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Lumiére lente par interactions non linéaires et cavités a
cristaux photoniques

La premiére mesure expérimentale de la vitesse de la lumiére a été réalisée en 1848
par Hippolyte Fizeau [Fizeau 1849| utilisant une méthode de temps de vol. Il a
mesuré le temps qu’il faut & une impulsion optique créée avec une roue dentée
tournante, pour faire 'aller-retour entre deux miroirs fixes: I'un & son domicile &
Suresnes et 'autre & Montmartre & Paris. Cette mesure pionniere de Fizeau a encore
été améliorée par le remplacement de la roue dentée par un miroir tournant et en
augmentant la distance de propagation. On sait que la vitesse mesurée par Fizeau
est ce qu'on appelle la vitesse de groupe, vy, et que celle-ci peut étre manipulée
et particuliérement réduite considérablement par rapport a la vitesse de la lumiére
dans le vide ¢ = 300000 km/s.

Les premiéres études théoriques de propagation de la lumiére dans les médias
avec des vitesses de groupe réduites remontent a 1880 lorsque Lorentz [Lorentz 1880]
a développé la théorie classique de la dispersion des ondes électromagnétiques. La
propagation lente des ondes électromagnétiques a été observée pour la premiére dans
la gamme des micro-ondes en 1950 [Pierce 1950].

Ce champ a été au ccoeur d’intenses recherches depuis deux décennies. En 1999,
L.V. Hau et ses collégues ont été les premiers a obtenir de la lumiére lente via trans-
parence induite électromagnétiquement (TIE) dans un condensat de Bose-Einstein
[Hau 1999]. L’effet consiste a produire un trou spectral d’absorption étroite qui
induit une forte dispersion de l'indice de réfraction. De nombreux groupes sont
aujourd’hui en mesure de ralentir la vitesse de la lumiére atteignant des vitesses
de groupe de quelques métres par seconde |Baldit 2005|, allant jusqu’a arréter le
mouvement de la lumiére entiérement |[Phillips 2001].

Une voie alternative a ’approche atomique a également été intensivement ex-
plorée afin de manipuler la vitesse de groupe pour obtenir la lumiére lente. Il
s’agit de la manipulation du diagramme de dispersion photonique via l'ingénierie
géométrique des propriétés optiques de materiaux transparents. C’est particuliére-
ment le cas dans les structures ol il ya une variation périodique de la constante
diélectrique, comme dans les miroirs de Bragg et les cristaux photoniques (CP)
[Notomi 2001].

Les deux options pour générer une lumiére lente, dispersion atomique et struc-
turation de matériaux ont été explorées en paralléle par des équipes venant
d’horizons differents. Ce n’est que récemment que les deux approches ont com-
mencé a étre considérées ensemble, générant un intérét accru ainsi que quelques
controverses. Du coté structuration, il est maintenant largement admis que des in-
dices de groupe, ngy = c¢/vy, supérieurs a 30 sont difficilement réalisables avec des
CP en raison de la forte augmentation des pertes qui suivent au moins une dépen-
dance linéaire en n,. Par contre, des vitesses de groupe ultra faibles, plus de 5
ordres de grandeur inférieures a ¢, sont actuellement obtenues par TIE et par le
biais du phénoméne des oscillations cohérentes de la population (OCP) [Boyd 1981]
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dans des systémes atomiques. Par ailleurs, la transmission optique pour étre proche
de 100 %, en dépit de l'indice de groupe extrémement élevé. Les pertes sont donc
indépendantes de l'indice de groupe. Ce paradoxe apparent est facilement résolu
si I'on considére les mécanismes physiques mis en ocuvre dans ces approches qual-
itativement différentes. La lumiére lente induite par structuration de la matiére
est essentiellement associée au temps de retard introduit par ’augmentation de la
distance de propagation. La lumiére lente obtenue par des interactions non linéaires
n’est pas associée a 'augmentation de la distance de propagation et ne génére donc
pas de pertes supplémentaires. Ce débat souléve la question de bénéficier des atouts
des deux approches en combinant dans la méme struture la lumiére lente obtenu
par interaction non linéaire et la lumiére lente obtenue par 'ingénierie des indices
de refractions.

L’étude de cette association de lumiéres lentes et 'objet de ma thése. Je com-
mence par rappeler les différentes fagcons qui permettent d’obtenir la lumiére lente
(partie I).

Dans le chapitre 1, je décris l'effet des oscillations cohérents de population (OCP)
utilisé dans cette thése pour obtenir une forte dispersion de l'indice de réfraction
dans les puits quantiques semi-conducteurs, et ainsi la lumiére lente par effet non
linéaire. Dans le chapitre suivant 2, je donne une bréve description des cristaux
photoniques (CP) et je montre comment ils peuvent étre utilisés pour construire des
nanocavités, des guides d’ondes et comment les CPs induisent des indices de groupe
élevés.

La thése est par la suite séparée en deux parties. La partie II est consacrée au
ralentissement de la lumiére par effet OCP dans des cavités & CP, tandis que la
partie III est consacrée & la combinaison des modes lents de guides d’ondes a CP
avec la lumiére lente obtenue par effet OCP.

Dans la partie II, je commence (dans le chapitre 3) en décrivant théoriquement
Ieffet OCP dans une cavité en utilisant la théorie des modes couplés. La descrip-
tion théorique montre que le comportement non linéaire de la cavité provoquée par
les puits quantiques actives ne peut pas étre négligé, ni dissocié de l'effet OCP.
Ensuite, dans le chapitre 4, le dispositif expérimental et les résultats obtenus sont
présentés et confrontés a la théorie. Une forte augmentation de la durée de vie est
démontrée, obtenant un facteur de qualité equivalent de 520000 qui correspond &
une amélioration d'un facteur 138 par rapport au facteur de qualité initial de la
cavité a CP.

La partie III est dédiée a 'association de la lumiére lente par effet OCP aux
modes lents des guides d’ondes & CP. Je commence dans le chapitre 5 en développant
un modéle perturbatif simple pour mieux comprendre 1’évolution de l'indice du
groupe et 'absorption du systéme lorsque 'effet OCP est associé avec le mode lent du
guide & CP. Cette model perturbative montre que I'interaction lumiére matiére a une
dépendance linéaire avec 'indice de groupe initial due a la structuration du matériau
formant le guide & CP, et ne depend pas de I'indice de groupe associé a l’effet OCP.
Dans le chapitre 6, je présente la problématique du couplage de la lumiére dans un
guide d’onde & CP et propose une systéme alternative pour coupler la lumiére dans
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le guide d’ondes de ’espace libre en utilisant une super réseau. Ce systéme est aussi
validé expérimentalement dans des guides d’ondes a CP transparents (sans puits
quantiques). Le chapitre 7 présente les résultats préliminaires sur les guides d’ondes
a CP actives et montrent des retards importants par rapport au retards obtenues
sans 'effet OCP.

Le chapitre 8 donne, enfin, les conclusions et les perspectives de ce travail.
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The first experimental measurement of the speed of light was performed in 1848
by Hippolyte Fizeau [Fizeau 1849] using a time of flight method. He measured
the time it takes to an optical pulse generated with a rotating cogwheel, to make
the round trip between two fixed mirrors, one at his house at Suresnes and the
other one at the Montmartre hill in Paris. This Fizeau pioneering measurement was
further improved by replacing the cogwheel by a rotating mirror and increasing the
propagation distance.

The Fizeau measurement corresponds to what we call nowadays the group veloc-
ity. The group velocity v, is the velocity at which a pulse envelope propagates (see
figure 1) in a medium with a refraction index n(w), where w is the optical circular
frequency. The group velocity is defined as:

Ow c
b=t - — (1)
ok n+ wgk
where k is the wavenumber. The denominator is called the group index:

on
ng = n—f—wa—w (2)

so that vy = ¢/ny.

Figure 1: Sketch of a propagating wavepacket.

From equation (2) it is easy to deduce that by modifying the index dispersion
On/Ow, one can manipulate the group velocity achieving, slow light (v, < ¢), fast
light (vy > c) or light propagating with negative group velocity (vq < 0).

The first theoretical studies of light propagation in media with reduced group
velocities go back to 1880 when Lorentz [Lorentz 1880] developed the classical theory
of dispersion of the electromagnetic waves. Slow propagation of electromagnetic
waves was first observed in the microwave range in 1950 [Pierce 1950].

This field has been at the heart of intense research for two decades. In 1999, L.V.
Hau and coworkers were the first to obtain slow light via electromagnetically induced



transparency (EIT) in a Bose-Einstein condensate [Hau 1999]. The effect consists in
generating a narrow absorption spectral hole that induces a strong dispersion of the
refraction index. Many groups are nowadays able to slow down the light achieving
group velocities of few meters per second [Baldit 2005] or even stop the motion of
light entirely [Phillips 2001].

An alternative avenue that has also been intensively explored is to achieve slow
light based on the moulding of the photonic dispersion diagram via the geometrical
engineering of the optical properties. Here spectral regions where the derivative
Ow/0k tends to zero are obtained. This is particularly the case in structures where
there is a periodic variation of the dielectric constant, like in Bragg mirrors and
photonic crystals [Notomi 2001].

The two options to generate slow light, atomic or atomic-like dispersion and
material structuration were explored in parallel by teams coming from quite different
backgrounds and that gained a clear cut intuition of the assets and limitations of
their slow light approaches. Only recently the two approaches were started to be
considered together generating both an increased interest and some controversies.
For instance it is well known, from distributed feed-back lasers, that slow light
propagation in an active medium periodically structured to induce the laser feed-
back, subsequently generates an increasing of the absorption, implemented in such
a case in order to increase the gain and achieve laser operation. Below the laser
threshold, slow light can be obtained but the increase of the absorption imposes a
severe limitation to the group velocity that can be achieved. In other words, it is
now largely accepted that group index higher than ~ 30 are hardily achievable in 2D
PhC due to the strong increase of losses that follow at least a linear dependence on
ng. Conversely, ultra slow group velocities more than 5 orders of magnitudes lower
than ¢ are currently achieved by EIT and Coherent Population Oscillations (CPO)
[Boyd 1981]. Moreover, here the optical transmission could be close to 100%, in spite
of the extremely high group index. Clearly, in this case, losses are independent on the
group index and velocity. This apparent paradox is easily solved when considering
the physical mechanisms at work in these qualitatively different approaches. The
slow light induced by the material structuring is essentially associated to the time
delay introduced by the increase of the propagation distance. This increased path is
at the hearth of the exaltation of the light-matter linear and nonlinear interactions
and thus generates the increase of the absorption and the additional losses. This
is particularly the case in 2D PhC W1 were the slow light explores more efficiently
the technological defects of the periodicity surrounding the WG core. In turn, slow
light by nonlinear interactions is not associated to the increase of the propagation
distance and thus generates no additional loss. This discussion raises the question of
benefiting from the assets of both approaches by combining in the same waveguide
nonlinearly induced and geometrically engineered slow light.

Only few theoretical papers addressed such a combination. M. Soljaci¢ and co-
workers performed numerical approaches [Soljaci¢ 2004, Soljaci¢ 2005a] but, even
though, they consider the possibility of slow mode wave guides for enhancing non-
linear effects when considering slow light from non-linear origins, e.g. EIT, they com-



bine it with PhC microcavities. More recently Mork and co-workers [Nielsen 2009]
explicitly considered EIT interaction in a W1 waveguide and demonstrated that
the combination of slow light by these two origins converges in a multiplication of
the two independent group indices regulated by the overlap of the optical mode in
the active region. They also did some research about the absorption enhancement
[Mo rk 2010] and showed that it scales linearly with geometrically engineered group
index but it does not have a dependence on the nonlinear group index.

In this thesis I address the problem of such a combination. I start by describing
the different means to achieve slow light (part I).

In chapter 1, I describe the Coherent Population Oscillations effect implemented
during my thesis in order to achieve strong index dispersion in semiconductor quan-
tum wells, and thus nonlinear slow light propagation. Next in chapter 2, I give a
brief description of the Photonic Crystals (PhCs) and show how they can be used
to build nanocavities, waveguides and how the PhCs induce high group indices. In
chapter 2, I will also give details on the system used during this thesis: the L3 PhC
nanocavities and the W1 PhC waveguides. I particularly discuss the problem of
coupling and extracting the electromagnetic field in and out the W1 waveguides.
Then the thesis is separated in two main parts according to the PhC structure stud-
ied. Part II is devoted to the combination of CPO and PhC cavities while part III
is devoted to the combination of the slow modes of PhC waveguides with the slow
light obtained by CPO effect.

In part II, I start (in chapter 3) by describing theoretically the CPO effect in a
cavity using the coupled mode theory. The theoretical description shows that the
nonlinear behavior of the cavity induced by the active quantum wells can not be
neglected nor dissociated from the CPO effect. Next, in chapter 4, the experimental
setup and the obtained results are presented and the experimental and theoreti-
cal results are compared. Strong increasing of the photonic lifetimes are therefore
demonstrated. These results are also discussed in terms of the enhancement, by an
order of magnitude, of the quality factor of the PhC nanocavity.

Part III is dedicated to the association of the CPO-based slow light with the W1
PhC waveguides. I start in chapter 5 by developing a simple perturbative model to
gain insight into the evolution of the group index and the absorption of the system
when the CPO effect is associated with the slow mode of the W1 PhC waveguide. In
chapter 6, I present the problematic of coupling light in a W1 PhC waveguide and
the proposed, grating, alternative for coupling light into the waveguide from the free
space. I also validate it in transparent W1 PhC waveguides. Chapter 7 presents the
preliminary results on active W1 PhC waveguides, that also demonstrate important
time delays.

Chapter 8 gives, finally, the conclusions and perspectives of this work.






CHAPTER 1

Slow light by nonlinear means

Slow light propagation is at the heart of intense research activities since two
decades. Induced by nonlinear interactions, such as Electromagnetically Induced
Transparence (EIT) [Fleischhauer 2005] or Coherent Population Oscillation (CPO),
slow light propagation was demonstrated in several systems including cold atoms
[Boller 1991, Hau 1999, Inouye 2000|, vapors [Kasapi 1995, Kash 1999|, rare-earth
doped crystals |Bigelow 2003a, Bigelow 2003b, Baldit 2005] and semiconductors
[Ku 2004].

These coherent nonlinear interactions induce a strong refractive index dispersion
associated to a narrow spectral hole transparency in the absorption spectrum. This
narrow window, related to the inverse of hyperfine coherence (EIT) or population
(CPO) relaxation times, also determines the temporal accessible bandwidth. Co-
herent nonlinear interactions are thus particularly interesting to achieve extremely
small group velocities that can be tuned by the absorption level or the light intensity.

Slow light based on CPO differs from EIT by several aspects. The main interest
of the CPO effect is that is has less restrictions. To achieve the CPO effect there is
no need of sophisticated 3-level system, indeed CPO could be implemented at room
temperature in any 2-level or 2-level like system provided the population lifetime T}
is sufficiently greater than the dephasing time 75. In contrast to the EIT effect it is
population lifetime T3 that is utilized in the coherent process and not the dephasing
time T5. CPO is less affected by inhomogeneous broadening [Chang 2005|, which
is usually inevitable and leads to a variation of the refractive index that is not as
sharp [Kim 2004] in semiconductor quantum structures.

1.1 Coherent Population Oscillations

Coherent population oscillations (CPO) was first introduced theoretically by
Schwarz and Tan in 1967 [Schwarz 1967] to understand the instabilities observed
in dye lasers and also to explain the presence of spectral windows narrower than the
homogeneous broadening and close to the natural linewidths. In the same paper,
Schwarz and Tan proposed to use the CPO effect as a spectroscopic tool in order to
measure the lifetime 73 of an atomic system when it is too short or when the atomic
system is not fluorescent. In 1978 Murray Sargent III [Murray Sargent IIT 1978|
used this approach to spectroscopic studies of the relaxation times.

In 1983, L.W. Hillman et al. [Hillman 1983] observed a 37 Hz half width half
maximum (HWHM) dip in the absorption profile of the homogeneously broadened
green absorption band of ruby, associated to the CPO effect. Taking benefit of this
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narrow hole in the ruby transition, to which a strong index dispersion is associ-
ated, Bigelow et al. |Bigelow 2003a] demonstrated slow light propagation in ruby
achieving a group velocity of 57 m/s. Since then, a large number of CPO-based
slow light propagations have been reported in various media such as alexandrite
[Bigelow 2003b], semiconductor structures [Ku 2004, Chang 2004, Palinginis 2005a,
Palinginis 2005b, Chang 2005|, and erbium-doped crystals [Baldit 2005].

1.1.1 Theory of Coherent Population Oscillations effect

The CPO effect is the main physical phenomenon I am using in the work reported
in this thesis. It is then important to give a theoretical description of this effect.
The starting point of this description is an ensemble of two-level atomic systems
as depicted in figure 1.1, characterized by a lifetime T3, a dephasing time 75 and
interacting with two electromagnetic fields: a pump oscillating at w and a weak
probe oscillating at w + §.We further suppose that both fields are close to resonance
with the atoms, that is w, w + d >~ wie. Due to the temporal interference between
the pump and the probe, the population of the atomic systems will oscillate at
the beating frequency ¢/(27n), in phase with the interference. The interaction
of the pump with a susceptibility oscillating at w 4+ ¢ induces two radiations at
w — 0 and w + 4. This second radiated field coincides with the probe and partially
annihilates its absorption. As the beating frequency §/(27n) gets larger than the
natural linewidth T'y, = 1/77, the population oscillations decline and the radiated
field at w + ¢ vanishes, retrieving thus the initial absorption of the atomic system.

b
1y =2
y&d_Tj r _ 1
) ba— v
Linewidth T,
characteristic decay rate
width .

Figure 1.1: Sketch of the 2 level system. T7 and T5 are respectively the lifetime of
the excited state and the decoherence time.

The CPO effect is a phenomenon driven by the population dynamics. However,
I perform here a full theoretical description of the system using the density matrix
formalism. The density matrix formalism is more adequate when one has to consider,
in addition, the inhomogeneous broadening of the atomic systems. Following the
formalism developed in [Boyd 2003] we end up with the following equations:

. . 1 y
Oba = — |:ZA - TQ:| Oba — %MbaE’UJ

w—wd

W= — iR + %(Nban'ab - MabETUba)
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The first equation describes the evolution of o3, the coherence of the atomic
system in the rotating wave approximation when exited by the electromagnetic field
E. pp, is the dipole moment of the transition, A = w — wp,. The second equation
describes the evolution of the population density difference w = ppp — paa. w4 = —1
is the population difference at equilibrium where all the atoms are supposed to be
in the ground state.

Now we rewrite <ﬁ’> = Pbattab T Pablba = O-ba/'Labe_th + O-abﬂbaeth- Using the
definition of the microscopic polarization p = 40, then (ﬁ) = p(t) = pe"“+c.c..
Equations (1.1) expressed as:

p=—[id— 2| p— tlumlBw
(1.2)

W= =¥ 4+ 53 (Ep)

In order to be in the CPO regime, the atomic systems have to be excited by
pump and probe fields oscillating respectively at w and w + d. However, experimen-
tally most often the pump and probe are obtained from a single laser source which
amplitude is modulated sinusoidally at frequency ¢, ending in the Fourier space with
three spectral components at w and w=+4d. We consider then that the atomic system
are interacting with three fields: the pump E,(w), the signal Es(w+J) and the idler
Ei(w — 6). We suppose that Es and E; are smaller than E,. Equations (1.2) are
solved considering the typical solutions:

p=po+pie " +p_qe (1.3)
w = wg + wle—l(St + w_le—ldt :

since w(t) € R, w; = wil and then w(t) = wo + 2|wi| cos(dt + ¢) where ¢ is the
phase of w.

The susceptibility at w + ¢ is given by X( )(w + ) = Np1/Es where N is the
density of the atomic systems and p; is the microscopic polarization oscillating at
w + d. They are obtained by solving the system (1.3).

(1)  Nlppal*wo i A Ll 0 1.4
X @0 =—p— [0+ )0 +T2 VAt Y

where D(0) = (544 ) (- A+ 4 ) (6+A+4) 02 (64 4 ) and @ = 25
is the pump Rabi frequency.

Now using the definition of the linear unsaturated absorption at the resonance
[2we9wy, Ta . 1+A2T2

_ N|ppa — 2eq
heo , setting wg = w TTATZ O TN T,

parameter s as the pump intensity normalized to the saturation intensity, which is

ap = and defining the saturation

also related to the Rabi frequency trough s = Q2T Ty , the susceptibility reads:
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X (@ +6) =

(1.5)

—apee 1+A2TZ i i 102_ 34
a2 D(5) 1+A2T22+Q%T1T2 [(5 + TT) <5 —A+ E) — 3 A—:é]
As the susceptibility is much smaller than 1 (]x| < 1) we can make a Taylor
approximation in first order /1 + x = 1 + x/2, then we can write the absorption
and refraction index as:

n(8) ~ 1+ %%[X(w +6)] (1.6)
a(6) = “T”%Mw 4 6] (1.7)

Figure 1.2 shows n(d) — 1 and the absorption «(d) for an absorption ap =
6.5 cm~!, a saturating parameter s = 0.5 and for 77 /T» = 20. The pump field is
supposed to be in resonance with the atomic transition (A = 0). A narrow CPO
hole appears in the homogeneous absorption line (see figure 1.2.a), to which a steep
dispersion of the index of refraction is associated (see figure 1.2.b). The dashed
curves are the absorption and the index of refraction in the same atomic systems
when only excited by the probe field.

7 T T T T T T T T T 5,0
6 (a) 1,\\ 4
1 \

—_ ! \ _. 25
'.E -eo
S =

: by
§ c 00
° o

g 8
3 g

5-2,5
- I s - R i L e S B e B B B R
Probe frequency ( 8T,) Probe frequency (37,)

Figure 1.2: Absorption (a) and refraction index n—1 (b) of the probe field when the
pump is present (continuous red line) and without the pump (dashed black line).
The parameters are g = 6.5 cm ™

AXTQZO.

, s = 0.5, Ty /Ty = 20, and a pump frequency

Considering a resonant pump (A = 0), T» < T} and a small pump-probe fre-
quency detuning we can further simplify equations for the absorption and the re-
fraction index:

agcly s 1)
n@) =1+ =501 (0T1)2 + (1 + 5)? (18)
() = 20 |- ___sU+s) (1.9)

T 1+s (0T1)% + (1 + s)2
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Using the expression of the refraction index (equation (1.8)) in the expression of
the group index (2) we can approximate it as:

n(w+6) —n(w —9)
26
aocly s 1

T2 14502+ (1+s)2 (1.10)

ng~1+w

Equation (1.10) for the group index shows that in order to achieve the maximal
ngy we need to optimize the pump intensity, which is such that s ~ 0.5 for homo-
geneously broadened systems. The exact value depends on the frequency. More
importantly, equation (1.10) shows that the group index depends on the product
aoTy. This suggest using high absorption media and long lived atomic systems in or-
der to achieve the slowest light propagation. However, by increasing ag, we increase
the propagation losses and for long 77, the slow light bandwidth is considerably
reduced.

1.1.2 CPO in semiconductors

Originally observed in atomic systems, the CPO effect has also been evidenced in
semiconductors allowing slow light propagation. The semiconductors have multiple
advantages over the atomic systems. The time scale of the population lifetime falls
in the range of nanoseconds, which corresponds to GHz bandwidths, much larger
than other atomic systems [Bigelow 2003b, Baldit 2005]. These large bandwidths
are compatible with the actual optical communication systems. Moreover, semi-
conductors allow easy on-chip integration with other active semiconductor-based
devices.

The first demonstration of CPO-based slow light propagation in a semiconductor
was carried out in a multi-quantum-wells (MQWs) sample achieving a group index
ng = 3.12 x 10 [Ku 2004]. Since then, other demonstrations have been reported
using either the quantum wells or the quantum dots [Chang 2005]. The main results
that have been achieved are summarized in table 1.1.

From the theoretical point of view, the semiconductors are considered as two-
level-like systems for the CPO effect. Indeed, as shown in figure 1.3, the electron in
the conduction band (CB) and the hole in the valence band (VB) play the role of the
2-level atomic system, and the electron-hole recombination time 7 is similar to the
atomic lifetime T7. It is then possible to use the formalism developed in section 1.1.1
to describe or predict the efficiency of the CPO effect in a given semiconductor
structure knowing two of its mains properties: the unsaturated absorption g and
the recombination time 7.
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Ng Length | Delay | Bandwidth | Medium | Temp. Reference
310* | 202.5 nm | 60 ps 2 GHz 15 QWs | 10°K [Ku 2004]
AlGaAs
1.5 10° | 195 nm 1 ns 120 MHz 15 QWs | 10°K | [Palinginis 2005a)
AlGaAs
565 440 pm | 830 ps | 100 MHz QW Room | [Palinginis 2005b|
AlGaAs
10.6 100 pm 2 ps Bulk Room [?]
InGaAsP
6 700 pm 7 ps 2 GHz QDs Room [Su 2006]
InGaAs

Table 1.1: Previous experiences of CPO in semiconductors.

CB

VB

W Va\a

T

Figure 1.3: Sketch of the 2 level system in a semiconductor. CB is the conduction
band, VB is the valence band and 7 is the electron-hole recombination time.




CHAPTER 2

Photonic Crystals

Over the last few decades a wide range of studies have been performed with the
objective of controlling light and its interaction with matter at the nanometer scale.
A particular interest has come to a point as we try to engineer materials that would
allow a light wave to propagate only in a certain direction (waveguides) or to confine
it within a region (cavities).

The first approach to this problem was the total internal reflection systems,
where light is confined in a dielectric or semiconductor using the refraction index
contrast between two materials. An important example of this are the fiber-optics
that revolutionized the telecommunications but cavities as microdisks or micro-
spheres also relay on this principle.

An other possible approach is to work with the interferences in a medium with
a periodicty in the refractive index. As in solids, where the periodicity of a crystal
modifies the conduction properties of electrons by defining allowed and forbidden
electronic energy bands, periodic structures of the refractive index at the wavelength
scale modify the propagation of light in certain directions for certain frequencies.
It is because of this analogy that one calls this kind of structure photonic crystals.
The first and well known example is the Bragg mirror that is indeed a sort of one
dimensional photonic crystal. In our days, we can also fabricate two dimensional or
three dimensional photonic crystals allowing light to propagate in a unique direction
(waveguides) or confining it to a given region (cavities). In this chapter we make a
brief description of these possibilities focusing on the particular structures studied
in this thesis the L3 photonic crystal cavity and the W1 photonic crystal waveguide.

2.1 1D photonic crystal

The Bragg mirror is the simplest 1D photonic crystal structure. It consists of a
structure with a periodical succession of layers of permitivities €; and €2 and period
A, as shown in figure 2.1. If we consider the case of a electromagnetic wave at a
wavelength A < A interacting with the structure then the problem can be explained
by geometrical optics (Snell-Descartes Law). If A < A the electromagnetic wave per-
cetves an homogeneous permitivity given by the average between €1 and 9 weighted
by the respective thicknesses. It is between this two regimes, when A ~ A, that the
periodic structure behaves like a Bragg mirror, i.e. if all the succesive reflexions are
in phase the wave attenuates rapidly as it penetrates the medium.

The propagation properties in such periodic medium is well described by the dis-
persion relation w(k) where the frequencies are given as a function of the wavevector
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Figure 2.1: Sketch of a structure with an unidimensional periodicity in the permi-
tivity (Bragg mirror).

k. The dispersion relation is obtained starting from the Maxwell equation consid-
ering the periodicity of the permittivity e(z) = e(z + A). We can decompose the
permitivity using a Fourier expansion:

e(z) = Zeme_mmz
m

where K = 27/A.
The solution of the Maxwell equations for this periodic system are the Bloch
waves:

E(Z) — 6me—i(kz+mK)z
H(Z) hmefi(szrmK)z (21>

where e,, and h,, are periodical. Note that the wave-vector, k, + mK, of the
the Bloch mode is invariant under a £K transformation. Indeed, in order to fully
describe the physics of propagation we can restrict ourselves to the interval —K /2 <
k < K/2: this region in k space is called the Brillouin zone. We also define the
effective index as neg(w) = ky(w)/ko where ko = 27/ .

Figure 2.2 shows the dispersion relation, called also band diagram, for the case
g1 = €3 = 13 (a) and for ey = 13 and e3 = 1 (b). It is important to note that,
for €1 # &9, there is no propagative solution for k = K /2, this is called band gap
in an analogy with solid state physics. At the band gap the 1D photonic crystal
works as a mirror. Bragg mirrors give thus a simple and intuitive example of band
gap structures. Nevertheless, the appellation photonic crystal is reserved to higher
dimensional periodical systems.

2.2 2D photonic crystal

The next step is to go from unidimensional periodic structure to a system with
periodicity in two directions and invariant in the third one, such structure is called
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Figure 2.2: Photonic band structure for a propagation perpendicular to the structure
for (a) e1 =2 = 13 and (b) €1 = 13 and g2 = 1 [Joannopoulos 2008].

2D photonic crystal. The most usual geometry is a triangular lattice of holes in a
2D membrane, as shown in figure 2.3.a. Using this geometry we can confine light
in the 2 directions of the plane with the help of band gaps. The confinement in
the third direction (perpendicular to the plane of symmetry) is achieved by index
contrast using total internal reflection. Indeed, usually the slab is sufficiently thin to
constitute a single mode waveguide. We consider an index periodicity given by air
holes (n=1) embedded in a high refractive index material. A key point for 2D pho-
tonic crystals is the discrimination between two polarizations of the electromagnetic
fields: transverse-electric (TE) modes where the magnetic field is normal to the
plane and the electric field lies on the plane, and transverse-magnetic (TM) modes
where the magnetic field is in the plane and the electric field is normal to the latter.
The band structure for the TE and TM modes can be completely different, as shown
in figure 2.3.b. In particular, it may occur that a photonic bandgap exists for one
polarization while no bandgap exists for the other one. Frequency bands for which
propagation is forbidden both for TE and TM modes are called total bandgaps. The
search for total bandgap was a key issue at the beginning of the engineering of 2D
PhC. We will now concentrate in the two devices at the heart of this thesis: 2D
PhC cavities and W1 PhC waveguides.

2.3 Photonic crystal cavities
The photonic bandgap can be used to confine light in reduced volumes. This was

the key issue in the pioneering work of E. Yablonovitch [Yablonovitch 1987]. The
aim being to confine light in a volume reduced to the wavelength in order to control
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Figure 2.3: (a) 2D Photonic crystal of triangular lattice. The periodicity is given by
air holes of radius r in a material with dielectric constant ¢ = 13. (b) Band diagram
for the structure in (a). The red lines represent the TE modes while the blue lines
the TM modes. The inset shows the Brillouin zone. |[Joannopoulos 2008|

the spontaneous emission of a single emitter. Imagine that we include a defect
in a 2D PhC for instance by removing some holes in the lattice: if this defect
has the appropriate size to support a mode surrounded by the photonic band gap,
then the light gets trapped into it. As a result, an optical cavity is achieved. These
cavities can have very small volumes and high quality factors (@), where ) represents
the rate of energy loss relative to the stored energy in the cavity. It is given by
Q = Tw/2 = w/Aw, with 7 the photon lifetime inside the cavity, w the cavity
resonance frequency, and Aw the resonance width.

As mentioned before photonic crystal nanocavities can be formed by removing
and/or modifying (i.e. by changing the hole size or the refractive index) one or more
holes in an otherwise perfectly periodic lattice. Such a breaking in the periodicity
of the lattice, that introduces new energy levels within the photonic band gap, can
be achieved for different types of lattice geometries and can have itself different
geometries. The most popular nanocavity geometries are defect cavities and double
heterostructures.

The simplest defect cavity in a bi-dimensional photonic crystal consists of re-
moving one hole [Painter 1999] in a perfect triangular lattice of holes. This cavity is
called H1. However, it typically has quality factors of a few hundreds, which exclude
them as good candidates for most nonlinear optical applications. L3 cavities where
3 consecutive holes are missing in a line of holes are nowadays the most emblematic
defect cavities since they ensure relative small volume and high @-factor. Such kind
of cavities are sketched in figure 2.4.a (top).

In recent years, a considerable amount of effort has been devoted to improve
PhC cavity design in terms of both Q-factors and mode volumes. In particular, it
has been shown that given a defect cavity, the quality factor of the structure can be
improved by shifting the position of the nearby holes or increasing/decreasing their
size. This is the case of the L3 modified cavity in a suspended PhC membrane.

Such cavities are given by three missing holes in a line of a triangular periodic lat-
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tice, as shown in figure 2.4.a. Noda et al. [Akahane 2003] have demonstrated that a
slight shift of the two holes closing the cavity increases the cavity quality factor by al-
most one order of magnitude, figure 2.4.b. Sauvan et al. [Sauvan 2004, Sauvan 2005]
have given a successful interpretation of this phenomenon. Two elements contribute
to the increase of the quality factor of the cavity: the shift of the surrounding holes
better adapt the cavity mode profile to the mirrors, improving their reflectivity and
producing a decrease of the group velocity of the cavity modes. We will come back
to this particular point in chapter 3. Thanks to this shift, high quality factors (Q),
e.g. Q ~ 10* in GaAs and @ ~ 45000 in Si, are achieved. In this thesis, we have
implemented this kind of cavities in InP suspended membranes (chapter 4).

®ove 0w e

0.1
d/a
(a) (b)

Figure 2.4: (a) Sketch of a L3 cavity with a lattice constant a, where the two holes
closing the cavity are shifted away a distance d. Image from [Akahane 2003]. (b)
Quality factor ) of the L3 cavity as a function of the holes shift, d. Squares corre-
spond to the experimental results in [Akahane 2003] while the line and the circles
correspond to the numerical results from [Sauvan 2005]. Image from [Sauvan 2005].

0.2

2.4 Photonic crystal waveguides

As we have seen in section 2.3, a punctual defect obtained by removing one or
several holes in a region induced a cavity; a linear defect created by removing a
row of holes generates a waveguide. Light propagates through this defect, confined
by total internal reflection in the vertical direction and Bragg like reflection, due
to the photonic crystal band gap, in the lateral direction. This kind of photonic
crystal waveguides where there is just one line of holes missing are usually called
W1 waveguides. Figure 2.5.a shows a sketch a W1 waveguide. Variations can be
made to build different kinds of waveguides following the same principle.

Figure 2.5.b shows the dispersion curve of the mode propagation in a W1 pho-
tonic crystal waveguide with a refraction index n = 3.31 (corresponding to InP), a
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Figure 2.5: (a) Sketch of a 2D PhC W1 waveguide. (b) Dashed blue line: light line,
straight green line: Dispersion curve of a W1 waveguide mode with: ¢ = 420 nm,
r = 125 nm, thickness e = 265 nm and n = 3.31.

triangular lattice period a = 420 nm, a hole radius » = 125 nm and a membrane
thickness e = 265 nm. W1 photonic crystal waveguides can be either mono or mul-
timode, in our case we have chosen to work with a small thickness which ensures a
monomode operation.

Equation (2) in the introduction shows that the group velocity is the derivative
of the frequency with respect of the wavevector, i.e. the slope of the dispersion
curve. Figure 2.5.b shows that as we approach the limit of the Brillouin zone (k, =
0.42 (27)/a) the group velocity becomes smaller and thus the corresponding group
index ng is large. The nature of this slowing down is the backscattering where
light is coherently backscattered at each unit cell of the crystal. If the forward
propagating and the backscattered light match in phase and amplitude (as they
do at the Brillouin zone boundary for k = 7/a), a standing wave results, which
can also be understood as a slow mode with zero group velocity. Another mean to
obtain slow light in PhC WGs is the omnidirectional reflection states. Because of the
fact that photonic crystal waveguides do not have a cut-off angle, light propagating
at any angle is reflected at the borders of the waveguide. We find then a zigzag
movement that becomes stiffer as we approach the I'-point, i.e. k& ~ 0, obtaining
slow modes and forming a standing wave for k = 0. The nature of slow light in PhC
WGs is fully discussed by T. F. Krauss [Krauss 2007|. In this thesis I will focus on
the backstering phenomenon close to k = 7 /a.

The first experimental demonstration of slow light in a W1 photonic crystal
waveguides was achieved by Prof. Notomi’s group in 2001 [Notomi 2001]. Since this
pioneering work several articles have tackled experimentally the slow modes on W1
waveguides. Table 2.1 shows some of the results of slow light in photonic crystal
waveguides. A review of these results was published by Prof. Baba [Baba 2008|.
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Group index | Length | Delay | Bandwidth Reference
(ng) (pm) | (ps) (nm)
40-60 250 40 10-12 [Kawasaki 2007]
25-60 390 40 3-12 [Hamachi 2009]
34 500 56 11 [Frandsen 2006]
300 250 250 20 [Vlasov 2005]

Table 2.1: Previous experiences of Slow light in W1 photonic crystal waveguides.
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Reducing cavity mode volumes and increasing the cavity lifetimes is a cru-
cial trend in photonics for integration of various optical functions and as well for
fundamental studies [Vahala 2003, Matsko 2006, Ilchenko 2006]. The narrow reso-
nance and the long photon lifetime of such devices can be used in optical and mi-
crowave filtering applications |Strekalov 2003, Oraevsky 2001| or for optical buffer
miniaturization [Tanabe 2006]. Moreover, such properties may result in suitable
conditions to enhance light-matter interaction with applications in nonlinear op-
tics [Yanik 2003, Shinya 2008, Chembo 2010], biosensing [Arnold 2009], microwave
filtering [Strekalov 2003], pulse storage [Tanabe 2006, Xu 2007, Dumeige 2009a],
quantum information and quantum electrodynamics [Aoki 2009, Rivoire 2011], po-
tentially in integrated platforms.

Intrinsic limits for the @Q-factor in a microcavity are given either by its ra-
diative losses due to imperfect light confinement or by the residual absorption
of the constituting material. Therefore, the manufacturing of high-@Q resonators
requires high purity materials [Savchenkov 2004], complex technological processes
to reduce fabrication imperfections |Takahashi 2007| and careful design to avoid
radiative losses [Akahane 2003, Lu 2010]. One can note that it is possible to
compensate for optical losses by using a gain material within the microcavity
[Minin 2004, Peng 2006, Dumeige 2008|. A rigorous theoretical analysis by C.
Sauvan et al. [Sauvan 2005] has shown that among the physical mechanisms in-
volved in the Q-factor enhancement via the geometrical engineering of the nanocav-
ity neighborhood is the increase of the the group index n, of the nanocavity mode.
By slightly changing the size and position of few holes surrounding the cavity, the
cavity mode group index is indeed increased.

Another way to increase the QQ-factor consists in inserting a highly dispersive
material inside the microcavity [Soljaci¢ 2005b]. This technique has already been
experimentally demonstrated in atomic systems embedded in macroscopic ring cav-
ities using coherent non-linear effects such as coherent population trapping or elec-
tromagnetically induced transparency (EIT) [Miiller 1997, Lukin 1998, Wang 2000,
Goorskey 2002, Yang 2004, Lauprétre 2011]. In those configurations, a powerful
pump beam induces a steep dispersion at the probe frequency, tuned to the cavity
resonance; the resulting increase of the group index strongly decrease the cavity
linewidth. In this context, it has also been shown that a nonlinear susceptibility at
the probe frequency can enhance the Q-factor of the cavity [Wu 2007|. The @Q-factor
of a solid state whispering gallery mode microresonator has been recently greatly
improved using the dispersion induced by optomechanical effects [Weis 2010].

In this part slow light via non-linear interactions in photonic crystal nanocavi-
ties is studied. It is theoretically and experimentally demonstrated that slow light
enables to have a small-size and ultra-high Q-factor cavity, regardless of the tech-
nological and design issues. For the experimental demonstration we use L3 2D
Photonic Crystal (PhC). The theoretical study of coherent nonlinear interaction in
nanocavities is developed in chapter 3. Chapter 4 presents the experimental setup
and the experimental results. Finally, the experimental results and the theoretical
predictions are compared.
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We have discussed in the general introduction of chapters 1 and 2 the different
ways to achieve slow light and more generally optical delays. We will concentrate
here on those associated to nonlinear interactions in a cavity. More precisely we
will consider different theoretical approaches of increasing complexity. Firstly, we
describe the situation of a cavity containing a 2-level system (TLS) in which CPO
effect is induced (section 3.1) [Dumeige 2012|. Second, we consider a simple Fabry-
Perot cavity in which CPO coexists with a nonlinear refractive index (section 3.2).
These simplified models allow to gain a first intuition on the physical situation
that will certainly exist in an active semiconductor nanocavity. A more sophisti-
cated approach based on coupled mode theory (CMT) is presented in section 3.3
[Dumeige 2012]. The theoretical model is based on the coupled equations describing
the evolution of the mode amplitude a in the cavity and the evolution of the carrier
density N in the quantum wells. Finally, analytical (section 3.4) and numerical
(section 3.5) results are presented.

Table 3.1 gives a summary of the different approaches, their advantages and
limitations.



26 Chapter 3. Theoretical Model
CPO in a Fabry-Perot Coupled mode theory
microcavity cavity Analytical | Numerical
Advantage Simple Separe Full Validation
approach | contributions model
Analytical
expressions YES YES NO NO
CPO YES YES YES YES
Nonlinear NO YES YES YES
Table 3.1: Characteristics of the different models.
3.1 CPO effect in a microcavity: Basic approach

In this approach, the 2D photonic crystal nanocavity containing active quantum
wells used for the experimental demonstrations in this thesis, is modeled by a simple
resonator containing two-level atomic like systems (TLSs) simulating the active
quantum wells. As shown is figure 3.1, the resonator is characterized by its lifetime
T given by

L2 )

T Te Trad Ta

where T,.,4 18 cavity lifetime limited by the radiation losses, 7, is the cavity lifetime
related to the absorption « of the atomic-like systems in the resonator, given by

1 co

T g (3.2)
where ng is the refractive index of the material constituting the cavity. 7. character-
izes the evanescent coupling of an electromagnetic field into the resonator through,
for example, an optical fiber. To induce the CPO effect in the TLSs, a pump field
at frequency wj, with intensity I shines the cavity whereas a weaker signal field at
frequency wy + 0 is coupled into the cavity through the fiber. In order to avoid non-
linear dispersion, and have only the bare CPO effect, the pump field is not resonant.
We will come latter to the general case.

As it has been explained in chapter 1, for a pump-probe detuning § < 1/77,
where T} is the population lifetime of the TLS, the CPO effect generates a strong
dispersion on the probe beam characterized by a group index ny calculated from a
density matrix approach and given by [Boyd 1981, Bigelow 2003a]

Oé()CTl I
2 (1+1)3

ng = (3.3)
where [ = Iy/Isq with Iy and Is, being respectively the pump and saturation
intensities. In the limit of 75 < 17, where T3 is the dephasing time of the TLSs and
in the limit where §77 < 1. The absorption is given by:
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Figure 3.1: Microcavity containing a two level system. The pump (frequency wp) is
non-resonantly coupled to the cavity. s (frequency ws = wp + ¢) is the input probe
field. The cavity mode is coupled to the reflected field u via evanescent waves with
a characteristic lifetime 7.
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(14+1)%
where g is the unsaturated absorption of the TLS. If ng > ng, the quality fac-

tor of the cavity experienced by the probe beam is thus given by [Miiller 1997,
Soljaci¢ 2005b, Sauvan 2005, Dumeige 2009b]:

o= (3.4)

ng woT

3.5
ot (35)
which can also be written using equations (3.1-3.5)
wolil
Q= ST : (3.6)
2(1 +I) []. + Ta0 (E + m) (1 + 1)2}
where
1 cag
— = 3.7
Ta0 2720 ( )

Depending of the different lifetimes of the system, two scenarios are considered.

Strong unsaturated absorption: in this first limit, we suppose that the absorp-
tion aq in the cavity is strong. In this case T, Traq > Tao, and the overall Q-factor
can be approximated by:

wolil
20+ 1)

This expression shows that the new lifetime of the cavity is 71 1y/(1 4+ Ip). Choosing
Ty > Trqq the population oscillation greatly increases the cavity lifetime which

Q= (3.8)

originally could only reach the maximum value 7,44 when all the other optical loss
sources are negligible. The only drawback of this case is that the reflected power
given by:
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4] = (27“())2(1“)4 (3.9)

Te

can be very weak as 7,0 < Te.

Weak unsaturated absorption: in this second situation we suppose that the
absorption in the cavity is very weak. As a consequence Te, Trqq <<€ Tao- The Q-
factor can now be written as

QZEL

Ta0 (1 +IO)3 Q0> (310)

where the Q-factor of the cold cavity Qo = woTo/2 is deduced from the photon
lifetime of the cold cavity

1 2 1 1

—=—+ + —. (3.11)

70 Te Trad Ta0

Considering the hypothesis, we get
1 2 1

70 Te Trad

(3.12)

The main limitation of this approach is that the @Q-factor is proportional to
T /740 which is limited since we have assumed a high value of 7,9. This leads to a
moderate value of CPO enhanced Q-factor.

As a partial conclusion, we point out that the photon lifetime of a microcavity
containing a two level system where CPO occurs can be strongly increased. The
cavity lifetime is then basically limited by the population lifetime T;. However, as it
has been pointed out in chapter 1 unlike other coherent effect based schemes where
absorption is completely canceled, in the CPO approach, the residual unsaturated
absorption limits the reflected power from the cavity. Our experimental situation is
closer to the second case where the unsaturated absorption is ag = 58 cm™!, which
in equation 3.3 can give a maximum ny = 30, which can achieve an enhancement of
3 of the quality factor. However, it will be shown in next sections that the nonlinear
properties of the cavity strongly contribute in the enhancement of the quality factor.

3.2 CPO and nonlinear effects in a Fabry-Perot cavity

In this section we discuss a simple model consisting of an optical cavity containing
a material with both dispersive and nonlinear effects in order to gain intuition of
the physical behavior when both CPO and nonlinear dispersion are present in our
nanocavity. In this model, we consider a Fabry-Perot cavity of length L, with finesse
F, and partially filled with a medium with a group index n, due to the CPO effect
and a negative nonlinear index ny. The cavity is simultaneously injected with a

strong pump beam Ep = Epge~“F! and a weak signal (probe) Eg = Egge™ st
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The respective wavevectors are: kpr = kp + AENL) for the pump and kg7 =

ks + AL for the probe, where Ak(VL) is the nonlinear term associated with the
nonlinear index ns. The nonlinear term can be written, considering a perturbative
approach, as:

(NL)

ﬁpAn no|E|?

S el (3.13)
Ug n Ug n

Ak‘(NL) _

where I' is the normalized overlap of the unperturbed mode with the perturbation,
vy represents the group velocity associated with the dispersion due to the periodic
structuration of the photonic crystal, and A is given

CNne

A:2,

such that I = A|E|?.

A detailed explanation of the origin of this equation will be given ahead, in
chapter 5 (see equation (5.25)).

We can then rewrite the pump and probe wavevectors as:

E 2

kpor = kp — A’% (3.14)
E 2

ks = ks — A’% (3.15)

where for simplicity we defined A’ = A%.

In order to calculate the delay due to the CPO effect and to the nonlinear
dispersion, we start by the determination of the transmitted probe field. This is done
by considering the conservation of the tangential electric field at the boundaries of
the cavity, i.e. at z =0 and at z = L, as shown in figure 3.2. We first suppose that
the two mirrors of the cavity are identical having the same amplitude transmission
t and reflection 7.

t,r CPO +n, t,r

EP’Oei(kP,Tz—th) Ap€j(kP‘Tz_th)—|—Asei(k51Tz_wSt)
___>_

Esg Oei(k&TZ—wst)

z2=0 zl=L

S 4

Figure 3.2: Fabry-Perot system studied.

At z = 0, we obtain:
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AP e—iwpt +AS e—iwst —
(3.16)
t (Epp e wpt + E570 €7iwst) +r (BP e~ wpt + Bg eiiwst)

multiplying on both sides by e™?! and integrating between —oo and oo only the
terms oscillating at —wpt are non null, giving:

. AP — tEp,()
= " .

Bp (3.17)

doing the same thing but multiplying by e*s? we obtain the equivalent probe con-

dition:
Ag —tE
Bg= 25— =50 (3.18)
r
Evaluating at z = L we can write the fields as:
Bpe_i(kP’TL+th) + Bse_i(kS’TLerst) —
(3.19)

r (APei(kP,TL_WPt) + Asei(kS,TL_wSt))

Now we replace Bp and Bg by the expressions given in equations (3.17) and
(3.18), the expressions of the wavevectors (3.14) and (3.15) and assume that the
nonlinear term is small.

AP—jEP,O e—i(ka—i-wpt)(l + Z'.A/TL2|E‘2) + As—;Es,o e—i(ksL+wst)(1 + Z'.A/TL2|E‘2) _
r [ApelhrLl=wrh) (1 — jAn,|B|?) + AgelhsLmws) (1 — i A'ny|E)?)]
(3.20)
We can write the field |E|? as:

|E|2 _ |AP 6i(ka—WpiE) + Ag ei(ksL—wst) + Bp e—i(ka—l-th) + Bg 6—i(ksL+wst)|2

and assuming the pump and probe condition |Ag|? < |Ap|?, |B| ~ |A|/r and
disregarding the terms oscillating at 2kgL or 2kp:

1 ‘ ‘ i(kp—ks)L
B = sl (14 3 ) + Apdg efor—os (ez(ks_kP)L P ) e

we introduce this expression in equation (3.20). Multiplying on both sides by e™s?
and integrating between —oo and oo only the terms oscillating at —wgt are non null,

giving:
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.Ap—tE —i i(ko— i(kp—kg)L
iar : PO, lkPL.A/TLQA}AS (ez(ks kp)L+ e PT2 s )

r

. ; ; _ i(kp—kg)L
+’L7"AP€lkPL.A/n2A}AS (ez(ks kp)L + et P2 s) )

(3.21)
_i_ASfiEs,o e~ tksL [1 + iAln2|Ap|2 (1 + %2)]
—T‘AseikSL [1 — iA’n2|AP|2 (1 + r%)] =0
We can finally write the probe field Ag as:
A _ tES’D
S 1ie2ikSL[r27iA/n2|AP|2(E—Zika+5r2)]+,L~_A/n2|AP‘2(T%+€2ikPL> (3.22)

where we disregarded the terms where the product of transmission ¢, nonlinear index
ng and/or probe field amplitude Ag gives a third order contribution.
We now introduce the wavevector for the probe:

w wg . An(€PO)
ks = —Sneff(wg) + Sp= (3.23)
c Vg n
We write the refraction index by separating the constant term from the frequency
dependent one and approximate to:

d
n~ngy+ ﬁéw. (3.24)

From the expression of the group index, we can write the derivative as:

dn Nng —n

do  w

then
CPO _
g

An(CPO) _ 0w "
w n
using this expression we develop the probe wavevector kg close to the linear reso-

namnce:

S nCPO —-n
kg ~ T4 0¥ <1 + r9> (3.25)

L Vg n
and:

S5 7LgPOf7‘L
‘ 2i 9w (1-1—1“7)
eZihsl — ¢ v " (3.26)

where dw = wg — wp with wg being the probe frequency and wy the cavity linear
resonance frequency. We further develop equation (3.26) at second degree of Taylor
expansion. We indeed need the second order to well describe the perturbations.
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Sw nCPO n 1
e2iksL 1 4 9;%% <1+Fg + =
Vg n 2

CPO _ 2
2:0% (1 + ann>] (3.27)

Vg n

Using equation (3.27) in (3.22) we obtain:

tEso
Ag = 2
nCPO _ cPoO_, ]
1{1+2ii‘; (1+F = )+2[215—w(1+1“7>] }x[ﬂz’A'n2|Ap|2(e2zka+5r2)]

—|—Z.A,TLQ’AP|2 ( + e?zka)

(3.28)
From this equation we study numerically which terms contribute and which
terms can be neglected, obtaining:

tE
A~ —— MS(’]@L)L oo (3.29)
1—r —f(5w)—2mT <1+F — )
where JwVL) = g — w(()NL) ,
CPO _ CPO _
sy~ 2200 [ rle T N gl ap2 = 9L (1 rle T |
f(
Vg n Vg n
and
4 Ans| Ap|?
s
14+T—-4——
From equation (3.29) we can write the group phase:
y(sw(NL)
qbg ~ arctan T—f.((m) (330)

PO_
where we defined y = QT L (1 +7T i n) .

Finally, from equation (3.30) we can calculate the final group delay in the cavity

_ dég .
as Tg = g

CPO _
7~ 2FLn (H_ann)
n

e

nCPO —-n
1+ TnorlAw [ 1 +T-L2—n— (3.31)
n

where F is the finesse of the cavity F = =z We assumed vy = - and defined

Aw = o) 4y and g = 2e0wpFn’L?
- S 0 - TC
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This expression shows that the total group delay has three contributions: the
passive cavity delay (~ 2FLn/(wc)), the CPO effect given by the group index nCP o
and the nonlinear term proportional to ny. Notice that the latter vanishes close to
the resonance frequency and it is maximum near the maximum slope of |Ap|? at
the high frequency side.

This perturbative approach clearly shows that in the presence of a nonlinear
refractive index the overall delay results from the contribution of both the change
of the group index resulting from the CPO effect and the nonlinear phase due to
the nonlinear refractive index.

3.3 Model for CPO in a semiconductor nonlinear micro-
cavity

In order to fully take into account the two contributions highlighted in section 3.2,
we consider here the case where the pump and probe fields, necessary for the CPO
effect, are in resonance with the cavity. In this situation as the pump amplitude
is high in the cavity, the nonlinear effect associated with the quantum wells is not
negligible anymore. The coupled mode theory is very well suited to describe this
nonlinear behavior of the cavity. Basically two equations are considered in the
CMT model. The first one describes the evolution of the field in the cavity and the
second concerns the evolution of the electrons, i.e. the carriers density in the active
quantum wells.

Cavity mode: a(t)

s(o)
mp+5 +TLS

u(t)

Figure 3.3: Nonlinear microcavity and its access line. s is the input field consisting
of a pump and a signal which carrier frequencies are respectively wp and ws = wp+9
($(w) represents the input signal spectrum). The cavity mode a is coupled to s and
to the reflected field u via evanescent waves with a characteristic lifetime 7.

The mode amplitude in the cavity a(t) is described by a simple harmonic oscil-
lator model [Haus 1984|

% [j(wo + Aw) - 1} alt) + \/st (3.52)

where s(t) is the input field. Note that |a(t)|* is the energy stored inside the cavity
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and the power of the input signal is given by |s(¢)|*. We assume that the absorption
linearly depends on the carrier density /N in the quantum wells through:

o= ap- (1 _ ]]D (3.33)

where N, is the carrier density at transparency. The refractive index variations
due to the photocreated carriers induce a frequency shift Aw of the cavity res-
onance. The absorption and the index variations are related through the Henry’s
linewidth enhancement factor gy [Henry 1982]. With these definitions, wy is the res-
onance frequency of the cavity at transparency (N = N;). The frequency shift due
to carrier density variations is [Spinelli 1998, Yacomotti 2006a, Yacomotti 2006b,
Brunstein 2011]

Aw= . (N - 1) . (3.34)

Ta0

The output field u(t) is obtained from the cavity mode amplitude expression

u(t) = \/Za(t). (3.35)

Considering the time domain slowly varying envelope approximation, the defi-
nition of the pump angular frequency wp and the expression of the field amplitudes

a(t) = A(t)e?*rt (3.36a)

s(t) = S(t)esrt (3.36b)

u(t) = U(t)elrt (3.36¢)
Equations (3.32) can be recast as:

dA 1 N 2

— = |jJA - — 1+ Alt —S(t .

il U el s ( +jaH)] (t) + TeS( ) (3.37)
where A is the detuning between the pump frequency and the cold cavity resonance
frequency:

A=wy— 2 p. (3.38)
Ta0

The carrier density is simultaneously obtained by solving the differential equation
[Kapon 1999, Raineri 2009|

dN _ N A0P
T Tia? [N(t) — Ny (3.39)

where |asmt|2 is the saturation energy and Tj the carrier lifetime. This simple model
could also be applied to a atomic two level system [Piredda 2007], in this case the
Henry’s factor ay would be replaced by the detuning between the atomic resonance
frequency and the pump frequency.
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3.4 Analytical results

3.4.1 First order calculations

An input field consisting of a strong pump so and a weak probe signal s; (with
|s1] < |so]|) slightly detuned from the pump frequency is considered

S(t) = s + 517 (3.40)

The cavity mode and the carrier density can be expanded in a similar way

At) = ao+are’ +a_je”’” (3.41a)
Ut) = ug+ue’™ +u_je (3.41b)
N(t) = No+ N1/ 4 N_je77%, (3.41c)

Due to the nonlinear term in equation (3.39) the frequency component in — for the
cavity mode, the output field and the carrier density must be taken into account.
The three following equalities are obtained by combining the last expressions with
equation (3.37) and identifying the zero and first order terms

1 Ny(1 ] /2
0= <]A — ) ap + 70( +JQH) ap + 41/ —3So (3.42&)

70 NiTao Te

) ) 1 1+« /2
joay = (]A — ) a1 + LA (N0a1 + Nlao) +4/—81 (342b)

70 NiTao Te

. . 1 147
—jda_q1 = (]A — ) a_q1+ ~rJan (Noa—1 + N_ja9) (3.42¢)
70 NiTao

The same operation can be done using equation (3.39), then

T Ty ‘asat’2
Ny (No = Ni)(aoa® | + arag) + Ni |ag|”

N 2
0 _ ool no (3.43a)

jON1 = —— — 3.43b

J 1 Tl T1 ‘asat’2 ( )

—j(SN _ _N_1 _ (No - Nt)(aoa{ + a_laz")) + N_ \a0]2 (3 430)
o Ty |a2,] ' '

Equation (3.43a) gives the relation between the normalized intracavity pump energy
x = lag/ asmg|2 and the static carrier density Ny,
NO x
— = . 3.44
Ny 1+ (3:44)

For convenience, y = Np/N; is introduced. Combining equation (3.44) and

equation 3.42a a relation between x and the pump input power P, = ]30\2 is
obtained:
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Pm:ngTe jA—l—i— T .1+jaH2
P() 2 T0 1+ Ta0

, (3.45)

where Py = |a5at]2 /0. Basically, this relation gives the nonlinear pump transmis-
sion. Under some conditions, the equation P;,, = f(x) can have two solutions giving
a bistable behavior to the cavity. Since N(t) is real we have N; = N*,, thus using
equation (3.42c):

* ARG
*1(8) = ag ]é )H(é) (3.46)
t
where
H(5) = L —jon (3.47)
n+ 300+ A)Tao — y(1 — joum) '
and 1 = 7,0/70. Using equation (3.46), equation (3.43b) can be rewritten:
N1 alaa
— = F( 3.48
N, Jauf? (9) (3.48)
where F'(9) is defined as:
1
F(3) (3.49)

T 14z+j6T —yH()

Substituting equation (3.48) into equation (3.42b) and using equation (3.35) the
expression of the probe amplitude reflection r = wu; /s is given by

2740/ Te

r(0) = J(6 = A)1eo + 1 — (1 + jag) [y +zF ()]

(3.50)

3.4.2 Asymptotic behavior

In this section, equation (3.50) at resonance (A = 0) is evaluated in two asymptotic
cases.

3.4.2.1 Purely absorptive nonlinearity ay =0

This simple model could describe a TLS with a pump tuned to the maximum of
absorption. Now, the assumption that A = 0 is taken, then H(J) can be expressed

as
H) = — (3.51)
n—y+joTa0’ '
At resonance, 6 — 0 and |d740| < 7 — y which leads to
1 0
H(5) = . JOTa0 (3.52)

n—y (m—y)?
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Substituting this last relation in equation (3.49) and making the same approxima-
tions, the following equation is obtained:

) T _Te0%
1 ) -1 (n—y)?
FO) = Grer =+ ERre ]2 , (3.53)
y—n [(1 + )% + yf—n}
with F(§) = p + jdq, the reflection coefficient reads
2 a e
r(6) = a0/ T (3.54)

=y —xp+5o(Ta0 — 2q)
The power reflection coefficient |r(8)|* has a Lorentzian profile and the associated

Q-factor can be easily evaluated using

Ta0 — Zg
n—y—xp

Q=2

. . (3.55)

In the case of a long carrier lifetime: T} > 7,9, using equation (3.53) simpler
expressions for ¢ and p and the overall Q)-factor are obtained

_ woT1(y — n)z
¢ 2(y = 1) [€(2)| [§(z) + 2]’ (3.56)

where

E(x) = (n—y)(1+a)* -2z (3.57)

One can check that {(x) + 2 > 0. For n < 9/8, {(x) can be null for two distinct
values 1 and xy (21 < x2) of z. This is the bistability condition for a nonlinear
absorptive resonator [Boyd 2003|. At the matching values of the input pump power,
the probe cavity Q-factor dramatically increases. The normalized reflected power
at resonance given by

2740 [£(2) + 95]] ?
re(n—y)&(x) |
can be higher than unity since £(xz) — 0 when & — z1: the signal probe is amplified.
This behavior comes from a differential gain [Gibbs 1976] experienced by the probe

o) = | (3.58)

due to the nonlinear shape of the transmission curve of the device as illustrated
at figure 3.4. The saturation of the differential amplification can be calculated by
numerically solving equations (3.37) and (3.39).

The enhancement of the Q-factor results from the bistable behavior of the cavity.
Indeed, in this configuration, in the bistability power zone, the pump reflectivity
and phase shift have a very stiff profile. Consequently, the probe signal undergoes
a strong phase shift together with a steep amplitude transmission. This leads to
a strong dispersion as well as to a differential amplification. Assuming now that
n ~ 1, which is possible since 1 < 7 < 9/8, equation (3.56) can be written
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0.0 0.2 0.4 0.6 0.8
P_ (arb. units)

Figure 3.4: (a) Nonlinear transfer function Py = f(P;,) where Py = ]u0|2 of a
cavity just below the bistability threshold. The transfer function of a small mod-
ulation stemming from the beating between the pump and the probe fields is also
schematically sketched. (b) For input power values close to the switching power
(P, = 0.45 in the example), the differential gain |dP,,;/dP;,| can be very high and
can even diverge for bistable cavities.

WQTll‘

Q=34 (3.59)

This last equation explicitly shows that the Q-factor enhancement is twofold: 1)
as expected, the photon lifetime and thus the Q-factor are proportional to 17 and
ii) for  — x; = 1, the Q-factor can be arbitrarily increased. As already discussed,
the latter effect also gives a strong differential amplification which can be useful to
compensate for residual losses of the cavity. For z ~ 0 and x > 1 equations (3.8)
and (3.59) give the same results; the two approaches differ only when z = z; and
x = x9. From another point of view, if 7 > 1 then

[€(2)| ~ &(x) + 2 = (1 + )2, (3.60)

noting that y —1 = —1/(1+4x) one can check that equations (3.8) and (3.56) lead to
the same expression of the Q)-factor. Thus it becomes clear that far from bistability,
the saturable absorber model used in the present calculations is equivalent to the
non-resonant pump approach shortly introduced in section 3.1.

In the case of a short carrier lifetime: 7T} < 7,0, the carrier density can
be adiabatically eliminated and the ()-factor enhancement only comes from the
nonlinear behavior of the cavity. The @-factor reads
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 woran {[6(2) + 2] +22} -
Q= Sy @ @ T o] (3.61)

In the limit of n & 1 and x =~ 1, ) can be approximated by

_ 2woTa0
1 —al

Q

(3.62)

the Q-factor enhancement is only brought about by the bistable effect controlled
by the pump beam. Comparing equation (3.59) and equation (3.62), the @Q-factor
enhancement coming from the carrier oscillations, which is about T4 /(4740) for a
given unsaturated absorption.

3.4.2.2 Dispersive regime: ax > 1

The cavity nonlinearity is thus mainly dispersive. In this case, it can be considered
that x < 1 and consequently y ~ z. Ag = A7,0 and X = agx is set. These
assumptions lead to

—Jjay
H(S) = , 3.63
) N+ 7[0Ta0 + Ao + X] (3.63)

which is used to write

T]—i-j[(sTao—l-Ao-l-X}

F(0) = . 3.64
(9) n—0T1 (Ao + X) + j(Ao +2X 4+ noTy) ( )
The amplitude reflection coefficient is now
2 al e
r(5) Tao/T (3.65)

4 {070 — Ao — X [L+ F(5)]}
The expression of the group delay 7, is deduced from the expression of r(6)

ry(8) = ~ 2228l 0)] ar%gr(é)] . (3.66)

In the studied configuration @ = wy7,4(0)/2 [Li 2010], which enables to calculate
the overall Q)-factor

_ *UJOTlXO'(X)
O P x) - X2 (367
where it has been set
I(X) = n*+ (D¢ +2X)? (3.68a)
o(X) = n?[AoX(8A¢+9X) + Ao’ + (3.68b)

2(A3 + X*)] + (Mg + X)*(Ag +2X)°.

The Q-factor enhancement mechanism is the same as in the absorptive case.
As it has been underlined in the absorptive case, the @Q-factor is proportional to
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the population lifetime T7. ¥(X) is strictly positive and thus never goes to zero.
Nevertheless, assuming

which is the dispersive bistability condition for the pump |Gibbs 1985], the following
equation

IX)—X2=0 (3.70)

can have two solutions X; = agxr; and Xy = agrs. When the normalized in-
tracavity pump energy is close to one of these two values the Q-factor is strongly
increased due to the nonlinear phase-shift and the differential amplification. This
will be illustrated at section 3.5.

As a conclusion, this analytical study emphasizes the physical effects producing a
strong Q-factor enhancement in a nonlinear microcavity. It is important to highlight
that the cavity has a nonlinear behavior only for the pump beam. This induces a
strong dispersion on the probe beam via the saturation of the absorption or the
cross nonlinear index. The strong increase in the dispersion value is due to the stiff
phase shift undergone by the probe near the transition points of the bistable cavity
transfer function. Finally, in certain domain of parameters, the delay associated to
this phase shift adds up to the increase of the group index due to the CPO effect.

3.5 Numerical results

The analytical model gives expressions for the radiative and external coupling Q-
factors, Qrqq = WoTrad/2 and Q. = woTe/4 respectively. Without absorption, for a
linear microcavity, the maximal attainable Q-factor is given by 1/(Q,. ald—i—Q;l). The

2
associated normalized reflection is (%) . All the following results have been

obtained in a cavity with radiative losses such as 7,4 = 7.. We will now consider
full numerical calculations.

3.5.1 Absorptive nonlinearity

In this section a medium with a strong absorption and negligible nonlinear dispersive
effects on the pump (g = 0) is considered. In order to reach the pump induced
bistability regime we assume that n = 1.05. The aim of this study is to show that
the induced dispersion can be used to increase the probe @-factor under realistic
conditions. For this purpose, a long carrier lifetime such as T1 = 2507, is considered.

3.5.1.1 Probe reflectivity spectrum

This part is focused on the case where a pump field is set at the cavity resonance
(wp = wp). Three reflection spectra are depicted in figure 3.5.a for three different
values of x. The dash curve is obtained for x = 0, the resulting overall Q-factor
is equal to Qo and the reflection under this condition is very low (< 1073) since
Ta0 <K Te. The reflection spectrum displays a very narrow peak when z increases
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(z = 0.1 and z = 0.3) mainly due to the fact that a strong dispersion is induced by
the pump via the carrier oscillations. In the meantime, the absorption saturation
increases the photon lifetime 7 in the cavity and both effects sum up to improve
the reflected power. These two effects were expected according to the basic model
description at section 3.1. The bistability does not play any role here since the
chosen values of z are sufficiently far from the turning points (x; and z3) as shown
in figure 3.5.b. Next to the switching zone of the bistable power curve, the probe can
be amplified. In figure 3.5.c the normalized intracaviy energy is set close to the first
turning point (x1) in order to obtain 100% reflectivity. This spectrum is compared
with the one of an identical non absorbant cavity (o = 0). Still slightly increasing
the pump input power (x = 1.24) a strong @Q-factor enhancement (2.5 x 10*Qo
instead of 20Q in the best linear configuration) is now observed together with a
selective amplification as depicted in figure 3.5.d.

80

5| (Q)
3.0x10 7 === =x=0
x=0.1 601
L 2.0x10° x=0.3
w > 40
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1.0x107 “,-—.‘ g 20-
0.0 - 0
2 -1 0 1 2
6@0/030
1.004 [C} ] 1004
a=0] =1 /3
- x=1.152 103
N% “‘% 14
= 0.504 =
0.1
0.254
001
0.00 ey ————— ——
0.2 0.1 0.0 0.1 02 -1.ox10°-5.0x10% 00 s5.0x10" 1.0x10°
3Q /o, 3Q /o,

Figure 3.5: (a) Probe reflection spectra for three values of = for a nonlinear cavity
with 7 = 1.05, oy = 0 and 71 = 250740. (b) Intracavity normalized pump energy
as a function of the input pump power. The inset is a zoom of the lowest part of the
curve. (c) Probe reflection spectra, the value of x = 1.152 has been set to obtain a
100% reflection. The case av = 0 corresponds to an absorption-free linear cavity. (d)
Example of a reflection spectrum with a high differential selective amplification.

3.5.1.2 Frequency pulling

The introduction of the CPO effect generates a strong dispersion of the medium in
the cavity achieving a linewidth narrowing that, in contrast to the methods based
on geometrical designs and technological performance, is robust and not critical in
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terms of field detunings with respect to the cavity resonance. This way the resonance
frequency of the narrowed cavity is fixed by the pump frequency. The numerical
calculations predicting this so called frequency pulling effect are presented in this
section.

Probe signal reflectivity Ir (Sjl2

A=0 ( mO:mP} ]

1(d)
1074 .f'\/l’nO:’O..l /QO

f

107 A/(:‘)O=—O.2/Q0
05 04 03 02 01 00 01 02 03 04 OS5
6Q /o,

Figure 3.6: Probe reflection spectra for several values of cavity /pump detuning (a)
A/wo = 0.2/@0 (b) A/wo = 0.1/@0 (C) A=0 (d) A/wo = —0.1/@0 e) A/wo =

—0.2/Qo. In all the cases x = 1.24 and the arrow points out the cavity resonances.

Figure 3.6 shows reflection spectra calculated for five values of the detuning A
decreasing from 0.2wy/Qp to —0.2wy/Qo. The intracavity energy is z = 1.24. In this
figure the arrow points out the initial cavity resonance. For all the initial detunings,
the probe resonance is pulled towards the pump frequency and its resonance is
obtained at ws ~ wp (0 ~ 0). This effect has already been discussed for EIT
[Lukin 1998|.

However, figure 3.6 also shows that the reflectivity decreases with a broader
cavity /pump detuning. This can be compensated for by increasing the pump power.
Figure 3.7 depicts the same conditions for a normalized intracavity energy and a
pump detuning respectively set at: x = 1.42 and A = —w/(15Q0). The reflectivity
coefficient is about 100% and the resonance is at least two orders of magnitude
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Figure 3.7: Probe reflection spectra for A = —wg/(15Q0) and = = 1.42 in a loga-
rithmic scale. The inset depicts the resonance with a linear scale. The resonance
full width at half maximum is wp/(3000Q0).

narrower than the cavity /pump detuning.

10° T T T T T T
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Figure 3.8: Quality factor for the probe signal as a function of the normalized pump
intracavity energy x for 77 = 25070 and 171 < 7,9. We have also plotted the value
of the Q-factor of an equivalent linear cavity without absorption.

3.5.1.3 Role of population oscillations

In the previous calculations a long carrier lifetime was assumed. In this section, the
reflectivity coefficients are compared in the cases where T > 7,0 and T} < T49. In
the first case, the Q-factor enhancement is due to a combination of population oscil-
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Figure 3.9: (a) Probe reflection spectra for = 0 (dash dark line) and = = 0.14
(full line) in the case of a nonlinear cavity which physical characteristics are n = 3,
Ao = —3V31/2, ag = 25 and Ty = 1007,9. For 2 = 0.14, the cavity reflection is
100%. For comparison, the bright dash line represents the spectrum of the same
cavity in the linear and absorption-free case (a = 0). (b) Intracavity normalized
pump energy as a function of the input pump power. (c) Probe reflection spectra
for x = 1.4 and 0.156. (d) Reflectivity spectrum calculated for z = 0.14 assuming
T1 = 1007—(10 or T1 = zTao.

lations and nonlinear effects whereas in the second case, the Q-factor enhancement
is exclusively related to the pump bistability effects. At figure 3.8 the Q-factor en-
hancement is plotted in comparison with the unsaturated cavity Q-factor (Qq) both
for 77 = 2507,0 and 17 < 749. For z < 0.2 and 77 = 2507,, the Q-factor increase
is mainly due to population oscillations and for z > 0.2 the nonlinear effect induces
an additional improvement. The straight horizontal dash line is the @Q-factor of the
cavity without absorption.

For high values of T, the dispersion induced by the pump strongly rises the
Q-factor in comparison with the short lifetime carrier approach. For example, in
the case T = 2507,0, Q = 1/(Q;' + Q) for Py, = 2.1P (z = 0.08) whereas in
the limit of very short 77, an input power P;, = 8.6F) (z = 1.02) is required to
obtain the same enhancement. At this power value the Q-factor is 60 times larger at
Ty = 25071, than that at T} < 7,9. These results highlight the convenient effects of
the population oscillations induced dispersion. Firstly it produces an increase factor
around T} /(47,40) and secondly it reduces the required power for a given Q-factor
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enhancement. This enables to use an input power much lower than the switching
power. Note that near the switching point, the system is strongly sensitive to
pump fluctuations as it is the case for delay lines based on critical slowing down
[Bonifacio 1979, Daunois 1988|. As a consequence the system combining CPO and
nonlinear effects is less sensitive to pump fluctuations and thus much more stable
than purely nonlinear system where T < 7.

3.5.2 Dispersive nonlinearity

We will now briefly discuss the dispersive nonlinearities. This case will be extensively
addressed in chapter 4 in regard to our actual experimental results. A dispersive
medium with ag = 25 is considered and 1 = 3 is taken to avoid absorptive bista-
bility. The cavity/pump detuning is set to Ag = —3+v/3n/2 in order to produce
dispersive bistability. In most of the cases presented in this paragraph T7 = 1007,9
is used. Figure 3.9.a shows the reflectivity spectrum for x = 0.14; we compare this
spectrum with those without pumping (z = 0) or without absorption (a = 0). As
already extensively discussed in the absorption dominated case, the cavity resonance
width is strongly reduced and next to the switching point as shown in figure 3.9.b
the reflection signal can be increased (|r(0)|> = 1 for z = 0.14) in comparison with
the absorption-free cavity case (|r(0)|*=4/9). Figure 3.9.c presents the reflectivity
spectra for x = 0.14 and z = 0.156 on a smaller frequency span. For z = 0.14 the Q-
factor enhancement is 1350. For z = 0.156 the enhancement is around 5000 and the
resonant reflectivity is close to 10. Finally in figure 3.9.d the reflectivity spectrum
has been plotted again for x = 0.14 and 77 = 1007, but also for T} = 27,49. The
ratio between the two Q)-factor enhancement values is 45 which is in good agreement
with equation (3.67).

3.6 Conclusion

We have studied theoretically coherent population oscillations in a nonlinear micro-
cavity. We proposed to simple approaches. First, we proposed a Fabry-Perot cavity
where we introduced perturbatively the CPO effect and a nonlinear refractive index
showing in a simple manner how both contributions ad up enhancing of the cavity
lifetime. Second, we developed a CMT model where we considered a generic two
level system (semiconductor, atomic medium, ...) driven by a powerful pump field
and probed by a weak signal. These analytical models enable us to discuss the
physical processes which lead both to a strong enhancement of the Q-factor and to
a control of the transmission at the probe frequency.

The photon lifetime of a microcavity containing a TLS where only CPO occurs
can be strongly increased by the reduction of the group velocity of the light coupled
into the cavity. The cavity lifetime is then basically limited by the population
lifetime T7. However, as in the CPO approach it remains a residual unsaturated
absorption that limits the reflected power from the cavity. This leads to a moderate
value of CPO enhanced Q-factor.
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In a nonlinear microcavity a strong )-factor enhancement can also be achieved.
In this case the cavity has nonlinear behavior for the pump beam inducing a strong
dispersion on the probe beam. The dispersion value increases as the probe gets near
the transition points of the bistable cavity transfer function. This way, in order to
get high dispersion the regime becomes less stable.

Finally, in certain domain of parameters, the delay associated to this phase shift
adds up to the increase of the group index due to the CPO effect. This is the
case we are most interested since we obtain strong stable enhancement of the cavity
Q-factor.

Additionally, the simultaneous action of population oscillations and the nonlinear
response of the cavity induces a strong intracavity dispersion and a differential gain.
This technique could be used to stabilize a microcavity using the frequency pulling
effect for example, in fact we will show an experimental demonstration of this effect
in an photonic crystal nonlinear nanocavity in the next chapter.
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Experiments of slow light in photonic crystals cavities were performed using
modified L3 PhC cavity containing semiconductor quantum wells (QWs) as active,
absorptive, nonlinear medium [Grinberg 2012]. The light is coupled into the cavity
using a tapered fiber. The pump and probe fields required for the CPO effect are
produced by the intensity modulation of a single laser beam. The measurements of
the delay and the probe intensity are performed using a home-made lock-in amplifier
system.

In figure 4.1, a general scheme of the experimental set-up is represented. A
fibered continuous-wave (cw) laser emitting up to 15 mW and tunable from 1490 nm
to 1650 nm is used. In order to avoid thermal effects, the cw laser is modulated with
a fibered acousto-optic modulator producing 100 ns duration square pulses repeated
every 20 us, longer than the thermal relaxation time [Moreau 2010]. The CPO effect
is induced by a sine-wave intensity modulation with a time period longer than the
electron-hole recombination time 7. = 200 ps, the sine-wave modulation is generated
using a fibered Mach-Zehnder interferometer. The beam passes then through a
circulator that allows to send the transmission to the tapered fiber, coupling thus
the light in the cavity, and recovering the reflection. The reflected signal is sent to
a fast avalanche photo-diode (APD). The measurement of the delay and intensity
of the probe is achieved using a home made lock-in amplifier whose outputs are
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sensitive to the in- and out-of-phase quadratures of the modulation. In this chapter
a detailed description of the sample and each of the parts of the experimental setup
is presented.

Using this set-up we experimentally implement some of the predictions of chap-
ter 3. In particular we demonstrate, through temporal and spectral measures, a
strong enhancement of the cavity Q-factor. We also put into evidence the frequency
pulling effect.

Pulse :100 ns
Rep. Rate : 50 kHz &=50-400 MHz

Tunablelaser | | I ‘

E .“m : AOM = - inputlaser
3 e S
circulator

RF-generator D -

‘/heﬂected laser

Figure 4.1: Set-up used to perform the experiments on slow light in the semicon-
ductor photonic crystal cavity.

4.1 The L3 PhC cavity

The photonic crystals (PhCs) are 10 um x 50 pm air hole triangular lattice InP
suspended membranes. The nanocavity is placed in the center of the PhC, as shown
by the scanning electron microscope (SEM) image in figure 4.2. The L3 nanocavity
is made by missing three holes over a line during fabrication. In order to achieve a
higher value of Q-factor the two holes closing the cavity are shifted apart by 0.15a.
Indeed, Noda et al. [Akahane 2003] have demonstrated that this shift increases the
cavity quality factor by almost one order of magnitude.

The PhC period and hole radius are a = 450 nm and r = 120 nm, respectively.
The PhC membrane is grown by metalorganic vapour phase epitaxy (MOCVD)
and contains four central layers of InGaAs/InGaAsP quantum wells (QWSs) (see
figure 4.3.a) each layer with a thickness of ~ 13.5 nm and ~ 16 nm for the well
and the barrier, respectively. The QWs luminescence at 300 K, measured over
an unetched region, close to the PhC, is centered at ~ 1.51 um (see figure 4.3.b)
with a spectral broadening of 75 nm. The membrane thickness (265 nm, A/2n.g)
is set such that the field maximum (at 1550 nm) is located at the center of the
membrane, matching the location of the active material. A Si0s sacrificial layer
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=== Shifted 0.15a

Figure 4.2: SEM (scanning electron microscope) image of a modified L3 cavity
(triangular lattice with period =450 nm, holes radius =120 nm). The two holes
closing the cavity are shifted away by 0.15a.

underneath the InP is bonded on a Si substrate through a benzocyclobutene (BCB)
layer [Karle 2010]. A 1 pm air spacer, obtained after etching the sacrificial layer,
lies between the InP membrane and the substrate.

( )
a) b)
) @ 3000 |
Inp | L3 Cavity ‘g
InGaAs/ -
InGaAsP é\
(2]
. 1000
Sio =
2 =
1300 1400 1500 1600
Wavelength (nm)
\_ J

Figure 4.3: (a) L3 PhC nanocavity and the quantum wells. (b) Quantum wells
photoluminescence spectrum when pumped at 810 nm.

4.1.1 Fabrication of the L3 PhC cavity

This section contains a brief description of the fabrication process. The samples
were fabricated in the clean room facilities of LPN by Alexandre Bazin, Yacine
Halioua, Fabrice Raineri, Isabelle Sagnes and Remy Braive. More details about the
fabrication process are given in [Karle 2010].



50 Chapter 4. Experimental Demonstration

The first step is the metalorganic vapour phase epitaxy (MOCVD) of the InP
structure. This starts by the growth of an InGaAs etch stop over an InP substrate,
followed by an InP layer, which will form the suspended membrane. In its center,
four InGaAsP/InGaAs QWs are grown. The membrane total thickness is ~ 265 nm
and it corresponds to A/2neg with neg the effective refractive index calculated as the
weighted average of the refractive index of air and material. Finally, a 1 pgm-thick
sacrificial layer of Si0s is deposited over the InP active membrane. This structure is
positioned (upside down) over a Si substrate coated with a BCB layer used for the
bonding, see figure 4.4. In order to polymerize the BCB and finalize the bonding, a
hard bake is performed in a nitrogen atmosphere for 2h at 300°C.

InGaAs ~ InP substrate
I .
Etch stop } InP active
membrane
SiO,
Si

Figure 4.4: Sketch of the structure before the etching processes

Once hard baked, the InP substrate is removed by HCl wet etching. The InGaAs
etch stop is removed using HoSO4:H202:H2O(3:1:1) leaving on top the InP layer with
the QWs.

The second step is the fabrication of an etching mask in order to define the
geometrical parameters of the 2D PhC. This mask is made of a 300 nm thick layer
of SigNy deposited at 300°C by PECVD (Plasma Enhanced Chemical Vapor De-
position) over the InP. The SiN is then covered by 450 nm of an electro-sensitive
resin (PMMA, Polymethyl Methacrylate). The sample is positioned in an e-beam
writer (LEICA EBPG 5000+) which allows to focus an electron beam over the resin
following the structure design, with 2.5 nm precision. Then, using an appropriate
chemical solution the isolated regions are dissolved.

After the resin exposure, the design is transferred into the nitride layer by a
dry etching using a CCP-RIE (Capacitively Coupled Plasma-Reactive Ion Etching)
which allows a directional etching. Then the motif is transferred to the semiconduc-
tor by a ICP-RIE (Inductively Coupled Plasma-Reactive Ion Etching). During this
stage the InP membrane is drilled by cylindrical air-holes (few hundreds nm depth)
down to the SiOq sacrificial layer.

Finally, in order to obtain the suspended membrane, the SiOs sacrificial layer
is etched in a HF wet atmosphere. The HF is able to penetrate into the sample
trough the holes dissolving the sacrificial layer. Residual HF resting on the sample
is removed by a supercritical drying technique.
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4.1.2 Photoluminescence characterization of the L3 PhC cavity

Right after the fabrication, the sample (both QWs and PhC cavity) is characterized
by measuring its photoluminescence. The experimental set up used for this purpose
is shown in figure 4.5. The sample is pumped at 810 nm using a pulsed Ti:Sa laser
source having a 80 MHz-repetition rate and 100 fs-pulse duration. The pump is fo-
cused on the sample with a 50X microscope objective ("Mitutoyo’, M Plan Apo NIR,
50X, f =170 mm, NA=0.42). The emission is collected by the same objective and
send to, either a CCD camera in order to visualize the sample, or to a spectrometer
("Princeton Instruments’, Acton SP2500i, with a 600 g/mm grating 1.6 um blaze
and Ni cooled camera) to record the spectrum of the QWs fluorescence. After pass-
ing trough the spectrometer the signal is sent to an InGaAs 1D array spectroscopy
camera ("Princeton Instruments’, OMA V| spectral range 0.7 um-1.6 pm, resolution

FWHM: 0.315 nm).
Spectrograph/
camera

White

N

Sample

Figure 4.5: Sketch of the set up used to characterize the QWs sample

First, a characterization of the photoluminiscence spectrum of the QWs for dif-
ferent excitation intensities is performed. Figure 4.3.b shows a typical photolu-
miniscence spectrum. Independently, the radiative lifetime was measured by Maia
Brunstein [Brunstein 2011] finding it is of the order of 7, ~ 200 ps. Secondly, the
photoemission of the active material (QWs) is also used to identify the cavity mode
under incoherent pumping. Indeed, the resonant cavity mode filters the broadband
luminescence giving a spectral narrow peak. A typical spectrum of the L3 cavity
described above is shown in figure 4.6, for a pump average power of 36 uW at the
pupil of the microscope objective. A mode centered at 1565 nm is observed. The
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quality factor obtained from the FWHM of the cavity (AX = 1.1 nm) resonance
gives ) ~ 1700. It is important to point out that the measurement of the quality
factor @ = A\/AX by means of photoluminescence spectra has two limitations: one
instrumental, since the FWHM of the emission peak is limited by the monochroma-
tor resolution and one inherent to the system, due to the material absorption, which
leads to pump power dependent quality factors. Therefore, the @Q-factor measured
for low pumping powers has to be considered as a lower bound limit approximation
of the intrinsic quality factor. More precise values will be measured later on.

Intensity [A.U.]

J |
1520 1540 1560 1580
Wavalength [nm]

Figure 4.6: Photoluminescence spectrum of a L3-type cavity for a pump power of
36 uW and 0.5 s of integration time. The mode is centered at A =1565 nm and the
resonance width is 1.7 nm (for this injected power). The PhC period and radius
are: a = 450 nm and r = 120 nm, respectively.

4.2 Tapered fiber assisted coupling into the L3 PhC cav-
ity
In order to couple light into the L.3 PhC cavity, we use the tapered fiber approach
since it diminishes insertion, propagation and absorption losses in a waveguide while
it easily allows probing several cavities on a chip. However, this coupling method
requires a device allowing to control the taper position and displacement with high
accuracy (sub-pm resolution) and stability. This system was developed at the LPN
by Maia Brunstein during her PhD [Brunstein 2011, Brunstein 2009] in collabora-

tion with Laurent Bigot from Laboratory PhLAM (Laboratoire de Physique des
Lasers, Atomes et Molecules) in Lille. Figure 4.7 shows a sketch of the system.

4.2.1 Fabrication and characterization of the tapered fiber

This section contains a brief description of the fabrication process of the taper,
fabricated at the Laboratoire de Physique des Lasers, Atomes et Molécules (PhLam)

in Lille by Laurent Bigot.
The tapered fiber, with a diameter of ~ 1.5 pym, has an U-shape and is fixed on
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Figure 4.7: PhC nanocavity evanescently coupled to the outside by a tapered fiber.

a microscope slide. The fabrication process starts with a standard single-mode
telecommunications fiber. The plastic jacket is removed exposing the 125 pm
cladding in a region of the order of 3 cm. After this, the fiber is fixed at both
extremities and a gas burner is positioned 1 mm under the naked fiber. The two
fixed points pull out the fiber at a speed of 50 pum/s during 175 seconds until a
minimum diameter between 1 and 3 pm is reached. Once the fiber is tapered down,
it is bent in the narrow part forming an U-shape and then sticked on the microscope
slide using UV glue in such a way that the thin curved segment (between 0.5-1 cm)
is freely standing in air. Such length of the free standing segment achieves a good
compromise between mechanical stability and physical constraints in the set-up. In
addition, the curvature of the fiber at the stretched segment reduces the optical
coupling to the substrate outside the PhC membrane, thus decreasing optical losses
[Hwang 2005]. Finally, two APC fiber pigtails were soldered at each fiber end.

For the characterization of the taper, losses are measured by means of a contin-
uous wave laser source emitting at 1550 nm. It is important to point out that the
taper diameter also plays a dramatic role: for diameters lower than 1.5 um the fiber
becomes extremely unstable and fragile (losses rapidly increase with the use). On
the other hand, for diameters larger than 4 pym, the evanescent tail of the optical
mode out of the fiber is reduced and the coupling in the L3 PhC cavity becomes
inefficient. The tapers used during this work have diameters between 1.5 and 3 pm.

4.2.2 Coupling efficiency

The microscope slide with the tapered fiber is fixed in a 3-axes stage with two
piezoelectric (PZT) driven axes (x-z) as shown in figure 4.8. The PZT is used
to set the fiber exactly over the cavity. Besides, the sample is also mounted on
PZT-driven axes that allow to move it in the x-y directions, as shown in figure 4.8.
Hwang et al. [Hwang 2005] have demonstrated that the maximal coupling efficiency
is obtained for a PhC-taper gap of 0.1 um. However, fiber-sample distances as short
as 0.1 pum cannot be fixed in our system since the fiber systematically sticks on
the sample surface, most probably due to electrostatic forces originated by charges
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accumulated on the fiber. Nevertheless, the contact configuration ensures robustness
to the system and reproducibility, since it guaranties the system stability during
measurements. A picture of the whole sample is shown in figure 4.9(a) where each
tiny square corresponds to a PhC and the red curved line to the tapered fiber.
Figure 4.9(b) shows a picture of the PhC with the fiber positioned over the PhC
cavity. In order to reduce mechanical vibrations of the taper due to air currents and
decrease thermal fluctuations and humidity, the whole device (sample plus tapered
fiber) is covered with a Polymethyl methacrylate (PMMA) box.

X-Y-Z

Positioner’

Tapered
fiber

Figure 4.8: Set up to place the fiber over the PhC. A 3-axes stage (Nanomax) is
used to precisely set the position of the fiber over the cavity.

Figure 4.9: (a) Image of the whole sample and the tapered fiber. (b) Visible image
of the PhC membrane with the fiber positioned above the cavity.

The coupling efficiency was characterized using a 80 MHz repetition rate, 120 fs-
duration laser pulses delivered by an Optical Parametric Oscillator (OPO) ("Opal’,
Spectra physics). The mean wavelength of the 30 nm-linewidth pulses is set to be
in coincidence with the cavity resonance wavelength and sent through a fibered po-
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larization controller to a circulator and then through the tapered fiber as shown in
figure 4.10. The polarization state is changed by means of the polarization controller
to optimize the optical coupling. The circulator allows measuring both the trans-
mitted (through the taper) and the reflected signals. Both signals are sent to an
optical spectrum analyser (OSA). The best measured coupling efficiency was 28%.
We must clarify that this result is the maximal that could be attained using the
tapered fiber method. However, the coupling efficiency has a strong dependence on
the position of fiber on the sample and on the level of degradation of the fiber itself.
Thus each fabricated tapered fiber has a different coupling quality. The coupling
efficiency of the tapered fiber used in the L3 PhC cavity experiment was of ~ 7%.
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Figure 4.10: Set up used to the characterize the coupling between the tapered fiber
and the nanocavity. A SEM image of the L3 cavity is shown.

4.3 Pump and probe generation

As discussed in more details in chapters 1 and 3, the CPO effect is induced by a
pump beam and a probe beam with their relative frequency detuned by J, which
should be smaller than 1/7,.. 7, = 200 ps being the electron-hole recombination time
in the quantum wells. For the experimental point of view, the pump and the probe
are produced starting from a single laser source whose intensity is modulated using
the sine-wave function sin(dt). From the spectral point of view, this modulation
induces in the Fourier space two new spectral components at w 4 ¢ around the
carrier oscillating at the optical frequency w and which corresponds to the average
intensity of the beam (see figure 4.11). It is then the modulation amplitude and the
average intensity that play respectively the role of the probe and the pump that are
required to induce the CPO effect.

Practically, the intensity modulation is achieved by driving a fibered Mach-
Zehnder interferometer (MZI) with a rf signal, following the function f(¢t) = 1+
msin(dt), where m is the depth of the modulation and § the modulation frequency,
as shown in figure 4.11. So the function describing the beam after passing though
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the MZI can be written as:

£ = (e0e™! 4 cc) X f(t) =&, [ + %(ei(w_‘s)t + @I | 4 e (4.1)

where we recognize the fields oscillating at w with amplitude €,, and the fields at
w * ¢ with amplitude .7 .
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Figure 4.11: Sketch of the Fourier space for a continuous or intensity modulated
beam

The source used to generate the pump and probe is a tunable, from 1490 nm
to 1650 nm, continuous-wave (cw) laser emitting up to 15 mW (Yenista Tunics-
T100R). In order to avoid thermal effects, the cw laser is modulated using a fibered
acousto-optic modulator producing 100 ns duration square pulses with a repetition
rate of 50 kHz, longer than the thermal dissipation time [Moreau 2010]. The CPO
effect is induced by using a sine-wave intensity modulation with a time period longer
than electron-hole recombination time 7, = 200 ps |Bigelow 2003a, Baldit 2005|. By
driving the fibered Mach-Zehnder interferometer with an RF signal, a 10% intensity
modulation depth is applied to the square pulses. The rf signal oscillating at the
frequency ¢ is supplied by a pulse function arbitrary generator (Agilent 81150A or
Agilent E40428). The beam passes then through a circulator that allows to send
the transmission to the tapered fiber and recover the reflection of the cavity. The
reflected signal is sent to a fast Avalanche Photo-Diode (APD, New Focus 1647)
with a bandwidth of 1.1 GHz The measurement of the delay and intensity of the
probe are achieved using a home made lock-in detection whose outputs are sensitive
to the in- and out-of-phase quadratures of the modulation.

4.4 Optical Detection

In our experiments, most of the time, we measure the delays achieved by the L3 PhC
cavity. We have then developed a detection system that is sensitive to the phase.
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We start by detecting the light reflected by the cavity which we retrieve using the
optical circulator connected to the tapered fiber. The output of the circulator is then
directly connected to the fibered APD. Figure 4.12.b shows a typical electrical signal
corresponding to the reflection detected at the APD for an input signal depicted
in figure 4.12.a. We recognize the 100 ns square pulse with the small amplitude
modulation. The reflected signal is rather noisy since the signal level is very low.
To extract the delay achieved in the cavity from the noisy amplitude modulation
we have developed a lock-in amplifier.

400
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Figure 4.12: Shape of the input signal (a) and typical signal obtained by the APD
detector (b), for a square pulse duration of 100 ns and a modulation frequency
0 = 240 MHz.

4.4.1 Measurement of the delays

Basically, a lock-in amplifier is aimed to analyze a noisy electrical signal at a par-
ticular frequency by mixing it with a sine-wave reference oscillating, at the same
frequency. The lock-in amplifier delivers then the amplitude of the signal with a high
signal-to-noise ratio and its phase relative to the phase of the reference. Mathemat-
ically, the electrical signal delivered by the APD and corresponding to figure 4.12,
can be written as:

Ipobe(t) = A + Iy cos(5t + ¢) (4.2)

where A corresponds to pump amplitude, i, to the modulation amplitude corre-
sponding to the probe, and ¢ is the phase of the modulation carrying the informa-
tion on the delay induced in the cavity. In the lock-in amplifier the signal (4.2) is
mixed with a sine-wave reference. In fact, two references are necessary to obtain
the amplitude and the phase of the modulation: an "in-phase" reference Ry and an
"out-of-phase" reference Ry whose phase is shifted by 90° with respect to the phase
of Ry. These two references can be written as:

Ri(t) = Rcos(dt + ¢y) (4.3)
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and

Ry(t) = Rcos ((5t + or + g) = Rsin(dt + ¢r) (4.4)
We have supposed that Ri(t) and Ra(t) have the same amplitude R. When

mixing the signal (4.2) with the references we obtain:

S1(t) = Rcos(dt + ¢r)Iin cos(0t + ¢s)

_ Bl [cos(¢s — &r) + cos(20t + b5 + br)] (45)

2
Sa(t) = Rcos(0t + ¢y ) Lin sin(ot + ¢s)

= T (201 + 64+ 6,) — sin(6, — 60)] (1.6

Both Si(t) and Sa(t) have a constant term and one oscillating at 20. To extract
the pertinent information only the constant term is kept, obtaining:

S1 = 2 cos(n — 61) (@)
Sy =~ sin(s, — ) (48)

From (4.7) and (4.8), the phase of the probe relative to the reference can be
obtained through:
% T Sin((bs - ¢r)
S1 cos(ds — ¢r)

¢s — ¢ = arctan (?) , (4.9)

1

= tan(¢r - ¢s)

and the delay between the probe and the reference can then be calculated:

arctan (%)

2md

We emphasize here that 74 is the group delay which is the derivative of the phase
with respect to the frequency. However, and according to the work of Q. Li et al.
[Li 2010], the cavity lifetime in our case, is given by 7 = 7,/2.

The amplitude of the modulation (probe) is obtained by adding the square power

Ty = (4.10)

of both signals:

) 2
s (IZ;R>
- 2/53+ 8¢
Iy = V2 (4.11)

It is worth noting that the delay (4.10) and the amplitude (4.11) are given
relatively to the reference phase ¢, and amplitude R respectively. However, as
these values are constants during the experimental measurements, variations in 7
and I;;, are associated to physical effects occurring in the cavity.
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For the experimental demonstrations we developed two types of lock-in ampli-
fiers.

Electronic home-made lock-in amplifier The electronic setup used is sketched
in figure 4.13. The frequency of the sine-wave modulation was é = 240 MHz.

This particular frequency is a good compromise as it fulfills the requirement
d < 1/7, and allows to measure delays up to 4 ns. The reference of the lock-in
detection is supplied by a second exit of the same wave generator used to drive the
MZI for the amplitude modulation. The relative phase between the two exits of the
generator can be controlled and it is set respectively at 0° and 90° to obtain the in
and out of phase references. Before the mixing, the DC part of the signal is filtered
out using a 50 MHz high pass filter (Mini Circuits BHP-50). The AC part is then
amplified electronically. After the mixing, the term oscillating at 26 is eliminated
with a 90 MHz low pass filter (Mini Circuits BLP-90), ending with electrical signals
proportional to the probe amplitude modulation quadratures S; and S, obtained
respectively when ¢, = 0 and ¢, = 45°.

Amplifier
s w
% to the
APD High pass ~ X__| oscilloscope
filter 50MHz X
T\
Mixer Low pass
filter 90MHz
RF @ 240 MHz

Figure 4.13: Sketch of electronic set-up used to demodulate the signal

The performance of the lock-in system is tested on a signal similar to the one
depicted in figure 4.12, delivered by the laser without going through the cavity.
Its intensity is adjusted using an attenuator in order to have the same magnitude
as the signal obtained on the actual experiments with the cavity. The results are
shown in figure 4.14 showing the evolution of the signal as the laser power increases.
Figure 4.14.a shows the pump intensity, proportional to the DC component of the
signal (equation 4.2), and the demodulated probe amplitude (equation 4.11); both
show a linear dependence with respect to the laser power as expected. Figure 4.14.b
shows the in and out of quadrature terms corresponding to S7 and S, normalized
by the amplitude of the modulation 4/ S% + S% . They are thus proportional to the
cosine and sine of the phase ¢p— ¢ er. We can see that for the low intensities (less than
~ 4mW) the signal is very noisy; for higher powers both signals remain constant as
the laser power increases. This shows that relative phase between the signal and the
reference is constant (equation (4.10)), provided the intensity is sufficiently high. We
show this graphically in figure 4.14.c where we see that the relative delay remains
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constant with the exception of the low power region, where noise dominates. This
confirms the good functioning of the home-made lock-in system.
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Figure 4.14: Direct measurements (without cavity). (a) Demodulated probe inten-
sity (blue) and pump intensity (green) as a function of the laser power. (b) In and
out quadratures S; and So, normalized by the modulation amplitude as a function
of laser power. (c) Group delay as a function of the laser power.

Figure 4.15 is equivalent to figure 4.14, but this time the signal comes from the
L3 PhC cavity. Figure 4.15.a shows now a highly nonlinear behavior for both the
pump and the probe amplitudes. We can also see in figure 4.15.b that in this case
the normalized in and out of phase amplitudes vary in a different way, indicating
that the relative phase between the signal and the reference is changing as the power
is increased. As shown in figure 4.15.c, this enables us to measure the delay induced
in the nanocavity (except for the low power regions where signal is to noisy).
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Figure 4.15: Cavity measurements. (a) Demodulated probe intensity (blue) and
pump intensity (green) as a function of the laser power. (b) In and out quadratures
S1 and S2, normalized by the modulation amplitude as a function of laser power.
(c) Group delay as a function of the laser power.

Digital home-made lock-in amplifier The measurements reported in this the-
sis are recorded as a function of various parameters such as power, wavelength, or
pump-probe detuning. The latter is simply achieved by changing the modulation
frequency 6. When this particular parameter is tuned, the electronic lock-in ampli-
fier has to be rebuilt and optimized for each frequency . To overcome this difficulty
the phase-sensitive detection is performed digitally on an advanced function fast
digital oscilloscope (Lecroy Wavemaster 813Zi 13GHz).
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The basis of the digital lock-in is to reproduce the electronic treatment numeri-
cally. In order to do this we acquire the signal from the APD using a fast oscilloscope
for each point of interest, i.e. each wavelength, power and pump-probe detuning.
The signal is then averaged on the oscilloscope in order to improve the signal-to-
noise ratio. This process is automatized using a LabView code that drives the laser
source, the function generator and the oscilloscope. The acquired data are then
analyzed using a MatLab code to retrieve the pump intensity and probe phase and
amplitude following the mathematical analysis in section 4.4.1. Simultaneously, the
pump intensity is obtained measuring the height of the square pulse. References are
generated digitally as a sine and a cosine of the same frequency as the modulation.
Using the references we follow the mathematical procedure explained above with the
only difference that instead of using a low pass frequency filter we take the mean
value to obtain S7 and Ss.
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4.5 Temporal Measurements

The measurements reported in this section are performed for a fixed pump-probe
detuning § = 240 MHz, while both the laser power and wavelength are tuned. The
wavelength is tuned around the cavity resonance wavelength while the power is
tuned from 1 to 15 mW from the laser corresponding to 5 to 75 W pump power in
the tapered fiber incident on the cavity. In a first set of experiments the modulation
frequency -hence the pump-probe detunning- is fixed and the electrical home-made
lock-in detection described in section 4.4.1 is used.

The first set of measurements is done for a fixed power of the laser as the wave-
length is tuned around the L3 PhC nanocavity resonance. In figure 4.16.a is shown
the reflected pump as a function of the wavelength for different laser powers. This
reflection corresponds to the standard cavity reflection that one can obtain even
without the sine-wave amplitude modulation at §. We recognize for the lowest
power an almost symmetrical cavity resonance. When the laser is increased the
resonance becomes asymmetric with a stiff variation on the short wavelength side
and a smooth fall on the longest wavelength side of the resonance. This kind of
asymmetric resonances and wavelengths shifts are the signature of an optical non-
linearity in the quantum wells embedded in the cavity and are the precursors of the
optical bistability.

Figures 4.16 (b) and (c) are the corresponding amplitude modulation (probe)
reflectivities and delays engendered by the nanocavity on the probe at § = 240 MHz.
For each curve, the maximum delay 7y is achieved for a particular laser wavelength
which we call A\p;. After correcting the measured delays from the virtual delay
associated to the phase of the reference of the lock-in detections, negative delays
are found at long wavelengths. Though confirmed theoretically, their absolute value
origins are still not yet understood.

The probe reflectivities reach as well the maximum values at the same wavelength
Ay It is worth noting that at the same wavelength Aps, the pump reflectivity is on
the stiff side of the resonance. Using the maximum group delay 7)s for each laser
power, obtained at Ap; we can calculate the corresponding Q-factor,

=
Figure 4.17 shows the maximum group delay and the corresponding effective Q-
factor obtained for each laser power. For comparison, the ()-factors corresponding
to the loaded cavity (Q;) and the cavity in the absence of absorption (Qraq) are also
indicated in figure 4.17 by the blue and green lines respectively. It becomes clear
that as the laser power is increased the total delay, hence the Q-factor is enhanced.

In order to fully understand the behaviors we perform additional studies tuning
simultaneously the power and the wavelength. Figure 4.18.a presents the power of
the reflected pump as a function of the laser power and wavelength. As the laser
power increases the cavity resonance becomes larger and asymmetric. Figure 4.18.b
shows the evolution of the amplitude of the modulation (probe) as the laser power
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Figure 4.16: Measured pump (a), modulation amplitude (b) reflections and group
delay (c) as a function of the laser wavelength for § = 240 MHz and for different
pump intensities.
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Figure 4.17: e Effective @-factor and group delay (black line) as a function of the
laser power. Blue line (Q; = 3752, green line Q.54 = 6300.

and wavelength are tuned, the position of the maximum of resonance follows the
position of the stiffest slope of the pump resonance on the blue side. Finally, fig-
ure 4.18.c presents the evolution of delay, it is clear that the position of the maximum
delay coincides with the position of the maximum amplitude of the probe; also, if we
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follow the delay peak we can see that it is increased as the laser power is increased.
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Figure 4.18: Measured pump (a), modulation amplitude (b) reflections and group
delay (c) as a function of the laser wavelength and power for 6 = 240 MHz and for

different pump intensities.

To represent the evolution more clearly we make sections of the 3D figures 4.18,
fixing the laser wavelength and showing the evolutions as a function of the laser
power. Figures 4.19 (a) and (b) show respectively the measured pump and modula-
tion amplitude reflectivities from the nanocavity as the laser power is changed, for
different laser wavelengths. Figure 4.19.c presents the corresponding group delay.
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It becomes clear from figure 4.19.a that as we reduce the wavelength, the pump
reflection shows a smooth variation as the laser power is increased, and a rapid vari-
ation starting at a particular laser power threshold, and then saturates at higher
laser powers. Regarding the modulation amplitude, i.e. the probe, figure 4.19.b
shows that a maximum value is achieved at a particular laser power, named Py, for
which the pump reflection slope with respect to the laser power is maximum. This
laser power value Pjs is wavelength dependent, shorter is the laser wavelength and
higher is the value of Py;. This is coherent with the results obtained in figure 4.16.a.
Concerning the group delay achieved in the L3 PhC cavity, a maximum value is also
achieved at Py, according to figure 4.19.c.
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Figure 4.19: Measured pump (a), modulation amplitude (b) reflections and group
delay (c) for 6 = 240 MHz and for different pump wavelengths.

As we did for the case where we tuned the wavelength for different powers,
we calculates the equivalent quality factor for each case. Figure 4.20 shows the
equivalent quality factor and group delay as a function of the power Pj; at which
the maximum delay is attained. We can see that as Py increases the Q-factor does
as well achieving a maximal enhancement of 82 times comparing to the radiation
loss limited Q-factor (Qraq = 6300) and 138 times comparing to the loaded @Q-factor
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(Q = 3752) for Py = 14.5 mW which corresponds to a Q-factor of 520000.
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Figure 4.20: e Effective Q-factor and group delay (black line) as a function of the
laser power. Blue line (); = 3752, green line Qraq = 6300.

4.6 Spectral Measurements

For a further confirmation of the enhancement of the nanocavity quality factor
spectral measures are performed.

Indeed, as we increase the quality factor, a cavity resonance linewidth narrowing
should be observed. Usually this linewidth narrowing is observed by measuring the
transmission or the reflection of an electromagnetic field oscillating at w and by
tuning the circular frequency w around the resonance. In our particular case, this
kind of measurements are performed using the digital home-made lock-in described
in section 4.4.1. The pump wavelength is set near Ay and the modulation frequency
¢ is tuned from 50 to 400 MHz. From a spectral point of view, this is similar to
measure the probe beam reflection as the probe frequency is tuned relatively to the
pump frequency vp = ¢/Ap (as explained in section 4.11).

1 T

0.8 o
< - N
&85 ce LN
.§ $06 -
L

£ % % P

=] *
2 T
gso04 3. .
25 o ® .d'.\.'.-.'
© »
24 oy

o
N
)

1 )
%0 100 150 200 250 300 350 400
Modulation Frequency [MHz]

Figure 4.21: Measured modulation amplitude reflection under nonlinear interaction
for a pump wavelength near the optimal wavelength Ay and a power of 10 mW.

Figure 4.21 shows the measured modulation amplitude transfer function of the
nanocavity under the CPO configuration. The measurement is achieved using a laser
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power of 10 mW, which corresponds to 50 uW pump power close to the cavity. As
the modulation frequency 0 is always positive we only measure the half resonance.
The resonance Half Width at Half Maximum (HWHM) is about 220 MHz is shown
in the figure 4.21 by the green vertical line.

The Q-factor associated to this resonance is then determined knowing that:

w

= Aw

where w = 2m¢/Ap and Aw = 2rAv. Av = 440 MHz is the full width at half maxi-
mum of the resonance. The @Q-factor is Q = 430000 is in good qualitative agreement
with the overall Q-factor inferred from the measured maximal delay obtained in the
temporal measurements, see figures 4.17 and 4.20.

4.7 Frequency Pulling

At last, a study of the spectral hole of the cavity, in terms of the pump-probe detun-
ing is performed for different pump wavelengths. The aim is to analyze this spectral
hole for the different wavelength positions with respect to the pump or probe cavity
resonance and thus to verify the frequency pulling prediction of chapter 3.5.1.2.

Figure 4.22 shows the modulation reflectivity as a function of the pump-probe
detuning §. This is similar to figure 4.21 for four different laser wavelengths. Note
that the four curves have roughly the same shape and linewidth despite the large de-
tunings between the pump frequencies. This is illustrated in the inset, representing
the same modulation reflectivity as a function of the frequency relative to a com-
mon origin vy = ¢/Av. For guidance, the theoretical resonance of the nanocavity
having the initial quality factor Q; = 3752 is represented in dashed lines. The four
vertical lines are the modulation reflectivity resonances extending over hundreds of
MHz, whereas the nanocavity linewidth is about 50 GHz. This demonstrates that
the final narrow resonance is always achieved in the vicinity of the pump frequency,
showing a frequency-pulling-like effect that could be used to overcome technological
imperfections.

This result is particularly interesting since, in contrast to usual approaches to
achieve high Q-factor nanocavities, in our case the quality factor enhancement is
robust and not critical in terms of field detuning with respect to the cavity resonance.
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Figure 4.22: Measured reflected modulation amplitude spectra for a pump power
of 10mW and for four different pump frequency vp detunings from the optimal
frequency vy (V) 12 GHz, (A) vp = vy, (o) —18 GHz, (B) —33 GHz. The inset
shows in dashed lines the original nanocavity resonance obtained for Q; = 3752
and centered at vy;. The vertical lines are the few hundreds reflected modulation
resonances.
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4.8 Theoretical and experimental comparison

In this section the experimental measures are compared with the numerical results
obtained via the CMT model developed in chapter 3. The results obtained from
temporal and spectral measurements and calculations are compared.

Figure 4.23 shows the theoretical-experimental comparison of the pump and
probe reflected powers and the probe group delay as a function of laser wavelength.
Figures 4.23 (a) and (b) show respectively the measured pump and modulation
amplitude reflectivities from the nanocavity as the laser wavelength is tuned around
its resonance, for different laser powers. Figure 4.23.c presents the corresponding
group delay for § = 240 MHz. These experimental results are the same that were
shown in figure 4.16. In figures 4.23 (d, e and f) the theoretical results corresponding
to the experimental figures 4.23 (a, b and c¢) are presented.
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Figure 4.23: Measured pump (a), modulation amplitude (b) reflections and group
delay (c) for 6 = 240 MHz and for different laser powers as a function of the laser
wavelength. (d), (e) and (f) are the corresponding theoretical predictions.

The theoretical evolutions of the pump reflection R, the modulation amplitude
of the reflection (probe) Rs(d) and the group delay 74(d) are obtained using the
following parameters: A\g = 2m¢/wp = 1569.96 nm, ay = 25, Qrqq = 6300 and Qq0 =
11800.These values are either independently measured or inferred from experimental
measurements.

Note that Qg = 3000, instead of Q9 = 4030, had to be used in order to re-
produce the width of the pump resonance, this value is slightly different from that
experimentally measured. This can be explained by the modification in the coupling
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conditions between the different experiments. In the numerical calculation we con-
sider s; = s9/80 which gives a modulation depth of 10%. The only free parameter
is the value of the saturation intracavity energy ]asat|2.

The experimental behaviors, i.e. wavelength shifts, absolute positions, delay
vs power and wavelength, are well reproduced. For the highest pump intensity
there is a discrepancy on the reflected modulation amplitude and delay that is
quite reasonable considering the limited number of adjustable parameters. This is
due to limitations both on the measurement of the steep resonances and on the
determination of the theoretical parameters close to the highly nonlinear points.
For the high wavelengths both experimental and theoretical curves show negative
delays. Whereas theory predicts a negative delay of —80 ps, experimentally we
measure negative delays up to —300 ps, this result is not yet understood.

Figure 4.24 shows the theoretical-experimental comparison of the pump and
probe reflected powers and the probe delay as a function of laser power. Figures 4.24
(a) and (b) show respectively the measured pump and modulation amplitude reflec-
tions from the nanocavity as the laser power is changed, for different laser wave-
lengths. Figure 4.24.c presents the corresponding group delay for § = 240 MHz.
These experimental results are the same that were shown in figure 4.19. In fig-
ures 4.24 (d, e and f) the theoretical results corresponding to the experimental
figures 4.24 (a, b and c¢) are presented.

Here also, the experimental behaviors are well reproduced. However, for the
highest laser powers and shortest wavelengths there is a discrepancy on the re-
flected modulation amplitude and delay. This is quite reasonable considering the
limited number of adjustable parameters. This is due to limitations both on the
measurement of the steep resonances and on the determination of the theoretical
parameters close to the highly nonlinear points. As it occurred when tunning the
laser wavelength, for the long wavelengths and high laser powers, both experimental
and theoretical curves show negative delays. The same disagreement is found, the
experimental measurements give negative delays up to -300 ps whereas the theoret-
ical model only predicts negative delays up to -80 ps.

We compare the spectral measurements as well. In figure 4.25 the dots represent
the measured modulation amplitude transfer function of the nanocavity under the
CPO configuration. The measurement is achieved for a laser power of 10 mW,
corresponding to 50 uW pump power. The laser wavelength is set near the maximum
reflected modulation amplitude A\y; and the modulation frequency ¢ is tuned from
50 to 400 MHz, changing that way the pump-probe detuning.

The experimental and theoretical results presented in figure 4.25 show qualita-
tive agreement and in the low frequency region (6 < 200 MHz) the agreement is
total even from a quantitative point of view. However, it is evident that for higher
frequencies differences are noticeable; a signal reduction is observed on theoretical
curve but experimental points show null signal from a frequency (0) of 320 MHz.
This disagreement can be partially explained from the fact that the detection system
shows a decreasing of the efficiency as the frequency detuning evolves; however, this
fact does not explain the phenomenon completely. Resuming, there is a good qual-
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Figure 4.24: Measured pump (a), modulation amplitude (b) reflections and group
delay (c) for 6 = 240 MHz and for different laser wavelengths as a function of the
laser power. (d), (e) and (f) are the corresponding theoretical predictions.

itative agreement and quantitative agreement for the low frequencies and HWHM
frequency.

The good qualitative and quantitative theory-experiment agreement for both
temporal and spectral measurements, and the agreement between these to kinds
of experiments, allows to unambiguously identify the physical mechanisms at the
origin of the strong enhancement of the Q)-factor, validating the theoretical model.
As the pump power is increased the blue shifted resonance undergoes a strong dis-
tortion characteristic to the onset of bistable behavior [Yacomotti 2006a]. The stiff
profile of the pump reflectivity and the phase shift, induce a steep reflectivity of the
modulation amplitude and a strong dispersion as a precursor of the critical slowing
down, which occurs above bistability. This effect adds-up to the CPO to strongly
increase the cavity lifetime.

The full calculation gives a clear insight on the mechanism at play but CPO
and nonlinear phase are intermingled and it is hard to identify their relative role.
We thus come back to the simple and intuitive Fabry-Perot model (see chapter 3.2)
predicting thus the group delay is:
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Figure 4.25: Measured modulation amplitude reflection under nonlinear interaction
for a pump wavelength near the optimal wavelength \j; and a power of 10 mW (e).
The corresponding theoretical prediction is represented by the line. Note that the
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Figure 4.26 shows in red line the group delay normalized to 27 = 2Qw, calcu-

lated using the Fabry-Perot model in the low Q-factor limit. The term /{n2|Ap\2 in
equation (3.31) is then neglected as the intracavity field and xk become weaker. The
CPO group index is given by:

QO CTy S

2 (1+s)3’

where s = P,/Ps, and we assumed that § < 17, in equation (1.10). The black
squares (M) represent the group delay obtained using the coupled mode theory

nNg =

model, section 3.3, when considering a cavity with ¢; = 100. All the other param-
eters are those used for figure 4.23. The black squares perfectly superpose with the
red line showing that the nonlinear dispersion can be neglected in the coupled mode
theory for @; = 100, revealing, thus, the bare CPO-induced group delay, which con-
tributes to about a factor 2.6 to the overall group delay enhancement. The dashed
black and dotted red lines in the inset are the group delays of figure 4.23 at respec-
tively the maximum transmission of the pump and of the modulation amplitude
reflections, corresponding to our experimental situation. They are calculated up to
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P,/Psq ~ 0.3 as for higher values the system becomes bistable. They show that
the behavior of the group delay when measured at the pump reflection maxima is
dominated by the CPO effect in the delay enhancement at low pump powers. At
the maxima of the modulation amplitude reflectivities, corresponding to the steep
variation of the pump reflection, the delay is an intertwinement of the CPO effect
and the strong nonlinear dispersion.
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Figure 4.26: Group delay 74 in units of (27;) as a function of the intracavity pump
power normalized to the saturation power. Red solid line: 7, obtained using equation
(3.31) and neglecting the nonlinear contribution. Black squares: 7, obtained using
equations (3.37) and (3.39) with @; = 100. Dashed black line (dotted red line): 7,
of figure 4.23 at the maxima of the pump (modulation amplitude) reflections. Inset:
zoom of the dashed box.

In conclusion, it has been experimentally demonstrated that the @-factor of a
nanocavity can be dynamically and strongly enhanced by the cooperative use of
CPO and dispersive nonlinearities. The numerical model developed in chapter 3
describes the experimental results. An agreement between the experimental mea-
surements and the theoretical model has been showed. Their agreement also enables
to predict the frequency pulling of the nanocavity resonance to the pump field. This
effect was experimentally demonstrated and can be used to lock the enhanced Q-
factor nanocavity to a desired wavelength. It can also be implemented to compensate
for technological errors or to lock several nanocavities to the same wavelength. Ad-
ditionally, the theoretical model also predicts signal amplification, an issue of great
importance to compensate /overcome absorptive, diffusive and unavoidable nanocav-
ity coupling losses; this has not been experimentally demonstrated but, anyhow, the
measurements show hints that this effect could be present.
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As discussed in chapter 1 and 2, slow light propagation is at the heart of intense
research since two decades. Induced by nonlinear interactions, such as Electromag-
netically Induced Transparence (EIT) [Fleischhauer 2005] or Coherent Population
Oscillation (CPO), ultra slow light propagation was demonstrated in several systems
including cold atoms [Boller 1991, Hau 1999, Inouye 2000]|, vapors |Kasapi 1995,
Kash 1999], rare-earth doped crystals [Bigelow 2003a, Bigelow 2003b, Baldit 2005]
and semiconductors [Ku 2004] (see chapter 1). These coherent nonlinear interac-
tions induce a strong refractive index dispersion associated to a narrow spectral
hole transparency in the absorption spectrum. This narrow window, related to the
inverse of hyperfine coherence (EIT) or population (CPO) relaxation times, also
determines the temporal accessible bandwidth. Coherent nonlinear interactions are
thus particularly interesting to achieve extremely small group velocities that can be
tuned by the absorption level or the light intensity.

An alternative avenue is also intensively explored to achieve slow light based on
the moulding of the photonic dispersion diagram via the geometrical engineering
of the optical properties. This is particularly the case in 2D Photonic Crystals
(2D PhC) where slow light modes can be achieved both as Bloch states in non
defective structures that act as distributed resonators and in defective 2D PhC
where a missing row of holes created the so called W1 waveguides that can also
host a slow mode [Baba 2008| (see chapter 2). In both cases the flat photonic band
dispersion (F(k)) is designed by adjusting the opto-geometrical parameters in order
to induce the slow group velocity (dE(k)/dk).

These two avenues were explored in parallel by teams coming from quite differ-
ent backgrounds and that gained a clear cut intuition of the assets and limitations
of their slow light approaches. Only recently the two approaches were started to
be considered together generating both an increased interest and some controver-
sies. For instance it is well known, from distributed feed-back lasers, that slow light
propagation in an active medium periodically structured to induce the laser feed-
back, subsequently generates an increasing of the absorption, implemented in such
a case in order to increase the gain and achieve laser operation. Below the laser
threshold, slow light can be obtained but the increase of the absorption imposes a
severe limitation to the group velocity that can be achieved. In other words, it is
now largely accepted that group index higher than 100 are hardily achievable in 2D
PhC due to the strong increase of losses that follow at least a linear dependence
on ng. The highest experimental demonstration goes up to ngy = 280 [Vlasov 2005]
at the expense of prohibitive losses. Conversely, ultra slow group velocities asso-
ciated to vy more than 5 orders of magnitude lower than c¢ are currently achieved
by EIT and CPO |[Baldit 2005]. Moreover, here the optical transmission could be
close to 100%, in spite of the extremely high group index. Clearly, in this case
losses are independent of the group index and velocity. This apparent paradox is
easily solved when considering the physical mechanisms at work in these qualita-
tively different approaches. The slow light originated by the material structuring is
essentially associated to the time delay introduced by the increase of the propaga-
tion distance [Krauss 2007|. This increased path is at the hearth of the exaltation of
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the light-matter linear and nonlinear interactions and thus generates the increase of
the absorption and the additional losses [Mortensen 2007]. This is particularly the
case in 2D PhC W1 were the slow light explores more efficiently the technological
defects of the periodicity surrounding the WG core and losses due to technological
imperfections become prohibitive in transparent or active 2D PhC. In turn, slow
light by nonlinear interactions is not associated to the increase of the propagation
distance and thus generates no additional loss. This discussion raises the question
of benefiting from the assets of both approaches by combing in the same waveguide
nonlinearly induced and geometrically engineered slow light.

Only few theoretical papers addressed such a combination. M. Soljaci¢ and co-
workers performed numerical calculations [Soljaci¢ 2004, Soljaci¢ 2005a] but, even
though, they consider the possibility of slow mode waveguides for enhancing nonlin-
ear effects when considering slow light from nonlinear origins, e.g. EIT, they com-
bine it with PhC microcavities. More recently Mork and co-workers |Nielsen 2009]
explicitly considered EIT interaction in the slow mode of a W1 waveguide and
demonstrated that the combination of slow light by these two origins converges in
a multiplication of the two independent group indexes regulated by the overlap of
the optical mode and the active region. In a recent paper |[Mg rk 2010] the same
team also considered the role of absorption and showed that it scales linearly with
geometrically engineered group index but it does not have a dependence on non
linear group index.

CPO differs from EIT by several aspects. In contrast to EIT, CPO does not
allow to burn the spectral hole completely and to fully stop the propagating light.
Nevertheless, its great interest is that there is no need of sophisticated 3-level sys-
tem. Indeed, as we have seen in chapter 1, CPO could be implemented at room
temperature in any 2-level or 2-level like system provided the population lifetime T3
is sufficiently greater than the dephasing time 7T5. To the best of our knowledge no
theoretical work has addressed the combination of CPO and geometrically induced
slow light, which is the purpose of this part.

In chapter 5 we present a theoretical approach to the combination of slow light
generated by the two means. As for the cavities, our approach is to start with the
simplest and intuitive model and to increase the complexity to be closer to an actual
experimental situation. We then first introduce a 1D model (5.1), next we develop
a perturbative model (5.2) and compare the results with numerical computations
(5.3). Chapter 6 presents and proposes a solution to the problem coupling light into
a short high absorptive W1 PhC WG. We present tests using the lateral coupling
(6.1). Next, we show functioning principle and theoretical calculations of the vertical
coupler (6.2.1). Then we perform an experimental validation presenting also our
first measures of slow light in PhC WGs (6.2.2). Finally, chapter 7 shows the first
measurements on active W1 PhC WGs.
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In this chapter, theoretical studies on the combination of slow light by both
means, material dispersion and structuring dispersion, are presented. In order to
fully apprehend the consequences of the combination of slow light by both CPO
effect and W1 PhC waveguide, we need to derive the total group index including
the contributions of different origins. Since we are interested in implementing the
coherent nonlinear interaction, we consider active 2D PhC close to the maximum of
absorption. Consequently, 2D PhC technological imperfections are neglected since
the absorption constitutes the dominant source of losses.

To gain intuition about the role of each effect and their link with losses we
develop a simple 1D model (section 5.1). Next, a perturbative analytical model
is presented (section 5.2). And finally, we compare the perturbative model results
with numerical computations (section 5.3). Table 5.1 presents the different models
specifying the advantages and disadvantages of each model.

1D model Perturbative Numerical
model computations
Interest Simple approach | Analytical model Validation
Analytical
expressions NO YES NO

Table 5.1: Characteristics of the different models.

5.1 1D model

To gain intuition about the role of slow light induced by the dispersive properties
of the CPO effect in a W1 PhC waveguide, we develop in this first approach a
simple unidimensional (1D) model where light propagates, as shown in figure 5.1,
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along the axis z, in a medium having a periodic index variation. In this approach,
the wavevector of the propagating mode is calculated including the CPO effect and
the dispersion relation is deduced. In fact, our approach is valid for any physical
phenomenon that induces, as the CPO effect, a strong dispersion of the index of
refraction which is quantified by a group index, labeled in the following nﬁ. In this
1D model, we also consider that an absorption «g is initially present in the medium
and constitutes the only source of losses.

I >
X

Figure 5.1: Sketch of the periodic sinusoidal grating for the unidimensional model.

In this approach, we essentially follow the introduction of Sakoda’s book on
Photonic Crystals [Sakoda 2005|, further including a frequency dependence of the
dielectric constant and an absorption ay. The wave equation describing the evolution
of the electric field in the 1D medium is:

O?E(r,w) w?e(z,w)

Ox? + c?
where ¢ is the relative permittivity, which is periodic in space: (x4 a,w) = e(z,w).
€ is considered as a complex number to include the absorption and is frequency

E(z,w)=0 (5.1)

dependent in order to account for dispersive phenomena, such as the CPO effect.
For simplicity, we consider that the relative permittivity has a sinusoidal modulation
along the propagation axis x as depicted in figure 5.1. The permittivity can be then
expressed as:

—i27

e(x,w) =eo(w) + Ace'a® + Ace e v (5.2)

where Ae and a are respectively the amplitude and the period of the permittivity
modulation along the z-axis. According to Bloch theorem, a typical solution of
equation (5.1) can be written as:

E(z,w) = uk(x,w)eikx,

with ug(z,w) is a periodic function, ug(z + a,w) = ug(z,w). By expanding uj in
Fourier series, we obtain:

E(z,w) = i umei(m%wm)x. (5.3)

m=—0oQ

Substituting expressions (5.2) and (5.3) into equation (5.1), we get:
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T ‘Z—;(Asum_l + A1) (5.4)
m w280(w) . (k + M)Q . .

c2

A further simplification is achieved by considering a propagation close to the
first order photonic crystal bandgap where k ~ 7/a. We can write then |k —
27 /a| ~ k. Thus, the two dominant coefficients of the Fourier series are o and
u_1 provided that "é—jeg(w) ~ k2. Note that the coefficients ug and u_; are the
amplitudes of the forward and backward waves of the Bloch mode respectively.
In order to calculate the overall group index and the absorption of the system,
we consider a small variation of the wavevector k, so that £k = kg + Ak, with
ko = m/a. The Fourier development given by equation (5.3) considerably simplifies
and reduces the field expression to only two Fourier components: the propagative
and the counter-propagative modes, so

E(z,t) = uge'FotAkz—wt 4y e=ilko—Ak)z—wt

Therefore, two coupled equations for ug and u_; can be obtained from rela-
tion (5.4):

[‘Z—jso(w) - k2 - 2Akk0] up + %;%Agu,l =0
(5.5)
‘Z—§Aeuo + [‘;—;eo(w) - k‘% + 2Akk0} u_1 =0

where, once more, we have only kept first order terms in Ak and Aw (w = wo+ Aw).

In order to go further with the calculations, it is necessary at this stage to
explicitly give an expression for the permittivity of the system starting from the
index of refraction and the absorption. The refractive index is simply given by
[Soljaci¢ 2005al:

n(w) = ngo + Aw (né —no) , (5.6)
wo

where ng is the effective index of refraction of the medium and wy = cko/ng. As
mentioned before, ng is the group index associated with the dispersive phenomenon
such as the CPO effect. Equation (5.6) has a linear dependance with respect to
Aw and is valid only for small detunings Aw <« wy. It is worth noting that the
slope of the linear equation (5.6) is proportional to the group index né. Then, the
permittivity reads:

eo(w) = {n(w) +¢0‘°2’;(0”)]2 ~ n2(w) <1 sz) , (5.7)

where we neglected the second order absorption term. Using (5.7) in (5.5) and
neglecting the terms containing Awagy we obtain:
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(8 — Ak +i% | ug + huy =0
g9

(5.8)
hug + [&—I-Ak—%—i%} u_1 =0,

T
Vg

2
;JSQAkZ = g Cﬁé is called the distributed feedback factor which couples the

forward and the backward waves through the first order diffraction.
Solutions of (5.8) give the dispersion relation Aw(Ak) close to the first order

gap. These are readily obtained by setting the determinant of (5.8) to zero:

where h =

UT +Z? =Ak“+h (59)
g

Now, in order to obtain stationary solutions, Aw must be real, therefore we can
easily compute the real and imaginary parts of the wavevector from (5.9) as:

N \/(ﬁgfﬂ‘;o)Q—h?

(5.10)

2
AR = £+ \/(ﬁf —i—i%) — 2
g

It is worth noting here that in the absence of absorption (o = 0) and when the
medium has no permittivity modulation (h = 0), we retrieve from equation (5.9)
that light propagates in the medium at the group velocity v;: imposed by the index
dispersion due to nonlinear phenomenon.

Figure 5.2 shows the solutions of the real part of the wavevector (equation 5.10)
for h = ko/10, ng = 3 and for different absorptions (ag = 0, 50,200 cm™1).

0.04
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Ao al2rn c
o

-0.02

004505 0 0.05

AK™ al2n

Figure 5.2: Dispersion relation (band diagram) at the first bandgap for ap = 0
(blue), ap = 50 cm ™! (green) and ag = 200 cm ™ (red).
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It is clear from figure 5.2 that in the presence of absorption the band diagram is
modified. For instance, there is no longer a strictly true bandgap. This is particularly
important as in this case the group index (ngOT

dw/dk and which can be deduced from figure 5.2, does not diverge.

), proportional to the derivative

Figure 5.3(top) shows the evolution of the group index deduced from the disper-
sion relation when the group nﬁ is changed (figure 5.3.a: nﬁ =3, 5.3.b: né =10
and 5.3.c: ng = 30 ) and h = 0.1kp remains constant. Figure 5.3(bottom) shows
the corresponding absorption proportional to the imaginary part of the wavevector
given by equation 5.10. The blue, green and red curves correspond respectively to

an absorption ag = 0, o9 = 50 ecm ™! and o = 200 cm ™.
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(blue), a = 50 ecm ™! (green) and o = 200 cm ™! (red). Bottom: enhancement of the
distributed absorption losses due to the structuration as a function of frequency for
a =50 cm™~! (green) and a = 200 cm™! (red). For: h = 0.1kg and (a) ng =3, (b)
né = 10 and (c) né = 30.

Figure 5.3: Top: group index ( ) as a function of the frequency for a = 0

L
g )
the overall losses remains constant. It is important to emphasize here the fact that

We see that for a given absorption the group index increases with n,, whereas
the slowing down induced by the dispersive phenomenon, such the CPO effect for
example, increases the group index without adding additional losses.

This is unlike modifying the group index by changing the geometry of the mod-
ulated medium. Indeed, this is shown in figure 5.4, similar to figure 5.3, where this
time the group index né = 10 is kept constant and where h is varied (figure 5.4.a:
h = 0.01kg, 5.4.b: h = 0.05kq and 5.4.c: h = 0.1kg). The h factor can be changed by
changing the period a or the modulation depth of the permittivity Ae, two geomet-
rical properties of the medium. For a given absorption, the deeper is the modulation
the higher is the overall group index. However in contrast with the previous case,
the losses also are increased.

These first results already highlight the fact that increasing the group index of
a medium with a periodic modulation of the refractive index impacts differently
whether it is caused by a coherent optical effect or by the geometrical engineering
of the medium structuration. Indeed, in coherent effect case the losses remain
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Figure 5.4: Top: group index (
(blue), a = 50 em ™! (green) and o = 200 cm ™! (red). Bottom: enhancement of the
distributed absorption losses due to the structuration as a function of frequency for
a =50 cm™! (green) and a = 200 cm~! (red). For: ngL = 10 and (a) h = 0.01ko,
(b) h = 0.05kp and (c) h = 0.1ko.

ngOT) as a function of the frequency for o = 0

constant, whereas for the geometrical engineering case, the losses goes growing with
the overall group index. In the case of a coherent interaction, when the group
5 is increased through the steep dispersion, the light propagates slowly over
a distance L in the medium feeling the same amount of losses independently on

index n

how slow it is. In the case where the overall group index is increased geometrically
through the A factor, the coupling between the propagative and counter-propagative
modes is strengthen. As a consequence, the light instead of propagating following
a rectilinear trajectory, it goes back and forth over single or multiple periods a.
The light then propagates over a length much longer than the real length L of the
medium, and feels thus additional losses.

In summary, this simple 1D model has allowed to show that the imaginary part
of k (distributed losses) is increased due to the increased trajectory induced by the
periodical structuration, but it is not modified when changing the background group
velocity, for instance by means of CPO.

5.2 Perturbative model

In this section, we develop a perturbative 3D model considering a periodic waveguide
along the z-direction. This work has been made in collaboration with P. Lalanne
and C. Sauvan at Institut d’Optique. The cross-section in the (x,y) plane is arbi-
trary. The materials can be absorptive, dispersive or anisotropic and the system is
characterized by the permittivity and permeability tensors e(r) and p(r). The sole
assumption is that the materials are reciprocal, 4 = u! and € = €7, where the su-
perscript denotes matrix transposition. The electromagnetic field (Eg:),Hg?)) of the
waveguide modes at the frequency w (we have adopted the e~™* time-dependence
for the fields) is solution of Maxwell’s equations in the absence of source,
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V x B = iwp(r)HO

m

5.11
Y < HO) = it (r)EO (5:11)

Since the waveguide is periodic along the z-direction, Bloch’s theorem allows us to
write

EO) (2,y,2) = &0 (x,y, 2)et =

m m

(5.12)

(0)

m

(0)

where the mode profiles ey, (z,y, z) and hgg)(:c, y, z) are periodic in the z-direction
with the same period a as the waveguide.

A small periodic perturbation of the dielectric permittivity, e — €+ Ae, modifies
the waveguide modes, which are now given by

V x Ey, = iwu(r)Hy, ,

. (5.13)
V x H,,, = —iw[e(r) + Ae(r)|Ey, .

This way, we have written the Maxwell equations for both, the perturbed and un-
perturbed system. We assumed that the perturbation has the same periodicity as
the waveguide, so that the modes of the perturbed waveguide are still Bloch modes,

Em(xa Y, Z) = em<337 Y, Z)eikmz

Hm(xa Y, Z) = hm(xv Y, 2)6

)

(5.14)

ikmz

In the following, we derive the new propagation constant k,,(w). For that purpose we
use perturbation theory to calculate the first-order modification of the propagation
constant as a function of the unperturbed mode. We first derive Lorentz reciprocity
theorem [Snyder 1983] between unperturbed and perturbed modes before applying
perturbation theory in a second step.

5.2.1 Lorentz reciprocity theorem

Figure 5.5 (left) shows an unperturbed mode propagating toward z > 0,
(E§2)+,H§2)+, k:,(q?)) and figure 5.5 (right) shows a perturbed mode propagating to-
ward z < 0, (E,; ) H,, —k,) at the same frequency w.
By applying the divergence theorem, [[[ V- Fdrd = $s F - dS, to the vector
\%4

F=E, x HYT - EYT « H. and noting that from equations (5.11) and (5.13)
V-F = —iwEQ". AeE;,, we obtain
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Figure 5.5: Sketch of the system of study for the perturbative model. Left, unper-
turbed propagative mode; right, perturbed counter-propagative

// (E, x HY* —EO* xH;)-dS = —iw/// EOF . AcE;dr,  (5.15)
P \%4

where Y denotes a closed surface that encloses the volume V. As shown in figure 5.5,
we consider a cylindrical closed surface formed by the cross-section planes z = z
and z = 29 + a that extends to infinity in the (x,y) plane. With this choice, the
surface integral on the left-hand side of equation (5.15) can be decomposed into two
surface integrals that run over the waveguide cross-section at z = zp and z = 2y + a
and a third integral over the lateral surface of the cylinder that vanishes since
the fields of the Bloch guided modes are assumed to be zero at infinity. Because
the waveguide modes are Bloch modes, see equations (5.12) and (5.14), we have

* —kn)a

F(z,y,20 +a) = F(x,y,2) € and Lorentz reciprocity theorem becomes

[1 . ei(ky(,?),kn)a:| // (E; v Hgg)Jr _ E,(QH « H;) u,dS =
S

zw/// EOF . AcE; d%r, (5.16)
v

where S is the waveguide cross-section at z = zg and u, is a unitary vector of space
in the z-direction.
5.2.2 First-order perturbation theory

Since the permittivity modification Ae is small compared to &, we use the first-order
perturbation theory to derive the modification of the propagation constant k,, — kﬁ,?).
We introduce a small dimensionless parameter x < 1 defined as

e+ Ae =e+zAE, (5.17)

and we develop the perturbed propagation constant and the perturbed fields in
power series of x,

km = O 4 2k 4. (5.18)

E,=EY +zE} 4. (5.19)
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H, =HY +zHY + ... (5.20)
In the following, we restrict ourselves to the first-order perturbation.

We now introduce the expansions (5.18), (5.19) and (5.20) in the expression of
Lorentz reciprocity theorem in equation (5.16) applied to the same mode (m = n).
By expanding the exponential function, we get, up to the first order in z

iotiYa [[ (897X B B+ H) s =

mw/// 0+ . AcEO~d’r, (5.21)

This relation evidences that we can calculate the first-order modification of the
propagation constant as a function of the known field of the unperturbed mode. If
we note Ak = :Uk:,(yll) the first-order perturbation, equation (5.21) straightforwardly
leads to

w ﬂfv E£2 *. AeEgg)_d?’r
Ak = s a0 0F 0= : (5.22)
@ [[o(En' ™ xHy'm —Ep’" xHy'~)-u.dS

It is interesting to introduce the group velocity Uéo) = dw/ dk:ﬁ,?) of the unperturbed
mode in this expression. The group velocity of a guided Bloch mode can be expressed
as [Lecamp 2007]

(0)
// (EQ-xHO+ — EO+xHO™) u.dS = 2 /// EO+ . cEQ-dr, (5.23)
s a 1%

and inserting equation (5.23) into equation (5.22) leads to:

w [l EDT . AcEQ " dr
Ak =75 OF _o(0-
2ug ﬂfv E;)/ " -eE; dBr

(5.24)

This result is general and applies to any periodic waveguide and to any perturbation
Ac.

We now assume that (1) the waveguide permittivity and the perturbation are
isotropic, (2) the waveguide is non-absorbing (e is real and EY = E£2)+*)
(3) the perturbation is either zero or a constant. With these assumptions and by

introducing the refractive index perturbation An, Ae ~ 2¢An/n, equation (5.24)

and

becomes

Ak = kon(O)FAn (5.25)

(0)

where ko = w/c, vy’ = ¢/ néo) and T' is the normalized overlap of the unperturbed
mode with the perturbation,
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r_ I £]E7(3) |2d3r
[T
with P the volume where the perturbation stands (Ae # 0).

(5.26)

Group Index We can now derive the total group index as the derivative of the
perturbated wave vector:

de dkY Ak dAk
ror _ 4% _ aFm = nl0)
Ng c 1o c dio +c dio Ny +c do

(5.27)

and from equation 5.25, it results:

dAk T d, An

= 2
TR OF AT (5.28)

where we have considered that the structuration group index ngo) and I' are constant
since the spectral interval where An # 0 is small. We now use An =n — ng then

dAk T d n r (n§te
S pa G -E () e
g g

where n corresponds to the index of the material taking into account the dispersion
generated by CPO effect. We now replace the expression obtained in (5.29) in (5.27)

dk nCPO
n?OT:c:n§O)+F(CO)< g —1>.
dw Ug 1o

This way the total group index resulting from the combination of nonlinear
dispersion (CPO) and geometrical structuration (PhC) reads:

nCPO
14T (9 - 1)] (5.30)
o

Absorption We can also calculate the total absorption of the system, for this
we need to consider the imaginary part of the propagation constant Sk, indeed

TOT _ , (0)
Ng — =Ty

absorption («) is defined as:

a = 23k

We can assume that the imaginary part comes from the perturbative contribution,
Ak. Using (5.25), we can then obtain the total absorption:
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NG
i (5.31)
no

a

CPO is the absorption given by relation (1.9).

Looking at the equation 5.31 a clear difference between slow light from structura-

where «

tion and from nonlinear effects pops up: while an enhancement of group index by
means of the structuration induces also an increase of the absorption of the system,
the group index enhancement via the CPO effect does not enhance the absorption
which is even reduced (as shown in chapter 1). Also, it is important to highlight the
fact that the increase of the absorption is not due to the enhancement of interaction
time as claimed in [Mortensen 2007]; this is a straightforward deduction from the
fact that slowing down by CPO effect does not involve such enhancement of the light
matter interaction, but only increases the propagation time. As already discussed,
the absorption is increased due to the increase of interaction length produced by the
periodical structuration.

5.3 Numerical simulations

To evaluate the validity of the model developed in the previous section, we make
the exact numerical simulations using the Bloch mode solver developped at the
Institut d’Optique [Lalanne 2002| (numerical simulations were performed at Institut
d’Optique Graduate School by Christophe Sauvan), in the particular situation of
2D photonic crystal waveguide.

The numerical calculations are made using the properties of the 2D photonic
crystal waveguide designed and fabricated at LPN for the experimental demonstra-
tions: period a = 420 nm, hole radius r = 125 nm, thickness e = 265 nm, material
refraction index n = 3.16 and effective index n.g = 3.31. We also set a constant
absorption ap = 100 cm™! of the active medium (quantum wells), with a carriers
recombination time 77 = 200 ps and a dephasing time 75 = 10 ps. The numer-
ical calculations were performed for 3 different wavelengths A = 1550,1560 and
1561.5 nm, each of which corresponds to a different group index n5 hC — 13,53,
and 100. The normalized overlap of the unperturbed mode with the perturbation
(quantum wells) are respectively I' = 0.292,0.29, and 0.2891.

In figures 5.6, 5.7 and 5.8 we show the comparison between the results ob-
tained using the perturbative model for the group index and the absorption (equa-
tions (5.30) and (5.31)), and the exact numerical calculations.

Figures 5.6, 5.7 and 5.8 show a quite good agreement between both results
providing a validation for the perturbative model. However, we can notice that
when the group index is high, there is a slight disagreement.

In conclusion, we developed two simple models that allows to predict slow light
in a system where we combine group index and absorption coming from two different
origins, nonlinear effect and periodical structuration. Both models show that the
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Figure 5.6: Graphics of the group index (a) and the absorption (b) as a function
of the wavelength comparing perturbative results (blue line) and exact numerical
calculations (o) at A = 1550 nm and then a photonic crystal group index ng he — 13,
Numerical simulations where performed at Institut d’Optique by Christophe Sauvan.
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Figure 5.7: Graphics of the group index (a) and the absorption (b) as a function
of the wavelength comparing perturbative results (blue line) and exact numerical
calculations (o) at A = 1560 nm and then a photonic crystal group index nf hC = 53.
Numerical simulations where performed at Institut d’Optique by Christophe Sauvan.

total group index has a linear dependence with each group index. Regarding the ab-
sorption, it must be said that differences between both slow light origin arises: while
structuration group index increases linearly the absorption, CPO-induced group in-
dex does not contribute to the modification of the absorption.
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We will now consider the experimental aspects associated to the predictions of
chapter 5. As we will see, coupling light to an absorptive short nano-waveguide is
a difficult task. The aim of this chapter is to propose and study a vertical (to the
periodicity) coupling strategy.

Coupling into W1 waveguides (WGs) is a challenging issue as generally a light
beam of few micrometers diameter has to be injected in the rectangular cross-section
of the W1 PhC WG of few square nanometers. There are different approaches that
can be used to overcome this difficulty. Various types of matching systems have
shown the ability for a good coupling between waveguides (ridge or PhCW in stan-
dard regime) and slow-light PhCWs [Talneau 2008, Hugonin 2007, Vlasov 2006].
Several solutions such as tapered-fiber evanescent couplers [Barclay 2003, Lee 2008],
adiabatic mode convertor couplers [McNab 2003, Notomi 2004] and grating based
couplers |Taillaert 2002, Van Laere 2007] have proven to be very efficient for cou-
pling with very low insertion loss (1dB) and typical coupling efficiency reaching
values up to 60%. These approaches have shown to be efficient, however, it requires
long propagation distances (~ mm). When working in passive waveguides, this is
not an issue since losses in the ridge waveguides are negligible compared to coupling
and propagation losses in the W1. On the other hand, and more particularly for
the studies reported in this thesis, it is necessary to reduce the propagation lengths
since the CPO effect requires absorptive QWs embedded in the waveguide.

Another issue that must be considered, besides the geometrical coupling aspects,
is the coupling to the slow mode of the W1 PhC WG. This problem has been widely
studied in the past [Hugonin 2007, Vlasov 2006] and the solution is basically to
use a W1 access waveguide with a modified period, where the slow mode (in the
unmodified waveguide) propagates with low group index (~ 5).
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In this chapter, we first present our initial, naive, attempt to couple light into the
W1 PhC WG directly from free space (butt coupling). Then we present an original
proposal based on the vertical coupling through a region where the period of the
lattice and radius of the holes of the PhC is modulated. This produces a folding of
the photonic band which allows vertical coupling. At last, an experimental validation
of this technique is presented.

6.1 Lateral coupling

The most simple approach to couple light into a waveguide is the butt coupling. This
is done by cleaving the PhC W1 waveguide on both sides, input and output, and
coupling the light directly into it directly after focusing the free space propagative
beam. Though this approach is very simple, the efficiency of this type of coupling
has a strong dependence on the group index of the waveguide. Indeed, the lower is
the group index, the higher the coupling efficiency will be. To maximize the coupling
an intermediate low group index region is then suitable.

Figure 6.1 shows a typical W1 waveguide arrangement consisting of a high group
index waveguide, called slow-waveguide, sandwiched between two low group index
waveguides called fast-waveguides. Following the work in [Hugonin 2007|, this ar-
rangement allows optimizing the coupling through the fast waveguide into the slow
waveguide under investigation. The slow-waveguide consists of a W1 waveguide ob-
tained in a triangular lattice photonic crystal with period a. The fast-waveguide
has the same lattice structure, however the period a’ in the propagation direction is
slightly increased with respecto to a.
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Figure 6.1: Sketch of sample to cleave on both ends consisting of fast waveguides at
the ends and slow waveguides in the center

Figures 6.2 (a) and (b) show respectively the calculated dispersion curves and
the group index of the fast and slow waveguides as a function of the wavelength for
the following set of parameters: n = 3.31 is the refractive index of the material,
a = 420 nm, @’ = 440 nm, r = 125 nm is the radius of the holes, and e = 265nm
is the thickness of the membrane. Figure 6.2.c represents the transmission from
the fast to the slow waveguide calculated with the 3D fully-vectorial Bloch-modal
method in [Lecamp 2007]. As an example, when working at A = 1560 nm, the group
index in the fast and slow waveguide are respectively n, = 5 and ny = 50, whereas
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the transmission from the fast to the slow waveguide is as high as 95%.

It is then more efficient to couple light into the structure depicted in figure 6.1,
going from air with unity index of refraction to the fast-waveguide with a group
index of about n, = 5, than directly to the slow-waveguide having a high group

index, for which the coupling losses directly from free space are expected to be very
high.
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Figure 6.2: (a) Band diagram of the W1 waveguides (In red standard waveguide;
in blue waveguide with modified period in the direction of propagation). (b) Group
index of light propagating in the waveguide as a function of the wavelength (In
red standard waveguide; in blue waveguide with modified period in the direction of
propagation) (c¢) Transmission from the modified to the standard waveguide.

6.1.1 Sample fabrication

The W1 waveguides used in this thesis are similar to the one depicted in figure 6.1.
The process described in section 4.1 was used for their fabrication. For these studies,
samples with and without quantum wells are considered.

Coupling into the fabricated waveguides requires cleaving the input and output
facets with waveguide lengths ranging from 100 pym to 300 pm. Figure 6.3 shows
a SEM image of a typical sample fabricated in the clean room facilities of our
laboratory.
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LPN-CNRS 5.0kV 4.1mm x25 .0k SE(M) 5/18/2011 2.00um

Figure 6.3: SEM image of the W1 waveguide sample (without quantum wells).

To anticipate fabrication imperfections and fluctuations, several waveguides with
various parameters are designed on the same sample of the photonic crystal lattice.
The length of the slow-waveguide is also varied. The different parameters used for
the design are sumarized in table 6.1.

r(nm) | a(nm) | ¢’(nm) | L of the slow waveguide(um)

410 430
415 435

115 420 440 All fast,
425 445 50,
430 450 100,
410 430 200,
415 435 300,

125 420 440 400,
425 445 All slow
430 450

Table 6.1: Different set of parameters used for the photonic crystal waveguides.

Figure 6.4 is an image of all the waveguides of a unique sample taken by illumi-
nating the sample with a white light and using a CCD camera with a 10X telescope
lens. The same set of waveguides is repeated three times. Typically, the waveguides,
in the red box in figure 6.4, have the same geometrical parameters a, a’ and hole
radius r. However the lengths of the slow waveguide, which diffuses less than the
fast waveguide and looks grey, are: 0 nm (bottom, the whole waveguide is fast),
50 pm, 100, 200, 300, 400 ym and 2 mm (top). The total length of each waveguide
is 2 mm. In order to make the cleavage, 2 sets of square markers are made, separated
by 500 pm and 1 mm. These markers can be seen in the top and bottom of the
picture in figure 6.4 as white squares.
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Figure 6.4: Picture of the full sample (without quantum wells) before cleaving. The
two dashed white lines are guidance to show the marks where the sample should be
cleaved. The red square shows a unit of waveguides with the same lattice parameters
and different slow waveguide length.

6.1.2 Cleaving process

In order to couple light into the waveguides, the fabricated samples are cleaved at
both ends following preferably the white dashed lines in figure 6.4.

I have to state here that the cleaving process is very delicate due to the fact that
our samples are reported on Si which is not the material the best suited for cleavage.
On the other hand, the length of the waveguides we wish to obtain, ~ 500 < pm, is
very short to fully control it.

Figure 6.5 is a picture of a sample after the cleavage. This cleaved sample has a
length of ~ 550um, which is close to the targeted length. However, looking at the
brightness of the guides, which depends on whether the waveguide is slow or fast,
we can see that: the cleavage is not well centered on the slow waveguide and is not
perpendicular to the propagation direction of the waveguides.

The fact that cleavage is not symmetric is not of great importance as long as
at both ends a part of fast waveguide is present, so in the example of figure 6.5
some guides could be used for transmission measurements. When small, the angle
between the direction of cleavage and the normal to the propagation direction in
the waveguide is not an important issue as it should not affect much the coupling
efficiency. It could even be helpful to avoid possible Fabry-Perot interferences coming
from Fresnel reflections on the cleaved facets.

The difficulty of the cleaving process is well illustrated in figure 6.6, showing
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Figure 6.5: Picture of the cleaved sample (without quantum wells).

SEM images of broken end facets caused by the cleavage. These waveguides can not
be used.

()

Figure 6.6: SEM images of the cleaved sample (without quantum wells).

In conclusion, we did not succed to use the butt coupling method directly into
a W1 PhC WG. Even though the lateral coupling is a simple method to couple the
light into the W1 PhC WG, it has a serious limitation: the cleaving process. Indeed,
this process is not reproducible and the minimum length that could be cleaved is
around 500 pgm which could be limiting for a W1 waveguide with QWs, due to
the absorption. Finally, because of the low success rate of the cleaving process,
the same sample should be repeated several times. An alternative to overcome
these difficulties is to use the so-called vertical coupling that has been developed in
collaboration with Philippe Lalanne (LCFIO) in the framework of this thesis.

6.2 Vertical coupling

In what follows we will call vertical coupling the coupling perpendicular to the plan
of the PhC. The vertical coupling into nanophotonic structures has been widely
studied since it allows injecting light into the structure with relatively small tech-
nological issues. Vertical grating couplers have already been widely reported since
their first theoretical proposition [Tamir 1977| achieving experimental coupling ef-
ficiencies of up to 60% [Taillaert 2002, Van Laere 2007]. Another possibility that
has been studied in the case of ridge waveguides is the use of metallic gratings
[Scheerlinck 2007, Scheerlinck 2008|. Those solutions either imply additional com-
plex technological issues or relatively long access system that are not compatible
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with highly nonlinear absorptive PhC. An alternative approach consists in the en-
gineering of the PhC lattice itself at the vicinity of W1. In their article, Tsai et
al [Tsai 2011] reported a method allowing direct vertical coupling to a PhC WG.
An FDTD analysis was performed to calculate local PhC lattice modifications that
could generate a vertical coupler. Theoretical calculations showed an emission an-
gle from the PhC WG restrained to low values (< 20°) and a very good coupling
efficiency (~ 60%) from its fundamental mode to a Gaussian beam. However, to
our knowledge, no experimental demonstration of such method has been reported.
Furthermore the aforementioned study mainly focused on a single frequency at the
band edge while this frequency should correspond to extremely high group index
values either beyond cut-off or liable to introduce strong disorder-induced losses
[Kuramochi 2005].

6.2.1 Theoretical calculations

The vertical coupling method we have adopted is based on the grating approach
[Tamir 1977]. By modulating periodically the characteristics of the W1 waveguide
lattice in the propagation direction z, light is diffracted out of the waveguide. Sym-
metrically, by injecting light in the same axis as the diffraction, but in the opposite
direction, coupling into the waveguide can be achieved.

The diffraction direction can be deduced using the Bragg phase-matching condi-
tion in the propagation direction z, between the wavevector 3 of the guided mode,
the wavevector k of the diffracted light and K the wavevector corresponding to the
periodicity introduced. However, the Bragg condition does not give an insight on
the efficiency of the diffraction.

Analytically, the Bragg condition can be written as:

k. =B+ pK (6.1)

where k, is the z-component with |k| = 27/, the wavevector of the diffracted light
in the air, 8 = 27nwi1 /A, with nyw; the effective index of the Bloch mode of the
W1 waveguide and |K| = 27 /A, is the wavevector associated to the grating having
a period A. The integer p is the diffraction order.

To obtain vertical coupling one needs to have k, = 0. According to equa-
tion (6.1), we obtain the following condition:

A

In our particular case, this condition can be fulfilled at a particular wavelength
A by optimizing the periodicity A of the grating. We assume that the W1 waveguide
is perturbed by an added periodic modulation. This perturbation acts as a grating
coupler with a leakage perpendicular to the propagation direction provided that the
phase-matching condition (6.2) is valid provided that one neglects the effective-index
change induced by the weak modulation [Tamir 1977]
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The coupler has been designed for coupling or decoupling light perpendicularly
to the waveguide at a group index of 20 (A = 1538 nm). We have first calculated
the effective index ny1 = 2.32 of the Bloch mode of the W1 waveguide (sketched
in figure 6.7.a) for this specific wavelength. For p = 1,2... we find A = 0.68 um
(~1.6a) and A = 1.35 pym (~ 3.2a). The perturbed waveguide (see figure 6.7.b) is no
longer periodic (or the period is very long) because A and a are not commensurate in
general. Although the perturbed waveguide of figure 6.7.b is likely decoupling light
normally, we have deliberately chosen to opt for a full-periodic coupler design by
changing the PhC period along the propagation direction in order to render A and
the new period a’ commensurate. In comparison to the case p = 1, the p = 2 case
is more favorable since a periodicity of ~ 3.2a requires only a very slight increase
of the longitudinal period, which becomes a’ = A/3 = a + 30 nm. The resulting
perturbed coupler with a periodicity of 3a’ is shown in figure 6.7.c. Finally, to ease
the fabrication process, we have decided to avoid etching the central part of the
waveguide and to use a heterostructure coupler, in which solely the two inner rows
of holes are modified. To keep the average effective index almost constant in order
to satisfy the phase matching condition of equation (6.2) we decided to increase
the radius of some holes and to decrease that of others. The radius increment is
denoted by Ar. Figure 6.7.d shows the resulting heterostucture. Finally, by using a
Bloch mode solver able to analyze leaky Bloch modes of photonic crystal waveguides
operating above the light |[Lalanne 2002|, we have optimized the parameter Ar to
guaranty an efficient decoupling at normal incidence.

7 1

a a
a a — >
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A A=3a’ A=3a’
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W1 waveguide Perturbed Perturbed Heterostructure
coupler periodic coupler coupler

Figure 6.7: Description of the steps of the design conception of the vertical coupler.

Resuming, the vertical coupler is achieved by modifying the period a of the trian-
gular lattice of the PhC and the radius r of the holes. The period in the z-direction
of the triangular lattice is changed to o’ and the periodic modification of the holes
radius allow us to have a grating period (A) which can be a multiple the triangular
lattice: A = ma’ where m is an integer. We can then rewrite equation (6.2) in terms
of these parameters:

A
Nl +p@ =0 (6.3)
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where a’ is the modified period and m is the factor by which we multiply the original
period of the triangular lattice.

Figure 6.8 presents the adopted solution. The period is A = 3a’ and the diffrac-
tion is at second order (p = 2). In the coupler region the period (a’) in direction
of the propagation of light is increased and the radius of the holes in the holes line
adjacent to the guiding region are modified: every three holes the radius of one is
reduced by Ar and the other two are increased by the same amount (Ar).
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Figure 6.8: Sketch of sample with vertical couplers at the two extremities.

Once the parameters of the coupler are defined, we make exact numerical com-
putations (numerical simulations were performed at Institut d’Optique Graduate
School by Philippe Lalanne) in order to study its characteristics. The method used
hereafter has been described in a previous work |Lecamp 2007| for the general case
of light propagation and light emission in three-dimensional (3D) periodic waveg-
uides and in stacks of them. In brief, the Bloch-mode method operates in the fre-
quency domains and relies on an analytical integration of Maxwell’s equations along
the longitudinal direction and on a supercell approach in the two others. Perfectly-
Matched-Layers implemented as nonlinear coordinate transforms [Hugonin 2005] are
used in the transverse x- and y-directions to carefully handle out-of-plane far-field
radiations in the air clad. The numerical sampling in the transverse direction is per-
formed in the Fourier space using truncated Fourier series. The approach directly
relies on methods developed in the 90’s for grating analysis [Moharam 1995, Li 1997].
The numerical results are obtained for truncation ranks, m, = 25 and m, = 14.
This implies that a total number of Ny = (2my + 1) x (2my + 1) = 1479 Fourier
coefficients are retained in the calculation. Indeed, the accuracy of the computa-
tional results increases as Ny increases, but calculations performed for larger Ng
have revealed that the truncation error has no influence on the discussion and on
the conclusion. The reflection, the transmission and the diffraction, referred as the
out-of-plan losses, are calculated along with the diffraction angle. These parameters
are defined in figure 6.9.

Figure 6.10 presents the transmission (a), the out of plane losses (b), the reflexion
(c) and the diffraction angle 6 (d) for a triangular lattice photonic crystal period
a = 420 nm, holes radius » = 125 nm and n = 3.31. In the coupler, the period
is @/ = 450 nm, Ar = 35 nm and the number of periods A is 15 decided as a
compromise between the coupling efficiency and the short length of the coupler.
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0
/) OOP=1-R-T
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Figure 6.9: Unidimensional sketch of the vertical coupler with the definitions of the
parameters: R (reflection), T (transmission), OOP (out of plane), 6 (angle of out of
plane with respect to the vertical).
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Figure 6.10: Characteristics of the coupler for a waveguide with: ¢ = 420 nm,
r = 125 nm and n = 3.31, and a coupler with: a’ = 450 nm, Ar = 35 nm and 15
periods (A). (a) Transmission, (b) Out of plane and (c) reflexion as a function of the
wavelength and (d) € as a function of the group index of the waveguide. Numerical
simulations were performed at Institut d’Optique by Philippe Lalanne.

The transmission losses, presented in figure 6.10.a, shows two minima one at A ~
1505 nm, at the fast regime (ny ~ 5) and the other at A ~ 1568 nm corresponding
to ng = 40. We can see in figure 6.10.b that the diffraction efficiency (OOP)
ranges between 10 and 55 % depending on the wavelength, it presents maxima at
the wavelengths where the transmission is minimum. Figure 6.10.d shows that we
have a broadband extraction within a diffraction angle smaller than 5° from a group
index of 10 to more than 100. However, looking at figure 6.10.c we can notice
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that the coupler also introduces an important reflection, presenting a maximum at
A =~ 1567 nm which coincides with the OOP maximum at the slow light regime.
On one hand, this generates difficulties to do a one way transmission measurements:
coupling into the waveguide, propagating along the waveguide, and extracting light
from the waveguide. On the other hand, the reflections allow to measure the group
index of the waveguide since the couplers act as mirrors and the system constituted
by the two couplers and the waveguide (see figure 6.8) behaves like a Fabry-Perot
resonator.

We will now analyze the modification of the different parameters due to this
Fabry-Perot effect and show the way the group index can thus be extracted. A
basic sketch of a Fabry-Perot interferometer is shown in figure 6.11, where E; is
incoming signal, ¢; and r; are the transmission and reflection of the first mirror and
to and ro those of the second mirror of the Fabry-Perot. The transmitted intensity
is then given by:
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Figure 6.11: Fabry-Perot model

I;

t= g (6.4)
1+ 2sm (‘5)

where we have assumed that r; = 79 = r, t; = to =t and have defined > = T and
r2 = R =1 —T. The phase ¢ is associated to the propagation round-trip in the
resonator and is defined as ¢ = 27n/L where n is the resonator index of refraction
and L the cavity length. + is defined as v = (1 — R)/v/R. Figure 6.12 is a Fabry-
Perot equivalent sketch of the waveguide with the in-coupler and the out-coupler
playing the role of the Fabry-Perot mirrors. One has to replace the transmission
coefficient of the mirrors in figure 6.11 by the coefficient o representing the out-of-
plan amplitude diffraction of the couplers. The transmitted intensity is then given

by:

,0O?

I; = -
(1-R)?2+ 4Rsm2(%)

(6.5)

where O = 0?.
According to expression (6.5), Fabry-Perot peaks are expected when tuning the
wavelength. These peaks have been shown to be helpful when one wants to deter-
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Figure 6.12: Sketch of a Fabry-Perot interferometer with vertical coupling

mine the group index of the waveguide. Measuring the free spectral range between
peaks we determine the group index as we will show next.

Calculation of the group index from the free spectral range The expression
of the phase of a wave after the propagation through a length L with an effective
index neg is

w

p(w) = neﬁ‘(W)EL
We can then write the phase difference between two consecutive maxima

/

w w
neﬁ(w')?[/ — neg(w)zL + (W) — dm(w) =7
Setting W’ = w + Aw and nlg = neg + Aneg where neg = neg(w) and nlg =
neg(w’), we can rewrite the previous equation as:
w Aw w
neff;L + (neﬁ" + Aneﬂ)TL - neff;L +Apy =
Throwing away the second order term we can rewrite then:

Aw Aneg

) +A¢y =7
The group index, ng = neg + w%, is written as:

(m — Adim) (6.6)

c
Ng = ——
9 LAw

We can finally rewrite the expression as a function of the wavelength,

2

¢
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)\2
g = 2w LAX

(m— Adm) (6.7)

where Ag,, can be neglected as shown in [Mazoyer 2011a| from 3D numerical com-
putations.

Expression (6.7) has shown to be very practical to determine the group index
experimentally. Indeed from the transmission spectrum, one only has to determine
the free spectral ranges A\ between two successive Fabry-Perot peaks and their
wavelengths to calculate the group index. We will implement this approach at the
end of this chapter.

6.2.2 Experimental validation of the coupler and measurement of
the group index

The purpose of this section is to present one implementation of the proposed vertical
couplers, as well as its characterization. Its functioning is tested here on conventional
passive W1 photonic crystal waveguides (W1 PhC WGs) with an injecting and an
extracting coupler. Next chapter is devoted to an analogue structure containing
active (absorptive) media.

6.2.2.1 Sample design

The photonic crystals (PhCs) are 10 gm x 500 pm air hole triangular lattice InP
suspended membranes. The waveguide is placed at the center of the PhC small
side, as shown by the scanning electron microscope (SEM) image in figure 6.13.
The W1 waveguide is generated by missing a row of holes (in the long axis) during
the fabrication. Two couplers are also introduced in this line defect setting the
propagating length L,.

The sample was fabricated following the same process described for the cavities
in section 4.1. The only difference is that here the PhC layer is constituted of a
membrane of indium phosphate (InP) with a thickness e = 265 nm. This gives a
refractive index of 3.16 instead of 3.31 for the samples containing the active media.

Different PhC WGs were fabricated changing the parameters of triangular lat-
tice, those of the coupler and the propagating distance. The radius remains constant
at 7 = 115 nm, the periods of the triangular lattice are a = 420,430,440 nm, the
periods of the coupler in the propagation direction are such that a’ —a = 30,40 nm
and the propagating lengths are L, = 100 and 200 um. This set of parameters is
showed in table 6.2.

6.2.2.2 Experimental set-up and sample description

Figure 6.14 shows the experimental set-up. A fibered continuous-wave (cw) laser
emitting up to 15 mW and tunable from 1490 nm to 1650 nm is used (Tunics). The
light is sent to free space using an achromatic reflective collimator (ARC), this is of
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Figure 6.13: SEM (scanning electron microscope) image of the transition between
W1 waveguide (triangular lattice with period a=440 nm, holes radius r=115 nm)
and the coupler (modified period a’=470 nm, radius increment/reduction Ar=35

nm.
r(nm) | a(nm) | ¢/(nm) | Ar(nm) Ly(pm)
430 460
470
440 470
115 480 35 100 and 200
450 480
490

Table 6.2: Different parameters used for the W1 photonic crystal waveguides with
injecting/extracting coupler.

particular importance since a wide spectral sweep is performed. A polarizing beam
splitter and a half-wave plate (HWP) are used to guarantee a linear polarization in
the direction x. The use of a 50/50 beam splitter allows to send the signal to the
sample -through a 10X microscope objective (0.25 NA)- and to recover it through
the same objective. The signal is injected into the sample by one coupler and
coupled out by the other, after a propagation through the waveguide of L, = 100 or
200 pm depending on the given PhC WG. Finally, a second beam splitter (99% of
transmission) sends a small part of the signal to a high sensitivity InGaAs camera
and the most part of the signal is coupled into an optical fiber using a second
collimator identical to the implemented at the input of the set-up. The signal is
then sent to a fast avalanche photo-diode (APD).

Figure 6.15 shows an image of the sample taken with the infrared camera pre-
senting three W1 waveguides with the coupling achieved in the central one. The
brightest spot (on the left) is due to the reflexion of the injection signal which is not
coupled into the waveguide; the small and elongated spot corresponds to the light
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Figure 6.14: Experimental set-up used to characterize the W1 photonic crystal

couplers.

scattered at the output coupler after passing through the 200 pym long W1 PhC

WG.

Figure 6.15: InGaAs infrared camera snap shot of the reflected and transmitted
signal over the sample, light is injected from the left, propagates in the waveguide
and then is outcoupled on the right side.

Looking at the image in figure 6.15 it becomes clear that a spatial filter is
needed to isolate the transmitted signal from the reflection, this can be performed

in two alternative ways. The simplest one, if only intensity is needed, is to digitally
integrate the pixel intensity in a selected region of the image, this is done using a
LabView program. The LabView program controls the tunable laser source -drive
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the wavelength scan- and allows to select two areas of integration in order to measure
the reflected and transmitted signal for a given waveguide.

The other option in order to measure the transmitted signal is to use a confocal
spatial filtering system. This system is implemented in this particular case using
the SMF optical fiber as pinhole (spatial filtering device) and light is focalized in it
using the ARC. This particular system offers one advantage. It is possible to replace
the detector by a laser and to do an inverse coupling; this procedure guarantees that
the selected area is the most adequate one. Also, this approach enables, by the use
of a fast avalanche photo diode, the possibility of making temporal measurements.

First experimental measurements are performed for a W1 PhC WG with a tri-
angular lattice period a = 440 nm and a hole radius r = 115 nm. Figure 6.16 shows
the calculated evolution of the group index in such a waveguide as a function of
wavelength.
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Figure 6.16: Group index as a function of the wavelength for a W1 PhC WG with:
triangular lattice period a = 440 nm, hole radius » = 115 nm, membrane thickness
e = 265 nm and n = 3.16. The 3D numerical simulations were performed at Institut
d’Optique by Philippe Lalanne with a Fourier modal method |Lalanne 2002].

The couplers used had a modified period a’ = 470 nm, an increment /reduction
of the hole radius Ar = 35 nm and a length of 15 periods (A) giving approximately
20 pm length of the the coupler area. The numerical calculations for such a coupler
are presented in figure 6.17. Figure 6.17.a shows the transmission (7) spectrum,
figure 6.17.b the reflexion (R) spectrum and figure 6.17.c the out of plane coupling
(OOP) spectrum. We can see that for low wavelengths -corresponding to ng ~ 5 -
the OOP is not negligible (~ 50%), nevertheless the losses (transmission) are also
important. Closer to the band-gap, at A ~ 1535 -corresponding to ngy ~ 10 the
transmission is reduced having then an increase of the reflection and OOP.

6.2.2.3 Experimental results

The propagation length (distance between couplers) L, of the waveguide was
200 pm. The laser source wavelength is tuned from 1490 nm to 1550 nm mea-
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Figure 6.17: Characteristics of the coupler for a waveguide with: triangular lattice
period a = 440 nm, hole radius » = 115 nm, membrane thickness e = 265 nm and
n = 3.16, and a coupler with: a’ = 470 nm, Ar = 35 nm and 15 periods (A). (a)
Modal transmission 7', (b) modal reflexion R and (c) Out of plane loss (1 — R —T)
as a function of the wavelength. Numerical simulations were performed at Insti-
tut d’Optique Graduate School by Philippe Lalanne with a 3D Bloch-mode modal
method using Fourier expansions and perfectly-matched layers |[Lecamp 2007].

suring the transmitted signal by spatially filtering in the camera. Figure 6.18 shows
in blue the obtained spectrum and in green a theoretically obtained spectrum.
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Figure 6.18: Transmission spectrum for a waveguide with a propagation length
L, = 200 pym, a = 440 nm triangular lattice period, » = 115 nm hole radius
and @/ = 470 nm period of the coupler in the direction of propagation. Blue,
experimental; Green, theoretical.

The spectrum presents Fabry-Perot resonances, as expected from the high re-
flection predicted by the simulations shown in figure 6.17. The high wavelength
limit in this transmission spectrum is set by the waveguide cut-off. The large group
indices enhance the consequences of the fabrication imperfections generating strong
losses and a chaotic behavior [Mazoyer 2011b]. The low wavelength limit is due
to the high losses of the whole system given by couplers transmission, as shown in
figure 6.17.a.

To compare the theoretical predictions with the experimental results we intro-
duce the values for the reflexion (R), the transmission (7°) and the out of plane
coupling (OOP) represented in figure 6.17 in the expression (6.5). This is repre-
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sented by the green line in figure 6.18. The theoretical curve (green line) was shifted
in order to set the ny, = 10 for the wavelength A = 1527 nm in order to compen-
sate for the uncertainties and lack of knowledge of exact values for the membrane
thickness and refractive index. Also, the normalized intensity is corrected so that
both intensities have the same value at the peak at 1531 nm. Considering these un-
certainties, the agreement between theory and experience is good. It must be said
that for the calculations there are not any free parameter with the only exception,
the already mentioned slight shift of the wavelength.

Exploiting the Fabry-Perot resonances we retrieve the group index evolution of
the waveguide mode as a function of the wavelength through the measurement of
the free spectral range (FSR) of the transmitted signal using the relation (6.6).
Figure 6.19 shows the inferred experimental group indices (circles in blue o) and the
green line corresponds to the same numerical calculations presented in figure 6.16.
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Figure 6.19: Group index as a function of the wavelength for a waveguide with a
propagation length L, = 200 pm, a = 440 nm triangular lattice period, r = 115 nm
hole radius and @’ = 470 nm period of the coupler in the direction of propagation.
e: obtained from experimental spectra; green line: theoretical data.

The transmission spectra are performed for all the W1 PhC WGs presented in
table 6.2. Figure 6.20 shows the spectra obtained for samples with @’ = a + 30 nm
and L, = 200 pum.

As previously described, using the experimental transmission spectra the group
index can be deduced from the free spectral range. Figure 6.21 shows the group
indices for all the waveguides with @’ = a + 30 nm. It is noteworthy that the
measured group indices for every set of parameters is equivalent regardless of the
length, confirming the reproducibility of the fabrication. Also, group indices go from
values around 10 to values around 100. The measurement of the smaller values of
ng is limited by the small reflexion of the coupler inducing a poor contrast for the
Fabry-Perot fringes. On the other hand, at high group index values, the limitation
is given by the fact that when group indices are large the imperfections on the
fabrication make the transmission low and chaotic [Mazoyer 2011b).



6.2. Vertical coupling 111

<08 |
g 1
0.6 | 7
»
©
Boa | |
(7]
% 0-2‘ h ‘ J |
— ‘ \
= V*Hﬁ‘\“’”i Lo s e w\li‘,i T eSO Y MR U ’J

1%90 1500 1510 1520 1530 1540 1550 1560 1570 1580

Wavelength (nm)

Figure 6.20: Transmission spectra for different waveguides of L, = 200 um
propagation length and period of the coupler in the direction of propagation of
a’ = a+ 30 nm, a hole radius » = 115 nm and a hole radius increment /reduction in
the coupler Ar = 35 nm. Black a = 430 nm, red a = 440 nm, blue a = 450 nm.
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Figure 6.21: Group index for different waveguides in function of the wavelength.
B a =430 nm, L = 100 ym, e a = 430 nm, L = 200 ym, A a = 440 nm,
L =100 yum, vV a = 440 nm, L = 200 ym, <« ¢ = 450 nm, L = 100 pym, »
a =450 nm, L, = 200 pym. o’ = a + 30 nm and r = 115 nm in all cases.

Next, we study the samples where the period of the coupler in the propagation
direction is such that a’ = a + 40 nm and the propagation length (distance between
couplers) L, = 200 pm. Transmission spectra for the three waveguides (¢ = 430 nm,
a = 440 nm, a = 450 nm) are presented in figure 6.22.

The cut-off wavelengths are approximately 1508, 1542 and 1569 nm for the
triangular lattice periods a=430, 440 and 450 nm, respectively. As expected, these
cut-offs wavelengths are similar to the cut-offs wavelengths of W1 PhC WGs with
the same waveguide lattice parameters (a and r) and ¢’ = a + 30 nm. This is,
cut-off wavelength depends on waveguide lattice parameters and not on the coupler
parameters. However, the contrast of the Fabry-Perot resonances is much smaller
making the determination of the free spectral range imprecise and thus group index
determination impossible.

As a partial conclusion, we have showed that using the designed vertical coupler



112 Chapter 6. Coupling into a W1 waveguide

o
[}

|
i
/WWM “J | } m
% 1 A @]‘L&—h‘ | \ M}L
1490 1500 1510 1520 1530 1540 1550 1560 1570 1580
Wavelength (nm)

Transmitted Signal (A.
o o
N iN

Figure 6.22: Transmission spectra for different waveguides of L, = 200 um
propagation length and period of the coupler in the direction of propagation of
a’ = a+ 40 nm, a hole radius » = 115 nm and a hole radius increment /reduction in
the coupler Ar = 35 nm. Black a = 430 nm, red a = 440 nm, blue a = 450 nm.

we succeeded to inject and extract light into a W1 PhC WG. The coupler design
should be improved in order to diminish its reflectivity. Nevertheless, we have
shown that it is possible to take benefit from this drawback to measure the W1
group index evolution. Using the Fabry-Perot FSR, group indices going from ~ 10
to ~ 100 were measured. However, the small reflectivity for n, < 10 prevents from
measuring ny in the whole wavelength range. In the following we implement an
additional engineering to fill this gap.

Indeed, it has been showed by S. Mazoyer in his PhD. thesis [Mazoyer 2011a]
that the introduction of one hole in the row of missing holes produces broadband,
strong reflection. In figure 6.23 we show the design done to exploit this specificity.
The full structure is identical as before, the only difference is that two additional
holes are introduced, one at the input of the W1 the other at the output. The hole
radius is the same that those at the lattice surrounding the W1.

Figure 6.23: (a) Sketch of sample with the vertical coupler and the reflecting
holes. (b) SEM image of the transition between the coupler (on the right) and
W1 waveguide (on the left) with the reflecting hole with a triangular lattice pe-
riod a = 440 nm, a hole radius r = 115 nm, a coupler period in the direction of
propagation a’ = 470 nm and a radius increment/reduction Ar = 35 nm.

In figure 6.24 the spectrum obtained at the output of the regular W1 (without
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additional holes) is presented in red -it is the same as in figure 6.20 (red)-. The
black line shows the spectrum obtained for a sample of same parameters where the
two reflecting holes are introduced. They allow to obtain contrasted Fabry-Perot

fringes over the 1490 nm-1525 nm range. A spectral region complementary to the
one obtained without holes.
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Figure 6.24: Transmission spectra for waveguides of L, = 200 pm length, a =

440 nm period, 7 = 125 nm radius and a’ —a = 30 nm difference between the period
of the coupler in the direction of propagation a’ and waveguide period a with (black)
and without (red) reflecting holes.

We use again the Fabry-Perot resonances FSR to retrieve the group index via
relation (6.6). The group indices corresponding to the spectra shown in figure 6.24
are presented in figure 6.25 with the same color code, red for the regular sample
and black for the one with additional holes. It can be seen that both curves are
connected. Together they allow to cover the spectral range going from 1490 nm to
1543 nm in which the group index varies from ny, = 5 to ny = 78.
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Figure 6.25: Group index for waveguides of L, = 200 pm length, a = 440 nm
triangular lattice period, 7 = 115 nm hole radius, a’ = 470 nm period of the coupler
in the direction of propagation and an increment/reduction of the hole radius Ar =
35 nm with (M) and without (e) reflecting holes.
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6.3 Conclusion

Coupling light into a short W1 PhC WG is not a simple task. We first tried the
simplest possible method: butt coupling from free space. The cleavage of such a
short waveguide with the additional difficulty of the Si substrate was very problem-
atic. We then explore an alternative approach using a periodical perturbation before
the waveguide to achieve a short vertical coupler. We fabricated and tested such
approach both to couple light into a short W1 PhC WG and to decouple it. Thanks
to its angular acceptance the coupler works for a quite wide wavelength range. Its
efficiency is not high but largely enough for the envisaged nonlinear experiments.

The main drawback of the present design is the reflectivity of the coupler that
induces Fabry-Perot effects. We however take advantage of this Fabry-Perot reso-
nances to measure the group index values up to ngy ~ 90.

During my PhD it was not possible to optimize further the coupler, fabricate
and test new designs. We preferred to apply the method as it is to active structures
and to have a first insight on their nonlinear response. This is the purpose of the
next chapter.
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This chapter presents preliminary experimental results on the combination of
slow light based on the CPO effect and slow mode in photonic crystal waveguides,
as calculated in chapter 5. Experiments were performed using W1 PhC waveguide
containing semiconductor quantum wells (QWSs) as active, absorptive, nonlinear
medium and exploiting the vertical coupled described in chapter 6. The pump and
probe beams are generated by the intensity modulation of a single laser beam. Delay
measurements of the probe signal are performed using a lock-in amplifier. We show
delays in this photonic crystal waveguides going up to 2 us.

7.1 Experimental method

In this section we present the characteristics of the W1 PhC WGs sample and the
experimental set-up used for the nonlinear measurements.

The photonic crystals (PhCs) are 10 pm x 500 pm air hole triangular lattice InP
suspended membranes. As in the passive samples, the waveguide is placed in the
center of the short side of the PhC. The W1 waveguide is generated by missing a row
of holes (in the long axis) during the fabrication. Two couplers are also introduced
in this line defect setting the propagating length L.

The fabrication process has been described in section 4.1. The PhC period and
hole radius are a = 430 nm and r = 115 nm, respectively. The PhC suspended
InP membrane (265 nm-thick, \/2n) is grown by metalorganic vapour phase epi-
taxy (MOCVD), containing four central layers of InGaAs/InGaAsP QWs (see fig-
ure 4.3.a), each layer having a thickness of ~ 13.5 nm and ~ 16 nm for the well and
the barrier, respectively.

As done for the cavity, we first perform a photoluminescence study of the QWs.
The experimental set up used for the photoluminescence is the same as that used
for the cavities, shown in figure 4.5. The sample is pumped using a pulsed Ti:Sa
laser source emitting at 810 nm, having a 80 MHz-repetition rate and 100 fs-pulse
duration. The pump is focused on the sample with a 20X microscope objective.
The emission is collected by the same objective and send to, either a CCD camera
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in order to visualize the sample, or a spectrometer ('Princeton Instruments’, Acton
SP2500i, with a 600 g/mm grating 1.6 pm blaze and Ni cooled camera) to record
the spectrum of the QWs fluorescence. After passing trough the spectrometer the
signal is sent to an InGaAs 1D array spectroscopy camera (’Princeton Instruments’,
OMA V, spectral range 0.7 pm-1.6 pm, resolution FWHM: 0.315 nm). Figure 7.1
shows a typical photoluminiscence spectrum for a pump average power of 70 uW.
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Figure 7.1: Quantum wells photoluminiscence spectrum.

Coupling into the waveguide is achieved using the vertical coupler with a pe-
riod increase in the propagation direction ¢’ — a = 30 nm (¢’ = 460 nm) and an
increment /reduction of the hole radius in the lines adjacent to the missing line
Ar = 35 nm. Samples with 3 different lengths L = 50;100;200 um were fabri-
cated. Figure 7.2 presents the experimental set-up used, it is almost the same as
the one used for the measurements on passive waveguides, see figure 6.14, with two
modifications.

We use a fibered acousto-optic modulator (AOM) to generate a sine-wave mod-
ulation of the signal coupled into the W1 waveguide and a supplementary laser
emitting at 800 nm wavelength (Ref. Diode Thorlabs) impinging on the sample at
oblique incidence (i.e. without passing through the microscope objective).

This laser, focused using a lens (f=100 mm), is used to pump the quantum wells.
An infrared camera is then used to detect the fluorescence of the QWs and determine
optically the location of the couplers. Figure 7.3 shows a picture of the sample taken
with the infrared camera as it is pumped with the 800 nm laser. The brighter parts
of the waveguides are the couplers, three waveguide lengths (L = 50, 100,200 pm)
between the couplers are clearly visible.

To generate the pump and probe beams a sinusoidal modulation of the Tunics
intensity is performed, as it was done in section 4.3. The amplitude modulation is
generated via a fibered acousto-optic modulator at a frequency, 9, of 100 kHz.

The pump intensity is measured in the same way as the transmitted intensity
in the passive waveguides (see section 6.2.2), i.e. we use the IR camera to measure
the intensity at the extraction coupler. Alternatively, as shown in the same section,
spatial filtering can also be implemented by confocal detection; in this case, the
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Figure 7.2: Experimental set-up used to perform the measurements of the active
W1 photonic crystal waveguides.

Figure 7.3: Infrared picture of the sample (taken with the InGaAs camera) of the
sample with ¢ = 430 nm, @’ = 460 nm, » = 115 nm, e = 265nm. The picture shows
three waveguides with lengths (distance between couplers) L = 50, 100,200 pm.

transmitted signal is detected through an APD and using a lock-in detector we
obtain the amplitude and phase of the modulation (i.e. intensity and delay of the
probe). Since the modulation frequency is 100 kHz, a commercial lock-in (Stanford
Research Systems-SR830) is used this time.

7.2 Experimental results

The first experimental measurement in the active waveguides is simply a repetition
of the one performed in the passive ones.

The transmission spectrum there is measured by integrating the intensity of the
IR camera pixels in the extraction coupler region, for each frequency. Figure 7.4
shows the transmission spectrum (black line) and group index, calculated using the
free spectral range, (red square M) for a waveguide with a lattice period a = 430 nm,
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a radius 7 = 115 nm and a length L = 50 pm. The pump intensity is 20 pW.
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Figure 7.4: Transmission spectrum (black line) and group index as a function of
the wavelength (M) for a W1 PhC WG with a propagation length L, = 50 pm,
a = 430 nm triangular lattice period, r = 115 nm hole radius and @’ = 460 nm
period of the coupler in the direction of propagation.

The transmission spectrum of figure 7.4 does not exhibit a lower limit in the
wavelength range considered and the cut-off at high wavelength is approximately
1543 nm. As in the case of absorption free samples (chapter 6) Fabry-Perot reso-
nances are observed before the cut-off, while transmission variation is smooth be-
tween 1520 and 1535 nm. From the Fabry-Perot peaks the free spectral range can
be measured and the group index evaluated. It varies from 20 at 1536 nm to 80 at
1541.5 nm.

Strong nonlinear behaviors are already presents in the transmission spectrum
presented figure 7.4, obtained for a pump power of 20 uW. Indeed, with the exception
of the resonances around 1535 nm, all the others present a steep profile at the blue
side. This is strongly reminiscent of the nonlinear response of the cavities studied
in chapter 4. The steepness at the blue side of the resonance is a signature of the
electronic origin of the nonlinear response.

To further investigate this response figure 7.5.a presents transmission spectra
around the Fabry-Perot resonances (1535 nm-1543 nm) for different pump powers.
It becomes clear that even for the lowest powers investigated most of the resonances
are non symmetric and exhibit its nonlinear behavior. This strong nonlinearity is
clearly not associated to the finesse of the Fabry-Perot peaks, but rather to the
length of the nonlinear interaction.

Figure 7.5.b presents the transmission spectra of the probe (modulation ampli-
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Figure 7.5: (a) Pump transmission spectrum. (b) Probe transmission spectrum.
Black 70 pW, light blue 125 uW, blue 250 W, green 500 pW, red 800 uW laser
intensity. For a W1 PhC WG with a propagation length L, = 50 pm, a = 430 nm
triangular lattice period, » = 115 nm hole radius and @’ = 460 nm period of the
coupler in the direction of propagation.

tude). Very narrow resonances are seen in coincidence with the steep slope wave-
length of the pump resonances. Most of the probe resonances are not appearing in
the measurement due to the step resolution of the wavelength scan.

In order to analyze as a very preliminary result the nonlinearly induced delay we
will now focus on the resonance at 1540.43 nm labeled by an arrow in figure 7.4. We
focus our studies in this maximum because it represent a good compromise between
the intensity of the signal and the spectral width of the probe.

Figure 7.6.a shows the transmitted pump intensity as the laser wavelength is
tuned around the resonance (1540.53 nm) measured with the IR camera for the
different laser powers, we can see that as the power increases the resonance becomes
larger, and more importantly asymmetric as the blue side slope becomes stepper
than the red side slope of the resonance. Figure 7.6.b shows the probe intensity
(modulation amplitude) as the laser wavelength is tuned, we can see that the res-
onances are centered around the respective pump blue side slope. Also that as the
laser power increases and the pump blue side slope becomes stepper, the probe res-
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Figure 7.6: (a) Pump, (b) probe and (c) delay spectra for a W1 waveguide of 50 um
length with difference between the period of the waveguide, a = 430 nm, a period of
the coupler in the direction of propagation, ' = 460 nm and a radius r = 115 nm,;
for different pump intensities (60 uW black, 70 pW red, 80 uW blue, 90 uW green).

onance becomes narrower. Finally, figure 7.6.c shows the probe delay as a function
of the laser wavelength, the maximum delay wavelength is centered in the probe
resonance (also, the steep slope of the pump resonance) as in the L3 PhC cavities,
exhibiting a clear nonlinear behavior. The maximum delay achieved is 2 us for a
pump intensity of 90 uW. One may think that larger delay could be achieved by
simply increasing the laser power, however, as we enhance the laser power the probe
resonance becomes narrower an the hole system becomes too unstable to perform
the delay measurements.

The origin of this delay enhancement comes, as in the L3 PhC cavity from
a combination of effects, including both the CPO effect and nonlinear behavior
showed by the asymmetry of the resonance. Nevertheless, in this case we do not
have developed yet the theoretical model to compare to the experimental result
as it becomes really difficult to estimate: the absorption of QWs, the linewidth
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enhancement factor and the coupling rate.

In conclusion, we have demonstrated vertical coupling in active slow-light pho-
tonic crystal waveguides, allowing propagation distances of some tens of microme-
ters. We have measured the group index of the W1 PhC waveguide for values from
20 to 80 through a Fabry-Perot method. We have showed that the coupler acts as
a mirror creating a cavity that (because of the presence of the QWs) has a clear
nonlinear behavior attaining delays up to 2 us.

This system requires further studies as the high reflection of the vertical coupler
have not allowed until now to make simple one way transmission measurements on
the waveguide and we are forced to work on the cavity regime. Nowadays we are
working to reduce the reflection of the coupler.
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CHAPTER 8

Conclusions and prospects

8.1 Conclusions

Slow light propagation is at the heart of intense research since two decades. There
are many possible applications of slow light in non-linear optics, quantum optics
and telecomunications. Usually there are two principal approaches material dis-
persion and material structuration. Material dispersion is originated by nonlinear
interactions, such as Electromagnetically Induced Transparence (EIT) or Coherent
Population Oscillation (CPO). The alternative option is to achieve slow light based
on the moulding of the photonic dispersion diagram via the geometrical engineering
of the optical properties. This is particularly the case in 2D Photonic Crystals (2D
PhC) where slow light modes can be achieved both as Bloch states in non defective
structures that acts as distributed resonators and in defective 2D PC where a miss-
ing row of holes created the so called W1 waveguides that can also host a slow mode.
In both cases the flat photonic band dispersion E(k) is designed by adjusting the
opto-geometrical parameters in order to induce the slow group velocity (dE(k)/dk).
Additionally large delays can be obtained using resonators. The purpose of this the-
sis was to combine slow light by material dispersion with photonic crystal cavities
and slow mode photonic crystal waveguides.

We have proposed a simple approach, which can be analytically solved, to de-
scribe coherent population oscillations in a nonlinear microcavity. The analytical
model enables us to discuss the physical processes which lead both to a strong
enhancement of the (-factor and to a control of the transmission at the probe
frequency. The simultaneous action of population oscillations and the nonlinear re-
sponse of the cavity induces a strong intracavity dispersion and a differential gain.
This technique could be used to stabilize a microcavity using the frequency pulling
effect for example. Finally, it is also possible to take advantage of the active control
of the Q-factor via the pump beam in optical pulse buffering applications.

We have also shown some of our predictions experimentally demonstrating that
the @Q-factor of a nanocavity can be dynamically and strongly enhanced by the
cooperative use of CPO and dispersive nonlinearities. The numerical model we
developed describes these experimental results and a good agreement between the
experimental measurements and the theoretical model was obtained. The predicted
frequency pulling effect was also experimentally demonstrated and can be used to
lock the enhanced Q-factor nanocavity to a desired wavelength. It can also be
implemented to compensate for technological errors or to lock several nanocavities
to the same wavelength.
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Concerning photonic crystal waveguides, we developed a simple perturbative
model that allows to predict the absorption and group index behaviour in a system
where we combine slow light by CPO and slow mode W1 PhC waveguides. The
model shows that the total group index has a linear dependence with each one of
the group indices while the absorption has linear dependence with the slow mode
group index and does not depend on the CPO group index.

We extended to PhC waveguides (WGs) the band-folding procedure already
applied to PhC cavities. By adding a periodical perturbation in the region before
and after the waveguide short couplers are designed able to insert (extract) the light
in (from) the waveguide. This couplers have a quite large wavelength and group
velocities acceptance into a reduced angle range. For instance with a given set of
parameters the whole range of 5 < ny < 100 can be addressed within a reasonable
coupling angle range of —4° < 6 < 6°. We design and fabricated InP based W1
suspended PhC WG and demonstrated the couplers ability over a > 50 nm spectral
range and we take benefit from Fabry-Perot oscillations to assess the group index
of the W1.

We have also performed preliminary nonlinear tests on active W1 PhC WG
where light is coupled and extracted thanks to the proposed band-folding approach.
The system exhibits a strong nonlinear response for low pump powers. Group delays
were measured on the Fabry-Perot resonances reaching values as high as 2 us.

8.2 Prospects

During my PhD these I studied the CPO effect in semiconductor photonic crystals,
showing theoretical and experimentally that this effect enables to enhance the life-
time in photonic crystal cavities. The experimental measures were done in a shifted
L3 PhC cavity and the active material were semiconductor quantum wells. Theo-
retical studies also predict signal amplification, an issue of particular interest since
it could compensate absorptive, diffusive and nanocavity coupling losses; however,
this signal amplification could not be done experimentally during this thesis; this
is mainly due to the difficulties calibrating the incoming power in the tapered fiber
configuration. In order to perform these measures a study of free space coupling al-
ternative to the tapered fiber was done in our laboratory to achieve vertical coupling
using the band folding technique [Haddadi 2012].

Work done on erbium-doped fiber amplifiers has shown that the utilization of
a forced modulated pump enables to enhance the relative phase delay obtained
with the CPO effect by an order of magnitude [Arrieta-Yanez 2009]. This is an
interesting approach to be applied for our semiconductor active PhC. In this case
we should consider a three-level system as sketched in figure 8.1 where we have levels
|1) and |2) that are connected via 5 and a third level |3) that is connected to |1)
via Q,. The decay rate from |3) to |2) is much faster than the one from |2) to |1)
(lifetime 7). Using the modulated source approach employed during this thesis we
would send a signal at frequency w ~ €05 with a small amplitude modulation at
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d < 1/7. In this case additionally to that signal we should send a second beam at
w ~ €1, also modulated at 6 enhancing the population oscillation as the decay from
|3) to |2) is fast and achieving then an enhancement of the delay. We expect to use
this technique in semiconductors; particularly, the experimental set-up described in
chapter 7 would allow such experiment.

4 35 13)
A Jzitay?z; A+

A 45
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p1 1< O
on 31 TQSO
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Figure 8.1: Three-level atom with the control (Rabi frequency Q) and the probe
(Rabi frequency 1) signal fields coupling |1) to the excited state |2). The strong
(Rabi frequency €9) and weak (Rabi frequency €,,1) pump fields couple the ground

Q

state |1) to the fast decaying excited state |3). The Rabi frequencies are expressed
in frequency units [Arrieta-Yanez 2009).

The work on W1 photonic crystal waveguides done in this thesis showed a sys-
tem enabling us to couple from free space into the W1 PhC WG. We have shown
experimentally that this system allows us to couple into short (~ 50 pm) active
(semiconductor QWs) PhC WGs. We have also shown measures of the group index
of such a waveguide up to ny = 80. The utilization of this system suffers however
from a relatively high reflection of the coupler that have not allowed until now to
make a simple one way transmission measurement on the waveguide. We were forced
to work on the cavity regime.

The very long delay achieved is very promising, since this reflection transforms
the waveguide in a Fabry-Perot cavity that shows nonlinear response even for low
pump intensities.

However, it would be very interesting to achieve the situation we envisaged for
the WG: that is single pass long delays coupling reasonable ng4 associated to the PhC
slow mode and CPO effect. A next step is thus to improve the vertical coupler design
to decrease the reflectivity and increase the out of plane coupling. The introduction
of CPO in a slow mode PhC WG would allow us to increase the delay without
increasing the losses. Additionally, this increase on the delay would be optically
controlled.
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Slow light in two dimensional semi-conductor photonic crystals

Abstract:

We report on the combination of slow light propagation with the resonance
properties of a photonic crystal cavity and with the slow mode of a photonic crystal
waveguide.

We demonstrate theoretically and experimentally that slow light induced by the
Coherent Population Oscillation (CPO) effect enables to have small-size and ultra-
high quality (Q) factor cavity, regardless of the technological and design issues.
The experimental proof is performed in an L3 2D PhC cavity with semiconductor
quantum wells as active, medium in which the CPO effect is induced. We achieve a
cavity Q-factor of 520000 which corresponds to an enhancement 138 comparing to
the original Q-factor of the cavity.

We present a theoretical approach to the combination of CPO-based slow light
and slow mode in PhC waveguides, showing that the total group index is a multi-
plication of the group indices associated respectively to the CPO slow light and to
the waveguide slow mode. We also set the basis for the experimental demonstra-
tion by designing and fabricating samples in the clean room facilities of LPN and
addressing the challenging issue of coupling and extracting light in and from the
waveguides. A particular design of the PhC in the waveguide is issued as a grating
that allows to couple light perpendicularly to the plane of the PhC from free space.
The vertical coupler has also been designed and fabricated along the waveguide and
has been experimentally characterized. Slow light based on CPO effect in the PhC
waveguides is always under experimental investigation.

Keywords: Slow light, coherent population oscillations, photonic crystals, cav-
ity, waveguide
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