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Abstract 

Elliptic Curve Cryptosystems (ECC) have been adopted as a standardized Public Key 

Cryptosystems (PKC) by IEEE, ANSI, NIST, SEC and WTLS. In comparison to traditional PKC 

like RSA and ElGamal, ECC offer equivalent security with smaller key sizes, in less computation 

time, with lower power consumption, as well as memory and bandwidth savings. Therefore, ECC 

have become a vital technology, more popular and considered to be particularly suitable for 

implementation on resource constrained devices such as the Wireless Sensor Networks (WSN). 

Major problem with the sensor nodes in WSN as soon as it comes to cryptographic operations is 

their extreme constrained resources in terms of power, space, and time delay, which limit the 

sensor capability to handle the additional computations required by cryptographic operations. 

Moreover, the current ECC implementations in WSN are particularly vulnerable to Side Channel 

Analysis (SCA) attacks; in particularly to the Power Analysis Attacks (PAA), due to the lack of 

secure physical shielding, their deployment in remote regions and it is left unattended. Thus 

designers of ECC cryptoprocessors on WSN strive to introduce algorithms and architectures that 

are not only PAA resistant, but also efficient with no any extra cost in terms of power, time delay, 

and area. 

The contributions of this thesis to the domain of PAA aware elliptic curve cryptoprocessor for 

resource constrained devices are numerous. Firstly, we propose two robust and high efficient 

PAA aware elliptic curve cryptoprocessors architectures based on innovative algorithms for ECC 

core operation and envisioned at securing the elliptic curve cryptoprocessors against Simple 

Power Analysis (SPA) attacks on resource constrained devices such as the WSN. Secondly, we 

propose two additional architectures that are envisioned at securing the elliptic curve 

cryptoprocessors against Differential Power Analysis (DPA) attacks. Thirdly, a total of eight 

architectures which includes, in addition to the two SPA aware with the other two DPA aware 
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proposed architectures, two more architectures derived from our DPA aware proposed once, 

along with two other similar PAA aware architectures. The eight proposed architectures are 

synthesized using Field Programmable Gate Array (FPGA) technology. Fourthly, the eight 

proposed architectures are analyzed and evaluated by comparing their performance results. In 

addition, a more advanced comparison, which is done on the cost complexity level (Area, Delay, 

and Power), provides a framework for the architecture designers to select the appropriate design. 

Our results show a significant advantage of our proposed architectures for cost complexity in 

comparison to the other latest proposed in the research field.  
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Mots-clés 

Les systèmes de cryptographie à base de courbe elliptique, les attaques par canaux auxiliaires, les 

attaques par analyse de consommation, les attaques par analyse élémentaire de consommation, les 

attaques par analyse différentielle de consommation, et la multiplication scalaire. 
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Abstrait 

Les systèmes de cryptographie à base de courbe elliptique (ECC) ont été adoptés comme des 

systèmes standardisés de cryptographie à clé publique (PKC) par l'IEEE, ANSI, NIST, SEC et 

WTLS. En comparaison avec la PKC traditionnelle, comme RSA et ElGamal, l'ECC offre le 

même niveau de sécurité avec des clés de plus petites tailles. Cela signifie des calculs plus rapides 

et une consommation d'énergie plus faible ainsi que des économies de mémoire et de bande 

passante. Par conséquent, ECC est devenue une technologie indispensable, plus populaire et 

considérée comme particulièrement adaptée à l’implémentation sur les dispositifs à ressources 

restreintes tels que les réseaux de capteurs sans fil (WSN). 

Le problème majeur avec les nœuds de capteurs chez les WSN, dès qu'il s'agit d’opérations 

cryptographiques, est les limitations de leurs ressources en termes de puissance, d'espace et de 

temps de réponse, ce qui limite la capacité du capteur à gérer les calculs supplémentaires 

nécessaires aux opérations cryptographiques. En outre, les mises en œuvre actuelles de l’ECC sur 

WSN sont particulièrement vulnérables aux attaques par canaux auxiliaires (SCA), en particulier 

aux attaques par analyse de consommation (PAA), en raison de l'absence de la sécurité physique 

par blindage, leur déploiement dans les régions éloignées et le fait qu’elles soient laissées sans 

surveillance. Ainsi, les concepteurs de crypto-processeurs ECC sur WSN s'efforcent d'introduire 

des algorithmes et des architectures qui ne sont pas seulement résistants PAA, mais également 

efficaces sans aucun supplément en termes de temps, puissance et espace.  

Cette thèse présente plusieurs contributions dans le domaine des cryptoprocesseurs ECC 

conscientisés aux PAA, pour les dispositifs à ressources limitées comme le WSN. Premièrement, 

nous proposons deux architectures robustes et efficaces pour les ECC conscientisées au PAA. Ces 

architectures sont basées sur des algorithmes innovants qui assurent le fonctionnement de base 

des ECC et qui prévoient une sécurisation de l’ECC contre les PAA simples (SPA) sur les 
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dispositifs à ressources limitées tels que les WSN. Deuxièmement, nous proposons deux 

architectures additionnelles qui prévoient une  sécurisation des ECC contre les PAA différentiels 

(DPA). Troisièmement, un total de huit architectures qui incluent, en plus des quatre architectures 

citées ci-dessus pour SPA et DPA, deux autres architectures dérivées de l’architecture DPA 

conscientisée, ainsi que deux architectures PAA conscientisées. Les huit architectures proposées 

sont synthétisées en utilisant la technologie la technologie des réseaux de portes programmables 

in situ (FPGA). Quatrièmement, les huit architectures sont analysées et évaluées, et leurs 

performances comparées. En plus, une comparaison plus avancée effectuée sur le niveau de la 

complexité du coût (temps, puissance, et espace), fournit un cadre pour les concepteurs 

d'architecture pour sélectionner la conception la plus appropriée. Nos résultats montrent un 

avantage significatif de nos architectures proposées par rapport à la complexité du coût, en 

comparaison à d'autres solutions proposées récemment dans le domaine de la recherche. 

  



Previously Published Materials 
  

  

Previously Published Materials 

The following papers have been published or presented, and contain material based on the content 

of this thesis.  

1. Journal Articles 

i. Houssain. H, Al-Somani. T.F, "Elliptic Curve Cryptoprocessor Implementation on a Nano FPGA: 

Interesting for Resource-Constrained Devices", International Journal of RFID Security and 

Cryptography (IJRFIDSC), Vol.1, Issues 1/2, p. 45 – 50, 2012 

ii. Houssain. H, Badra. M, Al-Somani. T.F, "Comparative Study of Elliptic Curve Cryptography 

Hardware Implementations in Wireless Sensor Networks", International Journal of RFID Security and 

Cryptography (IJRFIDSC), Vol. 1, Issues 1/2, p. 67 – 73, 2012 

iii. Houssain. H, Badra. M, Al-Somani. T.F, "Power Analysis Attacks on ECC: A Major Security 

Threat", International Journal of Advanced Computer Science and Applications ( IJACSA ) , Vol. 3, 

No.6, p. 90 – 96, 2012 

iv. Al-Somani. T.F, Khan. A.E, Qamar. A.M, and Houssain. H, "Hardware/Software Co-Design 

Implementations of Elliptic Curve Cryptosystems", Information Technology Journal, Vol. 8, No. 4, p. 

403 – 410, 2009 

v. Houssain. H, Badra. M, Al-Somani. T.F, “Software Implementations of Elliptic Curve Cryptography 

in Wireless Sensor Networks”, Journal of Communication and Computer, Vol. 9, No. 6, p. 712 – 720, 

2012 

2. Conference Papers 

i. Al-Somani. T.F, Houssain. H, "Implementation of GF(2^m) Elliptic Curve Cryptoprocessor on Nano 

FPGA", Internet Technology and Secured Transactions (ICITST), 2011 International Conference for  

Publication, p. 7 – 12, 2011 

http://www.getcited.org/pub/103482505
https://sites.google.com/site/appliedcrypto/papers/AlSomani-ITJ2009.pdf?attredirects=0
https://sites.google.com/site/appliedcrypto/papers/AlSomani-ITJ2009.pdf?attredirects=0
http://www.ieeeexplore.com/xpl/mostRecentIssue.jsp?punumber=6141531


Previously Published Materials 
  

  

ii. Houssain. H, Badra. M, Al-Somani. T.F, "Hardware implementations of Elliptic Curve 

Cryptography in Wireless Sensor Networks", Internet Technology and Secured Transactions (ICITST), 

2011 International Conference for  Publication, p. 1 – 6, 2011 

  



List of Abbreviations Used 
  

  

List of Abbreviations Used 

ADD  Addition 

ASIC  Application Specific Integrated Circuits 

CBA   Carry-based Attack 

CMOS  Complementary Metal-Oxide Semiconductor 

CPU  Central Processing Unit 

DA  Doubling Attack 

DoS  Denial of Service 

DPA  Differential Power Analysis 

ECC  Elliptic Curve Cryptosystems 

ECDLP  Elliptic Curve Discrete Logarithm Problem 

FPGA  Field Programmable Gate Array 

FPM   Fixed point multiplication 

GF(2m)  Finite Field of Order 2m 

MAC  Message Authentication Code 

MOF  Mutual Opposite Form 

MUL  Multiplication 

NAF  Non-Adjacent Form 

ONB  Optimal Normal Basis 

PAA  Power Analysis Attacks 

PADD  Point Addition  

PCA  Principal Component Analysis 

PDBL  Point Doubling 

PKC  Public Key Cryptosystems 



List of Abbreviations Used 
  

  

RAM  Random Access Memory 

RFID  Radio Frequency Identity 

RISC  Reduced Instruction Set Computing 

ROM   Read Only Memory 

RPA   Refined Power Analysis 

RPM  Random point multiplication 

RSA  Rivest, Shamir and Adleman 

SCA   Side Channel Analysis 

SeRLoC Secure Range-Independent Localization 

SPA  Simple Power Analysis 

SQR  Squaring 

SRAM  Static Random Access Memory 

TinyECCK Tiny Elliptic Curve Cryptosystem with Koblitz Curve 

TNAF   Ĳ - adic Non-Adjacent Form 

UCLA  University of Central Lancashire 

VHDL   VHSIC Hardware Description Language 

VHSIC  Very High-Speed Integrated Circuit 

VM  Verifiable Multilateration 

WSN  Wireless Sensor Networks 

ZPA   Zero Power Analysis 



Acknowledgements 
  

  

Acknowledgements 

All praise be to Allah the Almighty who has given me knowledge, patience, and devotion to 

finish my PhD dissertation works. After 4 years of PhD research, I would like to thank the people 

who supported me along the way.  

My greatest debt of gratitude is to my thesis supervisors who allowed me to conduct this work. 

My supervisor (Dr. Mohamad Badra) was a great help throughout these four years, and this thesis 

owes much to his advice, his rigor and lights that made me. My co-supervisor (Prof. Turki F. Al-

Somani) profound knowledge on cryptography and electronic system design was vital to make 

my dissertation successfully complete and resourceful. The continuous support of Prof. Turki, 

together with his stimulating suggestions and encouragement helped me in all the time of research 

for and writing of this dissertation. 

A great appreciation goes to my thesis director Prof. Philipe Mahey, for his invaluable 

inspiration, help, and guidance that helped me through my PhD dissertation works. I greatly 

valued the sincere and generous moral support he has provided me.  

I extend my warmest thanks to Prof. Bernard Cousin and Prof. Pascal Urien for accepting to 

be members of the jury, and Prof. Michel Misson for chairing it. and for their helpful comments 

and suggestions. 

I would like to express my utmost gratitude to to Dr. Mohammad Khodr and Ahlam Khodr 

(God bless their souls) for their guidance and support not only in my studies, but also in all 

matters of life. I am influenced by their way of thinking. They have been great teachers, friends, 

role models, and advisors to assist me in my career path and help me develop my professional 

skills. 

I’m very grateful to Eng. Abdullah Al Hassani who worked with me on various pieces of this 

thesis and on other publications.  



Acknowledgements 
  

  

I cannot forget to acknowledge all my friends from Blaise Pascal University. I am particularly 

grateful to Ismail Mansour for his invaluable help in adjusting to France, and being wonderful 

friend. 

Last, but not least, I would like to express my deepest thanks and appreciation to my beloved 

parents, and my lovely wife "Hala" for her love, moral support, patience and understanding. To 

my sons Mohamad and Ghayth for their love and confidence in me were the constant source of 

inspiration to offer the best of myself to this research.  

 



CHAPTER 1  

Introduction 

Wireless Sensor Networks (WSN) [1] are ad hoc networks comprised of a large number of 

low-cost, low-power, and multi-functional sensor nodes and one or more base stations. The recent 

developments in WSN technology have led to a wide range of potential applications for this 

technology, such as health monitoring, industrial control, environment observation, as well as 

office and even military operations. In most of these applications, critical information is 

frequently exchanged among sensor nodes through insecure wireless channels. It is therefore 

crucial to add security measures to WSN using cryptography for protecting its data against threats 

in a way so integrity, authenticity or confidentiality can be guaranteed. 

Major problem with the sensor nodes as soon as it comes to cryptographic operations is their 

extreme constrained resources in terms of power, space, and time delay, which limit the sensor 

capability to handle the additional computations required by cryptographic operations. 

Nevertheless, Public key cryptosystems (PKC) [2] is indeed shown to be feasible in WSN by 

using Elliptic Curve Cryptosystems (ECC) [3] [4]. This is because, in comparison to traditional 

cryptosystems like RSA [5] and ElGamal [6], ECC offers equivalent security with smaller key 

sizes, in less computation time, with lower power consumption, as well as memory and 

bandwidth savings.  

The current ECC implementations in WSN [7] are particularly vulnerable to Side Channel 

Analysis (SCA) attacks [8]; in particularly to the Power Analysis Attacks (PAA) [9], due to the 

lack of secure physical shielding, their deployment in remote regions and it is left unattended. 

Accordingly, there should exist countermeasures to secure ECC against SCA attacks such as the 

Simple Power Analysis (SPA) and the Differential Power Analysis (DPA) [9] [10] attacks, but 
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normally these countermeasure solutions on ECC involve extra computations to be handled by 

the sensor. Thus designers of ECC cryptoprocessors on WSN strive to introduce algorithms and 

architectures that are not only PAA resistant, but also efficient with no any extra cost in terms of 

power, time delay, and area. 

1.1. Motivation 

To the extent of our knowledge, no shown effort has been made for PAA resistant ECC 

implementations in WSN in particular [11]. Additionally, the current PAA aware ECC 

architectures require extra computations to be handled by the cryptoprocessor, and thus there are 

not easily viable to be implemented in extremely constrained resources such as WSN.  

1.2. Problem Statement 

In general, approaches for PAA resistant ECC implementations in WSN correspond to extra 

cost in terms of energy, area, and time delay consumption for cryptographic functions. Therefore, 

designing ECC cryptoprocessors on WSN require the proposition of algorithms and architectures 

that are not only PAA resistant, but also efficient with no any extra cost in terms of power, time 

delay, and area. Conquering this concern, the following requirements for investigation have been 

identified as criterions for efficient and secure PAA resistant ECC implementations in WSN: 

1. Underlying finite field, representation basis, project coordinate system, and the field 

arithmetic operations for ECC systems. 

2. Security issues and requirements for WSN, and its current software and hardware 

implementation in WSN, taking into consideration the underlying finite field, 

representation basis, occupied chip area, consumed power, and time delay performances of 

these implementations. 
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3. Major PAA and its countermeasures on ECC.  

1.3. Contributions 

The contributions of this thesis to the domain of PAA aware elliptic curve cryptoprocessor for 

WSN are numerous.  

Firstly, we propose two robust and high efficient PAA aware elliptic curve cryptoprocessors 

architectures for WSN. These architectures are based on innovative algorithms for ECC core 

operation and envisioned at securing the elliptic curve cryptoprocessors against Simple Power 

Analysis (SPA) [9] [10] attacks.  

Secondly, we propose two additional architectures that are envisioned at securing the elliptic 

curve cryptoprocessors against Differential Power Analysis (DPA) [9] [10] attacks. 

Thirdly, a total of eight architectures which includes, in addition to the two SPA aware with the 

other two DPA aware proposed architectures, two more architectures derived from our DPA 

aware proposed once, along with two other similar PAA aware architectures. The eight proposed 

architectures are synthesized using Field Programmable Gate Array (FPGA) [12] technology. 

Fourthly, the eight proposed architectures are analyzed and evaluated by comparing their 

performance results. In addition, a more advanced comparison, which is done on the cost 

complexity level (Area, Delay, and Power), provides a framework for the architecture designers 

to select the appropriate design. Our results show a significant advantage of our proposed 

architectures for security level and cost complexity in comparison to the other latest proposed in 

the research field. 

1.4. Organization of the Thesis 

This thesis is organization as follows.  
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In chapter 2, the necessary background on ECC is provided, including the GF(2m) finite field 

arithmetic, ECC arithmetics and ECC operations such as scalar multiplication, encryption, and 

discrete logarithm problem. 

Chapter 3 presents studies on both the hardware and software recent implementations of ECC in 

resource constrained devices such as the WSN. These studies consider the unique characteristics 

of WSN nodes as resource constrained devices, and thus it cover the underlying finite field, 

representation basis, occupied chip area, consumed power, and time delay performances of these 

implementations.  

Chapter 4 represents a comprehensive study for the major existing PAA on ECC and its 

countermeasures. In addition, we make a graphical presentation for the relation between PAA on 

ECC and the current countermeasures. We discuss the critical concerns to be considered in 

designing countermeasures against PAA on ECC particular for WSN.  

Chapter 5 proposes four different robust and high efficient PAA aware elliptic curve 

cryptoprocessors architectures for WSN. The first two architectures are envisioned at securing the 

elliptic curve cryptoprocessors against SPA attacks, whereas the last two architectures are 

envisioned at securing the elliptic curve cryptoprocessors against DPA attacks. 

Chapter 6 presents the results of synthesizing eight various cryptoprocessors, and shows a 

comparison study for these cryptoprocessors in terms of power, time delay and area. In addition, a 

more advanced comparison is done on the cost complexity level, which provides a framework for 

the architecture designers to select the appropriate design.  

In Chapter 7, we summarize this thesis, and suggest directions for future research.  
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CHAPTER 2  

Elliptic Curve Cryptography 

This chapter provides necessary background on Elliptic Curve Cryptosystems (ECC) [3] [4], 

including the GF(2m) finite field arithmetic, ECC arithmetics and ECC operations such as scalar 

multiplication, encryption, and discrete logarithm problem. 

This chapter is organized as follows: Section 2.1 presents a brief on the finite field arithmetic, 

followed by the GF(2m) arithmetics in Section 2.2. Elliptic Curve arithmetic is covered in Section 

2.3. In Section 2.4, the Elliptic Curve Scalar Multiplication is discussed at length.  Elliptic Curve 

encryption is considered in Section 2.5 and chapter summary is provided in Section 2.6.  

2.1. Finite Field Arithmetic 

Curve operations in elliptic curve cryptosystem are carried out using arithmetic operations in 

the underlying field; hence, the overall performance of this cryptosystem depends on the 

efficiency of the arithmetic performed in the underlying finite field.  

In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field 

that contains only finitely numerous elements. Finite fields are vital in number theory, algebraic 

geometry, Galois theory, cryptography and coding theory [13] [14] [15].  

G is a group that could be either a finite or infinite set of elements, and its order, represented by 

the symbol G  , is the number of elements in the group.  The group G together with a binary 

operation (also called group operation), ◊, collectively satisfy the following four fundamental 

properties: 

http://library.kiwix.org:4201/A/Evariste_Galois.html
http://mathworld.wolfram.com/BinaryOperation.html
http://mathworld.wolfram.com/BinaryOperation.html
http://mathworld.wolfram.com/GroupOperation.html
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1.  Closure:   a b G    a b G     
2. Associativity:   a b c G     ( ) ( )a b c a b c     .  

3. Identity: The group contains an identity element e G  such that   a G   
a e e a a    .  

4. Inverse: For every element a G there is an inverse 1a G   such that 

1 1a a a a e        
Abelian groups (also called commutative groups), are groups fulfilling the conditions that the 

result of product operation of elements is unrelated to their arrangement;  

i.e., a b b a      a b G  .  

Cyclic groups are groups that have a generator element. A generator element g G   is an 

element of the group G, if every element a G is generated by repeatedly applying the group 

operation on g. Thus,   a G   
 

 
(Equation  2.1) 

  

Additive groups are groups with the ̀ ` "  group operator, denoted as: 

 
(Equation  2.2)  

 Equally, multiplicative groups are groups with the ̀ ` "  group operator, denoted as:  

 

 
(Equation  2.3) 
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A field consists of a set of elements F together with two operations, addition (denoted by "+") and 

multiplication (denoted by "*"), that satisfy the following arithmetic properties: 

1. (F, +) is an Abelian group with respect to the `` "  operation, with additive identity 

denoted by 0.  

2. (F \ {0}, *) represented by F*, and its elements form an Abelian group under the " * " 

operation, with multiplicative identity denoted by 1, and contains all the elements in F 

except the additive identity 0.  

3. The distribution law applies to the two binary operations; as follows:  

  a b c F   , ( ) ( ) ( )a b c a b a c      .  

As previously mentioned, if the set F is finite, then the field is said to be finite. Finite fields 

are represented by the symbol GF(q) and for any prime p and positive integer m, there always 

exists a finite field of order q = pm. The prime p is called the characteristic of the finite field 

GF(pm). In addition, there are three kinds of fields that are especially adaptable for efficiently 

implementing elliptic curve systems are prime fields, binary fields, and optimal extension fields. 

2.2. GF(2m) Arithmetic 

The finite GF(2m) field, of order 2m, called binary fields or characteristics-two finite fields, are 

of particular significance in cryptography, especially in the hardware implementation of 

cryptosystems, since it introduces high efficiency compared to the other fields. Elements of the 

GF(2m) field are represented in terms of a basis. Either Normal or Polynomial Basis is usually 

used for the majority of the elliptic curve cryptosystem implementations. In case of hardware 

implementation, normal basis is more suitable than polynomial basis since its operations can be 

efficiently implemented in hardware, and it mainly involve rotation, shifting and exclusive-
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ORing. Since for instance, one advantage of normal bases is that squaring of a field element is a 

simple rotation of its vector representation.  

A normal basis of GF(2m) is a basis of the form (Ⱦଶ೘షభ
 , ..., Ⱦଶమ, Ⱦଶభ, Ⱦଶబ), where ȕ ߳ 

GF(2m). In addition, an element A  ߳ GF(2m) in a normal basis can be uniquely 

represented in the form  ൌ ෌ Ƚ୧Ⱦଶ୧୫-ଵ୧ୀ଴  , where Ƚ୧ ߳ {0,1}.  

GF(2m) operations using normal basis are performed as follows: 

1. Addition. Addition is performed by a simple bit-wise exclusive-OR (XOR) operation. 

2. Squaring. Squaring is simply a rotate left operation. Thus, if 

A = (am-1, am-2, … a1, a0), then A2 = (am-2, am-3, … a0, am-1).  

3. Multiplication.  A, B  ߳ GF(2m), where 

 

ܣ ൌ ෍ ܽ௜ߚଶ೔௠ିଵ௜ୀ଴  and  ܤ ൌ ෍ ܾ௜ߚଶ೔௠ିଵ௜ୀ଴  

 

The product C = A * B, is given by:  

 

C = A * B ൌ ෍ ܿ௜ߚଶ೔௠ିଵ௜ୀ଴  

 

Multiplication is defined in terms of a set of m multiplication matrices ʢ (k)  

(k = 0,1,….,m-1),  

ܿ௞  ൌ  ෍  ௠ିଵ
௜ୀ଴ ෍ ௜௝ሺ௞ሻ௠ିଵߣ

௝ୀ଴ ܽ௜ ௝ܾ   ׊ ݇ ൌ  Ͳǡͳǡ ǥ ǡ݉ െ ͳ 

 {1 ,0} ࣅ ௜௝ሺ௞ሻߣ      



 
  

 
 
 

 
 
 

29 
 

The complexity of the multiplication method and its hardware implementation is related to the 

number of non-zero elements in the Ȝ matrix. For Optimal Normal Basis (ONB) [16], this value is 

denoted as CN and is equal to (2m-1). An ONB is one with the minimum possible number of non-

zero elements in the ߣ௜௝  matrix.  

Values of the  Ȝ matrix elements can be derived in function of the field size m. ONB is 

categorized into two types, denoted by Type I and Type II [16]. An ONB of Type I is valid for a 

given field GF (2m) if: 

(a) m + 1 is a prime 

(b) 2 is a primitive in GF (m + 1) 

In the other side, an ONB of Type II is available in GF (2m) if: 

(a) 2m + 1 is prime 

(b) Either 2 is a primitive in GF(2m + 1) or 2m + 1 Ł 3 (mod 4) and the quadratic residues in 

GF(2m + 1) is generated by 2 

An ONB is available in GF (2m) for 23% of all possible values of m [16]. The ߣሺ௞ሻ matrix can be 

formed by a k-fold cyclic shift to ߣሺ଴ሻ as follows:  

௜௝ሺ௞ሻߣ ൌ ߣ௜ି௞ǡ௝ି௞ሺ଴ሻ   for all 0 ≤ i, j, k ≤ m-1 

The ߣሺ଴ሻ matrix is derived differently for the two types of ONB. For the Type I ONB, ߣ௜௝ሺ଴ሻ ൌ ͳ iff 

i and j satisfy one of the following two congruencies [17]: 

(a) 2i + 2j Ł 1 mod (m + 1) 

(b) 2i + 2j Ł 0 mod (m + 1) 

For all Type II ONB, ߣ௜௝ሺ௞ሻ ൌ ͳ iff i and j satisfy one of the following four congruencies 

[17]: 
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(a) 2i + 2j Ł 2k mod (2m + 1) 

(b) 2i + 2j Ł −2k mod (2m + 1) 

(c) 2i - 2j Ł 2k mod (2m + 1) 

(d) 2i - 2j Ł −2k mod (2m + 1) 

Therefore, ߣ௜௝ሺ଴ሻ ൌ ͳ iff i and j satisfy one of the following four congruences: 

2i ± 2j Ł ± 1 mod (2m + 1) 

 

4. Inversion. Inverse of a ߳ GF(2m), denoted as a-1, is defined as follows. 

aa−1 Ł 1 mod 2m 

The majority of the inversion algorithms are generated from Fermat’s Little Theorem, where 

a−1 = a2m−2 

for all a ≠ 0 in GF(2m).  

In this thesis, and for its advantage in hardware implementation efficiency, ONB is chosen to 

represent the elements of the GF(2m) fields in elliptic curve cryptoprocessors hardware 

implementations.  

2.3. Elliptic Curve Arithmetic 

An elliptic curve E over the finite field GF(p) defined by the parameters a, b ߳ GF(p), where p 

is a prime greater than 3, is the group formed by the additive identity of the group point O, known 

as the “point at infinity” [18], and the set of points P = (x, y), where x, y ߳ GF(p), that satisfy the 

elliptic curve equation (Equation  2.4)  

ଶݕ ൌ ݔଷ ൅ ݔܽ ൅ ܾ (Equation  2.4)

 

for a, b ߳ GF(p) and 4a3 + 27b2 ≠ 0 mod p. 
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For every curve over a finite field GF(q), it contains a defined number of points n that is 

calculated using Hasse’s theorem [14]. Adding two points on an elliptic curve E returns a third 

point on E which forms an Abelian group with the identity element 0. A cryptosystem based on 

the elliptic curve (elliptic curve cryptosystem) can be built using the Abelian group.  

Point Addition (PADD) over GF(p) is best described geometrically as follows. Let P = (X1,Y1) 

and Q = (X2,Y2)  be two distinct points on an elliptic curve E defined over GF(p) with Q ≠ −P;         

where –P = (X1,-Y1) is the additive inverse of P. The resultant point R is P + Q = (X3,Y3) of 

adding P and Q is the reflection in the x-axis of the point of the elliptic curve that is intersected by 

the line crossing P and Q.   The addition operation over GF(p) can be visualized in Figure  2.1. 

Point Doubling (PDBL) operation formula can be easily derived from the PADD one, when P = 

Q and P ≠ −P, and the resultant point R is P + Q = 2P is the additive inverse of a third point on E 

intercepted by the straight line tangent to the curve at point P. The doubling operation over GF(p) 

is depicted in Figure  2.2. 

Supersingular elliptic curves are special class of curves with some special properties that make 

them unstable for cryptography [19], and thus unsecure. Therefore, only non-supersingular curves 

over GF(2m) are considered. Equation 2.5 defines the non-supersingular elliptic curve equation 

for GF(2m) fields.  ݕଶ ൅ ൌ ݕݔ ଷ ൅ݔ  ଶ ൅ݔܽ ܾ (Equation ‎2.5) 

where a,b ߳ GF(2m) and b ≠ 0 

For a non-supersingular elliptic curve E defined over GF(2m), PADD and PDBL operations are 

generally computed using the algebraic formulae as follows: 

• Identityμ P + O = O + P = P for all P ߳ E. 

• Negativesμ If P = (x, y) ߳ E, then (x, y) + (x, x + y) = O. The point (x, x + y) is called the 

negative of P, denoted as −P. 
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Figure  2.1: The PADD operation (R = P + Q) over GF(p). 

 

 

 

Figure  2.2: The PDBL Operation (R = 2P) Over GF(p). 
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• PADD: Let P = (x1, y1), Q = (x2, y2) ߳ E, P ≠ Q and Q ≠ −P, then P + Q = 

(x3, y3), where 

ଷݔ ൌ ൬ݕଵା ݕଶݔଵା ݔଶ൰ଶ ൅ ൬ݕଵା ݕଶݔଵା ݔଶ൰ ൅ ݔଵ ൅ ଶݔ ൅ ܽ 

ଷݕ ൌ ൬ݕଵା ݕଶݔଵା ݔଶ൰ Ǥ ሺݔଵ ൅ ݔଷሻ ൅ ݔଷ ൅  ݕଵ 

• PDBL: If P = Q = (x1, y1), then 2P = P + P = (x3, y3), where 

 ଵଶݔܾ ଵଶ  ൅ݔ ଷ  ൌݔ

ଵଶ  ൅ݔ ଷ  ൌݕ ൬ݔଵ  ൅ ଵ൰ݔଵݕ  ଷݔ ൅ ݔଷ 

The dominant operation of all ECC algorithms, including encryption/decryption and 

signature generation/verification primitives, is the point scalar multiplication k*P, 

where k is an integer and P is a point on the elliptic curve, represents the addition of 

point P k times as presented by Equation  2.6. 

 
(Equation  2.6) 

When points on the elliptic curve E are represented in affine coordinates (x,y), it turns 

the PADD and PDBL operation inefficient because they contain field inversions, where 

inversions are the most expensive field operation and need to be largely prevented.  

As mentioned in Section 2.1, the cyclic groups have a generator element g, and every element 

a G is generated by repeatedly applying the group operation on g. The elliptic curve 

cryptosystems are based on this group, where g is represented by a base point P and n is the 
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number of points on the group. P is the generator of the group, and its order is n, whereas the 

order of any other point in the group is a finite number dividable by n.  

Projective coordinates (X, Y, Z) resolve the issue of expensive inversion in the PADD and PDBL 

caused by the affine coordinates, by adding Z as a third coordinate in order to replace inversion 

field operations by other less expensive operations [19].  

For elliptic curve defined over GF(2m), many different forms of formulas may be used for PADD 

and PDBL in the [20] [21] [22] [23]. For instance, the Homogeneous coordinate system replaces 

the coordinates of an elliptic curve point (x, y) by (x, y) = (X/Z, Y/Z) [21], whereas the Jacobian 

coordinate system replaces these coordinates by (x, y) = (X/Z2, Y/Z3) [22]. Likewise, the Lopez-

Dahab coordinate system takes the form (x, y) = (X/Z, Y/Z2) [23]. In consequence, different 

formulas require different number of field multiplications for the point adding and doubling for 

each of the coordinate systems as shown in Table  2.1, Table  2.2, and Table  2.3 respectively. For 

instance, Lopez-Dahab [23] coordinate system is very cost effective in comparison with both 

Homogenous and Jacobian coordinate systems, since it only requires 14 and 5 field 

multiplications for PADD and PDBL respectively, whereas Homogenous requires 16 and 7 field 

multiplications, and Jacbian requires 15 and 7 field multiplications. Coordinate systems could be 

a mix of two different coordinate systems, and point operation can take each point from one of 

the coordinate system, and the resulting point could be given in a third coordinate system [20]. 

2.4. Elliptic Curve Scalar Multiplication  

Scalar multiplication in the group of points of an elliptic curve is the analogous of 

exponentiation in the multiplicative group of integers modulo a fixed integer m. 
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Table  2.1: The Homogeneous Projective Coordinates System 

Addition Multiplications Doubling Multiplications 
A = X1 Z2 1M A = X1Z1 1M 
B = X2Z1 1M  ൌ   ଵ ସ ൅  ଵସ 1M 
C = A + B  C= A ଵସ 1M 
D = Y1Z2 1M D = Y1Z1 1M 
E = Y2Z1 1M E =  ଵଶ + D + A  
F = D + E  Z3 = A3 1M 
G = C + F 1M X3=AB 1M 
H = Z1Z2 5M Y3= C+BE 1M 
I = C3+aHC2 +HFG    
X3 = CI 1M   
Z3 = HC3 1M   
Y3=GI+ C2[FX1 + CY1] 4M   

Total 16M  7M 

Table  2.2: The Jacobian projective coordinates system 

Addition Multiplications Doubling Multiplications 

A = X1 ଶ ଶ  1M Z3 = X1 ଵ ଶ  1M 

B = X2 ଵ ଶ  1M  ൌ   ଵ ଶ  1M 
C = A + B  B= X1 + A  

D = Y1 ଶ ଷ  2M X3 = B4  

E = Y2 ଵ ଷ  2M C = Z1Y1 1M 
F = D + E  D = Z3 +  ଵ ଶ + C  
G = Z1C 1M E = DX3 1M 
H=FX2 + GY2 2M Y3=  ଵ ସ Z3 +E 1M 
Z3 = GZ2 1M   
I = F + Z3    

X3= a ଷ ଶ  + IF + C3 3M   

Total 15M  7M 

Table  2.3: The Lopez-Dahab projective coordinates system 

Addition Multiplications Doubling Multiplications 

A0 =  ଵ ଶܼଵ ଶ  1M Z3 =  ଵ ଶ ଵ ଶ  1M 

A1 = Y1 ଶ ଶ  1M ܺଷ ൌ  ଵ  ସ ൅    ଵ ସ  1M 
B0 = X2Z1 1M Y3=   ଵ ସ ଷ ൅  ଷ(aZ3 +  ଵ ଶ ൅   ଵ ସ ሻ 3M 

B1 = X1Z2 1M   
C = A0 + A1    
D = B0 + B1    
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E = Z1 Z2 1M   
F = DE 1M   
Z3 = F2    
G = D2(F + aE2) 2M   
H=CF 1M   
X3 = C2 +H + G    
I = D2B0E + X3 2M   
J = D2A0  + X3 1M   
Y3=HI+Z3J 2M   

Total 14M  5M 

Scalar multiplication is the basic and most time consuming operation in ECC; the computation of 

this operation includes three mathematical levels: scalar arithmetic, point arithmetic and field 

arithmetic. The mathematical hierarchy of ECC scalar multiplication is depicted in Figure  2.3. 

Scalar arithmetic is at the highest level of the hierarchy, and it is for the point 

multiplication. Point arithmetic is for point operation such as PADD and point double, 

and it is at the middle level. The lowest level is of the finite field arithmetic including 

field multiplication, field inversion, field squaring and field addition. The cost of field 

addition is negligible in the finite field GF(2m) when compared with the field inversion 

(equivalent cost of 10 field multiplications) and field squaring (equivalent cost of 0.2 

field multiplication).  

Scalar multiplication replies on the point operations over the elliptic curve. Numerous 

methods for scalar multiplication can be found in the literature. Good surveys have been 

conducted in [24] [25]. The straightforward double-and-add scalar multiplication 

algorithm (also called binary algorithm) is the traditional method for computing the 

scalar multiplication kP. The double-and-add algorithm is based on the binary 

expansion of the scalar k as 0's and 1's, and can be computed by scanning the bits of k = 
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(km−1, ..., k0) from left to right (See Algorithm  2.1) or right to left (See Algorithm  2.2) 

and perform PDBL for each bit, and PADD whenever the bit value ki = 1. 

 

Figure  2.3: Mathematical hierarchy of ECC scalar multiplication 

In Algorithm  2.1, PDBL is always performed in Step 2.1 regardless of the bit value, 

while PADD is only performed in Step 2.2 if the bit value ki = 1. Likewise, in 

Algorithm  2.2, PADD is performed in Step 2.1 only if the bit value ki = 1, while PDBL 

is always performed in Step 2.2.  

Algorithm  2.1 Double-and-add elliptic curve scalar multiplication method (left-to-right) 

Inputs: P: Base Point, k: Secret key. 

Outputs: kP. 

1: R[0] ĸ P 

2: for i =  m-2 down to 0 do 

2.1: R[0] ĸ 2R[0] 

2.2: if ki = 1 then R[0] ĸ R[0] + P 

2.3: end for 

Return R[0]. 
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Algorithm  2.2 Double-and-add elliptic curve scalar multiplication method (right-to-left). 

Inputs: P: Base Point, k: Secret key. 

Outputs: kP. 

1: R[0] ĸ O, R[1] ĸ P 

2: for i = 0 to m-1 do 

2.1: if ki = 1 then R[0] ĸ R[0] + R[1] 

2.2: R[1] ĸ 2R[1] 

2.3: end for 

Return R[0]. 

 

2.5. Elliptic Curve Encryption 

After being studies for hundred years, the practical use of the elliptic curves in public key 

cryptography was independently invented by Koblitz [18] and Miller [26], in the mid of 1980's. 

Since then, researchers proposed several approaches for the utilization of elliptic curves for 

encryption and decryption process, where elliptic curve Diffie-Hellman and elliptic curve 

ElGamal [17] are considered the most famous public key protocols relevant to elliptic curves.   

2.5.1 Elliptic Curve Diffie-Hellman Protocol 

Elliptic Curve Diffie-Hellman protocol is based on discrete logarithm problem, mutually 

invented by Diffie and Hellman in 1976 [27] as key exchange equivalent in elliptic curve 

cryptography. In Elliptic Curve Diffie-Hellman Protocol, if the private key of A, and its public 

key are denoted by are kA and PA = kAP respectively, the private key of B, and its public key are 

denoted by are kB and PB = kBP respectively, under a trusted public key infrastructure where P is 

the base point of the elliptic curve. The shared secret key S between A and B can be generated by 

computing kAPB and kBPA by A and B respectively. In addition, the message encryption is 
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performed by inserting the shared secret key into the the x-coordinate of Pm = (xm, ym) [17]. The 

result cipher text point Pc, a point on the elliptic curve, is given by   

Pc = Pm + S 

On the other side, to message decryption process is implemented by subtracting the shared secret 

key from the cipher text point Pc to give the plaintext point Pm given by 

Pm = Pc – S 

2.5.2 Elliptic Curve ElGamal Protocol 

Elliptic Curve ElGamal protocol is also based on discrete logarithm problem, invented by 

ElGamal in 1984 [6], as encryption and digital signature scheme. In Elliptic Curve ElGamal 

protocol, if B wants to encrypt and send a message point Pm to user A, B chooses a random 

integer l and generates the cipher text Cm which consists of the following pair of points: 

Cm = ( lP, Pm + lPA )  

The cipher text pair of points uses A’s public key, where only user A can decrypt the plaintext 

using his/her private key. To decrypt the cipher text Cm, the first point in the pair of Cm, lP is 

multiplied by A’s private key to get the point kA (lP). This point is subtracted from the second 

point of Cm to produce the plaintext point Pm.  

The complete decryption operations can be summarized in the following equation:  

Pm = (Pm + lPA) – kA (lP) = Pm + l (kA P) – kA (lP) 

2.5.3 Elliptic Curve Discrete Logarithm Problem 

The security of elliptic curve cryptosystems is based on the intractability of Elliptic Curve 

Discrete Logarithm Problem (ECDLP). The ECDLP is best defined as follow: 



 
  

 
 
 

 
 
 

40 
 

Let E be an elliptic curve defined over a finite field, and P and Q are two distinct points on E, the 

ECDLP is the problem of finding an integer k, where 0 ≤ k ≤ m – 1, such that Q = kP. P is the 

base point, and k is the elliptic curve discrete logarithm of Q with respect to P (i.e., k = logp (Q)). 

The strength of the ECDLP is subject to the precise selection of the parameters.  To date, Pollard–

ȡ algorithm [28] is known to be the most efficient algorithm for solving the ECDLP. Even with 

the ECDLP's parallelized version given by Gallant et. al. [29], the Pollard–ȡ algorithm requires 

an average of ξ݊, where n represent the number of points on the elliptic curve.  

2.6. Summary 

This chapter provides necessary background on ECC, including the GF(2m) finite field arithmetic, 

ECC arithmetics and ECC operations such as scalar multiplication, encryption, and discrete 

logarithm problem. 

In GF(2m), elements are presented in different basis, where the majority are represented using (a) 

normal basis, or (b) polynomial basis. If ECC efficient hardware implementation is a major 

requirement, normal basis is a preferable option since field operations in normal basis are limited 

to light arithmetics such as rotation, shifting and exclusive-ORing which are known for efficient 

implemented in hardware. 

Scalar multiplication is the basic and most time consuming operation in ECC. At the point 

operation level, the scalar multiplication is represented by a series of PADD and PDBL 

operations. At the field arithmetic level, the point operation involves field multiplication, field 

inversion, field squaring and field addition. Thus, efficient ECC implementation will require 

careful implementation at point operation and field arithmetic levels.  

Several projective coordinate systems have been proposed to reduce the number of inversions in 

scalar multiplication to only one single inversion. Lopez-Dahab projective coordinate system 
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requires less number of field multiplications as compared to other existing projective coordinate 

systems. Accordingly, Lopez-Dahab projective coordinate system has been selected for the 

implementations presented in this thesis. 

Being the core of elliptic curve cryptosystems security, the intractability of the elliptic curve 

discrete logarithm problem has been also discussed in this chapter. 
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CHAPTER 3  

Wireless Sensor Networks 

3.1 Background on WSN 

Wireless sensor networks (WSN) [30] [1] are ad hoc networks consist of hundreds or even 

thousands of small sensor nodes with limited resources are based around a battery powered 

microcontroller. These nodes are equipped with a radio transceiver, and are capable to 

communicate with each other and with one or more sink nodes that interact with the outside 

world. In addition, these nodes are furnished with a set of transducers through which they acquire 

data about the surrounding environment, and receive commands via the sink to assign data 

collection, data processing and data transfer tasks. The number of nodes participating in a sensor 

network is mainly determined by requirements relating to network connectivity and coverage, and 

by the size of the area of interest. An example is illustrated in Figure  3.1. 

Internet Wireless Sensor Network

Sink Node

Sensor Node

E

Event

User

 

Figure  3.1: A Wireless Sensor Network 
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There exist a large number of different application scenarios for WSN [30]: examples are health 

monitoring, industrial control, environment observation, as well as office and even military 

applications. For example, in the health monitoring applications, WSN can be used to remotely 

monitor physiological parameters, such as heartbeat or blood pressure of patients, and sends a 

trigger alert to the concerned doctor according to a predefined threshold. In addition, sensor nodes 

may be deployed in several forms: at random, or installed at deliberately chosen spots. 

3.1.1 Hardware Architecture of WSN nodes 

A basic WSN node (also known as mote) comprises five main components (Figure  3.2) which are 

capable of interacting with their surrounding area through different sensors, performing data 

processing, and communicating data wirelessly with other nodes. The main components of the 

WSN node are: Controller, memory, sensors and actuators, communication device, and power 

supply. 

Temp.

Others

Light

Motion

Sensor

Other Components Memory

Microcontroller

Power Unit

Transceiver:

Communication

Device 

 

Figure  3.2: WSN Node Main Components  

The controller is the core component of a WSN node. There are different options for the 

controller, where microcontroller is the best option that satisfies the need for general purpose 

processing, optimized for embedded applications, and low power consumption. Examples of 

microcontrollers are Texas Instruments MSP430 (16-bit RISC core, up to 4 MHz), Atmel 

Atmega128L (8-bit controller, larger memory than MSP430, and slower), where sensor nodes 



 
  

 
 
 

 
 
 

44 
 

such as Mica2 Mote, and Mica2dot use the Atmel Atmega128L microcontroller [31]. The main 

function of the controller is to collect and process data captured by the sensors, and most 

importantly decides when and where to send it. At the same time, monitoring the actuator 

behavior, the controller receives data from other sensor nodes.  

In addition to the microcontroller, the node includes a RAM (for data) and ROM (for code) 

memory chips of limited capacity. The communication device of the node uses a radio transceiver 

to send and receive data (captured, or requests/commands) to or from other sensors or base 

stations. Sensors with different types can be directly connected to the node or integrated in a 

board and connected to the node through an extension.    

Major hardware platform for WSN nodes are listed in Table  3.1. The most popular motes [31] are 

Mica2, MicaZ, and TelosB. The Mica2 platform is equipped with an Atmel Atmega128L and has 

a CC1000 transceiver. Intel has designed its own Imote that introduce various enhancements in 

the design over available mote, where the CPU processing power capacity is increased, together 

with the main memory size for on-board computing and improved radio reliability. In the Imote, a 

powerful ARM7TDMI core is complemented by a large main memory and non-volatile storage 

area; on the radio side, Bluetooth has been chosen.  

TinyOS is the known operation system for WSN nodes, and it is supported by Btnode, Imote, Iris, 

Mica, Mica2, MicaZ, SenseNode, TelosB, T-Mote Sky, and Shimmer. Contiki, Mantis OS, SOS 

and Microsoft .NET Micro are other operating system supported by the nodes [31].   

3.1.2 Applications of WSN 

WSN are envisioned to play an important role in a wide variety of areas, such as critical military 

surveillance applications, forest fire monitoring, building security monitoring, child education, 

and micro-surgery are few examples of its applications [32]. In these networks, a large number of 
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sensor nodes are deployed to monitor a vast field, where the operational conditions are most often 

harsh or even hostile. 

Table  3.1:  Major Hardware Platform for WSN 

Mote type CPU speed (MHz) Prog. Mem (MB) RAM (KB) Radio freq (MHz) 

Mica2 16 128 4 433 

MicaZ 16 128 4 2400 

Cricket 16 128 4 433 

TelosB/Tomte  16 48 10 2400 

Imote2  13 – 416 32 256 2400 

Table  3.2: WSN's Applications 

Area Applications 

Military  - Enemy tracking and detection 

- Security threat detection 

- Military situation awareness [33] 

- Battlefield surveillance [34] 

Environment - Environmental data tracking 

- Forest fire monitoring 

- Fire/water detectors [35] 

Habitat - Animal tracking 

Industry  - Inventory system [34] 

- Product quality monitoring [32] 

Health  - Monitoring people locations and health conditions [34] 

- Sensors for: blood flow, respiratory rate, ECG 

(Electrocardiogram), pulse oxymeter, blood pressure, and oxygen 

measurement [36] 

- Monitor patients and assist disabled patients [32] 

Smart Home/Office - Life quality improvement 

Automotive - Coordinated vehicle tracking [33] 
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Same as WSN nodes can be utilized for environment monitoring; it can similarly be applied to 

monitor the behavior of human being. In the Smart Kindergarten project at UCLA [37], 

wirelessly-networked, sensor-enhanced toys and other classroom objects supervise the learning 

process of children and allow unremarkable monitoring by the teacher. 

3.2 Security Issues in WSN 

3.2.1 Constraints in WSN 

WSN consists of a large number of sensor nodes which, and due to the limited energy and tiny 

size, have severe resources constraints in terms of processing power, storage capacity, and 

communication bandwidth. Because of these constraints, applying conventional security design 

for normal wired network becomes very challenging in WSN. To overcome this issue, and ensure 

a customized security measures and mechanism for WSN, it is essential to learn about these 

constraints and how it introduce security vulnerability or affect security measures for the WSN 

[38]. The major constraints of a WSN are listed below. 

i. Energy: Energy is the main constraint for WSN, and because of the location setup of the 

WSN nodes, recharging nodes batteries is not always possible, and in most cases it is 

impractical and not feasibility. Power consumption constrains for nodes in the case of (1) 

sensor transducer, (2) communication among sensor nodes, and (3) microprocessor 

computation. Communication is more costly than computation in WSN (power consumption 

of transmitting one bit is equivalent to computing 800 to 1000 instructions [39]). Thus, higher 

security levels for WSN correspond to extra energy consumption [40]. 

ii. Memory: Memory and storage space is another constraint in WSN due to the node tiny size. 

In general, the memory of the node consists of flash memory (stores downloaded application 

code) and RAM (stores application programs, sensor data, and intermediate results of 
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computations). It is not always possible to run complex algorithms like public key 

cryptography as a security measure since the operating system and application code would 

use huge part of the memory. Hence the majority of the current security algorithms are 

infeasible in these sensors [41]. 

iii. Communication: The communication in WSN is connectionless and thus it is unreliable by 

default. This unreliability in its communication is a serious security threat to WSN nodes and 

may cause damaging or loosing communicated packets among the nodes. Some applications 

may not tolerate having damaged or lost packets, and thus require implementing packet 

recovery schemes, which involve extra cost (energy, memory, time). On the other side, in 

some situations, packet collision may occur due to the broadcast nature of the communication 

in WSN, and thus it may require retransmission of the packet [32]. 

3.2.2 Security Requirements in WSN 

In addition to the above mentioned constraints in the WSN and since these networks are usually 

deployed in remote places and left unattended with no control and monitoring, these networks are 

vulnerable to numerous security threats that can adversely affect their proper functioning. 

Moreover, the characteristics of WSN are not limited to those of the conventional computer 

network, but it has many unique ones. In most of cases, critical information is frequently 

exchanged among sensor nodes through insecure wireless channels, it is therefore crucial to add 

security measures. Thus, in addition to the traditional security requirements such as data 

confidentiality, integrity, authenticity, and availability, WSN also require freshness, self-

organization, secure location, and time synchronization. Brief on each security required service 

for WSN are listed below:  
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i. Confidentiality: Data can only be understandable by the authorized nodes. For instance, data 

captured by a sensor node must not be shared with unauthorized nodes [41], which require a 

strong key mechanism for key distribution, where these keys will be used to encrypt sensors 

ID, public key, location, etc. as a countermeasure against traffic analysis attacks.     

ii. Integrity: Data is not tempered with by any unauthorized node. In some cases, an intruder 

intends to change the captured data by the node to introduce confusion in the decision 

process.  

iii. Authenticity: Communicating node is the one that it claims to be. Also, this is applied to the 

received data packet be verified that have come from the known sender (as claimed) and not 

from an adversary. Message authentication code (MAC) is a well know technique used to 

ensure data authentication when communicated between two nodes. The MAC is generated 

using a share secret key between the nodes. Secure routing and reliable packet is major focus 

of authentication for WSN. 

iv. Availability: Service is available regardless the presence of a security attack, namely the 

Denial of Service (DoS) attacks. The DoS attack usually refers to an adversary’s attempt to 

disrupt, subvert, or destroy a network. However, a DoS attack can be any event that 

diminishes or eliminates a network capacity to perform its expected functions [42]. 

Approaches used to countermeasure the DoS are mainly by adding extra communication 

means, or introducing central control system for successful delivery insurance.  

v. Data freshness: Data is current and no replay of old messages by adversary. In the absence 

of a proper secure mechanism for data freshness, an adversary in WSN may launch a replay 

attack using old secret shared key to assume secure message communication among the 

nodes. To defend against such replay attack, data packet may contain a nonce or an 
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incremental counter (linked to time) to validate the freshness of the communicated data 

packet. 

vi. Self-organization: Due to the dynamic nature of WSN, it is not always viable to adopt a 

secure communication mechanism among the nodes and the base station, that relies on 

preinstalled shared key mechanism [43]. Nodes in a WSN should self-organize among 

themselves to satisfy the need of multi-hop routing protocols, and support deployment of key 

management schemes in the network.  

vii. Secure localization: Accurate location of each node in a WSN must be securely 

communicated. In many applications for WSN, in addition to the captured data, the data 

packet communicated with other nodes or base station must contain information about the 

accurate node location. Different techniques are used for securing the node location, such as 

Verifiable Multilateration (VM) [44], and Secure Range-Independent Localization (SeRLoC) 

scheme [45].  

viii. Time synchronization: Time synchronization is critical to most of the applications in WSN, 

in addition to its important role in node accurate and secure location. Time synchronization is 

required for collaborative data processing, signal processing techniques, and all security 

mechanisms for WSN. 

3.2.3 Security Issues in WSN 

WSN suffer from many constraints in terms of energy consumption, processing power, storage 

capacity, and communication bandwidth. In addition, this network uses an insecure wireless 

communication media, and most importantly it is vulnerable to physical attacks since it is 

unattended. These constraints make WSN more susceptible to various types of attacks. These 

attacks can be categorized as [34]: 
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i. Attacks on secrecy and authentication: Major external attacks on the secrecy and 

authenticity of WSN communication such as eavesdropping, packet replay attacks, and 

modification or spoofing of packets can be defeated by implementing standard cryptographic 

techniques.  

ii. Attacks on network availability: DoS is a security attacks against the availability of WSN.  

iii. Stealthy attack against service integrity: In a stealthy attack, the goal of the attacker is to 

make the network accept a false data value. For example, an attacker compromises a sensor 

node and injects a false data value through that sensor node. In these attacks, keeping the 

sensor network available for its intended use is essential. DoS attacks against WSN may 

permit real-world damage to the health and safety of people [42].  

Moreover, since these networks are usually deployed in remote places and left unattended, it is 

crucial to implement security measures against physical attacks such as node capture, physical 

tampering, etc. A number of propositions exist in the literature for defense against physical attack 

on sensor nodes [42] [46] [47] [48] [49]. 

3.3 Implementations of ECC in WSN 

Efficient computation of Public Key Cryptosystems (PKC) [2] in sensor nodes (e.g., [50] [51] 

[52] [53]) has been intensively investigated by researchers. Major problem with the sensor nodes 

as soon as it comes to cryptographic operations is their extreme constrained resources in terms of 

power consumption, space, and time delay, which limit the sensor capability to handle the 

additional computations required by cryptographic operations. Nevertheless, PKC is indeed 

shown to be feasible in WSN (e.g., [52] [53]) by using ECC. This is because, in comparison to 

traditional cryptosystems like RSA and ElGamal, ECC offers equivalent security with smaller 
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key sizes, in less computation time, with lower power consumption, as well as memory and 

bandwidth savings. 

3.3.1 Hardware Implementations 

This section presents a study of hardware implementations of ECC in WSN. A critical study of 

the underlying finite field, representation basis, occupied chip area, consumed power, and time 

delay performances of these implementations is conducted.  

Several software implementations of ECC in WSN have been reported [52] [53] [54] [55] [56]. 

The advantages of software implementations include ease of use, ease of upgrade, portability, low 

development cost and flexibility. Their main disadvantages, on the other hand, are their lower 

performance and limited ability to protect private keys from disclosure compared to hardware 

implementations. These disadvantages have motivated many researchers to investigate efficient 

architectures for hardware implementations of ECC in WSN. Many hardware implementations of 

ECC in WSN have been reported [57] [58] [59] [60] [61] [62] [63]. Most of these 

implementations were for ECC defined over GF(2m) [59] [60] [61] [62] [63], and only 

implementations in [57] [58] [59] were defined over GF(p). 

The first hardware implementation of ECC was reported in 2005 by Gaubatz et. al. [57] [58] over 

GF(p). A custom-designed low power co-processor was presented in [59] [60]. The architecture 

of the presented co-processor occupies a chip area equivalent to 18,720 gates, using TSMC 0.13 

ȝm CMOS standard cell technology, and consumes less than 400 ȝW of power at a clock 

frequency of 500 kHz. Field operations are implemented in a bit-serial fashion to reduce the area. 

Figure  3.3 shows the block diagram of the arithmetic unit used in [57] [58]. 

Wolkerstorfer [59] in 2005 implemented an ECC processor over dual-field performing both prime 

and binary field operations using polynomial basis. The presented processor has an area 
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complexity of around 23,000 gates implemented in 0.35 ȝm CMOS technology, operates at 68.5 

MHz, consumes 500 ȝW of power and features a latency of 6.67 ms for one point multiplication. 

Figure  3.4 presents the architecture of the proposed processor in [59]. 

Batina et al. [60] in 2006 reported a low-power ECC processor over the binary field GF(2131) 

using polynomial basis. The consumed power in the presented processor in [16] was less than 30 

ȝW when the operating frequency is 500 kHz. The chip area of the presented work in [60] 

requires 6,718 gates using 0.13 ȝm CMOS technology. 

Bertoni et al. [61] in 2006 proposed an efficient ECC coprocessor over GF(2163) using polynomial 

basis. It computes the scalar multiplication in 17 ms at 8 MHz. The reported chip area was 11,957 

gates using the 0.18 ȝm CMOS technology library by ST Microelectronics. The consumed power, 

on the other hand, was 305 ȝW. Figure  3.5 depicts the structure of the proposed coprocessor in 

[61]. 

Kumar and Paar [62] in 2006 reported an ECC processor over GF(2m) using polynomial basis. 

The word size range of the implemented processor was between 113 and 193 bits. The presented 

architecture in [62] consists of three units: GF(2m) addition (ADD), GF(2m) multiplication 

(MUL), and GF(2m) squaring (SQR) (See Figure  3.6). The area of the presented designs in [62] is 

between 10 k and 18 k gates on a 0.35 ȝm CMOS technology. 

Recently, Portilla et al. [63] in 2010 reported an implementation of ECC over GF(2m) using 

polynomial basis on an FPGA, which incorporates a mixed solution based on an 8052 compliant 

microcontroller and a Xilinx XC3S200 Spartan 3 FPGA. 
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Figure  3.3: Block Diagram of the Arithmetic Unit Presented in [57] [58]. 
 

An additional XC2V2000 Virtex 2 FPGA is attached to the custom platform due to size 

limitations. The implemented field multiplier is generic and supports curve sizes from 163 up to 

571 bits. The reported chip area is 98275 and 180317 gates for the word sizes 283 and 571 bits 

respectively, using the Xilinx XC2V2000 Virtex 2 FPGA. The reported power consumption, on 

the other hand, is 253 and 484 mA at 25 MHz for the word sizes 283 and 571 bits respectively. 
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Figure  3.4: Architecture for ECC Processor in [59]. 
 
 

 

Figure  3.5: Structure of the 3-register coprocessor presented in [61]. 
 

 



 
  

 
 
 

 
 
 

55 
 

 

Figure  3.6:  The ECC processor presented in [62]. 
 
3.3.2 Discussion on the Reviewed Hardware Implementations 

 The key focus of this section is in studying the hardware implementations of ECC in WSN, and 

emphasizing on the underlying finite field, representation basis, occupied chip area, consumed 

power, and time delay performances of these implementations (See Table 3.3).  As shown in 

Table 3.3, the majority of the reported implementations used the GF(2m) binary fields [59] [60] 

[61] [62] [63], and only two of these implementations used prime fields GF(p) [57] [58] [59]. 

This is due to the reason that GF(2m) has shown to be best suited for cryptographic applications 

[25] [4]. Although it is known that normal basis representation provides more efficient hardware, 

Table 3.3 shows that only polynomial basis was used for all hardware implementations that used 

binary fields GF(2m) [59] [60] [61] [62] [63]. This opens an opportunity to explore and inspect 

the performance of normal basis based ECC implementations in WSN.  
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Table  3.3: A Summary of hardware implementations of ECC in WSN. 

Ref. 
Underlying 
finite field 

GF(2m) 
Representation 
basis 

Chip area 
(Gates) 

Consumed 
power 

Time 
performance 

[57] 
[58] 

GF(p) 
Word size: 
100 bits 

 
18,720 using 
TSMC 0.13 ȝm 
CMOS technology 

Under 400 
ȝW at 500 
kHz 

410.45 ms for 
one point 
multiplication at 
500 kHz 

[59] 

GF(p) and 
GF(2m) 
Word size: 
192 bits 

Polynomial 
basis 

23,000 using 0.35 
ȝm CMOS 
technology 

500 ȝW at 
68.5 MHz 

6.67 ms for one 
point 
multiplication at 
68.5 MHz 

[60] 
GF(2m) 
Word size: 
131 bits 

Polynomial 
basis 

6,718 using 0.13 
ȝm CMOS 
technology 

Less than 30 
ȝW (when the 
operating 
frequency is 
500 kHz) 

115 ms for one 
point 
multiplication at 
500 kHz 
 

[61] 
GF(2m) 
Word size: 
163 bits 

Polynomial 
basis 

11,957 using the 
0.18 ȝm CMOS 
technology library 
by ST 
Microelectronics 

305 ȝW at 8 
MHz 

17 ms for scalar 
multiplication at 
8 MHz 

[62] 

GF(2m) 
Word size 
[113, 131, 
163, 193 
bits] 

Polynomial 
basis 

Between 10,000 
and 18,000 using 
0.35 ȝm CMOS 
technology 

 

[12.5, 16.8, 
27.9, 38.8 ms] 
for scalar 
multiplication at 
13.56 MHz. 

[63] 

GF(2m) 
Word sizes 
[283, 571 
bits] 

Polynomial 
basis 

Between 98,275 
and 180,317 using 
Xilinx XC2V2000 
Virtex 2 FPGA  

253, 484 mA 
at 25 MHz  

It computes the 
scalar 
multiplication in 
[750, 3600 ȝs] 
at 25 MHz. 

 

Concerning the other parameters, the implementations in [59] and [62] performed ECC operation 

(point multiplication) in short time (6.67 ms for [59] at 68.5 MHz, and 18 ms for [62] at 13.56 

MHz), but at the cost of high operating frequency and power consumption of 500 ȝW and an area 
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between 10k and 23k gates. On the other hand, implementation in [58] performed ECC operation 

in 410 ms at 500 kHz, consuming just less than 400 ȝW and occupying a chip area equivalent to 

18,720 gates in 0.13 ȝm CMOS technology. The implementation in [60], however, is an 

enhancement of [58]. The presented design in [60] performed ECC operation in 115 ms at 500 

kHz, consuming less than 30 ȝW using 8,104 gates in 0.13 ȝm CMOS technology. The 

implementation in [61], on the other hand, performed ECC in 17 ms at 8 MHz, consuming 305 

ȝW and occupying a chip area of 11,λ57 using the 0.18 ȝm CMOS technology. 

An important result of our study is found in the implementation of [63]. FPGAs were used in [63] 

showing that FPGAs can be used in WSN. It has been believed for a long time that FPGAs are 

not suitable for WSN applications because of their power consumption. However, the reported 

work in [63] opens the opportunity of exploring the performance of FPGAs in terms of area, time 

delay and power consumption.        

3.3.3 Software Implementations 

This section presents a study of software implementations of ECC over binary and prime fields in 

WSN. An analytical study of the underlying finite field, representation basis, and performance of 

these implementations is conducted.  

Several ECC implementations in WSN have been reported  [52] [53] [54] [55] [56] [57] [58] [59] 

[60] [61] [62] [63] [7] [64] [65] [66] [67] [68] [69] [70]. Many researchers investigated the 

efficient architectures for hardware implementations of ECC in WSN [57] [58] [59] [60] [61] [62] 

[63]. Given the advantages of software implementations include ease of use, ease of upgrade, 

portability, low development cost and flexibility; most of the research effort was on the software 

implementations of ECC in WSN  [52] [53] [54] [55] [56] [7] [64] [65] [66] [67] [68] [69] [70]. 
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The first implementation was implemented by Gura et al. [53] in 2004. They implemented elliptic 

curve point multiplication with 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) on 

two 8-bit microcontrollers. With assembly code and instruction set extension on an 8-bit 

Atmega128L processor, it took 0.81 s for ECC point multiplication on the 160-bit curve. Gura et 

al. [53] also proposed a new hybrid multiplication method, reducing the calculation time to 0.59 

s. The presented work in [53] used mixed projective coordinates and Non-Adjacent Forms 

(NAFs) [71] to obtain optimized results. Inversion in [53] was implemented with the algorithm 

proposed by Chang Shantz [72]. The code size of the implementation in [53] is 3.682 K.   

Malan et al. [52] presented the first implementation of ECC over GF(2m) binary extension field 

curves for sensor networks (on 8 bits Atmega128L chip (MICA2 mote)). Inspired by the design 

of Dragongate Technologies Limited’s Java-based jBorZoi 0.9 [73], they implemented ECC 

using a polynomial basis over GF(2m), with a 163-bit key on a Koblitz curve, spending an average 

running time of approximately 34 s for point multiplication using just over 1 kilobyte of SRAM 

and 34 kilobytes of ROM, and total energy consumption of 0.816 J for public key generation. In 

[52], multiplication of points is achieved using Blake et al. [3] algorithm, while addition of points 

is achieved using L´opez and Dahab [74] algorithm. Field multiplication is implemented using 

L´opez and Dahab [75] algorithm, while inversion is implemented using Hankerson et al. [76] 

algorithm. 

Blaß and Zitterbart [7] in 2005 implemented the arithmetic of GF(2m) finite fields on the Atmels 

8-bit Atmega128L microcontroller clocked at 7 MHz. The elements of the finite field of 113-bits 

were represented by normal bases. Random point multiplication (RPM) was implemented using 

an ECC version of the popular square-and-multiply algorithm for large number exponentiation as 

described in [71] and [77]. Fixed point multiplication (FPM) took about 6.74 s and 17.28 s for 

RPM, and ECDSA signature took 6.88 s and verification took 24.17 s with a total RAM of 208 
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Bytes and total ROM of 75.088 Kbytes. Blaß and Zitterbart [7] used offline pre-computation (of 

certain points), handcrafting (handcrafted optimization) as well as the Comb method and the 

double-and-add methods for point multiplication.   

Haodong et al. [64] in 2005 implemented ECC over prime field, on TelosB mote (TPR2400) 

using the SECG recommended 160-bit elliptic curve: secp160r1. Haodong et al. [64] used a 

similar setup to the one in [63] using the hybrid multiplication method. Non-adjacent forms NAFs 

technique in RPM and sliding window technique [78] were adopted in this implementation. They 

achieved 3.13 s for FPM, and 3.51 s for RPM. For ECDSA implementation, generating a 

signature consumed roughly 18.09 mJ energy and verification costs 36.61 mJ. The 

implementation of [64] used 42.3 Kbytes ROM and 1.6 Kbytes RAM for ECDSA protocol, where 

the ECC Library used ROM (13.8 Kbytes), and RAM (1.3 Kbytes). 

Wang and Li [55] in 2006 implemented 160-bit ECC - secp160r1 - cryptoprocessor over GF(p) 

on MICA mote sensors, achieved the performance 1.3 s for ECC signature generation and 2.8 s 

for verification, where 1.24 s for FPM and 1.35 s for RPM (signature 1.60 s and verification 3.30 

s on TelosB). They adopted the hybrid multiplication method [53] in assembly language with 

column width d = 4. For modular reduction, the classic long division method was selected, that 

take advantage of pseudo-Mersenne primes specified in SECG curves, and for modular inversion 

an efficient Great Divide scheme [72] was adopted. Applied a mixed coordinate, and employed 

pre-computation using the sliding window method [78] and NAF [71]. The code of the ECC 

implementation is a total ROM of 75.2 Kbytes, and a total RAM of 3.06 Kbytes. 

Yan and Shi [65] in 2006 implemented ECC over F2163 and implemented the basic binary 

algorithm for point multiplication in 13.9 s and needs 12.412 Kbytes of memory, using fast 

modular reduction on an 8-bit processor at a clock rate of 8 MHz (Atmega128L). For scalar 
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multiplication, they implemented the basic binary algorithm that requires about m/2 additions and 

m doublings.  

Ugus et al. [66] in 2007 presents an optimized implementation of EC-ElGamal on a MicaZ 8-bits 

processor mote over GF(p) with 160 bits. They used the mutual opposite form (MOF) instead of 

NAF. The performance of multiplications (with pre-computation) being executed with the MOF 

is (1.03 s as execution time), and with 2 pre-computed points takes 0.57 s. The used memory was 

4.079 Kbytes.  

Liu and Ning [67] in 2008 implemented TinyECC; a configurable library for ECC operations in 

WSN, on TinyOS  with the underlying field primes p as pseudo-Mersenne primes.  TinyECC [67] 

implementation of 192-bit ECC over GF(p) on MicaZ (Atmega128L 8-bit) mote sensors, 

achieved the performance of 2 s for ECC signature generation and 2.43 s for verification (Point 

multiplication of 2.99 s). TinyECC [67] used the weighted projective (Jacobian) representation, 

made use of the sliding window method (i.e. grouping a scalar k into s-bit clusters), adopted 

optimized modular reduction using pseudo-Mersenne prime, and used the Hybrid Multiplication 

to achieve computational efficiency.  

Seo et al. [54] in 2008 presented TinyECCK (Tiny Elliptic Curve Cryptosystem with Koblitz 

curve - a kind of TinyOS package supporting elliptic curve operations) an ECC implementation 

over GF(2m) on 8-bit sensor motes using ATmega128L using polynomial basis. In [54], 

TinyECCK with sect163k1 computed a scalar multiplication within 1.14 s on a MicaZ mote at the 

expense of 5,592 Bytes of ROM and 618 Bytes of RAM.  Furthermore, TinyECCK with 

sect163k1 generated a signature and verified it in 1.37 s and 2.32 s with 13,748 Bytes of ROM 

and 1,004 Bytes of RAM.  

Szczechowiak et al. [56] in 2008 implemented ECC on two sensor nodes platforms; the 8-bit 

Atmel ATmega128L processor (MICA2) and the 16-bit Texas Instruments MSP430F1611 
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processor (Tmote Sky). Szczechowiak et al. [56] uses the NIST k163 Koblitz curve over GF(2163) 

binary field and over GF(p). The results show that a scalar multiplication took 2.16 s over binary 

field and 1.27 s over prime field on the MICA2 with energy consumption of 50.93 mJ and 30.02 

mJ respectively. On the other hand, it took 1.04 s over binary field and 0.72 s over prime field for 

a scalar multiplication on the Tmote Sky mote with energy consumption of 10.76 mJ and 7.95 

mJ. In [56], Szczechowiak et al. replaced standard C code with an assembly language specific for 

each platform. The Comb method for point multiplication (using additional storage to accelerate 

the calculations) described in [25] was used. Pre-computation was performed with window size w 

= 4 resulting in 16 elliptic curve points stored in ROM.  

C. Lederer et al [68] in 2009, implemented a 192-bit ECC over prime field (generalized-

Mersenne prime p = 2192 − 264 − 1) on the MicaZ motes. Using fixed-base comb method with 14 

pre-computed points, it requires 0.71 s to compute a scalar multiplication. A scalar multiplication 

using a random base point takes 1.67 s by applying window method with a window size of 4 (i.e. 

14 pre-computed points), Based on the energy characteristics of the MicaZ mote [79], these 

timings translate into energy consumption of 17.04 mJ and 40.08 mJ, respectively.  The 

implementation in [68] presented an improved version of Gura et al’s [52] hybrid method for 

multi-precision multiplication that requires fewer single-precision additions. Also, it implemented 

the reduction operation as described in [80].  

Khajuria et al. [69] in 2009 implemented a 163-bit ECC over GF(2m) on 8-bit ATmega128L 

MicaZ platform from Crossbow. In their approach, S. Khajuria et al., in [69] used Koblitz curves 

and TNAF ( Ĳ - adic non-adjacent form) with partial reduction modulo and consumes 28.1 s for 

point multiplication, and the space consumption of this system is found to be 29.248 Kbytes in 

ROM and 1.070 Kbytes in RAM. For field multiplication, the right-to-left comb method was 

adopted.  
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Diego F et al. [70] in 2010 implemented a 163-bit ECC over GF(2m) and Kobliz curves on 8-bit 

ATmega128L MicaZ platform. Diego F et al. [70] uses mixed addition with projective 

coordinates, given that the ratio of inversion to multiplication is 16. For RPM by a scalar, 

Solinas’ Ĳ - adic non-adjacent form (TNAF) representation with w = 4 was selected for Koblitz 

curves (4-TNAF method with 4 pre-computation points) and the method due to L´opez and 

Dahab was selected for random binary curves. For multiplying the generator, we employ the same 

4-TNAF method for Koblitz curves; and for generic curves, we employ the Comb method [81] 

with 16 pre-computed points. Point multiplications took 0.67 s (Koblitz curves), and 1.55 s 

(Binary curve) for 163 bits.   

3.3.4 Discussion on the Reviewed Software Implementations 

The key focus of this section is in studying the software implementations of ECC over binary and 

prime fields in WSN, and emphasizing analytical study of the underlying finite field, 

representation basis, and performance of these implementations is conducted. For fair 

comparison, the study covers only fixed word size ECC on the same word size for processor 

mote. Those, implementations of 160-bit ECC over GF(p) on 8-bit processors [53] [55] [66] [56] 

are presented in Table  3.4 and implementations of 163-bit ECC over GF(2m) on 8-bit processors 

[52] [54] [56] [65] [69] [70] are presented in Table  3.5.  

In Table  3.4, the implementation in Ugus et al. [66] is significantly the fastest (0.57 s) and the 

implementation in  Szczechowiak et al. [56] is the slowest (1.27 s) among all reported 160-bit 

implementations on 8-bit. The performance gain in Ugus et al. [66] implementation is primarily 

due to the use Mutual Opposite Form (MOF) instead of NAF and the use of the window and 

comb methods for scalar multiplication. Figure  3.7 illustrates the performance comparison for 
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these implementations. Though it was excluded from the comparison, it is worthy highlighting on 

the high performance of 0.71 s for 192-bit implementation in [68]. 

 

Table  3.4: 160-bits ECC over GF(p) in 8-bit processors in WSN 

Ref.  Year Performance (s) 

Gura et al. [53] 2004 0.59  

Wang and Li [55] 2006 1.24  

Ugus et al. [66] 2007 0.57  

Szczechowiak et al. [56] 2008 1.27  

 

 

 

Figure  3.7: Implementation of 160-bits ECC over GF(p) in 8-bit processors in WSN 
 

On the other side, the majority of the implementations over GF(2m) are carried out using 

polynomial basis representation, expect for implementation in [7] that uses normal basis 

representation. In Table 3.3, the implementation in Diego F et al. [70] is slightly the fastest (0.67 

s) and the implementation in Malan et. al. [52] is the slowest (34.17 s) among all reported 163-

bits implementations on 8-bit. The performance gain in Diego F et al. [70]  implementation is 

primarily due to the use of Koblitz curves, and Solinas’ Ĳ - adic non-adjacent form (TNAF) 

representation with w = 4. Figure  3.8 illustrates the performance comparison for these 
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implementations. Despite the fact that it was excluded from the comparison, it is significant 

stating that among the reported binary implementations; only one implementation is over normal 

basis (Blaß and Zitterbart [7]). 

Table  3.5: GF(2m) Polynomial basis 163-bit key 8-bit processor 

Ref. Year Performance (s) 

Malan et. al. [52]  2004 34.17 

Yan and Shi [65] 2006 13.9 

Seo et al. [54] 2008 1.14 

Szczechowiak et al. [56] 2008 2.16 

S. Khajuria et al. [65] 2009 28.1 

Diego F et al. [70] 2010 0.67  (Koblitz curves) 

Diego F et al. [70] 2010 1.55 (Binary curve) 

 
 

 

Figure  3.8: Implementation of 163-bits ECC over GF(2m) in 8-bit processors in WSN 
 

3.4 Summary 

A study on both hardware and software implementations of ECC in WSN are presented in this 

chapter. The study covered the underlying finite field, representation basis, occupied chip area, 
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consumed power, and time delay performances of these implementations. The study shows that 

most of the reviewed hardware implementations were implemented on ASIC and only one was 

FPGA. However, it has been believed for a long time that FPGAs are not suitable for WSN 

applications because of their power consumption. Most of these implementations were 

implemented over the binary fields GF(2m) and using polynomial basis representation. Despite 

that normal basis representation in GF(2m) are more efficient in hardware implementations, all of 

the reviewed implementations were implemented using polynomial basis representation. This also 

opens an opportunity to explore the performance of ECC in WSN over GF(2m) using normal basis 

representation.  

For the software implementations of ECC in WSN, the study shows that the fastest prime field 

implementation, among all reported ones that uses 160-bit on 8-bit, took 0.57 s. As for the 

implementations over binary field, the study demonstrates that the majority of these 

implementations are carried out using polynomial basis representation, expect for one 

implementation that uses normal basis representation. Where the fastest binary field 

implementation, among all reported ones that uses 163-bit on 8-bit, took 0.67 s.  
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CHAPTER 4  

Power Analysis Attacks on ECC in WSN 

and their Countermeasures  

4.1 Introduction 

As stated in Section 2.4 of Chapter 2, the scalar multiplication for Elliptic Curve Cryptosystems 

(ECC) [3] [4] is decomposed into a series of Point Additions (PADD) and Point Doublings 

(PDBL), and these point operations are the core for all ECC. The power and executing time 

requirements for PADD are different from those for PDBL on Wireless Sensor Networks (WSN) 

[1] nodes. In addition, the scalar multiplication algorithm performs PDBL for scalar bit value of 

0, and PADD for bit value of 1, where the scalar represents the private key of the sensor mote.  

Side Channel Analysis (SCA) attacks [8] exploit information leakage, such as power 

consumption and execution time, during the execution of an ECC protocol on WSN nodes, and 

thus will be able to learn about the entire private key as shown in Figure  4.1. 

This chapter will provide an introduction to SCA attacks, with focus on the Power Analysis 

Attacks (PAA) and their countermeasures. The chapter ends by remarks on the reviewed 

countermeasures and a summary of the chapter.  
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Figure  4.1: Power Traces revealing the private key of the WSN Node [82] 

 

4.2 Power Analysis Attacks 

Major nodes for WSN, such as Imote2, and MicaZ for instance, are manufactured by using 

CMOS (Complementary Metal-Oxide Semiconductor), where the logic inverter is its basic 

building block as depicted in Figure  4.2. The CMOS logic inverter [83] consists of two transistors 

namely P-channel and N-channel that serves as semiconductor switches and changes its status 

(ON or OFF) based on the input voltage Vin. A high voltage signal in Vin corresponds to logic 1 

and logic 0 for low voltage signal. If the input voltage Vin is low, then P-channel transistor is 

conduction and N-channel is not conducting. In this case the current will flow from the supply 

voltage Vdd to the output and thus Vout is high. Therefore, the CMOS inverter logic circuit gives 

output 0 if the input is 1 and vice versa. 

Hence, during the execution of a set of instructions, the consumed power by the device are 

expected to constantly change. Most importantly, measuring such consumed power during each 

clock cycle can be possible by using a resistor of one ohm value placed in series with the power 

supply and using an oscilloscope to measure the voltage change across the resistor.  
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Figure  4.2: CMOS Inverter Logic Circuit [83] 

In 1996, Paul Kocher introduced the power analysis procedure; then, in 1999 he introduced the 

PAA. These attacks have become a major threat against tamper resistant devices [84]. PAA [84] 

[85] allow adversaries to obtain the secret key in a cryptographic device, or partial information on 

it, by observing the power consumption traces. This is a serious threat especially to mobile 

devices such as WSN, smart cards, mobile phones, Radio Frequency Identity (RFID) [62] etc. 

Thus, implementers need algorithms that are not only efficient, but also PAA-resistant. 

However, without adopting suitable countermeasures, an FPGA implementation is as vulnerable 

to power attacks as its software counterparts running on a processor. As a matter of fact, the 

transistors switching inside the device can leak information about the operations performed. 

The following subsection presents the two main PAA techniques: 1) The Simple PAA (SPA) and    

2) The Differential PAA (DPA) attacks.  

4.2.1 Simple Power Analysis (SPA) 

The main idea of the SPA attacks [85] is to get the secret d using the side-channel leakage 

information obtained through observing the power consumption from a single measurement trace. 
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For instance, as ECSM is the basic operation for ECC, and the most straightforward algorithm for 

point multiplication on an elliptic curve is the double-and-add algorithm (See Algorithm  4.1), 

where a PDBL is executed for each bit of the scalar and a PADD is executed only if the scalar bit 

is equal to one. If the power consumption trace pattern of PDBL is different from that of PADD, 

the side-channel leakage of the implementation reveals the presence of the PADD and thus the 

value of the scalar bits and attackers can easily retrieve the secret key from a single side-channel 

trace. Figure  4.3 shows the power trace for a sequence of PADD (represented by A) and PDBL 

(represented by D) operations on ECC.  

 

Figure  4.3: Power trace for a sequence of PADD and PDBL Operations on ECC 

4.2.2 Differential Power Analysis (DPA) 

In DPA attacks [85], the adversary makes use of the obvious variations in the power consumption 

that are caused by multiple data and operation computations, and use statistical techniques to pry 

the secret information. This attack uses a two round technique: data collection and data 

processing. A DPA attack on ECSM is described in [86].  

More advanced DPA attacks techniques applicable to elliptic curve cryptosystems, such as 

refined power analysis (RPA) [87], zero power analysis (ZPA) [88], and doubling attacks [89] 

were introduced. 



 
  

 
 
 

 
 
 

70 
 

i. RPA (also called Goubin-type DPA) [87] attack directs its attention to the existence of a point 

P0 on the elliptic curve E(K) such that one of the coordinates is 0 in K and P0 ≠ O. RPA could 

deduce the next bit of the scalar by computing power consumption of chosen message and 

some chosen points on the elliptic curve. 

ii. ZPA attack [88] is an extension of RPA attack. This attack is based on the observation that 

that even if a point had no zero-value coordinate; the auxiliary register might take on a zero-

value. Thus with this attack, all points with zero power consumption are noticeable. 

iii. Doubling attack (DA) [89] attack is based on the two queries; one is on some input P and the 

other one is on 2P. The DA can detect when the same operation is done twice, i.e., exploits 

the similar PDBL operations for computing dP and d(2P), where d represent the scalar. There 

are two types of DA, normal and relative DA (relative doubling attack proposed by Yen et al. 

[90]), where the relative DA uses a totally different approach to derive the key bit in which 

the relationship between two adjacent key bits can be obtained as either di = di − 1 or di ≠ di − 1. 

iv. In addition, Template Attack [91] is very similar to DPA attack (Two rounds technique: 

Template building and matching), but requires access to a fully controllable device. In 

Template building phases (also called profiling phase), the attacker constructs a precise 

model of the wanted signal source, including a characterization of the noise. The matching 

phase comprises the actual attack.  

v. Carry-based Attack (CBA) [92] is an attack that does not attack the ECSM itself but its 

countermeasures. This attack depends on the carry propagation occurring when long-integer 

additions are performed as repeated sub-word additions.  

vi. Moreover, an advanced statistical technique such as Principal Component Analysis (PCA) 

[12] can be used by an attacker to perform PCA transformation on randomly switched PADD 

and PDBL (as in ECSM using Montgomery ladder) and identify the key bit. 
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4.3 Countermeasures 

Since 1996, many research efforts [8] [9] [86] [93] [94] [95] [96] [97] [98] [99] have been made 

to secure ECC method implementations, in special the ECSM, against PAA. The major challenge 

is to avoid additional computational cost, and to develop relatively fast cryptosystems without 

compromising security, due to the nature of WSN as constrained devices. 

4.3.1 Countermeasures for SPA 

There are different strategies to resist SPA attacks. These strategies share the same objective, 

which is to render the power consumption traces that are caused by the data and operation 

computations during an ECSM independent from the secret key. 

SPA attacks can be prevented by using one of the following methods:  

1. Making the group operations indistinguishable (by processing of bits “0” and “1” of 

multiplier indistinguishable by inserting extra point operations). As an example, the 'Double-

and-Add-Always' algorithm, introduced in [86] (As shown in Algorithm  4.1), and 

Montgomery ladder [94] (as shown in Algorithm  4.2) ensures that the sequence of operations 

appear as a PADD followed by a PDBL regularly. 

'Double-and-Add-Always' algorithm [86] is highly regular, and it requires no pre-computation or 

prior recoding. This algorithm requires m PDBL and m PADD regardless of the value of the 

scalar multiplicand, and two temporary registers are needed to store the results of each iteration.  

As for the Montgomery ladder [94], the execution time of the ECSM is inherently unrelated to the 

Hamming weight of the secret scalar, and this algorithm avoids the usage of dummy instructions. 

Montgomery ladder [94] resists the normal DA. However, it is attacked by the relative DA 

proposed by Yen et al. [90]. Moreover, recent studies have shown that processing the bits of 

multiplicand from left-to-right, as Montgomery ladder does, are vulnerable to certain attacks [89].  
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Algorithm  4.1 Double-and-Add-Always Elliptic Curve Scalar Multiplication Method 

Inputs: P: Base Point, k: Secret key. 
Outputs: kP. 

1μ R[0] ĸ O 

2: for i =  m-1 down to 0 do 

3μ R[0] ĸ 2R[0], R[1] ĸ R[0] + P 

4μ R[0] ĸ R[ki] 

5: end for 

Return R[0] 

 
Algorithm  4.2 Montgomery powering ladder Elliptic Curve Scalar Multiplication Method 

Inputs: P: Base Point, k: Secret key. 
Outputs: kP. 

1μ R[0] ĸ P, R[1] ĸ 2P  

2: for i =  m - 2 down to 0 do 

3: R[1 - ki] ĸ R[0] + R[1] 

4: R[ki] ĸ 2R[ki] 

5: end for 

Return R[0] 

In addition, the authors in [97] proposed secure (same security level as 'Double-and-Add-Always' 

method [86] and the Montgomery method [94]) and efficient ECSM method (See Algorithm  4.3) 

by partitioning the bit string of the scalar in half (Key splitting into half) and extracting the 

common substring from the two parts based on propositional logic operations. The computations 

for common substring are thus saved, where the computational cost is approximately (m/2) 

PADD + m PDBL.  

2. Using of unified formulae for PADD and PDBL through inserting extra field operations [93] 

[95] [96] [9] [8] [98] [100] [101] [102], by rewriting the PADD and PDBL formulas so that 

their implementation provides always the same shape and duration during the ECSM.   
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Algorithm  4.3 Propositional Logic Operations Based Elliptic Curve Scalar Multiplication Method 
[97] 

Inputs: P: Base Point, k: Secret key. B2 = (݀ଶ௠Ȁଶ… ݀ଶ௘ ….݀ଶଵ)2, B1 = (݀ଵ௠Ȁଶ… ݀ଵ௘ ….݀ଵଵ)2 

Outputs: kP. 

1μ R[0] ĸ  R[1] ĸ R[2] ĸ R[3] ĸ O 

2: for i =  1 to m/2 do /* scan B1 and B2 from LSB to MSB */ 

3: R[2 ଶୣ +  ଵୣ] ĸ R[2 ଶୣ +  ଵୣ] + P /* ADD */ 

4: P ĸ 2P                                       /* DBL */ 

5: end for 

6: R[1]ĸ R[1] + R[3], R[2]ĸ R[2] + R[3] 

7: for i =  1 to m/2 do 

8μ R[2]ĸ 2R[2]   

9: end for 

10μ R[1]ĸ R[2] + R[1] 

Return R[1]. 

An arithmetic was proposed in [93] and refined in [98] together with the use of Edwards 

coordinates for ECC as proposed by Bernstein and Lange in 2007 [103] uses the same formula to 

compute PADD and PDBL. In addition, Hesse [95] and Jacobi form [96] elliptic curves achieve 

the indistinguishability by using the same formula for both PADD and PDBL. Moreover, a 

method proposed by Moller [8] performs ECSM with fixed pattern of PADD and PDBL, 

employing a randomized initialization stage to achieve resistance against PAA. The same way, 

Liadet and Smart [9] have proposed to reduce information leakage by using a special point 

representation in some elliptic curves pertaining to a particular category, such that a single 

formula can be used for PADD and PDBL operations.  

3. Rewriting sequence of operations as sequences of side-channel atomic blocks that are 

indistinguishable for SPA attacks [100]. The idea is to insert extra field operations and then 
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divide each process into atomic blocks so that it can be expressed as the repetition of 

instruction blocks which appear equivalent (same power trace shape and duration) by SCA. 

The atomic pattern proposed in [100] is composed of the following field operations: a 

multiplication, two additions and a negation. This choice relies on the observation that during 

the execution of PADD and PDBL, no more than two additions and one negation are required 

between two multiplications.  

To reduce the cost of atomic pattern of [100], Longa proposed in his PhD thesis [101] two 

atomic patterns in the context of Jacobian coordinates. In [101] Longa expresses mixed 

affine-Jacobian PADD formula as 6 atomic patterns and fast PDBL formula as 4 atomic 

patterns. It allows performing an efficient left-to-right ESCM using fast PDBL and mixed 

affine-Jacobian addition protected with atomic patterns. In addition, the authors in [102] 

address the problem of protecting ECSM implementations against PAA by proposing a new 

atomic pattern. They maximize the use of squarings to replace multiplications and minimize 

the use of field additions and negations since they induce a non-negligible penalty.  

4.3.2 Countermeasures for DPA 

Same as in SPA attacks, there are different approaches and techniques [86] [87] [104] [81] [105] 

[106] used to resist DPA attacks. In general, the traditional and straightforward approach is by 

randomizing the intermediate data, thereby rendering the calculation of the hypothetical leakage 

values rather impossible. 

Coron [86] suggested three countermeasures to protect against DPA attacks: 

1. Blinding the scalar by adding a multiple of (#E).  

For any random number r and k’ = k + r * (#E), we have k’ * P = k * P since r * (#E) * P = O. 
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2. Blinding the point P, such that k * P becomes k * (P +R). The known value S = k * R is 

subtracted at the end of the computation. Blinding the point P makes RPA/ZPA more 

difficult.  

In [89], the authors conclude that blinding the point P is vulnerable to DA since the point which 

blinds P is also doubled at each execution. Thereafter, in [104], the authors proposed a 

modification on the Coron’s [86] point blinding technique to defend against the DA. The 

modified technique in [104] is secure against DPA attacks. 

3. Randomizing the homogeneous projective coordinates (X,Y,Z) with a random Ȝ ≠ 0 to (ȜX, 

ȜY, ȜZ). The random variable Ȝ can be updated in every execution or after each PADD or 

PDBL, which will makes the collection of typical templates more difficult for an attacker. 

Although randomizing projective coordinates is an effective countermeasure against DPA attacks, 

it fails to resist the RPA as zero is not effectively randomized. Furthermore, if the device outputs 

the point in projective coordinates, a final randomization must be performed; otherwise [107] 

shows how to learn parts of the secret value.  

Similar to Coron [86], Ciet and Joye [106] also suggested several similar randomization methods. 

1. Random scalar splitting: k = k1 + k2 or k = [k/r] * r + (k mod r) for a random r. 

Random scalar splitting can resist DPA attacks since it has a random scalar for each 

execution. In addition, it helps preventing RPA/ZPA if it is used together with Blinding the 

point P technique [10]  [87] [108].  

2. Randomized EC isomorphism.  

3. Randomized field isomorphism.  

In the same context, Joye and Tymen [105] proposed to execute the ECSM on an isomorphic 

curve and to change the intermediate representations for each execution of a complete ECSM. 
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In [81], the authors presented a PAA resistant ECSM algorithm, based on building a sequence of 

bit-strings representing the scalar k, characterized by the fact that all bit-strings are different from 

zero; this property will ensure a uniform computation behavior for the algorithm, and thus will 

make it secure against PAA attacks.  

4.4 Remarks on the Reviewed Countermeasures 

The main focus of this study is in highlighting on the PAA on ECC as a major security threat in 

the context of WSN. In a point of fact, none of the proposed countermeasures against PAA on 

ECC, which are suggested in literatures, have considered the case of WSN.  

Given the resource constraints of WSN nodes, designing countermeasure methods against 

PAA seems a non-trivial problem, and it should be a matter of tradeoff between the available 

resources on WSN node and performance. Thus, some critical concerns need to be taken into 

consideration while designing such countermeasures: 

1. Do not include any dummy operations (limited battery life time), and  

2. Do not limit the design to particular family of curves, and thus can be implemented in any 

NIST standardized curves.  

3. Immunity against DPA attacks may be carefully designed by combining several data 

randomization countermeasures and selectively change the ordering of these countermeasures 

with a time short enough to avoid a successful DPA attack. 

4. Template attacks are serious security threats on WSN nodes especially when the template 

building is simple and fast. 

In addition, as shown in Figure  4.4, different attacks could be thwarted by one or more 

countermeasures. For example, Random Projective Coordinate prevents three powerful attacks 

(DPA, DA, and Template attack). However, it is worthy to emphasis on the fact that finding a 
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countermeasure against all know attacks is extremely costly, especially in the context of 

constrained devices like WSN. 

4.5 Summary 

Taking into consideration the resource constraints of WSN nodes, its deployment in open 

environments make these nodes highly exposed to PAA. This chapter presented a comprehensive 

study of major PAA on ECC. The contributions of this chapter are as follows: First, we presented 

a review of the major PAA and its countermeasures on ECC.  Second, we made a graphical 

presentation for the relation between PAA on ECC and its countermeasures. In addition, we 

discussed the critical concerns to be considered in designing PAA on ECC particular for WSN. 

Those, this chapter should trigger the need for intensive researches to be conducted in the near 

future on the PAA on ECC in WSN nodes, especially that ECC is considered as the most feasible 

PKC for WSN security. 

 

Figure  4.4: PAA vs. Countermeasures 
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Although attacks like PAA in WSN are normally carried out in situations where the adversary can 

control the target device [109], SPA attacks together with Template Attacks are still considered 

serious security threats, and thus a robust a cost-effect security solutions should be 

implementation to thwart these attacks.  
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CHAPTER 5  

Architectures for ECC Cryptoprocessor 

Secure against SCA 

Majority of cryptoprocessors for Elliptic Curve Cryptosystems (ECC) [3] [4] in extreme 

constrained resources such as sensor mote, Radio Frequency Identity (RFID) [62], and smartcards 

have been proposed and implemented over the binary fields GF(2m) on Application Specific 

Integrated Circuits (ASIC) and only few using Field Programmable Gate Array (FPGA) [12] 

technology. Despite that normal basis representation in GF(2m) are more efficient in hardware 

implementations, all of the reviewed implementations in this thesis were implemented using 

polynomial basis representation [110]. In addition, although Power Analysis Attacks (PAA) [9] 

are considered serious security threats on Wireless Sensor Networks (WSN) [1], none of the 

reported implementations provides security against all known PAA.  

Thus, it is crucial to design ECC cryptoprocessor architectures (See Figure  5.1 – typical 

architecture for ECC coprocessor) for WSN implementations, and secure the cryptoprocessor 

against PAA. In this chapter, four robust, secure against PAA, and high efficient GF(2m) elliptic 

curve cryptoprocessors architectures based on innovative algorithms for ECSM are proposed. The 

security advantages provided in these cryptoprocessors covers both the Simple Power Analysis 

(SPA) and Differential Power Analysis (DPA) attacks [9] [10] by applying: (i) Point Addition 

(PADD) operation delaying using buffer storage, (ii) Scalar splitting for cost saving and 
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additional complexity, and (iii) Complicated randomization technique for extra confusion to 

secure against DPA attacks. 

The merits of these four cryptoprocessors are compared to the regular secure elliptic curve 

cryptoprocessor (ECCRG) which is used as a reference for such comparison. The following 

sections and subsections provide details of the ECCRG and the four proposed cryptoprocessors; 

namely: 

1. ECCRG: 'Double-and-Add’-based ECSM cryptoprocessor architecture with resistance against 

SPA attacks. 

2. ECCB-SPA: Buffer-based ECSM cryptoprocessor architecture with resistance against SPA 

attacks.  

3. ECCSB-SPA: Split Buffer-based ECSM cryptoprocessor architecture with resistance against 

SPA attacks.  

On the other side,  

4. ECCRB-DPA: Randomized Buffer-based ECSM cryptoprocessor architecture with resistance 

against DPA, and  

5. ECCRSB-SPA: Randomized Split Buffer-based ECSM cryptoprocessor architecture with 

resistance against DPA attacks.  

5.1 Architecture for regular GF(2m) Elliptic Curve 

Cryptoprocessor 

This section presents the architecture of a regular GF(2m) elliptic curve cryptoprocessor, named 

ECCRG which is based on the 'Double-and-Add' algorithm and provides security against SPA 

attacks. The proposed architecture is modeled using VHDL, stands for very high-speed integrated 
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circuit hardware description language, and is fully parameterized. The basic units of this 

architecture are: 1. the main controller, 2. the data embedding unit, 3. the PADD and Point 

Doubling (PDBL) units and 4. the field arithmetic units (adder, multiplier and inverter). In the 

following subsections, these units are described in details (Figure  5.1).  

MAIN CONTROLLER

POINT 

DOUBLING
POINT 

ADDITION

DATA 

EMBEDDER

rst

clk

FIELD 

ADDER
POINT 

MULTIPLICATION

FIELD 

INVRERTER

Registers

Control Data

 
Figure  5.1: Architecture of the ECC coprocessor 

5.1.1 Main Controller 

The 'Double-and-Add' algorithm has been selected for scalar multiplication (Algorithm  4.1). For 

the encryption/decryption process, the selected encryption protocol is the elliptic curve Diffie-

Hellman protocol [69]. The pseudocode of the ECCRG cryptoprocessor is given in Algorithm  5.1. 

The input of Algorithm  5.1 are: (1) the base point P, (2) the elliptic curve parameters a,b, (3) the 

secret key k, (4) the encryption/decryption mode and (5) the plaintext/cipher text. The output is 

either the cipher text or the plaintext depending on the encryption/decryption mode. 
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Algorithm  5.1 Pseudocode of the ECCRG Cryptoprocessor 

Inputs: P: Base Point, k: Secret key; a, b: Elliptic curve parameters, Plaintext/Ciphertext, 

Encryption/Decryption 
Outputs: Ciphertext/Plaintext. 

# Scalar Scalar Multiplication (kP): 

1: Algorithm  4.1(P,k) 

# Encryption/Decryption Process: 

2: if (Encrypt) then  

2.1: Embed the plaintext in random points on the elliptic curve 

2.2: ADD (kP) to data points 

2.3: Output (ciphertext) 

3: else 

3.1: ADD (− kP) to ciphered points 

3.2: Extract the plaintext from the data points 

3.3: Output (plaintext) 

Referring to the cryptoprocessor pseudocode (Algorithm  5.1), scalar multiplication starts at Step 

1 by executing the 'Double-and-Add-Always' ECSM algorithm (Algorithm  4.1). The encryption 

process starts at Step 2 by embedding the plaintext into a random point on the elliptic curve using 

"blinding the point" technique. The scalar multiplication result (kP) is added to this point to 

produce a ciphered point. The decryption process (Step 3), however, subtracts (kP) from the 

ciphered point. 

5.1.2 Data Embedding 

Data embedding is performed within the x-coordinate of a point on the elliptic curve. A random 

number is picked to fill the 5 most significant bits and the remaining bits will contain the data to 

be encrypted. If the x-coordinate is not a valid point on the elliptic curve, another random number 

is picked until a valid elliptic curve point is obtained. 
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The checking procedure is as follows [111]: 

 Recall the elliptic curve equation defined over GF(2m): 

ଶݕ ൅ ݕݔ ൌ ଷݔ  ൅ ଶݔܽ ൅ ܾ (Equation  5.1) 

Where a, b ࣅ GF(2m) and b ≠ 0. 

  Rewrite Equation 5.1 as  

ଶݕ ൅ ൅ ݕݔ  ݂ሺݔሻ ൌ Ͳ (Equation  5.2) 

where ݂ሺݔሻ ൌ ଷݔ  ൅ ଶݔܽ ൅ ܾǤ  
 Let ݕ ൌ  :Equation 5.2 becomes ,ݔݖ 

ଶݖ ൅ ൅ ݖ  ܿ ൌ Ͳ  (Equation  5.3) 

where 

ܿ ൌ  ݂ሺݔሻǤ  ଶ  (Equation  5.4)ିݔ

 Find the trace of c, the trace function is simply the parity function which can be easily 

implemented by computing the XOR of all the bits. 

 If the trace is 1, try another random number and repeat the check again. If the trace is 0, this 

is a valid x-coordinate and proceed to recover the y-coordinate. 

 By taking the square root of Equation 5.3, it can be rewritten as: 

ଵȀଶݖ ൌ ݖ ൅ ܿଵȀଶ (Equation  5.5) 

which can be also rewritten as: 

௜ݖ ൌ ݖ௜ିଵ ൅ ܿ௜ (Equation  5.6) 
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 Since z + 1 is actually the complement of z in a normal basis, in one of the two solutions the 

least significant bit will be 0 and the other one will be 1. We then further compute all the 

other bits one by one. 

 To compute the y value, simply multiply z by x. 

5.1.3 Point Addition and Doubling 

PADD and PDBL are performed using Lopez-Dahab projective coordinate system which takes 

the form (x,y) = (X/Z, Y/Z2) [23]. PADD and PDBL require only 14 and 5 field multiplications 

respectively (Table 2.3). The projective elliptic curve equation of the affine Equation  5.1 is given 

by 

ܻଶ ൅  ܻܼܺ ൌ  ܺଷܼ ൅ ܽܺଶܼଶ ൅ ܾܼସ (Equation  5.7) 

If Z = 0 in Equation 5.7, then Y2 = 0, i.e., Y = 0. Therefore, (1, 0, 0) is the only projective point 

that satisfies the equation for Z = 0. This is the point at infinity O [23]. To convert an affine point 

(x, y) into Lopez-Dahab projective coordinate, set X = x, Y = y, Z = 1. Similarly, to convert a 

projective point back to affine coordinate, we compute x = X/Z,    y = Y/Z2. The additive inverse 

of a point P = (X, Y, Z) is the point (X, XZ+Y, Z) which is used at the end of the decryption 

process [17]. 

The projective point operations formulas of Lopez-Dahab coordinate system [23] has been 

reported only for the most-to-least version of the scalar multiplication algorithm. Alternatively, 

PDBL and PADD formulas that are suitable for both versions of the scalar multiplication 

algorithm are proposed in Table  5.1. Clearly, the doubling formula requires only 5 field 

multiplications, 5 field squarings and 5 storage registers. PADD formula requires 14 field 

multiplications, 6 field squarings and 8 storage registers. 
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5.1.4 Field Operations 

One key advantage of normal basis representation is the simplicity of the squaring operation. 

Field squaring is simply a cyclic shift operation. Field addition is a Boolean XOR operation and 

is implemented using an m-bit XOR unit. Thus, only one clock cycle is required to perform either 

of the two operations, i.e., field squaring or field addition. 

Field multiplication is more complicated than addition and squaring. An efficient multiplier is 

highly needed and is the key for efficient finite field computations. Massey-Omura multiplier was 

selected for field arithmetic [112]. Since we are using FPGA as implementation technology to 

evaluate our proposed architectures, we have adopted for implementing the bit-serial version of 

the Massey-Omura multiplier to save on available FPGA resources. The Massey-Omura 

multiplier requires only two m-bit cyclic shift registers and combinational logic. The 

combinational logic consists of a set of AND and XOR logic gates (See Figure  5.2). The first 

implementation of the Massey-Omura multiplier was reported by Wang. et. al. [113]. The space 

complexity of the Massey-Omura multiplier is (2m – 1) AND gates + (2m – 2) XOR gates, while 

the time complexity is TA + (1 + log2 (m – 1)) TX, where TA and TX are the delay of one AND 

gate and one XOR gate respectively. One advantage of the Massey-Omura multiplier is that it can 

be used with both types of the optimal normal basis (ONB) (Type I and Type II). Another 

advantage is that it is a bit-serial multiplier and hence the same circuitry used to generate c0 can 

be used to generate ci (i = 1,2, … m – 1) as shown in Figure  5.2 [114]. 

The encryption/decryption process requires only one inversion since we are using projective 

coordinate (See Equation  5.4), while an inversion per trial is required for data embedding in a 

valid x-coordinate. Thus, an efficient inverter is required. The selected inverter is the Itoh and 

Tsujii inverter [115]. 
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b0, b1, …., bm-1

cm-1, …., c1, c0 

 
Figure  5.2:  The bit-serial Massey–Omura multiplier of GF(2m) [112]. 

The dataflow of the Itoh–Tsujii inverter is shown in Figure  5.3. Figure  5.3 shows that Itoh–Tsujii 

inverter requires three cyclic shift registers; one barrel shifter, one down counter and one 

multiplier (note that only one multiplier is used while two are drawn in the dataflow diagram for 

the purpose of clarity). 

In Figure  5.3, the down counter s controls the barrel shifter r in each iteration. The barrel shifter r, 

accordingly, controls the required number of squarings by the cyclic shift register q. The least bit 

of the barrel shifter r0, on the other hand, decides if the multiplication of the content of the cyclic 

shift register t by a is required or not. The Itoh–Tsujii Inversion algorithm is given in 

Algorithm  5.2. Clearly, the inverter depends a lot on the field multiplier. The Itoh–Tsujii 

Inversion algorithm requires only O (log2 (m)) multiplications, which is the best among other 

inversion algorithms reported thus far [114]. 
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Algorithm  5.2 Itoh–Tsujii Inversion Algorithm. 

Inputs: a. 
Outputs: l = a

-1 

1: set s ĸ [log2(m-1)] – 1, set p ĸ a 

3: for i =  s down to 0 do 

3.1μ set r ĸ shift m − 1 to right by s bit(s) 

3.2μ set q ĸ p 

3.3: rotate q to left by [r/] bit(s) 

3.4: set t ĸ p x q 

3.5: if least bit of r = 1 then 

3.5.1: rotate t to left by 1 bit, p ĸ t x a 

3.6: else 

3.6.1: p ĸ t 

3.7: s ĸ s – 1 

4: rotate p to left by 1 bit 

5: set l ĸ p 

return l 
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Table  5.1: Lopez-Dahab Projective Coordinate System 

PDBL PADD 

T1 ĸ X1 
T2 ĸ Y1 

T3 ĸ Z1 

T4 ĸ ξ  

T3 ĸ  ଷଶ 

T3 ĸ T3 x T4   
T4 ĸ  ସଶ 

T1 ĸ  ଵଶ 

T3 ĸ T1 x T3 = Z2  
T1 ĸ  ଵଶ 

T1 ĸ T1 + T4 = X2 

T2 ĸ  ଶଶ 

if a ≠ 0 then 
 T5 ĸ a 
 T5 ĸ T3 x T5 

 T2 ĸ T2 + T5 

T2 ĸ T2 + T4 

T2 ĸ T1 x T2 

T4 ĸ T3 x T4 

T2 ĸ T2 x T4 = Y2  

 

 

 

 
 
 
 

 

 

T1 ĸ X0 
T2 ĸ Y0 

T3 ĸ Z0 

T4 ĸ X1 

T5 ĸ Y1 

T6 ĸ Z1 

T7 ĸ T3 x T6 = E 

T1 ĸ T1 x T6 = B1 

T4 ĸ T3 x T4 = B0 

T1 ĸ T1 + T4 = D 
T3 ĸ  ଷଶ 

T6 ĸ  ଺ଶ 

T3 ĸ T3 x T5 = A0 

T6 ĸ T2 x T6 = A1 

T6 ĸ T3 + T6 = C 
T2 ĸ T1 x T7 = F 
T1 ĸ  ଵଶ 

T8 ĸ  ଻ଶ 

T8 ĸ a x T8 

T8 ĸ T2 + T8 

T5 ĸ T1 + T8 = G 
T8 ĸ T2 + T6 = H 

T6 ĸ  ଺ଶ 

T6 ĸ T6 + T8 

T6 ĸ T5 + T6 = X2 

T4 ĸ T1 x T4 

T4 ĸ T4 x T7 

T4 ĸ T4 + T6 = I 

T3 ĸ T1 x T3 

T3 ĸ T3 + T6 = J 
T4 ĸ T4 x T8 

T2 ĸ  ଶଶ = Z2 

T2 ĸ T2 x T3 

T8 ĸ T3 + T4 = Y2 
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5.2 Proposed Architectures for ECC Secure against 

SPA 

In this section, two proposed architectures for elliptic curve cryptoprocessors are presented; these 

cryptoprocessors provide resistance against SPA attacks. The first cryptoprocessor is Buffer-

based, called ECCB-SPA, and it uses an ECSM method that is based on delaying the PADD 

operation using buffering technique (with one buffer); whereas the second cryptoprocessor is 

Split Buffer-based, called ECCSB-SPA, and it uses an ECSM method that is based on splitting the 

scalar into two equal length partitions and delaying the PADD operation using buffering 

technique (with three different buffers).  

5.2.1 The ECCB-SPA Cryptoprocessor 

This subsection introduces the Buffer-based cryptoprocessor (ECCB-SPA), it uses a scalar 

multiplication method that is derived from the binary method (See Algorithm  2.2), and is based 

on delaying the PADD operation using buffering technique. The pseudocode of the Buffer-based 

ECSM method is given in (Algorithm  5.3).  

5.2.1.1 Background Information on the ECCB-SPA Cryptoprocessor 

In order to give background information on the ECCB-SPA cryptoprocessor, it is signification to 

recall that in the right-to-left version of the binary method (See Algorithm  2.2) of the ECSM, 

PADD is only performed if the bit value ki = 1, while PDBL is always performed regardless of 

the bit scalar value. The mathematical equation for the binary method is given below: 

݇ܲ ൌ ෍ ʹ௜݇௜ܲ ௠ିଵ
௜ୀ଴   (Equation  5.8) 
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where k is the scalar, P is the base point. 

In Equation  5.8, the scalar multiplication result is the conditional summation of PDBL operation 

of P at position i of the scalar where ki = 1. In addition, Equation  5.8 can be rewritten as below: 

݇ܲ ൌ  ʹ଴ܲȁሺ௞೚ ୀ ଵሻ ൅ ʹଵܲȁ൫௞భ ୀ ଵ൯ ൅ ʹଶܲȁ൫௞మ ୀ ଵ൯ ൅ڮ ʹ௠ିଵܲȁ൫௞೘షభ ୀ ଵ൯ (Equation ‎5.9) 

In Equation 5.9, the scalar is divided into a number s of partitions, we call it "scalar partitioning 

on 1's", where each partition is associated with a computed point (2iP | ki = 1) to keep its 

significance [116]. The partition is defined as the bit string of length j and only contains one bit 

"1". 

K = k(s-1) || k(s-2) || … || k(1) || k(0) 

For example, key length of 16 bits, and k = 42,395 = (1010010110011011)2, can be partitioned as 

depicted below in Figure  5.4: 

100110100101 1 110

456789101112131415 3 012

242526272829210211212213214215 23 202122

1632641282565121,0242,0484,0968,19216,38432,768 8 124

161282561,0248,19232,768 8 12

K = 1010 0101 1001 1011

 

Figure  5.4: Example for "Scalar Partitioning on 1's" 

5.2.1.2 Description of the ECCB-SPA Cryptoprocessor 

To protect against PAA, the point operations (PADD and PDBL) of the ECSM must be 

independent of the scalar bit value ki. In addition, since each key partition is associated with a 
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computed point to keep its significance, and the resulting points from processing these key 

partitions are accumulated to produce the scalar multiplication kP; therefore, PADD operation 

can be performed at a delayed time, and not necessarily at the corresponding scalar bit position. 

Accordingly, the proposed Buffer-based method for scalar multiplication is based on delaying the 

PADD operation using buffering technique, i.e., this proposed method store points into buffer and 

perform the PADD operations in later stage as elaborated in its algorithm (Algorithm  5.3) and 

shown in its dataflow (as depicted in Figure  5.5).   

Algorithm  5.3 Buffer-based ECSM Method 

Inputs: P: Base Point, k: Secret key, r is capacity limit of buffer 

Outputs: kP. 

1μ R[0] ĸ O, t ĸ 1 /* set buffer index t to 1 */ 

2: for i =  0 to m-1 do 

2.1μ B[t] ĸ P /* scan k, store points in buffer */ 

2.2μ P ĸ  2P 

2.3μ If (t ĸ r) or (i ĸ m-1), then /* buffer reach its capacity limit or scan k is completed */ 

2.3.1: for s = 1 to t do  

2.3.1.1: R[0] = R[0] + B[s] 

2.3.2μ t ĸ 1 /* reset buffer index to 1 */ 

2.4 else t ĸ t + ki /* increment t if the bit value of k is 1 */ 

Return R[0] 

In in Figure  5.5, the scalar is scanned from right to left and for every scalar bit value: 

1. Perform a PDBL operation. 

 PDBL operation keeps the significance of the point value at the scalar bit position of the 

 scalar. 

2. Write to buffer the updated value of P (result of PDBL operation) 



 
 

 

   
   

93  

d0d1de

Write 
Buffer

 Buffer or 

Scan? 
PADD

Point Double Operation for 

each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P 

correspond to each scalar bit 

value

Shift Left by one bit

Index to buffer will be incremented by the bit 

value (no increment in case of 0), and those 

only stored points in case of bit value of 1 will 

be considered for later PADD computation

Scan the bit scalar from right to left, store the updated value 

of P into the buffer, and then move to the next bit value

NO

PADD operation for all points 

stored in the buffer, and then 

add the result to Q

Check if either the buffer is full or the scan is completed

Return Q
Once the scan is completed 

together with the PADD 

operation, return Q

 

F
igure  5.5: 

D
ata Flow

 for B
uffer-based M

ethod for S
calar M

ultiplication 



 
  

 
 
 

 
 
 

94 
 

 Index to buffer is directly related to the bit scalar value; i.e., it will only increment for bit 

 value of 1. Therefore, the buffer will only store points corresponding to bit value of 1.  

3. Once the buffer is full (or the scalar scanning is completed) the PADD operation is 

performed on the stored points in the buffer 

The scalar multiplication will be the accumulated points of the PADD operation results. 

5.2.1.3 Example for the ECCB-SPA Cryptoprocessor 

In Figure  5.6 shows an example of the Buffer-based method for ECSM. In this example, the key 

length is 8-bit. The key k is 186, equivalent to (10111010)2 in binary, and the buffer capacity is 3. 

Points are stored, twice in the buffer as follow: 

1. In the first round by the points (2P, 8P, 16P) because the buffer became full, and then  

2. In the second round by the points (32P, 128P) since the scalar scan is completed.  

These points correspond to the scalar bit positions (1,3,4) in the first round, and positions (5,7) in 

the second round, where in each round a PADD operation is performed on the points, and the 

final value of PADD is stored in Q as the result of the scalar multiplication 186P = 26P + 160P.  

5.2.1.4 Performance Analysis for the ECCB-SPA Cryptoprocessor 

In the proposed Buffer-based method (Algorithm  5.3) for ECSM, PADD is performed in later 

stage and only if the bit value ki = 1, while PDBL is always performed regardless of the bit value 

ki. In addition, this proposed method is derived from the binary method (See Algorithm  2.2); 

therefore, the performance required by the proposed Buffer-based method is m PDBL and an 

average of m/2 PADD operations, which is equivalent to the performance of the binary method, 

and it has a better performance in compared to the double-and-add always method. In addition, 

Buffer-based method requires no extra dummy computation. This can be improved to m PDBL 

and an average of m/3 PADD when NAF encoding is used.  
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5.2.1.5 Security Analysis for the ECCB-SPA Cryptoprocessor 

In the proposed Buffer-based method (Algorithm  5.3) for ECSM, the PADD operation is delayed 

by storing points in a buffer, and a PDBL with "write to buffer" is performed for every bit value, 

and thus the relation between the scalar bit value and point operation is removed. Therefore, this 

proposed method is robust against SPA attacks since the point operations (PDBL and PADD) are 

independent of the bit scalar value. For instance, the power trace for the example in Section 

5.2.1.3 can be simulated below (Figure  5.7).  

(K)2 1 0 1 1 1    0 1 0   

K (in reverse order) 0 1 0 1 1    1 0 1   

Power Trace D D* D D* D* A A A D* D D* A A 

Figure  5.7: Example for Power Trace for the Buffer-based method 

where: D stands for PDBL & 'write to buffer' operation, D* stands for PDBL & 'write to 

buffer with increment of index to buffer' , and A stands for PADD operation. The key 

length is 8-bits, k is 186, equivalent to (10111010)2 in binary, and the buffer capacity is 3. 

Moreover, the security of this proposed method depends on the provided depth of confusion 

which is directly proportional to the size of the buffer, i.e., the smaller the buffer is, the easier to 

guess the number of processed bit "1" during the sequence of PDBL operations, and it will be 

harder when the buffer is larger. A moderate buffer size should be log2 (m) to reach a confusion 

depth that secures ECSM against SPA attacks.  

5.2.2 The ECCSB-SPA Cryptoprocessor 

This subsection introduces the ECCSB-SPA cryptoprocessor with an ECSM method, called Split 

Buffer-based Method, that is based on splitting the scalar into two equal length partitions and 
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delay the PADD operation using three different buffers (See Algorithm  5.4). In addition, the 

scalar splitting technique is derived from the ECSM method based on propositional logic 

operations in [97]. In [97], their ECSM is based on partitioning the bit string of the scalar in half 

and extracting the common substring from the two parts based on propositional logic operations 

(See Algorithm  4.3). 

5.2.2.1 Background Information on the ECCSB-SPA Cryptoprocessor 

According to [97], scalar multiplication kP can be computed as:  ݇ܲ ൌ ሺܭଶȁȁܭଵሻǤ ܲ   

ൌ  ʹ ೘మ  Ǥ ሺܭଶ . P) + (ܭଵ Ǥ ܲሻ  

        ൌ  ʹ ೘మ  Ǥ ሺܭ௑ைோ̴ଶ . P + ܭଵ̴஺ே஽̴ଶ Ǥ ଵ̴஺ே஽̴ଶ Ǥܭ + ௑ைோ̴ଵ . Pܭ) + (ܲ ܲሻ (Equation ‎5.10) 

where K1 = KXOR_1 + K1_AND_2   and K2 = KXOR_2 + K1_AND_2 

Also, KXOR_1 and KXOR_2 are K1 and K2 exclusive-or the common substring K1_AND_2, respectively. 

Splitting the scalar K into two equal partitions K2 and K1 is explained by example as given in 

Figure  5.8, where the scalar length is 16-bits such as K = (1010 0101 1001 1011)2 = 42,395. The 

two partitions K2 and K1 are as follows: 

K2 = (1010 0101)2 = 165 and K1 = (1001 1011)2 = 155 

Thus, as per Equation 5.10, the scalar K can be written as  

K = 28 *(165) + 155 = 256*165 + 155 = 42,395 

Where K2 = (0010 0100) + (1000 0001) = 36 + 129 = 165, and 

           K1 = (0001 1010) + (1000 0001) = 26 + 129 = 155 
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100110100101 1

K = 1010 0101 1001 1011

110

456789101112131415 3 012

100110100101 1 110

K =

K2= K1=

00100100KXOR_2 =

0001 0 100K1_AND_2 =

01011000KXOR_1 =

 

Figure  5.8: Example of Scalar Splitting with equal partitions 
 
5.2.2.2 Description of the ECCSB-SPA Cryptoprocessor 

Similar to the technique used in the Buffer-based Method (as described in Section 5.2.1.2), 

buffering technique is also used by the proposed Split Buffer-based Method for ECSM, but with 

splitting the bit string of the scalar k into two equal length partitions.   The data flow of the Split 

Buffer-based Method is depicted in Step 3 and 4 will be repeated until the scan is completed, and 

then the PADD operation is performed on the remaining points of the buffers. The scalar 

multiplication will be computed as given in Equation 5.10. 

In addition, the algorithm for this method is illustrated in Algorithm  5.4. Three buffers B1, B2, B3 

are defined with index i1, i2, i3 respectively. And the different values of bits (݇ଶୣ ǡ ݇ଵୣ  ሻ for 

partitions (ܭଶǡ ଵሻ are defined by n = 2݇ଶୣ  + ݇ଵୣܭ  , where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2  

are associated to n = 1, 2, and 3 respectively.  In Step 2 of Algorithm  5.4, the bit pairs of each 

partition are scanned from right to left at the same bit position e, then in every iteration, 1- the 

new value of P is stored in B1 (if ݇ଶୣ  ൌ 0, and ݇ଵୣ   = 1), or B2 (if ݇ଶୣ  ൌ 1, and ݇ଵୣ   = 0), or B3 (if ݇ଶୣ  ൌ 1, and ݇ଵୣ   = 1), 2- the value of P is doubled; Once one of the buffers (B1 or B2 or B3) is full, 

the PADD operation is performed on stored values of P in the buffer, and then the index of this 
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buffer is reset. When the scanning of the bit pairs (݇ଶ୬Ȁଶ      ݇ଵ୬Ȁଶሻ is completed, the PADD 

operation is performed on the remaining points in the buffers. 

5.2.2.3 Example for the ECCSB-SPA Cryptoprocessor 

Figure  5.10 shows an example of the Split Buffer-based Method. In this example, the key length 

is 16-bit. The K = (1010 0101 1001 1011)2 = 42,395 and the buffer capacity is 3. As mentioned in 

the example of scalar splitting with equal partitions (Figure  5.8), n = 2 ଶୣ  +  ଵୣ , where n [0,3] ࣅ 

and KXOR_1, KXOR_2, and K1_AND_2  are associated to n = 1, 2, and 3 respectively. Points are stored 

in the corresponding buffers according to the value of n, i.e., in the buffers (B1, B2, B3) for n = 1, 

2, 3 respectively. The points stored in B1 are (2P, 8P, 16P), B2 are (4P, 32P), and in B3 are (P, 

128P). Since the buffer capacity is 3, and the scalar scanning is completed in the first iteration, 

the buffers are only filled once. 

This method uses a four-step approach:  

1- The bit string of the scalar ݇ is split into two equal length partitions                                   ݇2 = (݇ଶ௠Ȁଶǥ ݇ଶ௘  ǥ ݇ଶଵ ሻ2, K1 = (݇ଵ௠Ȁଶǥ ݇ଵ௘  ǥ ݇ଵଵ ሻ2, then  

2- The partitions are scanned from right to left, and then a PDBL operation is perform for each bit 

pairs (݇ଶୣ ǡ ݇ଵୣ  ሻ of the partitions ݇2 and ݇1, and  

3- The updated value of P (result of PDBL operation) is stored to its relevant buffer that is related 

to the bit pair value: B1 for (݇ଶୣ  ൌ 0, and ݇ଵୣ   = 1), or B2 for (݇ଶୣ  ൌ 1, and ݇ଵୣ  = 0), or B3 for 

(݇ଶୣ  ൌ 1, and ݇ଵୣ   = 1). 

4- The PADD operation is delayed until any of the buffers becomes full, and then it is performed 

on the stored points in that buffer (full). The result point of PADD operation on B1, B2, and B3 

represents the values of KXOR_1, KXOR_2, and K1_AND_2 respectively. 
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Step 3 and 4 will be repeated until the scan is completed, and then the PADD operation is 

performed on the remaining points of the buffers. The scalar multiplication will be computed as 

given in Equation 5.10. 

In addition, the algorithm for this method is illustrated in Algorithm  5.4. Three buffers B1, B2, B3 

are defined with index i1, i2, i3 respectively. And the different values of bits (݇ଶୣ ǡ ݇ଵୣ  ሻ for 

partitions (ܭଶǡ ଵሻ are defined by n = 2݇ଶୣ  + ݇ଵୣܭ  , where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2  

are associated to n = 1, 2, and 3 respectively.  In Step 2 of Algorithm  5.4, the bit pairs of each 

partition are scanned from right to left at the same bit position e, then in every iteration, 1- the 

new value of P is stored in B1 (if ݇ଶୣ  ൌ 0, and ݇ଵୣ   = 1), or B2 (if ݇ଶୣ  ൌ 1, and ݇ଵୣ   = 0), or B3 (if ݇ଶୣ  ൌ 1, and ݇ଵୣ   = 1), 2- the value of P is doubled; Once one of the buffers (B1 or B2 or B3) is full, 

the PADD operation is performed on stored values of P in the buffer, and then the index of this 

buffer is reset. When the scanning of the bit pairs (݇ଶ୬Ȁଶ      ݇ଵ୬Ȁଶሻ is completed, the PADD 

operation is performed on the remaining points in the buffers. 

5.2.2.4 Example for the ECCSB-SPA Cryptoprocessor 

Figure  5.10 shows an example of the Split Buffer-based Method. In this example, the key length 

is 16-bit. The K = (1010 0101 1001 1011)2 = 42,395 and the buffer capacity is 3. As mentioned in 

the example of scalar splitting with equal partitions (Figure  5.8), n = 2 ଶୣ  +  ଵୣ , where n [0,3] ࣅ 

and KXOR_1, KXOR_2, and K1_AND_2  are associated to n = 1, 2, and 3 respectively. Points are stored 

in the corresponding buffers according to the value of n, i.e., in the buffers (B1, B2, B3) for n = 1, 

2, 3 respectively. The points stored in B1 are (2P, 8P, 16P), B2 are (4P, 32P), and in B3 are (P, 

128P). Since the buffer capacity is 3, and the scalar scanning is completed in the first iteration, 

the buffers are only filled once. 
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Algorithm  5.4 Split Buffer-based ECSM Method 

Inputs: P: Base Point, k: Secret key, k2 = (݇ଶ௠Ȁଶǥ ݇ଶ௘  ǥ ݇ଶଵ ሻ2, k1 = (݇ଵ௠Ȁଶǥ ݇ଵ௘  ǥ ݇ଵଵ ሻ2, r is 

capacity limit of buffer. 
Outputs: kP. 

1μ R[1] ĸ R[2] ĸ R[3] ĸ O, t1 ĸ t2 ĸ t3 ĸ 1 /* set buffers' indexes t1 ĸ t2 ĸ t3 to 1 */ 

2: for e = 1 to m/2 do 

2.1μ n ĸ 2݇ଶ௘  + ݇ଵ௘  
2.2: if n > 0, then 

2.2.1: Bn [tn] ĸP /* scan k, store points on corresponding buffer only for bit value of 1 */ 

2.2.2: if tn ĸ r Then 

2.2.2.1: for s = 1 to tn do 

2.2.2.1.1: R[n] ĸ R[n] + Bn [s] 

2.2.2.2: tn ĸ 1 /* reset buffer index to 1 */ 

2.2.3: else tn ĸ tn + 1 

2.3μ P ĸ 2P 

2.4μ if e ĸ m/2, Then 

2.4.1: for n= 1 to 3 do 

2.4.1.1: if tn >1 Then 

2.4.1.1.1: for s = 1 to tn – 1 do 

2.4.1.1.1.1: R[n] ĸ R[n] + Bn [s] 

3μ R[1] ĸ R[1] + R[3] 

4μ R[2] ĸ R[2] + R[3] 

5: for e = 1 to m/2 do 

5.1μ R[2] ĸ 2R[2] 

6μ R[1] ĸ R[2] + R[1] 

Return R[1].  

PADD operation is performed on the points in the buffers, and the final value of Q as the result of 

the scalar multiplication is: 28*(36P + 129P) + (26P + 129P) = 256*(165P) + (155P) = 42,395P. 
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5.2.2.5 Performance Analysis for the ECCSB-SPA Cryptoprocessor 

The proposed Split Buffer-based method (Algorithm  5.4) for ECSM is derived from the binary 

method (See Algorithm  2.2), and thus PADD is performed in later stage and only if the bit pair 

value ሺ݇ଶୣ  , ݇ଵୣ  ) is NOT (0,0), while PDBL is always performed regardless of the bit pair value. 

This method requires m PDBL, as proven in both Steps 2.3 and 5.1 of Algorithm  5.4, and on 

average ([m/2] – [m/8] = [3m/8]) PADD, as shown on Step 2.2.2.1.1 of the Algorithm  5.4, where 

PADD is performed for [m/2] iterations for only n > 0, i.e. PADD operation is not performed for 

the bit pairs ( ଶୣ ǡ  ଵୣ ሻ = (0 ,0), where its occurrence is with probability of [1/4], since as per 

Equation  5.11 the probability of (0, 0) = probability (0) * probability (0) = [1/2] * [1/2] = [1/4] . 

Additional number of PADD operations are performed at the end of algorithm, and these are 

negligible in comparison to m.  

            ሺܤ ݀݊ܽ ܣሻ ൌ             ሺܣሻ כ              ሺܤሻ (Equation ‎5.11) 

Therefore and to the best of our knowledge, this method outperforms all previously proposed 

methods in literature, including the binary method (See Algorithm  2.2) by reducing the PADD by 

m/8 and it only requires m PDBL and on average [3m/8] PADD. This performance improves to m 

PDBL and an average of [m/4] PADD when NAF encoding is used. In addition, the Split Buffer-

based method requires no extra dummy computation. 

5.2.2.6 Security Analysis for the ECCSB-SPA Cryptoprocessor 

In the proposed Split Buffer-based method (Algorithm  5.4) for ECSM, the security against SPA 

attacks is achieved in two levels of confusion: 

1. The first level is realized by inspecting bit pairs instead of a single bit of the scalar, and thus 

increase possible values to 4 (00, 01, 10, 11) instead of 2 (0, 1); and  



 
  

 
 
 

 
 
 

105 
 

2. The second level is achieved by delaying the PADD operation using buffers for interim 

points storage. Therefore, the relation between the scalar bit value and point operation is 

removed by delaying the PADD operation.  

For instance, the power trace for the example in Section 5.2.2.3 can be simulated below 

(Figure  5.11) 

(K)2  
1 0 1 0 0    1 0 1     

1 0 0 1 1    0 1 1     

K  
(in reverse order) 

1 0 1 0 0    1 0 1     

1 1 0 1 1    0 0 1     

  D*** D* D** D* D* A* A* A* D** D D*** A** A** A*** A*** 

Figure  5.11: Example for Power Trace for the Split Buffer-based method 
 

where: D stands for PDBL operation, and D* , D** , D*** stands for PDBL operation with store in 

buffers (B1, B2, B3) respectively; A stands for PADD operation and A* , A** , A*** stands for 

PADD operation on the points stored  in buffers (B1, B2, B3) respectively. The key length is      

16-bit, k is 42,395, equivalent to (1010 0101 1001 1011)2 in binary, and the buffer capacity is 3. 

Moreover, the security of this proposed method depends on the provided depth of confusion, 

which is directly proportional to the size of the buffer, i.e., the smaller the buffer, the easier to 

guess the number of processed bit pairs (01, 10, 11), and it will be harder when the buffer is 

larger. A moderate buffer size should be log2 (m) to reach a confusion depth that secures ECSM 

against SPA attacks. This method requires no extra dummy computations to secure ECSM against 

SPA attacks. 
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5.3 Proposed Architecture for ECC Secure against 

DPA 

In this section, two proposed architectures for elliptic curve cryptoprocessors are presented; these 

cryptoprocessors provide resistance against DPA attacks. The first cryptoprocessor is 

Randomized Buffer-based, called ECCRB-DPA, and it uses an ECSM method that is based on 

delaying the PADD operation using a buffer and applying randomization concept; whereas the 

second cryptoprocessor is Randomized Split Buffer-based, called ECCRSB-DPA, and it uses ECSM 

method that is based on splitting the scalar into two equal length partitions and delay the PADD 

operation using three different buffers and applying randomization concept.  

5.3.1 The ECCRB-DPA Cryptoprocessor 

This subsection introduces the Randomized Buffer-based ECCRB-DPA cryptoprocessor, it uses an 

ECSM method which is derived from the binary method, and is based on delaying the PADD 

operation by using randomized technique for points storing (in one buffer) and processing (See 

Algorithm  5.5). 

5.3.1.1 Background Information on the ECCRB-SPA Cryptoprocessor 

In order to give background information on the ECCRB-SPA cryptoprocessor, it is signification to 

recall that in the right-to-left version of the binary method (See Algorithm  2.2) of the scalar 

multiplication, PADD is only performed if the bit value ki = 1, while PDBL is always performed 

regardless of the bit value.  

Moreover, in Equation  5.9, the scalar is divided into a number s of partitions, we call it "scalar 

partitioning on 1's", where each partition is associated with a computed point (2iP | ki = 1) to keep 
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its significance [116]. The partition is defined as the bit string of length j and only contains one 

bit "1".  

Algorithm  5.5 Randomized Buffer-based ECSM Method 

Inputs: P: Base Point, k: Secret key, r is capacity limit of buffer 
Outputs: kP. 

1μ R[0] ĸ O, t ĸ 1 /* set buffer index t to 1 */ 

2: for i =  0 to m-1 do 

2.1μ r' ĸ RNG (0,r); /* Generate random number r', where 0 <  r' < buffer capacity r 

2.2μ B[t] ĸ P /* scan k, store points on buffer */ 

2.3μ P ĸ  2P 

2.4μ if (t ĸ r') then 

2.4.1μ j ĸ RNG (≤ r'); random number generator for a number less than or equal to i 

2.4.2: for s = j to t do 

2.4.2.1μ R[0] ĸ R[0] + B[s] 

2.4.3μ t ĸ j; Reset buffer (to avoid calculating resident points from previous iteration) 

2.5μ else t ĸ t + ki /* increment t if the bit value of k is 1 */ 

2.6μ if i ĸ m-1 then  

2.6.1: for s = 1 to t – 1 do 

2.6.1.1μ R[0] ĸ R[0] + B[s] 

Return R[0] 

5.3.1.2 Description of the ECCRB-SPA Cryptoprocessor 

To protect against power analysis attacks, the point operations (PADD and PDBL) of the scalar 

multiplication must be independent of the scalar bit value ki. In addition, since each key partition 

is associated with a computed point to keep the significance of each key partition, and the points 

resulting from processing these key partitions are accumulated to produce the scalar product kP, 

PADD operation can be performed at a delayed time in a randomized mode, and not necessarily 
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to be done at the corresponding key bit position. Thus, the Randomized Buffer-based method for 

ECSM is proposed and its dataflow is depicted in Figure  5.12.  

In in Figure  5.12, the scalar is scanned from right to left and for every scalar bit value: 

1. Perform a PDBL operation. 

PDBL operation keeps the significance of the point value at the scalar bit position of the 

scalar. 

2. Write to buffer the updated value of P (result of PDBL operation) 

The buffer capacity is randomized (greater than zero, and less or equal to the initial 

random capacity). Index to buffer is directly related to the bit scalar value; i.e., it will 

only increment for bit value of 1. Therefore, the buffer will only store points 

corresponding to bit value of 1.  

3. Once the buffer is full (i.e. the number of stored points is equal to the capacity of the 

buffer after applying randomization), the PADD operation is performed on a random 

number of points stored in the buffer.  

4. When the scalar scanning is completed, the PADD operation is performed on the 

remaining points in the buffer. 

The scalar multiplication will be the accumulated points of the PADD operation results. 

5.3.1.3 Example for the ECCRB-SPA Cryptoprocessor 

In Figure  5.13 shows an example of the Randomized Buffer-based method for ECSM. In the 

example, the key length is 8-bit. The key k = 186 = (10111010)2 and the initial buffer capacity is 

4. Points are stored to buffer, and PADD operation is performed on points from buffer in three 

rounds (iterations) as follow:  

1) In the first round, three points (2P, 8P, 16P) are stored since the buffer becomes full (i.e. The 

number of stored points is equal to the capacity of the buffer – randomized as 3), but PADD  
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operation is performed on two points only (8P, 16P) because the randomly generated number 

j is 2 and the processed points are the second and the third in the buffer.  

2) In the second round, only one point (32P) is stored since the buffer becomes full ((i.e. The 

number of stored points is equal to the capacity of the buffer – randomized as 2), and PADD 

operation is performed on one point only (32P) because the randomly generated number j is 2 

and the processed point is the second in the buffer. 

3) In the third round, only one point (128P) is stored since the scalar scanning is completed, and 

PADD operation is performed on two points only (2P, 128P) because these are the remaining 

points in the buffer. 

4) The result of the scalar multiplication is the final value of PADD operation on the stored in 

the buffer as per the below sequence: 

8P + 16P + 32P + 2P + 128P = 186P. 

 
5.3.1.4 Performance Analysis for the ECCRB-SPA Cryptoprocessor 

In the proposed Randomized Buffer-based method (Algorithm  5.5) for ECSM, PADD is 

performed in later stage and only if the bit value ki = 1, while PDBL is always performed 

regardless of the bit value ki. In addition, this proposed method is derived from the binary method 

(See Algorithm  2.2); therefore, the performance required by the proposed Buffer-based method is 

m PDBL and an average of m/2 PADD operations, which is equivalent to the performance of the 

binary method, and it has a better performance in compared to the double-and-add always 

method. In addition, Buffer-based method requires no extra dummy computation. This can be 

improved to m PDBL and an average of m/3 PADD when NAF encoding is used.   
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5.3.1.5 Security Analysis for the ECCRB-SPA Cryptoprocessor 

In the proposed Randomized Buffer-based method (Algorithm  5.5) for ECSM, the PADD 

operation is delayed by storing points in a buffer, and a PDBL with "write to buffer" is performed 

for every bit value, and thus the relation between the scalar bit value and point operation is 

removed. In addition, randomization technique is used in number points stored in the buffer, and 

the number of points processed for PADD in the buffer. Therefore, this proposed method is 

robust against DPA attacks. For instance, the power trace for the example in Section 5.3.1.3 can 

be simulated below (Figure  5.14).  

K 1 0 1 1 1   0 1  0   

K (in reverse order) 0 1 0 1 1   1 0  1   

Power Trace D D* D D* D* A A D* D A D* A A 

Figure  5.14: Example for Power Trace for the Randomized Buffer-based method 

where: D stands for PDBL & 'write to buffer' operation, D* stands for PDBL & 'write to buffer 

with increment of index to buffer', and A stands for PADD operation. The key length is 8-bits, k 

is 186, equivalent to (10111010)2 in binary and the buffer capacity is 4. 

Moreover, the security of the Randomized Buffer-based method depends on its depth of 

confusion which is directly proportional to:  

1) The deployment of randomization technique in both the buffer capacity (being dynamic) and 

the processed points for PADD operation; and  

2) The size of the buffer, i.e., the smaller the buffer, the easier to guess the number of processed 

bit "1" during the sequence of PDBL operations, and it will be harder when the buffer is larger. A 

moderate buffer size should be log2 (m) to reach a confusion depth that secures ECSM against 

DPA attacks. 
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5.3.2 The ECCRSB-DPA Cryptoprocessor 

This subsection introduces the ECCRSB-DPA cryptoprocessor with a ECSM method, called 

Randomized Split Buffer-based Method, that is based on splitting the scalar into two equal length 

partitions and delay the PADD operation using randomized technique for points storing (in three 

different buffers) and point processing (See Algorithm  5.6). In addition, the scalar splitting 

technique is derived from the ECSM method based on propositional logic operations in [97]. In 

[97], their ECSM method is based on partitioning the bit string of the scalar in half and extracting 

the common substring from the two parts based on propositional logic operations (See 

Algorithm  4.3). 

5.3.2.1 Background Information on the ECCRSB-SPA Cryptoprocessor 

As inError! Reference source not found., the scalar multiplication is split into two partitions 

(K1 and K2,), where the common substring K1_AND_2 is only computed once, and used in the two 

partitions such that  

K1 = KXOR_1 + K1_AND_2   and K2 = KXOR_2 + K1_AND_2.  

Splitting the scalar K into two equal partitions K2 and K1 is explained by example as given in 

Figure  5.8, and elaborated in Section 5.2.2.1. 

5.3.2.2 Description of the ECCRSB-SPA Cryptoprocessor 

Similar to the technique used in the Split Buffer-based method for ECSM (as described in Section 

5.2.2.2), but the Randomized Split Buffer-based method additionally uses randomized technique 

for points storing (in three different buffers) and point processing (See Algorithm  5.6).  

The data flow of the Randomized Split Buffer-based Method is depicted in Figure  5.15. This 

method uses a four-step approach:  

1- The bit string of the scalar k is split into two equal length partitions  
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K2 = (݇ଶ୬Ȁଶǥ ݇ଶୣ  ǥ ݇ଶଵ ሻ2, and K1 = (݇ଵ୬Ȁଶǥ ݇ଵୣ   ǥ ݇ଵଵ ሻ2, then  

Algorithm  5.6 Randomized Split Buffer-based ECSM Method 

Inputs: P: Base Point, k: Secret key, k2 = (݇ଶ௠Ȁଶǥ ݇ଶ௘  ǥ ݇ଶଵ ሻ2, k1 = (݇ଵ௠Ȁଶǥ ݇ଵ௘  ǥ ݇ଵଵ ሻ2, r is 

capacity limit of buffer. 
Outputs: kP. 

1μ R[1] ĸ R[2] ĸ R[3] ĸ O, t1 ĸ t2 ĸ t3 ĸ 1 /* set buffers' indexes t1 ĸ t2 ĸ t3 to 1 */ 

2: for e = 1 to m/2 do 

2.1μ n ĸ 2݇ଶ௘  + ݇ଵ௘  
2.2: if n > 0, then 

2.2.1: Bn [tn] ĸ P /* scan k, store points on corresponding buffer only for bit value of 1 */ 

2.2.2μ r ĸ RNG (<Capacity of Bn); Generate a random number less than the capacity of buffer Bn 

2.2.3: if tn ĸ r Then 

2.2.3.1: jn ĸ RNG (<  in); random number generator for a number less than in 

2.2.3.2: for s = 1 to tn do 

2.2.3.2.1: R[n] ĸ R[n] + Bn [s] 

2.2.3.3: tn ĸ jn /* reset buffer index to jn */ 

2.2.3.4: else tn ĸ tn + 1 

2.3μ P ĸ 2P 

2.4μ if e ĸ m/2, Then 

2.4.1: for n= 1 to 3 do 

2.4.1.1: if tn >1 Then 

2.4.1.1.1: for s = 1 to tn – 1 do 

2.4.1.1.1.1: R[n] ĸ R[n] + Bn [s] 

3μ R[1] ĸ R[1] + R[3] 

4μ R[2] ĸ R[2] + R[3] 

5: for e = 1 to m/2 do 

5.1μ R[2] ĸ 2R[2] 

6μ R[1] ĸ R[2] + R[1] 

Return R[1]. 



 
  

 
 
 

 
 
 

115 
 

 

2- The partitions are scanned from right to left, and then a PDBL operation is performed for each 

bit pairs (݇ଶୣ ǡ ݇ଵୣ  ሻ for partitions K2 and K1, and 

3- The updated value of P (result of PDBL operation) is stored to its relevant buffer that is related 

to the bit pair value: B1 for (݇ଶୣ  ൌ 0, and ݇ଵୣ   = 1), or B2 for (݇ଶୣ  ൌ 1, and ݇ଵୣ  = 0), or B3 for 

(݇ଶୣ  ൌ 1, and ݇ଵୣ   = 1). 

4- The PADD operation is delayed until any of the buffers becomes dynamically full (by 

generating a random value for the buffer capacity), and then it is performed on a random number 

of stored points in that buffer (full). The result point of PADD operation on B1, B2, and B3 

represents the values of KXOR_1, KXOR_2, and K1_AND_2 respectively. 

Step 3 and 4 will be repeated until the scan is completed, and then the PADD operation is 

performed on the remaining points of the buffers. The scalar multiplication will be the 

accumulated points of the PADD operation results as per Equation 5.10. 

 According to Algorithm  5.6, three buffers B1, B2, B3 are defined with index i1, i2, i3 respectively. 

Additionally, for the bit different values of ( ଶୣ ǡ  ଵୣ ሻ for partitions ( ଶǡ  ଵሻ can be defined by n = 

2 ଶୣ  +  ଵୣ , where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2  are associated to n = 1, 2, and 3 

respectively.  In Step 2 of Algorithm  5.6 the bit pairs of each partition are scanned from  right to 

left at the same bit position e, then in every iteration, 1- the new value of P is stored in B1 (if ݇ଶୣ  ൌ 0, and ݇ଵୣ   = 1), or B2 (if ݇ଶୣ  ൌ 1, and ݇ଵୣ   = 0), or B3 (if ݇ଶୣ  ൌ 1, and ݇ଵୣ   = 1), 2- the value of 

P is doubled; Once any of the buffer is dynamically full (by generating a random value for the 

buffer capacity), the PADD operation is performed on stored values of P in the relevant buffer, 

and the index of this buffer is reset. When the scanning of the bit pairs (݇ଶ୬Ȁଶ      ݇ଵ୬Ȁଶሻ is 

completed, the PADD operation is performed on the remaining points in the buffers. 
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5.3.2.3 Example for the ECCRSB-SPA Cryptoprocessor 

Figure  5.16 shows an example of the Randomized Split Buffer-based Method. In this example, 

the key length is 16-bit. The K = (1010 0101 1001 1011)2 = 42,395 and the initial buffer capacity 

is 4.  

As mentioned in the example of scalar splitting with equal partitions (Figure  5.8), n = 2 ଶୣ  +  ଵୣ , 
where n [0,3] ࣅ and KXOR_1, KXOR_2, and K1_AND_2  are associated to n = 1, 2, and 3 respectively. 

Points are stored in the corresponding buffers according to the value of n, i.e., in the buffers (B1, 

B2, B3) for n = 1, 2, 3 respectively.  

The randomized buffer capacity for all buffers is 2. Points are stored to buffer, and PADD 

operation is performed on points from buffer in three rounds (iterations) as follow: 

1) In the first round, the stored points in buffers are as follow: Two points (2P, 8P) in B1, two 

points (4P, 32P) in B2, and two points (P, 128P) in B3. In the second round, only one point 

(16P) is stored in B1. All buffers are full at 2 (i.e. the number of stored points in each buffer is 

equal to the capacity of the buffer after applying randomization = 2), and the total number of 

points in this example is 7. 

2) In the first round, PADD operation is performed on the points in each buffer (2P + 8P) for B1, 

(4P + 32P) for B2, and (P + 128P) for B3, since the randomly generated number j is 1 for all 

buffers.  

3) In the second round, one point (16P) only is processed by PADD operation for points in B1. 

4) The result of the scalar multiplication is the final value of PADD operation on the stored in 

the buffer as per the below sequence as per Equation 5.10: 

28 * ( B2 + B3) + (B1 + B3) = 28 * (36P + 129P) + ( 26P + 129P) 

                     = 256 * (165P) + (155P)   

                                                                     = 42,395P 
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5.3.2.4 Performance Analysis for the ECCRSB-SPA Cryptoprocessor 

The proposed Randomized Split Buffer-based method (Algorithm  5.6) for ECSM is derived from 

the binary method (See Algorithm  2.2), and thus PADD is performed in later stage and only if the 

bit value ki = 1, while PDBL is always performed regardless of the bit value ki. The Randomized 

Split Buffer-based method requires m PDBL, as proven in both Steps 2.3 and 4.1 of 

Algorithm  5.6, and on average ([m/2] – [m/8] = [3m/8]) PADD, as shown on Step 2.2.2.1.1 of the 

Algorithm  5.6, where PADD is performed for [m/2] iterations for only n > 0, i.e. PADD operation 

is not perform for the bit pairs ( ଶୣ ǡ  ଵୣ ሻ = (0 ,0), where its occurrence is with probability of [1/4], 

since as per Equation  5.11 the probability of (0, 0) = probability (0) * probability (0) = [1/2] * 

[1/2] = [1/4]. Additional number of PADD operations are performed at the end of algorithm, and 

these are negligible in comparison to m. 

Therefore, the Randomized Split Buffer-based method outperforms both the binary method (See 

Algorithm  2.2) by reducing the PADD by m/8 and it only requires m PDBL and on average 

[3m/8] PADD. This performance improves to m PDBL and an average of [m/4] PADD when 

NAF encoding is used. In addition, the Split Buffer-based method requires no extra dummy 

computation. 

5.3.2.5 Security Analysis for the ECCRSB-SPA Cryptoprocessor 

In the proposed Randomized Split Buffer-based method (Algorithm  5.6) for ECSM, the security 

against DPA attacks is achieved in two levels of confusion: 

1) The first level is realized by inspecting bit pairs instead of a single bit of the scalar, and thus 

increase possible values to 4 (00, 01, 10, 11) instead of 2 (0, 1); and  

2) The second level is achieved by delaying the PADD operation using randomization concept 

at both the buffers capacities levels and the number of points for PADD operation.  
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For instance, the power trace for the example in Section 5.2.2.3 can be simulated below 

(Figure  5.17). 

(K)2  
1 0 1 0   0 1   0 1    

1 0 0 1   1 0   1 1    

K  
(in reverse order) 

1 0 1 0   0 1   0 1    

1 1 0 1   1 0   0 1    

 D*** D* D** D* A* A* D* D** A** A** D D*** A*** A*** A* 

Figure  5.17: Example for Power Trace for the Randomized Split Buffer-based method 

where: D stands for PDBL operation, and D* , D** , D*** stands for PDBL operation after a point 

store in buffers (B1, B2, B3) respectively; A stands for PADD operation and A* , A** , A*** stands 

for PADD operation on the points stored  in buffers (B1, B2, B3) respectively. The key length is      

16-bit, k is 42,395, equivalent to (1010 0101 1001 1011)2 in binary, and the buffer capacity is 3. 

Furthermore, the depth of confusion is directly proportional to:  

1) The deployment of randomization technique in both the buffer capacity (being dynamic) and 

the processed points for PADD operation; and  

2) The size of the buffer, i.e., the smaller the buffer, the easier to guess the number of processed 

bit pairs (01, 10, 11), and it will be harder when the buffer is larger.  

A moderate buffer size should be log2 (m) to reach a confusion depth that secures ECSM against 

DPA attacks. 

5.4 Summary 

In this chapter by using the randomization concept together with the buffering and scalar splitting 

techniques, we propose four elliptic curve cryptoprocessor architectures for curves defined over 

GF(2m). The first two of these architectures are designed to provide security against SPA attacks, 

while the other two are designed to provide security against DPA attacks. The two proposed SPA 
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attack resistant cryptoprocessors are designed using ECSM methods that are based on buffering 

(ECCB-SPA) and scalar splitting techniques (ECCSB-SPA). Additional the other two proposed DPA 

attack resistant cryptoprocessors are designed using ECSM methods that apply randomization 

concept on the buffering (ECCRB-DPA) and the scalar splitting techniques (ECCRSB-DPA) at different 

levels (buffer capacity and processed points for PADD operation).    

Our performance analysis shows that all four proposed cryptoprocessors need no additional 

computation load (and no extra dummy operation as well) compared to the double-and-add 

always ECSM and two of these cryptoprocessors outperform this binary method. The 

performance of the cryptoprocessors is as follow: 

 The ECCB-SPA and ECCRB-DPA require m*PDBL + (m/2)*PADD  

 The ECCSB-SPA and ECCRSB-DPA requires m*PDBL + (3m/8) *PADD  

In term of security measurements, it is proven by examples relation between the security level 

and the buffer size. In addition, the countermeasures in ECCSB-SPA and ECCRSB-DPA 

cryptoprocessors inspect bit pairs instead of a single bit of the scalar, which introduce a new level 

of confusion. Finally the deployment of randomization technique in both the buffer capacity 

(being dynamic) and the processed points for PADD operation introduce a total confusion on the 

relation between the processed bits of the scalar and the performed point operation, which give 

advantage for the ECCSB-SPA and ECCRSB-DPA cryptoprocessors over the other proposed ones.  
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CHAPTER 6  

Results and Discussions 

To conduct an appropriate evaluation of our four proposed architectures for secure elliptic curve 

cryptoprocessors (ECCB-SPA, ECCSB-SPA, ECCRB-DPA, and ECCRSB-DPA), these architectures are 

compared to other two similar architectures; the first one is the regular secure elliptic curve 

reference cryptoprocessor (ECCRG) which is based on 'Double-and-Add-Always' algorithm (See 

Algorithm  4.1), whereas the second one is a cryptoprocessor (ECCPLO) based on the 

'Propositional Logic Operations (PLO)' based algorithm for ECSM which was proposed in [97]. 

Additionally, we derive two extra architectures from our proposed architectures that are secure 

against the DPA attacks, where ECCRB-DPA1 and ECCRSB-DPA1 are designed with one level of 

randomization (randomizing the buffer capacity), at the same way ECCRB-DPA2 and ECCRSB-DPA2 

with two levels of randomization (randomizing the buffer capacity, and the number of processed 

points for PADD operation). Therefore the evaluation covers a total of eight cryptoprocessors 

(ECCRG, ECCB-SPA, ECCRB-DPA1, ECCRB-DPA2, ECCPLO, ECCSB-SPA, ECCRSB-DPA1, ECCRSB-DPA2). 

These eight architectures were modeled using VHDL and synthesized on Altera FPGA. The 

developed VHDL models are parameterized to allow synthesizing the cryptoprocessors with 

different architectural features; additionally, these models allow for flexible definition of the 

following parameters: 

1. The elliptic curve parameters a and b. 

2. The underlying field GF(2m). 

3. The base point P. 
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4. The secret key k. 

5. The capacity of the buffer for the ECCB-SPA cryptoprocessor. 

6. The capacity of each of the buffers for the ECCRB-DPA cryptoprocessor. 

This chapter presents the results of synthesizing the various eight cryptoprocessors and compares 

these cryptoprocessors in terms of power, time delay and area. Altera Cyclone III 

EP3C80F780C7 FPGA has been used for prototyping. It is essential that identical FPGA chip is 

used with these cryptoprocessors in order to ensure that power, delay and area comparisons are 

done for the same technology and FPGA architecture and resources.  

6.1 Comparison Methodology 

The eight cryptoprocessors are designed to use the same field operation algorithms, e.g., 

multiplication and inversion. Thus, the performance difference between these cryptoprocessors is 

mainly a function of their control strategy and architectural differences independent of field 

operations. For example, field multiplication requires m clock cycles because of the Massey-

Omura multiplier (Section 5.1).  

Point Doubling (PDBL) requires 5 field multiplications, 4 field additions and 6 squarings. Each 

field addition and squaring requires only one clock cycle as a result of using ONB. The total 

number of clock cycles required for performing PDBL is 5m + 10 clock cycles. Point Addition 

(PADD), on the other hand, requires 14 field multiplications, 8 field additions and 6 squarings 

which requires 14m + 14 clock cycles.  

The average time cost for point doubles, points addition and scalar multiplication required for the 

different algorithms for the eight cryptoprocessors are listed in Table  6.1. The results in Table  6.1 

confirm the cryptoprocessors' performance analysis presented in Chapter 5, and that shows a 
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noticeable saving in the number of point operations (PADD) and timing for the proposed 

cryptoprocessors.  

Table  6.1: Time Cost Comparison for the Eight ECC Cryptoprocessors  

Cryptoprocessor 
Time in Clock Cycles 

Number of PDBLs Number of PADDs Scalar Multiplication 
ECCRG m (5m + 10) m (14m + 14) 19m2 + 24m 

ECCPLO m (5m + 10) [m/2] (14m + 14) 12m2 + 17m 

ECCB-SPA m (5m + 10) [m/2] (14m + 14) 12m2 + 17m 

ECCRB-DPA1 m (5m + 10) [m/2] (14m + 14) 12m2 + 17m 

ECCRB-DPA2 m (5m + 10) [m/2] (14m + 14) 12m2 + 17m 

ECCSB-SPA m (5m + 10) [3m/8] (14m + 14) 10m2 + [1/4] m2 + 15m + [1/4 ] m 

ECCRSB-DPA1 m (5m + 10) [3m/8] (14m + 14) 10m2 + [1/4] m2 + 15m + [1/4 ] m 

ECCRSB-DPA2 m (5m + 10) [3m/8] (14m + 14) 10m2 + [1/4] m2 + 15m + [1/4 ] m 

 

6.2 Synthesis Results and Comparison 

The eight ECC cryptoprocessors has been synthesized over GF(2173), GF(2191), and GF(2230) for 

different m sizes as recommended by NIST (m ࣅ {1 ,173λ1, 230}) on an Altera Cyclone III 

EP3C80F780C7 FPGA which contains 81,264 Slices. Table  6.2 lists the synthesis results for 

these ECC cryptoprocessors in terms of: 1) Delay measured in ms, 2) Area measured in number 

of slices, and 3) Power consumed measured in mW. In addition, comparison results for the Delay, 

Area, and Power of these cryptoprocessors are described in Figure  6.1, Figure  6.2, and Figure  6.3 

respectively. 

The delay comparison result (in Figure  6.1) shows that for security level of m = 173, the best time 

delays of 8.831 ms, 9.089 ms, and 9.536 ms are achieved by the Buffer-based cryptoprocessors 

(with no scalar splitting): ECCB-SPA, ECCRB-DPA1, and ECCRB-DPA2 respectively; while for higher 

security level of m = 230, the best time delays of 23.862 ms, 24.483 ms, 24.649 ms are achieved 
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by the Split-Buffer-based cryptoprocessors: ECCSB-SPA, ECCRSB-DPA1, and ECCRSB-DPA1 

respectively.  

Table  6.2: The Eight ECC Cryptoprocessor Synthesis Results.  

Cryptoprocessor m Clock(MHz) Delay(ms) Area (Slices) Area Usage Power (mW) 

ECCRG 173 34.11 16.793 22,292 27% 169.70 
ECCPLO

  173 35.80 10.114 25,977 32% 178.64 
ECCB-SPA 173 41.00 8.831 25,954 32% 173.97 
ECCRB- DPA1 173 39.84 9.089 26,137 32% 173.99 
ECCRB- DPA2 173 37.97 9.536 26,155 32% 174.00 
ECCSB-SPA 173 29.33 10.549 45,543 56% 192.92 
ECCRSB-DPA1 173 25.47 12.148 45,650 56% 193.18 
ECCRSB-DPA2 173 24.43 12.665 45,502 56% 191.60 
 
ECCRG 191 33.29 20.959 24,576 30% 177.78 
ECCPLO

  191 25.63 17.207 28,703 35% 187.53 
ECCB-SPA 191 40.36 10.927 28,625 35% 181.01 
ECCRB- DPA1 191 33.47 13.177 29,325 37% 182.97 
ECCRB- DPA2 191 29.34 15.031 29,746 37% 183.14 
ECCSB-SPA 191 26.39 14.280 50,736 62% 197.59 
ECCRSB-DPA1 191 24.47 15.400 51,067 63% 198.29 
ECCRSB-DPA2 191 25.21 14.948 51,138 63% 198.56 
 
ECCRG 230 22.56 44.797 29,539 36% 193.09 
ECCPLO

  230 22.76 28.063 34,483 42% 199.57 
ECCB-SPA 230 23.05 27.710 35,060 43% 196.77 
ECCRB- DPA1 230 22.90 27.891 35,949 44% 197.24 
ECCRB- DPA2 230 22.78 28.038 36,190 45% 197.54 
ECCSB-SPA 230 22.87 23.862 60,819 75% 213.05 
ECCRSB-DPA1 230 22.29 24.483 61,007 75% 213.46 
ECCRSB-DPA2 230 22.14 24.649 61,074 75% 213.84 

 
On the other side, the area comparison result (in Figure  6.2) shows a consistency on the variation 

of utilized area of the eight cryptoprocessors for all values of m. Likewise, it is as expected that 

by using buffers and extra registers for the scalar splitting, more area are required in comparison 

with the other cryptoprocessors. For instance, the area utilization for the ECCRG cryptoprocessor 

is only 29,539 slices, whereby it is almost twice (60,819, 61,007, and 61,074 slices) for the



 
Figure  6.1: Delay Comparison for the Eight Cryptoprocessors for All Values of m (173,191,230) 
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Figure  6.2: Area Comparison for the Eight Cryptoprocessors for All Values of m (173,191,230) 
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Figure  6.3: Power Comparison for the Eight Cryptoprocessors for All Values of m (173,191,230) 
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ECCSB-SPA, ECCRSB-DPA1, and ECCRSB-DPA2 cryptoprocessors respectively.  

As for the power comparison result (in Figure  6.3), it shows a harmony with the area 

consumption for all cryptoprocessors (in Figure  6.2). Nevertheless, although the increase in 

power consumption is directly proportional to the area utilized by the architectures; there is an 

exception for the ECCPLO cryptoprocessor, because of its extra time delay which results in more 

power consumption. In general, the increase in power consumption is quite reasonable, since it is 

only in the range of 10%.  

6.3 Delay, Area, and Power Cost Complexity Analysis 

Architecture designers for cryptographic solutions may not have the same importance to cost 

factors (delay, area, and power), as this will always depend on the application requirements and 

constrains. For instance, in the resource constrained devices like sensor mote, or RFID, power 

consumption and area utilization are of more importance than delay (speed); whereas other 

applications might give more important to delay, but area or power may not be a concern for 

such. Thus, it is important to present the cost complexity in term of delay, area, and power for the 

eight cryptoprocessors.  

The area, delay, and power will be multiplied partially or all together to generate different cost 

figures, which can be used by architecture designers for evaluation purpose. Any of the possible 

cost complexity (AT, AT2, A2T, ATP, ATP2, AT2P, A2TP, AT2P2, A2TP2, A2T2P) can represent 

importance weighting for the cost factors instance. For instance, the cost ATP (A*T*P = 

multiplying A, T, and P), represent an equal importance to the application for all cost factors 

(time, area and power). Moreover, the general formula for cost complexity is given in 

Equation  6.1 as below:  

               ൌ   ୶ ୷ ୸ (Equation  6.1) 
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where x, y, z {2 ,1 ,0} ࣅ, and the value 0 means no importance for the cost factor, and 2 means 

high importance for the cost factor.   

As example, for applications with no importance to (not concerned about) area, but given 

importance to delay, but more importance to power, the cost complexity (See Equation  6.1) can 

be calculated as 

               ൌ   ଴ ଵ ଶ ൌ   ଶ  

Cost complexity of different variation of  ୶ ୷ ୸ (as given in Equation  6.1) for all eight 

architectures are described in Table  6.3. In addition, for selective variation of  ୶ ୷ ୸ (ATP, 

AT2P, ATP2, and A2TP2), the cost complexity for all eight architectures are plotted in (Figure  6.4, 

Figure  6.5, Figure  6.6, and Figure  6.7) respectively for all values of m (173, 191, and 230), where 

some cost complexity values are rescaled to fit in these figures.  

For the ATP, ATP2, and A2TP2 cost complexities comparison (in Figure  6.4, Figure  6.6, and 

Figure  6.7), the lowest cost results are given by the two cryptoprocessors: ECCRB-DPA1, and 

ECCRB-DPA2, while the highest cost results are given by the two cryptoprocessors: ECCRSB-DPA1, 

and ECCRSB-DPA2, which are proven to provide highest security level in compared to the other 

cryptoprocessors (Section 6.4). 

For the AT2P cost complexity comparison (in Figure  6.5), the lowest cost results are also given by 

the two cryptoprocessors: ECCRB-DPA1, and ECCRB-DPA2, while the highest cost results are given by 

the two cryptoprocessors: ECCRSB-DPA1, and ECCRSB-DPA2, expect for m = 230 where the highest 

cost result is given by the ECCRG cryptoprocessor. 



 
 

Table  6.3: Cost Complexity (A, D, P) measurements for all values of m  

Cryptoprocessor m AT 
(106) 

AT2 
(107) 

A2T 
(108) 

ATP 
(108) 

ATP2 
(1010) 

AT2P 
(109) 

A2TP 
(1010) 

AT2P2 
(1012) 

A2TP2 
(1012) 

A2T2P 
(1011) 

ECCRG 173 0.374 0.629 0.083 0.635 1.078 1.067 0.142 0.181 0.240 0.238 
ECCPLO 173 0.248 0.236 0.064 0.443 0.791 0.422 0.115 0.075 0.205 0.110 
ECCB-SPA 173 0.263 0.266 0.068 0.457 0.794 0.462 0.119 0.080 0.206 0.120 
ECCRB-DPA1 173 0.231 0.204 0.060 0.402 0.699 0.355 0.105 0.062 0.183 0.093 
ECCRB-DPA2 173 0.238 0.216 0.062 0.414 0.720 0.376 0.108 0.065 0.188 0.098 
ECCSB-SPA 173 0.480 0.507 0.219 0.927 1.788 0.978 0.422 0.189 0.814 0.445 
ECCRSB-DPA1 173 0.555 0.674 0.253 1.071 2.070 1.301 0.489 0.251 0.945 0.594 
ECCRSB-DPA2 173 0.576 0.730 0.262 1.104 2.116 1.398 0.502 0.268 0.963 0.636 
      
ECCRG 191 0.515 1.080 0.127 0.916 1.628 1.919 0.225 0.341 0.400 0.472 
ECCPLO 191 0.431 0.649 0.124 0.809 1.517 1.216 0.232 0.228 0.436 0.349 
ECCB-SPA 191 0.493 0.848 0.141 0.892 1.614 1.534 0.255 0.278 0.462 0.439 
ECCRB-DPA1 191 0.320 0.350 0.094 0.586 1.073 0.641 0.172 0.117 0.315 0.188 
ECCRB-DPA2 191 0.392 0.516 0.117 0.718 1.315 0.946 0.214 0.173 0.391 0.281 
ECCSB-SPA 191 0.724 1.035 0.368 1.432 2.829 2.044 0.726 0.404 1.435 1.037 
ECCRSB-DPA1 191 0.786 1.211 0.402 1.559 3.092 2.402 0.796 0.476 1.579 1.226 
ECCRSB-DPA2 191 0.764 1.143 0.391 1.518 3.014 2.269 0.776 0.451 1.541 1.160 
      
ECCRG 230 1.323 5.928 0.391 2.555 4.934 11.446 0.755 2.210 1.457 3.381 
ECCPLO 230 0.967 2.711 0.333 1.930 3.851 5.410 0.665 1.080 1.328 1.866 
ECCB-SPA 230 0.984 2.761 0.345 1.936 3.809 5.433 0.679 1.069 1.336 1.905 
ECCRB-DPA1 230 0.996 2.760 0.358 1.965 3.875 5.444 0.706 1.074 1.393 1.957 
ECCRB-DPA2 230 1.009 2.815 0.365 1.994 3.939 5.561 0.722 1.099 1.425 2.013 
ECCSB-SPA 230 1.451 3.463 0.883 3.092 6.587 7.378 1.881 1.572 4.006 4.487 
ECCRSB-DPA1 230 1.494 3.657 0.911 3.188 6.806 7.806 1.945 1.666 4.152 4.762 
ECCRSB-DPA2 230 1.505 3.711 0.919 3.219 6.884 7.935 1.966 1.697 4.204 4.846 
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(a) 

 

 
(b) 

 
(c) 

Figure  6.4: Cost Complexity (ATP) Comparison for m = 173, 191, and 230 
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(c) 

Figure  6.5: Cost Complexity (AT2P) Comparison for m = 173, 191, and 230 
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(c) 

Figure  6.6: Cost Complexity (ATP2) Comparison for m = 173, 191, and 230 
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Figure  6.7: Cost Complexity (A2TP2) Comparison for m = 173, 191, and 230 
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6.4 Summary 

In this chapter, we present the results of synthesizing the various cryptoprocessors and compare 

these eight cryptoprocessors in terms of power, time delay and area. Altera Cyclone III 

EP3C80F780C7 FPGA has been used for prototyping. 

A delay, area, and power comparison study is conducted for the different cryptoprocessors, with 

different values of m. The comparison is done in details taking into consideration the 

randomization levels for DPA aware cryptoprocessors. In addition, a more advanced comparison 

is done on the cost complexity level, which provides a framework for the architecture designers to 

select the appropriate design.  

Results showed that our proposed architectures give best cost complexity in comparison to the 

other latest proposed in the research field.  

The presented work shows very interesting results (security level, and cost complexity) as 

compared to other similar work recently proposed in the research field. 
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CHAPTER 7  

Conclusions and Future Research 
In the recent few years, intense research has been focused on the efficient implementation of Elliptic 

Curve Cryptosystems (ECC) [3] [4] in extreme constrained resources such as the Wireless Sensor 

Networks (WSN) [1]. Likewise, the current ECC implementations in WSN [7] are vulnerable to Side 

Channel Analysis (SCA) attacks [8], in particularly to Power Analysis Attacks (PAA) [9], due to the 

lack of secure physical shielding, their deployment in remote regions and it is left unattended. This 

thesis has focused on devising algorithms and architectures for elliptic curve cryptoprocessors that are 

not only efficient, but also PAA resistant with no any extra cost in terms of power, time delay, and 

area. We proposed two cryptoprocessors (ECCB-SPA, ECCSB-SPA), and another two cryptoprocessors 

(ECCRB-DPA, ECCRSB-DPA) that are secure against SPA attacks and DPA attacks respectively.  

A more detailed description of the contributions of this thesis follows in Section 7.1. Possible future 

research directions are described in Section 7.2. 

1.1 Summary of Contributions 

Firstly, we proposed two robust and high efficient PAA aware elliptic curve cryptoprocessors' GF(2m) 

architectures (ECCB-SPA, ECCSB-SPA) for WSN. These architectures are based on innovative algorithms 

for ECC core operation and are secure against SPA attacks.  

Secondly, we proposed two additional cryptoprocessors' GF(2m) architectures (ECCRB-DPA, ECCRSB-DPA) 

that are secured against DPA attacks. 

The security advantages provided in these four cryptoprocessors covers both the SPA and DPA attacks 

by applying: (i) PADD operation delaying using buffer storage, (ii) Scalar splitting for cost saving and 

additional complexity, and (iii) Complicated randomization technique for extra confusion to secure 
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against DPA attacks. 

Thirdly, a total of eight architectures which includes, in addition to the two SPA aware with the other 

two DPA aware proposed architectures, two more architectures derived from our DPA aware proposed 

once, along with two other similar PAA aware architectures. The eight proposed architectures are 

synthesized for GF(2173), GF(2191), and GF(2230) on an Altera Cyclone III EP3C80F780C7 FPGA. 

The time delay performance results of these four cryptoprocessors in number of Point Doubling 

(PDBL) and Point Addition (PADD) are as follow: 

 The ECCB-SPA and ECCRB-DPA require m*PDBL + (m/2)*PADD  

 The ECCSB-SPA and ECCRSB-DPA requires m*PDBL + (3m/8) *PADD  

In term of security level, it is directly related to the buffer size. In addition, the countermeasures in 

ECCSB-SPA and ECCRSB-DPA cryptoprocessors inspect bit pairs instead of a single bit of the scalar, which 

introduce a new level of confusion. Finally the deployment of randomization technique in both the 

buffer capacity (being dynamic) and the processed points for PADD operation introduce a total 

confusion on the relation between the processed bits of the scalar and the performed point operation, 

which give advantage for the ECCSB-SPA and ECCRSB-DPA cryptoprocessors over the other proposed 

ones.   

These results in the time delay and security level have a practical impact in the area and power 

consumption of these cryptoprocessors. For instance, these results may directly increase the area space 

as the buffer size increase, which leads to more processing effort, and thus more power consumption. 

Most remarkably, as different application might give different importance to critical factors such as 

power, area, and time delay, a careful selection of cryptoprocessor with the best cost complexity 

results can lead to the realization of record-breaking implementations of ECC in resource constrained 

devices for the targeted application.  

Fourthly, the eight proposed architectures are analyzed and evaluated by comparing their performance 

results. In addition, a more advanced comparison, which is done on the cost complexity level (Area, 
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Delay, and Power), provides a framework for the architecture designers to select the appropriate 

design. Our results show a significant advantage of our proposed architectures for cost complexity in 

comparison to the other latest proposed in the research field.  

For the ATP, ATP2, and A2TP2 cost complexities comparison (in Figure  6.4, Figure  6.6, and 

Figure  6.7) for all eight cryptoprocessors have been done and evaluated. The results show that the 

lowest cost results are given by the two cryptoprocessors: ECCRB-DPA1, and ECCRB-DPA2, while the 

highest cost results are given by the two cryptoprocessors: ECCRSB-DPA1, and ECCRSB-DPA2, which are 

proven to provide highest security level in compared to the other cryptoprocessors (Section 6.4). 

For the AT2P cost complexity comparison (in Figure  6.5), the lowest cost results are also given by the 

two cryptoprocessors: ECCRB-DPA1, and ECCRB-DPA2, while the highest cost results are given by the two 

cryptoprocessors: ECCRSB-DPA1, and ECCRSB-DPA2, expect for m = 230 where the highest cost result is 

given by the ECCRG cryptoprocessor. 

1.2 Future Work 

Future potential research may further investigate the following: 

1. Exploring the hardware/software co-design of PAA aware ECC architecture for WSN. 

2. Developing a mechanism for accurately evaluating the security level of PAA aware 

cryptoprocessors, and  

3. Rebuilding our framework for the architecture designers to include security level (S-Level) as a 

fourth dimension in addition to (Area, Delay, and Power). 

4. Evaluating the four architectures on other ASIC platforms (e.g. chip-based payment card for 

banking financial transactions). 
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