
HAL Id: tel-00832795
https://theses.hal.science/tel-00832795

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elliptic curve cryptography algorithms resistant against
power analysis attacks on resource constrained devices

Hilal Houssain

To cite this version:
Hilal Houssain. Elliptic curve cryptography algorithms resistant against power analysis attacks on
resource constrained devices. Other. Université Blaise Pascal - Clermont-Ferrand II, 2012. English.
�NNT : 2012CLF22286�. �tel-00832795�

https://theses.hal.science/tel-00832795
https://hal.archives-ouvertes.fr

numèro d'ordre : D.U: 2286

EDSPIC: 602

UNIVERSITÉ BLAISE PASCAL – CLERMONT II

ÉCOLE DOCTORALE

SCIENCES POUR L'INGÉNIEUR DE CLERMONT-FERRAND

THÈSE

Présenté par

Hilal Houssain

Pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ

Discipline: Informatique

Elliptic Curve Cryptography Algorithms Resistant
Against Power Analysis Attacks on Resource

Constrained Devices

Président :

Rapporteurs :

Michel Misson

Bernard Cousin

Professeur à l’Université d’Auvergne

Professeur à l’Université de Rennes 1

 Pascal Urien Professeur à Telecom Paris Tech

Directeur de theses : Philipe Mahey Professeur à l’Université Blaise Pascal

Co-directeurs : Mohamed Badra Chercheur CNRS au LIMOS

 Turki Al-Somani Professeur à l’Université Umm Al Qura

Year: 2012

http://fr.linkedin.com/company/universite-de-rennes-1?trk=ppro_cprof

DEDICATION PAGE

To all those and all those who have contributed directly or indirectly to the completion of

this work, I say simply and from the heart, thank you!

… to the memory of Dr Mohamad Khodr, and Ahlam Khodr, May God bless their souls

… to my beloved parents, and specially my loving wife and kids.

Contents

CONTENTS

CONTENTS .. II

LIST OF TABLES .. V

LIST OF FIGURES ... VI

LIST OF ALGORITHMS ... VIII

KEYWORDS ... IX

ABSTRACT .. X

MOTS-CLÉS .. XII

ABSTRAIT .. XIII

PREVIOUSLY PUBLISHED MATERIALS ... XV

1. JOURNAL ARTICLES ... XV

2. CONFERENCE PAPERS .. XV

LIST OF ABBREVIATIONS USED ..XVII

ACKNOWLEDGEMENTS ... XIX

CHAPTER 1 ... 21

INTRODUCTION ... 21

1.1. MOTIVATION .. 22

1.2. PROBLEM STATEMENT.. 22

1.3. CONTRIBUTIONS .. 23

1.4. ORGANIZATION OF THE THESIS ... 23

CHAPTER 2 ... 25

ELLIPTIC CURVE CRYPTOGRAPHY ... 25

2.1. FINITE FIELD ARITHMETIC.. 25

2.2. GF(2
M
) ARITHMETIC .. 27

2.3. ELLIPTIC CURVE ARITHMETIC ... 30

2.4. ELLIPTIC CURVE SCALAR MULTIPLICATION .. 34

2.5. ELLIPTIC CURVE ENCRYPTION ... 38

2.5.1 Elliptic Curve Diffie-Hellman Protocol ... 38

2.5.2 Elliptic Curve ElGamal Protocol .. 39

2.5.3 Elliptic Curve Discrete Logarithm Problem .. 39

2.6. SUMMARY ... 40

CHAPTER 3 ... 42

WIRELESS SENSOR NETWORKS ... 42

3.1 BACKGROUND ON WSN .. 42

3.1.1 Hardware Architecture of WSN nodes .. 43

3.1.2 Applications of WSN .. 44

3.2 SECURITY ISSUES IN WSN .. 46

3.2.1 Constraints in WSN ... 46

3.2.2 Security Requirements in WSN .. 47

3.2.3 Security Issues in WSN .. 49

3.3 IMPLEMENTATIONS OF ECC IN WSN ... 50

3.3.1 Hardware Implementations ... 51

3.3.2 Discussion on the Reviewed Hardware Implementations .. 55

3.3.3 Software Implementations ... 57

Contents

3.3.4 Discussion on the Reviewed Software Implementations .. 62

3.4 SUMMARY .. 64

CHAPTER 4 ... 66

POWER ANALYSIS ATTACKS ON ECC IN WSN AND THEIR COUNTERMEASURES .. 66

4.1 INTRODUCTION .. 66

4.2 POWER ANALYSIS ATTACKS .. 67

4.2.1 Simple Power Analysis (SPA) .. 68

4.2.2 Differential Power Analysis (DPA) ... 69

4.3 COUNTERMEASURES ... 71

4.3.1 Countermeasures for SPA ... 71

4.3.2 Countermeasures for DPA... 74

4.4 REMARKS ON THE REVIEWED COUNTERMEASURES .. 76

4.5 SUMMARY .. 77

CHAPTER 5 ... 79

ARCHITECTURES FOR ECC CRYPTOPROCESSOR SECURE AGAINST SCA .. 79

5.1 ARCHITECTURE FOR REGULAR GF(2
M
) ELLIPTIC CURVE CRYPTOPROCESSOR .. 80

5.1.1 Main Controller ... 81

5.1.2 Data Embedding .. 82

5.1.3 Point Addition and Doubling ... 84

5.1.4 Field Operations .. 85

5.2 PROPOSED ARCHITECTURES FOR ECC SECURE AGAINST SPA .. 90

5.2.1 The ECCB-SPA Cryptoprocessor .. 90

5.2.1.1 Background Information on the ECCB-SPA Cryptoprocessor ... 90

5.2.1.2 Description of the ECCB-SPA Cryptoprocessor .. 91

5.2.1.3 Example for the ECCB-SPA Cryptoprocessor.. 94

5.2.1.4 Performance Analysis for the ECCB-SPA Cryptoprocessor .. 94

5.2.1.5 Security Analysis for the ECCB-SPA Cryptoprocessor .. 96

5.2.2 The ECCSB-SPA Cryptoprocessor .. 96

5.2.2.1 Background Information on the ECCSB-SPA Cryptoprocessor .. 97

5.2.2.2 Description of the ECCSB-SPA Cryptoprocessor ... 98

5.2.2.3 Example for the ECCSB-SPA Cryptoprocessor .. 99

5.2.2.4 Example for the ECCSB-SPA Cryptoprocessor .. 101

5.2.2.5 Performance Analysis for the ECCSB-SPA Cryptoprocessor ... 104

5.2.2.6 Security Analysis for the ECCSB-SPA Cryptoprocessor ... 104

5.3 PROPOSED ARCHITECTURE FOR ECC SECURE AGAINST DPA ... 106

5.3.1 The ECCRB-DPA Cryptoprocessor.. 106

5.3.1.1 Background Information on the ECCRB-SPA Cryptoprocessor ... 106

5.3.1.2 Description of the ECCRB-SPA Cryptoprocessor ... 107

5.3.1.3 Example for the ECCRB-SPA Cryptoprocessor .. 108

5.3.1.4 Performance Analysis for the ECCRB-SPA Cryptoprocessor ... 110

5.3.1.5 Security Analysis for the ECCRB-SPA Cryptoprocessor .. 112

5.3.2 The ECCRSB-DPA Cryptoprocessor .. 113

5.3.2.1 Background Information on the ECCRSB-SPA Cryptoprocessor .. 113

5.3.2.2 Description of the ECCRSB-SPA Cryptoprocessor ... 113

5.3.2.3 Example for the ECCRSB-SPA Cryptoprocessor ... 117

5.3.2.4 Performance Analysis for the ECCRSB-SPA Cryptoprocessor ... 119

5.3.2.5 Security Analysis for the ECCRSB-SPA Cryptoprocessor .. 119

5.4 SUMMARY .. 120

CHAPTER 6 ... 122

RESULTS AND DISCUSSIONS ... 122

6.1 COMPARISON METHODOLOGY.. 123

6.2 SYNTHESIS RESULTS AND COMPARISON .. 124

6.3 DELAY, AREA, AND POWER COST COMPLEXITY ANALYSIS ... 129

6.4 SUMMARY .. 136

CHAPTER 7 ... 137

CONCLUSIONS AND FUTURE RESEARCH .. 137

1.1 SUMMARY OF CONTRIBUTIONS ... 137

1.2 FUTURE WORK .. 139

BIBLIOGRAPHY ... 140

List of Tables

List of Tables

TABLE 2.1: THE HOMOGENEOUS PROJECTIVE COORDINATES SYSTEM ... 35

TABLE 2.2: THE JACOBIAN PROJECTIVE COORDINATES SYSTEM ... 35

TABLE 2.3: THE LOPEZ-DAHAB PROJECTIVE COORDINATES SYSTEM... 35

TABLE 3.1: MAJOR HARDWARE PLATFORM FOR WSN .. 45

TABLE 3.2: WSN'S APPLICATIONS ... 45

TABLE 3.3: A SUMMARY OF HARDWARE IMPLEMENTATIONS OF ECC IN WSN. .. 56

TABLE 3.4: 160-BITS ECC OVER GF(P) IN 8-BIT PROCESSORS IN WSN ... 63

TABLE 3.5: GF(2
M
) POLYNOMIAL BASIS 163-BIT KEY 8-BIT PROCESSOR .. 64

TABLE 5.1: LOPEZ-DAHAB PROJECTIVE COORDINATE SYSTEM ... 89

TABLE 6.1: TIME COST COMPARISON FOR THE EIGHT ECC CRYPTOPROCESSORS ... 124

TABLE 6.2: THE EIGHT ECC CRYPTOPROCESSOR SYNTHESIS RESULTS. .. 125

TABLE 6.3: COST COMPLEXITY (A, D, P) MEASUREMENTS FOR ALL VALUES OF M .. 131

List of Figures

List of Figures

FIGURE 2.1: THE PADD OPERATION (R = P + Q) OVER GF(P). ... 32

FIGURE 2.2: THE PDBL OPERATION (R = 2P) OVER GF(P). .. 32

FIGURE 2.3: MATHEMATICAL HIERARCHY OF ECC SCALAR MULTIPLICATION... 37

FIGURE 3.1: A WIRELESS SENSOR NETWORK .. 42

FIGURE 3.2: WSN NODE MAIN COMPONENTS ... 43

FIGURE 3.3: BLOCK DIAGRAM OF THE ARITHMETIC UNIT PRESENTED IN [60] [61]. ... 53

FIGURE 3.4: ARCHITECTURE FOR ECC PROCESSOR IN [62]. ... 54

FIGURE 3.5: STRUCTURE OF THE 3-REGISTER COPROCESSOR PRESENTED IN [64]. ... 54

FIGURE 3.6: THE ECC PROCESSOR PRESENTED IN [65]. ... 55

FIGURE 3.7: IMPLEMENTATION OF 160-BITS ECC OVER GF(P) IN 8-BIT PROCESSORS IN WSN 63

FIGURE 3.8: IMPLEMENTATION OF 163-BITS ECC OVER GF(2
M
) IN 8-BIT PROCESSORS IN WSN 64

FIGURE 4.1: POWER TRACES REVEALING THE PRIVATE KEY OF THE WSN NODE [82] ... 67

FIGURE 4.2: CMOS INVERTER LOGIC CIRCUIT [83] .. 68

FIGURE 4.3: POWER TRACE FOR A SEQUENCE OF PADD AND PDBL OPERATIONS ON ECC ... 69

FIGURE 4.4: PAA VS. COUNTERMEASURES ... 77

FIGURE 5.1: ARCHITECTURE OF THE ECC COPROCESSOR .. 81

FIGURE 5.2: THE BIT-SERIAL MASSEYʹOMURA MULTIPLIER OF GF(2
M
) [114]. ... 86

FIGURE 5.3: DATAFLOW OF THE ITOH AND TSUJII INVERTER ... 88

FIGURE 5.4: EXAMPLE FOR "SCALAR PARTITIONING ON 1'S" .. 91

FIGURE 5.5: DATA FLOW FOR BUFFER-BASED METHOD FOR SCALAR MULTIPLICATION ... 93

FIGURE 5.6: EXAMPLE FOR BUFFER-BASED METHOD FOR SCALAR MULTIPLICATION ... 95

FIGURE 5.7: EXAMPLE FOR POWER TRACE FOR THE BUFFER-BASED METHOD .. 96

FIGURE 5.8: EXAMPLE OF SCALAR SPLITTING WITH EQUAL PARTITIONS ... 98

FIGURE 5.9: DATA FLOW FOR SPLIT BUFFER-BASED METHOD FOR SCALAR MULTIPLICATION 101

FIGURE 5.10: EXAMPLE FOR DATA FLOW FOR SPLIT BUFFER-BASED METHOD ... 103

FIGURE 5.11: EXAMPLE FOR POWER TRACE FOR THE SPLIT BUFFER-BASED METHOD .. 105

FIGURE 5.12: DATA FLOW FOR RANDOMIZED BUFFER-BASED METHOD FOR SCALAR MULTIPLICATION 109

FIGURE 5.13: EXAMPLE FOR RANDOMIZED BUFFER-BASED METHOD FOR SCALAR MULTIPLICATION 111

List of Figures

FIGURE 5.14: EXAMPLE FOR POWER TRACE FOR THE RANDOMIZED BUFFER-BASED METHOD 112

FIGURE 5.15: DATA FLOW FOR RANDOMIZED SPLIT BUFFER-BASED METHOD FOR SCALAR MULTIPLICATION 116

FIGURE 5.16: EXAMPLE FOR DATA FLOW FOR RANDOMIZED SPLIT BUFFER-BASED METHOD 118

FIGURE 5.17: EXAMPLE FOR POWER TRACE FOR THE RANDOMIZED SPLIT BUFFER-BASED METHOD 120

FIGURE 6.1: DELAY COMPARISON FOR THE EIGHT CRYPTOPROCESSORS FOR ALL VALUES OF M (173,191,230) 126

FIGURE 6.2: AREA COMPARISON FOR THE EIGHT CRYPTOPROCESSORS FOR ALL VALUES OF M (173,191,230) 127

FIGURE 6.3: POWER COMPARISON FOR THE EIGHT CRYPTOPROCESSORS FOR ALL VALUES OF M (173,191,230) 128

FIGURE 6.4: COST COMPLEXITY (ATP) COMPARISON FOR M = 173, 191, AND 230 .. 132

FIGURE 6.5: COST COMPLEXITY (AT
2
P) COMPARISON FOR M = 173, 191, AND 230 ... 133

FIGURE 6.6: COST COMPLEXITY (ATP
2
) COMPARISON FOR M = 173, 191, AND 230 ... 134

FIGURE 6.7: COST COMPLEXITY (A
2
TP

2
) COMPARISON FOR M = 173, 191, AND 230 .. 135

List of Algorithms

List of Algorithms

ALGORITHM 2.1 DOUBLE-AND-ADD ELLIPTIC CURVE SCALAR MULTIPLICATION METHOD (LEFT-TO-RIGHT) 37

ALGORITHM 2.2 DOUBLE-AND-ADD ELLIPTIC CURVE SCALAR MULTIPLICATION METHOD (RIGHT-TO-LEFT). 38

ALGORITHM 4.1 DOUBLE-AND-ADD-ALWAYS ELLIPTIC CURVE SCALAR MULTIPLICATION METHOD 72

ALGORITHM 4.2 MONTGOMERY POWERING LADDER ELLIPTIC CURVE SCALAR MULTIPLICATION METHOD 72

ALGORITHM 4.3 PROPOSITIONAL LOGIC OPERATIONS BASED ELLIPTIC CURVE SCALAR MULTIPLICATION METHOD [97] 73

ALGORITHM 5.1 PSEUDOCODE OF THE ECCRG CRYPTOPROCESSOR .. 82

ALGORITHM 5.2 ITOHʹTSUJII INVERSION ALGORITHM. .. 87

ALGORITHM 5.3 BUFFER-BASED ECSM METHOD .. 92

ALGORITHM 5.4 SPLIT BUFFER-BASED ECSM METHOD... 102

ALGORITHM 5.5 RANDOMIZED BUFFER-BASED ECSM METHOD ... 107

ALGORITHM 5.6 RANDOMIZED SPLIT BUFFER-BASED ECSM METHOD ... 114

Keywords

Keywords

Wireless Sensor Networks, Elliptic Curve Cryptography, Side Channel Attacks, Power Analysis

Attacks, Simple Power Analysis Attacks, Differential Power Analysis Attacks, and Scalar

Multiplication.

Abstract

Abstract

Elliptic Curve Cryptosystems (ECC) have been adopted as a standardized Public Key

Cryptosystems (PKC) by IEEE, ANSI, NIST, SEC and WTLS. In comparison to traditional PKC

like RSA and ElGamal, ECC offer equivalent security with smaller key sizes, in less computation

time, with lower power consumption, as well as memory and bandwidth savings. Therefore, ECC

have become a vital technology, more popular and considered to be particularly suitable for

implementation on resource constrained devices such as the Wireless Sensor Networks (WSN).

Major problem with the sensor nodes in WSN as soon as it comes to cryptographic operations is

their extreme constrained resources in terms of power, space, and time delay, which limit the

sensor capability to handle the additional computations required by cryptographic operations.

Moreover, the current ECC implementations in WSN are particularly vulnerable to Side Channel

Analysis (SCA) attacks; in particularly to the Power Analysis Attacks (PAA), due to the lack of

secure physical shielding, their deployment in remote regions and it is left unattended. Thus

designers of ECC cryptoprocessors on WSN strive to introduce algorithms and architectures that

are not only PAA resistant, but also efficient with no any extra cost in terms of power, time delay,

and area.

The contributions of this thesis to the domain of PAA aware elliptic curve cryptoprocessor for

resource constrained devices are numerous. Firstly, we propose two robust and high efficient

PAA aware elliptic curve cryptoprocessors architectures based on innovative algorithms for ECC

core operation and envisioned at securing the elliptic curve cryptoprocessors against Simple

Power Analysis (SPA) attacks on resource constrained devices such as the WSN. Secondly, we

propose two additional architectures that are envisioned at securing the elliptic curve

cryptoprocessors against Differential Power Analysis (DPA) attacks. Thirdly, a total of eight

architectures which includes, in addition to the two SPA aware with the other two DPA aware

Abstract

proposed architectures, two more architectures derived from our DPA aware proposed once,

along with two other similar PAA aware architectures. The eight proposed architectures are

synthesized using Field Programmable Gate Array (FPGA) technology. Fourthly, the eight

proposed architectures are analyzed and evaluated by comparing their performance results. In

addition, a more advanced comparison, which is done on the cost complexity level (Area, Delay,

and Power), provides a framework for the architecture designers to select the appropriate design.

Our results show a significant advantage of our proposed architectures for cost complexity in

comparison to the other latest proposed in the research field.

Mots-clés

Mots-clés

Les systèmes de cryptographie à base de courbe elliptique, les attaques par canaux auxiliaires, les

attaques par analyse de consommation, les attaques par analyse élémentaire de consommation, les

attaques par analyse différentielle de consommation, et la multiplication scalaire.

Abstrait

Abstrait

Les systèmes de cryptographie à base de courbe elliptique (ECC) ont été adoptés comme des

systèmes standardisés de cryptographie à clé publique (PKC) par l'IEEE, ANSI, NIST, SEC et

WTLS. En comparaison avec la PKC traditionnelle, comme RSA et ElGamal, l'ECC offre le

même niveau de sécurité avec des clés de plus petites tailles. Cela signifie des calculs plus rapides

et une consommation d'énergie plus faible ainsi que des économies de mémoire et de bande

passante. Par conséquent, ECC est devenue une technologie indispensable, plus populaire et

considérée comme particulièrement adaptée à l’implémentation sur les dispositifs à ressources

restreintes tels que les réseaux de capteurs sans fil (WSN).

Le problème majeur avec les nœuds de capteurs chez les WSN, dès qu'il s'agit d’opérations

cryptographiques, est les limitations de leurs ressources en termes de puissance, d'espace et de

temps de réponse, ce qui limite la capacité du capteur à gérer les calculs supplémentaires

nécessaires aux opérations cryptographiques. En outre, les mises en œuvre actuelles de l’ECC sur

WSN sont particulièrement vulnérables aux attaques par canaux auxiliaires (SCA), en particulier

aux attaques par analyse de consommation (PAA), en raison de l'absence de la sécurité physique

par blindage, leur déploiement dans les régions éloignées et le fait qu’elles soient laissées sans

surveillance. Ainsi, les concepteurs de crypto-processeurs ECC sur WSN s'efforcent d'introduire

des algorithmes et des architectures qui ne sont pas seulement résistants PAA, mais également

efficaces sans aucun supplément en termes de temps, puissance et espace.

Cette thèse présente plusieurs contributions dans le domaine des cryptoprocesseurs ECC

conscientisés aux PAA, pour les dispositifs à ressources limitées comme le WSN. Premièrement,

nous proposons deux architectures robustes et efficaces pour les ECC conscientisées au PAA. Ces

architectures sont basées sur des algorithmes innovants qui assurent le fonctionnement de base

des ECC et qui prévoient une sécurisation de l’ECC contre les PAA simples (SPA) sur les

Abstrait

dispositifs à ressources limitées tels que les WSN. Deuxièmement, nous proposons deux

architectures additionnelles qui prévoient une sécurisation des ECC contre les PAA différentiels

(DPA). Troisièmement, un total de huit architectures qui incluent, en plus des quatre architectures

citées ci-dessus pour SPA et DPA, deux autres architectures dérivées de l’architecture DPA

conscientisée, ainsi que deux architectures PAA conscientisées. Les huit architectures proposées

sont synthétisées en utilisant la technologie la technologie des réseaux de portes programmables

in situ (FPGA). Quatrièmement, les huit architectures sont analysées et évaluées, et leurs

performances comparées. En plus, une comparaison plus avancée effectuée sur le niveau de la

complexité du coût (temps, puissance, et espace), fournit un cadre pour les concepteurs

d'architecture pour sélectionner la conception la plus appropriée. Nos résultats montrent un

avantage significatif de nos architectures proposées par rapport à la complexité du coût, en

comparaison à d'autres solutions proposées récemment dans le domaine de la recherche.

Previously Published Materials

Previously Published Materials

The following papers have been published or presented, and contain material based on the content

of this thesis.

1. Journal Articles

i. Houssain. H, Al-Somani. T.F, "Elliptic Curve Cryptoprocessor Implementation on a Nano FPGA:

Interesting for Resource-Constrained Devices", International Journal of RFID Security and

Cryptography (IJRFIDSC), Vol.1, Issues 1/2, p. 45 – 50, 2012

ii. Houssain. H, Badra. M, Al-Somani. T.F, "Comparative Study of Elliptic Curve Cryptography

Hardware Implementations in Wireless Sensor Networks", International Journal of RFID Security and

Cryptography (IJRFIDSC), Vol. 1, Issues 1/2, p. 67 – 73, 2012

iii. Houssain. H, Badra. M, Al-Somani. T.F, "Power Analysis Attacks on ECC: A Major Security

Threat", International Journal of Advanced Computer Science and Applications (IJACSA) , Vol. 3,

No.6, p. 90 – 96, 2012

iv. Al-Somani. T.F, Khan. A.E, Qamar. A.M, and Houssain. H, "Hardware/Software Co-Design

Implementations of Elliptic Curve Cryptosystems", Information Technology Journal, Vol. 8, No. 4, p.

403 – 410, 2009

v. Houssain. H, Badra. M, Al-Somani. T.F, “Software Implementations of Elliptic Curve Cryptography

in Wireless Sensor Networks”, Journal of Communication and Computer, Vol. 9, No. 6, p. 712 – 720,

2012

2. Conference Papers

i. Al-Somani. T.F, Houssain. H, "Implementation of GF(2^m) Elliptic Curve Cryptoprocessor on Nano

FPGA", Internet Technology and Secured Transactions (ICITST), 2011 International Conference for

Publication, p. 7 – 12, 2011

http://www.getcited.org/pub/103482505
https://sites.google.com/site/appliedcrypto/papers/AlSomani-ITJ2009.pdf?attredirects=0
https://sites.google.com/site/appliedcrypto/papers/AlSomani-ITJ2009.pdf?attredirects=0
http://www.ieeeexplore.com/xpl/mostRecentIssue.jsp?punumber=6141531

Previously Published Materials

ii. Houssain. H, Badra. M, Al-Somani. T.F, "Hardware implementations of Elliptic Curve

Cryptography in Wireless Sensor Networks", Internet Technology and Secured Transactions (ICITST),

2011 International Conference for Publication, p. 1 – 6, 2011

List of Abbreviations Used

List of Abbreviations Used

ADD Addition

ASIC Application Specific Integrated Circuits

CBA Carry-based Attack

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

DA Doubling Attack

DoS Denial of Service

DPA Differential Power Analysis

ECC Elliptic Curve Cryptosystems

ECDLP Elliptic Curve Discrete Logarithm Problem

FPGA Field Programmable Gate Array

FPM Fixed point multiplication

GF(2m) Finite Field of Order 2m

MAC Message Authentication Code

MOF Mutual Opposite Form

MUL Multiplication

NAF Non-Adjacent Form

ONB Optimal Normal Basis

PAA Power Analysis Attacks

PADD Point Addition

PCA Principal Component Analysis

PDBL Point Doubling

PKC Public Key Cryptosystems

List of Abbreviations Used

RAM Random Access Memory

RFID Radio Frequency Identity

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RPA Refined Power Analysis

RPM Random point multiplication

RSA Rivest, Shamir and Adleman

SCA Side Channel Analysis

SeRLoC Secure Range-Independent Localization

SPA Simple Power Analysis

SQR Squaring

SRAM Static Random Access Memory

TinyECCK Tiny Elliptic Curve Cryptosystem with Koblitz Curve

TNAF Ĳ - adic Non-Adjacent Form

UCLA University of Central Lancashire

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

VM Verifiable Multilateration

WSN Wireless Sensor Networks

ZPA Zero Power Analysis

Acknowledgements

Acknowledgements

All praise be to Allah the Almighty who has given me knowledge, patience, and devotion to

finish my PhD dissertation works. After 4 years of PhD research, I would like to thank the people

who supported me along the way.

My greatest debt of gratitude is to my thesis supervisors who allowed me to conduct this work.

My supervisor (Dr. Mohamad Badra) was a great help throughout these four years, and this thesis

owes much to his advice, his rigor and lights that made me. My co-supervisor (Prof. Turki F. Al-

Somani) profound knowledge on cryptography and electronic system design was vital to make

my dissertation successfully complete and resourceful. The continuous support of Prof. Turki,

together with his stimulating suggestions and encouragement helped me in all the time of research

for and writing of this dissertation.

A great appreciation goes to my thesis director Prof. Philipe Mahey, for his invaluable

inspiration, help, and guidance that helped me through my PhD dissertation works. I greatly

valued the sincere and generous moral support he has provided me.

I extend my warmest thanks to Prof. Bernard Cousin and Prof. Pascal Urien for accepting to

be members of the jury, and Prof. Michel Misson for chairing it. and for their helpful comments

and suggestions.

I would like to express my utmost gratitude to to Dr. Mohammad Khodr and Ahlam Khodr

(God bless their souls) for their guidance and support not only in my studies, but also in all

matters of life. I am influenced by their way of thinking. They have been great teachers, friends,

role models, and advisors to assist me in my career path and help me develop my professional

skills.

I’m very grateful to Eng. Abdullah Al Hassani who worked with me on various pieces of this

thesis and on other publications.

Acknowledgements

I cannot forget to acknowledge all my friends from Blaise Pascal University. I am particularly

grateful to Ismail Mansour for his invaluable help in adjusting to France, and being wonderful

friend.

Last, but not least, I would like to express my deepest thanks and appreciation to my beloved

parents, and my lovely wife "Hala" for her love, moral support, patience and understanding. To

my sons Mohamad and Ghayth for their love and confidence in me were the constant source of

inspiration to offer the best of myself to this research.

CHAPTER 1

Introduction

Wireless Sensor Networks (WSN) [1] are ad hoc networks comprised of a large number of

low-cost, low-power, and multi-functional sensor nodes and one or more base stations. The recent

developments in WSN technology have led to a wide range of potential applications for this

technology, such as health monitoring, industrial control, environment observation, as well as

office and even military operations. In most of these applications, critical information is

frequently exchanged among sensor nodes through insecure wireless channels. It is therefore

crucial to add security measures to WSN using cryptography for protecting its data against threats

in a way so integrity, authenticity or confidentiality can be guaranteed.

Major problem with the sensor nodes as soon as it comes to cryptographic operations is their

extreme constrained resources in terms of power, space, and time delay, which limit the sensor

capability to handle the additional computations required by cryptographic operations.

Nevertheless, Public key cryptosystems (PKC) [2] is indeed shown to be feasible in WSN by

using Elliptic Curve Cryptosystems (ECC) [3] [4]. This is because, in comparison to traditional

cryptosystems like RSA [5] and ElGamal [6], ECC offers equivalent security with smaller key

sizes, in less computation time, with lower power consumption, as well as memory and

bandwidth savings.

The current ECC implementations in WSN [7] are particularly vulnerable to Side Channel

Analysis (SCA) attacks [8]; in particularly to the Power Analysis Attacks (PAA) [9], due to the

lack of secure physical shielding, their deployment in remote regions and it is left unattended.

Accordingly, there should exist countermeasures to secure ECC against SCA attacks such as the

Simple Power Analysis (SPA) and the Differential Power Analysis (DPA) [9] [10] attacks, but

22

normally these countermeasure solutions on ECC involve extra computations to be handled by

the sensor. Thus designers of ECC cryptoprocessors on WSN strive to introduce algorithms and

architectures that are not only PAA resistant, but also efficient with no any extra cost in terms of

power, time delay, and area.

1.1. Motivation

To the extent of our knowledge, no shown effort has been made for PAA resistant ECC

implementations in WSN in particular [11]. Additionally, the current PAA aware ECC

architectures require extra computations to be handled by the cryptoprocessor, and thus there are

not easily viable to be implemented in extremely constrained resources such as WSN.

1.2. Problem Statement

In general, approaches for PAA resistant ECC implementations in WSN correspond to extra

cost in terms of energy, area, and time delay consumption for cryptographic functions. Therefore,

designing ECC cryptoprocessors on WSN require the proposition of algorithms and architectures

that are not only PAA resistant, but also efficient with no any extra cost in terms of power, time

delay, and area. Conquering this concern, the following requirements for investigation have been

identified as criterions for efficient and secure PAA resistant ECC implementations in WSN:

1. Underlying finite field, representation basis, project coordinate system, and the field

arithmetic operations for ECC systems.

2. Security issues and requirements for WSN, and its current software and hardware

implementation in WSN, taking into consideration the underlying finite field,

representation basis, occupied chip area, consumed power, and time delay performances of

these implementations.

23

3. Major PAA and its countermeasures on ECC.

1.3. Contributions

The contributions of this thesis to the domain of PAA aware elliptic curve cryptoprocessor for

WSN are numerous.

Firstly, we propose two robust and high efficient PAA aware elliptic curve cryptoprocessors

architectures for WSN. These architectures are based on innovative algorithms for ECC core

operation and envisioned at securing the elliptic curve cryptoprocessors against Simple Power

Analysis (SPA) [9] [10] attacks.

Secondly, we propose two additional architectures that are envisioned at securing the elliptic

curve cryptoprocessors against Differential Power Analysis (DPA) [9] [10] attacks.

Thirdly, a total of eight architectures which includes, in addition to the two SPA aware with the

other two DPA aware proposed architectures, two more architectures derived from our DPA

aware proposed once, along with two other similar PAA aware architectures. The eight proposed

architectures are synthesized using Field Programmable Gate Array (FPGA) [12] technology.

Fourthly, the eight proposed architectures are analyzed and evaluated by comparing their

performance results. In addition, a more advanced comparison, which is done on the cost

complexity level (Area, Delay, and Power), provides a framework for the architecture designers

to select the appropriate design. Our results show a significant advantage of our proposed

architectures for security level and cost complexity in comparison to the other latest proposed in

the research field.

1.4. Organization of the Thesis

This thesis is organization as follows.

24

In chapter 2, the necessary background on ECC is provided, including the GF(2m) finite field

arithmetic, ECC arithmetics and ECC operations such as scalar multiplication, encryption, and

discrete logarithm problem.

Chapter 3 presents studies on both the hardware and software recent implementations of ECC in

resource constrained devices such as the WSN. These studies consider the unique characteristics

of WSN nodes as resource constrained devices, and thus it cover the underlying finite field,

representation basis, occupied chip area, consumed power, and time delay performances of these

implementations.

Chapter 4 represents a comprehensive study for the major existing PAA on ECC and its

countermeasures. In addition, we make a graphical presentation for the relation between PAA on

ECC and the current countermeasures. We discuss the critical concerns to be considered in

designing countermeasures against PAA on ECC particular for WSN.

Chapter 5 proposes four different robust and high efficient PAA aware elliptic curve

cryptoprocessors architectures for WSN. The first two architectures are envisioned at securing the

elliptic curve cryptoprocessors against SPA attacks, whereas the last two architectures are

envisioned at securing the elliptic curve cryptoprocessors against DPA attacks.

Chapter 6 presents the results of synthesizing eight various cryptoprocessors, and shows a

comparison study for these cryptoprocessors in terms of power, time delay and area. In addition, a

more advanced comparison is done on the cost complexity level, which provides a framework for

the architecture designers to select the appropriate design.

In Chapter 7, we summarize this thesis, and suggest directions for future research.

25

CHAPTER 2

Elliptic Curve Cryptography

This chapter provides necessary background on Elliptic Curve Cryptosystems (ECC) [3] [4],

including the GF(2m) finite field arithmetic, ECC arithmetics and ECC operations such as scalar

multiplication, encryption, and discrete logarithm problem.

This chapter is organized as follows: Section 2.1 presents a brief on the finite field arithmetic,

followed by the GF(2m) arithmetics in Section 2.2. Elliptic Curve arithmetic is covered in Section

2.3. In Section 2.4, the Elliptic Curve Scalar Multiplication is discussed at length. Elliptic Curve

encryption is considered in Section 2.5 and chapter summary is provided in Section 2.6.

2.1. Finite Field Arithmetic

Curve operations in elliptic curve cryptosystem are carried out using arithmetic operations in

the underlying field; hence, the overall performance of this cryptosystem depends on the

efficiency of the arithmetic performed in the underlying finite field.

In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field

that contains only finitely numerous elements. Finite fields are vital in number theory, algebraic

geometry, Galois theory, cryptography and coding theory [13] [14] [15].

G is a group that could be either a finite or infinite set of elements, and its order, represented by

the symbol G  , is the number of elements in the group. The group G together with a binary

operation (also called group operation), ◊, collectively satisfy the following four fundamental

properties:

http://library.kiwix.org:4201/A/Evariste_Galois.html
http://mathworld.wolfram.com/BinaryOperation.html
http://mathworld.wolfram.com/BinaryOperation.html
http://mathworld.wolfram.com/GroupOperation.html

26

1. Closure:  a b G   a b G  
2. Associativity:  a b c G    () ()a b c a b c     .

3. Identity: The group contains an identity element e G such that  a G 
a e e a a    .

4. Inverse: For every element a G there is an inverse 1a G  such that

1 1a a a a e     
Abelian groups (also called commutative groups), are groups fulfilling the conditions that the

result of product operation of elements is unrelated to their arrangement;

i.e., a b b a    a b G  .

Cyclic groups are groups that have a generator element. A generator element g G  is an

element of the group G, if every element a G is generated by repeatedly applying the group

operation on g. Thus,  a G 

(Equation 2.1)

Additive groups are groups with the ̀ ` " group operator, denoted as:

(Equation 2.2)

 Equally, multiplicative groups are groups with the ̀ ` " group operator, denoted as:

(Equation 2.3)

27

A field consists of a set of elements F together with two operations, addition (denoted by "+") and

multiplication (denoted by "*"), that satisfy the following arithmetic properties:

1. (F, +) is an Abelian group with respect to the `` " operation, with additive identity

denoted by 0.

2. (F \ {0}, *) represented by F*, and its elements form an Abelian group under the " * "

operation, with multiplicative identity denoted by 1, and contains all the elements in F

except the additive identity 0.

3. The distribution law applies to the two binary operations; as follows:

 a b c F   , () () ()a b c a b a c      .

As previously mentioned, if the set F is finite, then the field is said to be finite. Finite fields

are represented by the symbol GF(q) and for any prime p and positive integer m, there always

exists a finite field of order q = pm. The prime p is called the characteristic of the finite field

GF(pm). In addition, there are three kinds of fields that are especially adaptable for efficiently

implementing elliptic curve systems are prime fields, binary fields, and optimal extension fields.

2.2. GF(2m) Arithmetic

The finite GF(2m) field, of order 2m, called binary fields or characteristics-two finite fields, are

of particular significance in cryptography, especially in the hardware implementation of

cryptosystems, since it introduces high efficiency compared to the other fields. Elements of the

GF(2m) field are represented in terms of a basis. Either Normal or Polynomial Basis is usually

used for the majority of the elliptic curve cryptosystem implementations. In case of hardware

implementation, normal basis is more suitable than polynomial basis since its operations can be

efficiently implemented in hardware, and it mainly involve rotation, shifting and exclusive-

28

ORing. Since for instance, one advantage of normal bases is that squaring of a field element is a

simple rotation of its vector representation.

A normal basis of GF(2m) is a basis of the form (Ⱦଶ೘షభ
 , ..., Ⱦଶమ, Ⱦଶభ, Ⱦଶబ), where ȕ ߳

GF(2m). In addition, an element A ߳ GF(2m) in a normal basis can be uniquely

represented in the form ൌ ෌ Ƚ୧Ⱦଶ୧୫-ଵ୧ୀ଴ , where Ƚ୧ ߳ {0,1}.

GF(2m) operations using normal basis are performed as follows:

1. Addition. Addition is performed by a simple bit-wise exclusive-OR (XOR) operation.

2. Squaring. Squaring is simply a rotate left operation. Thus, if

A = (am-1, am-2, … a1, a0), then A2 = (am-2, am-3, … a0, am-1).

3. Multiplication.  A, B ߳ GF(2m), where

ܣ ൌ ෍ ܽ௜ߚଶ೔௠ିଵ௜ୀ଴ and ܤ ൌ ෍ ܾ௜ߚଶ೔௠ିଵ௜ୀ଴

The product C = A * B, is given by:

C = A * B ൌ ෍ ܿ௜ߚଶ೔௠ିଵ௜ୀ଴

Multiplication is defined in terms of a set of m multiplication matrices ʢ (k)

(k = 0,1,….,m-1),

ܿ௞ ൌ ෍ ௠ିଵ
௜ୀ଴ ෍ ௜௝ሺ௞ሻ௠ିଵߣ

௝ୀ଴ ܽ௜ ௝ܾ ׊ ݇ ൌ Ͳǡͳǡ ǥ ǡ݉ െ ͳ

 {1 ,0} ࣅ ௜௝ሺ௞ሻߣ

29

The complexity of the multiplication method and its hardware implementation is related to the

number of non-zero elements in the Ȝ matrix. For Optimal Normal Basis (ONB) [16], this value is

denoted as CN and is equal to (2m-1). An ONB is one with the minimum possible number of non-

zero elements in the ߣ௜௝ matrix.

Values of the Ȝ matrix elements can be derived in function of the field size m. ONB is

categorized into two types, denoted by Type I and Type II [16]. An ONB of Type I is valid for a

given field GF (2m) if:

(a) m + 1 is a prime

(b) 2 is a primitive in GF (m + 1)

In the other side, an ONB of Type II is available in GF (2m) if:

(a) 2m + 1 is prime

(b) Either 2 is a primitive in GF(2m + 1) or 2m + 1 Ł 3 (mod 4) and the quadratic residues in

GF(2m + 1) is generated by 2

An ONB is available in GF (2m) for 23% of all possible values of m [16]. The ߣሺ௞ሻ matrix can be

formed by a k-fold cyclic shift to ߣሺ଴ሻ as follows:

௜௝ሺ௞ሻߣ ൌ ߣ௜ି௞ǡ௝ି௞ሺ଴ሻ for all 0 ≤ i, j, k ≤ m-1

The ߣሺ଴ሻ matrix is derived differently for the two types of ONB. For the Type I ONB, ߣ௜௝ሺ଴ሻ ൌ ͳ iff

i and j satisfy one of the following two congruencies [17]:

(a) 2i + 2j Ł 1 mod (m + 1)

(b) 2i + 2j Ł 0 mod (m + 1)

For all Type II ONB, ߣ௜௝ሺ௞ሻ ൌ ͳ iff i and j satisfy one of the following four congruencies

[17]:

30

(a) 2i + 2j Ł 2k mod (2m + 1)

(b) 2i + 2j Ł −2k mod (2m + 1)

(c) 2i - 2j Ł 2k mod (2m + 1)

(d) 2i - 2j Ł −2k mod (2m + 1)

Therefore, ߣ௜௝ሺ଴ሻ ൌ ͳ iff i and j satisfy one of the following four congruences:

2i ± 2j Ł ± 1 mod (2m + 1)

4. Inversion. Inverse of a ߳ GF(2m), denoted as a-1, is defined as follows.

aa−1 Ł 1 mod 2m

The majority of the inversion algorithms are generated from Fermat’s Little Theorem, where

a−1 = a2m−2

for all a ≠ 0 in GF(2m).

In this thesis, and for its advantage in hardware implementation efficiency, ONB is chosen to

represent the elements of the GF(2m) fields in elliptic curve cryptoprocessors hardware

implementations.

2.3. Elliptic Curve Arithmetic

An elliptic curve E over the finite field GF(p) defined by the parameters a, b ߳ GF(p), where p

is a prime greater than 3, is the group formed by the additive identity of the group point O, known

as the “point at infinity” [18], and the set of points P = (x, y), where x, y ߳ GF(p), that satisfy the

elliptic curve equation (Equation 2.4)

ଶݕ ൌ ݔଷ ൅ ݔܽ ൅ ܾ (Equation 2.4)

for a, b ߳ GF(p) and 4a3 + 27b2 ≠ 0 mod p.

31

For every curve over a finite field GF(q), it contains a defined number of points n that is

calculated using Hasse’s theorem [14]. Adding two points on an elliptic curve E returns a third

point on E which forms an Abelian group with the identity element 0. A cryptosystem based on

the elliptic curve (elliptic curve cryptosystem) can be built using the Abelian group.

Point Addition (PADD) over GF(p) is best described geometrically as follows. Let P = (X1,Y1)

and Q = (X2,Y2) be two distinct points on an elliptic curve E defined over GF(p) with Q ≠ −P;

where –P = (X1,-Y1) is the additive inverse of P. The resultant point R is P + Q = (X3,Y3) of

adding P and Q is the reflection in the x-axis of the point of the elliptic curve that is intersected by

the line crossing P and Q. The addition operation over GF(p) can be visualized in Figure 2.1.

Point Doubling (PDBL) operation formula can be easily derived from the PADD one, when P =

Q and P ≠ −P, and the resultant point R is P + Q = 2P is the additive inverse of a third point on E

intercepted by the straight line tangent to the curve at point P. The doubling operation over GF(p)

is depicted in Figure 2.2.

Supersingular elliptic curves are special class of curves with some special properties that make

them unstable for cryptography [19], and thus unsecure. Therefore, only non-supersingular curves

over GF(2m) are considered. Equation 2.5 defines the non-supersingular elliptic curve equation

for GF(2m) fields. ݕଶ ൅ ൌ ݕݔ ଷ ൅ݔ ଶ ൅ݔܽ ܾ (Equation ‎2.5)

where a,b ߳ GF(2m) and b ≠ 0

For a non-supersingular elliptic curve E defined over GF(2m), PADD and PDBL operations are

generally computed using the algebraic formulae as follows:

• Identityμ P + O = O + P = P for all P ߳ E.

• Negativesμ If P = (x, y) ߳ E, then (x, y) + (x, x + y) = O. The point (x, x + y) is called the

negative of P, denoted as −P.

32

Figure 2.1: The PADD operation (R = P + Q) over GF(p).

Figure 2.2: The PDBL Operation (R = 2P) Over GF(p).

33

• PADD: Let P = (x1, y1), Q = (x2, y2) ߳ E, P ≠ Q and Q ≠ −P, then P + Q =

(x3, y3), where

ଷݔ ൌ ൬ݕଵା ݕଶݔଵା ݔଶ൰ଶ ൅ ൬ݕଵା ݕଶݔଵା ݔଶ൰ ൅ ݔଵ ൅ ଶݔ ൅ ܽ

ଷݕ ൌ ൬ݕଵା ݕଶݔଵା ݔଶ൰ Ǥ ሺݔଵ ൅ ݔଷሻ ൅ ݔଷ ൅ ݕଵ

• PDBL: If P = Q = (x1, y1), then 2P = P + P = (x3, y3), where

 ଵଶݔܾ ଵଶ ൅ݔ ଷ ൌݔ

ଵଶ ൅ݔ ଷ ൌݕ ൬ݔଵ ൅ ଵ൰ݔଵݕ ଷݔ ൅ ݔଷ

The dominant operation of all ECC algorithms, including encryption/decryption and

signature generation/verification primitives, is the point scalar multiplication k*P,

where k is an integer and P is a point on the elliptic curve, represents the addition of

point P k times as presented by Equation 2.6.

(Equation 2.6)

When points on the elliptic curve E are represented in affine coordinates (x,y), it turns

the PADD and PDBL operation inefficient because they contain field inversions, where

inversions are the most expensive field operation and need to be largely prevented.

As mentioned in Section 2.1, the cyclic groups have a generator element g, and every element

a G is generated by repeatedly applying the group operation on g. The elliptic curve

cryptosystems are based on this group, where g is represented by a base point P and n is the

34

number of points on the group. P is the generator of the group, and its order is n, whereas the

order of any other point in the group is a finite number dividable by n.

Projective coordinates (X, Y, Z) resolve the issue of expensive inversion in the PADD and PDBL

caused by the affine coordinates, by adding Z as a third coordinate in order to replace inversion

field operations by other less expensive operations [19].

For elliptic curve defined over GF(2m), many different forms of formulas may be used for PADD

and PDBL in the [20] [21] [22] [23]. For instance, the Homogeneous coordinate system replaces

the coordinates of an elliptic curve point (x, y) by (x, y) = (X/Z, Y/Z) [21], whereas the Jacobian

coordinate system replaces these coordinates by (x, y) = (X/Z2, Y/Z3) [22]. Likewise, the Lopez-

Dahab coordinate system takes the form (x, y) = (X/Z, Y/Z2) [23]. In consequence, different

formulas require different number of field multiplications for the point adding and doubling for

each of the coordinate systems as shown in Table 2.1, Table 2.2, and Table 2.3 respectively. For

instance, Lopez-Dahab [23] coordinate system is very cost effective in comparison with both

Homogenous and Jacobian coordinate systems, since it only requires 14 and 5 field

multiplications for PADD and PDBL respectively, whereas Homogenous requires 16 and 7 field

multiplications, and Jacbian requires 15 and 7 field multiplications. Coordinate systems could be

a mix of two different coordinate systems, and point operation can take each point from one of

the coordinate system, and the resulting point could be given in a third coordinate system [20].

2.4. Elliptic Curve Scalar Multiplication

Scalar multiplication in the group of points of an elliptic curve is the analogous of

exponentiation in the multiplicative group of integers modulo a fixed integer m.

35

Table 2.1: The Homogeneous Projective Coordinates System

Addition Multiplications Doubling Multiplications
A = X1 Z2 1M A = X1Z1 1M
B = X2Z1 1M ൌ ଵ ସ ൅ ଵସ 1M
C = A + B C= A ଵସ 1M
D = Y1Z2 1M D = Y1Z1 1M
E = Y2Z1 1M E = ଵଶ + D + A
F = D + E Z3 = A3 1M
G = C + F 1M X3=AB 1M
H = Z1Z2 5M Y3= C+BE 1M
I = C3+aHC2 +HFG
X3 = CI 1M
Z3 = HC3 1M
Y3=GI+ C2[FX1 + CY1] 4M

Total 16M 7M

Table 2.2: The Jacobian projective coordinates system

Addition Multiplications Doubling Multiplications

A = X1 ଶ ଶ 1M Z3 = X1 ଵ ଶ 1M

B = X2 ଵ ଶ 1M ൌ ଵ ଶ 1M
C = A + B B= X1 + A

D = Y1 ଶ ଷ 2M X3 = B4

E = Y2 ଵ ଷ 2M C = Z1Y1 1M
F = D + E D = Z3 + ଵ ଶ + C
G = Z1C 1M E = DX3 1M
H=FX2 + GY2 2M Y3= ଵ ସ Z3 +E 1M
Z3 = GZ2 1M
I = F + Z3

X3= a ଷ ଶ + IF + C3 3M

Total 15M 7M

Table 2.3: The Lopez-Dahab projective coordinates system

Addition Multiplications Doubling Multiplications

A0 = ଵ ଶܼଵ ଶ 1M Z3 = ଵ ଶ ଵ ଶ 1M

A1 = Y1 ଶ ଶ 1M ܺଷ ൌ ଵ ସ ൅ ଵ ସ 1M
B0 = X2Z1 1M Y3= ଵ ସ ଷ ൅ ଷ(aZ3 + ଵ ଶ ൅ ଵ ସ ሻ 3M

B1 = X1Z2 1M
C = A0 + A1
D = B0 + B1

36

E = Z1 Z2 1M
F = DE 1M
Z3 = F2
G = D2(F + aE2) 2M
H=CF 1M
X3 = C2 +H + G
I = D2B0E + X3 2M
J = D2A0 + X3 1M
Y3=HI+Z3J 2M

Total 14M 5M

Scalar multiplication is the basic and most time consuming operation in ECC; the computation of

this operation includes three mathematical levels: scalar arithmetic, point arithmetic and field

arithmetic. The mathematical hierarchy of ECC scalar multiplication is depicted in Figure 2.3.

Scalar arithmetic is at the highest level of the hierarchy, and it is for the point

multiplication. Point arithmetic is for point operation such as PADD and point double,

and it is at the middle level. The lowest level is of the finite field arithmetic including

field multiplication, field inversion, field squaring and field addition. The cost of field

addition is negligible in the finite field GF(2m) when compared with the field inversion

(equivalent cost of 10 field multiplications) and field squaring (equivalent cost of 0.2

field multiplication).

Scalar multiplication replies on the point operations over the elliptic curve. Numerous

methods for scalar multiplication can be found in the literature. Good surveys have been

conducted in [24] [25]. The straightforward double-and-add scalar multiplication

algorithm (also called binary algorithm) is the traditional method for computing the

scalar multiplication kP. The double-and-add algorithm is based on the binary

expansion of the scalar k as 0's and 1's, and can be computed by scanning the bits of k =

37

(km−1, ..., k0) from left to right (See Algorithm 2.1) or right to left (See Algorithm 2.2)

and perform PDBL for each bit, and PADD whenever the bit value ki = 1.

Figure 2.3: Mathematical hierarchy of ECC scalar multiplication

In Algorithm 2.1, PDBL is always performed in Step 2.1 regardless of the bit value,

while PADD is only performed in Step 2.2 if the bit value ki = 1. Likewise, in

Algorithm 2.2, PADD is performed in Step 2.1 only if the bit value ki = 1, while PDBL

is always performed in Step 2.2.

Algorithm 2.1 Double-and-add elliptic curve scalar multiplication method (left-to-right)

Inputs: P: Base Point, k: Secret key.

Outputs: kP.

1: R[0] ĸ P

2: for i = m-2 down to 0 do

2.1: R[0] ĸ 2R[0]

2.2: if ki = 1 then R[0] ĸ R[0] + P

2.3: end for

Return R[0].

38

Algorithm 2.2 Double-and-add elliptic curve scalar multiplication method (right-to-left).

Inputs: P: Base Point, k: Secret key.

Outputs: kP.

1: R[0] ĸ O, R[1] ĸ P

2: for i = 0 to m-1 do

2.1: if ki = 1 then R[0] ĸ R[0] + R[1]

2.2: R[1] ĸ 2R[1]

2.3: end for

Return R[0].

2.5. Elliptic Curve Encryption

After being studies for hundred years, the practical use of the elliptic curves in public key

cryptography was independently invented by Koblitz [18] and Miller [26], in the mid of 1980's.

Since then, researchers proposed several approaches for the utilization of elliptic curves for

encryption and decryption process, where elliptic curve Diffie-Hellman and elliptic curve

ElGamal [17] are considered the most famous public key protocols relevant to elliptic curves.

2.5.1 Elliptic Curve Diffie-Hellman Protocol

Elliptic Curve Diffie-Hellman protocol is based on discrete logarithm problem, mutually

invented by Diffie and Hellman in 1976 [27] as key exchange equivalent in elliptic curve

cryptography. In Elliptic Curve Diffie-Hellman Protocol, if the private key of A, and its public

key are denoted by are kA and PA = kAP respectively, the private key of B, and its public key are

denoted by are kB and PB = kBP respectively, under a trusted public key infrastructure where P is

the base point of the elliptic curve. The shared secret key S between A and B can be generated by

computing kAPB and kBPA by A and B respectively. In addition, the message encryption is

39

performed by inserting the shared secret key into the the x-coordinate of Pm = (xm, ym) [17]. The

result cipher text point Pc, a point on the elliptic curve, is given by

Pc = Pm + S

On the other side, to message decryption process is implemented by subtracting the shared secret

key from the cipher text point Pc to give the plaintext point Pm given by

Pm = Pc – S

2.5.2 Elliptic Curve ElGamal Protocol

Elliptic Curve ElGamal protocol is also based on discrete logarithm problem, invented by

ElGamal in 1984 [6], as encryption and digital signature scheme. In Elliptic Curve ElGamal

protocol, if B wants to encrypt and send a message point Pm to user A, B chooses a random

integer l and generates the cipher text Cm which consists of the following pair of points:

Cm = (lP, Pm + lPA)

The cipher text pair of points uses A’s public key, where only user A can decrypt the plaintext

using his/her private key. To decrypt the cipher text Cm, the first point in the pair of Cm, lP is

multiplied by A’s private key to get the point kA (lP). This point is subtracted from the second

point of Cm to produce the plaintext point Pm.

The complete decryption operations can be summarized in the following equation:

Pm = (Pm + lPA) – kA (lP) = Pm + l (kA P) – kA (lP)

2.5.3 Elliptic Curve Discrete Logarithm Problem

The security of elliptic curve cryptosystems is based on the intractability of Elliptic Curve

Discrete Logarithm Problem (ECDLP). The ECDLP is best defined as follow:

40

Let E be an elliptic curve defined over a finite field, and P and Q are two distinct points on E, the

ECDLP is the problem of finding an integer k, where 0 ≤ k ≤ m – 1, such that Q = kP. P is the

base point, and k is the elliptic curve discrete logarithm of Q with respect to P (i.e., k = logp (Q)).

The strength of the ECDLP is subject to the precise selection of the parameters. To date, Pollard–

ȡ algorithm [28] is known to be the most efficient algorithm for solving the ECDLP. Even with

the ECDLP's parallelized version given by Gallant et. al. [29], the Pollard–ȡ algorithm requires

an average of ξ݊, where n represent the number of points on the elliptic curve.

2.6. Summary

This chapter provides necessary background on ECC, including the GF(2m) finite field arithmetic,

ECC arithmetics and ECC operations such as scalar multiplication, encryption, and discrete

logarithm problem.

In GF(2m), elements are presented in different basis, where the majority are represented using (a)

normal basis, or (b) polynomial basis. If ECC efficient hardware implementation is a major

requirement, normal basis is a preferable option since field operations in normal basis are limited

to light arithmetics such as rotation, shifting and exclusive-ORing which are known for efficient

implemented in hardware.

Scalar multiplication is the basic and most time consuming operation in ECC. At the point

operation level, the scalar multiplication is represented by a series of PADD and PDBL

operations. At the field arithmetic level, the point operation involves field multiplication, field

inversion, field squaring and field addition. Thus, efficient ECC implementation will require

careful implementation at point operation and field arithmetic levels.

Several projective coordinate systems have been proposed to reduce the number of inversions in

scalar multiplication to only one single inversion. Lopez-Dahab projective coordinate system

41

requires less number of field multiplications as compared to other existing projective coordinate

systems. Accordingly, Lopez-Dahab projective coordinate system has been selected for the

implementations presented in this thesis.

Being the core of elliptic curve cryptosystems security, the intractability of the elliptic curve

discrete logarithm problem has been also discussed in this chapter.

42

CHAPTER 3

Wireless Sensor Networks

3.1 Background on WSN

Wireless sensor networks (WSN) [30] [1] are ad hoc networks consist of hundreds or even

thousands of small sensor nodes with limited resources are based around a battery powered

microcontroller. These nodes are equipped with a radio transceiver, and are capable to

communicate with each other and with one or more sink nodes that interact with the outside

world. In addition, these nodes are furnished with a set of transducers through which they acquire

data about the surrounding environment, and receive commands via the sink to assign data

collection, data processing and data transfer tasks. The number of nodes participating in a sensor

network is mainly determined by requirements relating to network connectivity and coverage, and

by the size of the area of interest. An example is illustrated in Figure 3.1.

Internet Wireless Sensor Network

Sink Node

Sensor Node

E

Event

User

Figure 3.1: A Wireless Sensor Network

43

There exist a large number of different application scenarios for WSN [30]: examples are health

monitoring, industrial control, environment observation, as well as office and even military

applications. For example, in the health monitoring applications, WSN can be used to remotely

monitor physiological parameters, such as heartbeat or blood pressure of patients, and sends a

trigger alert to the concerned doctor according to a predefined threshold. In addition, sensor nodes

may be deployed in several forms: at random, or installed at deliberately chosen spots.

3.1.1 Hardware Architecture of WSN nodes

A basic WSN node (also known as mote) comprises five main components (Figure 3.2) which are

capable of interacting with their surrounding area through different sensors, performing data

processing, and communicating data wirelessly with other nodes. The main components of the

WSN node are: Controller, memory, sensors and actuators, communication device, and power

supply.

Temp.

Others

Light

Motion

Sensor

Other Components Memory

Microcontroller

Power Unit

Transceiver:

Communication

Device

Figure 3.2: WSN Node Main Components

The controller is the core component of a WSN node. There are different options for the

controller, where microcontroller is the best option that satisfies the need for general purpose

processing, optimized for embedded applications, and low power consumption. Examples of

microcontrollers are Texas Instruments MSP430 (16-bit RISC core, up to 4 MHz), Atmel

Atmega128L (8-bit controller, larger memory than MSP430, and slower), where sensor nodes

44

such as Mica2 Mote, and Mica2dot use the Atmel Atmega128L microcontroller [31]. The main

function of the controller is to collect and process data captured by the sensors, and most

importantly decides when and where to send it. At the same time, monitoring the actuator

behavior, the controller receives data from other sensor nodes.

In addition to the microcontroller, the node includes a RAM (for data) and ROM (for code)

memory chips of limited capacity. The communication device of the node uses a radio transceiver

to send and receive data (captured, or requests/commands) to or from other sensors or base

stations. Sensors with different types can be directly connected to the node or integrated in a

board and connected to the node through an extension.

Major hardware platform for WSN nodes are listed in Table 3.1. The most popular motes [31] are

Mica2, MicaZ, and TelosB. The Mica2 platform is equipped with an Atmel Atmega128L and has

a CC1000 transceiver. Intel has designed its own Imote that introduce various enhancements in

the design over available mote, where the CPU processing power capacity is increased, together

with the main memory size for on-board computing and improved radio reliability. In the Imote, a

powerful ARM7TDMI core is complemented by a large main memory and non-volatile storage

area; on the radio side, Bluetooth has been chosen.

TinyOS is the known operation system for WSN nodes, and it is supported by Btnode, Imote, Iris,

Mica, Mica2, MicaZ, SenseNode, TelosB, T-Mote Sky, and Shimmer. Contiki, Mantis OS, SOS

and Microsoft .NET Micro are other operating system supported by the nodes [31].

3.1.2 Applications of WSN

WSN are envisioned to play an important role in a wide variety of areas, such as critical military

surveillance applications, forest fire monitoring, building security monitoring, child education,

and micro-surgery are few examples of its applications [32]. In these networks, a large number of

45

sensor nodes are deployed to monitor a vast field, where the operational conditions are most often

harsh or even hostile.

Table 3.1: Major Hardware Platform for WSN

Mote type CPU speed (MHz) Prog. Mem (MB) RAM (KB) Radio freq (MHz)

Mica2 16 128 4 433

MicaZ 16 128 4 2400

Cricket 16 128 4 433

TelosB/Tomte 16 48 10 2400

Imote2 13 – 416 32 256 2400

Table 3.2: WSN's Applications

Area Applications

Military - Enemy tracking and detection

- Security threat detection

- Military situation awareness [33]

- Battlefield surveillance [34]

Environment - Environmental data tracking

- Forest fire monitoring

- Fire/water detectors [35]

Habitat - Animal tracking

Industry - Inventory system [34]

- Product quality monitoring [32]

Health - Monitoring people locations and health conditions [34]

- Sensors for: blood flow, respiratory rate, ECG

(Electrocardiogram), pulse oxymeter, blood pressure, and oxygen

measurement [36]

- Monitor patients and assist disabled patients [32]

Smart Home/Office - Life quality improvement

Automotive - Coordinated vehicle tracking [33]

46

Same as WSN nodes can be utilized for environment monitoring; it can similarly be applied to

monitor the behavior of human being. In the Smart Kindergarten project at UCLA [37],

wirelessly-networked, sensor-enhanced toys and other classroom objects supervise the learning

process of children and allow unremarkable monitoring by the teacher.

3.2 Security Issues in WSN

3.2.1 Constraints in WSN

WSN consists of a large number of sensor nodes which, and due to the limited energy and tiny

size, have severe resources constraints in terms of processing power, storage capacity, and

communication bandwidth. Because of these constraints, applying conventional security design

for normal wired network becomes very challenging in WSN. To overcome this issue, and ensure

a customized security measures and mechanism for WSN, it is essential to learn about these

constraints and how it introduce security vulnerability or affect security measures for the WSN

[38]. The major constraints of a WSN are listed below.

i. Energy: Energy is the main constraint for WSN, and because of the location setup of the

WSN nodes, recharging nodes batteries is not always possible, and in most cases it is

impractical and not feasibility. Power consumption constrains for nodes in the case of (1)

sensor transducer, (2) communication among sensor nodes, and (3) microprocessor

computation. Communication is more costly than computation in WSN (power consumption

of transmitting one bit is equivalent to computing 800 to 1000 instructions [39]). Thus, higher

security levels for WSN correspond to extra energy consumption [40].

ii. Memory: Memory and storage space is another constraint in WSN due to the node tiny size.

In general, the memory of the node consists of flash memory (stores downloaded application

code) and RAM (stores application programs, sensor data, and intermediate results of

47

computations). It is not always possible to run complex algorithms like public key

cryptography as a security measure since the operating system and application code would

use huge part of the memory. Hence the majority of the current security algorithms are

infeasible in these sensors [41].

iii. Communication: The communication in WSN is connectionless and thus it is unreliable by

default. This unreliability in its communication is a serious security threat to WSN nodes and

may cause damaging or loosing communicated packets among the nodes. Some applications

may not tolerate having damaged or lost packets, and thus require implementing packet

recovery schemes, which involve extra cost (energy, memory, time). On the other side, in

some situations, packet collision may occur due to the broadcast nature of the communication

in WSN, and thus it may require retransmission of the packet [32].

3.2.2 Security Requirements in WSN

In addition to the above mentioned constraints in the WSN and since these networks are usually

deployed in remote places and left unattended with no control and monitoring, these networks are

vulnerable to numerous security threats that can adversely affect their proper functioning.

Moreover, the characteristics of WSN are not limited to those of the conventional computer

network, but it has many unique ones. In most of cases, critical information is frequently

exchanged among sensor nodes through insecure wireless channels, it is therefore crucial to add

security measures. Thus, in addition to the traditional security requirements such as data

confidentiality, integrity, authenticity, and availability, WSN also require freshness, self-

organization, secure location, and time synchronization. Brief on each security required service

for WSN are listed below:

48

i. Confidentiality: Data can only be understandable by the authorized nodes. For instance, data

captured by a sensor node must not be shared with unauthorized nodes [41], which require a

strong key mechanism for key distribution, where these keys will be used to encrypt sensors

ID, public key, location, etc. as a countermeasure against traffic analysis attacks.

ii. Integrity: Data is not tempered with by any unauthorized node. In some cases, an intruder

intends to change the captured data by the node to introduce confusion in the decision

process.

iii. Authenticity: Communicating node is the one that it claims to be. Also, this is applied to the

received data packet be verified that have come from the known sender (as claimed) and not

from an adversary. Message authentication code (MAC) is a well know technique used to

ensure data authentication when communicated between two nodes. The MAC is generated

using a share secret key between the nodes. Secure routing and reliable packet is major focus

of authentication for WSN.

iv. Availability: Service is available regardless the presence of a security attack, namely the

Denial of Service (DoS) attacks. The DoS attack usually refers to an adversary’s attempt to

disrupt, subvert, or destroy a network. However, a DoS attack can be any event that

diminishes or eliminates a network capacity to perform its expected functions [42].

Approaches used to countermeasure the DoS are mainly by adding extra communication

means, or introducing central control system for successful delivery insurance.

v. Data freshness: Data is current and no replay of old messages by adversary. In the absence

of a proper secure mechanism for data freshness, an adversary in WSN may launch a replay

attack using old secret shared key to assume secure message communication among the

nodes. To defend against such replay attack, data packet may contain a nonce or an

49

incremental counter (linked to time) to validate the freshness of the communicated data

packet.

vi. Self-organization: Due to the dynamic nature of WSN, it is not always viable to adopt a

secure communication mechanism among the nodes and the base station, that relies on

preinstalled shared key mechanism [43]. Nodes in a WSN should self-organize among

themselves to satisfy the need of multi-hop routing protocols, and support deployment of key

management schemes in the network.

vii. Secure localization: Accurate location of each node in a WSN must be securely

communicated. In many applications for WSN, in addition to the captured data, the data

packet communicated with other nodes or base station must contain information about the

accurate node location. Different techniques are used for securing the node location, such as

Verifiable Multilateration (VM) [44], and Secure Range-Independent Localization (SeRLoC)

scheme [45].

viii. Time synchronization: Time synchronization is critical to most of the applications in WSN,

in addition to its important role in node accurate and secure location. Time synchronization is

required for collaborative data processing, signal processing techniques, and all security

mechanisms for WSN.

3.2.3 Security Issues in WSN

WSN suffer from many constraints in terms of energy consumption, processing power, storage

capacity, and communication bandwidth. In addition, this network uses an insecure wireless

communication media, and most importantly it is vulnerable to physical attacks since it is

unattended. These constraints make WSN more susceptible to various types of attacks. These

attacks can be categorized as [34]:

50

i. Attacks on secrecy and authentication: Major external attacks on the secrecy and

authenticity of WSN communication such as eavesdropping, packet replay attacks, and

modification or spoofing of packets can be defeated by implementing standard cryptographic

techniques.

ii. Attacks on network availability: DoS is a security attacks against the availability of WSN.

iii. Stealthy attack against service integrity: In a stealthy attack, the goal of the attacker is to

make the network accept a false data value. For example, an attacker compromises a sensor

node and injects a false data value through that sensor node. In these attacks, keeping the

sensor network available for its intended use is essential. DoS attacks against WSN may

permit real-world damage to the health and safety of people [42].

Moreover, since these networks are usually deployed in remote places and left unattended, it is

crucial to implement security measures against physical attacks such as node capture, physical

tampering, etc. A number of propositions exist in the literature for defense against physical attack

on sensor nodes [42] [46] [47] [48] [49].

3.3 Implementations of ECC in WSN

Efficient computation of Public Key Cryptosystems (PKC) [2] in sensor nodes (e.g., [50] [51]

[52] [53]) has been intensively investigated by researchers. Major problem with the sensor nodes

as soon as it comes to cryptographic operations is their extreme constrained resources in terms of

power consumption, space, and time delay, which limit the sensor capability to handle the

additional computations required by cryptographic operations. Nevertheless, PKC is indeed

shown to be feasible in WSN (e.g., [52] [53]) by using ECC. This is because, in comparison to

traditional cryptosystems like RSA and ElGamal, ECC offers equivalent security with smaller

51

key sizes, in less computation time, with lower power consumption, as well as memory and

bandwidth savings.

3.3.1 Hardware Implementations

This section presents a study of hardware implementations of ECC in WSN. A critical study of

the underlying finite field, representation basis, occupied chip area, consumed power, and time

delay performances of these implementations is conducted.

Several software implementations of ECC in WSN have been reported [52] [53] [54] [55] [56].

The advantages of software implementations include ease of use, ease of upgrade, portability, low

development cost and flexibility. Their main disadvantages, on the other hand, are their lower

performance and limited ability to protect private keys from disclosure compared to hardware

implementations. These disadvantages have motivated many researchers to investigate efficient

architectures for hardware implementations of ECC in WSN. Many hardware implementations of

ECC in WSN have been reported [57] [58] [59] [60] [61] [62] [63]. Most of these

implementations were for ECC defined over GF(2m) [59] [60] [61] [62] [63], and only

implementations in [57] [58] [59] were defined over GF(p).

The first hardware implementation of ECC was reported in 2005 by Gaubatz et. al. [57] [58] over

GF(p). A custom-designed low power co-processor was presented in [59] [60]. The architecture

of the presented co-processor occupies a chip area equivalent to 18,720 gates, using TSMC 0.13

ȝm CMOS standard cell technology, and consumes less than 400 ȝW of power at a clock

frequency of 500 kHz. Field operations are implemented in a bit-serial fashion to reduce the area.

Figure 3.3 shows the block diagram of the arithmetic unit used in [57] [58].

Wolkerstorfer [59] in 2005 implemented an ECC processor over dual-field performing both prime

and binary field operations using polynomial basis. The presented processor has an area

52

complexity of around 23,000 gates implemented in 0.35 ȝm CMOS technology, operates at 68.5

MHz, consumes 500 ȝW of power and features a latency of 6.67 ms for one point multiplication.

Figure 3.4 presents the architecture of the proposed processor in [59].

Batina et al. [60] in 2006 reported a low-power ECC processor over the binary field GF(2131)

using polynomial basis. The consumed power in the presented processor in [16] was less than 30

ȝW when the operating frequency is 500 kHz. The chip area of the presented work in [60]

requires 6,718 gates using 0.13 ȝm CMOS technology.

Bertoni et al. [61] in 2006 proposed an efficient ECC coprocessor over GF(2163) using polynomial

basis. It computes the scalar multiplication in 17 ms at 8 MHz. The reported chip area was 11,957

gates using the 0.18 ȝm CMOS technology library by ST Microelectronics. The consumed power,

on the other hand, was 305 ȝW. Figure 3.5 depicts the structure of the proposed coprocessor in

[61].

Kumar and Paar [62] in 2006 reported an ECC processor over GF(2m) using polynomial basis.

The word size range of the implemented processor was between 113 and 193 bits. The presented

architecture in [62] consists of three units: GF(2m) addition (ADD), GF(2m) multiplication

(MUL), and GF(2m) squaring (SQR) (See Figure 3.6). The area of the presented designs in [62] is

between 10 k and 18 k gates on a 0.35 ȝm CMOS technology.

Recently, Portilla et al. [63] in 2010 reported an implementation of ECC over GF(2m) using

polynomial basis on an FPGA, which incorporates a mixed solution based on an 8052 compliant

microcontroller and a Xilinx XC3S200 Spartan 3 FPGA.

53

Figure 3.3: Block Diagram of the Arithmetic Unit Presented in [57] [58].

An additional XC2V2000 Virtex 2 FPGA is attached to the custom platform due to size

limitations. The implemented field multiplier is generic and supports curve sizes from 163 up to

571 bits. The reported chip area is 98275 and 180317 gates for the word sizes 283 and 571 bits

respectively, using the Xilinx XC2V2000 Virtex 2 FPGA. The reported power consumption, on

the other hand, is 253 and 484 mA at 25 MHz for the word sizes 283 and 571 bits respectively.

54

Figure 3.4: Architecture for ECC Processor in [59].

Figure 3.5: Structure of the 3-register coprocessor presented in [61].

55

Figure 3.6: The ECC processor presented in [62].

3.3.2 Discussion on the Reviewed Hardware Implementations

 The key focus of this section is in studying the hardware implementations of ECC in WSN, and

emphasizing on the underlying finite field, representation basis, occupied chip area, consumed

power, and time delay performances of these implementations (See Table 3.3). As shown in

Table 3.3, the majority of the reported implementations used the GF(2m) binary fields [59] [60]

[61] [62] [63], and only two of these implementations used prime fields GF(p) [57] [58] [59].

This is due to the reason that GF(2m) has shown to be best suited for cryptographic applications

[25] [4]. Although it is known that normal basis representation provides more efficient hardware,

Table 3.3 shows that only polynomial basis was used for all hardware implementations that used

binary fields GF(2m) [59] [60] [61] [62] [63]. This opens an opportunity to explore and inspect

the performance of normal basis based ECC implementations in WSN.

56

Table 3.3: A Summary of hardware implementations of ECC in WSN.

Ref.
Underlying
finite field

GF(2m)
Representation
basis

Chip area
(Gates)

Consumed
power

Time
performance

[57]
[58]

GF(p)
Word size:
100 bits

18,720 using
TSMC 0.13 ȝm
CMOS technology

Under 400
ȝW at 500
kHz

410.45 ms for
one point
multiplication at
500 kHz

[59]

GF(p) and
GF(2m)
Word size:
192 bits

Polynomial
basis

23,000 using 0.35
ȝm CMOS
technology

500 ȝW at
68.5 MHz

6.67 ms for one
point
multiplication at
68.5 MHz

[60]
GF(2m)
Word size:
131 bits

Polynomial
basis

6,718 using 0.13
ȝm CMOS
technology

Less than 30
ȝW (when the
operating
frequency is
500 kHz)

115 ms for one
point
multiplication at
500 kHz

[61]
GF(2m)
Word size:
163 bits

Polynomial
basis

11,957 using the
0.18 ȝm CMOS
technology library
by ST
Microelectronics

305 ȝW at 8
MHz

17 ms for scalar
multiplication at
8 MHz

[62]

GF(2m)
Word size
[113, 131,
163, 193
bits]

Polynomial
basis

Between 10,000
and 18,000 using
0.35 ȝm CMOS
technology

[12.5, 16.8,
27.9, 38.8 ms]
for scalar
multiplication at
13.56 MHz.

[63]

GF(2m)
Word sizes
[283, 571
bits]

Polynomial
basis

Between 98,275
and 180,317 using
Xilinx XC2V2000
Virtex 2 FPGA

253, 484 mA
at 25 MHz

It computes the
scalar
multiplication in
[750, 3600 ȝs]
at 25 MHz.

Concerning the other parameters, the implementations in [59] and [62] performed ECC operation

(point multiplication) in short time (6.67 ms for [59] at 68.5 MHz, and 18 ms for [62] at 13.56

MHz), but at the cost of high operating frequency and power consumption of 500 ȝW and an area

57

between 10k and 23k gates. On the other hand, implementation in [58] performed ECC operation

in 410 ms at 500 kHz, consuming just less than 400 ȝW and occupying a chip area equivalent to

18,720 gates in 0.13 ȝm CMOS technology. The implementation in [60], however, is an

enhancement of [58]. The presented design in [60] performed ECC operation in 115 ms at 500

kHz, consuming less than 30 ȝW using 8,104 gates in 0.13 ȝm CMOS technology. The

implementation in [61], on the other hand, performed ECC in 17 ms at 8 MHz, consuming 305

ȝW and occupying a chip area of 11,λ57 using the 0.18 ȝm CMOS technology.

An important result of our study is found in the implementation of [63]. FPGAs were used in [63]

showing that FPGAs can be used in WSN. It has been believed for a long time that FPGAs are

not suitable for WSN applications because of their power consumption. However, the reported

work in [63] opens the opportunity of exploring the performance of FPGAs in terms of area, time

delay and power consumption.

3.3.3 Software Implementations

This section presents a study of software implementations of ECC over binary and prime fields in

WSN. An analytical study of the underlying finite field, representation basis, and performance of

these implementations is conducted.

Several ECC implementations in WSN have been reported [52] [53] [54] [55] [56] [57] [58] [59]

[60] [61] [62] [63] [7] [64] [65] [66] [67] [68] [69] [70]. Many researchers investigated the

efficient architectures for hardware implementations of ECC in WSN [57] [58] [59] [60] [61] [62]

[63]. Given the advantages of software implementations include ease of use, ease of upgrade,

portability, low development cost and flexibility; most of the research effort was on the software

implementations of ECC in WSN [52] [53] [54] [55] [56] [7] [64] [65] [66] [67] [68] [69] [70].

58

The first implementation was implemented by Gura et al. [53] in 2004. They implemented elliptic

curve point multiplication with 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) on

two 8-bit microcontrollers. With assembly code and instruction set extension on an 8-bit

Atmega128L processor, it took 0.81 s for ECC point multiplication on the 160-bit curve. Gura et

al. [53] also proposed a new hybrid multiplication method, reducing the calculation time to 0.59

s. The presented work in [53] used mixed projective coordinates and Non-Adjacent Forms

(NAFs) [71] to obtain optimized results. Inversion in [53] was implemented with the algorithm

proposed by Chang Shantz [72]. The code size of the implementation in [53] is 3.682 K.

Malan et al. [52] presented the first implementation of ECC over GF(2m) binary extension field

curves for sensor networks (on 8 bits Atmega128L chip (MICA2 mote)). Inspired by the design

of Dragongate Technologies Limited’s Java-based jBorZoi 0.9 [73], they implemented ECC

using a polynomial basis over GF(2m), with a 163-bit key on a Koblitz curve, spending an average

running time of approximately 34 s for point multiplication using just over 1 kilobyte of SRAM

and 34 kilobytes of ROM, and total energy consumption of 0.816 J for public key generation. In

[52], multiplication of points is achieved using Blake et al. [3] algorithm, while addition of points

is achieved using L´opez and Dahab [74] algorithm. Field multiplication is implemented using

L´opez and Dahab [75] algorithm, while inversion is implemented using Hankerson et al. [76]

algorithm.

Blaß and Zitterbart [7] in 2005 implemented the arithmetic of GF(2m) finite fields on the Atmels

8-bit Atmega128L microcontroller clocked at 7 MHz. The elements of the finite field of 113-bits

were represented by normal bases. Random point multiplication (RPM) was implemented using

an ECC version of the popular square-and-multiply algorithm for large number exponentiation as

described in [71] and [77]. Fixed point multiplication (FPM) took about 6.74 s and 17.28 s for

RPM, and ECDSA signature took 6.88 s and verification took 24.17 s with a total RAM of 208

59

Bytes and total ROM of 75.088 Kbytes. Blaß and Zitterbart [7] used offline pre-computation (of

certain points), handcrafting (handcrafted optimization) as well as the Comb method and the

double-and-add methods for point multiplication.

Haodong et al. [64] in 2005 implemented ECC over prime field, on TelosB mote (TPR2400)

using the SECG recommended 160-bit elliptic curve: secp160r1. Haodong et al. [64] used a

similar setup to the one in [63] using the hybrid multiplication method. Non-adjacent forms NAFs

technique in RPM and sliding window technique [78] were adopted in this implementation. They

achieved 3.13 s for FPM, and 3.51 s for RPM. For ECDSA implementation, generating a

signature consumed roughly 18.09 mJ energy and verification costs 36.61 mJ. The

implementation of [64] used 42.3 Kbytes ROM and 1.6 Kbytes RAM for ECDSA protocol, where

the ECC Library used ROM (13.8 Kbytes), and RAM (1.3 Kbytes).

Wang and Li [55] in 2006 implemented 160-bit ECC - secp160r1 - cryptoprocessor over GF(p)

on MICA mote sensors, achieved the performance 1.3 s for ECC signature generation and 2.8 s

for verification, where 1.24 s for FPM and 1.35 s for RPM (signature 1.60 s and verification 3.30

s on TelosB). They adopted the hybrid multiplication method [53] in assembly language with

column width d = 4. For modular reduction, the classic long division method was selected, that

take advantage of pseudo-Mersenne primes specified in SECG curves, and for modular inversion

an efficient Great Divide scheme [72] was adopted. Applied a mixed coordinate, and employed

pre-computation using the sliding window method [78] and NAF [71]. The code of the ECC

implementation is a total ROM of 75.2 Kbytes, and a total RAM of 3.06 Kbytes.

Yan and Shi [65] in 2006 implemented ECC over F2163 and implemented the basic binary

algorithm for point multiplication in 13.9 s and needs 12.412 Kbytes of memory, using fast

modular reduction on an 8-bit processor at a clock rate of 8 MHz (Atmega128L). For scalar

60

multiplication, they implemented the basic binary algorithm that requires about m/2 additions and

m doublings.

Ugus et al. [66] in 2007 presents an optimized implementation of EC-ElGamal on a MicaZ 8-bits

processor mote over GF(p) with 160 bits. They used the mutual opposite form (MOF) instead of

NAF. The performance of multiplications (with pre-computation) being executed with the MOF

is (1.03 s as execution time), and with 2 pre-computed points takes 0.57 s. The used memory was

4.079 Kbytes.

Liu and Ning [67] in 2008 implemented TinyECC; a configurable library for ECC operations in

WSN, on TinyOS with the underlying field primes p as pseudo-Mersenne primes. TinyECC [67]

implementation of 192-bit ECC over GF(p) on MicaZ (Atmega128L 8-bit) mote sensors,

achieved the performance of 2 s for ECC signature generation and 2.43 s for verification (Point

multiplication of 2.99 s). TinyECC [67] used the weighted projective (Jacobian) representation,

made use of the sliding window method (i.e. grouping a scalar k into s-bit clusters), adopted

optimized modular reduction using pseudo-Mersenne prime, and used the Hybrid Multiplication

to achieve computational efficiency.

Seo et al. [54] in 2008 presented TinyECCK (Tiny Elliptic Curve Cryptosystem with Koblitz

curve - a kind of TinyOS package supporting elliptic curve operations) an ECC implementation

over GF(2m) on 8-bit sensor motes using ATmega128L using polynomial basis. In [54],

TinyECCK with sect163k1 computed a scalar multiplication within 1.14 s on a MicaZ mote at the

expense of 5,592 Bytes of ROM and 618 Bytes of RAM. Furthermore, TinyECCK with

sect163k1 generated a signature and verified it in 1.37 s and 2.32 s with 13,748 Bytes of ROM

and 1,004 Bytes of RAM.

Szczechowiak et al. [56] in 2008 implemented ECC on two sensor nodes platforms; the 8-bit

Atmel ATmega128L processor (MICA2) and the 16-bit Texas Instruments MSP430F1611

61

processor (Tmote Sky). Szczechowiak et al. [56] uses the NIST k163 Koblitz curve over GF(2163)

binary field and over GF(p). The results show that a scalar multiplication took 2.16 s over binary

field and 1.27 s over prime field on the MICA2 with energy consumption of 50.93 mJ and 30.02

mJ respectively. On the other hand, it took 1.04 s over binary field and 0.72 s over prime field for

a scalar multiplication on the Tmote Sky mote with energy consumption of 10.76 mJ and 7.95

mJ. In [56], Szczechowiak et al. replaced standard C code with an assembly language specific for

each platform. The Comb method for point multiplication (using additional storage to accelerate

the calculations) described in [25] was used. Pre-computation was performed with window size w

= 4 resulting in 16 elliptic curve points stored in ROM.

C. Lederer et al [68] in 2009, implemented a 192-bit ECC over prime field (generalized-

Mersenne prime p = 2192 − 264 − 1) on the MicaZ motes. Using fixed-base comb method with 14

pre-computed points, it requires 0.71 s to compute a scalar multiplication. A scalar multiplication

using a random base point takes 1.67 s by applying window method with a window size of 4 (i.e.

14 pre-computed points), Based on the energy characteristics of the MicaZ mote [79], these

timings translate into energy consumption of 17.04 mJ and 40.08 mJ, respectively. The

implementation in [68] presented an improved version of Gura et al’s [52] hybrid method for

multi-precision multiplication that requires fewer single-precision additions. Also, it implemented

the reduction operation as described in [80].

Khajuria et al. [69] in 2009 implemented a 163-bit ECC over GF(2m) on 8-bit ATmega128L

MicaZ platform from Crossbow. In their approach, S. Khajuria et al., in [69] used Koblitz curves

and TNAF (Ĳ - adic non-adjacent form) with partial reduction modulo and consumes 28.1 s for

point multiplication, and the space consumption of this system is found to be 29.248 Kbytes in

ROM and 1.070 Kbytes in RAM. For field multiplication, the right-to-left comb method was

adopted.

62

Diego F et al. [70] in 2010 implemented a 163-bit ECC over GF(2m) and Kobliz curves on 8-bit

ATmega128L MicaZ platform. Diego F et al. [70] uses mixed addition with projective

coordinates, given that the ratio of inversion to multiplication is 16. For RPM by a scalar,

Solinas’ Ĳ - adic non-adjacent form (TNAF) representation with w = 4 was selected for Koblitz

curves (4-TNAF method with 4 pre-computation points) and the method due to L´opez and

Dahab was selected for random binary curves. For multiplying the generator, we employ the same

4-TNAF method for Koblitz curves; and for generic curves, we employ the Comb method [81]

with 16 pre-computed points. Point multiplications took 0.67 s (Koblitz curves), and 1.55 s

(Binary curve) for 163 bits.

3.3.4 Discussion on the Reviewed Software Implementations

The key focus of this section is in studying the software implementations of ECC over binary and

prime fields in WSN, and emphasizing analytical study of the underlying finite field,

representation basis, and performance of these implementations is conducted. For fair

comparison, the study covers only fixed word size ECC on the same word size for processor

mote. Those, implementations of 160-bit ECC over GF(p) on 8-bit processors [53] [55] [66] [56]

are presented in Table 3.4 and implementations of 163-bit ECC over GF(2m) on 8-bit processors

[52] [54] [56] [65] [69] [70] are presented in Table 3.5.

In Table 3.4, the implementation in Ugus et al. [66] is significantly the fastest (0.57 s) and the

implementation in Szczechowiak et al. [56] is the slowest (1.27 s) among all reported 160-bit

implementations on 8-bit. The performance gain in Ugus et al. [66] implementation is primarily

due to the use Mutual Opposite Form (MOF) instead of NAF and the use of the window and

comb methods for scalar multiplication. Figure 3.7 illustrates the performance comparison for

63

these implementations. Though it was excluded from the comparison, it is worthy highlighting on

the high performance of 0.71 s for 192-bit implementation in [68].

Table 3.4: 160-bits ECC over GF(p) in 8-bit processors in WSN

Ref. Year Performance (s)

Gura et al. [53] 2004 0.59

Wang and Li [55] 2006 1.24

Ugus et al. [66] 2007 0.57

Szczechowiak et al. [56] 2008 1.27

Figure 3.7: Implementation of 160-bits ECC over GF(p) in 8-bit processors in WSN

On the other side, the majority of the implementations over GF(2m) are carried out using

polynomial basis representation, expect for implementation in [7] that uses normal basis

representation. In Table 3.3, the implementation in Diego F et al. [70] is slightly the fastest (0.67

s) and the implementation in Malan et. al. [52] is the slowest (34.17 s) among all reported 163-

bits implementations on 8-bit. The performance gain in Diego F et al. [70] implementation is

primarily due to the use of Koblitz curves, and Solinas’ Ĳ - adic non-adjacent form (TNAF)

representation with w = 4. Figure 3.8 illustrates the performance comparison for these

0

0.5

1

1.5

[56] [58] [69] [59]

T
im

e
 (

s)

160-bits ECC over GF(p)

Performance

64

implementations. Despite the fact that it was excluded from the comparison, it is significant

stating that among the reported binary implementations; only one implementation is over normal

basis (Blaß and Zitterbart [7]).

Table 3.5: GF(2m) Polynomial basis 163-bit key 8-bit processor

Ref. Year Performance (s)

Malan et. al. [52] 2004 34.17

Yan and Shi [65] 2006 13.9

Seo et al. [54] 2008 1.14

Szczechowiak et al. [56] 2008 2.16

S. Khajuria et al. [65] 2009 28.1

Diego F et al. [70] 2010 0.67 (Koblitz curves)

Diego F et al. [70] 2010 1.55 (Binary curve)

Figure 3.8: Implementation of 163-bits ECC over GF(2m) in 8-bit processors in WSN

3.4 Summary

A study on both hardware and software implementations of ECC in WSN are presented in this

chapter. The study covered the underlying finite field, representation basis, occupied chip area,

0

10

20

30

40

[55] [68] [57] [59] [68] [73] -

Koblitz

Curve

[73] -

Binary

Curve

T
im

e
 (

s)

GF(2m) Polynomial basis 163-bit

Performance

65

consumed power, and time delay performances of these implementations. The study shows that

most of the reviewed hardware implementations were implemented on ASIC and only one was

FPGA. However, it has been believed for a long time that FPGAs are not suitable for WSN

applications because of their power consumption. Most of these implementations were

implemented over the binary fields GF(2m) and using polynomial basis representation. Despite

that normal basis representation in GF(2m) are more efficient in hardware implementations, all of

the reviewed implementations were implemented using polynomial basis representation. This also

opens an opportunity to explore the performance of ECC in WSN over GF(2m) using normal basis

representation.

For the software implementations of ECC in WSN, the study shows that the fastest prime field

implementation, among all reported ones that uses 160-bit on 8-bit, took 0.57 s. As for the

implementations over binary field, the study demonstrates that the majority of these

implementations are carried out using polynomial basis representation, expect for one

implementation that uses normal basis representation. Where the fastest binary field

implementation, among all reported ones that uses 163-bit on 8-bit, took 0.67 s.

66

CHAPTER 4

Power Analysis Attacks on ECC in WSN

and their Countermeasures

4.1 Introduction

As stated in Section 2.4 of Chapter 2, the scalar multiplication for Elliptic Curve Cryptosystems

(ECC) [3] [4] is decomposed into a series of Point Additions (PADD) and Point Doublings

(PDBL), and these point operations are the core for all ECC. The power and executing time

requirements for PADD are different from those for PDBL on Wireless Sensor Networks (WSN)

[1] nodes. In addition, the scalar multiplication algorithm performs PDBL for scalar bit value of

0, and PADD for bit value of 1, where the scalar represents the private key of the sensor mote.

Side Channel Analysis (SCA) attacks [8] exploit information leakage, such as power

consumption and execution time, during the execution of an ECC protocol on WSN nodes, and

thus will be able to learn about the entire private key as shown in Figure 4.1.

This chapter will provide an introduction to SCA attacks, with focus on the Power Analysis

Attacks (PAA) and their countermeasures. The chapter ends by remarks on the reviewed

countermeasures and a summary of the chapter.

67

Figure 4.1: Power Traces revealing the private key of the WSN Node [82]

4.2 Power Analysis Attacks

Major nodes for WSN, such as Imote2, and MicaZ for instance, are manufactured by using

CMOS (Complementary Metal-Oxide Semiconductor), where the logic inverter is its basic

building block as depicted in Figure 4.2. The CMOS logic inverter [83] consists of two transistors

namely P-channel and N-channel that serves as semiconductor switches and changes its status

(ON or OFF) based on the input voltage Vin. A high voltage signal in Vin corresponds to logic 1

and logic 0 for low voltage signal. If the input voltage Vin is low, then P-channel transistor is

conduction and N-channel is not conducting. In this case the current will flow from the supply

voltage Vdd to the output and thus Vout is high. Therefore, the CMOS inverter logic circuit gives

output 0 if the input is 1 and vice versa.

Hence, during the execution of a set of instructions, the consumed power by the device are

expected to constantly change. Most importantly, measuring such consumed power during each

clock cycle can be possible by using a resistor of one ohm value placed in series with the power

supply and using an oscilloscope to measure the voltage change across the resistor.

68

Figure 4.2: CMOS Inverter Logic Circuit [83]

In 1996, Paul Kocher introduced the power analysis procedure; then, in 1999 he introduced the

PAA. These attacks have become a major threat against tamper resistant devices [84]. PAA [84]

[85] allow adversaries to obtain the secret key in a cryptographic device, or partial information on

it, by observing the power consumption traces. This is a serious threat especially to mobile

devices such as WSN, smart cards, mobile phones, Radio Frequency Identity (RFID) [62] etc.

Thus, implementers need algorithms that are not only efficient, but also PAA-resistant.

However, without adopting suitable countermeasures, an FPGA implementation is as vulnerable

to power attacks as its software counterparts running on a processor. As a matter of fact, the

transistors switching inside the device can leak information about the operations performed.

The following subsection presents the two main PAA techniques: 1) The Simple PAA (SPA) and

2) The Differential PAA (DPA) attacks.

4.2.1 Simple Power Analysis (SPA)

The main idea of the SPA attacks [85] is to get the secret d using the side-channel leakage

information obtained through observing the power consumption from a single measurement trace.

69

For instance, as ECSM is the basic operation for ECC, and the most straightforward algorithm for

point multiplication on an elliptic curve is the double-and-add algorithm (See Algorithm 4.1),

where a PDBL is executed for each bit of the scalar and a PADD is executed only if the scalar bit

is equal to one. If the power consumption trace pattern of PDBL is different from that of PADD,

the side-channel leakage of the implementation reveals the presence of the PADD and thus the

value of the scalar bits and attackers can easily retrieve the secret key from a single side-channel

trace. Figure 4.3 shows the power trace for a sequence of PADD (represented by A) and PDBL

(represented by D) operations on ECC.

Figure 4.3: Power trace for a sequence of PADD and PDBL Operations on ECC

4.2.2 Differential Power Analysis (DPA)

In DPA attacks [85], the adversary makes use of the obvious variations in the power consumption

that are caused by multiple data and operation computations, and use statistical techniques to pry

the secret information. This attack uses a two round technique: data collection and data

processing. A DPA attack on ECSM is described in [86].

More advanced DPA attacks techniques applicable to elliptic curve cryptosystems, such as

refined power analysis (RPA) [87], zero power analysis (ZPA) [88], and doubling attacks [89]

were introduced.

70

i. RPA (also called Goubin-type DPA) [87] attack directs its attention to the existence of a point

P0 on the elliptic curve E(K) such that one of the coordinates is 0 in K and P0 ≠ O. RPA could

deduce the next bit of the scalar by computing power consumption of chosen message and

some chosen points on the elliptic curve.

ii. ZPA attack [88] is an extension of RPA attack. This attack is based on the observation that

that even if a point had no zero-value coordinate; the auxiliary register might take on a zero-

value. Thus with this attack, all points with zero power consumption are noticeable.

iii. Doubling attack (DA) [89] attack is based on the two queries; one is on some input P and the

other one is on 2P. The DA can detect when the same operation is done twice, i.e., exploits

the similar PDBL operations for computing dP and d(2P), where d represent the scalar. There

are two types of DA, normal and relative DA (relative doubling attack proposed by Yen et al.

[90]), where the relative DA uses a totally different approach to derive the key bit in which

the relationship between two adjacent key bits can be obtained as either di = di − 1 or di ≠ di − 1.

iv. In addition, Template Attack [91] is very similar to DPA attack (Two rounds technique:

Template building and matching), but requires access to a fully controllable device. In

Template building phases (also called profiling phase), the attacker constructs a precise

model of the wanted signal source, including a characterization of the noise. The matching

phase comprises the actual attack.

v. Carry-based Attack (CBA) [92] is an attack that does not attack the ECSM itself but its

countermeasures. This attack depends on the carry propagation occurring when long-integer

additions are performed as repeated sub-word additions.

vi. Moreover, an advanced statistical technique such as Principal Component Analysis (PCA)

[12] can be used by an attacker to perform PCA transformation on randomly switched PADD

and PDBL (as in ECSM using Montgomery ladder) and identify the key bit.

71

4.3 Countermeasures

Since 1996, many research efforts [8] [9] [86] [93] [94] [95] [96] [97] [98] [99] have been made

to secure ECC method implementations, in special the ECSM, against PAA. The major challenge

is to avoid additional computational cost, and to develop relatively fast cryptosystems without

compromising security, due to the nature of WSN as constrained devices.

4.3.1 Countermeasures for SPA

There are different strategies to resist SPA attacks. These strategies share the same objective,

which is to render the power consumption traces that are caused by the data and operation

computations during an ECSM independent from the secret key.

SPA attacks can be prevented by using one of the following methods:

1. Making the group operations indistinguishable (by processing of bits “0” and “1” of

multiplier indistinguishable by inserting extra point operations). As an example, the 'Double-

and-Add-Always' algorithm, introduced in [86] (As shown in Algorithm 4.1), and

Montgomery ladder [94] (as shown in Algorithm 4.2) ensures that the sequence of operations

appear as a PADD followed by a PDBL regularly.

'Double-and-Add-Always' algorithm [86] is highly regular, and it requires no pre-computation or

prior recoding. This algorithm requires m PDBL and m PADD regardless of the value of the

scalar multiplicand, and two temporary registers are needed to store the results of each iteration.

As for the Montgomery ladder [94], the execution time of the ECSM is inherently unrelated to the

Hamming weight of the secret scalar, and this algorithm avoids the usage of dummy instructions.

Montgomery ladder [94] resists the normal DA. However, it is attacked by the relative DA

proposed by Yen et al. [90]. Moreover, recent studies have shown that processing the bits of

multiplicand from left-to-right, as Montgomery ladder does, are vulnerable to certain attacks [89].

72

Algorithm 4.1 Double-and-Add-Always Elliptic Curve Scalar Multiplication Method

Inputs: P: Base Point, k: Secret key.
Outputs: kP.

1μ R[0] ĸ O

2: for i = m-1 down to 0 do

3μ R[0] ĸ 2R[0], R[1] ĸ R[0] + P

4μ R[0] ĸ R[ki]

5: end for

Return R[0]

Algorithm 4.2 Montgomery powering ladder Elliptic Curve Scalar Multiplication Method

Inputs: P: Base Point, k: Secret key.
Outputs: kP.

1μ R[0] ĸ P, R[1] ĸ 2P

2: for i = m - 2 down to 0 do

3: R[1 - ki] ĸ R[0] + R[1]

4: R[ki] ĸ 2R[ki]

5: end for

Return R[0]

In addition, the authors in [97] proposed secure (same security level as 'Double-and-Add-Always'

method [86] and the Montgomery method [94]) and efficient ECSM method (See Algorithm 4.3)

by partitioning the bit string of the scalar in half (Key splitting into half) and extracting the

common substring from the two parts based on propositional logic operations. The computations

for common substring are thus saved, where the computational cost is approximately (m/2)

PADD + m PDBL.

2. Using of unified formulae for PADD and PDBL through inserting extra field operations [93]

[95] [96] [9] [8] [98] [100] [101] [102], by rewriting the PADD and PDBL formulas so that

their implementation provides always the same shape and duration during the ECSM.

73

Algorithm 4.3 Propositional Logic Operations Based Elliptic Curve Scalar Multiplication Method
[97]

Inputs: P: Base Point, k: Secret key. B2 = (݀ଶ௠Ȁଶ… ݀ଶ௘ ….݀ଶଵ)2, B1 = (݀ଵ௠Ȁଶ… ݀ଵ௘ ….݀ଵଵ)2

Outputs: kP.

1μ R[0] ĸ R[1] ĸ R[2] ĸ R[3] ĸ O

2: for i = 1 to m/2 do /* scan B1 and B2 from LSB to MSB */

3: R[2 ଶୣ + ଵୣ] ĸ R[2 ଶୣ + ଵୣ] + P /* ADD */

4: P ĸ 2P /* DBL */

5: end for

6: R[1]ĸ R[1] + R[3], R[2]ĸ R[2] + R[3]

7: for i = 1 to m/2 do

8μ R[2]ĸ 2R[2]

9: end for

10μ R[1]ĸ R[2] + R[1]

Return R[1].

An arithmetic was proposed in [93] and refined in [98] together with the use of Edwards

coordinates for ECC as proposed by Bernstein and Lange in 2007 [103] uses the same formula to

compute PADD and PDBL. In addition, Hesse [95] and Jacobi form [96] elliptic curves achieve

the indistinguishability by using the same formula for both PADD and PDBL. Moreover, a

method proposed by Moller [8] performs ECSM with fixed pattern of PADD and PDBL,

employing a randomized initialization stage to achieve resistance against PAA. The same way,

Liadet and Smart [9] have proposed to reduce information leakage by using a special point

representation in some elliptic curves pertaining to a particular category, such that a single

formula can be used for PADD and PDBL operations.

3. Rewriting sequence of operations as sequences of side-channel atomic blocks that are

indistinguishable for SPA attacks [100]. The idea is to insert extra field operations and then

74

divide each process into atomic blocks so that it can be expressed as the repetition of

instruction blocks which appear equivalent (same power trace shape and duration) by SCA.

The atomic pattern proposed in [100] is composed of the following field operations: a

multiplication, two additions and a negation. This choice relies on the observation that during

the execution of PADD and PDBL, no more than two additions and one negation are required

between two multiplications.

To reduce the cost of atomic pattern of [100], Longa proposed in his PhD thesis [101] two

atomic patterns in the context of Jacobian coordinates. In [101] Longa expresses mixed

affine-Jacobian PADD formula as 6 atomic patterns and fast PDBL formula as 4 atomic

patterns. It allows performing an efficient left-to-right ESCM using fast PDBL and mixed

affine-Jacobian addition protected with atomic patterns. In addition, the authors in [102]

address the problem of protecting ECSM implementations against PAA by proposing a new

atomic pattern. They maximize the use of squarings to replace multiplications and minimize

the use of field additions and negations since they induce a non-negligible penalty.

4.3.2 Countermeasures for DPA

Same as in SPA attacks, there are different approaches and techniques [86] [87] [104] [81] [105]

[106] used to resist DPA attacks. In general, the traditional and straightforward approach is by

randomizing the intermediate data, thereby rendering the calculation of the hypothetical leakage

values rather impossible.

Coron [86] suggested three countermeasures to protect against DPA attacks:

1. Blinding the scalar by adding a multiple of (#E).

For any random number r and k’ = k + r * (#E), we have k’ * P = k * P since r * (#E) * P = O.

75

2. Blinding the point P, such that k * P becomes k * (P +R). The known value S = k * R is

subtracted at the end of the computation. Blinding the point P makes RPA/ZPA more

difficult.

In [89], the authors conclude that blinding the point P is vulnerable to DA since the point which

blinds P is also doubled at each execution. Thereafter, in [104], the authors proposed a

modification on the Coron’s [86] point blinding technique to defend against the DA. The

modified technique in [104] is secure against DPA attacks.

3. Randomizing the homogeneous projective coordinates (X,Y,Z) with a random Ȝ ≠ 0 to (ȜX,

ȜY, ȜZ). The random variable Ȝ can be updated in every execution or after each PADD or

PDBL, which will makes the collection of typical templates more difficult for an attacker.

Although randomizing projective coordinates is an effective countermeasure against DPA attacks,

it fails to resist the RPA as zero is not effectively randomized. Furthermore, if the device outputs

the point in projective coordinates, a final randomization must be performed; otherwise [107]

shows how to learn parts of the secret value.

Similar to Coron [86], Ciet and Joye [106] also suggested several similar randomization methods.

1. Random scalar splitting: k = k1 + k2 or k = [k/r] * r + (k mod r) for a random r.

Random scalar splitting can resist DPA attacks since it has a random scalar for each

execution. In addition, it helps preventing RPA/ZPA if it is used together with Blinding the

point P technique [10] [87] [108].

2. Randomized EC isomorphism.

3. Randomized field isomorphism.

In the same context, Joye and Tymen [105] proposed to execute the ECSM on an isomorphic

curve and to change the intermediate representations for each execution of a complete ECSM.

76

In [81], the authors presented a PAA resistant ECSM algorithm, based on building a sequence of

bit-strings representing the scalar k, characterized by the fact that all bit-strings are different from

zero; this property will ensure a uniform computation behavior for the algorithm, and thus will

make it secure against PAA attacks.

4.4 Remarks on the Reviewed Countermeasures

The main focus of this study is in highlighting on the PAA on ECC as a major security threat in

the context of WSN. In a point of fact, none of the proposed countermeasures against PAA on

ECC, which are suggested in literatures, have considered the case of WSN.

Given the resource constraints of WSN nodes, designing countermeasure methods against

PAA seems a non-trivial problem, and it should be a matter of tradeoff between the available

resources on WSN node and performance. Thus, some critical concerns need to be taken into

consideration while designing such countermeasures:

1. Do not include any dummy operations (limited battery life time), and

2. Do not limit the design to particular family of curves, and thus can be implemented in any

NIST standardized curves.

3. Immunity against DPA attacks may be carefully designed by combining several data

randomization countermeasures and selectively change the ordering of these countermeasures

with a time short enough to avoid a successful DPA attack.

4. Template attacks are serious security threats on WSN nodes especially when the template

building is simple and fast.

In addition, as shown in Figure 4.4, different attacks could be thwarted by one or more

countermeasures. For example, Random Projective Coordinate prevents three powerful attacks

(DPA, DA, and Template attack). However, it is worthy to emphasis on the fact that finding a

77

countermeasure against all know attacks is extremely costly, especially in the context of

constrained devices like WSN.

4.5 Summary

Taking into consideration the resource constraints of WSN nodes, its deployment in open

environments make these nodes highly exposed to PAA. This chapter presented a comprehensive

study of major PAA on ECC. The contributions of this chapter are as follows: First, we presented

a review of the major PAA and its countermeasures on ECC. Second, we made a graphical

presentation for the relation between PAA on ECC and its countermeasures. In addition, we

discussed the critical concerns to be considered in designing PAA on ECC particular for WSN.

Those, this chapter should trigger the need for intensive researches to be conducted in the near

future on the PAA on ECC in WSN nodes, especially that ECC is considered as the most feasible

PKC for WSN security.

Figure 4.4: PAA vs. Countermeasures

78

Although attacks like PAA in WSN are normally carried out in situations where the adversary can

control the target device [109], SPA attacks together with Template Attacks are still considered

serious security threats, and thus a robust a cost-effect security solutions should be

implementation to thwart these attacks.

79

CHAPTER 5

Architectures for ECC Cryptoprocessor

Secure against SCA

Majority of cryptoprocessors for Elliptic Curve Cryptosystems (ECC) [3] [4] in extreme

constrained resources such as sensor mote, Radio Frequency Identity (RFID) [62], and smartcards

have been proposed and implemented over the binary fields GF(2m) on Application Specific

Integrated Circuits (ASIC) and only few using Field Programmable Gate Array (FPGA) [12]

technology. Despite that normal basis representation in GF(2m) are more efficient in hardware

implementations, all of the reviewed implementations in this thesis were implemented using

polynomial basis representation [110]. In addition, although Power Analysis Attacks (PAA) [9]

are considered serious security threats on Wireless Sensor Networks (WSN) [1], none of the

reported implementations provides security against all known PAA.

Thus, it is crucial to design ECC cryptoprocessor architectures (See Figure 5.1 – typical

architecture for ECC coprocessor) for WSN implementations, and secure the cryptoprocessor

against PAA. In this chapter, four robust, secure against PAA, and high efficient GF(2m) elliptic

curve cryptoprocessors architectures based on innovative algorithms for ECSM are proposed. The

security advantages provided in these cryptoprocessors covers both the Simple Power Analysis

(SPA) and Differential Power Analysis (DPA) attacks [9] [10] by applying: (i) Point Addition

(PADD) operation delaying using buffer storage, (ii) Scalar splitting for cost saving and

80

additional complexity, and (iii) Complicated randomization technique for extra confusion to

secure against DPA attacks.

The merits of these four cryptoprocessors are compared to the regular secure elliptic curve

cryptoprocessor (ECCRG) which is used as a reference for such comparison. The following

sections and subsections provide details of the ECCRG and the four proposed cryptoprocessors;

namely:

1. ECCRG: 'Double-and-Add’-based ECSM cryptoprocessor architecture with resistance against

SPA attacks.

2. ECCB-SPA: Buffer-based ECSM cryptoprocessor architecture with resistance against SPA

attacks.

3. ECCSB-SPA: Split Buffer-based ECSM cryptoprocessor architecture with resistance against

SPA attacks.

On the other side,

4. ECCRB-DPA: Randomized Buffer-based ECSM cryptoprocessor architecture with resistance

against DPA, and

5. ECCRSB-SPA: Randomized Split Buffer-based ECSM cryptoprocessor architecture with

resistance against DPA attacks.

5.1 Architecture for regular GF(2m) Elliptic Curve

Cryptoprocessor

This section presents the architecture of a regular GF(2m) elliptic curve cryptoprocessor, named

ECCRG which is based on the 'Double-and-Add' algorithm and provides security against SPA

attacks. The proposed architecture is modeled using VHDL, stands for very high-speed integrated

81

circuit hardware description language, and is fully parameterized. The basic units of this

architecture are: 1. the main controller, 2. the data embedding unit, 3. the PADD and Point

Doubling (PDBL) units and 4. the field arithmetic units (adder, multiplier and inverter). In the

following subsections, these units are described in details (Figure 5.1).

MAIN CONTROLLER

POINT

DOUBLING
POINT

ADDITION

DATA

EMBEDDER

rst

clk

FIELD

ADDER
POINT

MULTIPLICATION

FIELD

INVRERTER

Registers

Control Data

Figure 5.1: Architecture of the ECC coprocessor

5.1.1 Main Controller

The 'Double-and-Add' algorithm has been selected for scalar multiplication (Algorithm 4.1). For

the encryption/decryption process, the selected encryption protocol is the elliptic curve Diffie-

Hellman protocol [69]. The pseudocode of the ECCRG cryptoprocessor is given in Algorithm 5.1.

The input of Algorithm 5.1 are: (1) the base point P, (2) the elliptic curve parameters a,b, (3) the

secret key k, (4) the encryption/decryption mode and (5) the plaintext/cipher text. The output is

either the cipher text or the plaintext depending on the encryption/decryption mode.

82

Algorithm 5.1 Pseudocode of the ECCRG Cryptoprocessor

Inputs: P: Base Point, k: Secret key; a, b: Elliptic curve parameters, Plaintext/Ciphertext,

Encryption/Decryption
Outputs: Ciphertext/Plaintext.

Scalar Scalar Multiplication (kP):

1: Algorithm 4.1(P,k)

Encryption/Decryption Process:

2: if (Encrypt) then

2.1: Embed the plaintext in random points on the elliptic curve

2.2: ADD (kP) to data points

2.3: Output (ciphertext)

3: else

3.1: ADD (− kP) to ciphered points

3.2: Extract the plaintext from the data points

3.3: Output (plaintext)

Referring to the cryptoprocessor pseudocode (Algorithm 5.1), scalar multiplication starts at Step

1 by executing the 'Double-and-Add-Always' ECSM algorithm (Algorithm 4.1). The encryption

process starts at Step 2 by embedding the plaintext into a random point on the elliptic curve using

"blinding the point" technique. The scalar multiplication result (kP) is added to this point to

produce a ciphered point. The decryption process (Step 3), however, subtracts (kP) from the

ciphered point.

5.1.2 Data Embedding

Data embedding is performed within the x-coordinate of a point on the elliptic curve. A random

number is picked to fill the 5 most significant bits and the remaining bits will contain the data to

be encrypted. If the x-coordinate is not a valid point on the elliptic curve, another random number

is picked until a valid elliptic curve point is obtained.

83

The checking procedure is as follows [111]:

 Recall the elliptic curve equation defined over GF(2m):

ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ଶݔܽ ൅ ܾ (Equation 5.1)

Where a, b ࣅ GF(2m) and b ≠ 0.

 Rewrite Equation 5.1 as

ଶݕ ൅ ൅ ݕݔ ݂ሺݔሻ ൌ Ͳ (Equation 5.2)

where ݂ሺݔሻ ൌ ଷݔ ൅ ଶݔܽ ൅ ܾǤ
 Let ݕ ൌ :Equation 5.2 becomes ,ݔݖ

ଶݖ ൅ ൅ ݖ ܿ ൌ Ͳ (Equation 5.3)

where

ܿ ൌ ݂ሺݔሻǤ ଶ (Equation 5.4)ିݔ

 Find the trace of c, the trace function is simply the parity function which can be easily

implemented by computing the XOR of all the bits.

 If the trace is 1, try another random number and repeat the check again. If the trace is 0, this

is a valid x-coordinate and proceed to recover the y-coordinate.

 By taking the square root of Equation 5.3, it can be rewritten as:

ଵȀଶݖ ൌ ݖ ൅ ܿଵȀଶ (Equation 5.5)

which can be also rewritten as:

௜ݖ ൌ ݖ௜ିଵ ൅ ܿ௜ (Equation 5.6)

84

 Since z + 1 is actually the complement of z in a normal basis, in one of the two solutions the

least significant bit will be 0 and the other one will be 1. We then further compute all the

other bits one by one.

 To compute the y value, simply multiply z by x.

5.1.3 Point Addition and Doubling

PADD and PDBL are performed using Lopez-Dahab projective coordinate system which takes

the form (x,y) = (X/Z, Y/Z2) [23]. PADD and PDBL require only 14 and 5 field multiplications

respectively (Table 2.3). The projective elliptic curve equation of the affine Equation 5.1 is given

by

ܻଶ ൅ ܻܼܺ ൌ ܺଷܼ ൅ ܽܺଶܼଶ ൅ ܾܼସ (Equation 5.7)

If Z = 0 in Equation 5.7, then Y2 = 0, i.e., Y = 0. Therefore, (1, 0, 0) is the only projective point

that satisfies the equation for Z = 0. This is the point at infinity O [23]. To convert an affine point

(x, y) into Lopez-Dahab projective coordinate, set X = x, Y = y, Z = 1. Similarly, to convert a

projective point back to affine coordinate, we compute x = X/Z, y = Y/Z2. The additive inverse

of a point P = (X, Y, Z) is the point (X, XZ+Y, Z) which is used at the end of the decryption

process [17].

The projective point operations formulas of Lopez-Dahab coordinate system [23] has been

reported only for the most-to-least version of the scalar multiplication algorithm. Alternatively,

PDBL and PADD formulas that are suitable for both versions of the scalar multiplication

algorithm are proposed in Table 5.1. Clearly, the doubling formula requires only 5 field

multiplications, 5 field squarings and 5 storage registers. PADD formula requires 14 field

multiplications, 6 field squarings and 8 storage registers.

85

5.1.4 Field Operations

One key advantage of normal basis representation is the simplicity of the squaring operation.

Field squaring is simply a cyclic shift operation. Field addition is a Boolean XOR operation and

is implemented using an m-bit XOR unit. Thus, only one clock cycle is required to perform either

of the two operations, i.e., field squaring or field addition.

Field multiplication is more complicated than addition and squaring. An efficient multiplier is

highly needed and is the key for efficient finite field computations. Massey-Omura multiplier was

selected for field arithmetic [112]. Since we are using FPGA as implementation technology to

evaluate our proposed architectures, we have adopted for implementing the bit-serial version of

the Massey-Omura multiplier to save on available FPGA resources. The Massey-Omura

multiplier requires only two m-bit cyclic shift registers and combinational logic. The

combinational logic consists of a set of AND and XOR logic gates (See Figure 5.2). The first

implementation of the Massey-Omura multiplier was reported by Wang. et. al. [113]. The space

complexity of the Massey-Omura multiplier is (2m – 1) AND gates + (2m – 2) XOR gates, while

the time complexity is TA + (1 + log2 (m – 1)) TX, where TA and TX are the delay of one AND

gate and one XOR gate respectively. One advantage of the Massey-Omura multiplier is that it can

be used with both types of the optimal normal basis (ONB) (Type I and Type II). Another

advantage is that it is a bit-serial multiplier and hence the same circuitry used to generate c0 can

be used to generate ci (i = 1,2, … m – 1) as shown in Figure 5.2 [114].

The encryption/decryption process requires only one inversion since we are using projective

coordinate (See Equation 5.4), while an inversion per trial is required for data embedding in a

valid x-coordinate. Thus, an efficient inverter is required. The selected inverter is the Itoh and

Tsujii inverter [115].

86

. . .

. . .

XOR

Plane

AND

Plane

m

m

AX

a0, a1, …., am-1

b0, b1, …., bm-1

cm-1, …., c1, c0

Figure 5.2: The bit-serial Massey–Omura multiplier of GF(2m) [112].

The dataflow of the Itoh–Tsujii inverter is shown in Figure 5.3. Figure 5.3 shows that Itoh–Tsujii

inverter requires three cyclic shift registers; one barrel shifter, one down counter and one

multiplier (note that only one multiplier is used while two are drawn in the dataflow diagram for

the purpose of clarity).

In Figure 5.3, the down counter s controls the barrel shifter r in each iteration. The barrel shifter r,

accordingly, controls the required number of squarings by the cyclic shift register q. The least bit

of the barrel shifter r0, on the other hand, decides if the multiplication of the content of the cyclic

shift register t by a is required or not. The Itoh–Tsujii Inversion algorithm is given in

Algorithm 5.2. Clearly, the inverter depends a lot on the field multiplier. The Itoh–Tsujii

Inversion algorithm requires only O (log2 (m)) multiplications, which is the best among other

inversion algorithms reported thus far [114].

87

Algorithm 5.2 Itoh–Tsujii Inversion Algorithm.

Inputs: a.
Outputs: l = a

-1

1: set s ĸ [log2(m-1)] – 1, set p ĸ a

3: for i = s down to 0 do

3.1μ set r ĸ shift m − 1 to right by s bit(s)

3.2μ set q ĸ p

3.3: rotate q to left by [r/] bit(s)

3.4: set t ĸ p x q

3.5: if least bit of r = 1 then

3.5.1: rotate t to left by 1 bit, p ĸ t x a

3.6: else

3.6.1: p ĸ t

3.7: s ĸ s – 1

4: rotate p to left by 1 bit

5: set l ĸ p

return l

88

Cyclic Shift

Reg. p

Cyclic Shift

Reg. q

Cyclic Shift

Reg. t

Multiplier

a

m-bits

m-bits

m-bits

m-bits

m-bits

Barrel Shifter

r

(m-1)-bits

m-1

Log2(m-1) bits Multiplier

m-bits

a

0

1

m-bits

a-1

m-bits

r0

Down

Counter s

[Log2(m-1)]-1bits

[Log2(m-1)]-1

F

ig
ur

e
 5.

3:

D
at

af
lo

w
 o

f
th

e
It

oh
 a

nd
 T

su
ji

i i
nv

er
te

r

89

Table 5.1: Lopez-Dahab Projective Coordinate System

PDBL PADD

T1 ĸ X1
T2 ĸ Y1

T3 ĸ Z1

T4 ĸ ξ

T3 ĸ ଷଶ

T3 ĸ T3 x T4
T4 ĸ ସଶ

T1 ĸ ଵଶ

T3 ĸ T1 x T3 = Z2
T1 ĸ ଵଶ

T1 ĸ T1 + T4 = X2

T2 ĸ ଶଶ

if a ≠ 0 then
 T5 ĸ a
 T5 ĸ T3 x T5

 T2 ĸ T2 + T5

T2 ĸ T2 + T4

T2 ĸ T1 x T2

T4 ĸ T3 x T4

T2 ĸ T2 x T4 = Y2

T1 ĸ X0
T2 ĸ Y0

T3 ĸ Z0

T4 ĸ X1

T5 ĸ Y1

T6 ĸ Z1

T7 ĸ T3 x T6 = E

T1 ĸ T1 x T6 = B1

T4 ĸ T3 x T4 = B0

T1 ĸ T1 + T4 = D
T3 ĸ ଷଶ

T6 ĸ ଺ଶ

T3 ĸ T3 x T5 = A0

T6 ĸ T2 x T6 = A1

T6 ĸ T3 + T6 = C
T2 ĸ T1 x T7 = F
T1 ĸ ଵଶ

T8 ĸ ଻ଶ

T8 ĸ a x T8

T8 ĸ T2 + T8

T5 ĸ T1 + T8 = G
T8 ĸ T2 + T6 = H

T6 ĸ ଺ଶ

T6 ĸ T6 + T8

T6 ĸ T5 + T6 = X2

T4 ĸ T1 x T4

T4 ĸ T4 x T7

T4 ĸ T4 + T6 = I

T3 ĸ T1 x T3

T3 ĸ T3 + T6 = J
T4 ĸ T4 x T8

T2 ĸ ଶଶ = Z2

T2 ĸ T2 x T3

T8 ĸ T3 + T4 = Y2

90

5.2 Proposed Architectures for ECC Secure against

SPA

In this section, two proposed architectures for elliptic curve cryptoprocessors are presented; these

cryptoprocessors provide resistance against SPA attacks. The first cryptoprocessor is Buffer-

based, called ECCB-SPA, and it uses an ECSM method that is based on delaying the PADD

operation using buffering technique (with one buffer); whereas the second cryptoprocessor is

Split Buffer-based, called ECCSB-SPA, and it uses an ECSM method that is based on splitting the

scalar into two equal length partitions and delaying the PADD operation using buffering

technique (with three different buffers).

5.2.1 The ECCB-SPA Cryptoprocessor

This subsection introduces the Buffer-based cryptoprocessor (ECCB-SPA), it uses a scalar

multiplication method that is derived from the binary method (See Algorithm 2.2), and is based

on delaying the PADD operation using buffering technique. The pseudocode of the Buffer-based

ECSM method is given in (Algorithm 5.3).

5.2.1.1 Background Information on the ECCB-SPA Cryptoprocessor

In order to give background information on the ECCB-SPA cryptoprocessor, it is signification to

recall that in the right-to-left version of the binary method (See Algorithm 2.2) of the ECSM,

PADD is only performed if the bit value ki = 1, while PDBL is always performed regardless of

the bit scalar value. The mathematical equation for the binary method is given below:

݇ܲ ൌ ෍ ʹ௜݇௜ܲ ௠ିଵ
௜ୀ଴ (Equation 5.8)

91

where k is the scalar, P is the base point.

In Equation 5.8, the scalar multiplication result is the conditional summation of PDBL operation

of P at position i of the scalar where ki = 1. In addition, Equation 5.8 can be rewritten as below:

݇ܲ ൌ ʹ଴ܲȁሺ௞೚ ୀ ଵሻ ൅ ʹଵܲȁ൫௞భ ୀ ଵ൯ ൅ ʹଶܲȁ൫௞మ ୀ ଵ൯ ൅ڮ ʹ௠ିଵܲȁ൫௞೘షభ ୀ ଵ൯ (Equation ‎5.9)

In Equation 5.9, the scalar is divided into a number s of partitions, we call it "scalar partitioning

on 1's", where each partition is associated with a computed point (2iP | ki = 1) to keep its

significance [116]. The partition is defined as the bit string of length j and only contains one bit

"1".

K = k(s-1) || k(s-2) || … || k(1) || k(0)

For example, key length of 16 bits, and k = 42,395 = (1010010110011011)2, can be partitioned as

depicted below in Figure 5.4:

100110100101 1 110

456789101112131415 3 012

242526272829210211212213214215 23 202122

1632641282565121,0242,0484,0968,19216,38432,768 8 124

161282561,0248,19232,768 8 12

K = 1010 0101 1001 1011

Figure 5.4: Example for "Scalar Partitioning on 1's"

5.2.1.2 Description of the ECCB-SPA Cryptoprocessor

To protect against PAA, the point operations (PADD and PDBL) of the ECSM must be

independent of the scalar bit value ki. In addition, since each key partition is associated with a

92

computed point to keep its significance, and the resulting points from processing these key

partitions are accumulated to produce the scalar multiplication kP; therefore, PADD operation

can be performed at a delayed time, and not necessarily at the corresponding scalar bit position.

Accordingly, the proposed Buffer-based method for scalar multiplication is based on delaying the

PADD operation using buffering technique, i.e., this proposed method store points into buffer and

perform the PADD operations in later stage as elaborated in its algorithm (Algorithm 5.3) and

shown in its dataflow (as depicted in Figure 5.5).

Algorithm 5.3 Buffer-based ECSM Method

Inputs: P: Base Point, k: Secret key, r is capacity limit of buffer

Outputs: kP.

1μ R[0] ĸ O, t ĸ 1 /* set buffer index t to 1 */

2: for i = 0 to m-1 do

2.1μ B[t] ĸ P /* scan k, store points in buffer */

2.2μ P ĸ 2P

2.3μ If (t ĸ r) or (i ĸ m-1), then /* buffer reach its capacity limit or scan k is completed */

2.3.1: for s = 1 to t do

2.3.1.1: R[0] = R[0] + B[s]

2.3.2μ t ĸ 1 /* reset buffer index to 1 */

2.4 else t ĸ t + ki /* increment t if the bit value of k is 1 */

Return R[0]

In in Figure 5.5, the scalar is scanned from right to left and for every scalar bit value:

1. Perform a PDBL operation.

 PDBL operation keeps the significance of the point value at the scalar bit position of the

 scalar.

2. Write to buffer the updated value of P (result of PDBL operation)

93

d0d1de

Write
Buffer

 Buffer or

Scan?
PADD

Point Double Operation for

each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Index to buffer will be incremented by the bit

value (no increment in case of 0), and those

only stored points in case of bit value of 1 will

be considered for later PADD computation

Scan the bit scalar from right to left, store the updated value

of P into the buffer, and then move to the next bit value

NO

PADD operation for all points

stored in the buffer, and then

add the result to Q

Check if either the buffer is full or the scan is completed

Return Q
Once the scan is completed

together with the PADD

operation, return Q

F
igure 5.5:

D
ata Flow

 for B
uffer-based M

ethod for S
calar M

ultiplication

94

 Index to buffer is directly related to the bit scalar value; i.e., it will only increment for bit

 value of 1. Therefore, the buffer will only store points corresponding to bit value of 1.

3. Once the buffer is full (or the scalar scanning is completed) the PADD operation is

performed on the stored points in the buffer

The scalar multiplication will be the accumulated points of the PADD operation results.

5.2.1.3 Example for the ECCB-SPA Cryptoprocessor

In Figure 5.6 shows an example of the Buffer-based method for ECSM. In this example, the key

length is 8-bit. The key k is 186, equivalent to (10111010)2 in binary, and the buffer capacity is 3.

Points are stored, twice in the buffer as follow:

1. In the first round by the points (2P, 8P, 16P) because the buffer became full, and then

2. In the second round by the points (32P, 128P) since the scalar scan is completed.

These points correspond to the scalar bit positions (1,3,4) in the first round, and positions (5,7) in

the second round, where in each round a PADD operation is performed on the points, and the

final value of PADD is stored in Q as the result of the scalar multiplication 186P = 26P + 160P.

5.2.1.4 Performance Analysis for the ECCB-SPA Cryptoprocessor

In the proposed Buffer-based method (Algorithm 5.3) for ECSM, PADD is performed in later

stage and only if the bit value ki = 1, while PDBL is always performed regardless of the bit value

ki. In addition, this proposed method is derived from the binary method (See Algorithm 2.2);

therefore, the performance required by the proposed Buffer-based method is m PDBL and an

average of m/2 PADD operations, which is equivalent to the performance of the binary method,

and it has a better performance in compared to the double-and-add always method. In addition,

Buffer-based method requires no extra dummy computation. This can be improved to m PDBL

and an average of m/3 PADD when NAF encoding is used.

95

01

 Buffer or

Scan?
PADD

Point Double Operation for

each scalar bit value

YES

20P21P

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Scan the bit scalar de from right to left, store the updated

value of P into the buffer, but only increment the index of the

buffer for the next store when the bit value is 1, and those

only consider these points in the PADD operation; Then

move to the next bit value.

The PADD results in Q = 2P

+ 8P + 16P = 26P for the first

Iteration, and the PADD

results in Q = 26P + 32P +

128P = 186P for the last

iteration

Check if either the buffer is full or the scan is completed

Return Q

011101

22P23P24P25P26P27P

P2P4P8P16P32P64P128P

P2P4P8P16P32P64P128P

2P8P16P32P128P de = “1”

Let buffer size equal 3; the write to buffer

will be done for all values of P. But store to

buffer will be done first 2P, 8P and 16P;

Then for 32P and 128P before the

completion of the scalar scan.

Q = 186P

F
igure 5.6:

E
xam

ple for B
uffer-based M

ethod for E
C

S
M

96

5.2.1.5 Security Analysis for the ECCB-SPA Cryptoprocessor

In the proposed Buffer-based method (Algorithm 5.3) for ECSM, the PADD operation is delayed

by storing points in a buffer, and a PDBL with "write to buffer" is performed for every bit value,

and thus the relation between the scalar bit value and point operation is removed. Therefore, this

proposed method is robust against SPA attacks since the point operations (PDBL and PADD) are

independent of the bit scalar value. For instance, the power trace for the example in Section

5.2.1.3 can be simulated below (Figure 5.7).

(K)2 1 0 1 1 1 0 1 0

K (in reverse order) 0 1 0 1 1 1 0 1

Power Trace D D* D D* D* A A A D* D D* A A

Figure 5.7: Example for Power Trace for the Buffer-based method

where: D stands for PDBL & 'write to buffer' operation, D* stands for PDBL & 'write to

buffer with increment of index to buffer' , and A stands for PADD operation. The key

length is 8-bits, k is 186, equivalent to (10111010)2 in binary, and the buffer capacity is 3.

Moreover, the security of this proposed method depends on the provided depth of confusion

which is directly proportional to the size of the buffer, i.e., the smaller the buffer is, the easier to

guess the number of processed bit "1" during the sequence of PDBL operations, and it will be

harder when the buffer is larger. A moderate buffer size should be log2 (m) to reach a confusion

depth that secures ECSM against SPA attacks.

5.2.2 The ECCSB-SPA Cryptoprocessor

This subsection introduces the ECCSB-SPA cryptoprocessor with an ECSM method, called Split

Buffer-based Method, that is based on splitting the scalar into two equal length partitions and

97

delay the PADD operation using three different buffers (See Algorithm 5.4). In addition, the

scalar splitting technique is derived from the ECSM method based on propositional logic

operations in [97]. In [97], their ECSM is based on partitioning the bit string of the scalar in half

and extracting the common substring from the two parts based on propositional logic operations

(See Algorithm 4.3).

5.2.2.1 Background Information on the ECCSB-SPA Cryptoprocessor

According to [97], scalar multiplication kP can be computed as: ݇ܲ ൌ ሺܭଶȁȁܭଵሻǤ ܲ

ൌ ʹ ೘మ Ǥ ሺܭଶ . P) + (ܭଵ Ǥ ܲሻ

 ൌ ʹ ೘మ Ǥ ሺܭ௑ைோ̴ଶ . P + ܭଵ̴஺ே஽̴ଶ Ǥ ଵ̴஺ே஽̴ଶ Ǥܭ + ௑ைோ̴ଵ . Pܭ) + (ܲ ܲሻ (Equation ‎5.10)

where K1 = KXOR_1 + K1_AND_2 and K2 = KXOR_2 + K1_AND_2

Also, KXOR_1 and KXOR_2 are K1 and K2 exclusive-or the common substring K1_AND_2, respectively.

Splitting the scalar K into two equal partitions K2 and K1 is explained by example as given in

Figure 5.8, where the scalar length is 16-bits such as K = (1010 0101 1001 1011)2 = 42,395. The

two partitions K2 and K1 are as follows:

K2 = (1010 0101)2 = 165 and K1 = (1001 1011)2 = 155

Thus, as per Equation 5.10, the scalar K can be written as

K = 28 *(165) + 155 = 256*165 + 155 = 42,395

Where K2 = (0010 0100) + (1000 0001) = 36 + 129 = 165, and

 K1 = (0001 1010) + (1000 0001) = 26 + 129 = 155

98

100110100101 1

K = 1010 0101 1001 1011

110

456789101112131415 3 012

100110100101 1 110

K =

K2= K1=

00100100KXOR_2 =

0001 0 100K1_AND_2 =

01011000KXOR_1 =

Figure 5.8: Example of Scalar Splitting with equal partitions

5.2.2.2 Description of the ECCSB-SPA Cryptoprocessor

Similar to the technique used in the Buffer-based Method (as described in Section 5.2.1.2),

buffering technique is also used by the proposed Split Buffer-based Method for ECSM, but with

splitting the bit string of the scalar k into two equal length partitions. The data flow of the Split

Buffer-based Method is depicted in Step 3 and 4 will be repeated until the scan is completed, and

then the PADD operation is performed on the remaining points of the buffers. The scalar

multiplication will be computed as given in Equation 5.10.

In addition, the algorithm for this method is illustrated in Algorithm 5.4. Three buffers B1, B2, B3

are defined with index i1, i2, i3 respectively. And the different values of bits (݇ଶୣ ǡ ݇ଵୣ ሻ for

partitions (ܭଶǡ ଵሻ are defined by n = 2݇ଶୣ + ݇ଵୣܭ , where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2

are associated to n = 1, 2, and 3 respectively. In Step 2 of Algorithm 5.4, the bit pairs of each

partition are scanned from right to left at the same bit position e, then in every iteration, 1- the

new value of P is stored in B1 (if ݇ଶୣ ൌ 0, and ݇ଵୣ = 1), or B2 (if ݇ଶୣ ൌ 1, and ݇ଵୣ = 0), or B3 (if ݇ଶୣ ൌ 1, and ݇ଵୣ = 1), 2- the value of P is doubled; Once one of the buffers (B1 or B2 or B3) is full,

the PADD operation is performed on stored values of P in the buffer, and then the index of this

99

buffer is reset. When the scanning of the bit pairs (݇ଶ୬Ȁଶ ݇ଵ୬Ȁଶሻ is completed, the PADD

operation is performed on the remaining points in the buffers.

5.2.2.3 Example for the ECCSB-SPA Cryptoprocessor

Figure 5.10 shows an example of the Split Buffer-based Method. In this example, the key length

is 16-bit. The K = (1010 0101 1001 1011)2 = 42,395 and the buffer capacity is 3. As mentioned in

the example of scalar splitting with equal partitions (Figure 5.8), n = 2 ଶୣ + ଵୣ , where n [0,3] ࣅ

and KXOR_1, KXOR_2, and K1_AND_2 are associated to n = 1, 2, and 3 respectively. Points are stored

in the corresponding buffers according to the value of n, i.e., in the buffers (B1, B2, B3) for n = 1,

2, 3 respectively. The points stored in B1 are (2P, 8P, 16P), B2 are (4P, 32P), and in B3 are (P,

128P). Since the buffer capacity is 3, and the scalar scanning is completed in the first iteration,

the buffers are only filled once.

This method uses a four-step approach:

1- The bit string of the scalar ݇ is split into two equal length partitions ݇2 = (݇ଶ௠Ȁଶǥ ݇ଶ௘ ǥ ݇ଶଵ ሻ2, K1 = (݇ଵ௠Ȁଶǥ ݇ଵ௘ ǥ ݇ଵଵ ሻ2, then

2- The partitions are scanned from right to left, and then a PDBL operation is perform for each bit

pairs (݇ଶୣ ǡ ݇ଵୣ ሻ of the partitions ݇2 and ݇1, and

3- The updated value of P (result of PDBL operation) is stored to its relevant buffer that is related

to the bit pair value: B1 for (݇ଶୣ ൌ 0, and ݇ଵୣ = 1), or B2 for (݇ଶୣ ൌ 1, and ݇ଵୣ = 0), or B3 for

(݇ଶୣ ൌ 1, and ݇ଵୣ = 1).

4- The PADD operation is delayed until any of the buffers becomes full, and then it is performed

on the stored points in that buffer (full). The result point of PADD operation on B1, B2, and B3

represents the values of KXOR_1, KXOR_2, and K1_AND_2 respectively.

100

k2
1k2

2

 n > 0

YES

k2
e

Write
Buffer

 Buffer or

Scan?
PADD

Point Double Operation for

each scalar bit value

YES

k2
m/2

20P21P2eP2(m/2)-1P

P2P2eP

P2P2eP

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Store the update value of P into the corresponding

Buffer; B1 for n = 1, B2 for n = 2, and B3 for n = 3.

Check if the at least one of the

bit pair is equal to “1”
NO

NO

PADD operation for all points

stored in the corresponding

buffer and then updates the

results in (R[1], R[2], and R[3])

for points in the buffers (B1,

B2, and B3) respectively

Check if either any of the buffers (B1, B2, B3) is full or the

scan is completed

Return Q

Once the scan is completed together

with he the PADD operations, return

the scalar multiplication result as

2^(m/2)*(R[2] + R[3]) + R[1] + R[3]

k1
1k1

2k1
ek1

m/2 K1 =

 K2 =

2(m/2)-1P

2(m/2)-1P

n = 3n = 2n = 1

F

igure 5.9:
D

ata Flow
 for S

plit B
uffer-based m

ethod for E
C

S
M

101

Step 3 and 4 will be repeated until the scan is completed, and then the PADD operation is

performed on the remaining points of the buffers. The scalar multiplication will be computed as

given in Equation 5.10.

In addition, the algorithm for this method is illustrated in Algorithm 5.4. Three buffers B1, B2, B3

are defined with index i1, i2, i3 respectively. And the different values of bits (݇ଶୣ ǡ ݇ଵୣ ሻ for

partitions (ܭଶǡ ଵሻ are defined by n = 2݇ଶୣ + ݇ଵୣܭ , where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2

are associated to n = 1, 2, and 3 respectively. In Step 2 of Algorithm 5.4, the bit pairs of each

partition are scanned from right to left at the same bit position e, then in every iteration, 1- the

new value of P is stored in B1 (if ݇ଶୣ ൌ 0, and ݇ଵୣ = 1), or B2 (if ݇ଶୣ ൌ 1, and ݇ଵୣ = 0), or B3 (if ݇ଶୣ ൌ 1, and ݇ଵୣ = 1), 2- the value of P is doubled; Once one of the buffers (B1 or B2 or B3) is full,

the PADD operation is performed on stored values of P in the buffer, and then the index of this

buffer is reset. When the scanning of the bit pairs (݇ଶ୬Ȁଶ ݇ଵ୬Ȁଶሻ is completed, the PADD

operation is performed on the remaining points in the buffers.

5.2.2.4 Example for the ECCSB-SPA Cryptoprocessor

Figure 5.10 shows an example of the Split Buffer-based Method. In this example, the key length

is 16-bit. The K = (1010 0101 1001 1011)2 = 42,395 and the buffer capacity is 3. As mentioned in

the example of scalar splitting with equal partitions (Figure 5.8), n = 2 ଶୣ + ଵୣ , where n [0,3] ࣅ

and KXOR_1, KXOR_2, and K1_AND_2 are associated to n = 1, 2, and 3 respectively. Points are stored

in the corresponding buffers according to the value of n, i.e., in the buffers (B1, B2, B3) for n = 1,

2, 3 respectively. The points stored in B1 are (2P, 8P, 16P), B2 are (4P, 32P), and in B3 are (P,

128P). Since the buffer capacity is 3, and the scalar scanning is completed in the first iteration,

the buffers are only filled once.

102

Algorithm 5.4 Split Buffer-based ECSM Method

Inputs: P: Base Point, k: Secret key, k2 = (݇ଶ௠Ȁଶǥ ݇ଶ௘ ǥ ݇ଶଵ ሻ2, k1 = (݇ଵ௠Ȁଶǥ ݇ଵ௘ ǥ ݇ଵଵ ሻ2, r is

capacity limit of buffer.
Outputs: kP.

1μ R[1] ĸ R[2] ĸ R[3] ĸ O, t1 ĸ t2 ĸ t3 ĸ 1 /* set buffers' indexes t1 ĸ t2 ĸ t3 to 1 */

2: for e = 1 to m/2 do

2.1μ n ĸ 2݇ଶ௘ + ݇ଵ௘
2.2: if n > 0, then

2.2.1: Bn [tn] ĸP /* scan k, store points on corresponding buffer only for bit value of 1 */

2.2.2: if tn ĸ r Then

2.2.2.1: for s = 1 to tn do

2.2.2.1.1: R[n] ĸ R[n] + Bn [s]

2.2.2.2: tn ĸ 1 /* reset buffer index to 1 */

2.2.3: else tn ĸ tn + 1

2.3μ P ĸ 2P

2.4μ if e ĸ m/2, Then

2.4.1: for n= 1 to 3 do

2.4.1.1: if tn >1 Then

2.4.1.1.1: for s = 1 to tn – 1 do

2.4.1.1.1.1: R[n] ĸ R[n] + Bn [s]

3μ R[1] ĸ R[1] + R[3]

4μ R[2] ĸ R[2] + R[3]

5: for e = 1 to m/2 do

5.1μ R[2] ĸ 2R[2]

6μ R[1] ĸ R[2] + R[1]

Return R[1].

PADD operation is performed on the points in the buffers, and the final value of Q as the result of

the scalar multiplication is: 28*(36P + 129P) + (26P + 129P) = 256*(165P) + (155P) = 42,395P.

103

11

 Buffer or

Scan?
PADD

Point Double Operation for

each scalar bit value

YES

20P21P

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Scan the bit pairs from right to left (MSB to LSB) and check

for the value of n. If n > 0, store the updated value of P

(result of the corresponding PDBL operation) in the

corresponding buffer

The PADD results are 26P,

36P, 129P for B1, B2, B3

respectively.

Check if either the buffer is full or the scan is completed

Return Q

011001

22P23P24P25P26P27P

P2P4P8P16P32P64P128P

P2P4P8P16P32P64P128P

2P8P16P32P128P n > 0 ?

Let all buffer capacities be 3, B1 will store

the values 2P, 8P, 16P; B2 will store 4P,

32P; and B3 will store P, 128P.

256*(36P + 129P) + (26P + 129P) =

256*165 + 155 = 42,395

1 0 1 0 0 1 0 1

P4P

B1B2B3

2P

8P

16P

4P

32P

P

128P

F
igure 5.10:

E
xam

ple for D
ata Flow

 for S
plit B

uffer-based m
ethod

104

5.2.2.5 Performance Analysis for the ECCSB-SPA Cryptoprocessor

The proposed Split Buffer-based method (Algorithm 5.4) for ECSM is derived from the binary

method (See Algorithm 2.2), and thus PADD is performed in later stage and only if the bit pair

value ሺ݇ଶୣ , ݇ଵୣ) is NOT (0,0), while PDBL is always performed regardless of the bit pair value.

This method requires m PDBL, as proven in both Steps 2.3 and 5.1 of Algorithm 5.4, and on

average ([m/2] – [m/8] = [3m/8]) PADD, as shown on Step 2.2.2.1.1 of the Algorithm 5.4, where

PADD is performed for [m/2] iterations for only n > 0, i.e. PADD operation is not performed for

the bit pairs (ଶୣ ǡ ଵୣ ሻ = (0 ,0), where its occurrence is with probability of [1/4], since as per

Equation 5.11 the probability of (0, 0) = probability (0) * probability (0) = [1/2] * [1/2] = [1/4] .

Additional number of PADD operations are performed at the end of algorithm, and these are

negligible in comparison to m.

 ሺܤ ݀݊ܽ ܣሻ ൌ ሺܣሻ כ ሺܤሻ (Equation ‎5.11)

Therefore and to the best of our knowledge, this method outperforms all previously proposed

methods in literature, including the binary method (See Algorithm 2.2) by reducing the PADD by

m/8 and it only requires m PDBL and on average [3m/8] PADD. This performance improves to m

PDBL and an average of [m/4] PADD when NAF encoding is used. In addition, the Split Buffer-

based method requires no extra dummy computation.

5.2.2.6 Security Analysis for the ECCSB-SPA Cryptoprocessor

In the proposed Split Buffer-based method (Algorithm 5.4) for ECSM, the security against SPA

attacks is achieved in two levels of confusion:

1. The first level is realized by inspecting bit pairs instead of a single bit of the scalar, and thus

increase possible values to 4 (00, 01, 10, 11) instead of 2 (0, 1); and

105

2. The second level is achieved by delaying the PADD operation using buffers for interim

points storage. Therefore, the relation between the scalar bit value and point operation is

removed by delaying the PADD operation.

For instance, the power trace for the example in Section 5.2.2.3 can be simulated below

(Figure 5.11)

(K)2
1 0 1 0 0 1 0 1

1 0 0 1 1 0 1 1

K
(in reverse order)

1 0 1 0 0 1 0 1

1 1 0 1 1 0 0 1

 D*** D* D** D* D* A* A* A* D** D D*** A** A** A*** A***

Figure 5.11: Example for Power Trace for the Split Buffer-based method

where: D stands for PDBL operation, and D* , D** , D*** stands for PDBL operation with store in

buffers (B1, B2, B3) respectively; A stands for PADD operation and A* , A** , A*** stands for

PADD operation on the points stored in buffers (B1, B2, B3) respectively. The key length is

16-bit, k is 42,395, equivalent to (1010 0101 1001 1011)2 in binary, and the buffer capacity is 3.

Moreover, the security of this proposed method depends on the provided depth of confusion,

which is directly proportional to the size of the buffer, i.e., the smaller the buffer, the easier to

guess the number of processed bit pairs (01, 10, 11), and it will be harder when the buffer is

larger. A moderate buffer size should be log2 (m) to reach a confusion depth that secures ECSM

against SPA attacks. This method requires no extra dummy computations to secure ECSM against

SPA attacks.

106

5.3 Proposed Architecture for ECC Secure against

DPA

In this section, two proposed architectures for elliptic curve cryptoprocessors are presented; these

cryptoprocessors provide resistance against DPA attacks. The first cryptoprocessor is

Randomized Buffer-based, called ECCRB-DPA, and it uses an ECSM method that is based on

delaying the PADD operation using a buffer and applying randomization concept; whereas the

second cryptoprocessor is Randomized Split Buffer-based, called ECCRSB-DPA, and it uses ECSM

method that is based on splitting the scalar into two equal length partitions and delay the PADD

operation using three different buffers and applying randomization concept.

5.3.1 The ECCRB-DPA Cryptoprocessor

This subsection introduces the Randomized Buffer-based ECCRB-DPA cryptoprocessor, it uses an

ECSM method which is derived from the binary method, and is based on delaying the PADD

operation by using randomized technique for points storing (in one buffer) and processing (See

Algorithm 5.5).

5.3.1.1 Background Information on the ECCRB-SPA Cryptoprocessor

In order to give background information on the ECCRB-SPA cryptoprocessor, it is signification to

recall that in the right-to-left version of the binary method (See Algorithm 2.2) of the scalar

multiplication, PADD is only performed if the bit value ki = 1, while PDBL is always performed

regardless of the bit value.

Moreover, in Equation 5.9, the scalar is divided into a number s of partitions, we call it "scalar

partitioning on 1's", where each partition is associated with a computed point (2iP | ki = 1) to keep

107

its significance [116]. The partition is defined as the bit string of length j and only contains one

bit "1".

Algorithm 5.5 Randomized Buffer-based ECSM Method

Inputs: P: Base Point, k: Secret key, r is capacity limit of buffer
Outputs: kP.

1μ R[0] ĸ O, t ĸ 1 /* set buffer index t to 1 */

2: for i = 0 to m-1 do

2.1μ r' ĸ RNG (0,r); /* Generate random number r', where 0 < r' < buffer capacity r

2.2μ B[t] ĸ P /* scan k, store points on buffer */

2.3μ P ĸ 2P

2.4μ if (t ĸ r') then

2.4.1μ j ĸ RNG (≤ r'); random number generator for a number less than or equal to i

2.4.2: for s = j to t do

2.4.2.1μ R[0] ĸ R[0] + B[s]

2.4.3μ t ĸ j; Reset buffer (to avoid calculating resident points from previous iteration)

2.5μ else t ĸ t + ki /* increment t if the bit value of k is 1 */

2.6μ if i ĸ m-1 then

2.6.1: for s = 1 to t – 1 do

2.6.1.1μ R[0] ĸ R[0] + B[s]

Return R[0]

5.3.1.2 Description of the ECCRB-SPA Cryptoprocessor

To protect against power analysis attacks, the point operations (PADD and PDBL) of the scalar

multiplication must be independent of the scalar bit value ki. In addition, since each key partition

is associated with a computed point to keep the significance of each key partition, and the points

resulting from processing these key partitions are accumulated to produce the scalar product kP,

PADD operation can be performed at a delayed time in a randomized mode, and not necessarily

108

to be done at the corresponding key bit position. Thus, the Randomized Buffer-based method for

ECSM is proposed and its dataflow is depicted in Figure 5.12.

In in Figure 5.12, the scalar is scanned from right to left and for every scalar bit value:

1. Perform a PDBL operation.

PDBL operation keeps the significance of the point value at the scalar bit position of the

scalar.

2. Write to buffer the updated value of P (result of PDBL operation)

The buffer capacity is randomized (greater than zero, and less or equal to the initial

random capacity). Index to buffer is directly related to the bit scalar value; i.e., it will

only increment for bit value of 1. Therefore, the buffer will only store points

corresponding to bit value of 1.

3. Once the buffer is full (i.e. the number of stored points is equal to the capacity of the

buffer after applying randomization), the PADD operation is performed on a random

number of points stored in the buffer.

4. When the scalar scanning is completed, the PADD operation is performed on the

remaining points in the buffer.

The scalar multiplication will be the accumulated points of the PADD operation results.

5.3.1.3 Example for the ECCRB-SPA Cryptoprocessor

In Figure 5.13 shows an example of the Randomized Buffer-based method for ECSM. In the

example, the key length is 8-bit. The key k = 186 = (10111010)2 and the initial buffer capacity is

4. Points are stored to buffer, and PADD operation is performed on points from buffer in three

rounds (iterations) as follow:

1) In the first round, three points (2P, 8P, 16P) are stored since the buffer becomes full (i.e. The

number of stored points is equal to the capacity of the buffer – randomized as 3), but PADD

109

d0d1de

Write
Buffer

Buffer ?

PADD

Point Double Operation for

each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Index to buffer will be incremented by the bit value (no

increment in case of 0), and those only stored points in case of

bit value of 1 will be considered for later PADD computation

 Scan the bit scalar from right to left, store the updated value

of P into the buffer, and then move to the next bit value

NO

Point Add operation on

random (j - r’) number of

points in the buffer

Check if the buffer index (stored points in the

buffer) is equal to r’

Return Q
Once the scan is completed

together with the PADD

operation, return Q

r' = RNG (r)
Generate a random number greater than

zero and less than the buffer capacity r

Scan?

j = RNG (≤ r') Generate a random number

less than or equal to r’

Reset buffer

to j

Reset buffer (to avoid calculation

of points from previous iteration)

Increase the

buffer index

by de

Check if the scan of the scalar

is completed
PADD

Point Add operation on the

remaining points in the buffer

YES

NO

F
igure 5.12:

D
ata Flow

 for R
andom

ized B
uffer-based m

ethod for E
C

S
M

110

operation is performed on two points only (8P, 16P) because the randomly generated number

j is 2 and the processed points are the second and the third in the buffer.

2) In the second round, only one point (32P) is stored since the buffer becomes full ((i.e. The

number of stored points is equal to the capacity of the buffer – randomized as 2), and PADD

operation is performed on one point only (32P) because the randomly generated number j is 2

and the processed point is the second in the buffer.

3) In the third round, only one point (128P) is stored since the scalar scanning is completed, and

PADD operation is performed on two points only (2P, 128P) because these are the remaining

points in the buffer.

4) The result of the scalar multiplication is the final value of PADD operation on the stored in

the buffer as per the below sequence:

8P + 16P + 32P + 2P + 128P = 186P.

5.3.1.4 Performance Analysis for the ECCRB-SPA Cryptoprocessor

In the proposed Randomized Buffer-based method (Algorithm 5.5) for ECSM, PADD is

performed in later stage and only if the bit value ki = 1, while PDBL is always performed

regardless of the bit value ki. In addition, this proposed method is derived from the binary method

(See Algorithm 2.2); therefore, the performance required by the proposed Buffer-based method is

m PDBL and an average of m/2 PADD operations, which is equivalent to the performance of the

binary method, and it has a better performance in compared to the double-and-add always

method. In addition, Buffer-based method requires no extra dummy computation. This can be

improved to m PDBL and an average of m/3 PADD when NAF encoding is used.

01

 Buffer or

Scan?
PADD

Point Double Operation for

each scalar bit value

YES

20P21P

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Scan the bit scalar de from right to left, store the updated

value of P into the buffer, but only increment the index of the

buffer for the next store when the bit value is 1, and those

only consider these points in the PADD operation; Then

move to the next bit value.

In Iteration 1, the PADD takes only 2 points

(j = 2), and results in Q = 16P + 8P = 24P;

Iteration 2, PADD takes only 1 point (j = 1),

and results in Q = 24P + 128P = 152P;

Iteration 3, the PADD takes remaining 2

points since scan is completed, and results

in Q = 152P + 32P + 2P = 186P.

Check if either the buffer is full or the scan is completed

Return Q

011101

22P23P24P25P26P27P

P2P4P8P16P32P64P128P

P2P4P8P16P32P64P128P

2P8P16P32P128P de = “1”

Start the random buffer capacity by 3, the

write to buffer will be done for all values of

P. But store to buffer will be done to points

2P, 8P, and 16P; Then 32P, and 128P

before the completion of the scalar scan.

Q = 186P

F
igure 5.13:

E
xam

ple for R
andom

ized B
uffer-based m

ethod for E
C

S
M

112

5.3.1.5 Security Analysis for the ECCRB-SPA Cryptoprocessor

In the proposed Randomized Buffer-based method (Algorithm 5.5) for ECSM, the PADD

operation is delayed by storing points in a buffer, and a PDBL with "write to buffer" is performed

for every bit value, and thus the relation between the scalar bit value and point operation is

removed. In addition, randomization technique is used in number points stored in the buffer, and

the number of points processed for PADD in the buffer. Therefore, this proposed method is

robust against DPA attacks. For instance, the power trace for the example in Section 5.3.1.3 can

be simulated below (Figure 5.14).

K 1 0 1 1 1 0 1 0

K (in reverse order) 0 1 0 1 1 1 0 1

Power Trace D D* D D* D* A A D* D A D* A A

Figure 5.14: Example for Power Trace for the Randomized Buffer-based method

where: D stands for PDBL & 'write to buffer' operation, D* stands for PDBL & 'write to buffer

with increment of index to buffer', and A stands for PADD operation. The key length is 8-bits, k

is 186, equivalent to (10111010)2 in binary and the buffer capacity is 4.

Moreover, the security of the Randomized Buffer-based method depends on its depth of

confusion which is directly proportional to:

1) The deployment of randomization technique in both the buffer capacity (being dynamic) and

the processed points for PADD operation; and

2) The size of the buffer, i.e., the smaller the buffer, the easier to guess the number of processed

bit "1" during the sequence of PDBL operations, and it will be harder when the buffer is larger. A

moderate buffer size should be log2 (m) to reach a confusion depth that secures ECSM against

DPA attacks.

113

5.3.2 The ECCRSB-DPA Cryptoprocessor

This subsection introduces the ECCRSB-DPA cryptoprocessor with a ECSM method, called

Randomized Split Buffer-based Method, that is based on splitting the scalar into two equal length

partitions and delay the PADD operation using randomized technique for points storing (in three

different buffers) and point processing (See Algorithm 5.6). In addition, the scalar splitting

technique is derived from the ECSM method based on propositional logic operations in [97]. In

[97], their ECSM method is based on partitioning the bit string of the scalar in half and extracting

the common substring from the two parts based on propositional logic operations (See

Algorithm 4.3).

5.3.2.1 Background Information on the ECCRSB-SPA Cryptoprocessor

As inError! Reference source not found., the scalar multiplication is split into two partitions

(K1 and K2,), where the common substring K1_AND_2 is only computed once, and used in the two

partitions such that

K1 = KXOR_1 + K1_AND_2 and K2 = KXOR_2 + K1_AND_2.

Splitting the scalar K into two equal partitions K2 and K1 is explained by example as given in

Figure 5.8, and elaborated in Section 5.2.2.1.

5.3.2.2 Description of the ECCRSB-SPA Cryptoprocessor

Similar to the technique used in the Split Buffer-based method for ECSM (as described in Section

5.2.2.2), but the Randomized Split Buffer-based method additionally uses randomized technique

for points storing (in three different buffers) and point processing (See Algorithm 5.6).

The data flow of the Randomized Split Buffer-based Method is depicted in Figure 5.15. This

method uses a four-step approach:

1- The bit string of the scalar k is split into two equal length partitions

114

K2 = (݇ଶ୬Ȁଶǥ ݇ଶୣ ǥ ݇ଶଵ ሻ2, and K1 = (݇ଵ୬Ȁଶǥ ݇ଵୣ ǥ ݇ଵଵ ሻ2, then

Algorithm 5.6 Randomized Split Buffer-based ECSM Method

Inputs: P: Base Point, k: Secret key, k2 = (݇ଶ௠Ȁଶǥ ݇ଶ௘ ǥ ݇ଶଵ ሻ2, k1 = (݇ଵ௠Ȁଶǥ ݇ଵ௘ ǥ ݇ଵଵ ሻ2, r is

capacity limit of buffer.
Outputs: kP.

1μ R[1] ĸ R[2] ĸ R[3] ĸ O, t1 ĸ t2 ĸ t3 ĸ 1 /* set buffers' indexes t1 ĸ t2 ĸ t3 to 1 */

2: for e = 1 to m/2 do

2.1μ n ĸ 2݇ଶ௘ + ݇ଵ௘
2.2: if n > 0, then

2.2.1: Bn [tn] ĸ P /* scan k, store points on corresponding buffer only for bit value of 1 */

2.2.2μ r ĸ RNG (<Capacity of Bn); Generate a random number less than the capacity of buffer Bn

2.2.3: if tn ĸ r Then

2.2.3.1: jn ĸ RNG (< in); random number generator for a number less than in

2.2.3.2: for s = 1 to tn do

2.2.3.2.1: R[n] ĸ R[n] + Bn [s]

2.2.3.3: tn ĸ jn /* reset buffer index to jn */

2.2.3.4: else tn ĸ tn + 1

2.3μ P ĸ 2P

2.4μ if e ĸ m/2, Then

2.4.1: for n= 1 to 3 do

2.4.1.1: if tn >1 Then

2.4.1.1.1: for s = 1 to tn – 1 do

2.4.1.1.1.1: R[n] ĸ R[n] + Bn [s]

3μ R[1] ĸ R[1] + R[3]

4μ R[2] ĸ R[2] + R[3]

5: for e = 1 to m/2 do

5.1μ R[2] ĸ 2R[2]

6μ R[1] ĸ R[2] + R[1]

Return R[1].

115

2- The partitions are scanned from right to left, and then a PDBL operation is performed for each

bit pairs (݇ଶୣ ǡ ݇ଵୣ ሻ for partitions K2 and K1, and

3- The updated value of P (result of PDBL operation) is stored to its relevant buffer that is related

to the bit pair value: B1 for (݇ଶୣ ൌ 0, and ݇ଵୣ = 1), or B2 for (݇ଶୣ ൌ 1, and ݇ଵୣ = 0), or B3 for

(݇ଶୣ ൌ 1, and ݇ଵୣ = 1).

4- The PADD operation is delayed until any of the buffers becomes dynamically full (by

generating a random value for the buffer capacity), and then it is performed on a random number

of stored points in that buffer (full). The result point of PADD operation on B1, B2, and B3

represents the values of KXOR_1, KXOR_2, and K1_AND_2 respectively.

Step 3 and 4 will be repeated until the scan is completed, and then the PADD operation is

performed on the remaining points of the buffers. The scalar multiplication will be the

accumulated points of the PADD operation results as per Equation 5.10.

 According to Algorithm 5.6, three buffers B1, B2, B3 are defined with index i1, i2, i3 respectively.

Additionally, for the bit different values of (ଶୣ ǡ ଵୣ ሻ for partitions (ଶǡ ଵሻ can be defined by n =

2 ଶୣ + ଵୣ , where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2 are associated to n = 1, 2, and 3

respectively. In Step 2 of Algorithm 5.6 the bit pairs of each partition are scanned from right to

left at the same bit position e, then in every iteration, 1- the new value of P is stored in B1 (if ݇ଶୣ ൌ 0, and ݇ଵୣ = 1), or B2 (if ݇ଶୣ ൌ 1, and ݇ଵୣ = 0), or B3 (if ݇ଶୣ ൌ 1, and ݇ଵୣ = 1), 2- the value of

P is doubled; Once any of the buffer is dynamically full (by generating a random value for the

buffer capacity), the PADD operation is performed on stored values of P in the relevant buffer,

and the index of this buffer is reset. When the scanning of the bit pairs (݇ଶ୬Ȁଶ ݇ଵ୬Ȁଶሻ is

completed, the PADD operation is performed on the remaining points in the buffers.

116

k2
1k2

2

 n > 0

YES

k2
e

Write
Buffer

Point Double Operation for each scalar

bit value

k2
n/2

20P21P2eP2(n/2)-1P

P2P2eP

P2P2eP

Updated Value of P correspond to

each scalar bit value

Shift Left by one bit

Store the update value of P into the corresponding

Buffer; B1 for n = 1, B2 for n = 2, and B3 for n = 3.

Check if the at least one of the bit pair is equal to “1” NO

k1
1k1

2k1
ek1

n/2 K1 =

 K2 =

2(n/2)-1P

2(n/2)-1P

n = 3n = 2n = 1

r' = RNG (r)
Generate a random number greater than zero and

less than the capacity of the buffer Bn

Buffer ?
Check if the buffer index (stored points in

the buffer Bn) is equal to r’

PADD

YES

j = RNG (≤ r') Generate a random number

less than or equal to r’

Point Add operation on random (j - r’)
number of points in the buffer Bn

Reset Buffer

to j

Reset buffer (to avoid calculation

of points from previous iteration)

Increase the

buffer index

by de

Scan?
Check if the scan of the scalar

is completed
PADD

Point Add operation on the remaining

points in the buffer

YES

Return Q

Once the scan is completed together

with he the PADD operations, return the

scalar multiplication result as

2^(m/2)*(R[2] + R[3]) + R[1] + R[3]

F
igure 5.15:

D
ata F

low
 for R

andom
ized S

plit B
uffer-based m

ethod for E
C

S
M

117

5.3.2.3 Example for the ECCRSB-SPA Cryptoprocessor

Figure 5.16 shows an example of the Randomized Split Buffer-based Method. In this example,

the key length is 16-bit. The K = (1010 0101 1001 1011)2 = 42,395 and the initial buffer capacity

is 4.

As mentioned in the example of scalar splitting with equal partitions (Figure 5.8), n = 2 ଶୣ + ଵୣ ,
where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2 are associated to n = 1, 2, and 3 respectively.

Points are stored in the corresponding buffers according to the value of n, i.e., in the buffers (B1,

B2, B3) for n = 1, 2, 3 respectively.

The randomized buffer capacity for all buffers is 2. Points are stored to buffer, and PADD

operation is performed on points from buffer in three rounds (iterations) as follow:

1) In the first round, the stored points in buffers are as follow: Two points (2P, 8P) in B1, two

points (4P, 32P) in B2, and two points (P, 128P) in B3. In the second round, only one point

(16P) is stored in B1. All buffers are full at 2 (i.e. the number of stored points in each buffer is

equal to the capacity of the buffer after applying randomization = 2), and the total number of

points in this example is 7.

2) In the first round, PADD operation is performed on the points in each buffer (2P + 8P) for B1,

(4P + 32P) for B2, and (P + 128P) for B3, since the randomly generated number j is 1 for all

buffers.

3) In the second round, one point (16P) only is processed by PADD operation for points in B1.

4) The result of the scalar multiplication is the final value of PADD operation on the stored in

the buffer as per the below sequence as per Equation 5.10:

28 * (B2 + B3) + (B1 + B3) = 28 * (36P + 129P) + (26P + 129P)

 = 256 * (165P) + (155P)

 = 42,395P

118

11

Point Double Operation for

each scalar bit value

YES

20P21P

Updated Value of P

correspond to each scalar bit

value

Shift Left by one bit

Scan the bit pairs from right to left (MSB to LSB) and check

for the value of n. If n > 0, store the updated value of P

(result of the corresponding PDBL operation) in the

corresponding buffer

Return Q

011001

22P23P24P25P26P27P

P2P4P8P16P32P64P128P

P2P4P8P16P32P64P128P

2P8P16P32P128P n > 0 ?

256*(36P + 129P) + (26P + 129P) =

256*165 + 155 = 42,395

1 0 1 0 0 1 0 1

P4P

B1B2B3

8P

2P
32P

4P
128P

P

Points stored in B1 as follow:

For e = 2,4, and 5, since n = 1

Points stored in B2 as follow:

For e = 3, and 6, since n = 2Points stored in B3 as follow:

For e = 1 and 8 since n = 3

Buffer ? j = RNG (≤ r')

Generate

Random r’

r' = RNG(<3);

e = 1, r = 1;

e = 2, r = 2;

e = 3, r = 1;

e = 4, r = 2;

e = 5, r = 2

e = 6, r = 2;

e = 7, r = 1;

e = 8, r = 2;

At e = 4, j1 = 1;

At e = 6, j2 = 1;

At e = 8, j3 = 1;

Buffer Bn is full as follow:

B1 is full at e = 4; r = 2

B2 is full at e = 6; r = 2

B3 is full at e = 8; r = 2

PADD

operation

At e = 4, compute from B1 2P + 8P = 10P

At e = 6, compute from B2 4P + 32P = 36P

At e = 8, compute from B3 P + 128P = 129P

In addition, at e = 8, only i1 > 1, compute from B1 10P + 16P = 26P

16P

F
igure 5.16:

E
xam

ple for D
ata Flow

 for R
andom

ized S
plit B

uffer-based m
ethod

119

5.3.2.4 Performance Analysis for the ECCRSB-SPA Cryptoprocessor

The proposed Randomized Split Buffer-based method (Algorithm 5.6) for ECSM is derived from

the binary method (See Algorithm 2.2), and thus PADD is performed in later stage and only if the

bit value ki = 1, while PDBL is always performed regardless of the bit value ki. The Randomized

Split Buffer-based method requires m PDBL, as proven in both Steps 2.3 and 4.1 of

Algorithm 5.6, and on average ([m/2] – [m/8] = [3m/8]) PADD, as shown on Step 2.2.2.1.1 of the

Algorithm 5.6, where PADD is performed for [m/2] iterations for only n > 0, i.e. PADD operation

is not perform for the bit pairs (ଶୣ ǡ ଵୣ ሻ = (0 ,0), where its occurrence is with probability of [1/4],

since as per Equation 5.11 the probability of (0, 0) = probability (0) * probability (0) = [1/2] *

[1/2] = [1/4]. Additional number of PADD operations are performed at the end of algorithm, and

these are negligible in comparison to m.

Therefore, the Randomized Split Buffer-based method outperforms both the binary method (See

Algorithm 2.2) by reducing the PADD by m/8 and it only requires m PDBL and on average

[3m/8] PADD. This performance improves to m PDBL and an average of [m/4] PADD when

NAF encoding is used. In addition, the Split Buffer-based method requires no extra dummy

computation.

5.3.2.5 Security Analysis for the ECCRSB-SPA Cryptoprocessor

In the proposed Randomized Split Buffer-based method (Algorithm 5.6) for ECSM, the security

against DPA attacks is achieved in two levels of confusion:

1) The first level is realized by inspecting bit pairs instead of a single bit of the scalar, and thus

increase possible values to 4 (00, 01, 10, 11) instead of 2 (0, 1); and

2) The second level is achieved by delaying the PADD operation using randomization concept

at both the buffers capacities levels and the number of points for PADD operation.

120

For instance, the power trace for the example in Section 5.2.2.3 can be simulated below

(Figure 5.17).

(K)2
1 0 1 0 0 1 0 1

1 0 0 1 1 0 1 1

K
(in reverse order)

1 0 1 0 0 1 0 1

1 1 0 1 1 0 0 1

 D*** D* D** D* A* A* D* D** A** A** D D*** A*** A*** A*

Figure 5.17: Example for Power Trace for the Randomized Split Buffer-based method

where: D stands for PDBL operation, and D* , D** , D*** stands for PDBL operation after a point

store in buffers (B1, B2, B3) respectively; A stands for PADD operation and A* , A** , A*** stands

for PADD operation on the points stored in buffers (B1, B2, B3) respectively. The key length is

16-bit, k is 42,395, equivalent to (1010 0101 1001 1011)2 in binary, and the buffer capacity is 3.

Furthermore, the depth of confusion is directly proportional to:

1) The deployment of randomization technique in both the buffer capacity (being dynamic) and

the processed points for PADD operation; and

2) The size of the buffer, i.e., the smaller the buffer, the easier to guess the number of processed

bit pairs (01, 10, 11), and it will be harder when the buffer is larger.

A moderate buffer size should be log2 (m) to reach a confusion depth that secures ECSM against

DPA attacks.

5.4 Summary

In this chapter by using the randomization concept together with the buffering and scalar splitting

techniques, we propose four elliptic curve cryptoprocessor architectures for curves defined over

GF(2m). The first two of these architectures are designed to provide security against SPA attacks,

while the other two are designed to provide security against DPA attacks. The two proposed SPA

121

attack resistant cryptoprocessors are designed using ECSM methods that are based on buffering

(ECCB-SPA) and scalar splitting techniques (ECCSB-SPA). Additional the other two proposed DPA

attack resistant cryptoprocessors are designed using ECSM methods that apply randomization

concept on the buffering (ECCRB-DPA) and the scalar splitting techniques (ECCRSB-DPA) at different

levels (buffer capacity and processed points for PADD operation).

Our performance analysis shows that all four proposed cryptoprocessors need no additional

computation load (and no extra dummy operation as well) compared to the double-and-add

always ECSM and two of these cryptoprocessors outperform this binary method. The

performance of the cryptoprocessors is as follow:

 The ECCB-SPA and ECCRB-DPA require m*PDBL + (m/2)*PADD

 The ECCSB-SPA and ECCRSB-DPA requires m*PDBL + (3m/8) *PADD

In term of security measurements, it is proven by examples relation between the security level

and the buffer size. In addition, the countermeasures in ECCSB-SPA and ECCRSB-DPA

cryptoprocessors inspect bit pairs instead of a single bit of the scalar, which introduce a new level

of confusion. Finally the deployment of randomization technique in both the buffer capacity

(being dynamic) and the processed points for PADD operation introduce a total confusion on the

relation between the processed bits of the scalar and the performed point operation, which give

advantage for the ECCSB-SPA and ECCRSB-DPA cryptoprocessors over the other proposed ones.

122

CHAPTER 6

Results and Discussions

To conduct an appropriate evaluation of our four proposed architectures for secure elliptic curve

cryptoprocessors (ECCB-SPA, ECCSB-SPA, ECCRB-DPA, and ECCRSB-DPA), these architectures are

compared to other two similar architectures; the first one is the regular secure elliptic curve

reference cryptoprocessor (ECCRG) which is based on 'Double-and-Add-Always' algorithm (See

Algorithm 4.1), whereas the second one is a cryptoprocessor (ECCPLO) based on the

'Propositional Logic Operations (PLO)' based algorithm for ECSM which was proposed in [97].

Additionally, we derive two extra architectures from our proposed architectures that are secure

against the DPA attacks, where ECCRB-DPA1 and ECCRSB-DPA1 are designed with one level of

randomization (randomizing the buffer capacity), at the same way ECCRB-DPA2 and ECCRSB-DPA2

with two levels of randomization (randomizing the buffer capacity, and the number of processed

points for PADD operation). Therefore the evaluation covers a total of eight cryptoprocessors

(ECCRG, ECCB-SPA, ECCRB-DPA1, ECCRB-DPA2, ECCPLO, ECCSB-SPA, ECCRSB-DPA1, ECCRSB-DPA2).

These eight architectures were modeled using VHDL and synthesized on Altera FPGA. The

developed VHDL models are parameterized to allow synthesizing the cryptoprocessors with

different architectural features; additionally, these models allow for flexible definition of the

following parameters:

1. The elliptic curve parameters a and b.

2. The underlying field GF(2m).

3. The base point P.

123

4. The secret key k.

5. The capacity of the buffer for the ECCB-SPA cryptoprocessor.

6. The capacity of each of the buffers for the ECCRB-DPA cryptoprocessor.

This chapter presents the results of synthesizing the various eight cryptoprocessors and compares

these cryptoprocessors in terms of power, time delay and area. Altera Cyclone III

EP3C80F780C7 FPGA has been used for prototyping. It is essential that identical FPGA chip is

used with these cryptoprocessors in order to ensure that power, delay and area comparisons are

done for the same technology and FPGA architecture and resources.

6.1 Comparison Methodology

The eight cryptoprocessors are designed to use the same field operation algorithms, e.g.,

multiplication and inversion. Thus, the performance difference between these cryptoprocessors is

mainly a function of their control strategy and architectural differences independent of field

operations. For example, field multiplication requires m clock cycles because of the Massey-

Omura multiplier (Section 5.1).

Point Doubling (PDBL) requires 5 field multiplications, 4 field additions and 6 squarings. Each

field addition and squaring requires only one clock cycle as a result of using ONB. The total

number of clock cycles required for performing PDBL is 5m + 10 clock cycles. Point Addition

(PADD), on the other hand, requires 14 field multiplications, 8 field additions and 6 squarings

which requires 14m + 14 clock cycles.

The average time cost for point doubles, points addition and scalar multiplication required for the

different algorithms for the eight cryptoprocessors are listed in Table 6.1. The results in Table 6.1

confirm the cryptoprocessors' performance analysis presented in Chapter 5, and that shows a

124

noticeable saving in the number of point operations (PADD) and timing for the proposed

cryptoprocessors.

Table 6.1: Time Cost Comparison for the Eight ECC Cryptoprocessors

Cryptoprocessor
Time in Clock Cycles

Number of PDBLs Number of PADDs Scalar Multiplication
ECCRG m (5m + 10) m (14m + 14) 19m2 + 24m

ECCPLO m (5m + 10) [m/2] (14m + 14) 12m2 + 17m

ECCB-SPA m (5m + 10) [m/2] (14m + 14) 12m2 + 17m

ECCRB-DPA1 m (5m + 10) [m/2] (14m + 14) 12m2 + 17m

ECCRB-DPA2 m (5m + 10) [m/2] (14m + 14) 12m2 + 17m

ECCSB-SPA m (5m + 10) [3m/8] (14m + 14) 10m2 + [1/4] m2 + 15m + [1/4] m

ECCRSB-DPA1 m (5m + 10) [3m/8] (14m + 14) 10m2 + [1/4] m2 + 15m + [1/4] m

ECCRSB-DPA2 m (5m + 10) [3m/8] (14m + 14) 10m2 + [1/4] m2 + 15m + [1/4] m

6.2 Synthesis Results and Comparison

The eight ECC cryptoprocessors has been synthesized over GF(2173), GF(2191), and GF(2230) for

different m sizes as recommended by NIST (m ࣅ {1 ,173λ1, 230}) on an Altera Cyclone III

EP3C80F780C7 FPGA which contains 81,264 Slices. Table 6.2 lists the synthesis results for

these ECC cryptoprocessors in terms of: 1) Delay measured in ms, 2) Area measured in number

of slices, and 3) Power consumed measured in mW. In addition, comparison results for the Delay,

Area, and Power of these cryptoprocessors are described in Figure 6.1, Figure 6.2, and Figure 6.3

respectively.

The delay comparison result (in Figure 6.1) shows that for security level of m = 173, the best time

delays of 8.831 ms, 9.089 ms, and 9.536 ms are achieved by the Buffer-based cryptoprocessors

(with no scalar splitting): ECCB-SPA, ECCRB-DPA1, and ECCRB-DPA2 respectively; while for higher

security level of m = 230, the best time delays of 23.862 ms, 24.483 ms, 24.649 ms are achieved

125

by the Split-Buffer-based cryptoprocessors: ECCSB-SPA, ECCRSB-DPA1, and ECCRSB-DPA1

respectively.

Table 6.2: The Eight ECC Cryptoprocessor Synthesis Results.

Cryptoprocessor m Clock(MHz) Delay(ms) Area (Slices) Area Usage Power (mW)

ECCRG 173 34.11 16.793 22,292 27% 169.70
ECCPLO

 173 35.80 10.114 25,977 32% 178.64
ECCB-SPA 173 41.00 8.831 25,954 32% 173.97
ECCRB- DPA1 173 39.84 9.089 26,137 32% 173.99
ECCRB- DPA2 173 37.97 9.536 26,155 32% 174.00
ECCSB-SPA 173 29.33 10.549 45,543 56% 192.92
ECCRSB-DPA1 173 25.47 12.148 45,650 56% 193.18
ECCRSB-DPA2 173 24.43 12.665 45,502 56% 191.60

ECCRG 191 33.29 20.959 24,576 30% 177.78
ECCPLO

 191 25.63 17.207 28,703 35% 187.53
ECCB-SPA 191 40.36 10.927 28,625 35% 181.01
ECCRB- DPA1 191 33.47 13.177 29,325 37% 182.97
ECCRB- DPA2 191 29.34 15.031 29,746 37% 183.14
ECCSB-SPA 191 26.39 14.280 50,736 62% 197.59
ECCRSB-DPA1 191 24.47 15.400 51,067 63% 198.29
ECCRSB-DPA2 191 25.21 14.948 51,138 63% 198.56

ECCRG 230 22.56 44.797 29,539 36% 193.09
ECCPLO

 230 22.76 28.063 34,483 42% 199.57
ECCB-SPA 230 23.05 27.710 35,060 43% 196.77
ECCRB- DPA1 230 22.90 27.891 35,949 44% 197.24
ECCRB- DPA2 230 22.78 28.038 36,190 45% 197.54
ECCSB-SPA 230 22.87 23.862 60,819 75% 213.05
ECCRSB-DPA1 230 22.29 24.483 61,007 75% 213.46
ECCRSB-DPA2 230 22.14 24.649 61,074 75% 213.84

On the other side, the area comparison result (in Figure 6.2) shows a consistency on the variation

of utilized area of the eight cryptoprocessors for all values of m. Likewise, it is as expected that

by using buffers and extra registers for the scalar splitting, more area are required in comparison

with the other cryptoprocessors. For instance, the area utilization for the ECCRG cryptoprocessor

is only 29,539 slices, whereby it is almost twice (60,819, 61,007, and 61,074 slices) for the

Figure 6.1: Delay Comparison for the Eight Cryptoprocessors for All Values of m (173,191,230)

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 D

e
la

y
 (

m
s)

Delay Comparison for the Eight Cryptoprocessors

Delay - m = 230

Delay - m = 191

Delay - m = 173

127

Figure 6.2: Area Comparison for the Eight Cryptoprocessors for All Values of m (173,191,230)

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

T
im

e
 D

e
la

y
 (

m
s)

Area Comparison for the Eight Cryptoprocessors

Area - m = 230

Area - m = 191

Area - m = 173

128

Figure 6.3: Power Comparison for the Eight Cryptoprocessors for All Values of m (173,191,230)

160

170

180

190

200

210

220

P
o

w
e

r
(m

W
)

Power Comparison for the Eight Cryptoprocessors

Power - m = 230

Power - m = 191

Power - m = 173

ECCSB-SPA, ECCRSB-DPA1, and ECCRSB-DPA2 cryptoprocessors respectively.

As for the power comparison result (in Figure 6.3), it shows a harmony with the area

consumption for all cryptoprocessors (in Figure 6.2). Nevertheless, although the increase in

power consumption is directly proportional to the area utilized by the architectures; there is an

exception for the ECCPLO cryptoprocessor, because of its extra time delay which results in more

power consumption. In general, the increase in power consumption is quite reasonable, since it is

only in the range of 10%.

6.3 Delay, Area, and Power Cost Complexity Analysis

Architecture designers for cryptographic solutions may not have the same importance to cost

factors (delay, area, and power), as this will always depend on the application requirements and

constrains. For instance, in the resource constrained devices like sensor mote, or RFID, power

consumption and area utilization are of more importance than delay (speed); whereas other

applications might give more important to delay, but area or power may not be a concern for

such. Thus, it is important to present the cost complexity in term of delay, area, and power for the

eight cryptoprocessors.

The area, delay, and power will be multiplied partially or all together to generate different cost

figures, which can be used by architecture designers for evaluation purpose. Any of the possible

cost complexity (AT, AT2, A2T, ATP, ATP2, AT2P, A2TP, AT2P2, A2TP2, A2T2P) can represent

importance weighting for the cost factors instance. For instance, the cost ATP (A*T*P =

multiplying A, T, and P), represent an equal importance to the application for all cost factors

(time, area and power). Moreover, the general formula for cost complexity is given in

Equation 6.1 as below:

 ൌ ୶ ୷ ୸ (Equation 6.1)

130

where x, y, z {2 ,1 ,0} ࣅ, and the value 0 means no importance for the cost factor, and 2 means

high importance for the cost factor.

As example, for applications with no importance to (not concerned about) area, but given

importance to delay, but more importance to power, the cost complexity (See Equation 6.1) can

be calculated as

 ൌ ଴ ଵ ଶ ൌ ଶ

Cost complexity of different variation of ୶ ୷ ୸ (as given in Equation 6.1) for all eight

architectures are described in Table 6.3. In addition, for selective variation of ୶ ୷ ୸ (ATP,

AT2P, ATP2, and A2TP2), the cost complexity for all eight architectures are plotted in (Figure 6.4,

Figure 6.5, Figure 6.6, and Figure 6.7) respectively for all values of m (173, 191, and 230), where

some cost complexity values are rescaled to fit in these figures.

For the ATP, ATP2, and A2TP2 cost complexities comparison (in Figure 6.4, Figure 6.6, and

Figure 6.7), the lowest cost results are given by the two cryptoprocessors: ECCRB-DPA1, and

ECCRB-DPA2, while the highest cost results are given by the two cryptoprocessors: ECCRSB-DPA1,

and ECCRSB-DPA2, which are proven to provide highest security level in compared to the other

cryptoprocessors (Section 6.4).

For the AT2P cost complexity comparison (in Figure 6.5), the lowest cost results are also given by

the two cryptoprocessors: ECCRB-DPA1, and ECCRB-DPA2, while the highest cost results are given by

the two cryptoprocessors: ECCRSB-DPA1, and ECCRSB-DPA2, expect for m = 230 where the highest

cost result is given by the ECCRG cryptoprocessor.

Table 6.3: Cost Complexity (A, D, P) measurements for all values of m

Cryptoprocessor m AT
(106)

AT2
(107)

A2T
(108)

ATP
(108)

ATP2
(1010)

AT2P
(109)

A2TP
(1010)

AT2P2
(1012)

A2TP2
(1012)

A2T2P
(1011)

ECCRG 173 0.374 0.629 0.083 0.635 1.078 1.067 0.142 0.181 0.240 0.238
ECCPLO 173 0.248 0.236 0.064 0.443 0.791 0.422 0.115 0.075 0.205 0.110
ECCB-SPA 173 0.263 0.266 0.068 0.457 0.794 0.462 0.119 0.080 0.206 0.120
ECCRB-DPA1 173 0.231 0.204 0.060 0.402 0.699 0.355 0.105 0.062 0.183 0.093
ECCRB-DPA2 173 0.238 0.216 0.062 0.414 0.720 0.376 0.108 0.065 0.188 0.098
ECCSB-SPA 173 0.480 0.507 0.219 0.927 1.788 0.978 0.422 0.189 0.814 0.445
ECCRSB-DPA1 173 0.555 0.674 0.253 1.071 2.070 1.301 0.489 0.251 0.945 0.594
ECCRSB-DPA2 173 0.576 0.730 0.262 1.104 2.116 1.398 0.502 0.268 0.963 0.636

ECCRG 191 0.515 1.080 0.127 0.916 1.628 1.919 0.225 0.341 0.400 0.472
ECCPLO 191 0.431 0.649 0.124 0.809 1.517 1.216 0.232 0.228 0.436 0.349
ECCB-SPA 191 0.493 0.848 0.141 0.892 1.614 1.534 0.255 0.278 0.462 0.439
ECCRB-DPA1 191 0.320 0.350 0.094 0.586 1.073 0.641 0.172 0.117 0.315 0.188
ECCRB-DPA2 191 0.392 0.516 0.117 0.718 1.315 0.946 0.214 0.173 0.391 0.281
ECCSB-SPA 191 0.724 1.035 0.368 1.432 2.829 2.044 0.726 0.404 1.435 1.037
ECCRSB-DPA1 191 0.786 1.211 0.402 1.559 3.092 2.402 0.796 0.476 1.579 1.226
ECCRSB-DPA2 191 0.764 1.143 0.391 1.518 3.014 2.269 0.776 0.451 1.541 1.160

ECCRG 230 1.323 5.928 0.391 2.555 4.934 11.446 0.755 2.210 1.457 3.381
ECCPLO 230 0.967 2.711 0.333 1.930 3.851 5.410 0.665 1.080 1.328 1.866
ECCB-SPA 230 0.984 2.761 0.345 1.936 3.809 5.433 0.679 1.069 1.336 1.905
ECCRB-DPA1 230 0.996 2.760 0.358 1.965 3.875 5.444 0.706 1.074 1.393 1.957
ECCRB-DPA2 230 1.009 2.815 0.365 1.994 3.939 5.561 0.722 1.099 1.425 2.013
ECCSB-SPA 230 1.451 3.463 0.883 3.092 6.587 7.378 1.881 1.572 4.006 4.487
ECCRSB-DPA1 230 1.494 3.657 0.911 3.188 6.806 7.806 1.945 1.666 4.152 4.762
ECCRSB-DPA2 230 1.505 3.711 0.919 3.219 6.884 7.935 1.966 1.697 4.204 4.846

132

(a)

(b)

(c)

Figure 6.4: Cost Complexity (ATP) Comparison for m = 173, 191, and 230

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
0.200
0.400
0.600
0.800
1.000
1.200

Cryptoprocessors cost (A,T,P) for m = 173

ATP

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000

0.500

1.000

1.500

2.000

Cryptoprocessors cost (A,T,P) for m = 191

ATP

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500

Cryptoprocessors cost (A,T,P) for m = 230

ATP

133

(a)

(b)

(c)

Figure 6.5: Cost Complexity (AT2P) Comparison for m = 173, 191, and 230

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000

0.500

1.000

1.500

Cryptoprocessors cost (A,T,P) for m = 173

AT2P

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
0.500
1.000
1.500
2.000
2.500
3.000

Cryptoprocessors cost (A,T,P) for m = 191

AT2P

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
2.000
4.000
6.000
8.000

10.000
12.000
14.000

Cryptoprocessors cost (A,T,P) for m = 230

AT2P

134

(a)

(b)

(c)

Figure 6.6: Cost Complexity (ATP2) Comparison for m = 173, 191, and 230

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000

0.500

1.000

1.500

2.000

2.500

Cryptoprocessors cost (A,T,P) for m = 173

ATP2

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500

Cryptoprocessors cost (A,T,P) for m = 191

ATP2

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000

Cryptoprocessors cost (A,T,P) for m = 230

ATP2

135

(a)

(b)

(c)

Figure 6.7: Cost Complexity (A2TP2) Comparison for m = 173, 191, and 230

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000
0.200
0.400
0.600
0.800
1.000
1.200

Cryptoprocessors cost (A,T,P) for m = 173

A2TP2

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000

0.500

1.000

1.500

2.000

Cryptoprocessors cost (A,T,P) for m = 191

A2TP2

E
C

C
R

G

E
C

C
P

LO

E
C

C
B

-S
P

A

E
C

C
R

B
-D

P
A

1

E
C

C
R

B
-D

P
A

2

E
C

C
S

B
-S

P
A

E
C

C
R

S
B

-D
P

A
1

E
C

C
R

S
B

-D
P

A
2

0.000

1.000

2.000

3.000

4.000

5.000

Cryptoprocessors cost (A,T,P) for m = 230

A2TP2

136

6.4 Summary

In this chapter, we present the results of synthesizing the various cryptoprocessors and compare

these eight cryptoprocessors in terms of power, time delay and area. Altera Cyclone III

EP3C80F780C7 FPGA has been used for prototyping.

A delay, area, and power comparison study is conducted for the different cryptoprocessors, with

different values of m. The comparison is done in details taking into consideration the

randomization levels for DPA aware cryptoprocessors. In addition, a more advanced comparison

is done on the cost complexity level, which provides a framework for the architecture designers to

select the appropriate design.

Results showed that our proposed architectures give best cost complexity in comparison to the

other latest proposed in the research field.

The presented work shows very interesting results (security level, and cost complexity) as

compared to other similar work recently proposed in the research field.

137

CHAPTER 7

Conclusions and Future Research
In the recent few years, intense research has been focused on the efficient implementation of Elliptic

Curve Cryptosystems (ECC) [3] [4] in extreme constrained resources such as the Wireless Sensor

Networks (WSN) [1]. Likewise, the current ECC implementations in WSN [7] are vulnerable to Side

Channel Analysis (SCA) attacks [8], in particularly to Power Analysis Attacks (PAA) [9], due to the

lack of secure physical shielding, their deployment in remote regions and it is left unattended. This

thesis has focused on devising algorithms and architectures for elliptic curve cryptoprocessors that are

not only efficient, but also PAA resistant with no any extra cost in terms of power, time delay, and

area. We proposed two cryptoprocessors (ECCB-SPA, ECCSB-SPA), and another two cryptoprocessors

(ECCRB-DPA, ECCRSB-DPA) that are secure against SPA attacks and DPA attacks respectively.

A more detailed description of the contributions of this thesis follows in Section 7.1. Possible future

research directions are described in Section 7.2.

1.1 Summary of Contributions

Firstly, we proposed two robust and high efficient PAA aware elliptic curve cryptoprocessors' GF(2m)

architectures (ECCB-SPA, ECCSB-SPA) for WSN. These architectures are based on innovative algorithms

for ECC core operation and are secure against SPA attacks.

Secondly, we proposed two additional cryptoprocessors' GF(2m) architectures (ECCRB-DPA, ECCRSB-DPA)

that are secured against DPA attacks.

The security advantages provided in these four cryptoprocessors covers both the SPA and DPA attacks

by applying: (i) PADD operation delaying using buffer storage, (ii) Scalar splitting for cost saving and

additional complexity, and (iii) Complicated randomization technique for extra confusion to secure

138

against DPA attacks.

Thirdly, a total of eight architectures which includes, in addition to the two SPA aware with the other

two DPA aware proposed architectures, two more architectures derived from our DPA aware proposed

once, along with two other similar PAA aware architectures. The eight proposed architectures are

synthesized for GF(2173), GF(2191), and GF(2230) on an Altera Cyclone III EP3C80F780C7 FPGA.

The time delay performance results of these four cryptoprocessors in number of Point Doubling

(PDBL) and Point Addition (PADD) are as follow:

 The ECCB-SPA and ECCRB-DPA require m*PDBL + (m/2)*PADD

 The ECCSB-SPA and ECCRSB-DPA requires m*PDBL + (3m/8) *PADD

In term of security level, it is directly related to the buffer size. In addition, the countermeasures in

ECCSB-SPA and ECCRSB-DPA cryptoprocessors inspect bit pairs instead of a single bit of the scalar, which

introduce a new level of confusion. Finally the deployment of randomization technique in both the

buffer capacity (being dynamic) and the processed points for PADD operation introduce a total

confusion on the relation between the processed bits of the scalar and the performed point operation,

which give advantage for the ECCSB-SPA and ECCRSB-DPA cryptoprocessors over the other proposed

ones.

These results in the time delay and security level have a practical impact in the area and power

consumption of these cryptoprocessors. For instance, these results may directly increase the area space

as the buffer size increase, which leads to more processing effort, and thus more power consumption.

Most remarkably, as different application might give different importance to critical factors such as

power, area, and time delay, a careful selection of cryptoprocessor with the best cost complexity

results can lead to the realization of record-breaking implementations of ECC in resource constrained

devices for the targeted application.

Fourthly, the eight proposed architectures are analyzed and evaluated by comparing their performance

results. In addition, a more advanced comparison, which is done on the cost complexity level (Area,

139

Delay, and Power), provides a framework for the architecture designers to select the appropriate

design. Our results show a significant advantage of our proposed architectures for cost complexity in

comparison to the other latest proposed in the research field.

For the ATP, ATP2, and A2TP2 cost complexities comparison (in Figure 6.4, Figure 6.6, and

Figure 6.7) for all eight cryptoprocessors have been done and evaluated. The results show that the

lowest cost results are given by the two cryptoprocessors: ECCRB-DPA1, and ECCRB-DPA2, while the

highest cost results are given by the two cryptoprocessors: ECCRSB-DPA1, and ECCRSB-DPA2, which are

proven to provide highest security level in compared to the other cryptoprocessors (Section 6.4).

For the AT2P cost complexity comparison (in Figure 6.5), the lowest cost results are also given by the

two cryptoprocessors: ECCRB-DPA1, and ECCRB-DPA2, while the highest cost results are given by the two

cryptoprocessors: ECCRSB-DPA1, and ECCRSB-DPA2, expect for m = 230 where the highest cost result is

given by the ECCRG cryptoprocessor.

1.2 Future Work

Future potential research may further investigate the following:

1. Exploring the hardware/software co-design of PAA aware ECC architecture for WSN.

2. Developing a mechanism for accurately evaluating the security level of PAA aware

cryptoprocessors, and

3. Rebuilding our framework for the architecture designers to include security level (S-Level) as a

fourth dimension in addition to (Area, Delay, and Power).

4. Evaluating the four architectures on other ASIC platforms (e.g. chip-based payment card for

banking financial transactions).

Bibliography

140

BIBLIOGRAPHY

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless Sensor
Networks: a survey," Computer Networks, 15 March vol. 38, issue. 4, p. 393-422, 2002.

[2] ANSI X9.62, "Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)," 1998.

[3] I. Blake, G. Seroussi, N. Smart, "Elliptic Curves in Cryptography," Cambridge

University Press, Cambridge, 1999.

[4] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren,
"Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics
and Its Applications," Vol. 34, Chapman and Hall, CRC, USA, 2005.

[5] C. K. Koc, "High-speed rsa implementation," In RSA Laboratories TR201, Nov. 1994.

[6] T. Elgamal, "A public key cryptosystem and a signature scheme based on discrete
logarithms," Information Theory, IEEE Transactions on, vol. 31, p. 469 – 472, July
1985.

[7] E.-O. Blaß and M. Zitterbart, "Efficient Implementation of Elliptic Curve Cryptography
for Wireless Sensor Networks," Telematics Technical Reports, March, 2005.

[8] B. Möller, "Parallelizable elliptic curve point multiplication method with resistance
against side-channel attacks," in Int. Conf. on Information Security (ISC 2002), Sao
Paulo, Brazil, vol. 2433, p. 402–413, 2002.

[9] P.-Y. Liardet, N.P. Smart, "Preventing SPA/DPA in ECC systems using the Jacobi
form," in Workshop on Cryptographic Hardware and Embedded Systems (CHES 2001),
Paris, France, vol. 2162, p. 391– 401, 2001.

[10] J. Ha, J. Park, S. Moon and S. Yen, "Provably Secure Countermeasure Resistant to
Several Types of Power Attack for ECC," in Information Security Applications (WISA),

vol. 4867. Springer, p. 333 – 344, 2007.

[11] H. Houssain, M. Badra and T. Al-Somani, "Power Analysis Attacks on ECC: A Major
Security Threat," International Journal of Advanced Computer Science and

Applications (IJACSA), vol. 3, issue. 6 ,p. 90 - 96, 2012.

[12] L. Batina, J. Hogenboom, N. Mentens, J. Moelans and J. Vliegen, "Side-channel
evaluation of FPGA implementations of binary Edwards curves," in in International

Conference on Electronics, Circuits and Systems 2010, p. 1255-1258, Athens, Greece,
Dec. 12-15, 2010.

[13] N. Biggs, Discrete Mathematics, New York: Oxford University Press, 1985.

[14] R. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic
Publishers, 1987.

[15] R. Lidl and H. Niederreiter, "Introduction to finite fields and their applications", revised
edition ed., Cambridge, UK: Cambridge University Press, 1994.

[16] R. Mullin, . I. Onyszchuk, S. Vanstone and R. Wilson, "Optimal normal bases in
GF(pm)". Discrete Appl. Math, vol. 22, p. 149–161, 1988/1989.

[17] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications
Company, 1999.

Bibliography

141

[18] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, vol. 48, p.
203–209, 1987.

[19] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
1993.

[20] H. Cohen, T. Ono and A. Miyaji, "Efficient elliptic curve exponentiation using mixed
coordinates," in In Advances in Cryptology ASIACRYPT’98, 1998.

[21] K. Koyama and Y. Tsutuoka, "Speeding up elliptic cryptosystems by using signed
binary window method," in Advances in Cryptology Proc. Of Crypto’92, LNCS 740,
1993.

[22] H. Cohen, A. Miyaji and T. Ono, "Efficient elliptic curve exponentiation.," in Advances

in Cryptology-Proc. Of ICICS’97, LNCS 1334, 1997.

[23] J. Lopez and R. Dahab, "Improved Algorithms for Elliptic Curve Arithmetic in
GF(2n)," in Selected Areas in Crpytography., LNCS 1556. Springer-Verlag. p. 201 -
212, 1999.

[24] D. Gordon, "A Survey of Fast Exponentiation Methods," Journal of Algorithms, p. 129
– 146, 1998.

[25] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004.

[26] V. S. Miller, "Use of elliptic curves in cryptography," in CRYPTO ’85: Proceedings of
the Advances in cryptology, New York, NY, USA, 1986.

[27] W. Diffie and M. Hellman, "New directions in cryptography," Information Theory,

IEEE Transactions on, vol. 22, p. 644–654, 1976.

[28] J. Pollard, "Monte Carlo methods for index computation mod p," Mathematics of

Computation, vol. 32, p. 918–924, 1978.

[29] R. Gallant, . R. Lambert and . S. Vanstone, "Improving the parallelized Pollard lambda
search on binary anomalous curves," Math. Comp., vol. 69, issue. 232, p. 1699-1705,
2000.

[30] E. D., G. R. , H. J. and K. S. , "Next Century Challenges: Scalable Coordination in
Sensor Networks," in Mobile Computing and Networking (MobiCom’99), Seattle, WA
USA, 1999.

[31] M. Healy, T. Newe and E. Lewis, "Wireless Sensor Node Hardware: A Review," p.
621-624, 2008.

[32] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A Survey on Sensor
Networks," IEEE Communications Magazine, p. 102-114, 2002.

[33] C.-C. Shen, C. Srisathapornphat and C. Jaikaeo, "Sensor Information Networking
Architecture and Applications," IEEE Personal Communications, August p. 52 - 59,
2001.

[34] E. Shi and A. Perrig, "Designing Secure Sensor Networks," IEEE Wireless

Communications, December p. 38 - 43, 2004.

[35] S. S. Doumit and D. P. Agrawal, "Self-Organizing and Energy-Efficient Network of
Sensors," IEEE, p. 1 - 6, 2002.

Bibliography

142

[36] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho and M. A. Perillo, "Middleware to
Support Sensor Network Applications," IEEE Network, p. 6-14, January/February,
2004.

[37] M. Srivastava, R. Muntz and M. Potkonjak, "Smart kindergarten: Sensor-based wireless
networks for smart developmental problem-solving enviroments," in in Proceedings of

the 7th Annual International Conference on Mobile Computing and Networking

(MobiCom’01), Rome, Italy, 2001.

[38] D. Carman, P. Krus and B. Matt, "Constraints and approaches for distributed sensor
network security," NAI Labs, Network Associates Inc., Glenwood, MD, 2000.

[39] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K. Pister, "System architecture
directions for networked sensors," in Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and Operating Systems, New
York, 2000.

[40] L. Yuan and G. Qu, "Design space exploration for energy efficient secure sensor
networks," in Proceedings of IEEE International Conference on Application-Specific

Systems, Architectures, and Processors, p. 88-100, July 2002.

[41] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J. Tygar, "SPINS: Security protocols for
sensor networks," Wireless Networks, September vol. 8, issue. 5, p. 521-534, 2002.

[42] A. D. Wood and J. A. Stankovic, "Denial of service in sensor networks," IEEE

Computer, vol. 35, issue. 10, p. 54-62, 2002.

[43] L. Eschenauer and V. Gligor, "A key-management scheme for distributed sensor
networks," in Proceedings of the 9th ACM Conference on Computer and Networking, p.

41-47, Nov 2002.

[44] S. Capkun and J.-P. Hubaux, "Secure positioning in wireless networks," IEEE Journal

on Selected Areas in Communications, vol. 24, issue. 2, p. 221-232, 2006.

[45] L. Lazos and R. Poovendran, "SERLOC: Robust localization for wireless sensor
networks," ACM Transactions on Sensor Networks, vol.1, issue. 1, p. 73-100, 2005.

[46] R. Anderson and M. Kuhn, "Low cost attacks on tamper resistant devices," In
Proceedings of the 5th International Workshop on Security Protocols, Bruce
Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael Roe (Eds.). Springer-
Verlag, London, UK, p. 125-136 , 1997.

[47] C. Hartung, J. Balasalle and R. Han, "Node compromise in sensor networks: The need
for secure systems," Technical Report CU-CS-988-04, Department of Computer
Science, University of Colorado at Boulder, 2004.

[48] X. Wang, W. Gu, S. Chellappan, K. Schoseck and D. Xuan, "Lifetime optimization of
sensor networks under physical attacks," in Proceedings of IEEE International

Conference on Communications, May 2005.

[49] X. Wang, W. Gu, S. Chellappan, D. Xuan and T. H. Laii, "Search-based physical
attacks in sensor networks: Modeling and defense," Technical report, Department of
Computer Science and Engineering, Ohio State University, February 2005.

[50] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn and P. Kruus, "TinyPK: securing
sensor networks with public key technology," In SASN ’04μ Proceedings of the 2nd
ACM workshop on Security of ad hoc and sensor networks, p. 59–64, 2004.

Bibliography

143

[51] L. Oliveira, D. Aranha, E. Morais, F. Daguano, J. L´opez and R. Dahab, "TinyTate:
Computing the TinyTate in resource-constrained nodes," in 6th IEEE International

Symposium on Network Computing and Applications, Cambridge,MA, 2007.

[52] D. Malan, M. Welsh and M. Smith, "A public-key infrastructure for key distribution in
TinyOS based on elliptic curve cryptography," in Proc. of the 1st IEEE

Communications Society Conference on Sensor and Ad Hoc Communications and

Networks (SECON '04), p. 71–80, Santa Clara, Calif, USA, 2004.

[53] N. Gura, A. Patel, A. S. Wander, H. Eberle and S. Chang Shantz, "Comparing elliptic
curve cryptography and RSA on 8-bit CPUs," in Cryptographic Hardware and

Embedded Systems — CHES 2004, vol. 3156 of LNCS, p. 119–132, Springer Verlag,
2004.

[54] S. Seo, D.-G. Han, H. Kim and S. Hong, "TinyECCK: Efficient Elliptic Curve
Cryptography Implementation over GF(2m) on 8-bit MICAz Mote," IEICE

Transactions on Info and Systems E91-D(5), p. 1338-1347, 2008.

[55] H. Wang and Q. Li, "Efficient implementation of public key cryptosystems on mote
sensors," in Information and Communications Security — ICICS 2006, vol. 4307 of
LNCS, p. 519–528, 2006.

[56] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier and R. Dahab, "NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks," in Wireless Sensor

Networks — EWSN 2008, vol. 4913 of LNCS, p. 305–320, 2008.

[57] E. Ozturk, B. Sunar and E. Savas, "Low-power elliptic curve cryptography using scaled
modular arithmetic," in Cryptographic Hardware and Embedded Systems - CHES 2004,

vol. 3156 of LNCS, p. 92–106, 2004.

[58] G. Gaubatz, J.-P. Kaps, E. Öztürk and B. Sunar, "State of the art in ultra-low power
public key cryptography for wireless sensor networks," Third IEEE International

Conference on Pervasive Computing and Communications Workshops, Workshop on

Pervasive Computing and Communications Security–PerSec'05, IEEE Computer

Society, p. 146–150, Mar, 2005.

[59] J. Wolkerstorfer, "Scaling ECC Hardware to a Minimum," in ECRYPT workshop -

Cryptographic Advances in Secure Hardware - CRASH 2005, September 6-7, 2005.
Invited Talk.

[60] L. Batina, N. Mentens, K. Sakiyama, B. Preneel and I. Verbauwhede, "Low-Cost
Elliptic Curve Cryptography for Wireless Sensor Networks," in Proc. ESAS'06, p.6-17,
2006.

[61] L. Breveglieri, G. Bertoni, and M. Venturi, "Power Aware Design of an Elliptic Curve
Coprocessor for 8 bit Platforms," in Proc. of PERCOMW'06, p. 337, 2006.

[62] S. Kumar and C. Paar, "Are standards compliant elliptic curve cryptosystems feasible
on RFID?," in Proc. of Workshop on RFID Security, Graz, Austria, July 2006.

[63] J. Portilla, A. Marnotes, E. de la Torre, T. Riesgo, O. Stecklina, S. Peter and P.
Langendörfer, "Adaptable Security in Wireless Sensor Networks by Using
Reconfigurable ECC Hardware Coprocessors," in International Journal of Distributed

Sensor Networks, 2010.

[64] "TelosB Implementation of Elliptic Curve Cryptography over Primary Field," WM-CS
Technical Report, 2005.

Bibliography

144

[65] H. Yan and Z. Shi, "Studying software implementations of elliptic curve cryptography,"
in Third International Conference on Information Technology: New Generations (ITNG

2006), p. 78-83, 2006.

[66] O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S.A. Huss, "Optimized Implementation
of Elliptic Curve based Additive Homomorphic Encryption for Wireless Sensor
Networks," in Workshop on Embedded Systems Security (WESS 2007), p. 11–16, 2007.

[67] A. Liu and P. Ning, "TinyECC: A configurable library for elliptic curve cryptography in
wireless sensor networks," in Proc. 7th International Conference on Information

Processing in Sensor Networks (IPSN 2008), p. 245–256, 2008.

[68] C. Lederer, R. Mader, M. Koschuch, J. Großschädl, A. Szekely and S. Tillich, "Energy-
Efficient Implementation of ECDH Key Exchange for Wireless Sensor Networks," in in

WISTP 2009.

[69] S. Khajuria and H. Tange, "Implementation of diffie-Hellman key exchange on wireless
sensor using elliptic curve cryptography," in 1st International Conference on Wireless

Communication, Vehicular Technology, Information Theory and Aerospace and

Electronic Systems Technology (Wireless VITAE ’09), p. 772–776, May 2009.

[70] D. F. Aranha, R. Dahab, J. López and L. B. Oliveira, "Efficient implementation of
elliptic curve cryptography in wireless sensors," Advances in Mathematics of

Communications, vol 4, issue 2, p. 169 - 187, 2010.

[71] F. Morain and J. Olivos, "Speeding up the computations on an elliptic curve using
addition-subtraction chains," Theoretical Informatics and Applications, 24, p. 531–543,
1990.

[72] S. C. Shantz, From euclid’s gcd to montgomery multiplication to the great divide, Sun
Microsystems Laboratories TR-2001-95, June 2001.

[73] "Dragongate Technologies Limited, “jBorZoi 0.λ,” httpμ//dragongate-
technologies.com/products.html," August 2003. [Online].

[74] J. L´opez and R. Dahab, "High-Speed Software Multiplication in F2m," Institute of
Computing, Sate University of Campinas, S˜ao Paulo, Brazil, Tech. Rep., May 2000.

[75] D. Hankerson, J. L. Hemandez and A. Menezes, "Software Implementation of Elliptic
Curve Cryptography over Binary Fields," LNCS, vol. 1965, 2001.

[76] N. Koblitz, " CM-Curves with Good Cryptographic Properties," in 11th Annual

International Cryptology Conference on Advances in Cryptology, 1991.

[77] J. A. Solinas, "An Improved Algorithm for Arithmetic on a Family of Elliptic Curves,"
in 17th Annual International Cryptology Conference on Advances in Cryptology, 1997.

[78] E. K. Reddy, "Elliptic Curve Cryptosystems and Side-channel Attacks," International

Journal of Network Security, vol.12, issue.3, p.151-158, May 2011.

[79] G. d. Meulenaer, . F. Gosset, F.-X. Standaert and O. Pereira, "On the energy cost of
communication and cryptography in wireless sensor networks," in Proceedings of the

4th IEEE International Conference on Wireless and Mobile Computing, Networking

and Communications (WIMOB 2008), 2008.

[80] J. Großsch¨adl and s. E. Sava, "Instruction set extensions for fast arithmetic in finite
fields GF(p) and GF(2m)," In Cryptographic Hardware and Embedded Systems —

CHES 2004, vol. 3156 of LNCS, p. 133–147, 2004.

Bibliography

145

[81] M. Hedabou, P. Pinel and L. Bénéteau, "A comb method to render ECC resistant against
Side Channel Attacks," IACR Cryptology ePrint Archive 2004, p. 342, 2004.

[82] D. E. Knuth, The Art of Computer Programming , Volume 2: Seminumerical
Algorithms, San Francisco: Addison-Wesley, 1998.

[83] ""http://bwrc.eecs.berkeley.edu/Classes/icdesign/ee141_f99/Notes/lecture3.pdf."," 2003.
[Online].

[84] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems," in Advances in Cryptology, Proc. CRYPTO ’96, N. Koblitz, ed., p. 104-
113, 1996.

[85] P. Kocher, J. Jaffe and B. Jun, "Differential power analysis," in Proc. Adv. Cryptology –

CRYPTO’99, Santa Barbara, CA, vol. 1666, p. 388–397, 1999.

[86] J. S. Coron, "Resistance against differential power analysis for elliptic curve
cryptosystems," in Cryptographic Hardware and Embedded Systems – CHES 1999,
Worcester, MA: Springer, vol. 1717, p. 292–302, 1999.

[87] L. Goubin, "A refined power-analysis attack on elliptic curve cryptosystems," in
Proceedings of PKC 2003, LNCS 2567, p. 199-211. Springer Berlin / Heidelberg, 2003.

[88] T. Akishita and T. Takagi, "Zero-value register attack on elliptic curve cryptosystem,"
IEICE Transactions, 88-A(1): p. 132–139, 2005.

[89] P. Fouque and F. Valette, "The doubling attack– why upwards is better than
downwards," in Proc. CHES’03, vol. 2779, p. 269–280, 2003.

[90] S. M. Yen, L. C. Ko, S. J. Moon and J. C. Ha, "Relative doubling attack against
montgomery ladder," in Proc. ICISC’05, vol. 3935, p. 117–128, 2006.

[91] S. Chari, J. R. Rao and P. Rohatgi, "Template Attacks," in Cryptographic Hardware

and Embedded Systems, CHES, ser. LNCS, vol. 2523, p. 13–28, 2002.

[92] P. Fouque, D. R´eal, F. Valette and M. Drissi, "The Carry Leakage on the Randomized
Exponent Countermeasure," in Cryptographic Hardware and Embedded Systems -

CHES, ser. LNCS, vol. 5154. Springer, p. 198 – 213, 2008.

[93] E. Brier and M. Joye, "Weierstraß elliptic curves and side-channel attacks," in David

Naccache and Pascal Paillier (Eds.), Public Key Cryptography, vol. 2274 of LNCS, p.
335 – 345. Springer, Berlin / Heidelberg, 2002.

[94] P. Montgomery, "Speeding up the Pollard and elliptic curve methods of factorization,"
Mathematics of Computation, vol. 48, issue. 177, p. 243 – 264, 1987.

[95] M. Joye and J. Quisquater, "Hessian elliptic curves and side-channel attacks,"
Cryptographic Hardware and Embedded Systems CHES 2001, LNCS 2162, Springer-
Verlag, p.402 – 410, 2001.

[96] O. Billet and M. Joye, "The Jacobi model of an elliptic curve and side-channel
analysis," Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 2003,

LNCS 2643, Springer- Verlag, p.34 – 42, 2003.

[97] W. Keke, L. Huiun, Z. Dingju and Y. Fengqi, "Efficient Solution to Secure ECC
Against Side-channel Attacks," 20 (CJE-3): p. 471 - 475, 2011.

[98] É. Brier, I. Déchène and M. Joye, "Unified PADDition formulæ for elliptic curve
cryptosystems," In Embedded Cryptographic Hardware: Methodologies &

Architectures., Nova Science Publishers, 2004.

Bibliography

146

[99] T. F. Al-Somani and A. A. Amin, "High Performance Elliptic Curve Scalar
Multiplication with Resistance against Power Analysis Attacks," Journal of Applied

Sciences, vol. 8 (24), p. 4587 - 4594, 2008.

[100] B. Chevallier-Mames, M. Ciet and M. Joye, "Low cost solutions for preventing simple
side-channel analysis: Side channel atomicity," IEEE Trans. Computers, 53(6): p. 760 –
768, 2004.

[101] P. Longa, Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over

Prime Fields., PhD thesis, School of Information Technology and Engineering,
University of Ottawa, 2007.

[102] C. Giraud and V. Verneuil, "Atomicity Improvement for Elliptic Curve Scalar
Multiplication," CARDIS 2010: 80441.

[103] D. Bernstein and T. Lange, "Faster Addition and Doubling on Elliptic Curves,"
Advances in Cryptology - ASIACRYPT, K. Kurosawa (ed.), vol. 4833 of LNCS, p. 29-
50, Springer, 2007.

[104] S. Ghosh, D. Mukhopadhyay and D. R. Chowdhury, "Petrel: Power and Timing Attack
Resistant Elliptic Curve Scalar Multiplier Based on Programmable GF(p) Arithmetic
Unit," IEEE Trans. on Circuits and Systems 58-I(8), p. 1798-1812, 2011.

[105] M. Joye and C. Tymen, "Protections against differential analysis for elliptic curve
cryptography," In: [cKKNP01] Cryptographic Hardware and Embedded Systems –

CHES 2001, LNCS, Vol. 2162, p. 377.

[106] M. Ciet and M. Joye, "(Virtually) Free Randomization Techniques for Elliptic Curve
Cryptography," in Information and Communications Security (ICICS2006), LNCS 2836,

Springer, 2003, p. 348–359.

[107] D. Naccache, N. P. Smart and J. Stern, "Projective Coordinates Leak," In: Advances in

Cryptology - EuroCrypt 2004, LNCS, Vol. 3027, p. 257–267. Springer, Berlin /
Heidelberg, 2004.

[108] T. Akishita and T. Takagi, "Zero-Value Point Attacks on Elliptic Curve Cryptosystem,"
vol. 2851, p. 218 – 233, 2003.

[109] G. d. Meulenaer and F.-X. Standaert, "Stealthy Compromise of Wireless Sensor Nodes
with Power Analysis Attacks," MOBILIGHT, p. 229-242, 2010.

[110] H. Houssain, M. Badra and T. F. Al Somani, "Hardware Implementations of Elliptic
Curve Cryptography in Wireless Sensor Networks," in Proc. 6th International Conf. on

Internet Technology and Secured Transactions (ICITST 2011), Abu Dhabi, UAE, p. 1 -
6, Dec 2011.

[111] N. Koblitz, A. Menezes and S. Vanstone, "The State of Elliptic Curve Cryptography,"
Designs, Codes and Cryptography, pp. Vol. 19, Issue. 2–3, p. 173–193, 2000.

[112] J. L. Massey and J. K. Omura, "Computational method and apparatus for finite field
arithmetic". US Patent No. 4587627 1986.

[113] C. C. Wang, T. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and . I. S. Reed, "VLSI
architectures for computing multiplications and inverses in GF(2m)," IEEE Trans.

Comput., Vol. 34, Issue. 8, p. 709-716. 1985.

[114] T. F. Al-Somani and A. Amin, "Hardware implementations of GF(2m) arithmetic using
normal basis," J. Appl. Sci, Vol. 6, Issue 6, p. 1362–1372, 2006.

Bibliography

147

[115] T. Itoh and S. Tsujii, "A fast algorithm for computing multiplicative inverses in GF(2m)
using normal bases," Info. Comput., Vol. 78, Issue.3, p. 171–177, 1988.

[116] C. Lim and P. Lee, "More Flexibility Exponentiation with Precomputation," Advances

in Cryptology - Crypto’94, LNCS 839, p. 95–107, 1994.

[117] R. Kling, "Intel Mote: An Enhanced Sensor Network Node," in International Workshop

on Advanced Sensors, Structural Health Monitoring and Smart Structures at Keio

University, Tokyo, Japan, 2003.

[118] J. L´opez and R. Dahab, "An Overview of Elliptic Curve Cryptography," Institute of
Computing, Sate University of Campinas, S˜ao Paulo, Brazil, Tech. Rep., May 2000.

[119] C. Hartung, J. Balasalle and R. Han, "Node compromise in sensor networks: The need
for secure systems," Technical Report CUCS-990-05, Department of Computer Science,
University of Colorado at Boulder, Jaunary 2005.

[120] IEEE P1363, "Standard Specifications for Public-Key Cryptography," 2000.

[121] National Institute of Standards and Technology, Recommended Elliptic Curves for
Federal Government Use, in the appendix of FIPS 186-2.

[122] Standards for Efficient Cryptography Group (SECG), Specification of Standards for
Efficient Cryptography.

