P. S. Aguilar, A. M. Hernandezarriaga, L. E. Cybulski, A. C. Erazo, and D. , Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis, The EMBO Journal, vol.20, issue.7, pp.201681-1691, 2001.
DOI : 10.1093/emboj/20.7.1681

U. Albers, K. Reus, H. A. Shuman, and H. , Theamoebaeplatetestimplicatesaparalogue of lpxb in the interaction of Legionella pneumophila with Acanthamoeba castellanii, Microbiology, issue.Pt1, pp.151167-182, 2005.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped blast and psiblast: a new generation of protein database search programs, Nucleic Acids Res, issue.17, pp.253389-3402, 1997.

D. Amikam and M. Y. , PilZ domain is part of the bacterial c-di-GMP binding protein, Bioinformatics, vol.22, issue.1, pp.3-6, 2006.
DOI : 10.1093/bioinformatics/bti739

L. Aravind and C. P. Ponting, The GAF domain: an evolutionary link between diverse phototransducing proteins, Trends in Biochemical Sciences, vol.22, issue.12, pp.22458-459, 1997.
DOI : 10.1016/S0968-0004(97)01148-1

L. Aravind and C. P. , The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins, Thecytoplasmichelicallinkerdomainofreceptorhistidinekinase andmethylacceptingproteinsiscommontomanyprokaryoticsignallingproteins, pp.111-116, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13650.x

J. P. Armitage and R. M. , Time for Bacteria to Slow down, Cell, vol.141, issue.1, pp.24-26, 2010.
DOI : 10.1016/j.cell.2010.03.023

C. Arnold and I. J. Hodgson, Vectorette PCR: a novel approach to genomic walking., Genome Research, vol.1, issue.1, pp.39-42, 1991.
DOI : 10.1101/gr.1.1.39

J. Barker, M. R. Brown, P. J. Collier, I. Farrell, and P. , RelationshipbetweenLegionella pneumophila and Acanthamoeba polyphaga : physiological status and susceptibility to chemical inactivation, ApplEnvironMicrobiol, issue.8, pp.582420-2425, 1992.

J. Barker, H. Scaife, and M. R. Brown, Intraphagocytic growth induces an antibioticresistant phenotypeofLegionellapneumophila, AntimicrobAgentsChemother, issue.12, pp.392684-2688, 1995.

S. Beyhan, L. S. Odell, and F. H. , Identification and Characterization of Cyclic Diguanylate Signaling Systems Controlling Rugosity in Vibrio cholerae, Journal of Bacteriology, vol.190, issue.22, pp.7392-7405, 2008.
DOI : 10.1128/JB.00564-08

A. Boehm, M. Kaiser, H. Li, C. Spangler, C. A. Kasper et al., Second messengermediated adjustment of bacterial swimming velocity, Cell, issue.1, pp.141107-116, 2010.

B. R. Boles and L. L. Mccarter, Vibrio parahaemolyticus scrABC, a novel operon affecting swarmingandcapsularpolysaccharideregulation, JBacteriol, issue.21, pp.1845946-5954, 2002.
DOI : 10.1128/jb.184.21.5946-5954.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135390

D. J. Brenner, A. G. Steigerwalt, and J. E. Mcdade, Classification of the legionnaires' disease bacterium:Legionellapneumophila,genusnovum,speciesnova,ofthefamilyLegionellaceae,familia nova, AnnInternMed, vol.90, issue.4, pp.656-658, 1979.

H. Brüggemann, A. Hagman, M. Jules, O. Sismeiro, M. A. Dillies et al., Virulence strategies for infecting phagocytes deduced fromtheinvivotranscriptionalprogramofLegionellapneumophila, CellMicrobiol, vol.8, issue.8, pp.1228-1240, 2006.

A. M. Buckley, M. A. Webber, S. Cooles, L. P. Randall, R. M. Ragione et al., The AcrABTolC efflux system of Salmonella enterica serovar Typhimurium playsaroleinpathogenesis, CellMicrobiol, vol.8, issue.5, pp.847-856, 2006.

C. Cazalet, C. Rusniok, H. Brüggemann, N. Zidane, A. Magnier et al., Evidence in the Legionella pneumophila genome for exploitationofhostcellfunctionsandhighgenomeplasticity, NatGenet, issue.11, pp.361165-1173, 2004.

C. Chan, R. Paul, D. Samoray, N. C. Amiot, B. Giese et al., Structural basis of activity and allosteric control of diguanylate cyclase, Proceedings of the National Academy of Sciences, vol.101, issue.49, pp.17084-17089, 2004.
DOI : 10.1073/pnas.0406134101

B. Chang, F. Kura, J. Amemuramaekawa, N. Koizumi, and H. Watanabe, Identification of a Novel Adhesion Molecule Involved in the Virulence of Legionella pneumophila, Infection and Immunity, vol.73, issue.7, pp.734272-4280, 2005.
DOI : 10.1128/IAI.73.7.4272-4280.2005

D. Chen, X. Congzheng, and Y. , Identification and characterization of novel ColE1-type, high-copy number plasmid mutants in Legionella pneumophila, Plasmid, vol.56, issue.3, pp.167-178, 2006.
DOI : 10.1016/j.plasmid.2006.05.008

W. Chen, R. Kuolee, and H. , Thepotentialof3',5'cyclicdiguanylicacid(cdiGMP)asan effectivevaccineadjuvant, Vaccine, issue.18, pp.283080-3085, 2010.

K. H. Chin, Y. C. Lee, Z. L. Tu, C. H. Chen, Y. H. Tseng et al., The cAMP Receptor-Like Protein CLP Is a Novel c-di-GMP Receptor Linking Cell???Cell Signaling to Virulence Gene Expression in Xanthomonas campestris, Journal of Molecular Biology, vol.396, issue.3, pp.646-662, 2010.
DOI : 10.1016/j.jmb.2009.11.076

W. K. Choy, L. Zhou, C. K. Syn, L. H. Zhang, and S. Swarup, MorA defines a new class of regulatorsaffectingflagellardevelopmentandbiofilmformationindiversePseudomonasspecies, J Bacteriol, issue.21, pp.1867221-7228, 2004.

M. Christen, B. Christen, M. G. Allan, M. Folcher, P. Jenö et al., DgrAisa member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motorfunctioninCaulobactercrescentus, pp.1044112-4117, 2007.

M. Christen, B. Christen, M. Folcher, A. Schauerte, and U. Jenal, Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP, Journal of Biological Chemistry, vol.280, issue.35, pp.30829-30837, 2005.
DOI : 10.1074/jbc.M504429200

M. Christen, H. D. Kulasekara, B. Christen, B. R. Kulasekara, L. R. Hoffman et al., Asymmetrical distribution of the second messenger cdiGMP upon bacterial cell division, Science, issue.5983, pp.3281295-1297, 2010.

L. Covarrubias, L. Cervantes, A. Covarrubias, X. Soberón, I. Vichido et al., Construction and characterization of new cloning vehicles V. Mobilization and coding properties of pBR322 and several deletion derivatives including pBR327 and pBR328, Gene, vol.13, issue.1, pp.25-35, 1981.
DOI : 10.1016/0378-1119(81)90040-8

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: A Sequence Logo Generator, Genome Research, vol.14, issue.6, pp.1188-1190, 2004.
DOI : 10.1101/gr.849004

N. De, M. V. Navarro, R. V. Raghavan, and H. Sondermann, Determinants for the Activation and Autoinhibition of the Diguanylate Cyclase Response Regulator WspR, Journal of Molecular Biology, vol.393, issue.3, pp.619-633, 2009.
DOI : 10.1016/j.jmb.2009.08.030

S. Debroy, V. Aragon, S. Kurtz, and N. P. , LegionellapneumophilaMIP,asurface exposedpeptidylprolinecistransisomerase,promotesthepresenceofPhospholipaseClikeactivity inculturesupernatants, InfectImmun, vol.74, issue.9, pp.5152-5160, 2006.

C. Dietrich, K. Heuner, B. C. Brand, J. Hacker, and M. Steinert, Flagellum of Legionella pneumophila Positively Affects the Early Phase of Infection of Eukaryotic Host Cells, Infection and Immunity, vol.69, issue.4, pp.2116-2122, 2001.
DOI : 10.1128/IAI.69.4.2116-2122.2001

K. Evans, L. Passador, R. Srikumar, E. Tsang, J. Nezezon et al., Influence of the MexABOprM multidrug effluxsystemonquorum sensinginPseudomonas aeruginosa, J Bacteriol, issue.20, pp.1805443-5447, 1998.

X. Fang and M. Gomelsky, A posttranslational, cdiGMPdependent mechanism regulating flagellarmotility, MolMicrobiol, vol.76, issue.5, pp.1295-1305, 2010.

M. Ferhat, D. Atlan, A. Vianney, J. C. Lazzaroni, P. Doublet et al., TheTolCprotein of Legionella pneumophila plays a major role in multidrug resistance and the early steps of host invasion, PLoSOne, issue.11, pp.4-7732, 2009.

R. B. Ferreira, L. C. Antunes, E. P. Greenberg, and L. L. Mccarter, Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growthonsurfaces, JBacteriol, issue.3, pp.190851-860, 2008.

B. S. Fields, R. F. Benson, and R. E. Besser, Legionella and Legionnaires' Disease: 25 Years of Investigation, Clinical Microbiology Reviews, vol.15, issue.3, pp.506-526, 2002.
DOI : 10.1128/CMR.15.3.506-526.2002

R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger et al., The pfam protein families database, Nucleic Acids Res, issue.Databaseissue, pp.38-211, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01294685

F. Fritsch, N. Mauder, T. Williams, J. Weiser, M. Oberle et al., The cell envelope stress response mediated by the LiaFSR threecomponent system of Listeria monocytogenes is controlledviathephosphataseactivityofthebifunctionalhistidinekinaselias, 2010.

M. Y. Galperin, Structural Classification of Bacterial Response Regulators: Diversity of Output Domains and Domain Combinations, Journal of Bacteriology, vol.188, issue.12, pp.4169-4182, 2006.
DOI : 10.1128/JB.01887-05

M. Y. Galperin, A. N. Nikolskaya, and E. V. Koonin, Novel domains of the prokaryotic two componentsignaltransductionsystems, FEMSMicrobiolLett, vol.203, issue.1, pp.11-21, 2001.

R. Gao and A. M. Stock, Molecular strategies for phosphorylationmediated regulation of responseregulatoractivity, CurrOpinMicrobiol, vol.13, issue.2, pp.160-167, 2010.

M. A. Gillesgonzalez, G. Gonzalez, E. H. Sousa, and J. Tuckerman, Oxygensensing histidineprotein kinases: assays of ligand binding and turnover of responseregulator substrates, MethodsEnzymol, vol.437, pp.173-189, 2008.

M. Gomelsky, Cyclic-di-GMP-Binding CRP-Like Protein: a Spectacular New Role for a Veteran Signal Transduction Actor, Journal of Bacteriology, vol.191, issue.22, pp.6785-6787, 2009.
DOI : 10.1128/JB.01173-09

M. Gomelsky, camp,cdiGMP,cdiAMPandnowcGMP:bacteriausethemall!MolMicrobiol, pp.562-565, 2011.

Y. Gotoh, Y. Eguchi, T. Watanabe, S. Okamoto, A. Doi et al., Twocomponentsignal transductionaspotentialdrugtargetsinpathogenicbacteria, CurrOpinMicrobiol, vol.13, issue.2, pp.232-239, 2010.

A. D. Gutu, K. J. Wayne, L. T. Sham, and M. E. Winkler, Kinetic characterization of the WalRK Spn (VicRK) twocomponent system of Streptococcus pneumoniae: dependence of WalK Spn (VicK)phosphataseactivityonitsPASdomain, JBacteriol, issue.9, pp.1922346-2358, 2010.

C. R. Guzzo, R. K. Salinas, M. O. Andrade, F. , and C. S. , PILZ Protein Structure and Interactions with PILB and the FIMX EAL Domain: Implications for Control of Type IV Pilus Biogenesis, Journal of Molecular Biology, vol.393, issue.4, pp.848-866, 2009.
DOI : 10.1016/j.jmb.2009.07.065

Y. W. He, C. Boon, L. Zhou, and L. H. Zhang, Coregulation of Xanthomonas campestris virulence by quorum sensing and a novel twocomponent regulatory system RavS/RavR, Mol Microbiol, issue.6, pp.711464-1476, 2009.

G. B. Hecht and A. Newton, Identification of a novel response regulator required for the swarmertostalkedcelltransitioninCaulobactercrescentus, JBacteriol, issue.21, pp.1776223-6229, 1995.

E. Hervet, X. Charpentier, A. Vianney, J. C. Lazzaroni, C. Gilbert et al., The protein kinase LegK2 is a T4SS effector involved in endoplasmic reticulum recruitment and intracellularreplicationofLegionellapneumophila, 2011.

J. W. Hickman and C. S. , IdentificationoffleqfromPseudomonasaeruginosaasac diGMPresponsivetranscriptionfactor, MolMicrobiol, vol.69, issue.2, pp.376-389, 2008.

T. Hindré, H. Brüggemann, C. Buchrieser, and Y. Héchard, Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation, Microbiology, vol.154, issue.1, pp.15430-15471, 2008.
DOI : 10.1099/mic.0.2007/008698-0

L. M. Holland, S. T. O-'donnell, D. A. Ryjenkov, L. Gomelsky, S. R. Slater et al., A staphylococcal GGDEF domain protein regulates biofilm formation independentlyofcyclicdimericGMP, JBacteriol, issue.15, pp.1905178-5189, 2008.

M. A. Horwitz, Phagocytosis of the legionnaires' disease bacterium (legionella pneumophila) occurs by a novel mechanism: Engulfment within a Pseudopod coil, Cell, vol.36, issue.1, pp.27-33, 1984.
DOI : 10.1016/0092-8674(84)90070-9

B. Huang, C. B. Whitchurch, and J. S. Mattick, Fimx, a multidomain protein connecting environmentalsignalsto twitchingmotilityinPseudomonasaeruginosa, JBacteriol, issue.24, pp.1857068-7076, 2003.

E. Huitema, S. Pritchard, D. Matteson, S. K. Radhakrishnan, and P. H. , Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site, Cell, vol.124, issue.5, pp.1025-1037, 2006.
DOI : 10.1016/j.cell.2006.01.019

T. N. Huynh, C. E. Noriega, and V. Stewart, Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX, Proceedings of the National Academy of Sciences, vol.107, issue.49, pp.21140-21145, 2010.
DOI : 10.1073/pnas.1013081107

S. Jagadeesan, P. Mann, C. W. Schink, and P. I. Higgs, A novel "fourcomponent" two component signal transduction mechanism regulates developmental progression in Myxococcus xanthus, JBiolChem, issue.32, pp.28421435-21445, 2009.

U. Jenal and J. Malone, Mechanisms of Cyclic-di-GMP Signaling in Bacteria, Annual Review of Genetics, vol.40, issue.1, pp.385-407, 2006.
DOI : 10.1146/annurev.genet.40.110405.090423

I. Jende, K. I. Varughese, and K. M. Devine, Amino acid identity at one position within the alpha1helixofboththehistidinekinaseandtheresponseregulatoroftheWalRKandPhoPRtwo component systems plays a crucial role in the specificity of phosphotransfer, Microbiology, pp.1561848-1859, 2010.

D. Jonas, I. Engels, D. Hartung, J. Beyersmann, U. Frank et al., Development and mechanism of fluoroquinolone resistance in Legionella pneumophila, Journal of Antimicrobial Chemotherapy, vol.51, issue.2, pp.51275-280, 2003.
DOI : 10.1093/jac/dkg054

D. K. Karaolis, K. Cheng, M. Lipsky, A. Elnabawi, J. Catalano et al., 3',5'cyclic diguanylic acid (cdiGMP) inhibits basal and growth factor stimulatedhumancoloncancercellproliferation, BiochemBiophysResCommun, vol.329, issue.1, pp.40-45, 2005.

E. Karatan and P. Watnick, Signals, regulatory networks, and materials that build and break bacterialbiofilms.MicrobiolMolBiolRev, pp.310-347, 2009.

B. I. Kazmierczak, M. B. Lebron, and T. S. , AnalysisofFimX,aphosphodiesterasethat governstwitchingmotilityinPseudomonasaeruginosa, MolMicrobiol, vol.60, issue.4, pp.1026-1043, 2006.

J. Key, V. Srajer, R. Pahl, and K. , Timeresolvedcrystallographicstudiesoftheheme domainoftheoxygensensorFixL:structuraldynamicsofligandrebindingandtheirrelationtosignal transduction, Biochemistry, issue.16, pp.464706-4715, 2007.

S. Kilvington and J. Price, Survival of Legionella pneumophila within cysts of Acanthamoeba polyphagafollowingchlorineexposure, JApplBacteriol, vol.68, issue.5, pp.519-525, 1990.

A. H. Klein, A. Shulla, S. A. Reimann, D. H. Keating, and A. J. Wolfe, The intracellular concentrationofacetylphosphateinEscherichiacoliissufficientfordirectphosphorylationoftwo componentresponseregulators, JBacteriol, issue.15, pp.1895574-5581, 2007.

P. V. Krasteva, J. C. Fong, N. J. Shikuma, S. Beyhan, M. V. Navarro et al., Vibrio cholerae vpst regulates matrix production and motility by directly sensingcyclicdiGMP, Science, issue.5967, pp.327866-868, 2010.
DOI : 10.1126/science.1181185

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054

S. L. Kuchma, K. M. Brothers, J. H. Merritt, N. T. Liberati, F. M. Ausubel et al., Bifa, a cyclicdiGMP phosphodiesterase, inversely regulates biofilm formation and swarming motilitybyPseudomonasaeruginosapa14, JBacteriol, issue.22, pp.1898165-8178, 2007.

H. Kulasakara, V. Lee, A. Brencic, N. Liberati, J. Urbach et al., Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2839-2844, 2006.
DOI : 10.1073/pnas.0511090103

N. Kulshina, N. J. Baird, and A. R. Ferréd-'amaré, Recognition of the bacterial second messengercyclicdiguanylatebyitscognateriboswitch, NatStructMolBiol, issue.12, pp.161212-1217, 2009.

Y. Kumagai, J. Matsuo, Y. Hayakawa, R. , and Y. , Cyclic diGMP signaling regulates invasionbyEhrlichiachaffeensisofhumanmonocytes, JBacteriol, issue.16, pp.1924122-4133, 2010.

M. Kumar and D. Andchatterji, Cyclicdigmp:asecondmessengerrequiredforlongtermsurvival, butnotforbiofilmformation,inMycobacteriumsmegmatis.Microbiology, pp.2942-2955, 2008.

U. K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1038/227680a0

T. H. Lai, Y. Kumagai, M. Hyodo, Y. Hayakawa, R. et al., The anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase twocomponent system and roleofcyclicdiGMPinhostcellinfection, JBacteriol, issue.3, pp.191693-700, 2009.

A. Lamprokostopoulou, C. Monteiro, M. Rhen, R. , and U. , Cyclic diGMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining, EnvironMicrobiol, vol.12, issue.1, pp.40-53, 2010.

J. L. Leduc and G. P. , CyclicdiGMPallostericallyinhibitstheCRPlikeprotein(CLP)of Xanthomonasaxonopodispv.citri, JBacteriol, issue.22, pp.1917121-7122, 2009.

E. R. Lee, J. L. Baker, Z. Weinberg, N. Sudarsan, and R. R. , Anallostericselfsplicing ribozymetriggeredbyabacterialsecondmessenger, Science, issue.5993, pp.329845-848, 2010.

X. Liu, S. Beyhan, B. Lim, R. G. Linington, and F. H. , Identificationandcharacterizationof a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae, J Bacteriol, issue.18, pp.1924541-4552, 2010.

P. C. Marijuán, J. Navarro, and R. , On prokaryotic intelligence: Strategies for sensing the environment, Biosystems, vol.99, issue.2, pp.94-103, 2010.
DOI : 10.1016/j.biosystems.2009.09.004

H. F. Martinezwilson, R. Tamayo, A. D. Tischler, D. W. Lazinski, and A. Camilli, The Vibrio choleraehybridsensorkinaseviescontributestomotilityandbiofilmregulationbyalteringthecyclic diguanylatelevel, JBacteriol, issue.19, pp.1906439-6447, 2008.

W. R. Mccleary and J. B. Stock, Acetyl phosphate and the activation of twocomponent responseregulators, JBiolChem, issue.50, pp.26931567-31572, 1994.

J. E. Mcdade, C. C. Shepard, D. W. Fraser, T. R. Tsai, M. A. Redus et al., Legionnaires' Disease, New England Journal of Medicine, vol.297, issue.22, pp.2971197-1203, 1977.
DOI : 10.1056/NEJM197712012972202

S. M. Mcwhirter, R. Barbalat, K. M. Monroe, M. F. Fontana, M. Hyodo et al., A host type i interferon response is induced by cytosolicsensingofthebacterialsecondmessengercyclicdiGMP, JExpMed, issue.9, pp.2061899-1911, 2009.

M. Merighi, V. T. Lee, M. Hyodo, Y. Hayakawa, and S. , Thesecondmessengerbis(3'5') cyclicGMP and its PilZ domaincontaining receptor Alg44 are required for alginate biosynthesis in Pseudomonasaeruginosa, MolMicrobiol, vol.65, issue.4, pp.876-895, 2007.

H. Mikkelsen, G. Ball, C. Giraud, and A. , Expression of Pseudomonas aeruginosa CupD Fimbrial Genes Is Antagonistically Controlled by RcsB and the EAL-Containing PvrR Response Regulators, PLoS ONE, vol.4, issue.6, p.6018, 2009.
DOI : 10.1371/journal.pone.0006018.s001

M. M. Méndezortiz, M. Hyodo, Y. Hayakawa, and J. Membrillohernández, Genomewide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3',5' cyclicdiguanylicacid, JBiolChem, issue.12, pp.2818090-8099, 2006.

M. Molmeret and Y. A. Kwaik, How does Legionella pneumophila exit the host cell?, Trends in Microbiology, vol.10, issue.6, pp.258-260, 2002.
DOI : 10.1016/S0966-842X(02)02359-4

A. B. Molofsky and M. S. Swanson, Differentiate to thrive: lessons from the Legionella pneumophilalifecycle, MolMicrobiol, vol.53, issue.1, pp.29-40, 2004.

P. D. Newell, R. D. Monds, and G. A. Toole, LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1, Proceedings of the National Academy of Sciences, vol.106, issue.9, pp.3461-3466, 2009.
DOI : 10.1073/pnas.0808933106

G. G. Nicastro, A. L. Boechat, C. M. Abe, G. H. Kaihami, and R. L. Baldini, Pseudomonas aeruginosaPA14cupdtranscriptionisactivatedbytheRcsBresponseregulator,butrepressedbyits putativecognatesensorRcsC, FEMSMicrobiolLett, vol.301, issue.1, pp.115-123, 2009.

J. Norrander, T. Kempe, and J. Messing, Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis, Gene, vol.26, issue.1, pp.101-106, 1983.
DOI : 10.1016/0378-1119(83)90040-9

K. Paul, V. Nieto, W. C. Carlquist, D. F. Blair, and R. M. , ThecdiGMPbindingprotein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism, MolCell, vol.38, issue.1, pp.128-139, 2010.

R. Paul, S. Abel, P. Wassmann, A. Beck, H. Heerklotz et al., Activation of the diguanylate cyclase PleD by phosphorylationmediated dimerization, J Biol Chem, issue.40, pp.28229170-29177, 2007.

R. Paul, T. Jaeger, S. Abel, I. Wiederkehr, M. Folcher et al., Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate, Cell, issue.3, pp.133452-461, 2008.

S. Pécastaings, M. Bergé, K. M. Dubourg, R. , and C. , is able to grow on surfaces and generate structured monospecies biofilms, Biofouling, vol.60, issue.7, pp.809-819, 2010.
DOI : 10.1128/AEM.02399-06

C. Pesavento, G. Becker, N. Sommerfeldt, A. Possling, N. Tschowri et al., Inverse regulatory coordination of motility and curlimediated adhesion in Escherichia coli, GenesDev, issue.17, pp.222434-2446, 2008.

A. A. Pioszak and A. J. Andninfa, Mutations Altering the N-Terminal Receiver Domain of NRI (NtrC) That Prevent Dephosphorylation by the NRII-PII Complex in Escherichia coli, Journal of Bacteriology, vol.186, issue.17, pp.5730-5740, 2004.
DOI : 10.1128/JB.186.17.5730-5740.2004

C. D. Pope, L. Dhand, C. , and N. P. , Random mutagenesis of Legionella pneumophila withminiTn10, FEMSMicrobiolLett, vol.124, issue.1, pp.107-111, 1994.

Y. Qi, F. Rao, Z. Luo, and Z. X. , AflavincofactorbindingpasdomainregulatescdiGMP synthesisinAXDGC2fromAcetobacterxylinum, Biochemistry, issue.43, pp.4810275-10285, 2009.

F. Rao, Y. Qi, H. S. Chong, M. Kotaka, B. Li et al., The functionalroleofaconservedloopinEALdomainbasedcyclicdiGMPspecificphosphodiesterase, Z.X.J Bacteriol, issue.15, pp.1914722-4731, 2009.

F. Rao, Y. Yang, Y. Qi, and Z. X. Liang, Catalytic mechanism of cyclic diGMPspecific phosphodiesterase: a study of the eal domaincontaining RocR from Pseudomonas aeruginosa, J Bacteriol, issue.10, pp.1903622-3631, 2008.

U. Römling, Rationalizing the Evolution of EAL Domain-Based Cyclic di-GMP-Specific Phosphodiesterases, Journal of Bacteriology, vol.191, issue.15, pp.4697-4700, 2009.
DOI : 10.1128/JB.00651-09

U. Römling and D. Amikam, Cyclic di-GMP as a second messenger, Current Opinion in Microbiology, vol.9, issue.2, pp.218-228, 2006.
DOI : 10.1016/j.mib.2006.02.010

U. Römling, M. Gomelsky, and M. Y. Galperin, CdiGMP: the dawning of a novel bacterial signallingsystem, MolMicrobiol, vol.57, issue.3, pp.629-639, 2005.

S. Romagnoli and F. R. Tabita, Phosphotransfer Reactions of the CbbRRS Three-Protein Two- Component System from Rhodopseudomonas palustris CGA010 Appear To Be Controlled by an Internal Molecular Switch on the Sensor Kinase, Journal of Bacteriology, vol.189, issue.2, pp.325-335, 2007.
DOI : 10.1128/JB.01326-06

D. A. Ryjenkov, R. Simm, U. Römling, and M. , ThePilZdomainisareceptorforthe secondmessengercdiGMP:thePilZdomainproteinycgrcontrolsmotilityinenterobacteria, JBiol Chem, issue.41, pp.28130310-30314, 2006.

K. Sauer, The genomics and proteomics of biofilm formation, Genome Biology, vol.4, issue.6, p.219, 2003.
DOI : 10.1186/gb-2003-4-6-219

B. Schusterböckler, J. Schultz, and S. And-rahmann, HMM logos for visualization of protein families, BMCBioinformatics, vol.5, p.7, 2004.

A. R. Shenoy and S. S. Visweswariah, New messages from old messengers: cAMP and mycobacteria, Trends in Microbiology, vol.14, issue.12, pp.14543-550, 2006.
DOI : 10.1016/j.tim.2006.10.005

R. E. Silversmith, Auxiliary phosphatases in two-component signal transduction, Current Opinion in Microbiology, vol.13, issue.2, pp.177-183, 2010.
DOI : 10.1016/j.mib.2010.01.004

R. Simm, M. Morr, A. Kader, M. Nimtz, R. et al., GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility, Molecular Microbiology, vol.39, issue.4, pp.1123-1134, 2004.
DOI : 10.1111/j.1365-2958.2004.04206.x

R. Simm, M. Morr, U. Remminghorst, M. Andersson, R. et al., Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization???time-of-flight mass spectrometry, Analytical Biochemistry, vol.386, issue.1, pp.53-58, 2009.
DOI : 10.1016/j.ab.2008.12.013

K. D. Smith, S. V. Lipchock, T. D. Ames, J. Wang, R. R. Breaker et al., Structural basisofligandbindingbyacdiGMPriboswitch, NatStructMolBiol, issue.12, pp.161218-1223, 2009.

N. Sommerfeldt, A. Possling, G. Becker, C. Pesavento, N. Tschowri et al., Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteinsinEscherichiacoli, Microbiology, issue.Pt4, pp.1551318-1331, 2009.

A. Srivatsan and J. D. Wang, Control of bacterial transcription, translation and replication by (p)ppGpp, Current Opinion in Microbiology, vol.11, issue.2, pp.100-105, 2008.
DOI : 10.1016/j.mib.2008.02.001

R. C. Stewart, Proteinhistidinekinases:assemblyofactivesitesandtheirregulationinsignaling pathways, CurrOpinMicrobiol, vol.13, issue.2, pp.133-141, 2010.

A. M. Stock, V. L. Robinson, and P. N. Goudreau, Two-Component Signal Transduction, Annual Review of Biochemistry, vol.69, issue.1, pp.183-215, 2000.
DOI : 10.1146/annurev.biochem.69.1.183

B. J. Stone and Y. A. , ExpressionofmultiplepilibyLegionellapneumophila:identification andcharacterizationofatypeIVpilingeneanditsroleinadherencetomammalianandprotozoan cells, InfectImmun, vol.66, issue.4, pp.1768-1775, 1998.

T. M. Suter, V. K. Viswanathan, C. , and N. P. , Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila, Antimicrob Agents Chemother, issue.6, pp.411385-1388, 1997.

H. Szurmant and G. W. Ordal, Diversity in chemotaxis mechanisms among the bacteria and archaea.MicrobiolMolBiolRev, pp.301-319, 2004.

R. Tal, H. C. Wong, R. Calhoon, D. Gelfand, A. L. Fear et al., Three cdg operons control cellular turnover of cyclic diGMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes, J Bacteriol, issue.17, pp.1804416-4425, 1998.

R. Tamayo, S. Schild, J. T. Pratt, and A. Camilli, Role of cyclic diGMP during el tor biotype Vibrio cholerae infection: characterization of the in vivoinduced cyclic diGMP phosphodiesterase cdpa, InfectImmun, vol.76, issue.4, pp.1617-1627, 2008.

A. Tanaka, H. Takahashi, and T. Shimizu, Critical Role of the Heme Axial Ligand, Met95, in Locking Catalysis of the Phosphodiesterase from Escherichia coli (Ec DOS) toward Cyclic diGMP, Journal of Biological Chemistry, vol.282, issue.29, pp.21301-21307, 2007.
DOI : 10.1074/jbc.M701920200

F. Tao, Y. W. He, D. H. Wu, S. Swarup, and L. H. , The Cyclic Nucleotide Monophosphate Domain of Xanthomonas campestris Global Regulator Clp Defines a New Class of Cyclic Di-GMP Effectors, Journal of Bacteriology, vol.192, issue.4, pp.1020-1029, 2010.
DOI : 10.1128/JB.01253-09

M. Tarutina, D. A. Ryjenkov, and M. Gomelsky, An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger cdiGMP, J Biol Chem, issue.46, pp.28134751-34758, 2006.

M. Thanbichler, Spatial regulation in Caulobacter crescentus, Current Opinion in Microbiology, vol.12, issue.6, pp.715-721, 2009.
DOI : 10.1016/j.mib.2009.09.013

A. D. Tischler and A. Camilli, Cyclic Diguanylate Regulates Vibrio cholerae Virulence Gene Expression, Infection and Immunity, vol.73, issue.9, pp.5873-5882, 2005.
DOI : 10.1128/IAI.73.9.5873-5882.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231145

A. Ueda and T. K. Wood, Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885), PLoS Pathogens, vol.179, issue.3, p.1000483, 2009.
DOI : 10.1371/journal.ppat.1000483.s008

L. E. Ulrich, E. V. Koonin, and I. B. Zhulin, Onecomponent systems dominate signal transductioninprokaryotes, TrendsMicrobiol, vol.13, issue.2, pp.52-56, 2005.
DOI : 10.1016/j.tim.2004.12.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756188

L. E. Ulrich and I. B. Zhulin, The MIST2 database: a comprehensive genomics resource on microbialsignaltransduction, NucleicAcidsRes, issue.Databaseissue, pp.38-401, 2010.

L. Vandersmissen, E. D. Buck, V. Saels, D. A. Coil, and J. Anné, A Legionella pneumophila collagenlikeproteinencodedbyagenewithavariablenumberoftandemrepeatsisinvolvedinthe adherenceandinvasionofhostcells, FEMSMicrobiolLett, vol.306, issue.2, pp.168-176, 2010.

G. H. Wadhams and J. P. , Makingsenseofitall:bacterialchemotaxis, NatRevMol CellBiol, vol.5, issue.12, pp.1024-1037, 2004.

X. Wan, J. R. Tuckerman, J. A. Saito, T. A. Freitas, J. S. Newhouse et al., Globins synthesize the second messengerbis(3'5')cyclicdiguanosinemonophosphateinbacteria, JMolBiol, vol.388, issue.2, pp.262-270, 2009.

V. Weiss and B. Magasanik, Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli., Proceedings of the National Academy of Sciences, vol.85, issue.23, pp.8919-8923, 1988.
DOI : 10.1073/pnas.85.23.8919

R. T. Wheeler and L. Shapiro, Differential localization of two histidine kinases controlling bacterialcelldifferentiation, MolCell, vol.4, issue.5, pp.683-694, 1999.

L. A. Wiater, A. B. Sadosky, and H. A. , MutagenesisofLegionellapneumophilausing Tn903 dlllacz: identification of a growthphaseregulated pigmentation gene, Mol Microbiol, vol.11, issue.4, pp.641-653, 1994.

M. K. Winson, S. Swift, P. J. Hill, C. M. Sims, G. Griesmayr et al., Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and miniTn5 constructs, FEMSMicrobiolLett, vol.163, issue.2, pp.193-202, 1998.

G. Witte, S. Hartung, K. Büttner, and K. P. Hopfner, Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates, Molecular Cell, vol.30, issue.2, pp.167-178, 2008.
DOI : 10.1016/j.molcel.2008.02.020

P. M. Wolanin, P. A. Thomason, and J. B. Stock, Histidine protein kinases: key signal transducersoutsidetheanimalkingdom, GenomeBiol, issue.10, pp.3-3013, 2002.

A. J. Wolfe, Physiologically relevant small phosphodonors link metabolism to signal transduction, Current Opinion in Microbiology, vol.13, issue.2, pp.204-209, 2010.
DOI : 10.1016/j.mib.2010.01.002

A. J. Wolfe and K. L. Visick, Get the Message Out: Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility, Journal of Bacteriology, vol.190, issue.2, pp.463-475, 2008.
DOI : 10.1128/JB.01418-07

J. J. Woodward, A. T. Iavarone, and D. A. Portnoy, cdiAMP secreted by intracellular listeria monocytogenesactivatesahosttypeIinterferonresponse, Science, issue.5986, pp.3281703-1705, 2010.

K. Wuichet, B. J. Cantwell, and I. B. Zhulin, Evolution and phyletic distribution of two componentsignaltransductionsystems, CurrOpinMicrobiol, vol.13, issue.2, pp.219-225, 2010.

D. Yan, H. S. Cho, C. A. Hastings, M. M. Igo, S. Y. Lee et al., Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators, Proceedings of the National Academy of Sciences, vol.96, issue.26, pp.9614789-14794, 1999.
DOI : 10.1073/pnas.96.26.14789

X. Yi, A. Yamazaki, E. Biddle, Q. Zeng, Y. et al., Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii, Molecular Microbiology, vol.188, issue.3, pp.77787-800, 2010.
DOI : 10.1111/j.1365-2958.2010.07246.x

J. H. Yu, Z. Hamari, K. H. Han, J. A. Seo, Y. Reyesdomínguez et al., Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi, Fungal Genetics and Biology, vol.41, issue.11, pp.41973-981, 2004.
DOI : 10.1016/j.fgb.2004.08.001

J. Zhang, M. W. Lau, and A. R. Ferréd-'amaré, Ribozymes and riboswitches: modulation of RNAfunctionbysmallmolecules, Biochemistry, issue.43, pp.499123-9131, 2010.

R. 1. Stock, A. M. Robinson, V. L. Goudreau, and P. N. , Two-Component Signal Transduction, Annual Review of Biochemistry, vol.69, issue.1, pp.183-215, 2000.
DOI : 10.1146/annurev.biochem.69.1.183

J. A. Hoch, Two-component and phosphorelay signal transduction, Current Opinion in Microbiology, vol.3, issue.2, pp.165-170, 2000.
DOI : 10.1016/S1369-5274(00)00070-9

R. Gao and A. Stock, Biological Insights from Structures of Two-Component Proteins, Annual Review of Microbiology, vol.63, issue.1, pp.133-154, 2009.
DOI : 10.1146/annurev.micro.091208.073214

M. Y. Galperin and A. N. Nikolskaya, Identification of Sensory and Signal???Transducing Domains in Two???Component Signaling Systems, Methods Enzymol, vol.422, pp.47-74, 2007.
DOI : 10.1016/S0076-6879(06)22003-2

R. Hengge, Principles of c-di-GMP signalling in bacteria, Nature Reviews Microbiology, vol.178, issue.4, pp.263-273, 2009.
DOI : 10.1038/nrmicro2109

A. Boehm, M. Kaiser, H. Li, C. Spangler, C. Kasper et al., Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity, Cell, vol.141, issue.1, pp.107-116, 2010.
DOI : 10.1016/j.cell.2010.01.018

X. Fang and M. Gomelsky, A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility, Molecular Microbiology, vol.190, issue.5, pp.1295-1305, 2010.
DOI : 10.1111/j.1365-2958.2010.07179.x

K. Paul, V. Nieto, W. Carlquist, D. Blair, and R. Harshey, The c-di-GMP Binding Protein YcgR Controls Flagellar Motor Direction and Speed to Affect Chemotaxis by a ???Backstop Brake??? Mechanism, Molecular Cell, vol.38, issue.1, pp.128-139, 2010.
DOI : 10.1016/j.molcel.2010.03.001

A. Seshasayee, G. Fraser, N. Luscombe, N. Sommerfeldt, A. Possling et al., Nucleic Acids Res 10, pp.1318-1331, 2009.

H. Brüggemann, A. Hagman, M. Jules, O. Sismeiro, M. Dillies et al., Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila, Cellular Microbiology, vol.22, issue.8, pp.1228-1240, 2006.
DOI : 10.1093/nar/30.4.e15

E. Karatan and P. Watnick, Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms, Microbiology and Molecular Biology Reviews, vol.73, issue.2, pp.310-347, 2009.
DOI : 10.1128/MMBR.00041-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698413

R. Ryan, Y. Fouhy, J. Lucey, and J. Dow, Cyclic Di-GMP Signaling in Bacteria: Recent Advances and New Puzzles, Journal of Bacteriology, vol.188, issue.24, pp.8327-8334, 2006.
DOI : 10.1128/JB.01079-06

M. Tarutina, D. Ryjenkov, and M. Gomelsky, An Unorthodox Bacteriophytochrome from Rhodobacter sphaeroides Involved in Turnover of the Second Messenger c-di-GMP, Journal of Biological Chemistry, vol.281, issue.46, pp.34751-34758, 2006.
DOI : 10.1074/jbc.M604819200

R. Ferreira, L. Antunes, E. Greenberg, and L. Mccarter, Vibrio parahaemolyticus ScrC Modulates Cyclic Dimeric GMP Regulation of Gene Expression Relevant to Growth on Surfaces, Journal of Bacteriology, vol.190, issue.3, pp.851-860, 2008.
DOI : 10.1128/JB.01462-07

X. Wan, J. Tuckerman, J. Saito, T. Freitas, J. Newhouse et al., Globins Synthesize the Second Messenger Bis-(3??????5???)-Cyclic Diguanosine Monophosphate in Bacteria, Journal of Molecular Biology, vol.388, issue.2, pp.262-270, 2009.
DOI : 10.1016/j.jmb.2009.03.015

J. Hickman, D. Tifrea, and C. Harwood, A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels, Proceedings of the National Academy of Sciences, vol.102, issue.40, pp.14422-14427, 2005.
DOI : 10.1073/pnas.0507170102

S. Bouché, E. Klauck, D. Fischer, M. Lucassen, K. Jung et al., : a role for acetyl phosphate in a response regulator-controlled process, Molecular Microbiology, vol.174, issue.4, pp.787-795, 1998.
DOI : 10.1046/j.1365-2958.1998.00725.x

L. Ulrich and I. Zhulin, The MiST2 database: a comprehensive genomics resource on microbial signal transduction, Nucleic Acids Research, vol.38, issue.Database, pp.401-407, 2010.
DOI : 10.1093/nar/gkp940

M. Barakat, P. Ortet, C. Jourlin-castelli, M. Ansaldi, V. Méjean et al., P2CS: a two-component system resource for prokaryotic signal transduction research, BMC Genomics, vol.10, issue.1, p.315, 2009.
DOI : 10.1186/1471-2164-10-315

A. Marchler-bauer, J. Anderson, F. Chitsaz, M. Derbyshire, C. Deweese-scott et al., CDD: specific functional annotation with the Conserved Domain Database, Nucleic Acids Research, vol.37, issue.Database, pp.205-210, 2009.
DOI : 10.1093/nar/gkn845

M. Gilles-gonzalez, G. Gonzalez, E. Sousa, and J. Tuckerman, Oxygen???Sensing Histidine???Protein Kinases: Assays of Ligand Binding and Turnover of Response???Regulator Substrates, Methods Enzymol, vol.437, pp.173-189, 2008.
DOI : 10.1016/S0076-6879(07)37010-9

R. Stewart, Protein histidine kinases: assembly of active sites and their regulation in signaling pathways, Current Opinion in Microbiology, vol.13, issue.2, pp.133-141, 2010.
DOI : 10.1016/j.mib.2009.12.013

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

F. Russo and T. Silhavy, The essential tension: opposed reactions in bacterial two-component regulatory systems, Trends in Microbiology, vol.1, issue.8, pp.306-310, 1993.
DOI : 10.1016/0966-842X(93)90007-E

L. Kenney, How important is the phosphatase activity of sensor kinases?, Current Opinion in Microbiology, vol.13, issue.2, pp.168-176, 2010.
DOI : 10.1016/j.mib.2010.01.013

G. Lukat, W. Mccleary, A. Stock, and J. Stock, Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors., Proceedings of the National Academy of Sciences, vol.89, issue.2, pp.718-722, 1992.
DOI : 10.1073/pnas.89.2.718

R. Paul, S. Abel, P. Wassmann, A. Beck, H. Heerklotz et al., Activation of the Diguanylate Cyclase PleD by Phosphorylation-mediated Dimerization, Journal of Biological Chemistry, vol.282, issue.40, pp.29170-29177, 2007.
DOI : 10.1074/jbc.M704702200

T. Lai, Y. Kumagai, M. Hyodo, Y. Hayakawa, R. et al., PleC Histidine Kinase and PleD Diguanylate Cyclase Two-Component System and Role of Cyclic Di-GMP in Host Cell Infection, Journal of Bacteriology, vol.191, issue.3, pp.693-700, 2009.
DOI : 10.1128/JB.01218-08

P. Wassmann, C. Chan, R. Paul, A. Beck, H. Heerklotz et al., Structure of BeF3???-Modified Response Regulator PleD: Implications for Diguanylate Cyclase Activation, Catalysis, and Feedback Inhibition, Structure, vol.15, issue.8, pp.915-927, 2007.
DOI : 10.1016/j.str.2007.06.016

N. De, M. Navarro, R. Raghavan, and H. Sondermann, Determinants for the Activation and Autoinhibition of the Diguanylate Cyclase Response Regulator WspR, Journal of Molecular Biology, vol.393, issue.3, pp.619-633, 2009.
DOI : 10.1016/j.jmb.2009.08.030

H. Martinez-wilson, R. Tamayo, A. Tischler, D. Lazinski, and A. Camilli, The Vibrio cholerae Hybrid Sensor Kinase VieS Contributes to Motility and Biofilm Regulation by Altering the Cyclic Diguanylate Level, Journal of Bacteriology, vol.190, issue.19, pp.6439-6447, 2008.
DOI : 10.1128/JB.00541-08

M. Buckstein, J. He, R. , and H. , Characterization of Nucleotide Pools as a Function of Physiological State in Escherichia coli, Journal of Bacteriology, vol.190, issue.2, pp.718-726, 2008.
DOI : 10.1128/JB.01020-07

A. Schmidt, D. Ryjenkov, and M. Gomelsky, The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains, Journal of Bacteriology, vol.187, issue.14, pp.4774-4781, 2005.
DOI : 10.1128/JB.187.14.4774-4781.2005

. Stykc, . S_tkc, and . Ser, Thr kinase catalytic domains; TCS, two-component regulatory system; TM, transmembrane domains

. Fig, Schematic diagram of conserved domains detected by NCBI's Conserved Domain Database (CDD) (26) in Lpl0330 and Lpl0329. The amino acid positions where the predicted domains start and end are shown

. Hatpase_c, REC: receiver domain; GGDEF: putative diguanylate cyclase domain; EAL: putative phosphodiesterase domain Relevant segments of sequence alignment between Lpl0329 or Lpl0330 sequences (top) and consensus domains from CDD (bottom) are shown, with PSSM id (position-specific scoring matrix identifier (26)) listed between brackets. Phosphorylation sites of the consensus HisKA domain (cd00082) and RED domain (cd00156) are underlined. Conserved amino acids residues in consensus sequences are in black, Amino acid residues exchanged are indicated with one star (*) with exact positions listed between brackets. Double points indicate amino acid residues that are identical in 100 % of consensus sequences

. Auteur, MélanieLEVETPAULO Titre:RôledesprotéinesàdomainesGGDEF/EALchezLegionellapneumophila, Directricedethèse:PatriciaDOUBLET Coencadrante

L. Hiskacontenantunmotifnommé«hgn», De plus, la phosphorylation de Lpl0329 modifie l'équilibre entre les deux activités enzymatiques en diminuant l'activité DGC seulement. Ainsi, Lpl0329 est le premier régulateur de réponse à double activité enzymatique caractérisé