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Abstract

An Agent-Based Approach for Distributed Resource Allocations

Antoine Nongaillard, PhD
Concordia University
Université Lille 1, 2009

Resource allocation problems have been widely studied according to various sce-
narios in literature. In such problems, a set of resources must be allocated to a set of
agents, according to their own preferences. Self-organization issues in telecommuni-
cation, scheduling problems or supply chain management problems can be modeled
using resource allocation problems.

Such problems are usually solved bymeans of centralized techniques, where an om-
niscient entity determines how to optimally allocate resources. However, these solving
methods are not well-adapted for applications where privacy is required. Moreover,
several assumptions made are not always plausible, which may prevent their use in
practice, especially in the context of agent societies. For instance, dynamic applica-
tions require adaptive solving processes, which can handle the evolution of initial data.
Such techniques never consider restricted communication possibilities whereas many
applications are based on them. For instance, in peer-to-peer networks, a peer can only
communicate with a small subset of the systems.

In this thesis, we focus ondistributedmethods to solve resource allocationproblems.
Initial allocation evolves step by step thanks to local agent negotiations. We seek to
provide agent behaviors leading negotiation processes to socially optimal allocations.
In this work, resulting resource allocations can be viewed as emergent phenomena. We
also identify parameters favoring the negotiation efficiency. We provide the negotiation
settings to use when four different social welfare notions are considered. The original
method proposed in this thesis is adaptive, anytime and can handle any restriction on
agent communication possibilities.

Keywords: Distributed problem solving, individual based reasoning, social networks,
social welfare, information privacy.
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Résumé

Une Approche Centrée Individu de l’Allocation de Ressources Distribuée

Antoine Nongaillard, PhD
Concordia University
Université Lille 1, 2009

Les problèmes d’allocation de ressources suscitent un intérêt croissant aussi bien en
Économie qu’en Informatique. Dans ces problèmes, un ensemble de ressources doit être
alloué à un ensemble d’entités selon leurs propres préférences. De nombreux problèmes
dans des domaines aussi divers que variés peuvent être modélisés grâce à un problème
d’allocation de ressources. L’auto-organisation de réseaux en télécommunications, la
planification en logistique, ou des problèmes basés sur des réseaux sociaux peuvent en
effet être représentés par des problèmes d’allocation de ressources.

Ordinairement, ces problèmes sont résolus grâce à des méthodes centralisées, dans
lesquelles une entité omnisciente détermine comment allouer les ressources demanière
optimale. Cependant, ces approches font des hypothèses qui ne correspondent pas
toujours à la réalité. Dans bien des contextes, il n’est pas possible d’avoir une entité
omnisciente. Certaines applications sont dynamiques et nécessitent une méthode de
résolution adaptative qui puisse prendre en compte de nouvelles informations au cours
de la résolution. Ces approches considèrent toujours que les possibilités de communi-
cation entre les différents participants ne sont pas restreintes, ce qui n’est évidemment
pas le cas dans la plupart des cas, comme dans les réseaux pair-à-pair par exemple où
un pair ne peut communiquer qu’à un ensemble restreint du système.

Dans cette étude de doctorat, nous nous focalisons sur les approches de ré-allocation
distribuées, basées sur des systèmes multi-agents, qui transforment une allocation ini-
tiale par des séquences de transactions locales entre agents. Nous cherchons à con-
cevoir des comportements d’agents menant un processus de négociation à une alloca-
tion socialement optimale. Cette allocation peut alors être vue comme un phénomène
émergent. Nous voulons également identifier les paramètres favorisant l’efficacité des
négociations ainsi que ceux qui la restreignent. Nous considérons différentes mesures
de bien-être social et nous fournissons les comportements à implémenter pour négocier
efficacement dans chaque cas. Nous proposons une méthode adaptative et “anytime”
où n’importe quel type de réseau d’accointances peut être considéré.

Mots-clés: Résolution distribuée de problèmes, raisonnement individuel, réseau social,
bien-être social, information privée.
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Introduction

This thesis is related to the distributed solving of resource allocation problems. We
argue that simple agent behaviors always exist to efficiently solve allocation problems.
In this chapter, we describe the main issues of this thesis. After a presentation of the
context and a description of the motivations of this study, our objectives are detailed.
The outline of this thesis is then presented.

Context and motivations

Auction, manufacturing scheduling, supply chain management or critical resource
sharing are applications that can be modeled by resource allocation problems. A
set of resources must be allocated to a set of entities who have preferences on them.
The aim is to allocate all resources to entities, usually maximizing a given objective.
Allocation problems are usually solved by centralized approaches. A central entity,
who is omniscient, optimally allocates resources to entities. However, such solving
methods do not suit many applications. Indeed, an omniscient central entity may not
be available. Moreover, dynamic applications, in which data evolve constantly, cannot
be solved efficiently by centralized techniques since any change in the initial data leads
to a restart of whole solving processes. As well, applications in which entities keep
private some information cannot be handled using centralized solving processes. For
instance, Internet related applications require more and more privacy for users who do
not want to reveal their preferences to everybody.

We choose in this thesis to focus on distributed approaches, solving allocation
problems by agent negotiations. According to such techniques, agents are autonomous
and act according to their own behavior. They locally negotiate with other agents in
order to identify resource transactions satisfying their own acceptability criteria. An
initial allocation evolves little by little by means of resource transactions among agents,
until nobody is able to use acceptable transactions. Completed resource allocations
can then be viewed as emergent phenomena. Each agent’s decision-making is only
based on its acceptability criterion. Indeed, agents are only aware of a restricted part
of the system: No agent knows the whole resource allocation at a given time. In
the literature, different notions of the social welfare theory can be used to collectively
evaluate allocations. We focus on the four main social welfare notions: The utilitarian
welfare that only considers the global efficiency, the egalitarianwelfare that focuses only
on the poorest agent, the Nash welfare that is a compromise between global efficiency
and fairness, and the elitist notion that considers only the richest agent.

1
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Objectives and contributions

In this thesis, we seek to design agents’ behaviors leading negotiation processes to
optimal allocations, or to socially close allocationswhen the need arises. We assume that
the agent population is homogeneous, i.e. that all agents act similarly. Agents express
their preferences thanks to additive utility functions. Different authors have studied
agent negotiations in the literature. Some of them focus on a specific welfare notion,
whereas others focus onmathematical properties of preference representations favoring
the achievement of socially optimal allocations. However, none of them considers that
agents have restricted communication abilities. Indeed, in real life, in social networks
like Facebook or MySpace, users only have a restricted number of “friends”. Each user
has its own list of contacts, which is different from the lists of other agents. Usually in
the literature, agents can negotiate with all other agents in the population, which is not
a plausible assumption for most applications.

Our contribution is first to consider restricted communications between agents,
which are represented by social graphs. Their price are also evaluated, i.e., their
impact on the quality of achieved allocations. We provide a complete study identifying
characteristics favoring the achievement of socially interesting allocations for each social
welfare notion. We compare the efficiency of our negotiation processes to optimal
solutions, which are provided by centralized methods. We finally provide negotiation
settings to use in order to achieve optimal allocations.

Thesis outline

Chapter 1: Resource allocation problems. This chapter presents the general context
of allocation problems. Their main characteristics are described and their impact on
negotiation processes are discussed: the nature of the resources and representation of
agent preferences are presented. Individual and collective evaluations of allocations
are detailed. Centralized solving approaches and distributed ones are then presented.
Contexts favoring the efficiency of eachmethod is presented, with a description of their
characteristics. Application examples that can be efficiently solved by each technique
are also presented.
Chapter 2: Distributed negotiations. This chapter focuses on distributed solving pro-
cesses for allocation problems. After a brief presentation of advantages of agent-based
approaches and multi-agent systems, agent negotiations are defined and all features
are detailed: Social graphs describing agent relationships, classes of transactions and
their complexity, acceptability criteria and agent behaviors are successively described.
Finally, issues related to the evaluation of negotiation processes are discussed.
Chapter 3: Experimental protocol. This chapter describes the simulation protocol,
presenting the generation of different parameters, in order to precisely characterize ex-
periments and to ensure their reproducibility. Algorithms required by the generation of
graphs, preferences and initial allocations are detailed. Data instances and simulations
are also characterized.
Chapter 4: Bilateral negotiations. In this chapter, results related to bilateral negotia-
tion processes are presented. Each welfare notion is successively evaluated as follows.
First, we present centralized methods, providing optimal solutions. Then, negotiation
properties are specified according to the considered welfare notion. Different facets of
negotiation processes are evaluated and important characteristics favoring the achieve-
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ment of socially efficient allocations are identified. Utilitarian negotiations, egalitarian
negotiations, Nash negotiations and elitist negotiations are successively investigated.
Chapter 5: Multilateral negotiations. This chapter is dedicated to multilateral transac-
tions. Pros and cons are discussed in order to determine their effective interests within
negotiation processes. A scalable method to determine acceptable multilateral trans-
actions is described. Multilateral negotiation processes are then evaluated. Solution
improvements due to their use is finally quantified.

We conclude this thesis by a summary of our contributions. Limits of this thesis are
also described with a description of extensions that seem interesting to investigate.
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Chapter 1

Resource Allocation Problems

Resource allocation is a research topic at the interface of two fields: Economics and
Computer Science. Even if both communities study similar problems, fundamental
differences appear when considering their respective objectives. While economists
study qualities that resource allocations should satisfy, e.g., using the social choice
theory and different welfare notions, computer scientists focus on mechanisms that
identify resource allocations satisfying the required qualities. Studies carried out by
both communities are thus complementary.

Recently, resource allocation problems arouse increasing interest due the large num-
ber of applications that can be modeled using this problem pattern. Up to now, most
studies focused on combinatorial auction and their different facets, usually maximizing
the global efficiency of the system. Representations of preferences and their math-
ematical properties are studied in order to decrease the problem complexity and to
design efficient solving methods. Resource allocation problems are usually considered
as optimization problems and solving processes are mainly centralized. Distributed
approaches based on multi-agent systems have been investigated, achieving resource
allocations thanks to local negotiations between agents. The aim is often to maximize
a specific welfare notion in both cases.

In this chapter, resource allocation problems and their main characteristics are first
described in Section 1.1. Features of resources and representations of agent’s prefer-
ences are presented. Issues related to individual and collective evaluations of resource
allocations are discussed, i.e., how allocations are evaluated either from the individual’s
point of view, or from the society’s point of view. The two main solving approaches
are then presented and compared. Principles of centralized techniques are described
in Section 1.2. Some applications for which these methods are not well-adapted are
identified. Classes of applications that can be efficiently solved by these approaches
are also described. Moreover, Section 1.3 is dedicated to distributed solving processes.
Examples of applications that can be efficiently solved only using distributed methods
are characterized.

1.1 Problem description

This section is dedicated to the description of the main facets of resource allocation
problems. Several essential questions arise during the problem definition: “What are
the properties of a resource? How does an agent express its preferences over the resource
set? How is evaluated the individual welfare of an agent? How a resource allocation can be

5
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evaluated?”. Each question corresponds to an important parameter characterizing the
problem. Even the slightest change of problem settings drastically affects the properties
of allocation problems, their complexity and then the way to solve them efficiently.

A resource allocation problem is defined considering a set of resources and a set of
entities. Resources correspond to anything that can be owned by entities, i.e., concrete
resources like books or any physical goods as well as abstract resources like CPU time
or network bandwidth. Entities express preferences over the whole resource set. The
aim of an allocation problem is to identify a distribution of all resources maximizing,
minimizing or satisfying a given objective. It can be formally defined as follows:

Definition 1.1 (Allocation problem) An allocation problem is a tuple 〈R,P,U〉, where R
is a set of m available resources, P is a finite set of n entities, and U is a vector of entity’s
preferences on the resource set. The aim is the identification of a resource distribution of R over
P satisfying an objective, according to the preferences of the entitiesU.

A resource allocation problem is illustrated in Figure 1.1. Two parts can be dis-
tinguished: on the left hand side, the initial data and a result on the right hand side.
The allocation problem is defined here by a set of 3 entities and a set of 9 resources.
According to the preferences of each agentU = (u0,u1,u2), the solving process leads to
an allocation in which each entity gets a set of resources.

Entity Set P 0

1

2

�
♣

♠

�

�

!

�

�

�

Resource Set R 0

pref u0

♠

1

pref u1

♣� �

2

pref u2

� � �

� !

Resource allocation

Figure 1.1: Resource allocation problems

Depending on the kind of solving method considered, a specific terminology can
be used. Indeed, in a distributed context, the set of entities is usually assimilated to
a population of agents. However, in a centralized context, the use of the term “agent”
is improper, according to the standard definition of an agent (Ferber, 1999; Woolridge,
2001). Indeed, entities are neither distributed, nor autonomous and no decision is made
at the entity level. Everything is decided by the central entity, which is most of the time
omniscient. Entities neither have perception nor consider their neighborhood, which
are important notions defining agents. Aware of the difference between entities and
agents, an abuse of terminology is tolerated in this thesis, and the term “agent” will be
used in both cases.

Each agent of the population owns a finite set of resources, called a resource bundle.
A resource allocation describes how resources are distributed to agents. Then, the
definition of a resource allocation can be based on the resource bundle of each agent.

Definition 1.2 (Resource allocation) Given a set R of m resources and a population P of n
agents, a resource allocation A is represented as an ordered list of n resource bundles Ri ⊆ R
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describing the subset of resources owned by each agent i:

A = [R1, . . . ,Rn], 1, . . . ,n ∈ P, A ∈ A.

whereA is the set of all possible allocations. The i-th element of an allocation A corresponds to
the resource bundle of agent i. It can be written as follows:

A[i] = Ri, i ∈ P, A ∈ A.

Example 1.1 Let us consider the resource allocation described in Figure 1.1. Let A ∈ A denotes
this allocation, which can be explicitly written as follows:

A =
[

R0,R1,R2

]

=
[

{♠}{♣,�,�}{�,!,�,�,�}
]

.

According to allocation A, entity 0 owns only one resource R0 = {♠}. Entity 1 has three
resources in its bundle R1 = {♣,�, �} whereas entity 2 owns the five remaining resources
R2 = {�,!,�,�,�}.

Different aspects of resource allocation problems are successively discussed in the
rest of this chapter. First, various kinds of resource are presented in Section 1.1.1
and their impact on the problem model. Then, different ways to represent agent’s
preferences are described in Section 1.1.2. The evaluation of the individual welfare of
an agent is also discussed. Finally, issues related to the collective evaluation of resource
allocations are addressed in Section 1.1.3. Notions proposed by the social choice theory
are presented as well as their impact on the resource distribution.

1.1.1 Resource characteristics

Resources are central elements of allocation problems. Their properties deeply affect
the model, independently of the solving approach that is considered. The nature of
the resources also influence the properties of allocations. The most important resource
features are described in the next parts (Chevaleyre et al, 2006a).

Continuous or discrete

According to the physical properties of resources, they can be either continuous like
water, or discrete like books. This influences the way that resources are exchanged.

Typically, continuous resources can be divided in as many parts as required. In
such a case, resources available in the system correspond to quantities. For instance, a
government aiming to fairly distribute water among cities according to their needs can
be modeled thanks to continuous resources (Cormas, 2001). Indeed, the only physical
resource of this problem is “water”. Resources of the allocation problem are quantities
of water.

Allocation mechanisms designed for discrete resources are also suitable in the case
of continuous resources. However, suchmechanisms are often not as efficient asmecha-
nismsdesigned specifically for continuous resources. At the opposite, discrete resources
are always indivisible and represent units. Continuous resources may be discretized,
i.e., transformed into discrete resources. The whole quantity is divided into several
parts, which are then considered as discrete and indivisible units. Allocation prob-
lems based on continuous resources are widely studied in the literature in Economics,
whereas Computer Science mainly focuses on discrete resources. Only discrete re-
sources are considered in this thesis.
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Divisible or not

Resources may be either divisible or indivisible. At the opposite of the former property,
this one is related to the allocation mechanism rather than to resources themselves. A
resource may be divided a given number of times, beyond which the resource becomes
an indivisible unit. However, only indivisible resources are considered in this thesis.

Sharable or not

Resources may also be sharable. This property affects the way that the agent welfare
is determined. When resources are sharable, it is not required to own a resource in
order to benefit from it. For example, if resources are assimilated to abilities, agents do
not necessarily need the ability itself, they only need to know other agents which have
this ability and then ask them to perform a task. Such a situation occurs in distributed
service environment for instance (Chakraborty et al, 2006). Another typical example is
the usage of common expensive resources like pictures got from a satellite (Lemaître
et al, 1999). A single resource can be allocated to several agents. In this thesis, only not
sharable resources are considered.

Static or not

Sometimes, resources may be usable. Such resources can be consumed by their owner,
which perform a specific task. For instance, resources like food are edible. An agent
may be able to eat some parts of its bundle in order to stay alive. Resources may then
disappear from the system. Resources may also be perishable and then have a value or
a quantity decreasing in time. In such cases, resources are considered as usable. At the
opposite, resources are static when their properties do not change in time. As usually
assumed in most of resource allocation studies, only static resources are considered in
this thesis.

Single-unit or multi-unit

In multi-unit environments, resources may be identical, and then indistinguishable.
Thus, they are addressed using a single name. For instance, in an egg box, all eggs are
similar and cannot be distinguished. In single-unit environments, resources can always
be distinguished from others. An identification tag is assigned to each resource. Multi-
unit environments can be turn into single-unit environments by tagging all resources.
For example, in the egg box, each tag allows agents to address a specific egg. The main
difference between these environments comes from the resource representation. In this
thesis, only single-unit environments are considered.

Resource or task

Resource allocation problems and task allocation problems can be distinguished. But,
tasks are often resources associated with a negative value. While agents benefit from
standard resources, tasks can be viewed as duties, and then represent a burden to
their owners. An important characteristic of tasks is that they are often related to
other tasks, e.g. the ones are conditions to fulfill in order to perform the others. For
instance, in factories, products may require the achievement of specific tasks in order
to undergo new transformations, which correspond to other tasks. This thesis focuses
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on resource allocation problems. Even if negative values can be assigned to resources,
no dependence relationship will be considered.

Allocation properties and complexity

In this thesis, resources are assumed to be discrete, not divisible and not sharable. All
resources are unique and agents cannot alter them. Since the characteristics of resources
we consider is now well-defined, properties of resource allocations can be specified.

Property 1.1 (Resource allocation properties) Since the allocation environment is single-
unit and resources are assumed to be indivisible, discrete and not sharable, each resource is
allocated to only one agent. Agents’ resource bundle must be pairwise disjoint. We also assume
that all resources must be allocated. More formally:

⋂

i∈P

A[i] =
⋂

i∈P

Ri = ∅, A ∈ A;

⋃

i∈P

A[i] =
⋃

i∈P

Ri = R, A ∈ A.

Different parameters may, more or less, affect the complexity, and then the identifi-
cation of optimal allocations (Chevaleyre et al, 2006a; Estivie, 2006). According to the
nature of the resources we consider, the size of the solution space can be deducted.

Property 1.2 (Size of the solution space) An allocation problem based on a population P
of n agents where m resources of a set R are available has an exponential number of possible
solutions:

|A| = nm.

The explanation is quite simple since it corresponds to the number of possible combi-
nations. Each resource of R can be allocated to any agent of the population P, so n
times. Similarly for all m resources, the total number of possible resource allocations
can be deduced. Thus, the solution space has an exponential size:

|A| =
∏

r∈R

n = nm.

1.1.2 Representation of preferences and individual welfare

The representation of an agent’s preferences is an essential issue in allocation problems.
Preferences express the relative or absolute satisfaction of an agent which needs to
consider several alternatives.

Five important features should be addressed when investigating preference rep-
resentation languages (Chevaleyre et al, 2006a). These features allow comparisons of
different representation languages, considering their different facets.

• Elicitation: It evaluates the difficulty of designing algorithms for an agent to get
an output expressed in a given language;

• Cognitive relevance: This criterion describes the ease for a human to know and
express its preferences in a given language;
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• Expressive power: In a given language, it identifies the different sets of preference
structures that can be expressed;

• Computational complexity: It evaluates the complexity of comparing two alterna-
tives, or the complexity of determining an optimal allocation for a given language;

• Comparative conciseness: For two languages expressing the same content, it evalu-
ates the size required for a given expression.

These characteristics are used to describe different classes of preference structure
in this section. The most widely used preference representations are presented. The
individual welfare evaluation is discussed with some issues related to so-called side
payments.

Families of preference structures

The representation of agent’s preferences has been studied for a long time (Doyle, 2004;
Fishburn, 1970; Mas-Colell et al, 1995). Four families of preference structures can be
distinguished:

• A cardinal preference structure is usually a utility function, denoted by u, which
associates a value from the set Val to all alternatives of the set X:

u : X→ Val.

If Val is a set of numerical values, the preference structure is called quantitative,
whereas if Val is an ordered set of qualitative values, like linguistic expressions,
e.g., {good, excellent, . . . }, the preference structure is called qualitative;

• An ordinal preference structure is a binary relation on alternatives, denoted by �,
which is reflexive and transitive;

• A binary preference structure is simply a partition of the set of alternatives X into
two subsets representing “good” and “bad” alternatives.

• A fuzzy preference structure is a fuzzy relation over X allowing the expression of
a degree of preference:

µ : X2 → [0, 1].

Binary and fuzzy preferences have not been used much as far as resource allocation
problems are concerned. Indeed, binary preferences are very restrictive and once the
“good” alternatives are regrouped, nothing indicates which one should be chosen.
Fuzzy preferences allow the comparison of alternatives by pairs. However, they are
not convenient when a very large number of alternatives must be compared.

Ordinal preferences can only express the satisfaction of an agent for all alternatives.
Intensity cannot be expressed and, given a resource allocation, it is not possible to
determine which agent is more satisfied. These preferences are not much used in a
resource allocation context in Computer Science (Bouveret et al, 2009), because of the
few information revealed.

Even if qualitative cardinal preferences can express intensity, they suffer of similar
drawbacks than ordinal preferences. The satisfaction of two agents possessing different
resources cannot be compared. More formally, there is no relationship between ui(r)
and u j(r′) with i, j ∈ P and r, r′ ∈ R, which are then not comparable.
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The most widely used representation of preferences in Computer Science is the
quantitative cardinal structure. In this thesis, agents express their preferences by nu-
merical preferences. The utility function can then be defined as:

u : 2R → R.

According to suchadefinition, 2R−1valuesmust be specified. However, the exponential
nature of an explicit specification leads to unscalability inmost cases. Then, it is relevant
to consider restricted preference structures.

In Economics, preferences are always represented by ordinal function nowadays
(Mas-Colell et al, 1995). Since there is no comparable scale of values between two agents,
it is not possible to compare the individual welfare of two agentswho own two different
resources. However, the context is generally different from ours. Indeed, economists
always consider human actors only and purely economic applications. However, in
Computer Science, in many classes of applications, agents are not necessarily humans
(e.g., computers or software programs). Resources have nature pretty similar. In such
a restricted context, cardinal preferences represent a plausible assumption.

Quantitative preferences

Utility functions are defined over resource bundles, and we assume that agents’ pref-
erences only depend on the resources they own. The agent’s utility is independent of
the utility of other agents. Such preferences said to be called free of externalities. More
formally:

ui(A) = ui(A[i]) = ui(Ri), i ∈ P, A ∈ A.

Several languages can be used to represent utility functions, and themost important
ones are presented next (Chevaleyre et al, 2006a; Estivie, 2006). Let us consider R =
{r1, r2, . . . , rm} the set of available resources and ρ ⊆ R a subset of resources in order to
illustrate the different forms.

First, the bundle enumeration, also called explicit form, is the most basic form
of utility function. The utility function is a set of pairs 〈ρ,ui(ρ)〉. The bundle form is
obviously fully expressive: Any utility function can be described. The description length
is a major drawback since its exponential length increases with the number of resources
m.

Example 1.2 Let us consider a resource set R = {r1, r2, r3}. According to the bundle enumer-
ation form, the utility function of agent i ∈ P must explicitly describe the utility of all possible
subsets of resources:

ui({r1}) = val1
ui({r2}) = val2
ui({r3}) = val3

ui({r1, r2}) = val4
ui({r1, r3}) = val5
ui({r2, r3}) = val6

ui({r1, r2, r3}) = val7
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Such a representation is fully expressive, but is not succinct since it requires an expo-
nential number of expressions. As well, the computational complexity is also high: The
determination of an optimal allocation requires an explicit consideration of all possible
resource allocations. It represents the major drawbacks of this representation which
cannot be used in practice.

The additive form expresses the utility associated with a given subset of resources
ρ relatively to the utility associated with each resource of this subset ρ (Wellman and
Doyle, 1992). The utility associated with a set of resources simply corresponds to the
sum of the utilities associated with each resource of this set. More formally, a utility
function is additive if and only if there exist, for all resources r ∈ ρ, coefficients αri such
as:

ui(ρ) =
∑

r∈ρ

αri , i ∈ P, ρ ⊆ R.

Example 1.3 Let us consider a set of resources R = {r1, r2, r3}. According to the additive
representation, the utility function of agent i ∈ P only requires the utility of each resource:

ui({r1}) = val1
ui({r2}) = val2
ui({r3}) = val3

The utility value associated with any subset of R can be easily computed from these values. For
instance:

ui({r1, r2}) = ui({r1}) + ui({r2}) = val1 + val2.

Such a representation is not fully expressive since no synergy among resources can be
expressed. However, this representation is very succinct and has a low computational
complexity. This additive form is the one used to represent agent’s preferences in
simulations performed in this thesis.

The k-additive form is inspired by the fuzzy measure theory (Grabisch, 1997; Mi-
randa et al, 2005). It corresponds to a generalization of the additive representation. A
utility function is k-additive if and only if there exists a coefficient αti for each resource
set t of size at most k.

ui(ρ) =
∑

t⊆ρ

αti , i ∈ P, ρ ⊆ R.

The coefficient αti represents the synergy value of owning all resources in the set t. If
agent i owns all resources in a term t, its utility value increases of αti .

Example 1.4 Let us consider a set of resourcesR = {r1, r2, r3}. A utility function can be written
in a polynomial form, where variables r j (the resources) are Boolean values. For instance, a 2-
additive function, which allows the expression of synergy between at most 2 resources, with two
non null coefficient α{r1} = val1 (where ∀ρ ⊆ R, α{ρ} denotes the coefficient associated with the
subset of resources ρ) and α{r2, r3} = val2 can be written as:

ui = val1r1 + val2r2r3

The representation of this utility function according to the bundle form requires the specification
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of 5 terms:

ui({r1}) = val1
ui({r1, r2}) = val1
ui({r1, r3}) = val1
ui({r2, r3}) = val2

ui({r1, r2, r3}) = val1 + val2

The k-additive form is also fully expressive, but only if k is large enough. Such an
assumption is not true in practice since k is generally restricted to a relatively small
value. This form is nevertheless more succinct than the bundle form.

Theweighted propositional formmakes an explicit use of logic (Bonzon et al, 2009;
Chevaleyre et al, 2006b; Coste-Marquis et al, 2004; Lang, 2004; Uckelman et al, 2009).
It is possible to express all kinds of synergy using logic formulas. Each resource r is
represented using a propositional variable, which is true if the agent owns r and false
otherwise. Each propositional formula can be considered as a goal, and a goal base GB
represents the whole set of formulas. Each agent has then a goal base expressing its
preferences. Numerical weights represent the relative importance of the formulas. In-
tuitively, the degree of satisfaction associated with a particular propositional allocation
A is the sum of the weights of the formulas satisfied by this allocation A. However,
different kinds of aggregations can be used instead of a summation.

Example 1.5 Let us consider a set of 4 resources R = {r1, r2, r3, r4}. The goal base can be
expressed as follows:

GB = {(val1, r1 ∧ r2), (val2,¬r1 ∧ r3}), (val3, r3 → r4)}.

According to the resources owned by the agent, the individual welfare can be evaluated:

uGB([r1, r2, r3, r4]) = val1 + val3
uGB([¬r1, r2, r3,¬r4]) = val2

The weighted propositional representation is a fully expressive form since any synergy
among resources can be expressed bymeans of formulas. It is less succinct than additive
preferences and more complex computationally.

The X-OR form is the most widely used binding language. It became a standard in
the expression of preferences in combinatorial auction (Nisan, 2000; Sandholm, 2002).
Agent’s preferences are a set of pairs (ρ, αρ) where αρ is the value associated with the
resource set ρ. At the opposite of the k-additive form, instead of adding all active terms,
the valuation of a bundle is simply the highest value offered for any of its terms.

ui(ρ) = max
t⊆ρ
αti , i ∈ P, ρ ⊆ R.

Example 1.6 Let us consider a set of 2 resources R = {r1, r2}. A utility function can be written
in a polynomial form, where variables r j (the resources) are Boolean values. For instance, an
X-OR utility function can be written as:

ui = val1r1 + val2r2 + val3r1r2
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Let us assume that val1 < val3 < val2. Then, the representation of this utility function according
to the bundle form requires the specification of 3 terms:

ui({r1}) = val1
ui({r2}) = val2

ui({r1, r2}) = val2

Evaluation function

Since the representation of agent’s preferences is clearly defined, issues related to the
determination of the agent individual welfare can now be considered.

Agents determine their individual welfare thanks to an evaluation function. Such
a function may be based on several criteria, including not only the utility function. For
instance, in the case of allocation problems where the use of money is allowed, the
individual welfare of agents can be based on their resource bundle and their wallet.

Inmost studies of the literature, money is considered in allocation problems through
side payments (Sandholm, 1998). When agents trade resources, they may get resources
associated with a lower utility value than the ones they give. Most of the time, agents
are assumed to be selfish, i.e., they can only accept resource transactions increasing
their individual welfare. The agent selfishness prevents transactions to be performed if
one of the participants is not satisfied. If an agent notices a decrease of its satisfaction,
it then refuses the transaction. However, the loss of utility can be compensated thanks
to side payments from other participants. Thus, a transaction, where an agent receives
resources associated with a lower utility value than the ones it provides, can still be
performed if the decrease of satisfaction is compensated by a side payment. In such
systems, the use of money is nevertheless constrained. The quantity of money in the
system is constant. In other words, when agents trade resources adding side payments,
the amount of money given by an agent is equal to the amount of money received by
the other agent. With such a constraint, the overall amount of money does not vary.
However, this amount is not bounded. Indeed, agents have no budget limit. Then,
they are always assumed as rich as required to perform any transaction that seems of
interest.

Example 1.7 Let us consider a transaction δ involving two agents i, j ∈ P, changing the initial
resource allocation A in another one A′ (A,A′ ∈ A). During this transaction, agent i gives one
of its resources, r ∈ Ri, to agent j.

Both agents are here assumed to be selfish. They only accept transactions increasing their
individual welfare. The acceptability of a transaction δ is determined based on the utility
participants get in the new allocation and on the payments they make or receive. More formally,
an acceptability condition can be formulated for each agent as follows:

ui(A′) + p(i) > ui(A)

u j(A′) + p( j) > u j(A).

where p(i) and p( j) are respectively the side payments made during the transaction by agents i
and j. The value associated with a payment function value is positive when agents receive money
while it is negative when they have to pay. Since no money is created during the transaction,
the following relationship is satisfied:

p(i) = −p( j).
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The amount of money given by one agent is equivalent to the amount of money received by the
other agent. According to the transaction, i.e., the gift of a resource r here, the acceptability
conditions can be written as follows:















ui(A) − ui(r) + p(i) > ui(A)

u j(A) + u j(r) + p( j) > u j(A)















p(i) > ui(r)

u j(r) > −p( j)

Both expressions can be combined into a single one:

u j(r) > p(i) > ui(r).

If the amount of money owned by each agent is not bounded, then independently of the util-
ity value associated with resource r by both agents, a compensatory payment satisfying this
expression always exists.

Thus, independently of the conditions that transactionsmust satisfy, any transaction
canbeperformed since they canbe artificially satisfiedusingunbounded sidepayments.
Since such an assumption is not plausible from a practical point of view, side payments
are considered as being beyond the scope of this thesis. Thus, money is prohibited and
the evaluation of the individual agent welfare is restricted to a utility function.

Definition 1.3 (Utility function) An agent evaluates its individual welfare thanks to an
additive utility function ui : 2R → R. When agent i ∈ P owns a set of resources ρ ⊆ R, its
utility is evaluated as follows:

ui(ρ) =
∑

r∈ρ

ui(r), i ∈ P, ρ ⊆ R.

Example 1.8 Let us illustrate the individual evaluation of agentwelfare using a simple example,
based on a population of 3 agents,P = {1, 2, 3}, and a set of 3 available resourcesR = {r1, r2, r3}.
The agent’s preferences are described in Table 1.1. For instance, agent 1 associates with resource
r2 the following utility value: u1(r2) = 7.

Table 1.1: Utility function - Example of agent’s preferences

Population P
Resource Set R

r1 r2 r3 r4 r5 r6
1 10 7 10 9 2 1
2 6 10 3 4 8 6
3 1 2 1 2 1 3

If the initial resource allocation is A = [{r4}{r1, r2, r6}{r3, r5}], then the utility of all agents
can be easily computed as follows:

u1(R1) = u1({r4}) = u1(r4) = 9

u2(R2) = u2({r1, r2, r6}) = u2(r1) + u1(r2) + u2(r6) = 6 + 10 + 6 = 22

u3(R3) = u3({r3, r5}) = u3(r3) + u3(r5) = 1 + 1 = 2
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1.1.3 Social welfare theory

The collective evaluation of resource allocations constitutes an important issue. “How
can the evaluation of an allocation be based on the welfare of each agent in the population?”.
An answer can be found in the literature thanks to the social choice theory (Arrow,
1963; Moulin, 1988; Sen, 1970). The social choice theory, which comes from Economics,
defines a set of tools used tomeasure thewelfare of a society from the individualwelfare
of all agents. Several notions exist, and most of them can be applied to allocation
problems according to different contexts (Arrow et al, 2002; Moulin, 2004; Sen, 1997).
In this section, these notions are successively detailed with their impact on resource
distributions.

Utilitarian welfare

The most widely used notion to evaluate resource allocations is the utilitarian welfare.
The welfare of a population is evaluated through the sum of the individual welfares of
all agents in the society. This notion is often used to maximize the global welfare of a
population, without consideration for individual welfare.

Definition 1.4 (Utilitarianwelfare) The utilitarian welfare of a resource allocation A, denoted
by swu(A), corresponds to the sum of individual utilities.

swu(A) =
∑

i∈P

ui(Ri), A ∈ A.

The utilitarian welfare is not well-adapted to all cases, especially when fairness
among agents is considered. In such cases, the egalitarian welfare is favored.

Egalitarian welfare

The egalitarian welfare of an allocation corresponds to the individual welfare of the
poorest agent in the population. Its maximization tends to reduce inequalities over the
population. Fair sharing is an important issue for many resource allocation problems
(Brams and Taylor, 1996; Moulin, 2004; Rawls, 1999; Sen, 1995).

Definition 1.5 (Egalitarian welfare) The egalitarian welfare of an allocation A, denoted by
swe(A), corresponds to the individual utility of the poorest agent.

swe(A) = min
i∈P

ui(Ri), A ∈ A.

Nash product

The Nash product considers the welfare of the whole population and reduces the
inequalities among agents at the same time (Ramezani and Endriss, 2009). The Nash
product is a social notion that can be viewed as a compromise between the utilitarian
and the egalitarian welfare. This notion is independent of utility scales, and it also
normalizes agent’s utilities. In spite of its qualities, a drawback remains: this notion
becomes meaningless if non-positive values are used.
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Definition 1.6 (Nash product) The Nash product of an allocation A, denoted by swn(A),
corresponds to the product of individual utilities.

swn(A) =
∏

i∈P

ui(Ri), A ∈ A.

Elitist welfare

The elitist welfare is the exact opposite of the egalitarian notion. It only considers the
welfare of the richest agent in the population. This notion can be useful in the context
of artificial agent societies for instance, where agents have a common objective. This
objective must be fulfilled, independently of the agent who achieves it. The elitist
welfare notion is then suitable.

Definition 1.7 (Elitist welfare) The elitist welfare of an allocation A, denoted by sweℓ(A),
corresponds to the individual utility of the richest agent in the population.

sweℓ(A) = max
i∈P

ui(Ri), A ∈ A.

Other notions

Various other notions andproperties exist to evaluate resource allocations. According to
the envy-free notion (Brams and Taylor, 1996), agents evaluate their individual welfare
using a comparison with the resource bundle of others. Indeed, a resource allocation is
envy-free if all agents are at least as happier with their bundle as they would be with
the resource bundle of other agents. More formally, an allocation is envy-free when the
following expression is satisfied:

ui(Ri) ≥ ui(R j) ∀i, j ∈ P.

According to the notion of jealousy, agents evaluate theirwelfare using a comparison
with thewelfare of others. Agents are not jealouswhen their individualwelfare is larger
than the welfare of other agents. More formally, an allocation is jealousy-free when the
following expression is satisfied:

ui(Ri) ≥ u j(R j) ∀i, j ∈ P.

Pareto optimal allocations (Moulin, 1988) are allocations in which no agent can
improve its individual welfare without penalizing the welfare of another agent. Such
a notion does not require any numerical preferences representation. More formally, an
allocation A ∈ A is Pareto optimal if:

∄A′ ∈ A, sw(A) < sw(A′) such as ∀i ∈ P, ui(A) ≤ ui(A′).

Lorenz optimality (Moulin, 1988) is a notion combining utilitarian and egalitarian
aspects of social welfare. The idea is to favor allocations improving the utilitarian
welfare without causing a loss in egalitarian welfare.

Theoretical studies on allocation properties based on these notions have been carried
out (Chevaleyre et al, 2007, 2009; Endriss et al, 2006). In spite of their interest, these
notions are not studied in this thesis. Thus, only the four main welfare notions are
considered, i.e., the utilitarian welfare, the egalitarian welfare, the Nash welfare and
the elitist welfare.



18 Chapter 1. Resource Allocation Problems

Impact on resource allocations

The fourmainwelfare notions have different impacts on resource distributions. Indeed,
the use of a specific welfare notion may induce undesirable properties, which should
be avoided depending on the application context.

Example 1.9 Let us consider a population of 3 agents P = {1, 2, 3} and a set of 6 resources
R = {r1, r2, r3, r4, r5, r6}. Table 1.2 describes the agent’s preferences.

Table 1.2: Welfare impact - Example of agent’s preferences

Population P
Resource Set R

r1 r2 r3 r4 r5 r6
1 10 7 10 9 2 1
2 6 10 3 4 8 6
3 1 2 1 2 1 3

Table 1.3 shows optimal social values and a corresponding resource allocation according to
the different social welfare notions. Characteristics of optimal allocations are then discussed.

Table 1.3: Optimal allocation examples for all welfare notions.
Social welfare Value Resource allocation

swu 53 [{r1, r3, r4}{r2, r5, r6}{}]
swe 8 [{r1}{r5}{r2, r3, r4, r6}]
swn 1800 [{r1, r3}{r2, r5}{r4, r6}]
sweℓ 39 [{r1, r2, r3, r4r5, r6}{}{}]

The use of the utilitarian notion leads to a resource allocation where one agent, agent 3, does
not get any resource. Indeed, some agents may be neglected, especially if, for each resource,
there exists another agent who associates with it a larger utility value. Such a situation may be
unreasonable.

The use of the egalitarian welfare leads to a resource allocation that provides at least one
resource to each agent. Thus, if the number of available resources is greater than the number
of agents (n < m), no agent is neglected in egalitarian allocations. However, the resource
distribution can be very unbalanced. Agents with low preferences, like agent 3, drain resources.
Such agents may obtain most of the resources in order to compensate for their low preferences.

The Nash product also leads to a resource allocation where all agents get at least one resource,
as in the egalitarian case. However, the optimal allocation ismore balanced, avoiding the draining
phenomenon. Nevertheless, this notion can only be used if the agent’s utility values are positive.

The elitist social welfare neglects all agents except one and leads to an allocation where all
resources are in the same bundle (when utility values are positive). This last notion is mainly
used when it is essential to achieve the objective, independently of the agent who achieves it.

Finally, let us note that the welfare value achieved according to these different notions are
quite different. However, their comparison is meaningless since the different welfare notions
are used for different purposes. The choice of a specific welfare notion only depends on the
application context.
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1.2 Centralized approaches

Obviously, resource allocation problems can be solved using centralized approaches.
Such approaches consider resource allocationproblems as optimizationproblems. They
are appropriate to solve many application classes. However, they are not adapted to all
cases since they make specific assumptions, even implicitly, which may prevent their
use under different conditions. These assumptions are detailed in this section. Then,
we discuss application characteristics according to which centralized solving processes
are not adapted. Finally, we describe applications that can be solved efficiently using
centralized models.

1.2.1 Description

All centralized techniques are based on the same principle. The solving process can be
decomposed into three main steps as described in Figure 1.2: information gathering,
computations, and the notification of the outcome to all agents.
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Figure 1.2: Principles of centralized techniques

First, all agents of the population must send their private information to a central
entity, i.e., their preferences and a list of the resources they own. This central entity
can be either an agent or an external entity. The central entity can be considered as
omniscient since it gathers all information: It knows preferences of all agents and a
complete list of resources available in the system. According to a predefined objective,
e.g., a social welfare notion as defined in Section 1.1.3, the central entity determines
a resource allocation maximizing this objective. Finally, once computations are over,
it notifies all agents what they get and then it allocates resources accordingly. Let us
note that these methods do not consider that resources are initially allocated anywhere.
They assume that all resources are available and just determine optimal allocations.

Resource allocation problems are assimilated to optimization problems. Such cen-
tralized approaches canbeused to solve some classes of applications, while other classes
cannot use them in a reasonable time. Since the solution space is finite according to
Proposition 1.2, an exact centralized method always exists. Indeed, the explicit enu-
meration of all solutions, keeping the one maximizing the objective, is always possible.
However, since the solution space is exponentially large, this method is not scalable at
all. Other limitations are described in the next section.
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1.2.2 Limiting cases

Centralized solving processes cannot be used to efficiently solve some classes of prob-
lems. These applications have specific features, described in this section, that can be
viewed as drawbacks. Some are directly related to the application context, whereas
others are related to implicit assumptions made by centralized approaches.

Dynamic applications cannot be solved efficiently using centralized approaches.
Indeed, in dynamic applications, data evolves constantly and these methods cannot
handle such evolutions. In order to consider new data, they have to restart a complete
solving process. A continuous evolution of the initial data cannot be handled properly.
Adaptive processes are then essential to efficiently solve dynamic applications. For
instance, in peer-to-peer applications, e.g., file sharing applications (Deshpande and
Venkatasubramanian, 2004; Ge et al, 2003), agents continuously enter and leave the
system, bringing new files to share with others. Thus, centralized techniques are not
well-adapted to the solution of dynamic problems. Applications can be considered as
dynamic when the time required for the solving process exceeds the time between two
data evolutions.

Scalability issuesmay quickly arise according to the population size and the num-
ber of resources available in the system. Indeed, a resource allocation problem based on
a population P of n agents and a resource set R of m resources leads to an exponential
number of allocations, according to Proposition 1.2. Thus, large problems may be un-
scalable. Even if the solving process is centralized, computations may be distributed.
Indeed, there exists optimization problems with distributed constraints (Petcu et al,
2006). According to the problem structure, the distribution of computations may be
more or less efficient. The improvement of the scalability due to the distribution is
limited anyway.

Information privacy. An important limitation is related to the issue of information
privacy. Indeed, depending on the application context, agents may need to keep in-
formation private. Especially when Internet-based applications are considered, more
and more people do not want to disclose private information to everybody, such as
personal preferences on resources. However, no privacy notion is possible when using
centralized processes. The central entity must gather the resource list and the pref-
erences of all agents in order to determine the best resource allocation, according to
the objective. Thus, when privacy is required, centralized methods are not suitable.
Two notions must be distinguished: selfishness and privacy. Even if agents want to
keep some information private, they are not necessarily selfish. Agents may have a
common objective and hence a cooperative behavior, but also do not want to report all
private information. At the opposite, selfish agents generally refuse to disclose private
information (Nisan, 1999; Sen, 1996). These notions are not equivalent and must be
distinguished.

Communication abilities. Centralized processes provide allocations but do not
consider the way to achieve them in practice. They assume that provided solutions
can always be applied. It is also possible to find transaction sequences leading to
such solutions using centralized methods, but it may not be scalable even with data
instances of moderate size. They implicitly assume that any agent can communicate
with all the other agents in thepopulation. Such an assumption is not plausible formany
applications. Indeed, in any application based on a community, an agent only knows a
small subset of the overall population, and it can only talk to this subset. For instance, in
apeer-to-peer network, apeer onlyknowsa subset of thewholepopulation. Centralized
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approaches do not focus on the way to achieve the provided resource allocations in
practice. Since they assume complete communication abilities, they also assume that a
resource can always circulate without restriction from its initial owner to its final owner
in the final allocation. Thus, when restricted communication abilities are considered,
the solutions provided by centralized techniques may not be achievable in practice.
Restricted communication abilities interfere in the resource circulation, which may
then prevent their achievement. The identification of a transaction sequence leading
to optimal allocations cannot be solved in a scalable way by centralized approaches.
When restricted communication abilities are considered, no simple test can determine
whether or not a path of satisfying transactions exists leading to an optimal solution.
The complexity of such problems is exponentially larger than the complexity of simple
allocation problems.

1.2.3 A typical application: combinatorial auction

Centralizedmethods are very efficient for several classes of applications. Indeed, one of
themost popular applications inEconomics can be solvedusing centralized approaches.
Auction problems have been widely studied (Bellosta et al, 2006; Boutilier et al, 1999;
Cramton et al, 2006; De Vries and Vohra, 2003; Nisan, 2000; Sandholm, 2002). Various
kinds of auctions exist, and different models can be used to solve them.

Auction problems fit very well with centralized solving methods. Indeed, agents
represent auction clients. In practice, clients report their preferences over resources to
an auctioneer, who is the central entity. This auctioneer can then determine optimal
outcomes and allocates resources to clients accordingly.

Many kinds of auction exists (Krishna, 2002): English auction also called “open
ascending price auction”, dutch auction also called “open descending price auction”,
sealed first-price auction or first-price sealed-bid auction, Vickrey auction or sealed-bid
second-price auction, . . . . These four types of auctions are only themost important, but
many others exist. Each kind requires a specific model in order to be solved efficiently.
This application class is very rich and many issues are still open (Lehmann et al, 2006;
Sandholm, 2002).

Generally, centralized approaches are efficient when the applications exists have
some suitable features. Any static application where no specific relationship among
agents can be solved efficiently using centralized approaches. If no privacy is required
or if we are just interested in results themselves and not in the way of achieving them,
centralized solving techniques are favored.

1.3 Distributed approaches

Alternativemethods have been developed in order to overcome the limits of centralized
methods. These methods are based on the notions of agents and multi-agent systems
(Ferber, 1999;Woolridge, 2001). Moreover, standard allocation problems becomemulti-
agent resource allocation problems that can be solved thanks to agent negotiations. In
contrast to centralized techniques, agent-based approaches are scalable and adaptable,
i.e., large dynamic systems can be handled as well as restricted relationships among
agents. We first describe the principles of these solving processes and identify the
main characteristics of suitable applications. We then discuss several issues related
to the importance of considering agent relationships. We also explain why provided
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allocations can be viewed as emergent phenomena. Finally, some application examples,
for which centralized approaches are not adapted, are finally presented.

1.3.1 Description

The principles of distributed approaches (Moulin andChaib-Draa, 1996) are fundamen-
tally different from the centralized ones. In agent-based methods, agents participate
actively in the determination of allocations optimizing the objective. Solving processes
start here from initial resource allocations, which evolve step by step using local ne-
gotiations among agents. Such solving processes correspond to negotiation processes,
which are illustrated in Figure 1.3.
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Figure 1.3: Principles of distributed methods

Figure 1.3 shows a negotiation process based on a population of 4 agents, P =
{0, 1, 2, 3}, and a set of 5 resources,R = {�,�,!, ♣,♠}. The communication possibilities
are represented by a graph: Twonodes directly linked can communicate. Different steps
of the negotiation process are illustrated. It starts from an initial resource allocation
A0 = [{�,�}{♣}{♠}{!}]. Agents 0 and2negotiate first andfinallyprovide two resources,
respectively ♠ and �. Exchanges are represented by dotted links on the figure. The
initial resource allocationA0 evolves into a newallocationA1 = [{�♠}{♣}{�}{!}]. Thus,
a sequence of local transactions among agents leads to the final resource allocation,
which constitutes the solution provided by the negotiation process.

Agent-based solving techniques handle resource allocationproblemsby considering
different aspects. Situations for which distributed solving processes are more suitable
than centralized ones are discussed next.

1.3.2 Characteristics

Adaptivity. Multi-agent systems are widely used to model dynamic phenomena. Re-
source allocation problems which are solved using a multi-agent system can model
dynamic applications. Arrivals and departures of agents during the solving process do
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not lead to restart the whole process. Since multi-agent systems are naturally expand-
able, they can manage the continuous evolution of data.

Social graph. Relationships among agents can be considered and modeled using
multi-agent systems. The communication possibilities of agents are represented thanks
to social graphs. According to the topology of a social graph, two agents can com-
municate if they are directly related in the graph. Restricted communication abilities
influence a lot the efficiency of negotiation processes since they restrict the resource cir-
culation. Such restrictions are widely encountered in various applications. Especially
in the case of large systems, like Internet, complete communications possibilities are
neither possible nor plausible.

Applicability. Since the solution of resource allocation problems is the result of
local negotiations among agents, a sequence of transactions is identified, from initial
resource allocations to the final solutions. Thus, allocations provided by multi-agent
approaches can always be achieved independently of the agents’ communication abili-
ties. However, the applicability should be moderated. A transaction sequence leading
from the initial solution to the final solution is identified with respect to the agents’
communication abilities. However, since agents only have a limited view of the sys-
tem, they cannot be sure that the negotiation process will end. In order to be sure that
negotiation processes end, a centralized coordinator is required.

Scalability. Multi-agent systems are also highly scalable compared to centralized
approaches. Indeed, a multi-agent system is populated by autonomous agents. This
characteristic allows an easy distribution of the computations. Very large populations
can be handled in a scalable way since computation costs can be split over the popula-
tion. In the case of negotiation processes, while one negotiation remains scalable, large
populations can be handled. However, if the determination of a transaction requires an
exponential time, it is obvious that the overall solving process cannot be scalable.

Heterogeneity. Multi-agent systems handle homogeneous populations, where all
agents act according to the same behavior, as well as heterogeneous populations, where
each agent acts according to its own behavior. Such notions are not taken into account
in centralized techniques. Large heterogeneous populations can be managed quite
easily using new design approaches, like the IODAmethodology (Interaction Oriented
Design Agent simulation) which focuses on the agent interaction instead of the agent
behavior (Kubera et al, 2008). A simulation is characterized by a matrix, which defines
the interactions that occur between agents with respect to their type. The combined use
of interaction matrices with generic interactions allows convenient simulation designs.
For instance, free-rider issues are widely studied in file sharing problems (Groves and
Ledyard, 1977; Morge and Mathieu, 2007). In such applications, two kinds of agents
can be distinguished: purely selfish agents who only get the media contents without
providing anything to others, and generous agents who do both operations. They
study the rate of free-riders in a population and its impact on the service efficiency.
Their aim is to design agent behaviors discouraging others to act selfishly. Even if
the management of heterogeneous populations is possible, this thesis only focuses on
homogeneous populations. Indeed, studies on heterogeneous populations deal mainly
with evolutionary issues (Hofbauer and Sigmund, 2003; Weibull, 1997), which is a topic
beyond the scope of this study.

Information privacy. Depending on the required level of privacy, a negotiation can
be designed in a suitable way. Depending on the quantity of information that agents
accept to disclose, different negotiation protocols can be designed. Indeed, negotiation
protocols influence the efficiency of solving processes. The more information agents
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accept to reveal, the more accurate are negotiations, and hence more efficient is the
identification of acceptable transactions. Indeed, a negotiation protocol based on bi-
nary information is very limited, i.e., a yes/no answer contains only few information,
whereas the expression of a degree of envy on resourcesmay help to identify acceptable
transactions.

The social graph: an essential issue?

Various studies have been carried out to solvemulti-agent resource allocation problems,
but only few of them consider restricted communication among agents. Distributed
solving methods can model them using social graphs. Studies focusing on distributed
techniques can be classified in two main classes. The first set of studies is mainly
theoretical and aim to prove the existence of solutions or to identify mathematical
properties favoring the achievement of optimal solutions. The second set of studies
mainly concentrate on mechanisms required to achieve these solutions.

An approach to solve the task reallocation problem uses marginal cost for different
classes of transactions (Sandholm, 1998). He analyzed the characteristics of local optima
avoided by each transaction class. He also established theorems on the existence or not
of transaction sequences leading from any initial resource allocation to optimal ones,
depending on the transaction allowed during negotiation processes. These transaction
classes and their efficiency have been assessed (Andersson and Sandholm, 1998) but
the evaluation is restricted to a small number of resources with a small population (less
than 10 resources and 10 agents). Each agent can always communicate with all other
agents. Other authors consider the contract sequencing (Andersson and Sandholm,
2000). They described a protocol to solve the multi-agent Traveling Salesman Problem,
and they compared strategies. However, only relative comparisons are performed and
the communication possibilities are always assumed to be complete. Their work has
been extended with studies mainly related to the transaction sequence length (Dunne,
2005). The author established bounds on the length of transaction sequences required to
achieve optimal allocations. He also introduced a new transaction class and evaluated
its efficiency. However, restricted communication possibilitieswere still not considered.
Amulti-agent systemwas proposed to solve distributed resource allocations relying on
amarket bidingmodel(Chavez et al, 1997; Clearwater, 1996). These authors specifically
addressedCPU time allocation problems. However, they did not compare the efficiency
of their allocation processes with optimal solutions. Classes of utility functions and
payment functions have also been studied to design convergent negotiation processes
(Chevaleyre et al, 2005). Authors analyzed the mathematical properties of different
functions and identified sufficient and necessary conditions to ensure the convergence
of negotiation processes. These negotiation processes have been evaluated using social
welfare theory (Moulin, 1986; Arrow et al, 2002). They established convergence results
dependingon the transaction classes allowedduring thenegotiations. Theyalso studied
different scenarios corresponding todifferent preference representations and todifferent
acceptability criteria (Endriss et al, 2006). However, they never considered restricted
agent’s communication abilities. These studies designed abstract frameworks, but none
of them is able to exhibit acceptable transaction sequences leading tooptimal allocations.
Moreover, none of these studies proposed the agent’s behaviors to implement in order
to negotiate efficiently in practice. Negotiation protocols were also designed where no
common knowledge is available (Saha and Sen, 2007) or when agents express multi-
criteria preferences (Hemaissia et al, 2007). However, the communication possibilities
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of agents are always assumed to be complete. Such an hypothesis restricts a lot the field
of applicability once more.

Since the “agents’ communication abilities” facet of resource allocation problems
was not considered in former studies, it is legitimate to investigate the importance of
such a parameter. Negotiation processes, which lead to optimal solutions according to
complete communication possibilities (i.e., based on complete social graphs), may only
lead to solutions far from the optimum, when communications are restricted.

Property 1.3 (Social graph impact) Independently of the objective function considered, a
restricted social graph may prevent the achievement of optimal resource allocations.

Proof. Let us prove this proposition using a counter-example, based on a population
of 3 agents P = {1, 2, 3}, and a set of 3 available resources R = {r1, r2, r3}. The agent’s
preferences are described in Table 1.4.

Table 1.4: Social graph impact - Example of agent’s preferences

Population P
Resource Set R
r1 r2 r3

0 3 1 9
1 1 4 1
2 10 2 3

The social graph is described in Figure 1.4. In this social graph, agents 0 and 2
cannot communicate. This figure also describes an initial resource allocation, which is
A = [{r1}{r2}{r3}].
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Figure 1.4: Social graph impact - Social graph example

Agents are assumed to be selfish in this example, i.e., they only accept transactions
increasing their own utility. Under such conditions, no transaction can be performed as
described in Table 1.5. This table lists the possible resource exchanges and shows that
none increases the utility value of all participants. Only two exchanges are possible:
between agents 0 and 1 who respectively exchange resources r1 against r2, and between
agents 1 and 2 who then exchange resources r2 against r3. Both cases lead to a decrease
of the utility of at least one participant.

Table 1.5: Social graph impact - Set of possible transactions

Transaction
Agent’s utility ui
u0 u1 u2

Initially 3 4 3
r1 ↔ r2 1 1 3
r2 ↔ r3 3 1 2

However, the exchange of r1 against r3, which leads to an increase of the utility
of both participants, is not possible since they cannot communicate according to the
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graph topology. If the utilitarian welfare is the social objective to maximize, then the
allocation A = [{r3}{r2}{r1}] represents an optimal solution, which cannot be achieved
since the agent communication possibilities are restricted. �

Restricted social graphs also have an indirect influence on the negotiation process.
The order according to which agents negotiate is not important when complete social
graphs are considered. Indeed, resources can always be traded with all other agents.
However, this order becomes an important parameter when considering a restricted
social graph.

Property 1.4 (Negotiation order) Independently of the objective function which is considered,
the order in which agents negotiate with each other may prevent the achievement of optimal
resource allocations.

Proof. Let us prove this proposition using a counter-example, based on a population
of 3 agents P = {1, 2, 3}, and a set of 3 available resources R = {r1, r2, r3}. The agents’
preferences are described in Table 1.6.

Table 1.6: Negotiation order - Example of agent’s preferences

Population P
Resource Set R
r1 r2 r3

0 2 10 4
1 5 3 9
2 2 7 1

The social graph and the initial resource allocation are described in Figure 1.5. In
this social graph, agent 0 cannot communicate to agent 2 and the initial allocation is:
A = [{r1}{r2}{r3}].

0

{r1}

1

{r2}

2

{r3}

Figure 1.5: Negotiation order - Social graph example

Let us assume that agent 1 initiates a negotiation. Depending on which neighbor it
selects to negotiate first, with respect to its behavior, the negotiation process may end
with sub-optimal allocations instead of optimal ones. We assume here that the objective
is themaximization of the utilitarianwelfare, but examples can be designed for all other
notions.

Table 1.7 lists the possible transactions depending on who the initiator selects to
negotiate with. As described in this table, if agent 1 first chooses agent 0, the exchange
leads to a sub-optimal allocation from which the negotiation process cannot leave.
If the initiator first selects agent 2, then the negotiation process ends on a socially
optimal allocation. Hence, the optimum can only be achieved using a specific order of
negotiation.

�

Thus, the social graph represents an important issue since its topology may prevent
the achievement of an optimal resource allocation in practice. Its influence on the
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Table 1.7: Utility of agents according to the initiator partner

Negotiating agents
Agent’s utility ui Welfare
u0 u1 u2 swu

Initially 2 3 1 6
Agent 0↔ Agent 1 10 5 1 16
Agent 1↔ Agent 2 3 7 2 17

efficiency of negotiation processes must be considered and should not be omitted as it
has been done in former studies.

An emergent phenomenon?

The concept of “emergence” is used by different communities but there still does not exist
an agreement around a common definition (Corning, 2002; Goldstein, 1997; Serugendo
et al, 2006). Indeed, there are as many definitions as users of this concept!

However, an operational definition of the concept of emergence is established (Ca-
pera et al, 2003). According to (DiMarzoSerugendoet al, 2006), thisdefinition, proposed
by computer scientists, is based on two main issues:

• The subject. The objective of a computational system is to achieve an adequate
function. This function, which may evolve during time, has to emerge.

• The condition. This function is emergent if the coding of the system does not
depend on any knowledge related to this function. This coding has to contain the
mechanisms allowing the adaptation of the system, so as to tend anytime towards
the adequate function.

According to this operational definition of emergence, our distributed approach
based on agent negotiations provides resource allocations that can be viewed as emer-
gent phenomena. Conditions to have an emergent phenomenon is to have a global
objective function, and local mechanisms that have no knowledge on this objective
function. In practice, agents have only a local view of the system. At most, they can
collect information from their neighborhood with respect to the social graph topology.
No agent is able to knowwhat is exactly the current resource allocation at a given time.
Agents only know their own resource bundle. It is then not possible for them to know
the value associated with the objective function.

1.3.3 Application examples

Many problems studied by the Computer Science community can be modeled as re-
source allocation problems.

Over the past years, there has been an increasing interest for routing problems and
network designs, in relation to self-organization issues (Serugendo et al, 2006). How
a network is designed is an important issue that influences its efficiency. Multi-agent
approaches can be used to design or maintain large networks (Anshelevich et al, 2008).
Each edge of the network has a cost, and agents try to minimize this cost, according
to some connectivity requirements for instance. Characteristics like performance or
resilience of resulting networks can be studied (Chun et al, 2004). According to the
cost function which is considered, various topologies can be generated, and the control
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of nodes degree, i.e the number of neighbors per node, appears to be of great impor-
tance in order to control the network balance. Recently, several studies addressed the
design of peer-to-peer networks. Such networks are dynamic and their growth may
alter the efficiency of the services that they provide. For instance, in the case of file
sharing applications, bottlenecks may appear as a result of the constant evolution of
the overlay. A proper adaptation of the overlay is essential to maintain the quality
of service (Ni and Liu, 2004; Hales, 2004). Based on a specific overlay, selfish routing
can be addressed using multi-agent resource allocation problems (Gairing et al, 2008;
Gibney and Jennings, 1998). In such applications, agents have to assign traffic to one of
their links. Generally, traffic of other agents is unknown. Efficient load-balancing can
be achieved in this way based on any kind of topology. Several grid computing issues
can also be modeled as multi-agent resource allocation problems. For instance, tasks
should be uniformly split among different nodes in order to speed up computations
(Buyya et al, 2002; Galstyan et al, 2005). Thus, load balancing can be performed using
agent-based techniques. Usually, resources of such systems are CPU time.

Supply chain problems are based on a network of facilities, which perform pro-
curement of materials and transformations of these materials into different products,
intermediate products as well as finished products (Kaihara, 2003). Facilities can per-
form different tasks on products. According to the manufacturing process, tasks must
be performed in a specific order. The dependencies among tasks that can be performed
by facilities represent a social graph. The resources are the time of engine usage. Vari-
ous criteria can be considered in such a problem. Material flows must be organized in
order to maximize the production of facilities, to minimize the cost of transportation
and distribution, to respect production delays, . . . . Some agent-based approaches are
proposed to solve the distributed manufacturing scheduling (Shen, 2002; Sycara et al,
1991). The aim of such systems is to maximize the global efficiency. However, no
client can be completely neglected and see its products manufactured too late. The
Nash product seems to be a welfare notion of interest in such situations. Continuous
planning issues under spatial constraints are also addressed (Sahli and Moulin, 2009).
Spatially-aware agents are used to solve complex planning problems in real dynamic
and large-scale spaces.

Applications based on social networks become more and more popular nowadays.
Social networks regroupmost of the time peoplewho have elements in common such as
preferences, geographic locations, friendships and blood relationships. Such a network
represents the social graph on which is based an agent negotiation process. When
agents are related, they have common interests and they are able to negotiate their
resources. Recently, many Internet applications based on barter appear on the Internet.
For instance, in services like www.homexchange.com or www.gchangetout.com, clients
are related according to their preferences. They would like to lend their own house
for a given number of weeks, in order to obtain the same number of weeks in another
house located in an area corresponding to their wish. The aim of such a barter system is
to satisfy all members of the community, which corresponds to an egalitarian problem.
Such a system can be easily modeled by means of cooperative agents. All agents enter
in the community bringing at least one resource: their house. The aim of all agents
is similar. They want to find a house to exchange with their own house for a given
vacation period. All agents express preferences on the kind of house they wish, on the
location and on the time period. Resources that agents offer andwish from other agents
represent connections among the agents, which constitute a social graph. Two agents
are related if one of them offers a resource (i.e., an house during an acceptable time
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period) that interests the other, or if they have close interests. An agent who stays with
its own house is a situation associated with a very weak satisfaction. However, when
an agent who lends its own house but does not get any in return, this corresponds to
the worst situation that is associated with either a negative utility if such values are
allowed, or with a null utility otherwise. The aim is to provide an house to every
community members during their vacation period.

1.4 Summary

In this chapter, allocation problems have been described and their three main charac-
teristics have been presented.

• Nature of resources: Resource properties have an important influence on alloca-
tion problems. Depending on them, efficient solving processes in a given context
may be completely inefficient in another context. We specifically address allo-
cation problems in which resources are assumed to be discrete, not divisible, not
sharable, and static.

• Preferences representation: Agent’s preferences also deeply affect allocation
problems. We choose to use a cardinal quantitative representation of preferences.
Agents express them using an additive utility function. Compensatory payments
are prohibited in this thesis.

• Collective evaluation: From the society’s point of view, allocations can be evalu-
ated thanks to social welfare notions and negotiation settings must be designed
according by. In this thesis, four main notions are considered: the utilitarian
welfare, the egalitarianwelfare, the Nashwelfare and the elitistwelfare.

Centralized solving approaches have been described. They are well-adapted in
some cases, e.g., for auction problems, but are not applicable when applications are dy-
namic or when privacy is required by agents. In this context, we discussed distributed
methods. These two kinds of approaches do not address the same problems. Based on
agent negotiations, distributed methods provide a sequence of transactions to achieve
the provided solutions in practice, and they can handle restricted communication pos-
sibilities. A suitable design is nevertheless required to achieve allocations as emergent
phenomena. The next chapter is dedicated to the negotiation design and provides a
description of the different parameters that we choose to consider to set up negotiation
processes.



30 Chapter 1. Resource Allocation Problems



Chapter 2

Distributed Negotiations

In this chapter, multi-agent negotiation problems are described. The combined use of
negotiations and multi-agent systems raise several important issues, which are never
addressed in centralized approaches. We will discuss issues related to the design of
solving processes, focusing on agent behaviors and trying to answer a crucial question:
“Howdoagents need to behave in order to leadnegotiationprocesses to socially optimal
solutions?”

The challenges related to the design of negotiation processes are described in Section
2.1, where we explain the difficulties related to such a process. Then, formal definitions
of negotiation problems and agents are presented in Section 2.2. Their features are
successively detailed in the next sections. Restrictions on agent communications are
presented in Section 2.3, which describes different topologies of relationships that can
bemodeled and have their typical characteristics. Then, different classes of transactions
are presented in Section 2.4. Section 2.5 details the decision-making criteria used by
agents, i.e., the conditions that transactions must satisfy in order to be performed.
Section 2.6 discusses agent behaviors, and presents different methods to model agents’
interactions. Finally, we present in Section 2.7 the evaluation of negotiation processes
and the metrics used during the experiments that we carried out.

2.1 Challenges

The design of negotiation processes is an essential issue affecting a lot their efficiency.
Different techniques based on multi-agent systems have been described in Section 1.3
with an emphasis on their advantages, but a suitable design is required to benefit from
them. The challenges related to the negotiation process design can be illustrated by a
proposition of (Sandholm, 1998), whichwas initiallywritten in a task allocation context.

Property 2.1 ((Sandholm, 1998), path) A sequence of resource purchases (O-contracts) al-
ways exists from any resource allocation to the optimal one. The length of the shortest path is at
most m (the overall number of resources).

Proof. The transaction sequence can be constructed by moving a resource one at a time
from the agent that initially owns it to the agent that gets it in the globally optimal
resource allocation. �

According to Proposition 2.1, a path of O-contracts, which corresponds to the pur-
chase of a resource, always exists between any initial allocation to an optimal one.

31
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Although this proposition is proposed in the case where communications are not re-
stricted, it is still valid in the context of restricted communication possibilities, if no
agent group is isolated from the others. Indeed, the proof is based on the existence of a
path between any pair of nodes in the graph, which is always satisfied when the graph
is complete. Such a path also exists if the restricted graph is connected. However, the
length of the shortest path can be longer than m depending the agents’ relationships.
Resources may have to go through different bundles in order to achieve an optimal
solution. In practice, the main issue is to identify such a path.

In order to find it, agents have to accept any transaction. Resources should then
freely circulate among the agents in order to finally be owned by the agent that has it
in a globally optimal resource allocation. According to agent-based method principles,
the initial allocation evolves thanks to local transactions among agents. However, since
agentsmust accept any transaction, theydonot distinguish aprofitable transaction from
another one. Thus, agents negotiate endlessly and the negotiation process cannot end.
Even if an optimal resource allocation is achieved during the solving process, agents
continue to negotiate and perform new transactions. This optimal resource allocation
is then lost.

Agents must be able to identify profitable transactions. Agents should be au-
tonomous and their decision-making should be based on a local acceptability criterion.
This criterion must only be based on the information that agents can get themselves
during a negotiation. When no agent can identify an acceptable transaction within its
neighborhood, the negotiation process is over. The resource allocation achieved at this
moment is the solution provided by the distributed negotiations. This is an important
issue in order to ensure the quality of achieved allocation. Negotiation processes must
be finite, agents must be able tomake their own decision based on local information un-
til no agent identifies acceptable transactions. These features can be achieved through
a suitable design of agent behaviors and the choice of an appropriate acceptability
criterion.

2.2 Definitions

A resource allocation problem in an agent society can be solved thanks to negotiation
processes among agents. Such problems can be distributed using the notion of agent.
Instead of maintaining an up-to-date state of the whole system and of all entities’
information in a single location, they are distributed inside agents. The notions of
negotiation problem and agent, which are closely related, can be defined as follows:

Definition 2.1 (Negotiation Problem) A negotiation problem is a tuple 〈P,R,T〉, where
P = {1, . . . ,n} is a finite population of n agents, R = {r1, . . . , rm} is a finite set of m resources,
and T corresponds to the set of transactions allowed during the negotiation process.

The transactions that can be allowed are presented later, in Section 2.4. An agent
can be defined in a generic way by a resource bundle, a utility function describing its
preferences, a list of agents with whom it is able to communicate, a behavior describing
how it interacts with other agents and an acceptability criterion related to its decision-
making.

Definition 2.2 (Agent) An agent i ∈ P is a tuple 〈Ri,ui,Ni,Bi,Ci〉, where Ri is its set of mi

resources, ui is its utility function, Ni is the list of ni neighbors, Bi defines the agent behavior
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according to which the agent negotiates, and Ci is its acceptability criterion on which are based
its decisions.

Preferences of agent i are defined according toDefinition 1.3 bymeans of additive utility
functions. The behavior Bi describes agent i from an external point of view, whereas
the acceptability criterion Ci describes it from an internal point of view. Indeed, the
behavior describes how an agent interacts with others while the acceptability criterion
corresponds to the conditions that a transaction must satisfy in order to be performed.
This criterion thus represents the central condition of the agent decision-making. Be-
haviors and acceptability criteria are respectively detailed in Sections 2.5 and 2.6.

Twonotionsmust bedistinguished. First, anegotiation seeks to identify anacceptable
transaction among agents. A negotiation is defined by interactions among agents (see
Section 2.6). A negotiation process seeks to find a path of acceptable transactions, and
thus includes many negotiation problems. In this thesis, we always consider a specific
negotiation problem based on an agent population P, a set of resources R which are
initially distributed over the population, and a set of transactions T allowed among
agents of the population.

2.3 Social graphs

At the opposite of centralized solving processes, which always assume complete com-
munication possibilities, solvingmethods based onmulti-agent systems can handle the
notions of neighborhood and social graph.

Definition 2.3 (Neighborhood) The neighborhood of agent i ∈ P, denoted byNi, is a subset
of the population P with whom it is able to communicate.

Ni ⊆
(

P \ {i}
)

, i ∈ P.

A graph of relationships, which we call a social graph, can be extracted from the
neighborhood of all agents.

Definition 2.4 (Social graph) The social graph G is a graph of relationships describing the
communication possibilities among agents of a population P. In such a graph, nodes repre-
sent agents, and an edge between two nodes means that the corresponding agents are able to
communicate.

Property 2.2 (Relationship symmetry) Let ei j be an edge of a social graph G between two
nodes i and j. This edge means that both agents i, j ∈ P are directly related. If agent j is a
neighbor of agent i, then agent i must also be a neighbor of agent j. More formally:

ei j ∈ G ⇒ j ∈ Ni and i ∈ N j, i, j ∈ P.

Such relationships are represented by non-oriented graphs.

The different classes of social graphs can be grouped into three main classes:

• Complete graphs;

• Structured graphs;

• Random graphs.
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First, negotiation processes based on complete social graphs can be compared to
centralized approaches. Indeed, both of them assume complete communication possi-
bilities among all the agents, and then have similar solving conditions. However, such
graphs are only used to carry out comparisons between distributed results and the ones
provided by centralized techniques.

Then, graphswith regular topological characteristics belong to the class of structured
graphs. For instance, a graph where all agents have the same number of neighbors
belongs to this class. Structured graphs also include some specific topologies like grids
(Berman et al, 2003), rings or trees.

Finally, unstructured graphs have an irregular topology. Several classes of random
graphs exist (Bollobás, 2001), like Erdős-Rényi graphs (Erdős and Rényi, 1959), free-
scale graphs or small worlds generated either by preferential attachment or by circle
rewiring (Albert and Barabási, 2002). The probability distribution is uniform when
Erdős-Rényi graphs are considered. Links between any pair of nodes have the same
probability to be generated. In small-worlds, the larger number of neighbors has a
node, the larger is the probability to link this node. Such topologies correspond to
real-life graphs like the Internet. The algorithms used to generate the classes of social
graphs considered in this thesis are detailed in Chapter 3.
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Figure 2.1: Classes of social graphs

Different classes of social graphs are illustrated in Figure 2.1. We will select specific
graphs for the experiments in Chapter 3: complete graphs, grids, Erdős-Rényi graphs
and small-worlds. These graphs correspond to a representative sample of what can be
encountered in most applications. Indeed, their characteristics vary significantly when
these graphs are evaluated with the most widely used metrics (Biggs et al, 1986), which
are described in the next paragraphs.

Themean connectivity, which corresponds to the mean number of neighbors, goes
from n − 1 with complete graphs (where n is the overall number of agents) down to
four neighbors in grids. If ni is the number of neighbors of agent i, it can be evaluated
as follows:

connectivity =
1
n

∑

i∈P

ni.
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The clustering coefficient is a metric that quantifies how well connected is the neigh-
borhood of an agent. Themore the neighbors of an agent are directly related, the higher
is the clustering coefficient. This coefficient is weak when grids are considered since
the four neighbors of an agent are not related directly, whereas the clustering coefficient
becomes highwhen complete graphs are considered since the neighborhood of an agent
is completely connected.

clustering =
1
n

∑

i∈P

2|{e jk}|

ni(ni − 1)
j, k ∈ Ni, e jk ∈ G;

with n the overall number of agents, ni the number of neighbors of agent i, and e jk an
edge between two neighbors j, k of agent i.
Another important characteristic is the mean-shortest path length. This metric de-
scribes the mean closeness among agents. In grids, two agents may be far from each
other (e.g., the opposite corners of a grid) whereas in small-worlds, the mean distance
between any pair of agents is really small. If di jmin denotes the shortest path length
between two agents i, j ∈ P, it can be computed as follows:

mean shortest path length =
2

n(n − 1)

∑

(i, j)∈P

di jmin.

Only connected graphs are considered in this thesis. In such graphs, a path always
exists between any pair of nodes, and its maximal length is n−1. If a social graph is not
connected, then agents from disconnected parts cannot communicate with each other.
Resources can circulate inside a portion of the graph, but cannot move to another one.
Hence, these portions can be considered as independent. Thus, a resource allocation
problem, which is based on a not connected social graph, can be split into as many
independent sub-problems as there distinct portions in the social graph.

Property 2.3 (Not connected graph) Independently of the objective considered, the solution
of an allocation problem based on a non-connected social graph is equivalent to the association
of the partial solutions provided by the solving process applied to all the portions of the graph.

Proof. If a social graph is composed by x portions, there is no path between nodes that
belong to different portions. Any pair of agents who do not belong to the same group
cannot communicate. Then, no resource can circulate from one of them to another.
The solution of the overall problem can be obtained by the union of the solution from
each portion. The resource allocation problem can be divided into x independent sub-
problems, each one restricted to the population of a portion. The optimal allocations
provided by the different solving processes can be merged to constitute the solution of
the whole problem. �

2.4 Transactions

During negotiation processes, the resource allocation evolves, step by step, by means
of local transactions among agents. The resource traffic is generated thanks to these
transactions, which move resources successively from an agent bundle to another one.

Definition 2.5 (Transaction) A transaction is an operation on resources among several agents,
which transforms an initial resource allocation A into a new one A′. Agents involved in a
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transaction are called participants, but two agent roles can be distinguished: the initiator who
starts the negotiation, and the partners who are selected by the initiator in its neighborhood.

The definition of a transaction can be based on the offers made by the partici-
pants. The number of resources that the participants can offer depends on the allowed
transaction class. Indeed, different classes of transactions exist, which are more or
less time-consuming, which involve more or less agents, which move more or less
resources . . . Three classes of transactions can be distinguished.

• Bilateral transactions, which involve only two agents at a time (also called one-
to-one transactions in the literature);

• Multilateral transactions, which involve more than two agents at once according
to two different transaction patterns:

– One-to-Many transactions, where the initiator is involved in all resource
operations;

– Many-to-Many transactions, where any resource operation is allowed among
all the participants.

In this section, these three classes of transactions are described. For each class of
transactions, the computational complexity, i.e., the number of possible transactions, is
determined according to the number of participants and according to the size of their
bundle.

2.4.1 Bilateral transactions

Bilateral transactions, also called one-to-one transactions, only involve two agents at a
time. They represent the most widely used class of transactions in the literature. Bilat-
eral transactions can be defined in a parametric way using two parameters representing
the size of the offers proposed respectively by the initiator and its partner, as illustrated
in Figure 2.2.

Definition 2.6 (Bilateral transactions) A bilateral transaction between two agents i, j ∈ P,
denoted by δ ji , is initiated by agent i who involves one of its neighbors j ∈ Ni. It is a pair

δ
j
i 〈u, v〉 = (ρδi , ρ

δ
j ), where the initiator i offers a set ρ

δ
i of u resources (ρδi ⊆ Ri) and the selected

partner j offers a set ρδj of v resources (ρ
δ
j ⊆ R j).

Ri

i

R j

j

ρδi

ρδj

Figure 2.2: Bilateral transactions

Let us recall the resource allocations’ properties which are satisfied according to the
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nature of the resources that we choose to consider (see Section 1.1.1):
⋂

i∈P

Ri = ∅ and
⋃

i∈P

Ri = R.

Hence, the intersection of the offers proposed by different agents is always empty.
The nature of the considered resources affects the definition and the properties of all
transactions. According to the size of the offers proposed by both participants, the
possible number of bilateral transactions is restricted.

Property 2.4 (Bilateral transaction complexity) Let us consider a bilateral transaction
δ
j
i 〈u, v〉, where the initiator i ∈ P owns initially mi resources and offers u resources (u ≤ mi),
and where it involves a neighbor j ∈ Ni who initially owns m j resources and offers a set of v
resources (v ≤ m j).

The possible number of bilateral transactions of cardinality 〈u, v〉 between agents i and j is:

#δ ji =
(

mi

u

)

×

(

m j

v

)

.

According to Proposition 2.4, the number of possible bilateral transactions grows ex-
ponentially with the size of the offers u and v proposed by the participants. Some
negotiation policies allow transactions of different cardinality during the same negoti-
ation process. Indeed, even if an agent i owns mi resources, it may be useful to bound
the number of resources it can offer in order to reduce the complexity. Under such
conditions, two negotiating agents may offer a resource set of any size from a single
resource up to u′ and v′, which bounds the size of the offered resource sets. We call
such negotiation policies “up to 〈u′, v′〉”. The number of possible bilateral transactions
can then be determined as follows:

#δ ji =















u′
∑

x=0
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mi

x

)





























v′
∑

x=0
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m j

x

)















− 1.

Any bilateral transaction, e.g., defined in (Sandholm, 1998), can be defined by
this representation, and the possible number of transactions can be evaluated using
Proposition 2.4. Bilateral transactions with specific cardinality are presented in the
following paragraphs.

A gift, also called O-contract, is a transaction where the initiator offers a single
resource and its partner none. The gift of resource r ∈ Ri from agent i to agent j is
represented by δ ji 〈1, 0〉with ρδi = {r} and ρ

δ
j = ∅. Only mi gifts are possible.

A cluster transaction, also called C-contract, is a transaction where the initiator
offers a set of resources and its partner none. Hence, the cluster of u resources from
agents i to agent j is represented by δ ji 〈u, 0〉with ρδi = {r1, . . . , ru} ⊆ Ri and ρδj = ∅. Then,
(mi
u
)

cluster transactions are possible, which correspond to the number of sets containing
exactly u resources in Ri. If the negotiation policy allows agents to offer up to their
whole bundle, i.e., if the size of the offers that agents may propose is not bounded, the
number of possible clusters is 2mi − 1.

A swap transaction, also called S-contract, is a transaction where both participants
offer each other a single resource. A swap between agents i and j, who respectively
exchange resources r ∈ Ri and r′ ∈ R j, is represented by δ ji 〈1, 1〉 with ρδi = {r} and
ρδj = {r

′}. In a such case, mi ×m j swaps are possible.
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Finally, a cluster-swap transaction is the general form of bilateral transactions,
where both agents offer a subset of their bundle. Then, a cluster swap between agents
i and j, who respectively offer a set of u and v resources, is represented by δ ji 〈u, v〉 with
ρδi = {r1, . . . , ru} ⊆ Ri and ρδj = {r

′
1, . . . , r

′
v} ⊆ R j. Thus,

(mi
u
)(m j

v
)

cluster-swaps are possible
when agent i exactly offers u resources and agent j exactly offers v resources. If the
negotiation policy allows the agents to offer up to their whole bundle, the number of
possible cluster-swap transactions is 2mi+m j − 1.

Let us note that cluster transactions include gifts. Cluster-swap transactions, which
are the general form of bilateral transactions, contain gifts, clusters and swaps. Figure
2.3 shows the inclusion relationships among the different bilateral transactions.

Gifts

Clusters Swaps

Cluster-swaps

Figure 2.3: Relationships among bilateral transactions

According to the cardinality parameters, these relationships are pretty obvious to prove.
Indeed, according to thedefinitionof cluster transactions δ ji 〈u, 0〉, the offer of the initiator

is constrainedbyu ≤ mi. If the initiator onlyprovides a single resource, the transaction δ
j
i

corresponds to a gift. Similarly, according to the definition of cluster-swap transactions
δ
j
i 〈u, v〉, the size of the participant offers are bounded by u ≤ mi and v ≤ m j. If both
agents only provide a single resource, it corresponds to a swap, if the partner does not
provide anything, the transaction corresponds either to a cluster or to a gift. Let us note
that the situation in which both agents do not provide any resource is not considered
as a transaction.

In this section, all bilateral transactions have been presented. Let us summarize the
complexity of the different classes of bilateral transactions in Table 2.1. Let us consider
a bilateral transaction δ ji between two agents i, j ∈ P. They own respectively mi and
m j resources. The total number of possible transactions is defined according to the
restriction on the agent offers.

2.4.2 Multilateral transactions

Another important class of transactions can be used to modify resource allocations.
Indeed, while bilateral transactions only involve two agents at once, multilateral trans-
actions involve more than two agents. During a multilateral transaction, the initiator is
able to involve a set of neighbors at once. Two multilateral transaction patterns exist:
One-to-many transactions and many-to-many transactions, as described next.
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Table 2.1: Summary - Complexity of bilateral transactions

Transaction δ ji Allowed transaction T Number of possible transactions
Gift 〈1, 0〉 mi

Cluster
〈u, 0〉

(mi
u
)

up to 〈u, 0〉
u
∑

x=0

(mi
x
)

− 1

Swap 〈1, 1〉 mi ×m j

Cluster-swap
〈u, v〉

(mi
u
)(m j

v
)

up to 〈u, v〉
(

u
∑

x=0

(mi
x
)

) (

v
∑

x=0

(m j
x
)

)

− 1

One-to-many transactions

During one-to-many transactions, the initiator is able to negotiate simultaneously with
a whole subset of its neighborhood. The initiator can offer to each partner a set of
resources, and inversely, all partners can offer a resource set to the initiator, as illustrated
in Figure 2.4.

i

j k . . . ℓ

ρδi j, ρ
δ
ji

ρδik, ρ
δ
ki

ρδiℓ, ρ
δ
ℓi

Agent initiator i ∈ P

Partners j, k, . . . , ℓ ∈ ∆δ ⊆ Ni

Figure 2.4: One-to-many transaction

Themain constraint of this transaction pattern is that the initiator is always involved
in any resource move. Resource sets are either offered or received by the initiator. Two
partners cannot negotiate with each other. One-to-many transactions can then be
formally defined as follows.

Definition 2.7 (One-to-many transactions) A one-to-many transaction δ∆i is initiated by an
agent i ∈ P and involves a subset of nδ neighbors ∆δ ⊆ Ni. It is a list of pairs describing the
resource sets given and received by all participants. Let ρδkℓ denote the resource set given by
agent k to agent ℓ. The initiator must always be involved in all offers, either to provide or to
receive them.

δ∆i = {(ρ
δ
i j, ρ

δ
ji) | j ∈ ∆δ} i ∈ P.

Let us note that, according to Definition 2.3, j ∈ ∆δ ⇒ i , j in this definition. Obviously,
the resources provided by the initiator are constrained. The initiator cannot give the
same resource to different neighbors (due to the nature of the considered resources).
Such constraints are required to ensure consistency during a multilateral negotiation.
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More formally:

ρδji ⊆ R j, i ∈ P, j ∈ ∆δ;
⋃

j∈∆δ

ρδi j ⊆ Ri, i ∈ P;

⋂

j∈∆δ

ρδi j = ∅, i ∈ P.

One-to-many transactions are more complex than bilateral transactions, and then
more time-consuming. Indeed, a one-to-many transaction can be considered as several
bilateral transactions performed simultaneously.

Property 2.5 (One-to-many transaction split) A one-to-many transaction δ∆i is equivalent
to at most nδ simultaneous bilateral transactions.

Proof. According to the definition of a one-to-many transactions δ∆i , the initiator i in-
volves at most nδ neighbors in the transaction. Since the initiator is always involved, it
corresponds to a list of at most nδ elements. Indeed, any agent k ∈ ∆δ from the initiator
neighborhood who either gives or receives resources leads to the addition of a pair of
resource sets (ρδi j, ρ

δ
ji). However, a partner may not be interested in the transaction and

hence do nothing. Each pair (ρδi j, ρ
δ
ji) corresponds exactly to a bilateral transaction by

definition. �

Property 2.6 (One-to-many transaction complexity) Let us consider a one-to-many trans-
action, where agent i ∈ P is the initiator. It initially owns mi resources and involves a set
∆δ ⊆ Ni of nδ neighbors. Each neighbor j ∈ ∆δ initially owns a set of m j resources. The possible
number of one-to-many transactions is:

#δ∆i = (nδ + 1)mi



















2
∑

j∈∆δ

m j



















− 1.

Proof. To count the number of possible one-to-many transactions, we consider the
resource allocations themselves. In other words, we determine where resources can be
allocated according to their initial owner.
According to Definition 2.7, resources initially owned by a partner of ∆δ can be either
allocated to the initiator i, or stay in the resource bundle of their initial owner. It
represents 2

∑

j∈∆δ
m j allocations. The resources owned by the initiator can be allocated

either to itself or to any partner, which represents (nδ + 1)mi different allocations. The
combination of both parts corresponds to the overall number of possible allocations
resulting from a one-to-many transactions. Since the situation inwhich nomodification
is performed is not consider as a transaction, we finally deduct the initial allocation. �

Many-to-many transactions

During a many-to-many transaction, the initiator i and the set of partners constitute a
group where everything is allowed. The main restriction of one-to-many transactions
is omitted: The initiator is not anymore necessarily involved in all resource moves.
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Figure 2.5: Many-to-many transactions

Any agent of this group can offer a set of resources to any other agents of the group, as
described in Figure 2.5.

Inmany-to-many transactions, the role of the initiator is depreciated since any agent
of the group can negotiate with the others. However, in practice, since two neighbors
are not necessarily directly linked according to the social graph topology, the initiator
can be used for the transit of the traded resources. A many-to-many transaction can be
formally defined as follows:

Definition 2.8 (Many-to-many transactions) A many-to-many transaction δ∆i is initiated
by agent i ∈ P and involves a subset of its neighbors ∆δ ⊆ Ni. It can be defined as a list of pairs
describing the resource sets offered and received by two agents j, k ∈ ∆δ ∪ {i}.

δ∆i = {(ρ
δ
jk, ρ

δ
kj)| j, k ∈ ∆

δ ∪ {i}, j < k}.

where ρδjk is the resource set given by agent j to agent k and inversely, ρδkj corresponds to the
resource set given by agent k to agent j.

Only constraints ensuring the consistency must be satisfied: A given resource can
only be offered to another agent. These constraints depend on the resource nature.

ρδjk ⊆ R j, j, k ∈ ∆δ ∪ {i}.

Many-to-many transactions are more complex than one-to-many transactions and
bilateral transactions. While a one-to-many transaction can be viewed as several bi-
lateral transactions performed at the same time, a many-to-many transaction can be
considered as several simultaneous one-to-many transactions.

Property 2.7 (Many-to-many transaction split) Amany-to-many transaction is thus equiv-
alent to atmost nδ simultaneous one-to-many transactions or to nδ(nδ−1) simultaneous bilateral
transactions.

Proof. According to the definition of a many-to-many transactions δ∆i , the initiator i
involves at most nδ neighbors in the transaction. nδ(nδ − 1) pairs of participants can be
constituted. Each pair of participants who provide or receive resources corresponds to
an element of the list. Each pair (ρδjk, ρ

δ
kj) exactly corresponds by definition to a bilateral

transaction. Then, a many-to-many transaction corresponds to nδ(nδ − 1) simultaneous
bilateral transactions. If we regroup the different pairs of offers according to the agent
providing the first offer, it corresponds to several one-to-many transactions. �
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Property 2.8 (Many-to-many transaction complexity) Let us consider a many-to-many
transaction δ∆i , where agent i ∈ P is the initiator. It initially owns mi resources and involves
a set ∆δ ⊆ Ni of nδ neighbors. Each neighbor j ∈ ∆δ initially owns a set of m j resources. The
possible number of many-to-many transactions is:

#δ∆i = (nδ + 1)m
′

− 1, where m′ =
∑

j∈∆δ∪{i}

m j.

Proof. As done for one-to-many transactions, the most convenient way to proceed is
to consider the resource allocations that can be achieved thanks to a many-to-many
transaction, and then where resources can be allocated.
According to Definition 2.8, any resource can be allocated either to the initiator or
to an involved agent. m′ corresponds to the number of resources available in this
restricted population i∪∆δ. Each resource can be allocated to any agent of the restricted
population, so (nδ + 1) times. Applied to all resources, it corresponds to the number
of possible many-to-many transactions. The initial allocation must also be subtracted
since no transaction is performed. �

Many-to-many transactions without restriction on the size of the offered resource
sets can be considered as a reallocation of all available resources over the restricted pop-
ulation of involved agents. On a complete social graph, an initiator involving its whole
neighborhood in a many-to-many transaction, involves the whole population since all
agents are related. In such conditions, many-to-many transactions are equivalent to
classical centralized solving methods.

2.5 Acceptability criteria

Agents must locally decide about which actions to perform when several actions are
possible. They must be able to determine the best action. Such a decision is based
on an acceptability criterion. It strongly influences the negotiation process. Indeed,
it highly restricts the set of possible transactions among the agents, by defining the
conditions that transactions must satisfy in order to be performed. Accordingly, agents
can determine whether or not transactions are profitable. Such criteria can be based
on different notions. In this thesis, two main notions are considered: Rationality and
sociability. These notions are successively described, and are finally compared in order
to emphasize their differences.

Let the criteria defined in this section be illustrated by means of a transaction δ∆i .
This transaction changes the initial resource allocation A into a new one A′. Then, let
Rk denote the resource bundle of any agent k ∈ P in the allocation A and R′k its bundle
in A′. The following definition can be restricted to the bilateral case.

2.5.1 Rational criterion

The individual rationality is the most widely used criterion in the literature. It specifies
that agents can only accept transactions increasing their individual welfare. It is used
especially in the case of selfish agents.

Definition 2.9 (Rational agent) A rational agent only accepts a transaction that increases
its own utility value. If the agent i ∈ P is rational, an acceptable transaction must satisfy the
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following condition:
ui(R′i ) > ui(Ri), i ∈ P, Ri,R

′
i ⊆ R.

Definition 2.10 (Rational transaction) A rational transaction δ, initiated by agent i ∈ P, is
a transaction involving rational agents only. Participants accept rational transactions only if
the following condition is satisfied:

u j(R′j) > u j(R j), j ∈ ∆δ ∪ {i}, Ri,R
′
i ⊆ R, ∆

δ ⊆ Ni.

This criterion can be computed using local information only. Indeed, the current
resource bundle, the offer an agent makes and the ones it receives are the only informa-
tion required. These information are available locally from the agent’s point of view.
However, the rationality criterion strongly restricts the transaction possibilities. Its use
may thus prevent the achievement of socially optimal allocations.

2.5.2 Social criterion

With respect to the social criterion, the welfare of the whole society cannot decrease.
Sociability is more flexible than rationality. Social agents are usually qualified as gen-
erous.

Definition 2.11 (Social agent) A social agent is an agent who only accepts transactions that
increase the welfare of the whole society.

Definition 2.12 (Social transaction) A social transaction δ, which changes the initial resource
allocation A to a new one A′, is a transaction leading to an increase of the social welfare.

sw(A′) > sw(A), A,A′ ∈ A.

The social criterion is centered on the social welfare value, which is a global notion.
Its value can only be determined thanks to the welfare of all agents. Agents should
then know the resource bundle and the preferences of all agents in the population, in
order to determine the value associated with the objective function. Such conditions
cannot be satisfied since agents have only local information. The social value of the
objective cannot then be locally computed. But, the computation of the exact value
of the welfare function is not essential, to know its evolution is sufficient to determine
whether or not a transaction penalize the society. Such computations can be restricted to
the local environment of agents. If participants to a negotiation consider the remaining
population as a constant, the evolution of the social value can be determined on a local
basis. The formal definition of social transactions can be specified according to the
welfare notion. The expressions of the conditions that transactions must satisfy, once
applied to a specific social welfare notion, are detailed in dedicated sections of Chapter
4.

2.5.3 Difference and impact

Two acceptability criteria have been described. Both of them can be used locally
to determine whether or not a transaction is profitable. However, these notions are
not equivalent. Rational transactions are always social, but at the opposite, social
transactions are not necessarily rational.
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Example 2.1 Let us illustrate the difference between these notions with an example, using
a population of 3 agents P = {0, 1, 2}, and a set of 3 available resources R = {r1, r2, r3}.
The preferences of all agents are described in Table 2.2. The initial resource allocation is
A = [{r1}{r2}{r3}]. The social objective considered in this example is the egalitarian welfare,
which focuses on the individual welfare of the poorest agent.

Table 2.2: Acceptability criteria - Example of agents’ preferences

Population P
Resource Set R
r1 r2 r3

0 8 6 7
1 9 5 2
2 6 1 3

Table 2.3: Acceptability criteria - Set of possible exchanges

Transaction
Agent utility ui Criterion Ci
u0 u1 u2 Rational Social

Initially 8 6 3 - -
r1 ↔ r2 6 9 3 × X

r1 ↔ r3 7 5 6 × X

r2 ↔ r3 8 2 1 × ×

Table 2.3 lists all possible exchanges. It also indicates whether or not acceptability criteria
are satisfied. It shows that no rational transaction can be performed. Each time an agent wants
to exchange its resource with another one, one participant decreases its utility. Thus, none of
them is rational. However, when the social criterion is considered, if the richest agent accepts
to loose some utility, the egalitarian welfare can be increased. For instance, let us consider the
exchange of resources r1 and r3 between agents 1 and 3. This resource swap is not possible if
agents are rational, whereas it is acceptable between social agents, as it leads to an increase of
the egalitarian welfare value of the whole society.

These criteria influence a lot negotiation processes and it is essential to consider
them in the agent decision-making. They restrict the set of possible transactions more
or less. The social criterion is more flexible than the rational one and allows agents to
perform more transactions. More importantly, both criteria lead to a finite negotiation
process.

Property 2.9 (Finite negotiation process) A negotiation process based on rational transac-
tions or on social transactions end after a finite number of transactions.

Proof. According to Proposition 1.2, an allocation problem with m resources and n
agents has a finite solution space: |A| = nm. The set of all possible allocations is finite
even if its size is exponential.
Any transaction δ, rational or social, always leads by definition to an increase of the
social welfare value (independently of the notion considered). Since, during a trans-
action sequence, it is not possible to return to an allocation previously encountered,
the associated social welfare value cannot be greater. Then, no cycle can then appear.
Since no cycle appears, coupled to the finite number of distinct resource allocations,
negotiation processes end after a finite number of transactions. �
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2.6 Agent interactions

Behaviors define agents from an external point of view. They describe how agents
interact with each other, i.e., how they negotiate. During a negotiation, each agent
makes and receives offers, and check their acceptability according to its own criterion.
If a transaction is acceptable for every participant, it is performed. Otherwise, agents
have to decide who has to modify its offer according to their behavior, and thus the
negotiation continues.

This section focuses on bilateral negotiations. Multilateral transactions are much
more complex to realize. Indeed, the initiator requires more information. In order
to identify where resources should be allocated, a lot of information is required, like
the partners’ preferences. Such a process is memory and time consuming, and some
alternative methods should be used. Chapter 5 addresses issues related to multilateral
negotiation.

A negotiation between agents can bemanaged in different ways (Parsons et al, 2003;
Rahwan and Larson, 2008; Saha and Sen, 2007). First, participants need to choose the
order in which they propose their offers to their partners. According to the minimal
concession strategy (Morge et al, 2009), agents always suggest first what is the most
advantageous for them. The twoparticipants successively suggest different alternatives
until they agree on an acceptable transaction. However, this strategy was initially
designed for agents knowing the complete bundle of the other agent. Considering
the set of available resources, agents generate the possible set of allocations and sort it
according to their preferences. They alternatively suggest an allocation, making more
and more concessions until either they agree on an acceptable allocation, or they abort
the negotiation.

This minimal concession strategy has to be adapted in order to satisfy the require-
ments ensuring the autonomy of all agents. In other words, this process must be based
on personal information only. Since an agent ignores the bundle of the other agents, it
must reason on its own bundle instead of allocations. An agent must prepare the set of
offers it can propose, denoted by L(ρ), and orders it according to its own preferences.
Then, an agent can propose in the first place the offer the least penalizing for it. Indeed,
agents always propose the offer associated with the lowest utility value. For any agent
i ∈ P, the set of offers Li(ρ) can be generated from its resource bundle Ri and from the
set of allowed transactions T . For instance, if a negotiation process allows only gifts,
then the set of alternatives corresponds to the resource bundle, and agents just have to
sort it according to their preferences. According to a negotiation policy “up to 〈3, 3〉”,
which allows agents to propose up to 3 resources, agents have to generate the list of
offers whose size is less than or equal to three.

Let us assume that agent i ∈ P initiates a negotiation and proposes an offer to one of
its neighbors j ∈ Ni previously selected. Both offers correspond to a bilateral transaction
δ
j
i . If both agents consider this transaction acceptable, it is performed. However, if one
participant rejects the offer, three alternatives can then be considered:

• agent i gives up and ends the negotiation;

• agent i changes the selected neighbor;

• agent i changes its offer or asks its partner to modify its own offer.

Based on this set of actions, various behaviors can be designed. Considering what
we call a rooted behavior, an agent cannot change the selected neighbor during the
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negotiation. The initiator has to randomly select a member of its neighborhood. In
contrast, a frivolous behavior allows the initiator to change its partner during the nego-
tiation. The initiator should then shuffle its neighborhood and involve each neighbor
successively. A stubborn agent only makes one offer. If the transaction is rejected by
one participant, the initiator does not want to negotiate again with it. In this case, the
initiator only considers the first offer of L(ρ), which corresponds to the least penalizing
one. Inversely, considering a flexible behavior, the initiator can change the offer that
it proposes during the negotiation. In such a case, an agent can propose successively
different offers of L(ρ).

Determining the order of these actions is an important issue. For instance, the
number of resources that agents offer can vary according to T , and the order in which
they consider the size of the possible offers is important. Agents can either regroup in
L(ρ) all their offers without considering their cardinality (the number of resources that
agents can offer), sort L(ρ) and then start the negotiation, or negotiate successively with
the offers regrouped by cardinality. Agents start by proposing successively resource
sets of a first kind, and if no acceptable transaction is identified, then they propose offers
of an other cardinality. The process continues until all allowed transactions δ ∈ T have
been attempted, or until an acceptable transaction is identified.

Example 2.2 Let us consider a single agent i ∈ P, who owns three resources in its bundle,
Ri = {r1, r2, r3}. This agent evaluates these resources as follows: ui(r1) = 1, ui(r2) = 3 and
ui(r3) = 8. This agent is involved in a negotiation with one of its neighbors. According to the
negotiation settings, several transactions are allowed: T = {〈1,X〉, 〈2,X〉}. Agent i can either
offer its neighbor a single resource or a set of two resources from its bundle. The order in which
offers are proposed is described in Table 2.4 according to the negotiation policy considered.

Table 2.4: Sequence of offers proposed by the agent
Negotiation policies

All together By cardinality
r1 r1
r2 r2
r1r2 r3
r3 r1r2
r1r3 r1r3
r2r3 r2r3

The list of offers that agent i ∈ P can propose, denoted Li(ρ), is always sorted according to its
preferences ui, so that it can first propose offers with the lowest utility value. According to the
policy “all together”, Li(ρ) is generated at the beginning of the negotiation according to T and
independently of the transaction cardinality. According to the second policy “by cardinality”,
the list of offers is regenerated for each allowed transaction in T and the order is modified. The
larger is the agent’s bundle Ri, the higher are the differences of the two lists.

The first possible behavior is the simplest one. The initiator i ∈ P only proposes
its offer associated with the lowest utility value (the first element of Li(ρ)) to one of
its neighbors j ∈ Ni. If the transaction is rejected, then the negotiation aborts. This
agent behavior is called rooted stubborn and is described in Algorithm 2.1. The initiator
can only propose a single offer. In all behaviors described in this section, the 
instructions correspond to acceptability tests, in which agents determine whether or
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not a transaction is profitable. Themain criteria have been described in Section 2.5. The
expression to use in such tests depends on the welfare objective considered, and hence
is detailed in the corresponding section of the next chapter.

Algorithm 2.1: Rooted and stubborn agent behavior
Input: Initiator i
Output:  if a transaction is performed

Li(ρ)← generate(T ,Ri) ; // list of all possible generated offers

Sort Li(ρ) according to ui ;
ρ← argmin

ρ′∈Li(ρ)
ui(ρ′) ; // selection of the cheapest offer

j← random(Ni) ; // random selection of a partner

Get ρ′ from j ; // get the offer from the partner

δ← (ρ, ρ′) ;
if  then // acceptability test

Perform δ ;
End the negotiation ;
return  ;

end

return 

According to the second behavior, the initiator i ∈ P can only propose its offer ρi
that is associated with the lowest utility. However, it can successively select different
neighbors during the negotiation. If the transaction involving the first partner is re-
jected, the initiator can select another neighbor to continue the negotiation. Such an
agent behavior is called frivolous stubborn and is described in Algorithm 2.2. The neigh-
borhood should be shuffled between two negotiations in order to modify the order in
which neighbors are considered, otherwise a bias may appear.

Algorithm 2.2: Frivolous and stubborn agent behavior
Input: Initiator i
Output:  if a transaction is performed

Li(ρ)← generate(T ,Ri) ; // list of all possible generated offers

Sorts Li(ρ) according to ui ;
ρ← argmin

ρ′∈Li(ρ)
ui(ρ′) ; // selection of the cheapest offer

ShuffleNi ;
forall the j ∈ Ni do // sequential selection of neighbors

Get ρ′ from j ; // get the offer from the partner

δ← (ρ, ρ′) ;
if  then // acceptability test

Perform δ ;
End the negotiation ;
return  ;

end

end

return  ;

An agent behavior is called rooted flexible when the initiator i ∈ P can successively
propose different offers ρi ∈ Li(ρ), and it cannot change the selected neighbor. Such a
behavior is described in Algorithm 2.3.
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Algorithm 2.3: Rooted and flexible agent behavior
Input: Initiator i
Output:  if a transaction is performed

Li(ρ)← generate(T ,Ri) ; // list of all possible generated offers

Sort Li(ρ) according to ui ;
j← random(Ni) ; // partner selection

forall the ρ ∈ Li(ρ) do
forall the ρ′ ∈ L j(ρ) do
δ← (ρ, ρ′) ;
if  then // acceptability test

Perform δ ;
End the negotiation ;
return  ;

end

end

end

return  ;

According to the next behavior, the initiator i ∈ P can change partners as well as its
offer during a negotiation process. The initiator i proposes each offer ρi ∈ Li(ρ) to all
its neighbors j ∈ Ni before changing it. According to such a behavior, if an acceptable
transaction exists somewhere in the neighborhood, it will necessarily be identified.
Such an agent behavior is called frivolous flexible and is described in Algorithm 2.4.
The neighborhood should be shuffled between two negotiations in order to modify the
order in which neighbors are considered.

Algorithm 2.4: Frivolous and flexible agent behavior
Input: Initiator i
Output:  if a transaction is performed

Li(ρ)← generate(T ,Ri) ; // list of all possible generated offers

Sort Li(ρ) according to ui ;
ShuffleNi ;
forall the ρ ∈ Li(ρ) do // flexibility

forall the j ∈ Ni do // frivolity

forall the ρ′ ∈ L j(ρ) do
δ← (ρ, ρ′) ;
if  then // acceptability test

Perform δ ;
End the negotiation ;
return  ;

end

end

end

end

return  ;

Agents may also scan their whole neighborhood in order to identify the best trans-
action to perform. Such agents are called perfectionist, and their behavior is illustrated
in Algorithm 2.5. In such situations, the initiator i ∈ P starts a rooted and flexible
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negotiation with each neighbor, and only memorizes the best transaction encountered,
which is finally performed. The determination of the best transaction between δ and
δ′ can be adapted according to the agent’s acceptability criterion for instance. It can
be either the maximization of its own utility or the maximization of the welfare of the
population. Such a behavior is more expensive than the others since agents try all pos-
sible transactions with their neighbors. Always performing the best transaction does
not ensure that optimal allocations are achieved at the end of negotiation processes.
Even if the transaction is locally the most interesting one, it may lead resources into
a dead-end whereas socially greater allocations might be achieved by allocating these
resources to other agents, which are not directly related to the initiator for instance. Ne-
gotiation processes among perfectionist agents can be compared to greedy heuristics in
the Optimization field.

Algorithm 2.5: Perfectionist agent behavior
Input: Initiator i
Output:  if a transaction is performed

Li(ρ)← generate(T ,Ri) ; // list of all possible generated offers

Sort Li(ρ) according to ui ;
forall the j ∈ Ni do

forall the ρ ∈ Li(ρ) do
forall the ρ′inL j(ρ) do
δ′ ← (ρ, ρ′) ;
if  then // acceptability test

if δ′    δ then
δ← δ′ ;

end

end

end

end

end

if δ , ∅ then
Perform δ ;
End the negotiation ;
return  ;

end

return  ;

According to flexible behaviors, as described in Algorithms 2.3 and 2.4, the initiator
i sequentially proposes all possible offers ρi ∈ Li(ρ). For each initiator’s offer, all the
offers ρ j that can be proposed by its partner j ∈ Ni must be attempted. In other words,
when the initiator’s offer is rejected, it always ask to its partner to propose something
else. When it is no more possible, the initiator changes its offer and try to associate it
with all possible offers of its partner.

However, when flexible behaviors are considered, negotiations can bemanaged in a
differentway. Indeed, each time that a transaction is rejected by one participant, instead
of always requesting to the partner to change its offer, participants may determine
which one should change its offer using a specific test. This test, called  
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in Algorithm 2.6 can be based, for instance, on the difference of utility values between
what they get and what they provide. More formally:

  ≔ ui(ρδi ) − ui(ρδj ) >
? u j(ρδj ) − u j(ρδi )

Thus, in all behaviors, instead of a loop based on ρ′ ∈ L j(ρ), Algorithm 2.6 can be used
during a negotiation to decrease the number of attempted transactions.

Algorithm 2.6: Who has to change its offer?

. . . ;
indexI← 0 ; // index on the initiator’s list of offers

indexP← 0 ; // index on the partner’s list of offers

while indexI < mi && indexP < m j do

ρ← Li(ρ)[indexI] ;
ρ′ ← L j(ρ)[indexP] ;
δ← (ρ, ρ′) ;
if  then // acceptability test

Perform δ ;
End the negotiation ;

else

if   then // change test

indexI← indexI + 1 ;
else

indexP← indexP + 1 ;
end

end

end

. . . ;

Note that in this thesis, we focus more on the distributed problem solving than
on the agent language. The speech acts performed by participants are not explicitly
written. Indeed, the initiator can access directly to some information of its partner,
such as its offers and its individual welfare. The initiator chooses itself the minimal
concession exchange (the least penalizing for both agents). However, this process can
obviously split into different speech acts (Guerra-Hernández et al, 2009), as described
in Figure 2.6. This figure describes the different speech acts required. Alternatively,
each agent makes offers, analyzes the information provided by the other agent, in order
to finally determine if the transaction composed of both offers is acceptable or not. Each
agent determines the acceptability of the transaction according to its own criterion. The
simplification made in our algorithm is possible since all agents act according to the
same behavior and to the same acceptability criterion.

Behavior names defined in this section are abbreviated in the experiments reported
inChapter 4 to improve theunderstanding of graphs. Table 2.5 summarizes thedifferent
behaviors and their abbreviated name.

• rs: rooted stubborn behavior;

• fs: frivolous stubborn behavior;

• rf: rooted flexible behavior based on a specific mechanism to determine who has
to modify its offer;
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Initiator Participant

offer ρi

reject

report ∆u j, offer ρ j

reject

accept

give ρ j

give ρi

Figure 2.6: Sequence of speech acts

Table 2.5: Summary - Agent behaviors
Rooted Frivolous

Stubborn fs rs

Flexible
rf ff

rf full ff full - agent
ff full - resource
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• rf full: rooted flexible behavior;

• ff: frivolous flexible behavior based on a specific mechanism to determine who
has to change its offers;

• ff full - agent: frivolous flexible behavior where the initiator favors the partner
change;

• ff full - resource: frivolous flexible behavior where the initiator favors the offer
change.

2.7 Evaluation of negotiation processes

Theevaluationof negotiationprocesses is not anobvious issue. Centralizedmethods are
most often evaluatedusing the computation timeor thequality of theprovided solutions
(e.g., in the case of heuristics), but negotiation processes can be evaluated using many
metrics. Depending on the chosen metric, the performance of negotiation processes
may vary. Hence, various metrics should be considered during their evaluation.

2.7.1 Evaluation metrics

A fair evaluation must consider the different aspects of negotiation processes. We
propose a set of usable metrics in this section.

First, the number of performed transactions indicates the overall number of trans-
actions effectively performed during the whole negotiation process. It corresponds to
the length of the transaction sequences required to evolve the initial resource allocations
to the provided solutions. The acceptability criterion significantly affects this metric.
Indeed, it restricts the set of possible transactions among agents. Negotiations based
on a restrictive criterion, like rationality, may end faster than negotiations based on a
more flexible criterion like sociability.

The number of attempted transactions is the overall number of offers proposed
during a negotiation process. Two factors influence this metric: the agents’ behaviors
and the allowed transactions. When agents are stubborn and/or rooted, they onlymake
a single offer during a negotiation, and then highly limit the number of attempted
transactions. However, in the case of flexible and/or frivolous agent behaviors, agents
attempt many more offers. In such cases, the set of transactions allowed is an essential
parameter. The larger is the number of possible transactions, the larger is the number
of attempts, as summarized in Table 2.6. Thus, the number of attempted transactions
may increase exponentially.

Then, the number of traded resources indicates the density of the resource traffic
when coupled with the number of performed transactions. Bilateral transactions, as
well as multilateral transactions, may have a bound on the size of the offers. According
to these limits, the number of traded resources during a transaction can vary. For
instance, during a bilateral transaction δ ji 〈u, v〉, a maximum of u + v resources may be
traded. However, from the same initial resource allocation, and in order to achieve the
same final allocation, a sequence of u gifts δ ji 〈1, 0〉 and v gifts δij〈1, 0〉 is required.

A negotiation process is a sequence of negotiation steps which are initiated by
agents. Each step corresponds to the identification of an acceptable transaction. The
number of speech turn corresponds to the number of times a negotiation is initiated, i.e.
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Table 2.6: Summary - Transaction complexity
Transaction kinds Number of possible transactions
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the number of steps. This metric depends on two parameters: The agent behavior and
the allowed transactions. If agents’ behaviors are rooted and/or stubborn for instance,
they may need a larger number of negotiations to identify an acceptable transaction
with one of their neighbors. Similarly, in the case of negotiation processes which are
only based on gifts, the number of negotiations required to end the negotiation process
is larger for processes based on cluster-swaps for instance.

Finally, the topological sensitivity should also be evaluated. Indeed, the topology
of social graphs affects a lot the negotiation process. Considering different graph topolo-
gies of the same class, negotiation processes starting from the same initial allocation
can achieve different allocations. The topological sensitivity can be evaluated thanks
to the standard deviation among the social values achieved at the end of negotiation
processes. A large deviation means that the negotiation process is very sensitive to
the graph topology, and thus the quality of the provided allocation significantly varies
according to the initial conditions.

2.7.2 Negotiation efficiency

The efficiency of negotiation processes is an important goal. Indeed, if a negotiation
process ends quickly, it might not be interesting if the provided solution is associated
with social values which are far from the optimum. The negotiation settings allow the
achievement of different kinds of allocations, as illustrated in Figure 2.7.

Allocation SetA

. . . achievable
according to the
set of allowed
transaction T

. . . achievable
according to the
social graph G

Optimal
allocation set

Figure 2.7: Different sets of achievable solutions depend on the negotiation settings

This figure represents the different allocation sets which are achievable according
to the negotiation settings. The largest set corresponds to the whole solution space.
Different sets of allocations can be achieved depending on settings, like the set of
allowed transactions or the topology of social graphs. In a situation where negotiation
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processes always lead to optimal allocations, the different solution sets are similar to
the optimal one.

In order to evaluate the quality of the provided solutions, we can carry out com-
parisons between the values provided by centralized techniques and by distributed
negotiations.

Centralized approaches provide social values used as a reference for the compar-
isons with the results which are provided by distributed negotiations. This social value
is called a global optimum.

Definition 2.13 (Global optimum) A resource allocation A ∈ A is a global optimum if no
other resource allocation A′ ∈ A associated with a greater social value exists.

∄A′ ∈ A sw(A′) > sw(A) A,A′ ∈ A such that A , A′.

A global optimum is not dependent on the allowed transactions among agents.
Depending on the kinds of allowed transaction, resource allocations corresponding to
global optima might not be achievable. Moreover, the optimal social value is unique
but several resource allocations can correspond to it.

During a negotiation process, agents negotiate until none of them is able to identify
acceptable transactions. The final solution is the resource allocation represented by the
state of system at that time. This state can be considered as an equilibrium state for the
negotiation process.

Definition 2.14 (Local optimum) A resource allocation A ∈ A is a local optimum if no
sequence of transactions, belonging to the set of allowed transactions T , leading to a resource
allocation associated with a greater social welfare value exists.

∀A′ ∈ A, ∄δ∆i sw(A′) > sw(A) δ ∈ T ,A ∈ A.

A local optimum is an equilibrium which can not be avoided using transactions
from T , with respect to the social graph topology. The closer are the social values
associated with the local optimum and with the global optimum, the more efficient are
the negotiation processes.

The comparison between the social value achieved by both approaches corresponds
to an evaluation of the price of anarchy (Gairing et al, 2006; Koutsoupias and Papadim-
itriou, 2009). This notion is often used to quantify the loss due to the distribution of solv-
ing processes (Christodoulou and Koutsoupias, 2005; Roughgarden, 2005). This price
of anarchy can be evaluatedwhen the centralized and the agent-based approaches have
pretty similar conditions, especially regarding the communication possibilities. This is
the casewhen negotiation processes are based on a complete social graph, which allows
to have “similar” solving conditions, and hence to carry out relevant comparisons.

However, restrictions on communication possibilities have a significant impact on
negotiation processes. Thus, another notion can be introduced: the price of the social

graph. This notion quantifies the quality loss due to the restriction imposed on the agent
communication possibilities. In thisway, negotiation processes based on different social
graphs can be compared, and the topology’s characteristics favoring the resource traffic
or the negotiation efficiency may be identified.

2.7.3 Computation time

The computation time required to carry out negotiation process is also an important
evaluation criterion. Its evaluation is quite simple. A solving process starts with the
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first negotiation, and is over when no agent in the population is able to identify an
acceptable transaction.

Since many parameters can influence a negotiation process and its efficiency, the
computation time shouldbedeterminedaccording to themost time-consuming settings.
It should represent an upper bound of the time required to end distributed negotiations
when restrictions are made. For instance, a complete social graph maximizes the
communication possibilities and the resource traffic. This setting can be considered
as the worst topology from a computational point of view, maximizing negotiation
opportunities. Agent behaviors also greatly influence the computation time. The worst
behavior in terms of computation time is flexible and frivolous. Agents who can change
partners as well as offers require more time to negotiate than other agents. Thus, in
our experiments, the computation time required by a negotiation process, for a given
set of allowed transactions T , is evaluated on complete graphs involving flexible and
frivolous agents.

2.8 Summary

In this chapter, distributed solving methods based on agent negotiations have been
described. Challenges related to agent-based methods have been discussed and the
different parameters defining agents have been successively detailed.

• Social graphs: Restricted communications among agents can be modeled using
a social graph representing agent relationships. Any graph topology can be
handled, but this thesis focuses on complete graphs, Erdős-Rényi graphs, grids and
small-worlds.

• Transactions: Different transaction classes have been presented, from simpler
ones like bilateral transactions to more complex ones like multilateral transactions.
Complexity issues have also been discussed.

• Acceptability criteria: In order to obtain finite negotiation processes, agents must
be able to determine locally if transactions are profitable or not. Two criteria have
been defined and characterized: Rationality and sociability.

• Agent behaviors: Agents can negotiate in several different ways. Behaviors
define how agents interact with each other. We defined the main features char-
acterizing agent behaviors: Rooted or frivolous, stubborn or flexible, perfectionist,
. . .

Finally, we discussed the evaluation of negotiations. Different metrics are presented
in order to consider every facet of distributed negotiations: The number of performed
transactions, the number of attempted transactions, the number of speech turns, the number of
traded resources and the topological sensitivity. Wealsodiscussed thenegotiation efficiency
by comparing optimal values provided by centralized techniques and by distributed
methods.

Simulations must be performed in order to establish the validity of our model of
distributed negotiations. This model is characterized by a large number of parameters,
and the next chapter describes algorithms required to generate them. Such algorithms
are required to ensure the reproducibility of the experiments.



56 Chapter 2. Distributed Negotiations



Chapter 3

Experimental Protocol

After theoretical studies of centralized and distributed approaches, experiments and
simulations must be performed in order to valid our approach. A large number of
parameters can be considered as described in Section 2.7. A precise simulation proto-
col is required, describing how each parameter is generated, in order to characterize
precisely experiments and to ensure their reproducibility. Indeed, each parameter sig-
nificantly affects the qualities of achieved allocations. This chapter is thus dedicated to
the description of the experimental protocol.

According to our definition of agent (see Section 2.2), we need to consider five
different parameters. Agent behaviors and acceptability criteria have already been
detailed respectively in Section 2.5 and 2.6. The three other parameters must still be
specified. Initial allocations and agents’ neighborhood are generated using centralized
algorithms and then distributed among the agents. Data instances are described and
the simulation settings are also characterized.

This chapter is organized as follows. First, the generation of the agents’ preferences
is described in Section 3.1, i.e., how utility functions are generated. Then, a method to
determine initial resource allocations is detailed in Section 3.2, since all resources must
be allocated before the beginning of negotiation processes. Section 3.3 is dedicated
to the generation of social graphs. For each class of social graphs considered during
the experiments, an algorithm of generation is provided. Section 3.4 describes how
sequential negotiation processes are managed in practice, with a description of the
mechanism distributing the speech turn among agents. Conditions to satisfy in order
to detect the end of negotiation processes are also discussed. Finally, the characteristics
of data instances and simulation settings are described in Section 3.5.

3.1 Generation of agents’ preferences

As described in Section 1.1.2, agents express their preferences using an evaluation
function restricted to an additive utility function. Agents’ preferences are generated
randomly according to a uniform distribution, as described in Algorithm 3.1. During
our experiments, the utility value range is [0,m], where m is the total number of re-
sources. Negative utility values can also be usedwithout any impact on the negotiation
process efficiency, except when the Nash welfare is considered.

57
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Algorithm 3.1: Generation of utility functions
Input: Agent i, Resource Set R
Output: Utility function ui of agent i

forall the r ∈ R do

val← random integer draw in [0,m] ;
add (r, val) to ui ;

end

The size of the range from which utility values are drawn also has an impact
on negotiation processes. Indeed, if the range of utility values is not large enough
compared to the overall number of resources, a very large number of equivalent optimal
solutions may appear. It may then bias the real efficiency of the negotiation processes.
The larger is the number of equivalent optimal solutions, the easier is the achievement
of one of them. Thus, an inappropriate range value of generation biases the efficiency
of negotiations. In order to avoid such a phenomenon, we suggest to generate utility
values in the range [0,m], where m is the total number of available resources.

3.2 Generation of initial allocations

A negotiation process starts from an initial allocation, which evolves step by step,
thanks to local negotiations among agents. According to Proposition 1.1 describing
allocation properties inherent to the resource nature, all resources must be allocated
to agents and each resource must be allocated to only one agent. Since there is no
reason for an agent to own a resource more than others, the initial resource allocation is
generated randomly. Thus, each resource is randomly allocated to an agent according
to a uniform distribution, as described in Algorithm 3.2.

Algorithm 3.2: Generation of initial allocations
Input: Agent population P, Resource Set R
Output: Initial allocation A

forall the r ∈ R do

i← random draw in P ;
add r to A[i] ;

end

Initial resource allocations influence significantly the negotiation efficiency when
restricted social graphs are considered. Indeed, these graphs restrict the resource traffic
according to their topology. Thus, an agent might never see resources depending on
where they are initially allocated. In such a context, initial allocations affect optima that
can be achieved. The generation of different graphs are described in the next section.

3.3 Generation of social graphs

Relationships among agents are generally not considered in resource allocation prob-
lems. Most of studies on resource allocation problems implicitly assume that the
solutions obtained by the proposed methods can always be achieved in practice. Ac-
cording to this assumption, any agent of the population is able to communicate with
all the other agents. However, many applications do not satisfy such an assumption,
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especiallywhen large systems are considered. A social graphmust then be defined, rep-
resenting relationships among agents. The features of different classes of social graphs
have a great impact on the efficiency of negotiation processes. This section provides
algorithms generating different classes of social graphs, as presented in Section 1.3.
They generate non-oriented graphs, but they can be easily adapted to generate oriented
graphs, if required.

In our experiments, simulation environments are assumed to be static: Populations
and resource sets do not change. Social graphs are generated using a centralized
algorithm, and then split and distributed among agents. All algorithms defined in this
section, generate and return a social graph G, which is modeled as an ordered list of
neighborhoods. The neighborhood of agent i ∈ P corresponds the i-th element of the
social graph, G[i] = Ni, as described in Figure 3.1.

Example 3.1 The following example illustrates the representation of a social graph used in this
thesis. The relationships among the 5 agents of a population P = {0, 1, 2, 3, 4} are described by
the social graph illustrated in Figure 3.1.

0

1

2

43

0 1 2 4
}

N0

1 0 3 4
2 0 4
3 1 4
4 0 1 2 3
Social graph G

Figure 3.1: A social graph and its representation

The social graph shows that agent 0 is linked to only three other agents. Then, its neighbor-
hood contains three agents: G[0] = N0 = {1, 2, 4}. Thus, the whole social graph can be defined
by: G = {N0,N1,N2,N3,N4} = {{1, 2, 4}, {0, 3, 4}, {0, 4}, {1, 4}, {0, 1, 2, 3}}.

Relationships among agents might also be represented by a connection matrix. The
social graph G is a Boolean square matrix of size n × n (where n is the total number
of agents). Each Boolean value G[i][ j] represents the existence of a link between two
agents i, j ∈ P. However, since we adopt a distributed approach, agents ignore the real
size of the population. A representation based on a list of neighbors is thus favored.

The following sections detail how we generate the different classes of social graphs
used in the experiments.

3.3.1 Complete graphs

In a complete social graph, each agent of the population can communicatewith all other
agents, as illustrated in Figure 3.2. Such a social graph is equivalent to the one used in
most other agent-based studies or in centralized approaches.

A complete social graph is generated as described in Algorithm 3.3.
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0

1 2

3

45

Figure 3.2: Example of complete graphs

Algorithm 3.3: Generation of complete graphs
Input: Agent population P
Output: Social graph G

forall the i ∈ P do

forall the j ∈ P \ {i} do
add j to G[i] ;

end

end

Complete graphs are only used for comparison purposes. Such a topology cannot be
ignored since the efficiency of negotiation processeswill be compared to the efficiency of
centralized approaches. However, complete graphs have no real interest in the solution
of multi-agent resource allocation problem.

3.3.2 Erdős-Rényi graphs

Erdős-Rényi graphs are basically random graphs. Two generation models exist (Erdős
and Rényi, 1959; Bollobás, 2001), namely G(n,M) and G(n, p). The first model, G(n,M),
is characterized by the number of nodes and the total number of edges required in
the graph, whereas the second model, G(n, p), is characterized by the number of nodes
and the probability to set an edge between agents of any pair of nodes. According
to this model, the probability to set an edge is the same and is independent from the
probability to set other edges. This second model G(n, p) is the one that we use to
generate the random graphs in our experiments, as illustrated in Figure 3.3.
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Figure 3.3: Example of Erdős-Rényi graphs

An Erdős-Rényi social graph, which is based on the G(n, p) model, is generated
using Algorithm 3.4.
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Algorithm 3.4: Generation of Erdős-Rényi graphs
Input: Agent population P, probability p
Output: Social graph G

forall the (i, j) ∈ P × P such that i < j do
val← random draw in [0, 1] ;
if val <= p then

add j to G[i] ;
add i to G[ j] ;

end

end

Let us note that generated graphs are not necessarily connected. If the probability
p is not large enough, some nodes may be isolated. If social graphs are not connected,
then multi-agent resource allocation problems can be split into several independent
sub-problems, as described in Proposition 2.3, and they can be solved independently.

3.3.3 Grids

In populations where all agents have exactly four neighbors, toric grids can be used to
represent their relationships, as illustrated in Figure 3.4. According to the characteristics
described in Section 1.3, the grids thatwe generate tend to have balanced dimension (i.e.
a shape close to a square). Given a population of agents, it is quite easy to determine
the corresponding dimensions of the grid using a prime number decomposition. Such
grids can be generated using Algorithm 3.5.

0 1 2

3 4 5

6 7 8

Figure 3.4: Example of grids
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Algorithm 3.5: Generation of grids
Input: Agent Population P, lengthGrid l
Output: Social graph G

forall the i ∈ P do

// determine the 4 neighbors of each agent

north← i − l ;
if north < 0 then

north← north + n ;
end

west← i − 1 ;
if west < 0 then

west← west + n ;
end

south← i + l ;
if south ≥ n then

south← south − n ;
end

east← i + 1 ;
if east ≥ n then

east← east − n ;
end

add north, south, east,west to G[i] ;
end

3.3.4 Small-worlds

Small-worlds describe a wide range of real systems in nature and societies. In our ex-
periments, small-worlds are generated using the preferential attachment model (Albert
and Barabási, 2002). New agents joining into the population are connected to the exist-
ing agents with a probability proportional to their number of neighbors. An example
of small world is illustrated in Figure 3.5.

0 1 2 3

4 5 6 7

8 9 10 11

Figure 3.5: Example of small-worlds

Such small-worlds can be generated using Algorithm 3.6.
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Algorithm 3.6: Generation of small-worlds
Input: Agent Population P
Output: Social graph G

total← 1 ;
forall the i ∈ P do

for j = 0→ i do
limit← (2 ∗ N j)/total ;
random draw of p ;
if p ≤ limit then

add i to G[ j] ;
add j to G[i] ;
total← total + 1 ;

end

end

end

In this section, the generation of different classes of social graphs has been described.
Each of them has different characteristics that prevent negotiation processes to achieve
optimal resource allocations, as discussed in Section 1.3.2.

In order to ensure the reproducibility of our experiments, some characteristics of the
protocolmust still be detailed. Since agents negotiate sequentially, a specificmechanism
is used to distribute the speech turn among them. Such a mechanism is described in
the next section as well as ending conditions of negotiation processes.

3.4 Negotiation processes

In order to fully define a finite negotiation process, some details must still be given. The
first mechanism is the speech turn distribution process, whereas the second is related
to the ending conditions of negotiation processes.

Negotiation processes are sequential in this study: Only one agent at a time can
initiate a negotiation, according to its behavior. To achieve this, a classical mechanism
based on a token is used to decide which agent can initiate a negotiation. The speech
turn is uniformly distributed over the population: No agent talks twice unless all agents
have talked at least once. Such a distribution is done thanks to awell-known round-robin
algorithm, which is often used as a task scheduler. The order in which agents receive
the token may bias the process. To avoid this phenomenon, the population is shuffled
when every agent has initiated a negotiation, i.e., periodically every n negotiations. The
distribution process of the token is illustrated in Figure 3.6.

0 1 2 . . . n

Shuffle P

Population P

Figure 3.6: Distribution of the speech turns

The last issue is related to ending conditions of negotiation processes. In other
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words, when can we consider that a negotiation process is terminated? During our
experiments, negotiation processes end when no agent in the population can identify
acceptable transactions to perform. Thus, negotiation processes can be managed as
described in Algorithm 3.7. We assume that the initiator of a negotiation returns the
Boolean value  if an acceptable transaction is performed, and  otherwise.

Algorithm 3.7: Negotiation processes
Input: Agent population P

transactionDone←  ;
while transactionDone =  do

transactionDone←  ;
shuffle P ;
forall the i ∈ P do

result← i negotiates ;
transactionDone← transactionDone  result ;

end

end

Ending conditions described here are based on a Boolean criterion. However, de-
pending on agents’ behaviors, a different condition may improve the efficiency. In
Algorithm 3.7, when no agent is able to identify acceptable transactions, negotiation
process end. However, the end of negotiation processes does not necessarily mean that
no acceptable transaction exists. For instance, when rooted behaviors are considered,
the initiator negotiates only with one neighbor. A negotiation process based on such
conditionsmay endprematurely if every agent has selected a “bad” neighbor. Allowing
several negotiation rounds where no agent is able to find acceptable transactions may
then improve solutions. These additional rounds may allow agents to select a proper
neighbor to negotiate, and then identify acceptable transactions.

This tip must nevertheless be moderated. Its efficiency is conditional to the ne-
gotiation cost. Indeed, when simple transactions such as gifts are allowed, allowing
additional negotiation rounds is not expensive. However, in the case where complex
transactions are allowed, such a tip may become exponentially time-consuming.

3.4.1 Simulation and practice

In practice, it is possible to greatly reduce the computation time. Indeed, negotiation
simulations are usually run sequentially. One agent at a time can initiate a negotiation,
and once this negotiation is over, another agent is selected to start a new negotiation.
However, such a method does not take advantage of the distributed nature of multi-
agent systems and of the agent’s autonomy. Parallel negotiations can be used to greatly
reduce the computation time. In such cases, each agent can only initiate one negotiation
at a time, but it can be involved in several negotiations simultaneously. However,
synchronization and deadlock issues should be considered. Since agents can negotiate
in a concurrent way, consistency must be ensured using specific mechanisms. If an
agent is involved in several different negotiations at once, it must not promise the same
resource to different partners since resources are not sharable.

Two main different mechanisms are available to synchronize negotiations. The first
mechanism applies at the “agent” level whereas the second mechanism applies at the
“resource” level.
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The first mechanism is the most basic one: The synchronization by neighborhood
exclusion. An agent who is already involved in a negotiation cannot be involved in
another one at the same time. Once the current negotiation is over, it can then be
involved in a new negotiation, as described in Figure 3.7. In this figure, agents 0 and 2
are negotiating as well as agents 1 and 3. These agents are then locked. Agent 4 who
looks for a partner cannot either choose agent 2 or agent 1 since they are already busy.
It should select agent 5.
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1

3

4New initiator

5

×
×

Locked agents

Impossible transactions

Figure 3.7: Agent-based synchronization mechanism

This synchronization mechanism is simple and easy to implement. Negotiation
processes based on bilateral transaction δ ji 〈u, 0〉, i.e., where partners do not offer any
resource like in gifts or clusters, synchronization mechanisms are useless. Indeed,
agents do not wait for an offer of their partner. Since an agent can only initiate one
negotiation at a time, no specific synchronization mechanism is required. However,
during a negotiation, most of the time agents only offer a small subset of their bundle.
Other agents can negotiate with them the unused resources. This idea leads to the
second synchronization mechanism.

It is based on the resource exclusion. Instead of waiting that the agent completely
ends a negotiation, it is possible to negotiate the resources which are still available as
described in Figure 3.8.
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Figure 3.8: Resource-based synchronization mechanism

Several agents can involve a common neighbor in simultaneous negotiations. This
agent locks each offered resource. Synchronization mechanisms must be carefully
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designed in order to avoid deadlocks. These situations arise when several agents wait
for the other participants to negotiate.

Wehave implementedparallel negotiations: Agents are representedby independent
threads. Negotiations have been simulated on an homogeneous cluster of computers.
Each node of this cluster is a 2.2 GHz AMD Opteron 64-bit processor. It utilizes the In-
finiBand network as the means for node-to-node communication and for Input/Output
to the cluster file system. The computation time of sequential negotiations have been
compared to the computation time of parallel negotiations, involving an increasing
number of processor cores. Both synchronization mechanisms have been implemented
and tested on numerous simulations, showing a decrease of the computation time with
the increase of the number of cores.

3.5 Experimental protocol

Issues related to the evaluation of negotiation processes have been discussed in Section
2.7. The fair evaluation of negotiation processes must be done according to an precise
protocol. The purpose of this section is to describe the different settings used. An
experiment is characterized by the characteristics of the data instances and of the
simulation.

3.5.1 Instance characteristics

An instance is composed of a population of agents who express their preferences over
the resource set thanks to a utility function, as described in Section 3.1. Agent neigh-
borhoods are defined by social graphs, generated according to a given class (see Section
3.3). Social graphs and population preferences depend on some parameters that must
be set beforehand, as described in Figure 3.9. Parameters are represented by boxes,
processes by ellipses, and results by double boxes.

Data instances

Social graph G

Agents preferences u

Link probability p

Population Size n

Number of resources m

Figure 3.9: Data instance specifications

First, the number of agents n varies from 25 up to 500 agents. The number of
available resources is a little dependent on the population size. Indeed allocating 100
resources over a population of 10 agents or over a population of 100 agents has not
the same complexity. Instead of characterizing instances by the overall number of
resources m, they can be characterized by the mean number of resources per agent
m
n . In our experiments, m

n ∈ {5, 10, 20}. For each pair (n,m), 10 population preferences
are generated. 10 social graphs of each class are generated. Hence, for a given link
probability and a population size, 31 social graphs are generated: 1 complete graphs,
10 grids, 10 Erdős-Rényi graphs and 10 small-worlds. In the case of graphs from the
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random family, the link probability p affects the social graph mean connectivity. In this
study, p varies from 0.05 up to 1.0. Finally, the association of a social graph with a set
of agents’ preferences set corresponds to one data instance.

3.5.2 Simulation characteristics

Some simulation settings must still be specified in order to clearly define the experi-
mental protocol. A simulation can be completely specified by four parameters: The
agent behavior B, the acceptability criterion C, the class of allowed transactions and
finally the social welfare notion sw considered, as described in Figure 3.10.

Test

×100

Data instance

Results

Acceptability criterion C

Agent behavior B

Allowed transaction kind T
Social welfare notion sw

Figure 3.10: Simulation specifications

The four main social welfare notions are considered, namely the utilitarian welfare,
the egalitarian welfare, the Nash product and the elitist welfare. Different transactions
can be allowed during a negotiation process. Multilateral deals or bilateral deals, such
as gifts, swaps or larger exchanges. Two acceptability criteria will be investigated:
the individual rationality and the sociability, as defined in Section 2.5. Finally, as de-
scribed in Section 2.6, various agent behaviors are assessed: Rooted, flexible, frivolous,
stubborn, . . .

The combination of these four parameters, associated with data instances, defines
a simulation. Each simulation will be iterated 100 times from different initial resource
allocations in order to evaluate the topological sensitivity as described in Section 3.2.

The description of data instance features and of simulation features shows the very
large number of experiments that have been realized, and their diversity. Results related
to bilateral negotiations are described and analyzed in Chapter 4, while multilateral
issues are addressed in Chapter 5.
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Chapter 4

Bilateral Negotiations

Bilateral transactions are the simplest and the most widely used transaction class in
the literature. During such negotiations, the agent who initiates a negotiation can only
involve one neighbor at a time. These transactions are popular since they require few
information. This chapter seeks to find an answer to the following question: “How
agents must interact in order to maximize the efficiency of negotiation processes?”,
according to the social notion considered. This chapter also shows that restricting
negotiation processes to bilateral transactions may affect the efficiency of negotiations.
Parameters maximizing the negotiation efficiency are identified, i.e., suitable agents’
behaviors, allowed transactions and the most adapted acceptability criterion.

This chapter is divided into four sections. Each section is dedicated to a specific
social welfare notion. Negotiation processes are analyzed in order to identify simula-
tion features leading agent negotiations to socially optimal allocations, or to socially
close allocations when the need arises. Each section is organized as follows. First,
centralized approaches are described and algorithms are provided in order to deter-
mine the optimal social welfare value. Then, the expression of acceptability criteria
are specified according to the objective function considered, and negotiation properties
are described. Different facets of negotiation processes are then evaluated according to
various metrics. The impact of the different parameters are discussed like agent behav-
iors, allowed transactions and social graphs. Section 4.1 is dedicated to the utilitarian
welfare, Section 4.2 describes egalitarian negotiations, Section 4.3 presents the results
related to the Nash negotiations and finally Section 4.4 deals with elitist negotiations.

4.1 Utilitarian bilateral negotiations

The utilitarian welfare is the notion the most widely used in the social welfare theory.
This notion is especially used for applications in Economics, as for example the e-
trade. An utilitarian objective maximizes the global welfare of the society without
any consideration of the individual welfare. First, different centralized approaches
are described in order to provide the global optimal welfare value. Such a value can
then be used as a reference in order to evaluate the efficiency of utilitarian negotiation
processes. The expression of acceptability criteria is then specified when the utilitarian
notion is considered. Negotiation properties are also discussed. Finally, negotiation
processes are evaluated according to different parameters as described in Section 2.7.

69
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4.1.1 Centralized techniques

Generally, several ways can be used to determine the optimal welfare value. When
the utilitarian welfare is considered, two ways are possible. The first one is to model
utilitarian resource allocation problems by means of linear programs, which can be
solved using any mathematical programming optimizer like  (ILOG Inc, 1995).
The variables of such amodel, denoted by xir, represent the ownership of resource r ∈ R
by agent i ∈ P as follows:

xir =















1 if agent i owns resource r

0 otherwise.
r ∈ R, i ∈ P.

Then, the determination of the optimal utilitarian welfare value can be formulated as
follows:

sw⋆u =































max
∑

i∈P

∑

r∈R
ui(r)xir

s.t:
∑

i∈P
xir = 1 r ∈ R

xir ∈ {0, 1} r ∈ R, i ∈ P.

The objective function is the maximization of the utilitarian welfare, which can be
written as the sum of all agents welfare according to Definition 1.4. Two consistency
constraints are required. According to the resource nature, i.e., since resources are
neither divisible nor sharable, Boolean variables are considered. However, this model
can be adapted easily. For instance, continuous resources could be represented by real
variables. The second constraint becomes xir ∈ [0, 1], r ∈ R, i ∈ P.

The other way to determine the optimal utilitarian value is to generate an optimal
allocation. However, the explicit enumeration of all allocations in order to extract the
largest social value is not a scalable approach, as a result of the exponential size of
the solution space. However, optimal utilitarian allocations satisfy a specific structural
property when additive utility functions express agents’ preferences. This property can
be used to simplify the generation of an optimal allocation, and then the determination
of the optimal utilitarian welfare value. It specifies how to allocate resources over the
population in order to maximize the utilitarian efficiency.

Property 4.1 (Utilitarian optimum) In utilitarian optimal allocations, each resource is allo-
cated to one of the agents who associates the largest utility value with it.

Proof. Let us make a proof by contradiction. A resource allocation A ∈ A is assumed
to be a global optimum, in which an agent i ∈ P owns a resource r ∈ Ri. Let us now
assume that another agent j ∈ P\ {i} associates a greater utility value with this resource
r. More formally:

∃(r, j) ∈ R × P such that u j(r) > ui(r), i ∈ P.

If the resource allocationA′ ∈ A(A , A′) corresponds to the allocation inwhich resource
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r is allocated to agent j, then the following expression is satisfied:

swu(A) =
∑

k∈P

uk(Rk)

= ui(Ri) + u j(R j) +
∑

k∈P\{i, j}

uk(Rk)

< ui(Ri) − ui(r) + u j(R j) + u j(r) +
∑

k∈P\{i, j}

uk(Rk)

< swu(A′).

The utilitarian welfare value associated with A′ is greater than the one associated with
A: swu(A) < swu(A′). Then, allocation A cannot be a global optimum since there exists
an allocation associated with a greater utilitarian welfare value. Thus, allocations that
do not allocate all resources to one of the agents who associates with them the largest
utility value are not a global optimum. �

Thus, thanks to this property, optimal allocations can be easily generated when the
utilitarian welfare is considered. A simple algorithm can be designed for this purpose.
According to Proposition 4.1, such an algorithm has to allocate each resource to an
agent who values it the most, as described in Algorithm 4.1.

Algorithm 4.1: Determination of the optimal utilitarian welfare value
Input: Agent population P, Resource set R
Output: sw⋆u the optimal utilitarian value

forall the r ∈ R do

i← argmax
k∈P

uk(r) ; // Determination of who estimates r the most

Add r to A[i] ; // Add r to agent i’s bundle
end

return swu(A) ;

4.1.2 Utilitarian negotiation properties

The expression of the rationality test does not vary according to the welfare notion
considered since it is only based on the agent resource bundle. However, the sociability
criterion is based on the chosen welfare notion and its expression can then be specified.
It is based on the evolution of the utilitarian welfare value during a transaction. Let us
note A ∈ A the resource allocation before the bilateral transaction δ ji 〈u, v〉 and A′ the
allocation afterwards. Such a transaction involves two agents i, j ∈ P who respectively
propose offers ρδi and ρδj . The resource bundle of any agent k ∈ P is denoted by Rk

before the transaction and by R′k afterwards (k ∈ {i, j}). Any social transaction must
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satisfy the following expression:

swu(A) < swu(A′)
∑

k∈P

uk(Rk) <
∑

k∈P

uk(R
′
k)

ui(Ri) + u j(R j) +
∑

k∈P\{i, j}

uk(Rk) < ui(R′i ) + u j(R′j) +
∑

k∈P\{i, j}

uk(R
′
k)

ui(Ri) + u j(R j) < ui(R′i ) + u j(R′j)

ui(Ri) + u j(R j) < ui(Ri) + ui(ρδj ) − ui(ρδi ) + u j(R j) + u j(ρδi ) − u j(ρδj )

ui(ρδi ) + u j(ρδj ) < ui(ρδj ) + u j(ρδi )

Thus, the utilitarian acceptability criterion is only based on the offers proposed
by the participants. During a social transaction, agents who receive resources must
associate with them a larger utility value than their initial owner. The initial welfare
of participants does not affect the acceptability of a transaction. This expression cor-
responds to the acceptability test that agents perform to determine whether or not a
transaction is profitable when the utilitarian welfare is considered. Hence, the accept-
ability test, which is represented by the instruction  in all behaviors of Section 2.6,
can be replaced by:

 ≔

[

ui(ρδi ) + u j(ρδj ) < ui(ρδj ) + u j(ρδi )
]

When the utilitarian welfare is considered, bilateral transactions have some impor-
tantproperties. Acceptable bilateral transactions δ ji 〈u, v〉maynot be split into a sequence
of acceptable bilateral transactions of lesser cardinality. This means that transactions
with a large cardinality might be required to achieve socially optimal allocations.

Property 4.2 (Utilitarian transaction split) Within an utilitarian societywhere agents express
their preferences by means of additive utility functions, it is not always possible to split social
bilateral transactions δ ji 〈u, v〉 between two agents i, j ∈ P into a sequence of social bilateral

transactions δ ji 〈u
′, v′〉 of lesser cardinality (u ≥ u′ and/or v ≥ v′).

Proof. Let us consider a counter example based on a population of two agents, P =
{0, 1}, who negotiate three available resources R = {r1, r2, r3}. Their preferences are
expressed by utility functions described in Table 4.1. The initial resource allocation is
A = [{r1, r2}{r3}]: Agent 0 owns two resources, R0 = {r1, r2}, whereas agent 1 only owns
resource R1 = {r3}.

Table 4.1: Utilitarian transaction split - Example of agent preferences

Population P
Resource Set R
r1 r2 r3

0 4 6 7
1 10 1 3

Let us consider the transaction δ10〈2, 1〉 = ({r1, r2}, {r3}), which changes the initial
resource allocation A into another allocation A′ (A,A′ ∈ A). During this transaction,
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agent 0 proposes ρδ0 = {r1, r2} while agent 1 proposes ρδ1 = {r3}. Such a transaction is
social since:

u0({r3}) + u1({r1, r2}) > u0({r1, r2}) + u1({r3})

Such a transaction leads to an increase of the utilitarian welfare value from swu(A) = 13
initially to swu(A′) = 18 afterwards. However, this transaction δ10〈2, 1〉 can be split into
a sequence of social transactions. Two decomposition patterns can be observed: A
swap transaction concatenated with a gift or three successive gifts are the lone possible
sequences. Table 4.2 describes the three possible sequences containing transactions
of lesser cardinality. In each of them, at least one transaction of the sequence is not
acceptable.

Table 4.2: Utilitarian transaction split - List of possible sequences
Split of δ10 Social sequence?

({r1, r2}, {r3}) = ({r1}, {r3}) + ({r2}, ∅) ({r2}, ∅) is not social
= ({r2}, {r3}) + ({r1}, ∅) ({r2}, {r3}) is not social
= ({r1}, ∅) + ({r2}, ∅) + (∅, {r1}) ({r2}, ∅) is not social

According to Table 4.2, the transaction δ10 = ({r1, r2}, {r3}) cannot be split into a se-
quence of acceptable transactions of lesser cardinality. Thus, social bilateral transactions
δ
j
i 〈u, v〉 cannot always be split into sequences of social transactions of lesser cardinality
when the utilitarian welfare is considered. Let us note that, since the utility values are
positive, any transaction that cannot be split is locally sub-optimal: A transaction of
lesser cardinality achieves a larger utilitarian value. �

4.1.3 Evaluation of utilitarian negotiations

This section is dedicated to the evaluation of the different facets of utilitarian negotia-
tions. First, impacts of restrictions on the transaction cardinality are investigated. Then,
the efficiency of negotiations based on different transactions, on different graphs and on
different acceptability criteria are studied, using a comparison with the optimal welfare
value provided by centralized methods. The impact of the social graph connectivity
is then presented. Agent behaviors are evaluated using several metrics to quantify
the negotiation process quality. Finally, issues related to the scalability of utilitarian
negotiation processes are discussed.

Influence of the transaction cardinality

According to Definition 2.6, a bilateral transaction δ〈u, v〉 is defined using two param-
eters u and v, which bound the size of agents’ offers. Their size influences a lot the
resource negotiation process. Proposing large offers during a transaction may be theo-
retically required to guarantee the achievement of optimal allocations since they cannot
always be split. However, allowing such large offers increases exponentially the cost
of a negotiation with the size of the participant’s bundle. Thus, the following question
can be raised: Does the efficiency improvement justifies additional costs induced by
the use of large bilateral transactions?

Figures 4.1 show the impact of the transaction cardinality on utilitarian negotiation
processes, according to two metrics: The computation time and the number of transac-
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tions performed during the whole processes. Negotiation processes are based here on
a population of 50 social agents who negotiate 250 resources on complete graphs.

Figure 4.1a represents the utilitarian welfare value evolution according to the com-
putation time, while Figure 4.1b represents its evolution according to the number of
performed transactions. On each figure, different transactions are allowed during the
negotiation process. The keys characterizing the curves in these graphs represent the
transaction cardinality 〈u, v〉. The curve denoted by “up to 〈2, 2〉”means that agents can
propose from an empty offer to a set of 2 resources. Then, the set of allowed transactions
T can be explicitly written as: T = {〈1, 0〉, 〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈1, 2〉, 〈2, 2〉}.
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Figure 4.1: Evaluation of the transaction cardinality impact in terms of computation
time in 4.1a and of performed transactions in 4.1b.
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Figure 4.1a shows that, independently of the cardinality of the allowed transac-
tions, all negotiation processes converge towards very close utilitarian welfare values.
Large bilateral transactions do not allow the achievement of greater utilitarian alloca-
tions whereas they are more time consuming. Negotiation processes based either on
〈0, 1〉 transactions (gifts), on 〈1, 1〉 transactions (swaps), or on both transactions (“up
to 〈1, 1〉”) end after 1 second while 10 seconds are required when transactions of car-
dinality “up to 〈3, 3〉” are allowed for instance. Figure 4.1b shows that the number of
performed transactions is almost similar in all cases. Large bilateral transactions do not
shorten transaction sequences required to close the negotiation processes. Negotiation
processes based on swaps 〈1, 1〉 end on socially weaker allocations. Since the initial
resource distribution cannot be modified, negotiation processes based on swaps end
on weaker local optima. Since the utilitarian welfare value achieved is almost similar,
independently of the transaction cardinality, the use of large bilateral transactions is
not justified due to important additional costs.

Price of social graphs

The efficiency of negotiation processes is an essential feature. This efficiency is eval-
uated here by a comparison between optimal utilitarian welfare values, provided by
centralized algorithms described in Section 4.1.1, and social values provided by agent
negotiations. Negotiations are based on a population of 50 agents where 250 resources
are available.

Table 4.3 presents the efficiency of negotiation processes based on different sets
of allowed transactions, on different acceptability criteria, and on different classes of
social graphs. This table shows the proportion of the optimal welfare value that can be
achieved. The greater is the proportion, the closer optima are the resulting allocations.
Table 4.4 describes the standard deviations observed among the social values provided
from different initial allocations. A large standard deviation means a high topological
sensitivity. For instance, negotiation processes based on a grid where rational agents
negotiate using δ〈1, 1〉 transactions only end on social values representing 79.0% of
the optimum with a standard deviation of 1.6%. Depending on the initial resource
allocation, the utilitarian welfare value achieved may vary of 1.6%.

Table 4.3: Utilitarian efficiency (%) according to the class of social graphs
Social graph Rational Social

kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 96.6 97.0 100 98.3 100 100
Grid 79.0 81.3 86.2 85.3 86.1 86.1

Erdős-Rényi 94.8 95.0 98.9 97.1 98.9 98.9
Small world 80.8 84.8 91.4 90.0 90.2 90.3

When considering complete social graphs, different negotiation strategies always
lead to optimal resource allocations. The transactions of weakest cardinality, which
achieves optimal allocations, are social gifts, i.e., social 〈1, 0〉 transactions. Any ne-
gotiation policy that includes social gifts, like “up to 〈1, 1〉”, “up to 〈2, 2〉” or “up to
〈3, 3〉” also achieve socially optimal resource allocations. However, their use leads to
important additional costs. The use of social gifts is sufficient to achieve optimal allocations
when the utilitarian welfare is considered. Table 4.3 also shows that, independently of
the social graph class, rational negotiation processes always lead to socially weaker
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Table 4.4: Standard deviation of the utilitarian efficiency (%) according to the class of
social graphs

Social graph Rational Social
kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 0.3 0.2 0 0.2 0 0
Grid 1.6 1.3 0.9 1.1 0.9 0.9

Erdős-Rényi 0.5 0.4 0.1 0.2 0.1 0.1
Small world 2.0 1.3 0.8 1.0 0.8 0.8

allocations than social negotiation processes. The restrictive character of the accept-
ability criterion affects the resource circulation, and then the quality of the provided
solution. The more restricted are social graphs, the weaker is the negotiation efficiency.
The combination of a restricted social graph like a grid and the use of rational swaps,
which restrict a lot transaction possibilities (since initial resource distributions cannot
bemodified), leads to the worst social efficiency: Only 79% of the optimal welfare value
can be achieved. When grids are considered, social negotiation processes achieve up to
86.2% of the optimum. The weak mean connectivity handicaps the resource traffic and
hence the achievement of socially efficient allocations. Negotiation processes lead to
allocations associated with up to 98.9% of the optimal welfare value when Erdős-Rényi
graphs are considered. Only 91.4% of the optimum is achieved when small-worlds are
considered. In an Erdős-Rényi graph, the probability for a link to exist between any
pair of nodes is always the same, while in small-worlds, the larger is the number of an
agent’s neighbors, the higher is the probability to link this agent. Many agents have
only one neighbors, and the resource traffic is unequally distributed. Then, bottlenecks,
i.e., agents who block the resource circulation, may appear. Swaps are the least efficient
transactions, but the difference is generally small. Since the number of resources per
agent cannot vary, the resource circulation is very limited. In all cases, the standard
deviation observed among the social values achieved remains weak for a given class
of social graphs. It means that when the utilitarian welfare is considered, the topology
has not a significant impact for a given class. The deviation is higher when rational
transactions are considered. Indeed, the rational acceptability criterion holds up the
resource traffic, which then influences on the quality of the provided allocations. The
more restricted is the resource traffic, the higher is the standard deviation, and thus
more important become the initial resource allocation.

Theorem 4.3 Within an utilitarian society, where agents express their preferences by means of
additive utility functions, negotiation processes based on complete social graphs always converge
towards a global optimum using only social 〈1, 0〉 transactions.

Proof. Since the social graph is complete and fully connected, any agent i ∈ P can
communicate with every other agents j ∈ P \ {i}. If a social 〈1, 0〉 transaction containing
r canbeperformedbetween agents i and j, thenu j(r) > ui(r) according to thedefinition of
a social transaction. It is always possible to create a sequence of social 〈1, 0〉 transactions
leading a resource into the bundle of an agent who associates the largest utility value
with it. Applying this process to each resource, and according to Proposition 4.1, the
resulting allocation is a global optimum. �
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Influence of the social graph connectivity

The social graph topology greatly affects the resource circulation and the negotiation
efficiency. The larger are agent neighborhoods, the denser are social graphs, and the
easier is the resource traffic. The model of generation for Erdős-Rényi graphs G(n, p)
is used to evaluate the impact of the connectivity on utilitarian negotiation processes.
The probability p for a link to exist between nodes from any pair can be modified. Note
that such a model does not guarantee that the generated graphs are connected.

Figure 4.2 shows the impact of the social graph connectivity on the negotiation effi-
ciency within a population of 50 agents who negotiate 250 resources using social 〈1, 0〉
transactions. Figure 4.2a represents the evolution of the utilitarian welfare value ac-
cording to the computation time, whereas Figure 4.2b represents its evolution according
to the number of performed transactions.

These figures show that aweak probability, which corresponds to small agent neigh-
borhoods, leads to short transaction sequences and utilitarian welfare values far from
the optimum. For instance, when p = 0.05, negotiations end after a sequence of 300
gifts performed in only 0.5 second. However, negotiation processes end on allocations
socially far from the optimum. The gradual increase of the probability p leads to longer
transaction sequences, to the achievement of larger utilitarian welfare values, and to
more time-consuming negotiations. Larger neighborhoods facilitate the resource cir-
culation by offering a larger number of possible transactions to all agents. The impact
becomes really significant when p < 0.3. Above this value, the resource circulation
is sufficient to achieve socially interesting allocations, but below this threshold, social
graphs are too restricted, and the flexibility of the social criterion cannot compensate
for the restrictiveness of graph topologies.

Influence of agent behaviors

Behaviors define howagents interactwith their neighbors, and then how they negotiate.
Different behaviors, defined in Section 2.6, can be compared using themetrics presented
in Section 2.7.1. In order to evaluate the agents’ behaviors, any factor that may alter
the comparison should be avoided, like the social graph topology for instance. For this
purpose, the negotiation processes which are compared here, are based on complete
social graphs, with a population of 50 agents and 250 resources. Agents negotiate using
social 〈1, 0〉 transactions only since they are the most efficient transactions.

The name of agent behaviors are abbreviated in Figure 4.3, as described in Table
2.5. Let us recall that “rs” corresponds to rooted stubborn behaviors, while “fs” defines
frivolous stubborn behaviors. Flexible behaviors can be either rooted “rf” or frivolous
“ff”. According to behaviors qualified as full, the initiator makes an exhaustive negoti-
ation with its partner. If agents are moreover rooted, their behaviors correspond to “rf
full”, whereas when agents are frivolous, a priority can be defined either on offers or
on partners. “rf full - agent” denotes agent behaviors favoring partner changes, while
“rf full - resource” denotes agent behaviors favoring offer changes.

When rooted stubborn agents negotiate, transaction sequences are short: Only few
transactions are performed before the end of utilitarian negotiations. Indeed, around
400 social gifts are required on average to end such processes. Agents always propose
first the offer the least penalizing for them. However, since agents are stubborn, they
only attempt a single offer, which is always a singleton since all utility values are
positive. Thus, according to rooted stubborn behaviors, the number of performed
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Figure 4.2: Evaluation of the mean connectivity impact in terms of computation time
in 4.2a and of performed transactions in 4.2b.
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Figure 4.3: Evaluation of the agent behavior impact in terms of performed transactions
in 4.3a, in terms of transacted resources in 4.3b, in terms of speech turns in 4.3d, in
terms of attempted transactions in 4.3e, and in terms of computation time in 4.3e.
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transactions is equivalent to the number of exchanged resources. A large number of
speech turns is required to end the negotiation process: Many speech turns are required
to communicate with all neighbors for instance. Since agents attempt a single offer
per negotiation, the number of attempted transactions is equivalent to the number of
speech turns. Thus, when agents interact according to rooted and stubborn behaviors,
negotiation processes are quite short, only few offers are attempted and lesser are
performed. Such processes generally end on allocations associated with weak social
values.

A stubborn but frivolous agent behavior leads to a weak number of performed
transactions as well as to a weak number of exchanged resources. Since the initiator
can change partners, the number of speech turns required to end such negotiations
is weaker than in the case of rooted stubborn behaviors. The number of attempted
transactions becomes 10 times higher. Moreover, negotiation processes can achieve
socially more interesting allocations, even if they become more time consuming. Both
stubborn behaviors are not socially efficient since corresponding negotiation processes
end on socially weaker allocations (15% weaker) after similar elapsed time.

Negotiations among flexible agents increase drastically the number of performed
transactions. More transactions are performed if the flexible negotiations are “full”
(since such behaviors identify all acceptable transactions if some exist in the neigh-
borhood), but the number of exchanged resources are close. If agent behaviors are
moreover rooted, the number of speech turns becomes very large. More than 3000 ne-
gotiations are required in the case of rooted agents while only 1300 steps are sufficient
when agents behave frivolously. However, frivolous flexible behaviors lead to a very
large number of attempted transactions (10 times more). The number of attempted
transactions increases exponentially with the mean number of resources per agent. No
real difference can be distinguished between the frivolous flexible behaviors. The val-
ues of the different metrics are always close. Indeed, on complete graphs, the order on
which agents negotiate is not critical, especially when the utilitarian welfare notion is
considered.

Negotiation scalability

The scalability is also an important issue, which is evaluated according to the conditions
described in Section 2.7.3, i.e., on complete social graphs among frivolous and flexible
agents.

Figure 4.4a represents the evolution of the utilitarian welfare value according to the
computation time, on several population sizes, while Figure 4.4b shows its evolution
according to the number of performed transactions. The different curves of these figures
are characterized by a pair n − m describing the size of the instances, where n is the
number of agents and m the overall number of resources. Then, the key “25-125” on
Figures 4.4 corresponds to instances populated by 25 agents who are negotiating 125
resources. These graphs underline the impact of the instance size on the observed
metrics. Independently of the mean number of resources per agent, the increase of the
metric values is almost regular.

Tables 4.5 and 4.6 respectively present the elapsed time that is required to end
utilitarian negotiation processes according to several instance sizes and to the number
of performed transactions. Each experiment is characterized by the population size
n and by the mean number of resources per agent m

n . According to these tables, 100
agents owning on average 10 resources each, end utilitarian negotiation processes in
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Figure 4.4: Evaluation of utilitarian scalability in terms of computation time in 4.4a and
performed transactions in 4.4b.
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Table 4.5: Utilitarian negotiation scalability - Computation time

Population size n
Mean number of resources per agent m

n
5 10 20

25 400 ms 550 ms 950 ms
50 625 ms 1.2 s 2.4 s
100 1.7 s 4.1 s 12 s
500 45 s 150 s 450 s

Table 4.6: Utilitarian negotiation scalability - Number of performed transactions

Population size n
Mean number of resources per agent m

n
5 10 20

25 325 625 1300
50 800 1500 3000
100 1900 3700 7100
500 13500 25000 47500

4.1 seconds after a sequence of 3700 social gifts. These tables show that large instances
can still be solved in a reasonable time.

Property 4.4 (Utilitarian gift-based negotiation complexity (Endriss andMaudet, 2005))
During a negotiation process based on social gifts, the number of distinct attempted transactions
and the number of transactions that can be performed are both polynomial.

Proof. When the utilitarian welfare is considered, a social transaction δ ji 〈1, 0〉 between
two agents i, j ∈ P, in which resource r ∈ Ri is offered, is characterized by the relation
u j(r) > ui(r). Then, during a social gift sequence, the utility value associated with r
gradually increases with its successive owners. No social gift allows the return of r
to former owners. No cycle of social gifts can then appear. A specific resource r can
be transacted at most n − 1. Then, the overall number of performed transactions is
bounded by m(n − 1) ∼ O(nm). �

The demonstration of the complexity in terms of attempted transactions depends a
lot on features like the implementation or the distribution of the speech turns. However,
if they are uniformly distributed as described in Section 3.4, the proposition can be
demonstrated as follows:

Proof. Themaximumnumber of distinct attempted gifts per agent corresponds tom(n−
1). Indeed, in the worst case, an agent may punctually own each resource and tries
to give them to everybody. Thus, the number of distinct attempted transactions is
bounded by m(n − 1)2 ∼ O(n2m). �

4.1.4 Conclusion

Centralized approaches are quite trivial when utilitarian problems are considered. Each
resource must be allocated to one of the agents who associates with it the largest utility.
In distributed agent negotiations, the use of social 〈1, 0〉 transactions is themost efficient
negotiation policy among frivolous and flexible agents.
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Best utilitarian negotiation policy

Transaction: 〈1, 0〉 (i.e., gifts)
Criterion: social
Test on δ

j
i : ui(ρδi ) + u j(ρδj ) < ui(ρδj ) + u j(ρδi )

Behavior: frivolous and flexible

Bilateral transactions are sufficient to achieve socially interesting allocations. The utili-
tarian welfare notion is flexible enough to favor the resource traffic. Themore resources
circulate among agents, the easier is the achievement of optimal allocations. Exper-
iments show that large bilateral transactions do not improve the provided solutions,
but lead to important additional costs, especially in terms of computation time. So-
cial 〈1, 0〉 transactions are sufficient to guarantee that optimal allocations are achieved
when negotiations are based on complete social graphs. When restricted social graphs
are considered, like Erdős-Rényi graphs, grids or small-worlds, social 〈1, 0〉 transac-
tions cannot guarantee the achievement of a social optimum but lead to socially close
resource allocations. The rational acceptability criterion, which is usually used in the
literature, restricts a lot the resource circulation and leads utilitarian negotiations to sub-
optimal allocations, whichmay be far from the optimum. Utilitarian negotiations based
on social 〈1, 0〉 transactions remain scalable even when large instances are considered.
Allocations maximizing the utilitarian welfare can be achieved by a negotiation process
among flexible and frivolous agents who negotiate with social gifts, independently of
the social graph considered.

4.2 Egalitarian bilateral negotiations

The egalitarian welfare is an important notion, especially when fairness in a society
of agents must be achieved. This notion focuses on the welfare of the poorest agent
within the population. In this section, centralized approaches are first described in
order to estimate the egalitarian optimal value. Egalitarian negotiation issues are then
discussed with the specification of the acceptability test expression and the detail of
some important properties of agent negotiations. Finally, egalitarian negotiations are
evaluated to identify the suitable parameters allowing the achievement of fairness
within societies.

4.2.1 Centralized techniques

The identification of the optimal egalitarian welfare value is a difficult problem.

Theorem 4.5 (Egalitarian welfare optimum complexity (Bouveret and Lang, 2005)) The
determination of the optimum egalitarian welfare value is aNP-hard problem.

Egalitarian resource allocation problems can be formulated by means of a mathe-
matical model using variables xir describing the ownership of a resource r ∈ R by an
agent i ∈ P:

xir =















1 if agent i owns resource r

0 otherwise.
r ∈ R, i ∈ P.
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Then, egalitarian resource allocation problems can be written as follows:

sw⋆e =































maxmin
i∈P

∑

r∈R
ui(r)xir

s.t:
∑

i∈P
xir = 1 r ∈ R

xir ∈ {0, 1} r ∈ R, i ∈ P.

The objective is the maximization of the welfare of the poorest agent. Two consistency
constraints are also defined. The first one ensures that each resource is allocated to
a single agent while the second constraint specifies that all resources are discrete and
not sharable. Then, variables xir correspond to Boolean variables. However, the model
can be adapted easily to other resource natures if required. For instance, continuous
resources should be represented by real variables. The second constraint becomes:
xir ∈ [0, 1], r ∈ R, i ∈ P.

This model can be solved using any mathematical programming optimizer like
 (ILOG Inc, 1995). However, such a method does not provide an exact solution,
and only provides an estimation that can be more or less accurate according to the
required gap. This gap is a parameter provided to the solver as an estimation of the
distance between returned solutions and optimal ones. The weaker the gap, the more
accurate are provided social values, but more time-consuming becomes the solving
process. A centralized solving process with a required null gap, is almost similar to the
explicit enumeration of all allocations and hence cannot be considered to be scalable.

Heuristics can also be designed to build allocations associated with near-optimal
social values. Since egalitarian negotiation processes tend to reduce inequalities, the
equal distribution of resources over the population can be considered. One way to pro-
ceed is to sequentially allocate to each agent the best remaining resource, as described in
Algorithm 4.2. Another way to proceed is to sequentially allocate the current resource
to the poorest agent of the population, as described in Algorithm 4.3.

Algorithm 4.2: Estimation of the optimal egalitarian welfare value - 1
Input: Agent population P, Resource set R
Output: sw⋆e the estimation of the optimal egalitarian value

i← 0 ;
Shu f f le(P) ; // Mix the population P

while R , ∅ do

r← argmin
r′∈R

ui(r′) ; // Determination of the best remaining resource

Add r to A[i] ; // Allocation of resource r to agent i
R ← R \ {r} ;
i← (i + 1)%n ;

end

return swe(A) ;
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Algorithm 4.3: Estimation of the optimal egalitarian welfare value - 2
Input: Agent population P, Resource set R
Output: sw⋆e the estimation of the optimal egalitarian value

forall the r ∈ R do

i← argmin
j∈P

u j(R j) ; // Determination of the poorest agent

Add r to A[i] ; // Allocation of resource r to agent i
end

return swe(A) ;

In spite of their scalability, these two heuristics have a major drawback affecting
the quality of the solutions. They are not really reliable. Indeed, both of them are
very sensitive to the order in which agents are considered. Depending on this order,
egalitarian welfare values provided by such heuristics may vary a lot.

4.2.2 Egalitarian negotiation properties

To express the social acceptability criterion, we use the definition of the egalitarian
welfare (Definition 1.5). The initial resource allocation A ∈ A changes into another
one A′ by means of a social transaction δ ji 〈u, v〉. Such a transaction involves two agents
i, j ∈ P, who respectively propose the offers ρδi and ρ

δ
j . The resource bundle of any agent

k ∈ P is denoted by Rk before the transaction and R′k afterward. According to the social
acceptability criterion, an egalitarian transaction must satisfy the following condition:

swe(A) ≤ swe(A′)

min
i∈P

(ui(Ri)) ≤ min
i∈P

(

ui(R′i )
)

When the egalitarianwelfare is considered, the expression of the social acceptability
criterion is not a strict inequality. Indeed, depending on the involvement of the poorest
agent in the current transaction, the egalitarian welfare value may not increase. If the
poorest agent is not involved in the current bilateral transaction δ ji , its utility value,
which corresponds to the egalitarian welfare value, does not vary since its resource
bundle is not modified. Thus, the egalitarian welfare value changes only if the poorest
agent of the population is involved.

The expression that social transactions δ ji must satisfied can be restricted to only two
agents. In such a case, the poorest agent after an egalitarian transaction must be richer
than it was before the transaction.

min
i, j∈P

(

ui(Ri),u j(R j)
)

< min
i, j∈P

(

ui(R′i ),ui(R
′
j)
)

min
i, j∈P

(

ui(Ri),u j(R j)
)

< min
i, j∈P

(

ui(Ri) + ui(ρδj ) − ui(ρδi ),u j(R j) + u j(ρδi ) − u j(ρδj )
)

In contrast to the utilitarian expression of the social acceptability criterion, which
only depends on the traded resources, the egalitarian expression is based on the sets
of traded resources transacted as well as on the initial resource bundle of each agent.
According to such a criterion, a very rich agent may accept to decrease its own utility
for the sake of thewhole society. In the casewhere the poorest agent of the population is
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not involved in the current bilateral transaction, the social criterion favors the resource
circulation, and consequently by thenegotiationprocess can avoid local optima. Indeed,
during egalitarian negotiation processes, resources progressively move from richer
agents to poorer agents to distribute the richness among agents. The agent’s decision
making is represented by the instruction  in all agent’s behaviors described in
Section 2.6. This test allows agents to determine whether a transaction is fair or not. It
can be written as follows:

 ≔

[

min
i, j∈P

(

ui(Ri),u j(R j)
)

< min
i, j∈P

(

ui(Ri) + ui(ρδj ) − ui(ρδi ),u j(R j) + u j(ρδi ) − u j(ρδj )
)

]

When the egalitarian welfare is considered, bilateral transactions have some im-
portant properties. Social bilateral transactions δ ji 〈u, v〉, i.e., transactions satisfying the
egalitarian acceptability criterion, may not be split into a sequence of egalitarian bilat-
eral transactions of lesser cardinality. This means that transactions of large cardinality
may be required to achieve a socially optimal resource allocation.

Property 4.6 (Egalitarian transaction split) Within an egalitarian agent society, where agents
express their preferences by means of additive utility functions, it is not always possible to split
social bilateral transactions δ ji 〈u, v〉 between two agents i, j ∈ P into a sequence of social bilateral

transactions δ ji 〈u
′, v′〉 of lesser cardinality (u > u′ and/or v > v′).

Proof. Let us consider a counter example based on a population of two agentsP = {0, 1}
who are negotiating three available resources R = {r1, r2, r3}. Their preferences are
expressed by additive utility functions described in Table 4.7. The initial resource
allocation is A = [{r1, r2}{r3}]: Agent 0 owns two resources, R0 = {r1, r2}, whereas agent
1 only owns a single resource, R1 = {r3}.

Table 4.7: Egalitarian transaction split - Example of agent preferences

Population P
Resource Set R
r1 r2 r3

0 7 4 5
1 5 2 1

Let us consider the transaction δ10〈2, 1〉 = ({r1, r2}, {r3}), during which agents 0 and 1
respectively offer ρδ0 = {r1, r2} and ρ

δ
1 = {r3}. Such a transaction is social since agent 0,

who is the poorest agent after the transaction δ10 with u0(r3) = 5, is richer than agent 1,
who was initially the poorest with u3(r3) = 1. More formally:

min (u0({r1, r2}),u1({r3})) < min (u0({r3}),u1({r1, r2}))

u1({r3}) < u0({r3})

Such a transaction leads to an increase of the egalitarian welfare value from 1 to 6
afterwards. Only two decomposition patterns are possible: A swap combined with
a gift, or three gifts. But, no 〈1, 0〉 transaction is social. Indeed, an agent who gives
one of its resources to its partner becomes poorer than the poorest agent before the
transaction. Since all possible sequence of transactions of lesser cardinality contains at
least one gift, the transaction δ10〈2, 1〉 = ({r1, r2}, {r3}) cannot be split into a sequence of
acceptable transactions.
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Hence, an egalitarian bilateral transaction cannot always be split into a sequence
of egalitarian bilateral transactions of lesser cardinality. Thus, transactions of large
cardinality may be required to achieve socially optimal solutions. �

4.2.3 Evaluation of egalitarian negotiations

The different facets of egalitarian negotiations are successively evaluated in this section.
First, the impact of the transaction cardinality on negotiation processes is studied.
Then, the fairness of resource allocations achieved using distributed negotiations are
compared. The optimal egalitarian value is estimated using a centralized technique.
This estimation is then used as reference. The price of the social graph can then be
discussed. Next, the impact of the social graph mean connectivity on negotiation
processes is presented. Behaviors are compared according to several metrics, in order
to identify characteristics allowing the achievement of fair allocations. Finally, issues
related to the scalability of egalitarian negotiation processes are discussed.

Influence of the transaction cardinality

As defined in Definition 2.6, bilateral transactions δ ji 〈u, v〉 between two agents i, j ∈ P
are specified thanks to cardinality parameters (the number of resources that participants
i, j can offer) u and v. The size of agents’ offers influences the efficiency of negotiation
processes. Figure 4.5 shows the influence of the transaction cardinality on the evolution
of the egalitarian welfare value during the negotiation processes. Experiments are here
based on a population of 50 agents who negotiate 250 resources by means of social
transactions. As defined previously, the negotiation policy “up to 〈2, 2〉” corresponds
to T = {〈u, v〉|u ≤ 2, v ≤ 2}.

On both figures, several floors can be observed during the evolution of the egal-
itarian welfare value. These floors characterize specific negotiation periods during
which the poorest agent of the population is not involved. As described in the previous
section, even if the resources can circulate, no improvement of the egalitarian welfare
value might occur.

Figure 4.5a focuses on the number of performed transactions required to end egal-
itarian negotiation processes, while Figure 4.5b focuses on the computation time. Ne-
gotiation processes based on social 〈1, 0〉 transactions end after only 450 social gifts.
Indeed, they lead to shorter transaction sequences, which are less time consuming.
However, such negotiation processes end with social values far from the ones achieved
by larger bilateral transactions. Nevertheless, such processes might be used when the
negotiation speed is the most important objective in spite of a solution of worse quality.

Negotiation processes based on social 〈1, 1〉 transactions require a large number of
performed transactions, which barely improves the social welfare value. Negotiation
processes based on 〈1, 1〉 transactions end on socially very weak allocations. Since such
processes are time consuming and inefficient, the use of 〈1, 1〉 transactions should be
avoided.

The larger is the cardinality of allowed transactions, the more time consuming
becomes the negotiation process. The length of transaction sequences is also higher
than in the case of 〈1, 0〉 transactions, but remains very close. Similarly, the egalitarian
welfare achieved at the end of egalitarian negotiations is almost identical. The use of
a larger set of allowed transactions than T = {〈1, 0〉, 〈1, 1〉} is useless since it leads to
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Figure 4.5: Influence of the transaction cardinality according to the number of per-
formed transactions in 4.5a and to the computation time in 4.5b.
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additional costs in terms of computation time without significant improvement of the
solution quality.

Price of social graphs

The efficiency of egalitarian negotiation processes is evaluated thanks to a comparison
between the estimation of the optimal egalitarian welfare value, which is provided
by centralized methods described in Section 4.2.2, and the welfare value obtained by
egalitarian negotiations.

Negotiations are based here on a population of 50 agents where 250 resources are
available. All agents interact according to frivolous and flexible behaviors. Different
sets of allowed transactions are considered, fromT = {〈1, 0〉} toT = {〈u, v〉|u ≤ 2, v ≤ 2},
which corresponds to the negotiation policy denoted by “up to 〈2, 2〉”. Since all utility
values are positive, no gift can be rational, and then the rational policy allowing both
gifts and swaps is equivalent to swaps.

Table 4.8 shows the impact of the social graph topologyon the egalitariannegotiation
efficiency and Table 4.9 describes the standard deviation among provided egalitarian
welfare values.

Table 4.8: Egalitarian negotiation efficiency (%) according to the class of social graphs
Social graph Rational Social

kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 19.3 20.8 78.5 24.1 99.9 99.9
Grid 13.9 14.6 66.2 23.6 80.2 80.6

Erdős-Rényi 17.4 20.2 77.3 23.8 96.1 96.6
Small world 13.1 13.9 63.8 23.4 78.1 78.2

Table 4.9: Standard deviation of the egalitarian efficiency (%) according to the class of
social graphs

Social graph Rational Social
kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 62.9 73.9 1.8 28.7 0.3 0.3
Grid 71.3 80.2 4.1 29.6 1.8 1.7

Erdős-Rényi 71.9 76.8 2.2 27.3 6.8 6.5
Small world 73.0 77.5 10.4 27.8 9.4 10.5

Table 4.8 shows that, generally, negotiations among rational agents achieve unfair
allocations. Indeed, independently of the allowed transactions, independently of the
social graph topology, rational negotiation processes end quite far from the optimal
welfare value. Only 20% of the optimal welfare value is achieved in the best cases.
According to Table 4.9, the standard deviation of negotiations among rational agents is
very important. In the case of rational negotiations based on small-worlds, egalitarian
welfare values that can be achieved may vary by 73%. Initial resource allocations and
social graph topologies are the most important factor when rational egalitarian nego-
tiations are considered. Thus, the rationality criterion is definitively not well-adapted
to solve egalitarian problems efficiently. It restricts the set of possible transactions
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too much and throws negotiation processes into local optima. Generosity is hence an
essential feature in order to achieve fair allocations.

Even using on complete graphs, no social negotiation policy can guarantee the
achievement of egalitarianoptima. Whereas social 〈1, 0〉 transactions arewell adapted to
the solution of utilitarian problems, they do not suit to the case of egalitarian problems.
Only 78.5% of the optimum can be achieved in the best cases. Indeed, after a finite
number of transactions, agents can not give any additional resource without becoming
poorer than their partners. The exclusive use of gifts is then not sufficient to lead
negotiations to socially efficient resource allocations. Negotiations based on social
〈1, 1〉 transactions lead to severely sub-optimal resource allocations with an efficiency
of 24.1% on complete social graphs in the best case. Such a weak efficiency is mainly
due to the inherent constraints of swap transactions. Since the resource distribution
cannot be modified, a poor agent who has only few resources initially, penalizes a lot
the egalitarian negotiation process. When both gifts and swaps are allowed, i.e., when
T = {〈u, v〉|u ≤ 1, v ≤ 1}, the negotiation efficiency is really close to the optimum.
Larger bilateral transactions improve only a little the fairness among agents, but are
much more expensive to determine.

Social graphs of weaker mean connectivity like grids lead negotiation processes to
socially weaker allocations whereas, when small-worlds are considered, the resource
traffic is restricted. The standard deviation is higherwhen small-worlds are considered.
In such cases, according to the generation rules, many agents have only one neighbor,
which may penalize egalitarian negotiations. Indeed, if such agents cannot identify an
acceptable transaction with their lone neighbor, some resources may be trapped in the
bundle of such agents.

Theorem 4.7 Within an egalitarian society where agents express their preferences by means
of additive utility functions, bilateral transactions cannot guarantee the achievement of an
egalitarian optimum, independently of the social graph considered.

Proof. Let us consider a counter-example, based on a population of three agents P =
{1, 2, 3} and a set of three available resources R = {r1, r2, r3}. The agent preferences are
described in Table 4.10.

Table 4.10: Bilateral insufficiency in egalitarian negotiations - Example of agent prefer-
ences

Population P
Resource Set R
r1 r2 r3

0 2 1 5
1 5 2 1
2 1 5 2

The complete social graph is described in Figure 4.6 with the initial resource allo-
cation A = [{r1}{r2}{r3}]. This figure also described the lone egalitarian transaction that
would be acceptable.

No sequence of acceptable bilateral transactions can lead to an optimal resource
allocation. Indeed, six 〈1, 0〉 transactions are possible but none can be performed since
they are not social. Indeed, if an agent gives a resource, its bundle becomes empty,
and the associated egalitarian welfare value becomes null. Three 〈1, 1〉 transactions are
possible, but each time the welfare value decreases, meaning that the transaction is not
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1

r1
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ρδ1 = r1
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ρδ3 = r3

ρδ2 = r2

Figure 4.6: Deadlocks in egalitarian negotiations

acceptable. Hence, even if the multi-agent system is completely connected, the optimal
solution cannot be achieved using only bilateral transactions. Only a multilateral
transaction corresponding to three simultaneous gifts is acceptable as described in
Figure 4.6.

Since bilateral transactions are not sufficient when negotiations are based on a
complete social graph, they are also not sufficient when the social graph is restricted.
Indeed, in such cases, less transactions are possible, and not acceptable transactions on
a complete social graph are still not acceptable on a restricted social graph. �

Influence of the social graph connectivity

The social graph topology influences a lot the resource circulation as well as the effi-
ciency of negotiation processes. The larger are agents’ neighborhoods, the denser are
social graphs, and consequently resources can circulate easily. Thanks to the model
of generation of Erdős-Rényi graphs G(n, p), which is described in Section 3.3.2, the
probability of link generation between two agents can be modified. High probabilities
correspond to dense social graphs.

Since rational negotiations can barely identify acceptable transactions, only social
negotiations are represented here. Figures 4.7 show the impact of the connectivity.
Erdős-Rényi graphs are generated with an increasing probability p from p = 0.05 to
p = 1.0.

Similarly to utilitarian negotiations, Figures 4.7 show that a high probability, which
corresponds to a dense social graph, leads to longer sequences of transactions dur-
ing negotiation processes, which achieve moreover a higher welfare value. Larger
neighborhoods facilitate the resource circulation by offering larger numbers of possible
transactions to all agents. The impact of the connectivity is important only if the prob-
ability p of link generation is very low. The impact of the connectivity is not linear, it
becomes really significant below p ≤ 0.3.

Influence of agent’s behaviors

Behaviors define how agents interact. The different behaviors defined in Section 2.6,
can be compared using metrics presented in Section 2.7.1. In order to evaluate agents’
behaviors, any factor that may affect the comparison should be avoided, as for example
the social graph topology. For this reason, our experiments with negotiation processes
are based on complete social graphs, with a population of 50 agents and 250 resources.
Agents only negotiate using social transactions: T = {〈1, 0〉, 〈1, 1〉}. Both gifts and swaps
are allowed since they correspond to the most efficient negotiation policy.
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Figure 4.7: Influence of the mean connectivity on egalitarian negotiations in terms of
the computation time in 4.7a and of number of performed transactions in 4.7b
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Figure 4.8: Agent behavior impact on egalitarian negotiations in terms of performed
transactions in 4.8a, of transacted resources in 4.8b, of speech turns in 4.8c, of attempted
transactions in 4.8d and finally in terms of computation time in 4.8e.
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Negotiations between stubborn agents lead to short transaction sequences, where
only few resources are exchanged. When agents are also frivolous, the number of
exchanged resources is atmost 500whereas negotiations betweenflexible agents, rooted
as well as frivolous, lead to aminimum of 1500 traded resources. Negotiations between
stubborn agents are generally fast and end after 1.5 seconds, but lead toweak egalitarian
values. When agents are stubborn, the number of performed transactions corresponds
to the number of traded resources.

As observed in utilitarian negotiations, egalitarian negotiations between flexible
agents, for both negotiation mechanisms (i.e., full or not), lead to close results. The
welfare values achieved at the end of negotiation processes are almost identical, but
full negotiations are more time consuming. If agents are also frivolous, then the num-
ber of attempted transactions is higher but such behaviors also improve the resulting
welfare values. Rooted behaviors require a larger number of speech turns compared
to frivolous behaviors. The most efficient behavior is the “flexible and frivolous” one,
since negotiation processes achieve the fairest allocations. The flexibility is the most
important characteristic of agent’s behaviors when egalitarian negotiations are consid-
ered. In order to reduce the inequalities within the agent society, agents must accept to
offer any resource of their bundle.

Negotiation scalability

The scalability of egalitarian negotiations is evaluated in terms of performed trans-
actions and in terms of computation time. Negotiation processes are based here on
complete social graphs when agents are frivolous and flexible. Such a simulation
setting corresponds to one of the most expensive configurations.

Figure 4.9a represents the evolution of the egalitarian welfare value according to the
computation time required to end egalitarian negotiations, on several instance sizes.
Figure 4.9b shows the evolution of the egalitarianwelfare value according to the number
of performed transactions. The objective value increases faster at the beginning of the
negotiation processes, which then spend a lot of time to lightly improves the solution.
Most of the transactions performed during negotiation processes are performed at the
beginning of negotiations.

Thus, even if large bilateral transactions improve the solutions, the time required
before the end of negotiation processes increases significantly for a small improve-
ment of the solution quality. Negotiations based on social transactions such that
T = {〈1, 0〉, 〈1, 1〉} seem to be the best compromise between efficiency and scalabil-
ity. The mean computation times, which are required to end negotiation processes, are
presented in Table 4.11, while Table 4.12 details the length of the transaction sequences
which are performed. Egalitarian negotiations are more time consuming than utilitar-
ian ones. For instance, a negotiation process between 100 agents who own 20 resources
each requires 25 seconds to converge. It is still reasonable compared to the solving time
required by a linear program solver as the one described in Section 4.2.1.

4.2.4 Conclusion

The determination of optimal allocations is aNP-hard problem even when agent pref-
erences are expressed by additive functions. Either heuristics or linear programs can be
used to estimate this optimal welfare value. In distributed agent negotiations, the com-
bined use of social 〈1, 0〉 and social 〈1, 1〉 transactions corresponds to the most efficient
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Figure 4.9: Scalability evaluation of egalitarian negotiations in terms of computation
time in 4.9a and of performed transactions in 4.9b.

Table 4.11: Egalitarian negotiation scalability - Computation time

Population size n
Mean number of resources per agent m

n
5 10 20

25 400 ms 650 ms 1.6 s
50 750 ms 1.5 s 5 s
100 2 s 5.8 s 25 s
500 110 s 342 s 1500 s
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Table 4.12: Egalitarian negotiation scalability - Transaction sequence length

Population size n
Mean number of resources per agent m

n
5 10 20

25 450 800 1900
50 1000 2150 4300
100 2500 5000 11000
500 18500 38000 78000

negotiation policy among frivolous and flexible agents.

Best egalitarian negotiation policy

Transaction: 〈1, 0〉 + 〈1, 1〉 (i.e., gifts and swaps)
Criterion: social
Test on δ

j
i : min

i, j∈P

(

ui(Ri),u j(R j)
)

< min
i, j∈P

(

ui(Ri) + ui(ρδj ) − ui(ρδi ),u j(R j) + u j(ρδi ) − u j(ρδj )
)

Behavior: frivolous and flexible

Egalitarian negotiation processes based on bilateral transactions cannot guarantee the
achievement of optimal resource allocations. Generosity is an essential feature required
in order to achieve fair resource allocations. The rational acceptability criterion which
is commonly used in the literature is in fact very inefficient. The social graph topol-
ogy also greatly influences the negotiation efficiency. Any characteristic disturbing the
resource traffic leads to a decrease of the negotiation efficiency, such as weak mean
connectivity and the existence of bottlenecks (e.g., agents with only neighbors). Nego-
tiation processes should be based on social transactions of T = {〈1, 0〉, 〈1, 1〉}. Indeed,
the exclusive use of gifts or swaps is not efficient and the use of transactions of larger
cardinality leads to important additional costs for a slight improvement of the welfare
value. Even on large instances, egalitarian negotiations remain scalable compared to
the solution of optimization models.

4.3 Nash bilateral negotiations

The Nash welfare is an interesting notion that can be viewed as a compromise between
the utilitarian and egalitarian welfare notions. This notion favors a decrease of the
inequalities within a population as well as an increase of the global welfare of the soci-
ety. The Nash product is nevertheless barely used due to its computational complexity.
Dedicated to theNash product, this section is organized as follows. Issues related to the
estimation of the optimal welfare value are first discussed. Centralized methods face
specific difficulties which are described. The expression of the social acceptability crite-
rion is detailed when the Nash welfare is considered. Properties of Nash negotiations
are then described. Several aspects of Nash negotiation processes are finally evaluated:
the transaction cardinality, the negotiation efficiency and their scalability, the impact
of the social graph connectivity and the agents’ interactions. We finally discuss the
implementation of characteristics in order to efficiently negotiate when using the Nash
welfare.
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4.3.1 Centralized techniques

The identification of the optimal Nash welfare value is a difficult problem. Indeed,
according to Definition 1.6, the Nash welfare notion is not a linear objective.

Theorem 4.8 (Nash welfare optimum complexity (Ramezani and Endriss, 2009)) The
determination of the optimum Nash welfare value is aNP-hard problem.

Nash resource allocation problems can be formulated by means of a mathematical
model using variables xir describing the ownership of a resource r ∈ R by an agent
i ∈ P:

xir =















1 if agent i owns resource r

0 otherwise.
r ∈ R, i ∈ P.

Then, the Nash resource allocation problem can be formulated as follows:

sw⋆n =































max
∏

i∈P

∑

r∈R
ui(r)xir

s.t:
∑

i∈P
xir = 1 r ∈ R

xir ∈ {0, 1} r ∈ R, i ∈ P.

The objective is the maximization of the Nash product, i.e. the maximization of the
product of all agents’ utilities. A consistency constraint ensures that each resource is
allocated to only one agent. Since resources are discrete and not sharable, Boolean
variables are used, but the model can be easily adapted to other resource natures.
For instance, continuous resources are represented by real variables, corresponding to
quantities of the considered resource: xir ∈ [0, 1], r ∈ R, i ∈ P.

Such a model cannot be handled in a classical way since the objective function is
neither linear, nor convex, nor concave. Theoretically, an estimation could be made
thanks to a combination of different optimization techniques. First, a Lagrangian
relaxation could be used (Fisher, 2004). This method can solve a system of non linear
equations if the objective function is convex. However, theNash product is not a convex
function. Amulti-start algorithmhas to be combinedwith this relaxation. Starting from
multiple initial solutions may help to avoid local optima when non convex functions
are considered (Hickernell and Yuan, 1997). Moreover, since resources are not divisible,
an integer solution has still to be found. Indeed, the relaxation changes the Boolean
variables of the discrete value set {0, 1} into reel variables of the continuous value set
[0, 1]. In order to obtain an integer solution, a branch-and-bound algorithm is used.
Such an algorithm can be guided by the values provided by the relaxed solution in
order to improve the integer solution and to reduce the computation time.

Such a method cannot guarantee the optimality of the resulting solution. Moreover,
this method is not really scalable, as a consequence of the non-linearity of the objective
and of the exponential solution space. For instance, solving a simple system with 25
agents is equivalent to optimize a sum of products with 25 terms each.

Since such a method is not scalable, we developed some heuristics in order to
estimate the optimalNashwelfare value. Since theNashwelfare notion is a compromise
between fairness and global efficiency, an estimation of the optimal welfare value
can be determined according to different methods based on these characteristics. A
first possibility is to consider the fairness of the resource distribution, as described in
Algorithm 4.4. This algorithm sequentially allocates the best remaining resources to
each agent.
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Algorithm 4.4: Estimation of the optimal Nash welfare value - 1
Input: Agent population P, Resource set R
Output: sw⋆n the estimation of the optimal Nash welfare value

i← 0 ;
Shu f f le(P) ; // Mix the population P

while R , ∅ do

r← argmin
r′∈R

ui(r′) ; // Determination of the best remaining resource

Add r to A[i] ; // Allocation of resource r to agent i
R ← R \ {r} ;
i← (i + 1)%n ;

end

return swn(A) ;

Another way to estimate the optimal Nash welfare value is to consider, focusing
on the global efficiency, as described in Algorithm 4.5. The first step of this algorithm
allocates each resource to the agent who values it the most. However, some agents
can be neglected and do not get any resource. Such a situation corresponds to a null
Nash welfare value. In order to avoid this phenomenon, the algorithm must perform a
second step ensuring that all agents own at least one resource and, if the need arises, it
tries to pick from an agent who has at least two resources the resource maximizing the
local welfare value.

Algorithm 4.5: Estimation of the optimal Nash welfare value - 2
Input: Agent population P, Resource set R
Output: sw⋆n the estimation of the optimal Nash welfare value

; // First step
forall the r ∈ R do

i← argmax
i∈P

ui(r) ; // Determination of who values r the most

Add r to A[i] ; // Allocation of resource r to agent i
end

; // Second step
for i ∈ P s.t. mi = 0 do

val← 0 ;
for j ∈ P s.t. mi > 1 do // Determine where to pick up a resource

r′ ← argmax
r∈R j

ui(r′)u j(R j \ {r′}) ;

if val < ui(r′)u j(R j \ {r}) then
val← ui(r)u j(R j \ {r}) ;
r← r′ ;
k← j ;

end

Add r to A[i] ; // Reallocation of resource r to agent i
end

end

return swu(A) ;

In spite of their scalability, these two heuristics have the drawback to affect the
quality of provided solutions, and thus are not really reliable. Similarly to the heuristics
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estimating the optimal egalitarian value, these heuristics are very sensitive to the order
in which agents are considered. Depending on this order, the Nash welfare value
provided by such heuristics may vary a lot.

4.3.2 Nash negotiation properties

The expression of the social acceptability criterion can be specified when the Nash
welfare is considered and the expression of the agents’ decisionmaking can be specified.
Let us note A ∈ A the resource allocation before the bilateral transaction δ ji 〈u, v〉 that
evolves into a new allocation A′ ∈ A(A , A′). Such a transaction involves two agents
i, j ∈ P, who respectively propose the offers ρδi and ρδj . The resource bundle of any
agent k ∈ P is denoted by Rk before the transaction and R′k afterward. A social bilateral
transaction must satisfy the following condition:

swn(A) < swn(A′)
∏

k∈P

uk(Rk) <
∏

k∈P

uk(R
′
k)

ui(Ri)u j(R j)
∏

k∈P\{i, j}

uk(Rk) < ui(R′i )u j(R′j)
∏

k∈P\{i, j}

uk(R
′
k)

ui(Ri)u j(R j) < ui(R′i )u j(R′j)

ui(Ri)u j(R j) <
(

ui(Ri) − ui(ρδi ) + ui(ρδj )
) (

u j(R j) + u j(ρδi ) − u j(ρδj )
)

Similarly to the egalitarian interpretation of the social acceptability criterion, the
Nash criterion must be based on traded resources as well as on initial resource bundles
of both agents. Then, the acceptability test, which is represented by the instruction
 in all behaviors described in Section 2.6, can thus be replaced by the following
expression:

 ≔

[

ui(Ri)u j(R j) <
(

ui(Ri) − ui(ρδi ) + ui(ρδj )
) (

u j(R j) + u j(ρδi ) − u j(ρδj )
)]

When the Nash welfare is considered, bilateral transactions have some impor-
tant properties affecting the negotiation efficiency. An acceptable bilateral transaction
δ
j
i 〈u, v〉 may not be split into a sequence of acceptable bilateral transactions of lesser
cardinality. This means that transactions of large cardinalitymay be required to achieve
socially optimal resource allocations.

Property 4.9 (Nash transaction split) In a society where agents express their preferences
by means of additive utility functions and where the maximization of the Nash welfare is the
objective, social bilateral transactions δ ji 〈u, v〉 between two agents i, j ∈ P cannot always be split

into a sequence of social bilateral transactions δ ji 〈u
′, v′〉 of lesser cardinality (u > u′ and/or v >

v′).

Proof. Let us consider a counter-example based on a population of two agents,P = {0, 1}
who are negotiating the two available resources R = {r1, r2}. Their preferences are
expressed by means of additive utility functions described in Table 4.13. The initial
resource allocation is A = [{r1}{r2}]: Each agent owns one resource.

Let us consider the transaction δ10〈1, 1〉 = ({r1}, {r2}), during which agents 0 and 1
respectively propose ρδ0 = {r1} and ρ

δ
1 = {r2}. This transaction corresponds a social swap



100 Chapter 4. Bilateral Negotiations

Table 4.13: Nash transaction split - Example of agent preferences

Population P
Resource Set R
r1 r2

0 7 3
1 4 1

since:
u0({r1})u1({r2}) < u0({r2})u1({r1})

This swap increases the Nash welfare value from swn(A) = 7 of the initial resource
allocation to swn(A′) = 12 afterwards. This transaction can only be split into a sequence
of two gifts. However, no gift is acceptable. Indeed, any agent who gives its lone
resource stays with an empty bundle, which is always associated with a welfare value
of 0. In such a case, the Nash welfare value of the whole society is null.

Hence, when the Nash welfare is considered, a social bilateral transaction cannot
always be split into a sequence of acceptable bilateral transactions of lesser cardinality.
Transactions of large cardinality may thus be required to achieve a socially optimal
solution. �

4.3.3 Evaluation of Nash negotiations

This section is dedicated to the evaluation of the Nash negotiations. In order to deter-
mine if large bilateral transactions are required to achieve socially efficient allocations,
the influence of the size of agent offers is studied first. Then, the Nash welfare values
provided by heuristics are compared to the ones provided by negotiation processes.
The impact of the social graph topology is then presented as well as suitable behavior
characteristics. Finally, scalability issues are addressed.

Let us first note that it is not convenient to directly work with the Nash welfare
values. According to Definition 1.6, the Nash welfare is the product of the individual
welfares of all agents. Such values become quickly so huge that it is difficult to deal
with them. For instance, a population of 50 agents where each agent estimates all of
250 resources with a positive utility value in the range [1..250] leads to Nash welfare
value scale around 1060. Thus, Log(swn(A)) is used instead of swn(A) in the different
comparisons, in order to avoid accuracy problems. However, a side effect of the use of
Logarithms is the “reduction” of the gap between two welfare values. Indeed, a gap
of 0.1% between two Logarithms represents an exponentially larger gap between the
values themselves.

Influence of the transaction cardinality

Bilateral transaction δ ji 〈u, v〉 between two agents i, j ∈ P is characterized by the cardi-
nality of the parameters u and v, describing the size of agent offers. These experiments
are based on a population of 50 agents who negotiate 250 resources. Several negotia-
tion policies are used and described using the cardinality parameters. The negotiation
policy denoted by “up to 〈2, 2〉” means that agents can offer up to two resources during
the same transaction. Figure 4.10 shows the evolution of the Nash welfare value during
a negotiation process according to the transactions cardinality.

Figure 4.10a shows that the transactions cardinality mainly affects the elapsed time.
Negotiation processes based on 〈1, 0〉 transactions are less time-consuming and agents



4.3. Nash bilateral negotiations 101

 300

 325

 350

 375

 10  100  1000  10000

N
as

h 
w

el
fa

re
 v

al
ue

 (
L

og
)

Computation Time (Log ms)

<1,0>
<1,1>

up to <1,1>
up to <2,2>
up to <3,3>

(a)

 300

 325

 350

 375

 0  250  500  750  1000

N
as

h 
w

el
fa

re
 v

al
ue

 (
L

og
)

Number of performed transactions

<1,0>
<1,1>

up to <1,1>
up to <2,2>
up to <3,3>

(b)

Figure 4.10: Influence of the transaction cardinality on Nash negotiations in terms of
computation time in 4.10a and of performed transactions in 4.10b.
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perform less transactions in such a case. The larger the allowed transactions, the
more time consuming are negotiation processes. However, according to Figure 4.10b
that focuses on the number of performed transactions, larger bilateral transactions do
not improve the quality of achieved solutions. Negotiations relying only on 〈1, 1〉
transactions require less transactions but also achieve socially weaker allocations. All
other negotiation processes end after sequences of transactions of close length. Large
bilateral transactions do not seem to significantly improve the Nash welfare value
achieved at the end of the negotiation processes. The use of transactions of large
cardinality does not justify the important additional costs, and thus the size of the
offers should be restricted.

Price of social graphs

When the Nash welfare is considered, the efficiency of the negotiation processes can
be evaluated using a comparison with the estimation given by centralized techniques.
Several centralized heuristics are described in Section 4.3.1, but only the one providing
the largest results is used here. The best results are provided by Algorithm 4.5 which
focuses on the global efficiency. It first allocates each resource to the agent who values
it the most, and then allocates at least one resource to each agent who gets nothing.
Table 4.14 shows the efficiency of negotiations depending on the class of social graphs
considered, whereas Table 4.15 shows the standard deviation of the different Nash
welfare values, which correspond to the topological sensitivity.

Negotiations are based here on a population of 50 agents where 250 resources
are available. All agents interact according to a frivolous and flexible behaviors in
every case. Different sets of allowed transactions are considered, from T = {〈1, 0〉} to
T = {〈u, v〉|u ≤ 2, v ≤ 2}. As described in the previous sections, since all utility values
are positive, no gift can be rational, and then the rational negotiation policy allowing
both gifts and swaps is restricted to swaps.

Table 4.14: Nash negotiation efficiency (%) according to the class of social graphs
Social graph Rational Social

kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 99.9 100.1 101.6 100.1 101.7 101.7
Grid 97.0 97.5 99.6 98.2 99.7 99.7

Erdős-Rényi 99.6 99.8 101.4 99.9 101.6 101.6
Small world 97.2 98.0 100.2 98.9 100.4 100.4

Table 4.14 shows that some welfare values achieved are greater than 100%. Since
heuristics can only give an estimation of Nash welfare values, an efficiency greater
than 100% means that the corresponding negotiation processes lead to socially more
interesting allocations than the ones provided by the heuristics. As observed in the case
of egalitarian negotiations, it is not possible to guarantee that optimal allocations can
be achieved using bilateral transactions only.

Rational negotiations generally achieve socially weaker allocations than social ne-
gotiations. Two negotiation policies, which are based respectively on T = {〈u, v〉|u ≤
1, v ≤ 1} and on T = {〈u, v〉|u ≤ 2, v ≤ 2}, lead to similar results. Allowing gifts
and swaps during a negotiation process seems sufficient to achieve socially efficient
allocations. Larger transactions do not significantly improve the Nash welfare values
achieved while the negotiation cost that increases a lot.
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Similarly to the egalitarian case, negotiations based on swap transactions achieve
the socially weakest allocations. Since the initial resource distribution cannot be mod-
ified, negotiations end quickly on local optima. According to Table 4.15, the standard
deviation related to negotiations based on 〈1, 1〉 transactions is also higher than for
other transactions.

Negotiation processes based on grids leads to the socially weakest allocations. The
mean connectivity of the social graphs is an important feature deeply affecting the ne-
gotiation efficiency. Relationships among agents are too restricted to allow a suitable
resource traffic, and then prevent the achievement of optimal allocations. The com-
parison between results achieved on Erdős-Rényi graphs and the ones achieved on
small-worlds indicates that a large number of agents, leaves of the graph (who have
only one neighbor), penalizes a lot the negotiation process.

Table 4.15: Standard deviation of the Nash product (%) according to the class of social
graphs

Social graph Rational Social
kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 0.33 0.27 0.06 0.31 0.02 0.02
Grid 0.44 0.40 0.14 0.37 0.14 0.14

Erdős-Rényi 0.33 0.28 0.06 0.32 0.02 0.02
Small world 0.46 0.38 0.13 0.37 0.12 0.12

Theorem 4.10 When the Nash welfare is considered, within a population of agents who express
their preferences by means of additive utility functions, bilateral transactions cannot guarantee
the achievement of optimal allocations, independently of the social graph considered.

Proof. Similarly to the proof of Proposition 4.7, a counter-example can be generated
with different agent preferences, where only a multilateral transactions can solve the
problem. �

As for the other welfare notions, negotiations among social agents achieve more
efficient allocations compared to rational negotiations usually studied in the literature.
Negotiations based on T = {〈1, 0〉, 〈1, 1〉} can be considered as the best alternative
to achieve socially interesting allocations. Transactions of weaker cardinality are not
sufficientwhereas larger transactions donot improve theNashwelfare valuewhile their
use increases the negotiation cost. However, the exclusive use of bilateral transactions
cannot guarantee the achievement of a global optimum, but leads to socially close
allocations instead.

Influence of the social graph connectivity

The social graph topologyaffects thenegotiation efficiencyandmayprevent the achieve-
ment of socially optimal allocations. Agent relationships are represented here by Erdős-
Rényi graphs, which is generated thanks to the model G(n, p). The variation of the
probability influences on the number of links, and thus the mean neighborhood size.

Figure 4.11a represents the Nash welfare evolution according to the elapsed time,
and Figure 4.11b corresponds to the Nashwelfare evolution according to the number of
performed transactions. They show that denser social graphs lead to longer negotiation
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Figure 4.11: Influence of the mean connectivity on Nash negotiations according to the
computation time in 4.11a and to the number of performed transactions in 4.11b.
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processes (with larger number of performed transactions) and to a higher utilitarian
welfare value at the end of the negotiation process. The connectivity has an important
influence only if the probability p of link generation is very low. The influence of the
connectivity is not linear, it becomes really significant below p ≤ 0.3.

Influence of agent behaviors

Behavior defines how agents negotiate. The different behaviors, which are defined in
Section 2.6, can be compared using metrics presented in Section 2.7.1. In order to eval-
uate agents’ behaviors, any factor that may alter the comparison of the different agents’
behaviors should be avoided, like the social graph topology. For this reason, simula-
tions of negotiation processes are based on complete social graphs, with a population of
50 agents and 250 available resources. Agents negotiate using social transactions only:
T = {〈1, 0〉, 〈1, 1〉}.

Themore restrictive the agents’ behaviors, the shorter are the transaction sequences.
For instance, stubborn and rooted agents can only perform few transactions during ne-
gotiation processes. Since only few offers are attempted, the identification of acceptable
transactions is difficult. Resources barely circulate, and then negotiation processes end
on socially sub-optimal resource allocations.

When agents are still rooted but flexible, the number of attempted transactions
increases as well as the number of performed transactions. A large number of speech
turns is required to end Nash negotiation processes. Since agents can propose several
offers during a negotiation, the identification of acceptable transactions is easier, which
favors the resource traffic and the achievement of socially interesting allocations.

Frivolous agents benefit from their neighborhood during a negotiation. This behav-
ior characteristic increases the potential number of transactions that agents can attempt
during a negotiation process. If agents are also stubborn, they only make a single
offer during a negotiation. Agents’ neighborhoods are large since the social graph is
complete, then the number of offers that agents can attempt is large enough to ensure
a sufficient resource traffic. A weak mean connectivity decreases the profit of frivolous
and stubborn behaviors.

The larger the set of offers that agents can attempt during negotiation processes, the
socially greater are generally the achieved allocations. Frivolous and flexible agents
maximize the transaction possibilities as well as the resource traffic. A larger number of
transactions are performed andmore resources are traded. Since agents can benefit from
their neighborhood and from their bundle (several offers during the same negotiation
canbe attempted), only few speech turns are required. Themaximization of the resource
traffic leads to the achievement of the largest Nash welfare values, independently of
the negotiation mechanism used.

Negotiation scalability

The scalability of Nash negotiations is evaluated according to one of the most time-
consuming simulation settings, as described in Section 2.7.3, i.e., on a complete social
graphwith frivolous and flexible agents, who negotiate using either social gifts or social
swaps: T = {〈1, 0〉, 〈1, 1〉}.

Figure 4.13a represents the evolution of the Nash welfare value according to the
computation time whereas Figure 4.13b shows its evolution according to the number of
performed transactions. Several instance sizes are used during the experiments, which
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Figure 4.12: Agent behavior impact on Nash negotiations in terms of performed trans-
actions in 4.12a, of transacted resources in 4.12b, of speech turns in 4.12c, of attempted
transactions in 4.12d and finally in terms of computation time in 4.12e.
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are characterized by a pair (n,m), where the first element corresponds to the number of
agents and the second one corresponds to the number of available resources. Then, the
key “25-125” on Figures 4.13 corresponds to instances populated by 25 agents who are
negotiating 125 resources.
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Figure 4.13: Evaluation of theNash negotiation scalability according to the computation
time in 4.13a and to the number of performed transactions in 4.13b

The mean computation time required to end negotiation processes are presented in
Table 4.11, whereas Table 4.12 details the length of the transaction sequence performed.
Nash negotiations are a little more time consuming than utilitarian negotiations, but
less than egalitarian negotiations. For a given instance, the number of transactions
performed does not significantly vary, while the time required to end the negotiation
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process may significantly vary by a factor greater than 2.

Table 4.16: Nash negotiation scalability - Computation time

Population Size n
Mean number of Resources per Agent m

n
5 10 20

25 340 ms 540 ms 750 ms
50 520 ms 1 s 2 s
100 1.4 s 2.4 s 6.7 s
500 60 s 250 s 600 s

Table 4.17: Nash negotiation scalability - Transaction sequence length

Population Size n
Mean number of Resources per Agent m

n
5 25 50

25 320 600 1300
50 740 1500 3000
100 1700 3300 6900
500 10500 27000 55000

4.3.4 Conclusion

Centralized solving methods quickly face scalability issues. The determination of
optimal allocations is a NP-hard problem. Heuristics must be used to estimate this
optimal welfare value. In distributed approaches, the combined use of social 〈1, 0〉 and
social 〈1, 1〉 transactions is the most efficient negotiation policy among frivolous and
flexible agents.

Best Nash negotiation policy

Transaction: 〈1, 0〉 + 〈1, 1〉 (i.e., gifts and swaps)
Criterion: social

Test on δ
j
i : ui(Ri)u j(R j) <

(

ui(Ri) − ui(ρδi ) + ui(ρδj )
) (

u j(R j) + u j(ρδi ) − u j(ρδj )
)

Behavior: frivolous and flexible

Bilateral transactions cannot guarantee the achievement of socially optimal resource
allocations. The determination of such optima is a difficult task even when centralized
approaches are considered. The optimal Nash welfare value can only be estimated in
a reasonable time. When negotiations are based on T = {〈1, 0〉, 〈1, 1〉}, socially efficient
allocations can be achieved. Transactions of weaker cardinality are too restrictive
and larger transactions do not significantly improve the social welfare value achieved,
but increase a lot the negotiation costs. This negotiation policy is flexible enough to
ensure a sufficient resource traffic on various classes of social graph topologies. Nash
negotiations remain scalable thanks to the limitations on the transaction cardinality
even on large instances. Efficient Nash negotiations can be performed among frivolous
and flexible agents allowing two transactions: social gifts and social swaps. Although
the social graph topology has an important impact, this negotiation policy can always
be considered as the best alternative.
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4.4 Elitist bilateral negotiations

The elitist welfare is a social welfare notion that aims to maximize the welfare of the
richest agent of the population, as defined in Definition 1.7. This notion is commonly
used in artificial societies, where a given objective must be achieved at any cost. The
objective must be fulfilled, no matter who achieves it. The determination of global
optimal elitist welfare values are first presented using centralized techniques. Then,
elitist negotiations are discussed with the expression of the elitist acceptability crite-
rion. Elitist negotiations are finally evaluated in order to determine how to negotiate
efficiently in elitist societies and how agents should interact in such a context?

4.4.1 Centralized techniques

The identification of the optimal elitist value is a quite simple problem, especially
when agents express their preferences using additive utility functions. Since all utility
values are positive, optimal elitist allocations satisfy some properties that can be used
to simplify the determination of the associated social value. This property specifies
how to allocate resources over the population.

Property 4.11 (Elitist optimum) When the elitist welfare is considered, in socially optimal
resource allocations, all resources are allocated to one agent, who assigns with them the largest
utility value.

Proof. Let us make a proof by contradiction. A resource allocation A ∈ A is assumed to
be a global optimum. Then, according to its definition, the following relationship with
any other resource allocation A′ ∈ A(A , A′) must be satisfied:

sweℓ(A) > sweℓ(A′) A,A′ ∈ A, A , A′

Let us assume that, in the optimal allocation A, agent i ∈ P is the richest agent of the
population. Then, according to Definition 1.7, the optimal elitist value corresponds to
its utility value:

max
k∈P

uk(Rk) = ui(Ri)

If agent i does not own all resources, then the allocation A is not a global optimum.
Indeed:

∃r ∈ R, j ∈ P r ∈ R j, such that j , i

Any allocation A′ that allocates this resource r to agent i is associated with a higher
elitist value.

ui(r) > 0

ui(Ri) + ui(r) > ui(Ri)

sweℓ(A′) > sweℓ(A)

Thus, since all utility values are positive, in an elitist optimum, all resources must be
allocated to the same agent who estimates the whole resource set R the most. �

Elitist resource allocation problems can be formulated by means of a mathematical
model using Boolean variables xir describing the ownership of a resource r ∈ R by an
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agent i ∈ P:

xir =















1 if agent i owns resource r

0 otherwise.
r ∈ R, i ∈ P.

Then, elitist resource allocation problems can be formulated as follows:

sw⋆eℓ =































maxmax
i∈P

∑

r∈R
ui(r)xir

s.t:
∑

i∈P
xir = 1 r ∈ R

xir ∈ {0, 1} r ∈ R, i ∈ P.

Here, the objective is to maximize the utility of the richest agent. Consistency con-
straints, which are inherent to the resource nature, ensure that each resource is allocated
to only one agent.

The other way to determine the optimal utilitarian value is to build an optimal
allocation, according to Proposition 4.11. A simple algorithm can then be designed
for this purpose. All resources associated with a positive utility value are summed
for all agents, and the maximum constitutes the optimal elitist value, as described in
Algorithm 4.6.

Algorithm 4.6: Determination of the optimal elitist welfare value
Input: Agent population P, Resource set R
Output: sw⋆eℓ the optimal elitist welfare value

i← argmax
j∈P

u j(R) ;

A[i]← R ;
return sweℓ(A) ;

In the case where negative values can be associated with resources, this algorithm
must be adapted. Indeed, instead of considering thewhole set of resourcesR, each agent
must only consider resources that it associates with positive values. The agent that
associates with such a resource set the largest welfare obtains this set. The remaining
resources can be randomly allocated to others, since they do not affect the elitist welfare
value. Algorithm 4.7 describes this process.
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Algorithm 4.7: Determination of the optimal elitist welfare value adapted to neg-
ative values
Input: Agent population P, Resource set R
Output: sw⋆eℓ the optimal elitist welfare value

maxVal← 0 ;
maxBundle← ∅ ;
forall the i ∈ P do

tmpVal← 0 ;
tmpBundle← ∅ ;
forall the r ∈ R do

if ui(r) > 0 then
tmpVal← tmpVal + ui(r) ;
Add resource r to tmpBundle ;

end

end

if maxVal < tmpVal then
j← i ;
maxVal← tmpVal ;
maxBundle← tmpBundle ;

end

end

A[ j]← maxBundle ;
forall the r ∈ R \ {maxBundle} do // Remaining resources allocation

i← random (P \ { j}) ;
Add r to i ;

end

return sweℓ(A) ;

4.4.2 Elitist negotiation properties

The expression of the elitist acceptability criterion, defined in Section 2.5, is based on
the evaluation of the elitist welfare value evolution between two allocations. Let us
note A ∈ A the resource allocation before the bilateral transaction δ ji 〈u, v〉 that changes
into a new allocation A′ ∈ A(A , A′). This transaction involves two agents i, j ∈ P,
who respectively propose the offers ρδi and ρ

δ
j . The resource bundle of any agent k ∈ P

is denoted by Rk before the transaction and by R′k afterward.
An elitist transaction must satisfy the following condition:

sweℓ(A) < sweℓ(A′)

max
i∈P

(ui(Ri)) ≤ max
i∈P

(

ui(R′i )
)

Similarly to the egalitarian interpretation of the social acceptability criterion, the
elitist interpretation is not a strict inequality when the test is restricted to only two
agents. However, the restriction is not as strong as the one imposed in the egalitarian
case. Indeed, if the poorest agent of the population is not involved, the egalitarian
welfare value cannot vary, but according to the elitist notion, even if the richest agent
of the population is not involved, the welfare value may increase. Nothing prevents
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for instance another agent to become richer than the agent of the population who was
the richest before the transaction.

The expression that elitist transactions δ ji must satisfied can be restricted to only two
agents. In such a case, the richest of the two involved agents after an elitist transaction
must be richer than the agent that was richer before.

max
i, j∈P

(

ui(Ri),u j(R j)
)

< max
i, j∈P

(

ui(R′i ),ui(R
′
j)
)

max
i, j∈P

(

ui(Ri),u j(R j)
)

< max
i, j∈P

(

ui(Ri) + ui(ρδj ) − ui(ρδi ),u j(R j) + u j(ρδi ) − u j(ρδj )
)

According to the elitist criterion, when two agents i, j ∈ P negotiate, an agent should
give all its resources to its partner in order to maximize the welfare of this agent. It
must become richer than the richest agent before the transaction. The agents’ decision
making, which is represented by the instruction  in all behaviors that are described
in Section 2.6, is based on this expression:

 ≔

[

max
i, j∈P

(

ui(Ri),u j(R j)
)

< max
i, j∈P

(

ui(Ri) + ui(ρδj ) − ui(ρδi ),u j(R j) + u j(ρδi ) − u j(ρδj )
)

]

Some properties related to the decomposition of elitist transactions can be estab-
lished. Similarly to the other cases, elitist bilateral transactions of large cardinality may
be essential to achieve optimal resource allocations.

Property 4.12 (Elitist transaction split) Within an elitist society where agents express their
preferences by additive utility functions, social bilateral transactions δ ji 〈u, v〉 between two agents

i, j ∈ P cannot always be split into a sequence of elitist bilateral transactions δ ji 〈u
′, v′〉 of lesser

cardinality (u > u′ and/or v > v′).

Proof. Let us consider a counter-example based on a population of two agents,P = {0, 1}
who are negotiating the three available resources R = {r1, r2, r3}. Their preferences are
expressed by means of additive utility functions, described in Table 4.18. The initial
resource allocation is A = [{r1, r2}{r3}].

Table 4.18: Elitist transaction split - Example of agent preferences

Population P
Resource Set R
r1 r2 r3

0 5 6 1
1 4 5 5

Let us consider the transaction δ10〈2, 0〉 = ({r1, r2}, ∅), during which agents 0 and 1
respectively propose ρδ0 = {r1, r2} and ρ

δ
1 = ∅. Such a transaction is social since the utility

of the richest agent increases from 11 in the initial allocation to 14 in the final allocation:

max (u0({r1, r2}),u1({r3})) < max (u0(∅),u1({r1, r2, r3}))

u0({r1, r2}) < u1({r1, r2, r3})

This transaction can be only split into two successive gifts. However, none of them
is acceptable according to the social acceptability criterion. If agent 0 gives one of its
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resources, then the other agent becomes the richest, but the elitist welfare value of the
population is weaker than it was initially. Such gifts are thus not acceptable.

Hence, in elitist societies, bilateral transactions cannot alwaysbe split into a sequence
of elitist bilateral transactions of lesser cardinality. Transactions of large cardinalitymay
thus be required to achieve a socially optimal solution. �

4.4.3 Evaluation of elitist negotiations

As described in Section 2.7, different facets of negotiation processes are evaluated in
this section. First, the impact of the transaction cardinality is investigated in order to
determine which transactions are the most suitable to efficiently negotiate according
to an elitist objective. Then, the efficiency of different negotiation policies is described
according to different classes of social graphs. The impact of the mean connectivity on
the negotiation efficiency is presented as well as the weight of the agents’ interactions.
Finally, issues related to the scalability of elitist negotiation process are discussed.

Influence of the transaction cardinality

According to the elitist acceptability criterion, restrictions canbemadeon the cardinality
of the allowed transactions. Since all utility values are positive, an implicit consequence
can be observed: An elitist negotiation process tends to gather all resources into a
single agent bundle, who assigns the largest utility value to them. Then, any bilateral
transaction δ ji 〈u, v〉 such that v > 0 is contrary to this objective.

According to Proposition 4.12, elitist transactions may not be split in a sequence
of elitist transactions of lesser cardinality. Agent i ∈ P should then be able to offer
its whole resource bundle, without compensation: T = {〈mi, 0〉}. Such a transaction is
meaningless when other social welfare notions are considered, but perfectly suits the
elitist notion.

Several sizes of offers can be tested. However, the computation time required to
end an elitist negotiation processes based on δ ji 〈1, 0〉 for instance is exponentially higher
(i, j ∈ P). Even instances of reasonable size (e.g., 50 agents and 250 resources) are not
really scalable. Thus, only cluster transactions of maximal size, i.e., 〈ρδi , 0〉 transactions
should be used when negotiating.

Price of social graphs

Since only cluster transactions are considered, an acceptability criterion cannot be used
anymore. Indeed, since agents only offer their whole resource bundle without compen-
sation, the rational acceptability criterion is improper. Since all utility value are positive,
no rational cluster transaction exists. Thus, such an acceptability criterion is unadapted
and inefficient when the elitist welfare notion is considered. This acceptability criterion
is thus not represented in the following experiments.

Table 4.19 presents the efficiency of elitist negotiation processes based on social
δ〈mi, 0〉 transactions and on different classes of social graphs. Here, 50 agents negotiate
250 resources according to frivolous and flexible behaviors.

Table 4.19 shows that, when the relationships among agents can be modeled by a
complete social graph, negotiation processes based on δ〈mi, 0〉 transactions, i.e., cluster
transactions ofmaximal size, always lead to socially optimal resource allocations. When
grids are considered, negotiation processes achieve allocations which correspond to



114 Chapter 4. Bilateral Negotiations

Table 4.19: Elitist negotiation efficiency(%) and standard deviation according to the
class of social graphs

Social graph
Social efficiency (%)

Standard deviation
〈mi, 0〉

Full 100 0
Grid 31.17 26.92

Erdős-Rényi 95.12 11.53
Small world 68.43 66.50

only 31.17% of the optimum. The mean connectivity is too weak to ensure a proper
resource traffic. Moreover, the achieved elitist welfare value may vary by 26.92%.
The large standard deviation reveals the important impact of the topology allocation.
Since resources circulate barely, depending on the agent to which they are initially
allocated, resources can be trapped somewhere, and then penalize elitist negotiations.
Resources remain dispatched over the population, which explains the poor efficiency of
negotiations basedongrids. Negotiations basedonErdős-Rényi graphs achieve socially
efficient allocations. Indeed, 95.12% of the optimal welfare value can be achieved, with
a standard deviation of 11.53%. The mean connectivity is higher than in grids, which
allows a sufficient resource circulation and result in interesting allocation. However,
in the case of small-worlds, only 68.43% of the optimal welfare value can be achieved.
Theirmean connectivity is really low (on average 6.8 neighbors per agent) and irregular.
Most agents have only few neighbors while few agents have many neighbors. This
irregularity explains the very large standard deviation which is observed. Depending
on the initial resource allocations, many resources cannot change of owners and thus
lead negotiation processes into a local optimum.

Theorem 4.13 Within an elitist society where agents express their preferences by means of
additive utility functions, a negotiation processes based on complete social graphs always con-
verge towards a global optimum using cluster transactions of maximal size, i.e., δ〈mi, 0〉 for any
initiator i ∈ P.

Proof. Since the social graph is complete and connected, any agent i ∈ P can talk with
every other agents of the population. The resource traffic is composed by several
sets of resources. The number of dispatched resource sets decreases gradually during
negotiation processes while their size is gradually growing. Indeed, since T = {〈mi, 0〉},
each time that two agents negotiate, one of them offers its whole resource bundle to the
other, who finally owns a larger resource bundle.

It is always possible to create a sequence of cluster transactions that gather all
resources into a single agent bundle, which is associated with the largest utility value.
The size of the cluster transactions gradually increases during negotiation processes
until the whole set of available resources is owned by a single agent. Once all resources
are gathered, the whole set of resources can still be offered to agents associating a
larger utility value to it. When it is no more possible, according to Proposition 4.11, the
resulting allocation is a global optimum. �
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Influence of the social graph connectivity

Themean connectivity of social graphs affects the negotiation efficiency since it restricts
more or less the transaction possibilities. Considering Erdős-Rényi graphs, the mean
connectivity can vary thanks to the probability p of link generation in the model of
generation G(n, p). These simulations are based on a population of 50 agents who
negotiate 250 resources, carrying out frivolous and flexible behaviors.
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Figure 4.14: Social graph connectivity impact on elitist negotiations in terms of compu-
tation time in 4.14a and of performed transactions in 4.14b.

As shown in Figure 4.14b, the number of performed transactions does not vary
significantly (between65 and80). Negotiationprocesses endafter transaction sequences
of close length. Figure 4.14a shows on the other hand that the computation time varies
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from 40ms to 125ms. However the elitist welfare value onwhich negotiation processes
end vary a lot. The mean connectivity significantly affects the quality of provided
solutions only when the probability is below p = 0.3. If the probability of generating a
link between two nodes is higher, the efficiency is not affected more than 8%. But if the
probability is lower, the elitist welfare value that can be achieved decreases drastically.

Influence of agents’ behaviors

Behaviors define how agents interact, i.e., how they negotiate. The different agent
behaviors defined in Section 2.6, can be compared using variousmetrics as presented in
Section 2.7.1. Negotiation processes are based in these experiments on complete social
graphs, with a population of 50 agents and 250 available resources. Agents negotiate
using social transactions only: T = {〈mi, 0〉}.
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Figure 4.15: Agent behavior impact in terms of performed transactions in 4.15a, of trans-
acted resources in 4.15b, of speech turn in 4.15c, and in terms of attempted transactions
in 4.15d.

Only one transaction is allowed during elitist negotiation processes. As described
in the previous sections, only 〈mi, 0〉 transactions are allowedwhere i ∈ P is the initiator.
Accordingly, agents are only able to make a single offer. Thus, flexible behaviors have
no impact because Li(ρ), the list of offers that agent i can propose has only one element
corresponding to its whole bundle Ri. For this reason, rooted behaviors, either flexible
or stubborn obtain almost similar value for all metrics.

Related to the four frivolous behaviors, negotiations end after transaction sequences
of identical length, where almost the same number of resources are traded. However,
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variations canbe observedwhen thenumber of speech turns or thenumber of attempted
transactions is considered. These variations are simply due to the frivolous character
of the agents’ behaviors. The order in which neighbors are considered influences the
negotiation process. According to this order, the number of attempted transactions
varies. In order to achieve socially optimal allocations, agents must be frivolous. They
can thus interact with all their neighbors.

Negotiation scalability

The scalability of elitist negotiations is evaluated when relationships among agents are
modeled by means of complete social graphs. Agents interact according to frivolous
behaviors. On each figure, several sizes of instances are used. An instance is charac-
terized by a pair n − m, where n is the number of agents and m is the overall number
of resources, initially distributed in a random way. For instance, the key “100-1000”
corresponds to an instance where 100 agents negotiate 1000 resources using only 〈mi, 0〉
transactions for any initiator i ∈ P.

Figure 4.16a represents the evolution of the elitist welfare value according to the
computation time, using different instance sizes. Larger instances lead to longer nego-
tiations and to greater elitist welfare values. The different floors that can be observed
correspond to transactions between agents who cannot become the richest ones in the
population. According to the elitist acceptability criterion, one of the involved agent
becomes richer than the richest agent before the transaction. However, if it does not
become richer than the richest agent of the population, the elitist welfare value does
not change, but resources circulate.

Figure 4.16b shows the evolution of the social welfare value according to the num-
ber of performed transactions. It reveals that, independently of the mean number of
resources per agent, the number of performed transactions if almost the same. Since
agents negotiate using only 〈mi, 0〉 transactions, agents offer their whole resource bun-
dle independently of their size. The number of resources per agent does not affect the
length of transaction sequences, in contrast to negotiation processes based on other
social welfare notions, which suffer from an exponential increase.

Table 4.20presents the computation time required to end elitist negotiationprocesses
according to the instance size, whereas Table 4.21 focuses on the number of performed
transactions. These tables show that the mean number of resources per agent has a
weak impact on elitist negotiation processes. Such elitist negotiations remain highly
scalable even when large instances are considered. Indeed, a negotiation among 500
agents and 10000 agents can be solved in 8.2 seconds, after a sequence of 819 cluster
transactions.

Table 4.20: Elitist negotiation scalability - Computation time

Population Size n
Mean number of Resources per Agent m

n
5 10 20

25 98 ms 113 ms 120 ms
50 132 ms 136 ms 140 ms
100 276 ms 350 s 642 ms
500 1.6 s 3.3 s 8.2 s
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Figure 4.16: Scalability of elitist negotiations in terms of computation time in 4.16a and
in terms of performed transactions in 4.16b

Table 4.21: Elitist negotiation scalability - Transaction sequence length

Population Size n
Mean number of Resources per Agent m

n
5 25 50

25 35 44 46
50 82 84 87
100 162 170 174
500 781 803 819
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4.4.4 Conclusion

Centralized techniques are quite trivial when elitist problems are considered. All
resources must be allocated to the agent who assigns with them the largest utility to
them. In distributed agent negotiations, the use of social 〈mi, 0〉 transactions is the most
efficient negotiation policy among frivolous and flexible agents.

Best elitist negotiation policy

Transaction: 〈mi, 0〉 (i.e., cluster of maximal size)
Criterion: social
Test on δ

j
i : max

i, j∈P

(

ui(Ri),u j(R j)
)

< max
i, j∈P

(

ui(Ri) + ui(ρδj ) − ui(ρδi ),u j(R j) + u j(ρδi ) − u j(ρδj )
)

Behavior: frivolous

The elitist welfare notion can be used in specific situations where an objective must be
achieved independently of the agent who achieves it. The maximization of the wel-
fare of the richest agent may seem inappropriate to human societies, but suits many
applications among artificial agents. The rational acceptability criterion is meaningless
when the elitist welfare notion is considered since no cluster transaction can be ratio-
nal. Collaboration among agents is essential during elitist negotiations, which then
should be based on social transactions. Only one transaction is required to negotiate
efficiently: 〈mi, 0〉 transactions, during which an agent offers its whole resource bundle.
Since agents can onlymake one offer, agents do not need to behavewith flexibility. Only
the frivolity characteristic is useful, to benefit from their neighborhood. When relation-
ships among agents are represented by means of complete graphs, elitist negotiations
based on social 〈mi, 0〉 transactions always lead to global optima. When the agents’
neighborhoods are restricted, the achievement of global optima cannot be guaranteed,
but if the agent neighborhood are large enough, socially efficient allocations can still
be achieved. The mean number of resources does not affect the scalability of elitist ne-
gotiations, while it has an exponential cost when other welfare notions are considered.
Elitist negotiations are highly scalable and large instances can be solved quickly.

4.5 Summary

In this chapter, agent negotiations based on bilateral transactions have been evaluated.
Different facets of negotiations have been considered: The size of offers that agents can
propose, the agent acceptability criterion or their behaviors, social graph classes, the
negotiation efficiency according to the social graph, and their scalability. The four main
notions of the social welfare theory have been investigated.

Generally, even if they are widely used in the literature, rational negotiations are
not efficient when the aim is tomaximize the social welfare. To achieve socially efficient
allocations, agents must be generous. They must accept to loose a little for the sake of
the whole society.

Utilitarian negotiations are the most efficient among frivolous and flexible agents,
using only social 〈1, 0〉 transactions (i.e., gifts). When complete social graphs are con-
sidered, optimal allocations can always be achieved. When restricted relationships are
considered, socially efficient resource allocations can still be achieved. Such utilitarian
negotiations favor the resource circulation sufficiently in order to be efficient on many
classes of graphs. Moreover, they remain scalable even on large instances.
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Egalitarian negotiations are the most efficient among frivolous and flexible agents.
Two transactions must be used among the agents: Social 〈1, 0〉 transactions and social
〈1, 1〉 transactions are required to achieve fair resource allocations (i.e., either gifts or
swaps). Bilateral transactions cannot guarantee the achievement of socially optimal
allocations. Such negotiations are more sensitive to topological issues of restricted
social graphs. Moreover, any characteristic restricting the resource circulation affects
a lot the negotiation efficiency. They remain scalable on large instances in contrast to
exact centralized techniques.

Nash negotiations are also the most efficient among frivolous and flexible agents,
using both social 〈1, 0〉 transactions and social 〈1, 1〉 transactions (i.e., gifts and swaps).
As in egalitarian negotiations, bilateral transactions cannot ensure the achievement of
the socially optimal allocations. The efficiency of such negotiation processes is difficult
to evaluate since centralized techniques are not easy to handle. Nash negotiations are
less sensitive than egalitarian negotiations and also less time-consuming. Indeed, they
remain scalable on large instances of population.

Elitist negotiations are efficient among a population of frivolous agents. Agents
should use cluster transactions of maximal size, i.e., social 〈Ri, 0〉 transactions. Agents
should offer their whole resource bundle if it improves the elitist welfare of the society.
Thus, the notion of rationality does not fit at all. Based on complete graphs, negotiations
always achieve optimal solutions, but not when restricted communication possibilities
are considered. Such negotiations are scalable on large instances, and the computation
time is moreover independent of the number of resources available.

Table 4.22: Summary - Efficient bilateral negotiation settings
Social welfare notions

Utilitarian Egalitarian Nash Elitist

Acceptability criterion social
Allowed transactions gifts gifts and swaps maximal cluster

Agent behaviors frivolous and flexible frivolous



Chapter 5

Multilateral Negotiations

Generally, bilateral transactions are not sufficient to guarantee the achievement of so-
cially optimal allocation. Especially when the social graphs are restricted, the agent
communication possibilities are also restricted, which make difficult the resource circu-
lation. In order to favor resource circulation, multilateral transactions might be used.
Allowing such transaction classes may increase the possible number of transactions, as
described in Section 2.4.2 and hence may improve the quality of provided allocations.
However, the determination of such acceptable transactions is not an obvious task, and
negotiation processes based on such transactions may face scalability problems.

This chapter addresses multilateral transactions. First, the motivations and the
limits using such a transaction class are presented in Section 5.1. This section describes
how such transactions favor resource circulation and the achievement of socially more
interesting resource allocations, especiallywhen restricted social graphs are considered.
Multilateral transactions also suffer from drawbacks that may prevent their practical
application. These drawbacks and the limits of the use of multilateral transactions are
also discussed. A literature review is presented in Section 5.2, in order to describe
different studies on this topic and their characteristics. Section 5.3 is dedicated to
the model that we propose to solve the problem of the determination of acceptable
multilateral transactions. An introduction to an efficient solving method is presented
in Section 5.4. This solving method is applied to our problem in Section 5.5, whereas
Section 5.6 evaluates the solutions.

5.1 Motivations and limitations

The determination of acceptable multilateral transactions is not an obvious issue. Ac-
cording to the description of multilateral transactions of Section 2.4.2, an exponential
number of possible multilateral transactions can be carried out during each negotia-
tion. This section reviews the pros and cons of using multilateral transactions during
negotiation processes. Do their advantages compensate their drawbacks?

5.1.1 Motivations

Multilateral transactions favor the resource traffic during negotiations and hence can
facilitate the identification of acceptable transactions. When restrictive acceptability
criteria are considered, only few transactions might be acceptable by an agent. For in-
stance, within a population of rational agents, agents only accept transactions increasing
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their own utility value. Such negotiation processes limit a lot the resource traffic and
may only achieve socially sub-optimal allocations. However, during a multilateral
transaction, e.g., during a one-to-many transaction δ∆i , the initiator can negotiate with
a set of its neighbors ∆δ = { j, k} ⊆ Ni. It can compensate a loss of utility from a part
of the transaction involving one neighbor, with the benefit resulting from a part of
the transaction involving another neighbor. Thus, the use of multilateral transactions
increases the number of acceptable transactions and negotiation processes may avoid
local optima. Let us illustrate this phenomenon with an example.

Example 5.1 Let us consider an agent population P = {0, 1, 2} where 5 resources are available,
R = {r1, . . . , r5}. Agents express their preferences bymeans of additive utility functions described
in Table 5.1. The initial resource allocation is A = [{r1r2}{r3}{r4}]. The social objective of this
system is the maximization of the utilitarian welfare, but examples can be designed for any other
notions of the social welfare theory. We also assume that all agents are rational. Hence, they
only accept transactions increasing their own welfare.

Table 5.1: Multilateral transaction motivations - Example of agent preferences

Population P
Resource Set R
r1 r2 r3 r4

0 5 7 10 3
1 7 5 4 5
2 2 9 6 4

Agent 0 is the initiator of a one-to-many transaction involving its two neighbors, agents
1 and 2, such that δ1,20 = {(ρ

δ
01, ρ

δ
10), (ρ

δ
02, ρ

δ
20)} = {({r1}, {r3})({r2}, {r4})}. Agent 0 offers agent

1 the resource set ρδ01 = {r1} and receives ρδ10 = {r3}. Simultaneously, agent 0 offers agent 2
another set of resource ρδ02 = {r2} and receives ρ

δ
20 = {r4}.

This one-to-many transaction is rational and then acceptable since it leads to an increase
of the utility of all involved agents, according to Table 5.2, which describes the utility of the
involved agents before and after the multilateral transaction.

Table 5.2: Multilateral transaction motivations - Evolution of utility values

Population P
Agent utility

Initially After δ120
0 u0({r1r2}) = 12 u0({r3r4}) = 13
1 u1({r3}) = 4 u1({r1}) = 7
2 u2({r4}) = 4 u2({r2}) = 9

However, the bilateral transactions δ10 and δ
2
0 are not individually rational. Performed si-

multaneously, these transactions satisfy the rational acceptability criterion, but not individually
since one of them, δ30, is not rational. The initiator uses the utility savings from one part to
compensate the loss of the other one.

Amultilateral transaction can be viewed as a sequence of bilateral transactions at the
end of which all involved agents satisfy their own acceptability criterion. This criterion
is not necessarily satisfied after each bilateral transaction of the sequence, as described in
Figure 5.1. A sequence of acceptable bilateral transactions exists, changing successively
the initial resource allocation A0 to A1,A2,A3 and finally A4, which corresponds to
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a socially optimal resource allocation. All bilateral transactions of this sequence are
acceptable. An acceptable multilateral transaction can be viewed as a sequence of
bilateral transactions, which are not necessarily individually acceptable, but which
ensure the acceptability of the achieved allocation. In this figure, the acceptable solution
space is connected, but this is not the casemost of time, especiallywhen restricted social
graphs are considered. In such cases, the use ofmultilateral transactions can be the only
way to guarantee the achievement of socially optimal allocations. Some optimization
methods have some similarities. In order to speed up the solving process or to leave
local optima, some optimizationmethods accept to go through non-satisfiable solutions
if they are sure that satisfiable solutions can be achieved later on.

×Initial allocation A0

×

A1

×

A2

× A3

× A4 Optimal allocation
×

A′

Acceptable solution space

Figure 5.1: Interpretation of multilateral transactions

5.1.2 Limitations

Multilateral transactions have some significant drawbacks that must be considered.
The first drawback is related to the quantity of information required to identify an
acceptable multilateral transaction. Indeed, an initiator may offer some resources to
different neighbors simultaneously. In order to avoid an exponential number of offers
that can be proposed to the different neighbors, the initiator can gather information
about its neighbors’ preferences and their resource bundle. The initiator can then
identify an acceptable multilateral transaction. However, to apply such a solving
process, all neighbors must accept to reveal their private information to the successive
initiators. Without such an information gathering step, it is still possible to identify
acceptable transactions, but it may require the explicit enumeration of all possible
transactions. It may then compromise the scalability of just one negotiation and then
a complete negotiation process may not be scalable. Thus, in order to use multilateral
transactions in a scalable way, the information privacy must be sacrificed.

Another important limitation depends on the social welfare notion that is consid-
ered. Indeed, each welfare notion does not lead to the same complexity of the solving
process. There is no specific difficulty when utilitarian problems are considered. In
the case of egalitarian problems, negotiation processes may face scalability problems.
Indeed, as described in Section 4.2.1, the exact resolution may be time consuming, but
it is still possible. But, when the Nash product is considered, such a method is not scal-
able. The exhaustive enumeration cannot be avoided to guarantee that no acceptable
multilateral transaction exists among the involved agents. Thus, the determination of
acceptable multilateral transactions is more or less complex and expensive depending
on the social welfare notion considered.
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0

{r1}

1

{r2}

2

{r3}

3

{r4}

Figure 5.2: Insufficiency of multilateral transactions - Example of social graph

Bilateral transactions cannot guarantee the achievement of optimal allocations, for
instance when the egalitarian welfare notion is considered (Proposition 4.7). Some
classes of multilateral transactions can solve such problems, e.g., many-to-many trans-
actions, but if the social graph is restricted, even the use of multilateral transactions
cannot certify the achievement of socially optimal resource allocations. Proposition 1.3
is still true when the use of multilateral transactions is allowed.

Example 5.2 Let us consider a population of four agents,P = {0, . . . , 3}, and a set of four avail-
able resources, R = {r1, . . . , r4} which are initially allocated as follows: A = [{r1}{r2}{r3}{r4}].
Their preferences are expressed by means of additive utility functions that are described in Table
5.3.

Table 5.3: Multilateral transaction insufficiency - Example of agent preferences

Population P
Resource Set R
r1 r2 r3 r4

0 3 1 1 9
1 1 3 1 1
2 1 1 3 1
3 9 1 1 3

The relationships among the agents are represented by the social graph illustrated in Figure
5.2. The social graph topology is a chain, where agents know at most 2 neighbors.

The objective is to maximize the utilitarian welfare. The optimal allocation is A′ =
[{r4}{r2}{r3}{r1}], which is associated with the welfare value swu(A′) = 24. However, even
allowing multilateral transactions, no acceptable sequence leads r1 into agent 3’s bundle and
inversely r4 into agent 0’s bundle. Then, the socially optimal resource allocation cannot be
achieved, even if multilateral transactions are allowed.

A question can be raised: Since the achievement of optimal allocations cannot be
guaranteed by the use of multilateral transactions, are their use justified in spite of their
costs? In order to be interesting, an efficient method must be designed to determine
acceptable multilateral transactions.

5.2 Related works

Efficient resource allocation is a complex issue and encounters very quickly some scal-
ability difficulties. A formal classification of the transactions is proposed (Sandholm,
1998). The classification starts with bilateral contracts, e.g. gifts, swaps or clusters and
ends with multilateral transactions such as the multi-agent contracts and the OCSM
contracts that involve more than two agents simultaneously. These multilateral trans-
actions can either be one-to-many or many-to-many transactions according to the re-
source traffic, as defined in Section 2.4.2. The author showed that the use of multilateral
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transactions is essential in order to guarantee the achievement of optimal allocations,
when the social graph is complete. However, only few works have studied their com-
plexity (Endriss andMaudet, 2005; Friedman and Rust, 1993). Multilateral transactions
are difficult to determine and not necessarily scalable.

In order to tackle the scalability issues, different studies suggest to use a restricted
set of transactions. First at all, start with the simplest ones, then use more complex ones
only when no simpler one is possible (Andersson and Sandholm, 1998). This iterated
process leads most of the time to a local optimum.

In the literature, generic models are proposed to solve problems under incomplete
information, which are represented by means of types, which represents the agents’
beliefs. Mechanism design is then used to create interaction rules among the agents of a
society. It is a sub-fieldofmicroeconomics andgame theory that considers how todesign
the rules of interaction in a game to achieve specific properties, for problems involving
multiple agents. Most of the time, systems are populated by selfish agents who can
misreport information about their preferences, in order to manipulate the mechanism
and increase their profits. By properly designing the interaction rules, it is possible
to incite the agents to report truthful information only. Mechanism design recently
became a tool in computer science and operational research (Conitzer and Sandholm,
2002; Feigenbaum and Shenker, 2002; Dash et al, 2003), due to distributed systems,
like Internet, which have many characteristics of an economy. Such approaches are
typically used in applications where agents have limited resources (Kfir-Dahav et al,
2000; Dash et al, 2005) or in load balancing problem (Grosu and Chronopoulos, 2004).
These studies are always based on selfish agents (Nisan, 1999). Issues related to faithful
mechanism are studied (Dash et al, 2004). Mechanisms are specifically designed to
incite agents to report truthful information during negotiations.

Recent studies (Sandholm, 2003) introduce the notion of Automated Mechanism De-
sign. This approach tacklesmechanismdesign as anoptimizationproblemandproposes
to automatically design the target mechanisms by means of optimization algorithms.
The optimization algorithmdefines the rules of interaction, hence the agents’ behaviors.
Integer linear programs are used to model and implement Arrovian welfare functions
(Sethuraman et al, 2003). An algorithm for automatedmechanismdesignwas proposed
in the context of bartering problems (Conitzer and Sandholm, 2004). Only bilateral ex-
changes are considered without side payments. Two agents are considered with up to
90 types, but the set of possible allocations is restricted to only 30 outcomes. However,
the complexity of determining an optimal mechanism grows exponentially with the
number of agents involved in the transactions. The efficiency of such a mechanism is
also discussed (Jameson et al, 2003).

The determination of acceptable multilateral transactions is modeled in a context of
automated mechanism designs. Agents can behave according to different acceptability
criteria. Depending on which acceptability notion is considered, the constraints of the
model change, as described in the next section.

5.3 Problem statement

This section describes the model that we propose to determine acceptable multilateral
transactions. This model is adapted to the automated mechanism design problem.

The definition of agent and utility function must be adapted to automated mech-
anism design problems. Let us note o the outcome of such problems and O the set of
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all possible outcomes. An outcome can be thought as a restricted resource allocation
problem. Instead of considering the whole population P, only the agents involved in
the multilateral transaction δ∆i are considered, P′ = ∆δ ∪ {i}, and the set of available
resources is restricted to the bundle of the involved agents, R′ =

⋃

i∈P′
Ri. Each agent i is

defined by means of:

• A finite set Θi of ti types, where each element θi ∈ Θi defines preferences that
indicate which outcome is preferred in a pair of outcomes;

• A probability distribution Pi on Θi: pki is the probability that agent i reports the
type θki ;

• An utility function ui : Θi × O → R that allows the agent to evaluate an outcome.

The state of the multi-agent system is described by a type profile θ = (θ1, . . . , θnδ),
i.e., a vector composed by the types reported by the nδ involved agents into the current
multilateral transaction δ∆i : θ j is the type reported by the agent j ∈ P′ = ∆δ ∪ {i}. The
set of possible type profiles is denoted byΘ ∈ Θ1× · · · ×Θnδ . The optimization problem
is defined over the variables gk

θ
where a specific gk

θ
is the probability for the mechanism

of choosing the outcome ok ∈ O when the types reported by the agents correspond to
the type profile θ. A slight abuse of notation is used here, because θ corresponds to a
type profile, it is a little improper to use it as an index for the variables.

The type of the mechanism characterizes the design of the mechanism:

• A deterministic mechanism always returns the same outcome. It uses Boolean
variables for a specific type profile: gk

θ
∈ {0, 1};

• A randomized mechanism returns a probability distribution per type profile.
Thus, it uses real variables: gk

θ
∈ [0, 1].

Since all involved agents have an acceptability criterion to satisfy, a set of acceptability
constraintsmust be added to themodel. When agents are rational, individual rationality
constraints are introduced in the model. Some variants of this notion are used in the
literature (Mas-Colell et al, 1995).

• Ex post: Each agent has to obtain equal or greater utility than initially, after he
knows the outcome chosen by themechanism. If there exists an outcome ok which
gives less than the initial utility of at least one agent for a given type profile θ, the
constraints lead the variable gk

θ
to 0. Hence, it is impossible for the designer to

return such a mechanism. The constraints are defined as follows:

∃θ ∈ Θ,ui(θ, ok) < ui(θ, o) ⇒ gkθ = 0, i ∈ P, o ∈ O.

• Interim: Before knowing the outcome chosen by the mechanism, the expected
utility of the agents are greater or equal on average than their initial utility. This
interim scenario incites the agents to participate in the transaction. However,
these constraints do not guarantee the achievement of a greater utility. Indeed,
the constraints are about expected utility, i.e., the average utility obtained over
the type profile. In most cases, the agents obtain more than initially, but some
cases may occur in which they obtain less. There is a part of uncertainty. With
this concept, the constraints are defined as follows:

∑

ok∈O

ui(θ, ok)g
k
θ ≥ ui(θ, o), i ∈ P′, θ ∈ Θ.
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When agents are not rational but social, sociability constraints must be added to the
model. Since such an acceptability criterion must be interpreted according to the social
welfare notion considered, the expression of acceptability constraints also depends on
it. Such acceptability constraints must ensure that the social welfare value increases
with the current multilateral transaction. When the utilitarian welfare is considered,
the summation of the utilities obtained by all involved agents must increase:

∑

i∈P′

∑

ok∈O

ui(θ, ok)g
k
θ ≥

∑

i∈P′
ui(θ, o), θ ∈ Θ.

When the egalitarianwelfare notion is considered, thepoorest agent after the transaction
must be richer than the poorest agent before:

min
i∈P′

∑

ok∈O

ui(θ, ok)g
k
θ ≥ min

i∈P′
ui(θ, o), θ ∈ Θ.

Agents have a set of types that they can report to others. Only one “true” type,
denoted θ̂i, from this set corresponds to the true preference of agent i ∈ P′. How-
ever, in the literature, it is assumed that an agent can misreport its type in order to
manipulate the mechanism and to try to achieve a greater utility. Consequently, a set
of incentive compatibility constraintsmust be added to the model. According to the kind
of equilibrium required among the involved agents, the expression of the constraints
may change. For instance, a Bayes-Nash equilibrium can be used, meaning that reporting
truthful information gives to the agents at least equal or greater utility, assuming other
agents report truthful information too. Let θ̂ be the truthful type profile, i.e., in which
all agents report truthful information. The constraints can then be written as follows:

∑

ok∈O

ui(θ̂, ok)g
k
θ̂
≥

∑

ok∈O

ui(θ̂, ok)g
k
θ θ̂, θ ∈ Θ, i ∈ P′.

Another possible equilibrium that can be used would be the dominant-strategy equilib-
riumwhere reporting truthful information gives to agents at least an equal or a greater
utility even if the other agents misreport their types. The constraints for a dominant-
strategy equilibrium are stronger than the constraints for a Bayes-Nash equilibrium. In
the case of a dominant-strategy equilibrium, the constraints are defined as follows:

∑

ok∈O

ui(θ−i, θ̂i, ok)g
k
θ̂
≥

∑

ok∈O

ui(θ−i, θ̂i, ok)g
k
θ θ̂, θ ∈ Θ, i ∈ P′.

where θ
−i is an incomplete type profile, without the type reported by agent i. Hence,

ui(θ
,
−iok) corresponds to the evaluation by agent i of the outcome ok, when agent i reports

truthful information θ̂i, and other agents report any information θ
−i (either truthful or

wrong types).
Finally, the objective function must be defined. A social welfare function can be

used here, or it is possible to define a specific objective for the initiator. For instance, in
a rational society, an initiator may want to maximize it personal profit. In such a case,
the objective function can be written as follows:

ui =
∑

θ∈Θ

∑

ok∈O

ui(θ, ok)g
k
θ.
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When the objective function is either the maximization of the utilitarian welfare notion,
or the maximization of the egalitarian welfare, the objective function can respectively
be written as follows:

swu =
∑

θ∈Θ

















∑

i∈P

∑

o∈O

ui(θ, ok)

















gkθ;

swe =
∑

θ∈Θ

















min
i∈P
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ui(θ, ok)

















gkθ.

5.4 Introduction to column generation methods

This section is dedicated to the description of a method corresponding to the determi-
nation of acceptable multilateral transactions depending on the considered parameters.
Unfortunately, the translation into an optimization formulation generates a huge num-
ber of variables, even for moderate problem sizes. Efficient solving methods must be
used in order to ensure the scalability.

Column generation (Chvátal, 1983) is a way to begin with a small and manageable
part of a problem (only few of the variables), and solving this part. The analysis of
the corresponding partial solution helps to determine the next part of the problem (one
or several variables) to add to the model. This enlarged model can then be solved.
Column-wise modeling repeats such a process until it achieves a satisfactory solution
to the whole problem.

In formal terms, column generation techniques are solution methods for linear
programswith a very large number of variables (e.g. exponential)where constraints can
be implicitly expressed with respect to the variables. They are widely used for solving
large scale integer programs whose solutions schemes rely on linear programming
relaxations. Their general principle is described in the sequel.

5.4.1 The master problem

Let us consider an integer linear program with a huge number of variables, say n, and
m constraints such that the relationship m≪ n is satisfied. The optimal solution of this
system is denoted by z⋆.

z⋆ =























min cx

subject to: Ax ≥ b

x ∈ Z+n.

(5.1)

The classic method to solve integer linear programs corresponds to the so-called branch-
and-bound. For minimization problems, relaxations are used in order to get lower
boundson theoptimal integer solution. Themostused relaxation is the linear relaxation,
denoted by (5.2), that corresponds to the solution of the following linear program:

z⋆

=























min cx

subject to: Ax ≥ b

x ≥ 0.

(5.2)

The variables x of the linear relaxation (5.2) corresponds to the columns of the matrixA.
Thus, variables and columns are used indifferently in the sequel. The optimal solution
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of (5.2), which can be determined using either the simplex algorithm or the column
generation technique, provides a lower bound. Indeed, the following relationship is
satisfied:

z⋆

= z ≤ z⋆.

Nowadays, linear programs are well solved in practice using effective implementations
of the simplex algorithm, for example using the  software (ILOG Inc, 1995). How-
ever, when the number of variables is very large, it is better to use column generation
methods.

Column generation methods rely on a decomposition of the initial linear program
into a restricted linear program and a pricing problem. The restricted linear program
is often called master problem. It corresponds to a linear program associated with a
restricted matrix A′, which is a sub-matrix of A. Such a decomposition is illustrated in
Figure 5.3. Here is its guiding principle: if an optimal solution of the restricted linear
program is identified, this solution may also be optimal for the initial linear program.
It can be tested thanks to the signs of the reduced costs of the missing columns, i.e.,
those are not explicitly considered in the linear relaxation (5.2).

c1 . . . c j . . .

A1 . . . a j . . . b

Figure 5.3: Matrix decomposition of a linear program

Column generation techniques proceed as follows: we consider a sub-matrix of
dimension m × n1, from the original matrix, say A1 = A′. For this sub-matrix, we
solve the corresponding linear program, and obtain an optimal solution, denoted by
x1

. Remember that c1 is a sub-vector of c, which corresponds to the columns of A1.



































min c1x

subject to: A1x ≥ b

0 ≤ x ≤ 1

x ∈ Rn1 .



−→ x1


(5.3)

A question should then be raised: “Is there a column a j ∈ A \ A1 such as c j < 0?” In
other words, can we find a column of the matrix A \ A1 for which the reduced cost is
negative? There are two possible answers:

• : The optimal solution x1

of the system (5.3) is optimal for the initial program

(5.2).
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• : Some columns must be added to the matrix A1 in order to find the optimal
solution. In that case, the following system must be solved:



































min c2x

subject to: A2x ≥ b

0 ≤ x ≤ 1

x ∈ Rn2 ,



−→ x2


(5.4)

with A2 = A1 ∪ {a j} such that c j < 0.

The process is iterated as long as we are able to find j such as c j ≤ 0, i.e., a column for
which the reduced cost is negative. When iterations are no more possible, the optimal
solution for the initial problem (5.2) is achieved.

The column generation technique needs either a feasible solution or an artificial
solution in order to start. An artificial solution can be generated in insignificant time:
the artificial solution corresponds to a set of columns, which constitute a square matrix
with dimension equal to the number of constraints. That number is tiny compared to
the number of variables. Moreover, in practice, it is more efficient to add a small set
of columns than add columns one by one. Let one important remark be specified: in
order to minimize the objective function, the algorithm needs a negative reduced cost,
but if the aim is to maximize the objective function, the reduced cost that the algorithm
looks for, is then positive.

It remains the following question: “how to determine if whether or not there exists
a column with a negative reduced cost?” To answer this question, the so-called pricing
problemmust be solved.

5.4.2 The pricing problem

Consider the current master problem, e.g. equation (5.3). In order to improve the
current solution of the master problem, a column a j associated with a negative reduced
cost is sought. For that purpose, the pricing problem has to be solved according to:















min c(a j)

with constraints on the elements of a j to guarantee that A2 ⊆ A,
(5.5)

where A2 = (A1|a j). Indeed, A2 is the concatenation of A1 and a j, i.e. the concatenation
of the matrix previously considered in the master problem and the new column.

For the master problem, the reduced cost is defined in the matrix form as follows:
c = c − vA where v is the vector of the dual variables associated with (5.2). Hence, for
column a j, the expression of the reduced cost becomes:

c j = c j − v1a j = c j(a j) − v1 · a j, (5.6)

where c j is the reduced cost associated with column a j, and v1 is the optimal dual vector
that is obtained when solving (5.3).

The variables of the pricing problem (5.5) correspond to them components of vector
a j. The constraints on a j come from the definition of the constraint matrix of the master
problem, which must be a sub-matrix of A.

Solving the pricing problem is equivalent to solving the following problem:

c⋆ = min{c(a) = c(a) − va : a ∈ A},
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where A = {a ∈ Rm : (A1|a) is a sub-matrix of A}.
The pricing problem (5.5) is very often a combinatorial problemwhich is difficult to

solve as it is oftenNP-complete. However, it is not necessary to solve it exactly at each
iteration. Indeed, it is enough to design a heuristic and to use it in combination with an
exact algorithm as described in the sequel.

If the heuristic returns c̃ such as c̃ < 0, the production of an optimal solution is not
important because an improvement of the current solution is possible: the associated
column is added to the current constraint matrix and a new iteration is carried out.

However, if the heuristic returns c̃ such as c̃ ≥ 0, the exact algorithm is called in
order to check the sign of the optimal solution of (5.5), denoted by c⋆:

1. c⋆ = 0: there is no missing column with a negative reduced cost. Hence the
optimal solution of the current master problem is indeed the optimal solution of
the initial -relaxation.

2. c⋆ < 0: an iteration has to be carried out.

The optimal value of the reduced cost c⋆ provided by the exact algorithm cannot be
positive. Indeed, in the case where the optimal solution has been identified, the lowest
reduced cost is then associated with a column already added to the constraint matrix
of the master problem. In this way, the associated reduced cost is zero.

Hence, the heuristic searches after a column with a negative reduced cost, which
means that the optimal solution for the pricing problem has not been found. As long
as such columns exist, iterations have to be performed. If a positive reduced cost
is returned, the exact algorithm is used. Then, if the provided exact solution is still
positive, it does not exist a column with a negative reduced cost, and the optimal
solution of the current master problem is an optimal solution of the initial -relaxation,
whereas if the returned exact solution is negative, improvements can be done thanks to
additional iterations.

Figure 5.4 summarizes the solving process of column generation techniques. The
dotted lines represent the different stages, including the pricing problem.

5.5 Expression of the pricing problem

Three kinds of constraints are required in the model: probability constraints en-
suring the consistency, rationality constraints to check the agents’ savings, and fi-
nally incentive compatibility constraints to prevent the misreport of information. Let
A = (A,A,A) be the constraint matrix of the current master problem. It con-
sists of 3 sets of constraints. Firstly, the sub-matrix  comes from the constraints
linked with the probability distribution. Secondly the  sub-matrix comes from the
individual rationality constraints and, thirdly, the  sub-matrix comes from the incentive
compatibility constraints.

Let us denote ξ a generic column of the constraint matrix, which is associated with
a variable gk

θ
and composed by various coefficients in each part. The dual vector can

be decomposed in a similar way:

ξ =
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Figure 5.4: Column generation solving process

Then the formula of the reduced cost associated with a variable gk
θ
becomes:

cθ,k = cθ,k − v · αθ,k − v · βθ,k − v · γθ,k.

Let us introduce the following xk and yθ such as:

xk =















1 if ok is selected

0 otherwise.

yθ =















1 if θ is the type profile reported

0 otherwise.

Consider the first part of the column:

(ξ)θ,k


= αθ,k.

There are as many constraints related to the probability part as the number of type
profiles, |Θ|. Hence, one index is enough to identify the element of that column part.

αθ,k
θ′
=















1 if θ = θ′

0 otherwise.

Hence, the expression of the probability part of the inner product becomes:

v · αθ,k =
∑

θ′∈Θ

vθ′ αθ,k
θ′

= vθ .
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Then, let us consider the second part of the column:

(ξ)θ,k

= βθ,k.

The number of individual rationality constraints is |Θ| × n, the number of type profiles
times the number of involved agents. Hence, two indices are required for element
identification in this part of column.

βθ,ki,θ′ =















ui(θ, ok) if θ = θ′

0 otherwise
.

Hence, the inner product related to this set of constraints can be expressed as:

v · βθ,k =
∑

i∈P

∑

θ′∈Θ

vi,θ′β
θ,k
i,θ′

=
∑

i∈P

vi,θ′β
θ,k
i,θ

=
∑

i∈P

ui(θ, ok)v


i,θ.

Finally consider the last part of the column, the one related to the incentive compat-
ibility constraints.

(ξ)θ,k

= γθ,k.

The number of constraints is (|Θ| − 1) × |Θ| × n. In this case, the elements of this part of
a column have to be identified by three indices.

γθ,ki,θ′,θ′′ =























ui(θ, ok) if θ = θ′

−ui(θ′, ok) if θ = θ′′

0 otherwise.

Hence, that part of the inner product becomes:

v · γθ,k =
∑

i∈P

∑

θ′∈Θ

∑

θ′′∈Θ
θ′′,θ′

vi,θ′,θ′′γ
θ,k
i,θ′,θ′′

=
∑

i∈P

[
∑

θ′∈Θ
θ′,θ

vi,θ,θ′γ
θ,k
i,θ,θ′ +

∑

θ′∈Θ
θ′,θ

vi,θ′,θγ
θ,k
i,θ′,θ

]

=
∑

i∈P

∑

θ′∈Θ
θ′,θ

[

vi,θ,θ′ui(θ, ok) − vi,θ′,θui(θ
′, ok)

]

.

The final expression of the reduced cost is based on the summation of the three parts
according to the analytic formula (5.6). Using the expressions of the previous inner
products v · αθ,k, v · βθ,k and v · γθ,k and the variables introduced, an expression
of the reduced cost associated with variable gk

θ
can be deduced:

cθ,k = xkyθ

(

cθ,k − vθ +
∑

i∈P

[

ui(θ, ok)
(

vi,θ +
∑

θ′∈Θ
θ′,θ

vi,θ,θ′
)

−
∑

θ′∈Θ
θ′,θ

ui(θ′, ok)v


i,θ′,θ

]

)

.
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Constraints have to be added in order to ensure that the newgenerated columnproperly
defines the constraints of themaster problem: themechanismhas to return a probability
distribution over the set of possible outcomes O, and each agent is able to report only
one type as its true type.

∑

ok∈O

xk = 1;

∑

θ∈Θ

yθ = 1.

5.6 Experimental evaluations

Two main facets can be evaluated in the context of resource allocation problems. The
first one corresponds to an evaluation carriedout from the agent’s point of view,which is
related to the cost and the efficiency of identifying an acceptablemultilateral transaction
in the agent’s neighborhood (either one-to-many or many-to-many). The second facet
corresponds to an evaluation carried out from the population’s point of view, which is
related to the efficiency of negotiation processes, especially on restricted social graphs.
This secondevaluationdetermineswhether or notmultilateral transactions significantly
improve the efficiency of negotiation processes compared to their costs.

5.6.1 Evaluation of multilateral transactions

Let us consider agent i ∈ P, who initiates amultilateral negotiation in its neighborhood.
It gathers the information that it needs to design the suitable optimization model. The
growth of the number of variables (gk

θ
, θ ∈ Θ, ok ∈ O) according to the neighborhood

size is described in Table 5.4. These experiments are characterized by the number of
neighbors of the initiator i. All agents have only one type. For instance, when the agent
initiator has 3 neighbors involved in the multilateral transaction, and when all of them
have 3 resources in their bundle, the optimization model has 3969 variables.

Table 5.4: Impact of the neighborhood size on the number of variables explicitly con-
sidered

Neighborhood Size
Number of Resources per Agent
1 2 3 4

1 1 9 49 225
2 2 36 686 11700
3 3 81 3969 236925
4 4 144 11956 2093400

Table 5.5 shows the growth of the number of variables (gk
θ
, θ ∈ Θ, ok ∈ O) in the

optimization model according to the number of types per agent. These experiments are
characterized by the number of types per agent and the number of resources per agent.
The initiator i involves 3 neighbors in its multilateral transaction δ∆i . For instance, when
each agent has 3 different types and 3 resources in its resource bundle, the optimization
model contains 107163 variables.

The neighborhood sizes and the number of types per agent remain relatively small,
but they are sufficient to show the evolution of the problem complexity. Themain factor
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Table 5.5: Impact of the number of types per agent on the number of variables explicitly
considered

Number of types per agent
Number of Resources per Agent
1 2 3 4

1 3 81 3969 236925
2 24 648 31752 1875400
3 81 2214 107163 6396975
4 192 5184 254016 15163200

of the growth of the complexity is the number of agents involved in the negotiation: the
number of possible exchanges increases exponentially with respect to the number of
agents. The number of types per agent has only a secondary impact on the complexity:
the number of type profiles increases exponentially with the number of agents and
linearly with the possible number of types per agent.

Experiments of this section evaluate the identification of a multilateral transaction,
involving different number of participants with resource bundle of different sizes. The
different curves on the following figures represents different population sizes.

Figure 5.5 shows the rate of variables explicitly considered by the columngeneration
method, i.e., the variables that have been added to the master problem. This parameter
is important since the main drawbacks of automated mechanism design is its huge
number of variables. Hence, any method that uses a small percentage of variables
helps to apply the automated mechanism design to larger instances, which are relevant
in practice.
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Figure 5.5: Number of variables (%) explicitly that are considered during the solving
process

Small instances (e.g., with 2 agents) have a higher percentage of considered variables
in consequence of the low number of variables. Instances with only one resource per
agent are not meaningful. Indeed, in order to efficiently use the column generation
techniques, the constraint matrix must have a specific form: One dimension has to be



136 Chapter 5. Multilateral Negotiations

much smaller than the other ones. However, if the instances are too small, e.g., 2 agents
with 1 or 2 resources each, the number of variables becomes similar to the number of
constraints. Then, the percentage of considered variables becomes higher. Figure 5.5
shows that the percentage of considered variables drops to less than 1% of the variables
that must be considered by the simplex algorithm. This small percentage represents the
efficiency of column generation techniques, which can then solve instances quite larger
within the same memory space.

Figures 5.6a and 5.6b summarize the computation time respectively for the simplex
algorithm and the column generation technique, depending on the number of resources
per agent and on the number of involved agents. Each agent has only one type. These
figures show that the column generation technique becomes faster than the simplex
algorithmbeyond 2 resources per agent. The computation time of the simplex algorithm
increases exponentially while it increases linearly associated with a weak slope in the
case of column generation technique. Indeed, the number of agents has a significant
impact on the number of variables and the column generation techniques are able to
select the best variables to be explicitly considered. In these settings, since only one type
per agent is allowed, the number of variables corresponds to the number of possible
exchanges among the agents. This number of variables increases exponentially with
the number of agents and the number of resources owned by each agent. It could
explain the exponential growth of the computation time observed when the simplex
algorithm is considered. The columngeneration technique, evenwith a straightforward
approach to solve the pricing problem, is able to find the few variables associated with
a reduced cost of the specified sign (respectively positive for a maximization problem
and negative for a minimization problem). They correspond to the exchanges with a
positive probability of being selected in the optimal solution.

Figures 5.7a and 5.7b summarize the computation time respectively for the simplex
algorithm and the column generation technique, depending on the same features (the
number of agents and the number of resources per agent) but when an agent can have
2 different types. The appearance of the curves remains similar as in the previous
case of considering only one type per agent. The simplex algorithm computation time
grows exponentially whereas the column generation technique results correspond to a
linear growth associated with a weak slope. As previously, when the instances have a
moderate size, the column generation approach is not really competitive. However, the
advantages show upwith larger instances with which the column generation approach
is significantly better.

We described a scalable method to determine acceptable multilateral transactions.
Such a method remains scalable even when large instances are used. It is also possible
to bound the number of neighbors that can be involved in a multilateral negotiation in
order to ensure the scalability of the approach. Since an efficient method exists, issues
related to its effective use within a negotiation process must be addressed.

5.6.2 Evaluation of multilateral negotiation processes

This section is dedicated to the impact of multilateral transactions on the efficiency of
negotiation processes. The efficiency of negotiations based on social many-to-many
transactions are evaluated by means of a comparison with the global optimal welfare
value. This efficiency is compared to the efficiency of negotiation processes based on
〈1, 0〉 transactions, which are the most efficient transactions with utilitarian societies.
Experiments are based here on systems populated by 50 agents, who negotiate 250
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Figure 5.6: Comparison of the computation time that is required by the simplex algo-
rithm in 5.6a and by the column generation techniques in 5.6b (each agent has only one
type).
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Figure 5.7: Comparison of the computation time required by the simplex algorithm in
5.7a and by the column generation techniques in 5.7b (each agent has two types).
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resources. Similarly to experiments described in Chapter 4, agents negotiate sequen-
tially, initiating the determination of an acceptable multilateral transaction involving
its neighborhood.

Table 5.6 shows the efficiency achieved by different negotiation processes, the first
ones based on 〈1, 0〉 transactions and the second ones based on many-to-many trans-
actions. For instance, when the social graph that is considered can be represented by
a grid, negotiation processes based on social gifts only achieve 86.2% of the optimal
welfare value, with 0.9% of standard deviation, whereas negotiation processes based
on social many-to-many transactions can achieve 94.7% of the optimal welfare value,
with a standard deviation of 0.45%.

Table 5.6: Efficiency (%) ofmultilateral transactions on negotiation processes depending
on the social graph topology

Social graph kind Social δ〈1, 0〉 Social mtm
Full 100 0.0 100 0.0
Grid 86.2 0.9 94.7 0.45

Erdős-Rényi - p = 0.05 83.1 1.36 94.3 0.76
Erdős-Rényi - p = 0.1 91.3 0.70 99.1 0.76
Erdős-Rényi - p = 0.2 95.4 0.38 99.9 0.02
Erdős-Rényi - p = 0.3 97.6 0.21 100.0 0.0
Erdős-Rényi - p = 0.5 98.9 0.12 100.0 0.0
Erdős-Rényi - p = 1.0 100 0.0 100.0 0.0

Small world 91.4 0.78 99.5 0.13

When full social graphs are considered, socially optimal resource allocations can
be achieved in both cases. Since social gifts are sufficient to ensure the achievement
of optimal allocations, and since many-to-many transactions contain gifts, negotiations
based on these transactions lead to optimal solutions.

However, when the considered social graph is restricted, the efficiency of multi-
lateral transactions is larger. When grids are considered, only 86.2% of the optimal
welfare value can be achieved when negotiations are based on social gifts, while 94.7%
can be achieved with multilateral transactions. Multilateral transactions favor a lot
the resource traffic over the population, which limits the impact of the social graph
topology.

5.7 Conclusion

Traditionally, negotiation among agents have been limited to the use of bilateral transac-
tions. However, when restricted social graphs are considered, multilateral transactions
can favor the resource circulation and then help in order to achieve socially more in-
teresting resource allocations. The lack of scalable methods to efficiently determine
acceptable multilateral transactions limits their use in practice. We propose a scalable
method to determine acceptable multilateral transactions. These transactions improve
the efficiency of negotiation processes, especially when restricted social graphs are con-
sidered. They favor the circulation of resources among agents, and hence allow solving
processes to leave many local optima, but their use cannot guarantee the achievement
of socially optimal allocations. Moreover, their use requires the relaxation of some
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assumptions that we made initially. Indeed, agents involved in a multilateral transac-
tions must accept to reveal private information, such as their resource bundle or their
preferences. This relaxation can be considered as a major drawback depending on the
considered application, and consequently it may prevent their use.

Thus, the use of multilateral transactions during agent negotiations leads to socially
more interesting allocations without guarantee to achieve optimal solutions. Even
if they improve the provided solution, especially when the mean connectivity of the
social graph is weak, the use of multilateral transactions requires to give up important
assumptions related to the agents’ autonomy. Dependingon the considered application,
the system designer will need to asses their interest.



Conclusion and Further Works

This chapter presents the conclusion of this thesis, coming back on the main issues.
Our contributions are also presented with the main results we established. Finally,
we describe the limits of this thesis throughout the presentation of interesting further
works.

Context

Resource allocation problems have been studied for a long time, usually by means of
centralized techniques, which are not well-adapted to variety of applications. Applica-
tion characteristics like dynamism, privacy or restricted agent communications cannot
be handled in scalable ways. These features are essential to many applications. In
this thesis, we focus on distributed solving methods based on local agent negotiations.
A solving process starts from an initial allocation that evolves step by step, thanks to
local transactions between agents, leading to a socially optimal allocation. In contrast
to centralized techniques, agent negotiations ensure that the provided solutions can be
achieved in practice, specifying transaction sequences leading to these solutions.

The objective of this thesis is to design a distributed mechanism based on local
transactions leading agent negotiations to socially optimal allocations. In this purpose,
we identify four important parameters that must be considered: the transactions, the
interactions, the acceptability criteria and the social graphs. We identify the simplest
kinds of transactions ensuring the efficiency of the negotiation process. We also propose
a local acceptability criterion, allowing efficient negotiations among agents, even when
restricted communication abilities are considered. We also introduce the social graph
notion, which represents the relationships between agents. In each case, we propose a
negotiation setting ensuring the achievement of socially optimal allocations.

Contributions

We have successively studied four notions of the social welfare theory in order to iden-
tify which agent’s behavior can lead negotiation processes to socially optimal resource
allocations. Generally, the individual rationality does not achieve socially optimal re-
source allocations. Indeed, this acceptability criterion is too restrictive, and a new one
is proposed, which is based on the evolution of the social welfare value. It allows
the achievement of socially interesting allocations. The main results and the efficient
negotiation settings that we propose, are summarized in Table 5.8. Each column of this
table corresponds to a specific welfare notion.

When the utilitarian problems are considered, social gifts are sufficient to guaran-
tee the achievement of optimal solutions on complete social graphs (Nongaillard et al,
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2008b,a). The number of performed transactions and the number of attempted trans-
actions are both polynomial. Agents’ behaviors can be frivolous and flexible in order
to favor the resource circulation. However, when the social graph is restricted, the
achievement of optimal solutions cannot be guaranteed any more. Nevertheless, the
utilitarian notion is flexible enough to allow a minimal resource traffic, ensuring the
achievement of socially interesting allocations. When social graphs are restricted, the
most efficient negotiation policy is still based on social gifts (Nongaillard et al, 2009b).

When the egalitarian welfare is considered, it is not possible to guarantee the
achievement of optimal solutions using only bilateral transactions, even on complete
social graphs (Nongaillard and Mathieu, 2009b,a). However, socially close allocations
can be achieved using two transactions. Both social gifts and social swaps are required
to ensure efficient egalitarian negotiations. Gifts allow to change the initial resource
distribution, and swaps allow improvements on the egalitarian welfare value, which is
not possible with gifts. Theoretically, large bilateral transactions are required since they
may lead to egalitarian improvements. However their cost does not justify the slight
improvement they bring. Egalitarian negotiations are also sensitive to bottlenecks in
the social graph topology. A mean connectivity of agents too weak (with only one
neighbor for instance) restrict a lot the resource circulation and hence the efficiency
of egalitarian negotiations. These negotiations are more time consuming than in the
utilitarian case, but remain scalable even with large instances.

The Nashwelfare is a notion for which it is only possible to roughly estimate the op-
timal welfare value using centralized heuristics (Nongaillard et al, 2009a). Similarly to
the egalitarian case, twokinds of transactions are required to negotiate efficiently: Social
gifts and social swaps. However, bilateral transactions cannot ensure the achievement
of optimal allocations, and Nash negotiation processes may then end on local optima.
Nevertheless, such negotiation processes achieve socially closer allocations than the
heuristics that we designed. Frivolous and flexible agent behaviors favor the resource
traffic and then help in the achievement of interesting allocations. The Nash welfare
is more flexible than the egalitarian notion, and is consequently less sensitive to social
graph restrictions, even if a very weak mean connectivity handicaps negotiations.

Finally, elitist societies have been studied. This welfare notion is very specific since
it only considers the richest agent, neglecting all other agents. The rational acceptability
criterionhas nomeaninghere, and themost efficient transaction corresponds to an agent
who offers its whole resource bundle. Indeed, any initiator has to give all its resource
bundle to its partner if this one becomes richer than the initiatorwouldbecome receiving
the whole resource bundle of its partner. In other words, maximal clusters are the most
suitable transactions to efficiently negotiate within elitist societies. When social graphs
are complete, it is possible to guarantee the achievement of optimal solutions. However,
it is no longer possible when restricted communication possibilities are considered.

In these four cases, we are now able to solve problems of reasonable size in less
than one minute. A negotiation process with an utilitarian society of 500 agents where
2500 resources are available ends in 45 seconds, whereas it ends in 120 seconds in
an egalitarian society of similar size. Such a negotiation process ends in 60 seconds
when the Nash Welfare is considered and only 1.6 seconds is required to end an elitist
negotiation process among 500 agents and 2500 resources. Negotiations have also been
implemented in a parallel framework to speed up computations.

Multilateral transactions have been presentedwith their advantages and drawbacks
(Asselin et al, 2006). Such transactions favor the resource circulation and hence help
in the achievement of more interesting allocations. However, when the social graph
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is restricted, multilateral transactions cannot guarantee the achievement of socially
optimal allocations. They are expensive and time consuming to determine, and some
assumptions must be relaxed: no information privacy can be considered. All agents
in the initiator’s neighborhood must report their private information in order for it to
determine whether or not an acceptable transaction exists. A scalable method based on
an optimization technique has been described, and the efficiency of these transactions
has been compared to bilateral ones. Especially when the mean connectivity is weak,
multilateral transactions may improve the provided allocations up to 10%, but does
this improvement justifies the sacrifice of the agents’ autonomy? Only application
designers can find an answer to this question. Indeed, depending on the application,
the autonomy of the agent cannot be relaxed, and then multilateral transactions cannot
be efficiently used.

Further works

In the future, we propose to study different preference representations. In this thesis,
we studied the efficiency of agents’ negotiations according to several welfare notions.
However,wealways assumed that agents express their preferences bymeansof additive
utility functions. Such a representation is quite restrictive since agents cannot express
dependencies among resources. For instance, agents may associate a larger utility
value with a set of resources than the simple summation of the utility associated with
each of them. Sometimes, resources from a set may have an interest if the agent owns
all of them, while individually they have no real value. Other restrictions cannot be
expressed, like exclusions: agents may be satisfied or own either a resource or another
one, but not if they own both of them. Agents’ preferences can be represented bymeans
of weighted propositional formula (WPF), which is a fully expressive representation.
Any synergy can be expressed using logic formulas. Each resource is represented
using a propositional variable which is true if the agent owns the resource, and false
otherwise. Numerical weights represent the relative importance of this formula.

We also propose to study different models of generation for agents’ preferences.
In this thesis, no relationship has been considered between neighbors and their pref-
erences. Indeed, instances have been randomly generated. However, in applications
related to social webs, neighbors can be considered as “friends” and then have a higher
probability to get similar preferences. Then, topologies of social networks are related
to agents’ preferences. Such an assumption has an important influence on the resource
circulation and on the optimal solution. The resource circulationwould be easier among
agents who express close preferences, which may facilitate the achievement of socially
optimal allocations.

Investigations on different functions for the evaluation of the individual welfare

seem of interest. The welfare of agents depends only on the resources in their bundle.
Such evaluation functions are called “free of externality”. The agent welfare is indepen-
dent of the welfare of others. However, in social networks, the notion of group should
be considered. Agents belong to different groups or communities. The individual
welfare of agents partially depends on the welfare of their group. Thus, agents may
be satisfied if any agent of their group owns the resources they wished. Interesting
simulations could be performed considering externalities among agents.

Dynamic environments should also be studied. We always assume that negotia-
tions take place in static environments. Indeed, neither the agents’ preferences, nor the
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social graph topology can vary. However, in practice, the utility value associated with
a resource may decrease in time. Indeed, an agent may lose interest in some resources
while it may express an increasing interest for other resources. As well, the topology
of the social graph cannot vary in our approach. However, in dynamic systems, new
agents constantly enter with their resources while other ones leave. Arrivals of new
agents change the network topology, affecting the resource traffic. With new agents,
resources blocked somewhere in the system may circulate again, leading the negoti-
ation process to socially more interesting allocations. The dynamic facet of resource
allocation problems seems to be of interest to us.
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Appendix A

Problèmes d’allocation de ressources

This chapter is a french translation of the first chapter of my PhD thesis, due to administrative
requirements.

L’allocationde ressources est un sujet à la frontière entre deuxdomaines : l’économie
et l’informatique. Même si ces deux communautés étudient des problèmes simi-
laires, des différences fondamentales apparaissent entre les objectifs qu’elles consid-
èrent. Alors que les économistes étudient les qualités souhaitables des allocations de
ressources, les informaticiens se focalisent davantage sur les mécanismes nécessaires à
l’identification de telles allocations, en utilisant notamment la théorie du choix social
ainsi quedifférentes notionsdebien-être. Les étudesmenéespar ces deux communautés
sont donc complémentaires.

Récemment, les problèmesd’allocationde ressources ont suscité un intérêt croissant.
En effet, un grand nombre d’applications peuvent être modélisées par un problème
d’allocation de ressources. Jusqu’à maintenant, la majorité des études portent sur
les différents aspects des enchères combinatoires, où l’efficacité globale du système
est généralement maximisée. La représentation des préférences et leurs propriétés
mathématiques sont étudiées dans le but de réduire la complexité du problème et
de concevoir des techniques de résolution efficaces. Les problèmes d’allocation de
ressources sont souvent perçus comme des problèmes d’optimisation qui sont résolus
au moyen de techniques centralisées la plupart du temps. Les approches distribuées
basées sur des systèmes multi-agents ont également été étudiées. Dans ce cas, les
solutions sont obtenues par des négociations locales entre les agents. Quelle que soit la
technique de résolution utilisée, le but est souvent demaximiser une notion de bien-être
donnée.

Ce chapitre tout d’abord décrit les problèmes d’allocations de ressources et leurs
principales caractéristiques dans la section A.1. La nature des ressources et les dif-
férentes représentations des préférences sont également décrites. L’évaluation des
allocations de ressources est présentée du point de vue individuel (d’un agent) et du
point de vue collectif (de la société). Les deux sections suivantes sont consacrées à la
description et à la comparaison des types des différentes méthodes de résolution. La
section A.2 décrit les principes des techniques centralisées. Les familles d’applications
qui peuvent être résolues efficacement via ces techniques centralisées sont présentées.
Enfin, la section A.3 est dédiée aux méthodes distribuées et aux caractéristiques qui
rendent nécessaire l’utilisation de telles méthodes.
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A.1 Description du problème

Cette section est dédiée à la description des aspects des problèmes d’allocation de
ressources. Plusieurs questions essentielles doivent être abordées pour définir un prob-
lème d’allocation de ressources : “Quelles sont les propriétés des ressources ? Comment
un agent peut-il exprimer ses préférences sur un ensemble de ressources ? Comment
est évalué le bien-être individuel d’un agent ? Comment peut-on évaluer une allocation
de ressources ?” Chacune de ces questions correspond à un paramètre important dans
la spécification d’un problème d’allocation de ressources. La moindre modification
d’un de ces paramètres peut changer radicalement les propriétés du problème ou sa
complexité, et donc la manière de le résoudre efficacement.

Nous définissons un problème d’allocation de ressources par un ensemble de
ressources et un ensemble d’entités. Les ressources peuvent correspondre à tout ce
qui peut être possédé par une entité, aussi bien des ressources concrètes comme des
livres ou n’importe quels biens physiques, que des ressources abstraites comme du
temps CPU ou de la bande passante sur un réseau. Un problème d’allocation de
ressources vise à identifier une distribution des ressources maximisant, minimisant ou
satisfaisant un objectif donné. Il peut être formellement défini comme suit :

Définition A.1 (Problème d’allocation de ressources) Un problème d’allocation de res-
sources est un triplet 〈R,P,U〉, où R est l’ensemble des m ressources disponibles, P est
l’ensemble des n entités, et U est un vecteur de préférences des entités sur l’ensemble des
ressources. Le but est l’identification d’une distribution de R sur P satisfaisant un objectif,
selon les préférencesU des entités.

La figure A.1 représente un problème d’allocation de ressources. Deux parties
peuvent être distinguées : les données initiales sur la gauche et le résultat sur la
droite. Cet exemple est basé sur un ensemble de 3 entités et 9 ressources. D’après
les préférences de chacun des agents U = (u0,u1,u2), la meilleure solution consiste à
allouer un ensemble spécifique de ressources à chacun des agents comme décrit sur la
partie droite de la figure.

Entity Set P 0

1

2

�
♣

♠

�

�

!

�

�

�

Resource Set R 0

pref u0

♠

1

pref u1

♣� �

2

pref u2

� � �

� !

Resource allocation

Figure A.1: Problème d’allocation de ressources

Selon la méthode utilisée lors de la résolution, une terminologie spécifique peut être
utilisée. En effet, dans un contexte distribué, l’ensemble d’entités est communément as-
similé à une population d’agents alors que cette terminologie n’est pas appropriée dans
un contexte centralisé (d’après la définition standard d’un agent (Ferber, 1999; Wool-
ridge, 2001)). En effet, les entités ne sont ni distribuées, ni autonomes et ne prennent
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aucune décision. Tout est décidé par l’entité centrale qui est également omnisciente la
plupart du temps. Les entités n’ont ni perception ni voisinage, qui sont des notions
importantes dans la définition d’un agent. Conscient de la différence entre les entités
et les agents, un abus de terminologie sera toléré dans cette thèse et le terme “agent”
sera employé dans tous les cas.

Chacun des agents de la population possède un ensemble de ressources, que l’on
appellera son panier. Une allocation de ressources décrit la manière dont sont dis-
tribuées les ressources entre les agents. La définition d’une allocation peut alors être
basée sur le panier de ressources de chacun des agents.

Définition A.2 (Allocation de ressources) Soient R un ensemble de m ressources et P une
population de n agents. Une allocation de ressources A est une liste ordonnée de n paniers de
ressources Ri ⊆ R, décrivant l’ensemble des ressources détenu par chaque agent :

A = [R1, . . . ,Rn], 1, . . . ,n ∈ P, A ∈ A.

oùA est l’ensemble de toutes les allocations possibles. Le i-ème élément de l’allocation correspond
au panier de ressources détenu par l’agent i :

A[i] = Ri, i ∈ P, A ∈ A.

Exemple A.1 Considérons l’allocation de ressources décrites dans la figure A.1 que nous
noterons A ∈ A. Cette allocation peut être explicitée de la manière suivante :

A =
[

R0,R1,R2

]

=
[

{♠}{♣,�,�}{�,!,�,�,�}
]

.

D’après cette allocation, l’agent 0 possède une unique ressource dans son panier R0 = {♠}.
L’agent 1 détient 3 ressources R1 = {♣,�,�} alors que l’agent 2 possède quant à lui les 5
ressources restantes R2 = {�,!,�,�,�}.

Les différents caractéristiques des problèmes d’allocations de ressources vont être
successivement présentées dans le reste de ce chapitre. D’abord, les différentes familles
de ressources sont décrites dans la section A.1.1 ainsi que leurs impacts sur la représen-
tation du problème. Ensuite, la section A.1.2 porte sur les représentations possibles des
préférences des agents. L’évaluation du bien-être individuel d’un agent est également
discutée. Finalement, l’évaluation collective des allocations de ressources est présentée
dans la section A.1.3. Les notions de la théorie du choix social sont décrites avec leurs
impacts sur la distribution des ressources.

A.1.1 Caractéristiques des ressources

Les ressources sont les éléments centraux des problèmes d’allocations. Leurs propriétés
influent beaucoup sur le modèle utilisé et donc sur la résolution du problème. Les plus
importantes caractéristiques sont décrites dans cette section (Chevaleyre et al, 2006a).

Continues ou discrètes

Selon leurs propriétés physiques, les ressources peuvent être soit continues comme l’eau
ou l’énergie, soit discrètes comme des livres. Cette propriété influence la manière dont
les ressources seront échangées par les agents.
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Les ressources continues peuvent être divisées autant que nécessaire. Les ressources
disponibles dans le système correspondent alors à des quantités. Par exemple, un
gouvernement, visant à distribuer également les ressources en eau entre les différentes
villes selon leurs besoins, peut modéliser le problème par des ressources continues
(Cormas, 2001). En effet, la seule ressource physique du problème est l’eau, et l’on
cherche à répartir des quantités d’eau entre les agents.

Les mécanismes d’allocation de ressources discrètes peuvent également être utilisés
si les ressources sont continues, même si ils ne seront pas aussi efficaces qu’un mécan-
isme conçu spécifiquement. Les ressources discrètes sont indivisibles et atomiques en
règles générales. Les ressources continues peuvent être discrétisées, c’est-à-dire trans-
formées en ressources discrètes. La quantité totale peut être divisée en plusieurs parties
qui sont alors considérées comme discrètes et indivisibles. En économie, les problèmes
d’allocation de ressources sont principalement basés sur des ressources continues alors
qu’en informatique, ils sont basés sur des ressources discrètes. Seules les ressources
discrètes sont considérées dans cette thèse.

Divisibles ou non

Les ressources peuvent être divisibles ou non. Au contraire de la propriété précédente,
celle-ci dépend du mécanisme d’échange plutôt que des ressources elles-mêmes. Une
ressource peut être divisée un certain nombre de fois au delà desquelles elle est con-
sidérée comme indivisible. Dans cette thèse, seules les ressources indivisibles sont
considérées.

Partageables ou non

Les ressources peuvent également être partageables. Cette propriété influe particulière-
ment la manière dont est déterminée le bien-être individuel d’un agent. Lorsqu’une
ressource est partageable, un agent ne doit pas nécessairement la posséder pour en
profiter. Par exemple, si les ressources sont des compétences, les agents ne doivent
pas forcément avoir une compétence mais connaître d’autres agents qui la possède
pour pouvoir leur demander d’effectuer des tâches particulières au moment opportun.
Une telle situation survient dans les environnements où les services sont distribués
(Chakraborty et al, 2006). Un autre exemple représentatif est l’usage d’une ressource
rare, comme les images produites par un satellite (Lemaître et al, 1999). Une seule
ressource peut être allouée à plusieurs agents à la fois. Cette thèse ne considère que les
ressources ne sont pas partageables.

Statiques ou dynamiques

Les ressources sont parfois utilisables : elles peuvent être consommées par leur pro-
priétaire lors de la réalisation d’une tâche. Prenons par exemple le cas de la nourriture,
qui sont des ressources comestibles. Un agent peut manger une partie de son panier
de ressources afin de rester en vie. Certaines ressources peuvent alors disparaître du
système. Les ressources peuvent également être périssables et voir leur valeur ou leur
quantité diminuer au cours du temps. Dans de tels cas, les ressources sont dynamiques.
Au contraire, les ressources sont considérées comme statiques si leurs propriétés ne vari-
ent pas au cours du temps. Comme dans la majorité des études réalisées, seules les
ressources statiques sont prises en compte dans cette thèse.
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Mono-items ou multi-items

Dans un environnement multi-items, plusieurs ressources peuvent être identiques.
L’une d’elles ne peut être distinguée par rapport aux autres. Elles sont donc référencées
par un seul etmêmenom. Considéronspar exemple une boîte àœufs : tous lesœufs sont
identiques et ne peuvent être distingués. Dans un environnement mono-items, toutes
les ressources sont distinguables. Un numéro d’identification unique est attribuée
à toutes les ressources. Les environnements multi-items peuvent être transformés en
environnementsmono-items en attribuant un numéro à chaque ressource. Par exemple,
tous les œufs d’une même boîte peuvent être identifiés spécifiquement. La principale
différence entre ces environnements réside dans la représentation des ressources. Seuls
les environnements mono-items sont considérés dans cette thèse.

Ressources ou tâches

Les problèmes d’allocation de ressources et les problèmes d’allocations de tâches peu-
vent être distingués,mais les tâches sont très souvent considérées commedes ressources
associées à une valeur négative. Alors que les agents bénéficient d’une ressource stan-
dard, les tâches peuvent être perçues comme des devoirs ou des contraintes par leur
détenteur. Une spécificité importante des tâches est qu’elles sont très souvent dépen-
dantes d’autres tâches : les unes sont des pré-conditions à la réalisation des autres. Par
exemple, dans une usine, des produits peuvent nécessiter l’accomplissement d’autres
tâches afin de les transformer à nouveau. Cette thèse ne se concentre que sur l’allocation
de ressources. Même si des valeurs négatives peuvent être associées aux ressources,
aucune relation de dépendance n’est considérée.

Propriétés et complexité

Dans cette thèse, les ressources sont supposées discrètes, indivisibles et non partage-
ables. Toutes les ressources sont uniques et les agents ne peuvent pas les modifier.
Puisque les propriétés des ressources considérées sont bien définies, les propriétés des
allocations de ressources peuvent être spécifiées :

Propriété A.1 (Propriétés des allocations) Puisque l’environnement est mono-items et que
les ressources sont indivisibles, discrètes et non partageables, toutes les ressources doivent être
allouées et chaque ressource appartient à un unique agent. Plus formellement,

⋂

i∈P

A[i] =
⋂

i∈P

Ri = ∅, A ∈ A;

⋃

i∈P

A[i] =
⋃

i∈P

Ri = R, A ∈ A.

Les propriétés des ressources affectent plus ou moins la complexité du problème
et donc l’identification d’une solution optimale (Chevaleyre et al, 2006a; Estivie, 2006).
La taille de l’espace des solutions possibles peut être déduite d’après la nature des
ressources considérées.

Propriété A.2 (Taille de l’espace des solutions) Un problème d’allocation, basé sur une
populationP de n agents où m ressources d’un ensemble R sont disponibles, possède un nombre
exponentiel de solutions possibles :

|A| = nm.
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L’explication est relativement simple, puisque cela corresponds au nombre de combi-
naisons possibles. Chaque ressource de l’ensemble R peut potentiellement être allouée
à chacun des agents de la population P, donc n possibilités. Les m ressources de R
mènent à un espace de taille exponentielle :

|A| =
∏

r∈R

n = nm.

A.1.2 Représentation des préférences et bien-être individuel

La représentation des préférences d’un agent est un problème essentiel dans les prob-
lèmes d’allocation de ressources. Les préférences permettent à un agent d’exprimer la
satisfaction relative ou absolue liée à différentes alternatives.

Cinq caractéristiques importantes doivent être prises en compte lorsque l’on parle
des langages de représentation des préférences (Chevaleyre et al, 2006a). Ces carac-
téristiques permettent la comparaison de différents langages en prenant en compte
différents critères.

• Élicitation : Ce critère évalue la difficulté de conception d’algorithmes pour que
les agents puissent exprimer leurs préférences dans un langage donné;

• Plausibilité : Ce critère décrit la facilité qu’a un humain à exprimer ses préférences
dans un langage donné;

• Expressivité : Ce critère évalue les différentes structures de préférences qu’il est
possible d’exprimer dans un langage donné;

• Complexité : Ce critère évalue la complexité computationnelle liée à la comparaison
de deux alternatives ou à la détermination d’une solution optimale d’un langage
donné;

• Concision : Ce critère évalue la taille requise par différents langages pour exprimer
une même chose.

Ces critères sont utilisés pour caractériser les différentes structures de préférences
décrites dans cette section. Les structures de préférences les plus utilisées sont présen-
tées. L’évaluation du bien-être individuel et l’utilisation des paiements compensatoires
sont également discutées.

Familles des structures de préférences

La représentation des préférences d’un agent est un sujet étudié depuis longtemps
(Doyle, 2004; Fishburn, 1970; Mas-Colell et al, 1995). Quatre familles de structures
peuvent être distinguées :

• Une structure cardinale est souvent représentée par une fonction d’utilité, notée u,
qui associe une valeur d’un ensemble Val à toutes les alternatives d’un ensemble
X :

u : X→ Val.

Si Val est une ensemble de valeurs numériques, la structure est dite quantitative,
alors que si Val est un ensemble ordonné de valeurs qualitatives, comme des
expressions linguistiques (bien, excellent, . . . ), la structure est dite qualitative;
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• Une structure ordinale est une relation binaire sur les alternatives, notée �, qui est
réflexive et transitive;

• Une structure binaire est simplement la partition de l’ensemble des alternatives X
en deux sous-ensembles classant les “bonnes” et les “mauvaises” alternatives;

• Une structure floue est une relation floue surX qui permet l’expression d’un degré
de préférences :

µ : X2 → [0, 1].

Les structures binaires et floues sont peu courantes dans les problèmes d’allocation
de ressources. En effet, les structures binaires sont très restrictives : une fois que les
“bonnes” alternatives sont regroupées, rien n’indique laquelle choisir. Les structures
floues permettent des comparaisons par paires. Cependant, elles ne se révèlent pas
pratiques si un très grand nombre d’alternatives doit être comparé.

Les structures de préférences ordinales peuvent seulement exprimer la satisfaction
d’un agent en face de toutes les alternatives. Les degrés de préférences ne peuvent être
exprimés et il n’est pas possible de déterminer quel agent est le plus satisfait par une
allocation. Ces structures sont peu utilisées en informatique (Bouveret et al, 2009) en
raison du peu d’informations qu’elles révèlent.

Les structures cardinales qualitatives peuvent exprimer des intensitésmais souffrent
des mêmes défauts que les structures ordinales. Les satisfactions de deux agents
possédant chacun un panier de ressources différent ne peuvent être comparées. Plus
formellement, il n’y aucune entre ui(r) et u j(r′) avec i, j ∈ P et r, r′ ∈ R, qui ne sont donc
pas comparables.

La représentation des préférences la plus utilisée en informatique est la structure
cardinale quantitative. Dans cette thèse, des préférences numériques sont utilisées. La
fonction d’utilité peut ainsi être définie de la manière suivante :

u : 2R → R.

D’après cette définition, 2R−1valeursdoivent être spécifiées. Une énumération explicite
serait exponentiellement coûteuse, et irréalisable la plupart du temps. Pour éviter cela,
une structure restreinte de préférences doit être utilisée.

En économie, les préférences sont représentées par des structures ordinales de
nos jours (Mas-Colell et al, 1995). Puisqu’il n’y a pas d’échelle de valeurs com-
parables entre les agents, il n’est pas possible de comparer leur bien-être respec-
tif. Mais le contexte dans lequel ces études se placent est généralement différent du
notre. En effet, les économistes ne considèrent que des acteurs humains dans le cadre
d’applications purement économiques. En revanche, en informatique, dans un grand
nombre d’applications, les agents ne sont pas nécessairement humains. De plus, la
nature des différentes ressources est souvent suffisamment proche pour que l’on puisse
comparer le bien-être des agents. Dans un tel contexte, les structures de préférences
cardinales correspondent à une hypothèse plausible.

Préférences quantitatives

Les fonctions d’utilité sont définies sur les paniers de ressources, et nous supposons
que le bien-être d’un agent ne dépend que des ressources qu’il possède. Le bien-être
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d’un agent est alors indépendant du bien-être des autres agents. De telles préférences
sont dites sans externalités. Plus formellement :

ui(A) = ui(A[i]) = ui(Ri), i ∈ P, A ∈ A.

Plusieurs langages peuvent être utilisés pour représenter les fonctions d’utilités.
Les plus importants sont présentés dans la suite (Chevaleyre et al, 2006a; Estivie, 2006).
Pour illustrer ces différentes représentations, considérons un ensemble de ressources
disponibles R = {r1, r2, . . . , rm} et ρ ⊆ R un sous-ensemble de ces ressources.

La forme explicite est la représentation la plus simple d’une fonction d’utilité. Elle
est définie comme un ensemble de paires 〈ρ,ui(ρ)〉. Cette représentation est totalement
expressive : n’importe quelle fonction d’utilité peut être décrite. La longueur de la
description est son inconvénient majeur, puisqu’elle est exponentielle en fonction du
nombre de ressources m.

Exemple A.2 Considérons un ensemble de ressources R = {r1, r2, r3}. Sous forme explicite,
la fonction d’utilité d’un agent i ∈ P doit décrire l’utilité associée à tous les sous-ensembles de
ressources :

ui({r1}) = val1
ui({r2}) = val2
ui({r3}) = val3

ui({r1, r2}) = val4
ui({r1, r3}) = val5
ui({r2, r3}) = val6

ui({r1, r2, r3}) = val7

Cette représentation est totalement expressivemais n’est pas concise du tout puisqu’elle
requiert un nombre exponentiel d’expressions. La complexité de calcul est également
très élevée : déterminer si une solution est optimale nécessite une considération explicite
de toutes les allocations. Ces inconvénients majeurs font que cette représentation n’est
pas utilisée en pratique.

Avec une forme additive, l’utilité associée à un sous-ensemble donné de ressources
ρ est déterminée grâce à l’utilité associée à chacune des ressources de ce sous-ensemble
ρ (Wellman andDoyle, 1992). L’utilité associée à unpanier de ressources correspond à la
somme des utilités associées à chacune des ressources de ce panier. Plus formellement,
une fonction d’utilité est additive si et seulement si, pour toutes les ressources r ∈ ρ, il
existe des coefficients αri tels que :

ui(ρ) =
∑

r∈ρ

αri , i ∈ P, ρ ⊆ R.

Exemple A.3 Considérons un ensemble de ressources R = {r1, r2, r3}. Sous une représentation
additive, la fonction d’utilité d’un agent i ∈ P requiert seulement les valeurs d’utilité associées
à chacune des ressources :

ui({r1}) = val1
ui({r2}) = val2
ui({r3}) = val3
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L’utilité associée avec un panier de ressources peut être calculée facilement à partir de ces valeurs.
Par exemple :

ui({r1, r2}) = ui({r1}) + ui({r2}) = val1 + val2.

une forme additive n’est pas totalement expressive puisqu’aucune synergie entre les
ressourcesn’est exprimable. Cependant, cette formeest très concise et trèspeu coûteuse.
La forme additive est celle qui est utilisée pour représenter les préférences des agents
dans les simulations de cette thèse.

La forme k-additive est inspirée de la théorie des mesures floues (Grabisch, 1997;
Miranda et al, 2005). C’est une généralisation de la représentation additive. Une
fonction d’utilité est k-additive si et seulement si il existe un coefficient αti pour tous les
sous-ensembles de ressources t de taille au plus k.

ui(ρ) =
∑

t⊆ρ

αti , i ∈ P, ρ ⊆ R.

Le coefficientαti représente la valeur de synergie queprocure le fait de posséder dans son
panier toutes les ressources de l’ensemble t. Si un agent possède toutes les ressources
décrites par un terme t, son utilité augmente de αti .

Exemple A.4 Considérons un ensemble de ressources R = {r1, r2, r3}. Une fonction d’utilité
peut être écrite sous forme polynomiale, où les variables r j (les ressources) sont des variables
Booléennes. Par exemple, une fonction 2-additive, qui permet l’expression de synergie entre au
plus 2 ressources, avec deux coefficients non nul α{r1} = val1 (où ∀ρ ⊆ R, α{ρ} est le coefficient
associé avec le sous-ensemble de ressources ρ) et α{r2, r3} = val2 peut être écrite comme suit :

ui = val1r1 + val2r2r3

La représentation de cette fonction sous la forme explicite nécessiterait d’expliciter 5 termes :

ui({r1}) = val1
ui({r1, r2}) = val1
ui({r1, r3}) = val1
ui({r2, r3}) = val2

ui({r1, r2, r3}) = val1 + val2

La forme k-additive est totalement expressive, mais seulement si k est suffisamment
grand. Une telle hypothèse n’est pas vraie en pratique car k est souvent restreint à de
petites valeurs. Cette forme est cependant plus concise que la forme explicite.

La forme booléenne pondérée est basée sur l’utilisation de la Logique(Bonzon
et al, 2009; Chevaleyre et al, 2006b; Coste-Marquis et al, 2004; Lang, 2004; Uckelman
et al, 2009). Tous les types de synergie peuvent être exprimés facilement par des
formules logiques. Chaque ressource r est représentée par une variable propositionnelle
qui est vraie si l’agent possède r et fausse dans le cas contraire. Chaque formule
propositionnellepeut être considérée commeunbut, et l’ensemble completdes formules
est représenté par une base de butsGB. Chaque agent exprime donc ses préférences par
une base de buts. L’importance de chacun des buts est décrite par un poids numérique.
Intuitivement, le degré de satisfaction associé à une allocation de ressources A est
la somme des poids des buts qui sont satisfaits par cette allocation A. Cependant,
différents modes d’agrégation peuvent être utilisés au lieu de la somme.
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Exemple A.5 Considérons un ensemble de 4 ressources R = {r1, r2, r3, r4}. La base de buts
peut être exprimée comme suit :

GB = {(val1, r1 ∧ r2), (val2,¬r1 ∧ r3}), (val3, r3 → r4)}.

D’après les ressources détenues par l’agent, son bien-être peut être évalué :

uGB([r1, r2, r3, r4]) = val1 + val3
uGB([¬r1, r2, r3,¬r4]) = val2

Cette représentation est totalement expressive puisque toute forme de synergie peut
être exprimée grâce aux formules propositionnelles. Elle est néanmoins moins concise
que la forme additive et plus coûteuse d’un point de vue computationel.

La forme X-OR est le langage d’enchère le plus utilisé. Il est devenu un standard
dans l’expression des préférences lors d’enchères combinatoires (Nisan, 2000; Sand-
holm, 2002). Les préférences des agents sont un ensemble de paires (ρ, αρ) où αρ

est la valeur associée au sous-ensemble de ressources ρ. Au contraire de la forme k-
additive où l’on considère la somme des termes actifs, l’évaluation du sous-ensemble
de ressources correspond simplement à la valeur offerte la plus élevée pour un terme
actif.

ui(ρ) = max
t⊆ρ
αti , i ∈ P, ρ ⊆ R.

Exemple A.6 Considérons un ensemble de deux ressourcesR = {r1, r2}. En forme polynomiale
où les variables r j (les ressources) sont Booléennes, une fonction d’utilité X-OR peut être écrite
comme suit :

ui = val1r1 + val2r2 + val3r1r2

Supposons maintenant que val1 < val3 < val2. Alors, la représentation de cette fonction
d’utilité sous forme explicite nécessité 3 termes :

ui({r1}) = val1
ui({r2}) = val2

ui({r1, r2}) = val2

Fonction d’évaluation

La représentation des préférences d’un agent est maintenant clairement définie. Nous
pouvons donc décrire la manière dont est évalué le bien-être d’un agent.

Les agents évaluent leur bien-être individuel grâce à une fonction spécifique, la
fonction d’évaluation. Cette fonction peut ne pas être seulement basée sur la fonction
d’utilité, et peut prendre en compte différents critères. Par exemple, dans le cas des
problèmes d’allocation de ressources où l’utilisation de l’argent est autorisé, le bien-être
individuel des agents peut être sur leur panier de ressources et sur un porte-monnaie.

Dans la plupart des études, l’usage d’argent est autorisé lors des transactions entre
agents sous forme de paiements compensatoires (Sandholm, 1998). Lorsque les agents
échangent des ressources, ils peuvent recevoir des ressources qu’ils associent à une
valeur d’utilité moindre que celle qu’ils associaient aux ressources qu’ils ont donné.
En général, les agents sont supposés égoïstes : ils n’acceptent que les transactions



A.1. Description du problème 165

augmentant leur bien-être individuel. L’égoïsme des agents peut empêcher certaines
transactions si l’un des participants n’est pas satisfait. Si l’un des agents devine une
baisse de son bien-être individuel si il accepte une transaction, il la refusera. Cette
diminution de bien-être peut être compensée par des paiements compensatoires. Ainsi,
une transaction entraînant une diminution de bien-être pour un des agents peut tout
de même être acceptée si un paiement compensatoire vient la compléter.

L’utilisation de l’argent dans un tel système est tout de même contrainte. En effet,
la quantité d’argent présente dans le système ne varie pas. Autrement dit, lorsque les
agents effectuent une transaction complétée d’un paiement compensatoire, le montant
reçu par un des agents équivaut au montant donné par un autre agent. Une telle
contrainte assure que l’argent présent dans le système est constant. Cependant, le
budget n’est pas borné : les agents sont toujours supposés aussi riches que nécessaire
pour effectuer les transactions qui leur semblent intéressantes.

Exemple A.7 Considérons une transaction δ impliquant 2 agents i, j ∈ P, qui fait évoluer
l’allocation initiale A en une autre allocation A′ (A,A′ ∈ A). Durant cette transaction, l’agent
i donne l’une des ressources de son panier, r ∈ Ri, à l’autre agent j.

Les deux agents sont ici supposés égoïstes. Ils n’accepteront donc que des transactions qui
feront augmenter leur bien-être individuel. L’acceptation d’une transaction est basée sur le
bien-être qu’ils obtiennent selon la nouvelle allocation ainsi que sur les éventuels paiements
compensatoires qu’ils font ou reçoivent. Plus formellement, la condition d’acceptabilité d’une
transaction peut s’écrire de la manière suivante :

ui(A′) + p(i) > ui(A)

u j(A′) + p( j) > u j(A).

où p(i) et p( j) sont respectivement les paiements compensatoires fait durant la transaction δ
par les agents i et j. La valeur associée à un paiement est positive si l’agent reçoit de l’argent
alors qu’elle négative si l’agent doit payer. Le fait que la quantité d’argent dans le système soit
constante peut se traduire par l’expression suivante :

p(i) = −p( j).

La quantité d’argent donnée par un agent est équivalente à celle perçue par l’autre agent. La
transaction est ici un don d’une unique ressource r, la condition sous laquelle la transaction sera
acceptable peut s’écrire :















ui(A) − ui(r) + p(i) > ui(A)

u j(A) + u j(r) + p( j) > u j(A)















p(i) > ui(r)

u j(r) > −p( j)

Les deux expressions peuvent se combiner en une seule :

u j(r) > p(i) > ui(r).

Si la quantité d’argent détenue par chaque agent n’est pas bornée, un paiement compensatoire
satisfaisant cette condition existera toujours, quelle que soit la valeur d’utilité associée avec la
ressource r.
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Ainsi, indépendemment des conditions qui doivent être satisfaites, n’importe quelle
transaction peut être appliquée. En effet, toute condition peut être artificiellement
satisfaite par des paiements compensatoires non bornés. Puisque cette hypothèse n’est
pas plausible d’un point de vue applicatif, les paiements compensatoires ne seront pas
autorisés, et l’évaluation du bien-être individuel d’un agent est restreint à sa fonction
d’utilité.

Définition A.3 (Fonction d’utilité) Un agent évalue son bien-être individuel grâce à sa
fonction d’utilité additive ui : 2R → R. Si un agent i ∈ P possède un ensemble de ressources
ρ ⊆ R, son utilité peut être évaluée comme suit :

ui(ρ) =
∑

r∈ρ

ui(r), i ∈ P, ρ ⊆ R.

Exemple A.8 Illustrons l’évaluation du bien-être individuel des agents par un exemple basé
sur une population de 3 agents, P = {1, 2, 3} et un ensemble de 3 ressources disponibles
R = {r1, r2, r3}. Les préférences des agents sont décrites dans le tableau A.1. Par exemple,
l’agent 1 associe à la ressource r2 l’utilité suivante : u1(r2) = 7.

Table A.1: Exemple de préférences d’agents

Population P
Ressources R

r1 r2 r3 r4 r5 r6
1 10 7 10 9 2 1
2 6 10 3 4 8 6
3 1 2 1 2 1 3

Si l’allocation initiale est A = [{r4}{r1, r2, r6}{r3, r5}], l’utilité de tous les agents peut être
calculée de la manière suivante :

u1(R1) = u1({r4}) = u1(r4) = 9

u2(R2) = u2({r1, r2, r6}) = u2(r1) + u1(r2) + u2(r6) = 6 + 10 + 6 = 22

u3(R3) = u3({r3, r5}) = u3(r3) + u3(r5) = 1 + 1 = 2

A.1.3 Théorie du bien-être social

L’évaluation collective d’une allocation de ressources constitue un problème important.
“Comment peut-on évaluer une allocation à partir du bien-être de tous les agents ?”. On peut
trouver une réponse à cette question dans la littérature grâce à la théorie du choix social
(Arrow, 1963;Moulin, 1988; Sen, 1970). Cette théorie, qui vient de l’économie, définit un
ensemble d’outils permettant de mesurer le bien-être d’une société d’agents, prenant
en compte le bien-être de tous ses agents. Différentes notions existent et la plupart
d’entre elles peuvent être utilisés dans le cadre des problèmes d’allocation (Arrow et al,
2002; Moulin, 2004; Sen, 1997). Dans cette section, ces notions sont détaillées avec leurs
conséquences sur la distribution des ressources.

Bien-être utilitaire

La notion la plus utilisée pour évaluer une allocation de ressources est le bien-être
utilitaire. Le bien-être de la population est évalué grâce à la somme des bien-être



A.1. Description du problème 167

individuels de tous les agents de la société. Cette notion est souvent utilisée afin de
maximiser le bien-être moyen des agents de la société.

Définition A.4 (Bien-être utilitaire) Le bien-être utilitaire d’une allocation de ressource A,
que l’on notera swu(A), correspond à la somme des utilités individuelles.

swu(A) =
∑

i∈P

ui(Ri), A ∈ A.

Le bien-être utilitaire n’est cependant pas adapté dans tous les cas. En effet, cette
notion se révèle inefficace lorsque l’égalité entre les agents est considérée. Dans de tels
cas, le bien-être égalitaire doit être utilisé.

Bien-être égalitaire

Le bien-être égalitaire d’une allocation de ressources correspond au bien-être individuel
de l’agent le plus pauvre de la population. La maximisation de cette notion réduit les
inégalités au sein d’une population. Le partage équitable est un enjeu crucial dans
de nombreuses applications (Brams and Taylor, 1996; Moulin, 2004; Rawls, 1999; Sen,
1995).

Définition A.5 (Bien-être égalitaire) Le bien-être égalitaire d’une allocation de ressources A,
que l’on notera swe(A), correspond à l’utilité individuelle de l’agent le plus pauvre.

swe(A) = min
i∈P

ui(Ri), A ∈ A.

Le produit de Nash

Le produit deNash considère le bien-êtremoyen dans une population tout en réduisant
les inégalités en son sein (Ramezani and Endriss, 2009). Le produit de Nash est une
notion qui peut être vue comme un compromis entre le bien-être utilitaire et le bien-être
égalitaire. Cette notion est indépendante des échelles d’utilité, et normalise également
les utilités des agents. En dépit de ces qualités, un inconvénient demeure : cette notion
n’a de sens que si toutes les valeurs d’utilité sont positives.

Définition A.6 (Le produit de Nash) Le produit de Nash d’une allocation de ressources A,
que l’on notera swn(A), correspond au produit des utilités individuelles.

swn(A) =
∏

i∈P

ui(Ri), A ∈ A.

Bien-être élitiste

Le bien-être élitiste est à l’opposé du bien-être égalitaire. Cette notion ne considère
que le bien-être de l’agent le plus riche dans la société. Cette notion est souvent utile
dans un contexte de sociétés artificielles par exemple, où tous les agents ont un objectif
commun. Cet objectif doit être rempli quel que soit l’agent qui le fait.

Définition A.7 (Bien-être élitiste) Le bien-être élitiste d’une allocation de ressource A, que
l’on notera sweℓ(A), correspond à l’utilité individuelle de l’agent le plus riche dans la population.

sweℓ(A) = max
i∈P

ui(Ri), A ∈ A.
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Autres notions

L’évaluation d’allocation de ressources peut également se faire par d’autres notions.
Selon l’absence d’envie (Brams and Taylor, 1996), les agents évaluent leur bien-être indi-
viduel par une comparaison avec le bien-être que lui procurerait le panier de ressources
d’un autre. En effet, si tous les agents sont au moins aussi heureux avec leur panier
de ressources qu’ils ne le seraient avec celui d’un autre agent, alors l’allocation de
ressources est dite “sans envie”. Plus formellement, une allocation de ressources est
dite “sans envie” si la condition suivante est satisfaite :

ui(Ri) ≥ ui(R j) ∀i, j ∈ P.

Dans un société d’agents jaloux, ils évaluent leur bien-être par une comparaison
avec le bien-être des autres. Les agents ne sont pas jaloux si leur bien-être est supérieur
à celui des autres. Plus formellement, une allocation de ressources est dépourvue de
jalousie lorsque la condition suivante est satisfaite :

ui(Ri) ≥ u j(R j) ∀i, j ∈ P.

Une allocation Pareto optimal (Moulin, 1988) est une allocation dans laquelle aucun
agent ne peut accroître son bien-être sans diminuer celui d’un autre agent. Cette
notion ne nécessite pas de structure de préférence numérique. Plus formellement, une
allocation A ∈ A est Pareto optimal si :

∄A′ ∈ A, sw(A) < sw(A′) ∀i ∈ P, ui(A) ≤ ui(A′).

L’optimalité deLorenz (Moulin, 1988) est unenotion combinant les aspects utilitaires
et égalitaires du bien-être social. L’idée est de favoriser les allocations augmentant le
bien-être utilitaire sans pour autant diminuer le bien-être égalitaire.

Des études théoriques focalisant sur ses notions ainsi que sur les propriétés des
allocations ont été réalisées (Chevaleyre et al, 2007, 2009; Endriss et al, 2006). En dépit
de leur intérêt, nous n’étudierons pas ces notions dans cette thèse. Ainsi, seules les
quatre principales notions de bien-être seront considérées : le bien-être utilitaire, le
bien-être égalitaire, le produit de Nash et le bien-être élitiste.

Impact sur la distribution des ressources

Les quatre principales notions de bien-être ont des impacts différents sur la distribution
des ressources. En effet, l’usage d’une notion de bien-être spécifique peut avoir des
effets indésirables selon le contexte d’application.

Exemple A.9 Considérons une population de 3 agents P = {1, 2, 3} ainsi qu’un ensemble de 6
ressources R = {r1, r2, r3, r4, r5, r6}. Le tableau A.2 décrit les préférences des agents.

Table A.2: Impact du bien-être social - Préférences des agents

Population P
Ressources R

r1 r2 r3 r4 r5 r6
1 10 7 10 9 2 1
2 6 10 3 4 8 6
3 1 2 1 2 1 3
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Le tableau A.3 contient les valeurs sociales optimales ainsi qu’une allocation correspondante
selon la notion de bien-être que l’on considère. Les distributions des ressources sont ensuite
discutées.

Table A.3: Exemple d’allocation optimal pour tous les bien-êtres.
Bien-être social Valeur Allocation de ressources

swu 53 [{r1, r3, r4}{r2, r5, r6}{}]
swe 8 [{r1}{r5}{r2, r3, r4, r6}]
swn 1800 [{r1, r3}{r2, r5}{r4, r6}]
sweℓ 39 [{r1, r2, r3, r4r5, r6}{}{}]

L’utilisation du bien-être utilitaire nous donne une allocation dans laquelle un agent, l’agent
3, n’obtient aucune ressource. En effet, certains agents peuvent être complètement négligés si,
pour chaque ressource, il existe un autre agent qui lui associe une valeur d’utilité plus importante.
Une telle situation pourrait être problématique.

Lorsque le bien-être égalitaire est utilisé, tous les agents obtiennent au moins une ressource.
Donc, si le nombre total de ressources est supérieur au nombre d’agents, (n < m), aucun agent
ne sera laissé de coté. En revanche, la répartition des ressources peut être très inégale. Un agent
qui a des préférences faibles, comme l’agent 3, drainera les ressources de la société. De tels agents
pourront obtenir la plupart des ressources pour compenser la faiblesse de leur préférences.

L’utilisation du bien-être de Nash permet de ne négliger aucun agent : tous obtiendront au
moins une ressource comme dans le cas d’une société égalitaire. Mais la répartition des ressources
sera plus équilibrée et le phénomène de drainage des ressources sera évité. Néanmoins, ce bien-
être ne peut être considéré que si les utilités sont toutes positives.

Quand on considère le bien-être élitiste, seul un agent n’est pas négligé et obtient toutes les
ressources (si les utilités sont toutes positives). Cette notion est principalement utilisée lorsqu’il
est important qu’une tâche soit accomplie, peu importe qui le fait.

Notons finalement que les valeurs obtenues avec les différents bien-être sociaux sont très
différentes. Toute comparaison est cependant vide de sens puisque les différentes notions de
bien-être sont utilisées dans des buts différents. Le choix de l’une d’elles dépend principalement
du contexte d’application.

A.2 Les techniques centralisées

Les problèmes d’allocation de ressources peuvent être bien sûr résolus par des tech-
niques centralisées. Ces techniques considèrent lesproblèmesd’allocationde ressources
comme des problèmes d’optimisation. Elles sont parfaitement adaptées à la résolution
de certaines familles d’applications, mais pas pour toutes. En effet, les hypothèses sur
lesquelles ces techniques sont basées, ne sont pas toujours satisfaites. Ces hypothèses
sont décrites dans cette section. Les caractéristiques des applications qui ne sont pas
adaptées à ces techniques de résolution sont présentées. Nous décrivons finalement
une famille d’applications pour laquelle ces techniques centralisées sont très efficaces.

A.2.1 Description

Toutes les techniques centralisées sont basées sur le même principe. Le processus de
résolution peut être décomposé en plusieurs étapes, comme décrit dans la figure 1.2 :
la collecte d’informations, les calculs, et la notification du résultat à tous les agents.



170 Chapter A. Problèmes d’allocation de ressources

0

1

2

Central
entity

u0, {�,�,�}

u1, {♣,!}

u2, {�, ♠}

1: Collecte d’informations 2: Calculs

Entité
centrale

1

0

2

{�, ♣}

{!,�}

{�, ♠, �}

3: Allocation des ressources

Figure A.2: Principes des techniques centralisées

D’abord, tous les agents de la populationdoivent envoyer leurs informationsprivées
à l’entité centrale, c’est-à-dire leur préférences et la liste des ressources qu’ils possèdent.
L’entité centrale peut aussi bien être un agent ou une entité extérieure au système.
Cette entité peut être considérée comme omnisciente puisqu’elle rassemble toutes les
informations : elle connaîtra les préférences de tous les agents et la liste complète
de toutes les ressources disponibles dans le système. Selon l’objectif social considéré,
l’entité centrale détermine une allocation maximisant cet objectif. Finalement, une fois
les calculs achevés, il notifie le résultat aux agents et leur distribue les ressources en
conséquence. Notons que ces techniques ne considèrent pas que les ressources sont
initialement allouées aux agents du système, ils supposent seulement qu’elles sont
disponibles, libres de toutes contraintes, et déterminent une allocation optimale.

Les problèmes d’allocations de ressources sont bien souvent assimilés à des prob-
lèmes d’optimisation, qui sont efficaces pour certaines classes d’application seulement.
Puisque l’espace des solutions est fini d’après la propriété 1.2, une méthode de réso-
lution exacte existe toujours. En effet, l’énumération explicite de toutes les solutions
possibles en gardant la meilleure est toujours possible. Mais la taille exponentielle
de l’espace de recherche rend cette méthode complètement inutilisable en pratique.
D’autres limitations existent et sont décrites dans la section suivante.

A.2.2 Cas limites

Les processus de résolution centralisés ne sont efficaces que pour certaines familles
d’applications, qui ont des caractéristiques spécifiques. Cette section décrit les carac-
téristiques rendant les techniques centralisées peu efficaces voire inutilisable.

Les applications dynamiques ne peuvent être résolues efficacement de manière
centralisée. En effet, les données évoluent continuellement et les techniques centralisées
ne peuvent prendre en compte ces évolutions. Pour intégrer les nouvelles données, un
nouveau processus de résolution est nécessaire : l’évolution continuelle des données ne
peut être gérée efficacement. Un processus de résolution adaptatif est nécessaire dans
le cadre d’applications dynamiques. Par exemple, dans les réseaux pair-à-pair avec
les applications de partage de fichiers (Deshpande and Venkatasubramanian, 2004; Ge
et al, 2003), les agents entrent et sortent du système en permanence avec leurs fichiers.
Ainsi, les techniques centralisées ne sont pas adaptées à la résolution de problèmes
dynamiques. Nous considérons qu’une application est dynamique lorsque son temps
de résolution est supérieure au temps entre deux évolutions des données.

Des problèmes de calculabilité peuvent survenir rapidement selon la taille de la
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population et selon le nombre total de ressources disponibles dans le système. En effet,
le nombre de solutions possibles est exponentiel : des problèmes dit “large-échelle” ne
sont pas résolvables par des techniques centralisées. Même si le processus est centralisé,
les calculs peuvent être distribués. Il existe en effet des problèmes d’optimisation avec
des contraintes distribuées (Petcu et al, 2006). Selon la structure du problème, la distri-
bution des calculs est plus ou moins facile et efficace. Dans tous les cas, l’amélioration
de calculabilité due à la simple distribution des calculs reste limitée.

Le respect de la vie privée n’est pas tellement compatible avec une technique cen-
tralisée. En effet, selon le contexte d’application, les agents peuvent souhaiter garder
certaines informations privées. En particulier dans les applications Internet, de plus
en plus d’utilisateurs ne veulent pas que leurs informations personnelles soient divul-
guées. Mais l’entité centrale doit rassembler toutes les informations pour entamer la
résolution. Les notions d’égoïsme et de confidentialité doivent cependant être distin-
guées. Ce n’est pas parce qu’un agent ne veut pas révéler ses informations personnelles
qu’il est forcément égoïste. Les agents peuvent tout de même avoir un objectif com-
mun, et donc un comportement coopératif, mais ne pas accepter pour autant de révéler
toutes les informations qui leur sont relatives. En revanche, des agents égoïstes refusent
généralement de partager leurs informations (Nisan, 1999; Sen, 1996). Ces deux notions
ne sont donc pas équivalentes.

Les possibilités de communication. Les techniques centralisées fournissent une
solution mais ne s’intéresse pas à la manière de l’atteindre en pratique. Elles supposent
que la solution est toujours atteignable par une séquence de transactions. Une telle
séquence peut toujours être identifiée de manière centralisée, mais la calculabilité est
extrêmement restreintemême sur de petits jeux de données. Les techniques centralisées
supposent de manière implicite que les agents peuvent toujours communiquer avec
tous les autres agents de la société. Cette hypothèse n’est pas plausible pour la plupart
des applications. En général, dans une application s’appuie sur une communauté,
un agent ne connaît qu’un nombre très limité d’agents avec qui il lui est possible de
communiquer. Par exemple, dans un réseau pair-à-pair, un pair spécifique ne connaît
qu’un sous-ensemble très restreint de l’ensemble des pairs du système. Les techniques
centralisées ne s’intéressent pas à la manière dont l’allocation optimale est atteinte
en pratique. Supposer que les possibilités de communication sont totales revient à
supposer que les ressources peuvent circuler sans restriction du panier de ressources
initiale à celui de son détenteur final. Dès que les possibilités de communication sont
restreintes, les solutions fournies par les techniques centralisées ne sont plus forcément
atteignables. Une séquence de transactions menant à une allocation optimale n’est
pas identifiable par une technique centralisée en un temps raisonnable. Lorsque les
communications sont restreintes, il n’existe pas de test simple permettant de déterminer
si une telle séquence existe. La complexité d’un tel problème est exponentiellement plus
importante que celle d’un simple problème d’allocations.

A.2.3 Une application adaptée : les enchères combinatoires

Les méthodes centralisées sont très efficaces pour certaines classes de problèmes. En
effet, une des applications les plus populaires en économie peut être résolues par des
techniques centralisées. Les problèmes d’enchères combinatoires ont été largement
étudiées (Bellosta et al, 2006; Boutilier et al, 1999; Cramton et al, 2006; De Vries and
Vohra, 2003; Nisan, 2000; Sandholm, 2002). Plusieurs types d’enchères existent et
différents modèles peuvent être utilisés pour les résoudre.
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La structure des problèmes d’enchères convient parfaitement aux techniques cen-
tralisées. En effet, les agents sont les clients des enchères. En pratique, les clients com-
muniquent leurs préférences à un commissaire-priseur, qui représente l’entité centrale.
Il peut alors déterminer une solution optimale et allouer les ressources en conséquence.

Plusieurs types d’enchères existent (Krishna, 2002) : les enchères anglaises, les
enchères hollandaises, les enchères de Vickrey, . . . Ces types d’enchères sont les plus
importantes mais beaucoup d’autres existent. Chacune requiert un modèle spécifique
pour être résolue efficacement. Cette famille d’application est très riche et beaucoup
reste à faire (Lehmann et al, 2006; Sandholm, 2002).

En général, les techniques centralisées sont efficaces quand les applications ont des
propriétés adaptées. Toute application statique où les relations entre les agents n’ont
pas d’importance peut être résolue en les utilisant. Si aucune notion de vie privée n’est
requise ou si nous sommes juste intéressés par l’allocation elle-même et non pas sur la
manière de l’obtenir, les techniques de résolution centralisées sont privilégiées.

A.3 Les approches distribuées

D’autresméthodes ont été développées afin de surpasser les limites des techniques cen-
tralisées. Cesméthodes sont basées sur les notions d’agents et de systèmesmulti-agents
(Ferber, 1999; Woolridge, 2001). Les problèmes d’allocation de ressources standards
deviennent alors des problèmes multi-agents d’allocation de ressources. A l’opposé
des techniques centralisées, les méthodes basées sur l’utilisation d’agents peuvent être
appliquées à des systèmes dit “large échelle”, elles sont adaptables et peuvent être
utilisées pour résoudre des problèmes dynamiques. Dans cette section, nous décrivons
tout d’abord les caractéristiques de ces méthodes multi-agents avec leurs principales
caractéristiques. L’importance de considérer des restrictions sur les relations entre les
agents est ensuite discutée. Nous expliquons également pourquoi la solution fournie
par notre méthode multi-agents peut être vue comme un phénomène émergent. Enfin,
des exemples d’applications sont présentés.

A.3.1 Description

Les principes des approches distribuées (Moulin andChaib-Draa, 1996) sont fondamen-
talement différentes des principes sur lesquels sont basés les techniques centralisées.
Dans les méthodes centrées individu, les agents participent activement à l’élaboration
de l’allocation optimale. Le processus de résolution part d’une allocation initiale qui
évolue transactions après transactions par des négociations locales entre les agents. Ces
processus de négociations sont illustrés par la figure A.3.

LafigureA.3montre unprocessusdenégociation entre les 4 agents d’unepopulation
P = {0, 1, 2, 3} où 5 ressources sont disponibles, R = {�, �, !, ♣,♠}. Les possibilités
de communication sont représentés par un graphe: deux nœuds directement reliés
peuvent communiquer. Différentes étapes du processus de négociation sont illustrées.
Il part d’une allocation initiale A0 = [{�,�}{♣}{♠}{!}].

L’agent 0 et l’agent 2 négocient d’abord et échangent respectivement deux ressources
♠ et�. Les échanges sont représentés pardes lignespointillées sur lafigure. L’allocation
initiale A0 évolue alors en une nouvelle A1 = [{�♠}{♣}{�}{!}]. Ainsi, une séquence de
transactions locales entre les agents amène finalement à une solution.
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Figure A.3: Principes des méthodes centrées individu

Les méthodes centrées individu peuvent gérer différents aspects des problèmes
d’allocation de ressources. Les situations dans lesquelles cesméthodes sont privilégiées
sont décrites dans la section suivante.

A.3.2 Caractéristiques

L’adaptabilité. Les systèmes multi-agents sont largement utilisés pour modéliser des
phénomènes dynamiques. Les arrivées et les départs d’agents durant le processus
de résolution sont possibles, et ne nécessitent pas un nouveau processus complet.
Par nature, les systèmes multi-agents sont extensibles et peuvent gérer l’évolution
permanente des informations.

Le réseau d’accointances. Les relations entre les agents doivent être prises en
compte, ce qui peut être fait grâce à un système multi-agents. Les possibilités de
communication entre les agentspeuvent être représentéesparungraphed’accointances.
Selon sa topologie, deux agents connectés directement peuvent communiquer. Les
restrictions des communications entre les agents influencent beaucoup l’efficacité d’un
processus de négociation puisqu’elles restreignent la circulation des ressources. Ces
restrictions sont monnaie courante dans beaucoup d’applications. En particulier dans
le cas de grands systèmes, comme le réseau Internet, être directement connecté à tous
les agents du système n’est pas une hypothèse possible.

La mise en pratique. Le processus de résolution est basé sur des négociations
locales entre les agents. Une séquence de transactions menant de l’allocation initiale à
l’allocation finale est identifiée. La solution fournie par une méthode centrée individu
est donc toujours applicable, quelles que soient les restrictions sur les communications.
La solution fournie respecte toujours la topologie du réseau d’accointances. Cependant,
puisque les agents ont une vue très limitée du système, ils ne peuvent pas être sûrs que
le processus de négociation a une fin. Une coordination centralisée est nécessaire pour
cela.

Lamontée à l’échelle. Les systèmesmulti-agentspeuvent êtreutiliséspour résoudre
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des problèmes de très grande taille. En effet, un système multi-agents est peuplé par
des agents autonomes. Cette propriété permet une distribution très facile des calculs.
Des problèmes très grands, basés sur de très grandes populations peuvent être résolus
en un temps raisonnable puisque le coût computationel est réparti entre les agents.

L’hétérogénéité. Les systèmes multi-agents peuvent résoudre des problèmes aussi
bien au sein de population homogène, où tous les agents ont le même comportement,
qu’au sein de population hétérogène, où chaque agent peut avoir son propre comporte-
ment. De telles notions nepeuvent être prises en comptepar des techniques centralisées.
De larges populations hétérogènes peuvent facilement être manipulées en utilisant des
approches de conception spécifique, comme la méthodologie IODA(Interaction Ori-
ented Design Agent simulation) qui se focalise sur les interactions entre les agents
plutôt que sur les comportements d’agents (Kubera et al, 2008). Une simulation est
caractérisée par une matrice qui définit les interactions qui arrivent entre les agents
selon leurs types. L’utilisation combinée d’interactions génériques avec la matrice per-
met une conception aisée de simulations large échelle. Par exemple, le problème du
“cavalier seul” est très étudié dans les applications de partages de fichiers (Groves and
Ledyard, 1977; Morge and Mathieu, 2007). Dans ces problèmes, deux types d’agents
cohabitent : les agents purement égoïstes qui copient du contenu multimédia sans ja-
mais rien donner aux autres, et les agents généreux qui font les deux opérations. Le
but de ces études est soit d’étudier le taux d’agents égoïstes d’une population et son
impact sur le service fourni, soit de concevoir des comportements d’agents spécifiques
qui découragent les autres agents de faire “cavalier seul”. Même si l’utilisation de
populations hétérogènes est possible, cette thèse ne considère que des populations ho-
mogènes. En effet, les études portant sur des populations hétérogènes se focalisent plus
sur des aspects évolutionnistes (Hofbauer and Sigmund, 2003; Weibull, 1997) qui sont
au-delà du sujet que nous abordons dans cette thèse.

La confidentialité. Selon le niveau de confidentialité requit, un processus de négo-
ciation plus ou moins efficace peut être imaginé. Différents protocoles de négociation
peuvent être conçus selon la quantité d’information que les agents acceptent de révéler.
Plus l’information sera disponible, plus le protocole sera précis et les négociations ef-
ficaces. Un protocole basé sur des informations binaires est très limité (une réponse
oui/non), alors que l’expressiond’undegréd’envie sur les ressources permet d’identifier
les transactions acceptables plus facilement.

Le réseau d’accointances, un paramètre important ?

De nombreuses études ont été menées pour résoudre les problèmes d’allocation de
ressourcesmulti-agents,mais peud’entre elles prennent en comptedes communications
restreintes entre les agents. Les méthodes de résolution distribuées peuvent le faire en
utilisant un réseau d’accointances. Deux familles d’études doivent cependant être
distinguées. Le premier ensemble d’études est principalement théorique et vise à
prouver l’existence d’une séquence de transactions jusqu’à une solution optimale, ou
d’identifier des propriétés mathématiques favorisant l’efficacité des négociations. Le
second ensemble d’études porte sur les mécanismes à mettre en œuvre afin d’obtenir
les solutions optimales.

Une approche de résolution des problèmes d’allocation de tâches basée sur les
coûtsmarginaux fût proposée pour différentes classes de transactions (Sandholm, 1998).
L’auteur a analysé les caractéristiques des optima locaux évités par chaque classe de
transactions. Il a également établi que plusieurs théorèmes sur l’existence ou non de



A.3. Les approches distribuées 175

séquences de transactions menant jusqu’à une solution optimale à partir de n’importe
quelle allocation initiale, selon les classes de transactions autorisées durant les processus
de négociation. Ces classes de transactions ont par ailleurs été évaluées (Andersson and
Sandholm, 1998), mais l’évaluation est restreinte à très peu d’agents et de ressources
(moins de 10 ressources et 10 agents). De plus, chaque agent pouvait communiquer
librement avec n’importe quel autre agent de la population. D’autres auteurs se sont
focalisés sur les séquences de transactions (Andersson and Sandholm, 2000). Ils ont
proposéunemanièrede résoudre leproblèmemulti-agentsduvoyageurde commerce et
ont comparé différentes stratégies. Seules des comparaisons relatives ont été effectuées
et les possibilités de communications sont toujours totales. Leurs travaux ont été
étendus par des travaux focalisant particulièrement sur la longueur des séquences de
transactions (Dunne, 2005). L’auteur établit des bornes sur la longueur des séquences
de transactions requises pour atteindre des solutions optimales. Il a également introduit
une nouvelle classe de transactions et a évalué son efficacité, mais des communications
restreintes sont toujours impossibles. Un système multi-agents combiné à un marché
d’enchères a été proposé pour résoudre le problème distribué d’allocation de ressources
(Chavez et al, 1997; Clearwater, 1996). Leurs recherches se focalisent en particulier sur
les problèmes d’allocation de temps CPU. Ils ne comparent cependant pas l’efficacité
de leurs processus d’allocation de ressources avec les solutions optimales. Les classes
de fonctions d’utilité et de paiements compensatoires ont également été étudiés pour
concevoir des processus de négociation convergeants (Chevaleyre et al, 2005). Les
auteurs analysent les propriétés des différentes fonctions et établissent des conditions
suffisantes pour assurer la convergence des processus de négociation. L’efficacité de ces
processus est évaluée en utilisant les notions de bien-être social (Moulin, 1986; Arrow
et al, 2002). Ils ont établi des résultats quant à la convergence des négociations selon
les classes de transaction qui sont employées. Différents scénarios, correspondant à des
représentations des préférences et des critères d’acceptabilité différents sont étudiés
(Endriss et al, 2006). Mais les communications ne sont jamais restreintes. Aucune
de ces études ne donne ni une séquence de transactions acceptables pour atteindre
une solution optimale et ni les comportements des agents à utiliser pour négocier
efficacement. Des protocoles de négociations ont également été proposés lorsqu’aucune
connaissance commune n’est disponible (Saha and Sen, 2007) ou lorsque les agents
expriment des préférences relatives à plusieurs critères (Hemaissia et al, 2007). Les
communications sont toujours complètes et une telle hypothèse restreint beaucoup le
champ d’application une nouvelle fois.

Puisque les communications entre les agents ne sont jamais restreintes dans les
études réalisées auparavant, on pourrait s’interroger sur l’intérêt d’intégrer cet aspect
aux négociations. Les processus de négociations, qui mènent à des solutions opti-
males quand les possibilités de communication sont totales (c’est-à-dire basée sur un
graphe d’accointances complets), ne peuvent atteindre que des solutions loin des op-
tima lorsque les communications sont restreintes.

Propriété A.3 (Impact des graphes d’accointances) Quelle que soit la fonction objectif
considérée, la restriction des communications peut empêcher l’atteinte d’allocations de ressources
optimales.

Proof. Prouvons ceci par un contre-exemple, basé sur unepopulationde trois agentsP =
{1, 2, 3}, et un ensemble de trois ressources disponibles R = {r1, r2, r3}. Les préférences
des agents sont décrites dans le tableau A.4.
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Table A.4: Exemple - Préférences des agents

Population P
Ressources R

r1 r2 r3
0 3 1 9
1 1 4 1
2 10 2 3

Le graphe d’accointances utilisé est décrit par la figure 1.4. Dans ce réseau, les
agents 0 et 2 ne peuvent communiquer. Cette figure précise aussi l’allocation initiale :
A = [{r1}{r2}{r3}].

0

{r1}

1

{r2}

2

{r3}

Figure A.4: Exemple - Réseau d’accointances

Les agents sont supposés égoïstes dans cet exemple, ils n’acceptent donc que les
transactions qui augmentent leur propre utilité. Dans de telles conditions, les seules
transactions qui peuvent être appliquées sont décrites dans le tableau A.5. Ce tableau
contient la liste des échanges possibles et montre qu’aucun n’est acceptable par les
agents. Seulement deux échanges sont possibles : entre les agents 0 et 1 qui échangent
les ressources r1 et r2, et entre les agents 1 et 2 qui échangent les ressources r2 et r3. Dans
les deux cas, au moins un des agents voit son utilité décroître.

Table A.5: Exemple - Transactions possibles

Transaction
Utilité des agents ui
u0 u1 u2

Au départ 3 4 3
r1 ↔ r2 1 1 3
r2 ↔ r3 3 1 2

On peut cependant constater que l’échange de la ressource r1 contre la ressource
r3 mène à une augmentation du bien-être des deux participants, mais est impossible
à cause de la topologie du réseau d’accointances. Si le bien-être utilitaire doit être
maximisé, l’allocationA = [{r3}{r2}{r1}] correspond à une solution optimale, qui ne peut
être atteinte en raison de restrictions sur les communications des agents. �

Les restrictions du réseau d’accointances ont également une conséquence indirecte
sur le processus de négociation. L’ordre dans lequel les agents négociaient n’est pas
forcément important lorsque le réseau était complet. En effet, les ressources pouvaient
potentiellement toujours circuler d’un panier de ressources à un autre. Mais cet ordre
dans lequel les agents négocient devient un paramètre très important quand le graphe
d’accointances est restreint.

Propriété A.4 (L’ordre de négociation) Quelle que soit la fonction objective que l’on con-
sidère, l’ordre dans lequel les agents négocient peut empêcher l’atteinte d’une allocation de
ressources optimale.
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Proof. Prouvons cette propriété en utilisant un contre-exemple, basé sur une population
de trois agentsP = {1, 2, 3}, et un ensemble de trois ressources disponiblesR = {r1, r2, r3}.
Les préférences des agents sont décrites dans le tableau A.6.

Table A.6: Exemple - Préférences des agents

Population P
Ressources R

r1 r2 r3
0 2 10 4
1 5 3 9
2 2 7 1

Le graphe d’accointances et l’allocation initiale sont décrit par la figure A.5. Dans ce
réseau, l’agent 0 ne peut communiquer avec l’agent 2 et les ressources sont initialement
allouées de la manière suivante : A = [{r1}{r2}{r3}].

0

{r1}

1

{r2}

2

{r3}

Figure A.5: Exemple - Réseau d’accointances

Supposons que l’agent 1 initie une négociation. Selon le voisin qu’il choisit pour
négocier, le processus de négociation peut terminer sur un optimum local. Nous
supposons que l’objectif est la maximisation du bien-être utilitaire, mais des exemples
peuvent être conçus pour toutes les autres notions.

Le tableau A.7 contient la liste des transactions possibles selon le voisin sélectionné
par l’initiateur. Si l’agent 1 choisit de négocier d’abord avec l’agent 0, l’échange mène
à une allocation socialement sous-optimale que le processus de négociation ne peut
quitter, alors que si l’agent 1 choisit de négocier avec l’agent 2, le processus termine sur
une allocation optimale. Par conséquent, l’ordre dans lequel les agents négocient influe
sur l’efficacité des négociations.

Table A.7: Utilité des agents selon le voisin choisit par l’initiateur

Voisin choisi
Utilité des agents ui Bien-être
u0 u1 u2 swu

AU début 2 3 1 6
Agent 0↔ Agent 1 10 5 1 16
Agent 1↔ Agent 2 3 7 2 17

�

Ainsi, le réseau d’accointances est un paramètre important qu’il faut prendre en
compte puisque sa topologie peut empêcher l’atteinte d’une solution optimale en pra-
tique. Son influence sur l’efficacité des négociations ne doit pas être négligée comme ce
fût le cas dans les études précédentes.

Un phénomène émergent ?

Le concept d’ “émergence” est utilisé par différentes communautés, mais de manière
parfois différente. Il n’existe pas de définition commune (Corning, 2002; Goldstein,
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1997; Serugendo et al, 2006). En effet, il y a autant de définitions que de personnes qui
utilisent ce concept !

Un définition pratique du concept d’émergence a été établie (Capera et al, 2003).
Selon (Di Marzo Serugendo et al, 2006), cette définition d’informaticiens se base sur
deux points :

• Le sujet. L’objectif d’un système doit être de réaliser une certaine fonction. Cette
fonction, qui peut changer au cours du temps, doit émerger.

• La condition. Cette fonction est émergente si le l’implémentation dans le système
ne dépend pas d’une connaissance de cette fonction. Cette implémentation doit
contenir un mécanisme permettant l’adaptation du système, qu’il puisse tendre
au cours du temps à réaliser la fonction voulue.

D’après cette définition pratique du phénomène d’émergence, notre méthode dis-
tribuée est basée sur des négociations locales entre les agents, elle fournie des allocations
de ressources qui peuvent être vue comme des phénomènes émergents. En pratique,
les agents ont seulement une vue locale du système. Au plus, ils peuvent collecter
des informations provenant de leur voisinage qui est défini par la topologie du réseau
d’accointances. Aucun agent ne sait quelle est l’allocation de ressources à un moment
donné. Les agents connaissent seulement leur propre panier de ressources. Il n’est
donc pas possible pour eux de connaître la valeur de la fonction à maximiser.

A.3.3 Applications

De nombreux problèmes étudiés en Informatique peuvent être modélisés comme des
problèmes d’allocations de ressources.

Depuis plusieurs années, un intérêt croissant est dédié aux problèmes de routage
et de conception de réseau, plus particulièrement ceux liés à l’auto-organisation (Seru-
gendo et al, 2006). La conception (ou organisation) de la structure d’un réseau est un
problème qui influe énormément sur son efficacité. Des approches centrées individu
peuvent être utilisées pour organiser ou entretenir de larges réseaux (Anshelevich et al,
2008). Chaque lien d’un réseau représente un certain coût, et les agents essaient de
minimiser ce coût selon les contraintes (besoins) de connectivité. Les caractéristiques
comme la performance ou la robustesse des réseaux sont étudiées (Chun et al, 2004).
Selon la fonction de coût, diverses topologies peuvent être générées, et le contrôle du
nombre de voisins par agents (degré des nœuds) apparaît comme un clé pour le con-
trôle de leur équilibre. Récemment, des travaux se sont focalisés sur l’organisation des
réseaux pair-à-pair. Ces réseaux ont une structure dynamique et leur croissance peut
altérer l’efficacité des services qu’ils fournissent. Par exemple, si l’on considère des
applications de partage de fichiers, des goulots d’étranglements peuvent apparaître au
gré de l’évolution de la topologie. Un processus d’adaptation de la topologie est es-
sentiel pour assurer le maintien de la qualité de service (Ni and Liu, 2004; Hales, 2004).
Basé sur une topologie spécifique, le routage égoïste est une problématique qui peut
être représenter à l’aide d’un problèmemulti-agents d’allocation de ressources (Gairing
et al, 2008; Gibney and Jennings, 1998). Dans de telles applications, les agents dirigent
le trafic sur un de leurs liens. Le trafic des autres agents est d’ordinaire inconnu. Une
répartition efficace de la charge du réseau pourrait être faite par une méthode centrée
individu, basée sur n’importe quelle topologie. Des problématiques liées aux grilles de
calcul peuvent également êtremodélisées par des problèmes d’allocation de ressources.
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Par exemple, les tâches devraient être équitablement réparties sur l’ensemble de la grille
pour accélérer les calculs (Buyya et al, 2002; Galstyan et al, 2005). Ainsi, l’équilibrage de
charges peut être réalisé par des méthodes multi-agents. Les ressources sont souvent
du temps CPU.

Lesproblèmesd’approvisionnement reposent surun réseaud’usines, qui achètent et
transforment desmatériaux en différents produits (Kaihara, 2003). Les usines effectuent
des tâches sur les produits selon un processus de fabrication particulier : les opérations
doivent être effectuées dans un ordre précis. Les dépendances entre les tâches sont
représentées par un réseaud’accointances. Les ressources sont le tempsd’utilisationdes
machines. Divers critères peuvent être pris en compte. Les flots de matériels doivent
être organisés au mieux afin de maximiser la production, de minimiser les coûts de
transport et dedistribution, de respecter les délais deproduction. . . Certaines approches
orientées agent ont été proposées pour résoudre de tels problème de planification (Shen,
2002; Sycara et al, 1991). Le but de ces systèmes est de maximiser l’efficacité globale.
Mais aucun client ne doit pour autant être négligé par rapport aux autres, et voir ainsi
ses produits fabriqués trop tard. Le bien-être de Nash semble être la notion la plus
intéressante dans ces situations. La planification dynamique sous contraintes spatiales
a été également étudiée (Sahli and Moulin, 2009). Des agents géographiquement situés
sont utilisés pour résoudre ce genre de problèmes dynamiques large-échelle.

Les applications basées sur des réseaux sociaux deviennent de plus en plus popu-
laires de nos jours. Les réseaux sociaux regroupent la plupart du temps des gens qui
ont des points communs comme leurs préférences, leur position géographique, l’amitié
ou la famille. Ces réseaux constituent un graphe social sur lequel des processus de
négociation peuvent être basés. Lorsque les agents sont connectés, ils ont des intérêts
communs et sont alors capables de négocier leurs ressources. Récemment, des applica-
tions basées sur des systèmes de troc ont fait leur apparition sur Internet. Par exemple,
des services comme www.homexchange.com or www.gchangetout.com, les clients sont
reliés entre eux selon leurs préférences. Ils veulent prêter leur propre maison pour
un nombre de semaines donné, afin de pouvoir obtenir un séjour équivalent dans une
maison correspondante à leurs critères. Le but d’un tel système de troc est de satisfaire
tous les clients de la communauté, ce qui est par définition un problème égalitaire.
Un tel système peut être modélisé par des agents coopératifs. Tous les agents entrant
dans la communauté apporte au moins une ressource : leur maison. Le but de tous
les agents est de partir en vacances dans une autre maison. Les agents expriment leurs
préférences sur le genre d’habitat qu’ils souhaitent, la localisation et la période. Les
ressources et les contraintes constituent un réseau d’accointances. Un agent qui reste
avec sa propre maison correspond à une situation de faible satisfaction. La pire situa-
tion, qui est inacceptable, est de prêter sa maison sans en obtenir une en contrepartie.
Le but est de fournir une maison à tous les membres de la communauté durant leurs
vacances.

A.4 Synthèse

Dans ce chapitre, les problèmes d’allocation de ressources ont été décris et leurs trois
principales caractéristiques ont été présentées.

• La nature des ressources : Les propriétés des ressources ont une influence im-
portante sur le problème d’allocation. Selon elles, l’efficacité du processus de ré-
solution dans un contexte donné peut se transformer en inefficacité totale. Nous
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nous sommes spécifiquement intéressés à des ressources discrètes, indivisibles,
non partageables et statiques.

• La représentation des préférences : Les préférences des agents affectent grande-
ment les problèmes d’allocation. Nous avons choisi d’utiliser une structure car-
dinale quantitative. Les agents utilisent des fonctions d’utilité additive pour
s’exprimer. Les paiements compensatoires sont également prohibés dans cette
thèse.

• L’évaluation collective : Dupointdevuede la société, les allocationsde ressources
sont évaluées grâce à des notions de bien-être social. Les processus de résolution
doivent être adaptés selon la fonction objectif que l’on considère. Dans cette thèse,
les quatre principales notions seront considérées : le bien-être utilitaire, égalitaire,
élitiste ainsi que le bien-être de Nash.

Les principes des approches centralisées ont été décris. Ces techniques sont adap-
tées à certaines classes d’applications, comme les enchères combinatoires, mais pas à
toutes. En effet, les applications qui sont dynamiques, ou celles où une certaine con-
fidentialité est nécessaire ne peuvent être résolues efficacement. Dans ces cas là, les
méthodes distribuées sont utilisées. Ces deux types deméthode s’adressent à des prob-
lèmes différents. Basées sur des négociations entre les agents, les méthodes distribuées
fournissent une séquence de transactions acceptables menant à une solution optimale
en pratique. Les restrictions sur les communications sont possibles grâce à l’utilisation
de réseau d’accointances. Une conception spécifique est cependant nécessaire pour
obtenir la solution par un phénomène d’émergence.





A: Various applications can be modeled by resource allocation problems. Usu-
ally, theyare solvedby centralized techniques, but these techniques arenotwell-adapted
to applications considering privacy, restricted communications among entities or to dy-
namic applications.

In this thesis, we focus on distributed problem solving, especially on methods rely-
ing on multi-agent systems. The approach we proposed is based on agent negotiations
and on local transactions. We identify parameters favoring the negotiation efficiency,
like acceptability criteria, transactions to use, or behaviors according to which agents
negotiate. Provided allocations can be viewed as emergent phenomena.

We provide algorithms to implement when the four main social welfare notions
are considered. Resulting negotiation processes are adaptive and anytime. They also
provide sequences of acceptable transactions leading to optimal allocations, or to so-
cially close allocations when the need arises. Negotiations can be based on any kind of
restricted relationships among agents. When the social welfare of the population is con-
sidered, experiments proof the inefficiency of individual rationality as decision-making
criterion. Agents must be generous to achieve socially efficient allocations.

Keywords: Distributed problem solving, individual based reasoning, social networks,
social welfare, information privacy, negotiation, multi-agent systems.

Ŕ́: De nombreuses applications dans des domaines très variés peuvent être
modélisées par des problèmes d’allocations de ressources. Ces problèmes sont souvent
résolus grâce à des méthodes centralisées, mais celles-ci ne sont pas toujours adaptées
aux spécificitées des applications que peuvent être la dynamicité, le respect de la vie
privée ou la restriction des communications entre les entités considées.

Dans ce travail nous nous sommes intéréssés à aux méthodes de résolution dis-
tribuées. Nous avons proposé une approche basée sur des négociations locales entre
les agents. Nous avons identifié les critères de négociation, les transactions à utiliser,
ainsi que les comportements selon lesquels les agents doivent interagir afin d’obtenir
une allocation de ressources par un phénomène d’émergence.

Nous donnons les algorithmes à implémenter pour les quatres principales mesures
de bien-être social. Les processus de négociations obtenus sont “anytime” et adaptatifs.
Ils gèrent les restrictions des communications entre agents et fournissent des séquences
de transactions acceptables pour les agents, menant à des allocations socialement op-
timales, ou très proche les cas échéchants. Les expérimentations montre l’inéfficacité
des critères d’acceptabilité basée sur la rationalité individuelle. Seules les négociations
entre des agents généreux mènent à des allocations socialement interéssantes.

Mots-clés: Résolution distribuée de problèmes, raisonnement individuel, réseaux so-
ciaux, bien-être social, information privée, négociation, systèmes multi-agents.


