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Spécialité : Physique

Ecole doctorale : � La Physique, de la Particule à la Matière Condensée �

réalisée au

Laboratoire FAST - UMR 7608 (UPMC-UPS-CNRS)

Bat. 502 - Campus Universitaire

91405 Orsay Cedex, FRANCE.

présentée par

Ching HSUEH

pour obtenir le grade de :

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE
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Notations

Notations Expressions

d gap between two glass plates (= 1mm in experimental set-up)

D binary diffusion coefficient (m2/s)

Dp particle diameter (nm)

Dtip distance to the contact line (m)

F total volumetric evaporation flux per unit length in the z direction (m2/s)

h(t) in Ch 3: contact line displacement as a function of time (mm)

h in Ch 4: H-hm cf figure 4.1 (m)

hm the vertical height of the meniscus free surface cf figure 4.1 (m)

hd deposition thickness (m)

H total height of 2D computational domain (m)

Ht H − α cf figure 4.4 (m)

Hu Humidity

j local evaporation rate (m/s)

~J local mass flux ( kg
m2s

)

~Jp local mass flux of solute ( kg
m2s

)

~Js local mass flux of solvent ( kg
m2s

)

J0 constant related to mean evaporation rate (m
3/2

s
)

~n normal vector to the meniscus

P pressure (Pa)

Q total volume flux of solution per unit length in the z direction (m2/s)

iv
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Notations Expressions

Qp total volume flux of solute per unit length in the z direction (m2/s)

R radius of the meniscus free surface

Re Reynolds number

T Temperature set for experiment (◦C)

~t tangential vector to the meniscus

~v velocity vector

u x component of the velocity (m/s)

un normal component of the velocity (m/s)

ut tangential component of the velocity (m/s)

v y component of the velocity field (m/s)

V1 receding velocity of the contact line (m/s)

Vair air flow velocity from the top to the meniscus free surface (m/s)

Vev mean evaporation velocity (m/s)

α truncated height (m)

δ truncated width (m)

δFp variation of pinning force

γ surface tension of water (N/m)

θeff effective contact angle

µ dynamic viscosity of solution (Pa · s)
µp dynamic viscosity of polymer solution (Pa · s)
µc dynamic viscosity of colloidal suspensions (Pa · s)
φp volume fraction of solute

φ̄p mean volume fraction of solute at boundary 5 (cf figure 4.3

φp0 initial bulk volume fraction of solute

ρ density of solution (kg/m3)

ρp solute concentration (kg/m3)

ρs solvent concentration (kg/m3)
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Notations Expressions

ρ0
p density of pure solute (kg/m3)

ρ0
s density of pure solvent (kg/m3)

V̄tip the y component of mean velocity at boundary 5 (cf figure 4.3(m/s)



Chapter 1

Introduction

1.1 Motivation

Drying of complex fluid is a common phenomena that happens in our daily life such

as stain problems [1], painting works, cosmetics products-related phenomena (nail polish

or skin-related drying) and even drying of blood droplets for disease detection [2]. Drying

process is also a crucial issue for industrial applications. For coating process such as

ink-jet printing [3, 4] or printed electronics [5], to avoid the “coffee stain” problems [6]

is the key to improve the production rate. Fabrication by self-assembly technology

of small scale structures for biological materials [7, 8, 9, 10], photonic crystals [11, 12]

by drying process will cost less than traditional methods. From the physical point of

view, during the drying of complex fluids, complexity comes from the coupling between

hydrodynamics, heat and mass transfers and physico-chemical behaviors of the solution

and substrate. Several scales are relevant, from the bulk to very thin films such as

precusor film are measured to be less than 1µm [13, 14]. The contact line exhibits complex

phenomena while drying, and it plays an important role for the pattern formation of the

deposit. Therefore, to understand the fundamental mechanisms of the drying process is

our motivation. The goal is to know how the movement of the contact line is related to

the deposition thickness, how the hydrodynamics or chemical properties of the solution

affect the deposition morphology.

7
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1.2 Background

1.2.1 Sessile droplet drying

Many experiments are carried out on sessile droplets, since this geometry is easy to

implement. Deegan et al. [6, 15] have shown that the accumulation of solute observed on

the dried droplet edge was due to contact line pinning and strong evaporation rate at the

droplet periphery, which induces a flow from the bulk to the edge (coffee stain effect).

Snoeijer’s group [16] has demonstrated mechanism to form a order-to-disorder transition

in the ring-shaped colloidal stain. Different from drying colloids, Smalyukh et al. find

periodic zigzag shape in the ring-shaped DNA stain and they related the phenomenon in

terms of a simple model based on liquid crystal elasticity [17].

A reverse phenomenon (uniform deposit or accumulation in the central zone) can

also be obtained by capillary force or Marangoni effect. Weon [18] and co-workers found

that the capillary force (due to the large size of the particle compare to the height of the

droplet which is in the order of ∼ 10µm) can prevail the outward flow due to evaporation

and than reverse the flow toward the center of the droplet. Multiple-ring formation in

stead of one-ring shape was found in their experiment as a proof. When both large and

small particles are used, this results in segregation effect [19, 20].

Marangoni flow is generated by gradient in surface tension which can result from

temperature gradient or concentration gradient. Hu and Larson developed a model [21, 22]

to describe the effects of Marangoni stresses on the droplet by mean of simplify Navier

Stokes equationss and continuity equation. Their solutions show that the heat of vapor-

ization and the nonuniform evaporation rate lead to a nonuniform distribution of temper-

ature along the air-liquid interface and hence a nonuniform surface tension, which drives

a thermal Marangoni flow. Experimentally [23, 1] it was found that strong Marangoni

flow brings all the particles deposit in the center. This was mainly observed by these

authors in organic liquid, and not in water droplet. It is maybe because water is easier

to be contaminated by environmental surfactant, which weakens the gradient of surface

tension. Then, Xu and Luo [24] used the fluorescence particles to see the Marangoni



9

flow inside the water droplets. A stagnation point where the surface flow changes direc-

tions is observed at the droplet surface. So there exists a maximum value of the surface

temperature near the contact line. On another point of view, Ristenpart and coworkers

studied the role of substrate thermal conductivity [25]. They found that the direction of

the Marangoni flow depends on the relative thermal conductivities of the substrate and

liquid and a reversing direction happens at a critical contact angle (31◦) over a certain

range of the ratio between substrate conductivity and liquid conductivity. Since the flow

will redistribute the particles deposition, they suggest the final deposition patterns are

significantly affected by Marangoni flow.

Morphologies of final patterns depends on the process and system parameters

such as the contact angle, particle concentration, evaporation rate, etc. The shape of

the particle can also determine the flow field and the resulting shapes. Kuncicky et al.

[26] systematically studied the morphologies of the deposition by varying the substrate

wettability (contact angle) and the particle volume fraction. After drying, concave shape

is found at low contact angle and low concentration while convex shape is found at high

contact angle and high concentration. Leng [27] found that in a confined 2D geometry the

deposition (glassy or crystalline) mainly depends on competition of the diffusion of the

colloids to the convection induced by the evaporation (local Peclet number). Recently,

Yunker et al.[28] brought onto play the jamming at the interface observed for anisotropic

particles compared to spherical ones. They point out that the ellipsoids particles form

easily jammed network on the interface between water and air, so that it can prevent the

ring pattern formation and leads to a uniform deposition.

Interactions between particle-particle/particle-substrate will also affect the

flow fields and the final patterns. Yan et al. [29] found the charge interactions between

the particles and the substrate can affect the colloidal crystal growth process and leads to

ordered/disordered patterns. Bhardwaj et al. [30, 31] found the final deposition depends

on the pH values of the solution. They proposed a phase diagram of the patterns (ring

patterns, flat deposition, and the transitions) by considering how DLVO interactions

modify the flow in the presence of evaporation and Marangoni effect.
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1.2.2 Drying in dip-coating-like geometry

The sessile droplet geometry presents several drawbacks: 1. solute concentration and

droplet radius continuously change during the drying so that it is a non-steady state and

the results are difficult to analyze 2. For applications, droplets are in mm size, long

range periodic patterns are difficult to achieve. Another geometry of drying, dip-coating,

where a plate is withdrawn from a bath at a given velocity (or similar systems) allows the

study of steady regimes. Besides, the velocity of the substrate is a independent control

parameter that can be defined easily by users. Moreover, it is possible to develop regular

patterns in a large area [32] which may have the potential for coating-process casting.

The film thickness (hd) as a function of the substrate velocity V1 exhibits a “v” shape

plot as shown in figure 1.1 (two slopes: −1 and 2/3). This result has been obtained

by different authors and for several different experimental systems [33, 34, 35] including

drying polymer solutions or colloidal suspensions. Modelings [36, 37] are also developed

to explain this phenomena. The two slopes come from two different mechanisms: for high

withdraw velocities, the slope is 2/3, this is called the dynamic wetting regime or Landau-

Levich regime. For low withdraw velocity (slope ' −1), it is called the evaporative regime

which is mainly dominated by evaporation. We give a brief introduction in the following.

More details corresponding to our experimental configuration are given in chapter 3.

Landau-Levich regime :

When capillary number is high enough, with Ca = V1×µ
γ

, V1 being the substrate velocity, µ

and γ are the solution dynamic viscosity and surface tension, the viscous force overcomes

the surface tension and entrains a continuous film. The mean thickness of the film is

proportional to the withdraw velocity V 2/3 as shown by Landau-Levich-Derjaguin model.

After the study, extended theories and experiments [38, 39, 40] were studied during last

few decades.

Evaporative regime:

When the withdraw velocity decreases, one shifts to the evaporative regime. The film

thickness is found to linearly decrease as the velocity V1 increases [34, 33]. The evaporation

acts as a pump which drives the solute to deposit. The film thickness can be explained
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Figure 1.1: Examples of “v” shape curve - deposition thickness versus substrate moving
velocity in a dip-coating-like system. Left: Le Berre [34] et al. found “v” shape for
evaporative regime and Landau-Levich regime by drying phospholipids. Right: Faustini
[35] et al. found “v” shape by drying sol-gel solutions in a dip-coating system.

by mass balance (detailed explanation will be presented in chapter 3). The film thickness

is not affected by the viscosity but depends on the evaporation rate.

Stick-slip regime:

When the withdraw velocity is much lower, it is found that a stick-slip motion of the mov-

ing contact line appears and then form periodic deposition patterns. Stick-slip means here

that the contact line is pinned or more generally slows down compared to the substrate

velocity an then goes a lot faster before pinning again. One remarkable aspect of stick-

slip phenomenon or periodic patterns formation are their universality, in the sense that it

can be observed for very different systems such as small molecules, colloidal suspensions,

polymer solutions in several geometries [43, 44, 45, 34, 46, 47, 41, 48]. Figure 1.2 give two

typical examples for the periodic patterns that happen in both dip-coating geometry as

well as a sphere-on-flat geometry. Note that even though periodic patterns can be found

universally, however from one system to another, this regime is not observed for the same

experimental conditions such as substrate velocity, evaporation rate, solute concentration,

substrate wettability, etc. Several models tried to explain this phenomena [41, 48, 49],
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Figure 1.2: Examples of periodic patterns by stick-slip phenomena. (a) and (b): Watanabe
et al. [41] found periodic stripes deposit on the glass substrate by drying colloidal particles
in a dip-coating system. (c): Lin et al.[42] found periodic patterns by drying polymer
solutions using capillary bridge in a confined geometry, scale bar = 200µm.



13

but a complete understanding of the driving mechanisms is still missing. While the re-

traction force which acts to unpin the contact line is often easy to characterize (due to

gravity for vertical set-up [48], capillarity for droplets [50, 51]), the physical origin of the

pinning force during drying and the onset conditions of a periodic regime are still opened

questions.

Simulations have also been performed by several groups [52, 53] taking into account

thermal Marangoni effect, vapor diffusion, thermal conduction in the substrate, interac-

tion of particles with the surface. But in most cases a phenomenological criterium for

pinning/unpinning is assumed a priori, like for instance the minimal value of the receding

angle.

Another approaches have been developed for evaporation of very thin films [54, 55,

49]. The authors used a disjoining pressure term taking into account Van der Waals

forces, electrostatic forces or structural effects on one hand, and a concentration dependent

viscosity on the other hand, to simulate dynamic behavior of thin films. Coupled with

film evaporation, these models can predict, for some configurations, periodic movement

of the contact line producing surface patterning.

1.3 Context

This manuscript include experimental as well as simulation results. The experimental

set-up and solution characteristics are introduced in Chapter 2. Experiments of drying

complex fluids (colloidal suspensions/polymer solutions) in a dip-coating-like system at

low capillary number are described in Chapter 3. Note that we mainly focus on the stick-

slip regime. Thanks to the in line recording of the contact line movement, a quantitative

description of the stick-slip motion is obtained for the different systems. Pinning forces,

wavelengths, stick and slip and velocities are compared for different pH, as a function of

the substrate velocity, evaporation rate, bulk concentration and particle sizes. Empirical

laws are deduced from these sets of experiments. A posteriori observations of the dried

deposits show important differences in the morphology of the patterns for the different pH.
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For polymer solutions drying, some preliminary results are obtained. Stick-slip motion

are found only at high temperature, the periodic patterns are different from the the one

of colloids. At last, the results are compared with existing models of the literature.

Chapter 4 is dedicated to the simulation of our experiments. A 2D model has been

developed to describe the flow inside a Hele-Shaw cell with a non-uniform evaporation

which is inspired by our experimental set-up. Deposit is studied as a function of the pro-

cess parameters (substrate velocity V1 , evaporation rate Vev) and the solution properties

(solute volume fraction φp, dynamic viscosity µ, diffusion coefficient D). This model is

a first step to study mass transfer in a meniscus. We assume a small truncated part at

the contact line to eliminate the singularity problem. An iterative procedure is used to

define the truncated boundary condition using mass balance. The concentration and ve-

locity fields are calculated by solving Stokes equation and Fick’s law. Then, a systematic

comparison with a simplified model and experiments are performed.

Finally, we give a conclusion and suggest future works for experiments as well as

simulations.



Chapter 2

Experimental system

In this chapter we introduce the experimental set-up and we describe how we measure

the evaporation velocity. We present the characteristics of the solutions including the

rheology as well as the chemical properties. Finally, we will define the experimental

procedure.

2.1 Experimental set-up

This section includes three parts. First, we present the dip-coating-like system which

is a home-made design. This design allows to control the evaporation velocity and the

contact line speed independently. The second part is the description of the chamber shown

in figure 2.1 used for the regulation of the temperature, humidity in order to control the

evaporation velocity of the dip-coating-like system. In the third part, we will discuss the

observation.

2.1.1 Dip-coating-like system

Figure 2.2 shows the dip-coating-like set-up which is composed of a Hele-Shaw cell

and a reservoir. The cell contains two parallel glass slides separated by 1mm. The small

spacers are located at the top of the glass slides and close to the edges. Then, a channel

(cf figure 2.3) that brings the air flow is carefully screwed on the top. An air flow from the

15
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Figure 2.1: Lab picture of the experimental set-up: it contains the water bath which
controls the temperature, the syringe pump system which controls the movement of the
contact line, the CCD camera to record the images and the 60L chamber which used to
isolate from outside. The dip-coating-like system is placed inside the chamber.



17

top of the channel brings the environmental air (in the chamber) to the interface of the

meniscus. To control the flow rate, a digital power supply is used to control the voltage

of the small fan which is set on the top of the channel. The air flow is set between 0.7m/s

and 1m/s to prevent the deformation of the interface.

A spontaneous capillary rise as shown in figure 2.2 is achieved in between these two

glass slides. The glass planar dimensions are 55 × 80mm. Parallelism of the glass slides

has been verified by measuring the capillary rise height as a function of the contact line

position and typical variations are typically on the order of 1%. The planar dimensions

of the reservoir are 30.6× 85mm. This is sufficient for the free-surface of the reservoir to

reach its infinite position within an accuracy on the order of 1%.

The reservoir is connected to a pumping system (Kd Scientific; Syringe: 60ml Maxi-

mum). Contact line velocity is controlled by the syringe pump using Labview software.

The accessible range of flow rates allows us to explore a contact line velocity range lying

between a few nanometers per second up to 2mm/s.

2.1.2 Evaporation velocity control

Chamber For Regulation

The dip-coating-like set-up is put inside a chamber of volume of 60L, thermally isolated

from the room as shown in figure 2.1. Inside the chamber, temperature and humidity are

regulated by a PID system. A water bath connected to the heat exchangers which are

inside the chamber is set by a feedback loop to regulate the temperature T . It could be

raised up to 80◦C and down to −5◦C. Most of the experiments presented in this study

are performed at 25◦C. For humidity Hu, an air flow pumped through either a dessicator

or a moisture air is controlled by a feedback loop as well. It can vary from 10% to 90%.

In our system, the evaporation velocity Vev depends on the combination of the tem-

perature, the humidity, the top air flow velocity, and the distance between the meniscus

surface and the entrance of air flow. To get an estimation of the evaporation velocity

in different configurations, preliminary experiments are performed with pure water. To
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Figure 2.2: Scheme of the experimental set-up. A capillary rise is achieved in between
two glass slides immersed in a reservoir. A push-syringe (not shown) is used to empty
the reservoir and thus to obtain a displacement of the contact line. An air flow is driven
between the glass slides. Side view shows the CCD position which allows to take the
image of the capillary rise.

Figure 2.3: Air channel above the dip-coating-like system. All made in aluminium. A
fan is hind inside the yellow part. Black are “hooks” for hanging the whole weight on a
support. The pink part is used to fix the Hele-Shaw cell.



19

Figure 2.4: The set-up to measure the evaporation velocities. Silicon glue is used to make
a close system as shown in red lines. A capillary rise is achieved by first filling water
and then pumping out so that there is no connection between the capillary rise and the
reservoir. Blue dash is the water level of the reservoir. Evaporation velocity is calculated
by recording the contact line movement versus time.

get the evaporation velocity in the same conditions than during the drying experiments,

the reservoir is filled with water (same level for every measurement). In order to prevent

the fulfilling from the reservoir, a cut between the meniscus and the reservoir is made by

silicone glue shown in figure 2.4. Then, we record the receding movement of the contact

line to get evaporation velocity, Vev, in the unit of µm/s.

The highest Vev can reach 3.4µm/s corresponding to T = 70◦C and Hu = 10%, and

the lowest Vev is 0.018µm/s corresponding to T = 2◦C and Hu = 80% as shown in figure

2.5. The leaking due to glue defects can be ignored since at low temperature and high

humidity, the evaporation velocity is as low as 10 magnitudes smaller than the case at

room temperature, which means that there is no significant leaking in our Hele-Shaw

set-up. All the experimental protocol mentioned above is used for the preliminary pure

water experiments.
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Figure 2.5: Evaporation velocities deduced from recording the movement of the contact
line. The straight lines are under different conditions. The highest evaporation velocity
shows here is 3.4µm/s. The lowest evaporation velocity is 0.018µm/s.
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Figure 2.6: Definition of the position z to measure the evaporation velocity. When z=0mm
it is closer to the air flow so that the evaporation velocity is higher while lower evaporation
velocity is obtained at z=45mm.

Distance effect

The evaporation velocity depends on the distance between the small fan and the free

surface of the meniscus. In order to have a more accurate estimation of the evaporation

velocity Vev, it is measured for several distances (see figure 2.6 for the definition of “z”).

The result is shown in figure 2.7 with conditions: T = 25◦C, Hu = 30%, Vair = 1m/s.

The highest evaporation velocity Vev = 0.6µm/s is at position z = 0, while the lowest

evaporation velocity Vev = 0.3µm/s is twice smaller at the position z = 45mm.

Beside room temperature, high evaporation velocity is also tested: T = 60◦C, Hu =

10%, Vair = 0.8m/s. The result is shown in figure 2.8. As can be seen there is also a

factor of 2 for the highest and lowest evaporation velocities corresponding to the positions

(z=5mm-10mm).

In conclusion, there are two evaporation velocities tested in the unit of µm/s for Vev
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and mm for z:

• Room temperature: Vev(z) = 0.6− 0.007z.

• High temperature: Vev(z) = 3.03− 0.041z.

Reproducibility

In order to test the control of the evaporation velocity, we repeat the same experiment

under the same conditions (a fixed distance between the small fan and the free surface of

the meniscus, the temperature, the humidity, and the water level). Three cases here are

considered:

• T = 70◦C Hu = 10% Vair = 1m/s

• T = 25◦C Hu = 30% Vair = 1m/s

• T = 2◦C Hu = 80% Vair = 0.7m/s

As can be seen in the picture 2.9 for high, middle, and low evaporation velocity, results

are similar, which confirms the reproducibility. Note that all the evaporation velocities

are tested for ∆z < 8mm, therefore, the distance effect presented in the previous section

does not appear.

2.1.3 Observation

A CCD camera (Marlin F201B Allied Vision Technologies) with a lens (AF Micro

Nikkor 60 mm f/2.8D) is used for taking the images of the contact line position as shown

in picture 2.1. The images are analyzed by IgorPro software. A subpixel analysis is

performed, and leads to a precision on the order of 2µm for the position of the contact

line.

A posteriori observation of the dried deposits are performed by optical microscope

(morphologies3000), profilometry (3D optical profilometer FOGAL nanotech and NT9100
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Figure 2.7: Evaporation velocity as a function of the contact line position under condi-
tions: T = 25◦C, Hu = 30%, Vair = 1m/s. At room temperature, Vev is between 0.3µm/s
to 0.6µm/s.

Figure 2.8: Evaporation velocity plot under the condition: T = 60◦C, Hu = 10%, Vair =
0.8m/s. At high temperature, Vev is between 1.2µm/s to 2.6µm/s.
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Figure 2.9: Evaporation velocity plot for reproducibility test.

WYKO in Lab PPMD, ESPCI) and AFM microscopy (Veeco dimension 3100 in Lab LPS,

UPS).

2.2 Solution Characteristics

In this section, we present the solution characteristics for the silica suspensions and

the polymer solution.

2.2.1 Basic information

1. Silica suspension

Commercial suspensions of silica colloidal have been used (50R50, 30R25, 30R12 Klebosol

AZElectronic Materials). According to our measurement (density meter and AFM), batch

50R50 is 50% in weight concentration and the particle’s mean diameter Dp is 83± 7nm.

Batch 30R25 is 30% in weight concentration with mean diameter of Dp = 32 ± 4nm.

Batch 30R12 is 31% in weight concentration with mean diameter of Dp = 27 ± 4nm. A

complementary measurement using light scattering equipment for the particle size has
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Figure 2.10: Summary of the silica particle information. The particle size is measured by
AFM in Vecco company. The concentration is measured by density meter. LS stands for
light scattering equipment (Brookhaven Zeta PALS).

been performed by Carmen Lucia Moraila Martinez using Brookhaven Zeta PALS (Phase

Analysis Light Scattering) in Biocolloid and Fluid Physics group in Granada University,

Spain. These data are summarized in table 2.10. As can be seen two methods give close

results. AFM images are shown in figure 2.11. The silica particle density is 2.208 g/cm3

measured by density meter (Anton Paar DMA5000).

2.Polymer solutions

We choose polyacrylamide (PAAm) polymer to perform the experiments because it is

soluble in water. Two PAAm solutions are used: the low-molar-mass PAAm in water

(Sigma-Aldrich 43,494-9) with weight concentration wt = 50% and molar mass Mw =

10000g/mol. The high-molar-mass PAAm powder (Lot572434, Polysciences Inc.) with

molar mass Mw = 5000000− 6000000.

3.pH buffer

DI water is used to prepare the desired pH buffer. pH2 buffer was prepared by diluting

Nitric Acid (sigma-aldrich 438073); while Acetic Acid (sigma-aldrich 320099) is used for

pH4. The original silica suspension is about pH9. All measurement are done by a pre-

calibrated pH meter (HANNA pH209). Note that low values of pH were not accurately

estimated, due to some limited detection of our pH meter electrode. Then, we use the

notation pH ' 2 for values between 1 and 2.
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Figure 2.11: AFM images of silica particles.

2.2.2 Ionic Properties

As we use industrial solutions, we have no detailed data of the solution composi-

tion, such as the salts composition or concentration (important to stabilize the colloidal

suspensions). Therefore, we have not performed a detailed characterization of the elec-

trochemical properties of the suspension. In this section, we just present partial results

of conductivity and electrophoretic mobility. A more complete characterization from a

macroscopic point of view will be made in the next section, where viscosity as a function

of concentration is studied.

1. Electrical conductivity

Electrical conductivity of the solution depends on the ionic composition inside the solu-

tion. The value can be used to deduce the Debye length by comparing it with the con-

ductivity of a blank solution (e.g. NaCl) at different concentrations. Hence, we assume

that the ionic strength of our suspension is due to an equivalent salt at a given concentra-

tion. All data are measured by a pre-cleaned conductivity meter (Microprocessor-pocket-

conductivity meter LF69-A/SET) under room temperature (25◦C).

In our measurement, we found that the sodium chloride (NaCl), 1 µS/cm is equivalent

to 0.603 mg of NaCl per kg of DI water, which is obtained by linear fitting several

measurements as shown in figure 2.12.
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Figure 2.12: Conductivity measurement of NaCl with linear fitting.

2. Debye-Length κ−1

The conductivity of the solution is converted to salt concentration in the unit of molar

per liter. To determine the Debye-length of our solutions, we use the equation in SI units

(cf appendix A):

κ−1 = 3.055× 10−10M−0.5 (2.1)

where M is the salt molar concentration in mole/liter (NaCl with molar mass=58.44

g/mole was used in our experiment). The results are summarized in the table 2.13. As

can be seen the Debye-Length for all the solutions at the initial concentration used in the

experiments are in the scale of 1nm.

3. Electrophoretic mobility

To measure the electrophoretic mobility, silica particles are diluted by different pH buffers.

Measurements using Brookhaven Zeta PALS (Phase Analysis Light Scattering) were per-

formed in Biocolloid and Fluid Physics group in Granada University. Figure 2.14 shows
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Figure 2.13: Debye Length deduction from conductivity measurements.

the pH effect for both size particles (φ = 0.01%): the higher pH value the lower electrical

mobility.

2.2.3 Viscosity measurement

Changes in electrostatic properties and the particle size is also reflected in macroscopic

properties such as the viscosity [56]. We have then performed a systematic study on the

viscosity of the suspensions as a function of pH and solute concentration. We regularly

measured the suspensions for several volume fraction at room temperature. The steps

are:

• Prepare 8% volume fraction colloidal suspension in a open beaker and drying it at

room temperature by stirring for 8 hrs.

• Stop stirring and cover the baker by parafilm for 1 to 2 hours to test the solution

stability.

• Use syringe to take out 5ml of the solution. 1ml is used for viscosity measurement

(Contraves low shear30); 4ml is used for density measurement (Density meter Anton

Paar DMA5000).
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Figure 2.14: Electrophoresis mobility of the colloidal suspension versus the pH value for
two different size of particles. Volume concentration is 0.01%.



30

• repeat step 2 until the solution becomes unstable (phase separation or non-constant

viscosity)

The results are plotted in the figure 2.15, each point is averaged by more than 25

measurements. The concentration is convert from density with ρ0
w = 0.998g/m3 for DI

water at 25◦C and ρ0
c = 2.208g/m3 for silica particle. The viscosity variation have been

fitted by the Krieger-Dougherty law (cf [57]) which predicts a power dependance with the

following expression:

µ = µ0 × (1− φ

φc
)c (2.2)

where µ is the dynamic viscosity of the solution, µ0 is the dynamic viscosity of the

pure solvent (0.912mPa ·s for DI water in our case), φ is the volume fraction of the solute

and viscosity diverges at φc. Constant c depends on the characteristics of the solution

[58, 59]. It was estimated by data fitting using Matlab (cftool). Fitting our data give an

exponent c between −1 and −2, and a critical concentration φc between 0.37 to 0.42.

A summary is shown in table 2.16. The third column is the volume fraction when the

suspension starts to become unstable (we found phase separation). These concentrations

are consistent to the corresponding φc. We also report data for PAAm solution which is

from our previous study [60]. Note that the viscosity diverges for higher concentration

not shown in the figure.

2.3 Experimental procedure

2.3.1 Solution preparation

Colloidal suspensions are stirred for one hour at room temperature before the

experiment starts.Polymer solutions are stirred for one night at room temperature and

filtered by a filter with pore size 200nm (hydrophilic,Lot16532GUK, Sartorius Stedim) just

before the experiment. For different pH values (pH2 or pH4), we use pre-prepared pH

buffers to dilute the original suspension solution by using micro balance. For pH9 colloidal
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Figure 2.15: Dynamic viscosity of the colloidal suspension and PAAm solution as a func-
tion of concentration. Fitting line is done by Matlab.

Figure 2.16: Summary of the viscosity fitting.
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suspensions, we just dilute it by DI water. Density of the solution will be measured by a

density meter (Anto Paar DMA5000) before and after the experiments.

2.3.2 Glass plates cleaning

Glass plates are cleaned by “Piranha” solution (hot mixture of concentrated sulfuric

(98%) acid and hydrogen peroxyd (50% water solution), in 70/30 proportions) for at least

20min. They are rinsed by pure water for 2min. Nitrogen flow is used to dry them. At the

beginning of the experiment, the receding contact angle is 10◦ to 15◦ due to contamination

by the environment. In order to ensure that the contact angle remains at similar values for

all the experiments, the cleaned glass slides are always used 15 minutes after the cleaning

procedure.

2.3.3 Experiments

At the same time when cleaning the glass plates, we set the desired temperature and

humidity in the chamber by using the feedback loop controlled by Labview program.

The glass substrates are fixed immediately in the dip-coating-like system by carefully

screwing just after cleaning. The whole cell is then put inside the chamber. Just before

the experiment starts, a small but fast filling out of the reservoir is imposed by manually

withdraw the syringes, so that the contact line reaches its receding contact angle. Then,

we wait for 10-15 minutes for the system to reach the setting state (Temperature and

humidity is controlled by PID system). The movement of the capillary rise is governed

through the pumping rate achieved using a pushing syringe. The position of the meniscus

that is on the top of the capillary rise is monitored during the experiment by CCD camera

outside the chamber.



Chapter 3

Experimental Results and Discussion

We first recall the main results obtained by Bodiguel et al [46, 48] and Jing et al [33]

on a similar set-up. Second, dynamics of the moving contact line as well as pinning

force variation is defined and discussed. Third, deposition morphologies such as

deposition slopes and shapes are discussed. We provide a detailed study of colloidal

suspensions, and first potential results for polymer solutions. Finally we will discuss the

existing models for the stick-slip regime.

3.1 Previous results

This study follows previous experiments performed on a similar set-up, using a cap-

illary rise between two vertical plates [46, 48, 33]. The changes between the set-up used

during this work and the previous one concern mainly the temperature and humidity

regulations, whose accuracy and variation ranges have been significantly improved.

First, we have performed some experiments in the same conditions than the old set-up

to check the reproducibility of the results. These tests were conclusive, so that empirical

laws and scalings deduced from previous studies will be used to analyze new data. Before

presenting experimental results, an important point should be highlighted: for these kind

of drying experiments, some dispersion in the results are always observed. Comparison

or scaling determination must then rely on numerous experiments to get a meaningful

overview of the system behavior.

33
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Figure 3.1: “V” shape plot to show the two regimes LLD and Evaporative regime. For
PAAm/water solutions, LM: low molar mass; HM: high molar mass. Red line is eq.3.1
The green line is deduced from the LLD theory where the slope = 2/3.

As mentioned in the introduction, several regimes have been identified depending on

the capillary number. This leads to a “v” shape plot when the deposit thickness hd is

plotted as a function of the substrate velocity V1. In the following, a brief review of

the previous results is introduced. Experimental results obtained in our set-up with the

PAAm solution are presented in figure 3.1. The deposit thickness hd is obtained by optical

profilometry measurement performed on the dried deposit, after having made a scratch

with a steel needle to strip the substrate. The mean thickness of the deposit is given by

step height measurements, repeated several times at different places and averaged.
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3.1.1 Evaporative regime and Landau-Levich regime

Evaporative regime

The evaporative regime is the left part of the “v” shape, at low receding velocities. In this

regime, experimental results performed previously on a large range of evaporation rates

and initial concentrations [33] have shown that data gather on a master curve (red line),

given by:

hd × V1

φp0Vev
= L, with L ' 330µm (3.1)

This empirical law can also be deduced from a simple model based on mass balances

in the meniscus. It will be described in detail in chapter 4 dedicated to simulation. The

main idea of this simple model is that evaporation at the free surface of the meniscus is

the driving mechanism. It acts as “a pump” that brings solute to the meniscus edge. As

can be seen in figure 3.1, new data obtained with the PAAm solution are in agreement

with equation 3.1, which confirms the similarity of the old and new set-up.

Landau-Levich regime

The Landau-Levich regime corresponds to the right part of the “v” shape. This is also

called dynamic wetting regime. There viscous forces are large enough to drag a film from

the bath. The thickness of the dragged film can be estimated by adapting the Landau

law to our confined geometry:

h = 0.67 d Ca2/3, (3.2)

where d is the distance between the two glass plates.

One can assume that the final deposit corresponds to the drying of the dragged film

(hd = Φ0h) and then the thickness of the deposit is expected to increase with the velocity

at power 2/3, as confirmed by various experimental results in the literature (cf [61, 34]),

and by figure 3.1.

Note that the thickness in this regime depends on the Capillary number, and then on

the viscosity which changes as a function of the initial concentration and temperature.
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The velocity V1 corresponding to the intersection of the two lines is given by V
5/3

1 '
0.5Vev(γ/η)2/3. The transition is shifted to the left when the viscosity increases and the

evaporation flux decreases, which explains that the transition for experiments performed

at high concentration and low temperature (Φp0 = 0.07 and T = 2◦C) occurs at about

40µm/s, while the transition velocity is about ten times larger for Φp = 0.034 and T =

25◦C.

3.1.2 Stick-slip regime

When the contact line velocity is very small, the coating may be no longer continuous

but may form periodic stripes. The movement of the contact line becomes pinning-

unpinning cycles. We focus now on this regime which is described in details in the end of

chapter 3.

3.2 Dynamics of the contact line

In this section we first present the tools we have developed to analyze the contact

line movement during the stick-slip regime. Results about pH effect and size effect

on the pinning force and wavelengths are presented for the colloidal suspensions. Then,

preliminary results are given for the polymer solution.

3.2.1 Definitions

The contact line movement is recorded by CCD camera from a side view of the menis-

cus (cf figure 2.2). By image processing, the contact line displacement versus time can be

plotted. Figure 3.2 (a) shows a typical example of a periodic motion. Stick-slip motion

is defined as following: stick means that the contact line slows down compared to the

mean velocity (red lines) and slip means that it accelerates (purple lines). For the two

stages (stick and slip), we can deduce the length dhi, duration τi and velocity Vi from

the observation of the contact line displacement. Definitions are straightforward from the
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Figure 3.2: Typical examples of the contact line movement versus time. The experimental
parameters are: V1 = 5µm/s, Vev = 0.4µm/s, φp0 = 8%. Only pH values are different. S2
stands for pH ' 2 and S9 stands for pH ' 9. t1, t2, t3 are arbitrary times corresponding
to h1,h2,and h3 positions.

diagram drawn in figure 3.2 (b).

dhtotal = h3 − h1, dhstick = h2 − h1, dhslip = h3 − h2

τstick = t2 − t1, τslip = t3 − t2, Vstick =
h2 − h1

t2 − t1
, Vslip =

h3 − h2

t3 − t2
(3.3)

3.2.2 Variation of the pinning force

For experiments performed with pure water and with a constant pumping rate, the

contact line displacement is a straight line: hW (t) = V1t, with hW (t) the distance from

the initial capillary rise before pumping and V1 the velocity imposed by the pumping

rate. Deviations from the linear variation observed during the stick-slip correspond to a

modification of the contact angle, due to an interaction between the contact line and the

deposit that is formed on the glass substrate. The corresponding pinning force can be

estimated from the weight of the water corresponding to this deviation, that is for one

side of the substrate and neglecting the change in meniscus shape (cf figure 3.3):
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Figure 3.3: Sketch for pinning force Fp. ρ is solution density, d is the gap width (1mm),
g is gravity.

Fp =
1

2
ρgd(hW (t)− h(t)) (3.4)

It is implicitly supposed here and in the following that the pinning force which is in

principle a local quantity is constant along the contact line. Thus the problem could be in

a first approximation considered as two-dimensional. This assumption is consistent with

experimental observations that always show patterns parallel to the contact line.

During an experiment performed with a colloidal suspension, we have no access to the

equilibrium pure water capillary rise hW (t). However, we may estimate the variation of

the pinning force from the end of the stick stage (t = t2, just before unpinning, where

the pinning force is maximum) and the end of the slip stage (t = t3, just before pinning

again):

δFp =
1

2
ρgd[h(t3)− h(t2)− V1.(t3 − t2)] =

1

2
ρgd[dhslip − V1τslip] (3.5)

Numerical estimation of δFp is made by assuming that the velocity V1 corresponding

to the pure water experiment is close to the mean velocity obtained with the colloidal
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Figure 3.4: Example of the displacement of the contact line versus time. There are 4
imposed velocities under the experimental conditions: T = 25◦C, Hu = 30%, colloidal
suspension volume fraction is 8%. The inset is a zoom on a small portion of the displace-
ment when V1 = 5.3µm/s, showing the periodic deviations (in red) of the contact line
from the mean velocity (in green).

suspension and deduced from the average motion of the contact line (cf figure 3.3).

3.2.3 Data analysis

A systematic method has been developed to analyze the dynamic of the contact line.

One example (displacement versus the time of the contact line movement) is illustrated

in figure 3.4. For this set of experiments (1.5 hours), 4 different velocities are imposed

by the pumping system. The velocities (13.5, 10.4, 5.3, 7.4µm/s) are obtained by linear

fit of the displacement versus time. It is called mean velocity V1, as shown in the

inset in figure 3.4 in green. In order to quantify the periodic behavior, a substraction

h′(t) = h(t) − V1 × t is performed as shown in figure 3.5. The sawtooth-shaped curve
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Figure 3.5: Example of pinning force variation measurement. (a) relative displacement
(deduced from a substraction from original displacement versus time as shown in figure
3.4. (b) To get the periodic behavior we use FFT to get the main frequency f (1 period
frame =1/f×tuner). This is then used to locate the peaks as shown in black dots in (c).
Experimental conditions: T = 25◦C, Hu = 30%, colloidal suspension volume fraction
is 8%, V1 = 5.3µm/s, S2 solution. (Note that since V1 is a mean value, the ordinate is
known ± a constant. In the following, only difference of peaks are used.)
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Figure 3.6: Sketch to show the relative displacement h′(t) = h(t)− V1 × t.

shows clear periodic behavior of the stick-slip motion. Using Fast Fourier Transform

(FFT), the main frequency f is estimated and then used to find the corresponding peaks

without taking into account secondary extrema. The procedure is the following:

• Start for instance from a maximum h′(t) which is found in the first period interval

[0, tp] with tp = 1/f . Suppose the maximum value is h′max1 at t = tmax1.

• Then, the minimum h′min1 is located in the interval [tmax1, tmax1 + tp].

• Then, second maximum h′max2 is found in the interval [tmin1, tmin1 + tp].
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• Then, the same procedure is repeated using the period tp, and all the peaks are

located.

Sometimes, the main peak found in FFT corresponds to 2 oscillations instead of 1. In

that case, a correction factor of 0.5 is manually applied to the period (tuner=0.5 shown

in figure 3.5 (c)).

Peaks give the information of the periodic behavior, including dh, τ and Vstick/slip

defined in equations 3.3, explained in the following: (cf figure 3.6).

h′(t2) = h(t2)− V1 × t2 , (3.6a)

h′(t1) = h(t1)− V1 × t1 , (3.6b)

dhstick = h(t2)− h(t1) , (3.6c)

= h′(t2)− h′(t1)− V1 × (t2 − t1) ,

= V ′stick × (t2 − t1)− V1 × (t2 − t1) ,

= (V ′stick − V1)× (t2 − t1) ,

= Vstick × τstick

Since h′(t) = h(t)−V1× t, we get the first two equations. V1 is known by linear fitting,

V ′stick and τstick are obtained from the peak information. Note that the absolute value of

h′(t) (figure 3.5) is not important, the important information is the difference between

the absolute values. The same deduction can be used for slip part.

When the velocity increases ( V1 > 12µm/s), we no more observe periodic patterns but

a flat film with small undulations. A typical example for V1 = 16.8µm/s where stick-slip

motion starts to disappear is shown in figure 3.7 and 3.8. This kind of data is not taken

into account for our analysis of the stick-slip motion, since the wavy motion is too small

compared to our image processing resolution (around 10µm). The peaks obtained by the

procedure described above have no meaning.
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Figure 3.7: Example of pinning force variation measurement at high velocity V1 =
16.8µm/s. (a) Relative displacement. (b) FFT gives the main frequency. (c) Illustration
of configuration where peaks determination failed. Experimental conditions: T = 25◦C,
Hu = 30%, colloidal suspension volume fraction is 8%, V1 = 16.8µm/s, S9 solution.

Figure 3.8: 3D image from profilometer corresponding to the experiment shown above.
The amplitude of the non-uniform undulation is around 0.4µm while the film thickness is
about 2µm. An artificial gap cut by a needle is performed to measure the film thickness.



44

Figure 3.9: Stick (left) and slip (right) lengths for S9, S4 and S2 suspensions.

In conclusion, once stick-slip motion clearly appears, stick-slip can be easily analyzed.

The values (dh, τ and Vstick/slip) can be obtained by the relative values of the peaks h′(ti).

To deduce the pinning force, equation 3.5 is used. The final value(s) are averaged over

more than 10 periods which are shown in the following results as an error bar (standard

deviation). All data processing are made with IgorPro.

3.2.4 Results for colloidal suspension

The results for colloidal suspensions include two parts, first we analyze the pH effect

on the dynamic of the contact line and the pinning force variation δFp. Second, we tested

two sizes of silica particles, we will compare the results for the pinning force variation and

the total wavelength.

pH effect

We first focus on the effect of variation of the ionic properties of the solution on the

pinning forces and wavelength, for the 83nm particles. Figure 3.9, 3.10, and 3.11 give

the results obtained for all the experiments performed with S2(pH ' 2), S4(pH ' 4),
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Figure 3.10: Stick (left) and slip (right) period for S9, S4 and S2 suspensions.

Figure 3.11: Stick (left) and slip (right) velocity for S9, S4 and S2 suspensions.
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S9(pH ' 9) colloidal suspensions. The conditions are:

• Initial volume fraction φp0 = 8%.

• Evaporation velocity: 0.3µm/s < Vev < 0.6µm/s.

• Imposed velocity: 1µm/s < V1 < 20µm/s.

Pinning Force Variation

It is worthwhile to compare the results obtained here with previous experiments performed

at pH ' 9, and covering a large range of initial volume fraction and evaporation rate.

Empirical scaling was obtained for the pinning force, that reads [46, 48] :

δFp
γ

= 1.4
φp0Vev
V1

(3.7)

where γ is the water surface tension. As can be seen in figure 3.12, no significant difference

is observed for δFp among the three suspensions S2, S4, and S9. Except for the dispersion

of the results, all the data gather on the same master curve given by eq. (3.7). Indeed, as

stated in section 3.5, δFp is given by dhslip − V τslip. dhslip and τslip are both smaller for

low pH (cf figure 3.9 and 3.10 right) and it appears that these two quantities compensate

each other.

Wavelength

We have tested the same scaling for the wavelength. As shown in figure 3.13, the same

scaling holds for the wavelengths dhtotal ' C × φvevap
V1

with C ' 74mm. Experiments

performed at pH ' 9 (S9 solutions) compare well with wavelengths deduced from pre-

vious experiments [48] with the same pH. No significant difference is observed with S4

suspensions while the drying of S2 leads to roughly two times smaller wavelengths: using

the same scaling for S2 points, we get C ' 44mm . A microscope view that illustrates the

difference in wavelength is shown in 3.15. By observing the contact line movement with

more detail (cf figure 3.14), it can be seen that both the stick and slip lengths contribute

to the decreasing of the wavelength. Let us note that, for a given experiment, the wave-

length distribution (corresponding to error bar) is much narrower than in Shmuylovich
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Figure 3.12: Variation of the pinning force for the three suspensions S9, S4 and S2.
γ = 72mN/m is the water surface tension at 25oC. The solid line is the empirical scaling
law suggested by Bodiguel et al. [46, 48].
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Figure 3.13: Wavelength for S9, S4 and S2 suspensions and hollow triangle is the data
from Bodiguel et al [46, 48]. The solid straight line is a fitting of S9, S4, and Bodiguel’
data (prefactor 74mm). The dash line is a fitting of S2 data.

et al. experiments performed on sessile droplets [62]. These authors related the large

distribution they observed to the stochastic contact line movement which pinned again

when it encounters a particle that has previously adhered to the substrate. Obviously

the geometry used here (dip-coating instead of droplets) and/or carefully cleaned sub-

strates significantly decrease the stochastic aspect of the stick-slip. Lin et al [42] observed

that the use of an exceptionally clean and homogeneous substrate (cleaved mica sheets)

enhanced uniformity of the patterns.
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Figure 3.14: Stick (left) and slip (right) lengths for S9, S4 and S2 suspensions.

Figure 3.15: Microscope views: wavelength comparison for S9 and S2 solutions. Condition
parameters: V = 9µm/s, vev = 0.4µm/s, φp0 = 8%.
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Figure 3.16: Variation of the pinning force at high pH, for two particles sizes. γ =
72mN/m is the water surface tension at 25oC. The solid line is the empirical scaling law
reported by Bodiguel and co-author [46, 48].

Size effect

In a second set of experiments, two particle sizes are tested for the pinning force

measurement: Dp = 83nm for S9 and Dp = 27nm for pH10. For smaller particles, the

deposition is more brittle and then detaches from the substrate. Several parameters were

tried to get well-patterned depositions: volume fraction is varied from 1.2% to 6% and

speed is varied from 1µm/s to 7µm/s. The results are shown in figure 3.16 and 3.17 for

pinning force and wavelengths respectively. As can be seen, there is no significant size

effect on the wavelengths or pinning force variation. Other results such as dhstick,dhslip,

the ratio of two velocities are shown in appendix B.

As a conclusion of these experiments, it appears that δFp, the variation of pinning

force between the unpinning and the beginning of the successive new pinning, is quite

independent on the two parameters studied here, particle sizes and solution pH. On the
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Figure 3.17: Wavelength for 83nm and 27nm particle suspensions. Solid line: power law
with exponent 1 and prefector = 74mm.

Figure 3.18: Microscopic View for big particle and small particle comparison. Experimen-
tal conditions bigger particle: V1 = 9µm/s, Vev = 0.35µm/s, φp0 = 8%, smaller particle:
V1 = 7.8µm/s, Vev = 0.33µm/s, φp0 = 6%.
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Figure 3.19: Table to summarize the experimental conditions and results using
PAAm/water solutions. “Y” indicates that the stick-slip phenomena can be observed.
“N” indicates that the stick-slip phenomena is not observed. “Y*” means the repro-
ducibility has to be confirmed.

contrary, wavelengths depend on solution pH values.

3.2.5 Results for polymer solutions

We present in this subsection the first results obtained with a polymer solution (PAAm

in water. Two molar mass are used: Mw = 10000g/mol (LM) and Mw = 5000000 −
6000000 (HM). We did not observe stick-slip at room temperature except for very low

velocities and low concentrations. But results are difficult to analyze. Then our objective

is first to determine the experimental conditions where stick-slip can be found and ana-

lyzed.

Several concentrations (0.5% to 5% mass fraction) at different evaporation velocities are

tested. The results are shown in table 3.19. The receding velocity V1 are tested from

1µm/s to 10µm/s. Low evaporation rate corresponds to T = 25◦C, Hu = 30% so that

Vev is between 0.3µm/s to 0.6µm/s. The high evaporation rate corresponds to T = 60◦C,

Hu = 10% so that Vev is between 1.3µm/s to 2.6µm/s. N stands for NO stick-slip motion.

We now determine the pinning force and the wavelength for the stick-slip configurations.

As described in equation (3.7) the power law for colloidal suspensions has a pre-factor
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Figure 3.20: Pinning force variation for polymer solutions. Black solid line: fitting from
colloidal suspensions’ results.

Figure 3.21: Wavelength for polymer solutions. Solid line has a prefector 74mm deduced
from colloidal suspensions’ results.
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1.4. In figure 3.20 we plot the variation of the pinning force for polymer solutions. Though

we have only a few results, it seems that the prefactor is about 3 times lower compare to

the colloidal suspensions. We also plot the wavelength dhtotal shown in figure 3.21. The

solid line is the previous fitting of colloidal suspensions (cf figure 3.13). As can be seen,

there is a significant decrease of dhtotal for polymer solutions. However, more experiments

should be made to confirm these first results.

Summary

To conclude this section, we quantified the dynamics of the contact line movement such

as the total wavelength dhtotal. We also defined the pinning force variation, and related

it to the pH effect and size effect for colloidal suspensions. We found lower pH value

suspensions will have lower wavelength and it may due to the lower viscosity. However,

there is no strong pH effect or size effect for the pinning force variation.

On the other hand, stick-slip motion of polymer solutions is observed at high evap-

oration velocities (60◦C). The variation of pinning force and the wavelength dhtotal are

found lower than the values of colloidal suspensions. This is only first results, which need

more investigation in the future.

3.3 Morphologies of depositions

Apart from these quantities deduced from the measurement of the contact line dis-

placement, direct observations of the dried deposit have been performed with microscope,

AFM or optical profilometer for a few samples, to get the wavelength, shape and height

of the deposits.

3.3.1 Results for colloidal suspensions

In this part, all the results are obtained with silica particles (Dp = 83nm) at different

pH values. Note that deposits obtained from smaller particles (Dp = 27nm) could not be

analyzed due to crack and delamination problems. Two parameters of the morphology
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are going to be discussed: first, the slope of the deposit in the side where unpinning takes

place. Second, the amplitude which is defined as the distance between the highest and

the lowest point of the height profile.

1. Downward slope α

The downward slope α corresponds to slip side (the contact line movement is toward left)

as shown in figure 3.22. As can be seen, the profile is much sharper for S2 solution. We

measured the angle for S9 by profilometer and the sharp angle for S2 using AFM as shown

in figure 3.23. The slopes for S2 are one order of magnitude higher than the ones for S9

as shown in figure 3.24, this is because the slip process goes faster as mentioned in the

last section. In order to relate it to the contact line movement, we plot also the ratio

of the slip velocity and stick velocity. This ratio is larger for S2 suspensions than S9/S4

suspensions as shown in figure 3.25.

2. Amplitude

The amplitude is defined as the difference between the maximal and minimum heights of

the deposit. A 3D picture of two pH depositions are compared in figure 3.26(V1 = 12µm/s,

Vev = 0.39µm/s φp0 = 8%). We observe that longer wavelengths and more symmetric

deposit for S9 suspensions. We manually measure the amplitude for 3 pH values at

different velocities as shown in figure 3.27. We found that there is no significant pH effect

on the amplitude of the depositions.

In conclusion of these part, an illustration of the strong influence of the ionic properties

of the suspension on the deposit morphology is given by observing the wavelength and

the slope of the deposition. For S2, the deposit is asymmetric and the transition is much

sharper at one side, but the amplitude of the three solutions (S2, S4 and S9) are similar.

3.3.2 Results for polymer solutions

We performed the same analysis for a few points where stick-slip was observed with

PAAm solutions. In figure 3.28 we show an example to illustrate the amplitude of the
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Figure 3.22: Example of slopes obtained after drying of S9 and S2.

Figure 3.23: AFM images for S9 and S2. Experimental conditions: V1 = 12µm/s, φp0 =
8%, Vev = 0.4µm/s. The contact line moves toward left of the picture.
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Figure 3.24: Downward slope comparison for 2 pH values.

Figure 3.25: ratio of slip velocity versus stick velocity
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Figure 3.26: 3D images obtained from profilometer measurement of the colloidal deposi-
tions under different pH values. The lower images are the cross section contour line of
the morphologies.

Figure 3.27: Amplitude as a function of all the parameters
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Figure 3.28: Morphology for PAAm solution drying at high temperature. Experimental
conditions: V1 ' 2µm/s, φp0 = 5%, PAAm with molar mass = 10000 g/mole. Tem-
perature is at 60◦C. The slope of the stripe pattern is too steep to be obtained from
profilemeter.

stripe patterns. The experimental conditions are :V1 ' 2µm/s, φp0 = 5%, PAAm with

molar mass = 10000 g/mole with evaporation velocity Vev = 2.7µm/s. As can be seen

the amplitude (dz) is 13µm. Note that the red arrow refers to the receding contact line

direction. The profiles below the 3D images are cross sections corresponding to the dash

lines. Note that the profile of the stripe patterns is not complete. The slope of the bump

is too large to be obtained from profilometer. However, the amplitude which is defined as

the distance between the highest and lowest point can still be obtained as shown in the

figure 3.28.

Results are summarized in table 3.29. As can be seen, the amplitude increases with
φp0Vev
V1

as for colloidal suspensions. We have not enough points to go further in the analysis.

It will be interesting to complete the results on the one hand, and to perform experiments

with colloids at high evaporation rate on the other hand.

3.4 Discussion

As stated in the introduction, some models rely on the modification of the equilibrium

contact angle to explain some characteristics of the observed stick-slip. We are going to

test these models using our experimental results.
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Figure 3.29: Table to summarize the morphology of the stripe patterns formed by PAAm
solution.

3.4.1 Topological origin of the pinning

It is well known that a contact line can be pinned by a topological change of a surface

[63], so we can try to relate the value of the pinning force to the geometry of the deposit.

Indeed, when the contact line stands on the negative slope of the deposit (the positive

direction being given by the displacement of the contact line, see figure 3.30), the effective

contact angle θ is modified in such a way that it produces a pinning. Assuming the same

equilibrium contact angle θ0 on the substrate (glass) and the deposit (silica), the pinning

force reads

Fp = γ ∆cosθ ' γ α sinθ0. (3.8)

In a previous work [46], the pinning force Fp and the deposit slope α were measured by

the same technics than in the present article, on the same suspension than S9 samples

(pH close to 9, same particle diameter). The values of Fp predicted by equation 3.8 were

found to be in very good agreement with the direct measurements. The conclusion is

very different if we take into account the new results at low pH. Indeed, we see in figure

3.12 that the pH doesn’t induce any significant effect on the pinning force, while figure

3.24 shows that the slope α is changed by at least one order of magnitude. This clearly

demonstrates that the above model is not pertinent. One point that may be erroneous in

this approach is the assumption of a clear transition between the deposit, considered as
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a solid, and the solution with a well defined contact line as sketched in figure 3.30. This

view appears too simple to model the forming deposit.

3.4.2 Free meniscus at the top of the deposit

Another static model has been proposed by Watanabe et al [41] and Lee et al [47].

These authors consider a liquid meniscus on a solid multilayer deposit of height hd. The

contact angle at the top of the deposit is assumed flexible, due to particle sphericity.

When the liquid level decreases, the meniscus stretches itself out, keeping its static shape

(i.e. given by the Laplace law), and get closer from the substrate (see figure 3.30). When

the distance hc between the meniscus and the substrate is too small, the meniscus breaks

up and the contact line jumps to another location, depending on the particles diameter

Dp. Adapting this approach to our geometry is very easy. Indeed, in our case, the gap

d = 1mm between the plates is much smaller than water capillary length, so the meniscus

is a circle, of diameter d at break out. Assuming hd � d, simple geometric arguments

lead to the following expression for the band spacing w:

w = z1 + z2 '
√
d(hd − hc) +

√
d(Dp − hc) (3.9)

The parameter hc is included in the range from 0 to the particle diameter Dp (Watanabe

et al [41] obtained a good agreement with their experiments taking hc/Dp of 0.5− 0.8).

Comparison of our experimental results with Watanabe et al model was deduced from

optical profilometer profiles. It was restricted to S2 solutions, for which the distance

between the top of the deposit and the new pinning event can be clearly measured (cf

figure 3.26). Two limiting cases are considered: hc = 0 and hc = Dp. As seen in figure

3.31, this model gives the right order of magnitude of the band spacing, whatever the

choice of hc. The best agreement is obtained by setting hc = 0. Then we can conclude

that the unpinning mechanism proposed in this model is in agreement with our data.

Nevertheless, it is far from giving a complete theory of stick-slip. Indeed, it cannot

predict the wavelength. Moreover, it is limited to strong stick-slip configurations, where

the slip velocity is much higher than the stick one.
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Figure 3.30: Models based on a variation of the equilibrium contact angle. Left: topolog-
ical origin of the pinning force ; right: free meniscus at the contact line (with c = 0.)

Figure 3.31: Spacings obtained with S2 suspension. Comparison of experimental data
with Watanabe et al model [41]
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3.4.3 Hydrodynamic model: a promising track ?

The two models discussed above rely on equilibrium considerations. Another track

should be to capture stick-slip phenomenon through a dynamical model, taking into ac-

count the hydrodynamic in the meniscus, and including the concentration dependent

viscosity. Indeed, looking at the different results obtained in this experimental section, it

seems that the viscosity might be a key ingredient. Since it changes with pH for colloidal

suspensions and with temperature for polymer solutions. As stated in the introduction,

the approach developed by Frastia et al [49] leads to a periodic patterning of the deposit,

without any artificial trigger: the periodic movement of the contact line is produced by

the competition between a dewetting and a drying fronts. However, the configuration

under study is far from the one considered here, making any direct comparison impos-

sible. Indeed, in their model, the chemical potential depends on the film pressure only

(Kelvin effect with disjoining and capillary pressure), and not of the concentration. The

main consequence is that evaporation decreases when the film thickness is small enough

to activate Kelvin effect via the disjoining pressure, which happens when the thickness

goes to nanometric scale [64]. In other words, the solution is assumed to evaporate like

a pure liquid, and this restricts the use of the model to very dilute solutions, and ultra-

thin liquid films. Anyway, adapting this type of model to get closer from experimental

configurations where the deposit thickness is of order of micron is a very interesting and

promising issue.



Chapter 4

Numerical Simulation

In this chapter we present a first step towards the modelisation of our experimental

set-up. Several simplifying assumptions are used. We focus on the concentration and

velocity field induced by the evaporation and the moving substrate. This model does not

aim to simulate the periodic stick/slip regime but analyze the effect of the evaporation

velocity and substrate velocity on the mean deposit thickness. Numerical simulations

results are compared with a simplified model and experimental results.

4.1 Model description

As a first step, we build a 2D model of our experimental set-up. We study the flow field

and concentration distribution inside the meniscus induced by evaporation and the mov-

ing substrate. We consider a continuous model in Cartesian coordinates. The meniscus

free surface spontaneously forms a circle-shape due to Laplace pressure. An electrostatic

analogy, suggested by Deegan and co-authors [6], is used to evaluate the evaporation flux

at the free surface. Note that this approach predicts a divergence of the evaporation ve-

locity at the contact line. To solve the singularity problem, we truncate the tip part and

we apply lubrication theory and mass balance to deduce the velocity field at the boundary

with the truncated part.

64
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4.1.1 Main assumptions

To simplify the model, there are several important assumptions:

1. Marangoni effect is neglected so that we assume zero tangential stress at the free

surface of the meniscus.

2. No buoyancy effect.

3. Inertia is neglected. This assumption is valid when Re = V1d
ν
<< 1, where V1 is the

receding velocity of the contact line, d is the characteristic length of the meniscus

( 1mm), ν ∼ 10−6m2/s is the minimum kinematic viscosity of the solution. This

assumption is thus valid for V1 << 1mm/s.

4. The solution density, ρ, is a constant.

5. Isothermal problem, which is justified by temperature measurements. We found

that, at 25oC there is only 2oC difference between the bulk temperature and the

air temperature. (Note that our dip-coating-like set-up is inside a thermostated

environment).

6. The local evaporation rate j(m/s) is J0√
Dtip

[6] where Dtip is the distance to

the tip. Note that this expression holds for the tip vicinity. In this study it is

extended to the whole meniscus free surface, as a first approximation. J0(m
3/2

s
) is a

constant deduced from the mean evaporation velocity Vev (m/s) deduced from

our experiment. See appendix D for the relation between the local evaporation

velocity j and the mean evaporation velocity Vev (m/s).

4.1.2 Geometry and governing equations

The model is constructed to simulate our experimental set-up (figure 4.1). The total

height is H = h + hm; h is large enough to define realistic boundary conditions at the

bottom (cf. next section). R stands for meniscus radius. For total wetting configuration,

hm = R = d/2. In the experimental configuration, the contact line receding velocity is
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V1, imposed by pumping. In our model, we suppose that the wall is moving toward +y

direction with velocity V1, while the liquid solution is fixed.

Figure 4.1: Sketch of the model geometry.

For our problem, we focus on the flow inside the meniscus. We define the truncated

region shown in figure 4.2 by cutting off a small tip region whose height is α and width is

δ. Here δ is a function of α and the effective contact angle θeff (θeff = 0 in total wetting).

Equations solved in the blue domain shown in figure 4.3 are discussed in the following.

We first assume an incompressible flow of Newtonian fluid with constant viscosity and

steady state, therefore the mass conservation and the Navier-Stokes equations read in

vector form:

~∇ · ~v = 0 , (4.1a)

ρ(~v · ~∇)~v = −~∇P + ~∇ · (µ~∇~v + µ~∇t~v) (4.1b)

where ρ is the density of the fluid, ~v = u~x+ v~y is the velocity field; µ is the viscosity.
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Figure 4.2: Sketch for the meniscus boundary conditions truncated by red line. The width
is δ and the height is α

As stated in the main assumption, we ignore the inertia term to get the so-called

”Stokes Equation”, with variables u, v, P :

0 = −~∇P + ~∇ · (µ~∇~v + µ~∇t~v) (4.2)

The mass balance for the solute leads to equation (4.3). It contains the convective

term (left) and diffusive terms (right) in steady state. φp is the volume fraction of solute

and D is the binary diffusion coefficient:

~v · ~∇φp = D∇2φp (4.3)

In conclusion, there are four variables u, v, P, φp governed by equations (4.1a), (4.2)

and (4.3).
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Figure 4.3: 5 boundary conditions.

4.1.3 Boundary conditions

The boundary conditions are shown in figure 4.3:

Boundary 1: At x = 0 the moving wall velocity is V1. We assume no slip and impermeable

boundary conditions so that:

u = 0 , (4.4a)

v = V1 , (4.4b)
∂φp
∂x

= 0 (4.4c)

Boundary 2: At y=0 we consider a fully developed flow, which implies that the velocity

field does not change in ~y direction. Impermeable condition (eq (4.4a)) condition along

the wall (B1) and mass conservation (cf 4.1a) imply u = 0 along B2. In such a case the

pressure gradient along the boundary will balance shear stress at the wall. Concentration

is assumed to be the bulk concentration φp0 of the inflow, while diffusion is neglected for
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the outflow. Summary is given in the following equations:

u = 0 , (4.5a)
∂v

∂y
= 0 , (4.5b)

~v · ~y > 0,=⇒ φp = φp0, (inflow) , (4.5c)

~v · ~y < 0,=⇒ ∂φp
∂y

= 0, (outflow) (4.5d)

Boundary 3: at x = R, the velocity or concentration fields are symmetric along the

plan x = R, from y = 0 to y = h :

u = 0 , (4.6a)
∂v

∂x
= 0 , (4.6b)

∂φp
∂x

= 0 (4.6c)

Boundary 4: along the meniscus, we suppose that the viscous shear stress along the

interface is 0. Note that we switch from the global coordinate ~v = u~x+v~y into ~v = un~n+ut~t

with ~n · ~t = 0 and the norm of tangential and normal vectors along the meniscus are

‖~n‖ = ‖~t‖ = 1 (cf figure 4.4). The local mass flux ~J = ~Jp + ~Js where ~Jp is the solute mass

flux and ~Js is the solvent mass flux.

In our experiment, the solute across the meniscus is nonvolatile, so that the normal flux

of solute across the meniscus is zero ~n · ~Jp = 0. The total normal flux, ~J ·~n = j×ρs0, is the

local evaporation rate j times the pure solvent density. Here we use Deegan’s proposition

[6] for the evaporation rate. With the assumption of constant density for the solution,

one can deduce j = un (cf Appendix C). J0 is a constant which can be experimentally

obtained. The boundary conditions are summarized in the following equations:
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Figure 4.4: boundary condition along meniscus surface

∂ut
∂n

+
∂un
∂t

= 0 , (4.7a)

~Jp · ~n = 0 , (4.7b)

un = j , (4.7c)

j =
J0√
H − y

(4.7d)

Boundary 5: The last boundary is the most intricate. We truncate a small distance

of the contact angle with the width δ and height α, see figure 4.2. This small cut off

allows us to ignore the singularities at the contact line. Since we assume a small contact

angle along the boundary, the flow can be assumed quasi parallel to the moving wall

and lubrication approximation can be applied. Moreover, δ is assumed small enough to

neglect the variation of solute volume fraction along the boundary. The simplified Stokes

equations reads:
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∂P

∂x
= 0 , (4.8a)

∂P

∂y
= µ

∂2v

∂x2
(4.8b)

From equation (4.8a) and (4.8b), ∂2v
∂2x

only depends on y. By integration we get:

∂2v

∂x2
= K(y) =⇒ v(x, y) = ax2 + bx+ c (4.9)

Coefficients a(y), b(y), c(y) are obtained using the conditions:

1. at x = 0, the no slip condition gives v(x = 0, y = H − α) = V1 ⇒ c = V1.

2. at x = δ, the shear stress is 0, so ∂v
∂x
|x=δ= 0⇒ 2aδ + b = 0.

3.
∫ δ

0
v(x, y)dx = V̄tip · δ, with V̄tip the mean velocity of y component along the boundary.

From the 3 equations,we get v(x, y) along boundary 5:

v(x, y) =
3

δ
(V̄tip − V1)x(1− x

2δ
) + V1 (4.10)

The x component of velocity ~v is deduced from mass conservation (4.1a):

∂u

∂x
+
∂v

∂y
= 0 ⇒ u(x, y) = −

∫ x

0

∂v

∂y
dx′ (4.11a)

combined with equation 4.10 and computed by MAPLE software, we get:

u(x, y) = [V̄tip
dδ

dy
(3δ − 2x) + V1

dδ

dy
(2x− 3δ) + δ

dV̄tip
dy

(x− 3δ)]
x2

2δ3
(4.12)

In the following we are going to deduce 1) dδ
dy

, 2)
dV̄tip
dy

as a function of V̄tip:

1. For small contact angle (θeff << 1), small slope approximation can be used to get:

δ(y) = (Ht − y)θeff +
(Ht − y)2

2R
⇒ dδ

dy
= −θeff +

y −Ht

R
(4.13)
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Here Ht is the total height of the meniscus except the truncated part, therefore equals

to H − α (cf figure 4.4).

2.
dV̄tip
dy

can be obtained by considering the local mass balance (with the assumption of

constant density ρ for the solution):

d

dy
(V̄tipδ) = −j(y) ⇒ dV̄tip

dy
= −1

δ
[j(y) + V̄tip

dδ

dy
] (4.14)

The hydrodynamic boundary conditions on B5 are thus given by equations (4.10),

(4.12), (4.13), (4.14), which express u, v as a function of the mean velocity V̄tip over B5.

At this stage, V̄tip is still unknown. The determination of V̄tip, which requires more

information, will be described in the next section.

Finally, we also need a boundary condition on the concentration field. Assuming

that B5 is an outlet (~v·~y ≥ 0 over the whole boundary), we impose the following condition:

∂φp
∂y

= 0 (4.15)

We expect that this approximation induces an error in a small region over a length

of order D
V̄tip

close to the boundary. The validity of this assumption will be checked in

section 4.3.2.

4.1.4 Estimation of V̄tip

The value V̄tip is obtained by a global mass balance on the truncated part of the tip

(cf figure 4.5). Assuming total drying in the tip (no more solvent for y > H) and if the

solute volume fraction φp is about constant along the boundary, the global mass balance

in the truncated tip reads (with ds ' dy in the tip ):

V̄tip(1− φ̄p)δ =

∫ H

H−α

J0√
H − y

dy = 2J0

√
α (4.16)

where φ̄p is the average volume fraction of solute along the boundary. Since V̄tip

depends on φ̄p, it is obtained by successive trials. For a given value V̄tip = V̄i, the velocity
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Figure 4.5: truncated tip

and concentration fields are obtained in the 2D computational domain by solving the

equations presented in the previous section. Thus we get φ̄pi, the solute volume fraction

at boundary 5.

We check that equation (4.16) satisfied for the two values V̄i and φ̄pi. If not, a new

trial is performed with another value of V̄tip until the relative error is less than 1%. Error

is defined as:

Erri =
V̄i(1− φ̄pi)δ − 2J0

√
α

2J0

√
α

(4.17)

We will show examples after we implant our model into COMSOL software.

4.1.5 Dry thickness

Deposition thickness can be obtained knowing φ̄p and V̄tip from the above solution. We

assume that the deposit moves at substrate velocity V1. In the truncated region shown

in figure 4.6, the total solute across boundary 5 (cross section δ) should be φ̄p × δ × V̄tip,
and the total deposit on the moving substrate should be hd × V1 × φc where φc is the

compaction of the deposit such as 0.74 for a close-packing deposit. For simplicity, we

assume completely dry deposit, so φc ' 1. The mass balance reads:

hd × V1 = φ̄p × δ × V̄tip ⇒ hd =
φ̄p × δ × V̄tip

V1

(4.18)
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Figure 4.6: Film thickness deduced from solute mass balance in the truncated region

4.2 COMSOL Implemention

In this section, we will implement the theoretical model into a commercial software

called COMSOL. This software is based on finite element method. It offers 5 simple steps

for implementation and to obtain solutions: 1.Define geometry 2.Specify physics

3.Define mesh 4.Solve 5.Visualize results. Following are the geometry scales and

testing variables’ ranges inspired by our experimental set-up and parameters:

• The total Height H : 3mm < H < 20mm.

• The truncated height α: 15µm < α < 100µm.

• The mean evaporation velocity Vev: 0.78µm/s < Vev < 1.5µm/s.

• The substrate moving velocity V1: 0.1µm/s < V1 < 100µm/s.

• The initial volume fraction of solute φp0: 1% < φp0 < 10%.

• The dynamic viscosity: set to be constant µ = 0.001Pa·s, or variable from empirical

laws: polymer solution viscosity µp(φ), colloidal suspension viscosity µc(φ).
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Figure 4.7: geometry buildup and 5 boundaries

• The diffusion coefficient D: 5× 10−12 < D < 5× 10−10m2/s.

4.2.1 Model implementation

1.Define geometry

To build our model, we draw simple shapes and by difference we can have a flat edge

at the tip part for boundary 5 whose width is δ. We select one example to walk through

in detail: H = 5mm, R = 0.5mm, α = 50µm so that δ = 2.5µm as shown in figure 4.7

for a total wetting case.

2.Physics for domain and boundaries

Given the model described in the previous section, we couple two packages Transport

of dilute species and Creeping flow from the model library. In Transport of dilute
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Figure 4.8: Simulation results corresponding to 5 different V̄tip =
(40µm/s, 41µm/s, ..., 45µm/s) along boundary 5. V1 = 10µm/s, Vev = 1.5µm/s,
φp0 = 3%. (a) the x component velocity profile. (b)the y component velocity profile
(c)concentration profile

species equations are written for the solute. In Creeping flow, Stokes equation is solved

for the velocity and pressure (cf appendix E for details).

4.2.2 Example of iterative procedure

One example is shown for the procedure in COMSOL. In this example, the moving

substrate velocity is V1 = 10µm/s, the evaporation velocity Vev = 0.78µm/s, the initial

volume fraction is 3%. Different V̄tip = (40µm/s, 41µm/s, ..., 45µm/s) are manually input

to COMSOL software for simulation. Then, different velocity profiles and concentration

profiles along boundary 5 are obtained. They are shown in figure 4.8. Note the v, y
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Figure 4.9: Numerical results corresponding to 5 different V̄tip. Yellow filled row is chosen
for the solution based on mass balance. Error is defined in equation (4.17).

component of velocity, should be positive along the boundary since we assumed that in

this narrow region there is no down flow. Figure 4.8(c) shows that the concentration along

the boundary is almost a constant for each V̄tip which is consistent with our assumption.

Finally we average the concentration along boundary 5 to get φ̄p for mass balance calcu-

lation until the error is less than 1% by equation (4.17).

In table 4.9, we summarized numerical results for the trials V̄tip based on the mesh of

10-element configuration discussed in the next section. As can be seen the errors in the

mass balance depends on V̄tip and the yellow colored row shows the lowest error ( 0.7%)

from (4.17). Therefore V̄tip = 42µm/s will be chosen to be the best approximation.

4.2.3 Mesh optimization

Before we start to study our model, we have to try several meshes to reach a reasonable

result while saving the cpu memory and the program running time. We will compare
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Figure 4.10: Mesh control. Left: auto-mesh generated by COMSOL without tuning.
Right: user-controlled mesh

results from different types of meshes by calculating global mass balance errors. There

are some key points that we should take care: first, at boundary 5, more elements will

be needed to describe accurately the results. Second, too many elements in the whole

domain can saturate the memory or make too long computational time. Therefore, we

divide the meniscus into two domains: 1. the narrow part at the upper meniscus which

is the crucial part for all the results. 2. the lower part. Figure 4.10 shows two examples

of mesh. The first is auto controlled mesh generated by COMSOL without tuning

anything. The second one is called User controlled mesh, which can be fine controlled

by defining the element size and shape, element growth rate, resolution of narrow regions,

etc. Therefore, you will find the second one is much refined, especially in the upper part

of the meniscus.

Mesh generating time for both methods are less than 1 minute. Therefore, we will stick

on user controlled mesh which allows us to tune more functions for a desired mesh.

Therefore, different resolutions at the narrow region will be mainly compared. Five mesh

methods at the truncated region are compared in detail as shown in figure 4.11:
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Figure 4.11: 5 mesh configurations at the tip part

1. Generated by auto controlled mesh with 1 element 4 at tip part.

2. Generate by user controlled mesh with 5 elements 4 at tip part.

3. Generate by user controlled mesh with 10 elements 4 at tip part

4. Generate by user controlled with 20 elements 4 at tip part.

5. Generate by user controlled with 20 elements 2 at tip part.

After solving the test case (V1 = 10µm/s, Vev = 0.78µm/s, φp0 = 3%.), velocity pro-

file along boundary 5 are plotted for the comparison of five mesh configurations. At first

glance, the velocity profile are similar for all mesh configurations except auto controlled

mesh. Since there is only one element in the boundary, we get a straight line for the ve-

locity and concentration and this solution is not accurate enough. Zoom in figures shown

at top right corner of figure 4.12, shows that the other four meshes configurations give

similar results for velocity and concentration.

In order to optimize the mesh configuration, we numerically compare the total num-

ber of mesh elements, calculating times, and global mass balance errors sum-

marized in the table shown in 4.14. Note that for all mesh methods, we use the same

discretization: linear for pressure, quadratic for velocity and solute concentration.

The total number of elements depends on the size and the shape. More mesh elements
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Figure 4.12: Velocity profile along B5 for 5 different mesh configurations.

Figure 4.13: Solute volume fraction distribution along B5 for 5 different mesh configura-
tions.
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Figure 4.14: Table of 5 mesh configurations comparison under condition of V1 = 10µm/s,
Vev = 1.5µm/s, φp0 = 3%.

gives more degree of freedom, therefore, needs more calculating time. All simulation times

are within 2 minutes as can be seen in the table. The last three columns correspond to

global mass balance estimation: we expect the integration of fluid velocity at boundary

2 should be equal to the integration of fluid velocity along boundary 4 and 5. The last

column indicates the relative difference between these two quantities. As you can see,

the error decreases while the number of mesh elements increase. 10-elements mesh con-

figuration gives the same errors as 20-elements one. Besides, the running time is 3 times

shorter. Therefore, we use 10-elements configuration in the following discussion.

4.3 Validation of Boundary conditions

Definitions of boundary conditions in B1, B3 and B4 do not require further validations

since they do not demand specific assumptions. On boundary 2 we assume fully developed

flow, bulk concentration for the in flow and we neglect solute diffusion. On Boundary 5 we

assume no back flow, quasi uniform concentration The objective of this section is to define

the computational domain (height H and truncated length α) so that these assumptions

are valid, namely for arbitrary H and α the concentration and velocity fields must be the

same or at least very close.
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Figure 4.15: Numerical results corresponding to V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 3%.
Left: upper domain. Right: lower domain with fully developed flow in boundary. Color
bar shows the solute volume fraction, the stream lines and the arrows correspond to
velocity field (u, v).

4.3.1 Flow field and concentration distribution

We first present the general behavior of flow field and concentration distribution.

One example is shown in figure 4.15 corresponding to the conditions: V1 = 5µm/s,

Vev = 0.78µm/s, φp0 = 3%. Left figure is the zoom in at the upper domain near the

meniscus free surface. The right one is the zoom at the bottom domain where ”fully

developed flow” is expected and it can be confirmed by the stream line plot. The total

height we assumed (= 5mm) is large enough. The flow itself is also reasonable: due to the

movement of the substrate, the velocity is higher close to the moving substrate compared
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to the velocity in boundary 3. Moreover, near boundary 5 which is the truncated part,

solute accumulation is observed as expected. From the color bar which stands for the

concentration, one can find the higher solute volume fraction near the free surface which

is expected since only solvent evaporates.

4.3.2 Geometry test

Two cases will be discussed: First, we vary α with a fixed height H. Second, we vary

H with a fixed truncated height α. We choose the following parameters: V1 = 5µm/s,

Vev = 0.78µm/s, φp0 = 8%. Higher substrate velocity will be discussed later. Three

important results are going to be compared:

1. concentration distribution along several cross sections.

2. velocity field profile along several cross sections.

3. deposition thickness which can be deduced by mass balance, see equation (4.18).

1. Test for truncated height α

To validate the model, three geometries α = 15µm, 50µm, 100µm are compared in fig-

ure 4.16. The total meniscus height is fixed : H = 5mm. To compare the three geometries,

color ranges for concentration data are from 8% to 16.75% so that blank parts near the

tip part mean the concentration is above 16.75%. As can be seen, the concentration and

velocity field distribution are qualitatively similar for the three geometries. To be more

quantitative, four cross sections (separated by 100µm) at upper meniscus L1, L2, L3, L4

are set as shown in figure 4.16. Figure 4.17 shows the concentration distribution along the

four cross sections for three α. Colors correspond to four cross sections, 3 shapes are for

the 3 different α. As can be seen they are the same. Figure 4.18 shows the y component

of velocity along the four cross sections. Right figure is to zoom in for the square region.

Little difference are found at cross section L4, but it is less than 1% which can be ignored.
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Figure 4.16: Flow field comparison for different α at V1 = 5µm/s, Vev = 0.78µm/s,
φp0 = 8%.

Figure 4.17: Concentration distribution along 4 cross sections at upper meniscus for 3
different α. Parameters: V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%, H = 5mm.
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Figure 4.18: Velocity v along 4 cross sections in the upper part of meniscus for 3 different
α. Parameters: V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%, H = 5mm.

2. Test for meniscus height H

Now we fix α = 15µm and change the total height of the meniscusH = 5mm, 10mm, 20mm

in the same testing case: V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%.

The results for upper meniscus cross sections (L1 to L4) are shown in figure 4.20 and

4.21. It confirms H has no effect on the concentration and velocity fields. The results

for lower meniscus cross sections (cf figure 4.19) are shown in figure 4.22 and 4.23. It

confirms that the three heights H = 5mm, 10mm, 20mm give the same results not only

for concentration, but also for the velocity fields at all cross sections, therefore, we can

conclude the assumptions used to write boundary conditions at B2 are valid.

Finally, we test more substrate velocities for different H and α. The film thicknesses

computed from equation (4.18) is shown in figure 4.24. It confirms that the results do not

depend on the truncated height α and the total meniscus height H. For higher velocity,

10µm/s < V1 < 100µm/s the same analysis was performed. It was shown that the tip

length α must be smaller than 15µm to ensure the assumption of no back flow at the tip.
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Figure 4.19: 4 cross sections (L5− L8) for 3 different H.

Figure 4.20: Concentration distribution along 4 cross sections (L1-L4) for 3 different H
with the same parameters: V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%, α = 15µm.
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Figure 4.21: Velocity v along 4 cross sections for 3 different H with the same parameters:
V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%, α = 15µm.

Figure 4.22: Concentration along 4 cross sections at lower meniscus for 3 different H.
Parameters: V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%, α = 15µm.
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Figure 4.23: Velocity v along 4 cross sections at lower meniscus for 3 different H. Param-
eters: V1 = 5µm/s, Vev = 0.78µm/s, φp0 = 8%, α = 15µm.

Figure 4.24: Film thickness versus substrate velocity for 3 different H at fixed α = 15µm
and 3 different α at fixed H = 5mm.
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Figure 4.25: Film thickness versus substrate velocity.

The three heights give the same results.

4.4 Results and discussion

After validating some assumptions made in the boundary conditions, we can start to

test all the parameters (the substrate velocity V1, the initial solute volume fraction φp0,

the mean evaporation velocity Vev). We will compare the simulation results to a simple

model, and also to the experimental results [33]. We will also discuss the effect of solution

characteristics including dynamic viscosity and diffusion coefficient.
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4.4.1 Prediction of deposit thickness

1. Deposit thickness by COMSOL simulation:

Figure 4.25 shows our results from COMSOL simulation. The dry thicknesses are de-

duced from the concentration along boundary 5 (cf section 4.1.5) hd =
φ̄p×δ×V̄tip

V1
. The

configuration used here is:

• H = 5mm, α = 50µm

• With 20 elements along boundary 5 for the mesh in the upper domain. Fine mesh

in the other domain.

• Descritization are P2(velocity)+P1(pressure)+P2(concentration).

• µ = 0.001Pa · s, D = 2× 10−10m2/s.

Two mean evaporation velocities Vev and three initial solute concentrations φp0 are

tested at different moving substrate velocities V1. We can deduce the characteristic ratio

Rcom = V1hd
Fφp0

for a later comparison. F (m2/s ) is the total volumetric flux along the

meniscus surface and has a relation with the mean evaporation velocity as F = Vev × d/2
(cf Appendix D) in a total wetting case.

2. Deposit thickness by a simple model:

A simple model first proposed by Nagayama and co-authors [65] can also predict the

deposit thickness shown in figure 4.26. The important assumptions of this model are: [33]

• There are two domains: the completely dried deposit which is in the tip part, and

the liquid solution which is the major part (in color light blue). No transition

domain between them.

• In a cross section Ly (y = h = constant), we assume uniform concentration (∂φp
∂x

=

0). In addition, the solute and solvent have equal densities.

• The following calculations are in steady state.



91

Based on global mass balance, the total flux going through Ly is either evaporating

through the meniscus (solvent) or depositing on the substrate at the tip part (solute):

Q =

∫ d/2

0

v dx = F + hd × V1. (4.19)

Where F is the total volumetric flux through the meniscus free surface, hd is the

deposition thickness. From solute mass balance, a second equation states that all the

solute across the dash line (Ly) will deposit on the substrate.

Qp =

∫ d/2

0

φpvp dx =

∫ d/2

0

φpv dx = φp

∫ d/2

0

v dx = φp ×Q. (4.20)

This is by neglecting the diffusion term and assuming uniform concentration φp that

will be considered as the bulk concentration φp0. Therefore, combining equation 4.19 and

4.20 with φp0 � 1, one can deduce:

Rsm '
hdV1

Fφp0
= 1 (4.21a)

3. Film thickness by experimental data fitting

By previous experimental studies on polymers and colloidal suspensions, there is an em-

pirical law deduced by fitting the experimental data: V1hd
Vevφp0

' 330µm = Le . Therefore,

we have Rexp = hdV1
Fφp0

' 330
500
' 0.7

In summary, we get for hdV1
Fφp0

:

• Rsm ' 1 deduced from a simple model;

• Rexp ' 0.7 deduced from experimental data fitting;

• In the same way, Rcom can be deduced from COMSOL simulation.

A summary is plotted in figure 4.27 which test various φp0, Vev and V1.

As can be seen, the three results have the same tendency: the higher substrate veloc-

ity, the lower value of hd
φp0Vev

. However, we found that for larger velocities (> 10−5m/s),
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Figure 4.26: Simple model based on mass balance to deduce the deposit thickness.

Figure 4.27: Three results comparison. Red line: simple model. Black line: experimental
data fitting. Points: COMSOL simulations.
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Figure 4.28: Characteristic length Lc normalized by Lm versus substrate moving velocity
V1. At low velocity, Lc is a constant, and it decreases when V1 increases.

Figure 4.29: Flux distribution at cross sections (L5-L8) at the lower part of meniscus for
three velocities.
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Figure 4.30: Table to test the Nagayama assumption at different V1.

the data from COMSOL simulations have no longer the same slope. To be more clear,

we draw Rcom. It is close to 1, i.e. to the simplified model at low velocities. The different

values obtained for the different φp0 are due to the approximation ”1− φp0 ' 1” used in

the estimation of Rcom. But a significant decreasing at velocities larger than 10µm/s is

observed as shown in figure 4.28.

To explain the phenomena, we compare the solute flux along 4 cross sections at the

lower part of meniscus (cf figure 4.19) for 3 velocities: low velocity(1µm/s), median ve-

locity 10µm/s and high velocity (100µm/s) as shown in figure 4.29.

• At low velocities, V1 = 1µm/s, the flux (φp × v) is positive and uniform along the

cross sections. There is no outflow across boundary B2.

• At median velocity V1 = 10µm/s, the flux along the cross sections starts to become

negative. It means the flow brings back some solute downward.

• At high velocity V1 = 100µm/s, there is a significant negative part of the flux, which

may break down the assumption of ”uniform concentration” along x direction. Since

the flow is large enough to bring back the solute, the thickness of the deposition will

decrease as observed in figure 4.27.
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As already mentioned, Nagayama’s model assume a uniform solute volume fraction

when computing the solute flux across the bottom boundary B2. Table 4.30 shows the

approximation on the estimation of the solute flux, using the result of the numerical sim-

ulation as a reference. As can be seen, at low velocity (V1 = 1µm/s), the two integrals

are almost the same. The difference at V1 = 10µm/s is small (8%), while it is much large

at V1 = 100µm/s (138%). When the velocity becomes large, the solute volume fraction

is no longer constant along x direction. Therefore, Nagayama’s assumption breaks down.

Even if experimental results show some dispersion, this transition between low and

high velocities is not observed in the experiments. This means that some of the simplifying

assumptions used in this model should be relaxed. This is beyond the scope of this work

and will be discussed in the conclusion. In the next section we are going to study the

influence of the viscosity and diffusion coefficient on the results.

4.4.2 Effect of viscosity

In this section, we will discuss the effect of solution viscosity . All above simulations

have been performed with constant viscosity µ = 0.001Pa · s. To approach the exper-

imental condition, a variable viscosity depending on the concentration is used. Kinetic

viscosities as a function of solute volume fraction (polymer µp and colloids µc) are shown

in the following equations:

µp = 10
−2.1827+7.9665φp−6.2026φ2p

0.72−φp Pa · s. , (4.22a)

µc = 0.912(1− φp/0.4125)−1.604Pa · s. (4.22b)

The conditions for simulations are:

• mesh 10 elements at narrow region and fine mesh elsewhere.

• α = 15µm, H = 5mm.
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• 0.1µm/s < V1 < 100µm/s.

• Vev = 0.78µm/s, φp0 = 1% and 8%.

Viscosity and flow distribution

Figure 4.31 shows one example at V1 = 10µm/s to estimate the effect of dynamic vis-

cosity distributions. As can be seen the viscosity for the three cases are different. First,

the viscosity for polymer or colloids are non-uniform and show small changes in the corner

regions such as the tip part and the corner between B3 and B4. Second, the viscosity of

the polymer is about 5 times larger than the viscosity of colloids shown in the color bar

which is the concentration distribution. Third, the highest viscosity of polymer is one

magnitude larger than the one of colloids.

However, it does not affect much the flow field which can be evidenced by stream lines

and the concentration distribution plotted in figure 4.32.

Film thickness and cross sections

In order to quantitatively compare the viscosity effect, the film thickness is calculated

by mass balance and plotted in figure 4.33. The thickness hd of µ = 0.001, µp and µc for

different initial concentration φp0 = 1%, 8% are identical. This is consistent to our exper-

imental results where the film thickness was found independent on the solution viscosity

(cf [33]).

Volume fraction distribution at upper meniscus along the cross sections(L1,L2,L3,L4)

are plotted in figure 4.34. The polymer has the highest concentration distribution among

the three cases, but note that it is less than 1% volume fraction difference and it is located

at L1 for x = 0.5mm. For the velocity distribution and solute flux, the three cases are

almost the same in the cross sections as shown in figure 4.35 and 4.36. And we found the

same tendency for the lower part of meniscus (L5-L8).
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Figure 4.31: Viscosity distribution for: 1.Constant viscosity solution 2.Polymer solution
(µ = µp) 3. Colloidal suspensions (µ = µc) in the condition of Vev = 0.78µm/s, φp0 = 8%.

Figure 4.32: Concentration distribution and flow field for: 1.Constant viscosity solution
2.Polymer solution (µ = µp) 3. Colloidal suspensions (µ = µc) in the condition of Vev =
0.78µm/s, φp0 = 8%.
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Figure 4.33: Deposition thickness plot.

Figure 4.34: The concentration distribution along cross sections (L1-L4) at the upper
part of meniscus for the three viscosities in the condition of Vev = 0.78µm/s, φp0 = 8%.
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Figure 4.35: The velocity (v) profile along cross sections (L1-L4) at the upper part of
meniscus for the three viscosities in the condition of Vev = 0.78µm/s, φp0 = 8%.

Figure 4.36: The solute flux along cross sections (L1-L4) at the upper part of meniscus
for the three viscosities in the condition of Vev = 0.78µm/s, φp0 = 8%.
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4.4.3 Effect of diffusion coefficient

It is known that the diffusion coefficient may depend on solute concentration. However,

in our simulations, the solute volume fraction at the boundary B5 (truncated tip) is always

smaller than 40%. Then we will assume that the diffusion coefficient D is almost constant,

as shown in paper [66] for colloidal suspensions and in paper [60] for PAAm solutions. For

colloids, the diffusion coefficient in the dilute regime can be described by Stokes-Einstein

equation:

D =
kbT

6πµRp

(4.23)

that is about 6 × 10−12m2/s for 80nm particles. For polymers, experimental results

obtained for PAAm solutions give a diffusion coefficient of about 2× 10−10m2/s. Then in

this section we will study the influence of D in the range 5×10−12m2/s to 5×10−10m2/s,

that is two orders of magnitude.

One special case is tested under parameters:

• the truncated region α = 15µm and δ = 0.225.

• the mean evaporation velocity Vev = 0.78µm/s.

• the initial volume fraction of solute φp0 = 8%, dynamic viscosity µ = 0.001Pa · s

• moving substrate velocity: V1 = 1, 10, 100µm/s

• testing diffusion coefficient: D = 5×10−12, 2×10−11, 6×10−11, 9×10−11, 2×10−10,

and 5× 10−10m2/s.

Result is plotted in figure 4.37. At low velocity V1 = 1µm/s, the deposition thickness

does not depend on the diffusion coefficient (five green points are overlapped). Since only

evaporation act as a pump for the flow field, all the flow goes toward the meniscus, there

is no back flow to disturb/breakup the uniform concentration distribution (at x direc-

tion). The Nagayma’s balance works well at low speed and diffusion dose not affect the
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Figure 4.37: The film thickness comparison for different diffusion coefficients in the con-
dition of Vev = 0.78µm/s, φp0 = 8%.

deposition.

At middle speed V1 = 10µm/s, the higher the diffusion coefficient, the thicker depo-

sition as shown in the insert in figure 4.37. One main reason is that when the velocity

increases the Nagayama’s balance was perturbed by the back flow due to convection. The

diffusion plays a role to mix the solution. The larger diffusion coefficient, the more efficient

the solute mixing. Therefore, some solute is brought back by diffusion and makes thicker

deposition while the D increases. At high velocity V1 = 100µm/s, the same tendency as

V1 = 10µm/s is observed as shown in figure 4.37.

As a conclusion, this model was a first step to describe concentration and flow fields

induced by the moving substrate and the evaporation at the meniscus free surface. It

was shown that the cut-off introduced to suppress the divergence at the tip and the

iterative procedure used to solve the problem allow to get pertinent results. However
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some discrepancies between the simulations and experiments at high velocities show that

some of the simplifying assumptions should be dropped. New mechanisms should then

be taken into account. In a close future, this model will be improved by taking account

buoyancy as well as Marangoni effect.



Chapter 5

Conclusion and outlook

5.1 Main results

The experimental set-up used in this study provides an accurate control of the sub-

strate velocity and evaporation rate. Based on previous experiments [46, 48, 33], three

regions can be defined for the film thickness, depending on the substrate velocities. At

high velocities, we reach the dynamic regime governed by the Landau-Levich-Derjaguin

theory. At lower velocities, we reach evaporative regime dominated by evaporation. At

lower velocity, stick-slip motion can be observed and form periodic patterns.

In the first part of this study, we focus on experimental characterization in the stick-

slip regime. The on-line recording of the contact line movement allows a detailed char-

acterization of the stick-slip dynamic. For colloidal suspensions, we have studied the

pinning force variation and the strip periodicity by systematically varying several pa-

rameters: receding velocity, particle size, and pH of the solution. Results show that the

variation of the pinning force is proportional to VevΦ/V1 and does not depend on particles

size or pH. The new results confirm the empirical law reported by Bodiguel et al [48],

which is summarized in equation (3.7).

On the contrary, change in electrical surface charge changes the deposition morpholo-

gies significantly. At lower pH (> pH2) , the stripe patterns have lower wavelengths ( a

factor of 0.6 is obtained between S2 and S9). Besides, the downward slope is one order of

103
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magnitude higher at lower pH than the one at high pH, therefore the shape of one stripe

is asymmetric at lower pH unlike for higher pH’s deposition. We tested several existing

models but it appears there is currently no complete explanation for our results.

The same set-up and experimental parameters were then used for polymer solution

(PAAm in water). Dried polymer films are almost flat at room temperature with only

small undulations on the surface. It is only at high temperature (60◦C) that we get clear

and systematic stick-slip motion with periodic patterns. The same power law as for col-

loidal suspensions was found for the variation of pinning force. However, the preliminary

results show different prefactors (1.4 for colloidal suspensions and 0.5 for polymer solu-

tions). The wavelength of the polymer patterns is found smaller than the one of particle

suspensions.

In the second part of our studies, we construct a 2D model to simulate our exper-

iment in the evaporative regime (stick-slip is not considered in this numerical part). In

the first step presented here, we assume it is isothermal, without buoyancy or Marangoni

effect. The velocity and concentration fields are thus only induced by the moving sub-

strate and evaporation. The liquid phase flow and concentration gradients are obtained

by solving the Stokes equations and Fick’s law. At the meniscus free surface, a known

but non uniform evaporation flux is imposed. The description for the contact line point

is achieved by introducing an a priori cut-off α where boundary conditions result from

a small scale description using lubrication approximation. Coupling the two models re-

quires an iterative procedure to define the boundary conditions, based on a global mass

balance for the truncated boundary. COMSOL software is used to solve the equations.

The concentration distribution and velocity field are analyzed as a function of several

parameters including: the solute bulk volume fraction φp0, the evaporation velocity Vev,

and the substrate moving velocity V1. The drying film thickness can be deduced by mass

balance which is then compared to our experimental results.

To validate our model, we first optimize the mesh by global mass balance. Then

computational domain including meniscus height H and the truncated length α were
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checked to be consistent with the assumptions used at the boundaries. After validation of

the model, we compare to a simplified model based on global mass balance and assuming

uniform concentration in a cross section. At low velocities (V1 < 10µm/s), the two models

have the same behavior. At high velocities (V1 > 10µm/s), a small decreasing of the

film thickness from the power law hd×V1
φp0Vev

= 500µm (deduced from the simplified model) is

observed. This can be explained by a break-up of the assumption of uniform concentration

distribution in the bulk. A back flow induced by higher substrate velocity V1 brings back

the solute so that the film thickness is smaller. After understanding our model, we tested

the viscosity effect and the diffusion coefficient effect. Results are consistent with our

previous experiments [33]: in the evaporative regime, the film thickness does not depends

on the viscosity. This is confirmed by observing the concentration distribution as well as

the velocity field distribution.

5.2 Outlook

Experiment

From an engineering point of view, it is useful to control the final pattern by manipulating

several parameters. Evaporation rate, substrate velocity and initial concentration have

been well studied for our system. In the future, it would be interesting to change the

system properties such as the wettability of the substrate (hydrophobic/hydrophilic/pre-

patterned), the properties of the solutions (organic solvent/biomolecules solution/nano-

material solutions), etc.

Moreover, it should be also interesting to perform local observations of the menis-

cus in order to test our model and improve our understanding of the stick-slip

mechanism. One thing we could try is to get the meniscus slope by optical methods

(for example, light interference [67] method or free-surface synthetic Schlieren (FS-SS)

method [68, 69]), and the local concentration and velocity fields by using confocal

microscope [70] or by Raman spectroscopy [71]. Despite the fact that some of these

methods have been successfully applied to droplets, the application to our geometry is
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still challenging (due to the high curvature meniscus shape) and will need feasibility study.

Simulation

In parallel, the next step for our 2D model should be to test the substrate wettability. Gap

size will also be interesting to study because experimentally it is difficult to achieve (one

order of magnitude smaller/larger than gap width = 1mm is not realistic for experiments,

because 100µm has parallelism issue to solve and 10mm is too large to have a capillary

rise).

From our simulation we found that the model is too simple to describe the hydrody-

namic behavior at higher substrate withdraw speed (V1 > 100µm/s). In order to improve

our model, the next step can be adding buoyancy effect and Marangoni effect for the flow.

Another interesting work will be to change from a steady state to a dynamic one (using

Deformed-Mesh-Physics in COMSOL software) which implies the shape of the meniscus

may change during the movement of the contact line. This is experimentally challenged.

It has a potential to explain the periodic behavior of the final deposit patterns.



Appendix A

Debye Length in an electrolyte

One example is shown here to deduce the Debye-Length κ−1 for aqueous solutions

NaCl at 25◦C. The definition of Debye length is following:

κ−1 =

(
e2

εε0kBT
Σinizi

2

)−1/2

(A.1)

where e is the electron charge (1.6×10−19C), ε is the relative dielectric constant for water

at 25◦C (= 78.5). ε0 is the permittivity in vacuum (= 8.854 × 10−12F/m), kB is the

Boltzmann constant (= 1.38× 10−23J/K), T is the temperature (assumed 298.2K), ni is

the ion concentration (ions/m3), zi is the ion valence. For NaCl zi = 1, we get:

κ−1 ' 3.055× 10−10M−0.5 (A.2a)

where M is the concentration in“mole/liter”.
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Appendix B

Comparison for 2 size particles

Figure B.1: dhstick and dhslip for both size particles.

Two different size of the silica particles (Dp = 83nm and Dp = 27nm) are tested in

the experiments at high pH values. Close results are obtained for dhstick, dhslip, Vslip,

Vstick and the ratio between Vslip and Vstick.
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Figure B.2: Vstick and Vslip for both size particles.

Figure B.3: Ratio between Vslip and Vstick for both size particles.



Appendix C

Mass flux J

In our discussion of normal flux due to evaporation across the meniscus free surface,

mass flux J (density × velocity) with SI unit in kg/m2s is discussed. For non volatile

solute (p) and for volatile solvent (s) with evaporation rate j, one can write following

equations:

~J = ρ~v = ρs~vs + ρp~vp, (ρ = ρs + ρp) , (C.1a)

ws =
ρs
ρ
, wp =

ρp
ρ
, (C.1b)

~v = ws~vs + wp~vp , (C.1c)

ρp~vp · ~n = 0 , (C.1d)

ρs~vs · ~n =
j

V̄s
. (C.1e)

with notations defined as:

• ρs is solvent density, ρp is solute density. Both are in the unit of kg/m3.

• ~vs is solvent velocity, ~vp is polymer velocity. Both are in the unit of m/s.

• ws = ρs/ρ is solvent mass fraction and wp = ρp/ρ is solute mass fraction.
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V̄s = 1/ρ0
s is defined as the inverse of pure solvent density, called solvent specific

volume, which is a constant in our case. V̄p = 1/ρ0
p is the specific volume of pure solute.

With φs = ρsV̄s is solvent volume fraction and φp = ρpV̄p is solute volume fraction we get:

wp =
φp

V̄p
V̄s

+ (1− V̄p
V̄s

)φp
(C.2a)

In our model, we suppose V̄p = V̄s, namely pure solute and pure solvent have the same

density ρ0
s = ρ0

p. Combined with equation (C.1c):

wp = φp, ws = φs , (C.3a)

~v · ~n = ws~vs · ~n+ wp~vp · ~n , (C.3b)

= φs~vs · ~n+ φp~vp · ~n (C.3c)

From equation (C.1e), the evaporation rate across the free surface can be written:

j = V̄sρs~vs · ~n (C.4a)

= φs~vs · ~n (C.4b)

= ~v · ~n− φp~vp · ~n (C.4c)

= ~v · ~n− wp~vp · ~n (C.4d)

= ~v · ~n (C.4e)

= un (C.4f)



Appendix D

Volumetric flux F

We call F the total volumic flux due to solvent evaporation, by unit length in the z

direction orthogonal to the directions x, y of our 2D model. The unit is then m2/s. From

the local evaporation rate j, based on our assumption, j = J0/
√
H − y (cf figure 4.1), we

get the total volume flux F by integral along the meniscus free surface (ds):

F =

∫ H

H−hm
j(y) ds , (D.1a)

=

∫ H

H−hm

J0√
H − y

ds , (D.1b)

= J0 × hm
∫ H

H−hm

dy√
(H − y)(hm −H + y)(hm +H − y)

(D.1c)

Where J0 is a constant, H is the total height of the meniscus, and hm is vertical

distance of the meniscus free surface (cf figure 4.1).

From the contact line movement in pure water evaporation experiment (cf section 2.4),

we deduce the mean evaporation velocity Vev(m/s) defined in the following way:

F = d/2× Vev (D.2)

where d is gap width between the two substrates. For a total wetting case (θeff = 0),
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hm = d/2. Combine the two equations (D.1c) and (D.2), we can get the mean evaporation

velocity Vev:

Vev = J0

∫ H

H−R

dy√
(H − y)(R−H + y)(R +H − y)

(D.3)

where R = d/2 = hm is the radius of the meniscus in a total wetting condition.

By changing J0 we can change the mean evaporation rate for model testing. In our

configuration (d = 1mm, total wetting), we get Vev ' 117J0.



Appendix E

COMSOL implemetation

E.1 Domain physics and boundary conditions

Transport of dilute species (chds):

• Choose Stationary for equations and convection for additional transport mecha-

nisms.

• Choose the discretization quadratic for the variable c.

• Enter diffusion coefficient Dc = 210.

• Enter c0 as the initial value for concentration.

• Add No flux at B1(moving wall) and B4 (the meniscus).

• Add Open boundary for B2 (bottom boundary)which we supposed a fully devel-

oped flow, enter c0 for C0,c.

• Add Open boundary for B5 (the truncated part), enter 0.5 for C0,c.

• Add Symmetric boundary condition for B3(symmetric wall).

Creeping flow(spf):

• Choose Stationary for equations and Incompressible flow neglect inertial

term (Stokes flow) for Physical Model.
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• Choose Streamline diffusion for Consistent Stabilization.

• Choose the discretization P2+P1, which means quadratic discretization for velocity

and linear discretization for pressure.

• Set fluid properties: enter ρ = 1kg/m3 and dynamic viscosity µ = 0.001Pa · s.

• Set initial conditions: u = 0; v = 0; p = 0.

• Add moving wall for B1, set u = 0 and v = V1.

• Add inlet for B2, choose pressure, no viscous stress type, enter 0 for pressure.

• Add pointwise constraint for B2, choose Bidirectional, symmetric for con-

strain type. Enter u for constraint expression.

• Add Symmetry boundary for B3.

• Add Boundary Stress for B4 and choose General stressfor boundary condition.

Enter 0 for both component of stress.

• Add pointwise constrain for B4, set u∗nx+v ∗ny−V ev in Constrain expression.

Choose Lagrange for shape function type and Quadratic for discretization.

• Add Leaking wall for B5 and set:

u = (V av ∗ d delta dy ∗ (3 ∗ delta− 2 ∗ x) + V 1 ∗ d delat dy ∗ (2 ∗ x− 3 ∗ delta)

+delta ∗ d V av dy ∗ (x− 3 ∗ delta)) ∗ x2/2/delta3 ,

v = 3 ∗ (V av − V 1) ∗ x ∗ (1− x/2/delta)/delta+ V 1 .

E.2 Global definitions

Add Parameters and Variables in Global definitions. Set all the parameters and vari-

able by typing as the following figures. Figure E.1 is for parameters and figure E.2 is for

variables.
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Figure E.1: Global definition of parameters

Figure E.2: Global definition of variables
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