recombinant fragments of 

mutant Htt when applied externally to cultured cells are readily taken up (Yang et al., 

2002; Ren et al., 2009) and gain access to the cytoplasm where they can seed 

polymerization of a soluble 25Q huntingtin reporter (Ren et al., 2009). Moreover, 

these assemblies persist for over 80 generation in prolonged cell culture, despite their 

dilution in dividing cells, suggesting a self-sustaining seeding and fragmentation 

process similar to prion replication (Caughey and Lansbury, 2003; Ren et al., 2009). 

The relevance of these observations in HD pathogenesis is unclear. Indeed, fetal 

grafts of striatal tissue in HD patients’ brains have shown, upon autopsy, to be 

susceptible of disease-like neurodegeneration, but abnormal huntintingtin 

aggregation was not observed within a decade from the trasnsplant (Cicchetti et al., 

2009). Thus, it is not clear how the pathogenesis is transmitted to the grafted cells 

and whether this is linked to the spreading of oligomeric form of the disease protein 

or of the toxic signal. This appear to be different from the case of cytoplasmic a-

synuclein rich Lewy bodies that were found in grafted cells in the brain of 

Parkinson’s disease patients, suggesting that prion-like transmission had possibly 

occurred from the diseased brain to the healthy grafted tissue (Allan et al., 2010; Li 

et al., 2008). In addition, Ren and colleagues reported that natural cell-to cell 

transmission of Htt, measured indirectly from the seeded-polymerization of a 

cytoplasmic 25Q huntintin reporter, was rather inefficient in co-cultured HEK293 

cells, and could be drastically increased by selective lysis of donor cell (Ren et al., 

2009). Deep-etch electron microscopy of polyQ aggregates in the cytosol revealed no 

evidence of surrounding membranous structure, suggesting the absence of a vesicular 

uptake (Ren et al., 2009).  

The question whether and how aggregated misfolded protein transfer between cells 

and lead to the spreading of the pathology is central to many neurodegenerative 

disorders. Recently, seeding of intracellular protein aggregates by external amyloid 

fribrils has been reported to occur in a cell culture model for tau aggregation (Frost et 

al., 2009). Importantly, in this case, spontaneously formed aggregates were also able 
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to naturally transfer between cells (Frost et al., 2009). Moreover, uptake of 

extracellualar aggregates containing tau (Frost et al., 2009; Kfoury et al., 2012) and 

a-synuclein (Desplats et al., 2009; Lee et al., 2008) is reported to occur through 

phagocytic or endocytic processes that results in delivery to the endoplasmic 

compartment, from which they must escape to nucleate aggregation of endogenous 

cytoplasmic proteins. Finally, it has been shown that prions and amyloid-! transfer 

between cells via Tunelling Nanotubes (TNTs), thin actin-rich membrane bridges 

connecting the cytoplasm of distant cells and allowing the exchange of cell 

components and pathogens (Gousset et al., 2009; Abounit and Zurzolo, 2012; Marzo 

et al., 2012). Therefore, it is possible that TNTs act as transport conduits also for 

other prion-like protein aggregates as recently showed for amyloid-! particles (Wang 

et al., 2011). 

In the present study we investigated directly the capacity of intracellular aggregates 

of a mutant Htt fragment of transfer between co-cultured neuronal cells as well as in 

primary neurons. Using both flow cytometry and microscopy analysis, we found that, 

Htt aggregates formed within donor cells are spontaneously transferred to receiving 

cells and characterized the mechanism of transfer. We demonstrate that Htt 

aggregates transfer is an active mechanism that does not rely on their passive release 

from dying cells as a result of mutant Htt induced toxicity. Moreover, transfer 

requires cell-to-cell contact and does not occur through the supernatant. We show 

that TNTs provide an efficient mechanism of transfer of polyQ aggregates between 

neuronal cells and seeded-polymerization of soluble endogenous Htt in primary 

neurons. 
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Materials and methods 

 

Cell lines, mouse lines, primary cell cultures 

CAD cells (mouse catecholaminergic neuronal cell line, Cath.a-Differentiated) were 

a gift of Dr. Laude H. (Institut National de la Recherche Agronomique, Jouy-en-

Josas, France) and were cultured in Opti-MEM (Gibco) with the addition of 10% 

FBS (fetal bovine serum). Primary cultures were established from C57BL/6J mice 

provided by Charles River Laboratories. All experiments were performed according 

to national guidelines. 

Primary cultures of CGNs (cerebellar granule neurons) were established as 

previously described (Langevin et al., 2010; Cronier et al., 2004). CGNs were 

cultured for the indicated time on poly-D-lysine (10 ug/ml; Sigma) pre-coated 

coverslips at a density of 400 000 cells/coverslip in DMEM (Dulbecco's modified 

essential medium; Gibco) supplemented with 10% (v/v) FBS, 20 mM KCl, penicillin 

(50 units/ml), streptomycin (50 µg/ml; Gibco) and complemented with B27 and N2 

supplement (Gibco).  

All cultures were incubated at 37°C in a humidified atmosphere with 5% CO2.   

 

Plasmids and transfection procedures 

GFP-HttQ68 and GFP-HttQ17 were a kind gift of Dr. Humbert S. (Institut Curie - 

UMR 146 du CNRS, Centre Universitaire Orsay, France). mCherry vector was from 

Clontech. 

CAD cells were transfected at 50% confluence with the indicated construct using 

Lipofectamine 2000 (Invitrogen), according to the producer’s protocol. 

CGNs were transfected with the appropriate construct in suspension immediately 

after isolation using the Amaxa nucleofector system and the amaxa electroporation 

transfection reagent VPD-1005 (Lonza) according to the manufacturer’s procedure.  

 

Western Blots 

CAD cells were seeded 1.000.000 in 25 cm flasks. The following day, cells were 

transfected with 4 µg of GFP-HttQ68 or GFP-HttQ17 as described above. After 48 h, 

cells were washed in D-PBS and lysed in 0.5% Triton X-100, 0,5% sodium 

deoxycholate, 100 mM NaCl, 10mM Tris-HCl (pH 8). After a short centrifugation 
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(3000g for 5min), 40 µg of cell lysate were resolved by SDS-PAGE either on a 7,5% 

acrylamide gel and Western blot with MAB2166 anti-huntingtin antibody (1:5000) 

or on a 12% acrylamide gel and probed with antibodies against cleaved caspase 3 

[(Asp175) (5A1E); Millipore] and cleaved PARP [(Asp214) (7C9); Millipore], as 

markers of apoptosis. Blots were stripped and re-probed with mouse anti-tubulin 

(mouse monoclonal antibody, 1:5000) (Sigma). HRP-conjugated secondary 

antibodies and ECL TM reagents from Amersham (GE Healthcare) were used for 

detection. 

 

Flow Cytometry 

CAD cells were transfected separately with GFP-HttQ68, GFP-HttQ17, and mCherry 

constructs in 25 cm flasks as descrided above.   

For co-culture experiments, 1-day after transfection, mCherry-expressing CAD cells 

were co-cultured with cells expressing either GFP-HttQ68 or GFP-HttQ17 at a ratio 

1:1 in 35 mm dishes. After 24h co-cultures, cells were scraped in D-PBS plus 1% 

FBS, passed through 40 µm nylon cell strainers and fixed in 2% paraformaldehyde 

overnight prior to flow cytometry analysis (BD Biosciences LSRFortessa cell 

analyzer). Each experiment was performed in triplicate and repeated three times. 

10.000 cells were counted each time. 

GFP-HttQ68 or GFP-HttQ17 expressing cells were also plated on 0.4 µm filters 

(Costar) placed on top of mCherry expressing cells in order to inhibit cell-cell 

contact. After 24h co-cultures, the filters were removed and the mCherry expressing 

cells were analyzed by flow cytometry as described above. 

In order to test supernatant involvement in transfer, CAD cells were transfected 

separately with GFP-HttQ68 and GFP-HttQ17. After 24h, cells were gently washed 

with D-PBS and fresh medium was added for additional 24h. Then, GFP-HttQ68 or 

GFP-HttQ17 CADs medium was used to culture mCherry expressing CAD 

(transfected the day before). After 24h incubation, mCherry expressing cells were 

analyzed by flow cytometry as described above. 

 

CGN co-cultures 
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For co-culture experiments, CGNs transfected with mCherry construct were mixed 

with GFP-HttQ68 transfected neurons at a ratio 1,5:1 immedialely after 

nucleofection and plated on coverslips as described above.  

 

Immunofluorescence  

At the indicated times post-transfection, cells were washed in D-PBS (Dulbecco's 

Phosphate Buffered Saline; Gibco) and fixed in 4% paraformaldehyde (Electron 

Microscopy Sciences). The cells were permeabilized with 0.1% Triton X-100 and 

labeled with mouse anti-huntingtin antibody (1:300, for 18 h at 4°C) (MAB2166; 

Millipore). The Alexa Fluor® 633 secondary antibody was purchased from 

Invitrogen. When indicated, CAD cells were stained with HCS CellMask! Blue 

(1:10 000, for 20 minutes at R.T.) (Invitrogen), Wheat Germ Agglutinin (WGA)-

rhodamine or WGA-Alexa Fluor® 350 conjugate (1:300, for 20 minutes at R.T) 

(Invitrogen). CGNs were also stained with DAPI (1:5000) (Sigma). The cells were 

washed and mounted with Aqua-Poly/Mount (Polysciences).  

Images were acquired with a wide-field microscope (Zeiss Axiovert 200M) 

controlled by Axiovision software. All Z-stacks were acquired with Z-steps of 0.4 

µm. For CAD cells, the HCS CellMask! staining was used to set the autofocus 

module, providing single focal plane images. When indicated, random mosaics of (3 

" 3 fields) were obtained using a 63" objective Plan-Apochromat objective [1.4 NA 

(numerical aperture)]. Representative tiles are presented.  

Images of CAD cells used for 3D reconstruction and TNTs (tunneling nanotubes) 

detection were acquired with an optimal Z-step of 0.25 µm covering the whole 

cellular volume.  

 

TNTs (Tunneling nanotubes) detection 

CAD cells were transfected with the indicated constructs in 25 cm flasks. The 

following day or 12 h post-transfection, cells were plated on µ-Dish35 mm, high (Ibidi 

") and fixed at the indicated time with a solution of 2% paraformaldehyde, 0.05% 

gluteraldehyde and 0.2 M Hepes in D-PBS for 20 min, followed by a second 20 min 

fixation with 4% paraformaldehyde and 0.2 M Hepes in D-PBS. Then cells were 

gently washed in D-PBS and stained as indicated.  
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Image processing and quantification 

Raw data were processed with Axiovision 4.8 software. The auto-scaling (min/max) 

of signal detection was applied to all images. When indicated, images were 

deconvolved using 3D Huygens Deconvolution software and three-dimensional 

reconstructions were performed with Imaris software. 

To quantify the percentage of CAD cells with huntingtin aggregates and to evaluate 

the number of TNT-connected cells, a manual analysis was performed as previously 

shown (Gousset et al., 2009). Experiments were made in triplicate and repeated three 

times. 

FACS raw data were analyzed by Kaluza® Flow Cytometry software (Beckman 

Coulter, Inc.). 

 
Image Analysis using Acapella™ software 

In order to evaluate and quantify the transfer of polyQ aggregates from donor (GFP-

HttQ68 transfected) to acceptor (mCherry transfected) CGN in co-culture 

experiments, we used the Acapella™ image analysis software (version 2.3 - Perkin 

Elmer Technologies) provided by the Plate-forme Imagerie Dynamique (Institut 

Pasteur) that allowed detecting in an automated manner Htt aggregates (GFP-tagged) 

in mCherry labeled neurons. 

The script is subdivided in four object segmentation subroutines and required the 

setting of several input parameters:  

• Segmentation of the nuclei in the channel 305 (DAPI staining) 

(nuclei_detection) 

• Automated detection of the cell body of acceptor cells (mCherry labeled 

neurons) in the channels 305 (nuclei, DAPI staining) and 546 (mCherry 

signal) by applying a mask that allowed to select only the cell bodies labeled 

in both channels (DAPI/mCherry overlap). 

• Neurite detection. Starting from the selected cell bodies, the application of a 

specific module of the Acapella software (neurite_detection) allowed to 

automatically draw the neuritic arborization corresponding to each cell body 

that, at this stage, appeared as “lines” in the 546 channel (mCherry signal). 

Then, to gain the thickness, a dilatation filter (radius = 3) was applied to the 

neuritic arbors. 
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• Spot and small object detection. In order to detect Htt aggregates two 

different algorithms were applied: spots and small object detection in both 

488 (GFP-HttQ68 signal) and 633 (anti-Htt MAB2166) channels. While the 

spot detection is based on a local intensity analysis with each spot 

corresponding to a local intensity maximum, the small object detection takes 

in to account not only the global intensity but also shape and size. Spot and 

small objects were scored as “within neurite” only in presence of a shape 

overlap with the neurite of at least 70%. We consider only spot and small 

object that were positive in both 488 (GFP-HttQ68 signal) and 633 (anti-Htt 

MAB2166) channels (based on a shape overlap) and we reported the presence 

within neurites of spots and small object detected only in the 633 channel 

(not GFP positive), thus indicating aggregation of the endogenous protein. 

The input parameters were optimized with feasibility studies in collaboration with 

image analysis experts at Plate-forme Imagerie Dynamique (Institut Pasteur). 

Different versions of the script corresponding to parameter adjustment were 

validated and included the use of GFP vector transfected neurons (versus GFP-

HttQ68) as negative control. 
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Results 

 

Intracellular mutant Htt aggregates transfer between co-cultured CAD cells 

The first 480 amino acids of huntingtin with either 17Q (wild-type Htt) or 68Q 

repeats (mutant Htt) fused to green fluorescent protein (GFP-Htt17Q and GFP-

Htt68Q respectively) were expressed in CAD neuronal cells (Figure 1A) and the 

fraction of cells with aggregates was quantified. At 48h post-transfection about 20% 

of the cells expressing GFP-Htt68Q contained aggregates, differently from GFP-

Htt17Q that showed a diffuse nucleocytoplasmic fluorescence with GFP puncta in 

less then 5% of cells (Figure 1B).  

In order to understand whether intracellular Htt aggregates transfer between co-

cultured cells, we set up a flow cytometry assay. To this aim, CAD cells were 

transfected with either GFP-Htt68Q (donor population) or with mCherry-vector (a 

red fluorescent protein variant, to label the acceptor population). At 1-day post-

tranfection, the two cell population were co-cultured at a ratio 1:1 for 24h prior to 

flow cytometry (see Materials and Methods). As control for background signal, 

donor and acceptor cells were cultured separately for 24h and mixed immediately 

before flow cytometry. In co-cultures with GFP-Htt68Q, 3.7% of cells scored as 

GFP/mCherry double positive versus 0,5% of cells mixed prior to flow cytometry 

(i.e. background, mix) (Figure 2A-B).  

To visualize the transfer of aggregates, we co-cultured donor and acceptor cell 

populations for 24h on ready-to use supports for microscopy (µ-Dish35 mm, high, 

Ibidi "). By fluorescence microscopy, we observed the presence of GFP-Htt68Q 

aggregates in mCherry acceptor cells (Figure 2C).  

Because GFP-Htt68Q has been shown to induce cell death (Bjorkoy et al., 2005), the 

transfer of aggregates to recipient cells could derive from the internalization of Htt 

aggregates released in the medium from dying cells. To test this possibility, we 

measured cell death in GFP-Htt68Q cells at the time of the co-culture experiments 

(48h post-transfection) compared with cells transfected with GFP-Htt17Q. We 

evaluated both active caspase3 and cleaved PARP levels, as markers of apoptosis, by 

Western Blot (Figure 3) and we assessed DNA fragmentation by TUNEL (TdT-

mediated dUTP nick end labeling), using fluorescence microscopy (data not shown). 

With these combined approaches, we could not detect any induction of cell death in 
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CAD cells expressing either mutant or wild-type Htt at 48h post-transfection. 

Therefore, these data support the hypothesis that aggregates formed within a cell are 

able to translocate to acceptor cells through a process that is independent of 

aggregate release following cell death.  

 

Intercellular transfer of Htt aggregates requires cell-cell contact. 

The transfer of Htt aggregates could have occurred through either cell-cell contact or 

secretion. To evaluate the possible impact of secretion and of exosomal release, we 

examined whether Htt aggregates transfer could occur through filters, which would 

allow the passage of secretory vesicles and exosomes but would not allow cell-to-cell 

contact. To this aim, 1-day post-transfection, donor cells expressing mutant Htt were 

plated on filters positioned in a plate on top of a layer of mCherry-labeled acceptor 

cells (see Materials and Methods). After 24h incubation, the acceptor cells were 

analyzed by flow cytometry and only 0,18% of cells were scored as double positive 

(Fig. 4). Thus, the transfer efficiency was reduced by more than 95% (to the 

background levels) when filters were used to separate the two populations compared 

to direct co-cultures.  

This result suggested that a secretion mechanism is not involved in the transfer of 

aggregates in our system. However, to rule out the possibility that filters could trap 

Htt aggregates, we analyzed whether transfer could be mediated by the supernatant 

of cells transfected with GFP-Htt68Q. To this aim at 1-day post-transfection the 

medium of mCherry CAD cells was replaced with the supernatant of GFP-Htt68Q 

cells collected for 24h post-transfection. Then, after 24h exposure to the conditioned 

medium, mCherry cells were analyzed by flow cytometry and scored for the 

presence of Htt aggregates. Similar to the filter experiments, only 0,04% of cells 

scored as double positive, further confirming that secretion into the medium was not 

involved in the transfer of Htt aggregates or that this mechanism was not very 

efficient (Figure 4).  

 

Tunneling Nanotubes mediate intercellular transfer of Htt aggregates in CAD cells 

Overall the above data indicated that cell-to cell contact is required for intercellular 

transfer of Htt aggregates. One attractive possibility is that Htt aggregates formed 

within a cell might access the cytoplasm of neighboring uninfected cells via 

Tunneling Nanotubes (TNTs) (Abounit and Zurzolo, 2012; Marzo et al., 2012), as it 
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was previously shown for PrPSc (Gousset et al., 2009) and amyloid-!  (Wang et al., 

2011) particles. To evaluate this possibility, 24h after transfection CAD cells 

expressing either GFP-HttQ68 or mCherry were co-cultured on plastic bottom dishes 

ready for imaging (µ-Dish35 mm, high, Ibidi ") in a well-spaced manner to favor the 

formation of TNTs, as previously shown (Gousset et al., 2009). After 24h co-culture 

(48h post-transfection, same as the flow cytometry analyses) cells were fixed, stained 

with WGA-Alexa Fluor® 350 conjugate to label TNT membranes and observed by 

fluorescence microscopy (Zeiss Axiovert 200M). At this time after co-culture, as 

expected from the flow cytometry data, we could visualize a relevant percentage of 

mCherry cells containing multiple aggregates connected through TNTs to GFP-

HttQ68 cells (data not shown). However, we could not detect GFP-Htt aggregates 

inside these structures. This could indicate that transfer of aggregates through TNTs 

had already occurred. In order to test this hypothesis, we repeated the same 

experiment by co-culturing the two cell populations for shorter time (18 h, 36 h post-

transfection). In these conditions, we could detect GFP-Htt aggregates within TNTs 

connecting distant cells (Figure 6A) and between the two different cell populations 

(GFP-HttQ68/mCherry cell pairs) (Figure 6B). Furthermore, we found aggregates in 

the lumen of TNT-paired mCherry cells, suggesting that transfer of Htt aggregates 

through TNTs had taken place. These data indicate that TNTs provide an efficient 

mode of transfer for Htt aggregates between CAD cells.  

Next, we evaluated the effect of mutant Htt on the number of TNT-connected cells. 

In order to assess this, we transfected CAD cells with either GFP-Htt68Q or GFP-

Htt17Q. After 12h, cells were detached and plated as described above. Cells were 

fixed 12 or 24h after plating (corresponding to 24 and 48h post-transfection) and 

stained with Wheat Germ Agglutinin (WGA)-rhodamine and HCS CellMask! Blue 

stain in order to detect TNT structures and cell bodies respectively. Then, by 

fluorescence microscopy, we quantified the number of transfected cells connected by 

TNTs. GFP-vector transfected cells were used as control. Interestingly, we found that 

at 48h post-transfection over-expression of mutant but not wild-type Htt increased 

the number of TNT-connected cells by about 20% compared to the control cells 

(Figure 5). Since this corresponds to the total time of the co-culture experiments 

analyzed by flow cytometry, it possible that mutant Htt on one hand induces an 

increase of TNT connections and on the other hand hijacks this enhanced network of 

TNT connections to optimize its transfer between cells. 
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Cell-to-cell transfer of mutant Htt aggregates occurs in primary neurons and 

requires intercellular contact. 

Having demonstrated that transfer of Htt aggregates occurs in CAD cells, we further 

investigated the ability of Htt aggregates to transfer between primary neurons. To 

this aim, we established in vitro co-cultures of primary Cerebellar Granule Neurons 

(CGNs) (See Materials and Methods). Specifically, GFP-HttQ68 and mCherry 

transfected CGNs were plated on coverslips at a ratio 1: 1.5 respectively and 

incubated for 140 hours before fixation. Mosaics of different fields were obtained by 

wide-field microscopy (Zeiss Axiovert 200M) to analyze the overall neuronal 

network. We could detect aggregates of GFP-HttQ68 in mCherry neurons both in 

neuritis and in the cell body around the nucleus (Figure 7). Quantification of the 

transfer events was made by using a dedicated version of the Acapella™ software 

(Perkin- Elmer) (see Materials and methods) and revealed that about 4% of mCherry 

neurons contained GFP-Htt aggregates. 

To our knowledge, this is the first evidence that Htt aggregates formed within one 

neuron can transfer to non-transfected cells in primary neuronal cultures. 

In primary neurons cell-to-cell transmission of cytosolic aggregates, such as the one 

formed by mutant Htt, could occur either through their release to the extracellular 

space (endo/exocytosis, exosomes, trans-synaptic transmission at axonal terminals) 

or through direct passage from the cytosol of one neuron to the other, possibly via 

TNTs (Marzo et al., 2012; Moreno-Gonzalez and Soto, 2011). To evaluate the 

possible role of the secretory pathway, we plated GFP-HttQ68 and mCherry 

transfected CGNs on separated coverslips in the same dish, thus, impairing 

intercellular contact but allowing exchange between the two different populations 

through the medium. After 140h of incubation, neurons were washed, fixed and 

analyzed by wide-field microscopy. In this condition, we were not able to detect Htt 

aggregates in mCherry labeled neurons, thus suggesting that secretion was not the 

main transfer mechanism for mutant Htt aggregates in primary neuronal cultures.  

Overall, these data demonstrate that the transfer of Htt aggregates does not appear to 

be associated with aggregates secretion in primary CGN (similar to CAD cells) and 

requires cell- cell contact  

  



Costanzo et al.,  15 

Cell-to-cell transfer of Htt aggregates induces nucleation of endogenous huntingtin 

in primary CGNs. 

One of the major recent findings in the pathogenesis of HD is the ability of 

externally applied polyQ aggregates to be internalized by cells in culture and to 

induce misfolding and aggregation of endogenous and otherwise soluble wild-type 

Htt, a process also known as seeding (Ren et al., 2009). Therefore we evaluated 

whether the transfer of Htt aggregates produced in the donor (GFP-HttQ68 

transfected cells) resulted in aggregation of wild-type Htt in the acceptor (mCherry 

transfected) neurons following TNT mediated transfer. To this aim, we co-cultured 

GFP-HttQ68 and mCherry transfected CGNs on coverslips as described above. After 

140h, cells were fixed and immunolabelled with anti-Htt antibody MAB2166, that 

recognizes both endogenous Htt and the mutant transfected fragment. In these 

conditions we detected aggregates labeled with the anti-Htt antibody in mCherry 

neurons (acceptor neurons) that were not positive for GFP, thus indicating 

aggregation of endogenous Htt. By using the Acapella software, we quantified the 

number of mCherry neurons with aggregates that were positive for MAB2166 

antibody but not for GFP fluorescence (the analysis is on going for the quantitation). 
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Discussion 

 

In the present study, we have tested the hypothesis that intracellular mutant 

huntingtin aggregates transfer between neuronal cells. To this aim we developed an 

in vitro approach in which CAD (mouse catecholaminergic neuronal cell line, 

Cath.a-Differentiated) cells expressing an expanded-polyglutamine fragment of 

huntingtin (GFP-HttQ68) prone to aggregation were co-cultured with acceptor cells 

expressing a cytosolic mCherry and analyzed by flow cytometry the number of 

acceptor cells containing Htt aggregates. Remarkably, we detected 3.7% of double 

fluorescent cells (GFP-HttQ68/mCherry). This was confirmed by microscopy 

analysis which showed that after 24 h co-culture, mCherry labeled cells contained 

multiple GFP-positive aggregates and were in close proximity of GFP-HttQ68 

expressing cells.  

To our knowledge, this is the first direct demonstration that polyQ aggregates formed 

within a neuronal cell can efficiently transfer to neighbouring cells. This data are in 

agreement with a previous very nice report that documented the change in the state 

of a soluble huntingtin reporter (from diffuse fluorescence to puncta) in non neuronal 

cells (HEK293) when co-cultured with cells expressing an expanded-polyQ 

fragment. The precise colocalization of the reporter puncta with expanded-polyQ 

aggregates strongly suggested cell-to-cell transfer of protein aggregates (leading to 

the seeded polymerization of the soluble reporter), but no direct evidence was 

provided in this sense (Ren et al., 2009). Moreover, in the same study it was 

suggested that spontaneous transfer of polyQ aggregates was rather inefficient since 

the number of reporter cells with puncta could be markedly increase only upon 

selective lysis of the donor cells compared to control (reporter cells cultured alone) 

suggesting that aggregates were internalized upon their passive release from dead or 

dying cells (Ren et al., 2009). The fact that in our conditions (e.g. 48 h post 

transfection) we could not detect activation of apoptotic pathways or increased 

TUNEL staining (data not shown) upon GFP-HttQ68 expression indicates that in our 

system aggregates transfer between neuronal cells is an active mechanism and occurs 

efficiently between intact, viable neuronal cells.  

Having established that transfer of aggregated intracellular huntingtin occurs 

between intact CAD cells, we began to characterize the transfer mechanisms. We 
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distinguished between direct cell-cell transfer which needs cell-to-cell contact and 

transfer through the cell medium (e.g following secretion of the aggregates). When 

cells were co-cultured through filters, the transfer efficiency was reduced to 

background noise (more than 95%) compared to direct co-culture, arguing against 

secretion. Furthermore, to rule out the possibility that aggregates where retained on 

the filters, we exposed acceptor cells to the conditioned medium of GFP-HttQ68 

cells. Also these experiments did not show significant aggregates transfer.  

Since in the pathogenesis of HD the target cells are post mitotic neurons, next we 

characterized whether and how expanded-polyQ aggregates transferred between 

primary neurons. Consistently with the findings in CAD cells, we could detect cell-

to-cell transfer of aggregates from primary neurons expressing GFP-HttQ68 to 

mCherry expressing neurons when they were co-cultured on the same coverslips, but 

not when the two different populations only shared the medium.  

Overall, these results indicate that in both neuronal cell cultures and primary neurons 

direct cell-cell contact is required for efficient transfer of GFP-HttQ68 aggregates 

and no transfer occurrs through release/secretion of the aggregates in the medium in 

our culturing condition (e.g. 24 h co-culture; 1:1 cell ratio). Furthermore, as Htt 

aggregates are either cytosolic or nuclear, transfer to neighbouring cells through the 

plasma membrane upon cell surface contact is not likely to occur.  

By fluorescence microscopy and three-dimensional reconstruction we found that 

GFP-HttQ68 aggregates were inside TNTs connecting two neuronal cells similarly to 

what was previously reported for infectious prions (Gousset et al., 2009) and recently 

for !-amyloid (Wang et al., 2011). Interestingly Htt aggregates were found in TNTs 

upon 12 h co-culture (corresponding to 36h post transfection) whereas after 24 h co-

culture (48 h transfection) we could visualize donor/acceptor cell pairs connected via 

TNT structures, with acceptor cells containing multiple Htt aggregates inside the cell 

but not in TNTs. Of interest, at 36 h post transfection acceptor cells contained less 

aggregates then at 48 h (data not shown). This indicates that transfer of aggregates 

occurs quite early after the co-culture is established and continues to occur between 

36 and 48h post transfection. Furthermore, as previously reported (Shin et al., 2005) 

we observed that the size of the aggregates in cultured cells increases upon time 

(result not shown), possibly due to the progressive nucleation of Htt molecules, 

therefore this might influence the ability of this structures to hijack TNTs after 

prolonged time in co-cultures. In addition, upon overexpression of GFP-HttQ68 (but 
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not of the wild-type fragment GFP-HttQ17), we detected an increase in the number 

of TNT structures between, CAD cells (Figure 5). Remarkably, this increase was 

occurring between 24 and 48 h post transfection, which is consistent with the timing 

of aggregatete detection in TNT structures (36 h after transfection) (Figure 6)  

Overall, our results indicate that Htt aggregates hijack TNT structures and that 

aggregation-prone polyQ huntingtin itself increases TNT formation, thus optimizing 

aggregate transfer, similar to what has been recently shown for HIV particles 

spreading (Eugenin et al., 2009). Because polyQ aggregates are cytosolic (or nuclear) 

and do not appear to be associated with membrane vesicle upon internalization (Ren 

et al., 2009) a cytosolic passage as aggresomes through TNTs can be envisaged. In 

addition, huntingtin can interact with acidic phospholipidis enriched on the 

cytoplasmic leaflet of the plasmamembrane (Kegel et al., 2005, 2009) suggesting a 

possible surfing process along the inside of TNT membrane (Marzo et al., 2012). 

Further, exploration of the mechanisms by which cells are induced to form TNTs and 

how the transfer of material is regulated within these structures will be essential for a 

better understanding of the mechanisms of aggregate spreading.  

The finding that infectious prions, polyQ aggregates and possibly !-amyloid (Wang 

et al., 2011) transfer from cell-to-cell through TNTs makes tempting to speculate that 

they might constitute a general mechanism for the spreding of different !-sheet rich 

proteinaceous aggregates (Marzo et al., 2012). Further studies are needed to confirm 

this hypothesis and the identification of specific markers and of these structures in 

vivo is critical to confirm their role in the progression of protein misfolding 

throughout the brain in prion, in Huntington’s disease and possibly other 

neurodegenerative disorders (Marzo et al., 2012). Of interest, it has been recently 

shown that stress induced by hydrogen peroxide (H2O2) treatment lead to an 

increase in TNT formation in both astrocytes and neurons (Wang et al., 2011). 

Remarkably, increased levels of oxidative stress in disease brains accompany 

different neurodegenerative disorder (Jomova et al., 2010; Abounit and Zurzolo, 

2012). 

It has been reported before that both synthetic and recombinant mutant huntingtin 

fragments can promote the fibrillogenesis of wild-type htt fragments resulting in the 

formation of co-aggreagtes (Busch et al., 2003; Ren et al., 2009). However, to satisfy 

the requirement of “infectivity” in analogy to prion replication breakage of stable 

oligomers (e.g co-aggregates of exogenous and newly misfolded protein) has to 
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occur thus resulting in an increased number of aggregation nuclei (e.g. newly 

aggregated endogenous protein alone). Here, we reported the formation of aggregates 

of endogenous huntingtin within neurites of acceptor primary neurons upon direct 

co-culture with GFP-HttQ68 expressing neurons. These results suggest that, 

following transfer, polyQ aggregates stimulates further misfolding of endogenous 

wild-type Htt. Remarkably, we detected aggregation of endogenous Htt (with the use 

of an N-terminal anti-huntingtin antibody) in the recipient cells and not the change in 

the soluble state of a fluorescent overexpressed reporter, as previously shown (Ren et 

al., 2009). Our findings strongly argue in favor of a self-sustaining seeding and 

fragmentation process (similar to prion replication) as it has been suggested before 

by the persistence of assemblies of a wild type htt reporter fragment in prolonged 

cultures of dividing cells (Ren et al., 2009). 

Of interest, aggregates of full-length tau protein alone (above the threshold of 

spontaneous aggregation upon overexpression) have been recently reported after 

exposure and internalization of extracellular aggregates of a tau fragment, together 

with the presence of co-aggregates of the two proteins (Frost et al., 2009). 

In the present study by using a number of restrictive experimental conditions we 

were able to show that direct cell-cell transfer of Htt aggregates occurs between 

dividing neuronal cells and in cultures of post-mitotic neurons. To our knowledge, 

this is the first direct demonstration that polyQ aggregates formed within a cell (and 

not exogenously added to the cell culture) can efficiently transfer to neighbouring 

cells. In HD deposition of protein aggregates is an early event in the pathogenic 

cascade and precedes neurodegeneration. Here we demonstrate that aggregate 

transfer occurs between intact, viable cells and therefore, possibly can contribute to 

the early stage of HD pathologenesis and to the progression of the disease in the 

brain. Consistently, we reported the aggregation of endogenous huntingtin in new 

aggregation nuclei, suggesting that cell-to-cell transfer of protein aggregates can lead 

to further propagation of protein misfolding in receiving cells. We also provide a 

plausible cellular mechanism for transfer. Having excluded secretion, and since cell 

surface transfer is not likely to occur due to the nature of Htt aggregates, all our data 

points towards a role of TNT-like structures in the intercellular transfer of Htt 

aggregates, similar to what has been shown for PrPSc (Gousset et al., 2009) and 

proposed in the case of !-amyloid (Wang et al., 2011), suggesting the possibility of a 

general pathogenic mechanism in different neurodegenerative disorders (Brundin, 
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Melki, et al., 2010; Frost and Diamond, 2010). In later stages, spreading of the 

aggregates upon their passive release from dead or dying cells, as suggested before 

(Ren et al., 2009; Brundin, Melki, et al., 2010), can also be envisaged and might 

further contribute to the progression of the disease. Large amounts of data, along 

with our present study, suggest that both cell autonomous and non-cell autonomous 

processes might have a role in the pathogenic cascade of HD. Progressive 

accumulation of protein misfolding can be the result of events occurring separately in 

single cells and/or prion-like transmission mechanisms may contribute in this sense 

leading to altered cell-cell communication and degeneration of vulnerable cells, 

besides the accumulation of visible protein aggregates. More studies in vivo will be 

required to understand how, to which extend and at which stage of the disease the 

cell autonomous and non cell autonomous mechanisms contribute to the disease 

progression. 
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Figure legends 

 

Figure 1. GFP-HttQ68 overexpression in CAD cells leads to aggregates 

formation. (A) 48 hours after transfection with GFP-HttQ17 or GFP-HttQ68 

constructs, CAD cells were stained with HCS CellMask! Blue to label the cytosol. 

Pictures are representative of three independent experiments. Scale bars, 10 µm. (B) 

Quantitation of the number of fluorescent aggregates based on manual counting in 

transfected cells after 48 hours.! 4.9% of cells have spontaneous aggregation of 

GFP-HttQ17 versus ! 23% of GFP-HttQ68 expressing cells (n = 3, 100 transfected 

cells counted per experiment). Mean ± s.e.m are shown. 

 

Figure 2. GFP-HttQ68 aggregates transfer between co-cultured CAD cells. (A) 

Cells were separately transfected with either GFP-HttQ68 (donor) or mCherry 

(acceptor) cronstructs for 24 hours. The two cell populations were either mixed 

immediately prior to analysis (mix) or co-cultured for additional 24 hours (co-

culture). Flow cytometry was used to quantify the percentage of acceptor cells 

containg aggregates. Representative cell plot are shown. (B) Quantitation of flow 

cytometry experiment revealed that 0.5% of cell scored positive for both GFP and 

mCherry fluorescence (upper right quadrant of the cell plot) when they were mixed 

just before analysis whereas 3.7% of cells scored double positive when co-cocultured 

for 24 h prior the analysis indicating transfer of GFP-HttQ68 aggregates (n = 3, 

10,000 cells recorded per condition in each experiment). (C) 1-day post transfection 

GFP-HttQ68 and mCherry cells were co-cultured on Ibidi " dishes for 24 h. Cells 

were then fixed and stained HCS CellMask! to label the cytosol. Multiple GFP-

HttQ68 aggregates (insets, white arrowheads) are visible within mCherry cells, 

confirming transfer of GFP-HttQ68 aggregates. *, labels GFP-HttQ68 transfected 

cell with aggregates. Scale bars, 10 µm. 

 

Figure 3. GFP-HttQ68 transfected CAD cells do not undergo apoptosis. (A) 

GFP-HttQ17 and GFP-HttQ68 CAD cells were lysed 48 h after transfection. Whole-

cell extracts were prepared and separated by SDS-PAGE gel and revatled by Western 

blot using antibodies against cleaved PARP and cleaved caspase-3. The second and 

the third blot are from the same gel. The third blot was stripped and re-blotted with 
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anti-tubulin to show equal amount of loading. Results are representative of three 

independent experiments. Activation of apoptosis in GFP-HttQ68 cells was not 

detected compared to control GFP-HttQ17 cells. 

 

Figure 4. Cell to cell contact is required for GFP-HttQ68 aggregates transfer in 
CAD cells. To determine the impact of GFP-HttQ68 aggregates present in the 

supernatant (e.g exosomal release, vesicle secretion), cells were separately 

transfected with either GFP-HttQ68 or mCherry constructs. The day after, mCherry 

cells were co-cultured with GFP-HttQ68 cells directly (co-culture) or through filters 

(filter) or exposed to the 24-hours-conditioned medium of GFP-HttQ68 cells 

(supernatant) for additional 24 hours. Flow cytometry was used to quantify double 

positive cells. Representative cell plot are shown. (B) Quantitation of flow cytometry 

experiments revealed only 0.18% and 0.04% of cells scored positive for both GFP 

and mCherry fluorescence in filter and supernatant condition respectively. These 

data indicate that an efficient transfer (3.7% of GFP/mCherry double positive cells) 

is occurring only when direct cell to cell contact is allowed (mean ± s.e.m, n = 3, 

10,000 cells recorded per condition in each experiment).  

 
Figure 5. Over-expression in CAD cells of GFP-HttQ68 but not GFP-HttQ17 

increases TNTs number. (A) CAD cells were transfected with GFP-vector, GFP-

HttQ17 or GFP-HttQ68. To ensure the optimal cell density for TNT formation, after 

12h cells were detached and plated on Ibidi " dishes. The cells were then fixed 12 or 

24 h after plating (corresponding to 24 and 48 h post-transfection respectively) and 

labelled with WGA-rhodamine (in red) and HCS cell mask (in blue) in order to 

detect both TNT structures and cell body. Scale bar 10 "m. (B) The relative 

percentage of TNT-connected cells upon GFP-HttQ17 or GFP-HttQ68 over-

expression compared to GFP-vector transfected cells is shown. (mean ± s.e.m, n = 3, 

100 transfected cells per experiment). Note that the effect of GFP-HttQ68 over-

expression is at 48 h post-transfection that corrisponds to the total time of the co-

culture experiments. 

 

Figure 6. Transfer of GFP-HttQ68 aggregates occurs through TNTs in co-
cultured CAD cells. 1-day post transfection, GFP-HttQ68 transfected cells (donor, 
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green) and mCherry transfected cells (acceptor, red) were co-cultured on Ibidi " 

dishes and fixed after 12 h (36 h post-transfection). Cells were stained with WGA-

Alexa Fluor® 350 conjugate to label TNTs (white). (A) GFP-HttQ68 aggregates 

were found inside TNTs connecting distant cells (white arrowheads top panel and 

insets a., b.). Three-dimensional reconstructions were obtained for the selected cells 

using Imaris software (second middle panel and insets). Insets a. and b. represents 

magnification of the boxed areas. (B) GFP-HttQ68 aggregates were found inside 

TNTs connecting GFP-HttQ68/mCherry cell pairs (white arrowheads top and bottom 

panels), as well as in the cytoplasm of the mCherry transfected cell (white asterisk) 

suggesting TNT-mediated transfer of GFP-HttQ68 aggregates between the two cell 

populations. Middle second and third pictures of top and bottom panels represent 

magnification of the boxed areas. In the third pictures the 305 channel (in white) 

corresponding to the TNT structures has been removed to better visualize the GFP-

HttQ68 aggregates (white arrowheads and asterics). Images are representative of 

three independent experiments. Scale bars, 10 µm. 

 

Figure 7. GFP-HttQ68 aggregates transfer between primary CGN co-culture. 
Immediately after isolation, CGNs were transfected with either GFP-HttQ68 (donor) 

or mCherry (acceptor) constructs and co-cultured at a ratio 1:1.5 on coverslips for 

140 hours. Cells were then washed fixed and labeled with DAPI. Mosaics (3 # 3 

fields) were acquired by wide-field microscopy to visualize the neuronal network. 

For acquisition, Z stacks (0.4 µm) were taken. GFP-HttQ68 aggregates (white 

arrowheads) were found both in the cell body (A) and in the neurites (B) of mCherry 

labeled neurons, indicating cell-to-cell transfer of GFP-HttQ68 aggregates in primary 

neuronal co-cultures. * marks one GFP-HttQ68 transfected cell with aggregates. 

Insets in (A) represent magnification of the boxed areas (first top and third image). In 

the insets the brightness of the green spot was equally increased. Representative tiles 

of three independent experiments are shown. Scale bars, 10 µm. 
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RESULT 3: 

Role of the cellular prion protein in the pathogenic 
pathways of Huntington’s disease 
 
 

3.1 Objectives 
 

a. To evaluate the effect of PrPC on polyQ-huntingtin 
aggregation and cell-to-cell transfer 

b. To evaluate the effect of PrPC on the toxicity induced by 
mutant huntingtin 

 
 

3.2 Specific background 
 
As already described (see introduction, chapter 5) Huntington 
disease (HD) is caused by a CAG repeat expansion in the exon 1 
of the huntingtin gene, which encodes an abnormally long 
polyglutamine (polyQ) stretch in the N-terminal part of the 
huntintin protein (Htt) (The Huntington's Disease Collaborative 
Research Group, 1993). HD is monogenic, fully penetrant and 
differently from other neurodegenerative diseases, there are no 
sporadic cases involving the wild-type form of the Htt gene. The 
disease is inherited in an autosomal dominant manner with age-
dependent penetrance. The pathological hallmark of HD consists 
of intranuclear inclusion bodies (IBs), which are larger aggregates 
of the mutant protein. Aggregates also arise in cytoplasm, 
dendrites and axonal terminals (DiFiglia et al., 1993; Davies et al., 
1997; Scherzinger et al., 1997).  
In the first part of my PhD work, I demonstrated that intracellular 
expanded-polyQ huntingtin aggregates transfer between neuronal 
cells and primary neurons. I also demonstrated that cell-to-cell 
contact is required and that Tunneling nanotubes (TNTs) provide 
an efficient mechanism of transfer, as previously shown in the 
case of PrPSc (Gousset el al., 2009) and more recently of 
amyloid-β spreading (Wang et al., 2011). Furthermore, 
consistently with a previous report (Ren et al., 2009) our study 
strongly argues that, following transfer to naïve cells, polyQ 
aggregates stimulates further misfolding of endogenous wild-type 
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Htt (Costanzo et al., Results 2, manuscript). These findings are in 
agreement with the growing amount of evidence present in the 
literature suggesting that intercellular prion-like transmission 
mechanisms may be responsible for propagation of protein 
misfolding in non-prion neurodegenerative disorders including 
Alzheimer’s, Parkinson’s, Huntington’s disease and taupathies 
(Brundin et al., 2010; Jucker and Walker, 2011; Soto et al., 
2006). It is possible that huntingtin misfolding progresses 
through the brain, thus explaining the topologically predictable 
progression of HD along defined anatomical pathways. Yet, 
whether and how the propagation of protein aggregates is linked 
to neurotoxicity is not completely understood (Brundin et al., 
2010; Ross and Poirier, 2004). Indeed, as described before (see 
chapter 6 of the introduction), in the case of HD as well as in 
other neurodegenerative disorders, the correlation between the 
brain regions that degenerate and protein aggregate deposition is 
weak, as neurons with inclusions do not correspond exactly to 
the neurons that degenerate (reviewed in Ross and Poirier, 
2004). In addition, in the case of HD, post-mortem autopsy of 
transplanted HD patients revealed that fetal grafts of striatal 
tissue were susceptible to neurodegeneration displaying 
increased caspase-3 activation, vacuolization and decreased 
structural integrity in the absence of abnormal huntingtin 
aggregation (Cicchetti et al., 2009). Thus, it appears that IBs 
formation is dissociated from the vulnerability of different 
neuronal types and affected regions of HD brains (Arrasate and 
Finkbeiner, 2012; Ross and Poirier, 2004). Different studies 
supported the hypothesis that small aggregates or even 
aberrantly folded monomeric forms of mutant huntingtin are 
toxic to cells (Arrasate et al., 2004; Bennett et al., 2007; 
Ravikumar et al., 2004). Accordingly, IBs may be a beneficial 
coping response of the affected cells that reduces the levels of 
toxic misfolded proteins in the soluble fraction by sequestering 
them in insoluble aggregates. (Arrasate and Finkbeiner, 2005; 
Finkbeiner et al., 2006). This is consistent with the hypothesis 
that selective neuronal toxicity is the result of both cell 
autonomous and non-cell autonomous mechanisms involving 
soluble oligomeric species rather then large aggregates (see 
introduction, paragraph 6.3). Events occurring independently at 
single cell levels and/or due to the intercellular spreading of toxic 
oligomers may cause dysfunction and damage in other cell-types 
by altering cell-to-cell interactions, thus resulting in the distinct 
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patterns of neurodegeneration that characterize a given disorder 
(Brundin et al., 2010; Garden and La Spada, 2012) 
Understanding how soluble oligomeric species (and possibly their 
cell-to-cell propagation) lead to neurodegeneration following 
neurotoxicity is still an open question in the field (Aguzzi and 
Falsig, 2012). 
Interestingly, recent studies provided evidence that PrPC could 
mediate the toxicity of amyloid-β oligomers and other β-sheet-
rich protein conformers by acting as a receptor for soluble 
ligands (Biasini et al., 2011; Bate and Williams, 2011; 
Resenberger et al. 2011). Therefore it is tempting to speculate 
the existence of a common mechanism for toxicity with PrPC 
functioning as a “danger sensor” (Barton and Caughey, 2011; 
Aguzzi and Falsig, 2012). It is possible that oligomeric forms of 
several different neurotoxic proteins could exert their effects by 
blocking, enhancing or subverting the normal function of PrPC as 
its pathogenic counterpart, PrPSc, does. Thus, binding of either 
oligomeric Aβ or PrPSc or other pathogenic aggregates to cell-
surface PrPC may initiate toxic signals that lead to neuronal loss 
and/or synaptic dysfunction (Aguzzi and Falsig, 2012)  
Contrasting data are present in the literature on the possible role 
of PrPC in HD pathogenesis. In 2001, it has been reported that 
“phenocopies” of HD (HD-like disease in the absence of CAG 
expansion in the Htt gene) can be due to a 192-nucleotide 
insertion within the coding region of the prion protein gene 
(PRNP), which encodes an expanded PrP with eight extra 
octapeptide repeats (Moore et al., 2001). PrP repeat expansions 
are well characterized and provoke early-onset, slowly 
progressive atypical prion diseases with an autosomal dominant 
pattern of inheritance and a remarkable range of clinical features, 
many of which overlap with those of HD (Moore et all, 2001). To 
examine the potential of PrP neuroprotective or neurotoxic 
properties in the context of HD, PrP was deleted from two 
transgenic models of HD. Deletion of PrP, in the R6/2 mouse 
model, modestly slowed motor deterioration as measured on an 
accelerating rotarod (a behavioral test) but otherwise did not 
alter other major features of the disease. Also transgenic 
overexpression of PrP did not exacerbate the Huntington motor 
phenotype (Steele et al., 2009). On the other hand, another 
report has suggested that PrPC has a protective effect on both 
HTT aggregation and toxicity in several neuronal cell lines (Lee et 
al., 2007). A connection between the cellular prion protein and 
the toxicity of expanded-polyQ aggregates has been made in 
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different systems including yeast (Saccharomyces cerevisiae) and 
Drosophila. For exemple, studies extending the HD model in yeast 
showed that cytoplasmic aggregation and toxicity of Htt 
fragments containing expanded-polyQ strech, is facilitated by the 
presence of the endogenous yeast prions in the amyloid 
conformation, [PIN+] and/or [PSI+] (Meriin et al., 2002; Gokhale 
et al., 2005; Duennwald et al., 2006) The prions [PIN+] and 
[PSI+] are self-perpetuating aggregates of the endogenous yeast 
proteins Rnq1 (unknown function) and Sup35 (translation 
termination, or release factor, also called eRF1), respectively (for 
review, see Wickner et al., 2007). Also, it has been reported that 
the expression of normal prion protein enhances the 
neurotoxicity of pathogenic polyQ proteins during eye 
development in Drosophila (Park et al., 2011). 
Considering all these contrasting data, in the second part of my 
PhD I have analyzed the effect of PrPC on the expression and 
toxicity of mutant Htt using primary neurons from PrPC 
overexpressing and PrP knockout mice (tga20 (mouse Prnpa 
allele) and PrP0/0 (Zurich I) respectively) 
 

3.3 Results 
 
Effect of PrPC on polyQ-huntingtin aggregation 
 
In order to evaluate the effect of the cellular prion protein, PrPC, 
on polyQ huntingtin aggregation, I expressed the first 480 amino 
acids of huntingtin with either 17Q (wild-type Htt) or 68Q 
repeats (mutant Htt) fused to green fluorescent protein (GFP) 
(GFP-Htt17Q and GFP-Htt68Q respectively) (see results Costanzo 
et al., Annex 2) in primary Cerebellar Granule Neurons (CGNs) 
obtained from PrP knockout and PrP overexpressing mice (see 
Materials and Methods). After fixation at different time points 
(from 72 h to 140 h post transfection), random mosaics of 
different fields were obtained by wide-field microscopy in order 
to analyze the presence of Htt aggregates in the overall neuronal 
network. Then, the fraction of cells with aggregates was 
quantified by blind manual counting discriminating between 
nuclear and cytoplasmic (in perinuclear position and/or within 
neurites) aggregates. Surprisingly and opposite to what has been 
reported before in neuronal cell lines (Lee et al., 2007), we found 
that at 140 h post transfection in PrP overexpressing neurons 
(from tga20 mice) the percentage of cells with cytoplasmic 
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aggregates was significantly higher compared to PrP knockout 
neurons, while there was no difference in the number of cells with 
nuclear aggregates (Figure 35A and B). As expected, 
independently of PrPC expression, overexpression of GFP-Htt17Q 
in primary CGN resulted in a diffuse cytoplasmic pattern of 
fluorescence with no significant aggregation detectable at 
different times post transfection (results not shown). 
 

 
Figure 35 Effect of PrPC expression on GFP-HttQ68 aggregation in primary 
CGN. PrP overexpressing (from tga20 mice) or PrP knockout (from Prnp0/0 mice) 
CGN were transfected with GFP-HttQ68 cronstruct and cultured up to 140 h post 
transfection. Cell were fixed and labelled with DAPI. (A) For each genotype, the 
percentage of CGN with nuclear aggregates was quantified at different time points by 
blind manual counting. Representative neuron with nuclear aggregates is shown. (B) 
Quantification of the percentage of CGN with cytoplasmic aggregates (in perinuclear 
position and or within neurites) at the different time points for both genotypes . 
Representative neuron with cytoplasmic aggregates is shown. Black bars, PrP 
overexpressing neurons; white bars, PrP knockout neurons. (mean ± s.e.m, n = 3) 

 
Because I have demonstrated that cell-to-cell transfer of polyQ 
aggregates occurs in primary CGN in the same condition (e.g. 
140 h post transfection when direct cell-cell contact is allowed) 
(see Results 2, appended manuscript), one attractive possibility 
to explain the finding that high levels of PrPC cause an increase in 
the number of primary neurons with perinuclear and neuritic Htt 
aggregates, is that PrPC might influence the cell-to-cell transfer 
of GFP-Htt68Q aggregates. To this aim, PrP knockout or PrP 
overexpressing neurons were transfected either with GFP-Htt68Q 
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(donor cells) or a cytosolic mCherry construct (acceptor cells) 
immediately after isolation and then plated on the same 
coverslips to allow transfer. The two populations were incubated 
up to 140 h post transfection (Figure 36A). Then cells were fixed 
and stained with a N-terminal anti-huntingtin antibody 
(MAB2166) and DAPI. Random mosaics of different fields were 
obtained as described above. We quantified the the number of 
mCherry labeled neurons containing GFP-Htt68Q aggregates, 
referred to as transfer events, in PrP knock out and PrP 
overexpressing co-cultures by using the same automated 
software developed in collaboration with the imaging platform at 
the Institut Pasteur (see section Materials and methods and 
project 1, appended manuscript). Strikingly, quantitation of the 
transfer events showed that after 140 h co-culture (and 
transfection), 3,4% of mCherry neurons contained GFP-Htt68Q 
aggregates in the case of PrP overexpressing neurons co-culture 
compared to 0.5% of co-cultures of PrP knockout neurons 
(Figure 36B). 
 

 
Figure 36 PrPC increases the transfer of GFP-HttQ68 aggregates between co-
cultured CGN. (A) Schematic of the in vitro co-culture allowing to distinguish donor 
(transfected with GFP-HttQ68) and acceptor neurons (transfected with mCherry 
construct). The experiment were performed in both PrP overexpressing neurons 
(CGNtga20) and PrP knockout neurons (CGN Prnp0/0). Representative image of 
acceptor  cells (mCherry labeled) containing GFP-HttQ68 aggregates (arrows). (B) 
Quantitation of the percentage of mCherry labeled neurons containing GFP-HttQ68 
aggregates (transfer events) in PrP overexpressing and PrP Knockout co-cultures. 
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These data suggest that in the absence of the prion protein, cell-
to-cell transmission of HTT aggregates is negligible. How PrPC 
increases the transfer of aggregates is not clear. Crucial 
experiments in which exchange of media was allowed between 
donor and acceptor neurons but not intercellular contact, 
excluded that the presence of PrPC increases the transfer of Htt 
by a secretion mechanism as already demonstrated in wild-type 
CGN (see Article 2). However, whether this is linked to a role of 
PrPC in increasing the number of aggregates in the periphery of 
the cell body and in the neurites is not clear. In addition, further 
experiments are required to address whether this is linked to an 
increase in the number of TNT-like structure similar to what we 
have shown in CAD cells (see Article 2 and below paragraph 3.4).  
 
Effect of PrPC on the toxicity induced by mutant huntingtin 
 
Recent studies have raised the unexpected possibility that PrPC, 
may also mediate the toxicity of amyloid-β oligomers that are 
associated with Alzheimer’s disease (Lauren et al, 2009) and of 
other β-sheet-rich oligomers (Resenberger et al., 2011) 
independent of infectious PrPSc propagation, thus, suggesting a 
pathophysiological role of the prion protein beyond prion diseases 
(Biasini et al., 2011; Aguzzi and Falsig 2012). 
Given that the presence of PrPC increased the number of primary 
neurons with perinuclear and neuritic polyQ aggregates as well as 
their cell-to-cell transfer, I next evaluated whether PrPC had also 
an effect on the toxicity triggered by mutant Htt. To this aim, I 
transfected GFP-Htt68Q and GFP-Htt17Q constructs in PrP 
knockout and PrP overexpressing CGN and analyzed caspase-3 
activation, as a marker of apoptosis. At different time points, 
from 72 h up to 140 h after transfection, cells were fixed and 
stained using an antibody that specifically recognizes the cleaved 
and therefore active form of caspase-3. Random mosaics of 
different fields were acquired by wide-field microscopy as 
previously described. Surprisingly, in PrP over expressing CGN at 
140 h post transfection, caspase-3 was active not only in the 
neurons with GFP-Htt68Q detectable aggregates but also in the 
neighbouring non-GFP-Htt68Q transfected neurons (Figure 37A). 
In contrast, in PrP knockout neurons, after 140 h transfection 
only the cells expressing GFP-Htt68Q with “visible” aggregates 
were positive for active caspase-3 and not the neighbouring non 
transfected neurons (Figure 37A). These data were confirmed by 
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western blot analysis showing a higher level of active caspase-3 
in PrP overexpressing neurons compared to PrP knockout neurons 
(Figure 37B). As expected, in the cells transfected with the wild-
type Htt fragment, GFP-Htt17Q, there was no activation of 
caspase-3 independently of PrPC expression (results not shown). 
 

 
Figure 37 Effect of PrPC on caspase-3 activation in GFP-HttQ68 transfected 
CGN. (A) PrP overexpressing (tga20) and PrP knokout (Prnp0/0) CGN transfected 
with GFP-HttQ68 were fixed and stained with cleaved caspase-3 (red) and DAPI 
(blue). At 140 h post transfection in presence of PrPC cleaved caspase-3 staining was 
present not only in the neurons with GFP-HttQ68 detectable aggregates but also in 
the neighbouring non GFP-HttQ68 transfected neurons. In contrast, in PrP Knockout 
neurons only neurons with aggregates were positive for cleaved caspase.(B) Wester 
blot with anti cleaved caspase-3 on CGN whole-cell extract obtained after 140 h 
transfection  with GFP-HttQ68 confirmed the immunoflurescence result represented in 
(A). CGN treated with staurosporin were used as positive control for caspase-3 
activation. PrP overexpressing CGN upon 140 h transfection with a GFP-vector were 
used as negative control. Results are representative of three independent experiment. 

 
These data indicate that activation of caspase-3 is mediated by 
the presence of Htt aggregates in the cell population. However, 
they also show that in the presence of PrPC (high levels) 
activation of caspase-3 occurs independently of the presence of 
detectable aggregates in the same cell, suggesting a role of PrPC 
in cell-cell communication (see discussion below). 
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In order to assess if the activation of caspase-3 in neighbouring 
neurons was mediated by soluble factors we plated PrP 
overexpressing CGN transfected either with GFP-Htt68Q (donor 
population) or a nucleo-cytoplasmic pGFP construct (acceptor 
population) on separated coverslips in the same dish, thus, 
impairing intercellular contact but allowing exchange of soluble 
factors between the two different populations through the 
medium. After 140 h incubation, we could not detect caspase-3 
activation in pGFP neurons plated on different coverslip. In 
contrast, a widespread signal of cleaved caspase-3 was detected 
among the acceptor population (GFP-Htt68Q transfected and non 
transfected neurons plated on the same coverslips) (Figure 38A). 
These results indicated that intercellular contact is needed in 
order to allow widespread activation of caspase-3 between 
neurons. This suggests that in our system, PrPC is not acting as 
receptor for soluble factors (or aggregates present in the 
extracellular medium), as it has been proposed in the case of 
Alzheimer’s disease.  
Next we investigated whether PrPC was required in both GFP-
Htt68Q transfected neurons and in the neighboring neurons 
(acceptor neurons) which did not express mutant Htt, or was 
dispensable in one of the two cell populations. 
To this aim, we co-cultured PrP overexpressing neurons 
transfected with GFP-Htt68Q (donor population) with PrP 
knockout neurons transfected with pGFP vector (acceptor 
population) on the same coverslip, thus, allowing intercellular 
contact to occur. The nuclear and cytosolic diffuse staining of 
the pGFP construct allowed us to distinguish between the two 
populations. In a complementary experiment, we transfected GFP-
Htt68Q in PrP knockout neurons (donor population) and co-
cultured them with PrP overexpressing neurons transfected with 
pGFP construct (acceptor population) on the same coverslip. In 
this condition, after 140 h co-culture, we evaluated the presence 
of active caspase-3 as described above (Figure 38B and C).  
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Figure 38 Cell-cell contact and expression of PrP in GFP-HttQ68 transfected 
neurons are required for activation of caspase-3 in cell non expressing mutant 
Htt. (A) PrP overexpressing CGN (tga20) were transfected either with GFP-HttQ68 or 
with GFP vector  and plated on different coverslips in the same dish and therefore 
shared the same culture medium (in the absence of cell-cell contact).  In these 
condition we could not detect cleaved caspase-3 (red) in GFP neurons (bottom 
image). (B) PrP overexpressing CGN were transfected with GFP-HttQ68 and PrP 
knockout neurons (Prnp0/0) with pGFP. The two cell population were plated on the 
same coverrslips, thus allowing intercellular contact. In this condition, we could detect 
cleaved caspase-3 staining in GFP CGN. (C) PrP overexpressing CGN were 
transfected with GFP vector  and PrP knockout neurons (Prnp0/0) with GFP-HttQ68. 
The two cell population were plated on the same coverrslips, thus allowing intercellular 
contact. In this condition, we could not detect cleaved caspase-3 staining in GFP 
CGN. 

 
Interestingly, we could detect active caspase-3 in the acceptor 
neurons regardless of the genotype (overexpressing or knockout 
for PrP) when GFP-Htt68Q was expressed in neurons containing 
PrPC. Conversely, we could not detect staining for cleaved 
caspase-3 in acceptor neurons when polyQ Htt was expressed in 
PrP knockout neurons. Overall, these results indicate that 
expression of PrPC is required in the donor neurons (containing 
Htt aggregates) while it is dispensable in the receiving neurons in 
order to determine a widespread activation of caspase-3 in the 
cell population (independently of the presence of the aggregates 
in the single cells). 
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3.4 Disussion  
 
Huntington Disease (HD) is an autosomal dominant 
neurodegenerative disorder characterized by progressive 
deterioration of cognitive, motor, and psychiatric function. 
Expression of mutant huntingtin is ubiquitous throughout the 
brain yet, the striatum is the primarily affected brain region in 
HD. The pathological hallmark of the disease is the deposition of 
aggregates of mutant Htt (inclusion bodies) in selected brain 
regions. Different studies supported the hypothesis that small 
aggregates or even aberrantly folded monomeric forms of mutant 
huntingtin are toxic to cells (Arrasate et al., 2004; Bennett et al., 
2007; Ravikumar et al., 2004). Accordingly, inclusion bodies may 
be a beneficial coping response of the affected cells that reduces 
the levels of toxic misfolded proteins in the soluble fraction by 
sequestering them in insoluble aggregates (Arrasate and 
Finkbeiner, 2005; Finkbeiner et al., 2006). Furthermore, recent 
evidence suggests that selective neuronal toxicity in different 
neurodegenerative diseases is the result of both cell autonomous 
and non-cell autonomous mechanisms involving soluble oligomeric 
species rather then large aggregates (see introduction, paragraph 
6.3). Events occurring independently at single cell levels and/or 
due to the intercellular spreading of toxic oligomers may cause 
dysfunction and damage in other cell-types by altering cell-to-cell 
interactions, thus resulting in the distinct patterns of 
neurodegeneration that characterize a given disorder (Brundin et 
al., 2010; Garden and La Spada, 2012). Understanding how 
soluble oligomeric species (and possibly their cell-to-cell 
propagation) lead to neurodegeneration following neurotoxicity is 
still an open question in the field. Recently a role for the cellular 
prion protein in the toxicity of amyloid-β oligomers and other β-
conformers has been proposed (Biasini et al., 2011; Bate and 
Williams, 2011; Resenberger et al., 2011).   
In this context, in the second part of my PhD, I focused on 
evaluating whether PrPC is a player in the pathogenic pathways 
of HD. Expecially, I examined the effect of PrPC on both the 
aggregation and toxicity of a mutant fragment of Htt in primary 
neurons. 
To this aim, I expressed N-terminal fragments of Htt containing 
an expanded or a wild-type polyQ tract as GFP-fusion proteins 
(GFP-Htt68Q and GFP-Htt17Q respectively) in primary cerebellar 
granule neurons (CGN) obtained from PrP knockout mice and 
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from transgenic mice overexpressing PrPC (PrP0/0 (Zurich I) and 
tga20 (mouse Prnpa allele) respectively). The polyQ-expanded N-
terminal region of Htt is sufficient for reproducing the 
characteristics of polyQ aggregation and toxicity as it was shown 
to aggregate and produce disease-like neurodegeneration in 
primate, rodents and invertebrate models of HD, it is clear that 
this region (reviewed in Rubinsztein 2002). Furthermore, 
although the cortical-striatal network is the most affected in HD, 
a recent study in a mouse model of HD have revealed that other 
components of the motor circuit, such as the cerebellum, are 
possibly involved in motor symptom development in HD 
(Dougherty et al., 2012) as the cerebellum forms disynaptic 
connection with the basal ganglia through the thalamus (Bostan 
et al., 2010; Bostan and Strick, 2010). The output neurons of 
the cerebellar cortex are the GABAergic Purkinje cells (PCs). 
Intranuclear inclusions have been found in PCs in postmortem 
tissue from HD patients and in knock-in animal models of HD 
(Adachi et al., 2001) and there is evidence suggesting a reduced 
density of PCs in HD patients (Rosas et al., 2003; Fennema-
Notestine et al., 2004; Jeste et al., 1984). The cerebellum is 
commonly affected in juvenile HD as exhibited by a loss in overall 
cerebellar volume (Fennema-Notestine et al., 2004; Nicolas et al., 
2011; Ruocco et al., 2006; Sakazume et al., 2009). Recently, in 
the R6/2 mouse model of HD that carries transgenic expression 
of exon 1 of the human huntingtin gene with an expanded CAG 
repeat (Mangiarini et al., 1996) it was reported a significant 
reduction in PC number by end-stage but no change in 
presymptomatic animals (4 weeks of age) (Dougherty et al., 
2012). Analysis of cellular function prior to cell loss and 
symptom onset revealed a striking deficit in spontaneous PC 
firing in asymptomatic R6/2 mice in the absence of “visible” 
huntingtin inclusions (that were observed only at end-stage) 
indicating that soluble huntingtin and/or abnormalities in other 
cell types (e.g. dysfunction in the molecular layer of interneurons 
where Htt aggregates accumulate at early stage) may contribute 
to PC dysfunction. Intriguingly, although aggregate deposition 
was detected at early stage, the interneurons were preserved 
through the disease time course supporting the hypothesis that 
the intranuclear inclusions may be protective and not causative in 
cell death (Dougherty et al., 2012; Arrasate et al., 2004; 
Kuemmerle et al., 1999). Taken together these studies suggest 
the possibility that the cerebellum and PCs play an important role 
in HD. In agreement with this hypothesis, in the first part of my 
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thesis (see section Results 2, article 2), I have shown that 
cerebellar neurons transfected with GFP-HttQ68 make 
aggregates suggesting that they are a good in vitro model for 
the disease. 
In order to evaluate the role of PrPC in HD, I used PrP knockout 
[PrP0/0 (Zurich I) (Bueler et al., 1992)] and PrP overexpressing 
transgenic mice [tga20 (mouse Prnpa allele) (Fischer et al., 
1996)] to obtain primary cultures of cerebellar granule neurons 
(CGN) as the marked difference in PrP expression (on an 
otherwise identical genetic background) could provide better 
evidence on a possible role of the cellular prion protein in the 
disease. Indeed, tga20 mice express PrPC 5 to 20 folds more 
compared to wild-type mice (Fischer et al., 1996). 
I evaluated first, the aggregation of GFP-Htt68Q in time course 
experiments and then compared the fraction of cells with 
aggregates in the two genotypes at different time post 
transfection. Strikingly, in primary CGN high level of PrPC resulted 
in a consistent increase in the number of cells with perinuclear 
and/or neuritic aggregates at 140 h post transfection (20% 
more compared to PrP knockout) while there was no difference in 
the percentage of cells containing nuclear aggregates. 
Although nuclear localization appears necessary for pathogenesis, 
extranuclear localization of Htt may also contribute to the 
disease through disruption of vesicle trafficking, BDNF transport, 
microtubule structure, NMDA receptor (NMDAR) and synaptic 
activity and organelle morphology (for review see Zuccato et al., 
2011). 
 
These findings could be explained by two possibilities: either PrPC 
is increasing the number of cytosolic aggregates within single 
cells (e.g. by enhancing their formation) and/or is it facilitating 
the cell-to-cell transfer of polyQ aggregates. Since PrPC is 
anchored to the external leaflet of the plasmamembrane by mean 
of a GPI-anchor (Prusiner 1998) while polyQ htt accumulates in 
intracellular location (either cytosolic or nuclear) (Di Figlia et al., 
1995; Sharp et al., 1995; Velier et al., 1998) the two proteins, 
under most circumstances, would not come in to contact (Barton 
and Caughey, 2011). In addition, I did not observe an overall 
variation in the intracellular distribution of PrPC in CGN with polyQ 
aggregates, when compared to control neuron (result not 
shown). However, it should be considered that huntingtin can 
interact with acidic phospholipidis on the cytoplasmic leaflet of 
the plasma membrane and polyQ expansion increases its insertion 
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in to lipid bilayers (Kegel et al., 2005; Kegel et al., 2009). 
Moreover, the first 17 N-terminal amino acids before the polyQ 
stretch do form an amphipatic a-helical membrane-binding 
domain that has been shown to regulate Htt subcellular 
localization, to enhance aggregate formation and also to promote 
disregulation of calcium homeostasis (Atwal et al., 2007; 
Rockabrand et al., 2007). Therefore, it is possible to speculate 
that Htt, (also considering its role as scaffold protein (reviewed in 
Zuccato et al., 2011)), might associate with the polypeptide 
chain of cell-surface PrPC via a putative transmembrane linker 
proteins as previously hypothesized for other cytoplasmic 
putative PrP interactors (reviewed in Biasini et al., 2011). 
However, how this interaction can possibly influence the process 
of aggregates formation is not clear. Degradation pathways for 
Htt include endosomal-lysosomal and autophagic pathways and 
may require targeting to membranes to initiate clearence (kegel 
et al., 2000; Qin et al., 2003).  
To explore the possibility that PrPC overexpression might 
influence the process of aggregate formation it may be possible 
to monitor the intracellular change of soluble mutant huntingtin 
to the aggregated state by live imaging in several neurons in 
presence or absence of PrPC. A similar approach was used by 
Finkbeiner and colleagues to monitor over time the fate of 
different individual primary neurons expressing a GFP-tagged 
exon 1 fragment of huntingtin (Arrasate and Finkbeiner, 2005; 
Finkbeineret al., 2006).  
By using a co-culture system that allowed us to evaluate cell-to 
cell transfer of polyQ aggregates from donor (GFP-Htt68Q 
transfected) to acceptor primary CGN (expressing a cytosolic 
mCherry) (see annex 2 appended manuscript), I showed that in 
presence of PrPC (after 140 h co-culture) the percentage of 
acceptor cells with aggregates was three times higher compared 
to PrP knockout (3,5% versus 0,5%), suggesting a correlation 
between aggregates transfer and PrPC expression. Since we 
excluded transfer mechanism through the culture media through 
uptake of GFP-Htt68Q aggregates following secretion, one 
attractive possibility is that PrPC may promote cell-to-cell 
interaction thereby enhancing aggregate transfer. Interestingly, 
PrPC itself has been recently involved in cytoskeleton dynamic 
and remodeling and in cell-to-cell adhesion (Malaga-Trillo 2009; 
Chiesa and Harris 2009; Schrock et al 2009). For example, it has 
been shown that in zebrafish, PrP-1, an homologue of the 
mammalian PrPC, might directly mediate homophilic interactions 
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or indirectly regulate the trafficking of E-cadherins and β-catenin 
to the plasma membrane, thus promoting adherents junctions 
(Malaga- Trillo, 2009). This is in agreement with previous 
observations made for mammalian PrPC in which a role for this 
protein in neurite outgrowth and cell-cell interaction, respectively 
in hippocampal neurons and neuroblastoma cells has been 
reported (Monge et al 2002; Santuccione et al 2005). 
Interestingly, recent data from our laboratory have disclosed a 
possible role of PrP in enhancing tunneling nanotube (TNT) 
formation (Marzo and Zurzolo, unpublished results). Indeed, 
overexpression of full-length GFP-PrP in neuronal CAD cells causes 
an increase in the number of TNT structures suggesting that PrP 
might have a structural role driving the anchoring on the nascent 
nanotube (e.g an actin-driven protusion) to the membrane of the 
target cell. In the first part of my thesis, I have demonstrated 
that intracellular polyQ aggregates transfer between neuronal 
cells by hijacking TNTs, similar to what has already been shown 
for infectious prions (Gousset et al., 2009) and intracellular 
amyloid-β particles (Wang et al., 2011). Different studies have 
shown the occurrence of TNT-like structure between astrocytes 
and primary neurons (for review see abounit and Zurzolo, 2012; 
Marzo et al., 2012) and in the lab I have shown that TNT-like 
structures can be found in co-culture of astrocytes and primary 
CGN (Costanzo and Zurzolo, unpublished data). Thus, one 
possibility would be that high level of PrPC might increase the 
number of TNT structures in primary CGN, as in neuronal CAD 
cells (Marzo and Zurzolo unpublished data) leading to an increase 
transfer of polyQ aggregates. Further experiments will be 
required to evaluate this hypothesis. A limiting step in primary 
neurons is the low transfection efficiency, therefore we are 
currently producing lentiviral particles of both GFP-Htt68Q and 
GFP-Htt17Q constructs in order to establish more favorable 
condition for aggregate detection in TNT-like structures in 
primary CGN. On the other hand, since we hypothesize that PrP 
can be involved in the transfer of polyQ aggregates by 
participating to the anchoring of the nascent TNT and/or by the 
establishment of cell-to-cell contact with a neighboring cell (thus 
interacting with different partners) one important experiment will 
be to evaluate the occurrence of aggregate transfer in presence 
of different anti-PrP antibodies (directed against different 
epitops). 
Overall, my data indicate that in presence of high levels of PrPC 
there is an increased number of primary neurons with perinuclear 



 135 

and neuritic aggregates as well as an increased cell-to-cell 
transfer of polyQ aggregates. Further investigation will be 
required to link PrP expression to TNT formation and polyQ 
aggregate transfer. If confirmed in primary neurons, it is likely 
that prion disease (Gousset et al., 2009) Alzheimer’s (Wang et 
al., 2011) and Huntington disease exploit a common spreading 
mechanism. The identification of specific TNTs marker will be 
required to evalute whether this common mechanism may 
contribute to disease progression in vivo. 
Stimulated by the recent findings that PrPC is able to mediate the 
toxicity triggered by different β-sheet-rich oligomeric species 
including amyloid-β oligomers (Biasini et al., 2011; Bate and 
Williams, 2011; Resenberger et al. 2011), I have analyzed the 
role of PrPC in mediating mutant Htt toxicity. Strikingly, I found 
that in presence of high levels of PrPC, caspase-3 was active not 
only in CGN with GFP-Htt68Q detectable aggregates but also in 
the neighbouring non-GFP-Htt68Q transfected neurons. 
Conversely, in the absence of PrP, I could detect active caspase-3 
only in CGN transfected with GFP-Htt68Q in presence of 
aggregates while the neighbouring non-transfected neurons were 
unaffected. Activation of caspase-3 in neighbouring neurons 
occurred only in co-culture where cell-cell contact was allowed 
and could not be detected in condition that allowed only sharing 
of the media (but not cell-to-cell contact) between donor (GFP-
Htt68Q transfected) and acceptor (pGFP transfected) neurons. 
This suggested that it was not mediated by a soluble (i.e 
secreted) factor and that in our system, PrPC is not acting as 
receptor for soluble factors (or aggregates present in the 
extracellular medium), differently to what been proposed in the 
case of Alzheimer’s disease. 
Overall, these data show that activation of caspase-3 is mediated 
by the presence of Htt aggregates in the cell population. 
However, in the presence of PrPC activaction of caspase-3 occurs 
independently of the presence of detectable aggregates in the 
single cells. One possibility is that this is mediated by soluble 
toxic oligomers that spread between cells when cell-cell contact 
is allowed. 
Explaining a role of PrPC in mediating Htt toxicity becomes more 
complicated then for other disease-associated aggregates. 
Indeed, for amyloid-β oligomers and others β-conformers a direct 
ligand-receptor interaction via the N-terminal domain of cell-
surface PrPC has been proposed, leading to the transduction of 
pro-apoptotic signals as measured by caspase-3 activation 
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(Resemberg et al., 2011; Lauren et al., 2009; Chen et al., 2010). 
As mentioned above, in the case of polyQ Htt a direct interaction 
with PrPC is not likely to occur and caspase-3 activation in 
neghbouring non-transfected neurons, although requiring PrPC, is 
not mediated by soluble factors. Regarding the toxicity of Htt 
both soluble and aggregated Htt have the potential to be toxic 
(Weiss et al., 2012; Lajoie and Snapp, 2010). Given that PrPC 
increases cell-to cell transfer of polyQ aggregates, it is tempting 
to speculate that PrPC might also increase the transfer of toxic 
soluble polyQ oligomers, thus leading to caspase-3 activation in 
the receiving neurons in the absence of detectable aggregates. 
Also in this context, one important experiment will be to evaluate 
the occurrence of widespread caspase-3 activation in presence of 
different anti-PrP antibodies, directed against different epitops of 
the protein. Another possibility is that PrPC is mediating the 
transfer of active caspase 3 in neigbouring cells. In agreement 
with this hypothesis is the spreading of death signals by 
tunneling nanotubes recently discovered in Jurkat and primary T 
cell (Arkwright et al., 2010). The existence of a similar 
mechanism is, therefore, possible in our system. Indeed, in 
primary astrocytes I could observe active caspase-3 in TNTs 
connecting neighbouring cells (result not shown). I recently 
established the condition to visualize TNTs in CGN cultures by 
plating them on a feeder layer of astrocytes (neurons plated 
directly on poly-D-lysine coated coverslips develop an intricate 
neurites network that does not allow visualizing TNTs on the 
basis of their typical morphology since specific TNT markers are 
still missing). Therefore, one possible experiment will be to 
evaluate the presence of active caspase-3 in TNT-like structure 
bridging primary neurons upon GFP-Htt68Q transfection. 
Interestingly, I demonstrated that for the activation of caspase-3 
in the neighbouring cells, independently of the presence of 
“visible” aggregates, PrPC expression is required in the neurons 
expressing polyQ Htt (donor population) while it is dispensable in 
the receiving neurons (transfected with a GFP-vector). 
Whether this is linked to an interaction between PrPC and polyQ 
Htt in the donor neurons needs to be further explored. 
Furthermore, these findings lead to some speculations and open 
up a series of new questions that could be the basis for further 
investigations. Recently, the effect of stress on TNTs formation 
have been analyzed in different cell types (Wang et al., 2011). In 
particular, stress induced by hydrogen peroxide (H2O2) leads to 
an increase in TNT formation in both astrocytes and neurons 
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(Wang et al., 2011) and in neuronal CAD cells (Gousset and 
Zurzolo, unpublished data). Moreover, It has been shown that in 
vitro and in vivo aggregation of a N-terminal fragment of 
huntingtin directly causes free radical production (Hands et al., 
2011). Interestingly, for both astrocytes and neurons it is always 
the cells undergoing stress that developes TNTs and transfers 
cellular materials in a unidirectional fashion to the non-activated 
cells (reviewed in Marzo et al., 2012). Therefore, it is tempting to 
speculate that the cells undergoing oxidative injuries upon 
expression of a polyQ fragment of huntingtin, might spread toxic 
signal in a PrPC-dependent manner, possibly through an increase 
in cell-to-cell connections, with a possible role for TNT structures. 
Overall, these results indicate that PrP has a role in both cell-to-
cell transfer of polyQ Htt (detectable aggregates and possibly 
toxic soluble species) as well as in the toxicity mediated by 
caspase-3 activation. Further investigations are required to 
confirm that in our system caspase-3 activation is driving acute 
neuronal cell death (e.g TUNEL staining, detection of cleaved 
PARP by wester blot on cell lysates), since it has been reported 
that activation of caspase3 triggers early synaptic disfunction 
independently from apoptosis in mouse model of Alzheimer’s 
disease (D’Amelio et al., 2010; Spires-Jones et al., 2008)  
These results are also consistent with the finding that caspase-3 
activation occurs in the absence of abnormal huntingtin 
aggregation in fetal grafts of striatal tissues in transplanted HD 
patients (Cicchetti et al., 2009) and that functional abnormalities 
in cerebellar neurons (purkinjie cells) occur at early stage in a 
mouse model of HD in the absence of visible aggregates 
deposition. They are also in agreement with several line of 
evidence that point to a role of the cellular prion protein in the 
toxicity of amyloid beta and other beta-sheet-rich conformers, 
although possibly with different mechanism. 
Finally, these findings are in agreement with the growing amount 
of evidences in literature indicating that soluble huntingtin and/or 
abnormalities in other cell types may account for toxicity in 
vulnerable neurons, thus indicating that the pathogenesis of this 
disease is a result of both cell autonomous and non-cell 
autonomous mechanisms and open the path to new investigation 
and novel therapeutical approaches. 
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Conclusion and perspectives 
 
! In the first part of my PhD work, I investigated the role of DCs 

(dendritic cells) in the spreading of prion infection to neuronal 
cells in order to better clarify whether and how they play a 
role in prion spreading in vivo from the periphery to the 
nervous system. This study was performed by using in vitro 
cultures of primary BMDCs (bone-marrow-derived dendritic 
cells) and cerebellar neurons and by the combined use of 
microscopy and biochemical approaches. 

 
In these experiment, in collaboration with Dr Langevin, I found 
that 
 

a) direct cell-cell transfer of PrPSc occurs between BMDCs and 
primary CGN in a PrPC-independent manner and results in 
the transfer of infectivity to neurons; 

b) the secretory pathway and transfer from the cell surface of 
prion-loaded BMDCs are not involved in PrPSc intercellular 
spreading in our culturing condition; 

c) TNT-like structures occur between co-cultured BMDCs and 
CGNs. Therfore having excluded transfer from the cell 
surface and by secretion, we concluded that TNTs could be 
an efficient mechanism to mediate the transfer from the 
cytosol of PrPSc from BMDCs to CGNs. 

 
Although BMDCs have been shown to secrete prion-enriched 
exosomes, using a number of restrictive experimental conditions 
such as short co-culture times, low BMDC/CGN ratios, physical 
separation and pre-fixation of cells, we were not able to show the 
involvement of the secretory pathway in the transfer of prions 
from BMDCs to CGNs. On the other end, the transfer mediated by 
direct cell-cell contact was very efficient and all of our data point 
towards a role of TNT-like structures in the intercellular transfer 
of PrPSc from BMDCs to CGNs, similar to what was recently 
shown with dorsal root ganglion neurons. 
Overall, these results highlight the importance of DCs as 
potentially important candidate in mediating prion transfer to 
nerve cells, possibly through TNT-like structures that might exist 
in vivo. Our system of co-cultures will allow further 
characterization of prion spreading from the periphery to the 
nervous system of different scrapie strains, which could lead to a 
better understanding of the species barrier phenomenon. In this 
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view, additional experiments are needed to assess the role of DCs 
during prion spreading in vivo. For exemple it would be possible 
to load dendritic cells with fluorescent Alexa-labeled PrPSc 
(Gousset et al., 2009) and then evaluate their ability to contact 
different cells and transfer prion in exposed limph nodes by 
intravital imaging.  
 
In the second part of my thesis I focused on Huntington’s disease 
and carried on two strictly related projects. 
 
! In the first project I explored the occurrence and the 

mechanisms of polyQ Htt transfer in neuronal cells and primary 
neurons. 

 
By using fluorescence microscopy and flow cytomery techniques 
combined with restrictive experimental co-culture conditions, I 
could show that: 
 

a) spontaneous transfer of intracellular Htt aggregates occurs 
between dividing neuronal cells and between post-mitotic 
primary neurons.  

b) aggregate transfer is an active mechanism that does not 
rely on their passive release upon cell death and requires 
cell-to-cell contact 

c) in our culturing conditions secretion is not involved in the 
transfer of Htt aggregates  

d) Htt aggregates hijack TNTs formed between neuronal cells 
that provide an efficient transfer mechanism.  

e) overexpression of mutant Htt increases by itself TNT-
formation. 

f) aggregation of endogenous wild-type Htt occurs in 
acceptor neurons upon direct co-cultures with mutant Htt 
expressing neurons indicating occurrence of seeding. 

 
In conclusion, my results support the possibility that also in the 
case of Huntington’s disease prion-like transmission of protein 
misfolding contributes both to the early stage pathogenesis and 
to the progression of the disease in the brain. These data 
reinforce the hypothesis that Huntington’s disease and other 
neurodegenerative proteinopathies are non cell autonomous 
diseases and that the spreading of intracellular aggregates as well 
as toxic species (results 3 and below) contributes to the 
pathogenesis. Furthermore my data extend the role of TNTs from 
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prion diseases to other pathological conditions associated with 
the deposition of different aggregate proteins (e.g., β-Amyloid, 
mutant Htt). They support the role of TNTs as general means for 
the spreading of signals (e.g., death signals) and pathogens (e.g., 
HIV virus, bacteria) between different cells. Therefore a more 
accurate characterization of this type of long distance form of 
intercellular communication together with a better understanding 
of their physiological role is an intriguing and challenging still 
open question in biology. 
Finally, these data also highlight the fact that a multidisciplinary 
synergistic research merging different fields is required to allow 
the development of new approaches and new way of looking at 
diseases and possibly allowing the development of new strategies 
to fight them.  
 
In the last part of my PhD, I focused my study on evaluating 
whether the cellular prion protein, PrPC, could have a role in the 
pathogenesis on Huntington’s disease 
 
! By using fluorescence microscopy techniques combined with 

restrictive experimental co-culture conditions, I found that: 
 

a) PrP overexpressing neurons (from tga20 mice) 
transfected with a mutant Htt fragment (GFP-HttQ68) 
have a higher percentage of cells with cytoplasmic 
aggregates compared to PrP knockout neurons while 
there is no difference in the number of cells with nuclear 
aggregates. 

b) high levels of PrPC results in an increase transfer of 
polyQ aggregates between primary CGN 

c) transfer requires cell-cell contact and is not mediated by 
secretion of polyQ  aggregates in the medium (as shown 
above) 

d) in presence of PrPC there is a widespread activaction of 
caspase-3 in the cell population independently of the 
presence of detectable aggregates in the single neurons 
while in PrP knockout neurons caspase-3 is active only 
in the neurons containing aggregates. 

 
Overall, my results indicate that PrPC has a role in both cell-to-
cell transfer of polyQ Htt (detectable aggregates and possibly 
toxic soluble species) as well as in the toxicity mediated by 
caspase-3 activation. They are also in agreement with several line 
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of evidence that points towards a role of the cellular prion 
protein in the toxicity of amyloid-β and other beta-sheet-rich 
conformers. However, considering the different nature of the 
proteinaceous aggregates, it is possible that the mechanism of 
PrPC involvement could be different in HD and in other 
neurodegenerative disorders. Further studies will be required to 
understand the mechanisms by which PrPC might mediate these 
different processes which lead to neuronal dysfunction and 
neurodegeneration as this could have an enormous importance in 
understanding and fighting protein conformational diseases. 
 



 143 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 



 144 

+! 97L>;! I>9>! D79=:<9<9I! :! =B<9CD;>7=<A>! B>H>:=! =F:=! <?! >bH:9A>A! :9A! C9?=:K;>! 79!
OC9=<9I=79^?! A<?>:?>! DFB787?78>?#! ,F>! OC9=<9I=79^?! )<?>:?>! 27;;:K7B:=<L>!
'>?>:BDF!*B7CH#!"QQE#!Q)&&#!U60QU"fQPE#!

+K7C9<=g! /#g! :9A! 2#! \CBh7;7#! 6W"6#! c<B<9I! =FB7CIF! =C99>;<9I! 9:97=CK>?YYGB78!
>;>D=B<D:;!?<I9:;?!=7!7BI:9>;;>!=B:9?G>B#!R"$Q)&&"$LD*"!"6T0"WPQf"WQP#!

+A:DF<g! O#g! +#! iC8>g!4#! 5<g! N#! $:]:I78<g! O#! $<M:g! V#! )7g! 2#! /:9Ig! N#! i7K:@:?F<g!4#!
)7@Cg!:9A!*#!/7KC>#!6WW"#!,B:9?I>9<D!8<D>!M<=F!:9!>bH:9A>A!2+*!B>H>:=!D79=B7;;>A!
K@! =F>! FC8:9! +'! HB787=>B! ?F7M! H7;@I;C=:8<9>! 9CD;>:B! <9D;C?<79?! :9A! 9>CB79:;!
A@?GC9D=<79!M<=F7C=!9>CB79:;!D>;;!A>:=F#!89+"$S5&"$G)4):"!"W0"WEQf"WJP#!

+IChh<g!+#!6WWE#!1B<79?!:9A! =F>!<88C9>!?@?=>80!:! e7CB9>@!=FB7CIF!IC=g!?H;>>9g!:9A!
9>BL>?#!%/E"$T++945&"!P"0"6Ef"U"#!

+IChh<g! +#g! 3#! S:C8:99g! :9A! V#! SB>8>B#! 6WWP#! ,F>! HB<79^?! >;C?<L>! B>:?79! G7B! K><9I#!
%449"$H)E"$@)9,5.D*"!E"0JEQfJUU#!

+IChh<g! +#g! :9A! +#4#! 2:;>;;:#! 6WWQ#! 1B<79?0! 1B7=><9! +IIB>I:=<79! :9A! -9G>D=<7C?!
)<?>:?>?#!2(M.*5&5;*D0&$H)E*)U.#!PQ0""WTf""T6#!

+IChh<g! +#g! :9A! V#! 3:;?<I#! 6W"6#! 1B<79! HB7H:I:=<79g! =7b<D<=@! :9A! A>IB:A:=<79#! @0:"$
@)9,5.D*"!"T0QERfQEQ#!

+IChh<g! +#g!4#!O><]>9M:;A>Bg! :9A!4#! 17;@8>9<A7C#! 6WWU#! -9?<IF=?! <9=7! HB<79! ?=B:<9?!
:9A!9>CB7=7b<D<=@#!@0:"$H)E"$S5&"$Q)&&$I*5&"!P0TT6fTR"#!

+IChh<g! +#g! :9A! 5#! ':e>9AB:9#! 6WWQ#! ,F>! =B:9?D>;;C;:B! ?HB>:A! 7G! D@=7?7;<D! :8@;7<A?g!
HB<79?g!:9A!HB<797<A?#!@)9,54#!RJ0UPEfUQW#!

+;;:9g! 5#%#g! *#O#! 1>=<=g! :9A! 1#! SBC9A<9#! 6W"W#! 2>;;! =B:9?H;:9=:=<79! <9! 1:B]<9?79^?!
A<?>:?>0!HB7K;>8?!:9A!H>B?H>D=<L>?#!Q9,,"$VA*4"$@)9,5&"!6E0J6RfJE6#!

+;H>Bg! ,#g!c#+#! 2B:8Hg!)#+#!O:<Ig! :9A!4#2#! 2;:B]>#! "QRU#!)7>?! =F>! :I>9=! 7G! ?DB:H<>!
B>H;<D:=>!M<=F7C=!9CD;><D!:D<AX!@0:9,)#!6"J0URJfURR#!

+9A>B?79g!'#4#g!2#+#!)799>;;@g!$#4#!3>BIC?79g!4#%#!c77;F7C?>g!2#V#!c:==g!O#V#!&A@g!
/#!4:cF<99>@g!/#1#!)C9?=:9g!,#'#!/7C=FM77Ag!V#c#!c<;>?8<=Fg!V#S#!'@:9g!5#V#!O7<9L<;;>g!
V#%#! O<;;>B=79g! +#'#! +C?=<9g! :9A! *#+#! c>;;?#! "QQR#! ,B:9?8<??<79! A@9:8<D?! :9A!
>H<A>8<7;7I@!7G!S/%!<9!SB<=<?F!D:==;>#!@0:9,)#!EP60UUQfUPP#!

+9AB:A>g!4#+#g!:9A!1#!S7B]#!"QQT#!O%+,!B>H>:=?!<9!=F>!OC9=<9I=79^?!A<?>:?>!HB7=><9#!
@0:"$G)4):"!""0""Tf""R#!

+9ABj7;>==<g! (#g! 1#! S>B=F79g! )#! 4:BDg! 1#! /:BB:A<9g! V#! *B7?D;:CA>g! 5#! L:9! i>C;>9g! 3#!
/DF>;DF>Bg! V#4#! %;?>9g! :9A! 3#! 5:9=<>B#! 6WWW#! %:B;@! :DDC8C;:=<79! 7G! 1B1Z/D[! <9! IC=Y
:??7D<:=>A!;@8HF7<A!:9A!9>BL7C?!=<??C>?!7G!?C?D>H=<K;>!?F>>H!GB78!:!'78:97L!G;7D]!
M<=F!9:=CB:;!?DB:H<>#!R"$G)4"$W*,5&"!P"0E""TfE"6R#!

+9AB>Mg!/#%#g!N#1#!*7;AK>BIg!S#!iB>8>Bg!O#!,>;>9<C?g!V#!,F><;8:99g!/#!+A:8g!%#!/=:BBg!3#!
/kC<=<>B<g! S#! 5<9g! :9A!4#+#! i:;DF8:9#! "QQE#! ,F>! B>;:=<79?F<H! K>=M>>9! =B<9CD;>7=<A>!
Z2+*[!B>H>:=!;>9I=F!:9A!D;<9<D:;!G>:=CB>?!7G!OC9=<9I=79^?!A<?>:?>#!@0:"$G)4):"!J0EQPf
JWE#!



 145 

+B]MB<IF=g!1#)#g!3#!5CDF>==<g!V#!,7CBg!2#!'7K>B=?g!'#!+@CKg!+#1#!47B:;>?g!V#V#!'7ABlIC>hg!
+#! *<;87B>g! S#! 2:979<D7g! /#! 1:H:g! :9A! 4#)#! %?H7?=<#! 6W"W#! 3:?! ?=<8C;:=<79! 7G! ,!
;@8HF7D@=>?! HB787=>?! B:H<A! <9=>BD>;;C;:B! >bDF:9I>! 7G! A>:=F! ?<I9:;?! L<:!8>8KB:9>!
9:97=CK>?#!2>;;!'>?#!6W0U6fPP#!

+BB:?:=>g!4#g!:9A!/#!3<9]K><9>B#!6WWT#!+C=78:=>A!8<DB7?D7H>!?@?=>8!G7B!A>=>B8<9<9I!
G:D=7B?!=F:=!HB>A<D=!9>CB79:;!G:=>#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"W60EPJWfEPJT#!

+BB:?:=>g!4#g!/#!4<=B:g!%#/#!/DFM><=h>Bg!4#'#!/>I:;g!:9A!/#!3<9]K><9>B#!6WWJ#!-9D;C?<79!
K7A@!G7B8:=<79!B>ACD>?! ;>L>;?!7G!8C=:9=!FC9=<9I=<9!:9A!=F>!B<?]!7G!9>CB79:;!A>:=F#!
@0:9,)#!JE"0PWTfP"W#!

+BB<:I:A:g! 1#.#g! V#O#! *B7MA79g! %#,#! O>A;>@YcF@=>g! :9A! S#,#! O@8:9#! "QQ6#!
$>CB7G<KB<;;:B@! =:9I;>?! KC=! 97=! ?>9<;>! H;:kC>?! H:B:;;>;! ACB:=<79! :9A! ?>L>B<=@! 7G!
+;hF><8>B^?!A<?>:?>#!@)9,5&5;M#!J60RE"fREQ#!

+BhK>BI>Bg! ,#g! i#! iB:8HG;g! /#! 5><8IBCK>Bg! :9A! +#! c><9A;#! "QQU#! 2F:9I>?! 7G! $4)+!
B>D>H=7B!?CKC9<=!Z$'"g!$'6S[!:9A!I;C=:8:=>!=B:9?H7B=>B!Z*5,"[!8'$+!>bHB>??<79!<9!
OC9=<9I=79^?! A<?>:?>YY:9! <9! ?<=C! F@KB<A<h:=<79! ?=CA@#! R"$ @)9,5A0:(5&"$ BYA"$ @)9,5&"!
TR0JJWfJTJ#!

+=M:;g!'#/#g!V#!a<:g!)#!1<9DF>Lg!V#!,:@;7Bg!'#4#!%H:9Ag!:9A!'#!,BC:9=#!6WWU#!OC9=<9I=<9!
F:?! :! 8>8KB:9>! :??7D<:=<79! ?<I9:;! =F:=! D:9! 87AC;:=>! FC9=<9I=<9! :IIB>I:=<79g!
9CD;>:B!>9=B@!:9A!=7b<D<=@#!89+"$S5&"$G)4):"!"R06RWWf6R"T#!

+CD7C=CB<>Bg!1#g!3#!*><??8:99g!)#!):87==>g!*#1#!/:K7B<7g!O#2#!4>>]>Bg!'#!i:?D?:]g!'#!
i:?D?:]g! '#-#! 2:BHg! :9A! ,#! c<?9<>M?]<#! 6WW"#! -9G>D=>A! ?H;>9<D! A>9AB<=<D! D>;;?! :B>!
?CGG<D<>9=!G7B!HB<79!=B:9?8<??<79!=7!=F>!2$/!<9!87C?>!?DB:H<>#!R"$Q&*4"$T4E).:"!"WP0UWEf
UWP#!

+C>BK:DFg! c#g! 4#/#! OCB;K>B=g! 1#! O<;A<=DFY4:IC<B>g! N#\#! c:AIF<B<g! .#2#!cF>>;>Bg! /#-#!
27F>9g! +#5#! V7@9>Bg! 4#%#! 4:D)79:;Ag! :9A! )#O#! ,CB9KC;;#! 6WW"#! ,F>! O)! 8C=:=<79!
D:C?>?! HB7IB>??<L>! ;>=F:;! 9>CB7;7I<D:;! A<?>:?>! <9!8<D>! >bHB>??<9I! B>ACD>A! ;>L>;?! 7G!
FC9=<9I=<9#!89+"$S5&"$G)4):"!"W06T"Tf6T6E#!

+@;M:BAg!%#O#g!+#4#!27A7B<g!+#!'7?>9K;:==g!4#!/F>BBg! V#!SB:9A=g!(#2#!/=<9>g!1#%#!S:B=:g!
*#)#!1>:B;?79g!:9A!2#+#!'7??#!6WWW#!':=>!7G!D:CA:=>!:=B7HF@! <9!HB>?@8H=78:=<D!:9A!
?@8H=78:=<D!?=:I>?!7G!OC9=<9I=79^?!A<?>:?>#!S5E"$J*.5,/"!"T0TT6fTRW#!

+@;M:BAg!%#O#g! S#3#!/H:B]?g!i#4#!3<>;Ag!.#!N:;;:HB:I:A:g!S#)#!/FHB<=hg!+#!'7?>9K;:==g! V#!
SB:9A=g!5#4#!*7CB;>@g!i#!5<:9Ig!O#!\F7Cg!'#5#!4:BI7;<?g!:9A!2#+#!'7??#!6WWJ#!(9?>=!:9A!
B:=>!7G!?=B<:=:;!:=B7HF@!<9!HB>D;<9<D:;!OC9=<9I=79!A<?>:?>#!@)9,5&5;M#!RE0RRfU6#!

S:;A:CGg!%#g!4#!S>>]>?g!:9A!O#!)<B<9I>B#!"QQU#!%L<A>9D>!G7B!:9!:;=>B9:=<L>!A<B>D=!B7C=>!
7G!:DD>??!G7B!=F>!?DB:H<>!:I>9=!=7!=F>!KB:<9!K@H:??<9I!=F>!?H<9:;!D7BA#!R"$G)4"$W*,5&"!UP!
Z!1=!T[0""PUf""QU#!

S:;ACDD<g! 2#g! 4#! S>>Ig! 4#! /=B:L:;:D<g! +#! S:?=79>g! +#! /D;<Hg! %#! S<:?<9<g! 5#! ,:H>;;:g! 5#!
27;78K7g!2#!4:9h79<g!,#! S7B?>;;7g! '#!2F<>?:g!4#!*7KK<g!4#!/:;879:g!:9A!*#!37B;79<#!
6W"W#!/@9=F>=<D!:8@;7<AYK>=:!7;<I78>B?! <8H:<B! ;79IY=>B8!8>87B@! <9A>H>9A>9=;@!7G!
D>;;C;:B!HB<79!HB7=><9#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WU066QTf6EWW#!



 146 

S:kC>=g!\#2#g!V#+#!*7B?]<g!:9A!i#'#!V79>?#!6WWJ#!%:B;@!?=B<:=:;!A>9AB<=>!A>G<D<=?!G7;;7M>A!
K@! 9>CB79! ;7??! M<=F! :AL:9D>A! :I>! <9! =F>! :K?>9D>! 7G! :9=>B7IB:A>! D7B=<D:;! KB:<9Y
A>B<L>A!9>CB7=B7HF<D!G:D=7B#!R"$@)9,5.D*"!6J0J6TWfJ6TP#!

S:B79g! *#/#g! i#! c>FB;@g! )#c#! )7BM:BAg! S#! 2F>?>KB7g! :9A! S#! 2:CIF>@#! 6WW6#!
279L>B?<79!7G! B:G=! :??7D<:=>A!HB<79!HB7=><9! =7! =F>!HB7=>:?>YB>?<?=:9=! ?=:=>! B>kC<B>?!
<9?>B=<79!7G!1B1YB>?!Z1B1/D[!<9=7!D79=<IC7C?!8>8KB:9>?#!BSIV$R#!6"0"WE"f"WJW#!

S:BB@g!+#%#g!-#!i;@CK<9g!V#4#!4D!)79:;Ag!+#V#!4:K;@g!4#+#!3:BB>;;g!4#!/D7==g!)#4#!c:;?Fg!
:9A! 4#V#! '7M:9#! 6W""#! +;hF><8>B^?! A<?>:?>! KB:<9YA>B<L>A! :8@;7<AYdY8>A<:=>A!
<9F<K<=<79! 7G! 5,1! <9! L<L7! <?! HB>L>9=>A! K@! <88C97=:BI>=<9I! D>;;C;:B! HB<79! HB7=><9#! R"$
@)9,5.D*"!E"0U6TQfU6RE#!

S:B=79g!i#+#g!:9A!S#!2:CIF>@#!6W""#!-?!1B1!=F>!B7:A!=7!BC<9X!BSIV$R"!EW0"PP6f"PPJ#!

S:B=hg!V#2#g!2#!)>e7<:g!,#!,CD]>Bg!+#%#!i<9D:<Ag!:9A!'#+#!S>??>9#!6WWT#!%b=B:9>CB:;!HB<79!
9>CB7<9L:?<79!M<=F7C=!;@8HF7B>=<DC;:B!?@?=>8!<9G>D=<79#!R"$W*,5&"!UQ0""PTPf""PRE#!

S:=>g!2#g!:9A!+#!c<;;<:8?#!6W""#!+8@;7<AYdY<9ACD>A!?@9:H?>!A:8:I>!<?!8>A<:=>A!L<:!
DB7??Y;<9]:I>!7G!D>;;C;:B!HB<79!HB7=><9?#!R"$I*5&"$Q()+"!6PR0EUQTTfEUQRE#!

S:=>?g!*#!6WWE#!OC9=<9I=<9!:IIB>I:=<79!:9A! =7b<D<=@! <9!OC9=<9I=79^?!A<?>:?>#!P04D):#!
ER"0"RJ6f"RJJ#!

S>DF>Bg!4#c#g! V#+#! i7=hC]g! +#O#! /F:BHg! /#c#!):L<>?g! *#1#! S:=>?g!)#5#! 1B<D>g! :9A! 2#+#!
'7??#! "QQP#! -9=B:9CD;>:B! 9>CB79:;! <9D;C?<79?! <9! OC9=<9I=79^?! A<?>:?>! :9A!
A>9=:=7BCKB:;! :9A! H:;;<A7;C@?<:9! :=B7HF@0! D7BB>;:=<79! K>=M>>9! =F>! A>9?<=@! 7G!
<9D;C?<79?!:9A!-,"T!2+*!=B<H;>=!B>H>:=!;>9I=F#!@)9,5C*5&"$J*."!J0EPUfEQU#!

S>D]g! %#g! 1#4#! ):9<>;g! +#V#! ):L>@g! )#2#! *:eAC?>]g! :9A! 2#V#! *<KK?#! "QP6#! ,F>!
H:=F7I>9>?<?! 7G! =B:9?8<??<K;>! ?H79I<G7B8!>9D>HF:;7H:=F@0! :9!C;=B:?=BCD=CB:;! ?=CA@#!
I,0*4#!"WT!Z1=!J[0UTTfUPR#!

S>>]>?g! 4#g! %#! S:;A:CGg! :9A! O#! )<B<9I>B#! "QQR#! />kC>9=<:;! :HH>:B:9D>! :9A!
:DDC8C;:=<79!7G!H:=F7I97879<D!8:B]>B?! <9!=F>!D>9=B:;!9>BL7C?!?@?=>8!7G!F:8?=>B?!
7B:;;@!<9G>D=>A!M<=F!?DB:H<>#!R"$G)4"$W*,5&"!UU!Z!1=!P[0"Q6Tf"QEJ#!

S>>]>?g! 4#g! :9A! 1#+#! 4DSB<A>#! 6WWW#! %:B;@! :DDC8C;:=<79! 7G! H:=F7;7I<D:;! 1B1! <9! =F>!
>9=>B<D! 9>BL7C?! ?@?=>8! :9A! IC=Y:??7D<:=>A! ;@8HF7<A! =<??C>! 7G! F:8?=>B?! 7B:;;@!
<9G>D=>A!M<=F!?DB:H<>#!@)9,5.D*)4D)$P)::),.#!6UP0"P"f"PJ#!

S>>]>?g! 4#g! :9A! 1#+#! 4DSB<A>#! 6WWU#! ,F>! ?HB>:A! 7G! HB<79?! =FB7CIF! =F>! K7A@! <9!
9:=CB:;;@!:DkC<B>A!=B:9?8<??<K;>!?H79I<G7B8!>9D>HF:;7H:=F<>?#!KBIL$R"!6UJ0TPPfRWT#!

S>FB>9?g! 1#3#g! 1#! 3B:9hg! S#! c77A8:9g! i#/#! 5<9A>9K>BIg! :9A! *#S#! 5:9AM>FB8>@>B#!
6WW6#! -8H:<B>A! I;C=:8:=>! =B:9?H7B=! :9A! I;C=:8:=>YI;C=:8<9>! D@D;<9I0! A7M9?=B>:8!
>GG>D=?!7G!=F>!OC9=<9I=79!8C=:=<79#!I,0*4#!"6T0"QWPf"Q66#!

S>9<;7L:g! -#g! %#! i:BB:9g! :9A! S#! )>! /=B77H>B#! 6W"6#! ,F>! =7b<D! +d! 7;<I78>B! :9A!
+;hF><8>B^?!A<?>:?>0!:9!>8H>B7B!<9!9>>A!7G!D;7=F>?#!@0:"$@)9,5.D*"!"T0EJQfETU#!



 147 

S>99>==g!%#V#g!$#3#!S>9D>g!'#!V:@:]C8:Bg!:9A!'#'#!i7H<=7#!6WWT#!*;7K:;! <8H:<B8>9=!7G!
=F>! CK<kC<=<9YHB7=>:?78>! ?@?=>8! K@! 9CD;>:B! 7B! D@=7H;:?8<D! HB7=><9! :IIB>I:=>?!
HB>D>A>?!<9D;C?<79!K7A@!G7B8:=<79#!S5&"$Q)&&#!"U0ET"fERT#!

S>99>==g! %#V#g! ,#+#! /F:;>Bg! S#! c77A8:9g! i#YN#! '@Cg! ,#/#! \:<=?>L:g! 2#O#! S>D]>Bg! *#1#!
S:=>?g!O#!/DFC;8:9g!:9A!'#'#!i7H<=7#!6WWU#!*;7K:;!DF:9I>?!=7!=F>!CK<kC<=<9!?@?=>8!<9!
OC9=<9I=79^?!A<?>:?>#!@0:9,)#!JJP0UWJfUWP#!

S>9L>I9mg!/#g!5#!*:?H>B<9<g!:9A!*#!5>I9:8>#!6W""#!+I>A!1B1!9C;;!8<D>!?F7M!A>G>D=<L>!
HB7D>??<9I! 7G! 9>CB>IC;<9?! <9! =F>! H>B<HF>B:;! 9>BL7C?! ?@?=>8#! S5&"$ Q)&&"$ @)9,5.D*"!
JU06PfET#!

S<:?<9<g!%#g!V#+#!,CB9K:CIFg!&#!&9=>BK>BI>Bg!:9A!)#+#!O:BB<?#!6W"6#!1B<79!HB7=><9!:=!=F>!
DB7??B7:A?!7G!HF@?<7;7I@!:9A!A<?>:?>#!?,)4/.$@)9,5.D*"!ET0Q6f"WE#!

S7BDF>;=g!)#'#g!4#!'7I>B?g!$#!/=:F;g!*#!,>;;<9Ig!:9A!/#S#!1BC?<9>B#!"QQE#!'>;>:?>!7G!=F>!
D>;;C;:B! HB<79!HB7=><9! GB78! DC;=CB>A! D>;;?! :G=>B! ;7??! 7G! <=?! I;@D7<97?<=7;! HF7?HF7;<H<A!
:9DF7B#!G&MD5C*5&5;M#!E0E"QfE6Q#!

S7?kC>g! 1#V#g! 2#! '@7Cg! *#! ,>;;<9Ig! )#! 1>B>=hg! *#! 5>I9:8>g! /#V#! )>+B879Ag! :9A! /#S#!
1BC?<9>B#!6WW6#!1B<79?!<9!?]>;>=:;!8C?D;>#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!QQ0EP"6fEP"U#!

S7?=:9g!+#2#g!'#1#!)C8g!:9A!1#5#!/=B<D]#!6W"W#!,F>!K:?:;!I:9I;<:!D788C9<D:=>!M<=F!=F>!
D>B>K>;;C8#!2,5D$@0:&$%D0/$LD*$X$L$%#!"WU0PJT6fPJTR#!

S7?=:9g! +#2#g! :9A! 1#5#! /=B<D]#! 6W"W#! ,F>! 2>B>K>;;C8! :9A! S:?:;! *:9I;<:! :B>!
-9=>BD799>D=>A#!@)9,5A.MD(5&$H)E#!6W06R"f6UW#!

S7C9F:Bg! N#g! N#! \F:9Ig! 2#*#! *77A@>Bg! :9A! +#! 5>S;:9D#! 6WW"#! 1B<79! 1B7=><9! 1B7=>D=?!
OC8:9! $>CB79?! :I:<9?=! S:bY8>A<:=>A! +H7H=7?<?#! R59,40&$ 5F$ I*5&5;*D0&$ Q()+*.:,M#!
6UR0EQ"JTfEQ"JQ#!

SB::]g! O#g! :9A! %#! SB::]#! "QQ"#! $>CB7H:=F7;7I<D:;! ?=:I><9I! 7G! +;hF><8>BYB>;:=>A!
DF:9I>?#!%D:0$@)9,5A0:(5&5;*D0#!P606EQf6TQ#!

SB::]g!O#g!%#!*F>KB>8>AF<9g!&#!'nKg!O#!SB:=h]>g!:9A!i#!)>;!,B>A<D<#!6WWJ#!/=:I>?!<9!=F>!
A>L>;7H8>9=!7G!1:B]<9?79^?!A<?>:?>YB>;:=>A!H:=F7;7I@#!Q)&&$?*..9)$H)."!E"P0"6"f"EJ#!

SB::]g! O#g! &#! 'nKg! :9A! i#! )>;! ,B>A<D<#! 6WWR#! 27I9<=<L>! A>D;<9>! D7BB>;:=>?! M<=F!
9>CB7H:=F7;7I<D:;!?=:I>!<9!1:B]<9?79^?!A<?>:?>#!R"$@)9,5&"$LD*"!6JP06TTf6TP#!

SB:9A9>Bg!/#g!+#!':>K>Bg!+#!/:<;>Bg!,#!S;o==;>Bg!4#!3<?DF>Bg!2#!c><??8:99g!:9A!+#!+IChh<#!
"QQR#! $7B8:;! F7?=! HB<79! HB7=><9! Z1B12[! <?! B>kC<B>A! G7B! ?DB:H<>! ?HB>:A! M<=F<9! =F>!
D>9=B:; 9>BL7C? ?@?=>8#!2,5D$@0:&$%D0/$LD*$X$L$%#!QE0"E"JPf"E"T"#!

SB>8>Bg!V#g!3#!S:C8:99g!2#!,<K>B<g!2#!c>??<Ig!O#!3<?DF>Bg!1#!/DFM:Bhg!+#)#!/=>>;>g!i#.#!
,7@]:g!i#Y+#!$:L>g! V#!c><?g!:9A!+#!+IChh<#!6W"W#!+b79:;!HB<79!HB7=><9! <?!B>kC<B>A!G7B!
H>B<HF>B:;!8@>;<9!8:<9=>9:9D>#!@0:$@)9,5.D*#!"E0E"WfE"P#!

SB7M9g! i#5#g! i#! /=>M:B=g! )#5#! '<=DF<>g! $#+#! 4:KK7==g! +#! c<;;<:8?g! O#! 3B:?>Bg! c#-#!
47BB<?79g!:9A!4#%#!SBCD>#!"QQQ#!/DB:H<>!B>H;<D:=<79!<9! ;@8HF7<A!=<??C>?!A>H>9A?!79!
HB<79!HB7=><9Y>bHB>??<9I!G7;;<DC;:B!A>9AB<=<D!D>;;?#!@0:"$S)/"!T0"EWPf"E"6#!



 148 

SB7M9g! 1#g! 2#V#!*<KK?g! 1#! '7AI>B?YV7F9?79g!)#4#!+?F>Bg!4#1#! /C;<8:g!+#! S:D7=>g! 5#*#!
*7;AG:BKg!:9A!)#2#!*:eAC?>]#!"QQJ#!OC8:9!?H79I<G7B8!>9D>HF:;7H:=F@0!=F>!$:=<79:;!
-9?=<=C=>?! 7G!O>:;=F! ?>B<>?! 7G! EWW! D:?>?! 7G! >bH>B<8>9=:;;@! =B:9?8<==>A!A<?>:?>#!%44"$
@)9,5&"!ET0T"EfT6Q#!

SB7M9g! ,#S#g! +#-#! S7IC?Fg! :9A!4#%#! %FB;<DF#! 6WWP#! $>7D7B=<D:;! >bHB>??<79! 7G!8C=:9=!
FC9=<9I=<9! <?! 97=! B>kC<B>A! G7B! :;=>B:=<79?! <9! ?=B<:=:;! I>9>! >bHB>??<79! 7B! 87=7B!
A@?GC9D=<79!<9!:!=B:9?I>9<D!87C?>#!89+"$S5&"$G)4):"!"U0EWQTfE"WJ#!

SBCD>g! 4#%#! "QQE#! /DB:H<>! ?=B:<9! L:B<:=<79! :9A! 8C=:=<79#! I,*:*.($ S)/*D0&$ I9&&):*4#!
JQ0P66fPEP#!

SBCD>g! 4#%#g! '#*#! c<;;g! V#c#! -B79?<A>g! -#! 4D2799>;;g! )#! )BC8879Ag! +#! /C==<>g! 5#!
4D2:BA;>g!+#!2FB>>g!V#!O7H>g!2#!S<B]>==g!/#!27C?>9?g!O#!3B:?>Bg!:9A!2#V#!S7?=7D]#!"QQU#!
,B:9?8<??<79?! =7!8<D>! <9A<D:=>! =F:=! pq9>M!L:B<:9=p^!2V)! <?! D:C?>A!K@! =F>!S/%!:I>9=#!
@0:9,)#!EPQ0JQPfTW"#!

SBC9A<9g! 1#g! '#! 4>;]<g! :9A! '#! i7H<=7#! 6W"W#! 1B<79Y;<]>! =B:9?8<??<79! 7G! HB7=><9!
:IIB>I:=>?!<9!9>CB7A>I>9>B:=<L>!A<?>:?>?#!@0:"$H)E"$S5&"$Q)&&$I*5&"!""0EW"fEWU#!

SCDD<:9=<9<g!4#g!/#!'<I:DD<g!+#!S>B=<g!5#!1<>B<g!2#!2>DDF<g!)#!$7?<g!5#!37B8<I;<g!3#!2F<=<g!:9A!
4#!/=>G:9<#!6WWT#!1:==>B9?!7G!D>;;!A>:=F!=B<II>B>A!<9!=M7!A<GG>B>9=!D>;;!;<9>?!K@!O@H3Y$!
HB>G<KB<;;:B!:IIB>I:=>?#!K%LBI$R"!"Q0JEUfJEQ#!

Sn>;>Bg! O#g! 4#! 3<?DF>Bg! N#! 5:9Ig! O#! S;C>=F8:99g! O#1#! 5<HHg! /#V#! )>+B879Ag! /#S#!
1BC?<9>Bg!4#!+IC>=g!:9A!2#!c><??8:99#!"QQ6#!$7B8:;!A>L>;7H8>9=!:9A!K>F:L<7CB!7G!
8<D>!;:D]<9I!=F>!9>CB79:;!D>;;Y?CBG:D>!1B1!HB7=><9#!@0:9,)#!ETR0TUUfTP6#!

SC]7B>?F=;<>Lg! $#.#g! a#! c:9Ig! %#! O7A9>;:9Ag! /#! *CB]>g! V#3#.#! S:BB7?7g! :9A! O#YO#!
*>BA>?#! 6WWQ#! />;>D=<L>! K;7D]! 7G! =C99>;<9I! 9:97=CK>! Z,$,[! G7B8:=<79! <9F<K<=?!
<9=>BD>;;C;:B!7BI:9>;;>!=B:9?G>B!K>=M>>9!12"6!D>;;?#!KBIL$P)::"!TPE0"JP"f"JPP#!

2:>=:97g! 3#+#g! 3#O#! S>B:;A7g! *#$#4#! O:eeg! +#5#! *C<8:B:>?g! /#! VnBI>9?>9g! +#1#!
c:?<;>M?]:Y/:8H:<7g! 1#O#3#! O<B:=:g! -#! /7Ch:g! 2#3#! 4:DF:A7g! )#N#Y5#! c79Ig! 3#*#! )>!
3>;<D>g! /#,#! 3>BB><B:g! .#3#! 1B:A7g! '#V#! '@;>==g! .#'#! 4:B=<9?g! :9A!4#+#4#! 1B:A7#! 6W""#!
+8@;7<AYK>=:!7;<I78>B?! <9DB>:?>!=F>!;7D:;<h:=<79!7G!HB<79!HB7=><9!:=!=F>!D>;;!?CBG:D>#!
R"$@)9,5D()+"!""U0TEPfTTE#!

2:;>;;:g!+#4#g!4#!3:B<9>;;<g!4#!$CL7;79>g!(#!4<B:9=>g!'#!477?g!V#!3:;?<Ig! -#4#!4:9?C@g!
:9A! +#! +IChh<#! 6W"W#! 1B<79! HB7=><9! :9A! +K>=:YB>;:=>A! ?@9:H=<D! =7b<D<=@! <8H:<B8>9=#!
BSIV$S5&$S)/#!60EWRfE"J#!

A>! 2:;<I979g! +#g! 4#! 17;@A7B7g! 4#! /CrB>hY2:;L>=g! 2#! c<;;<:8g! )#O#! +A:87M<Dhg! i#V#!
i7H><]<9:g! '#!1<=?=<D]g!$#!/:F:B:g! i#O#!+?F>g!*#+#!2:B;?79g!,#5#!/H<B>?YV79>?g!:9A!S#,#!
O@8:9#!6W"6#!1B7H:I:=<79!7G!=:C!H:=F7;7I@!<9!:!87A>;!7G!>:B;@!+;hF><8>B^?!A<?>:?>#!
@)9,54#!UE0RPTfRQU#!

2:;h7;:<g! 5#g!)#+#! 5@?>]g!)#'#! 1jB>hg!1#!*n9=>B=g!:9A!i#!cn=FB<DF#!6WWT#!1B<79!HB7=><9!
$4'!?=BCD=CB>?!7G!DF<D]>9?g!=CB=;>?g!:9A!GB7I?#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"W60RT"f
RTT#!

2:9:;?g!V#4#g!V#'#!1<9>A:g!V#3#!,7BB>?Y1>B:h:g!4#!S7?DFg!'#!4:B=l9Y-K:s>hg!4#,#!4Cs7hg!
*#! 4>9I7Ag! 1#! %B9G7B?g! :9A! V#! +;K>BDF#! 6WWJ#! SB:<9YA>B<L>A! 9>CB7=B7HF<D! G:D=7B!



 149 

B>IC;:=>?! =F>! 79?>=! :9A! ?>L>B<=@! 7G! 87=7B! A@?GC9D=<79! :??7D<:=>A! M<=F!
>9]>HF:;<9>BI<D! 9>CB79:;! A>I>9>B:=<79! <9! OC9=<9I=79^?! A<?>:?>#! R"$ @)9,5.D*"!
6J0UU6UfUUEQ#!

2:B;?79g!*#+#g!)#!c>?=:M:@g!/#V#!)>+B879Ag!4#!1>=>B?79Y,7BDF<:g!:9A!/#S#! 1BC?<9>B#!
"QPQ#! 1B<8:B@! ?=BCD=CB>! 7G! HB<79! HB7=><9! 8:@! 87A<G@! ?DB:H<>! <?7;:=>! HB7H>B=<>?#!
2,5D))/*4;.$5F$:()$@0:*540&$%D0/)+M$5F$LD*)4D).#!PR0UJUTfUJUQ#!

2:BB>;;g!'#c#g!:9A!)#+#!578:?#!"QQU#!279G7B8:=<79:;!A<?>:?>#!P04D):#!ETW0"EJf"EP#!

2:?=<;;:g! V#g!)#!*79h:;>hY'78>B7g!1#!/:rg!'#!47B:;>?g! V#!)>!2:?=B7g!:9A!2#!/7=7#!6WWP#!
2B7??<9I!=F>!?H>D<>?!K:BB<>B!K@!1B1Z/D[!B>H;<D:=<79!<9!L<=B7!I>9>B:=>?!C9<kC>!<9G>D=<7C?!
HB<79?#!Q)&&#!"EJ0UTUfURP#!

2:?=<;;:g!V#g!1#!/:rg!2#!O>=hg!:9A!2#!/7=7#!6WWT#!-9!L<=B7!I>9>B:=<79!7G!<9G>D=<7C?!?DB:H<>!
HB<79?#!Q)&&#!"6"0"QTf6WR#!

2:==:9>7g! %#g! 2#! \CDD:=7g! :9A! 4#! ,:B=:B<#! 6WWT#! $7B8:;! FC9=<9I=<9! GC9D=<790! :9!
:;=>B9:=<L>!:HHB7:DF!=7!OC9=<9I=79^?!A<?>:?>#!@0:"$H)E"$@)9,5.D*"!R0Q"QfQEW#!

2:CIF>@g!S#!"QQJ#!/DB:H<>Y:??7D<:=>A!1B1!:DDC8C;:=<79!:9A!:I>9=!B>H;<D:=<790!>GG>D=?!
7G! ?C;HF:=>A! I;@D7?:8<97I;@D:9! :9:;7IC>?#!2(*&5."$ ?,04."$ H"$ L5D"$ P54/"Z$ IZ$ I*5&"$ LD*"!
EJE0EQQfJWJ#!

2:CIF>@g!S#g!*#/#!S:B79g!S#!2F>?>KB7g!:9A!4#!V>GGB>@#!6WWQ#!*>==<9I!:!IB<H!79!HB<79?0!
7;<I78>B?g! :8@;7<A?g! :9A!H:=F7;7I<D:;!8>8KB:9>! <9=>B:D=<79?#!%449"$ H)E"$ I*5D()+"!
UP0"UUf6WJ#!

2:CIF>@g! S#g! :9A! 1#,#! 5:9?KCB@#! 6WWE#! 1B7=7G<KB<;?g! H7B>?g! G<KB<;?g! :9A!
9>CB7A>I>9>B:=<790!?>H:B:=<9I!=F>!B>?H79?<K;>!HB7=><9!:IIB>I:=>?!GB78!=F>!<997D>9=!
K@?=:9A>B?#!%449"$H)E"$@)9,5.D*"!6R06RUf6QP#!

2:CIF>@g!S#g!i#!$>:B@g!'#!SC;;>Bg!)#!%B9?=g!5#5#!1>BB@g!S#!2F>?>KB7g!:9A!'#%#!':D>#!"QQW#!
$7B8:;! :9A! ?DB:H<>Y:??7D<:=>A! G7B8?! 7G! HB<79!HB7=><9! A<GG>B! <9! =F><B! ?>9?<=<L<=<>?! =7!
HF7?HF7;<H:?>!:9A!HB7=>:?>?!<9!<9=:D=!9>CB7K;:?=78:!D>;;?#!R$W*,5&#!RJ0"WQEf""W"#!

2>BL>9:]7L:g!5#g!(#!N:]7L;>L:g!2#!4Di>9h<>g!/#!i7;DF<9?]@g!5#!4D/F:9>g!c#$#!)B7F:9g!
:9A!1#! SB7M9#! 6WWE#! /<8<;:B! ;>L>;?! 7G! <9G>D=<L<=@! <9! =F>!K;77A!7G!8<D>! <9G>D=>A!M<=F!
FC8:9YA>B<L>A! L2V)! :9A! *//! ?=B:<9?! 7G! =B:9?8<??<K;>! ?H79I<G7B8! >9D>HF:;7H:=F@#!
?,04.F9.*54#!JE0"RPUf"RQJ#!

2O+$)5%'g!'#5#!"QR"#!%9D>HF:;7H:=F@!<9!8<D>!HB7ACD>A!K@! <97DC;:=<79!M<=F!?DB:H<>!
KB:<9!8:=>B<:;#!P04D):#!"0"EUPf"EUQ#!

2F:h7=g!*#g!%#!SB7C??7;;>g!2#! ;! 5:HB:?g! ,#! S;o==;>Bg! +#! +IChh<g!:9A!$#! i7HH#!"QQR#!$>M!
L:B<:9=!7G!2B>C=hG>;A=YV:]7K!A<?>:?>!<9!:!6RY@>:BY7;A!3B>9DF!8:9#!P04D):#!EJU0""P"#!

2F>?>KB7g! S#g! '#! ':D>g! i#!c>FB;@g! V#! $<?F<7g!4#! S;778g! )#! 5>DF9>Bg! /#! S>BI?=B78g! i#!
'7KK<9?g! 5#! 4:@>Bg! :9A! V#4#! i><=F#! "QPT#! -A>9=<G<D:=<79! 7G! ?DB:H<>! HB<79! HB7=><9Y
?H>D<G<D!8'$+!<9!?DB:H<>Y<9G>D=>A!:9A!C9<9G>D=>A!KB:<9#!@0:9,)#!E"T0EE"fEEE#!

2F>?>KB7g!S#g!4#!,B<G<;7g!'#!':D>g!i#!4>:A>YcF<=>g!2#!,>9Ig!'#!5:2:??>g!5#!':@879Ag!2#!
3:L:B:g!*#!S:B79g!/#!1B<7;:g!S#!2:CIF>@g!%#!4:?;<:Fg!:9A!4#!(;A?=79>#!6WWT#!+9DF7B;>??!



 150 

HB<79!HB7=><9! B>?C;=?! <9! <9G>D=<7C?! :8@;7<A! A<?>:?>!M<=F7C=! D;<9<D:;! ?DB:H<>#! LD*)4D)#!
EWP0"JETf"JEQ#!

2F<>?:g!'#g!:9A!)#+#!O:BB<?#!6WWQ#!3<?F<9I!G7B!HB<79!HB7=><9!GC9D=<79#!2P5L$I*5&"!U0>UT#!

2FC9Ig!%#g!N#!V<g!N#!/C9g!'#V#!i:?D?:]g!'#S#!i:?D?:]g!1#)#!4>F=:g!/#4#!/=B<==8:==>Bg!:9A!,#!
c<?9<>M?]<#!6W"W#!+9=<Y1B12!8797D;79:;!:9=<K7A@! <9GC?<79!:?!:!97L>;! =B>:=8>9=! G7B!
D7I9<=<L>!A>G<D<=?!<9!:9!+;hF><8>B^?!A<?>:?>!87A>;!87C?>#!ISQ$@)9,5.D*#!""0"EW#!

2<DDF>==<g!3#g!/#!/:H7B=:g!'#+#!O:C?>Bg!4#!1:B>9=g!4#!/:<9=Y1<>BB>g!1#'#!/:9K>BIg!a#V#!5<g!
V#'#! 1:B]>Bg! N#! 2FCg! %#V#! 4CG?79g! V#O#! i7BA7M>Bg! :9A! ,#S#! 3B>>8:9#! 6WWQ#! $>CB:;!
=B:9?H;:9=?! <9! H:=<>9=?! M<=F! OC9=<9I=79^?! A<?>:?>! C9A>BI7! A<?>:?>Y;<]>! 9>CB79:;!
A>I>9>B:=<79#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WR0"6JPEf"6JPP#!

2;:L:IC>B:g! 3#g! ,#! S7;879=g! '#+#! 2B7M=F>Bg! )#! +KB:87M?]<g! /#! 3B:9]g! +#! 1B7K?=g! *#!
3B:?>Bg!+#i#!/=:;A>Bg!4#!S><K>;g!4#!/=:CG>9K<>;g!4#!VCD]>Bg!4#!*7>A>B=g!:9A!4#!,7;9:@#!
6WWQ#!,B:9?8<??<79!:9A!?HB>:A<9I!7G!=:C7H:=F@!<9! =B:9?I>9<D!87C?>!KB:<9#!@0:"$Q)&&$
I*5&"!""0QWQfQ"E#!

27;K@g!)#c#g! i#! *<;>?g! *#! 5>I9:8>g!O#!c<;;>g! -#.#! S:?]:]7Lg! /#V#!)>+B879Ag! :9A! /#S#!
1BC?<9>B#! 6WWQ#! )>?<I9! :9A! D79?=BCD=<79! 7G! A<L>B?>! 8:88:;<:9! HB<79! ?=B:<9?#!2,5D"$
@0:&"$%D0/"$LD*"$X"L"%"!"WR06WJ"Uf6WJ66#!

27;K@g! )#c#g! :9A! /#S#! 1BC?<9>B#! 6W""#! 1B<79?#! Q5&/$ LA,*4;$ 80,C$ 2),.A)D:$ I*5&#!
E0:WWRPEE#!

27;<9g! %#g! )#! \:;:g! *#! 5<7=g! O#! ':9I79>g! 4#! S7BB>;;Y1:It?g! a#YV#! 5<g! 3#! /:CA7Cg! :9A! /#!
OC8K>B=#! 6WWP#! OC9=<9I=<9! HF7?HF7B@;:=<79! :D=?! :?! :! 87;>DC;:B! ?M<=DF! G7B!
:9=>B7IB:A>pB>=B7IB:A>!=B:9?H7B=!<9!9>CB79?#!BSIV$R"!6U06"6Jf6"EJ#!

27;;<9I>g! V#!6WW"#!1! ! ! ! ! ! ! ! ! ! ! ! ! ! !'-($! ! ! ! ! ! ! ! ! ! ! ! ! ! !)! ! ! ! ! ! ! ! ! ! ! ! ! ! ! -/%+/%/!(3! ! ! ! ! ! ! ! ! ! ! ! ! ! !O!!!!!!!!!!!!!!!
&4+$/!+$)!!!!!!!!!!!!!!!+!!!!!!!!!!!!!!!$-4+5/!!!!!!!!!!!!!!  0!,F><B!2:C?>?!:9A!47;>DC;:B!S:?<?#!
%4490&$H)E*)U$5F$@)9,5.D*)4D)#!6J0T"QfTTW#!

27;;<9I>g! V#! 6WWT#! 47;>DC;:B! 9>CB7;7I@! 7G! HB<79! A<?>:?>#! R"$ @)9,5&"$ @)9,5.9,;"$
2.MD(*0:,"!UR0QWRfQ"Q#!

27;;<9I>g! V#g! :9A! +#'#! 2;:B]>#! 6WWU#! +! I>9>B:;! 87A>;! 7G! HB<79! ?=B:<9?! :9A! =F><B!
H:=F7I>9<D<=@#!LD*)4D)#!E"P0QEWfQER#!

27;;<9I>g! V#g!4#+#!cF<==<9I=79g! i#2#5#! /<A;>g! 2#V#! /8<=Fg!4#/#! 1:;8>Bg!+#'#! 2;:B]>g! :9A!
V#*#'#!V>GG>B@?#!"QQJ#!1B<79!HB7=><9!<?!9>D>??:B@!G7B!97B8:;!?@9:H=<D!GC9D=<79#!@0:9,)#!
EUW06QTf6QU#!

277H>Bg! V#i#g! *#! /DF<;;<9Ig! 4#3#! 1>=>B?g! c#V#! O>BB<9Ig! +#O#! /F:BHg! \#! i:8<9?]@g! V#!
4:?79>g!3#+#! iF:9g!4#!)>;:97@g!)#'#! S7BDF>;=g!.#5#!):M?79g! ,#4#!):M?79g!:9A!2#+#!
'7??#!"QQP#!,BC9D:=>A!$Y=>B8<9:;!GB:I8>9=?!7G!FC9=<9I=<9!M<=F!>bH:9A>A!I;C=:8<9>!
B>H>:=?! G7B8! 9CD;>:B! :9A! D@=7H;:?8<D! :IIB>I:=>?! <9! D>;;! DC;=CB>#!89+"$S5&"$ G)4):"!
U0UPEfUQW#!

27BA><B7g!N#g!:9A!V#5#!/<;L:#!6WWT#!,F>!F@H7=F>?<?!7G!=F>!D:=:;@=<D!:D=<79!7G!9CD;><D!:D<A!
79!=F>!D79L>B?<79!7G!HB<79!HB7=><9#!2,5:)*4$2)A:"$P)::"!"606T"f6TT#!



 151 

27BA<>BY)<B<]7Dg! /#g! :9A! V#! 2F:KB@#! 6WWP#! ,>8H7B:B@! A>H;>=<79! 7G! 2)""Du! A>9AB<=<D!
D>;;?! A>;:@?! ;@8HF7<9L:?<79! :G=>B! <9=B:H>B<=79:;! ?DB:H<>! <9G>D=<79#! R"$ W*,5&"! P60PQEEf
PQER#!

2B79<>Bg! /#g! $#! *B7?g! 4#O#! ,:==C8g! *#/#! V:D]?79g! +#'#! 2;:B]>g! V#! 27;;<9I>g! :9A! V#)#3#!
c:A?M7B=F#!6WWP#!)>=>D=<79!:9A!DF:B:D=>B<h:=<79!7G!HB7=><9:?>!iY?>9?<=<L>!A<?>:?>Y
B>;:=>A!HB<79!HB7=><9!M<=F!=F>B87;@?<9#!I*5D()+"$R"!J"R06QUfEWT#!

2C?F8:9g! 4#g! S#/#! V7F9?79g! (#)#! i<9Ig! +#)#! *<=;>Bg! :9A! V#! /F7B=>B#! 6W"W#! 1B<79Y;<]>!
A<?7BA>B?0! K;CBB<9I! =F>! A<L<A>! K>=M>>9! =B:9?8<??<K<;<=@! :9A! <9G>D=<L<=@#! R"$ Q)&&"$ LD*"!
"6E0""Q"f"6W"#!

)^+8>;<7g!4#g!.#!2:L:;;CDD<g!/#!4<AA><g!2#!4:BDF>==<g!/#!1:D<79<g!+#!3>BB<g!+#!)<:8:9=<9<g!
)#!)>!\<7g!1#!2:BB:B:g!5#!S:==<?=<9<g!/#!47B>97g!+#!S:DD<g!4#!+88:??:B<Y,>C;>g!O#!4:B<>g!
:9A!3#!2>DD79<#!6W""#!2:?H:?>YE!=B<II>B?!>:B;@!?@9:H=<D!A@?GC9D=<79!<9!:!87C?>!87A>;!
7G!+;hF><8>B^?!A<?>:?>#!$:=#!$>CB7?D<#!"J0RQfUR#!

):9h>Bg! i#4#g! )#! O::?>9g! +#'#! i:B7Mg! /#! 47C??:CAg! 4#! O:K>D]g! +#! *<>?>g! O#!
iB>=h?DF8:Bg!S#!O>9I>B>Bg!:9A!4#!i7?=]:#!6WWU#!)<GG>B>9=!?H>D<>?!7G!:;HF:Y?@9CD;><9!
7;<I78>B?!<9ACD>!D:;D<C8!<9G;Cb!:9A!?>>A<9I#!R"$@)9,5.D*"!6U0Q66WfQ6E6#!

):9h>Bg!i#4#g!/#i#!iB>K?g!4#!c7;GGg!*#!S<B]g!:9A!S#!O>9I>B>B#!6WWQ#!/>>A<9I! <9ACD>A!
K@! :;HF:Y?@9CD;><9! 7;<I78>B?! HB7L<A>?! >L<A>9D>! G7B! ?HB>:A<9I! 7G! :;HF:Y?@9CD;><9!
H:=F7;7I@#!R"$@)9,5D()+"!"""0"Q6f6WE#!

):L<>?g! /#c#g! 4#! ,CB8:<9>g! S#+#! 27h>9?g! 4#! )<3<I;<:g! +#O#! /F:BHg! 2#+#! '7??g! %#!
/DF>Bh<9I>Bg!%#%#!c:9]>Bg!5#!4:9I<:B<9<g!:9A!*#1#!S:=>?#!"QQU#!37B8:=<79!7G!9>CB79:;!
<9=B:9CD;>:B! <9D;C?<79?!C9A>B;<>?!=F>!9>CB7;7I<D:;!A@?GC9D=<79! <9!8<D>!=B:9?I>9<D!G7B!
=F>!O)!8C=:=<79#!Q)&&#!QW0TEUfTJP#!

):L<?g! )#4#g! :9A! /#! /7M<9?]<#! 6WWP#! 4>8KB:9>! 9:97=CK>?0! A@9:8<D! ;79IYA<?=:9D>!
D799>D=<79?!K>=M>>9!:9<8:;!D>;;?#!@0:"$H)E"$S5&"$Q)&&$I*5&"!Q0JE"fJER#!

):M?79g!,#4#g!:9A!.#5#!):M?79#!6WWE#!47;>DC;:B!H:=FM:@?!7G!9>CB7A>I>9>B:=<79!<9!
1:B]<9?79^?!A<?>:?>#!LD*)4D)#!EW60P"QfP66#!

)>G:M>Cbg! .#g! *#! )7BK:9g! $#! +9=7<9>g! V#! 1<B>=g! +#! *:KB<>;g! (#! V:Dk87=g! $#! 3:;<??>Y
17<B<>Bg! /#! 3;:9AB7@g! )#! \7Bh<g! :9A! %#! O><9>9#! 6WWU#! $>CB7<88C9>! D799>D=<79?! <9!
e>eC9:;! :9A! <;>:;! 1>@>B^?! H:=DF>?! :=! L:B<7C?! K7L<9>! :I>?0! H7=>9=<:;! ?<=>?! G7B! HB<79!
9>CB7<9L:?<79#!Q)&&$?*..9)$H)."!E6Q0ETfJJ#!

)>G:M>Cbg!.#g!*#!)7BK:9g!2#!)>879D>:Cg! V#! 1<B>=g!(#! V7;7<?g!(#!,F>;;<9g! 2#!,F<>;>9g! %#!
O><9>9g!:9A!$#!+9=7<9>#!6WWT#!-9=>BG:D>?!K>=M>>9!A>9AB<=<D!D>;;?g!7=F>B!<88C9>!D>;;?g!
:9A!9>BL>!G<KB>?! <9!87C?>!1>@>B^?!H:=DF>?0!H7=>9=<:;!?<=>?!G7B!9>CB7<9L:?<79!<9!HB<79!
A<?>:?>?#!S*D,5.D"$H)."$?)D("!RR0"fQ#!

)>;:D7CB=>g!+#g!$#!/>BI>:9=g!+#!c:==>hg!2#Y+#!4:CB:I>g!3#!5>K>B=g!3#!1:?kC<>Bg!:9A!V#Y1#!
):L<A#! 6WW6#! ,:C! :IIB>I:=<79! <9! =F>! F<HH7D:8H:;! G7B8:=<790! :9! :I><9I! 7B! :!
H:=F7;7I<D:;!HB7D>??X!BYA"$G),54:5&"!EU0"6Q"f"6QR#!

)>;>:C;=g!$#'#g! S#,#!O:BB<?g! V#'#! '>>?g!:9A!/#!/CH:==:H79>#!6WWU#!37B8:=<79!7G!9:=<L>!
HB<79?! GB78! 8<9<8:;! D78H79>9=?! <9! L<=B7#! 2,5D"$ @0:&"$ %D0/"$ LD*"$ X"L"%"! "WJ0QUJ"f
QUJR#!



 152 

)>8CB7g!+#g!%#!4<9:g!'#!i:@>Ag!/#2#!4<;=79g! -#!1:B]>Bg!:9A!2#*#!*;:K>#!6WWT#!2:;D<C8!
A@?B>IC;:=<79! :9A! 8>8KB:9>! A<?BCH=<79! :?! :! CK<kC<=7C?! 9>CB7=7b<D! 8>DF:9<?8! 7G!
?7;CK;>!:8@;7<A!7;<I78>B?#!R"$I*5&"$Q()+"!6PW0"U6QJf"UEWW#!

)>9Ig! N#1#g! '#5#! +;K<9g! V#S#! 1>99>@g! +#S#! N7C9Ig! i#)#! +9A>B?79g! :9A!+#! '><9>B#! 6WWJ#!
)<GG>B>9=<:;!;7??!7G!?=B<:=:;!HB7e>D=<79!?@?=>8?!<9!OC9=<9I=79^?!A<?>:?>0!:!kC:9=<=:=<L>!
<88C97F<?=7DF>8<D:;!?=CA@#!R"$Q()+"$@)9,5040:"!6U0"JEf"RJ#!

)>?H;:=?g! 1#g!O#YV#! 5>>g! %#YV#! S:>g! 2#! 1:=B<D]g! %#! '7D]>9?=><9g! 5#! 2B>M?g! S#! /H>9D>Bg! %#!
4:?;<:Fg! :9A! /#YV#! 5>>#! 6WWQ#! -9D;C?<79! G7B8:=<79! :9A! 9>CB79:;! D>;;! A>:=F! =FB7CIF!
9>CB79Y=7Y9>CB79! =B:9?8<??<79! 7G! :;HF:Y?@9CD;><9#! 2,5D"$ @0:&"$ %D0/"$ LD*"$ X"L"%"!
"WR0"EW"Wf"EW"T#!

)<:hY%?H<97h:g! '#g! :9A! 2#! /7=7#! 6W"6#! O<IFYB>?7;C=<79! ?=BCD=CB>! 7G! <9G>D=<7C?! HB<79!
HB7=><90!=F>!G<9:;!GB79=<>B#!@0:"$L:,9D:"$S5&"$I*5&"!"Q0EUWfEUU#!

)<3<I;<:g! 4#g! %#! /:HHg! i#(#! 2F:?>g! /#c#! ):L<>?g! *#1#! S:=>?g! V#1#! .79?:==>;g! :9A! $#!
+B79<9#! "QQU#! +IIB>I:=<79! 7G! FC9=<9I=<9! <9! 9>CB79:;! <9=B:9CD;>:B! <9D;C?<79?! :9A!
A@?=B7HF<D!9>CB<=>?!<9!KB:<9#!LD*)4D)#!6UU0"QQWf"QQE#!

)79:;A?79g! i#4#g!c#! 5<g! i#+#! 2F<9Ig! /#! S:=:;7Lg! 2#Y2#! ,?:<g! :9A!2#+#1#! V7:h><B7#! 6WWE#!
&K<kC<=<9Y8>A<:=>A! ?>kC>?=B:=<79! 7G! 97B8:;! D>;;C;:B! HB7=><9?! <9=7! H7;@I;C=:8<9>!
:IIB>I:=>?#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WW0PPQ6fPPQU#!

)7BK:9g!*#g!.#!)>G:M>Cbg!2#!)>879D>:Cg!/#!3;:9AB7@g!1#YS#!.:9!5>BK>BIF>g!$#!3:;<??>Y
17<BB<>Bg!V#!1<B>=g!%#!O><9>9g!:9A!$#!+9=7<9>#!6WWU#!-9=>B:D=<79!K>=M>>9!A>9AB<=<D!D>;;?!
:9A! 9>BL>! G<KB>?! <9! ;@8HF7<A! 7BI:9?! :G=>B! 7B:;! ?DB:H<>! >bH7?CB>#! W*,D(5U.$ %,D("!
JT"0"WTUf"WRT#!

)7CIF>B=@g! /#%#g! V#5#! '>>L>?g! %#i#! 5CD:?g! i#5#! *:8K;>g! 4#! 5>?7B=g! :9A! '#4#! 27M>;;#!
6W"6#! )<?BCH=<79! 7G! 1CB]<9e>! D>;;! GC9D=<79!HB<7B! =7! FC9=<9I=<9! :DDC8C;:=<79! :9A! D>;;!
;7??!<9!:9!:9<8:;!87A>;!7G!OC9=<9I=79!)<?>:?>#!BYA"$@)9,5&"!6ER0"U"f"UP#!

)B:I:=?<?g! -#g! +#! %G?=B:=<:A<?g! :9A! /#! \><=;<9#! "QQP#! 47C?>! 8C=:9=! >8KB@7?! ;:D]<9I!
FC9=<9I=<9! :B>! B>?DC>A! GB78! ;>=F:;<=@! K@! M<;AY=@H>! >b=B:>8KB@79<D! =<??C>?#!
J)E)&5A+)4:#!"6T0"T6Qf"TEQ#!

)B:I:=?<?g! -#g!4#/#! 5>L<9>g! :9A! /#! \><=;<9#! 6WWW#! -9:D=<L:=<79!7G! OAF! <9! =F>!KB:<9! :9A!
=>?=<?! B>?C;=?! <9! HB7IB>??<L>! 9>CB7A>I>9>B:=<79! :9A! ?=>B<;<=@! <9! 8<D>#! @0:"$ G)4):"!
6R0EWWfEWR#!

)C>99M:;Ag!4#5#g!/#! V:I:A<?Fg!3#!*<7BI<9<g!1#V#!4CDF7M?]<g!:9A!/#! 5<9AkC<?=#!6WWR#!+!
9>=M7B]!7G!HB7=><9! <9=>B:D=<79?!A>=>B8<9>?!H7;@I;C=:8<9>!=7b<D<=@#!2,5D"$@0:&"$%D0/"$
LD*"$X"L"%"!"WE0""WT"f""WTR#!

)CGGg! i#g! V#/#! 1:C;?>9g!5#V#! S>I;<9I>Bg!)#'#! 5:9IK>F9g!:9A! V#2#!/=7C=#!6WWU#! 1?@DF<:=B<D!
?@8H=78?! <9! OC9=<9I=79^?! A<?>:?>! K>G7B>! A<:I97?<?0! =F>! HB>A<D=YO)! ?=CA@#! I*5&"$
2.MD(*0:,M#!R60"EJ"f"EJR#!

)CGG@g! 1#g! V#!c7;Gg! *#! 27;;<9?g! +#*#! )>.7>g! S#! /=B>>=>9g! :9A! )#! 27M>9#! "QUJ#! 5>==>B0!
17??<K;>!H>B?79Y=7YH>B?79!=B:9?8<??<79!7G!2B>C=hG>;A=YV:]7K!A<?>:?>#!@"$B4;&"$R"$S)/"!
6QW0RQ6fRQE#!



 153 

)C@:7g!4#g!2#!+8KB7?>g!'#!4@>B?g!+#!$7L>;;>==7g!3#!1>B?<DF>==<g!4#!3B79=:;<g!/#!37;?=><9g!
2#! '7??g!4#! 3B:9hg! :9A!4#!+KK7==#! "QQE#! ,B<9CD;>7=<A>! B>H>:=! ;>9I=F! <9?=:K<;<=@! :9A!
:I>!7G!79?>=!<9!OC9=<9I=79^?!A<?>:?>#!@0:"$G)4):"!J0EPUfEQ6#!

%:9>?g!%#)#g!:9A!*#*#!*;>99>B#!"QRP#!aYB:@!A<GGB:D=<79!?=CA<>?!79!:8@;7<A!G<;:8>9=?#!R"$
8*.:5D()+"$QM:5D()+"!"R0RUEfRUU#!

%;Y+I9:Gg!(#4#+#g!/#+#!/:;>8g!i#%#!1:;>7;7I7Cg!5#V#!277H>Bg!$#V#!3C;;M77Ag!4#V#!*<K?79g!
4#)#!2CBB:9g!V#+#!27CB=g!)#4#+#!4:99g!/#!-]>A:g!4#'#!277]?79g!V#!O:BA@g!:9A!)#!+;;?7H#!
6WWE#! +;HF:Y?@9CD;><9! <8H;<D:=>A! <9! 1:B]<9?79^?! A<?>:?>! <?! HB>?>9=! <9! >b=B:D>;;C;:B!
K<7;7I<D:;!G;C<A?g!<9D;CA<9I!FC8:9!H;:?8:#!K%LBI$R"!"U0"QJTf"QJU#!

%88:97C<;<A7Cg! %#g! i#! 4>;:DFB7<97Cg! ,#! '7C8>;<7=<?g! /#)#! *:BK<?g! 4#! $=h7C9<g! 5#O#!
4:BI:B<=<?g! 5#! /=>G:9<?g! :9A! i#! .>]B>;;<?#! 6W"W#! 2>;;YHB7ACD>A! :;HF:Y?@9CD;><9! <?!
?>DB>=>A! <9! :! D:;D<C8YA>H>9A>9=! 8:99>B! K@! >b7?78>?! :9A! <8H:D=?! 9>CB79:;!
?CBL<L:;#!R"$@)9,5.D*"!EW0RPEPfRPT"#!

%?=B:A:Y/r9DF>hg! +#4#g! ,#! 479=<>;g! V#! />I7L<:g! :9A! 5#! 4:??<>C#! 6WWQ#! *;C=:8:=>!
=7b<D<=@! <9! =F>! ?=B<:=C8! 7G! =F>! 'Rp6! OC9=<9I=79^?! A<?>:?>! =B:9?I>9<D! 8<D>! <?! :I>Y
A>H>9A>9=! :9A! D7BB>;:=>?! M<=F! A>DB>:?>A! ;>L>;?! 7G! I;C=:8:=>! =B:9?H7B=>B?#!
@)9,5C*5&"$J*."!EJ0UPfPR#!

%CI>9<9g! %#+#g! 1#V#! *:?]<;;g! :9A! V#c#! S>B8:9#! 6WWQ#! ,C99>;<9I! 9:97=CK>?! Z,$,[! :B>!
<9ACD>A!K@!O-.Y<9G>D=<79!7G!8:DB7HF:I>?0!:!H7=>9=<:;!8>DF:9<?8!G7B!<9=>BD>;;C;:B!O-.!
=B:GG<D]<9I#!Q)&&"$T++945&"!6TJ0"J6f"JP#!

3>99>8:Y$7=>?=<9>g! 2#g!/#5#!+BDF<K:;Ag!4#c#! V:D7K?79g! V#!27B>@YS;778g! V#/#!1:C;?>9g!
*#4#!1>:L@g!+#2#!*:8?=g!V#4#!O:8<;=79g!)#1#!/:;879g!:9A!,#5#!V>B9<I:9#!6WWJ#!-9!L<L7!
>L<A>9D>!7G!D>B>K>;;:B!:=B7HF@!:9A!D>B>KB:;!MF<=>!8:==>B!;7??!<9!OC9=<9I=79!A<?>:?>#!
@)9,5&5;M#!RE0QPQfQQT#!

3>BB>Bg! -#g! %#! *7C=:9g! 2#! 4:Bl9g! 4#V#! '>@g! :9A! ,#! '<K:;=:#! 6WWW#! SB:<9YA>B<L>A!
9>CB7=B7HF<D!G:D=7B!<9!OC9=<9I=79!A<?>:?>#!I,0*4$H)."!PRR06TUf6R"#!

3>LB<>Bg! S#g! )#! .<;>==>g! 3#! +BDF>Bg! )#! 57>Mg! c#! 3:<I;>g! 4#! .<A:;g! O#! 5:CA>g! :9A! *#!
':H7?7#!6WWJ#!2>;;?!B>;>:?>!HB<79?!<9!:??7D<:=<79!M<=F!>b7?78>?#!2,5D"$@0:&"$%D0/"$LD*"$
X"L"%"!"W"0QRPEfQRPP#!

3<9A>Bg!.#O#g!:9A!'#!*;7D]?FCK>B#!6WWU#!+8@;7<AYK>=:!:IIB>I:=<79#!@)9,5/);)4),$J*.#!
J0"Ef6U#!

3<9]K><9>Bg! /#g! +#4#! 2C>BL7g! '#-#! 47B<87=7g! :9A! 1#V#! 4CDF7M?]<#! 6WWR#! )<?>:?>Y
87A<G@<9I!H:=FM:@?!<9!9>CB7A>I>9>B:=<79#!R"$@)9,5.D*"!6R0"WEJQf"WETU#!

3<?DF>Bg! 4#g! ,#! 'n;<D]>g! +#! ':>K>Bg! +#! /:<;>Bg! 4#! 47?>Bg! S#! (>?DFg! /#! SB:9A9>Bg! +#!
+IChh<g!:9A!2#!c><??8:99#!"QQR#!1B<79!HB7=><9! Z1B1[!M<=F!:8<97YHB7b<8:;!A>;>=<79?!
B>?=7B<9I!?C?D>H=<K<;<=@!7G!1B1!]97D]7C=!8<D>!=7!?DB:H<>#!BSIV$R"!"T0"6TTf"6RJ#!

37B97g!5#/#!"QQR#!$>CB7H:=F7;7I@!7G!1:B]<9?79^?!A<?>:?>#!R"$@)9,5A0:(5&"$BYA"$@)9,5&"!
TT06TQf6U6#!



 154 

37CB9<>Bg! V#*#g! 3#! %?D:<IYO:@>g! ,#! S<;;>==>! A>! .<;;>8>CBg! :9A! (#! '7K:<9#! "QQT#!
&;=B:?=BCD=CB:;! ;7D:;<h:=<79! 7G! D>;;C;:B! HB<79! HB7=><9! Z1B1D[! <9! ?@9:H=<D! K7C=79?! 7G!
97B8:;!F:8?=>B!F<HH7D:8HC?#!Q"$H"$%D0/"$LD*"$TTTZ$LD*"$W*)#!E"P0EEQfEJJ#!

3B:?>Bg!O#g! i#5#! SB7M9g! i#! /=>M:B=g! -#!4D2799>;;g! 1#!4DSB<A>g! :9A!+#!c<;;<:8?#! "QQR#!
'>H;<D:=<79!7G! ?DB:H<>! <9! ?H;>>9?! 7G! /2-)!8<D>! G7;;7M?! B>D79?=<=C=<79!M<=F!M<;AY=@H>!
87C?>!K79>!8:BB7M#!R"$G)4"$W*,5&"!UU!Z!1=!P[0"QETf"QJW#!

3B:?>Bg! O#g! -#!4D2799>;;g! *#+#!c>;;?g! :9A!4#!):M?79#! "QPP#! ,B:9?8<??<79!7G! K7L<9>!
?H79I<G7B8!>9D>HF:;7H:=F@!=7!8<D>#!W):"$H)D"!"6E0JU6#!

3B><Bg!)#S#g!+#V#!$<D7;;g!-#!i;@CK<9g!/#!1:9<D7g!V#4#!4D!)79:;Ag!%#!'<??>g!%#+#!+?:9=>g!4#+#!
3:BB7Mg! '#S#! />??<79?g! O#'#! /:<K<;g! +#'#! 2;:B]>g! 4#V#! '7M:9g! )#4#! c:;?Fg! :9A! V#!
27;;<9I>#!6W""#!-9=>B:D=<79!K>=M>>9!HB<79!HB7=><9!:9A!=7b<D!:8@;7<A!d!:??>8K;<>?!D:9!
K>!=F>B:H>C=<D:;;@!=:BI>=>A!:=!8C;=<H;>!?<=>?#!@0:$Q5++94#!60EER#!

3B7?=g! S#g! :9A! 4#-#! )<:879A#! 6WWQ#! ,F>! >bH:9A<9I! B>:;8! 7G! HB<79! HF>978>9:! <9!
9>CB7A>I>9>B:=<L>!A<?>:?>#!2,*54#!E0UJfUU#!

3B7?=g! S#g! :9A! 4#-#! )<:879A#! 6W"W#! 1B<79Y;<]>! 8>DF:9<?8?! <9! 9>CB7A>I>9>B:=<L>!
A<?>:?>?#!@0:"$H)E"$@)9,5.D*"!""0"TTf"TQ#!

3B7?=g! S#g! V#! (;;>?DFg! O#!c<;;>g! :9A!4#-#! )<:879A#! 6WWQ#! 279G7B8:=<79:;! A<L>B?<=@! 7G!
M<;AY=@H>! ,:C! G<KB<;?! ?H>D<G<>A! K@! =>8H;:=>A! D79G7B8:=<79! DF:9I>#! R"$ I*5&"$ Q()+"!
6PJ0ETJRfETT"#!

3C?D7g! 3#'#g! 2#! \CDD:=7g! 4#! ,:B=:B<g! +#! 4:B=7B:9:g! \#! )>! 4:BDFg! 2#! *<:8Hvg! %#!
2:==:9>7g!:9A!*#!S>B9:BA<#!6WWE#!27Y;7D:;<h:=<79!7G!KB:<9YA>B<L>A!9>CB7=B7HF<D!G:D=7B!
ZS)$3[!:9A!M<;AY=@H>!FC9=<9I=<9!<9!97B8:;!:9A!kC<97;<9<D!:D<AY;>?<79>A!B:=!KB:<9#!B9,"$
R"$@)9,5.D*"!"P0"WQEf""W6#!

*:KB<>;g!V#4#g!S#!(>?DFg!O#!iB>=h?DF8:Bg!4#!/D7==g!:9A!/#S#!1BC?<9>B#!"QQ6#!47;>DC;:B!
D;79<9I!7G!:!D:9A<A:=>!DF<D]>9!HB<79!HB7=><9#!2,5D))/*4;.$5F$:()$@0:*540&$%D0/)+M$5F$
LD*)4D).#!PQ0QWQUfQ"W"#!

*:BA>9g! *#+#g! :9A! +#'#! 5:! /H:A:#! 6W"6#! -9=>BD>;;C;:B! Z8<?[D788C9<D:=<79! <9!
9>CB7A>I>9>B:=<L>!A<?>:?>#!@)9,54#!UE0PPRfQW"#!

*:??>=g! 4#g! 4#+#! S:;AM<9g! )#O#! 5;7@Ag! V#4#! *:KB<>;g! )#4#! O7;=h8:9g! 3#! 27F>9g! '#!
3;>==>B<D]g! :9A! /#S#! 1BC?<9>B#! "QQ6#! 1B>A<D=>A! :;HF:YF>;<D:;! B>I<79?! 7G! =F>! HB<79!
HB7=><9! MF>9! ?@9=F>?<h>A! :?! H>H=<A>?! G7B8! :8@;7<A#! 2,5D"$ @0:&"$ %D0/"$ LD*"$ X"L"%"!
PQ0"WQJWf"WQJJ#!

*:C=F<>Bg! 5#'#g! S#2#! 2F:BB<9g! 4#! S7BB>;;Y1:It?g! V#1#! )78H<>BB>g! O#! ':9I79>g! 3#1#!
27BA>;<tB>?g! V#!)>!4>@g!4#%#!4:D)79:;Ag! .#! 5>??8:99g! /#! OC8K>B=g! :9A! 3#! /:CA7C#!
6WWJ#!OC9=<9I=<9!D79=B7;?!9>CB7=B7HF<D!?CHH7B=!:9A!?CBL<L:;!7G!9>CB79?!K@!>9F:9D<9I!
S)$3!L>?<DC;:B!=B:9?H7B=!:;79I!8<DB7=CKC;>?#!Q)&&#!""P0"6Uf"EP#!

*<8K>;g!)#+#g!O#S#!$@I::BAg!%#%#!27GG>@g!%#2#!*C9=F>Bg!V#!5:CBj9g!\#+#!*<8K>;g!:9A!/#4#!
/=B<==8:==>B#! 6W"W#! 4>87B@! <8H:<B8>9=! <9! =B:9?I>9<D! +;hF><8>B! 8<D>! B>kC<B>?!
D>;;C;:B!HB<79!HB7=><9#!R"$@)9,5.D*"!EW0RERUfREUJ#!



 155 

*;:K>g! 2#*#! 6WWR#! 278879! 8>DF:9<?8?! 7G! :8@;7<A! 7;<I78>B! H:=F7I>9>?<?! <9!
A>I>9>B:=<L>!A<?>:?>#!@)9,5C*5&"$%;*4;#!6U0TUWfTUT#!

*7:=>g! +#4#! "QQU#! 47;>DC;:B! I>9>=<D?! 7G! +;hF><8>B^?! A<?>:?>#! G),*0:,*D.#! T6! /CHH;!
60/Qf"6#!

*7A<9g! V#)#g! i#! 27;78K7g! 4#! 47;<9:Y2:;:L<=:g! *#! i>B@>Bg! )#! \:;:g! S#2#! 2F:BB<9g! 1#!
)<>=B<DFg!4#Y5#!.7;L>B=g!3#!*C<;;>87=g! -#!)B:I:=?<?g!N#! S>;;:<DF>g!3#!/:CA7Cg!5#!$IC@>9g!
:9A! /#! OC8K>B=#! 6W"W#! OC9=<9I=<9! <?! B>kC<B>A! G7B! 8<=7=<D! ?H<9A;>! 7B<>9=:=<79! :9A!
8:88:;<:9!9>CB7I>9>?<?#!@)9,54#!RU0EQ6fJWR#!

*7>A>B=g!4#g!4#*#! /H<;;:9=<9<g!$#V#! 2:<B9?g! :9A! '#+#! 2B7M=F>B#! "QQ6#! ,:C!HB7=><9?! 7G!
+;hF><8>B! H:<B>A! F>;<D:;! G<;:8>9=?0! :K97B8:;! HF7?HF7B@;:=<79! 7G! :;;! ?<b! KB:<9!
<?7G7B8?#!@)9,54#!P0"TQf"RP#!

*7]F:;>g!i#2#g!*#1#!$>M9:8g!4#N#!/F>B8:9g!:9A!N#(#!2F>B97GG#!6WWT#!47AC;:=<79!7G!
HB<79YA>H>9A>9=! H7;@I;C=:8<9>! :IIB>I:=<79! :9A! =7b<D<=@! K@! DF:H>B79>! HB7=><9?! <9!
=F>!@>:?=!87A>;#!R"$I*5&"$Q()+"!6PW066PWQf66P"P#!

*7C??>=g! i#g! %#! /DF<GGg! 2#! 5:9I>L<9g! \#! 4:B<e:97L<Dg! +#! 2:HC=7g! )#,#! SB7M8:9g! $#!
2F>97C:BAg!3#!A>!2F:C879=g!+#!4:B=<97g!V#!%99<9I:g!V#Y2#!(;<L7Y4:B<9g!)#!4o99>;g!:9A!
2#!\CBh7;7#!6WWQ#!1B<79?!F<e:D]!=C99>;;<9I!9:97=CK>?!G7B!<9=>BD>;;C;:B!?HB>:A#!@0:"$Q)&&$
I*5&"!""0E6PfEER#!

*7C??>=g! i#g! :9A! 2#! \CBh7;7#! 6WWQ#! ,C99>;;<9I! 9:97=CK>?0! :! F<IFM:@! G7B! HB<79!
?HB>:A<9IX!2,*54#!E0QJfQP#!

*B:F:8g!'#i#g!N#!)>9Ig!%#V#!/;7Mg!S#!O:<IFg!$#!S<??:A:g!*#!5Cg!V#!1>:B?79g!V#!/F>F:A>Fg!
5#!S>B=B:8g!\#!4CBHF@g!/#2#!c:BK@g!2#$#!)7=@g!/#!'7@g!2#5#!c>;;<9I=79g!S#'#!5>:L<==g!5#+#!
':@879Ag!)#c#!$<DF7;?79g!:9A!4#'#!O:@A>9#!6WWR#!2;>:L:I>!:=!=F>!D:?H:?>YR!?<=>! <?!
B>kC<B>A!G7B!9>CB79:;!A@?GC9D=<79!:9A!A>I>9>B:=<79!AC>! =7!8C=:9=!FC9=<9I=<9#!Q)&&#!
"6T0""UQf""Q"#!

*Cg!a#g!2#!5<g!c#!c><g!.#!57g!/#!*79Ig!/#YO#!5<g!,#!-M:?:=7g!/#!-=7F:B:g!a#YV#!5<g!-#!47A@g!$#!
O><9=hg! :9A! a#c#! N:9I#! 6WWT#! 1:=F7;7I<D:;! D>;;YD>;;! <9=>B:D=<79?! >;<D<=>A! K@! :!
9>CB7H:=F7I>9<D! G7B8! 7G! 8C=:9=! OC9=<9I=<9! D79=B<KC=>! =7! D7B=<D:;! H:=F7I>9>?<?! <9!
O)!8<D>#!@)9,54#!JR0JEEfJJJ#!

*C>?=g! c#2#g! V#4#! /<;L>B8:9g! %#! 17]B<?F>L?]@g! 4#+#! (^$><;;g! 5#-#! *B:Ag! :9A! $#'#!
2:?F8:9#!6W""#!*>9>B:;<h:=<79!7G! =F>!HB<79!F@H7=F>?<?! =7!7=F>B!9>CB7A>I>9>B:=<L>!
A<?>:?>?0!:9!<8H>BG>D=!G<=#!R"$?5Y*D5&"$B4E*,54"$8)0&:($20,:$%#!UJ0"JEEf"JTQ#!

*C7g! V#5#g! :9A! .#4#YN#! 5>>#! 6W""#! />>A<9I! 7G! $7B8:;! ,:C! K@! 1:=F7;7I<D:;! ,:C!
279G7B8>B?!)B<L>?!1:=F7I>9>?<?!7G!+;hF><8>BY;<]>!,:9I;>?#!R"$I*5&"$Q()+"!6PR0"TE"Uf
"TEE"#!

*C?>;;:g!V#3#g!$#/#!c>b;>Bg!1#4#!2799>:;;@g!/#5#!$:@;7Bg!4#+#!+9A>B?79g!'#%#!,:9h<g!1#2#!
c:=]<9?g! i#! (==<9:g! 4#'#! c:;;:D>g! :9A! +#N#! /:]:ICDF<#! "QPE#! +! H7;@87BHF<D! )$+!
8:B]>B!I>9>=<D:;;@!;<9]>A!=7!OC9=<9I=79^?!A<?>:?>#!@0:9,)#!EWR06EJf6EP#!

*C=>]C9?=g! 2#+#g! /#O#! 5<g! O#! N<g! V#/#! 4C;B7@g! /#! iC>88>B;>g! '#! V79>?g! )#! '@>g! '#V#!
3>BB:9=>g! /#4#! O>B?DFg! :9A! a#V#! 5<#! "QQQ#! $CD;>:B! :9A! 9>CB7H<;! :IIB>I:=>?! <9!
OC9=<9I=79^?!A<?>:?>0!B>;:=<79?F<H!=7!9>CB7H:=F7;7I@#!R"$@)9,5.D*"!"Q06T66f6TEJ#!



 156 

O:D]:8g!+#/#g!'#!/<9I:B:e:g!2#5#!c>;;<9I=79g!4#!4>=h;>Bg!i#!4D2C=DF>79g!,#!\F:9Ig!4#!
i:;DF8:9g! :9A! 4#'#! O:@A>9#! "QQP#! ,F>! <9G;C>9D>! 7G! FC9=<9I=<9! HB7=><9! ?<h>! 79!
9CD;>:B!;7D:;<h:=<79!:9A!D>;;C;:B!=7b<D<=@#!R"$Q)&&$I*5&"!"J"0"WQUf""WT#!

O:8H>;g!O#g!/#V#!,><H>;g!,#!3CDF?K>BI>Bg!$#!+9AB>:?>9g!V#!c<;=G:9Ig!4#!(==7g!N#!/F>9g!'#!
)7A>;g!N#!)Cg!4#!3:B;7Mg!O#YV#!4w;;>Bg!i#!S;>997Mg!:9A!i#!SC>BI>B#!6WWJ#!.:;C>!7G!2/3!
K>=:Y:8@;7<A"YJ6!:9A! =:C!:?!HB>A<D=7B?!7G!+;hF><8>B^?!A<?>:?>!<9!H:=<>9=?!M<=F!8<;A!
D7I9<=<L>!<8H:<B8>9=#!S5&"$2.MD(*0:,M#!Q0UWTfU"W#!

O:9A?g!/#g!4#&#!/:ee:Ag!4#V#!$>M=79g!:9A!+#!c@==>9K:DF#! 6W""#! -9! L<=B7!:9A! <9!L<L7!
:IIB>I:=<79! 7G! :! GB:I8>9=! 7G! FC9=<9I=<9! HB7=><9! A<B>D=;@! D:C?>?! GB>>! B:A<D:;!
HB7ACD=<79#!V#!S<7;#!2F>8#!6PR0JJT"6fJJT6W#!

O:9?>9g! 2#g! %#! +9I7=g! +#Y5#! S>BI?=Bw8g! V#+#! /=><9>Bg! 5#! 1<>B<g! *#! 1:C;g! ,#3#! (C=><B7g! '#!
4>;]<g!1#!i:;;C9]<g!i#!37Ig!V#YN#!5<g!:9A!1#!SBC9A<9#!6W""#!xY/@9CD;><9!HB7H:I:=>?!GB78!
87C?>! KB:<9! =7! IB:G=>A! A7H:8<9>BI<D! 9>CB79?! :9A! ?>>A?! :IIB>I:=<79! <9! DC;=CB>A!
FC8:9!D>;;?#!R"$Q&*4"$T4E).:"!"6"0U"TfU6T#!

O:BA@g! V#g! :9A! O#! (BB#! 6WWR#! ,F>! I>9>=<D?! 7G! 9>CB7A>I>9>B:=<L>! A<?>:?>?#! R"$
@)9,5D()+"!QU0"RQWf"RQQ#!

O:Be>?g! 1#g! :9A! %#%#! c:9]>B#! 6WWE#! ,F>! FC9=! G7B! FC9=<9I=<9! GC9D=<790! <9=>B:D=<79!
H:B=9>B?!=>;;!8:9@!A<GG>B>9=!?=7B<>?#!?,)4/.$I*5D()+"$LD*"!6P0J6TfJEE#!

O:??>;g! S#g! /#! ,>??;>Bg! '#5#4#! 3:C;;g! :9A! 1#2#! %8?79#! 6WWP#! *;C=:8:=>! CH=:]>! <?!
B>ACD>A!<9!HB>GB79=:;!D7B=>b!<9!OC9=<9I=79^?!A<?>:?>#!@)9,5D()+"$H)."!EE06E6f6EU#!

O>IA>g! '#/#g! V#+#! 4:?=B<:99<g! 4#'#! /D7==g! i#+#! )>3>:g! 1#! ,B>8K;:@g! 4#! ,7BDF<:g! /#V#!
)>+B879Ag! /#S#! 1BC?<9>Bg! :9A! .#'#! 5<9I:HH:#! "QQP#! +! =B:9?8>8KB:9>! G7B8! 7G! =F>!
HB<79!HB7=><9!<9!9>CB7A>I>9>B:=<L>!A<?>:?>#!LD*)4D)#!6UQ0P6UfPEJ#!

O>II>Kyg!'#g!2#4#! 1B>??g!*#!*C99>?g! 5#!*79hr;>hg!:9A!4#! V>GGB>@#!6WW6#!)<?=B<KC=<79!
:9A!:DDC8C;:=<79!7G!1B1!<9!IC=Y:??7D<:=>A!:9A!H>B<HF>B:;!;@8HF7<A!=<??C>!7G!?DB:H<>Y
:GG>D=>A!/CGG7;]!?F>>H#!R"$G)4"$W*,5&"!PE0JUQfJPQ#!

O>HH9>Bg! 3#5#g! +#)#! 2FB<?=g!4#+#! i;><9g!4#! 1B<9hg!4#! 3B<>Ag! V#Y1#! iB:>F>9KCF;g! :9A! +#!
+IChh<#!6WW"#!,B:9?>H<=F>;<:;!HB<79!=B:9?H7B=!K@!4!D>;;?#!@0:$S)/#!U0QURfQUU#!

O>Bg! 5#Y/#g! :9A! 5#/#S#! *7;A?=><9#! 6WWP#! %9F:9D>A! ?>9?<=<L<=@! 7G! ?=B<:=:;! 9>CB79?! =7!
:b79:;!=B:9?H7B=!A>G>D=?!<9ACD>A!K@!8C=:9=!FC9=<9I=<9#!R"$@)9,5.D*"!6P0"ERR6f"ERU6#!

O<;;g!+#3#g!4#!)>?KBC?;:<?g!/#!V7<9>Bg!i#2#!/<A;>g!-#!*7M;:9Ag!V#!27;;<9I>g!5#V#!)7>@g!:9A!1#!
5:9=7?#!"QQU#!,F>!?:8>!HB<79!?=B:<9!D:C?>?!L2V)!:9A!S/%#!@0:9,)#!EPQ0JJPfJTWg!T6R#!

O<;;g! +#3#g! /#! V7<9>Bg! V#! 5<9>F:9g! 4#! )>?KBC?;:<?g! 1#5#! 5:9=7?g! :9A! V#! 27;;<9I>#! 6WWW#!
/H>D<>?YK:BB<>BY<9A>H>9A>9=! HB<79! B>H;<D:=<79! <9! :HH:B>9=;@! B>?<?=:9=! ?H>D<>?#!
2,5D))/*4;.$5F$:()$@0:*540&$%D0/)+M$5F$LD*)4D).#!QU0"W6JPf"W6TE#!

O7AI>?g!+#g!+#)#!/=B:9Ag!+#i#!+B:I:]<g!+#!iCF9g!,#!/>9I?=:Ig!*#!OCIF>?g!5#+#!%;;<?=79g!2#!
O:B=7Ig!)#'#!*7;A?=><9g!)#!,FCg!\#'#!O7;;<9I?M7B=Fg!3#!27;;<9g!S#!/@9>]g!1#+#!O7;8:9?g!
+#S#!N7C9Ig!$#/#!c>b;>Bg!4#!)>;7B>9h<g!2#!i77H>BK>BIg!/#V#!+CI77Ag!'#5#4#!3:C;;g!V#4#!
(;?79g! 5#! V79>?g! :9A! '#! 5C=F<Y2:B=>B#! 6WWR#! '>I<79:;! :9A! D>;;C;:B! I>9>! >bHB>??<79!
DF:9I>?!<9!FC8:9!OC9=<9I=79^?!A<?>:?>!KB:<9#!89+"$S5&"$G)4):"!"T0QRTfQUU#!



 157 

O7GG9>Bg! *#g! 4#Y5#! -?;:9Ag! :9A! 1#! )e<:9#! 6WWT#! 1CB<G<D:=<79! 7G! 9>CB79:;! <9D;C?<79?! 7G!
H:=<>9=?!M<=F!OC9=<9I=79^?!A<?>:?>!B>L>:;?!:!KB7:A!B:9I>!7G!$Y=>B8<9:;!GB:I8>9=?!7G!
>bH:9A>A!FC9=<9I=<9!:9A!<9?7;CK;>!H7;@8>B?#!R"$@)9,5D()+"!QT0"6Tf"ER#!

O?<:7g!i#g!O#3#!S:]>Bg!,#V#!2B7Mg!4#!17C;=>Bg!3#!(M>9g!V#)#!,>BM<;;<I>Bg!)#!c>?=:M:@g!V#!
(==g! :9A! /#S#! 1BC?<9>B#! "QPQ#! 5<9]:I>! 7G! :! HB<79! HB7=><9! 8<??>9?>! L:B<:9=! =7!
*>B?=8:99Y/=BoC??;>B!?@9AB78>#!@0:9,)#!EEP0EJ6fEJT#!

OC:9Ig!3#Y1#g!2#3#!3:BkCF:Bg!$#+#!4:KK7==g!4#%#! SBCD>g!:9A!*#*#!4:D1F>B?79#!6WW6#!
4<IB:=<9I! <9=>?=<9:;! A>9AB<=<D! D>;;?! =B:9?H7B=! 1B1Z/D[! GB78! =F>! IC=#! R"$ G)4"$ W*,5&"!
PE06RUf6U"#!

OC8K>B=g! /#g! %#+#! SB@?79g! 3#1#! 27BA>;<tB>?g! $#2#! 27997B?g! /#'#! ):==:g! /#! 3<9]K><9>Bg!
4#%#!*B>>9K>BIg!:9A!3#! /:CA7C#!6WW6#! ,F>! -*3Y"p+]=! H:=FM:@! <?!9>CB7HB7=>D=<L>! <9!
OC9=<9I=79^?! A<?>:?>! :9A! <9L7;L>?! OC9=<9I=<9! HF7?HF7B@;:=<79! K@! +]=#! J)E"$ Q)&&#!
60PE"fPEU#!

-8:h>]<g! $#g! +#! />977g! :9A! N#! 3C?>#! "QQ6#! -?! =F>! G7;;<DC;:B! A>9AB<=<D! D>;;! :! HB<8:B<;@!
?=:=<79:B@!D>;;X!T++945&5;M#!UR0TWPfT"W#!

-?::D?g! V#)#g! *#/#! V:D]?79g! :9A! )#4#! +;=8:99#! 6WWR#! ,F>! B7;>! 7G! =F>! D>;;C;:B! HB<79!
HB7=><9!<9!=F>!<88C9>!?@?=>8#!Q&*4$BYA$T++945&#!"JR0"fP#!

V:D]?79g!c#/#g!+#c#!S7B]7M?]<g!O#!3::?g!+#)#!/=>>;>g!(#)#!i<9Ig!$#!c:=?79g!+#!V:?:97GGg!
:9A! /#! 5<9AkC<?=#! 6WWQ#! /H79=:9>7C?! I>9>B:=<79! 7G! HB<79! <9G>D=<L<=@! <9! G:=:;! G:8<;<:;!
<9?789<:!]97D]<9!8<D>#!@)9,54#!RE0JEPfJTW#!

V:9Ig!+#g!O#YV#! 5>>g! V#Y%#! /C]g! V#Yc#! VC9Ig! i#Y1#! i<8g! :9A! /#YV#! 5>>#! 6W"W#! $79YD;:??<D:;!
>b7D@=7?<?!7G!:;HF:Y?@9CD;><9!<?!?>9?<=<L>!=7!G7;A<9I!?=:=>?!:9A!HB787=>A!C9A>B!?=B>??!
D79A<=<79?#!R"$@)9,5D()+"!""E0"6REf"6UJ#!

V:BB>==g!V#,#g!:9A!1#,#! 5:9?KCB@!VB#!"QQE#!/>>A<9I!_79>YA<8>9?<79:;!DB@?=:;;<h:=<79`!7G!
:8@;7<A0!:!H:=F7I>9<D!8>DF:9<?8!<9!+;hF><8>B^?!A<?>:?>!:9A!?DB:H<>X!Q)&&#!UE0"WTTf
"WTP#!

V>?=>g! )#.#g! 5#! S:BK:9g! :9A! V#! 1:B<?<#! "QPJ#! '>ACD>A! 1CB]<9e>! D>;;! A>9?<=@! <9!
OC9=<9I=79^?!A<?>:?>#!BYA"$@)9,5&"!PT0UPfPR#!

V7F9?79g! '#,#g! :9A! 2#V#! *<KK?#! "QQP#! 2B>C=hG>;A=YV:]7K! A<?>:?>! :9A! B>;:=>A!
=B:9?8<??<K;>!?H79I<G7B8!>9D>HF:;7H:=F<>?#!@"$B4;&"$R"$S)/"!EEQ0"QQJf6WWJ#!

V7CBA:<9g! 1#g! 5#O#! S>BI>B?>9g! i#! SF:C]:CB:;;@g! 1#! S>hh<g!4#! /:9=>;;7g!4#!)78>BDkg! 2#!
4:=C=>g!3#!,79>;;7g!.#!*C9A>B?>9g!:9A!+#!.7;=>BB:#!6WWU#!*;C=:8:=>!>b7D@=7?<?!GB78!
:?=B7D@=>?!D79=B7;?!?@9:H=<D!?=B>9I=F#!@0:"$@)9,5.D*"!"W0EE"fEEQ#!

VCD]>Bg!4#g!:9A! 5#2#!c:;]>B#! 6W""#! 1:=F7I>9<D!HB7=><9!?>>A<9I! <9!+;hF><8>B!A<?>:?>!
:9A!7=F>B!9>CB7A>I>9>B:=<L>!A<?7BA>B?#!%44"$@)9,5&"!UW0TE6fTJW#!

i:A<Cg! -#g! :9A! O#%#! *>9A>;8:9#! 6W""#! OC8:9! -88C97A>G<D<>9D@! .<BC?! =@H>! "!
%9A7D@=<D! ,B:GG<D]<9I! ,FB7CIF! 4:DB7HF:I>! SB<AI<9I! 279AC<=?! 3:D<;<=:=>?! /HB>:A! 7G!
-9G>D=<79#!R$@)9,5*++94)$2(0,+0D5&#!R0RTPfRUT#!



 158 

i:>DFg!/#g!:9A!*#!S:9]>B#!6WWR#!2C;=CB<9I!F<HH7D:8H:;!9>CB79?#!@0:$2,5:5D#!"06JWRf
6J"T#!

i:I:97L<DFg! )#g! '#! i7H<=7g! :9A! V#! 3B@A8:9#! 6WWP#! 4<?G7;A>A! HB7=><9?! H:B=<=<79!
K>=M>>9!=M7!A<?=<9D=!kC:;<=@!D79=B7;!D78H:B=8>9=?#!@0:9,)#!JTJ0"WPPf"WQT#!

i:;DF8:9g! 4#+#g! '#i#! *B:F:8g! *#! a<:g! O#S#! i7<A>g! V#*#! O7AI?79g! i#2#! *B:F:8g! N#1#!
*7;AK>BIg! '#)#! *<>=hg! 2#4#! 1<D]:B=g! :9A! 4#'#! O:@A>9#! "QQR#! OC9=<9I=<9! <?!
CK<kC<=<9:=>A! :9A! <9=>B:D=?! M<=F! :! ?H>D<G<D! CK<kC<=<9YD79eCI:=<9I! >9h@8>#! R"$ I*5&"$
Q()+"!6U"0"QEPTf"QEQJ#!

i:9>g! 4#)#g! c#V#! 5<H<9?]<g! 4#V#! 2:;;:F:9g! 3#! S<:9g! '#+#! )CBF:8g! '#)#! /DFM:Bhg! +#%#!
'7F>Bg!:9A!5#2#!c:;]>B#!6WWW#!%L<A>9D>!G7B!?>>A<9I!7G!K>=:!Y:8@;7<A!K@!<9=B:D>B>KB:;!
<9GC?<79! 7G! +;hF><8>B! KB:<9! >b=B:D=?! <9! K>=:! Y:8@;7<A! HB>DCB?7B! HB7=><9Y=B:9?I>9<D!
8<D>#!R"$@)9,5.D*"!6W0ERWRfER""#!

i:9Cg!$#g!N#! -87]:M:g!)#$#!)B>DF?>;g!'#+#!c<;;<:8?79g!2#'#!S<B]>==g!2#V#!S7?=7D]g!:9A!
V#1#! SB7D]>?#! 6WW6#! ,B:9?G>B! 7G! /DB:H<>! 1B<79! -9G>D=<L<=@! K@! 2>;;! 279=:D=! <9! 2C;=CB>#!
Q9,,)4:$I*5&5;M#!"60T6EfTEW#!

i:H:?<g! \#3#g! *#3#! SCB=79g! 5#)#! /FC;=hg! V#*#! ,>Mg! :9A! +#i#! /h:]:;#! "QQE#! -9ACD=<79! 7G!
GC9D=<79:;! G7;;<DC;:B! A>9AB<=<D! D>;;! A>L>;7H8>9=! <9! ?>L>B>! D78K<9>A!
<88C97A>G<D<>9D@!8<D>#!-9G;C>9D>!7G!S!:9A!,!D>;;?#!R"$T++945&"!"TW06RJPf6RTP#!

i>I>;g!i#S#g!%#!/:HHg! V#!N7A>Bg!S#!2C<GG7g!5#!/7K<9g!N#V#!i<8g!\#YO#!z<9g!4#'#!O:@A>9g!$#!
+B79<9g! )#5#! /D7==g! *#! -?>9K>BIg!c#O#! *7;A8:99g! :9A!4#! )<3<I;<:#! 6WWT#! OC9=<9I=<9!
:??7D<:=>?! M<=F! :D<A<D! HF7?HF7;<H<A?! :=! =F>! H;:?8:! 8>8KB:9>#! R"$ I*5&"$ Q()+"!
6PW0ERJRJfERJUE#!

i>I>;g! i#S#g! .#! /DF>M]C97Mg! %#! /:HHg!$#!4:??7g! %#%#!c:9]>Bg!4#!)<3<I;<:g! :9A!c#O#!
*7;A8:99#! 6WWQ#! 17;@I;C=:8<9>! >bH:9?<79! <9! FC9=<9I=<9! <9DB>:?>?! <=?! <9?>B=<79! <9=7!
;<H<A!K<;:@>B?#!I*5D()+"$I*5A(M."$H)."$Q5++94"!EPU0JU6fJUT#!

i>??>;?g!O#c#g!5#$#!$IC@>9g!/#!$:K:L<g!:9A!'#!4:;<97M#!6W"W#!,F>!HB<79!HB7=><9!:?!:!
B>D>H=7B!G7B!:8@;7<AYK>=:#!@0:9,)#!JRR0%EfJ{!A<?DC??<79!%JfT#!

iF7?B:L:9<g! O#g! N#! \F:9Ig! /#! ,?C=?C<g! /#! O:8>>Ag! 2#! +;=<>Bg! V#! O:8<Ag! 5#! 2F>9g! 4#!
.<;;>8:<B>g! \#! +;<g! 3#'#! V<B<]g! :9A! *#c#! \:8H79<#! 6WWP#! 1B<79! HB7=><9! :==>9C:=>?!
>bD<=7=7b<D<=@!K@!<9F<K<=<9I!$4)+!B>D>H=7B?#!R"$G)4"$2(M.*5&"!"E"0<T#!

i<8g! V#Y-#g! -#!2:;<g!i#!/CB>M<Dhg!z#!i79Ig!*#V#!':@879Ag!'#!+=:B:?F<g!S#!':D>g!5#!z<9Ig!1#!
*:8K>==<g!S#!2:CIF>@g!:9A!c#i#!/CB>M<Dh#!6W"W#!4:88:;<:9!HB<79?!I>9>B:=>A!GB78!
K:D=>B<:;;@! >bHB>??>A! HB<79! HB7=><9! <9! =F>! :K?>9D>! 7G! :9@!8:88:;<:9! D7G:D=7B?#! R"$
I*5&"$Q()+"!6PT0"JWPEf"JWPU#!

i<8g! 4#c#g! N#! 2F>;;<:Fg! /#c#! i<8g! \#! (=M<97M?]<g! :9A! -#! S>hHB7hL:99@#! 6WWQ#!
/>D79A:B@!?=BCD=CB>!7G!OC9=<9I=<9!:8<97Y=>B8<9:;!B>I<79#!L:,9D:9,)#!"U0"6WTf"6"6#!

i<8K>B;<9g! '#O#g! :9A! 2#+#! c:;]>B#! "QPQ#! 1:=F7I>9>?<?! 7G! ?DB:H<>! <9! 8<D>! :G=>B!
<9=B:I:?=B<D!<9G>D=<79#!W*,9.$H)."!"606"Ef66W#!



 159 

i;><9g!4#+#g!'#!3B<IIg!%#!3;>DF?<Ig!+#V#!':>K>Bg!&#!i:;<9]>g!O#!S;C>=F8:99g!3#!S77=hg!4#!
/C=>Bg!'#4#!\<9]>B9:I>;g!:9A!+#!+IChh<#!"QQU#!+!DBCD<:;!B7;>!G7B!S!D>;;?!<9!9>CB7<9L:?<L>!
?DB:H<>#!@0:9,)#!EQW0RPUfRQW#!

i;><9g! 4#+#g! 1#/#! i:>?>Bg! 1#! /DFM:Bhg! O#! c>@Ag! -#! a>9:B<7?g! '#4#! \<9]>B9:I>;g! 4#2#!
2:BB7;;g! V#/#!.>BK>>]g!4#!S7==7g!4#V#!c:;H7B=g!O#!47;<9:g!&#! i:;<9]>g!O#!+DF:Y(BK>:g!
:9A! +#! +IChh<#! 6WW"#! 278H;>8>9=! G:D<;<=:=>?! >:B;@! HB<79! H:=F7I>9>?<?#! @0:"$ S)/"!
U0JPPfJQ6#!

i77@8:9g! )#5#g! *#c#! S@B9>g! /#! 4D2;>;;:9g! )#! $<>;?>9g!4#! ,79>g! O#!c:;A8:99g! ,#4#!
27GG8:9g!i#'#!4D2CBB@g! V#5#!1;:==g!:9A!V#/#!57I:9#!"QQT#! -9!L<L7! =B:9?G>B!7G!*1-Y;<9]>A!
D78H;>8>9=! B>?=B<D=<79! G:D=7B?! GB78! >B@=FB7D@=>?! =7! =F>! >9A7=F>;<C8#! LD*)4D)#!
6RQ0PQfQ6#!

i7H<=7g!'#'#!6WWW#!+IIB>?78>?g!<9D;C?<79!K7A<>?!:9A!HB7=><9!:IIB>I:=<79#!?,)4/.$Q)&&$
I*5&"!"W0T6JfTEW#!

i7L:D?g!*#*#g!:9A!O#!SCA]:#!6WWP#!1B<79!A<?>:?>?0!GB78!HB7=><9!=7!D>;;!H:=F7;7I@#!%+"$
R"$20:(5&"!"U60TTTfTRT#!

iC>88>B;>g!/#g!2#+#!*C=>]C9?=g!+#4#!i;><9g!a#V#!5<g!/#O#!5<g!4#3#!S>:;g!/#4#!O>B?DFg!:9A!
'#V#! 3>BB:9=>#! "QQQ#! OC9=<9I=79! :IIB>I:=>?! 8:@! 97=! HB>A<D=! 9>CB79:;! A>:=F! <9!
OC9=<9I=79^?!A<?>:?>#!%44"$@)9,5&"!JR0PJ6fPJQ#!

iCM:F:B:g!2#g!+#4#!,:]>CDF<g!,#!$<?F<8CB:g!i#!O:B:ICDF<g!+#!iCK7?:]<g!N#!4:=?C87=7g!
i#! /:>]<g! N#! 4:=?C87=7g! ,#! N7]7@:8:g! /#! -=7F:B:g! :9A! ,#! (97A>B:#! "QQQ#! 1B<79?!
HB>L>9=!9>CB79:;!D>;;Y;<9>!A>:=F#!@0:9,)#!JWW066Tf66R#!

5:D>g!*#g!*#4#!/:LL:g!*#!37B?=>Bg!'#!A>!/<;L:g!2#!SB:@9>g!3#%#!4:==F>M?g!V#V#!S:BD;:@g!5#!
):]<9g! 1#*#! -9D>g! :9A! /#S#!cF:B=79#! 6WWQ#!O<HH7D:8H:;! =:C!H:=F7;7I@! <?! B>;:=>A! =7!
9>CB7:9:=78<D:;! D799>D=<79?0! :9! :I><9I! H7HC;:=<79YK:?>A! ?=CA@#! I,0*4#! "E60"E6Jf
"EEJ#!

5:e7<>g! 1#g! :9A! %#5#! /9:HH#! 6W"W#! 37B8:=<79! :9A! =7b<D<=@! 7G! ?7;CK;>! H7;@I;C=:8<9>!
7;<I78>B?!<9!;<L<9I!D>;;?#!2P5L$V@B#!T0>"T6JT#!

5:9I>L<9g! 2#g! i#! *7C??>=g! 4#! 27?=:9h7g! (#! '<DF:BA‑5>!*7GGg! :9A! 2#! \CBh7;7#! 6W"W#!
2F:B:D=>B<h:=<79!7G! =F>! B7;>! 7G! A>9AB<=<D! D>;;?! <9! HB<79! =B:9?G>B! =7! HB<8:B@! 9>CB79?#!
I*5D()+*D0&$R59,40&#!JE"0"PQf"QP#!

5:CB>9g! V#g! )#+#! *<8K>;g! O#S#! $@I::BAg! V#c#! *<;K>B=g! :9A! /#4#! /=B<==8:==>B#! 6WWQ#!
2>;;C;:B! HB<79! HB7=><9! 8>A<:=>?! <8H:<B8>9=! 7G! ?@9:H=<D! H;:?=<D<=@! K@! :8@;7<AY|KIB}!
7;<I78>B?#!@0:9,)#!JTU0""6Pf""E6#!

5>:L<==g! S#'#g! V#+#! *C==8:9g! V#*#! O7AI?79g! *#O#! i<8>;g! '#! /<9I:B:e:g! +#c#! .7I;g! :9A!
4#'#! O:@A>9#! 6WW"#! c<;AY=@H>! FC9=<9I=<9! B>ACD>?! =F>! D>;;C;:B! =7b<D<=@! 7G! 8C=:9=!
FC9=<9I=<9!<9!L<L7#!%+"$R"$89+"$G)4):"!RP0E"EfE6J#!

5>>g! O#YV#g! /#! 1:=>;g! :9A! /#YV#! 5>>#! 6WWT#! -9=B:L>?<DC;:B! ;7D:;<h:=<79! :9A! >b7D@=7?<?! 7G!
:;HF:Y?@9CD;><9!:9A!<=?!:IIB>I:=>?#!R"$@)9,5.D*"!6T0RW"RfRW6J#!



 160 

5>>g! O#YV#g! V#Y%#! /C]g! %#YV#! S:>g! V#YO#! 5>>g! /#'#! 1:<]g! :9A! /#YV#! 5>>#! 6WWP:#! +??>8K;@Y
A>H>9A>9=! >9A7D@=7?<?! :9A! D;>:B:9D>! 7G! >b=B:D>;;C;:B! :;HF:Y?@9CD;><9#! T4:"$ R"$
I*5D()+"$Q)&&$I*5&"!JW0"PETf"PJQ#!

5>>g! O#YV#g! V#Y%#! /C]g! %#YV#! S:>g! V#YO#! 5>>g! /#'#! 1:<]g! :9A! /#YV#! 5>>#! 6WWPK#! +??>8K;@Y
A>H>9A>9=! >9A7D@=7?<?! :9A! D;>:B:9D>! 7G! >b=B:D>;;C;:B! :;HF:Y?@9CD;><9#! T4:"$ R"$
I*5D()+"$Q)&&$I*5&"!JW0"PETf"PJQ#!

5>>g! /#YV#g! 1#! )>?H;:=?g! 2#! /<ICBA?79g! -#! ,?<I>;9@g! :9A! %#! 4:?;<:F#! 6W"W#! 2>;;Y=7YD>;;!
=B:9?8<??<79!7G!979YHB<79!HB7=><9!:IIB>I:=>?#!@0:$H)E$@)9,5&#!R0UW6fUWR#!

5>I;>Bg!)#3#g!4#Y+#!)7CD>@g!1#!/DF9><A>Bg!5#!2F:H:==>g!3#2#!S>9A>Bg!:9A!2#!SB79#!6WWT#!
)<GG>B>9=<:;! <9?>B=<79! 7G! *1-Y:9DF7B>A! *31?! <9=7! ;<H<A! B:G=?! 7G! ;<L>! D>;;?#! K%LBI$ R"!
"Q0UEfUT#!

5>I9:8>g!*#g!O#Y(#S#!$IC@>9g!)#!1>B>=hg!3#%#!27F>9g!/#V#!)>+B879Ag!:9A!/#S#!1BC?<9>B#!
6WWR#!279=<9CC8!7G!HB<79!HB7=><9!?=BCD=CB>?!>9D<HF>B?!:!8C;=<=CA>!7G!HB<79! <?7;:=>Y
?H>D<G<>A!HF>97=@H>?#!1B7D#!$:=;#!+D:A#!/D<#!&#/#+#!"WE0"Q"WTf"Q""W#!

5>I9:8>g!*#g! -#.#! S:?]:]7Lg!O#Y(#S#!$IC@>9g!)#! '<>?9>Bg!3#%#!27F>9g!/#V#!)>+B879Ag!
:9A!/#S#!1BC?<9>B#!6WWJ#!/@9=F>=<D!8:88:;<:9!HB<79?#!LD*)4D)#!EWT0RUEfRUR#!

5>M<?g! 1#+#g! 3#! 1B7H>Bh<g! i#! 1B7AB78<A7Cg! +#'#! 2;:B]>g! V#! 27;;<9I>g! :9A! *#/#! V:D]?79#!
6WWR#!'>87L:;!7G!=F>!I;@D7?@;HF7?HF:=<A@;<97?<=7;!:9DF7B!GB78!1B1/D!K@!D:=F>H?<9!)!
A7>?!97=!B>ACD>!HB<79!<9G>D=<L<=@#!I*5D()+$R#!EQT0JJEfJJP#!

5>M<?g! .#g! :9A! $#4#! O77H>B#! 6W""#! ,F>! B7;>! 7G! ;<H<A! B:G=?! <9! HB<79! HB7=><9! K<7;7I@#!
K,54:"$I*5.D*"!"R0"T"f"RP#!

5<g!V#YN#g!%#!%9I;C9Ag!V#5#!O7;=79g!)#!/7C;>=g!1#!O:I>;;g!+#V#!5>>?g!,#!5:?F;>@g!$#1#!zC<99g!/#!
'>F9DB79:g! +#! SewB];C9Ag! O#! c<A9>Bg! ,#! '>L>?hg! (#! 5<9AL:;;g! :9A! 1#! SBC9A<9#! 6WWP#!
5>M@!K7A<>?!<9!IB:G=>A!9>CB79?!<9!?CKe>D=?!M<=F!1:B]<9?79^?!A<?>:?>!?CII>?=!F7?=Y=7Y
IB:G=!A<?>:?>!HB7H:I:=<79#!@0:9,)$S)/*D*4)#!"J0TW"fTWE#!

5<g!V#YN#g!%#!%9I;C9Ag!O#!c<A9>Bg!/#!'>F9DB79:g!+#!SewB];C9Ag!(#!5<9AL:;;g!:9A!1#!SBC9A<9#!
6W"W#! 2F:B:D=>B<h:=<79! 7G! 5>M@! K7A@! H:=F7;7I@! <9! "6Y! :9A! "RY@>:BY7;A! <9=B:?=B<:=:;!
8>?>9D>HF:;<D! IB:G=?! ?CBL<L<9I! <9! :! H:=<>9=! M<=F! 1:B]<9?79^?! A<?>:?>#! S5E)+)4:$
J*.5,/),.#!6T0"WQ"f"WQR#!

5<H=79g! /#+#g! :9A! 1#+#! '7?>9K>BI#! "QQJ#! %bD<=:=7B@! :8<97! :D<A?! :?! :! G<9:;! D78879!
H:=FM:@!G7B!9>CB7;7I<D!A<?7BA>B?#!@"$B4;&"$R"$S)/"!EEW0R"EfR66#!

5<Cg! 5#g! .#! )B7C>=g! V#c#!cCg!4#1#!c<==>Bg! /#+#! /8:;;g! 2#! 2;>;;:9Ag! :9A! i#! )CGG#! 6W"6#!
,B:9?Y?@9:H=<D!?HB>:A!7G!=:C!H:=F7;7I@!<9!L<L7#!2P5L$V@B#!U0>E"EW6#!

5<Cg!,#g!'#!5<g!,#!1:9g!)#!5<Cg!'#S#!1>=>B?>9g!S#Y/#!c79Ig!1#!*:8K>==<g!:9A!4#/#!/@#!6WW6#!
-9=>BD>;;C;:B!=B:9?G>B!7G!=F>!D>;;C;:B!HB<79!HB7=><9#!R"$I*5&"$Q()+"!6UU0JURU"fJURUP#!

5CA;:8g! 2#+#g! :9A! 4#5#! ,CB9>B#! 6WWR#! 4:9:I<9I! =F>! B<?]! 7G! =B:9?8<??<79! 7G! L:B<:9=!
2B>C=hG>;A=!V:]7K!A<?>:?>!K@!K;77A!HB7ACD=?#!I,"$R"$80)+0:5&"!"E60"Ef6J#!



 161 

5CI:B>?<g!%#g!'#!4>A7B<g!1#!479=:I9:g!+#!S:BChh<g!1#!27B=>;;<g!+#!5CI:B>?<g!1#!,<9CH>Bg!4#!
\CDD79<g! :9A! 1#! *:8K>==<#! "QPR#! 3:=:;! G:8<;<:;! <9?789<:! :9A! A@?:C=7978<:! M<=F!
?>;>D=<L>!A>I>9>B:=<79!7G!=F:;:8<D!9CD;><#!@"$B4;&"$R"$S)/"!E"T0QQUf"WWE#!

5nFB?g! ,#g! 2#! '<==>Bg! 4#! +AB<:9g! )#! '<>]Y57F>Bg! S#! S7FB8:99g! O#! )wK>;<g! )#! /DFCK>B=g!
:9A!'#!'<>]#!6WWT#!E)!?=BCD=CB>!7G!+;hF><8>B^?!:8@;7<AYK>=:Z"YJ6[!G<KB<;?#!2,5D"$@0:&"$
%D0/"$LD*"$X"L"%"!"W60"UEJ6f"UEJU#!

5C9]>?g!+#g!i#/#!5<9A>9K>BIg!5#!S>9YO:~>8g!2#!c>K>Bg!)#!)>L@?g!*#S#!5:9AM>FB8>@>Bg!
V#Y5#!4:9A>;g!:9A!N#!,B7==<>B#!6WW6#!1B7=>:?>?!:D=<9I! 79!8C=:9=!FC9=<9I=<9! I>9>B:=>!
D;>:L>A!HB7ACD=?!=F:=!A<GG>B>9=<:;;@!KC<;A!CH!D@=7H;:?8<D!:9A!9CD;>:B!<9D;C?<79?#!S5&"$
Q)&&#!"W06TQf6RQ#!

5@?>]g! )#+#g! 2#! /DF7B9g! 5#*#! $<L79g! .#! %?=>L>Y47@:g! S#! 2FB<?=>9g! 5#! 2:;h7;:<g! 2#! L79!
/DFB7>==>Bg!3#!3<7B<=7g!,#!O>BB8:99g!1#!*n9=>B=g!:9A!i#!cn=FB<DF#!6WWT#!1B<79!HB7=><9!
$4'!?=BCD=CB>?!7G!D:=?g!A7I?g!H<I?g!:9A!?F>>H#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"W60RJWf
RJT#!

4:g! V#g! :9A! /#! 5<9AkC<?=#! 6WW6#! 279L>B?<79! 7G! 1B1! =7! :! ?>;GYH>BH>=C:=<9I! 1B1/DY;<]>!
D79G7B8:=<79!<9!=F>!D@=7?7;#!LD*)4D)#!6QP0"UPTf"UPP#!

4:g! V#g! '#!c7;;8:99g! :9A! /#! 5<9AkC<?=#! 6WW6#! $>CB7=7b<D<=@! :9A! 9>CB7A>I>9>B:=<79!
MF>9!1B1!:DDC8C;:=>?!<9!=F>!D@=7?7;#!LD*)4D)#!6QP0"UP"f"UPT#!

4:KK7==g!$#+#g!4#%#!SBCD>g!4#!S7==7g!4#V#!c:;H7B=g!:9A!4#S#!1>H@?#!6WW"#!,>8H7B:B@!
A>H;>=<79! 7G! D78H;>8>9=! D78H79>9=! 2E! 7B! I>9>=<D! A>G<D<>9D@! 7G! 2"k! ?<I9<G<D:9=;@!
A>;:@?!79?>=!7G!?DB:H<>#!@0:"$S)/"!U0JPTfJPU#!

4:KK7==g!$#+#g!3#!4:D]:@g!3#!4<99?g!:9A!4#%#!SBCD>#!6WWW#!,>8H7B:B@!<9:D=<L:=<79!7G!
G7;;<DC;:B!A>9AB<=<D!D>;;?!A>;:@?!9>CB7<9L:?<79!7G!?DB:H<>#!@0:"$S)/"!R0U"QfU6W#!

4:KK7==g! $#+#g! :9A! *#*#! 4:D1F>B?79#! 6WWR#! 1B<79?! :9A! =F><B! ;>=F:;! e7CB9>@! =7! =F>!
KB:<9#!@0:$H)E$S*D,5#!J06W"f6""#!

4:KK7==g!$#+#g!V#!N7C9Ig! -#!4D2799>;;g!:9A!4#%#!SBCD>#!6WWE#!37;;<DC;:B!A>9AB<=<D!D>;;!
A>A<GG>B>9=<:=<79! K@! =B>:=8>9=! M<=F! :9! <9F<K<=7B! 7G! =F>! ;@8HF7=7b<9! H:=FM:@!
AB:8:=<D:;;@!B>ACD>?!?DB:H<>!?C?D>H=<K<;<=@#!R"$W*,5&"!UU0RPJTfRPTJ#!

4:D)79:;Ag! 4#%#! 6WWE#! OC9=<9I=<90! :;<L>! :9A! M>;;! :9A! M7B]<9I! <9! 8<AA;>!
8:9:I>8>9=#!LD*"$L?[B#!6WWE0H>JP#!

4:<I9<>9g! ,#g! 2#-#! 5:?8jh:?g! .#! S>B<9IC>g! )#! )7B879=g! :9A! V#1#! )>?;@?#! "QQQ#!
1:=F7I>9>?<?! 7G! =F>! 7B:;! B7C=>! 7G! <9G>D=<79! 7G! 8<D>! M<=F! ?DB:H<>! :9A! K7L<9>!
?H79I<G7B8!>9D>HF:;7H:=F@!:I>9=?#!R"$G)4"$W*,5&"!PW!Z!1=!""[0EWETfEWJ6#!

4r;:I:Y,B<;;7g!%#g!*#1#!/7;<?g!N#!/DFB7D]g!2#!*><??g! 5#! 5C9Dhg!.#! ,F78:9>=hg!:9A!2#+#(#!
/=C>B8>B#! 6WWQ#! '>IC;:=<79! 7G! >8KB@79<D! D>;;! :AF>?<79! K@! =F>! HB<79! HB7=><9#! 2P5L$
I*5&"!U0>TT#!

4:;;CDD<g!*#g!+#!)<D]<9?79g!V#!5<9>F:9g!1#Y2#!i;wF9g!/#!SB:9A9>Bg!:9A! V#!27;;<9I>#!6WWE#!
)>H;>=<9I!$>CB79:;!1B1! <9!1B<79!-9G>D=<79!1B>L>9=?!)<?>:?>!:9A!'>L>B?>?!/H79I<7?<?#!
LD*)4D)#!EW60PU"fPUJ#!



 162 

4:9?79g!V#2#g!+#'#!2;:B]>g!4#5#!O77H>Bg!5#!+<=DF<?79g!-#!4D2799>;;g!:9A!V#!O7H>#!"QQJ:#!
"6Qp(;:!8<D>! D:BB@<9I! :! 9C;;!8C=:=<79! <9! 1B1! =F:=! :K7;<?F>?! 8'$+! HB7ACD=<79! :B>!
A>L>;7H8>9=:;;@!97B8:;#!S5&"$@)9,5C*5&"!P0"6"f"6U#!

4:9?79g! V#2#g!+#'#!2;:B]>g!1#+#!4DSB<A>g! -#!4D2799>;;g!:9A! V#!O7H>#!"QQJK#! 1B1!I>9>!
A7?:I>!A>=>B8<9>?!=F>!=<8<9I!KC=!97=!=F>!G<9:;! <9=>9?<=@!7B!A<?=B<KC=<79!7G! ;>?<79?! <9!
?DB:H<>!H:=F7;7I@#!@)9,5/);)4),0:*54#!E0EE"fEJW#!

4:B<e:97L<Dg! \#g! +#! 2:HC=7g! .#! 2:8H:9:g! :9A! 2#! \CBh7;7#! 6WWQ#! -A>9=<G<D:=<79! 7G! :9!
<9=B:D>;;C;:B!?<=>!7G!HB<79!D79L>B?<79#!2P5L$20:(5;"!T0>"WWWJ6R#!

4:B?Fg!'#3#g!'#+#!S>??>9g!/#!5>F8:99g!:9A!*#'#!O:B=?7CIF#!"QQ"#!%H<A>8<7;7I<D:;!:9A!
>bH>B<8>9=:;! ?=CA<>?! 79! :! 9>M! <9D<A>9=! 7G! =B:9?8<??<K;>! 8<9]! >9D>HF:;7H:=F@#! R"$
G)4"$W*,5&"!U6!Z!1=!E[0TPQfTQJ#!

4:B=<9A:;>g!)#g!+#!O:D]:8g!+#!c<>Dh7B>]g!5#!%;;>BK@g!2#!c>;;<9I=79g!i#!4D2C=DF>79g!'#!
/<9I:B:e:g!1#!i:h>8<Y%?G:Be:9<g!'#!)>L79g!/#&#!i<8g!)#%#!SB>A>?>9g!3#!,CG:B7g!:9A!4#'#!
O:@A>9#!"QQP#!5>9I=F!7G!FC9=<9I=<9!:9A!<=?!H7;@I;C=:8<9>!=B:D=!<9G;C>9D>?!;7D:;<h:=<79!
:9A!GB>kC>9D@!7G!<9=B:D>;;C;:B!:IIB>I:=>?#!@0:"$G)4):"!"P0"TWf"TJ#!

4:B=<9>hY.<D>9=>g!4#g!\#!,:;;7Dh@g!%#!c79Ig!*#!,:9Ig!O#!i7I:g!/#!i:C?F<]g!'#!A>!.B<>?g!%#!
+B<:?g! /#! O:BB<?g! )#! /C;h>Bg! :9A! +#4#! 2C>BL7#! 6W"W#! 2:BI7! B>D7I9<=<79! G:<;CB>! <?!
B>?H79?<K;>!G7B!<9>GG<D<>9=!:C=7HF:I@!<9!OC9=<9I=79^?!A<?>:?>#!@0:$@)9,5.D*#!"E0TRUf
TUR#!

4:Bh7g! 5#g! i#! *7C??>=g! :9A! 2#! \CBh7;7#! 6W"6#! 4C;=<G:D>=>A! B7;>?! 7G! =C99>;<9I!
9:97=CK>?!<9!<9=>BD>;;C;:B!D788C9<D:=<79#!K,54:$2(M.*5&#!E0U6#!

4+/,%'/g! 2#5#g!)#2#! *+V)&/%ig! :9A!2#V#! *-SS/#! "QP"#! 2'%&,\3%5),YV+i(S!)-/%+/%!
.-'&/! -/(5+,-($/! 3'(4! ,O%! *%'/,4+$$Y/,'�&//5%'! /N$)'(4%#! I,0*4#!
"WJ0TTQfTPP#!

4:==><g! .#g! 4#*#! S:B>9D7g! .#! ,:?D<7==<g! ,#! *:B7G:;7g! +#! 579I7g! i#! S7;;>Bg! V#! 5wM>Bg! '#!
4<?:?<g! 3#! 479=B:?<7g! :9A! 4#! /7B<D>#! 6WWQ#! 1:B:DB<9>! )<GGC?<79! 7G! 1B12! :9A!
1B7H:I:=<79! 7G! 1B<79! -9G>D=<L<=@! K@! 1;:?8:! 4>8KB:9>Y)>B<L>A! 4<DB7L>?<D;>?#! 2P5L$
V@B#!J0>TWTU#!

4DSB<A>g! 1#+#g! c#V#! /DFC;hY/DF:>GG>Bg! 4#! )79:;A?79g! 4#! SBCD>g! O#! )<B<9I>Bg! O#+#!
iB>=h?DF8:Bg!:9A!4#!S>>]>?#!6WW"#!%:B;@!/HB>:A!7G!/DB:H<>!GB78!=F>!*:?=B7<9=>?=<9:;!
,B:D=!=7!=F>!2>9=B:;!$>BL7C?!/@?=>8!-9L7;L>?!+C=7978<D!3<K>B?!7G!=F>!/H;:9DF9<D!:9A!
.:IC?!$>BL>?#!R"$W*,5&"!UT0QE6WfQE6U#!

4D2:8HK>;;g! +#g! V#1#! ,:@;7Bg! +#+#! ,:@>g! V#! '7K<=?DF>]g!4#! 5<g! V#!c:;D7==g!)#!4>BB@g! N#!
2F:<g! O#! 1:C;?79g! *#! /7KC>g! :9A! i#O#! 3<?DFK>D]#! 6WWW#! 2'%SYK<9A<9I! HB7=><9!
?>kC>?=B:=<79!K@!>bH:9A>A!H7;@I;C=:8<9>#!89+"$S5&"$G)4):"!Q06"QUf66W6#!

4D*7L>B9g!*#g! /#!4:B=<9g! 5#! *79hr;>hg! V#!c<=hg! :9A!4#! V>GGB>@#! 6WWQ#! 3B>kC>9D@! :9A!
A<?=B<KC=<79!7G!9>BL>?! <9!?DB:H<>Y:GG>D=>A!:9A!C9:GG>D=>A!1>@>B^?!H:=DF>?!:9A! ;@8HF!
97A>?#!W):"$20:(5&"!JR06EEf6JW#!

4Di<9;>@g!4#1#g!+#!,:B:K7C;7?g! 5#!i>9:I:g!)#!/>BK:9g!+#!/=<>K>Bg!/#V#!)>+B879Ag!/#S#!
1BC?<9>Bg!:9A!$#!*79:=:?#!"QQ"#!&;=B:?=BCD=CB:;! ;7D:;<h:=<79!7G!?DB:H<>!HB<79!HB7=><9?!
<9!D@=7H;:?8<D!L>?<D;>?!7G!<9G>D=>A!DC;=CB>A!D>;;?#!P0C"$T4E).:"!RT0R66fREW#!



 163 

4Di9<IF=g! /#g! :9A! '#! ,e<:9#! "QPR#! ,B:9?DB<H=<79:;! ?>;>D=<L<=@! 7G! L<B:;! I>9>?! <9!
8:88:;<:9!D>;;?#!Q)&&#!JR0UQTfPWT#!

4>B<<9g!+#S#g!a#!\F:9Ig!a#!O>g!*#1#!$>M9:8g!N#(#!2F>B97GGg!:9A!4#N#!/F>B8:9#!6WW6#!
OC9=<9I=79!=7b<D<=@! <9!@>:?=!87A>;!A>H>9A?!79!H7;@I;C=:8<9>!:IIB>I:=<79!8>A<:=>A!
K@!:!HB<79Y;<]>!HB7=><9!'9k"#!R"$Q)&&$I*5&"!"TU0QQUf"WWJ#!

4>Bhg! 1#+#g! '#+#! /78>BL<;;>g! O#4#! c<?9<>M?]<g! :9A! i#! -kK:;#! "QP"#! +K97B8:;! G<KB<;?!
GB78!?DB:H<>Y<9G>D=>A!KB:<9#!%D:0$@)9,5A0:(5&5;*D0#!TJ0REfUJ#!

4>@>BY5C>F8:99g!4#g!V#!2778:B:?M:8@g!,#!S7;879=g!/#!i:>?>Bg!2#!/DF:>G>Bg!%#!i<;I>Bg!
+#!$>C>9?DFM:9A>Bg!)#!+KB:87M?]<g!1#!3B>@g!+#5#!V:=79g!V#Y4#!.<I7CB>=g!1#!1:I:9>==<g!
)#4#! c:;?Fg! 1#4#! 4:=F>M?g! V#! *F<?7g! 4#! /=:CG>9K<>;g! 5#2#! c:;]>Bg! :9A! 4#! VCD]>B#!
6WWR#! %b7I>97C?! <9ACD=<79! 7G! D>B>KB:;! K>=:Y:8@;7<A7I>9>?<?! <?! I7L>B9>A! K@! :I>9=!
:9A!F7?=#!LD*)4D)#!E"E0"UP"f"UPJ#!

4<;F:L>=g! (#g! :9A! /#! 5>F8:99#! 6WW6#! (b<A:=<L>! ?=B>??! :9A! =F>! HB<79! HB7=><9! <9!
=B:9?8<??<K;>!?H79I<G7B8!>9D>HF:;7H:=F<>?#!I,0*4$H)."$I,0*4$H)."$H)E"!EP0E6PfEEQ#!

4<;;>Bg! *#! 6WWQ#! $>CB7A>I>9>B:=<79#! 27C;A! =F>@! :;;! K>! HB<79! A<?>:?>?X! LD*)4D)#!
E6R0"EEUf"EEQ#!

4<B797Lg! +#g! )#! 5:=:M<>Dg! O#! c<;;>g! %#! S7Ch:879A7YS>B9?=><9g! *#! 5>I9:8>g! '#+#!
c<;;<:8?79g!)#!SCB=79g!/#V#!)>+B879Ag!/#S#!1BC?<9>Bg!:9A!1#V#!1>=>B?#!6WWE#!2@=7?7;<D!
1B<79!1B7=><9!<9!$>CB79?#!?()$R59,40&$5F$@)9,5.D*)4D)#!6E0U"PEfU"QE#!

4<=B:g!/#g!+#/#!,?L>=]7Lg!:9A!/#!3<9]K><9>B#!6WWQ#!/<9I;>!9>CB79!CK<kC<=<9YHB7=>:?78>!
A@9:8<D?! :DD78H:9@<9I! <9D;C?<79! K7A@! G7B8:=<79! <9! FC9=<9I=79! A<?>:?>#! R"$ I*5&"$
Q()+"!6PJ0JEQPfJJWE#!

479=B:?<7g! 3#g! '#! 3B<IIg! 4#! *;:=h>;g! 4#+#! i;><9g! 3#! 4:D]:@g! +#! +IChh<g! :9A! 2#!
c><??8:99#! 6WWW#! -8H:<B>A! HB<79! B>H;<D:=<79! <9! ?H;>>9?! 7G! 8<D>! ;:D]<9I! GC9D=<79:;!
G7;;<DC;:B!A>9AB<=<D!D>;;?#!LD*)4D)#!6PP0"6TUf"6TQ#!

477B>g! '#2#g! -#N#! 5>>g! *#5#! /<;L>B8:9g! 1#4#! O:BB<?79g! '#! /=B78>g! 2#! O><9B<DFg! +#!
i:BC9:B:=9>g! /#O#! 1:?=>B9:]g! 4#+#! 2F<?F=<g! N#! 5<:9Ig! 1#! 4:?=B:9I>;7g! i#! c:9Ig! +#3#!
/8<=g!/#!i:=:8<9>g!*#+#!2:B;?79g!3#%#!27F>9g!/#S#!1BC?<9>Bg!)#c#!4>;=79g!1#!,B>8K;:@g!
5#%#! O77Ag! :9A! )#! c>?=:M:@#! "QQQ#! +=:b<:! <9! HB<79! HB7=><9! Z1B1[YA>G<D<>9=! 8<D>! <?!
:??7D<:=>A! M<=F! CHB>IC;:=<79! 7G! =F>! 97L>;! 1B1Y;<]>! HB7=><9! A7HH>;#! R"$ S5&"$ I*5&"!
6Q60UQUfP"U#!

47B>97Y*79h:;>hg! -#g!:9A!2#!/7=7#!6W""#!4<?G7;A>A!HB7=><9!:IIB>I:=>?0!8>DF:9<?8?g!
?=BCD=CB>?!:9A!H7=>9=<:;!G7B!A<?>:?>!=B:9?8<??<79#!L)+*4"$Q)&&$J)E"$I*5&"!660JP6fJPU#!

47C<;;>=Y'<DF:BAg! /#g! 4#! %B879L:;g! 2#! 2F>K:??<>Bg! V#5#! 5:H;:9DF>g! /#! 5>F8:99g! V#4#!
5:C9:@g!:9A!(#!i>;;>B8:99#!6WWW#!/<I9:;!,B:9?ACD=<79!,FB7CIF!1B<79!1B7=><9#!LD*)4D)#!
6PQ0"Q6Tf"Q6P#!

4@>B?g! '#O#g! V#1#! .79?:==>;g! ,#V#! /=>L>9?g! 5#+#! 2CHH;>?g! %#1#! '<DF:BA?79g! V#S#! 4:B=<9g!
:9A! %#)#! S<BA#! "QPP#! 2;<9<D:;! :9A! 9>CB7H:=F7;7I<D! :??>??8>9=! 7G! ?>L>B<=@! <9!
OC9=<9I=79^?!A<?>:?>#!@)9,5&5;M#!EP0EJ"fEJU#!



 164 

$:=F:9?79g!$#g! V#!c<;>?8<=Fg!:9A!2#!*B<7=#!"QQU#!S7L<9>!/H79I<G7B8!%9D>HF:;7H:=F@!
ZS/%[0!2:C?>?!:9A!279?>kC>9D>?!7G!:!278879!/7CBD>!%H<A>8<D#!%+),*D04$R59,40&$5F$
BA*/)+*5&5;M#!"JT0QTQfQRQ#!

$:h7Bg! i#%#g! ,#! />M:BAg! :9A! *#2#! ,>;;<9I#! 6WWU#! 47=7B! K>F:L<7B:;! :9A!
9>CB7H:=F7;7I<D:;! A>G<D<=?! <9! 8<D>! A>G<D<>9=! G7B! 97B8:;! HB<79! HB7=><9! >bHB>??<79#!
I*5D(*+"$I*5A(M."$%D:0#!"UU60RJTfRTE#!

$>]77]<Y4:DF<A:g! N#g!4#! iCB7?:M:g!$#!$C]<9:g! i#! -=7g!,#!(A:g!:9A!4#!,:9:]:#!6WWQ#!
)<?=<9D=! D79G7B8:=<79?! 7G! <9! L<=B7! :9A! <9! L<L7! :8@;7<A?! 7G! FC9=<9I=<9Y>b79"! ?F7M!
A<GG>B>9=!D@=7=7b<D<=@#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WR0QRUQfQRPJ#!

$>;?79g! 1#,#g! O#! SB::]g! :9A!c#'#! 4:B]>?K>B@#! 6WWQ#! $>CB7H:=F7;7I@! :9A! D7I9<=<L>!
<8H:<B8>9=! <9! +;hF><8>B! A<?>:?>0! :! D78H;>b! KC=! D7F>B>9=! B>;:=<79?F<H#! R"$
@)9,5A0:(5&"$BYA"$@)9,5&"!RP0"f"J#!

$>;?79g! '#g! 4#'#! /:M:@:g! 4#! S:;K<B9<>g! +#Ä#! 4:A?>9g! 2#! '<>]>;g! '#! *B7=F>g! :9A! )#!
%<?>9K>BI#! 6WWT#! /=BCD=CB>! 7G! =F>! DB7??YK>=:! ?H<9>! 7G! :8@;7<AY;<]>! G<KB<;?#! @0:9,)#!
JET0UUEfUUP#!

$>C=B:g! 4#'#g! +#! 3B>@g! :9A! V#1#! iB:>F>9KCF;#! "QQR#! %H<=F>;<:;! 4! D>;;?0! I:=>M:@?! G7B!
8CD7?:;!<9G>D=<79!:9A!<88C9<h:=<79#!Q)&&#!PR0EJTfEJP#!

$<D7;:?g! *#g! )#! )>L@?g! +#! *7;A>9K>BIg! )#! 4:;=Å=>g! 2#! O>BLjg! )#! O:99>kC<9g! :9A! 5#!
*C@:9=Y4:BjDF:;#! 6W""#! VCL>9<;>! OC9=<9I=79! A<?>:?>! <9! :9! "PY879=FY7;A! K7@!
B>L>:;>A!K@!I;7K:;!A>L>;7H8>9=:;!A>;:@!:9A!B>ACD>A!D>B>K>;;:B!L7;C8>#!%+"$R"$S)/"$
G)4):"$%#!"TT+0P"TfP"P#!

$<D7;:?g!(#g!'#!*:Ll9g!:9A! V#+#!A>;!'l7#!6WWQ#!$>M! <9?<IF=?! <9=7!D>;;C;:B!HB<79!HB7=><9!
Z1B1D[! GC9D=<79?0! =F>! _@<9I! :9A! @:9I`! 7G! :! B>;>L:9=! HB7=><9#!I,0*4$H).$ H)E#! R"0"UWf
"PJ#!

$79:]:g!,#g!/#,#!c:=:9:K>g!,#!-M:=?CK7g!:9A!4#!O:?>I:M:#!6W"W#!/>>A>A!:IIB>I:=<79!
:9A! =7b<D<=@! 7G! Ç:;HF:ÉY?@9CD;><9! :9A! =:C0! D>;;C;:B! 87A>;?! 7G! 9>CB7A>I>9>B:=<L>!
A<?>:?>?#!R"$I*5&"$Q()+"!6PT0EJPPTfEJPQP#!

$CD<G7B:g! 3#2#g! VBg! 4#! /:?:]<g! 4#3#! 1>=>B?g! O#! OC:9Ig! V#i#! 277H>Bg! 4#! N:8:A:g! O#!
,:]:F:?F<g! /#! ,?Ce<g! V#! ,B79D7?7g! .#5#! ):M?79g! ,#4#! ):M?79g! :9A! 2#+#! '7??#! 6WW"#!
-9=>BG>B>9D>!K@!FC9=<9I=<9!:9A!:=B7HF<9Y"!M<=F!DKHY8>A<:=>A!=B:9?DB<H=<79!;>:A<9I!=7!
D>;;C;:B!=7b<D<=@#!LD*)4D)#!6Q"06J6Ef6J6P#!

(>?DFg! S#g! )#! c>?=:M:@g! 4#! co;DF;<g! 4#1#! 4Di<9;>@g! /#S#! i>9=g! '#! +>K>B?7;Ag! '#+#!
S:BB@g!1#!,>8H?=g!)#S#!,>H;7Mg!:9A!5#%#!O77A#!"QPT#!+!D>;;C;:B!I>9>!>9D7A>?!?DB:H<>!
1B1!6UYEW!HB7=><9#!Q)&&#!JW0UETfUJR#!

(;A?=79>g!4#S#+#g! '#! ':D>g!)#! ,F78:?g! O#! 5>M<D]<g!)#!O78:99g! /#! /8>;=g! +#! O7;hg! 1#!
i79<g!)#!57g!S#!2F>?>KB7g!:9A!'#!3;:L>;;#!6WW6#!5@8HF7=7b<9Y:;HF:Y!:9A!;@8HF7=7b<9Y
K>=:YA>G<D<>9=!8<D>!A<GG>B! <9! ?C?D>H=<K<;<=@! =7! ?DB:H<>0! >L<A>9D>!:I:<9?=!A>9AB<=<D! D>;;!
<9L7;L>8>9=!<9!9>CB7<9L:?<79#!R"$W*,5&"!UR0JETUfJERE#!

(9G>;=g! S#g! /#! $>AL>=h]<g! '#i#1#! S>99<9I>Bg! 4#+#! 1CBKF77g! /#! /7M<9?]<g! +#$#! OC8>g!
4#2#!/>:KB:g!4#+#+#!$><;g!1#4#c#!3B>9DFg!:9A!)#4#!):L<?#!6WWR#!/=BCD=CB:;;@!A<?=<9D=!



 165 

8>8KB:9>!9:97=CK>?!K>=M>>9!FC8:9!8:DB7HF:I>?!?CHH7B=!;79IYA<?=:9D>!L>?<DC;:B!
=B:GG<D!7B!?CBG<9I!7G!K:D=>B<:#!R"$T++945&"!"UU0PJURfPJPE#!

(M>9g!3#g!4#! 17C;=>Bg! '#! 57G=F7C?>g! V#! 27;;<9I>g!,#V#!2B7Mg!)#! '<?K@g!O#3#! S:]>Bg! '#4#!
'<A;>@g! i#!O?<:7g! :9A! /#S#! 1BC?<9>B#! "QPQ#! -9?>B=<79! <9! HB<79!HB7=><9! I>9>! <9! G:8<;<:;!
2B>C=hG>;A=YV:]7K!A<?>:?>#!P04D):#!"0T"fT6#!

1:9g! i#4#g! 4#! S:;AM<9g! V#! $IC@>9g! 4#! *:??>=g! +#! />BK:9g! )#! *B7=Fg! -#! 4>F;F7B9g! \#!
OC:9Ig! '#V#! 3;>==>B<D]g! :9A! 3#%#! 27F>9#! "QQE#! 279L>B?<79!7G! :;HF:YF>;<D>?! <9=7! K>=:Y
?F>>=?!G>:=CB>?!<9!=F>!G7B8:=<79!7G!=F>!?DB:H<>!HB<79!HB7=><9?#!2,5D$@0:&$%D0/$LD*$X$L$
%#!QW0"WQR6f"WQRR#!

1:kC>=g! /#g! 2#! 5:9I>L<9g! V#! 2F:HC<?g! *#/#! V:D]?79g! O#! 5:CA>g! :9A! )#! .<;>==>#! 6WWU#!
%GG<D<>9=! A<??>8<9:=<79! 7G! HB<79?! =FB7CIF! HB>G>B>9=<:;! =B:9?8<??<79! =7! 9>:BK@! D>;;?#!
R59,40&$5F$G)4),0&$W*,5&5;M#!PP0UWRfU"E#!

1:BDF<g! 1#g!+#!*<>?>g!/#!2:H>;;:B<g! 1#! SB7M9g!c#!/DFC;hY/DF:>GG>Bg!(#!c<9A;g! -#! \>BBg!O#!
SCA]:g!$#!i7HHg!1#!1<DD:BA7g!/#!17?>Bg!+#!'7e<:9<g!$#!/=B><DF>8K>BI>Bg!V#!VC;<>9g!2#!.<=:;g!
S#! *F>==<g! 1#! *:8K>==<g! :9A! O#! iB>=h?DF8:B#! "QQQ#! 2;:??<G<D:=<79! 7G! ?H7B:A<D!
2B>C=hG>;A=YV:]7K! A<?>:?>! K:?>A! 79! 87;>DC;:B! :9A! HF>97=@H<D! :9:;@?<?! 7G! EWW!
?CKe>D=?#!%44"$@)9,5&"!JR066Jf6EE#!

1:B]g!V#YN#g!i#/#!i<8g!/#YS#!5>>g!V#Y/#!'@Cg!i#2#!2FC9Ig!N#Yi#!2F77g!-#!V7Cg!V#!i<8g!:9A!/#4#!
1:B]#! 6WWQ#! (9! =F>!8>DF:9<?8! 7G! <9=>B9:;<h:=<79! 7G! :;HF:Y?@9CD;><9! <9=7! 8<DB7I;<:0!
B7;>?!7G!I:9I;<7?<A>!*4"!:9A!;<H<A!B:G=#!R"$@)9,5D()+"!""W0JWWfJ""#!

1:B]g!N#g!c#!i<8g!+#YN#!i<8g!O#V#!2F7<g!V#i#!2F7<g!$#!1:B]g!%#i#!i7Fg!V#!/>7g!:9A!N#O#!i7F#!
6W""#! $7B8:;! HB<79! HB7=><9! <9! )B7?7HF<;:! >9F:9D>?! =F>! =7b<D<=@! 7G! H:=F7I>9<D!
H7;@I;C=:8<9>!HB7=><9?!:9A!:;=>B?!?C?D>H=<K<;<=@!=7!7b<A:=<L>!:9A!:C=7HF:I@!?<I9:;<9I!
87AC;:=7B?#!I*5D()+"$I*5A(M."$H)."$Q5++94"!JWJ0REPfRJT#!

1:?=B:9:g!4#+#g!*#!/:e9:9<g!S#!(9<?]7g!V#!2:?=<;;:g!'#!47B:;>?g!2#!/7=7g!:9A!V#'#!'>kC>9:#!
6WWR#! -?7;:=<79! :9A! DF:B:D=>B<h:=<79! 7G! :! HB7=><9:?>! iY?>9?<=<L>! 1B1/D! GB:D=<79#!
I*5D()+*.:,M#!JT0"TU"Wf"TU"U#!

1:C;?>9g! V#/#g!$#! SC==>B?g! V#'#! /:A>]g! /#+#! V7F9?79g!)#1#! /:;879g!$#'#! /M>BA;7Mg! :9A!
4#'#!/M>9?79#!"QQT#!)<?=<9D=!D7I9<=<L>!HB7G<;>?!7G! D7B=<D:;!:9A!?CKD7B=<D:;!A>8>9=<:!
<9!:AL:9D>A!<;;9>??#!@)9,5&5;M#!JT0QT"fQTR#!

1:C;?>9g! V#/#g! '#%#! '>:A@g! V#4#! O:8<;=79g! 4#/#! 4>I:g! :9A! V#5#! 2C88<9I?#! 6WW"#!
$>CB7H?@DF<:=B<D! :?H>D=?! 7G! OC9=<9I=79^?! A<?>:?>#! R"$ @)9,5&"$ @)9,5.9,;"$ 2.MD(*0:,"!
U"0E"WfE"J#!

1:C;@g!1#2#g!:9A!)#+#!O:BB<?#!"QQP#!27HH>B!?=<8C;:=>?!>9A7D@=7?<?!7G!=F>!HB<79!HB7=><9#!
R"$I*5&"$Q()+"!6UE0EE"WUfEE""W#!

1>:B?79g!2#%#!6WWE#!/;<HH<9I!MF<;>!?;>>H<9IX!,B<9CD;>7=<A>!B>H>:=!>bH:9?<79?!<9!I>B8!
D>;;?#!?,)4/.$S5&$S)/#!Q0JQWfJQT#!

1>BB<9g! .#g! %#! 'jIC;<>Bg! ,#! +KK:?Y,>B]<g! '#! O:??<Ig! %#! SB7C<;;>=g! 1#! +>K<?DF>Bg! '#! 5C=F<Y
2:B=>Bg! :9A! $#! )jI;79#! 6WWU#! $>CB7HB7=>D=<79! K@! O?H"WJ! :9A! O?H6U! <9! ;>9=<L<B:;Y
K:?>A!B:=!87A>;?!7G!OC9=<9I=79^?!A<?>:?>#!S5&"$?(),"!"T0QWEfQ""#!



 166 

1>BC=hg!4#3#g!,#!V7F9?79g!4#!/ChC]<g!:9A!V#,#!3<9DF#!"QQJ#!*;C=:8<9>!B>H>:=?!:?!H7;:B!
h<HH>B?0!=F><B!H7??<K;>!B7;>!<9!<9F>B<=>A!9>CB7A>I>9>B:=<L>!A<?>:?>?#!2,5D"$@0:&"$%D0/"$
LD*"$X"L"%"!Q"0TETTfTETP#!

1>=]7L:g!+#,#g!'#)#!5>:H8:9g!\#!*C7g!c#Y4#!N:Cg!4#1#!4:==?79g!:9A!'#!,@D]7#!6WWT#!
/>;GYHB7H:I:=<9Ig!87;>DC;:BY;>L>;! H7;@87BHF<?8! <9! +;hF><8>B^?! K>=:Y:8@;7<A! G<KB<;?#!
LD*)4D)#!EWU06R6f6RT#!

1<DD:BA7g!1#g!V#2#!4:9?79g!)#!i<9Ig!S#!*F>==<g!:9A!'#4#!S:BB79#!6WWU#!+DDC8C;:=<79!7G!
HB<79!HB7=><9!<9!=F>!KB:<9!=F:=!<?!97=!:??7D<:=>A!M<=F!=B:9?8<??<K;>!A<?>:?>#!2,5D"$@0:&"$
%D0/"$LD*"$X"L"%"!"WJ0JU"6fJU"U#!

1<B7g! V#'#g! S#,#! O:BB<?g! :9A! /#! /CH:==:H79>#! 6W""#! -9! ?<=C! HF7=7A>IB:A:=<79! 7G!
<9D7BH7B:=>A!H7;@:9<79!A7>?!97=!:;=>B!HB<79!<9G>D=<L<=@#!2P5L$20:(5;"!U0>"WW6WW"#!

L79! 17?>BYi;><9g! 2#g! %#! 3;>DF?<Ig! ,#! O7GG8:99g! 1#! /DFM:Bhg! O#! O:B8?g! '#! SCeA7?7g! +#!
+IChh<g!:9A!4#+#!i;><9#!6WWP#!+;=>B:=<79!7G!SYD>;;!?CK?>=?!>9F:9D>?!9>CB7<9L:?<79!<9!
87C?>!?DB:H<>!<9G>D=<79#!R"$W*,5&"!P60EUQ"fEUQT#!

1B<9hg!4#g!4#!O><]>9M:;A>Bg!,#!VC9=g!1#!/DFM:Bhg!4#!*;:=h>;g!3#5#!O>HH9>Bg!N#Ya#!3Cg!4#!
5<HHg! :9A! +#! +IChh<#! 6WWE#! 17?<=<79<9I! 7G! G7;;<DC;:B! A>9AB<=<D! D>;;?! M<=F<9! =F>! ?H;>>9!
D79=B7;?!HB<79!9>CB7<9L:?<79#!@0:9,)#!J6T0QTUfQR6#!

1BC?<9>Bg!/#S#!"QPQ#!2B>C=hG>;A=YV:]7K!A<?>:?>!:9A!?DB:H<>!HB<79?#!%&'()*+),$J*.$%..5D$
J*.5,/#!E0T6fUP#!

1BC?<9>Bg! /#S#! "QQJ#! -9F>B<=>A!HB<79!A<?>:?>?#!2,5D"$ @0:&"$ %D0/"$ LD*"$ X"L"%"! Q"0JR""f
JR"J#!

1BC?<9>Bg!/#S#!"QQP#!1B<79?#!2,5D$@0:&$%D0/$LD*$X$L$%#!QT0"EEREf"EEPE#!

1BC?<9>Bg!/#S#g!4#1#!4Di<9;>@g!i#+#!S7M8:9g!)#2#!S7;=79g!1#%#!S>9AF><8g!)#3#!*B7=Fg!
:9A!*#*#! *;>99>B#! "QPE#! /DB:H<>! HB<79?! :IIB>I:=>! =7! G7B8!:8@;7<AY;<]>! K<B>GB<9I>9=!
B7A?#!Q)&&#!ET0EJQfETP#!

1BC?<9>Bg! /#S#g!4#! /D7==g!)#! 37?=>Bg! i#4#! 1:9g!)#! *B7=Fg! 2#!4<B>9A:g!4#! ,7BDF<:g! /#5#!
N:9Ig!)#!/>BK:9g!:9A!*#+#!2:B;?79#!"QQW#!,B:9?I>9>=<D!?=CA<>?! <8H;<D:=>! <9=>B:D=<79?!
K>=M>>9!F787;7I7C?!1B1!<?7G7B8?!<9!?DB:H<>!HB<79!B>H;<D:=<79#!Q)&&#!RE0RUEfRPR#!

':D>g! '#g! 4#! (;A?=79>g! :9A! S#! 2F>?>KB7#! 6WWW#! %9=B@! L>B?C?! K;7D]:A>! 7G! KB:<9!
<9G>D=<79! G7;;7M<9I! 7B:;! 7B! <9=B:H>B<=79>:;! ?DB:H<>! :A8<9<?=B:=<790! B7;>! 7G! HB<79!
HB7=><9!>bHB>??<79!<9!H>B<HF>B:;!9>BL>?!:9A!?H;>>9#!R"$W*,5&"!UJ0P6PfPEE#!

':F<8<g! 3#g! +#! /F:98CI:8g! :9A! *#! S<=:9#! 6WWP#! /=BCD=CB>YGC9D=<79! B>;:=<79?F<H?! 7G!
HB>YG<KB<;;:B! HB7=><9! :??>8K;<>?! <9! +;hF><8>B^?! A<?>:?>! :9A! B>;:=>A! A<?7BA>B?#! Q9,,$
%&'()*+),$H).#!T0E"QfEJ"#!

':9>g! $#/#g! /#Yc#! i:9Ig! (#! 2F:]B:K:B=<g! 5#! 3><I>9K:C8g! :9A! '#/#! O>IA>#! 6WWP#!
'>ACD>A! =B:9?;7D:=<79! 7G! 9:?D>9=! HB<79! HB7=><9! ACB<9I! %'! ?=B>??! D79=B<KC=>?! =7!
9>CB7A>I>9>B:=<79#!J)E"$Q)&&#!"T0ETQfEUW#!

':9>9g! $#*#g!(#2#! /=<9>g!4#O#!+KK7==g!4#! /F>BBg! +#4#! 27A7B<g!4#5#! 3B:9hg!$#-#! 2F:7g!
+#/#! 2FC9Ig! $#! 1;>:?:9=g! :9A!2#! 2:;;:F:9#! "QQT#! +9=<D<H:=<79! :9A! <9?=:K<;<=@! 7G! -,Y"T!



 167 

Z2+*[9!B>H>:=?!<9!H:B>9=Y7GG?HB<9I!H:<B?!M<=F!OC9=<9I=79!A<?>:?>#!%+"$R"$89+"$G)4):"!
TU0TQEfRW6#!

':=:eDh:]g!V#g!4#!c@?7Dh@9?]<g!3#!O:@>]g!+#! V:97M?]:Yc<>Dh7B>]g!:9A!4#\#!':=:eDh:]#!
6WWR#!4>8KB:9>YA>B<L>A!8<DB7L>?<D;>?0! <8H7B=:9=!:9A!C9A>B:HHB>D<:=>A!8>A<:=7B?!
7G!D>;;Y=7YD>;;!D788C9<D:=<79#!P)93)+*0#!6W0"JPUf"JQT#!

':@879Ag!2#'#g!1#!+CD7C=CB<>Bg!:9A!$#+#!4:KK7==#!6WWU#!-9!L<L7!A>H;>=<79!7G!2)""Du!
D>;;?! <8H:<B?!?DB:H<>!:I>9=!9>CB7<9L:?<79!GB78!=F>!<9=>?=<9>#!R"$ T++945&"!"UQ0UUTPf
UURR#!

'><9>Bg!+#g!'#5#!+;K<9g!i#)#!+9A>B?79g!2#V#!)^+8:=7g!V#S#!1>99>@g!:9A!+#S#!N7C9I#!"QPP#!
)<GG>B>9=<:;!;7??!7G!?=B<:=:;!HB7e>D=<79!9>CB79?!<9!OC9=<9I=79!A<?>:?>#!2,5D"$@0:&"$%D0/"$
LD*"$X"L"%"!PT0TUEEfTUEU#!

'>9g! 1#YO#g! V#%#! 5:CD]9>Bg! -#!i:DF<B?]:<:g! V#%#!O>C?>Bg!'#!4>;]<g!:9A!'#'#!i7H<=7#!6WWQ#!
2@=7H;:?8<D! H>9>=B:=<79! :9A! H>B?<?=>9=! <9G>D=<79! 7G! 8:88:;<:9! D>;;?! K@!
H7;@I;C=:8<9>!:IIB>I:=>?#!@0:"$Q)&&$I*5&"!""06"Qf66T#!

'>?D<I97g! 4#g! 4#! &BK:97g! S#! .:;h:?<9:g! 4#! 3B:9D7;<9<g! *#! '7==:g! '#! S79:?<7g! 3#!
*B:9CDD<g!V#Y1#!iB:>F>9KCF;g!:9A!1#!'<DD<:BA<Y2:?=:I97;<#!6WW"#!)>9AB<=<D!D>;;?!>bHB>??!
=<IF=! eC9D=<79!HB7=><9?!:9A!H>9>=B:=>! IC=!>H<=F>;<:;!8797;:@>B?! =7!?:8H;>!K:D=>B<:#!
@0:$T++945&#!60ER"fERU#!

'>?>9K>BI>Bg! &#i#g! i#3#! c<9];F7G>Bg! :9A! V#! ,:=h>;=#! 6W""#! $>CB7HB7=>D=<L>! :9A!
9>CB7=7b<D!?<I9:;<9I!K@!=F>!HB<79!HB7=><9#!?5A$Q9,,$Q()+#!EWT0"W"f""Q#!

'7D]:KB:9Ag!%#g!$#!/;>H]7g!+#! 1:9=:;79>g!.#$#!$C]:;:g!+#! i:h:9=?>Lg! V#5#!4:B?Fg! 1#*#!
/C;;<L:9g!V#/#!/=>GG:9g!/#5#!/>9?<g!:9A!5#4#!,F78H?79#!6WWU#!,F>!G<B?=!"U!:8<97!:D<A?!7G!
OC9=<9I=<9!87AC;:=>! <=?!?CKYD>;;C;:B! ;7D:;<h:=<79g!:IIB>I:=<79!:9A!>GG>D=?!79!D:;D<C8!
F78>7?=:?<?#!89+"$S5&"$G)4):"!"R0R"fUU#!

'7FB>Bg!)#g!)#1#!/:;879g!V#,#!c<b=>Ag!:9A!V#/#!1:C;?>9#!"QQQ#!,F>!A<?H:B:=>!>GG>D=?!7G!
+;hF><8>B^?! A<?>:?>! :9A! OC9=<9I=79^?! A<?>:?>! 79! ?>8:9=<D! 8>87B@#!
@)9,5A.MD(5&5;M#!"E0EP"fEPP#!

L:9! '77<e>9g! S#)#g! 4#4#+#%#! 2;:>??>9?g! :9A! .#! /CKB:8:9<:8#! 6WWP#! 4>8KB:9>!
K<9A<9I!7G! 7;<I78>B<D! :;HF:Y?@9CD;><9! A>H>9A?!79!K<;:@>B! DF:BI>! :9A!H:D]<9I#!KBIL$
P)::"!TP60EUPPfEUQ6#!

'7?:?g! O#)#g! )#O#! /:;:=g! /#N#! 5>>g! +#i#! \:;>=:g! .#! 1:HHCg! S#! 3<?DF;g! )#! *B>L>g! $#!
O>L>;79>g! :9A! /#4#! O>B?DF#! 6WWP#! 2>B>KB:;! D7B=>b! :9A! =F>! D;<9<D:;! >bHB>??<79! 7G!
OC9=<9I=79^?!A<?>:?>0!D78H;>b<=@!:9A!F>=>B7I>9><=@#!I,0*4#!"E"0"WTUf"WRP#!

'7??g! 2#+#g! :9A! 4#+#! 17<B<>B#! 6WWJ#! 1B7=><9! :IIB>I:=<79! :9A! 9>CB7A>I>9>B:=<L>!
A<?>:?>#!@0:"$S)/"!"W!/CHH;0/"Wf"U#!

'7??g! 2#+#g! 4#+#! 17<B<>Bg! %#%#! c:9]>Bg! :9A! 4#! +8h>;#! 6WWE#! 17;@I;C=:8<9>!
G<KB<;;7I>9>?<?0!=F>!H:=FM:@!C9G7;A?#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WW0"fE#!

'7??g!2#+#g!:9A!/#V#!,:KB<h<#!6W""#!OC9=<9I=79^?!A<?>:?>0!GB78!87;>DC;:B!H:=F7I>9>?<?!
=7!D;<9<D:;!=B>:=8>9=#!P04D):$@)9,5&#!"W0PEfQP#!



 168 

'7??<g! )#g! :9A! +#! .7;=>BB:#! 6WWQ#! +?=B7D@=<D! A@?GC9D=<790! <9?<IF=?! 79! =F>! B7;>! <9!
9>CB7A>I>9>B:=<79#!I,0*4$H)."$I9&&"!PW066Jf6E6#!

'C7DD7g! O#O#g! -#! 57H>?Y2>9A>?g! ,#5#! 5:CB<=7g! 5#4#! 5<g! :9A! 3#! 2>9A>?#! 6WWR#! 2;<9<D:;!
HB>?>9=:=<79!7G!eCL>9<;>!OC9=<9I=79!A<?>:?>#!%,\$@)9,5A.*\9*0:,#!RJ0TfQ#!

'C?=78g!+#g!'#!/:GGB<DFg!-#!4:B]7L<Dg!1#!c:;=F>Bg!:9A!O#YO#!*>BA>?#!6WWJ#!$:97=CKC;:B!
F<IFM:@?!G7B!<9=>BD>;;C;:B!7BI:9>;;>!=B:9?H7B=#!LD*)4D)#!EWE0"WWUf"W"W#!

/:K7Bl7g!*#1#g!2#!/7=7g!'#V#!i:?D?:]g!%#!5>L@g!'#!i:?D?:]g!)#+#!O:BB<?g!:9A!S#!3B:9I<79>#!
"QQQ#! 2>;;Y;@?:=>! D79L>B?<79! 7G! HB<79! HB7=><9! <9=7! <=?! HB7=>:?>YB>?<?=:9=! <?7G7B8!
?CII>?=?! =F>!H:B=<D<H:=<79!7G!:!D>;;C;:B!DF:H>B79>#!I*5D()+"$I*5A(M."$ H)."$Q5++94"!
6TP0JUWfJUT#!

/:]:ICDF<g! /#g! /#! i:=:8<9>g! $#! $<?F<A:g! '#! 47B<CDF<g! i#! /F<I>8:=?Cg! ,#! /CI<87=7g! +#!
$:]:=:9<g! N#! i:=:7]:g! ,#! O7C=:9<g! /#! /F<B:K>g! O#! (]:A:g! /#! O:?>I:M:g! ,#! 4<@:87=7g!
:9A!,#!$7A:#! "QQR#!57??!7G! D>B>K>;;:B! 1CB]<9e>! D>;;?! <9!:I>A!8<D>!F787h@I7C?! G7B!:!
A<?BCH=>A!1B1!I>9>#!@0:9,)#!EPW0T6PfTE"#!

/:]:hC8>g!/#g!/#!N7?F<9:B<g!%#!(IC8:g!%#!&=?C97g!,#!-?F<<g!N#!$:BC8<g!,#!/F<<F:B:g!:9A!O#!
(F:?F<#! 6WWQ#!+! H:=<>9=!M<=F! >:B;@! 79?>=! OC9=<9I=79!A<?>:?>! :9A! ?>L>B>! D>B>K>;;:B!
:=B7HF@#!%+"$R"$S)/"$G)4):"$%#!"JQ+0TQPfRW"#!

/:9=CDD<79>g! +#g! .#! /@=9@]g! -#! 5>?FDF@9?^]:g! :9A!4#! /DF:DF9>B#! 6WWT#! 1B<79! HB7=><9!
B>DBC<=?! <=?!9>CB79:;!B>D>H=7B!$2+4!=7!;<H<A!B:G=?!=7!:D=<L:=>!HTQG@9!:9A!=7!>9F:9D>!
9>CB<=>!7C=IB7M=F#!R"$Q)&&$I*5&"!"RQ0EJ"fETJ#!

/:CA7Cg!3#g!/#!3<9]K><9>Bg!)#!)>L@?g!:9A!4#%#!*B>>9K>BI#!"QQP#!OC9=<9I=<9!:D=?!<9!=F>!
9CD;>C?! =7! <9ACD>! :H7H=7?<?! KC=! A>:=F! A7>?! 97=! D7BB>;:=>! M<=F! =F>! G7B8:=<79! 7G!
<9=B:9CD;>:B!<9D;C?<79?#!Q)&&#!QT0TTfRR#!

/:b>9:g!/#g!:9A!1#!2:B79<#!6W""#!/>;>D=<L>!9>CB79:;!LC;9>B:K<;<=@!<9!9>CB7A>I>9>B:=<L>!
A<?>:?>?0!GB78!?=B>??7B!=FB>?F7;A?!=7!A>I>9>B:=<79#!@)9,54#!U"0ETfJP#!

/DF:GG:Bg!*#g!1#!SB>C>Bg!'#!S7=>L:g!2#!S>FB>9A?g!$#!,hL>=]7Lg!$#!/=B<HH>;g!O#!/:]:F<B:g!
i#! /<>I>B?g! 4#! O:@>BYO:B=;g! :9A! 3#&#! O:B=;#! 6WWJ#! 2>;;C;:B! =7b<D<=@! 7G! H7;@I;C=:8<9>!
>bH:9?<79!HB7=><9?0!8>DF:9<?8!7G!=B:9?DB<H=<79!G:D=7B!A>:D=<L:=<79#!S5&"$Q)&&#!"T0QTf
"WT#!

/DF>Bh<9I>Bg!%#g!+#!/<==;>Bg!i#!/DFM><I>Bg!.#!O><?>Bg!'#!5CBhg!'#!O:?>9K:9]g!*#1#!S:=>?g!O#!
5>FB:DFg! :9A! %#%#! c:9]>B#! "QQQ#! />;GY:??>8K;@! 7G! H7;@I;C=:8<9>YD79=:<9<9I!
FC9=<9I=<9! GB:I8>9=?! <9=7! :8@;7<AY;<]>! G<KB<;?0! <8H;<D:=<79?! G7B! OC9=<9I=79^?! A<?>:?>!
H:=F7;7I@#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!QR0JRWJfJRWQ#!

/DF8<==Y&;8?g!*#g! *#! 5>I9:8>g!4#+#! S:;AM<9g!O#5#! S:;;g!$#! SB:A79g! 1#V#! S7?kC>g! i#5#!
2B7??<9g!*#4#!%A>;8:9g!/#V#!)>+B879Ag!3#%#!27F>9g!:9A!/#S#!1BC?<9>B#!6WW"#!S<9A<9I!7G!
9>CB:;! D>;;! :AF>?<79!87;>DC;>?! Z$Y2+4?[! =7! =F>! D>;;C;:B! HB<79!HB7=><9#! R"$S5&"$ I*5&"!
E"J0"6WQf"66T#!

/D7==g! 4#g! )#! 37?=>Bg! 2#! 4<B>9A:g! )#! />BK:9g! 3#! 27CG:;g! 4#! co;DF;<g! 4#! ,7BDF<:g! )#!
*B7=Fg!*#!2:B;?79g!/#V#!)>+B879Ag!)#!c>?=:M:@g!:9A!/#S#!1BC?<9>B#!"QPQ#!,B:9?I>9<D!
8<D>! >bHB>??<9I! F:8?=>B! HB<79! HB7=><9! HB7ACD>! ?H>D<>?Y?H>D<G<D! ?DB:H<>! <9G>D=<L<=@!
:9A!:8@;7<A!H;:kC>?#!Q)&&#!TQ0PJUfPTU#!



 169 

/>;]7>g! )#V#! 6WW"#! +;hF><8>B^?! A<?>:?>0! I>9>?g! HB7=><9?g! :9A! =F>B:H@#! 2(M.*5&"$ H)E"!
P"0UJ"fURR#!

/F>9Ig! 4#g! :9A! 4#V#! i<8#! 6WW6#! 17?=?@9:H=<D! ?<I9:;<9I! :9A! H;:?=<D<=@! 8>DF:9<?8?#!
LD*)4D)#!6QP0UURfUPW#!

/F<9g! V#YN#g! \#YO#!3:9Ig! \#Ya#!NCg!2#Y%#!c:9Ig!/#YO#! 5<g!:9A!a#YV#! 5<#!6WWT#!%bHB>??<79!7G!
8C=:9=! FC9=<9I=<9! <9! I;<:;! D>;;?! D79=B<KC=>?! =7! 9>CB79:;! >bD<=7=7b<D<=@#! R"$ Q)&&$ I*5&"!
"U"0"WW"f"W"6#!

/F7B=8:9g!i#g!:9A!N#YV#!5<C#!6WW6#!47C?>!:9A!FC8:9!A>9AB<=<D!D>;;!?CK=@H>?#!@0:$H)E$
T++945&#!60"T"f"R"#!

/<ICBA?79g! 2#V#g! i#1#'#! $<;??79g! /#! O7B9>8:99g! 4#! O><]>9M:;A>Bg! *#! 4:9D7g! 1#!
/DFM:Bhg!)#!(==g!,#!'n;<D]>g!1#1#!5<K>B?]<g!2#!VC;<C?g!V#!3:;?<Ig!5#!/=<=hg!i#!cn=FB<DFg!:9A!+#!
+IChh<#!6WWQ#!)>!97L7! I>9>B:=<79!7G!:! =B:9?8<??<K;>! ?H79I<G7B8!>9D>HF:;7H:=F@!K@!
87C?>!=B:9?I>9>?<?#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WR0EWJfEWQ#!

/<;L><B:g! V#'#g! *#V#! ':@879Ag! +#*#! OCIF?79g! '#%#! ':D>g! .#5#! /<8g! /#3#! O:@>?g! :9A! S#!
2:CIF>@#!6WWT#!,F>!87?=!<9G>D=<7C?!HB<79!HB7=><9!H:B=<D;>?#!@0:9,)#!JEU06TUf6R"#!

/<8g! .#5#g! :9A! S#! 2:CIF>@#! 6WWQ#! &;=B:?=BCD=CB>?! :9A! ?=B:<9! D78H:B<?79! 7G! C9A>BY
I;@D7?@;:=>A!?DB:H<>!HB<79!G<KB<;?#!@)9,5C*5&"$%;*4;#!EW06WE"f6WJ6#!

/<879>:Cg!/#g!O#!'>h:><g!$#!/:;t?g!*#!i:<?>BY/DFC;hg!4#!5>G>KLB>Y'7kC>g!2#!.<A:;g!V#Y*#!
37CB9<>Bg!V#!278=>g!3#!c7HG9>Bg!V#!*B7?D;:CA>g!O#!/DFo=h;g!:9A!2#-#!5:?8jh:?#!6WWU#!-9!
L<=B7!:9A!<9!L<L7!9>CB7=7b<D<=@!7G!HB<79!HB7=><9!7;<I78>B?#!2P5L$20:(5;"!E0>"6T#!

/<879?g! 4#g! :9A! *#! ':H7?7#! 6WWQ#! %b7?78>?YYL>?<DC;:B! D:BB<>B?! G7B! <9=>BD>;;C;:B!
D788C9<D:=<79#!Q9,,"$VA*4"$Q)&&$I*5&"!6"0TUTfTP"#!

/;7Mg!%#V#g!'#i#!*B:F:8g!+#1#!(?8:9Ag!'#/#!)>L79g!*#!5Cg!N#!)>9Ig!V#!1>:B?79g!i#!.:<Ag!
$#! S<??:A:g! '#!c>=h>;g! S#'#! 5>:L<==g! :9A!4#'#! O:@A>9#! 6WWT#! +K?>9D>! 7G! K>F:L<7B:;!
:K97B8:;<=<>?! :9A! 9>CB7A>I>9>B:=<79! <9! L<L7! A>?H<=>! M<A>?HB>:A! 9>CB79:;!
FC9=<9I=<9!<9D;C?<79?#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"W60""JW6f""JWU#!

/8<=Fg!'#g!1#!SBC9A<9g!:9A!V#YN#!5<#!6WWT#!/@9:H=<D!A@?GC9D=<79!<9!OC9=<9I=79^?!A<?>:?>0!
:!9>M!H>B?H>D=<L>#!Q)&&"$S5&"$P*F)$LD*"!R60"QW"f"Q"6#!

/7;7879g! -#O#g! %#! S<:?<9<g! :9A! )#+#! O:BB<?#! 6W"6#! -79! DF:99>;?! <9ACD>A! K@! =F>! HB<79!
HB7=><90!8>A<:=7B?!7G!9>CB7=7b<D<=@#!2,*54#!R0JWfJT#!

/7;7879g! -#O#g!V#%#!OC>==9>Bg!:9A!)#+#!O:BB<?#!6W"W#!$>CB7=7b<D!8C=:9=?!7G!=F>!HB<79!
HB7=><9!<9ACD>!?H79=:9>7C?!<79<D!DCBB>9=?!<9!DC;=CB>A!D>;;?#!R"$I*5&"$Q()+"!6PT06RU"Qf
6RU6R#!

/7;7879g!-#O#g!$#!iF:=B<g!%#!S<:?<9<g!,#!4:??<I9:9g!V#%#!OC>==9>Bg!:9A!)#+#!O:BB<?#!6W""#!
+9!$Y=>B8<9:;!H7;@K:?<D!A78:<9!:9A!D>;;!?CBG:D>!;7D:;<h:=<79!:B>!B>kC<B>A!G7B!8C=:9=!
HB<79!HB7=><9!=7b<D<=@#!R"$I*5&"$Q()+"!6PR0"JU6Jf"JUER#!

/7=7g! 2#g! :9A! V#! 2:?=<;;:#! 6WWJ#! ,F>! D79=B7L>B?<:;! HB7=><9Y79;@! F@H7=F>?<?! 7G! HB<79!
HB7H:I:=<79#!@0:"$S)/"!"W!/CHH;0/REfRU#!



 170 

/7=7g!2#g!5#!%?=B:A:g!:9A!V#!2:?=<;;:#!6WWR#!+8@;7<A?g!HB<79?!:9A!=F>!<9F>B>9=!<9G>D=<7C?!
9:=CB>!7G!8<?G7;A>A!HB7=><9!:IIB>I:=>?#!?,)4/.$*4$I*5D()+*D0&$LD*)4D).#!E"0"TWf"TT#!

/7=7g! 2#g! *#1#! /:K7B<7g! :9A! 5#! +9A>B>?#! 6WW6#! 2@D;<D! :8H;<G<D:=<79! 7G! HB7=><9!
8<?G7;A<9I0! :HH;<D:=<79! =7! HB<79YB>;:=>A! A<?7BA>B?! :9A! K>@79A#! ?,)4/.$ *4$
@)9,5.D*)4D).#!6T0EQWfEQJ#!

/H>B7g!4#g!:9A!-#!5:h<K:=#!6W"W#!2B>C=hG>;A=YV:]7K!A<?>:?>0!D:?>!B>H7B=!:9A!B>L<>M!7G!
=F>!;<=>B:=CB>#!%D:0$Q&*4$Q,50:#!JQ0"P"f"PU#!

/H<B>?YV79>?g!,#5#g!+#!A>!2:;<I979g!,#!4:=?C<g!2#!\>FBg!'#!1<=?=<D]g!O#YN#!cCg!V#)#!(?>=>]g!
1#S#!V79>?g!S#V#!S:D?]:<g!4#S#!3>:9@g!*#+#!2:B;?79g!i#O#!+?F>g!V#!5>M<?g!:9A!S#,#!O@8:9#!
6WWP#! -9! L<L7! <8:I<9I! B>L>:;?! A<??7D<:=<79! K>=M>>9! D:?H:?>! :D=<L:=<79! :9A! :DC=>!
9>CB79:;!A>:=F!<9!=:9I;>YK>:B<9I!9>CB79?#!V#!$>CB7?D<#!6P0PR6fPRU#!

/=:F;g! $#g! 4#+#! S:;AM<9g! +#5#! SCB;<9I:8>g! :9A! /#S#! 1BC?<9>B#! "QQW#! -A>9=<G<D:=<79! 7G!
I;@D7<97?<=7;! HF7?HF7;<H<A! ;<9]>A! :9A! =BC9D:=>A! G7B8?!7G! =F>! ?DB:H<>! HB<79!HB7=><9#!
I*5D()+*.:,M#!6Q0PPUQfPPPJ#!

/=:F;g! $#g! )#'#! S7BDF>;=g! i#! O?<:7g! :9A! /#S#! 1BC?<9>B#! "QPU#! /DB:H<>! HB<79! HB7=><9!
D79=:<9?!:!HF7?HF:=<A@;<97?<=7;!I;@D7;<H<A#!Q)&&#!T"066Qf6JW#!

/=>>;>g! +#)#g! \#! \F7Cg! c#/#! V:D]?79g! 2#! \FCg! 1#! +C;CD]g! 4#+#! 47?]7M<=hg! 4#Y3#!
2F>??>;>=g!:9A!/#! 5<9AkC<?=#!6WWQ#!279=>b=!A>H>9A>9=!9>CB7HB7=>D=<L>!HB7H>B=<>?!7G!
HB<79!HB7=><9!Z1B1[#!2,*54#!E06JWf6JQ#!

/=>GG:9g!V#/#g!+#!i:h:9=?>Lg!(#!/H:?<DYS7?]7L<Dg!4#!*B>>9M:;Ag!N#\#!\FCg!O#!*7F;>Bg!%#%#!
c:9]>Bg! *#1#! S:=>?g! )#%#! O7C?8:9g! :9A! 5#4#! ,F78H?79#! 6WWW#! ,F>! OC9=<9I=79^?!
A<?>:?>! HB7=><9! <9=>B:D=?! M<=F! HTE! :9A! 2'%SYK<9A<9I! HB7=><9! :9A! B>HB>??>?!
=B:9?DB<H=<79#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!QU0RUREfRURP#!

/=>]>;g! )#V#g! 4#+#! $7M:]g! :9A! ,#'#%#! /7C=FM77A#! "QQR#! 1B>A<D=<79! 7G! GC=CB>! S/%!
?HB>:A#!@0:9,)#!EP"0""Q#!

/=>M:B=g!'#/#g!:9A!)#+#!O:BB<?#!6WWE#!4C=:=<79:;!:9:;@?<?!7G!=7H7;7I<D:;!A>=>B8<9:9=?!
<9!HB<79!HB7=><9!Z1B1[!:9A!8>:?CB>8>9=!7G!=B:9?8>8KB:9>!:9A!D@=7?7;<D!1B1!ACB<9I!
HB<79!<9G>D=<79#!R"$I*5&"$Q()+"!6UP0JTQRWfJTQRP#!

/=>M:B=g!'#/#g!1#!1<DD:BA7g!S#!*F>==<g!:9A!)#+#!O:BB<?#!6WWT#!$>CB7A>I>9>B:=<L>!<;;9>??!
<9! =B:9?I>9<D! 8<D>! >bHB>??<9I! :! =B:9?8>8KB:9>! G7B8! 7G! =F>! HB<79! HB7=><9#! R"$
@)9,5.D*"!6T0EJRQfEJUU#!

/=wFBg!V#g!V#2#!c:==?g!*#!5>I9:8>g!+#!(>F;>Bg!+#!5>8C?g!O#Y(#S#!$IC@>9g!V#!/C??8:9g!O#!
c<;;>g! /#V#! )>+B879Ag! /#S#! 1BC?<9>Bg! :9A! i#! *<;>?#! 6W""#! /H79=:9>7C?! I>9>B:=<79! 7G!
:9DF7B;>??!HB<79?!<9!=B:9?I>9<D!8<D>#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WP06"66Ef6"66P#!

/C9A>g! 4#g! 5#2#! />BH>;;g! 4#! S:B=;:8g! 1#%#! 3B:?>Bg! 4#S#! 1>H@?g! :9A! 2#2#! S;:]>#! "QQU#!
278879! D7B>! ?=BCD=CB>! 7G! :8@;7<A! G<KB<;?! K@! ?@9DFB7=B79! aYB:@! A<GGB:D=<79#! R"$ S5&"$
I*5&"!6UE0U6QfUEQ#!

/CH:==:H79>g! /#g! 1#! S7?kC>g! ,#! 4CB:87=7g! O#! c<;;>g! 2#! +:I::BAg! )#! 1>B>=hg! O#(#!
$IC@>9g! 2#! O><9B<DFg!4#! ,7BDF<:g! V#! /:G:Bg! 3#%#! 27F>9g! /#V#! )>+B879Ag! /#S#! 1BC?<9>Bg!



 171 

:9A!4#! /D7==#! "QQQ#! 1B<79! HB7=><9! 7G! "WR! B>?<AC>?! DB>:=>?! :9! :B=<G<D:;! =B:9?8<??<79!
K:BB<>B!G7B!HB<79!B>H;<D:=<79!<9!=B:9?I>9<D!8<D>#!Q)&&#!QR0PRQfPUP#!

,:B=:B<g!4#g! 2#! *<??<g! .#! 57! /:BA7g! 2#! \CDD:=7g! %#! 1<D:BA<g! *#! 1>?7;>g! :9A! %#! 2:==:9>7#!
6WWP#!1F@;7I>9>=<D!D78H:B<?79!7G!FC9=<9I=<9!F787;7IC>?!B>L>:;?!=F>!:HH>:B:9D>!7G!
:!HB<8<=<L>!H7;@z!<9!?>:!CBDF<9#!S5&"$I*5&"$BE5&"!6T0EEWfEEP#!

,:?:]<g! 4#g! 4#! &>A:g! /#! (DF<:<g! N#! ,:9:K>g! /#! 4CB:=:g! N#! 4<?C8<g! N#! /Cg! a#! /C9g! /#!
/F<9B<]<g! O#! V797g! 4#! /F797g! i#! (K:@:?F<g! :9A! N#! +9A7#! 6W"W#! ,B:9?8<??<79! 7G!
D<BDC;:=<9I! D>;;YGB>>! ++! :8@;7<A! 7;<I78>B?! <9! >b7?78>?! L>D=7B?! L<:! :! HB<79Y;<]>!
8>DF:9<?8#!I*5D()+"$I*5A(M."$H)."$Q5++94"!JWW0TTQfTR6#!

,:=><?F<g! V#g! ,#! i<=:87=7g! 4#\#! O7kC>g! :9A! O#! 3CBC]:M:#! "QQR#! %bH>B<8>9=:;!
=B:9?8<??<79!7G!2B>C=hG>;A=YV:]7K!A<?>:?>!:9A!B>;:=>A!A<?>:?>?!=7!B7A>9=?#!@)9,5&5;M#!
JR0TE6fTEU#!

,:@;7Bg!)#'#g!$#,#!c:==g!c#/#/#!1>B>B:g!:9A!$#4#!O77H>B#!6WWT#!+??<I9<9I!GC9D=<79?!=7!
A<?=<9D=!B>I<79?!7G!=F>!$Y=>B8<9C?!7G!=F>!HB<79!HB7=><9!=F:=!:B>!<9L7;L>A!<9!<=?!D7HH>BY
?=<8C;:=>Ag!D;:=FB<9YA>H>9A>9=!>9A7D@=7?<?#!R"$Q)&&"$LD*"!""P0T"J"fT"TE#!

,>;;<9Ig! *#2#g! 4#! /D7==g! i#i#! O?<:7g! )#! 37?=>Bg! /#5#! N:9Ig! 4#! ,7BDF<:g! i#2#! /<A;>g! V#!
27;;<9I>g! /#V#!)>+B879Ag! :9A! /#S#! 1BC?<9>B#! "QQJ#! ,B:9?8<??<79!7G! 2B>C=hG>;A=YV:]7K!
A<?>:?>! GB78! FC8:9?! =7! =B:9?I>9<D! 8<D>! >bHB>??<9I! DF<8>B<D! FC8:9Y87C?>! HB<79!
HB7=><9#!2,5D))/*4;.$5F$:()$@0:*540&$%D0/)+M$5F$LD*)4D).#!Q"0QQERfQQJW#!

,>;;<9Ig! *#2#g! 4#! /D7==g! V#! 4:?=B<:99<g! '#! *:K<h79g! 4#! ,7BDF<:g! 3#%#! 27F>9g! /#V#!
)>+B879Ag!:9A!/#S#!1BC?<9>B#!"QQT#!1B<79!HB7H:I:=<79!<9!8<D>!>bHB>??<9I!FC8:9!:9A!
DF<8>B<D! 1B1! =B:9?I>9>?! <8H;<D:=>?! =F>! <9=>B:D=<79! 7G! D>;;C;:B! 1B1! M<=F! :97=F>B!
HB7=><9#!Q)&&#!PE0UQfQW#!

,F:]CBg!+#i#g!4#!V:@:B:8:9g!'#!4<?FB:g!4#!,F:]CBg!.#4#!2F>;;IB>9g!-#YV#5#!S@>79g!)#O#!
+9eC8g!'#!i7A:;<g!,#1#!2B>:8>Bg!V#3#!279M:@g!+#4#!*B79>9K7B9g!:9A!'#!c>=h>;#!6WWQ#!
17;@I;C=:8<9>! A<?BCH=<79! 7G! =F>! FC9=<9I=<9! >b79! "! $! =>B8<9C?! =B<II>B?! :! D78H;>b!
:IIB>I:=<79!8>DF:9<?8#!@0:"$L:,9D:"$S5&"$I*5&"!"R0EPWfEPQ#!

,F:]CBg!+#i#g!:9A!'#!c>=h>;#!6WW6#!4C=:=<79:;!:9:;@?<?!7G!=F>!?=BCD=CB:;!7BI:9<h:=<79!
7G!H7;@I;C=:8<9>!:IIB>I:=>?#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!QQ0"UW"Jf"UW"Q#!

,F<>?g!c#g!:9A!5#!S;><;>B#!6W""#!6W""!+;hF><8>B^?!A<?>:?>!G:D=?!:9A!G<ICB>?#!%&'()*+),.$
J)+)4:#!U06WPf6JJ#!

,<b:A7Bg! 1#g! 5#!O>Bh7Ig! 3#! '><9>g! %#! V:C8:<9g! V#! 2F:HC<?g! +#! 5>!)CBg! O#! 5:CA>g! :9A!.#!
SjB<9IC>#! 6W"W#! ,F>! HF@?<D:;! B>;:=<79?F<H! K>=M>>9! <9G>D=<L<=@! :9A! HB<79! HB7=><9!
:IIB>I:=>?!<?!?=B:<9YA>H>9A>9=#!2P5L$20:(5;"!R0>"WWWPTQ#!

,7]CA:g! ,#g! 4#4#! zCB>?F<g! 4#,#! +BA:Fg! /#! .:BIF>?>g! /#+#/#! /F>F:Kg! ,#! i:?:<g! $#!
-?F<I:8<g! +#! ,:8:7]:g! 4#! $:]:I:M:g! :9A! (#4#+#! %;Y+I9:G#! 6W"W#! )>=>D=<79! 7G!
>;>L:=>A!;>L>;?!7G!xY?@9CD;><9!7;<I78>B?!<9!2/3!GB78!H:=<>9=?!M<=F!1:B]<9?79!A<?>:?>#!
@)9,5&5;M#!UT0"URRf"UU6#!

,B>C?DFg! /#g! )#4#! 2@Bg! :9A! /#! 5<9AkC<?=#! 6WWQ#! +8@;7<A! A>H7?<=?0! HB7=>D=<79! :I:<9?=!
=7b<D!HB7=><9!?H>D<>?X!Q)&&$QMD&)#!P0"RRPf"RUJ#!



 172 

,h<9I7C9<?g!+#.#g!:9A!V#-#!c:A<DF>#!6WWU#!*;C=:8:=>! =B:9?H7B=>B?0! D79G<9<9I!BC9:M:@!
>bD<=:=<79!K@!?F:H<9I!?@9:H=<D!=B:9?8<??<79#!@0:"$H)E"$@)9,5.D*"!P0QETfQJU#!

.:DF>Bg! 2#g! 5#! *:BD<:Y(B7hg! :9A! )#2#! 'CK<9?h=><9#! 6WWT#! (L>B>bHB>??<79! 7G! @>:?=!
F?H"WJ! B>ACD>?! H7;@I;C=:8<9>! :IIB>I:=<79! :9A! HB7;79I?! ?CBL<L:;! 7G! :! =B:9?I>9<D!
87C?>!87A>;!7G!OC9=<9I=79^?!A<?>:?>#!89+"$S5&"$G)4):"!"J0EJ6TfEJEE#!

.:;>9=>g!%#4#g!1#4#!+K7CY/;><8:9g!.#!2:HC=7g!4#4#i#!4Ck<=g!i#!O:BL>@g!/#!*<?H>B=g!\#!
+;<g!)#!)>;!,CBD7g!+#'#!S>9=<L7I;<7g!)#*#!O>:;@g!+#!+;K:9>?>g!'#!$C??K:C8g!'#!*79hr;>hY
4:;A79:A7g! ,#! )>;;>Bg! /#! /:;L<g! 1#! 27B=>;;<g!c#1#! *<;]?g! )#/#! 5:=DF8:9g! '#V#! O:BL>@g! S#!
):;;:H<DD7;:g!*#!+CKCBI>Bg!:9A!$#c#!c77A#!6WWJ#!O>B>A<=:B@!>:B;@Y79?>=!1:B]<9?79^?!
A<?>:?>!D:C?>A!K@!8C=:=<79?!<9!1-$i"#!LD*)4D)#!EWJ0""TPf""RW#!

.:??:;;7g! $#g! :9A! V#! O>B8?#! 6WWE#! 2>;;C;:B! HB<79! HB7=><9! GC9D=<79! <9! D7HH>B!
F78>7?=:?<?!:9A!B>A7b!?<I9:;;<9I!:=!=F>!?@9:H?>#!R"$@)9,5D()+"!PR0TEPfTJJ#!

.>;;:g! 5#V#g! '#+#! /F:BH;>?g! .#+#! 5:M?79g! 2#5#! 4:?=>B?g! '#! 2:HH:<g! :9A! +#3#! O<;;#! 6WWU#!
1:D]:I<9I! 7G! HB<79?! <9=7! >b7?78>?! <?! :??7D<:=>A! M<=F! :! 97L>;! H:=FM:@! 7G! 1B1!
HB7D>??<9I#!R"$20:(5&"!6""0TP6fTQW#!

.>9]:=B:8:9g! 1#g! '#! c>=h>;g! 4#! ,:9:]:g! $#! $C]<9:g! :9A! +#5#! *7;AK>BI#! 6WWJ#!
%C]:B@7=<D! HB7=>:?78>?! D:997=! A<I>?=! H7;@I;C=:8<9>! ?>kC>9D>?! :9A! B>;>:?>! =F>8!
ACB<9I!A>IB:A:=<79!7G!H7;@I;C=:8<9>YD79=:<9<9I!HB7=><9?#!S5&"$Q)&&#!"J0QTf"WJ#!

.<;:Bg! 4#g! O#Y,#! 2F7Cg! ,#! 5nFB?g! /#i#! 4:e<g! )#! '<>]Y57F>Bg! '#! .>B>;g! *#! 4:99<9Ig! O#!
/=:F;K>BIg!:9A!'#!'<>]#!6WWP#!,F>!G7;A!7G!:;HF:Y?@9CD;><9!G<KB<;?#!2,5D"$@0:&"$%D0/"$LD*"$
X"L"%"!"WT0PREUfPRJ6#!

.79?:==>;g! V#1#g! :9A! 4#! )<3<I;<:#! "QQP#! OC9=<9I=79! A<?>:?>#! R"$ @)9,5A0:(5&"$ BYA"$
@)9,5&"!TU0ERQfEPJ#!

.79?:==>;g!V#1#g!'#O#!4@>B?g!,#V#!/=>L>9?g!'#V#!3>BB:9=>g!%#)#!S<BAg!:9A!%#1#!'<DF:BA?79!
VB#! "QPT#! $>CB7H:=F7;7I<D:;! D;:??<G<D:=<79! 7G! OC9=<9I=79^?! A<?>:?>#! R"$ @)9,5A0:(5&"$
BYA"$@)9,5&"!JJ0TTQfTUU#!

c:A?M7B=Fg!V#)#3#g!%#+#!+?:9=>g!4#!)>?KBC?;:<?g!V#4#!5<9>F:9g!/#!V7<9>Bg!-#!*7M;:9Ag!V#!
c>;DFg!5#!/=79>g!/#%#!5;7@Ag!+#3#!O<;;g!/#!SB:9A9>Bg!:9A!V#!27;;<9I>#!6WWJ#!OC8:9!1B<79!
1B7=><9! M<=F! .:;<9>! "6Q! 1B>L>9=?! %bHB>??<79! 7G! .:B<:9=! 2V)! 1F>97=@H>#! LD*)4D)#!
EWR0"UQEf"UQR#!

c:;?Fg! )#4#g! :9A! )#V#! />;]7>#! 6WWU#! +! K>=:! 7;<I78>B?! Y! :! A>D:A>! 7G! A<?D7L>B@#! R"$
@)9,5D()+"!"W"0""U6f""PJ#!

c:9Ig!3#g!\#!\F:9Ig!a#!c:9Ig!V#!5<g!5#!\F:g!2#Y*#!NC:9g!2#!c><??8:99g!:9A!V#!4:#!6W"6#!
*>9>=<D! <9G7B8:=<79:;!'$+! <?!97=!B>kC<B>A!G7B!B>D78K<9:9=!HB<79!<9G>D=<L<=@#!R"$W*,5&"!
PR0"PUJf"PUR#!

c:9Ig! O#Yc#g! V#3#! 1:?=>B9:]g! O#! iC7g! O#! '<?=<Dg!4#1#! 5:8K>B=g! S#! 2FB78@g! i#5#! .<7;:g!
c#5#!i;><9g!c#S#!/=<9>g!*#+#!iB:GG=g!:9A!S#5#!,B788>B#!6WW6#!/7;CK;>!7;<I78>B?!7G!K>=:!
:8@;7<A! Z"YJ6[! <9F<K<=! ;79IY=>B8! H7=>9=<:=<79! KC=! 97=! ;79IY=>B8! A>HB>??<79! <9! B:=!
A>9=:=>!I@BC?#!I,0*4$H)."!Q6J0"EEf"JW#!



 173 

c:9Ig! N#g! V#! 2C<g! a#! /C9g! :9A! N#! \F:9I#! 6W""#! ,C99>;<9IY9:97=CK>! A>L>;7H8>9=! <9!
:?=B7D@=>?!A>H>9A?!79!HTE!:D=<L:=<79#!Q)&&$J)0:($J*FF),"!"P0UE6fUJ6#!

c:==g!$#,#g!:9A!$#4#!O77H>B#!6WWE#!,F>!HB<79!HB7=><9!:9A!9>CB79:;!h<9D!F78>7?=:?<?#!
?,)4/.$*4$I*5D()+*D0&$LD*)4D).#!6P0JWRfJ"W#!

c:==?g! V#2#g!:9A!)#!c>?=:M:@#!6WWU#!,F>!HB<79!HB7=><9! G:8<;@0!A<L>B?<=@g! B<L:;B@g!:9A!
A@?GC9D=<79#!I*5D(*+"$I*5A(M."$%D:0#!"UU60RTJfRU6#!

c><??g!+#g!)#!+KB:87M?]<g!4#!S<K>;g!'#!S7A9>Bg!.#!2F7HB:g!4#!)<3<I;<:g!V#!37bg!i#!i>I>;g!
2#!i;><9g!/#!*BC>9<9I>Bg!/#!O>B?DFg!)#!O7C?8:9g!%#!'jIC;<>Bg!O#)#!'7?:?g!4#!/=>G:9<g!/#!
\><=;<9g!*#!S<;K>g!:9A!1#!1:I:9>==<#!6WWQ#!/<9I;>Y?=>H!A>=>D=<79!7G!8C=:9=!FC9=<9I=<9!<9!
:9<8:;! :9A! FC8:9! =<??C>?0! :! K<7:??:@! G7B! OC9=<9I=79^?! A<?>:?>#! %40&"$ I*5D()+"!
EQT0Pf"T#!

c>?=:M:@g! )#g! 1#+#! *77A8:9g! 2#+#! 4<B>9A:g! 4#1#! 4Di<9;>@g! *#+#! 2:B;?79g! :9A! /#S#!
1BC?<9>B#! "QPU#! )<?=<9D=! HB<79! HB7=><9?! <9! ?F7B=! :9A! ;79I! ?DB:H<>! <9DCK:=<79! H>B<7A!
8<D>#!Q)&&#!T"0RT"fRR6#!

c<D]9>Bg!'#S#g!O#i#!%A?]>?g!3#!/F>M8:]>Bg!:9A!,#!$:]:@:?F<]<#!6WWU#!1B<79?!7G!GC9I<0!
<9F>B<=>A!?=BCD=CB>?!:9A!K<7;7I<D:;!B7;>?#!@0:"$H)E"$S*D,5C*5&"!T0R""fR"P#!

c<;>?8<=Fg! V#g! V#! '@:9g! :9A!4#! +=]<9?79#! "QQ"#! S7L<9>! ?H79I<G7B8! >9D>HF:;7H:=F@0!
>H<A>8<7;7I<D:;!?=CA<>?!79!=F>!7B<I<9#!W):),*40,M$H)D5,/#!"6P0"QQf6WE#!

c<;;g! '#*#g! V#c#! -B79?<A>g! 4#! \><A;>Bg! /#$#! 27C?>9?g! i#! %?=<K><B7g! +#! +;H>B7L<=DFg! /#!
17?>Bg!4#!17DDF<:B<g!+#!O7G8:9g!:9A!1#*#!/8<=F#!"QQR#!+!9>M!L:B<:9=!7G!2B>C=hG>;A=Y
V:]7K!A<?>:?>!<9!=F>!&i#!P04D):#!EJU0Q6"fQ6T#!

c<;;>g! O#g! c#! S<:9g! 4#! 4D)79:;Ag! +#! i>9A:;;g! )#c#! 27;K@g! 5#! S;7DFg! V#! (;;>?DFg! +#5#!
S7B7L<9?]<@g! 3#%#! 27F>9g! /#S#! 1BC?<9>Bg! :9A! *#! /=CKK?#! 6WWQ#! $:=CB:;! :9A! ?@9=F>=<D!
HB<79!?=BCD=CB>! GB78!aYB:@! G<K>B!A<GGB:D=<79#!2,5D"$@0:&"$%D0/"$ LD*"$X"L"%"!"WR0"RQQWf
"RQQT#!

c<;;<:8?g! +#V#g! :9A! O#5#! 1:C;?79#! 6WWP#! 17;@I;C=:8<9>! 9>CB7A>I>9>B:=<790! HB7=><9!
8<?G7;A<9I!B>L<?<=>A#!?,)4/.$@)9,5.D*"!E"0T6"fT6P#!

c@:==g! V#4#g! *#'#! 1>:B?79g! ,#$#! /8>BA79g! ,#V#! *BCGG@AAYV79>?g! *#+#!c>;;?g! :9A! V#c#!
c<;>?8<=F#!"QQ"#!$:=CB:;;@!7DDCBB<9I!?DB:H<>Y;<]>!?H79I<G7B8!>9D>HF:;7H:=F@! <9! G<L>!
A78>?=<D!D:=?#!W):"$H)D"!"6Q06EEf6ER#!

a<:g! V#g! )#O#! 5>>g! V#! ,:@;7Bg! 4#! .:9A>;G=g! :9A! '#! ,BC:9=#! 6WWE#! OC9=<9I=<9! D79=:<9?! :!
F<IF;@!D79?>BL>A!9CD;>:B!>bH7B=!?<I9:;#!89+"$S5&"$G)4):"!"60"EQEf"JWE#!

N:9Ig!c#g!V#'#!)C9;:Hg!'#S#!+9AB>M?g!:9A!'#!c>=h>;#!6WW6#!+IIB>I:=>A!H7;@I;C=:8<9>!
H>H=<A>?! A>;<L>B>A! =7! 9CD;><! :B>! =7b<D! =7! 8:88:;<:9! D>;;?#! 89+"$ S5&"$ G)4):"!
""06QWTf6Q"U#!

N7Cg!O#g!/#!,?C=?C<g!/#!O:8>>Ag!,#V#!i:99:9:@:]:;g!5#!2F>9g!1#!a<:g!V#)#,#!%9IK>B?g!/#+#!
5<H=79g!1#i#!/=@?g!:9A!*#c#!\:8H79<#!6W"6#!+d!9>CB7=7b<D<=@!A>H>9A?!79!<9=>B:D=<79?!
K>=M>>9!D7HH>B!<79?g!HB<79!HB7=><9g!:9A!$Y8>=F@;Y)Y:?H:B=:=>!B>D>H=7B?#!2,5D"$@0:&"$
%D0/"$LD*"$X"L"%"!"WQ0"UEUf"UJ6#!



 174 

NCg! \#Ya#g! /#YO#! 5<g! O#Y1#! $IC@>9g! :9A! a#YV#! 5<#! 6WW6#! OC9=<9I=<9! <9D;C?<79?! A7! 97=!
A>H;>=>!H7;@I;C=:8<9>YD79=:<9<9I!=B:9?DB<H=<79!G:D=7B?!<9!O)!8<D>#!89+"$S5&"$G)4):"!
""0QWTfQ"J#!

NL>B=g!*#g!i#/#!5<9A>9K>BIg!/#!1<D:CAg!*#S#!5:9AM>FB8>@>Bg!V#+#!/:F>;g!:9A!V#5#!4:9A>;#!
6WWW#! %bH:9A>A! H7;@I;C=:8<9>?! <9ACD>! 9>CB7A>I>9>B:=<79! :9A! =B:9?Y9>CB79:;!
:;=>B:=<79?! <9! D>B>K>;;C8! :9A! B>=<9:! 7G! /2+U! =B:9?I>9<D! 8<D>#! 89+"$ S5&"$ G)4):"!
Q06JQ"f6TWR#!

\:G:Bg!/#g!$#!L79!+F?>9g!4#!(>;;>B<DFg! -#! \>BBg!c#V#!/DFC;hY/DF:>GG>Bg!.#c#!+B8?=B79Ig!
:9A! +#'#! +?<G#! 6W""#! 1B7=>78<D?! :HHB7:DF! =7! <A>9=<G@! =F>! <9=>B:D=<9I! H:B=9>B?! 7G!
D>;;C;:B! HB<79!HB7=><9! :9A! DF:B:D=>B<h:=<79!7G! ':KU:! <9=>B:D=<79! <9! 9>CB79:;! D>;;?#! R"$
2,5:)5+)$H)."!"W0E"6EfE"ET#!

\F:9Ig!S#g!N#!&9>g!a#!3Cg!V#!N:9g!3#!*>g!V#!N:7g!V#!/:M:?F<=:g!4#!47B<g!O#!,787h:M:g!3#!
i:8>=:9<g!:9A!i#!O<ICDF<#!6WWP#!3>D:;!=B:9?8<??<79!7G!++!:8@;7<A7?<?! <9!=F>!DF>>=:F!
D79=B<KC=>?!=7!F<IF!<9D<A>9D>!7G!A<?>:?>#!2,5D"$@0:&"$%D0/"$LD*"$X"L"%"!"WT0U6REfU6RP#!

\F:9Ig! N#g! 4#! 5<g! 4#! )B7hA:g! 4#! 2F>9g! /#! '>9g! '#(#! 4>e<:! /:9DF>hg! S#'#! 5>:L<==g! %#!
2:==:9>7g!'#V#!3>BB:9=>g!4#'#!O:@A>9g!:9A!'#4#!3B<>A;:9A>B#!6WWE#!)>H;>=<79!7G!M<;AY
=@H>!FC9=<9I=<9!<9!87C?>!87A>;?!7G!9>CB7;7I<D!A<?>:?>?#!R"$@)9,5D()+"!PU0"W"f"WR#!

\CDD:=7g! 2#g! :9A! %#! 2:==:9>7#! 6WWU#! '7;>! 7G! KB:<9YA>B<L>A! 9>CB7=B7HF<D! G:D=7B! <9!
OC9=<9I=79^?!A<?>:?>#!2,5;"$@)9,5C*5&"!P"06QJfEEW#!

\CDD:=7g!2#g!4#!.:;>9h:g!:9A!%#!2:==:9>7#!6W"W#!47;>DC;:B!8>DF:9<?8?!:9A!H7=>9=<:;!
=F>B:H>C=<D:;!=:BI>=?!<9!OC9=<9I=79^?!A<?>:?>#!2(M.*5&"$H)E"!QW0QWTfQP"#!

!


