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Résumé de la these

Ce travail est consacré 4 1’étude de problemes de ‘blow-up’ pour une équation de type de la
chaleur avec un terme source uniforme fonction de la température instantanée en un point zy du domaine
spatial 2. Pour simplifier, on suppose que la (variation de) température u satisfait des conditions aux
limites de Dirichlet homogenes.

Rappelons la définition d’un ‘blow-up’ en temps fini. Soit

Tiax = sup {7 > 0 tel que u(z,t) est borné dans Q x (0,7") }

Si Thax = 00 , il n’y a pas de ‘blow-up’ en temps fini la solution u le I’équation parabolique semi linéaire
est dite globale. Si Tiax < 00, alors

i (-, )| oo () — 00

t—Tmax

et on dit qu’ il y a ‘blow-up’ en un temps fini Tj,,x. L’ensemble de ‘blow-up’ est alors :

B = {ze€Qbytel que I{z,,tn} C QX (0,Tmax); {Tn,tn} — {z, Tmax}

et u(xp,t,) — 0o quand n — 00.}

Tout point 2 de B est appelé point de ‘blow-up’. Si B = Q, on dit que le ‘blow-up’ est total, si B se
réduit & un singleton on parle de ‘blow-up’ en un seul point.
In 2000, C. Y. Chan and J. Yang [1] ont considéré 1’équation semi-linéaire parabolique

Uy — Uz = f(u(zo,t)), (z,t) € (0,1)x (0,7
uw(0,t) =u(l,t) =0, te(0,T)

Sous certaines conditions sur ug et f, ils ont montré qu’il y avait ‘blow-up’ en temps fini et que le ‘blow-up’
était total.
Le propos de cette these est de généraliser I’étude de C.Y. Chan et J. Yang a :

k(x)ut - (dlv(p(x)Vu) = k(m)f(u(x%t))v (iC,t) €0 x (O,T)a
u(z,t) =0, sur 9NVt € (0,7), (0.0.1)
u(z,0) = up(x),x € Q,
ol © est un domaine de RY, 2y est un point donné de Q, k. y, f et ug sont des fonctions données.

Cette these est divisée en six chapitres. Un rappel historique des problemes de ‘blow-up’ constitue le
chaptre 1.



Les chapitres 2 et 3 traitent le probléeme monodimensionnel sous la condition de stricte positivité
de k et p sur tout Q. La différence entre le chapitre 2 et le chapitre 3 est qu’au chapitre 2 ’existence
d’une solution avec ‘blow-up’ est établie par une méthode d’analyse fonctionnelle, i.e la méthode des
semi-groupes d’opérateurs linéaires dans un espace de Hilbert, alors qu’au chapitre 3 cela est prouvé par
une méthode d’analyse plus classique : la méthode des fonctions de Green. Le chapitre 4 concerne une
extension des résultats obtenus aux cas de dimensions N < 3 en utilisant la méthode des semi-groupes.
Avant d’examiner, en dimension 1, le cas ot k(0) = p(0) = 0 avec k(x), p(xz) > 0 sur (0, 1], on se fait la
main au chapitre 5 avec k(z) = z®, p(z) = 2°, a, 8 > 0. Le chapitre suivant traite le cas général pour k
et p avec, comme au chapitre 5, une méthode de fonctions de Green.

Pour plus de détails, au chapitre 2, en vue d’appliquer la théorie des semi-groupes on transforme le
probléme en une équation d’évolution du type :

ug(t) — Au(t) = F(u(t)) pour t > 0 et u(0) = uyp, (0.0.2)
oll A est 'opérateur linéaire non borné de D(A), le domaine de A, vers L?(I) défini par :

D(4) = {ue Hj(I) tel que Nw € L*(I) et

/ k(z)w(z)p(e)ds = — / p(£)Dyu(x) Dyspla)d, Voo € HY(I) b
I I

Au = w pour tout v € D(A) ou D, est la dérivée au sens des distributions sur I. L’opérateur (non
linéaire) F appliquaant D(A) dans L?(I) est défini par
F(u) = f(u(zo,t)).
Rappelons que L?(I) = {v est une fonction mesurable telle que [ k(z) lu()]? dz < 0o} est un espace de
T

Hilbert équippé du produit scalaire et de la norme :
1/2
(0) ) = [ Khu@ol@ids, et fulyzy = | [ ko) @) ds)
T T

respectivement et H'(I) = {v € L*(I) tel que Dyv € L*(I)} est un espace de Hilbert de carré de norme

2 2 2
ol 0y = o)+ [ p(e) | Dav(a) do
1
tandis que le sous-espace fermé Hi(I) = {v € H(I) tel que v(0) =0 = v(l)} est équippé de la norme
équivalente de carré :
ol = [ #) IDo(a) o
T

Notre principal résultat consiste en les 4 théoremes :

Théoreme 2.2.1 Il existe un nombre positif T tel que le probléme d’évolution (0.0.2) ait une unique
solution classique (au sens de la théorie des semi-groupes, i.e u € C([0,T], D(A)) N C([0,T], L*(1)))
définie par :

u(t) = S()uo + / S(t— 7)F(u(r))dr



ou S(t) est le semi-groupe analytique engendré par A.

Théoreme 2.2.2 Si [0, Tmax) est Uintervalle fini maximal pour lequel la solution u de (0.0.2) est bornée,
alors |u(zo,t)| tend vers l'infini quand ¢ tend vers T ax.

Théoréme 2.2.3 L’ensemble de ‘blow-up’ est 1.

Théoreme 2.2.4 Si,
1 wug atteint son maximum en xg,

2 f(&) >beP avecb>0et p>1,

3 H(0) > ()2)1)ﬁ avec H(t fk u(z,t)dx ot A\ est la premieére valeur propre et ¢ la

fonction propre associée de

i (p<x>j;¢<x>) — Me(2)(x) pour z € I et 6(0) = 0 = B(1),

alors il y a ‘blow-up’ en temps fini pour (0.0.1).

On a utilisé le fait que A est m-dissipatif autoadjoint et que F' est Holder-continue d’exposant
€ (0,1).

Au chapitre 3, ou on étudie le méme probleme, on prouve le ‘blow-up’ par une méthode de fonctions

de Green.

Pour construire la fonction de Green, on considére le probleme (régulier) de valeurs propres associé :

% (p(x)clci¢(x)> = Me(2)¢(z) pour x € T et ¢p(0) =0 = ¢(1) (0.0.3)

La propriété de complétion des fonctions propres ¢, de (0.0.3), implique que la fonction de Green est
définie par :

G(x,t,€,7) Z¢n On( A=) pour x,& € I et t > 7.

En utilisant le theéoréme de Green, I'équation intégrale correspondant au probleme (0.0.1) est alors :

1

= [ [Me6(@.t.¢.m) (uao, e + [ KOG, .¢,0)une)de. (0.0.4)

0

Pour prouver qu’il existe un réel positif T' tel que (0.0.4) ait une solution u continue sur [0, 7] pour
tout = € I, nous construisons une suite {w,,} avec wo(x,t) = ug(x) par :

k() (wn)e — (p(@)(wn)z)z = k(@) f(wn—1(z0,1)), (2,t) € I x (0,00),
w0, t) =0 =wy(L,t), t >0, (0.0.5)
w(z,0) = up(z), = € 1.

Ensuite, on montre que
1 la suite {w,} est une fonction non décroissante de t,

2 il existe T > 0 tel que {w,,} converge ponctuellement vers u sur [0, 7] pour tout = € I.

vi



Aussi, par le théoréme de Dini, on peut conclure que {w,} converge uniformément vers u sur [0, 7]
pour tout z € I. Ainsi, (0.0.4) a une unique solution u continue sur [0, 7] pour tout z € I. Avec cette
idée, on peut prouver le résultat suivant :

Théoréme 3.3.3 1l existe T > 0 tel que (0.0.4) a une solution unique non négative continue sur
[0, T pour tout = € I, u(x,t) > ug(x) pour tout (x,t) € I x [0,T] et u est une fonction non décroissante
de t.

Soit Tinax le supremum des T' tels que (0.0.4) ait une solution non négative.

Théoréme 3.3.4  Si Tyax est fini, alors u(zg,t) est non borné quand ¢ — Trax.
Comme au chapitre 2, nous donnons la condition suffisante pour garantir I’existence d’un ‘blow-up’
eu temps fini.

Théoréme 3.4.1 Si

/ H )\18

H(0)

ou H(s f k(x)u(x, s)¢1(x)dz, A\ la premiere valeur propre de (0.0.3) et ¢; la fonction propre associée,

alors la solutlon de (0.0.2) présente un ‘blow-up’ en temps fini.

Théoréme 3.5 Si une solution de (0.0.2) présente un ‘blow-up’ en temps fini, alors l’ensemble des
points de ‘blow-up’ est I.

Au chapitre 4 nous étendons les résultats au cas N-dimensionnel (VN < 3) avec des conditions de stricte
positivité pour k et p en tenant compte, grace a la théorie de I'interpolation et les injections de Sobolev,
de

D(A) — D((—A%)) — H**(Q) — C(Q)

avec s € (sn,1) et sy = N/4 pour tout N < 3.
Au chapitre 5 est examiné un cas dégénéré pour le probleme (0.0.1) ou k(z) = 2%, p(z) = 2” o, 8 > 0.
Le probleme aux valeurs propres associé

o do

( dx) \ePp(z) pour = € I,$(0) = ¢(1) =0 (0.0.6)

dx
est singulier, mais on dispose de propriétés suffisantes sur les valeurs propres et les fonctions propres pour
obtenir a propos du ‘blow-up’ des résultats dans ’esprit du chapitre 3.

Le dernier chapitre est consacré au cas dégénéré plus général k(0) = p(0), k et p > 0 sur (0,1].
Diverses conditions sont introduites en vue de ’existence, la complétion et la bornitude des fonctions
propres. Comme au chapitre 3, le probléme (0.0.1) est transformé en une équation intégrale, mais
Iexistence d’'un ‘blow-up’ va étre obtenue ici en utilisant le théoréeme de point fixe de Banach dans un
ensemble

E(M,T)={uec C( x [0,7] tel que max  |u(z,t)| < M}
(a,t)€Ix[0,T]

Pour conclure, on peut dire que chacune des 2 méthodes : semi-groupes et fonction de Green présente
des avantages ou des inconvénients quant a leur mise en oeuvre. L’intérét de la méthode semi-groupes
réside dans sa généralité et dans la panoplie de théoremes concernant les équations d’évolution semi-
linéaires. Il s’agit essentiellement de trouver le bon cadre fonctionnel et les bonnes propriétés sur f
générant de bonnes propriétés sur F' pour conclure quant a lexistence de ‘blow-up’ et la nature de

vii



I’ensemble des points de ‘blow-up’. L’avantage de la méthode des fonctions de Green est que cet outil
fondamental en théorie des équations aux dérivées partielles est enseigné dans tous les cours classiques
et donc a été facile a comprendre et a utiliser pour le probléeme considéré dans cette these.

Une limitation de la méthode des fonctions de Green est dans la construction méme de celles-ci, ce
qui peut arriver Lorsqu’on manque d’informations sur les valeurs propres ou fonctions propres. Ce fut le
cas au chapitre 6 ou nous n’avons pas trouvé dans la litérature des résultats concernant des cas dégénérés
pour k et p tres généraux. En réalité, cette limitation de connaissance de résultats spectraux va se
traduire dans la méthode des semi-groupes par la difficulté a choisir un bon cadre fonctionnel assurant
de bonnes propriétés pour F. On est amené & travailler dans un espace L? avec le poids k et & remplacer
H} par un espace V' complété pour I'intégrale du carré de la dérivée avec le poids p, nous ne savons pas
dans les cas généraux quand V est compact dans L3.

viii
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Chapter 1

Introduction

There has been a tremendous amount of recent activity due to the subjects of solutions to partial
differential equations blowing up in finite time. The mathematical theory for this is extensive and reviews
may be found in Levine (1990) and Samarskii et al. (1994). Finite time blow-up occurs in situations in
mechanics and other areas of applied mathematics, and studies of these phenomena have very recently
been gaining momentum.

The simplest form of spontaneous singularities in nonlinear problems appears when the variable or
variables tend to infinity when time approaches a certain finite limit 7" > 0. This is what we call a blow
-up phenomenon. Blow-up occurs in an elementary form in the theory of ordinary differential equations
(ODEs), and the simplest example is the following initial-value problem:

up = u?, t >0,
u(0) = a,

with v = wu(t) and a > 0. It then is immediate that a unique solution u exists in the time interval
0 <t < T = 1/a. Since the solution u is given by the formula u(t) = 1/(T —t), one see that u is a smooth
function for 0 < ¢ < T and also that u(t) — oo as t — T'—. We can say that the solution u of this problem
blows up in finite time at t = T and also that u has blow-up at that time. Blow-up is referred to in Latin
languages as explosion. Starting from this example, the concept of blow-up can be widely generalized as
the phenomenon whereby solutions cease to exist globally in time. Thus, a first step is given by ODE’s
of the form u; = uP, with p > 1 and, more generally,

Uy = f(u)v

where f is positive and continuous under the condition

oo
/ ds <
0.
f(s)
1
This Osgood’s condition in the ODE theory established in 1898 [22] is necessary and sufficient for the
occurrence of blow-up in finite time for any solution with positive initial data. More generally, we can

think of systems u; = f(t,u) for a vector variable u € R™. In this case we may have blow-up due to the
same mechanism if f is super-linear with respect to u for |u| large, and also blow-up due to the singular

character of f with respect to ¢ at certain given times.
The subject of blow-up was posed in the 1940’s and 50’s in the context of Semenov’s chain reaction
theory, adiabatic explosion and combustion theory, see [16] and [26]. A strong influence was also due to



blow-up singularities in gas dynamics, the intense explosion (focusing) problem with second kind self-
similar solutions considered by Bechert, Guderley and Sedov in the 1940’s [4], p. 127. An essential increase
of attention to blow-up research in gas dynamics, laser fusion and combustion in the 70’s was initiated
by the numerical results [21] on the possibility of the laser blow-up like compression of deuterium-tritium
(DT) drop to super-high densities without shock waves. The problem of localization of blow-up solutions
in reaction-diffusion equations was first proposed by Kurdyumov [19] in 1974.

The mathematical theory has been investigated by researches in the 60’s mainly after approaches to
blow-up by Kaplan [18], Fujita [14], [15], Friedman [13] and some others. There are two classical scalar
models. One of them is the exponential reaction model

ur = Au+ Xe¥, A >0,

which is important in combustion theory [26] under the name of solid-fuel model (Frank-Kamenetsky
equation) and also in other areas. The occurrence and type of blow-up depends on the parameter A > 0,
the initial data and the domain. The other classical blow-up equation is

up = Au+uP, p> 1.

Both semilinear equations were studied in the pioneering works by Fujita.
To define the phenomenon of blow-up in finite time, let u be a solution to a first order in time partial
differential equation, say
uy = Lu, (1.0.1)

for some partial derivative operator L which involves spatial derivatives. Suppose this equations is defined
on a domain Q C RY, for some positive range of times ¢ > 0. The solution to (1.0.1) will also be required
to satisfy suitable boundary and initial data. The definition of blow-up in finite time is given if we define
a number T* by

T* =sup {T > 0: u(x,t) is bounded in Q x (0,T), where u satisfies (1.0.1)}.

If T* = +o00,then blow-up in finite time does not occur and solutions are said to be global. If T* < oo,
then

timsup u(t)]. = oo
t—T*

and one says the solution blows up at time 7%. Furthermore, we can define the blow-up set, denoted by
B, by
B= {J; €0 Han, tn} Q% (0,T), t, =T, z, — x and u(xn,, t,) — oo}.

Its points in B are the blow-up points.
My inspiration comes from studying following papers. J. M. Chadam, A. Peirce and H. M. Yin [5] in
1992 studied the blow-up property of solutions to the problem

up — Au = f(u(zo,t)), (x,t) € Qx(0,T)
u(z,t) =0, (x,t) € 92 x (0,T)
u(r,0) = uo(z), = € Q,

where T is a positive number, 2 is a bounded domain in R™ with smooth boundary 02 while x is a
fixed interior point of 2. They showed that under some conditions the solution blows up in finite time
and the blow-up set is the whole region. In 2000, C. Y. Chan and J. Yang [9] studied the same question
for the degenerate semilinear parabolic initial-boundary value problem

Ty — Ugy = f(u(IOat))v (:C’t) SIS (07T)a

u(0,t) = 0=wu(l,t), t € (0,T),
u(z,0) = ug(z), z €1,



where ¢ is any nonnegative real number, f and ug are given functions. By using Green function method,
they proved that with suitable conditions, u blows up in finite time, and the blow-up set is the entire
interval I.

In this work, we study a semilinear parabolic problem with a localized nonlinear term, u;— ﬁ (p(x)ug)e =
fu(zo,t)) with k and p > 0 and zo be in the domain of z, which satisfies the Dirichlet boundary
conditions and nonhomogeneous initial condition.We show the existence and uniqueness of a blow-up
solution by semigroup theory and the blow-up set of such a solution. Furthermore, we give the suffi-
cient condition to blow-up in finite time. We also consider a degenerate semilinear parabolic problem,
z%u; — (2Puy), = f(u(zo,t)), which satisfies the Dirichlet boundary conditions and nonhomogeneous
initial condition. The existence and uniqueness of a blow-up solution is established by Green’s function
method. Moreover, the sufficient condition for occurrence of blow-up in finite time is shown. We finally
extend our degenerate semilinear parabolic problem in the form, u; — ﬁ(p(z)ux)x = f(u(zo,t)) with
k(0) =0 =p(0) and k,p > 0. We still obtain the same results as previous problems.



Chapter 2

Complete blow-up for a semilinear
parabolic problem with a localized

nonlinear term via functional
method

2.1 Introduction

Let xp be a fixed point in I = (0,1) and denote its closure by I. We study the semilinear
parabolic initial-boundary value problem with a localized nonlinear term

ug(x,t) — k(lg:) (p(@)uz(z,t)s = flu(zo,t)), (x,t) € I x (0,00),
w(0,t) = 0 = u(L,t), t >0, (2.1.1)
u(x,0) = ug(x), x €1,

where k € L>®(I), p € Wh(I), up € H?(I) N H(I) and f € C?([0,00)). Our study is exclusively
concerned with the question of existence and uniqueness of the blow-up solution of problem (2.1.1) and
the blow-up point of such solution.

Our objective of this chapter is to show existence, uniqueness and blow-up for a classical solution of
problem (2.1.1) by using semigroup theory. Throughout this chapter, we assume the following:

(H1) k€ L*>°(I) and 3 kp,, kar € (0, +00) such that &k, < k(x) < kps a.e. z €1,

(H2) p € Wh°(I) and 3 py, pas, B1, B2 € (0,+00) such that p,, < p(x) < pp and By < p/(z) < fo ace.
zel,

(H3) f € C?%([0,00)) is convex with f(0) =0 and f(s) > 0 for s > 0.

(H4) uo € H*(I) N H}(I) are nontrivial and nonnegative on I and satisfies

2 (o™

) + f(uo(wo)) > Crug(x) in I

for some positive constant (,



In order to obtain existence and uniqueness of a solution of problem (2.1.1), we will consider its
formally equivalent formulation in terms of a nonlinear evolution equation in the Hilbert space L?(I) :

du(t)
—A =F fi
o u(t) (u) fort >0, (2.1.2)
u(0) = uo,
where A is the linear unbounded operator from D(A), the domain of A, to L?(I) with
D(A) :{v € HA(I) | 3w e L3(I) s.t.

| Hau@ota) ds =~ [ p@)Dool@)Dugp(e) de, o € B},

I I
and Av(x) = w(z) for all v € D(A) and where F is defined by
u € D(A) — F(u) = f(u(zo,t)) € L*(I).

It will be shown before showing proposition 2.3.1.6 that the definition of F' is meaningful.

2.2 Main results

Our results comprise the following four theorems. The first one involves existence and uniqueness
of a solution u of problem (2.1.2) (in the sense of semigroup theory) whereas the last three theorems deal
with the blow-up time of u, blow-up set and sufficient condition to blow-up in finite time, respectively.

Theorem 2.2.1 There exists a finite positive constant T such that the evolution problem (2.1.2) has
a unique solution u € C([0,T], D(A)) N CH([0,T], L*(I)) defined by

u(t) = S(t)up + /S(t —7)F(u(r))dr
0

where S(t) is an analytic semigroup generated by A.

Theorem 2.2.2 If [0, Tyax) s the finite mazimal time interval in which a continuous solution u of
problem (2.1.2) exists, then |u(xo,t)| is unbounded as t tends to Tinax-

Theorem 2.2.3 The blow-up set of a solution u of problem (2.1.1) is 1.

Theorem 2.2.4 Assume that

1 ug attains its maximum at the point xg,

2 f(&) > b&P withb >0 and p > 1 and

1

3 H(0) > ()‘T)p’1 where the operator H defined by (2.3.4).

Then the solution u of problem (2.1.1) blows up in finite time.



2.3 The proof of main results

Hereafter we use an inner product and a norm, equivalent to the usual one, on L?(I) by

1/2

(v,w) = /k(a:)v(m)w(x) dz, and [v[p ) = (/ k(z) |v(a))? dx).
I I
If D,v denotes the distributional derivative with respect to « of the distribution v € D’(TI), we recall that
H'(I)={ve L*(I)|Dyv e L*(I)}.

The Hilbert space H'(I) here is equipped with the norm (equivalent to the usual one):
|v|§11(1) = \v|2LQ(I) +/Ip(x) |va(x)|2 dx

whereas its closed subspace H}(I) = {v € H'(I)|v(0) = 0 =v(1)} is equipped with

iy = [ 2@ Dot o

the norm induced by {71 (7, -

2.3.1 The proof of Theorem 2.2.1

To get existence and uniqueness of a solution of problem (2.1.2), we need the following proposi-
tions referred to [17].

Proposition 2.3.1.1 If A is self-adjoint and generates a Cy uniformly bounded semigroup S(t) and
g is Hélder continuous of exponent o € (0,1]. Then the evolution equation:

du(t)
dt

= Au(t) + g(t) with u(0) = ug € D(A)
has a unique solution u such that
u € C'([0,00), L*(I)) N C([0,00), D(A))

which can be expressed as
t

u(t) = S(t)up + ; S(t—7)g(r)dr.

Observe that the operator A of problem (2.1.2) is given by

Av(z) = %Dz (p(x)Dyv(x)).

To apply proposition 2.3.1.1 to such an operator, we show first that
Proposition 2.3.1.2 The operator A of problem (2.1.2) is m-dissipative and self-adjoint in L*(I).

Proof. An m-dissipative property of A in L?(I) is an immediate consequence of these two conditions:

1 (Av,v) <0 for all v € D(A), and



2 for any A > 0, R(I — MA) = L*(I), where R(I — AA) and I denote the range of I — A\A and the
identity operator on L?(I) respectively.

Condition 1. follows directly from definition of A. To obtain condition 2., letting g € L?(I) and A > 0,
we need to give an existence of v € H{(I) with the property:

1 1
X/Ik;(x)v(x)go(x) dx+/lp(x)D$v(x)D$<p(x) dx = X/Ik(x)g(x)go(x) dx

for each ¢ € H}(I). Such an existence is guaranteed by Lax-Milgram theorem [3], and thus, A is
m-~dissipative.

In order to prove that A is a self-adjoint operator in L?(I), since A is m-dissipative in L?([), it suffices
to prove that A is symmetric, that is, (Av, p) = (v, Ap) for all v and ¢ in D(A). Indeed, definitions of
D(A), Av and Agp yield

mm@:—ﬂmmmmmmwMM=@A@.

We note that by an m-dissipative property of A, the operator A generates a Cy semigroup S(t). To solve
problem (2.1.2), it is convenient to introduce the square root of —A, (fA)%. An elementary way to define
(—A)% is by considering the eigenvalues and eigenfunctions of —A. The operator (A — A)~! is a bounded
well-defined operator on L?(I) with values in H{(I) so that Rellich theorem (the embedding of H} (1)
into L?(I) is compact) implies that (A — A)~! is a compact operator on L?(I).

The following proposition is referred from [11].

Proposition 2.3.1.3 (The spectral theory of self-adjoint compact operator) There exists a
sequence (An, ¢n) C (0,+00) x HI(I) such that

1 App = —Anéon.

2 [, k(2)pn(2) P (2)dz = .

3 1 p(@) Do () Dot ()dz = XaGrm-

4 v(x) = (v, ¢n) dn(x) for allv e L3(I).

neN

5 Wliagy = X (v,6n)°

neN

6 D(A) = {v € L2(I)

SN2 (0, )7 < —1—00} and Av = = 3 Ay (v, dp) ¢n for each v € D(A).
neN neN
7 St =3 et (v, ¢,) ¢ for all (v,t) € L2(I) x [0, 00).

neN

Now, we can define domain of (—A)2 by

D«—Aﬁ>={veL%n

Z An (v, ¢n>2 < +oo}

neN

and the unbounded self-adjoint operator (—A)z in L2(I) by

1

(7A>%U = Z )\'rzt <U, ¢ﬂ> ¢n

for all v € D((—A)z). Moreover, we obtain the following propositions.

Proposition 2.3.1.4



1 D((=A)%) = HY(I) and |(~A)*v

e |U|H(}(I) for any v € D((—A)2).

2 Ifve D((—A)2), then S(t)v € D((—A)?) and

‘(_A)%S(t)u

(1)

Proof. Let us prove result 1. first.

Ifv=3Y (v,¢n) by for ¢, € H}(I), we have in the distributional sense:
neN

D(L‘/U = Z <Ua ¢n> D1¢n

neN

so that 3 An (v, ¢p)° = = [;p(x)|Dyv(x ()] dz = |U|§{3(1) < +oo. Conversely, if v € D((—A)?), the
neN
sequence (Vy), where

2
2
Vs =Vl = [olo)

M

- Z <“a¢n>2/lp($) 1Dy (2)| da

n=N+1

M
= Z An <U ¢n>2

n=N+1

Hence it converges to some V in H (I) (H}(I) is a Hilbert space) and to v in L2(I) so that v = V € H}(I).
The remaining equality has already been proven.

For result 2., because 3 Ape 22t (v, 6,)° < 32 A (v, ¢n)” for all t > 0, proposition 2.3.1.3 yields:
neN neN

if v e D((—A)2), then S(t)v € D((—A)z) and (—A)2S(t)v = S(t)(—A)zv for ¢ > 0.
Proposition 2.3.1.5 There ezists a Cy > 0 such that

Co
= [S(t)v \Hl(z) =312 |U|L2(1)

‘(—A)%S(t)v

L2(I)
for all (v,t) € L*(I) x (0, +00).

Proof. Tt is not difficult to see that ‘(—A)%S(t)v

=[Sl gy ) for any v € L3(I). Let v € L2(I).

Since the function s € Rt —— se~2% € RT is bounded, we have that there is a Cy > 0 such that

£ A (0,00)7 < Co Y (v,00)° = Co ol -

neN neN

L2(1)

Therefore, the definition of (—A)z yields that S(t)v € D((—A)z) and that the estimate involved in
proposition 2.3.1.5 is true.



Note that the previous result implies that S(t)v € D((—A)z) for all t > 0 and all v € L2(I), which, a
priori, is not obvious for a standard semigroup T'(t) on L2(I): usually T'(t)v belongs to L?(I) only but due
to the self-adjointness of A, the semigroup S(t) is analytic (holomorphic) and consequently S(¢t)v € D(A)
for all t > 0 and all v € L?(I).

Presently, we are in a position to solve the evolution problem (2.1.2). Firstly, we define a mapping F
by:

v € HYI) — F(v) = f(v(xo)) € L*(I). (2.3.1)

Note that this definition is meaningful because v € HJ(I) implies that v is continuous on I so that
v(z0) has a meaning and F(v) is a constant on I and therefore belongs to L?(I).

Proposition 2.3.1.6 The mapping F defined by (4.3.2) is locally Lipschitz from D((—A)2) (= HL(I))
to L*(I).

Proof. Let v,w € HZ(I) (— C(I)) such that ey lwle@ < M with M being a positive constant.
Then (H3) implies:

|F(v) = F(w)[72y < karlf(0(@0)) = flw(zo))|”
< kaLis [v(zo) — w(xo)[*
< kmLi v —wlgg
< kmL3Cl o —wlin g s

where Cj is the constant involved in the Sobolev embedding Hg (1) — C(I).
Next, due to proposition 2.3.1.4, we introduce a concept of mild solution for the evolution problem
(2.1.2).

Definition A function u is said to be a mild solution of problem (2.1.2) if there exists u € C([0,00), H} (I))
such that

u(t) = S(t)ug —I—/O S(t — 7)F(u(r))dr, Vt € [0,00),

ug being assumed to belong to Ha(I).
We modify the proof of Theorem 2.5.1 of [27] to obtain the following result.

Proposition 2.3.1.7 There exists a T > 0 such that problem (2.1.2) has a unique mild solution.
Moreover, let u(t), u(t) be mild solutions corresponding to ug and g, respectively. Then, for allt € [0,T],
the following estimate holds:

~ . % 1
|u(t) — u(t)|H5(1) < fuo — U0|Hé(1) e?CoCsky LT

Proof. Let M = \u0|H3(1) +1 and Ly, be the Lipschitz constant of f. Let T be a positive constant such

1
that T' < Ten C2C7LT,

. We define a mapping ® by:
t
v € E— ®(v)=S(t)ug +/ S(t—7)F(v(r))dr
0

where
E= {v € C(10.T], HY(I)) such that [o(t)] ;) < M for all t € [O,T]} ,

10



equipped with the norm:

lvlp = sup [v(t)] g1
t€[0,T)

We note that E is a closed convex subset of a Banach space C([0, T, H}(I)). We would like to prove that
®(v) € E for any v € E and @ is a contraction in E. Propositions 2.3.1.4, 2.3.1.5 and 2.3.1.6 imply:

|®(v)|, = sup u0+/ St —7)F(v(r))dr
t€[0,T] Hg (I)
< uolgyy + sup / 1S(t = 7)F(o(T)| g 1y dr
te[0,T]
< ol + su / o (£ oy + ki LarCo ol g ) )
= [Yolmy) @g] -7t L2(n) T MM s [VlEg (1)
1 todar

< \UO‘Hl(z)JF<00|f(0)|L2(1)JFCOkaLMCsM) sup T

0 tejo,r)Jo (t—7)2
<

1 1
‘UO‘H(%(I) +2C)y ('f(o)‘Lz(I) + ki/[L]\/[CSM> Tz,
If T is chosen in such a way that

1 1

T < min 55 - 5
rr OO A 403 (1(0)] gy + kb Laa O

then ®(v) is in E for any v € E. Moreover, for any vy,vy € F

B(0) = @)y = suwp | [ St 7) (F(1(r) - Flea(r) dr
tef0, 7] 1J0 H(I)
t
< G s [ )~ FOa g o

1 t 1
< Cok};LyCs sup / 7dT|U1—U2|E
tefo,71Jo (t—7)2

S QCQIC@LMCST% "Ul —1)2|E.

That is, ® is a contraction in E. Thus, ® has a fixed point that is the mild solution to problem (2.1.2)
in E. To show that the uniqueness also holds in C([0,T], H}(I)), let ui,us € C([0,T], H:(I)) be two
solutions of problem (2.1.2) and let u = u; — us. Then

u(t) = /0 St —7)(F(ui(r)) — F(ua(r))) dr.

Propositions 2.3.1.4, 2.3.1.5 and 2.3.1.6 imply:

/0 S(t — ) (F(us () — Flun(r))) dr

lu®)lgay = o
0
1 t 1
< Cocskf/[LM/ (7
0

t—T)%

s (7) = u2(7) | ga () AT

By Gronwall inequality, we immediately conclude that |u(t)| mi(ry = 0, that is, the uniqueness in C' ([0, 7], HY(I))
is proven. As before, we have

u(t) —u(t) = S(t)(uo — o) + /0 St —7) (F(u(r)) - F(u(r))) dr.

11



Therefore,

lu(t) — u(t)| gy 1)

_ 1 | _
< |up — uO‘Hé([) + C’oC’sk&LM/O 7(25 pu: lu(r) — U(T)\Hg(z) dr.
Gronwall inequality implies:
_ _ COCSk%{LM Rg L dr
u(t) —u()| gy < w0 — ol e (==
i 1
S |u0_aO|Hé([) eQCOc-‘kZ%ILMTZ.

Hence, this proposition is proven.
By modifying the proof of Corollary 2.5.1 of [27] we establish the following result.

Proposition 2.3.1.8 The mild solution u is Hélder continuous of exponent o (= %) int from [0,T)
toward H(I) for any ug € D(A)(= H2(I) N HY(I)).

Proof. Let ug € D(A). For any h > 0. Let u(t) = u(t + h). Then, we see that u is a mild solution of
problem (2.1.2) with initial data ug = u(h). Then,

lu(t +h) —u)l gy = @) = w®)lg )
1 1
< fulh) = ol gy >IN
On the other hand,

lu(h) — UO|H(§([)

h
< 180~ wolgyy + [ 1800~ )P () gy dr
h h CO
< / S(7)Aupdr -l-/ TREYY |F(“(7))|H[}(1) dr
‘ myny Jo (=)
h
< /0 |S(T)AUO|H(}(I) dr
h
Co 1
+/o m (|F(U0)|Hg(1) + k3 L Cs |u(r) — U0|Hg(1)) dr
<

1
2Co <|AU0|L2(1) + |F(Uo)|H5(1)) h=

1 " Ju(T) — ol
+Cok2 LarCy / E AL (U}
0 (h—1)2

By Gronwall inequality, we have
1 3 hE
u(h) — ol gz 1y < 2C0 (‘AUO‘L%I) + |F(u0)‘Hé(1)> hz P Cokirbar ol ®,
Thus, for any t1,t5 € [0,T] such that t; + h =t
u(ty) = ult2)| g r
1 1 1
< 20, <|Auo|L2(1) + |F(uo)|Hg(1)) ORI ) — )2

Hence u is Holder continuous of exponent a = % in t.

12



Now we are in a position to prove theorem 2.2.1.

Proof of Theorem 2.2.1.

2.3.1.1.

2.3.2 The proof of Theorem 2.2.2

Let us modify the proof of theorem 2.5.5 of [27] to obtain the following result.

Proposition 2.3.2.1 Let [0, Tinax) be the mazimal time interval in which the mild solution u of the
evolution problem (2.1.2) exists. If Trax 1 finite, then the solution u of problem (2.1.2) blows up in finite
time, that is,

i () gy ) = +oo.

Proof. We will use the contraction argument to prove proposition 2.3.2.1. Suppose that there is a finite

positive constant M and a sequence (t,) such that

|“(tn)|Hg(1) < M as t, — Tmax-
Consider the following problem:

du(t)
dt

Av(t) + F(v) and v(0) = u(ty,).

By proposition 2.3.1.7, the above problem has a unique local mild solution in [0, ] with ¢ depending on
M. We choose n large enough so that ¢, + > Tax. Let

() = u(t), for 0 <t <t,,
o(t —tn), fort, <t <t,+0.

We next would like to show that @(t) is a mild solution of problem (2.1.2) in [0, ¢, + d], i.e., u(t) satisfies
the integral equation

u(t) = S(t)up + /t St —7)F(u(r))dr for 0 <t <t,+9. (2.3.2)
0
From

u(t) = S(t)uo + / t S(t —7)F(u(r))dr for 0 <t < t,,
0
and

v(t) = S(t)u(tn) + /Ot S(t —7)F(v(r))dr for 0 <t <4,

13

Since F is locally Lipschitz and u is Holder continuous of exponent @ = 1
in ¢, I is also Holder continuous of exponent a = % in t. Hence, the result is a consequence of proposition

2



it is clear that for ¢ € [0,t,], u(t) satisfies (2.3.2). For t € [0, d],
ut+t,) = ov(t)

_ S@+mﬁm+lnsu+uf~ﬂFwwaA:£SU—ﬂF@h»m

Sttt [ S+t — 7)F(u(r))dr
0

+ /H_tn St+t, —7)F(v(r —t,))dr

n

= S+t " S0t 4+ by — ) F ()
0

+/H%S@+%ﬂF@ﬁ»m

n

t+t,
= apmww+/‘ St +t, — 7)F(u(r))dr.
0

Hence, u is a mild solution of problem (2.1.2) in [0,¢,, + ¢] with ¢, + § > Tiax. This contradicts the
definition of Ty,.x. Therefore, the proof of proposition 2.3.2.1 is complete.
We next prove Theorem 2.2.2

Proof of Theorem 2.2.2. Suppose that there is a positive constant M such that |u(zg,t)| < M as
t — Tmax. Since

u(t) = S(t)uo+/0 S(t—7)F(u(r))dr
= S(t)uo +/O fu(zo,7))S(t —7)1dr

where 1 is a function in L2(I) such that 1(x) = 1 Vx € I. Then, from proposition 3.1.4, we have

|
WOy < uolagen + (SO + ML) [ ——
0 (t -7
1
— ol + 2 (O] + MLag) 112, 8
Thus, as t — Tmax, |“(t)|H3(1) is bounded. This contradicts proposition 2.3.2.1. Hence, theorem 2.2.2 is

proven.

2.3.3 The proof of Theorem 2.2.3
Before showing the blow-up set of a solution u of problem (2.1.1), we will give a following lemma.
Lemma 2.3.3.1 For all x € I, there exists c(z) > 0 such that (S(t)1) (z) > c(z) for any t € [0, Tiax)-

Proof. The proof of this lemma results from lemma 3.3.3.1 in chapter 3 because this lemma is the
particular case of lemma 3.3.3.1.
We next prove theorem 2.2.3.

Proof of Theorem 2.2.3. Let M be a fixed positive constant with M > maxug(x). Since lim |u(xo,t)] —

zel t—Tmax

14



+00, there is a positive tp; such that |u(xg,t)] > M for all t > ;. Let us consider:

lu(zo, )] = Ju(t)(wo)]
< |(S(t)uo) (wo)| + / |(S(t = 7)1) (zo)| | (u(wo, 7)) | dr
0

+ [ (8= 1) ol (oo, )] dr

By locally Lipschitz continuity of f, we have

ta

lu(zo, )] < [(S()uo) (ﬂfo)|+/l(5(t*7)1) (o) (f(0) + Las |u(zo, T)[) dr

0

+ / (S(t = 7)1 (z0)] | f(u(zo, 7)) dr,

where L, is a positive constant depending on M. Thus, there are three positive constants ci, co and c3
such that

u(zo,t)] < e1+ertes / | (u(zo, 7))| dr

tm

c1+ co +03/f(u(aco,7'))d7'.

Taking ¢t — Tiax, we obtain that

. li%n /f(u(xo,T))dT — +00. (2.3.3)
maxtM
For any x € I, we have
¢
u(z,t) = )+ / (t—1)1) (z) f(u(zo, 7))dr.
0

Then, by lemma 2.3.3.1, there are two constant ¢;(x) and ¢z(x)(> 0) such that

t
u(x,t) > ¢ (x) + ca(x /f u(xo, T
0

Hence, as t — Tiax, u(x,t) — +oo for any x € I. For x € {0,1}, we can find a sequence {(z,t,)} such
that (z,,tn) — (€, Tmaz) and lim u(z,, t,) — oo. Therefore, the set of blow-up points of a solution u
n—oo

of problem (2.1.1) is I.

15



2.3.4 The proof of Theorem 2.2.4

Here, we will give the sufficient condition for occurrence of blow-up in finite time. In order to obtain our
result, we need the following lemmas.

Proposition 2.3.4.1 Let v be a classical solution of the problem: for any T € (0, 00),

vy — ﬁ(p(x)vz)z > B(z,t)v(zo,t), (z,t) €I x(0,T),
v(0,t) > 0 and v(1,t) >0,
v(z,0) >0, x €1,

where B(z,t) is nonnegative and bounded on I x [0,T]. Then v(x,t) >0 on I x [0,T].

Proof. If B(z,t) = 0 on I x [0, T], then it follows from Maximum principle that v(x,t) > 0 on I x [0, 7).
We assume that B(z,t) is positive on I x [0,7]. Let n be any positive real number and

V(z,t) = v(z,t) +n(1 +z?)e

where c is a positive constant with

2
¢ = —(pam +Phr) + (1 + 23)_max B(z,1).
km Tx[0,T]

We then consider that for any (z,t) € I x (0,77,

Vi(z,t) — 2)Va)e — Bz, t)V (0, t)

1
) (p(

1 2\ ct 27]66t
%(I’(l")ux)x+077(1+$ )e — (@)

> en(l+a?)e - [2p' () + p()] = nB(z,t)(1 + 23)e

(zp(x))s — Bz, t)V(x0,t)

= Ut_

27’]€Ct
k()

- (c(l +a?)— %[mp'(x) + p(@)] - Bla, )(1+ x%))

2
— ——(pn +plyy) — (1 + ) _max B(SM))
m Ix[0,T7]

Y
3
)

g
/N
)

ol

> 0.

We see that V(z,t) > 0 on {0,1} x (0,7]UT x {0}. We next would like to show that V(x,t) > 0 for
any (z,t) € I x [0,T]. Suppose that there exists a point (z1,%1) € I x (0,7) such that V(z1,t;) < 0. We
define the set A by

A={t:V(x,t) <0 for some x € I}.

It’s clear that set A is nonempty. Let t* = inf A. Since V(z,0) = uo(z) + n(1 + 2?) > 0 for x € I,
we obtain that t* > 0 and, additionally, by the definition of V, V(xg,t*) > 0. Indeed, if V(zq,t*) < 0,
then, by continuity of V, there exists a to(< t*) such that V(x,t2) < 0 for some = € I which contradicts
definition of t*. Since A is closed, by definition of t*, there exists a point zo € I such that

V(ze,t*) =0, Vi(xe,t™) <0 and V. (x9,t*) = 0.

Furthermore, since V attains its local minimum at the point zo, we have that V. (z2,t*) > 0. Thus, we
have that

0> Vi(za,t*) > Vi(xo,t*) —




Therefore, we get a contradiction. This shows that V(z,t) > 0 for any (z,t) € I x [0,7]. Since n is
arbitrary, we let  — 07 and then we obtain the desired result.

Proposition 2.3.4.2 For any (x,t) € T x [0, Timax), u(z,t) > ug(x) and us(x,t) > 0.

Proof. Let z(x,t) = u(z,t) — ug(x) for any (x,t) € I x [0, Tiax)- Let us consider that

%—1<mm%»=fwwmwﬂw£wifkwﬂﬁfn'

")
4 (p( )du‘)()> > — f(uo(o))-

Condition (A3) implies

dx dx
Thus, we obtain that

Zt*@(p( )za)a = fu(xo,1)) — f(uo(xo)) = f'(&1)z(w0, 1),

where ¢ is between u(zg,t) and ug(zo). Additionally, z(z,t) = 0 for any (z,t) € {0,1} x (0,T)UT x {0}.
Lemma 2.3.4.1 yields that z > 0 or u(wz,t) > ug(x) for any (x,t) € I x [0, Tinax)-
Let h be any positive constant less than Ti,,x and

w(z,t) = u(z,t + h) —u(z,t) for any (z,t) € I X [0, Tipax)-

We then have that for any (z,t) € I X (0, Tmax),

’”‘ﬁ%@umm$=ﬂm%¢+h»—ﬂw%,ﬂ F'(&)w(wo, )

for & between u(z,t + h) and u(z,t). For any (z,t) € {0,1} x (0,7) NI x {0}, w > 0. Then, lemma
2.3.4.1 implies that w > 0 or u(x,t + h) > u(x,t) for any (z,t) € I x [0, Tipax). Hence, this shows that
ug >0 on I x [0, Tnax)-

Before blow-up occurs, there exists a M (> 0) such that |u(z,t)| < M for any (z,t) € Ix[0, Tiax)-Locally
Lipschitz continuous property of f implies that there is a positive constant K (M) depending on M such
that for any v and v with |u| < M and |[v| < M,

|f(u) = f(v)] < K(M)|u—v|.
We note that before blow-up occurs, |u(zg,t)] < M and then we obtain that there exists a K (M) such
that f(u(zo,t) < K(M)u(zg,t) for t € [0, Tinax)-

Lemma 2.3.4.3 Before blow-up occurs, us(w,t) > K(M)u(x,t) for any I x [0, Tmax) if f'(uo(z0)) >

Proof. Let z(z,t) = uy(z,t) — K(M)u(x,t) for any I x [0, Tjax). We then consider that for any

I % (0, Tnax),
2 — ﬁ(p(x)zm)w = f'(u(zo,t))us — K(M)f(u(xo,t)).

It follows from locally Lipschitz continuous property of f that f(u(wzo,t)) < K(M)u(zg,t). We then have
that, by lemma 2.3.4.2,

!

u(zo,t))us(xo,t) — K2(M)u(z, t)

(
"(ug(zo)ug(zo,t) — K2(M)u(zo, t)
(

(

Y
S
—
o)
8
8
vV
- =

ARV

K (M)uy(zo,t) — K*(M)u(zg,t)
K M) (1‘0, )
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for any I X (0, Tinax). By lemma 2.3.4.2, we have that z(0,t) = u,(0,¢) — K(M)u(0,t) = u;(0,t) = 0 and
2(1,t) = ug(1,t) — K(M)u(1,t) = ur(1,t) = 0 for ¢ € (0, Timax)- As t tends to 0, condition (H4) implies
that 2(2,0) = lim u (1) ~ K(M)u(z,0) = g5 2 (p(2) 92 + F(ug(0)) ~ K (M)uo(x) > 0 for 2 € 1.
Then, lemma 2.3.4.1 implies that u(x,t) > K(M)u(x,t) for any I x [0, Tiax)-

Lemma 2.3.4.4 If ug(xo) > ug(x) for all x € I, then u(zo,t) > u(x,t) for any (z,t) € I x [0, Tiax)-
Proof. Let z(x,t) = u(xo,t) — u(z,t) for any (x,t) € I x (0, Tmax). Then, for any (x,t) € I x (0, Tmax),
lemma 2.3.4.3 implies that

2 — m(p(w)zx)x = w(xo,t) — f(u(zo,1))
> ut(x07t) *K(M)U(Io,t)
> 0.

On boundary, for any (z,t) € {0,1} x (0, T)NIx {0}, 2(0,t) = u(xq,t)—u(0,t) = u(xg,t) > uo(we) > 0 and
z(1,t) = u(zo,t) > up(xo) > 0 for any t € (0, Tinax) and z(z,0) = u(zg,0) — u(z,0) = ug(zg) — u(xg) >0
because uq attains its maximum at point xg. Therefore, these lemma is proved.

Let ¢1 be the first eigenfunction of the eigenvalue problem:

Ap = k(lac)jx <p(:€)flfz> =-X¢ forx € I =(0,1) and ¢(0) =0 = ¢(1),

A1 its corresponding eigenvalue and

/ k() () = 1.
T
We construct the function H as

Ht) = (u(t), 1) = / k(@) u(w, ) (2)da. (2.3.4)

1

Proof of Theorem 2.2.4. Let us consider: from the self-adjointness of A,

) = (Gutnen)
= (Au(t) + Fu(),60)
= (ult) Adn) + (Fult), &)

= “MH®)+ [ k) f(u(o, )61 ()ds.

I

It follows from lemma 2.3.4.4 that

H'(t)

Y

CMH() + / k(@) f (ulzo, 1)) (2)de

> —MH@) + | k(x)f(u(z, t)d(z)d.

N\N

Condition 2 of theorem 2.2.4 yields that

H'(#) > ~MH() + b / k(2)u? (2, ) (2)da. (2.3.5)



Holder inequality implies that

/k(x)u(w,t)¢1(x)dx < /k(bl(x)dx /k:¢1(x)up(x,t)dx
T 1 1
/k¢1(x)up(x,t)dx > /k(m)u(&t)qﬁl(x)dm
T T
From (2.3.5), we have that
H'(t) > =\ H(t) + bH"(t). (2.3.6)

Dividing both sides by H?, we have
HP(t)F'(t) + M HP(t) > b.
Multiplying both sides by 1 — p, we obtain
(L=p)HP)H'(t) + M (1 - p)H'P(t) < (1-p)b

dH'7P(t
WD -pE ) < 0o
Multiplying both sides by e} (=P we get
dHP(t
eAl(lfp)tT() + (1 ,p)eh(l*p)tHlfp(t) < (1 7p)be>\1(1*p)t
d

4 n(-p)tpri-p < VR (1—P)t
= (e H (t)) < (1-p)be .

Integrating both sides, we have
¢

/ % (e)\l(l—p)sHl—p(s))

0

A
—
i
|
=
=
S
o—_
o
>
>
-
3
=
IS
Vo)

ekl(l—p)tHl—p(t)_Hl—P(O) < b eM(I=p)t _ i

- )\1 A1
1- b 1- bl aa-py
H7Pt) < —+|H 7P0)— —|e tPE (2.3.7)
A M
From (2.3.7), we see that
HPL(t) > ! .
Loy [Hl—P(O) f ﬂ e—M(1-p)t

By condition 3 of theorem 2.2.4, we have that H'P(0) < /\%. Thus, there exists some positive ¢; such
that H tends to infinity. By the definition of H, we see that

/k u(z, t)p1(z)dx < /k; Yo1(x)dz | u(zo,t) = u(zop, t).

Hence, there exists a finite time t; > 0 such that the solution u blows up in finite time.

Note that this chapter was the object of the article :

P. Sawangtong. C. Licht, B. Novaprateep and S. Orankitjaroen. Existence and uniqueness of a blow-
up solution for a parabolic problem with a localized nonlinear term via semigroup theory, East-West
Journal of Mathematics, to appear.
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Chapter 3

Complete blow-up for a semilinear
parabolic problem with a localized
nonlinear term via classical method

3.1 Introduction

In this chapter we still consider the same semilinear parabolic problem with a localized nonlinear
term as the problem in previous chapter. But we use the classical method, Green’s function method,
investigate a blow-up solution of such a problem. Before starting our process, we recall that we are
studying the semilinear parabolic problem with a localized nonlinear term in the form. Let T be any
positive real number, D = (0,1) and Qr = (0,1) x (0,T) Let D and Qr be the closure of D and Qr,
respectively.

k(z)ue — (p(2)ta)e = k() f(u(zo, 1)) for (z,t) € Qr,
u(z,0) = ¢Y(zx) for x € D, (3.1.1)
uw(0,t) =0 =wu(1,t) for t € (0,T),

where xg is a fixed point in D and k, p, f and ¢ are given functions. In order to obtain a blow-up solution
of problem (3.1.1), we need the following assumptions.

(A1) p(x), k(x), p'(z) and k' (x) are real-valued and continuous for z € D, and p(z) and k(z) are positive

for z € D, i.e.,
0 < kmin = mink(z) < k(zr) < maxk(z) = knax,
x€D x€D
0 < Pmin = minp(z) < p(z) < maxp(r) = Pmax,
xeD xeD
kmin = mlgk/(x) S k/(x) S mai(k/(x) = k;naxv
€D €D
Phnin = minp'(z) < p'(z) < maxp'(z) = prax
xeD xeD

(A2) (x) € C*(D), ¢ is nontrivial and nonnegative on D, 1(0) = 0 = (1), and ¥(xq) > 1 (z) for any
x € D and the function 1 satisfies

4= (r0) %) + 50a0) = Gl on D

for some positive constant (,
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(A3) f(s) € C?([0,0)), f is positive, increasing and convex on [0, 00).

3.2 Green’s function

We will begin this section with finding Green’s function corresponding to semilinear parabolic
problem (3.1.1). Let us construct the corresponding Green’s function G(z,t,£,7) and denote that

L=ka) g - o [ |

The corresponding Green’s function is determined by the following system: for each (x,t) € Qr,
G(I,t,g,T) = 5(1.76)6(2577)7
G(z,t,&,7) = 0, fort<r,
G(0,t,¢,7) = 0=G(1,t,¢,7), (3.2.1)

where §(z) is the Dirac delta function. From [6], we will use the eigenfunction expansion method to
construct the Green’s function, so we let

oo

G(x,t,&,7) Z (3.2.2)

where g, is the eigenfunction of the corresponding regular eigenvalue problem to semilinear parabolic
problem (3.1.1)

% [P(ﬂf)jvgn(ﬂf)} + Apk(2)gn(x) =0, (3.2.3)

and the boundary conditions
9n.(0) = 0= gn(1),

where )\, is the eigenvalue associating to g, and has a property
0< A <A< A3 <o < Ay < A1 < e

and A\, = O(n?) for sufficiently large n. Moreover the set {g,(z)} is a maximal (that is, complete)
orthonormal set with the weight function k(z), that is,

1
/k(x)gi(x)dw =1forzeD
0

and g,, is bounded for any x € D. By substituting (3.2.2) into (3.2.1), we obtain that

ik(x)a; Zan { ) ai (x)}

n=1 n=1

D k(x z) + An Zk (@) = &(x—E)d(t—7),

o(z —&)o(t — ),

D k(@)gn(@) [0, (t) + Anan(t)] = 6(z —E)d(t — 7).
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Multiplying both sides by ¢, () and integrating from 0 to 1 with respect to z, we have

[ 90(@) 32 k@)gn @) 610 + Anan () do = [ 9 (2)3(z — )5t ),

Using the orthogonal property of the eigenfunction g,,, we have

1
6+ A (8] [ ba)g? (2)do = 9, (3(¢ = 7).
0
Multiplying both sides by exp(\,t) and using the property of g,,, we have
[a; (t) + )\nan(t)] exp()‘nt) = Ygn (5)6“ - T) eXp(Ant)v
d
% [an(t> eXp()‘nt)] = gn(f)é(t - T) eXp<>\nt)'

Integrating from 7~ to ¢ and applying the property of the green’s function, G(z,t,&,7) = 0 for ¢t < 7,
we have

t t

[ S a@entns] = [ g€~ ) exp(ras)ds,

T T

t

an(t) exp(nt) — an(r™)exp(nt™) = ga(€) / 5(s — 1) exp(Ans)ds,

T

n(§) exp(AnT),
n(§) exp [=An(t — 7)].

Therefore, we obtain that the Green’s function is in the form, for ¢ > 7

an(t)exp(Apt) =

g
an(t) g

.T, tv 67 Z gn eXp [ >\7L(t - T)] )

or

Gz, t,&,7) Zgn exp[—A(t —7T)H(t—T),

where the function H is the Heaviside unit-step function. We would like to show that the Green’s function
exists, i.e. the infinite series representing the Green’s function converges. Then we consider that for ¢ > 7

(oo}

G(z,t,¢,7) = Zgn &) exp [—An(t — 7)]
< [gleaggn }ZGXP n(t—1)].

[e.e]
It ia easy to show that this series > exp[—A,(t — 7)] converges, and then we obtain that the infinite

n=1

series > gn(2)gn(€) exp [—An(t — 7)] converges uniformly. Therefore, the Green’s function exists.

Lemma 3.2.1 i k(z)gn(z)gn(§) = 6(x — &).

n=1
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Proof. Using the completeness property of eigenfunction g,, we can write the function é(x — &) in the

o0
Z Cngn

n=1

terms of the function g,, that is

Multiplying both sides by g, (x), we have

gn(.li)é(ﬂﬁ - = gn Z k Cngn

Integrating both sides from 0 to 1 and using the orthogonal property of the eigenfunction g,,, we have

Cngn

[ ou@ita - iz
0

O\H
[ M8

wE) = e / k(&) g (2)gn(2)da
0
Cn = gn(g)

Therefore, we get the result.
We next check that the Green’s function we just construct satisfies the problem (3.2.1). We begin by
computing

8G _ lz Angn (2)gn (€) exp [~ Ap (t — 7)]1 H(t—r7)

Zgn &)exp[—An (t—T)]] 5(t—r1).

Using the property of the Dirac delta function, f(¢)§(t —7) = f(7)d(t — 7), we have
oG
h(2) 55 :—%@)E:M% ) exp[— M@ﬂﬂHuﬂ

+k(z) E:gﬁmmnﬁﬂ<ﬂt—T%

= —/ﬂ(l‘) Z)\ngn eXp[ A (t_T)]‘| H(t_T)
+fo§ﬁ@fr)
So,

B - ([ 00 ) an(@ e a0 e =)
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We can rewrite in the form,

k05 - 5 (0% )

= =3 (00| 57 (#0) o0n(@)) 4 AkC)gn) | exp LAl = 7)) 0= )
Using the equation - [p(2) g, (z)] + A\uk(z)gn(x) = 0, we finally obtain
LG =6(x—&)o(t—71),

and then by direct computation and definition of the Heaviside unit-step function, we can get the condi-
tions G(z,t,£,7) =0, for t <7 and G(0,1,£,7) = 0= G(1,t,&, 7).
To derive the integral equation from the problem (3.1.1), let us consider the adjoint operator L*,

which is given by L* = —k(m)% - a% (p(x)a%) . Using the Green’s theorem, we obtain the integral
equation
t o1 1
u(e.t) = [ [ MO LE D oo dedr + [ HOGE OBl (:24)
00 0

We state the properties of the Green’s function corresponding to the problem (3.1.1) in below lemma.
Lemma 3.2.2 In the set {(z,t,&,7) iz and € are in D,0 <71 <t < T}, G(z,t,&,7) > 0.

Proof. Let A = {(z,t,§,7) : © and £ are in D,0 < 7 < ¢t < T}. Suppose that there exists a point
(z0,t0,&0,70) in A such that G (zo,to,&0,70) < 0. Since the function G is continuous, there exists a
positive constant e such that G(z,t,£,7) < 0 in the set

Wo = (w0 —&,20 +€) X (to —&,t0 +¢) X (§o —&,§0 +¢€) X (T0 —€,70 +€)

in A. Let Wy = (§ —¢,& +¢) x (1o —&,70 +¢) and Wa = ({0 — /2,8 +¢/2) X (10 — /2,70 + £/2). We
would like to show that there exists a function h € C? such that h = 1 on Wy, h = 0 outside W7, and
0 < h <1in W;\Ws;. We will construct the function h in a sequence of steps.

First step: we define the function f; by

fl(s):{o s <0,

exp(—s=2) ,5>0,

which belongs to C?(R), vanishes for s <0, is positive for s > 0, and is monotone increasing.
Second step: we define the function fs by

fa(s) = fi(s)fi(1 = s),

which belongs to CQ(R), vanishes for s < 0 and s > 1, and is positive for 0 < s < 1.
Third step: we define the function f3 by



which belongs to C*°(R), vanishes for s < 0, is monotone increasing, equals to 1 for s > 1, and satisfies
0< f3(s) <1forall seD.
Last step: we define the function h(z,t) by

which is in C?(R?), h =1 on Wy, h = 0 outside Wy, and 0 < h < 1 in W;\W,. Hence the solution of the
problem Lu(z,t) = h(z,t) in ,, where tg < «, with u satisfying zero initial and boundary conditions is
given by
To+e §ote
u(z,t) = / / G(z,t, &, 17)h(&, T)dEdT.

To—€ &p—¢

Since we have that G(z,t,&,7) < 0in Wy, 0 < h(,7) < 1in Wy, and h = 1 on W, it follows that
u(z,t) <0 for (z,t) in (vo —e,20+¢€) X (to — €,%0 + €). On the other hand , h(z,t) > 0 in Q, implies
that u(z,t) > 0 by the weak maximum principle [12]. Therefore we get a contradiction and hence
G(z,t,&,7) > 0 in A. Next we will show that G(z,t,&,7) # 0 in A. Suppose that there exists a point
(z1,t1,&1,71) in A such that G(z1,¢1,&,71) = 0. Using the property of Green's function, G(x,t,£,7) < 0
for t < 7, we have that G(z,t,&1,71) = 0 in DN {(z,¢,&,71) : @ € D, t < t1}. On the other hand,

G(&1,t1,8,11) = Z g2 (&) exp [-An(t1 — 11)], which is positive. We again have a contradiction. This
shows that G(z,t 5, ) is positive in A.

t1 o
Lemma 3.2.3 If r € C([0,T)), then [ [ G(x,t,& 7)r(7)dédT is continuous for x € D and t € [0,T).
00

Proof. Let ¢ be any positive number such that t —e > 0. For z € D and 7 € [0,t — €], we multiply the
equation

G(z,t,&,7) Zgn &) exp [—An(t — 7)]

by the function r(7), and then we obtain

G(z,t,&,m)r(r) = Z Gn (%) gn (€) exp [—An(t — 7)] 7(T)
< 01<11Ta<XT r(r Z gn(2 §) exp [~ An(t — 7)]

It is easy to show that the series Y exp [—\, (¢t — 7)] converges and then we have that > g, (2)gn (&) exp [-An(t — 7)] 7(7)
n=1 n=1
converges uniformly. Therefore we have

t/e/lg(a:,t,&T)r(T)dde_n 1t/€/19n )gn (&) exp [~ An (t — 7)) r(7)dEdT.
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Let us consider that

n=1
_ 192 oo e 1
< ot — 7)) ded
< max r(r) | maxga(a) ; O/ exp [~ 7)] dédr

exp [—An(t — 7)) dr

_ 1 _ B -
= OISIITaSXTr(T) -rxnea%{gn(l‘)- Z)\n [eXp( )‘nE) exp( )\nt)]

IA

o0
OglraSXTT(T) I;lea%{gn(x)_ Z AL

[ee]
Since the series Y A1 converges, we have
n=1

€

Il
—

NE
O ~—T

n

/ 0n ()90 (€) XD [ An(t — 7)] r(r)dédr
0

converges uniformly with respect to z,t, and €. Since the uniform convergence also holds for € = 0, it
follows that

t—e
0

is a continuous function of z, ¢, and € > 0. Therefore

hE

o _

gn(x &) exp [—An(t — 7)] r(7)d&dr

I
-

n

t—e

O/to/lGxtf, 7)dgdr = lim io/

n=1

/ 0n ()G (€) exp [~ An(t — 7)] r(r)dédr

is a continuous function of x and ¢.
Lemma 3.2.3 Given any x € D and any finite time T, there exist two positive numbers C (depending

on x and T) and Cy(depending on T') such that for 0 <t <T,

1 1
Ci < /G(x,t,f,O)dé and /G(mo,t7§,0)d§ < (Cs.
0 0

Proof. Let us consider the following auxiliary problem

ov 0 Ov .
k;(x)g o [p(m)am} = 1lin Qp,
v(z,0) = Oonz¢€ D,
v(0,t) = 0=w(l,t)for0<t<T. (3.2.5)
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The problem (3.2.5) has a solution v given by

v(x,t) = G(x,t,&, 7)dedr
G(z,t — 1,£,0)dédT

G(x7 T7 g’ O)dng7

I
S O~ O~
S O O — _

and then we differentiate with respect to ¢,
1
/G x,t,&,0)dE > 0, i.e. v is increasing function.
0
We consider at the time ¢t = 0, for any x € D

ve(x,0) =

vV

z€D 0

max k(x)’
zeD

Thus for any finite time T, there exists a positive constant C(depending on x and T') such that

C1 < /G(m,t,f,())df, for 0 <t <T.
1
Since we know that [ G(z,t,&,0)dé < oo, there exists a positive constant Co(depending on T') such that
0

1
/Gwo,t§0d§<C2,for0<t<T
0
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3.3 Existence of a blow-up solution

After we know important properties of the corresponding Green’function to semilinear parabolic
problem (3.1.1), we will show that that there exists a positive real number ¢; such that the integral
equation (5.3.2) has a unique continuous solution u on [0,#;] for any # € D before a blow-up occurs.
To do so, let us construct the sequence {u,} with ug(x,t) = ¢(x) for n = 0,1,2,..., and consider the
following problem

Lunyi(z,t) = k(z)f(un(zo,t)), in (z,t) € Qr,
Unt1(z,0) = (z), for z € D,
Un+1(0,8) = 0=wupy1(1,1t), for 0 <t < T. (3.3.1)

Lemma 3.3.1 The sequence u, > forn=0,1,2,...

Proof. We will show by using the principle of mathematical induction. By using a property of 1,
LIp(z)Lap(2)] + k(z) f(¥(z0)) > 0 for z € D, we have

dx
d d
Ll = wo)(wst) = (@) f(u(wo, 1)) + -+ [p(@) 7 0(o)
z  k(x)f(u(zo, 1)) — k(x) f(1b(x0))
= k(2)f((x0)) — k(z) f(¢(x0))
= 0,
and the initial and boundary conditions
(ug — ug)(x,0) = 0, forx € D,
(Ulqu)((),t) = 0:(U17U0)(1,t), for0<t<T.

Applying the maximum principle for parabolic type [12], we obtain that u; — uy > miﬁn (up —ug) =0,
u1 > up in Qp. Next, we assume that for any positive j o
P <u; <us < ... <Up—1 <uyin Qr.
By using that f is an increasing function and u,_; < u,, we have
L(upt1 — un) = k() f(un(x0,t)) — k(2) f (un—1(x0,t)) >0, in Qr,

and the initial and boundary conditions

(unt1 — un)(z,0) = 0, for z € D,
(Unt1 —un)(0,8) = 0= (upt1 —un)(1,¢), for 0 <t <T.

Applying the maximum principle for parabolic type [12], we obtain that w41 > u, for all n. Therefore,
we can conclude that, by the principle of mathematical induction, w,, > 1 in Q7 for each positive n.

Lemma 3.3.2 The sequence {u,} is a non-decreasing function of t.
Proof. Let us define the sequence {w,} by for n =0,1,2, ...

wp(2,t) = up(z,t + h) — up (2, t)
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where h is any positive number such that 0 < ¢t + h < T. Thus we also have
wo(x,t) = up(x,t + h) — ug(x,t) = 0.
Let us consider the equation
Lwy(z,t) =0, in Qp_p,
and the initial and boundary conditions
w1(z,0) = wui(z,h) —ui(x,0) =ui(z,h) —p(x) >0, forx € D
wi(0,t) = 0=wi(1,t), for 0 <t <T —h.

Applying the maximum principle for parabolic type [12], we obtain that w; > 0 for Q7_j. Let us assume
that for each n, w, > 0 for Q7_j,. By using the Mean Value Theorem, we obtain

Lwpi1(z,t) = L(upgr(z,t +h) — ups1(z, b))
= k(@) f(un(zo,t + h)) — k(z) f (un(zo, 1))
= k(@) f (un(@o, t1) (un (@0, t + h) — un(z,t))
= k(@) f (un(wo, t1)wn (w0 + h,t)

>

T
T

=]

for some t; € (t,t+ h), and the initial and boundary conditions
Wnt1(2,0) = upr1(z,h) — Uupi1(2,0) = upi1(z,h) —P(x) >0, for v € D,
Wpt1(0,8) = 0=w,1(L,t), for 0 <t <T — h.

Applying the maximum principle for parabolic type [12], we obtain that w, 1 > 0 on Q7_j. Therefore,
we can conclude that, by the principle of mathematical induction, w, > 0 on Q7_;, for each positive n,
i.e. u, is a non-decreasing function of .

Theorem 3.3.3 There exists some T such that the integral equation (5.3.2) has a unique non-negative
continuous solution u > ¥(x) for 0 <t < T, and u is a non-decreasing function of t.

Proof. Let us consider the following auxiliary problem

Lv(z,t) = 0, in Qr,
v(z,0) = (z), for z € D,
v(0,t) = 0=wv(1,t), for0<t<T.

Then the solution of the above problem is
1
v(z,t) = /k(m)G(%t,f,O)w(g)dg.
0

Since the functions k, G, and ¢ are non-negative, we have that v > 0 in Q7. By the maximum principle
for parabolic type [12], we know that v attains its maximum K = max(z) in D x {0}. We claim that
D

e
for any given positive constant M > K, there exists some positive constant ¢; such that u, < M for

0 <t < t;. Let us consider the sequence {u,} which is constructed from problem (3.3.1). By (3.2.4), we
obtain

¢ 1 1
un(at) = [ [ HOG,t,6.7) f(unr(an, ))dgdr + [ HOG (1,6, 0)w(E)de. (33.2)
00

0
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As t — 0, we can see that

1

limu, = lim [ k(&)G(z,t,& 0)(€)de

t—0 t—0
0

—

1
_ / lim k()G (, £, €, 0)(&)dg
0

= / (Z k(&)gxw)gi(é)) $(€)de

0

By lemma 3.3.2, there exists ¢; such that u, < M for 0 < ¢ < t;. Let u denote lim wu,, and then we
n—oo

show that the sequence {u,} converges uniformly to u for 0 < ¢ < ¢;. We consider

t 1
i (1, 8) — n (2, £) = / / KOG a1, 6, 7) (F(us(z0,7)) — f(usr (0, 7)) dedr. (3.3.3)
00

Let S, = max |up(z,t) — up—1(z,t)|. Using the Mean Value Theorem, we have

t1

f(un(xovT)) - f(Un—l(l"o; T)) = f/(ﬂ)(un(anT) - un—l(xO,T))a

where p is between wu,(zg,7) and u,_1(zg, 7). Since we know that w,, < M for all n and f”(s) > 0 for
s > 0, we have

fun(zo, 7)) = f(un—1(x0,7)) f (M) (un (0, 7) = tn-1(z0,7))

f1(M)Sy,

IA A



From (5.3.5), we obtain

LzeD

t 1
|un+1 - un| S kmaxf/(M)Sn G<x7t7§77)d§d7-
/]
to1
= kmazf (M)S, ZgZ &) exp [—A;i(t — )] dédr
/%
r 12 to1 o]
< kmaxf' (M) |max g;(z) Sn//Zexp[ Ai(t —7)] dédr
00 ¢

- -2

= kmaxf/(M) mal(gi(x) S”Z

LzeD

- -2

= kpaxf (M) |maxg;(z) Sn_z

LzeD

- -2

= kmaxf/(M) maﬁ(gz(x) Sn Z )\;1(1 — eXp(f)\it)).

LzeD

o0
We can see that Z A1 = exp(—Ait)) < Z A1, a convergent series. Therefore the series 3 A; (1 —
i= i=1
exp(—A;t)) convergeb uniformly. Claim that there exists a positive o1(> 0) such that

Emaz ' (M) [rfaxgl } [Z A, (1 —exp(—Apt)) | < 1fort e [0,01]. (3.3.4)

Let us consider that

o0

hm Z A1 — exp(— Z }Hn A1 — exp(—=\it)) = 0.

By the definition of limit, there exists a positive o1 > 0 such that

oo

D OATH1 —exp(=Ait))| <

i=1

1

b (M) (o)

xzeD

5, for t € [0, 01].

Therefore we get the result and we also have that the sequence {u,} converges uniformly to u for
0 <t < oy. Similarly for o1 <t < t;, we substitute u(£,01) to the place of ¥(§) in the integral equation
(3.3.2), so we have

(1) = / / K(E)G (@, t,€,7) f(uis (0, 7)) dEdr + / k()G (2,1, £, 0)u(€, 01 )de.
0

Moreover, we also have

1 (2, 8) — () = / / K(E)G (.1, £,7) (f(un(20,7)) — F(tn-1 (20, 7))) dedlr.
0

o1
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In the same way, since S, = max |u, — tun—1/, it follows from the Mean Value Theorem
Dx [0'1 ,tl]

fun(x0,7)) = f(un—1(z0,7)) < f'(M)Sh

From (5.3.5), we obtain

t 1
it — tin] < Foman ' (M)Sn / / Gz, 1,6, 7)dedr

IN

xzeD

b () i) s / / > exp At - )] dedr

zeD

2 )
— anf (4) (o) [Z AT = exp(—Nift — o—l)ﬂ] S0
Thus there exists oo = min{oy,¢; — o1} > 0 such that

<1, (3.3.5)

rzeD

Kmaz f'(M) [maxgl } lZA [1— exp(=Ai(t — 01))]

for ¢ € [01, min{204,¢;}]. Hence the sequence {u,} converges uniformly to u for ¢ € [0y, min{204,¢;}].
By proceeding in this way the sequence {u;} converges uniformly to u for 0 < ¢ < #;. Therefore we can
conclude that the integral equation (3.2.4) has a continuous solution u for 0 < t < ¢;. We would like
to show that the solution u is unique for ¢ € [0,¢1]. Suppose that the integral equation (3.2.4) has two

distinct the solution v and @ for ¢ € [0,¢1], and let ® = max |u — u| > 0. Since v and @ are the solution
(z,t)€Q:,

of the problem, we have

t 1
u(x,t) //k(f)G(w,t,{,T) [f (u(zo, 7)) = f(u(zg,7))] dédrT.
0
Using the same idea, we obtain that

® for t € [0,01].

Kmaz f' (M) {maxgn ] Li_o:l (1 —exp(—=Ant))

xzeD

This implies that

xzeD

kmaacf/(M) |:H1aX gn :|

Z)\ (1 — exp( )\nt))] >1, for t €[0,04].

which contradicts to the equation (3.3.4). Hence the solution w is unique for 0 < ¢t < 1. Using the same
idea, we can show that for ¢ € [o1, min{201,¢1}] ,

2 oo
knnan /(M) [maxgnu)} [Z A1 — exp(— At — mm] o,

z€D n=1

This implies that for ¢ € [o1, min{207y,1}],

Fmas f' (M) [maxgnm] [Z A [ — exp(—An(t - am]] > 1,

zeD



which contradicts to the equation (3.3.5). Hence the solution w is unique for o1 < ¢ < min{201,%;}.
By proceeding in this way, the integral equation w is unique continuous for 0 < t < ¢;. Since u,, is a
non-decreasing function of ¢, u is a non-decreasing function of ¢.

Let T4 be the supremum of all ¢; that the integral equation (3.2.4) has a unique non-negative
continuous solution u.

Theorem 3.3.4 If Tyq. is finite, then u(xzg,t) is unbounded as t — Tyax.

Proof. By lemma 2.3.4.4, we have that u(zo,t) > u(z,t) for all (z,t) € Qr,,,,. Suppose that u(x,t)

is bounded on [0, Tr,q.] We consider the integral equation of the solution u for [T,q., T| with the initial
condition u(z,0) replaced by u(x, Tmaz),

1 1

(o, t) = / K(E)G (w0, t,€,7) f(ulwo, 7)) dédr + / k()G (0,1, €, Du(E, Trna) .
e

0 0

For any positive constant N > u(zo, Tynae ), an argument as before shows that there exists some positive
to such that the integral equation of the solution u is unique and continuous on the interval [Tp,qz, ta].
This contradicts to the definition of T},... Hence this theorem is proven

Theorem 3.3.5 The semilinear parabolic problem (3.1.1) has a unique solution u.

1

Proof. Since [ [k(§)G(z,t,&,7)f(u(zo,7))dédT < oo for © € D and t in any compact subset of
00

[0, Thnaz), we have that for any x € D and t2 € (0, 1),

1

/ E(&)G(x,t, &, 1) f(u(zo, 7))dEdT
0

0

t—1/n 1
= i / / HEYG(,t,€ 1) (ulo, 7)) dedr
t (—=1/n 1

i [ [ [ RO 6 futen, )dedrds
to 0 0
to—1/n a

+ lim / /G(m,t27§,7)f(u(x0,7'))d§d7.

n—oo

0 0

Let us consider the following problem

Lw = 0, for (z,t) € Qr,,.,
w(0,t,&,7) = 0=w(l,t,& 1), for 0 <7 <t < Thnaz,
tl_i)rgr (®)w(z,t,&,7) = dx—¢E).
Then we obtain that
1
w(z,t,&,7) = /k(a)G(x,t,a,T)(s(Z(;)é)da = G(x,t,&,7) for t > 7.
0
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It means that hm+ kE(x)G(z,t,&,7) = §(x — &). Therefore we have
t—T1
k(§)G(z,t,&,7) f (u(xo, T))dEdT

k()G (x, b2, &, 7) f(u(wo, 7))dEdT

Tt~ T —-
S O —__

t ¢—1/n 1

+n1320t2/8 / / G2, ¢, &,7) f (u(xo, 7))dEdrdC

0

to 1
- / / k()G t2. €, 7) f (ulo, 7)) dédr
0 0

ta 0 0

t (—1/n 1

wtim [ [ [ HOG,¢.&ofuten,r)dedrdc
+ [ [ 56— ) puteo, 0)dsdc
/]

- / / K(E)G (&, t,€,7) f(ulzo, 7))dédr
0 0

t ¢—1/n 1

+ lim / / / (€)Ge(, ¢, €, 7) (o, 7)) dedrdC + / F(u(0,0))dC.

n—oo

We let that
¢—1/n 1

7,0) = / / K()Ge (. 6, &, ) f(ulzo, 7))dEdr.

Without loss of generality, let n > m, so we have

9n(z,C) — gm (2, Q) = / /k 6Ge(x, ¢, &, 1) f(ulxo, 7))dEdT.



Since k(z)Gy(x,t,&,7) € C(D x (1,T)) and f(u(xo,t)) is a monotone function of ¢, we use the Second
Mean Value Theorem for Integral and then we have that for any z # £ and any ¢ in any compact subset
of (0, T)az), there exists some real number v such that ( —v € (( —1/m,( —1/n) and

¢—v 1
on(@,0) = gm(@,0) = Flu(xo, ¢ — 1/m) / / k()G C. &, 7)dédr
¢—=1/m 0O
¢(—1/n 1
T Fulzo,¢ — 1/n)) / / k()G C, &, 7)dédr.
¢—v 0

It is easy to show that G¢(x,(,&,7) = —G-(,(,&,7) and then we have
gn(x’ C) - gm(xv C)

(—v 1

= f(u(ro,C — 1/m)) / / K(E)Go (2, ¢, € 7)dedr
¢-1/m 0

¢—1/n 1
~ Flu(zo,¢ — 1/n)) / / k()G (x. . €, 7)dédr

= —f(u(ﬂ]‘(), C - l/m)) |:/ k(f)G($7 C?gv C - I/)df - /k(f)G(ﬂ?, Cvga C - l/m)d§]
0 0

/ k()G (.6 — V)d§]

0

= [Flu(wo. ¢ — 1/n)) — Flu(zo, ¢ — 1/m)) / R(E)G(2,C.6.C — v)d
0

~ Flu(xo, ¢ — 1/n)) / B(E)G(x,C.E.C — 1/n)de

Since, for x # &, k(z)G(z,(, &, — ¢) = k(x)G(z,¢,&,0) converges uniformly to 0 with respect to ¢ as
e — 0, it follow that, for z # £,the sequence {g,} is a Cauchy sequence, and hence the sequence {g,}
converges uniformly with respect to ¢ in any compact subset of (0, Tyqz). Therefore for x # £

t (—1/n 1

tm [ [ [ HOGw.¢.&.m) (ulao, e

1
/ K(E)Ge (2, ¢, &,7) f (ulo, 7))dEdrdC
0
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In the case z = &, we have
—k(l’)Gc(.’L‘7C7f, an Zk gz )\ eXp[_)‘i(C - T)]f(u($0’7))’

which is positive. Therefore the sequence {—g,} is a non-decreasing sequence of non-negative function
with respect to (. By the Monotone Convergence Theorem,

t ¢—1/n 1

i [ [ [ K©)Ge(e. ¢ &) oo, m)dedrdc

n—oo

ta 0 0
¢—1/n

1
i [ [ K€)Ge(o €&, (ulao, 7)) dedrde
0 0

n—oo

o~ o~
S N
~ ~+

¢ 1
/ / K(E)Ce (., €,7) f (ulwo, 7)) dédTdC.
0 0

Thus, we obtain that

t

/ / K(E)G(a.t, €, 7) f(ulzo, 7))dedr
0 0

t 1

K(E)G (1, €,1) f (u(zo, £))dE + / / K(E)Gy (2.1, £,7) f(u(zo, 7)) dEdr
0 O

= f(u(zo,t) /5 (x—¢ df+//k VGi(z,t,&,7) f (u(zo, 7))dédT

0

Il
O\H Q‘Qj

o

t 1
= flu(wo,t) + [ [ KOG, t,€,7)f(ulzo, 7))dedr.
] e

We would like to show that by using the Leibnitz rule, we have for any x € D and t in any compact
subset of (0, Thaz),

tf
o |
or
0
t—e
9
ox

0

€

1
/G ‘T t 57 (an ))dfd’]’ = Gx(.’ﬂ,t7§,T)f(u(.’ﬂo,T))dng,
0

(,% [p(2)Gy(x,t, &, 7)] f(u(zg, 7))dEdT.

O~ T
oo

1
/p (x,t,&,7)f(u(xg, 7))dEdT =
0

37



Let us consider that for any x7 € D,

nr%//amg, u(zo, 7))ddr
[ ]
a t—e 1
= ;L}Hé [%//G 777ta§7 (I’()a ))dng d77
[ 0]
t—e 1
+hn(1)//Gx1,t§, (u(wo, 7))dEdr
0
T 1
- i / / Gy (1,1, €, 7) f (u(zo, 7)) dédrd
1 0 0

t o1
+O/O/G(xl,t,f,T)f(u(xo,T))dde.

Claim that

x €

lim n 777t 57 an ))ddedn

e—0

/hm
e—0

a0, 6,&,7) f(u(zo, 7))dEdTdn. (3.3.6)

t—e 1
[ ]
0 0
t—e 1
| [
0 0
By using the Fubini Theorem

x t—e 1

gliI(l)///Gn n,t,&,7) f(u(zg, 7))dldTdn

0 0

- lir%/f w(o, T //G (n,t.€,7)dedndr

m10
1

/ (z,t,&,7) /G(xl,t,f,T)dfl dr

0

/G(w,t,f,T)df—/G(xl,t,f,T)dfl dr
0 0

= gl_l’)r(l) / f .’Eo,

- / F(u(w0,7)




t 1
which exists because [ [ G(x,t,&,7)f(u(xo, 7))dédr is continuous. Therefore we have
00

f(u(zo, 7))

0/ G(z,t,€, )5—/G($17t§7 )fldr

t 1

o O~
o _

G(l’,t,g, ) 5[30, dng_ Gmlatva 1’07 ))dng
/0/
1

/G 777t 57 1’0, ))dﬁd’r

0

Il
s~
e

dn

o—_

1
/f(?n(n,t,f,f)f(U(wo7T))dédfdn
0

o—__

t—e

im
—0
0

0\»—4

E\H S, =

1
/G,7 n,t,&,7) f(u(zo, 7))dEdTdn.
0

thus, we have (3.3.6). Therefore we also have

Gz, t, &, 1) f(u(zo, 7))dEdT

Il
Flo Plo
I&—| O\H_
\&1 O\
o\W =

1
/ Gyn(n,t,&,7) f(u(zo, 7))dédTdn
0

1

_|_

o\: O\N

1
[ teni xm»%MI
0

Gy(,t,&,7) f(u(zg, 7))dEdT.

0
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Let us consider that for any xo € D,

/ P(2)Go (2,1, €, 7) f (u(o, 7)) dEdr
0

/ p(n) G, . €,7) f (ulzo, 7))ddr | di
0

t—e 1

+ lim p(w2)G(w2,t,§,7) f (u(wo, 7))dEdT
nf)
r t—e 1
8

- i / O/ 0/ oy P)Go0.1.€.7)) Fu(zo. ))dedrdy

¢ 1

+ p(x2)Gy(z2,t, &, 7) f(u(xo, 7))dEdT. (3.3.7)
/]

Claim that

a0, 1,6, 7)) f(u(wo, 7))dEdTdn

w6, &, 1) fu(zo, 7))dédTdn. (3.3.8)

x t—e 1
. 0
Iy / / 55 PGy 18.6,7)] F(utan, 7)) dedr
t—e z 1
. 0
~ 1 / f(u(ao. ) / / 55 P0Gy (1.8.6,7)] dedndr
t—e 1 1
= gi_r)%/f(u(xoﬁ)) p(x)/Gz(ac t,&,7)dE — p(x2) /Gm (22,t,&,7) ]
0 0 0
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which exists G (z,t,&,7) because is continuous. Therefore we have

1 1
/f(U(:vo,T)) [p(w)/Gm(:r,t,éﬁ)dé—p(xz)/G(xzvt,iﬁ)dﬁl dr
0

0

t 1 A
N //p(l.)Gw(x7t7€7T)f(u($0aT))dgdlr_ //p(SCQ)Gz(IQ,t,f,T)f(u(.’l?'077'))d€d7'
0 0 -
z a t 1
= — p(n)Gn(natyf,T)f(u(xoﬂ-))dfah—] dn
Jll]
- / / / ;7[p(n)Gn(n,t,f,r)]f(u(xo,r))dgdrdn
z2 0 0

1
/ O (o) Galin, 1,6, 7)) f(u(o, 7))dedrdn.
0

thus, we have (3.3.8). Therefore we also have

t 1

a% //p 2(2,1,€,7) ((Io,T))d§dT]

0
t

g

p(r2)Gy (72, &, )f(u(xoﬂ'))dde]

on

/ O (o).t 6.7 f (o, 7)) dEdrdy
0

LT

_|_

o\w v \&I

t

/

for any « in D and ¢ in any compact subset of (0, T},qz ). By using the Leibnitz rule, we have that for any

a% { G(,t,¢, )} f(u(wo, 7))dédr,

[ ]
/

2 in D and t in any compact subset of (0, Trnaz ),

G(z,1,8,0)0(8)ds = [ Gi(x,t,€,0)1(§)dE,

o

o O—
\H

I e reowed = [Gure 0w

O\H

o [ PGt 0w / o ()G, 1,6, 0) Q)

0
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From the integral equation (3.2.4) we have for z € D and 0 < t < Tax

Lu(z,t) gt e% (p(x);;)] u(z,t)

Il
—
ol
—
=
|
|

1
— k) ulan )+ [ 1) (Ma)Galot.6.0) = 5 o) 5L Gt 60| ) wiehae
0

t
v
0
1
= k‘( J,‘ot /k‘
0

/k Vo(t — 7) f(u(xo, 7))dEdT

K(6) (Mo)Gilet.6.7) - 57 [ (@) 3Gt )| ) fluteo, r)dsr

o—_

_|_

é O\w

= k() f(u(xo,1)),
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and the initial condition of the solution u can compute from for and x € D

t—0

1
}i_r}%u(x,t) = lim/k(f)G(%t,faO)¢(f)df
0

lim £(§)G (¢, & 0)y(§)dE

[
/15(96 —§)o(&)dg
),

since we know that G(0,t,£,7) = 0 = G(1,t,&,7), we can compute directly and obtain the boundary
condition u(0,t) = 0 = u(1,t). Therefore u defined by (3.2.4) is a solution of the problem.

3.4 A sufficient condition to blow-up in finite time

In this section, we give a sufficient condition to guarantee occurrence of blow-up in finite time
for the solution u of semilinear parabolic problem (3.1.1). Let A; be the first eigenvalue of a singular
eigenvalue problem (3.2.3) and let g; > 0 be its corresponding eigenfunction. Without loss of generality,
we assume that

1
/k;(x)gl(:v)dx =1 (3.4.1)
0
We then define a function @ by
1
Q) = /k(x)gl(x)u(x,t)dac. (3.4.2)
0

Theorem 3.4.1 If
7d8 <0
Q(s) — A\is
Qo

1
with Qo = Q(0) = [ k(x)yr1(x)g1(x)dz, then a solution u of semilinear parabolic problem (3.1.1) blows
0

up in finite time.

Proof. Suppose that a solution u of semilinear parabolic problem (3.1.1) exists for all ¢ > 0. Multiplying
both sides of problem (3.1.1) by ¢g; and then integrating both sides of problem (3.1.1) with respect to
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over its domain, we obtain

Q

dt k(z)ue(x, t)g1(z)dx

L oY O Y—

[aa (pw?;) + k(x)f(u(zo,t»} g1(2)dz

-/ [fx (p<x>§z)] g1(x)dz + / k(@) (u(wo, )1 (2)da.

0

Using the integration by part for the first term in right hand side and then using the boundary condition
of regular eigenvalue problem (3.2.3), we have

T - pegee)| - [r05 G [k .0
0

Using the integrate by part again for the first term in right hand side and then using the boundary
condition of semilinear parabolic problem (3.1.1), we get

% = - [p(x)u(x,t)%gxl]:—k /1 u(a:,t)a% [p(x)%ﬂ d + /1 k() f (u(xo, t))g1(x)dz
0 0

I
\
>~
—
O\H
>~
—
E
I~
—~
8
~
~—
)
=
—
8
~—
U
8
+

— MO+ / k(@) (ulzo,1))g1 (z)da
0

It follows from lemma 2.3.4.4 that

D> na0+ [ K@) (a0 )ds (3.4.3)
0

Furthermore, from Jensen’s inequality for convex functions, we apply to the second term in the right
hand side 0f (3.4.3) and then we obtain

/ k@) f(u(e, ) (2)dx > f ( / k(x)u(x,wgl(x)dx)
0 0

Q). (3.4.4)
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From (3.4.3) and (3.4.4), we have the inequality

4Q(t)

20 > SnQ+ Q). (345)

It follows from

x)ug(x, t)g1(x)dr > 0

O\H

that Q(t) > Qo for all ¢ > 0 and since lim ! ( tends to infinity, there exists a positive constant N with
S§—00
N > Qg such that
f(s) —A1s>0for any s > N > Q.

by above sentence we can rewrite the inequality (3.4.5) in the form

Q)
ds
> ¢,

Q(s) — Ais —
Qo

or
Q1)

t</ /\18 /Q —A\is’

By assumption of theorem, ¢ is finite. We thus get a contradiction. Hence the solution u of semilinear
parabolic problem (3.1.1) blow-up in finite time.

3.5 The blow-up set

In the last section of this chapter, we investigate the blow-up of solution u of semilinear parabolic
problem (3.1.1).

Theorem 3.5.1 If a solution u of semilinear parabolic problem (3.1.1) blows up in a finite time, then
the blow-up set of such a u is D.

Proof. Assume that u blows up in a finite time T},4.. A solution u of semilinear parabolic problem
(3.1.1) is given by

t 1 1
- / / K(E)G . t,€,7) f (ulxo, 7))dEdT + / k()G 1, €, 0)b(€)de.
0 0 0
By lemma 3.2.3 we obtain

ety = | [ KEGC@ t,7) flulzo,7))dedr + / R(E)G . 1,€,0)b(€)de
0

S, O~
o O~

1
B(E)G (. £,€, 0)  (u(ro, t — 7))dédr + / B(E)G (. £,€, 0)(€)de
0

t

Cokmaz / fu(zo,t — 7))dr + Cokimas maxh(z).
x€D

IN

0
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Since u blows up in finite time, we have that as t converges to Th,az,

Tmax

/ fu(xo, t — 7))dT = 0.
0

On the other hand, let us consider that for any (z,t) € Qr

t
u(z,t) = /
0

o—__

1
k()G (x, 1, £,7) f(u(zo, 7))dedr + / K(E)G (. ,€, 0)6(€)de
0

t 1
> Cilomin / Flu(zo,t —7))dr + / B(E)G (a1, £,0)6(€)de
Ot 0
> Cikmin / Flu(zo,t —7))dr,

0

which tends to infinity for any « € D as t approaches T),,.. For z € {0,1}, we can find a sequence
{(zn,tn)} such that (x,,t,) — (¥, Tinez) and lim u(z,,t,) — co. Thus, the blow-up set of a solution u
n—oo

of semilinear parabolic problem (3.1.1) is D.

Note that this chapter was the object of the communication :
P. Sawangtong and B. Novaprateep Complete blow-up for a semilinear parabolic problem with a
localized nonlinear term, Thai national conference on Mathematics, Bangkok, Thailand, May 2008.
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Chapter 4

Complete blow-up for a semilinear
parabolic problem with a localized
nonlinear term in several dimensions

4.1 Introduction

Let Q be an open bounded subset of RY with a smooth boundary 9Q and Q be its closure. In
this chapter, we consider the following semilinear parabolic problem

up — ﬁdiv (p(x)Vu(z,t)) = f(u(b,t)) for (x,t) € Q x (0,00),
u(z,t) = 0 for (x,t) € 9N x (0, 00), (4.1.1)
u(x,0) = ug(z) for x € Q,

where k, p, f, and ug are given functions, b is a fixed point in €.
Through this chapter, we assume that

(A1) ke L>*(Q) and 0 < ko < k(z) <k a.e. x € (2 for some constants ko and kq,

(A2) p € L™(Q), 0 < pg < p(z) < py ae. x € Q for some constants pg and p; and p satisfies the
following condition: there exist positive constants ¢y and ¢; such that, for any real vector &,

N
co € <p(x) Y && < el

ij=1
for all (z,t) €  x (0, 00),
(A3) f is locally Lipschitz continuous, f(0) = 0 and f(s) > 0 for s > 0 and

(A4) ug € H*(Q) N H{ (), up is nontrivial and nonnegative on .

4.2 Main results

Our main results in this chapter are as follows.
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Theorem 4.2.1 Before blow-up occurs, there exists a positive constant T such that the semilinear
parabolic problem (4.1.1) has a unique continuous solution u on Q x [0, T].

Theorem 4.2.2 Let Ty be the supremum of all T such that the semilinear parabolic problem (4.1.1)
has a unique continuous solution u on Q x [0,T). If Tyax is finite, then |u(b,t)| is unbounded as t tends
to Tinax-

Theorem 4.2.3 If Ty,.x is finite, then the blow-up set of a solution w of problem (4.1.1) is .

4.3 The proof of main results

Let us define the space L?(2) by

L*(Q) = { u: Q — R Lebesgue measurable such that /k(x)uz(x)d:v < 00
Q

The space L?(9) equipped with the inner product

(u, U)LQ(Q) = /k(m)u(x)v(x)dx

Q

is a Hilbert space and its corresponding norm is given by

1
2

Julliaoy = | [ bla)ul o)z
Q

The space H*(2) defined by
H' () ={ue L*Q): Dy,ue L*(Q) fori=1,2,...,N},

where D,,u is partial differentiation of v with respect to x; in the distributional sense, is a Hilbert space
equipped with the inner product

N
(U, 0) () = / (k(ac)u(x)v(x) + p(x) Z Dwiquv> dx

Q i=1

and the corresponding norm

N|=

vy = | [ <k<x>u2<x> +p(@) ) <Dmu>2> o

Q i=1
Finally, we define a Hilbert space Hj(£2) by
Hy(Q) = {ue H(Q) : u(z) =0 for z € 99}

where its inner product and norm are given by

N

(u,v}Hé(Q) = /p(ac) ZDwiuDzivdx

Q i=1

49



and

N
Hu”Hl(Q) = / Z Drlu )
=1

respectively. In order to obtain our main results, we will transform the semilinear parabolic problem to
the following equivalent semilinear evolution problem

du(t)
dt

— Au(t) = F(u) for t > 0 and u(0) = uo, (4.3.1)
where A is an operator mapping from D(A), domain of A, to L?(£2) with

D(A) = {u€ H{(Q): there exists an unique element w € L?*(Q) such that
N
[ rau@p@ds =~ [ o) > Daubsgds for any o € (@),
Q Q =1

and Au =

k(lx (p(2)ug)y = w for all u € D(A) and where the operator F : D(A) — L?(Q) is defined by

F(u) = f(u(b)) for any u € D(A). (4.3.2)

4.3.1 The proof of theorem 4.2.1

Existence and uniqueness of a solution u of the equivalent semilinear evolution problem (4.3.1)
result from the next proposition referred to [17].

Proposition 4.3.1.1 If B : D(B) — L?(R) is m-dissipative and self-adjoint and G is Hélder contin-
uous of exponent « € (0,1), then an semilinear evolution problem,

dv(t)
dt
has an unique solution v € C([0,00), D(B)) N C([0,00), L?(2)) which can be expressed as

— Bou(t) = G(t) fort >0 and v(0) = vy € D(B),

t

v(t) = H(t)vo + /H(t —71)G(7)dT
0
where H(t) is an analytic semigroup generated by B.

By modifying the proof of proposition 2.3.1.1 in chapter 2, we get the following lemma.

Lemma 4.3.1.2 The operator A defined by (4.5.1) is m-dissipative and self-adjoint.

Since an operator (A — A)~! is bounded well-defined operator on L?(Q) with its values in H}(Q),
Rellich theorem yeilds that (Al — A)~! ia a compact on L?(Q2). Next proposition gives well-known results
of self-adjoint compact operators, the spectral theory of self-adjoint compact operators referred from [11].

Proposition 4.3.1.3 For any n € N, there exists a sequence (A, ¢n) C (0,00) X HE(Q) such that
1 App, = =N bn.-

1 ifn=m

2 fk (2) P (2)dx = 8y, WiLH Gy, { 0 ifntm

3 fp JXV: Dxlgbn(x)Dxl(bm(x)dx = Mbnm

=1
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4 For anyu € L2(Q), u= Y (u, ¢,) dn.
n=1
5 For any u € LQ(Q), ||U||iz(9) = 21 <U7¢n>2-

6 Av = — io: An (U, ) dn for any v € D(A) with
n=1

D(A):{UEL2 Z ivgbn <OO}

18

7 St = e~ Mt (v, ¢n) by for all (v,t) € L2(Q) x [0, +00).

n=1

Let s € R with 0 < s < 1. By using eigenfunctions and eigenvalues of —A, we define an operator
(—A)*: D((—A)®) — L*(Q) with

D((=4)%) = {u € Hy(Q): ) AY (v,n)” < OO}

n=1

by
—A)*u =" "N (v, 6n) b
n=1

We note that D((—A)®) is a Banach space equipped with a square of norm

el aye) = ZA?S = [(=A)*ullz20)
and D(A) — D((—A)®). Let N € N with N < 3, we set

Hereafter, let s € (sy,1). We then note that by interpolation theory and Sobolev embedding referred
from [24],
D(A) — D((=A)®) — H*(Q) — C(Q), (4.3.3)

and that the definition of F given by (4.3.2) is meaningful. Moreover, by equation (4.3.3), there exist
positive constant ¢g, ¢; and c¢o such that for any u € D(A),

Hu”C(ﬁ) Co ||uHH2S(Q)a

<
<

Hu||H2s(Q) €1 ”uHD((fA)S)

and
lull p—aysy < c2llullpa

From (4.3.3), we obtain the following lemma.

Proposition 4.3.1.4 The operator F defined by (4.3.2) is locally Lipshitz continuous from D(A) to
L?(Q).
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Proof. Let u,v € D(A). From (4.3.3), there exists a M > 0 such that |u| < M and |v| < M. By locally
Lipschitz continuous property of f, there exists a positive constant L depending on M with

1) — F@)l2aq = / k(z) |F(u(z)) — F(o(a))[? de
Q
= [ ha) L Fw(®) - o) do
Q
< L/k(m) lu(b) — v(b)|* da
Q

2
kL9 [lu = vllo@)

2
< coki L|Qf |lu = vl[72e q)

2
< cocrtki L [QJu = v[[p - aye
< coerczki L |9 ||U_U||2D(A)'

Therefore, the proof is complete.
Moreover, we obtain the following results by modifying proofs of proposition 2.3.1.4.

Lemma 4.3.1.5 Let v € D((—A)®) and ¢t > 0.
1 S(t)v € D((—A)*)

2 [(=A)* Sl g2y = ISO(=A)*0l[ 20y < [(=A) "]l 12(q) -
Proof. Let v € D((—A)®). Proposition 3.3.1.4 gives:

DS, dn)® = D AT (v, 6,)
n=1 n=1

< N AE (v, ¢0)?
n=1

2
= ||U||D((—A)s)

which shows that S(t)v € D((=A)*) and [[S(t)v[| p(_ays) < vl p(_a)s) - Moreover,

SH(=A)v =YX (v,¢n) e = (—A)*S(t).

Since o 0
S0 e < SN () ot 0.7
el n=1

we have

[(=A)*S ()0l 20y = IS} (=A)*0[| L2y < VIl p((— ey for ¢ € (0, T].

The proof then is complete.

Lemma 4.3.1.6 There is a positive constant cs such that

S CS
1(=A)*S)vll 2y = ISV (= ays) < m vl £z
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for any (v,t) € L?(Q2) x (0,00).

Proof. Let v € L%(Q). It is not difficult to see that [(=A)*S)vll 12y = ISE)vllp((—a)s) - Since the
function
y € RT — y*e 2 ¢ R

is bounded, there exists a ¢ > 0 such that
o0 o0
£ A (0, dn) e < e YN (0,60)" = cllul7agg)
n=1 n=1

Hence, we get this lemma.
We next give the definition of a mild solution of a semilinear parabolic problem ( 4.3.1).

Definition u is a mild solution of the semilinear parabolic problem (4.3.1) if there exists u €
C([0,00), D((—A)*®)) such that

t
u(t) u0—|—/St—T (1))dr for all t € [0,T]
0

where ug s assumed to belong to D((—A)*®).
Local existence of a mild solution w of a semilinear evolution problem ( 4.3.1) is shown in the next
lemma which base on the proof of proposition 2.3.1.7.

Lemma 4.3.1.7 Let ug € D((—A)®). There is a positive constant T such that the equivalent semilinear
evolution problem (4.3.1) has a unique mild solution on [0,T]. Moreover, let u(t) and u(t) be the mild
solutions corresponding to ug and ug. Then for all t € [0,T],

es(eger by Lipt/2i—s
T—s

[u(®) = ()| p—aysy < lluo = Uoll p—aysy €

Proof. Let
M = |luoll p(—ayy +1

and

1 1
1—s5 1-s 1—s T—s
T < mi , 4.34
mln{(CgM(Coclk1L|Q|)1/2> (Cg(COClle|Q|)1/2> } ( )
We then define the set E by

E = {u € C([0,T], D((—A)*)) such that [[u(t)[|p(_ )y < M forallt € [07T]}
equipped with the norm

)

ullz = tSUP | (@)l p(—ae) -

Clearly, E is a Banach space. Let

B(u) = S(t)uo + / S(t — 7)F(u(r))dr. (4.3.5)

0
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We now show that the operator ® defined by (4.3.5) maps F into itself and the mapping is a contraction.
For any u € E, by proposition 4.3.1.4 and lemma 4.3.1.5 and 4.3.1.6, we have

12 (w)ll g

IA

IN

IN

IN

IN

<

0 D((—A)*)
/St—T

||U0||D((—A)s) + sup / 1S(t - T)F(U(T))”D((—A)s) dr
t€[0,T]

(1))dr

D((=4)*)

sup |[S(t)uoll p

—A)s )—i— sup
t€[0,T]

t€[0,T]

¢
[ Fu(T) | 20
(t—7)°

[[uoll p((—a)s) +c3 sup

e[OT]
[lu(r ||D A)®)
" + es(coer ki L1QDY? s /—dT
liollp—ayey + ealcocmn LI sup [ —7=05

t

1
U, +cMcckLQl/2sup/7de
” OHD(( A)s) 3 (0 1R1 | |) re(0.T] (t_T)é

CgM(Coclle |Q|)1
1—5

1—s

[uoll p((—ays) +

Thus, by (4.3.4), ®(u) € E. For any uy,us € E, we have

1 (u1)

—Ow)lp =

t

/ S(t — ) [Fur(r)) — Flua(r))] dr

sup
t€[0,T]
D((=A)*)
t
< sup / 15t = ) [F(ur (7)) = FCun() i _ayey dr
t€[0,T]
F u T 2
< ¢z sup /” 1 Pl © g7
+€[0,T) t—T)
U
< ce3(coerki L)9Y)) 1/2 sup /” ! )HD(( A gr
t€[0,T t_T)
1/2 / dT
< ce3(coerki L)9Y)) sup | —— | [lv1 —v2llg
te[O,T]O (t_T)

C3(C()Cl]€1L ‘QDl/QTliS
- 1—5

[vr — val| g -

By (4.3.4), ® is strict contraction on E. Therefore, by the contraction mapping theorem, ® has a fixed
point in F, that is, there exists a unique u € F such that

T))dr

u(t) = S()uo + / S(t— 7)F (u(
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which is a mild solution of equivalent semilinear evolution problem (4.3.1). To show that uniqueness
also holds in C([0,T], D((—A)®)), let u,us € C([0,T],D((—A)*)) be two solutions of (4.3.1) and let

u = u; — us. Then
/S (t = 7) [F(ua (7)) — Flus(r))] dr.
0

It follows from proposition 4.3.1.4 and lemma 4.3.1.6 that

lu@lp(—ayy = /5 (t = 7) [F(ur(7)) = F(uz(r))] dr

D((=4)*)

INA
o
%)
=
|
\]

Flur(r)) — Fus(r)]l g ayey dr

(| F (s (7 Flua(r ))HL?(Q)
03/ t—T) dr

IN

lua (7) — w2 (7))l p(—ays
03(COC1k1L|Q\)1/2/ (t_T)SD“ ) a4

t
u(T s
= 03(0061k1L|Q)1/2/| ( )”D(“A) )dﬂ

(t—m7)°

By the Gronwall inequality, ||u(¢ _ sy = 0forallt € [0,7], i.e., the uniqueness in C([0, T], D((—A)*)).
D((—=A)*)
Moreover, we have

u(t) — a(t) = S(t)(uo — o +/S (t —7) [F(u(r)) — F(u(r))] dr.
0

Then

Ju®) = w(®)l p-ay)
Smwrﬂm+/arwnmwmwamnm

0

D((=A)*)
t

(t—71)8

s|wamm—%MMFmﬂ+t/apquwu»_F@w»wf
0 D((~A))
[ F(u(r)) — F(ﬂ(T))HLz(Q)
SH%—Wb,m+@/ — i
Fllu(r) = ()]
u(T u(7T s
S ||U() _IEOHD((fA)S) +03(CQCII{/’1L|Q|)1/2/ D(( A) )dT
0
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The Gronwall inequality implies:

R
C3(Coclk51L|Q‘)1/2 ﬁd?’
0

IN

[u®) = @)l p((—a)s luo = Uoll p((—a) €
~ ca(cge |apt/2pi—s
[[uo _UOHD((fA)S)e e

IN

Therefore, this theorem is proven.

Proposition 4.3.1.8 Let ug € D((—A)®). The mild solution u of semilinear evolution problem (4.8.1)
is Holder continuous of exponent 1 — s in t from [0,T] to D((—A)®).

Proof. Let ug € D((—A)?®). Let u(t) = u(t + h) for any h > 0 and 0 < ¢ < T — h. Then, u is a mild
solution of problem (4.3.1) with the initial data @(0) = w(h). Thus

u(t+h) —w®)llp—aysy = Malt) = u®llp—ay
cg(cger kLl l/2rli—s

< lu(h) = uollpo—ay € s

On the other hand, we have that

llu(h) = uoll p—ays

h)ug — up + /S(h —7)F(u(T))dr
0 D((~4)°)

h
< 180~ wallp-ayey + | [ S = DF(a(r)ir
0 D((—4)%)
' ||

< / S(7) Augdr / “ @ gy

0 D((-4)) 0
< / 1S(r) At py_ayey 7

0

/ (| F(uo ||L2 @ T (coc1k1L |Q|)1/2 [[u(r) — UOHD((—A)S)
+c3 dr
(h—1)°
< /||AU0||L2 e 4 3/ [ (uo HL2(Q
ulT) —u
tes(coerki L |9) 1/2/ [Ju oll p((—ay: ) dr
h—T)
B (s HF(uo)HLz(Q)) h
- 1—s
7 llu(r) = uoll
U\T) — Ug —A)s
+03(coclk1L|Q|)1/2/ (h—T?S(( ) qr.
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Gronwall inequality implies:

[[u(h) — UOHD((fA)S)

c3 (HAUOHLz(Q) + ||F(U0)||L2(Q)) es(eoctka LN N ol ar
e 0

hl—s
- 1—s
c3 (HAUO||L2(Q) + ||F(U0)||L2(Q)) cgleger by LiQPY/2Tizs L
1—s
- 1—s ¢ ’
Then, for any t1,ts € [0,7T] such that t; + h = to,
[u(t2) = w(t)ll p(—a)s
€3 (||AUOHL2(Q) + HF(UO)HL2(Q)> ca(cgerky L@/ 2Tl —s 1—s
e 1-s |t2 — t1| .

- 1—s

Hence, u is Holder continuous of exponent 1 — s in ¢.
It follows from D(A) — D((—A)®) and lemma 4.3.1.7 that we obtain the local existence of a classical
solution of the semilinear evolution problem (4.3.1).

Lemma 4.3.1.9 There exists a positive constant T such that the equivalent semilinear evolution
problem (4.3.1) has a unique classical solution u(t) € C([0,T], D((=A)*)) N C*([0,T], L?(R)) given by

u(t) = S(t)uo + /S(t —1)F(u(r))dr
0

where S(t) is an analytic semigroup generated by A and ug € D(A).

Proof of theorem 4.2.1 The proof of theorem 4.2.1 then follows directly from proposition 4.3.1.1.

4.3.2 The proof of theorem 4.2.2

Let Tinax be the supremum of all T' such that equivalent semilinear evolution problem (4.3.1) has
an unique mild » on [0, 7]. By modifying the proof of proposition 2.3.2.1, we have the following results.

Proposition 4.3.2.1 Let ug € D(A). If Tinax is finite, then ||[u(t)|| p((_ 4y is unbounded as t tends
to Tmax-

Proof. Suppose that there exists a positive constant M and a sequence {t,,} such that
||U(tn)HD((7A)S) < M as t, — Thmax-

Let us consider the following semilinear evolution problem

i Av(t) = F(v(t)) for t > 0 and v(0) = u(ty). (4.3.6)

We then have that by lemma 4.3.1.9, there exists a positive constant v such that problem (4.3.6) has a
unique mild solution v on the interval [0,7]. We choose n large enough with ¢, + v > Tmax. We then
define the function u by

() = u(t) for 0 <t <t,,
vt —t,) fort, <t <t,+7.
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We would like to show that @ is a mild solution of the equivalent semilinear evolution problem (4.3.1) on

[0,t, + 7], that is, u satisfies that

u(t) = S(t)uop + / S(t — 7)F(u(r))dr for t € [0,t, +7].

0

Clearly, u is a mild solution of the equivalent semilinear evolution problem (4.3.1) on [0,t,]. We thus

consider that for ¢ € [0,7],

u(t+tn)
= ()
= Stt+t)uo+ | St+t, —7)F(u(r))dr + | S{t—7)F(v(r))dr
/ /

tn

= S(t+tn)u0+/5(t+tn—

0
tn

= S(t+tn)uo+/5(t+tn—

0

t+in

PVF((r))dr + / S(t 4ty — 7)F(o(r — t,))dr

tn
t+tn

T)F(u(r))dr + / St +t, —7)F(u(r))dr

in

t+tn
= St+t)uo+ [ S(t+t,—7)F(u(r))dr.
0

Therefore, @ is a mild solution of the equivalent semilinear evolution problem (4.3.1) on [t,, t,, +7]. Hence,
the proof is complete.

Proof of Theorem 4.2.2 Suppose that there is a positive constant M such that |u(b,t)| < M for
t € [0, Thmax). By lemma 4.3.1.9, we have that

t
u(t) = Styuy + / S(t — 7)F(u(r))dr for any ¢ € [0, Tras).
0
Then, for any ¢ € [0, Tnax),

la@lpnyey = AﬂWm+/SU—ﬂFWUDW
0

D((=4)*)
t

< wollpe—ays + /S(t—T)f(u(b»T))dT
0 D((-4)°)
t
< Juollogayy + 0D | [ St =7) - 1dr
0 D((—A)*®)
ALl
L2 ()
< ol pg—aysy + esf(M) de
tlfs
= luollp(—a)s +Csf(M)1 —
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Then, we have that |[u(t)||p(_ 4+ is bounded as ¢t — Thax which contradict to proposition 4.3.2.1.

4.3.3 The proof of theorem 4.2.3
Before proving theorem 3.2.3, we need the following lemma.

Lemma 4.3.3.1 For any x € I, there exists a positive real number ¢(x) depending on x such that

(S()1) () = e(w) for any t € [0, Thnax)-

Proof. Let zg be arbitrary in I and ¢ a C*°(R¥) function with support valued in the ball B(0,1) and
such that

Let ¢, defined by

The maximum principle yields that for any (z,t) €  x [0, 00),

EN

(21

(S()1) (z) = (S(t)pe) ().

Moreover, for any (z,t) € Q x [0, 00),

e M (oo, b)) bn(T).

M8

(S(t)ee) (x) =

n=1

But

/ pebndr — by (x0)| < sup{|én(z) — bu(xo)|, = € B(0,1)}

Q

IN

esup{Vo,(z), z € B(0,1)}.

Using the spectral theory and may be some additional properties of regularity for p and k we have a
suitable power of A, say (A\,)"™ (ry because it depends on N but not on n). Hence,

N N

= (S(t)pe) (o) > ;— (Z e G2 (2) — 2 Y e-Aan:;N“N)

0o 2

n=1 n=1

sy being such that |¢,| < cA3N¥ (such relationship exists [see spectral theory] and suitable smooth
o0
assumptions on Q and p, k). The series > e ! A"N+5N converges because \,, ~ n%, thus the results is

n=1
proven by choosing € small enough.

Proof of Theorem 4.2.3 From theorem 3.2.2, that is, |u(b,t)| is unbounded as ¢ tends to Tiax, it
means that there exists a t* with 0 < t* < Tax such that |u(b,t)] > M where M is a fixed positive
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constant for any ¢ > t*. Let us consider that

u(d, )] = [u(t)(b)]

t

< I(S(t)Uo)(b)l+/I(S(t77)1)(b)lIf(U(b,T))\dT

0

*

— [(S@u)®)] + [ (5~ DO 7,7l dr

0
/| (t — 7)1 B f (u(b, 7)) dr.

Locally Lipschitz continuity of f implies that there exists a positive constant L depending on M such
that
| f(u(b,t))| < L|u(b,t)| for any t < t*
and then we have that
-
lu(b, )] < I(S(t)uO)(b)I+/I(5(t—7)1)(b)\(LIU(b,t)I)dT

0

/\ (t = 7)1)(B)] | fu(b, 7))|dr

IN

ca+cs / | (b, 7)) dr,

b
where ¢y and c; are some positive constants. Then, it follows from theorem 4.2.2, we obtain that

f | f(u(b,7))| dT is unbounded as t tends to Tiax. On the other hand, we consider that
u(z,t) = u(t)(z)
= +/ (t—7)1)(x)f(u(b,7))dr
0

for any (x,t) € Q x (0, Tmax). From lemma 4.3.3.1, there exist two positive constant cg and ¢7 such that
t
u(z,t) > cg + 07/f(u(b, T))dT
0
Since non-negativity of ug and positivity of f imply that u is nonnegative, we obtain that
/f(u(b7 7))dr is unbounded as t converges to t*.
i

Hence, as t approaches to Tiax, the solution u of semilinear parabolic problem (4.1.1) will be blow-up at
every point x in €.
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Chapter 5

Complete blow-up for a degenerate
semilinear parabolic problem with a
localized nonlinear term

5.1 Introduction

Let o and 8 be constants witha > 0,0 < 8 < land a+0 # 0and let D = (0,1), Qr = Dx(0,T)
and D, Qr be the closure of D and Qy, respectively. Let us consider the following degenerate parabolic
first initial-boundary value problem,

Lu(z,t) = f(u(zo,t)), for (z,t) € Qrp,
u(z,0) = ¢(z), for z € D, (5.1.1)
uw(0,¢) =0 =wu(1,t), for t € (0,T],

where 29 € D, Lu = 2%u; — (2%u,), and u; denotes the derivative of u with respect to t. We assume
throughout this chapter that

(A) f e C?([0,00)) is convex with f(0) =0 and f(s) > 0 for s > 0.
(B) ¢ € C%(D), ¢ is nontrivial and nonnegative, ¢(0) = 0 = ¢(1), and

(2°¢'(x)) + f(b(20)) >0 for z € D. (5.1.2)

Since the coefficients of u;, u,, and uz;, may tend to 0 as = tends to 0, we can regard the equation as
degenerate.

This chapter is organized as follows: in section 4.2, we show properties of eigenvalues and their
corresponding eigenfunctions of (5.1.1); in section 4.3, we also give properties of the corresponding Green’s
function of (5.1.1) and show the existence and uniqueness of the solution of (5.1.1); in section 4.4, we
give a criteria for the solution of (5.1.1) to blow up in a finite time; in the last section, we prove that the
set of blow-up points is the whole interval D.
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5.2 Eigenvalues and eigenfunctions

Using separation of variables on the homogeneous problem corresponding to (5.1.1), we obtain

the following singular eigenvalue problem:
(2P¢'(x)) 4+ Az“g(x) =0, for z € D and g(0) =0 = g(1),

We set g(x) = a7 y(x). Then, we obtain that

dg d 1-8
i G )
1-— —1-— 1
= e 1y ()
and
d dg d (1-0 s B+1
| BZL - =2 /
dx( dx) dz 2 v y(x)+:c2y(:c)>
1-6\° s g1 B41
= - (F0) S0+ T @ 4 )

Thus, equation (5.2.1) becomes

:Bzy”(m) + 2y (z) + {)\xafﬁ+2 — %} y(z) =0 for z € D,
y(0) is finite and y(1) = 0.

Let x = za*2ﬁ+2. We then have

dy dydz a—p0+2 a5 dy
= —_— —Z a—B+2 —
dr dzdx 2 dz

and

dz? 2 d?

Thus, we get the following problem:

2

(a=B+2)>  (a—p+2)*

22% —&—z% + [ net (1P ] y(z) =0 for z € I,
z(0) is finite and z(1) = 0.

Equation (5.2.2) is a Bessel equation. Its general solution is given by

y(z) = AJ,(wz) + BJ_,(wz),

y _ (0‘5”)222&51‘3 dy (0‘5”)2( o-p >sz§+§dy.

(5.2.1)

(5.2.2)

or
g(z) = 2(1=8)/2 {AJM(wx(“_m’m/Q) + BJ,M(wx(a_ﬁ+2)/2)} ,
where p = a:ﬁz? w = azj;/jz, A and B are arbitrary constants, and J,, denote the Bessel function of the

first kind of order p (> 0). Turning to the boundary conditions, at z = 0 leads to B = 0. The boundary

condition at z = 1 gives the following equation
Ju(w) = 0.
Consequently, the appropriate eigenfunctions of (5.2.1) are

gn(x) = Ax(l_ﬂ)/QJM(wnx(a_ﬂ”)/Q),
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where w,, is the nth root of (5.2.3). We next use orthogonality of Bessel functions, that is,

3272 (knb) if m =n,

b
/a:Jp(knx)Jp(kmx)dx = { 0 if m o n,
0

to determine value of A and to obtain the orthonormal property of g, with the weight function =<,

1 ifn=m,

1
san(@an(de={ ]
0/ 0 if n#m.

To do so, let us consider the following;:

1 1
/xo‘gz(x)dx = A2/xa_ﬁHJi(wnxa_g“)dx. (5.2.4)
0 0
Let y = 2“5 . Then,
— 2w
Thus, we have that
1 ) 1
a—B+1 72 a=f+2 _ 2
/x Jiwnz™ 2 )dx = P /yJN(wny)dy
0 0
1 2
= acgrzienln)
From (5.2.4), we obtain that
1
o 2 d _ A2 2

0
Since the right-hand side of (5.2.5) must equal to 1, the value of A is determined by

(a— B +2)/2
A= FT4
[ Tut1(wn)|

We then obtain s ) /o
(v — B+ 2)1/24(1=5)/ Ty (wnx(a—ﬁ+ )/ )

[ Jpt1 (wn)]
We note that by [1], A, = O(n?) as n — oo. For convenience, we state the following properties of
eigenfunctions.

gn(z) =

Lemma 5.2.1 For some positive constant ko, |gn(z)| < koz=(@+8)/% for 2 € (0,1].

Proof. The asymptotic formula of J,(z) [2] is

2\"? um T
Ju(z) ~ - cos(zf?—z)

. . 222 (a—Bt2)/2
for z (> 0) sufficiently large. Thus for sufficiently large P X , we have

1/2
Ju (wnx(a_BJrz)/g) < (— = F+2 :
ﬂA}l/2Jj(O‘_ﬂ+2)/2
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It follows from [8] that we get

‘JP«Jrl (wn)] a—[F3+2

where kg is some positive constant. Then we get the result.

1/2
1 A2
g( T ) ko. (5.2.6)

Lemma 5.2.2 For some positive constant k1, |gn(z)| < klx(lfﬁ)m)\}/[l for x € D.
Proof. By the upper bounds [2], i.e.,
’JH (wnm(afﬁw)/z)‘ <1, for any u > 0.
and (5.2.6), we get that |g,(z)| < keyx=)/2)\* for some constant k.

Lemma 5.2.3 For any x1 > 0 and for all x € [x1,1], there exists ko depending on x1 such that
97 ()] < koo™,

Proof. Since z = 2(*#+2)/2 we obtain
gu(2) = (0= 52720, (@02) [ 11 ()]

By the property of Bessel functions

DT w) = v T (9),

dy
we have
/ _ (a_5+2>1/2i ©
gn(’z) - |J#+1 (Wn)| dZ (Z JH (wnz))
(a—B+2)'2

= OO AT (wnz) .
Ty ()] T (9n2)

Since z = (@ 8+2)/2 (= 2)\71/2/(04 —B8+2),and p=(1-0)/(ac — B+ 2), we have
gl (@) = [(a = B+ 2\, 2 alem2040/2 ) (wnm(o‘_ﬂ“)ﬂ) / [T (wn)] - (5.2.7)

Since

1/2
T (wpale=94972) | < (0‘ — B+ 2) o-(a—B+2)/4
B n = 7r)\1/2 ’

From (5.2.6) and (5.2.7), for any « € [z1, 1] with 3 > 0
|9 (@)] < k2 A/,

where ko is some positive constant. Hence we get the result.

5.3 Existence and uniqueness

Green’s function G(z,t,&,7) corresponding to (5.1.1) is determined by the following system for
each z and € in D, and ¢ and 7 in (0, 7],

LG(I7 ta €7 T) = (S(ZZZ - f)é(t - T)a
G(z,t,&,7) =0, fort<T, (5.3.1)
G(0,t,&,17)=0=G(1,t,&, 1),
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where §(z) is the Dirac delta function. By the method of eigenfunction expansion,

G(z,t,6,7) Zgn &) exp[—An(t —7)], fort > 7.

where A, and g, (z) are the eigenvalues and their corresponding eigenfunctions to (5.1.1).
We will give the following properties of G(z,t,&, 7).

Lemma 5.3.1 For any t > 7, G(x,t,£,7) is continuous for (x,t,£) € D x (1,T] x (0,1].
Proof. By lemma 5.2.2,

K (O20=02 % TN exp [ An(t — 7))

n=1

1S A2 exp[<Aa(t — 7],

n=1

IN

Z §) exp [=An(t —7)]

IN

which converges uniformly, G(z,t, &, 7) is continuous for (z,¢,&,7) € (D x (0,7T]) x ((0,1] x [0,T)).
Note that from lemma 5.3.1, the Green’s function exists.

Lemma 5.3.2 For each fized (£,7) € D x [0,T), Gi(z,t,&,7) € C(D x (1,T)).

Proof. By lemma 5.2.2;

3 G @e a7

IN

Z |90 (%)] g (E)| An exp [=An (t — 7)]

IN

2SN exp [ Al — 7],

n=1

which converges uniformly with respect to # € D and ¢ in any compact subset of (7,7]. This proves
lemma.

Lemma 5.3.3 For each fized (£,7) € Dx[0,T), Gy (x,t,£,7) and Gop(2,t,&,7) are in C((0,1]x (1, T)).

Proof. By lemma 5.2.2 and 5.2.3,

Zgn &) exp [~ An(t — 7)]

IN

Z |gn M gn ()] exp [=An(t — 7)]

IN

k1 ko Z A2 exp [ (t—7)],

n=1

which converges uniformly with respect to 2 in any compact subset of (0,1] and ¢ in any compact subset
of (7,T). Thus G.(z,t,&,7) is continuous.
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By equation (5.2.1) and lemma 5.2.3, we then have that for some positive constants k3 and ky,

Zg §) exp[—An(t — 7)]

) ﬁ 10, 19n(6)] expl—n(t — 7]

n=1

+ 3 2% N0 [ga(@)] |90 (E)] exp[—An(t — 7)]

IN

< kS Z >‘111/2 exp[_)‘n(t - T)] + k4 Z )\2/2 exp[_/\n(t - T)]v

n=1 n=1
which converges uniformly with respect to z in any compact subset of (0,1] and ¢ in any compact subset
of (7,T]. This lemma then is proved.
t1
Lemma 5.3.4 If r(t) is a nonnegative, bounded, and continuous function on [0, T}, then [ [ G(x,t,&, 7)r(r)dédr
00

is continuous for x in any compact subset of (0,1] and t € [0, T.

Proof. Let ¢ be any positive number such that ¢t — e > 0. For  in any compact subset of (0, 1], i.e., for
any ¢ € [zg, 1] with 2o > 0, and for 7 € [0, t—¢], by using lemma 5.2.1, 5.2.2 and letting ro, = 01<na<xTr(T),
77-7

we then obtain for ¢t > 7,

&) exp[—An(t —7)]r(7)

< kok l,_(a+ﬂ)/4 (1—- B)/2 Z )\1/4 exp (t — 7')]

which converges uniformly. Therefore we have

t/_e/l G(x,t, &, 7)r(T)dédT = i t/_a/1 gn () gn (&) exp [-An(t — 7)] r(7)dE&dT.
0o 0 n=1 0 0

Let us consider that
00 1>

n=1

/ G (2)gn (€) exp [~ An (t — )] r(r)dEdr

SY~—T

t

o t—E 1
kokyay T 3 / / A/ exp [~ A (t — 7)) dédr
n=17

IN

< koklx;(a-i-ﬁ)/‘lroo Z )\;3/4’

n=1

which converges (uniformly with respect to z, t, and ¢) since \,, = O(n?) as n — oo. Then

>

n=1

g

o7

/ Gn(2)gn (€) exp [~ An(t — 7)] r(r)dédr
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converges uniformly with respect to x, t, and . Since the uniform convergence also holds for ¢ — 0, it
follows that

0 €
n=1

is a continuous function of x, ¢, and € > 0. Therefore

O —T7

/gn(x)gn(f) exp [—An(t — 7)] r(7)d&dT
0

t—e

O/to/lGa:tg, 7)dgdr = lin io/

n=1

/gn ) gn (&) exp [—An(t — 7)] r(7)d&dT
0

is a continuous function of z in any compact subset of (0, 1Jand ¢ € [0, T].
A proof similar to that of lemma 4.c of [7] gives the following additional property of the Green’s
function in the following lemma.

Lemma 5.3.5 In the set {(z,t,£,7) : 2 and & are in D,0 <7 <t <T}, G(z,t,§,7) >0
To derive the integral equation of (5.1.1), let us consider the adjoint operator L*, which is given by

o 0 )
* o el
L=~ o <x ax>'

Applying Green’s second formula, we finally obtain the representation formular of (5.1.1)

//Ga: 1 e, ) (u(o, 7) d§d7+/§a 2.1, €,0)6(€)de. (5.3.2)
00

We state an additional property of the Green’s function in the next lemma.
Lemma 5.3.6 For each fized (¢,7) € D x [0,T), lim+ Gz, t,&,7) =0(x —§).
t—T1
Proof. Let us consider the problem,

Lw(z,t,¢,7)=0forz,£ € D, 0 <7 <t
w(0,t,&,7) =0 =w(l,t,&7) for 0 < 7 < t,
Hm+ z®w(x,t,&,7) = o(x — &).

t—T

From the representation formula (5.3.2),

1

[ 6w t.cneesic - g
0
= Gz, t,& 1) fort > 7.

U}(.’L'7 ta ga T)

It follows that lim+ 2*G(x,t,&,7) = 6(x — &).
t—T1
Next, we will give the blow-up results of the solution of (5.1.1)
Theorem 5.3.7 There exists some t1 > 0 such that the integral equation (5.3.2) has a unique non-
negative continuous solution u > ¢(z) for x in any compact subset of (0,1] and 0 < t < t1, and u is a

nondecreasing function of t. Let t, be the supremum of such t, that the integral equation (5.3.2) has a
unique nonnegative continuous solution u. If ty is finite, then u(xg,t) is unbounded as t — tp.
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Proof. Construct a sequence {uy,} in Qr by ug(x,t) = ¢(z) for n =0, 1,2, ..., and consider the equation

Luyy1(z,t) = f(un(zo,t)), for (x,t) € Qr,
Unt1(z,0) = ¢(x), for x € D,
Un+1(0,) = upy1(1,6) =0, for 0 <t <T.

Claim 1. wu,, > ug for each positive n.
We will show by using the principle of mathematical induction. By (5.1.2), we have

Liur — uo)(w,1) = £(8(x0)) + (279 (@)) > 0, for (z,t) € O,
(u1 —up)(z,0) =0, for z € D,
(u1 —u0)(0,t) = 0= (ug —ug)(1,¢), for 0 <t <T.

Maximum principle in [12] implies that u; > ug in Q7.
Next, we assume that for any positive n

¢ <u; <uz <...<up—1 < Uy, in Q.
Since f is increasing and u,_1 < u,, we have

L(unt1 = un) = f(un(xo,1)) = f(un—1(x0,t)) 2 0, for (z,t) € Qr,
(Unt1 — un)(2,0) =0, for z € D,
(Unt1 — un)(0,t) =0 = (uny1 — un)(1,%), for 0 <t <T.

It follows from Maximum principle that wu,4+1 > u, for all n. Therefore, we can conclude that, by the
principle of mathematical induction, u, > ¢ in Qp for each positive n.

Claim 2. The sequence {u,} is a nondecreasing function of t.

Let us define the sequence {w,} for n =0,1,2,... by

wp(x,t) = up(z,t + h) — up(z,t)
where h is any positive number such that 0 < ¢t + h < T. Thus, we also have
wo(z,t) = up(z,t + h) — up(x,t) = 0.
Let us consider the equation

Lwy(z,t) =0, for (x,t) € Qr_p,
wy(z,0) >0, forx € D
w1(0,t) =0 =w(1,t), for 0 <t <T — h.

Maximum principle yields that w; > 0 for Q7 _p,.
Let us assume that for each positive number n, w,, > 0 for Qp. By using the Mean Value Theorem,
we obtain
Lwyi1(x,t) = f'(un(zo, t1))wn(z0,t) > 0, in Qr_p,
Wnt1(7,0) = tUpy1(x,h) — ¢(x) >0, for x € D,
wn+1(0,t) = wn+1(1,t) =0, for0<t<T—h.

for some t; € (t,t + h). By Maximum principle, we obtain that w, 1 > 0 for Q7_j. Therefore, we can
conclude that, by the principle of mathematical induction, w, > 0 in Q for each positive n, i.e. u, is a
nondecreasing function of ¢.

Claim 3. Before a blow-up occurs, the integral equation (5.3.2) has a unique continuous solution w.
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Let us consider the following problem,

Lv(z,t) =0, for (z,t) € Qr,
v(z,0) = ¢(x), for z € D, (5.3.3)
v(0,t) =0=wv(1,t), for 0 <t <T.

Then the solution of (5.3.3) is
1
olant) = [ 4G, t.6,0)0(6)de
0

Since the functions G and ¢ are nonnegative, we have that v > 0 in Qp. By the maximum principle, we

know that v attains its maximum k = max ¢(z) in D x {0}.
€D

For a given positive constant M > k, let us consider

1

t 1
un(x,t) = //G(sr:,t,g,T)f(un,l(mo,f))dgdr—|—/faG(x,t,§,0)¢(§)d§, (5.3.4)
0 0

0

as t — 0, we see that
1
lig un.£) = [ Tim Gl 1.€,0)6(€)d = o(a) < M.
0

This shows that there exists ¢; such that u,(z,t) < M for 0 <t <t; and n = 1,2,... In fact, ¢; satisfies

t1

1 1
F() / / Gla,t1, €, 7)dedr + / 4G, 11, £,0)6(€)dE < M.
0 0 0

Next, we denote lim w, by u.

Subclaim 3.1 The sequence {u,} converges uniformly to u for = in any compact subset of (0,1] and
0<t<ty.

Let us consider that for each x in any compact subset of (0,1], i.e., for each z € [z2,1] with 25 > 0
and from (5.3.4),

t 1

un+1(m,t)—un(x,t)://G(m,t,g,T) (Fln (20, 7)) — F(tn_1(x0,7))) dEdr. (5.3.5)

0 0

Let S,, = max |tn (2,t) — up—1(x,t)|. Using the Mean Value Theorem, we have
(z,t)€[x2,1]Xx[0,t1]

flun(xo,7)) = f(un—1(z0,7)) = f'(11) (un (20, 7) = tin—1(z0, 7)),

where p is between u, (xo,7) and wu,—_1(xo, 7). Since u, < M for all n and f”(s) > 0 for s > 0, we have
fun(wo, 7)) = flun—1(z0,7)) < f'(M)Sh,.
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From (5.3.5), we obtain

t1
Swn < FODS, [ [ 3 ai@g© exp -t - 7)) dedr
o o =!I
t1
< kokiz, (a+ﬁ)/4 Sn// 1/46Xp Xi(t — 7)) d&dr
o o =1
< kokizy (/i g Z T3 — exp(—Ait)).

Since > )\;3/4(1—exp(—)\it)) converges uniformly because of \; = O(i?) as i — oo, we have }in% > )\;3/4(1—
i= —0=1
exp(—A\;t)) = 0. Hence, there exists some positive o1 > 0 such that
kokiay @A (M) S, Z)\ 41— exp(—=Agt)) < 1 for t € [0, 04). (5.3.6)

Thus, Sp+1 < S, and the sequence {u;} converges uniformly to u for z in any compact subset of (0, 1]
and 0 <t <oj.
Similarly for o9 <t < 1, we replace ¢(§) in the integral equation (5.3.4) by u(§, 01) to obtain

t 1
://G x, 6, &, 7) f(up—1(xo, T )dde—F/fa x,t,&,0)u(g, o1)dE.
o1 O

Moreover, we also have

Uy (,) — (2, 1) = / / G, t,€,7) (F(tn (0, 7)) — F(utn_1 (w0, 7)) dédr.
o1 O

and
t 1
Swir < F(M)Sn / / G(e,t,¢,7)dédr
< kokyay Ty [ZA_:M GXP()\i(tffl))]]-

Thus there exists oo = min{oy,¢; — o1} > 0 such that for ¢ € [0, min{207, t1 }].
kokyay @A/ lz A7V 1 — exp(=A(t — 0—1))]1 <1, (5.3.7)

Hence the sequence {u,} converges uniformly to u for z in any compact subset of (0,1] and ¢ €
[o1, min{207,t1}]. By proceeding in this way the sequence {u,} converges uniformly to u for z in any
compact subset of (0,1] and 0 < ¢ < ¢;. Therefore we can conclude that the integral equation (5.3.2) has
a continuous solution u for x in any compact subset of (0,1] and 0 < ¢ < ¢;.
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To prove claim 3, we suppose that the integral equation (5.3.2) has two distinct solution u and « for
2 in any compact subset of (0,1] and ¢ € [0,¢1]. Let ® = max |u — @] > 0. Since u and u are

(z,t)€lz2,1]%[0,t1]
the solution of (5.3.2),

u(x,t) — u(x,t) = //G(m,t,f,T) [f(u(zo, 7)) — f(u(zo,7))] dEdT.
0 0

Then

d < koklx (a+B)/4 ¢ lZ)\ 3/4 exp(—)\it))] ®, for t €[0,04],
which implies that
kokiz, St/ g lZA 3/4 exp(—)\it))] > 1, for t € [0,01].

We have a contradiction to (5.3.6). Hence, the solution u is unique for x in any compact subset of (0, 1]
and 0 <t < o;.

We can show in a similar fashion that solution w is unique for z in any compact subset of (0, 1] and
o1 <t < min{204,t;}. By proceeding in this way, the integral equation w is unique continuous for z in
any compact subset of (0,1] and 0 < ¢ < ¢;. Therefore we conclude that since u,, is a nondecreasing
function of ¢, u is a nondecreasing function of ¢.

Let t; be the supremum of such ¢; that the integral equation (5.3.2) has a unique continuous solution
u. We would like to show that if ¢, is finite, then u(xg,t) is unbounded as t — .

Suppose that u(xg,t) is bounded in [0,t,).We consider the integral equation of the solution u for
[tp, T) with the initial condition u(z,0) replaced by u(z,tp),

1
(o, ) / / G0 t,€,7) f(u(xo, 7))dédr + / XG0, 1, €, ty)ulE, 1) dE.
0

For any positive constant N > wu(xg, t), an argument as before shows that there exists some positive to
such that the integral equation (5.3.2) has the unique continuous solution w on [tp, t2]. This contradicts
to the definition of ¢,. Therefore If ¢ is finite, then u(xg,t) is unbounded in [0, ¢3).

The following theorem show that u is the solution of (5.1.1).
Theorem 5.3.8 Before blow-up occurs, the problem (5.1.1) has a unique solution u.
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Proof. By lemma 5.3.4, we have that for any € D and any t2 € (0, 1)

2G(x,t, &, 1) f(u(xo, 7))dEdT

Gz, t2,&,7) f(u(xo, 7))dEdT

t ¢=1/n 1

+ lim | — / /x“G(x,(,§,T)f(u(m0,7))d§d7'dC
0

to 0

Let

(—1/n

gn(x,¢) = /
0

1
[ 4 Ge(w. 6.6 (w0, ).
0

Without loss of generality, let n > m, thus we have

¢—1/n 1

9n(2,0) — gunl,€) = / / G, ¢, €,7) f (ulwo, 7)) dédr.

¢—1/m O

Since %Gy (z,t,&,7) € C(D x (7,T)) and f(u(zo, 7)) is a monotone function of 7, it follows from Second
Mean Value Theorem for Integration and then we have that for any  and £ € D and any 7 in any
compact subset [t3,t4] of (0,1), there exists some real number v such that { —v € (( —1/m,( —1/n)
and

—v 1
n(@:0) = gm(@:C) = f(u(o, ¢ —1/m)) / / G, C, €, 7)dedr
¢—1/m O
¢—1/n 1
—f—f(u(.'lﬁo,g - 1/”)) :EQGC<$7 4,6,7)d£d7'~
I
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Since G¢(z,(, &, 7) = —G-(x,(, &, 7), we have

gn<x7 C) - gm(l‘,g)

1

= [f(u(zo.C — 1/n)) — flulzo,¢ — 1/m)) / G, C,€,C — v)dé

0

1
(a0, € — 1/m)) / G, €6, ¢ — 1/m)de

)
—f(u(zo, ¢ —1/n)) /x (x,(,6,¢—1/n)d¢
0

1
Since [2°G(z,(,§,¢ —¢e)dé =1 as e — 0, it follow that, the sequence {g,} is a Cauchy sequence, and
0

hence the sequence {g,} converges uniformly with respect to ¢ in any compact subset [t3,t4] of (0,p).
Then we obtain that

Thus, we obtain that

—
8,

G, t,&,7) f(u(xo, 7))dEdT

Sl

Il
Sl
\w T O\w
O\n o\g o

0/ 5" Gy t2,,7) (ulan, )y + [ Fluao, )G
1
/

+ z“Ge(x, C, {,T)f(u(mo,T))dﬁdeC)

= Fulzot / / Gy, ,€,7) f(u(wo, 7)) dedr.

We would like to show that by using the Leibnitz rule, we have for any € D and ¢ in any compact
subset [t3,t4] of (0,%p),
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t—e

//1G (z,t,&,7)f(u(zo, 7))dédr =
0

0

1
/xﬁGI (z,t,&,7) f(u(xo, 7))dédT =
0

Fle

2 £
ox

O~
O\I S Y—7
o o—__

Let us consider that for any z; € D,

t—e

lim
e—0
0

x

/G(w,t,f,T)f(u(aco,T))deT
0

t—e
o |
n

0

t—e 1

+l1m G(z1,t,&,7) f(u(xo, 7))dEdT
u /]

= lim
e—0

| —

/ G(mt,ﬁﬁ)f(U(wo,T))dﬁdT] dn
0

Z1

x t—e 1

= i [ [ [eyot6n tuteor)deiran
x1 0 O

e—0

t o1
+O/O/G(xl,t,f,T)f(u(xo,T))dde.

Claim that

x t—e

1
hr% //Gn n,t, &, 7) f(u(xo, 7))dEdTdn
E—
0 0

z t 1
-/ / [ Gttt )i,
] 0 0
By using the Fubini Theorem
z t—e 1
hII(l) //Gn n,t,&,7) f(u(xg, 7))dEdTdn
0 0
t—e z 1
~ lim (/ Gt )dfdn> lulao,)dr
0 10
t—e 1
— iy [ | [Glten) / (xl,t@w)df] f(ulzo,7))dr
o Lo

t 1

0 0
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Gz, t, &, 1) f(u(zo, 7))dedT,

(.’IJBGI(I', t, 57 T))zf(u(l'o, T))d&d’]’

//G(m,t7§,7 u(xzo, T dng—//G x1,t,&,7) f(u(zo, 7))dEdT,

(5.3.8)



which exists because of lemma 5.3.4. Therefore we have

t 1 t 1

//G(x,t,{,T u(xo, T d{de//G x1,t,&,7)

0 0
_ /(% O/to/lam &,7)f (ulxo, 7))dedr | dy
x t 1
_ / O/ 0/ G (s, €,7) f (u(iwo, 7)) dedrdy.

Thus, we have (5.3.8). Therefore we also have

t

860/0/16’ (2,1,€,7) f (u(wo, 7))dEdr
= % [/z/t/1Gn(77,t,§7T)f(U(on,T))ddedn
xz1 0 O

+

1
/ Glas,t,&,7)f (u(wo, ™ ))dsdT]
0

Gy, t,&,7) f(u(zg, 7))dEdT.

Il
O\H
O\H O\M

Let us consider that for any x5 € D,

u(xo, 7))dEdT

t—e 1
lim / / PG (w,,€,7) f(ulo, 7)) dedr
0 0
t—e 1
oy [0 8G, (n.t (u(zo, 7))ddr | d
= Elg(l) 377 0" Gy(n,t,&,7) f(u(wo, 7))dEdT
0 0
t—e 1
+ lim /x Gy(w2,t,&,7) f(u(wo, 7))dldT
0 0
x t—e 1
~ 1m / / o (1, €, 7)) f (w0, 7)) dEdrdn
o 0 0

-l-//ngn(w27t,§7T)f(u(xo,T))dde.

0 0
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Claim that

e—0
2 0 0

lim ] 7 /1 (n°Gy(n,t,&, 7))y f (u(zo, T))dédTdn

z t 1
[ | [orcyre st mdeian (5:3.10)

By using the Fubini Theorem

z t—e 1

lim / / / 5Gy(n, 1, £,7))nf (u(wo, 7)) dédrdn

= lm /E(/%O/1 (n°Gy(n,t,€,7))y dfdn) f(ulzo, 7))dr

t 1 1
- / /x5G$ x, t 57 f('U/(Z'(), T))dng - /ngm (an tv f? T)f(u($07 T))dnga
00 0

which exists because of lemma 5.3.3. Therefore we have

1
/ / x,@Gr(xa t7 Ea T)f(u(x()v T))dde - /‘rgGT(‘T27 ta 57 T)f(u(l'o, T))dé.dT
0 0 0

t 1
/ / PG, €, 7) f (ulo, 7))dEdr | di
0 0

Il
o\
O\H

m

Q

—
=
~
o
S~—"
S~—
\
—~
<
—
8]
4
S~—
S~—
U
I

QU

\]

U

3

Thus, we have (5.3.10). Therefore we also have

t
Q/
ox

L0

acﬂGaC (,t,&,7) f(u(zo, T))dﬁdT]

1

/ o011, 6, 7)) (0, 7)) dedrdn
0

[
S
)
M\H
o O _

1
+

[

for any « in D and ¢ in any compact subset [ts, t4] of (0,%5). By using the Leibnitz rule, we have that for

—

gchm(x27 t,&,7) f(u(xo, T))dde]

0

(2, t,&, 7))o f(u(xg, 7))dEdT,

O\H o\“

7



any x in D and ¢ in any compact subset [ts,t4] of (0,tp),

1 1

0
argz/f“G@%ufiWﬂﬁdS = o [eGuw g 00,
0

1 1

0 o . a
a! G2, 1, €,0)p(€)dE = /éGA%u&®MO%7
1

o [€ @ re0) o0t = [ gL
0

0

From the integral equation (5.3.2), forx € Dand 0 <t < T

Lu(z,t)
1

= f(’u(:L‘o,t)) + /ga [xaGt($7t7§70) - (‘rﬁGI(matvgaO))l} ¢(€)d§

0

x tJ? , 37690337,,7':5 w(zo, T .
+0/0/ “Gil(w,t,6,7) — (27 Ga(2,1,8,7))a] f(u(zo, 7))ded

- ﬂM%JD+&@/€W@—OMO%
i, f

0
= f(ulro.1),

and the initial condition of u can compute from for z € D

/5 x—&)o(t — 1) f(u(zg, 7))dédr
0

1
ggwaﬂz/égﬁG@m&®M0%1¢@%
0

since G(0,¢,&,7) = 0= G(1,t,&,7), we can compute directly and obtain the boundary condition u(0,t) =
0 = u(1,t). Therefore u is a solution of the problem (5.1.1).

5.4 A sufficient condition to blow-up in finite time

In this section, we will give a blow-up criterion for the solution u to blow-up in a finite time.
Let us denoted by A; > 0 the principal (smallest) eigenvalue of the problem

(2P () = —A\z%y () for z € D, and 1, (0) = 0 = 1, (1) (5.4.1)

and by 1 (x) the corresponding (first) eigenfunction. Let ¢ (x) > 0 be normalized such that

1

]| = / o () = 1.

0

78



Since lim M — 00, there is a zp > 0 such that f(s) — Ays > 0 for each s > z.

5§—00

o0
Proposition 5.4.1 Suppose that [ ﬁ is finite. Let us consider the following initial-boundary
Zo

value problem,
Lu(z,t) = f(u), for (z,t) € Qr,
=ug(z) >0, forz € D, (5.4.2)
u(0,t) =0=wu(l,t), for0 <t <T.

1
If [ x%ug(z)yr (x)dz > 2z, then the solution u of (5.4.2) blows up in finite time.
0

Proof. Assume that the solution u of problem (5.4.2) exists for all ¢. Construct the function E(t) by

1

/a:uxtwl x)dx

0

1
Then E(0) = [ 2%ug(x)¢1(x)dz > 2o which means that the initial condition ug(z) have to be sufficiently
0

large. Multiplying Lu(x,t) = f(u) by ¥ and integrating from 0 to 1, we have

1
dE
- = —ME(t) +/f(u)w1(x)da: (5.4.3)
0
Applying Jensen’s inequality to the second term in the right hand side, we then obtain
1 1
[ i@ > [ i@ > 1 (E). (5.4.4)
0 0
From (5.4.3) and (5.4.4), we obtain that
dE
o 2 ~ME@) + f(E(?)) > 0.
Thus we obtain that
E(t)
t < 5.4.5
/ f >\15 / f(s )\18 ( )
E(0)

which contradicts to assumption that the solution w of problem (5.4.2) exists for all ¢. Therefore, the
solution u(zx,t) of (5.4.2) blows up in a finite time.

In order to obtain the sufficient condition to blow-up in finite time of (5.1.1), we need the following
lemma.

Lemma 5.4.2 Let u(x,t) be a classical solution of the following problem

Lu(z,t) > b(x, t)u(xo,t), for (z,t) € Qr,
u(x,0) >0, forz € D,
u(0,t) >0 and u(l,t) >0, for 0 <t < T,

where b(z,t) is nonnegative and bounded on Qr, then u(z,t) >0 in Qr.
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Proof. If b(z,t) = 0, then by the weak maximum principle u attains its minimum on the parabolic
boundary, i.e., u(z,t) > 0 in Qr.
For the case b(z,t) being nonnegative and nontrivial, let 3" € (8,1) be a positive constant and

v(z,t) = u(z,t) + n(l+ xﬁ,_ﬁ)e“7

where 1 > 0 is sufficiently small and ¢ is a positive constant to be determined. Then v(z,t) > 0 on the
parabolic boundary 97, and

Lu(z,t) — b(z, t)v(zo, )

(ﬁl _ 5)(1 _ ﬁl)eCt
x2=h

> 2%n(1+ 27 et + U —n(1+ wglfﬂ)eCtb(a@?t)

> net |ex®™ + B=00=5) _ (1 —&—xoﬁ,_ﬁ) max b(m,t)] . (5.4.6)

— 37 —
z2=h (z,t)E€Qr

If max b(z,t) < (8 —B)(1—3)/(1+2" "), then from (5.4.6)
(z,t)EQr

Lo(z,t) — b(x, t)v(zo, t)
> pect [Mu_ﬁ/) —(1 +x€’—ﬂ) max b(x,t)]

2= (z,t)€Qr
> 0.

On the other hand, assume that max b(z,t) > (8 —8)(1-03)/(1+ xglfﬁ). Let s be the positive root
(z,t)eQr

of the algebraic equation

(1+a§ ") max b(a,t) = (5 - B)(1 - ) /2>,
(x,t)EQr

and let ¢ > 0 be sufficiently large such that

c>(1 +xg/_’8) max  b(z,t)/s".
(x,t)€Qr

Then if 2 < s, then from (5.4.6)
Lv(x,t) — b(z, t)v(xo, t)
> et [(61 —AH0-F5) (1+ Jig/_ﬁ) max b(x,t)]

— 3 —
z2=0 (z,t)EQT

%

!/ 1 _ / ,
net [(5 52),(@ 7 (1+25 7) max b(x,t)]
S (z,t)E€Qr
= 0.
On the other hand, if > s, then from (5.4.6)
Lv(x,t) — bz, t)v(zo,t)

> net [cxa -1 +:rgl7ﬁ) max. b(x,t)]
(z,t)eQr

> pet

(14277 max b(x,t)((a:/s)a—l)]
(z,t)EQT

Y

0.
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Therefore we have
Lv(z,t) — bz, t)v(zo,t) > 0 for (x,t) € Qp. (5.4.7)

We would like to show that v(z,t) > 0 in Qp, Suppose not , i.e., v(z,t) < 0 in Q. We define the set
A={t:v(x,t) <0 for some x € D},

is non-empty. Let ¢ denote its infimum. Then there exists some z; € D such that v(z1,t) = 0, v(x1,t) <0,
and v (x1,t) = 0. Since 7 is the infimum of the set A, we have that v(z,¢) > 0 for ¢ < ¢ and by using the
continuity of the function v we also have that v(z,¢) > 0 for all z. Since we have that v(z1,t) = 0, we
obtain that v(z1,t) is local minimum. This means that v, (z1,t) > 0. Therefore we have

0> z{v(x1,t) > Lu(xq,t) — b(z1, T)v(x0, t) > 0,

which contradicts to (5.4.7). Asn — 0%, u(z,t) > 0 in Q7.
The following theorem gives a sufficient condition for the solution u to blow-up in a finite time.

Theorem 5.4.3 If ¢(x) is sufficiently large in a neighborhood of xo, then the solution of (5.1.1) blows
up in a finite time.

Proof. Let us consider the following problem,

Lo(z,t) = f(v), for (z,t) € (xg — 20+ ) x (0,7,
v(z,0) = vo(z) > 0, for x € [xg — J,20 + 9], (5.4.8)
v(zg —6,t) =v(wo+0,8) =0, for 0 <t <T,

where vo(x) > 0 on (xg — §, 0 + 9), vo(xo — ) = 0 = vo(xg + 0) and vp(x) is symmetric and attains its
maximum at the point x = zq. Since lim f(s)/s = co, there exists a positive constant k4 > zg such that
S§— 00

op
(wo — 8)1-7

f(S)ZQ((fo+5)ﬁ+

S 52 > , for s > ky. (5.4.9)

By proposition 5.4.1, the solution v of (5.4.8) blows up at the point = xg in a finite time, provided
that vo(x) is large enough. Since vo(x) is symmetric at the point x = 1z, the solution v(x,t) have its
maximum at the point o and then we have

Lv(z,t) = f(v(z,t)) < f(v(xo,t)) for (z,t) € (xg — d§, 20 + ) x (0,T].
Next, we can choose a positive constant ks > k462 big enough such that
wo(z) = ks [v — (xg — )] [(xo + ) — 2] > vo(x), for x € [xg — b, 20 + 4]
Consider for each z € (zg — d,z0 + 0)
(«"wp(2)) + f(wo(wo))
= —2k; [ggﬁ + xlﬁ*ﬁ (x — xo)] + f(k56%)

os3
(w0 —8)' 7

> —2ks | (w0 +6)° + + f(ks0?)

> 0.

Then
(2Pw)(2)) + f(wo(z)) >0, for x € (zg — 8,20 + 6).
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We consider the following problem

Lw(xz,t) = f(w(xo,t)), for (z,t) € (xg — §, 29 + ) x (0,7,
w(z,0) = wo(x) > 0, for x € [xg — I, 29 + J], (5.4.10)
w(xg — 6,t) =0 =w(xg + ,t), for 0 <t <T.

Therefore, we have for (z,t) € (xg — §,20+ ) x (0
Llw=v) = flw(zo,t)) = f(v(z,1))
flw(zo,t)) —

> (o, 1)) = f(v(@o, 1))
= f'(n) [w(zo,t) —v(wo,1)],

where 7 lies between w(zg,t) and v(zg,t), and the initial and boundary conditions

7T]a

w(z,0) —v(z,0) = wo(x)—ve(x) >0, for x € [xg — §,x9 + J],
w(z,t) —v(x,t) = 0, for (z,t) € {xg — 6,20+ 6} x (0,T].

Therefore, it follows from lemma 5.4.2 that w(z,t) > v(z,t) in (x,t) € [xo — J, 20 + ] x [0, T]. Therefore
the solution w of (5.4.10) blows up in a finite time. By the same way, we can choose that the function
¢(x) is sufficiently large such that ¢(z) > wo(z), for x € [xg—, 20+ J], so we conclude that the solution
u(x,t) blows up in a finite time.

5.5 The blow-up set

The next lemma give an additional property of Green’s function.

Lemma 5.5.1 Given any x € D and any finite time T, there exist two positive numbers kg and kr
such that

1
ke < /G(x,t,{,O)d§<k7 for0<t<T.
0

Proof. Let us consider the following auxiliary problem

Lv(z,t) =1, for (z,t) € Qr,
v(z,0) =0, for x € D, (5.5.1)
v(0,t) =0=wv(1,t), for 0 <t <T.

The solution of (5.5.1) is given by

1

t 1 ¢
v(z,t) = Gz, t, & 7)dldT = G(x,1,&,0)dEdT.
[] /

0

It follows that

1
ve(x,t) = /G(x,t,f,O)df > 0.
0
Since for any x € D

1
v (x,0) = /G(m,O,&O)df = %
0
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there exists a positive kg such that
1
k6</Gxtf()d§,forO<t<T
0
Furthermore, since v(x,t) is continuous in D x [0, T, there exists a positive k7 such that
1
/G(:L’,t,g,())df <k;for0<t<T.
0

We finally show that the set of blow-up points of (5.1.1) is the whole interval [0,1] in the following
theorem.

Theorem 5.5.2 If the solution u of (5.1.1) blows up in a finite time, then the set of blow-up points
of (5.1.1) is D.

Proof. The solution u of (5.1.1) is given by

t 1 1
://G 5.t €,7) (mo,r))d§d7'+/EQG(x,t,S,O)gﬁ(ﬁ)df. (5.5.2)
0 O 0

It follows from theorem 5.3.7 that u blows up at least at the point = zg as ¢ — t,. From (5.5.2) and
lemma 5.5.1,

u(zo,t) =

o .
o L O ——__

1
G(.’Eo, ta 57 O)f(u(l'o, t— T))dde + / faG(.’EO, ta 57 0)¢(£)d£
0

IN

k7 | flu(xo,t —7))dT + k7 (max gzﬁ(x))

xzeD

Since u(zg,t) — oo as t — tp, we have

ty

/f(u(xmtb —7))dT = 0.
0

On the other hand, let us counsider that for any (z,t) € Qr,

w(zt) > ke / f(ulwort —7))dr + / G a,1,€,0)(€)de
0 0
> ke / Flu(zo,t — 7))dr
0

As t approaches ¢, , it follows from f f(u(zo,ty — 7))dT — oo that u(z,t) tends to infinity. Thus, the set
of blow-up points is D. For z € {0, 1} we can find a sequence {(x,,t,)} such that (z,,t,) — (Z,t) and
lim u(z,,t,) — oo. Therefore, the set of blow-up points of (5.1.1) is D.

n—oo

83



Note that this chapter was the object of the article :

P. Sawangtong. B. Novaprateep and W. Jumpen. Blow-up solutions for a Degenerate Parabolic
Problems with a Localized Nonlinear Term, WSEAS Transactions on Heat and Mass Transfer, issue 3,
vol. 5, 2010, p. 178-189.

84



References

[1]. Abramowitz M., Stegun L.A. Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables, National Burean of
Standards, Applied Mathematics Series 55, Washington; 1958.

[2]. Andrews L.C. Special functions of mathematics for engineers. Macmillan,
NewYork; 1985.

[3]. Chan C.Y., Wong B.W. Existence of classical solutions for semilinear
parabolic problems. Quart. Appl. Math. 1995;53:201-213.

85



Chapter 6

Complete blow-up for a generalized
degenerate semilinear parabolic
problem with a localized nonlinear
term

6.1 Introduction

Without loss of generality and for simplicity, we take the interval of « to be [0,1]. Let I = (0, 1),
Qr = I x (0,T), I and Q be the closure of I and Qr, respectively. We here study the following
degenerate semilinear parabolic problem with a localized nonlinear term:

Lu(z,t) = f(u(zo,t)) for (z,t) € Qr,
u(0,t) =0=wu(1,t) for t € (0,T), (6.1.1)
u(x,0) = ug(x) for x € 1,

where xo € I, Lu(z,t) = uy — ﬁ(p(sc)um)z, and k,p, f and ug are given functions.

The purpose of this chapter is to prove that before blow-up occurs, there exists a T7 such that problem
(6.1.1) has a unique nonnegative continuous solution u on the interval [0, 7}] for any x € I. Moreover, a
sufficient condition to blow-up in finite time and the blow-up set of such a solution w of problem (6.1.1)
are shown.

In order to obtain our results, we need the following assumptions.

(A) pe CY(I), p(0) =0, p is positive on (0, 1].

(B) k€ C(I), k(0) =0, k is positive on (0, 1].

(C) f € C%(0,00)) is convex with f(0) =0 and f(s) > 0 for s > 0.

(D) ug € C*(I), up(0) = 0 = ug(1), up is nonnegative on I, ug(zo) > 0 and ug satisfies

1 d ( (o) L20l)

> + f(uo(z0)) > Cug(z) on I

for some positive constant .

86



By separation of variables, we get the corresponding singular eigenvalue problem to (6.1.1) defined by

i (pl@)%22) + Mr(@)é(w) = 0 on 1, } 6.12)
$(0) = 0= o(1).
We note that conditions (A) and (B) yield that the point = 0 is a singular point of a singular eigenvalue

problem (6.1.2) and, by proposition 2.1 of [20], condition (C) implies that f is increasing and locally
Lipschitz on [0, 00). We rewrite a singular eigenvalue problem (6.1.2) in an equivalent form:

2?¢' (x) + {I%] ¢'(z) + A [552];85” ¢(x)=0on, } (6.1.3)

$(0) = 0= o(1).

We have to add some conditions on functions p and k to make the point z = 0 a regular singular point,

that is,
z2k(x)

“K(@) are finite as # — 0 and 2 and are analytic at x = 0.
p(z) p(z) p()

(E) The limit of wp(/ig)c) and =

P

We note that theorem 5.7.1 of [25] yields existence of eigenfunctions ¢, and their corresponding
eigenvalues A, of problem (6.1.3). By [25], completeness of eigenfunctions ¢, of problem (6.1.3) results
from next assumption.

1
(F) [ [ H(z,&)?k(x)k(&)dédx is finite where H is the corresponding Green’s function to problem (6.1.3).
0

Ct— =

In order to obtain the existence of the corresponding Green’s function defined by (6.2.2) to problem
(6.1.1), we have to assume additional conditions on eigenvalues A,, and their associating eigenfunctions

P

(G) A = O(n®) for some s > 1 as n — oo and there exists some positive constant K such that
|pn(z)] < KA for d > 0 and for any z € 1.

6.2 Local existence and uniqueness

This section deals with the local existence and uniqueness of the nonnegative continuous solution
u of problem (6.1.1). Next lemma states the well-known properties of eigenfunctions ¢,, and eigenvalues
An, of problem (6.1.2) referred to [25].

Lemma 6.2.1
1 |1 forn=m,
1 Ofk(z)¢n(x)¢m(x)dx - { 0 forn #m.

2 All eigenvalues are real and positive.
3 Figenfunctions are complete with the weight function k.

4 AN <X <...and lim \, = oo.

n—oo

An forn=m,

1
5 { p(@)), (2) ¢y, (z)de = { 0 forn#m.

6 For anyn € N, ¢, € C((0,1]).
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Let us construct Green’s function G(z,t,£,7) corresponding to problem (6.1.1). It is determined by
the following system: for z,£ € I and t,7 € (0,7,
LG(xv tv 57 T) = (S(.’E - g)g(t - T)?
G0,4,6,7) = 0= G(L,t,€,7), (6.2.1)
G(z,t,&,7)=0for t <,

where § is the Dirac delta function. By eigenfunction expansion, the corresponding Green’ s function G
to problem (6.1.1) is defined by

G(x,t,€,7) Zcbn )én(€)e ™" for z, 6 e Tand 0 < 7 <t < T. (6.2.2)

To derive the equivalent integral equation of problem (6.1.1 ), let us consider the adjoint operator L*,
which is given by L*u = —uy — ﬁm(p(x)ul«)x Using Green’s second identity, we obtain

1 1
= /k;(f) z,t,€,0)up(§)dé + /k (z,t,&,7) f(u(xzo, 7))dEdT. (6.2.3)
0 0

o—_ .

The following lemma is due to properties of Green’s function G.
Lemma 6.2.2
1 G is continuous for v, € € I and 0 <1 <t <T.
2 G is positive forx, 6 €T and 0 <17 <t <T.

3 lim k(z)G(z,t,&,7) =6z — ).

t—7t

4 For any fized T € (0,T), there exist a positive constant cg such that

1
/k(m)G(m,t,f,T)dﬁ < ¢y for any (z,t) € I x (1,T).
0

Proof. By modifying proof of lemma 4.a and 4.c [7], we obtain the proof of 1 and 2, respectively. For
proof of 3, let us consider the following problem:

Lw(z,t,§,7)=0forz, e Tand 0 < 7 <t < T,
w(0,t,&,7) =0=w(l,t,§,7) for 0 <7 <t <T,
lim+ k(z)w(z,t,&,1) = d(xz — £).

t—T1

By equation (6.2.3), we have that for any ¢ > 7,

w(a,t,6,7) = [ kG2, t,n,7)7—=0(n = §)dn = G(z,t,£,7).

1
k(n)

o _

Hence, we get the proof of 3. We next prove 4. For any ¢t > 7. Let us consider the series

M8

1
/ F(E) () (€)e TV,

n=1
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1 00
Since | [ k(§)¢n(w)qﬁn(f)e_)‘“(t_ﬂdﬁ’ < (max k‘(m)) K2)\2de=An(t=7) and, by assumption, the series > A\2%e
0

xzel n=1

converges, Z fk ()b (§)e= = T)dE converges uniformly for any (z,t,7) € I x (1,T) x (0,T).
n=10
Hence, we obtain the proof of 4. Therefore, the proof of this lemma is complete.

Next theorem says to local existence of a solution u of the equivalent integral equation (6.2.3).

Theorem 6.2.3 There exists a Ty with 0 < Ty < T such that the equivalent integral equation (6.2.3)
has a unique continuous solution u on @Tl'

Proof. We will use the fixed point theorem to prove existence of a continuous solution u of the
equivalent integral equation (6.2.3). Since }k(ﬁ)G(x,t,f, 0)d¢ < K; for some positive K1, we let M =
(K7 4 1) max |ug(x)| + 1. Locally Lipschitz pOroperty of f implies that there exists a positive constant Ly
dependingeoln M such that for any z,y € (0, 00) with |x| < M and |y| < M,

|f(z) = f()| < Lar |z =yl

We then choose

1 1
Ty <mind —— ——\ 6.2.4
' {Cof(M) colins } (624
Define a set E by
E =<{ueC(Qr) such that max |u(z,t)| < M. (6.2.5)
(z,t)€QT,
Then, E is a Banach space equipped with the norm |u|, = max |u(z,t)|. Let
(#,1)€EQn

1
Au(z,t) = / K(©)G (. 1. £, 0)uo (€)dé
0

t 1
—l—o/O/k:({)G(x,t,f,T)f(u(xo,T))dde. (6.2.6)

for any u € E. We next show that the operator A defined by (6.2.6) maps E into itself and that A is
contractive. Let u,v € E. We then have that

1

Au(e, 1) < / K(E)G (a1, €,0)up(€)dé

0

t
“f
0

k(&)G(x,t,&,7) f(u(xo, 7))dédT]| . (6.2.7)

o—__

From (6.2.7) and lemma 6.2.2.4,

|Au(z, t)]

IN

Klmax|u0 )+ f(M // G(z,t,&,7)dEdr

IN

K1 ma%(|uo( )| +f( )CoTl.
fAS
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By definition of 77, Au € E for any u € E. Since

[Au(z,t) — Av(z,t)] < //k(&)G(xahf,T)[f(u(x(ﬂ))—f(v(xoﬁ))]dde
0 0

t 1
< Ly k(&)G(x,t,&,7) |u(xg, 7) — v(x0,t)| dEdT
/]
t o1
< Ly k’(f)G(l‘, t, g? T)dng |u - U|E
/]
S C()LMT1 |U—U‘E, (628)

definition of T and (6.2.8) yield that A is contractive. The fixed point then implies that there exists a
unique u € F satisfying equation (6.2.3). Therefore, the proof of this theorem is complete.

Lemma 6.2.4 Let v be a classical solution of the following problem:

Lv(z,t) > B(z,t)v(xo,t) for (z,t) € Qr,
v(0,t) > 0 and v(1,t) > 0 fort € (0,T), (6.2.9)
v(z,0) = ug(x) for x €1,

where B is a nonnegative and bounded function on Qp. Then v(z,t) >0 for any (z,t) € Qp.

Proof. By modifying the proof of proposition 2.3.4.1, we obtain the proof of this lemma.
Next lemma gives additional properties of a solution u of problem (6.1.1).

Lemma 6.2.5 Let u be a continuous solution of problem (6.1.1). Then u(x,t) > ug(x) and uy(x,t) > 0
for any (x,t) € Q.

Proof. Let z(x,t) = u(z,t) — up(x) on Q. Let us consider that for any (z,t) € Qr,

Lefot) = Fludans) + s 2o (#0) ™)

Condition (D) implies that

k(lﬂf)czc ( (z) dusix)) > —f(uo(xo)) on I

and then we obtain that, by the second mean value theorem, for any (z,t) € Qr,

Lz(x,t) > f(u(o,1)) — f(uo(zo)) = f'(m)z(x0, 1)

where 7, is between u(zg,t) and ug(xg). Moreover, for any (x,t) € {0,1} x (0,T) U T x {0}, z(x,t) = 0.
Lemma 5.2.4 implies that z > 0 on Qp or u > ug on Q. Let h be any positive constant less than T and
w(z,t) = u(z,t + h) — u(z,t) on Qp_j. We then have that, by the second mean value theorem, for any
(x,t) € Qr—n,

Luw(x,t) = f(u(zo,t + h)) — f(u(zo,1)) = f'(n2)w(wo, t)

where 1, is between u(xg,t + h) and u(zg,t). Furthermore, w = 0 on {0,1} x (0,7 — h) and w > 0 on
I x {0} . It then follows from lemma 5.2.4 that w > 0 on Q_,,. This shows that u; > 0 on Q.
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We note that before blow-up occurs, there exists a positive constant M such that |u(x,t)] < M for all
(z,t) € @Tl. Locally Lipschitz continuity of f implies that there exists a positive constant Ljy; depending
on M such that

|f (w(o, )] < Lar [u(wo, )| for any ¢ € [0, T1].

Lemma 6.2.6 If f'(ug(z0)) > Las, then u(x,t) > Laju(x,t) on Qp, .

Proof. Let z(z,t) = uy(2,t) — Lyu(z,t) on Qg . We then have that for (z,t) € Qry,
Lz(a,t) = f'(u(xo, t))ue(xo, t) — Las f(u(zo, t)).
Locally Lipschitz continuity of f implies that for (z,t) € Qr,,

Lz(x,t) f(u(zo, t))us (2o, t) — L3 u(xo,t)
' (uo (o) )us (o, t) — L u(wo, t)
LMut (Cﬂo, t) - L?Wu(x()a t)

LJV[Z(Io,t).

vV IV IV

From lemma 6.2.5, 2(0,t) = u4(0,¢) = 0 and 2(1,t) = us(1,t) = 0 for ¢ € (0,71). If, in condition (D), we
set ¢ = Ly, then condition (D) implies that for any x € I,

z(z,0) = tlg% ug(x,t) — Lpsug(z)
i (PO ) ¢ ol - Larualo)
> 0.

Therefore, by lemma 6.2.4, the proof of this lemma is complete.

Lemma 6.2.7 If ug(zo) > uo(z) for all z € I, then u(xo,t) > u(z,t) for any (z,t) € Qp,.

Proof. Let z(x,t) = u(xo,t) — u(z,t) on @Tl' We have that, on @Tl’ lemma xx and locally Lipschitz
property of f yield that

Lz(x,t)

ut(2o,t) — f(u(zo,1))
ug(xo,t) — Lasu(zo, t)
0.

AV,

Since z(0,t) = u(zo,t) > ug(xg) > 0, 2(1,t) = u(wo,t) > ug(xg) > 0 for t € (0,71) and z(x,0) =
up(xo) — up(x) > 0 for x € I, by lemma 6.2.4, we get the proof of this lemma.

Theorem 6.2.8 Let T, be the supremum of all Ty such that a continuous solution u of an equivalent
integral equation (6.2.3) exists. If Timax is finite, then u(xg,t) is unbounded as t tends to Tiax.

Proof. Suppose that u(zg, Tmax) is finite. Let N = w(zg, Timax) + 1. By theorem xx and a fact that
u is nondecreasing in t, there exists a finite time f(> Timax) depending on N such that the equivalent
integral equation (6.2.3) has a unique continuous solution u on the time interval [0, Tv] for any = € I. By
the definition of Ty, .y, We get a contradiction.
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6.3 A sufficient condition to blow-up in finite time

Let A1 be the first eigenvalue of a singular eigenvalue problem (6.1.2) and let ¢; be its corre-
sponding eigenfunction. Without loss of generality, we assume that

1
/k(ac)q’)l(x)da: =1 (6.3.1)
0
We then define a function H by
1
H(t) = / k(2) 1 (2)ulz, £)dz. (6.3.2)
0

Theorem 6.3.1 Assume that

1 ug attains its maximum at point xq.

2 f(s) > bsP withb>0 and p > 1.

3 HO) > (3)77.

Then a solution u of problem (6.1.1) blows up in finite time.

Proof. Multiplying equation (6.1.1) by k(x)¢;1(x) and integrating equation (6.1.1) from 0 to 1 with
respect to x yield

%t(t) =~ () Jr/k(ﬂf)Jc(U(%oaf))(in(fn)dac.
0

By lemma 6.2.7 and assumption 2, we have

dZt(t) > CNH() + /1 k(@) f (ulz, £))n (2)de
{
> CMH() 4+ /1 K2y (z, t) by () da (6.3.3)
Holder inequality implies that 0
/1 k() (2)uz, t)de < /1 () () da N /1 k() (2)? (z, £)da ;
From (6.3.1), \(:ze get 0 O
/1 k() (2)? (z, £)da > ( /1 k(x)¢1(x)u(x7t)dx) - H(1). (6.3.4)
0 0

From equation (6.3.3) and (6.3.4), we obtain

H'(t) > =X\ H(t) +bHP(t)
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or

1
Ly |:H1—p(0> — bl ent-m

HP (1) >

It then follows from assumption 3 that there exists a ZA“(> 0) such that H tends to infinity as t converges
to T. By the definition of H (6.3.2), we find that

1

H(t) < /k(x)(j)l(m)dx u(xo, t) = u(xo, t).

0

Therefore, a solution u of problem (6.1.1) blows up at point xg as t tends to T.

6.4 The blow-up set

Theorem 6.4.1 The blow-up set of a solution u of problem (6.1.1) is I.

Proof. From (6.2.3), we have that for ¢ € (0, Tinax),

u(zg,t) = /k(ﬁ)G(mo,t7§,0)uo(§)d§

0

t 1
+ / / K(E)G (@0, t.€,7) f (ulwo, 7)) dédr

< Iilgjxuo(x)—l—Co/f(u(.ro,T))dT. (6.4.1)
0

By theorem 6.2.8, we obtain that as ¢ tends to Tiax,

Tmax

[ ftutaorir = . (64.2)
0

On the other hand, by positivity of k, G and ug, we get that for any (z,t) € Qr,

max )
1

t
u(et)> [ [ HOG( 6 1 (ulao,r))dedr
0 0
1
Since there exists a positive constant ¢; such that [ k(§)G(x,t,&,7)dE > ¢1, we obtain that
0

t

u(z,t) > ¢ /f(u(xo,T))dT for all (z,t) € Qr,..-
0

Hence, the solution u tends to infinity for all « € I as t approaches to Tyax. Therefore the proof of this
theorem is complete.
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Note that this chapter was the object of the article :

P. Sawangtong. B. Novaprateep and W. Jumpen. Complete blow-up for a degenerate semilinear
parabolic problem with a localized nonlinear term, Proceeding of International Conference on Fluid
Mechanics and Heat and Mass Transfer, Corfu Island, Greece, 22-24 July 2010, p. 95-99.
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Chapter 7
Conclusions

The motivation of this thesis is that the author, major advisor and co-advisors have studied the
paper by Chan and Yang [9]. In [9] authors considered the semilinear parabolic problem with a localized
nonlinear term: let ¢ be any positive real number: z%u; — uy, = f(u(xo,t)) with nonhomogeneous initial
and Dirichlet boundary conditions and xg is a fixed point in the domain of z. They proved that their
problem has a blow-up solution and the blow-up of such a blow-up solution is the whole domain of .
They furthermore gave a condition to guarantee occurrence for blow-up in finite time of their problem.
Applications of this kind of problems are mentioned in the first chapter.

The purpose of this thesis is to generalize the results of Chan and Yang [9] to a more general form
and obtain the same results as in [9], that is, existence and uniqueness of a blow-up solution, blow-up set
of such a blow-up solution and the sufficient condition to blow-up in finite time. Our generalized problem
is k(z)ur — (p(x)ug)r = k(x) f(u(xo,t)) with nonhomogeneous initial and Dirichlet boundary conditions
and xg is a fixed point in the domain of z.

This thesis is divided into six chapters as follows. The history of the study of blow-up problems is
given in the first chapter. Chapter 2 and 3 deal with our problem in 1-dimension of variable z in the
case that k and p are positive functions on the whole domain of . The difference of chapters 2 and 3 is
that in chapter 2 existence of a blow-up solution is shown by the functional method, i.e., the semigroup
method, but in chapter 3 it is proven by a classical method, i.e., the Green’s function method. Chapter
4 is concerned with the extended problem of the previous problem to N dimensions in the variable x by
the using semigroup method. Before studying the case that k£(0) = 0 = p(0) and k and p are positive on
the whole domain of x except for the point x = 0, we study the particular problem which results from
replacing function k with z® and function p with 2 in chapter 5. In the last chapter, we investigate a
blow-up solution of our problem in such a case by using the Green’s function method.

The advantage of the semigroup method is that before applying the semigroup method to our problem,
we have to transform our problem into the equivalent evolution problem and then since, in the semigroup
theory, there are many theorems on the existence of solutions of evolution problems, it is convenient to
use a suitable theorem in the semigroup theory to show existence of solutions to our problem. On the
other hand, the difficulty is that, in using such a suitable theorem, we have to make conditions in our
equivalent evolution problem satisfy assumptions of such a suitable theorem.

The advantage of the Green’s function method is that the Green’s function method is a fundamental
method in the topic of partial differential equations to find solutions of P.D.E. problems and furthermore
it is included in elementary courses at the undergraduate level. This is why the Green’s function method
is easy to understand and apply to our problem.

On the other hand, there are limitations to the application of semigroup method and Green’s function
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method to our problem. Firstly, we mention limitations in using the Green’s function method. Before
applying the Green’s function method to our problem, we have to find eigenvalues and eigenfunctions
of the corresponding eigenvalue problem in order to construct the Green’s function associated with our
problem. Different assumptions of k and p in chapters 3 and 6 allow us to obtain the regular eigenvalue
problem in chapter 3 and the singular eigenvalue problem in chapter 6. For chapter 3, since there are
many text books on Partial Differential Equations (P.D.E.) concerning the general regular eigenvalue
problem, we have the asymptotic property of eigenvalues, A\, = O(n?) as n — oo, and boundedness
of eigenfunctions. With these facts, we can obtain desired results in chapter 3. But chapter 6 deals
with the general singular eigenvalue problem. However, there are no books written on eigenvalues and
eigenfunctions of the general singular eigenvalue problem. This is the reason why we must construct
condition (G) in chapter 6.

As previously discussed, if we want to apply the semigroup method to our problem, we have to
transform our problem into the equivalent evolution problem. In order to show that the operator F' is
Holder continuous in chapter 2, we need proposition 2.3.1.3. Proposition 2.3.1.3 follows from the Rellich
theorem. The embedding of H} into L? is compact. In the case that k(0) = 0 = p(0) and k and p are
positive on the whole domain of = except for the point z = 0. We can define the spaces H} and L? similar
to those in section 2.3 of chapter 2. The limitation of applying semigroup method to our problem is that
we don’t know whether the embedding of H} into L? is compact in such a case.

In order to achieve our objective to apply the semigroup method to our problem in the case that
k(0) = 0 = p(0) and k and p are positive on the whole domain of z except for the point = 0, we may
complete this problem completely in the future.
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Résumé de la thése : On étudie l'existence de ‘blow-up’ et ’ensemble des points de ‘blow-up’ pour
une équation de type chaleur dégénérée ou non avec un terme source uniforme fonction non linéaire de la
température instantanée en un point fixé du domaine. L’étude est conduite par les méthodes d’analyse
classique (fonction de Green, développements en fonctions propres, principe du maximum) ou fonction-
nelle (semi-groupes d’opérateurs linéaires).

TITRE en anglais : COMPLETE BLOW-UP FOR A SEMI-LINEAR PARABOLIC PROBLEM
WITH A LOCALIZED NONLINEAR TERM.

RESUME en anglais : We study existence of blow-up and blow-up sets for a (degenerate or not)
Heat-like equation with a uniform source term nonlinear function of the instantaneous temperature at
a given point of the domain. The techniques are relevant from either classical analysis (Green function,
eigenfunction expansion, maximum principle) or function analysis (semi-group of linear operators).

DISCIPLINE : MECANIQUE.
MOTS-CLES : ‘Blow-up’, Problemes paraboliques semi-linéaires, Semi-groupes, Fonctions de Green.
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