PLANNING OPTIMAL MOTIONS FOR ANTHROPOMORPHIC SYSTEMS

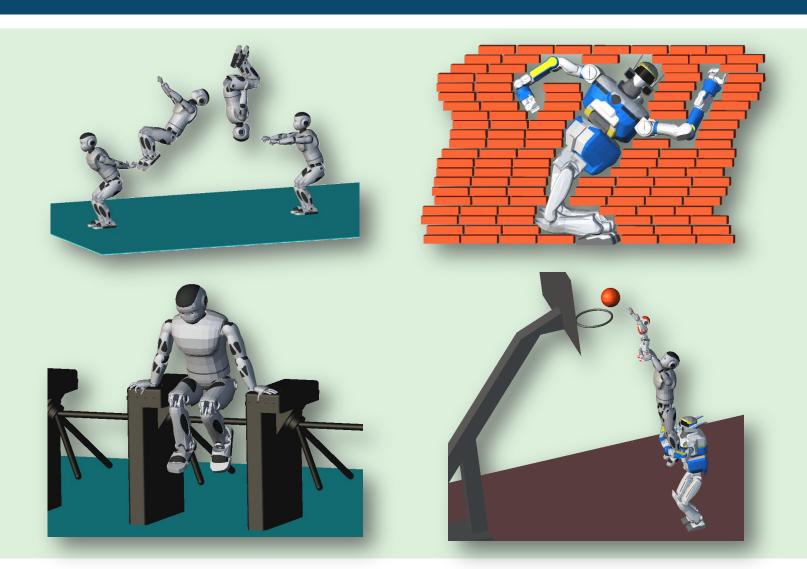
Antonio El Khoury
Under the supervision of
Florent Lamiraux and Michel Taïx

June 3rd 2013

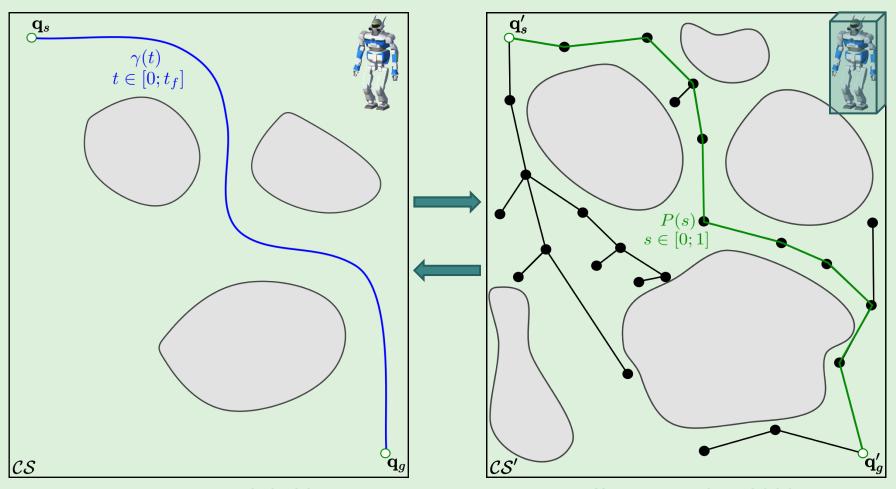
PhD Defense Committee
Brigitte d'Andréa-Novel
Maren Bennewitz
Timothy Bretl
Patrick Danès
Rodolphe Gelin
Abderrahmane Kheddar
Florent Lamiraux
Michel Taïx

LAAS-CNRS

THE MOTION PLANNING PROBLEM



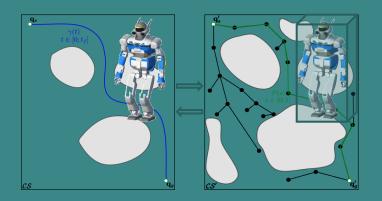
A DECOUPLED APPROACH FOR MOTION PLANNING



[Lozano-Perez (TRO 1983)]

[Kuffner et al. (ICRA 2000)]

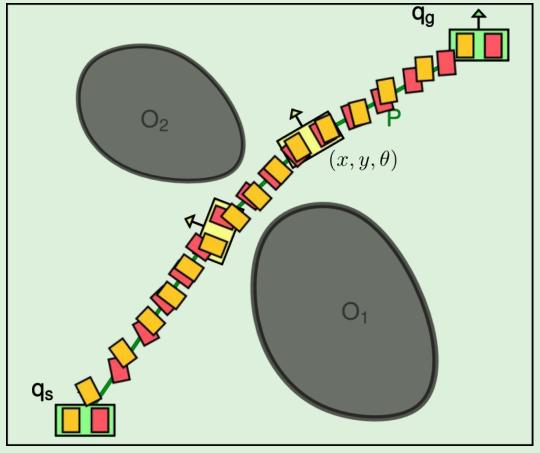
OUTLINE



PATH OPTIMIZATION FOR THE BOUNDING BOX APPROACH

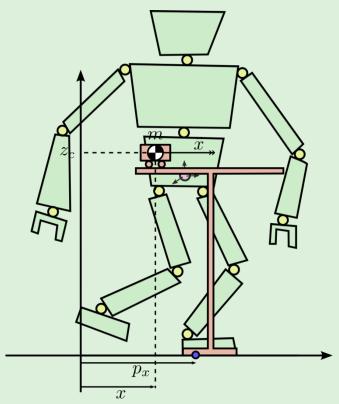
PROBLEM SIMPLIFICATION: THE BOUNDING BOX APPROACH

■ Simplification of planning: 3-DoF bounding box of the robot



CART-TABLE MODEL

Dynamic balance criterion for walking robots on a flat surface: the Zero-Moment Point (ZMP) [Vukobratovic et al. (TBE 1969)]

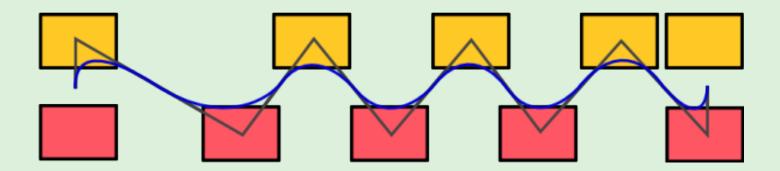


$$\begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix} = \begin{pmatrix} x - \frac{z_{c}}{g} & \cdots \\ y - \frac{z_{c}}{g} & \cdots \\ y - \frac{z_{c}}{g} & y \end{pmatrix}$$

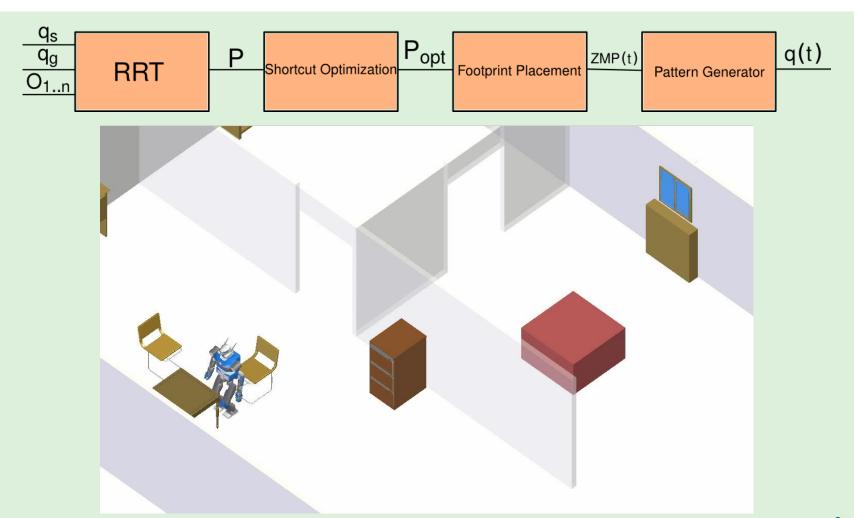
PREVIEW-CONTROL-BASED PATTERN GENERATOR

■ The Center of Mass (CoM) trajectory is generated from a desired ZMP trajectory for the cart-table model

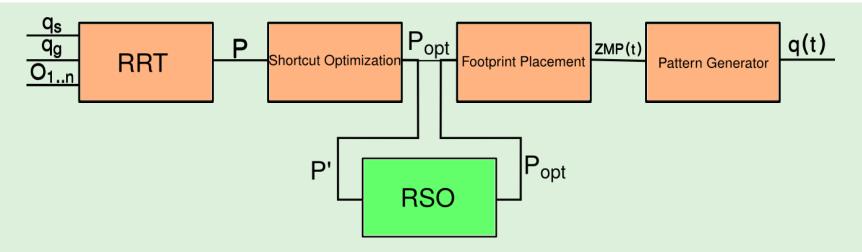
Desired ZMP trajectory
CoM trajectory



SO WHAT'S WRONG?

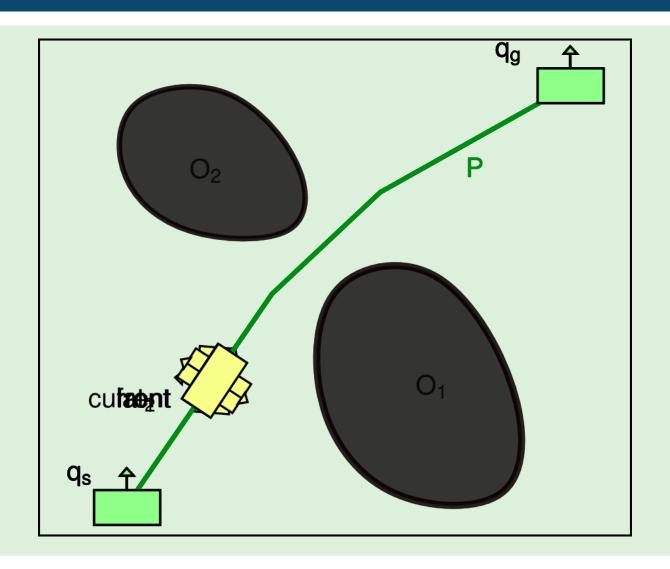


CONTRIBUTION: REGULAR SAMPLING OPTIMIZATION (RSO)

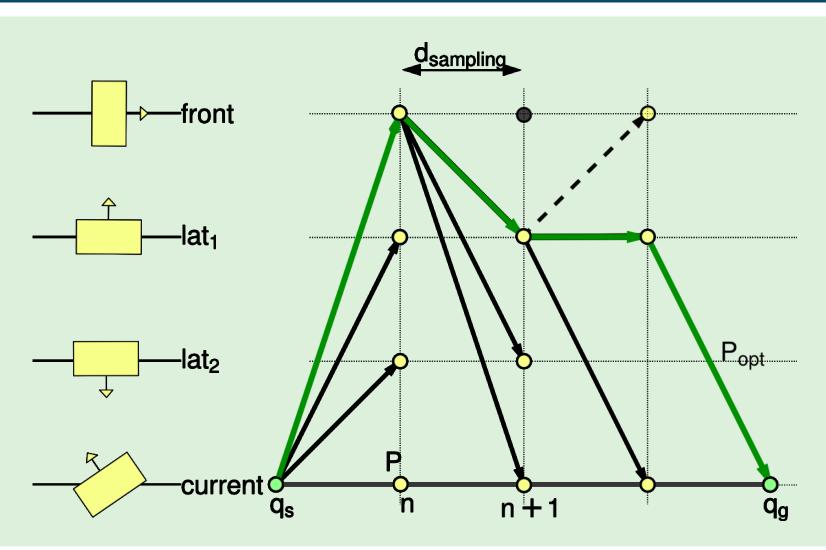


- What is wrong with the current scheme?
 - Random nature of RRT ⇒ Random path
 - Even after shortcut optimization, robot orientation is still random
- Need for frontal walking
 - Shorter trajectories (in time)
 - Camera facing the walking direction

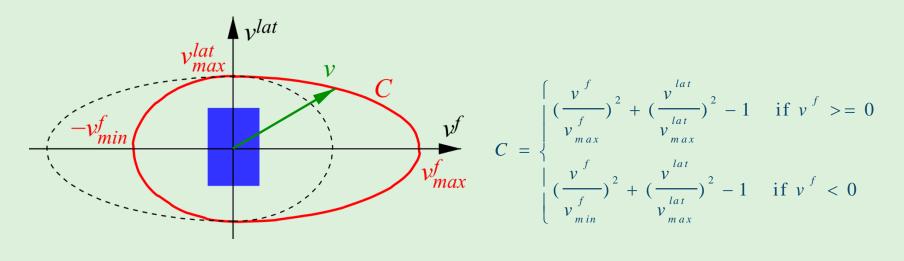
REGULAR SAMPLING OPTIMIZATION (RSO)



A* ALGORITHM



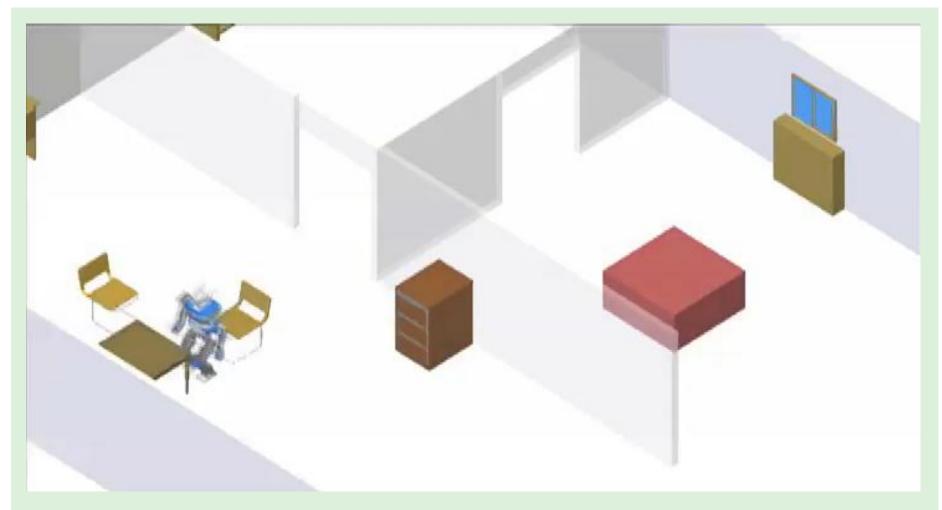
COST FUNCTION



$$cost(\mathbf{q}_{i}, \mathbf{q}_{j}) = \int_{0}^{L} \frac{1}{v(s)} ds$$
 (Walking time)

■ Heuristic function: cost of walking frontally from \mathbf{q}_i to \mathbf{q}_g while staying on P

APARTMENT SCENARIO



PERFORMANCE OF REGULAR SAMPLING OPTIMIZATION

Computation time (s)

	RRT	Shortcut Optimization	RS0	Total
Chairs	4.0	1.9	2.1	8.0
Boxes	0.092	2.5	0.24	2.8
Apartment	1.2	2.4	2.4	6.0

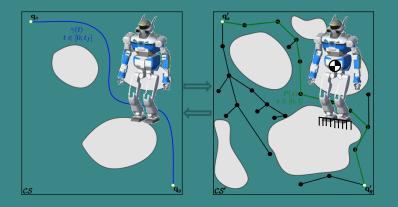
Walking time (s)

	Shortcut Optimization	Shortcut Optimization + RSO
Chairs	40	35
Boxes	66	57
Apartment	200	120

SUMMARY

- Summary of RSO
 - Regular sampling of path
 - Four orientations states for each sample configuration
 - A* search with time as cost function
- Discussion of results
 - Optimized trajectories are shorter with respect to walk time
 - Very low computational overhead to the planning scheme when compared to walking time gain

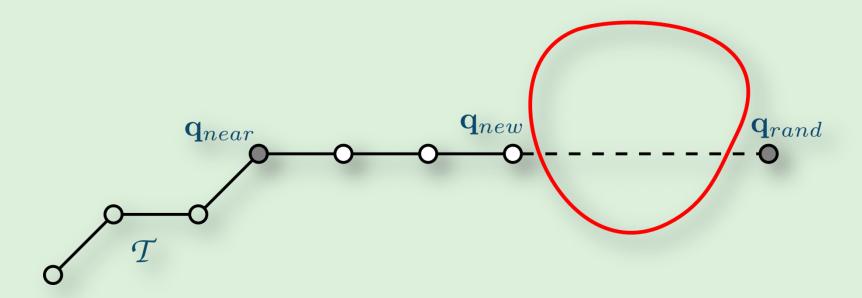
BUT...



WHOLE-BODY OPTIMAL MOTION PLANNING

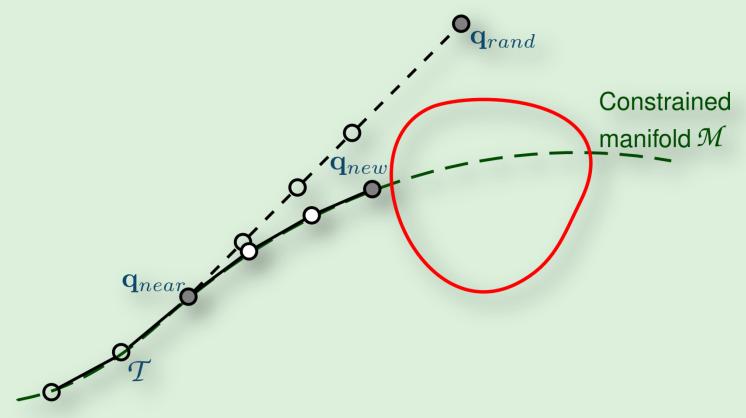
2

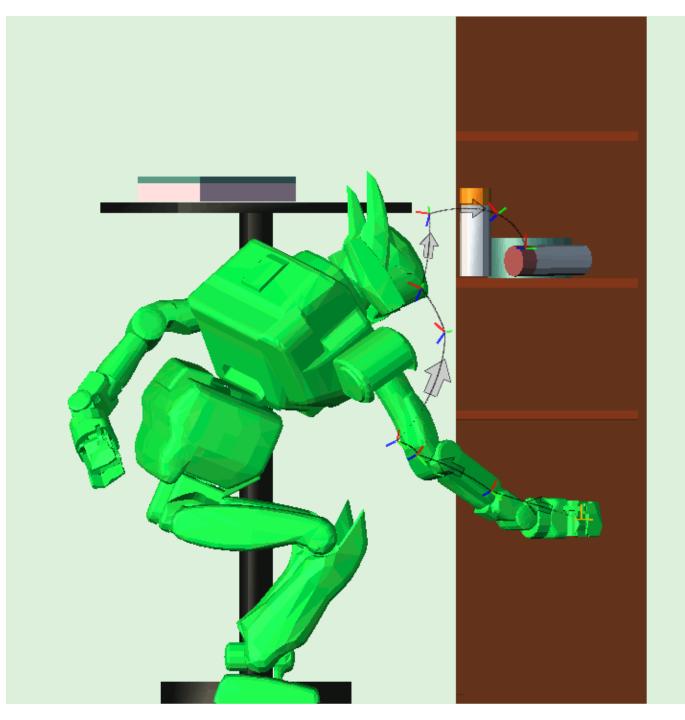
RRT EXTENSION



PLANNING ON A CONSTRAINED MANIFOLD

■ Contact and static balance constraints: plan on a zero-measure manifold f(q) = 0





STATICALLY BALANCED PATH PLANNING

Planning manifold:

Fixed right foot 6D position

Fixed left foot 6D position

Center of mass projection at support polygon center

CONSTRAINED RRT: PROPERTIES AND DRAWBACKS

Properties

- Generation of quasi-static collision-free paths.
- Probabilistic completeness.
- Geometric local minima avoidance.

Drawbacks

- Random and long paths.
- No time parametrization.
- Additional processing needed to obtain a feasible trajectory.

NUMERICAL OPTIMIZATION FOR OPTIMAL CONTROL PROBLEMS (NOC)

$$\begin{aligned} \min_{\mathbf{x}(\cdot),\mathbf{u}(\cdot),T} & J(\mathbf{x}(t),\mathbf{u}(T),T) = \int_{0}^{T} L(\mathbf{x}(t),\mathbf{u}(t))dt + \Phi(\mathbf{x}(T)) \\ & \mathbf{x}(t) & = \mathbf{f}(t,\mathbf{x}(t),\mathbf{u}(t)), \quad t \in [0,T], \\ & \mathbf{g}(t,\mathbf{x}(t),\mathbf{u}(t)) & = \mathbf{0}, \quad t \in [0,T], \\ & \mathbf{h}(t,\mathbf{x}(t),\mathbf{u}(t)) \geq \mathbf{0}, \quad t \in [0,T], \\ & \mathbf{r}(\mathbf{x}(0),\mathbf{x}(T)) & = \mathbf{0}. \end{aligned}$$

- x ,u: state and control vectors
- f: differential equation of the model
- g,h,r: constraint vector functions

NOC: PROPERTIES AND DRAWBACKS

Properties

- Generation of locally optimal trajectories.
- Enforcement of equality and inequality constraints.

Drawbacks

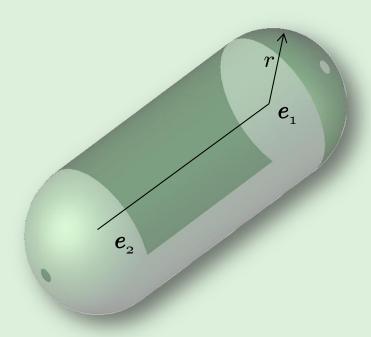
- Possible failure if stuck in local minima.
- Success depends of the "initial guess".
- Prior processing needed to guarantee optimization success.

A DECOUPLED APPROACH FOR OPTIMAL MOTION PLANNING

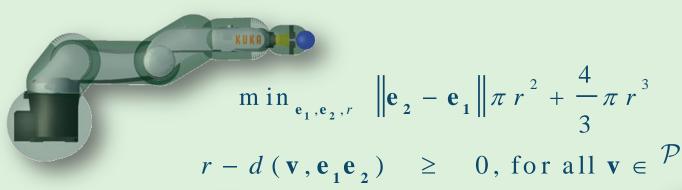
- Optimal motion planning two-stage scheme:
 first plan draft path, then optimize
- Locally optimal collision-free trajectory generation
- Application to a humanoid robot with fixed coplanar contact points

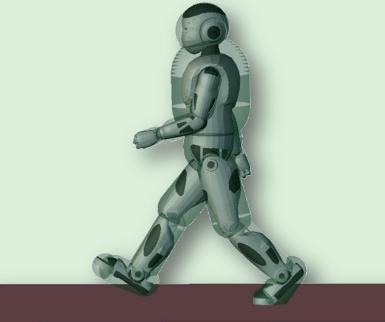
(SELF-)COLLISION AVOIDANCE: CAPSULE BOUNDING VOLUMES

- Capsule: Set of points lying at a distance r from a segment
- Simple to implement
- Fast distance and penetration computation



MINIMUM BOUNDING CAPSULE OVER A POLYHEDRON





OPTIMAL CONTROL PROBLEM FORMULATION

$$\mathbf{x}(t) = [\mathbf{q}(t), \mathbf{q}(t), \mathbf{q}(t)]^{T}$$

$$\mathbf{u}(t) = [\mathbf{q}(t)]^{T}$$

$$J = \int_{0}^{T} \mathbf{q}(t)^{T} \mathbf{q}(t) dt$$

$$\frac{\mathbf{q}}{\mathbf{q}} \leq \mathbf{q}(t) \leq \mathbf{q}$$

$$\mathbf{p}_{lf}(\mathbf{q}(t)) = \mathbf{p}_{lf}(\mathbf{q}(0))$$

$$\mathbf{p}_{rf}(\mathbf{q}(t)) = \mathbf{p}_{rf}(\mathbf{q}(0))$$

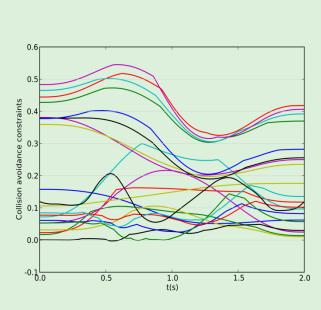
$$\mathbf{p}_{zmp}(\mathbf{q}(t), \mathbf{q}(t), \mathbf{q}(t)) \in \mathcal{P}_{sup}$$

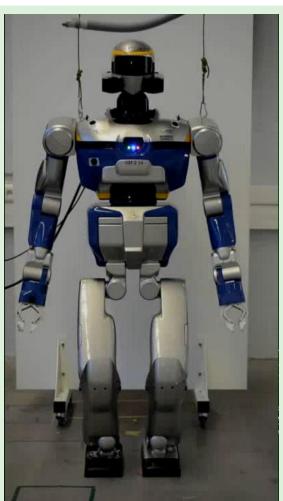
$$\mathbf{d}_{min}(t) \geq \mathbf{0}$$

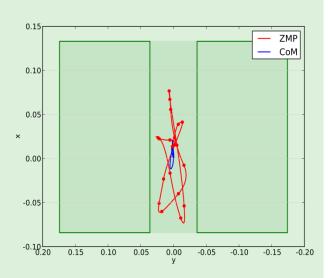
OPTIMAL CONTROL PROBLEM SOLVER

- MUSCOD-II: specially tailored SQP solver.
- Trajectory search space: q(t) (or jerk) piecewise linear.
- Discretized constraints: 20 nodes over trajectory.

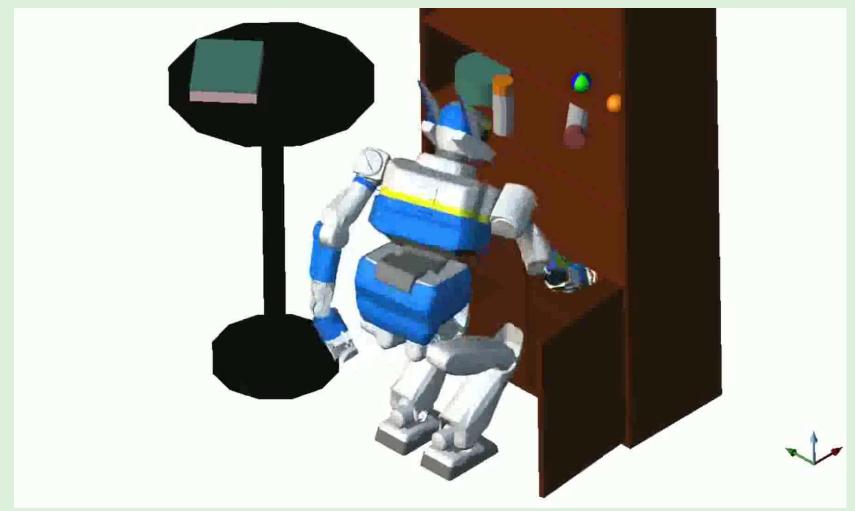
MARTIAL ARTS MOTION







SHELVES SCENARIO

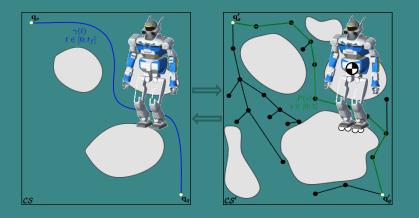


SUMMARY

- Decoupled approach: first plan, then optimize.
- Draft path provided by constrained planner.
- Path used as initial guess by numerical optimal control solver
- Generated trajectories are locally optimal, feasible, and collision-free.

BUT....

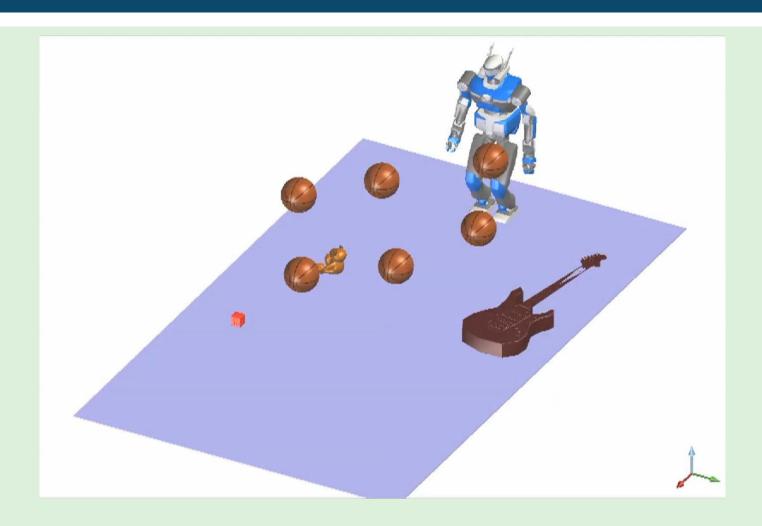
- Optimal control solver: black box
 - Even with a proper initial guess and duration, solver fails sometimes
 - Difficult to tune
- Problems are sensitive to scaling
- Very long computation time
- Difficult to extend to walking motions



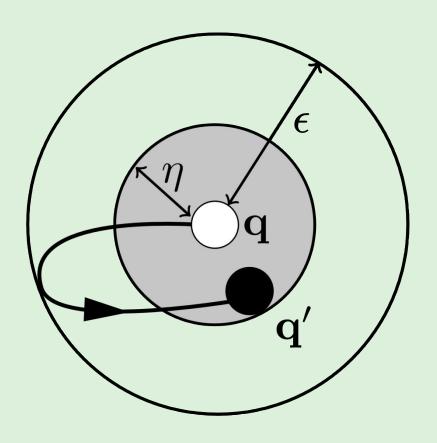
A WHOLE-BODY MOTION PLANNER FOR DYNAMIC WALKING

3

PLANNING ON A CONSTRAINED MANIFOLD

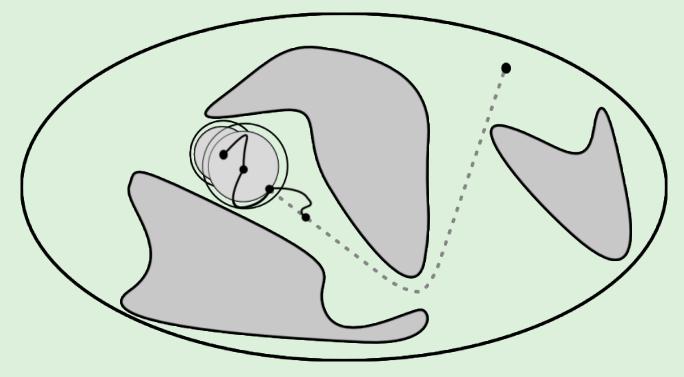


SMALL-SPACE CONTROLLABILITY

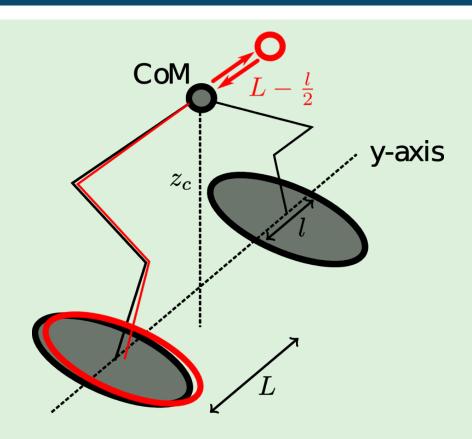


SMALL-SPACE CONTROLLABILITY

 For small-space controllable systems any collision-free path can be approximated by a sequence of collision-free feasible trajectories



SMALL-SPACE CONTROLLABILITY OF A WALKING HUMANOID ROBOT



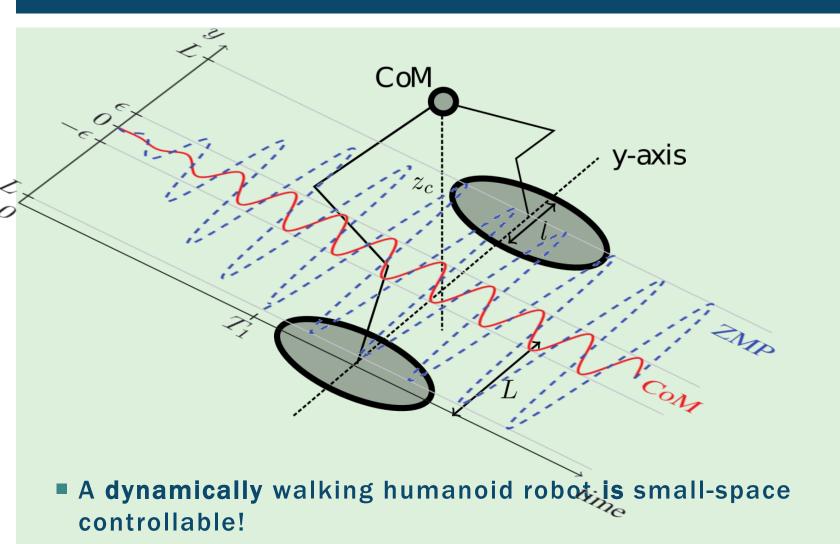
A quasi-statically walking humanoid robot is not small-space controllable

SMALL-SPACE CONTROLLABILITY OF A WALKING HUMANOID ROBOT

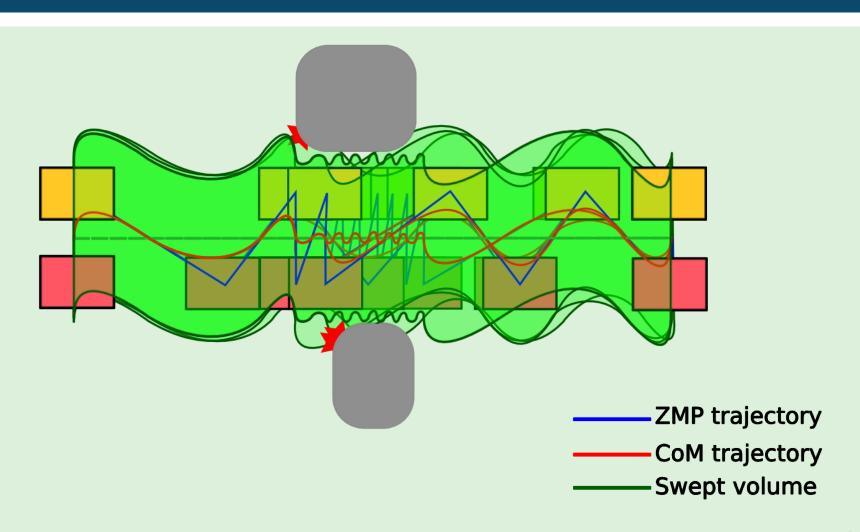
$$y(t) = \epsilon \sin(\omega t) \implies p_y(t) = (1 + \left(\frac{\omega}{\omega_0}\right)^2)^{\epsilon} \sin(\omega t)$$

Moving the CoM fast enough in an arbitrarily small neighborhood generates dynamically balanced walk

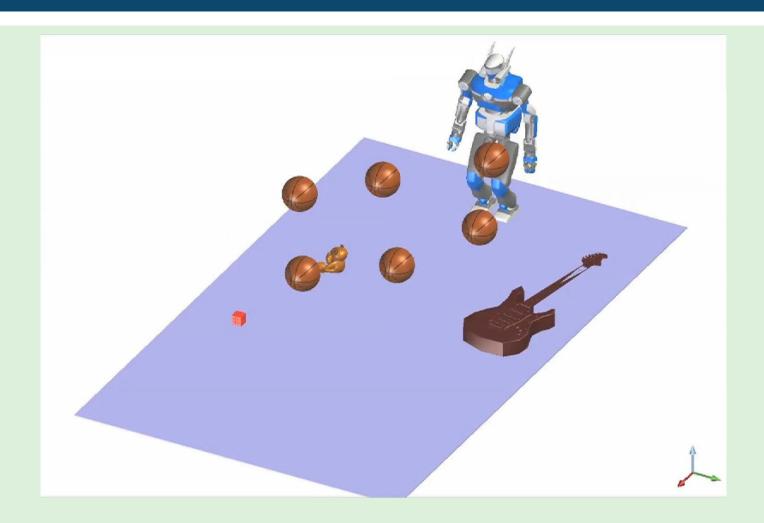
SMALL-SPACE CONTROLLABILITY OF A WALKING HUMANOID ROBOT



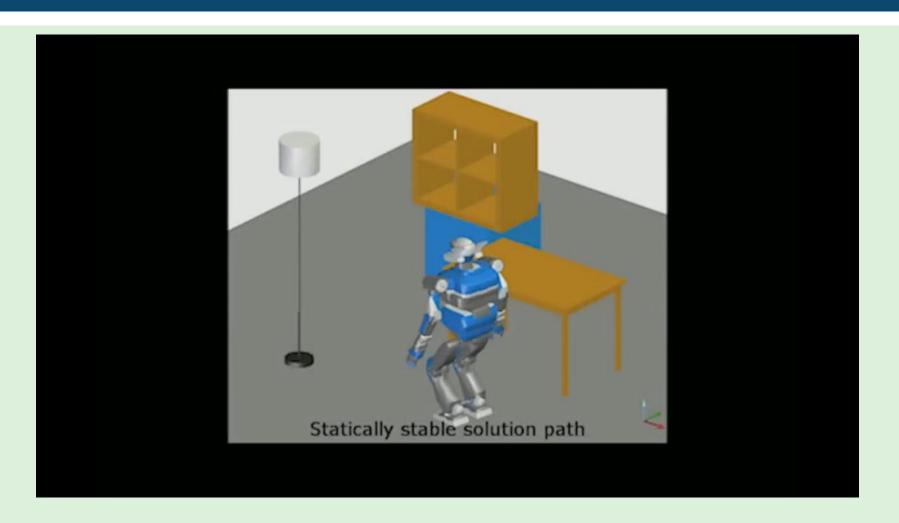
A TWO-STEP WHOLE-BODY MOTION PLANNING ALGORITHM



WHOLE-BODY MOTION PLANNING IN A CLUTTERED ENVIRONMENT



APPLICATION ON THE HRP-2



SUMMARY

- A dynamically-walking humanoid robot is small-space controllable
- A two-step well-grounded algorithm for whole-body motion planning on a flat surface
 - Plan a draft sliding quasi-static path
 - Use the small-space controllability property to approximate it with a sequence of collision-free steps
- Combine navigation and manipulation seamlessly
- Simpler, more reliable and faster than whole-body optimal control

CONCLUSION

SUMMARY OF CONTRIBUTIONS

- Efficient path optimization method for humanoid walk planning when using a bounding box approach [ICINCO 2011]
- Combining constrained path planning and optimal control methods for the generation of locally optimal collision-free trajectories [ICRA 2013]
- Generalization of constrained path planning to walk planning [Humanoids 2011, IJRR 2013]
- All contributions used to generate motions on the HRP-2 humanoid robot

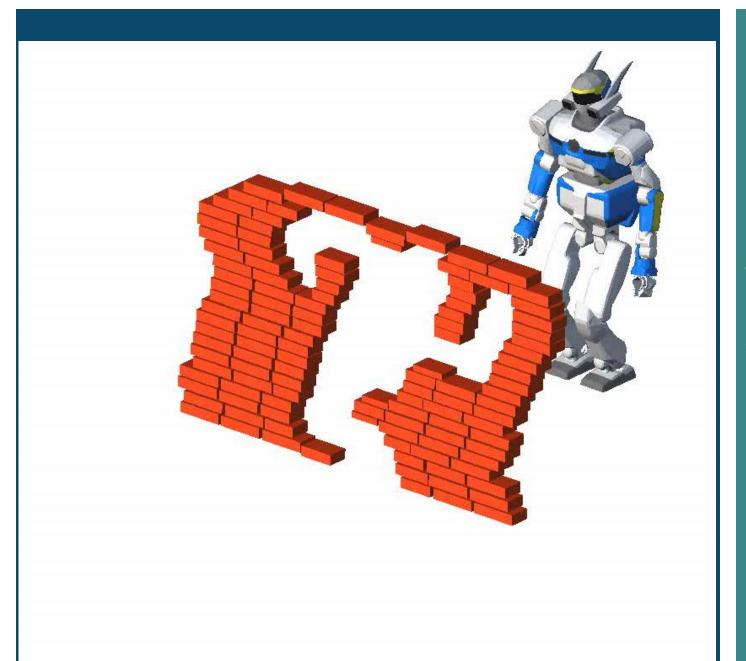
CONCLUSION

- Decoupled approach for motion planning
 - Easy
 - Fast
 - Sound
- Instead of generating complex motions for complex dynamics
 - Focus on simpler systems
 - Find equivalence properties
 - Solve efficiently and reliably a particular class of motion planning problems

OPEN QUESTIONS

How can we execute trajectories reliably in uncertain environments?

Can we extend the small-space controllability property to multi-contact motion?



THANK YOU FOR YOUR ATTENTION