
HAL Id: tel-00832234
https://theses.hal.science/tel-00832234

Submitted on 10 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation mathématique du risque endogène dans les
marchés financiers

Lakshithe Wagalath

To cite this version:
Lakshithe Wagalath. Modélisation mathématique du risque endogène dans les marchés financiers.
Finance quantitative [q-fin.CP]. Université Pierre et Marie Curie - Paris VI, 2013. Français. �NNT :
�. �tel-00832234�

https://theses.hal.science/tel-00832234
https://hal.archives-ouvertes.fr
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encouragé à diffuser ma recherche dans de nombreux séminaires, groupes de travail et
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travail. Merci également à Jean-Philippe Bouchaud, Nicole El Karoui, Damir Filipovic,
Mathieu Rosenbaum et Peter Tankov d’avoir accepté de faire partie de mon jury de
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Café ou d’une pizza-foot. Merci à tous !
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Résumé

Cette thèse propose un cadre mathématique pour la modélisation du risque endogène
dans les marchés financiers. Le risque endogène désigne le risque généré, et amplifié,
au sein du système financier lui-même, par les différents acteurs économiques et leurs
intéractions, par opposition au risque exogène, généré par des chocs extérieurs au système
financier. Notre étude est motivée par l’observation des différentes crises financières
passées, qui montre le rôle central du risque endogène dans les marchés financiers. Ainsi,
les périodes de crises sont souvent associées à des phénomènes de liquidation/ventes
éclair (’fire sales’), qui génèrent, de manière endogène, une importante volatilité pour
les actifs financiers et des pics inattendus de corrélations entre les rendements de ces
actifs, entrâınant de fortes pertes pour les investisseurs. Alors que la structure de
dépendance entre les rendements d’actifs financiers est traditionnellement modélisée de
manière exogène, les faits décrits précédemment suggèrent qu’une telle modélisation
exogène ne peut rendre compte du risque endogène observé dans les marchés financiers.
L’idée principale de cette thèse est de distinguer entre deux origines pour la corrélation
entre actifs. La première est exogène et reflète une corrélation fondamentale. La seconde
est endogène et trouve son origine dans l’offre et la demande systématiques générées par
les grandes institutions financières.

Nous modélisons la dynamique en temps discret des prix d’actifs financiers d’un
marché multi-actifs par une châıne de Markov dans lequel le rendement de chaque actif,
à chaque période k, se décompose en un terme aléatoire – qui représente les fondamentaux
de l’actif et est indépendant du passé – et un terme d’offre/demande systématique, généré
de manière endogène. Dans chaque chapitre, nous caractérisons mathématiquement
cette offre endogène et son impact sur les prix d’actifs financiers. Nous exhibons des
conditions sous lesquelles la châıne de Markov converge faiblement, lorsque le pas de
temps du modèle discret tend vers zero, vers la solution d’une équation différentielle
stochastique dont nous donnons le drift et la volatilité multi-dimensionnels. L’étude du
processus de covariation quadratique de la limite diffusive nous permet de quantifier
l’impact de l’offre et demande endogènes systématiques sur la structure de dépendance
entre actifs. Enfin, nous développons des outils statistiques et économétriques visant
à résoudre le problème inverse d’identification et d’estimation des paramètres de notre
modèle à partir de données de prix d’actifs financiers.

Le Chapitre 1 étudie le risque endogène généré par un fonds sujet à des ventes forcées
en raison d’investisseurs qui sortent de leurs positions lorsque le fonds sous-performe
et que sa valeur passe en-dessous d’un seuil. Nous modélisons l’offre et la demande
provenant de telles ventes forcées en introduisant une ’fonction de liquidation’ f qui
mesure la vitesse à laquelle les investisseurs sortent de leurs positions dans le fonds.
Nous supposons que l’offre en excès due au fonds sur chaque actif impacte le rendement
de l’actif de manière linéaire et nous explicitons les conditions pour que la dynamique de
prix en temps discret soit une châıne de Markov dans

(
R
∗
+

)n
, où n est le nombre d’actifs

dans le marché. Nous exhibons des conditions sous lesquelles le modèle discret converge
faiblement vers une diffusion en temps continu et calculons les drifts et volatilités multi-
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dimensionnels de la dynamique de prix en temps continu. L’étude de la covariation
quadratique de la limite diffusive permet d’expliciter l’impact des ventes forcées dans
le fonds sur la structure de dépendance entre les actifs financiers. En particulier, nous
montrons que la matrice de covariance réalisée s’écrit comme la somme d’une matrice de
covariance fondamentale et une matrice de covariance en excès, qui dépend des positions
du fonds, de la liquidité des actifs et de la trajectoire passée des prix et qui est nulle
lorsqu’il n’y a pas de ventes forcées. Nous prouvons alors que cet impact endogène
augmente la volatilité du fonds en question, exactement dans les scénarios où le fonds
subit des pertes. Nous calculons également son impact sur la volatilité d’autres fonds
investissant dans les mêmes actifs et prouvons l’existence d’une relation d’orthogonalité
entre les positions du fonds de référence et d’un autre fonds telle que, si cette relation
d’orthogonalité est vérifiée, des ventes forcées dans le fonds de référence n’affectent pas
la volatilité de l’autre fonds.

Le Chapitre 2 étend les résultats du Chapitre 1 au cas de plusieurs fonds et d’un
impact quelconque (pas nécessairement linéaire) de l’offre aggrégée en excès provenant
de ventes forcées dans ces fonds, sur les rendements de prix d’actifs. Nous exhibons
des conditions sous lesquelles le modèle discret converge faiblement vers une diffusion en
temps continu. La fonction de volatilité de la limite diffusive ne dépend de la fonction de
d’impact qu’à travers sa dérivée première en zero, montrant qu’un modèle de d’impact
linéaire capture complètement l’impact des effets de rétroaction dus aux ventes forcées
dans les différents fonds sur la structure de dépendance entre actifs. Nous calculons la
matrice de covariance réalisée, en fonction des positions liquidées, en particulier dans un
cas simple où les liquidations ont lieu à vitesse constante, dans un intervalle de temps
fixé et nous donnons des conditions assurant que cette relation peut être inversée et les
volumes de liquidations identifiés. Nous construisons alors un estimateur du volume de
liquidation dans chaque actif, dont nous prouvons la consistance, et pour lequel nous
dérivons un théorème central limite, qui nous permet de construire un test statistique
testant si, pendant une période donnée, des liquidations ont eu lieu. Nous illustrons
notre procédure d’estimation avec deux exemples empiriques: le ’quant event’ d’août
2007 et les liquidations suivant la faillite de Lehman Brothers en Automne 2008.

Le Chapitre 3 étudie l’impact d’un investisseur institutionnel investissant une por-
tion constante de sa richesse dans chaque actif (stratégie fixed-mix). Pour un vecteur
d’allocations donné, nous prouvons l’existence d’une unique stratégie fixed-mix autofi-
nançante. A chaque période, le prix des n actifs et la valeur du fonds fixed-mix sont
obtenus comme la solution d’un problème de point fixe. Nous montrons que, sous cer-
taines conditions que nous explicitons, le modèle discret converge vers une limite dif-
fusive, pour laquelle nous calculons la covariance et la corrélation réalisée à l’ordre un
en liquidité. Nos résultats montrent que la présence d’investisseurs institutionnels peut
modifier les corrélations de façon significative. Nous calculons les vecteurs propres et
valeurs propres de la matrice de corrélation réalisée (à l’ordre un en liquidité). L’étude
des drifts de la limite continue nous permet de calculer les rendements espérés des actifs et
montre qu’en raison de la présence de l’investisseur institutionnel, les rendements espérés
des actifs avec grand (resp. faible) drift fondamental, comparés au rendement fondamen-
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tal du fonds, diminuent (resp. augmentent). Nous calculons, dans un exemple simple,
la stratégie efficiente pour un critère moyenne-variance et montrons qu’elle est différente
de la stratégie optimale fondamentale (sans le fonds). L’étude de la frontière optimale
dans cet exemple montre qu’un investisseur prenant en compte l’impact de l’investisseur
institutionnel peut améliorer son rendement pour un niveau de risque donné.
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Abstract

This thesis proposes a mathematical framework for studying feedback effects and en-
dogenous risk in financial markets. We propose a multi-period model of a financial
market with multiple assets, which takes into account the price impact generated by
large shifts in supply and demand from financial institutions. Chapter 1 reviews the ex-
isting empirical and theoretical literature on feedback effects and motivates this thesis.
Chapter 2 studies feedback effects from distressed selling in a large fund, in the case of
a linear price impact model, while Chapter 3 extends such results to feedback effects
from fire sales in multiple funds and allows for a general price impact function. Chapter
4 studies the impact of a large institutional investor keeping a fixed allocation/portion
invested in each asset. We quantify the excess supply and demand generated in each
case. The multi-period price dynamics in the presence of feedback effects is modeled as
a Markov chain and we exhibit conditions under which it converges weakly, as the time
step of the discrete-time model goes to zero, to the solution of a stochastic differential
equation, for which we give the multi-dimensional drift and volatility explicitly. The
study of the quadratic covariation process of the diffusion limit allows us to quantify
the impact of feedback effects on the dependence structure of asset returns and the en-
dogenous risk generated: under our model assumptions, we show that we can compute
the impact of feedback effects on fund volatility and the spillover effects to other funds
investing in the same assets. Finally, we give conditions for the identifiability of model
parameters from time series of asset prices and build an estimator for the fund flows
generated by systematic supply and demand by large financial institutions. We show
that such estimator is consistent and derive a central limit theorem in Chapter 3. We
illustrate our estimation procedure with two empirical examples.
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Notations

In this thesis, we use the following notations� We denote the set of positive (resp. strictly positive) real numbers by:

R+ = {x ∈ R|x ≥ 0} (resp. R∗
+ = {x ∈ R|x > 0})� For x ∈ R, we denote by ⌊x⌋ the only integer such that ⌊x⌋ ≤ x < ⌊x⌋+ 1.� For an integer p ≥ 1, Cp(E) represents the set of mappings defined on E and p

times continuously differentiable.� For an integer p ≥ 1, Cp0(E) represents the subset of Cp(E) containing the mappings
whose derivatives of order 1 ≤ l ≤ p have compact support (ie: are equal to zero
outside of a compact set of E).� C∞(E) = {f |∀p ≥ 1, f ∈ Cp(E)} (resp. C∞

0 (E) = {f |∀p ≥ 1, f ∈ Cp0(E)})� For (X,Y ) ∈ R
n × R

n, we denote the scalar product between X and Y and the
norm of X as:

X.Y =
n∑

i=1

XiYi and ‖X‖ = (X.X)
1
2 =

(
n∑

i=1

X2
i

) 1
2� For X ∈ R

n and r > 0, we denote B(X, r) = {z ∈ R
n|‖X − z‖ ≤ r}.� For X ∈ R

n, we write expX =




expX1
...

expXn


.� Mp×q (R) (resp. Mp (R)) denotes the set of real-valued matrices with p lines and

q columns (resp. p columns).� For M ∈ Mp×q (R), M t ∈ Mq×p (R) denotes the transpose of M.� The set of real-valued symmetric matrices is denoted:

Sp(R) = {M ∈ Mp (R) |M t =M}� The set of real valued symmetric positive semi-definite matrices is denoted:

S+
p (R) = {M ∈ Sp (R) |∀X ∈ R

n,X.MX ≥ 0}� Convergence in law and probability: for a sequence X(τ) of random variables, we
denote the fact that X(τ) converges in law (resp. in probability) to X when τ goes

to zero by X(τ) ⇒
τ→0

X (resp. X(τ) P→
τ→0

X)
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CHAPTER 1. INTRODUCTION

1.1 Feedback effects and endogenous risk in financial markets

The observation of financial markets in the past years shows that the global decline in
asset prices during a financial crisis is associated with a surge in correlation between asset
returns. Contrary to situations where liquidity ’dries up’, those correlation spikes are
not combined with a fall in traded volumes - on the contrary, traded volumes sometimes
even increase during these episodes. Such unexpected correlation spikes generally occur
during the liquidation of large positions and the failure of large financial institutions.

The recent financial crisis illustrates the surge in correlations associated to the col-
lapse of a large financial institution. Figure 2.1 displays, on the left, the one-year
exponentially-weighted moving average (EWMA) estimator of average pairwise corre-
lations of daily returns in the main European equity index, the Eurostoxx 50 and on
the right, the one year EWMA estimator of correlation between the energy sector and
the technology sector of the S&P 500. In both graphs, we see that correlation increases
significantly after the collapse of Lehman Brothers on September, 15th, 2008. For exam-
ple, correlation between the energy sector and the utility sector of the S&P500 increases
dramatically after September, 15th, 2008, from 5% to 85%.

Such correlation spikes were associated to the collapse of all equity markets around
the world, following Lehman Brother’s filing for chapter 11 bankruptcy protection. The
top graph of Figure 1.2 shows the performance of the S&P500 index, which declined
sharply in the Fall 2008. However, contrary to liquidity dry-up events, the global fall
of stock markets and the correlation spikes observed between asset returns were not
associated with a decrease in traded volumes. On the contrary, we see on the bottom
graph of Figure 1.2, that traded volumes even increased in Fall 2008.
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Figure 1.1: Left: One-year EWMA estimator of average pairwise correlations of daily
returns in EuroStoxx 50 index. Right: One-year EWMA estimator of correlation between
two sector indices of the S&P 500: SPDR XLE (energy) and SPDR XLK (technology).

The combination of falling markets, unexpected correlation spikes and stable (or
larger-than-usual) trading volumes was originated by the great deleveraging of Fall 2008.
The failure of a huge financial institution such as Lehman Brothers generated liquidations
and deleveraging in all asset classes all over the world. It was such a shock to financial
markets - major equity indices all lost around 10% on that day - that it triggered stop-

20



CHAPTER 1. INTRODUCTION

Q1−08 Q2−08 Q3−08 Q4−08 Q1−09 Q2−09 Q3−09
0

1

2

3
x 10

9

V
o

lu
m

e

Q1−08 Q2−08 Q3−08 Q4−08 Q1−09 Q2−09 Q3−09
500

1000

1500

P
ri
c
e

 

 

Figure 1.2: Level of the S&P500 and volume for the S&P futures

loss and deleveraging strategies among a remarkable number of financial institutions
worldwide. Risk measures of portfolios, for example the value at risk, increased sharply,
obliging financial institutions to hold more cash, which they got by deleveraging their
portfolios, rather than by issuing debt which would have been very costly at such dis-
tressed times. This great deleveraging by financial institutions resulted in a generalized
decline of asset prices, along with a rise in correlation between all asset classes, resulting
in a high volatility environment and dramatic losses for investors.

The following examples also give a good intuition of how feedback effects from large
shifts of supply and demand by financial institutions can lead to downward spirals of
prices and unexpected correlation spikes and, ultimately, generate endogenous risk.

The 1987 Stock Market Crash

On October 19th 1987, the US stock market experienced its largest-ever one day drop:
the Dow Industrial Average lost 22.6% which represented $500 billion, leading all other
markets of major economies to collapse in a similar way. The mechanisms which led to
the ”Black Monday” of 1987 were thoroughly investigated, by public authorities (Re-
port of the Presidential Task Force on Market Mechanisms, 1988) and academics (Shiller,
1988; Rubinstein, 2000; Carlson, 2006) and show the key role played by rule-based strate-
gies in the collapse of the stock market that day. During the years preceding the stock
market crash, portfolio insurance strategies expanded dramatically and represented be-
tween $60 and $80 billion in 1987. Portfolio insurance consists in short selling stock
index futures in order to hedge a portfolio of stocks and implies buying stocks when the
market rises and selling stocks when it declines. Whereas the US stock market expe-
rienced a bull bubble from 1982 to early 1987, leading portfolio insurers to hold more
and more stocks, the Fall of 1987 saw nervousness among investors: the second week
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before the crash, the S&P500 fell by 5.2% and the Dow Industrial Average lost 5% on
October 16th. On the next trading day, October 19th, the decline resumed sharply at
the opening of the stock markets, leading portfolio insurers to sell stocks in large blocks
and automatically, as a result of their hedging strategy in a bear market. As port-
folio insurers represented a significant portion of the traded volumes, their rule-based
selling fed on itself, generating more selling and triggering stop-loss strategies and fire
sales among other investors, leading ultimately to the largest fall in the history of the
Dow Industrial Average. Contrary to the crisis of 1929, when markets took years to
recover, stock markets recovered quickly from the Black Monday of 1987, which shows
that, rather than reflecting a genuine economic decline, the stock crash was triggered by
rule-based strategies, which led to self-reinforced fire sales and a decline in all stocks.

The collapse of Long Term Capital Management

LTCM was a hedge fund founded in 1994 by John Meriwether, the former vice-chairman
and head of bond trading at Salomon Brothers and its board of director members in-
cluded Scholes and Merton, who share the 1997 Nobel Prize in Economic Sciences. It
followed quantitative strategies, mainly on government bonds (for example spreads be-
tween government securities, between swaps and US Treasuries but also Russian bonds)
and built a portfolio of strategies which was supposedly well-diversified, among geo-
graphical zones (USA, Japan, European countries) and asset classes (it traded not only
bonds but also equity and derivatives). Due to heavy losses in its investments in Rus-
sian bonds caused by the default of the Russian government in August 1998, LTCM was
forced to liquidate part of its positions after a sudden increase in the correlations across
its -previously uncorrelated- strategies. This led to a sharp increase in its volatility
(Rosenfeld, 2010); unexpected spikes of correlation arose between asset classes that used
to be uncorrelated (Russian bonds and US equity for instance), amplifying the fund’s
losses and leading to the collapse of LTCM.

The hedge fund losses of August 2007

From August 6th to August 9th 2007, long-short market-neutral equity funds experi-
enced large losses: many funds lost around 10% per day during four days and experi-
enced a rebound of around 15% on August 10th, 2007. During this week, as documented
by Khandani and Lo (2011), market-neutral equity funds whose returns previously had
a low historical volatility exhibited negative returns exceeding 20 standard deviations,
while no major move was observed in major equity indices. Khandani and Lo (2011)
simulate a contrarian strategy which implies buying (resp. selling) assets that decreased
(resp. increased) the most one day before. They find that the profit and loss profile for
this strategy is similar to that of market-neutral equity funds during the second week of
August. They suggest that this event was due to a large market-neutral fund delever-
aging its positions, which endogenously generated huge losses for other market-neutral
funds, following the same rules of investments and having similar positions, while leaving
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index funds unaffected.

Such examples suggest that feedback effects from deleveraging and fire sales in large po-
sitions can lead to unexpected spikes in correlation between asset classes, which generate
endogenous risk and can lead to the collapse of financial institutions. These examples
illustrate that ”asset correlations can be different during a liquidity crisis because price
movements are caused by distressed selling and predatory trading rather than funda-
mental news” (Brunnermeier and Pedersen, 2005). We witness that one shock can be
amplified within the financial system, due to the systematic supply and demand gen-
erated by financial institutions. This notion of endogenous risk has been studied by
Danielsson and Shin (2003); Shin (2010) who define endogenous risk as ”risks that are
generated and amplified within the financial system, rather than risks from shocks that
arrive from outside the financial system. The precondition for endogenous risk is the con-
junction of circumstances where individual actors react to changes in their environment
and when those individuals’ actions affect their environment”.

Such endogenous variations in volatility and correlations, generated by systematic
patterns in supply and demand linked to fire sales, short-selling or rule-based trading
strategies, have played an important role in past financial crises and have been the focus
of several studies (Adrian and Shin, 2008, 2009; Brunnermeier, 2008; Brunnermeier and Pedersen,
2009; Carlson, 2006; Pedersen, 2009; Shin, 2010).

The key ingredient when feedback effects are concerned is liquidity. Because financial
markets are not perfectly liquid, investors reacting to price movements in a systematic
way and traders following specific rules of investments impact prices in a systematic way,
which will make them trade more and so on. Due to the illiquidity of financial markets,
feedback effects from fire sales and rule-based strategies can lead to the spirals of losses
and correlation spikes described in the previous examples, ultimately causing systemic
risk, which is the risk that the whole financial system collapses.

Systemic risk was particularly brought to light during the recent financial crisis.
In the aftermath of the collapse of Lehman Brothers, public authorities injected hun-
dreds of billions of dollars in financial markets, most of them dedicated to help financial
institutions, so that the financial system and the whole economy do not collapse.

Whereas the observation of financial markets and, in particular, past financial crises,
points to the key role played by feedback effects from large financial institutions, most
models for asset prices do not take this feature into account and are purely statistical
models, with exogenous parameters. Such models, which are more and more statistically
sophisticated, allow to fit the returns of financial assets, thanks to an exogenous choice
of parameters. However, they do not incorporate liquidity effects and feedback effects
and hence cannot account for the empirical facts observed in past crisis times: mutually-
exciting correlation spikes and fund losses.

Our aim is to propose a tractable model which takes those feedback effects into
account and, in a sense, is more economically justified as it reflects the imbalances of
supply and demand generated by investors.
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1.2 Empirical studies

Liquidity

Whereas financial markets are assumed to be infinitely liquid in numerous academic
studies, and that investors are ’price-takers’ and their strategies do not affect asset prices,
the fact that financial markets are indeed not perfectly liquid is widely documented in
the empirical literature. Empirical studies shed light on such market illiquidity at daily
and intraday frequencies, for various asset classes and countries (Kraus and Stoll (1972);
Holthausen et al. (1987); Kempf and Korn (1999); Bouchaud and Potters (2003); Almgren et al.
(2005); Obizhaeva (2011); Cont et al. (2010)...). The fact that financial markets are not
perfectly liquid allows for feedback effects from trading by investors, in particular large
financial institutions, on asset prices. Depending on the strategy followed by large in-
vestors, the impact on asset prices will be different. In the next paragraphs, we review
the empirical literature on feedback effects from different types of strategies.

Feedback effects from options trading

The observation of options markets reveals that stock prices and indices can behave
abnormally near options expiration dates, suggesting that the action of options traders
impacts the underlying stocks, especially on expiration dates. Numerous empirical stud-
ies (Stoll et al., 1986; Ni et al., 2005; Golez and Jackwerth, 2010) focus on the behavior
of stock prices and indices near options expiration dates. They show a clustering effect
for stock prices on the day when options expire, which is also known as stock pinning.
The probability that a stock price or an index is equal (or very close) to an option’s strike
at the end of the day is significantly higher on options expiration dates. In addition,
stocks and indices with a large options market have a higher probability of pinning at
options maturity. Those studies suggest that stock pinning is caused by market-makers’
rebalancing of delta hedges, which, on expiration dates, is strong enough to pull stocks
and indices towards the nearest option strike. More precisely, they suggest that this
clustering phenomenon is due to market makers who are long options and for whom
delta hedging implies buying the underlying stock or index if it decreases below the
strike price and selling the underlying if it exceeds the strike price.

Feedback effects from distressed selling

Evidence of distressed selling and its impact on market dynamics has been examined by
several empirical studies. Ippolito (1992); Chevalier and Ellison (1997); Sirri and Tufano
(1998) show that fund past performance and fund flows are strongly linked. Coval and Stafford
(2007) study the relationship between ownership structure of open end mutual funds and
the performance of those funds. They find that funds which underperformed experience
outflows of capital leading to fire sales in existing positions. They show that the outflows
of capital can be extreme and lead to a significant decrease of assets under management
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held by the funds. They explain such fire sales by the fact funds experiencing outflows
of capital are often distressed funds which cannot borrow money easily. Combined to
self-imposed constraints that prevent them from short-selling other securities, such out-
flows of capital result in fire sales in existing positions. This mechanism creates a price
pressure on all assets held in common by distressed funds.

Fratzscher (2011) studies the impact of key events, such as the collapse of Lehman
Brothers, on capital flows. He uses a dataset on portfolio capital flows and performance
at the fund level containing daily, weekly and monthly flows for more than 16000 equity
funds and 8000 bond funds, domiciled in 50 countries. He aggregates the net capital flows
(ie net of valuation changes) for each country and finds that they are negative for all the
countries of the study. This means that fund managers of such funds deleveraged their
positions after the collapse of Lehman Brothers, sometimes in dramatic proportions: in
some cases, the outflows can represent up to 30% of the assets under management by
the funds.

Large financial institutions can also be forced to deleverage their positions for regu-
latory reasons. Berndt et al. (2005) shows how banks must sell their risky assets after
large losses in the corporate debt market. Leland (2011) show how bank capital require-
ments, imposed by new regulation (Basel Committee on Banking Supervision, 2010),
can generate fire sales.

Khandani and Lo (2011) simulate a market-neutral strategy and are able to recon-
stitute empirically the profile of losses of hedge funds during the second week of August
2007. They explain the hedge fund losses during this period by the deleveraging of a
large market-neutral portfolio that impacted other market-neutral funds, which, in order
to reduce risk exposure, were compelled to deleverage their market-neutral strategy, and
reinforced the losses for all market-neutral funds, generating a series of unprecedented
losses for such funds.

Short selling and predatory trading

As argued by the managers of LTCM in 1998, short selling and predatory trading can
be associated to fund underperformance and distressed selling. Empirical studies by
Comerton-Ford et al. (2010) show that short selling represents 40.2% of the total dollar
volume on NYSE and 39.2% on the Nasdaq. Short selling is widely used by market par-
ticipants in financial markets. Although it has been accused, among others by politicians,
to be the key factor for market crashes and hence has periodically been banned (short
selling on financial securities were banned in the US in Fall 2008; Germany banned short
selling in 2010), several empirical studies, such as Haruvy and Noussair (2006), underline
the fact that short selling allows prices in financial markets to reflect their fundamental
values.

Price-mediated contagion

The empirical studies mentioned previously all focus on the impact of large fund flows on

25



CHAPTER 1. INTRODUCTION

asset returns and do not study their impact on the dependnce structure of assets. Dur-
ing the LTCM crisis, price-mediated contagion was described as ”the rapid spread from
one market to another of declining prices, declining liquidity, increased volatility, and in-
creased correlation associated with the financial intermediaries’ own effect on the markets
in which they trade” (Kyle and Xiong, 2001). Bank for international settlements (1999);
Kaminsky and Reinhart (2003) describe the mechanism which led to the market turmoil
of Fall 1998 and the collapse of LTCM and show empirically that financial turbulence in
one or more of the world’s financial centers leads to contagion effects in the other mar-
kets. Hamao et al. (1990) study the interdependence of prices and volatility between
New-York, London and Tokyo stock markets and find evidence of volatility spillover
effects from New-York to Tokyo and London and from London to Tokyo. Lin et al.
(1994) find that Tokyo New-York-daytime returns are correlated with the New-York
Tokyo-overnight returns and explain this correlation by the flow of information from one
market to another.

Jotikasthira et al. (2011) lead an empirical investigation on the effects of fund flows
from developed countries to emerging markets. They show that underperformance of
funds domiciled in developed countries lead to a deleveraging of their positions in emerg-
ing markets, hence affecting asset prices and correlations between emerging markets and
developed countries and creating a new channel through which shocks are transmitted
from developed markets to emerging markets. Anton and Polk (2008) find empirically
that common active mutual fund ownership predicts cross-sectional variation in return
realized covariance. They show that such fund-ownership-originated covariance is due to
a contagion effect generated by trading from large fund managers. These studies show
that the impact of large investors on a panel of assets can affect prices of other assets,
through the price-mediated contagion mechanism described above, and hence modify
the dependence structure between assets: losses in one asset class can lead to spiral of
losses in all asset classes and a surge a correlation between those asset classes, which is
exactly what happened in the examples described in Section 1.1.

1.3 Theoretical studies

Danielsson and Shin (2003) give an insightful description of feedback effects and endoge-
nous risk. They first give the (non financial) example of the Millenium bridge in London,
which, the day of its opening, wobbled dangerously due to the large numbers of pedes-
trians who reacted in a same systematic manner to an external shock (the wind, which
made the bridge slightly oscillate) and amplified the bridge oscillation, which made them
react again in the same way, and generate a self-reinforcing oscillation for the bridge.
They focus in three financial examples which illustrate the feedback loop in financial mar-
kets. In particular, they show how feedback effects accelerated the collapse of LTCM:
a distress in existing positions triggered margin calls, which were paid by deleveraging
the fund’s positions and hence generating adverse price moves and additional distress
for the fund, opening the same loop again.

Theoretical models have been proposed in order to take into account the impact of
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large investors following rule-based strategies on asset prices. First, one has to model
liquidity and characterize the impact of large trades on asset prices.

1.3.1 Price impact

Modeling price impact has become a controversial topic as many theoretical studies,
backed with empirical data, flourished over the last years, yielding different, and some-
times contradictory, results. The most simple model for price impact is the linear model:
a net demand/supply for an asset impacts the asset return in a linear way. This rela-
tionship is characterized by the market depth of the asset, which represents the number
of assets one has to buy in order to make the asset price increase by one percent. Such
linear relationship between excess demand/supply and asset returns is widely used in
the theoretical literature and is documented by empirical results at daily (Obizhaeva,
2011) and intraday (Cont et al., 2010) frequencies. Other studies model price impact
as logarithmic Bouchaud and Potters (2003), a square root (Zhang, 1999) or stochastic
(Cetin et al., 2004). More complex models can be used in order to model market liq-
uidity. Kyle (1985) introduces three parameters representing the tightness, depth and
resilience of the market, to describe market liquidity. Kempf and Korn (1999) shows that
the price impact function is concave and not symmetric: a net supply will have a larger
impact than a net demand for the same volume of assets. Almgren and Chriss (2000)
add a temporary impact to the permanent price impact function. The price impact
model is then used to determine optimal liquidation strategies (Almgren and Chriss,
2000; Almgren and Lorenz, 2006; Almgren, 2009; Alfonsi et al., 2009), price options in
illiquid markets (Cetin et al., 2006) or determine the impact of large institutional in-
vestors on asset prices (Pritsker, 2005; Allen et al., 2006).

Modeling price impact is not the purpose of this thesis. We take the price impact func-
tion as given and study the impact of feedback effects, from investors to asset prices. In
order to study feedback effects from rule-based strategies and fire sales in particular, one
has to characterize the supply and demand that they generate and propose a model for
asset prices which takes this supply and demand pattern into account, in relation with
liquidity. The existing literature can be divided into two types of models:� equilibrium models: the supply and demand of each type of traders is specified ad

hoc and, at each period, a (general or partial) equilibrium verifying a market clear-
ing condition is attained (e.g. Frey and Stremme (1994, 1997),Platen and Schweizer
(1998)).� ’dynamic’ models: at each time step, the movement of asset prices is decomposed
into two components: a first ’exogenous’ component which is modeled as indepen-
dent from past moves in prices and classically modeled as a stochastic noise term,
and a second, ’endogenous’, component resulting from the price impact of the
supply/demand generated by institutional investors who systematically rebalance
their portfolios in reaction to price changes (e.g. Avellaneda and Lipkin (2003),
Jeannin et al. (2007)).

27



CHAPTER 1. INTRODUCTION

Both approaches have been proposed for modeling feedback effects from dynamic hedging
and fire sales.

1.3.2 Modeling feedback effects from dynamic hedging

The impact of options hedging, portfolio insurance and other dynamic hedging strategies

A typical example where dynamic hedgers have to buy (resp. sell) stocks when the
stock price has increased (resp. decreased) is the portfolio insurance strategy, which
accelerated the market crash of 1987. Grossman (1988) focuses on feedback effects gen-
erated by portfolio insurance strategies, which can imply replicating a put option using
index futures. Using an equilibrium model, Gennotte and Leland (1990) show that when
hedgers follow strategies that generate an upward sloping demand, such as portfolio in-
surance, they tend to amplify small market shocks and increase market volatility. They
allow for asymmetric information and show that, the better market participants under-
stand that hedgers act in a systematic way and that their action do not carry informa-
tion, the weaker the impact of dynamic hedging on asset prices. Platen and Schweizer
(1994) develop a framework for studying the impact of portfolio insurance on asset
volatility and smile and skewness. Frey and Stremme (1994, 1997) propose a temporary
equilibrium model for quantifying the impact of dynamic hedging on volatility. They
consider a multi-period market with one risky asset and two types of traders: ’reference
traders’, who are considered as the ’normal’ traders, and ’program traders’, who are
running dynamic hedging strategies, such as delta hedging or portfolio insurance, in a
systematic way. They characterize the supply and demand generated by each type of
traders and show that at each period, there exists an equilibrium price verifying the
market clearing equation. By studying the continuous-time limit of the discrete-time
price dynamics, they are able to compute the asset volatility in the presence of feedback
effects from program traders and quantify the increase of volatility generated by cer-
tain types of dynamic hedging. Platen and Schweizer (1998) decompose the aggregate
demand for a stock into the sum of three terms: a noise term, a term originated by
arbitrage-based agents and a term originated by dynamic hedging of options written on
the stock. By characterizing the demand from options hedgers, they show the existence
of a price equilibrium satisfying the market clearing condition and explain the smile
and skewness effects for the asset’s implied volatility, which are observed empirically.
Their approach gives an endogenous explanation for asset volatility smile and skew-
ness, contrary to the stochastic volatility approach (Heston, 1993; Renault and Touzi,
1996; Hobson and Rogers, 1998; Fouque et al., 2004; Christoffersen et al., 2009) or local
volatility approach (Cox and Ross, 1976; Rubinstein, 1983; Dupire, 1996), which give
an exogenous dynamics for asset volatility and generate, ad hoc, a smile and skewness
structure for asset volatility. Schonbucher and Wilmott (2000) also propose a general
equilibrium model in order to quantify the impact of replicating options by dynamic
trading strategies and explain empirical observations such as volatility surges in the
presence of feedback effects from delta-hedgers.

More recent studies proposed dynamic approaches in order to study feedback effects
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from dynamic hedgers. Avellaneda and Lipkin (2003) model the continuous-time dy-
namics of an asset as a Black Scholes dynamics with a perturbation due to dynamic
hedgers. They consider the particular case where those dynamic hedgers are market
makers who are long options and delta-hedge their positions. Using the first order ap-
proximation of the supply and demand generated by those hedgers, they show that the
presence of delta hedgers who are long options generate stock-pinning: the probability
that the stock price ends exactly at the strike price at maturity is strictly positive. As
seen in Section 1.2, stock pinning has been documented in the empirical literature and
results from the fact that short-option delta-hedgers have to sell (resp. buy) the stock
if it goes above (resp. below) the option’s strike price. Jeannin et al. (2007) give a
complete representation of the impact of short options delta hedgers on price dynamics
by taking into account the exact supply and demand that they generate and quantify
the decrease of volatility that they generate.

Lions and Lasry (2006, 2007) develop a general framework for quantifying the im-
pact of dynamic hedgers on asset volatility and asset prices. They show that, given a
utility function and a price impact function - which is linear -for hedgers, there exists an
optimal hedging strategy and they compute the impact of this strategy on asset dynam-
ics. Surprisingly, they find that feedback effects in this framework result in a decrease of
volatility. This result is counter-intuitive because some hedging strategies imply buying
(resp. selling) when the price goes up (resp. down) and should yield higher volatility.
It is due to the fact that Lasry and Lions only focus on feedback effects from hedgers
following optimal strategies and hence not from all types of hedgers.

1.3.3 Fire sales and their impact on prices

The economic literature underlines the link between fire sales and market instability.
Shleifer and Vishny (2011) describe the fire sale mechanism: when assets held by a
financial institution experience a significant decrease, leading to losses for the institution,
this institution is compelled, for various reasons that we describe in the sequel, so sell
part of its positions. This forced sale is done at a discounted price to non specialist
buyers as potential high valuation buyers are affected by the same shocks as the financial
institution and may also be forced to sell. The authors underline the fact that in the
presence of fire sales, losses by financial institutions with overlapping holdings become
self-reinforcing, leading to downward spirals for asset prices and, ultimately, to systemic
risk.

Fire sales can result from rule-based strategies, such as maintaining a fixed value at
risk or a constant leverage for a portfolio of risky assets. Danielsson and Zigrand (2001);
Danielsson et al. (2004) propose respectively a one-period and multi-period model of
general equilibrium, where traders have value at risk constraints. They show that a
decline in asset prices triggers a surge in perceived risk for the financial institution and
hence a fire sale of the asset so as to maintain a constant value at risk, amplifying market
shocks. Shin (2010) uses a one-period equilibrium model, where the equilibrium price of a
risky asset results from the confrontation of noise traders and a large financial institution
maintaining a constant leverage. He shows that the leverage of a financial institution
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increases due to losses in its portfolio and leads to fire sales so that the financial company
can respect the leverage and capital constraint. As in the previous case, maintaining a
portfolio with a constant leverage generates an upward sloping demand, which can lead
to spirals of losses and endogenous risk.

Fire sales can also result from investors running for the exit. Investors holding risky
assets can decide to sell those assets if they decrease below a threshold and hence stop
their losses. Similarly, investors in mutual funds can redeem their positions when the
mutual fund underperforms, the outflow of capital generating fire sales by the mutual
fund, as documented by Coval and Stafford (2007). Pedersen (2009) gives a qualitative
description of the impact of investors running for the exit on asset prices. He exhibits
the mechanism through which they can generate spirals in prices and spillovers to other
asset classes as well as a crowding effect. He illustrates such crowding effect with the
example of the hedge fund losses of August 2007, that we presented in Section 1.1, and
that he explains qualitatively by a self reinforcing deleveraging of quantitatively built
market-neutral portfolios.

Fire sales are most commonly generated by creditors of distressed funds (Shleifer and Vishny,
2011), who can sell the assets of the distressed fund that they hold as collateral, precisely
at the moment when those assets have lost value, generating fire sales and accelerating
the decline of the fund’s value. Hart and Moore (1994, 1995, 1998) model collateralized
debt and assume that the lender has a the right to liquidate the collateral posted by
the borrower in the case he defaults. They take the liquidation value of the collateral as
exogenous. Shleifer and Vishny (1992) propose a model where this liquidation value is
determined endogenously, by the confrontation of the demand by two types of potential
investors: specialist buyers, who are bound to buy the collateral at its fair value and
non-specialist buyer, who agree to buy the collateral but at a discounted price, hence
triggering fire sales. The authors show that an exogenous shock which leads to the de-
fault of a company is bound to impact all other companies of the same sector and hence
all other potential specialist buyers of collateral, resulting ultimately in fire sales and
leading to a large negative impact on the value of collateral.

Brunnermeier and Pedersen (2005) studies a market with one risky asset (that can
represent the value of a strategy on multiple assets) and models the impact on the asset
price of a fund liquidating its positions as linear. The cause of the liquidation is not
specified - it can be either of the causes described previously - and it leads, in the pres-
ence of other informed traders maximizing a mean-variance criteria, to short selling by
those traders: the optimal strategy when a fund is liquidating its positions is to short
sell the same positions and buy them back at the end of the liquidation. The supply
and demand pattern generated by such predatory trading cannot be distinguished from
that generated by the liquidation and amplifies the impact of fire sales on asset prices.

All the studies mentioned previously and most of the literature on feedback effects focus
on a single asset. They model and quantify the impact of delta hedging or portfolio
insurance or other types of dynamic hedging on the underlying asset’s expected return
and volatility (Section 1.3.2) or the mechanism leading to fire sales and distressed selling

30



CHAPTER 1. INTRODUCTION

and short selling and their impact on the asset’s performance (Section 1.3.3). However,
as suggested by Section 1.1, one key aspect of feedback effects in financial markets, which
led to numerous financial crisis, is their impact on the dependence structure of assets.
The examples developed in Section 1.1 indeed strongly suggest that, due to the action of
economic actors (who are selling in a period of distress, liquidating a portfolio or follow-
ing rule-based strategies), losses in one asset class could spillover to other asset classes
and generate spirals of losses and a surge in correlation between those asset classes.
The empirical studies reviewed in the last part of Section 1.2 document the impact of
feedback effects on the dependence structure of asset returns.

1.3.4 The dependence structure of assets

The theoretical literature on the impact of feedback effects on the dependence struc-
ture of asset returns is scarce. Brunnermeier (2008) explains the economic mechanisms
through which losses in subprime mortgage-backed securities led to huge falls in eq-
uity markets, although the two asset classes used to be uncorrelated: investors suffer-
ing losses in subprime mortgage-backed securities deleveraged their portfolios by selling
their positions in equity markets, leading to the fall of equity markets. Andrade et al.
(2008) proposes a multi-asset equilibrium model in which liquidity providers hedge non-
informational trading imbalances in one stock by buying or selling correlated stocks.
Their model quantifies the price-mediated contagion from assets presenting trading im-
balances to other assets and show that non-informational trading increases the volatility
of stock returns. Greenwood and Thesmar (2011) propose a simple framework for mod-
eling price dynamics which takes into account the ownership structure of financial assets,
considered as given exogenously. They show that, in the presence of a concentrated own-
ership structure, assets are more likely to deviate from fundamentals and the correlation
between assets is modified because liquidity shocks force investors to buy or sell at the
same time, generating non fundamental trading.

Kyle and Xiong (2001) provides a framework which allows to quantify feedback ef-
fects in a market with two assets, where traders are divided into three categories: noise
traders who trade randomly, long term investors whose supply and demand is charac-
terized by a linear rule based on fundamentals and provide liquidity and convergence
traders who trade optimally using a logarithmic utility function. The price in each mar-
ket is the result of an equilibrium between the three types of traders and is determined
endogenously by the aggregate action of traders. The price dynamics obtained shows
the existence of contagion effects, when convergence traders suffer losses in one market
and deleverage their positions in both markets, spreading the loss from one market to
another. Gromb and Vayanos (2002) study a market with two identical assets where
arbitrageurs exploit the discrepancies between the two asset prices and show that the
equilibrium attained is not socially optimal, in the sense that a change in the positions
of the arbitrageurs can benefit to all other investors. In order to measure the connected-
ness between hedge funds, banks, broker/dealers and insurance companies, Billio et al.
(2012) propose statistical tools based on the principal component analysis of the corre-
lation matrix of returns of those four categories and shows that the four sectors have
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become highly interconnected, the banking sector playing a central role in the transmis-
sion of shocks between those four sectors. One of the main limits of such tools built on
the study of returns is that studying returns does not take into account the size of each
of the four sectors whereas, historically, the size of financial institutions played a central
role in the propagation of shocks, as shown by the examples of Section 1.1.

Most of the studies described in this section either yield qualitative results or non
tractable results. The few tractable studies that exist, such as Kyle and Xiong (2001),
focus on a market with two assets. A quantitative framework is needed in order to
account for the impact of feedback effects on the dependence structure of asset returns, in
a tractable way. In particular, in such a framework, the realized correlation between asset
returns in the presence of feedback effects, which is a key ingredient of the dependence
structure of asset returns, should be tractable. Whereas the correlation structure of asset
returns is often considered as constant (Markowitz, 1952, 1959; Pogue, 1970; Merton,
1972; Elton and Gruber, 1997) or varying stochastically (Engle and Kroner, 1995; Engle,
2002; Gouriéroux, 2006; Gouriéroux et al., 2009; Fonseca et al., 2007; Stelzer, 2010) with
parameters that are specified exogenously, the evidence of feedback effects in financial
markets and their impact on the dependence structure of asset returns call for modeling
correlation in an endogenous way, in relation to the systematic supply and demand
generated by large investors.

1.4 Summary of contributions

This thesis provides a quantitative analysis of feedback effects and endogenous risk in
financial markets in a multi-asset setting. The empirical facts described in Section 1.1
strongly suggest that the flows of investments generated by large financial institutions
have an endogenous impact on asset prices and the dependence structure of asset returns
and can lead endogenously to huge losses for investors and systemic risk. Consequently,
the main idea of this thesis is to consider that the returns of financial assets can be
originated not only by:� movements in fundamentals which are due to exogenous economic factors and

reflect a fundamental structure between assets; but also by:� the systematic supply and demand generated by large financial institutions which
trade in reaction to fundamental price movements. In this thesis, we model the
supply and demand generated by fire sales and short selling in distressed funds
(Chapter 2 and 3) and by the rebalancing of a large institutional investor keeping
a fixed allocation in each asset (Chapter 4).

As done in Föllmer and Schweizer (1993) for a market with one risky asset, we pro-
pose an intuitive discrete-time model which takes into account the price impact of large
financial institutions in a multi-asset setting and we study the continuous-time limit of
such multi-period model, which gives tractable results quantifying the impact of feedback
effects on realized volatilities, correlations and expected returns.
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We formalize that idea as follows. We consider a financial market where n assets are
traded at discrete dates tk = kτ , multiples of a time step τ (taken to be a trading day
in the empirical examples). The value of asset i at date tk is denoted Sik. It is useful, in
the examples, to think of Si as the value of an index or ETF representing a sector, asset
class, or geographic zone or more generally the value of a strategy (long-short strategy
for example). The impact of exogenous economic factors (’fundamentals’) on prices is
modeled through an IID sequence (ξk)k≥1 of Rn-valued centered random variables, such
that in the absence of other effects than ’fundamentals’, the return of asset i during
period k is given by

exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)
− 1 (1.1)

Here mi represents the (’fundamental’) expected return of asset i and the ’fundamental’
covariance matrix Σ, defined by

Σi,j = cov(ξik, ξ
j
k)

represents the covariance structure of returns, in the absence of large systematic trades
by institutional investors. Note that when ξk is normal: ξk ∼ N (0,Σ), (1.1) is equal to
the return of an asset in a discretized multi-variate Black-Scholes model.

The fundamental price movements described in (1.1) can trigger systematic trading
by large financial institutions, which impacts prices further. Between tk and tk+1, the
asset price dynamics can hence be summed up as follows:

Sk S∗
k+1 Sk+1

exogenous

factors (ξk+1)

systematic supply

and demand

We studied different origins for such systematic trading and allowed for general forms of
price impact on asset returns. Our results allow to quantify the endogenous impact of
large financial institutions on the dependence structure of asset returns, expected asset
returns and the endogenous risk they generate: surge in fund volatility and spillover ef-
fects. We also develop econometric tools which allow to estimate the parameters of our
model from time series of asset prices and investigate endogenous risk in a systematic
way.

1.4.1 Chapter 2: Feedback effects from fire sales

Running for the exit: distressed selling and endogenous correlation in financial markets

Chapter 2 studies feedback effects generated by distressed selling and short selling in
a distressed fund. We consider a large fund holding αi units of asset i with 1 ≤ i ≤ n.
Thus, between tk and tk+1, exogenous economic factors described in (1.1) move the value
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of the fund from Vk =

n∑

i=1

αiS
i
k to

V ∗
k+1 =

n∑

i=1

αiS
i
k exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)

Investors enter the fund at t = 0 when the fund is valued at V0 > 0. Like most investors in
mutual funds, investors in the fund adopt a passive, buy and hold behavior as long as the
fund is performing well. If the fund value drops below a threshold β0V0 < V0, investors
progressively may exit their positions, generating a negative demand across all assets
held by the fund, proportionally to the positions held by the fund. Furthermore, short
sellers can short the positions of the fund if it underperforms, as part of a predatory
trading strategy (Brunnermeier and Pedersen, 2005). Short sellers generate the same
supply and demand as distressed sellers and we will not make the difference between
short selling and distressed selling in the sequel.

We model the supply/demand pattern generated by distressed selling by introducing
a function f : R → R which measures the rate at which investors in the fund exit
their positions: when fund value drops from Vk to V ∗

k+1, investors redeem a fraction

f(VkV0 ) − f(
V ∗
k+1

V0
) of their position in the fund. Thus, the net supply in asset i due to

distressed selling (or short selling) is equal to

−αi(f(
V ∗
k+1

V0
)− f(

Vk
V0

))

The above assumptions on investor behavior imply that f : R → R is increasing, constant
on [β0,+∞[.

We furthermore assume that the fund is liquidated when the value reaches βliqV0
where βliq < β0 and distressed selling ceases. In practice, as the fund loses value and
approaches liquidation, distressed selling becomes more intense: this feature is captured
by choosing f to be concave. Figure 1.3 gives an example of such a function f : in this
example, we see that the drop of fund value from Vk to V ∗

k+1 generates distressed selling
of almost 40% of the fund’s positions. Note that as long as the fund’s value is above
β0V0, there is no distressed selling, as f is constant on [β0,+∞[.

As documented by empirical studies (Obizhaeva, 2011; Cont et al., 2010), we assume
that the impact of the net supply generated by short sellers and distressed sellers on asset
i’s return is linear and equal to

αi
Di

(f(
V ∗
k+1

V0
)− f(

Vk
V0

))

where Di represents the depth of the market in asset i: a net demand of Di

100 shares for
security i moves the price of i by one percent.

The price dynamics can hence be summed as follows:

Sik+1 = Sik exp

(
τ

(
mi −

Σi,i
2

)
+
√
τξik+1

)(
1 +

αi
Di

(
f

(
V ∗
k+1

V0

)
− f

(
Vk
V0

)))
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Figure 1.3: Net supply due to distressed selling and short selling is equal to−αi(f(
V ∗
k+1

V0
)−

f(VkV0 ))

where Vk =
n∑

j=1

αjS
j
k and V ∗

k+1 =
n∑

j=1

αjS
j
k exp

(
τ

(
mj −

Σj,j
2

)
+

√
τξjk+1

)
and we ex-

hibit conditions under which S is a Markov chain in
(
R
∗
+

)n
(Proposition 2.2.1).

Simulations of the discrete-time model show that distressed selling by investors exit-
ing the fund can generate significant realized correlation, even between assets with zero
fundamental correlation, resulting in higher fund volatility. Realized correlation condi-
tional on the fact that distressed selling took place is significantly higher than realized
correlation in scenarios where there was no distressed selling, thus reducing the benefit
of diversification for the fund, precisely in scenarios where such effects are needed.

We exhibit conditions (Assumption 2.4.1) under which the discrete-time price dy-
namics converges weakly to a diffusion limit and give the continuous-time limit of our
discrete-time framework (Theorem 2.4.2). The study of this diffusion limit allows us to
obtain analytical expressions for the realized covariance matrix of returns (Proposition
2.5.1): the realized covariance matrix between 0 and t is equal to 1

t

∫ t
0 cs ds where the

instantaneous covariance matrix cs is given by

cs = Σ+
1

V0
f

′
(
Vs
V0

)[ΛtπsΣ+ ΣπtsΛ] +
1

V 2
0

(f
′
)2(

Vs
V0

) (Σπs.πs)Λ
tΛ where� πt =




α1P
1
t

...
αnP

n
t


 denotes the (dollar) holdings of the fund� Λ =




α1

D1

...
αn

Dn


 represents the positions of the fund in each market as a fraction of

35



CHAPTER 1. INTRODUCTION

the respective market depth.

This result shows that realized covariance may be decomposed as the sum of a fun-
damental covariance and an ’excess’ covariance which is liquidity-dependent and path-
dependent. The excess covariance is exacerbated by illiquidity and is equal to zero when
there is no distressed selling (f ′ = 0).

We compute the distressed fund’s variance in the presence of fire sales (Proposition
2.6.1) and show that it is a sum of two regimes: a fundamental regime and an excess
volatility regime, that is exacerbated with illiquidity (market depth D is small) or when
the fund has large positions (α is large). Our results point to the limits of diversification,
previously discussed by many authors, but also allow one to quantify these limits. We
show that a fund manager investing in apparently uncorrelated strategies may experience
significant realized correlation across his/her strategies in the case of distressed selling
by investors facing losses, thus losing the benefit of diversification exactly when it is
needed.

Finally, we study the spillover effect of a fund subject to distressed selling on other
funds’ variance (Proposition 2.6.3). We show that, in the presence of distressed selling
in a reference fund, the variance of another fund with small positions µit on each asset
i can also be decomposed into the sum of a fundamental variance and an additional
variance. This additional variance is exacerbated when µ is collinear to the positions
being liquidated α. On the contrary, if the allocations of the two funds verify the
‘orthogonality’ condition ∑

1≤i≤n

αi
Di
µitP

i
t = 0

distressed selling of investors in the reference fund does not affect the small fund’s
variance. This orthogonality condition allows for a quantitative explanation of the hedge
fund losses of August 2007, when a large market-neutral fund deleveraged its portfolio,
generating exacerbated volatility in other funds with similar (ie collinear) positions, while
leaving index funds, which verified the orthogonality condition given above, unaffected.

1.4.2 Chapter 3: Inverse problem

Fire sales forensics: measuring endogenous risk

Chapter 3 develops econometric tools which allow for a quantitative investigation of
fire sales from several distressed funds and the empirical reconstitution, a posteriori and
using time series of asset prices, of the aggregate flow of investments during a period of
distress.

It extends the framework used in Chapter 2 to a multi fund setting: consider J large
funds, each fund j holding αji units of asset i. As in Chapter 2, fundamental moves in
asset values, described in (1.1), can generate fire sales in each fund, which are captured
by a function fj for each fund j. Such systematic net supply and demand generated by
fire sales impact asset returns: whereas in the previous chapter, we assumed that price
impact was linear, we allow here for a general price impact function: the impact on asset
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i’s return of a net demand of size v for asset i is equal to φi(v). As a consequence, the
price dynamics is given by:

Sik+1 = Sik


1 + τmi +

√
τξik+1 + φi


 ∑

1≤j≤J
αji

(
fj

(
(V j
k+1)

∗

V j
0

)
− fj

(
V j
k

V j
0

))




where V j
k =

∑

1≤i≤n
αjiS

i
k and (V j

k+1)
∗ =

∑

1≤i≤n
αjiS

i
k(1 + τmi +

√
τξik+1).

We exhibit conditions on the price impact functions (φi)1≤i≤n, the deleveraging
schedules (fj)1≤j≤J and the fundamental movements ξ (Assumption 3.2.3) such that
the discrete-time price dynamics converges weakly, as the time step goes to zero and we
give the expression of the diffusion limit (Theorem 3.2.4).

The limit diffusion process depends on the price impact functions only through their
first and second derivatives in 0: (φ′i(0))1≤i≤n and (φ′′i (0))1≤i≤n. In particular, the local
multi-dimensional volatility function depends only on (φ′i(0))1≤i≤n. In particular, a
linear price impact model, with markets depths Di =

1
φ′i(0)

perfectly captures the impact

of fire sales on the dependence structure of asset returns.
Corollary 3.2.6 gives the expression of the continuous-time limit in the case of linear

price impact functions and shows that the magnitude of the impact of fire sales on price
dynamics is captured by a n× n matrix Λ such that

Λi,j =
αji
Di

represents the size of fund j in asset i as a fraction of asset i’s market depth: Λi,j is the
liquidation impact of fund j’s position on asset i.

Our results allow to compute the realized covariance matrix in the presence of fire
sales in multiple funds (Proposition 3.2.7). In particular, under the assumption that
there are no fire sales between 0 and T and each fund j liquidates between T and
T+τliq at a constant rate γj, we find (Corollary ??) that the realized covariance matrices
between 0 and T and between T and T + τliq are respectively equal to:

C[0,T ] =
1

T

∫ T

0
ct dt = Σ

and

C[T,T+τliq] =
1

τliq

∫ T+τliq

T
ct dt = Σ+ LM0ΠΣ+ ΣΠM0L+O(‖Λ‖2)

with
M0 =

∑

1≤j≤J

γj

V j
0

× αj(αj)t

where αj =




αj1
...

αjn


 is the vector of positions of fund j and L, Π are diagonal matrices

37



CHAPTER 1. INTRODUCTION

with i-th diagonal term equal respectively to 1
Di

and 1
τliq

∫ T+τliq
T P it dt and O(‖Λ‖2)

‖Λ‖2 is

bounded almost surely when ‖Λ‖ → 0.
We then consider the inverse problem of identifying the matrix M such that

C[T,T+τliq] = Σ+ LMΠΣ+ ΣΠML

and hence investigate abnormal patterns of realized covariances.
We give conditions for the identifiability of M (Proposition 3.3.1) and show that the

knowledge of M allows to estimate, up to an error term of order one in ‖Λ‖, the volume of
fire sales in asset class i between T and T + τliq (Corollary 3.3.2). We build an estimator
of M (Section ??). We show that this estimator is consistent (Proposition 3.3.4) and we
derive a central limit theorem (Proposition 3.3.5) which allows us to build a statistical
test to determine whether the assumption of no fire sales during a period [T, T + τliq]
can be rejected or not (Corollary 3.3.7). This econometric study allows us to estimate,
thanks to the observation of price series, the magnitude of fire sales in each asset during
a given period. We illustrate our estimation methodology with two empirical example,
described qualitatively in Section 1.1.

First, we study the Great Deleveraging of Fall 2008 (Section 3.4). We find that the
aggregate liquidated portfolio was a long portfolio which was made essentially of financial
stocks and energy stocks. In particular, for the Eurostoxx 50, the main European equity
index, two financial stocks, Deutsche Bank and ING, account for more than a half of the
fire sales during the aftermath of the collapse of Lehman Brothers. Our second example
focuses on the hedge fund losses of August 2007 (Section 3.5). Our estimation procedure
allows to reconstitute the long short structure of the positions liquidated during the
second week of August 2007. We find that the aggregate portfolio liquidated is market-
neutral: it is orthogonal to index funds, in the sense of the orthogonality condition given
in Equation ?? and hence did not affect index funds, as predicted quantitatively by our
model.

Our framework allows to explain large shifts in the realized covariance structure of
asset returns in terms of supply and demand patterns across asset classes, which makes
such events easier to analyze and understand. This estimation procedure may be useful
for regulators in view of investigating unusual market events in a systematic way, moving
a step in the direction proposed by Fielding et al. (2011), who underlined the importance
of systematically investigating all ’systemic risk’ events in financial markets, as done by
the National Transportation Safety Board for major civil transportation accidents.

1.4.3 Chapter 4: Institutional investors and return correlations

Impact of large institutional investors on the dependence structure of asset returns

Chapter 4 studies the impact of a large institutional investor/fund following a fixed-mix
strategy, ie: keeping a fixed allocation xi in each asset i. Fixed-mix strategies are widely
used by financial institutions as numerous studies Markowitz (1952); Evstigneev and Schenk-Hoppé
(2002); Dempster et al. (2003); Mulvey and Kim (2008) show that this strategy can en-
hance the long-term growth rate of portfolios. In our model, at each period, the large
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fund has to rebalance its positions after exogenous price moves (1.1). Typically, when
the value of an asset increased more than the other assets, its weight on the fund’s
portfolio increases and the fund has to sell some of its positions in this asset in order
to maintain its target allocation. The fixed-mix strategy is an example of contrarian
strategy, which implies ’buying low and selling high’.

We show that there exists a unique self-financing strategy which allows the large fund
to follow a fixed-mix strategy (Proposition 4.2.1). At each date tk, asset prices and fund
value are given as the result of a fixed-point problem. Simulations of the multi-period
model using realistic parameters, estimated from time series of the S&P500, show that
the rebalancing by the fund at each period generates a significant increase in realized
correlation between asset returns and modifies the principal component properties of
the realized correlation matrix of returns. In particular, we find that starting with
homogenous fundamental correlation between asset returns, equal to 15%, and a realistic
size for the large institutional investor, the feedback mechanism that we propose leads
to an average pairwise correlation of 21%, as observed for the S&P500 in 2006 (Section
4.2.2).

In order to confirm the phenomena observed in our numerical experiments, we exhibit
conditions (Assumption 4.2.2) under which the multi-period model converges weakly to
a diffusion limit and describe the diffusion limit (Theorem 4.2.3). As in the previous
chapters, the expressions for the drift and the volatility of the diffusion limit show that
the impact of the large fund is measured by a vector Λ such that

Λi =
φi0
Di

which represents the size of the fund’s initial position as a fraction of asset market depth.
We give the expansion at order one in ‖Λ‖ of the realized covariance matrix (Corollary

4.3.2) and the realized correlation matrix (Equation 4.18) in the presence of feedback
effects from the large institutional investor. Starting with homoscedastic inputs, the
economic mechanism of fund rebalancing naturally generates heteroscedasticity.

The realized correlation between assets i and j on [0, T ] is equal to:

Ri,j[0,T ] =
Σi,j√
Σi,iΣj,j

+
Λi√

Σi,iΣj,j

(
1 +

∫ T

0

(
1− s

T

)
dΦis

)
 ∑

1≤l≤n
xl

(
Σj,l −

Σi,j
Σi,i

Σi,l

)


+
Λj√

Σi,iΣj,j

(
1 +

∫ T

0

(
1− s

T

)
dΦjs

)
 ∑

1≤l≤n
xl

(
Σi,l −

Σi,j
Σj,j

Σj,l

)
+O(‖Λ‖2)

where O(‖Λ‖2)
‖Λ‖2 is bounded when Λ goes to zero. It is the sum of the fundamental cor-

relation and an additional correlation which is liquidity-dependent and path-dependent.
This formula exhibits the dependence of realized correlations to liquidity (Λ), the large
fund’s allocations ((xi)1≤i≤n) and the volume of rebalancing that it generates for each
asset (dΦit at date t for asset i). Our results show that when the fund invests in assets
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with zero fundamental correlation, feedback effects from the fixed-mix strategy decrease
asset realized volatilities and generate positive realized correlation between asset returns,
leading to a correlation matrix of returns which has the same features as those observed
empirically: a first eigenvalue which is larger than the other eigenvalues and of the order
of n, the number of assets in the market (Equation 4.20), and which is associated to an
eigenvector with positive weights.

We give tractable formulas for the eigenvalues and the eigenvectors of the realized
correlation matrix of returns (Proposition 4.4.1), which depend on the sizes and allo-
cations of the large fund. We compute the formulas that we find in a simple example
of homogenous fundamental correlation between assets and homogenous fundamental
asset volatilities and show that the assets which generate large rebalancing volumes by
the fund have large weights in the first principal component of the realized correlation
matrix of returns.

Finally, we calculate asset expected returns (Proposition 4.5.1) and find that the
presence of the large institutional investor increases (resp. decrease) the expected returns
of assets i with fundamental expected mi return lower (resp. large) than the benchmark

return of the fund
∑

1≤j≤n
xjmj . Due to feedback effects, investors who use the large

fund as a benchmark and overweigh (resp. underweigh) assets with large (resp. low)
fundamental expected returns will experience lower-than-expected returns. We illustrate
in a simple example how feedback effects modify optimal strategies associated to a mean-
variance criteria (Proposition 4.5.3) and find that an investor who takes the presence of
the fixed-mix fund into account can improve his risk/return trade-off (Figure 4.8).
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Chapter 2

Running for the exit: distressed selling and

endogenous correlation in financial markets

Abstract

We propose a simple multiperiod model of price impact from trading in a market with
multiple assets, which illustrates how feedback effects due to distressed selling and short
selling lead to endogenous correlations between asset classes. We show that distressed
selling by investors exiting a fund and short selling of the fund’s positions by traders
may have non-negligible impact on the realized correlations between returns of assets
held by the fund. These feedback effects may lead to positive realized correlations be-
tween fundamentally uncorrelated assets, as well as an increase in correlations across
all asset classes and in the fund’s volatility which is exacerbated in scenarios in which
the fund undergoes large losses. By studying the diffusion limit of our discrete time
model, we obtain analytical expressions for the realized covariance and show that the
realized covariance may be decomposed as the sum of a fundamental covariance and
a liquidity-dependent and path-dependent ’excess’ covariance. Finally, we examine the
impact of these feedback effects on the volatility of other funds. Our results provide
insight into the nature of spikes in correlation associated with the failure or liquidation
of large funds.
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2.1 Introduction

Correlations in asset returns are a crucial ingredient for quantifying the risk of financial
portfolios and a key input for asset allocation and trading. Correlations and covariances
between returns of assets, indices and funds are routinely estimated from historical data
and used by market participants as inputs for trading, portfolio optimization and risk
management. Whereas sophisticated models –featuring stochastic volatility, conditional
heteroskedasticity and jumps– have been proposed for univariate price dynamics, the
dependence structure of returns is typically assumed to be stationary, either through a
time-invariant correlation matrix or a copula, and estimated from historical time series
of returns. For example, a popular method is to use (exponentially-weighted) moving
average (EWMA) estimators of realized correlation.

On the other hand, empirical evidence points to high variability in realized correla-
tions and model-based estimators of correlation (Engle, 2009): these estimators exhibit
large spikes or dips associated to market events. Figure 2.1 shows examples of variability
in time of (empirical) realized correlations in equity indices; we observe a sharp increase
in realized correlations associated with the collapse of Lehman Brothers on September
15th, 2008. More generally, unexpected correlation spikes are often associated with the
liquidation of large positions by market participants. For instance, in 1998, due to heavy
losses in its investments in Russian bonds, Long Term Capital Management was forced
to liquidate its positions after a sudden increase in the correlations across its –previously
uncorrelated– positions which led to a sharp increase in its volatility (Rosenfeld, 2010).
Unexpected spikes of correlation arose between asset classes that used to be uncorrelated
(Russian bonds and US equity for instance), leading to the collapse of the fund. A more
complex phenomenon occurred in August 2007: between August 7 and August 9 2007,
all long-short equity market neutral hedge funds lost around 20% per day whereas major
equity indices hardly moved. Khandani and Lo (2011) suggest that this ’quant event’ of
August 2007 was due to the unwinding of a large long-short market neutral hedge fund’s
positions, that created extreme volatility on other funds with similar portfolios, while
leaving index funds unaffected. These examples illustrate that ”asset correlations can be
different during a liquidity crisis because price movements are caused by distressed sell-
ing and predatory trading rather than fundamental news” (Brunnermeier and Pedersen,
2005).

The evidence for time-variation in the dependence structure of asset returns has mo-
tivated the development of new classes of stochastic models with time-dependent corre-
lation structures (Engle, 2002; Da Fonseca et al., 2008; Gouriéroux et al., 2009; Stelzer,
2010) in which the conditional distribution of asset returns is given by a multivariate
distribution with a randomly evolving covariance structure whose evolution is specified
exogenously. However, such models where correlation is represented as an exogenous
risk factor fail to explain the presence of spikes in correlations associated with market
events such as the liquidation of large funds. The examples cited above suggest the
existence of an endogenous component in asset correlations, which should be modeled
by taking into account the impact of supply and demand generated by investors, in
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Figure 2.1: Left: One-year EWMA estimator of average pairwise correlations of daily
returns in EuroStoxx 50 index. Right: One-year EWMA correlation between two sector
indices of the S&P 500: SPDR XLE (energy) and SPDR XLK (technology).

particular in situations of market distress. Such endogenous variations in volatility and
correlations, generated by systematic patterns in supply and demand linked to rule-
based trading strategies, short selling or fire sales, have played an important role in past
financial crises and have been the focus of several studies (Adrian and Shin, 2008, 2009;
Brunnermeier, 2008; Brunnermeier and Pedersen, 2009; Carlson, 2006; Pedersen, 2009;
Shin, 2010) which underline the link between liquidity and volatility in financial markets.

Our contribution is to show that the intuitive link between distressed selling and en-
dogenous changes can be modeled quantitatively in a rather simple, analytically tractable
framework which allows to quantify the endogenous risk generated by fire sales, when
investors facing losses simultaneously try to exit a fund.

2.1.1 Summary

We consider a fund investing in various asset classes/ strategies whose returns are decom-
posed into random components that represent exogenous economic factors (fundamen-
tals) and a term representing the price impact of sellers, which is a function of aggregate
excess demand for each asset generated either by investors liquidating their positions or
by speculators shorting the fund’s position once the fund value drops below a threshold.
Simulations of this discrete-time model reveal that, even in the case of assets with zero
fundamental correlation, one observes a significant positive level of realized correlation
resulting in higher than expected fund volatility. Furthermore, this realized correlation
is observed to be path-dependent.

We confirm the generic nature of these simulation results by studying the continuous-
time limit of our model. We exhibit conditions under which the discrete-time model
exhibits a diffusion limit and provide explicit expressions for the realized covariance and
correlation across assets and realized fund volatility for the limiting diffusion process.
Our analytical results show that realized covariance is the sum of a fundamental covari-
ance and an excess covariance term which is path-dependent and varies inversely with
market liquidity. Furthermore, this excess covariance is computable in our model setting.
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Even in the absence of correlations between fundamentals, asset returns may exhibit sig-
nificant positive realized correlation, resulting in higher realized fund volatility. We show
that, even when market depth is constant, the liquidation of large fund positions can
generate significant positive realized correlation between the fund’s assets, and may also
generate spillover effects, affecting the volatility of other funds holding similar assets.
All these effects are shown to be analytical computable and expressions are given for
their magnitude.

Our results point to the limits of diversification, previously discussed by many au-
thors, but also allow one to quantify these limits. We show that a fund manager invest-
ing in apparently uncorrelated strategies may experience significant realized correlation
across his/her strategies in the case of distressed selling by investors facing losses, thus
losing the benefit of diversification exactly when it is needed. These results provide sim-
ple explanations for the sudden rise in correlations associated with the failure of LTCM
in 1998 and the hedge fund losses of August 2007. Our study provides insight into the
nature of spikes in correlation and fund volatility associated with the failure or liquida-
tion of large funds and gives a quantitative framework to evaluate strategy crowding as
a risk factor. In particular, the model explains how, in August 2007, the liquidation of
a large long-short equity market neutral fund generated high volatility for funds with
similar allocations while leaving index funds unaffected.

2.1.2 Related Literature

Empirical evidence of distressed selling and its impact on market dynamics has been doc-
umented by several previous studies. Funds experiencing large outflows sell their hold-
ings, as documented by Coval and Stafford (2007). For regulatory reasons, after large
losses, banks must sell risky assets, as discussed by Berndt et al. Berndt et al. (2005) for
the corporate debt market. Khandani and Lo (2011) describe how the need to reduce risk
exposure compelled market-neutral long-short equity hedge funds to liquidate large po-
sition in equity markets in the second week of August 2007, generating a series of huge
losses which are explained quantitatively by our model. Comerton-Ford et al. (2010)
show empirically the importance of short selling in financial markets (40.2% and 39.2%
of total dollar volume on the NYSE and Nasdaq, respectively). Haruvy and Noussair
(2006) examine empirically the effects of short selling restrictions finding that relax-
ing short selling constraints does not induce prices to track fundamentals. Our study
provides a quantitative framework for analyzing these empirical observations.

Various theoretical models have been proposed for analyzing feedback effects result-
ing from fire sales in financial markets, mostly in a single-asset framework. Avellaneda and Lipkin
(2009) show how short selling in a single asset generates price anomalies and higher price
volatility and violation of Call-Put parity. Market losses in subprime mortgage-backed
securities, largely seen as being uncorrelated with equity markets, led to huge falls in
equity markets as explained by Brunnermeier (2008). Shin (2010) describes the mech-
anisms which amplified the recent financial crisis and the systemic risk they generate.
Investors ’running for the exit’ can generate spirals in prices and spillovers to other asset
classes as well as a crowding effect, as discussed by Pedersen (2009). Andrade et al.
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(2008) show how trading imbalances in one asset class can lead to deviation of prices
from fundamental value in other asset classes. Short selling by predators is described in
Brunnermeier and Pedersen (2005), where the authors show how shorting the portfolio
of a fund approaching its liquidation value can lead to the collapse of the fund. Our
detailed quantitative analysis confirms these predictions. Whereas these studies mainly
focus on asset prices and fund value, our multi-asset framework allows for a computation
of the impact of fund liquidation or short selling on realized correlation between assets
and fund volatility.

2.1.3 Outline

The paper is organized as follows. Section 2.2 presents a multiperiod, multi-asset model
of trading with price impact and introduces a simple model for distressed selling. Sec-
tion 2.3 displays the results of the simulations of this model. In Section 2.4, we find
the continuous-time limit of our discrete-time dynamics. Section 2.5 gives analytical ex-
pressions for the realized variance and covariance of asset returns in the continuous-time
limit and uses these expressions to study the path-dependence of realized correlations
and role of market depth. Using these analytical results, we show in Section 2.6 how
feedback effects lead to endogenous volatility in a distressed fund and spillover effects
across funds. Section 2.7 concludes.

2.2 A multi-asset model of price impact from distressed selling

Consider a market where n financial strategies/assets are traded at dates tk = kτ , where
τ is the time step between two trading dates. The price of asset i at date tk is denoted
Sik and we denote Sk = (S1

k, ..., S
n
k ). It is useful, in the examples, to think of Si as the

value of an index or ETF representing a sector, asset class or geographic zone or more
generally the value of a financial strategy (for example a long-short strategy).

At each period, the value of the assets is affected by exogenous economic factors,
represented by an IID sequence ξk = (ξ1k, ..., ξ

n
k )1≤k≤M of centered random variables

with covariance matrix Σ. In the absence of other effects, the return of asset i at period
k would be

exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)
− 1

where mi is the expected return of asset i in the absence of other effects than ’funda-

mentals’. We denote (Sik+1)
∗ = Sik exp

(
τ
(
mi − Σi,i

2

)
+

√
τξik+1

)
.

We consider a large fund holding αi units of asset i with 1 ≤ i ≤ n. Thus, between
tk and tk+1, exogenous economic factors move the (benchmark) value of the fund from

Vk =

n∑

i=1

αiS
i
k to

V ∗
k+1 =

n∑

i=1

αi(S
i
k+1)

∗ =
n∑

i=1

αiS
i
k exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)
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Investors enter the fund at t = 0 when the fund is valued at V0 > 0. Like most
investors in mutual funds, investors in the fund adopt a passive, buy and hold behavior as
long as the fund is performing well. If the fund value drops below a threshold β0V0 < V0,
investors progressively may exit their positions, generating a negative demand across all
assets held by the fund, proportionally to the positions held by the fund. Our purpose is
to model the price impact of this distressed selling and investigate its effect on realized
volatility and correlations of the assets held by the fund.

We model the supply/demand pattern generated by distressed selling by introducing
a function f : R → R which measures the rate at which investors in the fund exit
their positions: when fund value drops from Vk to V ∗

k+1, investors redeem a fraction

f(VkV0 ) − f(
V ∗
k+1

V0
) of their position in the fund. Thus, the net supply in asset i due to

distressed selling (or short selling) is equal to

−αi(f(
V ∗
k+1

V0
)− f(

Vk
V0

))

The above assumptions on investor behavior imply that f : R → R is increasing, constant
on [β0,+∞[.

We furthermore assume that the fund is liquidated when the value reaches βliqV0
where βliq < β0. In practice, as the fund loses value and approaches liquidation, dis-
tressed selling becomes more intense: this feature is captured by choosing f to be con-
cave. Figure 2.2 gives an example of such a function f .
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Figure 2.2: Net supply due to distressed selling and short selling is equal to −αi(f(
V ∗
k+1

V0
)−

f(VkV0 ))

It is well documented that sale of large quantities of assets impacts prices. Empirical
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studies (Obizhaeva, 2011; Cont et al., 2010) provide evidence for approximate linearity
of this price impact at daily and intraday frequencies. Between tk and tk+1, given the
net supply generated by short sellers and distressed sellers, market impact on asset i’s
return is equal to

αi
Di

(f(
V ∗
k+1

V0
)− f(

Vk
V0

))

where Di represents the depth of the market in asset i: a net demand of Di

100 shares for
security i moves the price of i by one percent. Obizhaeva (2011) studies empirically the
link between market depth and average daily volume (ADV) on NYSE and NASDAQ

stocks, finding that ADVi
√
250

Diσi
is close to 1. We will use this relation to pick realistic

values for the size of a large fund’s positions αi in terms of the market depth Di, in
the examples of Section 2.3. The supply/demand pattern generated by these distressed
sellers exiting the fund may be amplified by short sellers or predatory traders: the
presence of short sellers may result in scenarios where a fraction > 1 of the fund is
exited/liquidated. From our perspective, their effect on price dynamics is similar and
we will not distinguish between distressed (e.g. long) sellers and short sellers.

Sk, Vk

tk

S∗
k+1, V

∗
k+1 Sk+1, Vk+1

tk+1

exogenous

factors (ξk+1)

distressed selling

short selling

Summing up, the dynamics of asset prices is given by:

Sik+1 = Sik exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)(
1 +

αi
Di

(
f

(
V ∗
k+1

V0

)
− f

(
Vk
V0

)))
(2.1)

where

Vk =
n∑

j=1

αjS
j
k (2.2)

and

V ∗
k+1 =

n∑

j=1

αjS
j
k exp

(
τ

(
mj −

Σj,j
2

)
+

√
τξjk+1

)
(2.3)

Proposition 2.2.1 Under the assumption that S0 ∈
(
R
∗
+

)n
and ‖f‖∞ < 1

2min Di

|αi|
1≤i≤n

, the

price dynamics given by (2.1),(2.2) and (2.3) defines a Markov chain in
(
R
∗
+

)n
.

Proof (2.1), (2.2) and (2.3) show that Sk+1 depends only on its value at tk and on ξk+1,
which is independent events previous to tk. S is thus a Markov Chain. In addition,

when ‖f‖∞ < 1
2min Di

|αi|
1≤i≤n

, 1 + αi

Di

(
f
(
V ∗
k+1

V0

)
− f

(
Vk
V0

))
> 0, which ensures that, starting

from S0 ∈
(
R
∗
+

)n
, the Markov chain stays in

(
R
∗
+

)n
.
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In the sequel, we work under the assumption of Proposition 2.2.1 which garantees

that S is a Markov chain in
(
R
∗
+

)n
. Using the dimensionless variables S̃k = (

S1
k

S1
0

, ...,
Sn
k

Sn
0
)

and Ṽk =
Vk
V0
, we can rewrite (2.1)–(2.2)–(2.3) as

S̃ik+1 = S̃ik exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)(
1 +

αi
Di

(
f(Ṽ ∗

k+1)− f(Ṽk)
))

where

Ṽk =

n∑

j=1

αjS
j
0

V0
S̃jk

and

Ṽ ∗
k+1 =

n∑

j=1

αjS
j
0

V0
S̃jk exp

(
τ

(
mj −

Σj,j
2

)
+
√
τξik+1

)

Hence the dynamics of S̃k is entirely determined by� the drift m� the sequence (ξk) and its fundamental covariance matrix Σ� the vector ( α1

D1
, ..., αn

Dn
) which expresses the sizes of the fund’s positions in each asset

relative to the asset’s market depth. This is a dimensionless measure of the size of
positions, which is relevant for measuring market impact in case of liquidation.� the dollar proportions (

α1S1
0

V0
, ...,

αnSn
0

V0
) initially invested in each asset by the fund� the function f which describes the supply generated by distressed/short selling

2.3 Numerical experiments

2.3.1 Simulation procedure

We perform a Monte Carlo simulation (106 independent scenarios) of the multiperiod
model described above for a fund investing in two strategies/asset classes with zero
fundamental correlation and volatilities respectively given by 30% and 20%. We assume
that the volume held by the fund on each asset is of the order of 20 times average
daily volume for the asset. In comparison, LTCM’s on–balance sheet assets totalled
around $125 billion, which represented 250 times average daily volume on the S&P 500
in 1998. We assume that the fund initially invests the same amount in both assets and
that distressed sellers can trade once a day. We simulate the discrete-time model for a
one-year period with the following parameters:� m=0� ξ is normal and Σ =

(
σ21 0
0 σ22

)
with σ1 = 30% year−

1
2 and σ2 = 20% year−

1
2
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D1
= α2

D2
= 1

10 : the fund’s position on asset 1 (resp. on asset 2) is equal to 10%
of asset 1’s (resp. asset 2’s) market depth, or, using Obizhaeva (2011), around 15
times average daily volume for asset 1 (resp. around 20 times average daily volume
for asset 2)� α1S1

0

V0
=

α2S2
0

V0
= 1

2 : the fund initially invests the same amount in 1 and 2� We use the following choice for f : f(x) = −1
(βliq−β0)4 (x − β0)

4 which satisfies the

conditions described in Section 2.2, with β0 = 0.95 and βliq = 0.55.

2.3.2 Realized variance and realized correlations

In each simulated path, we compute the log-returns rik = log(
Si
k+1

Si
k

) of asset i for i = 1, 2.

Let ri be the sample average of those returns: ri = 1
M

M−1∑

k=0

rik. For each sample path, we

compute the realized covariance between assets i and j:

Ĉi,j =
1

T

M−1∑

k=0

(rik − ri)(rjk − rj)

and the realized correlation between i and j: Ĉi,j

(Ĉi,iĈj,j)
1
2

. The realized volatility for i is

given by (Ĉi,i)
1
2 .

Figure 2.3 shows the distribution of the one-year realized correlation for the two
strategies. In each scenario, we also computed realized correlation without feedback
effects. Figure 2.4 is a scatter plot of the one-year realized correlation with and without
feedback effects from distressed selling/short selling. Each point of the graph corresponds
to one trajectory (for clarity, we choose to display only 1000 trajectories on scatter plots).
For each point of the graph and hence each trajectory, realized correlation in the presence
of feedback effects (resp. without feedback effects) can be read on the vertical axis (resp.
the horizontal axis).

In the presence of distressed selling, the distribution of realized correlation is signifi-
cantly modified. Our simulations show that distressed selling by investors exiting funds
with similar portfolios and short selling can generate significant realized correlation, even
between assets with zero fundamental correlation. In Figure 2.3, the distribution of re-
alized correlation without feedback effects reflects the statistical error in the estimation
of correlation. Hence, the aspect of the distribution of realized correlation with feed-
back effects due to distressed selling or short selling reflects the effects of such trading
on correlation between assets: average correlation in the presence of feedback effects is
higher than its fundamental value ρ = 0 and the profile of its distribution presents a
thick upper tail. In Figure 2.4, all points are above the Y=X axis, confirming the fact
that distressed selling increases correlation between assets. In the presence of feedback
effects, correlation becomes path dependant. It is interesting to examine the distribution
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Figure 2.3: Distribution of realized cor-
relation between the two securities (with
ρ = 0) with and without feedback effects
due to distressed selling
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Figure 2.4: Scatter plot of realized corre-
lation with and without feedback effects
due to distressed selling (each data point
represents one simulated scenario)

of realized correlation in scenarios where fund value reaches β0V0, triggering distressed
selling/short selling.

Conditional correlation: In Figure 2.5, we divide trajectories into two categories, whether
fund value reaches β0V0 or not and we display the distribution of realized correlation for
those two categories: in plain line, the distribution of realized correlation in scenarios
where fund value reaches β0V0, triggering distressed selling; in dotted line, the distribu-
tion of realized correlation in scenarios where fund value remains above β0V0 and there
is no distressed selling or short selling. Realized correlation conditional on the fact that
distressed selling took place is significantly higher than realized correlation in scenarios
where there was no distressed selling. In scenarios where distressed selling took place,
price impact affects all assets of the fund in the same direction during the time the
fund’s market value is below the threshold β0V0. This results in higher realized corre-
lation in those scenarios: the average conditional correlation is equal to 18% whereas
unconditional correlation is 9% and fundamental correlation is zero.

Asset volatility: In the presence of feedback effects from distressed selling/short selling,
asset volatility increases. Figure 2.6 shows that the distribution of realized volatility of
each asset, in scenarios where there was distressed selling, is centered around a higher
value than the asset’s fundamental volatility and presents a thick upper tail. In such
scenarios, assets are more volatile than in scenarios without distressed selling. The
action of distressed sellers (and short sellers) increases the amplitude of price moves and
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Figure 2.5: Distribution of realized correlation in scenarios where fund value reaches
β0V0 (plain line) and in scenarios where fund value remains above β0V0 (dotted line)
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Figure 2.6: Distribution of realized volatilities for each security in scenarios where fund
value reaches β0V0 between 0 and T (plain lines) and in scenarios where fund value
remains above β0V0 (dotted lines) (with σ1 = 30% and σ2 = 20%)
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generates higher asset volatility. This should result in higher fund volatility.

2.3.3 Fund volatility

Figure 2.7 is a scatter plot of fund volatility, with and without feedback effects from
distressed selling/short selling. We also compare the distribution of fund volatility in
scenarios where the fund reaches β0V0 or not. Figure 2.8 displays the distributions of
fund volatility in those two scenarios.
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Figure 2.7: Scatter plot of realized volatil-
ity of the fund with and without feedback
effects (each data point represents one sim-
ulated scenario)

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2.8: Distribution of realized fund
volatility in scenarios where fund value
reaches β0V0 between 0 and T (plain
line) and in scenarios where fund value
remains above β0V0 (dotted line)

Distressed selling increases the fund’s volatility: the distribution of realized fund
volatility presents a thick upper tail when there are feedback effects from short sell-
ers or distressed sellers. Figure 2.7 underlines the fact that feedback effects increase
the fund’s volatility. Figure 2.8 shows that when there is distressed selling, the fund is
more volatile than when fund value remains above β0V0 and there is no distressed selling.

Our simulations show that, even in the case of assets with zero fundamental correla-
tion, one observes a significant positive level of realized correlation resulting in higher
than expected fund volatility.

52



CHAPTER 2. DISTRESSED SELLING AND ENDOGENOUS CORRELATION

2.4 Diffusion limit

To confirm that the phenomena observed in the numerical experiments are not restricted
to particular parameter choices or a particular choice of the function f , we will now an-
alyze the continuous-time limit of our discrete-time model: the study of this limit allows
one to obtain analytical formulas for realized correlation which confirm quantitatively
the effects observed in the numerical experiments.

In order to study the continuous-time limit of the multi-period model, we work under
the following assumption:

Assumption 2.4.1 For all 1 ≤ i ≤ n, αi ≥ 0 and there exists η > 0 such that:

E(‖ exp(ηξ)‖) <∞ , E(‖ξ‖η+4) <∞ and f ∈ C3
0(R)

where Cp0(R) denotes the set of real-valued, p-times continuously differentiable maps
whose derivatives of order 1 ≤ l ≤ p have compact support.

The assumption on f is natural if we assume that f is C3 and that f is constant on
]−∞, βliq] and [β0,+∞[.

Our main theoretical result is the following theorem which describes the diffusion
limit of the price process.

Theorem 2.4.2 Under Assumption 2.4.1,
(
S⌊ t

τ
⌋

)
t≥0

converges weakly to a diffusion

(Pt)t≥0 when τ goes to 0 where

dP it
P it

= µi(Pt)dt+ (σ(Pt)dWt)i 1 ≤ i ≤ n

where µ (resp., σ) is a R
n-valued (resp. matrix-valued) mapping defined by

µi(Pt) = mi +
αi
Di

1

2V 2
0

f ′′
(
Vt
V0

)
πt.Σπt +

αi
Di

1

V0
f ′
(
Vt
V0

)
(πt.m+ (Σπt)i) (2.4)

σi,j(Pt) = Ai,j +
αi
Di
f

′
(
Vt
V0

) (Atπt
)
j

V0
(2.5)

Here Wt is an n-dimensional Brownian motion, πt =




α1P
1
t

...
αnP

n
t


 is the (dollar) allo-

cation of the fund, Vt =
∑

1≤k≤n
αkP

k
t the value of the fund, mi = mi − Σi,i

2 and A is a

square-root of the fundamental covariance matrix: AAt = Σ.

∗ When market depth is infinite (i.e. price impact is negligible) the continuous-time limit
is a multivariate geometric Brownian motion and the covariance of the log-returns is
given by the ‘fundamental’ covariance: cov(lnP it , lnP

j
t ) = tΣij.

∗ The expression of σ shows that distressed selling modifies correlation between assets,
asset volatility and fund volatility. We will focus on this phenomenon in the next
sections.
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2.5 Realized correlations

2.5.1 Realized covariance

We define C[t1,t2] the realized covariance matrix of returns (Barndorff-Nielsen and Shephard,
2004; Andersen et al., 2003) between dates t1 and t2 as

Ci,j[t1,t2] =
1

t2 − t1

(
[lnP i, lnP j]t2 − [lnP i, lnP j ]t1

)

where [lnP i, lnP j ]t is the quadratic covariation between lnP i and lnP j on [0, t].
The following result follows by direct computation from Theorem 2.4.2:

Proposition 2.5.1 The realized covariance matrix of returns between 0 and t is 1
t

∫ t
0 cs ds

where the instantaneous covariance cs at date s is given by

cs = Σ+
1

V0
f

′
(
Vs
V0

)
[ΛtπsΣ+ ΣπtsΛ] +

1

V 2
0

(f
′
)2(

Vs
V0

) (πs.Σπs) Λ
tΛ where� πt =




α1P
1
t

...
αnP

n
t


 denotes the (dollar) holdings of the reference fund� Λ =




α1

D1

...
αn

Dn


 represents the positions of the reference fund in each market as a

fraction of the respective market depth.

The expression for the realized covariance of asset returns shows that realized covari-
ance is the sum of the fundamental covariance and an excess covariance term which is
path-dependent and varies inversely with market depth. Excess covariance depends on
the ratio α

D , which compares the positions of the fund to the market depth in each asset.
When market depth is infinite, realized covariance reduces to fundamental covariance.
Moreover, the expression of instantaneous covariance shows that it is a deterministic
and continuous function of vector πt, hence the impact of distressed selling on realized
covariance and correlation is computable in this setting. Realized covariance and corre-
lation between assets depend on the derivative of f , which represents the rate at which
investors exit their positions when the fund underperforms.

In scenarios where the fund value stays above β0V0 realized covariances converge to
their fundamental value. However, as soon as the fund value falls below the threshold
β0V0 which triggers distressed selling, excess covariance appears: in such distress sce-
narios, realized correlation and realized variance differ from the values implied by the
‘fundamental covariance’ Σ. In the case where fundamental correlation is positive be-
tween all pairs of assets, distressed selling increases realized covariance. As shown by
Eq. (2.5.1), the magnitude of this effect is determined by the size αi of the positions
being liquidated relative to the depth Di of the market in these assets: this is further
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discussed in Section 2.5.4. It is also interesting to notice that when the fund invests sig-
nificantly in an asset i compared to its market depth and when fund value drops below
β0V0, instantaneous covariance between i and any other asset j in the market is different

from its fundamental value Σi,j (as
αi

Di
f

′
(
Vs
V0

)
(Σπt)j
V0

6= 0).

2.5.2 Case of zero fundamental correlations

We now focus on the case of a diagonal covariance matrix Σ (Σi,j = 0 for i 6= j): the n
assets have zero fundamental correlation. We denote Σi,i = σ2i (σi is asset i’s volatility).

Corollary 2.5.2 If the fundamental covariance matrix Σ is diagonal, then, for all 1 ≤
i, j ≤ n, the instantaneous covariances are given by

ci,jt =
αj
Dj

f
′
(
Vt
V0

)
αi
V0
P itσ

2
i +

αi
Di
f

′
(
Vt
V0

)
αj
V0
P jt σ

2
j +

αiαj
DiDj

(f
′
)2(

Vt
V0

)
∑

1≤l≤n
(
αl
V0
P ltσl)

2 ≥ 0

and

ci,it = σ2i + 2
αi
Di
f

′
(
Vt
V0

)
αi
V0
P itσ

2
i + (

αi
Di

)2(f
′
)2(

Vt
V0

)
∑

1≤l≤n
(
αl
V0
P ltσl)

2 ≥ σ2i

Realized correlation between i and j (resp realized variance for asset i) between 0 and

T are equal to
∫ T

0
ci,jt dt

(
∫ T
0
ci,it dt

∫ T
0
cj,jt dt)

1
2

(resp. ( 1
T

∫ T
0 ci,it dt)

1
2 ).

Since f is increasing, realized correlations are positive and the realized volatility of
asset i is greater than its fundamental volatility σi: in the absence of fundamental
correlation, distressed selling generates positive realized correlation across the fund’s
strategies and increase the volatility of all assets detained by the fund. This is due
to the fact that when Vt < β0V0, all strategies owned by the fund face a net demand
of the same sign. In particular a large fall in fund value generates a negative demand
by investors across all positions held by the fund and increases the amplitude of price
movements. These analytical results confirm the results of our simulation experiments.

Even if the fund invests in ’fundamentally’ uncorrelated strategies, in scenarios where
the fund experiences losses e.g. Vt < β0V0 and approaches liquidation, distressed selling
by investors leads to a positive realized correlation between the fund’s strategies, reducing
the benefit of diversification.

To check whether these asymptotic results are relevant in the case of daily rebalanc-
ing, we compare the theoretical formula for realized covariance in continuous time given
in Corollary 2.5.2 and the realized covariance in a discrete-time market as calculated in
2.3.2. Figure 2.9 shows that the higher the trading frequency, the better the concordance
between empirical realized covariance (calculated as in section 2.3.2) and the continuous-
time result (given by Corollary 2.5.2). More precisely, a linear regression of the realized
covariance with respect to the theoretical values computed using Corollary 2.5.2 shows
good agreement between the empirical and theoretical values: the regression yields a
slope of 0.95 (R2 = 0.63) for τ = 1

250 and a slope of 0.99 (R2 = 0.96) for τ = 1
2500 .
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Figure 2.9: Scatter plot of theoretical realized covariance and empirical realized covari-
ance for τ = 1

250 (left) and τ = 1
2500 (right)

2.5.3 The path-dependent nature of realized correlation

Proposition ?? shows that instantaneous covariance ci,jt is a deterministic function of
πt = (α1P

1
t , ..., αnP

n
t )

t. Figure 2.10 shows an example of the evolution of correlation,
given a trajectory πt. We used the same parameters as in our simulations (section 2.3)
and we display the evolution of Vt

V0
on the graph at the left and the evolution of realized

correlation
1
t

∫ t
0
c1,2s ,ds

(( 1t
∫ t

0
c1,1s ,ds)( 1

t

∫ t

0
c2,2s ,ds))

1
2

, in the figure on the right. We see that as long

as fund value stays above β0V0, realized correlation is equal to 0. Losses greater than
this threshold generate distressed selling and lead to a positive endogenous correlation
between the asset returns. As shown in Figure 2.10, this excess correlation is path-
dependent: it depends on the performance of the fund. Fund losses are amplified by
investors exiting funds with similar allocations or by those trading against the fund.
This not only drives down the fund value but increases the correlation between its two
strategies to unexpected levels. As a result, realized correlation among strategies can be
much higher than the ’fundamental’ correlation, exactly when the fund is in dire need
of the relief promised by diversification. The spiral can be triggered by a large loss in
one of its strategies. This leads to investors exiting similar funds, others shorting its
positions and thus generates a high correlation among all its positions.
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Figure 2.10: Vt
V0

(left) and realized correlation on [0, t] (right)

2.5.4 Liquidation impact

Theorem 2.4.2 and Proposition 2.5.1 show that the price dynamics and correlation be-
tween assets are functions of the positions of the fund relative to the market depth of
each asset: Λ = ( α1

D1
, ..., αn

Dn
)t. These results suggest that αi

Di
may be used as an indi-

cator of the impact on asset i of the liquidation of the fund’s position. When α
D → 0,

we find, as expected, a Black-Scholes model with constant correlation between assets.
Proposition 2.5.1 shows that the excess covariance tends to 0 when market depth goes
to infinity. Corollary 2.5.2 proves that in the case of assets with zero fundamental cor-
relation, the bigger the fund’s positions compared to the market depth of each asset, the
more correlated its strategies will be, as can be seen on Figure 2.11.

It is interesting to underline the fact that when all assets, except one, denoted i0, have
infinite market depths and when distressed selling/short selling occurred in the market

(∃t0, Vt0V0 ≤ β0), all strategies are positively correlated with strategy i0 (as Ct0i,i0 > 0).
Figure 2.12 shows that when one asset (asset 2) has finite market depth, the underper-
formance of other assets (asset 1) leads to strictly positive realized correlation.
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2.6 Endogenous risk and spillover effects

The computation of realized correlations is relevant for the assessment of the (realized)
volatility of portfolios: the explicit formulas obtained in Section 2.5 allow one to quantify
the impact of distressed selling on the volatility of the fund being exited/shorted, and
see how distressed selling on one fund affects other funds’volatility.

2.6.1 Realized variance of a fund subject to distressed selling

Proposition 2.6.1 The fund’s realized variance between 0 and t is equal to 1
t

∫ t
0 Γs ds

where Γs, the instantaneous variance of the fund, is given by:

ΓsV
2
s = πs.Σπs +

2

V0
f

′
(
Vs
V0

)
(πs.Σπs)Λ.πs

+
1

V 2
0

(
f

′
(
Vs
V0

))2

(πs.Σπs) (Λ.πs)
2 (2.6)

and πs and Λ are defined in Proposition 2.5.1.

The proof is given in the appendix. We note that distressed selling increases the fund’s
volatility:

ΓsV
2
s ≥ πs.Σπs

The fund’s instantaneous variance is equal to its fundamental value 1
V 2
s
πs.Σπs plus a term

of order one in Λ and a term of order two in Λ. In a market with infinite market depth,
Γs is equal to its fundamental value. As in the case of instantaneous covariance between
assets, Γs is a continuous and deterministic function of πs and is a superposition of two
regimes: a fundamental regime and an excess volatility regime, that is exacerbated with
illiquidity (D is small) or when the fund has big positions (α is large). Note that, even
without liquidity drying up (D constant), feedback effects may significantly increase
fund volatility when investors ’run for the exit’, generating spikes in realized correlation,
even in the absence of predatory trading by short sellers.

2.6.2 Fund volatility in the case of zero fundamental correlations

Corollary 2.6.2 If the fundamental covariance matrix Σ is diagonal, the instantaneous
variance of the fund value is given by

Γt =


1 +

∑

1≤i≤n

αiP
i
t

V0

αi
Di
f

′
(
Vt
V0

)


2
∑

1≤j≤n

(
αjP

j
t

Vt
σj

)2

Proof This is a consequence of Proposition 2.6.1 and the fact that Σ is a diagonal
matrix.
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The fund’s realized variance between 0 and T is equal to 1
T

∫ T
0 Γt dt. Corollary 2.6.2

explains the observations of section 2.3 and confirms that, when the size of the fund’s
positions are non-negligible with respect to market depth, distressed selling leads to
an increase in realized fund volatility, even when the fund invests in assets with zero
fundamental correlation. Similarly, fund volatility increases when similar funds liquidate
part of their positions.

These results point to the limits of diversification when price impact is not negligible:
even if the fund manager invests in uncorrelated strategies, short selling and liquidation
by investors facing losses will correlate them positively, exactly in scenarios where the
fund experiences difficulty, increasing the volatility of the portfolio and reducing the
benefit of diversification. This may arise either because the fund has large positions or
because other large funds are following similar strategies (strategy crowding).

2.6.3 Spillover effects

We now examine the impact of distressed selling by investors in a large fund (called
hereafter the reference fund) on the volatility of other funds.

Consider a (small) fund investing in the n securities and following a self-financing
strategy. We denote by µit the number of units of i detained by the small fund at date

t. Note that we allow for dynamic strategies. Its market value at t is Mt =
∑

1≤i≤n
µitP

i
t .

As the small fund’s strategy is self-financing, we have dMt =
∑

1≤i≤n
µitdP

i
t .

In our framework, the small fund’s strategy should impact prices and its action should
modify the dynamics of P given by Theorem 2.4.2. However, when its positions are very
small compared to the size of the reference fund, the impact of its trading strategy is
negligible compared to feedback effects due to distressed selling and short selling in the
reference fund.

Under the assumption that the size of the small fund is small, its strategy does not
impact prices and P still follows the dynamics given in Theorem 2.4.2 and we obtain

d[lnM ]t = πµt .ctπ
µ
t dt

where πµt =




µ1tP
1
t

...
µnt P

n
t


 is the dollar allocation of the small fund and ct is the instanta-

neous covariance matrix of returns, given in Proposition 2.5.1.

Proposition 2.6.3 Assume that the small fund’s strategy does not impact prices. Then
the quadratic variation of the fund value is given by

[lnM ]t =

∫ t

0
γMs ds where

γMt = πµt .Σπ
µ
t +

2f
′
(
Vt
V0

)

V0
(πµt .Σπ

α
t )(Λ.π

µ
t ) +

f
′
(
Vt
V0

)2

V 2
0

(παt .Σπ
α
t )(Λ.π

µ
t )

2
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where� Mt =
∑

1≤i≤n
µitP

i
t is the value of the small fund� παt = (α1P

1
t , ..., αnP

n
t )

t denotes the (dollar) holdings of the reference fund,� πµt = (µ1tP
1
t , ..., µ

n
t P

n
t )

t denotes the (dollar) holdings of the small fund, and� Λ = ( α1

D1
, ..., αn

Dn
)t represents the positions of the reference fund in each market as

a fraction of the respective market depth.

This result shows how distressed selling in one fund affects the volatility of other funds.
In the presence of feedback effects, the realized variance of the small fund is given by
its fundamental value

∫ t
0 π

µ
s .Σπ

µ
s ds plus an additional variance term which correspond

to the impact of distressed selling in the reference fund and depends on the ’liquidity
vector’ Λ.

It is interesting to note that this ’contagion’ across portfolios depends on the simi-
larity between the portfolio of the reference fund α and the small fund µ. In particular,
when the portfolios α and µ are orthogonal for Σ (πµt .Σπ

α
t = 0), the term of order one in

Λ in Proposition 2.6.3 is zero and the small fund’s variance is equal to its fundamental
value plus a term of order two in Λ, whose magnitude is much smaller.

More interestingly, if the allocations of the two funds verify the ‘orthogonality’ con-
dition

Λ.πµt =
n∑

i=1

αi
Di
µitP

i
t = 0 (2.7)

distressed selling of investors in the reference fund does not affect the small fund’s
variance:

[lnM ]t =

∫ t

0
πµs .Σπ

µ
s ds

On the contrary, the excess volatility due to feedback is maximal when strategies µ and α
are colinear (i.e. when the vectors πµt and παt are colinear). These results shed some light
on the ’quant event’ of August 2007. In August 2007, long-short equity market-neutral
funds experienced extreme volatility and large losses during three days, whereas there
was no tangible effect on major equity indices in the same period. An explanation which
has been advanced is that a large position in such a market-neutral long-short fund, was
liquidated by an investor in this three day period. Our model suggests that this rapid
liquidation would then exacerbate the volatility of other long-short market-neutral funds
following similar strategies (i.e. whose allocation vector has a positive projection on the
allocation vector of the fund being exited). Since, by construction of market-neutral
funds, the holdings of index funds are orthogonal to market-neutral funds in the sense
of the orthogonality condition (2.7), our model predicts that index funds would not be
subject to these feedback effects: indeed, they were insensitive to this event.

Alternative explanations advanced for the August 2007 events are sometimes based
on a supposed drying up of liquidity in equity markets during that period (Khandani and Lo,
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2011). However, there is no evidence such a dry-up in liquidity occurred: in fact, trading
in equity indices occurred seamlessly during this period. By contrast, the mechanism un-
derlying our model does not require any time-varying liquidity for these effects to occur:
indeed, all these effects are present even when the market depth Di is constant. Also,
our explanation entails that the population of long-short market-neutral funds affected
by this event had allocations with substantial ’colinearity’ i.e. that “strategy crowding”
was a major risk factor in this market. Our results show the relevance of strategy crowd-
ing as a risk factor and represent a first step in quantifying it. Our analysis points in
particular to the necessity of using indicators based on the size of positions when quanti-
fying crowding effects, via proxies such as the market capitalization of various strategies.
Clearly, factors based on returns alone cannot capture such size effects.

2.7 Conclusion

We have presented a simple and analytically tractable model for investigating the im-
pact of fire sales on volatility and correlations of assets held by a fund. Our model
yields explicit results for the realized variance and realized correlations of assets held
by the fund and shows that the realized covariance between returns of two assets may
be decomposed into the sum of a ‘fundamental’ covariance and a liquidity-dependent
’excess covariance’, which is found to be inversely proportional to the market depth of
these assets.

We have shown that the presence of this excess covariance leads to endogenous risk
for large portfolios –liquidating the positions of such a large portfolio entails a higher-
than-expected volatility which may increase liquidation costs– as well as spillover effects:
distressed selling of investors in a large fund may also exacerbate the volatility of funds
with similar allocations, while leaving funds verifying an ’orthogonality’ condition unaf-
fected. This underlines the necessity of considering ’strategy crowding’ as a risk factor
and gives a quantitative framework to evaluate such risk.

More generally, our study shows that “liquidity risk” and “correlation risk”, often
treated as separate sources of risk, may be difficult to disentangle in practice: rather
than being treated as an exogenous factor to be estimated using statistical methods,
correlation risk needs to be modeled at its source, namely comovements in supply and
demand across asset classes. Each of these observations raises a point which merits an
independent, in-depth study. We plan to pursue some of these research directions in a
forthcoming work.
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2.8 Appendices

2.8.1 Proof of Theorem 2.4.2

We work under Assumption 2.4.1. We denote Zk+1 = τm +
√
τξk+1 ∈ R

n where mi =

mi − Σi,i

2 . We can write the price dynamics (2.1) as follows:

Sik+1 = Sik exp
(
Zik+1

)

1 + αi

Di


f




n∑

j=1

αjS
j
k

V0
exp

(
Zjk+1

)

− f




n∑

j=1

αjS
j
k

V0








As a consequence, we can write

Sk+1 = θ(Sk, Zk+1)

where θ :
(
R
∗
+

)n × R
n 7→

(
R
∗
+

)n
is C3 as f is C3.

As S is a Markov chain in
(
R
∗
+

)n
, we study the convergence of the Markov chain on(

R
∗
+

)n
and hence consider, without further precision, that S ∈

(
R
∗
+

)n
in the sequel.

Define now a (resp., b) a Mn(R)-valued (resp. Rn-valued) mapping such that

ai,j(S) =

n∑

l=1

∂θi
∂zl

(S, 0) ×Al,j (2.8)

bi(S) =
n∑

j=1

∂θi
∂zj

(S, 0)mj +
1

2

n∑

j,l=1

∂2θi
∂zj∂zl

(S, 0)Σj,l (2.9)

In order to show Theorem 2.4.2, we first show the following lemma:

Lemma 2.8.1 Under the assumptions of Theorem 2.4.2, for all ǫ > 0 and r > 0:

lim
τ→0

sup
‖S‖≤r

1

τ
P (‖Sk+1 − Sk‖ ≥ ǫ|Sk = S) = 0 (2.10)

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E (Sk+1 − Sk|Sk = S)− b(S)

∥∥∥∥ = 0 (2.11)

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E
(
(Sk+1 − Sk)(Sk+1 − Sk)

t|Sk = S
)
− aat(S)

∥∥∥∥ = 0 (2.12)

where a and b are defined respectively in (2.8) and (2.9).

Proof Fix ǫ > 0 and r > 0. As θ is C1, there exists C > 0 such that, if ‖Zk+1‖ ≤ ǫ and
‖Sk‖ ≤ r, then

‖Sk+1 − Sk‖ = ‖θ(Sk, Zk+1)− θ(Sk, 0)‖ ≤ C‖Zk+1‖ = C‖mτ +√
τξk+1‖

We then have:
P (‖Sk+1 − Sk‖ ≥ ǫ|Sk = S, ‖S‖ ≤ r, ‖Zk+1‖ ≤ ǫ)
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≤ P
(
C‖mτ +√

τξk+1‖ ≥ ǫ
)

≤ P

(
‖ξk+1‖ ≥ ǫ− ‖m‖Cτ

C
√
τ

)

≤ E

[(
‖ξk+1‖

C(r)
√
τ

ǫ− ‖m‖C(r)τ

)2+η
]

≤ τ1+
η
2E

[
(‖ξk+1‖)2+η

]
×
(

C(r)

ǫ− ‖m‖C(r)τ

)2+η

which implies that

P (‖Sk+1 − Sk‖ ≥ ǫ, ‖Zk+1‖ ≤ ǫ|Sk = S, ‖S‖ ≤ r)

≤ τ1+
η
2E

[
(‖ξk+1‖)2+η

]
×
(

C(r)

ǫ− ‖m‖C(r)τ

)2+η

In addition, we have

P (‖Sk+1 − Sk‖ ≥ ǫ, ‖Zk+1‖ ≥ ǫ|Sk = S) ≤ P(‖Zk+1‖ ≥ ǫ)

and

≤ τ1+
η
2E
[
‖ξk+1‖2+η

]
×
(

1

ǫ(r)− ‖m‖τ

)2+η

using the same methodology as we just did previously. Given that P(‖Sk+1 − Sk‖ ≥
ǫ|Sk = S) is equal to:

P(‖Sk+1 − Sk‖ ≥ ǫ, ‖Zk+1‖ ≤ ǫ|Sk = S) + P(‖Sk+1 − Sk‖ ≥ ǫ, ‖Zk+1‖ ≥ ǫ|Sk = S)

we find (2.10).

As θ is C2 we can write the Taylor expansion of θi in 0, for 1 ≤ i ≤ n:

Sik+1 − Sik = θi(Sk, Zk+1)− θi(Sk, 0)

=
∂θi
∂z

(Sk, 0)Zk+1 +
1

2
Zk+1.

∂2θi
∂z∂z′

(Sk, 0)Zk+1 + Zk+1.Ri(Sk, τ, ξk+1)Zk+1

where Ri converges uniformly to 0 when τ goes to 0, when ‖Zk+1‖ ≤ ǫ and ‖Sk‖ ≤ r.
We have:

E

(
∂θi
∂z

(S, 0)Zk+1

)
= τ

n∑

j=1

∂θi
∂zj

(S, 0)mj

and

E

(
Zk+1.

∂2θi
∂z∂z′

(S, 0)Zk+1

)
= τ

n∑

j,l=1

∂2θi
∂zlzj

Σj,l + o(τ)
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where o(τ)
τ converges to zero when τ goes to zero. As a consequence, we find that:

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E [(Sk+1 − Sk)|Sk = S, ‖Zk+1‖ ≤ ǫ(r)]− b(S)

∥∥∥∥ = 0 (2.13)

Remarking that
∥∥∥∥
1

τ
E
(
(Sk+1 − Sk)1‖Zk+1‖≤ǫ|Sk = S

)
− b(S)

∥∥∥∥

≤
∥∥∥∥
(
1

τ
E ((Sk+1 − Sk)|Sk = S, ‖Zk+1‖ ≤ ǫ)− b(S)

)∥∥∥∥P(‖Zk+1‖ ≤ ǫ(r))+‖b(S)‖P(‖Zk+1‖ ≥ ǫ)

As we saw that P(‖Zk+1‖ ≥ ǫ) ≤ τ1+
η
2E

[
(‖ξk+1‖)2+η

]
×
(

1
ǫ(r)−‖m‖τ

)2+η
and given

(3.35) and the fact that b is continuous, we find that:

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E
(
(Sk+1 − Sk)1‖Zk+1‖≤ǫ|Sk = S

)
− b(S)

∥∥∥∥ = 0 (2.14)

Similarly, we show that

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E
(
(Sk+1 − Sk)(Sk+1 − Sk)

t1‖Zk+1‖≤ǫ|Sk = S
)
− aat(S)

∥∥∥∥ = 0 (2.15)

Given (2.1), we have the following inequality for Sik+1:

Sik+1 ≤ Sik exp (Z
i)

(
1 +

2αi
Di

‖f‖∞
)

≤ Sik exp (miτ +
√
τξik+1)

(
1 +

2αi
Di

‖f‖∞
)

which implies that, conditional on Sk = S and for p > 0 such that p
√
τ < η, Sk+1 ∈ Lp.

Using this result for p = 2, we find that for
√
τ < η

2 , Sk+1 ∈ L2 and we can use Cauchy
Schwarz inequality: ∣∣E

(
(Sik+1 − Sik)1‖Zk+1‖≥ǫ|Sk = S

)∣∣

≤
√

E
(
(Sik+1 − Sik)

2|Sk = S
)
P (‖Zk+1‖ ≥ ǫ(r))

≤
√

E
(
(Sik+1 − Sik)

2|Sk = S
)
√

E

( ‖ξk+1‖
√
τ

ǫ(r)− ‖µ‖τ

)4+η

≤ τ1+
η
4

√
E
(
(Sik+1 − Sik)

2|Sk = S
)
√

E

( ‖ξk+1‖
ǫ− ‖µ‖τ

)4+η

As E(‖ξk+1‖4+η) < ∞, Sk+1 ∈ L2 and Sk+1 stays L2 bounded as ‖Sk‖ ≤ r and τ
goes to 0, we obtain:

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E
(
(Sk+1 − Sk)1‖Zk+1‖≥ǫ|Sk = S

)∥∥∥∥ = 0 (2.16)
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Using the same property with p=4, we show that

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E
(
(Sk+1 − Sk)(Sk+1 − Sk)

t1‖Zk+1‖≥ǫ|Sk = S
)∥∥∥∥ = 0 (2.17)

(3.36) and (3.38) give (2.11). Similarly, (4.41) and (3.39) give (2.12).

The following lemma gives the explicit expressions of a and b defined in (2.8) and
(2.9) respectively.

Lemma 2.8.2 (2.8) and (2.9) respectively can be written as

ai,j(S) = Si
[
Ai,j +

αi
Di

1

V0
f ′
(
V (S)

V0

)
(Atπ(S))j

]
(2.18)

bi(S) = Simi + Si
αi
Di

1

2V 2
0

f ′′
(
V (S)

V0

)
π(S).Σπ(S) (2.19)

+Si
αi
Di

1

V0
f ′
(
V (S)

V0

)
(π(S).m+ (Σπ(S))i)

where π(S) =




α1S
1

...
αnS

n


 and V (S) =

n∑

j=1

αjS
j .

Proof Given (2.1), θ is defined as:

θi(S, z) = Si exp(zi)


1 +

αi
Di


f




n∑

j=1

αjS
j

V0
exp(zj)


− f

(
V (S)

V0

)




As a consequence, we find that for l 6= i:

∂θi
∂zl

(S, 0) = Si
αi
Di
f ′
(
V (S)

V0

)
αlS

l

V0

and
∂θi
∂zi

(S, 0) = Si + Si
αi
Di
f ′
(
V (S)

V0

)
αiS

i

V0

In addition, for l 6= i and j 6= i, we find that

∂2θi
∂zj∂zl

(S, 0) = Si
αi
Di
f ′′
(
V (S)

V0

)
αlS

l

V0

αjS
j

V0

∂2θi
∂zi∂zl

(S, 0) = Si
αi
Di

(
f ′′
(
V (S)

V0

)
αlS

l

V0

αiS
i

V0
+ f ′

(
V (S)

V0

)
αlS

l

V0

)

and
∂2θi
∂z2i

(S, 0) = Si + Si
αi
Di

(
f ′′
(
V (S)

V0

)(
αiS

i

V0

)2

+ f ′
(
V (S)

V0

)
2αiS

i

V0

)

and by direct computation of (2.8) and (2.9) we find 3.40 and 3.41.
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Because f is C3, a and b are C2 and C1. Furthermore, because f’, and hence f” and
f (3), have a compact support and because we focus on S ∈

(
R
∗
+

)n
and αi ≥ 0, there

exists R > 0 such that when ‖S‖ ≥ R, f ′
(
V (S)
V0

)
= f ′′

(
V (S)
V0

)
= f (3)

(
V (S)
V0

)
= 0. As a

consequence, there exists K > 0 such that for all S ∈
(
R
∗
+

)n
:

‖a(S)‖ + ‖b(S)‖ ≤ K‖S‖ (2.20)

Furthermore, as the first derivatives of a and b are bounded, a and b are Lipschitz.

Define the differential operator G : C∞
0

(
R
∗
+

)n 7→ C1
0

(
R
∗
+

)n
by

Gh(x) =
1

2

∑

1≤i,j≤n
(aat)i,j(x)∂i∂jh+

∑

1≤i≤n
bi(x)∂ih

As a and b verify (2.20), (Ethier and Kurtz, 1986, Theorem 2.6, Ch.8) states that the
martingale problem associated to (G, δS0

) is well-posed. As we have shown Lemma 2.8.1,

by (Ethier and Kurtz, 1986, Theorem 4.2, Ch.7), when τ → 0,
(
S⌊ t

τ
⌋

)
t≥0

converges in

distribution to the solution (P, (Pt)t≥0) of the martingale problem associated to (G, δS0
).

Furthermore, as a and b are Lipschitz, the solution of this martingale problem is the
unique strong solution of the stochastic differential equation:

dPt = b(Pt)dt+ a(Pt)dWt and P0 = S0

which concludes the proof of Theorem 2.4.2.

2.8.2 Proof of Proposition 2.6.1

Theorem 2.4.2 gives us the dynamics of asset prices in the continuous-time limit:

dP it
P it

= µi(Pt)dt+ (σ(Pt)dWt)i

where W is an n dimensional Brownian motion and where the coefficients are Lipschitz.
As a consequence, starting from P0 ∈

(
R
∗
+

)n
, for all 1 ≤ i ≤ n, P it is strictly positive.

We also have for all 1 ≤ i ≤ n, αigeq0 and so: Vt =
∑

1≤k≤n
αkP

k
t is strictly positive. Let’s

focus on the dynamics of the fund’s position.

dVt =
∑

1≤i≤n
αidP

i
t =

∑

1≤i≤n
αiP

i
t (µi(Pt)dt+ (σ(Pt)dWt)i)

Dividing by Vt and denoting xit =
αiP

i
t

Vt
, we obtain

dVt
Vt

=
∑

1≤i≤n
xit(µi(Pt)dt+ (σ(Pt)dWt)i)
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=
∑

1≤i≤n
xitµi(Pt)dt+

∑

1≤i≤n
xit(σ(Pt)dWt)i

=
∑

1≤i≤n
xitµi(Pt)dt+

∑

1≤i≤n
xit(

∑

1≤j≤n
σi,j(Pt)dW

j
t )

=
∑

1≤i≤n
xitµi(Pt)dt+

∑

1≤j≤n

∑

1≤i≤n
xitσi,j(Pt)dW

j
t .

As a consequence, the instantaneous variance of the fund is
∑

1≤j≤n
(
∑

1≤i≤n
xitσi,j(Pt))

2.

The statement follows.
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Chapter 3

Fire sales forensics: measuring endogenous

risk

Abstract

We propose a tractable framework for quantifying the impact of fire sales on the volatility
and correlations of asset returns in a multi-asset setting. Our results enable to quantify
the impact of fire sales on the covariance structure of asset returns and provide a quanti-
tative explanation for spikes in volatility and correlations observed during liquidation of
large portfolios. These results allow to estimate the impact and magnitude of fire sales
from observation of market prices: we give conditions for the identifiability of model
parameters from time series of asset prices, propose an estimator for the magnitude of
fire sales in each asset class and study the consistency and large sample properties of
the estimator. We illustrate our estimation methodology with two empirical examples:
the hedge fund losses of August 2007 and the Great Deleveraging following the default
of Lehman Brothers in Fall 2008.

69



CHAPTER 3. FIRE SALES FORENSICS: MEASURING ENDOGENOUS RISK

3.1 Introduction

Fire sales or, more generally, the sudden deleveraging of large financial portfolios, have
been recognized as a destabilizing factor in recent (and not-so-recent) financial crises,
contributing to unexpected spikes in volatility and correlations of asset returns and re-
sulting in spirals of losses for investors (Carlson, 2006; Brunnermeier, 2008; Khandani and Lo,
2011). In particular, unexpected increases in correlations across asset classes have fre-
quently occurred during market downturns (Cont and Wagalath, 2012b; Bailey et al.,
2012), leading to a loss of diversification benefits for investors, precisely when such ben-
efits were desirable.

For instance, during the first week of August 2007, when a large fund manager
deleveraged his/her positions in long-short market neutral equity strategies, other long-
short market neutral equity funds experienced huge losses, while in the meantime, in-
dex funds were left unaffected (Khandani and Lo, 2011). On a larger scale, the Great
Deleveraging of financial institutions’ portfolios subsequent to the default of Lehman
Brothers in fall 2008 led to an unprecedented peak in correlations across asset returns
(Fratzscher, 2011).

The importance of fire sales as a factor of market instability is recognized in the
economic literature. Shleifer and Vishny (1992, 2011) characterize an asset fire sale by a
financial institution as a forced sale in which potential high valuation buyers are affected
by the same shocks as the financial institution, resulting in a sale of the asset at a dis-
counted price to non specialist buyers. They underline the fact that in the presence of fire
sales, losses by financial institutions with overlapping holdings become self-reinforcing,
leading to downward spirals for asset prices and, ultimately, to systemic risk. Pedersen
(2009) describes qualitatively the effects of investors running for the exit and the spirals
of losses and spillover effects they generate. Shin (2010) and ? propose equilibrium mod-
els which takes into account the supply and demand generated by investors reacting to
a price move and show how feedback effects contribute to the amplification of volatility
and market instability. ? emphasize the role of institutional investors in price-mediated
contagion, suggesting that crisis spread through the asset holdings of international in-
vestors rather than through changes in fundamentals. Brunnermeier (2008) describes the
channel through which losses in mortgage backed securities during the recent financial
crisis led to huge losses in equity markets, although those two assets classes had been
historically uncorrelated.

The empirical link between fire sales and increase in correlation across asset returns
has been documented in several recent studies. Coval and Stafford (2007) give empirical
evidence for fire sales by open-end mutual funds by studying the transactions caused
by capital flows. They show that funds in distress experience outflows of capital by
investors which result in fire sales in existing positions, creating a price pressure in the
securities held in common by distressed funds. Jotikasthira et al. (2011) lead an em-
pirical investigation on the effects of fund flows from developed countries to emerging
markets. They show that such investment flows generate forced trading by fund man-
agers, affecting asset prices and correlations between emerging markets and creating a
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new channel through which shocks are transmitted from developed markets to emerg-
ing markets. Anton and Polk (2008) find empirically that common active mutual fund
ownership predicts cross-sectional variation in return realized covariance.

However, although the empirical examples cited above are related to liquidation of
large portfolios, most theoretical studies focus for simplicity on fire sales in a single
asset market and thus are not able to investigate the effect of fire sales on asset return
correlations and the resulting limits to diversification alluded to above.

Kyle and Xiong (2001) propose an equilibrium model, which takes into account the
supply and demand of three categories of traders: noise traders, long-term investors
and convergence traders, in a market with two risky assets and find that convergence
traders, who are assumed to trade using a logarithmic utility function, can react to a price
shock in one asset by deleveraging their positions in both markets, leading to contagion
effects. Greenwood and Thesmar (2011) propose a simple framework for modeling price
dynamics which takes into account the ownership structure of financial assets, considered
as given exogenously. Cont and Wagalath (2012b) model the systematic supply and
demand generated by investors exiting a large distressed fund and quantify its impact
on asset returns.

We propose here a tractable framework for modeling and estimating the impact of fire
sales in multiple funds on the volatility and correlations of asset returns in a multi-asset
setting. We explore the mathematical properties of the model in the continuous-time
limit and derive analytical results relating the realized covariance of asset returns to the
parameters describing the volume of fire sales. In particular, we show that, starting from
homoscedastic inputs, feedback effects from fire sales naturally generate heteroscedastic-
ity in the covariance structure of asset returns, thus providing an economic interpretation
for various multivariate models of heteroscedasticity in the recent literature (Engle, 2002;
Da Fonseca et al., 2008; Gouriéroux et al., 2009; Stelzer, 2010). Our results allow for a
structural explanation for the variability observed in measures of cross sectional depen-
dence in asset returns (Bailey et al., 2012), by linking such increases in cross-sectional
correlation to the deleveraging of large portfolios.

The analytically tractable nature of these results allows to explore in detail the
problem of estimating these parameters from empirical observations of price series; we
explore the corresponding identification problem and propose a method for estimating
the magnitude of distressed selling in each asset class, and study the consistency and
large sample properties of the proposed estimator. These results provide a quantitative
framework for the ’forensics analysis’ of the impact of fire sales and distressed selling,
which we illustrate with two empirical examples: the August 2007 hedge fund losses and
the Great Deleveraging of bank portfolios following the default of Lehman Brothers in
September 2008.

Our framework links large shifts in the realized covariance structure of asset returns
with the liquidation of large portfolios, in a framework versatile enough to be amenable
to empirical data. This provides a toolbox for risk managers and regulators in view
of investigating unusual market events and their impact on the risk of portfolios in a
systematic way, moving a step in the direction proposed by Fielding et al. (2011), who
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underlined the importance of systematically investigating all ’systemic risk’ events in
financial markets, as done by the National Transportation Safety Board for major civil
transportation accidents.

Outline This paper is organized as follows. Section 3.2 presents a simple framework for
modeling the impact of fire sales in various funds on asset returns. Section 3.3 resolves
the question of the identification and estimation of the model parameters, characterizing
the fire sales. Section 3.4 displays the results of our estimation procedure on liquidations
occurring after the collapse of Lehman Brothers while Section 3.5 is focused on the study
of the positions liquidated during the first week of August 2007.

3.2 Fire sales and endogenous risk

3.2.1 Impact of fire sales on price dynamics: a multiperiod model

Consider a financial market where n assets/financial strategies are traded at discrete
dates tk = k

N , multiples of a time step 1
N ( taken to be a trading day in the empirical

examples: N = 250). The value of asset/financial strategy i at date tk is denoted Sik.
We consider J institutional investors trading in these assets: fund j initially holds

αji units of asset i. The value of this (benchmark) portfolio at date tk is denoted

V j
k =

n∑

i=1

αjiS
i
k (3.1)

The impact of (exogenous) economic factors (’fundamentals’) on prices is modeled
through an IID sequence (ξk)k≥1 of Rn-valued centered random variables such that, in
the absence of fire sales, the return of asset i during period [tk, tk+1] is given by

exp

(
1

N

(
mi −

Σi,i
2

)
+

√
1

N
ξik+1

)
− 1

Here mi represents the expected return of asset i in the absence of fire sales and the
’fundamental’ covariance matrix Σ, defined by

Σi,j = cov(ξik, ξ
j
k)

represents the covariance structure of returns in the absence of large systematic trades
by institutional investors.

Typically, over short time horizons of a few days, institutional investors do not alter
their portfolio allocations. However, the occurrence of large losses typically leads the
fund to sell off part of its assets (Coval and Stafford, 2007; Jotikasthira et al., 2011;
Shleifer and Vishny, 2011). Such distressed selling may be triggered endogenously by� capital requirements set by regulators or target leverage ratios set by fund man-

agers, which lead financial institutions to deleverage their portfolios when faced
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with trading losses (Danielsson et al., 2004; Greenwood and Thesmar, 2011). Con-
sider the simple example of a fund whose maximal leverage ratio is 12. Initially
this fund possesses $10 million of equity and borrows $90 million to build a port-
folio of assets worth $100 million. The initial leverage of this fund is hence equal
to Assets

Assets−Debt =
100

100−90 = 10 < 12.
A decline of d (expressed in percent) in the value of the assets held by the fund

modifies the fund’s leverage to a value of 100×(1−d)
100×(1−d)−90 . As a consequence, a decline

in asset value of more than 1.8% leads to a spike in the fund’s leverage ratio above
the maximum leverage ratio of 12. In order to maintain such maximum leverage
ratio, the fund can either raise equity (which can be costly, especially at a time
when its portfolio value is decreasing) or, most likely, engage in fire sales. The
diagram below illustrates such endogenous mechanism for distressed selling when
asset value drops by 5%, leading to liquidation of $35 million of assets. On the
contrary, as long as the drop in asset value is lower than 1.8%, the leverage of the
fund remains below 12 and there is no distressed selling.

Note that this mechanism is asymmetric with respect to losses/gains: large losses trigger
fire sales, but large gains do not necessarily result in massive buying. Once the capi-
tal requirement constraints or leverage constraints are not binding, they may cease to
influence the fund managers’ actions in a decisive manner.

Debt
(90)

Equity
(10)

Assets
(100)

Leverage = 10 < 12

Debt
(90)

Equity (5)

Assets
(95)

Leverage = 95
5 > 12

Liquidation of
$35 million
of assets

Asset value
drops by 5%

Leverage
too large

Fire sales may be also due to:� investors redeeming (or expanding) their positions depending on the performance of
the funds, causing inflows and outflows of capital. This mechanism is described by
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Coval and Stafford (2007), who show empirically that funds in distress experience
outflows of capital by investors and explain that, as the ability of borrowing is
reduced for distressed funds and regulation and self-imposed constraints prevent
them from short-selling other securities, such outflows of capital result in fire sales
in existing positions.� rule based strategies –such as portfolio insurance– which result in selling when a
fund underperforms (Gennotte and Leland, 1990),� sale of assets held as collateral by creditors of distressed funds (Shleifer and Vishny,
2011).

The impact of fire sales may also be exacerbated by short-selling and predatory
trading: Brunnermeier and Pedersen (2005) show that, in the presence of fire sales in a
distressed fund, the mean-variance optimal strategy for other investors is to short-sell
the assets held by the distressed fund and buy them back after the period of distress. A
common feature of these mechanisms is that they react to a (negative) change in fund
value.

Here we do not attempt to model each of these mechanisms in detail but focus in-
stead on their aggregate effect. This aggregate effect may be modeled in a parsimonious
manner by introducing a deleveraging schedule, represented by a function fj which mea-
sures the systematic supply/demand generated by the fund j as a function of the fund’s
return: when, due to market shocks, the value of the portfolio j moves over [tk, tk+1]
from V j

k to
n∑

l=1

αjlS
l
k exp (

1

N
(ml −

Σl,l
2

) +

√
1

N
ξlk+1)

a portion

fj

(
V j
k

V j
0

)
− fj

(
1

V j
0

n∑

l=1

αjlS
l
k exp

(
1

N
(ml −

Σl,l
2

) +

√
1

N
ξlk+1

))
(3.2)

of fund j is liquidated between tk and tk+1, proportionally in each asset detained by the
fund.

As shown in the previous example and by Jotikasthira et al. (2011), negative returns
for a fund lead to outflows of capital from this fund: this implies that fj is an increasing
function. Fire sales occur when a fund underperforms significantly and its value goes
below a threshold and it ends when the fund is entirely liquidated: as a consequence,
we choose fj to be constant for small and large values of its argument (i.e. constant

outside an interval [βliqj , βj ]) with βj < 1. Furthermore, we choose fj to be concave,
capturing the fact that fire sales accelerate as the fund exhibits larger losses. Figure 3.1
displays an example of such a deleveraging schedule fj. As long as fund j’s value remains

above βjV
j
0 , the portion liquidated, given in (3.2), is equal to zero, as fj is constant on

[βj ,+∞[: there are no fire sales. A drop in fund value below that threshold generates
fire sales of a portion of fund j, described in (3.2).
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−1

−0.8

−0.6

−0.4

−0.2

0

Fund value

Portion of the fund
liquidated

Drop in fund value

Figure 3.1: Example of a deleveraging schedule fj

When the trades are sizable with respect to the average trading volume, the sup-
ply/demand generated by this deleveraging strategy impacts asset prices. We introduce,
for each asset i, a price impact function φi(.) which captures this effect: the impact of
buying v shares (where v < 0 represents a sale) on the return of asset i is φi(v). We
assume that φi : R 7→ R is increasing and φi(0) = 0.

The impact of fire sales on the return of asset i is then equal to

φi




J∑

j=1

αji

(
fj(

1

V j
0

n∑

l=1

αjlS
l
k exp (

1

N
(ml −

Σl,l
2

) +

√
1

N
ξlk+1))− fj(

V j
k

V j
0

)

)


The price dynamics can be summed up as follows:

Sik Sik exp
(

1
N (mi − Σi,i

2 ) +
√

1
N ξ

i
k+1

)
Sik+1

exogenous

factors (ξk+1)

fire sales

Sik+1 = Sik exp

(
1

N

(
mi −

Σi,i
2

)
+

√
1

N
ξik+1

)
×


1 + φi




J∑

j=1

αji

(
fj(

1

V j
0

n∑

l=1

αjlS
l
k exp (

1

N
(ml −

Σl,l
2

) +

√
1

N
ξlk+1))− fj(

V j
k

V j
0

)

)




(3.3)
where V j

k is the benchmark portfolio value of fund j at date tk, defined in (3.1).
At each period, the return of asset i can be decomposed into a fundamental com-

ponent, which is independant from the past, and an endogenous component due to the
impact of fire sales. Note that when there are no fire sales, this endogenous term is equal
to zero and the return of asset i is equal to its fundamental return.

75



CHAPTER 3. FIRE SALES FORENSICS: MEASURING ENDOGENOUS RISK

Assumption 3.2.1 S0 ∈
(
R
∗
+

)n
and min

1≤i≤n
φi


−2

n∑

j=1

|αji | × ‖fj‖∞


 > −1.

Proposition 3.2.2 Under Assumption 3.2.1, (3.1)–(3.3) define a price dynamics S
which is a discrete-time Markov process in

(
R
∗
+

)n
.

Proof Equations (3.1) and (3.3) show that Sk+1 depends only on its value at tk and on
ξk+1, which is independent of events previous to tk. The price vector S is thus a discrete-

time Markov process. Furthermore, when min
1≤i≤n

φi


−2

n∑

j=1

|αji | × ‖fj‖∞


 > −1, the

endogenous price impact due to fire sales, is strictly larger than -1, which ensures that
the Markov process stays in

(
R
∗
+

)n
.

This multiperiod model exhibits interesting properties: in particular, as shown in
(Cont and Wagalath, 2012b), the presence of distressed selling induces an endogenous,
heteroscedastic component in the covariance structure of returns, which leads to path-
dependent realized correlations, even in the absence of any heteroscedasticity in the
fundamentals.

Figure 3.2 shows an example of such endogenous correlations: we simulated 106 price
trajectories of this multiperiod model with the parameters used in (Cont and Wagalath,
2012b, Section 3) and for each trajectory, we computed the realized correlation between
all pairs of assets. We find that even in the case where the exogenous shocks driving the
asset values are independent (i.e. the ’fundamental’ covariance matrix Σ is diagonal), the
presence of distressed selling leads to significant realized correlations, thereby increasing
the volatility experienced by investors holding the fund during episodes of fire sales. This
phenomenon may substantially decrease the benefits of diversification.

Our goal is to explore such effects systematically and propose a method for estimating
their impact on price dynamics.

3.2.2 Continuous-time limit

The multiperiod model described above is rather cumbersome to study directly; in the
sequel we focus on its continuous-time limit, which is analytically tractable and more
easily related to commonly used diffusion models for price dynamics. This will allow us
to compute realized covariances between asset returns in the presence of feedback effects
from distressed selling.

For two n-dimensional vectors x and y, we denote x.y =
∑

1≤i≤n
xiyi the scalar product

between vectors x and y. ForM ∈ Mn(R),M
t is the transpose of matrix M. Sn(R) (resp.

S+
n (R)) denotes the set of real-valued symmetric matrices (resp. real-valued symmetric

positive semi-definite matrices). For a sequence X(N) of random variables indexed by
integers N , we denote the fact that X(N) converges in law (resp. in probability) to X
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Figure 3.2: Distribution of realized correlation between two securities in the presence of
distressed selling (case of zero fundamental correlation)

when N goes to infinity by X(N) ⇒
N→∞

X (resp. X(N) P→
N→∞

X). For (a, b) ∈ R
2, we

denote a ∧ b = min(a, b).
In order to study the continuous-time limit of the multiperiod model described in

the previous section, we make the following assumption.

Assumption 3.2.3 For i = 1..n, j = 1..J,

φi ∈ C3(R) , fj ∈ C3
0(R) and αji ≥ 0

∃η > 0,E(‖ exp(ηξ)‖) <∞ and E(‖ξ‖η+4) <∞
where Cp0(R) denotes the set of real-valued, p-times continuously differentiable maps
whose first derivative has compact support.

Note that if fj ∈ Cp0(R), all its derivatives of order 1 ≤ l ≤ p have compact support.
In particular fj is constant for large values and very small values of its argument. This
assumption has a natural interpretation in our context: fire sales occur when funds
underperform, i.e. when the value of the fund relative to a benchmark falls below a
threshold, and cease when the fund defaults, i.e. when the value of the fund relative to
the benchmark decreases below a default threshold.

Theorem 3.2.4 Under Assumptions 3.2.1 and 3.2.3, the process (S⌊Nt⌋)t≥0 converges
weakly on the Skorokhod space D([0,∞[,Rn), as N → ∞, to a diffusion process (Pt)t≥0

solution of the stochastic differential equation

dP it
P it

= µi(Pt)dt+ (σ(Pt)dWt)i 1 ≤ i ≤ n (3.4)
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where µ (resp., σ) is a R
n-valued (resp. matrix-valued) mapping defined by

σi,k(Pt) = Ai,k + φ′i(0)
J∑

j=1

αjif
′
j(
V j
t

V j
0

)

(
Aπjt

)
k

V j
0

(3.5)

µi(Pt) = mi +
φ′i(0)
2

J∑

j=1

αji

(V j
0 )

2
f ′′j (

V j
t

V j
0

)πjt .Σπ
j
t (3.6)

+
J∑

j=1

φ′i(0)
αji
V j
0

f ′j(
V j
t

V j
0

)
(
πjt .m+ (Σπjt )i

)
+
φ′′i (0)
2

J∑

j,r=1

αjiα
r
i

V j
0 V

r
0

f ′j(
V j
t

V j
0

)f ′r(
V r
t

V r
0

)πjt .Σπ
r
t

Here Wt is an n-dimensional Brownian motion, πjt =




αj1P
1
t

...

αjnPnt


 is the (dollar) al-

location of fund j, V j
t =

n∑

k=1

αjkP
k
t is the value of fund j, mi = mi − Σi,i

2 and A is a

square-root of the fundamental covariance matrix: AAt = Σ.

The proof of this Theorem is given in Appendix 3.6.1.

Remark 3.2.5 The limit price process that we exhibit in Theorem 3.2.4 depends on the
price impact functions only through their first and second derivatives in 0, φ′i(0) and
φ′′i (0). In particular, the expression of σ in (3.5) shows that realized volatilities and
realized correlations of asset returns depend only on the slope φ′i(0) of the price impact
function. As a consequence, under our assumptions, a linear price impact function would
lead to the same realized covariance structure for asset returns in the continuous-time
limit.

In the remainder of this paper, which is dedicated to the study of the impact of fire sales
on the covariance structure of asset returns, we hence use the assumption of linear price
impact: Di =

1
φ′i(0)

then corresponds to the market depth for asset i and is interpreted

as the number of shares an investor has to buy in order to increase the price of asset i
by 1%.

Corollary 3.2.6 (Case of linear price impact) When φi(x) =
x
Di

, the drift and volatil-
ity of the stochastic differential equation (3.4) verified by the continuous-time price pro-
cess are:

σi,k(Pt) = Ai,k +
1

Di

∑

1≤j≤J
αjif

′
j(
V j
t

V j
0

)

(
Aπjt

)
k

V j
0

(3.7)

µi(Pt) = mi +
1

Di

J∑

j=1

(
αji

2(V j
0 )

2
f ′′j (

V j
t

V j
0

)πjt .Σπ
j
t +

αji
V j
0

f ′j(
V j
t

V j
0

)
(
πjt .m+ (Σπjt )i

))
(3.8)

where Wt, π
j
t , V

j
t , m and A are defined in Theorem 3.2.4.
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When market depths are infinite, the price dynamics follows a multivariate exponen-
tial Brownian motion. In the presence of fire sales by distressed sellers, the fundamental
dynamics of the assets is modified.

3.2.3 Realized covariance in the presence of fire sales

The realized covariance (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004)
between dates t1 and t2 computed on a time grid with step 1

N is defined as

Ĉ
(N)
[t1,t2]

=
1

t2 − t1
([X,X]

(N)
t2 − [X,X]

(N)
t1 ) (3.9)

whereX is the log price process defined byXi
t = lnP it and [X,X]

(N)
t =

(
[Xi,Xk]

(N)
t

)
1≤i,k≤n

with

[Xi,Xk]
(N)
t =

∑

1≤l≤⌊tN⌋
(Xi

l/N −Xi
(l−1)/N )(Xk

l/N −Xk
(l−1)/N ) (3.10)

As N goes to infinity, the process
(
[X,X]

(N)
t

)
t≥0

converges in probability on the Sko-

rokhod space D([0,∞[,Rn) to an increasing, S+
n (R)-valued process ([X,X]t)t≥0, the

quadratic covariation of X (Jacod and Protter, 2012, Theorem 3.3.1). We define the
S+
n (R)-valued process c = (ct)t≥0, which corresponds intuitively to the ’instantaneous

covariance’ of returns, as the derivative of the quadratic covariation process. The realized
covariance matrix of returns between t1 and t2 is denoted C[t1,t2].

[X,X]t =

∫ t

0
csds C[t1,t2] =

1

t2 − t1

∫ t2

t1

ct dt (3.11)

Theorem 3.2.6 allows to compute the realized covariance matrix for the n assets.

Proposition 3.2.7 The instantaneous covariance matrix of returns, ct, defined in (3.11),
is given by:

ct = Σ+
J∑

j=1

[
1

V j
0

f
′
j(
V j
t

V j
0

)
(
Λj(π

j
t )
tΣ+ ΣπjtΛ

t
j

)]
+

J∑

j,k=1

πjt .Σπ
k
t

V j
0 V

k
0

f
′
j(
V j
t

V j
0

)f
′
k(
V k
t

V k
0

)ΛjΛ
t
k

where

πjt =




αj1P
1
t

...

αjnPnt


 denotes the (dollar) holdings of fund j and Λj =




αj
1

D1

...
αj
n

Dn


 rep-

resents the positions of fund j in each market as a fraction of the respective market
depth.

Fire sales impact realized covariances between assets. In the presence of fire sales,
realized covariance is the sum of the fundamental covariance matrix Σ and an excess
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realized covariance which is liquidity-dependent and path-dependent. The magnitude
of this endogenous impact is measured by the vectors Λj , which represent the positions
of each fund as a fraction of asset market depths. The volume generated by fire sales
in fund j on each asset i is equal to αji × f ′j and its impact on the return of asset i is

equal to
αj
i

Di
× f ′j. This impact can be significant even if the asset is very liquid, when

the positions liquidated are large enough compared to the asset’s market depth. Thus,
even starting with homoscedastic inputs, fire sales naturally lead to endogenous patterns
of heteroscedasticity in the covariance structure of asset returns –in particular spikes or
plateaux of high correlation during liquidation periods– similar to those observed in
empirical data.

More precisely, we observe that the excess realized covariance terms due to fire sales
contain a term of order one in ‖Λ‖ plus higher order terms:

ct = Σ+

J∑

j=1

[
1

V j
0

f
′
j

(
V j
t

V j
0

)(
Λj(π

j
t )
tΣ+ ΣπjtΛ

t
j

)]
+O(‖Λ‖2) (3.12)

where
Λ = (Λ1, ...,ΛJ ) ∈ Mn×J(R) (3.13)

where Λj is defined in Proposition 3.2.7 and O(‖Λ‖2)
‖Λ‖2 is bounded as ‖Λ‖ → 0. This result is

due to the fact that under Assumption 3.2.3, the second order terms
πj
t .Σπ

k
t

V j
0 V

k
0

f
′
j(
V j
t

V j
0

)f
′
k(
V k
t

V k
0

)

in the expression of ct in Proposition 3.2.7 are bounded because for all 1 ≤ j ≤ n, f ′j has
a compact support.

In addition, if we denote γj the average rate of liquidation (for example γj =
fj(βj)−fj(βliq

j )

βj−βliq
j

), we can approximate the terms of order one in ‖Λ‖ in (3.12) as follows:

J∑

j=1

[
1

V j
0

f
′
j

(
V j
t

V j
0

)(
Λj(π

j
t )
tΣ+ ΣπjtΛ

t
j

)]
=

J∑

j=1

[
γj

V j
0

(
Λj(π

j
t )
tΣ+ ΣπjtΛ

t
j

)]
+O(‖f ′′‖)

where ‖f ′′‖ =

J∑

j=1

‖f ′′j ‖∞.

As a consequence, Proposition 3.2.7 may be interpreted as follows: if there are no
fire sales between 0 and T , the realized covariance of returns between 0 and T is given
by

C[0,T ] =
1

T

∫ T

0
ct dt = Σ

while the realized covariance between T and T + τliq (where liquidations could have
occurred) contains an endogenous component, whose leading terms will be

C[T,T+τliq] =
1

τliq

∫ T+τliq

T
ct dt = Σ+ LM0ΠΣ+ ΣΠM0L+O(‖Λ‖2, ‖f ′′‖) (3.14)
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where the remainder is composed of higher order corrections in ‖Λ‖2 and ‖f ′′‖, and

M0 =
J∑

j=1

γj

V j
0

× αj(αj)t (3.15)

where αj =




αj1
...

αjn


 is the vector of positions of fund j and L and Π are diagonal ma-

trices with i-th diagonal term equal respectively to 1
Di

and 1
τliq

∫ T+τliq
T P it dt. In practice,

as shown by simulation studies in (Cont and Wagalath, 2012b), this first order approx-
imation is precise enough and we will focus on this approximation in the numerical
examples.

In the absence of distressed selling between 0 and T , the realized covariances between
asset returns during this period are equal to their fundamental value. Between T and
T + τliq, fire sales can affect the realized covariance between asset returns. The excess
realized covariance is characterized by a matrix M0, defined in (3.15), which reflects the
magnitude of the fire sales. Note that we do not assume that all the funds are liquidating
between T and T + τliq. A fund j which is not subject to fire sales during this period of
time has a rate of liquidation γj equal to zero.

In (3.15), αj(αj)t is a n×n symmetric matrix representing an orthogonal projection
on fund j’s positions and hence M0 is a sum of projectors. The symmetric matrix M0

captures the direction and intensity of liquidations in the J funds.

3.2.4 Spillover effects: price-mediated contagion

Consider now the situation where a reference fund with positions (α1, ..., αn) is subject to
distressed selling. As argued above, this leads to endogenous volatility and correlations
in asset prices, which then modifies the volatility experienced by any other fund holding
the same assets.

Proposition 3.2.7 allows to compute the magnitude of this volatility spillover effect
(Cont and Wagalath, 2012b). The following result shows that the realized variance of
a (small) fund with positions (µit, i = 1..n) is the sum of the realized variance in the
absence of distressed selling and an endogenous term which represents the impact of fire
sales in the reference fund.

Corollary 3.2.8 (Spillover effects) In the presence of fire sales in a reference fund
with positions (α1, ..., αn), the realized variance for a small fund with positions (µit)1≤i≤n
between t1 and t2 is equal to 1

t2−t1
∫ t2
t1
γs ds where

γsM
2
s = πµs .Σπ

µ
s +

2f
′
(VsV0 )

V0
(πµs .Σπ

α
s )(Λ.π

µ
s ) +

f
′
(VsV0 )

2

V 2
0

(παs .Σπ
α
s )(Λ.π

µ
s )

2 (3.16)
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where παs =




α1P
1
s

...
αnP

n
s


 and πµs =




µ1tP
1
s

...
µnt P

n
s


 denote the (dollar) holdings of the ref-

erence fund and the small fund respectively, Ms =

n∑

i=1

µisP
i
s is the small fund’s value,

and Λ = ( α1

D1
, ..., αn

Dn
)t represents the positions of the reference fund in each market as a

fraction of the respective market depth.

The second and third term in (3.16), which represent the price-mediated contagion
of endogenous risk from the distressed fund to other funds holding the same assets, are
maximal for funds whose positions are colinear to those of the distressed fund. On the
other hand, these endogenous terms are zero if the two portfolios verify an ’orthogonality
condition’:

Λ.πµt =

n∑

i=1

αi
Di
µitP

i
t = 0, (3.17)

in which case the fund with positions µt is not affected by the fire sales of assets by the
distressed fund.

3.3 Identification and estimation

Theorem 3.2.4 describes the convergence of the multiperiod model to its diffusion limit
under the assumption that the funds liquidate long positions. However, the continuous-
time model given in Theorem 3.2.4 makes sense in a more general setting where we
relax the constraint on the sign of αji i.e. when long-short portfolios are liquidated: in
this case, the coefficients of the stochastic differential equation are still locally Lipschitz,
so by (Ikeda and Watanabe, 1981, Theorem 3.1, Ch.4) the equation still has a unique
strong solution on some interval [0, τ [, where τ is a stopping time (possibly infinite).

In the sequel, we consider the continuous-time model given in Theorem 3.2.4 in this
more general setting which allows for the liquidation of long-short portfolios. Note that
the expressions for covariances and spillover effects are not modified.

3.3.1 Inverse problem and identifiability

Equation (3.14) describes the leading term in the impact of fire sales on the realized co-
variance matrix of returns. Conversely, given that realized covariances can be estimated
from observation of prices series, one can use this relation to recover information about
the volume of liquidation during a fire sales episode.

We now consider the inverse problem of explaining ’abnormal’ patterns in realized
covariance and volatility in the presence of fire sales and estimating the parameters of
the liquidated portfolio from observations of prices. Mathematically, this boils down to
answering the following question: for a given time period [T, T + τliq] where liquidations
could have occurred, is it possible, given Σ, C[T,T+τliq], L and Π, to find M such that

C[T,T+τliq] = Σ+ LMΠΣ+ ΣΠML (3.18)
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The following proposition gives conditions under which this inverse problem is well-posed
i.e. the parameter M is identifiable:

Proposition 3.3.1 (Identifiability) Let L and Π be diagonal matrices with

Lii =
1

Di
Πii =

1

τliq

∫ T+τliq

T
P it dt

If ΠΣL−1 is diagonalizable and there exists an invertible matrix Ω and φ1,...,φn such
that

Ω−1ΠΣL−1Ω =



φ1 0

. . .

0 φn




and for all 1 ≤ p, q ≤ n
φp + φq 6= 0

then there exists a unique symmetric n×n matrixM verifying (3.18) which is given
by

M = Φ(Σ, C[T,T+τliq]) (3.19)

where Φ(Σ, C) is a n× n matrix defined by

[
ΩtΦ(Σ, C)Ω

]
p,q

=
1

φp + φq
×
[
ΩtL−1(C − Σ)L−1Ω

]
p,q

(3.20)

In this case, the unique solution M of (3.18) verifies

M =M0 +O(‖Λ‖2, ‖f ′′‖) (3.21)

where M0 is defined in (3.15).

The proof of this proposition is given in Appendix 3.6.2. Thanks to (3.21), we deduce
the following corollary:

Corollary 3.3.2 The knowledge of M allows to estimate, up to an error term of order
one in ‖Λ‖ and zero in ‖f ′′‖, the volume of fire sales in asset class i between T and
T + τliq:

J∑

j=1

αjiP
i
T

V j
T

× γj ×
(
V j
T − V j

T+τliq

V j
0

)
× V j

T

= (0, ..., 0, P iT , 0, ..., 0)M(PT − PT+τliq ) +O(‖Λ‖2, ‖f ′′‖)
Note that the knowledge of M does not allow in general to reconstitute the detail

of fire sales in each fund. Indeed, the decomposition of M given in (3.15) is not always
unique. Nevertheless, when different funds engage in similar patterns of fire sales, the
common component of these patterns may be recovered from the principal eigenvector
of M . In the empirical examples, we find that M has one large eigenvalue, meaning that
liquidations were concentrated in one direction.
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3.3.2 Consistency and large sample properties

In the remainder of the paper, we make the following assumption, which guarantees that
the identification problem is well-posed in the sense of Proposition 3.3.1:

Assumption 3.3.3 ΠΣL−1 is diagonalisable with distinct eigenvalues φ1, ..., φn such
that for all 1 ≤ p, q ≤ n:

φp + φq 6= 0

As a consequence, (3.19) (3.20) (3.21) hold. We require that the eigenvalues of
ΠΣL−1 are distinct so that the set of matrices Σ verifying Assumption 3.3.3 is an open
subset of Sn(R) which allows for the study of the differentiability of Φ defined in (3.20).

Proposition 3.3.1 states that if we know L = diag( 1
Di

), Π = diag( 1
τliq

∫ T+τliq
T P it dt),

the fundamental covariance matrix, Σ, and the realized covariance matrix between T
and T + τliq, C[T,T+τliq], we can reconstitute M and hence the aggregate characteristics
of the liquidation between T and T + τliq, according to Corollary 3.3.2.

The market depth parameters (L) may be estimated using intraday data, following
the methods outlined in Obizhaeva (2011); Cont et al. (2010). This is further discussed
in Section 3.4. Π may be computed from time series of prices.

Σ and C[T,T+τliq] are estimated using the realized covariance matrices computed on

a time-grid with step 1
N , defined in (3.9). In order to estimate Σ, we have to identify a

period of time with no fire sales. Denote

τ = inf {t ≥ 0 | ∃ 1 ≤ j ≤ J, V j
t < βjV

j
0 } ∧ T. (3.22)

τ is the first time, prior to T , when fire sales occur. In our model, fire sales begin
when the value of a fund j drops below a certain threshold βjV

j
0 , with βj < 1. Given

Corollary 3.2.6, asset prices and hence fund values are continuous, which implies that τ
is a stopping time, bounded by T . Furthermore, as βj < 1 for all 1 ≤ j ≤ J , τ is strictly
positive almost surely: P (τ = 0) = 0. As a consequence, we estimate the fundamental
covariance matrix Σ using the sample realized covariance matrix on [0, τ ], denoted Σ̂(N).
In addition, a natural estimator for C[T,T+τliq] is the sample realized covariance matrix

between T and T + τliq, denoted Ĉ
(N). By (Jacod and Protter, 2012, Theorem 3.3.1),

we find that the estimators of Σ and C[T,T+τliq] are consistent:

Σ̂(N) =
1

τ
[X,X](N)

τ
P−→

N→∞
Σ (3.23)

Ĉ(N) =
1

τliq

(
[X,X]

(N)
T+τliq

− [X,X]
(N)
T

)
P−→

N→∞
C[T,T+τliq] (3.24)

where the process [X,X](N) is defined in (3.10) and τ is defined in (3.22). We can hence

define an estimator M̂ (N) of M by:

M̂ (N) = Φ(Σ̂(N), Ĉ(N)) (3.25)

where Φ is defined in (3.20).
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Proposition 3.3.4 (Consistency) M̂ (N) defined in (3.25) is a consistent estimator of
M :

M̂ (N) = Φ(Σ̂(N), Ĉ(N))
P−→

N→∞
M.

The proof of this proposition is given in Appendix 3.6.2. Proposition 3.3.4 shows that
M̂ (N) defined in 3.25 is a consistent estimator of M , which contains the information on
liquidations between T and T + τliq. The following proposition gives us the rate of this

estimator M̂ (N) and its asymptotic distribution.

Proposition 3.3.5 (Asymptotic distribution of estimator)

√
N
(
M̂ (N) −M

)
⇒

N→∞
∇Φ

(
Σ, C[T,T+τliq]

)
.

(
1
τZτ

1
τliq

(ZT+τliq − ZT )

)
(3.26)

where τ is defined in (3.22), ∇Φ is the gradient of Φ, defined in (3.20), and

Z
ij
t =

1√
2

∑

1≤k,l≤n

∫ t

0

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)
dW̃ kl

s (3.27)

where W̃ is a n2-dimensional Brownian motion independent fromW and Ṽ is a Mn2×n2(R)-
valued process verifying

(ṼtṼ
t
t )
ij,kl = [σσt(Pt)]i,k[σσ

t(Pt)]j,l (3.28)

where σ is defined in (3.7).

The proof of this proposition is given in Appendix 3.6.3. The Brownian motion W̃
describes the estimation errors in (3.25): the fact that it is asymptotically independent
from the randomness W driving the path of the price process allows to compute the
asymptotic distribution of the estimator, conditioned on a given price path and derive
confidence intervals, as explained below.

3.3.3 Testing for the presence of fire sales

Proposition 3.3.5 allows to test whether M 6= 0 i.e. if significant fire sales occurred
between T and T + τliq. Consider the null hypothesis

M = 0 (H0)

Under hypothesis (H0), there are no fire sales between T and T + τliq. The central limit
theorem given in Proposition 3.3.5 can be simplified as follows:

Proposition 3.3.6 Under the null hypothesis (H0), the estimator M̂ (N) verifies the
following central limit theorem:

√
NM̂ (N) ⇒

N→∞
Φ

(
Σ,Σ+

1

τliq
(ZT+τliq − ZT )−

1

τ
Zτ

)
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where Z is a n2-dimensional Brownian motion with covariance

cov(Z
i,j
, Z

k,l
) = Σi,kΣj,l +Σi,lΣj,k

and Φ and τ are defined in (3.20) and (3.22) respectively.

The proof of this proposition is given in Appendix 3.6.4. τ is given in (3.22) and can be
simulated thanks to Corollary 3.2.6. This result allows to test whether the variability
in the realized covariance of asset returns during [T, T + τliq] may be explained by the
superposition of homoscedastic fundamental covariance structure and feedback effects
from fire sales. To do this, we estimate the matrix M and test the nullity of the liquida-
tion volumes derived in Corollary (3.3.2). In practice, it may be possible, for economic
reasons, to identify a period [0, T ] with no fire sales and hence test the presence of fire
sales during [T, T + τliq].

Corollary 3.3.7 Under the null hypothesis (H0) and if there are no fire sales between
0 and T ,

√
N
(
P tT M̂

(N)(PT − PT+τliq )
)

⇒
N→∞

N


0,

(
1

T
+

1

τliq

) n∑

i,j,k,l=1

mijmkl (ΣikΣjl +ΣjkΣil)




with mij =

n∑

p,q=1

[Ω−1PT ]p[Ω
−1(PT − PT+τliq )]q

φp + φq
ΩipΩjqDiDj where Ω and (φi)1≤i≤n are

defined in Proposition 3.3.1, Pt is the vector of prices at date t and (Di)1≤i≤n are the
asset market depths.

The proof of this corollary is given in Appendix 3.6.4. Corollary 3.3.7 gives the

asymptotic law of
(
P tT M̂

(N)(PT − PT+τliq )
)
, the estimated volume of liquidations, under

the null hypothesis (H0) and if there are no fire sales during [0, T ]. We can then define
a level l such that

P

(∣∣∣P tT M̂ ( N)(PT − PT+τliq )
∣∣∣ > l

)
≤ 1− pl

where pl is typically equal to 95% or 99%. If we find that
∣∣∣P tT M̂ ( N)(PT − PT+τliq )

∣∣∣ > l

and if we know that there were no fire sales during [0, T ], then the null hypothesis of no
fire sales between T and T + τliq may be rejected at confidence level pl.

3.3.4 Numerical experiments

To assess the accuracy of these estimators in samples of realistic size, we first apply this
test to a simulated discrete-time market. We consider the case of one fund investing
in n = 20 assets, with fundamental volatility 30% and zero fundamental correlation.
Furthermore, we assume that all assets have the same market depth D and that the

fund is initially equally weighted across these assets:
αiP i

0

V0
= 1

n . The size of the fund
can be captured by the vector Λ, defined in Proposition 3.2.7, which represents the size
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of the fund’s position in each asset as a fraction of the asset’s market depth. In our
simulations, we choose this ratio equal to 20%.

We examine the results of our estimation method in the two following cases:� the fund is not subject to distressed selling� the fund is subject to distressed selling: when the fund value drops below β0 = 95%
of its initial value, the manager deleverages the fund portfolio.

Figure 3.3 displays a trajectory for the fund’s value, where the fund was subject to
distressed selling between T=116 days and T + τliq = 127 days.
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Figure 3.3: Fund value

We consider a market where trading is possible every day ( 1
N = 1

250 ). We calculate

Σ̂(N) and Ĉ(N) and we apply our estimation procedure and calculate in each case (no
liquidation and liquidation cases) an estimate for the volume of liquidations. Using
3.3.7, we can determine, at confidence level 95%, for example, whether there has been a
liquidation or not.

Under the assumption (H0) that M = 0 and using Lemma 3.3.7 we find that

P

(∣∣∣P tT M̂ (N)(PT − PT+τliq )
∣∣∣ > 3.2 × 103

)
≤ 5%

We find that� when there are no fire sales, P tT M̂
(N)(PT − PT+τliq ) = 203 < 3.2 × 103 and we

cannot reject assumption (H0)� when fire sales occur, P tT M̂
(N)(PT − PT+τliq ) = 7× 103 > 3.2 × 103 and we reject

(H0) at a 95% confidence level.
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Let us now focus on the results of our estimation procedure in the case where there were
liquidations and check whether it allows for a proper reconstitution of the liquidated

portfolio. We find that the estimates for the proportions liquidated
αiP i

0

V0
are all positive

and ranging from 2% to 10%, around the true value which is 1
20 = 5%.

3.4 The Great Deleveraging of Fall 2008

Lehman Brothers was the fourth largest investment bank in the USA. During the year
2008, it experienced severe losses, caused mainly by the subprime mortgage crisis, and
on September, 15th, 2008, it filed for chapter 11 bankruptcy protection, citing bank debt
of $613 billion, $155 billion in bond debt, and assets worth $639 billion, becoming the
largest bankruptcy filing in the US history.

The failure of Lehman Brothers generated liquidations and deleveraging in all asset
classes all over the world. The collapse of this huge institution was such a shock to fi-
nancial markets - major equity indices all lost around 10% on that day - that it triggered
stop loss and deleveraging strategies among a remarkable number of financial institu-
tions worldwide. Risk measures of portfolios, for example the value at risk, increased
sharply, obliging financial institutions to hold more cash, which they got by deleveraging
their portfolios, rather than by issuing debt which would have been very costly at such
distressed times.

This massive deleveraging has been documented in several empirical studies. Fratzscher
(2011) studies the effect of key events, such as the collapse of Lehman Brothers, on capi-
tal flows. He uses a dataset on portfolio capital flows and performance at the fund level,
from EPFR, and containing daily, weekly and monthly flows for more than 16000 equity
funds and 8000 bond funds, domiciled in 50 countries. He aggregates the net capital flows
(ie net of valuation changes) for each country and finds that they are negative for all the
countries of the study. This means that fund managers of such funds deleveraged their
positions after the collapse of Lehman Brothers, sometimes in dramatic proportions: in
some cases, the ouflows can represent up to 30% of the assets under management by the
funds.

Our method allows to estimate the net effect of liquidations during this period. We
report below the result of the estimation method described in Section 3.3 SPDRs and
components of the Eurostoxx 50 index. Figure 3.4 shows that the increase of average
correlation in these two equity baskets lasted for around three months after September,
15th, 2008. As a consequence, we examine liquidations that occurred between September,
15th, 2008 and December, 31st, 2008.

We calculate the realized covariance matrices respectively between 02/01/2008 and
T = 09/15/2008 and between T = 09/15/2008 and T + τliq = 12/31/2008 and ap-
ply the estimation procedure described in Section 3.3. We use a linear price impact
model Obizhaeva (2011); Cont et al. (2010). To calibrate the market depth parameters
Di, we follow the approach proposed in Obizhaeva (2011): denoting by σi the average
daily volatility of asset i and ADVi the average daily trading volume, it was shown in
Obizhaeva (2011) for a large panel of US stocks that the ratio 1

D
ADV
σr

does not vary
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Figure 3.4: One-year EWMA estimator of average pairwise correlations of daily returns
in S&P500 and EuroStoxx 50 index

significantly from one asset to another and

1

D

ADV

σr
≈ 0.33. (3.29)

Obizhaeva (2011) also argues empirical evidence that the difference in price impact of
buy-originated trades and sell-originated trades is not statistically significant. We use
average daily volumes and average daily volatility to estimate the market depth of each
asset, using (3.29). Alternatively one could use intraday data, following the methodology
proposed in Cont et al. (2010).

3.4.1 Sector ETFs

We first study fire sales among sector SPDRs, which are sector sub indices of the S&P
500. There exist nine sector SPDRs: Financials (XLF), Consumer Discretionary (XLY),
Consumer Staples (XLP), Energy (XLE), Health Care (XLV), Industrials (XLI), Ma-
terials (XLB), Technology (XLK) and Utilities (XLU) and our goal is to determine
how economic actors investing in those SPDRs liquidated their portfolios following the
collapse of Lehman Brothers.

In order to compute our estimation procedure, we need to know the market depth of
each SPDR, which we can estimate as described in the previous section. Market depths
are given in Table 3.1. We find that financials have the highest market depth and that
other SPDRs have similar market depths.

We can then apply the estimation method described in Section 3.3 and find the
magnitude of fire sales in each SPDR between September, 15th, 2008 and December,
31st, 2008.
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Sector SPDR Estimated Market Depth
×108 shares

Financials 34.8
Consumer Discretionary 4.4
Consumer Staples 6.2
Energy 8.8
Health Care 6.4
Industrials 8.1
Materials 7.0
Technology 7.9
Utilities 7.1

Table 3.1: Estimated market depth for SPDRs.

Our method yields an estimate of 86 billion dollars for fire sales afffecting SPDRs
between September, 15th, 2008 and December, 31st, 2008. Using Corollary 3.3.7, we can
reject the hypothesis of no liquidation at a 95% confidence level for this period. The
liquidation volume that we find is equivalent to a daily liquidation volume of 1.2 billion
dollars per day. In comparison, the average volume on SPDRs before Lehman Brother’s
collapse was 5.1 billion dollars per day. This shows how massive the liquidations were
after this market shock.

Corollary 3.3.2 allows us to determine the aggregate composition of liquidations be-
tween September 15th 2008 and December, 31st, 2008. The daily liquidated volumes and
the proportions of each SPDR are given in Table 3.2. This shows that the aggregate
portfolio liquidated after Lehman Brother’s collapse was a long portfolio. This is con-
sistent with the observation that many financial institutions liquidated equity holdings
in order to meet capital requirements during this period, due to the increase of the risk
associated with Lehman Brother’s collapse. The highest volume of liquidations are asso-
ciated with financial stocks, followed by the energy sector. Those two sectors represent
60% of the liquidations and more that 50 billion dollars liquidated before December,
31st, 2008.

As discussed in Section 3.3.1, the principal eigenvector of M reflects the common
patterns of fire sales. Table 3.3 gives the proportions of fire sales associated to the
principal eigenvector of M . We see that this portfolio is essentially made of financials,
which have a weight of 78%. The large weight of XLF, the financial sector index, may
be explained in terms of the loss of investor confidence in banks in the aftermath of the
Lehman’s collapse.

3.4.2 Eurostoxx 50

We now conduct our analysis on stocks belonging to the Eurostoxx 50 in order to de-
termine the average composition of portfolios diversified among the components of the
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Sector SPDR Daily amount liquidated Weight
×106$

Financials 320 28%
Consumer Discretionary 55 5%
Consumer Staples 38 3.5%
Energy 300 26%
Health Care 63 5.5%
Industrials 90 8%
Materials 110 9.5%
Technology 65 5.5%
Utilities 100 9%

Table 3.2: Daily volume and proportions of fire sales for SPDR between September 15th,
2008 and Dec 31,2008.

Sector SPDR Weight

Financials 78%
Consumer Discretionary 0%
Consumer Staples 2.5%
Energy 4%
Health Care 0%
Industrials 0%
Materials 2.5%
Technology 10%
Utilities 3%

Table 3.3: Proportions of fire sales between September 15th, 2008 and December, 31st,
2008 associated to the principal eigenvector of M
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Eurostoxx 50 and that were liquidated after Lehman Brother’s filing for bankruptcy.
The Eurostoxx 50 is an equity index regrouping the 50 largest capitalizations of the
Euro zone. It is the most actively traded index in Europe and is used as a benchmark
to measure the financial health of the euro zone.

We use the same methodology as in the previous section (choice of dates, estimation
of Σ and market depths). Note that we restricted our study to 45 stocks of the index,
for which we had clean data. The 5 stocks left correspond to the lowest capitalizations
among the index components, with very low liquidity.

We find that 350 billion euros were liquidated on stocks belonging to the Eurostoxx
50 between September, 15th, 2008 and December, 31st, 2008. Our statistical test de-
scribed in Corollary 3.3.7 allows us to reject the null hypothesis of no liquidation at a
99% confidence level. Our estimate for the liquidated volume is equivalent to a daily
liquidation of 5 billion euros, which is equal to one third of the average daily volume of
the index components before September, 15th, 2008.

Figure 3.5, where each bar represents the weight of a stock in the aggregate liqui-
dated portfolio, shows that most of the liquidations following Lehman Brother’s collapse
involved liquidation of long positions in stocks.
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Figure 3.5: Fire sales in Eurostoxx 50 stocks in Fall 2008: each bar represents the weight
of one stock in the aggregate liquidated portfolio

Figure 3.5 shows that fire sales are more intense for some stocks than others. Table
3.4 gives the detail of those stocks. As suggested by the previous section, we see that
the fire sales in the Eurostoxx 50 index were concentrated in the financial and energy
sectors. ING and Deutsche Bank account for almost half of the volume liquidated on
the whole index.
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Stock Amount liquidated Weight
×106 e

ING 1100 25%
Deutsche Bank 1000 23%
Eni 750 16%
Arcelor Mittal 350 8%
Intesa San Paolo 320 7%
Unicredito 300 6.5%

Table 3.4: Most liquidated stocks in the Eurostoxx 50 during the three months following
September, 15th, 2008

3.5 The hedge fund losses of August 2007

From August 6th to August 9th 2007, long-short market-neutral equity funds experienced
large losses: many funds lost around 10% per day and experienced a rebound of around
15% on August 10th, 2007. During this week, as documented by Khandani and Lo
(2011), market-neutral equity funds whose returns previously had a low historical volatil-
ity exhibited negative returns exceeding 20 standard deviations, while no major move
was observed in equity market indices.

Khandani and Lo (2011) suggested that this event was due to a large market-neutral
fund deleveraging its positions. They simulate a contrarian long-short equity market
neutral strategy implemented on all stocks in the CRSP Database and were able to
reconstitute qualitatively the empirically observed profile of returns of quantitative hedge
funds : low volatility before August 6th, huge losses during three days and a rebound
on August 10th. We reconstituted empirically the returns for Khandani and Lo’s equity
market neutral strategy on the S&P500 for the first three quarters of 2007. Figure 3.6
shows that this strategy underperforms significantly during the second week of August
2007, while no major move occurred in the S&P 500. Such empirical results tend to
confirm the hypothesis of the unwind of a large portfolio, which generated through price
impact large losses across similar portfolios, as predicted by our model.

Using historical data on returns of 487 stocks from the S&P500 index, we have
reconstituted the composition of the fund that deleveraged its positions during the second
week of August 2007 using the estimation procedure described in Section 3.3 for the
periods [0, T ] = [08/03/2006, 08/03/2007] and [T, T + τliq] = [08/06/2007, 08/09/2007].

Figure 3.7 displays the composition of the aggregate portfolio liquidated on the
S&P500 during this period and found by our estimation method. The first and strik-
ing difference with the case of the deleveraging after Lehman Brother’s collapse is that,
during this quant event, the liquidated portfolio was a long-short portfolio. We clearly
see in Figure 3.7 that for some stocks the liquidated position is significantly negative,
meaning that a short position is being exited. More precisely, 250 stocks have positive
weights in the liquidated portfolio, whereas 237 have negative weights. Furthermore,
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Figure 3.6: Returns of an market-neutral equity portfolio in 2007, compared with
S&P500 returns.

we find that the liquidated portfolio was highly leveraged: for each dollar of capital, 15
dollars are invested in long positions and 14 dollars are invested in short positions.
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Figure 3.7: Equity positions liquidated during the 2nd week of August 2007.

Importantly, the estimated portfolio is market-neutral in the sense of Equation (3.16):
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using the notations of Section 3.2.4 we find

Λ̂.πµ̂t

‖Λ̂‖‖πµ̂t ‖
=

n∑

i=1

αi
Di
µitP

i
t

‖Λ̂‖‖πµ̂t ‖
= 0.0958

which corresponds to an angle of 0.47π between the vectors Λ̂ and πµ̂t , i.e. very close
to orthogonality. This provides a quantitative explanation for the fact that, although
massive liquidations occurred in the equity markets, index funds were not affected by
this event. Note that, unlike other explanations proposed at the time, this explanation
does not involve any assumption of liquidity drying up during the period of hedge fund
turbulence.

3.6 Appendices

3.6.1 Proof of Theorem 3.2.4

We work under Assumptions 3.2.1 and 3.2.3. We denote Zk+1 = 1
Nm+

√
1
N ξk+1 ∈ R

n

where mi = mi − Σi,i

2 . We can write the price dynamics (3.3) as follows:

Sik+1 = Sik exp
(
Zik+1

)

1 + φi




J∑

j=1

αji

(
fj(

n∑

l=1

αjlS
l
k

V j
0

exp (Z lk+1))− fj(
n∑

l=1

αjlS
l
k

V j
0

)

)




As a consequence, we have Sk+1 = θ(Sk, Zk+1) where θ :
(
R
∗
+

)n × R
n 7→

(
R
∗
+

)n
is

C3(R) as fj and φi are C3(R) for all 1 ≤ j ≤ J and 1 ≤ i ≤ n.
Define now a (resp., b) a Mn(R)-valued (resp. Rn-valued) mapping such that

ai,j(S) =

n∑

l=1

∂θi
∂zl

(S, 0) ×Al,j (3.30)

bi(S) =
n∑

j=1

∂θi
∂zj

(S, 0)mj +
1

2

n∑

j,l=1

∂2θi
∂zj∂zl

(S, 0)Σj,l (3.31)

In order to show Theorem 3.2.4, we first show the following lemma:

Lemma 3.6.1 Under Assumptions 3.2.1 and 3.2.3, for all ǫ > 0 and r > 0:

lim
N→∞

sup
‖S‖≤r

N × P (‖Sk+1 − Sk‖ ≥ ǫ|Sk = S) = 0 (3.32)

lim
N→∞

sup
‖S‖≤r

‖N × E (Sk+1 − Sk|Sk = S)− b(S)‖ = 0 (3.33)

lim
N→∞

sup
‖S‖≤r

∥∥N × E
(
(Sk+1 − Sk)(Sk+1 − Sk)

t|Sk = S
)
− aat(S)

∥∥ = 0 (3.34)

where a and b are defined respectively in (3.30) and (3.31).
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Proof Fix ǫ > 0 and r > 0. As θ is C1, for ‖S‖ ≤ r, there exists C > 0 such that for all
Z ∈ R

n

‖θ(S,Z)− θ(S, 0)‖ ≤ C‖Z‖
As Sk+1 = θ(Sk, Zk+1) and Sk = θ(Sk, 0), we find that:

P (‖Sk+1 − Sk‖ ≥ ǫ|Sk = S, ‖S‖ ≤ r) ≤ P (C‖Zk+1‖ ≥ ǫ)

≤ P

(
C‖m

N
+

√
1

N
ξk+1‖ ≥ ǫ

)
≤ P


‖ξk+1‖ ≥ ǫ− ‖m‖C

N

C
√

1
N




≤ E





‖ξk+1‖

C
√

1
N

ǫ− ‖m‖C(r)
N




2+η

 ≤ 1

N1+ η
2

E

[
(‖ξk+1‖)2+η

]
×
(

C

ǫ− ‖m‖C(r)
N

)2+η

which implies (3.32).
As θ is C2, we can write the Taylor expansion of θi in 0, for 1 ≤ i ≤ n:

θi(S,Z)− θi(S, 0) =
∂θi
∂z

(S, 0)Z +
1

2
Z.

∂2θi
∂z∂z′

(S, 0)Z + Z.Ri(S,Z)Z

where Ri converges uniformly to 0 when Z goes to 0, when ‖Z‖ ≤ ǫ and ‖S‖ ≤ r. We
have:

E

(
∂θi
∂z

(S, 0)Zk+1

)
=

1

N

n∑

j=1

∂θi
∂zj

(S, 0)mj

and

E

(
Zk+1.

∂2θi
∂z∂z′

(S, 0)Zk+1

)
=

1

N

n∑

j,l=1

∂2θi
∂zlzj

Σj,l + o(
1

N
)

Recalling that Sik+1 − Sik = θ(Sk, Zk+1)− θ(Sk, 0), we find that:

lim
N→∞

sup
‖S‖≤r

‖NE [(Sk+1 − Sk)|Sk = S, ‖Zk+1‖ ≤ ǫ]− b(S)‖ = 0 (3.35)

We remark that:

∥∥NE
(
(Sk+1 − Sk)1‖Zk+1‖≤ǫ|Sk = S

)
− b(S)

∥∥

≤ ‖(NE ((Sk+1 − Sk)|Sk = S, ‖Zk+1‖ ≤ ǫ)− b(S))‖P(‖Zk+1‖ ≤ ǫ)+‖b(S)‖P(‖Zk+1‖ ≥ ǫ)

As we saw that P(‖Zk+1‖ ≥ ǫ) ≤ 1

N1+
η
2
E

[
(‖ξk+1‖)2+η

]
×
(

1

ǫ− ‖m‖
N

)2+η

and given

(3.35) and the fact that b is continuous, we find that:

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)1‖Zk+1‖≤ǫ|Sk = S

)
− b(S)

∥∥ = 0 (3.36)
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Similarly, we show that

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)(Sk+1 − Sk)

t1‖Zk+1‖≤ǫ|Sk = S
)
− aat(S)

∥∥ = 0 (3.37)

Given (3.3), we have the following inequality:

Sik+1 ≤ Sik exp (
mi

N
+

√
1

N
ξik+1)


1 + φi


2

J∑

j=1

αji
Di

‖fj‖∞






which implies that, conditional on Sk = S and for p > 0 such that p
√

1
N < η, Sk+1 ∈ Lp.

Using this result for p = 2, we find that for
√

1
N < η

2 , Sk+1 ∈ L2 and we can use Cauchy

Schwarz inequality: ∣∣E
(
(Sik+1 − Sik)1‖Zk+1‖≥ǫ|Sk = S

)∣∣

≤
√

E
(
(Sik+1 − Sik)

2|Sk = S
)
P (‖Zk+1‖ ≥ ǫ)

≤ 1

N1+ η
4

√
E
(
(Sik+1 − Sik)

2|Sk = S
)
√√√√

E

(
‖ξk+1‖
ǫ− ‖m‖

N

)4+η

As E(‖ξk+1‖4+η) <∞, Sk+1 ∈ L2 and Sk+1 stays L2 bounded conditional on Sk = S
and ‖S‖ ≤ r. As a consequence, we obtain:

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)1‖Zk+1‖≥ǫ|Sk = S

)∥∥ = 0 (3.38)

Using the same property with p=4, we show that

lim
N→∞

sup
‖S‖≤r

∥∥NE
(
(Sk+1 − Sk)(Sk+1 − Sk)

t1‖Zk+1‖≥ǫ|Sk = S
)∥∥ = 0 (3.39)

(3.36) and (3.38) give (3.33). Similarly, (4.41) and (3.39) give (3.34).

The following lemma gives the expressions of a and b by direct computation of (3.30)
– (3.31).

Lemma 3.6.2 (3.30) and (3.31) respectively can be written as

ai,k(S) = Si


Ai,k + φ′i(0)

J∑

j=1

αji

V j
0

f ′
(
Vj(S)

V j
0

)
(Atπj(S))k


 (3.40)

bi(S) = Simi + Si
φ′i(0)
2

J∑

j=1

αji

(V j
0 )

2
f ′′j

(
Vj(S)

V j
0

)
πj(S).Σπj(S) (3.41)
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+Siφ′i(0)
J∑

j=1

αji

V j
0

f ′j

(
Vj(S)

V j
0

)
(πj(S).m+ (Σπj(S))i)

+Si
φ′′i (0)
2

J∑

j,r=1

αjiα
r
i

V j
0 V

r
0

f ′j

(
Vj(S)

V j
0

)
f ′r

(
Vr(S)

V r
0

)
πj(S).Σπr(S)

where πj(S) =




αj1S
1

...

αjnSn


 and Vj(S) =

n∑

l=1

αjlS
l.

Because fj is C3 for 1 ≤ j ≤ J , a and b are C2 and C1 respectively. Furthermore,

because f ′j, and hence f ′′j and f
(3)
j , have a compact support, there exists R > 0 such

that, for all 1 ≤ j ≤ J , when ‖S‖ ≥ R, f ′j

(
Vj(S)

V j
0

)
= f ′′j

(
Vj(S)

V j
0

)
= f

(3)
j

(
Vj(S)

V j
0

)
= 0.

As a consequence, there exists K > 0 such that for all S ∈
(
R
∗
+

)n
:

‖a(S)‖ + ‖b(S)‖ ≤ K‖S‖ (3.42)

Furthermore, as the first derivatives of a and b are bounded, a and b are Lipschitz.
Define the differential operator G : C∞

0

(
R
∗
+

)n 7→ C1
0

(
R
∗
+

)n
by

Gh(x) =
1

2

∑

1≤i,j≤n
(aat)i,j(x)∂i∂jh+

∑

1≤i≤n
bi(x)∂ih

As a and b verify (3.42), one can apply (Ethier and Kurtz, 1986, Theorem 2.6, Ch.8)
to conclude that the martingale problem associated to (G, δS0

) is well-posed. In fact,
as a and b are Lipschitz, the solution of this martingale problem is given by the unique
strong solution of the stochastic differential equation:

dPt = b(Pt)dt+ a(Pt)dWt with P0 = S0.

As we have shown Lemma 3.6.1, by (Ethier and Kurtz, 1986, Theorem 4.2, Ch.7), when
N → ∞,

(
S⌊Nt⌋

)
t≥0

converges in distribution to the solution of the martingale problem

associated to (G, δS0
), which concludes the proof of Theorem 3.2.4.

3.6.2 Proofs of Propositions 3.3.1 and 3.3.4

Let us invert (3.18) under the assumptions of Proposition 3.3.1. Denote

Ω(i) =




Ω1,i
...

Ωn,i




the i-th column of the matrix Ω. By definition, we know that ΠΣL−1Ω(p) = φpΩ
(p)

which is equivalent to (Ω(p))tL−1ΣΠ = φp(Ω
(p))t. As (3.18) is equivalent to MΠΣL−1 +
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L−1ΣΠM = L−1(C[T,T+τliq]−Σ)L−1 and multiplying this equality on the left by (Ω(p))t

and on the right by Ω(q), we find that

(φp + φq)[Ω
tMΩ]p,q = [ΩtL−1(C[T,T+τliq] − Σ)L−1Ω]p,q

which gives the matrix ΩtMΩ as a function of Σ and C[T,T+τliq]. As Ω is invertible, this
characterizes the matrixM , as a function, denoted Φ of Σ and C[T,T+τliq], proving (3.19)
and (3.20).

Furthermore, notice that M0 = Φ
(
Σ, C[T,T+τliq] +O(‖Λ‖2, ‖f ′′‖)

)
. Given the ex-

pression for Φ in (3.20), (3.21) follows directly. This concludes the proof of Proposition
3.3.1.

Lemma 3.6.3 The mapping Φ defined in (3.20) is C∞ in a neighborhood of (Σ, C).

Proof The following map

F : S3
n(R) 7→ Sn(R), (S,C,N) 7→ LNΠS + SΠNL + S− C (3.43)

is infinitely differentiable, its gradient with respect to N given by

∂F

∂N
(S,C,N).H3 = LH3ΠS + SΠH3L.

As Σ verifies Assumption 3.3.3, we showed that ∂F
∂N (Σ, C,N) is invertible for all C.

As Φ(Σ, C) is defined as the only matrix verifying F (Σ, C,Φ(Σ, C)) = 0, the implicit
function theorem states that Φ is C∞ in a neighborhood of (Σ, C).

As convergence in probability implies that a subsequence converges almost surely,
we assume from now on that the estimators defined in (3.23) and (3.24) converge almost
surely. As a consequence, for N large enough, Σ̂( N) also verifies Assumption 3.3.3. This
is possible because the set of matrices Σ verifying this assumption is an open set and
Σ̂( N) converges almost surely to Σ when N goes to infinity. We can hence define M̂ ( N)

as in (3.25).

Lemma 3.6.3 implies in particular that Φ is continuous and hence that Φ(Σ̂( N), Ĉ( N))
converges almost surely, and hence in probability, to Φ(Σ, C[T,T+τliq]). As a consequence,

Φ(Σ̂( N), Ĉ( N)) is a consistent estimator of Φ(Σ, C[T,T+τliq]), meaning that M̂ ( N) is a
consistent estimator of M . This shows Proposition 3.3.4.

3.6.3 Proof of Proposition 3.3.5

Using Theorem 3.2.6 and Ito’s formula, we deduce that the log price Xi
t = ln(P it ) verifies

the following stochastic differential equation:

dXi
t =

(
µi(e

Xt)− 1

2
(σ(eXt)σ(eXt)t)i,i

)
dt+

(
σ(eXt)dWt

)
i
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where σ, µ andW are defined in Theorem 3.2.6 and eXt is a n-dimensional column vector
with i-th term equal to expXi

t . As a consequence, X is an Ito process which verifies, for
t ≥ 0,

∫ t

0


 ∑

1≤i≤n

(
µi(Pt)−

1

2
(σ(Pt)σt(Pt)

t)i,i

)2

+ ‖σσt(Pt)‖2

 ds <∞

We are thus in the setting of (Jacod and Protter, 2012, Theorem 5.4.2, Ch.5) which
describes the asymptotic distribution of the quadratic covariation of an Ito process with
well-behaved coefficients. We need to extend (Ω,F , (Ft)t≥0,P) to a larger probability
space (Ω̃, F̃ , (F̃t)t≥0, P̃). There exists W̃ a n2-dimensional Brownian motion, defined on
(Ω̃, F̃ , (F̃t)t≥0, P̃) and independent from W , such that

√
N
(
[X,X](N) − [X,X]

)
s.l.−→

N→∞
Z

where the n × n dimensional process Z is defined in (3.27) and s.l. means stable con-
vergence in law (see (Jacod and Protter, 2012, Section 2.2.1)). The auxiliary Brown-
ian motion W̃ represents the estimation error. Furthermore, (Jacod and Protter, 2012,
Equation 2.2.5) shows that

(√
N
(
[X,X](N) − [X,X]

)
, τ
)

⇒
N→∞

(
Z, τ

)

This implies that the estimators (Σ̂( N), Ĉ( N)) defined in (3.23) and (3.24) verify the
following central limit theorem:

√
N

[(
Σ̂( N)

Ĉ( N)

)
−
(

Σ
C[T,T+τliq]

)]
⇒

N→∞

(
1
τZτ

1
τliq

(ZT+τliq − ZT )

)
(3.44)

Since Φ ∈ C1, one can then apply the ’delta method’ to (Σ̂(N), Ĉ(N)) to derive the result
in Proposition 3.3.5.

3.6.4 Proof of Proposition 3.3.6 and Corollary 3.3.7

Under the null hypothesis (H0),
1
τliq

∫ T+τliq
T ct dt = Σ and hence

Φ

(
Σ,

1

τliq

∫ T+τliq

T
ct dt

)
= Φ(Σ,Σ) = 0

Let us calculate now the first derivative of Φ on (Σ,Σ). Recall that Φ(Σ, C) is
defined as the only element of Sn(R) such that F (Σ, C,Φ(Σ, C)) = 0, where F is defined
in (4.13). F is affine in each component and as a consequence is C∞ and we can define
its derivatives on (S,C,N), ∂F∂S (S,C,N), ∂F∂C (S,C,N) and ∂F

∂N (S,C,N) which are linear
mappings from Sn(R) to Sn(R) defined by:

∂F

∂S
(S,C,N).H1 = LNΠH1 +H1ΠNL+H1
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∂F

∂C
(S,C,N).H2 = −H2

∂F

∂N
(S,C,N).H3 = LH3ΠS + SΠH3L

As a consequence, we have

∇F (S,C,N).(H1,H2,H3) = LNΠH1 +H1ΠNL+H1 −H2 + LH3ΠS + SΠH3L

In the proof of Lemma 3.6.3, we showed that ∂F
∂N (Σ, C,N) is invertible. As a con-

sequence we can apply the implicit function theorem in order to compute the gradient
of Φ. As F (Σ, C,Φ(Σ, C)) = 0 and Φ(Σ,Σ) = 0, we find that ∂F

∂S (Σ,Σ, 0).H1 = H1,
∂F
∂C (Σ,Σ, 0).H2 = −H2 and ∂F

∂N (Σ,Σ, 0).H3 = LH3ΠΣ + ΣΠH3L and hence the deriva-
tive of Φ on (Σ,Σ) is given by:

∇Φ(Σ,Σ).(H1,H2) =

(
∂F

∂N
(Σ,Σ, 0)

)−1

(H2 −H1)

which is equivalent to

∇Φ(Σ,Σ).(H1,H2) = Φ(Σ,Σ+H2 −H1)

Using Proposition 3.3.5, we find that

√
NM̂ ( N) L⇒ Φ

(
Σ,Σ+

1

τliq
(ZT+τliq − ZT )−

1

τ
Zτ

)

which concludes the proof of Proposition 3.3.6.
If there are no fire sales between 0 and T , then τ = T almost surely. In addition,

under (H0), we have σσt = Σ and the expression for the process Ṽt defined in (3.28) is
simplified as

(ṼtṼ
t
t )
ij,kl = Σi,kΣj,l (3.45)

which implies that the process Z defined in (3.27) is a Brownian motion.

Furthermore, given Proposition 3.3.6, under (H0),
√
N
(
P tT M̂

(N)(PT − PT+τliq )
)

converges in law when N goes to infinity to the random variable

P tTΦ

(
Σ,Σ+

1

τliq
(ZT+τliq − ZT )−

1

T
ZT

)
(PT − PT+τliq )

Given the expression for Φ given in (3.20), we find the expression for:

P tTΦ(Σ, C)(PT − PT+τliq )

=
∑

1≤p,q≤n
(Ω−1PT )p

[
ΩtL−1(C − Σ)L−1Ω

]
p,q

φp + φq
(Ω−1(PT − PT+τliq ))q
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Given the fact that L−1 = diag(Di), we have (ΩtL−1)p,i = Ωi,pDi and (L−1Ω)j,q =
Ωj,qDj. As a consequence, denoting

mi,j =
∑

1≤p,q≤n

[Ω−1PT ]p[Ω
−1(PT − PT+τliq )]q

φp + φq
ΩipΩjqDiDj

we can write P tTΦ(Σ, C)(PT − PT+τliq ) as
∑

1≤i,j≤n
mij(Ci,j − Σi,j). Hence the limit of

√
N
(
P tT M̂

(N)(PT − PT+τliq )
)
is equal to

∑

1≤i,j≤n
mij

(
1

τliq
(ZT+τliq − ZT )−

1

T
ZT

)

i,j

Under the assumptions of Corollary 3.3.7, Z is a Brownian motion on [0, T + τliq] (see
(3.45)), so the limit process is a mean-zero Gaussian process. To compute its variance,

we first compute the variance of
∑

1≤i,j≤n
mijZ

i,j
t which, given the expression of Z in (3.27),

can be written as
∑

1≤k,l≤n

∫ t

0

1√
2

∑

1≤i,j≤n
mi,j

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)
dW̃ kl

s .

Using the Ito isometry formula, its variance is thus equal to

∑

1≤k,l≤n

∫ t

0


 ∑

1≤i,j≤n

1√
2
mi,j

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)



2

ds

=
t

2

∑

1≤k,l≤n


 ∑

1≤i,j,p,q≤n
mi,jmp,q

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)(
Ṽ pq,kl
s + Ṽ qp,kl

s

)



=
t

2

∑

1≤i,j,p,q≤n
mi,jmp,q


 ∑

1≤k,l≤n

(
Ṽ ij,kl
s + Ṽ ji,kl

s

)(
Ṽ pq,kl
s + Ṽ qp,kl

s

)



= t
∑

1≤i,j,p,q≤n
mi,jmp,q (Σi,pΣj,q +Σi,qΣj,p)

using the fact that
∑

1≤k,l≤n
Ṽ ij,kl
s Ṽ pq,kl

s = Σi,pΣj,q as Ṽ verifies (3.45). Given the fact

that ZT+τliq − ZT and ZT are independent, we find that the variance of the limit
∑

1≤i,j≤n
mij

(
1

τliq
(ZT+τliq − ZT )−

1

T
ZT

)

i,j

is equal to

(
1

T
+

1

τliq

) ∑

1≤i,j,k,l≤n
mijmkl (ΣikΣjl +ΣjkΣil)

which concludes the proof of Corollary 3.3.7.
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Chapter 4

Impact of institutional investors on the

dependence structure of asset returns

Abstract

We propose a multi-period model of a financial market with multiple assets, which takes
into account the impact of a large institutional investor rebalancing its positions at each
period, so as to maintain a fixed allocation in each asset. We show that feedback ef-
fects can lead to significant excess realized correlation between asset returns and modify
the principal component structure of the (realized) correlation matrix of returns. The
continuous-time limit of the multi-period model allows to compute the realized correla-
tion matrix of returns and its eigenvalues and eigenvectors in the presence of feedback
effects. Our study naturally links the properties of the realized correlation matrix to the
sizes and trading volumes of large institutional investors. Finally, we show that feedback
effects flatten the differences between assets’ expected returns and tend to align them
with the returns of the institutional investor’s portfolio. In particular, we show that
an investor who tries to overperform the institutional investor by overweighting assets
with large expected returns will experience lower-than-expected returns, due to feedback
effects.
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4.1 Introduction

International financial markets have become increasingly dominated by large institu-
tional investors, who account for a large fraction of holdings and trades in financial
assets. For instance, institutional investors in the US hold $25000 billion in financial as-
sets which represents 17.4% of total outstanding assets. Their positions in the US equity
markets amount to $12500 billion, which corresponds to holding 70% of the total equity
assets in the US (Gonnard et al., 2008; Tonello and Rabimov, 2010). Two major fea-
tures characterize large institutional investors over the last years. First, they build their
portfolios with the use of indices and exchange traded funds (representing a sector, a
geograpical zone or an asset class for instance), which have become increasingly popular
in the last years, and assets traded on large national exchanges (Gastineau, 2010; Fuhr,
2011; Boudreaux, 2012) . Secondly, while such asset managers do not frequently modify
their allocations, they do actively trade in the market: Carhart (2012) documents that
the average turnover for US mutual funds is 75%.

Large institutional investors build and manage their portfolios comprising numerous
assets taking into account the dependence structure between asset returns. In par-
ticular, the correlation between asset returns is a key ingredient for trading, portfolio
optimization and risk management. It is very often considered as reflecting a structural
correlation between fundamentals of asset returns and hence assumed not to vary a lot in
time. Ever since Markowitz (1952), theoretical studies show that, under the assumption
of a constant correlation structure between asset returns, optimal strategies are fixed-
mix strategies: the investor maintains a fixed allocation in each asset of its portfolio.
Typically, if the value of an asset increased, its weight in the portfolio increases and the
investor following a fixed-mix strategy sells a part of its positions in this asset, so as to
come back to the target allocation for this asset. The fixed-mix strategy implies ’buy-
ing low and selling high’. Numerous theoretical studies (Evstigneev and Schenk-Hoppé,
2002; Dempster et al., 2003; Mulvey and Kim, 2008) have shown that such strategies
can enhance the long term growth rate of portfolios.

Whereas the price of financial assets is traditionally modeled as an exogenous stochas-
tic process unaffected by investors’ strategies, the presence of institutional investors,
which have a large impact when trading, has implications for financial markets, in par-
ticular for the indices and ETFs that they trade, and hence for the components of those
indices and ETFs.

In this paper, we examine how the market impact of a large institutional investor
keeping a fixed allocation affects the realized correlation between asset returns and the
expected asset returns. We derive tractable expressions for the principal components
and the corresponding eigenvalues of the (realized) correlation matrix of returns in
the presence of feedback effects. We describe and quantify how the economic mech-
anism of rebalancing positions by a large institutional investor can lead to the features
commonly observed in empirical realized correlation matrices (Friedman and Weisberg,
1981; Bouchaud et al., 2000; Sandoval and Franca, 2012): positive average pairwise re-
alized correlation for stock indices, largest eigenvalue of the realized correlation matrix
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which is significantly larger than the other eigenvalues (Figure 4.1) and associated to an
eigenvector with positive weights (Figure 4.2).
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Figure 4.1: Left: One-year exponentially-weighted moving average estimator of average
pairwise correlations of daily returns in equity indices/ Right: Difference between the
first and second eigenvalue of the empirical correlation matrix normalized by the number
of stocks in the index
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Figure 4.2: Components of the eigenvector associated to the largest eigenvalue of the
empirical correlation matrix of returns for Eurostoxx 50

4.1.1 Summary

We propose a multi-period model of a financial market with multiple assets, in which a
large institutional investor maintains a fixed allocation across assets. Simulations of this
model, with realistic parameters estimated from time series of S&P500 stock returns,
suggest that feedback effects from the fund’s rebalancing lead to a significant increase
in realized correlation between asset returns. We exhibit conditions under which the
discrete-time model converges to a diffusion limit. By studying the multi-dimensional
diffusion limit for the price dynamics, we show that the existence of a large institutional
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investor maintaining a constant allocation across asset classes may result in a significant
and systematic impact on expected returns and the correlation of returns. In particular,
such fixed-mix strategies dampen asset volatility but increase correlation across asset
classes they invest in. This rebalancing effect leads to a systematic bias in the first
principal component of the correlation matrix, overweighting assets with high turnover
in the benchmark portfolio, as well as higher eigenvalue for this principal component.
The impact of the large institutional investor biases asset expected returns and decreases
the performance of funds who overweigh (resp. underweigh) assets with large (resp.
low) expected returns. These findings have consequences for risk-management and asset
allocation. We show that the impact of the large institutional investor modifies the
risk/return trade off of portfolios composed from the same assets: an investor who
factors these effects into his allocations can improve his risk/return trade off.

4.1.2 Related literature

Various empirical studies attest to the large market share of institutional investors.
Gonnard et al. (2008) studies institutional investors of countries of the Organization for
Economic Co-operation and Development (OECD) while Tonello and Rabimov (2010)
focuses on the institutional investors in the US. Such investors comprise mutual funds,
insurance companies and pension funds. Their investments amounted to $40000 billion
for funds in the OECD in 2005, which represents 150% of the gross domestic product of
the OECD. US institutional investors account for more than half of those investments
($25000 billion) and prefer investing in equity markets (50% of their positions).

The preferences of large institutional investors are examined in numerous empirical
studies. Del Guercio (1996) finds empirically that banks, contrary to mutual funds, pre-
fer investing in prudent stocks. Gompers and Metrick (2001) use a database with seven-
teen years of data on large institutional investors and show that they prefer holding liquid
assets, while Ferreira and Matos (2008) find that institutional investors have a strong
preference for the stocks of large firms and firms with good governance. Falkenstein
(2012) shows that mutual funds prefer investing in liquid stocks with low transaction
costs and are averse to stocks with low idiosyncratic volatility. Lakonishok et al. (1992)
study the types of strategies followed by institutional investors and whether they follow
trading practices which are potentially destabilizing for asset prices. The impact of in-
stitutional investors on asset returns is widely studied in the empirical literature. Aitken
(1998) shows that the growth of capital invested by mutual funds and other institutional
investors in emerging markets resulted in a sharp increase of autocorrelation for the as-
sets in those markets. Sias and Starks (1997) also finds that the larger the institutional
ownership of a stock in the NYSE, the larger its autocorrelations while Sias (1996) finds
that an increase in ownership by institutional investors on a given stock results in a
greater stock volatility.

Most theoretical studies model the impact of large institutional investors on a single
asset’s return and volatility. Almgren and Chriss (2000); Almgren and Lorenz (2006);
Almgren (2009) model the permanent and temporary impact of a large investor liquidat-
ing a position on a single asset and derive an optimal liquidation strategy. Alfonsi et al.
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(2009) derive the optimal strategy to liquidate a large position on an asset by taking into
account the order book of the asset. Gabaix et al. (2006) propose an equilibrium model
which takes into account the supply and demand of a large institutional investor and
show that their trades can lead to volatility spikes. They derive an optimal strategy for
the institutional investor, in the presence of its own feedback effects. These theoretical
studies explain quantitatively the facts described in the empirical literature cited previ-
ously, but mainly focus on a single asset and derive optimal strategies for institutional
investors. In particular, they do not model the cross-asset impact of large institutional
investors and the spillover effects that they can generate. Kyle and Xiong (2001) study
a market with two risky assets and three types of traders: noise traders, convergence
traders and long-term investors. They show how the strategies implemented by each
type of traders can result in contagion effects and lead to endogenous correlation which
can not be explained by assets fundamentals.

4.1.3 Outline

This paper is organized as follows: Section 4.2 presents a framework for modeling the
impact of fixed-mix strategies on asset returns. Section 4.3 studies the realized covari-
ances and correlations between asset returns in the presence of feedback effects from the
large institutional investor while Section 4.4 gives analytical formulas for the eigenvalues
and eigenvectors of the realized correlation matrix. Section 4.5 analyzes the impact of
the large institutional investor on the asset expected returns.

4.2 Asset dynamics in the presence of feedback effects

4.2.1 Multi-period model

Consider a discrete-time market, where trading takes place at dates tk = kτ and which
comprises n financial assets. The value of asset i at tk is Sik. Typically, one can consider
that Si is the value of an index or an ETF representing a sector, asset class or geographic
zone. Between tk and tk+1, it is affected by economic moves, represented by an IID
sequence ξk = (ξ1k, ..., ξ

n
k )1≤k≤M of centered random variables with covariance matrix Σ.

In the absence of other effects, the value of asset i at tk+1 would be equal to

(Sik+1)
∗ = Sik exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)
(4.1)

where mi is the ’fundamental’ expected return of asset i and Σ is the ’fundamental’
covariance matrix between asset returns and reflects the fundamental structure between
the n assets.

Consider now a large institutional investor/fund investing in this market and follow-
ing a (long) fixed-mix strategy, maintaining a fixed allocation in each asset. As discussed
in Section 4.1, the fixed-mix strategy is widely used by institutional investors, in between
two allocation dates, which correspond to a time frame of several months. At each date
tk, the fund holds a (constant, positive) proportion xi of each asset i which means that
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the dollar amount invested by the fund in asset i at this date is equal to xiWk whereWk

is the fund value/wealth at tk. Denoting by φik the number of units of asset i held at tk,
the fixed-mix strategy implies that at each date:

φikS
i
k = xiWk (4.2)

At each period, the asset values may change as described in (4.1) and the fund
rebalances its positions to maintain the target proportion xi in each asset i. Typically,
if the value of an asset increased (resp. decreased) more than the others, the fund sells
(resp. buys) units of this asset in order to maintain a fixed portion of this asset in its
portfolio. The fixed-mix strategy is a typical example of a contrarian strategy, which
implies ’buying low and selling high’. The rebalancing by the fund in order to maintain
its target allocation generates a net demand of φik+1−φik units of asset i between tk and
tk+1, in a self-financing manner:

Wk+1 =

n∑

i=1

φik+1S
i
k+1 =

n∑

i=1

φikS
i
k+1 (4.3)

We assume that the impact of this net demand on the return of each asset i is linear
(Obizhaeva, 2011; Cont et al., 2010) and is measured by the depth Di of the market in
asset i: a net demand of Di

100 shares for security i moves the price of i by one percent.

As a result, the value of asset i at date tk+1 has to verify:

Sik+1 = Sik exp

(
τ

(
mi −

Σi,i
2

)
+

√
τξik+1

)(
1 +

φik+1 − φik
Di

)
(4.4)

However, as φik+1 depends on Sik+1 we have to prove that, at each period, the fund
can rebalance its positions in a self-financing way so as to keep its fixed allocation ie:
verify (4.4). This is done in Proposition 4.2.1. We remark that when market depths
are infinite (Di = ∞), the fund’s rebalancing does not generate any feedback on asset
returns and (4.4) is equivalent to (4.1), meaning that asset values move according to
’fundamentals’ only, which are captured by the fundamental covariance matrix Σ and
the fundamental expected returns m.

Proposition 4.2.1 There exists a unique self-financing investment strategy which al-
lows the fund to keep a constant proportion xi invested in asset i. Furthermore, there
exists

θ : (R∗
+)

n+1 × R
n → (R∗

+)
n+1

such that

(
Sk+1

Wk+1

)
=




S1
k+1
...

Snk+1

Wk+1


 =




θ1(Sk,Wk,mτ + ξk+1
√
τ)

...
θn(Sk,Wk,mτ + ξk+1

√
τ)

θn+1(Sk,Wk,mτ + ξk+1
√
τ)


 (4.5)
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and (Sk,Wk) verifies Equations 4.2, 4.3, and 4.4 for every k. Here, mi = mi − Σi,i

2
and, for every compact set K ⊂ (R∗

+)
n+1, there exists ǫK > 0 such that θ is C∞ on

K × B(0, ǫK).

In particular, (Sk,Wk) is a Markov chain in (R∗
+)

n+1. The proof of this proposition in
given in Appendix 4.6.1.

4.2.2 Simulation experiments

In this section, we make simulation experiments which illustrate the impact of feedback
effects from a large institutional investor following a fixed-mix strategy on the realized
correlation between assets and the principal component properties of the realized corre-
lation matrix of returns.

We simulate the multi-period model described in the previous section in a very simple
example of homogenous fundamental volatility, correlation and expected return. In order
to compare our numerical results with empirical results on the S&P500 in 2006, we choose
the following realistic parameters. The simulated market comprises n = 500 assets and
trading is possible everyday (τ = 1

250 ). Each asset has a fundamental expected return
mi = 11% (equal to the return of the S&P500 in 2006) and a fundamental volatility√

Σi,i = 10% (equal to the realized volatility of the S&P500 in 2006). We denote by

ρ =
Σi,j√
Σi,iΣj,j

the fundamental correlation between any pair of assets.

We consider an institutional investor maintaining a constant portion xi =
1
n = 0.2%

invested in each asset i and the initial position of the fund in each asset is equal to one

fifth of the respective asset market depth: for all i,
φi0
Di

= 1
5 . This choice is legitimated

by empirical studies: Tonello and Rabimov (2010) shows that the size of institutional
investors over the last years is approximately $25000 billion, among which 50%, ie:$12500 billion are invested in US equity markets. As a proxy of market depth, we use,
following Obizhaeva (2011),

D =
Average Daily V olume

0.33 ×Daily V olatility

Given that in 2006 the average daily volume of the US equity market was $80 billion
and the realized volatility of the S&P500 was 10%, we find that the depth of the US
equity markets is 80

0.33× 10%√
250

≈ $38000 billions. Assuming, for example, that 60% of the

institutional investors follow a fixed-mix strategy, this legitimates our choice of
φi0
Di

=

60% × 12500
38000 = 1

5 .

Note that we choose to compare our numerical results to empirical results on the
S&P500 in 2006 because the recent financial turmoil started in 2007 and, since then, the
US equity market was subject to major fire sales and deleveraging phenomenon, which
were the main source of feedback in those markets, as analysed in Cont and Wagalath
(2012a).
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For each of the 10000 simulated scenarios, we compute the realized volatility of asset
returns and the realized correlation between asset returns. The following figures display
the distribution of those quantities, in the case of ρ = 0. We compare those distributions
to the case without feedback effects (which corresponds to infinite market depth).

Realized correlation and realized variance Figure 4.3 shows that feedback effects increase
realized correlation between assets. Whereas without feedback effects, the distribution
of realized correlation between the two assets is centered around its fundamental value
ρ = 0, we witness, in the presence of feedback effects, that the distribution of realized
correlation is shifted towards strictly positive values, centered around an average value
of 10% and with values over 20% with significant probability. Even starting with zero
fundamental correlations, feedback effects generate, on average, a realized correlation of
10% between assets.

In Figure 4.4, we see that the price impact of fixed-mix strategies decreases asset
volatility. This is due to the fact that the fund follows a ’contrarian’ strategy: it buys
(resp. sells) assets that decreased (resp. increased) the most, hence damping their
decrease (resp. increase) and, overall, damping the amplitude of price moves.

−40 −30 −20 −10 0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

with feedback

without feedback

Figure 4.3: Distribution of realized correlation between assets 1 and 2 (with ρ = 0) with
and without feedback effects

Average pairwise realized correlation and highest eigenvalue of the realized correlation matrix

Table 4.1 displays the average for the average pairwise realized correlation over 104

simulations, for different values of fundamental correlation ρ and fund sizes
φi0
Di

. It
shows that, for each choice of parameters, the average pairwise correlation is higher
than its fundamental value in the presence of feedback effects. Furthermore, we see
that the larger the fund’s positions as a fraction of asset depth (ie: the larger the
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Figure 4.4: Distribution of realized volatility for asset 1 with and without feedback
effects (fundamental volatility equal to 10%)

fund’s positions or the lower the assets’ depth or liquidity), the larger the impact on the
average pairwise correlation. In 2006, the average pairwise one-year realized correlation
in the S&P500 was 21%. Table 4.1 shows that with a reasonable and realistic choice of

parameters for the fund’s size, for example
φi0
Di

= 1
5 as discussed in the beginning of this

section, an homogenous fundamental correlation of only 15% combined to feedback effects
generated by the rebalancing of the fund’s positions generate a 22% average pairwise
realized correlation, as observed empirically.

Table 4.2 leads to the same conclusions: the presence of the large institutional in-
vestor increases the value of the largest eigenvalue of the realized correlation matrix,

compared to its fundamental value which is given in the column
φi0
Di

= 0. Furthermore,
the larger the fund’s positions as a fraction of market depth, the larger the eigenvalue
of the realized correlation matrix. While the largest eigenvalue of the one-year realized
correlation matrix of the S&P500 in 2006 was 110, we see that our model leads to this
level of largest eigenvalue starting from a fundamental correlation of 15%, which corre-
sponds to a fundamental largest eigenvalue of 76, combined to feedback effects, in the

case where
φi0
Di

= 1
5 .

First eigenvector of the realized correlation matrix It is also interesting to focus on the
impact of feedback effects on the eigenvectors of the realized correlation matrix, and, in
particular, on the first eigenvector of such matrix, associated to the largest eigenvalue.
Given the set of reference parameters that we chose in our simulation experiments, the

first eigenvector of the fundamental correlation matrix is ’the market’: 1√
n




1
...
1


. In
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Average pairwise realized correlation

ρ
φi0
Di

= 1
10

φi0
Di

= 1
5

φi0
Di

= 1
3

0 2% 5% 10%
10% 12% 15% 21%
15% 18% 22% 29%
25% 29% 35% 44%
50% 55% 61% 69%
75% 79% 82% 87%
90% 92% 93% 95%

Table 4.1: Average for the average pairwise realized correlation for different values of

fundamental correlation ρ and fund sizes (as a fraction of market depth)
φi0
Di

. In com-
parison, the average pairwise one-year realized correlation of the S&P500 in 2006 was
21%.

Largest eigenvalue of the realized correlation matrix

ρ
φi0
Di

= 0
φi0
Di

= 1
10

φi0
Di

= 1
5

φi0
Di

= 1
3

0 1 8 9 11
10% 51 64 79 105
15% 76 93 113 146
25% 126 149 175 216
50% 251 277 307 345
75% 375 394 412 434
90% 450 459 467 476

Table 4.2: Average for the largest eigenvalue of the realized correlation matrix for dif-
ferent values of fundamental correlation ρ and fund sizes (as a fraction of market depth)
φi0
Di

. In comparison, the largest eigenvalue of the one-year realized correlation matrix of
the S&P500 in 2006 was 110.
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Figure 4.5, we see that when there are no feedback effects, the angle between the first
eigenvalue of the realized correlation matrix and the market is close to zero. However, in
the presence of feedback effects from the fixed-mix strategy, we witness that this angle
is larger, around two times larger than in the case without feedback effects: the first
eigenvalue of the realized correlation matrix deviates from its fundamental direction. In
Figure 4.6, we compare the angle between the first eigenvalue of the realized correlation
matrix and the market for different choices of parameters: non homogenous liquidity(
φ2i0
D2i

=
2φ2i+1

0

D2i+1

)
and non homogenous fund allocations (x2i = 2x2i+1). The eigenvectors

of the realized correlation matrix depend on the size of the fund as a fraction of market
depth (and hence are liquidity-dependent) and on the fund’s allocations. Feedback effects
shape the first eigenvalue of the realized correlation matrix depending on the fund’s
strategy, positions and asset market depths.
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Figure 4.5: Histogram for the angle between the first eigenvector of the realized corre-
lation matrix and the market with and without feedback effects
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Figure 4.6: Histogram for the angle between the first eigenvector of the realized corre-
lation matrix and the market for different sets of parameters
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4.2.3 Continuous time limit

To confirm the phenomena observed in the simulation experiments, we now analyze the
continuous-time limit of the multi-period model: the study of this limit allows one to
obtain analytical formulas for realized correlation between asset returns, eigenvalues and
eigenvectors of the realized correlation matrix and asset expected returns, which confirm
quantitatively the effects observed in the numerical experiments.

Define a (resp., b) a Mn+1×n(R)-valued (resp. Rn+1-valued) mapping such that

ai,j(S,W ) =

n∑

l=1

∂θi
∂zl

(S,W, 0) ×Al,j (4.6)

bi(S,W ) =
n∑

j=1

∂θi
∂zj

(S,W, 0)mj +
1

2

n∑

j,l=1

∂2θi
∂zj∂zl

(S,W, 0)Σj,l (4.7)

where θ andm are defined in Proposition 4.2.1 and A is a square-root of the fundamental
covariance matrix: AAt = Σ.

In order to study the continuous-time limit of the multi-period model, we work under
the following assumption:

Assumption 4.2.2 There exists η > 0 such that:

E(‖ exp(ηξ)‖) <∞ and E(‖ξ‖η+4) <∞

The following theorem describes the diffusion limit of the price process.

Theorem 4.2.3 Under Assumption 4.2.2, (S⌊ t
τ
⌋,W⌊ t

τ
⌋)t≥0 converges weakly to a diffu-

sion (Pt, Vt)t≥0 = (P 1
t , ..., P

n
t , Vt)t≥0 as τ goes to 0 with:

dP it = bi(Pt, Vt)dt+ (a(Pt, Vt)dBt)i 1 ≤ i ≤ n

dVt = bn+1(Pt, Vt)dt+ (a(Pt, Vt)dBt)n+1

where a and b are defined in (4.6) and (4.7) respectively and Bt is an n-dimensional
Brownian motion.

The proof of this theorem is given in Appendix 4.6.2. The expression for a and b can be
deduced from Lemma 4.6.3 and Lemma 4.6.4 in Appendix 4.6.2.

In the case where market depths are infinite (for all i, Di = +∞), the expression for
a and b simplifies to

ãi,k(P̃ , Ṽ ) = P̃ iAi,k and b̃i(P̃ , Ṽ ) = P̃ imi 1 ≤ i ≤ n

and the price follows a multivariate Black Scholes dynamics with expected return m and
covariance matrix Σ:

P̃ it = P i0 exp

((
mi −

Σi,i
2

)
t+ (ABt)i

)
and Vt = V0 exp

((
X.m− X.ΣX

2

)
t+X.ABt

)
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which implies that

Φ̃it =
φ̃it
φ̃i0

= exp

((
X.m−mi −

X.ΣX − Σi,i
2

)
t+X.ABt − (ABt)i

)
(4.8)

In particular, we find that

E

(
Φ̃it

)
= exp (t (X.m−mi +Σi,i − (ΣX)i)) (4.9)

When market depths are finite, feedback effects from the large fund modify this price
dynamics.

In the continuous-time limit, at each date t, the fund allocates xi to asset i. Its
holdings in asset i are:

φit =
xiVt
P it

(4.10)

4.3 Realized correlations in the presence of feedback effects

4.3.1 The covariance structure of asset returns

The realized covariance (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004)
matrix of asset returns between t1 and t2, denoted C[t1,t2], is defined by

Ci,j[t1,t2] =
1

t2 − t1

(
[lnP i, lnP j ]t2 − [lnP i, lnP j]t1

)
=

1

t2 − t1

∫ t

0
ci,js ds (4.11)

where [lnP i, lnP j ]t is the quadratic covariation between lnP i and lnP j on [0, t] and
cs is the derivative of the quadratic covariation and corresponds to the instantaneous
covariance matrix of asset returns. The following result follows by direct computation
from Theorem 4.2.3 and Lemma 4.6.3.

Proposition 4.3.1 The instantaneous covariance matrix at date t, ct, defined in (4.11),
is given by

ct = Σ+Σ(Γtt − In)Ft + Ft(Γt − In)Σ (4.12)

+Ft(Γt − In)Σ(Γ
t
t − In)Ft

where Ft and Γt are n× n matrices such that Ft is diagonal with i-th term equal to

F i,it =
ΦitΛi

1 + ΦitΛi
and Γi,jt =


 ∑

1≤p≤n

xp
1 + ΦptΛp




−1

xj

1 + ΦjtΛj
(4.13)

where Λ is an n dimensional vector such that

Λi =
φi0
Di

(4.14)
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represents the initial holdings of the fund in asset i as a fraction of market depth and

Φit =
φit
φi0

(4.15)

In the sequel, we study realized covariances and correlations on [0, T ] for clarity
purpose. Using Proposition 4.3.1, we find that

C[0,T ] = Σ+
1

T

∫ T

0

(
Σ(Γts − In)Fs + Fs(Γs − In)Σ

)
ds (4.16)

+
1

T

∫ T

0

(
Fs(Γs − In)Σ(Γ

t
s − In)Fs

)
ds

where Fs and Γs are defined in (4.13). In the presence of feedback effects, the realized
covariance matrix is the sum of the fundamental covariance matrix Σ and an excess
realized covariance matrix which is path-dependent and liquidity-dependent and is equal
to zero when market depths are infinite. Starting with homoscedastic inputs, feedback
effects from institutional investors actions result in endogenous heteroscedasticity. Our
model shows that the economic mechanism of rebalancing naturally impacts the realized
covariance between asset returns, this impact being quantified by Equation 4.16.

Corollary 4.3.2 The realized covariance between assets i and j returns can be decom-
posed as follows:

Ci,j[0,T ] = Σi,j + Λi

(
1 +

∫ T

0

(
1− s

T

)
dΦis

) ∑

1≤l≤n
xl(Σj,l − Σi,j)

+ Λj

(
1 +

∫ T

0

(
1− s

T
dΦjs

)) ∑

1≤l≤n
xl(Σi,l − Σi,j) +O(‖Λ‖2) (4.17)

where Λ and Φ are defined in (4.14) and (4.15) respectively, and E

(
O(‖Λ‖2)
‖Λ‖2

)
is bounded

when Λ goes to zero.

The proof of this corollary is given in Appendix 4.6.3. We remark that when the
fund invests significantly in one asset i0, such that Λi0 > 0, and even if its positions on
the other assets are negligible (Λi = 0 for i 6= i0), the realized covariance between those
assets and i0 is modified and different from the fundamental covariance.

4.3.2 Realized correlation between asset returns

The realized correlation between assets i and j between dates 0 and T is

Ri,j[0,T ] =
Ci,j[0,T ]

(
Ci,i[0,T ]C

j,j
[0,T ]

) 1
2
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where C[0,T ], the realized covariance matrix between dates 0 and T , is defined in (4.16).

Using (4.17), the realized correlation between assets i and j can be decomposed as
follows:

Ri,j[0,T ] =
Σi,j√
Σi,iΣj,j

+
Λi√

Σi,iΣj,j

(
1 +

∫ T

0

(
1− s

T

)
dΦis

)
 ∑

1≤l≤n
xl

(
Σj,l −

Σi,j
Σi,i

Σi,l

)


+
Λj√

Σi,iΣj,j

(
1 +

∫ T

0

(
1− s

T

)
dΦjs

)
 ∑

1≤l≤n
xl

(
Σi,l −

Σi,j
Σj,j

Σj,l

)
+O(‖Λ‖2) (4.18)

where E

(
O(‖Λ‖2)
‖Λ‖2

)
is bounded when Λ goes to zero.

In the absence of other effects than exogenous economic moves in fundamentals, the
realized correlation between assets i and j would be equal to the fundamental correlation
between assets i and j:

Σi,j√
Σi,iΣj,j

. Feedback effects from the fund’s rebalancing generate

a realized correlation that is different from the fundamental correlation and is path-
dependent and liquidity-dependent.

The magnitude of the fund/institutional investor’s impact on asset returns is natu-
rally measured by the quantities

Λi =
φi0
Di

which measure the size of the fund/institutional investor’s positions in each asset, as a
fraction of asset market depth. The larger the fund’s positions, the greater the impact on
realized correlation between assets. In Obizhaeva (2011), Obizhaeva shows empirically
that Di is proportional to ADVi√

Σi,i

, where ADVi is the average daily volume for asset i.

This implies that the position of the fund in asset i can be measured by
φi0
√

Σi,i

ADVi
.

Furthermore, at each date t, the fund buys a quantity dφit = φi0dΦ
i
t of asset i in

order to maintain a fixed proportion invested in asset i. Equation 4.18 shows that the
larger the rebalancing of the fund’s positions (more precisely, the larger the quantity∫ T
0

(
1− s

T

)
dΦis), the greater the impact of the fund on realized correlation between

asset returns. Feedback effects are exacerbated by the size of institutional investors and
the volumes of rebalancing generated by their strategies.

We define the average pairwise realized correlation between 0 and T , R[0,T ] by

R[0,T ] =
1

n(n− 1)

∑

1≤i 6=j≤n
Ri,j[0,T ]

which can be decomposed, using (4.18), as the sum of the fundamental average pairwise
correlation and excess pairwise realized correlation, which is also liquidity-dependent
and path-dependent and exacerbated by the fund’s positions and rebalancing volumes.
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4.3.3 Case of zero fundamental correlations

In this section, we examine the case when the fund invests in assets with zero fundamental
correlations: the fundamental covariance matrix Σ is diagonal and we write Σi,i = σ2i .

Using Corollary 4.3.2, we find that the realized variance of asset i returns is given by

Ci,i[0,T ] = σ2i

(
1− 2(1− xi)

(
1 +

∫ T

0

(
1− s

T

)
dΦis

))
+O(‖Λ‖2) < σ2i

Ito’s formula gives: 1 +
∫ T
0

(
1− s

T

)
dΦis = 1

T

∫ T
0 Φisds > 0, which implies that feedback

effects decrease the realized variance of asset returns, as suggested by Figure 4.4. This
is consistent with the fact that the fund buys (resp. sells) assets which decreased (resp.
increased) the most, limiting the amplitude of asset movements.

Using (4.18), we can compute the realized correlation between assets i and j returns:

Ri,j[0,T ] = Λi
σjxj
σi

(
1 +

∫ T

0

(
1− s

T

)
dΦis

)
+Λj

σixi
σj

(
1 +

∫ T

0

(
1− s

T

)
dΦjs

)
+O(‖Λ‖2) > 0

(4.19)
Feedback effects from the fund’s rebalancing generates positive realized correlation be-
tween assets with zero fundamental correlations. This stems from the fact that the
systematic strategy used by the fund creates a similar pattern of behavior for all assets
and shows that the presence of feedback effects reduces the benefits of diversification
as they generate positive realized correlation between assets with zero fundamental cor-
relations. This analytical result confirms quantitatively the numerical results of Figure
4.3.

(4.19) allows us to derive a lower bound for the realized correlation between assets i
and j:

Corollary 4.3.3 The large fund’s rebalancing strategy generates a lower bound for real-
ized correlation between asset returns, which depends on the size and rebalancing volumes
of the institutional investor:

Ri,j[0,T ] ≥ 2
√
xiΛixjΛj

(
1 +

∫ T

0

(
1− s

T

)
dΦis

) 1
2
(
1 +

∫ T

0

(
1− s

T

)
dΦjs

) 1
2

+O(‖Λ‖2)

As the realized correlation matrix R[0,T ] has strictly positive terms, the Perron Frobe-
nius theorem states that it has an eigenvalue which is strictly higher than its other
eigenvalues and which is associated to an eigenvector with strictly positive coordinates.
Furthermore, this eigenvalue belongs to the interval:


1 + (n− 1)R[0,T ] ; 1 + max

i

∑

j 6=i
Ri,j[0,T ]


 (4.20)

where R[0,T ] is the average pairwise realized correlation. This result is consistent
with the observation of empirical realized correlation matrices, which have a largest
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eigenvalue of the order of n, the number of assets in the basket. Our model naturally
generates a highest eigenvalue of the order of n, as shown by (4.20), even starting with
a fundamental correlation matrix equal to the identity matrix, which has all eigenvalues
equal to 1. Furthermore, this result shows that this eigenvalue is associated to an
eigenvector with strictly positive weights, as observed empirically (see Figure 4.2).

4.4 Eigenvalues and eigenvectors of the realized correlation matrix

In order to lead the principal component analysis of the realized correlation matrix,
we derive analytical properties for the eigenvalues and eigenvectors of a proxy R̃ for
the realized correlation matrix R[0,T ], which is equal to the first order expansion of the
realized correlation matrix, i.e. the expression given in (4.18), up to the replacement of
Φ by its fundamental value Φ̃ = Φ|Λ=0, whose explicit expression is given in (4.8).

We define the proxy for the realized correlation by:

R̃ : Rn 7→ Sn(R)

such that [R̃(Λ)]i,i = 1 and, for i 6= j,

[R̃(Λ)]i,j =
Σi,j√
Σi,iΣj,j

+
Λi√

Σi,iΣj,j

(
1 +

∫ T

0

(
1− s

T

)
dΦ̃is

)
 ∑

1≤l≤n
xl

(
Σj,l −

Σi,j
Σi,i

Σi,l

)


+
Λj√

Σi,iΣj,j

(
1 +

∫ T

0

(
1− s

T

)
dΦ̃js

)
 ∑

1≤l≤n
xl

(
Σi,l −

Σi,j
Σj,j

Σj,l

)


For all Λ ∈ R
n, R̃(Λ) is a real-valued symmetric matrix and hence is diagonalisable in

orthonormal basis: there exists n eigenvalues v1(Λ) ≥ ... ≥ vn(Λ) and n eigenvectors
ψ1(Λ), ..., ψn(Λ) such that

R̃(Λ)ψi(Λ) = vi(Λ)ψi(Λ)

and

ψi(Λ).ψj(Λ) = δi,j

where δi,j = 1 if i = j and 0 otherwise.

Notice that R̃(Λ) is linear in Λ; in particular, when Λ goes to zero, it converges
almost surely to R̃(0), which is the fundamental correlation matrix. Furthermore R̃ is
C∞ and

∇R̃(0).Λ = R̃(Λ)− R̃(0)

As the realized correlation matrix in the presence of feedback effects can be consid-
ered as a perturbation of the fundamental correlation matrix, one can expect that its
eigenvalues and eigenvectors are also perturbations of the corresponding eigenvalues and
eigenvectors of the fundamental correlation matrix. The following proposition quantifies
this perturbation due to the impact of the large institutional investor.
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Proposition 4.4.1 Under the assumption that vj(0), the j-th eigenvalue of the funda-
mental correlation matrix R̃(0), is a simple eigenvalue, there exists an open set Uj ⊂ R

n

containing 0 such that the restriction of vj and ψj to Uj are C∞ and for all Λ ∈ Uj,
vj(Λ), the j-th eigenvalue of R̃(Λ), is a simple eigenvalue and verifies

vj(Λ) = vj(0) + ψj(0).
(
R̃(Λ)− R̃(0)

)
ψj(0) + o(‖Λ‖)

and is associated to the unit eigenvector ψj(Λ), which is collinear to:

ψj(0) +
∑

k 6=j

ψk(0).
(
R̃(Λ)− R̃(0)

)
ψj(0)

vj(0)− vk(0)
ψk(0) + o(‖Λ‖)

where ψk(0) is an eigenvector for R̃(0), associated to the eigenvalue vk(0) and such that

‖ψk(0)‖ = 1 and o(‖Λ‖)
‖Λ‖ converges almost surely to zero when Λ goes to zero.

Proposition 4.4.1 gives a tractable formula for the eigenvalues and eigenvectors of the
realized correlation matrix in the presence of feedback effects. We see that they become
path-dependent and liquidity-dependent, as suggested by our numerical experiments.
When market depths are infinite, those eigenvalues and eigenvectors are equal to the
eigenvalues and eigenvectors of the fundamental correlation matrix. In the presence
of feedback effects from the fixed-mix strategy, the eigenvalues and eigenvectors of the
realized correlation matrix depend on the sizes and allocations of institutional investors.

Example and numerical tests In this paragraph, we illustrate how feedback effects impact
the principal component properties of the realized correlation matrix of returns in a
simple example where all parameters are homogenous: asset fundamental volatilities are
equal to σ, fundamental correlation between any pair of assets is ρ, the large institutional
investor’s allocation in each asset i is xi =

1
n and the size of its position in each asset as

a fraction of market depth is Λi = Λ.

Corollary 4.4.2 Under the assumptions of our example, the largest eigenvalue of the
realized correlation matrix of returns in the presence of feedback effects is equal to:

v1(Λ) = 1+(n−1)ρ+2Λ

(
1− 1

n

)
(1−ρ)(ρ+1− ρ

n
)
∑

1≤i≤n

∫ T

0

(
1− s

T

)
dΦ̃is+o(Λ) (4.21)

and is associated to the first eigenvector, given by:

ψ1(Λ) =
1√
n


1 + Λ(1− ρ)(ρ+

1− ρ

n
)


n− 1 +

1

n

∑

1≤i≤n

∫ T

0

(
1− s

T

)
dΦ̃is









1
...
1



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+
Λ√
n
(n− 2)(1− ρ)(ρ+

1− ρ

n
)




∫ T
0

(
1− s

T

)
dΦ̃1

s
...∫ T

0

(
1− s

T

)
dΦ̃is

...∫ T
0

(
1− s

T

)
dΦ̃ns




+ o(Λ) (4.22)

Proof In our example, the fundamental correlation matrix R̃(0) is such that [R̃(0)]i,i = 1
and [R̃(0)]i,j = ρ for i 6= j. As a consequence, it has a simple eigenvalue v1(0) =

1 + (n − 1)ρ, associated to the eigenvector ψ1(0) = 1√
n




1
...
1


, and an eigenvalue of

order n− 1: vk(0) = 1− ρ for 2 ≤ k ≤ n, associated to eigenvectors (ψk(0))2≤k≤n, which

form an orthonormal basis of the hyperplan of Rn: H = {z ∈ R
ns.t.

∑

1≤i≤n
zi = 0}. As the

largest eigenvalue of the fundamental correlation matrix, v1(0), is a simple eigenvalue,
we can use Proposition 4.4.1 to compute the largest eigenvalue and the first eigenvector
of the realized correlation matrix of returns in the presence of feedback effects.

Given the parameters of our example, we find that for i 6= j

[R̃(Λ)− R̃(0)]i,j = Λ(1− ρ)(ρ+
1− ρ

n
)

(
2 +

∫ T

0

(
1− s

T

)
dΦ̃is +

∫ T

0

(
1− s

T

)
dΦ̃js

)

We hence find the expression for v(Λ) given in Corollary 4.4.2 by direct computation of
Proposition 4.4.1.

Proposition 4.4.1 states that the first eigenvalue of the realized correlation matrix of
returns in the presence of feedback effects is given by:

ψ1(Λ) = ψ1(0) +
1

nρ

∑

k≥2

(
ψk(0).

(
R̃(Λ)− R̃(0)

)
ψ1(0)

)
ψk(0) + o(Λ)

as v1(0) − vk(0) = nρ for k ≥ 2. Given the fact that (ψk(0))2≤k≤n is an orthonormal

basis of H = {z ∈ R
ns.t.

∑

1≤i≤n
zi = 0}, the term

∑

k≥2

ψk(0).
(
R̃(Λ)− R̃(0)

)
ψ1(0)ψk(0)

is the orthogonal projection of
(
R̃(Λ)− R̃(0)

)
ψ1(0) on H. Given the equation defining

H, this orthogonal projection pH on H is expressed as

pH(z) =




z1 − 1
n

∑

1≤i≤n
zi

...

zn − 1
n

∑

1≤i≤n
zi




121



CHAPTER 4. INSTITUTIONAL INVESTORS AND RETURN CORRELATIONS

Theoretical eigenvalue (4.21) Fundamental eigenvalue
vs Numerical eigenvalue vs Numerical eigenvalue

Average Error 10% 60%

Table 4.3: Average error for the largest eigenvector of the realized correlation matrix

As
[(
R̃(Λ)− R̃(0)

)
ψ1(0)

]
i
= 1√

n
Λ(1−ρ)(ρ+1−ρ

n )
∑

j 6=i

(
2 +

∫ T

0

(
1− s

T

)
dΦ̃is +

∫ T

0

(
1− s

T

)
dΦ̃js

)
,

and given the expression for pH, we find the expression for ψ1(Λ) given in Corollary 4.4.2

Corollary 4.4.2 shows that the value of the largest eigenvalue of the realized correla-
tion matrix increases in the presence of feedback effects, as suggested in the numerical
results of Section 4.2.2. We simulated 104 price trajectories of our model and, for each
trajectory, we calculated numerically the largest eiegenvalue of the realized correlation
matrix and computed the theoretical largest eigenvalue given by (4.21). Table 4.3 shows
that the average error made by using the theoretical formula of (4.21) to estimate the
largest eigenvalue of the realized correlation matrix is 10%, which is significantly lower
than when using the fundamental largest eigenvalue (error of 60%, using fundamental
largest eigenvalue, which is equal to 1 + (n− 1)ρ).

Corollary 4.4.2 shows that the first eigenvector of the realized correlation matrix
is path-dependent. On average, as we chose homogenous parameters, it is equal to

the fundamental eigenvector 1√
n




1
...
1


. However, in scenarios where the rebalanc-

ing volume for one particular asset i is significantly larger than those for other assets,
the weight of this asset i in the first eigenvector will be greater than for other assets,
as the principal component of the realized correlation matrix is driven by the vector


∫ T
0

(
1− s

T

)
dΦ̃1

s
...∫ T

0

(
1− s

T

)
dΦ̃ns


 which is equal to a weighted average of the rebalancing volume

by the fund in each asset.

Corollary 4.4.2 shows that the weight in the first eigenvector of the realized correla-
tion matrix of an asset which significantly overperforms or underperforms other assets
should increase. Figure 4.7 shows that the weight of the energy sector increased from
2006 to 2007. This was associated to a significant overperformance of the energy sector
(+44% in one year) over the other sectors, which generated large rebalancing volumes by
large institutional investors and increased its weight in the first eigenvector, as predicted
by Corollary 4.4.2.
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Figure 4.7: Weight of each sector in the first principal component of the empirical
correlation matrix of US equity returns in 2006 and 2007.

4.5 Asset returns and fund performance in the presence of feedback

effects

4.5.1 Impact on expected returns

Theorem (4.2.3) allows us to compute the expected return of each addet i in the presence
of feedback effects. As P i verifies the stochastic differential equation given in Theorem
(4.2.3), the expected return of asset i at date t is bi(Pt,Vt)

P i
t

where b is defined in (4.7) and

given explicitly by Lemmas 4.6.3 and 4.6.4. As we did for covariances and correlations
between asset returns, we can study the expansion of the instantaneous expected return
at order one in Λ, which gives an intuitive insight on the impact of feedback effects on
the assets’ expected return. Following the same method as in Corollary 4.3.2, we can
prove the following Proposition.

Proposition 4.5.1 The expected return of asset i at date t in the presence of feedback
effects from the fixed-mix investor is:

bi(Pt, Vt)

P it
= mi +ΦitΛi


 ∑

1≤l≤n
xlml −mi


+O(‖Λ‖2) (4.23)

where Λ and Φit are defined respectively in (4.14) and (4.15) and E

(
O(‖Λ‖2)
‖Λ‖2

)
is bounded

when Λ goes to zero.

When the positions of the fund are negligible compared to market depths (Λ = 0),
the expected return of asset i at date t is equal to the ’fundamental’ expected return mi.
In the presence of feedback effects, bi(Pt,Vt)

P i
t

is the sum of mi and an additional expected
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return which is state-dependent and liquidity-dependent and is exacerbated by the size
of the fund’s positions in asset i as a fraction of the asset market depth.

The nature of the impact of feedback effects on the expected return of asset i depends
on the difference between the fundamental expected return of asset i, mi, and the fun-

damental expected return of the fund,
∑

1≤l≤n
xlml. When mi >

∑

1≤l≤n
xlml, (4.23) shows

that bi(Pt,Vt)
P i
t

< mi and the impact of the large institutional investor decrease (resp. in-

crease) the expected return of assets whose fundamental expected returns are larger (resp.
lower) than the benchmark fund. The action of the institutional investor endogenously
dampens the difference between expected returns of assets with large fundamental ex-
pected returns (compared to the benchmark) and those with low fundamental expected
returns.

Proposition 4.5.1 directly gives us the expected return for the large institutional
investor and for other (small) investors in the presence of feedback effects.

Corollary 4.5.2 At date t, the expected returns for the large institutional investor and
for a (small) investor holding a portion yit of each asset i are given respectively by

∑

1≤i≤n
ximi +

∑

1≤i≤n
xiΛiΦ

i
t


 ∑

1≤l≤n
xlml −mi


+O(‖Λ‖2)

∑

1≤i≤n
yitmi +

∑

1≤i≤n
yitΛiΦ

i
t


 ∑

1≤l≤n
xlml −mi


+O(‖Λ‖2)

The expected return for the large institutional investor is lower (resp. higher) than

its benchmark return
∑

1≤i≤n
ximi if it overweighs (resp. underweighs) assets with large

fundamental expected returns. When the large institutional investor allocates more to
assets with low fundamental expected returns, he benefits from his own feedback effects
and experience higher-than-expected returns.

The expected return for a small fund with positions yt is lower than the small fund’s

fundamental return
∑

1≤i≤n
yitmi when it overweighs assets with large fundamental ex-

pected returns (ie when yit is large for assets i which verify mi >
∑

1≤l≤n
xlml). Whereas

large institutional investors are considered as benchmarks by other investors, we show
that, due to feedback effects, investors who try to beat the large fund by overweighting
(resp. underweighting) assets with fundamental expected returns larger (resp. lower)
than the large fund’s benchmark will experience lower-than-expected returns.

4.5.2 Optimal strategy and efficient frontier in a simple example

The following example illustrates how feedback effects from a large investor affects other
funds. We consider the case of a market comprising n = 2 assets with zero fundamental
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correlation and identical fundamental volatility. We write:

Σ =

(
σ2 0
0 σ2

)
and m =

(
m1

m2

)

and we assume, for example, that m1 > m2. We consider that a large institutional
investor starts investing in this market and keeps a constant proportion of each asset in
its portfolio, equal to 50% for each asset:

X =

(
50%
50%

)

Consider now a small fund investing in those two assets and holding, at date t, a
proportion y1t of asset 1 and y2t = 1−y1t of asset 2. We assume that this fund chooses its
allocations by maximizing a mean-variance criteria. The small fund needs to estimate
expected returns, variances and covariances and then calculates its allocation in each
asset by solving:

y1t = argmax{Ut(y); y ∈ R} (4.24)

where

Ut(y) = yE (return1,t) + (1− y)E (return2,t)

−γ
(
y2E (variance1,t) + (1− y)2 E (variance2,t) + 2y (1− y)E (covariance1,2,t)

)

where γ is a parameter of risk aversion for the small fund.

As long as the large institutional investor does not trade in the market:

Ũt(y) = ym1 + (1− y)m2 − γσ2
(
y2 + (1− y)2

)
(4.25)

However, in the presence of feedback effects from the rebalancing by the large insti-
tutional investor:

Ut(y) = Ũt(y) +

(
yΛ1 − (1− y)Λ2

2
(m2 −m1)

)
exp(t(m1 −m2)) (4.26)

+γσ2
(
y2Λ1 + (1− y)2Λ2 − y(1− y)(Λ1 + Λ2)

)
exp(t(m1 −m2)) +O(‖Λ‖2)

Proof In our example x1 = x2 = 50%, Σ1,1 = Σ2,2 = σ2 and Σ1,2 = Σ2,1 = 0. Using
4.9, we find that E(Φ̃1

t ) = E(Φ̃2
t ) = exp(t(m1 −m2)). Using (4.23) and (4.17), we find

that
E (return1,t) = m1 +

Λ1

2 (m2 −m1) exp(t(m1 −m2)) +O(‖Λ‖2)
E (return2,t) = m2 +

Λ2

2 (m1 −m2) exp(t(m1 −m2)) +O(‖Λ‖2)
E (variance1,t) = σ2 (1− Λ1 exp(t(m1 −m2))) +O(‖Λ‖2)
E (variance2,t) = σ2 (1− Λ2 exp(t(m1 −m2))) +O(‖Λ‖2)
E (covariance1,2,t) =

σ2

2

(
Λ1+Λ2

2

)
exp(t(m1 −m2)) +O(‖Λ‖2)

which gives (4.26).
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The following Proposition follows immediately.

Proposition 4.5.3 In the absence of large institutional investors, the optimal strategy
is associated to (4.24) and (4.25) and is given by:

ỹ1 =
1

2
+
m1 −m2

4γσ2

When the large institutional investor trades in this market, the optimal strategy is asso-
ciated to (4.24) and (4.26) and is given by:

y1t = ỹ1 + (Λ1 +Λ2)
m1 −m2

8γσ2
+

Λ1 − Λ2

4
+O(‖Λ‖2)

When there are no feedback effects, the mean variance criteria gives an optimal pro-
portion in each asset which is constant and hence implies that the small fund’s strategy
will be a fixed-mix strategy. We see that the larger the difference between the funda-
mental expected return of asset 1 and 2, the greater the allocation in asset 1 (recall that
m1 > m2). When risk aversion goes to infinity (γ → ∞), the optimal allocations do not
depend on the assets’ fundamental expected returns.

We see that in the presence of feedback effects, this strategy (ỹ1) is no longer optimal,
as y1t 6= ỹ1. The presence of large institutional investors generates a non-optimality for
strategies which are optimal in the absence of feedback effects. If the small fund does not
take feedback effects into account, it will choose strategy ỹ1 which is not optimal. On the
contrary, if the small fund estimates the fundamentals of the market (from price series
when the large investor was not trading in the market) and knows the strategy of the
large institutional investor (which is realistic, for example, for large mutual funds whose
strategies are often public), the small fund will be able to follow the strategy y1t which is
optimal for the mean-variance criteria (4.24). Figure 4.8 shows that the efficient frontier
is modified in the presence of feedback effects. We see that taking feedback effects into
account allows the small investor to diminish the volatility of its portfolio for a given
return. This stems from the fact that fixed-mix rebalancing induces a decrease of realized
asset volatilities, as shown in Section 4.3.3, which can be used by an investor following
the optimal strategy y1t to build a less volatile portfolio. Trading and risk-management
decisions in financial markets need to take into account the allocations and sizes of large
benchmark portfolios.
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Figure 4.8: Efficient frontier with and without feedback effects
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4.6 Appendices

We denote

Mk =

(
Sk
Wk

)
∈ R

n+1 and Zk+1 = τm+
√
τξk+1 ∈ R

n (4.27)

where mi = mi − Σi,i

2 .

We obviously have
n∑

i=1

xi = 1. In addition, as the large fund has long positions:

xi ≥ 0 for all 1 ≤ i ≤ n.

4.6.1 Proof of Proposition 4.2.1

Let Mk ∈ (R∗
+)

n+1 and ξk+1 be given, thus fixing the value of φik =
xiM

n+1
k

M i
k

. We can

write (4.4) as M i
k+1 = Ai(Mk, Zk+1)+

1
M i

k+1

Bi(Mk, Zk+1)M
n+1
k+1 where Mk and Zk+1 are

given in (4.27) and Ai and Bi are defined on (R∗
+)

n+1 ×R
n by:

Ai(M,Z) =M i exp(Zi)

(
1− xiM

n+1

M iDi

)
(4.28)

Bi(M,Z) =M i exp(Zi)
xi
Di

(4.29)

which implies thatM i
k+1 =

1
2

(
Ai(Mk, Zk+1) +

√
A2
i (Mk, Zk+1) + 4Bi(Mk, Zk+1)M

n+1
k+1

)
.

Reinjecting in Equation 4.3, we find that Mn+1
k+1 is a fixed point of the function

v(x) =
1

2

n∑

i=1

xiM
n+1
k

M i
k

(
Ai(Mk, Zk+1) +

√
A2
i (Mk, Zk+1) + 4Bi(Mk, Zk+1)x

)

As a consequence, proving Proposition 4.2.1 is equivalent to proving that v has a unique
fixed point on R

∗
+.

Existence Given the expression of v, it is clear that for x large enough, v(x) < x. We
then examine the three following possibilities:� there exists i0 such that Ai0(Mk, Zk+1) > 0, which implies that v(0) > 0 and, as v

is a continuous function of x, that v(x) > x for x small enough;� there exists i0 such that Ai0(Mk, Zk+1) = 0, which implies that

v(x) ≥ 1

2

xiM
n+1
k

M i0
k

√
4Bi0(Mk, Zk+1)x

which is strictly larger than x for x small enough;
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CHAPTER 4. INSTITUTIONAL INVESTORS AND RETURN CORRELATIONS� ∀i Ai(Mk, Zk+1) < 0 which implies that v(0) = 0. Let us then calculate:

v′(0) =
n∑

i=1

xiM
n+1
k

M i
k

Bi(Mk, Zk+1)

|Ai(Mk, Zk+1)|
=

n∑

i=1

xiM
n+1
k

M i
k

xi
Di

xiM
n+1
k

M i
k
Di

− 1

This implies that:

v′(0) >
n∑

i=1

xiM
n+1
k

M i
k

xi
Di

xiM
n+1
k

M i
kDi

=
n∑

i=1

xi = 1

assuring that v(x) > x for x small enough.

As v is a continuous function of x, that v(x) > x for large x and v(x) < x for small x,
there exists at least one fixed point x0 > 0 such that v(x0) = x0.

Unicity Suppose that there exist two fixed points of function v, denoted a and b with
0 < a < b. As v is concave, for 0 < x < a we have v(a)−v(x)

a−x ≥ v(b)−v(a)
b−a = 1, meaning

that x ≥ v(x) which is in contradiction with the fact that x < v(x) for x sufficiently
small. As a consequence, v cannot have more than one fixed point. The unique fixed
point of v is Mn+1

k+1 > 0 and we can deduce, for 1 ≤ i ≤ n:

M i
k+1 =

1

2

(
Ai(Mk, Zk+1) +

√
A2
i (Mk, Zk+1) + 4Bi(Mk, Zk+1)M

n+1
k+1

)
> 0

This proves the first part of Proposition 4.2.1.
We denote

ψ : (R∗
+)

n+1 × R
n ×R

∗
+ → R

ψ : (M,Z, x) → x− 1

2

n∑

i=1

xiM
n+1

M i

(
Ai(M,Z) +

√
A2
i (M,Z) + 4Bi(M,Z)x

)
(4.30)

where Ai and Bi are defined respectively in (4.28) and (4.29). ψ is C∞. Furthermore,

we have ψ(M, 0,Mn+1) = 0 and Ai(M, 0) = M i
(
1− xiMn+1

M iDi

)
and Bi(M, 0) = M i xi

Di

according to (4.28) and (4.29), which implies that

A2
i (M, 0) + 4Bi(M, 0)Mn+1 =

(
M i

(
1 +

xiM
n+1

M iDi

))2

(4.31)

Hence we find that:

∂ψ

∂x
(M, 0,Mn+1) = 1−

n∑

i=1

xiM
n+1

M i

Bi(M, 0)√
A2
i (M, 0) + 4Bi(M, 0)Mn+1

= 1−
n∑

i=1

xi ×
xiM

n+1

M i

Di +
xiMn+1

M i
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=

n∑

i=1

xi −
n∑

i=1

xi ×
xiMn+1

M i

Di +
xiMn+1

M i

∂ψ

∂x
(M, 0,Mn+1) =

n∑

i=1

xi

1 + xiMn+1

DiM i

> 0 (4.32)

As a consequence, if K is a compact set of
(
R
∗
+

)n+1
, the implicit function theorem

states that there exists ǫK > 0 and θn+1 which is C∞ on K × B(0, ǫK) such that:

ψ(M,Z, θn+1(M,Z)) = 0 (4.33)

and then, we deduce, for 1 ≤ i ≤ n,

θi(M,Z) =
1

2

(
Ai(M,Z) +

√
A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z))

)

and θi is C∞ on K×B(0, ǫK). This concludes the proof for the existence and smoothness
of θ.

4.6.2 Proof of Theorem 4.2.3

Lemma 4.6.1 Under the assumption that there exists η > 0 such that E(‖ξ‖η+2) <∞,
for all ǫ > 0 and r > 0:

lim
τ→0

sup
‖M‖≤r

1

τ
P(‖Mk+1 −Mk‖ ≥ ǫ|Mk =M) = 0 (4.34)

Proof Fix ǫ > 0 and r > 0. Proposition 4.2.1 shows that there exists ǫ(r) > 0 and
C(r) > 0 such that, if ‖mτ +√

τξk+1‖ ≤ ǫ(r) and ‖Mk‖ ≤ r, then

‖Mk+1 −Mk‖ = ‖θ(Mk,mτ +
√
τξk+1)− θ(Mk, 0)‖ ≤ C(r)‖mτ +√

τξk+1‖

We then have:

P
(
‖Mk+1 −Mk‖ ≥ ǫ|Mk =M, ‖M‖ ≤ r, ‖mτ +√

τξk+1‖ ≤ ǫ(r)
)

≤ P
(
C(r)‖mτ +√

τξk+1‖ ≥ ǫ
)

≤ P

(
‖ξk+1‖ ≥ ǫ− ‖m‖C(r)τ

C(r)
√
τ

)

≤ E

[(
‖ξk+1‖

C(r)
√
τ

ǫ− ‖m‖C(r)τ

)2+η
]

≤ τ1+
η
2E

[
(‖ξk+1‖)2+η

]
×
(

C(r)

ǫ− ‖m‖C(r)τ

)2+η

130



CHAPTER 4. INSTITUTIONAL INVESTORS AND RETURN CORRELATIONS

which implies that

P
(
‖Mk+1 −Mk‖ ≥ ǫ, ‖mτ +√

τξk+1‖ ≤ ǫ(r)|Mk =M, ‖M‖ ≤ r
)

≤ τ1+
η
2E

[
(‖ξk+1‖)2+η

]
×
(

C(r)

ǫ− ‖m‖C(r)τ

)2+η

Moreover, we have

P(‖Mk+1 −Mk‖ ≥ ǫ, ‖mτ +√
τξk+1‖ ≥ ǫ(r)|Mk =M) ≤ P(‖mτ +√

τξk+1‖ ≥ ǫ(r))

and

P(‖mτ +√
τξk+1‖ ≥ ǫ(r)) ≤ τ1+

η
2E

[
(‖ξk+1‖)2+η

]
×
(

1

ǫ(r)− ‖m‖τ

)2+η

(4.35)

Given that P(‖Mk+1 −Mk‖ ≥ ǫ|Mk =M) is equal to:

P(‖Mk+1 −Mk‖ ≥ ǫ, ‖mτ +√
τξk+1‖ ≤ ǫ(r)|Mk =M)

+P(‖Mk+1 −Mk‖ ≥ ǫ, ‖mτ +√
τξk+1‖ ≥ ǫ(r)|Mk =M)

we find (4.34).

Lemma 4.6.2 Under the assumption that there exists η > 0 such that E(‖ exp(ηξ)‖) <
∞ and E(‖ξ‖η+4) <∞, for all ǫ > 0 and r > 0:

lim
τ→0

sup
‖M‖≤r

∥∥∥∥
1

τ
E(Mk+1 −Mk|Mk =M)− b(M)

∥∥∥∥ = 0 (4.36)

lim
τ→0

sup
‖S‖≤r

∥∥∥∥
1

τ
E[(Mk+1 −Mk)(Mk+1 −Mk)

t|Mk =M ]− aat(M)

∥∥∥∥ = 0 (4.37)

where a and b are defined respectively in (4.6) and (4.7).

Proof Fix r > 0. We know by Proposition 4.2.1 that there exists ǫ(r) > 0 such that θ is
C∞ on B(0, r)×B(0, ǫ(r)). As a consequence, for ‖Mk‖ ≤ r and ‖mτ +√

τξk+1‖ ≤ ǫ(r)
we can right the Taylor expansion of θi (1 ≤ i ≤ n+ 1) in 0:

M i
k+1 −M i

k = θi(Mk,mτ +
√
τξk+1)− θ(Mk, 0)

=
∂θi
∂z

(Mk, 0)(mτ +
√
τξk+1) +

1

2

(
mτ +

√
τξk+1

)
.
∂2θi
∂z∂z′

(Mk, 0)
(
mτ +

√
τξk+1

)

+
(
mτ +

√
τξk+1

)
.Ri(Mk, τ, ξk+1)

(
mτ +

√
τξk+1

)

As θi is C∞ on B(0, r)×B(0, ǫ(r)), the rest Ri(Mk, τ, ξk+1) converges uniformly to 0
when τ goes to 0. As a consequence, we obtain that:

lim
τ→0

sup
‖M‖≤r

∥∥∥∥
1

τ
E
(
(Mk+1 −Mk)|Mk =M, ‖mτ +√

τξk+1‖ ≤ ǫ(r)
)
− b(M)

∥∥∥∥ = 0 (4.38)
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Remarking that

∥∥∥∥
1

τ
E

(
(Mk+1 −Mk)1‖mτ+√

τξk+1‖≤ǫ(r)|Mk =M
)
− b(M)

∥∥∥∥

≤
∥∥∥∥
(
1

τ
E
(
(Mk+1 −Mk)|Mk =M, ‖mτ +√

τξk+1‖ ≤ ǫ(r)
)
− b(M)

)
P(‖mτ +√

τξk+1‖ ≤ ǫ(r))

∥∥∥∥

+‖b(M)P(‖mτ +√
τξk+1‖ ≥ ǫ(r))‖

and given (4.35) and (4.38) and the continuity of b (which implies that b(M) is bounded
for ‖M‖ ≤ r), we find

lim
τ→0

sup
‖M‖≤r

∥∥∥∥
1

τ
E

(
(Mk+1 −Mk)1‖mτ+√

τξk+1‖≤ǫ(r)|Mk =M
)
− b(M)

∥∥∥∥ = 0 (4.39)

Similarly, we show that:

lim
τ→0

sup
‖M‖≤r

∥∥∥∥
1

τ
E

(
(Mk+1 −Mk)(Mk+1 −Mk)

t1‖mτ+√
τξk+1‖≤ǫ(r)|Mk =M

)
− aat(M)

∥∥∥∥ = 0

(4.40)
By construction of Mk+1, we see that Mk+1 ≤ g(Mk)‖ exp(mτ +

√
τξk+1)‖. As a

consequence, for p > 0, as soon as p
√
τ < η and given Mk =M , Mk+1 ∈ Lp. Using this

result for p = 2, we find that for
√
τ < η

2 , Mk+1 ∈ L2 and we can use Cauchy Schwarz
inequality: ∣∣∣E

(
(M i

k+1 −M i
k)1‖mτ+√

τξk+1‖≥ǫ(r)|Mk =M
)∣∣∣

≤
√

E
(
(M i

k+1 −M i
k)

2|Mk =M
)
P
(
‖mτ +√

τξk+1‖ ≥ ǫ(r)
)

≤
√
E
(
(M i

k+1 −M i
k)

2|Mk =M
)
√

E

( ‖ξk+1‖
√
τ

ǫ(r)− ‖µ‖τ

)4+η

≤ τ1+
η
4

√
E
(
(M i

k+1 −M i
k)

2|Mk =M
)
√

E

( ‖ξk+1‖
ǫ(r)− ‖µ‖τ

)4+η

As E(‖ξk+1‖4+η) < ∞, Mk+1 ∈ L2 and Mk+1 stays L2 bounded as τ goes to 0 and we
obtain:

lim
τ→0

sup
‖M‖≤r

∥∥∥∥
1

τ
E

(
(Mk+1 −Mk)1‖mτ+√

τξk+1‖≥ǫ(r)|Mk =M
)∥∥∥∥ = 0 (4.41)

Using the same property with p=4, we show that

lim
τ→0

sup
‖M‖≤r

∥∥∥∥
1

τ
E

(
(Mk+1 −Mk)(Mk+1 −Mk)

t1‖mτ+√
τξk+1‖≥ǫ(r)|Mk =M

)∥∥∥∥ = 0 (4.42)

(4.39) and (4.41) (resp. (4.40) and (4.42)) give (4.36) (resp. (4.37)).
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The following lemma is a direct consequence of the implicit function theorem

Lemma 4.6.3 For 1 ≤ l, i ≤ n:

∂θi
∂zl

(M, 0) =
M i

1 + xiMn+1

M iDi



δi,l +

xiM
n+1

M iDi

n∑

j=1

xj

1 +
xjMn+1

MjDj

× xl

1 + xlMn+1

M lDl




(4.43)

∂θn+1

∂zl
(M, 0) =

Mn+1

n∑

j=1

xj

1 +
xjMn+1

MjDj

xl

1 + xlMn+1

M lDl

(4.44)

Proof θn+1 is defined implicitely by ψ(M,Z, θn+1(M,Z)) = 0, where ψ is given in
(4.30). The implicit function theorem gives, for 1 ≤ l ≤ n,

∂θn+1

∂zl
(M,Z) =

− ∂ψ
∂zl

(M,Z, θn+1(M,Z))

∂ψ
∂x (M,Z, θn+1(M,Z))

(4.45)

Given the expression for ψ given in (4.30), we find that

∂ψ

∂zl
(M,Z, θn+1(M,Z)) =

−1

2

xlM
n+1

M l


Al(M,Z) +

A2
l (M,Z) + 2Bl(M,Z)x√
A2
l (M,Z) + 4Bl(M,Z)x




(4.46)
and

∂ψ

∂x
(M,Z, θn+1(M,Z)) = 1−

∑

1≤i≤n

xiM
n+1

M i

Bi(M,Z)√
A2
i (M,Z) + 4Bi(M,Z)x

(4.47)

Using (4.28) and (4.29), we find that

A2
l (M,Z) + 2Bl(M,Z)Mn+1 = (M l)2

(
1 +

(
xlM

n+1

M lDl

)2
)

(4.48)

Given (4.31) and the fact that θn+1(M, 0) =Mn+1, we find that

∂ψ

∂zl
(M, 0, θn+1(M, 0)) =

−xlMn+1

1 + xlMn+1

M lDl

(4.49)

Using (4.45), (4.49) and (4.32), we find that

∂θn+1

∂zl
(M, 0) =

Mn+1

n∑

j=1

xj

1 +
xjMn+1

MjDj

xl

1 + xlMn+1

M lDl
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Let us now calculate, for 1 ≤ i ≤ n and 1 ≤ l ≤ n, ∂θi∂zl
(M, 0). Given the definition of

θi, we remark that:

∂θi
∂zl

(M,Z) = −∂ψ
∂zl

(M,Z, θn+1(M,Z))
δi,l

xiMn+1

M i

+
Bi(M,Z)∂θn+1

∂zl
(M,Z)

√
A2
l (M,Z) + 4Bl(M,Z)x

(4.50)

which, evaluated in 0 and given the expression for ∂θn+1

∂zl
and (4.31) gives:

∂θi
∂zl

(M, 0) =
M i

1 + xiMn+1

M iDi



δi,l +

xiMn+1

M iDi

n∑

j=1

xj

1 +
xjMn+1

MjDj

× xl

1 + xlMn+1

M lDl




Lemma 4.6.4 For 1 ≤ j, l ≤ n:

∂2θn+1

∂zj∂zl
(M, 0)

1

Mn+1

∑

1≤p≤n

xp

1 +
xpMn+1

DpMp

=
δj,lxl

1 + xlMn+1

DlM l


1−

2
(
xlM

n+1

DlM l

)2

(
1 + xlMn+1

DlM l

)2


 (4.51)

+
2xjxl(

1 + xlMn+1

DlM l

)(
1 +

xjMn+1

DjMj

) 1∑

1≤p≤n

xp

1 +
xpMn+1

DpMp




(
xlM

n+1

DlM l

)2

(
1 + xlMn+1

DlM l

)2 +

(
xjMn+1

DjMj

)2

(
1 +

xjMn+1

DjMj

)2




− 2xjxl(
1 + xlMn+1

DlM l

)(
1 +

xjMn+1

DjMj

) 1

 ∑

1≤p≤n

xp

1 +
xpMn+1

DpMp




2

∑

1≤p≤n

xp

(
xpMn+1

DpMp

)2

(
1 +

xpMn+1

DpMp

)3

∂2θi
∂zj∂zl

(M, 0,Mn+1) = δi,jδj,l
M i

1 + xiMn+1

DiM i


1−

2
(
xlM

n+1

DlM l

)2

(
1 + xlMn+1

DlM l

)2


 (4.52)

+2M i

(
xiMn+1

DiM i

)2

(
1 + xiMn+1

DiM i

)3
1∑

1≤p≤n

xp

1 +
xpMn+1

DpMp


δi,l

xj(
1 +

xjMn+1

DjMj

) + δi,j
xl(

1 + xlMn+1

DlM l

)




−2Mi

2
(
xlM

n+1

DlM l

)2

(
1 + xlMn+1

DlM l

)3

xj

1+
xjM

n+1

DjM
j

xl

1+
xlM

n+1

DlM
l


 ∑

1≤p≤n

xp

1 +
xpMn+1

DpMp




2 +

xi
Di

1 + xiMn+1

DiM i

∂2θn+1

∂zj∂zl
(M, 0)
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Proof We first calculate for 1 ≤ j, l ≤ n ∂2θn+1

∂zj∂zl
(M, 0). Deriving (4.46) with respect to

zl and zj gives the following equation:

∂2ψ

∂zj∂zl
(M,Z, θn+1(M,Z)) +

∂2ψ

∂x∂zl
(M,Z, θn+1(M,Z))

∂θn+1

∂zj
(M,Z) (4.53)

+
∂2ψ

∂x∂zj
(M,Z, θn+1(M,Z))

∂θn+1

∂zl
(M,Z)+

∂2ψ

∂x2
(M,Z, θn+1(M,Z))

θn+1

∂zj
(M,Z)

θn+1

∂zl
(M,Z)

+
∂ψ

∂x
(M,Z, θn+1(M,Z))

∂2θn+1

∂zj∂zl
(M,Z) = 0

Considering (4.46), we find that if l 6= j, then ∂2ψ
∂zj∂zl

(M,Z, θn+1(M,Z)) = 0. Deriving

(4.46) with respect to zl, we find that

∂2ψ

∂z2l
(M,Z, x) = −1

2

xlM
n+1

M l


Al(M,Z) +

2A2
l (M,Z) + 2Bl(M,Z)x√
A2
l (M,Z) + 4Bl(M,Z)x

− (A2
l (M,Z) + 2Bl(M,Z)x)2

(A2
l (M,Z) + 4Bl(M,Z)x)

3
2




=
∂ψ

∂zl
(M,Z, x) +

2xlM
n+1

M l

B2
l (M,Z)x2

(A2
l (M,Z) + 4Bl(M,Z)x)

3
2

Evaluating this equation in 0 and using (4.49) and (4.31), we find that

∂2ψ

∂zj∂zl
(M, 0,Mn+1) = δj,l

xlM
n+1

(
1 + xlMn+1

DlM l

)3

((
1− xlM

n+1

DlM l

)2

− 1

)
(4.54)

Deriving (4.46) with respect to x, we find that

∂2ψ

∂zl∂x
(M,Z, x) = −2xlM

n+1(M,Z)

M l

B2
l (M,Z)x

(A2
l (M,Z) + 4Bl(M,Z)x)

3
2

which, evaluated in 0, gives

∂2ψ

∂zl∂x
(M, 0,Mn+1) = −2xl

(
Mn+1xl
M lDl

)2
1

(
1 + Mn+1xl

M lDl

)3 (4.55)

Differentiating (4.47) with respect to x, we find that

∂2ψ

∂x2
(M,Z, x) = 2

∑

1≤p≤n

xpM
n+1

Mp

B2
p(M,Z)

(A2
p(M,Z) + 4Bp(M,Z)x)

3
2
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which implies that

∂2ψ

∂x2
(M, 0,Mn+1) =

2

Mn+1

∑

1≤p≤n

xp

(
xpMn+1

DpMp

)2

(
1 +

xpMn+1

DpMp

)3 (4.56)

Using (4.43), (4.44), (4.54), (4.55) and (4.56), the relationship given in (4.53) gives
(4.51) of Lemma 4.6.4.

Using (4.50), we can calculate the second order derivative of θi for 1 ≤ i ≤ n. For
1 ≤ j, l ≤ n:

∂2θi
∂zj∂zl

(M,Z, θn+1(M,Z)) = − δi,l
xiMn+1

M i

(
∂2ψ

∂zj∂zl
(M,Z, θn+1(M,Z))

)

− δi,l
xiMn+1

M i

(
∂2ψ

∂x∂zl
(M,Z, θn+1(M,Z))

∂θn+1

∂zj
(M,Z)

)

+δi,j
∂θn+1

∂zl
(M,Z)

2B2
i (M,Z)θn+1(M,Z)

(A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z))

3
2

−2
B2
i (M,Z)∂θn+1

∂zj
(M,Z)∂θn+1

∂zl
(M,Z)

(A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z))

3
2

+
Bi(M,Z)√

A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z)

∂2θn+1

∂zj∂zl
(M,Z)

which, for Z = 0, gives (4.52).

Define the differential operator G : C∞
0 (Rn+1) 7→ C∞

0 (Rn+1) by

Gh(x) =
1

2

∑

1≤i,j≤n
(aat)i,j(x)∂i∂jh+

∑

1≤i≤n
bi(x)∂ih

where a and b are defined in (4.6) and (4.7) respectively. a and b are continous
and Lemmas 4.6.3 and 4.6.4 show that for all x ∈ R

n+1, ‖a(x)‖ + ‖b(x)‖ ≤ K‖x‖.
(Ethier and Kurtz, 1986, Theorem 2.6, Ch.8) states that the martingale problem for
(G, δS0,W0

) is well-posed. So, by (Ethier and Kurtz, 1986, Theorem 4.2, Ch.7), this
implies, using Lemmas 4.6.1 and 4.6.2, that the process (S⌊ t

τ
⌋,W⌊ t

τ
⌋) converges in dis-

tribution to the solution (P, (Pt, Vt)t≥0) of the martingale problem for (G, δS0,W0
) when

τ → 0.

Furthermore, as a and b are C∞, they are locally Lipschitz and hence, by (Ikeda and Watanabe,
1981, Theorem 3.1, Ch.4), the solution of the martingale problem for (G, δS0,W0

) is the
unique strong solution of the stochastic differential equation given in Theorem 4.2.3.
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4.6.3 Proof of Corollary 4.3.2

We study the expression of C[0,T ] given in (4.16). Let us start with the term

1

T

∫ T

0
(Fs(Γs − In)Σ) ds

We have

[Fs(Γs − In)]i,k =
ΛiΦ

i
s

1 + ΦisΛi




 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

xk
1 + φksΛk

− δi,k




which implies that

∫ T

0
[Fs(Γs − In)Σ]i,jds =

∫ T

0

∑

1≤k≤n
[Fs(Γs − In)]i,kΣk,jds

= −
∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds+

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi

∑

1≤k≤n


 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

xk
1 + ΦksΛk

Σk,jds

We then remark that

∣∣∣∣
∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds −

∫ T

0
ΛiΦ

i
sΣi,jds

∣∣∣∣ ≤ |Σi,j|Λ2
i

∫ T

0

(Φis)
2

1 + ΦisΛi
ds

and hence

∣∣∣∣
∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds−

∫ T

0
ΛiΦ

i
sΣi,jds

∣∣∣∣ ≤ |Σi,j|Λ2
i

∫ T

0
(Φis)

2ds (4.57)

Furthermore, we remark that

∣∣∣∣∣∣

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi

∑

1≤k≤n


 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

xk
1 + ΦksΛk

Σk,jds−
∫ T

0
ΛiΦ

i
s

∑

1≤k≤n
xkΣk,jds

∣∣∣∣∣∣

≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0
ΦisΛi

∣∣∣∣∣∣
1

1 + ΦisΛi

1

1 + ΦksΛk


 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

− 1

∣∣∣∣∣∣
ds

≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0

ΦisΛi
(1 + ΦksΛk) (1 + ΦisΛi)

∣∣∣∣∣∣


 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

−
(
1 + ΦksΛk

) (
1 + ΦisΛi

)
∣∣∣∣∣∣
ds
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≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0
ΦisΛi

∣∣∣∣∣∣


 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

−
(
1 + ΦksΛk

) (
1 + ΦisΛi

)
∣∣∣∣∣∣
ds

≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0
ΦisΛi

∣∣∣∣∣∣∣∣∣
ΦisΛi +ΦksΛk +ΦisΦ

k
sΛiΛk +




∑

1≤p≤n

xp
1 + ΦpsΛp

− 1

∑

1≤p≤n

xp
1 + ΦpsΛp




∣∣∣∣∣∣∣∣∣
ds

≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0
ΦisΛi

∣∣∣∣∣∣∣∣∣
ΦisΛi +ΦksΛk +ΦisΦ

k
sΛiΛk +




∑

1≤p≤n

xp
1 + ΦpsΛp

−
∑

1≤p≤n
xp

∑

1≤p≤n

xp
1 + ΦpsΛp




∣∣∣∣∣∣∣∣∣
ds

≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0
ΦisΛi



ΦisΛi +ΦksΛk +ΦisΦ

k
sΛiΛk −




∑

1≤p≤n

xpΦ
p
sΛp

1 + ΦpsΛp
∑

1≤p≤n

xp
1 + ΦpsΛp






ds

≤
∑

1≤k≤n
xk |Σk,j|

∫ T

0
ΦisΛi

∣∣∣∣∣∣
ΦisΛi +ΦksΛk +ΦisΦ

k
sΛiΛk +

∑

1≤p≤n
xpΦ

p
sΛp

∑

1≤p≤n
xp(1 + ΦpsΛp)

∣∣∣∣∣∣
ds

(4.58)

where we used that
∑

1≤p≤n
xp = 1 and that for strictly positive real numbers (yi)1≤i≤n,

we have the convexity inequality


 ∑

1≤p≤n

xp
yp




−1

≤
∑

1≤p≤n
xpyp.

Given Lemmas 4.6.3 and 4.6.4, we find that, for 1 ≤ i, k ≤ n,
ai,k(Pt,Vt)

P i
t

,
an+1,k(Pt,Vt)

Vt
,

bi(Pt,Vt)

P i
t

and bn+1(Pt,Vt)
Vt

, defined in (4.6) and (4.7), are bounded uniformly in Λ. As a

consequence, by applying Itô’s formula to (φit)
p(φjt )

q(φkt )
r for p, q, r ≥ 0, we find that

E((φit)
p(φjt )

q(φkt )
r) ≤ K exp(Ct) where C does not depend on Λ.

Given that Φis =
φis
φi0

and using (4.57), we find that

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds =

∫ T

0
ΛiΦ

i
sΣi,jds+O(‖Λ‖2)

where E

(
O(‖Λ‖2)
‖Λ‖2

)
is bounded when Λ goes to zero.
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Similarly, using (4.58), we find that

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi

∑

1≤k≤n


 ∑

1≤p≤n

xp
1 + ΦpsΛp




−1

xk
1 + φksΛk

Σk,jds =

∫ T

0
ΛiΦ

i
s

∑

1≤k≤n
xkΣk,jds+O(‖Λ‖2)

We then use the same methodology to study the other terms of C[0,T ] given in (4.16).

We conclude this proof by using Ito’s formula and the fact that Φi0 =
φi0
φi0

= 1, which

gives the relationship

1 +

∫ T

0

(
1− s

T

)
dΦis =

1

T

∫ T

0
Φisds

which leads to the decomposition of C[0,T ] given in Corollary 4.3.2.

4.6.4 Proof of Proposition 4.4.1

Let vj(0) be a simple eigenvalue of the fundamental correlation matrix R̃(0). Define
F : Rn × R 7→ R, such that for (Λ, v) ∈ R

n × R

F (Λ, v) = det(vIn − R̃(Λ))

F is polynomial in v and (Λi)1≤i≤n so F ∈ C∞(Rn+1). As vj(0) is a simple eigenvalue of
R̃(0)

F (0, vj(0)) = 0 and
∂F

∂v
(0, vj(0)) 6= 0

The implicit function theorem ensures the existence of an open set Ũj containing 0, and
open set Vj containing vj(0) and a C∞ mapping ṽj : Ũj 7→ Vj such that ∀(Λ, v) ∈ Ũj×Vj:� F (Λ, v) = 0 ⇔ v = ṽj(Λ)� ∂F

∂v (Λ, v) 6= 0� ∂ṽj
∂Λi

(Λ) = − ∂F
∂Λi

(Λ, ṽj(Λ)) × 1
∂F
∂v

(Λ,ṽj(Λ))

As a consequence, for all Λ ∈ U , ṽj(Λ) is a simple eigenvalue for the correlation matrix
R̃(Λ). Obviously ṽj(0) = vj(0). As vj(0) is the j-th eigenvalue of R̃(0) and is a simple
eigenvalue: vj−1(0) < vj(0) < vj+1(0). We know that the eigenvalues of R̃(Λ) are
continuous functions of Λ, which implies that there exists an open set Uj ⊂ Ũj containing
0 such that: ∀ Λ ∈ Uj , ∀ i ≤ j − 1 and k ≥ j + 1, vi(Λ) < ṽj(Λ) < vk(Λ). As a
consequence, for Λ ∈ Ui, ṽj(Λ) is the j-th eigenvalue of R̃(Λ) and hence is equal to
vj(Λ). As a consequence, the restriction of vj to Ui is C∞. Furthermore, the fact that
∂F
∂v (Λ, v) 6= 0 implies that vj(Λ) is a simple eigenvalue for R̃(Λ). Let us now calculate
the derivative of vj .

Denote ψ̃j(Λ) an eigenvector associated to the eigenvalue vj(Λ).

(vj(Λ)In − R̃(Λ))ψj(Λ) = 0 (4.59)
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As vj(Λ) is a simple eigenvalue, the rank of the matrix vj(Λ)In − R̃(Λ) is equal to n− 1
and it is possible to extract a n − 1 × n − 1 submatrix which is invertible. Without

loss of generality, we can assume that

([
vj(Λ)In − R̃(Λ)

]
i,k

)

2≤i,k≤n
is invertible. As

a consequence, fixing the first component of the eigenvector ψ̃j(Λ) equal to one and

remarking that Λ →
([
vj(Λ)In − R̃(Λ)

]
i,k

)

2≤i,k≤n
is also C∞ and invertible, which

implies that its inverse is also a C∞ function of Λ, we deduce that the other components
of ψ̃j(Λ) are C∞ functions of Λ, for Λ ∈ Uj. Hence, ψ̃j is a C∞ function of Λ on Uj and

so is ψj(Λ) =
˜ψj(Λ)

‖ ˜ψj(Λ)‖
.

Differentiating (4.59) with respect to Λi, we obtain:

(
∂vj
∂Λi

(0)In − ∂R̃

∂Λi
(0)

)
ψj(0) + (vj(0)In − R̃(0))

∂ψj
∂Λi

(0) = 0

Multiplying on the left by ψj(0)
t and given the fact that

ψj(0)
t(vj(0)In − R̃(0)) = 0

we obtain: ‖ψj(0).ψj(0)‖2 ∂vj∂Λi
(0) = ψj(0)

t ∂Rt

∂Λi
(0)ψj(0). As a consequence, we have:

dvj(0).Λ = ψj(0).∇R̃(0).Λψj(0) = ψj(0).
(
R̃(Λ)− R̃(0)

)
ψj(0)

which concludes the proof for the first part of Proposition 4.4.1.
We saw that the restriction of the unit eigenvector function (ψj) to Uj is also C∞.

We write
∂ψj
∂Λi

(0) =

n∑

k=1

ai,jk ψk(0)

the decomposition of the differential of ψj in 0 with respect to Λi in the orthonormal
basis (ψk(0))1≤k≤n.

Using this decomposition and the fact that

(vj(0)In − R̃(0))ψk(0) = (vj(0)− vk(0))ψk(0)

and differentiating (4.59) with respect to Λi, we obtain:

(
∂vj
∂Λi

(0)In − ∂R̃

∂Λi
(0)

)
ψj(0) +

n∑

k=1

(vj(0)− vk(0))a
i,j
k ψk(0) = 0

Multiplying on the left by ψk(0)
t for k 6= j and using the fact that ψk(0).ψj(0) = 0 and

‖ψk(0)‖ = 1 we obtain:

(vj(0)− vk(0))a
i,j
k = ψk(0).

∂R̃

∂Λi
(0)ψj(0)
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Differentiating the relation ‖ψj(Λ)‖2 = 1, we obtain that ψj(0).
∂ψj

∂Λi
(0) = 0 which implies

that ai,jj = 0. Hence we have:

∂ψj
∂Λi

(0) =
∑

k 6=j

ψk(0).
∂R̃
∂Λi

(0)ψj(0)

vj(0)− vk(0)
ψk(0)

By definition of the differential of ψj(Λ) in 0 we can write:

ψj(Λ) = ψj(0) +
n∑

i=1

∂ψj
∂Λi

(0)Λi + o(‖Λ‖)

which implies, up to a normalizing factor, that:

ψj(Λ) = ψj(0) +
∑

k 6=j

ψk(0).∇R̃(0).Λψj(0)
vj(0)− vk(0)

ψk(0) + o(‖Λ‖)

and hence the direction of ψj(Λ) is given by the direction of:

ψj(0) +
∑

k 6=j

ψk(0).
(
R̃(Λ)− R̃(0)

)
ψj(0)

vj(0) − vk(0)
ψk(0) + o(‖Λ‖)
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