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On s'intéresse dans ce mémoire aux équations de la magnétohydrodynamique (MHD) dans des milieux hétérogènes, i.e. dans des milieux pouvant présenter des variations (éventuellement brutales) de propriétés physiques. En particulier, on met ici l'accent sur la résolution des équations de Maxwell dans des milieux avec des propriétés magnétiques inhomogènes. On présentera une méthode non standard pour résoudre ce problème à l'aide d'éléments nis de Lagrange. On évoquera ensuite l'implémentation dans le code SFEMaNS, développé depuis 2002 par J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre et A. Ribeiro, ainsi que les premiers résultats obtenus dans les simulations de dynamo. Nous nous intéresserons par exemple au cas de la dynamo dite de Von Kármán, an de comprendre l'expérience VKS2. En outre, nous aborderons des cas de dynamo en précession, ou encore le problème de la dynamo au sein d'un écoulement de Taylor-Couette.

La magnétohydrodynamique (MHD) consiste en la description du comportement d'un uide conducteur de l'électricité, en présence d'un champ électromagnétique. Le uide considéré peut être par exemple du métal liquide, ou bien encore un plasma. Son caractère conducteur de l'électricité implique des interactions entre le mouvement du uide et le champ magnétique ambiant. En astrophysique, géophysique ou même au niveau industriel, on peut trouver d'innombrables applications, mais ce présent travail de thèse se focalise sur un seul en particulier : l'eet dynamo, qui est considéré comme responsable de l'omniprésence des champs magnétiques dans l'Univers. La MHD fait intervenir un couplage entre les équations régissant le mouvement du uide (ici les équations de Navier-Stokes) et les équations régissant l'évolution du champ magnétique (équations de Maxwell dans lesquelles on néglige les courants de déplacement). Deux paramètres adimensionnés apparaissent alors : R e le nombre de Reynolds cinétique, comparant le temps visqueux au temps advectif, et R m , le nombre de Reynolds magnétique, comparant le temps de diusion ohmique au temps advectif. L'interaction se fait au travers de la force de Lorentz.

Jusqu'à ce jour, plusieurs expériences ont pu mettre en évidence cet eet dynamo, mais l'explication des phénomènes mis en jeu n'est pas encore claire. L'un des objectifs de ce travail est de fournir un outil de simulation numérique capable de représenter au mieux certaines congurations réalistes, an d'étudier les mécanismes qui peuvent être à l'origine d'un eet dynamo. Il existe actuellement plusieurs codes numériques capables d'intégrer les équations de la MHD dans des géométries particulières (cf. Tilgner et al. [START_REF] Tilgner | On models of precession driven core ow[END_REF][START_REF] Tilgner | Precession driven dynamos[END_REF] pour une sphère en précession, Dormy et al. [START_REF] Cardin | MHD ow in a slightly dierentially rotating spherical shell, with conducting inner core, in a dipolar magnetic eld[END_REF] dans une sphère avec prise en compte des eets thermiques, Léorat ou Willis et al. pour des cylindres axialement périodiques). Depuis 2002, l'équipe dans laquelle ce travail de thèse a été eectué s'est xé comme objectif de développer un code non-linéaire parallélisé pouvant intégrer les équations de la MHD dans des géométries plus complexes (toutefois axisymétriques) et dans des domaines hétérogènes. Ce code, baptisé SFEMaNS (pour Spectral/Finite Element for Maxwell and Navier-Stokes), est actuellement l'un des seuls à pouvoir intégrer le système MHD non-linéaire tout en tenant compte des hétérogénéités du domaine. Il repose sur une méthode hybride, avec une décomposition de Fourier dans la direction azimutale, et une méthode d'éléments nis de Lagrange dans le plan méridien. Ce choix d'éléments nis est assez audacieux car il a déjà été mis en évidence que les méthodes standards basées sur les éléments nis de Lagrange pouvaient donner lieu à des problèmes de convergence, notamment lors de la résolution de cas stationnaires, dans des domaines présentant des singularités géométriques et/ou des sauts de perméabilité.

Au départ de cette thèse, ce problème était contourné en n'utilisant le code que pour des calculs instationnaires, dans des géométries régulières. L'un des objectifs principaux de cette thèse a été la mise au point d'une méthode mixte autorisant tout type de géométrie, et permettant de résoudre également des problèmes d'induction stationnaires. En particulier, l'une des dicultés inhérentes aux milieux hétérogènes ou aux domaines singuliers est que la régularité des solutions est très basse. Nous nous proposons de chercher à préciser cette régularité, an de mettre au point une méthode dépendant d'un paramètre α qui permettra d'approcher correctement les solutions. Un autre objectif de cette thèse a été la modication du code SFEMaNS : outre une nouvelle méthode de résolution, nous nous proposons de rendre le code plus ecace (en terme de temps de restitution) en ajoutant une étape de parallélisation. D'un point de vue pratique, ces améliorations apportées au code nous permettront de faire des simulations numériques dans des cas proches de cas expérimentaux, an de mettre en évidence l'eet dynamo dans certaines congurations.

Introduction générale.

Nous décrivons les équations issues de la modélisation des phénomènes MHD. On explique également succinctement ce qu'est l'eet dynamo, et on donne, parmi quelques exemples connus, ceux qui ont directement suscité notre intérêt, du point de vue de la simulation numérique.

Méthode de résolution.

On présente de manière simpliée les idées qui ont abouti à la mise en ÷uvre d'une nouvelle méthode de résolution. Outre l'obtention de la méthode, ce chapitre reprend les résultats essentiels des annexes A et B, et donne quelques informations supplémentaires sur des méthodes alternatives qui pourraient paraître plus simples, mais qui présentent susamment d'inconvénients pour avoir été écartées.

Le code SFEMaNS.

Dans ce chapitre, on présente de façon succincte le code de calcul utilisé en pratique. On met l'accent en particulier sur les évolutions subies par ce code depuis 2009. On en présente les principales caractéristiques, et les hypothèses nécessaires à son utilisation. Enn, on donne quelques résultats numériques illustrant son bon comportement. instable pour certains écoulements stationnaires. Ce chapitre a donc pour but d'expliquer ces comportements, et ne concerne nalement que la partie hydrodynamique du problème.

J.-L. Guermond, J. Léorat, F. Luddens & C. Nore, Remarks on the stability of the Navier-Stokes equations supplemented with stress boundary conditions, soumis à European Journal of Mechanics -B/Fluids 1. 3 Les équations de la MHD Nous étudions tout au long de ce travail les équations de la magnétohydrodynamique (MHD), qui décrivent le comportement d'un uide conducteur de l'électricité en présence d'un champ magnétique, ainsi que sa rétroaction sur ledit champ magnétique. On peut trouver une description détaillée dans [START_REF] Roberts | An introduction to Magnetohydrodynamics[END_REF] ou [START_REF] Moatt | Magnetic Field Generation in Electrically Conducting Fluids[END_REF]. Commençons par évoquer les équations qui régissent le champ électromagnétique.

Équation d'induction

Les équations régissant le champ électromagnétique proviennent des équations de Maxwell. En notant E le champ électrique, D l'induction électrique, H le champ magnétique et B l'induction magnétique, elles s'écrivent :

∂ t B = -∇×E, (1.3.1) 
∇×H = j + ∂ t D + χu, (1.3.2) ∇•D = χ, (1.3.3) 
∇•B = 0, (1.3.4) où j désigne la dénsité de courant électrique, χ la densité de charges électriques et u la vitesse du milieu considéré. On suppose que les diérents champs vérient en outre les relations constitutives suivantes, associées aux milieux considérés :

D = ǫE,
(1.3.5) B = µH, (1.3.6) où ǫ (resp. µ) représente la permittivité électrique (resp. la perméabilité magnétique) du milieu considéré. Pour la MHD, on se place dans le cadre de l'approximation quasi-statique (cf. [START_REF] Moatt | Magnetic Field Generation in Electrically Conducting Fluids[END_REF] pour plus de précisions), i.e. on néglige dans les équations de Maxwell les termes en χ et ∂ t D. En particulier, les équations (1.3.2)-(1.3.3) se réécrivent :

∇×H = j, (1.3.7) ∇•(ǫE) = 0.
(1.3.8) Avant de passer à l'adimensionnement, notons encore que l'on utilise la loi d'Ohm pour caractériser la densité de courant j. Elle s'écrit j = σ (E + u×B) , (1.3.9) où σ désigne la conductivité du milieu ; σ ≡ 0 dans toutes les parties isolantes du milieu. Pour l'adimensionnement, on prend comme perméabilité (resp. permittivité) caractéristique la perméabilité magnétique du vide µ 0 (resp. la permittivité électrique du vide ε 0 ). On se donne une longueur caractéristique L, un temps caractéristique T et une conductivité caractéristique σ 0 . On note U = L T et on introduit un nombre sans dimension (1.3.10) R m := µ 0 σ 0 LU.

En réécrivant les équations sous forme adimensionnée, on considère que les deux termes dans l'équation de Maxwell-Faraday sont du même ordre de grandeur, i.e. µ 0 |H| T = |E| L . On aboutit alors à

∂ t (µH) = -∇×E, ∇×H = R m σ (E + u×(µH)) , ∇•(εE) = 0, ∇•(µH) = 0.
Ici, µ (resp. ε) désigne la perméabilité (resp. permittivité) relative par rapport à µ 0 (resp. ε 0 ). Notons que l'on peut écrire un système de deux équations portant uniquement sur le champ magnétique H :

∂ t (µH) = - 1 R m ∇× 1 σ ∇×H + ∇× (u×µH) , (1.3.11) ∇•(µH) = 0.
(1.3.12) Remarque 1.3.1. Notons que si l'on avait gardé le terme ∂ t D dans l'équation de Maxwell-Ampère, le terme adimensionné correspondant aurait été

ε 0 µ 0 U 2 ∂ t (εE).
Or, avec c la vitesse de la lumière, on a ε 0 µ 0 c 2 = 1. Puisqu'on considère U négligeable devant c, le terme ∂ t D peut eectivement être négligé.

Signalons que, dans le cadre de la dynamo cinématique (i.e. lorsqu'on s'intéresse uniquement à la résolution des équations de Maxwell avec un champ de vitesses donné), on trouve parfois un adimensionnement diérent, basé sur le temps de diusion du champ magnétique dans le conducteur. On note alors U la vitesse caractéristique basée sur le champ de vitesses, et on prend comme temps caractéristique T := µ 0 σ 0 L 2 . R m reste déni par (1.3.10) et on aboutit à

(1.3.13) ∂ t (µH) = -∇× 1 σ ∇×H + R m ∇× (u×µH) .
Dans les deux cas, on voit que l'équation d'induction fait intervenir deux termes :

un terme de diusion, qui est prépondérant à faible R m , et qui tend à dissiper le champ magnétique.

un terme de couplage, prépondérant à fort R m , et qui contient une partie d'advection pure. En eet, avec un champ de vitesses incompressible et une induction à divergence nulle, on a ∇×(u×µH) = (u•∇)(µH) -(µH•∇)u. La seconde partie correspond à un cisaillement du champ magnétique par l'écoulement.

Équations de Navier-Stokes

Dans le cas de la MHD faisant intervenir un milieu uide, on va toujours considérer un uide newtonien incompressible, dont le mouvement est régi par les équations de Navier-Stokes. On écrit ici le terme non linéaire sous forme rotationnelle, et on utilise la pression dynamique, car c'est le choix qui a été fait pour la résolution numérique. On part alors de :

∂ t u + (∇×u) ×u -ν∆u = - 1 ρ ∇p + 1 ρ f , (1.3.14) 
∇•u = 0, (1.3.15) où u désigne le champ de vitesse, p la pression dynamique, ρ la masse volumique (supposée donc uniforme dans le uide), ν la viscosité cinématique, et f représente un champ de forçage volumique. On décompose ce forçage en deux parties distinctes f = f 0 + f L , où f L désigne la force de Lorentz, qui traduit l'action du champ magnétique sur le uide, et f 0 désigne un forçage extérieur. La force de Lorentz s'écrit f L = j×B, ce qui entraîne, en utilisant (1.3.7), (1.3.16)

f L = (∇×H) ×(µH).
Étant données une longueur caractéristique L, une vitesse caractéristique U, on utilise pour l'adimensionnement le temps d'advection T = L/U, si bien que, en notant P (resp. H) une échelle caractéristique de pression (resp. de champ magnétique), on obtient l'équation suivante sur les grandeurs adimensionnées :

U T ∂ t u + U 2 L (∇×u) ×u - νU L 2 ∆u = - P ρL ∇p + H 2 µ 0 ρL (∇×H) ×(µH).
(1.3.17)

Notons que l'on a omis le terme de forçage extérieur f 0 pour l'adimensionnement. On pose P = ρU 2 , et on introduit deux paramètres sans dimension A 2 := µ 0 H 2 ρU 2 et le nombre de Reynolds cinétique R e := U L ν0 ; on obtient alors

∂ t u + (∇×u) ×u - 1 R e ∆u = -∇p + A 2 (∇×H) ×(µH), (1.3.18) 
∇•u = 0.

(1. 3.19) Lorsqu'on ne considère que les équations de Maxwell, on se rend compte que le choix de l'intensité de référence du champ magnétique H peut être arbitraire, car il n'intervient pas directement dans les équations adimensionnées. Dans le cadre de la magnétohydrodynamique en revanche, il apparaît par l'intermédiaire du paramètre d'interaction A. Sauf mention contraire, on considère que la vitesse caractéristique est égale à la vitesse d'Alfvén, i.e. U = H µ 0 ρ . Cela correspond alors à A = 1.

Les équations dans le code

Dans le code numérique que nous utiliserons (cf. section 3), on gardera dans les équations de Maxwell un terme de courant externe j (supposé adimensionné) et dans les équations de Navier-Stokes, un terme de forçage externe f (supposé adimensionné), i.e. on s'intéressera aux équations suivantes :

∂ t (µH) + 1 R m ∇× 1 σ ∇×H -∇× (u×µH) = 1 R m ∇× 1 σ j , (1.3.20) 
∇•(µH) = 0,

(1.3.21)

∂ t u + (∇×u) ×u - 1 R e ∆u = -∇p + A 2 (∇×H) ×(µH) + f , (1.3.22) 
∇•u = 0, (1.3.23) où A = 0 ou 1 selon que l'on s'intéresse à un cas hydrodynamique pur, ou un cas de MHD non linéaire.

1.4 L'eet dynamo L'eet dynamo peut être, de manière simpliée, décrit comme étant l'émergence et l'entretien d'un champ par les mouvements d'un uide (ou d'un solide) conducteur de l'électricité. En eet, la présence d'un terme de couplage dans l'équation d'induction (1.3.11) peut entraîner des instabilités par rapport au paramètre adimensionné R m . Plus précisément, c'est le terme d'étirement (µH•∇)u qui est le terme clef de la dynamo. Soulignons que les écoulements ne sont pas tous susceptibles d'entretenir un champ magnétique. En particulier, certaines symétries dans les champs de vitesse ou magnétique peuvent rendre impossible cet eet dynamo. Pour une description plus détaillée de certains théorèmes anti-dynamo, on renvoie à [START_REF] Moatt | Magnetic Field Generation in Electrically Conducting Fluids[END_REF]. On peut néanmoins citer les résultats suivants :

1. (Cowling, [START_REF] Cowling | The magnetic eld of sunspots[END_REF]) Un écoulement axisymétrique ne peut pas engendrer un champ magnétique axisymétrique. Notons que l'on peut avoir un eet dynamo, mais alors le champ magnétique sera porté par des modes non nuls. 2. Lorsque le conducteur a des propriétés électromagnétiques homogènes, un écoulement plan ne peut pas produire d'eet dynamo. À l'opposé, on peut citer des résultats positifs de dynamo : en premier lieu, on peut mentionner des cas de dynamo solide (i.e. le champ magnétique est entretenu par le mouvement d'un solide conducteur de l'électricité), comme la dynamo de Bullard (cf. [START_REF] Bullard | The stability of a homopolar dynamo[END_REF]) ou la dynamo de Lowes et Wilkinson (cf. [START_REF] Lowes | Geomagnetic dynamo : a laboratory model[END_REF][START_REF] Lowes | Geomagnetic dynamo : an improved laboratory model[END_REF]). Toutefois, puisqu'il semble admis par la communauté que la présence du champ magnétique terrestre actuel pourrait être expliquée par un phénomène de dynamo uide, c'est ce type de dynamo sur lequel on va mettre l'accent dans ce mémoire. Citons alors quelques résultats positifs de dynamo uide.

La dynamo de G. O. Roberts Cette dynamo a été mise en évidence expérimentalement à Karlsruhe (Allemagne) en 2000 (cf. [START_REF] Stieglitz | Experimental demonstration of a homogeneous two-scale dynamo[END_REF][START_REF] Tilgner | Numerical simulation on the onset of dynamo action in an experimental two-scale dynamo[END_REF][START_REF] Tilgner | Simulation of the bifurcation diagram of the Karlsruhe dynamo[END_REF][START_REF] Müller | A two-scale hydromagnetic dynamo experiment[END_REF]). Elle s'inspire de l'écoulement analytique de G. O. Roberts [START_REF] Roberts | Dynamo action of uid motions with two-dimensional periodicity[END_REF], qui est périodique et indépendant de la variable verticale. Son expression est : u = sin(y)e x + sin(x)e y + (cos(x)cos(y)) e z .

An de réaliser expérimentalement un écoulement proche de cet écoulement analytique, le dispositif mis en place à Karlsruhe consiste en un ensemble d'écoulements hélicoïdaux de composantes verticales opposées, engendrés dans un réseau de tubes à l'aide de pompes. On reporte en gure 1.1 un schéma de ce dispositif. Un dipôle magnétique stationnaire (perpendiculaire à l'axe des tubes) a ainsi été mis en évidence. La valeur de ce champ à saturation est de l'ordre de 250G, à 10% au dessus du seuil. Fig. 1.1: Schéma des dispositifs pour la dynamo de Karlsruhe (à gauche, [START_REF] Stieglitz | Experimental demonstration of a homogeneous two-scale dynamo[END_REF]) et Riga (à droite, [START_REF] Gailitis | Detection of a ow induced magnetic eld eigenmode in the Riga dynamo facility[END_REF])

La dynamo Ponomarenko (Riga)

Cette dynamo a été obtenue expérimentalement à Riga (Lettonie) en 1999. L'écoulement utilisé, appelé écoulement de Ponomarenko [START_REF] Yu | Theory of the hydrodynamic generator[END_REF], est assez simple et ore l'avantage d'être instable vis à vis de l'eet dynamo pour des petites valeurs de R m (de l'ordre de quelques dizaines). On donne un schéma du dispositif expérimental en gure 1.1. Le uide est entraîné en translation, puis en rotation grâce à une hélice dans un tube. Il est ensuite redirigé par un écoulement vertical vers l'entrée du tube, dans une chemise entourant le cylindre. L'ensemble est immergé dans du sodium au repos. Des simulations numériques de Stefani et al. [START_REF] Stefani | Velocity prole optimization for the Riga dynamo experiment[END_REF] ont permis l'optimisation de la conguration. L'eet dynamo a été observé pour diérents nombres de Reynolds magnétiques très proches du seuil cinématique [START_REF] Gailitis | Riga dynamo experiment and its theoretical background[END_REF].

L'expérience Von Kármán Sodium (VKS) Cette expérience est menée conjointement depuis quelques années par des équipes du CEA Saclay, du CEA Cadarache et des Écoles Normales Supérieures de Paris et Lyon. Il s'agit d'obtenir un eet dynamo à partir d'un écoulement de Von Kármán dans du sodium liquide. Le dispositif expérimental, représenté de façon simpliée en gure 1.2, consiste essentiellement en un cylindre de rayon R, de hauteur H et de rapport de forme Γ := H/R = 1.8. L'écoulement est forcé par deux disques munis de pales et tournant en contra-rotation. Pour de grandes valeurs du nombre de Reynolds cinétique R e , l'écoulement obtenu est très turbulent et hélicitaire. Néanmoins, il n'est pas forcément générateur de dynamo. En eet, une première expérience dans laquelle disques et pales étaient faits d'acier n'a pas permis de mettre en évidence un eet dynamo, mais a tout de même permis d'identier divers mécanismes d'induction [START_REF] Bourgoin | Magnetohydrodynamics measurements in the Von Kármán Sodium experiment[END_REF][START_REF] Marié | Open questions about homogeneous uid dynamos : the VKS experiment[END_REF][START_REF] Marié | Numerical study of homogeneous dynamo based on experimental von Kármán type ows[END_REF][START_REF] Pétrélis | Nonlinear magnetic induction by helical motion in a liquid sodium turbulent ow[END_REF]. En 2006, en remplaçant l'acier par du fer doux, l'eet dynamo a pu être observé, mais sa compréhension demeure incomplète. Les sauts de perméabilité magnétique semblent jouer un rôle essentiel dans cette dynamo et c'est pourquoi nous y avons consacré trois articles (en chapitres annexes) dans cette thèse. La dynamo en précession L'eet dynamo engendré par un mouvement de précession a été fortement étudié en géométrie sphérique, car la précession est considérée comme une source (tout au moins partielle) possible du champ magnétique terrestre (cf. [START_REF] Malkus | Precession of the Earth as the cause of geomagnetism : Experiments lend support to the proposal that precessional torques drive the Earth's dynamo[END_REF][START_REF] Tilgner | Precession driven dynamos[END_REF] par exemple). Des études paléomagnétiques tendent d'ailleurs à conrmer cette idée [30]. La conguration est assez simple : un uide conducteur de l'électricité est placé dans un conteneur en rotation par rapport à un axe de symétrie (conteneur axisymétrique). Cet axe de symétrie est lui-même en rotation dans le référentiel du laboratoire. Une expérience est en cours de montage à Dresde (Allemagne), an d'étudier cette dynamo [START_REF] Stefani | DresDyn -A new facility for MHD experiments with liquid sodium[END_REF]. L'un des attraits de cette dynamo en précession est le fait qu'elle est un modèle de dynamo homogène ; en eet, le uide homogène est mis en rotation autour de deux axes, sans guidage (comme à Karlsruhe) ni dispositif d'injection (comme à Riga), et ne nécessite pas de forçage externe par un matériau solide en fer doux (crucial dans la dynamo de Cadarache). Chapitre 2 Approximation des équations de Maxwell en milieu hétérogène Dans ce chapitre plutôt mathématique, on essaie de présenter de manière simpliée les fondements de la méthode numérique mise en place pour la résolution des équations de Maxwell. On commence par écrire un problème simplié sous forme variationnelle, et on discute de l'approximation dans les espaces fonctionnels naturellement mis en jeu. On donne ensuite une formulation permettant de retrouver de la convergence. Les résultats importants de ce chapitre sont : l'estimation de régularité (2.1.20), qui correspond au résultat principal prouvé dans l'annexe A, qui donne une régularité a priori des solutions, les théorèmes 2.3.1 et 2.3.2, qui correspondent aux principaux résultats prouvés dans l'annexe B, et qui justient de la convergence de la méthode, aussi bien sur des problèmes aux limites que pour la recherche de valeurs propres. Après avoir illustré numériquement la convergence de la méthode, on discute également rapidement d'une autre formulation, qui pourrait sembler un peu plus naturelle, mais qui est également plus contraignante sur les espaces d'approximation, et sera donc écartée.

2.1

Cadre fonctionnel

Modèle simplié

Pour bien comprendre la méthode développée et mise en place numériquement, on se place dans le cadre suivant : dans tout ce chapitre, on considère un domaine borné Ω conducteur, et on suppose que Ω = i=1,N Ω i , avec dans chaque Ω i , des propriétés physiques (i.e. µ et σ) uniformes et isotropes. Pour simplier, on considère même que σ et µ sont constants sur chaque Ω i . On fait en outre l'hypothèse que tous les domaines Ω et Ω i ont une frontière Lipschitz. On peut écrire les équations régissant l'évolution du champ magnétique sous la forme suivante :

∂ t (µH) + ∇× 1 σ ∇×H = g dans Ω, (2.1.1) ∇•(µH) = 0 dans Ω, (2.1.2)
où g contient le terme de couplage (on écrit les équations sous cette forme car numériquement, le terme de couplage sera traitée de manière explicite). An de simplier notre propos, suppo-sons que g est une donnée et considérons également que le domaine Ω est entouré par un milieu de perméabilité innie, i.e. on impose la condition de bord suivante sur Γ := ∂Ω : H×n = 0, où n désigne la normale unitaire sortante. Enn, on note Σ l'interface au niveau de laquelle µ et σ peuvent présenter des discontinuités, i.e. Σ := i =j ∂Ω i ∩ ∂Ω j . On rappelle alors que l'on a les relations de continuité suivantes :

H i ×n i + H j ×n j = 0 sur Σ, (2.1.3) µ i H i •n i + µ j H j •n j = 0 sur Σ, (2.1.4) où les indices i et j indiquent le sous-domaine sur lequel on considère chaque quantité, et sont tels que ∂Ω i ∩ ∂Ω j = ∅. Il ne faut pas oublier d'ajouter une donnée initiale, H |t=0 = H 0 , où H 0 est supposé connu. La diculté de l'approximation de ces équations par éléments nis réside notamment dans la recherche d'une solution stationnaire de (2.1.1). En eet, dans le cas instationnaire, avec l'hypothèse que ∇•g = 0, si on part de ∇•(µH 0 ) = 0, alors l'équation d'induction (2.1.1) assure que µH est toujours à divergence nulle. En revanche, lorsque l'on cherche une solution stationnaire, i.e. lorsqu'on veut résoudre 

Espaces fonctionnels

Dénissons ici le cadre fonctionnel dont nous allons avoir besoin par la suite. Sauf mention contraire, tous les espaces utilisés ici seront équipés de leur norme naturelle. On peut retrouver ces dénitions dans les introductions des annexes A et B, mais on les redonne ici par souci de clarté. Pour un ouvert E de R d , d = 2, 3 donné, on notera L 2 (E) l'ensemble des fonctions (scalaires) mesurables de carré intégrables sur E. On note également W 1,2 (E) l'ensemble des fonctions de L 2 (E) dont toutes les dérivées sont encore de carré intégrable. Le sous-ensemble de W 1,2 (E) formé de toutes les fonctions qui s'annulent sur le bord de E sera noté W 1,2 0 (E).

Lorsque E est borné dans au moins une direction, en utilisant l'inégalité de Poincaré (cf. par exemple [23, chapitre 9]), on considère la norme suivante sur W 1,2 0 (E) :

q W 1,2 0 (E) := ∇q L 2 (E) .
Pour distinguer les espaces de fonctions à valeurs scalaires et les espaces de fonctions à valeurs vectorielles, on utilisera des caractères gras. On utilise encore les espaces suivants :

H curl (E) := F ∈ L 2 (E) | ∇×F ∈ L 2 (E) ,
(2.1.11)

H 0,curl (E) := F ∈ H curl (E) | F×n |∂E = 0 ,
(2.1.12)

H div (E) := F ∈ L 2 (E) | ∇•F ∈ L 2 (E) ,
(2.1.13)

H div=0 (E) := F ∈ L 2 (E) | ∇•F = 0 , (2.1.14) 
X(E) := H 0,curl (E) ∩ H div=0 (E) ,

(2.1.15)

X µ (E) := {F ∈ H 0,curl (E) | ∇•(µF) = 0} .
(2.1.16)

On dénit enn les espaces de Sobolev fractionnaires, en utilisant l'interpolation réelle (cf. [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF] ou [143, chapitre 22] par exemple) : pour 0 < s < 1,

(2.1.17) W s,2 (E) := L 2 (E), W 1,2 (E) s,2 et

W s,2 0 (E) := L 2 (E), W 1,2 0 (E) s,2
.

On notera W -s,2 (E) le dual de W s,2 0 (E). Notons que les espaces W s,2 et W s,2 0 correspondent aux espaces H s et H s 0 introduits dans le chapitre A. On évite ici la notation H pour éviter toute confusion avec le champ magnétique considéré dans le problème. Dans la suite, on notera (•, •) E le produit scalaire sur E, i.e.

(2. 1.18) ∀f, g ∈ L 2 (E), (f, g)

E := E f g.
Bien souvent, lorsque E = Ω, on omettra les références à E.

Remarque 2.1.1. Les espaces d'interpolation W s,2 (E) peuvent être vus comme des espaces intermédiaires entre L 2 (E) et W 1,2 (E).

Pour comprendre ces espaces intermédiaires, on donne (sans démonstration) le résultat suivant : il existe c dépendant uniquement de E et de s tel que,

∀f ∈ W s,2 (E), ∀t > 0, ∃f t ∈ W 1,2 (E), f -f t L 2 (E) ≤ ct s f W s,2 (E) , f t W 1,2 (E) ≤ ct s-1 f W s,2 (E) .
Ce résultat signie que, pour tout élément de W s,2 (E), on peut trouver une suite d'approximations dont on peut contrôler à la fois la vitesse de convergence dans L 2 (E) et la vitesse de divergence (lorsque la suite diverge) dans W 1,2 (E). Le caractère bien posé de cette formulation, ainsi que la régularité a priori des solutions, est plus compliqué à établir qu'il n'y paraît, en particulier dans le cas où µ présente des discontinuités. Nous y avons consacré un article, reporté en annexe A. On renvoie le lecteur à ce chapitre pour les détails, et on ne cite ici que les résultats importants :

En utilisant la Proposition A.4.1, on a la coercivité de la forme bilinéaire dénie par le membre de gauche de (2.2.1). Le théorème de Lax-Milgram (cf. [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF]Chap. 5] par exemple) assure alors l'existence et l'unicité d'une solution H ∈ X µ . En utilisant le théorème A.5.1, on montre qu'il existe τ µ > 0 (resp τ σ > 0) dépendant uniquement de Ω et µ (resp. σ) et tels que la solution H ∈ X µ de (2.1.19) vérie :

(2.1.20)

H W sµ,2 (Ω) + ∇×H W sσ ,2 (Ω) ≤ c g L 2 (Ω) ,
pour une constante c ne dépendant que de Ω et des indices s µ ∈ [0, τ µ ) et s σ ∈ [0, τ σ ). Il s'agit maintenant d'approcher la solution de (2.1.19) par une méthode d'éléments nis. La diculté réside dans la contrainte de divergence nulle. Une première idée est d'ajouter un terme de stabilisation dans la forme bilinéaire, pour assurer une divergence nulle. Nous allons voir que le choix de cette stabilisation n'est pas anodin.

Cas simplié, µ = 1

Dans cette section, on explique pourquoi la stabilisation de la divergence dans L 2 (Ω), qui paraît naturelle, peut poser problème. On se limite au cas µ ≡ 1, σ ≡ 1, et on suppose g à divergence nulle (et indépendante du temps bien sûr).

2.2.1

Formulation faible du problème continu.

La formulation variationnelle (2.1.19) s'écrit alors : trouver H ∈ X tel que, pour tout F ∈ X, (∇×H, ∇×F) = (g, F) , (2.2.1) la contrainte de divergence nulle étant contenue dans l'espace X. Toutefois, il n'est pas commode de construire des espaces d'approximations qui vérient la contrainte de divergence nulle (rappelons que nous voulons utiliser des éléments de Lagrange continus). On peut alors considérer un nouveau problème variationnel : trouver H ∈ H 0,curl (Ω) ∩ H div (Ω) tel que, pour tout F ∈ H 0,curl (Ω) ∩ H div (Ω), (∇×H, ∇×F) + (∇•H, ∇•F) = (g, F) . (2.2.2) Le caractère bien posé de ces deux formulations découle directement du théorème de Lax-Milgram grâce à l'inégalité

(2.2.3) ∀F ∈ H 0,curl (Ω) ∩ H div (Ω) , c F 2 L 2 (Ω) ≤ ∇×F 2 L 2 (Ω) + ∇•F 2 L 2 (Ω) ,
où c est une constante qui ne dépend que du domaine Ω (voir par exemple [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF]). Utilisant le lemme 2.2.1 ci-après, on peut montrer que les deux formulations sont équivalentes.

On pose ensuite w := F -∇p. Puisque F ∈ H curl (Ω) et que ∇×∇p = 0, on a w ∈ H curl (Ω).

En outre, la condition de Dirichlet homogène sur p implique ∇p×n = 0 sur ∂Ω. Il s'en suit que w×n = 0 sur ∂Ω. Enn, on a F ∈ H div (Ω) et par dénition, ∆p = ∇•F, ce qui implique ∇•w = 0. On a donc bien montré que w ∈ X. Par ailleurs, puisque w est à divergence nulle et q ∈ W 1,2 0 (Ω), on a bien (w, ∇p) = 0.

La formulation (2.2.2) est une version simpliée de la formulation utilisée dans [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF], qui était en premier lieu implémentée dans le code SFEMaNS. On va voir qu'elle n'est pas toujours adaptée aux éléments nis de Lagrange continus, et on présentera une alternative.

Éléments nis de Lagrange.

Dans toute la suite du chapitre, on note {T h } h>0 une famille régulière de maillages anes quasi-uniformes, de taille caractéristique h, i.e. on fait les trois hypothèses suivantes sur la famille de maillages :

1. (famille régulière) Il existe β 0 > 0 tel que, pour tout h > 0 et tout K ∈ T h , (2.2.5)

h k ρ K ≤ β 0 ,
où h K désigne le diamètre de l'élément K, et ρ K le diamètre de la plus grosse boule incluse dans K.

Notons ε h := inf F h ∈X h H -F h H 0,curl (Ω)∩H div (Ω) . La proposition précédente assure qu'il existe une constante c indépendante de h telle que,

ε h ≤ H -H h H 0,curl (Ω)∩H div (Ω) ≤ cε h .
Ainsi, une condition nécessaire et susante pour que l'approximation H h converge vers H lorsque h tend vers 0 est que ε h → 0. Or, puisque X h ⊂ W 1,2 (Ω), on obtient :

(2.2.11)

∀h > 0, ε h ≥ inf F h ∈W 1,2 (Ω)
H -F h H curl (Ω)∩H div (Ω) =: ε.

Rappelons maintenant un résultat dû à Costabel :

Théorème 2.2.1 (cf. [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF]). Si Ω n'est pas convexe et que sa frontière n'est pas de classe C 1 , alors l'espace W 1,2 (Ω) est un sous-espace strict et fermé de H curl (Ω) ∩ H div (Ω).

En d'autres termes, pour certains domaines Ω présentant des singularités (notamment des coins ou des arêtes rentrantes), on a ε > 0, ce qui implique que le schéma peut, pour certaines données, ne pas converger. En illustration, on renvoie à la gure 2.1. Notons que le résultat démontré dans [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF] est plus précis car il donne des indications précises sur la codimension de W 1,2 (Ω) dans H curl (Ω) ∩ H div (Ω), en utilisant la géométrie de Ω. Nous allons mettre au point une méthode qui nécessite le moins d'informations possibles sur Ω, c'est pourquoi nous nous contentons de cette forme du théorème 2.2.1.

2.3

Contrôle de la divergence La stabilisation dans L 2 (Ω) de l'induction magnétique n'assurant pas la convergence, on doit se tourner vers un autre type de stabilisation. Une approche est celle de la stabilisation dans des espaces pondérés, suggérée par Costabel et al. (cf. [START_REF] Costabel | Weighted Regularization of Maxwell Equations in Polyhedral Domains[END_REF] par exemple), et reprise par la suite par Bua et al. [START_REF] Bua | Solving electromagnetic eigenvalue problems in polyhedral domains with nodal nite elements[END_REF]. On peut également trouver une autre approche, proposée par Bramble et al. [START_REF] Bramble | A new approximation technique for div-curl systems[END_REF][START_REF] Bramble | The approximation of the Maxwell eigenvalue problem using a least-squares method[END_REF], qui consiste en une méthode de moindres carrés, et évite encore l'utilisation d'éléments nis complexes. Le point commun de ces méthodes est qu'elles sont basées sur des espaces intermédiaires. On utilise ici également des espaces intermédiaires, dans la continuité du travail de Bonito & Guermond [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF]. On va démontrer un résultat d'approximation pour une formulation abstraite, car c'est sur cette formulation qu'on va se baser pour développer une formulation plus facile à implémenter. Dans toute la suite, on considère µ > 0 et σ > 0, constants sur chaque sous-domaine Ω i .

Stabilisation dans des espaces intermédiaires

En s'inspirant du problème (2.2.2), on peut introduire l'espace suivant :

X s := F ∈ H 0,curl (Ω) | ∇•(µF) ∈ W s-1,2 (Ω) ,
pour s ∈ (0, 1). On cherche alors H ∈ X s tel que, (2.3.1)

∀F ∈ X s , 1 σ ∇×H, ∇×F + ∇•(µH), ∇•(µF) W s-1,2 (Ω) = (g, F) , où •, • W s-1,2 ( 
Ω) désigne le produit scalaire sur W s-1,2 (Ω). Notons que (2.2.2) correspond au cas s = 1. Pour l'instant, nous considérerons que g est à divergence nulle.

Coercivité et consistance

Là encore, on fait appel aux résultats de l'annexe A.

Proposition 2.3.1. Le problème (2.3.1) est bien posé.

Preuve. En utilisant la proposition A.4.1, on a l'existence de τ > 0 dépendant uniquement de Ω et µ, et tel que X s s'injecte continument dans W s,2 (Ω), pour s ∈ [0, τ ). En outre, on a l'inégalité : Preuve. Soit g ∈ H div=0 (Ω) et H ∈ X µ la solution de (2.1.19). On a bien H ∈ X s , pour tout s ∈ (0, 1). Soit F ∈ X s . On résout le problème elliptique suivant : trouver p ∈ W 1,2 0 (Ω) tel que, ∀q ∈ W 1,2 0 (Ω), (µ∇p, ∇q) = (µF, ∇q) .

∀F ∈ X s , F 2 W s,2 (Ω) ≤ c ∇×F 2 L 2 (Ω) + ∇•(µF)
On pose ensuite w := F -∇p. On voit immédiatement que w ∈ H curl (Ω) et ∇×w = ∇×F. Par ailleurs, la condition p |Γ = 0 implique que ∇p×n = 0, et donc w ∈ H 0,curl (Ω). Enn, par dénition de p, on a ∇•(µw) = 0, ce qui implique que w ∈ X µ . En utilisant (2.1.19), on obtient :

1 σ ∇×H, ∇×F + ∇•(µH), ∇•(µF) W s-1,2 (Ω) = 1 σ ∇×H, ∇×w + 0, ∇•(µF) W s-1,2 (Ω)
= (g, w) .

Or, p ∈ W 1,2 0 (Ω) et g est à divergence nulle, ce qui implique que (g, ∇p) = 0. Au nal, on a bien :

1 σ ∇×H, ∇×F + ∇•(µH), ∇•(µF) W s-1,2 (Ω) = (g, F) ,
i.e. H est la solution de (2.3.1).

Les deux problèmes étant équivalents, on s'intéresse à l'approximation de (2.3.1) par éléments nis.

Approximation par éléments nis de Lagrange

On introduit un espace d'approximation qui prend en compte l'interface Σ où les coecients σ et µ peuvent présenter des discontinuités.

(2.3.2)

X h := F h ∈ L 1 (Ω), | ∀i, F h ∈ C 0 (Ω i ), ∀K ∈ T h , F h|K ∈ P ℓ .
On peut alors montrer que, pour tout s ∈ 0, 1 2 , on a X h ⊂ X s . Dans toute la suite, on prend s < τ < 1 2 . On peut alors dénir une approximation H h ∈ X h par :

(2.3.3)

∀F h ∈ X h , 1 σ ∇×H h , ∇×F h + ∇•(µH h ), ∇•(µF h ) W s-1,2 (Ω) = (g, F h ).
En utilisant des arguments similaires à la partie précédente, on peut montrer le résultat d'approximation suivant :

Proposition 2.3.3. Pour g ∈ H div=0 (Ω), on note H ∈ X s la solution de (2.3.1) et H h ∈ X h la solution de (2.3.3). Il existe c uniforme en h telle que :

(2.3.4) H -H h X s ≤ c inf F h ∈X h H -F h X s .
On rappelle que la norme sur X s est dénie par :

F 2 X s := F 2 L 2 (Ω) + ∇×F 2 L 2 (Ω) + ∇•(µF) 2 W s-1,2 (Ω) .
Enn, on termine cette partie par le résultat d'approximation suivant : Proposition 2.3.4. Soient s ∈ [0, τ ) et g ∈ H div=0 (Ω). On note H ∈ X s la solution de (2.3.1) et H h ∈ X h la solution de (2.3.3). Il existe c uniforme en h et r > 0 tels que :

(2.3.5) H -H h X s ≤ ch r g L 2 (Ω) .

Preuve. Avec la proposition précédente, il sut de montrer que l'on peut trouver r > 0 et 

F h ∈ X h tels que H -F h X s ≤ ch r g L 2 (Ω
H -F h L 2 (Ω) ≤ H -K δ H L 2 (Ω) + K δ H -C h K δ H L 2 (Ω) ≤ cδ t H W t,2 (Ω) + ch ℓ+1 δ t-ℓ-1 H W t,2 (Ω)
Pour le deuxième terme, on utilise les résultats d'approximation (B.4.3), (B.3.18) et (B.3.17) :

∇×H -∇×F h L 2 (Ω) ≤ ∇×H -∇×K δ H L 2 (Ω) + ∇×K δ H -∇×C h K δ H L 2 (Ω) ≤ cδ t ∇×H W t,2 (Ω) + ch ℓ δ t-ℓ-1 H W t,2 (Ω)
Enn, pour la divergence, on utilise le fait que ∇•F W s-1,2 (Ω) ≤ F W s,2 (Ω) , pour obtenir,

∇•(µ(H -F h )) W s-1,2 (Ω) ≤ µ(H -F h ) W s,2 (Ω) ≤ c H -F h W s,2 (Ω) .
La dernière inégalité, non triviale (c'est l'objet de la proposition A.2.1), est vraie puisque s < 1 2 . La constante c dépend alors de µ et de la décomposition de Ω en sous-domaines Ω i . Enn, on applique les résultats d'approximation (B.4.3), (B. 3.18) et (B. 3.16), pour aboutir à :

∇•(µ(H -F h )) W s-1,2 (Ω) ≤ c H -K δ H W s,2 (Ω) + c K δ H -C h K δ H W s,2 (Ω) ≤ cδ t-s H W t,2 (Ω) + ch ℓ+1-s δ t-ℓ-1 H W t,2 (Ω) .
Enn, on regroupe toutes ces inégalités en utilisant (2.1.20), pour obtenir :

H -F h X s ≤ c δ t-s + h ℓ δ t-ℓ-1 g L 2 (Ω) .
On peut maintenant choisir δ de sorte que δ t-s = h ℓ δ t-ℓ-1 , i.e. δ = h ℓ 1-s+ℓ . On obtient alors :

H -F h X s ≤ ch r g L 2 (Ω) , avec r = (t-s)ℓ
1-s+ℓ .

2.3.4

Inconvénients de cette méthode À ce stade, on a construit (tout au moins de manière théorique) une méthode basée sur des espaces intermédiaires qui assure la convergence des solutions discrètes vers la solution continue. Néanmoins, deux inconvénients sont à noter :

Nous avons uniquement prouvé la convergence de la méthode pour le problème aux limites, i.e. le problème (2.1.5)-(2.1.6)-(2.1.7), lorsque le second membre est à divergence nulle. Or, les formulations variationnelles (2.1. [START_REF] Bossavit | Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, volume 2 of Electromagnetism[END_REF]) ou (2.3.1) autorisent un second membre à divergence non nulle. Dans ce cas, les deux problèmes ne sont plus équivalents. Ce problème a déjà été soulevé dans [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF], et implique que la méthode ne sera pas adaptée à la recherche de valeurs propres (i.e. à l'approximation du problème (2.1.8)-(2.1.9)-(2.1.10)). Le deuxième inconvénient de cette méthode est qu'elle met en jeu le produit scalaire dans l'espace W s-1,2 (Ω). Il faut donc savoir calculer (ou au moins approcher numériquement) ce produit scalaire, ce qui n'est pas aisé. En conséquence, on va devoir modier quelque peu cette méthode, an de remplir ces deux objectifs : obtenir de la convergence quel que soit le second membre, et ne faire intervenir que des termes faciles à calculer.

Formulation mixte

Expliquons comment nous passons de la formulation (2.3.1) à une formulation mixte, plus adaptée. Il ne s'agit ici que de donner les idées directrices, mais pas de démonstrations au sens propre. On démarre de la forme bilinéaire a 1 h sur X h dénie par :

a 1 h (F h , G h ) := 1 σ ∇×F h , ∇×G h + ∇•(µF h ), ∇•(µG h ) W s-1,2 (Ω) .
On procède en quatre étapes : 1. On se débarrasse du produit scalaire dans W s-1 (Ω). En vertu de l'inégalité inverse

∇•(µF h ) W s-1,2 (Ω) ≤ ch -s ∇•(µF h ) W -1,2 (Ω) ,
vraie pour tout F h ∈ X h , on remplace a 1 h par a 2 h dénie par :

a 2 h (F h , G h ) := 1 σ ∇×F h , ∇×G h + h -2s ∇•(µF h ), ∇•(µG h ) W -1,2 (Ω) .
2. On traite le produit scalaire dans W -1,2 (Ω) à l'aide d'une formulation mixte. À ces ns, on introduit l'opérateur (-∆ µ ) -1 : W -1,2 (Ω) → W 1,2 0 (Ω) déni par :

∀q ∈ W 1,2 0 (Ω), µ∇ (-∆ µ ) -1 f , ∇q = -f, q W -1,2 (Ω),W 1,2 0 (Ω) ,
le membre de droite étant le crochet de dualité. On peut alors vérier que la forme bilinéaire b dénie sur W -1,2 (Ω) par :

∀f, g ∈ W -1,2 (Ω), b(f, g) = -f, (-∆ µ ) -1 g W -1,2 (Ω),W 1,2 0 (Ω)
est un produit scalaire équivalent au produit scalaire usuel sur W -1,2 (Ω) (voir par exemple [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF]Chapitre 4] pour le cas µ ≡ 1, i.e. le cas où (-∆ µ ) -1 est l'inverse de l'opérateur de Laplace avec conditions de Dirichlet homogènes). Soient alors

F h , G h ∈ X h . On note p := (-∆ µ ) -1 (∇•(µF h )).
On remplace alors a 2 h par a 3 h en utilisant ce nouveau produit scalaire :

a 3 h (F h , G h ) = 1 σ ∇×F h , ∇×G h -h -2s ∇•(µG h ), p W -1,2 (Ω),W 1,2 0 (Ω) = 1 σ ∇×F h , ∇×G h + h -2s (µG h , ∇p) .
On a par ailleurs, pour tout q ∈ W 1,2 0 (Ω),

(2.3.6)

(µ∇p, ∇q) = -∇•(µF h ), q W -1,2 (Ω),W 1,2 0 (Ω) = (µF h , ∇q) .
On introduit donc une nouvelle inconnue p, que l'on va également approcher par éléments nis. On utilise alors l'espace d'approximation suivant :

M h := q h ∈ C 0 (Ω) ∩ W 1,2 0 (Ω) | ∀K ∈ T h , q h|K ∈ P ℓp .
On note 

a 4 h ((F h , p h ), (G h , q h )) := 1 σ ∇×F h , ∇×G h + (µ∇p h , G h ) + h 2s (µ∇p h , ∇q h ) -(µF h , ∇q h ) .
3. On ajoute enn un terme de stabilisation qui, on le verra par la suite, facilite le caractère bien posé de la formulation discrète et évite d'imposer des contraintes importantes sur les espaces d'approximation. On utilise nalement la forme bilinéaire suivante :

a h ((F h , p h ), (G h , q h )) := 1 σ ∇×F h , ∇×G h + i h 2(1-s) (∇•(µF h ), ∇•(µG h )) Ω i + (µ∇p h , G h ) + h 2s (µ∇p h , ∇q h ) -(µF h , ∇q h ) .
(2.3.7)

4. Partant de cette forme bilinéaire, on est tenté de chercher

(H h , p h ) ∈ X h ×M h tels que, ∀(F h , q h ) ∈ X h ×M h , a h ((H h , p h ), (F h , q h )) = (g, F h ) .
Si g est à divergence nulle, cela ne pose aucun problème. Si g n'est pas à divergence nulle en revanche, la formulation n'est pas consistante. On pallie à ce problème en résolvant : tel que, ∀(F, q) ∈ X s ×W 1,2 0 (Ω), a h ((H, p), (F, q)) = (g, F) + h 2s (g, ∇q) .

∀(F h , q h ) ∈ X h ×M h , a h ((H h , p h ), (F h , q h )) = (g, F h ) + h 2s (g,
Preuve. Soit g ∈ L 2 (Ω). On note H ∈ X µ la solution de (2.1.19) et p ∈ W 1,2 0 (Ω) la solution du problème suivant :

∀q ∈ W 1,2 0 (Ω), (µ∇p, ∇q) = (g, ∇q) .
On prend alors (F, q) ∈ X s ×W 1,2 0 (Ω). On introduit également r ∈ W 1,2 0 (Ω) la solution de :

∀z ∈ W 1,2 0 (Ω), (µ∇r, ∇z) = (µF, ∇z) ,
et on note w = F-∇r. Avec cette construction, on a w ∈ X µ (Ω) et ∇×w = ∇×F. On calcule alors a h ((H, p), (F, q)). Puisque ∇•(µH) = 0, il n'y a que quatre termes à évaluer (cf. (2.3.7)) : en utilisant (2.1.19), les dénitions de p et r, ainsi que ∇•(µH) = 0, on obtient :

1 σ ∇×H, ∇×F + (µ∇p, F) + h 2s (µ∇p, ∇q) -(µH, ∇q) = 1 σ ∇×H, ∇×F + (µ∇p, ∇r) + h 2s (g, ∇q)
= (g, w) + (g, ∇r) + h 2s (g, ∇q)

= (g, F) + h 2s (g, ∇q) , ce qui est le résultat attendu. En pratique, il n'est pas forcément aisé de construire un espace d'approximation conforme dans H 0,curl (Ω). On va alors ajouter des termes de pénalisation. On renvoie à l'annexe B pour tous les détails concernant la formulation employée en pratique. Notons que l'annexe B est une version préliminaire d'un article, qui n'a pas encore été soumis. Néanmoins, déjà deux résultats importants sont démontrés dans cette annexe. Le premier, à savoir le théorème B.5.3 concerne la convergence de notre approximation dans le cadre d'un problème aux limites. Il peut s'écrire de la manière suivante : Théorème 2.3.1. Soit g ∈ L 2 (Ω). On note H la solution de (2.1. [START_REF] Bossavit | Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, volume 2 of Electromagnetism[END_REF]) et (H h , p h ) la solution discrète obtenue par notre nouvelle méthode. Il existe t > 0 tel que, si s ∈ (0, t) (s étant l'indice utilisé dans la dénition de la forme bilinéaire),

H -H h L 2 (Ω) ≤ ch r g L 2 (Ω) ,
avec r > 0 et c uniforme en h et ne dépendant pas de H ou g.

Remarque 2.3.3. Dans l'annexe B, on introduit un paramètre α ∈ (0, 1) dans la forme bilinéaire. Ce paramètre correspond en fait à α = 1s. Dans la suite, on utilisera plutôt α commme paramètre.

Le deuxième résultat important de cette annexe B concerne les valeurs propres. Il s'agit de la section B.6, dont le résultat principal peut être énoncé ainsi : Théorème 2.3.2. Pour α ∈ (1-t, 1) (i.e. s ∈ (0, t)), cette nouvelle méthode d'approximation est spectralement correcte, i.e. permet d'approcher sans pollution de spectre les valeurs propres du problème (2.1.8)-(2.1.9)-(2.1.10).

Pour les détails (notamment mathématiques) concernant cette assertion, on renvoie à l'annexe B. Ces deux résultats assurent donc que la méthode mise au point est correcte aussi bien pour résoudre des problèmes aux limites que pour calculer des valeurs propres.

Illustrations numériques

Nous terminons notre description de la méthode par quelques illustrations numériques, qui concernent à la fois le problème aux limites et le problème de valeurs propres. Nous présentons ici uniquement des calculs 2D.

Singularité géométrique

Pour justier les restrictions sur les valeurs de α (cf. 2.3.3 pour la dénition), à savoir α proche de 1, on commence par résoudre le même problème que dans [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF], avec diérentes valeurs de α. Rappelons le cadre. On se place dans un domaine plan en forme de L.

Ω := (-1, 1) 2 \ ([0, 1]×[-1, 0]) .
On prend σ = 1, µ = 1, et on cherche H tel que : problème soit équivalent à un problème du type ∇×∇×H = g, avec condition de divergence nulle et condition de bord homogène. Dans ces conditions, la solution cherchée est en fait H = ∇φ, qui présente des singularités. Plus précisément, pour tout t ∈ 0, 2 3 , H ∈ W t,2 (Ω). La gure 2.1 illustre le défaut de convergence lorsque α est proche de 0 (i.e. s proche de 1). Sur un même maillage, on compare la composante radiale de la solution approchée obtenue pour α = 0 (à gauche), de la solution réelle (au milieu) et de la solution approchée obtenue pour α = 0.75 (à droite). Notons que le cas α = 0 correspond au cas 2.2.2 dont on a prédit le défaut de convergence.

Sauts de perméabilité

Illustrons maintenant le comportement de l'approximation pour des cas où les perméabilités sont discontinues. On reprend un exemple présenté dans [START_REF] Ciarlet | Weighted regularization for composite materials in electromagnetism[END_REF]. On garde Ω le domaine en L, que l'on décompose en trois sous-domaines :

Ω 1 = (0, 1) 2 , Ω 2 = (-1, 0)×(0, 1), Ω 3 = (-1, 0) 2 .
On prend alors une distribution de perméabilité telle que

µ |Ω 2 = 1 et µ |Ω 1 = µ |Ω 3 =: µ r . On note λ > 0 une solution de tan λπ 4 tan λπ 2 = µ r .
On dénit alors le potentiel scalaire S λ (r, θ) = r λ φ λ (θ), où la fonction φ λ est dénie par :

φ λ (θ) = sin(λθ) si 0 ≤ θ < π 2 , φ λ (θ) = sin λπ 2 cos λπ 4 cos λ θ - 3π 4 si π 2 ≤ θ < π, φ λ (θ) = sin λ 3π 2 -θ si π ≤ θ ≤ 3π 2 .
On résout à présent le problème suivant :

∇×∇×H = 0, ∇•(µH) = 0, H×n |∂Ω = ∇S λ ×n,
La solution de ce problème est alors H = ∇S λ . On présente deux séries de calculs, pour λ = 0.535 et λ = 4.535. Dans ces deux cas, on a µ r = 0.499 ± 10 -3 . On s'intéresse à la norme L 2 de 

Calcul de valeurs propres

Enn, on termine ces illustrations par un calcul de valeurs propres. On se place sur un domaine

Ω = (-1, 1) 2 ,
découpé en quatre sous-domaines :

Ω 1 = (0, 1) 2 , Ω 2 = (-1, 0)×(0, 1), Ω 3 = (-1, 0) 2 , Ω 4 = (0, 1)×(-1, 0).
On choisit alors une distribution de perméabilité telle que µ

|Ω 1 = µ |Ω 3 = 1 et µ |Ω 2 = µ |Ω 4 =: µ r .
Un benchmark des valeurs propres pour les cas µ r ∈ { 1 2 , 1 10 , 1 100 , 1 10 8 } a été eectué par Dauge et al. [START_REF] Dauge | Benchmark for Maxwell[END_REF]. On présente ici le cas µ r = 0.1, avec α = 0.7, et on compare les résultats avec le benchmark. Le tableau 2.1 présente les résultats pour les quatre premières valeurs propres. La colonne coc désigne l'ordre de convergence calculé à partir des erreurs. On peut remarquer que la deuxième valeur propre est plus dicile à approcher. Cela tient au fait qu'elle présente une singularité au niveau de l'origine. log ( H λ 1 ≃ 4.534 λ 2 ≃ 6.250 

-H h L 2 ) log(1/h) α = 0.0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 pente -2 pente -3

Un résultat sans stabilisation

On a vu dans la partie précédente que la nouvelle méthode de résolution faisait intervenir un terme de stabilisation sur la divergence de µH. On peut raisonnablement se demander si ce terme est vraiment nécessaire pour la convergence du schéma numérique. On va montrer dans cette partie que, dans un cadre simplié, on peut parfois s'en passer. Néanmoins, pour assurer la convergence, des contraintes sur les espaces d'approximation sont nécessaires. Par ailleurs, on verra que numériquement, l'un des cas de gure qui nous intéresse semble ne pas donner de convergence, ce qui explique qu'on garde en pratique le terme de stabilisation.

Cadre

On s'intéresse au cas µ, σ constants (on les prend égaux à 1 sans perte de généralité) et α = 1. On veut montrer que, pour certains choix d'éléments nis, on peut considérer une forme bilinéaire sans stabilisation de la divergence, i.e. sans le terme h 2 (∇•H, ∇•F). On note donc dans cette partie a s la forme bilinéaire dénie sur H 0,curl (Ω) ×W 1,2 0 (Ω)

2 par : ∀(H, p), (F, q) ∈ H 0,curl (Ω) ×W 1,2 0 (Ω), a s ((H, p), (F, q)) = (∇×H, ∇×F) + (∇p, F) -(H, ∇q) + (∇p, ∇q) . (2.4.1) 
On va utiliser la norme naturelle sur H 0,curl (Ω) ×W 

|||H, q||| 2 := H 2 L 2 (Ω) + ∇×H 2 L 2 (Ω) + ∇p 2 L 2 (Ω) .
On considère toujours une famille de maillages {T h } h>0 comme en 2.2. On note toujours K un élément de référence, et on se donne une fonction b dénie sur K, nulle sur le bord (fonction bulle). Pour tout K ∈ T h , on dénit b K := b • T -1 K . On va montrer que la nouvelle méthode converge lorsqu'on choisit les espaces d'approximation suivants :

X h := F h ∈ C 0 ( Ω) | ∀K ∈ T h , F h|K ∈ P 1 , (2.4.3) 
M h := q h ∈ W 1,2 0 (Ω), ∀K ∈ T h , q |K ∈ P 1 ⊕ Rb K . (2.4.4)
On suppose encore (pour simplier le propos) que

(2.4.5)

X h ⊂ H 0,curl (Ω) .

On utilise une technique à la Fortin (cf. [START_REF] Fortin | An analysis of the convergence of mixed nite element methods[END_REF] 

∀q ∈ W 1,2 0 (Ω), ∀F h ∈ X h , (∇•F h , π h q) = (∇•F h , q) , (2.4.6) ∃c > 0, ∀q ∈ W 1,2 0 (Ω), π h q W 1,2 0 (Ω) ≤ q W 1,2 0 (Ω) , (2.4.7) 
où la constante c est uniforme en h. 

∀q ∈ W 1,2 0 (Ω), ∀K ∈ T h , K π h q = K q.
On note C h un interpolateur W 1,2 0 (Ω) → M h de type Clément (cf. [START_REF] Clément | Approximation by nite element functions using local regularization[END_REF][START_REF] Bernardi | Optimal nite element interpolation on curved domains[END_REF] par exemple), et on cherche, pour q ∈ W 1,2 0 (Ω), π h q sous la forme

π h q = C h q + K∈T h γ K b K ,
où les γ K sont des nombres réels à déterminer. Rappelons qu'il existe c uniforme en h telle que, pour tout q ∈ W 1,2 0 (Ω),

C h q W 1,2 0 (Ω) ≤ c q W 1,2 0 (Ω) ,
(2.4.9)

C h q -q L 2 (Ω) ≤ ch q W 1,2 0 (Ω) .
(2.4.10)

Puisqu'on cherche à imposer (2.4.8), on obtient :

∀K ∈ T h , γ K = K (q -C h q) K b K .
En supposant, sans perte de généralité, que | K| -1 K b = 1, un changement de variable ane assure que K b K = |K|, ce qui induit :

∀K ∈ T h , γ K = |K| -1 K (q -C h q) .
On a donc construit un candidat π h , dont on sait par construction qu'il vérie (2.4.6). Par ailleurs, par construction, il est bien linéaire. Il ne reste donc plus qu'à vérier (2.4.7). Utilisant l'inégalité triangulaire, la partie C h q est immédiate, en utilisant (2.4.9). Pour la seconde partie, on remarque que :

K∈T h γ K b K 2 W 1,2 0 (Ω) = K∈T h γ 2 K ∇b K 2 L 2 (K) .
En appliquant l'inégalité de Cauchy-Schwarz dans la dénition de γ K , et on calculant par changement de variables ∇b K L 2 (K) , on obtient :

γ 2 K ≤ |K| -1 q -C h q L 2 (K) , ∇b K 2 L 2 (K) ≤ β 2 0 h 2 K h 2 K |K| | K| ∇b 2 L 2 ( K) ,
où β 0 est déni par (2.2.5). Puisque K et b sont indépendants de h, on obtient donc, en utilisant l'hypothèse (2.2.6) :

∇b K 2 L 2 (K) ≤ c |K| h 2 ,
où c est uniforme en h. On peut alors sommer et utiliser (2.4.10), pour aboutir à :

K∈T h γ K b K 2 W 1,2 0 (Ω) ≤ ch -2 K∈T h q -C h q 2 L 2 (K) = ch -2 q -C h q 2 L 2 (Ω) ≤ c q W 1,2 0 (Ω) .
Au nal, on a bien montré que 

π h q W 1,2 0 (Ω) ≤ c q W 1,2 0 (Ω) , i.e. ( 2 
∀F h ∈ X h , ∇•F h W -1,2 (Ω) ≤ c sup 0 =q h ∈M h (F h , ∇q h ) ∇q h L 2 (Ω) .
Preuve. Rappelons tout d'abord que, étant donnée la dénition de la norme sur W 1,2 0 (Ω), on a :

∀F ∈ L 2 (Ω), ∇•F W -1,2 (Ω) := sup 0 =q∈W 1,2 0 (Ω) (F, ∇q) ∇q L 2 (Ω) . Soient alors F h ∈ X h et q ∈ W 1,2 0 (Ω).
On utilise le projecteur π h déni précédemment, et l'on obtient :

(F h , ∇q) = -(∇•F h , q) = -(∇•F h , π h q) = (F h , ∇π h q) .
En utilisant (2.4.7), on a alors :

(F h , ∇q) ∇q L 2 (Ω) ≤ c (F h , ∇π h q) ∇π h q L 2 (Ω) ≤ c sup 0 =q h ∈M h (F h , ∇q h ) ∇q h L 2 (Ω) .
Le résultat est ensuite obtenu en prenant le sup sur tous les q ∈ W 1,2 0 (Ω).

Coercivité et continuité

La forme bilinéaire considérée n'est pas à proprement parler coercive sur les espaces considérés. Néanmoins, elle vérie la condition inf-sup suivante. Proposition 2.4.1. Il existe c > 0 uniforme en h telle que, pour tout

(F h , q h ) ∈ X h ×M h , (2.4.12) c|||F h , q h ||| ≤ sup (0,0) =(G h ,r h )∈X h ×M h a s ((F h , q h ), (G h , r h )) |||G h , r h |||
Par ailleurs, en utilisant par exemple [17, Lemme 3.1], il existe c ne dépendant que de Ω telle que

c F h L 2 (Ω) ≤ ∇×F h L 2 (Ω) + ∇•F h W -1,2 (Ω)
En utilisant le lemme 2.4.2, on obtient alors :

F h L 2 (Ω) ≤ cS 1 2 |||F h , q h ||| 1 2 + c sup 0 =r h ∈M h (F h , ∇r h ) ∇r h L 2 (Ω) .
Or, par dénition de S, on a, pour tout

r h ∈ M h non nul, S ≥ a s ((F h , q h ), (0, -r h )) |||0, -r h ||| = (F h , ∇r h ) ∇r h L 2 (Ω) - (∇q h , ∇r h ) ∇r h L 2 (Ω) ≥ (F h , ∇r h ) ∇r h L 2 (Ω) -∇q h L 2 (Ω) .
En prenant le sup sur r h , on obtient alors :

sup 0 =r h ∈M h (F h , ∇r h ) ∇r h L 2 (Ω) ≤ S + S 1 2 |||F h , q h ||| 1 2 .
En combinant ces inégalités, on obtient alors :

|||F h , q h ||| 2 ≤ c S 2 + S|||F h , q h ||| ,
ce qui induit le résultat voulu.

Proposition 2.4.2 (continuité). La forme bilinéaire a s est continue sur H 0,curl (Ω) ×W 1,2 0 (Ω).

Preuve. En utilisant directement des inégalités de Cauchy-Schwarz, on obtient, pour tous (H, p), (F, q) ∈ H 0,curl (Ω) ×W 

(F, q) ∈ H 0,curl (Ω) ×W 1,2 0 (Ω) : (2.4.14) a s ((H, p), (F, q)) = (g, F) .
Preuve. En procédant comme dans la proposition 2.2.1, on montre que, pour tout F ∈ H 0,curl (Ω) :

(∇×H, ∇×F) = (g, F) .
Par ailleurs, puisque H est à divergence nulle, pour tout q ∈ W 1,2 0 (Ω), on a

(H, ∇q) = 0.
En combinant ces deux relations et la dénition p = 0, on obtient le résultat voulu. 

∀(F h , q h ) ∈ X h ×M h , a s ((H h , p h ), (F h , q h )) = (g, F h ) .
Alors il existe s > 0 tel que :

(2.4.16)

|||H h -H, p h ||| ≤ ch s g L 2 (Ω) .
Preuve. On commence par prouver l'inégalité suivante :

(2.4.17)

|||H h -H, p h ||| ≤ c inf (0,0) =(F h ,q h )∈X h ×M h |||F h -H, q h |||, pour une constante c indépendante de h, H, H h et p h . Soit alors (F h , q h ) ∈ X h ×M h . Utilisant l'inégalité triangulaire, on a : |||H h -H, p h ||| ≤ |||H h -F h , p h -q h ||| + |||F h -H, q h |||.
On traite le premier terme en utilisant la condition inf-sup (2.4.12) :

|||H h -F h , p h -q h ||| ≤ c sup (0,0) =(G h ,r h )∈X h ×M h a s ((H h -F h , p h -q h ), (G h , r h )) |||G h , r h ||| .
Or, la relation de consistance (2.4.14) implique que pour tout G h , r h , on a :

a s ((H h -F h , p h -q h ), (G h , r h )) = a s ((H -F h , -q h ), (G h , r h )) .
Enn, on utilise la continuité (2.4.13) pour obtenir

|||H h -F h , p h -q h ||| ≤ c|||H -F h , -q h |||.
En prenant l'inf sur F h , q h , on aboutit à (2.4.17). Il ne reste plus qu'à montrer qu'on peut choisir un couple F h , q h ad hoc. Pour cela, on utilise Remarquons au passage que G h ∈ W 1,2 0 (Ω). On obtient alors :

F h := C h K δ H, q h := 0, où C h et K δ sont
|||H h -H, p h ||| ≤ c C h K δ H -H L 2 (Ω) + ∇×(C h K δ H -H) L 2 (Ω) ≤ c C h K δ H -K δ H L 2 (Ω) + ∇×(C h K δ H -K δ H) L 2 (Ω) + c K δ H -H L 2 (Ω) + ∇×(K δ H -H) L 2 (Ω)
En utilisant les propriétés d'approximation de C h et K δ , on aboutit à :

|||H h -H, p h ||| ≤ c h 2 δ -3 2 + hδ -3 2 + δ 1 2 H W 1 2 ,2 (Ω) + ∇×H W 1 2 ,2 (Ω)
.

Or, on peut remarquer que (cf. par exemple [17, Proposition 2.1])

H W 1 2 ,2 (Ω) + ∇×H W 1 2 ,2 (Ω) ≤ c g L 2 (Ω) .
On choisit alors δ de sorte que δ

1 2 = hδ -3 2 , i.e. δ = √ h.
On a alors :

|||H h -H, p h ||| ≤ ch 1 4 g L 2 (Ω) ,
ce qui est le résultat voulu, avec s = 1 4 .

Remarque 2.4.1. Étant donné le choix de G h ∈ W 1,2 0 (Ω) dans la preuve précédente, on voit que l'hypothèse (2.4.5) n'est pas restrictive, puisqu'on peut même prendre X h ⊂ W 1,2 0 (Ω).

Illustration numérique et conclusion

On propose trois gures pour illustrer le propos développé dans cette partie. On résout encore le problème (2.3.8) en utilisant la forme bilinéaire a s introduite précédemment, à l'aide du logiciel FreeFem++ (cf. [START_REF] Pironneau | freeFEM Homepage[END_REF]). Dans les gures 2.4, 2.5 et 2.6, pour chaque graphe, la courbe rouge correspond au cas sans stabilisation de la divergence (i.e. celui qu'on vient de décrire), et la courbe bleue est la référence avec stabilisation (et α = 1 bien sûr). On propose à chaque fois quatre courbes :

En haut à gauche : la norme L 

∇•(H -H h ) L 2 nb dof -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.

Le code SFEMaNS

Cette partie a pour but de décrire de façon succincte le code utilisé pour la résolution des équations de la MHD. On discute également des modications apportées au cours de cette thèse pour enrichir ce code. Enn, on donne quelques résultats qui illustrent le bon fonctionnement de SFEMaNS. La seule hypothèse restrictive que l'on fait est l'hypothèse que Ω v est simplement connexe, ce qui nous permet de chercher le champ magnétique dans le vide sous la forme d'un gradient. Outre la décomposition des champs selon des modes de Fourier (réels) dans la direction azimutale, on tire également parti de la symétrie cylindrique en explicitant tous les termes susceptibles de mêler les modes (les termes non linéaires ou de couplage). On obtient alors des systèmes indépendants sur chacun des modes de Fourier considérés. L'interaction entre les modes de Fourier se fait uniquement par le second membre des systèmes à résoudre.

Les hypothèses concernant l'axisymétrie peuvent sembler restrictives, mais nous pensons que ce code couvre (presque) tous les cas de dynamos réalistes, astrophysiques ou expérimentales (sphères, cylindres, tores...) et décrit également correctement un certain nombre de situations MHD pratiques. Nous admettons tout de même que nous ne pouvons pas représenter correctement le dispositif VKS. Néanmoins, nous pouvons, en modélisant les régions disques+pales, utiliser le code de calcul pour obtenir quelques informations sur la dynamo de Cadarache (cf. section 4. Enn, on lance des simulations non linéaires dans la gamme de paramètres établie par le calcul de dynamo cinématique.

Implémentation

On renvoie à [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] pour les détails concernant la discrétisation en temps des équations de Navier-Stokes. En ce qui concerne la discrétisation des équations de Maxwell, la méthode initialement mise en ÷uvre est expliquée dans [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF]. Elle a été au cours de cette thèse modiée, pour prendre en compte l'ajout de la "pression magnétique" (cf. Remarque 2.3.2). On en trouve une description dans [START_REF] Guermond | Eects of discontinuous magnetic permeability on magnetodynamic problems[END_REF], article qui est reporté en annexe D. Dans le cas d'un calcul de MHD non linéaire, on peut résumer la marche en temps (basée sur une méthode à deux pas) de la façon schématique suivante : Initialisation du champ de vitesses u 0 , u 1 , de la pression dynamique p 0 , p 1 , du champ magnétique dans le conducteur H 0 , H 1 et du potentiel dans le vide φ 0 , φ 1 . Approximation des termes non linéaires et de couplage dans l'équation de Navier-Stokes (à l'instant t n+1 ) par des extrapolations à partir de u n , u n-1 , H n , H n-1 . Calcul de u n+1 puis p n+1 en utilisant ces extrapolations. Approximation du terme de couplage dans les équations de Maxwell (à l'instant t n+1 ) par des extrapolations à partir de u n+1 , H n , H n-1 . Calcul de H n+1 et φ n+1 . On peut remarquer qu'il existe un décalage en temps entre les champs magnétiques et le champ de vitesses. Pour les cas où on veut ne résoudre que les équations de Maxwell ou que les équations de Navier-Stokes, on adapte aisément ce schéma.

Signalons enn que le code de calcul permet de traiter des conditions de périodicité, pour prendre en compte des géométries innies (par exemple un cylindre inni) dans la direction de l'axe de symétrie.

3.2

Parallèlisation sur les modes de Fourier On a souligné que les modes de Fourier pouvaient être résolus de manière quasi-indépendante, puisque l'interaction des modes de Fourier n'apparaît que dans les seconds membres. Cette caractéristique est donc propice à une parallélisation selon les modes de Fourier, mise en ÷uvre dès l'origine. Les détails concernant cette parallélisation peuvent être trouvés dans [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF].

Parallèlisation dans le plan méridien

Une nouvelle étape de parallélisation a été mise en place. Il s'agit de découper le plan méridien en un certain nombre de sous-domaines, an de répartir le calcul sur plusieurs processeurs. Dans un souci d'équilibre des charges de travail réparties sur chacun des processeurs, on distingue trois parties dans le plan méridien : une partie Ω 2D N S dans laquelle on doit résoudre les équations de Navier-Stokes pour le champ de vitesses, ainsi que l'équation d'induction pour le champ magnétique, une partie Ω 2D M XW dans laquelle la vitesse de la partie conductrice est supposée connue, et où l'on ne résout que l'équation d'induction pour le champ magnétique, une partie Ω 2D v dans laquelle on ne résout que l'équation d'induction pour le potentiel magnétique dans le vide. On utilise dans le code la librairie Metis (cf. [START_REF] Karypis | A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs[END_REF][START_REF] Lab | METIS Homepage[END_REF]) an de créer une partition équilibrée par rapport à la charge de calculs, i.e. on s'arrange pour que les sous-domaines de Ω 2D N S contiennent moins d'éléments que les autres, et que les sous-domaines de Ω 2D v , au contraire, en contiennent le plus : le but de ce découpage est de répartir équitablement tous les degrés de liberté sur les processeurs. Pour la résolution des systèmes linéaires, nous avons remplacé l'utilisation d'un solveur itératif par une méthode directe, en utilisant MUMPS (cf. [4,5,[START_REF] Amestoy | MUMPS : a MUltifrontal Massively Parallel sparse direct Solver[END_REF]) au travers d'une interface fournie par la librairie PETSc (cf. [START_REF] Balay | Ecient management of parallelism in object oriented numerical software libraries[END_REF][START_REF] Balay | PETSc users manual[END_REF][START_REF] Balay | PETSc Web page[END_REF]). On présente dans la suite quelques résultats qui conrment le bon comportement du code, aussi bien du point de vue de la précision que du point de vue de la parallélisation. La gure 3.1 montre un exemple de ce découpage du plan méridien. Dans cette partie, on présente une série de tests qui attestent du bon comportement du code numérique. Nous avons implémenté dans le code sept cas tests analytiques, pour les problèmes purement hydrodynamiques et d'induction magnétique, et nous les présentons ici. An de couvrir le cas de la MHD non linéaire, on reporte également une comparaison avec des calculs faits avec le code non parallélisé, sans la stabilisation de la divergence. Ces calculs proviennent de [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] et sont reproduits ici avec un très bon accord. Enn, on termine par quelques résultats sur la parallélisation dans le plan méridien. Notons pour être complet que des résultats concernant la parallélisation sur les modes de Fourier peuvent être trouvés dans [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF].

Ω 2D N S Ω 2D M XW Ω 2D v

Précision pour la résolution des équations de Navier-Stokes

Deux tests ont été mis en place pour vérier le bon comportement du code vis à vis des équations hydrodynamiques. Pour ces deux tests, on se donne une solution analytique (u, p) et une géométrie, et l'on calcule la solution en utilisant un terme de forçage f ad hoc, i.e.

f := ∂ t u + (∇×u)×u - 1 R e ∆u + ∇p.
On impose des conditions de Dirichlet sur la vitesse au bord du domaine. Les deux tests font intervenir R e = 1.

Test 1

On se place dans un domaine Ω cylindrique, de hauteur 1 et de rayon 1. On cherche à approcher la solution suivante :

u r (r, θ, z, t) = r 2 z 3 -3r 3 z 2 cos(θ) -r 2 z 3 + 3r 3 z 2 sin(θ) cos(t), u θ (r, θ, z, t) = 3 r 3 z 2 -r 2 z 3 (cos(θ) + sin(θ)) cos(t), u z (r, θ, z, t) = 3r 2 z 3 cos(θ) + 5r 2 z 3 sin(θ) , p(r, θ, z, t) = rz (cos(θ) + sin(θ)) sin(t).
On illustre la convergence en maillage en utilisant un pas de temps δt = Le domaine de calcul est le même que précédemment, mais on impose cette fois une condition de périodicité sur la vitesse et la pression, en z = 0 et z = 1. On cherche à approcher la solution suivante :

u r (r, θ, z, t) = -r 2 (1 -2πr sin(2πz)) sin(θ) cos(t), u θ (r, θ, z, t) = -3r 2 cos(θ) cos(t), u z (r, θ, z, t) = r 2 (4 cos(2πz) + 1) sin(θ) cos(t), p(r, θ, z, t) = r 2 cos(2πz) cos(θ) cos(t).
On illustre en gure 3.3 la convergence en maillage, avec un pas de temps δt = Pour l'équation d'induction, 5 tests ont été mis en place, au fur et à mesure du développement du code. Ils sont numérotés dans la continuité des tests sur les équations de Navier-Stokes. À l'instar des tests hydrodynamiques, on se donne d'abord une solution analytique (H, φ), et éventuellement un champ de vitesses u. Ensuite, on calcule une source de courant j et un champ électrique E pour que les équations soient satisfaites. On impose des conditions de Dirichlet sur φ au bord du domaine de calcul. Dans certains cas, le domaine conducteur touche le bord du domaine de calcul. On impose alors des conditions de Dirichlet soit sur H×n, soit sur E×n.

Test 3

Le domaine conducteur est un cylindre de hauteur 1 et de rayon 0.5. Pour le calcul, le vide correspond à la coquille cylindrique dénie par z ∈ [0, 1] et r ∈ [0.5, 1]. Des conditions de Dirichlet sont appliquées sur H×n en z = 0 et z = 1. On suppose que le domaine a une perméabilité constante µ ≡ 1 et que la conductivité est uniforme dans le conducteur σ ≡ 1.

On utilise R m = 1, et on suppose que la vitesse du conducteur est portée par des modes non nuls, et peut s'écrire :

u r (r, θ, z, t) = m 1 m=m 0 1 m 3 α m zr m-1 m cos(mθ) + β m zr m-1 m sin(mθ) , u θ (r, θ, z, t) = m 1 m=m 0 1 m 3 β m zr m-1 m cos(mθ) -α m zr m-1 m sin(mθ) , u z (r, θ, z, t) = m 1 m=m 0 1 m 3 (α m r m cos(mθ) + β m r m sin(mθ)) , avec 0 < m 0 ≤ m 1 .
On cherche à approcher la solution suivante :

(3.4.1)                                    H r (r, θ, z, t) = m 1 m=m 0 1 m 3 α m zr m-1 m cos(mθ) + β m zr m-1 m sin(mθ) cos(t), H θ (r, θ, z, t) = m 1 m=m 0 1 m 3 β m zr m-1 m cos(mθ) -α m zr m-1 m sin(mθ) cos(t), H z (r, θ, z, t) = m 1 m=m 0 1 m 3 (α m r m cos(mθ) + β m r m sin(mθ)) cos(t), φ(r, θ, z, t) = m 1 m=m 0 1 m 3 (α m zr m cos(mθ) + β m zr m sin(mθ)) cos(t).
La gure 3.4 montre le domaine utilisé pour le calcul (vue dans un plan méridien). La gure 3.5 illustre la convergence en maillage, pour diérentes valeurs de notre paramètre α. Les calculs ont été réalisés avec m 0 = 1, m 1 = 3, en utilisant seulement 3 modes de Fourier (cela est possible car le terme non linéaire u×(µH) est en fait nul), sur 2000 itérations avec un pas de temps δt = . Notons que la solution est susamment régulière pour que toutes les valeurs de α donnent de la convergence. On peut néanmoins noter quelques légères diérences sur l'ordre de convergence, qui semble être proche de 3α.

Test 4

Ce deuxième test sur l'équation d'induction a pour but de vérier le bon comportement du code vis à vis de conditions aux limites périodiques. On prend encore comme domaine de calcul le domaine représenté en gure 3.4. Cette fois, on impose des conditions périodiques, à savoir

H(z = 1) = H(z = 0), φ(z = 1) = φ(z = 0). Ω c Ω v - - 6 ?
0.5 0.5 Là encore, on suppose que µ ≡ 1 dans tout le domaine, et que σ ≡ 1 dans le conducteur. En revanche, on suppose que le conducteur est au repos, i.e. u = 0. On prend R m = 1, et on cherche à approcher la solution suivante :

(3.4.2) L'ordre de convergence est entre 2 et 3 et varie selon α.

                           H r (r, θ, z, t) = cos(t) cos(θ) cos(2πz) r r 2 0 -2π r r 0 2 A + B r r 0 , H θ (r, θ, z, t) = cos(t) sin(θ) cos(2πz) 2π r r 0 2 C -2 r r 2 

Test 5

Ce test est essentiellement le même que le test numéro 3, à ceci près que l'on découpe maintenant le domaine conducteur en deux parties, et on introduit articiellement une interface entre ces deux sous-domaines (cf. gure 3.7). La solution est encore donnée par les

Ω c1 Ω v Ω c2 - - 6 ?
0.5 0.5 

H -H h L 2 ∇×(H -H h ) L 2 ∇•(H -H h ) L 2 φ -φ h W

Test 7

Ce test correspond encore au cas de la sphère de Durand, mais où l'on suppose cette fois que la sphère interne est isolante (cf. D.4.2, cas 2). Cette hypothèse ne change pas la solution analytique, mais elle change la méthode de résolution des équations. On fait encore le calcul en une itération, avec un pas de temps δt = 10 10 . On utilise µ = 20 dans le conducteur, et on présente en gure 3.9 l'erreur en norme L 2 , sur diérents maillages, de taille caractéristique h ∈ {0.16, 0.08, 0.04, 0.02, 0.01}. On utilise diérentes valeurs du paramètre α et, comme pour le test 6, toutes ces valeurs donnent une méthode convergente et les ordres de convergence ne semblent pas très diérents : cela est encore dû à la régularité de la solution.

3.4.3

Cohérence avec la version non parallélisée du code Depuis 2009, le code a subi de profondes modications, avec des changements dans la méthode de résolution, au niveau théorique (méthode présentée plus haut) et pratique (changement de solveur linéaire). Il semble donc pertinent de vérier sur un exemple que cela n'aecte pas les résultats obtenus précédemment. On reprend ici un cas de dynamo dans une conguration Taylor-Couette présenté dans [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]. Deux congurations sont étudiées, l'une faisant intervenir des conditions de périodicité, l'autre dans un cylindre ni. La conguration utilisée est la suivante : le domaine conducteur est compris entre deux cylindres coaxiaux de rayons respectifs 1 et 2. Le reste du domaine est considéré comme du vide. Le cylindre extérieur est au repos, alors que le cylindre intérieur tourne avec une vitesse angulaire de 1.

Dans le cas périodique, le domaine de calcul utilisé a pour hauteur 4, et l'on applique des conditions de périodicité sur les bords z = ±2. Dans le cas ni, le domaine de calcul utilisé a pour hauteur 2π, et l'on applique pour le champ de vitesses des conditions de Dirichlet homogènes à z = ±π. Dans chaque cas, on commence par calculer l'écoulement u 0 obtenu par le seul forçage engendré par le mouvement des parois, avec un nombre de Reynolds R e = 120. À partir de ce champ, on fait ensuite des calculs de dynamo.

Dynamo cinématique

En gardant l'écoulement de base u 0 stationnaire calculé juste avant, on calcule les taux de croissance pour diérents nombres de Reynolds magnétiques. Les résultats obtenus sont reportés en gure 3.10. On note un excellent accord avec les calculs réalisés en 2007, malgré de légères diérences entre les tailles caractéristiques et les pas de temps utilisés. 

Dynamo non linéaire

Ecacité de la parallélisation

On a déjà signalé que le code SFEMaNS était dès l'origine parallélisé selon les modes de Fourier. Des détails sur cette implémentation et sur les tests de performance peuvent être trouvés dans [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]. Ainsi, on ne s'intéresse ici qu'à l'ecacité de la parallélisation dans le plan méridien. Pour les modes de fonctionnnement "nst" et "mxw", on présente deux valeurs. Dans un premier temps, on xe le maillage (assez n), et l'on fait plusieurs calculs avec diérents où T i représente le temps moyen d'une itération pour un découpage en i sous-domaines, et N r est le nombre minimal de processeurs que l'on a utilisé pour faire le calcul (en général, on essaie de prendre N r = 1, mais il peut arriver que les données soient trop importantes pour êtres traitées sur seulement 1 domaine). On fait également un test de parallélisation "faible", i.e. on lance plusieurs simulations avec diérents nombres de processeurs, en faisant en sorte que le nombre moyen de degrés de liberté sur chaque processeur soit toujours le même. On s'attend alors à ce que la quantité

W (N ) := T Nr T N ,
où T i représente le temps moyen d'une itération pour un découpage en i sous-domaines, soit proche de 1. Les résultats sont présenté dans le tableau 3.2. On peut remarquer que la paral- Application à l'eet dynamo Ce chapitre a pour but de discuter les diérentes applications testées au cours de cette thèse, concernant l'eet dynamo : excepté pour la section 4.1, les résultats sont présentés comme des résumés des annexes C à H. On renverra le lecteur à ces articles pour plus de détails. Notons également que l'implémentation de notre nouvelle méthode de résolution a été cruciale pour pouvoir résoudre correctement des problèmes dans des congurations de type VKS (cf. 4.2) dans lesquelles il y a de fortes variations de perméabilité. [START_REF] Busse | A simple dynamo caused by conductivity variations[END_REF]. L'idée est de faire circuler un uide conducteur de l'électricité au dessus d'un matériau présentant des variations de conductivité. Cette étude a été poursuivie par B. Gallet dans le cas de matériau présentant des sauts de perméabilité [START_REF] Gallet | Dynamo action due to spatially dependent magnetic permeability[END_REF]. Inspiré par des calculs de W. Herreman, on adapte ici cette conguration plane à un cas cylindrique. On considère deux cylindres coaxiaux, de rayons respectifs R et R + g (cf. g. 4.1 pour une vue de dessus), et d'axe Oz. Le cylindre intérieur Ω 1 , de conductivité constante σ 1 et de perméabilité constante µ 1 , tourne 4.1: Vue de dessus du dispositif à vitesse angulaire ω. La couronne externe Ω 2 est immobile, et présente des variations de perméabilité et/ou de conductivité. L'adimensionnement est basé sur le temps diusif , i.e., on choisit les échelles de longueur, de vitesse et de temps suivantes :

N/N r NST (N r = 1) MXW (N r = 2) S(N ) W (N ) S(N ) W (N ) 2 
Ω 1 σ 1 , µ 1 constantes Ω 2 σ variable Fig.
L = R, U = ωR, T = σ 1 µ 1 R 2 .
L'équation adimensionnée vériée par le champ magnétique est alors l'équation (1.3.13) 

∂ t (µH) = -∇× 1 σ ∇×H + R m ∇× (u×µH) , où R m = σ 1 µ 1 ωR 2 .
α 0 = 1, k z = 1, ξ 0 = 1 et κ 0 = 0.9.
Le seuil de dynamo trouvé est R mc ≃ 11300. Ce seuil est très élevé, et l'on aimerait trouver une conguration qui le fasse signicativement baisser. Une idée est d'ajouter des variations de perméabilité en plus, par exemple, considérer µ = µ 1 constante sur Ω 1 et µ = µ 2 constante sur Ω 2 . Une étude plus approfondie est en cours, mais il semblerait que µ 1 > µ 2 aide à baisser le seuil de dynamo, alors que dans la limite opposée, le seuil tend vers l'inni. Des calculs réalisés avec µ 1 = 10, µ 2 = 1 donnent un seuil R mc ≃ 1520 par exemple, ce qui est bien inférieur au cas µ 1 = 1. Ce comportement n'est pas tellement étonnant, car, si l'on met de côté les conditions de compatabilité induites par ce saut de perméabilité, on remarque que, pour µ 2 = 1 xé, la variation de µ 1 inue directement sur le nombre de Reynolds. Augmenter µ 1 revient grosso modo à augmenter R m , et donc contribue à abaisser le seuil. On peut également utiliser notre méthode d'éléments nis pour faire des calculs avec σ ≡ 1 dans tout le domaine, et µ variable dans la couronne. En choisissant µ constant par morceaux dans la couronne, on décrit alors une situation plus réaliste. On choisit pour cet exemple µ = µ 2 constant dans la partie supérieure de la couronne, et µ = µ 3 constant dans la partie inférieure (cf. g. 4.3). On présente en gure 4.4 les taux de croissance calculés pour diérentes valeurs de R m avec les valeurs suivantes : µ 1 = 1, µ 2 = 0.5 et µ 3 = 0.1. On trouve un nombre de Reynolds magnétique critique R m ≃ 7050. Ce taux reste très élevé malgré les discontinuités de µ. Une étude plus approfondie concernant les valeurs de ce seuil dans des proportions raisonnables est à envisager.

Ω 1 Ω 2 Ω 3

Perspectives

Une étude plus approfondie du seuil de dynamo en fonction des variations de perméabilité est envisagée, mais n'a pas encore pu être réalisée. Il semble toutefois que des fortes variations de perméabilité (avec des valeurs importantes dans la zone où le uide est en mouvement) contribuent fortement à l'abaissement du seuil de dynamo. Par ailleurs, nous étudions la possibilité d'ajouter une composante verticale sur la vitesse, pour ainsi étudier des congurations de type Ponomarenko. On pourra alors étudier encore l'inuence de zones à fortes perméabilités. Enn, une étude de la dynamo dans des congurations plus réalistes est envisagée, an éventuellement de proposer un dispositif expérimental réalisable : une idée est par exemple d'ajouter une couronne entre le disque central et la couronne présentant des sauts de perméabilité, et d'y imposer un écoulement de type Taylor-Couette, i.e. de la forme u = Ar + B r e θ .

Dynamo de type VKS

L'explication des phénomènes à l'origine de la dynamo obtenue par l'expérience VKS2 reste encore vague et non unanimement acceptée. Nous avons essayé de produire à partir de données expérimentales des simulations permettant de mieux comprendre le phénomène. Nous résumons ici les principaux résultats obtenus et discutons de leur possible signication vis à vis de l'expérience VKS.

Conguration étudiée

L'expérience menée à Cadarache consiste en la génération d'un champ magnétique par le mouvement de sodium liquide dans une cuve cylindrique, de rayon R = 1.4 et de hauteur Z = 2.6. Deux disques, de rayon R d = 0.95 et d'épaisseur h = 0.1, munis de pales, sont mis en contrarotation pour forcer le mouvement du sodium liquide. La distance entre les deux disques est H i = 1.8. Ce liquide est entouré d'une ne chemise de cuivre, elle-même entourée par une couronne de sodium au repos. Ce dispositif est contenu dans une cuve en cuivre. On renvoie à la gure 4.5 pour les détails sur les positions relatives des diérents éléments. Notons que, numériquement, on ne modélise pas la ne chemise de cuivre séparant les deux couches de sodium liquide, ce qui revient à supposer qu'elle est susamment ne pour ne pas inuencer le système. Par ailleurs, le code SFEMaNS ne peut pas prendre en compte les pales sur les disques, donc nous avons dans un premier temps modélisé uniquement un cas sans pales, an de préserver l'axisymétrie. On distingue dans le domaine uide trois zones distinctes :

la zone située entre les disques r ∈ [0, R d ], z ∈ -H i 2 , H i 2 , appelée "bulk-ow", la zone proche de la paroi latérale r ∈ [R d , R], z ∈ -H i
2 , H i 2 , appelée "side-layer", les zones situées derrière les disques r ∈ [0, R], |z| ∈ H i 2 + h, Z 2 , appelées "lid'ow". Dans un premier temps, on compare deux codes de calcul sur des cas de décroissance ohmique, i.e. on suppose que le uide est au repos dans la cuve, et on regarde la décroissance du champ magnétique. Au delà du bon accord entre les deux codes de calcul (cf. gure C.8), on évalue l'inuence des sauts de perméablité et/ou de conductivité sur le taux de décroissance du champ magnétique. Cette inuence est étudiée pour deux valeurs diérentes de h, l'épaisseur des disques. On note λ le taux de décroissance calculé (λ < 0). Lorsque les disques sont épais (h = 0.6), une augmentation du saut de perméabilité ou du saut de conductivité réduit la vitesse d'atténuation du champ magnétique (i.e. |λ| diminue pour les trois cas considérés, i.e. les composantes toroïdale et poloïdale du mode m = 0, et le mode m = 1). En revanche, dans le cas de disques ns (h = 0.1, plus proches du cas expérimental), des diérences nettes apparaissent entre les modes. En eet, si le mode m = 1 se comporte comme pour les disques épais, on n'observe presque aucune inuence du saut de perméabilité (resp. saut de conductivité) sur la décroissance de la composante poloïdale (resp. toroïdale) du mode m = 0. Ce comportement est intéressant car on voit que les fortes variations de perméabilité atténuent fortement la composante poloïdale du champ magnétique, mais pas sa composante toroïdale, ce qui confère au champ magnétique une forme plus proche de celle trouvée expérimentalement.

Dynamo cinématique (mode m = 1)

Pour les calculs de dynamo cinématique, on utilise comme champ de vitesses le ot MND (Marié-Normand-Daviaud, [START_REF] Marié | Galerkin analysis of kinematic dynamos in the von Kármán geometry[END_REF]) : (4.2.1) On voit par ailleurs qu'au delà d'une certaine valeur de µ r , le taux de (dé)croissance du champ magnétique semble indépendant de µ r , les taux de croissance sont très sensibles à la forme du champ de vitesses dans la région du "bulk-ow" : de petites variations dans le ot provoquent d'importantes variations du taux de croissance. Ces calculs renforcent donc l'idée que la présence de zones à fortes perméabilités est cruciale pour la dynamo de Cadarache, alors que des sauts de conductivité semblent la freiner. Ils soulignent également l'importance d'une modélisation aussi précise que possible de ces zones de forte perméabilité, ainsi qu'une évaluation précise du champ de vitesses. Dans le cadre de notre approximation, on peut néanmoins noter que le seuil calculé pour le mode m = 1 est supérieur au Reynolds magnétique estimé dans les expériences, ce qui est en accord avec le fait que la dynamo observée expérimentalement présente un mode axisymétrique.

               u r = - π H i r(1 -r) 2 (1 + 2r) cos 2πz H i , u θ = 4ǫr(1 -r) sin πz H i , u z = (1 -r)(1 + r - 5r 

4.2.3

Résultats principaux de l'annexe D

On résume ici les résultats de dynamo cinématique présentés dans l'annexe D. On a souligné précédemment que la forme de l'écoulement dans la zone du "bulk-ow" inuait fortement sur les seuils calculés. On essaie d'utiliser un écoulement plus proche de celui réellement observé. Pour ce faire, on prend ici comme champ de vitesses un ot axisymétrique provenant de mesures dans une expérience réalisée avec de l'eau dans une conguration VKS (cf. [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF]). On ne s'intéresse ici qu'au mode m = 1. On montre alors que dans le cas de disques de forte perméabilité (µ r >> 1), la forme du ot derrière les disques ("lid-ow") n'inue pas sur le seuil de la dynamo (cf. tableau F.1) : la présence de disques de fortes perméabilités écrante l'eet du "lid-ow". Dans le cas de disques de perméabilité µ r = 1 en revanche, l'eet du "lid-ow" est visible, et inue sur le seuil de dynamo. Cela suggère donc qu'il est surtout nécessaire de se concentrer sur la zone du "bulk-ow", et la zone latérale ('side layer'), mais que les régions derrière les disques ne sont pas importantes dans la dynamo de Cadarache. Un autre résultat intéressant dans cette optique est un calcul eectué dans un modèle encore plus simplié de l'expérience VKS. On ne s'intéresse ici qu'à la zone entre les deux disques. Les domaines simpliés sont présentés en gure 4.6. On distingue trois cas :

Cas 1 : on considère la région du "bulk-ow", la "side-layer" contenant du sodium immobile, et une chemise en cuivre autour. Le reste est considéré comme isolant (en particulier, cela modélise un cas où les disques sont isolants) : on trouve R mc = 45. Cas 2 : on garde le même domaine que pour le cas 1, mais on impose sur le champ magnétique la condition H×n = 0 sur {z = ± 1 "bulk-ow" "side layer" enveloppe en cuivre Ces contraintes pourraient alors donner des champs magnétiques plus propices à la dynamo.

4.2.4

Résultats principaux de l'annexe E Les deux articles précédents ont pu attester de l'importance de disques de forte perméabilité dans l'expérience de Cadarache. Dans cet article, on pousse plus avant l'étude de l'inuence de µ r sur les seuils de dynamo. Outre une loi d'échelle pour le comportement de R mc en fonction de µ r mise en évidence pour le mode m = 1 avec l'écoulement MND donné en (4.2.1), l'étude montre des résultats probants sur le mode m = 0. Pour celui-ci, on note que le ot n'a pas ou peu d'importance : par conséquent, on se limite à l'étude du cas de décroissance ohmique. Par ailleurs, on voit qu'au delà d'un certain seuil de µ r , c'est la composante toroïdale du mode m = 0 qui est la moins atténuée. Cet eet, visible sur des disques de faible épaisseur, est lié à un phénomène de 'pompage paramagnétique' (cf. section E.4). On montre alors que la composante toroïdale du mode m = 0 est localisée au niveau des disques, et que son taux de décroissance augmente de façon inversement proportionnelle à µ r , ce qui implique que c'est cette composante qui est la moins atténuée pour de grandes valeurs de µ r .

Conclusions

Les diérentes simulations numériques ont conrmé que la présence de disques de forte perméabilité était essentielle, car elle permet de réduire signicativement le Reynolds magnétique critique. Il semblerait que les contraintes géométriques induites par les conditions de continuité du champ magnétique soient également impliquées dans la dynamo, ce qui suggère que même pour de grandes valeurs de R m , on ne peut pas obtenir de dynamo avec des disques en acier. Par ailleurs, il semble que des variations de conductivité dans les disques soient un obstacle à la dynamo. Enn, l'utilisation de disques ns de forte perméabilité permet de réduire l'atténuation du mode m = 0, même sans champ de vitesses. On peut alors penser que l'eet de pompage paramagnétique, qui intervient sur la composante purement toroïdale du mode m = 0, puisse par la suite agir sur la partie poloïdale par l'intermédiaire des termes de couplage, lorsque les distributions de perméabilités ne sont plus axisymétriques (comme dans le cas réel) et/ou pour des champs de vitesses non axisymétriques. Cela pourrait jouer un rôle important dans la dynamo de Cadarache. En revanche, les simulations numériques ne permettent pour le moment pas de comprendre l'importance de la rotation des disques dans le mécanisme de dynamo. 

Γ = Lz L où L = R o -R i .
Le cylindre intérieur est supposé solide et tourne à vitesse angulaire Ω i . L'espace entre les deux cylindres est supposé uide. On considère que la conductivité et la perméabilité sont constantes dans tout le domaine. Enn, on suppose que ces cylindres sont entourés de vide. Le dispositif est similaire à celui de la section 3.4.3. Deux diérences sont à noter : tout d'abord, on s'intéresse ici à un plus petit rapport de forme Γ = 2. Par ailleurs, le haut et le bas du domaine tournent ici avec la même vitesse angulaire que le cylindre intérieur. On va s'intéresser à la possibilité de générer un champ magnétique avec un écoulement dans cette géométrie.

4.3.2

Résultats principaux de l'annexe F Rapport vitesse poloïdale / vitesse toroïdale Dans un premier temps, on utilise cette conguration pour calculer l'écoulement de base, pour un petit nombre de Reynolds R e = 120. On obtient un écoulement stationnaire axisymétrique. On utilise alors cet écoulement pour des calculs de dynamo cinématique, à bas Reynolds magnétique (R m ≤ 200). On remarque alors que l'écoulement de base ne permet pas d'engendrer de la dynamo. On modie alors cet écoulement de base, pour étudier l'inuence du rapport entre vitesse poloïdale et vitesse toroïdale sur le champ magnétique. On reporte en gure 4.7 l'évolution du taux de croissance du champ magnétique en fonction de ǫ, paramètre adimensionné proportionnel au rapport entre vitesse poloïdale et vitesse toroïdale. On voit alors apparaître, pour R m = 200, une fenêtre de dynamo pour certaines valeurs de ǫ. Par exemple, on voit que pour ǫ = 1, qui correspond au cas de l'écoulement de base non modié, on n'a pas de dynamo (et le rapport entre vitesses poloïdale et toroïdale est Λ = 0.235). En revanche, on dépasse le seuil de dynamo à ǫ = 6.5 (i.e. Λ = 1.5275) par exemple.

Calculs avec forçage

L'écoulement utilisé pour obtenir une dynamo (avec ǫ = 1) n'est pas physique : on essaie donc par la suite d'imposer un forçage sur le champ de vitesses an d'obtenir un écoulement de base présentant un rapport Λ ≃ 1.53 entre vitesse poloïdale et vitesse toroïdale compatible avec la fenêtre de dynamo précédemment observée. Ce forçage est localisé à proximité des parois supérieure et inférieure du cylindre, et peut être interprété comme l'action de pales sur l'écoulement. Avec ce forçage, on calcule un nouvel écoulement de base, utilisé ensuite Il est bon de noter que ce seuil est en accord avec des calculs réalisés en géométrie sphérique (cf. [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF]) ou dans des cas de plus grand rapport d'aspect (cf. [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]). On peut également utiliser ces données pour un calcul non-linéaire complet de MHD, à R m = 200. Au cours du temps, on peut percevoir des changements dans la structure de cette dynamo. Dans un premier temps, on a une évolution du champ magnétique similaire au cas de dynamo cinématique (pour le mode m = 1). Une fois que le champ magnétique est susamment important pour nourrir la force de Lorentz, les autres modes de Fourier commencent à contribuer à la dynamo, et le champ de vitesses perd sa symétrie cylindrique. En revanche, la symétrie équatoriale des champs est encore respectée. Cette symétrie nit par être brisée au cours d'une courte phase de transition, provoquée par la croissance des modes pairs du champ magnétique. Il s'en suit une phase dont la dynamique est dominée par les grands modes de Fourier. Un régime non linéaire est nalement atteint lorsque les modes pairs du champ magnétique cessent de croître. Cette dynamo présente dans un premier temps les caractéristiques d'un dipôle équatorial, mais dans le régime non linéaire nal, une composante verticale du dipôle magnétique apparaît et présente des inversions.

Conclusions

On a montré que, dans une conguration de type Taylor-Couette dans un cylindre de petit rapport de forme, un écoulement non forcé ne permet pas d'obtenir de dynamo à faible Reynolds magnétique. En revanche, il est possible d'ajouter un forçage ad hoc qui permet au ot de présenter un rapport entre vitesse poloïdale et vitesse toroïdale compatible avec une dynamo. On interprète ce forçage comme une action de pales sur le uide. On peut alors imaginer une expérience dans cette conguration, dans le but d'optimiser encore le rapport entre vitesse poloïdale et vitesse toroïdale. Ce pourrait être un bon indicateur sur la forme des pales et/ou sur la puissance à fournir dans un tel dispositif. Il semble être réalisable expérimentalement, et la puissance à fournir pourrait être inférieure à celle utilisée dans l'expérience de Cadarache car, pour des géométries similaires, les turbulences induites par des turbines co-rotatives sont moins importantes que dans le cas de turbines contra-rotatives. Une expérience de dynamo est d'ailleurs envisagée par Colgate et al. [START_REF] Colgate | High magnetic shear gain in a liquid sodium stable Couette ow experiment : A prelude to an α-ω dynamo[END_REF] Dans cette section, on s'intéresse à un cas de dynamo uide homogène, et plus particulièrement à la possibilité d'engendrer un eet dynamo à partir d'un uide contenu dans une cuve en précession. Le cadre général est le suivant : on considère une cuve présentant une symétrie cylindrique. Cette cuve est remplie par un uide conducteur de l'électricité (on supposera ici µ = 1 et σ = 1 dans cette partie). L'axe de symétrie de la cuve est mis en précession autour d'un axe dirigé par un vecteur unitaire e p dans le référentiel du laboratoire. En outre, on suppose que la cuve tourne autour de son axe de symétrie (dirigé par e z ). La cuve est entourée de vide, et nous négligeons les eets éventuels liés à l'épaisseur de la cuve. On se place dans le référentiel en précession, i.e. dans un référentiel pour lequel le seul mouvement de la cuve est la rotation autour de son axe de symétrie. Ainsi, les équations de Navier-Stokes prennent une forme légèrement diérente de (1.3.22), en faisant maintenant intervenir la force de Coriolis : (4.4.1)

∂ t u + (∇×u) ×u - 1 R e ∆u + 2ǫe p ×u = -∇p + (∇×H) ×(µH) + f ,
où ǫ est le taux de précession, i.e. le rapport entre la vitesse angulaire de la précession autour de e p et la vitesse angulaire de rotation autour de l'axe de symétrie.

Dans un premier article, on étudie la possiblité d'une dynamo dans une cuve cylindrique en précession. On se place dans un cylindre de rapport de forme H R = 2, où H est la hauteur totale du cylindre, et R son rayon. On se restreint au cas ǫ = 0.15, et on considère que les axes de précession et de rotation sont orthogonaux.

Régime hydrodynamique

Dans un premier temps, on se focalise sur les équations de Navier-Stokes uniquement. Le seul forçage ici provient de la rotation de la cuve, i.e. on prend H = 0 et f = 0 dans l'équation (4.4.1), et on impose que le champ de vitesses sur le bord corresponde à la rotation de la cuve. En faisant varier le nombre de Reynolds R e , on observe un comportement similaire à celui décrit dans des cavités sphériques en précession : à bas nombre de Reynolds, le champ de vitesses est stationnaire et centrosymétrique (i.e. u(-x) = -u(x)). Lorsqu'on augmente le nombre de Reynolds, le ot perd à la fois son caractère symétrique et stationnaire. L'énergie cinétique est transférée de façon cyclique entre la partie supérieure et la partie inférieure du cylindre. S'inspirant de [START_REF] Tilgner | Precession driven dynamos[END_REF][START_REF] Wu | On a dynamo driven by topographic precession[END_REF], on s'attend à ce que la dynamo soit facilitée par un écoulement asymétrique instationnaire, c'est pourquoi on utilise par la suite R e = 1200.

Dynamo

An de déterminer des valeurs de R m susceptibles de générer une dynamo, on commence par eectuer des calculs de dynamo cinématique. Comme le champ de vitesses calculé pour R e = 1200 n'est pas stationnaire, on résout à la fois l'équation d'induction et les équations de Navier-Stokes, mais on retire le couplage dans la partie hydrodynamique (i.e. on résout (1.3.22) avec A = 0). Le calcul à R e = 1200 donne alors un seuil de dynamo R mc ≃ 750. Des calculs non linéaires ont ensuite été eectués, pour diérents nombres de Reynolds magnétiques, variant de 600 à 2400, et ont permis de prouver qu'une dynamo pouvait être générée par un cylindre en précession. Par ailleurs, la gure 4.8 (reproduction de la gure G.10) montre une coïncidence remarquable sur l'évolution de l'énergie magnétique dans trois cas distincts, à R m = 1200 : Re , les valeurs de paramètres permettant l'eet dynamo semblent atteignables expérimentalement, et nous espérons pouvoir bientôt comparer ces simulations numériques à l'expérience DresDyn, actuellement en cours de montage en Allemagne [START_REF] Stefani | DresDyn -A new facility for MHD experiments with liquid sodium[END_REF].

4.4.3

Précession dans un sphéroïde (résultats principaux de l'annexe H)

Là encore, on étudie une conguration où l'axe de précession et l'axe de rotation sont orthogonaux. La cuve est ici considérée comme étant un sphéroïde (i.e. un ellipsoïde avec une symétrie cylindrique). Le point de départ de cet article était l'étude de la dynamo dans une telle conguration. Comme pour toutes les congurations étudiées, la première étape est de vérier que l'on peut calculer un écoulement de base. Là encore, le seul forçage vient de la rotation de la cuve. Stewartson et Roberts [START_REF] Stewartson | On the motion of liquid in a spheroidal cavity of a precessing rigid body[END_REF] ont montré que, dans la limite d'un uide peu visqueux et avec un faible taux de précession, le champ de vitesses a une expression analytique simple, excepté dans de nes couches d'Ekman au niveau de la frontière du domaine. Ce ot, linéaire, est souvent appelé solution de Poincaré, et on donne son expression en (H.3.6). S'inspirant de [START_REF] Wu | On a dynamo driven by topographic precession[END_REF], on modie les conditions aux limites sur le champ de vitesses, an de ne pas avoir à traiter ces couches limites. On introduit une nouvelle formulation (cf. (H.3.2) à (H.3.7)), qui s'est avérée être plus délicate que prévu à résoudre, ce qui explique qu'on ne s'intéresse dans cet article qu'au régime hydrodynamique. L'avantage de ce nouveau jeu de conditions aux limites est que le système admet une solution stationnaire simple, en l'occurrence la solution de Poincaré. Mais l'inconvénient majeur est que cette solution n'est ni unique (d'autres solutions non physiques apparaissent), ni stable. Nous nous sommes donc eorcés de comprendre ce qui posait problème, tout en essayant de proposer une méthode numérique qui permette dans une certaine mesure d'approcher une solution du système. Dans le même esprit que [START_REF] Stewartson | On the motion of liquid in a spheroidal cavity of a precessing rigid body[END_REF], nous avons été en mesure de prouver que, si le produit ǫR e (où ǫ désigne le taux de précession) est susamment faible, alors toute solution de (H.3.2) (H.3.7) tend vers un champ stationnaire de la forme u P + w, où u P désigne la solution de Poincaré, et w est une rotation solide autour de l'axe de symétrie. Des comparaisons avec d'autres codes de calcul ont été eectuées, soulignant toutes ce problème lié aux rotations autour de l'axe de symétrie. Numériquement, l'un des problèmes principaux est le contrôle de la composante verticale du moment cinétique,

M z = Ω x×u•e z .
Dans le cas ǫ = 0, nous avons pu mettre au point une méthode permettant numériquement de contrôler M z , évitant ainsi l'apparition d'une composante supplémentaire de rotation solide. Dans le cas ǫ = 0, il n'est toutefois pas encore clair de savoir si un tel ajustement est possible, sans imposer une nouvelle condition sur le moment cinétique, qui pourrait être incompatible avec la physique. En revanche, nous avons proposé un nouveau jeu de conditions aux limites, dans le même esprit mais en cassant la symétrie de la formulation, qui semble éviter ces problèmes de stabilité. Des calculs de dynamo sont envisagés par la suite, une fois que ce problème hydrodynamique sera mieux compris.

Conclusions

Nous avons montré que le mouvement de précession pouvait à lui seul être générateur de dynamo, dans le cas d'une géométrie cylindrique. Par ailleurs, l'étude de cette dynamo a montré de façon surprenante une relative indépendance de la croissance du champ magnétique vis à vis de l'asymétrie et de l'instationnarité du champ de vitesses. Ce comportement, contraire aux prédictions de Tilgner [START_REF] Tilgner | Precession driven dynamos[END_REF], peut n'être qu'un cas particulier à R e = 1200 = R m . Il serait intéressant d'étudier l'inuence des brisures de symétrie et de l'instationnarité du ot sur la dynamo, pour une gamme plus large de paramètres. Par ailleurs, nous avons commencé à explorer le cas d'un sphéroïde en précession. Le changement de conditions aux limites sur le champ de vitesses, qui devait nous permettre de faciliter la résolution en supprimant les couches limites, a nalement soulevé des problèmes de stabilité auxquels nous avons répondu en nous démarquant de [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. Nous espérons pouvoir par la suite obtenir des calculs satisfaisants de dynamo. Cette thèse s'inscrit comme un prolongement naturel de celles de R. Laguerre ([87], soutenue en Décembre 2006) et A. Ribeiro ([124], soutenue en Juillet 2010). Le l conducteur de ce travail a été l'amélioration constante du code de calcul SFEMaNS, qui est l'un des seuls outils capables d'intégrer le système complet d'équations de la MHD, dans n'importe quelle conguration axisymétrique. L'un des principaux objectifs était de modier la méthode de résolution des équations de Maxwell, an d'obtenir une méthode capable de résoudre ecacement les problèmes faisant intervenir une distribution hétérogène de perméabilité et/ou de conductivité, ou des singularités géométriques, dans le cas stationnaire.

À ces ns, une nouvelle inconnue, appelée pression magnétique, a été introduite dans les équations et une formulation mixte a pu être écrite. Cette pression magnétique peut à la fois être vue comme un multiplicateur de Lagrange associée à la contrainte de divergence nulle, et comme un terme de stabilisation. Par ailleurs, un autre terme de stabilisation a été ajouté, et nous a permis de valider la méthode numérique avec des choix relativement simples d'éléments nis. En particulier, cette méthode autorise les éléments nis de Lagrange, et ne requiert que peu d'hypothèses sur l'espace d'approximation pour la pression magnétique. Les diérentes conditions de continuité (au sein du conducteur ou entre conducteur et isolant) sont traitées par des méthodes de pénalisation. Un travail théorique important a été eectué an de valider la méthode dans un cadre général. En particulier, les résultats de régularité présentés en annexe A peuvent ne pas être nouveaux dans la communauté mathématique, mais les références à de tels résultats sont diciles à trouver, et nous pensons que cet article les résume bien. La validation théorique inclut également la preuve de convergence du schéma dans un modèle simplié 2D. Cette convergence a été illustrée par de nombreux exemples recouvrant les dicultés possibles : singularités géométriques, sauts de perméabilité, calcul de valeurs propres. Nous avons ensuite adapté cette méthode au sein du code SFEMaNS.

Outre la méthode de résolution de l'équation d'induction, un profond remaniement au sein du code SFEMaNS a été eectué au cours de cette thèse, an d'en améliorer les performances. Alors qu'il était jusque là parallélisé uniquement selon les modes de Fourier, nous avons ajouté un niveau de parallélisation, concernant la résolution des systèmes linéaires dans les plans méridiens. Nous avons également exploré diérents solveurs linéaires, pour nalement renoncer à une méthode itérative au prot d'une méthode directe, qui nous fait gagner énormément de temps de calcul. La contrepartie est une dépense de mémoire plus importante, mais nous pensons qu'à l'heure actuelle, étant données les capacités des calculateurs, cette contrepartie est plus qu'acceptable. Après toutes ces modications, une étape de validation du code a été nécessaire. Elle a été eectuée de deux façons diérentes et complémentaires. Dans un premier temps, on a montré sur des cas analytiques que le code convergeait de façon convenable, que ce soit sur des calculs hydrodynamiques ou sur des calculs de dynamo cinématique. Par ailleurs, nous avons vérié que le code était cohérent avec d'anciennes versions, au travers d'un exemple de dynamo non-linéaire dans une conguration de type Taylor-Couette.

Grâce à cette pression magnétique, nous avons pu en application faire de nombreux calculs dans des congurations de type VKS, pour lesquelles il y a de forts sauts de perméabilité. En particulier, nous avons pu illustrer numériquement l'importance de la présence de disques ns en fer. L'un des atouts de ces disques est qu'ils écrantent l'eet de l'écoulement derrière eux, écoulement qui est apparu défavorable à la dynamo dans d'autres simulations. Par ailleurs, l'épaisseur des disques et les conditions de compatibilité induites par les sauts de perméabilité semblent réduire l'atténuation de la composante toroïdale du mode m = 0 du champ magnétique, même sans écoulement. On peut alors penser que dans un cas réel, avec un champ de vitesses non axisymétrique, ils peuvent jouer un rôle dans la création d'un champ magnétique axisymétrique. Dans le modèle simplié que nous avons étudié, nous avons également pu montrer qu'une enceinte à haute perméabilité serait un frein à la dynamo, ce qui suggère que la position et la géométrie des zones à haute perméabilité dans la dynamo de Cadarache sont importantes. On peut alors penser que les conditions de continuité induites par ces sauts de perméabilité et/ou conductivité sont un élément clef de la dynamo. Enn, nous avons également illustré numériquement l'eet néfaste à la dynamo d'une variation de conductivité dans le dispositif.

Nous avons par ailleurs élargi le champ d'action du code SFEMaNS, en rendant possible l'intégration dans l'équation de Navier-Stokes de la force de Coriolis, permettant ainsi de faire des calculs de dynamo homogène en précession. Les calculs de dynamo dans un sphéroïde n'ont malheureusement pas encore pu être traités, car le régime hydrodynamique soulève des problèmes de stabilité, mais des calculs de dynamo dans un cylindre ont donné des résultats assez encourageants, et ont conrmé la possibilité de générer de l'eet dynamo. Par ailleurs, les plages de dynamo obtenues semblent raisonnables. Une expérience est en cours de montage à Dresde (Allemagne) [START_REF] Stefani | DresDyn -A new facility for MHD experiments with liquid sodium[END_REF] et nous espérons pouvoir à l'avenir comparer simulations numériques et expériences.

Enn, nous avons également pu appliquer cette méthode de pression magnétique à un modèle cylindrique de type Busse & Wicht, pour lequel nous avons mis en évidence un potentiel dynamogène. En revanche, ces dynamos sont très peu ecaces, en ce sens qu'elles requièrent un très haut nombre de Reynolds magnétique. La présence de fortes perméabilités dans la zone en rotation contribue à faire baisser le seuil.

5.2

Vers encore plus de réalisme ?

La conguration Busse & Wicht présentée dans ce mémoire n'a été étudiée que vers la n de la thèse, ce qui explique que les résultats soient encore sommaires. Néanmoins, une étude plus approfondie de congurations de même type est envisagée, notamment en ajoutant dans le cas de la gure 4.3 une couronne interne avec un écoulement de type Taylor-Couette. Une autre piste d'étude est l'ajout d'une composante verticale sur la vitesse, an de se rapprocher de congurations de type Ponomarenko, et de pouvoir étudier l'inuence d'une couronne avec sauts de perméabilité dans ce cas.

Nous avons discuté des capacités du code de calcul SFEMaNS, qui n'ont cessé d'augmenter depuis sa création. Néanmoins, d'autres modications importantes sont en cours, an de représenter des modèles aussi réalistes que possible. Nous avons mis en avant la diculté pour un code axisymétrique de bien modéliser les pales dans l'expérience VKS. Une approche éventuelle serait de considérer des disques dont la perméabilité varie en fonction de l'azimut θ, et éventuellement en fonction du temps. Pour cela, une adaptation de la méthode de résolution de l'équation d'induction est nécessaire, et étudiée par J.-L. Guermond et D. Castanon.

Du point de vue hydrodynamique également, nous savons que certaines congurations réelles présentent un écoulement très turbulent (R e > 10 5 ), qui n'est actuellement pas réalisable par notre méthode de simulation numérique directe. Une méthode de stabilisation est étudiée en ce moment par J.-L. Guermond et L. Cappanera notamment, an de permettre une résolution des équations de Navier-Stokes à grands nombres de Reynolds cinétique, sans nécessiter un maillage trop n.

En application, ces deux améliorations du code pourraient permettre de faire des calculs non-linéaires dans une géométrie de type VKS, et nous espérons qu'ils pourraient donner des informations sur la dynamo de Cadarache. Jusque là, deux types de calcul non linéaires avaient été eectués : dans un premier temps, dans le modèle simplié de disques sans pales, les calculs non linéaires n'ont pas permis d'apporter d'information sur le mécanisme de dynamo. Un scénario avancé dans [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF][START_REF] Pétrélis | On the magnetic elds generated by experimental dynamos[END_REF] justie la création du champ magnétique par un eet α (cf. [START_REF] Parker | Hydromagnetic dynamo models[END_REF]) induit près des pales par l'écoulement très turbulent et hélicoïdal, suggérant l'importance des pales dans la dynamo (importance relayée par les expériences). Des calculs ont donc été réalisés (cf. [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF][START_REF] Laguerre | Erratum : Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF]) dans une conguration de type VKS avec un forçage modélisant l'eet α. Ces calculs ont mis en évidence un champ magnétique axisymétrique au même seuil que dans l'expérience, mais pour des valeurs non réalistes pour la modélisation de l'eet α. On peut alors se demander si les conditions de continuité sur le champ magnétique induites par la géométrie des zones entre les pales peuvent inuer sur le champ magnétique de manière à obtenir un eet α comparable à celui utilisé. Nous travaillons à l'élaboration d'un modèle simplié qui pourrait nous fournir des illustrations numériques. Introduction

The purpose of this note is to prove regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coecients and minimal regularity assumptions. More precisely, given a Lipschitz domain Ω, we are interested in the time harmonic Maxwell System, (A.1.1)

∇×E -iωµH = 0 and ∇×H + iωεE = J,
where E is the electric eld, H is the magnetic eld, J is a given (divergence-free) current density, ε is the electrical permittivity of the material, and µ is the magnetic permeability. The tensor elds x → ε(x) and x → µ(x) are only assumed to be piecewise smooth. The Maxwell system (A.1.1) must be supplemented with boundary conditions. In this work, we assume that Ω is a perfect conductor, i.e.

(A.1.2)

E×n| Γ = 0,
where n is the outer unit normal of Ω. Eliminating the magnetic eld from (A.1.1), the electric eld satises the following system:

(A.1.3) ∇× µ -1 ∇×E -ω 2 εE = iωJ, ∇•(εE) = 0, E×n| Γ = 0.
If the electric eld is eliminated instead, we obtain 

(A.1.4) ∇× ε -1 ∇×H -ω 2 µH = ∇× ε -1 J , ∇•(µH) = 0, µH•n| Γ = 0, a Department
•n| Γ = 0 is a consequence of (A.1.2).
Establishing regularity estimates for (A.1.3) and (A.1.4) requires studying the following model problem

(A.1.5) ∇× µ -1 ∇×F = g, ∇•(εF) = 0, F×n| Γ = 0.
The main result (Theorem A.5.1) established in this paper is that, under very mild assumptions on the elds µ and ε, there is τ (ε, µ) < 1 2 so that the mapping g -→ (F, ∇×F) is continuous from L 2 (Ω) to H s (Ω)×H s (Ω) for all 0 ≤ s < τ (ε, µ). Theorem A.5.1 relies on the following two embedding estimates established in Proposition A.4.1 and Proposition A.4.2, respectively: There are constants c(ε), c(µ) so that (A.1.6)

F H s (Ω) ≤ c(ε) ∇×F L 2 (Ω) + ∇•(εF) H s-1 (Ω) , ∀s ∈ [0, τ (ε))
holds for all smooth vector eld F with zero tangent trace, and

(A.1.7) G H s (Ω) ≤ c(µ) ∇×G L 2 (Ω) , ∀s ∈ [0, τ (µ))
holds for all smooth vector eld G with zero normal trace and such that ∇•(µG) = 0. The estimate (A.1.6) is of particular interest when approximating the Maxwell equations with Lagrange nite elements and when using a stabilization technique that requires controlling the divergence of the electric eld in H s-1 (Ω) with s ∈ (0, 1 2 ), see e.g. [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF]. The estimates (A.1.6)-(A.1.7) are also useful to establish compactness on the electric eld and its curl. More precisely, assuming that F solves (A.1.5) and upon setting G = µ -1 ∇×F, we observe that G•n| Γ = 0, ∇•(µG) = 0, and (A.1.7) implies that G is a member of H s (Ω), which in turn, under mild assumptions on the multiplier µ, implies that ∇×F is in H s (Ω).

To the best of our knowledge, the results stated in Theorem A.5.1, Proposition A.4.1 and Proposition A.4.2 are new in the range s ∈ (0, 1 2 ). In particular Proposition A.4.1 and Proposition A.4.2 generalize the now well-known fact, established in particular in [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF], that H 0,curl (Ω)∩H div (Ω) and H curl (Ω)∩H 0,div (Ω) are continuously embedded in H It is likely that these estimates are not new, and may be found scattered in the literature in various guises. We nevertheless have included the proof of this theorem in the paper to make it self-contained. For instance, Savaré [START_REF] Savaré | Regularity results for elliptic equations in Lipschitz domains[END_REF] has proved similar results for Dirichlet data by assuming some global integrability of the right-hand side of the Laplace equation and assuming that the multiplier is piecewise constant over two sub-domains. Later, Jochmann [START_REF] Jochmann | An H s -regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions[END_REF] removed the extra integrability assumption, considered nitely many sub-domains and mixed Dirichlet-Neumann boundary conditions. His proof technique is based on local maps and requires some mild regularity on the boundary of the domain (each map is Lipschitz and its Jacobian is piecewise C 0, 1 2 ). Following the arguments proposed by Meyers [START_REF] Meyers | An L p e-estimate for the gradient of solutions of second order elliptic divergence equations[END_REF] and Jochmann [START_REF] Jochmann | An H s -regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions[END_REF], we provide in Theorem A.3.1 a regularity result for both types of boundary conditions assuming only Lipschitz regularity on the boundary of the domain and piecewise smoothness on the multiplier. Our proof is dierent from that of Jochmann in the sense that we only use the Jerison-Kenig [START_REF] Jerison | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF] regularity results on Lipschitz domains for the Laplace equation.

The paper is organized as follows. We introduce some notation and prove preliminary results on multipliers in A.2. Regularity properties of the Laplace equation with non-smooth coecients are discussed in A.3. The main result of this section is Theorem A.3.1. We establish embedding results in A.4; these results are stated in Proposition A.4.1 and Proposition A.4.2 and are used to prove regularity estimates on the Maxwell system. Finally A.5 focuses on the Maxwell system with non-smooth coecients, e.g. electrical conductivity, magnetic permeability, or electrical permittivity. The main result of this section is Theorem A.5.1. The main thrust for the present work is our ongoing research program to establish convergence estimates for the approximation of the Maxwell system using H 1 -conforming Lagrange nite elements in the spirit of [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF].

A.2 Preliminaries

A.2.1 Notation

Henceforth Ω is a simply-connected Lipschitz polyhedron in

R d , d = 2, 3. We assume that Ω is partitionned into M Lipschitz subdomains Ω 1 , • • • , Ω M .
We denote Γ the boundary of the domain, i.e., Γ := Γ and Σ the interface between the subdomains Ω i , i.e., (A.2.1)

Σ := i =j Γ i ∩ Γ j .
Let E ⊂ Ω be a non-empty open Lipschitz subset of Ω. We denote (•, •) E the inner product in L 2 (E) for vector-valued eld, in L 2 (E) for scalar-valued elds, or in L 2 (E) d×d for tensorvalued elds. The subscript is omitted if the domain of integration is Ω. Let L2 (E) and Ḣ1 (E) be respectively the subspaces of L 2 (E) and H 1 (E) composed of the function with zero average over E. Owing to the Poincaré and Poincaré-Friedrichs inequalities, we equip H 1 0 (E) and Ḣ1 (E) with the following norms:

(A.2.2) u H 1 0 (E) := ∇u L 2 (E) , u Ḣ1 (E) := ∇u L 2 (E) .
The norm of H 1 0 (E)

′ is then dened by (A.2.3)

F (H 1 0 (E)) ′ := sup 0 =u∈H 1 0 (E) F, u (H 1 0 (E) ′ ,H 1 0 (E) ∇u L 2 (E) ,
and the norm of H 1 (E) ′ is dened similarly. We dene the Sobolev spaces H s (E), Ḣs (E) for 0 < s < 1, by using the real interpolation method (K-method) between L 2 (E) and H 1 (E) and between L2 (E) and Ḣ1 (E), respectively; see for instance [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF] or [START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF]Chapter 22]. We also dene H s 0 (E) by interpolation between L 2 (E) and H 1 0 (E), so that for any 0 ≤ s < 1 2 , the spaces H s 0 (E) and H s (E) coincide (cf. [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]Thm 11.1] or [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Cor. 1.4.4.5]). For the sake of conciseness, we denote (A.2.4)

H s (E) := H s 0 (E) for Dirichlet boundary conditions, Ḣs (E) for Neumann boundary conditions, for s ∈ [0, 1], and H s (E) := (H -s (E)) ′ for s ∈ [-1, 0]. Note that when we use H 1 (E) = Ḣ1 (E), the elements of the dual space H s (E), s ∈ [-1, 0), cannot be identied with distributions in (D(E)) ′ in general. For instance, for any g ∈ L 2 (∂E) and s ∈ [-1, -1 2 ), the linear form Proposition A.2.1. Let ν ∈ W 1,∞ Σ (Ω) d×d . Then E ν ∈ L(H s (Ω), H s (Ω)) for every s ∈ 0, 1 2 and (A.2.14) E ν H s (Ω)→H s 0 (Ω) ≤ ν max N s,ν , where N s,ν := D s,Ω (2(1 + C 2 Ω Λ 2 ν )) s/2 .
Moreover, the following holds for all r ∈ [0, 1 2 ), (A.2.15)

E ν H s →H s 0 ≤ ν max N s r r,ν , ∀s ∈ [0, r]. Proof. Let 0 ≤ s < 1 2 and u ∈ H s (Ω). We set u i := u |Ω i for i = 1, • • • M . Then owing to Lemma B.7.3 below, u i ∈ H s (Ω i ) for all i = 1, . . . , M . This in turn implies that u i ∈ H s 0 (Ω i ) since 0 ≤ s < 1 2 .
We want to use the K-interpolation theory. For any

u i ∈ [L 2 (Ω i ), H 1 0 (Ω i )] s = H s 0 (Ω), we set K(t, u i , L 2 (Ω i ), H 1 0 (Ω i )) := inf v∈H 1 0 (Ω i ) u i -v 2 L 2 (Ω i ) + t 2 v 2 H 1 0 (Ω i ) .
Then asserting that u i is in

H s 0 (Ω i ) is equivalent to say that the mapping R + ∋ t → K(t, u i , L 2 (Ω i ), H 1 0 (Ω i )) is in L 1 R + , dt t 1+2s . For any t > 0, we dene u i,t ∈ H 1 0 (Ω i ) so that the following holds for all v i ∈ H 1 0 (Ω i ), (u i,t , v i ) Ω i + t 2 (∇u i,t , ∇v i ) Ω i = (u i , v i ) Ω i .

This denition implies that

u i -u i,t 2 L 2 (Ω i ) + t 2 u i,t 2 H 1 0 (Ω i ) = K(t, u i , L 2 (Ω i ), H 1 0 (Ω i )).

Now we estimate

K(t, E ν u, L 2 (Ω), H 1 0 (Ω)).
For this purpose we dene u t by u t|Ω i = u i,t . Since every u i,t vanishes on Σ, we have

u t ∈ H 1 0 (Ω), E ν u t ∈ H 1 0 (Ω) with the estimates E ν (u -u t ) 2 L 2 (Ω) = M i=1 ν(u i -u i,t ) 2 L 2 (Ω i ) ≤ ν 2 max M i=1 u i -u i,t 2 
L 2 (Ω i ) ,
and

E ν u t 2 H 1 0 (Ω) := ∇ (E ν u t ) 2 L 2 (Ω) d×d ≤ 2 M i=1 ν∇u i,t 2 
L 2 (Ω i ) d×d + (∇ν)u i,t 2 L 2 (Ω i ) d×d ≤ 2ν 2 max 1 + C 2 Ω Λ 2 ν M i=1 ∇u i,t 2 L 2 (Ω i ) d×d
where we used the Poincaré inequality on every Ω i in the second estimate. Combining the above two inequalities and setting

α 2 := 2 1 + C 2 Ω Λ 2 ν gives K(t, E ν u, L 2 (Ω), H 1 0 (Ω)) ≤ E ν (u -u αt ) 2 L 2 (Ω) + t 2 E ν u αt 2 H 1 0 (Ω) ≤ ν 2 max M i=1 u i -u i,αt 2 
L 2 (Ω i ) + α 2 t 2 ∇u i,αt 2 L 2 (Ω i ) d×d ≤ ν 2 max M i=1 K(αt, u i , L 2 (Ω i ), H 1 0 (Ω i )).
As a result E ν u ∈ H s 0 (Ω), and using the injection

u i H s 0 (Ω i ) ≤ D s,Ω i u i H s (Ω i ) we deduce E ν u 2 H s 0 (Ω) ≤ ν 2 max M i=1 ∞ 0 K(αt, u i , L 2 (Ω i ), H 1 0 (Ω i ))t -1-2s dt ≤ ν 2 max α 2s M i=1 u i 2 H s 0 (Ω i ) ≤ ν 2 max α 2s M i=1 D 2 s,Ω i u i 2 H s (Ω i ) ≤ ν 2 max N 2 s,ν M i=1 u i 2 H s (Ω i ) .
Then we nally obtain (A.2.14) by using Lemma B.7.3. Noticing that N 0,ν = 1, the inequality (A.2.15) directly follows from the re-interpolation formula

H s (Ω) = L 2 (Ω), H r (Ω) s r .
This completes the proof.

Lemma A.2.1. The following holds for all s ∈ [0, 1] and for all v ∈ H s (Ω),

(A.2.16) M i=1 v |Ω i 2 H s (Ω i ) ≤ v 2 H s (Ω) .
Proof. The result is evident for s = 0 and s = 1. Let us assume now that s ∈ (0, 1). Let v be a member of H s (Ω). Recall that

v H s (Ω) := ∞ 0 K(t, v, L 2 (Ω), H 1 (Ω)) 2 t -1-2s dt 1/2 , K(t, v, L 2 (Ω), H 1 (Ω)) 2 := inf w∈H 1 (Ω) v -w 2 L 2 (Ω) + t 2 w 2 H 1 (Ω) .
For all t ∈ R + , let us denote v t the function in H 1 (Ω) that achieves the inmum in the denition of

K(t, v, L 2 (Ω), H 1 (Ω)), i.e., -t 2 ∆v t +t 2 v t +(v t -v) = 0 over Ω with homogeneous Neumann boundary condition. Then M i=1 v |Ω i 2 H s (Ω i ) = M i=1 ∞ 0 K(t, v |Ω i , L 2 (Ω i ), H 1 (Ω i )) 2 t -1-2s dt ≤ M i=1 ∞ 0 v |Ω i -v t|Ω i 2 L 2 (Ω i ) + t 2 v t|Ω i 2 H 1 (Ω i ) t -1-2s dt = ∞ 0 M i=1 v |Ω i -v t|Ω i 2 L 2 (Ω i ) + t 2 v t|Ω i 2 H 1 (Ω i ) t -1-2s dt = ∞ 0 K(t, v, L 2 (Ω), H 1 (Ω)) 2 t -1-2s dt := v 2 H s (Ω) .
This completes the proof.

A.3 Non-constant coecient Laplace equation

We establish regularity estimates for the Laplace equation with non-constant coecients in this section.

A.3.1

The main result

Let ν be a tensor eld in W 1,∞ Σ (Ω) d×d and assume that (A.3.1)

∃ν min > 0 such that ξ T νξ ≥ ν min ξ T ξ a.e. in Ω, ∀ξ ∈ R d .
Consider the following problem:

given f ∈ H -1 (Ω), nd p ∈ H 1 (Ω) such that, (A.3.2) ∀q ∈ H 1 (Ω), (ν∇p, ∇q) = f, q H -1 (Ω),H 1 (Ω) .
The existence and uniqueness of a solution to the above problem is ensured by the Lax-Milgram lemma since

∀p ∈ H 1 (Ω), ν min p 2 H 1 (Ω) = ν min (∇p, ∇p) ≤ (ν∇p, ∇p) .
We re-write the above problem (A.3.2) in the symbolic form -∆ H 1 ν p = f . The objective of this section is to prove the following

Theorem A.3.1. Let ν ∈ W 1,∞
Σ (Ω) d×d be satisfying (A.3.1). There exists τ ∈ (0, 1 2 ), only depending on ν, Ω, and the partition

{Ω i } M i=1 such that, for every s ∈ [0, τ ) and every f ∈ H s-1 (Ω), the solution p ∈ H 1 (Ω) of the problem (A.3.2) is in H 1+s (Ω)
and satises the estimate

(A.3.3) p H s+1 (Ω) ≤ c f H s-1 (Ω) ,
where c depends only on Ω, ν, the partition {Ω i } M i=1 , and s. We postpone the proof of Theorem A.3.1 to A.3.3. We will use a technique similar to that in [START_REF] Jochmann | An H s -regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions[END_REF], where the author proves the result for a more general class of spaces, but requires some additional regularity conditions on the boundary Γ and assumes (A.2.14). One novelty of our proof is that, owing to the assumptions on ν, the Lipschitz condition on the boundary of the domain is sucient; we also derive an almost explicit admissible range for τ .

A.3.2 Key lemmas

Using the same notation as in [START_REF] Jochmann | An H s -regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions[END_REF], we introduce the operators

J ∈ L(H -1 (Ω), H 1 (Ω)) and S ∈ L(L 2 , H -1 (Ω)) dened as follows: (A.3.4) ∀f ∈ H -1 (Ω), ∀q ∈ H 1 (Ω), (∇(J f ), ∇q) = f, q H -1 (Ω),H 1 (Ω) . and (A.3.5) ∀F ∈ L 2 , ∀q ∈ H 1 (Ω), SF, q H -1 (Ω),H 1 (Ω) := (F, ∇q) .
Note that J is well dened owing to the denition of H 1 (Ω) and the Lax-Milgram lemma.

Notice that formally

SF = -∇•F when H 1 = H 1 0 (Ω), -∇•F + F•nδ Γ when H 1 = Ḣ1 (Ω),
where δ Γ is the Dirac measure supported on Γ.

Lemma A.3.1. For any s ∈ [0, 1] and F ∈ H s 0 (Ω), we have

(A.3.6) SF ∈ H s-1 (Ω) and SF H s-1 (Ω) ≤ F H s 0 (Ω) .
Proof. This is again a standard interpolation argument. We start with s = 0 and F ∈ L 2 (Ω).

Then the following series of bounds holds for all p ∈ H 1 (Ω),

SF, p H -1 (Ω),H 1 (Ω) = (F, ∇p) ≤ F L 2 (Ω) ∇p L 2 (Ω) = F L 2 (Ω) p H 1 (Ω) ,
which leads to

(A.3.7) SF H -1 (Ω) ≤ F L 2 (Ω) .
When s = 1 and F ∈ H 1 0 (Ω), we have for p ∈ H 0 (Ω)

SF, p H -1 (Ω),H 1 (Ω) = (F, ∇p) = -(∇•F, p) ≤ ∇•F L 2 (Ω) p H 0 (Ω) .
Using the fact that

∇•F 2 L 2 (Ω) ≤ ∇•F 2 L 2 (Ω) + ∇×F 2 L 2 (Ω) = ∇F 2 L 2 (Ω) = F 2 H 1 0 (Ω) ,
and recalling that for

F ∈ H 1 0 (Ω) SF = -∇•F and Ω SF = 0, we deduce (A.3.8) sup 0 =p∈H 0 (Ω) SF, p H -1 (Ω),H 1 (Ω) p H 0 (Ω) = SF H 0 = SF L2 (Ω) = SF L 2 (Ω) ≤ F H 1 0 (Ω) .
We conclude by the using the Riesz-Thorin Theorem.

Lemma A.3.2. For all r ∈ [0, 1 2 ), there is K := K(Ω, r) such the following holds that for all f ∈ H r-1 (Ω),

(A.3.9) J f ∈ H 1+r (Ω) and J f H 1+r (Ω) ≤ K f H r-1 (Ω) .
and for all s ∈ [0, r] and all f ∈ H s-1 (Ω),

(A.3.10) J f ∈ H 1+s (Ω) and J f H 1+s (Ω) ≤ K s r f H s-1 (Ω) .
Proof. The result is proved by using a standard interpolation technique. We rst establish the estimate for s = 0. Taking f ∈ H -1 (Ω) and using the denition of J together with the norm in H 1 (Ω) gives

J f 2 H 1 (Ω) = f, J f H -1 (Ω),H 1 (Ω) ≤ f H -1 (Ω) J f H 1 (Ω) ,
thereby leading to

(A.3.11) ∀f ∈ H -1 (Ω), J f H 1 (Ω) ≤ f H -1 (Ω) .
We must distinguish two cases for r < 1 2 depending whether

H 1 (Ω) = H 1 0 (Ω) or H 1 (Ω) = Ḣ1 (Ω). If H 1 (Ω) = H 1 0 (Ω)
, then a standard result from [START_REF] Jerison | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF] (cf. Theorem 0.5) implies that there exists K only depending on Ω and r such that, for any f ∈

H r-1 (Ω) = H r-1 (Ω), J f ∈ H 1+r (Ω) and J f H 1+r (Ω) ≤ K f H r-1 (Ω) .
The Neumann boundary case, H 1 (Ω) = Ḣ1 (Ω), does not seem to be as clear as the Dirichlet case. It appears however to be a by-product of Theorem 3 in [START_REF] Savaré | Regularity results for elliptic equations in Lipschitz domains[END_REF]; it is proved therein that J f ∈ H 1+r (Ω) for any r ∈ [0, 1 2 ), i.e., (abusing the notation) there exists K only depending on Ω and r such and the following estimate holds for any f ∈ (H

1-r (Ω)) ′ ∇J f H r (Ω) ≤ K f (H 1-r (Ω)) ′ .
In conclusion, for any 0 < r < 1 2 there exists K = K(r, Ω) such that (A.3.9) holds. The estimate (A.3.10) is obtained by interpolation using (A.3.11) and (A.3.9).

Remark A.3.1. Owing to the property J S∇u = u for all u ∈ H 1 (Ω), we infer that

J H r-1 →H r+1 S H r 0 →H r-1 ≥ 1, which in turn implies the following lower bound K(Ω, r) ≥ J H r-1 →H r+1 ≥ 1. A.3.3 Proof of Theorem A.3.1
We want to use a perturbation argument à la Meyer [START_REF] Meyers | An L p e-estimate for the gradient of solutions of second order elliptic divergence equations[END_REF]. Let k > 0 be a positive number yet to be chosen. Let f ∈ H -1 (Ω) and let p ∈ H 1 (Ω) be the solution to (A.3.2). Let us start by observing that the following holds in the distribution sense

if f ∈ (H 1 0 (Ω)) ′ : f = -∇•(ν∇p) = -k∆p + ∇•((kI -ν)∇p) = -∆(kp) + ∇•((I - 1 k ν)∇(kp)),
where I ∈ R d×d is the identity matrix. To account for boundary conditions, (in particular for Neumann boundary conditions, i.e., f ∈ (H 1 (Ω)) ′ ), we actually have

f = S(ν∇p) = kS∇p -S((kI -ν)∇p) = S∇(kp) -S((I - 1 k ν)∇(kp)).
Upon setting ν := I -1 k ν and q = kp, and using that J S∇ is the identity operator in H 1 (Ω), we arrive at q -J (S(ν∇q)) = J f.

Let us denote Q := J SE ν ∇ and let us assume for a moment that we can establish that Q is a bounded operator from H s+1 (Ω) to H s+1 (Ω) and that the norm of

Q in L(H s+1 (Ω), H s+1 (Ω)) is less than 1, say Q H s+1 →H s+1 < 1. Then k p H s+1 (Ω) = q H s+1 (Ω) ≤ J 1 -Q f H s-1 (Ω)
and the conclusion follows readily. In summary, the crux of the matter is to prove

Q H s+1 →H s+1 < 1.
Since q is in H 1+s (Ω), we infer that ∇q ∈ H s (Ω). The hypothesis s < 1 2 together with Proposition A.2.1 implies that E ν ∇q ∈ H s 0 (Ω). Using Lemma A.3.1, we infer that SE ν ∇q ∈ H s-1 (Ω) so that Lemma A.3.2 yields Qq = J SE ν ∇q ∈ H s+1 (Ω). In addition, we have

Q H s+1 →H s+1 ≤ J H s-1 →H s+1 S H s 0 →H s-1 E ν H s →H s 0 ≤ K s r (1 - ν min k )N s r r,ν provided k ≥ ν max .
Then by choosing k = ν max , we deduce the following bound

Q H s+1 →H s+1 ≤ ν max -ν min ν max K s r N s r r,ν , which implies that Q H s+1 →H s+1 < 1 for all s ∈ [0, τ ) where τ := r min   1, log νmax νmax-ν min log(KN r,ν )   .
Note that KN r,ν ≥ 1 owing to Remark A.3.1 and denitions (A.2.10), (A.2.14). Observe also that τ ∈ (0, 1 2 ). Finally we arrive at

p H s+1 (Ω) ≤ K s r ν max -(ν max -ν min )K s r N s r r,ν f H s-1 (Ω) .
This concludes the proof of Theorem A.3.1.

A.4

H s embeddings

In this section, we prove two embedding results which are used in A. In the rest of the paper we use the following spaces characterizing the regularity of vector elds:

H curl (Ω) := F ∈ L 2 (Ω) | ∇×F ∈ L 2 (Ω) , (A.4.1) H div (Ω) := F ∈ L 2 (Ω) | ∇•F ∈ L 2 (Ω) . (A.4.2)
Let s be a real number in the range s ∈ [0, 1 2 ). We consider the following space equipped with its canonical norm:

Z 1-s (Ω) := F ∈ L 2 (Ω) | ∇×F ∈ H -s (Ω), ∇•F ∈ H -s (Ω) . (A.4.3) The tangential trace v×n of a function v ∈ H -s (Ω) with ∇×v ∈ H -s (Ω) is dened as an element of H -s-1 2 (Γ), s ∈ [0, 1 2 ), by v×n, ψ H -s-1 2 (Γ),H s+ 1 2 (Γ) := ∇×v, E(ψ) H -s (Ω),H s (Ω) -v, ∇×E(ψ) H -s (Ω),H s (Ω) , (A.4.4) for all ψ ∈ H s+ 1 2 (Γ).
Here E(ψ) denote any extension to Ω guaranteed by the continuity and surjectivity of the trace operator from [START_REF] Jerison | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF]Thm 3.1]. Note that the above denition is consistent with the usual tangential traces when v ∈ H curl (Ω) and is independent of the extension chosen using the density of C ∞ 0 (Ω) in H 1+s 0 (Ω). In addition, the following estimate holds (A.4.5)

H 1+s (Ω) to H s+ 1 2 (Γ), s ∈ [0, 1 2 )
v×n H -s-1 2 (Γ) ≤ c v H -s (Ω) + ∇×v H -s (Ω) .
Similarly,

for v ∈ H -s (Ω) with ∇•v ∈ H -s (Ω), we dene v • n ∈ H -s-1 2 (Γ) by v • n, ψ H -s-1 2 (Γ),H s+ 1 2 (Γ) := ∇•v, E(ψ) H -s (Ω),H s (Ω) + v, ∇E(ψ) H -s (Ω),H s (Ω) , (A.4.6) for all ψ ∈ H s+ 1 2 (Γ). Moreover, the normal trace v • n satises (A.4.7) v • n H -s-1 2 (Γ) ≤ c v H -s (Ω) + ∇•v H -s (Ω) .
The above arguments show that it is legitimate to consider the following spaces:

Z 1-s T (Ω) := v ∈ Z 1-s | v•n |Γ = 0 , (A.4.8) Z 1-s N (Ω) := v ∈ Z 1-s | v×n |Γ = 0 .
(A.4.9)

A.4.2 Case of constant coecients

Theorem 2 in [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF] asserts that

Z 1 T (Ω) and Z 1 N (Ω) are continuously embedded in H 1 2 (Ω)
. The objective of this section is to establish the following generalization: Theorem A.4.1. For any s ∈ [0, 1 2 ) and any u ∈ Z 1-s (Ω), the following conditions are equivalent:

(i) u×n ∈ L 2 (Γ), (ii) u•n ∈ L 2 (Γ).
Moreover, there is a constant c > 0 so that the following embedding estimates hold:

u H 1 2 (Ω) ≤ c ∇×u H -s (Ω) + ∇•u H -s (Ω) + u×n L 2 (Γ) , (A.4.10) u H 1 2 (Ω) ≤ c ∇×u H -s (Ω) + ∇•u H -s (Ω) + u•n L 2 (Γ) .
(A. 4.11) In order to prove Theorem A.4.1, we introduce B an open ball containing Ω, we set Γ 0 = ∂B and O := B\ Ω, and we establish the following lemma: Lemma A.4.1. For any s ∈ [0, 1 2 ) and for any g ∈ H

-s-1 2 (Γ), there exists χ ∈ Ḣ1-s (O) such that ∇χ, ∇ψ H -s (O),H s (O) = g, ψ H -s-1 2 (Γ),H s+ 1 2 (Γ) , ∀ψ ∈ Ḣ1+s (O) (A.4.12) χ Ḣ1-s (O) ≤ c g H -s-1 2 (Γ) , (A.4.13)
where c is a constant that only depends on s and Γ. If in addition, g, 1

H -s-1 2 (Γ),H s+ 1 2 (Γ)
= 0, then (A.4.12) holds for any ψ ∈ H 1+s (O).

Proof. Owing to the closed range Theorem, proving (A.4.12) is equivalent to prove the following inf-sup condition:

inf 0 =ψ∈ Ḣ1+s (O) sup 0 =φ∈ Ḣ1-s (O) ∇φ, ∇ψ H -s (O),H s (O) φ Ḣ1-s (O) ψ Ḣ1+s (O) ≥ α,
for some α > 0. Using the notations of Section A.3 with H s (O) = Ḣs (O), the following holds

∇φ, ∇ψ H -s (O),H s (O) = S∇ψ, φ H s-1 (O),H 1-s (O)
for any φ ∈ Ḣ1-s (O) and ψ ∈ Ḣ1+s (O), As a result, for any ψ ∈ Ḣs+1 (O), we have

(A.4.14) sup 0 =φ∈ Ḣ1-s ∇φ, ∇ψ H -s (O),H s (O) φ Ḣ1-s (O) = S∇ψ H s-1 (O) ,
where S :

L 2 (O) → ( Ḣ1 (O)) ′ is dened by ∀f ∈ L 2 (O), ∀q ∈ Ḣ1 (O), Sf , q ( Ḣ1 (O)) ′ , Ḣ1 (O) = (f , ∇q) .
Since O is a Lipschitz domain, we can use J S∇ψ = ψ for any ψ ∈ Ḣ1 (O), where J :

( Ḣ1 (O)) ′ → Ḣ1 (O) is dened by ∀f ∈ L 2 (O), ∀q ∈ Ḣ1 (O), Sf , q ( Ḣ1 (O)) ′ , Ḣ1 (O) = (f , ∇q) .
Thus, upon applying Lemma A.3.2 we obtain:

(A.4.15)

∇ψ H s (O) = ψ H 1+s (O) = J S∇ψ H 1+s (O) ≤ K(O, s) S∇ψ H s-1 (O) .
Combining (A.4.14) and (A.4.15) together with the Poincaré-Friedrichs inequality on O leads to the inf-sup condition, with α -1 = K(O, r). This in turn implies the existence of χ with (A.4.12) and the estimate (A.4.13) with c = α -1 (see for instance [START_REF] Ern | Theory and practice of nite elements[END_REF]Lemma A.42]). Since the left-hand side of (A.4.12) only involves gradients, if in addition g satises the condition g, 1

H -s-1 2 (Γ),H s+ 1 2 (Γ)
= 0, the denition (A.4.12) holds for any ψ ∈ H 1+s (O), i.e., (A.4.16)

∀ψ ∈ H 1+s (O), ∇χ, ∇ψ H -s (O),H s (O) = g, ψ H -s-1 2 (Γ),H s+ 1 2 (Γ)
.

Let D be an open Lipschitz domain in R d . For any F ∈ L 1 (D), we denote E D F the extension of F by 0, i.e., (A.4.17)

E D F (x) = F (x) if x ∈ D, 0 elsewhere.
We use the same denition for vector-valued functions in L 1 (D).

Proof of Theorem A.4.1. The proof is similar to that of Theorem 2 in [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF]. Taking u ∈ Z 1-s (Ω), we build an extension of ∇×u in H -s (R d ) in order to be able to construct w ∈ H 1-s (Ω) such that uw is curl-free. Then we use results from Jerison and Kenig (cf. [START_REF] Jerison | The Neumann problem in Lipschitz domains[END_REF]) to obtain some regularity on uw.

Taking u ∈ Z 1-s (Ω), we have ∇×u ∈ H -s (Ω) and ∇•∇×u = 0, so that (∇×u)•n is well-dened as an element of H -s-1 2 (Γ), owing to (A. 4.6). Note also that this normal trace satises

(∇×u)•n, 1 H -s-1 2 (Γ),H s+ 1 2 (Γ) = 0.
Thus we can apply Lemma A.4.1, and there

exists χ ∈ H 1-s (O) such that ∇χ, ∇ψ H -s (O),H s (O) = -(∇×u)•n, ψ H -s-1 2 (Γ),H s+ 1 2 (Γ) , ∀ψ ∈ H 1+s (O).
We now set

f = E Ω ∇×u + E O ∇χ. Since s < 1 2 , H s (Ω) = H s 0 (Ω) and H s (B) = H s 0 (B)
, f can also be seen as an element of H -s (R d ), i.e., the following holds:

f , Ψ H -s (R d ),H s (R d ) := ∇×u, Ψ |Ω H -s (Ω),H s (Ω) + ∇χ, Ψ |O H -s (O),H s (O) , for all Ψ ∈ H s (R d ). Moreover, since the restrictions H s (R d ) → H s (Ω) and H s (R d ) → H s (O)
are continuous with norm 1, combining (A.4.13) and (A.4.7) leads to

f H -s (R d ) ≤ ∇×u H -s (Ω) + ∇χ H -s (O) ≤ ∇×u H -s (Ω) + c (∇×u)•n H -s-1 2 (Γ) ≤ c ∇×u H -s (Ω) ,
Owing to the denition of the trace (∇×u)•n and the denition of χ we infer that, the following hold for all φ ∈ C ∞ 0 (R d ):

f , ∇φ H -s (R d ),H s (R d ) = ∇×u, ∇φ |Ω H -s (Ω),H s (Ω) + ∇χ, ∇φ |O H -s (O),H s (O) , = ∇×u, ∇φ |Ω H -s (Ω),H s (Ω) -(∇×u)•n, φ H -s-1 2 (Γ),H s+ 1 2 (Γ) , = ∇×u, ∇φ |Ω H -s (Ω),H s (Ω) -∇×u, ∇φ |Ω H -s (Ω),H s (Ω) -∇•∇×u, φ H -s (Ω),H s (Ω) = 0, implying that ∇•f = 0. As a result there exists Φ ∈ H 2-s (R d ) such that -∆Φ = f with ∇•Φ = 0 and Φ H 2-s (R d ) ≤ c f H -s (R d ) .
Setting w := ∇×Φ, we infer that

w H 1-s (R d ) ≤ c f H -s (R d ) , ∇×w = f , ∇•w = 0.
This in turn implies that

∇×w |Ω = ∇×u ∈ H -s (Ω), ∇•w |Ω = 0, w |Ω H 1-s (Ω) ≤ c f H -s (R d ) .
We set now z := u-w |Ω . Using the fact that Ω is simply-connected together with ∇×z = 0, we infer from [59, Theorem 2.9] that there exists v ∈ H 1 (Ω) such that z = ∇v. We now split v to be able to apply a regularity result on a homogeneous Laplace equation with non homogeneous boundary conditions. Let

E Ω ∇•u be the zero extension of ∇•u. Clearly E Ω ∇•u ∈ H -s (B) since E Ω ∇•u, ψ H -s (B),H s (B) := ∇•u, ψ |Ω H -s (Ω),H s (Ω) , ∀ψ ∈ H s 0 (B),
and

E Ω ∇•u H -s (B) ≤ ∇•u H -s (Ω) , since s < 1 2 . Let p ∈ H 1 0 (B) be the solution of -∆p = E Ω ∇•u.
Then elliptic regularity implies that p ∈ H2-s (B) (see for instance [76, Theorem 0.5]) and the following estimate holds:

∇p H 1-s (B) ≤ c E Ω ∇•u H -s (B) ≤ c ′ ∇•u H -s (Ω) .
Finally, let us dene r := vp |Ω , so that u = (w + ∇p) |Ω + ∇r. By denition of w and p, we have ∆r = 0 in H -s (Ω). Let us assume that (i) holds, i.e., u×n ∈ L 2 (Γ). Since w ∈ H 1-s (Ω), we have w×n ∈

H 1 2 -s (Γ) ⊂ L 2 (Γ). Similarly, p |Ω ∈ H 2-s (Ω) so that ∇p×n ∈ H 1 2 -s (Γ) ⊂ L 2 (Γ). As a result, we have ∇r×n |Γ = (u×n -w×n -∇p×n) |Γ ∈ L 2 (Γ), which together with r |Γ ∈ L 2 (Γ) implies r |Γ ∈ H 1 (Γ). Thus we have ∆r = 0 in Ω, r |Γ ∈ H 1 (Γ).
Consequently r ∈ H 3 2 (Ω) and the following estimate holds

∇r H 1 2 (Ω) ≤ c r H 1 (Γ) ≤ c ′ ∇r×n L 2 (Γ) .
Hence, because u = (w+∇p) |Ω +∇r with w |Ω ∈ H 1-s (Ω), ∇p |Ω ∈ H 1-s (Ω), and ∇r ∈ H

1 2 (Ω), we deduce that u ∈ H 1 2 (Ω). Note also that (w•n + ∇p•n) |Γ ∈ L 2 (Γ), which implies that u•n |Γ = (w•n + ∇p•n + ∇r•n) |Γ ∈ L 2 (Γ) thereby proving (ii).
The proof of the converse implication is similar, we leave the details to the reader. In summary, we have proved that (i) and (ii) are equivalent, and that both these assumptions imply u ∈ H 1 2 (Ω). Using s < 1 2 and gathering all the previous estimates, we end up with:

u H 1 2 (Ω) ≤ c w H 1-s (Ω) + ∇p H 1-s (Ω) + ∇r H 1 2 (Ω) ≤ c w H 1-s (Ω) + ∇p H 1-s (Ω) + u×n L 2 (Γ) + w×n L 2 (Γ) + ∇p×n L 2 (Γ) ≤ c w H 1-s (Ω) + ∇p H 1-s (Ω) + u×n L 2 (Γ) ≤ c f H -s (R d ) + E Ω ∇•u H -s (B) + u×n L 2 (Γ) ≤ c ∇×u H -s (Ω) + ∇•u H -s (Ω) + u×n L 2 (Γ) ,
which is the desired result. The inequality involving u•n is obtained similarly; in particular we must use the fact that the scalar eld r := vp |Ω is such that

∆r = 0 in Ω, n•∇r ∈ L 2 (Γ),
which again implies r ∈ H

A.4.3 Case of non-constant coecients

Throughout A.4 and A.5 we assume that the tensor elds ε and µ satisfy the following property:

Assumption A.4.1. We assume that ε, µ ∈ W 1,∞ Σ (Ω) d×d and there exist ε min , µ min > 0 such that

ξ T εξ ≥ ε min ξ T ξ a.e. in Ω, ∀ξ ∈ R d , ξ T µξ ≥ µ min ξ T ξ a.e. in Ω, ∀ξ ∈ R d .
The analysis of the regularity of Maxwell problem (A.1.5) requires introducing the following two spaces:

Y s (Ω) := F ∈ L 2 (Ω) | ∇×F ∈ H -s (Ω), ∇•(µF) = 0, µF•n |Γ = 0 , (A.4.18) X s (Ω) := F ∈ L 2 (Ω) | ∇×F ∈ H -s (Ω), ∇•(εF) ∈ H s-1 (Ω), F×n |Γ = 0 . (A.4.19)
We dene the following semi-norms in X s (Ω) and Y s (Ω):

(A.4.20) |F| 2 X s (Ω) := ∇×F 2 H -s (Ω) + ∇•(εF) 2 H s-1 (Ω) , |F| Y s (Ω) := ∇×F H -s (Ω) .
Two embedding results for X s and Y s (Ω) are established in this section.

Proposition A.4.1. Let Assumption A.4.1 hold. There exists τ ε > 0, only depending on Ω and ε, such that, for any s ∈ [0, τ ε ), X s (Ω) is continuously embedded in H s (Ω), and there is c > 0 so that (A.4.21)

F H s (Ω) ≤ c |F| X s (Ω) , ∀F ∈ X s (Ω).
Proof. Owing to Assumption A.4.1, we can apply Theorem A.3.1 with ν = ε and H 1 (Ω) =

H 1 0 (Ω). Let τ ε < 1 2 be the parameter dened in Theorem A.3.1. Let us consider F ∈ X s (Ω) with s ∈ [0, τ ε ). We dene p ∈ H 1 0 (Ω) such that (∇p, ∇q) = (F, ∇q) , ∀q ∈ H 1 0 (Ω),
and we set w := F -∇p. This denition implies that w ∈ Z 1-s (Ω) since ∇×w = ∇×F and ∇•w = 0. Observing also that w×n |Γ = 0 and applying Theorem A.4.1, we deduce that

w ∈ H 1 2 (Ω) and w H 1 2 (Ω)
≤ c ∇×w H -s (Ω) . In addition, s < 1 2 and ∇×w = ∇×F, imply that (A.4.22)

w H s (Ω) ≤ c ∇×F H -s (Ω) . Moreover, since w ∈ H s (Ω), Proposition A.2.1 ensures that εw ∈ H s (Ω); as a result, ∇•(εw) ∈ H s-1 (Ω) and (A.4.23) ∇•(εw) H s-1 (Ω) ≤ c εw H s (Ω) ≤ c ′ w H s (Ω) ≤ c ′′ ∇×F H -s (Ω) .
Let us now turn our attention to p. In view of the following equality

(ε∇p, ∇q) = (εF, ∇q) -(εw, ∇q) , q ∈ H 1 0 (Ω),
and upon introducing the linear form f : H 1 (Ω) ∋ q → (εFεw, ∇q), i.e., f = -∇•(ε(F-w)), we infer that p solves:

(ε∇p, ∇q) = f, q H -1 (Ω),H(Ω) , ∀q ∈ H 1 (Ω).
The denition of X s (Ω) implies that ∇•(εF) ∈ H s-1 (Ω). This, together with (A.4.23), implies that f H s-1 (Ω) ≤ c|F| X s (Ω) . Applying Theorem A.3.1, we infer that p ∈ H 1+s (Ω) and (A.4.24)

∇p H s (Ω) ≤ c|F| X s (Ω) .
Using (A.4.22), (A.4.24), and recalling the denition F = w+∇p, we conclude that F ∈ H s (Ω) and there exists a constant c that only depends on Ω, ε, and s such that (A.4.25)

F H s (Ω) ≤ c |F| X s (Ω) .
This concludes the proof.

Proposition A.4.2. Let Assumption A.4.1 hold. There exists τ µ only depending on Ω and µ such that, for any s ∈ [0, τ µ ), the space Y s (Ω) is continuously embedded in H s (Ω).

Proof. We proceed as in the proof of Proposition A.4.1. We consider F ∈ Y s (Ω) and we want to decompose F as follows:

F = w + ∇p,
where w is a regular part and p is the solution of an elliptic system with discontinuous coecients. We rst focus on the construction of w. We introduce

H 0,curl (Ω) := {G ∈ H curl (Ω) | G×n = 0} , H div=0 (Ω) := {G ∈ H div (Ω) | ∇•G = 0} .
Owing to (A.4.10) with s = 0 (see also [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF]Theorem 2]) and the Lax-Milgram lemma, there exists a unique G ∈ H 0,curl (Ω) ∩ H div=0 (Ω) such that the following holds:

(A.4.26)

(∇×G, ∇×f ) = (F, ∇×f ) , f ∈ H 0,curl (Ω) ∩ H div=0 (Ω) .
Since the above denition only involves ∇×f , we infer that the following holds also

(∇×G, ∇×f ) = (F, ∇×f ) , ∀f ∈ H 0,curl (Ω) .
Setting w := ∇×G, the above equality implies that ∇×w = ∇×F. The equality ∇×w = ∇×F rst holds in the distribution space D ′ (Ω), and then in H -s (Ω) taking advantage of the regularity ∇×F ∈ H -s (Ω). We have w ∈ L 2 (Ω) with ∇•w = 0 and ∇×w ∈ H -s (Ω), i.e. w ∈ Z 1-s (Ω). Moreover, the condition

G×n |Γ = 0 implies w•n |Γ = 0. Then Theorem A.4.1 implies that w ∈ H 1 2 (Ω) and (A.4.27) w H 1 2 (Ω) ≤ c ∇×w H -s (Ω) = c ∇×F H -s (Ω) .
The equality ∇×w = ∇×F yields the existence of p ∈ H 1 (Ω) such that F = w + ∇p [59, Theorem 2.9]. Up to an additive constant, we assume that p ∈ Ḣ1 (Ω) and now derive H s (Ω) estimates. The denition of p together with the assumption ∇•(µF) = 0 implies that

(µ∇p, ∇q) = (µF, ∇q) -(µw, ∇q) = -(µw, ∇q) , ∀q ∈ H 1 (Ω).
As a result, we have

(µ∇p, ∇q) = -(S(µw), q), ∀q ∈ Ḣ1 (Ω).
Proposition A.2.1 ensures that µw ∈ H s (Ω) for all s < 1 2 , and Lemma A.3.1 implies that S(µw) ∈ H s-1 (Ω), so that

S(µw) H s-1 (Ω) ≤ µw H s 0 (Ω) ≤ µ max N s,µ w H s (Ω) ≤ c w H 1 2 (Ω)
.

We now can apply Theorem A.3.1 with H 1 (Ω) = Ḣ1 (Ω) and ν = µ. Let τ µ be the parameter dened in Theorem A.3.1. Then p ∈ H 1+s (Ω) for all s ∈ [0, τ µ ) and there is a constant c so that (A.4.28)

∇p H s (Ω) ≤ c S(µw) H s-1 (Ω) ≤ c ′ w H 1 2 (Ω)
.

Recalling that and F = w + ∇p, we nally conclude that F ∈ H s , and owing to (A.4.27) and (A.4.28) we obtain the following estimate:

(A.4.29)

F H s ≤ c w H 1 2 ≤ c ′ ∇×F H -s (Ω) = c ′ |F| Y s (Ω) .
This concludes the proof. The discontinuities in the elds ε are µ imply regularity losses. See also [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF].

A.5 Application to Maxwell problem

We turn our attention in this section to the Maxwell problems mentioned in the introduction. Using Theorem A.3.1, we establish a priori estimates for the following problem: Given g and b, nd E so that (A.5.1)

∇×(µ -1 ∇×E) = g, ∇•(εE) = b, E×n| Γ = 0. A.5.

Notation and preliminaries

Let us consider the following space:

X s div=0 (Ω) := {F ∈ X s (Ω) | ∇•(εF) = 0} , (A.5.2)
equipped with the canonical norm (A.5.3)

F 2 X s div=0 (Ω) := E 2 L 2 (Ω) + ∇×E 2 H -s (Ω) .
The case b = 0 reduces to the case b = 0 upon decomposing E := E + ∇p where E is the solution of the Maxwell system with b = 0 and p solves

(ǫ∇p, ∇r) = (b, r), ∀r ∈ H 1 0 (Ω).
As a consequence, we focus from now on to the case b = 0. Problem (A.5.1) can be reformulated as follows: Find E ∈ X 0 div=0 (Ω) such that the following holds:

(A.5.4)

µ -1 ∇×E, ∇×F = (g, F) , ∀F ∈ X 0 div=0 (Ω).

Let us denote

A : L 2 (Ω) ∋ g → E ∈ X 0 div=0 (Ω)
the solution mapping for the model problem Problem (A.5.4). We deduce an existence result as an immediate consequence of Proposition A.4.1, i.e., the linear operator A is well dened. 

E := Ag in X 0 div=0 (Ω) for any g ∈ L 2 (Ω)
and there is a constant c, independent of g, so that (A.5.5)

Ag X 0 (Ω) ≤ c g L 2 (Ω) .
Proof. This is a direct application of the Lax-Milgram lemma. Indeed, for any

F ∈ X 0 div=0 (Ω), Proposition A.4.1 implies that F 2 X 0 (Ω) = F 2 L 2 (Ω) + ∇×F 2 L 2 (Ω) ≤ c |F| 2 X 0 (Ω) + ∇×F 2 L 2 .
After observing that

|F| X 0 (Ω) = ∇×F L 2 , since F ∈ X 0 div=0 (Ω), we conclude that F 2 X 0 (Ω) ≤ c ∇×F 2 L 2 ≤ cµ max µ -1 ∇×F, ∇×F ,
and the bilinear form µ -1 ∇×F, ∇×G is coercive in X 0 div=0 (Ω). The rest of the proof is standard.

A.5.2 Regularity of the Maxwell problem

We now establish regularity estimates for the solution of the Maxwell problem (A.5.4).

Theorem A.5.1. Let the regularity Assumption A.4.1 hold. There exist τ ε , τ µ , depending only on Ω, ε, and µ so that,

g ∈ L 2 (Ω) → Ag ∈ H s (Ω) is continuous for all s ∈ [0, τ ε ), (A.5.6) g ∈ L 2 (Ω) → ∇×Ag ∈ H s (Ω) is continuous for all s ∈ [0, τ µ ). (A.5.7)
Proof. By applying Proposition A.4.1 and Proposition H.2.2, we infer that

Ag H s (Ω) ≤ c |Ag| X s (Ω) ≤ c ∇×Ag L 2 (Ω) ≤ c ′ g L 2 (Ω) ,
which proves (A.5.6). Note in passing that this also proves that µ -1 ∇×Ag ∈ L 2 (Ω).

We now prove (A.5.7). We rst establish that there exists p ∈ H 1 0 (Ω) so that ∇× µ -1 ∇×Ag = g -ε∇p. Let F ∈ C ∞ 0 (Ω) and let q ∈ H 1 0 (Ω) be so that

(ε∇q, ∇r) = (εF, ∇r), ∀r ∈ H 1 0 (Ω),
and set w := F -∇q. The denition of q implies that w×n| Γ = 0, ∇•(εw) = 0, and ∇×w = ∇×F ∈ L 2 (Ω). As a result, w is a member of X 0 (Ω). This in turn implies that

µ -1 ∇×Ag, ∇×F = µ -1 ∇×Ag, ∇×w = (g, w) = (g, F -∇q) .

Now let us dene

p ∈ H 1 0 (Ω) so that (ε∇p, ∇r) = (g, ∇r), ∀r ∈ H 1 0 (Ω).
Then,

µ -1 ∇×Ag, ∇×F = (g, F) -(ε∇p, ∇q) = (g, F) -(εF, ∇p) .
Since F is an arbitrary member of C ∞ 0 (Ω), the above equality implies that

∇× µ -1 ∇×Ag + ε∇p = g, in (D(Ω)) ′ .
The equality actually holds in L 2 (Ω) since q ∈ L 2 (Ω) and p ∈ H 1 0 (Ω), and

∇× µ -1 ∇×Ag L 2 (Ω) ≤ g L 2 (Ω) + ε max ∇p L 2 (Ω) ≤ (1 + ε max ε -1 min ) g L 2 (Ω) .
In conclusion µ -1 ∇×Ag is a member of H curl (Ω). Now let us observe that since ∇×Ag is a member of H div (Ω), the condition ∇•(∇×Ag) = 0 together with the boundary condition

Ag×n| Γ = 0 implies that (µ -1 ∇×Ag)•n| Γ = 0. Moreover it is clear that ∇•(µ(µ -1 ∇×Ag)) = 0.
In conclusion, µ -1 ∇×Ag is a member of Y 0 (Ω). Using Proposition A.4.2, we infer that there is τ µ > 0 so that the following holds for all s ∈ [0, τ µ ):

µ -1 ∇×Ag H s (Ω) ≤ c µ -1 ∇×Ag Y 0 (Ω) = c µ -1 ∇×Ag L 2 (Ω) + ∇×(µ -1 ∇×Ag) L 2 (Ω) ≤ c ′ g L 2 (Ω) .
We conclude by using the fact that E µ is a continuous operator from H s (Ω) to H s (Ω) for all

s ≤ τ µ < 1 2 . Introduction B.1.1
The Maxwell problem

We start from the time-harmonic Maxwell equations with perfect conductor boundary conditions in a simply connected, bounded, Lipschitz domain Ω ⊂ R d :

∇×E -iωµH = 0 and ∇×H + iωεE = J in Ω, E×n = 0 and H•n = 0 on ∂Ω.
We assume that Ω is made of heterogenous media, i.e. the permittivity ε and the permeability µ may have discontinuities. Eliminating the magnetic eld H from the above equations, the electric eld E satises a system of the kind

∇× µ -1 ∇×E -ω 2 εE = εg and ∇•(εE) = 0, in Ω.
This naturally leads to the following two problems: • the boundary value problem; given g a eld such that ∇•(εg) = 0, nd E such that:

     ∇× µ -1 ∇×E = εg ∇•(εE) = 0 E×n = 0
• the eigenvalue problem; nd (λ, E) such that:

     ∇× µ -1 ∇×E = λεE ∇•(εE) = 0 E×n = 0
In the following, we will often use κ := µ -1 .

B.1.2 Mixed formulation

It can be shown (cf. [START_REF] Bonito | Note on the regularity of the Maxwell equations in heterogeneous media[END_REF] e.g.) that the boundary value problem may extend for any squareintegrable data g, using the following mixed formulation:

(B.1.1)      ∇×(κ∇×E) + ε∇q = εg, ∇•(εE) = 0 E×n |Γ = 0, q |Γ = 0.
This formulation is the starting point for approximation. In the homogeneous case (i.e. κ and ε constant), it is well-known that the use of Lagrange nite element is challenging, because it often relies on convergence in the L 2 -norm for both the curl and the divergence of the electric eld. It has been shown by Costabel [35] that such techniques may fail to converge if Ω is non-smooth and non-convex.

In the present paper, we follow the idea of controlling the divergence of the electric eld in a an intermediate space between L 2 (Ω) and H -1 (Ω). The idea has already been used by Bramble et al. [START_REF] Bramble | A new approximation technique for div-curl systems[END_REF][START_REF] Bramble | The approximation of the Maxwell eigenvalue problem using a least-squares method[END_REF], Costabel and Dauge [START_REF] Costabel | Weighted Regularization of Maxwell Equations in Polyhedral Domains[END_REF]. Here, we develop a technique in the spirit of [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF], based on estimates in fractional Sobolev spaces with negative exponents.

The paper is organized as follows: in 2, we introduce the functional framework and recall a regularity result from [START_REF] Bonito | Note on the regularity of the Maxwell equations in heterogeneous media[END_REF] for the solution of the Maxwell system. In 3, we introduce a regularization operator with good approximation and commutating properties. In 4, we present the discrete formulation we want to use, and prove that the method is well-dened and consistent. Several convergence results (for dierent norms) for the boundary value problem are stated. Finally, in 5, we focus on the eigenvalue problem, and prove that in some sense, the approximation technique we have developed is suitable to approximate both eigenvalues and eigenvectors. 

v 2 H 1 (D) := v 2 L 2 (D) + ∇v 2 L 2 (D) .
The space H s (D) for s ∈ (0, 1) is dened by the method of real interpolation between H 1 (D) and L 2 (D) (see e.g. [START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF])

(B.2.2) H s (D) = [L 2 (D), H 1 (D)] s,2 .
We also consider the space H 1 0 (D) to be the completion of D(D) with respect to the following norm

(B.2.3) v H 1 0 (D) := ∇v L 2 (D) .
This allows us again to dene the space H s 0 (D) for s ∈ (0, 1) by the method of real interpolation between H 1 0 (D) and L 2 (D) (B.2.4)

H s 0 (D) = [L 2 (D), H 1 0 (D)] s,2 .
(This denition is slightly dierent from what is usually done; the only dierences occurs at 

0 =w∈H s 0 (D) D vw w H s 0 (D) . It is a standard result that H -s (D) = [L 2 (D), H -1 (D)] s,2 .
The above denitions are naturally extended to the vector-valued Sobolev spaces H s (D) and H s 0 (D). We additionally introduce the spaces

H curl (D) = {v ∈ L 2 (D) | ∇×v ∈ L 2 (D)}, (B.2.5) H 0,curl (D) = {v ∈ L 2 (D) | ∇×v ∈ L 2 (D), v×n| ∂D = 0}, (B.2.6) H r curl (D) = {v ∈ L 2 (D) | ∇×v ∈ H r (D)}, (B.2.7) H r 0,curl (D) = {v ∈ L 2 (D) | ∇×v ∈ H r (D), v×n| ∂D = 0}, (B.2.8)
all equipped with their natural norm; for instance, v 2

H curl (D) = v 2 L 2 (D) + ∇×v 2 L 2 (D) . B.2.2 The domain The domain Ω is a bounded open set in R d , d = 2, 3.
The boundary is assumed to have the Lipschitz regularity. To simplify the presentation we also assume that 0 ∈ Ω and Ω is star-shaped with respect to an open neighborhood of 0. More precisely, there is an open neighborhood of the origin, say V, such that Ω is star-shaped with respect to all the points on V. This assumption is equivalent to assuming that Ω is a star-shaped domain with respect to the origin and there exists a real number χ ∈ (0, 1) such that the following holds for any δ ∈ (0, 1):

(B.2.9)

(1 -δ)Ω + B(0, δχ) ⊂⊂ Ω,
where B(0, r) is the ball centered at 0 of radius r and ⊂⊂ denotes compact embedding.

A key piece of the convergence analysis of the method that we propose in this paper is based on the existence of a family of smoothing operators in H 0,curl (Ω). This construction is discussed in detail in B. 3. The main challenge one encounters when constructing this family of operators is to make it compatible with the boundary condition and to commutes with the curl operator. The purpose of the hypothesis (B.2.9) is to make this construction possible. The hypothesis (B.2.9) may seem restrictive, but, using a partition of unity technique, the results presented in this paper remain valid for any domain that can be divided into nitely many domains that are star-shaped with respect to a open neighborhood.

B.2.3 Formulation of the problem

We want to approximate the solution to the following boundary value problem: Given a vector eld g, nd E and p such that (B.2.10)

∇×(µ -1 ∇×E) + ε∇p = εg; ∇•(εE) = 0, E×n |Γ = 0, p |Γ = 0,
where the elds µ and ε are piecewise smooth. More precisely we assume that Ω is partitioned into N Lipschitz subdomains Ω 1 , • • • , Ω N and we dene

Σ := i =j ∂Ω i ∩ ∂Ω j . (B.2.11) W 1,∞ Σ (Ω) := ν ∈ L ∞ (Ω) | ∇(ν |Ω i ) ∈ L ∞ (Ω i ), i = 1, • • • , N .
(B.2.12)

We refer to Σ as the interface between the subdomains Ω i . In the rest of the paper we assume that the elds ε and µ satisfy the following properties: There exist ε min , µ min > 0 such that (B.2.13)

ε, µ ∈ W 1,∞ Σ (Ω),
and ε ≥ ε min , µ ≥ µ min a.e. in Ω.
The following stability results proved in [START_REF] Bonito | Note on the regularity of the Maxwell equations in heterogeneous media[END_REF] play important roles in the stability of the nite element method developed in this paper:

Theorem B.2.1. Assuming that εg ∈ L 2 (Ω), Problem (B.2.10) has a unique solution in H 0,curl (Ω). Moreover, assuming (B.2.13), there exist c, depending on Ω and the elds ε and µ, and there exist τ ε and τ µ depending on Ω and the elds ε and µ, respectively, so that

E H s (Ω) ≤ c εg L 2 (Ω) , ∀s ∈ [0, τ ε ), (B.2.14) ∇×E H s (Ω) ≤ c εg L 2 (Ω) , ∀s ∈ [0, τ µ ).
(B.2.15)

∇×(µ -1 ∇×E) L 2 (Ω) + ∇p L 2 (Ω) ≤ c εg L 2 (Ω) , (B.2.16) B.3
Smooth approximation in H 0,curl (Ω)

We introduce in this section a smoothing operator in H 0,curl (Ω) that will be used to prove the convergence of the nite element approximation. The key diculty that we are facing is to nd an approximation that is compatible with the boundary condition in H 0,curl (Ω) and commutes with the curl operator. We essentially proceed as in [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF] but modify the argument to correct an incorrect statement made therein. When invoking C h (Ae) ε in the proof of Lemma 3.3 in [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF] it was incorrectly assumed that (AE)ε is in H 0,curl (Ω), which is not the case. We resolve this issue in the present construction by introducing an additional scaling operator, S δ D .

B 

E D F(x) = F(x) if x ∈ D, 0 elsewhere.
Let δ ∈ [0, 1 2 ], dene δ := 1δ and set D δ := δD. We dene the scaling operator S δ D :

L 1 (D) -→ L 1 (D δ ) by (B.3.2) ∀F ∈ L 1 (D), ∀x ∈ D δ , (S δ D F)(x) := F x δ-1 . Lemma B.3.1.
The following commuting properties hold: ) is similar. Let F be a member of H 0,curl (D), then the following holds:

S δ R d E D = E D δ S δ D (B.3.3) ∂ x i (S δ D F) = δ-1 S δ D (∂ x i F), ∀F ∈ L 1 (D), ∀i = 
∇×(E D F), φ = R d (E D F)•∇×φ = D F•∇×φ = D ∇×F•φ, ∀φ ∈ D(R d ),
where the last equality holds owing to F being in H 0,curl (D). Then

∇×(E D F), φ = R d E D (∇×F)•φ, ∀φ ∈ D(R d ),
which proves the statement. [2]. Then the rst assertion follows directly from the interpolation theory. For the second part, a scaling argument ensures that S δ D is a continuous operator from L 2 (D) to L 2 (D δ ). Using (B.3.4), we infer that it is also a continuous operator from H 1 (D) to H 1 (D δ ). The conclusion follows from the interpolation theory.

Lemma B.3.2. For all r ∈ [0, 1], (i) the linear operator E D : H r 0 (D) → H r 0 (R d ) is bounded; (ii) the family of operators {S δ D } : H r (D) → H r (D δ ) is uniformly bounded with respect to δ ∈ [0, 1 2 ]. Proof. It is a standard result that E D is a continuous operator from L 2 (D) to L 2 (R d ) and from H 1 0 (D) to H 1 0 (R d ),
Taking r ∈ 0, 1 2 and using the fact that the spaces H r 0 (Ω) and H r (Ω) coincide (with equivalent norms), we infer that there exists c such that,

(B.3.7) ∀F ∈ H r (Ω), E Ω F H r (R d ) ≤ c F H r (Ω) .
Moreover, using this inequality and the second part of Lemma B.3.

2 with D = R d , we infer that S δ R d E Ω : H r (Ω) → H r (R d
) is a linear continuous operator, and there exists c, uniform in δ, such that

(B.3.8) ∀F ∈ H r (Ω), S δ R d E Ω F H r (R d ) ≤ c F H r (Ω) .
Lemma B.3.3. The following holds: 1 2 ). More precisely there is c, uniform with respect to δ, so that the following holds:

∀F ∈ H 0,curl (Ω) , ∇×(S δ R d E Ω F) = δ-1 S δ R d E Ω (∇×F). (B.3.9) Proof. Let F ∈ H 0,curl (Ω). By (B.3.4) we infer that ∇×(S δ R d E Ω F) = δ-1 S δ R d ∇×(E Ω F). Then (B.3.5) from Lemma B.3.1 implies ∇×(S δ R d E Ω F) = δ-1 S δ R d E Ω (∇×F), since F ∈ H 0,curl (Ω). This concludes the proof. Lemma B.3.4. The linear operator S δ R d E Ω : H r 0,curl (Ω) -→ H r 0,curl R d is bounded for all r ∈ [0,
(B.3.10)

∇×(S δ R d E Ω F) H r (R d ) ≤ c ∇×F H r (Ω) .
Proof. The identity (B.3.9) implies that S δ R d E Ω is a continuous map from H 0,curl (Ω) to H 0,curl R d . Let r∈ [0, 1 2 ) and let F be a member of H r 0,curl (Ω). A simple scaling argu-

ment implies that S δ Ω F is a member of H r 0,curl (Ω δ ). Since ∇×S δ Ω F is in H r (Ω) and r ∈ [0, 1 2 ), the extension by zero is stable in H r (R d ), i.e., E Ω δ ∇×S δ Ω F is a member of H r (R d )
and there is a constant c, uniform with respect to F and δ, so that 

E Ω δ ∇×S δ Ω F H r (R d ) ≤ c ′ ∇×S δ Ω F H r (Ω δ ) = c ′ δ-1 S δ Ω ∇×F H r (Ω δ ) ≤ c ∇×F H r (Ω) . Note that c is uniform with respect to δ since δ ∈ [ 1 2 , 1].
∇×(S δ R d E Ω F) H r (R d ) = ∇×(E Ω δ S δ Ω F) H r (R d ) = E Ω δ ∇×S δ Ω F H r (R d ) ≤ c ∇×F H r (Ω) ,
which concludes the proof.

We now state a lemma that gives some important approximation properties of the operator

F → S δ R d E Ω F.
Lemma B.3.5. There exists K 1 for all r ∈ [0, 1] such that the following holds for every F ∈ H r 0 (Ω):

F -S δ R d E Ω F H s 0 (Ω) ≤ K 1 δ r-s F H r 0 (Ω) 0 ≤ s ≤ r ≤ 1, (B.3.11)
and for all r ∈ [0, 1 2 ) there exists K 2 (r), such that the following holds every F ∈ H r 0,curl (Ω)

∇×(F -S δ R d E Ω F) H s (Ω) ≤ K 2 (r)δ r-s ∇×F H r (Ω) 0 ≤ s ≤ r < 1 2 .
(B.3.12)

Proof. We prove the rst inequality (B. 

F -S δ R d E Ω F L 2 (Ω) ≤ F L 2 (Ω) + S δ R d E Ω F L 2 (Ω) ≤ 1 + δ d 2 F L 2 (Ω) ≤ 2 F L 2 (Ω) . F -S δ R d E Ω F H 1 0 (Ω) = ∇(F -S δ R d E Ω F) L 2 (Ω) ≤ ∇F L 2 (Ω) + ∇S δ R d E Ω F L 2 (Ω) = ∇F L 2 (Ω) + δ-1 S δ R d ∇(E Ω F) L 2 (Ω) = ∇F L 2 (Ω) + δ d 2 -1 E Ω ∇F L 2 (Ω) = 1 + δ d 2 -1 ∇F L 2 (Ω) ≤ 2 F H 1 0 (Ω) .
We now derive an estimate for the mapping

H 1 0 (Ω) ∋ F → F -S δ R d E Ω F ∈ L 2 (Ω). The denition of S δ R d E Ω F implies that F -S δ R d E Ω F 2 L 2 (Ω) = Ω (E Ω F)(x) -(E Ω F) x δ-1 2 dx = Ω 1 0 ∇(E Ω F) (1 -t)x + tx δ-1 • δ δ x dt 2 dx ≤ Ω δ 2 δ2 |x| 2 1 0 ∇(E Ω F) (1 -t)x + tx δ-1 2 dt dx
Then, we introduce M := max x∈Ω |x|, and we apply Fubini's lemma:

F -S δ R d E Ω F 2 L 2 (Ω) ≤ M 2 δ 2 δ2 1 0 Ω ∇(E Ω F) (1 -t)x + tx δ-1 2 dxdt
Using a change of variable in the inner integral, we nally obtain

F -S δ R d E Ω F 2 L 2 (Ω) ≤ M 2 δ 2 δ2 ∇E Ω F 2 L 2 (Ω δ ) 1 0 δ δ + δt d dt ≤ M 2 δ 2 δ-2 ∇(E Ω F) 2 L 2 (R d ) . Since F ∈ H 1 0 (Ω), we have ∇E Ω F L 2 (R d ) = E Ω ∇F L 2 (R d ) = ∇F L 2 (Ω)
. Using now the assumption δ ≤ 1 2 , i.e., δ-1 ≤ 2, we nally deduce that (B.3.13)

F -S δ R d E Ω F L 2 (Ω) ≤ 2M δ ∇F L 2 (Ω) = 2M δ F H 1 0 (Ω) .
We now set K 1 := max(2, 2M ) and we have proven that

F -S δ R d E Ω F L 2 (Ω) ≤ K 1 F L 2 (Ω) , F -S δ R d E Ω F L 2 (Ω) ≤ K 1 δ F H 1 0 (Ω) , F -S δ R d E Ω F H 1 0 (Ω) ≤ K 1 F H 1 0 (Ω) .
We conclude that (B.3.11) holds by using the Lions-Peetre Reiteration Theorem.

We now turn our attention to (B.3.12). Let r ∈ [0, 1 2 ) and consider s ∈ [0, r]. Let F be a member of H r 0,curl (Ω). We observe rst that

S δ R d E Ω F is also in H r 0,curl (Ω) owing to Lemma B.3.4. Using (B.3.9) gives ∇×(F -S δ R d E Ω F) H s 0 (Ω) = ∇×F -δ-1 S δ R d E Ω ∇×F H s 0 (Ω) ≤ ∇×F -δ-1 ∇×F H s 0 (Ω) + δ-1 ∇×F -S δ R d E Ω (∇×F) H s 0 (Ω) ≤ δ δ-1 ∇×F H s 0 (Ω) + K 1 δ-1 δ r-s ∇×F H r 0 (Ω) .
Using δ < 1 2 , i.e., δ-1 ≤ 2, we have

∇×(F -S δ R d E Ω F) H s 0 (Ω) ≤ 2(K 1 + δ 1-r+s )δ r-s ∇×F H r 0 (Ω) ,
Remembering that H s (Ω) and H s 0 (Ω) coincide for 0 ≤ r < 1 2 and that their norm are equivalent, the above inequality yields (B.3.12) since 1r + s ≥ 1r > 0.

B.3.2 Smooth approximation

We now use the above extension operator S δ R d E Ω together with a mollication to construct a smooth approximation operator. For 0 < δ < 1 2 , we set

(B.3.14) ρ δ (x) := δ -d ρ(x/δ), where ρ(x) := η exp -1 1-|x| 2 , if |x| < 1, 0, if |x| ≥ 1,
where η is chosen so that R d ρ = 1. We dene a family of approximation operators {K δ } δ>0 in the following way:

(B.3.15) K δ F = ρ δχ ⋆ (S δ R d E Ω F), ∀F ∈ L 1 (Ω)
where χ is the constant introduced in (B.2.9).

Theorem B.3.1. K δ F| Ω is in C ∞ 0 (Ω) for all F ∈ L 1 (Ω).
There exists a constant K such that the following estimates hold for any 0 < δ < 1 2 :

F -K δ F H s 0 (Ω) ≤ Kδ r-s F H r 0 (Ω) 0 ≤ s ≤ r ≤ 1 (B.3.16) ∇×F -∇×K δ F H s (Ω) ≤ Kδ r-s ∇×F H r (Ω) 0 ≤ s ≤ r < 1 2 (B.3.17) K δ F H r (Ω) ≤ Kχ s-r δ s-r F H s (Ω) 0 ≤ s ≤ r, s < 1 2 (B.3.18)
and all F ∈ H r 0 (Ω), all F ∈ H 0,curl (Ω), and all F ∈ H r (Ω), respectively.

Proof. Owing to the properties of the mollication operator, we have K δ F| Ω ∈ C ∞ (Ω). We now prove that the support of K δ F is compact in Ω. The denition of the convolution operation implies that the following holds for all x ∈ R d :

K δ F(x) = R d (S δ R d E Ω F)(y)ρ δχ (x -y) dy = δΩ F(y/ δ)ρ δχ (x -y) dy.
If x / ∈ δΩ + B(0, δχ), then for all y ∈ δΩ, we have ρ δχ (xy) = 0 and then K δ F(x) = 0. As a result, K δ F is supported in δΩ + B(0, δχ) which is compactly embedded in Ω owing to the assumption (B.2.9). Hence, K δ F ∈ C ∞ 0 (Ω); in particular, we have K δ F ∈ H 0,curl (Ω). We now prove the estimates (B.3.16) to (B. 3.18). Let us rst consider F ∈ H r 0 (Ω). Using standard approximation properties of the mollication operator, we deduce that there exists a uniform constant K 3 > 0 so that

S δ R d E Ω F -K δ F H s 0 (Ω) ≤ K 3 (δχ) r-s S δ R d E Ω F H r 0 (R d ) , 0 ≤ s ≤ r ≤ 1.
Using the triangle inequality and Lemma B.3.5 we have

F -K δ F H s 0 (Ω) ≤ F -S δ R d E Ω F H s 0 (Ω) + S δ R d E Ω F -K δ F H s 0 (Ω) ≤ K 1 δ r-s F H r 0 (Ω) + K 3 χ r-s δ r-s S δ R d E Ω F H r 0 (R d ) ≤ (K 1 + 2K 3 χ r-s )δ r-s F H r 0 (Ω) .
This proves (B.3.16) with

K = K 1 + 2K 3 since χ ≤ 1 and s ≤ r. Let us now consider F ∈ H r 0,curl (Ω). Using that ∇×K δ F = ρ δχ ⋆ ∇×(S δ R d E Ω F), we infer that ∇×(S δ R d E Ω F -K δ F) H s (Ω) ≤ K 3 (δχ) r-s ∇×(S δ R d E Ω F) H r (R d ) 0 ≤ s ≤ r
Using the triangle inequality together with (B.3.10), Lemma B.3.5, and assuming that r < 1 2 we have

∇×(F -K δ F) H s (Ω) ≤ ∇×(F -S δ R d E Ω F) H s (Ω) + ∇×(S δ R d E Ω F -K δ F) H s (Ω) ≤ K 2 (r)δ r-s ∇×F H r (Ω) + K 3 (δχ) r-s ∇×(S δ R d E Ω F) H r (R d ) ≤ (K 2 (r) + K 2 χ r-s ) ∇×F H r (Ω) ,
which proves (B.3.17) with

K = K 1 + 2K 2 (r) since χ ≤ 1 and s ≤ r. Let us nally assume that F ∈ H r (Ω).
Using again the properties of the mollication operator, we infer

K δ F H r (Ω) ≤ K δ F H r (R d ) ≤ K 3 (δχ) s-r S δ R d E Ω F H s (R d ) 0 ≤ s ≤ r.
Applying (B.3.8), we obtain (B. 3.18). Note that the assumption s < 1 2 is required in order to ensure that S δ

R d E Ω F ∈ H r (R d ).
Remark B.3.1. In the following, we will use (B.3.18) without χ in the right hand sides. Indeed, we will use the inequality with r bounded from above by the polynomial degree of the approximation; as a result, χ s-r is uniformly bounded.

We end this section with a commuting property on K δ . Lemma B.3.6. The following holds for any F ∈ H curl (Ω):

(B.3.19) δ∇×K δ F = K δ (∇×F).
Proof. Owing to the properties of the convolution, the following holds for any F ∈ H curl (Ω):

∇×K δ F = ρ δχ ⋆ ∇× S δ R d E Ω F .
Applying (B.3.9), we infer

∇×K δ F = ρ δχ ⋆ δ-1 S δ R d E Ω (∇×F) = δ-1 ρ δχ ⋆ S δ R d E Ω (∇×F) = δ-1 K δ (∇×F).
This completes the proof.

B.4 Finite Element Approximation of the boundary value problem

We introduce and study the stability properties of a Lagrange nite element technique for solving the boundary value problem (B.2.10).

B.4.1 Finite Element Spaces

Let {T h } h>0 be a shape regular family of conforming ane meshes with typical mesh size h. We assume that the sub-domains Ω i , i = 1, . . . , N are polyhedra and the interface Σ is captured by the meshes in {T h } h>0 , i.e., Σ is partitioned by a set of mesh interfaces. We introduce the following discrete space:

X h := F ∈ N i=1 C 0 ( Ωi ), | ∀K ∈ T h , F |K ∈ P ℓ-1 (B.4.1)
where P ℓ-1 denotes the vector space of vector-valued polynomial of total degree at most ℓ -1, ℓ ≥ 2. Note that the approximation space is non-conforming, i.e., X h ⊂ H 0,curl (Ω) and X h ⊂ H div (Ω, ǫ). From the standard approximation theory of nite elements, we know that there exists a family of operators C h : H 0,curl (Ω) → X h satisfying the following properties (cf. e.g. [START_REF] Scott | Finite element interpolation of nonsmooth functions satisfying boundary conditions[END_REF]): there exist c uniform in h such that, for every

F ∈ H 0,curl (Ω) ∩ H l (Ω) C h F H l (Ω) ≤ c F H l (Ω) 0 ≤ l ≤ 3 2 (B.4.2) C h F -F H t (Ω) ≤ ch l-t F H l (Ω) 0 ≤ t ≤ l ≤ ℓ, t < 3 2 (B.4.3)
We additionally introduce the scalar-valued discrete space (B.4.4)

M h := q ∈ C 0 ( Ω), | ∀K ∈ T h , q ∈ P ℓ-1 , q |Γ = 0 ⊂ H 1 0 (Ω).
Again, the approximation theory of nite elements ensures that there exists an approximation operator P h : H 1 0 (Ω) -→ M h satisfying the scalar counterparts of (B.4.2) and (B.4.3) for all

q ∈ H 1 0 (Ω) ∩ H l (Ω). P h q H l (Ω) ≤ c q H l (Ω) 0 ≤ l ≤ 3 2 (B.4.5) P h q -q H t (Ω) ≤ ch l-t q H l (Ω) 0 ≤ t ≤ l ≤ ℓ, t < 3 2 (B.4.6)
Note that the construction of M h and P h is possible since the mesh is conforming. We denote F i h the set of the mesh interfaces: F is an interface if there are two elements in T h , say K m and K n so that F = K m ∩ K n and F is a d -1 manifold. We denote F ∂ h the set of the boundary faces: F is a boundary face if there is an element in T h , say K i so that F = K m ∩ Γ and F is a d -1 manifold. To simplify notation we also introduce

F h := F i h ∪ F ∂ h .
For any mesh interface F ∈ F i h , F = K m ∩ K n and any function v whose restrictions over K m and K n are continuous, we dene the tangent and normal jump of v across F by

[[v × n]](x) := (v |Km ×n m )(x) + (v |Kn ×n n )(x), ∀x ∈ F, (B.4.7) [[v•n]](x) := (v |Km •n m )(x) + (v |Kn •n n )(x), ∀x ∈ F, (B.4.8)
where n l is the unit outer normal to K l . The average of v across across F is dened by (B.4.9)

{ {v} } (x) := 1 2 v |Km (x) + v |Kn (x) , ∀x ∈ F.
Whenever F is a boundary face we set

[[v×n]](x) := v |Km ×n m (x), [[v•n]](x) := v |Km •n m (x) and { {v} } (x) := v |Km (x).
Remark B.4.1. We may assume the following: for any

F ∈ H 1 0 (Ω), C h F ∈ H 1 0 (Ω).
In particular, we have

[[C h F×n]] = 0. B.4.2
Discrete formulation

It will be useful to work with broken norms; for instance, we introduce the following notation:

v 2 L 2 (Ω Σ ) := N i=1 v 2 L 2 (Ω i ) , (v, w) Ω Σ := N i=1 Ω i vw, (B.4.10) v 2 L 2 (Σ∪Γ) := v 2 L 2 (Σ) + v 2 L 2 (Σ) , (v, w) Σ∪Γ := Σ vw + Γ vw. (B.4.11)
To simplify the notation we set κ := µ -1 . We construct a discrete formulation of (B.2.10) by proceeding as in [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF]. Let α ∈ [0, 1] be a parameter yet to be chosen. We dene the following bilinear form a h :

X h ×M h -→ R, (B.4.12) a h ((E h , p h ), (F h , q h )) := (κ∇×E h , ∇×F h ) Ω Σ + ({ {κ∇×E h } } , [[F h ×n]]) Σ∪Γ + θ ({ {κ∇×F h } } , [[E h ×n]]) Σ∪Γ + γh -1 ({ {κ} } [[E h ×n]], [[F h ×n]]) Σ∪Γ + (ε∇p h , F h ) Ω -(εE h , ∇q h ) Ω + c α h 2α (∇•(εE h ), ∇•(εF h )) Ω Σ + h 2(1-α) (ε∇p h , ∇q h ) Ω + h (2α-1) ([[εE h •n]], [[εF h •n]]) Σ ,
where γ, c α > 0, and θ ∈ {-1, 0, +1} are user-dened parameters. We say that the formulation is anti-symmetric, incomplete, or symmetric depending whether θ is equal to -1, 0, or 1, respectively. The choice θ = 1 ensures the adjoint consistency of the method. The term proportional to γ enforces the weak continuity of the tangent component of E. The purpose of the term proportional to c α is to penalize ∇

•(εE h ) in H -α (Ω).
The discrete formulation that we consider in the rest of the manuscript consists of dening (E h , p h ) ∈ X h ×M h such that the following holds for all (F h , q h ) ∈ X h ×M h : (B.4.13)

a h ((E h , p h ), (F h , q h )) = (εg, F h ) Ω + c α h 2(1-α) (εg, ∇q h ) Ω .
To perform the consistency analysis of the method we are led to introduce 

Z s (Ω) = {F ∈ H s 0,curl (Ω) ; ∇×(κ∇×F) ∈ L 2 (Ω), ∇•(εF) ∈ L 2 (Ω)}. (B.
(Z s + X h )×H 1 0 (Ω) 2 
for all s > 0.

Proof. Note rst that M h ⊂ H 1 0 (Ω) and the extension of the bilinear form to scalar elds in

H 1 0 (Ω)
does not pose any diculty. We decompose a h into three pieces:

a 0h ((E h , p h ), (F h , q h )) := ({ {κ∇×E h } } , [[F h ×n]]) Σ∪Γ + θ ({ {κ∇×F h } } , [[E h ×n]]) Σ∪Γ a 1h ((E h , p h ), (F h , q h )) := (κ∇×E h , ∇×F h ) Ω Σ + γh -1 ({ {κ} } [[E h ×n]], [[F h ×n]]) Σ∪Γ a 2h ((E h , p h ), (F h , q h )) := c α h 2α (∇•(εE h ), ∇•(εF h )) Ω Σ + h 2(1-α) (ε∇p h , ∇q h ) Ω + h (2α-1) ([[εE h •n]], [[εF h •n]]) Σ + (ε∇p h , F h ) Ω -(εE h , ∇q h ) Ω .
The bilinear form a 1h can clearly be extended to

(Z s + X h )×H 1 0 (Ω) 2 , since every function E in Z s is such that [[E×n]] Σ∪Γ is zero. Hence, if either (E, F) ∈ Z s ×(Z s + X h ) or (E, F) ∈ (Z s + X h )×Z s , we set a 1h ((E, p), (F, q)) := (κ∇×E, ∇×F) Ω Σ , for all (p, q) ∈ H 1 0 (Ω).
The bilinear form a 2h can also be extended to

(Z s + X h )×H 1 0 (Ω) 2 , since every function E in Z s is such that [[E•n]] Σ∪Γ is zero. Hence, if either (E, F) ∈ Z s ×(Z s + X h ) or (E, F) ∈ (Z s + X h )×Z s , we set a 2h ((E, p), (F, q)) := c α h 2α (∇•(εE), ∇•(εF)) Ω Σ + h 2(1-α) (ε∇p, ∇q) Ω + (ε∇p, F) Ω -(εE, ∇q) Ω . for all (p, q) ∈ H 1 0 (Ω).
The question of the extension of a 0h is more subtle, and we must now distinguish the trial and test spaces. We are going to use Lemma B.7.4 that shows that the bilinear form

(H s (Ω) ∩ H curl (Ω))×X h ∋ (φ, F h ) -→ F φ•(F h ×n) ∈ R is well dened for all F ∈ F h . Let E be a member of Z s , then ∇×E ∈ H s (Ω). If s ≥ 1 2 , then ∇×E ∈ H s ′ (Ω) for all s ′ ∈ (0, 1
We henceforth abuse the notation by assuming that ∇×E ∈ H s (Ω) with s ∈ (0, 1 2 ). Owing to (B.2.13), κ can be shown to be in W 1,∞ Σ (Ω) and κ∇×E ∈ H s (Ω), see e.g. [START_REF] Bonito | Note on the regularity of the Maxwell equations in heterogeneous media[END_REF]. Note in addition that E being a member of Z s implies that ∇×(κ∇×E) ∈ L 2 (Ω), which in turn also implies that { {κ∇×E} } |Σ = κ∇×E |Σ . In conclusion can use Lemma B.7.4 to make sense of F κ∇×E•(F h ×n) for all F ∈ F h and for all (E, F h ) ∈ Z s ×X h . The extension of a 0h for (E h , F) ∈ X h ×Z s is justied similarly. The extension of a 0h for (E, F) ∈ Z s ×Z s is trivial since the tangent jumps of E and F across F are zero. In conclusion a 0h can be extended to

(Z s + X h )×H 1 0 (Ω)
2 by setting 

a 0h ((E + E h , p), (F + F h , q)) := (κ∇×E, [[F h ×n]]) Σ∪Γ + ({ {κ∇×E h } } , [[F h ×n]]) Σ∪Γ + θ (κ∇×F, [[E h ×n]]) Σ∪Γ + θ ({ {κ∇×F h } } , [[E h ×n]]) Σ∪Γ for all (E, E h ) ∈ Z s ×X h , all (F, F h ) ∈ Z s ×X h ,
(F + F h , q) ∈ (Z s + X h )×H 1 0 (Ω): a h ((E, p), (F + F h , q)) = (εg, F + F h ) Ω + c α h 2(1-α) (εg, ∇q) Ω .
Proof. Let us observe rst that

a h ((E, p), (F + F h , q)) = (κ∇×E, ∇×F + F h ) Ω Σ + (κ∇×E, [[F h ×n]]) Σ∪Γ + (ε∇p, F + F h ) Ω + c α h 2(1-α) (ε∇p, ∇q) Ω ,
where all the terms make sense owing to the extension properties of a h stated in Proposition B.4.1. We now test (B.2.10) with

F + F h ∈ (Z s + X h ), (∇×κ∇×E, F) Ω + N i=1 (∇×κ∇×E, F h ) Ω i + (ε∇p, F + F h ) Ω = (εg, F + F h ) Ω ,
and we perform the integration by parts over Ω when the test function is F and over each sub-domain when the test function is

F h , (κ∇×E, ∇×F) Ω + N i=1 (κ∇×E, ∇×F h ) Ω i + (κ∇×E, [[F h ×n]]) Σ∪Γ + (ε∇p, F + F h ) Ω = (εg, F + F h ) Ω .

Note that the term (κ∇×E, [[F h ×n]])

Σ∪Γ is meaningful owing to E being a member of Z s . This implies that

a h ((E, p), (F + F h , q)) = (εg, F + F h ) Ω + c α h 2(1-α) (ε∇p, ∇q) Ω .
Upon testing again (B.2.10) with ∇q, q ∈ H 1 0 (Ω), we infer that

(ε∇p, ∇q) Ω = (εg, ∇q) Ω ,
which in turn implies the desired result. 

a h ((E -E h , p -p h ), (F h , q h )) = 0.
Proof. This is a direct consequence of Lemma B.4.1 and the formulation (B.4.13).

Remark B.4.2 (Continuous Approximation of p). Observe that the approximation of the Lagrange multiplier p is globally continuous. This will lead to a global control of ∇•(εE) in

H -α (Ω) instead of N i=1 H -α (Ω i ). B.4.3
Well posedness of the discrete formulation

We discuss in this section the existence and uniqueness of a solution (E h , p h ) to (B.4.13). This issue is addressed by equipping X h ×M h with the following discrete norm:

(B.4.16)

F h , q h 2 h := κ 1 2 ∇×F h 2 L 2 (Ω Σ ) + γh -1 { {κ} } 1 2 [[F h × n]] 2 L 2 (Σ∪Γ) + c α h 2α ∇•(εF h ) 2 L 2 (Ω Σ ) + h 2(1-α) ε 1 2 ∇q h 2 L 2 (Ω) + h (2α-1) [[εF h •n]] 2 L 2 (Σ)
and by proving a coercivity property, uniform in h, and by establishing some continuity estimates for the bilinear form a h (., .). We rst establish the coercivity of a h .

Proposition B.4.2 (Coercivity). If θ ∈ {0, 1}, there exists γ 0 > 0 and c(γ 0 ) > 0, uniform with respect to h, so that the following holds for all γ ≥ γ 0 :

(B.4.17)

a h ((E h , p h ), (E h , p h )) ≥ c(γ 0 ) E h , p h 2 h , ∀(E h , p h ) ∈ X h ×M h ,
and this inequality holds with c(γ 0 ) = 1 if θ = -1.

Proof. We rst observe that

a h ((E h , p h ), (E h , p h )) = E h , p h 2 h + (1 + θ) ({ {κ∇×E h } } , [[E h ×n]]) Σ∪Γ .
The conclusion is evident if θ = -1. Otherwise we have to control the term

({ {κ∇×E h } } , [[E h ×n]]) Σ∪Γ .
Invoking a trace and a Young inequality yields

(B.4.18) ({ {κ∇×F h } } , [[F h ×n]]) Σ∪Γ ≤ 1 4 κ 1 2 ∇×F h 2 L 2 (Ω Σ ) + c 0 h -1 { {κ} } 1 2 [[F h ×n]] 2 L 2 (Σ∪Γ)
.

Hence, if γ ≥ γ 0 := 4c 0 , we infer that the following holds:

(B.4.19) a h ((E h , p h ), (E h , p h )) ≥ 1 2 E h , p h 2 h ≥ 0.
This completes the proof.

We now establish the uniform boundedness of the bilinear form a h .
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Proposition B.4.3 (Continuity). For any s ∈ 0, 1 2 , there is c > 0, uniform in h such that the following holds for every (E, p)

∈ Z s ×H 1 0 (Ω) and (G h , d h ), (F h , q h ) ∈ X h ×M h : c a h ((E -G h , p -d h ), (F h , q h )) F h , q h h ≤ E -G h h + h α-1 E -G h L 2 (Ω) + h σ κ∇×(E -G h ) H σ (T h ) + h ∇×κ∇×(E -G h ) L 2 (T h ) (B.4.20) + h -α p -d h L 2 (Ω) + h ( 1 2 -α) p -d h L 2 (Σ) .
where .

2 L 2 (T h ) := K∈T h . 2 K .
Proof. We rst realize that Cauchy-Schwarz inequalities yield

(κ∇×(E -G h ), ∇×F h ) Ω + γh -1 ({ {κ} } [[(E -G h )×n]], [[F h ×n]]) Σ∪Γ + c α h 2α (∇•(ε(E -G h )), ∇•(εF h )) Ω Σ + h 2(1-α) (ε∇(p -d h ), ∇q h ) Ω + h (2α-1) ([[ε(E -G h )•n]], [[εF h •n]]) Σ , ≤ F h , q h h E -G h , p -d h h .
We now bound separately the remaining terms appearing in the denition (B.4.12) of a h (., .):

-(ε(E -G h ), ∇q h ) Ω ≤ε max h α-1 ∇q h L 2 (Ω) h 1-α E -G h L 2 (Ω) , (ε∇(p -d h ), F h ) Ω ≤h α ∇•(εF h ) L 2 (Ω Σ ) h -α p -d h L 2 (Ω) + h (α-1 2 ) [[εF h • n]] L 2 (Σ) h ( 1 2 -α) p -d h L 2 (Σ) ,
where we used an integration by parts for the second estimate. It remains to bound the consistency terms (B.4.21)

({ {κ∇×(E -G h )} } , [[F h ×n]]) Σ∪Γ + θ ({ {κ∇×F h } } , [[(E -G h )×n]]) Σ∪Γ .
For the rst term in (B.4.21), we apply Lemma B.7.

4 with v = [[F h ×n]],
which is a polynomial of degree ℓ -1, and φ = { {κ∇×(E -G h )} }. Then for any F ∈ Σ ∪ Γ, we infer that

({ {κ∇×(E -G h )} } , [[F h ×n]]) F ≤ ch -1 2 [[F h ×n]] L 2 (F ) × 2 i=1 h s κ∇×(E -G h ) H s (K i ) + h ∇×κ∇×(E -G h ) L 2 (K i ) + κ∇×(E -G h ) L 2 (K i ) ,
where

K 1 , K 2 ∈ T h such that F = K 1 ∩ K 2 .
Hence, summing over all the faces we arrive at

({ {κ∇×(E -G h )} } , [[F h ×n]]) Σ∪Γ ≤ ch -1 2 [[F h ×n]] L 2 (Σ∪Γ) × h s κ∇×(E -G h ) H s (T h ) + h ∇×κ∇×(E -G h ) L 2 (T h ) + κ∇×(E -G h ) L 2 (T h ) .
For the second term in (B.4.21) we notice that

[[(E -G h )×n]] = -[[G h ×n]]
owing to the regularity of E. The by proceeding as above, we arrive at

({ {κ∇×F h } } , [[(E -G h ×n]]) Σ∪Γ ≤ ch -1 2 [[G h ×n]] L 2 (Σ∪Γ) κ∇×F h L 2 (T h ) ≤ ch -1 2 [[(E -G h )×n]] L 2 (Σ∪Γ) κ∇×F h L 2 (T h ) ,
where we used the inverse inequalities

h ∇×κ∇×F h L 2 (T h ) ≤ c κ∇×F h L 2 (T h ) , h s κ∇×F h H s (T h ) ≤ c κ∇×F h L 2 (T h ) .
The desired result is obtained by gathering the above estimates.

The following result will be useful in order to prove a convergence result in L 2 (Ω).

Proposition B.4.4 (Adjoint continuity). For any s ∈ 0, 1 2 , there is c > 0, uniform in h such that the following holds for every (E, p),

(F, q) ∈ Z s ×H 1 0 (Ω), F h ∈ X h ∩ H 0,curl (Ω), q h ∈ M h and (G h , d h ) ∈ X h ×M h : c a h ((E -G h , p -d h ), (F -F h , q -q h )) E -G h , p -d h h ≤ F -F h , q -q h h + h α-1 F -F h L 2 (Ω) + h s κ∇×(F -F h ) H s (T h ) + h ∇×κ∇×(F -F h ) L 2 (T h ) (B.4.22) + h -α q -q h L 2 (Ω) + h ( 1 2 -α) q -q h L 2 (Σ) .
Proof. The proof proceeds similarly as in the proof of Proposition B.4.3. The only dierence here is that we have

({ {∇×(E -G h )} } , [[(F -F h )×n]]) Σ∪Γ = 0.
owing to the assumption on F h . This identity makes the analysis of the consistency term (B.4.21) tractable.

Remark B.4.3. Note that the coercivity and the continuity of a h have been established for any α ∈ [0, 1].

B.5 Convergence analysis for the boundary value problem

In the rst part of this section, we prove two convergence results for the discrete problem (B.4.13) using the discrete norm • h , one assuming minimal regularity and the other assuming full smoothness. In the second part of the section we use a Nitsche-Aubin duality argument to establish convergence in L 2 (Ω). The performance of the method is numerically illustrated at the end of the section. We assume rst that the solution to the boundary value problem (B.2.10) has minimal regularity properties.

Theorem B.5.1. Let g ∈ L 2 (Ω) and denote (E, p) the solution of (B.2.10). Let τ < min(τ ε , τ µ ) where τ ε and τ µ are dened in Theorem B.2.1. Denote (E h , p h ) the solution of (B.4.13). Then, for any α ∈ ℓ(1-τ ) ℓ-τ , 1 , there exists c > 0, uniform in h, such that (B.5.1)

E -E h , p -p h h ch r g L 2 (Ω) , with r = min 1 -α, α -1 + τ 1 -α r .
Proof. We rst recall that, owing to Theorem B.2.1, we have E ∈ H τ (Ω)∩H τ 0,curl (Ω), together with the estimates

E H τ (Ω) + ∇×E H τ (Ω) + ∇×(κ∇×E) L 2 (Ω) + ∇p L 2 (Ω) ≤ c g L 2 (Ω) .
We establish (B.5.1) by using the triangular inequality

E -E h , p -p h h E -K δ E, 0 h + K δ E -C h K δ E, p -P h p h + C h K δ E -E h , P h p -p h h ,
for some δ > 0 to be dened later, and by bounding from above the three terms separately.

Using the denition of 

E -K δ E, 0 h ≤cδ τ ∇×E H τ (Ω) + ch α δ τ -1 E H τ (Ω) + h α-1 2 K δ E L 2 (Σ) .
Note that the estimate (B.3.17) is critical to obtain a bound that depends only on ∇×E H τ (Ω) instead of E H 1+τ (Ω) . To estimate the last term in the above inequality, we apply (B.7.6)

with Θ = 1-2τ 2(1-τ ) , h α-1 2 K δ E L 2 (Σ) ≤ ch α-1 2 K δ E 1-Θ H τ (Ω) K δ E Θ H 1 (Ω) ≤ ch α-1 2 δ Θ(τ -1) E H τ (Ω) ≤ ch α-1 2 δ τ -1 2 E H τ (Ω) .
Finally, we arrive at (B.5.2)

E -K δ E, 0 h ≤ c δ τ + h α δ τ -1 + h α-1 2 δ τ -1 2 g L 2 (Ω) .
Let us now turn our attention to K δ E -C h K δ E, p -P h p h . Owing to the denition of C h and the regularity of K δ E, we have C h K δ E ∈ H 0,curl (Ω), so that we only have four terms to bound (the jumps of C h K δ E across the mesh interfaces and the tangent trace on Γ are zero, cf. Remark B.4.1). Using the properties of K δ and C h together with (B.7.5) we deduce that:

κ 1 2 ∇×(K δ E -C h K δ E) L 2 (Ω) ≤ch ℓ-1 K δ E H ℓ (Ω) ≤ ch ℓ-1 δ τ -ℓ E H τ (Ω) , h α ∇• (ε(K δ E -C h K δ E)) L 2 (Ω) ≤ch α+ℓ-1 K δ E H ℓ (Ω) ≤ ch α+ℓ-1 δ τ -ℓ E H τ (Ω) , h 1-α ε 1 2 ∇(p -P h p) L 2 (Ω) ≤ch 1-α p H 1 0 (Ω) , h α-1 2 [[ε(K δ E -C h K δ E)•n]] L 2 (Σ) ≤ch α-1 2 K δ E -C h K δ E L 2 (Σ) ≤ch α-1 2 K δ E -C h K δ E 1-1 2α L 2 (Ω) K δ E -C h K δ E 1 2α H α (Ω) ≤ch α-1 2 h ℓ(1-1 2α ) h (ℓ-α) 1 2α K δ E H ℓ (Ω) ≤ch α+ℓ-1 δ τ -ℓ E H τ (Ω) .
These estimates lead to (B.5.3)

K δ E -C h K δ E, p -P h p h ≤ c h ℓ-1 δ τ -ℓ + h 1-α g L 2 (Ω) .
The last term, C h K δ E -E h , P h pp h h , is a little more subtle to handle. We start from the coercivity of a h (B.4.19) and use both the Galerkin orthogonality (B.4.15) and the continuity of a h (B.4.20) with s = 1α to get the following estimate:

C h K δ E -E h , P h p -p h h ≤ c a h ((C h K δ E -E h , P h p -p h ), (C h K δ E -E h , P h p -p h )) C h K δ E -E h , P h p -p h h ≤ c a h ((C h K δ E -E, P h p -p), (C h K δ E -E h , P h p -p h )) C h K δ E -E h , P h p -p h h ≤ c C h K δ E -E, P h p -p h + h α-1 E -C h K δ E L 2 (Ω) + h 1-α κ∇×(E -C h K δ E) H 1-α (Ω) + h -α p -P h p L 2 (Ω) + h ∇×κ∇×(E -C h K δ E) L 2 (T h ) + h 1 2 -α p -P h p L 2 (Σ) .
We now handle each term in the right hand side separately. Using the triangle inequality 

C h K δ E -E, P h p -p h ≤ C h K δ E -K δ E, P h p -p h + K δ E -E,
C h K δ E -E, P h p -p h ≤ c δ τ + h α δ τ -1 + h α-1 2 δ τ -1 2 + h ℓ-1 δ τ -ℓ + h 1-α g L 2 (Ω) .
Similarly, we obtain

h α-1 E -C h K δ E L 2 (Ω) ≤ c h α-1 δ τ + h α+ℓ-1 δ τ -ℓ g L 2 (Ω) , h 1-α κ∇×(E -C h K δ E H 1-α (Ω) ≤ c h 1-α δ τ +α-1 + h ℓ-1 δ τ -ℓ g L 2 (Ω) .
Note that the previous computation is valid since 1α ≤ τ owing to the assumption α ∈ ℓ(1-τ ) ℓ-τ , 1 . For the last term involving E we use the commuting property δ∇×K δ E = K δ ∇×E, see (B.3.19) as follows:

h ∇×κ∇×(E -C h K δ E) L 2 (T h ) ≤ h ∇×κ∇×E L 2 (T h ) + h ∇×κ∇×K δ E L 2 (T h ) + h ∇×κ∇×(K δ E -C h K δ E) L 2 (T h ) ≤ c h g L 2 (Ω) + h ∇×K δ E H 1 (Ω) + h ℓ-1 K δ E H ℓ (Ω) ≤ c h g L 2 (Ω) + h K δ ∇×E H 1 (Ω) + h ℓ-1 δ τ -ℓ E H τ (Ω) ≤ c h + hδ τ -1 + h ℓ-1 δ τ -ℓ g L 2 (Ω) .
For the remaining terms involving p, we use (B.7.5) together with the approximation properties of C h :

h -α p -P h p L 2 (Ω) ≤ch 1-α p H 1 0 (Ω) ≤ ch 1-α g L 2 (Ω) , h 1 2 -α p -P h p L 2 (Σ) ≤h 1 2 -α p -P h p 1-1 2α L 2 (Ω) p -P h p 1 2α H α (Ω) ≤h 1 2 -α h 1-1 2α h (1-α) 1 2α p H 1 0 (Ω) ≤ ch 1-α g L 2 (Ω) .
Gathering all the above estimates together with (B.5.2) and (B.5.3), we nally obtain (B.5.4)

E -E h , p -p h h ≤c δ τ + h 1-α + h + hδ τ -1 + h ℓ-1 δ τ -ℓ + h α-1 δ τ + h 1-α δ τ +α-1 + h α δ τ -1 + h α-1 2 δ τ -1 2 g L 2 (Ω) .
We want to use δ = h β for some β ∈ (0, 1), i.e., δh -1 → +∞ as h → 0. Once the negligible terms are removed in (B.5.4), we derive the following estimate:

E -E h , p -p h h ≤ c h α-1 δ τ + h 1-α + h ℓ-1 δ τ -ℓ g L 2 (Ω) .
Using δ = h 1-α ℓ implies that h α-1 δ τ = h ℓ-1 δ τ -ℓ and we arrive at

E -E h , p -p h h ≤ c(h α-1+τ (1-α ℓ ) + h 1-α ) g L 2 (Ω) ,
which leads to (B.5.1) with r := min 1α, α -1 + τ 1 -α ℓ . Note that the assumed lower bound on α ensures that we have a convergence result as h → 0.

Remark B.5.1. Note that the best choice for α is such that 1α = α -1 + τ 1 -α ℓ . This choice gives the following convergence rate τ

2 (1 -1 ℓ ) < r = τ ℓ-1 2ℓ-τ < τ 2 .
We now derive a convergence estimate assuming that the solution of (B.2.10) is smooth.

Theorem B.5.2. Let g ∈ L 2 (Ω) and denote (E, p) the solution of (B.2.10). Assume that E ∈ H k+1 (Ω) and p ∈ H k+α (Ω) for some 0 < k ≤ ℓ -1 and α ∈ [0, 1]. Denote (E h , p h ) the solution of (B.4.13). Then there exists c > 0, uniform in h, such that (B.5.5)

E -E h , p -p h h ≤ c h k g L 2 (Ω) + E H k+1 (Ω) + p H k+α (Ω) .
Proof. The proof is similar to that of Theorem B.5.1. We start from the triangular inequality

E -E h , p -p h h ≤ E -C h E, p -P h p h + C h E -E h , P h p -p h h .
We bound the two terms in the right hand side separately. For the rst one, we use the approximation properties of C h to get:

E -C h E, p -P h p h ≤c h k E H k+1 (Ω) + h k+α E H k+1 (Ω) + h -1 2 E -C h E L 2 (Σ∪Γ) + h 1-α h k+α-1 p H k+α (Ω) + h α-1 2 E -C h E L 2 (Σ) .
Using (B.7.5) for any σ ∈ 1 2 , 1 , we have

E -C h E L 2 (Σ) ≤ c E -C h E 1-1 2σ L 2 (Ω) E -C h E 1 2σ H σ (Ω) ≤ c h k+ 1 2 E H k+1 (Ω) .
As a result, we obtain (B.5.6)

E -C h E, p -P h p h ≤ ch k E H k+1 (Ω) + p H k+α (Ω) .
Now we turn our attention to C h E-E h , P h p-p h h . We use the coercivity of a h , the Galerkin orthogonality and the continuity of a h (for any σ ∈ 0, 1

2 ) to get

C h E -E h , P h p -p h h ≤ c E -C h E, p -P h p h + h α-1 E -C h E L 2 (Ω) + h σ κ∇×(E -C h E) H σ (T h ) + h ∇×κ∇×(E -C h E) L 2 (T h ) + h -α p -P h p L 2 (Ω) + h 1 2 -α p -P h p L 2 (Σ) .
Using the approximation properties of C h together with (B.5.6), we infer

E -C h E, p -P h p h ≤ ch k E H k+1 (Ω) + p H k+α (Ω) , h α-1 E -C h E L 2 (Ω) ≤ ch k+α E H k+1 (Ω) , h σ κ∇×(E -C h E) H σ (T h ) ≤ ch k E H k+1 (Ω) , h -α p -P h p L 2 (Ω) ≤ ch k p H k+α (Ω) .
For the last term involving p, we use (B.7.5) for some σ ∈ 1 2 , 1 :

h 1 2 -α p -P h p L 2 (Σ) ≤ ch 1 2 -α p -P h p 1-1 2σ L 2 (Ω) p -P h p 1 2σ H σ (Ω) ≤ ch 1 2 -α h k+α-1 2 p H k+α (Ω) = ch k p H k+α (Ω) .
For the last term involving E, we distinguish two cases depending whether k < 1 or k ≥ 1.

If k < 1, we use an inverse inequality together with the approximation properties of C h to deduce that

h ∇×κ∇×(E -C h E) L 2 (T h ) ≤ h ∇×κ∇×E L 2 (Ω) + ch C h E H 2 (T h ) ≤ h g L 2 (Ω) + h k E H k+1 (Ω) . If k ≥ 1, we use the approximation properties of C h to get h ∇×κ∇×(E -C h E) L 2 (T h ) ≤ ch E -C h E H 2 (T h ) ≤ ch k E H k+1 (Ω) .
In both cases, we have:

h ∇×κ∇×(E -C h E) L 2 (T h ) ≤ ch k E H k+1 (Ω) + g L 2 (Ω) .
Gathering all the above estimates and using (B.5.6) gives the desired result (B.5.5).

Remark B.5.2. Note that the error estimate (B.5.5) is optimal since it implies that ∇×(E -E h ) L 2 (Ω) ≤ c h k , which is the best that can be expected from the piece-wise polynomial approximation of degree k. Note also that there is no lower bound on α to get convergence when the solution of (B.2.10) is smooth, i.e., any α in the range [0, 1] is acceptable.

B.5.2

Convergence in the L 2 -norm.

Before proving that the discrete solution converges to the exact solution in the L 2 -norm, we prove a global version of Lemma B.7.4 that will be useful in the proof of Theorem B.5.3.

Lemma B.5.1. Let s ∈ 0, 1 2 . Then there exists c > 0, uniform in h, such that the following holds, for any ψ ∈ H curl (Ω) ∩ H s (Ω) and any

F h ∈ X h : (B.5.7) |(ψ, [[F h ×n]]) Σ∪Γ | ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h s ψ H s (Ω) + h ∇×ψ L 2 (Ω) .
Proof. Let us consider ψ ∈ H curl (Ω) ∩ H s (Ω) and F h ∈ X h . Notice that the left hand side is well dened owing to Lemma B.7.4. We start from

ψ, [[F h ×n]] Σ∪Γ ≤ |(ψ -K δ ψ, [[F h ×n]]) Σ∪Γ | :=I 1 + |(K δ ψ, [[F h ×n]]) Σ∪Γ | :=I 2 ,
for some δ to be dened later. We handle the two terms I 1 , I 2 separately. For the rst one, we apply Lemma B.7.4 with v = [[F h ×n]], φ = ψ -K δ ψ and σ = s, and we sum over all the faces F ∈ Σ ∪ Γ. This leads to

I 1 ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h s ψ -K δ ψ H s (T h ) + h ∇×(ψ -K δ ψ) L 2 (T h ) + ψ -K δ ψ L 2 (Ω) ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h s ψ -K δ ψ H s (T h ) + h ∇×ψ L 2 (T h ) + h ∇×K δ ψ L 2 (T h ) + ψ -K δ ψ L 2 (Ω) .
Using the approximation properties of K δ (B. 3.16) and (B.3.18), we arrive at

I 1 ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h s ψ H s (Ω) + h ∇×ψ L 2 (Ω) + δ s ψ H s (Ω) + h K δ ψ H 1 (Ω) ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) (h s + δ s + hδ s-1 ) ψ H s (Ω) + h ∇×ψ L 2 (Ω) .
We handle I 2 by using the Cauchy-Schwarz inequality on every

∂Ω i , i = 1, • • • , N . I 2 ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) N i=1 h 1 2 K δ ψ L 2 (∂Ω i ) .
We use (B.7.6) on every Ω i with Θ := 1-2s 2(1-s) , this leads to

I 2 ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) N i=1 h 1 2 K δ ψ 1-Θ H s (Ω i ) K δ ψ Θ H 1 (Ω i ) ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h 1 2 K δ ψ 1-Θ H s (Ω) K δ ψ Θ H 1 (Ω) ,
where the constant c depends on N , which we recall is a xed number. Using again the approximation properties of K δ we infer that

I 2 ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h 1 2 δ (s-1)Θ ψ H s (Ω) ≤ c h -1 2 [[F h ×n]] L 2 (Σ∪Γ) h 1 2 δ s-1 2 ψ H s (Ω) .
Then (B.5.7) is obtained by gathering the above estimates and setting δ = h.

Remark B.5.3. The proof of Lemma B.5.7 can done by using the decomposition

ψ = ψ - C h ψ + C h ψ instead of ψ = ψ -K δ ψ + K δ ψ.
Theorem B.5.3. Let g ∈ L 2 (Ω) and denote (E, p) the solution of (B.2.10). Let τ < min(τ ε , τ µ ) where τ ε and τ µ are dened in Theorem B.2.1. Denote (E h , p h ) the solution of (B.4.13). Then, for any α ∈ ℓ(1-τ ) ℓ-τ , 1 , there exists c > 0, uniform in h, such that (B.5.8)

E -E h L 2 (Ω) ≤ c h 2r g L 2 (Ω) , with r := min 1 -α, α -1 + τ 1 -α ℓ
. If in addition E and p are smooth, say E ∈ H k+1 (Ω) and p ∈ H k+α (Ω) for some 0 < k < ℓ -1, then the following holds: (B.5.9)

E -E h L 2 (Ω) ≤ c h k+r g L 2 (Ω) + E H k+1 (Ω) + p H k+α (Ω) .
Proof. We are going to use a duality argument à la Nitsche-Aubin. In the following we denote a 1 h the extension to

(Z τ (Ω) + X h )×H 1 0 (Ω)
2 of the bilinear form dened on [X h ×M h ] 2 in (B.4.12) with θ = 1. Then the following symmetry property holds:

a 1 h ((F, q), (G, r)) = a 1 h ((G, -r), (F, -q)) .
for all ((F, q), (G, r))

∈ (Z τ (Ω) + X h )×H 1 0 (Ω)
2 . Let (w, q) ∈ H 0,curl (Ω) ×H 1 0 (Ω) be the solution of the following (adjoint) problem:

∇×κ∇×w -ε∇q = ε (E -E h ) , ∇•(εw) = 0.
Recall that Theorem B.2.1 implies that w ∈ Z τ (Ω) ∩ H τ (Ω) for any s < τ and that

w H τ (Ω) + κ∇×w H τ (Ω) + ∇×κ∇×w L 2 (Ω) ≤ c E -E h L 2 (Ω) .
(B.5.10)

The denition of the pair (w, q) implies that (ε∇q, ∇ϕ)

Ω = -(ε(E-E h , ∇ϕ) for all ϕ ∈ H 1 0 (Ω),
and the following identities hold:

ε 1 2 (E -E h ) 2 L 2 (Ω) = a 1 h ((w, -q), (E -E h , p h -p)) + c α h 2(1-α) (ε∇q, ∇(p h -p)) Ω = a 1 h ((E -E h , p -p h ), (w, q)) + c α h 2(1-α) (ε(E -E h ), ∇(p -p h )) Ω = a h ((E -E h , p -p h ), (w, q)) + c α h 2(1-α) (ε(E -E h ), ∇(p -p h )) Ω + (1 -θ) ({ {κ∇×w} } , [[-E h ×n]]) Σ∪Γ

We now use the Galerkin orthogonality and introduce

C h K δ w, P h q, with δ = h 1-α ℓ : (B.5.11) ε 1 2 (E -E h ) 2 L 2 (Ω) = a h ((E -E h , p -p h ), (w -C h K δ w, q -P h q)) + c α h 2(1-α) (ε(E -E h ), ∇(p -p h )) Ω -(1 -θ) (κ∇×w, [[E h ×n]]) Σ∪Γ .
Note that we replaced { {κ∇×w} } by κ∇×w since the tangent component of κ∇×w is continuous across the interfaces owing to ∇×(κ∇×w) ∈ L 2 (Ω).

We now handle the three terms in the right hand side separately. For the rst one, we use Proposition B.4.4 with s = 1α, F = w and

F h = C h K δ w (note that F h ∈ X h ∩ H 0,curl (Ω) since K δ w ∈ C ∞ 0 (Ω)); we then infer that a h (E -E h , p -p h ), (w -C h K δ w, q -P h q) ≤ c E -E h , p -p h h w -C h K δ w, q -P h q h + h α-1 w -C h K δ w L 2 (Ω) + h -α q -P h q L 2 (Ω) + h 1 2 -α q -P h q L 2 (Σ) + h ∇×κ∇×(w -C h K δ w) L 2 (T h ) + h 1-α ∇×(w -C h K δ w) H 1-α (Ω) .
The right hand side has already been estimated in the proof of Theorem B.5.1. We then have (B.5.12)

a h (E -E h , p -p h ),(w -C h K δ w, P h q -q) ≤ c E -E h , p -p h h h r E -E h L 2 (Ω) .
The second term in (B.5.11) is estimated by using the Cauchy-Schwarz inequality, the denition of the norm

• h and inequality r ≤ 1 -α, h 2(1-α) (ε(E -E h ), ∇(p -p h )) Ω ≤ c h 1-α ∇(p -p h ) L 2 (Ω) h 1-α E -E h L 2 (Ω) ≤ c E -E h , p -p h h h r E -E h L 2 (Ω) .
(B.5.13)

The last term in (B.5.11) is estimated by using Lemma B.5.1 with ψ := κ∇×w and s := τ : 

(1 -θ) κ∇×w, [[E h ×n]] Σ∪Γ ≤ c E -E h h h τ κ∇×w H τ (Ω) + h ∇×(κ∇×w) L 2 (Ω) ≤ c E -E h h h r E -E h L 2 (Ω) , ( 
ε 1 2 (E -E h ) 2 L 2 (Ω) ≤ ch r E -E h L 2 (Ω) E -E h , p -p h h .
Owing to the uniform positivity of ε, this leads to: ; this convergence rate approaches the optimal rate, τ , when the approximation degree ℓ is large.

E -E h L 2 (Ω) ≤ ch r E -E h , p -p h h .
Remark B.5.5. It is interesting to notice that the degree of the polynomials used for M h is not involved in the convergence rate when minimal regularity is assumed. This means that we can use dierent degrees of polynomials for X h and M h , and that it is sucient to take polynomials of degree 1 for M h .

B.5.3 Numerical illustrations

We present in this section some numerical illustrations of the performance of the method on a boundary value problem. We consider the L-shaped domain

Ω = (-1, 1) 2 \ ([0, +1]×[-1, 0]) .
We assume that Ω is composed of three subdomains:

Ω 1 = (0, 1) 2 , Ω 2 = (-1, 0)×(0, 1), Ω 3 = (-1, 0) 2 . We use κ ≡ 1 in Ω, ε |Ω 2 = 1 and ε |Ω 1 = ε |Ω 3 =: ε r . Denoting λ > 0 a real value such that tan λπ 4 tan λπ 2 = ε r ,
we dene the scalar potential S λ (r, θ) = r λ φ λ (θ), where (r, θ) are the polar coordinates, and φ λ is dened by

φ λ (θ) = sin(λθ) if 0 ≤ θ < π 2 , φ λ (θ) = sin λπ 2 cos λπ 4 cos λ θ - 3π 4 if π 2 ≤ θ < π, φ λ (θ) = sin λ 3π 2 -θ if π ≤ θ ≤ 3π 2 .
Then we solve the problem

∇×∇×E = 0, ∇•(εE) = 0, E×n |∂Ω = ∇S λ ×n.
The exact solution is given by E = ∇S λ . We present two series of simulations. In Now we turn our attention to the following problem: nd

(E, λ) ∈ H 0,curl (Ω) ∩ H div (Ω, ε)×R such that ∇×κ∇×E = λεE.
Using our discrete approximation, we want to prove an approximation result for the solutions of this problem.

B.6.1 Framework

In the rest of this section, we equip L 2 (Ω) with the inner product (f , g) ε := Ω εf •g. This inner product is equivalent to the usual inner product, owing to (B.2.13). The associated norm is denoted • ε . We introduce an operator A, using (B.2.10). For any g ∈ L 2 (Ω), we denote (E, p) the solution of (B.2.10) and we set Ag := E. Then A is well-dened L 2 (Ω) → L 2 (Ω), selfadjoint and, owing to Theorem B.2.1, compact. We want to study whether or not the discrete formulation can lead to a spectrally correct approximation in the sense of Theorem B.6.1.

Theorem B.6.1 (Spectral convergence [START_REF] Babu²ka | Eigenvalue problems. In Finite Element Methods (Part 1)[END_REF][START_REF] Osborn | Spectral Approximation for Compact Operators[END_REF]). Let X be an Hilbert space, and A : X → X a self-adjoint and compact operator. Let Θ = {h n ; n ∈ N} be a discrete subset of R such that h n → 0 as n → +∞. Assume that there exists a family of operators A h : X → X such that:

• for all h ∈ Θ, A h is a linear self-adjoint operator,

• A h converges pointwise to A,

• the family is collectively compact.

Let µ be an eigenvalue of A of multiplicity m and denote {φ j }, j = 1, • • • , m, a set of associated orthonormal eigenvectors.

(i) For any ǫ > 0 such that the disk B(µ, ǫ) contains no other eigenvalues of A, there exists h ǫ such that, for all h < h ǫ , A h has exactly m eigenvalues (repeated according to their multiplicity) in the disk B(µ, ǫ).

(ii) In addition, for h < h ǫ , if we denote µ h,j , j = 1, • • • , m the set of the eigenvalues of A h in B(µ, ǫ), there exists c > 0 such that (B.6.1)

c|µ -µ h,j | ≤ m j,l=1 | ((A -A h )φ j , φ l ) X | + m j=1 (A -A h )φ j 2 X .
Note that this result is even stronger than pointwise convergence. Now let us turn our attention to the collective compactness. Recall that a set A := {A h : X → X, h ∈ Θ} is said to be collectively compact if, for each bounded set U ⊂ X, the image set

AU := {A h F, F ∈ U, A h ∈ A} is relatively compact in X.
Lemma B.6.3. The family {A h } h>0 is collectively compact.

Proof. Owing to the compact embedding H s (Ω) ⊂ L 2 (Ω) for any s > 0, it is sucient to prove that there exists s > 0 and c > 0 such that, for any g ∈ L 2 (Ω) and any h > 0,

A h g H s (Ω) ≤ c g L 2 (Ω) .
Let us take g ∈ L 2 (Ω). Owing to the denition of X h and M h , we know that, for any s ∈ 0, 1 2 , A h g ∈ H s (Ω). Moreover, there exists c only depending on s such that

A h g H s (Ω) ≤ ch -s A h g L 2 (Ω) .
Let us consider s < r. Notice that, in addition, 2s < τ . Using the triangular inequality, interpolation results, inverse inequality together with Theorems B.5.3 and B.2.1 leads to:

A h g H s (Ω) ≤ A h g -Ag H s (Ω) + Ag H s (Ω) ≤ c A h g -Ag 1 2 L 2 (Ω) A h g -Ag 1 2 H 2s (Ω) + c g L 2 (Ω) ≤ ch r g 1 2 L 2 (Ω) h -s A h g 1 2 L 2 (Ω) + Ag 1 2 H 2s (Ω) + c g L 2 (Ω)
≤ c h r-s + 1 g L 2 (Ω) .

Since r > s, we have the collective compactness of {A h }.

Combining these three lemma, we conclude that the approximation is spectrally correct, in the sense of Theorem B.6.1.

B.6.3 Numerical illustration

In this section, we present some eigenvalues computations. We consider the square Ω = (-1, 1) 2 in the plane. We split Ω in four subdomains The column COC stands for the computed order of convergence. The computations have been done using ARPACK (cf. [START_REF] Lehoucq | ARPACK users' guide, volume 6 of Software, Environments and Tools[END_REF]) with tolerance 10 -8 . It is interesting to notice that, for every eigenvalue, the computed order of convergence seems to be constant for suciently small h. This expected behaviour is especially visible in the case ε r = 0. Let {T h } h>0 be an ane shape-regular mesh family in R d , d = 2, 3. Let T K : K -→ K be the ane mapping that maps the reference element K to K and let J K be the Jacobian of T K . It is a standard result that there are constants that depend only on K and the shape regularity constants of the mesh family so that (B.7.1)

Ω 1 = (0, 1) 2 , Ω 2 = (-1, 0)×(0, 1), Ω 3 = (-1, 0) 2 , Ω 4 = (0, 1)×(-1, 0). We use κ ≡ 1 in Ω, ε |Ω 1 = ε |Ω 3 = 1 and ε |Ω 2 = ε |Ω 4 = ε r . A benchmark is provided for ε -1 r ∈ {2,
J K ≤ ch K , J -1 K ≤ ch -1 K , | det(J K )| ≤ ch d K , | det(J -1 K )| ≤ ch -d K ,
where h K is the diameter of K.

Lemma B.7.1. For all s ∈ [0, 1], there is a constant c, uniform with respect to the mesh family, so that the following holds for all cells K ∈ T h and all ψ ∈ H s (K) with zero average over K:

(B.7.2)

ψ H s ( b K) ≤ ch s-d 2 K ψ H s (K) , where ψ(x) := ψ(T K (x))
Proof. Upon making the change of variable x = T K ( x) we obtain

ψ L 2 ( b K) = | det(J K )| -1 2 ψ L 2 (K) ≤ ch -d 2 K ψ L 2 (K) .
Likewise, using the fact that ψ is of zero average, the Poincaré inequality implies

ψ H 1 ( b K) = ψ 2 L 2 ( b K) + ∇ ψ 2 L 2 ( b K) ) 1 2 ≤ (c p ( K) + 1) 1 2 ∇ ψ H 1 ( b K) ≤ c| det(J K )| -1 2 J K ∇ψ L 2 (K) ≤ ch -d 2 +1 K ψ H 1 (K) . B.7. APPENDIX: TECHNICAL LEMMAS 123
Then, the Riesz-Thorin theorem implies that

ψ Ḣs ( b K) ≤ c h s-3 2 K ψ Ḣs (K) ,
where we dened Ḣs (E) := [ L2 (E), Ḣ1 (E)] s,2 with L2 (E) and Ḣ1 (E) being the subspaces of the functions of zero average in L 2 (E) and H 1 (E), respectively. We conclude using Lemma B. 

v ∈ [L 2 (E), H 1 (E)] s ∩ L2 (E).
Proof. One can use Lemma A1 from [START_REF] Guermond | The LBB condition in fractional sobolev spaces and applications[END_REF] with T being the projection onto L2 (Ω).

Lemma B.7.3. The following holds for all s ∈ [0, 1] and for all v ∈ H s (Ω), (B.7.3)

K∈T h v |K 2 H s (K) ≤ v 2 H s (Ω) .
Proof. The result is evident for s = 0 and s = 1. Let us assume now that s ∈ (0, 1). Let v be a member of H s (Ω). Recall that

v H s (Ω) := ∞ 0 K(t, v, Ω) 2 t -1-2s dt 1 2 , K(t, v, Ω) 2 := inf w∈H 1 (Ω) v -w 2 L 2 (Ω) + t 2 w 2 H 1 (Ω) .
For all t ∈ R + , let us denote v t the function in H 1 (Ω) that minimizes K(t, v, Ω), i.e., -t 2 ∆v t + t 2 v t + (v t -v) = 0 over Ω with homogeneous Neumann boundary condition. Then

K∈T h v |K 2 H s (K) = K∈T h ∞ 0 K(t, v |K , K) 2 t -1-2s dt ≤ K∈T h ∞ 0 v |K -v t|K 2 L 2 (Ω) + t 2 v t|K 2 H 1 (K) t -1-2s dt = ∞ 0   K∈T h v |K -v t|K 2 L 2 (K) + t 2 v t|K 2 H 1 (K)   t -1-2s dt = ∞ 0 K(t, v, Ω) 2 t -1-2s dt := v 2 H s (Ω) .
This completes the proof.

We now state the main result of this section. It is a variant of Lemma 8.2 in [START_REF] Bua | Discontinuous Galerkin approximation of the Maxwell eigenproblem[END_REF] with the extra term φ L 2 (K) . Our proof slightly diers from that in [START_REF] Bua | Discontinuous Galerkin approximation of the Maxwell eigenproblem[END_REF] since the proof therein did not appear convincing to us (actually, the embedding inequality at line 9, page 2224 in [START_REF] Bua | Discontinuous Galerkin approximation of the Maxwell eigenproblem[END_REF] has a constant that depends on the size of the cell; as result the estimate (8.11) therein is not uniform with respect to h).

Lemma B.7.4. For all k ∈ N and all σ ∈ (0, 1 2 ) there is c, uniform with respect to the mesh family, so that the following holds for all faces F ∈ F h in the mesh, all polynomial function v of degree at most k, and all function φ ∈ H σ (K) ∩ H(curl, K) (B.7.4)

F (v×n)•φ ≤ c v L 2 (F ) h -1 2 F (h σ K φ H σ (K) + h K ∇×φ L 2 (K) + φ L 2 (K) ),
where K is either one of the two elements sharing the face F .

Proof. We restrict ourselves to three space dimensions. In two space dimensions φ is scalarvalued and the proof must be modied accordingly. Let K be either one of the two elements sharing the face F . Let φ the average of φ over K and let us denote

ψ := φ -φ. Upon denoting v(x) = J T K v(T K ( x)) and ψ( x) = J T K ψ(T K ( x))
, it is a standard result (see [111, 3.82]) that

F (v×n)•ψ = b F ( v× n)• ψ,
where n is one of the two unit normals on F . Let us extend v by zero on ∂ K\ F ; then

v ∈: H 1 2 -σ (∂ K) for all σ > 0. Note that it is not possible to have σ = 0. Now let R : H 1 2 -σ (∂ K) -→ H 1-σ ( K)
be a standard lifting operator. There is a constant depending only on K and σ so that

R v L 2 ( b K) + ∇×R v H -σ ( b K) ≤ c( K, σ) R v H 1-σ ( b K) ≤ c ′ c( K, σ) v H 1 2 -σ ( b F )
,

where ∇× is the curl operator in the coordinate system of K. Then we have b F

( v× n)• ψ = b K (R v)• ∇× ψ -ψ• ∇×(R v) ≤ c (R v) L 2 ( b K) ∇× ψ L 2 ( b K) + ψ H σ 0 ( b K) ∇×(R v) H -σ ( b K) ≤ c ∇× ψ L 2 ( b K) + ψ H σ 0 ( b K) v H 1 2 -σ ( b F ) ≤ c ∇× ψ L 2 ( b K) + ψ H σ ( b K) v H 1 2 -σ ( b F )
,

where we used that 2 ). Due to norm equivalence for discrete functions over K and using that

H σ ( K) = H σ 0 ( K) for σ ∈ [0, 1 
J K ≤ ch K , h K /h F ≤ c and |F | ≤ ch 2
F in three space dimensions, where c depends of the shape-regularity constant of the mesh family and the polynomial degree k, we have

v H 1 2 -σ ( b F ) ≤ c v L 2 ( b F ) ≤ c J K |F | -1 2 v L 2 (F ) ≤ ch K h -1 F v L 2 (F ) ≤ c ′ v L 2 (F ) .
Using the identity (see [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]Cor. 3.58])

(∇×ψ)(T K ( x)) = 1 det(J K ) J K ( ∇× ψ)( x),
we obtain

∇× ψ L 2 (K) ≤ c|det(J K )| 1 2 J -1 K ∇×ψ L 2 (K) ≤ ch 1 2 K ∇×ψ L 2 (K) .
Since the average of ψ over K is zero, we can use Lemma B.7.1 (with an extra scaling by

J K for ψ = J T K ψ(T K )) to deduce ψ H σ ( b K) ≤ ch σ-1 2 K ψ H σ (K) .
In conclusion we have obtained the following estimate:

F (v×n)•(φ -φ) ≤ c h K ∇×φ L 2 (K) + h σ K φ -φ H σ (K) h -1 2 K v L 2 (F ) .
Observing that 1

H σ (K) ≤ 1 1-σ L 2 (K) 1 σ H 1 (K) = 1 L 2 (K) = |K| 1 2 , we infer that φ -φ H σ (K) ≤ φ H σ (K) + |φ||K| 1 2
The Cauchy-Schwarz inequality yields |φ| ≤ |K| -1 2 φ L 2 (K) ; as a result,

φ -φ H σ (K) ≤ φ H σ (K) + φ L 2 (K) ≤ 2 φ H σ (K) .
Now we evaluate a bound from above on F (v×n)•φ as follows:

F (v×n)•φ ≤ |φ||F | 1 2 v L 2 (F ) ≤ |K| -1 2 φ L 2 (K) |F | 1 2 v L 2 (F ) ≤ c v L 2 (F ) h -1 2 F φ L 2 (K) .
The result follows by combining all the above estimates.

Lemma B.7.5. Let α ∈ ( 1 2 , 1). There is exists a constant c(α) so that (B.7.5)

u L 2 (Γ) ≤ c(α) u 1-1 2α L 2 (Ω) u 1 2α
H α (Ω) , ∀u ∈ H α (Ω).

Similarly, for s ∈ 0, 1 2 , there exists a constant c(s) so that, for Θ := 

u L 2 (Γ) ≤ c(s) u 1-Θ H s (Ω) u Θ H 1 (Ω) , ∀u ∈ H 1 (Ω).
Proof. We start with the standard estimate

u L 2 (Γ) ≤ c u 1 2 L 2 (Ω) u 1 2 H 1 (Ω) , ∀u ∈ H 1 (Ω),
which allows us to apply Lemma B.7.6. This implies that the trace operator is a continuous

linear mapping from [L 2 (Ω), H 1 (Ω)] 1 2 ,1 to L 2 (Γ). Then the re-iteration lemma implies that [L 2 (Ω), H α (Ω)] 1 2α ,1 = [L 2 (Ω), [L 2 (Ω), H 1 (Ω)] α,2 ] 1 2α ,1 = [L 2 (Ω), H 1 (Ω)] 1 2 ,1 [H s (Ω), H 1 (Ω)] Θ,1 = [[L 2 (Ω), H 1 (Ω)] s,2 , H 1 (Ω)] Θ,1 = [L 2 (Ω), H 1 (Ω)] 1 2 ,1
The norms being equivalent, we can write: and L represent typical velocity and length scales and η denotes the magnetic diusivity) to exceed a threshold of the order of Rm c ∼ 10...100. From the parameter values of liquid sodium the best known liquid conductor at standard laboratory conditions (η = 1/µ 0 σ ≈ 0.1 m 2 /s and L ≈ 1 m, where µ 0 is the vacuum permeability and σ the electrical conductivity) it becomes immediately obvious that self excitation of magnetic elds in the laboratory needs typical velocity magnitudes of U ∼ 10 m/s, which is already quite demanding. Therefore, the rst successful dynamo experiments performed by [START_REF] Lowes | Geomagnetic dynamo : a laboratory model[END_REF][START_REF] Lowes | Geomagnetic dynamo : an improved laboratory model[END_REF] utilized soft-iron material so that the magnetic diusivity is reduced (this issue deserves indeed a specic study and is examined below) and the magnetic Reynolds number is (at least locally) increased. Although these experiments cannot be classied as hydromagnetic dynamos (no uid ow and therefore no backreaction of the eld on a uid motion is possible) they allowed the examination of distinct dynamical regimes manifested in steady, oscillating or reversing elds. It is interesting to note that these results did not initiate further numerical studies on induction in the presence of soft iron domains.

u L 2 (Γ) ≤ c u [L 2 (Ω),H 1 (Ω)] 1 2 ,1 ≤ c(α) u [L 2 (Ω),H α (Ω)] 1 2α ,1 ≤ c(α) u 1-1 2α L 2 (Ω) u 1 2α H α (Ω) , u L 2 (Γ) ≤ c u [L 2 (Ω),H 1 (Ω)] 1 2 ,1 ≤ c(s) u [H s (Ω),H 1 (Ω)] Θ,1 ≤ c(s) u 1-Θ H s (Ω) u Θ H 1 (Ω)
The eects of internal and external walls with nite permeability and conductivity have been examined in [START_REF] Avalos-Zuñiga | Inuence of electromagnetic boundary conditions onto the onset of dynamo action in laboratory experiments[END_REF][START_REF] Avalos-Zuñiga | Inuence of inner and outer walls electromagnetic properties on the onset of a stationary dynamo action[END_REF] by analytically solving a one dimensional kinematic dynamo driven by an α-eect. A facilitation of dynamo action is obtained for increasing conductivity and/or permeability of given inner and outer walls. This threshold reduction is monotonous in the case of a stationary dynamo mode but non monotonous in the case of a time dependent dynamo due to dissipation from eddy currents induced within the container walls. The authors also assumed that a mean ow may increase the dynamo threshold due to additional dissipation. More recently, [START_REF] Roberts | Numerical simulation of a spherical dynamo excited by a ow of von Kármán type[END_REF] performed nonlinear simulations in a sphere with a ow driven by the counter rotation of the two hemispherical parts of the outer sphere. Their setup and geometry are only roughly representative for the VKS conguration (they also included an inner sphere made of a solid electrical insulator). They performed nonlinear simulations simultaneously varying permeability and conductivity of the external walls, applying thin wall conditions (where the wall thickness h → 0 and the permeability µ r → ∞ and conductivity σ → ∞ so that the product hµ r (hσ) remains nite). Only a few runs exhibit dynamo action and their results cannot yield any general conclusion about the inuence of the wall permeability or conductivity on the dynamo threshold.

A possibility to increase the eective magnetic Reynolds number in uid ow driven dynamo experiments arises from the addition of tiny ferrous particles to the uid medium leading to an uniform enlargement of the relative permeability [START_REF] Frick | Eective magnetic permeability of a turbulent uid with macroferroparticles[END_REF][START_REF] Dobler | Screw dynamo in a time-dependent pipe ow[END_REF]. Since the amount of particles is limited so as to retain reasonable uid properties, the maximum uid permeability achievable by this technique is µ r ≈ 2. The main eect found in the simulations of [START_REF] Dobler | Screw dynamo in a time-dependent pipe ow[END_REF] was a reduced decay of the initial eld but not a smaller threshold (essentially because of nonmonotonous behavior of the growth rate with respect to Rm).

Another type of ferromagnetic inuence on dynamo action is observed in the von-Kármánsodium (VKS) dynamo. In the VKS experiment a turbulent ow of liquid sodium is driven by two counterotating impellers located at the opposite end caps of a cylindrical domain [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. Dynamo action is only obtained when the impellers are made of soft-iron with µ r ∼ 100 [START_REF] Verhille | Induction in a von Kármán ow driven by ferromagnetic impellers[END_REF]. Recently it has been shown in [START_REF] Giesecke | Role of Soft-Iron Impellers on the Mode Selection in the von KármánSodium Dynamo Experiment[END_REF] that these soft-iron impellers essentially determine the geometry and the growth rates of the magnetic eld by locally enhancing the magnetic Reynolds number and by enforcing internal boundary conditions for the magnetic eld at the material interfaces. We conjecture that non-homogenous distributions of the material coecients µ r and σ may support dynamo action because gradients of µ r and σ modify the induction equation by coupling toroidal and poloidal components of the magnetic elds which is essential for the occurrence of dynamo action. An example for this dynamo type has been presented in [START_REF] Busse | A simple dynamo caused by conductivity variations[END_REF] where it was shown that even a straight ow without shear over an (innite) conducting plate with sinusoidal variation of the conductivity is able to produce dynamo action. However, an experimental realization of this setup would require either an unachievable large magnetic Reynolds number or rather large variations of the conductivity ( > ∼ factor of 100 and with a mean value which should be of the order of the uid conductivity). On the other hand, large permeability variations are more easily achievable experimentally, for instance the relative permeability of soft-iron alloys easily attains values of several thousands. Although these dynamos are of little astrophysical relevance the experiments of Lowes and Wilkinson and in particular the rich dynamical behavior of the VKS dynamo demonstrate the usefulness of such models.

The purpose of the present work is to validate the numerical tool necessary to establish a basic understanding of the inuence of material properties on the induction process. Emphasis is given to the problem of free decay in cylindrical geometry where two disks characterized by high conductivity/permeability and their thickness are inserted in the interior of a cylindrical container lled with a conducting uid. To demonstrate the reliability of our results we use two dierent numerical approaches and show that both methods give results in agreement. The study is completed by an application of a mean ow as it occurs in the VKS experiment in combination with two high permeability disks.

C.2 Induction equation in heterogenous domains

From Faraday's Law in combination with Ohm's Law one immediately retrieves the induction equation that determines the temporal behavior of the magnetic ux density B:

(C.2.1)

∂B ∂t = ∇ × (u × B - 1 µ 0 σ ∇ × B µ r ),
where u denotes the ow velocity, σ the electric conductivity, µ 0 the vacuum permeability and µ r the relative permeability. In case of spatially varying distributions of conductivity and permeability equation (C.2.1) can be rewritten in the form:

∂B ∂t = ∇ × (u × B) + 1 µ 0 µ r σ ∇ 2 B + 1 µ 0 µ r σ ∇ × (∇ ln µ r × B) - 1 µ 0 µ r σ (∇ ln µ r + ∇ ln σ) × (∇ ln µ r × B) + 1 µ 0 µ r σ (∇ ln µ r + ∇ ln σ) × (∇ × B). (C.2.2)
The terms on the right-hand-side that involve gradients of µ r and σ potentially couple the toroidal and poloidal eld components which is known to be essential for the existence of a dynamo. The lack of symmetry between the terms containing ∇µ r and ∇σ indicates a distinct impact of σ and µ r . This dierence of behavior can also be anticipated by looking at the jump conditions that the electric and magnetic elds have to fulll at material interfaces. At interfaces between materials 1 and 2 that exhibit a jump in conductivity σ and/or in relative permeability µ r the normal component of the magnetic ux density is continuous whereas the tangential components exhibit a jump described by the ratio of the permeabilities. In case of conductivity discontinuities, the tangential components of the electric eld are continuous and the normal component of the electric current is continuous. Mathematically these jump conditions are given by (see e.g. [74] [74])

n • (B 1 -B 2 ) = 0, n × B 1 µ r,1 - B 2 µ r,2 = 0, n • (j 1 -j 2 ) = 0, n × (E 1 -E 2 ) = 0, (C.2.3)
where n denotes the unit vector in the normal direction on the interface between materials 1 and 2. If there is no contribution of the ow, the continuity of the normal current leads to the discontinuity of the normal electric eld in the ratio of the conductivities. Although the transmission conditions (C.2.3) are standard, their dynamical consequences in ows at large Rm are largely unknown.

C.3 Numerical schemes

Two dierent numerical algorithms and codes are used for the numerical solution of problems involving the kinematic induction equation (C.2.1). The rst one is a combined nite volume/boundary element method FV/BEM [START_REF] Stefani | Numerical simulations of liquid metal experiments on cosmic magnetic elds[END_REF]. It is a grid based approach which provides a exible scheme that utilizes a local discretization and intrinsically maintains the solenoidal character of the magnetic eld.

The second solution method is based on a Spectral/Finite Element approximation technique denoted SFEMaNS for Spectral/Finite Elements for Maxwell and Navier-Stokes equations. Taking advantage of the cylindrical symmetry of the domains, Fourier modes are used in the azimuthal direction and nite elements are used in the meridional plane. For each Fourier mode this leads to independent two-dimensional-problems in the meridian plane.

C.3.1 Hybrid nite volume/boundary element method

We start with the induction equation in conservative form (C.3.1)

∂B ∂t + ∇ × E = 0,
where the electric eld E is given by (C.3.2)

E = -u × B + η∇ × B µ r
and η = 1/µ 0 σ is the magnetic diusivity. For the sake of simplicity we give a short sketch for the treatment of inhomogeneous conductivity and permeability only in Cartesian coordinates.

The scheme can easily be adapted to dierent (orthogonal) coordinate systems (e.g. cylindrical or spherical coordinate system) making use of generalized coordinates [START_REF] Stone | -2D : A radiation magnetohydrodynamics code for astrophysical ows in two space dimensions. I -The hydrodynamic algorithms and tests[END_REF][START_REF] Stone | ZEUS-2D : A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II. The Magnetohydrodynamic Algorithms and Tests[END_REF].

In the nite volume scheme the grid representation of the magnetic eld is given by a staggered collocation of the eld components that are interpreted as an approximation of the (cell-)face average:

(C.3.3) B i-1/2,j,k x ≈ 1 ∆y∆z Γyz B x (x i-1/2 , y, z)dydz,
where the integration domain Γ corresponds to the surface of a single cell-face: (C.3.4)

Γ yz = [y j-1/2 , y j+1/2 ] × [z k-1/2 , z k+1/2 ] (see gure C.

1). A comparable denition is applied to the

E i,j-1/2,k-1/2 x ≈ 1 ∆x x i+1/2 x i-1/2 E x (x, y j-1/2 , z k-1/2 )dx.
Similar denitions hold for the components B , respectively. The nite volume discretization of the induction equation reads

d dt B i-1/2,j,k x = - E i-1/2,j+1/2,k z (t) -E i-1/2,j-1/2,k z (t) ∆y + E i-1/2,j,k+1/2 y (t) -E i-1/2,j,k-1/2 y (t) ∆z (C.3.5)
and it can easily been shown that this approach preserves the ∇ • B constraint for all times (to machine accuracy) if the initial eld is divergence free.

Material coecients

In the following we only discuss the treatment of the diusive part of the electric eld, E = η∇ × B/µ r because the induction contribution (∝ -u × B) does not involve the material properties and can be treated separately in the framework of an operator splitting scheme (see e.g. [START_REF] Iskakov | An integro-dierential formulation for magnetic induction in bounded domains : boundary element-nite volume method[END_REF] [72], [START_REF] Giesecke | Kinematic simulations of dynamo action with a hybrid boundary-element/nite-volume method[END_REF] [57], [157] [157]). To obtain the computation directive for the electric eld the magnetic eld has to be integrated along a (closed path) around E x(,y,z) at the edge of a grid cell (see dotted curve in gure C.1).

(C.3.6)

E x ≈ 1 Γ Γyz E x dA = 1 Γ Γyz η ∇ × B µ r dA ≈ η ∆y∆z ∂Γyz B µ r dl,
where Γ = ∆y∆z is the surface surrounded by the path Γ yz and η is the average diusivity (η = (µ 0 σ) -1 ) seen by the electric eld. Unlike vectorial quantities the material coecients are scalar quantities that are localized in the center of a grid cell. The consideration of spatial variations and/or jumps in conductivity respectively permeability is straightforward if corresponding averaging procedures for σ or µ r are applied [START_REF] Haber | Fast Finite Volume Simulation of 3d electromagnetic problems with highly discontinuous coecients[END_REF]. For the component E x the discretization of equation (C.3.6) leads to

E i,j-1/2,k-1/2 x = η i,j-1/2,k-1/2 1 ∆y B i,j,k-1/2 z (µ r ) i,j,k-1/2 - B i,j-1,k-1/2 z (µ r ) i,j-1,k-1/2 - 1 ∆z   B i,j-1/2,k y (µ r ) i,j-1/2,k - B i,j-1/2,k-1 y (µ r ) i,j-1/2,k-1     . (C.3.7)
In equation (C.3.7), η i,j-1/2,k-1/2 represents the diusivity that is seen by the electric eld

component E i,j-1/2,k-1/2 x
at the edge of the grid cell (ijk) and which is given by the arithmetic average of the diusivity of the four adjacent cells:

(C.3.8) η i,j-1/2,k-1/2 = 1 4 (η i,j,k + η i,j-1,k + η i,j,k-1 + η i,j-1,k-1 )
.

Similarly, µ r denotes the relative permeability that is seen by the magnetic eld components (B y and B z ) at the interface between two adjacent grid cells. For instance, for the case considered in equation (C.3.7), µ r is dened as follows:

for B i,j-1/2,k y The scheme is robust and simple to implement, however, the averaging procedure results in a articial smoothing of parameter jumps at interfaces and in concave corners additional diculties might occur caused by ambiguous expressions for µ r . Furthermore in the simple realization presented above, the parameter range is restricted. For larger jumps of µ r or σ a more careful treatment of the discontinuities at the material interfaces is necessary which would require a more elaborate eld reconstruction that makes use of slope limiters.

: (µ r ) i,j-1/2,k = 2(µ r ) i,j,k (µ r ) i,j-1,k (µ r ) i,j,k + (µ r ) i,j-1,k , for B i,j,k-1/2 z : (µ r ) i,j,k-1/2 = 2(µ r ) i,j,k (µ r ) i,j,k-1 (µ r ) i,j,k + (µ r ) i,j,k-1 . (C.3.9) For the computation of E i-1/2,j,k-1/2 y and E i-1/2,j-1/2,k z equations (C.

Boundary conditions

In numerical simulations of laboratory dynamo action insulating boundary conditions are often simplied by assuming vanishing tangential elds (VTF, sometimes also called pseudo vacuum condition). In fact, a restriction of the boundary magnetic eld to its normal component resembles an artical but numerically convenient setup where the exterior of the computational domain is characterized by an innite permeability. VTF boundary conditions usually overestimate the eld growth rates in many dynamo problems. Therefore a more elaborate treatment of the eld behavior at the boundary is recommended which is nontrivial in nonspherical coordinate systems. Insulating domains are characterized by a vanishing current j ∝ ∇ × B = 0 so that B can be expressed as the gradient of a scalar eld Φ (assuming that the insulating domain is simply connected) which fullls the Laplace equation:

(C.3.10) B = -∇Φ with ∇ 2 Φ = 0, Φ → O(r -2 ) for r → ∞.
Integrating ∇ 2 Φ = 0 and adoption of Green's 2nd theorem leads to (C.3.11)

Φ(r) = 2 Γ G(r, r ′ ) ∂Φ(r ′ ) ∂n -B n (r ′ ) -Φ(r ′ ) ∂G(r, r ′ ) ∂n dΓ(r ′ ),
where (C.3.12)

G(r, r ′ ) = -(4π |r -r ′ |) -1 is the Greens function (with ∇ 2 G(r, r ′ ) = -δ(r -r ′ ))
B τ = 2 Γ e τ • Φ(r ′ )∇ r ∂G(r, r ′ ) ∂n + B n (r ′ )∇ r G(r, r ′ ) dΓ(r ′ ),
where e τ represents a tangential unit vector on the surface element dΓ(r ′ ). In fact, there are two orthogonal tangential directions on the boundary and equation (C.3.12) is valid independently for both orientations. After the subdivision of the surface Γ in boundary elements Γ j with Γ = ∪Γ j the approximate potential Φ i = Φ(r i ) and the tangential eld

B τ i = B τ (r i ) = -e τ • (∇Φ i ) in discretized form are given by 1 2 Φ i = - j Γ j ∂G ∂n (r i , r ′ )dΓ ′ j Φ j , - j Γ j G(r i , r ′ )dΓ ′ j B n j B τ i = j Γ j 2e τ • ∇ r ∂G ∂n (r i , r ′ )dΓ ′ j Φ j + j Γ j 2e τ • ∇ r G(r i , r ′ )dΓ ′ j B n j .
(C.3.13)

The system of equations (C.3.13) gives a linear, non local relation for the tangential eld components at the boundary in terms of the normal components and closes the problem of magnetic induction in nite (connected) domains with insulating boundaries [START_REF] Iskakov | On magnetic boundary conditions for non-spectral dynamo simulations[END_REF]. A more detailed description of the scheme can be found in [START_REF] Giesecke | Kinematic simulations of dynamo action with a hybrid boundary-element/nite-volume method[END_REF].

C.3.2 Spectral/Finite Elements for Maxwell equations

The conducting part of the computational domain is denoted Ω c , the non-conducting part (vacuum) is denoted Ω v , and we set Ω := Ω c ∪ Ω v . We use the subscript c for the conducting part and v for the vacuum. We assume that Ω c is partitioned into subregions Ω c1 , • • • , Ω cN , so that the magnetic permeability in each subregion Ω ci , say µ ci , is smooth. We denote Σ µ the interface between all the conducting subregions. We denote Σ the interface between Ω c and Ω v . A sketch of the computational domain is displayed on gure D.1(a). The electric eld E and magnetic eld H in Ω c and Ω v solve the following system:

Ω v ∂Ω Σ Ω c1 Ω c2 Σ µ
∂(µ c H c ) ∂t = -∇ × E c , ∂(µ v H v ) ∂t = -∇ × E v , (C.3.14) ∇•(µ c H c ) = 0, ∇•(µ v H v ) = 0, (C.3.15) E c = -u × µ c H c + 1 σ ∇×H c , ∇×H v = 0 (C.3.16)
and the following transmission conditions hold across Σ µ and Σ:

H ci × n ci + H cj × n cj = 0, H c × n c + H v × n v = 0,
(C.3.17)

µ ci H ci • n ci + µ cj H cj • n cj = 0, µ c H c • n c + µ v H v • n v = 0, (C.3.18) E ci × n ci + E cj × n cj = 0, E c × n c + E v × n v = 0, (C.3.19)
where n c (resp. n v ) is the unit outward normal on Σ, i.e. n c points from Ω c to Ω v (resp. from Ω v to Ω c ), and n ci is the unit normal on Σ µ , i.e. n ci points from Ω ci to Ω cj .

Weak formulation

The nite element solution is computed by solving a weak form of the system (C. 

0 = Ω ci ∂(µ ci H ci ) ∂t • b + Ω ci ∇ × E ci • b = Ω ci ∂(µ ci H ci ) ∂t • b + Ω ci E ci • ∇ × b + ∂Ω ci (n ci × E ci ) • b = Ω ci ∂(µ ci H ci ) ∂t • b + Ω ci -u × µ ci H ci + 1 σ ∇ × H ci • ∇ × b + ∂Ω ci E ci • (b × n ci ). (C.3.20)
Note that, in the weak formulation, the variable of integration is omitted. We proceed slightly dierently in Ω v . From (C. 

Ωv ∂(µ v ∇φ v ) ∂t • ∇ψ + Σ E v • ∇ψ × n v + ∂Ω E v • ∇ψ × n v = 0.
We henceforth assume that a := E |∂Ω is a data. Since only the tangential parts of the electric eld are involved in the surface integrals in (C. 3.20) 

E ci • b × n ci = Σµ {E c } • b × n ci , Σ E v • ∇ψ × n v = Σ E c • ∇ψ × n v ,
where 

{E c } is dened on Σ µ by {E c } = 1 2 E ci + E cj .
∂(µ c H c ) ∂t • b + Ωv ∂(µ v ∇φ v ) ∂t • ∇ψ + ∪ N i=1 Ω ci 1 σ ∇ × H ci -u × µ ci H ci • ∇ × b + Σµ {E c } • [[b × n]] + Σ E c • (b × n c + ∇ψ × n v ) = - ∂Ω a • ∇ψ × n v ,
where we have set

[[b × n]] := b i × n ci + b j × n cj with b i := b| Ω ci and b j := b| Ω cj .
We nally get rid of E c by using Ohm's law in the conductor:

Ωc ∂(µ c H c ) ∂t •b + Ωv ∂(µ v ∇φ v ) ∂t •∇ψ + ∪ N i=1 Ω ci 1 σ ∇×H ci -u×µ ci H ci •∇×b + Σµ { 1 σ ∇×H c -u×µ c H c }•[[b×n]] + Σ 1 σ ∇×H c -u×µ c H c • (b×n c + ∇ψ×n v ) = - ∂Ω a•∇ψ×n v . (C.3.22)
This formulation is the starting point for the nite element discretization.

Space discretization

As already mentioned, SFEMaNS takes advantage of the cylindrical symmetry. We denote

Ω 2d
v and Ω 2d ci the meridian sections of Ω v and Ω ci , respectively. These sections are meshed using quadratic triangular meshes (we assume that Ω 2d v and the sub-domains Ω 2d c1 . . . Ω 2d cN have piecewise quadratic boundaries). We denote {F v h } h>0 , {F c1 h } h>0 . . . {F cN h } h>0 the corresponding regular families of non-overlapping quadratic triangular meshes where h denotes the typical size of a mesh element. -c) displays a meridian triangular mesh used in section C.4 with disks of thickness d = 0.6 (see section C.4 for details). We use the same mesh strategy for all the sub-domains. We can use renement, but the ratio between the maximum size of an element and the minimum one is of order 1. For every triangle K in the mesh we denote T K : K -→ K the quadratic transformation that maps the reference triangle

K := {(r, ẑ) ∈ R 2 , 0 ≤ r, 0 ≤ ẑ, r + ẑ ≤ 1} to K.
Given ℓ H and ℓ φ two integers in {1, 2} with ℓ φ ℓ H we rst dene the meridian nite element spaces

X H,2d h := b h ∈ L 1 (Ω c ) / b h | Ω ci ∈ C 0 (Ω ci ), ∀i = 1, . . . , N, b h (T K ) ∈ P ℓ H , ∀K ∈ ∪ N i=1 F ci h , X φ,2d h := ψ h ∈ C 0 (Ω v ) / ψ h (T K ) ∈ P ℓ φ , ∀K ∈ F v h ,
where P k denotes the set of (scalar or vector valued) bivariate polynomials of total degree at most k. Then, using the complex notation i 2 = -1, the magnetic eld and the scalar potential are approximated in the following spaces: where M + 1 is the maximum number of complex Fourier modes.

Time discretization

We approximate the time derivatives using the second-order Backward Dierence Formula (BDF2). The terms that are likely to mix Fourier modes are made explicit. Let ∆t be the time step and set t n := n∆t, n 0. After proper initialization at t 0 and t 1 , the algorithm proceeds as follows. For n 1 we set

H * = 2H c,n -H c,n-1 and      DH c,n+1 := 1 2 3H c,n+1 -4H c,n + H c,n-1 , Dφ v,n+1 := 1 2 3φ v,n+1 -4φ v,n + φ v,n-1 ,
and the discrete elds H c,n+1 ∈ X H h and φ v,n+1 ∈ X φ h are computed so that the following holds for all

b ∈ X H h , ψ ∈ X φ h : (C.3.23) L (H c,n+1 , φ v,n+1 ), (b, ψ) = R(b, ψ),
where the linear for R is dened by

R(b, ψ) = - ∂Ω a•∇ψ×n v + Ωc u×µ c H * •∇×b + Σµ {u×µ c H * }•[[b×n]] + Σ u×µ c H * • (b×n c + ∇ψ×n v ) ,
the bilinear form L is dened by

L (H c,n+1 , φ v,n+1 ),(b, ψ) := Ωc µ c DH c,n+1 ∆t •b + Ωv µ v ∇Dφ v,n+1 ∆t •∇ψ + Ωc 1 σ ∇×H c,n+1 •∇×b + g (H c,n+1 , φ v,n+1
), (b, ψ)

+ Σµ { 1 σ ∇×H c,n+1 }•[[b×n]] + Σ 1 σ ∇×H c,n+1 • (b×n c + ∇ψ×n v )
and the bilinear form g is dened by

g((H h , ψ h ), (b h , ψ h )) := β 1 h -1 F Σµ (H h,1 ×n c 1 + H h,2 ×n c 2 ) • (b h,1 ×n c 1 + b h,2 ×n c 2 ) + β 2 h -1 F Σ (H h ×n c + ∇ψ h ×n v ) • (b h ×n c + ∇ψ h ×n v ) ,
where h F denotes the typical size of ∂K ∪ Σ µ or ∂K ∪ Σ for all K in the mesh such that ∂K ∪ Σ µ or ∂K ∪ Σ is not empty. The constant coecients β 1 and β 2 are chosen to be of order 1. The purpose of the bilinear form g is to penalize the tangential jumps [[H c,n+1 ×n]] and H c,n+1 ×n c + ∇ψ v,n+1 ×n v , so that they converge to zero when the mesh-size goes to zero.

Addition of a magnetic pressure

The above time-marching algorithm is convergent on nite time intervals but may fail to provide a convergent solution in a steady state regime since errors may accumulate on the divergence of the magnetic induction. We now detail the technique which is employed to control the divergence of B c on arbitrary time intervals.

To avoid non-convergence properties that could occur in non-smooth domains and discontinuous material properties, we have designed a non standard technique inspired from [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF] to control ∇•B. We replace the induction equation in Ω c by the following:

(C.3.24) ∂(µ c H c ) ∂t = -∇ × E c + µ c ∇p c , (-∆ 0 ) α p c = ∇•µ c H c , p c | ∂Ωc = 0,
where α is a real parameter, ∆ 0 is the Laplace operator with zero boundary condition on Ω c , and p c is a new scalar unknown. A simple calculation shows that p c = 0 if the initial magnetic induction is solenoidal; hence, (D.3.9) enforces ∇•µ c H c = 0. Taking α = 0 amounts to penalizing ∇•µ c H c in L 2 (Ω c ), which turns out to be non-convergent with Lagrange nite elements when the boundary of Ω c is not smooth, (see [START_REF] Costabel | A coercive bilinear form for Maxwell's equations[END_REF] for details). The mathematical analysis shows that the method converges with Lagrange nite elements when α ∈ ( 1 2 , 1). In practice we take α = 0.7.

We introduce new nite elements spaces to approximate the new scalar unknown p c X p,2d h

:= p h ∈ L 1 (Ω c ) / p h ∈ C 0 (Ω c ), p h (T K ) ∈ P ℓp , ∀K ∈ ∪ N i=1 F ci h , p h = 0 on ∂Ω c , X p h := p = M m=-M p m (r, z)e imθ / ∀m = 1 . . . , M, p m ∈ X p,2d h and p m = p -m .
Here ℓ p is an integer in {1,2}. The nal form of the algorithm is the following: after proper initialization, we solve for H c,n+1 ∈ X H h , φ v,n+1 ∈ X φ h and p n+1 ∈ X p h so that the following holds for all

b ∈ X H h , ψ ∈ X φ h , q ∈ X p h : (C.3.25) L (H c,n+1 , φ v,n+1 ), (b, ψ) + D (H c,n+1 , p c,n+1 , φ v,n+1 ), (b, q, ψ) + P(φ v,n+1 , ψ) = R(b, ψ) with (C.3.26) D ((H, p, φ), (b, q, ψ)) := N i=1 Ω ci µ c b•∇p -µ c H•∇q + h 2α ∇•µ c H ∇•µ c b + h 2(1-α) ∇p•∇q ,
where h denotes the typical size of a mesh element. The term

N i=1 Ω ci h 2α ∇•µ c H c,n+1 ∇•µ c b
is a stabilization quantity which is added in to have discrete well-posedness of the problem irrespective of the polynomial degree of the approximation for p c . The additional stabilizing bilinear form P is dened by

P(φ, ψ) = Ωv ∇φ•∇ψ - ∂Ωv ψn•∇φ.
This bilinear form is meant to help ensure that ∆φ v,n+1 = 0 for all times.

Taking advantage of the cylindrical symmetry for Maxwell and Navier-Stokes equations SFEMaNS is a fully nonlinear code integrating the coupled Maxwell and Navier-Stokes equations ( [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]). As mentioned above, any term that could mix dierent Fourier modes has been made explicit. Owing to this property, there are M + 1 independent linear systems to solve at each time step (M + 1 being the maximum number of complex Fourier modes). This immediately provides a parallelization strategy. In practice we use one processor per Fourier mode. The computation of the nonlinear terms in the right-hand side is done using a parallel Fast Fourier Transform. Note that, in the present paper, we use only the kinematic part of the code with an axisymmetric steady ow. A typical time step is ∆t = 0.01 and a typical mesh size is h = 1/80. When necessary, the mesh is rened in the vicinity of the curved interface Σ µ so that we have h = 1/400 locally.

C.4 Ohmic decay in heterogenous domains

The inspection of equations (C.2.3) shows that even in the absence of ow, heterogeneous domains can lead to non trivial Ohmic decay problems. Therefore the reliability and the application range of both numerical schemes are rst examined by studying pure Ohmic decay conductivity σ and permeability µ r (see gure C.3). The thickness d = 0.1 is representative of the VKS impellers but the other d have been tested to study the scaling law with an eective permeability or an eective conductivity and also to estimate the impact of the numerical resolutions.

In a freely decaying system azimuthal Fourier modes are independent one from another as long as µ r and σ are axisymmetric. Moreover the axisymmetric mode (m = 0) can be split into decoupled poloidal (B r , B z ) and toroidal (B ϕ ) components which decay independently and exhibit two distinct decay rates. The three components of the magnetic eld of each Fourier mode m ≥ 1 are coupled, i.e. the poloidal and toroidal components interact and have the same decay rate when m ≥ 1. The Ohmic decay rates are computed with SFEMaNS by solving an eigenvalue problem using the ARPACK package. Between 10 to 40 eigenvectors are computed for each azimuthal Fourier mode, and the dominant eigenvector, i.e., the one whose eigenvalue has the largest real part, is extracted. Applying the grid-based FV/BEM algorithm equation (C.2.1) is time stepped and the growth (respectively decay) rates are estimated from the time behavior of the magnetic eld amplitude. Initial conditions are given by a divergence free random magnetic eld which ensures that all possible eigen vectors are excited.

In the following we limit our examinations to the decay of the axisymmetric mode (m = 0) and the simplest non-axisymmetric mode, i.e. the (m = 1)-mode (B ∝ cos ϕ).

C.4.1 External boundary conditions and eld pattern

A couple of simulations have been performed utilizing vanishing tangential eld boundary conditions in order to make comparisons with the vacuum boundary conditions. Figure C.4 shows the structure of the eld geometry with the container embedded in vacuum (upper panels) and with VTF boundary conditions (lower panels). We observe that the boundary conditions have signicant impacts when the conductivity and the permeability are uniform in the whole computational domain. This impact becomes negligible when the disk permeability or conductivity is large enough. More noticeable dierences occur when comparing the axisymmetric eigenmode of the magnetic eld obtained with high permeability disks with that obtained with high conductive disks. In the rst case (as µ r increase) the axisymmetric mode changes from a poloidal dominant structure to a toroidal dominant structure (see gure C.7 for d = 0.6). The change of structure occurs irrespective of d around µ eff r ≈ 1.5, where µ eff r denotes the eective value for permeability dened by µ eff r = V -1 µ r (r)dV (with V the volume of the cylindrical domain). The eld structure is dominated by two distinct azimuthal annular structures essentially located within the disks. When the conductivity is large the axial component of the magnetic eld dominates and has a slab like structure concentrated around the axis. A remarkable change in the eld structure is obtained when the thickness of the disks is small (d = 0.1, see gure C.5 & C.6). When µ r is large the azimuthal component of the eld is dominated by two ring like structures centered on the outer part of both disks. The radial eld component is concentrated within two highly localized paths on the outer edge of the disk. The axial component is nearly independent from z except close to the disks where the jump conditions require H z to be very small within the disks. The dierences in the eld patterns between d = 0.6 and d = 0.1 are less signicant when the conductivity is large where a torus-like structure of the poloidal eld component dominates in all cases (see right panel in gure C.6).

Note the equatorial symmetry breaking in the toroidal eld when the conductivity is large (µ 0 σ = 100, central column in gure C.4). The asymmetry in H ϕ results from the occurrence of combined contributions with dipole-like symmetry (even with respect to the equator) and quadrupolar-like symmetry (odd with respect to the equator). Using ARPACK the SFEMaNS scheme yields decay rates for both symmetries which are close but not equal (the dipole mode has always a larger decay time than the quadrupole mode).

C.4.2 Decay rates and dominating mode

The temporal behavior of the magnetic eigenmodes follows an exponential law B ∝ e γt where γ denotes the growth or decay rate. Figure C.8 shows the magnetic eld decay rates for a thick disk (d = 0.6) and a thin disk (d = 0.1) against µ eff r (left column) and against σ eff (right column). σ eff denotes the eective values for the conductivity dened similarly to µ eff r (see above) by σ eff = V -1 σ(r)dV . The essential properties of the eld behavior can be summarized as follows: The presence of high permeability/conductivity material enhances axisymmetric and (m = 1) modes. However, for thin disks the enhancement works selectively for the axisymmetric toroidal eld (in case of large µ r ), respectively for the poloidal axisymmetric mode (in case of large σ) and the decay rate of the poloidal (respectively toroidal) eld component remains nearly independent of the permeability (respectively conductivity).

Small dierences can be observed between the results obtained by the SFEMaNS and FV/BEM algorithms. These are particularly noticeable for the axisymmetric poloidal mode and for the (m = 1) mode when the disks are thin (d = 0.1). A couple of simulations with higher resolution in the axial direction (marked by the blue, red and the yellow stars in the lower right panel of gure C.8) show that these deviations are most probably the result of the poor resolution of the FV/BEM scheme. Only 6 mesh points are used to resolve the vertical structure of the disk in FV/BEM whereas SFEMaNS uses 40 mesh points. More systematic discrepancies between both algorithms become obvious by means of the behavior of the decay time τ dened by the reciprocal value of the decay rate (see gure C.9). For suciently large values of µ eff r (respectively σ eff ), τ follows a scaling law τ ∝ cµ eff r (respectively ∝ cσ eff ) as reported in table C.1. For increasing µ eff r the decay time of the (m = 0) toroidal mode slightly increases as d decreases whereas the axisymmetric poloidal mode exhibits an opposite behavior. The variation of the decay time with σ eff for the (m = 0) components (toroidal and poloidal) is the opposite to the behavior obtained with varying µ eff r . These variations with respect to d suggest that the decay time scaling law not only depends on the ferromagnetic volume of the impellers but also depends on the geometric constraints associated with the jump conditions (C.2.3).

Further evaluation of the discrepancies in the scaling behavior obtained by both numerical schemes is dicult, since it would require doing simulations with larger values for µ eff r and/or σ eff , which is not possible at the moment without signicantly improving the numerical schemes. In particular for the thin disk case (d = 0.1) the achievable values for µ r and/or σ are restricted to µ eff r (respectively µ 0 σ eff ) < ∼ 5 and, with the available data, it is not obvious whether the asymptotic linear scaling has been reached. In any case the absolute values for the decay rates obtained by both algorithms are close, giving condence that the results imply a sucient accurate description of the magnetic eld behavior in the presence of nonheterogenous materials. As already indicated by the marginal dierences in the eld pattern for both examined boundary conditions, we nd no qualitative change in the behavior of the decay rates or decay times with vacuum boundary conditions or VTF boundary conditions (see gure C.10). Although for small values of µ eff r and σ eff the absolute values of the decay rates dier by 30% the scaling behavior of the decay time is nearly independent of the external boundary conditions (see Tab. C.2). The inuence of these boundary conditions is smaller as µ r increases. Although the decay rates (for the thick disks) dier by approximately 30% when µ r < ∼ 5 there are nearly no dierences in γ for higher values of the permeability. This behavior is less obvious in case of a high conductivity disk where the poloidal axisymmetric eld exhibits dierences in the decay rates of 15% even at the highest available conductivity C.1: Scaling coecient c for the decay time as τ ∝ cµ eff r (respectively cµ 0 σ eff ) for dierent m = 0 and m = 1 modes as indicated (vacuum BC).

(see gure C.11). Note that the axisymmetric toroidal eld behaves exactly in the same way for both kinds of boundary conditions because insulating boundary conditions and vanishing tangential eld conditions are identical for the axisymmetric part of B ϕ .

C.5 Kinematic Dynamo

In the following, the kinematic induction equation is solved numerically with Rm > 0 in order to examine whether the behavior of the magnetic eld obtained in the free decay regime is maintained when interaction with a mean ow is allowed. To approximately mimic the VKS experiment we apply the so called MND-ow [START_REF] Marié | Galerkin analysis of kinematic dynamos in the von Kármán geometry[END_REF] given by

u r (r, z) = -(π/H) cos(2πz/H) r(1 -r) 2 (1 + 2r), u ϕ (r, z) = 4ǫr(1 -r) sin (πz/H) , (C.5.1) u z (r, z) = (1 -r)(1 + r -5r 2 ) sin (2πz/H) ,
where H = 1.8 denotes the distance between the impeller disks and ǫ measures the ratio between toroidal and poloidal component of the velocity (here, ǫ = 0.7259 is chosen following previous work, e.g. [137] [137]). The ow magnitude is characterized by the magnetic Reynolds number which is dened as (C.5.2)

Rm = µ 0 σ 0 U max R,
where U max is the maximum of the ow velocity and σ 0 denotes the uid conductivity. Figure C.12 shows the structure of the velocity eld where equations (E.2.3) are only applied in the region between the two impellers. The ow active region with radius R = 1 (corresponding to 20.5 cm in the experiment) is surrounded by a layer of stagnant uid with a thickness of 0.4R (the side layer) which signicantly reduces Rm c ([137] [START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF]). In the domain of the impellers a purely azimuthal velocity is assumed given by the azimuthal velocity of the MND ow (see (E.2.3)) at z = ±H/2. A so called lid layer is added behind each impeller disk. A purely rotating ow is assumed within these lid layers, and it is modeled by a linear interpolation along the z-axis between the azimuthal velocity at the outer side of the impeller disk and zero at the end cap of the cylindrical domain. Here we limit our examinations to disks with a height d = 0.1. Note that the impellers are modeled only by the permeability and/or conductivity distribution and no particular ow boundary conditions are enforced on the (assumed) interface between the impellers and the uid. This setup is comparable to the conguration in [START_REF] Giesecke | Role of Soft-Iron Impellers on the Mode Selection in the von KármánSodium Dynamo Experiment[END_REF] except that we now assume that permeability and conductivity are axisymmetric.

Figure C.13 shows the growth rates for the (m = 1) mode for dierent magnetic Reynolds numbers. Compared to the free decay, we obtain a remarkable distinct behavior of the growth rate if induction from a mean ow is added. High permeability disks together with Rm > 0 enhance the (m = 1) mode when compared to the case µ r = 1 resulting in a non-negligible impact on the critical magnetic Reynolds number for the onset of dynamo action (of this mode): Rm c is reduced from around 76 at µ r = 1 to Rm c around 55 at µ r = 100. The behavior of Rm c indicates a saturation around Rm c ≈ 55 for µ r ≫ 1 which is still above 50 which is the highest achievable experimental value. The enhancement of the (m = 1) mode Figure C.9: (Color online) Ohmic decay. Decay times against µ eff r (top row) and against µ 0 σ eff (bottom row) for three disk thicknesses d = 0.6, 0.3, 0.1 (blue, red, yellow). The solid curves show the results obtained from the hybrid FV/BEM scheme and the dotted curves denote the results from the SFEMaNS scheme.

for Rm = 0 is weaker compared to the Ohmic decay (green curve in left panel of gure C. [START_REF] Balay | PETSc Web page[END_REF]). An opposite behavior is obtained for a high conducting disk where a reduction of the (m = 1) growth rate is obtained (see right panel of gure C.13).

In both cases the (m = 1) decay rate remains independent of µ r (respectively σ) for values exceeding approximately µ r ≈ 20 (or µ 0 σ ≈ 20). The critical magnetic Reynolds number has also been computed for a dierent set-up with the ow restricted to the bulk region : 0 ≤ r ≤ 1.4, -0.9 ≤ z ≤ 0.9 with VTF conditions applied at the boundary of this region. We obtained in Rm c = 39 in this case. Note that this pseudo-vacuum set-up under-estimates the threshold by more than 30% when compared to Rm c = 55 in the limit µ r ≫ 1. This conrms that a realistic description of the soft iron impellers is crucial to get correct estimates.

The robustness of the results reported above exhibits a rather delicate dependence of the eld behavior on the details of the ow distribution, in particular from the ow in the lid layers. Beside the dynamo killing inuence of the lid ow [START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF] this is also true for the radial ow in the vicinity of the inner side of the disks. In order to estimate the relative impact of velocity jumps on the two codes, some simulations have been performed by smoothing the radial component of the velocity at the transition between the bulk of the domain and the impeller disk (where u r = 0). The resulting decay rates at Rm = 50 (black stars in the left panel of gure C.13 and table C.3) are slightly dierent at µ r = 1 but the dierence is more signicant for µ r = 60.

C.6 Conclusions

In addition to its well recognized eects in magnetostatics, experimental dynamos have shown that soft-iron material may also nd important applications in the eld of magnetohydrodynamics. For instance, at least one of the two impellers of the Cadarache experiment must be made of soft iron and must rotate in order to achieve dynamo action (F. Daviaud, private is only to lower the critical magnetic Reynolds number in the domain of experimental feasibility or if the dynamo mechanism is fundamentally dierent when the conducting medium is no longer homogenous. This issue can be addressed numerically in principle . However, to face such problems with heterogenous domains, specic algorithms must be implemented and validated. This was the aim of the present study. Our comparative runs of Ohmic decay problems proved in practice to be extremely useful to optimize both codes and to select some numerical coecients occurring in the algorithms (such as in penalty terms). The problems which have been successively presented above are standard in MHD, but we were forced to reduce the dimension of the parameter space to congurations more or less related to the Cadarache experiment, where the impellers may be treated as disks in a conducting ow bounded by a cylinder of a given aspect ratio. We have thus considered axisymmetric domains only (see [START_REF] Giesecke | Role of Soft-Iron Impellers on the Mode Selection in the von KármánSodium Dynamo Experiment[END_REF] for non-axisymmetric cases), and azimuthal modes of low order (m = 0 and 1).

We have rst studied Ohmic decay problems, with disk impellers of various thicknesses to investigate scaling laws and the impact of the spatial resolution. The eects of internal assemblies of high permeability material within the uid container are dierent from those of an enhanced, but homogenous uid permeability because of inner boundary conditions for the magnetic eld (in case of high permeability material), and for the electric eld/current (in case of conductivity jumps). In the free decay problem with thin high permeability disks a selective enhancement of the axisymmetric toroidal eld and the (m = 1) mode is observed whereas the axisymmetric poloidal eld component is preferred in case of high conductive disks.

We have also shown that pseudo-vacuum boundary conditions, which are easier to implement on the cylinder walls than the jump conditions on the impellers, have only a slight inuence on the decay rates. The impact of the outer container boundaries on the eld behavior is limited to a shift of the decay/growth rates. This is surprising, insofar as pseudo vacuum boundary conditions resemble the conditions that correspond to an external material with innite permeability. Nevertheless, the presence of high permeability/conductivity disks within the liquid hides the inuence of outer boundary conditions, and the simplifying approach applying vanishing tangential eld conditions at the end caps of the cylinder in order to mimic the eects of the high permeability disks in the VKS experiment ( [START_REF] Gissinger | Eect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling ows[END_REF]) is not sucient to describe the correct eld behavior. The consideration of impeller disks with (large but nite) permeability remains indispensable in order to describe the inuence of the material properties.

For completeness, we have also considered conductivity domains. From the experimental point of view the utilization of disks with a conductivity that is 100 times larger than the conductivity of liquid sodium remains purely academic. Nevertheless, the simulations show a crucial dierence between heterogeneous permeabilities and conductivities: even if these two quantities may appear in the denition of an eective Reynolds number Rm eff = µ 0 µ eff r σ eff U L, they do not play the same role and they select dierent geometries of the dominant decaying mode. It is not only a change of magnetic diusivity that matters.

We have considered kinematic dynamo action, using analytically dened ows in accordance with the setting of the VKS mean ow. Since these ows and the variation of µ and σ are axisymmetric, the azimuthal modes are decoupled. An important Fourier mode is the (m = 1) mode which will be excited eventually through dynamo action. We have shown that our codes give comparable growth rates for this mode. We have examined also the growth rate of the (m = 0) magnetic eld in presence of soft iron impellers and the axisymmetric MND ow. Since convergence of results is not achieved in all the cases considered, this comparative study is still in progress and it has thus not been included in the present paper. We recall that the main surprise of the Cadarache experiment was perhaps the occurrence of the mode (m = 0), which pointed out the possible role of the non-axisymmetric ow uctuations. Nonaxisymmetric velocity contributions might be considered in terms of an α-eect as it has been proposed in [START_REF] Pétrélis | On the magnetic elds generated by experimental dynamos[END_REF] and [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF][START_REF] Laguerre | Erratum : Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF]. Preliminary examinations applying simple α-distributions are presented in [START_REF] Giesecke | Generation of axisymmetric modes in cylindrical kinematic mean-eld dynamos of VKS type[END_REF] and [START_REF] Giesecke | Role of Soft-Iron Impellers on the Mode Selection in the von KármánSodium Dynamo Experiment[END_REF]. However, there is still a lack of knowledge on the details and physical justication of a precise α-distribution which requires a non-linear hydrodynamic code. The questions related to this empirical fact represent a main issue of the experimental and numerical approaches of the uid dynamo problem and deserve a dedicated study. Our axisymmetric model is not intended to explain the main features of the VKS experiment, which are the dominating axisymmetric eld mode and the surprising low critical magnetic Reynolds number of Rm ≈ 32. However, our results give a hint why the (m = 1) mode remains absent in the experiment.

A source term on the m = 0 mode appears when the ow axisymmetry is broken. Although the relative amplitude of this source cannot be discussed here, we note that the decay time of the (m = 0) toroidal mode becomes the largest when the eective permeability is high enough (see for example gure C.8). It may thus appear as the dominant mode of the dynamo, as it seems to be observed in the VKS experiment. Stated otherwise, the impact of soft-iron impellers on the critical magnetic Reynolds number of the (m = 1)-mode could be rather low (decrease from ∼ 76 to ∼ 55 in the MND case) and could remain unobservable, while it could be strong for the (m = 0) mode (down to 32 in the VKS geometry) when conjugated with a slight departure from axisymmetry of the ow. Numerical evidences for this picture require the consideration of non-axisymmetric velocity contributions, either in terms of vortices as e.g. observed in water experiments by [START_REF] De La Torre | Slow Dynamics in a Turbulent von Kármán Swirling Flow[END_REF] or applying a physically established prole of an α-eect. Introduction This paper is the third part of a research program whose goal is to develop a solution method for solving the magnetohydrodynamic equations in heterogeneous axisymmetric domains. The computational domain is assumed to be composed of non-conducting and conducting media. The electromagnetic eld is represented by the pair H-φ, where H denotes the magnetic eld in the conducting region and φ denotes the magnetic scalar potential in the non-conducting region. The basic ideas for approximating this class of problems have been introduced in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF]. Lagrange nite elements are used in the median section and variations in the azimuthal direction are approximated with Fourier expansions. The approximation is discontinuous across the interface separating the conducting and the non-conducting domains. This choice allows us to use Lagrange elements. The coupling between the H and φ representations is done by using an Interior Penalty technique [START_REF] Arnold | An interior penalty nite element method with discontinuous elements[END_REF][START_REF] Baker | Finite element methods for elliptic equations using nonconforming elements[END_REF]. The method has been applied in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF] to the Maxwell equations forced by given velocity elds; this is the so-called kinematic dynamo problem. The solution method has been shown to be stable and convergent. In [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF], the method has been generalized to the full magnetohydrodynamic (MHD) problems and has been shown to be capable of solving nontrivial nonlinear dynamo problems. The Navier-Stokes/Maxwell coupling together with details on a parallelization technique for the Fast Fourier Transform (FFT) method are described in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF].

The main restriction of the method introduced in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] is that the magnetic permeability must be smooth in the conducting region. This is a major impediment since magnetic permeability heterogeneousness is suspected to play a key role in the connement of the magnetic eld in some dynamo experiments (we refer in particular to the VKS2 (von Kármán Sodium 2) successful dynamo experiment [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]) and thus signicantly lowers the dynamo threshold, [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF]. The second restriction is that our using Lagrange nite elements and penalizing the divergence of the magnetic induction in L 2 requires all the interfaces to be either smooth or the convexity of the interfaces be oriented towards the non-conducting region. This geometrical restriction is sometimes cumbersome. The objective of the present work is to address the two above issues. We show in the present work that the approximation framework proposed in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] can be generalized to account for magnetic permeability jumps and possible lack of smoothness of the interfaces where the electric conductivity and the magnetic permeability are discontinuous.

The paper is organized as follows. Notation and basic notions regarding the continuous problem are introduced and discussed in D.2. The nite element approximation is presented in D.3. In addition to accounting for discontinuous magnetic permeability, the main novelty of the method is condensed in the bilinear form D in the weak formulation (D. 3.11). The new method is tested numerically on various academic benchmark problems in D.4. The method is shown therein to be robust with respect to geometric singularities and high magnetic permeability contrasts. The method is nally used in D.5 to explore various aspects of the VKS2 experiment. Our numerical results conrm the experimental observation that using soft iron components in the VKS2 experiment signicantly lowers the dynamo threshold.

D.2

Setting of the magnetic problem

The purpose of this section is to describe the PDE setting. We focus our attention on the magnetic features of the problem since the main novelty that we are going to introduce with respect to [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] consists of accounting for the discontinuities of magnetic permeability eld. The Navier-Stokes part of the full MHD problem is thus not considered in this paper.

D.2.1 The geometric setting

We consider the MHD equations in a bounded axisymmetric domain Ω ⊂ R 3 (Ω could be a truncated version of an unbounded domain). The boundary of Ω is denoted by Γ = ∂Ω and is henceforth assumed to be at least Lipschitz continuous. Ω is assumed to be partitioned into a conducting region (subscript c) and an insulating region (subscript v) as follows:

(D.2.1)

Ω = Ω c ∪ Ω v , Ω c ∩ Ω v = ∅.
Ω c is referred to as the conducting domain and Ω v is referred to as the non-conducting domain.

The interface between the conducting region and the non-conducting region is given and denoted by (D.2.2)

Σ = ∂Ω c ∩ ∂Ω v .
The magnetic permeability, µ, is assumed to be axisymmetric and piece-wise smooth over Ω c . More precisely, we assume that the conducting region, Ω c , can be partitioned into subregions Ω c1 , . . . , Ω cN so that the restriction of µ over each subregion, Ω ci , i ∈ 1, N , is smooth. In other words, (D.2. 3)

Ω c = Ω c1 ∪ . . . ∪ Ω cN , Ω ci ∩ Ω cj = ∅, ∀i, j ∈ 1, N .
The interface between all the conducting subregions is also given and denoted by Σ µ , (D.2.4)

Σ µ = ∪ i,j∈1,N Ω ci ∩ Ω cj .
The interfaces Σ and Σ µ are xed and given; they correspond to changes of material properties and one side of these interfaces is always a non-deformable solid.

To easily refer to boundary conditions, we introduce (D.2.5)

Γ c = Γ ∩ ∂Ω c , Γ v = Γ ∩ ∂Ω v .
Note that Γ = Γ v ∪ Γ c . Moreover, we denote by Γ 0 v the connected component of ∂Ω v that contains Γ v . We assume that ∂Ω v has J + 1 connected components, say (D.2.6)

Γ 0 v , Γ 1 v , . . . , Γ J v .
Observe that

Σ = (Γ 0 v \ Γ v ) ∪ Γ 1 v ∪ . . . ∪ Γ J v
The notation is illustrated in 

v \ Γ v ) ∪ Γ 1 v ∪ Γ 2 v .
The conducting region is composed of 5 subregions. The geometry shown in the right panel (b)

has J = 1, Γ 0 v = Γ v , Γ c = ∅, and Σ = Γ 1 v .
The conducting region is composed of 2 subregions of dierent electric conductivities and magnetic diusivities.

D.2.2

The PDE setting

The conducting region is composed of uid and solid domains, with conductivity and permeability jumps. The time evolution of the magnetic and electric elds is modeled by the Maxwell equations. To simplify the presentation, we assume in this paper that the velocity eld of the uid and that of the solid moving parts are known and we denote this quantity by ũ. No notational distinction is made to separate the uid and the solid regions. The time evolution of the electromagnetic eld is modeled as follows:

(D.2.7)

                         µ∂ t H = -∇×E, in Ω ∇×H = σ(E + ũ×µH) + j s , in Ω c 0, in Ω v ∇•E = 0, in Ω v E × n| Γ = a, H| t=0 = H 0 , in Ω c Γ i v E•n = 0, 1 ≤ i ≤ J
where n is the outward normal on Γ. The independent variables are space and time. The dependent variables are the magnetic eld, H, and the electric eld, E. The physical parameters are the magnetic permeability, µ, and the electric conductivity, σ. The data are H 0 , a

D.2.3 Non-dimensionalization of the equations

We now non-dimensionalize (D.2.7). We denote by L and U reference length and velocity scales, respectively. Our basic assumption is that U ≪ c, where c is the speed of light. The reference (advective) time scale is T := L/U. The uid density is assumed to be a constant ρ. The reference magnetic permeability and electric conductivity are denoted by µ 0 and σ 0 , respectively. We choose the reference scale for the magnetic eld to be so that the reference Alfvén speed is one, i.e., H := U ρ/µ 0 . The reference scale for the electric eld is set to be E := µ 0 HU. The source current j s and the data H 0 , a are non-dimensionalized by HL -1 , H and H, respectively. This leaves one non-dimensional parameter which we refer to as the magnetic Reynolds number, R m , and which is dened as follows:

(D.2.8)

R m := ULσ 0 µ 0 .
Henceforth we abuse the notation by using the same symbols for the non-dimensional and the corresponding dimensional quantities. The non-dimensional set of equations is re-written as follows:

(D.2.9)

                         µ∂ t H = -∇×E, in Ω ∇×H = R m σ(E + ũ×µH) + j s , in Ω c 0, in Ω v ∇•E = 0, in Ω v E × n| Γ = a, H| t=0 = H 0 , in Ω c Γ i v E•n = 0, 1 ≤ i ≤ J,
where σ and µ are the relative conductivity and permeability, respectively.

D.2.4

Introduction of φ and elimination of E

In addition to the above geometrical hypotheses on Ω, we henceforth assume that the initial data H 0 is smooth and is such that ∇•(µH 0 )| Ω = 0 and ∇×H 0 | Ωv = 0. We also assume that either Ω v is simply connected or that the circulation of H along any path in the insulating media is zero for all time. The condition ∇×H| Ωv = 0 together with the above assumption implies that there is a scalar potential φ, dened up to an arbitrary constant, such that H| Ωv = ∇φ. The same holds for H 0 , i.e., there is φ 0 such that H 0 | Ωv = ∇φ 0 .

To clarify in which domain we work, we now dene (D.2.10)

H = H c in Ω c ∇φ in Ω v , µ = µ c in Ω c µ v in Ω v ,
and we denote by n c and n v the outward normal on ∂Ω c and ∂Ω v , respectively. Similarly, to distinguish between the limits lim Ωc i ∋y→x and lim Ωc j ∋y→x whenever x is on the interface Σ µ and x ∈ Ω ci ∩ Ω cj , we set (D.2.11)

H c 1 (x) = lim Ωc i ∋y→x H c (y) if i < j lim Ωc j ∋y→x H c (y) otherwise, H c 2 (x) = lim Ωc j ∋y→x H c (y) if i < j lim Ωc i ∋y→x H c (y) otherwise,
and we equip L and X with the norm of

L 2 (Ω c )×H 1 (Ω v ) and H curl (Ω c )×H 1 (Ω v ), respectively. H 1 R =0 (Ω v )
is the subspace of H 1 (Ω v ) composed of the functions of zero mean value. The space H curl (Ω c ) is composed of the vector-valued functions on Ω c that are component-wise L 2 -integrable and whose curl is also component-wise L 2 -integrable. The space H div (Ω) is composed of the vector-valued functions on Ω that are component-wise L 2 -integrable and whose divergence is L 2 -integrable. We recall that, for any eld b in H curl (Ω c ), the tangential components of b are continuous across Σ µ , i.e., b 1 ×n c 1 + b 2 ×n c 2 = 0. By proceeding as in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF] and taking inspiration from the so-called Interior Penalty method [START_REF] Arnold | An interior penalty nite element method with discontinuous elements[END_REF][START_REF] Baker | Finite element methods for elliptic equations using nonconforming elements[END_REF], we reformulate the problem as follows: Seek the pair (H c , φ) ∈ L 2 ((0, +∞); X) ∩ L ∞ ((0, +∞); L) (with ∂ t H c and ∂ t φ in appropriate spaces) such that for all pairs (b, ϕ) ∈ X and a.e. t ∈ (0, +∞),

(D.2.16)                                H c | t=0 = H c 0 ; ∇φ| t=0 = ∇φ 0 , Ωc µ c (∂ t H c )•b + ((R m σ) -1 (∇×H c -j s ) -ũ×µ c H c )•∇×b + Ωv µ v (∂ t ∇φ)•∇ϕ + Σµ (R m σ) -1 (∇×H c -j s ) -ũ×µ c H c •(b 1 ×n c 1 + b 2 ×n c 2 ) + Σ ((R m σ) -1 (∇×H c -j s ) -ũ×µ c H c )•(b×n c + ∇ϕ×n v ) = Γc (a×n)•(b×n) + Γv (a×n)•(∇ϕ×n).
The interface integrals over Σ and Σ µ are zero since b×n c + ∇ϕ×n v = 0 and b 1 ×n c 1 + b 2 ×n c 2 = 0, but we nevertheless retain these two integrals since they will not vanish when we construct the non-conforming nite element approximation, see D.3. In the same spirit, observe that the tangential components of the average of (R m σ) -1 (∇×H cj s ) -ũ×µ c H c ×n c 1 are equal to the average of the tangential components of the electric eld. Since the tangential components of electric eld are continuous, the two terms composing the average across Σ µ are actually equal. We nevertheless retain the average notation since this is the formulation that we shall use when we construct the non-conforming nite element approximation, see D.3.

The main novelty with respect to [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] is the presence in (D.2.16) of the boundary integral over Σ µ . It is this term that will allow us to account for jumps on the magnetic permeability. The boundary integral over Σ µ appears when one tests the Faraday equation in (D.2.13) with a test function b that is piecewise smooth on Ω c1 , . . . , Ω cN but with discon- tinuous tangential components across Σ µ , and when one integrates by parts over each

Ω ci , i ∈ 1, N .
Showing that the problem (D.2.16) is well-posed under suitable assumption on the velocity eld ũ is a standard exercise in functional analysis; it is essentially a consequence of Lions' theorem (see e.g. [23, p .218], [95, pp. 253258]). We refer e.g. [3,[START_REF] Bossavit | Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, volume 2 of Electromagnetism[END_REF], [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF]Thm 2.1] for more details on the well-posedness issue.

At this point it may not seem clear to the reader that the weak formulation (D.2.16) naturally enforces the interface condition

µ c 1 H c 1 •n c 1 + µ c 2 H c 2 •n c 2 = 0 across Σ µ .
To see that this is indeed true, let us set E c := (R m σ) -1 (∇×H cj s ) -ũ×µ c H c on Ω c . By using test functions compactly supported on Ω c , one infers from (D. 2.16) that H c and E c are related by Faraday's law: µ c ∂ t H c = -∇×E c (integrate by parts over Ω c and apply a distribution D. 3 Approximation

The purpose of this section is to explain how (D.2.16) is discretized in space and time. We proceed as in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF], taking into account that µ c is discontinuous, but the divergence-free condition on the magnetic induction is treated dierently so as to handle quite general geometries.

D.3.1 The geometry

The algorithm that we propose takes advantage of the cylindrical symmetry of the domain Ω and the interfaces Σ and Σ µ . The symmetry axis is denoted Oz and the cylindrical coordinates are denoted (r, θ, z): r is the distance to the Oz axis; θ, (0 ≤ θ ≤ 2π), is the angular coordinate; and z is the position along the Oz axis. We denote by

Ω 2D v , Ω 2D c
and Ω 2D ci (i = 1, . . . , N ), the meridional sections of Ω v , Ω c and Ω ci , respectively. We assume that Ω v , Ω c and Ω ci have piecewise quadratic boundaries. These sections are meshed using quadratic triangular meshes.

We denote by {F v h } h>0 , {F c h } h>0 and {F ci h } h>0 the corresponding regular families of nonoverlapping quadratic triangular meshes. We assume for the sake of simplicity that, for every given mesh index h, F ci h is a subset of F c h . We denote by Σ 2D h and Σ 2D µh the collection of triangle faces that compose the meridional section of Σ and Σ µ , respectively. The collection of cylindrical surfaces generated by rotation around the symmetry axis by the faces in Σ 2D h and

Σ 2D
µh are denoted by Σ h and Σ µh , respectively. For every cylindrical surface F in Σ h ∪ Σ µh , we denote by h F the diameter of the triangle face that generates F .

For every element K in the mesh F v h ∪ F c h we denote by T K : K -→ K the quadratic transformation that maps the reference triangle

K := {(r, ẑ) ∈ R 2 , 0 ≤ r, 0 ≤ ẑ, r + ẑ ≤ 1}
to K, and we denote by h K the diameter of K. Finally, we denote by K 3D the volume generated by rotation around the symmetry axis by an element K.

D.3.2 Space discretization for the Maxwell equations

The electromagnetic part of the problem is approximated by using the technique introduced in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF]. The main feature of the space approximation is that the method is non-conforming, i.e., the continuity constraint

(b×n c + ∇ϕ×n v )| Σ = 0 and (b 1 ×n c 1 + b 2 ×n c
2 )| Σµ = 0 in X (see (D.2.15)) are relaxed and enforced by means of an interior penalty method.

Let ℓ H and ℓ φ be two integers in {1, 2} with ℓ φ ≥ ℓ H . We rst dene the meridional nite element spaces

X H,2D h := {b h ∈ L 2 (Ω c ); b h | Ωc i ∈ C 0 (Ω ci ), ∀i = 1, . . . , N, b h (T K )| K ∈ P ℓ H , ∀K ∈ F c h }, (D.3.1) X φ,2D h := {ϕ h ∈ C 0 (Ω v ); ϕ h (T K )| K ∈ P ℓ φ , ∀K ∈ F v h }, (D.3.2)
where P k denotes the set of bivariate polynomials of total degree at most k, and P k := P k ×P k ×P k . Then, using the complex notation i 2 = -1, the magnetic eld and the scalar potential are approximated in the following spaces:

X H h := {b = M m=-M b m h (r, z)e imθ ; b m h ∈ X H,2D h , b m h = b -m h , k ∈ 0, M }, (D.3.3) X φ h := {ϕ = M m=-M ϕ m h (r, z)e imθ ; ϕ m h ∈ X φ,2D h , ϕ m h = ϕ -m h , m ∈ 0, M }, (D.3.4)
where M + 1 is the maximum number of complex Fourier modes.

D.3.3 Time discretization

We use the same time discretization as in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]. We just recall the main steps without going through the details. The time derivatives are approximated using the second-order Backward Dierence Formula (BDF2). All the terms that are likely to mix the modes are made explicit (e.g. cross products). Let ∆t be the time step and set t n := n∆t, n ≥ 0. A rst version of the algorithm is written as follows: after appropriate initialization at t 0 and t 1 , dene the following elds for all n ≥ 1 (D.3.5)

H * = 2H c,n -H c,n-1 (D.3.6) DH c,n+1 := 1 2 (3H c,n+1 -4H c,n + H c,n-1 ), Dφ n+1 := 1 2 (3φ n+1 -4φ n + φ n-1 ).
The solution to the Maxwell part of the problem is computed in one step by solving for H c,n+1 in X H h and φ n+1 in X φ h so that the following holds for all b in X H h and all ϕ in X φ h

(D.3.7) Ωc µ c DH c,n+1 ∆t •b + Ωv µ v ∇Dφ n+1 ∆t •∇ϕ + L (H c,n+1 , φ n+1 ), (b, ϕ) = R n (b, ϕ) ,
where we have dened the linear form 

R n R n (b, ϕ) := Γv (a×n v ) • (∇ϕ×n v )+ Γc (a×n c ) • (b×n c )+ Ωc (R m σ) -1 j s + ũ×µ c H * •∇×b + Σµ (R m σ) -1 j s + ũ×µ c H * •[[b×n]] + Σ (R m σ) -1 j s + ũ×µ c H * • (b×n c + ∇ϕ×n v ) ,
L (H c,n+1 , φ n+1 ), (b, ϕ) := Ωc (R m σ) -1 ∇×H c,n+1 •∇×b+ Σµ (R m σ) -1 ∇×H c,n+1 •[[b×n]] + g (H c,n+1 , φ n+1 ), (b, ϕ) + Σ (R m σ) -1 ∇×H c,n+1 • (b×n c + ∇ϕ×n v )
where g is dened by

g((H c,n+1 , φ n+1 ), (b, ϕ)) := β 2 F ∈Σ µh h -1 F F [[H c,n+1 ×n c ]]•[[b×n c ]]
(D.3.8)

+ β 1 F ∈Σ h h -1 F F (H c,n+1 ×n c + ∇φ n+1 ×n v )•(b×n c + ∇ϕ×n v ),
The purpose of the bilinear form g is to penalize the quantities H c,n+1 ×n c +∇φ n+1 ×n v and [[H c,n+1 ×n c ]] across Σ and Σ µ , respectively, so that they converge to zero when the mesh-size goes to zero. The coecients β 1 and β 2 are user-dependent. We usually take

β 1 = γ 1 /(R m min x∈Ωc (σ(x))),
β 2 = γ 2 /(R m min x∈Ωc (σ(x))),
with γ 1 = γ 2 = 1. This scaling can be justied by arguments from the Interior Penalty theory [START_REF] Arnold | An interior penalty nite element method with discontinuous elements[END_REF][START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF].

D.3.4

Addition of a magnetic pressure At this point, the only novelty with respect to [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] is that the approximate magnetic eld is discontinuous across the interface Σ µh . This method has been proven to be convergent on nite time intervals, but it may fail to converge in the steady state regime. Indeed, in the time-dependent case, taking the divergence of Faraday's equation, we observe that provided the initial magnetic induction is divergence-free, the following holds for all times

∇•(µH) = 0.
Unfortunately, in the steady state case, this condition is a constraint that the above technique may fail to respect. We describe in this section the modications we have made in order to enforce the divergence-free condition in both conducting and insulating part, even in timeindependent situations.

Motivation for a magnetic pressure.

In [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF], the solenoidality constraint is enforced by means of a penalty term added to the bilinear form L, namely

β 0 Ωc ∇•(µ c H c,n+1 )•∇•(µ c b),
where β 0 = 0 or 1 depending on the regularity of the domain. Taking β 0 = 1 requires that the approximate solution converges to the exact solution in the H curl (Ω) ∩ H div (Ω) norm. We point out the fact that we want to use H 1 -conforming Lagrange nite elements. It is known since the ground-breaking work of Costabel (cf. [START_REF] Costabel | A coercive bilinear form for Maxwell's equations[END_REF]) that, for non-smooth and non-convex domains (e.g. a L-shape domain), H 1 is a genuine closed subspace of H curl (Ω) ∩ H div (Ω). This means that one can nd elements in H curl (Ω) ∩ H div (Ω) that cannot be approximated by elements of H 1 . We thus need to nd another way to deal with the divergence-free constraint in non-smooth domains.

In the conducting region.

Taking inspiration from [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF], we propose a non standard technique, which consists of replacing the induction equation in the conducting part by (D.3.9)

∂ t (µ c H c ) = -∇ × E c -µ c ∇p c , (-∆ 0 ) α p c = -∇•(µ c H c ), p c | ∂Ωc = 0,
where α is a yet-to-be-chosen real parameter, ∆ 0 is the Laplace operator on Ω c with zero Dirichlet boundary condition, and p c is a new scalar unknown which we call magnetic pressure.

A simple calculation shows that if the initial magnetic induction is solenoidal, then p c ≡ 0 so that (D.3.9) indeed enforces the condition ∇•(µ c H c ) = 0. Taking α = 0 in the above formulation amounts to penalize ∇•(µ c H c ) in L 2 (Ω c ), as in the previous subsection. For

α ∈ ( 1 2 , 1],
this new formulation can be shown to be convergent, even if the domain is nonsmooth and non-convex. We refer to [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF] for the mathematical analysis of this method. Although α = 1 is a legitimate value when solving boundary value problems, it is shown in [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF] that α should be taken away from 1 when solving eigenvalue problems in non-smooth domains to avoid spurious eigenvalues. In practice, we use α ∈ [0.6, 0.8] and we do not observe any signicative dependence of the method with respect to α when the interfaces are nonsmooth. When the interfaces are smooth the method works properly for any value α ∈ [0, 1] both for boundary value and eigenvalue problems.

In the vacuum.

We proceed slightly dierently in Ω v . The induction equation is replaced by the following (D.3.10)

∂ t (µ v ∇φ) = -∇×E v -µ v ∇p v , ∆p v = ∆φ, ∇p v •n v | ∂Ωv = 0,
where p v is a new scalar unknown, and µ v is the magnetic permeability in the vacuum which we assume to be constant. Once again, a simple calculation shows that if the initial magnetic induction is solenoidal, then p v ≡ 0, so that (D.3.10) indeed enforces ∆φ = 0. Moreover, upon observing that

Ωv ∇p v •∇ϕ = Ωv ∇φ•∇ϕ - ∂Ωv (n•∇φ)ϕ, ∀ϕ ∈ H 1 (Ω v )
The weak formulation of (D.3.10) can be re-written as follows:

Ωv µ v (∂ t ∇φ)•∇ϕ = - Ωv ∇×E v •∇ϕ - Ωv µ v ∇φ•∇ϕ + ∂Ωv µ v (n•∇φ)ϕ, ∀ϕ ∈ H 1 (Ω v )
so that p v is eliminated from the formulation.

Final algorithm.

Finally, we have three unknown elds (one vector-eld H c , two scalar elds φ, p c ) instead of two (H c , φ).

We introduce a new nite element space to approximate the new scalar unknown p c :

X p,2D h := p h ∈ L 2 (Ω c ) / p h ∈ C 0 (Ω c ), p h (T K ) ∈ P ℓp , ∀K ∈ F c h , p h = 0 on ∂Ω c , X p h := p = M m=-M p m h (r, z)e imθ / ∀m = 1 . . . , M, p m ∈ X p,2D h and p m h = p -m h
Here ℓ p is an integer in {1,2}.

The nal form of the algorithm is the following : after proper initialization, we solve for

H c,n+1 ∈ X H h , φ n+1 ∈ X φ h and p c,n+1 ∈ X p h so that the following holds for all b ∈ X H h , ψ ∈ X φ h , q ∈ X p h Ωc µ c DH c,n+1 ∆t •b + Ωv µ v ∇Dφ n+1 ∆t •∇ϕ + L (H c,n+1 , φ n+1
), (b, ϕ)

+ P(φ n+1 , ϕ) + D (H c,n+1 , p c,n+1 ), (b, q) = R n (b, ϕ) (D.3.11)
where P denotes the stabilizing bilinear form dened by

P(φ, ψ) = Ωv µ v ∇φ•∇ψ - ∂Ωv µ v ψn•∇φ,
and D is dened by

D ((H, p), (b, q)) := β 0   Ωc µ c ∇p•b - Ωc µ c H•∇q + K∈F c h K 3D h 2(1-α) K ∇p•∇q + s(H c,n+1 , b)   ,
where the last bilinear form s is dened by

s(H, b) := K∈F c h K 3D h 2α K ∇•(µ c H)∇•(µ c b).
P accounts for the addition of p v and D is a discrete approximation for the weak formulation of (D.3.9). Finally, s is a stabilization term that makes the discrete formulation well-posed irrespective of the polynomial degree of the approximation for p c . The coecient β 0 is scaled as follows:

β 0 = γ 0 /(R m min x∈Ωc (σ(x))),
with γ 0 = 1. This scaling can be justied by arguments from the Interior Penalty theory [START_REF] Arnold | An interior penalty nite element method with discontinuous elements[END_REF][START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF].

D.4 Convergence tests

The new formulation (D.3.11) presents two major novelties with respect to that introduced in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]: it now accounts for non-smooth geometries and discontinuous magnetic permeability elds. The purpose of this section is to illustrate numerically these new features on benchmark problems.

D.4.1

The L-shape domain

We rst illustrate the positive eect of the magnetic pressure in the case of steady-state regime in a non-smooth and non-convex domain. The setting is the following: we consider the conducting L-shape domain (two dimensional case) (D.4.1)

Ω = Ω c = (-1, +1) 2 \([0, +1]×[-1, 0]).
with no insulating region, 

Ω v = ∅, (cf.
∇×∇×H = 0, ∇•H = 0, H×n| Γ = G×n,
where the Cartesian components of the boundary data G are given by (D.4.3)

G(r, θ) = 2 3 r -1 3 -sin( θ 3 ) cos( θ 3 )
, and (r, θ) are the polar coordinates centered at the re-entrant corner of the domain. The solution to the above problem is H = ∇ψ, where ψ(r, θ) = r Five quasi-uniform (non-nested) Delaunay meshes are considered of mesh-sizes h = 1/10, 1/20, 1/40, 1/80, 1/160, respectively. The meshes are composed of triangles. Two types of approximation are tested; we use P 1 elements in the rst case and P 2 elements in the second case. The magnetic eld and the magnetic pressure are approximated using equal order polynomials in each case.

Denoting by H h the approximate magnetic eld, we report in Table D.1 the relative errors H h -H L 2 / H L 2 for α = 0.75 and α = 1. Table D.1 also shows the computed order of convergence (COC). Convergence is observed for the P 1 and P 2 approximations. The best possible convergence rate is 2 3 and this rate is achieved numerically when using P 2 elements.

the accuracy of the method improves when α → 1, but the absence of spurious eigenvalues is assured only for α < 1. This phenomenon can be observed on the rst eigenvalue by comparing Table D We now turn our attention to three-dimensional induction problems with discontinuous permeability elds.

Description of the problem

The domain is Ω := R 3 and the conductor is composed of two concentric spheres centered at 0. The radius of the inner sphere, say Ω 1 , is R 1 and its magnetic permeability is µ 1 . The radius of the outer conducting sphere, say Ω 2 , is R 2 and its magnetic permeability is µ 2 . This composite sphere is surrounded by vacuum of magnetic permeability µ 0 . The magnetic eld at innity is the vertical uniform eld H 0 := H 0 e z . The magnetic eld solves (D.4.5)

∇×H = 0, ∇•(µH) = 0, lim x →+∞ H 0 (x) = H 0 e z .
This problem has an analytical steady state solution which is derived in [START_REF] Durand | Magnétostatique[END_REF] and which we briey recall for the sake of completeness.

There is a scalar potential ψ so that H = ∇ψ in R 3 , and ψ solves ∇•(µ∇ψ) = 0 in R 3 with ∇ψ → H 0 e z at innity. Using the spherical coordinates (̺, ϑ, θ), where ̺ is the distance to the origin, ϑ ∈ [0, π] is the colatitude and θ ∈ [0, 2π) is the azimuth, the potential is given by (D.4.6)

ψ(̺, ϑ, θ) =        -A̺ cos ϑ, for ̺ ≤ R 1 -B̺ + C R 3 1 ̺ 2 cos ϑ for R 1 ≤ ̺ ≤ R 2 -D R 3 1 ̺ 2 -H 0 ̺ cos ϑ for R 2 ≤ ̺,
where A, B, C and D are constants. The constants can be computed by enforcing ψ and µ∂ ̺ ψ to be continuous across Σ µ and Σ, (the continuity of ψ guarantees that the tangential components of the magnetic eld H are continuous and the continuity of µ∂ ̺ ψ guarantees that the normal component of the magnetic induction µH is continuous). To simplify the expressions of A, B, C and D we assume that µ 1 = µ 0 and we abuse the notation by setting µ := µ 2 /µ 0 . Then,

A = - 9µH 0 (2µ + 1)(µ + 2) -2(µ -1) 2 R 1 R 2 3 D = (2µ + 1)(µ -1) R 2 R 1 3 -1 H 0 (2µ + 1)(µ + 2) -2(µ -1) 2 R 1 R 2 3 B = 1 3 2 + 1 µ A, C = 1 3 1 - 1 µ A.
The magnetic eld in Ω 1 is H| Ω 1 = -Ae z . Whether the spheres are composed of conducting material or not does not matter since the conductivity coecient does not appear in any formula. As a result, the inner sphere can be viewed from two dierent perspectives: we can either consider Ω 1 to be part of the conducting medium (with µ 1 = µ 0 ), in which case

Ω c = Ω 1 ∪ Ω 2 ,
or we can consider Ω 1 to be part of the non-conducting medium, in which case Ω c = Ω 2 . Both cases are described by the same steady solution but the numerical approximations computed by our method are computed dierently.

µ h H, L 2 COC ∇×H, L 2 COC ∇•(µ c H c ), L 2 COC φ,

Note that

A → 0, B → 0, C → 0, D → (R 2 /R 1 ) 3 H 0 , and µB → 3H 0 /(1 -(R 1 /R 2 ) 3 ), µC → 6H 0 /(1 -(R 1 /R 2 )
3 ) when µ → ∞; as a result, the magnetic eld tends to zero in Ω 1 ∪ Ω 2 but the magnetic induction converges to a non-zero limit in Ω 2 when µ → ∞. The magnetic eld penetrates more or less in the spheres depending on the value of µ, and it is completely expelled from the spheres in the limit µ → ∞.

Case 1: Inner sphere is a conductor

We assume that Ω c = Ω 1 ∪ Ω 2 , i.e., the conducting medium is composed of the inner and the outer spheres. We take L := R 2 as reference length scale and we set R 1 = 1 2 R 2 . We set H := H 0 to non-dimensionalize the magnetic eld since there is no velocity to construct a reference magnetic eld.

The innite vacuum region is truncated at ̺ = 10R 2 . We enforce the time-independent Dirichlet condition φ = H 0 z := H 0 ̺ cos ϑ at the outer boundary of the vacuum region, Γ v . The steady solution is computed in one time step using ∆t = 10 9 . (Recall that the steady-state problem is now well-posed thanks to our introducing the magnetic pressure.)

The above problem is solved using various uniformly rened meshes and various values of µ. The stabilizing exponent α is equal to 0.75. The magnetic pressure is approximated using P 1 elements, the magnetic eld is approximated using P 2 elements, and the scalar potential is approximated using P 2 elements. For each computation we measure the relative error on H c , ∇×H c , ∇•(µ c H c ) in the L 2 (Ω c )-norm, and the error on φ in the H 1 (Ω v )-norm. The results are reported in Table D velocity.) The non-dimensional conductivity is σ = 1 and the magnetic Reynolds number is R m = 100. The non-dimensional magnetic permeability in the entire electromagnetic domain is constant and equal to one, i.e., µ c = µ v = 1. The imposed magnetic eld at innity is H 0 e x . This is a benchmark test case thoroughly investigated in [START_REF] Witkowski | Multidomain analytical-numerical solution for a rotating magnetic eld with nite-length conducting cylinder[END_REF].

̺ = R 1 , ϑ = π/2). This shows that the IP µ h H, L 2 COC ∇×H, L 2 COC ∇•(µ c H c ), L 2 COC φ,
The time-dependent problem is solved with initial data H 0 = H 0 e x on a Delaunay mesh which is quasi-uniform in the conducting region and of mesh-size h = 1/100. We use P 2 elements for both the magnetic eld and the magnetic potential. The magnetic pressure is approximated using P 1 elements. The time step is ∆t = 5 10 -2 . The truncated numerical domain is Ω = {r ∈ (0, 1.6), θ ∈ [0, 2π], z ∈ (-4, 4)} and the non-conducting domain is

Ω v = Ω\Ω c . The imposed boundary condition on Γ v is φ| Γv = H 0 r cos θ. The only active Fourier mode is m = 1.
The time evolution of the magnetic energy is shown in Figure D.4(a). The graph shows oscillations that correspond to reconnections of the magnetic lines. Figure D.4(b) shows the radial prole of H z at z = 0.8 in the meridian plane θ = 0 at steady state. Note that the point r = 1, θ = 0, z = 0.8 is located on the upper sharp edge of the cylinder. The prole is compared with that obtained in [START_REF] Witkowski | Multidomain analytical-numerical solution for a rotating magnetic eld with nite-length conducting cylinder[END_REF]. The agreement is excellent considering that the gradient of the solution is discontinuous at the edges of the cylinder. 5 from [START_REF] Witkowski | Multidomain analytical-numerical solution for a rotating magnetic eld with nite-length conducting cylinder[END_REF] even at the corners. Figure D.5(c) shows the streamlines of the Fourier mode m = 1 of the electric current in the cylinder. The current is mainly contained in a thin layer (of the order of the skin depth). It varies smoothly in the azimuthal direction and bends sharply at the corners. This behavior is a direct consequence of the presence of the cylindrical interface with vacuum. The current creates the z-component of the magnetic eld and is responsible for the strong extremum of H z at the sharp edges of In order to measure the impact of soft iron disks on induction elds, we now consider two counter-rotating disks embedded in a cylindrical conductor which is itself embedded in vacuum. This test case is a qualitative illustration of the Cadarache VKS2 uid dynamo studied in more details in Section D.5. The conducting domain is a cylinder of non-dimensional radius R = 1 and of rectangular cross section of non-dimensional height L = 2.55: Ω c = {(r, θ, z); r ∈ [0, 1), z ∈ (-1.275, 1.275), θ ∈ [0, 2π)}. Two counter-rotating disks, Ω top c , Ω bot c , are embedded in Ω c . The upper rotating conducting disk is a cylinder whose cross section is dened as follows:

0.775 ≤ z ≤ 0.975 if r ≤ 0.65, (r -0.65) 2 + (z -0.875) 2 ≤ (0.1) 2 if r ≥ 0.65.
The lower rotating conducting disk is the image by reection about the equatorial plane z = 0 of the upper disk. There is no analytical solution to this problem, but asymptotic solutions are given in [START_REF] Herzenberg | Electromagnetic Induction in Rotating Conductors[END_REF] assuming that the disks are of rectangular cross section. The upper and lower disks rotate with non-dimensional angular speed ̟ top = -1 and ̟ bot = 1, respectively. The non-dimensional magnetic permeability and conductivity of the non-rotating solid container, Ω c \(Ω top c ∪ Ω bot c ), are µ 0 = 1 and σ 0 = 1, respectively. The non-dimensional magnetic permeability and conductivity of the two counter-rotating disks, Ω top c ∪ Ω bot c , are µ d and σ d , respectively. The non-dimensional magnetic permeability of the vacuum is µ 0 = 1.

The imposed velocity eld in

Ω c is ũn+1 (x) =      0 in Ω c \(Ω top c ∪ Ω bot c ) ̟ top e z ×x in Ω top c ̟ bot e z ×x in Ω bot c
The device is placed in a transverse uniform magnetic eld H 0 := H 0 e x = H 0 (cos θe r -sin θe θ ) and we look for the steady state solution in two cases: (a)

µ d = 200µ 0 , σ d = 1; (b) µ d = 1, σ d = 200σ 0 .
In both cases the eective magnetic Reynolds number is the same for the disks

R disks m = µ d σ d ̟ bot R 2 = 200µ 0 σ 0 .
For computational purposes the vacuum region is truncated and restricted to the sphere of non-dimensional radius R v = 10. The time-independent Dirichlet condition φ = H 0 x := H 0 r cos θ is enforced at the outer boundary of the vacuum region, Γ v . The steady solution is computed by advancing (D. 3.11) in time until convergence to steady state is reached. We use the P 2 /P 2 nite element pair for H and φ and P 1 elements for the magnetic pressure. Some three-dimensional representations of the computed solutions are shown in Figure D.6. Panels (a) and (d) show some magnetic eld streamlines near the top disk seen from the side of the cylinder. Panels (b) and (e) show the same magnetic eld streamlines seen from the top of the cylinder. Panels (c) and (f) show the contour of the magnetic energy corresponding to 10% of the maximum energy. The top panels correspond to the solution with µ d = µ 0 and σ d = 200σ 0 and the bottom panels (c,d,e) correspond to the solution with µ d = 200µ 0 and σ d = σ 0 . The two steady solutions are very dierent although the two congurations have the same eective magnetic Reynolds number. When the disks are non-ferromagnetic, the magnetic eld lines are distorted horizontally due to the eddy current in each disk. When the disks are ferromagnetic, the eld lines are distorted inside the disks but also outside as they connect nearly perpendicularly to the disks.

D.5 Kinematic dynamo

The kinematic code based on the new formulation (D.3.11) has been further validated on kinematic dynamo problems by making comparisons with a nite-volume/boundary-element method code [START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF] using analytical axisymmetric ows. We now illustrate the eciency of the new method by applying it to VKS2-like kinematic dynamo problems. These tests have been preformed with α = 0.7. The interest of the scientic community for dynamo action in liquid metals has been renewed since 2000 in the wake of successful experiments [START_REF] Gailitis | Detection of a ow induced magnetic eld eigenmode in the Riga dynamo facility[END_REF][START_REF] Stieglitz | Experimental demonstration of a homogeneous two-scale dynamo[END_REF][START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. We show in this section that the numerical method proposed in this paper is suitable, to some extent, to model the Cadarache von Kármán Sodium 2 (VKS2) experiment [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF] which has been done in liquid sodium. The experimental set-up is schematically represented on Figure D.7 together with the simplied geometry that we use in the numerical simulations. The 'bulk ow', composed of liquid sodium, is contained in a cylinder of radius r = 206 mm, height 524 mm and thickness 5 mm. This cylinder is made of copper and is henceforth referred to as the envelope. The liquid sodium is stirred by two counter-rotating impellers located at the top and bottom of the container. Each impeller is composed of a supporting disk and eight curved blades. The impellers act on the liquid sodium as ecient centrifugal pumps: the uid is pumped in and expelled out radially, thus forming an helicoidal ow. The top and bottom ows recirculate alongside the envelope wall and meet at the mid-plane. This creates a strong azimuthal shear-layer between the two toroidal recirculation ows. A layer of stationary liquid sodium Bottom: simplied geometry in non-dimensional units for numerical simulations; the thickness of the copper envelope is zero.

is trapped between the envelope and the cooling system. This stationary uid zone is called 'side layer'. Due to experimental and technical constraints, two additional layers of liquid sodium exist between the impellers and the top and bottom lids of the copper container and are referred to as 'lid ows'. Dynamo action was rst observed in the VKS2 set-up once the two counter-rotating impellers, which were initially made of stainless steel, were replaced by soft iron ones and the injected power was high enough [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. Once dynamo action occurs, the measured time-averaged magnetic eld is that of a steady axisymmetric axial dipole with a strong azimuthal component in the equatorial plane [START_REF] Monchaux | The von Kármán sodium experiment : Turbulent dynamical dynamos[END_REF]. This contradicts the kinematic dynamo computations based on axisymmetric time-averaged von Kármán ows reported in [START_REF] Marié | Numerical study of homogeneous dynamo based on experimental von Kármán type ows[END_REF][START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF][START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF][START_REF] Laguerre | Approximation des équations de la MHD par une méthode hybride spectraleéléments nis nodaux : application à l'eet dynamo[END_REF][START_REF] Léorat | Interplay between experimental and numerical approaches in the uid dynamo problem[END_REF]. In these simulations the generated magnetic eld is non-axisymmetric as a consequence of Cowling's theorem [START_REF] Cowling | The magnetic eld of sunspots[END_REF] (the Fourier mode m = 1 is always found to be the most unstable mode). Until now, there is no satisfying explanation that could throw light on the generation of the mainly axisymmetric magnetic eld which is observed in the VKS2 experiment. Cowling's theorem [START_REF] Cowling | The magnetic eld of sunspots[END_REF] implies that there exists a mechanism in the VKS2 experiment that breaks the ow axisymmetry, and this mechanism has yet to be clearly identied. One possible scenario to explain this behavior is that small scale helical turbulence may have induction eects via the so called α-eect. A source for the α-eect could be the helical ow induced by the shear between outwardly expelled uid trapped between the impeller blades and the slower moving uid in the bulk of the container [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF][START_REF] Pétrélis | On the magnetic elds generated by experimental dynamos[END_REF][START_REF] Giesecke | Generation of axisymmetric modes in cylindrical kinematic mean-eld dynamos of VKS type[END_REF]. Another possible scenario proposed in [START_REF] Gissinger | Bypassing Cowling's theorem in axisymmetric uid dynamos[END_REF] is based on non-axisymmetric velocity uctuations created by nonlinearities on the induction equation.

Notwithstanding the above scenarii, recent experimental observations (F. Daviaud, private communication, 2010) have shown that the role of moving ferromagnetic material is crucial. With the same available power, the dynamo eect has been obtained only when at least one of the rotating impellers is made of soft iron. In particular, the following material substitutions have led to subcritical behavior: (1) replacing the copper envelope by a soft iron one while using steel impellers, (2) using steel impellers enclosed in a copper envelope and lling the space occupied by the 'lid ow' with copper plates, (3) using one non-rotating impeller (disk+blades) made of soft iron, the other rotating impeller being made of steel, and removing the envelope, (4) placing non-rotating soft iron disk behind the steel impellers and removing the envelope, (5) using two rotating composite impellers (either composed of soft iron disks with steel blades or steel disks with soft iron blades) and removing the envelope. The main conclusion of all these experiments is that at least one of the impellers (disk+blades) must be made of soft iron and must rotate for the dynamo eect to be observed.

Obviously the experiment is quite complex. The purpose of the present study is not to explain the generation of the observed axisymmetric magnetic eld in the VKS2 experiment but rather to investigate the role played by the magnetic permeability of the impellers on the dynamo threshold for the m = 1 Fourier mode. That this mode has not been observed may be related to the limited range of magnetic Reynolds numbers available in the VKS device (R m ≤ 50).

D.5.2 Simplied model

Before going through the analysis of a VKS2-like device we investigate the eect of the 'side layer' and compare the so-called Vanishing Tangential Field (VTF) boundary condition with the vacuum boundary condition. The VTF boundary condition, H×n| Γ = 0, models walls of innite permeability.

We consider two simplied geometries of the VKS device. The rst one (vessel Nb1) is a cylinder of rectangular cross section (r, z)

∈ [0, 1.6R 0 ]×[-1 2 H 0 , 1 2 H 0 ] with H 0 = 1.8R 0 . The moving uid is contained in the cylinder of cross section (r, z) ∈ [0, R 0 ]×[-1 2 H 0 , 1 2 H 0 ]
and the 'side layer' is the torus of cross section (r, z)

∈ [R 0 , 1.4R 0 ]×[-1 2 H 0 , 1 2 H 0 ]. The outer part of the vessel of cross section (r, z) ∈ [1.4R 0 , 1.6R 0 ]×[-1 2 H 0 , 1 2 H 0 ] is made of copper, cf. Figure D.8(a). The second simplied vessel (vessel Nb2) is a cylinder of rectangular cross section (r, z) ∈ [0, R 0 ]×[-1 2 H 0 , 1 2 H 0 ] with H 0 = 1.8R 0 lled with moving uid cf. Figure D.8(b).
Note that the impellers are not accounted for in these two simplied models. The conductivity of the uid is σ 0 and that of copper is σ = 4.5σ 0 . The magnetic permeability is assumed to be uniformly constant, µ 0 .

Three dierent kinematic dynamo scenarii with prescribed velocity eld ũ are considered:

Case 1 The conducting region is vessel Nb1. The device is embedded in a truncated sphere of vacuum of radius 10R 0 . The usual vacuum/conductor transmission condition is enforced on the interface Σ which separate the conducting material from the vacuum region (see (D.2.13)).

Case 2 The conducting region is again modeled by the vessel Nb1, but in order to replicate There is no insulating region.

The velocity eld ũ that has been chosen for these tests is the axisymmetric time-averaged ow eld measured in a water experiment which is documented in [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF]. The ow is interpolated on the nite element grid and normalized by the maximum of the euclidian norm of the velocity, U max . Henceforth we use L = R 0 as reference length scale and U = U max as reference velocity scale. The magnetic Reynolds number is (D.5.1)

R m = µ 0 σ 0 U max R 0 .
>From Cowling's theorem [START_REF] Cowling | The magnetic eld of sunspots[END_REF], only magnetic elds with Fourier modes m ≥ 1 can be generated by a prescribed axisymmetric velocity eld. Furthermore, the azimuthal modes are uncoupled since ∇×(ũ×H c ) cannot transfer energy between the azimuthal modes of H c . It is also known that the Fourier mode m = 1 is the most unstable one [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF][START_REF] Marié | Galerkin analysis of kinematic dynamos in the von Kármán geometry[END_REF][START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF][START_REF] Laguerre | Approximation des équations de la MHD par une méthode hybride spectraleéléments nis nodaux : application à l'eet dynamo[END_REF]; therefore, we investigate only this mode. We denote H c (m = 1) the Fourier mode m = 1 of H c .

The above three problems are solved by advancing (D.3.11) in time using a small random divergence-free magnetic eld as initial data. The magnetic energy of H c (m = 1),

1 2 Ω 2D c H c (m = 1) 2 dx,
is recorded as a function of time for various magnetic Reynolds numbers R m ∈ [START_REF] Bua | Discontinuous Galerkin approximation of the Maxwell eigenproblem[END_REF][START_REF] Malkus | Precession of the Earth as the cause of geomagnetism : Experiments lend support to the proposal that precessional torques drive the Earth's dynamo[END_REF]. The critical magnetic Reynolds number R mc correspond to zero growth rate. The critical magnetic Reynolds number for the three cases dened above are reported in Table D.6. By comparing cases 1 and 2, we observe that the critical magnetic We show in Figure D.10 the two unstable modes of the magnetic eld corresponding to Cases 2' and 4'. They look similar in the 'bulk ow' region. There is an equatorial dipole and two vertical structures of opposite sign. Noticeable dierences become apparent when observing the magnetic lines close to the counter-rotating disks as shown in Figure D.11.

The general conclusion of this parametric study is that ferromagnetic disks have a measurable impact on the dynamo threshold, which is crucial since the experimental magnetic Reynolds number is constrained to be below 50 in the VKS2 experiment. A provisional result about ferromagnetic disks is that they may screen the 'bulk ow' from the inuence of the 'lid ow', thereby lowering the dynamo threshold for the Fourier mode m = 1 of the magnetic eld. These numerical experiments also conrm the importance of moving soft iron material in the VKS2 dynamo. This may be one piece of the big maze that constitutes the VKS2 experiment, but more experimental and numerical investigations need to be done to fully understand this experiment. This illustrates clearly the unending interplay between MHD experiments and simulations.

D.6 Conclusion

We have developed a novel approximation technique using Lagrange nite elements for solving magneto-dynamics problems involving discontinuous magnetic permeability and non-smooth interfaces. The method has been applied to model the VKS2 experiment in a kinematic dynamo context. In the future, we will investigate nonlinear regimes with the full MHD equations in a VKS2 set-up using impellers modeled by at disks together with an axisymmetric volumic forcing term acting at the location of the blades. is relatively uncomplicated because the magnetic Reynolds number is always huge. However, due to their limited size the realization of dynamo action in laboratory experiments is a demanding task and requires an elaborate design that makes use of optimizations like an ideal guidance of a uid ow or a selective choice of materials. Material properties like electrical conductivity or relative permeability have always been important for experimental dynamos. For example, the use of soft iron in the dynamo experiments of Lowes & Wilkinson [START_REF] Lowes | Geomagnetic dynamo : a laboratory model[END_REF][START_REF] Lowes | Geomagnetic dynamo : an improved laboratory model[END_REF] was crucial for the occurrence of magnetic self excitation. More recently, the addition of high permeability material (soft iron spheres) into a conducting uid was examined to test magnetic self excitation [START_REF] Dobler | Screw dynamo in a time-dependent pipe ow[END_REF] in a ow that otherwise would not be able to sustain a dynamo.

The work presented here is motivated by the Cadarache von-Kármán-Sodium (VKS) dynamo [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. In this experiment liquid sodium contained in a cylindrical vessel is driven by two counterrotating impellers that are located close to the lids of the vessel. Dynamo action is obtained only when (at least one of) the ow driving impellers are made of soft iron with a relative permeability µ r ≈ 65 [START_REF] Verhille | Induction in a von Kármán ow driven by ferromagnetic impellers[END_REF]. Moreover the observed magnetic eld is dominated by an axisymmetric mode [START_REF] Monchaux | The von Kármán sodium experiment : Turbulent dynamical dynamos[END_REF]. It can be conjectured that the occurrence of dynamo action with soft iron impellers and the axisymmetry of the magnetic eld are linked but, so far, the very nature of the axisymmetric dynamo is still unknown.

A well-known necessary condition for the occurrence of dynamo action is a suciently complex conducting uid ow that couples the toroidal and poloidal components of the magnetic eld. The interaction between these components gives rise to the so-called dynamo cycle which consists of regenerating the toroidal eld from the poloidal eld and vice versa. This coupling can take place on large scales [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF] as well as on small scales by virtue of the well known α-eect [START_REF] Krause | Mean-Field Magnetohydrodynamics and Dynamo Theory[END_REF]. It is less well known that non-homogeneities in the electrical conductivity can also introduce such coupling and, by this, favour dynamo action. For example, a uniform ow over an innite plate with varying conductivity can produce dynamo action [START_REF] Busse | A simple dynamo caused by conductivity variations[END_REF][START_REF] Wicht | Dynamo Action Induced by Lateral Variation of the Electrical Conductivity[END_REF]. It is likely that inhomogeneous magnetic permeability can lead to dynamo action as well.

In this paper we investigate the impact of a localized disk-like permeability distribution embedded in a conducting axisymmetric uid ow on the growth-rates of the rst axisymmetric and non-axisymmetric magnetic eigenmodes. Induction eects due to non-axisymmetric perturbations (turbulence, small-scale or large-scale ow or conductivity/permeability distributions) are not taken into account. First, we briey re-examine the threshold of the equatorial dipole mode as in [START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF] and propose an explanation for the scaling law that relates the critical magnetic Reynolds number to the permeability in the impeller disks. Second we investigate the inuence of the concentrated high permeability on the axisymmetric eld modes. Even though they are always damped, according to Cowling's theorem [START_REF] Cowling | The magnetic eld of sunspots[END_REF][START_REF] Hide | Generalization of Cowling's theorem[END_REF], for large µ r we nd a dominant toroidal mode very close to the onset of dynamo action. We suggest that this eigenmode plays a signicant role in the dominance of the axisymmetric mode in the dynamo observed in the VKS experiment [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF].

In the following, toroidal and poloidal components always refer to the axisymmetric case so that the toroidal component corresponds to the azimuthal eld Btor = Bϕeϕ and the poloidal component is given by B pol = Brer + Bzez, where (er, eϕ, ez) are the cylindrical unit vectors. Note that the ow is mixed (poloidal and toroidal) between the two impeller disks and purely toroidal within and behind the impeller disks.

in the inner cylinder is given by the so-called MND uid ow [START_REF] Marié | Galerkin analysis of kinematic dynamos in the von Kármán geometry[END_REF]:

u r (r, z) = -(π/h) cos(2πz/h) r(1 -r) 2 (1 + 2r), u ϕ (r, z) = 4ǫr(1 -r) sin (πz/h) , (E.2.3) 
u z (r, z) = (1 -r)(1 + r -5r 2 ) sin (2πz/h) ,
where h is the distance between the two impeller disks (h = 1.8) and ǫ parametrizes the toroidal to poloidal ratio of the ow (in the following we choose ǫ = 0.7259) . A purely azimuthal velocity equal to the azimuthal velocity of the MND ow at z = ±h/2 is assumed in the two impeller disks. A so-called lid layer [START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF] is added behind each impeller disk, and the velocity eld therein is modeled by linear interpolation along the z-axis between the azimuthal velocity at the outer side of the impeller disk and the no-slip condition at the lid of the vessel. The velocity eld and the impeller disks (two thin structures shown in black solid lines) are displayed in Figure E.1. The conductivity is assumed to be uniform in the liquid metal and the soft iron disks. We focus in this paper on non-uniform permeability distributions only, which seems roughly justied for soft iron disks embedded in liquid sodium. The equations are nondimensionalized so that R = R in is the reference length-scale (R in is the radius of the ow active region) and

U = max[(u 2 r + u 2 ϕ + u 2 z ) 1 /2
] is the reference velocity scale (maximum absolute value of the velocity eld). The control parameter is the magnetic Reynolds number dened by Rm = µ 0 σUR.

where n denotes the unit normal vector at the interface between both materials, j the current density and E the electrical eld.

This value is close to the optimum relation between poloidal and toroidal ow that has been estimated in various comparable congurations [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF] and has frequently been utilized in previous studies of dynamo action driven by the MND ow (e.g. Stefani et al. [START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF], Gissinger et al. [START_REF] Gissinger | Eect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling ows[END_REF], Giesecke et al. [START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF]).

E.3 Results

The eigenvalues of the dierential operator in the right-hand side of equation (E.2.1) are denoted λ = γ +iω; the real part γ is the growth-rate of the eld amplitude (γ < 0 corresponds to decay) and the imaginary part ω is the frequency. All the computations reported below give non-oscillatory eigen-modes (i.e. ω = 0). An immediate consequence of the axisymmetric setup is that the eigenmodes of the kinematic dynamo problem can be computed for each azimuthal wavenumber m.

E.3.1 Overview

We show in Table E.1 sample values of growth-rates obtained by FV and SFEMaNS for the above simplied VKS model problem. This table conrms that FV and SFEMaNS converge to the same solutions up to 2% on the growth-rates. We use the following notation in Table E.1 and in the rest of the paper: γ m0 is the growth-rate of a mixed poloidal/toroidal mode. This mode degenerates to a purely poloidal mode when Rm = 0, and when there is no permeability jump (e.g. for stainless steel disks) this mode always determines the behavior of the axisymmetric eld. Furthermore, γ t m0 is the growth-rate of the rst axisymmetric mode (m = 0) that is purely toroidal and γ m1 is the growth-rate of the rst non-axisymmetric mode (m = 1).

When R m = 0, the dominant and the second dominant m0-modes at µ r = 1 are purely poloidal and purely toroidal, respectively; the situation is reversed at µ r = 60: the dominant mode is purely toroidal. All growth-rates increase with µ r . When R m > 0, the growth-rate of the m0-mode is always negative in agreement with Cowling's theorem [START_REF] Cowling | The magnetic eld of sunspots[END_REF], but we observe that its relaxation time becomes longer as the permeability in the impeller disks increases. Table E.1: Comparison of growth-rates obtained with FV (hybrid nite volume/boundary element method) and SFEMaNS (spectral/nite element method for Maxwell and Navier-Stokes equations). Rm is the magnetic Reynolds number, µ r the disk permeability, γ t m0 the growth-rate of the axisymmetric toroidal eld, γ m0 the growth-rate of the axisymmetric mixed eld, γ m1 the growth-rate of the rst nonaxisymmetric eld (m1-mode). The thickness of the impeller disks is d = 0.1. . This type of scaling is an indication that a boundary layer eect is at play which can be explained as follows. Starting with the idea that the stationary m1-dynamo is generated within the uid ow, it is reasonable to expect that the rotating disks see this eld as a quickly varying imposed eld. The magnetic eld cannot penetrate the disks when the permeability is innite but, according to the classical skin eect, it can diuse through a thin boundary layer of thickness δ = (σµ r Ω) -1/2 when µ r is nite (Ω is the mean angular velocity). This diusion eect adds a supplementary µ -1/2 r damping to the magnetic eld mode compared to the innite permeability case. Contrary to what we have observed for the m1-mode, the dependence of the m0-mode with respect to Rm seems to be small; more precisely, the ow does not seem to play a signicant role when the permeability is large. r . The introduction of a velocity eld (Rm > 0) transfers poloidal eld components into toroidal eld components, but not vice versa. Therefore for increasing Rm a mixed mode is generated from the purely poloidal eld that is observed at Rm = 0 (see dashed lines in Figure E.5). The dependence of the growth-rate of the mixed mode with respect to the Reynolds number and the permeability is small. This mixed mode is dominant when µ r < ∼ µ t r , but above this transitional point it is the purely toroidal eigenmode that dominates (see solid colored curves in Figure E.5). The purely toroidal mode hardly depends on the magnetic Reynolds number and its growth-rate increases with µ r like in the free decay situation.

E.3.2 Eect of the disk permeability on the m1-mode

Surprisingly, the value of the transitional permeability µ t r is more or less the same for all the considered Reynolds numbers (see the vertical dotted line in Figure E.5 that marks the transition).

E.4

Discussion on the m0-mode

E.4.1
The coupling

Using the cylindrical coordinate system (r, ϕ, z), and assuming axisymmetry, the induction equation can be written as follows: where Purely toroidal and purely poloidal elds cannot exist if µ r depends on ϕ. The same remark holds if σ depends on ϕ; for instance, spatial variation of the electric conductivity is used in [START_REF] Busse | A simple dynamo caused by conductivity variations[END_REF] to produce dynamo action. When the permeability µ r is axisymmetric there is no mechanism to transfer magnetic energy from the toroidal component B ϕ to the poloidal pair (B r , B z ) (see Eqs. E.4.1 and E.4.3).

∂ ∂t + u r ∂ ∂r + u z ∂ ∂z B r = B r ∂ ∂r +B z ∂ ∂z u r + η 0 ∂ ∂z ∂ ∂z B r µ r - ∂ ∂r B z µ r , (E.4.1) ∂ ∂t + u r ∂ ∂r - 1 r + u z ∂ ∂z B ϕ = B r ∂ ∂r - 1 r + B z ∂ ∂z u ϕ + η 0 ∆ * B ϕ µ r , (E.4.2) ∂ ∂t + u r ∂ ∂r + u z ∂ ∂z B z = B r ∂ ∂r +B z ∂ ∂z u z -η 0 1 r ∂ ∂r r ∂ ∂z B r µ r - ∂ ∂r B z µ r (E.4.3)
∆ * = ∂ 2 ∂r 2 + 1 r ∂ ∂r + ∂ 2 ∂z 2 -1

E.4.2 Selective enhancement of B ϕ

We start by explaining qualitatively why, for large values of µ r , the purely toroidal mode is the least damped one and why the mixed mode is so little inuenced by the disk. The argument is based on the paramagnetic pumping term (E.2.2) that is at the origin of an electromotive force (EMF): (E.4.4)

E µ = V µ ×B = 1 µ 0 µ r σ ∇µ r µ r ×B.
Since the permeability jump is restricted to the material interface there is only a contribution to the EMF within that localized area. For suciently thin disks, as considered here, it is reasonable to assume that the permeability jump at the rim of the impeller disks plays a minor role. We therefore assume that the pumping velocity is mainly axial: V µ ∝ ∂ ∂z µ r e z . The interaction of V µ with the axial eld B z e z is henceforth neglected.

The interaction between V µ ∝ ∂ ∂z µ r e z and the radial eld B r e r creates an azimuthal current j ϕ e ϕ at the interface between the impeller disks and the uid (see left panel in Figure E.7). Since the impeller disks are thin, it is reasonable to assume that the orientation and the amplitude of B r do not change across the disks. This implies that the signs of the pumping term (E.2.2) at the back and at the front side of the disks are opposite, which in turn implies that the induced azimuthal currents mostly cancel each other and the overall azimuthal current is close to zero. This cancellation mechanism would not occur with thick disks. When the impeller disks are thick, the mixed mode and the purely toroidal mode have similar growth-rates as can be observed in the left panels on gure 8 in [START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF] where the above phenomenon is illustrated for two thicknesses of the impeller disks, d = 0.1 and d = 0.6.

The behavior is very dierent concerning the EMF that results from the interaction of the azimuthal component B ϕ e ϕ with V µ (see right panel in Figure E.7). In this case the currents generated at the front and at the back of the impeller disks add up and the EMF drives a Our numerical results clearly indicate that the inuence of the ow on the toroidal axisymmetric mode is negligible and that this mode is mostly localized inside the impeller disks. In order to better understand the dynamics of the toroidal m0-mode, we consider an idealized disk-uid model in free decay situation (R m = 0).

Let us assume a disk of radius 1, permeability µ r ≫ 1 and thickness d, sandwiched between two semi-innite cylindrical uid regions with µ r = 1. We further assume the boundary condition H×n = 0 at the wall r = 1. This simplifying assumption will allow us to nd analytical solutions. We solve

µ r γB ϕ = ∆ * B ϕ , r < 1, |z| < d/2 γB ϕ = ∆ * B ϕ , r < 1, |z| > d/2 (E.4.5)
where

∆ * = ∂ 2 ∂r 2 + 1 r ∂ ∂r + ∂ 2 ∂z 2 -1 r 2 .
Note that the non-dimensionalization is done so that the reference scale of the growth-rate is (σµ 0 R 2 ) -1 . The boundary condition is B ϕ = 0 at r = 1, and the transmission condition across the material interface is that H ϕ and E r = ∂ z H ϕ /σ be continuous at z = ±d/2.

The numerical simulations show that the dominating eigenmodes are symmetric with respect to the equatorial plane of the disk z = 0. This leads to the following ansatz

B ϕ = A 1 J 1 (kr) cos l 1 z, r < 1, 0 < z < d/2 B ϕ = A 2 J 1 (kr) e -L 2 z , r < 1, z > d/2,
where J 1 is the Bessel function of the rst kind and (E.4.6)

l 1 = -γµ r -k 2 , L 2 = k 2 + γ.
The amplitudes A 1 and A 2 are arbitrary for the moment. The elds are obtained by symmetry for z < 0. To ensure that the solution decays at innity (i.e. it remains bounded when z → ±∞), it is necessary that l 1 and L 2 be real. This imposes the constraints (E.4.7)

µ r > 1 , γ ∈ [-k 2 , -k 2 /µ r ].
The boundary condition at r = 1 implies that J 1 (k) = 0, i.e. k is a zero of J 1 . We choose the rst zero, say k 1 , so that the solution is composed of one radial cell only, (E.4.8)

k 1 ≈ 3.8317.
This value specically depends on the idealized boundary condition that we have assumed at r = 1; the eect of small deviations k = (1 ± 0.1)k 1 is considered further below. Due to the assumed symmetry, we need to impose the transmission conditions at the z = d/2 interface only:

1 µ r cos l 1 d 2 A 1 -e -L 2 d/2 A 2 = 0, l 1 σµ r sin l 1 d 2 A 1 - L 2 σ e -L 2 d/2 A 2 = 0.
(E.4.9)

The determinant of the above linear system must be zero for a solution to exist, (E.4.10)

L 2 cos l 1 d 2 -l 1 sin l 1 d 2 = 0.
Upon inserting the denitions of l 1 and L 2 from (E. ). The agreement is quite satisfactory and thereby conrms our analysis. When representing γ(µ r ) in log-log scale (not shown) we see that γ(µ r ) scales like µ -1 r in the limit µ r → ∞. Actually this behavior depends on the choice that we have made for the non-dimensionalization. Involving the disks permeability for dening the new timescale (σµ r µ 0 R 2 ) instead of (σµ 0 R 2 ), we obtain the rescaled growth-rate γ = γµ r shown in the right-panel of Figure E.9. This representation shows that the growth-rate γ reaches a constant value for very high permeabilities (γ ∞ = -86.6631). This observation immediately implies that the following power law γ ∼ γ∞ /µ r holds in the original units when µ r → +∞.

In conclusion, the above simplied model explains why the growth-rate of the purely toroidal mode goes to zero when µ r → ∞. The model shows also that although the dominant purely toroidal mode is localized to a very small volume, its decay time determines the overall decay of the axisymmetric azimuthal magnetic eld. Note nally that this mode would not be observed in numerical simulations of VKS-dynamos that use the idealized boundary condition H×n = 0 on the disk's surface (see e.g. [START_REF] Gissinger | Eect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling ows[END_REF]). Using the proper time scale σµ r µ 0 R 2 involving the permeability of the impeller disk, the growth-rate γ = γµ r reaches an asymptote at high µ r .

E.5 Conclusions

The aim of this paper is to study the inuence of thin high permeability disks on a VKS-like dynamo model. This work goes well beyond the study of [START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF] in the sense that we investigate thoroughly the axisymmetric mode and present novel details on the scaling behavior of the dynamo m1-mode. The high permeability disks facilitate the occurrence of non-axisymmetric dynamo action by enhancing the growth-rate of the equatorial dynamo m1-mode. Compared to the idealized limit (µ r → ∞) the presence of a nite but high permeability material adds a small supplementary damping eect and therefore slightly increases the dynamo threshold. We propose that the observed µ -1/2 r -scaling for the dynamo threshold can be explained by a skin-eect so that that the disk's role on the m1-mode is quite passive. Although the reduction of the magnetic Reynolds number is substantial (from Rm c ≈ 76 at µ r = 1 to Rm c ≈ 54 in the limit µ r → ∞) the spatial structure of the m1-mode is hardly changed.

The eects of the high permeability of the impeller disks on the axisymmetric mode turn out to be more fundamental. In the presence of a mean ow the axisymmetric m0-modes are split up in two separate families, one consisting of a purely toroidal mode and one consisting of a mixed mode composed of a poloidal and a toroidal component. The growth-rate of the mixed m0-mode slightly increases with Rm but is nearly independent of the disk permeability. The growth-rate of the purely toroidal m0-mode is not signicantly inuenced by the ow amplitude, but it is considerably enhanced ∝ µ -1 r for large values of µ r . This selective enhancement of the purely toroidal m0-mode can be explained qualitatively by paramagnetic pumping. A simplied analytical model that interprets the purely toroidal mode as a localized free decay solution conrms the scaling obtained in the numerical simulations. This slowly decaying purely toroidal mode promoted through the high permeability disks may play an important role in axisymmetric dynamo action. However, in our simple axisymmetric set-up no possibility for a closure of the dynamo cycle is provided since the poloidal component remains decoupled from the dominant toroidal eld so that such dynamo remains impossible [START_REF] Cowling | The magnetic eld of sunspots[END_REF][START_REF] Hide | Generalization of Cowling's theorem[END_REF].

Our study shows that the ideal boundary conditions H × n = 0 is indeed a reasonable assumption for the m1-mode, but it is not appropriate for the analysis of the toroidal m0mode. The purely toroidal m0-mode can be obtained only by explicitly considering the internal permeability distribution and the corresponding jump conditions at the uid/disk interface. This mode cannot be obtained numerically by simulations of VKS-like dynamos that use either the idealized boundary condition H×n = 0 at the uid/disk interface or the thin-wall approximation from [START_REF] Roberts | Numerical simulation of a spherical dynamo excited by a ow of von Kármán type[END_REF].

In conclusion, we have seen that the high (but nite) permeability in the impeller disks is very important to promote axisymmetric modes in our model and we suppose that it may also play a nontrivial role in the real VKS experiment. For example, in the presence of more complex (non-axisymmetric) ows containing small scale turbulence modeled by an α-eect [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF][START_REF] Giesecke | Generation of axisymmetric modes in cylindrical kinematic mean-eld dynamos of VKS type[END_REF], or in the presence of non-axisymmetric permeability distributions that resemble the soft-iron blades attached to the disks [START_REF] Giesecke | Role of Soft-Iron Impellers on the Mode Selection in the von KármánSodium Dynamo Experiment[END_REF], the purely toroidal m0-modes can be coupled with poloidal eld components thus providing the required mechanism to close the dynamo loop. Introduction Still a century after Larmor suggested that dynamo action can be a source of magnetic eld in astrophysics, the exact mechanism by which a uid dynamo can be put in action in astrophysical bodies remains an open challenge. In addition to the numerous analytical and numerical studies that have been done since Larmor's work, it is only recently that uid dynamos have been produced experimentally [START_REF] Gailitis | Detection of a ow induced magnetic eld eigenmode in the Riga dynamo facility[END_REF][START_REF] Stieglitz | Experimental demonstration of a homogeneous two-scale dynamo[END_REF][START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. These experimental dynamos have been helpful in particular to explore the nonlinear saturation regime. For instance, the dynamo produced in the Cadarache experiment [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF] has an axial dipolar component and exhibits polarity reversals that are not unlike those observed in astronomical dynamos. The design of this experiment, however, has peculiar features that distinguishes it from natural dynamos. The most notable one is that the ow motion is induced by counter-rotating impellers. This driving mechanism induces an unrealistic dierential rotation in the equatorial plane and produces a large turbulent dissipation. Even with a mechanical power injection close to 300 kW, the magnetic Reynolds number of the ow of liquid sodium hardly reaches R m = 45. Another peculiarity of this experiment is that dynamo action has not yet been obtained by using blades made of steel. The dynamo threshold has been reached at R m = 32 by using blades made of soft iron instead. The objective of the present work is to investigate an alternative driving mechanism that shares the fundamental symmetry properties of natural dynamos, i.e., axisymmetry and equatorial symmetry (so-called SO(2)-Z2 symmetry). The Taylor-Couette geometry is a natural candidate for this purpose, since this conguration is already known to produce dynamos both in axially periodic geometries [START_REF] Willis | A Taylor-Couette dynamo[END_REF] and in nite vessels of large aspect ratio [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]. We examine in the present paper the dynamo capabilities of Taylor-Couette ows in vessels of small aspect ratio, and we compare the results obtained in this setting with those from more popular spherical dynamos [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF].

The paper is organized as follows. The formulation of the problem and the physical setting of the Taylor-Couette conguration under consideration are described in F.2. The formulation of the problem and the physical setting of the Taylor-Couette conguration under consideration are described in F.2. Three types of ows are considered in the paper and are discussed in F.3. These ows are the standard Taylor-Couette ow driven by viscous stresses, a manufactured Taylor-Couette ow, and an optimized ow driven by a body force that models rotating blades attached to the lids. Two kinematic dynamo congurations are investigated in G.4. It is found that the poloidal to toroidal ratio of the velocity eld generated by viscous driving only (standard Taylor-Couette) is not large enough to generate a dynamo at R m ≤ 200. Dynamo action is obtained by using the strengthen Taylor-Couette ow and the forced Taylor-Couette ow. In both cases the poloidal to toroidal ratio of the velocity eld is close to one. A nonlinear dynamo obtained with the forced Taylor-Couette ow is described in F.5. In the early linear phase of the dynamo, the magnetic eld at large distance is dominated by an equatorial rotating dipole. In the established nonlinear regime, an axial axisymmetric component of the magnetic dipole is excited and exhibits aperiodic reversals. Concluding remarks are reported in F.6.

F.2

Formulation of the problem

F.2.1
The physical setting

We consider an incompressible conducting uid of constant density ρ and constant kinematic viscosity ν. This uid is contained between two coaxial cylinders of height L z . The radius of the inner cylinder is R i and that of the outer one is R o . The inner cylinder is composed of a solid conducting material. The inner cylindrical wall and the top and bottom lids corotate at angular velocity Ω i . The outer cylindrical wall is motionless. The inner solid core may rotate or not, i.e., the inner core and the inner cylindrical wall may have dierent angular velocities. The electrical conductivity and magnetic permeability of the inner cylinder are signicant elements of the parameter space. For instance, using sodium at 140 o Celsius, the ratio of the conductivity of the inner cylinder to that of the liquid metal is 1 if the inner cylinder is made of soft iron, it is about 0.16 if the inner cylinder is made of stainless steel, and it is about 4.5 if the inner cylinder is made of copper. Using soft iron implies jumps of the magnetic permeability, and using steel or copper implies jumps of the conductivity. Although our code can cope with discontinuous physical parameters [START_REF] Guermond | Eects of discontinuous magnetic permeability on magnetodynamic problems[END_REF], we postpone the optimization stage with respect to these parameters and focus on the simplest choice which consists of assuming that the conductivities of the uid and of the inner solid are equal. The conductivity in the solid and in the uid is denoted σ 0 . The magnetic permeability µ 0 is assumed to be constant in the entire space.

Let U be a reference velocity scale yet to be dened. We then consider the following reference scales for length, L = R o -R i , magnetic eld, H = U ρ/µ 0 , and pressure, P = ρU 2 . The non-dimensional parameters of the system are the kinetic Reynolds number, R e , the magnetic Reynolds number, R m , the radius ratio η, and the aspect ratio Γ:

(F.2.1)

R e = UL ν , R m = µ 0 σ 0 UL, η = R i R o , Γ = L z L .
To limit the number of geometrical parameters, we restrict ourselves in this paper to η = 0.5 and Γ = 2. Abusing the notation, this immediately implies that R i = 1 and R o = 2 in nondimensional units. We did not explore other aspect ratios (see for example [START_REF] Tavener | Novel bifurcation phenomena in a rotating annulus[END_REF]1,[START_REF] Marques | Onset of three-dimensional unsteady states in smallaspect-ratio TaylorCouette ow[END_REF][START_REF] Hewitt | Nonlinear vortex development in rotating ows[END_REF] for short aspect ratios and dierent angular velocities). The conducting domain Ω c is partitioned into its uid part enclosed between the two walls, Ω cf , and its solid part enclosed in the inner cylinder, Ω cs . Using non-dimensional cylindrical coordinates (r, θ, z), we have

Ω cf = [1, 2]×[0, 2π)×[-1, 1] and Ω cs = [0, 1]×[0, 2π)×[-1, 1].
The conducting material is embedded in a non-conducting region denoted Ω v , which we refer to as the vacuum region.

The non-dimensional set of equations that we consider is written as follows in the conducting material:

∂ t u + (u•∇)u + ∇p = 1 R e ∆u + (∇×H c )×H c + f I (F.2.2) ∇•u = 0 (F.2.3) ∂ t H c -∇×(u × H c ) = 1 R m ∆H c (F.2.4) ∇•H c = 0, (F.2.5)
where u, p, and H c are the velocity eld, pressure, and magnetic eld, respectively. The magnetic eld in Ω v is assumed to derive from a harmonic scalar potential: H v = ∇φ, ∆φ = 0. The transmission conditions across the interface separating the conducting and nonconducting material are such that the tangent components of the magnetic and electric elds are continuous (see [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF]). We consider three dierent settings: (i) The incompressible Navier-Stokes setting (H c = 0); (ii) The Maxwell or kinematic dynamo setting; (iii) The nonlinear magnetohydrodynamics setting (MHD). In the Navier-Stokes setting, H c is set to zero in the Lorentz force and the induction equation is not solved. The source term f I is an ad hoc body force that models blades xed at the endwalls, see F.3.3. When f I = 0, the viscous stress induced by the rotating walls is the only source of momentum, see F.3.1. In the Maxwell setting, only the induction equation is solved assuming that some ad hoc velocity eld u is given. In the MHD setting, the full set of equations is solved.

Since the denition of the reference velocity in similar dynamo congurations may be dierent (velocity at a given point, maximal speed in the ow, etc.), we introduce the root mean square (rms) velocity to facilitate comparisons: (F.2.6)

U * 2 = 1 vol(Ω cf ) Ω cf u(x, t) 2 dx,
where the dimensionless uid volume is vol(Ω cf ) = 6π in the present case.

F.2.2 Numerical details

The code (SFEMaNS) that we have developed solves the coupled Navier-Stokes and Maxwell equations in the MHD limit in heterogeneous axisymmetric domains composed of conducting and nonconducting regions by using a mixed Fourier/Lagrange nite element technique. Continuous Lagrange Finite elements are used in the meridian plane and Fourier modes are used in the azimuthal direction. Parallelization is done with respect to the Fourier modes. Continuity conditions across interfaces are enforced using an interior penalty technique [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]. SFEMaNS can account for discontinuous electrical conductivity and magnetic permeability distributions [START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF][START_REF] Guermond | Eects of discontinuous magnetic permeability on magnetodynamic problems[END_REF]. An original technique for the control of the divergence of the magnetic induction has been developed to ensure the convergence of the method in the presence of corner singularities [START_REF] Guermond | Eects of discontinuous magnetic permeability on magnetodynamic problems[END_REF][START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF]. The magnetic eld in the nonconducting regions is assumed to derive from a scalar magnetic potential, i.e., the congurations that we model are such that there is some mechanism that ensures that the circulation of the magnetic eld along any path in the insulating medium is zero (this happens for instance when the vacuum is simply connected). Finite elements naturally take care of corner singularities induced by the boundary conditions of the hydrodynamic problem. The velocity eld in Ω cf and the magnetic eld in Ω c are approximated using continuous P 2 polynomials, and the pressure eld in Ω cf is approximated using continuous P 1 polynomials. In the vacuum Ω v , the magnetic potential φ is approximated using continuous P 2 polynomials. Typical characteristics of the meshes in the meridian section of all the cases studied in this paper are summarized in Table F The performance of SFEMaNS has been validated on various kinematic and nonlinear dynamo congurations. In particular, a study of two Taylor-Couette setups using SFEMaNS is reported in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]. In the rst case Γ = 4, η = 0.5, and z-periodicity is assumed; in the second case Γ = 2π, η = 0.5 and the vessel is nite, i.e., no z-periodicity is assumed and the vessel is closed at both ends. In both cases the inner wall rotates, but the outer wall and the two endwalls (when present) are motionless. The self-consistent saturated dynamo found in [START_REF] Willis | A Taylor-Couette dynamo[END_REF] in the z-periodic case has been reproduced in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF], and a new nonlinear dynamo has been found in the nite vessel at R e = 120, R m = 240. The behaviors of the z-periodic and nitevessel dynamos, as observed in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF], signicantly dier. After some transient, the kinetic and magnetic energies of the z-periodic dynamo converge to a stationary value. The nal nonlinear MHD state is a steady rotating wave resulting from the balance between the driving eect of the viscous shear and the braking eect of the Lorentz force. The nonlinear dynamo action found in the nite vessel shows a dierent behavior in which the spatial symmetry about the equatorial plane (or mid-plane) of the velocity and magnetic elds plays a key role. The dynamo is cyclic in time and the elds rotate rigidly with modulated amplitude. In these two cases (periodic and nite extension), the wavelength of the magnetic eigenvector is about twice that of the ow; as a result, the velocity eld in the median plane of a single magnetic structure is directed inwards. This feature is shared by the spherical kinematic dynamos studied in [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF]. It is reported in [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF] that the lowest critical magnetic Reynolds number is obtained when the velocity eld forms two poloidal cells that ow inwards in the equatorial plane. Note in passing that the two numerical experiments reported in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] clearly conrm that assuming periodicity or enforcing nite boundary conditions give rise to dynamos with fundamentally dierent behaviors, i.e., assuming periodicity or ad hoc boundary conditions for the sake of numerical convenience may have nontrivial consequences. The series of observations above have led us to investigate more thoroughly the Taylor-Couette conguration with aspect ratio

Γ = 2. F.3
Hydrodynamic forcing Since a number of dynamo studies have shown that the ratio of poloidal to toroidal speed should be close to unity to obtain the lowest critical magnetic Reynolds number, it is important to control this ratio. We describe in this section the mechanisms that we use to optimize the velocity eld for dynamo action.

F.3.1 Taylor-Couette ow (viscous driving only)

When the aspect ratio is about 2 and the kinematic Reynolds number is moderate, two counterrotating poloidal cells form with a toroidal angular velocity oriented in the same direction as that of the inner cylinder. In order to enforce the equatorial jet to ow inwards, we let the lids of the vessel rotate with the angular velocity of the inner cylinder and we keep the outer cylinder motionless. Note that it is important to have the lids and the inner cylindrical wall of the vessel to corotate; this makes the equatorial jet ow inwards and makes the overall velocity eld similar to the spherical ows that are known to yield dynamo action [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF] at Rm c ≈ 100. With an outward equatorial jet ow (in case of static lids), the dynamo threshold is expected to be enhanced following Livermore and Jackson's results [START_REF] Livermore | On magnetic energy instability in spherical stationary ows[END_REF]. These authors gave an intuitive argument: the magnetic eld is stretched up and down by the poloidal circulation associated to an inwards jet and aligns with the direction of the maximal strain rate, whereas it is compressed with the reversed circulation and the alignment is less eective. They computed the magnetic energy instability thresholds in both cases for a Modied Dudley and James ow and found a factor of 2 between the two thresholds. We dene the velocity reference scale to be (F.3.1)

U = Ω i R i ,
when the only source of momentum is the viscous stress at the boundary.

At R e = 120 in the Navier-Stokes regime, the ow is steady, and forms the expected two toroidal cells invariant under the SO(2)-Z2 symmetry, i.e., axisymmetric and symmetric with respect to the equatorial plane, see Figure F.1. This ow, henceforth generically referred to Since the toroidal component of the velocity at the inner cylinder is equal to 1/α(ǫ), the angular velocity of the inner wall is Ω i = 1/α(ǫ), and this also means that the reference velocity scale is (F.3.4)

U = α(ǫ)Ω i R i .
Although the vector eld V ǫ is not a solution of the Navier-Stokes equations, it is nevertheless solenoidal. This ow is henceforth generically referred to as V ǫ . Computations have been done (see F. 4 A number of dynamo studies have shown that the ratio of poloidal to toroidal speed should be close to unity to obtain a low critical magnetic Reynolds number. Viscous driving by the rotating walls yields a value for this ratio that is not close to unity (Λ 0 = 0.235 at R e = 120, see section above). At low Reynolds numbers, the ow is steady and axisymmetric. It is relatively easy to vary the relative amplitude of the toroidal component in experimental setups by using blades xed to the corotating endwalls to act as centrifugal pumps. This conguration, however, is dicult to implement in a computer code. In order to better control the poloidal to toroidal ratio in our simulations, we have chosen to model the toroidal driving by a body force. The action of blades on the top and bottom lids is modeled by an ad hoc axisymmetric divergence-less force given in dimensional form as follows:

(F.3.5)

f I (r, z) =    ρ A r U 2 e r if 0.8 ≤ |z| ≤ 1 and 1.2 ≤ r ≤ 1.8 0 otherwise,
where the non-dimensional parameter A has been tuned to optimize the poloidal to toroidal ratio. Note that (F.3.5) denes the reference velocity U. The resulting velocity eld is denoted V I and the ow is generically called V I .

We have found that using A = 2.5 at R e = 120 gives

Λ I = V * Ip /V * It = 1.
04 and the rms velocity is V * I = 0.219. We have observed that the azimuthal velocity in the vicinity of the inner radius is close to 0.55; hence, to reduce the viscous boundary layer at the inner wall and endwalls, we have set the dimensionless angular velocity to Ω i = 0.55. The steady axisymmetric ow V I is shown in We perform two studies at R m = 100 and R m = 200 to determine the optimal weight ǫ that gives the largest growthrate of the dynamo action in the kinematic regime. The computations are done with SFEMaNS in Maxwell mode. The magnetic eld is initialized to some small random values and the growth rate (i.e., the real part of the leading eigenvalue) is computed by running short time simulations for various ratios ǫ ∈ [3,[START_REF] Bernardi | Optimal nite element interpolation on curved domains[END_REF] shown in Table F.2. As the vector eld V ǫ is axisymmetric, the term ∇×(V ǫ ×H c ) cannot transfer energy between the Fourier modes of H c , i.e., the Fourier modes are uncoupled. The rst bifurcation is of Hopf type and the most unstable eigenvector is the Fourier mode m = 1. The growthrate of the magnetic energy is reported in This eigenvector is a rigid wave that rotates in the same direction as the inner cylinder and top/bottom lids, and its period of rotation is T ≃ 870, i.e., more than 66 rotation periods of the inner cylinder. Since Ω i = 1/α(ǫ) and ǫ = 8, the angular velocity of the inner cylinder is Ω i = 0.481; this in turn implies that the rotation period of the inner cylinder is T i = 2π Ω i = 13.1. Upon introducing the equatorial symmetry operator S Z2 H = (H r , H θ , -H z )(r, θ, -z). the magnetic eld has the following symmetry property: (F.4.1)

H c = S Z2 H c .
i.e., the magnetic eld has the same symmetry as the velocity eld.

We now evaluate the critical magnetic Reynolds number and its minimal value with respect to ǫ. We assume that the growthrate depends smoothly on R m . Upon inspecting Figure F.3 we see that the growth rate is maximum for ǫ opt ≈ 5 at R m = 100 and for ǫ opt ≈ 8 ate R m = 200. Then, by drawing the line connecting the two maximum points in Figure F.3, we observe that this line crosses the horizontal line of zero growth rate in the interval ǫ ∈ [6. 5,[START_REF] Arnold | An interior penalty nite element method with discontinuous elements[END_REF]. We have chosen to explore the value ǫ = 6.5, which gives the poloidal to toroidal ratio Λ = 1.53. The growth rate for various magnetic Reynolds numbers in the range [START_REF] Roberts | Dynamo action of uid motions with two-dimensional periodicity[END_REF]200] has been We use the steady axisymmetric forced ow, V I , at R e = 120 to perform kinematic dynamo computations. The reference velocity scale is dened in (F.3.5) with A = 2.5. To determine whether the rotation of the inner solid core has any impact on the dynamo threshold, we have compared growth rates when the solid inner core is motionless and when the inner wall and solid inner core corotate with angular speed Ω i . Whether the inner core rotates or not, the magnetic eigenvector m = 1 is always the most unstable. We show in Ω i = 0.55.

F.5 Nonlinear dynamo action

We report in this section on nonlinear dynamo computations done with the forced Taylor-Couette setup at R e = 120 and R m = 200.

F.5.1 Description of the setting

We consider the forced Taylor-Couette setup described in F.4.2. The reference velocity scale is dened in (F.3.5) with A = 2.5. We perform nonlinear dynamo computations with the parameters R e = 120, R m = 200. The inner core is kept motionless. We work with 32 azimuthal modes (m = 0, . . . , 31), and the meridional nite element mesh is the same as in the kinematic runs. The total number of degrees of freedom to be updated at each time step is 11,353,104. The initial velocity eld is the axisymmetric ow V I that we computed in the Navier-Stokes regime at R e = 120. The initial magnetic seed is the growing Fourier mode The initial magnetic eld has been rescaled so that nonlinear saturation occurs within reasonable CPU time. When dynamo action occurs, the magnetic energy grows exponentially until the Lorentz force is capable of modifying the base ow. This transient phase lasts about 5 rotation periods. When the Lorentz force is strong enough, a new regime settles where the magnetic energy saturates. Nonlinear saturation is a slow process that lasts at least 200 rotation periods (see Figure 11 in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF]). Although SFEMaNS is parallel with respect to the Fourier modes, the volume of computation required by this type of simulation is such that we have not been able to explore other kinematic and magnetic Reynolds numbers within the resources allocated to this project. The nonlinear run presented in this section used about 15600 cumulated CPU hours with 32 processors on an IBM Power 6 cluster. where the kinetic and magnetic energies are dened as follows: 1 2 Ω cf u 2 dx, 1 2 Ωc H c 2 dx, respectively. From t = 0 to t = 500 (rst transition), the kinetic energy decreases and the magnetic energy grows exponentially with a growthrate similar to that of the kinematic dynamo. Then both the magnetic and the kinetic energies seem to saturate in a rst nonlinear regime, 500 t 1100. During the rst transition, the uid ow loses the axial symmetry, m = 0, and the magnetic eld loses the symmetry associated with the Fourier mode m = 1. The ow being forced by the Lorentz force (∇×H c )×H c , the velocity thereby acquires a contribution on the Fourier mode m = 2. The magnetic eld being deformed by the action of the induction term u×H c acquires a contribution on the Fourier mode m = 3. The cascade of nonlinear couplings generate even velocity modes, m = 0, 2, . . ., and odd magnetic modes, m = 1, 3, . . . During this transitional phase that consists of populating the Fourier modes, the axisymmetry of the velocity eld is broken but the equatorial (mid-plane) symmetry is preserved for both the velocity and the magnetic eld. A second nonlinear transition starts at t = 1100 and lasts until t = 1175. In this time interval the magnetic energy increases and the kinetic energy decreases. This change of behavior is due to the breaking of the equatorial symmetry. This phenomenon is well illustrated by computing the energy of the symmetric part, 1 2 (H c + S Z2 H c ), and anti-symmetric part, In the time interval 1175 ≤ t ≤ 1600, the system enters a second nonlinear regime characterized by large uctuations and a dynamics dominated by the large Fourier modes. Between t = 1600 and t = 2200, we observe a third transition during which the small even modes of the magnetic eld increase again until they reach the nal saturated state. A third and nal nonlinear regime settles beyond t = 2200. Figure F.9(c) shows that the large Fourier modes, exemplied by m = 30 and m = 31, basically uctuate within some asymptotic range for t > 1250, whereas the small even modes grow until they become energetically signicant.

We show in Figure F.10(a) the time series of the azimuthal component of the magnetic eld at the point (r = 1.2, θ = 0, z = -0.5). The envelop of the signal rst grows then reaches a maximum range. The period of the signal is T ≈ 112.5; this corresponds to a wave that rotates in the same direction as the inner cylinder and top/bottom lids. More frequencies appear beyond t = 1100; the signal is the superposition of an oscillation of period T ≈ 150 and a modulation of period T mod ≈ 17, which happens to be of the same order as the wall rotation period T lids = 2π/0.55 ≈ 11.4. The modulation of the time series of H θ has similarities with the solar activity modulation reproduced by some mean-eld dynamo models (see e.g. [START_REF] Tobias | Modulation of solar and stellar dynamos[END_REF]). The breaking of the equatorial symmetry is measured by monitoring the anti-symmetric part of the magnetic eld. We show in To characterize the long distance inuence of the magnetic eld, we have recorded the time evolution of the magnetic dipole dened by D = Ωc r×(∇×H c )dx. Figure F.12 shows the time series of the three Cartesian components of the magnetic dipole in the time interval 0 ≤ t ≤ 2500. During the rst two transitions and nonlinear regimes, i.e., 0 ≤ t ≤ 1600, the dipolar moment is purely equatorial and rotates at the same frequency as the magnetic eld. The axial moment starts to grow at the beginning of the third transition (t > 1600) and changes sign several times afterward (note that the time series in (a) is under sampled in this range). We have numerically demonstrated that pure viscous driving by smooth rotating walls in a short Taylor-Couette setup does not lead to dynamo action for R m ≤ 200 since the poloidal to toroidal ratio of the velocity eld is too small. An adjustment of the poloidal to toroidal ratio is needed to achieve dynamo action in the kinematic regime. We have implemented an ad hoc body force to produce a poloidal to toroidal ratio that is of the same order as what is needed in the kinematic simulations to trigger the dynamo action. This force may be thought of as a model for the action of blades xed to the static or to the rotating walls/lids at convenient angles. This force has also the same symmetry properties as the geodynamo, i.e., the SO(2)×Z2 symmetry (axisymmetry and equatorial symmetry). The critical magnetic Reynolds number of this setup based on the inner cylinder speed µ 0 σΩ i R 2 i = 0.55×180 = 99 is in the range of what has been obtained in the kinematic studies of [START_REF] Dudley | Time-dependent kinematic dynamos with stationary ows[END_REF] in a spherical container with the same symmetries. This magnetic Reynolds number is also comparable to what has been reported in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF] for Taylor-Couette simulations in vessels of larger aspect ratios and with pure viscous driving.

A nonlinear simulation has been performed at R e = 120, R m = 200 over 225 rotation periods. In the early linear phase of the dynamo, the external eld is dominated by an equatorial rotating dipole. In the established nonlinear regime, an axial axisymmetric component is excited and exhibits reversals. The relation between the main ow parameters of the timedependent angle formed by the dipole and the rotation axis calls for further investigations, since it is a basic feature of observed planetary dynamos.

Exploring the feasibility of an experimental uid dynamo based on the present design will require expertise from many dierent experimental and numerical elds [START_REF] Léorat | Interplay between experimental and numerical approaches in the uid dynamo problem[END_REF]. To achieve a magnetic Reynolds number equal to 100 in a ow of liquid sodium requires that the kinematic Reynolds number be of order 10 7 . It is well known that such a value corresponds to a highly turbulent ow that can be studied only in experimental facilities, since it is far beyond the capacity of direct numerical simulations. The objective of such experiments should be to recover optimized poloidal and toroidal components after time averaging, which presumably would guide the design of the blades xed to the endwalls. These experiments would also inform about the power requirements. Using a standard rotation frequency of 50 Hz, a magnetic Reynolds number of 100 can be obtained in liquid sodium at 150 o C with an inner radius of approximatively 18 cm and an outer radius and height of 36 cm. This seems feasible since these dimensions are not far from those of the Cadarache experiment [START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. We conjecture however that the power required by this experiment at a given rotation frequency should be smaller, since the turbulence rate induced by co-rotating lids/impellers should be smaller than that of counter-rotating lids/impellers. A dynamo facility presenting similarities with the present proposal is currently investigated by Colgate and collaborators [START_REF] Colgate | High magnetic shear gain in a liquid sodium stable Couette ow experiment : A prelude to an α-ω dynamo[END_REF]. Their MHD device uses also a Taylor-Couette forcing in a short cylindrical container with size and targeted magnetic Reynolds number similar to those studied in the present paper. There are however dierences: the ow in their experiment forms an outwards jet in the equatorial plane and is driven by viscous stresses only. More detailed comparisons of the respective merits of both designs should certainly be instructive. Introduction

The interest of astronomers and physicists for the dynamo action nds its origins in the quest for a reasonable explanation for the source of terrestrial and solar magnetism. Dynamo action is obtained when the conversion rate of kinetic energy in magnetic energy in the Earth liquid core is larger than the ohmic dissipation. This phenomenon is turbulent and reproducing it either numerically or experimentally constitutes an enormous challenge.

For a long time the analysis of the dynamo action has been restricted to kinematic dynamo theories which postulate that the velocity eld is known a priori. For instance the so-called mean eld theory consists of assuming that the velocity and magnetic length scales are well separated and the magnetic Reynolds number is small. Although the mean-eld theory is widely used, its validity in the range of large magnetic Reynolds number is questionable [START_REF] Moatt | Magnetic Field Generation in Electrically Conducting Fluids[END_REF][START_REF] Krause | Mean-Field Magnetohydrodynamics and Dynamo Theory[END_REF].

Some models like the so-called alpha-quenching include some sort of nonlinear retro-action of the uid ow on the magnetic eld through a modelling of the velocity perturbations as a function of the local magnetic eld. These models do give saturated nonlinear dynamics, but, again, the theoretical foundations of these approaches are questionable. One can imagine that, as the number-crunching capacity of computers is ever growing, some of the short-comings of the above phenomenological theories and models can be overcome by direct numerical simulation (DNS) of the magnetohydrodynamics equations (MHD). Although the main advantage of the direct numerical simulation approach is that the nonlinear coupling between the Navier-Stokes equations and the induction equation is represented exactly, some level of modelling of the boundary conditions and forcing is still required by DNS. For instance, the question of the nature of the forcing that needs to be applied to the MHD system so that the resulting dynamo has experimental or astronomical signicance needs to be somewhat modelled. The purpose of the remainder of this introduction is to briey review this issue, and the objective of this paper is to show that precession is an ecient forcing that can be used for experimental purposes and does not require any modelling.

DNS of the dynamo action is very demanding computationally since obtaining statistically stationary solutions requires very long integration times. Two types of DNS are performed in practice to address this problem. If one is interested in the dynamics of length scales that are signicantly smaller than those of the forcing term (i.e., the source of energy in the system), one can use periodic boundary conditions together with the very ecient arsenal of Fourier/spectral techniques. This is the choice usually made for the study of turbulent dynamos. If on the contrary one is interested in the dynamics of scales that are close to the characteristic scales of the forcing term, one must represent the boundary conditions more accurately and thus use numerical methods that are not yet as ecient as spectral methods and thus cannot reach very high Reynolds numbers. This type of choice is made when one wants to study large scale dynamos. Forcing by precession, which is the object of this paper, can be put in this category. Let us now review the various types of nonlinear dynamos known so far to better appreciate the qualities of precession forcing.

In the standard framework of homogeneous MHD turbulence, the mechanical power injected in the system is modelled by a large scale forcing term that can be either time independent or random with zero or nite correlation time. The purpose of the turbulent dynamos thus generated is to study the dynamics of the energy transfers between scales and between the velocity and the magnetic elds [START_REF] Nore | Dynamo action in the TaylorGreen vortex near threshold[END_REF][START_REF] Subramanian | Evolving turbulence and magnetic elds in galaxy clusters[END_REF][START_REF] Schekochihin | Fluctuation dynamo and turbulent induction at low magnetic prandtl numbers[END_REF][START_REF] Ponty | Dynamo action at low magnetic Prandtl numbers : mean ow vs. fully turbulent motion[END_REF]. It is sucient to use periodic boundary conditions to achieve this program. Let us emphasize though that this type of simulation is not yet capable of drawing reasonable conclusions concerning the terrestrial magnetism, since the magnetic Prandtl numbers explored so far, P m , are larger than 0.01, whereas the terrestrial magnetic Prandtl number is very small, P m ≈ 10 -5 .

Contrary to turbulent dynamos, it is critical to impose realistic boundary conditions in large scale dynamos. Although natural and experimental dynamos have simple geometries in general, modelling their forcing for numerical purposes is non trivial. For instance, thermal convection is known to be a source of stellar dynamos, and it is also suspected to be one of the possible sources of the geodynamo [START_REF] Kageyama | Formation of current coils in geodynamo simulations[END_REF], but enforcing a realistic boundary condition to control the thermal convection is a particularly tricky question for the geodynamo. It is now recognized that various numerical scenarios can be obtained depending on the nature of the boundary condition which is imposed at the boundary of the iron core, see for instance [START_REF] Glatzmaier | A three-dimensional self-consistent computer simulation of a geomagnetic eld reversal[END_REF], [START_REF] Kuang | Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell : Weak and strong eld dynamo action[END_REF], and [START_REF] Olson | Probing Earth's dynamo[END_REF]. The situation is similar for experimental dynamos driven either by rotors or pumps [START_REF] Gailitis | Detection of a ow induced magnetic eld eigenmode in the Riga dynamo facility[END_REF][START_REF] Stieglitz | Experimental demonstration of a homogeneous two-scale dynamo[END_REF][START_REF] Monchaux | Generation of magnetic eld by a turbulent ow of liquid sodium[END_REF]. In this case also forcing is usually modelled by inserting ad hoc forces in the momentum equation, see for instance [START_REF] Bayliss | Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent ow[END_REF][START_REF] Kenjere² | Numerical simulation of a turbulent magnetic dynamo[END_REF][START_REF] Gissinger | Bypassing Cowling's theorem in axisymmetric uid dynamos[END_REF].

Contrary to the above examples, precession has the rare quality of generating a ow dy-namics free of modelling, since exact boundary conditions are imposed in this case. The boundary conditions prescribe the action of the container walls on the ow and thus create a realistic forcing at the largest scale available. Simulating numerically precession-driven rotating ows is useful for experimental uid dynamos and opens perspectives for real astrophysical dynamos [START_REF] Bullard | The magnetic eld within the Earth[END_REF][START_REF] Malkus | Precession of the Earth as the cause of geomagnetism : Experiments lend support to the proposal that precessional torques drive the Earth's dynamo[END_REF]. To the best of our knowledge, only two precession-driven dynamos have been successfully simulated so far. Tilgner [START_REF] Tilgner | Precession driven dynamos[END_REF][START_REF] Tilgner | Kinematic dynamos with precession driven ow in a sphere[END_REF] has rst proved the capability of precession to drive the dynamo eect in a spherical shell. However, due to the symmetry properties of the sphere, the precessing ow thus obtained is driven by viscosity, which makes it dicult to be used in experimental and astrophysical applications at large kinetic Reynolds numbers. Wu and Roberts [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] have obtained the dynamo eect in a precessing spheroid using a ow obtained as a stress free uctuation of an analytical Poincaré solution. The objective of the paper is to show that dynamo action can also be achieved in a precessing cylinder. The precession forcing in a cylinder is large scale, i.e., comes from the walls, and is not purely viscous.

Although the spheroidal geometry is more relevant in an astrophysical context, the cylindrical geometry is more suitable for experimental purposes. A rst attempt to realize an experimental turbulent homogeneous dynamo in a precessing cylindrical container is reported in [START_REF] Gans | On hydromagnetic precession in a cylinder[END_REF].

A new experiment using a cylindrical vessel is now planned in the large scale MHD facility DRESDYN currently being built at Helmholtz-Zentrum Dresden-Rossendorf in Germany. The action of precession will be tested there, among other things (F. Stefani [133]). The objective of the present article is to report numerical evidences supporting the idea that precession is indeed a potent mechanism to drive dynamo action in cylindrical containers. The paper is organized as follows. The formulation of the problem is described in section G.2. We present in section G.3 the hydrodynamical regimes that are obtained at dierent Reynolds numbers, focusing on the two largest ones. Section G.4 explores the dynamo action in linear and nonlinear regimes. The role of symmetries is also investigated in this section. Section G.5 is devoted to a discussion of the results.

G.2 Formulation of the problem

The conducting domain considered in this article is a cylindrical vessel C of radius R and length L. The vessel contains a conducting uid and is embedded in vacuum. The solid walls of the vessel are assumed to be so thin that their inuence is henceforth neglected. The container rotates about its axis of symmetry with angular velocity Ω r e z and is assumed to precess about a second axis spanned by the unit vector e p forming an angle α with e z , (0 < α < π). The angular velocity of the precession is Ω p e p . A cylindrical coordinate system about the axis of the cylinder is dened as follows: the origin of the coordinate system is the center of mass of the cylinder, say O; the Oz axis is the line passing through O and parallel to e z ; the origin of the angular coordinate θ (0 ≤ θ ≤ 2π) is the half plane passing through O, spanned by e z and e p , and containing the vector Ω p e p . The third coordinate, denoted r, is the distance to the Oz axis. We denote by L = R and U = RΩ r the reference length and velocity scales, respectively. The uid density, ρ, is assumed to be constant and the reference pressure scale is P := ρU 2 . The magnetic permeability is uniform throughout the entire space, µ 0 , and the electric conductivity of the conducting uid is constant, σ 0 . The quantities µ 0 and σ 0 are used as reference magnetic permeability and electric conductivity, respectively. The reference scale for the magnetic eld is chosen so that the reference Alfvén speed is 1, i.e., H := U ρ/µ 0 . We are left with ve non-dimensional parameters: one geometrical parameter L/R (aspect ratio); two forcing parameters α (precession angle) and ε = Ω p /Ω r (precession rate); and two uid parameters, namely the Ekman number E = ν/R 2 Ω r (where ν is the kinematic viscosity) and the magnetic Prandtl number P m = νµ 0 σ 0 . We nally dene the kinetic Reynolds number R e = 1/E and the magnetic Reynolds number R m = P m R e .

The non-dimensional set of equations that we consider is written as follows in the precessing frame of reference:

∂ t u + (u•∇)u + 2εe p ×u + ∇p = 1 R e ∆u + f , ∇•u = 0, ∂ t h -∇×(u × h) = 1 R m ∆h, ∇•h = 0,
where u, p, and h are the velocity eld, the pressure, and the magnetic eld, respectively. In the following we consider three dierent settings to solve these equations: (i) The incompressible Navier-Stokes setting; (ii) The Maxwell or kinematic dynamo setting; (iii) The nonlinear magnetohydrodynamics setting (MHD). In the Navier-Stokes setting the source term f is set to zero and h is not computed. In the Maxwell setting, only the induction equation is solved assuming that the velocity eld u is given. In the MHD setting the full set of equations is solved and the source term f is the Lorentz force per unit mass, f := (∇×h)×h. The noslip boundary condition on the velocity eld is written as follows in the precessing frame of reference: u = e θ at r = 1 and u = re θ at z = ±1. The magnetic eld is represented as the gradient of a scalar potential, ∇φ, in the vacuum. The magnetic boundary transmission conditions enforce that the magnetic eld is continuous across the walls of the vessel, say Σ, i.e., h| Σ = ∇φ| Σ .

The above equations are solved numerically by means of a code which is specialized to axisymmetric domains and has been presented in details in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a fourier/nite element technique and an interior penalty method[END_REF][START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF]. The code is called SFE-MaNS for Spectral/Finite Elements for Maxwell and Navier-Stokes equations. It is an hybrid algorithm that uses nite element representations in the meridian section of the axisymmetric domain and Fourier representations in the azimuthal direction. The magnetic eld is represented as a vector eld in the conducting region and as the gradient of a scalar potential in the insulating region. SFEMaNS can account for discontinuous distributions of electric conductivity and magnetic permeability, and all the required continuity conditions across the interfaces are enforced using an interior penalty technique. The solution technique is parallel and parallelization is done with respect to the Fourier modes.

The typical spatial resolution in the meridional plane of the conducting domain is ∆x = 1/160. The grid is non-uniform in the vacuum with ∆x = 1/160 close to the cylindrical vessel and ∆x = 1 at the outer boundary of the numerical domain, which is a sphere of radius ten times larger than that of the cylinder. We take 24 or 32 Fourier modes (m = 0, . . . , 23 or m = 0, . . . , 31) for Navier-Stokes runs and 64 Fourier modes (m = 0, . . . , 63) for MHD runs. The typical time-step is ∆t = 0.001. A typical MHD run requires about 1000 cumulated CPU hours per rotation (t = 2π) on 64 processors on an IBM-SP6.

G.3 Hydrodynamical regime

Let us now briey recall what is observed in a typical precessing uid experiment starting with the uid at rest, (see e.g. [92,[START_REF] Lagrange | Instability of a uid inside a precessing cylinder[END_REF][START_REF] Lehner | Mode coupling analysis and dierential rotation in a ow driven by a precessing cylindrical container[END_REF]). The vessel is rst set in rotation without precession. The uid motion is then governed by the formation of a viscous Ekman boundary layer during the acceleration ramp. The resulting ow is a stable solid rotation independently of the strength of the acceleration phase. Once precession is applied, the Coriolis force generates an axial motion of the ow driven by the Fourier mode m = 1. When R e is large enough, the ow undergoes a transition from laminar to turbulent even for small precession rates and small angles [START_REF] Lagrange | Instability of a uid inside a precessing cylinder[END_REF]. The range ε ∈ [0.1, 0.15] has been shown in [92] to maximize the axial energy in a cylinder of aspect ratio 2 in the range R e ∈ [500, 5000] when α = π/2. Although a parametric study varying the aspect ratio, the precession angle and the precession rate is interesting per se, due to limited numerical resource we are going to reduce the dimensionality of the parametric space to one aspect ratio, L/R = We start our investigations with a Navier-Stokes run at R e = 1000. The initial velocity eld is the solid rotation in the precessing frame: u 0 = e z ×r. The onset of the axial circulation induced by precession is monitored by recording the time evolution of the normalized total kinetic energy K(t) = 1 2 C u 2 (r, t) dr/K 0 and normalized axial kinetic energy

K z (t) = 1 2 C u 2 z (r, t) dr/K 0 where K 0 = 1 2 C u 2
0 dr is the kinetic energy of the initial motion. The time evolution of K(t) and K z (t) for t ∈ [0, 297] is reported in gure G.1. The time t = 297 corresponds to 47.3 rotation periods. After a transient that lasts 5 rotation periods and peaks at two rotation periods, the axial kinetic energy oscillates around a plateau value K z ≈ 0.1. Meanwhile, the total kinetic energy decreases and oscillates around a plateau value K ≈ 0.418 after 5 rotation periods also. These values are in very good agreement with those reported in gure 1 of [92]. The time evolution of the total kinetic energy shown in gure G.1(b) presents doubly periodic oscillations with one long period of about 9 rotation periods and one small period of about one rotation period.

To enrich the dynamics of the system we have restarted the computation at t = 72 (i.e., 11.5 rotation periods) and increased the Reynolds number to R e = 1200. The time evolution of K(t) and K z (t) at R e = 1200 for t ∈ [START_REF] Iskakov | An integro-dierential formulation for magnetic induction in bounded domains : boundary element-nite volume method[END_REF]342] and at R e = 1000 for t ∈ [0, 275] is reported in gure G.2. At saturation, the time evolution of the total kinetic energy exhibits doubly periodic oscillations as can be seen in gure G.2(c) for R e = 1200. The short period oscillations correspond to energy exchanges between the north and south halves of the container, with a period of about 2 rotation periods. The energy exchange mechanism is visible in gure G.2(d) where we have reported the time evolution of the kinetic energy of the north and south halves of the cylinder for t ∈ [312,342]. Similar oscillations between north and south hemispheres have been reported to occur in a spheroidal cavity in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF].

More can be learned by examining spectra instead of integrated quantities like the total kinetic energy K. We show for instance in gure G.3 the time averaged azimuthal spectra of the three velocity components at R e = 1200. More precisely, the quantities shown are

K i (m) := 1 T T 0 [ 1 2 |û i (r, m, z, t)| 2 drdz
]dt where ûi (r, m, z, t) is the m-th Fourier component of the velocity component u i (r, θ, z, t), i ∈ {r, θ, z}. The maximum at m = 0 of the azimuthal u(-r, t)) and u a (r, t) = 1 2 (u(r, t)+u(-r, t)). In the Navier-Stokes simulations reported below, we monitor the loss of centro-symmetry by tracking the time evolution of the asymmetric kinetic energy K a (t) = 12 C u 2 a (r, t)dr/K 0 and the asymmetry ratio r a (t) = K a (t)/K(t). These computations have been done on centro-symmetric grids, but centro-symmetry has not been otherwise enforced. Figure G.5 shows that the asymmetric ratio decreases as time grows at R e = 750 (see also the enlarged view in gure G.6(a)) and is always below 10 -6 at R e = 700 and 730. At R e = 800, the velocity eld is unsteady and asymmetric; the asymmetry ratio r a (t) oscillates around the asymptotic value 0.0022 as shown in gure G.6(b). At R e = 900 and above, the ow is clearly asymmetric and the time evolution of the total kinetic energy is quasi-periodic with a short period of about one rotation period and a long period of about 9 rotation periods, see gure G.4. We now solve the full MHD system using as initial velocity eld the velocity computed at t = 192 during the Navier-Stokes run at R e = 1200. The initial magnetic eld and the boundary conditions on the scalar potential are dened as follows in order to trigger eciently the dynamo instability. The zero Dirichlet boundary condition that was imposed on the scalar potential φ on the outer sphere is replaced by φ0 = 0.05zf (t) for m = 0 and φ1 = 0.05rf (t)

for m = 1, where f (t) = τ 3 a 1+τ 3 a 1 -τ 4 e 1+τ 4 
e with τ a = t 0.4 and τ e = t 2 , and the amplitude of each Fourier mode of the initial magnetic eld components is set to 10 -5 for m ≥ 2. It has been veried in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF] that imposing vanishing Dirichlet boundary conditions on φ on a sphere of radius ten times larger than the typical scale of the conducting region gives results that are very close to those obtained by imposing Neumann or Robin boundary conditions.

Various MHD runs are done at R e = 1200 for dierent values of the magnetic Prandtl number. The onset of dynamo action is monitored by recording the time evolution of the magnetic energy in the conducting uid, M (t) = 1 2 C h 2 (r, t)dr/K 0 . Linear dynamo action We now want to observe the nonlinear saturation and evaluate the impact of the magnetic Prandtl number on the nonlinear regime. To reach nonlinear saturation in reasonable CPU time, we have used as initial data for the velocity and magnetic elds the velocity and magnetic elds from the MHD run at t = 217 with P m = 2. The velocity eld has been kept unchanged but we have multiplied by 300 the amplitude of the Fourier modes m = 0, . . . , 5 of the magnetic eld. The time evolution of the magnetic energy of this nonlinear run in the time interval A snapshot of the vorticity and magnetic lines at R e = 1200, R m = 2400 is shown in gure G.8. We observe a central S-shaped vortex which is deformed by the precession and 

G.4.3 Role of the ow symmetries

Tilgner [START_REF] Tilgner | Precession driven dynamos[END_REF] has observed that unsteadiness and breaking of the centro-symmetry of the ow facilitate dynamo action. A similar observation has been made in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF], and dynamo action is reported therein to occur when cyclic oscillations of the kinetic energy between the north and south halves of the spheroidal cavity occur. Although the loss of centro-symmetry is not a necessary condition for dynamo action, we now want to test this idea in the present cylindrical setting.

The time evolution of the asymmetry ratio r a for the Navier-Stokes run at R e = 1200 is shown in gure G.9 in the time range t ∈ [START_REF] Iskakov | An integro-dierential formulation for magnetic induction in bounded domains : boundary element-nite volume method[END_REF]407] (dotted line). The ratio r a varies between 0.004 and 0.01 when the nonlinear regime is well established, i.e., t ≥ 220.

In order to evaluate the impact of the dynamo on the centro-symmetry of the ow, we have started the MHD run at t = 192 with P m = 2 (i.e., R m = 2400). The time evolution of r a in this MHD run is shown in solid line in gure G.9. Note that the solid and dotted lines coincide since the dynamo regime is linear in the time interval t ∈ [192, 217] and the magnetic eld is too weak to have an impact on the kinetic energy ratio r a . We have restarted the MHD run at t = 217 after multiplying the amplitude of the magnetic eld by 300 as already mentioned. The ratio r a (solid line) clearly departs from its Navier-Stokes value thereafter as seen in the gure. At saturation, r a oscillates between 0.008 and 0.012; these values are slightly larger than those reported in [START_REF] Tilgner | Precession driven dynamos[END_REF] for a precessing sphere. We have restarted the MHD run again at The asymmetry factor (dotted blue line) also departs from its Navier-Stokes value, as seen on the gure. We have nally restarted the MHD run at t = 271 after reducing the value of the magnetic Prandtl number to 1 2 . As expected the dynamo dies and r a decreases to 0.003 close to the hydrodynamical level. These computations show that the dynamo action reinforces the loss of centro-symmetry of the ow.

In order to assess the impact of the centro-symmetry and of the unsteadiness of the ow on the dynamo action, we have performed two Maxwell runs at R m = 1200 with the following characteristics: (i) the velocity eld at R e = 1200 is frozen at t = 211, (ii) the velocity eld at R e = 1200 is frozen at t = 211 but only its symmetric component is retained so that the resulting velocity eld is centro-symmetric. The time evolution of the magnetic energy of the MHD run and the two Maxwell runs (i) and (ii) are shown in gure G.10. It is remarkable that, in the two considered kinematic runs, the dynamo keeps growing with a rate similar to that of the MHD run. These computations show that neither the temporal oscillations nor the ow asymmetry play a crucial role on the dynamo action in the precessing cylinder at R m = 1200.

G.5 Discussion

Although the range of Reynolds numbers that we have explored in our Navier-Stokes simulations is modest, it is wide enough to suggest a scaling law for the average kinetic energy, K, as a function of the Reynolds number R e for the precession rate ǫ = 0.15. To substantiate this claim we show in gure G.11(b) the average K as a function of R e . The run at R e = 2000 has not been discussed in this paper and the points at R e = 2500, 4000, 5000 have been extracted from Lallemand et al. [92]. The log-log representation of the data suggests that in range . This scaling predicts that the average ow vanishes at large R e . This property is not paradoxical since, in an axisymmetric container with a rotation axis parallel to its symmetry axis, the azimuthal ow is driven only by viscous forces at the wall. Since in the limit of zero viscosity the rotation does not force the ow, one expects to get at the inviscid limit a static uid in the precessing frame and a solid body motion around the precession axis in the inertial frame.

The above scaling for the velocity reminds of the Stewartson-Roberts analysis [START_REF] Stewartson | On the motion of liquid in a spheroidal cavity of a precessing rigid body[END_REF] of the critical layer in a precessing sphere. Note that the range of Reynolds numbers explored here spans one decade only and the values are not large enough to reach an asymptotic regime. We mention this scaling as a possible venue for future theoretical investigations.

Forty years after the promising experiments with liquid sodium by Gans [START_REF] Gans | On hydromagnetic precession in a cylinder[END_REF], we have numerically demonstrated that dynamo action can occur in a precessing cylindrical tank. The bifurcations through symmetry breaking and cyclic time dependence are similar to those already observed in dynamo ows in spherical or spheroidal precession-driven cavities. There is however a large gap between the control parameters used in the present simulations and those achieved in experimental set-ups and planetary dynamos, where E = 1/R e and P m are many orders of magnitude smaller. Following these evidences for dynamo action, it seems that the following two directions need to be thoroughly investigated: (1) the study of parity breaking and unsteadiness through variations of the forcing parameters (precession angle and rate); (2) the search for a scaling law for the critical magnetic Reynolds number as a function of the hydrodynamic Reynolds number. Such a relation has been proposed by Tilgner in a precessing sphere [START_REF] Tilgner | Precession driven dynamos[END_REF], who argues that it is the asymmetric part of the ow that plays a key role in the dynamo. The research program (2) will be time consuming as it will necessitate large scale computations to explore a wide range of Reynolds numbers. It will also require to develop nonlinear stabilization techniques to simulate small scale viscous dissipation. We are currently working on a second level of parallelization of the code: in addition to the parallelization with respect to the azimuthal modes which is already implemented, we are implementing a domain decomposition technique based on PETSc [START_REF] Balay | PETSc Web page[END_REF] to solve the two-dimensional problems in the meridional domains. This will hopefully speed-up the code and will permit us to perform higher Reynolds number computations. The empirical scaling K ≃ R -0.4 e that we have observed so far needs to be conrmed on smaller Ekman numbers before being considered seriously.

A major step in the understanding of precession dynamo will hopefully be achieved in the near future with the construction of the large scale MHD facility DRESDYN at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The cooperation between simulations and experiments will lead to a better understanding of natural dynamos, including the geodynamo.

This work was performed using HPC resources from GENCI-IDRIS (Grant 2010-0254). We acknowledge fruitful discussions with D. Cébron, W. Herreman, P. Lallemand, P. H. Roberts, F. Stefani and A. Tilgner. The liquid core of the Earth is often modeled as a heated conducting uid enclosed between the solid inner core and the mantle. Numerically simulating the dynamics of the liquid core is dicult in many respects; one of the diculties comes from the presence of viscous layers that develop at the boundaries of the uid domain, i.e., the so-called inner core boundary (ICB) and core mantle boundary (CMB). It is a common practice in the geophysics literature to use stress-free boundary conditions in order to minimize the role played by the viscous layers. Although this choice of boundary condition is convenient, it is not clear that it is more physically justied than using the no-slip condition. Actually, enforcing either the noslip or the stress-free boundary condition may lead to signicantly dierent results when it comes to simulating the geodynamo. For example, Glatzmaier and Roberts [START_REF] Glatzmaier | A three-dimensional self-consistent computer simulation of a geomagnetic eld reversal[END_REF] and Kuang and Bloxham [START_REF] Kuang | An Earth-like numerical dynamo model[END_REF][START_REF] Kuang | Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell : Weak and strong eld dynamo action[END_REF] have used the above two dierent sets of boundary conditions and have reported numerical buoyancy-driven dynamos in rapidly rotating spherical shells that dier in some fundamental aspects, see e.g. [START_REF] Olson | Probing Earth's dynamo[END_REF]. The simulations reported in [START_REF] Kuang | An Earth-like numerical dynamo model[END_REF] use the stress-free condition whereas those reported in [START_REF] Glatzmaier | A three-dimensional self-consistent computer simulation of a geomagnetic eld reversal[END_REF] use the no-slip condition. The dynamo simulated in [START_REF] Kuang | An Earth-like numerical dynamo model[END_REF] has a magnetic eld outside the core-mantle boundary that is dominated by an axial dipole component, like that of the Earth, and its intensity is close to the present geomagnetic dipole moment. The internal magnetic eld outside the core-mantle boundary is comparable to that obtained by Glatzmaier and Roberts [START_REF] Glatzmaier | A three-dimensional self-consistent computer simulation of a geomagnetic eld reversal[END_REF], but important dierences in the velocity and magnetic elds between these two dynamos can be observed within the outer core and the Taylor-Proudman tangent cylinder. (It is known that rotation of the Earth rigidies the ow eld in the direction parallel to the rotation axis through a mechanism known as the Taylor-Proudman eect. This eect makes the imaginary cylinder that is tangent to the equator of the solid inner core and whose axis is parallel to the rotation axis of the Earth acts like a solid boundary.) In the dynamo reported in [START_REF] Kuang | An Earth-like numerical dynamo model[END_REF] the uid ow is almost stagnant inside the tangent cylinder and has a strong azimuthal component outside; the magnetic eld is active throughout the outer core and is composed of two opposite toroidal cells and a simple dipolar poloidal structure. In the dynamo reported in [START_REF] Glatzmaier | A three-dimensional self-consistent computer simulation of a geomagnetic eld reversal[END_REF] the uid ow is composed of an intense polar vortex that is located inside the tangent cylinder and extends in the two hemispheres; the toroidal component of the magnetic eld is active only inside the tangent cylinder and is concentrated near the ICB; the poloidal component has a complicated dipolar structure with extra closed loops near the ICB. It is suggested in [START_REF] Olson | Probing Earth's dynamo[END_REF] that the signicantly dierent structures of the above two dynamos should be attributed to the nature of the boundary conditions that are imposed at the ICB and CMB interfaces. Note nally that dierent thermal boundary conditions (i.e., xed temperature or xed heat-ux boundary conditions) lead also to dierent magnetic and uid solutions [START_REF] Sakuraba | Generation of a strong magnetic eld using uniform heat ux at the surface of the core[END_REF].

In addition to thermal or compositional convection due to buoyancy, precession is also believed to be a possible source of energy for the geodynamo. The precession hypothesis has been formulated for the rst time in [START_REF] Bullard | The magnetic eld within the Earth[END_REF] and experimentally investigated using a water model in [START_REF] Malkus | Precession of the Earth as the cause of geomagnetism : Experiments lend support to the proposal that precessional torques drive the Earth's dynamo[END_REF]. It has since then been actively studied from the theoretical, experimental and numerical perspectives. However, it seems that it is only recently that numerical examples of precession dynamos have been reported in spheres [START_REF] Tilgner | Precession driven dynamos[END_REF][START_REF] Tilgner | Kinematic dynamos with precession driven ow in a sphere[END_REF], in spheroidal cavities [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] and in cylinders [START_REF] Nore | Nonlinear dynamo action in a precessing cylindrical container[END_REF]. Recently, Wu and Roberts [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] have numerically studied the dynamo eect in a precessing oblate spheroid. To facilitate their analysis the authors have split the total velocity eld into a basic stationary analytic (polynomial) solution (the so-called Poincaré ow) and a uctuating part. Following ideas of Kerswell and Mason [START_REF] Mason | Chaotic dynamics in a strained rotating ow : a precessing plane uid layer[END_REF], they have implemented the stress-free boundary condition on the uctuating component of the velocity in order to reduce the impact of the viscous layers at the rigid boundaries.

The purpose of the present paper is to show that the use of stress boundary conditions poses mathematical diculties. We prove for instance that, if the uid domain is not axisymmetric, the ow always returns to rest for large times when the stress-free boundary condition is enforced (see Proposition H.2.1), but this may not be the case when the ow domain is axisymmetric (see Proposition H.2.3). Various scenarios can occur depending whether the domain undergoes precession or not.

The note is organized as follows. We analyze the stress-free boundary condition in general uid domains in H.2. We show that this boundary condition is admissible if and only if the domain is not axisymmetric (see Proposition H.2.2). We revisit the same question in axisymmetric domains that undergo precession in H.3 and H.4. We show in H.3 that the problem exhibits a spurious stability behavior if the stress-free condition is enforced on the velocity eld minus the Poincaré ow (i.e., on the perturbation to the Poincaré ow; see Proposition H.3.1). We show in H.4 that the problem always returns to rest for large times if the homogeneous stress-free boundary condition is enforced. The theoretical argumentation developed in H. 3 ), but the rest state, {0}, is not an attractor. There are initial data that create ows that never return to rest. In particular, if the initial data is a rigid-body rotation, the ow will rotate for ever without losing energy.

Recall that it can be shown that Ω is axisymmetric if and only if Ω is either a sphere (and all the directions are symmetry axes) or Ω has a unique symmetry axis. Without a loss of generality, we assume that Oz is the only symmetry axis of Ω. Recall that all the rigid-body rotations about Oz can be written as follows x -→ ωe z ×x, ω ∈ R, where x is the position vector. We introduce the following space (H.2.9) R := span {e z ×x} , and its orthogonal complement in L 2 (Ω), say R ⊥ .

Lemma H.2.2. Let Ω be an open, bounded, connected, domain of class C 1 with unique symmetry axis Oz. There exists K > 0 such that the following holds for every v ∈ R ⊥ ∩ H 1 (Ω) with v•n = 0:

K v 2 L 2 (Ω) ≤ Ω |ǫ(v)| 2 dx,
where we denote |ǫ(v)| 2 := ǫ(v):ǫ(v).

Proof. The proof is similar to that of Proposition H.2.2 and proceeds by contradiction. We consider a sequence v n ∈ R ⊥ ∩ H 1 (Ω) with vanishing normal component such that

v n L 2 = 1 and ǫ(v n ) L 2 1 n .
Using Korn's inequality, we can prove that (up to extraction) v n converges in H 1 (Ω), and the limit v satises v ∈ R ⊥ , v•n = 0 and ǫ(v) = 0.

This implies that v is the sum of a translation plus a rigid-body rotation. But Ω being bounded the translation is zero. The unique symmetry axis of Ω being Oz, the condition v•n = 0 implies that v is a rigid-body rotation about the Oz-axis, i.e., v ∈ R ∩ R ⊥ = {0}, which contradicts v L 2 (Ω) = 1.

We claim that the Navier-Stokes problem (H. (ii) No element in R is an attractor.

Proof. (i) Let u ∈ L 2 ((0, +∞); L 2 (Ω)) ∩ L ∞ ((0, +∞); H 1 (Ω)) be a Leray-Hopf solution of (H.2.1)(H.2.5) and consider the following decomposition: u(t) = u ⊥ (t) + λ(t)e z ×x, where u ⊥ (t) ∈ R ⊥ , λ(t) ∈ R, ∀t ∈ [0, +∞).

Invoking Lemma H.3.1 we infer that dλ(t) dt = 0, implying that λ(t) = λ(0) := λ 0 . Let t 2 > t 1 > 0 be two positive times, then u being a Leray-Hopf solution implies that u ⊥ (t 2 ) 2 L 2 (Ω) + c z λ(t 2 ) 2 + 4ν Using the Gronwall-Bellmann inequality (see Lemma H.4.1), we infer that u ⊥ (t) L 2 (Ω) ≤ u 0 L 2 (Ω) e -2νKt . In conclusion

u(t) -λ 0 e z ×x L 2 (Ω) = u ⊥ (t) L 2 (Ω) ≤ u 0 L 2 (Ω) e -2νKt .
This implies that the global attractor, say A, is such that A ⊂ R, but since λ 0 spans R, we conclude that A = R.

(ii) Let us consider the rigid-body rotation eld u = ωe z ×x ∈ R. It is clear that {u} is an invariant set, i.e., u is a steady-state solution. Let B(u, ρ) ∈ H be the ball centered at u of arbitrary radius ρ > 0. Let v = µe z ×x ∈ R, µ = 0, be another rigid-body rotation and assume that µ is small enough so that u + v ∈ B(u, ρ). Clearly u + v satises (H.2.2), (H.2.4), (H. since u + v is a rigid-body rotation. Upon setting p = 1 2 |u + v| 2 we conclude that u + v solves (H.2.1). This proves that u + v is invariant (i.e., a steady-state solution). In other words u + v does not converge to u, no matter how small ρ is, thereby proving that the set {u} is not an attractor, no matter how large ν is.

H.2.4

An admissible stress-free-like boundary condition

The principal motivation to consider the so-called stress-free boundary condition is that it minimizes viscous layers and is thus less computationally demanding than the no-slip boundary condition. We have seen above that it unfortunately leads to pathological stability properties when the computational domain is axisymmetric. One possible remedy to this problem is to consider the following non-symmetric boundary condition:

(H.2.10)

(n•∇u) ×n |Γ = 0.
This condition expresses that the tangent components of the normal derivative of the velocity eld are zero. The physical interpretation of this condition is denitely less appealing than that of the stress-free boundary condition. However (H.2.10) and the stress-free condition are equally numerically convenient. The main advantage we see in (H.2.10) over the stress-free condition is that it yields standard stability properties, i.e., {0} is the global attractor. Proof. Upon observing that ∇•(ǫ(u)) = 1 2 ∇•(∇u) since u is solenoidal, we infer that

Ω -∇•(ǫ(u))•v = Ω -1 2 ∇•(∇u)•v = 1 2 Ω ∇u:∇v -1 2 Γ (n•∇u)•v = 1
2 Ω ∇u:∇v - 

K Ω v 2 ≤ Ω |∇v| 2 , ∀v ∈ H 1 (Ω), v•n |Γ = 0,
which can be shown to hold by proceeding as in the proof of Proposition H.2.2.

H.3 Precession driven ow with Poincaré stress

If the uid domain is a spheroid that undergoes precession, the time-independent Navier-Stokes equations supplemented with the impenetrable condition admit a so-called Poincaré solution. We show in this section that, independently of the value of the viscosity, the Poincaré solution is not an attractor of the problem if the tangential stress at the boundary is enforced to be equal to that of the steady-state Poincaré solution.

H.3.1 Geometry and equations

The container is an ellipsoid of revolution of center O and symmetry axis Oz. The unit vector along the Oz-axis is e z . The unit vectors along the other two orthogonal axes Ox and Oy are e x and e y , respectively. The surface of the spheroid is dened by the equation (H.3.1)

x 2 + y 2 + (1 + β)z 2 = 1,
where β > -1 and β = 0. We assume that the Ox-axis is xed in an inertial reference frame and the container rotates about the Ox-axis with angular velocity εe x . The reference frame (O, e x , e y , e z ) is non-inertial, and the non-dimensional Navier-Stokes equations describing the motion of the uid in this reference frame are written as follows: The only inertial eect to be considered in this frame is the Coriolis force induced by the rotation about the Ox-axis. Note that the denition of the pressure has been changed to account for the centripetal acceleration, εe x ×(εe x ×x). We additionally enforce the impenetrable boundary condition, (H.3.5)

u•n |Γ = 0.
The system (H. One way to force u P to be a Navier-Stokes solution consists of proceeding as in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] and to consider the problem (H. That is, we want the tangential component of the normal stress to be equal to that of the Poincaré solution. As mentioned in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF], it is clear that Claim H.3.1 (See [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]). u P is a steady state solution of (H. The question that we now want to investigate is whether there is a threshold on ν beyond which u P is a stable solution as t → +∞; i.e., does the ow return to u P independently of the initial data as t → +∞ if ν is large enough. We show in this section that the answer to this question is no, the fundamental reason being that rigid-body rotations cannot be dampened by viscous dissipation, no matter how large ν is. (ii) {u P } + R is the global attractor if ε/ν < 2K where K is the Korn constant introduced in Lemma H.2.2, and the convergence to the attractor is exponential.

Proof. Let us rst prove item (i). Let ρ > 0 be an arbitrary positive number. Let B(u P , ρ) ⊂ H be a ball of radius ρ centered at u P . Let w = ωe z ×r is a rigid-body rotation about the Oz-axis, and assume that ω = 0 is small enough so that u P + w ∈ B(u P , ρ). Let us prove that u P + w is a steady state solution of (H. Let us now show that it is possible to nd a pressure eld so that the steady where we used v•∇u P •v = -2εv y v z for any vector eld v. Then using Lemma H.4.1 and assuming that ε/ν < 2K, we conclude that u ⊥ (t) 2

L 2 (Ω) ≤ u ⊥ 0 2
L 2 (Ω) e -2(2Kν-ε)t . Using (H.3.13), we deduce that (λ(t 2 )λ(t 1 ))

Ω (e z ×x) 2 = -ε where c is a generic constant and µ := 2Kνε. This immediately implies that λ(t) converges exponentially to a constant. In conclusion u(t)-u P converges exponentially fast to an element in R as t tends to innity. Proof. Observing that M z = Ω (e z ×x)•u, we multiply (H. The conclusion follows readily. which concludes the proof.

Remark H.3.2. If we choose g = ǫ(u P )•n like in (H.3.7), then -Γ ν(g×n)•((e z ×x)×n) is equal to -Ω (e z ×x)•ν∇•(ǫ(u P )) = 0 and the balance equation of the angular momentum in the z direction simplies to ∂ t M z + εM y = 0.

Remark H. The setting of the problem is the same as in Section H.3.1 except that we enforce the tangential component of the normal stress to be zero at the boundary. The result that we want to emphasize is that contrary to what we observed in Section H.3, 0 becomes the unique stable solution of (H.4.1)(H.4.5) as t → +∞. The main result that we want to prove here is that any solution of the system (H.4.1)-(H.4.4) returns to rest as t → +∞. This fact has been mentioned in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] without proof. The key argument is that rigid-body rotations about the Oz axis are not stationary solutions of (H.4.1).

Theorem H.4.1. {0} is the global attractor of (H.4.1)(H.4.5).

Proof. Let us start by observing that {0} is indeed an invariant set of (H.4.1)(H.4.5). Let B(0, ρ) be the unit ball in H centered at 0 and of radius ρ. Let u 0 ∈ B(0, ρ) and let u ∈ L 2 ((0, +∞); L 2 (Ω)) ∩ L ∞ ((0, +∞); H 1 (Ω)) be a Leray-Hopf solution of (H.4.1)(H.4.5) and consider the following decomposition: u(t) = u ⊥ (t) + λ(t)e z ×x, where u ⊥ (t) ∈ R ⊥ , λ(t) ∈ R, ∀t ∈ [0, +∞). where c z = e z ×x 2 L 2 (recall t -→ u(t) is continuous in the L 2 -weak topology). Let t 2 > t 1 in (0, +∞), then (H. 3.13) where c is a generic constant that depends on Ω and may vary at each occurrence from now on. Let us take ϕ ∈ D(Ω) independent of time and divergence-free. Since u is a Leray solution we have 0 = Ω (u(t 2 , x) -u(t 1 , x))•ϕ(x) dx + Let us now set t 2 = t 1 + 1. Upon observing that Ω ((e z ×x) ⊗ (e z ×x)):∇ϕ(x)dx = 0 and Ω (e z ×x)•∇•ǫ(ϕ) dx = 0. This implies that there is a constant c(ϕ) ≥ 0 so that

2ε t 2 t 1 λ(τ ) dτ
Ω (e z ×x)•(ϕ(x)×e x ) dx ≤ (λ(t 2 ) -λ(t 1 ))

Ω (e z ×x)•ϕ(x) dx + c(ϕ)δ.

Let us choose ϕ so that 2ε Ω (e z ×x)•(ϕ(x)×e x ) dx = 1. The above estimate implies that

t 1 +1 t 1 λ(τ ) dτ ≤ c(ϕ)δ.
This implies that λ ∞ = lim t 1 →∞ We now illustrate the mathematical results from H.3-H.4 by performing numerical simulations with the geometry used in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. The simulations are performed using the SFEMaNS code [START_REF] Guermond | Eects of discontinuous magnetic permeability on magnetodynamic problems[END_REF] which has been extensively validated on precession ows [START_REF] Nore | Nonlinear dynamo action in a precessing cylindrical container[END_REF]. The authors of [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] study the dynamo action in an oblate spheroid dened by equation (H.3.1) with β = 0.5625 (this corresponds to the value b = 0.8 for the semi-minor axis used in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF], b := (1 + β) -1 2 ). This spheroid rotates about the Oz-axis and precesses about the Ox-axis with a precession rate ε. Two sets of boundary conditions are considered: either the homogeneous stress-free boundary or the Poincaré stress condition is enforced. The normalization is done so that the Reynolds number is equal to ν -1 . L 2 in the precessing frame. Note that ∂ t E K is always negative, establishing that E K is a decreasing function. This graph is in excellent agreement with gure 1(a) of [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. It also shows that u → 0 as t → ∞ in agreement with (H.4.6) (i.e., {0} is indeed the global attractor). The right panel in the g- ure shows the time derivative of the angular momentum along the Oz-axis and the quantity 50(∂ t M z + εM y ) evaluated numerically at each time step (see Lemma H.3.1). We observe that ∂ t M z + εM y is zero up to truncation errors as expected. This graph is also in excellent agreement with gure 1(b) of [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. This precession rate is chosen so that ε/ν is small. The spatial resolution of the meridian mesh is 1/40, and 16 Fourier modes are used in the azimuthal direction. We test two dierent perturbations denoted PERT1 and PERT2. PERT1 corresponds to the initial condition u 0 = u P + (1 + rand(r, z))e z ×x where u P is the Poincaré solution and rand(r, z) is a random function of amplitude in the range [-0.5, 0.5]. PERT2 corresponds to the initial condition u 0 = u P + e z ×x + v where v is a perturbation without rigid-body rotation, v(r, θ, z) = ( r 2 sin(θ), r cos(θ), 0), where (r, θ, z) are the cylindrical coordinates about the Ozaxis. The y-and z-components of the angular momentum of the initial data of PERT1 are (0, 2.67842046). The y-and z-components of the angular momentum of the initial data of PERT2 are (0, 2.68077560). The z-component of the angular momentum is a measure of the rigid-body rotation of the initial data. Note that the z-component of the angular momentum of the initial data of PERT2 is the same as that of the rigid-body rotation 2e z ×x. We show in Figures H.2 the time evolution of the quantities δE K = 1 2 uu P 2 L 2 (Ω) and u ⊥ (t) L 2 (Ω) and of the y-and z-components of the angular momentum (denoted M y and M z in the gures, respectively). The two solutions tend to two dierent steady states with two dierent rigidbody rotations about the Oz-axis, and these rigid-body rotations are dierent from those of the initial data (see gure H.2(d)). This is due to the fact that, even if the y-component of the angular momentum of the initial data is zero for both initial data, the angular momentum balance implies that the y-component of the angular momentum departs from zero when t > 0, thereby perturbing the z-component of the angular momentum via the conservation equation ∂ t M z + εM y = 0 (see gure H.2(c)). The velocity component u ⊥ of the two steady states is zero as expected, up to truncation errors induced by the space discretization, (see gure H.2(b)). These results illustrate the fact that, provided ε/ν is mall enough, {u P } + R is the global attractor of (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7), but no element in {u P } + R is an attracting set, meaning that the rigid-body rotation of the nal steady state can dier from that of its initial data.

Large Reynolds number ows

In the third series of simulations we solve equations (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7) with the Poincaré stress boundary condition at a larger Reynolds number with the precession rate ε = 0.25 that is used in [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. We use ν = 0.00375 and the initial data is the Poincaré solution. L 2 (Ω) from t = 0 to t = 2800, obtained with the SFEMaNS code. The mesh size in the meridian section is of order 1/80 and 16 Fourier modes are used in the azimuthal direction. Note that contrary to what is shown in gures 5 and 6 of reference [START_REF] Wu | On a dynamo driven by topographic precession[END_REF], the system does not converge to an oscillating state, and the order of magnitude of δE K in our computation is at least 6 times larger than that reported in gure 6 of [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. This contradictory result is reproduced in gure H.3(b) by another colleague using a totally dierent and independent code based on a Finite Volume algorithm (courtesy of S. Vantieghem, ETH, Zurich, Switzerland). The quantity δE K from the Finite Volume code is at least 3 times larger than that reported in gure 6 of [START_REF] Wu | On a dynamo driven by topographic precession[END_REF]. These results illustrate the fact that the attractor of (H. Poincaré stress boundary condition has pathological properties. The dynamo results of [START_REF] Wu | On a dynamo driven by topographic precession[END_REF] based on the Poincaré stress boundary condition may therefore be questioned.

H.6 Discussion

The so-called stress-free boundary condition (n•ǫ(u))×n |Γ = 0 is often used in the geophysics literature to avoid issues induced by viscous layers. For example, an anelastic dynamo benchmark [START_REF] Jones | Anelastic convection-driven dynamo benchmarks[END_REF] was conducted very recently in a rotating spherical shell. The authors emphasize in their concluding section the diculties they encountered to obtain the same hydrodynamical solutions using four dierent codes in a model with stress-free boundary conditions applied to the ICB and the CMB. Since the container in this benchmark has the spherical symmetry (spherical shell), the balance equation (H.3.13) gives ∂ t M = 0 in the inertial reference frame, and each group had to apply some remedy in order to numerically conserve the three components of the angular momentum. But, more importantly, they also had to use the same initial condition. This diculty did not arise in the older dynamo benchmark [START_REF] Christensen | A numerical dynamo benchmark[END_REF] using the same geometry because the no-slip boundary condition was prescribed at the ICB and CMB.

We have proved in this work that the stress-free boundary condition with no precession leads to spurious stability behaviors when the uid domain is axisymmetric. This problem is still present when precession is accounted for and the Poincaré stress boundary condition is imposed. One recovers stability at large times with precession when the stress-free boundary condition is enforced.

We hope that the present work will help draw the attention of the geodynamo community on this problem. The above pathological stability behaviors can be avoided by enforcing one additional condition. For instance, for problem (H. For problem (H.2.1)(H.2.5), one could think of enforcing the vertical component of the total angular momentum (H.6.3) Γ u•(e z ×x) ds = 0, as was done for the three components in the anelastic dynamo benchmark [START_REF] Jones | Anelastic convection-driven dynamo benchmarks[END_REF].

We have suggested in H.2.4 to use a boundary condition that does not have the stability problems mentioned above. For the problem (H. In conclusion, using the stress boundary condition to evaluate nonlinear behaviors of Navier-Stokes systems may sometimes be dubious when the domain is axisymmetric.

Fig. 1 . 2 :

 12 Fig. 1.2: Dispositif de Cadarache : à gauche, schéma du dispositif (Von Kármán Sodium collaboration) ; à droite, détails techniques pour le cas réel (en haut) et géométrie simpliée pour les simulations numériques (en bas), cf. [67]. La structure du ot moyen est également représentée.
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 11 ∇×H = g dans Ω, (2.1.5) ∇•(µH) = 0 dans Ω, (2.1.6) H×n = 0 sur Γ, (2.1.7) la seconde équation devient une contrainte qu'il faut gérer proprement. Ce problème soulève naturellement le problème de valeurs propres suivant : trouver λ et H tels que ∇× ∇×H = λµH dans Ω, (2.1.8) ∇•(µH) = 0 dans Ω, (2.1.9) H×n = 0 sur Γ. (2.1.10) C'est pour répondre à ces deux problèmes (2.1.5)-(2.1.6)-(2.1.7) et (2.1.8)-(2.1.9)-(2.1.10) que nous allons développer une nouvelle méthode d'approximation, en utilisant les éléments nis de Lagrange.

2. 1 . 3

 13 Formulation variationnelle et régularité (Résultats principaux de l'annexe A) Nous utilisons une formulation variationnelle pour résoudre le problème (2.1.5)-(2.1.6)-(2.1.7) : on dira que H ∈ X µ est solution de (2.1.5)-(2.1.6)-(2.1.7) lorsque (2.1.19)

∀F ∈ X µ , 1 σ

 1 ∇×H, ∇×F = (g, F) .

( 2 . 3 . 8 ) 2 3 sin 2 3

 23822 ∇×∇×H = 0, ∇•H = 0, H×n |∂Ω = G×n,où G est une donnée ; ici, on prend G = ∇φ, où φ est déni en coordonnées polaires par φ(r, θ) = r θ . On peut noter que G×n est susamment régulière au bord pour que ce

Fig. 2 . 1 :

 21 Fig. 2.1: Comparaison des approximations pour α = 0 (à gauche) et α = 0, 75 (à droite) avec la solution exacte (au centre).

Fig. 2 . 2 :

 22 Fig. 2.2: Courbes de convergence pour le cas λ = 0.535. On note qu'on retrouve numériquement l'ordre de convergence optimal 0.535 pour α = 0.8 ou 1.

Fig. 2 . 3 :

 23 Fig. 2.3: Courbes de convergence pour le cas λ = 4.535. Il semble que l'ordre de convergence soit 3-α, mais nous n'avons pas été en mesure de le prouver précisément de manière théorique.

  dénis au chapitre B (cf. (B.3.15), (B.4.2) et (B.4.3)) et δ > 0 reste à choisir.

Fig. 2 . 6 :

 26 Fig. 2.6: Sans stabilisation, éléments P 2 pour H h , éléments P 1 pour p h .

  SFEMaNS (Spectral / Finite Element code for Maxwell and Navier-Stokes equations) est un outil développé en Fortran90 depuis 2002 par J.-L. Guermond et al. Il s'agit d'une méthode hybride spectrale/éléments nis de Lagrange, qui permet d'intégrer le système complet d'équations de la MHD. Nous en donnons ici les principales caractéristiques.

Fig. 3 . 1 :

 31 Fig. 3.1: Exemple de découpage du plan méridien : à gauche, représentation des domaines Ω 2D N S (bleu), Ω 2D M XW (vert) et Ω 2D v (marron), à droite, répartition des degrés de liberté sur 4 processeurs (une couleur par processeur)
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 344 Fig. 3.4: Schéma du domaine de calcul pour les tests 3 et 4

Fig. 3 . 5 :

 35 Fig. 3.5: Test 3 : erreur L 2 sur le champ magnétique : la courbe est en échelle logarithmique, et on remarque que l'ordre de convergence semble être 3α.

Fig. 3 . 6 :

 36 Fig. 3.6: Test 4 : erreur L 2 sur le champ magnétique : la courbe est en échelle logarithmique. L'ordre de convergence est entre 2 et 3 et varie selon α.

Fig. 3 . 7 :

 37 Fig. 3.7: Schéma du domaine de calcul pour le test 5

Fig. 3 . 9 :

 39 Fig. 3.9: Test 7 : erreur en norme L 2 sur le champ magnétique dans le conducteur. La courbe est en échelle logarithmique.

4. 1

 1 Dynamo de Busse & Wicht 4.1.1 Conguration étudiée et adimensionnement En 1992, Busse & Wicht ont proposé une conguration simple génératrice de dynamo

Fig. 4 . 2 :

 42 Fig.4.2: Taux de croissance en fonction de R m , pour α 0 = 1, k z = 1, ξ 0 = 1 et κ 0 = 0.9.
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 9 Fig.4.2: Taux de croissance en fonction de R m , pour α 0 = 1, k z = 1, ξ 0 = 1 et κ 0 = 0.9.

  Fig.4.2: Taux de croissance en fonction de R m , pour α 0 = 1, k z = 1, ξ 0 = 1 et κ 0 = 0.9.

4. 1 . 3

 13 Dynamo cinématique avec sauts de perméabilité

Fig. 4 . 3 :

 43 Fig. 4.3: Conguration avec sauts de perméabilité (vue de dessus).

Fig. 4 . 4 :

 44 Fig. 4.4: Taux de croissance en fonction de R m , dans la couronne avec sauts de perméabilité.

Fig. 4 . 5 : 1 .

 451 Fig. 4.5: Schéma simplié du dispositif VKS. Nous représentons également la forme du ot MND (4.2.1) : les couleurs indiquent la vitesse toroïdale, alors que les vecteurs indiquent la vitesse poloïdale. Les traits noirs représentent le contour des disques. Dans les notations adimensionnées, le uide a une conductivité σ = 1 et une perméabilité µ = 1. Les disques ont une conductivité σ = σ r et µ = µ r . Rappelons que l'expérience a mis en évidence un eet dynamo dans le cas où les disques et les pales étaient en fer doux (ce qui correspond à une conguration du type σ r = 1, µ r >> 1). Il semble important pour l'expérience que l'ensemble disque+pales en fer doux soit en rotation pour produire de l'eet dynamo. La question naturelle qui se pose est la suivante : est-ce que la présence d'une zone de forte perméabilité magnétique en mouvement est nécessaire à l'obtention d'un eet dynamo, ou est-ce qu'elle permet simplement de réduire le seuil de dynamo à un niveau réalisable expérimentalement ? Nous essayons par la suite de produire des simulations numériques pour tenter de répondre à cette question. Les diérentes simulations que nous allons présenter

Fig. 4 . 6 :

 46 Fig. 4.6: Modèles simpliés pour VKS : à gauche pour les cas 1 et 2, à droite pour le cas 3.

Fig. 4 . 7 :

 47 Fig. 4.7: Taux de croissance du champ magnétique en fonction du rapport entre vitesse poloïdale et toroïdale, pour deux valeurs de R m

  .

Fig. 4 . 8 :

 48 Fig. 4.8: Évolution de l'énergie magnétique en fonction du temps (R e = 1200, R m = 1200)
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 2 Ω). The proofs of Proposition A.4.1 and Proposition A.4.2 use regularity estimates on the Laplace equation with non-smooth coecients supplemented with either Dirichlet or Neumann data. These regularity estimates are established in Theorem A.3.1.

  5 to establish regularity estimates on the Maxwell problem (A.1.5). The main results of this section are propositions A.4.1 and A.4.2. Both these results are consequences of TheoremA.4.1, which by itself is an improvement of [35, Theorem 2]. A.4.1 Notations

Remark A. 4 . 1 . 1 2

 411 The counterpart of Proposition A.4.1 and Proposition A.4.2 when ε are µ are constant or smooth functions is that X s (Ω) and Y s (Ω) are continuously embedded in H (Ω).

Proposition A. 5 . 1 .

 51 Let the Assumption (A.4.1) hold. Problem (A.5.4) has a unique solution

  Let D be an open connected Lipschitz domain in R d . (In the rest of the paper D denotes a generic open Lipschitz domain that may dier from Ω.) The space of the smooth functions with compact support in D is indierently denoted by C ∞ 0 (D) or D(D). We dene the norm in H 1 (D) as follows: (B.2.1)

  1, . . . , d, (B.3.4) ∇×(E D F) = E D (∇×F), ∀F ∈ H 0,curl (D) , (B.3.5) ∇(E D F) = E D (∇F), ∀F ∈ H 1 0 (D). (B.3.6) Proof. (B.3.3) is evident and (B.3.4) is just the chain rule. We only prove (B.3.5) since the proof of the (B.3.6

  3.11) by means of an interpolation technique. Using Lemma B.3.1 together with d ≥ 2, we have

B. 5 . 1

 51 Convergence in the discrete norm.

  0 h and the estimates (B.5.2)-(B.5.3), we obtain

  B.5.14) where we have used (B.5.10) and r ≤ τ 2 < τ . Upon inserting (B.5.12)-(B.5.13)-(B.5.14) in (B.5.11) we obtain

  10, 100, 10 8 } by M. Dauge, cf. [40]. Tables B.3 and B.4 show results for ε r = 0.5 and ε r = 0.1 respectively. The column rel. tol. stands for the ratio |λc-λr| λr , where λ c (resp. λ r ) is the computed (resp. reference) eigenvalue. The reference values are those from the benchmark.

Figure C. 1 :

 1 Figure C.1: Localization of vector quantities on a grid cell ijk with the cell center located at (x i , y j , z k ). The dotted curve denotes the path along which the integration of B is executed for the computation of E i,j-1/2,k-1/2 x.
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 38 and (C.3.9) have to be adjusted according to the localization and the eld components involved. Applying the averaging rules (C.3.8) and (C.3.9) to the computation of the diusive part of the electric eld results in a scheme that intrinsically fullls the jump conditions (C.2.3) at material interfaces.

  and ∂/∂n is the normal derivative on the surface element dΓ so that ∂ n Φ = -B n yields the normal component of B on dΓ. The tangential components of the magnetic eld at the boundary B τ = e τ • B = -e τ • ∇Φ(r) are computed from equation (C.3.11) as follows :

Figure C. 2 :

 2 Figure C.2: Example of a computational domain Ω with various boundaries: (a) sketch with arbitrary axisymmetrical domains showing the conducting domain Ω c (shaded regions) and the vacuum Ω v (non-shaded domain) with the interfaces Σ µ and Σ, (b) meridian triangular mesh used in section C.4 with disks of d = 0.6 thickness with SFEMaNS (1 point out of 4 has been represented), (c) zoom of (b).

  Figure D.1(b

  z)e imθ ; ∀m = 0, . . . , M, b m h ∈ X z)e imθ ; ∀m = 0, . . . , M, ψ m h ∈ X H,2d h and ψ m h = ψ -m h ,

  Figure C.3: Sketch of the set up. Two disks with thickness d = 0.6, 0.3, 01 (solid, dashed, dotted curve) are introduced in a cylinder with height H = 2.6 and radius R = 1.4. In all runs the location of the backside of each disk is xed at z = ±1. At the outer disk edge a circular shape is applied with a curvature radius corresponding to half of the disk thickness. The radial extension of the disks is xed and given by R disk = 0.95. The dashed horizontal line denotes the inner boundary that separates the dynamical active region from the stagnant outer layer in the runs with Rm > 0 (see Sec. C.5).
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 641 Figure C.4: (Color online) Ohmic decay. Axisymmetric eigenmodes of the magnetic eld H = µ -1 r B (from left to right: H r , H ϕ , H z ); From top to bottom: µ r = µ 0 σ = 1 (no disks), µ r = 100, µ 0 σ = 100 (all with insulating boundary conditions and d = 0.6), µ r = µ 0 σ = 1 (no disks), µ r = 100, µ 0 σ = 100 (all with vanishing tangential eld boundary conditions and d = 0.6). Note that the absolute amplitudes denoted by the respective color bars are meaningless and only serve to compare the relative amplitudes of the dierent components within one case.

Figure C. 5 :

 5 Figure C.5: (Color online) Ohmic decay. Axisymmetric eld H = µ -1 r B for the thin disk case (d = 0.1, from left to right: H r , H ϕ , H z ); Top row: µ r = 100, bottom row: µ 0 σ = 100. Insulating boundary conditions. Note that the absolute amplitudes denoted by the respective color bars are meaningless and only serve to compare the relative amplitudes of the dierent components within one case.

Figure C. 6 :

 6 Figure C.6: (Color online) Ohmic decay for thin disks (d = 0.1). Left panel: µ r = 100, right panel: µ 0 σ = 100. The isosurfaces present the magnetic energy density at 25% of its maximum value.

Figure C. 7 :

 7 Figure C.7: (Color online) Ohmic decay. The blue transparent isosurfaces present the magnetic energy density at 25% of the maximum value and the red eldlines show the eld structure for d = 0.6 and (from left to right): µ r = 1, 2, 10, 100 (corresponding to µ eff r = 1, 1.2, 2.7, 19.5).

Figure C. 8 :

 8 Figure C.8: (Color online) Decay rates with vacuum BC against µ eff r (left column) and against µ 0 σ eff (right column) for d = 0.6 (top row) and d = 0.1 (bottom row). The solid curves show the results obtained from the hybrid FV/BEM scheme and the dashed curves denote the results from the SFEMaNS scheme. The stars in the lower right panel present the results of a FV/BEM run with higher resolution demonstrating that the FV/BEM algorithm might approach the SFEMaNS data.

Figure C. 10 :

 10 Figure C.10: (Color online) Decay rates and decay times against µ eff r (left column) and against µ 0 σ eff (right column) for vanishing tangential elds boundary conditions. d = 0.6. The solid (dashed) curves denote the results from the FV/BEM (SFEMaNS) scheme.
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 1160 Figure C.11: (Color online) Comparison of boundary conditions. Decay times against µ eff r (left panel) and against µ 0 σ eff (right panel) for vacuum BC (solid curves) and VTF boundary conditions (dashed curves). d = 0.6. All data results from the SFEMaNS scheme.

Figure C. 13 :

 13 Figure C.13: Growth rates for the MND ow driven dynamo against µ r (left panel) and against µ 0 σ (right panel). Solid curves denote data obtained from the FV/BEM scheme, dashed curves denote the results from the SFEMaNS scheme. The green, blue, red, yellow colors denote the cases Rm = 0, 30, 50, 70. The black stars in the left panel show the results for the SMND ow at Rm = 50 (see text) as reported in Tab. C.3.
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Figure D. 1

 1 on two examples. The vertical dashed line represents the symmetry axis. Only the meridional section of each region is shown. The geometry shown in the left panel (a) has J = 2 (3 conducting torii), and Σ = (Γ 0

and [[b×n]] stands for b 1 ×n c 1 + b 2 ×n c 2 .

 12 The bilinear form L in (D.3.7) is dened by

Figure D. 2 :

 2 Figure D.2: Two-dimensional L-shape domain with constant µ c

. 4 .

 4 The method converges well in the range µ ∈[2, 200].

Figure D. 3

 3 shows the computed solution for µ = 200. We observe that the radial component H c r (panel (a)) is continuous at (̺ = R 1 and ϑ = 0, ϑ = π) and that the vertical component H c z (panel (b)) is continuous at (

Figures D. 5 (

 5 a), D.5(b) show the contour lines of the m = 1 azimuthal Fourier mode of H θ at t = 100. Observe that H θ is symmetric with respect to the equatorial plane. Plotting the contour lines of H θ emphasizes the skin eect. The lines shown in Figures D.5(a), D.5(b) are very close to those reported in Figure

Figure D. 4 :

 4 Figure D.4: Induction in a nite rotating solid cylinder at R m = 100. 'LMW' is the result from [105], 'FEM' is our result with P 2 nite elements for H and P 2 nite elements for φ with h = 1/100.

8 )

 8 Figure D.5: Rotating cylinder at R m = 100 at steady state. Contours of H θ of the m = 1 mode in azimuthal planes and streamlines of the electric current of the m = 1 mode colored by the norm of the current.

Figure D. 6 :

 6 Figure D.6: Steady solutions for two counter-rotating disks in a cylindrical vessel: (a,b,c) µ d = µ 0 and σ d = 200σ 0 ; (c,d,e) µ d = 200µ 0 and σ d = σ 0 ; magnetic line near the top disk seen from the side (a,d) and from the top (b,e); (c,f) contours corresponding to 10% of the maximum magnetic energy.

Figure D. 7 :

 7 Figure D.7: VKS design and mean-ow structure. Top: dimensions (in millimeters) and technical details of the set-up. Are represented the copper vessel with the embedded cooling system, the thin copper envelope of radius r = 206 mm, height 524 mm and thickness 5 mm separating the ow and the stagnant liquid sodium, the impellers (disks with attached blades), and the shafts (courtesy of the VKS team).Bottom: simplied geometry in non-dimensional units for numerical simulations; the thickness of the copper envelope is zero.

Figure D. 8 :

 8 Figure D.8: Two simplied domains where the thickness of the copper envelope is zero.

65 Figure D. 10 :

 6510 Figure D.10: Magnetic eld in two perpendicular azimuthal planes in Cases 2' and 4'.

(a) µ = 1 ,

 1 Figure D.11: Magnetic lines and iso-value of the magnetic energy density corresponding to 25% of the maximum magnetic energy for Cases 2' and 4'.

Figure E. 1 :

 1 Figure E.1: Velocity eld used in the kinematic simulations. The azimuthal velocity, u ϕ , is shown in color and the poloidal component of the velocity, u r e r + u z e z , is shown with arrows. The black structures in the intervals z ∈ [-1.0; -0.9] and z ∈ [0.9; 1.0] represent two axisymmetric impellers of relative permeability µ r > 1.Note that the ow is mixed (poloidal and toroidal) between the two impeller disks and purely toroidal within and behind the impeller disks.
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Figure E. 3

 3 Figure E.3 shows the growth-rate of the m1-mode as a function of the relative permeability of the impeller disks for four values of the Reynolds number. This gure is similar to gure 13a in

[ 56 ]

 56 Figure E.4: Left panel: Dynamo threshold for the m1-mode as a function of µ r . Right panel: Linear t on log-log scale provides the scaling Rm c -Rm c ∞ ∝ µ -0.52 r
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 33 Figure E.5 shows the growth-rates of the axisymmetric mode as a function of µ r . Contrary to what we have observed for the m1-mode, the dependence of the m0-mode with respect to Rm seems to be small; more precisely, the ow does not seem to play a signicant role when the permeability is large.

Figure E. 5 :

 5 Figure E.5: Growth-rates of the m0-mode. The dotted vertical line marks the transitional value µ t r ≈ 17.5 at which the pure toroidal mode becomes dominant. In the free decay case (Rm = 0) the poloidal (dashed black line) and toroidal (solid black line) modes are decoupled and the growth-rates of these two modes are γ m0 = -4.159 and γ t m0 = -8.950, respectively. The decay time of the poloidal eigenmode is signicantly larger than that of the toroidal one. The dominant poloidal eigenmode exhibits a typical dipolar pattern as shown in the left panel of Figure E.6. Increasing the disk permeability (still at Rm = 0) the poloidal mode remains nearly unaected (dashed black curve in Figure E.5) whereas the purely toroidal mode is signicantly enhanced and eventually becomes dominant

Figure E. 6 :

 6 Figure E.6: Spatial structure of m0-mode in free decay (Rm = 0). Left panel: µ r = 1, right panel: µ r = 60. The isosurfaces show the energy density at 20%, 40%, 80% of the maximum value. The colors code the azimuthal component H ϕ = µ -1 r B ϕ .

Figure E. 7 :

 7 Figure E.7: Left panel: current generation at the uid-disk interface by paramagnetic pumping for a radial magnetic eld B r . Right panel: current generation from paramagnetic pumping for the azimuthal magnetic eld B ϕ .

r 2 ,

 2 and η 0 = 1 σµ 0 . This form of the induction equation clearly shows that B r = B z = 0 and B ϕ = 0 can be an axisymmetric solution: this is the purely toroidal mode. If B r = 0, B z = 0, then their shearing by the nonzero azimuthal ow u ϕ , the so-called Ω-eect, will always generate B ϕ = 0 which then results in a mixed mode. The growth-rate of the mixed mode will however remain entirely xed by its poloidal components B r and B z (see Figure E.5).

Figure E. 8 :

 8 Figure E.8: Paramagnetic pumping at µ r = 60. Upper row: electromotive force (EMF) E µ = (µ 0 µ r σ) -1 µ -1 r ∇µ r × B ϕ e ϕ at Rm = 0 (left) and Rm = 30 (right). Lower row: (poloidal) current density j = (µ 0 ) -1 ∇ × B/µ r at Rm = 0 (left) and Rm = 30 (right). The light grey lines show soft iron disks and the solid horizontal line shows the separation between the moving uid and stagnant side layer. The azimuthal current is negligible. Note the close similarity between free decay (left column) and the case Rm = 30 (right column) illustrating the marginal impact of the uid ow.
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 46 into this dispersion relation, we obtain an implicit nonlinear equation for the growth-rate γ as a function of d and µ r . We show in the left panel of Figure E.9 the graph of the function γ(µ r ) deduced from (E.4.10) with d = 0.1 and k = k 1 = 3.8317. Two further analytical graphs computed with k = (1 ± 0.1)k 1 show the very weak sensitivity of the growth rate on relaxing the strict boundary condition H × n = 0 (e.g. by using an outer shell of dierent conductivity). We also show in this gure the numerical outcome for the growth-rate of the purely toroidal mode at Rm = 0 (see also black solid line in Figure E.5

Figure E. 9 :

 9 Figure E.9: (left) Growth-rate γ as a function of µ r for the dominant axisymmetric toroidal eigenmode from the simplied model. d = 0.1, k = k 1 and k = (1 ± 0.1)k 1 . (right) Using the proper time scale σµ r µ 0 R 2 involving the permeability of the impeller disk, the growth-rate γ = γµ r reaches an asymptote at high µ r .

  Figure F.2, (see Figure F.1 for a comparison with the pure Taylor-Couette ow). We have veried, by performing nonlinear Navier-Stokes simulations, that the ow V I , at Re = 120, is stable with respect to three-dimensional perturbations supported on Fourier modes up to m = 11. The rst hydrodynamic non-axisymmetric instability occurs on the Fourier mode m = 3 at R e = 168. The steady and axisymmetric forced Taylor-Couette ow V I is used in F.4.2 to perform kinematic dynamo simulations.

Figure F. 3 .

 3 There is no dynamo action at R m = 100. Dynamo action occurs at R m = 200 in the range 4.2 < ǫ < 15.4, which corresponds to 1.0 < Λ(ǫ) < 3.8. Note that the purely viscous driving, which corresponds to ǫ = 1 and Λ 0 = 0.235, cannot sustain a dynamo at R m = 100 and R m = 200.

Figure F. 3 :

 3 Figure F.3: Kinematic dynamo. Growthrate of Fourier mode m = 1 for the modied Taylor-Couette ow, V ǫ , as a function of ǫ for R m = 100 and R m = 200; Γ = 2 and R e = 120.

Figure F. 4

 4 Figure F.4 the magnetic eigenvector for the Fourier mode m = 1 at R e = 120, R m = 200and ǫ opt = 8. This eigenvector is a rigid wave that rotates in the same direction as the inner cylinder and top/bottom lids, and its period of rotation is T ≃ 870, i.e., more than 66 rotation periods of the inner cylinder. Since Ω i = 1/α(ǫ) and ǫ = 8, the angular velocity of the inner cylinder is Ω i = 0.481; this in turn implies that the rotation period of the inner cylinder is T i = 2π Ω i = 13.1. Upon introducing the equatorial symmetry operator S Z2 H = (H r , H θ , -H z )(r, θ, -z). the magnetic eld has the following symmetry property:

( a ) 2 (g) isosurface H c 2 Figure F. 4 :

 a224 Figure F.4: Kinematic dynamo with ow V(ǫ = 8) at R e = 120, R m = 200. Magnetic eigenvector for Fourier mode m = 1. Represented in (a) to (f) are the radial, azimuthal, and vertical components, normalized by the square root of the magnetic energy, in two complementary planes, with 0 ≤ r ≤ 2, -1 ≤ z ≤ 1 (the z-axis is on the left): for θ = 0, -0.85 ≤ H r ≤ 0.85 (every 0.17), -0.1 ≤ H θ ≤ 0.68 (every 0.17) and -0.85 ≤ Hz ≤ 0.85 (every 0.17); for θ = π 2 , -1 ≤ H r ≤ 3.75 (every 0.25), -1 ≤ H θ ≤ 0.15 (every 0.25) and -1.5 ≤ H z ≤ 1.5 (every 0.25). Represented in (g) is the isosurface H c 2 (7% of maximum value) colored by the azimuthal component. Note the m = 1 structure.
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 42 Kinematic dynamo in the forced Taylor-Couette setup

Figure F. 6

 6 Figure F.5: Kinematic dynamo of ow V(ǫ = 6.5), Γ = 2, R e = 120. Growthrate of the Fourier mode m = 1 as a function of R m .

Figure F. 6 :

 6 Figure F.6: Kinematic dynamo with V I ow, Γ = 2 and R e = 120 . Growthrate of the Fourier mode m = 1 as a function of R m . ROT: rotating inner core; NO-ROT: non-rotating inner core (but inner wall rotates).

( a ) 2 (g) isosurface H c 2 Figure F. 7 :

 a227 Figure F.7: Kinematic dynamo with ow V I at R e = 120, R m = 200. Magnetic eigenvector for Fourier mode m = 1. Represented in (a) to (f) are the radial, azimuthal, and vertical components, normalized by the square root of the magnetic energy, in two complementary planes: for θ = 0, -0.9 ≤ H r ≤ 0.2 (every 0.1), -1.4 ≤ H θ ≤ 0.35 (every 0.25) and -0.6 ≤ H z ≤ 0.6 (every 0.1); for θ = π/2, -2.2 ≤ H r ≤ 0.9 (every 0.25), -0.25 ≤ H θ ≤ 1.75 (every 0.25) and -1.25 ≤ H z ≤ 1.25 (every 0.1). Represented in (g) is the isosurface H c 2 (14% of maximum value) colored by the azimuthal component. Note the m = 1 structure.
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 52 Time evolution of the energy The time evolutions of the kinetic and magnetic energies are reported in Figure F.8(a-b),

  Figure F.8: Nonlinear dynamo in the forced Taylor-Couette setup. (a) Time evolution of kinetic (-0.37) and magnetic energies in the conducting region 0 ≤ r ≤ R o and -Γ/2 ≤ z ≤ Γ/2. Panel (b) shows the symmetric and anti-symmetric components of the magnetic energy.

1 2 (

 2 H c -S Z2 H c ), of the magnetic eld. The time evolution of these two quantities is shown in Figure F.8(c). The equatorial symmetry breaking is driven by the small even azimuthal modes of the magnetic eld as can be seen on Figure F.9 (a)(b), especially the magnetic mode m = 2.

31 Figure F. 9 :

 319 Figure F.9: Time evolution of dierent modal energies; (a) magnetic energies m = 0, 2 (bottom curves) and m = 1, 3 (top curves); (b) kinetic energies m = 1, 3 and magnetic energies m = 0, 2; (c) magnetic energies m = 1 (top curve), m = 30, 31 (middle curves) and m = 0.

  Figure F.10(b) the time evolution of twice the anti-symmetric part of H θ at (r = 1.2, θ = 0, z = -0.5).

F. 5 . 3 Figure F. 11 :

 5311 Figure F.11: Nonlinear dynamo at t = 1000, t = 1400 and t = 2500, for R e = 120, R m = 200:(a-c) isosurface of H c 2 (25% of maximum value); (d-f) isosurface of V 2 (25% of maximum value); (g-i) isosurface of V 2 without the axisymmetric mode (10% of maximum value); color scale proportional to azimuthal component.

  Figure F.12(b) presents a zoom of the time evolution of D z showing two reversals.

  Figure F.12: Time evolution of the dipolar magnetic moment. Note that the vertical component has been multiplied by 5 in the left panel.

  Figure F.13: Isosurface of H c 2 (25% of maximum value) and magnetic eld lines at t = 2500.

F. 6

 6 Concluding remarks
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  Figure G.2: (Color online) Time evolution of the total kinetic energy K, axial kinetic energy K z , and total north and south kinetic energies as indicated.

Figure G. 3 : 2 3 , 1 2} 2 3 , 1 2}

 32121 Figure G.3: (Color online) Time averaged spectra of the three components of the velocity eld as a function of the azimuthal mode m = 0, . . . , 23 at R e = 1200.

Figure G. 4 :

 4 Figure G.4: (Color online) Time evolution of the total kinetic energy K for dierent Reynolds numbers R e ∈ [400, 1200]. reconnects at the walls through viscous boundary layers, (see gure G.8(a)). The magnetic eld lines exhibit a quadrupolar shape which is best seen in the vacuum from the top of the cylinder (see gure G.8(b)). These lines connect mainly to the lateral wall where the current is concentrated. The magnetic energy in the cylinder is dominated by the azimuthal modes m = 1, 2, 3.

Figure G. 5 :

 5 Figure G.5: (Color online) Time evolution of the asymmetry ratio r a for dierent Reynolds numbers R e ∈ [700, 1200].

  Figure G.6: (Color online) Time evolution of the asymmetry ratio r a at R e = 750 and R e = 800 to show the short period of oscillations.

R

  e ∈ [400 : 5000] the energy scales like K ≃ R -0.4 e (see gure G.11(b)), which in turn suggests the following scaling law for the velocity u ≃ R -1/5 e = E 1/5

  Figure G.7: (Color online) Time evolution of the magnetic energy M in the conducting uid (a) in the linear regime from t = 192 at R e = 1200 and various R m as indicated (in lin-log scale) and (b) in the nonlinear regime from t = 192 to t = 287.5 (R e = 1200, R m = 2400), from t = 241 to t = 346 (R e = 1200, R m = 1200) and from t = 271 to t = 307 (R e = 1200, R m = 600).

  Figure G.8: (Color online) Snapshot at t = 241 for R e = 1200, R m = 2400 showing vorticity eld lines (red) and magnetic eld lines colored by the axial component (grey/black for positive/negative H z component).

Figure G. 9 :

 9 Figure G.9: (Color online) Time evolution of the asymmetry ratio r a at R e = 1200 for t ∈ [72, 407] in the Navier-Stokes setting and R e = 1200, R m = 2400 for t = [192, 287.5], R e = 1200, R m = 1200 for t = [241, 346], and R e = 1200, R m = 600 for t = [271, 307] in the MHD setting. The curves at R e = 1200, R m = 1200 and R e = 1200, R m = 600 have been shifted for easy reading.

Figure G. 10 :

 10 Figure G.10: (Color online) Time evolution of the magnetic energy M at R e = 1200 and R m = 1200 for t ∈ [211, 229] in the MHD setting (denoted as 'MHD'), in the Maxwell setting with the velocity frozen at t = 211 (denoted as 'MAXWELL') and in the Maxwell setting with the symmetrized velocity frozen at t = 211 (denoted as 'MAXWELL SYM').

  Figure G.11: (Color online) Total (time averaged) kinetic energy K in the precessing frame as a function of the Reynolds number R e : (a) the points denoted PL are from reference [92], (b) log-log scale with the t R -2/5 e

  2.5) (recall that ǫ(u + v) = 0). Let us observe that ∂ t (u + v) -2ν∇•(ǫ(u + v)) = 0 and (u + v)•∇(u + v) = 2(u + v)•ǫ(u + v) -(u + v)•(∇(u + v)) T = -1 2 ∇|u + v| 2 ,

Lemma H. 2 . 3 .

 23 The following holds for all smooth solenoidal vector eld u that satises(n•∇u) ×n |Γ = 0: , ∀v ∈ H 1 (Ω), v•n |Γ = 0.

∂

  t u + u•∇u -2ν∇•ǫ(u) + 2εe x ×u + ∇p = 0, (H.3.2) ∇•u = 0, (H.3.3) u |t=0 = u 0 .(H.3.4) 

  3.2)-(H.3.3)-(H.3.5) equipped with the additional non-homogeneous boundary condition (H.3.7)(n•ǫ(u)) ×n |Γ = (n•ǫ(u P )) ×n |Γ .

  3.2)-(H.3.3)-(H.3.5)-(H.3.7). H.3.2 Long term stability

Proposition H. 3 . 1 .

 31 (i) For all ν > 0, {u P } is not an attractor of the Navier-Stokes problem (H.3.2)-(H.3.3) equipped with the boundary conditions (H.3.5)-(H.3.7).

  3.2)-(H.3.3)-(H.3.5)-(H.3.7). Owing to ǫ(w) = 0, w•n |Γ = 0, ∇•w = 0, it is clear that u P + w is solenoidal and satises the boundary conditions (H.3.5)-(H.3.7).

t 2 t 1 Ω 2 t 1 Ω

 121 e y •(x×(λ(τ )(e z ×x) + u ⊥ )). But Lemma H.3.2 implying that Ω e y •(x×(λ(τ )(e z ×x))) = λ(τ ) Ω e y •(x×(e z ×x)) = 2λ(τ ) Ω (e z ×x)•(e x ×(e z ×x)) = 0,we nally infer that|λ(t 2 )λ(t 1 )| Ω (e z ×x) 2 ≤ ε t |e y •(x×u ⊥ )| ≤ cµ -1 e -µt 1e -µt 2 ,

Remark H. 3 . 1 . 1 .

 311 Proposition H.3.1 is the generalization of Proposition H.2.3 with ε = 0. Item (ii) of Proposition H.3.1 is similar in spirit to the result of Stewartson and Roberts [138]. H.3.3 Angular momentum balance Let us now mention a result on the balance of the angular momentum. Let us assume that u solves (H.3.2)-(H.3.3) with the boundary conditions n•u = 0 on Γ, (H.3.10) (n•ǫ(u)) ×n = g×n on Γ, (H.3.11) where the eld g is a boundary data. Let us now dene the angular momentum (H.3.12) Denoting by M z and M y the zand y-component of M, respectively, all the weak solutions of (H.3.2)-(H.3.3)-(H.3.10)-(H.3.11) satisfy (H.3.13) ∂ t M z + εM y = -Γ ν(g×n)•((e z ×x)×n), a.e. t ∈ (0, +∞).

3 . 2 )

 32 by e z ×x and integrate over Ω. Using the divergence free condition together with (H.3.10) and integrating by parts, we infer thatΩ (e z ×x)•(u•∇u) = Ω ∇•(u ⊗ u)•(e z ×x) = Γ (u•n) (u• (e z ×x)) = 0,where we used that (u ⊗ u):∇(e z ×x) = 0 since the matrix u ⊗ u is symmetric and ∇(e z ×x) is anti-symmetric. The same argument applies to the viscous termΩ (e z ×x)•ν∇•(ǫ(u)) = Γ ν(ǫ(u)•n)•(e z ×x) = Γ ν(g×n)•((e z ×x)×n),where we used e z ×x = (e z ×x)×n since (e z ×x)•n |Γ = 0. The same argument applies again for the pressure term since ∇p = ∇•(pI) where I is the identity matrix. Ω (e z ×x)•∇p = Γ p(e z ×x)•n = 0. We now deal with the Coriolis term by applying Lemma H.3.2: Ω (e z ×x)•(e x ×u) = 1 2 Ω e y •(x×u) = 1 2 M y .

Lemma H. 3 . 2 . 2 Ω

 322 Let v ∈ L 1 (Ω) be an integrable vector eld such that ∇•v = 0 and v•n |Γ=0 , then (H.3.14) Ω e y •(x×v) = (e z ×x)•(e x ×v).Proof. Let us rst observe that Ω (e z ×x)•(e x ×v) = -Ω xv z . Noticing that Ω xv z + zv x = Ω v•∇(zx) = 0 since ∇•v = 0 and v•n |Γ = 0, we infer that Ω (e z ×x)•(e x ×v) = -

∂

  t u + u•∇u -2ν∇•ǫ(u) + 2εe x ×u + ∇p =

Lemma H. 2 . 0 u ⊥ (τ ) 2 L 2 (Ω) dτ ≤ u 0 2 L 2 (

 202222 2 together with u being a Leray-Hopf solution implies thatu ⊥ (t) 2 L 2 (Ω) + c z λ(t) 2 + 4νK t Ω) .

t 2 t 1 Ω 2 t 1 Ω 2 t 1 Ω

 12121 2εu(τ, x)•(ϕ(x)×e x ) dx dτ t 2νu(τ, x)•∇•ǫ(ϕ) dx dτt (u(x) ⊗ u(x)):∇ϕ(x)dx dτ.

t 1 +1 t 1 λ

 1 (τ ) dτ ≤ c(ϕ)δ, which means that λ ∞ = 0. In conclusion (H.4.6) lim t→+∞ u L ∞ ((t,+∞);L 2 ) = 0,which concludes the proof.

H. 5

 5 .1 Stress-free boundary condition The rst simulation solves the equations (H.4.1)-(H.4.2)-(H.4.3)-(H.4.4) with stress-free boundary conditions using the initial data u |t=0 = 0.1e z × x = 0.1(-ye x + xe y ). The normalized viscosity is ν = 0.024 and the precession rate is ε = 0.25 as in [156]. The left panel in Figure H.1 shows the time derivative of the total energy E K = 1 2 u 2

Figure H. 1 :

 1 Figure H.1: Precessing spheroid with β = 0.5625, ε = 0.25 and ν = 0.024 with the stressfree boundary condition (solution of (H.4.1)-(H.4.2)-(H.4.3)-(H.4.4)): (left) time evolution of ∂ t E K of the solution, (right) time evolution of ∂ t M z and 50(∂ t M z + εM y ).

H. 5 . 2

 52 Poincaré stress boundary condition Small Reynolds number ows The second series of simulations solves equations (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7) with the Poincaré stress boundary condition using dierent initial data and with the precession rate ε = 0.025.

  Figure H.3(a) shows the time evolution of δE K = 1 2 uu P 2

1 2 u-u P 2 L 2

 122 Figure H.2: (Color online) Precessing spheroid with β = 0.5625, ε = 0.025 and ν = 1 with the Poincaré stress boundary condition (solutions of (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7)). Time evolution of (a) the kinetic energy, δE K = 1 2 u-u P 2 L 2 (Ω) , with two dierent perturbations (PERT1 and PERT2, see text) as initial data, (b) u ⊥ (t) L 2 (Ω) , (c) M y , (d) M z .

2 L 2

 22 Figure H.3: (Color online) Precessing spheroid with β = 0.5625, ε = 0.25, ν = 0.00375, and the Poincaré stress boundary condition (solutions of (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7)). Time evolution of the kinetic energy, δE K = 1 2 uu P 2 L 2 (Ω) , with the Poincaré solution as initial data: (a) solution with the SFEMaNS code and (b) solution with a Finite Volume code (courtesy of S. Vantieghem, ETH, Zurich, Switzerland).

  3.2)(H.3.5) and (H.3.7), one could think of enforcing the vertical component of the angular momentum of the dierence uu P , say (H.6.1) Γ (uu P )•(e z ×x) ds = 0, or enforcing uu P and u P to be orthogonal in average over the boundary, say (H.6.2) Γ (uu P )•u P ds = 0.
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	1.1	Objet et motivation

  2 W s-1,2 (Ω) , où la constante c ne dépend que de Ω, µ et s. Il s'en suit que la forme bilinéaire dénie par le membre de gauche de (2.3.1) est coercive sur X s , pour s ∈ [0, τ ). En appliquant une nouvelle fois le théorème de Lax-Milgram, on a existence et unicité d'une solution au problème (2.3.1). 2.3.2. Pour g ∈ H div=0 (Ω), la solution de (2.1.19) est également la solution de (2.3.1).

Remarque 2.3.1. Dans toute la suite, on suppose sans perte de généralité que τ < min τ µ , τ σ , 1 2 , où τ µ et τ σ sont dénis par (2.1.20). En s'inspirant de la preuve de la proposition 2.2.1, on peut également montrer le résultat suivant : Proposition

  p h ∈ M h un élément dont le but est d'approcher h -2s p. En combinant la forme bilinéaire a 3 h et (2.3.6), on utilise à présent la forme bilinéaire a 4 h dénie sur [X h ×M h ] 2 par :

  ou [47, Lemme 5.2.6]).

	2.4.2	Un projecteur utile

Lemme 2.4.1. Pour tout h, il existe une application linéaire π h : W 1,2 0 (Ω) → M h vériant les deux conditions suivantes :

  Preuve. Remarquons que la relation (2.4.6) ne fait intervenir que des fonction F h ∈ X h . Il s'en suit que sur chaque élément K ∈ T h , ∇•F h est constante. Ainsi, une condition susante pour que (2.4.6) soit satisfaite est que :

	(2.4.8)

  .4.7) est bien vériée.

Lemme 2.4.2. Il existe c > 0 uniforme en h telle que,

(2.4.11) 

  Proposition 2.4.4 (convergence). Soit g ∈ H div=0 (Ω). On note H la solution de (2.2.1). On note (H h , p h ) ∈ X h ×M h la solution de :

	(2.4.15)

  voit alors que la méthode sans stabilisation est convergente pour d'autres choix d'éléments nis. Toutefois, les gures 2.5-2.6 suggèrent que, sans stabilisation, il faut un espace de pression magnétique plus riche que l'espace de champ magnétique. Or, la convergence énoncée dans le théorème 2.3.1 ne requiert que la condition M h ⊂ W 1,2 0 (Ω) (cf. annexe B pour les détails), ce qui nous motive à essayer de trouver une méthode faisant intervenir pour M h des polynômes de degré 1, quel que soit le degré choisi pour X h . En conclusion, il vaut mieux (et c'est ce qu'on fera) garder le terme de stabilisation, qui donne une convergence sans hypothèse particulière sur les espaces discrets.
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Fig. 2.4: Sans stabilisation, éléments P 1 pour H h , éléments P 1-bulle pour p h . On h ) Fig. 2.5: Sans stabilisation, éléments P 1 pour H h , éléments P 2 pour p h .

  On suppose en outre que les distributions µ et σ sont également axisymétriques, et indépendantes du temps. 2. Pour la résolution des équations de Maxwell, on suppose que le domaine possède deux parties distinctes : une partie conductrice Ω c dans laquelle la conductivité σ est uniformément positive, et une partie isolante Ω v , appelée vide, dans laquelle σ ≡ 0. En outre, sur Ω v , on suppose µ ≡ 1.

3.1.1 Hypothèses de base

Deux hypothèses de base sont faites pour ce code, et nous discuterons de leur impact sur les congurations étudiées.

1. Le domaine de calcul est supposé axisymétrique. Cette hypothèse est sans doute la plus restrictive (elle empêche par exemple de modéliser parfaitement des congurations comme celle de la dynamo de Cadarache (expérience VKS), les pales faisant perdre l'axisymétrie), mais elle est à la base de notre méthode. En eet, on se sert de cette symétrie cylindrique pour faire une décomposition de Fourier dans la direction azimutale, et l'on résout les problèmes dans le plan méridien par une méthode d'éléments nis de Lagrange.

  2) L'hypothèse d'un isolant simplement connexe est cruciale pour la recherche du champ magnétique sous forme d'un gradient. Lorsque ce n'est plus le cas, écrire le champ comme un gradient revient à faire une hypothèse de courant moyen nul dans le conducteur, ce qui est raisonnable dans nos applications.

	3.1.2	Cadre d'application

Ce code permet de résoudre des problèmes de trois types diérents : des problèmes purement hydrodynamiques : étant donnée une source de forçage f (non nécessairement la force de Lorentz), on ne résout que les équations de Navier-Stokes (1.3.22)-(1.3.23) avec A = 0. des problèmes d'induction magnétique : étant donnés un courant externe j et la vitesse du conducteur u, on ne résout que les équations de Maxwell (1.3.20)-(1.3.21) dans le conducteur, ainsi que le potentiel magnétique. Dans ce cas, on parle de dynamo cinématique. le problème de MHD non linéaire, pour lequel on résout à la fois les équations de Navier-Stokes et les équations de Maxwell. Dans ce cas, on parle de dynamo non linéaire Signalons encore que, pour déterminer si une conguration donnée permet de générer un eet dynamo (on parlera parfois abusivement de conguration dynamogène), on procède en trois étapes. La première étape est purement hydrodynamique : on étudie le champ de vitesses produit par diérentes valeurs du nombre de Reynolds R e . Si le ot obtenu est stationnaire, on l'utilise ensuite pour des calculs d'induction, qui nous permettent d'évaluer un seuil de dynamo cinématique, i.e. un nombre de Reynolds magnétique critique R mc à partir duquel on a une croissance exponentielle du champ magnétique. Si le ot est instationnaire, les calculs de dynamo cinématique prennent l'une des deux formes suivantes : soit on prend un (ou plusieurs) ot(s) gé(s) provenant du calcul hydrodynamique pour évaluer un nombre de Reynolds magnétique critique R mc , soit on calcule à la fois le champ magnétique et le champ de vitesses, mais en enlevant le couplage par la force de Lorentz dans les équations de Navier-Stokes (i.e. on résout (1.3.22) avec A = 0).

  1 2000 , et en calculant l'erreur au temps t = 1. Plusieurs maillages sont utilisés, de taille caractéristique

	h ∈ 1 2 , 1 5 , 1 10 , 1 20 , 1 40 , 1 80 , et les résultats sont reportés en gure 3.2. Le calcul a été eectué en utilisant trois modes de Fourier.
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		-8								
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Fig. 3.2: Test 1 : erreur L 2 sur le champ de vitesses : la courbe est en échelle logarithmique, et on s'attend à une convergence d'ordre 3, obtenue ici. Test 2

  Les calculs ont été réalisés en utilisant trois modes de Fourier, et les erreurs sont calculées après 4000 itérations (i.e. au temps t = 1).

	des maillages de taille caractéristique h ∈ 1 2 , 1 5 , 1 10 , 1 20 , 1 40 , 1 -14 -12 -10 -8 -6 -4 0 0.5 1 1.5 2 2.5 3 log ( u -u h L 2 ) erreur calculée 3.5 80 . -16 -2 pente -3	4	4.5	1 4000 , pour
	log(1/h)			

Fig. 3.3: Test 2 : erreur L 2 sur le champ de vitesses : la courbe est en échelle logarithmique, et on s'attend à une convergence d'ordre 3, obtenue ici.

3.4.2 Précision pour la résolution des équations de Maxwell

  1 2000 . Les coecients α m et β m sont tous pris égaux à 1, et les maillages utilisés ont des tailles caractéristiques h ∈ 1

	5 , 1 10 , 1 20 , 1 40 , 1 80

  où r 0 = 0.5 et K 1 désigne la fonction de Bessel modiée de seconde espèce. Les paramètres A, B et C sont ajustés de sorte que les relations de passage soient vériées en r = r 0 . On donne en gure 3.6 une illustration de la convergence en maillage. Le pas de temps choisi ici est δt = 1 2000 et on représente la norme L 2 de l'erreur après 2000 itérations. Diérents maillages sont utilisés, de taille caractéristique h ∈ 1 Encore une fois, on voit une légère diérence entre les ordres de convergence, tout de même moins marquée que dans le test 3.

					,
					0
	H z (r, θ, z, t) = cos(t) cos(θ) sin(2πz)	r r 2 0	3A + 4B	r r 0	-C ,
	φ(r, θ, z, t) = cos(t) cos(θ) cos(2πz)K 1 (2πr),		
	pour diérentes valeurs de α.	10 , 1 20 , 1 40 , 1 80 , et on compare les calculs

  Fig. 3.8: Test 6 : erreur en norme L 2 sur le champ magnétique dans le conducteur. La courbe est en échelle logarithmique.

		-2.0					α = 0.0	
							α = 0.2	
		-4.0					α = 0.4 α = 0.6	
							α = 0.8	
	L 2	-6.0					α = 1.0 pente -3	
	-H h	-8.0						
	H							
		-10.0						
		-12.0						
		-14.0						
		1.5	2	2.5	3	3.5	4	4.5	5
					1/h			
									1,2
	Test 3	2.40 10 -4		3.18 10 -4		2.08 10 -3		9.37 10 -5
	Test 5	2.72 10 -4		3.72 10 -4		2.28 10 -3		9.59 10 -5
	Tab. 3.1: Comparaison des erreurs obtenues pour les tests 3 et 5 : on voit que les erreurs
	calculées sont sensiblement les mêmes, ce qui assure que la prise en compte des
	interfaces par une méthode de pénalisation permet une bonne approximation des
	solutions.						
	Test 6							
	Ce test correspond au cas de la sphère de Durand, présenté dans [67], cf. D.4.2, cas 1. On
	cherche une solution stationnaire, et notre nouvelle méthode nous permet de faire le calcul
	en une seule itération, en utilisant un pas de temps δt = 10 10 . La gure 3.8 rassemble les
	résultats obtenus pour un saut de µ égal à 20 et diérentes valeurs du paramètre α, sur des
	maillages de taille caractéristique h ∈ {0.16, 0.08, 0.04, 0.02, 0.01}. Notons ici que la régularité de la solution inuence de deux façons la méthode :
	toutes les valeurs de α donnent une approximation convergente,	
	les ordres de convergence sont proches de 3 et semblent moins diérents que dans le cas
	de la gure 2.3.						

  On choisit dans cette partie u(x, y) = (-y, x, 0). On ne s'intéresse qu'à des solutions périodiques dans la direction Oz, et on ne résout que pour un nombre d'ondes xé, noté k z . Ainsi, on se ramène à un problème en deux dimensions dans un plan orthogonal à l'axe Oz.

	4.1.2	Dynamo cinématique avec sauts de conductivité
	Dans un premier temps, on prend µ ≡ 1 dans tout le domaine, et on fait varier σ dans la couronne de la manière suivante :
		σ(r, θ) =	1 ξ 0 + κ 0 cos(α 0 θ)	,
	où (r, θ) désignent les coordonnées polaires, et ξ 0 , κ 0 , α 0 sont des paramètres. On calcule pour
	diérentes valeurs des paramètres ξ 0 , κ 0 , α 0 , k z , R m le taux de croissance (ou décroissance) du
	champ magnétique. Deux codes de calcul diérents ont été utilisés : le premier (WH sur la
	gure), développé par W. Herreman, calcule des valeurs propres par une méthode implicite,
	et présente l'avantage de ne résoudre l'équation d'induction que dans la couronne (ainsi, elle
	évite le calcul dans des couches très nes aux alentours de l'interface r = 1). Le second code
	(FL sur la gure) utilise la méthode d'éléments nis avec stabilisation de la divergence dans
	les espaces intermédiaires présentée dans ce manuscrit, et calcule le champ magnétique dans
	le domaine complet. La gure 4.2 présente une comparaison satisfaisante pour des nombres
	de Reynolds magnétique variant de 100 à 15000. Pour notre méthode d'éléments nis, tous
	les calculs ont été faits avec le même maillage, qui s'avère être trop grossier pour des grandes
	valeurs de R m , ce qui explique l'écart pour le calcul à R m = 20000. On note une évolution du taux de croissance proportionnelle à R 1/3 m , ce qui induit une dynamo peu ecace. Les
	paramètres choisis pour ce calcul sont :	

  Il semble important pour l'expérience que l'ensemble disque+pales en fer doux soit en rotation pour produire de l'eet dynamo. La question naturelle qui se pose est la suivante : est-ce que la présence d'une zone de forte perméabilité magnétique en mouvement est nécessaire à l'obtention d'un eet dynamo, ou est-ce qu'elle permet simplement de réduire le seuil de dynamo à un niveau réalisable expérimentalement ? Nous essayons par la suite de produire des simulations numériques pour tenter de répondre à cette question. Les diérentes simulations que nous allons présenter

	sont des calculs de dynamo cinématique, i.e. avec un champ de vitesses xé. Par ailleurs, ce
	champ, décrit par (4.2.1), est axisymétrique. Il s'en suit que les champs magnétiques obtenus
	ne peuvent pas représenter le cas réellement observé par l'expérience, pour lequel la dynamo
	présente un mode axisymétrique. Néanmoins, l'étude de la dynamo cinématique nous donne
	quelques indications sur des mécanismes possibles pour la dynamo de Cadarache. Dans la
	suite, on ne s'intéresse qu'aux modes m = 0 et m = 1, et l'on sépare le mode m = 0 en une
	composante toroïdale et une composante poloïdale, dont on étudie les variations séparément.
	4.2.2	Résultats principaux de l'annexe C
	Décroissance ohmique

  domaine conducteur est constitué de deux cylindres coaxiaux de rayons respectifs R i et R o , et de hauteur L z . Le rapport de forme est

	4.3	Dynamo non linéaire Taylor-Couette
	4.3.1	Écoulement de Taylor-Couette dans un cylindre de petit rapport de
		forme
	Dans cette partie, on s'intéresse à un écoulement de type Taylor-Couette dans le domaine
	suivant : le

  .3.1 Extension operator Let D be an open Lipschitz domain in R d . For any F ∈ L 1 (D), we denote E D F the extension of F by 0, i.e.,

(B.3.1)

  and all (p, q) ∈ H 1 0 (Ω).

Lemma B.4.1. Assume (B.2.13) and let (E, p) be the solution of (B.2.10). Let s > 0 be such that E ∈ Z s . The following holds for any

  Lemma B.4.2 (Galerkin Orthogonality). Assume (B.2.13), then the Galerkin orthogonality holds, i.e., let (E, p) be the solution of (B.2.10) and (E h , p h ) be the solution of (B.4.13), then

(B.4.15) 

  • h together with the approximation properties of K δ , cf. (B.3.16)-(B.3.17)-(B.3.18), we infer:

  Now we consider two cases. Assuming only minimal regularity, Theorem B.5.1 gives a bound on E -E h , pp h h that leads to (B.5.8). If E and p are smooth, then we can apply Theorem B.5.2 and we obtain (B.5.9). B.5.4. Let τ ∈ (0,1 2 ) and denote (E, p) the solution of (B.2.10). Assume that E ∈ H τ (Ω) and E / ∈ H τ + (Ω) for all τ + > τ . Then the best choice of α is α =

	the convergence rate 2r = τ ℓ-1 ℓ-τ 2	ℓ(2-τ ) 2ℓ-τ , which gives

Remark

Table B .

 B tableB.1, we use λ = 0.535, which leads to ε r = 0.499 ± 10 -3 . In table B.2, we use λ = 0.24, which leads to ε r ≃ 7.55 10 -2 . In both case, we have computed the relative error in the L 2 -norm, and the column COC stands for the computed order of convergence. We have used several values of α, to show the eect of λ and α on the convergence rates. It seems that the convergence 1: L 2 -errors and computed order of convergence for λ = 0.535. We expect a convergence rate that is at most 0.535: it is almost optimal with α = 0.9 rate improves when α is close to 1, which seems to be in contradiction with Remark B.5.4.Actually, if we write the example used here in the form of (B.2.10), we can use g which is divergence free. Then one can notice in the convergence proofs that in this case, we have only

	h	α = 0.4 rel.tol.	coc	α = 0.6 rel.tol.	coc	α = 0.9 rel.tol.	coc
	0.2	5.773E-1			-	4.739E-1		-	4.426E-1	-
	0.1	6.209E-1 -0.11 4.507E-1 0.07 3.801E-1 0.22
	0.05	6.711E-1 -0.11 4.413E-1 0.03 3.259E-1 0.22
	0.025 7.180E-1 -0.10 4.452E-1 -0.01 2.788E-1 0.23
	0.0125 7.564E-1 -0.08 4.602E-1 -0.05 2.380E-1 0.23
	h	α = 0.4 rel.tol.	coc	α = 0.6 rel.tol.	coc	α = 0.9 rel.tol.	coc
	0.2	2.332E-1			-	1.444E-1		-	1.249E-1	-
	0.1	2.473E-1	-0.08	1.168E-1	0.31	8.846E-2	0.50
	0.05	2.631E-1	-0.09	9.452E-2	0.31	6.186E-2	0.52
	0.025	2.797E-1	-0.09	7.700E-2	0.30	4.289E-2	0.53
	0.0125	2.968E-1	-0.09	6.312E-2	0.29	2.962E-2	0.53
							α ℓ	,
	which increases with α.						

r = α -1 + τ 1 -

Table B .

 B 2: L 2 -errors and computed order of convergence for λ = 0.24. We expect a convergence rate that is at most 0.24: it is almost optimal with α = 0.9

	B.6	Eigenvalue problem

Table B .

 B 5. 3: Approximation of the rst four eigenvalues for ε r = 0.5. We used α = 0.7 in the simulations.

	h	λ r ≃ 3.3175 rel. err. COC rel. err. COC rel. err. COC rel. err. COC λ r ≃ 3.3663 λ r ≃ 6.1863 λ r ≃ 13.926
	0.2	9.364E-4	-	3.943E-3	-	1.439E-1	-	6.104E-1	-
	0.1	1.833E-4 2.35 2.147E-3 0.88 1.734E-4 9.70 4.484E-1 0.44
	0.05	3.751E-5 2.29 1.188E-3 0.85 2.241E-5 2.95 1.599E-1 1.49
	0.025 8.405E-6 2.16 6.463E-4 0.88 2.833E-6 2.98 1.120E-5 13.8
	0.0125 2.081E-6 2.01 3.439E-4 0.91 3.667E-7 2.95 1.478E-6 2.92
	h	λ r ≃ 4.5339 rel. err. COC rel. err. COC rel. err. COC rel. err. COC λ r ≃ 6.2503 λ r ≃ 7.0371 λ r ≃ 22.342
	0.2	4.559E-1	-	6.052E-1	-	6.410E-1	-	8.869E-1	-
	0.1	2.859E-1 0.67 4.731E-1 0.36 5.310E-1 0.27 8.512E-1 0.06
	0.05	3.306E-2 3.11 2.982E-1 0.67 3.763E-1 0.50 8.033E-1 0.08
	0.025 2.154E-6 13.9 7.748E-2 1.94 1.772E-1 1.09 7.406E-1 0.12
	0.0125 2.608E-7 3.05 3.258E-3 4.57 5.946E-7 18.2 6.602E-1 0.17

Table B . 4 :

 B4 Approximation of the rst four eigenvalues for ε r = 0.1. We used α = 0.8 in the simulations.

	B.7	Appendix: Technical Lemmas

  7.2 Lemma B.7.2. The spaces [ L2 (E), Ḣ1 (E)] s and [L 2 (E), H 1 (E)] s ∩ L2 (E) are identical and the induced norms are identical, i.e., v Ḣs (E) = v H s (E) for all for all

.

  Lemma B.7.6(Lions-Petree). Let E 1 ⊂ E 0 be two Banach spaces, with continuous embedding. Let L be a linear mapping E 1 → F with F another Banach space. For s ∈ (0, 1), L extends to a linear mapping from [E 0 , E 1 ] s,1 to F if and only if there exists C > 0 such that∀u ∈ E 1 , Lu F ≤ C u 1-s E 0 u s E 1 . IntroductionMagnetic elds of galaxies, stars or planets are produced by dynamo action in a homogenous medium in which a conducting uid ow provides for generation of eld energy. During the past decade the understanding of the eld generation mechanism has considerably benetted from the examination of dynamo action in the laboratory. However, realization of dynamo action in laboratories at least requires the magnetic Reynolds number Rm = U L/η (where U
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  3.14)-(C.3.19). We proceed as follows in Ω ci . Multiplying the induction equation in Ω ci by a test-function b, integrating over Ω ci , integrating by parts and using (C.3.16) gives

Table C

 C 

.3: Decay rate for m = 1 mode for 2 ows MND and a similar ow with slightly modied (smoothed) radial velocity component (SMND).

Table D .

 D .2 and Table D.3. The COC stalls for the eigenvalues λ 3 and λ 4 using P 2 since the accuracy of the computed eigenvalues is limited by the tolerance in ARPACK (10 3: First ve eigenvalues using P 1 elements and P 2 elements with α = 0.7.

	D.4.2	Induction in a composite sphere		
								-8 ).
		h	λ 1	P 1 Rel. Error	COC	λ 1	P 2 Rel. Error	COC
		0.1	1.930	2.668 10 -1 N/A 1.707 1.452 10 -1 N/A
		0.05	1.845	2.224 10 -1 0.26	1.623	9.522 10 -2 0.61
		0.025	1.765	1.788 10 -1 0.32	1.586	7.240 10 -2	0.4
		0.0125	1.696	1.389 10 -1 0.36	1.545	4.614 10 -2 0.65
		0.006256	1.644	1.080 10 -1 0.36	-	-	N/A
		h	λ 2	P 1 Rel. Error	COC	λ 2	P 2 Rel. Error	COC
		0.1	3.573	1.101 10 -2 N/A 3.537 8.266 10 -4 N/A
		0.05	3.551	4.716 10 -3 1.22	3.535	2.380 10 -4	1.8
		0.025	3.540	1.578 10 -3 1.58	3.534	6.640 10 -5	1.8
		0.0125	3.536	6.245 10 -4 1.33	3.534	1.726 10 -5	1.9
		0.006256	3.535	2.768 10 -4 1.17	-	-	N/A
		h	λ 3	P 1 Rel. Error	COC	λ 3	P 2 Rel. Error	COC
		0.1	5.450	5.770 10 -1 N/A 7.828 2.307 10 -1 N/A
		0.05	7.852	2.277 10 -1 1.34	9.870	3.799 10 -7 19.21
		0.025	9.873	3.075 10 -4 2.89	9.870	3.856 10 -8	3.3
		0.0125	9.870	7.714 10 -5	2.0	9.870	3.444 10 -8 0.16
		0.006256	9.870	1.934 10 -5	2.0	-	-	N/A
		h	λ 4	P 1 Rel. Error	COC	λ 4	P 2 Rel. Error	COC
		0.1	5.455	5.761 10 -1 N/A 7.841 2.291 10 -1 N/A
		0.05	7.858	2.270 10 -1 1.34	9.870	4.712 10 -7 18.9
		0.025	9.873	3.100 10 -4 9.52	9.870	3.856 10 -8 3.61
		0.0125	9.870	7.768 10 -5	2.0	9.870	1.990 10 -8 0.95
		0.006256	9.870	1.935 10 -5	2.0	-	-	N/A
		h	λ 5	P 1 Rel. Error	COC	λ 5	P 2 Rel. Error	COC
		0.1	5.506	6.964 10 -1 N/A 7.903 3.614 10 -1 N/A
		0.05	7.877	3.646 10 -1 0.93	11.39	2.374 10 -5 13.89
		0.025	11.39	4.326 10 -4 9.72	11.39	7.786 10 -6 1.61
		0.0125	11.39	1.457 10 -4 1.57	11.39	2.168 10 -6 1.85
		0.006256	11.39	5.303 10 -5 1.46	-	-	N/A
								The symbol
		-indicates that the pair (Linear Solver + ARPACK) did not converge with the
		assigned tolerances.				

  H 1 .691 10 -4 2.65 2.094 10 -3 1.81 1.068 10 -2 1.32 2.018 10 -5 2.24 0.04 3.898 10 -5 2.79 4.889 10 -4 2.10 3.831 10 -3 1.48 3.431 10 -6 2.56 0.02 7.088 10 -6 2.46 1.239 10 -4 1.98 1.480 10 -3 1.37 5.945 10 -7 2.53 0.01 1.363 10 -6 2.38 3.114 10 -5 1.99 5.980 10 -4 1.31 1.032 10 -7 2.53 .004 10 -3 3.00 6.180 10 -3 2.59 6.699 10 -3 0.97 7.065 10 -5 2.19 0.04 1.089 10 -4 3.21 4.273 10 -4 3.85 1.845 10 -3 1.86 1.253 10 -5 2.50 0.02 2.048 10 -5 2.41 4.570 10 -5 3.22 4.856 10 -4 1.93 2.220 10 -6 2.50 0.01 3.832 10 -6 2.42 1.069 10 -5 2.10 1.310 10 -4 1.89 3.885 10 -7 2.51 .439 10 -2 2.13 9.239 10 -2 2.01 2.620 10 -3 0.57 8.331 10 -5 2.26 0.04 4.321 10 -3 2.50 1.571 10 -2 2.56 1.076 10 -3 1.28 1.444 10 -5 2.53 0.02 6.547 10 -4 2.72 2.233 10 -3 2.81 4.114 10 -4 1.39 2.577 10 -6 2.49 0.01 9.008 10 -5 2.86 2.956 10 -4 2.92 1.223 10 -4 1.75 4.536 10 -7 2.51 Table D.4: Case 1, P2/P2; one iteration (∆t = 10 9 ); α = 0.75

								COC
	0.16 1.688 10 -3	-	7.328 10 -3	-	2.665 10 -2	-	9.536 10 -5	-
	2 0.08 220 0.16 8.044 10 -3 0.16 1.067 10 -1 0.08 1200 0.08 2	--	3.729 10 -2 3.728 10 -1	--	1.314 10 -2 3.876 10 -3	--	3.218 10 -4 3.984 10 -4	--

  H 1 .913 10 -4 2.45 2.002 10 -3 1.87 9.423 10 -3 1.36 2.679 10 -5 2.35 0.04 2.898 10 -5 3.33 4.525 10 -4 2.15 3.285 10 -3 1.52 3.924 10 -6 2.77 0.02 4.910 10 -6 2.56 1.088 10 -4 2.06 1.189 10 -3 1.47 6.694 10 -7 2.55 0.01 1.109 10 -6 2.15 2.665 10 -5 2.03 4.637 10 -4 1.36 1.162 10 -7 2.53 .494 10 -3 2.66 6.749 10 -3 2.54 6.627 10 -3 0.95 7.261 10 -5 2.24 0.04 1.952 10 -4 2.94 5.859 10 -4 3.53 1.832 10 -3 1.85 1.245 10 -5 2.54 0.02 2.409 10 -5 3.02 7.075 10 -5 3.05 4.819 10 -4 1.93 2.203 10 -6 2.50 0.01 2.889 10 -6 3.06 1.255 10 -5 2.49 1.291 10 -4 1.90 3.862 10 -7 2.51 .474 10 -2 2.15 9.847 10 -2 2.00 2.596 10 -3 0.57 8.380 10 -5 2.26 0.04 4.415 10 -3 2.49 1.740 10 -2 2.50 1.067 10 -3 1.28 1.472 10 -5 2.51 0.02 7.451 10 -4 2.57 2.658 10 -3 2.71 4.091 10 -4 1.38 2.642 10 -6 2.48 0.01 1.211 10 -4 2.62 3.999 10 -4 2.73 1.217 10 -4 1.75 4.668 10 -7 2.50 Table D.5: Case 2, P2/P2; one iteration (∆t = 10 9 ); α = 0.75

								COC
	0.16 1.590 10 -3	-	7.314 10 -3	-	2.424 10 -2	-	1.362 10 -4	-
	2 0.08 220 0.16 9.418 10 -3 0.16 1.098 10 -1 0.08 1200 0.08 2	--	3.924 10 -2 3.934 10 -1	--	1.282 10 -2 3.861 10 -3	--	3.423 10 -4 4.013 10 -4	--

Table F . 1 :

 F1 .1. Characteristics of the runs: ∆x is the quasi-uniform meshsize in Ω c ; ∆t is the timestep; np(P ) is the number of P 1 nodes for the pressure eld in Ω cf ; np(V ) is the number of P 2 nodes for the velocity eld in Ω cf ; np(H) is the number of P 2 nodes for the magnetic eld in Ω c ; np(φ) is the number of P 2 nodes for the magnetic potential in Ω v . The numbers np(P ), np(V ), np(H) refer only to the meridian section. The total number of grid points for each unknown Y is obtained by multiplying np(Y ) by 2 times the number of Fourier modes, M , minus one.

	Run	∆x	∆t	np(P ) np(V ) np(H) np(φ) M
	F.3.1	1/100 0.025 5911 23341	-	-	8
	F.3.3, F.3.2 1/100 0.025 5911 23341	-	-	12
	F.4.1, F.4.2 1/100 0.005 5911 23341 29821 14041 4
	F.5	1/100 0.005 5911 23341 29821 14041 32

  .1) for the values of ǫ reported in Table F.2. The quantity denoted V max in Table F.2 is the maximum of the velocity modulus; V max depends on ǫ. 0.235 0.71 0.94 1.18 1.41 1.53 1.89 2.36 2.83 3.77 V max 2.00 1.67 1.49 1.32 1.20 1.21 1.23 1.25 1.26 1.27 Table F.2: Modied Taylor-Couette ow: normalization factor α(ǫ), poloidal to toroidal ratio Λ(ǫ) and maximum of the velocity modulus V max . F.3.3 Forced Taylor-Couette ow (viscous driving plus body force)

	ǫ	1	3	4	5	6	6.5	8	10	12	16
	α(ǫ)	1	1.19 1.34 1.50 1.69 1.78 2.08 2.49 2.92 3.80
	Λ(ǫ)										

  2, one precession angle, α = π/2, one precession rate, ε = 0.15, four values of R m ∈ {600, 800, 1200, 2400} and a larger range of R e ∈ [400, 1200].

	G.3.1	Axial and total kinetic energies

  t ∈[192, 287.5] is shown in gure G.7(b). We observe that M grows smoothly in one turnover time (i.e., until t ≈ 222) and begins to oscillate thereafter. The ratio M/K is observed to be of order 6 10 -2 during the nonlinear oscillating regime. After restarting the MHD run at t = 241 with P m = 1 and running it until t = 346, we observe that the dynamo is still active. After restarting the MHD run at t = 271 with P m =1 2 and running it until t = 307, we observe that the dynamo dies in a short time lapse, suggesting that the dynamo bifurcation is not sub-critical for this set of control parameters. These nonlinear results indicate that P * m lies in the interval [1 2 , 1]. Recall that the threshold determined in the linear regime is P *

m ≈ 0.625.

  and H.4 is numerically illustrated in H.5. Concluding remarks are reported H.2.3 The Axisymmetry curse Let us assume that Ω is axisymmetric. We are going to show the following statement in this section. Claim H.2.1. The zero velocity eld, 0, is in the global attractor of (H.2.1)-(H.2.2)-(H.2.3)-(H.2.4)-(H.2.5

  2.1)-(H.2.2) equipped with boundary conditions (H.2.4)-(H.2.5) has spurious stability properties due to the following proposition. Proposition H.2.3. (i) R is the global attractor of (H.2.1)-(H.2.2)-(H.2.3)-(H.2.4)-(H.2.5).

  |ǫ(u)| 2 dx dτ ≤ u ⊥ (t 1 ) 2 L 2 (Ω) + c z λ(t 1 ) 2 ,where c z := e z ×x 2 L 2 (Ω) . Since λ(t 2 ) = λ(t 1 ), Lemma H.2.2 impliesu ⊥ (t 2 ) 2 L 2 (Ω) + 4νK L 2 (Ω) dτ ≤ u ⊥ (t 1 ) 2 L 2 (Ω) .

	t 2	
	t 1	Ω
	t 2	u ⊥ 2
	t 1	

  where we used again the decompositionv |Γ = (n•v)n -n× (n×v). H.2.4. Assume that Ω is an open, connected, bounded Lipschitz domain, then {0} is the global attractor of (H.2.1)-(H.2.2)-(H.2.3)-(H.2.10)-(H.2.5). Proof. Repeat the argument in the proof of Proposition H.2.1 using Lemma H.2.3 together with the following Poincaré-like inequality

			1 2	Γ	(n•∇u)•((n•v)n) + 1 2	Γ	((n•∇u)×n)• (n×v)
	= 1 2	Ω	∇u:∇v,		
	Proposition				

  3.2)-(H.3.3)-(H.3.5) is known to admit a steady-state solution called the Poincaré ow (see e.g.[START_REF] Wu | On a dynamo driven by topographic precession[END_REF]) whose expression is as follows:Of course, u P does not solve the Navier-Stokes system (H.3.2)-(H.3.3) equipped with the noslip boundary condition. However, it has been shown formally in Stewartson and Roberts[START_REF] Stewartson | On the motion of liquid in a spheroidal cavity of a precessing rigid body[END_REF] that if the ellipsoid additionally rotates about the Oz-axis with angular velocity e z and if ν → 0 and ε → 0, the no-slip Navier-Stokes solution converges to u P when t → +∞, except in thin Ekman layers on Γ. This result is the main reason why we are interested in the Poincaré solution.

	(H.3.6)	u P = -ye x + x -	2ε β	(1 + β)z e y +	2ε β	ye z .

  3.3. Note that (H.3.13) is just a consequence of (H.3.2)-(H.3.3)-(H.3.10)-(H.3.11). This balance holds whether the long term stability of (H.3.2)-(H.3.3)-(H.3.10)-(H.3.11) is spurious or not. It is false to consider that (H.3.13) is an additional equation that xes the long term stability behavior of the system.H.4 Precession driven ow with stress-free boundary conditionsWe show in this section that if we enforce (n•ǫ(u))×n |Γ = 0, instead of enforcing (n•ǫ(u))×n |Γ = (n•ǫ(u P ))×n |Γ in (H.3.2)-(H.3.3)-(H.3.10), then 0 becomes the unique stable solution as t → +∞, i.e., {0} is the global attractor.

	H.4.1	Long time stability

  means that|λ(t 2 )λ(t 1 )| |(e y ×x)•u| ≤ ε|t 2t 1 | u 0 L 2 (e y ×x) L 2 ,thereby proving that t -→ λ(t) is uniformly Lipschitz over (0, +∞). Since u is a Leray-Hopf solution we also haveu ⊥ (t 2 ) 2 L 2u ⊥ (t 1 ) 2 L 2 + (λ(t 2 ) 2λ(t 1 ) 2 ) e z ×x 2 L 2 + 4ν L 2 e y ×x L 2 e z ×x -1 L 2 =: γ.In conclusion the function t -→ u ⊥ (t) 2 L 2 satises the assumptions of Lemma H.4.2. We then infer that u ⊥ L Let δ > 0 be an arbitrarily small number. Let t δ be so that u ⊥ L ∞ ((t,+∞);L 2 ) ≤ δ for all t ≥ t δ . Let t 2 > t 1 ≥ t δ in (0, +∞) then the energy balance impliesu ⊥ (t 2 ) 2 L 2 + c z λ(t 2 ) 2 ≤ u ⊥ (t 1 ) 2 L 2 + c z λ(t 1 ) 2 ,which also givesλ(t 2 ) 2 ≤ λ(t 1 ) 2 + 2c -1 z δ 2 .Lemma H.4.3 in turn implies that λ(t) converges to real a number λ ∞ as t goes to innity, since λ is a continuous function. Using (H.3.13) again, we infer that (λ(t 2 )λ(t 1 )) y •(x×(λ(τ )(e z ×x) + u ⊥ )).

	Ω	(e z ×x) 2 = -ε	t 2 t 1	Ω
	But Lemma H.3.2 implying that		
			t 2	
			t 1	Ω
					t 2 t 1	Ω	|ǫ(u)| 2 ≤ 0.
	This in turn implies that			
	u ⊥ (t 2 ) 2 L 2 -u ⊥ (t 1 ) 2 L 2 t 2 -t 1	≤ (|λ(t 2 ) + λ(t 1 )|) ≤ 2ε u 0 2	|λ(t 2 ) -λ(t 1 )| |t 2 -t 1 |	e z ×x 2 L 2

Ω (e z ×x) 2 ≤ ε ∞ ((t,+∞);L 2 ) → 0 as t → +∞. e Ω e y •(x×(λ(τ )(e z ×x))) = λ(τ ) Ω e y •(x×(e z ×x)) = 2λ(τ ) Ω (e z ×x)•(e x ×(e z ×x)) = 0,

we nally infer that

|λ(t 2 )λ(t 1 )| Ω (e z ×x) 2 ≤ ε t 2 t 1 Ω |e y •(x×u ⊥ )| ≤ cδ|t 2t 1 |,

  2.1)(H.2.5) this condition is (H.6.4) (n•∇u)×n |Γ = 0, and for the problem (H.3.2)(H.3.5) this condition is (H.6.5) (n•∇u)×n |Γ = (n•∇u P )×n |Γ . Let us nally emphasize that it is false to consider that the momentum balance equation (H.3.13) is an additional equation that makes (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7) a wellbehaved dynamical system. The equation (H.3.13) is a redundant consequence of (H.3.2)-(H.3.3)-(H.3.5)-(H.3.7). For instance, (H.6.1) (or (H.6.2) or (H.6.3)) is an additional equation whereas (H.3.13) is not.

1.3. LES ÉQUATIONS DE LA MHD

Preuve. Soit F ∈ H 0,curl (Ω). On note p ∈ W 1,2 0 (Ω) la solution du problème de Laplace avec conditions de Dirichlet homogènes suivant : ∀q ∈ W 1,2 0 (Ω), (∇p, ∇q) = (F, ∇q) .

Preuve. Soit (F h , q h ) ∈ X h ×M h diérent de (0, 0). On note S le sup présent dans le membre de droite de (2.4.12). On a immédiatement :

H i , 0 ≤ r ≤ R 0 }. Cela correspond au cas où les disques ont une perméabilité innie : on trouve R mc = 40 . Cas

: on ne garde que la région du "bulk-ow", que l'on considère entourée d'une enveloppe de perméabilité innie (i.e. on impose H×n partout). Il n'y a pas de région isolante ici : on trouve R mc = 52. On peut déduire de ces calculs que la présence de disques de forte perméabilité aide à réduire le seuil de dynamo. Par ailleurs, la présence de sodium immobile autour de l'écoulement semble également jouer un rôle important, alors que le connement du ot dans une enveloppe de perméabilité innie se révèle contre-productif. En particulier, cela montre que la présence de zones à forte perméabilité, si elle est cruciale dans l'expérience VKS, n'est pas la seule condition à la dynamo. Il faut en outre que ces zones soient placées à des endroits spéciques, avec pour eet des contraintes géométriques liées aux conditions de continuité du champ magnétique.

4.4.2Précession dans un cylindre (résultats principaux de l'annexe G)

(Ω), (see for instance[START_REF] Jerison | The Neumann problem in Lipschitz domains[END_REF] or[START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF] Lemma 1]).

).

= 0 across Σ µ , since this relation holds at time t = 0, (recall that H 0 is smooth and ∇•(µ c H 0 ) = 0 in Ω c ).

(u(r, t) -

uu P 2 L 2 (Ω) , with two dierent perturbations (PERT1 and PERT2, see text) as initial data, (b) u ⊥ (t) L 2 (Ω) , (c) M y , (d) M z . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
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H -s (E) ∋ p → ∂E gp is in H s (E) and cannot be represented by a distribution in (D(E)) ′ . The above denitions naturally extend to vector elds and in this case we use bold letters to avoid confusion. For s ∈ [0, 1], we abusively denote H 1+s (E) the following spaces:

and we equip H 1+s (E) with the following norm: (A.2.6)

The Poincaré constant over each sudomain Ω i is denoted C Ω i , i.e., (A.2.7)

and we set (A.2.8)

The norm of the natural injection from H s (Ω i ) to H s 0 (Ω i ) is denoted D s,Ω i for all s ∈ [0, 1 2 )

and all i = 1, . . . , M , i.e., (A.2.9)

In addition, we set (A.2.10)

Assuming that X and Y are two Banach spaces, L(X, Y ) denotes the space of bounded linear operator X → Y equipped with its natural norm, • X→Y .

In the rest of the paper we use the generic notation c for constants. The value of c may change at each occurrence.

A.2.2 Multipliers

We now introduce notation to stipulate the regularity that we require on the tensor elds ε and µ. For this purpose we dene (A.2.11)

For all ν in W 1,∞ Σ (Ω) d×d we dene ν max ∈ R such that (A.2.12)

ξ T νξ ≤ ν max ξ T ξ, a.e. in Ω, ∀ξ ∈ R d and Λ ν ∈ R by

, if ν max = 0, Λ ν := 0 otherwise.

Given a tensor eld ν in W 1,∞ Σ (Ω) d×d , we call multiplier E ν associated with ν the linear operator E ν : L 2 (Ω) → L 2 (Ω) so that (A.2.13) (E ν (u))(x) := ν(x)u(x) for a.e. x in Ω, ∀u ∈ L 2 (Ω).

The main result of this section is the following Annexe B

H 1 -conforming approximation of the

We will check the assumptions of Theorem B.6.1 with the family {A h } dened by: for any g ∈ L 2 (Ω), denote (E h , p h ) the solution of (B.4.13) and set A h g := E hh 2(1-α) ∇p h . In this section, we consider (B.4.13) in the symmetric case, i.e. with θ = 1 in the denition of a h (B.4.12). We denote τ < 1 2 the minimal regularity of the problem (B.2.10), and we use in the following

In the following, we prove that the family A h satises all the properties required in Theorem B.6.1.

B.6.2 Approximation result

We start by proving that the family {A h } is a family of self-adjoint bounded operators. Then we prove the pointwise convergence and we nally establish the collective compactness.

Lemma B.6.1. For any h, A h : L 2 (Ω) → L 2 (Ω) is a self-adjoint operator, i.e. for any E, F ∈ L 2 (Ω), the following holds (B.6.2)

Proof. Let E, F ∈ L 2 (Ω) and denote (E h , p h ), (F h , q h ) ∈ X h ×M h the solutions of (B.4.13) with g = E and g = F respectively. By denition of E h , p h , we have

Using the symmetry properties of a h , together with the denition of F h , q h , we infer a h ((E h , p h ), (F h , -q h )) = a h ((F h , q h ), (E h , -p h ))

As a result, the operator A h is self-adjoint on L 2 (Ω) equipped with the inner product (•, •) ε .

Lemma B.6.2. With the above notations, there exists c > 0, uniform with respect to h such that, (B.6.3)

Proof. Let E ∈ L 2 (Ω) and denote (E h , p h ) ∈ X h ×M h the solution of (B.4.13) with g = E. We also denote p ∈ H 1 0 (Ω) such that ∇×κ∇×AE + ε∇p = εE. Using the triangular inequality, Theorems B.5.3 and B.5.1, the equivalence between the norms on L 2 (Ω) and the fact that r ≤ 1α, we infer 

Axis 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 

Examples of computational domains with various boundaries. The left line is the revolution axis. The shaded regions constitute the conducting domain Ω c , the non-shaded domain is vacuum Ω v . The dashed subregions may have dierent electric conductivities and magnetic permeabilities. and j s : H 0 is an initial data; a is a boundary data; j s is an externally imposed distribution of current. The initial magnetic induction eld, µH 0 , is assumed to satisfy the compatibility condition ∇•(µH 0 ) = 0.

Let U be the characteristic scale of ũ and let c be the speed of light. The MHD approximation consists of assuming that the ratio U/c is extremely small. This hypothesis leads to neglect the displacement currents ǫ∂ t E in the Ampère-Maxwell equation. Note however that the conditions ∇•E| Ωv = 0 and Γ i v E•n = 0, 1 ≤ i ≤ J are what is left from the Ampère-Maxwell equation when passing to the limit to zero on the ratio U/c (assuming that the total electrostatic charge in each conducting region is zero). These extra conditions ensure that E is uniquely dened, i.e., they have no eect on H. Note nally that the condition Γ 0 v E•n = 0 needs not be enforced since it is a consequence of the J other conditions,

together with E being solenoidal. We refer to [START_REF] Bossavit | Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, volume 2 of Electromagnetism[END_REF]3] for more details on the asymptotic analysis leading to (D.2.7).

When σ is uniformly positive over Ω, i.e., Ω c = Ω and Ω v = ∅, an evolution equation for H can be obtained after eliminating the electric eld. This shortcut is no longer possible when Ω v is non trivial, and determining the complete solution, including the electric eld, is no longer straightforward.

We henceforth assume that the conductivity σ is zero in Ω v and is bounded from below and from above in Ω c by positive constants. We also assume that the restriction of µ to Ω v is a smooth function, and that µ is piece-wise smooth on Ω c , i.e., µ| Ωc i is smooth for all i = 1, . . . , N . and we have similar denitions for µ c 1 (x) and µ c 2 (x). For any (scalar-or vector-valued) function f that is two-valued at x ∈ Ω ci ∩ Ω cj we dene the average of f at x as follows: (D.2.12)

Furthermore, we denote by n ci (x) and n cj (x) the outward normal at x on ∂Ω ci and ∂Ω cj , respectively. Assuming that i < j, we set

It is possible to eliminate the electric eld from the problem (see e.g. [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF] for the details), and once this is done we obtain:

The rst equation in (D.2.13) is obtained by substituting the electric eld in the Faraday equation in the conducting domain by 

2 )| Σµ = 0 express the continuity of the normal component of the magnetic induction across Σ and Σ µ , respectively. These constraints are consequences of the continuity of the tangential components of the electric eld across Σ and Σ µ , respectively.

If the electric eld is needed, it is computed in the conducting domain by using Ohm's law, i.e., by setting E c := (R m σ) -1 (∇×H cj s ) -ũ×µ c H c . The electric eld is computed in the non-conducting medium by solving the Cauchy-Riemann problem:

Note that (D.2.13) does not involve the Γ i v 's, 1 ≤ i ≤ J, and whether µ is continuous or not does not matter when computing the electric eld.

D.2.5

Weak formulation

A weak formulation of (D.2.7) with the electric eld eliminated (i.e., (D.2.13)) has been derived in [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF] assuming that µ is continuous. We handle the discontinuous situation similarly. For this purpose, we introduce the following Hilbert spaces: 

2 ) = 0 across Σ µ . One then concludes that 

Eigenvalue problem

We now study Ohmic decay in the conducting L-shape domain. Assuming that the magnetic eld has the following behavior H(x, t) = H(x)e -λt , where λ > 0, we are lead to consider the following eigenvalue problem: nd (λ, H) such that (D.4.4)

Approximations of the rst ve eigenvalues with 10 -11 tolerance are provided in [START_REF] Dauge | Benchmark for Maxwell[END_REF]: λ 1 ≈ 1.47562182408, λ 2 ≈ 3.53403136678, λ 3 = λ 4 = π 2 ≈ 9.86960440109, and λ 5 ≈ 11.3894793979. We solve (D.4.4) using ARPACK [START_REF] Lehoucq | ARPACK users' guide, volume 6 of Software, Environments and Tools[END_REF] with a relative tolerance of 10 -8 . Table D.2 shows the rst eigenvalue computed with α = 0.9 on ve quasi-uniform (nonnested) Delaunay meshes of mesh-sizes 1/10, 1/20, 1/40, 1/80, 1/160, respectively. As explained in [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF], taking α close to 1 improves the convergence rate on the rst eigenvalue. The method is clearly convergent although the eigenvector has a strong unbounded singularity. Relative errors and COC for λ 1 using P 1 elements and P 2 elements with α = 0.9.

The symbol -indicates that the pair (Linear Solver + ARPACK) did not converge with the assigned tolerances.

Table D.3 shows the rst ve eigenvalues computed with α = 0.7 on ve quasi-uniform (non-nested) Delaunay meshes of mesh-sizes 1/10, 1/20, 1/40, 1/80, 1/160, respectively. Here again we observe convergence and there is no spurious eigenvalue. As expected the worst rate of convergence is observed for the rst eigenvalue which corresponds to the most singular eigenvector. The second eigenvector is in H 1 (Ω), the third and fourth eigenvectors are analytic, the fth one has a strong unbounded singularity. The theory developed in [START_REF] Bonito | Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange nite elements[END_REF] shows that method enforces well the continuity of the tangential component of the magnetic eld. The panel (c) shows the magnetic eld lines of H c (0 ≤ ̺ ≤ R 2 ) and those of ∇φ (R 2 ≤ ̺). The magnetic lines in the vacuum region arrive nearly perpendicularly at the ferromagnetic interface. This phenomenon is a feature of µ → ∞. Case 2: Hollow sphere

We use the same geometric setting as in case 1, but we now assume that the inner sphere is an insulator, i.e., Ω c = Ω 2 . The non-conducting medium, Ω v , is composed of the inner sphere Ω 1 plus the spherical annulus ̺ ∈ (R 2 , 10R 2 ). The exact solution to this problem is the same as in case 1.

We repeat the same convergence tests as in case 1. The results are reported in Table D.5. We observe that the method converges well in the range µ ∈ [2,200] and that the convergence rates are almost identical to those shown in Table D.4.

D.4.3 Induction in rotating devices

We test in this section the proposed method on rotating conductors embedded in a uniform external magnetic eld. We make two numerical tests: the rst one assesses the robustness of the method with respect to geometrical singularities and the second one assesses the robustness of the method with respect to high permeability contrasts. These tests have been preformed with α = 0.7.

Induction in a nite rotating solid cylinder

Let Ω c be a conducting cylinder of non-dimensional radius R = 1 and height L c z = 1.6. This cylinder is embedded in vacuum in R 3 and rotates about the z-axis with angular speed ̟ = 1.(The reference velocity U is equal to the product of the radius of the cylinder and the angular Reynolds number decreases when the VTF condition is used to model the soft iron impellers, thereby conrming that using soft iron impellers may indeed help to lower the dynamo threshold in the VKS2 experiment. The results of the third experiment (Case 3) show that using an envelope made of soft iron to conne the magnetic eld within the 'bulk ow' region is counter-productive. Another interpretation of this result is that the presence of the 'side layer' may help the dynamo eect in the VKS2 experiment. case boundary condition

VTF everywhere 52 The conducting domain is partitioned into a moving region (comprising the 'bulk ow', 'lid ows', and the 'disk ows') and a stationary region (comprising the 'side layer' and the copper vessel), see Figure D.9.

The moving uid region is The purpose of the 'disk ows' is to model the two impellers and the uid moving between the blades. To account for the presence of solids of various material properties in the 'disk ows' subregions, we also introduce two 'at disks' of width H i = 0.075R 0 , radius R i = 0.75R 0 and round edges.

The copper walls of the device are (r, z)

The uid is assigned the conductivity of liquid sodium σ 0 , (σ 1 = σ 0 ). The outer wall of the device is assigned the conductivity of copper, σ 2 = 4.5σ 0 . The magnetic permeability of every component of the device is equal to that of the vacuum µ 0 except for the two 'at disks'. Two dierent material compositions are tested for the 'at disks'. In what we hereafter refer to as Case 1' and Case 2' the 'at disks' are made of stainless steel, σ i = 0.14σ 0 and µ i = µ 0 , but in Case 3' and Case 4' the 'at disks' are made of soft iron, σ i = σ 0 and µ i = 60µ 0 .

The prescribed axisymmetric velocity eld ũ is dened separately in the `bulk ow', 'disk ow', and 'lid ow' regions. In the 'bulk ow' region ũ is modeled as in the previous section by using the axisymmetric time-averaged ow eld measured in a water experiment which is documented in [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF]. The ow is interpolated on the nite element grid and normalized by the maximum of the Euclidian norm of the velocity, U max . The quantity U max is chosen to be the reference velocity scale, U := U max . Let us denote by u 0 (r, z)e θ the axisymmetric 'bulk ow'. Then the ow in the top 'disk ow' region is dened to be equal to u 0 (r, 0.9)e θ and the ow in the bottom 'disk ow' region is dened to be equal to u 0 (r, -0.9)e θ . Finally, two dierent models are tested for the 'lid ow'. In the rst model the top 'lid ow' velocity eld is dened to be the linear interpolation with respect to z between u 0 (r, 0.9)e θ and the zero, and the bottom ow is dened similarly. The 'lid ow' thus dened is denoted u lin θ . In the second model the 'lid ow' velocity is dened to be the sum of u lin θ and 10% of an analytical poloidal recirculation ow u pol that has been introduced in [START_REF] Marié | Galerkin analysis of kinematic dynamos in the von Kármán geometry[END_REF]. The ow u pol is normalized so that the maximum of Cartesian norm of u pol is U max .

We use u lin θ in the 'lid ow' region in Case The adverse eect of the 'lid ows' was rst demonstrated in [START_REF] Stefani | Ambivalent eects of added layers on steady kinematic dynamos in cylindrical geometry : application to the VKS experiment[END_REF]. Adding a poloidal component to the 'lid ow' with 10% recirculation intensity (Case 2') lowers the threshold from 82 to 75 which is still larger than 45. Hence, changing the magnetic permeability has more eect than tweaking the 'lid ow'. The threshold goes further down to R mc = 65 ± 1 in both Cases 3' and 4'. i.e. the threshold decreases as µ r increases. This scaling law suggests a skin eect mechanism in the soft iron disks. More important with regard to the Cadarache dynamo experiment, we observe a purely toroidal axisymmetric mode localized in the high permeability disks which becomes dominant for large µ r . In this limit, the toroidal mode is close to the onset of dynamo action with a (negative) growth-rate that is rather independent of the magnetic Reynolds number. We qualitatively explain this eect by paramagnetic pumping at the uid/disk interface and propose a simplied model that quantitatively reproduces numerical results. The crucial role of the high permeability disks for the mode selection in the Cadarache dynamo experiment cannot be inferred from computations using idealized pseudo-vacuum boundary conditions (H×n = 0).

E.1 Introduction

Astrophysical magnetic elds are a ubiquitous phenomenon. They aect formation and behavior of galaxies, stars or planets and might even be important for structure formation on cosmic scales. On astrophysical scales uid ow driven eld generation by virtue of the dynamo eect The induction equation with nonuniform material coecients, i.e. spatially dependent electrical conductivity σ = σ(r) and relative permeability µ r = µ r (r), reads:

(E.2.1)

where u is the prescribed (mean) ow, B the magnetic ux density and µ 0 the vacuum permeability (µ 0 = 4π × 10 -7 Vs/Am). The middle term in the right hand side of Eq. (E.2.1) proportional to ∼ ∇µ r × B represents the so-called "paramagnetic pumping" [START_REF] Dobler | Screw dynamo in a time-dependent pipe ow[END_REF]. This term is responsible for the suction of the magnetic eld into the regions with large permeability and involves a (non divergence free) velocity-like eld that we henceforth call "pumping velocity" (E.2.2)

The eigenvalue problem associated with equation (E.2.1) is solved numerically by using two dierent methods. One is based on a spectral/nite element approach described in [START_REF] Guermond | Eects of discontinuous magnetic permeability on magnetodynamic problems[END_REF] (SFE-MaNS, spectral/nite element method for Maxwell and Navier-Stokes equations) which solves the eigenvalue problem using ARPACK. The second approach utilizes a combined nite volume/boundary element method for timestepping equation (E.2.1), [START_REF] Giesecke | Kinematic simulations of dynamo action with a hybrid boundary-element/nite-volume method[END_REF]. Both approximation methods can account for insulating boundaries and non-uniform permeability and/or conductivity distributions. In the FV/BEM scheme insulating boundary conditions are treated by solving an integral equation on the boundary which allows a direct computation of the (unknown) tangential eld components by correlating the (known) normal eld components on the surface of the computational domain [START_REF] Iskakov | An integro-dierential formulation for magnetic induction in bounded domains : boundary element-nite volume method[END_REF][START_REF] Giesecke | Kinematic simulations of dynamo action with a hybrid boundary-element/nite-volume method[END_REF]. In the SFEMaNS code the magnetic eld is computed numerically in a certain domain outside of the cylinder and matching conditions are used at the interfaces with the insulator [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF].

The respective discretizations are done so that the transmission conditions across the material interfaces are satised. In addition to having passed independent convergence tests on manufactured solutions, the two codes have been cross-validated by comparing their outputs on various common test cases (see Giesecke et al. [START_REF] Giesecke | Generation of axisymmetric modes in cylindrical kinematic mean-eld dynamos of VKS type[END_REF][START_REF] Giesecke | Electromagnetic induction in non-uniform domains[END_REF] and Table E.1 below).

We use the same conguration as applied in [START_REF] Giesecke | Role of Soft-Iron Impellers on the Mode Selection in the von KármánSodium Dynamo Experiment[END_REF]. The computational domain is inspired from the VKS conguration. The conducting uid is contained in a cylinder of height H = 2.6 and radius R out = 1.4, surrounded by an insulator. The uid lls two unconnected compartments. The moving uid is contained in an inner cylinder of radius R in = 1. The uid contained in the annular region comprised between the cylinders of radius R in = 1 and R out = 1.4 is at rest; this region is referred to as the side layer (see gure E.1). Two discoidal subdomains of radius R imp = 0.95 are located in the intervals z ∈ [-1.0; -0.9] and z ∈ [0.9; 1.0] and are meant to model soft iron impeller disks of thickness d = 0.1; the relative magnetic permeability in these two disks is denoted µ r . The velocity eld u and the permeability distribution µ r are assumed to be axisymmetric. The velocity eld between the impeller disks At the interface between two materials denoted 1 and 2, the transmission conditions on the magnetic eld and the electric eld/current are given by:

«

= 0 for permeability jumps and n • (j 1j 2 ) = 0 and n × (E 1 -E 2 ) = 0 for conductivity jumps.

We also observe that dynamo action occurs on the m1-mode and that increasing µ r lowers the critical threshold on R m . 

Abstract

It is numerically demonstrated by means of a magnetohydrodynamics code that a short Taylor-Couette setup with a body force can sustain dynamo action. The magnetic threshold is comparable to what is usually obtained in spherical geometries. The linear dynamo is characterized by a rotating equatorial dipole. The nonlinear regime is characterized by uctuating kinetic and magnetic energies and a tilted dipole whose axial component exhibits aperiodic reversals during the time evolution. These numerical evidences of dynamo action in a short Taylor-Couette setup may be useful for developing an experimental device. as V 0 , is characterized by its rms velocity, V * 0 , dened as follows:

where V * 0p and V * 0t are the rms poloidal and toroidal velocities of the reference hydrodynamic ow, respectively, and vol(Ω cf ) = 6π is the volume of the vessel. Our computations give V * 0 = 0.272; this value is signicantly lower than the maximum speed at the rim of the endwalls which is equal to 2. The poloidal to toroidal ratio is

We have veried that the ow V 0 is stable with respect to non-axisymmetric perturbations supported on the Fourier modes m = 1, • • • , 7 at R e = 120. The velocity eld V 0 together with a sketch of the setup is shown in Figure F.1. This reference ow is used in F.4.1 to perform kinematic dynamo simulations .

F.3.2 A modied Taylor-Couette ow

In order to perform kinematic dynamo simulations with a velocity eld that has a poloidal to toroidal ratio that can be controlled easily, we construct an ad hoc eld based on V 0 . We use the poloidal and toroidal components of the vector eld V 0 to dene a kinematic eld, V ǫ , with a pre-assigned poloidal to toroidal ratio as follows:

(F.3.2)

The normalization is done so that the rms of V ǫ is the same as that of V 0 . This gives (F.3.3) To compare the ows V 0 , V I , and V ǫ , we show in Table F.3 the following characteristics of these three ows: rms velocity, V * ; maximum of the velocity modulus in the uid domain, V max ; poloidal to toroidal ratio, Λ.

Run

V * V max Λ

Viscous ow V 0 , F. We evaluate in this section the properties of the kinematic dynamos generated by the ows V ǫ (viscous driving) and V I (viscous driving plus body force).

F.4.1

Parametric study of the poloidal to toroidal ratio using V ǫ

We investigate the dynamo properties of the manufactured ow V ǫ in the kinematic regime, see F.3.2. The reference velocity scale is dened in (F.3.4). To ensure that the velocity is continuous across the solid/uid interface, the angular velocity of the inner core is set to be Ω i = 1/α(ǫ) with α(ǫ) given by Table F.2. The conductivities of the solid inner core and the uid are identical. Note that K is a decreasing function of R e in this range (see discussion in G.5). At low Reynolds numbers, e.g. at R e = 700, the velocity eld is steady and centro-symmetric, meaning that u(r, t) = u(r) = -u(-r).

At larger Reynolds numbers, the loss of centro-symmetry of the velocity eld can be monitored by inspecting its symmetric and antisymmetric components: u s (r, t) = 1 in H.6.

H.2 Stress-free boundary condition without precession

The objective of this section is to investigate the long term stability of the Navier-Stokes equations equipped with the stress-free boundary condition. The uid domain is denoted Ω and is assumed to be open, bounded and Lipschitz.

H.2.1 Position of the problem

We are interested in the motion of an incompressible uid in a container Ω with boundary Γ.

The container is assumed to be at rest in an inertial reference frame. Denoting u the velocity of the uid and p the pressure, the uid motion is modeled by means of the incompressible Navier-Stokes equations:

2)

where ν is the kinematic viscosity, ǫ(u) := 1 2 ∇u + ∇u T is the strain rate tensor, and u 0 is an initial data in

It is a common practice to replace the term ∇• ∇u + ∇u T in the momentum equation by ∆u since ∇•∇u T = 0 for incompressible ows. We nevertheless keep the original form of the viscous stress since we want to enforce the so-called stress-free boundary condition: (H.2.4)

together with the impenetrable boundary condition:

where n is the unit outward normal on Γ. The stress-free condition means that the tangent component of the stress at the boundary is zero. We shall see that this boundary condition is admissible in general for non-axisymmetric domains, but it yields pathological stability behaviors if the uid domain is a solid of revolution.

We are not going to discuss the well-posedness of the above problem in its full generality since it is still unknown whether the three-dimensional Navier-Stokes equations are well-posed under the much simpler no-slip boundary condition. We nevertheless recognize as a symptom of pathological stability behavior the fact that there are solutions to (H.2.1)-(H.2.2)-(H.2.3)-(H.2.4)-(H.2.5) that do not return to rest as t → +∞ if Ω is axisymmetric. Denition H.2.1. We say that Ω is stress-free admissible if there is a constant K > 0, possibly depending on Ω, so that the following holds (H.2.6)

where ":" denotes the tensor double product. Proof. We omit the details concerning the existence of Leray-Hopf solutions, which can be constructed using standard Galerkin techniques [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Navier-Stokes Equations : Theory and Numerical Analysis[END_REF][START_REF] Sell | Global attractors for the three-dimensional Navier-Stokes equations[END_REF], and we focus only on the aspects of the question which are relevant to our discussion. It is clear that {0} is an invariant set of (H. Let u be a Leray-Hopf solution corresponding to the initial data u 0 and let v be a smooth solenoidal vector eld satisfying the impenetrable boundary condition. Upon multiplying the momentum equation by v and integrating over the domain we obtain

Solenoidality and the impenetrable boundary condition imply that

and integrating by parts the viscous term we obtain:

-

The transport term is re-written in the following form

We now apply the above identities by replacing v by a sequence {v n } n∈N that converges in the appropriate norm to u. By integrating in time over an arbitrary interval (t 1 , t 2 ) and by passing to the limit (we omit the details again, see Sell [132, 2.3]), we nally obtain (H.2.7)

Note that equality is lost in the passage to the limit. Then using (H.2.6), we infer the following inequality:

which, owing to the Gronwall lemma (see Lemma H.4.1), immediately leads to u L 2 (Ω) u 0 L 2 (Ω) e -2Kνt , thereby proving that u → 0 as t → +∞.

We shall see that the stress-free admissibility condition (H.2.6) does not hold for axisymmetric uid domains, which are common in geoscience.

Remark H.2.1. Note that whether equality holds in (H.2.7) in three space dimensions is an open question related to the Navier-Stokes Millennium Prize from the Clay institute. For this reason we refrain from invoking the time derivative of the kinetic energy in the proof of Proposition H.2.1. The mapping t -→ Ω u 2 dx is a priori lower semi-continuous only, and, upon denoting L 2 w (Ω) the space L 2 (Ω) equipped with the weak topology, the mapping t -→ u ∈ L 2 w (Ω) is continuous.

H.2.2 The non-axisymmetric case

To better understand the stress-free admissibility condition (H.2.6), we rst prove that it holds if and only if Ω is not axisymmetric.

Denition H.2.2. We say that Ω is axisymmetric (or is a solid of revolution) if and only if there is a rotation R : Ω -→ Ω which is tangent on Γ.

Upon introducing the average operator over Ω, v := 1 |Ω| Ω v, where |Ω| is the volume of Ω, the following lemma gives a characterization of non-axisymmetric domains: Lemma H.2.1 (Desvillettes-Villani [START_REF] Desvillettes | On a variant of Korn's inequality arising in statistical mechanics[END_REF]). Assume that the domain Ω is of class C 1 but is not a solid of revolution, then there is c > 0 so that

We are now in measure to state the main result of this section:

Proposition H.2.2. Assume that the domain Ω is of class C 1 , then Ω is stress-free admissible if and only if Ω is not a solid of revolution.

Proof. Let us assume rst that Ω is not a solid of revolution. Let us now assume that (H.2.6) does not hold. We start from the Korn inequality (cf. e.g. [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF]): there exists a constant c > 0 such that, for

Since (H.2.6) does not hold, for any n ∈ N, one can nd = 1, and

The Korn inequality implies that the sequence u n is bounded in H 1 (Ω). Since the inclusion H 1 (Ω) ⊂ L 2 (Ω) is compact, there exists u ∈ H 1 (Ω) such that (we keep using u n after extraction of the converging sub-sequence) u nu L 2 (Ω) → 0 and u n ⇀ u in H 1 (Ω). We also have

(Ω) and ∇u n + ∇u T n → ∇u + ∇u T in D ′ (Ω), which nally gives ∇u + ∇u T = 0 (D(Ω) is the space of smooth vector-valued functions with compact support in Ω and D ′ (Ω) is the space of vector-valued distributions over Ω, i.e., the linear forms acting on D(Ω).) Applying the Korn inequality to uu n and using the fact that

we infer that u n -u H 1 (Ω) → 0. This allows us to pass to the limit on the boundary condition u•n |Γ = 0. The condition ǫ(u) = 0 implies that there are two vectors t ∈ R 3 , ω ∈ R 3 so that u = t + ω×x. This means that ∇×u = ∇×u = ω. Using Lemma H.2.1, we conclude that ω = 0, which means that u = t. The boundary condition u•n |Γ = 0 implies t = 0; this in turn means u = 0, which is impossible because u L 2 (Ω) = 1. In conclusion, (H.2.6) holds.

Let us assume now that Ω is axisymmetric. This means that there is a rotation R : Ω -→ Ω which is tangent on Γ. Without loss of generality we assume that the rotation axis is parallel to e z and the coordinate origin is located on this axis. Then R(x) = ωe z ×x and clearly R ∈ H 1 (Ω), R(x)•n(x) |Γ = 0, R L 2 (Ω) = 0 but (H.2.6) does not hold since ǫ(R) = 0. state momentum equation holds. Let us rst prove that u P •∇w + w•∇u P + 2εe x ×w is a gradient. A straightforward computation gives:

so that (H.3.8)

Let us then dene q(x) := -ω(x 2 +y 2 )+ 2εω β (1+β)xz. Observe that we can dene the pressure eld r(x) so that ∇r := -u P •∇u P -2εe x ×u P , since u P solves (H.3.2). Let us nally observe that (H.3.9)

Then we conclude that u P + w solves (H.3.2) with p = q + r -1 2 |w| 2 . In particular if we set u 0 = u P + w, then u P + w remains a solution forever, i.e., the solution does not converge to u P as t → +∞, no matter how small ρ is and no matter how large ν is. This proves that although {u P } is an invariant set, it is not an attracting set.

We now prove item (ii). Let u ∈ L 2 ((0, +∞); L 2 (Ω)) ∩ L ∞ ((0, +∞); H 1 (Ω)) be a Leray-Hopf solution of (H. 

A rigorous proof would require a passage to the limit à la Sell [132, 2.3]. Using the decomposition uu P = u ⊥ + w together with (H.3.8) and (H.3.9), we obtain

Using that v•∇w•v = 0 for any vector eld v, we nally infer the following energy estimate:

We start by recalling a standard version of the Gronwall-Bellman inequality.

Lemma H.4.1. Let u ∈ L ∞ ((0, T ); R + ) and assume that u is lower-semi-continuous and there exists λ ∈ R so that the following holds < +∞}. Note that meas(R + \M ) = 0 and meas(R + \M t ) = 0. Let us proceed by contradiction. Assume that there exists c > 0 so that for all t > 0, α L ∞ ((t,+∞);R + ) ≥ c. Let us set t 0 = 0. Since α is integrable, there is a set A * 1 ⊂ (t 0 + 1, +∞) of positive measure and diameter 1 so that α(τ ) ≤ 

This means that

8γ for all t i , which contradicts the fact that α is integrable.

Lemma H.4.3. Let ψ ∈ C 0 ([0, +∞); R + ) so that for all δ > 0 there is t δ ≥ 0 so that for all t 2 ≥ t 1 ≥ t δ , ψ(t 1 ) + δ ≥ ψ(t 2 ), then ψ(t) converges to a nite limit as t goes to innity.

Proof. Let ψ := lim sup t≥0 ψ(t) and ψ := lim inf t≥0 ψ(t). Let δ > 0 be a positive real number.

There are t 1 ≥ t δ and t 2 ≥ t 1 ≥ t δ so that ψ(t 1 ) ≤ ψ + δ, and

In conclusion ψ ≤ ψ + 3δ, which implies ψ = ψ since δ is arbitrary. This completes the proof.
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C.1 Localization of vector quantities on a grid cell ijk with the cell center located at (x i , y j , z k ). The dotted curve denotes the path along which the integration of B is executed for the computation of E