

# Restauration d'images par temps de brouillard et de pluie : applications aux aides à la conduite

#### Houssam Halmaoui

houssam.halmaoui@ifsttar.fr

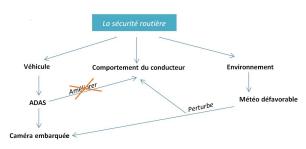
30 novembre 2012

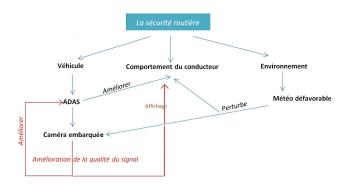
#### Jury:

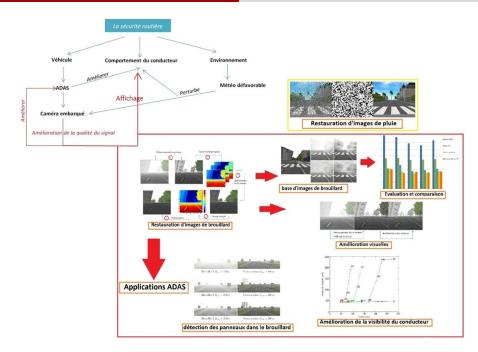
Rapporteurs : Fabrice MÉRIAUDEAU - Professeur IUT Le Creusot

Frédéric CHAUSSE - Enseignant Chercheur LASMEA

Examinateurs : Michel DEVY - Dir. de recherche LAAS/CNRS

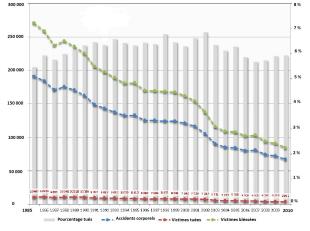

Samia BOUCHAFA - Professeur IBISC


Directeur: Didier AUBERT - Dir. de recherche IFSTTAR


Encadrants : Nicolas HAUTIÈRE - Chercheur IFSTTAR
Aurélien CORD - Chercheur IFSTTAR












#### Contexte

La sécurité routière ne cesse de s'améliorer depuis plus de 20 ans



Objectif des ADAS : pallier les défaillances du conducteur

# Caméra embarquée

- ▶ Différents traitements à l'aide d'un seul capteur
- Capteur économique et non encombrant
- Plusieurs applications ADAS







iOnRoad(smartphone); détection panneaux et piétons(BMW)

# Caméra embarquée

- Différents traitements à l'aide d'un seul capteur
- Capteur économique et non encombrant
- Plusieurs applications ADAS







iOnRoad(smartphone); détection panneaux et piétons(BMW)

Le signal se dégrade à cause de la météo



#### Influence de la météo

► Augmentation du risque d'accident et perturbation des systèmes de vision



|            | Effets sur le conducteur       | Effets sur l'image       |
|------------|--------------------------------|--------------------------|
| Brouillard | Distance de visibilité réduite | Atténuation des couleurs |
|            | Surestimation des distances    | et des contrastes        |
|            | inter-véhicule                 |                          |
| Pluie      | Visibilité de la scène diminue | Occultations de la scène |
|            | Perte d'adhérence              |                          |

# Amélioration des performances des ADAS

► Solutions envisageables

# Amélioration des performances des ADAS

- Solutions envisageables
  - Désactiver le système : éviter les résultats erronés ;

# Amélioration des performances des ADAS

- Solutions envisageables
  - Désactiver le système : éviter les résultats erronés;
  - Modifier chaque ADAS pour chaque cas (beau temps, brouillard, pluie...);

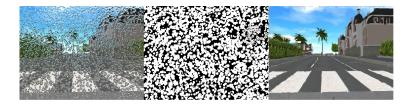
#### Amélioration des performances des ADAS

- Solutions envisageables
  - Désactiver le système : éviter les résultats erronés ;
  - Modifier chaque ADAS pour chaque cas (beau temps, brouillard, pluie...);
  - Restauration : Améliorer la qualité du signal.
    - Étendre la gamme de fonctionnement des ADAS existants
    - Systèmes d'assistance








#### Méthodologie

► Modèles physiques des phénomènes brouillard et pluie

► Méthodes de traitement d'images

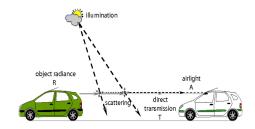
# Méthodologie

- Modèles physiques des phénomènes brouillard et pluie
- ► Méthodes de traitement d'images
- Cas pluie :
  - ▶ Détection des gouttes sur le pare-brise [Cord et al.] ¹.
  - ► Contribution : Inpainting des gouttes
    - État de l'art : texture, vidéo, diffusion par EDP
    - Comparaison de 3 méthodes de diffusion par EDP
    - Optimisation des paramètres (recuit simulé)



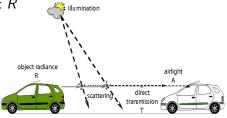
# Méthodologie

- Modèles physiques des phénomènes brouillard et pluie
- ► Méthodes de traitement d'images
- Cas pluie :
  - ▶ Détection des gouttes sur le pare-brise [Cord et al.] ¹.
  - Contribution : Inpainting des gouttes
    - État de l'art : texture, vidéo, diffusion par EDP
    - Comparaison de 3 méthodes de diffusion par EDP
    - Optimisation des paramètres (recuit simulé)




1. A. Cord et D. Aubert. *Towards rain detection through use of in-vehicle multipurpose cameras.* In Intelligent Vehicles Symposium (IV), 2011.

- Restauration d'images de brouillard
  - État de l'art
  - Approche proposée
  - Évaluation
- **2** Évaluation ADAS
  - Détection des panneaux
  - Mesure du temps de perception
- **3** Conclusion et perspectives

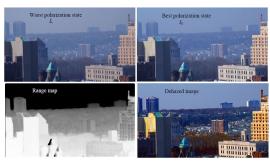

### Modèle optique du brouillard

- ▶ Équation de Koschmieder : I = T + Aavec  $T = Re^{-\beta d}$  l'atténuation directe et  $A = I_{\infty}(1 - e^{-\beta d})$  le voile atmosphérique
  - ► *R* : luminance intrinsèque
  - ightharpoonup eta : coefficient d'extinction atmosphérique
  - ▶ d : distance à l'observateur
  - $ightharpoonup I_{\infty}$  : luminance du ciel



# Modèle optique du brouillard

- ▶ Équation de Koschmieder : I = T + Aavec  $T = Re^{-\beta d}$  l'atténuation directe et  $A = I_{\infty}(1 - e^{-\beta d})$  le voile atmosphérique
  - ► *R* : luminance intrinsèque
  - ightharpoonup eta : coefficient d'extinction atmosphérique
  - d : distance à l'observateur
  - $ightharpoonup I_{\infty}$  : luminance du ciel
- Restauration :  $R = I \mathrm{e}^{\beta d} + I_{\infty} (1 \mathrm{e}^{\beta d})$
- ▶ Variables inconnues :  $\beta$ , d,  $I_{\infty}$  et R
- Problème mal posé

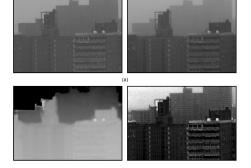



#### Filtres polarisant



- ▶ Un seul filtre : Atténuation du voile atmosphérique
- Brouillard : deux images acquises en modifiant l'orientation.<sup>2</sup>



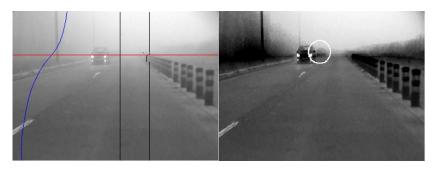



2. Y.Y. Schechner, S.G. Narasimhan et S.K. Nayar. *Instant dehazing of images using polarization*. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.

### Deux conditions météorologiques différentes



Détection des variations de profondeur<sup>3</sup>




3. S.G. Narasimhan et S.K. Nayar. *Contrast restoration of weather degraded images*. Pattern Analysis and Machine Intelligence, 2003.

# Hypothèse monde plan (PA)



- Estimation de la densité du brouillard 4
- Profondeur de la route supposée plane



4. N. Hautière, J.P. Tarel et D. Aubert. *Towards fog-free in-vehicle vision systems through contrast restoration*. In Computer Vision and Pattern Recognition, 2007.

# Dark Channel Prior (DCP)



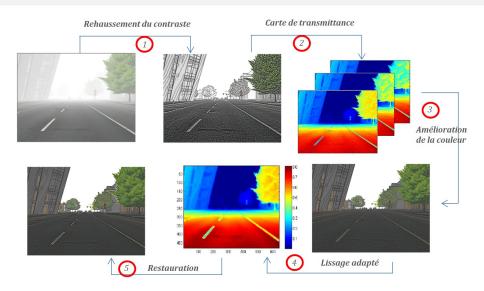
► En absence de brouillard, au moins un canal à une intensité quasi-nulle<sup>5</sup>



5. K. He, J. Sun et X. Tang. *Single image haze removal using dark channel prior*. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

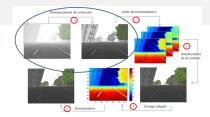
# Contraintes sur le voile atmosphérique (NBPC)




► Estimation du voile atmosphérique + filtrage adapté <sup>6</sup>

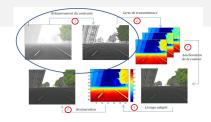


6. J.P. Tarel et N. Hautiere. Fast visibility restoration from a single color or gray level image. ICCV, 2009.


- Restauration d'images de brouillard
  - État de l'art
  - Approche proposée
  - Évaluation
- **2** Évaluation ADAS
  - Détection des panneaux
  - Mesure du temps de perception
- 3 Conclusion et perspectives

# Algorithme

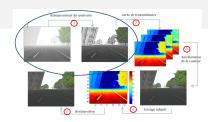



#### Rehaussement du contraste

- Méthode de traitement d'images
  - ► Égalisation d'histogramme locale

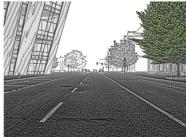


#### Rehaussement du contraste


- Méthode de traitement d'images
  - Égalisation d'histogramme locale

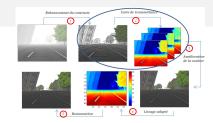


- Sous contraintes :
  - ▶ Intensité image restaurée < intensité image brouillard
  - Prise en compte du voisinage


#### Rehaussement du contraste

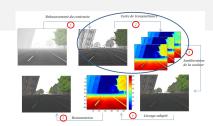
- Méthode de traitement d'images
  - Égalisation d'histogramme locale

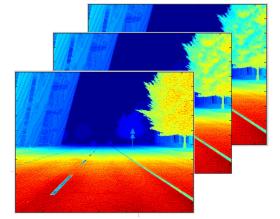


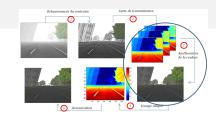

- Sous contraintes :
  - ▶ Intensité image restaurée < intensité image brouillard
  - Prise en compte du voisinage



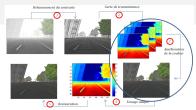



#### Carte de transmittance


- ▶ Koschmieder :  $I = Rt + I_{\infty}(1-t)$
- Carte de transmittance  $t = e^{-\beta d}$

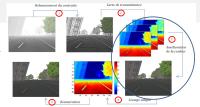



#### Carte de transmittance


- ▶ Koschmieder :  $I = Rt + I_{\infty}(1-t)$
- ► Carte de transmittance  $t = e^{-\beta d}$
- $\begin{array}{l} \blacktriangleright \ t_c = \frac{I_c I_{c\infty}}{R I_{c\infty}} \\ \text{avec } c = \{r, g, b\} \text{ et } R = I_{eq} \end{array}$

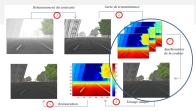


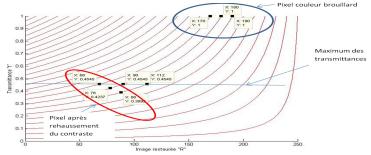



► Même transmittance pour les 3 canaux

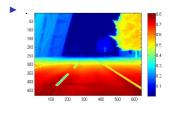



- ▶ Même transmittance pour les 3 canaux
- $t_{col} = max(t_r, t_g, t_b)$

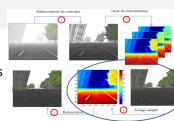





- ▶ Même transmittance pour les 3 canaux
- $t_{col} = max(t_r, t_g, t_b)$

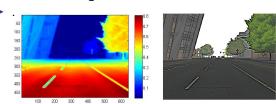


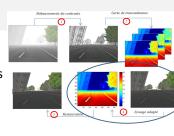


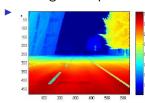

# Lissage

Lissage de *t* par une gaussienne de grande taille : homogénéisation des zones uniformes





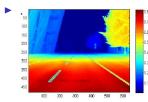


### Lissage

Lissage de *t* par une gaussienne de grande taille : homogénéisation des zones uniformes

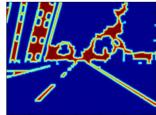




lacktriangle Lissage de t par une gaussienne de petite taille : préserve les détails



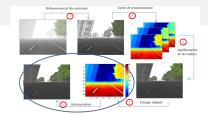


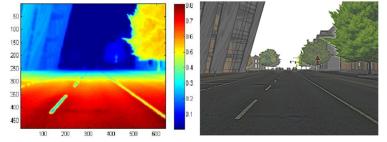


#### Lissage



Lissage de t par une gaussienne de petite taille : préserve les détails






Coupler les deux lissages

#### Restauration

▶ Inversion du modèle de Koschmieder



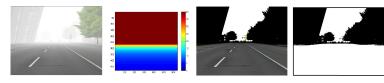


# Résultats qualitatifs










# Résultats qualitatifs



# Restauration du plan de la route

► Segmentation des objets verticaux



► Fusion monde plan



## Restauration du plan de la route











Image restaurée

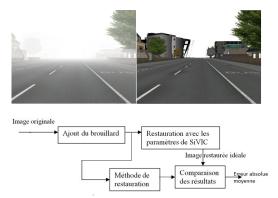




Image restaurée avec l'hypothèse monde plan

- Restauration d'images de brouillard
  - État de l'art
  - Approche proposée
  - Évaluation
- ② Évaluation ADAS
  - Détection des panneaux
  - Mesure du temps de perception
- 3 Conclusion et perspectives

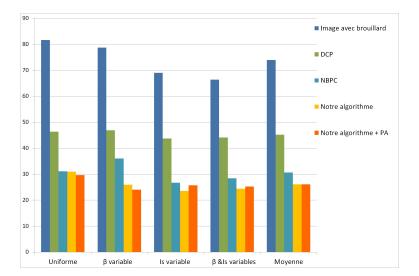
#### Bases d'images de brouillard


- ▶ Images de synthèses : logiciel SiVIC
  - ► Images de la même scène avec et sans brouillard : base d'images FRIDA <sup>7</sup>
  - 4 types de brouillard : uniforme; densité hétérogène; luminance du ciel hétérogène; mixte



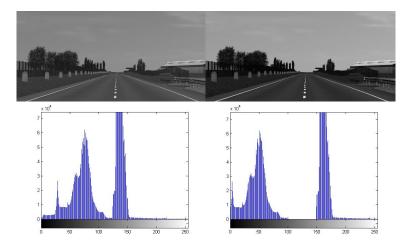
7. J.P. Tarel, N. Hautière, L. Caraffa, A. Cord, H. Halmaoui et D. Gruyer. *Vision Enhancement in Homogeneous and Heterogeneous Fog.* ITS Magazine, 2012.

#### Méthodes d'évaluation


- Absence d'information à partir d'une certaine distance
- Image restaurée idéale : image référence8
- Erreur absolue moyenne  $\frac{1}{NbPix} \sum |I(i,j) R_{ideale}(i,j)|$



8. H. Halmaoui, A. Cord et N. Hautiere. *Contrast restoration of road images taken in foggy weather.* ICCV, 2011

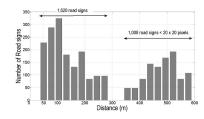

# Évaluation

Erreur en fonction du type de brouillard

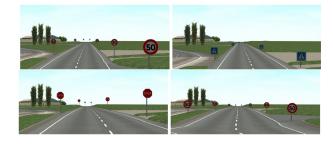


### Illustration d'une erreur absolue moyenne de 25

Modification de l'histogramme

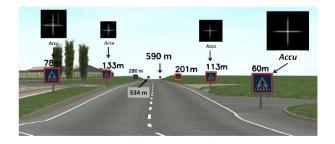



▶ Erreur absolue moyenne : ne prend pas en compte la vision humaine


- Restauration d'images de brouillar
  - État de l'art
  - Approche proposée
  - Évaluation
- **2** Évaluation ADAS
  - Détection des panneaux
  - Mesure du temps de perception
- 3 Conclusion et perspectives

# Base d'images de panneaux

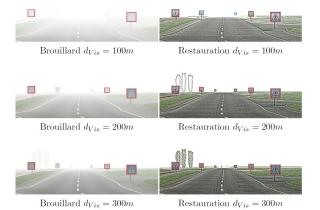
- ▶ 504 images de synthèse
- 2628 panneaux
- Différentes configurations




Détection des panneaux

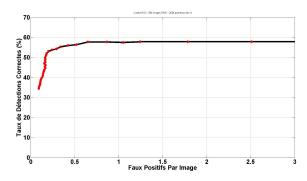


#### Algorithme de détection

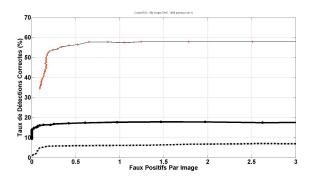

- ► Modèle géométrique : transformée chinoise bilatérale 9
- ▶ Détection de panneaux circulaire, triangulaire...



9. R. Belaroussi et J.P. Tarel. *A real-time road sign detection using bilateral chinese transform.* Advances in Visual Computing, 2009.


### Détection des panneaux

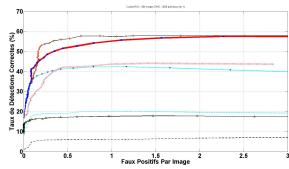
- Ajout de brouillard
- Différentes densités 10




10. H. Halmaoui, R. Belaroussi and A. Cord. *Road Signs Detection Under Dense Fog.* (soumis à IEEE Robotics and Automation Magazine, 2013).

► Temps clair

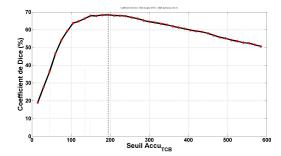



▶ Visibilité 50 m

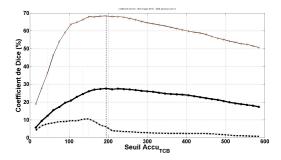


Visibilité 100 m

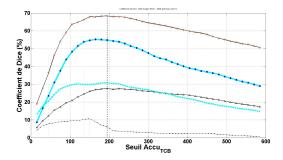



Visibilité 400 m

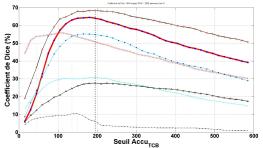



Maximum de détection

| $d_{Vi}$ | $_{s}$ (mètre)    | 250m-400m | $200 \mathrm{m}$ | $150 \mathrm{m}$ | 100m | $50 \mathrm{m}$ |
|----------|-------------------|-----------|------------------|------------------|------|-----------------|
| Ima      | age de brouillard | 44 %      | 35~%             | 27 %             | 20 % | 7 %             |
| Ima      | age restaurée     | 56 %      | 55 %             | 53 %             | 42 % | 18 %            |


- ►  $Dice = \frac{2TP}{TP+FP+P}$ ► Temps clair

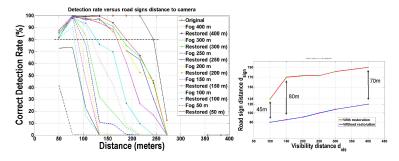



▶ Visibilité 50 m



▶ Visibilité 100 m




Visibilité 400 m



▶ Modification de point de fonctionnement après la restauration

# Mesure des performances

► Taux de détection en fonction de la distance



▶ Gain en temps de détection : pour un brouillard tel que la distance de visibilité  $\in [150-200m]$  et un véhicule roulant à 60 km/h, un panneaux sera détecté 5 secondes plus tôt

# Images réelles

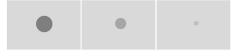


- Restauration d'images de brouillar
  - État de l'art
  - Approche proposée
  - Évaluation
- **2** Évaluation ADAS
  - Détection des panneaux
  - Mesure du temps de perception
- 3 Conclusion et perspectives

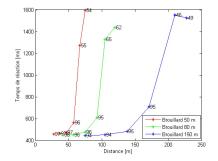
- De combien le temps de perception augmente en présence du brouillard par rapport à un temps clair?
- À partir de quelle distance un objet est détectable dans un brouillard d'une certaine densité?
- ▶ De combien nous pouvons améliorer le temps de perception et le pourcentage de détection d'un objet dans le brouillard en utilisant la restauration ?

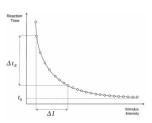
- ▶ De combien le temps de perception augmente en présence du brouillard par rapport à un temps clair?
- À partir de quelle distance un objet est détectable dans un brouillard d'une certaine densité?
- De combien nous pouvons améliorer le temps de perception et le pourcentage de détection d'un objet dans le brouillard en utilisant la restauration?




► Temps écoulé entre la présentation d'un stimulus visuel et la réponse du sujet (appuie sur bouton, réponse vocale...)

- Modélisation d'un objet noir de taille 2 m dans le brouillard
  - 3 distances de visibilité; 6 distances objet
  - 30 sujets; 8 répétitions




- Modélisation d'un objet noir de taille 2 m dans le brouillard
  - 3 distances de visibilité; 6 distances objet
  - 30 sujets; 8 répétitions



Moyenne des temps de réaction et taux de détection





Loi de Piéron

#### Modification du rendu visuel

- Modification de la méthode
  - ▶ Utilisation de toute la dynamique de l'image : meilleur contraste global
  - Lissage plus robuste au bruit
  - Couleurs plus proches de l'image avec brouillard



Rehaussement du contraste 1

+ filtrage bilatéral

Amélioration des couleurs

#### Modification du rendu visuel

- Modification de la méthode
  - ▶ Utilisation de toute la dynamique de l'image : meilleur contraste global
  - Lissage plus robuste au bruit
  - Couleurs plus proches de l'image avec brouillard



Rehaussement du contraste

+ filtrage bilatéral

Amélioration des couleurs



# Images réelles



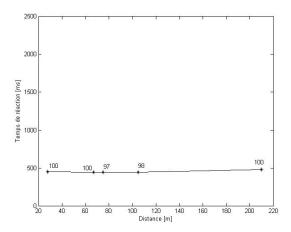






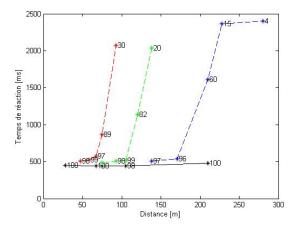
#### Résultats vidéo

# Expérience avec des images routières


Modélisation d'un HUD dans le brouillard

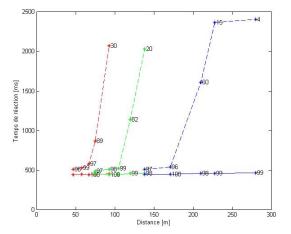


- ► Caméra linéaire + Calibrage écran -> luminance affichée est la même que dans le monde réel
- ▶ 3 densités de brouillard ; 5 distances ; 6 répétitions


## Mesure du temps de perception

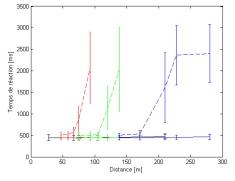
► Temps clair




## Mesure du temps de perception

Brouillard




#### Amélioration de la visibilité dans le brouillard

 Restauration du temps de réaction et du taux de détection jusqu'à une certaine distance



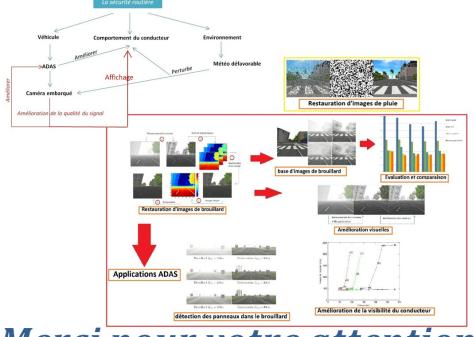
#### Amélioration de la visibilité dans le brouillard

Variabilité des réponses des sujets



| Visibilité (m)         | 50    | 80   | 150  |
|------------------------|-------|------|------|
| Distance objet (mètre) | 93    | 138  | 280  |
| TR Brouillard (sec)    | 2     | 2    | 2,4  |
| TR Restauration (sec)  | 0,5   | 0,5  | 0,5  |
| TD Brouillard          | 30 %  | 20 % | 4 %  |
| TD Restauration        | 100 % | 98%  | 99 % |

- Restauration d'images de brouillard
  - État de l'art
  - Approche proposée
  - Évaluation
- **Évaluation ADAS**
  - Détection des panneaux
  - Mesure du temps de perception
- **3** Conclusion et perspectives


#### Conclusion

- Nouvelle discipline de la restauration : "deweathering"
- ▶ Nouvelles méthodes de "deweathering" : brouillard et pluie
- Étendre la gamme de fonctionnement des ADAS
- Un seul capteur caméra
- Temps réel
- Evaluations qualitative et quantitative
- ▶ Applications ADAS : gains en temps de perception humain et logiciel

## Perspectives

- Prendre en compte la vision humaine : restauration et évaluation
- Véhicules du futur
- Application hors ADAS : appareils photos; vidéo surveillance; télédétection; cartographie terrestre; gestion du patrimoine routier et ferroviaire
- Débruitage par inpainting





Merci pour votre attention