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Introduction

In the computer graphics community, it is sometimes argued that after soagg, and video,

the next digital media revolution will be about 3-dimensional geoyn&¥/hile this prediction

may seem somewhat optimistic, one has to acknowledge that shapes are becomiaganore
more widespread in computer science. The success of video games, as well as the one of
special effects in motion pictures provide the most prominent examples.dlhicadto these
applications in entertainment, geometry is also crucial in many industrial se&aronsider-

able fraction of real world objects are produced from geometric models aebigsing CAGD
systems. Also, it is often useful to produce a computer model of a real worlé seapmples
include reverse engineering of mechanical parts, digitalization of art works, élement sim-
ulations, GIS, surgery simulation, oil reservoirs modelling, or pro¢gigineering.

Dealing with shapes on a computer requires the ability to build and procesricythat is
discrete models of shapes. By now, discretization of signals such as sound and ingaige, an
a smaller extent video, is a fairly well-mastered area. Indeed, powerful thedretols such
as Fourier transform, Shannon’s sampling theory or wavelets lead to efficianitlags to
discretize signals and to manipulate them. For geometric data, the situmatjaite different.
Because shapes are not signals, that is real functions, but rather sets, the taaisahtoned
cannot be applied, at least directly. While some attempts were made to adapt sigeskspg
tools to treat geometric data, a fully satisfying framework for shape dizatigin still remains
elusive.

There is no consensus on the way a shape should be encoded on a computer. Instedd, sev
discrete models of shapes are commonly used, each having its pros and cons :

e Point sets arise naturally in applications such as reverse engineering, whehapeeof in-
terest is only known through a finite number of points measured on itacgurPoint sets,



even huge, can be rendered efficiently using splatting techniques. Also, efficierithatgor
are available to compute geometric structures associated with point sets, sueNMa®tioi
diagram. The Voronoi diagram of a sampling of a surface gives much infaxmatout
the surface itself. For that reason, in order to study a surface, it is often wgdjulld a
sampling of that surface. On the other hand, point sets are not really surfaetsirasdthey
do not encode the topology of the surface they lie on.

Implicit surfaces encode surfaces as zero-sets of functions having an analygssap.
They are particularly well suited for certain tasks. In particular, they are aecoemt tool
for morphing or for shape animation. They also are the basis of level-sdisdsetn surface
modeling, they are used to build complex shapes by blending elementary shapdiniglo
with implicit surfaces has the advantage to allow for topological changésutiany special
care. As a drawback, rendering them directly requires ray-tracing and is tmmutation-
ally demanding. Moreover, their manipulation can lead to difficult computer edgebues
and robustness problems.

Meshes are probably the most popular way to encode shapes. Surfaces meshes are by far
the preferred representation for rendering, at least up to a reasonable numbbmohp,

since they can be processed very efficiently by graphic cards. Discrete conformal parame-
terizations lead to satisfying texture mapping algorithms for surfacessepted by meshes.
Surface meshes also are a convenient data structure for many geometric algaikhms,

ing for instance to “walk” on the surface easily. Finally, they form the baksplnes and
subdivision surfaces, which are the main surface models used in CAGD. Volumesraesh

also ubiquitous, since they are essential components in finite elements simaulatio

Volumetric images arise in applications where shapes are acquired by tomyggagph as
medical imaging. Being -3D- images, they can be processed with techniques frotiofial
analysis, but they are not very well handled by more geometric methodso dine inten-

sity of the noise they contain. Also, high resolution volumetric imaggsbe expensive to
process, since their size is cubical in their spatial resolution. Let us mentioneaesiihg
intermediate between meshes and images, the so-called geometry images [65]. The idea i
to model shapes by coarse -and possibly curved- meshes, whose polygons are entlowed w
textures encoding the detailed geometry of the shape. Typically, the Viallbese textures



give x,y,z coordinates of surface points, or coordinates of the normal vectors. The repr
sentation enables the use of image processing technique at a small scale, while #eeping
combinatorial structure of a mesh at a larger scale.

Shape discretization raises numerous problems. At the heart of these prokelgestiet-
ric approximation questions : given a discretization of a shape, to whientesan one recover
the geometry of the original shape? How can one discretize shapes while lcogtitod ap-
proximation error? A first class of problems posed by surface discretizationdgecwmd with
the conversion between discrete models of shapes. Conversions are useful becaguseartiey
to take advantage of the particular strengths of either one of the models.

e The problem of surface reconstruction [39] consists in finding a mesh appraxgaegiven
surface, knowing only a sampling of that surface. Its main application isseeggineering.
Ideally, the approximating mesh should have the same topology as gweabsurface, and
be geometrically close to it. Most surface reconstruction algorithms from ectatipnal ge-
ometry are based on the Delaunay triangulation of the sample points. The latest Hrase
are provably correct, that is guarantee the topology and the geometrg oluthbut mesh
provided the initial surface is smooth and densely enough sampled. The key $adhgn
these guarantees is the convergence of a certain subset of the Voronoi vertieesarhple
points towards the medial axis of the complement of the original surfacem Brcertain
point of view, these results can be considered as a geometric analog of Shaheonys
since they give a sampling condition under which a given shape can be recdderveeler,
they are not fully satisfactory. Indeed, the sampling condition requuasihe local density
of points should be at least a constant times the curvature of the surface. Asesjaence,
this sampling condition cannot be met -by finite point clouds- when thiasicontains a
sharp edge, even almost flat.

e Passing from a point cloud to an implicit surface is also useful. Several tecd:aye
available for that purpose. Most of them first compute a decomposition -@ratovering-
of space induced by the points. The desired implicit function is then defineduinygg
functions defined on each element of the covering. The coverings used can be denved fr
the Voronoi diagram of the points [15], or from an octree [95]. Aaid¢ exception are the
point set surfaces, which do not use any covering of space.



One may also want to convert an implicitly defined surface into a point cloud.plopular
method [35], an initial sampling is first computed, and the sample poiets tfimic the
motion of particles repelling each other while staying on the surface. Whenbeouni is
reached, the resulting point cloud is evenly distributed on the surface.l{Jsbalrepelling
force is driven by the curvature of the surface, so that the density of thes&inglling adapts
to the curvature of the surface. Another technique aims at building a sagmpatching the
conditions ensuring correct surface reconstruction [16].

Finally, it is sometimes needed to build a mesh approximating an implicaceufif guar-
antees on the geometric distortion are often desired, the major specific probetens to
recover the topology of the implicit surface correctly. We do not elabduatiker as part Il
is entirely devoted to this problem.

Building efficient meshes of known shapes is a major area of research. Efficiency can have
different meanings according to the problem studied. For surface meshes,atlhis gm
optimize the ratio between geometric distortion and number of mesh cells. Bficidace
meshes can be stored, transmitted or processed at lower cost. Several measures of geometric
distortion are commonly used : Hausdorff distance, closeness between the norroed,vect
LP norms, or volume enclosed by the surface and its approximating mesh. thvisikrom
approximation theory that the shape of cells in an efficient mesh is given by nvetare of

the surface to be meshed [34]. In Part Il chapter 4 of this thesis, we addressitihenp of
computing an efficient mesh of a surface described by a high resolution mesh.

For volume meshes, efficiency usually refers to their main application, nameiyitiecel-
ements method. In this context, a mesh is used to define a finite-dimensional sjgete

of a given space of real functions defined on the volume to be meshed. Theserfsiacgo
then approximated by elements of the finite-dimensional vector space and p#drairdial
equations are replaced by finite-dimensional analogs. The goal here is to ogtimizgtio
between the dimension of the approximation space and the quality of thexapption. In
this respect, Delaunay meshes have good theoretical properties and are ofteagfei€).
Also, in many cases, the phenomenon studied is not uniform in space, due teseaqe

of media having different characteristics. Given the interfaces between these useiby
described by a mesh, it can thus be useful to build a 3-dimensional Delaunay me&sh-con
ing the interface mesh as a sub-complex. As an example, when modeling thevairdlond

an airplane wing, it is needed that the boundary of the wing is representesiibscamplex
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of the mesh used for simulation. The problem of building such a mesh is addregsstl i

Another direction of research related to the problem of shape discretizatioa extén-
sion of notions from the continuous world to the discrete one. Indgadpth objects, such as
surfaces, have been extensively studied by many generations of mathematicianss Tiese i
an extremely well developed theoretical framework to deal with such objects. riBsast the
study of discrete objects such as meshes has received much less attention, leavingamuch r
for further developments. In this respect, a particularly exciting areasdarch consists in
finding discrete counterparts of objects classically defined only in the smoothgsefts an
example, smooth Morse theory involves derivative computations and thostdyeneralize to
the discrete setting directly. Still, the critical point theory for meshegldped by T. Banchoff
[8] provides a satisfying discrete counterpart of it. In this case, bothisicesde and the smooth
theory actually are special cases of a more general one, stratified Morse theory. This ensures
structural consistency, which is often sought after : the discrete concept Satisky the same
theorems as the smooth one. Discrete conformal parameterizations are anothgleedfam
unified framework for both the discrete and the smooth case. In additionrig bensistent,
definitions of discrete analogs of smooth concept should also lead to efficienttabgtmicom-
pute them. Successful examples in this respect include the PL Morse complex byr&iuedsb
[46] et al. or Forman’s combinatorial Morse theory [51]. Finally, an extamsi a quantitative
notion such as curvature to say meshes should also satisfy approximation resutistdrece,
the curvature of mesh approximating a smooth surface -in a sense to be made-@kould
be close to the curvature of the surface. Indeed, this is useful for estinmatrposes : if a
surface is only known through an approximating mesh, this is the ¢ondihder which the
curvature of the surface can be recovered by computing the one of the mesart Ih Re
propose a definition of curvature for meshes that respects the three critgristweentioned :
consistency, low computational cost, and good behavior under approximatio

This thesis is organized in three almost independent parts. The first one describgs-an al
rithm devoted to the problem of conforming Delaunay triangulatiorisclvwe already men-
tioned. The goal is to compute a Delaunay mesh containing a given set of palygpmstraints
in 3D as sub-complex. This is the first practical algorithm which is provabtyect without
any restriction on the input constraints. Implementation has shown thalghathm works
well in practice. This part has been published in the proceedings of SOCG 2aDvilan
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appear in the special issue of CGTA devoted to this conference.

The second part is concerned with curvature estimation from meshes. Our camtribut
twofold. First, using the theory of normal cycles, we give an extensigheoturvature tensor
to a broad class of surfaces, including smooth and piecewise linear ones. More preasely
associate with each region of a surface a tensor which, in the smooth case, equritgytiaof
the curvature tensor over that region. Our main result is that under certamatgsuos, this ten-
sor behaves nicely under approximation. In particular, a mesh approxinsasimgoth surface
well will have curvature tensors close to the ones of the smooth surface. Wheis,computed
a mesh approximating a smooth surface, our curvature tensor yields a reliainigtesof the
curvature tensor of the smooth surface. This estimator also proves to workedidtice and
is straightforward to compute. We actually prove the general approximeggult not only for
surfaces, but for hypersurfaces of any dimension. This work on the curvats tess been
published in the proceedings of SOCG 2003. Second, we describe an algantahmsotropic
polygonal remeshing of triangulated surfaces. Using the algorithm mentady®a, we first
estimate the principal curvatures and directions at each vertex of the inpatesuiVe then
trace a net of lines of curvatures on the surface by numeric integratioallyi-we derive an
anisotropic mesh of the input surface from this net. With an appropriateelof the spacing
between lines of curvature, the resulting mesh is actually close to being ofainagiproxima-
tion purposes. This work on remeshing has been published in the proceedBiga@RAPH
2003.

In the last part, we give a new algorithm for implicit surface polyg@agion. To the best of
our knowledge, this is the first algorithm that recovers the topolodiie@fmplicit surface in a
provably correct way. We actually show that the polygonalization we ouglivays isotopic
to the input implicit surface. Instead of sticking to the precise geomettyeoimplicit surface,
we try to capture its topology with the least computational cost. Ford#aason, we believe our
algorithm should be efficient in practice, though we did not implement ibydack of time.
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Introduction

In the following, the ternfacesdenotes objects in 3D space which are either 0-dimensional
faces called vertices, 1-dimensional faces called edges or 2-dimensional faces called 2-faces.
The vertices are just points, the edges are straight line segments, and the &<¢goelygonal
regions possibly with holes and isolated edges or vertices included inritezior. A piecewise

linear complex, called for short PLC, is a finite $2bf faces such that:

¢ the boundary of any face &f is a union of faces ot’;
¢ the intersection of any two faces @fis either empty or a union of faces &f.

A triangulation.7 is said toconformto a PLC% if any face of%” is a union of faces of” .
In this paper, we propose an algorithm which, given a REJinds a set of points” whose
Delaunay triangulation conforms 6. The setZ” includes the vertices of and a certain
number of additional points which are usually called Steiner points.

This question is motivated by problems in mesh generation and geometricingpdel
these fields, it is crucial to decompose the space into a set of simplices which cenfoam
given PLC, with the additional restriction that the shape of the cells musfysagrtain prop-
erties. Delaunay triangulations present several featuresgggg17]) which can be exploited
to solve this problem, and many mesh generation algorithms make use obtigispt.

The problem of computing a conforming 2D Delaunay triangulation wagddly Saalfeld [103]
and Edelsbrunner and Tan [44]. The algorithm by Edelsbrunner and Tan [44] tpesam
O(n®) bound on the number of generated Steiner verticassfthe size of the input. Most
of the further works on the subject are based on the Delaunay refinement appaaetred
by Ruppert [101] and Chew [31]. Shewchuk [109] gave an algorithmOna®ich builds a
conforming Delaunay triangulation under restrictive conditions oratigdes of the PLC. Mur-
phy, Mount, and Gable [94] found a solution which works under no kgin, but produces
far too many points in practice. The main interest of their paper is to showibieece of a
conforming Delaunay triangulation with a finite set of vertices for any 3D PLC.

Our algorithm uses the Delaunay refinement approach. Initially, the/set the set of
vertices of the comple¥’. Points are then added & until each edge and each face of the
complex@ is a union of simplices which are in the Delaunay triangulatiosf

15



The main difficulty with such a strategy is to ensure termination. Indeesl kihown that
sharp edges and corners may induce cascading additions of Steiner points. Tihiawefigct,
we first define a protected area around edges and vertices of the PLC with a special refinement
process. Outside the protected area, the PLC can be refined using Ruppert’s process and th
interaction between refinements in both areas can be controlled. Murphy, Mouradhel
use a similar approach. The main difference with our work lies in the defirafithe protected
area. In our case, this area adapts to the local geometry of the input PLC.
The algorithm is presented in Section 1.1 and proved to be correct in Sectiolm B&c-
tion 1.3, we present the details of the construction of the initialgoted area, skipped in
Section 1.1. Section 1.4 presents some refinements to improve the runningftthre algo-
rithm and to lower the number of vertices in the output conformirangulation. At last, we
end with experimental results in Section 1.5.
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1.1 The algorithm

After a few definitions, we describe the protected area (Subsections 1.1.21aB)d We then
define the refinement process used for this area (Subsections 1.1.4 and 1.1.39y, Wwaal
describe the main procedure and summarize the whole algorithm.

1.1.1 Definitions and notations

Thecircumballof a segmenabis the ball admitting the segmeab as diameter. Theircumball
of a triangleabcis the ball admitting the circumscribing circle abcas great circle.

An edge (resp. a triangle) is said to have @abriel propertyif its circumball contains no
point of & in its interior. A point in the interior of the circumball of an edgegp. a triangle)
is said toencroach uporthis edge (resp. this triangle).

In the following, we note bB) the boundary of a balB, int(B) the interior of B and
circum(ab) (resp circunfabc)) the circumball of the segmenb (resp. of the trianglabg).

1.1.2 Protecting balls

The 1-skeleton Skf the complex#’ is the union of the 0- and 1-dimensional faces0fThe
protected area is defined by means of aZeif closed balls, called protecting balls, satisfying
the following requirements:

i. the union of the balls in# covers the 1-skeletoBkof the complexs’;
ii. the balls are centered on points which aré&k
iii. if two balls intersect, their centers belong to the same edge of the ex#pl
iv. if a face of% intersects a ball, then it contains the center of this ball;
v. the intersection of any three balls# is empty;
vi. any two balls are not tangent;
vii. the center of any ball is inside no other ball.

(i) and (iv) imply that any vertex if¥’ is the center of a ball i8. We show in Section 1.3
how to build a set of balls satisfying these requirements. Furthermore, in Sé&cfiove show
that there is in fact no need to cover all the edges.

17



protected area ; 1 — ed_ges of¢’
unprotected area | 2faceso ... shield edges

Figure 1.1:The situation in the neighborhood of a ball B, incident to three othdistiz, B,
and Bs. There are two faces in the complex, limited by three edges, in the plahe fifjure.
Point h is added on the radical plane of B angl Bb-points ab, ¢, and d belong to the boundary
of two balls and to a face, they are therefore also inserted/nincident to o are four right-
angled triangles €.g, ohpa) and two isosceles triangles.g, oab). The shield edges are ab
and cd.

1.1.3 Center-points h-points, p-points, and SOS-points

We describe here a few subsets of points, included in the balig, dhat we need to add first
in the set#. See Figure 1.1.

Let B be a ball in#Z with centero. Let %g be the set of balls inZ that intersecB. By
condition (v), the intersections & with the elements af4g are disjoint.

We first add the centey of B. Such a point will be called eenter-point Then, for each
elementB; of #g, consider the radical plane & andB;. It intersects the line joining the
centers oB andB; at a pointh;, which is on an edge of by condition (iii). The pointh; is
added to the se?’. Such points will be calleti-points

By condition (iv), any face o%” which intersect8 N B; contains the centers & andB;,
and thus can be either the edge including the segm@nto; is the center oB;) or a 2-face
incident this edge. For each 2-faEeof ¢ intersectingB N B;, we add toZ the intersection
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points ofF with the circle bdB) Nbd(B;). We called those points-points

Consider the plan® of a 2-face of#” intersectingB (and thus containing). The edges
of & split the diskQN B into one or several sectors. We focus on sectors which are included
in €. The p-points further split these sectors in subsectors. Werigit-angled subsectors
the subsectors limited by an edge@fand ap-point andisosceles subsectotise subsectors
limited by two p-points.

If some isosceles subsectors form an angla/2, we add some points on their bounding
circular arcs to subdivide them in new subsectors forming an angi2. For reasons that
will be clear in Subsection 1.1.4, these points are called-8@&ts The new subsectors with
angle< mr/2 are still calledsosceles subsectors

Center-points ant-points are the only categories of points added in the interior dépto
ing balls. p-points andSOSpoints lie on the boundaries of protecting ba$©Spoints belong
to a single protecting ball whilp-points belong to the intersection of two balls.

Isosceles subsectors are defined by the centéa ballB and by two pointa andb (either
p-points orSOSpoints) on bdB). Line segments such ab, joining two points that define
an isosceles subsector, are caldield edgesIn the following, triangles defined by center-
points and shield edges suchaab are referred to asosceles trianglesTriangles spanned
by a center-point, &-point and ap-point on the boundary of some right-angled subsector are
referred to asight-angled triangles

Definition 1 Theprotected are& the union of the isosceles and right-angled triangles. See
the dark gray area in Figure 1.1. In particular, the protected areansluded in the union of
the protecting balls.

Definition 2 Theunprotected areia the complex’, minus the protected area.

1.1.4 The “split-on-a-sphere” strategy

During the process, it will be necessary to split shield edges. Since we do nooveattt tnore
points inside the balls i, we use a special treatment to split such a shield edge, called the
“split-on-a-sphere” strategy (SOS for short). See Figure 1.2.

Let ab be a shield edge to be split, in a bBll We distinguish two casestandb are both
SOSpoints and belong to a single b#l) or at least one of these two points (for examglés
a p-point and belongs also to another Hall

19



Vs

Figure 1.2: The SOS strategy: We split the shield edge ab by inserting the point ceon th
boundary of the ball.

If aandb belong only toB, let ¢ be the midpoint of the shortest geodesic abon bd B).
To refine edgab, we addc to &7 and replace the shield edgb by two shield edgeacandch.

If ais a p-point belonging to bB) Nbd(B’), the idea is quite similar; however, if we do
not take care, the SOS strategy could lead to cascading insertions of points, bedausg r
an edge orB would lead to refinement of an edge Bh and so on. We thus use a strategy “a
la Ruppert” [101], using circular shells. We consider the length of the sagai, divided by
two, and round it to the nearest distarttevhich is of the form & k € Z (the unit distance has
been chosen arbitrarily at the beginning of the algorithm). d_ké the point of the shortest
geodesic arab on bd B) at distancel from a. We split the shield edgab using the point.

In both cases, the added pombelongs to the category &OSpoints. Note that, due
to the SOS refinement strategy, the protected and unprotected areas, still defined las in Su
section 1.1.3, will slightly evolve during the algorithm. Each SOS refgm@nmncreases the
protected area and decreases the unprotected area.

1.1.5 The protection procedure

This procedure adds some points to $étto ensure that shield edges and isosceles triangles
have the Gabriel property. It uses recursively the SOS strategy and woraBomssf While
there is an encroached shield eddpor an encroached isosceles triangéd, refine the edge
abusing the SOS strategy.

1.1.6 The whole algorithm

Let us recall that the algorithm works by adding points to $et We noteDt3(.%?) the 3D
Delaunay triangulation of points i&’. For each plan® of a 2-face irg’, we noteDty(Z N Q)
the 2D Delaunay triangulation of points # N Q. These triangulations are updated upon each
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insertion of a point inZ.
The algorithm performs the initialization step and the main procedure tesddoelow.

The Initialization Step:
e Construct and initialize the protected area (as described in 1.1.2 and 1.1.3);
e execute the protection procedure.

We will see later that the Delaunay triangulation.@f conforms to the part o¥ which
is inside the protected area. Because the algorithm maintains the Gabrieftpropshield
edges, in each plan@ of a 2-faceF of %, the 2D triangulatioDt, (% N Q) conforms to the
shield edges in this plane and thus to the unprotectedpaftF. The main procedure ensures
that the triangles dbtz(2? N Q) included inF, appear in the 3D triangulatiddtz(.2?).

The Main Procedure:
The Main Procedure consists in executing the following loop: While theagriangleT in the
2D Delaunay triangulatiobt; (22 N Q) of the planeQ of a 2-faceF of ¥ such that:

a. T isincluded in the unprotected paig of F,
b. T does not appear iDt3(2?),

refineT trying to insert its circumcentas, that is:
e if cencroaches upon no shield edge, insert it;

e otherwise, split all the shield edges encroached uponusing the SOS strategy, and then
execute the protection procedure.

1.2 Proof of the algorithm

Two steps are involved for the proof of this algorithm. First, we prowariants of the algo-
rithm concerning the positions of the points added and the Gabrieépyopf some triangles
and edges. After that, we are able to prove termination.

1.2.1 Properties maintained in the algorithm

Lemma 1 At the beginning (and the end) of each execution of the main looghib&l edges
have the Gabriel property.
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Figure 1.3:The circumcenter p of a triangle T lies in the unprotected area.

Proof. Indeed, this is true before the first execution of the main loop, becaugedtextion
procedure, which has just been executed, ensures this property; for the sametreasiso
holds after an execution of the loop leading to the split of shield edgesisf\td circumcenter
is inserted inZ? only if it does not violate this property. O

In the following, we define amddedcircumcenter to be a circumcenter inserted in the
set.Z, and arejectedcircumcenter to be a circumcenter considered in the algorithm but not
inserted because it encroaches upon some shield edge.

Lemma 2 Any circumcenter (added or rejected) considered by the algorithm lies in thre-unp
tected area, outside the protecting spheres. In particular, no point is@dtside the protecting
spheres after the initialization step, ad is included in%’.

Proof. Let T be a triangle whose circumcenter is considered at some step of the algorithm.
T lies in the unprotected area, and belongs to the 2D Delaunay triangul2t0&” N Q) of
the planeQ of some 2-face ir¥’. Let p be the circumcenter of. Assume for contradiction
that p lies outside the unprotected area. Ibebe a point inT. Since shield edges enclose
the connected component of the unprotected area which conftaitise segmenpm must
intersect a shield edg#h. The vertices andb cannot be inside circu(it ) becausd belongs
to Dto(Z N Q). Hence (Figure 1.3), triangl& belongs to the circumball cdib, which is
impossible by Lemma 1.

Moreover, since the circumballs of shield edges cover the intersection of thetected
area with the protecting balls (see Figure 1.4), any added circumcenter isyacuiside the
protecting spheres. O
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Figure 1.4:The intersection of the unprotected area with the union of protectinig sin-
cluded in the circumballs of shield edges.

Proposition 3 At the beginning (and the end) of each execution of the main loopsdkeeles
triangles have the Gabriel property.

Proof. The proposition is obvious after the initialization step because the pimtgoiocedure
is called and enforces the Gabriel property of isosceles triangles. For the same itaasdso
the case when a circumcenter has just been rejected because it encroaches upon some shield
edge.
It remains to see that this proposition is still true when a circumcenteuktisgen inserted:
such a circumcenter lies outside the protecting spheres (by Lemma 2) and dogsailetm-
ball of any shield edge (otherwise it is not inserted#). Letabbe such a shield edge, belong-
ing to ballB. We note that the boundaries®fcircum(ab), and circunfoab) belong to a pencil
of spheres. Because the angtsis smaller tharrt/2, we have circurfpab) C circum(ab) UB
(Figure 1.5). The result follows. O

Figure 1.5:The balls Bcircum(oab), andcircum(ab).

Lemma 4 Let B be a ball with center o, and p be a point on the boundary of B. If, mteso
stage of the algorithm, the segment op is encroached upon, the enicrggchnt is a h-point
hi on the radical plane of B and;Band p belongs tbd(B) Nint(B;).
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Proof. The circumball ofop is insideB. Therefore,op can only be encroached upon by a
vertex in this ball, and not by the centerBf hence only by d-vertex inB. Suppose thabp
is encroached upon by a vertkex belonging toB andB;. The encroachment condition can be
rewrittenoh p > 11/2. Because pointgin bd(B) that satisfyohiq > /2 lie in bd(B) Nint(B;),
p belongs to intB;). O

Proposition 5 At each stage of the algorithm, the right-angled triangles have thei€lgiyop-
erty.

Proof. Suppose that a right-angled triangik; p does not have the Gabriel property at some

stage of the algorithmh; is on the radical plane betwe&wandBj, andpis on the boundary of

B andBj. Because the circumball oh;pis the circumball obp, by Lemma 4, the encroching

point is ah-point, andp has to belong to the interior of a third b&j, which is impossible by

condition (v). O
Center points ant-points cut the edges &f in subedges. Note that Proposition 5 implies

that these subedges are edgebif .#?).

1.2.2 Termination proof
Proposition 6 The protection procedure always terminates.
The proof is a straightforward consequence of the following lemma.

Lemma 7 For each call to the protection procedure, there exBts 0 such that no isosceles
triangle with angle at the center of the ball less thawill be split.

Proof. Let oabbe an isosceles triangle with shield edden a protecting balB. We consider
in turn three kinds of possible encroaching points: points on thedsyrofB (case 1), points
in the interior of B (case 2), and points outsid® (case 3). In each cade we prove the
existence of a valuéy, such that neithesabnorab can be encroached upon by a point of type
kif aob< 6.

Recall that the three balB circum(ab) and circunjoab) belong to a pencil of spheres. Be-
cause the angkobis smaller tharr/2, we have circurfoab) C Bucircum(ab) and circuntab) N
B C circum(oab) (see Figure 1.5). Therefore, it is enough to check that points on the bgqundar
of B or outsideB (cases 1 and 3) do not encroach uadrand that points iB (case 2) do not
encroach upooah.
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1. For a plan&) of a 2-face of#” intersectingB, we consider the circle boundiigN Q and
we denote by5(Q,B) the union of arcs on this circle spanned by the isosceles triangles
in Q. Notice that all theSOSpoints inserted oB are located on such a s§tQ, B).

If Qis the plane containingah, no point ofS(Q, B) encroaches upaab. If Q' is another
plane, the distance betwe&Q,B) andSQ',B) is strictly positive, so there is a value
61(B,Q, Q) such thatab is not encroached upon by a point &', B) if aob < 6.
Setting6; = min{61(B,Q,Q’)} achieves the proof of case 1.

2. The only points in a baB which can encroach upon an isosceles triamglein B are
the h-points inB. Suppose that a poiti (on the radical plane d8 andB;) encroaches
uponoab.

If h; is in the planeQ of oab, we prove that encroachment is not possible. Indeed, if
encroaches upameab, h; encroaches either upaaor uponob. Thusa or b would belong
to bd(B) Nint(B;), by Lemma 4, which is impossible becawsandb are eithemp-points
or SOSpoints.

Let us now deal with the case whdredoes not belong to the plaiGg Letc € SQ,B);

¢ does not belong t&;, for otherwiseh; would belong toQ. Let us prove thah; is not
in the closed ball circurfoc). If h is in the interior of circunfoc), this means thadc is
encroached upon by, hence, by Lemma 4; belongs to intB;), which is not the case.
Similarly, if hj is on the boundary of circu(oc), ¢ belongs tdB;.

Hence, the distance betwelgrand the ball circurfoc) is strictly positive. Le® (B, Q, hj)
be the minimum (strictly positive) of this distance foe SQ,B). Let &'(B,8) be the
Hausdorff distance between circgoe) and circunfoa’b’) whereodb' is an isosceles
triangle witha’ andb’ on bd B), axisocanda’ob = 6. As 0’(B, 0) goes to 0 whei® goes
to 0, there exist§,(B, Q, h;) such tha®’(B, 0) < (B, Q,h;) for any 8 < 6,(B,Q,h;). It
follows thatoab cannot be encroached upon hyif aob< 6,(B,Q,hi). Setting6, =
min{ 62(B,Q, h;)} achieves the proof of case 2.

3. Consider now the case where e@tpes encroached upon by a poipbutside the balB.
At each call of the protection procedure, the set of points outside the pngtagtheres
is fixed. Also, the distance between two s§{Q;,B1) andS(Q», B2) which do not share
ap-point is bounded from below. Thus, there is a vajsuch that, ifiob < 05, edgeab
cannot be encroached upon pexcept if p belongs toS(Q, B’) whereQ is the plane of
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oabandB' intersectdB. Therefore, the only case remaining to be considered is the case
wherea is a p-point in QN bd(B) Nbd(B’) andab is encroached upon by a poiptof
S(Q,B'). However, in this case, we split edges incidera tgsing circular shells. Hence,
after a few splits, the edges incidentaavill have the same lengths and will be unable

to encroach upon each other. Therefore, we get a \v@Jue 6; satisfying the desired
requirement.

Theorem 8 The algorithm terminates, and, once it is the case, the Delaunay triatignlof
& conforms to the complex.

Proof. It is sufficient to prove that the main procedure terminates: indeed, oncthé sase,
Propositions 3 and 5 show that the Delaunay triangulatio?afonforms to the protected area

of ¢, and the fact that the algorithm ends precisely means that the Delaunay taiéogof &7

also conforms to the unprotected areasof We prove the termination of the main procedure

by proving first that the number of added circumcenters is finite and second ¢hatitiber

of shield edges encroached upon by rejected circumcenters is finite. Because the protectio
procedure is already known to terminate, these two facts imply the teronnatithe main
procedure.

By construction of the protecting spheres, the unprotected area is a digpont of plane
regions. LetF, be such a region. As previously noticed, owing to the SOS strategy, these
unprotected regions slightly evolve during the algorithm; havethey are always shrinking.
Consequently, the distance betwdgnand the other regions as well as the distance between
Fu and the set of center-points ahgboints added in the interior of the protecting balls can be
bounded from below by a constady. Let T be a triangle in/, whose circumcenter has to
be inserted inZZ and letCy be the circumcircle off. As T does not belong t®t3(.%), its
circumball circunT) contains a point in2? which is not in the plane df,. Such a point can
be inside a protecting ball (a center-point oh-point), on the boundary of a protecting ball
(and thus on the boundary of another region), or an added circumcenteo{iveanegion by
Lemma 2). Therefore circufi) either contains a point added in the interior of a protecting
sphere or intersects another unprotected region, and the rad@is isfthus larger thardg.
Becausd@ belongs to the 2D Delaunay triangulation in the planBofCt encloses no point of
2. The area ofy, being finite, this shows that the number of added circumcenters is bounded.
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Figure 1.6:The shortest shield edge ab which may be encroached upon by a rejected circum-
center p.

Let us now show that the total number of edges encroached upon by rejected circuscenter
is finite. For this purpose, consider a shield edge encroached upon by thegehgecircum-
circleC in a regionk,. C being empty and of radius larger thag, it is easy to show that the
shield edge has length at leg@t,/2 (see Figure 1.6). Thus the number of those edges is finite.
O

1.3 Construction of the protecting balls

We have to build the se® of protecting balls satisfying the conditions described in Subsec-
tion 1.1.2. The efficiency of the algorithm really depends on this consgtructhe less balls
there are, the less points will be producedin

Definition 3 Let ¥ be a PLC. Thdocal feature sizeof a point p with respect t& is the
distance between p and the union of face®’d@ghat do not contain p.

Let Ifs(p) denote the local feature size of pomtvith respect to the PLC which is given as
input of the algorithm. We address the following construction ofghelosing balls. Letr be
areal, 0< a < 3 (typically a = 0.4).

First, for each vertex of the PLC, construct a ball of radius- Ifs(v).

Then, on each edgg do the following. Whilesis not completely covered by balls, consider
a maximal open line segmeata, in e and outside the union of the balls in the current#et
Pointg; (i = 1,2) is an intersection of bal; (with centero; and radius;) with edgee. We will
insert a ball betweeB; andB,. Let o be the midpoint ofi;a,. Insert a new balB in 4, of
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centero and radiug, with:
. r r
r:mln{a-Ifs(o),oa1+§1,oa2+§2}.
To ensure condition (vi), if = oa;, we replacer by (1— €)r wheree is a small positive
constant.

Lemma 9 This construction terminates.

Proof. Consider an edge whose vertices have just been protected by two sphereé hesthe

union of the (open) line segments which areminus the union of the current set of balls. Call

Ao the setA just after the protection of the endpointseofThe distance = min{Ifs(p)| p€ Ao}

is strictly positive (thdfs function is continuous oo, andlfs does not vanish oAg). The

insertion of a new ball:

e either increases by one the number of connected componeih&f decreases the measure
of Aby at least 21— ¢) - a - d (hence this case can happen only a finite number of times),

e or decreases by one the number of connected componeatéwithout increasing the mea-
sure ofA).

The result follows. O

Conditions (i), (i), (iv), (vi) and (vii) are obviously satisfiedii)ifollows from the fact that
if two pointso ando’ do not belong to the same edge is larger than or equal tifs(0) and
Ifs(0'). If two balls B andB', centered ab ando’ with radii r andr’, are in%, thenr < 1Ifs(o)
and similarly forr’. Thusr +r’ < od, hence the balls cannot intersect.

(v) is also true. Indeed, if three balls intersect, their centers must be vertiagsangle in
% . But it follows from our construction that two balls centered on vertidat® PLC cannot
intersect because < 3.

Hence we have:

Proposition 10 This construction ofZ is correct.

1.4 Improvements

1.4.1 Speeding up the protection procedure

The following proposition shows that when the protection proceducalled from the main
procedure, there is no need to check whether isosceles triangles have the Gape&glpr
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Proposition 11 After the initialization process, enforcing Gabriel property for shield edges
the protection procedure is enough to ensure Gabriel property for isoscedemgtes.

Proof. Upon termination of the initialization step, all isosceles triangles hay&tibriel prop-
erty. Suppose that, at some stage of the algorithm, a point encroaches upmisesoeles
triangle oab without encroachin@b. Let B be the ball containingab Since circunfoab) is
included in the union oB and circunfab) (Figure 1.5), the encroaching point must be inside
B.

Hence it is sufficient to show that no isosceles triangle is encroached upon byxanside
its protecting ball during the algorithm. By contradiction, Tet= oab be the first isosceles
triangle encroached upon by a vertexBn Since no point is inserted inside the balls during
the main procedure] must be a triangle which results from the splitting of some triangle
T’ = oac The encroaching point can thus only bé&-goint h; lying insideB. Arguing that
circum(oaby), circum(oac), and circunjoa) belong to a sphere pencil and comparing their radii,
we deduce (Figure 1.7) that circdoab) C circum(oac) U circum(oa). However,h; does not
belong to circunfoac) becausd’ = oacwas not encroached upon hy nor to circuntoa) (by
Lemma 4). Thereforl; does not belong to circufoab), which yields the contradiction. O

Figure 1.7: circunfioab) C circum(oac) U circum(oa).

1.4.2 Restricting the area where balls are required

In 1.1.2, the set# is constructed so that the balls cover the whole 1-skel&toof ¥". We
explain here that this is not always necessary. Indeed, the balls are intraduedd troubles
with small angles; they are thus not required at places where faces intersect witjlalasge
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enough. This remark enables to put less ball#irhence to reduce the size of the outpdt
We first describe the modification in the construction of the balls, and these pinat, despite
this slight modification, the algorithm is still correct.

Lete= 0,0, be an edge of the PLC so that all angles between faces incideat¢o> 11/2.
We modify the algorithm in the following way. Still construct baBs andB, centered at the
verticeso, andoy. In &, insertos, 0y, and the two intersectiong; and p, of e with the
boundaries oB; andB,.

Considerp; p2 as a shield edge in the main procedure. In other words, whenever this edge
would be encroached upon by the insertion of a pointAnsplit this edge in the middle, to
keep it protected at each stage of the algorithm. The original ed@e isfthus not in the
protected area, but the process is exactly like in the standard algorithm.

There are only minor modifications for the proof of the algorithm. Thpratected area
is still bounded with shield edges. The proof of termination of the primtieqirocedure is
analogous: Lemma 7 can be adapted without difficulty to show that there alsoalesigth
0 > 0 such that the protection procedure never splits a shield edge which is@f paredge
and with length less thad. The only difficulty is to show the following proposition.

Proposition 12 The modified version of the main procedure always terminates.

Proof. Let F, be a region, in a plan®, incident to edgee. The distance betweds, and the
regions non-incident te as well as the distance betweEnand the set of center-points and
h-points outsid&) can be bounded from below by a constéat> 0. Let p be the circumcenter
of a triangleT in K, added to?. We will show that the circumball of cannot contain a
vertex of another face incident & which implies that the radius of this circumball is larger
thandg, like in the proof of Theorem 8.

Suppose for contradiction th@tis encroached upon by a poiptof £ on a face incident
to e. Necessarily, because the angles of the faces afe obtuse ag¢, the circumball ofT
must intersece. Let a andb be the intersection points of the boundary of cir¢limwith
e. Letab’' be the unique shield edge includeddnvhich is intersected by circu(i). (The
uniqueness follows from the fact that pointsdf, like a’ andb/, cannot lie in circunfil).) Let
H be the plane orthogonal f§, and containingg, andH™ be the half-space bounded by
and not containing . Clearly, circuniT) NH™ C circum(ab)nH™ C circum(@b’)nH™ (see
Figure 1.8). The poinp/ is in circumT)NH™, hence in circure’b’), which means thap’
encroaches upon the shield edge’ and yields the contradiction.
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Figure 1.8:1In the half-space H (above the edge e in the figure), the partcotum(T) is
included in the part o€ircum(ab) which is, in turn, contained in the part efrcum(a’t’).

The remaining part of the proof of termination of the main procedureastty the same as
in the proof of Theorem 8. O

1.5 Experimental results

The algorithm has been implemented and tested using the Computational Gealgetityhms
Library CGALL. Results for several models are displayed in Table 1.1 and Figures 1.9, 1.10,
1.11, and 1.12.

Table 1.1 gives for each model, the number of vertices of the input Rh@hput verticel
the number of 2-faces to which the Delaunay triangulation of input vertioes not conform
(non Delaunay facgsand the number of vertices of the conforming output triangulatidm (
output vertices In those examples and in most cases, the number of vertices in the output
conforming triangulation and the number of input vertices are in a catmprised between 3
toland 10to 1.

The running times, measured on a PC with 500Mhz processor, do not includentipei-co
tations of local feature size values, because the current implementation uses awdmyusé
force algorithm for it. We are currently designing a data structure tédeivim speed up these
computations.

lhtt p: // www. cgal . or g/
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Table 1.1:Experimental data.

geological datg triceratops| umbrella
nb input vertices 7566 2832 16
nb non Delaunay faces 1045 2194 5
nb output vertices 25793 27947 122
running time (s) 83 570 0.7

1.6 Conclusion

We have presented an algorithm for computing a conforming Delaunay ut&tian of any
three-dimensional piecewise linear complex. The most important innoyatompared to the
paper by Murphy et al. [94], is to enclose critical places by balls whose radiidfitatal
complexity of the complex, with the use of the local feature size. Ouemx@ntal results
show that it is valuable in practice. The algorithm could be easily modified aoagtee in
the resulting mesh the Gabriel property for any triangle included in a@nttThe next step
currently under work is to investigate how conforming meshes with guseardn the shape
and size of the elements can be obtained. Several questions remain open: wdrngitofatd
the time complexity of our algorithm. It would also be interestinginagl4] in the plane, to
find a bound on the output depending on the size of the initial compléfoa(like in [101])
thelfs function.
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Figure 1.9:Detail of a geological formation (Courtesy of T-surf and Mr. Reinsdorff)id3ime
segments stand for shield edges.

Figure 1.10:Umbrella. Solid line segments stand for shield edges.
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Figure 1.11:Triceratops.

Figure 1.12:Detail of the triceratops. Solid line segments stand for shield edges.
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Part Il

Estimation of the curvature tensor via the
normal cycle
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Introduction

In many applications such as surface segmentation, anisotropic remeshing¢}photorealistic
rendering, a key step is to estimate the curvature tensor of a smooth surtacedmonly a
polyhedral approximation of it. A lot of efforts have been devotedhts problem, leading to
several estimators, see [96] or [86] for a detailed survey. Most popular meatblgds either
one of the following three approaches.

The first one is the quadric fitting approach, where the estimated curvature iernke
one of the quadric that best fits the sample points locally [104]. Uswsalth algorithms first
estimate the tangent plane at the vertex at which the curvature is to be esdtiméten a
set of nearby vertices is selected, and their projectigrnen the estimated tangent plane are
computed, as well corresponding heighis Finally, the quadratic functiori defined on the
estimated tangent plane that minimizes the least square error betwegfpthand theh; is
determined, and the output is the curvature tensor of the graghadbthe considered point.
Some multi-pass variants of this method use the estimated quadric to delulnpefally better
estimation of the tangent plane, and repeat the whole procedure based onasiestiuntil
convergence is reached [86]. The use of higher degree polynomials insteaato& func-
tions is also of interest [26]. The main advantages of quadric fitting arelé@swe robustness
against noise, and the fact that inieshlessit can proceed point clouds of which no triangula-
tion is available. Still, one should be able to select a set of neighborimgsdor each sample,
which is not that much easier than triangulating them, at least locally. The nmanbdck of
this approach is that for some specific configurations of neighboring poiatsely when the
h; lie on a conic, there can be a whole space of quadratic functions achieverfeatgdit. This
results in a very high sensitivity of the estimation in the vicinity aégh configurations, and
thus in a poor accuracy [26].

Another general technique, closer to classical differential geometry, first consistisriatest
ing the curvatures of well-chosen cross-sections of the surface. In most cases, theas sectio
are defined by planes spanned by the considered point, and two neighbors @iithat the
triangulation. Some methods discard triples of points that are not sutficaigned [29]. The
curvature of corresponding cross-sections are usually estimated by the invidregadius of
the circle that passes through the considered triple of points [85]gthother choices are pos-
sible [78]. From these curvatures and an estimate of the normal vector, thalraurvatures
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of the surface can be estimated using Meusnier’'s theorem. Finally, the estimatedireurvat
tensor is the one that best accounts for the previously estimated normalucesvgtl9, 37].
The main shortcomings of this general approach are the lack of analysis ofality gfi the
obtained estimators, and also the lack of solid theoretical foundations.

Let us mention for sake of completeness a third class of methods, relying orecmeama-
trices. An example of algorithm falling in this class is [10]. It proceeg®stimating normal
vectors at each vertex neighboring a given vegigand project these vectors on the estimated
tangent plane gb. The estimated curvature tensores defined as being the inertia matrix of
the obtained set of 2-vectors. Other methods output the inertia maget®6f vectors obtained
by different means [127]. Algorithms based on the covariance matrix appevaameshless
and seem robust against noise but, again, no analysis of the estimation ervaitaisle, and
it seems that these algorithms are not well suited for irregular samplings.

In this work, we propose a sound approach to curvature estimation. if8pilgoon the
theory of normal cycles from differential geometry, we define curvature terisoa general
class of surfaces, including smooth and polyhedral ones. More precisely, we assottiate wi
each region a tensor which in the smooth case is the average of the curvasarecesr this
region. The curvature tensor of a polyhedral approximation of a smodcsithen provides
an estimator of the one of the smooth surface. Our definition can be viewed asatiGpic
generalization of what is usually called discrete curvatures.

Besides the aforementioned definition, our main contribution is a bonnbeodifference
between the estimated curvature and the actual one. This bound holds wheag@aylttedral
approximation iclosely inscribedn the smooth surface, which is a rather mild assumption.
In particular, restricted Delaunay triangulations can be shown to fulfillgfoperty for suffi-
ciently dense samplings. This latter case is of great importance in practice. Indeedst
cases, the only available data on an object is a set of points sampled on its surfaissil#e
approach is then to apply a reconstruction algorithm to get a triangulated¢suand estimate
the curvature of the object from that triangulation. As most populams&caction algorithms,
at least among the Delaunay-based ones, return a triangulation close to the Déliamgaya-
tion of the samples restricted to the object, the special case of restricted Delaangylations
is particularly worth studying. For these triangulations, the boua@btained implies that our
estimator converges linearly with respect to the sampling density, under égaldiniformity
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condition on the sampling. This latter result actually holds for any closegribed triangu-
lation in which all triangles have bounded aspect ratio. To the best of aawlkdge, only
weaker results have been obtained in the past [87]. Our result can be viewedagitatjue
version of a theorem obtained by J.Fu [52] for gaussian and mean curvatures.

This part of the thesis is organized in three chapters. In the first one, we galeraantary
presentation of the theory of normal cycles, and how they can be used to defiatuoceirv
for both smooth and polyhedral surfaces in a unified way. We also state the reanertn
precisely. The second chapter, which is more mathematical, is devoted to tHeoptbe
theorem. We will actually give a more general result, applying to a broad aladgects, from
which follow corollaries corresponding to specific cases, such as the one of redhéttechay
triangulations. Finally, the third chapter shows a practical applicationwhture estimation,
which we already briefly mentioned : the anisotropic remeshing of triangusatéaces.
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Chapter 2

Elementary presentation of normal cycles
theory

Introduction

The curvature of smooth surfaces has been extensively studied during the paseseniu

a certain sense, it is defined by differentiating the considered surface twice. Thisialgfini
obviously, does not generalize to less than twice differentiable surfaces, famtiori not to
piecewise linear surfaces. As shown in figure 2.1 in the case of curves, the very cohcept
pointwise curvature does not even make sense for the class of piecewise lijgess.dbdeed,

at any point lying in the interior of an edge, the curvature is 0, whereayvattex, it seems
infinite. This problematic situation is easily overcome by shifting from plointwise point

of view to themeasure theoretione : instead of considering curvatures at a given point, one
should consider integrals of curvature over a given region. For instarte, curvature at a
given point of a polygonal line is not geometrically relevant, it iitively clear that the total
amount of curvature in the regidh(in bold in figure 2.1) if3, the angle between the normals
at the two endpoints d3.

The function that associates to each regsahe numbe|B is the simplest example of what
are calledcurvature measuresCurvature measures are an appropriate way to deal with the
curvature of non necessarily smooth objects. For surfaces, which have a richerryeonest
can define two curvature measures : the gaussian curvature measure, and the mean curvature
measure.
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Figure 2.1:What is the curvature of a polygonal line?

These two curvature measures give a rather coarse description of the geomegrgwtth
face. In a certain sense, they tell how much curvature there is in the considemd beg not
in which direction the curvature is. Typically, they contain enoughrimiation to recover the
radius of a cylinder, but not the direction of its axis. We will showvhihis problem can be
solved by defining a new type of curvature measures, which are tensor-valueghisbgopic
curvature measures

Also, a crucial issue for our purpose of curvature estimation is the onepobamation :
when the considered piecewise linear surface is a good approximation of ehssudaice, are
respective curvature measures close to each other? Our main theorem states that @mnaler cert
reasonable assumptions, the answer is yes.

Curvature measures have various interpretations. For convex objectsréhigyolved in
the formula giving the volume of an offset of the object as a functiothe offset parameter,
as we will see. They can also be defined in the framework of integral geometry [[28se
interpretations, however, do not seem to lead easily to the definition of aypsoturvature
measures, nor to the mentioned approximation result, except for the convd® tad® reach
this finer level of understanding, one needs to rely on a powerful tawj st the crossroads of
geometric measure theory and differential geometry : the theory of norrolalscy

This chapter is organized in four sections. We first introduce some notatiorstatadhe
theorem (section 2.1). Then we present the theory of normal cycles (sectiand.Bpw they
can be used to define anisotropic curvature measures (section 2.3), which isilautontof
this thesis. A rough idea of the proof of the theorem, intended for théoo mathematically
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inclined reader, is given in section 2.4.

2.1 Statement of the main theorem

In the sequel, we denote By a surface in the three dimensional oriented euclidean space
We assume for simplicity thafl is the boundary of some compact ¥et R3.

2.1.1 Curvature measures

Let us first recall some basic definitions and notations in the case Whesesmooth. A good
reference for these is [9]. The unit normal vector at a ppist M pointing outwaradv will
be referred to as(p). Note thatM is thereby oriented. Given a vectoin the tangent plane
ToM to M at p, the derivative oh(p) in the directionv is orthogonal ta(p) asn(q) has unit
length for anyq € M. The derivativeDyn of n at p thus defines an endomorphism M,
known as the Weingarten endomorphism, or shape operafdre Weingarten endomorphism
can be shown to be symmetric ; the associated quadratic form is called the seatsut éuntal
form. Eigenvectors and eigenvalues of the Weingarten endomorphism are resdpexiied
principal directions and principal curvatures. Both principal curvatures eardovered from
the trace and determinant Dfyn, also called meafand gaussian curvature pit Figure 2.1.1
shows the geometric meaning of the second fundamental form at agoiapplied to a unit
vectorV in the tangent plane g, it yields the signed curvature of the section of the surface by
the plane spanned by p), V, and passing througp. Principal directions, displayed in bold,
correspond to the values of where the second fundamental form is maximal or minimal.
According to the sign of the gaussian curvature, one gets three different casestivesp
depicted in figure 2.1.1 : elliptic (positive), parabolic (zero), and hypke (negative).

As mentioned in the introduction, our result does not involve curestat a single point,
but rathercurvature measuresvhich we define here :

Definition 4 The gaussian curvature measure of i, is the function that associates with
every (Borel) set Bc R3 the quantity :

@ (B) = ., G(P)dp

lfor some reason, most authors add a minus sign in the defi nition of the Weingartenaptiism.
the mean curvature is usually defi ned as the half trace of the Weingarten entismorp
3this restriction is very weak : virtually all sets one can encounter are Borel sets.
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Figure 2.2:The second fundamental form

where @G p) is the gaussian curvature of M at point p. Similarly, we define the measatue
measureg’! by :

d/(®)= [ H(pdp

H(p) being the mean curvature of M at point p.

Corresponding objects can be defined for triangulated surfaces. Assume navishat
polyhedron with vertex s€® and edge sek.

Definition 5 The discrete gaussian curvature measure ofg#l is the function that associates
with every (Borel) set B- R3 the quantity :

G _
@/ (B) = pegmpg(p) (2.1)

where dp) is the angle defect of M at point p, that 23t minus the sum of angles between
consecutive edges incident on p. Similarly, we define the discrete mean cumaasarep’

by :
@ (B) = EEIengtt(em B)B(e) (2.2)

|B(e)| being the angle between the normals to the triangles of M incident on esighef
B(e) is chosen to be positive if e is convex and negative if it is concave.

In section 2.2 we will see where these formulas come from and why we use the same
notation for continuous and discrete curvature measures.
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2.1.2 Anisotropic curvature measures

In the case wher®l is smooth, the second fundamental form\vbfassociates with each point
p € M a2x 2 symmetric bilinear form ofip,M, denoted byy (p). The 2x 2 symmetric bilinear
form on TpM having the same eigenvectors ldg(p) but with swapped eigenvalues will be
denotedHy (p). As we will see, we will need to extend these bilinear forms toBsymmetric
bilinear forms, which we caly (p) andl—TV(p). We do so by settingty (X,Y) = I—TV (X,Y)=0
wheneverX or Y is orthogonal toTpM. In other words, applying one of thesex3 form

to a couple of 3-vectorX andY amounts to applying the corresponding 2 form to the
projections ofX andY on T,M. A form related toHy has already been considered by Taubin
in [119]. We now introduce two matrix valued measures which are in some seiss¢raic
versions of curvature measures :

Definition 6 The anisotropic curvature measuiég and I—TV associate with every (Borel) set
the 3 x 3 symmetric bilinear form :

The above definition is the reason why we extentligdp) andHy (p) to R3 : indeed, it
would have been impossible to integrate any of these forms directly, thiaggane where they
are defined depends on the considered peitgain, corresponding objects can be defined in
the polyhedral case. Yf is a polyhedron, we define the discrete anisotropic curvature measures

by :

Definition 7

Hv(B) = EEB(e)IengtI*(eﬂ B €®€

Hv(B) — ;wkﬁ(@ _sing(e))e* @ e

—  —

+(B(e)+sinB(e))e” ®e ]

where € denotes a unit 3-vector with the same direction as ejlgade’ ande™ respec-
tively denote the normalized sum and difference of unit normal vectorsatggtes incident on
e. If uandv are two vectorsy® v is the bilinear form with matrixi.vt.
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2.1.3 Theorem

We now go back to the case whevkis smooth. The mapr that associates with each point
p € R3 its closest point oM is called theprojectionon M. Note that the projection is defined
everywhere except on the skeletorifof\ M. One can show that it is continuous wherever it is
defined [50].

Definition 8 A triangulated surface S is said to be closely inscribed in M if :
(i) its vertices lie on M
(ii) the projection pr is defined on S and is a homeomorphism from S to M.

Theorem 13 Let W € R2 be a volume whose boundary is a triangulated surface T closely
inscribed in M. If B is the relative interior of a union of triangles of Tieh :

@5(B) — @F(pr(B))| < CuKe
@(B)— & (pr(B))| < CwKe
IFw(B) — Av(pr(B))]| < CuKe
IFw(B) — Hy(pr(B))l| < CuKe

where G is a real number depending only on the maximum curvature of M and :

K= Y rt)?+ > r(t)
{teT,tcB} {teT, tcB, tNdB#£0}
e = maxr(t)|t € B}

r(t) being the circumradius of triangle t.

In particular, this theorem holds wh&M is the Delaunay triangulation of ansample of
M restricted tov, with r < 0.06. Indeed, such triangulations are closely inscribed, as shown
by Nina Amenta et al.[6]. When the triangles Dfhave bounded aspect ratig¢,boils down
to O(area(BH-length(dB)). For restricted Delaunay triangulations, this is the case when the
sampling is locally uniform in the sense of [58]. In these cases, theorem 13 Staivestimated
curvature measures @ converge to ones d¥l linearly with respect to the sampling density.
At the end of section 3.3.4, we show the convergence of our estimator in thefaaestricted
Delaunay triangulations, assuming a weaker local uniformity condition The sample points
than the one used in [58].
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2.2 Normal cycles and curvature measures

Introduced by Wintgen and Zahle [130, 126], the theory of normal cydlegiges a unified
way to define curvature for both smooth and polyhedral surfaces. Here is a vadeyarerview
of their approach.

The first observation is that the curvature measures of a smooth surface actuajigrace b
ucts of an object associated to the surface, called the normal cycle of the surface. rbtore p
cisely, the curvature measures of a surface can be easily recovered from the noreaif cycl
the surface. Second, the definition of the normal cycle of a surface has a maiguel exten-
sion to the polyhedral case. Finally, the curvature measures of a polyhedrdefawed to be
the measures recovered from its normal cycle. Before explaining what a noyolalis, we
shortly review an early approach to curvature measures and the required backgrou

2.2.1 Afirst approach

Historically, curvature measures were introduced by considering offsetswid the so-called
tube formula. First assume thdtis smooth.

() R—

Figure 2.3:The tube formula
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Let p be the distance betwedh and the medial axis of the complementb{p is some-
times called theeachof M) and

Ve={plp¢V d(p,V) < e} CR®

that is thes-offset ofV minusV. The tube formula then reads :
3

Vol(V;) = areaM)e + fRWM)g—zz T "ﬁ'\")%

for € < p. Moreover, this formula can be localized : if one only considers the\#B) of V¢
that projects on a subsBtof M, then we have :
g2 g3
Vol(Ve(B)) = area(B)e + @ (B>? + (R?(B)§
In the smooth case, the volume\f(B) is thus a polynomial irg, and its coefficients are
multiples of the curvature measures®&f H. Federer [49] actually showed that the volume
of Vg(B) is always a polynomial ire for € < p, even if the boundary 0¥ is not smooth.
The coefficients of this polynomial thus provide a way to generalize the tlefiraf curvature
measures as soon@ss strictly positive. For instance, ¥ is a convex polyhedron, the obtained
definitions agree with definition 5.
Unfortunately, this approach breaks down as soop equals 0, which is already the case
whenV is a non convex polyhedron ; this is the reason why the theory of nayass was
developed.

2.2.2 Background

The reader acquainted with exterior differential calculus might want to sigps#ttion. [25]
provides a good introduction to the subject.

2-differential forms

Definition Let.¥ be a smooth manifold of dimension at least two embedded in some eu-
clidean spac&". If fisavector field on”, we denote byf, € T,.¥ the vector associated with

a pointx € .. 2-differential forms are, in a certain sense, 2-dimensional analogs of vector
fields :

4The case of a convex polyhedron is actually the fi rst considered historically, by Steioer [116].
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Definition 9 A 2-differential formw on.” associates with every pointexy” a skew-symmetric
bilinear form on ., denoted bywy.

The following definition shows how a 2-differential form can be buitrfrtwo vector fields :

Definition 10 The exterior product A g of two vector fields f and g of7, is the 2-differential
form defined by :
fx.u ok.U

(FAG(uV) = (ngg(uv) =/ -

for all x in .7 and(u,v) € Ty

Exterior products are special cases of 2-differential forms. However, theydera good in-
tuition of the general case : any 2-differential form can actually be written laear com-
bination of exterior products of vector fields. It can be seen from the defindfoan ex-
terior product that ifA is a linear transformation of the plarkespanned byu andv, then

(f Ag)x(Au,Av) = det(A)(f Ag)x(u,v). In particular,(f Ag)x(u,v) = (f Ag)x(U/,V) for any

two direct orthonormal frame@, v) and(u’,V') of P. Note that this property extend to general
2-differential forms by linearity. Similarly, we havig A gx(u,v) = f; A dk(u,v) for any couple

of orthonormal framesfy, gx) and( f,, d)) spanning the same oriented plane. Important exam-
ples of exterior products as¥ea forms Area forms are a way to represent oriented surfaces as
2-differential forms. I C . is an oriented surface, then the area fornvois constructed as
follows : for each poink € .7, pick a direct orthonormal frame of the tangent plapég’, say
(ux,Vx). Forx ¢ 7, setuy = vx = 0. The area form of/, denoted bya ~, is the 2-differential
formuAv. Intuitively, area forms can be thought of as fields of surface elements : wipéadp

to two vectorsaa andb in T,., az yields the signed area of the parallelogram spanned by the
projections ofa andb on Tx.7 .

Integration  2-differential forms can be integrated on oriented surfaces, in the same way vec-
tor fields can be integrated on oriented curves. To see how, leé an oriented surface i

and, for eaclx € .7, let (ux, Vx) be a direct orthonormal frame of the tangent plagé . The
integral of a 2-differential formw on .7 is defined to be :

/{7 W= /y o (U, Vx)dX

For instance, one hgs; a» = area(.7 ), which is why area forms are called this way.
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Change of variable A change of variable is merely a diffeomorphigm .’ — . where
<" is the manifold where the new variables live. Using such a map, a 2-diffakéasrm w on
& can be transformed into a 2-differential form off, by a process callepullback:

Definition 11 The pullback otv by ¢, denoted byy' w is given by :

@ ox(U,V) = wy(x) (Dx@(u), Dx@(V))
forallx ¢ " anduv e T.v".

In a certain sense, pulling a 2-differential form back amounts to expressmgeitms of the
new variables. The change of variable formula relates the integral of fee2editial form with
the one of its pullback. The result turns out to be particularly simple :

/l(p*w:/(p(y/)w (2.3)

For example, it = .7’ = R? andh is an integrable function fron¥’ to R, applying (2.3) to

w = haz yields ¢*w = Jaq @)ho a5 : (2.3) thus generalizes the classical change of variable
formula. For this formula to holdp need actually not be a diffeomorphism fro#ff to . ; the
only requirement is thap should be a diffeomorphism froo¥’ to ().

Integral 2-currents

Integral 2-currents generalize oriented surfaces [91]. They can be formallydefmlinear
combinations of oriented surfaces with integral coefficients. In particularoaented sur-
face .7 can be considered as an integral 2-current, which we will abusively also dénote
Integration of 2-differential forms is extended to integral 2-cutsday linearity :

/ w=n / w+p| w
nT+pJ’ T T

The surface that is setwise the sameZadut with reverse orientation thus corresponds to
the current-.7. Geometrically, integral 2-currents can be thought of as oriented surfattes wi
multiplicities For instance, if7 and.7’ are two oriented surfaces such that orientations of
7 and. 7' agree on7 N.7', 7 + .7’ can be represented & U .7’ endowed with the same
orientation as7 and.7’, points in.7 N7’ having a multiplicity equal to 2. If orientations of
7 and.7’ do not agree, then summing and.7’ yields a cancellation o N.7’.
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Figure 2.4:Sum of integral currents.

Invariant 2-forms

Now set.” = R3 x &. .7 is obviously a subset dk3 x R3. We will call the first factor of
the latter product theoint spaceEp, and the second one tm@rmal spaceEn. The reason
for this is that an element of” can be thought of as a point in space together with a unit
normal vector. Ifu is a 3-vectoru” will denote the vectofO,u) € E, x En, anduP the vector
(u,0) € Ep x En. Rigid motions ofR3 can be naturally extended 1 : if g is such a motion,
one can set(p,n) = (9(p), g(n)), where g is the rotation associated with We now define
two particular 2-differential forms o1y’ :

Definition 12 Let(p,n) € . and xy € R such that(x,y,n) is a direct orthonormal frame of
R3. We set :

H

Wpn = XPAYHXAYP
G _ n

Wpny = XAY

One can actually check that these 2-forms do not depend on the choi@ndf). Moreover,

they aranvariant under rigid motionsthat is satisfyg®w = w for all rigid motiong. Geometric
interpretations of these forms will be given in section 2.2.5. The dimensi the space of
invariant forms is actually 4 [93].

2.2.3 Smooth case

The theory of normal cycles is inspired by the same ideas as the one presentedhmze&ct,
but transposed in a setting where they can be generalized : the theory of cutreasely
speaking, normal cycles are a way to unfold offsets in a higher dimensional:space
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Defi nition 13 The normal cycle KV) of V° is the current associated with the set :
STV = {(p,n(p))| pe M} C Ep x En
endowed with the orientation induced by the one of M.

M andSTLV are obviously diffeomorphic via the map :
i: M — STV
p — (p,n(p))

The connection between normal cycles and curvature measures lies in the fgllemima

Lemma 14
G _ .G
/N(V)%(Bmlvl) = @/(B)
H _ _H
/N(V)%(Bmvl) = @&/ (B)
for all (Borel) set Be R3.

Herewgwv) denotes the restriction e toi(BN M), that is the form that coincides with
oni(BNM) and vanishes elsewhere. In words, curvature measures of a surface can be recovered
by integrating specific differential forms on its normal cycle.

Proof. By definition we have :

G

G
: = w
/N(V) Ditem) /i(BﬂM)

The change of variable formula now states that :
/ W° — / i* oG
i(BAM) (BNM)
To prove the first claim, it is thus sufficient to show that :
i*w® = Gay
Let (u,v) be a direct orthonormal frame @M, wherex € M. By definition, we have :

Swe will sometimes abuse the terminology and write 'the normal cycle of the orientebeMf instead.
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Expressingq?x) in the frame(u", V", nY), we get

u".(uP + Dxn(u)”

(i*w®)x(u,v) = V1.(UP + Dyn(u)")
u".(VP+Dygn(v)") V"

(VP4 Dyn(v)"™)

u.Dxn(u) v.Dxn(u)

=G(x)
u.Dxn(v) v.Dxn(v)

)
)
(
(v

The proof of the second equality is similar. We omit it here as we will p@stronger result
in section 2.3. O

2.2.4 Convex case

WhenV is convex, a hormal cycle can be defined eveM iis not smooth. Indeed, in place of
normal vectors, we can considasrmal cones

Defi nition 14 The normal cone N&p) of a point pe V is the set of unit vectors v such that :
YgeV pgv<0
Defi nition 15 The normal cycle V) of V is the current associated with the set

{(p,n)|[pedV neNG/(p)}

endowed with the orientation induced by the on@éf

In particular, wherV is convex and smooth, this definition agrees with the one given in the
previous section. We now state a crucial property of the normal cycle, wiegcbould have
stated in the smooth case as well : additivity.

Proposition 15 Let 4 and \4 be two convex sets [R® such that YU Vs is convex. Then :

N(V2NV2) +N(V1UVs) = N(V1) +N(Va)

Proof. It is sufficient to show that the multiplicities of any poif, n) in N(V1 NV2) + N(Vp U
Vo) andN(Vq) + N(V,) agree. Ifp does not belong t@Vi N dVy, this is obvious. Ifp lies
in dV1 N dV,, one concludes easily by noticing thdCy,~v, (p) = NGy (p) UNG,,(p) and
NGu,uv, (P) = NGy, (p) NGy, (). o

In figure 2.5 normal cycles are graphically represented by their image undejneend-
ing (p,n) € Ep x Eqto p+n.
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Figure 2.5:Additivity of the normal cycle

2.2.5 Polyhedral case
Defi nition

Once we know what the normal cycle of a convex is, there is at most one wasfiaing the
normal cycle of a polyhedron while keeping the additivity propehtyeed, if one is given a
triangulation of the polyhedrovi into tetrahedra;,i = 1..n, the normal cycle o¥ has to be :

8

NV) = SDM Y N

n=1 1<ip<..<ip<n

by application of the inclusion-exclusion principle. We will give a geatric description of the
obtained current that does not depend on the chosen triangulation, 8t{thas well-defined
in the polyhedral case.

Simplices

Let us now describe the normal cycle of the polyhedvonThe way it is defined suggests
to look first at the normal cycle of simplices. Remember that intuitively, tlaesaunfolded
versions of offsets of simplices. Just as their offsets, normal cycles of simplicdsecae-
composed int@pherical partscylindrical parts andplanar parts The difference is that these
parts now live inE, x E,. We will say that a subsé of Ej x E,, lies abovea subseB C R3 if
the projection ofA on the point space is included B Let us now describe in turn each type
of part for a simplexS of varying dimension :
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¢ spherical partdie above vertices o& They are subsets ¢ p,n)| ||n|| = 1} wherep is the
considered vertex. I8is reduced tm, then the spherical part is a whole sphere. In Gse
is an edge, then each spherical part is a half sphere. \8eea triangle, they are spherical
2-gons, and iSis a tetrahedron, they are the spherical triangles spanned by the normals of
neighboring facets. Edges of these spherical polygons are dual to edgesdfthe external
angle between two incident spherical edges equals the angle between correspoiatling d
edges.

e cylindrical partslie above edges @& They are included ig(p,n)|p€ e, ||n||=1, n.e=0},
e being the considered edge.Siis reduced te, the cylindrical part is a whole cylinder. If
Sis a triangle, it is a half-cylinder, and 8 is tetrahedron, it is a portion of cylinder whose
section is a circle arc joining the normals to incident facets.

e planar partslie above facets. They have the fofrp,n)| p € t} wheret is the considered
triangle andn a unit normal vector to. If Sis reduced td, both possible orientations for
n have to be taken into account, whereaSi$ a tetrahedron, one should only consider the
outward normal.

General case

We can now go back to the case of a general polyhedrofo begin with, for any poinp lying

in the interior ofV, there is a triangulation &f such thatp lies in the interior of a tetrahedron.
Thus, there is nothing lying above the interionbin N(V). By a similar argument restricted
to a facef of M = gV, the part ofN(V) lying abovef is the planar parf x n, wheren is the
outward normal taf. The two remaining cases are slightly more involved.

Above edges If eis a convex edge d¥, V can be triangulated in such a way tleis in-
cluded in only one tetrahedron. AboeeN(V) thus coincides with the normal cycle of this
tetrahedron : we get a cylindrical part delimited by the normals to facedantione, with
multiplicity 1. If eis concave, one can find a triangulationo$uch thakis an edge of exactly
two tetrahedrda andt’. Abovee, N(V) is the sum of the cylindrical parts &f(t) andN(t’)
lying abovee minus the cylindrical part dl(t Nt’) lying abovee.

The above picture shows a cross section along a plane perpendicular to thescexhgas/
As can be seen, we get again a cylindrical part delimited by the normals to facielsrit ore,
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Figure 2.6:Normal cycle above a concave edge

but with a multiplicity equal to-1, that is with reverse orientation.

Above vertices Above a vertexp, the situation is more involved, as we obtain a linear com-
bination of at least degree @fhalf-spheres, spherical 2-gons and spherical triangles. In mag-
nitude, one can get arbitrarily large multiplicitiesgfis not supposed to be convex. A full de-
scription of the part oN(V) lying abovep can be given by computing the multiplicity, (p, h)

(or u(p,h) for short) of (p, h) in N(V) for each unit vectoh :

Lemma 16

v (p.h) = x(S§ (p,h))
where is the Euler characteristic and $tp, h) is the upper star of p, that is the union of
relative interiors of cell8 of V incident on p and lying in the half plafe| pxh > 0}

Proof. One checks easily that both sides coincide wiiés a simplex. Indeedst] (p, h) is the
cone with apexp and with base (which we calll) the union of relative interiors of simplices
of the trianglet opposite top in V that lie in the half plangx| pxh > 0}. If his in the
normal cone o¥/ at p, thenSt} (p,h) = {p} souv(p,h) = 1= x(St/ (p,h)). If not, then the
plane{x| pxh = 0} meetst. Thus,b is either a vertex of or an edge of. In any of these
casesx(b) = 1. As the Euler characteristic of a cone is 1 minus the one of the base, we have
Hv(p.h) = 0= x(St/ (p.h)).

The claimed result then follows as both sides have the additivity propeyespect to/.
O

5The relative interior of a point is that point.
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Note that this quantity, also called thdexof p with respect to the directioh [8][46], is
always smaller than 1 ip is regular inV.

Curvature measures for polyhedra

Curvature measures for a polyhedidrare defined as the outcome of the integration of cor-
responding invariant forms oN(V), just like in the smooth case. Thanks to the structure of
N(V), itis sufficient to compute the integral of these forms on spherical,dytial and planar
parts :

e atangent plane to a planar part is spanned by two vectde® ofApplying w® or w to a
couple of two such vectors yields determinants with at least one zero columrar Pkamts
thus do not contribute to the curvature measyrésind¢®, as could be expected.

e the tangent plane to a cylindrical part at a pdiptn) is spanned by® andv", whereu is
a vector parallel to the corresponding edge ansl orthogonal tau. For the same reason
as abovew® vanishes when applied {@P,v"). uandv can be chosen so théi,v,n) is a
direct orthonormal frame. Expressingj*pm) in the frame(uP, V"), one obtains :

uP.uP Vv".uP N
SLAVARRVARVL

u".uP vP.uP
TAVARRV SRV

w(|-;|:),n) (Up,Vn) —

The integral ofw™ over a subset of a cylindrical part thus equals the area of this subset.

e atangent plane to a spherical part is spanned by two vect&3 dfhus, integratingo™ on a
subset of such a part yields 0. Integratm§ yields the area of the subset, by a computation
similar to the one given above.

The curvature measug! (B) of a subseB < R? is the sum of the areas of cylindrical parts
of N(V) lying aboveB, weighted by their multiplicities. By the previously given descriptidn
N(V) above edges, one obtains indeed the formula (2.2).

gq?(B) is obtained by summing the areas of spherical parts lying aBoweighted by
their multiplicities. Let us do the computation for parts lying aboveedexp € B. V can be
triangulated such that all tetrahedra incidentpshare an edgeqg. These tetrahedra can be
numbered in a circular order aroupd, saytj,i = 1..n. Let p; be the common vertex &f, tj, 1
andM, considering indices mon, a;j be the anglgsi_1 pp andB; = pipg. For each simple$
incident onp, the area of the spherical p&BS) of N(S) lying abovep s :
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e S=pq: 2T
e S=pipq: 2(r— () asSRAS) is a spherical 2-gon with angke— 3 at its vertices

e S=tj: 2m—a;— B_1— B by the formula giving the area of a spherical triangle as a function
of its angles

Let us now apply the inclusion-exclusion principle to find the coefficient of ed¢he areas
described above in the linear combination givigg(p). Areas of SPt;) appear once each.
Intersecting two tetrahedta 1 andt; yields the trianglep;pg ; as these are obtained exactly
onceSR(pipg) has coefficient-1. The remainingn? — 3n) /2 pairwise intersections all equal
pg. Fork > 3, k-fold intersections also equal;. Hence, the coefficient @R pq) is :

-3 2 w1 N
- + § (=1 =1
g (1)

Finally, we have :
@p) = _Z(ZH*OH*Biflfﬁi)*_zz(nfﬁiprz"

. n
= 27— i;ai

that is the classical definition of the angle defecpailhis computation thus agrees with the
definition given by equation (2.1). Note that unlike the mean curvat@asore, the gaussian
curvature measure is independent on the orientation, in the sense that ghtbesiomplement
of V instead ol would yield the same measure.

2.3 The second fundamental form via the normal cycle

The concept of normal cycle was introduced to define mean and gaussian curvature measures
for a general class of objects. In this section, we show that it can actually praddmplete
description of the curvature of an object. Not surprisingly, integgatnvariant forms on the

normal cycle yields integrals of invariants of the Weingarten endohsmp, namely its trace

and determinant. The basic idea here is to integrate non invariant foromslén to obtain
integrals of each coefficients in the Weingarten endomorphism matrix.
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2.3.1 Two more 2-differential forms

We now define, for each couple of 3-vectdrandY, two 2-differential forms oeP x E" from
which we will recover the second fundamental form.

Definition 16 Given a point(p,n) € E° x E" we set :

XY
Wy = (NP xpXP)AY"
~XY

Opny = XPA (MM xnY™)

wherex, and x , respectively denote cross products if&nd in EP.

Note that these two forms are bilinearXhandY, but not symmetric. However, we will see
that integrating them on normal cycles yields symmetric bilinear forms.

2.3.2 Smooth case

Lemma 17 If M is smooth, then :

~ XY 9
/N(V)wi(BmM) = Hv(B)(X,Y)

X.Y .
Jo, @l = ABY)

Proof. As in the the proof of lemma 14, we perform a change of variable indftdhbind side.
To computei*@*Y at a pointp € M, we consider the direct orthonormal frarfes, ep,n) of
R3 wheree; ande, are principal directions anad= n(p). If the principal curvatures associated
with e; ande, are respectively; andA,, we have :

oy (ener) = @ (e +Mel &S+ Aaeh)

X.e; det(n,Y,Ase1)
X.e det(n,Y,Azey)

X1 —A1Ys
X2 AN
= A2X1Y1 +A1XoYs

= Hv(p)(X.Y)
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whereX; andY;, i = 1,2,3 are the components &f andY in (e,ex,n). The first claim thus
follows. The second one can be proved in a similar way. a

2.3.3 Polyhedral case

The fact that integrals of the second fundamental form can be recovered frorarthal rcy-
cle of a smooth surface by integrating 2-differential forms enables usfioedcorresponding
objects for polyhedral surfaces, as they also have a normal cycle. The next lestifias
definition 7 :

Lemma 18 IfV is a polyhedron, then :
~X.Y . a
/N(V) w\i(BmM) = Hv(B)(X,Y)

X.Y T
S, @iy = AV BIGY)

Proof. Clearly, @Y vanishes on planar and spherical parts. &€& an edge oM, or a
segment included in such an edge, &rlbe the cylindrical part oN(V) lying abovee. The
tangent plane t&€P at (p,n) € CP has a direct orthonormal frame of the fofoP, V"), whereu
is a unit vector parallel te. We have :

P (WP — X.u detn,Y,0)
(.n) 0 det(n,Y,v)
—  (X.U)(Y.u)

As a function ofX andY, d’()%)

non-zero eigenvalue and(or €) as associated eigenvector. It thus equéls €. Integration

(uP,v") is thus a symmetric bilinear form with 1 as unique

onCPyields:

&Y = B(e)lengthe) € ® €
CP

and the first result follows. The derivation of the second one follows the §agseand is left
to the reader. O

Both in the smooth and polyhedral case, anisotropic curvature measures gertbelize
mean curvature measure : indeed, the tradéyaB)(X,Y) or Hy (B)(X,Y) equalsg (B).
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2.4 Sketch of proof of the theorem

The idea behind the proof of theorem 13 is roughly as follows.H.denote the part dil(W)

lying aboveB andD be the part oN(M) lying abovepr(B) (figure 2.7). Consider for simplicity
thatE andD are oriented surfaces, though it is not really accurate as they actually are currents.
By lifting the projectionpr to EP x E", one obtains a map from E to D. DefineC to be the
union of all line segments joining points &fwith their image undef. C is a volume whose
boundary is the union d&, D, and a surfacé which is the union of all line segments joining
points of dE with their image underf. By applying Stokes theorem @ and a 2-differential
form w, one can express the difference between integrats oh E andD as the integral of

w on A plus an integral ol€. In particular, wherw is a form associated with some curvature
measure, this implies that the difference between the considered curvature meé&ueesl

D is the sum of an integral oA plus an integral oiC. In this particular case, the quantities
to be integrated ok andD are bounded. Thus, to get a bound on the difference of curvature
measures, it is sufficient to bound the volumeé&and the area oA.

To do so we first bound the areaBfand the length ofE, which respectively give rise to
the two terms in the constaKtinvolved in the theorem (see section 3.3.4).

Also, we show that the line segments from whizhndA are built are short. More precisely,
the distance between points Bfand their image undef is O(¢g) with € = maxX{r(t)|t € B}.
Equivalently, the distance between a pgirg B and its projectiorpr(p) is O(¢), as well as the
angle between the normal vectorg@t p) and any vectoh such that p, h) lies in the normal
cycle of W (see section 3.3.4).

Loosely speakingC (resp.A) is thus a distorted cylinder the height of whichQge) and
the base of whiclk (resp.dE) has area (resp. length) boundedkayif C (resp.A) were a true
cylinder, that is if all line segments were parallel, one could deducetthablume (resp. area.)
is O(Ke). But this is not the case, so we have to take the distortion into accduntn$ out
that the effect of this distortion is to scale the volume at most by a nu@\elepending only
on the maximum curvature & on pr(B). One thus gets the desired boud(CyKe) claimed
in theorem 13.
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Figure 2.7:Proof of theorem 13
2.5 Results

In practice, in order to estimate the curvature tensor of a surface at a vertemastaapprox-
imating that surface, we choose a small neighborr®odltriangles surrounding the vertex as
averaging region, and retuHiT(B), which has a simpler expression thbTrn(B). To get the
principal directions, we compute the eigendirections of the obtainedxn@ltre one associated
with the smallest eigenvalue in magnitude provides an estimation of tineahtw the surface,
and the remaining two others give approximations of the principakctons, provided asso-
ciated eigenvalues are sufficiently different. These eigenvalues, divided by the & egi\ad
estimates of the principal curvatures. In the following, we takeBfarfixed number of rings
around the considered vertex. Note that theorem 13 does not ensure lineargence with
the sampling density in this case, as the averaging region shrinks as thenspimgleases.
Still, we will see that in practice linear convergence seems to hold, at least fayeadaough
number of rings.

Figure 2.8 shows the result of the estimation on a triangulated torins0@0 vertices.
This mesh was obtained by applying a Delaunay-based ([15]) reconstructioftratgto a
uniform random sampling of the surface of a torus. The estimated princiealidins are close
to the actual ones, that is lie along the meridians and parallels of the tdougever, a closer
look shows that the estimation sometimes fails in the vicinity of whatlvba the topmost (or
bottommost) part of the torus, if the torus would lie flat on a table.Mwecisely, the principal
direction associated with the minimum curvature (in yellow) is correctthmitwo other direc-
tions might not be (see the green rectangles in figure 2.8). The reason is thatmentioned
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Figure 2.8:Frame of principal directions estimated on a meshed torus. For each vertex, the
averaging domain used for computations is the 2-ring of that vertex.

area, one of the principal curvature vanishes and thus the correspondindiesgeon can be
mixed up with the normal direction, as they both lie in the same eigenspaiqa.oﬁ\ possible

way of solving this problem would be to combine this result with the of the alternate ten-

sor Hr (B), so as to recover a correct estimation of the principal direction associated with the
maximum curvature.

Figure 2.9 shows a logarithmic plot of the mean estimation error as adaradtthe number
of points of the torus. The solid curve corresponds to the angle (iredspbetween the true di-
rection of minimum curvature and the estimated one. The dotted curve disp&gstimation
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error on the maximum curvature. From left to right, the three figures vespeectively obtained
using the 1,2, and 3-ring of each vertex as averaging domain. Due taythet@igularity of the
sampling, 1-rings are too small averaging regions to get a reliable auevastimation. Using
3-rings, one sees that the logarithm of the error decreases with a slopdyregghl to -0.5
with respect to the logarithm of the number of points. This means that aplyatiee estimated
guantities converge linearly with the sampling density. On a torus 1@@00 vertices, the ob-
served average deviation on the direction of minimal curvaturesi§ and the mean error on
the maximum curvature is less than 2%. For low resolution meshes, usings3prinduces an
unwanted blurring effect resulting in a less accurate estimation. For instanegooms with
200 vertices, 2-rings provide better results.

The estimator seems to be, to some extent, robust against noise : on a noiggrcye
estimated principal directions using 3-rings are globally correct (figur®)2.Note however
that the results are not as good if one uses only 1 or 2-rings as averagmags. On this ex-
ample, the noise added to the vertices of the cylinder is about one fuititik typical spacing
between samples.

Figure 2.13 shows the result on a mesh of Michelangelo’s David. It is ofseodelicate to
claim that the result is correct, as the actual curvatures are not available, @i nof even
defined -what is the curvature of a real world object? Still, the fact thatalisgl only the es-
timated minimal curvature directions is enough to recognize the mastergidtielelangelo
proves in some sense the quality of the result.

Figure 2.10:Estimated principal directions on a noisy cylinder using 3-rings
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Figure 2.11: The principal directions estimated on an ellipse with 1442 vertices, are very

similar to the actual ones, whose integral lines are shown in figut2.2.

Figure 2.12:Lines of curvature of an ellipse
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Figure 2.13:Directions of minimal curvature estimated on a mesh of Michelangelo’s David
For each vertex, the averaging domain used for computations is the Dfitigt vertex.
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Chapter 3

Approximation of normal cycles

Introduction

In his articleEuler characteristic and finitely additive Steiner measy@&®, John Milnor raises
the following question : in what sense do two sets have to be close to eachiotbater to
guarantee that their curvature measures are close to each other? This open pesbéthé
heart of our approach to curvature estimation, since we estimate the curvaasenes of a
surface by the ones of a piecewise linear approximation of that surface. Indgeahsamer
to the problem leads to conditions on the approximating triangua&nsuring the accuracy of
the estimation.

This line of research has already received some attention in the past. In the caseohver
sets, the situation is well understood. For instance, the difference betweeedmecurvature
measures of two convex sets is bounded by a constant times their Hausdoritel{&a); as
can be seen easily using the integral-geometric interpretation of curvatureregeddafortu-
nately, these considerations do not seem to apply successfully to the considersbtiffiowlt
case of non-convex sets.

If one drops the convexity assumption, it appears that the theory aialarycles is a rele-
vant tool to tackle the problem. As explained in the previous chapternormal cycle of a
-sufficiently regular- set is a current that generalizes the notion of unbaldoundle to non-
necessarily smooth objects[126], [128], [130],[131],[129]. The key &odiut normal cycle
theory is that the various curvature measures of an object can be recoveredsfroonnial
cycle by integration of well-chosen universal differential forms. Using thterpretation of
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curvature measures, Joseph Fu [52] was able to prove, under certain assumptiohsy that i
sequence of polyhedra converge to a smooth submanifold of an Euclidean spacéethen t
curvature measures converge to the ones of the submanifold. This theorembiskst by
showing that the normal cycles of the polyhedra converge, in the senserentsito the one

of the submanifold. The proof of this convergence heavily relies on thgactness theorem

for integral currents with bounded mass.

Let us mention for sake of completeness that Cheeger, Miller and Schrader [28] managed t
obtain an approximation result for curvature measures, but in a differemgs€efiney showed
that the curvature measures of a Riemannian manifold can be well approximajedryties
defined by means of geodesic triangulations of the manifold. Note thatghreach is intrinsic

and therefore different from ours in spirit.

The goal of this chapter is to refine the result of Joseph Fu by giving a quivetitarsion
of it. Indeed, his convergence result does not shed any light on the relapidretiveen the
curvature measures of a smooth submanifold and the ones of a given appnogip@yhe-
dron, which is the question we are interested in. We answer the questionifay gn estimate
of the flat norm of the difference of the normal cycle of a compactanifoldV of E" whose
boundary is a smooth hypersurface, and the normal cycle of a -sufficientiaregompact
subsets” in terms of the mass of the normal cycle\gfthe Hausdorff distance betwe@¥ and
0%, the maximum angle between the normal¥/tand the “normals” te¢’t, and ana priori
upperbound on the norm of the second fundamental foradVof\We thereby give an answer to
the question raised by John Milnor in the special case where one of the two setoithism

In the first section of this chapter, we give precise definitions relative tmalocycles, in-
cluding the extension of anisotropic curvature measures to hypersurfaceg dinagnsion.
In the second one, we prove the approximation result, and in the last orgiyevpractical
corollaries of it such as the theorem 13 stated in the previous chapter. Weor¢32] for a
treatment of the material of this chapter in the Riemannian framework.

3.1 Background on geometric measure theory

All the details can be found in [49].

Lthis will be given a precise sense even wiaéfiis not smooth.
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General currents

Let 2™ the R-vector space o€® differential m-formswith compact support ofi”. 2™ can
be endowed with a topology similar to the topology on the space of testifuns used to
define distributions, the so-call&¥* topology. A sequencép) of elements o7™ converges
to @ € 2™ in theC® topology if and only if the derivatives of any order of tipeconverge to
the corresponding derivatives @funiformly on every compact.
The topological dual of2™ is the R-vector spaceZ,, of m-currentson E". Equivalently,
currents can be viewed as differential forms whose coefficients are distributistead of
smooth functions. Theupport Sp{T) of a currenfT can be defined as the union of the support
of its coefficients.

The subset ofm-currents with compact support is denoted®y. We endowZy, with the
weak topology:

Yoec g™ jIi_r)rgoTj =T < IimTj(@) =T(p)

j—>00

Operations on currents
Basic notions relative to differential forms can be transposed to curremsdization :

1. Boundary : to eachr-currentT one can associatera— 1-currentd T called itsbound-
ary, defined by :
Voec 2™ 1T (p) =T(dg)

whered@ denotes the exterior derivative @f

2. Push-forward : given am-currentT and a smooth map defined on a neighborhood of
the support off, one can define theush-forward T of T by f :

Voe 2™ 1,T(p) =T(f* @)

where f*@ is the pull-back ofp by f. Note that this definition only makes sense when
f*@is compactly supported. We thus have to assumefttisproper, that isf ~(K) is
compact for every compakt. Actually, for the push-forward to be defined, it is sufficient
that the restriction of to the support ofl is proper.

Since f* commutes with exterior differentiatiorf; commutes with the boundary operator, so
that the push-forward of a current without boundary is also withounhdary.
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Current representable by integration

We say that a currerit € 2, is representable by integratiahthere is a Borel regular measure
||T|| onE" finite on compact subsets and a umitvector fieldsT defined almost everywhere
such that

Voe 2™ T(9) =/<?,cp>d|lTll

Currents representable by integration are analogous to distributimrder 0. A current
representable by integratioh can be “restricted” to any{T ||-measurable se (see [50] pp
356). The obtained curreiit_A is defined by :

Voe 2™ TLA(Q) :/<?,<P> Iad|[T]|

Rectifi able and integral currents

In particular, one can associate arcurrent representable by integration to any oriented
rectifiable subses of dimensionm of E". It is a well-known fact that rectifiable sets of
dimensionm have a well-defined tangent spaces&t™-almost every point. LeE be the unit
m-vector field encoding these -oriented- tangent spaces. The current associat&l stiith
denoted by, is defined by :

S<¢)=/S<§co>d%m

More general currents can be defined by incorporating integer multipligitiaghe previous
formula :

T(@)z/su<§co>d%’“

If the support ofSis compact, andsud.7Z™ < «, we say thafl is rectifiable The space of
rectifiable currents is denoted %,.

A current is said to bentegralif it is rectifiable and if its boundary is rectifiable.

Mass and norms of currents

The norm of an-differential formg is the real number

2we refer to [50] for an exposition of the rather subtle notion of rectifi ability.
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|ol| = sup||@ll,
peM”

where, for eaclp € M",

||| = sup{| < @p,{p > |,{p € A"TM™, || = 1}.

There are different interesting seminorms on the space of curigptdVe mention the main
ones:

e The mass of a curreflt € 9, is the real number
M (T) = sup{T (@), such thatpc 2™, ||@|| < 1.}

For rectifiable currents of dimensian, the mass somehow generalizes the notiomef
volume : the mass of the currehidefined by 3.1 igsud.s#™. Rectifiable currents thus have
finite mass. Using general results on representation theory of geometric measuygitheo
can be proved that ¥ (T) < o, T is representable by integration.

e The flat norm of a current € %y, is the real number
F(T)=inf{M(A)+M(B) such thafl =A+9JB,Ac In,B€E Dmni1}.

It can be shown that the flat norm can also be expressed in the following way :
F(T) =sup{T(9), such thatp € 2™, ||g|| < 1,||dg|| <1}.

The constancy theorem

We will use the following important result:
Theorem 19 Let A be an oriented connected ubmanifold oE" with boundary, and let T be
an integral current whose support lies in A, and such that the suppatTdies indA. Then,

there exists an integer k such thatTkA.

Note that this theorem actually holds for a larger class of currents, the sotczdl flat
chains
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3.2 Geometric measure theory and curvature measures

3.2.1 Normal cycle of a geometric subset d"

Under certain regularity assumptions, one can associate with a compacti&eanfintegral
n— 1-current of (the total space ofE", called its normal cycle that generalizes the notion
of unit normal bundle to non-necessarily smooth sets. In the previousecham gave the
definition of the normal cycle of such a compact etn some particular cases : &% is a
C? mdimensional manifold, the normal cyd¥(%’) of % is just the integrah — 1-current of
TE" associated with the outer unit normal bundle&f If € is convex,N(%) can be defined
in a similar way using normal cones instead of unit normals. Finally, iE a polyhedron,
one first start by decomposirg as a union of convex polyhedf. N(%’) is then defined by
inclusion-exclusion :

n+1 n o

MO L3,
By construction, the normal cycle is Euler-additive. These definitionsigeos satisfactory
way to generalize the notion of unit normal bundle to compact setsQfithoundary or com-
pact polyhedra. Joseph Fu [57] proved that the concept of normal cycle can actualiyher
generalized to a very broad class of objects, which he galtenetric setsGeometric sets are
defined in a rather indirect way. Fu first exhibits some basic properties that anpabésgen-
eralization of the normal cycle should satisfy. He then shows that for each cosyteset of
E" there is at most one integral current satisfying the properties (theorgrif 0ch a current
Sexists, the set is said geometric and its normal cycle is defined as being tha 8uBefore
explaining what these properties are, let us give some notations.

We identify the total space GfE" with E x F whereE is the base space afds the fibef.
LetJ: E — F be the canonical isomorphism betwdemandF. We endowT E" with the dot
product< (e f),(€,f) >=<e € >+ < J1(f),J7X(f") >. If uis a vectoru* denotes the
dot product byu. Thecanonical 1-formo on TE" is defined by

() - 5 &6

3Here, the term ‘cycle”is used because normal cycles have no boundary.
4in chapter 2, we used to dendfeby E" andF by EP. We change the notation to avoid confusion with the

dimension.
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where(g) is any orthonormal frame d& and¢é; is thei-th coordinate ofi~1(&) in (g). The
derivativew of a is called thesymplectic formon TE". For any orthonormal framge) of E,
we have :

w=e NIe) +..+esAd(en)"

Let Sbe an integra(n— 1)-current supported iSTE". Sis said to bdegendrianif it cancels
o andw, that is if one has :

Yoe 2" ?T(pAa)=0
Voe 2" 3T(pAw) =0

The key theorem in Fu’s definition of geometric sets is the following :

Theorem 20 (Uniqueness theorem) Let TE" — R. There is at most one closed legendrian
integral (n— 1)-current S whose support is a compact subset d&"Sdnd such that :

SOX.E)dE) = [ 5 ok &)tk &)

S xERn

for any smooth functiogp : STE" — R.
heredé denotes the pull-back of the volume form®¥! by the projectiorE x F — F.

Definition 17 A compact se¥’ C E'is said geometric if the current S of theorem 20 exist when
i =iy is the function defined by :

i (x, &) = limy olimgjo [X (¢’ NB(X,r)N{p| (P—X).& <t})h=2

S is then called the normal cycle fand denoted by [¥).

WhenC is a stratified sefy(x, &) is just the index [23, 61] ok as critical point of the dot
product by€. i« (x, &) can be viewed as the multiplicity i, &) in N(%¢) ([22]).

The definition of geometric sets does not give a practical way to decide whetlvenssgt
is geometric. Fortunately, important classes of sets have been shown to bergedrasides
smooth objects and polyhedra. The main examples are subanalytic sets [54],ldeftafil4]
, Riemannian polyhedra [74], or sets with positive reach [57].
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3.2.2 Curvature measures from normal cycles

As explained in the previous chapter, the crucial point about normagyskhat the curvature
measures of a smooth object arise as integrals of invariant differential tormts unit normal
bundle, that is on its normal cycle. This interpretation shows that cuevateasures can be
defined for any compact admitting a normal cycle. As we only gave the defisitd the
invariant forms in the case= 3, we now recall their construction in arbitrary dimension.

At any point(m,&) of STE" = {(m,&) € E xF | ||€]| = 1}, consider an orthonormal frame
(e1,....en_1) of I7L(&)L, and(gy = Jey, ..., &n_1 = J&,) its image byd. OnSTE", we can build
the (n— 1)-differential form

Q= (e]+te)N...A(e)_1+ten_1)

This form clearly does not depend on the choice of the orthonormal f(egner he coefficient
of t' in this expression considered as a polynomial in the varigisi¢hus a well-defined — 1
form w. Eacha is invariant under the action of the orthogonal group. @Whetogether with
the canonical 1-form and the symplectic form, actually span the algebra af/atiant forms
on STE".

Defi nition 18 Let% be a geometric compact subsetff The k-th curvature measure of,
denoted byp%&, associates with each Borel subset Bidfthe real number

@ (B) = N(%)L(B x F)(a)

If € is the volume enclosed byG? compact hypersurfacm'r}(B) is just the integral over
BN o% of thek-th symmetric function of the principal curvaturesast’. We refer to [93] for
a proof, which basically consists in a change of variable. With the notatibtiee previous
chapterg = @' and¢® = ¢°.

3.2.3 Second fundamental form of geometric sets

In the previous chapter we showed how the normal cycle could be used to defameraliza-
tion of the notion of (integral of the) second fundamental form to petira in 3-space : the
anisotropic curvature measures. Among the two anisotropic curvature megrodsaced in

chapter 2, only oneily, seems to generalize naturally beyond the three dimensional case

SBernig [13] has recently studied a family of a tensors-valued forms which includesaitisuypar one.
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Definition 19 Let% be a geometric compact subseff The anisotropic curvature measure
of &, denoted by-Tcg, associates with each Borel subset Bidfthe following bilinear form on
E:

¥X,Y € E2Hy (B)(X,Y) = N(%).(B x F)(wx.y)

where :
wxy = *e(J7HE) AXH)AI(Y)

herexg denotes the Hodge dual on E.

Just as in the three-dimensional case, wi#éis the volume enclosed by @ compact
hypersurfacel—Tcg(B) is the integral oveB N d% of a symmetric bilinear form oit related
to the second fundamental form 8%’. More precisely, this fornH4 (m) coincides with the
second fundamental form @f¢” on the tangent space @f¢, and vanishes on its orthogonal
complement.

Proposition 21 If ¢ is the volume enclosed by & @ompact hypersurface M, then for any
Borel set BC E :

Hy (B) = /EW Hy (M)dm

The proof of this fact follows the same lines as in the aase3 :

Proof. As usual, using the Gauss m&pof M (see section 3.3.1), we perform a change of
variable on the integral ofux y over N(V).(B x F) to transform it into an integral oves.
We only have to show thdb*wx v is the bilinear form inX andY described above times the
volume form ofM. Fix a pointp € M and let(e, ..,e,—1) be an orthonormal frame of principal
directions atp. Leti and|j be two indices comprised between 1 and 1. By definition of
wx.y and becausBG(u) = (u,J(As(u))) for any vectom, we have :

n-1

G kg (er, 1) = 3 (1) eI (&), 8,81, .., 8 1,81, n-1) < DG(&x), I(ey) >
k=1

= (-1)"'detI"*(¢),q,€1,..,6-1,81,...n-1) < DG(&),J(gj) >
= <DG(&),J(g) >=<As (&), >

To conclude the proof we need to check tl&t, ;-1¢) = 0 which is obvious from the pre-
ceding computation. O
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|‘ng(B) IS symmetric even i’ is a non smooth geometric set, which is not obviaysiori,
aswyxy # wyx if X andY are not collinear. This a consequence of the fact that normal cycles,
by definition, cancel the canonical symplectic foeoron TE", that is satisfy :

Voe 2" 3 T(pArw)=0

We recall thatw = €] AJ(e1)* + .. + €, AJ(en)* if (&) is an orthonormal frame dE. At a

point (m, &) we will consider an orthonormal frame having the fofe, .., ey, J(€1),..,J(en))

with e, = J~1(&). To prove that anisotropic curvature measures are symmetric, it is sufficient to
show that for eachandj, we e, — We; ¢ is @ Wedge oo with some(n—3)-form @. Actually, as
normal cycles are supported®TE", we only need to prove that the restrictionwaf e, — e, ¢

to STE" can be writtenp A w. First consider the case where neithaor j equalsn. Choose
a=+JHE) e A€]). Assuming w.l.o.g. thait< j, a is (—1)+I+" times the wedge o}
fork=1,..,n—1,i andj being omitted. Now sep = o, stgn. We have :

PAW = OAWSTEn
= :Zi*E(J_l(f)*/\Q*Ae]k)/\ei/\J(@)*
- *;(J_l(f)*/\q*/\e]-k)/\q*/\\](a)*—}—*E(J_l(f)*/\q*/\e]-‘)/\e]-‘/\\](ej)*
= (DA g @)+ (D) AR A ()
= (N—2)! (g ¢6; — Wej q) STEN

which is the desired result (The restriction of the rh$STE" has been dropped in the in-
termediate lines of the above computation to simplify the notations).cakel = nis simpler.
Indeed,ws, ¢ is Obviously 0, andug ¢, also, when restricted t8TE".

3.3 An approximation result

In this paragraph, we shall evaluate an upper bound on the flat norm offtleedce of the
normal cycle of a compactmanifoldV of E" the boundary of which is a smooth hypersurface
M"—1 and the normal cycle of a geometric compact sutieéhe boundary of whicl¥ is
strongly close tdv" ! (see the definition below). We denote &§A, A') the Hausdorff distance
between two subsesandA’ of E".
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3.3.1 Strongly close hypersurfaces
The Gauss map associated tiv1"~1

We assume tha¥"~1 is the boundary of a compaotmanifoldV. Let & be the outer unit
normal vector field on the hypersurfabd1. We denote byG -in the last chapter it was
denoted by- the Gauss map associatedd—1:

G: M1 TE"
is defined by
G(m) = (m,&m).
The derivative ofG at m satisfies :

DG(m): T,M"™ ! — TE"~ExF
X — (X, =AsX)

whereA; is the Weingarten endomorphismmat Denoting by| |hm|| the norm of the second fun-
damental form oM"~1 at the pointm, that is the largest magnitude of the principal curvatures,
we thus have in particular :

IDG(X)|| < sup(L, ||hm|)-

The projection on a smooth hypersurface

SinceM" 1 is smooth, there exists a tubular neighborhtb¢bf varying radius) oM"~1 on
which the orthogonal projection |grfrom U to M"~1is well defined. By orthogonal projection
we mean the function that maps a point to its closest poiMBnt.

The following result is classical (see [50] for instance):

Proposition 22 The map
pry :U — Mt

is differentiable; moreover, at each pointqJ, its derivative is given by the following matrix,
in a frame of principal vectors of f1 completed by the unit normal vector:
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1
m e e O

Dpry(p) = .
1
O .

whereA, ..., An_1 are the principal curvatures of M1, ande = +1. In particular,

1
<

Ihpr, (ml

In what follows, we will say that a compact sub&dying in U is close to M~1. Moreover,
if the orthogonal projection ontM"~* induces a bijection betwedhandM"~1 we shall say
thatB is strongly close to M. If B is strongly close taM"1, then it is homeomorphic to
it. In the following, we assume th& is a n-manifold with boundary which is geometric and
whose boundary is strongly closeNt .

Comparing the normals

To give a measure of the closeness between the tangent spadesaod M"~1, one can
compare, for every poimhin M™%, the normak,, to M"~1 with the set :

{veF|(prim),v)esptN(¥)}

that is the support of the normal cycle @flying above pri(m). For every subses of ¢, we
put:

ag= sup sup{Z(&m, V)| (pr-i(m),v) e sptN(%)}
mePr(B)

3.3.2 A homotopy between normal cycles

With the previous notations, consider the nfagefined by the following diagranpg denotes
the projection on the first factor &f x F) :

UxF —— sptN(V) CV xF

| Is

§] pr Mn—l
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Let h be the affine homotopy betwedrand the identity, [49]:
h:(UxF)x[0,1] — sptN(V),

given by
h(x, X,t) =tf(x,X) + (1—t)(x, X)

Let B’ be a Borel subset ar8l= B’ N d%. To simplify the notations, we define tfie— 1)-
currentsD andD’ by D = N(%¢).(B x F) andD’ = N(V).(pr(B) x F). We define also the
n-currentC = h;(D x [0, 1]) and the(n— 1)-currentA by A= h;(dD x [0,1]). Note thatC and
A are indeed defined dsis smooth and proper.

Figure 3.1:Homotopy between normal cycles

Proposition 23 One has:

F(D-D') < (M(D)+M(dD)) sup|f—Id| sup(||[Df||"2||Df||"* 1)
Sptb Sptb

Proof.

1. To begin with, we show thaft(D) = D'. First note thaB x F = f ~1(pr(B) x F), so that
([49] pp. 359):

f:(D) = f(N(€)(BxF)) = f;,(N(%)).(pr(B) x F)

f.(N(%)) is an integral(n — 1)-current without boundary that is supported in tbé
(n—1)-manifold Spt(N(V)). Thus, by the constancy theorem (theorem 19), there is an
integerc such thatf;(N(%¢)) = cN(V), which impliesf;(D) = cD'. To prove that = 1,
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one can assume thats’ contains an open s€ on which it is smooth. Indeed, if it

is not the case, one can modify localiz’ leavingB unchanged in such a way that it
holds. Then the restriction gf; to O x F is 1-1, thusf o, is also 1-1. We conclude that
fs(N(€)(OxF)) =N(V)(pr(O) xF), thatisc=1: f;(D) =D".

2. In order to evaluate the flat normbf— D', we decompos® — D’ =D — f;(D) in a sum
of a (n— 1)-current and the boundary ofracurrent, using the homotopy formula for
currents (cf. [49]) :

D-D' €D f,(D)=aC-A

By definition of the flat norm, we deduce immediately that the flat norniDof- D’)
satisfies

Z(D—D') <M(C)+M(A)

If D or dD has infinite mass, then the result is trivial. If not, they are representable by
integration. In this case, we have ([49] 4.1.9.):

M (C) = M (hy(D x [0,1])) < M(D) sup|f —1d| sup(|[Df||""*,[[1d[|""),
Sptbp Sptbp

and

M (hy(9D x [0,1])) <M(dD)) sup|f —Id| sup(||Df||"?,|[Id]|"~?),
sptb sptb

from which we deduce Proposition 23.

Proposition 24 Let B be a Borel subset of'Eand B=B'Nd%. Then
1. supsptp | f —1d| < max(ds, ag), and
sup(L,||hg||)

wheredg = 8(B, pr(B)) is the Hausdorff distance between B andBrand||hg|| is the maxi-
mum of the norm of the second fundamental form &f Mestricted to p(B).
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Proof.

1. The firstitem is trivial;

2. For the second item, we remark that

The conclusion then follows since one has :

1
sup||DG|| < supl,||hsg||),||Dprg|| < ——~———,||Dp1|| = 1.
pr(B)H | pnf( |Ihsl]), ||Dprg|| 1= /e |IDp4 |

To summarize, we have proved the following result :

Theorem 25 Let M"~! be a smooth hypersurface Bf bounding a compact subset V and
¢ C E" be a n-manifold with boundary that is geometric and the boundawhich is strongly
close to M. Let B be any Borel subset @&" and B= B'NJd%. Then,

F(N(E).(BxF)—N(K)_(pr(B) xF)) <

sups(L, [[hel|)

n—-1
g ) (MINGE)L(BXF))+ MON(©) (B X F)))

max(Js, as)(

wheredg = (B, pr(B)), ||hg|| denotes the maximum of the norm of the second fundamental
form h of M"! restricted to p(B).

3.3.3 Approximation of curvature measures

Once we have bounded the flat norm between the normal cycsantl4’, we only need to
bound the norms of the invariant forms and the ones of their extdenvative to bound the
differences between respective curvature measures, thanks to the alternate defittigoftat
norm. Note however that as we only defined the foupson STE", we need first to extend
them outside oSTE", as the homotopy between the normal cycles described in section 3.3.2
is not supported IBTE" but in E x B(0,1) (B(0,1) denotes the unit ball df). To do so, we
consider a smooth functio@ : R — R supported in1/2,3/2] and such thatp(1) = 1. The
extended formsy, are then defined by

W (m &) = (| |€ ) ca(m, & /1[&]])
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The formswy, are obviously bounded, as well as their derivatives, by some con€tgintk).
We thus have :

Corollary 26 Let M"1 be a smooth hypersurface Bff bounding a compact subset V and
¢ C E" be a n-manifold with boundary that is geometric and the boundawhach is strongly
close to M1, Let B be any Borel subset @" and B=B'Nd%. Then, for every JO0 < k <
n—1,
|9 (B) — i (pr(B))| <

sups(L,|lhs]l)

1— dg||hs]|

wheredg = 0(B, pr(B)) is the Hausdorff distance between B andByrand ||hg|| is the

maximum of the norm of the second fundamental form'bf'estricted to p(B).

Ca(n, k) max(ds, as)(( )"HM(N(@)L(B x F)) +M((N(€)(BxF))))

We now proceed the same way with the anisotropic curvature measures, exced tlaat w
not need to extend the corresponding forms as their definition already makessang@oint
of TE". Consider a framée;) of E". For any two indicesandj of E", the coefficients ofug e,
at(m, &) are linear functions of. Thus they are bounded &x B(0, 1), which is the domain
of interest, since the homotopy between the normal cycles is supported/iariover,dcwg e;
has constant coefficients. As a consequence, shandY are two unit vectors, the norms of
wx .y and its derivative oic x B(0, 1) are bounded by some const&a{n). Hence :

Corollary 27 Under the assumptions of corollary 26 and with the same notations :

[[Hz(B) —Hv (pr(B))[| <

sups(1,|hg|])
1— dg||hs||

here||.|| denotes the operator norm.

Ca(n) max(ds, as)(( )" HM(N(%)(Bx F)) +M(I(N(?)(BxF)))),

Whend% = N is C? andB’ = E", these results can be interpreted as followsN i closely
inscribed inM and :

1. M andN are close g is small)

2. M andN have close normalsxg is small)
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3. The norm of the second fundamental form\bfs not too big (|hg|| is not too big)

4. The total curvature dfl is not too big

thenM andN have close curvature measures. Indeed, the mass of the normal c¥tle of a
certain sense a measure of the total curvatufé. dfor instance, if the dimension dfis 2 and
ki1 andky denote its principal curvatures, one has [56] :

M(N(%)) = 2/ (1412 + K2 4 K2KZ) /2
N

The requirement that the mass of the normal cycl& a$ not too big cannot be removed,
as the following example shows. Lkt be a square in space, aNdhe surface obtained from
M by adding conic spikes with height, slope8, and centered on the vertices of a grid of
sizen. We assume thati2< 6n, so that the spikes do not overlaj.is closely inscribed in
M and whenu, 6, andn go to 0,0g andag also go to 0. However, one can tune the decay
of these parameters in such a way that the total mean curvdtofeN goes to infinity.H is
simply the sum of the total mean curvatures of all the spike.oThe total mean curvature
of each spike is a function gf and 8 that is linear with respect tg by homogeneity. Thus
H ~ u/n?f(6) for some functionf. Calculations show thatt(8) = Q(8) when8 goes to 0.
Thus if one choose8 = n/3 andu such that 2 < 8n holds, e.g.u = n*3/3, then one has
H = Q(n~Y3). In this example, the total mean curvature does not converge because the mass
of N(%) is unbounded.

We have given conditions under which the curvature measures of a hypeesare close
to the ones of a given smooth hypersurface. Unfortunately, our approacls ld@ahk as soon
as both hypersurfaces are singular, in particular because thégtihen explodes. We leave
to the reader the following question which, if the answer were positivejdvgettle the issue
of approximation of curvature measure in the most general case :

Open problem 1 Let M (resp. N) be a closed hypersurfacédf andV (resp. W) the bounded
component of the complement of M (resp. N). Assume V and W are geometric e lat
homeomorphism between M and N. Let:

1. 0 = supnemd(m, f(m))
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2. a be the maximum Hausdorff distance between the support\fil{{m} x F) and the
one of
NW)L({F(m)} < F)

Can one bound the difference between the curvature measures of M and Nrintiarfgp of
0, a, and the masses of(M) and N(W) that goes td with d anda?

3.3.4 The case of triangulations in 3-space

We now apply the general curvature measures approximation results of theugrsection
to the particular case of a smooth surfade= 0V approximated by a triangulated surface
T = dW. For simplicity, we will take a8 the relative interior of a union of triangles @f,
though for some applications other possibilities may be preferred, such addhsection off
with a ball centered on it.

Triangulated mesh closely inscribed in a smooth surface

Following [52], we say that a triangulated mesHgS¥is inscribed in a smooth surfach! if all
its vertices belong td/. A triangulated mesh is closely inscribedin a smooth surfach! if

it is both inscribed in it and strongly close to it. In what follows, we assuhatT is closely
inscribed inM. Here are some useful notations and definitions introduced in [92] to stedy
relationship between the geometry of a surface and the one of a mesh closelyeimhscrib
Lett be a triangle off .

n (t) denotes diameter of that is the length of its longest edge.

r(t) denotes theircumradiusof a trianglet.

Thestraightnes®f a trianglet is the real number

str(t) = max _|sin(6p)|,
p vertex oft

where6, is the angle of at p.

Therelative heightof t with respect taM is the real number defined by:

T (t) = supn (t)|[hpr(m|
met
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Let us now give explicit bounds on the various quantities involvetiénbounds of section
3.3.3.

Lemma 28 The Hausdorff distancé between a triangle t and its projection (p§ on M is
smaller than the diametey (t) of t.

This is obvious since the vertices of the triangle lie on the surface.

Lemma 29 For fixed M, we have :
ar = O(r(t))

asn(t) goes ta0.

In this caseq; is nothing but the maximum angle between the normal to triaingied the
normals toM on pr(t).

Proof. It is shown in [92] that iffju (t) < 3 :

: 4
<
sina; < (str(t) +2)1(t)
As M is smooth and compagh|| is bounded from below sy (t) is aO(n (t)) soa fortiori a
O(r(t). Also as in any triangle we have :

_length(e)
"®) = 3sin(ey)

p being any vertex af ande being the edge opposite o Thus the vertey such thatsin(8y)|
is the largest is also such that leng#) is the largest, that iélr% = 2r(t) and the conclusion
follows. a

This result is similar to the one obtained by Nina Amenta [6] in the casesificted
Delaunay triangulations.

The mass of the normal cycle of a triangulated mesh

We shall now evaluate the mass of the pé¥V)._(B x F) of N(W) lying aboveB and the one
of d(N(W)L(B x F)), the last two quantities that remain to bound to prove the theorem 13,
which we recall for convenience.
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Theorem 30 Let W € R3 a volume whose boundary T is a triangulated surface closely in-
scribed in M. If B is the relative interior of a union of triangles of T, then

@5(B) — @F(pr(B))| < CuKe
@(B)— & (pr(B))| < CuKe
IFw(B) — Ay (pr(B))l| < CuKe
[Fw(B) — Fv(pr(B))l| < CuKe

where Gy is a real number depending only on the maximum curvature of M and :

K= S r*+ Y
{teT,tcB} {teT, tcB, tNdB#0}
e = maXr(t)|t e B}

In order to shorten notations we set :

sB) = Y rt)?
{teT, tcB}

sdB) = z r(t)
{teT, tcB, tNdB+£0}
For the next two lemmas, we rely on the description of the normal cycietoédngulated
surface given in the previous chapter. We recall that the mass of an integrale is the area
of its support, locally weighted by the multiplicity.

Lemma 31 The mass of (W) (B x F) is O(s(B)).

Proof. This mass can be decomposed in three terms : the mass lying above the intdrer of
triangles ofT, M!, the mass lying above the interior of the edge3 pM®, and the mass lying
above the vertices df, MV. M! is merely the area d8, so it isO(s(B)). Let us now focus on
ME€. We have :

ME= 3 |B(e)llength(e)
eedge ofs

Let e be an edge of andt, t’ be the triangles o incident one. The dihedral angle & is
O(r(t)+r(t")) by 29, as well as the length ef Thus we also havis1® = O(s(B))

The last quantity to consider M". Letu be a vertex ofl, andu;, i = 1..nits neighbors in
circular order. Ifn; is the unit normal to trianglau;u;. 1, then the mass lying abowas smaller
than the sum of the areas of spherical trianglegnin;.1. By lemma 29, the area of any such
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triangle isO((r (UtUiy1) +r(Uti1Ui12))?). Summing on all € B, we get thaM" = O(s(B)).
We thus proved the announced claim. O

Lemma 32 The mass of (N(W).(B x F)) is O(sd(B)).

Proof. d(N(W). (B x F)) decomposes into two parts : a union of line segments corresponding
to the edges ofB, and a union of circle arcs corresponding to the edg&sroéetingdB. The
mass of the former is obvious{y(sd(B)) and the one of the latter also by lemma 29. O

From the preceding discussion together with the results of section 3.3.8ednees im-
mediately theorem 13. Note that theorem 13 does not imply the convergercevature
measures for anfg, since the quantitg(B) + sd(B) might go to infinity. An important case
where this does not occur is when all triangle8ihave all their angles bounded from below.
As explained in chapter 2, the bound then boils down to the aréapdfis the length of its
boundary, times the maximum diameter of a triangl8,nimes a constant. In particular, Bf
is the union of all triangles of meeting a fixed compact sBt whose boundary is smooth and
transverse td/, the area oB is bounded, as well as the length of its boundary. We thus get the
convergence of respective curvature measures with a linear speed with respect toithermax
diameter of a triangle iB.

The case of restricted Delaunay triangulations

Among the triangulations of a -sufficiently dense- given point set lying sarface, the De-
launay triangulation of these points restricted to the surface seems to becalpdyt good
one for the purpose of curvature estimation. First of all, the resultdred Nmenta [6] imply
that these triangulations are closely inscribed provided that the pointaetisample of the
surface withe < 0.06.

Second, one can expect that these triangulations tend to minimize the maginsumra-
dius of their triangles, which is involved in our bound. Indeed, thisue when the surface is
a plane, since restricted Delaunay triangulations are in this case nothintabat Pelaunay
triangulations, which are known to maximize [12] the granularity fihene sometimes given
to the maximum circumradius of a triangulation. Of course, this doebkaidtfor curved sur-
faces. Still, when the sampling density is high, the surface looks like & @lathe scale of a
triangle. One can thus expect that in this case restricted Delaunay triangsilatioa nearly
optimal granularity, though a precise argument still needs to be foumanyt case, it follows
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from the definitions that the granularity of the restricted Delaunay ttikatigpn of ans-sample
isaO(e).

The quantitys(B) is also optimized by Delaunay triangulations -in the plane, but it is more
difficult to bound, even for restricted Delaunay triangulations. If no locéoumity assump-
tion is made on the sampling, then one can build examples ve(i&fg is unbounded, such as
what could be called th8chwartz helicoifl (see figure 3.2).

Figure 3.2: A sequence of restricted Delaunay triangulations whose normal cycles have un-
bounded mass

The triangulation depicted in figure 3.2 is the restricted Delaunay triangulat a particu-
lar sampling of a helicoid. This sampling is such that the demkityf samples in the direction
of the axis of the helicoid is much larger than the dengitpf samples along the fibers. If one
chooses for instanah, = d? and letsd go to infinity, then not onlys(R3) goes to infinity, but
also do the masses of associated normal cycles. This shows that the problem iartpdecs
not thats(B) is a too weak bound.

A way to circumvent the problem is to require that the sampling is locadlfoum in the
sense of [58]. Indeed, in this case, it can be shown that the triangles of thetegsbelaunay
triangulation have their smallest angle larger than a given constant, soéhadriblusions of
the previous section apply. However, the local uniformity as definedBhigather restrictive.
Typically, it does not allow samplings where some sample point is spéttimo very close
samples, which can occur in practice. We thus consider a weaker notion of locahuityfor
introduced by D. Attali and J.D. Boissonnat in [7] :

6A famous similar example built with a cylinder instead of a helicoid is often calle@thevartz lantern
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Definition 20 A setZ is said to be &-light e-sample of M if :
1<t#(B(p,elfs(p))N &) <k
for all point pe M.

Loosely speaking, this definition allows to split each sample point into lesskhai
points. From now on, we assume tli#tis ak-light e-sample oM for some positive constants
k ande. LetW be the Delaunay triangulation ¢P restricted tov andT = dW. We will also
assume < 0.1 so that the closed ball property [43] is satisfied [5]. A triarigle T then has
a unique empty circumscribing ball centeredMnwhich we will denote byB(t). The center
and radius oB(t) will be respectively referred to agt) andR(t).

Lemma 33 Let Z be ak-light e-sample of#, pc M, and | > 0. If 2el < 1then:

4(B(p,lelfs(p)) N 22) = O(kl?)

Proof. Because théfs function is 1-lipschitz, its minimum om(p,l&elfs(p)) is larger than
Ifs(p) — I elfs(p) > 0.5Ifs(p). Now consider a maximal set of disjoint balls with radiud®Ifs(p)
and centered oB(p, | lfs(p)) NM. By a packing argument together with lemma 34, such a set
hasO(1?) elements. Doubling the radius of these balls yields a coverigj pfl elfs(p)) N M.
Each ball containing less thanpoints by definition of the sampling condition, the assertion
follows. =

Lemma 34
areaM NB(t)) = O(r(t)?)

Proof. As the radius of curvature is bounded from below, we get that the mawiamngle
between the normal tM at c(t) and the normal toM at any point inM N B(t) is O(r(t)).
ThusM N B(t) is included in the complement of a cone with apél), axis along the normal
to M atc(t), and half-anglert/2 — O(r(t)). Consequently, the image & N B(t) under the
orthogonal projection on the tangent planeMoat c(t) contains a disk with centea(t) and
radiusQ(r(t)). As orthogonal projections shrink areasga(M N B(t)) = Q(r(t)?). Moreover,
lemma 29 implies a lower bound on the jacobian of the projection, scatieatM N B(t)) =
o(r(t)?). m
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Note that this implies that :

s(B) = O(Zarea(MﬂB(t)))

te

sincer (t) < R(t)

Lemma 35 A vertex v of T has () neighbors in7 .

Proof. Lett be the triangle off containingv such that (t) is maximal. Then the baB with
centerc(t) and radius B(t) contains all the neighbors of Applying lemma 33 yields the
result. O

We now show that if : ]

ﬂ MNB(tj) #0

j=1
where thet; are different triangles of, thenn = O(k?). A point p in this intersection is in
conflict with all thet;. If p were inserted ifT, its neighbors would thus be the vertices of the
trianglestj. As such a vertex can only belong @{(k) triangles, we get that the number of
neighbors ofpis Q(n/k). But Z U {p} is a(k + 1)-light e-sample oM, sok = Q(n/k), and
the conclusion follows. Since no more th@k?) sets of the fornM N B(t;j) can overlap, we
have as a result :

Lemma 36

s(B) = O(areaM N [ J B(t)))
teB

Unfortunately, this quantity might be much larger than the area ibsome triangle oB
sharing an edge withB have a large angle at the vertex opposite to that edge (see figure 3.3).

However, if this is not the case, then it seems #(B} is a big-Oh of the area @&, and also
thatsd(B) is a big-Oh of the length afB. This would imply that the bound on the difference
between the curvature measured/béndT have the same form as in the case of triangulations
with bounded aspect ratio, that@ e (area(B) + length(dB))).

Even if assuming that the samplingkslight does not imply that our bounds converge to
zero for a generaB, the bound ors(B) obtained in lemma 36 shows ths(fR3) is bounded,
from which one deduces :
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Figure 3.3:The bound on(®8) may be large

Theorem 37 Let (£%),i € N be a sequence of-light g-samples of M such tha tends to
zero as i tends to infinity, and;Whe Delaunay triangulation af?; restricted to V. For all open
set B such that arg@BNM) = 0, we have :

@5 (B) - @f(B) = o(1)
@ (B) - @ (B)] = o(1)
IFw (B)—Fu(B)|| = o(1)
IFw(B) — Hu(B)l| = o(1)

Proof. Let us apply theorem 25 td andW, with B= M. As B has empty boundargd(B) = 0.
By lemma 365(B) is bounded by a multiple of the areadf Moreover,dg andag tend to zero
as for any restricted Delaunay triangulation. We deduce that the normal ¢yWeonverge to
the one oV in the topology induced by the flat norm, aadortiori in the weak topology. As
mentioned in [52], this implies the weak convergence of curvature measures, iwlexactly
the claimed assertion. O
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Chapter 4

Application to anisotropic polygonal
remeshing

Introduction

Despite a recent effort to make digital geometry tools robust to arbytrarégular meshes,
most scanned surfaces need to undergo complete remeshing (alteration of the santpbbhg
the connectivity; see [122, 42, 73, 80, 79, 21, 3, 65]) before anlidugirocessing: results of
finite element computations, compression, or editing rely heavily on an gesmdtigtion of the
original geometry. Several techniques have been proposed over the last decadeywdée
variety of target applications. In [3], a thorough review shows that mdsting methods com-
bine mesh simplification and vertex optimization (see [72, 19] for examptbgrs start with
a complete resampling of the surface [122], mixed with connectivity opéition. However,
even if this remeshing process has now been made both efficient and flexible, mosfueshn
do not put any constraint on the local shape of the mesh elements: althoughdemsity is
often required to depend on local curvatures, no condition is imposed oegshkimg shape
and orientation of the triangles or quads. Whenever we wish to align or stretsh elements
with a certain direction field, we neeahisotropic remeshing

Such a specific remeshing is interesting for many reasons. While many elliptic pirtial
ferential equations ideally require meshes with quasi-equilateral trianglegjaténl elements
with large aspect ratio are often desired in the field of simulation, for fluid floangsotropic
diffusion for instance. In these cases, a2 matrix (referred to as a Riemannian metric tensor)
traditionally indicates, for each point on the surface, the desired orientatiaspect ratio of
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the mesh element locally desired [20].

Additionally, several researchers in approximation theory have provetihthsame anisotropic
requirement naturally arises when an optimal mesh is sought after: for a givarenof ele-
ments, a mesh will “best" approximate a smooth surface (foL.theorms withp > 1) if the
anisotropy of the mesh follows (in non-hyperbolic regions) the eigleles and eigenvectors of
the curvature tensor of the smooth surface regions [113, 34]. This catuitesely noticed by
considering a canonical example, such as an infinite cylinder: planar quad®lpfstretched
along the lines of minimal curvature provide the best piecewise linear gaeari This sim-
ilarity between applications in simulation and approximation is not sings if we interpret
both these results in terms of optimal error control. In this paper, Wexplore the problem
of anisotropic remeshing, and present a novel, efficient, and flexible stroke-lzasedhing
technique whose lines continuously follow intrinsic geometric priogeacross a model.

4.0.5 Previous Work

Because of the theoretical ubiquity of anisotropic meshes, algorithms &otespic remeshing
have been proposed in several geometry-related fields.

Anisotropic Triangle Remeshing Bossen and Heckbert [20] proposed an anisotropic trian-
gle meshing technique for flat, 2D regions on which a metric tensor is defiimey.proceeded
through successive vertex insertions, vertex removals, and iterative relaxatian include
edge flips taalign the edgesn accordance with the metric tensor. Shimada [112] used ellipse
packing to introduce anisotropy in the remeshing; although this tpeethods generates high
guality anisotropic meshes whose elements conform precisely to the givenfieftsdhis ac-
curacy is obtained at the price of rather slow computations, and results iimégd ways for
a user to guide the design of the mesh.

Heckbert and Garland [70] made an interesting link between the quadric ernoc orestd
in their mesh simplification [59] and its asymptotic behavior on finely tesselltddces. In
particular, they demonstrated that the triangles resulting from their megdlifstation tech-
nique will be more elongated along minimal curvature directions. Such rengesirough-
simplification methods provide fast results, but again, leave very littléiflay in the process.
Moreover, the anisotropic behavior is only proven for fine meshes: theseagtv, however, a
limited (and uncontrollable) amount of anisotropy on coarse meshes. Finatilye that work
on feature remeshing [21] has also pointed out the importance of usingrapisdriangles
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in feature regions and of aligning their edges to the principal direstiaithough no complete
anisotropic remeshing technique using these principles was proposed.

Anisotropic Quad Remeshing Several works have also focused on ustugdranglesor
remeshing, due to their appealing tensor-product nature. Borouchaki anfllBtelescribed
an anisotropic triangle mesh generation, and then transformed the resudtagimo a quad-
dominant mesh through a simple triangle-to-quad conversion. Shimada aad1li1], on
the other hand, proposed to directly use rectangle packing, where the restangistretched
according to a specified vector field on the surface. This computational intensive gbezdis
to a quad-dominant anisotropic mesh, aligned with the given vector field.

In Computer Graphics, there have also been recent attempts at finding anisp&@c
eterizations [105, 66]. Get al. [65] showed how this could be used to provide a perfectly
regular remeshing of surface meshes. However, no control over the alignmira efiges
with specific directions is provided.

Lines of Curvatures and Curvature-based Strokes Even if anisotropy is a relatively recent
research theme in mesh processing, this particularity of almost all shapes has longtixsssh
and used by artists. A caricaturist, for instance, only needs a few select strokesdyp stvong
geometric information. Similarly, a digital artist creates or edits a 3dehm a top-down fash-
ion, using the main axes of symmetries and a few sparse strokes to efficiently thesigash,
contrasting drastically with the local point-sampling approach of most attomemeshing
techniques (Figure 4.1). In the scientific community, studies and previoo-photorealistic
rendering techniques have also shown how much lines of curvatures are essel@sairihing
the geometry [24, 71]: since local directions of minimum and maximumatures indicate
respectively the slowest and steepest variation of the surface normal, these aiuisitirap-
sic quantities govern most lighting effects. In particular, many hatchingiigobs use strokes
that are aligned along the principal curvatures: this results in a perceptoalhncing display
of complex surfaces [75, 76, 99, 60, 71].

4.0.6 Contributions

Although illustration and sketching techniques have been using principatoue strokes to
represent geometry, graphics techniques rarely even exploit anisotropyrédeesio drive the
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Figure 4.1:Artist-designed models (left) often conform to the anisotropy of a surfan&ast-
ing with the conventional curvature-adapted point sampling used in neos¢shing engines

(right).

remeshing process. Nevertheless, a straight edge on a coarse mesh naturally represents a zer

curvature line on the surface. It therefore seems appropriate (thoughiviai)tto directly
place edges parallel to the local principal directions in non-hyperbolic #seasFigure 4.2,
left), instead of first placing vertices to then slowly optimize their pos#tiororder to align the
induced edges.

In this paper, we propose a principal curvature stroke-based anisotrositegrg method
that is both efficient and flexible. Lines of minimum and maximum curvature iaceedized
into edges in regions with obvious anisotropy (Figure 4.2, leftjjerttraditional point-sampling
is used on isotropic regions and umbilic points where there is ravdéa\direction (as typically
done by artists; see Figure 4.2, right). This approach guarantees an efficient regreesiti
adapts to the natural anisotropy of a surface in order to reduce the numiecesfsary mesh
elements. We also provide control over the mesh density, the adaptationatucanas well as
over the amount of anisotropy desired in the final remeshed surface. Thus, our teobiifieys
a unified framework to produce quad-dominant polygonal meshes rangingi$otropic to
anisotropic, and from uniform to adapted sampling.

4.0.7 Overview

Figure 4.3 illustrates the main steps of our algorithm. We assume th@airigodel to be
a genus-0, non closed triangle mesh, possibly provided with tagged featwe® @um-zero
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Figure 4.2:Left: Skilled mesh designers tend to intuitively align edges with lines offmmim
and maximum curvatures in anisotropic areas, as it provides a more comgpaesentation of
the local geometry. Right: Point sampling is, however, preferred in spherrealsavhere no

input mesh direction fields sampling meshing output mesh after smoothing

Figure 4.3:From an input triangulated geometry, the curvature tensor field is estim#ied
smoothed, and its umbilics are deduced (colored dots). Lines of curvatotesvihg the
principal directions) are then traced on the surface, with a local densitgeguiby the principal
curvatures, while usual point-sampling is used near umbilic pointsespdl regions). The
final mesh is finally extracted by subsampling, and conforming-edge mserfihe result is
an anisotropic mesh, with elongated quads aligned to the originadggal directions, and
triangles in isotropic regions. Such an anisotropy-based placemehé@dges and cells makes
for a very efficient and high-quality description of the geometry. A smootlidan be
obtained by quad/triangle subdivision of the newly generated model.

genus input can be done on a per-chart basis). In a preliminary step, weéhafgdture skele-
ton[21, 3], representing all the tagged features (creases and corners) in a graph ofgdjacen
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The mesh is now ready to be remeshed:

¢ \We first estimate the curvature tensor field of the surface at the vertices, and dezgltwe th
principal direction fields stored as a 2D symmetric tensor field in a conformal parameter
space. These fields are then smoothed, and the degenerate points (umbilics)aatedextr
(see Section 4.1).

e We then trace aetwork of lines of curvaturenith a density guided by the local principal
curvatures, in order tgample the original geometryappropriately along minimum and
maximum curvatures, in agreement with asymptotic results from approximtagory. The
isotropic regions (around the umbilic points, being either spheridéi are point-sampled
since no obvious direction of symmetry is locally present (see Section 4.2).

e Finally, the vertices of the newly generated mesh are extracted fronmtigrsectionsof
lines of curvature on anisotropic areas, and a constrained Delaunay trianywatiécs a
convenient way to deduce the final edges from a subsampling of the lines ofwrer{ste
Section 4.3). The output of our algorithm igjaad-dominant anisotropic polygon mesh
due to the natural orthogonality of the curvature lines.

We discuss the various computational geometry and numerical tools we usgaiticantly
ease the implementation, as well as our results in Section 4.4.

4.1 Principal Direction Fields

Since we will base our remeshing method on lines of curvature, we first needréctetkte
principal curvatures. In this section, we describe how the curvature tensoofidie input
surface is extracted, smoothed, and analyzed. Most of these steps are performedidirectl
parameter space, to speed up the computations.

4.1.1 Robust 3D Curvature Tensor Estimation

Due to the piecewise-linear nature of the input mesh, the very notion re&ttuwe tensor,
well known in Differential Geometry [63], becomes non trivial, and subjectarious defi-
nitions [118, 88]. In order to have @ntinuougensor field over the whole surface, we build
a piecewise linear curvature tensor field by estimating the curvature tensor at e@shavet
interpolating these values linearly across triangles. However, locally evajube surface cur-
vature tensor at a vertex is not very natural. For every edgfethe mesh, on the other hand,
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B(e)

Figure 4.4:Integration domain for curvature tensor estimation

there is an obvious minimum (i.e., along the edge) and maximum (i.essatire edge) curva-
ture. A natural curvature tensor can therefore be defined at each point along an edgeeds n
recently in [33]. This line density of tensors can now be integradedraged see Figure 4.4)
over an arbitrary regioB by summing the different contributions fro) leading to the simple
expression:

T (V) = % edzwseﬁ(e) lenB| e'e (4.1)

wherev is an arbitrary vertex on the megBj is the surface area aroumaver which the tensor

is estimatedf3(e) is the signed angle between the normals to the two oriented trianglesriticid
to edgee (positive if convex, negative if concaveégB| is the length oBN B (always between 0
and|e|), and eis a unit vector in the same direction@dn our implementation, we evaluate the
tensor at every vertex locationfor a neighborhoo@® that approximates a geodesic disk around
this vertex. This approximation is done by simply computing the drskindv that is within a
sphere centered at The sphere radius is specified by the user; a radius equal@d of the
bounding box diagonal is used by default. To remain consistent with ounteelsicevaluation,
the normal at each vertex can now be estimated by the eigenvectd(\of associated with
the eigenvalue of minimum magnitude. The two remaining eigenvaty@gsand Kmax are
estimates of the principal curvaturesvatNotice that the associated directions avétched

the eigenvector associated with the minimum eigenvalue is the maximum aerdatection
Ymax &nd vice versa foy,,, (see Figure 4.5). This curvature tensor evaluation procedure, in
addition to being intuitive and simple to implement, has solid thezakfoundations, as well
as convergence properties [33].
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Figure 4.5:Principal directionsy,,,;, and y,,,x €stimated at mesh vertices, scaled by their re-
spective curvatures.
4.1.2 Flattening the Curvature Tensor Field

To allow for fast subsequent processing, we wish to ‘flatten’ the surface, alongtsvithrva-
ture tensor field. We use the discrete conformal parameterization recently presd8dig]
as the solution of choice for mapping the 3D surface to a 2D domain: basesimple varia-
tional formulation, this parameterization automatically provides an gogserving mapping,
without fixing any boundary positions, by simply solving a simple, spameai system. We
also compute the induced area distortion as advocated in [3].

On this parameterization, we can now simply store the 2D curvature tensondgtimal
component is no longer needed). For every vertex in this 2D parameterizaédhus compute
the 2D curvature tensdr such as:

Top [ Kmn 0 g (4.2)
0  Kmax

We do not need to compute the matixin practice. The tensor can be found simply by
picking an edge from the 1-ring, projecting it onto the tangent plarecamputing the signed
anglea between this projection and the eigenvector of the maximum eigenvalue: ése qu
conformality of our parameterization allows us to now find the projected eggtor by starting
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from the same edge in parameter space, and rotating @.byhe other eigenvector being
orthogonal to the first one by definition, the symmetric matrix represgmtican now be found
explicitly.

Once we havd at each vertex, the 2D tensor field is then interpolated linearly, i.e., the
matrix coefficients are linearly interpolated over each triangle (there arelumely toefficients
to interpolate, since the matrix is symmetric). Therefore, for any value in the parameter
space, we can return the value of the local teflSor v).

4.1.3 Tensor Field Smoothing

Although the averaged nature of our tensor construction (Section 4ehd3 to remove local
imperfections due to the piecewise-linear description of our input meshesdiioaal pass of
smoothing over the resulting 2D tensor field is often most needed. Indeed afseaemeshing
of the surface geometry is desired, we first have to smooth and simplify thertesid in order
to only capture the global geometry of the surface. However, if a very ddteéimeshing is
desired, no or little smoothing is needed.

A Gaussian filtering of the tensor (coefficient by coefficient) is performed directiizan
parameter space. This is efficiently done by placing a small disk around each 2D vestex of
parameterization, with a radius inversely proportional to the local areztilist: the conformal
nature of the parameterization will keep it a geodesic disk. We then conv@Vetd using this
circular, isotropic support for the Gaussian function. Although tss €onvolution is sufficient
in most cases (see Figure 4.6), a more anisotropic smoothing of the thsee teefficients
can also be performed when higher geometric fidelity is required: the reader catorgféf
or [88] for possible practical solutions. We finally get a smoothed, contiswarvature field
that encodes the principal directions along with their associated curvatureseggeivectors
and eigenvalues, respectively.

4.1.4 Tensor Field Umbilic Points

The topology of a tensor field is partially defined by its degenerate pointsdcatibilic points
Such degenerate points of a 2D symmetric tensor field are at locations such as:

T(u,v) = ( )\O ;) ) (4.3)
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Figure 4.6:Progressive smoothing of the principal direction fields. From left to thietrippitial
minimal curvature directions, the same region after 10 smoothingtiters, and another view
of the smoothed field. Although the smoothing is computed in parameiss,gpe tensor field
has been projected back onto the surface for illustration purposes. The dotsrindicate

umbilics.
This corresponds to the regions of the mesh where the figddti®pic i.e., where the surface

is locally spherical or flat. To find the umbilic points of our piecewise-lineassor field, we
follow Tricoche [120]: we define the deviator p&rtof our tensor fieldl', obtained through:

D:T—%tr(T)Izz Z _Ba , (4.4)
where the special cage= 3 = 0 corresponds to an umbilic point. Due to the linear interpo-
lation within each triangle, only one umbilic point can exist per triangind it locally corre-
sponds to either wedgetype, or arisectortype [120] as shown in Figure 4.7. All the umbilics
can easily be found by going over each triangle and solving & Bnear system. They are then
classified using a third-order polynomial root-finding problem as describg&bin We keep
a list of all the types and 2D positions of these umbilics for further tneat. Notice finally

that the smoothing of the tensor field described in the previous sectioncdilsteduces the
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number of umbilic points, as it also simplifies the topology of theaottrd curvature tensor
field.

trisector

Figure 4.7: Trisector and wedge umbilic points are the only possible singularibes
piecewise-linear tensor field.

4.1.5 Taking Care of Features

When tagged features are present on the input mesh, special care must be used dardng ext
tion, smoothing, and umbilic analysis. First, the averaged regions dviehwve integrate the
curvature tensors must be clipped if they intersect a feature. Indeed, feags®ften repre-
sent a significant discontinuity in the geometry (as between two adjacent faces of éocub
instance), and a one-sided evaluation is therefore recommended. Second, thergsiep
must also perform the same clipping (in the 2D plane this time) durie@tussian smoothing
of a vertexv near a feature also to avoid “contamination” between separate regions; after the
clipping is done, the contribution due to a feature vertex locatedmilte support is set to be
the average of the values of its neighbors on the same side of the featureheese operations,
simple to implement, are sufficient to deal correctly with features.

Once a smoothed tensor field is obtained, the next stage of our algorithrstsansesam-
pling the original geometry stored as a 2D tensor field in parameter space, udingoauts
and curvature-directed strokes.

4.2 Resampling

At this stage, we wish to anisotropically resample our geometry. Althodgiga majority of
techniques perform resampling by spreading 0-elements (vertices, isotrapadurg) over the
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surface, this way of proceeding does not qualify as anisotropic. Howevegnieats (edges)
are, by nature, anisotropic as they represent a segment of zero curvature Tdoaibfore, we
propose to resample the geometry by what is knowlimas of curvature$63]: these lines are
always along either the minimum, or the maximum curvatures. With a posesity in agree-
ment with local curvatures, such a network of orthogonal curves will adequidisasetize the
object. The final edges will be found by subsampling these lines. Based on thesatbssyv
we show in this section how anisotropic areas are sampled with a set of curvesdaigng
principal directions, and how isotropice., spherical) areas are simply discretized with points
(see Figure 4.8).

1. vertices (points) 2. edges (e.g., Delaunay) 3. faces

1. lines of curvatures 2. vertices (intersections) 3. edges (curve approximation)

St

Figure 4.8: Point-based sampling vs. curve-based sampling: while most techniques spread
vertices first before deducing edges and faces, we use lines of curvatures to find esitter®
before simplifying these lines to straight edges, and then deducing faces.

4.2.1 Curve-based Sampling for Anisotropic Areas

Our goal is to trace a network of orthogonal lines of curvature in ampatrareas. We present
the numerical approach we used to successfully tracing lines, before giving detailsere
the lines are traced on the surface.

Lines of Curvatures

By definition, a line of maximum (resp. minimum) curvature is a curvasnrface such as, at
every point of the curve, the tangent vector of this curve is collinedr thi principal direction
of the surface that corresponds to the maximum (resp. minimum) curvature. ligaabf
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curvature either starts from an umbilic point and ends at another one, orchased orbit, or
can enter and exit from the domain bounds. One can trace such aCutve u(t),v(t) in the
parameter spadel,Vv) of the surface (see Section 4.1.2) by integrating the following orginar
differential equation:

ue |
(0]«

wherey is an eigenvector of (u(t),v(t)). More precisely,y is the eigenvector associated
with the smallest (resp. largest) eigenvalueloivhen computing a line of maximum (resp.
minimum) curvature.

Numerical Integration of a Line

Equation (4.5) can be numerically solved with an embedded fourth-ordereRgutga integra-
tion with adaptive step [97] where the step length is weighted by the nbthe deviator (see
Section 4.1.4), as recommended by Tricoche [120]. If a starting goifit, v(9)) is chosen,
the local tensor is directly evaluated on the parameterization and its associateeigenis
computed on the fly: the integration routine provides the nextt@damg the line of curvature.
By iterating this process, we find a series of locatitui¥), v(K)) that defines a piecewise-linear
approximation of a line of curvature. Notice that once the line ends (atralic point, at a
feature line, at the boundary, or close to another line of curvature), weagtin at(uo, Vo) but

in the opposite direction this time, to complete the line. We now toithe problem of finding
the local density required for these lines of curvature.

Local Density of Lines

Two pivotal questions at this point of the algorithm are: how many Istexuld be traced on
the surface, and where should we trace them? A partial answer is to first compdesitesl
density of lines needed at any given point on the surface, or, inversely, the guisiance
between two lines. To achieve this, first consider two lines of curvature very tdosach
other. A cross section of the surface, normal to these two lines, will show anxapate arc
of circle (the local osculating circle of the surface) with two points on rtegponding to the
trace of these two lines. A linear approximation between these two pointbevdivay from
the actual osculating circle (i.e., the surface) by a small distance. If we wgnaranteethat
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Figure 4.9:Notations
this distance is less thanin order to minimize the piecewise-linear reconstruction error, the
distancad between the two points must be dependenk @s follows (see Figure 4.9):

d(k) :21/8(%—&‘). (4.6)

This means that for any point on a line of maximum (resp. minimum) cur@ain approx-
imation of the optimal distance to the next line of same curvatumis = d(Kmin) (resp.,

dmin = d(Kmax))- Notice that, in the limit (as element area goes to zero on a differentiable
surface), Equation (4.6) leads to an aspect ratio of the rectangular elements equal to:

Omax |Kmax|
~ , 4.7
dmin |Kmin| (.7)

which coincides with the result obtained by [113] in approximation thedhe spacing be-
tween lines of curvature defined above thus provides, for fine meshes, optimakiapgtron
of the underlying smooth surface. In our implementation, these theoretstahdes are ap-

proximated quite well directly in parameter space: due to the conformal raittlve parame-
terization, multiplying such a distance by the local area stretching [3JpnoNide the distance
in the parameter space.

Curve-based Sampling

Now that we know both how to trace lines of curvature and how spaced the{dsbeuwe
can start the curve-based sampling per se. High-quality placemstreafmlineshave already
been studied in other applications, for visualization of vector fields for instabeferent
approaches, using image guidance [121], adapted seeding [77], and more recerglyifled
seeding [125], have been proposed, but always for regularly sampled fieldshdivever a
trivial matter to adapt them to our context: the technique we describegigdrefore a hybrid
version of [77], and [125]. We will deal with the lines of minimum cature and the lines of
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streamline

Figure 4.10:Streamline computation.

maximum curvaturéendependently We first put all the umbilic points into a list gfotential
seeddor lines of curvatures. We then begin by tracing lines of maximum (respinmim)
curvature originated from the umbilic point with maximum absolutevature, as proposed
in [125]. One line gets started if the umbilic point is a wedge, wthiee get started if it is
trisector, to respect the local topology of the vector field (see Figure 4.i@n uimbilics were
present, we start the line at the point with the largrest,| (resp.|kmax|)- After each integration
step needed to trace the line of curvature, a pair of seeds, placed orthogonhiyciartent
line at the ideal distance (computed locally as in Section 4.2.1), is added listthf potential
seeds [77] (see Figure 4.10).

The current line is traced until one of these cases happen:

the line reaches another umbilic point;

the line comes back close to its starting seed: in this case, a loop is created;

the line crosses an edge of the feature graph or the domain boundary;

or the line becomes too close to an existing line of maximum (resp. mmjnourvature.

The notion of closeness in the explanations above is relative to the loadabplistance
dmin (resp.,dmay between lines. However, we artificially decrease the optimal distances near
the umbilic points to allow for a higher-fidelity discretization. The sepaotential seeds are
put in a priority queue sorted by the difference between the local optirsi@inte at this seed
and the actual distance to a streamline. The seed that best fits the local requirement is th
used to start a new line, as described above. We perform this seed selection and theesiibseq
line tracing iteratively until a complete coverage is obtained. A final checleifopned to
make sure that no large areas are still uncovered. This is done by randomlyirgathpl
parameterization space and evaluate desired distance vs. actual distances. Generally, only a
handful of additional lines of curvatures get started this way.
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Proximity Queries Since the algorithm described above makes heavy use of distance com-
putations, we must handle all the proximity queries with care and efficiéhggy.to the highly
non-uniform distribution of samples used on the surface, a quad-tree dattusg would not
pay off. Instead, we opted for a conventional computational geometry ftmolyhich opti-
mized implementations are readily available (such as in CGAL [48], tharljibive use): a
constrained Delaunay triangulatiofCDT). Indeed, a CDT allows for fast proximity queries
to constraints; furthermore, exploiting the coherence of requests (as weaalong the line
of curvature) through face caching results in near-linear complexity inuh#er of samples.
We proceed as follows: we first enter each feature segmentin a CDT. Then, whikce®tre
line of curvature, we cache each of its samples and perform the proximityequethe current
CDT, providing distances to existing lines and features. When we are doméhgtline, we
incorporate all its constituting segments into the CDT as constraintstarich new line.

Control Parameters The sampling process is made flexible by providing the user with three
types of control. First, the parameterindicating the geometric accuracy of the remeshing
(see Equation 4.6) is an easy way to guide the number of lines of curvature. Séwend
user can also apply a transfer function F (as in [3]) to the curvatures, to tarentbunt of
curvature adaptation of the final mesh. Finally, the amount of isotropy vsotaopy is selected
through a valuep € [0;1]. We turn the optimal distance definitions from Equation 4.6 into:

Omax=d(0/2| Kmax + (1 —0/2) |Kmin|) @anddmin = d(p/2 |Kmin| + (1 —p/2) |[Kmax)-

4.2.2 Point-based Sampling in Spherical Areas

In spherical and flat areas, the surface has no special direction of symmetry; placingredges i
this case does not make sense. We therefore use a more traditional point gaegimque

in these regions. Although efficient [3] or precise [4] point-sampling waslcould be used, it
must be noted that these regions are extremely rare: except for canonical sha@esasplene

or a sphere, the tensor smoothing we initially perform tends to reducptiexical regions to
single umbilic point, for which sampling is straightforward.

When a region has several umbilic points, we only pick a subset of them to esanepl
region according to desired spacing (computed using Equation (4.6) again).réAfsceach
umbilic point is computed as a function of its desired distance and the atittahce to an-
other selected sample or to a feature liriBhe best fit is selected, tagged as beingsatropic

1This distance is computed through a proximity query to the CDT. Additionally, sartiéeare selected will
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sample and we iterate this process until we can no longer add samples. Notice that, necasio
ally, we use up all the umbilics without meeting the density requiren¥éms can only happen
when large triangles in flat regions are present (since only one possibléajpaint was gen-
erated per triangle, a flat region may be undersampled). In these rare cases, welitexdtv
more random samples in the triangles and proceed with the best-fit selectiomhatgontil
saturation.

4.3 Meshing

The previous resampling stage has spread a series of lines of curvatures armicisatntples

over the surface. We now must deduce the final cells, edges and vertices of our remeshing
process to complete our work. Principal curvatures being always orthogooradtanother, the
network of lines of curvatures have created well-shaped quad regions alheveurface. We
capitalize on this observation to extract a quad-dominant mesh as follows.

4.3.1 Vertex Creation

In anisotropic regions, we traced lines of curvature using polylinecqamations while we
used regular sample points for spherical and flat regions. vEngceswill therefore be the
intersections of curvature lines, and the isotropic samples that we spreadt téhikotropic
samples do not require any specific treatment, computing the line interseesao be per-
formed.

In order to perform these intersections quickly, as well as to prepare usefoekt steps, we
make use of a CDT again, in parameter space. We first enter all the features edges astsonstrain
in a new CDT. We add all the little segments defining the lines of curgatsequentially, as
constraints as well. Finally, the isotropic samples are added as vertices iDTh@ e vertices,
intersection of features or of the lines of curvatures, lmwematicallypeen added to the CDT
since two intersecting edge constraints will generate a vertex insertiornvetktex creation
phase is over.

Notice that the performance of this phase is, again, heavily affected bydeeiarwhich
the constrained segments are added. We found, not surprisingly, thatranskertion leads
to slow performance. On the other hand, adding the segments sequentiaiyealcim line

be incorporated in the CDT in order to take them into account for future requests.
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of curvature results in almost linear complexity, as the incremental CDT befrefih spatial
coherence through caching. In our tests, the whole CDT process has been thiasteayhian
any of the other algorithms dedicated to segment intersections we haveithedt exploiting
spatial coherence.

4.3.2 Edge Creation

The lines of curvatures must now be subsampled in order to extract the re¢elgeg. Al-
though it could seem that simply joining the previously-extracted cestivould do, we must
proceed with care to avoid folds on the mesh. We use a straightforward decirpedcess that
safely removes all useless samples: going repeatedly over each vertex present in theeCDT, w
eliminate those which:
e are Runge-Kutta samples and have only one constraint segment attachebtifinvalvay
all dangling curvature lines) (see Figure 4.11,A);
e have zero constrained segments attached and are not isotropic samples (vertisetyjoé t
appear during the decimation process, when a curvature line disappears totaistdnce);
e have two constrained segments of same type attached (two minimum curvatiseg-
ments, two maximum curvature line segments, or two feature edges)—nbuf metyoving
these two segments and replacing them by a single constraint segmemodos=ate any
new intersections (see Figure 4.11,B). This last condition guarantees tlggaiph of region
adjacencies stays planar: it will prevealdingin the final mesh.
This decimation is performed until we can no longer delete vertices. Whilgthess has
taken care of the anisotropic regions, we still do not have edges inpsotregions. This
is easily remedied by finally adding the CDT edges incident to the isotropiclearap con-
straints: it will provide a triangulation of each spherical or flat regiomtifer edge-swaps can
be performed later to reduce valence dispersion or approximation error; yee [3]

4.3.3 Polygon Creation

The last stage of our remeshing phase extracts a final polygonal mesh from they@bBdirg
all regions entirely surrounded by constrained edges: these will be ouggray This can be
done efficiently by simply visiting each CDT triangle once and recursively ¥ssiteighbors
until constraint edges are reached (see Figure 4.11,C). These extracted pbiggrzossibly
concave we perform a convex decomposition using an implementation of Gseblmamic
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Figure 4.11:Remeshing phase: a dome-like shape is sampled with lines of curvatures. All the
curvature line segments (red/blue) and the feature edges (green) are agddedstraints in a

CDT in parameter space. The CDT creates a dense triangulation; a rapid veéetmation

(A,B) then suppresses most small edges, and leaves only few vertices, defining a cggose pol
nal mesh. Adding constraint edges to the umbilic (center) point takes tére near-spherical

cap.

programming algorithm [64] (also included in CGAL). We provide an #@ddal option to
bound the highest degree of the polygons to easily allow for quadjteanesh generation.
This task is achieved through a recursive polygon partitioning algoritfat uses simple rules
for conforming-edge insertion, as indicated in Figure 4.12.

RN B B
et B TR

Figure 4.12: A hybrid quad/triangle mesh is generated by adding conforming edges to T-
junctions in a systematic manner (this table is not exhaustive).
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4.4 Results and Discussion

Different remeshing examples for relatively simple shapes are illustrated uned=g13. A
dome-like shape (first row) exhibits a spherical area at the top, and anisareps elsewhere.
The lines of maximum curvature converge towards the umbilic pointeatdp, and the lines
of minimum curvature are concentric, closed circles. The vertices on the boumalagypeen
deduced from intersections between feature graph and lines of curvatures. Nmtidbeh
area nearby the umbilic point has been triangulated, while other areas éenddssellated
with elongated four-sided elements. For illustration purposes, a quadleismbdivision algo-
rithm [114, 81], designed to preserve the hybrid (quad/triangle) sireict applied to generate
a smooth surface from the newly generated coarse mesh. Stretching the dome (sajond
totally modifies the distribution of curvatures on the surface, generatithgr elongated ele-
ments on highly anisotropic areas. Finally, a saddle-like shape exemplifiesrtbes spacings
happening as a function of curvatures.

:
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Figure 4.13: Top: A dome-like shape, its lines of curvatures, the output of our remgshi
process, its limit surface after quad/triangle subdivision, with two clgseef the cap; Bottom:
A squeezed dome and a saddle shape exhibit high anisotropy.

The model of a pig entirely remeshed with our technique is illustrated inr&igui4. The
curvature-based sampling of our lines of curvatures produces elongated gaad®inopic ar-
eas. The edges tend to follow the local directions of symmetry, as expectedr@org edges
have been added to the output polygonal model in order to obtain alrgumed/triangle model.
The second row shows a close-up of the ear, along with a surface obtained byigogid/'t
subdivision.

Finally, three other anisotropically remeshed models are shown in Figure Bhfocta-
flower (A) is chosen to illustrate piecewise smooth anisotropic remeshing (G, d)diféction
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Figure 4.14Remeshing a pig. Row 1, and right column: lines of minimum (blue) andmoaxi
(red) curvature, and the anisotropic polygon mesh generated. Row 2: close-an ear
showing the lines of curvatures, the resulting polygon mesh with conforediges, the surface
after quad/triangle subdivision (edges of the coarse model are superinjp@setthe mesh
after two iterations of subdivision.

fields are estimated, then piecewise smoothed as described in Section 4.1.5 (B—F)s&bp cl
(C) illustrates how the direction fields are not influenced by the features, eably other
across the sharp creases. Remeshingotimy headwith three resolutions is illustrated by
Figure 4.15(l); notice the placement of the elements on the ears. The eykeaadrtof the
Michelangelo’s David model show the richness of the geometry: the linesraditcmes con-
form to all the details, creating a mesh adapted to the 'anatomy’ of the afigiadel. Note
that we show the resulting polygonal mesh before insertion of conforedggs.

Timing Our current implementation allows us to process the hand model (Figyre 4.3s

for the tensor field computations, $fr the sampling phase, and for the final remeshing
phase. These timings are typical of all other models, with the exception eintite head of
Michelangelo’s Davidthat required 8 minutes to resample. Given that no post-optimization
process is required, we regard these numbers as very reasonable.

Implementation As indicated through this paper, we have tried to systematically use numer-
ical techniques and computational geometry tools optimized and readily dedtadbecrease
the difficulty of implementation. We strongly adviagainstan implementation “from scratch”
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Figure 4.15:A-H: the octa-flower geometry illustrates the behavior of our remeshingigch
for piecewise smooth surfaces. Principal direction fields are estimated and mecawoothed
(C) (see Section 4.1.5). I: The bunny’s head is remeshed with different mestiederd: Fi-
nally, Michelangelo’s David is remeshed; close-ups on the eye and the eaitBb@omplexity
of the model, and how the lines of curvatures match the local structures.wBglanother
closeup, on the whole face this time, with lines of curvatures and folggpnal mesh.

of our technique: it would result in weeks of coding, with slow and leritdsults. The use of
numerical techniques polished over time, and of an optimized and robust coimpaltgeom-
etry library guarantees a much easier implementation, as well as fast and robust résult
instance, the remeshing part of our technique requires only 200 lines oirdwteinterfaced
with CGAL with an appropriate filtered kernel [48], while earlier trials raddr significant
(ten times) larger code, and less robust and efficient results. For reference, the tenpoofield
cessing code requires 1000 lines, while the sampling process is 5000 lingse Alsb that
being able to handle the David’s head mesh is proof of numerical robustvessvery large
area distortion due to flattening is accommodated for.

Limitations Due to the global parameterization used in this paper, the techniquetsditoi
genus-0 patches. For closed or gensobjects, this requires to go through chart construction
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and surface cutting. Besides, the main bottleneck of our current approach is theasigm-
pling stage. Although it is undeniably the most important stage, findewgistics to improve
it or to speed it up would be desirable. In addition, it would also be usefdevelop a fast
optimization phase, when higher quality bounds on the sampling densiheaded. Finally,
moving the remeshed vertices out of the original manifold could drasticagiyove the result-
ing error approximation, but this is not the focus of this work, @mwdll be explored at a later
time.

4.5 Conclusions and Future Work

We have introduced a novel approach to remeshing, exploiting the natisaltropy of most
surfaces. Imitating artists’ curvature strokes used in caricatures, we trace linevatuces
onto the surface with a proper local curvature-dependent density before nigducjuad-
dominant mesh, with elements naturally elongated along local minimum cuevditections.
Resulting meshes are very efficient, in the sense that they capture the main geteagires
with a very low number of elements. This method also offers control over éstmuality and
density. Obvious extensions include a user-guided selection of the ficesvatures.

As future work we wish to find a way to sample and remesh directly on the nhcueifo-
bedded in a three-dimensional space, without using a parameterization. Fixalthyjreg other
resampling solutions is of interest. In particular, following the digtof minimum absolute
curvature would be in complete agreement with approximation theory [3#]s approach
leads to non-orthogonal edge intersections in hyperbolic regionshudwisually displeasing
but optimal in terms of approximation error. We plan to investigate dfternate solution and
evaluate its relevance to our community.
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Meshing implicit surfaces with certifi ed
topology
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Introduction

Implicit equations are a popular way to encode geometric objects [12Bjcdlyexamples are
CSG models, where objects are defined as results of boolean operations on simpué¢rigeo
primitives. Given an implicit surface, associated geometric objects of interestasuntour
generators, are also defined by implicit equations. Another advantage of imppogsenta-
tions is that they allow for efficient blending of surfaces, with obviousliappons in CAD
or metamorphosis. Finally, this type of representation is also relevanhéo stientific fields,
such as level sets methods or density estimation [40].

However, most graphical algorithms, and especially those implemented in haydvaanot
process implicit surfaces directly, and require that a piecewise linear ap@txmof the con-
sidered surface has been computed beforehand. As a consequence, polygonalizafdioiof i
surfaces has been widely studied in the literature. Among the general classes adsragho
voted to this problem, the most common one is the so-called extrinsiggmalization method
[123]. It consists in two steps : first build a tesselation of space, and then anadyireeitsec-
tion of the considered surface with each cell of the tesselation to produce threxiapgtion.
The celebrated marching cube algorithm [83] belongs to this category. Bhi@ian implicit
surface polygonizer is twofold : its output should be geometrically diosiee original surface,
and have the same topology. While the former is achieved by several palyzgtion schemes
[124], the latter has been barely addressed up to now.

Some algorithms achieve topological consistency, that is ensure that thes@sieed a man-
ifold, by taking more or less arbitrary decisions when a topologicallyigndus configuration
is encountered. This implies that their output might have a differgriogy from the original

surface, except in very specific cases [82]. To the best of our knowledge, therg amergaper
devoted to the more difficult problem of homeomorphic polygonabzgtl 15]. The main theo-
retical tool used in this paper is Morse theory. The authors first find a level $et obhsidered
function that can be easily polygonalized. This initial polygonalizatiothén progressively
transformed into the desired one, by computing intermediate level sets.eGiseas in partic-

ular to perform topological changes when critical points are encounteredrtunétely, this

work is mostly heuristic, and the authors do not give any proof of theectmess of their algo-
rithm.
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In this chapter, we give the first certified algorithm for isotopic implautface polygonal-
ization. Assuming the critical points of the function defining the surfae&aown, the whole
algorithm can be implemented in the setting of interval analysis. We only asthanéhe
considered isosurface is smooth, that is does not contain any critical poiict) w8hgeneric

by Sard’s theorem [106]. Our polygonalization is the zero-set of the limearpolation of
the implicit function on a mesh dk3. We first exhibit a set of conditions on the mesh used
for interpolation that ensure the topological correctness (section 1.6)., Weedescribe an
algorithm for building a mesh satisfying these conditions, thereby leddiagrovably correct
polygonalization algorithm (section 1.7).
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1.6 A condition for isotopic meshing

Let f be aC? function fromR3 to R. We assume tha¥l = f~1(0), the surface we want to
polygonalise, is compact. In what follow3, denotes a triangulation of a domaihc R®
containingM and f the function obtained by interpolatirglinearly onT. A vertexv will be
saidlarger (resp.smallep than a vertexu if f(v) is larger (resp.smalle) than f(u) ; the sign
of f at a vertex will be referred to as the sign of that vertex. WeNset f~1(0).

1.6.1 A glimpse at stratified Morse theory
Classical Morse theory

The topology of implicit surfaces is usually investigated through Morseryh@8]. Given a

real functionf defined on a manifold, Morse theory studies the topological changes in the sets
f=1(] — 00, a]) (lower level-sets) whea varies. In our case, dsis defined orR3, this amounts

to study how the topology of the part of the graphfolying below a horizontal hyperplane
changes as this hyperplane swe®fs Classical Morse theory assumes tlfids of classC?.

In this case, as is well known, these topological changes are relateddotit& pointsof f,

that is the points where the gradidnf of f vanishes. More precisely, the only topological
changes occur whefi-1(a) passes through a critical poipt-a is then called aritical value

In the 2-dimensional case, the topology fof'(] — «,a]) can change in three possible ways,
according to the type of critical point (see figure 1.16).

In figure 1.16, the set6~1(] — «, a]) are displayed as striped regions. The leftmost column
depicts the situation whemeis a local maximum, that is when the Hessiarf @t p is positive.
In this case,f~1(] — ®,a+ €]) is obtained fromf ~1(] — ,a— £]) by gluing a topological
disk along its boundary. In the case of a saddle point (i.e. the Hessian hatusgi, 1)),
passing a critical value amounts to glue a thickened topological line se@meotd) along its
“thickened” boundary (in blue). Finally, passing through a local minimaegétive Hessian)
just amounts to add a disk disconnected front(] —o,a—¢]). If p does not fall in any of
these categories, that is if the Hessiap & degenerate, then classical Morse theory cannot be
applied. C? functions whose critical points all have non-degenerate Hessian are Mailse
functions From now on, we will assume thétis a Morse function. Also, we require that O is
not a critical value off, which implies thai is a manifold.
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Figure 1.16:Smooth Morse theory in 2D.

Stratifi ed Morse theory

As mentioned in the introduction, we chose to approximate the zeid-séthe smooth func-
tion f by the zero-seM of f, which is piecewise linear. We thus need to be able to compare
the topology of the level sets df with the topology of those of. Unfortunately, f, being
piecewise linear, falls out of the realm of classical Morse theory. Also, in thef@f lemma
54, we will need to apply Morse theory to a piecew@efunction. As a consequence, we have
to resort to an extension of Morse theory developed by Goresky and MacPhersoce]t&L,
stratified Morse theory. This extension can handle a certain type of singular spaced, call
Whitney-stratified space8Vhitney-stratified spaces are unions of (open) smooth submanifolds
of varying dimension, the strata, such that the boundary of each stratum israafriower
dimensional strafa These spaces can be rather complicated. For our purpose, we can restrict
ourselves to the case of a graph of a pieceWli$dunction g from R3 to R. In this case, the
3-dimensional strata are the interior of the patches where the funci@h &nd lower dimen-
sional strata are lower dimensional faces of these patgs®uld also satisfy some conditions
3 for the theory to apply. In particular, the restrictiongfo any stratum should be a Morse
function. We will call such functions stratified Morse functions.

In stratified Morse theory, the critical points of a function are defined toderitical points

2These spaces should also satisfy additional properties. For a precise defi nition, see [61].
3Basically, the height function restricted to the graplyshould be a Morse function in the sense of [61].
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of the restriction of the function to a stratum. Note that points difiensional strata are by
convention critical points. Just as in the classical case, the topology of tige §ét- w0, a])
changes only whea passes through a critical value, that is whyegr(a) passes through some
critical point p. The difference is that the change in its topology can be much more gdoolv
than in the classical case. Still, like in the smooth case, it can be shown that tret§et

w0, a+ £]) can always be obtained frogrt(] — c,a— £]) by gluing some sef along some
subseB C A. The pair(A,B) is called thdocal Morse dateof g at p. To put it more formally,

if B(p, ) denotes the ball centered prand with radius, then one has :

A~B(p,0)Ng Y([a—¢,a+¢])

and
B~B(p,6)Ng ‘(a—¢)

These definitions actually make sense, as one can show that the topology of each of/éhe ab
spaces does not depend®andd for 0 < € < & < 1. In the classical case, if critical poipt
has indexA, that it the Hessian af at p has signaturé3 — A, A), thenA is homeomorphic to
the product of a -dimensional disk with &3 — A )-dimensional one, anB is homeomorphic
to the product of A — 1)-dimensional sphere with(@— A )-dimensional disk (see figure 1.16).
Together with each critical point of a Morse functiorng defined on a stratified space is
associated an integer, called the indexy@ait p, and denoted bind(p,g) or simply byind(p)
when no confusion is possible. The index is defined to be the increase in theBardacteristic
of g7(] — «,a]) whena goes fromg(p) — £ to g(p) + &. If pis not a critical point, then its
index is set to 0. Note that this index is different from the one clasgicakd in the smooth
setting, that is the numb@&r considered in the previous paragraph. Wipes a critical point
of a smooth function, one actually hisl(p) = (—1)*. From now on, by index we will mean
the numbeind(p). Almost by definition, we get the following counterpart of Hopf’s them
in the stratified setting :

Theorem 38 Let Y be a compact subsetRf and g: Y — R be a stratified Morse function.
Then,x denoting the Euler characteristic :

Xx(Y) =" ind(p)
p;(l

In the sequel, we will use the following consequence of this theorem :
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Lemma 39 Let f,g be two stratified Morse functions definedhand Y be a compact subset
of R3 such that f and gy are stratified Morse functions. If f and g coincide in a neighborhood

of aY, then:
ind(p,f) =" ind(p,9)

Proof. We havey ,cvind(p, fiy) = X(Y) = Y pevind(p,giy). Now the difference between
> pey iNd(p, f) andy oy ind(p, fly) is the sum ofnd(p, f) —ind(p, fy), where the sum runs
over critical points off lying on dY, since both indices coincide for critical points lying in the
interior of Y. As f andg coincide in a neighborhood a@fY, we have for eaclp € 9Y :

ind(p, f) —ind(p, fiy) =ind(p,g9) —ind(p,gy)
and the result follows. O

In the following, we will call the quantity ,cy ind(p, f) the index off onY. We recall that
if f:R3— RisaC?Morse function ant¢  R3? is a 3-manifold with boundary, then ([62])

Lemma 40 The index of f onY is the degree of the map f@d¥nto the sphere &that asso-
ciates with each point g dY the normalized gradient of f at p.

Obviously, there is no such result in the stratified setting, as the normalragliegt is not
continuous any more, so its degree is not defined. However, there is @& Sityaltion in which
a result in the same spirit holds. Lét R® — R be a piecewis€? Morse function ang be a
critical point of f.

Lemma 41 Consider the sét:
C. = convex hufOf (x)| x € B(p, €) ,Of(x) is defined

If for sufficiently smalle, O ¢ C¢, then the lower-level set (] — oo, f(p) — n]) is a strong
deformation retract of T1(] — oo, f(p) + n]) for sufficiently smalh. In particular, the index of
f at pisO.

We recall that loosely speaking, a sp&e a strong deformation retragtof A > B if A can
be continuously collapsed ®without being torn. In particular, one hggA) = x(B). For a
precise definition see any topology textbook, such as [68] or [41]. Lemms @rbved in [1]
(proposition 12).

4The limit of the seCC; ase goes to 0 is known as the Clarke’s subdifferentiaf aft p.
5In what follows, we write "deformation retract” for short.
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PL case

We now apply stratified Morse theory to the simple case of the piecewise linesiciuri. For
piecewise linear functions, being a stratified Morse function means that no tgbhbaoging
vertices map to the same value bywhich we will assume from now on. We also assume
that no vertex off maps to 0 byf, which guarantees that is a manifold. We refer to these
two assumptions agenericity assumptionsLet us first recall some well-known definitions
[46, 61] :

Defi nition 21 Thestarof a vertex is the union of all simpliGesontaining this vertex. Thignk
of a vertex is the boundary of its star.

Defi nition 22 Thelower starSt (v) of f at a vertex v is the union of all simplices incident on
v all vertices of which but v are smaller than v. Tlower link Lk~ (v) of f at a vertex v is the
union of all simplices of the link of v all vertices of which are smallenth.

Becausef is linear on each simplex df, its only critical points are the vertices of To
guarantee tha¥l is a manifold, we assume that no vertextomaps to 0 byf (hyp. b). Again,
this can be ensured by perturbifglightly if necessary. We refer to hypotheaiandb as the
genericity assumptions

Proposition 42 The local Morse data at a vertex v of T is homotopy equivalef®to(v), Lk~ (v)).

We recall that homotopy equivalence is a coarser relation than homeomorwingll
for instance for changes in the dimensions of the spaces involved. For pretiséahs of
homotopy equivalence of topological spaces and of pair of spaces, see [68] or [41].

Figure 1.17 shows the local Morse data in 2D in the case of a vertex with cedreater
link (left), of a maximum (ie lower link equal to the link, middle), duof a “3-fold saddle”
(lower link with 3 components, right). In the sense of stratified Morse thebeyvertexv in
the left of figure 1.17 is a critical point, as any vertex. Still, no tagital change in the lower
level-sets occurs at such a point. This is what incited us to modify the defirat critical
points in the PL case :

Defi nition 23 A critical pointoff is a vertex whose lower link is not contractibleA vertex
that is not a critical point off will be calledregular

6By simplex we mean a closed cell 8fof any dimension.
A topological space is contractible if it retracts by deformation to a point.
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Figure 1.17: Morse theory for PL functions in 2D. Plus and minus signs indicate whether
neighbors of v are larger or smaller than v. Lower links are displayed irebBetsf‘l(] —
w, f(v) — €]) in red, and setd (] — w0, f(v) + £]) in green.

With this definition, any critical point induces a change in the homotgpg of lower level-
sets. The index of a critical pointis 1 minus the Euler characteristic ok~ (v) [8]. In figure
1.17v respectively has index 0, 1, anel. In 2D the critical points are exactly the vertices
with non-zero index. This is not true any more in 3D. For instance,cestivhose lower link
has the topology of the disjoint union of an annulus and a disk areariiut have index 0.
Still, regular points all have index 0. In 3D, a point is regulaauid only if its lower link and
its upper link (similarly defined) are connected, which yields an easy way detecalkpdints.
Finally, remark that if a vertex meets the assumptions of propositiorhéf, iy proposition 42
its lower stars retracts by deformation on its lower link, so that its I®staaris contractible, i.e.
the vertex is regular.

Before stating the theorem, we need one more topological notion :

1.6.2 Collapses

Loosely speaking, a collapse [100] is an operation which consists in removirsgficett a
simplicial complex whithout changing its connectivity. More precisely :

Definition 24 If L is a simplicial complex and K a subcomplex of L, one says that tisez@ i
elementary collapse from L to K if there is a p-simplex s of L ar{gha 1)-face t of s such
that :

- sis not a face of any simplex of L.

- t is not a face of any simplex of L other than s.

-L=KuUs.

- ds\ K is the relative interior of t.
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Figure 1.18:Elementary collapse.

Definition 25 If L is a simplicial complex and K a subset of L, one says that L collapsesfto K
there is a subdivision’Lof L such that K can be obtained from ly a sequence of elementary

collapses.

Definition 25 is illustrated in figure 1.19. In figure 1.19, the compldrethe middle and
on the right do not collapse to the bold curve because they would needtaribéin order to
do so. If a complex collapses to a subcomplex, then the subcomplex is andéitor retract of
the complex, but the converse is not true in general. However, we haveltowing :

Lemma 43 A contractible subcomplex of a 2-sphere collapses to a point.

Figure 1.19:The grey complex on the left collapses to the bold curve (dashed edges represent
the subdivision). This is not true for the two other complexes.

1.6.3 Main result

0. We assume thatt does not vanish on any tetrahedronfofontaining a critical point of .

Theorem 44 Let W be a subcomplex of T.
If W satisfies the following conditions :
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1. f does not vanish odWw.

2. W contains no tetrahedron of T containing a critical point of f.
2'. W contains no critical point of .

3. W collapses to/.

4. f and f have the same index on each bounded componemt b¥ .

Then M andM are isotopic in W. Moreover, the Hausdorff distance between MMrig
smaller than the “width” of W, that is the maximum over the componeraéW of the Haus-
dorff distance between the subsetdf where f is positive and the one where f is negative.

In the conclusion of the theorem, isotopiddhmeans thai can be continuously deformed
into M while remaining a manifold embedded\i, so thatM could not be a knotted torus if
M is an unknotted one, for instance. We first prove that under the conditfdhe theorem,
M andM are homeomorphic. Under the assumptions of the theorem, the fact thatctoeyly
are isotopic will be proved in the next section. Before proving tle®tém, we first show by
some examples that none of its assumptions can be removed. In the thoaéniglpictures,
(local) minima of f are represented hyin, (local) maxima bymax and saddle points bs:
Critical points of f are represented similarly but with a caret. The sign preceding a critical
point symbol indicates the sign of the considered functibnr(f) at the critical point.

+

+S

M/

- +

Figure 1.20:Condition0. is needed.

Figure 1.20 shows that conditidh cannot be removed even in the 2D case. By allowing
for critical points of f inside a triangle off with positive vertices, one can build an example
whereM has an extra component w.i without violating conditions involving critical points
and their indices. Indeed, in figure 1.20has index 0 on the triangle, since minima have index
1 and saddle points have index..
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Figure 1.21:Critical points do not determine the topology of level-sets.

Figure 1.21 is a 2D example of two zero-s&is(boundary of the gold region) and’
which are not homeomorphic, though their defining functions have the saitical points,
with the same indices. The dashed curves represents a negative level-set (in féen) o
function definingM’, and a positive one (in blue). Such an example can also be built such that
M’ = M for some mesfH . This shows the importance of the $¢in the theorem. In particular,
conditionsl. and3. cannot be removed. Indeed, if one drdpgaking forW any set satisfying
2. and3. makes the theorem fail. On the other hand, if one d&panyW satisfying2. and1.
also makes the theorem fail.

Figure 1.22:Condition2’. and4. are needed.

Figure 1.22 is a 3D example whekis a torus whereald is a sphere. This is becaubéas
an extra negative minimum inside (] — e, 0]) whereasf has an index 1 saddle point outside
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the bounding boX2. Depending on whether this extra minimum liesNhor not (see the circle
arc with arrows at both ends in figure 1.22), one obtains counterexanaptas theorem if
assumption®’. or 4. are dropped. One can build similar examples showing that condition
is also needed.

We now return to the proof of theorem 44.

1.6.4 Proof of the homeomorphy

Lemma 45 Let S and T be two subsets of a topological space X that meef\(ie-50).

Assume the boundary of S is connected, as well as T and. X

If the X\ S and X\ T meet but their boundaries do not, then S is contained in the interior of T
or the other way around.

Proof. Let SandT be two such setsiSis the disjoint union o8SNint(T) anddSNint(X\T)
sincedSNJT is empty. So we have a partition @fS in two relatively open sets. As it is
connected, one has to be empty.

If 9SNint(T) is empty therdScC int(X\ T) thatisT NdSis empty. As a consequencejs in-
cluded inintS) or in int(X'\ S) by connectedness. Sin8andT meet, we have that C int(S).
Now if aSNint(X\ T) is empty thenX \ T is contained in intS) or in int(X \ S) by connect-
edness again. Similarly as above it has to be contained(X i), which means thabC T.
Thus in(S) C int(T) sodS> S\int(T) =SNJT. If Swould mee®WT, thendSanddT would
meet, which is impossibleSis included in the interior of . a

Lemma 46 LetV be a connected component of W.
M NV is a connected smooth compact manifold without boundary.

Proof. HypothesisSimplies easily tha¥/ collapses tdViNV. ThusV contains a simplex having
positive and negative vertices. As a consequeha@nishes oV. Sincef does not vanish on
JW (1), M intersectd/. Also, M does not meet the boundary\éf(1), soM NV is a smooth
compact manifold without boundary.

Becausé/, which is connected, collapses XNV, M NV is a connected closed surface.
Therefore, the complement 8 NV has exactly two components, one of which is bounded.
Becausa/ collapses taM, R3\V also has exactly one bounded component which we denote
by A and one unbounded component we denot®&byhe complement of\, which isBUV,
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is connected, becaug&andV are connected. For the same reasdbn,V is also connected.
Moreover, since the complementAt)V is B, it is also connected. In summa#yjs connected
as well as its complement, and the same is trué&foV .

Call nowM;, i = 1..nthe connected componentsMinV. For each, letN; be the bounded
component oifRs\ Mi. M; = JdN; does not meef (AUV) C dW (1), andAUYV is connected
as is its complement. 94 is included inAUV thanks to lemma 45. Now; contains at least
one critical point off. But asN; C AUV, such a point has to lie iA, by 2. SoN; meets
A, but sincedN; = M; does not meefA c W, N; containsA by lemma 45 again. Suppose
M NV is not connected. TheN; and N, both containA so they intersect. Becaudé is
smooth, their boundaries do not intersect. So one has w.INpg: N;. Now f vanishes on
d(N1\N2) = dN1 UIN,, and therefore has an extremuniNp\ N2, which is impossible because
N1\ N2 C V. O

Figure 1.23:Proof of lemma 46.

SoMNV andM NV are connected compact surfaces without boundary. As seen in the
preceding proofA contains all critical points of enclosed byM NV, with the same notations.
Also, A contains all critical points of enclosed by NV by 2’. From conditior4., we deduce
that the volumes enclosed ByNV and byM NV have the same Euler characteristic, since the
Euler characteristic of a lower level set is the index of the considered funatidhat lower
level set (theorem 38). 9d NV andM NV have the same genus and are thus homeomorphic.
To complete the proof thafl andM are homeomorphic, it remains to check that :

Lemma 47 M is included in W.

Proof. Let D be some component @\ W. We claim thatM N D is empty. FirstM ND is
empty by3 so w.l.0.g vertices lying in the closure Bfare all positive. IM N D is not empty
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then some componei of f~1(] —c,0]) meetsD. Moreover, by conditiorl, D does not
meetE. Indeed,f is positive at vertices of D and does not vanish aD C dW U JQ. So
E, being connected, is included in the interiorf But thenkE is compact and thué reaches
its minimum onE : E contains a (negative) critical point df This is impossible since the
tetrahedron containing this critical point would have negative vertigesonditionO, though
being included irD. O

The proof of the bound on the Hausdorff distance betwdeand M is not difficult. Pick
any pointpin M and letV be the component & containing it. Assume w.l.o.g. thé(p) > 0
and letp’ be the closest point op on the component ofV where f is negative. By the
intermediate value theorem, the line segmepitmeetsM at a pointg. The distance betwegm
andgis smaller than the distance betwggandp’ which is smaller than the Hausdorff distance
between the two components@¥. This shows one half of the bound. The other half can be
proved in a similar way.

1.6.5 Proof of the isotopy

Now that we know thaM andM are homeomorphic, the fact that they are isotopic is a con-
sequence of proposition 48, which is of independent interest. The backgoouswinanifold
topology required for the proof of this proposition can be founde@]. In this section, all
maps and manifolds considered &8&.

Proposition 48 Let S be a orientable compact connected surface without boundary and let S
be a surface such that

e Sis homeomorphicto S,
e Sis embedded in\ Sx [0,1],
e SN(Sx{0})=0and 1 (Sx {1}) =0,
e V\ S has two connected components, one contaifing0} and the other one containing
Sx {1}.
Then S is isotopic t& in V.

To prove theorem 44, one applies proposition 48 to each compon#&ht ldore precisely,
let M; be any component ofl, and letM; (resp.\WW) be the corresponding componentb{resp.
W). Now consider any regular neighborhdddf W (see [100]). Sinc®\ collapses tdvii, U is
also a regular neighborhood bf. ([100] corollary 3.29). NowM; has a regular neighborhood
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N such that the paitM;,N) is homeomorphic tqM; x {1/2},M; x [0,1]). Indeed, such a
neighborhood can be obtained as the union of a collafoin f~1(] —«,0]) and a collar

of M; in f~1(]0,4[) (3.17 and 2.26 in [100]). Thus by the uniqueness result for regular
neighborhoods (3.24 in [100]), the pa;,U) is homeomorphic tdM; x {1/2},M; x [0,1]).
Consider now a smooth surfaédﬂomeomorphic td/l; and leth be a homeomorphism between
the pair(M;,U) and(Sx {1/2},5x [0,1]). Let alsoSbe a smooth surface embedde&in |0, 1]
isotopic toh(M;). SandSsatisfy the assumptions of proposition 48, so they are isotopic, which
implies thatiV; andM; are isotopic inJ. AsU can be chosen arbitrarily close\tg, M; andM;
actually are isotopic iN\.

For technical reasons our proof of proposition 48 does not work \#ism sphere. Fortu-
nately, isotopy always holds in this case, since there is no smooth knosiglae2e ifR?3 (this
follows from Schoenflies theorem, see [98] p.34). From now on, we assum& thatot a
sphere. The proof of proposition 48 is based upon the following theasem[69] p.16 for a
proof).

Theorem 49 LetV be a connected compact irreducible Seifert-fibered manifold. Then any
essential surface S M is isotopic to a surface which is either vertical, i.e. a union of regula
fibers, or horizontal, i.e. transverse to all fibers.

Let us explain the various terms involved in this theorem. A 3-manNokisaidirreducible
if any 2-sphere embedded khbounds a 3-ball embedded M A Seifert-fibered manifolds
a 3-manifold that decomposes into a union of topological circlesfiltlees satisfying certain
properties. In particular, the cartesian product of a suraed a circleS! is a Seifert-fibered
3-manifold, with fibers the circlefx} x St for x € S. We will not explain what &egularfiber s,
but in the previous case, which will be ours, all fibers are regular. An@ide surface without
boundaryS embedded in a 3-manifold is saidincompressiblef none of its components is
homeomorphic to a sphere and if for any (topological) dsk N whose boundary is included
in S, there is a dislD’ ¢ Ssuch tha®D = dD’. Any disk D for which there is nd’ is called
a compressing diskor S (see figure 1.24 for an example of compressing disk). The notion
of essential surfacef a 3-manifold is similar to the one of incompressible surface, but more
restrictive. However, when the 3-manifold has no boundary, bothmetoincide.

In our settingV is the trivial Seifert-fibered manifol§x St, which we obtain by identi-
fying the two boundary components ¥f= Sx [0,1]. We will still denote byS the surface
corresponding t&in V. We first prove tha¥ andSfulfill the hypothesis of theorem 49 and
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then deduce th&is isotopic toS. Because we assume tHats not a 2-dimensional sphere,
V = Sx Stis irreducible ([69] prop 1.12 p.18). We now prove the follogin

Lemma 50 S is an essential surface Yh.

Proof. SinceV has no boundary it is sufficient to prove ti&is incompressible. Let € St

be the point corresponding to the endpoint§ipl] and denote by the sectiorSx {x} in V.
SupposeS is compressible. So one can find a simple cuvan S which does not bound a
disk in Sand which bounds an embedded diln V. Do the following surgery: cualong

y and glue a disk homotopic © along each of the two boundary componentsSafy (see
figure 1.24). By doing so, one obtains a new surface with Euler charactegistter than
X(S) = x(S). The previous surgery does not change the homology class: the new surface is
homologous t&. Also, the surfacé (with well chosen orientation) is homologouséoasé
andSform the boundary of an open subseMn On the other hand, it follows from Kiinneth
formula ([G] p.198) that the homology class 8fin V = Sx St is not zero. So one of the
connected componen®of the new surface has a non zero homology class iMoreover,S

has a smaller genus than the oneésofindeed, suppose it is not the case. As the new surface
has a larger Euler characteristic thg(lS) and has at most two connected components, the
only possibility is that this surface is the disjoint union®fand a sphere. Considering the
complement of the compressing disk in the sphere component showHXhmtunds a disk in

S which is a contradiction.

Figure 1.24:Surgery along a compressing disk.
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Note that it is possible to chood$2 such thatD N S=0: among all the embedded disks
with y as boundary that me&tin a finite numben of simple closed curves, take Bsthe one
such than is minimum. Suppose thatis not zero. Among all these intersection curves, there
is at least one curve bounding a disk iD \ (5N D) (when the curves are nested, consider
any innermost curve ob, see fig. 1.25 on the right). Also, the surfadés incompressible,
since the injection o§in V induces an injection between corresponding fundamental groups
(see [69] p. 10). As a consequencebounds a disk irS and one can then make an isotopy to
obtain a diskD’ such thaD’ NS= (DN $)\ a. This contradicts the minimality af (see fig.
1.25).

Figure 1.25:Decreasing the number of components of B.

The previous surgery cannot be iterated an infinite number of times, sincetios gf
S decreases each time. Upon termination, one obtains a surface, Saligdin, which is
incompressible or the sphe®, and which does not intersect the surf&eecause we chose
compressing disks that do not mé&tf S is a 2-sphere, it does not bound a 3-ball because its
homology class it (V) is not zero. This implies thal is not irreducible: contradiction. So
S is an incompressible surface. Applying theorem 49, one deduceS tisdésotopic to either
a horizontal or a vertical surface.
Claim: S is not isotopic to a vertical surface.
Proof: Suppose itis. Then there exists a surf8¢evhich is an union of fibers of and which
is isotopic toS. Choose one fibep included inS’. Its intersection number witBis equal to
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1 and has to remain constant during the isotopy.SSetontains a simple closed curve whose
intersection number wit8is equal to 1, namely the image @funder the isotopy. Bu§ does
not intersec&: contradiction.

HenceS is isotopic to a horizontal surface, which is a coveringohder the canonical projec-

tion of V. But this is not possible sinagenugS) < genugS). So,Sis incompressible, which

concludes the proof of lemma 50. O

Now, it follows from theorem 49 th&is isotopic to either a horizontal or a vertical surface.
Sdoes not intersed, so it cannot be isotopic to a vertical surface, by the same argument as
above. SaSis isotopic to a horizontal surface. This surface is a covering ahder the
canonical projection of/. Becausé/ \ Sis connected, it follows from [69] p.17-18 that the
covering is trivial. HenceSis isotopic to a horizontal surface which meets each fiber in one
point. It is now a classical fact that this horizontal surface can be “pushed alerfgérs”
to construct an isotopy t8 (see Fig. 1.6.5). Note that, using the same argument as the one
used previously to prove that one can const@&icuch that it does not interseBtthe isotopy

fi,t € [0,1] betweenS andS can be chosen so th&(S),t €]0,1] never intersectS. SoSis
isotopic toSin V.
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Figure 1.26:Pushing S tS along the fibers o7 .

1.7 Algorithm

In the algorithm, we take a4 a set that is related to the notion of watershed from topography.
This set satisfies properti@s and3. by construction. In section 1.7.1, we give its definition,
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basic properties, and construction algorithms. Section 1.7.2 describes thegnalgiarithm
itself, which ensures that fulfills also condition9., 1., 2’., and4., and proves its correctness.

1.7.1 PL watersheds

We first assume that the meStconforms toM, i.e. M is contained in a union of triangles of
We will see later how to remove this assumption, which is in contradictidim tve genericity
assumptions. Defin&/™ as the result of the following procedure :

Positive Watershed Algorithm
setW* =M.
mark all vertices oM.
while there is a positive regular unmarked ventf T s.t. the vertices dfk ™ (v) are marked
do
setW™ =WTUSt (v).
markv.

end while
return W+

W~ is defined as the result of the same algorithm applied to We setW =W UW .
Note thatW contains no critical point off. Also, positive marked vertices are exactly the
vertices ofW ™.

Figure 1.27:Construction of W : lower stars of regular vertices (such ag)\are added one
by one. Lower stars of critical verticesyvare discarded.
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Lemma 51 W collapses to/.

Proof. It is sufficient to show the result fa*. LetW" be the state ofv" afteri steps of
the algorithm, and let; be thei-th marked vertex. ASNO+ — M, the only thing we have to
show is thatW 7, collapses to\™ for all i. Let us first show thaltk—(v;) is included inW™.

If it is not the case, leti be the largest vertex of some simplerf Lk~ (v;) that is not inW,*.
sis in St™(u) which is hence not included M/". Sou is either critical or not marked yet,
which is a contradiction sinog is marked. Sa.k™(vj) C V\/i+. Now sincey; is regularLk™ ()
collapses to a point (lemma 43). Consider a sequence of elementary collapsesgatiowi
collapseLk™ (v;) to pand letsj C Lk~ (i), j = 1..n be the sequence of simplices defining these
elementary collapses. The simplican\s; Uvj) and the edgev; define a valid sequence of
elementary collapses allowing to colla|c\845§*Fl =W USt (v) to W', which concludes the
proof. O

One may prefer a more intrinsic definition Wf™. In the same spirit as in [47], one can
define a partial order on the vertices Dby the closure of the acyclic relatior defined by
u=<vif ue St~ (v) oru=v. We will note this order again and say thatflowsinto u whenever
u < V. The next lemma shows that the verticed\¢f do not depend on the order the vertices
are considered in the construction.

Lemma 52 The vertices of W are exactly the positive vertices that do not flow into any posi-
tive critical point.

Proof. The vertices oW have this property by construction. etz W™ be a positive vertex
and assum@ does not flow into any positive critical point. In particul@ris regular. Hence,
asp ¢ W, the lower link of p, which is not empty, has to contain either a critical vertex or
an unmarked one. It cannot contain a critical point because @snforms toM, vertices in
Lk~ (p) are all non-negative, and gpwould flow into a positive critical point. There is thus
an unmarked vertey; in Lk~ (p). If pp can be chosen positive, thgn satisfies the same
assumptions ap so one can defin@, in a similar way. By going on, one obtains a strictly
decreasing sequence of positive vertices, that thus has to endy litstlast term. Lk~ (pk)
contains no positive unmarked vertices. Buffasonforms toM, vertices inLk—(py) are all
non-negative. As vertices & are marked, we get a contradiction. O

Note thatW is the union of simplices with all their vertices W. As a result, we get an
intrinsic definition oW, and not only of its vertices. From an algorithmic point of view, it may
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be efficient to examine the vertices in increasing order in the constructdh ofOne can for
instance maintain the ordered list of vertices neighbovihglways consider the first element
of this list for marking, and discard it if it cannot be marked. Indeed, Witk strategy, a vertex
that cannot be marked at some point will never be marked.

Another consequence of lemma 52, which will be useful later, goes as followH.c e
minimum of | (v)| = | f(v)| over all critical pointss of f.

Lemma 53 W contains all vertices whose image|l§y is smaller than c.

Proof. Let p be such thatf (p)| < c. Without loss of generality, assume this positive. Any
critical pointv in which p flows satisfies (v) < f(p). So it cannot be positive by definition of
c: by lemma52p lies inW+. 0

Non conforming case. We now drop the assumption thitconforms toM and assume
genericity again. Frort andM one can build a mesBthat is finer tharl, conforms tavl, and
has all its extra vertices ovi. Indeed, it suffices to triangulate the overlayNbfand T without
adding extra vertices except thoseMf\ T. This can be done as the cells of the overlay are
convex. The construction &% described above can then be applie®t@ positive vertex of
T has its lower link inScontaining only vertices dfl if and only if its lower link inT contains
only negative vertices. Thus, in order to find the say positive vertice¢fl, one can apply
the positive watershed algorithm described abovE, tibat the initialization step one marks all
negative vertices having a positive neighbor instead of tho$&. @till, note that if a negative
critical point has a positive neighbor, then this neighbor will nonteeked by this modified
algorithm, whereas it could have been marked by the standard algorithrecify$i However,
if we assume that vertices having a neighbor of opposite sign are reguratit{oa a), then
this does not happen and the resMltof the modified algorithm is equal W'. In our meshing
algorithm, we will not build the mes8, but rather make sure conditi@holds, and apply the
modified algorithm.

Updating W/.  The intrinsic definition oW —or W/— given above yields an efficient
way of updatingV whenT undergoes local transformations. It is sufficient to describe the
algorithm for updating the vertices ¥¥*. Let T; be a mesh obtained frof by removing
some set of tetrahedia and remeshing the void left y. Call A the set of positive critical
points of the linear interpolation df on Ty that lie inE. Then the vertex set of the positive
watershed\,~ associated witff; can be computed from the vertex seief~ by performing
the following two operations. To begin with, the set of vertice3 pthat flow intoA must be
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removed fromW™ (lemma 52), which amounts to a graph traversal. Remaining vertices all
belong ton. Then, mark these vertices and apply the positive watershed algorithm loop to
get the vertex set of/;".

Remark. The presented definition of a watershed seems quite well-behaved and leads to
an easy construction algorithm, but it is not fully satisfactory. In padicuhe watershed we
compute is in general strictly included in the 'true watershed’. The 'traterghed’ seems hard
to compute, though, and can intersect a triangle in a very complicated way. Tiggreba
interesting intermediate definitions between ours and the true one, fanaesbased on the PL
analog of the Morse complex introduced in [46].

1.7.2 Main algorithm

Assume the critical points df are given. Theorem 44 enables us to build a mesh isotoit to
using only one simple predicateanish vanishtakes a triangle or a box and returns trué if
vanishes on that triangle or that box. We actually not even need a predicatathasta filter.
More preciselyyanishmay return true even if does not vanish on the considered element, but
not the other way around. Still, we require tivainishreturns the correct answer if the input
triangle or box is sufficiently small. Such filters can be designed using intervaisasal

Our algorithm also requires to build a refinable triangulation of space smrft(resp.
Of) converges tdf (resp.If) when the size of elements tends to 0. As noticed by Shewchuk
[110], this is guaranteed provided all tetrahedra have dihedral and plaglasd&ounded away
from . In [11], Bern, Eppstein and Gilbert described an octree-based algorithm ygeldin
meshes whose angles are bounded away from 0. In our case, which is much easiendte desi
triangulation can simply be obtained by adding a vertex at the center of eacle souabeach
cube of the octree, triangulating the squares radially from their center,cangl tthe same with
the cubes. Indeed, resulting planar and dihedral angles are all bounded awaBfFondne
can expect that this scheme does not produce too many elements upon refinement,tbecause
size of elements is allowed to change rapidly as we do not require that these bawunded
aspect ratio (see figure 1.28). The main algorithm uses an d@@itbe associated triangulation
T, the watershe®lV’. We will say that two (closed) boxes @f are neighbors if they intersect.
O is initialized to a bounding bog of M. Such a bounding box can be found by computing
the critical points of the coordinate functions restrictedvto if possible, or using interval
analysis. Besides, we maintain four sets of boxes ordered by decreasin@rdizal contains
all boxes containing a critical point df that is not in a box containing a critical point 6f
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Figure 1.28Octree and triangulation used in the algorithm. In tRBI3 example, only the edges
of the triangulation of the box on the right are shown (dashed).

Indexcontains all boxes neighboring a bbxcontaining a critical point of and such that
and f have different indices oh. Boundarylcontains all boxes containing two neighbors -in
T- of opposite signs one of which is critical fér(conditiona, see paragrapRon conforming
cas@. Finally, BoundaryZontains all boxes that contain a trianglef dW’ such thawvanisht)

is true and that are not included\Vi'.

Main Algorithm
Initialization RefineO until vanisk{b) is false for all boxes containing at least one critical

point of f.
computeT andW’, and the four set€ritical, Boundaryl Boundary2 andindex
while (true) do
updateT, W', and the four sets.
if Critical£ 0 then
split its first element.
else ifBoundary£ 0 then
split its first element.
else ifBoundary24 0 then
split its first element.
else if f and f have different indices on some bounded componeft oV’ then
split the first element oindex
else
return M
end if
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end while

Thanks to theorem 44 applied W', the correctness of this algorithm almost amounts to
its termination. The only problem is th#’ might contain some critical point dff, thereby
violating condition2.. It thus seems that the definition\&f needs to be slightly modified. The
modification consists in taking &'" vertices -and the same fov’'~- the positive vertices
that do not flow into positive critical points df nor into vertices lying in a box containing a
positive critical point off. With this modification, lemma 51 still holds and lemma 53 holds
if one replaces by the minimumc’ of ¢ and the minimum of f| on the boxes containing a
critical point of f. Also, ¢’ is positive asf does not vanish on these boxes.

We now show that the main algorithm terminates. First note that after tiediration step,
no box containing a critical point df is split. The magnitude dflf is thus larger than a certain
constantgmin on the complemer@ of the union of these boxes. Let us show that the size of the
boxes ofCritical that are split at some point is bounded from below.mfsconverges talf,
there is a numbes; such that for each tetrahedron with diameter smaller saafdf — Of||
is smaller thargmin/2 on the interior of that tetrahedron. If the tetrahedron is included, in
this implies thatlf andOf make an angle smaller thar 6.

Lemma 54 Let AC R3 be such thabA is a manifold included in C and containing no vertex
of T. Suppose that all boxes meetdy are smaller than g
Then f andf have the same index on A.

Proof. Let p € dA andd(p) denote the local feature size pfwith respect to the 2-skeleton of
T, as defined -in 2D- by Ruppert [101]. SimplicesTothat meet the open ball centeredmat
of radiusd(p) all share a vertex(p) -by definition,d(p) is the largest number such that this
holds. We calldnin the minimum ofd, which is known to be positive, and deequal to the
minimum ofdmin, ande, the half of the distance fromlA to the closest box that does not meet
JA.

Let us now consider a smooth nonnegative functoriR® — R with support included in
the open ball centered at 0 of radkisThe convolution off andg is a smooth functiorf. Let
p be a point at distance less thafrom dA. The gradient off at p is a weighted average of
the gradients of at points lying in the open ball centeredmand with radiusk. All gradients
involved in this average are gradients fobn tetrahedra incident or(p). Moreover, the size
of these tetrahedra is smaller therbecausd < e. As a consequence, considered gradients all
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Figure 1.29:Proof of lemma 54.

make an angle smaller thari6 with the gradient of atv(p). As the weights in the average are
nonnegative, we have that the angle betwediip) andf (v(p)) is smaller thant/6. Also,
the angle betweeflf(v(p)) and O f(p) is less thanrt/3 since both vectors make an angle
smaller tharvt/6 with the gradient off on some tetrahedron containipgandv(p). Finally,
we get that]f(p) andJf (p) make a positive dot product.

Let nowU; be a neighborhood alA whose closure does not contain any verteX aind
U, be an open set such tHat UU, = R3. We also require that the Hausdorff distance between
U; and dA is smaller thare and thatU, N dA = 0. Denote by{us,u} a partition of unity
subordinate to the covering)1,U,}. This means that far= 1..2, u; is a non negative smooth
function defined ofR3, with support inJ;, and such that; + us is identically 1. In particular,
u> equals 1 on the complementdf, and vice versa. So the functign= up f + u; f coincide
with f on R3\U1 and with f on R3\U2 o dA. Now recall thatdf andOf make a positive
dot product ordA. Hence the linear homotopy between both vector fields does not vanish on
AA : by normalization, one gets a homotopy betwéefy||0f|| andOf /||0f||, considered
as maps frondA to the unit sphere. Because the degree is invariant under homotopy 8], w
deduce that these maps have the same degree, which shovisatidf have the same index
onA. Now asg and f coincide in a neighborhood @A, f andg have the same index @k To
complete the proof, it thus suffices to show thand f also have the same index &n Now
the critical points off are critical forg, with the same index, dd; contains no such point.
Potential other critical points aj can only lie inU;. But the gradient ofy at any pointp of
U1 where it is defined is a convex combination®f (p) andf(p) : it thus makes a positive
dot product with(Jf (p). As a consequence, 0 is not in the convex hull of the image of a smalll
neighborhood op by Og, which implies thag has index 0 ap (lemma 41). We thus proved
the announced claim. O
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Suppose that some bawof Critical of size smaller thas; is split. Letv be a critical point
of f included inb. All the boxes containing are inCritical and their size is smaller tham
since we consider boxes in decreasing order. Now the gradiefitsrofetrahedra incident an
all make a positive dot product witif which is a contradiction with lemma 41 which implies
thatv is not critical. So the conclusion is th@ritical becomes -at least temporarily- empty
after a finite number of consecutive splittings of boxe€iitical.

Now if the algorithm splits a bo in Boundaryl thenb contains a say positive critical
point of f, which belongs to a box containing a critical point ofas Critical is empty. So
the maximum of f| on b is larger than the minimum dff | on the boxes containing a critical
point of f (i.e. ¢/). On the other hand, vanishes o1 sinceb contains a negative vertex. This
cannot happen if the size bfis below a certain value, so that boxesHaundarylcannot be
split eternally.

Suppose that the algorithm splits arbitrarily small boxeBaundary2 If a small enough
box b is split, thenb contains a trianglé of W’ on which f vanishes. So, if the size tfis
small enough, the maximum ¢f | on b will be smaller thart’. By lemma 53, all vertices df
belong toW’ sob c W’ which is a contradiction. Thus the size of split boxe8mundary2s
also bounded from below.

To complete the proof of termination, we need to prove thdexdoes not contain too
small boxes. This is true by applying lemma 54 to small offsets of the boxgainng critical
points of f. Finally :

Theorem 55 The main algorithm returns an isotopic piecewise linear approximaaiov.

Furthermore, if one wishes to guarantee that the Hausdorff distance bebivesl its
approximation is less than sayit suffices to modify the positive watershed algorithm so as to
control that the width ofV is smaller tharg, thanks to theorem 44.

1.8 Conclusion

We have given an algorithm that approximates regular level sets of a gimetidn with piece-
wise linear manifolds having the same topology. Moreover, our algorgan be modified so
as to ensure geometric closeness in the Hausdorff sense. Though no implemeastieein
carried out yet, we believe that it should be rather efficient due to the siypdi the involved
predicates and the relative coarseness of the required space decomposition.

146



The main drawback of our algorithm is that it requires, as is, the knowletlthes critical
points of the considered function. A closer look shows that we almost @@y o find a set
of boxes containing all the critical points, and on which the function du#ssanish. This
task, corresponding to the initialization step in the main algorithm, casobe in a certified
way using interval analysis. Once this is done, the only remaining proldeémdompute the
index of the function on these boxes in a robust way. In a forthcomangian of this work,
we will show how this can be done in the framework of interval analysistetby giving a
complete solution to the problem. Also, we plan to adapt the algorithtinet case of surfaces
with boundaries, which is useful for instance when one wants to study tissdeoed level set

inside a user-specified bounding box.
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Conclusion

Surface discretization is a broad area of research, raising a variety of problems afgigem
different natures. A global treatment of this topic, analogous to samglegry for signals,
still seems out of reach. In this thesis, we have studied three particulaeprsbtlated to
surface discretization : the construction of conforming Delaunay triangukgtthe estimation
of the curvature tensor of a smooth surface from an approximating mesh eapalyigonaliza-
tion of implicit surfaces with guaranteed topology. Our work on thesesdpaves many gaps
wide open.

We have designed a certified algorithm building conforming Delaunay wlatigns hav-
ing a reasonable number of vertices, which is an improvement on previousadsetistill,
obviously, the meshes produced by our algorithm are not competititedanain application
of 3D meshing, namely finite elements simulations. In particular, we do natatdime grading
of elements, nor their shape and orientation, which crucially determine theaaganirsimu-
lations. A challenging problem could be to adapt the ideas introduced inl méwdpter 4 for
anisotropic surface remeshing to the problem of 3D mesh generation.

In part I, we have shown how the notion of curvature tensor could bergéred to non-
necessarily smooth surfaces, such as polyhedra. This generalization consists in aieesbr-v
measure, which we call anisotropic curvature measure. As most important resuiiaue
proved that these anisotropic curvature measures behave nicely under apgpiansmin par-
ticular, a high resolution mesh of a smooth surface will have anisotropi@ttue measures
close to the ones of the smooth surface. In part lll, we have given an &lgoyielding topolog-
ically correct polygonal approximations of implicitly defined surfaces. Thisralgm outputs
the zero-set of the linear interpolation of the function considered on aclefien mesh. Its
correctness relies on a result ensuring the existence of an isotopy between tketzafra-
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smooth function and the one of its linear interpolation on a mesh, undairceonditions on
the mesh.

The Parts Il and Ill, though focusing on different problems, thus betonige same line of
research : given an “object” defined both in the smooth and the piecewise linear,setth@s
anisotropic curvature measures for surfaces or level-sets for real functioaisgistretization
conditions should one require in order to guarantee that the smoo#ctdly “close” to its PL
analog? From a practical point of view, this line of research is motivatedéontreasing need
to process discretized objects. On a more fundamental side, we believe it can aige jpro
deeper understanding of each of the geometric problems considered. As a qussipéctive,
many other geometric objects could be studied along these lines : conformalqiarizations,
geodesics, Morse complexes, or Reeb graphs for example.

The discretization condition used in part Il to ensure the accuracy of curvaturegsh
requires not only that the smooth surface and its PL approximation are oltise Hausdorff
sense, but also that the normals to both objects are close. Similarly, theoprmyfectness of
our implicit surface polygonalization algorithm requires that the casid implicit function
and its PL approximation have close -or rather not too different- grasliést a consequence,
our result are limited to the approximation of smooth objects. In padictiiey do not handle
noisy data. Still, for instance, there should exist a notion of curvaturavraiy continuously
under corruption by noise, at least up to a certain noise intensity. Indeegbeudgragrees that
the curvature of a lens can be defined in very accurate way, whereas at the atomic scale, th
surface of a lens is highly irregular. This example suggests that a defioiturvature robust
against noise might be found in a multi-resolution framework. A satigfgenulti-resolution
framework for discrete geometric objects would be of great interest in nespects. Some at-
tempts were made to adapt wavelet theory to surfaces, but many classical propevtieslefs
are then lost. Another possible track would be to adapt scale-space theory golated sur-
faces. Finally, a very attractive track, and also more intrinsically geometricg cmuto use
ideas of Edelsbrunner et al. [45] on persistence of critical points. It has alreadyglggested
that persistence could be used for level-set denoising. We believe this conoépipoove
helpful in other situations as well.
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QUELQUES PROBLEMES LIES A LA DISCRETISATION DES SURFACES

Un nombre croissant d’applications nécessite d’opérer des traitements aiggués sur
des objets tridimensionnels. Le plus souvent, ceux-ci sont représentés par dessstnif
angulées. Cette thése aborde trois problemes posés par la manipulation ddéapes.s@n
donne d’abord un algorithme qui, étant donnée une surface triangulétrgbane triangula-
tion de Delaunay volumique la contenant comme sous-complexe. De tedleguiations sont
utiles par exemple pour le calcul scientifique. Puis, on définit une généralisatlarcdurbure
s’appliquant a des surfaces non nécessairement lisses, donc en particulier aux surfaces trian
gulées, et on étudie sa stabilité. Celle-ci est ensuite utilisée dans un algod¢hramaillage
de surfaces triangulées visant a optimiser le rapport complexité/distoHEidfin, on donne un
algorithme de maillage de surfaces implicites garantissant que I'apprasinmabduite a la
méme topologie que la surface initiale.

Mots-clefs : surfaces triangulées, géométrie différentielle, topologie différentielleroxp
mation.

TOPICS IN SURFACE DISCRETIZATION

A rapidly growing number of applications requires to deal with threeedisional objects
on a computer. These objects are usually represented by triangulated surfaces. This thesi
addresses three problems one encounters when dealing with such surfaces. We firsative
gorithm which builds a volumic Delaunay triangulation containingveig triangulated surface
as a sub-complex. Such triangulations are useful for numerical simulatioimstance. Then,
we introduce a generalization of curvature which applies to non-necessaribttsimigiects,
thus in particular to triangulated surfaces, and we study its stability. Emerglization is then
used to design an algorithm for remeshing triangulated surfaces while aimiagdb an op-
timal complexity/distortion ratio. Finally, we give an algorithnr fmeshing implicit surfaces
which guarantees that the output has the same topology as the input surface.

Keywords : Triangulated Surfaces, Differential Geometry, Differential Topology, Agpr
mation.
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