
HAL Id: tel-00833019
https://theses.hal.science/tel-00833019v1

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning Optimal Motions for Anthropomorphic
Systems

Antonio El Khoury

To cite this version:
Antonio El Khoury. Planning Optimal Motions for Anthropomorphic Systems. Robotics [cs.RO].
Université Paul Sabatier - Toulouse III, 2013. English. �NNT : �. �tel-00833019�

https://theses.hal.science/tel-00833019v1
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par:

Présentée et soutenue par:

Titre:

Unité de recherche:

Autre membres du Jury:

THÈSE

le lundi 3 juin 2013

École doctorale et discipline ou spécialité:

Directeurs de Thèse:

Planification de Mouvements Optimaux pour des Systèmes Anthropomorphes
Planning Optimal Motions for Anthropomorphic Systems

2

i

Résumé

L’objet de cette thèse est le développement et l’étude d’algorithmes de planifica-
tion de mouvements optimaux pour des systèmes anthropomorphes sous-actionnés
et hautement dimensionnés, à l’instar des robots humanöıdes et des acteurs virtuels.
Des méthodes de planification aléatoires et de commande optimale sont proposées
et discutées. Une première contribution concerne l’utilisation d’une méthode ef-
ficace de recherche dans un graphe pour l’optimisation de trajectoires de marche
planifiées pour un système modélisé par sa bôıte englobante. La deuxième contribu-
tion concerne l’utilisation de méthodes de planification aléatoires sous contraintes
afin de planifier de façon générique des mouvements corps-complet de marche et
manipulation. Enfin nous développons une approche algorithmique qui combine
des méthodes de planification aléatoires sous contraintes et de commande optimale.
Cette approche permet de générer des mouvements dynamiques, rapides, et sans
collision, en présence d’obstacles dans l’environnement du système.

ii

iii

Abstract

This thesis deals with the development and study of algorithms for planning optimal
motions for anthropomorphic systems, which are underactuated and highly redun-
dant systems, such as humanoid robots and digital actors. Randomized motion
planners and optimal control methods are proposed and discussed. A first contri-
bution concerns the use of an efficient graph search algorithm in order to optimize
walk trajectories that were previously obtained for a bounding-box representation
of the system using randomized motion planners. The second contribution develops
the use of constrained randomized motion planners in order to plan in a generic
way whole-body motions that involve both walking and manipulation. Finally we
develop an algorithmic approach which combines constrained randomized motion
planners and optimal control methods; this approach allows the generation of dy-
namic, fast and collision-free motions for anthropomorphic systems in the presence
of obstacles.

iv

v

Remerciements

J’ai profité d’un accueil exceptionnel au LAAS-CNRS durant mes trois années de
thèse. C’est pourquoi je tiens tout d’abord à remercier ses directeurs successifs Raja
Chatila, Jean-Louis Sanchez et Jean Arlat, le directeur du thème Robotique Rachid
Alami, et plus spécifiquement les directeurs successifs du groupe Gepetto Jean-Paul
Laumond et Philippe Souères.

Je tiens à exprimer toute ma gratitude envers mes directeurs de thèse Florent
Lamiraux et Michel Täıx. Leur confiance, leurs connaissances approfondies, leurs
précieux conseils et leur sympathie ont directement contribué au travaux que j’ai
effectués et au plaisir que j’en ai tiré.

C’est un honneur d’avoir Maren Bennewitz et Abderrahmane Kheddar comme
rapporteurs de ma thèse, et je les remercie sincèrement pour leur relecture attentive
de mon manuscrit. Je remercie également Brigitte d’Andréa-Novel, Timothy Bretl,
Patrick Danès et Rodolphe Gelin d’avoir accepté de faire partie de mon jury de
thèse, ainsi que pour leurs remarques et discussions intéressantes.

J’ai eu la chance d’effectuer un séjour scientifique à l’Université de Heidelberg
dans le groupe ORB . Je tiens à remercier Katja Mombaur pour ses précieux conseils
et l’excellent accueil qu’elle m’a réservée.

J’ai été très marqué par l’esprit d’équipe qui règne dans le groupe Gepetto,
et espère y avoir contribué durant ces trois années. Je remercie chaleureusement
Nicolas Mansard et Olivier Stasse qui, sans être directement impliqués dans mes
travaux, m’ont fourni tout le soutien scientifique et technique dont un doctorant
pourrait rêver.

Ces trois dernières années sont passées rapidement; ceci est principalement dû à
mon côtoiement au quotidien de doctorants et stagiaires sympathiques et brillants,
dont la bonne humeur a ajouté encore plus de plaisir à ces travaux de recherche.
J’ai eu la joie de collaborer étroitement avec Sébastien Dalibard, Martin Felis, David
Flavigné et Thomas Moulard; je les remercie pour leur dévouement à nos travaux
ainsi que pour leur amitié.

Je me sens privilégié d’avoir pu rencontrer de glorieux anciens, qui m’ont in-
culqué les préceptes de l’esprit d’équipe et de la bonne ambiance. Merci donc
à Duong, François, Layale, Manish, Maxime, Nicolas, Oussama, Samory, Sovan,
Valentin, Wassim, et Wassima. Je remercie également tous les actuels membres qui

vi

perpétuent la tradition: Aiva, Andreas, Arturo, Francesco, He, Henning, Léo, Lau-
rent, Mauricio, Mehdi, Olivier, Oscar, Perle, avec une mention spéciale pour Justin
Carpentier, Olivier Roussel, et Jorrit T’Hooft qui ont consacré une semaine de leur
temps à la construction d’un magnifique mur de brique. Je leur souhaite à tous
bonne continuation.

S’il arrive un jour à lire et comprendre ce manuscrit, je tiens à remercier le robot
HRP-2 14 pour avoir supporté, sans jamais se plaindre, les collisions, les chutes, et
tous les mouvements “inhumains” que je lui ai fait faire.

Je souhaite exprimer toute ma reconnaissance à ma famille, et plus partic-
ulièrement à mes parents et mon frère, pour leur amour, leurs conseils attentionnés
et leur soutien constant.

Enfin je souhaite remercier Maya pour son soutien, son amour, et pour m’avoir
accompagné, malgré la distance, durant ces trois dernières années qui ont mené
jusqu’à ma soutenance. Et la fin n’est que le début.

(0,0)

/)_)

""

CONTENTS vii

Contents

Introduction xix

1 Path Optimization for Humanoid Walk Planning: an Efficient Ap-
proach 1

1.1 Motion Planning in the Configuration Space 1

1.1.1 Deterministic Algorithms . 2

1.1.2 Sampling-based Algorithms 3

1.1.3 Path Optimization . 3

1.2 Anthropomorphic Systems . 5

1.2.1 Underactuated Systems . 5

1.2.2 Kinematic Redundancy . 7

1.3 Walking and Balance . 8

1.3.1 Zero-Moment Point (ZMP) 8

1.3.2 Cart-Table Model . 9

1.4 Humanoid Walk Planning . 9

1.4.1 Footstep Planning . 11

1.4.2 Constraints-Based Motion Generation 11

1.4.3 Constrained Motion Planning 11

1.4.4 Multi-Contact Planning . 11

1.4.5 Decoupled Planning . 12

1.4.6 Holonomic vs Nonholonomic Walking Motion 12

1.5 Contribution: Regular Sampling Optimization 13

1.6 Regular Sampling Optimization . 13

1.6.1 Bounding Box Path Optimization 15

1.6.2 Motion Generation for a Humanoid Robot 18

1.7 Examples . 20

1.7.1 “Chairs” Scenario . 21

1.7.2 “Boxes” Scenario . 23

1.7.3 “Apartment” Scenario . 23

1.8 Conclusion . 23

viii CONTENTS

2 Dynamic Walking and Whole-Body Motion Planning for Humanoid
Robots: an Integrated Approach 25

2.1 Motion Planning in Submanifolds of the Configuration Space 26

2.1.1 Inverse Kinematics . 26

2.1.2 Randomized Motion Planning on Constraint Manifolds 27

2.1.3 Example . 29

2.1.4 Extension to Collision-Free Walk Planning 31

2.2 From Geometric Paths to Feasible Motions: Small-Space Controllability 32

2.3 Contribution . 34

2.4 From Statically Balanced Paths to Dynamic Walk Trajectories . . . 35

2.4.1 Small-Space Controllability of Dynamically Walking Robots . 36

2.4.2 Application: Dynamic Approximation of a Statically Balanced
Sliding Path . 40

2.5 Experimental Results . 41

2.5.1 Passing between two chairs 43

2.5.2 Walking among floating obstacles 43

2.5.3 ’Put the ball on a shelf’ . 45

2.6 Discussion and Future Work . 45

2.7 Conclusion . 47

3 Optimal Motion Planning for Humanoid Robots 49

3.1 Path Planning . 49

3.2 Numerical Optimization . 50

3.3 Optimal Control . 50

3.3.1 Dynamic Programming . 52

3.3.2 Indirect Methods . 52

3.3.3 Direct Methods . 53

3.3.4 Non-Jacobian-Based Optimal Control 58

3.4 Anthropomorphic System Dynamics 59

3.4.1 Expressing Dynamics with Spatial Algebra 59

3.4.2 Dynamics Equation . 60

3.4.3 Inverse Dynamics . 61

3.4.4 Forward Dynamics . 61

3.4.5 Dynamic Balance for Anthropomorphic Systems 62

3.5 (Self-)Collision Avoidance . 64

3.5.1 Distance Pairs . 64

3.5.2 Distance Computation for Collision Avoidance 64

3.6 Optimal Control Applications for Anthropomorphic Systems 66

3.7 Contribution . 68

3.8 (Self-)Collision Avoidance Constraints 69

3.8.1 Computing minimum bounding capsules 69

3.8.2 Computing Distances for Pairs 70

3.8.3 Body Distance Pair Selection 72

CONTENTS ix

3.9 Optimal Motion Planning Framework 73
3.9.1 Constrained Path Planning 73
3.9.2 Time Parameterization for Initial Trajectory 74
3.9.3 Optimal Control Problem Formulation 75

3.10 Results . 77
3.10.1 Test Case . 77
3.10.2 Dynamic Motion Generation on the HRP-2 78

3.11 Extension to Non-Coplanar Contact Points 87
3.12 Discussions and Future Work . 89
3.13 Conclusion . 92

4 Conclusion 93
4.1 General Contributions . 93
4.2 Perspectives . 93

A Sliding Motion Planning Benchmarks 97

B Numerical Optimization 99
B.1 Unconstrained Optimization . 99

B.1.1 Necessary Conditions . 100
B.1.2 Finding the Minimizer . 100
B.1.3 Steepest Descent Line Search 101
B.1.4 Newton Line Search . 104
B.1.5 Quasi-Newton Line Search . 104
B.1.6 Constrained Optimization . 107

B.2 Quadratic Programming . 108
B.2.1 Equality-constrained QP . 108
B.2.2 Inequality-Constrained QP 108

B.3 Nonlinear Programming . 109
B.3.1 Sequential Quadratic Programming 109
B.3.2 Interior-Point Methods for Nonlinear Programming 112
B.3.3 Conclusion . 114

Bibliography 117

x CONTENTS

LIST OF FIGURES xi

List of Figures

1 The human-like mechanical structure of humanoid robots. xx
2 A robot solves a motion planning problem. xxi

1.1 Motion planning with deterministic algorithms. 2
1.2 A valid path computed with a bidirectional RRT planner. 4
1.3 Shortcut optimization techniques. 5
1.4 Humanoid robot kinematic tree. 6
1.5 Kinematic redundancy for anthropomorphic systems 7
1.6 Cart-table model . 10
1.7 ZMP preview-control pattern generator. 10
1.8 Solution paths for the bounding box. 14
1.9 The A∗ search algorithm produces an optimized path Popt. 16
1.10 The rectangular bounding box speed vector v is bounded. 17
1.11 Sample configurations are reoriented on local paths. 18
1.12 HRP-2 trajectory on the optimized path passing between two chairs. 21
1.13 HRP-2 uses holonomic motion to pass between two chairs. 22
1.14 HRP-2 optimized trajectory in the boxes scenario. 22
1.15 HRP-2 optimized trajectory in the apartment scenario. 23

2.1 Random goal configurations solving a reaching task. 29
2.2 One step of extension of the RRT algorithm. 29
2.3 One step of constrained extension. 30
2.4 HRP-2 displaces a ball in a shelf. 32
2.5 The small-space controllability property. 33
2.6 Small-space controllability in motion planning. 33
2.7 Collision-free path for a sliding humanoid robot. 35
2.8 Simplified model of a legged robot. 37
2.9 CoM motion (solid line) along y axis. 38
2.10 The first steps of the walk planning algorithm. 42
2.11 The robot HRP-2 passing between two chairs. 43
2.12 Horizontal trajectory of the robot CoM during locomotion. 44
2.13 Solution path for a cluttered environment. 44
2.14 Horizontal trajectory of the robot CoM during locomotion. 44

xii LIST OF FIGURES

2.15 Solution path for a hand reaching problem in an apartment. 45
2.16 Horizontal trajectory of the robot CoM during locomotion. 46
2.17 Execution of the walking trajectory by HRP-2 on stage. 46

3.1 Illustration of the optimal control problem. 51
3.2 Solving the OCP with direct single-shooting methods. 54
3.3 Solving the OCP with direct multiple-shooting methods. 56
3.4 Contact forces are applied on the anthropomorphic system. 60
3.5 Possible self-collision pairs for a robot body. 65
3.6 Minimum-volume bounding capsules generation for the HRP-2. . . . 71
3.7 Minimum-volume bounding capsule generation for the Romeo robot. 71
3.8 Path found by the path planner in a shelves environment. 73
3.9 Initial trajectory parametrization. 75
3.10 Paths for the test case. 77
3.11 Test case: optimized trajectories for the chest yaw joint. 79
3.12 Test case: evolution of kinematic constraint values over time. 80
3.13 Test case: Evolution of the distance inequality constraint values. . . 81
3.14 Test case: Trajectory of the ZMP and the CoM projection. 81
3.15 Martial arts scenario: evolution of the distance constraints. 82
3.16 Martial arts scenario: trajectory of the ZMP and the CoM projection. 83
3.17 Shelves scenario: trajectories of the ZMP and the CoM projection. . 83
3.18 Shelves scenario: evolution of the distance constraints. 84
3.19 HRP-2 does a quick martial arts motion while avoiding self-collision. 85
3.20 HRP-2 transfers quickly a ball in a shelf. 86
3.21 Martial arts scenario: trajectories of the ZMP and the CoP. 88
3.22 Martial arts scenario: Left and right normal contact forces. 88
3.23 Martial arts scenario: floating joint generalized torque evolution. . . 89
3.24 Martial arts scenario: collision avoidance constraints evolution. . . . 90

4.1 A humanoid robot executes a back-flip. 95

A.1 Number of RRT iterations for scenarios. 97
A.2 RRT computation time for scenarios. 98
A.3 Number of tree nodes for scenarios. 98

B.1 Steepest descent line search. 102
B.2 Steepest-descent line search strategy with Wolfe conditions. 103
B.3 Newton line search. 105
B.4 Quasi-Newton line search. 106
B.5 Solution of a constrained QP problem. 109
B.6 Solution to the general QP problem using an active-set method. . . . 111
B.7 NLP Solution using SQP methods. 113

LIST OF TABLES xiii

List of Tables

1.1 Computation time of each planning stage. 20
1.2 Humanoid robot walk time. 20

2.1 Experimental results on 20 motion planning runs. 31

3.1 Performance of minimum-volume bounding capsules generation. . . . 71
3.2 Test Case Computation Times . 78
3.3 Computation Times for Martial Arts Scenario 84
3.4 Computation Times for the Shelves Scenario 85

xiv LIST OF TABLES

LIST OF ALGORITHMS xv

List of Algorithms

1 RRT(qs) . 3
2 RSO(P , dsample) . 19
3 SolveConstraints(q, f , ε): find q such that f(q) = 0 27
4 ConstrainedExtend(T ,qnear,qrand, f, ε) 30
5 FindDynamicTrajectory(Path P) 41
6 StepLengthWolfe(f , xk, pk, αk, ρ, it max) 102
7 BFGS(x0, ε) . 106
8 ActiveSetSolve(x0) . 110
9 SQPSolve(x0,λ0, ε) . 112

xvi LIST OF ALGORITHMS

LIST OF ALGORITHMS xvii

Notation table

This is a brief review of notations used in this thesis, listed by appearance order.

Term Meaning

q Configuration, generalized position
q̇ Generalized velocity
q̈ Generalized acceleration
...
q Generalized jerk
τ Generalized torque
CS Configuration space
SS State space
CSfree Free configuration space
RRT Rapidly-exploring Random Trees
PRM Probabilistic Roadmaps
DoF Degrees of Freedom
Bi Body i of robot
Ji Joint i of robot

CoM Center of Mass
ZMP Zero-Moment Point
g Gravity constant

RO Random Optimization
RSO Regular Sampling Optimization
IK Inverse Kinematics
M Manifold
QP Quadratic Programming

NLP Nonlinear Programming
SQP Sequential Quadratic Programming
IPM Interior-Point Method
ODE Ordinary Differential Equation
PDE Partial Differential Equation
OCP Optimal Control Problem

RNEA Recursive Newton-Euler Algorithm
CRBA Composite Rigid Body Algorithm
ABA Articulated Body Algorithm

xviii LIST OF ALGORITHMS

xix

Introduction

While the term robotics was first coined by Isaac Asimov some seventy years ago,
and while the first industrial robots were developed in 1961, the description of au-
tomaton mechanisms can be dated back to the tenth century B.C., which is a proof
of Man’s long-time fascination with robots. The first robots had limited capabilities,
mainly focused on moving some of their limbs in order to act on their environment
or simply to entertain. Starting from the middle of the twentieth century, techno-
logical advances in electronics allowed the creation of sensors which allowed robots
to perceive their surroundings (including their own body), i.e. to build a useful rep-
resentation of them. Finally, thanks to the breakthroughs in the Computer Science
and Mathematics fields, the means to decide how to act based on perception were
given to robots (and roboticists too!). This decision process is known as planning.

Anthropomorphic Systems in Robotics

Anthropomorphic systems can be described as systems which are made to look like
humans with respect to their mechanical structure and their abilities. In robotics,
they usually have similar perception systems, such as visual sensors in the head,
tactile and inertial sensors. Also, they usually have two arms and more importantly
two legs, which sets them apart from wheeled robots. These features are such that
it is very complex to implement a perception-planning-action on anthropomorphic
systems (or humanoid robots).

So why do we bother designing and studying anthropomorphic systems? Simply
because it is fun! As the reader may still be skeptical with respect to this argument,
there are luckily many applications for humanoids robotics. First of all, as humanoid
robots are made to look like humans, they have similar abilities that can allow them
to walk, run, jump, climb, write, carve, manipulate, etc. There are of course highly
specialized robots that can achieve each one of those tasks, but very few exhibit such
a high versatility. Also, we are witnessing a shift from industrial robotics to personal
robotics. Humanoid robots can have access to the same environments as humans,
and they are made to look like them and to be easily accepted: they can therefore
be used as companions, assistants, guides, teachers, etc. in various situations.

From a research point of view, anthropomorphic systems are very interesting
as they give researchers the means to devise new algorithms to control them and

xx INTRODUCTION

Figure 1: The human-like mechanical structure of humanoid robots enables them to accom-
plish complex tasks, such as avoiding obstacles in constrained environments.

make them walk and manipulate objects without loosing their balance, allowing
the generation of human-like motions. Conversely, humanoid robots are perfect
tools for neuroscientists to understand human motion and perception, as well as the
invariants behind them; for instance, moving certain actuators while keeping others
at a fixed position is very easy in robotics, and this allows decoupling different
behaviors in order to observe them more clearly. Humanoid robots also tend to be
more cooperative (so far) than humans or monkeys when it comes to accomplishing
tedious and repetitive tasks during experiments.

In this thesis, we focus on developing new algorithmic tools for planning optimal
motions for anthropomorphic systems, as well as applying them on humanoid robots.

Problem Statement

The problem of motion planning for anthropomorphic systems can be defined as the
following: given a starting configuration, say a position and posture, we would like
an anthropomorphic system, say a humanoid robot or a digital actor, to reach a goal
configuration if it is possible. Obviously such a system cannot move instantaneously,
so it will have to travel continuously in the environment surrounding it to reach its
goal. The environment will usually not be empty, as it will contain at least the
ground that supports the system. It might also contain moving or static entities
which we do not want the system to collide with in order to avoid damaging either
the entities, the system, or both. Additionally, we want to avoid self-collisions
between the different limbs of the system. Finally, as anthropomorphic systems rely
on making and breaking contact with their environment in order to move, great
care must be given to make sure the system can realize the required motions and
does not fall. This requires a good definition of a system balance and the means to
ensure it. Therefore, finding a solution to the problem of humanoid walk planning

xxi

consists in finding a continuous motion connecting the start configuration to the
goal configuration, such that the anthropomorphic system is never in collision with
the environment or itself when executing this motion, and such that it is always
balanced.

While the found solution is guaranteed to be collision-free, we still know nothing
about its “quality”. In the case of anthropomorphic system motion, the notion of
quality can be linked to how close a motion is to real human motion, i.e. one which a
human being would have made if he was put in the same conditions. Obtaining high-
quality motions is desirable since humanoid robots are bound to move in man-made
environments such as homes, offices, and factories and because it could help them
blend in among humans more seamlessly. Subsequently, we would like to impose
additional constraints on the motion planning problem in order to find motions that
are both collision-free and optimal with respect to a certain cost measure. We refer
to this problem by the name of optimal motion planning.

Figure 2: A robot solves a motion planning problem. The solution is collision-free, but
obviously the robot can do much better (Jorge Cham, PhD Comics).

Contributions

The first contribution of this thesis is a heuristic and efficient optimization method
that takes as input a path computed for the robot bounding box, and produces a

xxii INTRODUCTION

path where a discrete set of configurations is reoriented using an A* search algorithm.
The resulting trajectory leads to a significantly shorter walking time. This method
is validated on various scenarios.

The second contribution is a whole-body motion planner for humanoid robots
which computes collision-free walking trajectories, based on exact models of both
the robot and its environment. It is used to solve manipulation tasks that may
require walking. The first stage of our algorithm uses a sampling-based constrained
motion planner and computes a collision-free statically balanced path for a robot
which can be fixed or sliding on the ground. The formal proof that dynamic walking
makes humanoid robots small-space controllable is then established; this directly
implies that this first path can always be approximated by a dynamically balanced,
collision-free walking trajectory. This well-grounded method is implemented and
the results are validated on several environments.

A new framework for optimal motion planning is proposed as a third contribu-
tion. Given a humanoid robot geometric and dynamic model, an exact model of the
environment, start and end configurations, and a robot contact stance, we first plan
a collision-free statically balanced path that satisfies all kinematic constraints. We
convert the path to an initial trajectory using a suitable time parametrization, and
we then optimize it to generate a locally-optimal collision-free dynamically-balanced
trajectory. This involves both finding a new time parametrization for the trajectory,
and reshaping the path in a geometrical sense; thus, it is not simply a problem of
optimal path tracking. In order to ensure (self-)collision avoidance during the opti-
mization process, we choose to model distance constraints using bounding capsules
around the robot exact body geometries. We provide an automatic bounding cap-
sule generation tool; it relies on a numerical optimization problem formulation that
allows us to find the minimum-volume capsules around bodies which are modeled
by polyhedra. The capsules allow us then to enforce collision-avoidance constraints
between the robot, the obstacles and itself.

Outline of This Thesis

The thesis is organized by contribution order, and the related work is explained
when needed. Chapter 1 describes the path optimization method for humanoid
walk planning. Chapter 2 deals with the second contribution, namely whole body
motion planning and the associated small-space controllability proof. Finally, the
optimal motion planning framework and the automatic bounding capsule generator
are detailed in Chapter 3.

xxiii

Publications in This Thesis

Journal

− Sébastien Dalibard, Antonio El Khoury, Florent Lamiraux, Alireza Nakhaei,
Michel Täıx and Jean-Paul Laumond. Dynamic Walking and Whole-
Body Motion Planning for Humanoid Robots: an Integrated Ap-
proach, International Journal of Robotics Research, 2013.

Peer-Reviewed International Conferences

− Antonio El Khoury, Michel Täıx and Florent Lamiraux. Path Optimization
for Humanoid Walk Planning: an Efficient Approach, International
Conference on Informatics in Control, Automation and Robotics, 2011.

− Sébastien Dalibard, Antonio El Khoury, Florent Lamiraux, Michel Täıx and
Jean-Paul Laumond. Small-Space Controllability of a Walking Hu-
manoid Robot, IEEE International Conference on Humanoid Robots, 2011.

− Antonio El Khoury, Florent Lamiraux and Michel Täıx. Optimal Motion
Planning for Humanoid Robots, IEEE International Conference on
Robotics and Automation, 2013.

Videos of Simulations and Experiments

Videos of simulations and experiments realized in this thesis can be found at this
address:
http://www.laas.fr/~aelkhour/video/thesis.html

Software Contributions in This Thesis

Several open-source software packages were created or extended throughout this
thesis. Some of them include:

− kws-hash-optimizer : a package for an efficient path optimization method,
which is described in Chapter 1.

− hpp-wholebody-step-planner : a package for humanoid whole-body motion plan-
ning. It implements the algorithm that is presented in Chapter 2 of this thesis.

− roboptim-capsule: an automated bounding capsule generator over polyhedrons.
It is based on an optimization formulation, which is presented in Chapter 3.

− MetaPOD (Meta-Programming Optimized Dynamics): a template-based C++
implementation of [Featherstone 08]. It is used in the optimal control formu-
lation which is described in Chapter 3.

http://www.laas.fr/~aelkhour/video/thesis.html

xxiv INTRODUCTION

1

Chapter 1

Path Optimization for
Humanoid Walk Planning: an
Efficient Approach

This chapter deals with path optimization for humanoid walk planning in cluttered
environments. Under the assumption that the humanoid robot will walk on a flat
floor in a perfectly modeled static environment, it presents a heuristic and efficient
optimization method that takes as input a path computed for the humanoid bound-
ing box, and produces a path where a discrete set of configurations is reoriented
using an A∗ search algorithm. A pattern generator is then used to generate a tra-
jectory that minimizes walking time. This method is validated in various scenarios
on the humanoid robot HRP-2.

1.1 Motion Planning in the Configuration Space

The problem of motion planning is now well formalized in robotics and several books
present the various approaches [Latombe 91, Choset 05, LaValle 06]. One particu-
larly useful concept is the one of configuration space CS [Lozano-Perez 83], which is
the set of all configurations q of a robot R; q is a vector comprised of the n indepen-
dent degrees of freedom (DoF) that are sufficient to uniquely identify the full state
of the robot at each instant. CS defines then a manifold of dimension n. Some of the
robot body positions can generate (self-)collisions; the equivalent configurations will
be said to be in collision, and the set of all configurations in collision is denoted by
CSobs ⊂ CS. Its complement is denoted by CSfree and is called the free configuration
space. Using these notations, we can redefine the motion planning problem as the
answer to the following question: is there a continuous path P : [0, 1]→ CSfree that
connects a start configuration qs to a goal configuration qg, and what is it?

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 2

qs

qg qg

P

CS

P

O

O

O

O

CS

1

3

2

qs

Figure 1.1: Left: A valid path is computed by the deterministic algorithm. Arrows show the
attractive and repulsive potential fields. Thin lines show the potential lines. Right: Example
of problem where the stable local minimizer does not coincide with the goal configuration,
which is the global minimizer. P is thus not a solution to the path planning problem.

1.1.1 Deterministic Algorithms

This question can be answered through the use of deterministic algorithms; for a
given number of tries, they will always compute the same valid path P .

One class of algorithms, mainly developed in the past 30 years, relies on repre-
senting CSobs explicitly in order to build a graph, also called roadmap, that repre-
sents the connectivity of CSfree. Solving the motion planning problem then boils
down to a graph exploration to connect qs to qg. A non-exhaustive list of these
methods includes cellular decomposition, Voronoi diagrams, visibility graphs, and
Canny’s algorithm [Goodman 04].

Such algorithms offer the nice property of completeness, i.e. they can always
provide an answer to the motion planning problem as defined previously. But while
they work well for solving path planning problems in low-dimensional configuration
spaces, using them in high-dimensional configuration spaces is either impossible
by design, or is computationally expensive, as building CSfree requires finding its
frontiers, and computation time is at best exponential with respect to the dimension
of CS.

Other approaches are inspired from real-time motion generation techniques, such
as the one detailed in [Khatib 85], which consists in assigning artificial attractive
potentials on the goals, and repulsive ones around the start configuration and the
obstacles. The robot is then subject to forces that will direct it from the start
configuration towards the goal configuration. However, because of the locality of the
planner, a path may be computed while not being a solution to the path planning
problem. This can happen in a maze-like environment when a stable equilibrium
point other than the goal configuration is found (see Figure 1.1).

1.1. MOTION PLANNING IN THE CONFIGURATION SPACE 3

1.1.2 Sampling-based Algorithms

Deterministic algorithms rapidly reach their limit when the configuration space di-
mension rises above 4. Computation speed plays a big part in choosing which algo-
rithm to use for path planning problems, as many applications require, or at least
aim for, real-time resolution. In this perspective, sampling-based algorithms, such
as Probabilistic Roadmaps (PRM) [Kavraki 96] or Rapidly-exploring Random Trees
(RRT) [Kuffner 00], were developed in the past fifteen years.

Instead of trying to build an explicit representation of CSfree, sampling-based
algorithms rely on approximating the connectivity of CSfree through rejection sam-
pling: random configurations qrand are sampled in CS, and efficient Boolean collision
detection techniques [Hudson 97, Gottschalk 96] reject configurations that produce
collisions, keeping only configurations q ∈ CSfree.

The classic RRT algorithm, as presented in [Kuffner 00], make use of the Voronoi
bias to efficiently explore CSfree and grow a random tree in it. Each iteration of
the algorithm attempts to extend the tree by adding new vertices in the direction
of a randomly selected configuration qrand. Algorithm 1 shows the pseudo-code of
the RRT algorithm. It takes as input an initial configuration qs and grows a tree T
rooted in qs.

Algorithm 1 RRT(qs)

T .Init(qs)
for i = 1 to K do

qrand ← Rand(CS)
qnear← Nearest(qrand,T)
Extend(T ,qnear,qrand)

end for

One way to make the RRT algorithm more efficient is to grow trees from both
the initial and goal configurations, see Figure 1.2. This was first proposed in
[Kuffner 00].

While not being complete (i.e. they cannot tell whether a solution exists or not),
sampling-based algorithms have the weaker property of probabilistic completeness:
if a solution path exists, then the algorithm will be able to compute it with a
probability of 1 when the number of iterations K reaches infinity. In practice, these
algorithms can compute paths in complex real-life environments in a reasonable time
on regular computers and have been used to solve problems for various systems,
ranging from 6-DoF floating objects, to 50-DoF anthropomorphic systems, to 1000-
DoF proteins.

1.1.3 Path Optimization

As shown in Figure 1.2, RRT returns the shortest path P inside the graph that
connects qs to qg. Due to the probabilistic nature of RRT, it is clear that P is not

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 4

qg

qs

CS

PO

O

O

1

2

3

1T

2T

Figure 1.2: A valid path (in green) computed with a bidirectional RRT planner. qstart and
qgoal are the roots of the trees T1and T2 respectively. The algorithm keeps diffusing both
trees until they can be connected together with an edge (in dashed green).

optimal in terms of length. Path optimization methods take a valid, i.e. collision-
free, path as input and try to shorten it while making sure that the output path is
still valid.

Greedy Optimization

A greedy optimizer, such as the one shown in Figure 1.3, left, uses the greedy
approach to shorten and smooth a path. First, it tries to connect directly qs to qg;
if the path is not collision-free, it tries to connect qs to the node preceding qg, and
so on until it reaches qs. This process is then restarted similarly on the following
nodes.

Random Optimization

In the case of the greedy optimizer, the nodes that are in the optimized path are also
nodes of the input path. Random Optimization (RO) tries to bypass some nodes
and keeps the rest. While this simple method runs very fast, it does not always give
the best possible path. A different shortcut strategy can be run in a loop: at each
iteration, two random configurations are sampled on the path, and the optimizer
tries to connect qs to the first, the first one to the second one, and the second one
to qg. The local paths that are still collision-free are then kept to make a shorter
path, as shown in Figure 1.3, right.

1.2. ANTHROPOMORPHIC SYSTEMS 5

Popt Popt

CS

P

P

O

O

O

O

OO
1

3

2

1

2

3

CS

qs qs

qgqg

Figure 1.3: Left: The path P (in dashed green) is optimized with a greedy optimizer.
Right: The optimized path Popt (in continuous green) after several iterations of random
optimization (RO).

1.2 Anthropomorphic Systems

We focus in this work on humanoid robots and digital actors, which are anthropo-
morphic systems. Such systems have a high number of DoF, and are capable of
accomplishing human-like tasks: locomotion (such as walking, running and park-
our), manipulation, or both. These tasks can be accomplished thanks to the fact
that anthropomorphic systems are both underactuated and highly redundant.

In the remainder of this work, we will refer indistinguishably to anthropomorphic
systems, humanoid robots and digital actors.

1.2.1 Underactuated Systems

A robot R is usually composed of a set of rigid bodies (Bi)i, i ∈ 0..NB, and a
set of joints (Ji)i, i ∈ 1..NJ , which constrain the body positions. A rigid body
has a mass, an inertia and a given geometry. We use the kinematic tree formalism
proposed in [Featherstone 08] to model a full robot: a node of the tree represents a
body of the robot, while an arc (or edge) represents a joint Ji of the robot which
constrains the motion of the successor body Bi with respect to its parent body Bλi
(see Figure 1.4). Note that in the tree representation, each body has one and exactly
one parent body, except for the root body which has no parents; this means that
additional constraints have to be added later on in order to correctly model robots
with closed kinematic chains such as parallel robots, or humanoid robots when they
are in contact with their environment.

Joints usually correspond to the actuators on the physical robot. Each type of
actuator will then have an equivalent type of joint (prismatic, revolute, etc). A
configuration q of such a robot can then be defined as the concatenation of all joint
DoF values, and the set of all configurations is called the actuated configuration
space Q. This is however not sufficient in the particular case of anthropomorphic
systems, which rely on making and breaking contact with their environment – the

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 6

world

Bi

Ji

Bλ(i)

Bλ(i)

Ji

Bi

Figure 1.4: Left: schematic view of a humanoid robot: bodies are connected with joints
(yellow circles) which represent the actuators. A fictitious 6-DoF joint, or floating joint
(purple circle), is added to move the robot in SE(3). Right: A kinematic tree view of the
same robot, where bodies and joints are represented by nodes and edges respectively.

1.2. ANTHROPOMORPHIC SYSTEMS 7

Be
Be

Figure 1.5: Anthropomorphic systems are highly redundant systems. For a desired Cartesian
position (in blue) of the end effector Be, there exists more than one configuration q that
accomplish this task. Left and right: two possible solution configurations.

floor for instance – in order to move in their workspace. Additional information in the
configuration vector is needed to model the general position of the system, and not
only its actuators. Anthropomorphic systems are therefore said to be underactuated
systems.

We therefore introduce a 6-DoF floating joint, which we attach to the root of the
existing kinematic tree containing the actuated joints. The successor body of the
floating joint will be called the floating base. Note that any body of the kinematic
tree can be chosen to be the floating base; in Figure 1.4, the floating base is the
“waist” of the robot. Thus, a full configuration q of the robot R is an element of
the configuration space CS = SE(3) × Q.

1.2.2 Kinematic Redundancy

We briefly introduce here the concept of kinematic redundancy. Figure 1.5 shows
that for a same target Cartesian position of the end effector Be, there exists more
than one configuration of R that allows Be to reach the target. The robot R is
therefore kinematically redundant with respect to the task of reaching the object.
One could imagine assigning multiple tasks to be accomplished at the same time, or
even exploring CS while continuously accomplishing one or more tasks. This will be
discussed more thoroughly in Chapter 2.

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 8

1.3 Walking and Balance

As stated in Section 1.2.1, anthropomorphic systems are underactuated. This means
that they have to press some of their bodies against their environment in order to
produce a displacement. In terms of dynamics, this is equivalent to saying that the
environment exerts forces on contact surfaces of the robot. Note, however, that not
all kinds of forces can be achieved, as the environment cannot for instance pull a
body towards it in order to retain a contact. Great care must be then given to make
sure that a planned motion is indeed achieved on a given system and environment.
The concept of balance can be thus introduced: a motion will be balanced, provided
that there are sufficient external forces which allow both achieving this motion and
keeping the system physical integrity. In the general case, this does not necessarily
imply that the system will not fall; a humanoid robot executing a back-flip is tech-
nically falling in the absence of contact forces, but, as long as it lands back safely on
the ground without damaging its bodies, sensors or actuators, this motion is deemed
to be balanced.

In this work, as we focus on the particular case of humanoid walking on a flat
floor, we can rely on results from walking system stability analysis [Wieber 02] in
order to verify and guarantee an anthropomorphic system balance during a walking
motion.

1.3.1 Zero-Moment Point (ZMP)

We assume here that the robot R is walking on a flat horizontal floor, to which we
associate the normal vector u. We also assume that the robot is always in contact
with the floor using its feet, i.e. that there are no jumps, and that all contacts are
non-sliding. We will call these assumptions the walking conditions. R is then subject
to its weight and to contact forces, and the total wrench of applied forces can be
written as:

∑
i

mig +
∑
k

fck∑
i

mixi × g +
∑
k

pck × fck

 , (1.1)

where mi and xi are respectively the mass and center of mass vector of rigid body
Bi, g is the gravity acceleration vector, and pck and fck are respectively the position
and force vectors for contact ck.

Newton’s second law of motion states that the total wrench of forces must be

equal to the system dynamic wrench, denoted

(
f
n

)
. Let m and xG denote respec-

tively the total mass of the robot and its Center of Mass (CoM) position. Assuming
that the walking conditions are verified, the analysis presented in [Wieber 02] can
be applied to guarantee that a walking motion is dynamically balanced if and only
if the vertical projection of the point defined by:

1.4. HUMANOID WALK PLANNING 9

mgxG + u× f

mg + f .u
(1.2)

is always in the interior of the convex hull of the contact points; the convex hull is
also known as the support polygon.

This point is called the Zero-Moment Point (ZMP) [Vukobratovic 69], where it
is defined as the point on the floor where the horizontal components of the total
moment are zero. It is also known as the Center of Pressure (CoP), as it can be
found by computing the barycenter of contact points weighted by normal contact
forces applied on them. We further discuss the use of the ZMP formulation in
Chapter 3.

Note that in the particular case where the dynamic wrench is zero, i.e. when body
velocities and accelerations are zero, the point defined in Equation (1.2) coincides
with the CoM. This allows us to guarantee that a quasi-static walking motion is
statically balanced if and only if the vertical projection of the CoM is always in the
interior of the support polygon.

1.3.2 Cart-Table Model

The above formulation of ZMP is rather hard to control. One way to deal with
the complexity of a humanoid robot kinematic tree is to use the so-called “cart-
table” simplified model, where the walking robot is modeled by a point mass at a
fixed height, see Figure 1.6. The equations giving the ZMP horizontal coordinates
(px, py) as functions of the CoM horizontal coordinates (x, y) in the cart-table model
were presented in [Kajita 03]:(

px
py

)
=

 x− zc
g
ẍ

y − zc
g
ÿ

 (1.3)

where zc is the constant height of the CoM and g is the gravity constant.
Based on this simplified model, a walking pattern generator is proposed in

[Kajita 03]. Starting from a time-parameterized footprint sequence, a reference ZMP
trajectory is built such that it connects the footprint centers and remains inside the
support polygon. The support polygon consists of one footprint in single-support
phases, and of the convex hull of two consecutive footprints in double-support phases.
A preview-control method uses then Equation (1.3) to derive the CoM trajectory,
see Figure 1.7, and inverse-kinematics methods are finally used to generate a whole-
body dynamically balanced walking motion of the system.

1.4 Humanoid Walk Planning

The motion planning problem is certainly a complex one in the case of humanoid
robots, which are high-DoF redundant systems that have to verify bipedal balance
constraints. Various planning strategies can be found in the literature.

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 10

zc

px
x

m ẍ

Figure 1.6: Simplified model of a cart on table. The cart can move horizontally along one
dimension on the table with a non-zero acceleration and represents the robot CoM. The table
foot represents the contact surface of the robot. Note that in its current state, the robot is
dynamically balanced, as the ZMP lies on the table foot. The CoM vertical projection, on
the other hand, is outside the table foot and static balance is not ensured.

Desired ZMP trajectoryDesired ZMP trajectory
CoM trajectory

Figure 1.7: An illustration of the walking pattern generator: a desired ZMP trajectory
(in grey) connects footprints. During the single-support phase, the ZMP stays under the
support foot, and switches feet during the double support phase. The cart-table model is
then used to produce the corresponding CoM trajectory (in blue).

1.4. HUMANOID WALK PLANNING 11

1.4.1 Footstep Planning

One possible way of addressing humanoid walk planning is by reasoning on the foot-
step level. In [Kuffner 01, Chestnutt 05], humanoid footstep planning schemes are
described. Starting from an initial footstep placement, they use an A∗ graph search
[Hart 68] to explore a discrete set of footstep transitions. The search stops when
the neighborhood of the goal footstep placement is reached. A similar approach
[Garimort 11] that uses D∗ Lite allows fast re-planning in the presence of dynamic
obstacles. While the previous methods are very efficient, they are not practical in en-
vironments with narrow passages; in [Xia 09, Perrin 12b], the computational cost of
footstep planning is reduced by adapting RRT planning algorithm and efficiently ex-
ploring the discrete footstep space. In their most recent work, [Perrin 11, Perrin 12a]
give an elegant proof of the equivalence between the discrete footstep planning prob-
lem and a continuous motion planning problem, which enables the use of off-the-shelf
planning algorithms such as RRT.

1.4.2 Constraints-Based Motion Generation

Another category relies on prioritized whole-body task planning: kinematic redun-
dancy is used to accomplish tasks with different orders of priorities [Khatib 04,
Saab 12]. Dynamic balance and obstacle avoidance can then be defined as unilat-
eral constraints that the algorithm has to verify during the whole motion. The
trajectory is then generated by specifying a set of goal tasks – which could be a
goal configuration – and let this set act as an attractor, in a way similar to the
simpler example shown in 1.1.1. Using such as scheme, the work in [Kanoun 09]
defines a robot augmented with a sequence of footprints and formulates the problem
of locomotion planning as an optimization problem. Such a scheme works well in
the presence of simple obstacles, but is prone to falling in local minima, failing to
find solutions for more complex environments.

1.4.3 Constrained Motion Planning

More recently, sampling-based motion planning algorithms were adapted to effi-
ciently explore a constraint submanifold of CS. In [Bretl 06, Hauser 10a], this strat-
egy is used to plan on a union of submanifolds, where each manifold is defined by a
contact limb position and static balance constraints, producing statically balanced
locomotions for hexapods and humanoid robots on uneven terrain. Constrained
motion planning will be further discussed in Chapter 2, where a new dynamically-
balanced locomotion planner is introduced.

1.4.4 Multi-Contact Planning

It is interesting to note that while collision avoidance is a requirement in motion
planning, some features of the environment can in fact be useful to solve the problem,
especially in the case of underactuated systems. In [Bouyarmane 12, Escande 13], a

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 12

multiple-contact-point stance planner looks for authorized contact surfaces in order
to help the robot reach its goal. The contact points do not have to be coplanar, and
the planner produces a sequence of statically balanced postures for a humanoid robot
which can press his feet and hands against objects in the environment. A heuristic
method is used to direct the search towards the goal, so this planner does not offer
a completeness property. Once the contact stance sequence is obtained, motion
generation tools can be used to generate statically balanced or dynamically balanced
locomotion trajectories.

1.4.5 Decoupled Planning

Finally, another strategy consists in dividing a high-dimensional problem into smaller
problems and solving them successively [Zhang 09]. The idea of dividing the problem
into a two-stage scheme is described in [Yoshida 08]: A 36-DoF humanoid robot is
reduced to a 3-DoF bounding box. Using the robot simplified model, the PRM algo-
rithm solves the path planning problem and generates a valid path for the bounding
box. A geometric decomposition of the path places footsteps on it, and the walk
pattern generator described in Section 1.3 finally produces the whole-body trajec-
tory for the robot. In [Moulard 10], this two-stage approach is also used; numerical
optimization of the bounding box path produces a time-optimal trajectory that is
constrained by foot speed and distance to obstacles. Optimization techniques will
be discussed in details in Chapter 3, where we describe an optimal motion planning
framework.

1.4.6 Holonomic vs Nonholonomic Walking Motion

An important notion on humanoid walk planning is the one of holonomic motion.
A holonomic constraint is given by:

C(q) = 0, (1.4)

with q the configuration vector. When a constraint of the form

C(q,
.
q) = 0, (1.5)

with
.
q =

dq

dt
, cannot be integrated into a form similar to (1.4), this constraint is

called nonholonomic.
In practice, a nonholonomic constraint implies that a system velocity vector

cannot take an arbitrary direction. For instance, you cannot drive a car sideways
(this makes life harder for us when parking), and therefore it has a nonholonomic
constraint. On the other hand, a spherical ball can roll in any direction, which
means it has a holonomic constraint.

So is there a particular constraint that governs human gait? Studies, like the one
described in [Mombaur 10], established a model that presents trajectory planning
as an optimization problem of a cost function. Basically, it is shown that for small

1.5. CONTRIBUTION: REGULAR SAMPLING OPTIMIZATION 13

distances and small orientation variations between the start and goal configurations,
humanoid motion obeys a holonomic constraint, and sidestepping is allowed. How-
ever, for greater distances and orientation variations, a nonholonomic constraint
rules human gait, and sidestepping is forbidden, i.e. the human direction is always
tangent to its path. But one should note that this model is only applicable in the
case of the absence of any obstacles, and it is clear that in the presence of narrow
passages, a human would be forced to adopt holonomic motion in order to walk
sideways.

The path planning scheme in [Yoshida 08] is designed to this end; a PRM algo-
rithm first builds a roadmap with Dubins curves [Dubins 57], but such curves impose
a nonholonomic constraint and narrow passages cannot be crossed. The roadmap is
therefore enriched with linear local paths. As a result, this planning scheme gener-
ates motions such that the robot remains tangent to its path most of the time and
uses sidestepping only in narrow passages.

1.5 Contribution: Regular Sampling Optimization

The work of [Moulard 10] provides a sound way for generating nice walking trajec-
tories, using numerical optimization to minimize the robot walking time along the
path while enforcing velocity and obstacle distance constraints. However, after hav-
ing tried this approach, we came to the conclusion that it was too computationally
expensive given the simple nature of the robot model, with optimizations taking
several minutes even for simple environments.

While using the same two-stage approach of [Yoshida 08], a simpler heuristic
method that generates near time-optimal humanoid trajectories is proposed. First
the PRM algorithm and the Dubins local paths are replaced with an RRT-Connect
algorithm and linear local paths. The path is then optimized by locally reorienting
the robot bounding box on a discrete set of configurations. Our heuristic gives
priority to nonholonomic motion; holonomic motion is used only to pass in narrow
passages or avoid nearby obstacles, thus generating short walking trajectories.

The following section presents this method and explains how it is integrated in
the motion planning scheme. Examples of different scenarios, including a real one
with the HRP-2 platform, are shown in section 1.7.

1.6 Regular Sampling Optimization

Assuming full knowledge of the environment, the RRT algorithm produces
a collision-free piecewise linear path PRRT for the robot bounding box (in offline
mode), i.e. the path consists of the concatenation of linear local paths LPRRT .

Due to the probabilistic nature of RRT, PRRT may not be optimal in terms of
length, and a preliminary random shortcut optimization (RO) can be run in order
to shorten it (See Figure 1.8). Though the optimized path P is collision-free, the

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 14

(a)

(c)

(b)

Figure 1.8: Top view: (a) RRT-Connect path for the bounding box passing between two
chairs. (b) Optimized bounding box path by random optimization (RO). (c) Optimized
bounding box after adding regular sampling optimization (RSO) .

1.6. REGULAR SAMPLING OPTIMIZATION 15

bounding box orientation is such that it could lead to a trajectory which is not time-
optimal. For instance, the humanoid robot could spend a long time walking sideways
or backwards over a long distance in an open space. An additional optimization stage
is introduced to address this issue in the next section.

1.6.1 Bounding Box Path Optimization

Note that each configuration q can be written as q = (X, θ), where X = (x, y) de-
scribes the bounding box position in the horizontal plane, and θ gives its orientation.
The optimizer reorients the bounding box along P by changing θ while retaining the
value of X.

For this purpose, an A∗ search algorithm is executed. First, P is regularly sam-
pled. Using a discrete set of admissible orientations for each sample configuration,
a cost function and a heuristic estimation function, the bounding box orientation is
then modified along P . An optimized path Popt is created and leads to a trajectory
which is time-optimal with the respect to the expanded graph.

Preliminary Notations

After running RO on the piecewise linear path PRRT , the path P is also piecewise
linear, and its first and last configurations are denoted by qs and qg.

Let dsample ∈ R+ \ {0} be a sampling distance. Sampling P with a distance
dsample means dividing each local path LPj of P into smaller local paths of length
dsample; each new local path end is then a sample configuration. Note that the last
interval on each local path LPj can have a length smaller than dsample. The nth

sample configuration of P in its initial state can be obtained by indexing new local
path ends starting from qs, and is denoted qinitn .

The admissible orientation states need to be defined. We aim to make a hu-
manoid robot reach its goal as soon as possible. Since the robot is faster while
walking straight than side-stepping, we attempt to change the orientation of each
initial sample configuration qinitn such that the bounding box is tangent to the local
path, and we introduce a new configuration denoted qfrontn . To take into account the
fact that there may be obstacles that forbid a frontal orientation, we also create qlat1n

and qlat2n that are rotated by
π

2
and −π

2
relative to the path tangent, see Figure 1.9.

One particular case is local path end configurations: the mean direction of the two
adjacent local paths is considered to define frontal and lateral configurations. This
is done to ensure a smooth transition between two local paths.

A sample configuration whose orientation is unknown will be denoted by qstaten .
It can have any orientation state of the set {init, front, lat1, lat2} except for qs
and qg which remain in their initial state. Ideally, the algorithm should be able (as
long as there are no obstacles) to put each sample configuration in the frontal state,
create a new path Popt and generate a time-optimal trajectory for the robot.

An A∗ search is run to achieve this goal; the algorithm functions are described
in the following section.

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 16

Popt

G

P

qgqs

lat2

lat1

front

init

n n+1

Figure 1.9: Each initial sample configuration can be rotated and be in one of four states.
Starting from qs, the A∗ search algorithm searches the graph G that contains only valid
nodes and arcs to produce an optimized path Popt.

A∗ Function Definition

An A∗ search algorithm can find an optimal path in a graph as long as the latter and
an evaluation function are correctly defined. Starting from qs, A∗ expands in each
iteration the admissible transitions from one sample to the next one in the graph
and evaluates, using the evaluation function, a lower bound of the cost-to-go from
each state to the goal state, see Figure 1.9.

A graph G is defined to be a set of nodes and arcs. A valid node qstatenn is
defined to be a configuration with no collisions, and a valid arc qstatenn q

staten+1

n+1 is
a collision-free local path. The whole graph G could be built before running A∗

by testing all nodes and arcs and making sure they are collision-free. But collision
tests are slow, and A∗ uses a heuristic estimation function to avoid going through
all nodes. An empty graph G is thus initialized and nodes and arcs are built only
when necessary. A successor operator needs to be defined for this purpose.

The Successor operator Γ(qstatenn): Its value for any node qstatenn is
a set {(qstaten+1

n+1 , cn,n+1)}, where q
staten+1

n+1 denotes a successor node, and cn,n+1

is the cost of going from qstatenn to q
staten+1

n+1 . The cost cn,n+1 is defined to be the

distance D(qstatenn , q
staten+1

n+1) between two nodes of G; it computes the walk time

1.6. REGULAR SAMPLING OPTIMIZATION 17

vf

vlat

vmax
lat

vmax
f

vmin
f−

C
v

Figure 1.10: The rectangular bounding box speed vector v is bounded inside the hashed area
defined by the speed constraint C. The area is bounded by the union of two half-ellipsoids.

from qstatenn to q
staten+1

n+1 . The speed constraint C is defined as:

C =

(
vf

vfmax
)2 + (

vlat

vlatmax
)2 − 1 if vf >= 0

(
vf

vfmin
)2 + (

vlat

vlatmax
)2 − 1 if vf < 0

(1.6)

where vf and vlat are respectively the frontal and lateral speed, and vfmin, vfmax and

vlatmax their minimum and maximum values (See Figure 1.10). D(qstatenn , q
staten+1

n+1)
can be then computed by integrating this speed constraint along the linear path
connecting qstatenn to q

staten+1

n+1 .

Having expressed the successor operator, which allows the optimizer to choose
which node to expand at each iteration, the A∗ evaluation function can be defined.

The Evaluation Function f̂(qstaten): It is the estimated cost of an optimal path
going through qstaten from qs to qg and can be written as:

f̂(qstaten) = ĝ(qstaten) + ĥ(qstaten) (1.7)

where ĝ(qstaten) is the estimated cost of the optimal path from qs to qstaten and
ĥ(qstaten) is a heuristic function giving the estimated cost of the optimal path from
qstaten to qg.

ĥ(q) must verify ĥ(q) ≤ h(q) for any q to ensure that the algorithm is admissible,
i.e. that the path from qs to qg is optimal. Since the robot is fastest while walking

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 18

dsample

O2

1O

qs

qn+1
front

qn
lat1

qn
init

qn+1
init

Figure 1.11: Local paths are regularly sampled (light grey) and each sample configuration
is reoriented (dark) while considering obstacles O1 and O2.

straight forward in the absence of obstacles, ĥ(qstaten) is defined as:

ĥ(qstaten) = D(qstaten , qfrontn+1)

+

Nsample−n−2∑
k=1

D(qfrontn+k , qfrontn+k+1)

+D(qfrontn+1 , qg)

(1.8)

where Nsample is the total number of initial sample configurations in P including qs
and qg. ĥ(qstaten) thus sums the cost of walking along P while staying tangential to
the path with the start and end transition costs from qstaten and to qg.

Now that the A∗ functions are fully defined, a search algorithm can be run to
compute an optimal path Popt by changing the orientation of each sample node.
Algorithm 2 describes the Regular Sampling Optimization (RSO) method, and an
example is shown in Figure 1.11.

1.6.2 Motion Generation for a Humanoid Robot

A collision-free path P for the 3-DoF bounding box can be found using RRT-Connect
and RO. The regular sampling optimization (RSO), which is the subject of this

1.6. REGULAR SAMPLING OPTIMIZATION 19

Algorithm 2 RSO(P , dsample)

// Closed set
C ← ∅
// Open set
O ← {(qs, f̂(qs))}
qstatenn ← qs
while qstatenn 6= qg do

C ← C ∪ {(qstatenn , f̂(qstatenn))}
// Expand node
En+1 ← {(qstaten+1

n+1 , cn,n+1)} ← Expand(qstatenn , P, dsample)

for q
staten+1

n+1 ∈ En+1 do
// Mark as “open” each successor not already marked “closed”
if (q

staten+1

n+1 , f̂) /∈ C then

O ← O ∪ {(qstaten+1

n+1 , f̂(q
staten+1

n+1)}
else

// Remark as open each closed successor for which evaluation function is
now smaller than stored value
if f̂(q

staten+1

n+1) < f̂ then

O ← O ∪ {(qstaten+1

n+1 , f̂(q
staten+1

n+1)}
end if

end if
end for
// Select open node whose value evaluation function value is the smallest
qstatenn ← arg min

q∈O
f̂(q)

end while
C ← C ∪ {(qg, 0)}
// Return closed set which makes up optimized path.
return C

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 20

RRT-Connect RO RSO Robot Trajectory Total

Chairs 3.97 1.89 2.14 66.1 74.1

Boxes 0.0917 2.50 0.238 65.7 68.6

Apartment 1.21 2.43 2.41 223 229

Table 1.1: Computational time, in seconds, of each planning stage for the presented scenar-
ios.

RO RO+RSO

Chairs 40 35

Boxes 66 57

Apartment 200 120

Table 1.2: Humanoid robot walk time, in seconds, for the presented scenarios using RO
alone and a RO-RSO combination.

work, is then applied on the path and produces a path Popt that gives priority to
nonholonomic motion.

Once the bounding box trajectory is computed, the robot has to walk along
it. A footstep sequence is thus generated along Popt by geometric decomposition of
the path, and the pattern generator cited in Section 1.4 then produces the robot
whole-body trajectory.

1.7 Examples

This section presents experimental results of the path optimizer after it has been
inserted in the previously described walk planning scheme. Distance parameters
vfmax, vlatmax, vfmin are set to 0.5, 0.1, and 0.25 m.s−1 respectively. Note that these
parameters play a key role in giving priority to forward walking with respect to
lateral and backwards walking. Indeed kinematic constraints are usually such that
it is very hard to achieve fast lateral walking. Also sensors, such as the cameras
facing the forward direction, can require preferring forward walking to backward
walking.

Since the A∗ search only takes place over the graph of discretized configurations
of the input path, it is important to choose a proper value of the sampling interval
dsample. If the value is too small, the search space will be much bigger, possibly
leading to better trajectories, but leading to an explosion of the A∗ search time. If
the value is too high, the A∗ search will be very fast in the small trajectory space, but
we risk missing some optimizations on the trajectory. We found that setting dsample

to be equal to
h

6
, where h is the humanoid height, provided a good tradeoff between

computation time and trajectory quality; dsample gives then a broad approximation
of the nominal human step length.

Tests are performed on a 2.13 GHz Intel Core 2 Duo PC with 2 GB RAM.

1.7. EXAMPLES 21

Figure 1.12: Perspective view of the simulated HRP-2 trajectory on the final optimized path
passing between two chairs.

Simulations of the humanoid robot HRP-2 are run in three scenarios. The first one
is a small environment where HRP-2 has to pass between two chairs. The second
environment is uncluttered with few obstacles lying around, while the last one is
a bigger apartment environment where the robot has to move from one room to
another while passing through doors. The chairs scenario motion is also replayed on
the real humanoid robot HRP-2 [Kaneko 04], see Figure 1.13.

Table 1.1 shows computation times for each stage of the planning scheme: RRT-
Connect, RO, RSO, and the whole-body robot trajectory generation. In order to
show the optimizer contribution, robot walk times are also measured by creating a
trajectory directly after RO, and comparing it with a trajectory where the RSO was
added, see Table 1.2.

1.7.1 “Chairs” Scenario

Figure 1.8 shows the bounding box RRT path and the RO path for the chairs
scenario. It is obvious that RO creates a shorter path. However, the bounding box
starts rotating from the beginning of the path even though both chairs are still far.
This causes the robot trajectory to not be time-optimal since walking sideways takes
a longer time than walking straight.

However, after applying RSO, it is clear that the bounding box stays oriented
towards the front and rotates only when it reaches the chairs. Figure 1.12 and
Table 1.2 show that the walk time is 12% shorter and the final trajectory for HRP-2
is more realistic. Note that the RSO takes 2,144 ms to be executed on the chairs
path, which is less than 3% of the total computation time.

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 22

Figure 1.13: Humanoid Robot HRP-2 uses holonomic motion, or side-stepping, to pass
between two chairs.

Figure 1.14: Perspective view of HRP-2 optimized trajectory in the boxes scenario.

1.8. CONCLUSION 23

Figure 1.15: Perspective view of HRP-2 optimized trajectory in the apartment scenario.

1.7.2 “Boxes” Scenario

Here, an uncluttered environment is considered, and it can be seen that RRT-
Connect and RSO computation times are very low compared to other environments.
This can be explained by the fact that a tree connecting start and goal configura-
tions is easier to find, and that the frontal orientation state is valid for all considered
samples on the path, see Figure 1.14.

1.7.3 “Apartment” Scenario

The planning scheme is finally applied in the apartment scenario. In Figure 1.15,
it is evident that HRP-2 walks facing forward through the doors. As with previous
scenarios, the trajectory is more realistic than a trajectory where RSO is not used.
The added computation time for RSO is 2,412 ms, which is insignificant compared
to the 228 seconds which are required by the whole planning scheme.

Additionally, since the environment is significantly larger and more constrained
than the previous ones, the walk time difference is more striking: Table 1.2 shows
that it takes the robot 40% less time to cross the apartment when an RO-RSO
combination is used.

1.8 Conclusion

In this chapter, a novel simple optimization method is presented for humanoid walk
planning that relies on a decoupling between trajectory and robot orientations. It

CHAPTER 1. PATH OPTIMIZATION FOR HUMANOID WALK PLANNING:
AN EFFICIENT APPROACH 24

uses an A∗ search that takes as input a path for the robot bounding box, and pro-
duces a path where a discrete set of configurations have been reoriented to generate
a realistic time-optimal walk trajectory. Results show that new trajectories are more
satisfactory while the added computation time is insignificant compared to the whole
planning time.

Achieving humanoid walk planning on flat surfaces using the bounding box ap-
proach is both simple and efficient; it allows using off-the-shelf sampling-based plan-
ners to efficiently explore the configurations space, thus removing the need to take
into account additional kinematic and balance constraints when planning for the
whole articulated robot. But it has one major drawback: in order to have a sound
framework which always produces collision-free walking trajectories, the bounding
box must contain all the robot geometries and take into account the robot swaying
motion during walking. Thus, it is a rather conservative method which cannot be
used for manipulation tasks, and which might not even succeed in finding collision-
free walk trajectories in cluttered environments. If we go back to the chairs example
in Section 1.7.1, we can show that the lateral walking motion could have been avoided
if the HRP-2 had lifted its arms over the two chairs. Beside leading to an even faster
motion, walking forward could be necessary if vision systems were needed to achieve
robot localization and/or environment mapping.

In the next chapter, we introduce a sound whole-body motion planning algorithm
that allows planning collision-free walking trajectories for the fully articulated hu-
manoid robot, hence releasing it from its bounding box constraint and increasing its
accessible workspace.

25

Chapter 2

Dynamic Walking and
Whole-Body Motion Planning
for Humanoid Robots: an
Integrated Approach

The humanoid walk motion planning problem was tackled in Chapter 1 by first
planning a geometric path for the robot bounding box, then transforming the path
into a dynamic walking trajectory by laying footprints along it and using a pattern
generator. However, this approach reasons only on the walking level, and does not
take into consideration the fact that the upper body could move. Indeed, some
difficult and complex situations may require considering exact 3D models of a hu-
manoid robot and its environment. This applies when passing between two chairs
for instance (see Section 1.7.1), as lifting the arms of the robot outside of the bound-
ing box could enable the humanoid robot to use forward walking during the whole
motion, which will lead to faster execution time. Furthermore, as the robot arms
are primarily used for manipulation, freeing them from the bounding box can allow
the generation of whole-body motions involving both locomotion and manipulation.

This chapter presents a general method for planning collision-free whole-body
walking motions for humanoid robots. We rely on a randomized algorithm for con-
strained motion planning; it is used to generate collision-free statically balanced
paths solving manipulation tasks. Then, we show that dynamic walking makes a
humanoid robot small-space controllable. Such a property allows to easily trans-
form collision-free statically balanced paths into collision-free dynamically balanced
trajectories. It leads to a sound algorithm which has been applied and evaluated on
several problems where whole-body planning and walk are needed, and the results
have been validated on the HRP-2 robot.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 26

2.1 Motion Planning in Submanifolds of the Configura-
tion Space

Sampling-based planners, such as the ones presented in Section 1.1.2, have encoun-
tered wide success in generating collision-free paths in high-dimension configuration
spaces. When using sampling techniques on a humanoid robot, a major difficulty
is to take into account contact and balance constraints, which is equivalent to gen-
erating random configurations on zero volume submanifolds of CS. Indeed, the
probability of sampling a configuration qrand in CS such that it lies on such man-
ifolds is zero. In this section, we present recent advances in motion planning on
constraint manifolds using inverse-kinematics (IK) solvers.

2.1.1 Inverse Kinematics

The problem of inverse kinematics for a humanoid robot, or any articulated struc-
ture, is to compute a configuration q to achieve a task x. This task is usually
expressed in the Cartesian space, and can represent an end-effector position and/or
orientation, the CoM position, etc. Some tasks may have more than one solution
configuration, see Section 1.2.2. In the case of most robotics tasks for redundant
systems, the set of solution configurations has a specific topological structure and
forms a differentiable submanifold M of CS, i.e. a set that locally “looks like” the
euclidean space Rm, and such that the tangent vector space TqM is defined for any
q. m is called the dimension of the manifold M.

As the robots we deal with are redundant, it is natural to take advantage of this
redundancy by specifying multiple tasks, potentially with different priorities. This
problem has been widely studied in robotics planning and control literature, and
many Jacobian-based solutions have been proposed, among which [Nakamura 86],
[Siciliano 91], [Baerlocher 98], [Khatib 04] and [Kanoun 09]. Obstacle avoidance
can be taken into account with similar methods. To do so, one has to include the
obstacles as constraints to satisfy, see for example [Kanehiro 08]. These methods are
prone to fall into local minima, thus global motion planning is needed to overcome
this limitation. Note that when local methods find solutions, these are usually
smoother; the choice of using global motion planners is justified by the need for
complete algorithms.

We show here a functional example of an IK solver: its purpose is to find the
root q of a non-linear C1 function f(q) with a tolerance of ε. If we want to find
a configuration on a manifold M, f(q) can be defined as a vector-valued function
that contains the concatenation of all constraints defining M. Note that as the
intersection of two or more manifolds is also a manifold, this constraint solver allows
us also to generate configurations that lie at the intersection of several manifolds.

Algorithm 3 implements a Newton-Raphson method [Bonnans 06]: starting from

an initial value of q, q is updated iteratively by −α
(
∂f

∂q
(q)

)+

f(q), where α denotes

2.1. MOTION PLANNING IN SUBMANIFOLDS OF THE CONFIGURATION
SPACE 27

a gain and

(
∂f

∂q
(q)

)+

denotes the Moore-Penrose pseudo-inverse of the Jacobian

of f(q). The use of an adaptive gain α, which increases iteratively from an initial
value α to a maximum value αmax ∈ [0, 1], allows the overshoot avoidance and
convergence acceleration. The update rule relies on a real factor w ∈ [0, 1]; the
lower w is, the faster α will reach αmax. Obviously, beside the solver parameters,
the solver convergence depends of the initial value of q, and a bad initialization can
lead to either slow convergence or failure. A cutoff number of iterations itmax is
thus introduced to bypass these cases. Note that in this simplistic implementation,
joint limit position bounds are not enforced. Clamping the update at each iteration
allows making sure they are not violated.

In practice, we observe that values of ε = 10−6, α = 0.1, αmax = 0.95 and
w = 0.8 lead to good behavior, i.e. fast convergence and low failure rate. These
values are kept constant for all scenarios in this work.

Algorithm 3 SolveConstraints(q, f , ε): find q such that f(q) = 0

i = 0
while ‖f(q)‖ > ε and i ≤ itmax do

// (.)+ denotes the Moore-Penrose pseudo-inverse

q← q− α
(
∂f

∂q
(q)

)+

f(q)

i ← i+ 1
// Make α tend toward αmax
α← αmax − w(αmax − α)

end while
if ‖f(q)‖ ≤ ε then

return q
else

return failure
end if

2.1.2 Randomized Motion Planning on Constraint Manifolds

This problem of motion planning on constraint submanifolds of CS has been inves-
tigated with success during the last few years; the work of [Berenson 11] presents an
exhaustive survey of Jacobian-based methods. Other recent contributions [Porta 12]
present sophisticated constrained motion planning techniques based on higher-
dimensional continuation.

This section presents an algorithm for constrained motion planning on a subman-
ifold M of the configuration space CS. It presents a simple adaptation of the RRT
algorithm to constrained motion planning, that was first introduced in [Dalibard 09].
A configuration q of CS is said to be valid iff, beside being collision-free, it lies on
the manifold M up to the tolerance ε; we call M the planning manifold.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 28

The problem solved here differs from classic approaches in two ways:

1. the set of valid configurations is defined implicitly, as the set of collision-free
configurations satisfying a given set of inverse kinematics balance constraints;

2. the goal manifoldMg is also defined implicitly, by additional inverse kinemat-
ics constraints.

During global planning, several types of constraints are considered for various rea-
sons:

− Static balance: the CoM of the robot stays above the support polygon center,
the two feet are horizontal on the ground.

− End-effector position and orientation: the goals of some problems presented
in the experimental section of this chapter are defined as a specific robot hand
pose, or a gaze direction.

− Configuration task: this adaptation of randomized motion planning algorithms
uses tasks defined as the distance towards a given configuration in CS. This
will be detailed in the following section.

This formulation of manipulation planning does not include an explicit goal
configuration, so it is not possible to directly grow a tree from the goal. To make
use of the idea of growing multiple trees, the goal manifold is first randomly sampled
and several goal configurations are generated. Then, random trees are grown from
the initial configuration and the random goal configurations. The idea of generating
several goals for manipulation planning was proposed in [Diankov 08].

Goal Manifold Sampling

A goal configuration is generated using the following algorithm:

1. Sample a random configuration qrand in CS with uniform distribution.

2. Call SolveConstraints (Algorithm 3) on qrand, with f(q) defined by the
intersection of the planning and goal manifolds M∩Mg.

3. If success, check for collisions.

Figure 2.1 shows resulting random configurations which satisfy both balance
(M) and reaching (Mg) constraints for the HRP-2 robot.

Random Extensions on a Constrained Manifold

The RRT algorithm is described in Algorithm 1. Figure 2.2 shows an extension of
the classic RRT algorithm, from a configuration already in the tree qnear towards a
random configuration qrand.

2.1. MOTION PLANNING IN SUBMANIFOLDS OF THE CONFIGURATION
SPACE 29

Figure 2.1: Random goal configurations solving a reaching task. All the configurations are
balanced and collision-free, and the right hand of the robot reaches the orange ball.

qnear

T

qnew
qrand

Obstacle

Figure 2.2: One step of extension of the RRT algorithm. The algorithm tries to add the
longest possible edge from qnear towards qrand, while avoiding collisions.

The equivalent random extension on a constrained manifold M, defined by the
constraint function f , starts from a valid configuration qnear ∈ M, and extends
the tree towards a random configuration qrand, while keeping the constraints sat-
isfied. Note that qrand /∈ M. Extension attempts orthogonal to M are useless, as
newly added edges have to be included in M. To extend in directions that follow
the directions of M, we rely on Jacobian-based inverse kinematics. Algorithm 4
presents the adaptation of the classic extend function, and Figure 2.3 illustrates this
extension. The idea is to first project qrand on the tangent space to M at qnear.
Let us call the projected configuration qrand

′. Let qrand
′′ be the result of a call to

SolveConstraints(qrand
′, f , ε). It is the projection of qrand

′ on M. Instead of ex-
tending the tree from qnear towards qrand, the algorithm tries to extend from qnear
towards qrand

′′ while remaining onM. While extending the tree, the configurations
along the new edge are automatically projected onto M. These projections are not
very costly if the edge is close to the constrained manifold.

[Berenson 11] presents a formal proof that projection-based constrained random
motion planning on a fixed dimension manifold is probabilistically complete. This
proof equally applies to this algorithm.

2.1.3 Example

We present in Figure 2.4 an illustration of the use of randomized motion planning
on complex manipulation problems. The humanoid robot HRP-2 faces shelves. It

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 30

Obstacle

Constrained

manifold M

qnear

qrand

TqM
qrand

′

qrand
′′

qnew

Figure 2.3: One step of constrained extension illustrating Algorithm 4: qrand is first pro-
jected on TqM the tangent space ofM. qrand

′ is then projected ontoM at qrand
′′. A classic

RRT extension tries to go as far as possible from qnear towards qrand
′′ while remaining on

M. qnew is then returned.

Algorithm 4 ConstrainedExtend(T ,qnear,qrand, f, ε)
d← Distance(qnear, qrand)
q ← qnear
while d > ε do

qrand
′ ← OrthogonalProject(qrand, TqM)

qrand
′′ ← SolveConstraints(qrand

′, f, ε)
d← Distance(q,qrand

′′)
q←qrand

′′

end while
qnew← RRT::Extend(T ,qnear,qrand′′)

2.1. MOTION PLANNING IN SUBMANIFOLDS OF THE CONFIGURATION
SPACE 31

min max average average
per problem

number of nodes 43.00 481.00 102.70
goal generation time (s) 1.00 1.56 1.22

planning time (s) 67.36 376.84 134.28 44.76

Table 2.1: Experimental results on 20 runs: Each run consists of 3 motion planning problems
and 2 goal generations for the three phases. Time is expressed in seconds.

has to: (i) grasp a ball lying on a shelf, (ii) put it on a higher shelf, (iii) come
back to a natural rest configuration. We can thus define three separate constrained
motion planning problems where the planning manifold M is the static balance
manifold defined in 2.1.2; the goal manifold of problem (i) is defined by a hand pose
constraint (the hand must be horizontal and its position has to coincide with the
ball initial position), and a gaze constraint (the robot has to look at the ball in
its initial position). Similarly, the goal manifold of problem (ii) is defined by hand
and gaze constraints that correspond to the position of the ball on the higher shelf.
Finally, we define the rest configuration as the single goal configuration for problem
(iii).

The goal configuration in phase (i) is in a narrow passage. Note that for phases
(i) and (iii) the ball is also considered as an obstacle. This is necessary to prevent the
robot grasping hand from colliding with the ball during the approach and retraction
phase.

For the two reaching motions in (i) and (ii), we first generate 8 random goal
configurations (Section 2.1.2), then we solve the three constrained motion planning
problems separately. As randomized motion planning algorithms produce log paths,
a classic shortcut method is used to optimize and shorten them.

This set of motion planning problems was run 20 times; results are compiled in
Table 2.1. The performance of SolveConstraints (Algorithm 3) is also measured
when used to project configurations on M; the average number of iterations is 6.5
per call, and the success rate, i.e. the ratio of the number of successfully projected
configurations over the total number of calls, is above 95 percent. This success
rate, high as it is, could be further improved by sampling a better initial configura-
tion of CS, for example by introducing a heuristic bias towards statically balanced
configurations.

2.1.4 Extension to Collision-Free Walk Planning

While the previous algorithm considers motion planning on a single submanifoldM
of CS, similar strategies can be adopted to explore the union of submanifolds ∪Mi

and achieve quasi-static multi-step planning for walking and free-climbing robots,
see [Bretl 06, Hauser 10a]. These methods can be seen as very generic and offer
the property of probabilistic completeness; they are not however directly applicable
to humanoid dynamically balanced locomotion: they can only produce statically

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 32

Figure 2.4: HRP-2 grabs a ball on a shelf, puts it on another shelf, and comes back to a rest
position. Static balance constraints are enforced along the path, and the intermediary goals
consisting in grasping and displacing the ball are defined implicitly as inverse kinematics
constraints.

balanced walking paths, which restricts the scope of feasible motions. Furthermore,
it is not obvious how they can be transformed to dynamically balanced motions
while guaranteeing that this transformation will always succeed and not lead to
unforeseen collisions.

Other recent contributions to the field of locomotion planning include algorithms
considering the dynamics at the planning phase [Glassman 10, Shkolnik 11]. This
leads to a growth of algorithmic complexity, particularly costly for high-dimensional
systems such as humanoid robots, which can explain why such techniques have not
yet been used on humanoid robotic platforms so far.

2.2 From Geometric Paths to Feasible Motions: Small-
Space Controllability

Let us recalls the definition of small-space controllability and its use in motion
planning.

A robotic system is controllable if for any two configurations q1 and q2, there
exists a trajectory going from q1 to q2 in a finite time interval. It is small-space
controllable if for all configurations q, for all ε > 0, there exists η > 0 such that all
the configurations contained in the ball of center q and radius η are reachable, in
a finite time interval, by trajectories included in the ball of center q and radius ε.
Figure 2.5 shows an illustration of this property.

The main consequence of this property in motion planning is the following theo-
rem, that shows how planning for dynamic systems is reduced to geometric planning

2.2. FROM GEOMETRIC PATHS TO FEASIBLE MOTIONS: SMALL-SPACE
CONTROLLABILITY 33

q′

q

ε

Bε(q)

η Bη(q)

Figure 2.5: The small-space controllability local property: any configuration q′ at a distance
less than η is reachable from q by an admissible trajectory included in a ball of size ε.

q2

q1

C

Obstacles

Figure 2.6: Small-space controllability in motion planning. A collision-free path from q1 to
q2 is approximated by collision-free and admissible trajectories by using the local property.

thanks to the small-space controllability property:

Theorem 1. Any collision-free path of a small-space controllable system can be
approximated by a sequence of both collision-free and admissible (or feasible) tra-
jectories. Thus, small-space controllability reduces trajectory planning problems to
geometric path planning problems.

Figure 2.6 shows an example of collision-free path approximation by admissible
collision-free sub-trajectories. The convergence of this algorithm is guaranteed by
the small-space controllability property.

This result has been long known and used in motion planning, in particular for
non-holonomic systems. A detailed proof can be found in [Laumond 94]. We present
a sketch of the proof to give an intuition about the corresponding algorithm.

Proof of Theorem 1. Let CS be the configuration space of a small-space controllable

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 34

robot, and CSfree ⊂ CS the set of collision-free configurations. We consider in-
contact configurations as colliding, so CSfree is an open set. Let τ : [0, 1]→ CSfree
be a collision-free path. Thus for all x ∈ [0, 1], τ(x) ∈ CSfree, there exists εx such
that the open ball B(τ(x), εx) of center τ(x) and radius εx is included in CSfree.
The small-space controllability property states that for all x, there exists ηx > 0
such that every configuration q ∈ B(τ(x), ηx) is reachable from τ(x) by a trajectory
included in B(τ(x), εx).

The set of open balls (B(τ(x), ηx))x∈[0,1] forms an open cover of τ([0, 1]) which is
compact. The Heine-Borel theorem [Fitzpatrick 06] states that there exists a finite
subcover (B(τ(xi), ηxi))i∈{1,...,n} of τ([0, 1]). To this finite subcover corresponds a
finite number of feasible trajectories, going from τ(0) to τ(1), included in the union
of (B(τ(xi), εxi))i∈{1,...,n}, and thus in CSfree. This concludes the proof.

Small-Time versus Small-Space Controllability

In the control theory literature, the property used is usually small-time controlla-
bility, which states that for all configurations q, for all times T > 0, the set of
configurations accessible from q in time less than T forms a neighborhood of q.
When accelerations and velocities are bounded, small-time controllability implies
small-space controllability. This is why a lot of motion planning previous work only
refers to the sufficient small-time controllability property. However, the converse is
not necessarily true: a system can be small-space controllable and not small-time,
if the trajectories generated by its controller are arbitrarily long. The important
property, regarding motion planning application, is small-space controllability, as
Theorem 1 shows. In the following, we show that legged robots are small-space con-
trollable, but not that they are small-time controllable. In fact, the control method
that we present does not follow the small-time controllability property. For the sake
of clarity, we have chosen to make the distinction between these two controllability
properties.

2.3 Contribution

The main contribution of this chapter is a whole-body motion planner for humanoid
robots that computes collision-free walking trajectories, based on exact models of
both the robot and its environment. It is used to solve manipulation tasks that may
require walking. The first stage of our algorithm uses a sampling-based constrained
motion planner and computes a collision-free statically balanced path for a robot
which can be fixed or sliding on the ground.

Another contribution of this chapter is the formal proof that dynamic walking
makes humanoid robots small-space controllable, with the direct implication that
this first path can always be approximated by a dynamically balanced, collision-
free walking trajectory. We have implemented this well-grounded method, and the
results have been validated on the HRP-2 robot.

2.4. FROM STATICALLY BALANCED PATHS TO DYNAMIC WALK
TRAJECTORIES 35

Figure 2.7: Collision-free statically balanced path for a humanoid robot sliding on the
ground.

Section 2.4 generalizes the constrained motion planning algorithm to problems
that require locomotion. The generalization is well-grounded, and based on a con-
trollability property of legged robots demonstrated in the chapter. Section 2.5
presents some experimental results, and Section 2.6 discusses the limitations and
potential future work of our method.

2.4 From Statically Balanced Paths to Dynamic Walk
Trajectories

The previous section has presented a simple algorithm that solves manipulation
planning problems on a given constraint manifoldM of CS. If we use this algorithm
with static balance constraints without fixing globally the robot foot positions, it
generates statically balanced paths for a robot sliding on the ground. Fig 2.7 shows
an example of a whole-body collision-free path for a robot passing between two
chairs. Since in reality a legged robot cannot slide on a regular floor, such paths are
physically unfeasible. They are, however, easier to generate than feasible dynamic
walking trajectories because only geometric constraints are considered at planning
time.

This section presents a constructive proof that any such statically balanced,
collision-free path for a legged robot sliding on the ground can be approximated
by a dynamically balanced, collision-free walk trajectory. The proof is based on
ideas from control theory, in particular small-space controllability. It also uses the
fact that balance criteria for dynamic walking are different from the ones for static
balance.

Section 2.4.1 proves that a dynamically walking legged robot is small-space con-
trollable, while a quasi-statically walking legged robot is not. Section 2.4.2 shows
how this property is used to approximate collision-free statically balanced paths by
dynamic walking trajectories.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 36

2.4.1 Small-Space Controllability of Dynamically Walking Robots

This section discusses a walking robot small-space controllability. To clarify the
presentation, we consider a simplified model of a legged robot consisting of two feet
of zero mass and a point mass free to move in three dimensions. We do not consider
the kinematic chains between the feet and the mass. The robot is walking on a flat
terrain, and the feet are assumed to have a positive surface. For our presentation, it
is not necessary to consider the foot height, so the configuration space of the robot
is:

CS = SE(2)× SE(2)× R3 (2.1)

It is of dimension 9.

The balanced walking conditions for a quasi-static walking robot are that the
point mass, or CoM, should always be over the support polygon (the convex hull of
the two feet), and one foot can move iff the CoM is over the other foot. Similarly,
the walking conditions for a dynamic walking robot are that the ZMP should always
be in the robot support polygon, and one foot can move iff the ZMP is over the
other foot. Under these assumptions, the following result holds:

Theorem 2. A quasi-statically walking robot is not small-space controllable. A
dynamically walking robot is.

Proof of Theorem 2. The first claim is straightforward. Let the robot be in a config-
uration q where the two feet are separated by a positive distance. Let L > 0 be the
positive horizontal distance between the CoM and the left foot (if the CoM is over
the left foot, we can consider similarly the right foot). For all ε < L, any valid tra-
jectory starting from q, included in the ball of center q and radius ε B(q, ε), is such
that the CoM is never over the left foot. Given the quasi-static walking conditions,
the right foot of the robot is fixed along the trajectory. Thus, the set of accessible
configurations from q by staying inside B(q, ε) does not form a neighborhood of q,
since it does not include any configuration where the right foot has moved. This
shows that the robot is not small-space controllable.

Let us now consider a dynamically walking robot. If the CoM is not over the
edge of the support polygon, it is possible to move it in a quasi-static way inside a
neighborhood of its current position that projects itself over the support polygon.
It is thus sufficient and necessary to prove that for all ε > 0, it is possible to move
the feet while keeping the CoM inside a neighborhood of size ε. Let such ε > 0 be
arbitrarily fixed.

Let us recall the equations giving the ZMP horizontal coordinates (px, py) as
functions of CoM horizontal coordinates (x, y) in the cart-table model, as presented
in Section 1.3.2: (

px
py

)
=

 x− zc
g
ẍ

y − zc
g
ÿ

 (2.2)

2.4. FROM STATICALLY BALANCED PATHS TO DYNAMIC WALK
TRAJECTORIES 37

y-axis

CoM

zc

L

l

Figure 2.8: Simplified model of a legged robot. The CoM is at (0, 0, zc), the two feet are flat
on the ground, aligned with the y-axis, at a horizontal distance L from the CoM.

where zc is the constant height of the CoM and g is the gravity constant. In the

following we will note ω0 =

√
g

zc
.

Without loss of generality, let us assume that the robot is in a configuration
in which the CoM is at the horizontal position (0, 0), the foot centers are aligned
with the y-axis and the horizontal distance between the CoM and either of the foot
centers is L. To achieve dynamically balanced walking, we aim at making py(t)
oscillate between −L and L. To move the ZMP under a given foot, only the y
coordinate of the CoM is of interest. Thus, we will keep the x coordinates of the
CoM and ZMP constant equal to 0. By assumption, the feet have a positive surface,
let l > 0 be such that the length of the section of a foot along the y-axis is greater
than l. Figure 2.8 summarizes the notations used in the following.

The idea of this proof is to use the form of Equation (2.2) to apply a scaling factor
between the amplitude of the oscillations of the CoM and of the ZMP. The faster
the CoM oscillates, the bigger is the amplitude of the ZMP oscillations. Following
is a formalization of this idea.

For ω > 0, assuming the CoM follows the trajectory y(t) = ε sin(ωt), Equation
(2.2) gives:

py(t) = (1 +

(
ω

ω0

)2

)ε sin(ωt) (2.3)

The amplitude of the oscillations of y is multiplied by a factor (1 +

(
ω

ω0

)2

).

Choosing ω = ω0

√
L

ε
− 1 makes py oscillate between −L and L, while y oscillates

between −ε and ε. At time t
(n)
l = n

2π

ω
+
π/2

ω
, the ZMP is located at the center of

the left foot, the robot can move its right foot and at time t(n)
r = n

2π

ω
+

3π/2

ω
the

ZMP is located at the center of the right foot, the robot can move its left foot.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 38

−L

L

0

time

ε

−ε

0 T

y

CoM

ZMP

Figure 2.9: CoM motion (solid line) along y axis. The CoM stays in the interval [−ε, ε]
while during steady state (t ≥ T), the ZMP (dashed line) oscillates between the centers of
the feet, which allows in-place walk.

Starting from a static configuration at time (t = 0), we cannot apply directly
a control y(t) = ε sin(ωt) because it generates a discontinuity in the velocity of the
CoM at time (t = 0). To overcome this discontinuity, we go through a transient
state between (t = 0) and (t = T) for some T > 0. Let f : [0, T] → [0, 1] be an
increasing function of class C∞ such that f(0) = 0, ḟ(0) = 0, f(T) = 1, ḟ(T) = 0
and f̈(T) = 0. We can explicitly construct such an f with a spline of degree 4.

We also request that for all t ∈ [0, T], |2εḟ(t)
ω

ω2
0

| ≤ l

4
and |εf̈(t)/ω2

0| ≤
l

4
. These

inequalities will be used to bound the trajectory of the ZMP. We can guarantee them
by choosing T large enough. Let us now consider the following CoM motion:

y(t) =

{
f(t)ε sin(ωt) if t ∈ [0, T]
ε sin(ωt) if t ≥ T (2.4)

One can check that y is of class C2 over R+, and that ḟ(0) = 0. When t ≥ T ,
the robot is in the steady state described above and can successively move either
of its feet inside small neighborhoods. The last point to check is that for t ∈ [0, T]
py(t) stays inside the support polygon of the robot. The calculation of the successive
derivatives of y gives:

py(t) = f(t)ε(1 +

(
ω

ω0

)2

) sin(ωt)

+2εḟ(t)
ω

ω2
0

cos(ωt)

+
ε

ω2
0

f̈(t) sin(ωt)

(2.5)

For all t ∈ [0, T], f(t)ε(1 +
ω

ω0

2
) sin(ωt) lies between −L and L. The bounds

on the derivatives of f guarantee that py(t) lies between −L − l/2 and L + l/2,
which means that the ZMP stays inside the support polygon. Figure 2.9 shows an

2.4. FROM STATICALLY BALANCED PATHS TO DYNAMIC WALK
TRAJECTORIES 39

example of CoM motion on the y axis and the corresponding ZMP motion. Once in
steady in-place walking state, the robot can come back to a static state by applying a
symmetric transient state used to decrease gradually the amplitude of the oscillations
of the CoM without generating a discontinuity in the first derivative of the control.

We have thus exhibited a continuous control scheme that allows to move any of
the feet in any direction, while keeping the CoM inside an arbitrarily small neigh-
borhood. This concludes the proof.

Remarks

Generalization to a complete model: We have not extended the above proof to
any legged robot model since empirically, the table cart model describes a large part
of the dynamics of a walking humanoid robot. Although of little practical interest,
the generalization of the proof does not seem very difficult to achieve. As an insight,
the difference between the table cart model and the full size humanoid robot is due
to the derivative of the angular momentum and to the vertical acceleration of the
center of mass. These perturbations can be made as small as desired along the
sliding path by following the sliding path as slowly as necessary. The derivatives of
the angular momentum produced by the stepping motion can also be made as small
as desired by making the step height as small as necessary and by using recent results
on properties of joint trajectories induced by end-effector motions [Zanchettin 12].

Use of ZMP preview controller: The control strategy presented in the above
proof may generate very long trajectories, because of the transient states at the be-
ginning and end of the locomotion. In the actual implementation, we have chosen to
generate CoM motions with a ZMP preview controller, as presented in [Kajita 03].
We have observed experimentally that the amplitude of CoM trajectories decreases
when the frequency of steps increases. Our current ZMP preview controller relies
on the cart-table model approximation. To make this approximation valid, we fix
the height of the robot CoM during walk, as well as the vertical orientation of the
robot waist. These geometric constraints are also applied when planning statically
balanced paths, to ensure that the paths can be approximated by dynamic walk
trajectories. Note that this is due to our current ZMP preview controller implemen-
tation, and does not affect the generality of the small-space controllability result
presented above.

Relying on the cart-table model approximation means that the angular momen-
tum induced by arm movements for instance can lead to non dynamically balanced
walking motion. We thus implement the ZMP filtering stage proposed in [Kajita 03]
to compute the exact ZMP, take into account the full dynamics of the robot and
generate feasible trajectories.

Velocity of CoM: The theoretical result presented in this section implies that any
collision-free path can be approximated by a sequence of admissible and collision-

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 40

free trajectories. However, the theorem depends on a control law that generates
trajectories with unbounded velocities for the CoM, when the input path is close
to obstacles. The humanoid robot hardware (actuators, mechanical structure, etc.)
may be a limitation to such trajectories. To prevent the generated CoM oscillations
from being too fast, one has to require that the statically balanced path is included
inside an ε-radius tube of the free space, where ε depends on the physical capabilities
of the robot.

2.4.2 Application: Dynamic Approximation of a Statically Bal-
anced Sliding Path

The algorithm that animates a statically balanced path into a dynamically balanced
walk trajectory has been inspired by the previous small-space controllability proof.
Given a statically balanced path P verifying the cart-table model approximation
constraints, we start by placing footprints corresponding to the nominal walk pat-
tern of the robot. Given the footprints, we compute a ZMP trajectory, derive foot
trajectories, and a preview controller returns the corresponding CoM trajectory.
Classic numerical Jacobian-based prioritized inverse kinematics methods prove to
be very useful to generate a dynamic walking trajectory while trying to accomplish
secondary tasks, such as following a reference configuration trajectory. We use the
framework called Generalized inverse kinematics (Gik) developed in [Yoshida 06].

The hierarchy of tasks (referred to as GikTasks in Algorithm 5) applied to the
robot to generate a dynamic walking motion is – in decreasing priority order:

1. Positions and orientations of feet,

2. Horizontal position of the CoM,

3. Height of the CoM,

4. Verticality of the waist,

5. Configuration task towards corresponding configuration in P .

Tasks (1) and (2) generate a dynamically balanced motion by using the simplified
cart-table model and the ZMP criterion. Tasks (3) and (4) ensure that the resulting
motion is well described by the cart-table model. Task (5) is used to approximate
P as well as possible given the walk parameters.

Because it comes at the lowest priority, task (5) is not necessarily fulfilled in the
resulting trajectory. Hence, collisions may appear when animating P , if the resulting
trajectory diverges too much from the initial sliding path. If so, it is necessary to
approximate more closely P by a walk trajectory. To do so, we use the small-space
controllability property of the system shown in the previous section. The way we
use this property is inspired by similar results in non-holonomic mobile robot control
presented in [Laumond 94].

2.5. EXPERIMENTAL RESULTS 41

If the animated trajectory collides with the environment, we cut the initial path
P into two sub-paths, that we try to animate recursively. When the paths to ani-
mate are too short for the robot nominal walk parameters, we accelerate the steps,
and decrease the maximum height of the moving foot. As shown in previous sec-
tion, the walk trajectory corresponding to smaller and faster steps converges toward
the sliding path. Algorithm 5 shows pseudo-code that takes a sliding path P as
input and returns a collision-free walk trajectory. Figure 2.10 shows a sketch of the
method.

Algorithm 5 FindDynamicTrajectory(Path P)

Footprints← ComputeFootprints(P)
GikTasks.addFootprintTask(Footprints)
GikTasks.addWaistTask()
GikTasks.addConfigurationTask(P)
DynamicTrajectory ← ComputeWalkTrajectory(GikTasks)
if (CheckForCollisions(DynamicTrajectory) = Colliding) then

(p1, p2)← CutInHalf(p)
DT1 ← FindDynamicTrajectory(p1)
DT2 ← FindDynamicTrajectory(p2)
return Concatenate(DT1, DT2)

else
return DynamicTrajectory

end if

2.5 Experimental Results

The motion planning algorithms presented in this chapter have been implemented
using KineoWorksTM[Laumond 06]. The planning times have been measured on an
Intel Core 2 Duo 2.13 GHz PC with 2 GB of RAM. Evaluation of the randomized
algorithm has been conducted by executing 500 trials on each scenario using two
flavors of RRT: the classic RRT and IPP-RRT [Ferre 04]. We present the results in
Figures A.1, A.2 and A.3 in Appendix A.

Our whole-body motion planner generates a robot configuration trajectory that
is sampled at a 200 Hz rate and stored in a file. This file can then be used to play the
trajectory in open-loop on the HRP-2 robot, which is position-controlled. Scenarios
in Sections 2.5.1 and 2.5.3 were both successfully executed.

In this work, to get “nicer” walking motions in the experiments, we require the
foot positions to be fixed with respect to each other, and the CoM to be projected
in the center of the support polygon during the sliding path planning stage.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 42

ZMP trajectory
CoM trajectory
Swept volume

Figure 2.10: The first three steps of algorithm 5 are shown (top left and right, bottom
left). Starting from a sliding collision-free path (dashed), a walking trajectory is computed
using nominal walk parameters. If collisions are detected, the path is recursively cut and
animated until a collision-free dynamic walking trajectory is found (bottom right). Notice
that shorter and faster steps in the middle of the trajectory lead to smaller deviations of the
CoM trajectory (in red) from the original path.

2.5. EXPERIMENTAL RESULTS 43

Figure 2.11: The robot HRP-2 passing between two chairs. In this kind of environment
whole-body collision avoidance is needed during locomotion.

2.5.1 Passing between two chairs

The environment shown in Figure 2.11 and 2.7 was presented in Section 1.7.1. There,
the motion planning problem is solved with a bounding box method, leading the
robot to walk sideways between the two chairs. The method presented in this chapter
generates a locomotion trajectory in which the robot walks forward, which may be
required if the robot has to use vision during locomotion. The first planning stage
requires 1 s on average. The animation of the sliding path presented in Figure 2.7
uses 66.5 s of computation time.

Figure 2.12 shows the horizontal trajectory of the robot CoM during locomotion.
The amplitude of the oscillations decreases when passing between the chairs. This
motion has been validated on a real HRP-2 platform.

2.5.2 Walking among floating obstacles

In the environment shown in Figure 2.13, the robot has to find a way among floating
obstacles. In this environment neither bounding box nor footstep planning strategies
could find a collision-free walk trajectory. The first planning stage requires 53 s on
average, and the animation of the trajectory presented in Figure 2.13 uses 339.5 s of
computation time. Figure 2.14 shows the robot CoM trajectory during locomotion.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 44

Figure 2.12: Horizontal trajectory of the robot CoM during locomotion. When the robot is
close to obstacles, the amplitude of the oscillations decreases.

Figure 2.13: Solution path for a cluttered environment, the robot walks among floating
obstacles.

Figure 2.14: Horizontal trajectory of the robot CoM during locomotion.

2.6. DISCUSSION AND FUTURE WORK 45

Figure 2.15: Solution path for a hand reaching problem in an apartment. The goal is
implicitly defined as an inverse kinematics task.

2.5.3 ’Put the ball on a shelf’

In the problem shown in Figure 2.15 the robot has to put a ball on a shelf, in a
constrained apartment environment. The final configuration is defined implicitly
as a desired hand position. We have generated automatically goal configurations
solving the task, as described in Section 2.1.2 . Then, we have applied our planner
to generate a whole-body walking motion that solves the hand reaching task.

The solution sliding path is constrained between the table on the right and the
lamp on the left. This passage is too narrow for the robot nominal walk parameters.
When executing the walk motion resulting from our algorithm, the robot left hand
is only a few centimeters away from the lamp.

The first planning stage requires 15 s on average, and the animation of the
resulting walk motion presented in Figure 2.15 requires around 190 s of computation
time. Figure 2.16 shows the robot CoM trajectory during locomotion. Figure 2.17
shows some snapshots taken from the motion execution on the real robot HRP-2.

2.6 Discussion and Future Work

This section lists some limitations of the current methods, and discusses potential
future work to overcome them.

Stepping over obstacles Because of the kinematic constraints we apply at the
planning stage, we are not able yet to plan motions where the robot steps over
obstacles, while this is an important feature of humanoid robots. Nevertheless,
because we compute collision queries on an exact model of the robot, our method is

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 46

Figure 2.16: Horizontal trajectory of the robot CoM during locomotion.

Figure 2.17: Execution of the walking trajectory by HRP-2 on stage. The robot first goes
to the shelves to release the ball, then comes back to a rest position.

2.7. CONCLUSION 47

able to generate paths where obstacles pass between the feet of the robot. One way
of dealing with this issue would be to incorporate the continuous footstep planner
described in [Perrin 11] in the planning phase; it would allow stepping over obstacles,
while whole-body collision-avoidance would be solved by the algorithm presented in
this chapter. The main challenge with this approach would be then to verify that
the small-space controllability property still holds.

Environment representation The experimental setup assumes perfect knowl-
edge of the environment. This can be guaranteed during experiments by using
calibrated objects and motion capture systems. This indeed allows us to focus on
complex motion planning problems. The perception problem, interesting as it is, is
thus completely decoupled from the planning problem in this work. Experiments
in [Nakhaei 08, Dang 12] have shown that it is possible to build a representation
of the environment using stereo vision, and use it to plan collision-free motions for
humanoid robots.

Trajectory following The setup also assumes perfect execution of the plan. It
can be critical here, since non-nominal stepping may cause the robot to drift away
from the planned trajectory, and collide with obstacles. It is thus necessary to devise
a localization-based controller which, based on the current state of the robot, will lo-
cally modify the robot future states to make sure the planned trajectory is followed,
see [Moulard 12b]. This approach works only if local perturbations are applied to
the system or environment between the planning and execution phases. One way to
guarantee a proper motion execution would be to establish a planning-control loop;
under the assumption that each component is fast enough, this loop could take into
account all modifications in the environment or the robot global position by continu-
ously re-planning new trajectories, see [Baudouin 11]. Note that whatever approach
is chosen, accurate localization methods must be used, and multiple sensor sources
might need to be fused to obtain relevant information about the humanoid robot
pose. An example of such methods can be found in [Hornung 10], where accurate
localization information is obtained from multiple sensors in complex environments
including staircases.

2.7 Conclusion

In this chapter, we have used a simple algorithm for constrained motion planning
within a novel, well-grounded strategy for humanoid whole-body manipulation plan-
ning including locomotion. The locomotion algorithm is based on a formal small-
space controllability property of humanoid robots. An important point is that this
strategy only holds for dynamic walking robots, and not for quasi-static walking
ones. We have used our motion planner on different challenging examples, and val-
idated the generated motions on a real platform. We have discussed the limits and
potential extensions of our method, and we plan to address them in future work.

CHAPTER 2. DYNAMIC WALKING AND WHOLE-BODY MOTION
PLANNING FOR HUMANOID ROBOTS: AN INTEGRATED APPROACH 48

This motion planning algorithm helps us achieve global planning in complex
environments, but it still cannot provide us with the “best” possible trajectories
with respect to a given cost function. In the next chapter, we focus on planning
dynamic optimal motions for humanoid robots in complex environments, such that
the generated trajectories solve both motion planning and optimal control problems.
We will therefore use the same constrained motion planning algorithms which we
presented in this chapter and combine them with optimal control techniques.

49

Chapter 3

Optimal Motion Planning for
Humanoid Robots

The generation of the best possible trajectory that does not violate any constraints
imposed by the environment is an ubiquitous task in both industrial and humanoid
robotics. Numerous examples of successful robotic applications in the domains of
motion planning and optimal control can be encountered in literature and industry.
Very few however consider the more general problem of optimal motion planning for
complex robots evolving in complex environments.

There are two established but still quite separate research areas that both ad-
dress a part of the optimal motion planning problem, namely path planning and op-
timal control. This chapter aims at combining state-of-the-art developments of path
planning and optimal control and to create the algorithmic foundations to tackle
optimal control problems in cluttered environments. We thus propose a two-stage
framework for optimal motion planning on complex robots, where a quasi-statically
feasible path is first planned then optimized in order to produce a dynamically feasi-
ble trajectory. We additionally describe a simple method to automatically generate
minimum bounding capsules around exact robot body geometries represented by
meshes; the capsules are used to implement distance constraints for an optimal con-
trol problem solver and achieve (self-)collision avoidance. The whole framework is
successfully applied to generate optimal collision-free trajectories on the humanoid
robot HRP-2.

3.1 Path Planning

Sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT) which
were presented in Section 1.1.2, are particularly powerful when it comes to solving
path planning problems in high-dimension CS and cluttered environments. In this
chapter, we rely on the same constrained RRT algorithm which was described in
Chapter 2.1.2 in order to generate statically balanced paths on a submanifold of CS.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS50

Let us recall that an important feature of sampling-based algorithms is their
probabilistic completeness, i.e. their capacity to avoid falling into local minima and
to find a solution path if it exists. They present however three drawbacks. First,
due to their random sampling nature, the configuration q might move in a random
fashion along the path P , which could lead to unnecessarily long paths. Second,
we still need to apply a time parametrization in order to transform the path into
a trajectory. This is a non-trivial task in the particular case of a humanoid robot,
as we must ensure its dynamic balance along the trajectory. Third, the resulting
paths are continuous but not C1; to enforce this constraint, the time-parameterized
motion would need to stop at each waypoint, or would leave the planned path around
waypoints. Additional processing is thus needed to provide a reshaped collision-free
trajectory that can be executed on the robot.

3.2 Numerical Optimization

We give in Appendix B an overview of the most successful numerical optimization
techniques that can be found in the literature. We focus on Jacobian-based methods,
i.e. methods that use information given by the variations of the function we want
to minimize to find its minimizer.

3.3 Optimal Control

While the previous section described numerical optimization and its associated tech-
niques, this section discusses the particular application of finding, for a dynamic
model such as an anthropomorphic system, a trajectory that allows the model to
move over the course of time from an initial state to a final state, while minimizing
a certain criterion. This particular field is known as optimal control, and has been
a major field of interest in the Control Theory and Robotics communities ever since
their beginning.

Given a dynamic model, let:

− t denotes the time variable,
− x denotes the state vector,
− u denotes the control vector,
− T denotes the trajectory duration,
− L denotes the Lagrangian term (also cost rate) of the objective function,
− Φ denotes the Mayer term (also terminal cost) of the objective function,
− f denotes the Ordinary Differential Equation (ODE) of the model,
− g denotes the equality constraint vector function,
− h denotes the inequality constraint vector function,
− r denotes the boundary conditions vector function.

An optimal control problem (OCP) can be written as follows:

3.3. OPTIMAL CONTROL 51

0 t T

u(t)

x(t)

r(x(0),x(T))

g(t,x,u), h(t,x,u)

Figure 3.1: Illustration of the optimal control problem, showing the control and state vectors,
path and boundary constraints. As the space of continuous functions is infinite-dimensional,
the general OCP is also infinite-dimensional.

min
x(·),u(·),T

J(x(·),u(·), T) =

∫ T

0
L(x(t),u(t))dt+ Φ(x(T)) (3.1)

subject to:

ẋ(t) = f(t,x(t),u(t)), t ∈ [0, T],
g(t,x(t),u(t)) = 0, t ∈ [0, T],
h(t,x(t),u(t)) ≥ 0, t ∈ [0, T],
r(x(0),x(T)) = 0.

(3.2)

Figure 3.1 summarizes the OCP. Note that it cannot be written (yet) as a finite-
dimensional NLP and use associated solving methods, as x(t) and u(t) are infinite-
dimensional.

A significant number of methods which can solve the OCP have been developed
in the past sixty years. They can be classified into three broad categories: dynamic
programming, inverse methods and direct methods. For more details on dynamic
programming and indirect methods, the interested reader can refer to [Laumond 98,
Todorov 06]. We give a broad description of the first two methods and discuss direct
methods more deeply, as they are heavily used in Robotics and Computer Graphics
nowadays. Note that the list we establish is largely inspired by [Diehl 06]; an even
more exhaustive survey can be found in [Betts 98, Betts 10].

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS52

3.3.1 Dynamic Programming

Dynamic Programming is based on Bellman’s Optimality Principle [Bellman 65],
which states that for any OCP going from an initial to a final state, we have a
solution optimal control if we have a solution optimal control for the sub-OCP
starting from a state reached from the initial state and going to the final state.

Let v(x, t) =

∫ T

t
L(x(t),u(t))dt+ Φ(x(T)). Using this principle, the Hamilton-

Jacobi-Bellman (HJB) Partial Differential Equation (PDE) can be derived
for continuous-time systems:

v̇(x, t) + min
u(·)

(
f(x,u)>∇xv(x, t) + L(x,u, t)

)
= 0, (3.3)

subject to the terminal condition:

v(x, T) = Φ(x(T)). (3.4)

v is also called the value function. Equation (3.3) is the PDE which gives the
necessary conditions for finding an optimal control policy. It can be solved backwards
in time, just as in discrete-time dynamic programming, starting from t = T and
ending at t = 0. State-of-the-art solvers which rely on finite-element methods are
then used to solve it. However, as the PDE contains partial derivatives with respect
to both time and state, solvers suffer from the curse of dimensionality and the HJB
equation is not used for large-scale systems in practice.

3.3.2 Indirect Methods

Another fundamental idea in optimal control is the Maximum (or Minimum) Prin-
ciple, introduced by Pontryagin [Boltyanskii 60]. It also gives necessary conditions
for optimal control, and leads to the same solutions as the optimality principle. It
can be derived indirectly from the HJB equation, by first hiding the value function
gradient in a costate vector:

p(t) = ∇xv(x, t), (3.5)

and defining the Hamiltonian as the objective function in the HJB PDE:

H(x,u,p, t) = f(x,u)>p(t) + L(x,u, t) (3.6)

These new definitions lead to Pontryagin’s minimum principle necessary conditions:

ẋ(t) =
∂

∂p
H(x,u,p, t)

−ṗ(t) =
∂

∂x
H(x,u,p, t)

u(t) = arg min
u(·)
H(x,u,p, t).

(3.7)

3.3. OPTIMAL CONTROL 53

Remarkably, this transformation turns the HJB PDE into a 2n-dimensional ODE
which can be solved with standard boundary value problems with linear complexity.
Furthermore, deriving the optimal control policy consists in minimizing the Hamil-
tonian, which is very easy in the particular case where controls appear linearly in
the dynamics and quadratically in the cost rate.

3.3.3 Direct Methods

Dynamic programming and indirect methods are used to solve the exact OCP. Direct
methods, on the other hand, rely on first discretizing the controls and/or the states:
this effectively transcribes the infinite-dimensional OCP into a finite dimensional
NLP, which can be solved using standard numerical optimization techniques. This
allows handling all constraints more easily, and, surprisingly, can lead to better
performance than exact methods, as specialized solvers can take advantage of the
high sparsity of the NLP, i.e. the fact that the associated gradients contain a large
number of zeros. The major drawback of such methods comes from the fact that we
only obtain an approximate solution of the OCP, but a proper choice of discretization
gives good results in practice. Nowadays direct method are the most commonly used
methods due to their easy applicability to large-scale problems and their robustness.

Direct Single-Shooting

In direct single-shooting methods [Hicks 71, Sargent 78], the control vector u(t) is
discretized on a fixed grid 0 = t0 < t1 < . . . < tN = T . The state vector x(t)
is regarded as a dependent variable on [0, T]; numerical integration is then used in
order to obtain, starting from an initial state x(0), the state as a function x(t,q)
of finitely many control parameters q = (q0,q1, . . . ,qN−1). Examples of possible
parameterizations include but are not limited to piecewise constant, piecewise linear,
continuous piecewise linear functions.

Once the control discretization is achieved and a numerical ODE solution is
found, we obtain the following finite-dimension NLP:

min
q∈RnN

∫ T

0
L(x(t,q),u(t,q))dt+ Φ(x(T,q)) (3.8)

subject to:
g(x(ti,q),u(ti,q)) = 0, i = 0, . . . , N,
h(x(ti,q),u(ti,q)) ≥ 0, i = 0, . . . , N,
r(x(0,q),x(T,q)) = 0.

(3.9)

Figure 3.2 shows an example of the control discretization and state numerical
integration, using a piecewise constant control parameterization q.

Single-shooting methods present several advantages: they only need an initial
guess of the control parameterization q, and they can rely on state-of-the-art ODE
solvers to obtain the corresponding state x(t,q). Due to this fact, the underly-
ing NLP problem has few degrees of freedom, even for large-scale ODE systems.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS54

0 t T

u(t,q)

x(t)

q1

q2 qN−1

Figure 3.2: Solving the OCP with direct single-shooting methods: the controls are discretized
on a coarse grid, and the state trajectory is found by numerical integration of the model
ODE starting from an initial value. In this example, the discretized control u(t,q) is a
piecewise constant function, and it is equal to qi on sub-interval i.

However, because the state vector cannot be initialized, we cannot use the state
knowledge to initialize it. This is problematic in tracking problems for instance,
where we want to find an optimal policy starting from a good initial state trajectory.
Furthermore, some ODE systems can be highly nonlinear and unstable (imagine a
propelled rocket system); it can be very difficult to stabilize such systems over long
trajectories and to make them achieve terminal constraints just by modifying x(0)
and q.

Direct Collocation

Direct collocation methods, as described in [Tsang 75], discretize both control and
state vectors on a fine grid with node values qi ≈ u(ti) si ≈ x(ti) respectively. This
allows replacing the infinite ODE by finitely many equality constraints, and approxi-
mating the Lagrangian term in the objective function. Using forward differentiation
for instance would give:

ẋ(t)− f(x(t)),u(t)) = 0, t ∈ [0, T]
⇓ forward differentiation

ci(qi, si, si+1) =
si+1 − si
ti+1 − ti

− f

(
si + si+1

2
,qi

)
= 0, i = 0, 1, . . . , N − 1

(3.10)

and

3.3. OPTIMAL CONTROL 55

∫ T

0
L(x(t),u(t))dt

⇓
N−1∑
i=0

li(qi, si, si+1) =

N−1∑
i=0

L

(
si + si+1

2
,qi

)
(ti+1 − ti)

(3.11)

Using this discretization, we obtain a large but sparse NLP. It can be solved
using efficient SQP or IPM solvers which are specialized for sparse problems, such
as SNOPT [Gill 02] and IPOPT [Biegler 09]:

min
s∈RnN ,q∈RnN

N−1∑
i=0

li(qi, si, si+1) + Φ(sN) (3.12)

subject to:

ci(qi, si, si+1) = 0, i = 0, . . . , N,
g(si,qi) = 0, i = 0, . . . , N,
h(si,qi) ≥ 0, i = 0, . . . , N,
r(s0, sN) = 0.

(3.13)

State Parameterization One particular case occurs when the control and state
derivatives can be directly derived from the states. There is thus no need to discretize
the controls, which are here dependent variables, and only the states are discretized.
The states can then be represented by smooth functions such as polynomials or
splines [Sirisena 81]. This approach offers the advantage of leading to a NLP with
a smaller number of variables than in the general case of direct collocation, and is
quite common in robotics.

To conclude, direct collocation methods transcribe the OCP into a large-scale,
but very sparse NLP, which can be solved by efficient solvers. It can treat unstable
systems well, offering robust handling of path and terminal constraints. Further-
more, the state discretization is such that convenient state trajectories can be used
as an initial guess, which is not the case for single-shooting methods. However, not
all ODE solvers can be used as some of the most efficient ones use an adaptive-step
scheme to perform state integration; this indeed requires changing the discretization
grid during the optimization process, and leads to a change in the NLP dimensions.

Direct Multiple-Shooting

Direct multiple-shooting methods [Bock 84] were devised as hybrid methods between
single-shooting and collocation methods; they are based on a coarse discretization
of the control vector u(t) = qi for t ∈ [ti, ti+1], and the addition of initial state
values si for the state vector. These nodes serve as initial values for the numerical
integration of the ODE over each sub-interval [ti, ti+1]:

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS56

0 ti tN

u(t,q)

x(ti+1, si,qi+1) 6= si+1

q0

q1 qN−1

qi

ti+1

s0

s1

si si+1

sN−1

sN

Figure 3.3: Solving the OCP with direct multiple-shooting methods: controls are discretized
on a coarse grid, and several initial values for the state are given. The state trajectory is
computed on each sub-interval by numerical integration of the model ODE starting from
the node values. Note that the whole trajectory is not continuous, and additional continuity
constraints need to be added.

ẋi(t, si,qi) = f(xi(t, si,qi),qi), t ∈ [ti, ti+1] ,
xi(t, si,qi) = si.

(3.14)

Similarly, the Lagrangian term can be numerically integrated over each sub-
interval:

li(si,qi) =

∫ ti+1

ti

L(xi(ti, si,qi),qi)dt (3.15)

Trajectory pieces xi(t, si,qi) are then generated, as shown in Figure 3.3. We can
see that the whole trajectory is not necessarily continuous; we introduce continuity
conditions to ensure state continuity over the whole duration, and the obtained
finite-dimensional NLP is:

min
s∈RnN ,q∈RnN

N−1∑
i=0

li(si,qi) + Φ(sN) (3.16)

subject to:

xi(ti+1, si,qi)− si+1 = 0, i = 0, . . . , N − 1,
g(si,qi) = 0, i = 0, . . . , N,
h(si,qi) ≥ 0, i = 0, . . . , N,
r(s0, sN) = 0.

(3.17)

3.3. OPTIMAL CONTROL 57

Let us summarize all variables si and qi in one single vector as:

w = (s0,q0, s1,q1, . . . , sN) ∈ R2nN , (3.18)

and let us gather continuity (including boundary), equality and inequality con-
straints in three vectors C,G and H respectively. We can then rewrite the NLP
problem as:

min
w∈R2nN

F (w) such that

C(w) = 0,
G(w) = 0,
H(w) ≥ 0.

(3.19)

This NLP can be solved iteratively using an SQP method, where each step
consists in building the approximate QP subproblem around the current iterate, as
seen in Section B.3.1. The QP subproblem is written as:

min
p∈R2nN

1

2
p>∇2

wwLp +∇F>p, such that

C +∇C>p = 0,

G +∇G>p = 0,

H +∇H>p ≥ 0,

(3.20)

where p = (∆s0,∆q0,∆s1,∆q1, . . . ,∆sN), and L is the Lagrangian of F .

If we give a closer look at the first equality constraint, we notice that each block-
component can be written as:

ci + Xs
i∆si + Xq

i ∆qi −∆si+1 = 0, i = 0, . . . , N − 1
m

∆si+1 = ci + Xs
i∆si + Xq

i ∆qi, i = 0, . . . , N − 1,
(3.21)

where Xs
i and Xq

i are the Jacobians of x(ti+1, si,qi) with respect to s and q respec-
tively.

This leads to two conclusions: first, the continuity constraint vector Jacobian
C> is block-sparse (it can be similarly shown that it is also the case for the other
constraints gradients and the Lagrangian Hessian). Second, there exists a recurrence
relation between ∆si+1 and ∆si for i = 0, . . . , N−1. This gives way for a condensing
strategy, where the variables ∆si, i = 1, . . . , N are eliminated from the KKT system,
and a reduced and simpler system is solved for the vector:

w′ = (∆s0,∆q0,∆q1, . . . ,∆qN−1) (3.22)

The eliminated variables can then be reconstructed, starting from ∆s0, using the
recurrence relation from Equation (3.21).

The condensing strategy allows then to make advantage of the QP subprob-
lem sparsity, and leads to an efficient SQP strategy. Such a method can be found
in the MUSCOD-II [Leineweber 03a, Leineweber 03b] and ACADO [Houska 10]
multiple-shooting optimal control solvers.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS58

To conclude, direct multiple-shooting methods offer several advantages: they
rely on a coarse discretization of both control and state vectors, using adaptive-step
ODE solvers to integrate the state on the sub-intervals. They can thus use knowl-
edge of the state at initialization, which makes them very suitable for applications
where a good initial guess of the state can be given. Furthermore, the multiple-
shooting scheme allows robust handling of all constraints, and can be potentially
easy to parallelize. While its underlying NLP is not as sparse as in direct collo-
cation methods, multiple-shooting methods are particularly powerful thanks to the
condensing strategy, which takes advantage of the QP subproblem sparsity, and is
used to solve them efficiently.

3.3.4 Non-Jacobian-Based Optimal Control

Note that for all methods we described above, the objective, dynamics and constraint
functions can be nonlinear. They must be, however, at least C1 so that the solvers
can get an idea of the function local shapes and know where to look for the minimizer
while obeying the constraints. This requirement can be alleviated by the use of non
gradient-based optimal control methods.

We described a random optimization method in Section 1.1.3. It is a shortcut
heuristic, and can be seen as an optimal control method which does not need the
function Jacobians. If shortcut heuristics are applied in the state space, the resulting
trajectory has a lower cost than the original one. However, no solution can be found
outside the bounding box of the original trajectory due to the fact that the iterative
process picks points to shortcut that are on the trajectory. Shortcut methods get
easily stuck in local minimizers.

Another example is RRT∗ [Karaman 11]: it is a variant of the RRT sampling-
based planner that relies on a simultaneous exploration of the configuration space
and rewiring of the exploration tree so that it contains only low-cost connections.
This exploration-rewiring iterative process continues even after one solution has been
found, and it offers the interesting property of asymptotic convergence towards the
global minimum-cost collision-free path. It is also shown that, in practice, the run-
ning time until an acceptable minimizer is reached is greater than the time needed
to find any collision-free solution by only a constant factor. Of course, if we want
to generate an optimal trajectory, we need to explore not only the configuration
space CS, but at least the whole state space SS (if not the space of both states and
controls), where an element of SS is x. In this case, the exploration might become
too large to have tractable performance. Another problem arises from choosing the
correct metric for choosing nearest neighbors, as well as the local optimal steering
method. In [Perez 12], the authors propose a variant which uses the local lineariza-
tion of a system to derive both coherent metric and extension method. Results have
so far been only obtained on simple systems, and this method has yet to be tested on
complex ones. Nevertheless, RRT∗ is an interesting approach as only one algorithm
is needed to achieve global optimal motion planning.

3.4. ANTHROPOMORPHIC SYSTEM DYNAMICS 59

3.4 Anthropomorphic System Dynamics

If we want to be able to generate feasible motions for anthropomorphic systems, we
need to take into account their dynamics in the OCP formulation. Such underac-
tuated systems are modeled by a rigid body kinematic tree attached to a floating
base, as mentioned in Section 1.2.1; therefore a motion feasibility cannot be guar-
anteed unless dynamic balance constraints are enforced over the whole trajectory
duration. We give in this section a brief overview about a floating-base system dy-
namics computation and the dynamic balance conditions. A complete description
of state-of-the-art efficient dynamics algorithms can be found in [Featherstone 08].

3.4.1 Expressing Dynamics with Spatial Algebra

Usually, rigid body dynamics are written using 3D vector notations which keeps the
translation and rotation parts of dynamic quantities apart: linear velocities vs angu-
lar velocities, forces vs torques, linear momentum vs angular momentum, etc. We in-
troduce here 6D spatial vectors and their associated spatial algebra [Featherstone 08]:
they allow to have a compact representation of dynamic quantities, which leads to
increased performance of their associated operators.

For instance let us assume that we have a rigid body B with two coordinate
systems A and B; each of them has an associated Cartesian frame and coordinates
system. Let vA and ωA denote the body linear and angular velocity in A coordi-
nates. We have then the following relations:

vB = E(vA − r× ωA)

ωB = E ωA
(3.23)

where r =
−→
AB is the translation vector between the two coordinate systems, and

E = RB A is the rotation matrix from A to B.
Let us define the 6D spatial velocity vector:

vA s =

(
ωA

vA

)
(3.24)

We can then rewrite Equation (3.23) as:

vB s = XB A vA s, XB A =

(
E 0

−Er× E

)
(3.25)

The same relation holds for both spatial velocities and accelerations, which are
both referred to by the term spatial motions. Similarly, we can define a coordinate
transformation relation for spatial forces:

fB s = XB ∗
A fA s, fA s =

(
nA

fA

)
, XB ∗

A = XB >
A =

(
E −Er×
0 E

)
(3.26)

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS60

Ji :

qi,
q̇i,
q̈i,
τ i

f sck

Figure 3.4: Non-vanishing and non-sliding contact forces are applied on the anthropomorphic
system by its environment, and they are integrated in its dynamics equation. Joints limits
are shown in red.

Note that except for the ordering of the translation and rotation components,
spatial vectors represent the same concepts as velocity, acceleration and force
wrenches, i.e. they both give a compact representation of a vector field. In what
follows, we only use the spatial algebra notations.

In conclusion, the spatial vector notation provides a compact rewriting of the
dynamics equations, which leads to efficient dynamics computation algorithms.

3.4.2 Dynamics Equation

By using a Newtonian dynamics formulation, we can express the compact dynamics
equation for a floating-base robot with respect to the generalized coordinate and
actuated torque vectors q and τ :

A(q)q̈ + b(q, q̇) +
∑
k

J>ckf
s
ck

= S>τ , (3.27)

where A is the joint-space inertia matrix, b is the joint-space bias force which
account for both Coriolis and gravity effects, Jck is the contact Jacobian for the
contact ck that is submitted to spatial contact force f sck . In this work, we assume
that all bodies are rigid and that contacts are non-sliding. This leads to the necessary
condition that each 3D contact force applied at a point must lie inside the positive
Coulomb friction cone [Trinkle 97] defined by the inequalities:

3.4. ANTHROPOMORPHIC SYSTEM DYNAMICS 61

f>ckuck ≥ 0, k = 1, . . . , nc,∥∥∥f∠ck∥∥∥ ≤ µs ∥∥∥f⊥ck∥∥∥ , k = 1, . . . , nc,
(3.28)

where uck denotes the normal vector to the contact surface, f⊥ and f∠ denote
the normal and tangential contact forces to the contact surface respectively, and
µs denotes the limiting coefficient of static friction, which depends of the contact
interface nature (materials, temperature, etc.).

In addition to the dynamics equation, both of the actuators and the kinematic
structure can impose several limitations, such as joint position limits

q ≤ q ≤ q, (3.29)

joint velocity limits

q̇ ≤ q̇ ≤ q̇, (3.30)

and actuator torque limits

τ ≤ τ ≤ τ (3.31)

These additional constraints, shown in Figure 3.4 will also have to be taken into
account in the OCP formulation in order to generate feasible motions.

3.4.3 Inverse Dynamics

When the generalized position, velocity and acceleration vectors are known, we can
use the dynamics equation 3.27 to retrieve the unknown actuated torques τ . This is a
problem of inverse dynamics; the Recursive Newton-Euler Algorithm (RNEA) is an
efficient algorithm which relies on a loop of forward propagation of spatial velocities
and accelerations starting from the floating base, then a second loop of backward
propagation of torques and forces starting from the leaves of the kinematic tree until
the floating base. Its complexity is O(n) and it has a low count of operations, which
makes it very suitable for optimal control applications.

3.4.4 Forward Dynamics

In Forward dynamics, on the opposite of the inverse dynamics problem, the general-
ized position, velocity and actuated torque vectors are known, and the accelerations
q̈ are unknown.

The Composite Rigid Body Algorithm (CRBA) is an efficient algorithm for com-
puting the joint-space inertia matrix A(q). Interestingly, the bias force b(q, q̇) can
be retrieved by computing the inverse dynamics while setting both accelerations q̈
and contact forces f sck to 0. We can then use standard linear algebra solvers to solve
the following system for q̈:

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS62

A(q)q̈ = S>τ − b(q, q̇)−
∑
k

J>ckf
s
ck

(3.32)

The whole algorithm complexity is O(n3); the Articulated Body Algorithm (ABA),
just like RNEA, is based on a propagation method and offers a complexity of O(n).
As the torques usually constitute the physical controls of a system, forward dynamics
algorithms are very useful in simulation and control applications.

3.4.5 Dynamic Balance for Anthropomorphic Systems

Dynamic balance is a necessary condition to the generation of safe and feasible
motions. We describe here possible ways of including this condition in an OCP.

Dynamic Balance with Zero-Moment Point

As we previously introduced the ZMP in Section 1.3.1, we simply recall that it
provides a simple dynamic balance condition, namely that the ZMP must remain
inside the contact support polygon, as long as the humanoid robot is moving on a
flat floor. We saw in Section 1.3.2 how it can be derived for the cart-table model,
and we briefly describe here a method to compute it for whole-body motions of an
anthropomorphic system using inverse dynamics.

Let q,q̇ and q̈ denote respectively the rigid-body system generalized position,
velocity and acceleration vectors. We recall that, if feasible contact forces are applied
to its bodies, a necessary and sufficient condition for a humanoid robot dynamical
balance is that it can realize the state q,q̇ and q̈ using only its physical actuators.
As the humanoid robot does not have any thrusters, this condition is equivalent to
requiring that the 6D generalized torque applied by the floating joint be 0:

τfl = 0, (3.33)

where τfl denotes the floating-joint torque vector, see [Hirukawa 06].

Conversely, if we set all contact forces to zero and we compute the joint general-
ized torques using the RNEA, τfl will be equivalent to a spatial force (or wrench):
it is the force that the floating joint would need to exert in order to make the whole
system realize the state given by q,q̇ and q̈. This spatial force, expressed in the
floating base frame and denoted ffl sc , is thus equal to the resultant spatial force that
includes all the necessary contact forces. Computing the ZMP is then a simple mat-
ter of transforming ffl sc to the absolute world frame W , and finding the coordinates
(px, py) of the point on the floor such that the moments around the x and y axes, i.e.
the first two components of fW s

c , are equal to zero. This point p is, according to its
definition, the Zero-Moment Point which we are looking for. We can then guarantee
a humanoid robot dynamic balance by ensuring p stays inside the support polygon
Psup, i.e. the convex hull of all contact points.

3.4. ANTHROPOMORPHIC SYSTEM DYNAMICS 63

Dynamic Balance with Non-Coplanar Contact Forces

Let us briefly mention that the ZMP criterion is extended to handle non-coplanar
contact points such as arms and hands in [Harada 03], and is called the Generalized
ZMP (GZMP). An associated support polyhedron is defined, and the GZMP must
stay inside this polyhedron to ensure the dynamic balance of the robot. Although
this approach is interesting, it is not as simple as the ZMP criterion, and we prefer
to deal directly with contact forces through the complete dynamics of the robot.

Forward Dynamics We present here a method that ensures the dynamic balance
constraint for optimal control, as seen in [Mombaur 05]. It relies on forward dynam-
ics, where the system is torque-controlled. The state contains both the acceleration
q̈ and contact forces f sck .

As we work under the assumption that a contact point does not move during
the motion, we have:

pck(t) = pck(0), k = 1, . . . , nc, (3.34)

where pck denotes the 6D position of contact ck.
By derivating it twice we obtain the contact condition:

Jck q̈ + J̇ck q̇ = 0, k = 1, . . . , nc, (3.35)

Let f sc and Jc denote the concatenated contact force vector and contact Jacobian
respectively:

f sc =

f sc1
...

f sck
...

f scnc

 , Jc =

Jc1
...

Jck
...

Jcnc

 (3.36)

The following linear system can then be built using the dynamics equation and
contact condition, and solved for q̈ and all f sck .(

A J>c
Jc 0

)(
q̈
f sc

)
=

(
S>τ − b

−J̇cq̇

)
(3.37)

Note that Jc must be full-rank, otherwise, the system is not invertible. There-
fore, this approach allows finding a unique set of spatial forces as long as no more
than one spatial contact force is exerted on each rigid body. If we consider the
humanoid walking case, this means that one spatial contact force is applied on each
foot. However, the sum of the two solution forces can lead to a ZMP lying outside
the support polygon, as the foot geometry is never taken into account. Solving the
previous linear system is unfortunately not always sufficient to ensure dynamic bal-
ance; additional constraints, such as ZMP constraints [Koch 12], need to be added.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS64

Inverse Dynamics We saw in Equation (3.33) that if we apply feasible contact
forces and the floating-joint torques are zero, then the humanoid robot is dynamically
balanced. If we chose to control our system with the generalized acceleration vector
q̈ and contact forces f sck , we can use a simple integration scheme to retrieve the
generalized position and velocity vectors q and q̇, compute the torques τ fl, and add
Equation (3.33) as an equality constraint in the OCP formulation. This gives a way
of integrating the dynamics and enforcing the dynamic balance of the humanoid
robot through a 6D vector equality constraint, given any set of contact forces, even
when some of them are exerted on the same bodies. In order to ensure that only
feasible contact forces are applied, the inequalities from Equation (3.28) also need to
be taken into account. A similar formulation, where the contact forces are considered
as optimization variables, was suggested in [Saab 12].

3.5 (Self-)Collision Avoidance

Beside generating dynamically feasible motions for an anthropomorphic system, we
need to make sure no collision occurs during the motion. Let us assume a collision-
free initial guess is fed to the OCP solver. The optimization solver iteratively re-
shapes the motion, and either collisions between the robot and itself or collisions
with the environment might ensue. This motivates the need to take into account
(self-)collision avoidance in the OCP.

3.5.1 Distance Pairs

Consider a body Bi of the robot. Figure 3.5 gives an idea of the potential complexity
of self-collision avoidance: if the robot has NB bodies, there are NB − 1 potential
pairs of bodies 〈Bi, Bj〉 that need to be checked at a given configuration q in order
to ensure that there is no collision between the robot bodies. Since the pair 〈Bi, Bj〉
is equivalent to the pair 〈Bj , Bi〉, the total number of self-collision body pairs can be

as high as to
NB(NB − 1)

2
. Furthermore, assuming that the obstacles surrounding

the robot are considered as a single geometric entity O, we also need to check NB

body-environment pairs 〈Bi, O〉 for collisions.

One could use efficient collision detection algorithms, but their return result is
Boolean and is not suitable for gradient-based optimal control. In order to guarantee
(self-)collision avoidance, we need to compute the distance between for all potential
collision pairs (or distance pairs), and make sure this distance is positive during the
whole duration of the optimized motion.

3.5.2 Distance Computation for Collision Avoidance

A geometry can be represented accurately by a cloud of vertices, and a set of facets,
usually triangles, which define the surface of the geometry. One could then express
inequality constraints using the exact distance between the polyhedral geometries.

3.5. (SELF-)COLLISION AVOIDANCE 65

O

Bi

Bj

〈Bi, O〉

〈Bi, Bj〉

Figure 3.5: All self-collision possible pairs are shown in red for body Bi. The collision pair
between Bi and an obstacle O is also shown in blue.

Thanks to bounding volume hierarchy representations of the polyhedra, the dis-
tance computation can be precise and relatively efficient [Larsen 00], especially when
the algorithms are parallelized on graphics processing unit (GPU) [Lauterbach 10].
However, such algorithms return a constant zero distance when collisions occur, thus
leading to a zero gradient; this can be very prohibitive as numerical optimization
methods rely on the local constraint information to generate feasible iterates. In
[Kim 02], a penetration computation algorithm is proposed, but computation times
are still too restrictive.

One strategy to cope with poor performance and gradient discontinuities is to
consider bounding volumes that contain the exact robot body geometries. As this
is a conservative approach, some motions such as ones involving fine object manip-
ulation cannot be generated. In most cases, however, this approach is suitable for a
variety of robotic applications a constitutes a good trade-off between precision and
computation time. In [Escande 07] a nice solution to this problem is described: they
introduce Sphere-Torus Patches Bounding Volumes (STPBV), which are strictly
convex bounding volumes of the exact polyhedral body geometries; the returned
distance can be negative for slight collisions, and it is shown that the distance be-
tween a STPBV and a convex mesh is always C1. These constraints are successfully
used for self-collision avoidance in posture optimization, and real-time control of a
humanoid robot [Stasse 08]. Capsules, which are basically cylinders capped by half-

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS66

spheres, are slightly more conservative than STPBV, but offer an even simpler way
of computing distances: computing the distance between two capsules is equivalent
to computing the distance between two segments and subtracting the segment radii.
In [Kanoun 11] for instance, such bounding volumes are successfully used to avoid
self-collision for a humanoid robot in a real-time control application.

We discuss here an important aspect of OCP solutions when using direct meth-
ods, seen in Section 3.3.3. Indeed, these methods are based on a transcription of the
OCP into a finite-dimensional NLP, through a grid discretization. Constraints are
also discretized over the trajectory duration, which means that they are verified on
the grid points, but not between them. In [Lee 12], based on previous work for safe
trajectory optimization [Lengagne 13], capsules are used as bounding geometries for
each body; the minimum distance over each sub-interval of the discretization grid
is computed for all distance pairs, and this minimum distance is required to stay
positive. Interestingly, this leads to a final optimized motion which is guaranteed to
be collision-free for any t ∈ [0, T]. So far this method has been applied to implement
self-collision avoidance, i.e. motions are generated in the absence of obstacles.

We briefly present the signed distance transform [Felzenszwalb 04], which is
an alternative method for computing distances: assuming that the environment
is static, an offline voxelized grid can be built, and the minimum distance to the
obstacles is computed for each voxel. If there is a collision, the distance is negative
and is equal to the penetration depth. This method allows fast distance computa-
tion for optimization algoritm, but the voxel grid needs to be fine enough to allow
acceptable gradient computation through finite differentiation.

3.6 Optimal Control Applications for Anthropomorphic
Systems

Over the past thirty years, optimal control techniques have been successfully applied
in the fields of Robotics, Biomechanics and Computer Graphics. The problem of
tracking a reference path while minimizing time can for instance be modeled as an
OCP and solved thanks to state-of-the-art solvers, see [Bobrow 85, Verscheure 09,
Suleiman 10]. In this case, the initial path is assumed to be collision-free; as solving
the path tracking problem consists in applying a time parameterization without
deforming the path, collision avoidance constraints are not taken into account.

Optimal control techniques can also be used for motion imitation such as in
[Suleiman 08], where trajectories are generated for a humanoid robot by minimizing
the error with reference human motions and ensuring its dynamic balance. Self-
collisions are then post-processed when replaying the motion, using a task-based
controller for instance, see [Kanehiro 08].

In Model Predictive Control (MPC), the current control of a system is derived
from its future states to ensure its stability. Finding the best control can be done
through an optimal control formulation over a receding time horizon, in order to
ensure maximum dynamic balance for instance. This has led to online control ap-

3.6. OPTIMAL CONTROL APPLICATIONS FOR ANTHROPOMORPHIC
SYSTEMS 67

plications for a biped walking motion of a humanoid robot [Kajita 03, Herdt 10],
and more complex locomotion on non-flat terrains for animated avatars [Coros 10,
Tassa 12].

From a biomechanics point of view, some aspects of human motion can be rep-
resented as the resulting optimal policies of OCP. Conversely, solving the same
OCP can allow human behaviors to emerge from the solutions: such behaviors in-
clude walking [Chevallereau 01], running [Schultz 10], emotional walking [Felis 12]
and even more general motions involving seamless extreme locomotion and manip-
ulation [Mordatch 12]. It is interesting here to point out the gradual convergence
of the Robotics, Biomechanics and Computer Graphics fields as simulation models
become more and more realistic and are able to take into account various kinds of
physical interactions including gravity, actuator models, contact models, etc.

Some humanoid motions are very hard, or even impossible to generate without
optimal control methods. Indeed, dynamic motions greatly expand the capabili-
ties of humanoid robots which otherwise would have to satisfy the more restrictive
quasi-static balance constraints. Complex motions such as ball-kicking [Miossec 06]
and weight-lifting [Arisumi 08], and parkour [Dellin 12] can then be obtained. Also,
the accessible space of a humanoid robot can be further increased if it uses its en-
vironment to help it achieve its goal; this involves generating multiple non-coplanar
contact motion, and optimal control methods have proved to be very powerful tools
to do so [Lengagne 13].

In many cases, robots have to move in the presence of obstacles. Therefore we
must make sure that the resulting optimal policy does not lead to any collision be-
tween the robot and its environment or even itself. In [Dubowsky 86], time-optimal
collision-free trajectories are computed for a 6-DoF manipulator by adding, to the
OCP objective function, a penalty term that computes the distance to obstacles
and allows avoiding them. Penalty terms are also used in CHOMP [Ratliff 09], an
efficient optimal control solver which relies on a covariant gradient descent tech-
nique, and in STOMP [Kalakrishnan 11], a similar solver which relies on trajectory
stochastic perturbations in order to find collision-free optimal trajectories without
computing function Jacobians.

All previous applications involve simple robotic arms; in [Toussaint 07], a hu-
manoid robot trajectory is modeled as a finite sequence of attractors in the task-
space, such as a 3D hand position. This allows a great dimension reduction of the
underlying NLP and leads to very short optimizations times of the order of a few
seconds. An obstacle avoidance penalty term is also added in the objective function,
and enables the robot to avoid both self-collisions and collision with simple planar
obstacles. In this latter work, the initial trajectory can potentially generate colli-
sions, although there is no guarantee that the optimization process will succeed in
finding a collision-free solution in more complex environments. Furthermore, as no
contact body position or dynamic balance tasks are considered, fast motions cannot
be generated with this framework without compromising the robot dynamic balance.

In the general case, minimizing an objective function which contains constraints

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS68

transcribed as penalty terms allows building unconstrained optimal control prob-
lems. Good convergence rates can then be obtained as long as the problem dimen-
sion is small, and as long as the sum of too many penalty functions does not lead
to an increased nonlinearity of the objective function. Otherwise, the performance
gain obtained by solving an unconstrained NLP is neutralized by a poor convergence
rate. Furthermore, the sum of penalty terms is usually weighted to give more or less
importance to each term. This leads to the problem of choosing the correct weights
such that the resulting trajectory is satisfactory for a variety of problems.

All methods cited above make profit from optimal control to achieve several
applications of motion generation. However, current formulations either work under
the assumption that the initial guess is collision-free, or allow it to be slightly in
collision by means of linear interpolation between the initial and final states, without
giving any guarantee that the optimization process will succeed. In fact, there
are cases where the solver might get stuck in local minima and fail to generate a
trajectory that avoids collisions of the robot with either itself or the environment.

The idea of combining planning algorithms with optimization methods is not
new, and is especially motivated by the wide use of sampling-based planners which
generally produce collision-free paths of poor-quality [LaValle 06]. The shortcut
method, which we used in Chapters 1 and 2, can be seen as a local optimization
method. In [Geraerts 07], several shortcut heuristics are developed to increase a
path quality and clearance from obstacles, but they can be used to shorten a path
length with respect to a given metric only in the configuration space as time is not
considered. A suitable shortcut heuristic for optimal control of simple robotic arms
is described in [Hauser 10b]: starting from an initial collision-free path given by a
RRT path, an initial trajectory is placed on the path, making stops at the mile-
stones to ensure it is still collision-free, then a shortcut heuristic is called several
times to reduce the trajectory duration under bounded velocity and acceleration
constraints, while making sure the result is still collision-free. Similarly, a method
that combines a sampling-based planner and the STOMP optimizer is proposed,
see [Mainprice 12]. Note that in both previous methods, results were successfully
obtained for simple 7-DoF arms; as they do not allow enforcing complex constraints
such as closed-loop constraints or dynamic balance, achieving optimal motion plan-
ning for anthropomorphic systems with such methods does not seem to be possible.

3.7 Contribution

To our best knowledge there is no available algorithmic approach that addresses the
global problem of optimal motion planning for complex robots, such as anthropo-
morphic systems, in the presence of arbitrarily complex obstacles.

We therefore propose a new framework for optimal motion planning. Given a
humanoid robot geometric and dynamic model, an exact model of the environment,

3.8. (SELF-)COLLISION AVOIDANCE CONSTRAINTS 69

start and end configurations, and a robot contact stance, we first plan a collision-
free statically balanced path that satisfies all kinematic constraints. We use the
constrained RRT planner, which we presented in Section 1.1.2, to this end. We
convert the path to an initial trajectory using a suitable time parameterization, and
we then optimize it to generate a locally-optimal collision-free dynamically-balanced
trajectory. The MUSCOD-II solver uses a direct multiple shooting method to solve
the formulated optimal control problem. Note that this involves both finding a new
time parameterization for the trajectory, and reshaping the path in a geometrical
sense, so it is not simply a problem of optimal path tracking.

In order to ensure (self-)collision avoidance, we choose to model distance con-
straints using bounding capsules around the robot exact body geometries. In pre-
vious applications, the capsule parameters were set by hand by the user for a given
body. We therefore provide an automatic bounding capsule generation tool; it relies
on a NLP formulation that allows us to find the minimum-volume capsules around
bodies which are modeled by polyhedra. The capsules allow us then to enforce
collision-avoidance constraints between the robot, obstacles and itself.

To ensure dynamic balance during the robot motion, most of the results we
present on the ZMP criterion; we introduce later on some preliminary results when
using a multiple contact force formulation.

The full framework is successfully applied to generate optimal collision-free tra-
jectories for a humanoid robot both in simulation and on the HRP-2.

The collision avoidance constraints are tackled in Section 3.8 and used in the
optimal control problem described in Section 3.9. Section 3.10 showcases results
obtained for the robot HRP-2. We also show an extension to multiple contact
points in Section 3.11.

3.8 (Self-)Collision Avoidance Constraints

Before providing a description of our optimal motion planning framework, we first
focus in this section on building the collision avoidance constraints through the
automatic generation of bounding capsules around the robot body geometries, and
the automatic pruning of unnecessary distance pairs 〈Bi, Bj〉 and 〈Bi, O〉.

3.8.1 Computing minimum bounding capsules

Capsule can be represented as the union of a cylinder and two half-spheres, or
sphere-swept segment. It is uniquely determined by its two segment endpoints e1,
e2 and its radius r. Capsules are convex geometries, and have been widely used in
Robotics and Computer Graphics as they provide a simple representation of more
complex polyhedral geometries.

In [Kanoun 11], the bounding capsules parameters are set by hand to obtain
the best fitting capsules around the body geometries, which is not very practical
especially if we want to use various robot geometric models. In [Eberly 07], a method

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS70

is proposed to compute a bounding capsule of a set of vertices, but not necessarily
the best fitting one. This method is based on first determining the capsule segment
direction using a least-squares regression, setting the capsule radius by finding the
farthest vertex from the line, and finally determining the segment length by trying
to make the capsule spherical caps come as close as possible to each other.

We propose here to automatically find minimum-volume capsule parameters by
solving, offline and once for each body of the robot, the following optimization
problem:

min
e1,e2,r

‖e2 − e1‖πr2 +
4

3
πr3 (3.38)

subject to:

r − d(v, e1e2) ≥ 0, for all v ∈ P, (3.39)

where d(p, e1e2) is the distance of p to line segment e1e2. Equations 3.38 and 3.39
mean we want to find the minimum-volume capsule while ensuring all vertices v of
the underlying polyhedron P lie inside the capsule.

The problem we defined above is a NLP with inequality constraints. It can
be solved using either SQP or IPM methods, as long as we give suitable initial
parameters e10, e20, and r0. Luckily, a good initial guess can be provided by the
bounding capsule method we presented earlier, as all constraints are satisfied and
the initial volume is not far off the optimal volume.

It can be proved that a convex geometry is a bounding volume of a set of points
P if and only if it is a bounding volume of its convex hull HP , which is characterized
by a lower vertex count than P. We can use this property to our advantage: by
first computing the convex hull and finding the minimum-volume capsule for HP ,
we are sure to have better optimization performance as the number of constraints
is greatly reduced, especially for non-convex geometries.

We solve our minimization problem with RobOptim [Moulard 09, Moulard 12a]
and the IPOPT solver [Biegler 09], and we use our implementation1 to find the
optimal bounding capsules for both HRP-2 and Romeo [Guizzo 10] humanoid robots.
Table 3.1 demonstrates how solving optimization problem instances forHP instead of
P accelerates their convergence. Figures 3.6 and 3.7 show the best fitting bounding
capsules superimposed over the original robot geometries.

3.8.2 Computing Distances for Pairs

The optimal capsule parameters can now be used to compute distances for body-
body and body-environment pairs. With respect to body-body distance pairs, we
can compute their minimum distance by first computing the distance between the
two capsule segments, then subtract their radii in order to obtain the real distance.

1An open-source implementation can be found at https://github.com/roboptim/

roboptim-capsule/ and http://roboptim.net/roboptim-capsule/doxygen/1.0.1/

https://github.com/roboptim/roboptim-capsule/
https://github.com/roboptim/roboptim-capsule/
http://roboptim.net/roboptim-capsule/doxygen/1.0.1/

3.8. (SELF-)COLLISION AVOIDANCE CONSTRAINTS 71

Table 3.1: Performance of minimum-volume bounding capsules generation.

Robot
Body
count

Mean vertex
count per body

Total
computation
time without

convex hull (s)

Total
computation
time using

convex hull (s)

HRP-2 41 1526 46.8 7.50

Romeo 46 7033 410 27.6

(a) Original geome-
tries.

(b) Convex hull.
(c) Initial capsule pa-
rameter guess.

(d) Optimization re-
sult.

Figure 3.6: Minimum-volume bounding capsule generation for the HRP-2.

(a) Original geome-
tries.

(b) Convex hull.
(c) Initial capsule pa-
rameter guess.

(d) Optimization re-
sult.

Figure 3.7: Minimum-volume bounding capsule generation for the Romeo robot.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS72

We rely on the Wild Magic geometric library [Schneider 03, Eberly 11] to compute
this distance in an average time of 2 µs.

Concerning capsule-environment pairs, as the environment is modeled by polyhe-
dral meshes, we can compute their distance by computing the distance between the
capsule segment and mesh, then subtract the capsule radius. State-of-the-art dis-
tance computation algorithms rely on building a hierarchical tree of simple bounding
volumes around the mesh. In our work, we rely on an implementation of OBB-Trees
in the Kineo Collision Detection (KCD) library to compute distances for capsule-
environment pairs. For the environment in figure 3.8, the distance for one capsule-
environment pair takes about 500 µs to be computed, since the environment is
assumed to be perfectly modeled by polyhedron meshes. Note that even for very
efficient implementations, the tree traversal scheme in bounding volume hierarchies
implies running multiple proximity queries and we cannot hope for good performance
unless GPU-based implementations are used.

3.8.3 Body Distance Pair Selection

We mentioned in Section 3.5 that if we were to take into account all body distance

pairs of a robot, we could end up with
NB(NB − 1)

2
possible pairs. This means that

for a robot like HRP-2 with 41 bodies, we can have up to 820 pairs and it can be
very costly to evaluate the distance for all of them. Luckily, some bodies are either
always colliding because they are adjacent in the kinematic tree, or never colliding
due to kinematic constraints; for the particular example of the HRP-2, its kinematic
tree and joint limits are such that the head body can never collide with its chest
or any of its feet. The pairs corresponding to those bodies can therefore be safely
pruned.

In order to avoid hand-checking of all pairs, we use the offline tool implemented
in [Sucan 11]: it relies on finely exploring the configuration space, using a sampling-
based planner such as RRT, and keeping track of colliding bodies. In the case of the
HRP-2, this allows us to keep only 510 “useful” pairs out of 820 pairs. Although
not used in this work, note that there exist online collision pair pruning techniques
which allow to accelerate collision detections and proximity queries [Ericson 04].

As in all our examples, we consider the particular case of double-support motion,
we can be sure that most of the leg bodies cannot collide with each other due to the
additional kinematic constraints. This is a manual step, but it could be automated if
additional kinematic constraints were taken into account in the previously described
tool. We finally end up with 327 capsule-capsule pairs that must be all evaluated to
guarantee self-collision avoidance.

Similarly, we can do more effort and prune some of the capsule-environment pairs
that do not need to be checked due to the particular kinematic structure of a robot.
In the case of HRP-2 for instance, if both waist and chest are not in collision with
the environment, we can be sure that it will be the same for the intermediate body
linking them. This case is not handled in the automated tool. Out of 41 potential

3.9. OPTIMAL MOTION PLANNING FRAMEWORK 73

Figure 3.8: Path found by the path planner in a shelves environment.

capsule-environment pairs, we keep 23 pairs.

3.9 Optimal Motion Planning Framework

Now that we have defined collision avoidance constraints, we can build the full
optimal motion planning framework. It can be decomposed into two main stages,
namely constrained path planning and optimal control, with an intermediate stage
which builds a time parameterization over the path that is generated by the planner.

In our work, we focus on generating collision-free trajectories for the HRP-2 in
the case both its feet remain in the same position on a horizontal floor. We choose
to minimize the integral, over a fixed duration, of the generalized square jerk

...
q(t);

this helps obtain smooth motions.

3.9.1 Constrained Path Planning

We use the constrained planner in [Dalibard 09], which we described in Section 2.1.2,
and is implemented with the motion planning library KineoWorksTM[Laumond 06].
This planner allows generating a collision-free path, while guaranteeing that the
solution path lies on a manifold of the configuration space. We want to generate

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS74

for HRP-2 a collision-free path that guarantees its quasi-static balance when it is
standing on both feet. We then define the manifold M with the following stack of
equality constraints:

1. Right foot has a fixed 6D transformation,

2. Left foot has a fixed 6D transformation,

3. Center of mass vertical projection lies in the center of the support polygon.

Additionally, we would like to avoid choosing a single goal configuration qg, but
instead define a goal task xg. This task can be defined by a sub-manifoldMg of the
planning manifold M. For a simple object manipulation task, Mg can be defined
as the intersection between M and the manifold defined by the following stack of
equality constraints:

1. Gripper has the same 3D position as the object to grab.

2. Gripper thumb is oriented vertically.

Given a start configuration qs a planning manifold M and a goal sub-manifold
Mg, we first create a set of goal configurations qg by sampling a fixed number of
configurations inMg, then we solve the path problem from qs to qg. The constrained
planner diffuses trees from qs and each configuration of qg, and stops once at least
one of the goal configurations is in the same connected component as qs. A shortcut
optimizer can then prune unnecessary waypoints and shorten the solution path.
Figure 3.8 shows an example where HRP-2 has to grab an object on the lower shelf
and place it on the upper shelf.

3.9.2 Time Parameterization for Initial Trajectory

The constrained path planner generates a collision-free statically balanced path
where the kinematic constraints are enforced, but we still need to apply a time pa-
rameterization before feeding it to the optimal control solver. We want to minimize
the sum of square jerks; it is shown in [Flash 85] that an unconstrained minimum-
jerk trajectory is a polynomial of degree 5 which can be explicitly computed if the
initial and final states are known. We choose then to place minimum-jerk trajec-
tories between each pair of path waypoints, assuming they start and end at zero
velocity and acceleration. This ensures that the configuration q(t) follows exactly
the solution path and that collision avoidance constraints are not violated around
the waypoints.

As we rely on a direct multiple-shooting optimal control solver, the minimum-
jerk trajectories that have been computed are discretized along the state and control
grid. Figure 3.9 shows an example where the time grid has 20 sub-intervals and a
duration of 2 seconds, the control is a piecewise linear function representing the jerk,

3.9. OPTIMAL MOTION PLANNING FRAMEWORK 75

0.0 0.5 1.0 1.5 2.0
t(s)

-150

-100

-50

0

50

100

150

..
.

q

0.0 0.5 1.0 1.5 2.0
t(s)

-8

-6

-4

-2

0

2

4

6

q̈

0.0 0.5 1.0 1.5 2.0
t(s)

-1.0

-0.5

0.0

0.5

q̇

0.0 0.5 1.0 1.5 2.0
t(s)

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

q

q0

q1

q2

q3

q4

Figure 3.9: In this example, the planned path contains 5 milestones. The jerk (in orange)
is a continuous piecewise linear function, and is computed such that the position trajectory
starts and ends with zero velocity and acceleration at each milestone. The state nodes (blue
dots) are similarly chosen, and the controls are integrated over each sub-interval to obtain
the full trajectory (in blue). Note that discontinuities are observed because of the control
parameterization.

and the state is comprised of the position, velocity and acceleration. Note that as
only the nodes si are known, the remainder of the state trajectory can be obtained
using the control representation and successive time integrations.

3.9.3 Optimal Control Problem Formulation

We can now build the full OCP formulation, and let the optimization solver reshape
the initial guess in order to minimize the objective function while enforcing all
constraints. This should lead to smooth motions without intermediate stops.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS76

Objective function

We choose to minimize, for a fixed duration, the integral over time of the sum of
square jerks, as this criterion leads to smooth trajectories.

The objective function can then be written as:

J =

∫ T

0

...
q(t)T

...
q(t)dt (3.40)

and we define the state and control variables to be:

x(t) = [q(t), q̇(t), q̈(t)]T

u(t) = [
...
q(t)]T

(3.41)

Equality and inequality constraints

Joint constraints Each actuated joint is subject to physical limitations of its
underlying actuator and mechanical structure. Box constraints on angular, speed
and torque limits are then added as:

q ≤ q ≤ q

q̇ ≤ q̇ ≤ q̇

τ ≤ τ ≤ τ

(3.42)

Dynamic balance The robot is submitted in our case to multiple coplanar contact
reaction forces from the ground. We can then express the dynamic balance constraint
using the whole-body ZMP, which has to remain inside the robot support polygon
defined by its feet.

These constraints can be written as for any t ∈ [0, T]:

plf (q(t)) = plf (q(0))
prf (q(t)) = prf (q(0))

pzmp(q(t), q̇(t), q̈(t)) ∈ Psup,
(3.43)

where plf , prf are respectively the 6D positions of the left and right foot, pzmp
and Psup are the 2D ZMP coordinates and the support polygon respectively. Note
that in order to ensure plf and prf are continuous functions, we do not use Euler
angles (such as roll, pitch and yaw) to represent 3D rotations, and each contact
body position is written as the concatenation of a 3D translation vector and a 3D
rotation vector; the rotation vector direction gives the rotation axis, and its norm
gives the rotation angle around this axis.

Collision avoidance constraints We use the capsule-capsule and capsule-
environment pairs defined in Section 3.8. Given a configuration q of the robot,
we check that distances for pairs of bodies and pairs of body and obstacle are posi-
tive to ensure (self-)collision avoidance. We first tried to add one constraint per pair,

3.10. RESULTS 77

(a) Initial invalid path. (b) RRT path. (c) Shortcut path.

Figure 3.10: Paths for the test case.

which added up to (327+23)∗nms constraints, where nms is the number of shooting
nodes in MUSCOD-II. This led to poor performance as the solver systematically
went beyond the threshold number of iterations. We hence propose to define one
inequality constraint per robot body, with its value being the minimum distance for
all distance pairs involving this body, i.e. both self-collision and obstacle collision
pairs.

3.10 Results

We demonstrate the effectiveness of our optimal motion planning framework by
first using it in a a simple test case example, then applying it to generate feasible
motions on the robot HRP-2. All tests were run on a computer with a 2.53 GHz
Intel R© CoreTM2 Duo processor.

3.10.1 Test Case

Figure 3.10a shows the motion planning problem to be solved: HRP-2 starts from
its rest position and moves to a goal configuration by raising its left arm. A concave
object is placed such that the left hand is at one point enclosed in it if the initial path
connecting the start to goal configuration is executed. This is a typical example of a
problem with a local minimum defined by the environment, where a real-time control
approach in task-space might fail. Figure 3.10b shows a possible solution path found
with constrained RRT. This path can be shortened with a shortcut optimizer, as in
figure 3.10c.

To showcase the usefulness of our approach, we try to solve the optimal control
problem defined in Section 3.9.3 starting from the different paths, and put all results
in Table 3.2. When starting with the initial path from figure 3.10a, the solver failed
to achieve a single iteration. This can be explained by the fact that in the middle

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS78

Table 3.2: Test Case Computation Times

Initial guess Initial path RRT path Shortcut path

Planning time (s) – 5 5

Shortcut time (s) – – 4

Optimization status ERROR MAX ITER OK

SQP iterations – 200 70

Optimization time (s) – 3068 1186

Constraints evaluation time (s) – 2176 847

of this path, the robot left hand is enclosed inside the obstacle and some distance
constraints are violated; the solver fails to determine a clear direction which would
remove this violation due to the geometric local minimum. Since the constrained
RRT avoids it and generates a collision-free path, the solver behaves correctly when
starting with the path in 3.10b, but the maximum number of iterations is reached
before reaching convergence. It is achieved when starting with the shortcut path in
3.10c.

In Figure 3.11, the evolution of the same component for the generalized position,
velocity, acceleration and jerk is shown. We can see that the state trajectory is
continuous, smooth, and the intermediate stops that were present in the initial
guess have disappeared.

Figure 3.12 shows the evolution of all 12 components of the kinematic equality
constraints on both feet. As the constraints are only enforced on the shooting nodes,
we observe slight deviations on the sub-intervals; they are luckily sufficiently small
to consider these constraints as perfectly enforced.

Note that about 70% of the optimization time is spent in evaluating the distance
constraints and their gradients; this significant overhead can be explained by the fact
that MUSCOD-II relies on internal numerical differentiation to compute Jacobians.
Figure 3.13 shows the evaluation of the collision avoidance constraints: due to the
time discretization, one constraint is violated during less than 100ms. This violation
does not however exceed 1mm, and this is considered as acceptable as all distance
constraints are computed with bounding capsule geometries which already define
conservative volumes around the exact geometries.

Finally, we observe in Figure 3.14 that dynamic balance is guaranteed during
the whole motion, as the ZMP remains fully inside the support polygon.

3.10.2 Dynamic Motion Generation on the HRP-2

We also use our approach to generate fast optimal collision-free trajectories and
execute them on the humanoid robot HRP-2. In the first scenario, HRP-2 executes
a kind of martial art figure where it crosses its arms rapidly while bending its knees,

3.10. RESULTS 79

0.0 0.5 1.0 1.5 2.0
t(s)

-15

-10

-5

0

5

10

..
.

q

0.0 0.5 1.0 1.5 2.0
t(s)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

q̈

0.0 0.5 1.0 1.5 2.0
t(s)

-0.4

-0.2

0.0

0.2

0.4

q̇

0.0 0.5 1.0 1.5 2.0
t(s)

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

q

Figure 3.11: Test case: optimized position, velocity, acceleration and jerk trajectories for
the chest yaw joint. Note that compared to Figure 3.9, there are no more intermediate stops
and the trajectories are smooth.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS80

0.0 0.5 1.0 1.5 2.0
t(s)

-4

-3

-2

-1

0

1

2

3

4

F
o
o
t

k
in

em
a
ti

c
co

n
st

ra
in

ts

1e-6

Figure 3.12: Test case: evolution of kinematic constraint values over time. As we constrain
the 6D positions of the two robot feet, we end up with 12 equality constraints. They are
only fully enforced on the shooting nodes, but it can be seen that the maximum deviation
does not exceed a few µm.

3.10. RESULTS 81

0.0 0.5 1.0 1.5 2.0
t(s)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

C
o
ll
is

io
n

a
v
o
id

a
n

ce
co

n
st

ra
in

ts
(m

)

Figure 3.13: Test case: Evolution of the distance inequality constraint values over time. As
the constraints are only enforced at the shooting nodes, a slight penetration of a maximum
of 1mm is observed between the left forearm capsule and the obstacle.

-0.20-0.15-0.10-0.050.000.050.100.150.20
y

-0.10

-0.05

0.00

0.05

0.10

0.15

x

ZMP

CoM

Figure 3.14: Test case: Trajectory of the ZMP and the CoM vertical projection on the
floor. The green rectangles correspond to the robot left and right foot, and the filled area
is the support polygon. As the ZMP never goes out the support polygon, this trajectory is
dynamically balanced.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS82

0.0 0.5 1.0 1.5 2.0
t(s)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
ll
is

io
n

a
v
o
id

a
n

ce
co

n
st

ra
in

ts

Figure 3.15: Martial arts scenario, phase 2: evolution of the distance inequality constraint
values over time. A slight penetration of a maximum of 3mm is observed between the left
and right forearm capsules.

changes the arms configuration, then moves back to a rest posture. The motion
must be executed while ensuring the arms do not collide with each other, and the
robot does not fall. This is quite a difficult task as the 3 trajectories durations are
fixed to 1, 2, and 2 seconds respectively. Particularly, the second motion where one
arm goes around the other arm proved to be impossible to generate without a prior
planning phase as proposed in our approach.

In the second scenario, we add a complex environment that contains shelves with
different levels; HRP-2 first bends its knees to grab a ball located deep on the lower
shelf, then moves it to an upper shelf to release it between two other objects. The
trajectories last respectively 2 and 5 seconds. Here, both collision and self-collision
constraints need to be enforced in order to obtain a valid trajectory. Again, the ball
transfer motion cannot be generated using an optimal control solver and a simple
initial guess; a prior planning phase is needed to find a collision-free transfer path.

We successfully apply our framework to generate feasible motions for both sce-
narios as seen in figures 3.19 and 3.20. Computation times are shown in Tables 3.3
and 3.4. Figures 3.15 and 3.18 show the collision avoidance constraint evolution
for the second phase of each scenario. The ZMP is plotted in Figure 3.16 for the
martial arts scenario. In the shelves scenario, Figure 3.17, left, shows that the ZMP
inequality constraint which corresponds to the front edge of the feet is active at
three nodes; as this constraint is not necessarily enforced on the sub-intervals, it is

3.10. RESULTS 83

-0.20-0.15-0.10-0.050.000.050.100.150.20
y

-0.10

-0.05

0.00

0.05

0.10

0.15
x

ZMP

CoM

Figure 3.16: Martial arts scenario, phase 2: trajectory of the ZMP and the CoM vertical
projection on the floor. The green rectangles correspond to the robot left and right foot,
and the filled area is the support polygon. As the ZMP never goes out the support polygon,
this trajectory is dynamically balanced.

-0.20-0.15-0.10-0.050.000.050.100.150.20
y

-0.10

-0.05

0.00

0.05

0.10

0.15

x

ZMP

CoM

-0.20-0.15-0.10-0.050.000.050.100.150.20
y

-0.10

-0.05

0.00

0.05

0.10

0.15

x

ZMP

CoM

Figure 3.17: Shelves scenario, phase 2: trajectories of the ZMP and the CoM vertical
projection on the floor. Left: the dynamic balance constraints are enforced at the nodes,
but the ZMP goes out the support polygon in two sub-intervals. Right: the ZMP stays inside
the support polygon when more restrictive balance constraints and, leading to a reduced
support polygon, are used.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS84

0.0 0.8 1.7 2.5 3.3 4.2 5.0
t(s)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

C
o
ll
is

io
n

a
v
o
id

a
n

ce
co

n
st

ra
in

ts

Figure 3.18: Shelves scenario, phase 2: evolution of the distance inequality constraint values
over time. A slight penetration of a maximum of 3mm is observed between the right gripper
capsule and the shelves.

violated, and this leads to a fall of the robot. One solution would be to increase the
trajectory execution time so that the ZMP is closer to the CoM projection. As we
still want to generate fast motions, it is necessary to implement balance constraints
with a reduced support polygon to ensure that the ZMP remains entirely inside the
convex hull of the foot contact points, even inside the time sub-intervals, see Figure
3.17, right.

Table 3.3: Computation Times for Martial Arts Scenario

Phase 1 2 3

Planning time (s) 4 13 2

Shortcut time (s) 4 6 1

SQP iterations 32 73 25

Optimization time (s) 346 1130 278

Constraints evaluation time (s) 124 356 83

3.10. RESULTS 85

Figure 3.19: HRP-2 does a quick martial arts motion while avoiding self-collision.

Table 3.4: Computation Times for the Shelves Scenario

Phase 1 2

Planning time (s) 13 38

Shortcut time (s) 6 23

SQP iterations 74 80

Optimization time (s) 1745 5020

Constraints evaluation time (s) 1396 2640

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS86

Figure 3.20: HRP-2 bends down quickly to grab a ball in the lower shelf and transfers it to
the upper shelf.

3.11. EXTENSION TO NON-COPLANAR CONTACT POINTS 87

3.11 Extension to Non-Coplanar Contact Points

While the previous OCP allows us to successfully generate optimal collision-free
trajectories, it is limited to the case where all contact points lie on the same plane,
which allows us to ensure dynamic balance through ZMP constraints. We propose
to extend our framework in order to handle dynamic balance with potentially non-
coplanar contact points and provide some preliminary results.

Therefore, we modify our formulation a bit by keeping the state vector and
adding to the control vector all 3D contact forces which are applied on the robot
bodies:

x(t) = [q(t), q̇(t), q̈(t)]T

u(t) = [
...
q(t), fc(t)]

T ,
(3.44)

and discretize the forces to represent them as continuous piecewise linear function,
as for jerks. Each 3D force vector is expressed in the local body coordinate system.

As the ZMP is no longer useful in this case, we replace the ZMP inequality
constraints by the dynamic balance equality constraint from Equation (3.33). For
now we assume that the limiting coefficient of static friction µs is infinite, i.e. that
the friction cone is the positive half-space. We therefore only add the first constraint
from (3.28), which ensure that the contact force normals are positive.

We use the second phase of the martial arts scenario to verify our approach with
a set of coplanar contact points. As both feet of the HRP-2 are on the horizontal
floor, we first place one contact force on each of the four foot vertices, which amounts
to a total of 8 forces. We set the motion duration to 0.6s in order to create a fast
trajectory.

Let the center of pressure (CoP) be the contact point barycenter, weighted by
the normal contact forces. We plot the CoM, ZMP and CoP in Figure 3.21a. Inter-
estingly, the ZMP and the CoP coincide over the shooting nodes, and differ only in
between, which confirms that the new dynamic balance formulation is equivalent to
the one using the ZMP when all contact points lie in the same plane. We also no-
tice that the ZMP is not always inside the support polygon as the dynamic balance
constraints are not enforced over the sub-intervals. Figure 3.21b shows the result-
ing ZMP and CoP trajectories when placing contact forces on a reduced support
polygon vertices.

We show in Figure 3.22 the normal contact force values over time. Note that
as the forces are required to be non-vanishing, their normal components remain
positive during the whole motion. We also show the floating joint generalized force
constraint value in Figure 3.23; as expected, all components are equal to zero at the
shooting nodes, but the constraint are not properly enforced in the sub-intervals.
The values may seem high, but they should be compared with other forces to which
the robot is subject, such as the gravity force. For instance the red and blue line
correspond to linear force components, and they represent less than 5% of the HRP2
weight, which is around 550N.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS88

-0.20-0.15-0.10-0.050.000.050.100.150.20
y

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

x

ZMP

CoM

CoP

(a) Contact forces applied at the foot edge
vertices.

-0.20-0.15-0.10-0.050.000.050.100.150.20
y

-0.10

-0.05

0.00

0.05

0.10

0.15

x

ZMP

CoM

CoP

(b) Contact forces applied on reduced sup-
port polygon.

Figure 3.21: Martial arts scenario, phase 2: trajectories of the ZMP and the CoP computed
from the contact forces. Left: the dynamic balance constraints are enforced at the nodes,
but the ZMP goes out the support polygon in two sub-intervals. Right: the ZMP stays
inside the support polygon when more restrictive balance constraints, leading to a reduced
support polygon, are used.

0.0 0.1 0.2 0.3 0.4 0.5
t(s)

0

50

100

150

200

L
e
ft

fo
o
t
n
o
rm

a
l
c
o
n
ta

c
t
fo
rc

e
s
(N

)

0.0 0.1 0.2 0.3 0.4 0.5
t(s)

0

20

40

60

80

100

120

140

160

180

R
ig
h
t
fo

o
t
n
o
rm

a
l
c
o
n
ta

c
t
fo
rc

e
s
(N

)

Figure 3.22: Martial arts scenario, phase 2: Left and right normal contact forces. All normal
forces remain positive during the motion, and are computed to ensure dynamic balance.

3.12. DISCUSSIONS AND FUTURE WORK 89

0.0 0.1 0.2 0.3 0.4 0.5
t(s)

-15

-10

-5

0

5

10

15

20

25

F
lo

a
ti

n
g

jo
in

t
g
en

er
a
li
ze

d
fo

rc
e

Figure 3.23: Martial arts scenario, phase 2: floating joint generalized torque evolution over
time. It is required to be equal to 0 in order to obtain dynamic balance.

Finally, we confirm in Figure 3.24 that the collision avoidance constraints are
properly enforced.

In this work, we only tried enforcing dynamic balance constraints with a con-
tact force formulation in the case of horizontal coplanar contact points. The same
formulation can luckily be used for cases where the contact points are not coplanar,
e.g. where HRP-2 stands on an uneven floor or uses its upper limbs to go in contact
with the environment. We leave this for future work.

3.12 Discussions and Future Work

In subsection 3.10.1, we demonstrate in a simple example the influence of the initial
guess of the optimal control problem on the solver success and performance. In fact,
due to its probabilistic completeness, the usage of the constrained planner in a first
stage guarantees that an initial collision-free and quasi-statically feasible trajectory
can be found. The optimization solver then can reshape this trajectory in order to
minimize the objective function while enforce constraints such as joint limits and
dynamic balance.

Solution optimality Note however that with this method, only locally optimal
trajectories are found; further investigation can be done in order to try to trans-
form the OCP into an equivalent convex optimization problem, as this would allow

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS90

0.0 0.1 0.2 0.3 0.4 0.5
t(s)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
ll
is

io
n

a
v
o
id

a
n

ce
co

n
st

ra
in

ts

Figure 3.24: Martial arts scenario, phase 2: collision avoidance constraints evolution over
time. The constraint violation does not exceed 2mm on the sub-intervals.

both using simpler and more efficient solvers and ensuring that global minimizers
are computed. Such an approach has been applied for time-optimal path tracking
problem, see [Verscheure 09]. Alternatively, it might be interesting to solve the op-
timal motion planning problem in one step using the RRT∗ sampling-based planner,
as described in Section 3.3.4.

Trajectory duration In this work, the trajectory duration is fixed in the OCP
formulation. This means that if it is not properly set, the optimization solver might
fail as some constraints such as velocity limits would never be enforced. This issue
could be solved by including time as a variable in the OCP in order to guarantee the
complete framework succeeds in generating optimal trajectories. However, this has
to be done carefully: indeed, if time is a free variable, the minimum-jerk trajectory
will have an infinite duration. One could choose to include time in the objective
function, so that both jerk and time are minimized, but a suitable weight ratio
for both terms then needs to be found, and the optimal trajectory quality would
be directly affected by those weights. An alternative solution would be to add an
additional stage in the framework: the initial path would be first parameterized
to an infinite-duration trajectory, then a constrained minimum-time OCP would
be solved, and the solution would be finally used as an initial guess to solve the
constrained fixed-time minimum-jerk OCP we described in this work.

3.12. DISCUSSIONS AND FUTURE WORK 91

Computation time Obviously the optimal motion planning we described is still
not meant for online motion generation. In its current state, the two major hurdles
are the distance constraint computation and the optimal control solver itself. We use
the KCD library in order to successfully compute distances between capsules and
meshes; however, it not the most efficient library and other ones such as the Flexible
Collision Library (FCL) [Pan 12], can be used for better performance. Regarding the
optimal control solver, MUSCOD-II relies on an internal numerical differentiation
mechanism to compute all Jacobians. This is a very nice feature which allowed to
formulate an OCP very quickly without explicitly derivating the Jacobians, and it
leads to acceptable performance when the functions are not expensive to compute.
Sadly computing distances between capsules and meshes is not very fast. Luckily
their Jacobian is not very hard to compute; it would be then useful to rely on solvers
which can use the Jacobian explicit expression.

One other possibility we did not explore is parallel computing; indeed, dynamics,
distance computation, and multiple shooting algorithms all support parallelization;
relying on smart GPU-based implementations of these algorithms would obviously
lead to enhanced performance.

Enforcing constraints MUSCOD-II is based on a direct multiple shooting
method. This implies, as we saw in Section 3.3.3, that the OCP is transcribed
to a finite-dimensional NLP thanks to a discretization of both the control and state
vector. This also implies that constraints are only enforced on the multiple shooting
nodes, without any guarantee that they will be valid over the time sub-intervals. As
long as we use enough nodes, this is not really an issue for constraints that have slow
dynamics such as kinematic constraints. This is not the case for balance constraints
such as the ZMP, and we needed to verify a posteriori that they were enforced over
the whole trajectory, reducing the support polygon size when necessary.

In [Lengagne 13], this issue is solved by locally approximating constraints with
Taylor polynomials, computing their extremal values over each sub-interval of the
time-grid, and using them as effective constraints in the OCP formulation. Another
possible solution consist in relying on direct collocation methods; as the control and
state are finely discretized, constraints can be verified almost everywhere on the
trajectory.

Extension to non-coplanar contacts We showed in Section 3.11 preliminary
results of optimal control with a unilateral contact force formulation which ensures
balance. While we only applied it to horizontal coplanar contact points, it can be
used in the same way to generate optimal motions with non-coplanar contact points.
If we want to handle correctly such cases in our optimal motion planning framework,
we equally need to plan statically balanced paths for non-coplanar contact points.
This implies redefining the planning manifold M in order to enforce a generic sta-
bility criterion, as described in [Bretl 06], where a configuration and contact forces
are computed such that static balance is obtained.

CHAPTER 3. OPTIMAL MOTION PLANNING FOR HUMANOID ROBOTS92

Towards collision-free locomotion optimization In this work, we focused on
generating motions under the assumption that the set of contact points does not
change during the whole motion. It would be however interesting to consider optimal
motion planning for the more general case of locomotion, manipulation, or both. As
in [Lengagne 13], our framework could be extended, by planning and optimizing
sequentially for multiple phases, where each phase is defined by a fixed set of non-
coplanar contact points. This approach requires us to first plan the contact stance
sequence which cannot be changed later on.

An alternative solution would be to reformulate the OCP so that changing con-
tact point sets are taken into account, e.g. through a linear complementarity con-
straint between a contact point distance to obstacles and the normal contact force,
as proposed in [Posa 12, Tassa 12, Mordatch 12]. Collision avoidance can be inte-
grated in this process by first planning a draft path, using high-level planners such
as the one we described in Chapter 2, and letting the optimizer decide which contact
points to use, and when to use them.

3.13 Conclusion

In this chapter we propose a novel approach to tackle optimal control problems
in cluttered environments. Our approach combines, in a two-stage framework, a
constrained path planning algorithm and an optimal control problem solver. We
generate optimal feasible trajectories for the humanoid robot HRP-2 and successfully
execute them in constrained environments.

Our framework can benefit from improvements to increase its usability. In future
work we aim to consider non-coplanar contacts, as well as release the robot from its
fixed support constraints in order to accomplish optimal locomotion planning.

93

Chapter 4

Conclusion

4.1 General Contributions

The work presented in this thesis deals with planning optimal motions for anthropo-
morphic systems in general, and humanoid robots in particular. Based on promising
but still separate advances in motion planning and optimization in high-dimensional
spaces, the main focus of this work was set on the combination of methods from both
fields in order to generate optimal collision-free trajectories for humanoid robots.

More precisely, the contributions lead to the development of :

− an efficient A∗-based path optimization algorithm for a bounding-box repre-
sentation of a humanoid robot. It was inserted in an existing two-stage planner
which allowed the generation of minimum-time dynamic walking trajectories.

− a whole-body motion planner for humanoid robots. Based on the small-space
controllability property which was established in this work, collision-free tra-
jectories that seamlessly combine dynamic walking and manipulation were
produced.

− a two-stage optimal motion planning framework which combines constrained
sampling-based planners with optimal control methods. Dynamically-feasible
collision-free smooth trajectories were successfully generated in constrained
environments.

Finally, special care was given in this thesis to generate feasible motions that not
only can be executed on digital actors, but also on physical humanoid robots in real
environments. Therefore, resulting motions from all previously cited contributions
were successfully executed on the HRP-2 humanoid robot.

4.2 Perspectives

Let us recall that planning represents only one of the three components of the
perception-planning-action paradigm. We want humanoid robots to achieve tasks

CHAPTER 4. CONCLUSION 94

such as locomotion in a reactive way; it is therefore obvious that the time which
is spent in the planning component should be very short, i.e. motions should be
generated very quickly. This work succeeded in the development of generic methods
for planning optimal motion for humanoid robots, but their computational efficiency
remains one of their main limitations, as computation time was not the focus of this
work. Some pointers were thus given in the previous chapter discussions in order to
address this issue.

Humanoid robots have formidable abilities when compared to more common
fixed-base or wheeled robots: thanks to their legged structure, they can walk, step
over obstacles, run, climb hills and execute acrobatic figures among many things.
This thesis was limited to generating motions where a humanoid robot is standing
on a flat horizontal floor; this voluntary limitation allowed us to devise sound meth-
ods for whole-body dynamic walking and optimal motion planning. Nevertheless,
insights for extending our optimal motion planning framework to handle a set of
non-coplanar contact points were given.

In some sense, both the computer graphics community and the robotics one
share the common goal of generating feasible motions, with the former’s main con-
cern being the motion realism with respect to the laws of Physics, and the latter’s
being its feasibility on complex hardware platforms in the physical world. Thanks
to a smart usage of online model-predictive control techniques for digital avatar an-
imation [Coros 10, Tassa 12], recent results have shown that we can hope to make
humanoid robots plan extreme locomotion reactively. However, beside a transcrip-
tion of the above algorithms to humanoid robots, we need to make sure that we have
both the right hardware and control software.

Consider for instance a back-flip motion, as shown in Figure 4.1. The robot
must first exert adequate forces on the floor to jump in the air, rotate during the
flying phase, then land back on its feet. Most mainstream humanoid robots, such
as the HRP-2, are capable of pushing sufficiently to jump in the air, but their ac-
tuators are such that they cannot quickly transform the kinetic energy acquired in
the flying phase into other energies when they hit the ground; this energy is thus
entirely transmitted to the mechanical structure and might cause it to break. Intro-
ducing backdrivable actuators in the robot structure can help addressing this issue
by allowing the fast transformation of the kinetic energy back into electric energy
and keeping the physical system integrity. Furthermore, the generated current mea-
surements can give a good idea of the actuator torques, which paves the way for
the implementation of force-based control laws. Such laws, compared with position-
based control laws, can be extremely useful in retaining the robot balance during
fast motions.

In light of these results, we would like to tackle, in our future works, the themes
of model-predictive control and stabilization for force-controlled humanoid robots.

4.2. PERSPECTIVES 95

Figure 4.1: A humanoid robot executes a back-flip. This is a highly dynamic motion where
the flying phase is difficult to control, and the foot forces on impact may be high.

CHAPTER 4. CONCLUSION 96

97

Appendix A

Sliding Motion Planning
Benchmarks

The motion planning algorithms presented in Chapter 2 have been implemented
using KineoWorksTM[Laumond 06]. The planning times have been measured on an
Intel Core 2 Duo 2.13 GHz PC with 2 GB of RAM. Evaluation of the randomized
algorithm has been conducted by executing 500 trials on each scenario using two
flavors of RRT: the classic RRT and IPP-RRT [Ferre 04]. We present the results in
Figures A.1, A.2 and A.3.

Figure A.1: Number of RRT iterations it for the floating objects and the shelf scenarios,
using two variants of RRT. Mean it, standard deviation σit, minimum and maximum values
are represented.

APPENDIX A. SLIDING MOTION PLANNING BENCHMARKS 98

Figure A.2: RRT computation time t for the floating objects and the shelf scenarios, using
two variants of RRT. Mean t, standard deviation σt, minimum and maximum values are
represented.

Figure A.3: Number of tree nodes n for the floating objects and the shelf scenarios, using
two variants of RRT. Mean n, standard deviation σn, minimum and maximum values are
represented.

99

Appendix B

Numerical Optimization

We give here an overview of the most successful numerical optimization techniques
that can be found in the literature. We focus on Jacobian-based methods, i.e.
methods that use information given by the variations of the function we want to
minimize to find its minimizer. As this section is largely based on [Nocedal 99], we
invite the interested reader to refer to it for more details.

B.1 Unconstrained Optimization

Given a scalar objective function f : Rn → R, we would like to solve the following
problem:

min
x∈Rn

f(x) (B.1)

This is a problem of unconstrained optimization; it consists of finding one ore
more solutions x?, which we call minimizers. A minimizer is said to be global if and
only if:

f(x?) ≤ f(x) ∀x ∈ Rn, (B.2)

implying that there is no other point x ∈ Rn such that the value of f at x is lower
than the value of f at x?. On the other hand, a local minimizer is such that ∃ a
neighborhood N of x? and:

f(x?) ≤ f(x) ∀x ∈ N . (B.3)

Obviously, a local minimizer is weaker than a global minimizer, as Equation
(B.3) implies that there is no other minimizer only in the vicinity of x?, and it does
not ensure the nonexistence of another point x?g such that f(x?g) ≤ f(x?). Therefore,
there is no guarantee that the local minimizer is also a global one for f .

APPENDIX B. NUMERICAL OPTIMIZATION 100

B.1.1 Necessary Conditions

In order to characterize a minimizer of f , we introduce the first-order necessary
conditions for unconstrained optimization:

Theorem 3. x? is a local minimizer, f continuously differentiable (C1) in an open
neighborhood of x? ⇒ ∇f(x?) = 0.

All points x? which satisfy the first-order conditions are called stationary points.
Note that stationary points can correspond to minimizers, maximizers, or saddle
points of f . The second-order necessary conditions are then used to distinguish
local minimizers:

Theorem 4. x? is a local minimizer, f twice continuously differentiable (C2) in an
open neighborhood of x? ⇒ ∇f(x?) = 0 and ∇2f(x?) is positive semi-definite (psd).

The key for the conditions is that f be at least C2 so that ∇f and ∇2f be defined
and continuous. Note that if f is convex and C1, ∇2f(x) is positive definite (pd)
∀ x, and it can be shown that any stationary point of f is also a global minimizer
of f .

B.1.2 Finding the Minimizer

One way of finding a minimizer of f is to look for a stationary point starting from an
initial point x0, and produce a sequence of iterates {xk}∞k=0 that terminates when a
termination condition is reached; this condition corresponds to the point x? where
no more progress can be made, up to a specified tolerance ε > 0.

Given an iterate xk, the next iterate xk+1 can be chosen based on information
about f at xk so that f(xk+1) < f(xk). There exist two main strategies to do so:

1. Line search strategy: a direction pk is first chosen, then a step length αk > 0
is computed such that it approximately solves the 1D minimization problem:
min
α>0

f(xk + αkpk). This leads to xk+1 = xk + αkpk.

2. Trust region strategy: a local model mk of f is constructed, and a direction
pk is chosen inside a fixed-size trust region such that it approximately solves
the minimization problem: min

pk

mk(xk + pk).

Note that these two strategies are very similar as they try to find approximate so-
lutions to simple optimization problems which offer good performance. They mainly
differ in the order in which the step length and search direction are chosen. In the
following section, we describe some of the most common line search strategies. We
illustrate them using the Rosenbrock function [Rosenbrock 60], or banana function,
defined as:

x = (x, y) ∈ R2, R(x) = (1− x2) + 100(y − x2)2. (B.4)

R has only one minimizer x? = (1, 1), and is commonly used to benchmark
optimization algorithms.

B.1. UNCONSTRAINED OPTIMIZATION 101

B.1.3 Steepest Descent Line Search

Let fk denote f(xk) ∀ k > 0. Using a first-order Taylor approximation of f , it can
be proved that:

pk = −∇fk (B.5)

is the steepest descent direction, i.e. it is the direction along which f decreases the
most locally around xk.

This strategy has a linear convergence rate:

‖xk+1 − x?‖
‖xk − x?‖

≤ r for all k sufficiently large, r =
κ− 1

κ+ 1
, (B.6)

where κ is the condition number of the Hessian ∇2f , i.e. the ratio of the maximum
singular value over the minimum singular value of ∇2f . It can therefore lead to
extremely slow convergence when ∇2f is ill-conditioned and r ≈ 1.

Figure B.1 shows an example of minimizing the Rosenbrock function. We show
the first 20 iterates when using a steepest descent line search and setting αk to a
constant value of 1. The search direction pk is always orthogonal to the function
contour line, as it is the direction that allows to decrease R quickly. Unfortunately, as
the iterates reach the basin, keeping a constant step size leads to a strong oscillation
and convergence is not achieved. This motivates the need for a good step size
computation method that will ensure a decrease of the function at each iteration.

The Wolfe conditions offer the theoretical means and an easily verifiable way to
compute suitable step lengths. They are defined as:

f(xk + αkpk) ≤ f(xk + c1αk∇f>k pk), (B.7)

∇f(xk + αkpk)
>pk ≥ c2∇f>k pk, (B.8)

where 0 < c1 < c2 < 1. Equation (B.7) is called the sufficient decrease or Armijo
condition; it rejects too small decreases in f . Equation (B.8) is called the curvature
condition, and it rejects too negative slopes which might slow down convergence. In
practice, c1 is very small and set to 10−4, while c2 is set to a value ranging from 0.1
to 0.9.

The Wolfe conditions can be used to write a simple step length computation
algorithm, as described in Algorithm 6. The idea is to start with a large value of αk
and decrease it until the Wolfe conditions are satisfied.

Figure B.2 shows the solution to the same problem as in Figure B.1 with the
Wolfe conditions enforced at each iteration. The minimizer x? = (1 1) is reached
after around 5000 iterations. Such a high number is mainly due to an ill-conditioned
Hessian and the induced zigzagging behavior which prevents quickly reaching the
minimizer, as shown in Figure B.2b.

APPENDIX B. NUMERICAL OPTIMIZATION 102

-0.5 0.0 0.5 1.0
x

-0.5

0.0

0.5

1.0

y

1.
0

200.0

20
0.
0

x0

Figure B.1: Contour lines show the Rosenbrock function R. Starting from x0 = (−0.6,−0.6),
a steepest descent line search is used with a constant step size αk = 1. The minimizer basin is
reached very quickly, but large values of the step size then prevent minimizing the function.
Note that the steepest descent direction is orthogonal to the contour lines of R.

Algorithm 6 StepLengthWolfe(f , xk, pk, αk, ρ, it max)

it ← 0
while Wolfe conditions are not verified & it < it max do

// ρ < 1
αk ← ραk
it ← it+ 1

end while
return αk

B.1. UNCONSTRAINED OPTIMIZATION 103

-0.5 0.0 0.5 1.0
x

-0.5

0.0

0.5

1.0
y

1.
0

200.0

20
0.
0

x0

x?=(1.0 1.0)

(a) Solution to the Rosenbrock function minimization problem.

0.56 0.58 0.60 0.62 0.64
x

0.32

0.34

0.36

0.38

0.40

0.42

y

1.
0

200.0

20
0.
0

(b) Enlarged view: the zigzagging behavior slows down convergence.

Figure B.2: Steepest-descent line search strategy. The Wolfe conditions are enforced at each
iteration to ensure sufficient decrease of the objective function.

APPENDIX B. NUMERICAL OPTIMIZATION 104

B.1.4 Newton Line Search

Assuming that f is C2 and using a second-order Taylor approximation at xk, we
can derive the Newton direction:

pk = −∇2f−1
k ∇fk; (B.9)

xk+1 = xk + pk is then the minimizer of the local quadratic approximation of f .
The Newton direction has a natural step length αk = 1. Nevertheless the Wolfe
conditions still need to be verified to make sure that there is a decrease in the exact
function f . Figure B.3 shows the sequence of iterates when applying a Newton line
search to find the minimizer of the Rosenbrock function. It is clear in Figure B.3b
how the next iterate is the minimizer of the local quadratic approximation of the
objective function.

The Newton line search is very efficient and exhibits a quadratic convergence
rate:

‖xk+1 − x?‖
‖xk − x?‖2

≤M for all k sufficiently large, M > 0, (B.10)

which is faster than a linear convergence rate. However, beside knowing how to
compute the Jacobian of f , we also need to derive the Hessian of f and this is not
always a trivial task.

B.1.5 Quasi-Newton Line Search

Instead of using the Hessian, a quasi-Newton line search relies on an approximation
of ∇2f when it is not possible to compute it. The search direction is then given by:

pk = −B−1
k ∇fk, (B.11)

where Bk ≈ ∇2f is a symmetric nonsingular matrix.

Several algorithms for deriving approximates Bk exist, the best one being the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, as described in Algorithm 7.
It relies on updating the Hk = B−1

k while the iterative optimization is taking place.
As an initial value H0 = I is given, the line search behaves like a steepest-descent
line search for the first iterations, converging towards a Newton line search as the
optimization advances and as the approximation is closer to the real Hessian. The
BFGS line search has then a superlinear convergence rate:

lim
k→∞

‖xk+1 − x?‖
‖xk − x?‖

= 0, (B.12)

B.1. UNCONSTRAINED OPTIMIZATION 105

-5 -4 -3 -2 -1 0 1 2
x

-5

0

5

10

15

20

y

50.0

50.0

50000.0

x0

x? = (1.0 1.0)

(a) Solution to the Rosenbrock function minimization problem: a few
iterations are needed to find the minimizer x?.

-5 -4 -3 -2 -1 0 1 2
x

-5

0

5

10

15

20

y

50.0

50000.0

50000.0

x0

x1

(b) The contour lines show the local quadratic approximation of R around
x0. The next iterate x?

1 is then the minimizer of the quadratic approxi-
mation.

Figure B.3: Newton line search. The Wolfe conditions are enforced at each iteration to
ensure sufficient decrease of the objective function.

APPENDIX B. NUMERICAL OPTIMIZATION 106

Algorithm 7 BFGS(x0, ε)

H0 ← I, k ← 0
while ‖∇fk‖ > ε do

// Search direction
pk ← −Hk∇fk
// Line search with Wolfe conditions
xk+1 ← xk + αkpk
sk ← xk+1 − xk
yk ← ∇fk+1 −∇fk
ρk ←

1

y>k sk
// BFGS update of the Hessian inverse
Hk+1 ← (I− ρksky>k)Hk(I− ρkyks>k) + ρksks

>
k

k ← k + 1
end while

-4 -2 0 2 4
x

-5

0

5

10

15

20

25

30

y

x0

x? = (1.0 1.0)

Figure B.4: Rosenbrock function minimization with a quasi-Newton line search using a
BFGS-Hessian approximation. It is interesting to note that the line search behaves like a
steepest-descent line search for the first iterations, converging towards a Newton line search.

B.1. UNCONSTRAINED OPTIMIZATION 107

B.1.6 Constrained Optimization

The previous section described methods that allow us to solve the problem of uncon-
strained optimization, which consists in finding the minimizer x? ∈ Rn of a scalar
function f . In many cases, however, the minimizer is required to additionally obey to
a number of constraints in order to be feasible. The general constrained optimization
problem can then be written as:

min
x∈Rn

f(x), such that

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I (B.13)

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I} is called the feasible set, and a
point x is said to be feasible iff x ∈ Ω. At a feasible point, an inequality constraint
ci (i ∈ I) is:
− active iff ci(x) = 0, i.e. x is on the boundary of ci,
− inactive iff ci(x) > 0, i.e. x is an interior point of ci.

We can then define the active set at x:

A(x) = E ∪ {i ∈ I : ci(x = 0)}, (B.14)

as the set of all active constraints at a point x. Let us also define the active constraint
gradients at x:

A(x) = [∇ci(x)]>i∈A(x) (B.15)

The optimality conditions we introduced in Theorems 3 and 4 do not hold any-
more as we need to take constraints into account. Let us define the Lagrangian:

L(x,λ) = f(x)−
∑
i∈E∪I

λici(x), (B.16)

where λi, i ∈ E ∪ I are called the Lagrange multipliers.
It can be shown that candidate minimizers are the stationary points of L, which

is equivalent to ∇f lying in the subspace spanned by the active constraint gradients
∇ci, i ∈ A(x). The components of ∇f expressed in this subspace basis correspond
then to the active constraint Lagrange multipliers λi, i ∈ A(x). This leads to the
Karush-Kuhn-Tucker (KKT) first-order necessary conditions:

Theorem 5. x? is a local minimizer, f is C1 in an open neighborhood of x?, A(x)
is full-rank ⇒ ∃!λ? ∈ Rm such that:

a) ∇xL(x?,λ?) = 0
b) ci(x

?) = 0 ∀i ∈ E
c) ci(x

?) ≥ 0 ∀i ∈ I
d) λ?i ≥ 0 ∀i ∈ I
e) λ?i ci(x

?) = 0 ∀i ∈ E ∪ I

APPENDIX B. NUMERICAL OPTIMIZATION 108

Note that f(x?) = L(x?,λ?) because of the complementarity condition e) in
Equation (5).

B.2 Quadratic Programming

In order to find points which satisfy the KKT conditions, we first consider the simpler
problem of Quadratic programming (QP), where the objective function is quadratic,
and all constraints are linear:

min
x∈Rn

q(x) =
1

2
x>Gx+c>x, such that

{
a>i x = bi, i ∈ E
a>i x ≥ bi, i ∈ I G symmetric. (B.17)

B.2.1 Equality-constrained QP

In the particular case of an equality-constrained QP, we have:

min
x∈Rn

q(x) =
1

2
x>Gx + c>x, such that Ax = b A full rank. (B.18)

The KKT conditions given in Theorem (5) imply that the solution x? verifies:

(
G −A>

A 0

)(
x?

λ?

)
=

(
−c
b

)
x?=x+p⇐⇒

(
G A>

A 0

)(
−p
λ?

)
=

(
g
h

)
h = Ax− b
g = c + Gx
p = x? − x

(B.19)

The final linear system in Equation (B.19) is called the KKT system. It can be
solved using standard linear algebra techniques, and its solution gives the update p
which leads directly to the minimizer x? of q.

We use this method to solve an equality-constrained QP, shown in Figure B.5:
for the same quadratic objective function, we find the minimizer for three different
linear equality constraints. We can see that the associated Lagrange multiplier is
higher as the constrained minimizer is further from the unconstrained minimum.
Intuitively, Lagrange multiplier give an idea of the “force” which the constraints
are exerting on the constrained minimizer to keep it away from the unconstrained
minimum.

B.2.2 Inequality-Constrained QP

Now that we can solve an equality-constrained QP, we can move on to solve the
general QP presented in Equation (B.17). Several types of method such as active-
set, gradient-projection and interior-point can be used to this end. We describe here
the active-set method for solving inequality-constrained QP.

B.3. NONLINEAR PROGRAMMING 109

-4 -2 0 2 4

-4

2

0

2

4

x0

x?
1

λ?
1 = 0.6

x?
2

λ?
2 = 1.2

x?
3

λ?
3 = 1.6

Figure B.5: Solution of a constrained QP problem. One linear equality constraint is used,
and solutions for different values of the constraint are shown. Note that the farther the con-
straint is from the unconstrained minimum, the larger is the associated Lagrange multiplier.

The active-set method, described in detail in Algorithm 8, consists in iteratively
estimating the optimal active set, solving the underlying equality-constrained QP
with the active constraints, and repeat until the optimal active set is correctly found.
We implement an active-set method to solve a QP as shown in Figure B.6. One linear
equality constraint and two linear inequality constraints are added. Starting from a
point x0, the optimal solution and active set are found iteratively.

B.3 Nonlinear Programming

We are now ready to tackle Nonlinear programming (NLP), i.e. to solve the general
problem from Equation (B.13). Two of the most successful methods used nowa-
days to solve large-scale problems are Sequential Quadratic Programming (SQP)
and Interior-Point Methods (IPM).

B.3.1 Sequential Quadratic Programming

The idea behind SQP is quite simple: for each SQP iteration, we build a local
quadratic approximation of the objective function and linearized approximation of
the constraints in order to obtain a QP subproblem:

APPENDIX B. NUMERICAL OPTIMIZATION 110

Algorithm 8 ActiveSetSolve(x0)

// Initialize active set
W0 ← subset of the active constraints at x0

for k = 0, 1, 2, ... do
// Find minimizer of equality-constrained QP using active constraints
(pk λk+1) ← SolveKKTSystem(Wk)
if pk = 0 then

if λk+1,i ≥ 0 ∀i ∈ Wk ∩ I then
// All inequality constraints in the active set are active
return (xk,λk+1)

else
// At least one inequality constraint in the active set is inactive
// Remove the one that is “least active”
Wk+1 ← Wk\{arg min

j∈Wk∩I
λk+1,j}

end if
else

// Compute αk such that the constraints which are not in the active set are
not violated

αk ← min
i/∈Wk

a>
i pk<0

bi − a>i xk

a>i pk

xk+1 ← αkpk
if αk < 1 then

// At least one constraint which is not the active set is active, add one
Wk+1 ← Wk ∪ {one blocking constraint}

else
// Keep the same active set
Wk+1 ← Wk

end if
end if

end for

B.3. NONLINEAR PROGRAMMING 111

-4 -2 0 2 4

-4

2

0

2

4

x0

x?

Figure B.6: Solution to the general QP problem using an active-set method. The blue line
represents the linear equality constraint, while the green and red half-planes represent the
linear inequalities (the infeasible set is filled). Starting from x0, the optimal solution x? and
active set are found iteratively.

APPENDIX B. NUMERICAL OPTIMIZATION 112

min
p

1

2
p>k∇2

xxL(xk,λk)pk +∇f(xk)
>pk + f(xk)

s.t.

{
∇ci(xk)>pk + ci(xk) = 0, i ∈ E
∇ci(xk)>pk + ci(xk) ≥ 0, i ∈ I

(B.20)

We then solve the QP subproblem, with active-set methods for instance, and
repeat iteratively until the convergence test is satisfied, as described in Algorithm 9.

Algorithm 9 SQPSolve(x0,λ0, ε)

for k = 0, 1, 2, ... do
Evaluate fk, ∇fk, ci(xk), ∇ci(xk), ∇2

xxL(xk,λk)
(pk,λk+1) ← ActiveSetSolve(xk)
xk+1 ← xk + αkpk
if convergence test satisfied for tolerance ε then

return (xk+1,λk+1)
end if

end for

This requires us to derive the Hessian of both objective function and constraints,
see Equation (B.20). One solution to avoid computing them exactly is to use the
BFGS method as seen in Section B.1.5. Note that iterates can be infeasible and that
only the final solution is guaranteed to be feasible. Also, as in the case of line search
methods in unconstrained optimization, there is no guarantee that the solution of
QP subproblem will lead to a decrease of the original objective function, or that
it will improve feasibility with respect to the constraints. A merit function can be
used to this end and ensure, just like the Wolfe conditions for the unconstrained
case, that there is a sufficient decrease of f and forbid too great infeasibility. One
simple merit function is the `1 exact function defined as:

φ1(x, µ) = f(x)+µ
∑
i∈E
|ci(x)|+µ

∑
i∈I

[ci(x)]−, µ > 0, [x]− = max(0,−x). (B.21)

In Figure B.7, we show an implementation of SQP using the `1 merit function,
where the Rosenbrock function is minimized under one nonlinear equality constraint
and one nonlinear inequality constraint, represented by a circle and a disk respec-
tively. Interestingly, it shows that not all initial values will lead to the global min-
imizer, as some iterates might get stuck in local minimizers. Also it is clear that
not all iterates are feasible, which means that we have to wait until the end of the
optimization process (up to a specified tolerance) to retrieve a feasible solution.

B.3.2 Interior-Point Methods for Nonlinear Programming

We describe interior-point methods, also known as log-barrier methods. They propose
an alternative to SQP and are also very powerful when used to solve large-scale NLP.

B.3. NONLINEAR PROGRAMMING 113

-4 -2 0 2 4
x

-4

2

0

2

4

y

50.0 5
0
.0

5
0
0
0
0
.0

5
0
0
0
0
.0

x?
c

x?
b

x?
a

x0b

x0a

x0c

Figure B.7: Minimization of the Rosenbrock function under the nonlinear circle equality
constraint x2 + y2 − 4 = 0 and the disk inequality constraint (x− 1)2 + (y− 2)2 − 2.25 ≥ 0,
starting from three different initial points. Only x0a leads to the global minimizer x?

a, while
x0b and x0c do not.

APPENDIX B. NUMERICAL OPTIMIZATION 114

Their principle is the following: a slack variable s is introduced to reformulate
the general NLP as:

min
x∈Rn

f(x), such that

ci(x) = 0, i ∈ E

ci(x)− si = 0, i ∈ I
si ≥ 0, i ∈ I

(B.22)

A parameter µ > 0 is also introduced, which allows us to obtain the perturbed
KKT conditions:

a) ∇f(x)−A>E (x)y −A>I (x)z = 0
b) cE(x) = 0
b′) cI(x)− s = 0
c) s ≥ 0
d) z ≥ 0
e) Sz = µe,

(B.23)

with cE , cI denoting the constraints vector, AE(x), AI(x) denoting their respec-
tive Jacobians, y, z denoting the Lagrange multipliers, S = diag(si) and e> =(
1 · · · 1

)
.

The variables s and z are eliminated from the KKT conditions:

∀i ∈ I sizi − µ = 0
ci(x)− si = 0

}
⇒ zi =

µ

ci(x)
, (B.24)

and substituted in ∇xL(x,y, z) in Equation (B.23)a):

∇f(x)−A>E (x)−
∑
i∈I

µ

ci(x)
∇ci(x) = 0

m
min
x
P (x;µ) = f(x)− µ

∑
i∈I

logci(x) such that cE = 0

(B.25)

Finding the stationary points of the Lagrangian of the original problem is then
equivalent to minimizing the equality-constrained log-barrier function P (x;µ) and
making µ→ 0.

One way to solve the NLP is to start with an initial value of the parameter µ0.
The associated log-barrier function problem is then solved, and the process is re-
peated while decreasing µk towards 0. The log-barrier function problem solutions
for the central path {x?(µk)}k, with the particularity that each iterate is feasible
with respect to the original equality and inequality constraints.

B.3.3 Conclusion

To conclude, SQP and IPM are equally efficient for solving large-scale NLP problems.
They are somewhat similar as both of them are based on two nested iteration loops.
Their main difference is the fact that IPM generate feasible iterates thanks to their

B.3. NONLINEAR PROGRAMMING 115

conservative approach, while SQP methods may generate infeasible iterates, with
the guarantee that only the solution is feasible.

APPENDIX B. NUMERICAL OPTIMIZATION 116

BIBLIOGRAPHY 117

Bibliography

[Arisumi 08] Hitoshi Arisumi, Sylvain Miossec, J-R Chardonnet & Kazuhito
Yokoi. Dynamic lifting by whole body motion of humanoid robots.
In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 668–675. IEEE, 2008.

[Baerlocher 98] P. Baerlocher & R. Boulic. Task-priority formulations for the
kinematic control of highly redundant articulated structures. In
1998 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1998. Proceedings., volume 1, 1998.

[Baudouin 11] Léo Baudouin, Nicolas Perrin, Thomas Moulard, Florent Lami-
raux, Olivier Stasse & Eiichi Yoshida. Real-time replanning us-
ing 3D environment for humanoid robot. In Humanoid Robots
(Humanoids), 2011 11th IEEE-RAS International Conference on,
pages 584–589. IEEE, 2011.

[Bellman 65] Richard Bellman & Robert E Kalaba. Dynamic programming
and modern control theory. Academic Press New York, 1965.

[Berenson 11] D. Berenson, S.S. Srinivasa & J. Kuffner. Task Space Regions:
A framework for pose-constrained manipulation planning. The
International Journal of Robotics Research, 2011.

[Betts 98] John T Betts. Survey of numerical methods for trajectory opti-
mization. Journal of guidance, control, and dynamics, vol. 21,
no. 2, 1998.

[Betts 10] John T Betts. Practical methods for optimal control and es-
timation using nonlinear programming, volume 19. Society for
Industrial and Applied Mathematics, 2010.

[Biegler 09] LT Biegler & VM Zavala. Large-scale nonlinear programming
using IPOPT: An integrating framework for enterprise-wide dy-
namic optimization. Computers & Chemical Engineering, vol. 33,
no. 3, pages 575–582, 2009.

BIBLIOGRAPHY 118

[Bobrow 85] James E Bobrow, Steven Dubowsky & JS Gibson. Time-optimal
control of robotic manipulators along specified paths. The Inter-
national Journal of Robotics Research, vol. 4, no. 3, pages 3–17,
1985.

[Bock 84] H.G. Bock & K.J. Plitt. A Multiple Shooting algorithm
for direct solution of optimal control problems. In Proceed-
ings of the 9th IFAC World Congress, pages 242–247, Bu-
dapest, 1984. Pergamon Press. Available at http://www.iwr.uni-
heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

[Boltyanskii 60] Vladimir Grigor’evich Boltyanskii, Revaz Valer’yanovich
Gamkrelidze & Lev Semenovich Pontryagin. The theory of op-
timal processes. I. The maximum principle. Rapport technique,
DTIC Document, 1960.

[Bonnans 06] J.F. Bonnans, J.C. Gilbert, C. Lemaréchal & C.A. Sagas-
tizábal. Numerical optimization: theoretical and practical as-
pects. Springer, 2006.

[Bouyarmane 12] K. Bouyarmane & A. Kheddar. Humanoid Robot Locomotion and
Manipulation Step Planning. Advanced Robotics, vol. 26, no. 10,
pages 1099–1126, 2012.

[Bretl 06] T. Bretl. Motion planning of multi-limbed robots subject to equi-
librium constraints: The free-climbing robot problem. The In-
ternational Journal of Robotics Research, vol. 25, no. 4, pages
317–342, 2006.

[Chestnutt 05] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins &
T. Kanade. Footstep Planning for the Honda ASIMO Humanoid.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on, pages 629 – 634,
April 2005.

[Chevallereau 01] C Chevallereau & Y Aoustin. Optimal reference trajectories for
walking and running of a biped robot. Robotica, vol. 19, no. 5,
pages 557–569, 2001.

[Choset 05] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A.
Kantor, Wolfram Burgard, Lydia E. Kavraki & Sebastian Thrun.
Principles of robot motion: Theory, algorithms, and implemen-
tations. MIT Press, Cambridge, MA, June 2005.

[Coros 10] Stelian Coros, Philippe Beaudoin & Michiel van de Panne. Gen-
eralized biped walking control. ACM Transactions on Graphics
(TOG), vol. 29, no. 4, page 130, 2010.

BIBLIOGRAPHY 119

[Dalibard 09] S. Dalibard, A. Nakhaei, F. Lamiraux & J.-P. Laumond. Whole-
body task planning for a humanoid robot: a way to integrate col-
lision avoidance. In Humanoid Robots, 2009. Humanoids 2009.
9th IEEE-RAS International Conference on, pages 355 –360, 7-10
2009.

[Dang 12] N. Dang, F. Lamiraux & J.-P. Laumond. Experiments on whole-
body manipulation and locomotion with footstep real-time opti-
mization. In IEEE International Conference on Humanoid Robots
(Humanoids), Osaka, 2012.

[Dellin 12] Christopher M Dellin & Siddhartha S Srinivasa. A framework
for extreme locomotion planning. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 989–996.
IEEE, 2012.

[Diankov 08] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa & J. Kuffner.
Bispace planning: Concurrent multi-space exploration. Proceed-
ings of Robotics: Science and Systems IV, 2008.

[Diehl 06] Moritz Diehl, Hans Georg Bock, Holger Diedam & P-B Wieber.
Fast direct multiple shooting algorithms for optimal robot control.
Fast Motions in Biomechanics and Robotics, pages 65–93, 2006.

[Dubins 57] L. E. Dubins. On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Po-
sitions and Tangents. American Journal of Mathematics, vol. 79,
no. 3, pages pp. 497–516, 1957.

[Dubowsky 86] S Dubowsky, M Norris & Z Shiller. Time optimal trajectory plan-
ning for robotic manipulators with obstacle avoidance: a CAD
approach. In Robotics and Automation. Proceedings. 1986 IEEE
International Conference on, volume 3, pages 1906–1912. IEEE,
1986.

[Eberly 07] David H Eberly. 3d game engine design: a practical approach
to real-time computer graphics. Morgan Kaufmann Publishers,
2007.

[Eberly 11] David H. Eberly. Wild Magic 5.7. http://www.geometrictools.
com, 2011.

[Ericson 04] Christer Ericson. Real-time collision detection. Morgan Kauf-
mann, 2004.

[Escande 07] Adrien Escande, Sylvain Miossec & Abderrahmane Kheddar.
Continuous gradient proximity distance for humanoids free-
collision optimized-postures. In Humanoid Robots, 2007 7th

http://www.geometrictools.com
http://www.geometrictools.com

BIBLIOGRAPHY 120

IEEE-RAS International Conference on, pages 188–195. IEEE,
2007.

[Escande 13] Adrien Escande, Abderrahmane Kheddar & Sylvain Miossec.
Planning contact points for humanoid robots. Robotics and Au-
tonomous Systems, 2013.

[Featherstone 08] R. Featherstone. Rigid body dynamics algorithms, volume 49.
Springer Berlin:, 2008.

[Felis 12] Martin L Felis, Katja Mombaur, Hideki Kadone & Alain Berthoz.
Modeling and identification of emotional aspects of locomotion.
Journal of Computational Science, 2012.

[Felzenszwalb 04] Pedro Felzenszwalb & Daniel Huttenlocher. Distance transforms
of sampled functions. Technical Report TR2004-1963, 2004.

[Ferre 04] E. Ferre & J.P. Laumond. An iterative diffusion algorithm for
part disassembly. In 2004 International Conference on Robotics
and Automation (ICRA’2004), pages 3149–3154, New Orleans
(USA), 2004.

[Fitzpatrick 06] P. Fitzpatrick. Advanced calculus, volume 5. American Mathe-
matical Society, 2006.

[Flash 85] Tamar Flash & Neville Hogans. The Coordination of Arm Move-
ments: An Experimentally Confirmed Mathematical Model. Jour-
nal of neuroscience, 1985.

[Garimort 11] Johannes Garimort & Armin Hornung. Humanoid navigation
with dynamic footstep plans. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3982–
3987. IEEE, 2011.

[Geraerts 07] Roland Geraerts & Mark H Overmars. Creating high-quality paths
for motion planning. The International Journal of Robotics Re-
search, vol. 26, no. 8, pages 845–863, 2007.

[Gill 02] Philip E Gill, Walter Murray & Michael A Saunders. SNOPT:
An SQP algorithm for large-scale constrained optimization. SIAM
journal on optimization, vol. 12, no. 4, pages 979–1006, 2002.

[Glassman 10] Elena Glassman & Russ Tedrake. A quadratic regulator-based
heuristic for rapidly exploring state space. In Robotics and Au-
tomation (ICRA), 2010 IEEE International Conference on, pages
5021–5028. IEEE, 2010.

BIBLIOGRAPHY 121

[Goodman 04] J.E. Goodman & J. O’Rourke. Handbook of discrete and com-
putational geometry. Chapman & Hall/CRC, 2004.

[Gottschalk 96] S. Gottschalk, M.C. Lin & D. Manocha. OBBTree: a hierarchi-
cal structure for rapid interference detection. In Proceedings of
the 23rd annual conference on Computer graphics and interactive
techniques, pages 171–180. ACM, 1996.

[Guizzo 10] E. Guizzo. France Developing Advanced Humanoid Robot Romeo.
IEEE Spectrum Automaton Blog, December 13, 2010.

[Harada 03] Kensuke Harada, Shuuji Kajita, Kenji Kaneko & Hirohisa
Hirukawa. Zmp analysis for arm/leg coordination. In Intelli-
gent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 1, pages 75–81.
IEEE, 2003.

[Hart 68] Peter Hart, Nils Nilsson & Bertram Raphael. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pages 100–107, February 1968.

[Hauser 10a] K. Hauser & J.C. Latombe. Multi-modal motion planning in non-
expansive spaces. The International Journal of Robotics Research,
vol. 29, no. 7, pages 897–915, 2010.

[Hauser 10b] Kris Hauser & Victor Ng-Thow-Hing. Fast smoothing of manip-
ulator trajectories using optimal bounded-acceleration shortcuts.
In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2493–2498. IEEE, 2010.

[Herdt 10] Andrei Herdt, Holger Diedam, Pierre-Brice Wieber, Dimitar
Dimitrov, Katja Mombaur & Moritz Diehl. Online Walking Mo-
tion Generation with Automatic Footstep Placement. Advanced
Robotics, vol. 24, no. 5-6, pages 719–737, 2010.

[Hicks 71] GA Hicks & WH Ray. Approximation methods for optimal con-
trol synthesis. The Canadian Journal of Chemical Engineering,
vol. 49, no. 4, pages 522–528, 1971.

[Hirukawa 06] Hirohisa Hirukawa, Shizuko Hattori, Kensuke Harada, Shuuji Ka-
jita, Kenji Kaneko, Fumio Kanehiro, Kiyoshi Fujiwara & Mit-
suharu Morisawa. A universal stability criterion of the foot con-
tact of legged robots-adios ZMP. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Confer-
ence on, pages 1976–1983. IEEE, 2006.

BIBLIOGRAPHY 122

[Hornung 10] Armin Hornung, Kai M Wurm & Maren Bennewitz. Humanoid
robot localization in complex indoor environments. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Con-
ference on, pages 1690–1695. IEEE, 2010.

[Houska 10] Boris Houska, Hans Joachim Ferreau & Moritz Diehl. ACADO
toolkitAn open-source framework for automatic control and dy-
namic optimization. Optimal Control Applications and Methods,
vol. 32, no. 3, pages 298–312, 2010.

[Hudson 97] T.C. Hudson, M.C. Lin, J. Cohen, S. Gottschalk & D. Manocha.
V-COLLIDE: accelerated collision detection for VRML. In Pro-
ceedings of the second symposium on Virtual reality modeling
language, pages 117–ff. ACM, 1997.

[Kajita 03] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada,
K. Yokoi & H. Hirukawa. Biped walking pattern generation by
using preview control of zero-moment point. In Robotics and
Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, volume 2, Sept. 2003.

[Kalakrishnan 11] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter
Pastor & Stefan Schaal. STOMP: Stochastic trajectory optimiza-
tion for motion planning. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 4569–4574. IEEE,
2011.

[Kanehiro 08] Fumio Kanehiro, Florent Lamiraux, Oussama Kanoun, Eiichi
Yoshida & Jean-Paul Laumond. A local collision avoidance
method for non-strictly convex polyhedra. Proceedings of robotics:
science and systems IV, 2008.

[Kaneko 04] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki,
M. Hirata, K. Akachi & T. Isozumi. Humanoid robot HRP-2.
In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, volume 2, pages 1083–1090.
IEEE, 2004.

[Kanoun 09] Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio
Kanehiro, Eiichi Yoshida & Jean-Paul Laumond. Prioritizing
linear equality and inequality systems: Application to local motion
planning for redundant robots. In Robotics and Automation, 2009.
ICRA ’09. IEEE International Conference on, pages 2939 –2944,
May 2009.

BIBLIOGRAPHY 123

[Kanoun 11] Oussama Kanoun. Real-time prioritized kinematic control under
inequality constraints for redundant manipulators. In Proceedings
of Robotics: Science and Systems, Los Angeles, CA, USA, 2011.

[Karaman 11] Sertac Karaman & Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics
Research, 2011.

[Kavraki 96] L.E. Kavraki, P. Svestka, J.-C. Latombe & M.H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configu-
ration spaces. Robotics and Automation, IEEE Transactions on,
vol. 12, no. 4, pages 566 –580, August 1996.

[Khatib 85] O. Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. In Robotics and Automation. Proceedings. 1985
IEEE International Conference on, volume 2, pages 500 – 505,
March 1985.

[Khatib 04] O. Khatib, L. Sentis, J. Park & J. Warren. Whole body dynamic
behavior and control of human-like robots. International Journal
of Humanoid Robotics, vol. 1, no. 1, pages 29–43, 2004.

[Kim 02] Young J. Kim, Miguel A. Otaduy, Ming C. Lin & Dinesh
Manocha. Fast penetration depth computation for physically-
based animation. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA
’02, pages 23–31, New York, NY, USA, 2002. ACM.

[Koch 12] Kai Henning Koch, Katja Mombaur & Philippe Soueres.
Optimization-based walking generation for humanoid robot. In
Robot Control, volume 10, pages 498–504, 2012.

[Kuffner 00] Jr. Kuffner J.J. & S.M. LaValle. RRT-connect: An efficient ap-
proach to single-query path planning. In Robotics and Automa-
tion, 2000. Proceedings. ICRA ’00. IEEE International Confer-
ence on, volume 2, pages 995 –1001 vol.2, 2000.

[Kuffner 01] Jr. Kuffner J.J., K. Nishiwaki, S. Kagami, M. Inaba & H. Inoue.
Footstep planning among obstacles for biped robots. In Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ Inter-
national Conference on, volume 1, pages 500 –505 vol.1, 2001.

[Larsen 00] Eric Larsen, Stefan Gottschalk, Ming C Lin & Dinesh Manocha.
Fast distance queries with rectangular swept sphere volumes. In
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, volume 4, pages 3719–3726. IEEE,
2000.

BIBLIOGRAPHY 124

[Latombe 91] Jean-Claude Latombe. Robot motion planning. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

[Laumond 94] J.-P. Laumond, P.E. Jacobs, M. Taix & R.M. Murray. A motion
planner for nonholonomic mobile robots. Robotics and Automa-
tion, IEEE Transactions on, vol. 10, no. 5, pages 577 –593, oct
1994.

[Laumond 98] J.-P. Laumond. Robot motion planning and control. Springer,
1998.

[Laumond 06] J.-P. Laumond. Kineo CAM: a success story of motion planning
algorithms. Robotics & Automation Magazine, IEEE, vol. 13,
no. 2, pages 90–93, 2006.

[Lauterbach 10] Christian Lauterbach, Qi Mo & Dinesh Manocha. gProximity:
Hierarchical GPU-based Operations for Collision and Distance
Queries. In Computer Graphics Forum, volume 29, pages 419–
428. Wiley Online Library, 2010.

[LaValle 06] S. M. LaValle. Planning algorithms. Cambridge University Press,
Cambridge, U.K., 2006.

[Lee 12] Youngeun Lee, Sébastien Lengagne, Abderrahmane Kheddar &
Young J. Kim. Accurate evaluation of a distance function for
optimization-based motion planning. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 1513–1518. IEEE, 2012.

[Leineweber 03a] Daniel B Leineweber, Irene Bauer, Hans Georg Bock & Jo-
hannes P Schlöder. An efficient multiple shooting based re-
duced SQP strategy for large-scale dynamic process optimization.
Part 1: theoretical aspects. Computers & Chemical Engineering,
vol. 27, no. 2, pages 157–166, 2003.

[Leineweber 03b] Daniel B Leineweber, Andreas Schäfer, Hans Georg Bock & Jo-
hannes P Schlöder. An efficient multiple shooting based reduced
SQP strategy for large-scale dynamic process optimization: Part
II: Software aspects and applications. Computers & chemical en-
gineering, vol. 27, no. 2, pages 167–174, 2003.

[Lengagne 13] Sébastien Lengagne, Joris Vaillant, Eiichi Yoshida & Abderrah-
mane Kheddar. Generation of Whole-body Optimal Dynamic
Multi-Contact Motions. The International Journal of Robotics
Research, 2013.

BIBLIOGRAPHY 125

[Lozano-Perez 83] T. Lozano-Perez. Spatial Planning: A Configuration Space Ap-
proach. Computers, IEEE Transactions on, vol. C-32, no. 2, pages
108 –120, feb. 1983.

[Mainprice 12] Jim Mainprice. Planification de mouvement pour la manipulation
d’objets sous contraintes d’interaction homme-robot. PhD thesis,
INSA de Toulouse, 2012.

[Miossec 06] Sylvain Miossec, Kazuhito Yokoi & Abderrahmane Kheddar.
Development of a software for motion optimization of robots-
application to the kick motion of the hrp-2 robot. In Robotics
and Biomimetics, 2006. ROBIO’06. IEEE International Confer-
ence on, pages 299–304. IEEE, 2006.

[Mombaur 05] Katja D Mombaur, Hans Georg Bock, Johannes P Schlöder &
Richard W Longman. Open-loop stable solutions of periodic op-
timal control problems in robotics. ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathe-
matik und Mechanik, vol. 85, no. 7, pages 499–515, 2005.

[Mombaur 10] Katja Mombaur, Anh Truong & Jean-Paul Laumond. From
human to humanoid locomotion–an inverse optimal control ap-
proach. Auton. Robots, vol. 28, pages 369–383, April 2010.

[Mordatch 12] Igor Mordatch, Emanuel Todorov & Zoran Popović. Discovery of
complex behaviors through contact-invariant optimization. ACM
Transactions on Graphics (TOG), vol. 31, no. 4, page 43, 2012.

[Moulard 09] Thomas Moulard. RobOptim. https://github.com/laas/

roboptim, 2009.

[Moulard 10] Thomas Moulard, Florent Lamiraux & Pierre-Brice Wieber.
Collision-free walk planning for humanoid robots using numerical
optimization. Retrieved from http://hal.archives-ouvertes.fr/hal-
00486997/en/, 2010.

[Moulard 12a] Thomas Moulard. Optimisation numérique pour la robotique et
exécution de trajectoires référencées capteurs. PhD thesis, Insti-
tut National Polytechnique de Toulouse-INPT, 2012.

[Moulard 12b] Thomas Moulard, Florent Lamiraux & Olivier Stasse. Trajectory
following for legged robots. In Biomedical Robotics and Biomecha-
tronics (BioRob), 2012 4th IEEE RAS & EMBS International
Conference on, pages 657–662. IEEE, 2012.

[Nakamura 86] Y. Nakamura & H. Hanafusa. Inverse kinematic solutions with
singularity robustness for robot manipulator control. ASME,

https://github.com/laas/roboptim
https://github.com/laas/roboptim

BIBLIOGRAPHY 126

Transactions, Journal of Dynamic Systems, Measurement, and
Control, vol. 108, pages 163–171, 1986.

[Nakhaei 08] A. Nakhaei & F. Lamiraux. Motion planning for humanoid robots
in environments modeled by vision. In Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference on,
pages 197 –204, dec. 2008.

[Nocedal 99] Jorge Nocedal & Stephen J Wright. Numerical optimization.
Springer verlag, 1999.

[Pan 12] Jia Pan, Sachin Chitta & Dinesh Manocha. FCL: A general
purpose library for collision and proximity queries. In Robotics
and Automation (ICRA), 2012 IEEE International Conference
on, pages 3859–3866. IEEE, 2012.

[Perez 12] Alejandro Perez, R Platt, George Konidaris, Leslie Kaelbling &
Tomas Lozano-Perez. LQR-RRT*: Optimal sampling-based mo-
tion planning with automatically derived extension heuristics. In
Robotics and Automation (ICRA), 2012 IEEE International Con-
ference on, pages 2537–2542. IEEE, 2012.

[Perrin 11] N. Perrin, O. Stasse, F. Lamiraux & E. Yoshida. Weakly
collision-free paths for continuous humanoid footstep planning.
In IEEE International Conference on Intelligent Robots and Sys-
tems (IROS’11), 2011.

[Perrin 12a] N. Perrin. From Discrete to Continuous Motion Planning. In
Tenth International Workshop on the Algorithmic Foundations
of Robotics (WAFR’12), 2012.

[Perrin 12b] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux & E. Yoshida.
Fast humanoid robot collision-free footstep planning using swept
volume approximations. IEEE Transactions on Robotics (T-RO),
vol. 28, no. 2, 2012.

[Porta 12] J.M. Porta, L. Jaillet & O. Bohigas. Randomized path planning
on manifolds based on higher-dimensional continuation. The In-
ternational Journal of Robotics Research, vol. 31, no. 2, pages
201–215, 2012.

[Posa 12] Michael Posa & Russ Tedrake. Direct trajectory optimization of
rigid body dynamical systems through contact. In Workshop on
the Algorithmic Foundations of Robotics, 2012.

[Ratliff 09] N. Ratliff, M. Zucker, J.A. Bagnell & S. Srinivasa. Chomp: Gra-
dient optimization techniques for efficient motion planning. In

BIBLIOGRAPHY 127

Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pages 489–494. IEEE, 2009.

[Rosenbrock 60] Howard H Rosenbrock. An automatic method for finding the
greatest or least value of a function. The Computer Journal,
vol. 3, no. 3, pages 175–184, 1960.

[Saab 12] L. Saab, O. Ramos, N. Mansard, P. Souères & J-Y. Fourquet.
Dynamic Whole-Body Motion Generation Under Rigid Contacts
and Other Unilateral Constraints. IEEE Transaction on Robotics,
November 2012. (in press).

[Sargent 78] R Sargent & G Sullivan. The development of an efficient optimal
control package. Optimization Techniques, pages 158–168, 1978.

[Schneider 03] Philip J Schneider & David H Eberly. Geometric tools for com-
puter graphics. Morgan Kaufmann Pub, 2003.

[Schultz 10] G. Schultz & K. Mombaur. Modeling and Optimal Control of
Human-Like Running. Mechatronics, IEEE/ASME Transactions
on, 2010.

[Shkolnik 11] A. Shkolnik, M. Levashov, I.R. Manchester & R. Tedrake. Bound-
ing on rough terrain with the LittleDog robot. The International
Journal of Robotics Research, vol. 30, no. 2, page 192, 2011.

[Siciliano 91] B. Siciliano & J.J.E. Slotine. A general framework for manag-
ing multiple tasks in highly redundant robotic systems. In Ad-
vanced Robotics, 1991.’Robots in Unstructured Environments’,
91 ICAR., Fifth International Conference on, pages 1211–1216,
1991.

[Sirisena 81] H. R. Sirisena & F. S. Chou. State parameterization approach
to the solution of optimal control prob lems. Optimal Control
Applications and Methods, vol. 2, no. 3, pages 289–298, 1981.

[Stasse 08] Olivier Stasse, Adrien Escande, Nicolas Mansard, Sylvain
Miossec, Paul Evrard & Abderrahmane Kheddar. Real-time
(self)-collision avoidance task on a hrp-2 humanoid robot. In
Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on, pages 3200–3205. IEEE, 2008.

[Sucan 11] Ioan Sucan. planning environment. http://www.ros.org/wiki/
planning_environment, 2011.

[Suleiman 08] Wael Suleiman, Eiichi Yoshida, Fumio Kanehiro, J-P Laumond &
André Monin. On human motion imitation by humanoid robot. In

http://www.ros.org/wiki/planning_environment
http://www.ros.org/wiki/planning_environment

BIBLIOGRAPHY 128

Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on, pages 2697–2704. IEEE, 2008.

[Suleiman 10] W. Suleiman, F. Kanehiro, E. Yoshida, J.-P. Laumond &
A. Monin. Time Parameterization of Humanoid-Robot Paths.
Robotics, IEEE Transactions on, vol. 26, no. 3, pages 458 –468,
june 2010.

[Tassa 12] Yuval Tassa, Tom Erez & Emanuel Todorov. Synthesis and stabi-
lization of complex behaviors through online trajectory optimiza-
tion. In Intelligent Robots and Systems, 2012. Proceedings. 2012
IEEE/RSJ International Conference on. IEEE/RSJ, 2012.

[Todorov 06] Emanuel Todorov. Optimal control theory. Bayesian brain: prob-
abilistic approaches to neural coding, pages 269–298, 2006.

[Toussaint 07] M. Toussaint, M. Gienger & C. Goerick. Optimization of sequen-
tial attractor-based movement for compact behaviour generation.
In Humanoid Robots, 2007 7th IEEE-RAS International Confer-
ence on, pages 122 –129, 29 2007-dec. 1 2007.

[Trinkle 97] Jeffrey C Trinkle, J-S Pang, Sandra Sudarsky & Grace Lo.
On Dynamic Multi-Rigid-Body Contact Problems with Coulomb
Friction. ZAMM-Journal of Applied Mathematics and Me-
chanics/Zeitschrift für Angewandte Mathematik und Mechanik,
vol. 77, no. 4, pages 267–279, 1997.

[Tsang 75] TH Tsang, DM Himmelblau & TF Edgar. Optimal control via
collocation and non-linear programming. International Journal of
Control, vol. 21, no. 5, pages 763–768, 1975.

[Verscheure 09] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris
De Schutter & Moritz Diehl. Time-optimal path tracking for
robots: A convex optimization approach. Automatic Control,
IEEE Transactions on, vol. 54, no. 10, pages 2318–2327, 2009.

[Vukobratovic 69] M. Vukobratovic & D. Juricic. Contribution to the synthesis of
biped gait. Biomedical Engineering, IEEE Transactions on, no. 1,
pages 1–6, 1969.

[Wieber 02] Pierre-Brice Wieber. On the stability of walking systems. In Pro-
ceedings of the International Workshop on Humanoid and Human
Friendly Robotics, Tsukuba, Japan, 2002.

[Xia 09] Zeyang Xia, Guodong Chen, Jing Xiong, Qunfei Zhao & Ken
Chen. A random sampling-based approach to goal-directed footstep

BIBLIOGRAPHY 129

planning for humanoid robots. In Advanced Intelligent Mecha-
tronics, 2009. AIM 2009. IEEE/ASME International Conference
on, July 2009.

[Yoshida 06] E. Yoshida, O. Kanoun, C. Esteves & J.P. Laumond. Task-driven
support polygon reshaping for humanoids. In Humanoid Robots,
2006 6th IEEE-RAS International Conference on, pages 208–213,
2006.

[Yoshida 08] E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi
& K. Yokoi. Planning 3-D Collision-Free Dynamic Robotic Mo-
tion Through Iterative Reshaping. Robotics, IEEE Transactions
on, vol. 24, no. 5, pages 1186 –1198, Oct. 2008.

[Zanchettin 12] A.M. Zanchettin & P. Rocco. A General User-Oriented Frame-
work for Holonomic Redundancy Resolution in Robotic Manipu-
lators Using Task Augmentation. Robotics, IEEE Transactions
on, vol. 28, no. 2, pages 514 –521, April 2012.

[Zhang 09] Liangjun Zhang, Jia Pan & D. Manocha. Motion planning of
human-like robots using constrained coordination. In Humanoid
Robots, 2009. Humanoids 2009. 9th IEEE-RAS International
Conference on, Dec. 2009.

	Introduction
	Path Optimization for Humanoid Walk Planning: an Efficient Approach
	Motion Planning in the Configuration Space
	Deterministic Algorithms
	Sampling-based Algorithms
	Path Optimization

	Anthropomorphic Systems
	Underactuated Systems
	Kinematic Redundancy

	Walking and Balance
	Zero-Moment Point (ZMP)
	Cart-Table Model

	Humanoid Walk Planning
	Footstep Planning
	Constraints-Based Motion Generation
	Constrained Motion Planning
	Multi-Contact Planning
	Decoupled Planning
	Holonomic vs Nonholonomic Walking Motion

	Contribution: Regular Sampling Optimization
	Regular Sampling Optimization
	Bounding Box Path Optimization
	Motion Generation for a Humanoid Robot

	Examples
	``Chairs'' Scenario
	``Boxes'' Scenario
	``Apartment'' Scenario

	Conclusion

	Dynamic Walking and Whole-Body Motion Planning for Humanoid Robots: an Integrated Approach
	Motion Planning in Submanifolds of the Configuration Space
	Inverse Kinematics
	Randomized Motion Planning on Constraint Manifolds
	Example
	Extension to Collision-Free Walk Planning

	From Geometric Paths to Feasible Motions: Small-Space Controllability
	Contribution
	From Statically Balanced Paths to Dynamic Walk Trajectories
	Small-Space Controllability of Dynamically Walking Robots
	Application: Dynamic Approximation of a Statically Balanced Sliding Path

	Experimental Results
	Passing between two chairs
	Walking among floating obstacles
	'Put the ball on a shelf'

	Discussion and Future Work
	Conclusion

	Optimal Motion Planning for Humanoid Robots
	Path Planning
	Numerical Optimization
	Optimal Control
	Dynamic Programming
	Indirect Methods
	Direct Methods
	Non-Jacobian-Based Optimal Control

	Anthropomorphic System Dynamics
	Expressing Dynamics with Spatial Algebra
	Dynamics Equation
	Inverse Dynamics
	Forward Dynamics
	Dynamic Balance for Anthropomorphic Systems

	(Self-)Collision Avoidance
	Distance Pairs
	Distance Computation for Collision Avoidance

	Optimal Control Applications for Anthropomorphic Systems
	Contribution
	(Self-)Collision Avoidance Constraints
	Computing minimum bounding capsules
	Computing Distances for Pairs
	Body Distance Pair Selection

	Optimal Motion Planning Framework
	Constrained Path Planning
	Time Parameterization for Initial Trajectory
	Optimal Control Problem Formulation

	Results
	Test Case
	Dynamic Motion Generation on the HRP-2

	Extension to Non-Coplanar Contact Points
	Discussions and Future Work
	Conclusion

	Conclusion
	General Contributions
	Perspectives

	Sliding Motion Planning Benchmarks
	Numerical Optimization
	Unconstrained Optimization
	Necessary Conditions
	Finding the Minimizer
	Steepest Descent Line Search
	Newton Line Search
	Quasi-Newton Line Search
	Constrained Optimization

	Quadratic Programming
	Equality-constrained QP
	Inequality-Constrained QP

	Nonlinear Programming
	Sequential Quadratic Programming
	Interior-Point Methods for Nonlinear Programming
	Conclusion

	Bibliography

