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Résumé de la thèse

Un des buts de la physique moderne est de comprendre les propriétés élec-
troniques des solides. En effet, comment expliquer leur variété alors que les
élements de départ sont les mêmes pour tous les solides, à savoir des électrons,
des protons et des neutrons ? Par exemple, quelle est la cause de la différence
entre les isolants comme le bore, et les isolants comme l’aluminium ? Ou
encore quelle est l’origine du magnétisme ou de la supraconductivité ?

Un des grands succès de la physique de la matière condensée dans les années
soixante a été de comprendre ces différentes propiétés à travers une unique
théorie, baptisée théorie de Ginzburg-Landau. Dans ce cadre, on montre que
ces transitions de phase sont associées à des brisures spontanées de symétries
quand la température diminue. par exemple, la transition d’un matériel entre
une phase paramagnétique et une phase magnétique à la température de Curie
TC correspond à la brisure de la symétrie SU(2) des moments magnétiques
intrinsèques : au-dessus de TC , ils pointent dans des directions différentes,
mais tendent à s’aligner lorsque la température descend sous TC . De même, la
transition vers un supraconducteur correspond à la brisure d’une symétrie de
jauge, et un cristal brise la symétrie par transition, au contraire d’un liquide.

Cette classification des solides en fonction des symétries spontanément
brisées a nécessité d’être raffinée lors de la découverte de l’effet Hall quantique
entier par von Klitzing et al. en 1980. Dans le cadre des symétries spon-
tanément brisées, on s’attend à ce que cette phase soit un isolant, puisquil
s’agit d’un cristal ne présentant pas d’électrons de conduction. Cependant,
von Klitzing et al. ont montré l’existence d’états de bord conducteurs. De
manière plus surprenante, ces états de bord sont robustes : ils ne disparaissent
pas en présence du désordre. il a été rapidement montré que la présence et
la robustesse de ces états de bord est expliquée par un ordre topologique en
complément des symétries brisées. Les expériences sur l’effet Hall quantique
entier requièrent des champs magnétiques intenses, des faibles températures
et un gaz d’électrons purement bidimensionnel. Il était alors admis qu’il était
nécessaire de briser l’invariance par renversement du temps et des échantillons
bidimensionnels pour observer un ordre topologique non trivial.

Cependant, Kane et Mele ont proposé en 2005 que le graphène pouvait
présenter un tel ordre topologique non trivial, tout en respectant l’invariance
par renversement du temps. Le graphène est le premier exemple d’un cristal
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bidimensionnel, et venait juste d’être réalisé expérimentalement. Il s’agit d’un
semi-métal (les bandes de conduction et de valence se touchent), mais Kane
et Mele ont montré que la prise en compte du couplage spin-orbite ouvre un
gap entre les deux bandes, et le graphène devient isolant. De plus, ce couplage
spin-orbite est responsable d’un ordre topologique non trivial qui se manifeste
par l’apparition de deux états de bord contre-propageants et de spin opposé.
Cette phase topologique non triviale, différente d’un isolant conventionnel (par
la présence de deux états de bord conducteurs), et de l’effet Hall quantique
(par le respect de l’invariance par renversement du temps) a été aussi prédite
dans des puits quantiques de HgTe/CdTe, où le couplage spin-orbite joue aussi
un rôle crucial. Peu après, cette phase a été généralisé à des équivalents tridi-
mensionnels, contrairement à l’effet Hall quantique. Ces isolants topologiques
tridimensionnels ont été proposés en premier dans l’alliage BixSb1−x, puis dans
une famille de semi-conducteurs conventionnels comme Bi2Se3, Bi2Te3, Sb2Se3,
ou encore dans du HgTe sous contrainte.

Les réalisations expérimentales des ces prédictions d’isolants topoogiques
ont vite suivi : l’effet Hall quantique de spin a été observée par Molenkamp
et al. dans des puits quantiques de HgTe/CdTe, et les isolants topologiques
tridimensionnels par différents groupes dans différents matériaux (Hasan et

al., Ando et al., Kapitulnik et al., Lévy et al.).
Ces réalisations expérimentales ont été la source d’un grand enthousiasme

dans la communauté de la matière condensée, grâce aux applications poten-
tielles de ces isolants topologiques, au-delà de leur seul intérêt d’un point de
vue fondamental. L’effet Hall quantique de spin présente de robustes états de
bords hélicaux ; leur robustesse empêche la rétrodiffusion, et donc la perte de
potentiel chimique le long du bord : ils sont parfaitement transmis. Associé
au fait qu’il trie les spins selon leur direction (des spins opposés vont dans des
directions opposés), cette transmission sans dissipation des états de bord fait
de l’effet Hall quantique de spin un candidat idéal pour la spintronique.

De plus, associés à des supraconducteurs, les isolants topologiques tridi-
mensionnels pourrait réaliser des supraconducteurs topologiques, et créer des
fermions de Majorana. De la même manière que les isolants topologiques sont
des isolants avec des états de bord ou de surface robustes, les supraconducteurs
topologiques présentent des états de bord ou de surface protégés par la topolo-
gie : les fermions de Majorana. Ces fermions de Majorana sont des particules
fondamentales dont l’existence est discutée depuis leur proposition en 1937, et
sont remarquables en ce qu’ils sont leur propre antiparticule. Le tressage de
ces fermions de Majorana suit une statistique non-abélienne, ce qui est très
utile pour l’informatique quantique, et la preuve de leur existence dans une
hétérostructure isolant topologique/supraconducteur par Kouwenhoven et al.

en 2012 est une étape importante, même si ces résultats ne font pas consensus.

Quand on s’intéresse aux propriétés électroniques, les expériences de trans-
port sont des outils naturels et puissants pour classer les solides. Par exem-



ple, la découverte de l’effet Hall quantique entier a été faite en observant
des plateaux lors de la mesure d’une conductivité transverse en fonction d’un
champ magnétique.

Le transport des électrons dans un cristal est expliqué par la théorie des
ondes de Bloch : les électrons de conduction sont soumis à un potentiel péri-
odique créé par les ions du cristal. cette périodicité engendre la délocalisation
des électrons par le théorème de Bloch. La théorie du liquide de Fermi-Landau
assure que l’on peut négliger les interactions entre électrons ou entre les élec-
trons et les ions du cristal, et que l’on peut considérer les électrons comme
des électrons libres avec une masse renormalisée. Les résultats de la théorie de
Fermi-Landau sont en excellent accord avec les expériences conduites sur les
conducteurs, même à très basse température.

Dans le cas de l’effet Hall quantique, qui est un isolant, le transport cor-
respond à des canaux indépendants unidimensionnels : les états de bord. On
utilise alors le formalise de Landauer-Büttiker pour décrire le transport et
retrouver les plateaux dans la mesure de la conductance. On peut décrire avec
le même formalisme le cas de l’effet Hall quantique de spin où les deux états
de bords contre-propageants sont indépendants et calculer la valeur attendue
pour les conductances.

Le cas des états de surface d’un isolant topologique tridimensionnel est dif-
férent à cause du phénomène de diffusion : en présence d’impuretés, un électron
avec une direction de propagation donnée peut-être réfléchi dans n’importe
quelle direction, contrairement au cas unidimensionnel où le désordre n’est
pas pertinent. Cette diffusion permet alors des interférences quantiques, re-
sponsables dans le régime mésoscopique (basse température, faible désordre
et petits échantillons) du phénomène de localisation faible et de fluctuations
universelles de la conductance. Ce régime mésoscopique est le régime naturel
pour décrire les expériences menées sur les isolants topologiques, il est donc
nécessaire de calculer la valeur de cette correction de localisation faible et
de l’amplitude des fluctuations de conductance afin de les comparer aux ex-
périences : une description théorique reliant les propriétés topologiques des
matériaux aux grandeurs mesurées expérimentalement nous aidera à classer
les solides.

Pendant ma thèse, j’ai étudié principalement deux problèmes. Le premier
concerne l’effet Hall quantique de spin, et comment on peut utiliser un supra-
conducteur afin de sonder ses propriétés uniques en y injectant des paires de
Cooper. Nous en avons en particulier montré que la conservation du spin
total de la paire pendant son transfert, associé avec l’hélicité des canaux de
bords engendre une séparation parfaite de la paire de Cooper. Dans le cas
où la région supraconducteur est grande, nous avons alors prédit une réflexion
d’Andreev totale, ce qui a été observé expérimentalement peu après a pub-
lication de nos résultats dans Probing the helical edge states of a topological



insulator by Cooper-pair injection published in Physical Review B, 82, 081303
(R).

J’ai ensuite étudié le diffusion des états de surface des isolants topologiques
tridimensionnels. Ces états de surface présentent une relation de dispersion
relativiste, ils sont donc décrits comme des fermions de Dirac. Nous avons
dans un premier temps calculé la conductance obtenue pour des fermions de
Dirac en présence de désordre, en utilisant deux techniques, la résolution de
l’équation de Boltzmann et un calcul diagrammatique standard. La technique
diagrammatique nous a aussi permis de calculer la valeur de la correction de lo-
calisation faible ainsi que les amplitudes des fluctuations de conductance. Nous
avons pu vérifier que la conductivité est alors fonction d’un seul paramètre, le
coefficient de diffusion, une fois que la classe de symétrie universelle, dépendant
des symétries explicitement brisées par le hamiltonien, est connue. Nous avons
ensuite pris en compte le gauchissement hexagonal de ces cônes de Dirac ob-
servé expérimentalement dans notre étude, et ce de manière non-perturbative,
afin de présenter une théorie au plus proche des conditions expérimentales. Ces
travaux ont été publiés dans Diffusion at the surface of topological insulators

in New Journal of Physics, 14, 103027.



Introduction

One goal of modern physics is to understand the electronic properties of solids,
and how to classify them. Indeed, starting with so few ingredients (protons,
neutrons and electrons), how can we explain the variety of the electronic prop-
erties of solids ? For example, what causes the difference between insulators as
boron, and metals as aluminum ? Where does magnetism or superconductivity
come from ?

A great success of condensed matter physics in the 1960’s was to understand
within a unique framework the origin of these different properties between
solids. From Ginzburg-Landau’s theory, it can be shown that phase tran-
sitions occur when temperature decreases, simultaneously with spontaneous
symmetry breaking[1]. For example, the transition between a paramagnet and
a ferromagnet at the Curie temperature TC corresponds to the breaking of the
SU(2) symmetry of the spin : above TC , all the spins of the sample point in
different directions, but below TC they all tend to point in the same direction.
Similarly, the superconducting transition is explained by a breaking of a gauge
symmetry, and a crystal breaks the translational symmetry, as opposed to a
liquid.

This classification of solids depending on the spontaneously broken symme-
tries had to be refined with the discovery in 1980 by von Klitzing et al. of the
integer quantum Hall effect[2]. Within the symmetry breaking framework, we
expect this phase to be an insulator as it is a crystal with no conduction elec-
trons. However, von Klitzing et al. showed the existence of conducting edge
states. More surprisingly these edge states are robust : they do not disappear
in presence of disorder. It was shown soon after that there is a topological or-
der beyond the symmetry breaking[3], and that this topological order explains
the presence and the robustness of the edge states[4]. To observe the quan-
tum Hall effect, experiments require strong magnetic fields, low temperatures
and bidimensionality of the sample considered. At the time it was believed
that the breaking of the time-reversal symmetry and the bidimensionality were
necessary conditions to non trivial topological orders.

However, Kane and Mele proposed in 2005[5], that graphene could present
a non-trivial topological order, without breaking the time-reversal symme-
try. Graphene is the first example of bidimensional crystal, just realized
experimentally[6] at that moment. It is a semi-metal (conduction and valence
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band touch), but Kane and Mele showed that the introduction of the spin-orbit
coupling could open a gap, and turns it into an insulator. Moreover, this spin-
orbit coupling is responsible for a non trivial topological order, resulting in the
appearance of two robust counterpropaging edge states of opposite spins. This
non trivial topological phase, different from a conventional insulator (the edge
states conduct) or the quantum Hall effect (the time-reversal symmetry is pre-
served) was also predicted[7] in HgTe/CdTe quantum wells. In this material,
spin-orbit coupling still plays a crucial role. This was soon after generalized
to three dimensional equivalents[8][9][10], as opposed to the quantum Hall ef-
fect. Three dimensional topological insulators were first proposed to be seen
in BixSb1−x, then in usual semi-conductors such as the family of compounds
Bi2Se3, Bi2Te3, Sb2Se3[11], or stressed HgTe.

The experimental realizations of these predicted topological insulators fol-
lowed rapidly : the quantum spin Hall effect in 2 dimensions by Molenkamp et

al.[12], and the 3 dimensional topological insulators by many groups in differ-
ent compounds (Hasan et al.[13], Ando et al.[14], Kapitulnik et al.[15], Lévy
et al.[16]).

These experimental realizations brought a lot of enthusiasm in the field
of condensed matter, motivated by potential applications of these topological
insulators beyond their interest from a fundamental point of view. The quan-
tum spin Hall phase presents robust helical edge states[17] ; their robustness
implies that there is no backscattering allowed hence no loss of the chemical
potential along an edge : they are perfectly transmitted. In association with
their spin-filtering property (opposite spins move in opposite direction), this
dissipationless transmission of the edge states turns the quantum spin Hall
effect in a perfect candidate for spintronics[18].

Moreover, combined with superconductors, the topological insulators could
realize topological superconductors[19][20][21] and lead to the creation of Ma-
jorana fermions[22][23]. Similarly to topological insulators being insulators
with robust edge or surface states, the topological superconductors are su-
perconductors with edge or surface states (the Majorana fermions) protected
by topology. These Majorana fermions are fundamental particles whose exis-
tence is discussed among physicists since their proposal in 1937[24], and are
fermions remarkable as they are their own antiparticle. The braiding of Ma-
jorana fermions obeys a non-abelian statistic[25] which turns very useful for
quantum computing[26][27][28][29], and the proof of their realization in topo-
logical insulator/superconductor hybrid structure by Kouwenhoven et al. in
2012[30], even if still debated, is a milestone.

When dealing with electronic properties, transport experiments are a natu-
ral and powerful choice to classify the solids. For example, the discovery of the
integer Hall effect occurred through a resistance measurement as a function of
magnetic field showing plateaux.
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The transport of electrons in crystals is explained by the Bloch’s wave
theory : the conducting electrons are submitted to a periodic potential, created
by the ions on the lattice. This periodicity leads to delocalization of the
electrons in the sample via the Bloch’s theorem[31]. The Landau-Fermi liquid
theory ensures that we can neglect the interaction between these electrons
and the ions and between the electrons, and consider them as free particles,
with a renormalized mass. The Landau-Fermi liquid theory provides results in
excellent agreement with experiments for metals, even at low temperatures.

In the case of the quantum Hall effect, which is an insulating phase, trans-
port corresponds to 1 dimensional independent channels : the edge states.
We use the Landauer-Büttiker formalism to describe the transport and find
the plateaux in the transverse conductance. Similarly, when the two counter-
propaging edge states of the quantum spin Hall effect are independent, this
formalism is still valid, and we derive the expected value of the conductances.

The case of surface states of 3 dimensional topological insulators is different
because of diffusive processes : in presence of impurities, an electron with a
given direction of propagation can be scattered in every direction, as opposed
to the 1 dimensional case where disorder is irrelevant. This diffusive process
allows for quantum interferences responsible for weak localization effect and
universal conductance fluctuations[32], when in the mesoscopic regime (low
concentration of impurities, small samples, low temperatures). This meso-
scopic regime is the natural regime to describe transport experiments in topo-
logical insulator, thus a derivation of these quantities is needed to confront
with experiments : a theoretical description relating the topological order to
measured transport properties helps to understand the classification of solids.

In this thesis, I will give in the first part an introduction to the physics
of topological insulators. The first chapter intends to describe the topological
properties behind the quantum Hall effect, as shown by Thouless et al.[3].
The techniques presented in the first chapter will be adapted to the time-
reversal invariant topological phases in the second chapter, following the works
of Kane et al.[5][33][8]. Whereas these two first chapters focus on the technical
side of the description of the topological insulators, the last chapter of this
introduction will be a brief presentation of their experimental realizations.

The second part focuses on the two dimensional quantum spin Hall effect,
and proposes an original way to probe the unique properties of the quan-
tum spin Hall edge states by Cooper pair injection from a superconducting
electrode. In particular, we show that the s-pairing of the superconductor,
associated with the helicity of the edge states induces a perfect Cooper pair
splitting or equivalently that the Andreev reflection is perfect at the interface
between a quantum spin Hall phase and a superconductor. This quantum
spin Hall effect/superconductor junction have potential applications in spin-
tronics, or in the optics to create Majorana bound states. We also present
experimental works exploiting this property. This part is an adaptation of our
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paper, Probing the helical edge states of a topological insulator by Cooper-pair

injection published in Physical Review B, 82, 081303 (R), chosen by editor’s
suggestion.

The third part focuses on the transport properties of 3 dimensional topo-
logical insulators, resulting in the publication of Diffusion at the surface of

topological insulators in New Journal of Physics, 14, 103027 in 2012. In the
case of 3 dimensional topological insulators, the surfaces states are represented
as Dirac fermions, with a relativistic dispersion. Because of the impurities, the
Dirac fermions are diffusive. The first chapter of this part (chapter 5) is a gen-
eral derivation of the classical transport properties of Dirac fermions, using
two different techniques : solving the Boltzmann equation and the standard
diagrammatic technique. The chapter 6 presents the quantum interferences
effects such as the weak anti-localization or the universal conductance fluctu-
ations. In this chapter, we use the standard diagrammatic technique to derive
these two quantities. We also stress the importance of the symmetry explicitly
broken by the hamiltonian, showing that the values of these quantum cor-
rections only depend on a universal symmetry class. Finally, the chapter 7
is about a special feature of the 3DTI surface states : because of the lattice
geometry of the crystal, and the time-reversal symmetry, they present at high
Fermi energy a hexagonal warping of the Fermi surface : the Fermi surface
turns from a circle into a hexagon or a snow-flake. We study in this chapter
the effects of this hexagonal warping, and show that it manifests through a
dependance of the diffusion constant on the Fermi energy. We also show a
dependance of the magnetic field characterizing the magnetoconductance ex-
periments measuring the weak anti-localization correction or the amplitude of
the universal conductance fluctuations. Moreover, we show that this hexagonal
warping is also responsible for magnetoconductance even when the magnetic
field is along the surface.

Published works

• Probing the helical edge states of a topological insulator by Cooper-pair

injection published in Physical Review B, 82, 081303 (R)

• Diffusion at the surface of topological insulators in New Journal of
Physics, 14, 103027
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Le suprême en ce genre est atteint quand on

arrive à la quantification.

Paul Valéry, Cahiers

Chapter 1

The first topological insulator :

the Integer Quantum Hall effect

Classical Hall effect

If we consider a metallic two dimensional sample in the xy-plane, the presence
of a transverse magnetic field ~B along the z-axis, creates a voltage VH in one
direction when a current Ix flows along the other direction (see fig 1.1).

Figure 1.1: Schematic representation of an experimental setup measuring the
Hall effect. A current I, provided by the voltage source Vx flows along the
conductor creates a transverse voltage Vh when the magnetic fieldBz is applied.

The classical Hall effect was discovered in 1879, and the underlying mech-
anism is simple to explain : the electric charges experience the Lorentz force
from the magnetic field q~v× ~B which curves their trajectories. Hence, positive
charges tend to move to one side of the sample, the negative charges to the
other, creating a voltage in the direction transverse to the current.

We can quantify this effect by measuring the transverse conductance,
namely the ratio σxy = Ix

VH
. This transverse conductance is directly pro-

portional to the magnetic field. This linearity is for example used in some
teslameters to measure external magnetic fields.
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1. The integer quantum Hall effect : a topological insulator

1.1 Quantum Hall effect

1.1.1 The edge states

The classical Hall effect explanation is no longer valid at high magnetic field,
as discovered in 1980 [2] : the transverse conductance is no longer proportional
to the magnetic field for purely 2-dimensional samples (cf Fig. 1.2). To explain
this, we have to use quantum mechanics[34].

Figure 1.2: Transverse (up) and longitudinal (down) resistances as a function
of the applied magnetic field B. We observe the departure of the transverse
resistance from a linear model, with the presence of plateaux.

We consider a two dimensional electron gas in the x, y-plane (e.g. at the
interface between two semi conductors), and use the Landau gauge for the
magnetic field ~A = (−By, 0, 0). The Hamiltonian reads :

H =
1

2m

((

px −
eBy

c

)2

+ p2y

)

+ V (y) . (1.1)

Because of the commutation between the Hamiltonian and the momentum
along x, [H, px] = 0, kx is a conserved quantity. Consequently we look for
ansatz of the form Ψ(x, y) = eikxξk(y), where ωc = |eB| /mc is the cyclotron
frequency associated to the magnetic field and y0 = −~k/mωc the eigenvalues
problem reads :

(

− ~
2

2m

∂2

∂y2
+
m

2
ω2
c (y − y0)

2 + V (y)

)

ξk,n = Ek,nξk,n . (1.2)

This expression shows that in absence of the confinement potential, the
two dimensional electron gas with magnetic field problem can be mapped onto
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1.1. Quantum Hall effect

an harmonic oscillator. This mapping exhibits the presence of the so-called
Landau levels, strongly degenerated states spaced by a value ~ωc. This gives
a scale of relevant energies, and if the variations of the potential V (y) are
small compared to this scale of energy, we can neglect them, and thanks to
the analogy with an harmonic oscillator problem, we find the solutions Ek,n =
~ωc(n+1/2). However, near the edges of the sample, the confinement potential
strongly varies which changes the energy as Ek,n = E(n, ωc, y0(k)) with a
typical profile plotted in Fig. 1.3.

Figure 1.3: Typical profile of the confinement potential as a function of y

The profile of the energy gives the group velocity corresponding to each
energy through the formula vk,n = 1

~

dEk,n

dk = 1
~

dEk,n

dy0
dy0
dk . Hence, along the

lower edge y1, the group velocity is positive, and along the upper edge y2 it
is negative. Moreover, at the center of the sample, the group velocity is zero
because of the flatness of the band, so we do not observe a current flowing.
This proves that only the edge states participates to electronic transport, and
this can be extended to other potential profiles smooth enough (the variations
of the central part of the potential should be on length scales larger than
lB =

√

h/eB).
At a given Fermi energy, we observe as many edge states as there are filled

Landau levels.
Furthermore, we see that disorder cannot cause backscattering : a given

edge state traveling with a positive velocity v cannot be backscattered with a
negative velocity since the states with negative velocity are at the other edge
of the sample. This spatial separation of the two edges ensures the robustness
of these edge states to disorder.
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1. The integer quantum Hall effect : a topological insulator

In the following, we will focus on the transport properties of these robust
edge states, first showing that they have a finite conductance, then explaining
the presence of the plateaux in conductance measurement experiments.

1.1.2 Conductance quantification

We have just seen that electronic transport only occurs along the edges states,
so to access to electric properties of the sample, we should know what is the
conductance associated to each edge state. Let us first consider the case of a
metal, contacted by a perfect wire to two reservoirs at the same temperature
and at different chemical potentials µL = µ0 − eV

2 et µR = µ0 + eV
2 and

calculate its conductance (we will see that it is finite). The i reservoir injects
in the metal electrons at energy E according to the Fermi-Dirac distribution
(βi = (kBTi)

−1):

fi(E) =
1

eβi(E−µi) + 1
. (1.3)

Left

L
T

reservoir

L

Right

R
T

reservoir

R

Figure 1.4: Representation of the studied single channel.

The part of the current flowing at energy E from left to right is given by
the formula :

dIL→R(E) =
dρL→R(E)

dE
dE

︸ ︷︷ ︸

Density of states

ev(E) τ(E)
︸ ︷︷ ︸

transmission probability

fL(E)
︸ ︷︷ ︸

injection probability

.

(1.4)
However, we can deduce the velocity of the charges and the density of

states from the spectrum by v(E) = 1
~

dE
dk and dρL→R(E)

dE = 1
2π

dk
dE , simplifying

by v(E) dρ
dE = 1

h and substracting the part of the current flowing from right to
left :

I =

∫
e

h
[fL(E)− fR(E)] τ(E)dE ≃ e

h

∫

−eV τ(E)
∂f

∂E
︸︷︷︸

−−−→
T≪1

−δ(E−EF )

dE ,

=
e2

h
τ(EF )V . (1.5)
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1.1. Quantum Hall effect

A difference between the classical world and the quantum world is seen
through this simple example : even if the metal considered was perfect, the
conductance could not exceed e2

h . This paradox is lifted by remembering that
we have measured the conductance of the system composed of the metal and
the contacts. The contacts are responsible for the dissipation, and each counts
as a 2e2/h conductance.

1.1.3 Landauer-Büttiker formalism

To measure the transverse conductance of a sample, and see its quantification
in the regime of quantum Hall effect, it is necessary to use a particular geometry
of the conductor, named a Hall bar : because of the presence of at least
4 different contacts (2 allowing the current to flow, and 2 to measure the
chemical potentials) we need to use a multiterminal formalism.

The formalism to describe the conductivity of a multiterminal device, where
the terminal are connected by independant channels is known as the Landauer-
Büttiker formalism.

In this formalism, each channel is characterized by its conductance
τ(E)e2/h, and we express the the current flowing from the lead α to the device
as a function of the potential of each lead through the conductance matrix G
as :

Iα =
∑

β

GαβVβ . (1.6)

The matrix coefficient Gαβ is the sum of all the conductances τ(E)e2/h of
each channel connecting the lead α to the lead β. The conductance matrix
is constrained by Kirchoff’s laws, as

∑

β Gαβ = 0 to ensure the conservation
of the charge, and

∑

αGαβ = 0 because the potentials are defined up to
an additive constant. The coefficient on the diagonal Gαα are the number of
conducting channels going out of the lead α times the quantum of conductance
Gαα = nαe

2/h, and, in the case of perfectly transmitted channels, the non
diagonal coefficients Gαβ are the opposite of the number of channels coming
from the lead β to the lead α : Gαβ = −nβαe2/h.

In the case of n edge states in the quantum Hall effect, then this matrix is
made out of n on the diagonal, and −n just behind the diagonal, for example
in a 6-terminals device :

GQHE =
e2

h











n 0 0 0 0 −n
−n n 0 0 0 0
0 −n n 0 0 0
0 0 −n n 0 0
0 0 0 −n n 0
0 0 0 0 −n n











. (1.7)

We want to invert this conductance matrix as we constrain the current
vector Iα and look for the potential vector Vβ , but the determinant of the
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1. The integer quantum Hall effect : a topological insulator

conductance matrix vanishes because of the Kirchoff’s law. This problem is
solved by considering that the information on one lead is already provided
by the other leads : if we take the 6th lead in the previous example, we can
measure all the potentials with respect to V6, and the current through this
lead is I6 = −Σ5

α=1Iα. With this simplification the problem can be inverted
as :









V1 − V6
V2 − V6
V3 − V6
V4 − V6
V5 − V6









=
h

e2









1/n 1/n 1/n 1/n 1/n
0 1/n 1/n 1/n 1/n
0 0 1/n 1/n 1/n
0 0 0 1/n 1/n
0 0 0 0 1/n

















I1
I2
I3
I4
I5









. (1.8)

Solving the problem for the quantum Hall effect in this 6 terminal geometry
is then performed by imposing the current vector. In the example of Fig. 1.5,
we impose I1 = −I4 = I, I2 = I3 = I5 = I6 = 0, and we observe that
V1 = V2 = V3 =

h
ne2

I and V4 = V5 = V6 = 0.
The calculation of the transverse conductance GH = V2−V5

I shows the con-
ductance quantification and the plateaux GH = ne2/h.

V

V V

0 0

0

I I

1

2 3

4

56

Figure 1.5: Schematic representation of the six-terminal measurement in the
quantum Hall regime with two filled Landau levels.

We also observe equipotentials along the edge, with no loss of the potential,
as expected from the absence of backscattering.

We have seen that the conductance plateaux observed in the quantum
Hall effect are a property arising from the edges of the 2 dimensional sample
regardless of its size or shape or even the disorder of the sample. The branch
of mathematics that concerns a property independent of "deformations" is
topology, and it seems natural to see if this conductance quantification is not
related to a topological property of the quantum Hall effect. This is what we
aim to do in the rest of this chapter.
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1.2. Topology and Quantum Hall effect

1.2 Topology and Quantum Hall effect

1.2.1 Topology

Topology is the branch of mathematics that tries to attribute properties to
mathematical objects that do not depend on the metric, the way how the
length between two points is measured. The first example of a topological
problem was the resolution of the Seven Bridges of Königsberg by Euler. The
problem is the following : is it possible to do a walk in the town by crossing
every bridge of the city only once ? The solution appeared obvious when Euler
considered the problem as shown in the Fig. 1.6 : when the problem is shown
in the graph form, all you need to do is to count the number of vertices of the
graph connected to an odd number of edges (if this number is 3 or more, then
there is no solution).

Figure 1.6: The Seven Bridges of Königsberg problem, and the graph resolution
to solve it.

This problem does not depend on the size or the shape of the different part
of the city, this is what the deformation to a graph shows, and the same result
is expected for two different cities that can be mapped into the same graph :
this is why topology is also defined as the science of global properties, or also
as the invariant properties with respect to smooth deformations.

1.2.1.1 Genus of closed surfaces

Another topology problem that will help us to understand to what extend these
insulators are topological is the problem of the classification of closed surfaces
in 3 dimensions. For example, a football ball can be smoothly deformed into
a rugby ball, or even a flying disc by squishing it, but it is impossible to
turn it into a torus without cutting and glueing it. The definition of what
is a "smooth" deformation needs to be precised, but in this context of closed
surface, we will require the impossibility to cut or glue it. In this case, one way
to characterize the different kinds of surfaces would be to deform them into
polyhedra and calculate their corresponding Euler characteristic χ = v− e+ f

where v (resp. e and f) is the number of vertices (resp. edges and faces) of
the polyhedron. For example, both the rugby ball and the football ball can
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1. The integer quantum Hall effect : a topological insulator

be deformed into a cube or a tetrahedron, but the calculation of their Euler
characteristic gives the same value : for a cube χ = 8 − 12 + 6 = 2, for a
tetrahedron χ = 4 − 6 + 4 = 2. The same calculation can be done for all
the platonician solids, and even for the different polyhedra the sphere can be
turned into : to be accurate, a football is actually a truncated icosahedron,
with 12 pentagonal and 20 hexagonal faces, 90 edges and 60 vertices, and thus
the same Euler characteristic χ = 2. This characteristic does not depend on
the particular deformation, since the fusion of a two vortices will decrease both
the number of vertices and edges by one, and similarly, the suppression of a
given edge will decrease both the number of edges and faces by one.

However, the torus can not be deformed into the same class of polyhedra,
but it can be turned into the two pictured in Fig. 1.7. For the cubic toroid, one
finds that χ = 32−64+32 = 0, and for the hexagonal one χ = 24−48+24 = 0.

Figure 1.7: Two toroidal polyhedra, left the cuboid one, right the hexagonal
one.

Intuitively, there is a generalization of the Euler characteristic in the case
of a polyhedron : we can see that the difference between the toroidal polyhedra
and the platonician solids is the number of holes, and the relation between the
Euler characteristic and the number of holes g, called the genus is χ = 2− 2g.
This intuitive manner to classify the surfaces by their gender is very convenient,
since it is a generalization to surfaces that are not polyhedra, but we need
a more rigorous approach to calculate the number of holes. A mathematical
theorem helps us to define it more precisely : the Gauss-Bonnet theorem which
states that for a closed surface S :

χ =
1

2π

∫

S
KdS , (1.9)

where K is the local curvature. We can foresee its importance for our study of
topological insulators, because it relates a global property to a local geometry.
We will provide other examples of this relation when studying the topological
order of topological insulators.

In the case of a sphere of radius R, the curvature is constant and equal to
1/R2, so χ = 2 as previously calculated. In the case of the torus, it can be
identified with a flat square whose sides are identified one with another, and
because of the flatness of the square K = 0, so we find that χ = 0.
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1.2. Topology and Quantum Hall effect

1.2.2 Quantum Hall effect as a topological insulator

We have just seen that the edge states of a quantum Hall effect are the rele-
vant states to describe its electric properties. Indeed, the number n of filled
Landau levels does not depend on small changes of the Hamiltonian, such as
disorder, profile of the confinement potential, etc... The transverse conduc-
tance ne2/h appears to be a global property independent of "deformations" of
the Hamiltonian[35] : in this section we intend to show that there is a sublying
topology that explain this behavior.

To have a better understanding of the quantum Hall effect, it could be
useful to picture what happens in a semi-classical way, where electrons follow
circles of radius lB =

√

~/eB. At the center of the sample, they do not partic-
ipate to electric current ; at the edges the electrons bounce and participate to
current. The bigger the magnetic field, the higher the Landau level spacing,
and the fewer the edge states.

The presence of an impurity will not affect the transport since it could
change the trajectory of the electrons on a scale lB, if the other edge is far
enough, each incoming electron on the impurity has to leave on the same edge,
with same velocity : there is no loss of chemical potential along the edges.
Similarly, even in the case of non perfectly flat edges, the concerned electrons
will still bounce (provided that the potential variations occur on a length scale
bigger than lB).

This robustness of the number of edge states seems very similar to the
robustness of the Euler characteristic, this is the idea that led Thouless,
Kohmoto, Nightingale and den Nijs [3][36] to look for a topological invari-
ant characterizing the quantum Hall effect[37][38]. It was later shown by
Hatsugai[4] that the topological invariant they propose in the case of an infi-
nite sample, with no edge, is equivalent to the number of edge states for finite
samples.

For a 2-dimensional gas of non-interacting electrons, in presence of a peri-
odic potential U(x, y) and a constant magnetic field, the Hamiltonian is written
as :

H =
1

2m

(

~p+ e ~A
)2

+ U(x, y) . (1.10)

We assume that the periodicity of the potential U(x, y) in x and y is given
by U(x + a, y) = U(x, y + b) = U(x, y). The system is invariant under trans-
lations of a in the direction x and b in the direction y, but because of the
presence of the potential vector, the Hamiltonian is not. We introduce the
magnetic translation operators as :

T̂~R = exp
[

(i/~)~R.
(

~p+ e ~A
)]

. (1.11)

If we choose the symmetric gauge for the potential vector ~A =
(Bzy/2,−Bzx/2, 0), the Hamiltonian commutes with T̂a and T̂b. The product
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1. The integer quantum Hall effect : a topological insulator

of 4 magnetic translation operators corresponds to move around a loop, thus :

T̂−1
a T̂−1

b T̂aT̂b = ei2πφ , (1.12)

where φ = (eBz/h)ab is the magnetic flux through the unit cell of size a and
b. If this flux is an integer1, then the Eq. (1.12) simplifies as T̂aT̂b = T̂bT̂a :
the two magnetic translation operators commute.

If ψ is an eigenfunction that diagonalizes simultaneously H, T̂a and T̂b, the
eigenvalues of the magnetic translation operators are given by :

T̂aψ = eikxaψ , (1.13)

T̂bψ = eikybψ , (1.14)

where kx and ky are generalized crystal momenta and are restricted to
the Brillouin zone of length 2π/a and 2π/b. Since kx and ky are conserved
quantities, the starting Hamiltonian of Eq. (1.10) can be written as :

H(~k) =
1

2m

(

−i~~∇+ ~~k + e ~A
)2

+ U(x, y) , (1.15)

where ~k is the vector of components kx and ky, ~A is the potential vector
and U(x, y) is a periodic potential. The Bloch states corresponding to this
Hamiltonian uαkxky are defined on the Brillouin zone such that :

H(~k)uαkxky = Eα(~k)uαkxky . (1.16)

When ~k is varied through the Brillouin zone, the eigenvalue Eα varies contin-
uously, for a given α index, this forms a dispersion band. The eigenstates are
normalized as

∫

UC dxdy|u|2 = 1 where
∫

UC denotes the integration over a unit
cell.

In the quantum Hall regime,we apply a small electric field to flow a current
in the sample and the transverse conductivity is derived by a linear response
theory through the Kubo formula :

σxy =
e2~

i

∑

Eα<EF<Eβ

(vy)αβ(vx)βα − (vx)αβ(vy)βα
(Eα − Eβ)2

, (1.17)

where EF is the Fermi energy and ~v is the velocity operator ~v = (−i~~∇ +
e ~A)/m. The matrix elements vαβ are integrated over a unit cell :

(~v)αβ = δkxk′xδkyk′y

∫

UC
dxdy (uαkxky)

∗ ~v uβk′xk′y . (1.18)

1In the more general case where this flux is a rational, we can turn it into an integer by

multiplication of the lattice vectors.
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1.2. Topology and Quantum Hall effect

Since the Kubo formula takes into account only off diagonal matrix ele-
ments (α states are below Fermi energy whereas β states are above), it is pos-
sible to write these matrix elements as a partial derivatives of the ~k-dependant
Hamiltonian :

(vi)αβ =
1

~
〈α|∂kiH(~k)|β〉 , i = x, y , (1.19)

=
Eβ − Eα

~
〈α|∂kiuβ〉 = −E

β − Eα

~
〈∂kiuα|β〉 . (1.20)

Inserting the result of Eq. (1.20) into the Kubo formula Eq. (1.17) gives :

σxy =
e2

i~

∑

Eα<EF<Eβ

(
〈∂kyuα|β〉〈β|∂kxuα〉 − 〈∂kxuα|β〉〈β|∂kyuα〉

)
. (1.21)

As we assumed the Fermi energy is in a gap between two bands, we
use the closure relation

∑

Eα<EF<Eβ (|α〉〈α|+ |β〉〈β|) = Id to write σxy =
∑

Eα<EF
σαxy where :

σαxy =
e2

h

1

2πi

∫

BZ
d~k

∫

UC
d~r ∂ky(u

α)∗ ∂kxu
α − ∂kx(u

α)∗ ∂kyu
α , (1.22)

where
∫

BZ is the integration over the Brillouin zone, and σαxy is the contribution
of each filled band to the Hall conductivity.

Introducing the Berry connection :

~A(~k) = −i
∫

UC
d~r u∗kxky

~∇~k
ukxky = i〈ukxky |~∇~k

|ukxky〉 , (1.23)

where the vector ~∇~k
is the vector of components ∂kx and ∂ky we can express

the Hall conductivity of the α band as :

σαxy =
e2

h

1

2π

∫

BZ
d~k
[

~∇~k
× ~A(~k)

]

z
. (1.24)

The Berry connection ~A corresponds to the linear transport of the infor-
mation on the phase when moving on the torus forming the Brillouin zone,
this is why it is called a connection. Let us see where this parallel transport
comes from with a simple example. Let us take a general Hamiltonian Hλ

depending on a parameter λ and corresponding eigenstates |ψ;λ〉. Then if we
adiabatically change the value of the parameter λ in time, the evolution of the
eigenstates will be given by :

Hλ(t)|ψ(t);λ(t)〉 = i∂t|ψ(t);λ(t)〉 . (1.25)
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1. The integer quantum Hall effect : a topological insulator

Solving this equation shows that the eigenstate acquires a phase γ called the
Berry phase during the evolution namely :

|ψ(t)〉 = eiγ exp

(

−i
∫ t

0
E(s)ds

)

|ψ;λ(t)〉 , (1.26)

γ = i

∫ t

0
〈ψ;λ(s)|∂s|ψ;λ(s)〉ds . (1.27)

Applying this result to a change of the parameter ~k in the Hamiltonian
H(~k) of eigenstates ukxky shows the link between parallel transport and the
Berry connection ~A we calculated. If we define the Berry curvature associated
to this connection on the torus of the Brillouin zone as F(~k) = ~∇~k

× ~A(~k), we
observe that the equation Eq. (1.24) simplifies as :

σαxy = nα
e2

h
, (1.28)

nα =
1

2π

∫

BZ
d~kF(~k) . (1.29)

The quantity nα is quantified, in the same way as the Euler characteristic
is for the classification of closed surfaces.

Precisely, we are studying the geometric object formed by the eigenstates
u(~k) for each point ~k of the torus of the Brillouin zone, each eigenstate being
defined up to a phase factor : this structure is known as a fiber bundle. A
simple image of a fiber bundle is a Möbius strip (combination of a circle and a
fiber). In each point of the circle, the Möbius strip looks like any regular piece
of paper, similarly, the fiber bundle we are studying is locally similar to the
product of a portion of the Brillouin zone and of the phase associated to each
point. This phase is not of importance if we only look for local properties, but
its importance is capital to topology : you can distinguish a Möbius strip from
a simple cylinder only if you look at the whole strip of paper.

The Brillouin zone is a 2 dimensional torus, and Chern showed[39] that
there is n topological invariants associated to every fiber bundle constructed
upon a 2n dimensional orientable manifold. In our case, the only topological
invariant is an integer named the first Chern number and is defined as nα in
Eq. (1.29).

In analogy with the closed surfaces classification of Sec. 1.2.1.1 where we
have seen that we can deform a football ball without changing the Euler char-
acteristic, this Chern number can not be modified by "smooth" deformation.
The action corresponding to cut or glue surfaces will be any action on the
Hamiltonian that closes the gap, as this derivation holds only for insulators.

We deduce from Eq. (1.28) the quantification of the Hall conductance. This
expression also shows that the Hall conductivity does not depend on any choice

14



1.2. Topology and Quantum Hall effect

of the phase : if we change all the eigenstates ukxky by a ~k-dependant phase
u′kxky = ukxkye

iφk , then the Berry connection is modified as ~A′ = ~A+ ~∇φk but
the Berry curvature is not F ′ = F .

1.2.3 Haldane model

1.2.3.1 Introduction of the model

To see how this Chern invariant can be derived, but also in order to introduce
more easily the Z2 topological insulators, we now study a theoretical model
introduced by Haldane where a quantum Hall phase appears in the absence of
a net magnetic field. This model consists in spinless electrons on a honeycomb
lattice (e.g. graphene). A honeycomb lattice consists of two triangular sublat-
tices labeled A and B, where we develop the states on each of the sublattice

|ψ〉 =
(
ψA

ψB

)

. The different terms in the Hamiltonian are (see Fig.1.8) :

• nearest neighbor hopping t connecting two sites of the different sublat-
tices A and B ;

• next-nearest neighbor hopping t′ connecting two sites of the same sub-
lattice A or B ;

• a term breaking the symmetry between the two sublattices +M on the
A sublattice, −M on the B sublattice. This symmetry is known as the
parity symmetry ;

• finally a local magnetic field is added in such a way that the flux through
an unit cell vanishes. This can be done by assuming that the nearest
neighbor hopping coefficient is real and the next nearest neighbor hop-
ping coefficient acquires a phase t′ = t2e

±iΦ.

We introduce the vectors ~ai that connect the B sites to the A sites, and
the lattice vectors ~bi that represent the displacement on the same sublattice.
If we express the states as a two-component spinor acting on the A and B
sublattices, the Hamiltonian reads :

H(~k) =2t2 cosΦ

(
3∑

i=1

cos(~k.~bi)

)

Id+ t

(
∑

i

[

cos(~k.~ai)σ
x + sin(~k.~ai)σ

y
]
)

+

[

M − 2t2 sinΦ

(
3∑

i=1

sin(~k.~bi)

)]

σz . (1.30)

This Hamiltonian can be written as H(~k) = h0(~k)Id + ~h(~k).~σ, and this
expression shows that the 2 energy bands only touch when ~h(~k) = ~0. Focus-
ing only on the first two components of the vector ~h(~k) this can only occur

15



1. The integer quantum Hall effect : a topological insulator

+  M−M

t

t ’

2
a

a
1

3
a

b

b

b
1

2

3

Figure 1.8: Haldane model for the honeycomb lattice. The parity breaking
term ±M is shown, as the hopping coefficients. On the right cell, the arrows
indicate the hopping terms with a positive phase t′ = t2e

iΦ. The lattice vectors
ai and bi are also shown.

at the corners of the Brillouin zone, where ~k. ~a1, ~k. ~a2, ~k. ~a3 take the values
0,+2π/3,−2π/3. When in these corners, the third component of the vector is
zero only if M = ±3

√
3t2 sinΦ.

We will assume that |t2/t| ≤ 1/3 so that the two energy bands never cross
the same energy unless when they touch.

Since we are interested in topological invariants, when the condition M =
±3

√
3t2 sinΦ is not satisfied, we can change the Hamiltonian as long we do not

close the gap. For example, we can get rid of the h0 term which is just a shift
of the two energy bands. We can also change the value of |~h| so it is constant
and equal to 1 everywhere in the Brillouin zone since it just corresponds to
varying the gap between the two energy bands.

1.2.3.2 Diagonalization of the Hamiltonian and topology

With these modifications, the Hamiltonian now reads :

H(~k) = ~h(~k).~σ , (1.31)

where ~h is on the Bloch sphere, and can be labeled by the azimuthal and
polar angles θ(~k) and φ(~k) so that (hx, hy, hz) = (sin θ cosφ, sin θ sinφ, cos θ).
The diagonalization is straightforward and gives the two eigenvalues ±1 with
corresponding eigenstates :

|u(N)
− (~k)〉 =

(
sin(θ/2)e−iφ

− cos(θ/2)

)

; |u(N)
+ (~k)〉 =

(
cos(θ/2)

sin(θ/2)eiφ

)

. (1.32)
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1.2. Topology and Quantum Hall effect

The superscript (N) stands for north pole, because we have chosen this
particular point to define what is the azimuthal angle. The problem with this
choice of the eigenstates is that there is a non physical ambiguity at the south
pole where θ = π, as the polar angle φ is not defined ; in most of the cases, this
is solved by considering a different expression for the eigenstates, for example
we can introduce :

|u(S)− (~k)〉 =
(

sin(θ/2)
− cos(θ/2)eiφ

)

; |u(S)+ (~k)〉 =
(

cos(θ/2)e−iφ

sin(θ/2)

)

. (1.33)

The two bands are well separated by a gap of value 2, and we know that we
need to calculate the Chern numbers only for the filled bands : in this model,
this corresponds to focus only on the |u−〉 band.

During the calculation of the integral of its Berry curvature, two cases must
be distinguished.

In the first one, one of the points on the Bloch sphere is never reached when
~k is moved along the Brillouin zone, for example the south pole. In this case,
no problem appears by taking the eigenstates |u(N)

− 〉 for all the states, and the
integral of the curvature on all the Brillouin zone reduces to zero : there is no
quantum Hall effect. It can be seen as the fact that we are not sensitive to the
topological singularity, just as a portion of a Möbius strip looks totally similar
to a portion of a non twisted strip.

The second case is when all of the Bloch sphere is spanned when ~k described
the whole Brillouin zone : in this case the singularity at the south pole can
not be ignored. The presence of this singularity is an obstruction to a single
definition of the phase on all the space.

To treat it properly, we need to cut our Bloch sphere in two halves, and
define the eigenstates with the convention |u(N)

− 〉 (resp. |u(S)− 〉) on the northern
(resp. southern) hemisphere. It is possible to use the mapping ~h to change the
variables of integration from the ~k in the Brillouin zone to the θ, φ labeling
the direction of ~h(~k), and introducing the number of times nw this vector ~h
winds around all the sphere (nw = 0 in the previous case), the calculation of
the Chern number is then given by :

n =
1

2π

∫

BZ
d~kF(~k) =

nw
2π

∫

Bloch sphere

dθdφF(θ, φ) . (1.34)

The integral on the whole Bloch sphere is then done by integrating on
each hemisphere, and using the Stokes theorem, the integral of the Berry
curvature on each hemisphere gives the integral of the Berry connection along
the equator :

n =
nw
2π

∫

θ=π/2
( ~AN − ~AS).d~l . (1.35)
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1. The integer quantum Hall effect : a topological insulator

However, we have derived in the subsection 1.2.2 that a change of the
phase for all the eigenstates u′kxky = ukxkye

iφk changes the Berry connection

as ~A′ = ~A + ~∇φk and in this case we know that |u(N)
− 〉 = e−iφ|u(S)− 〉 and this

gives :
n = nw . (1.36)

1.2.3.3 Resolution of the Haldane model

� Π
2

0
Π

2
Π
Φ

�3 3

3 3

M�t2

Figure 1.9: Phase diagram of the Haldane model as a function of the parame-
ters M/t2 and φ. Along the blue lines, the gap closes, allowing for a topological
phase transition.

We want to precise the phase diagram of Fig. 1.9, where the Chern number
is defined as a function of the parameters M/t2 and φ. It is not necessary to
calculate the Chern number for all values of the coefficients M/t2 and φ since
we know that the gap never closes outside of the blue lines. This means that
the Chern number can not change away from the blue lines : we have only three
Chern numbers to determine. Moreover, the operation φ′ = −φ corresponds to
the flipping of the magnetic field, so we should have n(−φ) = −n(φ) because
these numbers gives the Hall conductivity in units of e2/h. In conclusion,
outside of the two lobes, n = 0, and we only need to calculate n for a positive
value of φ.

We can calculate directly the Chern number :

n =
1

2π

∫

BZ
d~kF(~k) . (1.37)

In the case where the Hamiltonian is defined as H(~k) = ~h(~k).~σ, with ~h on
the Bloch sphere, the calculation of the Berry curvature reduce to a simpler
value and the Chern number reads :

n =
1

4π

∫

BZ

~h.
(

∂kx
~h× ∂ky

~h
)

. (1.38)
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1.2. Topology and Quantum Hall effect

For φ = π/2 and t2 = t1/4, we calculated this Chern number and found
that for M = 0, n = 1, and for M = 8t2, we found n = 0, as expected. The
final diagram phase is plotted in Fig. 1.10.
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3 3
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n = 0

n = +1n = -1

n = 0

Figure 1.10: Final phase diagram of the Haldane model as a function of the pa-
rameters M/t2 and φ, where we have indicated the value of the Chern number
in each domain.
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Le temps ne fait rien à l’affaire.

Georges Brassens

Chapter 2

Time reversal invariance and

topological order

2.1 Towards two-dimensionnal topological insulators :

graphene and spin-orbit coupling

2.1.1 The Quantum Spin Hall Effect

Graphene is a two-dimensional crystal consisting of a honeycomb lattice of
carbon atoms [6]. As pictured in Fig. 1.8, it consists of two triangular sublat-
tices labeled A and B, and with a lattice model where we develop the states

on each of the sublattice |ψ〉 =
(
ψA

ψB

)

. Adding a nearest neighbor hopping

t we obtain the Hamiltonian :

H0 = t
∑

〈i,j〉
c†icj =

∑

~k

H(~k) , (2.1)

where we defined :

H(~k) = t

(
∑

i

[

cos(~k.~ai)σ
x + sin(~k.~ai)σ

y
]
)

. (2.2)

The dispersion relation plotted in Fig. 2.1 shows the Dirac cones with a
linear dispersion E = ~vFk at the corners of the Brillouin zone, and because of
the triangular lattice structure, there are only two independant cones labeled ~K
and ~K ′ = − ~K. The corresponding degeneracy is called the valley degeneracy,
and we account for this degeneracy with a second Pauli matrix τ where τ z = ±1
corresponds to momentum located near one or the other of the valleys ~K or
~K ′. The effective Hamiltonian is obtained by expanding Eq. (2.2) around ~K
and ~K ′ :

Heff = −i~vF (σxτz∂x + σy∂y) , (2.3)
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2. Time reversal invariance and topological order

where ψ is a four components spinor, describing the valley and the sublattice
degeneracy.

Figure 2.1: Dispersion relation of the graphene. The first Brillouin zone con-
sists of the hexagon formed by the six cones where the two bands touch each
other.

As we will see in Sec. 3.0.3, the introduction of spin-orbit coupling [40][5]
allows a new term in the Hamiltonian that do not break time-reversal invari-
ance nor parity :

HSO = ∆SOσ
zτ zsz . (2.4)

In this expression, the spin-orbit coupling preserves the electron spin’s on
the z-axis sz to be a good quantum number. In this case, it is possible to
separate electrons into up and down spins. We treat this spin-orbit coupling
by introducing a tight binding model : we add to the next-nearest hopping
term t of the kinetic Hamiltonian H0 a new term :

H =
∑

〈ij〉α
tc†iαcjα +

∑

≪ij≫αβ

it2νijs
z
αβc

†
iαcjβ . (2.5)

The 〈ij〉 (resp. ≪ ij ≫) represents nearest (resp. next nearest) neighbor
pairs. We check that the spin sz is conserved by the second term ; it also
preserves τ z and σz. The term νij = −νji = ±1 depends on the orientation of
the two nearest neighbor bonds connecting the site i to site j. νij takes the value
+1 (resp. -1) when the electron has to do a clockwise (resp. anticlockwise)
turn. To be consistent with Eq. (2.4) at low energies, t2 = ∆SO/3

√
3.

This tight-binding model is equivalent to the Haldane model of Eq. (1.30)
where the parameters are defined as M = 0, φ = ±π/2 depending on the value
of the spin sz. In this case, we can define a Chern number for each value of sz,
n↑ and n↓. From the calculation of Sec. 1.2.3, we deduce that n↑ = −n↓ = 1
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(up to a sign that is not relevant). The total Chern number, as it is the sum
of all the filled bands n↑+n↓, vanishes : as expected, because we do not break
the time-reversal symmetry, we can not see quantum Hall effect. However, this
phase differs from a trivial insulator as it presents two edge states of opposite
spins and counterpropaging (cf.Fig 2.2).

In comparison to the quantum Hall phase, if we perform a four-terminal
terminal experiment to measure the transverse conductance, we obtain σH = 0
since the transverse voltage VH vanishes by symmetry. However, we can mea-
sure the transverse spin voltage VH,↑ − VH,↓ since the edge states are coun-
terpropaging for opposite spins. Reciprocally, when we bias two leads with a
potential V , we obtain a transverse spin current Is (and not a charge current)
flowing between the two other leads (cf Fig. 2.3). The associated transverse
spin conductance is quantified as Is/V = e/(2π). However, we can not mea-
sure the specificity of this topological phase by measuring the transverse spin
conductance as spin currents do not couple to experimental probes.

Figure 2.2: Representation of the Quantum Spin Hall phase as two copies
of Quantum Hall effect of opposite direction for opposite spins. (Source :
Murakami, New J. Phys. 9 (2007) 356)

2.1.2 The Z2 topological invariant

This first approach to a time-invariant topological invariant as a pair of re-
versed quantum Hall effect is not satisfying because to mimic opposite mag-
netic fields we used a spin-orbit coupling that preserve the sz component of the
spin whereas we know that because of this coupling there is a relation between
spin and momentum : the spin is no longer a good quantum number. More
precisely, the introduction of the spin-orbit coupling in graphene allows Rashba
spin-orbit coupling which in this model is of the form HR = λR(σ

xτ zsy−σysx).
As a consequence, sz is not conserved [sz,H] 6= 0, and we can not separate
electrons in spins up and spins down. In the next section, we present how
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V/2

-V/2

0 0I
s

Figure 2.3: Schematic description of the transverse spin current Is obtained
when a bias V is applied to two leads[5].

Kane and Mele derived the Z2 topological invariant in the general case where
we can not identify the quantum spin Hall phase with two copies of quantum
Hall effect[40].

2.1.2.1 The time-reversal operation and Kramer’s degeneracy

Although they both act on spins, magnetic fields and spin-orbit coupling differ
from a symmetry point of view : while a magnetic field breaks the time-reversal
symmetry, the spin-orbit coupling does not. The time-reversal operation Θ
should be antiunitary because of the Schrödinger equation : if |ψ(t)〉 is a
solution of the Schrödinger equation i~∂tψ = Hψ by complex conjugation, we
expect |ψ∗(−t)〉 to be another solution. As a consequence, if |α̃〉 = Θ|α〉 is
the action of the time-reversal operation on a given state |α〉 (and resp. with
|β̃〉 = Θ|β〉), the two relations defining the antiunitarity and the linearity are
satisified :

〈α̃|β̃〉 = (〈β|α〉)∗ , (2.6)

Θ(λ|α〉+ µ|β〉) = λ∗|α̃〉+ µ∗|β̃〉 . (2.7)

Furthermore, we expect this time-reversal operation to leave the position
operator invariant Θ−1xΘ = x and to reverse momenta operator whether
it be canonical momentum Θ−1pΘ = −p or orbital momentum Θ−1JΘ =
−J . The antiunitarity property of the time-reversal operation allows to write
this operation as a product of a unitary transformation U and the complex
conjugation K : Θ = UK. In the case of the spin 1/2 particles we are
interested in, this time-reversal operation acts on the spin, and we can write
it as Θ = −iηsyK. Here the η denotes an arbitrary phase of the operator.
This operation corresponds to a π rotation of the spin when applied to each
component of the spin operator sx, sy, sz, as expected.
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What is specific of half integer spins, is the property of the square of the this
time-reversal operation : Θ2 = −Id. This can be understood as the minus sign
associated to a 2π rotation (2 successive π rotations) of a spin 1/2. Because of
this specific value of Θ2, we know that in the case of a time-reversal symmetric
Hamiltonian Θ−1HΘ = H, for every eigenstate |n〉 of energy En, there exists a
different state Θ|n〉 6= |n〉 at the same energy. Indeed, if these two states were
equivalent, we could write Θ|n〉 = eiδ|n〉 and applying Θ a second time leads
to Θ2|n〉 = Θeiδ|n〉 = |n〉 which is in contradiction with Θ2 = −Id. This two
fold degeneracy, combination of the time-reversal symmetry and of the spin
1/2 nature of the electrons is called Kramer’s degeneracy.

In the case of a lattice model, we can introduce a reduced Bloch Hamilto-
nian H~k

on the first Brillouin zone that should satisfy the relation Θ−1H~k
Θ =

−H−~k
(even if the total Hamiltonian is time-reversal symmetric Θ−1HΘ = H).

In this case, degeneracy is recovered only at specific points of the Brillouin zone
such that ~k and −~k differ by a reciprocal lattice vector ~G. These points are
called time reversal invariant momenta (TRIM), pictured in Fig. 2.4 for a
square Brillouin zone.

As pictured in Fig. 2.5, we can observe two different kinds of energy spectra
when ~k is moved on a line between two TRIMs, depending on whether there
is an exchange of the Kramer’s pair partners between the two TRIM or not.
It is possible to imagine a Fermi energy in the gap below (or above) the two
eigenstates at every ~k by slightly changing them only according to the first
scenario (left picture). These two pictures hint at the difference between a
trivial insulator, with an even number of pair of edge states at every Fermi
energy in the gap, and a topological insulator where it is odd.

0

3
1

2

k
x

k
y

E. B. Z.

Figure 2.4: Representation of the Brillouin zone, reduced to the effective Bril-
louin zone. The four time-reversal invariant momenta Γi are also represented.
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Figure 2.5: Dispersion of the edge states along a line connecting two TRIM
for a trivial insulator (left) and for a topological insulator (right). In the two
cases, the Kramer’s pair are labeled I and II, and is pictured the time-reversal
operation between them.

2.1.2.2 The construction of the Z2 topological invariant

Thanks to the time-reversal symmetry, we can focus on half of the Brillouin
zone and define an effective Brillouin zone twice smaller (for example, re-
strained to the domain where kx ≥ 0). The states on the rest of the Brillouin
zone can be deduced from those on the effective Brillouin zone through the
relation :

|uI−~k
〉 = eiχ~kΘ|uII~k 〉 , (2.8)

|uII−~k
〉 = −eiχ−~kΘ|uI~k〉 . (2.9)

Here the superscripts I and II distinguish the states forming a Kramer’s pair
at a TRIM. We have explicitly written in these equation the phase-dependance
χ~k that will be responsible for topological properties when integrated over the
Brillouin zone. We should notice that we deduce Eq. (2.9) from Eq. (2.8) by
applying the time-reversal operation Θ, this is why the same phase appears in
the two equations.

We have seen in Sec.1.2.3 how to integrate the Berry curvature on all
the Brillouin zone in the Haldane model. In particular, we parametrized the
Hamiltonian as H(~k) = ~h(~k).~σ, and when ~h spans the whole Bloch sphere when
~k moves in the Brillouin zone, there is an obstruction to define consistently
the phase on each point.

We solved this obstruction by defining the phase on two subspaces with a
different gauge in each domain, and the integration reduced to the integration
of the transition function between the two gauges at the boundary between
the two domains.
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Similarly, we will separate our effective Brillouin zone in two parts (for
example depending on the sign of ky) labeled A and B (cf. Fig. 2.6). The
phase χ on each domain will be taken to be constant : hence all the winding
of this phase will be associated with the transition function, as we have done
in the calculation of the Chern number in the Haldane model.
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Figure 2.6: Representation of the Brillouin zone and the effective Brillouin
zone, with the two domains (A) and (B) where the phase is assumed to be
constant.

Consequently, on each subspace, we have the relations |uI−~k
〉 = Θ|uII~k 〉 and

|uII−~k
〉 = −Θ|uI~k〉, and at the boundary A∩B, the transition function is a 2 by

2 matrix reading :

|unA(~k)〉 = tnmAB(
~k)|umB (~k)〉 . (2.10)

where the indices n,m = I, II.
This 2 by 2 matrix should be unitary, and defining θ(~k) such that

det[t(~k)] = eiθ(
~k), the integral of the transition function is :

D =
1

2π

∮

∂A

~∇θ(~k).d~k =
1

2πi

∮

∂A
Tr
[

t†~∇t
]

d~k , (2.11)

where Tr
[

t†~∇t
]

=
∑

m〈umB (~k)|t†~∇t|umB (~k)〉.

We can get rid of the transition function in this trace by using the relation :

~∇tAB|umB 〉 = ~∇




tAB|umB 〉
︸ ︷︷ ︸

|um
A 〉




− tAB

~∇|umB 〉 . (2.12)
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2. Time reversal invariance and topological order

We introduce the Berry connection ~AA and ~AB on each subspace A and B
as ~Aα = +i

∑

n=I,II〈unα|∇|unα〉, and we find :

D =
1

2π

∮

∂A
d~k.
(

~AB − ~AA

)

. (2.13)

Within the domain A, |uA〉 is well defined, so we can use Stokes’ theorem
and write

∮

∂A d
~k ~AA =

∫

A d
2kFA, where we defined the Berry curvature F =

~∇× ~A. It is not possible to apply directly this theorem for the integral of ~AB

since ~AB is a priori not well defined on all the domain A, but we can write
the integration domain ∂A as ∂EBZ − ∂B (cf. Fig. 2.7).

0

3
1

2

k
x

k
y

E. B. Z.

(A)

(B)

Figure 2.7: Representation of the definition of the contours of the domains A
and B, and of the effective Brillouin zone.

We obtain :

D =
1

2π

(∮

∂EBZ
d~k ~A−

∫

EBZ
Fd2k

)

. (2.14)

We have seen in Sec.1.2.3 that an arbitrary change of the phase of one
of the two bands on one domain does not affect the Berry curvature F :
this allowed us to drop the subscript in the previous equation. However, this
arbitrary change of phase could change the value of the Berry connection, and
in general, the consequence is to change the integral by an integer. However,
because of the time-reversal symmetry |uI−~k

〉 = Θ|uII~k 〉 and |uII−~k
〉 = −Θ|uI~k〉

we can not change the Berry curvature of one band without changing the
other. This affects D and changes it only by an even integer. Hence only two
inequivalent topological invariants[9] exist :

• if D=0 mod 2, it is possible to choose the phase such that D = 0 and
we have a trivial insulator, with no winding of the phase around the
Brillouin zone ;

• if D=1 mod 2, it is not possible to choose the phase such that D = 0.
The corresponding phases are the topological insulators.

28



2.2. 3 dimensional topological insulators

2.2 3 dimensional topological insulators

After the discovery of quantum Hall effect in 1980, the paradigm was that
such topological phases require two ingredients : the breaking of time-reversal
symmetry and the 2 dimensionality, but with the discovery of the quantum
spin Hall effect and its Z2 topological invariant it was clear that the breaking of
time-reversal symmetry was not crucial to have topological order. The natural
step forward was to look after three dimensional generalization of the quantum
spin Hall effect, with a topological invariant similar to the Z2 invariant of the
QSH phase.

However it is not possible to define a Chern number in three dimension, this
is why the proposals for 3 dimensional quantum Hall effect were indeed 2+1
dimensional as stacked layers of 2 dimensional quantum Hall effect phases[41].
The reason lies in the topology of fiber bundles, and can be seen as an analog
of the theorem of the hairy ball, only valid for spheres of even dimension. As
a consequence we need a different interpretation for the Z2 invariant, that is
not based on Chern classes.

2.2.1 A different interpretation of the Z2 invariant of the QSH phase

We start with the expression of the Z2 topological invariant for derived in the
Eq. 2.14 :

D =
1

2π

(∮

∂EBZ
d~k ~A−

∫

EBZ
Fd2k

)

. (2.15)

This equation was obtained by dividing the effective Brillouin zone in two
domains where the time-reversal operation was assumed to be |uI−~k

〉 = Θ|uII~k 〉
and |uII−~k

〉 = −Θ|uI~k〉.
To obtain a different expression for this topological invariant, we adapt the

work done by Fu and Kane[33]. Following them we define the partial Berry
connection ~As = i〈us(~k)|~∇|us(~k)〉, and the partial polarization associated to
one branch s = I, II for a given kx as :

P s(kx) =
1

2π

∮

C(kx)
dkyAs

y , (2.16)

where the contour of integration C(kx) consists of a straight line crossing the
effective Brillouin zone at constant kx. We also define the total polarization
P tot(kx) = P I(kx) + P II(kx) and the time-reversal polarization P θ(kx) =
P I(kx)−P II(kx). From the time-reversal operation definition |uI−~k

〉 = Θ|uII~k 〉
and |uII−~k

〉 = −Θ|uI~k〉, we deduce ~AII(~k) = − ~AI(−~k). With a change of variable

ky ↔ −ky, we find that P II(kx) = P I(−kx).
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Figure 2.8: Representation of the contour of integration C(kx) in Eq. 2.16.

We want to express the two terms in the Eq.2.15 as a function of these
polarizations. For the first term we find :

1

2π

∫

∂EBZ
d~k ~A = P I(0) + P II(0)− P I(Kx)− P II(Kx) . (2.17)

where Kx is the value of kx at the edge of the Brillouin zone. In this case,
Kx = −Kx up to a reciprocal lattice vector so P II(Kx) = P I(−Kx) = P I(Kx)
, and we can write this term as 2(P I(0)− P I(Kx)).

The second term is an integral over the whole effective Brillouin zone, and
not only its border 1

2π

∫

EBZ d
2kF . We express F = ∂kxAy − ∂kyAx and using

the Fubini theorem we find :

1

2π

∫

EBZ
d2kF =

1

2π

∫

EBZ
dkxdky∂kxAy + ∂kyAx

=
1

2π





∫

dkxAx(Ky)−Ax(−Ky)
︸ ︷︷ ︸

=0

−
∫

dkyAy(Kx)−Ay(0)





(2.18)

=P tot(0)− P tot(Kx) . (2.19)

Collecting Eq. (2.17) and Eq. (2.19) we can express the topological invariant
D as :

D = P θ(0)− P θ(Kx) . (2.20)

To derive this equation, we divided the effective Brillouin zone into two
domains A and B where the phase χ in :

|uI−~k
〉 = eiχ~kΘ|uII~k 〉 , (2.21)

|uII−~k
〉 = −eiχ−~kΘ|uI~k〉 , (2.22)
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2.2. 3 dimensional topological insulators

was assumed to be constant. However, this expression is still correct when χ~k
evolves continuously on the Brillouin zone, instead of jumping at the boundary
between the domains, since the quantity P θ is just defined as a relation on the
two different branches.

In the more general case where the phase χ(~k) is not constant on different
domains of the effective Brillouin zone, but cis a smooth fuction of ~k, the
relation coming from the time-reversal operation between the partial Berry’s
connections ~AII(~k) = − ~AI(−~k) becomes :

~AI(−~k) = − ~AII(~k)− ~∇χ(~k) . (2.23)

To evaluate the partial polarization P I(kx), we split the domain of inte-
gration depending on the sign of ky :

P I(kx) =
1

2π

∫ Ky

−Ky

dkyAI
y(kx, ky) =

1

2π

∫ Ky

0
dkyAI

y(kx, ky)−AI
y(kx,−ky) .

(2.24)
Using Eq.2.23 in this equation gives :

P I(kx) =
1

2π

(∫ Ky

0
dkyAI

y(kx, ky) +AII
y (−kx, ky)− (χ(−kx,Ky)− χ(−kx, 0))

)

.

(2.25)
Introducing the matrix relating the time-reversed bands of coefficient

wαβ(~k) = 〈uα(−~k)|Θ|uβ(~k)〉 :

w(~k) =

(

0 eiχ(
~k)

−eiχ(−~k) 0

)

, (2.26)

we can express the phase χ(~k) as the Pfaffian of this matrix when it is antisym-
metric, which happens at the time-reversal invariant momenta. Indeed, for a
2 by 2 antisymmetric matrix, the Pfaffian is just the upper-right coefficient. It
is then possible to write exp iχ(~k) = Pf [w(~k)] when ~k is a TRIM.

We use this property to write P I(kx) at the special points where kx = 0,Kx

since the phases χ that appear in the second member of Eq. (2.25) will be
located at TRIM :

P I(kx = 0,Kx) =
1

2π

(∫ Ky

0
dky(AI(kx, ky) +AII(−kx, ky))y

+i log
Pf [w(kx,Ky)]

Pf [w(kx, 0)]

)

. (2.27)
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2. Time reversal invariance and topological order

Following the same procedure for P II( ~kx) gives the similar result and col-
lecting this results in P θ = P I − P II gives :

P θ(kx = 0,Kx) =
1

2π

[
∫ Ky

0
dkyAy(kx, ky)−

∫ 0

−Ky

dkyAy(kx, ky)

+2i log
Pf [w(kx,Ky)]

Pf [w(kx, 0)]

]

. (2.28)

where A = AI+AII is the total Berry connection. We want to rewrite the two
first terms of the expression Eq. (2.28) as a function of the w matrix defined
in Eq. (2.26). The first step is to calculate :

Tr
[

w†~∇~k
w
]

=
∑

αβ

〈uα(~k)|Θ†|uβ(−~k)〉~∇~k
〈uβ(−~k)|Θ|uα(~k)〉 . (2.29)

Distributing the action of the derivative on Θ|uα(~k)〉 and on 〈uβ(−~k)|, and
using a closure relation, this trace is evaluated as :

Tr
[

w†~∇~k
w
]

=
∑

α

〈uα(~k)|Θ†~∇~k
Θ|uα(~k)〉

+
∑

αβ

〈uα(~k)|Θ†|uβ(−~k)〉〈~∇~k
uβ(−~k)|Θ|uα(~k)〉 ,

=
1

i
A(~k) +

∑

β

〈~∇~k
uβ(−~k)|uβ(−~k)〉 , (2.30)

=
1

i

(

A(~k)−A(−~k)
)

. (2.31)

Introducing this result in Eq. (2.28), we find :

P θ(kx = 0,Kx) =
1

2πi

(∫ Ky

0
dkyTr

[

w†~∇~k
w
]

− 2 log
Pf [w(kx,Ky)]

Pf [w(kx, 0)]

)

.

(2.32)

With the definition of w of Eq. (2.26), we show that Tr
[

w†~∇~k
w
]

=

~∇~k
logDet[w(~k)]. Moreover at the TRIM, because the w matrix is antisym-

metric we have Det[w[~k]] = Pf [w[~k]]2. As a conclusion, it seems that P θ

should vanish.
However, in Eq. (2.32) appears logarithms of complex functions, but the

definition of a logarithm in the complex plane is ambiguous. Indeed we want
the logarithm to respect exp(log x) = x, but exp(2iπ) = 1, as a consequence
the logarithm can be defined only up to 2iπZ. Thus depending on the respec-
tive definition of the logarithm in the integral, and the log for the pfaffians,
P θ is only defined modulo 2. The two different values correspond to whether
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2.2. 3 dimensional topological insulators

the Pfaffians at the two TRIM correspond to the same branch of the root of
the determinant or not.

In the end, we can write this as :

(−1)P
θ(kx=0,Kx) =

√

Det[w[kx, 0]]

Pf [w[kx, 0]]

√
Det[w[kx,Ky]]

Pf [w[kx,Ky]]
. (2.33)

where we suppressed the ambiguity on the square root by assuming that
√
Det[w[kx, ky]] is defined continuously on the effective Brillouin zone.
We have sen in Eq. (2.20) that the topological invariant we want to derive

is D = P θ(0)− P θ(Kx), so using Eq. (2.33) this topological invariant is equal
to :

(−1)D =

3∏

i=0

δi where δi =

√

Det[w[Γi]]

Pf [w[Γi]]
. (2.34)

where the Γi are the 4 time-reversal invariant momenta (cf. Fig. 2.4).
If we consider only a product of two δi, for example δ0δ1, its physical

meaning is what we have seen in Fig. 2.5 : it corresponds to whether or not
the Kramers’ pair partners are the same at the two TRIM. This product can
be changed, for example by a gauge depending on ~k, but we have just shown
the product of the four δ can not as it is the topological invariant.

2.2.2 Application to 3 dimensional topological insulators

We expressed the Z2 topological invariant in the case of two-dimensional topo-
logical insulator only as a function calculated at the time-reversal invariant
momenta (TRIM) instead of an integral over the whole Brillouin zone. As op-
posed to the Chern number, defined only in even dimension, this definition can
be extended directly to three dimensional insulators[8]. In three dimensions,
there are 8 distinct TRIM Γi defined via the reciprocal lattice vectors ~b1, ~b2
and ~b3 as Γi=n1n2n3

= n1~b1 + n2~b2 + n3~b3 with ni = 0, 1. For each of these
TRIM, we define a parameter δn1n2n3

= ±1 consistently with what we have
done in Eq. (2.34) :

δi =

√

Det[w(Γi)]

Pf [w(Γi)]
. (2.35)

where wij(~k) = 〈ui(~k)|Θ|uj(~k)〉 is antisymmetric at the TRIM.
With these δi it is now possible to construct a Z2 invariant ν0 such that :

(−1)ν0 =
∏

ni=0,1

δn1n2n3
. (2.36)

Fu, Kane and Mele[8] showed that this product of the 8 δ is gauge invariant
even if none of them is gauge invariant.
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2. Time reversal invariance and topological order

It is also possible to construct three other invariants as :

(−1)νi=1,2,3 =
∏

ni=1,nj 6=i=0,1

δn1n2n3
. (2.37)

If these four invariants are zero, then we are in the topological phase of the
trivial insulators. When ν0 = 1, the number of surfaces states is odd, whereas
it is even when ν0 = 0 (it can be zero). In the case of ν0 = 0, when one of the
other invariant does not vanish, the surfaces states appear as the edge states
of stacked QSH phases, and the direction of this stacking is given by the three
indices as

∑

i 6=0 νi
~bi. The surface states number is only defined modulo 2, and

they can be coupled by disorder. In the case of "stacked QSH", with ν0 = 0,
it is likely that the disorder will turn them into trivial insulators by opening
a gap coupling the surface states by pairs : they are called "weak topological
insulators", as opposed to the ν0 = 1 "strong" topological insulators where
always exists at least one surface state[42][43].
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Il faut, messieurs, agir ! Agir et faire !

Anton Tchekov, Oncle Vania

Chapter 3

Experimental realizations

3.0.3 Spin-orbit coupling

The spin-orbit coupling is a crucial ingredient for the existence of topological
insulators. In this section, I briefly explain where does it come from and how
we can treat it. This spin orbit coupling comes from the approximation of the
Dirac equation for relativistic particles when their velocity is small compared
to the speed of light v ≪ c. In this case, and at the first order, the Hamiltonian
reads :

H = mc2+
p2

2m
+V (~r)− p4

8m3c2
− ~

4m2c2
~σ.(~p× ~∇(V ))+

~
2

8m2c2
∆V + . . . (3.1)

The first term is the rest energy of the particle, the second one its kinetic
energy and the third term is a potential energy.

The fourth term p4

8m3c2
is relativistic, as it originates from the formula

E2 = m2c4 + p2c2.
The fifth term − ~

4m2c2
~σ.(~p× ~∇(V )) is the spin-orbit coupling we are inter-

ested in, and the last term, called the Darwin term, is only included to respect
the series expansion.

We can interpretate this spin-orbit coupling term as follows. By a change
of the reference frame, the electric field ~E felt by an electron at speed ~v is
equivalent to a magnetic field ~B = −1

c2
(~v× ~E). If we consider that this magnetic

field act on the spin of the electron through Zeeman interaction gµB~σ. ~B where
µB = eh

2m is the Bohr magneton, this leads to an interaction :

HSO =
−~

2m2c2
~σ.(~p× ~∇(V )) . (3.2)

The difference by a factor of two called the Thomas factor originates from
the naivety of this interpretation. Refining with a proper calculation for the
change of the reference frame leads to the correct factor[44][45], that is anyway
integrated by the definition of an effective spin-orbit coupling constant that
also includes m and c.
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Some remarks are of importance about this expression for the spin-orbit
coupling :

• the main contribution to the potential variation ~∇V (~r) are not due to
an external electric field but to the presence of the atoms on the crystal
structure. This explain why we will be looking for heavy atoms, the
heavier the atoms, the stronger the spin-orbit coupling, scaling as Z4 ;

• we can see that this spin-orbit coupling is responsible for a momentum-
spin locking : for each direction of propagation of the electron, there is a
prefered direction of polarization for the spin minimizing the spin-orbit
coupling ;

• this Hamiltonian is time-reversal symmetric, since a time-reversal opera-
tion reverse both spin and momentum. Indeed as the time-reversal oper-
ator is Θ = exp(iπσy/~)K, we can check that ΘHSO(~p) = HSO(−~p)Θ ;

• this time-reversal invariance and the spin degeneracy imply the presence
of Kramers pairs : for an eigenstate at ~k and spin ~σ correspond an
eigenstate at −~k and −~σ. Consequently, lifting the spin degeneracy
requires a breaking of the inversion symmetry ~k ↔ −~k. The breaking of
the inversion symmetry is due either to a non centro-symmetric crystal
(Dresselhauss coupling) or to external asymmetries such as an external
electric field, asymmetry of the well, etc (Rashba coupling).

3.1 2 dimensional topological insulators : HgTe quantum

wells

As we have seen in the previous chapter, the introduction of spin-orbit cou-
pling turns the graphene into a topological insulator. However, the insulating
behavior is not experimentally measurable : the gap created by taking into
account this spin-orbit coupling is too small (even if there is no consensus on
its magnitude), because graphene is made out of carbon atoms, with too small
Z. Indeed, we have seen that the potential variations in the formula of the
spin-orbit coupling − ~

4m2c2
~σ.(~p × ~∇(V )) originates from the electronic struc-

ture of the atoms in the lattice, and that the heavier the atoms, the stronger
the spin-orbit coupling.

Alternatively, the quantum spin Hall effect was also proposed to be seen
experimentally in CdTe/HgTe/CdTe quantum wells [7][46]. These semi-
conductors have been chosen to satisfy different conditions :

• both of them show an important spin-orbit coupling, thanks to massive
atoms ;
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3.1. 2 dimensional topological insulators : HgTe quantum wells

• their lattice structure is very similar : they are both zincblende lattices,
where one type of atom is on a face-centered cubic lattice, and the other
at the center of half of the tetrahedra formed by neighboring atoms of the
first lattice. Moreover, their lattice constant are very close (6.48 Å for
CdTe and 6.45 Å for HgTe) : it is possible to make such a heterojunction
without stressing the different lattices too much and changing their band
structure ;

• they have inverted band structures : in CdTe, the valence band has p like
symmetry, and the conduction band s like ; but in HgTe, because of a
stronger spin-orbit coupling, the p like band rises in energy, and become
the conduction band.

An inverted band structure is necessary to obtain a phase transition when
a critical width of the HgTe layer is reached : when this layer is too thin, the
inverted structure can not be felt, and the heterojunction is a trivial semi-
conductor as CdTe, but when this width is increased, it should be an inverted
semi-conductor as HgTe. We will see that this phase transition is a topological
phase transition, turning a trivial insulator into a topological insulator.

3.1.1 Band model and edge states

We consider a quantum well grown in the z-direction, allowing the electrons to
evolve freely in a x,y-plane. In the simplest band model, we need to consider
only four bands, the ones of opposite parity that touch when the critical width
is reached (there are two for each spin). If we consider that the degeneracy
between up spins and down spins is lifted, and that time-reversal symmetry is
preserved, the effective Hamiltonian can be written as :

Heff =

(

H(~k) 0

0 H∗(~k)

)

. (3.3)

In this equation, H(~k) acts on the up spin space, and we deduced the
Hamiltonian on the down spin space by time-reversal symmetry. The opposite
parity s and p of the two bands of spin up restrains H(~k) so we expect that
the terms on the diagonal are even functions of ~k whereas the terms between
the different parity bands should be odd function of ~k. Using the rotational
symmetry in the kx − ky plane, we can express this effective Hamiltonian as
the lowest order in ~k as :

H(~k) = ǫ(~k)Id+ di(~k)σ
i , (3.4)

dx(~k) = Akx , (3.5)

dy(~k) = Aky , (3.6)

dz(~k) = M −B(k2x + k2y) . (3.7)
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The overall energy ǫ(~k) can be dropped in the study of topological invari-
ants as it is just a shift of the energies. The important parameter is the mass
parameter M , and in experimental devices, it changes sign when the width of
HgTe reaches the critical value of dc = 6.3 nm.

Considering only the up spin (the down spin behavior is deduced by time-
reversal symmetry), the bulk dispersion relation is straightforward : E(~k) =
ǫ(~k)±

√

(M −Bk2)2 +A2k2, and we can check that it is indeed an insulator,
with a band gap ∆ = 2M at the origin.

However, we are interested in edge states. To find them, we focus on an
interface between the plane of the electrons and the vacuum, for example, we
consider a semi-infinite sample where y > 0 and the vacuum when y < 0.
We look for plane-wave in the x-direction, exponentially decaying in the y-
direction, which corresponds to an envelop function of the form exp(ikxx+λy).
We can solve for λ through the substitution ky ↔ λ and find that at a given
energy E and wave vector kx there exist 4 different values of λ satisfying the
eigenvalue equation :

λ2 = k2x +
A2 − 2BM

2B2
︸ ︷︷ ︸

F

±
√

F 2 − M2 − E2

B2
. (3.8)

At E = 0 and kx = 0, this reduce to the four values :

λ1,2 =
−A±

√
A2 − 4MB

2B
; λ3,4 = −λ1,2 . (3.9)

The corresponding eigenstates are spinors representing the respective weight
of the eigenstate on the two different bands. For λ1 and λ2, this spinor is
(

1
−1

)

, while it is
(

1
1

)

for λ3,4. With this values of the λ, we try to obtain

edge states that satisfy the boundary conditions.
To obtain edge states, we have to satisfy the limit conditions |Ψ|2 → 0

when y → ∞. In HgTe/CdTe quantum wells, the A and B parameter do not
change significally with the width of the HgTe layer, and both are negative.
Edge states exist only for λ real, corresponding to the condition A2 > 4MB.
If this condition is satisfied, the only relevant states correspond to λ < 0 and
they differ depending on the sigh of M . The second limit condition is given at
the interface.

• When M > 0, the two negative values for λ are λ1 and λ4, and we can
express the edge state as :

Ψ(x, y) =

(
αeλ1y + βeλ4y

−αeλ1y + βeλ4y

)

. (3.10)

We can chose two types of boundary condition at the interface y = 0
: open boundary condition Ψ(x, 0) = 0 or annihilation of the current
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3.1. 2 dimensional topological insulators : HgTe quantum wells

at the interface ∂yΨ(x, y)|y=0 = 0 but in both cases, the result is that
α = β = 0, which means that there is no edge state.

• On the opposite, when M < 0, we have to chose λ1 and λ2 which corre-
spond to the same eigenvector, so we can satisfy the boundary condition
at the interface. In this case, the edge state is written as :

Ψ(x, y) =

(
2

λ1 + λ2
− 1

2λ1
− 1

2λ2

)(

eλ2y − eλ1y
)( 1

−1

)

. (3.11)

This corresponds to a wave function with a density probability exponen-
tially increasing from the edge on a length scale λ1, then exponentially
decreasing on the length λ2 (cf. Fig. 3.1) : we have an edge state. More-
over, when E 6= 0, the wave vector associated to the up-spin edge state
kx will be non zero ; by applying the time-reversal symmetry, there is an
edge state for the down spin, with wave vector −kx.

y

Ψ�x,y�
2

Figure 3.1: Presence probability of the edge state as a function of the distance
to the edge (arbitrary units).

This simple model shows us how varying the width of the HgTe layer in
the quantum well can change the nature of the phase, from a trivial insula-
tor to a topological insulator, with two edge states, corresponding to counter
propagating electrons of opposite spins.

3.1.2 Experimental realization and transport measurements

Within a year after the theoretical proposal for QSHE on HgTe/CdTe quan-
tum wells, the group led by Molenkamp was able to design the corresponding
devices, and demonstrate the presence of QSHE [12][47].

To understand their result, we just have to know that this quantum spin
Hall phase is characterized by two edge states of opposite velocities for opposite
spins. These two edge states can not be backscattered by an impurity as long
as the impurity does not allow spin flip : if the spin is preserved during the
scattering, so is the velocity. This absence of backscattering means that there
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3. Experimental realizations

is no loss of the chemical potential of a given direction of the spin along an edge,
transport is then ballistic, and we can use the Landauer-Büttiker formalism as
explained in Sec. 1.1.2.

3.1.2.1 Two-terminals devices

The two-terminal conductance has first been used in HgTe/CdTe quantum
wells to show the existence of the edge states in an insulator : in the case
of a trivial insulator, the longitudinal conductance will vary from a positive
value when the Fermi energy is in one of the bulk bands to a zero value in the
gap, where there is no available states. In the quantum spin Hall phase, there
are two edges states available to conduct the current, and each one of them
has a conductance of e2/h, so the drop in conductance should stop at the non
zero-value of 2e2/h.

The measurements done in 2007 by Molenkamp et al. [12] show the different
values of the resistance in the gap, as a function of the Fermi energy, for
different values of the HgTe layer in the quantum wells (Fig3.2).
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Figure 3.2: Experimental measurement of the longitudinal resistance of
HgTe/CdTe quantum wells[12] as a function of the Fermi energy. The curve
labeled I corresponds to a trivial insulator (the width of the HgTe layer is thin-
ner than the critical width). Curves II,III and IV correspond to QSH phases.
The II curve is done for a longer sample, losing the ballistic behavior of the
edge states thus increasing resistance.
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3.1. 2 dimensional topological insulators : HgTe quantum wells

As we can see in the Fig.3.2, there is a plateau at the value of 2e2/h
showing the presence of two edge states. However, the same plateau can be
seen in any other experiment where two perfectly conducting channels coexist,
for example in a quantum Hall system with a filling factor of 2 (the filling factor
is the number of Landau levels in Sec. 1.1). To discriminate the quantum spin
Hall effect from other system with two edge states, further experiments have
been done, using a Hall bar geometry.

3.1.2.2 4 and 6-terminals devices

4 and 6 terminal devices have been used to probe the absence of chemical
potential drop along the edge of a quantum Hall system, or similarly to show
that a perfect conducting channel has an infinite conductance if we suppress
the contact resistances (the one responsible for the finite value of e2/h).

Using a 6-terminal device for a quantum spin Hall system allows to probe
a whole set of resistances Rαβ

γδ obtained as the voltage drop between the leads
α and β divided by the current I that flows from the γ to the δ leads.

Using the Landauer-Büttiker formalism, we express the current flowing
from the lead α to the Hall bar as a function of the chemical potential of each
lead through a conductance matrix : Iα =

∑

β GαβVβ .

The conductance matrix is constrained by Kirchoff’s laws, as
∑

β Gαβ = 0
to ensure the conservation of the charge, and

∑

αGαβ = 0 because the chemical
potentials are defined up to an additive constant. In the case of perfectly
transmitted channels, the coefficient on the diagonal Gαα are the number of
conducting channels going out of the lead α times the quantum of conductance
Gαα = nαe

2/h, the non diagonal coefficients Gαβ are the opposite of the
number of channels coming from the lead β to the lead α : Gαβ = nβαe

2/h.

For example, for a 6-terminals device, in the case of two chiral edge states
in the quantum Hall effect, this matrix is :

GQHE =











2 0 0 0 0 −2
−2 2 0 0 0 0
0 −2 2 0 0 0
0 0 −2 2 0 0
0 0 0 −2 2 0
0 0 0 0 −2 2











. (3.12)

We can build similarly the matrix corresponding to counter propagating
edge states of quantum spin Hall effect, in this case there are still two edge
states coming out of each leads, but the incoming ones are associated to dif-
ferent leads, and we obtain :
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GQSH =











2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2











. (3.13)

This conductance matrix formalism shows why the same result is obtained

for 2-terminal devices as in both cases G =

(
2 −2
−2 2

)

, and why we expect

a different signature with a higher number of leads. To gain access to the
resistivity Rαβ

γδ , we set Iγ = −Iδ = I and Iǫ = 0 for ǫ 6= γ, δ, and we invert
the conductance matrix, using the Kirchoff’s laws. This provides the value
of the chemical potential in each lead, which is what we needed to have the
resistances Rαβ

γδ .
In the case of quantum Hall effect, we find that these resistances can take

only two values, 0 and h/(2e2) in both four and six terminals measurements,
but in the case of quantum spin Hall effect many more values with specific
fractions of h/e2 can be reached by changing the leads where flows the current
and where are measured the chemical potentials (cf Fig.3.3). As we can see in
Fig. 3.4 where these values are the dashed lines, the experimental values[48]
are in good agreement with the theory.
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Figure 3.3: Schematic representation of the six-terminal measurements. Top
left : a measurement for quantum Hall effect at filling factor ν = 2. The three
others show the different values of the chemical potentials when the current
leads are changed in the case of a quantum spin Hall phase.

The experimental proof of the edge states transport in quantum spin Hall
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3.1. 2 dimensional topological insulators : HgTe quantum wells

effect, as well as their helical nature (they are of opposite velocity for opposite
direction of the spin) was the trigger of the research in the field of topological
insulators[49][50].

two-terminal

x-

Figure 3.4: Experimental plots of different 4 terminal resistances [48]. The
dashed lines correspond to the theoretically expected values. The drop for high
values of the voltage means that we enter the bulk band, and the quantum
well is no longer insulating.

3.1.3 Experimental realizations of 3D topological insulators

3.1.3.1 ARPES experiments

The theoretical propositions for 3 dimensional topological insulators were first
looked among materials with strong spin-orbit coupling such as Bi1−xSbx[51]
where the band theory predicts a non zero ν0. The transport measurements we
use in 2 dimensional samples to show their topological insulator properties are
difficult to use in the case of 3DTI because the extra dimension can be seen as
a multiplication of the conducting channels. Moreover, this extra dimension
allows for diffusive processes as opposed to the ballistic edge states of quantum
spin Hall effect as we will see in Ch. 5. However, there are other ways to probe
the existence of surface states, and one of them is the angle-resolved photo-
electron spectroscopy (ARPES).

In an ARPES experiment, a laser beam is shined on the surface of the sam-
ple and through photo-electric effect some electrons are emitted. By conser-
vation of energy, and measurement of the electron momentum, the dispersion
relation is probed. The surface states are distinguished from the bulk states
by varying the energy of the incoming photons : the change in energy can be
absorbed only if there is a component of the electron transverse to the surface
to absorb the extra energy.

The first ARPES experiments were done[13][52] on Bi1−xSbx and showed
the presence of an odd number of Dirac cones as surface states (Fig. 3.5), as
expected[53].

This first experimental proof of topological insulators in three dimensions
lead physicists to find other materials, with a simpler band structure, and
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Figure 3.5: ARPES experiment showing the presence of 5 surface states in
Bi1−xSbx. The white stripes correspond to the bulk bands.

possibly a larger gap. It was shown[11] that a family of compounds (Bi2Se3,
Bi2Te3 and Sb2Te3) presents a unique surface state. Moreover, the fact that
they are stoichiometric compounds, instead of an alloy in the case of Bi1−xSbx

allows a growth with higher purity. Simulations of the expected dispersions in
these materials are plotted in Fig. 3.6.
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Figure 3.6: Dispersion relation from ab initio calculations for the Bi2Se3 family
of compounds, showing that three of them are topological insulators with a
single surface state[11].

These works also demonstrated that these surface states obey a linear dis-
persion relation as expected : because of the strong spin-orbit coupling, the
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3.1. 2 dimensional topological insulators : HgTe quantum wells

lowest order in ~k time-reversal symmetric Hamiltonian possible is a Hamilto-
nian where the momentum and the spin are coupled, for example H ∝ ~k.~σ.
This Hamiltonian is time-reversal symmetric, as a time-reversal operation
would reverse both the quantum number of spin and the momentum. Indeed,
in the plot in Fig.3.6, the dispersion is linear.

ARPES experiments soon followed, focusing on Bi2Se3 and Bi2Te3. Besides
the dispersion relation of the surface (and bulk) states, ARPES experiments
can also probe the spin of the extracted electron[54][55][56][57]. The experi-
mental plots presented in Fig. 3.7 show the unicity of the surface state, and
the winding of the electron spin around the Fermi surface.

Low High

0

¬0.2

¬0.4

¬0.6

E
B 

(e
V

)

0

¬0.2

¬0.4

¬0.6

E
B 

(e
V

)

0

¬0.2

¬0.4

¬0.6

E
B 

(e
V

)

¬0.2 0 0.2

ky (Å¬1)

¬0.2 0 0.2

ky (Å¬1)

¬0.2 0 0.2

ky (Å¬1)

21 eV 19 eV 31  eV

a

Publishers Limited. 

–0.2 –0.1 0.0 0.1 0.2
–0.3

–0.2

–0.1

0.0

d

k
x
 (Å–1)

–0.1 0.0 0.1

–0.1

0.0

0.1
Tuned Bi2–!Ca!Se3

c

–0.2

–0.1

0.0

0.1

0.2

Bi
2
Te

3

-0.2 -0.1 0.0 0.1 0.2

d

a b

Figure 3.7: ARPES experiments results for Bi2Se3 and Bi2Te3. The top left[58]
shows the dispersion relation of Bi2Se3 along one direction ; the brightest areas
being the bulk contribution. We can check the linear dispersion of the surface
state. Top right : the same results apply for Bi2Te3. The grey ares correspond
to bulk states[59]. Bottom : the winding of the spin projection around the
Fermi surface, left for doped Bi2Se3, right for Bi2Te3[59].

In these experimental plots, we can notice the unicity of the surface state,
showing a linear dispersion and a spin-momentum coupling. These two ingre-
dients are characteristic of Dirac fermions. We can also observe a gap of order
of 0.1 eV, larger than in the Bi1−xSbx alloy.
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3.1.3.2 Scanning tunneling spectroscopy

In addition to the ARPES experiment another technique allows to probe the
surface states of a sample, the scanning tunneling microscopy (STM). In a
STM experiment, a conducting tip is used to scan a surface, when a voltage
bias is applied between the tip and the surface to characterize : electrons can
tunnel from the tip to the surface. The tunneling probability is a function of
the distance of the tip from the surface, the applied voltage and of the local
density of states of the sample, so this method can be used to measure the
latest.

The first comparison between ARPES and STM experiments was done
in Bi2Te3 [15][60], and the integrated density of states derived from ARPES
experiment is in good agreement with the STM measurements (cf Fig. 3.8).

Figure 3.8: Comparison of the integrated density of states obtained from
ARPES experiment (left) and from STM experiment (right)[15].

3.1.3.3 Hexagonal warping of the surface state

We can also notice in the inset of the left figure of Fig. 3.8 that there is
a deviation of the surface state dispersion from the expected linear behavior.
This was seen in ARPES experiments [61], with sections of the conic dispersion
at different energies : the Fermi surface evolves from a pure circle to a hexagon
and to a snowflake-like shape when the Fermi energy is increased away from
the Dirac point.

This has also been confirmed in STM experiments where the density of
states is studied on samples with atomic steps at the surface. These steps are
obtained when the crystal is cleaved and their height is of the order of a unit
cell of the crystal, which in the case of the Bi2Te3 consist of 5 atomic layers.
In the case of a pure Dirac dispersion, the absence of backscattering implies
the absence of stationary state between two steps[62][63]. However, when the
Fermi energy reaches the point where the Fermi surface turns from concave to
convex, we see the apparition of a stationary state (cf. Fig 3.10), proving the
departure from the pure Dirac cone[15].
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3.1. 2 dimensional topological insulators : HgTe quantum wells

Figure 3.9: Fermi surface of the surface state when the Fermi energy decreases
from left to right. SSB (resp. BVB and BCV) refers to the surface state band
(resp. bulk valence band and bulk conductance band)[61].

Figure 3.10: The STM experiment results where the amplitude of the pres-
ence of a stationary state is plotted as a function of the Fermi energy (top
pannel)[15].

The existence of this hexagonal warping of the surface state can be ex-
plained theoretically[64] as the combination of the trigonal warping coming
from the crystalline structure of the Bi2Te3 and the time-reversal symmetry.
Taking into account these two symmetries leads to an additional term to the
Hamiltonian cubic in momentum which tilts the spin out of the surface plane
HW ∝ (k3+ + k3−)σ

z. The corresponding dispersion and projection of the spin
are in good agreement with the theoretical description.

This hexagonal warping is also present, even if smaller in amplitude, in
Bi2Se3 for the same physical reasons. This hexagonal warping is a special
feature of topological insulator, since the time-reversal symmetry does not
constrain a single Dirac cone in the case of graphene. In graphene, the higher
order in ~k terms are also cubic, but only imply a trigonal warping. The im-
plications of this special feature of topological insulator in terms of diffusive
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transport are the main object of the Ch. 7 of this thesis.

3.1.3.4 Transport measurements

As we can see in the different ARPES plots I have presented, even if the
gap is relatively large, the Fermi energy always lies near from one of the
bulk bands (in the plots, the energy is measured with respect to the Fermi
energy)[65]. In terms of transport, this means that because of disorder, we
are always in presence of conduction from the bulk[66][67][68][69], which is
a disadvantage when we want to characterize surface states. The Fermi en-
ergy can be changed by chemical doping, e.g. replacing some of the atoms
by Ca atoms or vacancies, but this breaks the transitional invariance of the
crystal and thus creates some disorder potential[70]. Another way to re-
duce the bulk conductivity is to improve the bulk to surface ratio, which
can be done by using very thin samples, made of a small number of atomic
planes[71][72][73][74][75][76][77][78][66][79][80]. Moreover, thin films allow to
gate the whole sample more easily[81][82][83].

For example, in Bi2Se3 nanoribbons, the presence of a negative magneto-
resistance (cf. Fig3.11) has been observed, as expected from the theory ex-
plained in Ch. 6.
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Figure 3.11: Magnetotransport experiment in a Bi2Se3 nanoribbon[84].

A similar effect has also been observed in a different kind of topological
insulator : strained HgTe. Bulk HgTe is a semimetal, where the conduction
and the valence bands touch each other. However, the presence of a stress can
open a gap and turns it into a topological insulator. Experimentally, this stress
is obtained by depositing the HgTe layers on top of CdTe ; the small lattice
constant mismatch is responsible for a distorsion of the HgTe lattice. The
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3.1. 2 dimensional topological insulators : HgTe quantum wells

topological insulator strained HgTe has been seen experimentally[16], results
are shown in Fig. 3.12.

-0.4 -0.2 0.0 0.2 0.4

B (T )

0.0

0.2

0.4

0.6

δ
σ

x
x
(e

2
/π
h
)

1.5K
2K
3K
4K
5K
7K
10K
15K

V g=6V

p
i
p
o,

Figure 3.12: Magnetotransport experiment in strained HgTe[16].

49





Magritte, La reproduction interdite

Part II

Helical edge states Andreev

reflection

51
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Jorge Luis Borges, Ficciones

Chapter 4

Cooper pair injection in a QSH

edge state

We have seen that the edge states of a quantum spin Hall system, consist
in two counter-propaging ballistic channels. If a superconducting region is
created in an edge, for example by proximity effect of a superconducting probe,
it becomes possible to transfer Cooper pairs into the edge[85]. Cooper pairs
are pairs of electrons bound together by an attractive interaction[86][87], in
S-pairing superconductors, these electrons have opposite momenta and spins.
Because of the conservation of the total spin during the tunneling process from
the superconductor to the edge, the two electrons of the same Cooper pair have
opposite spins in the edge. The helical nature of the edge states then ensures
that the electrons must travel in opposite direction of the edge, hence, this
system should provide a perfect Cooper pair splitter. As a comparison, in a
standard metal, the electrons can travel in the same direction since it is the
total spin that is preserved during the injection and not necessary the total
momentum (a rugged interface breaking the translational symmetry). In this
chapter, we are going to study this injection of Cooper pairs in a helical edge
state.

4.1 Model

To model the propagation of the edge states, we will first assume that the
edge is along the x-axis. We will also assume, without any loss of generality,
that the electrons moving from left to right at velocity vF have spin up, and
electrons moving from right to left have spin down. Down spin electrons also
move at the velocity vF because of time-reversal symmetry. In the absence of
the superconducting probe, and introducing the field operators ψ↑ (resp. ψ↓)
associated to the up-spin (resp. down-spin) electrons, the kinetic Hamiltonian
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Superconductor

CdTe

HgTe

I

IR

L

Figure 4.1: Schematic representation of the proposed experimental setup. The
Quantum Spin Hall phase is realized in a HgTe/CdTe junction. Transport
trough this QSH phase is measured by a standard two terminals setup with
normal electrodes. Between these two electrodes, a superconducting electrode
is deposited over a length l on one side of the sample.

reads :

H0 = −i~vF
∫ ∞

−∞
dx

(

ψ†
↑∂xψ↑ − ψ†

↓∂xψ↓
)

. (4.1)

This Hamiltonian shows the ballistic properties of the edge states provided
there is no coupling between the two channels. Moreover the velocity is the
same at every energy thanks to the linear dispersion : hence the eigenstates
satisfy ψ↑(x, t) = ψ↑(x − vF t, 0) and ψ↓(x, t) = ψ↓(x + vF t, 0). To model the
superconducting region, we consider an effective pairing potential ∆(x) which
can be related to the pairing potential ∆0 of the probe through the formula
∆(x) = t(x)2/~∆0 where t(x) is the tunneling amplitude from the probe to
the QSH edge state. This provides the effective Hamiltonian :

H = H0 + ~

∫ l

0
dx (∆∗(x)ψ↓(x)ψ↑(x) + H.c.) . (4.2)

To determine the scattering matrix between the channels, or to express
the current operators, we will focus only on the value at the boundaries of this
superconducting region, what happens further in the leads being determined
by the ballistic propagation of the edge states.

4.2 Cooper pair injection and scattering

We have seen that at a normal metal/superconducting interface (N/S junc-
tion), it is possible to inject Cooper pairs from the superconductor into the
normal metal. This injection is possible when the potential of the supercon-
ductor µS is larger than the Fermi energy EF in the metal. When µS < EF ,
the Cooper pairs are absorbed from the metal.

An incident electron (resp. hole) from the normal metal, with an energy E
below the superconducting gap ( µS−∆ < E < µS+∆) can not be transmitted
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4.2. Cooper pair injection and scattering

Superconductor

Normal metal
Normal metal

Figure 4.2: Scattering processes at a N/S/N junction. An incoming electron
(black) can be reflected or tunnel as an electron (blue), or form a Cooper pair
and be either reflected or transmitted as a hole (red). For simplicity reasons,
we assumed that the three regions are at equilibrium µL = µS = µR and
neglected the temperature dependance T = 0.

in the superconductor as a quasi-particle (resp. quasi-hole) because its energy
lies in the gap. However, it can be transmitted as a Cooper pair of energy
µS with another electron (resp. hole) of energy 2µS − E. The two electrons
(resp. holes) must have opposite spins and opposite momenta to form a Cooper
pair, consequently this absorption (resp. injection) of a Cooper pair can be
effectively described as the retroreflection of the electron (resp. hole) as a hole
(resp. electron) of opposite momentum and spin. This retroreflection is known
as the Andreev reflection[88][89][90].

The study of a normal metal/superconductor/normal metal (N/S/N) junc-
tion shows the presence of different processes. If we neglect the Cooper pair
absorption, an incoming electron can be reflected at the first interface, or it
can tunnel into the second lead. Because of Cooper pair absorption, it can
be retroreflected as a hole (Andreev reflection) if it pairs with an electron of
the opposite lead, or it can tunnel as a hole (non-local Andreev reflection)
when the second electron originates from the same lead (cf Fig. 4.2). These
Andreev processes correspond to a transfer of charge 2e between the metals
and the superconductor, as opposed to the transmission or the reflection as an
electron where no charge are transferred.

This effective image of Andreev reflection must be taken with precaution :
in a N/S/N junction, the Andreev reflection does not necessarily happen at
the interface, since it is the absorption of a Cooper pair formed of electrons
originating from different leads we expect the absorption to occur in all the
superconducting region.

Now, if we consider a junction of two quantum spin Hall phases with a
superconductor (QSH/S/QSH), some of these processes are forbidden by the
helicity of the edge states. If we consider that up-spin excitations have to
travel from left to right, and down-spin from right to left an incoming electron
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Figure 4.3: Scattering processes. With Fermi liquid leads, an incident elec-
tron (1) can be backscattered as an electron (2), reflected as a hole (local
Andreev reflection) (3), transmitted as an electron (4) or transmitted as a
hole (non local Andreev process) (5). In the QSH edge state, helicity conser-
vation prevents electronic backscattering (2) and hole transmission (5). For
a wide superconductor, electron transmission (5) vanishes and only Andreev
reflection (3) remains.

is either transmitted or Andreev reflected. The reflection is suppressed because
the QSH/S interface can not cause spin-flip of the electron, and the non-local
Andreev reflection is impossible since there is no pair of electrons originating
from the same lead with opposite spins.

Moreover, in the case of a superconducting region of length l ≫ ξ the
coherence length, the transmission of a subgap electron vanishes, the conser-
vation of energy then ensures that even if there are defects or a mismatch at
the boundary between the QSH edge state and the superconducting region,
there will be perfect Andreev reflection.

It is important to stress that this perfect Andreev reflection does not occur
at the interfaces : in the stationary regime, every possible Cooper pair has
been absorbed (or injected) by the superconductor because of its length. If
we start with Fermi seas at different potentials µL and µR for each lead, then
the particles flowing out of the superconductor will be Fermi seas at potentials
2µS − µR at the right lead, and 2µS − µL at the left lead : we observe an
effective perfect Andreev reflection at each interface.

As we have seen the equivalence between the Andreev reflection and the
injection/absorption of Cooper pairs, we will now on use these two images
indifferently.

The study of the injection/absorption of Cooper pairs in a quantum spin
Hall edge is equivalent to a scattering problem where electrons can be either
transmitted or Andreev reflected. We will in the next section derive the trans-
mission and Andreev reflection amplitudes as a function of the energy of the
incoming electron, for the general case of superconducting region of length l.
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4.3 Transmission and reflection amplitudes

To determine the amplitude of Andreev reflection and of the transmission,
we first use the time-reversal constraint : because of time-reversal symmetry,
we expect the amplitudes concerning incoming up-spins electrons, originating
from the left reservoir to be related to the down-spins electrons of the right
reservoir. Then we will derive these amplitudes in the case of a constant pairing
potential.

4.3.1 Time-reversal constraint

The Hamiltonian of Eq. (4.2) can be written as :

H =

∫ ∞

−∞
dx
[

−i~vF
(

ψ†
↑∂xψ↑ − ψ†

↓∂xψ↓
)

+ ~ (∆∗(x)ψ↓(x)ψ↑(x) + H.c.)
]

,

(4.3)
where we assumed that the pairing potential vanishes outside the supercon-
ducting region (∆(x) = 0 for x ≤ 0 or x ≥ l). It is possible to perform
a Bogoliubov transformation to express this Hamiltonian as matrix product.
In this case, this transformation reduces to consider eigenvectors of the form
(Ψ↑Ψ

†
↓) instead of (Ψ↑Ψ↓) and we can write the Hamiltonian as :

H = ~

∫ ∞

−∞
dx
(

Ψ↑(~r) Ψ†
↓(~r)

)

[−ivFσz∂x +∆(x)σx]

(

Ψ†
↑(~r)

Ψ↓(~r)

)

, (4.4)

where the σ matrices are Pauli matrices. As a consequence, we are looking for
eigenvectors of the matrix :

H = −ivF∂xσz +∆(x)σx . (4.5)

This expression of the matrix operator H shows that the problem is doubly
degenerate, as we could expect from the time-reversal symmetry. Indeed, if φ
is an eigenstate of H, then the state defined as σxφ∗ is also an eigenstate with
the same eigenvalue. Conserving only the component of σxφ∗ orthogonal to φ
allows to consider a orthogonal basis of eigenvectors φ and Φ :

Φ = σxφ
∗ − 〈φ|σxφ∗〉φ . (4.6)

On general ground, an eigenstate can be parametrized according to :

φ(x) =

{

eikx
(
1
0

)
+ r(k)e−ikx

(
0
1

)
for x ≤ 0 ,

t(k)eikx
(
1
0

)
for x ≥ l .

(4.7)

The first line corresponds to the solution on the left hand side of the su-
perconducting region, with the superposition of an incoming up-spin electron
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R

Figure 4.4: Scattering amplitudes for an electron originating from the left t
and r, and for an electron originating from the right t′ and r′. because of the
time-reversal symmetry, these different amplitudes are related.

going from the left to the right and the Andreev reflected part with amplitude
r(k), of opposite spin and going from right to left. The second line is just
the component of the wavefunction of the excitation transmitted to the other
end of the superconducting region, with amplitude t(k). This parametrization
of the eigenstate thus gives the tunneling amplitude t(k) and the Andreev
reflection amplitude r(k) for electrons originating from the left reservoir.

The calculation of the second eigenstate Φ defined in Eq. (4.6) leads to :

Φ(x) = t∗(k)×
{

t(k)e−ikx
(
0
1

)
for x ≤ 0 ,

e−ikx
(
0
1

)
− r∗(k)t(k)

t∗(k) eikx
(
0
1

)
for x ≥ l .

(4.8)

Absorbing t∗(k) in the normalization of the state shows that it corresponds
to the process of a down-spin electron originating from the right reservoir
partially transmitted and Andreev reflected. The corresponding amplitudes
are t(k) for the transmission, and − r∗(k)t(k)

t∗(k) for the Andreev reflection. As
expected, the time-reversal symmetry constrain the amplitudes for electrons
originating from the right reservoir to be expressed as a function of the ampli-
tudes associated to the left reservoir (cf Fig. 4.4).

We use the relation ǫ = ~vFk to parametrize the incoming electrons as a
function of their energy instead of their momentum. The scattering process
we have just derived then reduces to :

ψ↑,out(ǫ) = t(ǫ)ψ↑,in(ǫ)−
r∗(ǫ)t(ǫ)
t∗(ǫ)

ψ†
↓,in(−ǫ) ,

ψ†
↓,out(−ǫ) = r(ǫ)ψ↑,in(ǫ) + t(ǫ)ψ†

↓,in(−ǫ) . (4.9)

We will now derive only the values of the two quantities of interest t(ǫ) and
r(ǫ) for a given geometry of the superconducting region.
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4.3. Transmission and reflection amplitudes

4.3.2 Derivation of the amplitudes for a constant potential

We have seen that the presence of both S-pairing in the superconducting region
and helicity of the edge states is responsible for the suppression of normal
reflection and Andreev transmission, leading to only transmission or Andreev
reflection. This Andreev reflection consists in the reflection of an electron in
a hole of opposite spin and vice-versa.

From now on we will count the energies with respect to the chemical po-
tential of the superconducting region µS = 0. The number of particles is not
conserved during this scattering (because of the injection/absorption of Cooper
pairs where electrons are reflected in holes) but the introduction of the fields :

χ+(x, ω) = ψ↑(x, ω) , χ−(x, ω) = ψ†
↓(x,−ω) , (4.10)

maps the problem into a problem of classical scattering on a standard potential
instead of a pairing potential. The equations of motions derived from the
Hamiltonian read :

(

−iω + vF
d

dx

)

χ+(x, ω) = −i∆∗(x)χ−(x, ω) , (4.11)
(

−iω − vF
d

dx

)

χ−(x, ω) = −i∆(x)χ+(x, ω) . (4.12)

To solve these equations, we split the space in three regions x ≤ 0, 0 ≤ x ≤ l
and x ≥ l corresponding to the regions at the left, under and at the right of
the superconducting barrier. We further assume that the pairing potential is
constant under the barrier ∆(x) = ∆. The resolution of these equations by
plane waves reads in the superconducting region :

χ+(x, ω) = A+e
ikx +A−e

−ikx , (4.13)

χ−(x, ω) = B+e
ikx +B−e

−ikx , (4.14)

with the dispersion relation

k(ω) =

√

ω2 − |∆|2
vF

if |ω| ≥ |∆| , (4.15)

= i

√

|∆|2 − ω2

vF
otherwise . (4.16)

An imaginary wave vector corresponds to the tunneling crossing, with an
evanescent wave functions that does not vanish at the second interface, even for
energies smaller than the gap. Using continuity conditions at the boundaries
of the superconducting region x = 0, l allows to express the coefficient A± and
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4. Cooper pair injection in a QSH edge state
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Figure 4.5: Transmission probability through the superconducting barrier, as
a function of its length l in units of the superconducting length ξ and of the
energy of the incoming electron ω in units of the pairing potential ∆.

B± as a function of the incoming fields χin
+ (ǫ) = χ+(x = 0, ǫ) and χin

− (ǫ) =
χ−(x = l, ǫ) :

χ+(x, ǫ) =
F (l − x, ǫ)

F (l, ǫ)
χin
+ (ǫ) +

−2i∆sin(kx)

F (l, ǫ)
χin
− (ǫ) , (4.17)

χ−(x, ǫ) =
−2i∆∗ sin(k(l − x))

F (l, ǫ)
χin
+ (ǫ) +

F (x, ǫ)

F (l, ǫ)
χin
− (ǫ) , (4.18)

where the function F is defined by F (x, ǫ) = (vFk(ǫ)+ǫ)e
−ikx+(vFk(ǫ)−ǫ)eikx.

With this expression of the field inside the superconducting region, it is
possible to derive the transmission and Andreev reflection amplitude by look-
ing at these quantities at the boundaries x = 0, l :

t(ǫ) =
F (0, ǫ)

F (l, ǫ)
(4.19)

r(ǫ) =
−2i∆∗ sin(kl)

F (l, ǫ)
(4.20)

We can check that the probabilities T (ǫ) = |t(ǫ)|2 and R(ǫ) = |r(ǫ)|2 sum
to 1, T (ǫ) +R(ǫ) = 1 which expresses the conservation of energy.

The transmission probability T (ǫ) is plotted in Fig. 4.5 as a function of
the energy of the incoming electron ǫ and the length of the superconducting
region l. In the limit of long barriers l → ∞, for electrons with energy in
the gap |ǫ| ≤ |∆|, the transmission probability vanishes whereas the reflection
probability goes to 1: we realize a perfect Andreev reflection.
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4.4. Supercurrent and current-current correlations

On the other hand, in the limit of very small barrier l → 0, we recover
perfect transmission at every energy, as expected in the absence of the su-
perconductor. The crossover occurs on a length scale corresponding to the
superconducting length ξ = vF /∆, which can also be interpreted as the pene-
tration length of the subgap excitations. Finally, we observe oscillations arising
from multiple scattering of the excitation at the two barriers x = 0, l.

4.4 Supercurrent and current-current correlations

4.4.1 Supercurrent

The current in the right and left lead are counted positive from left to right
and then defined as :

IL(t) = −evF (ψ†
↑ψ↑ − ψ†

↓ψ↓)(x = 0, t) , (4.21)

IR(t) = −evF (ψ†
↑ψ↑ − ψ†

↓ψ↓)(x = l, t) . (4.22)

We express these currents as a function of the field operators incoming or
outgoing of the superconductors as :

IL(t) = −evF (ψ†
↑,inψ↑,in − ψ†

↓,outψ↓,out)(t) , (4.23)

IR(t) = −evF (ψ†
↑,outψ↑,out − ψ†

↓,inψ↓,in)(t) . (4.24)

With the scattering matrix derived previously in Eq.4.9, it is possible to
express the outgoing fields as a function only of the incoming fields. This
scattering matrix is defined for every energy, as opposed to the time, and we
assume to be in a stationary regime, so it is easier to derive the temporal
Fourier transform of the currents. Moreover the incoming fields are considered
to be at equilibrium in the reservoirs which allows to write 〈(ψin

↑ )†(ǫ)ψin
↑ (ǫ′)〉 =

h
vF
n↑(ǫ)δ(ǫ − ǫ′) (and similarly for the down spin) where n↑ (resp. n↓) is the

equilibrium distribution in the left (resp. right) reservoir with a chemical
potential µL = eVL (resp. µR = eVR).

For the current in the left lead, this leads to the operator :

IL(ω) =− evF

∫ [

ψ†
↑,in(ǫ)ψ↑,in(ǫ+ ~ω) − (r(−ǫ)ψ↑,in(−ǫ) + t(−ǫ)ψ†

↓,in(ǫ))
(

r∗(−ǫ− ~ω)ψ†
↑,in(−ǫ− ~ω) + t(−ǫ− ~ω)ψ↓,in(ǫ+ ~ω)

)]

dǫ .

(4.25)

There are two different contributions to the current in this expression :
the contribution of the voltage bias between the two leads I = e2

h (VL − VR)
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4. Cooper pair injection in a QSH edge state

reflecting the existence of a single ballistic channel in each direction, and sec-
ondly the current injected by the superconductor IS . Hence the presence of
the superconductor is described by the supercurrent operator defined as :

IS(t) = IR(t)− IL(t) = (−evF )
∑

σ=↑,↓

[

ψ†
σ,out(t)ψσ,out(t)− ψ†

σ,in(t)ψσ,in(t)
]

.

(4.26)
Similarly we express its Fourier transform as a function of the incoming

fields :

IS(ω) = (−evF )
∫ ∞

−∞

dǫ

2π~

[

Aε,ω ψ
†
i,↑(ǫ)ψi,↑(ǫ+ ~ω)

+Bε,ω ψi,↓(−ǫ)ψ†
i,↓(−ǫ− ~ω) + Cε,ω ψi,↓(−ǫ)ψi,↑(ǫ+ ~ω)

+Dε,ω ψ
†
i,↑(ǫ)ψ

†
i,↓(−ǫ− ~ω)

]

, (4.27)

with

Aε,ω = t∗(ǫ)t(ǫ+ ~ω)− r∗(ǫ)r(ǫ+ ~ω)− 1, (4.28)

Bε,ω = −t∗(ǫ)t(ǫ+ ~ω) +
r(ǫ)t∗(ǫ)
t(ǫ)

r∗(ǫ+ ~ω)t(ǫ+ ~ω)

t∗(ǫ+ ~ω)
+ 1, (4.29)

Cε,ω = −t∗(ǫ)r(ǫ+ ~ω)− r(ǫ)t(ǫ+ ~ω)
t∗(ǫ)
t(ǫ)

, (4.30)

Dε,ω = −r∗(ǫ)t(ǫ+ ~ω)− r∗(ǫ+ ~ω)t∗(ǫ)
t(ǫ+ ~ω)

t∗(ǫ+ ~ω)
. (4.31)

Expressing the equilibrium of the incoming fields with the reservoir, and
the conservation of energy R(ǫ) + T (ǫ) = 1, the zero-frequency component of
the supercurrent simplifies towards :

〈IS〉 =
2e

h

∫

R(ǫ) (n↑(ǫ) + n↓(−ǫ)− 1) dǫ . (4.32)

This equation shows that the supercurrent is made by injecting or ab-
sorbing Cooper pairs naturally : first the multiplying factor of 2 in front of
the quantum of conductance corresponds to the total charge 2e of a Cooper
pair. Secondly, the integral counts the number of Cooper pairs injected : the
Andreev reflection probability R(ǫ) is also the probability to inject/absorb a
Cooper pair, as we have seen in Sec. 4.2, and the term between the brackets
n↑(ǫ) + n↓(−ǫ) − 1 accounts for the existence of occupied (resp. available)
states of opposite spins and energy in the edge to be absorbed as (resp. to
inject) a Cooper pair.

At zero bias µL = µR the equation for the supercurrent leads to the differ-
ential conductance :

(
∂〈IS〉
∂V

)

V=0

=
4e2

h
R(ǫ = 0) . (4.33)
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Figure 4.6: Schematic representation of the Cooper pair injection by the super-
conductor in the QSH edges. The T = 0 distribution function of the incoming
electrons from the reservoirs at chemical potential µG, µD are represented. In
the distribution function for the electrons leaving the junction, the grey area
correspond to the states accessible for the injection of Kramers pair by the su-
perconductor. The case of small junction correspond to an imperfect injection
of pairs : the associated partitioning noise is associated with the appearance of
cross-correlation of noise in the injected current on both side of the junction.
For large junction, all the accessible electronic states are injected in the QSH
edges : the injected current on both sides are maximal, but perfectly noiseless.

This differential conductance goes from 0 in the absence of superconductor
l → 0, to the maximal value of 4e2/h in the limit l ≫ ξ of long superconducting
region. This value of 4e2/h corresponds to two metallic channels in parallel
with perfect Andreev reflection at the interface with a superconductor (2 times
an interface where a charge 2e is transmitted).

4.4.2 Current-current correlators

Having derived the mean-value of the supercurrent, we now consider the second
cumulant, the noise of the current. This amounts to consider for example
〈IS(ω)IS(ω′)〉. Expressing each current as a function of the incoming fields
only, terms containing 4 fermionic fields operator appear. To relate these
products to the equilibrium distribution of the reservoir we apply the Wick’s
theorem, expressing the mean value of a product of 4 terms as a combination
of mean values of product of two terms :

〈abcd〉 = 〈ab〉〈cd〉+ 〈ad〉〈bc〉 − 〈ac〉〈bd〉 . (4.34)

The minus sign in front of the third term comes from the anticommutation
rule for the fermionic operators ; it should be replaced by a plus sign in the
case of bosonic operator (for example in quantum optics).
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4. Cooper pair injection in a QSH edge state

Applying the Wick’s theorem in our problem, we obtain the current-current
correlator :

〈
IS(ω)IS(ω

′)
〉
= 2πS(ω) δ(ω + ω′), (4.35)

where:

S(ω) =
e2

h

∫ ∞

−∞
dǫ Aε,ωAε+ω,−ω n↑(ǫ)(1− n↑(ǫ+ ~ω))

+
e2

h

∫ ∞

−∞
dǫ Bε,ωBε+ω,−ω n↓(−ǫ− ~ω)(1− n↓(−ǫ))

+
e2

h

∫ ∞

−∞
dǫ Cε,ωDε+ω,−ω (1− n↓(−ǫ))(1− n↑(ǫ+ ~ω))

+
e2

h

∫ ∞

−∞
dǫ Dε,ωCε+ω,−ω n↑(ǫ)n↓(−ǫ− ~ω) . (4.36)

These expressions provide the noise correlator at finite frequency. If we
are interested in the low-frequency noise, this expression simplifies at zero
frequency into :

S(ω → 0) =
8e2

h

∫

R(ǫ) (n↑(1− n↑) + n↓(1− n↓)) (ω) dǫ

+
8e2

h

∫

R(ǫ)T (ǫ) ((n↑ + n↓ − 1)(ω))2 dǫ . (4.37)

where for simplicity we noted n↑ = n↑(ǫ) and n↓ = n↓(−ǫ) The first term is
the thermal contribution of the reservoirs : in the case of zero temperature,
the equilibrium distribution take the values 0 or 1, so this first term vanishes.
Moreover, when the bias voltage V goes to zero, the second term vanishes, and
the noise satisfies the Johnson-Nyquist relation S0 = 4kBT (〈∂IS〉/∂V )V=0

The second term represents the non equilibrium contribution to the supercon-
ducting current noise associated with Andreev reflection/ normal transmission
partitioning, since it vanishes in the case of a perfectly transmitted or perfectly
reflected process. Since only Andreev reflexion is associated with Cooper pair
emission or absorption from the superconductor, the partitioning between An-
dreev reflection processes and normal transmission is at the origin of the excess
noise in the superconducting current.

4.4.2.1 Excess noise

To study the excess noise coming from the Andreev reflection/normal trans-
mission partionning, we focus on the zero-temperature limit. In the case of
small biases µL = µr = V , only partially transmitted electrons will contribute
to the noise, and for the pairing potential profile we used ∆(x) = Θ(x)Θ(l−x),
the response of this noise to the bias is :

∂S

∂µ
=

16e2

h

sinh2 (l/ξ)

cosh4 (l/ξ)
. (4.38)
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Figure 4.7: Noise response ∂S
∂µ in units of e2/h and Fano factor F = S/2e〈IS〉

(dashed curve) as a function of l/ξ.

As we can see on the Fig.4.7, two regimes correspond to a vanishing
noise : in the case of a very short superconducting region, we neglect the
presence of the superconductor, and we recover two independent channels,
noiseless because they are at equilibrium with the reservoir. This is the
expected behavior since there is no partitioning when when the transmission
probability is 1. The regime of long superconducting region can be understood
as a regime where every possible absorption or injection of Cooper pairs have
been performed. In stationary regime, this is equivalent to a conversion from
supercurrent to quasi particle current through the perfect Andreev reflection.

As expected, the maximum noise is observed when the length of the super-
conducting region equals the superconducting length l = ξ, where the reflection
and transmission probabilities are equal to 1/2.

We also derived the Fano factor F = S/2e〈IS〉 and found that
F = 2T (ǫ = 0) (dashed curve of Fig.4.7), consistent with the charge 2e
of the Cooper pairs transmitted between the QSH edge states and the
superconductor.

A strong test of the helical properties of the edge states is obtained by
considering transport when µG = −µD 6= 0. In this case, at zero temperature
the superconducting current as well as its excess noise vanish since the elec-
tron distribution sent from the reservoirs is such that no Cooper pair can be
emitted within the superconductor thus leading to the simultaneous vanish-
ing of the superconducting current and its fluctuations. However, if normal
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4. Cooper pair injection in a QSH edge state

Figure 4.8: Left : Experimental plot of the resistance of a S/QSH/S junction,
as a function of the Fermi energy of the QSH phase Vfront, and the bias voltage
between the two superconductors V . Inset a) shows the a cross section of the
device. Inset b) shows a typical dispersion relation, the plain lines representing
bulk states, the dashed lines the helical edge states[91]. Right : Experimental
plots extracted from the left panel[91]. Inset a) shows the value of the normal
resistance (blue) as a function of the Fermi energy, controlled by Vfront. For
Vfront < 2 V, the insulating regime is reached. Inset b) is a plot of the excess
conductance ∆G as a function of the Fermi energy. When the Fermi energy is
in the gap, we observe fluctuations of ∆G around 2e2/h.

backscattering (or non local Andreev transmission) is possible, the partition-
ning between reflected and transmitted electrons will produce noise, increasing
with the value of µG = −µD.

4.5 Experimental application

This link between Andreev reflection and helical edge states has been used[91]
to show the helical properties of the edge states of InAs/GaSb quantum wells.
Their experimental setup, inset a) of the left panel Fig. 4.8 is made of a
GaSb/InAs quantum well, contacted by 2 superconducting Nb probes. Helical
edge states have been reported in such quantum wells, and there are repre-
sented by the dashed lines in the inset b).

The top gate Ti/Au allows to tune the Fermi energy in the insulating
regime.
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We observe in the left panel of Fig. 4.8 the crossing from the normal
metal regime to insulating regime when Vfront decreases below 0V. In the
insulating regime, we observe a zero-bias conductivity peak (ZBCP). This
ZBCP is related to the Andreev reflection probability as only Cooper pairs
can be injected in the QSH phase. We expect this peak in conductivity when
the two superconductors are at the same potential, if not, the absorption by
a superconducting lead of a Cooper pair injected by the other is forbidden
because of the energy mismatch.

Since we have a single channel to transport Cooper pairs of charge 2e,
we expect the total conductance to be R(EF ) × 2e2/h, where R(EF ) is the
Andreev reflection probability at the the Fermi energy, measuring the efficiency
of the Cooper pair injection. Extracting the excess conductance ∆G(Vfront) =
G(Vfront, V = 0) − G(Vfront, V ≫ ∆s/e) from the measurement of the left
panel Fig. 4.8, we obtain the plot of the inset b) of the right panel Fig. 4.8,
and we observe that in the insulating regime, ∆G = 2e2/h. This is strong
indication that there is perfect Andreev reflection at the interface between
the InAs/GaSb quantum well and the Nb superconducting probe : there are
helical edge states in the quantum well.
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- Sheldon, what the hell are you doing ?

- The same thing I’ve been doing for three

days. Trying to figure out why electrons

behave as if they have no mass when traveling

through a graphene sheet.

The Big Bang Theory

Chapter 5

Diffusion of Dirac fermions

5.1 Introduction

5.1.1 Dirac fermions

We have seen that topological insulators are a new phase of matter character-
ized by an insulating bulk and conducting edge or surface states, explaining
why the transport experiments could be described only by what happens at
the edge or the surface[92]. In this chapter, we are interested in 3 dimensional
topological insulators, and we have seen in Ch.3 that their surface states are
described by massless Dirac fermions with a Hamiltonian H ∝ ~σ.~p.

We remind that this can be understood as the combination of three phe-
nomena : the dependance in momentum of the surface states, the momentum-
spin locking and time-reversal symmetry :

• when the dispersion bands of the surface states cross, the lowest-order
dependance of the momentum should be linear. If one wants to remain
in the topological insulator regime, the Fermi energy should remain in
the small gap opened between the bulk conductance and valence bands,
this is why we can neglect highest-order terms in a first approximation

• because of the momentum-spin locking, we know that the Hamiltonian
should exhibit a term linking spin and momentum, and the time-reversal
symmetry implies that in this term, the spin should appear to a odd
power.

Finally, the isotropy of the problem explains the same coefficient in front of
the two terms.

These Dirac fermions are not specific to topological insulators since they
also appear in graphene, a pure 2 dimensional crystal of carbon atoms. The
experimental realization of graphene in 2004 [93] raised interest in the study
of the transport properties of Dirac fermions[94], as their behavior differs from
the non-relativistic case (here their energy increases as the momentum, not the
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5. Diffusion of Dirac fermions

square of the momentum), we expect their transport properties to be distinct.
In particular, in the case of real materials, we can not create perfectly clean
samples : in every crystal, impurities such as vacancies or different atoms break
the translational invariance. In the limit of a good sample, where the number
of impurities is small (we will define in Sec.5.1.3 what this "small" number is),
we can consider that the electrons scatter on the impurities, like a pinball : it
is the diffusive regime. For pedagogical purpose we will remind in this chapter
the result for the diffusion of Dirac fermions[95][96], and the corresponding
derivation of the conductivity, the quantum correction to the conductivity,
and the universal conductance fluctuations in the case of Dirac fermions in
Ch. 6. These results are applicable to both graphene and topological insulators
surface states.

However, there are important differences between the two dimensional
metal that is graphene, and the topological insulator surface states :

• in the expression of the Hamiltonian H ∝ ~σ.~p, the σ matrix relates to
the magnetic spin only for the surface states (it relates to a sublattice
partition in graphene), so magnetic fields effect should be different ;

• in the case of graphene, there is an even number of Dirac cones (precisely
4, 2 for the spin degeneracy, and 2 for the valley degeneracy) whereas
there is an odd number for topological insulators. This means that in
the limit of a strong disorder that do not close the gap, graphene would
be localized as opposed to topological insulator surface states : there is
at least one surface state that cannot couple to another, and remains
conductive[97] ;

• the time-reversal symmetry that is crucial in 3 dimensional topological
insulators affects the Dirac cones differently. In topological insulator,
the cone must respect this symmetry, whereas in graphene, a cone is
projected into the cone of the other valley by time-reversal operation ;

• as a consequence, the departure to Dirac physics at high Fermi energy
is different : the Dirac cones of graphene present a triangular warping
whereas the warping is hexagonal for topological insulators.

We will study in Ch. 7 the specificities of topological insulators surface states,
in particular this hexagonal warping, and the effects of a magnetic field.

5.1.2 Regime of coherent transport

At macroscopic scales, electronic transport through a material is described
by the Ohm’s law U = RI. In this equation, the constant R relating the
number of electron I crossing the sample per unit of time when a difference of
potential U is applied, is called the resistance and is a function of the material
used and the size of the sample. To express the dependance in the size of the
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Figure 5.1: Left : principle of the diffraction of the light by a circular hole, right
: diffraction pattern observed. Pictures from Atlas de phénomène d’optiques,
Springler-Verlag

sample one has to introduce the resistivity r, a constant of the material, and
gets in the case of a sample of length l and transverse surface S a resistance
R = rl/S. This formula provides the traditional result for the composition of
resistances whether it be in series or in parallel. However, at very small scales,
for example at the order of the atom, the classical world as we know it no
longer exists, and we have to take into consideration the quantum mechanics,
where electrons can no longer be described as particles but also present a wave
behavior characterized by the Fermi wavelength λF .

A specificty of wave physics is that t is possible to observe interferences,
for example with light in a diffraction experiment : when a laser beam is sent
through a tiny hole, the result on a screen behind the hole shows an alternating
scheme of bright parts and shadows. When the laser beam is changed by a
bulb light, the interference pattern disappears, the reason being that all the
photons coming out of the laser beam are in the same quantum state (same
direction and same frequency), and they exit the laser cavity with the same
phase, they are said to be coherent. The photons coming from a light bulb
present a wide range of different frequencies and directions, they are said to
be incoherent. The phase of the incoherent photons is random on the screen
whereas it is deterministic in the case of coherent light, this is why we can see
the interference patterns, which are a reminiscence of the information of the
phase.

Similarly, to see interference effects with electrons, we need to conserve
their phase coherence. There is a variety of phenomena responsible for the
loss of the phase coherence, for example interactions between the electrons, or
interactions between the electrons and the vibration of the atoms of the lattice
(called phonons) for example. These inelastic processes where an electron can
exchange energy modify the phase of the electron, and the repetition of many
events of this type leads to the introduction of a length, called coherence length,
giving an estimation of the length an electron can travel before losing memory
of its initial phase.

The mesoscopic regime of coherent transport corresponds to the regime
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where we can treat the electrons as particles that can interfere. This corre-
sponds to the regime where the size of the sample L is comparable with the
phase coherence length Lφ, and λF ≪ L in order to treat the electrons as
particles.

5.1.3 Diffusive transport

In the nature it is merely impossible to have clean crystals : even in the
cleanest atmosphere, the presence of residual impurities at random positions
creates a random disorder potential that scatters particles. Since the scattering
is elastic, there is no exchange of energy between the electron and the scatterer,
so it does not affect the coherence length. To characterize the strength of this
disorder, it is useful to introduce the mean-free path traveled by an electron
between two scattering events le. With a semi-classical picture, we can see
the movement of the electron as a particle bouncing on the impurities, moving
by nearly le between each scattering event ; in the limit where le → 0, this
random walk is called a diffusion. If we want to remain in this semi-classical
picture, this length le has to be larger than the Fermi wavelength λF : the
Fermi wavelength can be seen as the size of the cloud where the electron can
be found, if this size is similar to le, this cloud sees different scattering events
at the same time and the picture of the bouncing ball is no longer valid. The
mean-free path should also be smaller than the size of the sample to have a
large number of scattering events, and if we want to remain in the coherent
regime, it should also be smaller than Lφ. In the end we have this scale between
all the lengths :

λF ≪ le ≪ L,Lφ . (5.1)

This scale between all the lengths also provides a relation between the Fermi
energy and the disorder strength. As long as λF ≪ le, the disorder strength is
smaller than the Fermi energy, this is the weak disorder regime in opposition
to the strong disorder regime where the mean-free path is comparable with
the Fermi wavelength. The works presented in this thesis were done in the
weak-disorder regime, in particular the diagrammatic technique presented in
Sec. 5.3 is a series expansion in order of λF /le.

5.1.4 Model

Dirac fermions

We have seen in Ch. 3 that the massless Dirac fermions we want to describe
obey an equation H ∝ ~σ.~p. In the case of topological insulators surface states,
the simplest Hamiltonian describing the ARPES experimental plots is H =
~vF (kxσ

y−kyσx). Without any loss of generality, we perform a rotation around
the spin z-axis and we will use for the Dirac fermions the kinetic Hamiltonian :

H0 = ~vF (kxσ
x + kyσ

y) . (5.2)
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5.1. Introduction

Figure 5.2: Left : ARPES data showing the linear dispersion of the topological
insulator Bi2Te3 surface states labeled SSB, BVB and BCB being the bulk
bands [61]. Right : ARPES data showing the Fermi surface of topological
insulator Bi2Te3 surface state, with projection of the spin in red arrows for
every direction [98].

The dispersion relation shows the linear behaviour of the the massless Dirac
fermions, and also the momentum-spin locking observed experimentally (cf.
Fig.5.2). In the Hamiltonian, the spins points toward the center of the Fermi
surface instead of winding around the surface, but as expected, we recover the
same physics if we perform a rotation of the spins around the z-axis.

Disorder

To introduce the disorder responsible for diffusion in our study, we use a stan-
dard model where the impurity potential profile is described as a scalar gaus-
sian disorder potential V (~r), characterized by its mean value and its second
cumulant. We introduce the notation 〈...〉 to describe the mean-value of a
quantity averaged over many realizations of the disorder (e.g. different sam-
ples). In our model, we define the zero of energies such that 〈V (~r)〉 = 0, and
the second cumulant can be written as 〈V (~r)V (~r′)〉 = γδ(~r − ~r′). This value
of the second-cumulant shows that we do not consider any correlation in space
between different scatterer positions, this is why this model is called uncor-
related gaussian disorder. This corresponds to localized scatterers centers for
non magnetic impurities that do not couple to the spin of the electron. Be-
sides its simplicity in calculations, this model is useful in the sense that it is a
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5. Diffusion of Dirac fermions

limit of dilute impurities at concentration nimp at positions ~ri with a potential
v0δ(~r− ~ri), when the density goes to infinity keeping nimpv

2
0 = γ constant [32].

5.2 Boltzmann equation

5.2.1 Hamiltonian diagonalization, density of states

Starting from the kinetic Hamiltonian given before we have :

H = ~vF (kxσ
x + kyσ

y) =

(
0 ~vFk−

~vFk+ 0

)

, (5.3)

where k± = kx ± iky.
This Hamiltonian is easy to diagonalize, and we get E = ±~vFk. This

confirms the linear dispersion relation, and justifies the notation vF for the
Hamiltonian parameter as it is the Fermi velocity, constant for Dirac fermions,
as opposed to the usual case where it varies as a function of the Fermi energy.
The eigenvectors are a tensorial product of an external spatial component
corresponding to a plane wave of wavevector ~k and a spin component given
by :

|~k〉± = |~k〉ext. ⊗ |~k〉±s , (5.4)

|~k = (k, θ)〉±s =
ei
~k.~r

√
2

(
1

±eiθ
)

. (5.5)

This dependance of the spinorial part of the eigenvector on the direction θ
of the wavevector is of importance in the study of the scattering as we will see
later. This dependance is also responsible for the rotation of the polarization
around the Fermi surface: the polarization of the spin ~s in the x,y plane is
the vector s〈~k|~σ|~k〉s. For the eigenvector of positive energy E = ~vFk, we find
that the polarization is given by the vector ~s = cos θ ~ex + sin θ ~ey and thus is
locked to the direction given by the momentum.

Since we are only interested in the insulating regime of the topological
insulators and do not consider the bulk contributions, we assume the gap
between the bulk bands to be large enough to ensure that the Fermi energy
lies in it. In the regime of weak disorder described in Sec. 5.1.3, we assume
that the Fermi energy is the second largest scale of energy of the problem after
the gap.

Having the (linear) dispersion relation, we can derive the density of states
ρ(E) =

∑

±
∫

d~k
(2π)2

δ(E − E±(~k)) and obtain the relation :

ρ(E) =
|E|

2π~2v2F
. (5.6)

There is a large density of state far from the Dirac point where lies the
Fermi energy in the regime of weak disorder, so the surface states correspond
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5.2. Boltzmann equation

Gap
Fermi energy

Figure 5.3: Left : projection of the spin for different eigenvectors around
the Fermi surface. Right : representation of the different scale of energies in
the regime of weak disorder. The dotted line around the Fermi energy line
correspond to the states relevant to transport. The energies are counted with
respect to the Dirac point.

to a good metal. This means that the Fermi energy is large enough, and since
the transport is due to excitations near the Fermi surface, we can focus only
on the state near this positive Fermi energy and neglect the eigenstates of
negative energies(cf Fig. 5.3).

5.2.2 Elastic scattering time

These eigenstates are scattered one into the other by the presence of the disor-
der potential. Using the Fermi golden rule, the elastic mean-free time between
two scattering events reads :

1

τe(EF )
= 〈
∫

d~k′

(2π)2
2π

~
|〈~k′|V |~k〉|2δ(E(~k′)− EF )〉 . (5.7)

Using the relation 〈V (~r)V (~r′)〉 = γδ(~r− ~r′) for the second cumulant of the
disorder, and introducing the density of states, we obtain the elastic scattering
time as a function of the strength of the disorder γ, the greater the disorder,
the shorter the mean-free time :

~

τe(EF )
= πρ(EF )γ . (5.8)

We observe that there is a factor of difference of 2 compared to the usual
relation ~/(2τe) = πργ in the case of non relativistic electrons. This comes
from the anisotropy of the scattering probability from a wavevector ~k to a
wavevector ~k′ on the Fermi surface. Even if the scalar potential is isotropic,
this scattering is not : because of the spinorial nature of the excitation, the
scattering amplitude is proportional to the overlap between the two spinors,
and we have seen that there is a dependance of the spinor in the direction of
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Figure 5.4: Polar plot of the spinor overlap g(~k, ~k′) (proportional to the scat-
tering probability) as a function of the relative angle θ between incoming and
outgoing wave vector given by Eq. (5.9).

the wavevector. In this case we obtain a scattering probability proportional to
the spinor overlap :

g(~k, ~k′) = |s〈~k′|~k〉s|2 =
1

2

(
1 + cos(θ − θ′)

)
, (5.9)

where θ and θ′ are the polar angle corresponding to the direction of the wave
vectors ~k and ~k′ on the Fermi surface. We can see in Fig. 5.4 that the scattering
is anisotropic, but there is no dependance in the direction of the wavevectors,
only a dependance in the relative angle of the scattering.

During the integration over all the available wave-vectors, the cosine term
averages out, and we obtain 1/2, whereas in the case of non relativistic elec-
trons, the overlap g(~k, ~k′) is constant and equal to 1.

We also notice in Fig. 5.4 the absence of backscattering as the probability
g(~k,−~k) vanishes. This comes from the combination of the spin 1/2 nature
of the Hamiltonian and its time-reversal symmetry : if an eigenstate goes at
~k with a spin ~σ, the eigenstate going at −~k has a spin −~σ. However, the
scalar nature of the potential preserves the time-reversal symmetry and thus
does not allow spin flips, ensuring the absence of backscattering as opposed to
magnetic impurities.

5.2.3 Classical conductivity

The conductivity is derived by solving the integro-differential Boltzmann equa-
tion, which gives the effect of an electric field ~E on the local density of state
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at a given wavevector f(~k) :

−e ~E.∂f
∂~k

= 〈
∫

d~k′

(2π)2
2π|〈~k′|V |~k〉|2δ(E(~k′)− EF )

[

f(~k′)− f(~k)
]

〉 . (5.10)

To solve it, we assume that the local density of states f(~k) responds linearly
to the electric field, and look to the first order terms in the electric field. We use
the ansatz f(~k) = nF (E(~k))+ ∂nF

∂E f̄(θ) where θ accounts for the direction of the
wavevector ~k. Using the value of the spinor overlap |〈θ′|θ〉|2 = (1+cos(θ′−θ))/2
we solve the equation in f̄ assuming the electric field is along the x-axis and
find :

f̄(θ) = 2evF τe cos θEx . (5.11)

We can derive the electric current along the x-axis caused by the electric
field jx =

∫
d~k

(2π)2
e1
~

dE
dkx

f̄(θ)δ(E(~k)− EF ) and dividing by the electric field we
find the classical Drude conductivity :

σxx = e2v2F τeρ(EF ) . (5.12)

Using the Einstein equation σ = e2ρD, it is possible to determine the
diffusion constant D = v2F τe and the corresponding transport time τtr defined

as D =
v2F τtr

d where d is the dimensionality of the problem, here d = 2. In
this case, there is a doubling of the transport time compared to the elastic
scattering time due to the anisotropy of the scattering : we have seen that
the probability for a given state to be scattered into another direction is not
the same in every direction, even if the disorder is isotropic. Starting from a
given direction ~k, after a single scattering event, the probability of going in
the direction ~k′ = −~k is strongly reduced. After two scattering events, this
probability is proportional to the convolution of two g(~k, ~k′) :

g(2)(~k, ~k′) =
∫ 2π

0

dt

π

1 + cos(t− θ)

2

1 + cos(θ′ − t)

2
. (5.13)

The normalization factor in the integral of π comes from the normalization
of the scattering probability as

∫

~k′
g(~k, ~k′) = π.

We can check on the plot of Fig. 5.5, that the scattering probability be-
comes of the same order of magnitude for every direction after two scattering
events, so we can consider we have lost memory of the initial direction of
propagation and we have entered a diffusive regime.

5.3 Standard diagrammatic technique

In the precedent section, we have seen that we can derive the value of the clas-
sical conductivity from the Hamiltonian of the problem. However, solving the
Boltzmann equation does not provide any information about the corrections
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Figure 5.5: Polar plots of the single scattering spinor overlap g(~k, ~k′) (blue) and
double scattering spinor overlap g(2)(~k, ~k′) (red) as a function of the relative
angle θ between incoming and outgoing wave vector given by Eq. (5.9) and
Eq. (5.13).

coming from the quantum nature of the excitations : the interferences respon-
sible for the quantum correction to conductivity or the universal conductance
fluctuations are not taken into account.

In a conductance measurement experiment, we measure the current flowing
through a material as a function of the voltage bias applied. Because of the
disorder, there is a large number of paths that the electron can travel from one
end to another, each with a given complex amplitude ai. The total amplitude
is thus

∑

i ai, but the probability from going from one end to the other is given
by the modulus square of the amplitude : P =

∑

i,j aia
∗
j . A different way to

see this equation is that the current is created by particle-hole excitations,
and that we need to consider all the different paths followed by the particle
and the hole. In classical mechanics, we would just have the simple sum
Pclass =

∑

i aia
∗
i , but this simpler expression does not take into account the

quantum interferences.
The indices for the sum run over a infinite number of different paths, each

with a different weight given by the amplitude probability. We use the stan-
dard diagrammatic technique as in [32] in order to simplify this infinite sum
and consider only the most significant terms. This diagrammatic technique
is relevant only in the regime of weak disorder since it corresponds to a per-
turbative approach, where the perturbative parameter is the strength of the
disorder.

5.3.1 Kubo formula

The starting point of our study will be the Kubo formula giving the conduc-
tivity tensor of a sample, as a function of the microscopic parameters of the
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Hamiltonian :

σαβ =
~

2πΩ
ℜTr

(
jαG

RjβG
A
)
. (5.14)

In this equation, Ω is the volume of the sample, jα is the current operator
along the direction α, and GR/A represent respectively the propagation of the
electron (resp. hole) like excitation in the sample. This equation is derived
from a linear response of the sample to a potential vector, assuming that the
Fermi energy is much larger than the temperature, and that the study is done
in the weak disorder regime kF le ≫ 1. For the interested reader, a derivation
of this Kubo formula can be found in [32].

For a given realization of the disorder, this Kubo formula gives the corre-
sponding value of the conductivity. Consequently, the conductance is a func-
tion of the realization of the disorder, and becomes a random variable of the
disorder. The relevant physical quantity is thus the probability distribution of
this random variable that we characterize by its first and second cumulant.

Moreover, this description allows to understand the transition from the
mesoscopic to the classical regime : if we divide a sample of length L in N
samples of size Lφ where the interference effects are visible N = (L/Lφ)

d, the

variance of the conductivity scales as
√

〈(G−〈G〉)2〉
〈G〉 = 1√

N
= (Lφ/L)

d/2. For a
large sample, this variance vanishes, and the conductivity is equal to its mean-
value, this property is called self-averaging, and justifies the classical regime
of Ohm’s law.

Noting 〈...〉 the average over many realizations of the disorder we first focus
on 〈σ〉, and since this quantity is the mean-value of a product, we first calculate
the product of the mean-values which we call the bare conductivity, then add
the remaining part, the contribution of the diffuson.

5.4 Calculation of the Green’s functions

5.4.1 Ballistic Green’s function

The Green’s functions are a very general tool used in physics to solve a linear
problem LX = F where L is a linear operation, X the unknown variable and
F a known variable. If X1 and X2 are solution of LX = Fi, then X1 +X2 is
a solution of LX = F1 + F2. When dealing with variables that are functions
of a variable, it is convenient to express the function F as an integral of Dirac
functions, and look for the solution as the integral of all the solution of the
problem when F is a Dirac function.

In quantum mechanics, the eigenvalue problems we want to solve is the
following HX = EX, so we look for the Green’s functions of the problem as
solutions of (E −H)G(~r, ~r′) = δ(~r − ~r′). However, in our problem, we do not
know precisely V (~r) for a given realization of the disorder, so we will first focus
on the ballistic Green’s function by focusing only on the kinetic Hamiltonian.
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5. Diffusion of Dirac fermions

Moreover, the spatial invariance of the problem assures that G(~r, ~r′) = G(~r −
~r′). Finally, the kinetic Hamiltonian is diagonal in ~k-representation, so it will
be easier to do a spatial Fourier transform and expressG in this representation :

(E − ~vF~k.~σ)G
0(~k) = Id . (5.15)

Using the algebra of the Pauli matrices, it is easy to derive the solution :

G0(~k) = (E − ~vF~k.~σ)
−1 =

E + ~vF~k.~σ

E2 − ~2v2Fk
2
. (5.16)

We can refine this Green’s function by taking into account the finite lifetime
of the particles, introducing an imaginary part to the energy E → E ± iη. In
the regime of weak disorder, this imaginary part is small compared to the Fermi
energy η ≪ E. The ± sign in front of this finite lifetime for the Green’s function
depends on whether we consider the electron-like excitation propagation (plus
sign) or the hole-like (minus sign).

5.4.2 Disorder averaged Green’s function

The ballistic Green’s function obeys the equation (E − H0)G
0 = Id, simi-

larly, the Green’s function in presence of disorder should obey the equation
(E − H)G = Id, so to calculate it explicitly, we consider the disorder as a
perturbative parameter, with the series expansion :

(E −H0 − V )G = Id =
(
(G0)−1 − V

)
G , (5.17)

(G0)−1G = Id+ V G . (5.18)

This equation G = G0+G0V G0+G0V G0V G0+ ..., is easier to understand
in the real space. Expressed in this representation, the Green’s function G(~r−
~r′) should be understood as a propagation from ~r′ to ~r and the series expansion
equation is written :

G(~r − ~r′) = G(~r − ~r′) +
∫

~r1

G(~r1 − ~r′)V (~r1)G(~r − ~r1) + ... (5.19)

This means that in presence of disorder, traveling from ~r′ to ~r can be done
directly, encountering no scatterer, or encountering scatterers any number of
time.

To calculate the mean-value of this Green function, we use the properties of
the gaussian disorder introduced earlier : 〈V (~R)〉 = 0, 〈V (~r)V (~r′)〉 = γδ(~r−~r′)
and the other cumulants vanish. In the series expansion G = G0 +G0V G0 +
G0V G0V G0+ ..., we apply the Wick’s theorem which allows us to express the
mean value for the product of V as a sum of disorder correlators. Because
only the second cumulant does not vanish, we only keep in the sum the terms
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Figure 5.6: Diagrammatic representation of the equation for the Green’s func-
tion. The double line represents the naked Green function, and the doted
line an interaction with the disorder. Left : all the terms contributing to the
Green’s function. Right : the terms that do not contribute to the disorder
averaged Green’s function have been removed.

where the potential appears an even number of times. In the reciprocal space
of the k-representation, we have :

〈G(~k)〉 = G0(~k)+

〈∫

~q,~q′
G0(~k)V (~q)G0(~k − ~q)V (~q′)G0(~k − ~q + ~q′)

〉

+... (5.20)

We will now on use the notation
∫

~k
=
∫

d~k
(2π)2

to simplify the equations.
All the diagrams accounting for this expression of G (cf. right picture of Fig.
5.6) can be separated in two groups, depending on how the impurity lines
connect to the Green’s functions. If it is possible to separate the diagram in
two diagrams that are not connected via an impurity line (for example the last
diagram in the right picture of Fig. 5.6), the diagram is called reducible, else
it is called irreducible. This means that every reducible diagram can be seen
as a product of irreducible diagrams connected by ballistic Green’s function.
Noting Σ the sum of all the irreducible diagrams also called self-energy, we
express the Eq. (5.20) as a recursive equation :

〈G(~k)〉 = G0(~k) +G0(~k)
∞∑

n=1

[

Σ(~k)G0(~k)
]n

= G0(~k) +G0(~k)Σ(~k)〈G(~k)〉 .

(5.21)
Using the value of the ballistic Green’s function, we solve this Dyson equa-

tion and find :

〈G(~k)〉 = (E − Σ(~k))Id+ ~vF~k.~σ

(E − Σ(~k))2 − ~2v2Fk
2
. (5.22)

5.4.2.1 Self-energy

The calculation of the self-energy requires the calculation of the sum of an
infinity of terms (all the irreducible diagrams). However, in the regime of
weak disorder, the disorder is treated as a perturbation, so we have a natural
perturbative parameter as the strength of the disorder compared to the Fermi
energy

√
γ/E or more conveniently 1/(kF le), and this sum is dominated by
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Figure 5.7: Diagrammatic representation of the self-energy.

the first term, with a single pair of scattering events, the others terms being
subdominant. This first term is :

Σ1(~k) =

∫

~q
〈V (~q)V (−~q)〉G0(~k − ~q) . (5.23)

The calculation of this first term of the self energy shows that it is a
complex number. The real part does not have a physical meaning, it can be
reabsorbed by a proper definition of the energy that is not relevant for the
physics studied. The imaginary part of the energy has a physical meaning, it
corresponds to a finite lifetime for the ballistic states, and is also denoted as
the elastic scattering time :

Im Σ1 =
−~

2τe
=

−πρ(EF )γ

2
. (5.24)

However, to calculate this self energy, we made the assumption that the
finite lifetime for the ballistic Green’s function as seen in Sec. 5.4.1, for example
originating from the inelastic scattering, enters in the energy EF through a
small positive imaginary part EF → EF + iη. This corresponds to particle-like
excitations, but for the holes, this is not correct and we should take EF −iη. In
the end, we obtain two different Green’s functions averaged over the disorder,
one for the particle like excitation, called the retarded Green’s function GR,
and one for the hole-like, called the advanced Green’s functions GA :

〈GR/A(~k,E)〉 = ER/AId+ ~vF~k.~σ

(ER/A)2 − ~2v2Fk
2

where ER/A = E ± i

(

η +
~

2τe

)

.

(5.25)
This addition rule for the inverse of finite life times is known as the

Matthiessen rule, and allows to take into account other scattering mechanisms
(magnetic impurities for example). Here, we only consider a scalar disorder as
a source of scattering, and we are in the mesoscopic physics regime where τe
is much smaller than the lifetime, so we assume ER/A = E ± i ~

2τe
.

5.5 Diffuson

To calculate the mean-value of the conductivity, the first step is to use the
approximation 〈GRGA〉 = 〈GR〉〈GA〉+ .... This means that during the propa-
gation, we have only consider the propagations of the electron and the hole with
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Figure 5.8: Example of contributions coming from the coupling of the two
Green’s functions through the disorder. Left : example of contribution that
average out. Right : one of all the terms we need to consider to obtain the
diffuson.

independent scattering events. For example, terms as 〈G0V (~q)G0G0V (−~q)G0〉
that are present in the conductivity are not taken into account in this approx-
imation and are hidden in the dots.

In these terms, the retarded and advanced Green’s functions have to ex-
change momentum at each scattering event, because the potential is uncorre-
lated 〈V (~r)V (~r′)〉 = γδ(~r − ~r′), this is why each scatterer has to be seen the
same number of time by each Green’s function. Moreover, during the prop-
agation, the retarded (resp. advanced) Green’s function acquire a phase of
order kF lr (resp. kF la) where lr (resp. la) is the length of the path followed
by the electron (resp. hole) like excitation. If the two paths differ, the dif-
ference of length should be at least of order le, which is an order of value of
the length between two scattering events, then the difference of phase will be
of order kF le ≫ 1, meaning that these contributions vanish when we average
over different realizations of the disorder. In the end, we have to consider only
the contributions where the two excitations encounter the same sequence of
scatterers where they exchange momentum.

We will introduce the diffuson noted ΓD as the sum of all the terms of this
kind, as we are interested in terms 〈GR(~k)〉〈GA(~k−~q)〉ΓD(~q)〈GR(~k′)〉〈GA(~k′−
~q)〉. We can write a recursive equation on ΓD :

ΓD(~q, ω) = γId⊗Id+
∫

~k
γ〈GA(~k−~q, EF −ω)〉⊗〈GR(~k,EF )〉ΓD(~q, ω) . (5.26)

This just means that we are building recursively all the terms by adding
all the scatterers one after the other, the integration over the momentum en-
suring that we count every amount of momentum exchanged in the scattering.
The tensorial product ⊗ is a notation to remind that we are considering the
propagation of two spin 1/2 particles. By inverting this relation we obtain the
formal relation ΓD = γ(Id⊗ Id− γPD)−1.
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5.5.1 PD(~q, ω)

This quantity of crucial interest in the calculation of the diffuson term is defined
by the relation :

PD(~q, ω) =

∫
d~k

(2π)2
〈GR(~k,EF )〉〈GA(~k − ~q, EF − ω)〉 . (5.27)

To calculate it, we use the expression for the mean-values of the Green’s
functions derived in Eq. (5.25) 〈GR/A(~k,E)〉 = ER/A+~vF~k.~σ

(ER/A)2−~2v2F k2
where ER/A =

E ± i~/τe. We focus on the conductance at zero frequency, so we consider
ω = 0 and the calculations are done in the following manner :

• we drop the dependance in ~q and ~/τe in the upper part of the fraction,
since they are dominated by ~k and EF :

PD(~q, ω = 0) =

∫
d~k

(2π)2
E + ~vF~k.~σ

(ER)2 − ~2v2Fk
2

E + ~vF~k.~σ

(EA)2 − ~2v2F (k − q)2
,

(5.28)

• then we perform a polar transformation, and integrates the radial part
via the residue theorem,

PD(~q, ω = 0) =

∫
dk

2π

dθ

2π

E + ~vFk(cos θσ
x + sin θσy)

(ER)2 − ~2v2Fk
2

E + ~vFk(cos θσ
x + sin θσy)

(EA)2 − ~2v2F (k
2 + q2 − 2k cos θqx + sin θqy)

(5.29)

=

∫
dθ

2π
(Id+ (cos θσx + sin θσy))2 × 2iπ

−2E
(5.30)

E

(EA)2 − (ER)2 + 2E~vF (cos θqx + sin θqy)− ~2v2F q
2
,

• after a series expansion in τevF ~q, the integration of the angular part is
obvious and we find that :

PD(~q, ω = 0) =
1

2γ

[(

1− τ2e v
2
F q

2

2

)

Id⊗ Id+
1

2

(

1− τ2e v
2
F q

2

4

)

~σ ⊗ ~σ

−ivF τe
1

2
~q.(~σ ⊗ Id+ Id⊗ ~σ)− τ2e v

2
F

4
(~σ.~q)⊗ (~σ.~q)

]

+ o(τ2e v
2
F q

2).

(5.31)

We can now plot easily the spectrum of Id ⊗ Id − γPD as a function of
q = ‖~q‖ and find (Fig. 5.9) that at long distance (meaning small q), there is
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Figure 5.9: Spectrum of Id⊗ Id− γPD(~q, ω = 0) as a function of q = ‖~q‖.

only one mode whose eigenvalue vanishes. This mode is thus the only mass-
less diffusive mode and is the singlet one, whereas the other triplet mode are
massive (their eigenvalues are non zero). These names of singlet and triplet
correspond to the fact that we are considering the propagation of two spin 1/2
excitations, GR and GA, so the natural basis is composed of a singlet state
and three triplet. However, this denomination must be considered carefully, in-
deed, the spin is not a correct quantum number because of the spin-momentum
locking, at different momenta, the natural basis of the spin changes. The sin-
glet/triplet is then correct only in the diffusive limit q = 0 ; but we extend
it when q 6= 0, even if the terms in the second line of the equation Eq. (5.31)
induce a departure of the eigenstates from traditional singlet and triplet states.

As we will see in the section 6.4, we expect the presence of a single diffusive
mode instead of the four that could be present. This reduction of the number of
diffusive mode is due to the symmetries of the problem, in this case, because
of the spin 1/2 nature of the surface states, the time-reversal operation Θ
squares to the opposite of the identity Θ2 = −Id. This corresponds to a given
universality class in the Anderson problem (either unitary or symplectic, in
this case symplectic) where the number of diffusive mode is fixed to 1.

To describe the diffusion at long distance, it is thus necessary to keep only
the singlet mode so we approximate the diffuson structure factor by its limit
~q → 0 :

ΓD(~q) = γ
1

Dq2τe

1

4
[Id⊗ Id+ σx ⊗ σx − σy ⊗ σy + σz ⊗ σz] . (5.32)

We can notice that except the spinorial nature of this diffuson expressed
between the brackets, we observe the same expression for the diffuson structure
factor as in the case of non relativistic electrons in 1

Dq2τe
, as expected since the

diffuson should obey a diffusion equation. However, the importance of the dif-
fuson in the diffusion process does not come only from this diffusive mode, but
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= + D

Figure 5.10: Diagrammatic representation of the current operator renormal-
ization.

also from a renormalization of the current operator, and this renormalization
is due to one of the massive modes.

5.5.2 Renormalization of the current operator

By definition, the current operator is obtained by introducing electric potential
via the substitution ~p → ~p − e ~A, and deriving the Hamiltonian with respect
to the potential, jα = δH

δAα
. In the case of Dirac fermions we obtain that the

current operator is given by the density of spin, jα = −evFσα.
The renormalization of the current operator is obtained by including a

vertex correction, in the form of an additionnal diffuson to the current operator,
Jα = jα + jαP

DΓD as represented in the diagram of the figure 5.10. We can
check that it is equivalent to :

Jα = jα ⊗ 1

γ
ΓD . (5.33)

In this case, the diffusive mode will have no contribution, even at q = 0
because of the sum on the Pauli matrices. However, the triplet modes of
the diffuson structure factor ΓD do contribute and we obtain a renormalized
current operator Jα = 2jα.

We observe the apparition of the same factor of two, seen in the Sec.5.2.3,
due to the anisotropy of the scattering. It corresponds to the difference between
the elastic scattering time and the transport time corresponding to diffusive
transport. Because of the anisotropy of the scattering, we need to observe two
scattering events to lose memory of the initial wavevector (cf. Fig. 5.5).

5.5.3 Classical conductivity

To calculate the mean-value of the classical conductivity, or Drude conduc-
tivity, we need to add all the diagrams where the particle-like excitation and
the hole-like excitation exchange momentum during scattering events. In ad-
dition to the simple diagram where they do not exchange momentum, we need
to count all the "ladder" diagrams where they follow the same scattering se-
quence, which is the diffuson (Fig.5.11). In the end, this calculation is similar
to the plugging of a current operator to the renormalized current operator.
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+

=

D

Figure 5.11: Diagrammatic representation of the calculation of the classical
conductivity.

Namely we will have the equation :

〈σDr
αβ 〉 = 〈 ~

2πΩ
ℜTr

(
jαG

RjβG
A
)
〉 (5.34)

=
~

2π
tr
(
JαP

D(~q = 0)jβ
)
. (5.35)

In this equation, Tr means a trace over all quantum numbers (momenta
and spins), whereas tr is a trace only on the spins, the integration over the
momenta being calculated in PD. Using the relation between the elastic scat-
tering time and the strength of the disorder ~/τe = πρ(EF )γ, we can express
the conductivity tensor as a function of the scattering time and finds for the
longitudinal conductivity the same result as Eq. (5.12) :

〈σDr
αβ 〉 =

~

2π
e2v2F 2

δαβ
γ

= e2ρ(EF )v
2
F τeδαβ . (5.36)

In agreement with what has been done in the Sec.5.2.3, this gives a diffu-
sion constant D = v2F τe, hence a transport time twice larger than the elastic
scattering time.
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The Beach Boys

Chapter 6

Quantum correction to the

conductivity and universal

conductance fluctuations

So far, we have considered only classical transport, in the sense that the in-
terference effects coming from the wave nature of the excitations have not
been taken into account. The Boltzmann equation and the diagrammatic
calculations at the level of approximation considered previously, even if they
have been treated within quantum mechanics framework (Fermi golden rule
or Green’s functions) do not explain the weak-anti localization behavior seen
experimentally.

In these experiments, the resistivity of a sample (graphene or the surface of
a 3d topological insulator) is measured as a function of a transverse magnetic
field. What is observed in this case is a decrease of the resistivity (or an increase
of the conductivity) when the magnetic field vanishes, with a characteristic
magnetic field corresponding to a quantum of flux through the whole surface
of the sample. Since this field is very small, the reason for this change in the
resistivity can not be explained classically ; this does not come from a curving
of the trajectories of the particles by the magnetic field. In fact, the surface
states we study are not charge neutral, and in presence of a magnetic field,
they acquire a phase : we need to refine our diagrammatic approach to take
into account the quantum interferences originating from this additional phase,
responsible of this dip in resistivity at zero field.

6.1 The cooperon

The terms responsible for this effect are called cooperon and their origin lies in
the fact that in our approximation for the diffuson, when we neglected all the
diagrams where the electron and hole do not encounter the same scatterers
in the same order, we neglected crossed diagrams that do not average out.
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Figure 6.1: Experimental measurement of the weak anti-localization correction
on the topological insulator strained HgTe [16].

Indeed, if a diffuson forms a loop, it is possible to reverse the path of one of the
branches as long as the time-reversal symmetry is preserved. In this case, the
argument on the difference of the length of the two paths drops and no phase
is accumulated so these diagrams do contribute to the conductivity. In our
study, the time reversal symmetry is preserved since a time reversal operation
consists in changing signs for both the momenta and the spins. However, the
introduction of a transverse magnetic field will break it, and in absence of
time-reversal symmetry it becomes impossible to reverse one of the branch of
the diffuson. The contribution of the cooperon then vanishes, explaining the
change in the resistivity seen experimentally.

More precisely, we need to calculate diagrams of the form depicted in Fig.
6.3. A different representation of the cooperon shows that its structure is very
similar to the diffuson’s, as expected since it is a diffuson with one of the
branch time-reversed.

The equation for the cooperon’s structure factor reads :

ΓC( ~Q) = γId⊗ Id+

∫

k
γ〈GA( ~Q− ~k)〉 ⊗ 〈GR(~k)〉ΓC( ~Q) , (6.1)

which can be written as ΓC = (Id⊗Id−γPC( ~Q)−1) with the appropriate PC ,
and ΓC is then solved similarly than for ΓD.
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6.1. The cooperon

Figure 6.2: Representation in real space of a diffuson (left) forming a loop with
the corresponding cooperon (right).

= +

!k

!Q−
!k

ΓC( !Q)ΓC( !Q)

Figure 6.3: Left : Diagrammatic representation of the cooperon structure
factor in the middle part, stressing it similarity with the diffusons at each end.
Right : Recursive equation obeyed by the cooperon structure factor

Furthermore, we can use adequately additional symmetries coming from
the reversal of, for example, the momentum and the spin on the hole like exci-
tation. In the calculation of PC , we can write the advanced Green’s function
around −~k as a Green’s function around ~k by absorbing the minus sign in a
new definition of the ~σ matrix :

〈GA( ~Q− ~k)〉 = E + ~vF ( ~Q− ~k).~σ

(EA)2 − ~2v2F (Q− k)2
=

E + ~vF (~k − ~Q).σ̃

(EA)2 − ~2v2F (k −Q)2
. (6.2)

In this expression we have σ̃ = −~σ, and the calculation of PC =
∫

~k
〈GA( ~Q −

~(k))〉〈GR(~k)〉 is the same than the calculation of PD in Sec. 5.5 and similarly
to Eq. 5.31 we obtain :

PC(~q, ω = 0) =
1

2γ

[(

1− τ2e v
2
F q

2

2

)

Id⊗ Id− 1

2

(

1− τ2e v
2
F q

2

4

)

~σ ⊗ ~σ

−ivF τe
1

2
~q.(~σ ⊗ Id− Id⊗ ~σ) +

τ2e v
2
F

4
(~σ.~q)⊗ (~σ.~q)

]

+ o(τ2e v
2
F q

2). (6.3)
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C

Figure 6.4: Diagrammatic representation of the calculation of the quantum
correction to conductivity.

The calculation of the cooperon structure factor ΓC is slightly more sub-
tle because we need to take into account the direction of propagation of the
Green’s function in the recursive equation. Since it must be done "backwards",
this correspond to take the transpose of the matrices. The composition of the
minus sign from σ̃ and the transpose corresponds to add a minus sign to σx

and σz matrix of the advanced Green’s function branch, but the minus sign
does not affect the σy matrix since −(σy)T = σy. In the end, from Eq. (5.32),
the cooperon structure factor can be approximated when Q −→ 0 :

ΓC( ~Q) = γ
1

DQ2τe

1

4
[Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] . (6.4)

Again, we observe that except for the spinorial nature of the cooperon
structure factor, it presents the same dependance in Q as in the non relativistic
case 1

DQ2τe
, since it obeys a diffusion equation.

We also observe that the cooperon structure is a traditional singlet ΓC ∝
[Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] as opposed to the diffuson structure
factor ΓD ∝ [Id⊗ Id+ σx ⊗ σx − σy ⊗ σy + σz ⊗ σz]. Indeed, the diffuson
structure is associated with the diffusion of a particle-like excitation and a hole-
like excitation ; the cooperon is associated with the diffusion of two excitations
of the same nature, allowing for a traditional expression of the singlet.

6.2 Quantum correction to conductivity

The quantum correction to conductivity (or weak anti-localization) 〈∆σ〉 =
〈σ〉 − 〈σDr〉 originating from the cooperon contribution is obtained similarly
to the diffuson correction by calculating (cf Fig.6.4) :

〈∆σαβ〉 =
~

2π
Tr
[

GA(~k)JαG
R(~k)ΓC( ~Q = ~k + ~k′)GR(~k′)JβG

A(~k′)
]

. (6.5)

The Tr part is an integration over the momenta ~k and ~k′ or similarly the
momenta ~k and ~Q as long as the condition ~Q = ~k + ~k′ is preserved. The
expression for ΓC shows that the dominant part of the integration comes from
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= +H
C

+

Figure 6.5: Diagrammatic representation of the three Hikami boxes.

for small Q. As the Green’s functions are regular around ~k, we drop their
dependance in ~Q. It is then possible to write this correction to conductivity
as follows :

〈∆σαβ〉 =
~

2π
tr

[∫

~Q
ΓC( ~Q)H0

]

, (6.6)

where we have noted H0 =
∫

~k
GA(~k)JαG

R(~k) ⊗ GR(−~k)JβGA(−~k) the first
Hikami box (cf Fig. 6.5).

6.2.1 Calculation of the Hikami box

The calculation of this first Hikami box is done in the same way as was done
the calculation of PD, without the difficulty of searching for a series expansion
in ~q. From now on we focus only on the longitudinal terms of the conductivity
tensor, and for the longitudinal conductivity σxx we find :

H0 = e2v2Fρ(EF )

(
2τe
~

)3 π

16
[3σx ⊗ σx + σy ⊗ σy − 4Id⊗ Id] . (6.7)

It is possible to draw several other diagrams than this first Hikami box
to take into account the contribution of the cooperon to the conductivity.
However, only two of these diagrams, depicted in Fig. 6.5 are of the same
order in the perturbative parameter 1

kF le
. These two diagrams write as :

H1 = γ

∫

~k,~q
GA(~k)JxG

R(~k)GR(−~q)⊗GR( ~−k)GR(~q)JxG
A(~q) , (6.8)

H2 = γ

∫

~k,~q
GA(−~q)GA(~k)JxG

R(~k)⊗GR(~q)JxG
A(~q)GA( ~−k) . (6.9)

Using the relation ~/τe = πρ(EF )γ we find that :

H1 = H2 = e2v2Fρ(EF )

(
2τe
~

)3 π

16
[Id⊗ Id− σx ⊗ σx] . (6.10)

Collecting the results of Eq. (6.7) and Eq. (6.10), we obtain the "dressed"
Hikami box for cooperons as the sum of the three Hikami boxes :

HC = e2v2Fρ(EF )

(
2τe
~

)3 π

16
[σx ⊗ σx + σy ⊗ σy − 2Id⊗ Id] . (6.11)
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ΓC(!Q)HC

Figure 6.6: Diagrammatic representation of the calculation of the quantum
correction to conductivity.

6.2.2 Quantum correction to conductivity

The quantum correction can now be computed by using the formula giving the
cooperon structure factor in Eq. (6.4) and the dressed Hikami box for cooperon
in Eq. (6.11) and we find :

〈∆σxx〉 =
~

2π
tr

[∫

~Q
ΓC( ~Q)H0

]

(6.12)

=
e2

π~

∫

~Q

1

Q2
. (6.13)

At first sight, the careful reader could notice that the integral does not
converge, but in reality, this integral is a sum over all available momenta, and
the domain of integration is restricted by both IR and UV cut-offs. Since
the cooperon is a pure quantum interference effect, it disappears if the phase
coherence is lost : this is the IR cut-off at 1/Lφ. In this restriction we assumed
that the length of the sample L is larger than the coherence length, if not we
need to change Lφ by L. Moreover, the cooperon has been approximated in
the diffuse limit, on a length larger than the elastic scattering length, ensuring
the UV cut-off at 1/le

1. With these cut-offs on the integration domain, this
correction reads :

〈∆σxx〉 =
e2

2π2~
ln

(
Lφ

le

)

. (6.14)

This correction is called weak antilocalization for two reasons : it is a weak
correction since it is of the order of magnitude of the quantum of conductance
e2/h, compared to the classical part, much larger in the mesoscopic regime of

1Rigorously, we should consider the transport time τtr instead of the elastic scattering

time τe, but since it appears only as a cut-off in the integration, it is not relevant for the

physics.
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6.2. Quantum correction to conductivity

weak disorder ; and it is an increase of the conductance, meaning that it is
easier to travel through the sample : electrons seem less localized in absence of
the magnetic field than when it is present. This difference from the more usual
weak localization correction is also a consequence of the time-reversal symme-
try, associated to the spin 1/2 nature of the Dirac fermions : in non-relativistic
electron without spin H = ~

2k2

2m , there is still time-reversal symmetry, ensuring
the presence of a quantum correction to conductivity. However, for spinless,
non-relativistic electrons, the scatterring probability is isotropic, and we ob-
serve backscattering processes, whereas it is impossible for the Dirac fermions
since the scattering amplitude is the spin overlap, and a ~k, ~σ backscattered as
−~k, ~σ would break the time-reversal symmetry.

The conductivity is related to the probability of going from one end of the
sample to the other P (~r, ~r′). In presence of backscattering, the probability
of return to the origin P (~r, ~r′ = ~r) is enhanced, leading to an increase of the
resistivity. The absence of backscattering in the case of Dirac fermions reduces
the probability of return to the origin, thus electrons are less localized and then
increase the conductivity.

We observe exactly the same expression for the weak anti-localization cor-
rection in the case of non-relativistic electrons submitted to a strong spin-orbit
coupling[99], and we will see in Sec. 6.4 how we can explain this equality.

6.2.2.1 Transverse magnetic field

The breaking of time reversal symmetry by the introduction of a transverse
magnetic field leads to a dephasing that kills the contribution of the cooperon.
To calculate this effect, we need to know the contribution of the cooperon to
the probability of return to the origin of a diffusive path. This is done in
the case of non-relativistic electron in [32], and this derivation still holds for
Dirac fermions. The effect of the magnetic field ~B = ~∇× ~A can be neglected
on the trajectories of excitations (the field is not large enough to bind them)
but not in the phase of the Green’s function. This corresponds, in the spatial
representation of the Green’s function, to add an extra phase :

GR/A(~r, ~r′, ~B) = GR/A(~r, ~r′,~0)eiφ(~r,
~r′) , (6.15)

where the phase φ is defined as φ(~r, ~r′) = −e
~

∫ ~r′

~r
~A.d~l. In the case of the

cooperon, the two phases of the retarded and advanced Green’s functions do
not cancel out, as opposed to the diffuson. This changes the equation obeyed
by the cooperon to be :

(

−iω −D

[

∇r′ + i
2e

~

~A(~r′)

]2
)

ΓC(~r, ~r′, ω) =
γ

τe
δ(~r − ~r′) . (6.16)

This problem can me mapped to a Schrödinger equation through the substitu-
tion ~/2m↔ D and e↔ 2e. In the case of a uniform transverse magnetic field,
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we obtain the Landau levels En = ~ωC(n + 1/2), where ωC is the cyclotron
pulsation ωC = ~eB/m.

The integrated probability of return to the origin of the cooperon as a
function of the time t and the magnetic field B is written as ZC(t, B) =
∑

n e
−Ent[32], and by analogy with a partition function we obtain :

ZC(t, B) =
BS/Φ0

sinh(4πBDt/Φ0
) . (6.17)

In the case of Dirac fermions, the quantum correction to conductivity
is then expressed as an integral over time of this return probability ∆σ ∝
∫
dtZC(t, B)e

− t
τφ , and constraining the integration domain at a minimum time

of τe gives :

∆σ(B) =
e2

2π2~

[

Ψ(
1

2
− Be

B
)−Ψ(

1

2
− Bφ

B
)

]

. (6.18)

where Ψ is the Digamma function and the characteristic fields BX =
~/(4eDτX) have been introduced. Using the relation Ψ(1/2 + x) ≃ lnx when
x −→ 0, we retrieve the result derived in the absence of the magnetic field.

6.3 Universal Conductance Fluctuations for Dirac

fermions

HCHC

ΓC(−Ω, !Q)

ΓC(Ω, !Q)
!k !Q−

!k,EF − Ω

!k′ !Q−
!k′, EF − Ω

!Q−
!K ′,

EF − Ω

!Q−
!K,

EF − Ω
!K

!K ′

Figure 6.7: Diagram for the conductance fluctuations with Cooperons.

We have seen in Sec. 5.3 that the physical quantity relevant to the physics
is the distribution probability of the conductance. Consequently, when a con-
ductance is measured for different realizations of disorder, the departure from
the mean-value can also be measured. Changing the realization of disorder can
for example be done experimentally by changing the sample or applying an
external magnetic field. The remarkable thing is that these fluctuations have
the same amplitude of order (e2/h)2 even for different in nature experiments,
and also that this amplitude does not depend on the size of the sample : it is
the regime of universal conductance fluctuations.
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HDHD
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!k′ !k′ − !q, EF − Ω

!K ′
− !q,

EF − Ω

!K − !q,
EF − Ω

!K

!K ′

Figure 6.8: Diagram for the conductance fluctuations with Diffusons.

To derive the conductance fluctuations 〈δσ2〉 = 〈σ2−〈σ〉2〉, we need to take
into account two kinds of diagrams containing either cooperons or diffusons.
The Hikami box for cooperons has been calculated previously in Eq. (6.11).
Proceeding similarly with the diffuson instead of cooperon structure factor we
obtain the Hikami box for diffusons :

HD = ρ(EF )

(
2τe
~

)3 π

16
[2Id⊗ Id+ σx ⊗ σx + σy ⊗ σy] . (6.19)

We have already performed an integration over the momentum (arising
from the Kubo formula) in these expressions for the Hikami boxes. Hence we
only need to plug a diffuson (resp. cooperon) structure factor between two
HD (resp. HC). Summing these two diagrams (Fig. 6.8 and Fig. 6.7) and
performing the spin trace, we obtain :

〈δσ2〉1 = 8

(
e2

h

)2
1

V

∫

~q

1

q4
. (6.20)

The second part of the conductance fluctuations come from the diagrams
represented in Fig. 6.9 that we have not yet considered. In the expression of
the conductivity σ = e2ρD, we can separate the conductance fluctuations as
the fluctuations originating from fluctuations of the diffusion constant D from
the fluctuations originating from fluctuations of the density of states ρ. We
have just calculated the first ones in Eq. (6.20), and the fluctuations due to
fluctuations of the density of states require the determination of two additional
Hikami boxes (one for Diffusons and one for Cooperons) :

H̃D = ρ(EF )

(
2τe
~

)3 π

16
[Id⊗ Id+ σx ⊗ σx] , (6.21)

H̃C = ρ(EF )

(
2τe
~

)3 π

16
[Id⊗ Id− σx ⊗ σx] . (6.22)
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Figure 6.9: Diagrams for the second contribution to conductance fluctuations

The final result after contraction in spin space of these diagrams is :

〈δσ2〉2 = 4

(
e2

h

)2
1

V

∫

~q

1

q4
. (6.23)

Summing the two contributions originating from fluctuations of the diffu-
sion constant(6.20) and fluctuations of the density of states (6.23), we finally
get the result :

〈δσ2〉 = 〈δσ2〉1 + 〈δσ2〉2 = 12

(
e2

h

)2
1

S

∫

~q

1

q4
. (6.24)

Defining the phase coherent Lφ =
√
Dτφ(T ) and thermal lengthscales

LT =
√

~D/T , we can focus on different regimes : for L ≪ Lφ, LT , a proper
regularization of the integral in (6.24) leads to the universal value

〈δσ2〉 = 12

π4

(
e2

h

)2 ∞∑

nx=1

∞∑

ny=0

1

(n2x + n2y)
2
≃ 0.185613

(
e2

h

)2

. (6.25)

This result is independent of the diffusion coefficient D and thus independent
of the strength of the disorder, explaining the universality of these fluctuations.
On the other hand, in the other limits [32]

〈δσ2〉 ≃ 3

π

(
e2

h

)2(
Lφ

L

)2

for Lφ ≪ L,LT , (6.26)

≃ 2

3

(
LT

L

)2(e2

h

)2

ln

(
L

LT

)

for LT ≪ L≪ Lφ, (6.27)

≃ 2

3

(
LT

L

)2(e2

h

)2

ln

(
Lφ

LT

)

for LT ≪ Lφ ≪ L. (6.28)

100



6.4. Symmetry classes and diffusion

there is a dependance in D : the thermal length and the coherence length being
defined as a function whereas the sample length is fixed.

6.3.1 Introduction of a transverse magnetic field

The introduction of a transverse magnetic field induces the suppression of the
diagrams where a cooperon appears, which will reduce by a factor of two the
amplitude of the fluctuations. This crossover is described as [32] :

〈δσ(B)2〉 = 1

2
〈δσ(0)2〉

[

1 +
Bφ

B
Ψ′(

1

2
+
Bφ

B
)

]

(6.29)

where Ψ is the Digamma function and Bφ(b) = ~/4eD(b)τφ.

6.4 Symmetry classes and diffusion

As we have seen in Sec. 6.2.2 the quantum correction to conductivity, is in
the case of Dirac fermions a weak antilocalization, which means that the resis-
tance decreases when the magnetic field is suppressed. In the case of spinless,
non-relativistic electrons we observe the opposite effect, called weak localiza-
tion. However, this weak anti-localization is not specific to Dirac fermions
: it has also been observed for non-relativistic electrons submitted to spin-
orbit coupling. Surprisingly, even if the calculations are different in the case
of non relativistic electrons with spin-orbit coupling than for the case of Dirac
fermions with scalar disorder, the amplitude of the correction, as well as the
amplitude of the conductance fluctuations are the same.

There are similarities between these two experiments: in the case of non-
relativistic electrons with random spin-orbit coupling, the Green’s functions
are ballistic, and the anisotropy arises from the spin-orbit coupling to the
impurities. For the Dirac fermions, the Green’s functions are not diagonal in
the spin-space, but the coupling to the impurities is. Moreover, both cases show
a coupling between the momentum and the spin via the spin-orbit coupling.
To show explicitly the similarity between these two experiments, we need to
show that they correspond to the same physics.

The problem of diffusive waves in a random potential is the problem of
Anderson localization[100]. There are universality classes to describe the tran-
sition to localization in the case of strong disorder. These universality classes
depend on both the symmetry of the sample preserved by the disorder and
the effective dimensionality of the diffusion. For topological insulators, these
classes are only relevant for the surface states since the bulk is not a metal ;
however we need to take into account the reduced dimensionality.

However these symmetry classes do not only describe the transport in the
case of strong disorder, but they are also relevant to describe the perturbative
regime of weak disorder : for a given universality class, the only parameter
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6. Quantum corrections

necessary to describe all the transport experiments is the diffusion coefficient,
and knowledge of this coefficient and of the symmetry class is enough to deter-
mine the value of the quantum correction to conductivity and the amplitude
of the conductance fluctuations.

In the case of metals, there are only three classes : the orthogonal, the
symplectic and the unitary class. The class of a system is fully determined by
the time-reversal operation Θ :

• If the Hamiltonian is time-reversal symmetric and Θ2 = Id, it is the
orthogonal class. This is for example the case of non-relativistic electron
with a scalar disorder.

• If the Hamiltonian is time-reversal symmetric and Θ2 = −Id, it is the
symplectic class. This happens for example in the case of relativistic
electrons, such as in graphene and topological insulator surface states.
It is also the case of non-relativistic electrons in presence of spin-orbit
coupling. Since both cases are described with the same model, we expect
to find the same results for the amplitude of the quantum correction or
the conductance fluctuations[99].

• Finally, a breaking of the time-reversal symmetry leads to the unitary
class.

The breaking of the time-reversal symmetry can be done for example by
applying a transverse magnetic field, and this crossover from the orthogonal
or symplectic class to the unitary class is what is observed in a magnetocon-
ductance measurement.

Instead of thinking in terms of symmetry classes, it could be convenient to
see that for every symmetry class there is a given number of diffusive modes
associated : there are 8 (1 singlet and 3 triplets for both diffuson and cooperon)
in the orthogonal class, 2 (the diffuson and the cooperon singlets) in the sym-
plectic class and only one in the unitary class (the cooperon is suppressed).
We have seen that by nature, the cooperon is only observable when there is
time-reversal symmetry (we flipped one of the two Green’s functions of a dif-
fuson), this is why the breaking of time-reversal symmetry by a magnetic field
change the symmetry class to unitary and suppress the contributions of the
cooperon.

A 2 dimensional metal such as graphene and the surface states of a topo-
logical insulator belong to the same symmetry class, however there is a deep
difference in the strong disorder limit. In the case of the 2 dimensional metal,
the eigenstates must appear in pairs, this is known as the fermion doubling
theorem, whereas at the surface of a 3 dimensional topological insulator, they
have to be in an odd number. In presence of strong disorder, Anderson lo-
calization tells that the metal becomes an insulator. This is not the case for
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6.4. Symmetry classes and diffusion

topological insulator as the surface states can be localized only by pairs, im-
plying that that at least one surface state is not localized, and the insulating
regime is not reached as long as the disorder preserves the gap[97].
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For particulars, as every one knows, make for

virtue and happiness; generalities are

intellectually necessary evils.

Aldous Huxley, Brave New World

Chapter 7

Hexagonal warping of the Fermi

surface for topological

insulators surface states

7.1 Model for hexagonal warping

For Dirac fermions, the Fermi surface, a cut of the dispersion relation at a given
energy, is a pure circle. However, ARPES experiments[61] on the surface states
of Bi2Te3 showed that instead of being circular, the Fermi surface presents a
six-fold deformation which becomes more and more visible as we move away
from the Dirac point : from a circle, the Fermi surface turns into a hexagon
then into a snowflake (cf Fig. 7.1).

The origin of such a behavior has been understood by L. Fu[64] by study-
ing the band structure of Bi2Te3 using k.p theory. This theory corresponds to
an expansion of the dispersion relation at small energy and small momentum
around the Γ point. The first term in the development explains the Hamilto-
nian we have used in the previous chapter, but there are higher order terms
that have been neglected. They are treated by adding a new term in the

Figure 7.1: ARPES data showing the deformation of the Fermi surface when
the Fermi energy is moved away from the Dirac point (from right to left)[98].

105
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Hamiltonian which becomes for Bi2Te3 surface states :

H = ~vF (kxσ
y − kyσ

x) +
λ

2
(k3+ + k3−)σ

z , (7.1)

where we have noted k± = kx ± iky.
Let us take a closer look to this Hamiltonian. First of all, we can perform a

π/2 rotation around the spin z-axis and obtain the ~k.~σ form of the Hamiltonian
we used previously. There are only two parameters in this Hamiltonian, the
Fermi velocity vF which has been renormalized by going to an higher order in
the k.p theory, and the parameter λ that we will call the warping parameter.
Indeed, this second term of the Hamiltonian is the one that breaks the contin-
uous rotational symmetry into a six-fold degeneracy that can be understood
as the combination of the three-fold symmetry of the crystalline structure of
Bi2Te3 and the time-reversal symmetry[101].

A similar departure from Dirac physics is also observed in graphene, but
in this case, the deformation is a triangular warping since the time-reversal
symmetry in graphene projects a Dirac cone into a different valley Dirac cone.
The fact that this warping tilts the spin out of the x−y plane, and that it has
not been studied in graphene are the motivation for this work.

7.1.1 Diagonalization of the Hamiltonian

Starting from the Hamiltonian :

H = ~vF (~k.~σ) +
λ

2
(k3+ + k3−)σ

z , (7.2)

it is easy to determine the dispersion relation :

E(~k) = ±
√

~2v2Fk
2 + λ2k6 cos2 3θ , (7.3)

where ~k = (k, θ) in polar representation. We plot this dispersion relation in
Fig. 7.2, and check that it reproduces well the behaviour seen experimentally
in Fig7.1.

To quantify the strength of this hexagonal warping, a geometric factor
depending on the extremal amplitude of the momentum around the Fermi
surface has been introduced[98] :

w = wmax
kmax − kmin

kmax + kmin
with wmax =

2 +
√
3

2−
√
3
≃ 13.9 . (7.4)

This geometric factor depends only on the shape of the Fermi surface, for
example, two Fermi surfaces differing only by a simple homothetic transfor-
mation will have the same geometric factor. Since the shape of the Fermi
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Figure 7.2: Left : Numerical plot of the dispersion relation. Right : Fermi
surface for different value of the Fermi energy.

surface changes with the Fermi energy, we introduced the dimensionless pa-
rameter b = λE2

F

2~3v3F
obtained from the Hamiltonian parameters as another mea-

sure of the warping strength. The coefficients are linked through the relation

b(w) =
√

wwmax
(wmax+w)2

(wmax−w)3
, showing that indeed an increase of b corresponds

to an increase of w, and that they both increase with the Fermi energy. Two
sets of values of the coefficients appear of interest : when there is no deforma-
tion, corresponding to a circular Fermi surface b = 0 and w = 0 ; when the
the Fermi surface is a hexagon w = 1, b = 2/(3

√
3) ≃ 0.38. When the Fermi

energy is increased, the edges curves inward and we obtain a snow-flake like
Fermi surface, with w > 1.

Using experimental ARPES data showing the form of the Fermi surface, it
is possible to derive the value of the coefficient w, and thus a range of values
of b. Using the experimental values for the Bi2Se3 compound λ = 128 eV.Å3 ,
vF = 3.55 eV.Å from [102] we obtain relatively small values of warping 0.04 <
b < 0.09 for energies 0.05eV < E < 0.15eV , and similarly 0.0 < b < 0.04 with
the values λ = 95 eV.Å3 , vF = 3.0 eV.Å and 0.00eV < E < 0.15eV from
[103]. On the other hand, the experimental values for the Bi2Te3 compound
λ = 250 eV.Å3 and vF = 2.55 eV.Å [61, 15] lead to a warping factor ranging
from b = 0.13 for E = 0.13 eV to b = 0.66 for E = 0.295 eV.

This range of values for b first led to consider a perturbative
approach[104][105], but we will see that for values of b larger than 0.2, this
perturbative approach appears clearly unapplicable.

To simplify the future calculations we introduce kF = EF /~vF and k =
kF k̃(θ) so that the Fermi surface is defined by the equation :

1 = k̃2(θ) + 4b2k̃6(θ) . (7.5)
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7.2 Boltzmann approach perturbative in warping

To calculate the classical conductivity through the Boltzmann method we need
the same ingredients as in the previous chapter, but we will develop the series
expansion up to the fourth order in b.

7.2.1 Elastic scattering time

The diagonalization of the Hamiltonian H = ~vF (~k.~σ) +
λ
2 (k

3
+ + k3−)σ

z gives

the energy E =
√

~2v2Fk
2 + λ2k6 cos2 3θ far from the Dirac point (this is why

we neglect the negative energy excitations). The corresponding spinorial part
of the eigenvector is :

|~k = (k, θ)〉s =
(

cosφ
sinφeiθ

)

where ei2φ = 2bk̃3 cos θ + ik̃ . (7.6)

7.2.1.1 Scattering amplitude

Using this value of the eigenvector, it is possible to calculate the spinor overlap
between |~k〉 and |~k′〉. For a given value of the warping parameter b, the value
of k̃(θ) is fixed, this is equivalent to say that the indication of the Fermi
energy and of the the direction of the wavevector is enough to determine its
length. We derive exactly the value of the scattering probability from ~k to
~k′, on the disorder |〈~k′|V |~k〉|2. This probability is proportional to the spinor
overlap g(~k, ~k′) = |s〈~k′|~k〉s|2, that we express as a function of the relative angle
between ~k and ~k′, the direction of the incoming wavevector and the value of
the warping parameter b. It does not depend on the Fermi energy or the length
of the wavevectors since they have been absorbed in the definition of b and k̃.
We obtain :

g(~k, ~k′) =
1

2

[
1 + cos 2φ cos 2φ′ + sin 2φ sin 2φ′ cos(θ − θ′)

]
. (7.7)

We can compare this to the result of pure Dirac fermions, where b =
0. In this case φ = π/2, and we recover the result of Eq. (5.9), g(~k, ~k′) =
1
2 (1 + cos(θ − θ′)).

The calculated scattering probability is plotted in Fig.7.3 ; we can no-
tice that the anisotropy is increased by the warping. Moreover, there is now
a dependance of the scattering probability in the direction of the incoming
wavevector which was absent in the case of pure Dirac fermions.
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Figure 7.3: Scattering probability as a function of the angle between the in-
coming and the outgoing wavevector, for different values of the warping, and
for two different directions of the incoming wavevector.

7.2.1.2 Density of state and elastic scattering time

The density of state ρ(E) =
∫

d~k
(2π)2

δ(E −E(~k)) is now derived by integrating
on constant energy contours and we obtain :

ρ(EF ) =
EF

2π~2v2F

∫
dθ

2π

1

1 + 12b2k̃(θ) cos2 3θ
. (7.8)

Noting X0 the value of the quantity X in the absence of warping as derived
in the previous chapter X0 = X(b = 0), we perform a series expansion and we
obtain at the fourth order in b :

ρ(EF ) = ρ0(EF )
(
1− 6b2 + 90b4 + o(b4)

)
. (7.9)

The calculation of the elastic scattering time through the Fermi golden
rule :

1

τe(EF )
= 〈
∫

d~k

(2π)2
2π

~
|〈~k′|V |~k〉|2δ(E(~k′)− EF )〉 , (7.10)

can also be derived by using the same integration on constant energy contours.
However the relation between the elastic scattering time and the density of
states through the amplitude of the disorder ~/τe = πργ remains. As a result
we find that :

1

τe
=

1

τ0e

(
1− 6b2 + 90b4 + o(b4)

)
. (7.11)

The effect of the warping is to reduce the density of state : the warping is
responsible for an increase of the Fermi surface coming from the curving of the
edges, since there is more space available for the same number of energy states,
the density of states decreases. On the other hand, the elastic scattering time
is increased : this lowering of the density of states induces less scattering of
the particles.

This two effects seem to counterbalance so the resulting effect of the hexag-
onal warping on the diffusion is difficult to guess. However, we have seen that
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7. Hexagonal warping

the interesting time to describe the conductivity is not the elastic scattering
time when the scattering is anisotropic, but the transport time. To obtain it,
we need to solve the Boltzmann equation.

7.2.2 Boltzmann equation

To solve the Boltzmann equation

−e ~E.∂f
∂~k

= 〈
∫

d~k′

(2π)2
2π|〈~k′|V |~k〉|2δ(E(~k′)− EF )

[

f(~k′)− f(~k)
]

〉 , (7.12)

we will use the linearized ansatz f(~k) = nF (ǫ(~k)) +
∂nF
∂ǫ f̄(θ) with f̄ linear in

the electric field. For an electric field along the x-axis, this corresponds to
solve the equation :

−eEx.
∂ǫ

∂kx
= 2πγ

∫
dθ′

(2π)2
|〈~k′|~k〉|2kF |θ′

∂ǫ
∂k |θ′

[
f̄(θ′)− f̄(θ)

]
, (7.13)

We derive the quantities present in this equation up to fourth order in b :

∂ǫ

∂kx
=~vF

(
cos θ + b2 cos 3θ(11 cos 2θ + cos 4θ)

+ b4 cos3 3θ(−109 cos 2θ + 11 cos 4θ)
)
, (7.14)

|〈~k′|~k〉|2 =1

2

[
1 + cos(θ − θ′) + b2h1(θ, θ

′) + b4h2(θ, θ
′)
]
, (7.15)

h1(θ, θ
′) =4 cos 3θ cos 3θ′ − 2(cos2 3θ + cos2 3θ′) cos(θ − θ′) , (7.16)

h2(θ, θ
′) =− 24 cos 3θ cos 3θ′(cos2 3θ + cos2 3θ′) (7.17)

+ (4 cos2 3θ cos2 3θ′ + 22 cos4 3θ + 22 cos4 3θ′) cos(θ − θ′) ,

kF |θ′
∂ǫ
∂k |θ′

=
EF

~2v2F

(
1− 12b2 cos2 3θ′ + 240b4 cos4 3θ′

)
, (7.18)

and solving the equation iteratively in powers of b in the expansion of f̄ gives
to fourth order in b :

f̄(θ) = evF τeEx

[

2 cos θ + b2(18 cos θ + 5 cos 5θ − cos 7θ) (7.19)

−b
4

4
(522 cos θ + 20 cos 5θ + 44 cos 7θ + 49 cos 11θ − 11 cos 13θ)

]

.

7.2.2.1 Classical conductivity

The current is then calculated according to :

jx =

∫
d~k

(2π)2
e
∂ǫ

∂kx
f̄(θ)δ(ǫ(~k)− EF ) = σEx , (7.20)
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Figure 7.4: Diffusion constant calculated perturbatively to fourth order as a
function of the warping parameter b.

leading to the conductivity :

σ = e2ρ(EF )v
2
F τe

(
1 + 8b2 − 58b4 + o(b4)

)
. (7.21)

We can check that in the limit b −→ 0 of no hexagonal warping, the
precedent result of Eq. (5.12) is retrieved since ρ(EF )τe = ρ0(EF )τ

0
e = π~γ.

This equation defines the diffusion constant D = D0(1 + 14b2 − 64b4). In the
end, even if the density of state and the elastic scattering time are effected in
opposite way and counterbalance, the increased anisotropy of the scattering
is dominant and is responsible for an increase of the conductivity with the
warping.

This perturbative approach in b gives a tendency for the effect of the warp-
ing on the conductivity, however, for the extremal values of b around 0.6, this
gives a negative value for the conductivity (cf Fig. 7.4), suggesting that the
larger experimental values for the warping parameter b are beyond the radius
of convergence of the series expansion and that an approach non perturbative
in warping is necessary.

7.3 Diagrammatic technique : derivation of the classical

conductivity

To calculate the classical conductivity with the diagrammatic technique, we
follow the method used in the previous chapter : the first step consists in
the calculation of the self-energy thus providing the disorder averaged Green’s
functions. Then, the classical Drude conductivity is calculated as the sum
of two contributions, the one where there is no disorder induced coupling
between the advanced and the retarded Green’s functions that we called the
bare conductivity, and the one arising from the vertex renormalization coming
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7. Hexagonal warping

from the diffuson. All this study will be done non-perturbatively in the warping
parameter b and confronted to the previous perturbative result obtained by
the resolution of the Boltzmann equation.

7.3.1 Averaged Green’s function and elastic scattering time.

The averaged Green’s function is obtained by calculating the self-energy cor-
rection and averaging over disorder as we did in the previous chapter. The
corresponding disorder averaged Green’s functions read :

〈GR/A(~k)〉 = (E ± i~/2τe)Id+ ~vF~k . ~σ + λk3 cos(3θ)σz

(E ± i~/2τe)2 − ~2v2Fk
2 − λ2k6 cos2(3θ)

, (7.22)

where the elastic scattering time for the warped (resp. unwarped) conical
Dirac fermion τe (resp. τ (0)e ) is defined by :

ρτe =
~

πγ
= ρ(0)τ (0)e . (7.23)

We assume that the phase coherence time τφ ≫ τe in order to be in the
regime of coherent transport. By using the parameterization k̃(θ) of the Fermi
surface shape defined in Eq. (7.5) as 1 = k̃2(θ) + 4b2k̃6(θ), we obtain the non
perturbative expression for the the density of states :

ρ

ρ(0)
= α(b) =

∫ 2π

0

dθ

2π

1

1 + 12 b2k̃4(θ) cos2(3θ)
=
τ
(0)
e

τe
. (7.24)

As expected from the perturbative result, we find an increase of the scattering
time τe by the warping whereas the density of states is reduced by the same
factor. Once again, these two counterbalancing effects do not teach anything
about the classical conductivity since it is only determined by the transport
time or the diffusion constant, and not by the elastic scattering time. To access
the conductivity, we need to follow the procedure explained in the previous
chapters (starting from Sec. 5.3).

7.3.2 Diagrams for the classical conductivity

We remind the reader that for a given impurity configuration, the conductivity
is given by the Kubo formula :

σ = σxx =
~

2πL2
ℜTr

[
jxG

RjxG
A
]
, (7.25)

In this expression and below, Tr denotes a trace over the electron’s Hilbert
space (momentum and spin quantum numbers). The current operator jα is
obtained from the Hamiltonian Eq. (7.2) by inserting the vector potential via
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the minimal coupling substitution ~k → ~k − (e/~) ~A and using the definition
jα = δH

δAα
. We obtain a warping dependent current operator :

jx = (−e)
(

vF σx +
3λ

~
σz(k

2
x − k2y)

)

. (7.26)

We can check that in the limit of the absence of the warping term λ = 0,
only the constant term σx remains. However, in the presence of the warping,
there is also a dependance of the current operator in the momentum ~k : the
previous technique of the current operator renormalization is no longer valid.
Instead the classical mean conductivity is obtained from the bubble diagram
of Fig. 7.5 where the propagating lines are the retarded and advanced disorder
averaged Green functions Eq. (7.22). This classical conductivity is the sum of
two terms : σA and σB. The contribution of diagram A in Fig. 7.5 is defined

ΓD+

Figure 7.5: Diagrammatic representation of the two contributions σA and σB
to the classical conductance.

at ~q = 0 and ω = 0 by :

σA =
~

2π

∫
d~k

(2π)2
tr
[

jx(~k)〈GR(~k,EF )〉jx(~k)〈GA(~k,EF )〉
]

, (7.27)

where tr represents a trace over the spin quantum numbers. Performing ex-
plicitly the trace and the integration over the momentum k = |~k|, we obtain
the following expression:

σA =
~e2v2F
2πγ

α(b) + 5β(b) + δ(b)

α(b)
, (7.28)

which is non perturbative in b. The function α(b) has been defined in Eq. (7.24)
and we have introduced β(b) and δ(b) as :

α(b) =

∫ 2π

0

dθ

2π

1

1 + 12 b2k̃4(θ) cos2(3θ)
, (7.29)

β(b) =

∫ 2π

0

dθ

2π

4b2 cos2(3θ)k̃6(θ)

1 + 12b2 cos2(3θ)k̃4(θ)
, (7.30)

δ(b) =

∫ 2π

0

dθ

2π

36b2(k̃4(θ)− k̃6(θ))

1 + 12b2 cos2(3θ)k̃4(θ)
, (7.31)
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Figure 7.6: Schematic representation of the Diffuson and Cooperon structure
factors. The dotted lines correspond to disorder correlators, while the plain
and dashed lines represent retarded and advanced Green’s functions.

where k̃(θ) has been introduced in Eq. (7.5) as k = kF k̃(θ).
The contribution of the diagram B in Fig. 7.5 accounts for the contribution

of the so-called diffuson [32]. Retaining only the dominant contribution of the
integral, we can write is explicitly as :

σB(~q, ω) =
~

2π
tr
[

JxΓ
(d)(~q, ω)Jx

]

, (7.32)

where the vertex operator J is defined by :

Jx =

∫
d~k

(2π)2
〈GA(~k,E)〉 jx(~k) 〈GR(~k,E)〉 = J σx . (7.33)

A contraction over the spin indices is assumed, resulting in the proportionality
to σx.

The diffuson structure factor ΓD in Eq. (7.32) is defined diagrammatically
as in Eq. (5.32) in the absence of warping , and satisfies the same recursive
Dyson equation, solved by the expression ΓD(~q, ω) = γ

[
Id⊗ Id− γPD(~q, ω)

]

where PD is defined as :

PD(~q, ω) =

∫
d~k

(2π)2
〈GR(~k,E)〉 〈GA(~k − ~q, E − ω)〉. (7.34)

As in the case of the absence of warping, this diffuson structure factor can be
separated into 4 modes, one which is the singlet at q = 0 and ω = 0 which
is the only diffusive one, and the three triplets that do not contribute at long
range, but with one of them being responsible of the renormalization of the
transport time. To obtain this contribution to the conductivity, we do not need
to solve exactly the Dyson equation : we parametrize the diffuson structure
factor at ω = 0 and ~q = ~0 using three parameters as follows :

Γ(D) = a1Id⊗ Id+ a2(σ
x ⊗ σx + σy ⊗ σy) + a3σ

z ⊗ σz. (7.35)

Then, using this parameterization and the expression for the current operator
associated to an advanced and a retarded Green’s function of Eq. (7.33) and
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performing the resulting trace we obtain :

σB = J2(a1 − a3) . (7.36)

We derive the value of J as a function of the parameter α(b) and β(b)

defined in Eq. (7.24) and Eq. (7.30) : J = −evF
γ

α(b)+2β(b)
α(b) . Similarly, we can

derive the value of a1 − a3, expressing PD as a function of α(b) and β(b) and
using the relation Γ = γ(Id⊗ Id− γPD)−1 : a1 − a3 = α(b)

α(b)+β(b) . With these
two relations we obtain :

σB = J2(a1 − a3) =
~e2v2F
2πγ

(α(b) + 2β(b))2

α(b)(α(b) + β(b))
. (7.37)

It is now possible to add the two contributions of Eq. (7.28) and Eq. (7.37)
and obtain the full expression for the classical conductivity, and this allows us
to define the diffusion constant D from the Einstein relation σcl = σA + σB =
e2ρD. Finally we obtain an expression for the diffusion constant :

D =
v2F τe
2

(
α(b) + 5β(b) + δ(b)

α(b)
+

(α(b) + 2β(b))2

α(b)(α(b) + β(b))

)

. (7.38)

which is non perturbative in the warping parameter b.
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Figure 7.7: Profile of the diffusion constant as a function of warping intensity b.
The plain line corresponds to the expression non perturbative in the warping
amplitude b, while the dashed curves corresponds to perturbative results to
order b2 and b4.

In the limit b → 0 of absence of warping, we recover the known result
for Dirac fermions with scalar disorder with a diffusion constant D = v2F τe =
v2F τtr/2 with a transport time τtr = 2τe accounting for the inherent anisotropic
scattering of Dirac fermions on scalar disorder.
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7. Hexagonal warping

Fig. 7.7 shows the evolution of the diffusion constant as a function of
the warping parameter b and the increase by a factor up to 4 of the diffusion
coefficient within the range of experimental values of b which can be as high as
0.6. This increase comes from the stronger anisotropy of the scattering when
the hexagonal warping strength is increased, whereas the renormalization of
the density of states and elastic scattering time balance. This increase of the
diffusion coefficient corresponds to a stronger increase of the transport time
compared to the elastic scattering time since this diffusion coefficient accounts
for both the renormalization of the density of states and the renormalization
of the transport time. It is important to notice that this diffusion coefficient
is now a function of the warping parameter b : for a given sample with fixed
Hamiltonian parameters λ and vF , the diffusion coefficient can be modified by
changing the Fermi energy. The effects of such a change will be examined in
the following sections.

Finally, we observe that this non perturbative calculation shows a strong
departure of the perturbative approach when b approaches the maximum of
the experimental values, showing that a non perturbative in warping approach
is necessary to describe transport experiments.

7.4 Quantum corrections to conductivity and universal

conductance fluctuations

The warping term Hw = λ
2 (k

3
+ + k3−)σ

z preserves the time-reversal symmetry.
Consistently with Sec. 6.4, we can check that the time-reversal operation
squares to minus identity Θ2 = −Id, so we are still in the symplectic class.

We have derived the value of the diffusion constant, so we already know
the value of the quantum correction to conductivity and the amplitude of the
conductance fluctuation. In Sec. 6.2.2, we have shown that the weak anti-
localization correction does not depend on the diffusion constant, so we expect
the result to hold in this case. The next section intends to show it explicitly.

7.4.1 Calculation of the quantum correction to conductivity

To obtain the quantum correction to conductivity, the first step is to obtain
the new Hikami box HC , the difficulty arising from the dependence of the cur-
rent operator on the momentum jx = e

(
−vFσx + 3λ

~
σz(k

2
x − k2y)

)
. Reminding

Σx = jx + jxP
DΓD, we express the first Hikami box as :

HC
0 =

∫

~k

[

GA(~k)ΣxGR(~k)GR(−~k)ΣxGA(−~k)
]

. (7.39)
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7.4. Quantum corrections to conductivity and universal conductance fluctuations

We perform this integral using polar coordinates, and integrate the radial part :

HC
0 =

e2v2F τ
2
e

4γ~

τe

τ
(0)
e

∫
dθ

2π

A+BA+ ⊗A−BA−
1 + 12b2k̃(θ)4 cos2(3θ)

, (7.40)

A± = Id± k̃(θ) (cos θσx + sin θσy) + 2b k̃3(θ) cos(3θ)σz , (7.41)

B =

(

2 +
β

α+ β

)

σx + 6b k̃2(θ) cos(2θ)σz . (7.42)

The two other Hikami boxes, where an impurity line links two Green’s
functions can be calculated by the method used above, and summing the three
Hikami box, one can write the result for the Hikami box as :

HC =
e2v2F τ

2
e

4γ~
H(b) , (7.43)

where H(b) is a complex expression containing angular integral functions of b.
We need to close this Hikami box with a Cooperon structure factor :

ΓC =
γ

τe

1

D(b)Q2

1

4
(Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz) . (7.44)

We assumed that the cooperon structure factor can still be approximated
around Q = 0 by a singlet diffusive state, with the relevant diffusion constant
D(b). Introducing :

h(b) = tr[H(b)
1

4
(Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz)] , (7.45)

as the trace over the spin space of the cooperon structure factor and the Hikami
box, we obtain the quantum correction to the conductivity :

〈∆σ(b)〉 = ~

2π
Tr(HCΓC) =

e2

h

v2F τeh(b)

2D(b)

∫
d~q

q2
. (7.46)

The change in the weak anti-localization correction v2F τeh(b)

2D(b) arising from
the hexagonal warping can be computed, and we found it to be constant equal
to 1 and independent of b. This shows the independence of the weak anti-
localization correction with respect to the value of the diffusion constant, as
expected from the previous derivation for pure Dirac fermions since we have
not changed the symmetries preserved by disorder and thus stayed in the same
universality classes of the Anderson problem.

7.4.2 Universal conductance fluctutations

We have just checked in the previous section that the introduction of the
hexagonal warping preserves the time-reversal symmetry, and thus that we stay
in the symplectic class. Moreover, we have determined the diffusion constant
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7. Hexagonal warping

non perturbatively in the warping parameter b in Eq. (7.38). We can introduce,
as in the Sec. 6.3 the phase coherence length Lφ =

√
D(b)τφ(T ) and thermal

length LT =
√

~D(b)/T that now depend on b. The results derived in the
case of pure Dirac fermions still hold, with these renormalized lengths. We
obtain in the universal regime L ≪ Lφ, LT , the same value for the universal
conductance fluctuations :

〈δσ2〉 = 12

π4

(
e2

h

)2 ∞∑

nx=1

∞∑

ny=0

1

(n2x + n2y)
2
≃ 0.185613

(
e2

h

)2

. (7.47)

In the other regimes, the value of the fluctuations are not universal as they
depend on the diffusion coefficient, and we obtain again :

〈δσ2〉 ≃ 3

π

(
e2

h

)2(
Lφ

L

)2

for Lφ ≪ L,LT , (7.48)

≃ 2

3

(
LT

L

)2(e2

h

)2

ln

(
L

LT

)

for LT ≪ L≪ Lφ, (7.49)

≃ 2

3

(
LT

L

)2(e2

h

)2

ln

(
Lφ

LT

)

for LT ≪ Lφ ≪ L. (7.50)

7.5 Evolution of the diffusion coefficient

7.5.1 WAL correction

The length Lφ is defined through the diffusion coefficient, which is now a
function of the warping parameter b, and we have seen that the increase of the
diffusion coefficient when the warping is increased is dramatic. This means
that it is possible, for a given sample with fixed Hamiltonian parameters λ
and vF to modify the value of the diffusion coefficient by changing the Fermi
energy as we can see in Fig7.8 where we plotted the evolution of D, and the
corresponding conductivity, as a function of the Fermi energy, for a range of
energy in the gap of the topological insulator.

This increase of the diffusion coefficient will be responsible for an increase
of the classical conductivity with the Fermi energy, but also for an increase of
the coherence length Lφ =

√
D(b)τφ(T ) and thermal length LT =

√

~D(b)/T
that appear when studying the amplitude of the conductance fluctuations when
not in the universal regime :

〈δσ2〉 ≃ 3

π

(
e2

h

)2(
Lφ

L

)2

for Lφ ≪ L,LT , (7.51)

≃
(
LT

L

)2(e2

h

)2

ln

(
L

LT

)

for LT ≪ L≪ Lφ, (7.52)

≃
(
LT

L

)2(e2

h

)2

ln

(
Lφ

LT

)

for LT ≪ Lφ ≪ L. (7.53)
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7.5. Evolution of the diffusion coefficient
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Figure 7.8: Left : Profile of the diffusion constant as a function of the Fermi
energy in Bi2Te3 and Bi2Se3. Right : Evolution of the conductance with
the Fermi energy. The parameters vF and λ have been derived from ARPES
experiments as λ = 128 eV.3 and vF = 3.55 eV. in Bi2Se3 whereas λ = 250
eV.3 and vF = 2.55 eV. in Bi2Te3 and both the diffusion constant and the
conductivity have been normalized with respect to their value in the absence
of hexagonal warping λ = 0.

Since these two lengths are defined as a function of the diffusion coefficient
whereas the size of the sample L is fixed, we should observe a variation of the
amplitude of the fluctuations when the Fermi energy is changed.

7.5.2 Critical magnetic field

In the magnetoconductance experiments where a transverse magnetic field is
applied to the sample in order to change the symmetry class from symplectic
to unitary, we observe the suppression of the cooperon as the suppression of
the weak anti-localization correction. This crossover is described by :

〈∆σ(B)〉 = e2

2π2~

[

Ψ(
1

2
− Be

B
)−Ψ(

1

2
− Bφ

B
)

]

. (7.54)

where Ψ is the Digamma function and the characteristic fields BX =
~/(4eDτX). The characteristic field to observe this suppression is Bφ and
the dependance of this field on the diffusion coefficient can be observed by
repeating the experiments with different Fermi energies (cf Fig.7.9).

Similarly, the conductance fluctuations are divided by a factor of 2 when
the magnetic field is increased, with a crossover :

〈δσ(B)2〉 = 1

2
〈δσ2〉

[

1 +
Bφ

B
Ψ′(

1

2
+
Bφ

B
)

]

. (7.55)

and this division is observed with the same characteristic field, so the profile
of the crossover will be different for different Fermi energies.
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Figure 7.9: Dependence of the weak localization correction 〈δσ(B)〉/〈δσ(B =
0)〉 on the Fermi energy for the values of λ and vF corresponding to the Bi2Te3
(Left) and Bi2Se3 (Right) compounds. We have chosen to scale the magnetic
field as B/B0 where B0l

2
e = Φ0 = h/e to avoid any energy (or warping)

dependence of this rescaling field. The results show a clear dependence on
energy of the magnetic field characteristic of weak localization decay.

7.6 In plane magnetic field

In opposition to graphene, the spin entering in the Hamiltonian of topological
insulators is the real spin, which means that a magnetic field is a powerful tool
at the disposition of experimentalists to know better about the properties of
such surface states.

For example, we consider the effect of an in plane Zeeman magnetic field
on the transport properties of the surface states. This magnetic field adds a
new term to the Hamiltonian in Eq. (7.2) :

HZ = gµB(σ
xBx + σyBy). (7.56)

In the absence of warping, the total Hamiltonian reads :

H = (~vF~k + gµB ~B).~σ. (7.57)

This expression shows the Zeeman field acts as a constant vector potential
and can be gauged away : we can shift uniformly the momenta by the quantity
gµB ~B/~vF and we obtain the pure Dirac Hamiltonian of Eq. (5.2). As a
consequence, this magnetic field should not modify the scattering probability
g(~k, ~k′).

However, in presence of the hexagonal warping, this shift is not possible
anymore, and the introduction of the magnetic field deforms the Fermi sur-
face (cf Fig. 7.10). As a consequence, we observe a dependance in B of the
scattering amplitudes g(~k, ~k′) and thus a dependance of the conductivity is
expected.

Moreover, if we perform the gµB ~B/~vF shift in momentum, we observe
that the Fermi surface is no longer time-reversal symmetric : opposite points
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Figure 7.10: Evolution of the Fermi surface in absence of warping (left), and
with hexagonal warping (right) as the magnetic field is increased in the y
direction (from blue to red).

of the Fermi surface are not at the same distance from the center. We expect
a crossover from the symplectic class in the absence of the Zeeman magnetic
field to the unitary when time-reversal symmetry is broken.

To describe quantitatively this crossover, we introduce the magnetic field
as a perturbation in the standard diagrammatic. The perturbative parameter
is B̃ = gµBB/EF . The crossover from the symplectic class to the unitary
class corresponds to the suppression of the cooperon contribution as it is now
described by the diffusion of a massive singlet. Indeed, to obtain the cooperon
structure factor, we need to calculate the quantity PC( ~Q) =

∫

~k
〈GA( ~Q−~k)〉 ⊗

〈GR(~k)〉. As ΓC = γ(Id ⊗ Id − PC)−1, we calculate the eigenvalues of the
operator Id⊗Id−PC . In absence of the magnetic field, the smallest eigenvalue
is DQ2τe, corresponding to the diffusive singlet state. However, in the presence
of the magnetic field, this eigenvalue turns to DQ2τe+M(b, B̃) and this leads
to a cooperon structure factor approximated by :

ΓC( ~Q) = γ
1

DQ2τe +M(b, B̃)

1

4
[Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] .

(7.58)
It is this mass term M(b, B̃) which encodes the effect of the Zeeman mag-

netic field. We have already calculated this term in the absence of magnetic
field in the study of the hexagonal warping in Eq. (6.4), M(b, 0) = 0, and we
expect this term to vanish in absence of the hexagonal warping, since it cor-
responds to a magnetic field that can be gauges away M(0, B̃) = 0. Perturba-
tively to the second order in B̃, this term can be written as M(b, B̃) = m(b)B̃2,
and we plotted in Fig. 7.11, the evolution of the parameter m(b).

The expression DQ2τe+M(b, B̃) introduces naturally a length scale LB =
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Figure 7.11: Evolution of the coefficient m(b) characterizing the mass term
M(b, B̃) = m(b)B̃2 due to the magnetic field.

√

Dτe/M(b, B̃) quantifying the crossover from the symplectic to the unitary
class. The length scale combines with the coherence length as

L̃−2 = L−2
φ + L−2

B

to form the length scale on which the cooperon is suppressed , the relevant
length to describe the weak anti localization and the conductance fluctuations.
We obtain :

〈∆σ( ~B)〉 =

(
e2

π~

)∫

~Q

1

Q2 + L−2
B + L−2

φ

= f(L̃/le, L/L̃) , (7.59)

〈δσ2( ~B)〉 = 6

(
e2

h

)2
1

V

[
∫

~q

1

(q2 + L−2
φ )2

+

∫

~q

1

(q2 + L−2
B + L−2

φ )2

]

=
1

2
〈δσ2( ~B)〉+ f2(L/L̃) . (7.60)

The functions f and f2 depend on the geometry of the sample. In the case
of an infinite 2 dimensional sample, we obtain from Eq. (7.59) the logarithmic
dependance of f in L̃/le seen in Eq. (6.14) :

〈∆σ( ~B)〉 = e2

2π2~
ln

(

L̃

le

)

. (7.61)

For different geometries, we need to do the proper summation over all
the available momenta, depending on the boundary conditions to obtain the
function f and f2.
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7.6. In plane magnetic field

We can check that in the absence of the magnetic field, the mass term
vanishes and the magnetic length associated LB becomes infinite. In this case,
the relevant length for describing the cooperon is the coherence length L̃ = Lφ.
The introduction of the magnetic field reduces the value of the length scale L̃,
and we need to compare the sample size to this length, instead of the coherence
length.

In order to determine the effects of this magnetic field, we need an order
of magnitude of the magnetic length scale LB, to check if it can be measured
experimentally. This magnetic length scale can be expressed as a function of
the parameters of the Hamiltonian as follows :

LB

le
=

√

D(b)/(D(b = 0)m(b))

B̃
=
c(b)

B̃
. (7.62)
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Figure 7.12: Evolution of the coefficient c relating the magnetic length to the
elastic scattering length, as a function of the warping parameter.

We have plotted in Fig. 7.12 the evolution of the coefficient c as a function
of the warping parameter b. In the Fig. 7.13, we plotted the value of this
length normalized to the elastic scattering length with parameters relevant to
Bi2Se3 and Bi2Te3, for a magnetic field of 1 T. This plot shows that we should
expect a magnetic length around 1000 le, which which means this effect could
be measured experimentally.
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Figure 7.13: dependance of the magnetic dephasing length LB on the Fermi
energy for Bi2Te3 (red, λ = 250 eV.3 and vF = 2.55 eV.) and Bi2Se3 (blue, λ
= 128 eV.3 and vF = 3.55 eV.).
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Chapter 8

Conclusions

The aim of this thesis was to study the electronic transport properties of new
phases of the matter, the topological insulators.

In a first time, we focused on the quantum spin Hall effect that was just
realized experimentally. The main idea was to use the helical edge states of
this phase, in combination with the Cooper pairs in a superconductor, to form
perfect Cooper pair splitter. In theory, a perfectly clean interface between a
normal metal and a superconductor should also realize this perfect Cooper
pair splitting but any defect at the interface could absorb momentum during
the tunneling process and leaves Cooper pairs unsplitted. We have shown
that this no longer the case in a QSH/SC junction, as the total spin of a
Cooper pair is conserved during the tunneling. As a consequence, because
of the helicity of the QSH edge states, it is necessary that the two electrons
forming the Cooper pairs go in opposite directions. We have also stressed the
relation between Cooper pair injection and Andreev reflection, and showed that
a QSH/SC junction is equivalent to a beam-splitter where reflected electrons
are turned into holes, which leads to perfect Andreev reflection in the regime
of long superconducting regions. In the case of long superconducting region
in a QSH/SC/QSH junction, we also showed this perfect Andreev reflection,
with the precaution that the Andreev reflection is only a convenient picture
to describe effectively the scattering and that we must remember that the
reflection does not occur at the interfaces but on the whole superconducting
length.

Secondly, we turned to 3 dimensional topological insulators, where disor-
der plays a stronger role than in 2 dimensional topological insulators : the
edge states of QSH are ballistic, since the time-reversal symmetry prevents
backscattering. In the case of 3DTI surface states, the backscattering is also
suppressed, but the Fermi surface is a circle, and not reduced to two points.
This means that any impurity can scatter the surface states in any direction,
and that the propagation of the surface states is diffusive. We focused in the
mesoscopic physics regime of coherent transport, where the surface states keep
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8. Conclusions

memory of their phase along the diffusion, allowing for interference effects. In
this regime, we studied the diffusion of Dirac fermions, the simplest model to
characterize the 3DTI surface states. We also derived the quantum interfer-
ences responsible for weak anti-localization correction and the amplitude of
the universal conductance fluctuations. This derivation showed that the only
relevant parameters to describe these effects are the diffusion constant and the
time-reversal symmetry of the hamiltonian (in the case of metals). Finally, we
also studied a feature distinguishing the 3DTI surface states from other Dirac
fermions (e.g. in graphene) : the hexagonal warping deforming the Fermi sur-
face from a circle into a hexagon or a snow-flake when the Fermi energy is
increased. This hexagonal warping preserves the symmetry of the hamiltonian
but changes the value of the diffusion constant. As a consequence, we predict
that the value of the characteristic magnetic field for weak anti-localization
correction or the amplitude of the universal conductance fluctuations should
be dependent in the Fermi energy. We also predict a magnetoconductance
when the magnetic field is in the plane of the diffusion only in presence of this
hexagonal warping.
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Résumé

! Les travaux présentés dans cette thèse ont pour objectif d’apporter à la physique 

mésoscopique un éclairage concernant la compréhension des propriétés de transport électroniques 

d’une classe de matériaux récemment découverts : les isolants topologiques.

! La première partie de ce manuscrit est une introduction aux isolants topologiques, mettant 

en partie l’accent sur leurs spécificités par rapport aux isolants "triviaux" : des états de bords 

hélicaux (dans le cas de l’e"et Hall quantique de spin en 2 dimensions) ou de surface relativistes 

(pour les isolants topologiques tridimensionnels) robustes vis-à-vis du désordre.

! La deuxième partie propose une sonde de l’hélicité des états de bords de l’e"et Hall 

quantique de spin en étudiant les propriétés remarquables de l’injection de paires de Cooper dans 

cette phase topologique.

! La troisième partie étudie la di"usion des états de surface des isolants topologiques 

tridimensionnels dans le régime cohérent de phase. L’étude de la di"usion, de la correction 

quantique à la conductance (antilocalisation faible) et de l’amplitude des fluctuations universelles 

de conductance de fermions de Dirac sans masse est présentée. Cette étude est aussi menée dans le 

cas d’états de surface dont la surface de Fermi présente la déformation hexagonale observée 

expérimentalement.

Mots-clés : Isolants topologiques ; E"et Hall quantique de spin ; Physique mésoscopique ; 

Transport électronique cohérent ; Systèmes désordonnés ; (Anti)localisation faible ; Fluctuations 

universelles de conductance ; Fermions de Dirac ; Réflexion d’Andreev.

Abstract

! The works presented in this thesis intend to contribute to condensed matter physics in the 

understanding of the electronic properties of a recently discovered class of materials : the 

topological insulators.

! The first part of this memoir is an introduction to topological insulators, focusing on their 

specifities compared to "trivial" insulators : helical edge states (in the two dimensional quantum 

spin Hall e"ect) or relativistic surface states (for three dimensional topological insulators) both 

robust against disorder.

! The second part proposes a new way to probe the unique properties of the helical edge 

states of quantum spin Hall e"ect via the injection of Cooper pair from a superconductor.

! The third part deals with the di"usion of the three dimensional topological insulator surface 

states,  in the phase coherent regime. The di"usion, the quantum correction to conductivity, and the 

amplitude of the universal conductance fluctuations are studied. This study is also led in the 

experimentally relevant case where the Fermi surface presents a hexagonal deformation. 

Keywords : Topological insulators : Quantum spin Hall e"ect ; Mesoscopic physics ; Coherent 

electronic transport ; Disordered systems ; Weak (anti)localization ; Universal conductance 

fluctuations ; Dirac fermions ; Andreev reflection.


