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Résumé de la thèse

Ce travail est consacré á l’étude de problèmes de ‘blow-up’ pour une équation de type de la
chaleur avec un terme source uniforme fonction de la température instantanée en un point x0 du domaine
spatial Ω. Pour simplifier, on suppose que la (variation de) température u satisfait des conditions aux
limites de Dirichlet homogènes.

Rappelons la définition d’un ‘blow-up’ en temps fini. Soit

Tmax = sup {T > 0 tel que u(x, t) est borné dans Ω× (0, T ) }

Si Tmax = ∞ , il n’y a pas de ‘blow-up’ en temps fini la solution u le l’équation parabolique semi linéaire
est dite globale. Si Tmax < ∞, alors

lim
t→Tmax

‖u(·, t)‖L∞(Ω) →∞

et on dit qu’ il y a ‘blow-up’ en un temps fini Tmax. L’ensemble de ‘blow-up’ est alors :

B = {x ∈ Ω by tel que ∃ {xn, tn} ⊂ Ω× (0, Tmax); {xn, tn} → {x, Tmax}
et u(xn, tn) →∞ quand n →∞.}

Tout point x de B est appelé point de ‘blow-up’. Si B = Ω, on dit que le ‘blow-up’ est total, si B se
réduit à un singleton on parle de ‘blow-up’ en un seul point.

In 2000, C. Y. Chan and J. Yang [1] ont considéré l’équation semi-linéaire parabolique

xqut − uxx = f(u(x0, t)), (x, t) ∈ (0, 1)× (0, T )

u(0, t) = u(1, t) = 0, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ (0, 1)

x0 ∈ (0, 1)

Sous certaines conditions sur u0 et f , ils ont montré qu’il y avait ‘blow-up’ en temps fini et que le ‘blow-up’
était total.

Le propos de cette these est de généraliser l’étude de C.Y. Chan et J. Yang à :

k(x)ut − (div(p(x)∇u) = k(x)f(u(x0, t)), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, sur ∂Ω∀t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(0.0.1)

où Ω est un domaine de RN , x0 est un point donné de Ω, k, µ, f et u0 sont des fonctions données.
Cette thèse est divisée en six chapitres. Un rappel historique des problèmes de ‘blow-up’ constitue le

chaptre 1.
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Les chapitres 2 et 3 traitent le problème monodimensionnel sous la condition de stricte positivité
de k et p sur tout Ω. La différence entre le chapitre 2 et le chapitre 3 est qu’au chapitre 2 l’existence
d’une solution avec ‘blow-up’ est établie par une méthode d’analyse fonctionnelle, i.e la méthode des
semi-groupes d’opérateurs linéaires dans un espace de Hilbert, alors qu’au chapitre 3 cela est prouvé par
une méthode d’analyse plus classique : la méthode des fonctions de Green. Le chapitre 4 concerne une
extension des résultats obtenus aux cas de dimensions N ≤ 3 en utilisant la méthode des semi-groupes.
Avant d’examiner, en dimension 1, le cas où k(0) = p(0) = 0 avec k(x), p(x) > 0 sur (0, 1], on se fait la
main au chapitre 5 avec k(x) = xα, p(x) = xβ , α, β > 0. Le chapitre suivant traite le cas général pour k

et p avec, comme au chapitre 5, une méthode de fonctions de Green.
Pour plus de détails, au chapitre 2, en vue d’appliquer la théorie des semi-groupes on transforme le

problème en une équation d’évolution du type :

ut(t)−Au(t) = F (u(t)) pour t > 0 et u(0) = u0, (0.0.2)

où A est l’opérateur linéaire non borné de D(A), le domaine de A, vers L2(I) défini par :

D(A) =
{
u ∈ H1

0 (I) tel que ∃!w ∈ L2(I) et
∫

I

k(x)w(x)ϕ(x)dx = −
∫

I

p(x)Dxu(x)Dxϕ(x)dx, ∀ϕ ∈ H1
0 (I)



 ,

Au = w pour tout u ∈ D(A) où Dx est la dérivée au sens des distributions sur I. L’opérateur (non
linéaire) F appliquaant D(A) dans L2(I) est défini par

F (u) = f(u(x0, t)).

Rappelons que L2(I) = { v est une fonction mesurable telle que
∫
I

k(x) |v(x)|2 dx < ∞} est un espace de

Hilbert équippé du produit scalaire et de la norme :

〈u, v〉L2(I) =
∫

I

k(x)u(x)v(x)dx, et |u|L2(I) =




∫

I

k(x) |u(x)|2 dx




1/2

,

respectivement et H1(I) =
{
v ∈ L2(I) tel que Dxv ∈ L2(I)

}
est un espace de Hilbert de carré de norme

|v|2H1(I) = |v|2L2(I) +
∫

I

p(x) |Dxv(x)|2 dx

tandis que le sous-espace fermé H1
0 (I) =

{
v ∈ H1(I) tel que v(0) = 0 = v(1)

}
est équippé de la norme

équivalente de carré :

|v|2H1
0 (I) =

∫

I

p(x) |Dxv(x)|2 dx.

Notre principal résultat consiste en les 4 théorèmes :

Théorème 2.2.1 Il existe un nombre positif T tel que le problème d’évolution (0.0.2) ait une unique
solution classique (au sens de la théorie des semi-groupes, i.e u ∈ C([0, T ], D(A)) ∩ C1([0, T ], L2(I)))
définie par :

u(t) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ

v



où S(t) est le semi-groupe analytique engendré par A.

Théorème 2.2.2 Si [0, Tmax) est l’intervalle fini maximal pour lequel la solution u de (0.0.2) est bornée,
alors |u(x0, t)| tend vers l’infini quand t tend vers Tmax.

Théorème 2.2.3 L’ensemble de ‘blow-up’ est I.

Théorème 2.2.4 Si,

1 u0 atteint son maximum en x0,

2 f(ξ) ≥ bξp avec b > 0 et p > 1,

3 H(0) >
(

λ1
b

) 1
p−1 avec H(t) =

∫
I

k(x)φ1(x)u(x, t)dx où λ1 est la première valeur propre et φ1 la

fonction propre associée de

d

dx

(
p(x)

d

dx
φ(x)

)
= λk(x)φ(x) pour x ∈ I et φ(0) = 0 = φ(1),

alors il y a ‘blow-up’ en temps fini pour (0.0.1).

On a utilisé le fait que A est m-dissipatif autoadjoint et que F est Hölder-continue d’exposant
α ∈ (0, 1).

Au chapitre 3, où on étudie le même problème, on prouve le ‘blow-up’ par une méthode de fonctions
de Green.

Pour construire la fonction de Green, on considère le problème (régulier) de valeurs propres associé :

d

dx

(
p(x)

d

dx
φ(x)

)
= λk(x)φ(x) pour x ∈ I et φ(0) = 0 = φ(1) (0.0.3)

La propriété de complétion des fonctions propres φn de (0.0.3), implique que la fonction de Green est
définie par :

G(x, t, ξ, τ) =
∞∑

n=1

φn(x)φn(ξ)e−λn(t−τ) pour x, ξ ∈ I et t > τ.

En utilisant le theéorème de Green, l’équation intégrale correspondant au problème (0.0.1) est alors :

u(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)u0(ξ)dξ. (0.0.4)

Pour prouver qu’il existe un réel positif T tel que (0.0.4) ait une solution u continue sur [0, T ] pour
tout x ∈ Ī, nous construisons une suite {wn} avec w0(x, t) = u0(x) par :

k(t)(wn)t − (p(x)(wn)x)x = k(x)f(wn−1(x0, t)), (x, t) ∈ I × (0,∞),
wn(0, t) = 0 = wn(1, t), t > 0,

wn(x, 0) = u0(x), x ∈ I.



 (0.0.5)

Ensuite, on montre que

1 la suite {wn} est une fonction non décroissante de t,

2 il existe T > 0 tel que {wn} converge ponctuellement vers u sur [0, T ] pour tout x ∈ Ī.
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Aussi, par le théorème de Dini, on peut conclure que {wn} converge uniformément vers u sur [0, T ]
pour tout x ∈ Ī. Ainsi, (0.0.4) a une unique solution u continue sur [0, T ] pour tout x ∈ Ī. Avec cette
idée, on peut prouver le résultat suivant :

Théorème 3.3.3 Il existe T > 0 tel que (0.0.4) a une solution unique non négative continue sur
[0, T ] pour tout x ∈ Ī, u(x, t) ≥ u0(x) pour tout (x, t) ∈ Ī × [0, T ] et u est une fonction non décroissante
de t.

Soit Tmax le supremum des T tels que (0.0.4) ait une solution non négative.

Théorème 3.3.4 Si Tmax est fini, alors u(x0, t) est non borné quand t → Tmax.
Comme au chapitre 2, nous donnons la condition suffisante pour garantir l’existence d’un ‘blow-up’

eu temps fini.

Théorème 3.4.1 Si ∞∫

H(0)

ds

H(s)− λ1s
< ∞

où H(s) =
1∫
0

k(x)u(x, s)φ1(x)dx, λ1 la première valeur propre de (0.0.3) et φ1 la fonction propre associée,

alors la solution de (0.0.2) présente un ‘blow-up’ en temps fini.

Théorème 3.5 Si une solution de (0.0.2) présente un ‘blow-up’ en temps fini, alors l’ensemble des
points de ‘blow-up’ est Ī.

Au chapitre 4 nous étendons les résultats au cas N-dimensionnel (N ≤ 3) avec des conditions de stricte
positivité pour k et p en tenant compte, gràce à la théorie de l’interpolation et les injections de Sobolev,
de

D(A) ↪→ D((−As)) ↪→ H2s(Ω) ↪→ C(Ω)

avec s ∈ (sN , 1) et sN = N/4 pour tout N ≤ 3.

Au chapitre 5 est examiné un cas dégénéré pour le problème (0.0.1) où k(x) = xα, p(x) = xβ α, β > 0.
Le problème aux valeurs propres associé

d

dx
(xα dφ

dx
) = λxβφ(x) pour x ∈ I, φ(0) = φ(1) = 0 (0.0.6)

est singulier, mais on dispose de propriétés suffisantes sur les valeurs propres et les fonctions propres pour
obtenir à propos du ‘blow-up’ des résultats dans l’esprit du chapitre 3.

Le dernier chapitre est consacré au cas dégénéré plus général k(0) = p(0), k et p > 0 sur (0, 1].
Diverses conditions sont introduites en vue de l’existence, la complétion et la bornitude des fonctions
propres. Comme au chapitre 3, le problème (0.0.1) est transformé en une équation intégrale, mais
l’existence d’un ‘blow-up’ va être obtenue ici en utilisant le théorème de point fixe de Banach dans un
ensemble

E(M,T ) = {u ∈ C(Ī × [0, T ] tel que max
(x,t)∈Ī×[0,T ]

|u(x, t)| ≤ M }

Pour conclure, on peut dire que chacune des 2 méthodes : semi-groupes et fonction de Green présente
des avantages ou des inconvénients quant à leur mise en oeuvre. L’intérêt de la méthode semi-groupes
réside dans sa généralité et dans la panoplie de théorèmes concernant les équations d’évolution semi-
linéaires. Il s’agit essentiellement de trouver le bon cadre fonctionnel et les bonnes propriétés sur f

générant de bonnes propriétés sur F pour conclure quant à l’existence de ‘blow-up’ et la nature de
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l’ensemble des points de ‘blow-up’. L’avantage de la méthode des fonctions de Green est que cet outil
fondamental en théorie des équations aux dérivées partielles est enseigné dans tous les cours classiques
et donc a été facile à comprendre et à utiliser pour le problème considéré dans cette thèse.

Une limitation de la méthode des fonctions de Green est dans la construction même de celles-ci, ce
qui peut arriver Lorsqu’on manque d’informations sur les valeurs propres ou fonctions propres. Ce fut le
cas au chapitre 6 où nous n’avons pas trouvé dans la litérature des résultats concernant des cas dégénérés
pour k et p très généraux. En réalité, cette limitation de connaissance de résultats spectraux va se
traduire dans la méthode des semi-groupes par la difficulté à choisir un bon cadre fonctionnel assurant
de bonnes propriétés pour F . On est amené à travailler dans un espace L2 avec le poids k et à remplacer
H1

0 par un espace V complété pour l’intégrale du carré de la dérivée avec le poids p, nous ne savons pas
dans les cas généraux quand V est compact dans L2

k.
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Chapter 1

Introduction

There has been a tremendous amount of recent activity due to the subjects of solutions to partial
differential equations blowing up in finite time. The mathematical theory for this is extensive and reviews
may be found in Levine (1990) and Samarskii et al. (1994). Finite time blow-up occurs in situations in
mechanics and other areas of applied mathematics, and studies of these phenomena have very recently
been gaining momentum.

The simplest form of spontaneous singularities in nonlinear problems appears when the variable or
variables tend to infinity when time approaches a certain finite limit T > 0. This is what we call a blow
-up phenomenon. Blow-up occurs in an elementary form in the theory of ordinary differential equations
(ODEs), and the simplest example is the following initial-value problem:

ut = u2, t > 0,

u(0) = a,

with u = u(t) and a > 0. It then is immediate that a unique solution u exists in the time interval
0 ≤ t < T = 1/a. Since the solution u is given by the formula u(t) = 1/(T − t), one see that u is a smooth
function for 0 ≤ t < T and also that u(t) →∞ as t → T−. We can say that the solution u of this problem
blows up in finite time at t = T and also that u has blow-up at that time. Blow-up is referred to in Latin
languages as explosion. Starting from this example, the concept of blow-up can be widely generalized as
the phenomenon whereby solutions cease to exist globally in time. Thus, a first step is given by ODE’s
of the form ut = up, with p > 1 and, more generally,

ut = f(u),

where f is positive and continuous under the condition

∞∫

1

ds

f(s)
< ∞.

This Osgood’s condition in the ODE theory established in 1898 [22] is necessary and sufficient for the
occurrence of blow-up in finite time for any solution with positive initial data. More generally, we can
think of systems ut = f(t, u) for a vector variable u ∈ Rn. In this case we may have blow-up due to the
same mechanism if f is super-linear with respect to u for |u| large, and also blow-up due to the singular
character of f with respect to t at certain given times.

The subject of blow-up was posed in the 1940’s and 50’s in the context of Semenov’s chain reaction
theory, adiabatic explosion and combustion theory, see [16] and [26]. A strong influence was also due to
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blow-up singularities in gas dynamics, the intense explosion (focusing) problem with second kind self-
similar solutions considered by Bechert, Guderley and Sedov in the 1940’s [4], p. 127. An essential increase
of attention to blow-up research in gas dynamics, laser fusion and combustion in the 70’s was initiated
by the numerical results [21] on the possibility of the laser blow-up like compression of deuterium-tritium
(DT) drop to super-high densities without shock waves. The problem of localization of blow-up solutions
in reaction-diffusion equations was first proposed by Kurdyumov [19] in 1974.

The mathematical theory has been investigated by researches in the 60’s mainly after approaches to
blow-up by Kaplan [18], Fujita [14], [15], Friedman [13] and some others. There are two classical scalar
models. One of them is the exponential reaction model

ut = ∆u + λeu, λ > 0,

which is important in combustion theory [26] under the name of solid-fuel model (Frank-Kamenetsky
equation) and also in other areas. The occurrence and type of blow-up depends on the parameter λ > 0,

the initial data and the domain. The other classical blow-up equation is

ut = ∆u + up, p > 1.

Both semilinear equations were studied in the pioneering works by Fujita.
To define the phenomenon of blow-up in finite time, let u be a solution to a first order in time partial

differential equation, say
ut = Lu, (1.0.1)

for some partial derivative operator L which involves spatial derivatives. Suppose this equations is defined
on a domain Ω ⊂ RN , for some positive range of times t > 0. The solution to (1.0.1) will also be required
to satisfy suitable boundary and initial data. The definition of blow-up in finite time is given if we define
a number T ∗ by

T ∗ = sup {T > 0 : u(x, t) is bounded in Ω× (0, T ), where u satisfies (1.0.1)} .

If T ∗ = +∞,then blow-up in finite time does not occur and solutions are said to be global. If T ∗ < ∞,

then
lim sup

t→T∗
‖u(t)‖∞ = ∞

and one says the solution blows up at time T ∗. Furthermore, we can define the blow-up set, denoted by
B, by

B =
{
x ∈ Ω : ∃{xn, tn} ⊂ Ω× (0, T ), tn → T−, xn → x and u(xn, tn) →∞}

.

Its points in B are the blow-up points.
My inspiration comes from studying following papers. J. M. Chadam, A. Peirce and H. M. Yin [5] in

1992 studied the blow-up property of solutions to the problem

ut −4u = f(u(x0, t)), (x, t) ∈ Ω× (0, T )
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = u0(x), x ∈ Ω,

where T is a positive number, Ω is a bounded domain in Rn with smooth boundary ∂Ω while x0 is a
fixed interior point of Ω. They showed that under some conditions the solution blows up in finite time
and the blow-up set is the whole region. In 2000, C. Y. Chan and J. Yang [9] studied the same question
for the degenerate semilinear parabolic initial-boundary value problem

xqut − uxx = f(u(x0, t)), (x, t) ∈ I × (0, T ),
u(0, t) = 0 = u(1, t), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ I,
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where q is any nonnegative real number, f and u0 are given functions. By using Green function method,
they proved that with suitable conditions, u blows up in finite time, and the blow-up set is the entire
interval I.

In this work, we study a semilinear parabolic problem with a localized nonlinear term, ut− 1
k(x) (p(x)ux)x =

f(u(x0, t)) with k and p > 0 and x0 be in the domain of x, which satisfies the Dirichlet boundary
conditions and nonhomogeneous initial condition.We show the existence and uniqueness of a blow-up
solution by semigroup theory and the blow-up set of such a solution. Furthermore, we give the suffi-
cient condition to blow-up in finite time. We also consider a degenerate semilinear parabolic problem,
xαut − (xβux)x = f(u(x0, t)), which satisfies the Dirichlet boundary conditions and nonhomogeneous
initial condition. The existence and uniqueness of a blow-up solution is established by Green’s function
method. Moreover, the sufficient condition for occurrence of blow-up in finite time is shown. We finally
extend our degenerate semilinear parabolic problem in the form, ut − 1

k(x) (p(x)ux)x = f(u(x0, t)) with
k(0) = 0 = p(0) and k, p > 0. We still obtain the same results as previous problems.

4



Chapter 2

Complete blow-up for a semilinear

parabolic problem with a localized

nonlinear term via functional

method

2.1 Introduction

Let x0 be a fixed point in I = (0, 1) and denote its closure by I. We study the semilinear
parabolic initial-boundary value problem with a localized nonlinear term

ut(x, t)− 1
k(x) (p(x)ux(x, t))x = f(u(x0, t)), (x, t) ∈ I × (0,∞),

u(0, t) = 0 = u(1, t), t > 0,

u(x, 0) = u0(x), x ∈ I,





(2.1.1)

where k ∈ L∞(I), p ∈ W 1,∞(I), u0 ∈ H2(I) ∩ H1
0 (I) and f ∈ C2([0,∞)). Our study is exclusively

concerned with the question of existence and uniqueness of the blow-up solution of problem (2.1.1) and
the blow-up point of such solution.

Our objective of this chapter is to show existence, uniqueness and blow-up for a classical solution of
problem (2.1.1) by using semigroup theory. Throughout this chapter, we assume the following:

(H1) k ∈ L∞(I) and ∃ km, kM ∈ (0, +∞) such that km < k(x) < kM a.e. x ∈ I,

(H2) p ∈ W 1,∞(I) and ∃ pm, pM , β1, β2 ∈ (0, +∞) such that pm ≤ p(x) ≤ pM and β1 ≤ p′(x) ≤ β2 a.e.
x ∈ I,

(H3) f ∈ C2([0,∞)) is convex with f(0) = 0 and f(s) > 0 for s > 0.

(H4) u0 ∈ H2(I) ∩H1
0 (I) are nontrivial and nonnegative on I and satisfies

d

dx

(
p(x)

du0(x)
dx

)
+ f(u0(x0)) ≥ ζ1u0(x) in I

for some positive constant ζ1,
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In order to obtain existence and uniqueness of a solution of problem (2.1.1), we will consider its
formally equivalent formulation in terms of a nonlinear evolution equation in the Hilbert space L2(I) :

du(t)
dt

−Au(t) = F (u) for t > 0,

u(0) = u0,



 (2.1.2)

where A is the linear unbounded operator from D(A), the domain of A, to L2(I) with

D(A) =
{

v ∈ H1
0 (I) | ∃! w ∈ L2(I) s.t.

∫

I

k(x)w(x)ϕ(x) dx = −
∫

I

p(x)Dxv(x)Dxϕ(x) dx, ∀ϕ ∈ H1
0 (I)

}
,

and Av(x) = w(x) for all v ∈ D(A) and where F is defined by

u ∈ D(A) 7−→ F (u) = f(u(x0, t)) ∈ L2(I).

It will be shown before showing proposition 2.3.1.6 that the definition of F is meaningful.

2.2 Main results

Our results comprise the following four theorems. The first one involves existence and uniqueness
of a solution u of problem (2.1.2) (in the sense of semigroup theory) whereas the last three theorems deal
with the blow-up time of u, blow-up set and sufficient condition to blow-up in finite time, respectively.

Theorem 2.2.1 There exists a finite positive constant T such that the evolution problem (2.1.2) has
a unique solution u ∈ C([0, T ], D(A)) ∩ C1([0, T ], L2(I)) defined by

u(t) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ

where S(t) is an analytic semigroup generated by A.

Theorem 2.2.2 If [0, Tmax) is the finite maximal time interval in which a continuous solution u of
problem (2.1.2) exists, then |u(x0, t)| is unbounded as t tends to Tmax.

Theorem 2.2.3 The blow-up set of a solution u of problem (2.1.1) is I.

Theorem 2.2.4 Assume that

1 u0 attains its maximum at the point x0,

2 f(ξ) ≥ bξp with b > 0 and p > 1 and

3 H(0) >
(

λ1
b

) 1
p−1 where the operator H defined by (2.3.4).

Then the solution u of problem (2.1.1) blows up in finite time.
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2.3 The proof of main results

Hereafter we use an inner product and a norm, equivalent to the usual one, on L2(I) by

〈v, w〉 =
∫

I

k(x)v(x)w(x) dx, and |v|L2(I) =
(∫

I

k(x) |v(x)|2 dx

)1/2

.

If Dxv denotes the distributional derivative with respect to x of the distribution v ∈ D′(I), we recall that

H1(I) =
{

v ∈ L2(I)
∣∣ Dxv ∈ L2(I)

}
.

The Hilbert space H1(I) here is equipped with the norm (equivalent to the usual one):

|v|2H1(I) = |v|2L2(I) +
∫

I

p(x) |Dxv(x)|2 dx

whereas its closed subspace H1
0 (I) =

{
v ∈ H1(I)

∣∣ v(0) = 0 = v(1)
}

is equipped with

|v|2H1
0 (I) =

∫

I

p(x) |Dxv(x)|2 dx;

the norm induced by |·|H1(I) .

2.3.1 The proof of Theorem 2.2.1

To get existence and uniqueness of a solution of problem (2.1.2), we need the following proposi-
tions referred to [17].

Proposition 2.3.1.1 If A is self-adjoint and generates a C0 uniformly bounded semigroup S(t) and
g is Hölder continuous of exponent α ∈ (0, 1]. Then the evolution equation:

du(t)
dt

= Au(t) + g(t) with u(0) = u0 ∈ D(A)

has a unique solution u such that

u ∈ C1([0,∞), L2(I)) ∩ C([0,∞), D(A))

which can be expressed as

u(t) = S(t)u0 +
∫ t

0

S(t− τ)g(τ)dτ.

Observe that the operator A of problem (2.1.2) is given by

Av(x) =
1

k(x)
Dx(p(x)Dxv(x)).

To apply proposition 2.3.1.1 to such an operator, we show first that

Proposition 2.3.1.2 The operator A of problem (2.1.2) is m-dissipative and self-adjoint in L2(I).

Proof. An m-dissipative property of A in L2(I) is an immediate consequence of these two conditions:

1 〈Av, v〉 ≤ 0 for all v ∈ D(A), and
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2 for any λ > 0, R(I − λA) = L2(I), where R(I − λA) and I denote the range of I − λA and the
identity operator on L2(I) respectively.

Condition 1. follows directly from definition of A. To obtain condition 2., letting g ∈ L2(I) and λ > 0,
we need to give an existence of v ∈ H1

0 (I) with the property:

1
λ

∫

I

k(x)v(x)ϕ(x) dx +
∫

I

p(x)Dxv(x)Dxϕ(x) dx =
1
λ

∫

I

k(x)g(x)ϕ(x) dx

for each ϕ ∈ H1
0 (I). Such an existence is guaranteed by Lax-Milgram theorem [3], and thus, A is

m-dissipative.
In order to prove that A is a self-adjoint operator in L2(I), since A is m-dissipative in L2(I), it suffices

to prove that A is symmetric, that is, 〈Av, ϕ〉 = 〈v,Aϕ〉 for all v and ϕ in D(A). Indeed, definitions of
D(A), Av and Aϕ yield

〈Av, ϕ〉 = −
∫

I

p(x)Dxv(x)Dxϕ(x)dx = 〈v, Aϕ〉 .

We note that by an m-dissipative property of A, the operator A generates a C0 semigroup S(t). To solve
problem (2.1.2), it is convenient to introduce the square root of −A, (−A)

1
2 . An elementary way to define

(−A)
1
2 is by considering the eigenvalues and eigenfunctions of −A. The operator (λI−A)−1 is a bounded

well-defined operator on L2(I) with values in H1
0 (I) so that Rellich theorem (the embedding of H1

0 (I)
into L2(I) is compact) implies that (λI −A)−1 is a compact operator on L2(I).

The following proposition is referred from [11].

Proposition 2.3.1.3 (The spectral theory of self-adjoint compact operator) There exists a
sequence (λn, φn) ⊂ (0, +∞)×H1

0 (I) such that

1 Aφn = −λnφn.

2
∫

I
k(x)φn(x)φm(x)dx = δnm.

3
∫

I
p(x)Dxφn(x)Dxφm(x)dx = λnδnm.

4 v(x) =
∑

n∈N
〈v, φn〉φn(x) for all v ∈ L2(I).

5 |v|2L2(I) =
∑

n∈N
〈v, φn〉2 .

6 D(A) =
{

v ∈ L2(I)
∣∣∣∣

∑
n∈N

λ2
n 〈v, φn〉2 < +∞

}
and Av = − ∑

n∈N
λn 〈v, φn〉φn for each v ∈ D(A).

7 S(t)v =
∑

n∈N
e−λnt 〈v, φn〉φn for all (v, t) ∈ L2(I)× [0,∞).

Now, we can define domain of (−A)
1
2 by

D((−A)
1
2 ) =

{
v ∈ L2(I)

∣∣∣∣∣
∑

n∈N
λn 〈v, φn〉2 < +∞

}

and the unbounded self-adjoint operator (−A)
1
2 in L2(I) by

(−A)
1
2 v =

∑

n∈N
λ

1
2
n 〈v, φn〉φn

for all v ∈ D((−A)
1
2 ). Moreover, we obtain the following propositions.

Proposition 2.3.1.4
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1 D((−A)
1
2 ) = H1

0 (I) and
∣∣∣(−A)

1
2 v

∣∣∣
L2(I)

= |v|H1
0 (I) for any v ∈ D((−A)

1
2 ).

2 If v ∈ D((−A)
1
2 ), then S(t)v ∈ D((−A)

1
2 ) and

∣∣∣(−A)
1
2 S(t)v

∣∣∣
L2(I)

=
∣∣∣S(t)(−A)

1
2 v

∣∣∣
L2(I)

≤
∣∣∣(−A)

1
2 v

∣∣∣
L2(I)

.

Proof. Let us prove result 1. first.
If v =

∑
n∈N

〈v, φn〉φn for φn ∈ H1
0 (I), we have in the distributional sense:

Dxv =
∑

n∈N
〈v, φn〉Dxφn

so that
∑

n∈N
λn 〈v, φn〉2 =

∫
I
p(x) |Dxv(x)|2 dx = |v|2H1

0 (I) < +∞. Conversely, if v ∈ D((−A)
1
2 ), the

sequence (VN ), where

VN =
N∑

n=1

〈v, φn〉φn,

is Cauchy in H1
0 (I) because if N < M, then

|VN − VM |2H1
0 (I) =

∫

I

p(x)

∣∣∣∣∣
M∑

n=N+1

〈v, φn〉Dxφn(x)

∣∣∣∣∣

2

dx

=
M∑

n=N+1

〈v, φn〉2
∫

I

p(x) |Dxφn(x)|2 dx

=
M∑

n=N+1

λn 〈v, φn〉2 .

Hence it converges to some V in H1
0 (I) (H1

0 (I) is a Hilbert space) and to v in L2(I) so that v = V ∈ H1
0 (I).

The remaining equality has already been proven.
For result 2., because

∑
n∈N

λne−2λnt 〈v, φn〉2 ≤
∑

n∈N
λn 〈v, φn〉2 for all t ≥ 0, proposition 2.3.1.3 yields:

if v ∈ D((−A)
1
2 ), then S(t)v ∈ D((−A)

1
2 ) and (−A)

1
2 S(t)v = S(t)(−A)

1
2 v for t ≥ 0.

Proposition 2.3.1.5 There exists a C0 > 0 such that
∣∣∣(−A)

1
2 S(t)v

∣∣∣
L2(I)

= |S(t)v|H1
0 (I) ≤

C0

t1/2
|v|L2(I)

for all (v, t) ∈ L2(I)× (0,+∞).

Proof. It is not difficult to see that
∣∣∣(−A)

1
2 S(t)v

∣∣∣
L2(I)

= |S(t)v|H1
0 (I) for any v ∈ L2(I). Let v ∈ L2(I).

Since the function s ∈ R+ 7−→ se−2s ∈ R+ is bounded, we have that there is a C0 > 0 such that

t
∑

n∈N
λne−2λnt 〈v, φn〉2 ≤ C0

∑

n∈N
〈v, φn〉2 = C0 |v|2L2(I) .

Therefore, the definition of (−A)
1
2 yields that S(t)v ∈ D((−A)

1
2 ) and that the estimate involved in

proposition 2.3.1.5 is true.
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Note that the previous result implies that S(t)v ∈ D((−A)
1
2 ) for all t > 0 and all v ∈ L2(I), which, a

priori, is not obvious for a standard semigroup T (t) on L2(I): usually T (t)v belongs to L2(I) only but due
to the self-adjointness of A, the semigroup S(t) is analytic (holomorphic) and consequently S(t)v ∈ D(A)
for all t > 0 and all v ∈ L2(I).

Presently, we are in a position to solve the evolution problem (2.1.2). Firstly, we define a mapping F

by:

v ∈ H1
0 (I) 7−→ F (v) = f(v(x0)) ∈ L2(I). (2.3.1)

Note that this definition is meaningful because v ∈ H1
0 (I) implies that v is continuous on I so that

v(x0) has a meaning and F (v) is a constant on I and therefore belongs to L2(I).

Proposition 2.3.1.6 The mapping F defined by (4.3.2) is locally Lipschitz from D((−A)
1
2 ) (= H1

0 (I))
to L2(I).

Proof. Let v, w ∈ H1
0 (I) (↪→ C(I)) such that |v|C(I) , |w|C(I) ≤ M with M being a positive constant.

Then (H3) implies:

|F (v)− F (w)|2L2(I) ≤ kM |f(v(x0))− f(w(x0))|2

≤ kML2
M |v(x0)− w(x0)|2

≤ kML2
M |v − w|2C(I)

≤ kML2
MC2

s |v − w|2H1
0 (I) ,

where Cs is the constant involved in the Sobolev embedding H1
0 (I) ↪→ C(I).

Next, due to proposition 2.3.1.4, we introduce a concept of mild solution for the evolution problem
(2.1.2).

Definition A function u is said to be a mild solution of problem (2.1.2) if there exists u ∈ C([0,∞),H1
0 (I))

such that

u(t) = S(t)u0 +
∫ t

0

S(t− τ)F (u(τ))dτ, ∀t ∈ [0,∞),

u0 being assumed to belong to H1
0 (I).

We modify the proof of Theorem 2.5.1 of [27] to obtain the following result.

Proposition 2.3.1.7 There exists a T > 0 such that problem (2.1.2) has a unique mild solution.
Moreover, let u(t), ũ(t) be mild solutions corresponding to u0 and ũ0, respectively. Then, for all t ∈ [0, T ],
the following estimate holds:

|u(t)− ũ(t)|H1
0 (I) ≤ |u0 − ũ0|H1

0 (I) e2C0Csk
1
2
M LM T

1
2 .

Proof. Let M = |u0|H1
0 (I) +1 and LM be the Lipschitz constant of f. Let T be a positive constant such

that T < 1
4kM C2

0C2
s L2

M
. We define a mapping Φ by:

v ∈ E 7→ Φ(v) = S(t)u0 +
∫ t

0

S(t− τ)F (v(τ))dτ

where
E =

{
v ∈ C([0, T ],H1

0 (I)) such that |v(t)|H1
0 (I) ≤ M for all t ∈ [0, T ]

}
,
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equipped with the norm:
|v|E = sup

t∈[0,T ]

|v(t)|H1
0 (I) .

We note that E is a closed convex subset of a Banach space C([0, T ],H1
0 (I)). We would like to prove that

Φ(v) ∈ E for any v ∈ E and Φ is a contraction in E. Propositions 2.3.1.4, 2.3.1.5 and 2.3.1.6 imply:

|Φ(v)|E = sup
t∈[0,T ]

∣∣∣∣S(t)u0 +
∫ t

0

S(t− τ)F (v(τ))dτ

∣∣∣∣
H1

0 (I)

≤ |u0|H1
0 (I) + sup

t∈[0,T ]

∫ t

0

|S(t− τ)F (v(τ))|H1
0 (I) dτ

≤ |u0|H1
0 (I) + sup

t∈[0,T ]

∫ t

0

C0

(t− τ)
1
2

(
|f(0)|L2(I) + k

1
2
MLMCs |v|H1

0 (I)

)
dτ

≤ |u0|H1
0 (I) +

(
C0 |f(0)|L2(I) + C0k

1
2
MLMCsM

)
sup

t∈[0,T ]

∫ t

0

dτ

(t− τ)
1
2

≤ |u0|H1
0 (I) + 2C0

(
|f(0)|L2(I) + k

1
2
MLMCsM

)
T

1
2 .

If T is chosen in such a way that

T < min





1
4kMC2

0C2
s L2

M

,
1

4C2
0

(
|f(0)|L2(I) + k

1
2
MLMCsM

)2





,

then Φ(v) is in E for any v ∈ E. Moreover, for any v1, v2 ∈ E

|Φ(v1)− Φ(v2)|E = sup
t∈[0,T ]

∣∣∣∣
∫ t

0

S(t− τ) (F (v1(τ))− F (v2(τ))) dτ

∣∣∣∣
H1

0 (I)

≤ C0 sup
t∈[0,T ]

∫ t

0

1
(t− τ)

1
2
|(F (v1(τ))− F (v2(τ)))|L2(I) dτ

≤ C0k
1
2
MLMCs sup

t∈[0,T ]

∫ t

0

1
(t− τ)

1
2
dτ |v1 − v2|E

≤ 2C0k
1
2
MLMCsT

1
2 |v1 − v2|E .

That is, Φ is a contraction in E. Thus, Φ has a fixed point that is the mild solution to problem (2.1.2)
in E. To show that the uniqueness also holds in C([0, T ],H1

0 (I)), let u1, u2 ∈ C([0, T ], H1
0 (I)) be two

solutions of problem (2.1.2) and let u = u1 − u2. Then

u(t) =
∫ t

0

S(t− τ) (F (u1(τ))− F (u2(τ))) dτ.

Propositions 2.3.1.4, 2.3.1.5 and 2.3.1.6 imply:

|u(t)|H1
0 (I) =

∣∣∣∣
∫ t

0

S(t− τ) (F (u1(τ))− F (u2(τ))) dτ

∣∣∣∣
H1

0 (I)

≤ C0Csk
1
2
MLM

∫ t

0

1
(t− τ)

1
2
|u1(τ)− u2(τ)|H1

0 (I) dτ.

By Gronwall inequality, we immediately conclude that |u(t)|H1
0 (I) = 0, that is, the uniqueness in C([0, T ],H1

0 (I))
is proven. As before, we have

u(t)− ũ(t) = S(t)(u0 − ũ0) +
∫ t

0

S(t− τ) (F (u(τ))− F (ũ(τ))) dτ.
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Therefore,

|u(t)− ũ(t)|H1
0 (I)

≤ |u0 − ũ0|H1
0 (I) + C0Csk

1
2
MLM

∫ t

0

1
(t− τ)

1
2
|u(τ)− ũ(τ)|H1

0 (I) dτ.

Gronwall inequality implies:

|u(t)− ũ(t)|H1
0 (I) ≤ |u0 − ũ0|H1

0 (I) e
C0Csk

1
2
M LM

R t
0

1

(t−τ)
1
2

dτ

≤ |u0 − ũ0|H1
0 (I) e2C0Csk

1
2
M LM T

1
2 .

Hence, this proposition is proven.
By modifying the proof of Corollary 2.5.1 of [27] we establish the following result.

Proposition 2.3.1.8 The mild solution u is Hölder continuous of exponent α (= 1
2 ) in t from [0, T ]

toward H1
0 (I) for any u0 ∈ D(A)(= H2(I) ∩H1

0 (I)).

Proof. Let u0 ∈ D(A). For any h > 0. Let ũ(t) = u(t + h). Then, we see that ũ is a mild solution of
problem (2.1.2) with initial data u0 = u(h). Then,

|u(t + h)− u(t)|H1
0 (I) = |ũ(t)− u(t)|H1

0 (I)

≤ |u(h)− u0|H1
0 (I) e2C0Csk

1
2
M LM t

1
2 .

On the other hand,

|u(h)− u0|H1
0 (I)

≤ |S(h)u0 − u0|H1
0 (I) +

∫ h

0

|S(h− τ)F (u(τ))|H1
0 (I) dτ

≤
∣∣∣∣∣
∫ h

0

S(τ)Au0dτ

∣∣∣∣∣
H1

0 (I)

+
∫ h

0

C0

(h− τ)
1
2
|F (u(τ))|H1

0 (I) dτ

≤
∫ h

0

|S(τ)Au0|H1
0 (I) dτ

+
∫ h

0

C0

(h− τ)
1
2

(
|F (u0)|H1

0 (I) + k
1
2
MLMCs |u(τ)− u0|H1

0 (I)

)
dτ

≤ 2C0

(
|Au0|L2(I) + |F (u0)|H1

0 (I)

)
h

1
2

+C0k
1
2
MLMCs

∫ h

0

|u(τ)− u0|H1
0 (I)

(h− τ)
1
2

dτ.

By Gronwall inequality, we have

|u(h)− u0|H1
0 (I) ≤ 2C0

(
|Au0|L2(I) + |F (u0)|H1

0 (I)

)
h

1
2 e2C0k

1
2
M LM Csh

1
2 .

Thus, for any t1, t2 ∈ [0, T ] such that t1 + h = t2

|u(t1)− u(t2)|H1
0 (I)

≤ 2C0

(
|Au0|L2(I) + |F (u0)|H1

0 (I)

)
e4C0Csk

1
2
M LM T

1
2 |t1 − t2|

1
2 .

Hence u is Holder continuous of exponent α = 1
2 in t.
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Now we are in a position to prove theorem 2.2.1.

Proof of Theorem 2.2.1. Since F is locally Lipschitz and u is Hölder continuous of exponent α = 1
2

in t, F is also Hölder continuous of exponent α = 1
2 in t. Hence, the result is a consequence of proposition

2.3.1.1.

2.3.2 The proof of Theorem 2.2.2

Let us modify the proof of theorem 2.5.5 of [27] to obtain the following result.

Proposition 2.3.2.1 Let [0, Tmax) be the maximal time interval in which the mild solution u of the
evolution problem (2.1.2) exists. If Tmax is finite, then the solution u of problem (2.1.2) blows up in finite
time, that is,

lim
t→Tmax

|u(t)|H1
0 (I) = +∞.

Proof. We will use the contraction argument to prove proposition 2.3.2.1. Suppose that there is a finite
positive constant M and a sequence (tn) such that

|u(tn)|H1
0 (I) ≤ M as tn → Tmax.

Consider the following problem:

dv(t)
dt

= Av(t) + F (v) and v(0) = u(tn).

By proposition 2.3.1.7, the above problem has a unique local mild solution in [0, δ] with δ depending on
M. We choose n large enough so that tn + δ > Tmax. Let

ũ(t) =
{

u(t), for 0 ≤ t ≤ tn,

v(t− tn), for tn ≤ t ≤ tn + δ.

We next would like to show that ũ(t) is a mild solution of problem (2.1.2) in [0, tn + δ], i.e., ũ(t) satisfies
the integral equation

ũ(t) = S(t)u0 +
∫ t

0

S(t− τ)F (ũ(τ))dτ for 0 ≤ t ≤ tn + δ. (2.3.2)

From

u(t) = S(t)u0 +
∫ t

0

S(t− τ)F (u(τ))dτ for 0 ≤ t ≤ tn,

and

v(t) = S(t)u(tn) +
∫ t

0

S(t− τ)F (v(τ))dτ for 0 ≤ t ≤ δ,

13



it is clear that for t ∈ [0, tn], ũ(t) satisfies (2.3.2). For t ∈ [0, δ],

ũ(t + tn) = v(t)

= S(t + tn)u0 +
∫ tn

0

S(t + tn − τ)F (u(τ))dτ +
∫ t

0

S(t− τ)F (v(τ))dτ

= S(t + tn)u0 +
∫ tn

0

S(t + tn − τ)F (u(τ))dτ

+
∫ t+tn

tn

S(t + tn − τ)F (v(τ − tn))dτ

= S(t + tn)u0 +
∫ tn

0

S(t + tn − τ)F (ũ(τ))dτ

+
∫ t+tn

tn

S(t + tn − τ)F (ũ(τ))dτ

= S(t + tn)u0 +
∫ t+tn

0

S(t + tn − τ)F (ũ(τ))dτ.

Hence, ũ is a mild solution of problem (2.1.2) in [0, tn + δ] with tn + δ > Tmax. This contradicts the
definition of Tmax. Therefore, the proof of proposition 2.3.2.1 is complete.

We next prove Theorem 2.2.2

Proof of Theorem 2.2.2. Suppose that there is a positive constant M such that |u(x0, t)| ≤ M as
t → Tmax. Since

u(t) = S(t)u0 +
∫ t

0

S(t− τ)F (u(τ))dτ

= S(t)u0 +
∫ t

0

f(u(x0, τ))S(t− τ)1dτ

where 1 is a function in L2(I) such that 1(x) = 1 ∀x ∈ I. Then, from proposition 3.1.4, we have

|u(t)|H1
0 (I) ≤ |u0|H1

0 (I) + (|f(0)|+ MLM )
∫ t

0

1
(t− τ)

1
2
|1|L2(I) dτ

= |u0|H1
0 (I) + 2 (|f(0)|+ MLM ) |1|L2(I) t

1
2 .

Thus, as t → Tmax, |u(t)|H1
0 (I) is bounded. This contradicts proposition 2.3.2.1. Hence, theorem 2.2.2 is

proven.

2.3.3 The proof of Theorem 2.2.3

Before showing the blow-up set of a solution u of problem (2.1.1), we will give a following lemma.

Lemma 2.3.3.1 For all x ∈ I, there exists c(x) > 0 such that (S(t)1) (x) > c(x) for any t ∈ [0, Tmax).

Proof. The proof of this lemma results from lemma 3.3.3.1 in chapter 3 because this lemma is the
particular case of lemma 3.3.3.1.

We next prove theorem 2.2.3.

Proof of Theorem 2.2.3. Let M be a fixed positive constant with M > max
x∈I

u0(x). Since lim
t→Tmax

|u(x0, t)| →

14



+∞, there is a positive tM such that |u(x0, t)| > M for all t ≥ tM . Let us consider:

|u(x0, t)| = |u(t)(x0)|

≤ |(S(t)u0) (x0)|+
tM∫

0

|(S(t− τ)1) (x0)| |f(u(x0, τ))| dτ

+

t∫

tM

|(S(t− τ)1) (x0)| |f(u(x0, τ))| dτ.

By locally Lipschitz continuity of f, we have

|u(x0, t)| ≤ |(S(t)u0) (x0)|+
tM∫

0

|(S(t− τ)1) (x0)| (f(0) + LM |u(x0, τ)|) dτ

+

t∫

tM

|(S(t− τ)1) (x0)| |f(u(x0, τ))| dτ,

where LM is a positive constant depending on M. Thus, there are three positive constants c1, c2 and c3

such that

|u(x0, t)| ≤ c1 + c2 + c3

t∫

tM

|f(u(x0, τ))| dτ

= c1 + c2 + c3

t∫

tM

f(u(x0, τ))dτ.

Taking t → Tmax, we obtain that

lim
t→Tmax

t∫

tM

f(u(x0, τ))dτ → +∞. (2.3.3)

For any x ∈ I, we have

u(x, t) = (S(t)u0) (x) +

t∫

0

(S(t− τ)1) (x)f(u(x0, τ))dτ.

Then, by lemma 2.3.3.1, there are two constant c̃1(x) and c̃2(x)(> 0) such that

u(x, t) ≥ c̃1(x) + c̃2(x)

t∫

0

f(u(x0, τ))dτ.

Hence, as t → Tmax, u(x, t) → +∞ for any x ∈ I. For x ∈ {0, 1}, we can find a sequence {(xn, tn)} such
that (xn, tn) → (x, Tmax) and lim

n→∞
u(xn, tn) → ∞. Therefore, the set of blow-up points of a solution u

of problem (2.1.1) is I.
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2.3.4 The proof of Theorem 2.2.4

Here, we will give the sufficient condition for occurrence of blow-up in finite time. In order to obtain our
result, we need the following lemmas.

Proposition 2.3.4.1 Let v be a classical solution of the problem: for any T ∈ (0,∞),

vt − 1
k(x) (p(x)vx)x ≥ B(x, t)v(x0, t), (x, t) ∈ I × (0, T ),

v(0, t) ≥ 0 and v(1, t) ≥ 0,

v(x, 0) ≥ 0, x ∈ I,

where B(x, t) is nonnegative and bounded on I × [0, T ]. Then v(x, t) ≥ 0 on I × [0, T ].

Proof. If B(x, t) = 0 on I× [0, T ], then it follows from Maximum principle that v(x, t) ≥ 0 on I× [0, T ].
We assume that B(x, t) is positive on I × [0, T ]. Let η be any positive real number and

V (x, t) = v(x, t) + η(1 + x2)ect

where c is a positive constant with

c =
2

km
(pM + p′M ) + (1 + x2

0) max
I×[0,T ]

B(x, t).

We then consider that for any (x, t) ∈ I × (0, T ],

Vt(x, t)− 1
k(x)

(p(x)Vx)x −B(x, t)V (x0, t)

= ut − 1
k(x)

(p(x)ux)x + cη(1 + x2)ect − 2ηect

k(x)
(xp(x))x −B(x, t)V (x0, t)

≥ cη(1 + x2)ect − 2ηect

k(x)
[xp′(x) + p(x)]− ηB(x, t)(1 + x2

0)e
ct

= ηect

(
c(1 + x2)− 2

k(x)
[xp′(x) + p(x)]−B(x, t)(1 + x2

0)
)

≥ ηect

(
c− 2

km
(pM + p′M )− (1 + x2

0) max
I×[0,T ]

B(x, t)

)

> 0.

We see that V (x, t) ≥ 0 on {0, 1} × (0, T ] ∪ I × {0}. We next would like to show that V (x, t) > 0 for
any (x, t) ∈ I × [0, T ]. Suppose that there exists a point (x1, t1) ∈ I × (0, T ) such that V (x1, t1) ≤ 0. We
define the set A by

A = {t : V (x, t) ≤ 0 for some x ∈ I} .

It’s clear that set A is nonempty. Let t∗ = inf A. Since V (x, 0) = u0(x) + η(1 + x2) > 0 for x ∈ I,

we obtain that t∗ > 0 and, additionally, by the definition of V, V (x0, t
∗) ≥ 0. Indeed, if V (x0, t

∗) < 0,

then, by continuity of V, there exists a t2(< t∗) such that V (x, t2) ≤ 0 for some x ∈ I which contradicts
definition of t∗. Since A is closed, by definition of t∗, there exists a point x2 ∈ I such that

V (x2, t
∗) = 0, Vt(x2, t

∗) ≤ 0 and Vx(x2, t
∗) = 0.

Furthermore, since V attains its local minimum at the point x2, we have that Vxx(x2, t
∗) ≥ 0. Thus, we

have that

0 ≥ Vt(x2, t
∗) ≥ Vt(x2, t

∗)− 1
k(x2)

(p(x2)Vx(x2, t
∗))x −B(x2, t

∗)V (x0, t
∗) > 0.
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Therefore, we get a contradiction. This shows that V (x, t) > 0 for any (x, t) ∈ I × [0, T ]. Since η is
arbitrary, we let η → 0+ and then we obtain the desired result.

Proposition 2.3.4.2 For any (x, t) ∈ I × [0, Tmax), u(x, t) ≥ u0(x) and ut(x, t) ≥ 0.

Proof. Let z(x, t) = u(x, t)− u0(x) for any (x, t) ∈ I × [0, Tmax). Let us consider that

zt − 1
k(x)

(p(x)zx)x = f(u(x0, t)) +
1

k(x)
d

dx

(
p(x)

du0(x)
dx

)
.

Condition (A3) implies
d

dx

(
p(x)

du0(x)
dx

)
≥ −f(u0(x0)).

Thus, we obtain that

zt − 1
k(x)

(p(x)zx)x ≥ f(u(x0, t))− f(u0(x0)) = f ′(ξ1)z(x0, t),

where ξ1 is between u(x0, t) and u0(x0). Additionally, z(x, t) = 0 for any (x, t) ∈ {0, 1}× (0, T )∪ I ×{0}.
Lemma 2.3.4.1 yields that z ≥ 0 or u(x, t) ≥ u0(x) for any (x, t) ∈ I × [0, Tmax).

Let h be any positive constant less than Tmax and

w(x, t) = u(x, t + h)− u(x, t) for any (x, t) ∈ I × [0, Tmax).

We then have that for any (x, t) ∈ I × (0, Tmax),

wt − 1
k(x)

(p(x)wx)x = f(u(x0, t + h))− f(u(x0, t)) = f ′(ξ2)w(x0, t)

for ξ2 between u(x, t + h) and u(x, t). For any (x, t) ∈ {0, 1} × (0, T ) ∩ I × {0}, w ≥ 0. Then, lemma
2.3.4.1 implies that w ≥ 0 or u(x, t + h) ≥ u(x, t) for any (x, t) ∈ I × [0, Tmax). Hence, this shows that
ut ≥ 0 on I × [0, Tmax).

Before blow-up occurs, there exists a M(> 0) such that |u(x, t)| ≤ M for any (x, t) ∈ I×[0, Tmax).Locally
Lipschitz continuous property of f implies that there is a positive constant K(M) depending on M such
that for any u and v with |u| ≤ M and |v| ≤ M,

|f(u)− f(v)| ≤ K(M) |u− v| .
We note that before blow-up occurs, |u(x0, t)| ≤ M and then we obtain that there exists a K(M) such
that f(u(x0, t) ≤ K(M)u(x0, t) for t ∈ [0, Tmax).

Lemma 2.3.4.3 Before blow-up occurs, ut(x, t) ≥ K(M)u(x, t) for any I × [0, Tmax) if f ′(u0(x0)) ≥
K(M).

Proof. Let z(x, t) = ut(x, t) − K(M)u(x, t) for any I × [0, Tmax). We then consider that for any
I × (0, Tmax),

zt − 1
k(x)

(p(x)zx)x = f ′(u(x0, t))ut −K(M)f(u(x0, t)).

It follows from locally Lipschitz continuous property of f that f(u(x0, t)) ≤ K(M)u(x0, t). We then have
that, by lemma 2.3.4.2,

zt − 1
k(x)

(p(x)zx)x ≥ f ′(u(x0, t))ut(x0, t)−K2(M)u(x0, t)

≥ f ′(u0(x0)ut(x0, t)−K2(M)u(x0, t)

≥ K(M)ut(x0, t)−K2(M)u(x0, t)

= K(M)z(x 0, t)
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for any I × (0, Tmax). By lemma 2.3.4.2, we have that z(0, t) = ut(0, t)−K(M)u(0, t) = ut(0, t) = 0 and
z(1, t) = ut(1, t) −K(M)u(1, t) = ut(1, t) = 0 for t ∈ (0, Tmax). As t tends to 0, condition (H4) implies
that z(x, 0) = lim

t→0
ut(x, t)−K(M)u(x, 0) = 1

k(x)
d
dx

(
p(x)du0(x)

dx

)
+ f(u0(x0))−K(M)u0(x) ≥ 0 for x ∈ I.

Then, lemma 2.3.4.1 implies that ut(x, t) ≥ K(M)u(x, t) for any I × [0, Tmax).

Lemma 2.3.4.4 If u0(x0) ≥ u0(x) for all x ∈ I, then u(x0, t) ≥ u(x, t) for any (x, t) ∈ I × [0, Tmax).

Proof. Let z(x, t) = u(x0, t)− u(x, t) for any (x, t) ∈ I × (0, Tmax). Then, for any (x, t) ∈ I × (0, Tmax),
lemma 2.3.4.3 implies that

zt − 1
k(x)

(p(x)zx)x = ut(x0, t)− f(u(x0, t))

≥ ut(x0, t)−K(M)u(x0, t)

≥ 0.

On boundary, for any (x, t) ∈ {0, 1}×(0, T )∩I×{0}, z(0, t) = u(x0, t)−u(0, t) = u(x0, t) ≥ u0(x0) ≥ 0 and
z(1, t) = u(x0, t) ≥ u0(x0) ≥ 0 for any t ∈ (0, Tmax) and z(x, 0) = u(x0, 0)− u(x, 0) = u0(x0)− u(x0) ≥ 0
because u0 attains its maximum at point x0. Therefore, these lemma is proved.

Let φ1 be the first eigenfunction of the eigenvalue problem:

Aφ =
1

k(x)
d

dx

(
p(x)

dφ

dx

)
= −λφ for x ∈ I = (0, 1) and φ(0) = 0 = φ(1),

λ1 its corresponding eigenvalue and ∫

I

k(x)φ1(x)dx = 1.

We construct the function H as

H(t) = 〈u(t), φ1〉 =
∫

I

k(x)u(x, t)φ1(x)dx. (2.3.4)

Proof of Theorem 2.2.4. Let us consider: from the self-adjointness of A,

H ′(t) =
〈

d

dt
u(t), φ1

〉

= 〈Au(t) + Fu(t), φ1〉
= 〈u(t), Aφ1〉+ 〈Fu(t), φ1〉
= −λ1H(t) +

∫

I

k(x)f(u(x0, t))φ1(x)dx.

It follows from lemma 2.3.4.4 that

H ′(t) ≥ −λ1H(t) +
∫

I

k(x)f(u(x0, t))φ1(x)dx

≥ −λ1H(t) +
∫

I

k(x)f(u(x, t))φ1(x)dx.

Condition 2 of theorem 2.2.4 yields that

H ′(t) ≥ −λ1H(t) + b

∫

I

k(x)up(x, t)φ1(x)dx. (2.3.5)
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Hölder inequality implies that

∫

I

k(x)u(x, t)φ1(x)dx ≤



∫

I

kφ1(x)dx




p−1
p




∫

I

kφ1(x)up(x, t)dx




1
p

or ∫

I

kφ1(x)up(x, t)dx ≥



∫

I

k(x)u(x, t)φ1(x)dx




p

.

From (2.3.5), we have that
H ′(t) ≥ −λ1H(t) + bHp(t). (2.3.6)

Dividing both sides by Hp, we have

H−p(t)F ′(t) + λ1H
1−p(t) ≥ b.

Multiplying both sides by 1− p, we obtain

(1− p)H−p(t)H ′(t) + λ1(1− p)H1−p(t) ≤ (1− p)b
dH1−p(t)

dt
+ λ1(1− p)H1−p(t) ≤ (1− p)b.

Multiplying both sides by eλ1(1−p)t, we get

eλ1(1−p)t dH1−p(t)
dt

+ λ1(1− p)eλ1(1−p)tH1−p(t) ≤ (1− p)beλ1(1−p)t

d

dt

(
eλ1(1−p)tH1−p(t)

)
≤ (1− p)beλ1(1−p)t.

Integrating both sides, we have
t∫

0

d

ds

(
eλ1(1−p)sH1−p(s)

)
≤ (1− p)b

t∫

0

eλ1(1−p)sds

eλ1(1−p)tH1−p(t)−H1−p(0) ≤ b

λ1
eλ1(1−p)t − b

λ1

H1−p(t) ≤ b

λ1
+

[
H1−p(0)− b

λ1

]
e−λ1(1−p)t. (2.3.7)

From (2.3.7), we see that

Hp−1(t) ≥ 1
b

λ1
+

[
H1−p(0)− b

λ1

]
e−λ1(1−p)t

.

By condition 3 of theorem 2.2.4, we have that H1−p(0) < b
λ1

. Thus, there exists some positive t1 such
that H tends to infinity. By the definition of H, we see that

H(t) =
∫

I

k(x)u(x, t)φ1(x)dx ≤



∫

I

k(x)φ1(x)dx


u(x0, t) = u(x0, t).

Hence, there exists a finite time t1 > 0 such that the solution u blows up in finite time.

Note that this chapter was the object of the article :
P. Sawangtong. C. Licht, B. Novaprateep and S. Orankitjaroen. Existence and uniqueness of a blow-

up solution for a parabolic problem with a localized nonlinear term via semigroup theory, East-West
Journal of Mathematics, to appear.
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Chapter 3

Complete blow-up for a semilinear

parabolic problem with a localized

nonlinear term via classical method

3.1 Introduction

In this chapter we still consider the same semilinear parabolic problem with a localized nonlinear
term as the problem in previous chapter. But we use the classical method, Green’s function method,
investigate a blow-up solution of such a problem. Before starting our process, we recall that we are
studying the semilinear parabolic problem with a localized nonlinear term in the form. Let T be any
positive real number, D = (0, 1) and ΩT = (0, 1) × (0, T ) Let D and ΩT be the closure of D and ΩT ,

respectively.
k(x)ut − (p(x)ux)x = k(x)f(u(x0, t)) for (x, t) ∈ ΩT ,

u(x, 0) = ψ(x) for x ∈ D,

u(0, t) = 0 = u(1, t) for t ∈ (0, T ),



 (3.1.1)

where x0 is a fixed point in D and k, p, f and ψ are given functions. In order to obtain a blow-up solution
of problem (3.1.1), we need the following assumptions.

(A1) p(x), k(x), p′(x) and k′(x) are real-valued and continuous for x ∈ D, and p(x) and k(x) are positive
for x ∈ D, i.e.,

0 < kmin = min
x∈D

k(x) ≤ k(x) ≤ max
x∈D

k(x) = kmax,

0 < pmin = min
x∈D

p(x) ≤ p(x) ≤ max
x∈D

p(x) = pmax,

k′min = min
x∈D

k′(x) ≤ k′(x) ≤ max
x∈D

k′(x) = k′max,

p′min = min
x∈D

p′(x) ≤ p′(x) ≤ max
x∈D

p′(x) = p′max.

(A2) ψ(x) ∈ C2(D), φ is nontrivial and nonnegative on D, ψ(0) = 0 = ψ(1), and ψ(x0) ≥ ψ(x) for any
x ∈ D and the function ψ satisfies

d

dx

(
p(x)

dψ

dx

)
+ f(ψ(x0)) ≥ ζ1ψ(x) on D

for some positive constant ζ1,
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(A3) f(s) ∈ C2([0,∞)), f is positive, increasing and convex on [0,∞).

3.2 Green’s function

We will begin this section with finding Green’s function corresponding to semilinear parabolic
problem (3.1.1). Let us construct the corresponding Green’s function G(x, t, ξ, τ) and denote that

L ≡ k(x)
∂

∂t
− ∂

∂x

[
p(x)

∂

∂x

]
.

The corresponding Green’s function is determined by the following system: for each (x, t) ∈ ΩT ,

LG(x, t, ξ, τ) = δ(x− ξ)δ(t− τ),

G(x, t, ξ, τ) = 0, for t < τ,

G(0, t, ξ, τ) = 0 = G(1, t, ξ, τ), (3.2.1)

where δ(x) is the Dirac delta function. From [6], we will use the eigenfunction expansion method to
construct the Green’s function, so we let

G(x, t, ξ, τ) =
∞∑

n=1

an(t)gn(x), (3.2.2)

where gn is the eigenfunction of the corresponding regular eigenvalue problem to semilinear parabolic
problem (3.1.1)

d

dx

[
p(x)

d

dx
gn(x)

]
+ λnk(x)gn(x) = 0, (3.2.3)

and the boundary conditions
gn(0) = 0 = gn(1),

where λn is the eigenvalue associating to gn and has a property

0 < λ1 < λ2 < λ3 < ... < λn < λn+1 < ...

and λn = O(n2) for sufficiently large n. Moreover the set {gn(x)} is a maximal (that is, complete)
orthonormal set with the weight function k(x), that is,

1∫

0

k(x)g2
n(x)dx = 1 for x ∈ D

and gn is bounded for any x ∈ D. By substituting (3.2.2) into (3.2.1), we obtain that

∞∑
n=1

k(x)a′n(t)gn(x)−
∞∑

n=1

an(t)
∂

∂x

[
p(x)

∂

∂x
gn(x)

]
= δ(x− ξ)δ(t− τ),

∞∑
n=1

k(x)a′n(t)gn(x) + λn

∞∑
n=1

k(x)an(t)gn(x) = δ(x− ξ)δ(t− τ),

∞∑
n=1

k(x)gn(x) [a′n(t) + λnan(t)] = δ(x− ξ)δ(t− τ).
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Multiplying both sides by gn(x) and integrating from 0 to 1 with respect to x, we have

1∫

0

gn(x)
∞∑

n=1

k(x)gn(x) [a′n(t) + λnan(t)] dx =

1∫

0

gn(x)δ(x− ξ)δ(t− τ)dx.

Using the orthogonal property of the eigenfunction gn, we have

[a′n(t) + λnan(t)]

1∫

0

k(x)g2
n(x)dx = gn(ξ)δ(t− τ).

Multiplying both sides by exp(λnt) and using the property of gn, we have

[a′n(t) + λnan(t)] exp(λnt) = gn(ξ)δ(t− τ) exp(λnt),
d

dt
[an(t) exp(λnt)] = gn(ξ)δ(t− τ) exp(λnt).

Integrating from τ− to t and applying the property of the green’s function, G(x, t, ξ, τ) = 0 for t < τ,

we have
t∫

τ−

d

ds
[an(s) exp(λns)] =

t∫

τ−

gn(ξ)δ(s− τ) exp(λns)ds,

an(t) exp(λnt)− an(τ−) exp(λnτ−) = gn(ξ)

t∫

τ−

δ(s− τ) exp(λns)ds,

an(t) exp(λnt) = gn(ξ) exp(λnτ),

an(t) = gn(ξ) exp [−λn(t− τ)] .

Therefore, we obtain that the Green’s function is in the form, for t > τ

G(x, t, ξ, τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] ,

or

G(x, t, ξ, τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] H(t− τ),

where the function H is the Heaviside unit-step function. We would like to show that the Green’s function
exists, i.e. the infinite series representing the Green’s function converges. Then we consider that for t > τ

G(x, t, ξ, τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)]

≤
[
max
x∈D

gn(x)
]2 ∞∑

n=1

exp [−λn(t− τ)] .

It ia easy to show that this series
∞∑

n=1
exp [−λn(t− τ)] converges, and then we obtain that the infinite

series
∞∑

n=1
gn(x)gn(ξ) exp [−λn(t− τ)] converges uniformly. Therefore, the Green’s function exists.

Lemma 3.2.1
∞∑

n=1
k(x)gn(x)gn(ξ) = δ(x− ξ).
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Proof. Using the completeness property of eigenfunction gn, we can write the function δ(x− ξ) in the
terms of the function gn, that is

δ(x− ξ) =
∞∑

n=1

k(x)cngn(x).

Multiplying both sides by gn(x), we have

gn(x)δ(x− ξ) = gn(x)
∞∑

n=1

k(x)cngn(x).

Integrating both sides from 0 to 1 and using the orthogonal property of the eigenfunction gn, we have

1∫

0

gn(x)δ(x− ξ)dx =

1∫

0

gn(x)
∞∑

n=1

k(x)cngn(x)dx

gn(ξ) = cn

1∫

0

k(x)gn(x)gn(x)dx

cn = gn(ξ).

Therefore, we get the result.
We next check that the Green’s function we just construct satisfies the problem (3.2.1). We begin by

computing

∂G

∂t
= −

[ ∞∑
n=1

λngn(x)gn(ξ) exp [−λn(t− τ)]

]
H(t− τ)

+

[ ∞∑
n=1

gn(x)gn(ξ) exp [−λn(t− τ)]

]
δ(t− τ).

Using the property of the Dirac delta function, f(t)δ(t− τ) = f(τ)δ(t− τ), we have

k(x)
∂G

∂t
= −k(x)

[ ∞∑
n=1

λngn(x)gn(ξ) exp [−λn(t− τ)]

]
H(t− τ)

+k(x)

[ ∞∑
n=1

gn(x)gn(ξ)

]
δ(t− τ),

= −k(x)

[ ∞∑
n=1

λngn(x)gn(ξ) exp [−λn(t− τ)]

]
H(t− τ)

+δ(x− ξ)δ(t− τ).

So,

k(x)
∂G

∂t
− ∂

∂x

(
p(x)

∂G

∂x

)

= −k(x)

[ ∞∑
n=1

λngn(x)gn(ξ) exp [−λn(t− τ)]

]
H(t− τ)

−
∞∑

n=1

[
∂

∂x

([
p(x)

∂

∂x
gn(x)

])
gn(ξ) exp [−λn(t− τ)]

]
H(t− τ)

+δ(x− ξ)δ(t− τ).
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We can rewrite in the form,

k(x)
∂G

∂t
− ∂

∂x

(
p(x)

∂G

∂x

)

= −
∞∑

n=1

(
gn(ξ)

[
∂

∂x

(
p(x)

∂

∂x
gn(x)

)
+ λnk(x)gn(x)

]
exp [−λn(t− τ)]

)
H(t− τ)

+δ(x− ξ)δ(t− τ).

Using the equation d
dx

[
p(x) d

dxgn(x)
]
+ λnk(x)gn(x) = 0, we finally obtain

LG = δ(x− ξ)δ(t− τ),

and then by direct computation and definition of the Heaviside unit-step function, we can get the condi-
tions G(x, t, ξ, τ) = 0, for t < τ and G(0, t, ξ, τ) = 0 = G(1, t, ξ, τ).

To derive the integral equation from the problem (3.1.1), let us consider the adjoint operator L∗,
which is given by L∗ = −k(x) ∂

∂t − ∂
∂x

(
p(x) ∂

∂x

)
. Using the Green’s theorem, we obtain the integral

equation

u(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ. (3.2.4)

We state the properties of the Green’s function corresponding to the problem (3.1.1) in below lemma.

Lemma 3.2.2 In the set {(x, t, ξ, τ) : x and ξ are in D, 0 ≤ τ < t < T}, G(x, t, ξ, τ) > 0.

Proof. Let A = {(x, t, ξ, τ) : x and ξ are in D, 0 ≤ τ < t < T}. Suppose that there exists a point
(x0, t0, ξ0, τ0) in A such that G (x0, t0, ξ0, τ0) < 0. Since the function G is continuous, there exists a
positive constant ε such that G(x, t, ξ, τ) < 0 in the set

W0 = (x0 − ε, x0 + ε)× (t0 − ε, t0 + ε)× (ξ0 − ε, ξ0 + ε)× (τ0 − ε, τ0 + ε)

in A. Let W1 = (ξ0 − ε, ξ0 + ε)× (τ0 − ε, τ0 + ε) and W2 = (ξ0 − ε/2, ξ0 + ε/2)× (τ0 − ε/2, τ0 + ε/2). We
would like to show that there exists a function h ∈ C2 such that h ≡ 1 on W2, h ≡ 0 outside W1, and
0 ≤ h ≤ 1 in W1\W2. We will construct the function h in a sequence of steps.

First step: we define the function f1 by

f1(s) =

{
0 , s ≤ 0,

exp(−s−2) , s > 0,

which belongs to C2(R), vanishes for s ≤ 0, is positive for s > 0, and is monotone increasing.
Second step: we define the function f2 by

f2(s) = f1(s)f1(1− s),

which belongs to C2(R), vanishes for s ≤ 0 and s ≥ 1, and is positive for 0 < s < 1.

Third step: we define the function f3 by

f3(s) =

s∫
0

f2(t)dt

1∫
0

f2(t)dt

,
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which belongs to C∞(R), vanishes for s ≤ 0, is monotone increasing, equals to 1 for s ≥ 1, and satisfies
0 < f3(s) < 1 for all s ∈ D.

Last step: we define the function h(x, t) by

h(x, t) = f3

(
ε− |x− x0|

ε/2

)
f3

(
ε− |t− t0|

ε/2

)
,

which is in C2(R2), h ≡ 1 on W2, h ≡ 0 outside W1, and 0 ≤ h ≤ 1 in W1\W2. Hence the solution of the
problem Lu(x, t) = h(x, t) in Ωα, where t0 < α, with u satisfying zero initial and boundary conditions is
given by

u(x, t) =

τ0+ε∫

τ0−ε

ξ0+ε∫

ξ0−ε

G(x, t, ξ, τ)h(ξ, τ)dξdτ.

Since we have that G(x, t, ξ, τ) < 0 in W0, 0 ≤ h(ξ, τ) ≤ 1 in W1, and h ≡ 1 on W2, it follows that
u(x, t) < 0 for (x, t) in (x0 − ε, x0 + ε) × (t0 − ε, t0 + ε). On the other hand , h(x, t) ≥ 0 in Ωα implies
that u(x, t) ≥ 0 by the weak maximum principle [12]. Therefore we get a contradiction and hence
G(x, t, ξ, τ) ≥ 0 in A. Next we will show that G(x, t, ξ, τ) 6= 0 in A. Suppose that there exists a point
(x1, t1, ξ1, τ1) in A such that G(x1, t1, ξ1, τ1) = 0. Using the property of Green′s function, G(x, t, ξ, τ) < 0
for t < τ , we have that G(x, t, ξ1, τ1) = 0 in D ∩ {(x, t, ξ1, τ1) : x ∈ D, t ≤ t1}. On the other hand,

G(ξ1, t1, ξ1, τ1) =
∞∑

n=1
g2

n(ξ1) exp [−λn(t1 − τ1)] , which is positive. We again have a contradiction. This

shows that G(x, t, ξ, τ) is positive in A.

Lemma 3.2.3 If r ∈ C([0, T ]), then
t∫
0

1∫
0

G(x, t, ξ, τ)r(τ)dξdτ is continuous for x ∈ D and t ∈ [0, T ].

Proof. Let ε be any positive number such that t− ε > 0. For x ∈ D and τ ∈ [0, t− ε], we multiply the
equation

G(x, t, ξ, τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)]

by the function r(τ), and then we obtain

G(x, t, ξ, τ)r(τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)

≤ max
0≤τ≤T

r(τ)
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)]

≤ max
0≤τ≤T

r(τ)
[
max
x∈D

gn(x)
]2 ∞∑

n=1

exp [−λn(t− τ)] .

It is easy to show that the series
∞∑

n=1
exp [−λn(t− τ)] converges and then we have that

∞∑
n=1

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)

converges uniformly. Therefore we have

t−ε∫

0

1∫

0

G(x, t, ξ, τ)r(τ)dξdτ =
∞∑

n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ.
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Let us consider that

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

≤ max
0≤τ≤T

r(τ)
[
max
x∈D

gn(x)
]2 ∞∑

n=1

t−ε∫

0

1∫

0

exp [−λn(t− τ)] dξdτ

= max
0≤τ≤T

r(τ)
[
max
x∈D

gn(x)
]2 ∞∑

n=1

t−ε∫

0

exp [−λn(t− τ)] dτ

= max
0≤τ≤T

r(τ)
[
max
x∈D

gn(x)
]2 ∞∑

n=1

λ−1
n [exp(−λnε)− exp(−λnt)]

≤ max
0≤τ≤T

r(τ)
[
max
x∈D

gn(x)
]2 ∞∑

n=1

λ−1
n .

Since the series
∞∑

n=1
λ−1

n converges, we have

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

converges uniformly with respect to x, t, and ε. Since the uniform convergence also holds for ε = 0, it
follows that

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

is a continuous function of x, t, and ε ≥ 0. Therefore

t∫

0

1∫

0

G(x, t, ξ, τ)r(τ)dξdτ = lim
ε→0

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

is a continuous function of x and t.

Lemma 3.2.3 Given any x ∈ D and any finite time T , there exist two positive numbers C1(depending
on x and T ) and C2(depending on T ) such that for 0 ≤ t ≤ T,

C1 <

1∫

0

G(x, t, ξ, 0)dξ and

1∫

0

G(x0, t, ξ, 0)dξ < C2.

Proof. Let us consider the following auxiliary problem

k(x)
∂v

∂t
− ∂

∂x

[
p(x)

∂v

∂x

]
= 1 in ΩT ,

v(x, 0) = 0 on x ∈ D,

v(0, t) = 0 = v(1, t) for 0 < t < T. (3.2.5)
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The problem (3.2.5) has a solution v given by

v(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ)dξdτ

=

t∫

0

1∫

0

G(x, t− τ, ξ, 0)dξdτ

=

t∫

0

1∫

0

G(x, τ, ξ, 0)dξdτ,

and then we differentiate with respect to t,

vt(x, t) =

1∫

0

G(x, t, ξ, 0)dξ > 0, i.e. v is increasing function.

We consider at the time t = 0, for any x ∈ D

vt(x, 0) =

1∫

0

G(x, 0, ξ, 0)dξ

=

1∫

0

∞∑
n=0

gn(x)gn(ξ)dξ

=

1∫

0

∞∑
n=0

k(x)
k(x)

gn(x)gn(ξ)dξ

≥ 1
max
x∈D

k(x)

a∫

0

∞∑
n=0

k(x)gn(x)gn(ξ)dξ

=
1

max
x∈D

k(x)

a∫

0

δ(x− ξ)dξ

=
1

max
x∈D

k(x)
.

Thus for any finite time T, there exists a positive constant C1(depending on x and T ) such that

C1 <

1∫

0

G(x, t, ξ, 0)dξ, for 0 ≤ t ≤ T.

Since we know that
1∫
0

G(x, t, ξ, 0)dξ < ∞, there exists a positive constant C2(depending on T ) such that

1∫

0

G(x0, t, ξ, 0)dξ < C2, for 0 ≤ t ≤ T.
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3.3 Existence of a blow-up solution

After we know important properties of the corresponding Green’function to semilinear parabolic
problem (3.1.1), we will show that that there exists a positive real number t1 such that the integral
equation (5.3.2) has a unique continuous solution u on [0, t1] for any x ∈ D before a blow-up occurs.
To do so, let us construct the sequence {un} with u0(x, t) = ψ(x) for n = 0, 1, 2, ..., and consider the
following problem

Lun+1(x, t) = k(x)f(un(x0, t)), in (x, t) ∈ ΩT ,

un+1(x, 0) = ψ(x), for x ∈ D,

un+1(0, t) = 0 = un+1(1, t), for 0 < t < T. (3.3.1)

Lemma 3.3.1 The sequence un ≥ ψ for n = 0, 1, 2, ...

Proof. We will show by using the principle of mathematical induction. By using a property of ψ,
d
dx [p(x) d

dxψ(x)] + k(x)f(ψ(x0)) ≥ 0 for x ∈ D, we have

L(u1 − u0)(x, t) = k(x)f(u(x0, t)) +
d

dx
[p(x)

d

dx
ψ(x)]

≥ k(x)f(u(x0, t))− k(x)f(ψ(x0))

= k(x)f(ψ(x0))− k(x)f(ψ(x0))

= 0,

and the initial and boundary conditions

(u1 − u0)(x, 0) = 0, for x ∈ D,

(u1 − u0)(0, t) = 0 = (u1 − u0)(1, t), for 0 < t < T.

Applying the maximum principle for parabolic type [12], we obtain that u1 − u0 ≥ min
x∈ΩT

(u1 − u0) = 0,

u1 ≥ u0 in ΩT . Next, we assume that for any positive j

ψ ≤ u1 ≤ u2 ≤ ... ≤ un−1 ≤ un in ΩT .

By using that f is an increasing function and un−1 ≤ un, we have

L(un+1 − un) = k(x)f(un(x0, t))− k(x)f(un−1(x0, t)) ≥ 0, in ΩT ,

and the initial and boundary conditions

(un+1 − un)(x, 0) = 0, for x ∈ D,

(un+1 − un)(0, t) = 0 = (un+1 − un)(1, t), for 0 < t < T.

Applying the maximum principle for parabolic type [12], we obtain that un+1 ≥ un for all n. Therefore,
we can conclude that, by the principle of mathematical induction, un ≥ ψ in ΩT for each positive n.

Lemma 3.3.2 The sequence {un} is a non-decreasing function of t.

Proof. Let us define the sequence {wn} by for n = 0, 1, 2, ...

wn(x, t) = un(x, t + h)− un(x, t)
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where h is any positive number such that 0 < t + h < T. Thus we also have

w0(x, t) = u0(x, t + h)− u0(x, t) = 0.

Let us consider the equation
Lw1(x, t) = 0, in ΩT−h,

and the initial and boundary conditions

w1(x, 0) = u1(x, h)− u1(x, 0) = u1(x, h)− ψ(x) ≥ 0, for x ∈ D

w1(0, t) = 0 = w1(1, t), for 0 < t < T − h.

Applying the maximum principle for parabolic type [12], we obtain that w1 ≥ 0 for ΩT−h. Let us assume
that for each n, wn ≥ 0 for ΩT−h. By using the Mean Value Theorem, we obtain

Lwn+1(x, t) = L(un+1(x, t + h)− un+1(x, t))

= k(x)f(un(x0, t + h))− k(x)f(un(x0, t))

= k(x)f ′(un(x0, t1)(un(x0, t + h)− un(x, t))

= k(x)f ′(un(x0, t1)wn(x0 + h, t)

≥ 0,

for some t1 ∈ (t, t + h), and the initial and boundary conditions

wn+1(x, 0) = un+1(x, h)− un+1(x, 0) = un+1(x, h)− ψ(x) ≥ 0, for x ∈ D,

wn+1(0, t) = 0 = wn+1(1, t), for 0 < t < T − h.

Applying the maximum principle for parabolic type [12], we obtain that wn+1 ≥ 0 on ΩT−h. Therefore,
we can conclude that, by the principle of mathematical induction, wn ≥ 0 on ΩT−h for each positive n,

i.e. un is a non-decreasing function of t.

Theorem 3.3.3 There exists some T̃ such that the integral equation (5.3.2) has a unique non-negative
continuous solution u ≥ ψ(x) for 0 ≤ t ≤ T̃ , and u is a non-decreasing function of t.

Proof. Let us consider the following auxiliary problem

Lv(x, t) = 0, in ΩT ,

v(x, 0) = ψ(x), for x ∈ D,

v(0, t) = 0 = v(1, t), for 0 < t < T.

Then the solution of the above problem is

v(x, t) =

1∫

0

k(x)G(x, t, ξ, 0)ψ(ξ)dξ.

Since the functions k, G, and φ are non-negative, we have that v ≥ 0 in ΩT . By the maximum principle
for parabolic type [12], we know that v attains its maximum K = max

x∈D
ψ(x) in D × {0}. We claim that

for any given positive constant M ≥ K, there exists some positive constant t1 such that un ≤ M for
0 < t < t1. Let us consider the sequence {un} which is constructed from problem (3.3.1). By (3.2.4), we
obtain

un(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(un−1(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ. (3.3.2)
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As t → 0, we can see that

lim
t→0

un = lim
t→0

1∫

0

k(ξ)G(x, t, ξ, 0)φ(ξ)dξ

=

1∫

0

lim
t→0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ

=

1∫

0

( ∞∑

i=1

k(ξ)gi(x)gi(ξ)

)
ψ(ξ)dξ

=

1∫

0

ψ(ξ)δ(x− ξ)dξ

= ψ(x).

By lemma 3.3.2, there exists t1 such that un ≤ M for 0 ≤ t ≤ t1. Let u denote lim
n→∞

un, and then we

show that the sequence {un} converges uniformly to u for 0 ≤ t ≤ t1. We consider

un+1(x, t)− un(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ) (f(ui(x0, τ))− f(ui−1(x0, τ))) dξdτ. (3.3.3)

Let Sn = max
Ωt1

|un(x, t)− un−1(x, t)| . Using the Mean Value Theorem, we have

f(un(x0, τ))− f(un−1(x0, τ)) = f ′(µ)(un(x0, τ)− un−1(x0, τ)),

where µ is between un(x0, τ) and un−1(x0, τ). Since we know that un ≤ M for all n and f ′′(s) > 0 for
s > 0, we have

f(un(x0, τ))− f(un−1(x0, τ)) ≤ f ′(M)(un(x0, τ)− un−1(x0, τ))

≤ f ′(M)Sn
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From (5.3.5), we obtain

|un+1 − un| ≤ kmaxf ′(M)Sn

t∫

0

1∫

0

G(x, t, ξ, τ)dξdτ

= kmaxf ′(M)Sn

t∫

0

1∫

0

∞∑

i=1

gi(x)gi(ξ) exp [−λi(t− τ)] dξdτ

≤ kmaxf ′(M)
[
max
x∈D

gi(x)
]2

Sn

t∫

0

1∫

0

∞∑

i=1

exp [−λi(t− τ)] dξdτ

= kmaxf ′(M)
[
max
x∈D

gi(x)
]2

Sn

∞∑

i=1

t∫

0

1∫

0

exp [−λi(t− τ)] dξdτ

= kmaxf ′(M)
[
max
x∈D

gi(x)
]2

Sn

∞∑

i=1

t∫

0

exp [−λi(t− τ)] dτ

= kmaxf ′(M)
[
max
x∈D

gi(x)
]2

Sn

∞∑

i=1

λ−1
i (1− exp(−λit)).

We can see that
∞∑

i=1

λ−1
i (1− exp(−λit)) ≤

∞∑
i=1

λ−1
i , a convergent series. Therefore the series

∞∑
i=1

λ−1
i (1−

exp(−λit)) converges uniformly. Claim that there exists a positive σ1(> 0) such that

kmaxf ′(M)
[
max
x∈D

gi(x)
]2

[ ∞∑
n=1

λ−1
n (1− exp(−λnt))

]
< 1 for t ∈ [0, σ1]. (3.3.4)

Let us consider that

lim
t→0

∞∑

i=1

λ−1
i (1− exp(−λit)) =

∞∑

i=1

lim
t→0

λ−1
i (1− exp(−λit)) = 0.

By the definition of limit, there exists a positive σ1 > 0 such that
∣∣∣∣∣
∞∑

i=1

λ−1
i (1− exp(−λit))

∣∣∣∣∣ <
1

kmaxf ′(M)
[
max
x∈D

gi(x)
]2 , for t ∈ [0, σ1].

Therefore we get the result and we also have that the sequence {un} converges uniformly to u for
0 ≤ t ≤ σ1. Similarly for σ1 ≤ t ≤ t1, we substitute u(ξ, σ1) to the place of ψ(ξ) in the integral equation
(3.3.2), so we have

un(x, t) =

t∫

σ1

1∫

0

k(ξ)G(x, t, ξ, τ)f(ui−1(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)u(ξ, σ1)dξ.

Moreover, we also have

un+1(x, t)− un(x, t) =

t∫

σ1

1∫

0

k(ξ)G(x, t, ξ, τ) (f(un(x0, τ))− f(un−1(x0, τ))) dξdτ.
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In the same way, since Sn = max
D×[σ1,t1]

|un − un−1| , it follows from the Mean Value Theorem

f(un(x0, τ))− f(un−1(x0, τ)) ≤ f ′(M)Sn.

From (5.3.5), we obtain

|un+1 − un| ≤ kmaxf ′(M)Sn

t∫

σ1

1∫

0

G(x, t, ξ, τ)dξdτ

≤ kmaxf ′(M)
[
max
x∈D

gi(x)
]2

Sn

t∫

σ1

1∫

0

∞∑

i=1

exp [−λi(t− τ)] dξdτ

= kmaxf ′(M)
[
max
x∈D

gi(x)
]2

[ ∞∑

i=1

λ−1
i [1− exp(−λi(t− σ1))]

]
Sn.

Thus there exists σ2 = min{σ1, t1 − σ1} > 0 such that

kmaxf ′(M)
[
max
x∈D

gi(x)
]2

[ ∞∑

i=1

λ−1
i [1− exp(−λi(t− σ1))]

]
< 1, (3.3.5)

for t ∈ [σ1,min{2σ1, t1}]. Hence the sequence {un} converges uniformly to u for t ∈ [σ1,min{2σ1, t1}].
By proceeding in this way the sequence {ui} converges uniformly to u for 0 ≤ t ≤ t1. Therefore we can
conclude that the integral equation (3.2.4) has a continuous solution u for 0 ≤ t ≤ t1. We would like
to show that the solution u is unique for t ∈ [0, t1]. Suppose that the integral equation (3.2.4) has two
distinct the solution u and ũ for t ∈ [0, t1], and let Φ = max

(x,t)∈Ωt1

|u− ũ| > 0. Since u and ũ are the solution

of the problem, we have

u(x, t)− ũ(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ) [f(u(x0, τ))− f(ũ(x0, τ))] dξdτ.

Using the same idea, we obtain that

Φ ≤ kmaxf ′(M)
[
max
x∈D

gn(x)
]2

[ ∞∑
n=1

λ−1
n (1− exp(−λnt))

]
Φ for t ∈ [0, σ1].

This implies that

kmaxf ′(M)
[
max
x∈D

gn(x)
]2

[ ∞∑
n=1

λ−1
n (1− exp(−λnt))

]
≥ 1, for t ∈ [0, σ1].

which contradicts to the equation (3.3.4). Hence the solution u is unique for 0 ≤ t ≤ σ1. Using the same
idea, we can show that for t ∈ [σ1, min{2σ1, t1}] ,

Φ ≤ kmaxf ′(M)
[
max
x∈D

gn(x)
]2

[ ∞∑
n=1

λ−1
n [1− exp(−λn(t− σ1))]

]
Φ.

This implies that for t ∈ [σ1, min{2σ1, t1}],

kmaxf ′(M)
[
max
x∈D

gn(x)
]2

[ ∞∑
n=1

λ−1
n [1− exp(−λn(t− σ1))]

]
≥ 1,
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which contradicts to the equation (3.3.5). Hence the solution u is unique for σ1 ≤ t ≤ min{2σ1, t1}.
By proceeding in this way, the integral equation u is unique continuous for 0 ≤ t ≤ t1. Since un is a
non-decreasing function of t, u is a non-decreasing function of t.

Let Tmax be the supremum of all t1 that the integral equation (3.2.4) has a unique non-negative
continuous solution u.

Theorem 3.3.4 If Tmax is finite, then u(x0, t) is unbounded as t → Tmax.

Proof. By lemma 2.3.4.4, we have that u(x0, t) ≥ u(x, t) for all (x, t) ∈ ΩTmax . Suppose that u(x0, t)
is bounded on [0, Tmax] We consider the integral equation of the solution u for [Tmax, T ] with the initial
condition u(x, 0) replaced by u(x, Tmax),

u(x0, t) =

t∫

et

1∫

0

k(ξ)G(x0, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

k(ξ)G(x0, t, ξ, t̃)u(ξ, Tmax)dξ.

For any positive constant N > u(x0, Tmax), an argument as before shows that there exists some positive
t2 such that the integral equation of the solution u is unique and continuous on the interval [Tmax, t2].
This contradicts to the definition of Tmax. Hence this theorem is proven

Theorem 3.3.5 The semilinear parabolic problem (3.1.1) has a unique solution u.

Proof. Since
t∫
0

1∫
0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ < ∞ for x ∈ D and t in any compact subset of

[0, Tmax), we have that for any x ∈ D and t2 ∈ (0, t),

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
n→∞

t−1/n∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
n→∞

t∫

t2

∂

∂ζ

ζ−1/n∫

0

1∫

0

k(ξ)G(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

+ lim
n→∞

t2−1/n∫

0

a∫

0

G(x, t2, ξ, τ)f(u(x0, τ))dξdτ.

Let us consider the following problem

Lw = 0, for (x, t) ∈ ΩTmax
,

w(0, t, ξ, τ) = 0 = w(1, t, ξ, τ), for 0 ≤ τ < t < Tmax,

lim
t→τ+

k(x)w(x, t, ξ, τ) = δ(x− ξ).

Then we obtain that

w(x, t, ξ, τ) =

1∫

0

k(α)G(x, t, α, τ)
δ(α− ξ)

k(α)
dα = G(x, t, ξ, τ) for t > τ.
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It means that lim
t→τ+

k(x)G(x, t, ξ, τ) = δ(x− ξ). Therefore we have

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ

=

t2∫

0

1∫

0

k(ξ)G(x, t2, ξ, τ)f(u(x0, τ))dξdτ

+ lim
n→∞

t∫

t2

∂

∂ζ

ζ−1/n∫

0

1∫

0

k(ξ)G(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t2∫

0

1∫

0

k(ξ)G(x, t2, ξ, τ)f(u(x0, τ))dξdτ

+ lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

+ lim
n→∞

t∫

t2

1∫

0

k(ξ)G(x, ζ, ξ, ζ − 1/n)f(u(x0, τ))dξdζ

=

t2∫

0

1∫

0

k(ξ)G(x, t2, ξ, τ)f(u(x0, τ))dξdτ

+ lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

+

t∫

t2

1∫

0

δ(x− ξ)f(u(x0, ζ))dξdζ

=

t2∫

0

1∫

0

k(ξ)G(x, t2, ξ, τ)f(u(x0, τ))dξdτ

+ lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ +

t∫

t2

f(u(x0, ζ))dζ.

We let that

gn(x, ζ) =

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτ.

Without loss of generality, let n > m, so we have

gn(x, ζ)− gm(x, ζ) =

ζ−1/n∫

ζ−1/m

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτ.
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Since k(x)Gt(x, t, ξ, τ) ∈ C(D × (τ, T )) and f(u(x0, t)) is a monotone function of t, we use the Second
Mean Value Theorem for Integral and then we have that for any x 6= ξ and any ζ in any compact subset
of (0, Tmax), there exists some real number υ such that ζ − ν ∈ (ζ − 1/m, ζ − 1/n) and

gn(x, ζ)− gm(x, ζ) = f(u(x0, ζ − 1/m))

ζ−ν∫

ζ−1/m

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)dξdτ

+f(u(x0, ζ − 1/n))

ζ−1/n∫

ζ−ν

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)dξdτ.

It is easy to show that Gζ(x, ζ, ξ, τ) = −Gτ (x, ζ, ξ, τ) and then we have

gn(x, ζ)− gm(x, ζ)

= −f(u(x0, ζ − 1/m))

ζ−ν∫

ζ−1/m

1∫

0

k(ξ)Gτ (x, ζ, ξ, τ)dξdτ

−f(u(x0, ζ − 1/n))

ζ−1/n∫

ζ−ν

1∫

0

k(ξ)Gτ (x, ζ, ξ, τ)dξdτ

= −f(u(x0, ζ − 1/m))




1∫

0

k(ξ)G(x, ζ, ξ, ζ − ν)dξ −
1∫

0

k(ξ)G(x, ζ, ξ, ζ − 1/m)dξ




−f(u(x0, ζ − 1/n))




1∫

0

k(ξ)G(x, ζ, ξ, ζ − 1/n)dξ −
1∫

0

k(ξ)G(x, ζ, ξ, ζ − ν)dξ




= [f(u(x0, ζ − 1/n))− f(u(x0, ζ − 1/m))]

1∫

0

k(ξ)G(x, ζ, ξ, ζ − ν)d

+f(u(x0, ζ − 1/m))

1∫

0

k(ξ)G(x, ζ, ξ, ζ − 1/m)dξ

−f(u(x0, ζ − 1/n))

1∫

0

k(ξ)G(x, ζ, ξ, ζ − 1/n)dξ

Since, for x 6= ξ, k(x)G(x, ζ, ξ, ζ − ε) = k(x)G(x, ε, ξ, 0) converges uniformly to 0 with respect to ζ as
ε → 0, it follow that, for x 6= ξ,the sequence {gn} is a Cauchy sequence, and hence the sequence {gn}
converges uniformly with respect to ζ in any compact subset of (0, Tmax). Therefore for x 6= ξ

lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t∫

t2

lim
n→∞

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t∫

t2

ζ∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ.
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In the case x = ξ, we have

−k(x)Gζ(x, ζ, ξ, τ)f(u(x0, τ)) =
∞∑

i=1

k(ξ)g2
i (ξ)λi exp[−λi(ζ − τ)]f(u(x0, τ)),

which is positive. Therefore the sequence {−gn} is a non-decreasing sequence of non-negative function
with respect to ζ. By the Monotone Convergence Theorem,

lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t∫

t2

lim
n→∞

ζ−1/n∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t∫

t2

ζ∫

0

1∫

0

k(ξ)Gζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ.

Thus, we obtain that

∂

∂t

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ

=

1∫

0

k(ξ)G(x, t, ξ, t)f(u(x0, t))dξ +

t∫

0

1∫

0

k(ξ)Gt(x, t, ξ, τ)f(u(x0, τ))dξdτ

= f(u(x0, t))

1∫

0

δ(x− ξ)dξ +

t∫

0

1∫

0

k(ξ)Gt(x, t, ξ, τ)f(u(x0, τ))dξdτ

= f(u(x0, t)) +

t∫

0

1∫

0

k(ξ)Gt(x, t, ξ, τ)f(u(x0, τ))dξdτ.

We would like to show that by using the Leibnitz rule, we have for any x ∈ D and t in any compact
subset of (0, Tmax),

∂

∂x

t−ε∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ =

t−ε∫

0

1∫

0

Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ,

∂

∂x

t−ε∫

0

1∫

0

p(x)Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ =

t−ε∫

0

1∫

0

∂

∂x
[p(x)Gx(x, t, ξ, τ)] f(u(x0, τ))dξdτ.
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Let us consider that for any x1 ∈ D,

lim
ε→0

t−ε∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x1


 ∂

∂η

t−ε∫

0

1∫

0

G(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

+ lim
ε→0

t−ε∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x1

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ.

Claim that

lim
ε→0

x∫

x1

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

=

x∫

x1

lim
ε→0

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη. (3.3.6)

By using the Fubini Theorem

lim
ε→0

x∫

x1

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

= lim
ε→0

t−ε∫

0

f(u(x0, τ))

x∫

x1

1∫

0

Gη(η, t, ξ, τ)dξdηdτ

= lim
ε→0

t−ε∫

0

f(u(x0, τ))




1∫

0

G(x, t, ξ, τ)dξ −
1∫

0

G(x1, t, ξ, τ)dξ


 dτ

=

t∫

0

f(u(x0, τ))




1∫

0

G(x, t, ξ, τ)dξ −
1∫

0

G(x1, t, ξ, τ)dξ


 dτ,
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which exists because
t∫
0

1∫
0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ is continuous. Therefore we have

t∫

0

f(u(x0, τ))




1∫

0

G(x, t, ξ, τ)dξ −
1∫

0

G(x1, t, ξ, τ)dξ


 dτ

=

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ −
t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ

=

x∫

x1

∂

∂η




t∫

0

1∫

0

G(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

=

x∫

x1

t∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

=

x∫

x1

lim
ε→0

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη.

thus, we have (3.3.6). Therefore we also have

∂

∂x

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ

=
∂

∂x




x∫

x1

t∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ




=

t∫

0

1∫

0

Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ.
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Let us consider that for any x2 ∈ D,

lim
ε→0

t−ε∫

0

1∫

0

p(x)Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x2

∂

∂η




t−ε∫

0

1∫

0

p(η)Gη(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

+ lim
ε→0

t−ε∫

0

1∫

0

p(x2)Gη(x2, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x2

t−ε∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

p(x2)Gη(x2, t, ξ, τ)f(u(x0, τ))dξdτ. (3.3.7)

Claim that

lim
ε→0

x∫

x2

t−ε∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη

=

x∫

x2

lim
ε→0

t−ε∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη. (3.3.8)

By using the Fubini Theorem

lim
ε→0

x∫

x2

t−ε∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη

= lim
ε→0

t−ε∫

0

f(u(x0, τ))

x∫

x2

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] dξdηdτ

= lim
ε→0

t−ε∫

0

f(u(x0, τ))


p(x)

1∫

0

Gx(x, t, ξ, τ)dξ − p(x2)

1∫

0

Gx(x2, t, ξ, τ)dξ


 dτ

=

t∫

0

f(u(x0, τ))


p(x)

1∫

0

Gx(x, t, ξ, τ)dξ − p(x2)

1∫

0

Gx(x2, t, ξ, τ)dξ


 dτ,
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which exists Gx(x, t, ξ, τ) because is continuous. Therefore we have

t∫

0

f(u(x0, τ))


p(x)

1∫

0

Gx(x, t, ξ, τ)dξ − p(x2)

1∫

0

G(x2, t, ξ, τ)dξ


 dτ

=

t∫

0

1∫

0

p(x)Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ −
t∫

0

1∫

0

p(x2)Gx(x2, t, ξ, τ)f(u(x0, τ))dξdτ

=

x∫

x2

∂

∂η




t∫

0

1∫

0

p(η)Gη(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

=

x∫

x2

t∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη

=

x∫

x2

lim
ε→0

t−ε∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη.

thus, we have (3.3.8). Therefore we also have

∂

∂x




t∫

0

1∫

0

p(x)Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ




=
∂

∂x




x∫

x2

t∫

0

1∫

0

∂

∂η
[p(η)Gη(η, t, ξ, τ)] f(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

p(x2)Gη(x2, t, ξ, τ)f(u(x0, τ))dξdτ




=

t∫

0

1∫

0

∂

∂x

[
p(x)

∂

∂x
G(x, t, ξ, τ)

]
f(u(x0, τ))dξdτ,

for any x in D and t in any compact subset of (0, Tmax). By using the Leibnitz rule, we have that for any
x in D and t in any compact subset of (0, Tmax),

∂

∂t

1∫

0

G(x, t, ξ, 0)ψ(ξ)dξ =

1∫

0

Gt(x, t, ξ, 0)ψ(ξ)dξ,

∂

∂x

1∫

0

G(x, t, ξ, 0)ψ(ξ)dξ =

1∫

0

Gx(x, t, ξ, 0)ψ(ξ)dξ,

∂

∂x

1∫

0

p(x)Gx(x, t, ξ, 0)ψ(ξ)dξ =

1∫

0

∂

∂x
[p(x)Gx(x, t, ξ, 0)] ψ(ξ)dξ.
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From the integral equation (3.2.4) we have for x ∈ D and 0 < t < Tmax

Lu(x, t) =
[
k(x)

∂

∂t
− ∂

∂x

(
p(x)

∂

∂x

)]
u(x, t)

= k(x)
∂

∂t




t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ




+k(x)
∂

∂t




1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ




− ∂

∂x

(
p(x)

∂

∂x

) 


t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ




− ∂

∂x

(
p(x)

∂

∂x

) 


1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ




= k(x)f(u(x0, t)) + k(x)

t∫

0

1∫

0

k(ξ)Gt(x, t, ξ, τ)f(u(x0, τ))dξdτ

+k(x)

1∫

0

k(ξ)Gt(x, t, ξ, 0)ψ(ξ)dξ

−
t∫

0

1∫

0

k(ξ)
∂

∂x

[
p(x)

∂

∂x
G(x, t, ξ, τ)

]
f(u(x0, τ))dξdτ

−
1∫

0

k(ξ)
∂

∂x

[
p(x)

∂

∂x
G(x, t, ξ, 0)

]
ψ(ξ)dξ

= k(x)f(u(x0, t)) +

1∫

0

k(ξ)
(

k(x)Gt(x, t, ξ, 0)− ∂

∂x

[
p(x)

∂

∂x
G(x, t, ξ, 0)

])
ψ(ξ)dξ

+

t∫

0

1∫

0

k(ξ)
(

k(x)Gt(x, t, ξ, τ)− ∂

∂x

[
p(x)

∂

∂x
G(x, t, ξ, τ)

])
f(u(x0, τ))dξdτ

= k(x)f(u(x0, t)) + δ(t)

1∫

0

k(ξ)δ(x− ξ)ψ(ξ)dξ

+

t∫

0

1∫

0

k(ξ)δ(x− ξ)δ(t− τ)f(u(x0, τ))dξdτ

= k(x)f(u(x0, t)),
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and the initial condition of the solution u can compute from for and x ∈ D

lim
t→0

u(x, t) = lim
t→0

1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ

=

1∫

0

lim
t→0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ

=

1∫

0

δ(x− ξ)φ(ξ)dξ

= ψ(x),

since we know that G(0, t, ξ, τ) = 0 = G(1, t, ξ, τ), we can compute directly and obtain the boundary
condition u(0, t) = 0 = u(1, t). Therefore u defined by (3.2.4) is a solution of the problem.

3.4 A sufficient condition to blow-up in finite time

In this section, we give a sufficient condition to guarantee occurrence of blow-up in finite time
for the solution u of semilinear parabolic problem (3.1.1). Let λ1 be the first eigenvalue of a singular
eigenvalue problem (3.2.3) and let g1 > 0 be its corresponding eigenfunction. Without loss of generality,
we assume that

1∫

0

k(x)g1(x)dx = 1. (3.4.1)

We then define a function Q by

Q(t) =

1∫

0

k(x)g1(x)u(x, t)dx. (3.4.2)

Theorem 3.4.1 If

∞∫

Q0

ds

Q(s)− λ1s
< ∞

with Q0 = Q(0) =
1∫
0

k(x)ψ1(x)g1(x)dx, then a solution u of semilinear parabolic problem (3.1.1) blows

up in finite time.

Proof. Suppose that a solution u of semilinear parabolic problem (3.1.1) exists for all t > 0. Multiplying
both sides of problem (3.1.1) by g1 and then integrating both sides of problem (3.1.1) with respect to x
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over its domain, we obtain

dQ

dt
=

1∫

0

k(x)ut(x, t)g1(x)dx

=

1∫

0

[
∂

∂x

(
p(x)

∂u

∂x

)
+ k(x)f(u(x0, t))

]
g1(x)dx

=

1∫

0

[
∂

∂x

(
p(x)

∂u

∂x

)]
g1(x)dx +

1∫

0

k(x)f(u(x0, t))g1(x)dx.

Using the integration by part for the first term in right hand side and then using the boundary condition
of regular eigenvalue problem (3.2.3), we have

dQ

dt
=

[
p(x)

∂u

∂x
g1(x)

]1

0

−
1∫

0

p(x)
∂u

∂x

∂g1

∂x
dx +

1∫

0

k(x)f(u(x0, t))g1(x)dx

= −
1∫

0

p(x)
∂u

∂x

∂g1

∂x
dx +

1∫

0

k(x)f(u(x0, t))g1(x)dx.

Using the integrate by part again for the first term in right hand side and then using the boundary
condition of semilinear parabolic problem (3.1.1), we get

dQ

dt
= −

[
p(x)u(x, t)

∂g1

∂x

]1

0

+

1∫

0

u(x, t)
∂

∂x

[
p(x)

∂ψ1

∂x

]
dx +

1∫

0

k(x)f(u(x0, t))g1(x)dx

=

1∫

0

u(x, t)
∂

∂x

[
p(x)

∂g1

∂x

]
dx +

1∫

0

k(x)f(u(x0, t))g1(x)dx

= −λ1

1∫

0

k(x)u(x, t)g1(x)dx +

1∫

0

k(x)f(u(x0, t))g1(x)dx

= −λ1Q(t) +

1∫

0

k(x)f(u(x0, t))g1(x)dx

It follows from lemma 2.3.4.4 that

dQ

dt
≥ −λ1Q(t) +

1∫

0

k(x)f(u(x, t))g1(x)dx (3.4.3)

Furthermore, from Jensen’s inequality for convex functions, we apply to the second term in the right
hand side 0f (3.4.3) and then we obtain

1∫

0

k(x)f(u(x, t))g1(x)dx ≥ f




1∫

0

k(x)u(x, t)g1(x)dx




= f (Q(t)) . (3.4.4)
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From (3.4.3) and (3.4.4), we have the inequality

dQ(t)
dt

≥ −λ1Q(t) + f (Q(t)) . (3.4.5)

It follows from

Q′(t) =

1∫

0

k(x)ut(x, t)g1(x)dx ≥ 0

that Q(t) ≥ Q0 for all t > 0 and since lim
s→∞

f(s)
s tends to infinity, there exists a positive constant N with

N ≥ Q0 such that
f(s)− λ1s ≥ 0 for any s ≥ N ≥ Q0.

by above sentence we can rewrite the inequality (3.4.5) in the form

Q(t)∫

Q0

ds

Q(s)− λ1s
≥ t,

or

t ≤
Q(t)∫

Q0

ds

Q(s)− λ1s
<

∞∫

Q0

ds

Q(s)− λ1s
.

By assumption of theorem, t is finite. We thus get a contradiction. Hence the solution u of semilinear
parabolic problem (3.1.1) blow-up in finite time.

3.5 The blow-up set

In the last section of this chapter, we investigate the blow-up of solution u of semilinear parabolic
problem (3.1.1).

Theorem 3.5.1 If a solution u of semilinear parabolic problem (3.1.1) blows up in a finite time, then
the blow-up set of such a u is D.

Proof. Assume that u blows up in a finite time Tmax. A solution u of semilinear parabolic problem
(3.1.1) is given by

u(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ.

By lemma 3.2.3 we obtain

u(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ

=

t∫

0

1∫

0

k(ξ)G(x, t, ξ, 0)f(u(x0, t− τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)ψ(ξ)dξ

≤ C2kmax

t∫

0

f(u(x0, t− τ))dτ + C2kmax max
x∈D

ψ(x).
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Since u blows up in finite time, we have that as t converges to Tmax,

Tmax∫

0

f(u(x0, t− τ))dτ = ∞.

On the other hand, let us consider that for any (x, t) ∈ ΩTmax

u(x, t) =

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

k(ξ)G(x, t, ξ, 0)φ(ξ)dξ

≥ C1kmin

t∫

0

f(u(x0, t− τ))dτ +

1∫

0

k(ξ)G(x, t, ξ, 0)φ(ξ)dξ

≥ C1kmin

t∫

0

f(u(x0, t− τ))dτ,

which tends to infinity for any x ∈ D as t approaches Tmax. For x ∈ {0, 1}, we can find a sequence
{(xn, tn)} such that (xn, tn) → (x, Tmax) and lim

n→∞
u(xn, tn) →∞. Thus, the blow-up set of a solution u

of semilinear parabolic problem (3.1.1) is D.

Note that this chapter was the object of the communication :
P. Sawangtong and B. Novaprateep Complete blow-up for a semilinear parabolic problem with a

localized nonlinear term, Thai national conference on Mathematics, Bangkok, Thailand, May 2008.
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Chapter 4

Complete blow-up for a semilinear

parabolic problem with a localized

nonlinear term in several dimensions

4.1 Introduction

Let Ω be an open bounded subset of RN with a smooth boundary ∂Ω and Ω be its closure. In
this chapter, we consider the following semilinear parabolic problem

ut − 1
k(x)div (p(x)∇u(x, t)) = f(u(b, t)) for (x, t) ∈ Ω× (0,∞),

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x) for x ∈ Ω,





(4.1.1)

where k, p, f, and u0 are given functions, b is a fixed point in Ω.

Through this chapter, we assume that

(A1) k ∈ L∞(Ω) and 0 < k0 ≤ k(x) ≤ k1 a.e. x ∈ Ω for some constants k0 and k1,

(A2) p ∈ L∞(Ω), 0 < p0 ≤ p(x) ≤ p1 a.e. x ∈ Ω for some constants p0 and p1 and p satisfies the
following condition: there exist positive constants c0 and c1 such that, for any real vector ξ,

c0 |ξ|2 ≤ p(x)
N∑

i,j=1

ξiξj ≤ c1 |ξ|2

for all (x, t) ∈ Ω× (0,∞),

(A3) f is locally Lipschitz continuous, f(0) = 0 and f(s) > 0 for s > 0 and

(A4) u0 ∈ H2(Ω) ∩H1
0 (Ω), u0 is nontrivial and nonnegative on Ω.

4.2 Main results

Our main results in this chapter are as follows.
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Theorem 4.2.1 Before blow-up occurs, there exists a positive constant T such that the semilinear
parabolic problem (4.1.1) has a unique continuous solution u on Ω× [0, T ].

Theorem 4.2.2 Let Tmax be the supremum of all T such that the semilinear parabolic problem (4.1.1)
has a unique continuous solution u on Ω× [0, T ]. If Tmax is finite, then |u(b, t)| is unbounded as t tends
to Tmax.

Theorem 4.2.3 If Tmax is finite, then the blow-up set of a solution u of problem (4.1.1) is Ω.

4.3 The proof of main results

Let us define the space L2(Ω) by

L2(Ω) =



u : Ω → R Lebesgue measurable such that

∫

Ω

k(x)u2(x)dx < ∞


 .

The space L2(Ω) equipped with the inner product

〈u, v〉L2(Ω) =
∫

Ω

k(x)u(x)v(x)dx

is a Hilbert space and its corresponding norm is given by

‖u‖L2(Ω) =




∫

Ω

k(x)u2(x)dx




1
2

.

The space H1(Ω) defined by

H1(Ω) =
{
u ∈ L2(Ω) : Dxiu ∈ L2(Ω) for i = 1, 2, . . . , N

}
,

where Dxiu is partial differentiation of u with respect to xi in the distributional sense, is a Hilbert space
equipped with the inner product

〈u, v〉H1(Ω) =
∫

Ω

(
k(x)u(x)v(x) + p(x)

N∑

i=1

DxiuDxiv

)
dx

and the corresponding norm

‖u‖H1(Ω) =




∫

Ω

(
k(x)u2(x) + p(x)

N∑

i=1

(Dxi
u)2

)
dx




1
2

.

Finally, we define a Hilbert space H1
0 (Ω) by

H1
0 (Ω) =

{
u ∈ H1(Ω) : u(x) = 0 for x ∈ ∂Ω

}

where its inner product and norm are given by

〈u, v〉H1
0 (Ω) =

∫

Ω

p(x)
N∑

i=1

Dxi
uDxi

vdx
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and

‖u‖H1(Ω) =




∫

Ω

p(x)
N∑

i=1

(Dxiu)2 dx




1
2

,

respectively. In order to obtain our main results, we will transform the semilinear parabolic problem to
the following equivalent semilinear evolution problem

du(t)
dt

−Au(t) = F (u) for t > 0 and u(0) = u0, (4.3.1)

where A is an operator mapping from D(A), domain of A, to L2(Ω) with

D(A) = {u ∈ H1
0 (Ω) : there exists an unique element w ∈ L2(Ω) such that

∫

Ω

k(x)w(x)ϕ(x)dx = −
∫

Ω

p(x)
N∑

i=1

DxiuDxiϕdx for any ϕ ∈ H1
0 (Ω)},

and Au = 1
k(x) (p(x)ux)x = w for all u ∈ D(A) and where the operator F : D(A) → L2(Ω) is defined by

F (u) = f(u(b)) for any u ∈ D(A). (4.3.2)

4.3.1 The proof of theorem 4.2.1

Existence and uniqueness of a solution u of the equivalent semilinear evolution problem (4.3.1)
result from the next proposition referred to [17].

Proposition 4.3.1.1 If B : D(B) → L2(Ω) is m-dissipative and self-adjoint and G is Hölder contin-
uous of exponent α ∈ (0, 1), then an semilinear evolution problem,

dv(t)
dt

−Bv(t) = G(t) for t > 0 and v(0) = v0 ∈ D(B),

has an unique solution v ∈ C([0,∞), D(B)) ∩ C1([0,∞), L2(Ω)) which can be expressed as

v(t) = H(t)v0 +

t∫

0

H(t− τ)G(τ)dτ

where H(t) is an analytic semigroup generated by B.

By modifying the proof of proposition 2.3.1.1 in chapter 2, we get the following lemma.

Lemma 4.3.1.2 The operator A defined by (4.3.1) is m-dissipative and self-adjoint.
Since an operator (λI − A)−1 is bounded well-defined operator on L2(Ω) with its values in H1

0 (Ω),
Rellich theorem yeilds that (λI−A)−1 ia a compact on L2(Ω). Next proposition gives well-known results
of self-adjoint compact operators, the spectral theory of self-adjoint compact operators referred from [11].

Proposition 4.3.1.3 For any n ∈ N, there exists a sequence (λn, φn) ⊂ (0,∞)×H1
0 (Ω) such that

1 Aφn = −λnφn.

2
∫
Ω

k(x)φn(x)φm(x)dx = δnm with δnm =
{

1 if n = m,

0 if n 6= m.

3
∫
Ω

p(x)
N∑

i=1

Dxi
φn(x)Dxi

φm(x)dx = λnδnm
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4 For any u ∈ L2(Ω), u =
∞∑

n=1
〈u, φn〉φn.

5 For any u ∈ L2(Ω), ‖u‖2L2(Ω) =
∞∑

n=1
〈v, φn〉2 .

6 Av = −
∞∑

n=1
λn 〈v, φn〉φn for any v ∈ D(A) with

D(A) =

{
v ∈ L2(Ω) :

∞∑
n=1

λ2
n 〈v, φn〉2 < ∞

}

7 S(t)v =
∞∑

n=1
e−λnt 〈v, φn〉φn for all (v, t) ∈ L2(Ω)× [0, +∞).

Let s ∈ R with 0 < s < 1. By using eigenfunctions and eigenvalues of −A, we define an operator
(−A)s : D((−A)s) → L2(Ω) with

D((−A)s) =

{
u ∈ H1

0 (Ω) :
∞∑

n=1

λ2s
n 〈v, φn〉2 < ∞

}

by

(−A)su =
∞∑

n=1

λs
n 〈v, φn〉φn.

We note that D((−A)s) is a Banach space equipped with a square of norm

‖u‖2D((−A)s) =
∞∑

n=1

λ2s
n 〈u, φn〉2 = ‖(−A)su‖2L2(Ω)

and D(A) ↪→ D((−A)s). Let N ∈ N with N ≤ 3, we set

sN =
N

4
.

Hereafter, let s ∈ (sN , 1). We then note that by interpolation theory and Sobolev embedding referred
from [24],

D(A) ↪→ D((−A)s) ↪→ H2s(Ω) ↪→ C(Ω), (4.3.3)

and that the definition of F given by (4.3.2) is meaningful. Moreover, by equation (4.3.3), there exist
positive constant c0, c1 and c2 such that for any u ∈ D(A),

‖u‖C(Ω) ≤ c0 ‖u‖H2s(Ω) ,

‖u‖H2s(Ω) ≤ c1 ‖u‖D((−A)s)

and
‖u‖D((−A)s) ≤ c2 ‖u‖D(A) .

From (4.3.3), we obtain the following lemma.

Proposition 4.3.1.4 The operator F defined by (4.3.2) is locally Lipshitz continuous from D(A) to
L2(Ω).
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Proof. Let u, v ∈ D(A). From (4.3.3), there exists a M > 0 such that |u| ≤ M and |v| ≤ M. By locally
Lipschitz continuous property of f, there exists a positive constant L depending on M with

‖F (u)− F (v)‖2L2(Ω) =
∫

Ω

k(x) |F (u(x))− F (v(x))|2 dx

=
∫

Ω

k(x) |f(u(b))− f(v(b))|2 dx

≤ L

∫

Ω

k(x) |u(b)− v(b)|2 dx

≤ k1L |Ω| ‖u− v‖2C(Ω)

≤ c0k1L |Ω| ‖u− v‖2H2s(Ω)

≤ c0c1k1L |Ω| ‖u− v‖2D((−A)s)

≤ c0c1c2k1L |Ω| ‖u− v‖2D(A) .

Therefore, the proof is complete.
Moreover, we obtain the following results by modifying proofs of proposition 2.3.1.4.

Lemma 4.3.1.5 Let v ∈ D((−A)s) and t > 0.

1 S(t)v ∈ D((−A)s)

2 ‖(−A)sS(t)v‖L2(Ω) = ‖S(t)(−A)sv‖L2(Ω) ≤ ‖(−A)sv‖L2(Ω) .

Proof. Let v ∈ D((−A)s). Proposition 3.3.1.4 gives:

∞∑
n=1

λ2s
n 〈S(t)v, φn〉2 =

∞∑
n=1

λ2s
n e−2λnt 〈v, φn〉2

≤
∞∑

n=1

λ2s
n 〈v, φn〉2

= ‖v‖2D((−A)s)

which shows that S(t)v ∈ D((−A)s) and ‖S(t)v‖D((−A)s) ≤ ‖v‖D((−A)s) . Moreover,

S(t)(−A)sv =
∞∑

n=1

λs
n 〈v, φn〉 e−2λnt = (−A)sS(t)v.

Since ∞∑
n=1

λ2s
n 〈v, φn〉2 e−2λnt ≤

∞∑
n=1

λ2s
n 〈v, φn〉2 for t ∈ (0, T ],

we have
‖(−A)sS(t)v‖L2(Ω) = ‖S(t)(−A)sv‖L2(Ω) ≤ ‖v‖D((−A)s) for t ∈ (0, T ].

The proof then is complete.

Lemma 4.3.1.6 There is a positive constant c3 such that

‖(−A)sS(t)v‖L2(Ω) = ‖S(t)v‖D((−A)s) ≤
c3

ts
‖v‖L2(Ω)
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for any (v, t) ∈ L2(Ω)× (0,∞).

Proof. Let v ∈ L2(Ω). It is not difficult to see that ‖(−A)sS(t)v‖L2(Ω) = ‖S(t)v‖D((−A)s) . Since the
function

y ∈ R+ → y2se−2y ∈ R+

is bounded, there exists a c > 0 such that

t2s
∞∑

n=1

λ2s
n 〈v, φn〉2 e−2λnt ≤ c

∞∑
n=1

λ2s
n 〈v, φn〉2 = c ‖v‖2L2(Ω) .

Hence, we get this lemma.
We next give the definition of a mild solution of a semilinear parabolic problem ( 4.3.1).

Definition u is a mild solution of the semilinear parabolic problem (4.3.1) if there exists u ∈
C([0,∞), D((−A)s)) such that

u(t) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ for all t ∈ [0, T ]

where u0 is assumed to belong to D((−A)s).
Local existence of a mild solution u of a semilinear evolution problem ( 4.3.1) is shown in the next

lemma which base on the proof of proposition 2.3.1.7.

Lemma 4.3.1.7 Let u0 ∈ D((−A)s). There is a positive constant T such that the equivalent semilinear
evolution problem (4.3.1) has a unique mild solution on [0, T ]. Moreover, let u(t) and ũ(t) be the mild
solutions corresponding to u0 and ũ0. Then for all t ∈ [0, T ],

‖u(t)− ũ(t)‖D((−A)s) ≤ ‖u0 − ũ0‖D((−A)s) e
c3(c0c1k1L|Ω|)1/2T1−s

1−s .

Proof. Let
M = ‖u0‖D((−A)s) + 1

and

T < min

{(
1− s

c3M(c0c1k1L |Ω|)1/2

) 1
1−s

,

(
1− s

c3(c0c1k1L |Ω|)1/2

) 1
1−s

}
(4.3.4)

We then define the set E by

E =
{

u ∈ C([0, T ], D((−A)s)) such that ‖u(t)‖D((−A)s) ≤ M for all t ∈ [0, T ]
}

equipped with the norm
‖u‖E = sup

t∈[0,T ]

‖u(t)‖D((−A)s) .

Clearly, E is a Banach space. Let

Φ(u) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ. (4.3.5)
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We now show that the operator Φ defined by (4.3.5) maps E into itself and the mapping is a contraction.
For any u ∈ E, by proposition 4.3.1.4 and lemma 4.3.1.5 and 4.3.1.6, we have

‖Φ(u)‖E = sup
t∈[0,T ]

∥∥∥∥∥∥
S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ

∥∥∥∥∥∥
D((−A)s)

≤ sup
t∈[0,T ]

‖S(t)u0‖D((−A)s) + sup
t∈[0,T ]

∥∥∥∥∥∥

t∫

0

S(t− τ)F (u(τ))dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖u0‖D((−A)s) + sup
t∈[0,T ]

t∫

0

‖S(t− τ)F (u(τ))‖D((−A)s) dτ

≤ ‖u0‖D((−A)s) + c3 sup
t∈[0,T ]

t∫

0

‖Fu(τ)‖L2(Ω)

(t− τ)s
dτ

≤ ‖u0‖D((−A)s) + c3(c0c1k1L |Ω|)1/2 sup
t∈[0,T ]

t∫

0

‖u(τ)‖D((−A)s)

(t− τ)s
dτ

≤ ‖u0‖D((−A)s) + c3M(c0c1k1L |Ω|)1/2 sup
t∈[0,T ]

t∫

0

1
(t− τ)s

dτ

≤ ‖u0‖D((−A)s) +
c3M(c0c1k1L |Ω|)1/2

1− s
T 1−s.

Thus, by (4.3.4), Φ(u) ∈ E. For any u1, u2 ∈ E, we have

‖Φ(u1)− Φ(u2)‖E = sup
t∈[0,T ]

∥∥∥∥∥∥

t∫

0

S(t− τ) [F (u1(τ))− F (u2(τ))] dτ

∥∥∥∥∥∥
D((−A)s)

≤ sup
t∈[0,T ]

t∫

0

‖S(t− τ) [F (u1(τ))− F (u2(τ))]‖D((−A)s) dτ

≤ c3 sup
t∈[0,T ]

t∫

0

‖F (u1(τ))− F (u2(τ))‖L2(Ω)

(t− τ)s
dτ

≤ c3(c0c1k1L |Ω|)1/2 sup
t∈[0,T ]

t∫

0

‖u1(τ)− u2(τ)‖D((−A)s)

(t− τ)s
dτ

≤ c3(c0c1k1L |Ω|)1/2


 sup

t∈[0,T ]

t∫

0

dτ

(t− τ)s


 ‖v1 − v2‖E

≤ c3(c0c1k1L |Ω|)1/2T 1−s

1− s
‖v1 − v2‖E .

By (4.3.4), Φ is strict contraction on E. Therefore, by the contraction mapping theorem, Φ has a fixed
point in E, that is, there exists a unique u ∈ E such that

u(t) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ
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which is a mild solution of equivalent semilinear evolution problem (4.3.1). To show that uniqueness
also holds in C([0, T ], D((−A)s)), let u1, u2 ∈ C([0, T ], D((−A)s)) be two solutions of (4.3.1) and let
u = u1 − u2. Then

u(t) =

t∫

0

S(t− τ) [F (u1(τ))− F (u2(τ))] dτ.

It follows from proposition 4.3.1.4 and lemma 4.3.1.6 that

‖u(t)‖D((−A)s) =

∥∥∥∥∥∥

t∫

0

S(t− τ) [F (u1(τ))− F (u2(τ))] dτ

∥∥∥∥∥∥
D((−A)s)

≤
t∫

0

‖S(t− τ) [F (u1(τ))− F (u2(τ))]‖D((−A)s) dτ

≤ c3

t∫

0

‖F (u1(τ))− F (u2(τ))‖L2(Ω)

(t− τ)s
dτ

≤ c3(c0c1k1L |Ω|)1/2

t∫

0

‖u1(τ)− u2(τ)‖D((−A)s)

(t− τ)s
dτ

= c3(c0c1k1L |Ω|)1/2

t∫

0

‖u(τ)‖D((−A)s)

(t− τ)s
dτ,

By the Gronwall inequality, ‖u(t)‖D((−A)s) = 0 for all t ∈ [0, T ], i.e., the uniqueness in C([0, T ], D((−A)s)).
Moreover, we have

u(t)− ũ(t) = S(t)(u0 − ũ0) +

t∫

0

S(t− τ) [F (u(τ))− F (ũ(τ))] dτ.

Then

‖u(t)− ũ(t)‖D((−A)s)

=

∥∥∥∥∥∥
S(t)(u0 − ũ0) +

t∫

0

S(t− τ) [F (u(τ))− F (ũ(τ))] dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖S(t)(u0 − ũ0)‖D((−A)s) +

∥∥∥∥∥∥

t∫

0

S(t− τ) [F (u(τ))− F (ũ(τ))] dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖u0 − ũ0‖D((−A)s) + c3

t∫

0

‖F (u(τ))− F (ũ(τ))‖L2(Ω)

(t− τ)s
dτ

≤ ‖u0 − ũ0‖D((−A)s) + c3(c0c1k1L |Ω|)1/2

t∫

0

‖u(τ)− ũ(τ)‖D((−A)s)

(t− τ)s
dτ.
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The Gronwall inequality implies:

‖u(t)− ũ(t)‖D((−A)s) ≤ ‖u0 − ũ0‖D((−A)s) e
c3(c0c1k1L|Ω|)1/2

tR
0

1
(t−τ)s dτ

≤ ‖u0 − ũ0‖D((−A)s) e
c3(c0c1k1L|Ω|)1/2T1−s

1−s .

Therefore, this theorem is proven.

Proposition 4.3.1.8 Let u0 ∈ D((−A)s). The mild solution u of semilinear evolution problem (4.3.1)
is Hölder continuous of exponent 1− s in t from [0, T ] to D((−A)s).

Proof. Let u0 ∈ D((−A)s). Let ũ(t) = u(t + h) for any h > 0 and 0 ≤ t ≤ T − h. Then, ũ is a mild
solution of problem (4.3.1) with the initial data ũ(0) = u(h). Thus

‖u(t + h)− u(t)‖D((−A)s) = ‖ũ(t)− u(t)‖D((−A)s)

≤ ‖u(h)− u0‖D((−A)s) e
c3(c0c1k1L|Ω|)1/2T1−s

1−s .

On the other hand, we have that

‖u(h)− u0‖D((−A)s)

=

∥∥∥∥∥∥
S(h)u0 − u0 +

h∫

0

S(h− τ)F (u(τ))dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖S(h)u0 − u0‖D((−A)s) +

∥∥∥∥∥∥

h∫

0

S(h− τ)F (u(τ))dτ

∥∥∥∥∥∥
D((−A)s)

≤
∥∥∥∥∥∥

h∫

0

S(τ)Au0dτ

∥∥∥∥∥∥
D((−A)s)

+ c3

h∫

0

‖F (u(τ))‖L2(Ω)

(h− τ)s
dτ

≤
h∫

0

‖S(τ)Au0‖D((−A)s) dτ

+c3

h∫

0

‖F (u0)‖L2(Ω) + (c0c1k1L |Ω|)1/2 ‖u(τ)− u0‖D((−A)s)

(h− τ)s
dτ

≤ c3

h∫

0

‖Au0‖L2(Ω)

(h− τ)s
dτ + c3

h∫

0

‖F (u0)‖L2(Ω)

(h− τ)s
dτ

+c3(c0c1k1L |Ω|)1/2

h∫

0

‖u(τ)− u0‖D((−A)s)

(h− τ)s
dτ

≤
c3

(
‖Au0‖L2(Ω) + ‖F (u0)‖L2(Ω)

)
h1−s

1− s

+c3(c0c1k1L |Ω|)1/2

h∫

0

‖u(τ)− u0‖D((−A)s)

(h− τ)s
dτ.
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Gronwall inequality implies:

‖u(h)− u0‖D((−A)s)

≤
c3

(
‖Au0‖L2(Ω) + ‖F (u0)‖L2(Ω)

)

1− s
e
c3(c0c1k1L|Ω|)1/2

hR
0

1
(h−τ)s dτ

h1−s

≤
c3

(
‖Au0‖L2(Ω) + ‖F (u0)‖L2(Ω)

)

1− s
e

c3(c0c1k1L|Ω|)1/2T1−s

1−s h1−s.

Then, for any t1, t2 ∈ [0, T ] such that t1 + h = t2,

‖u(t2)− u(t1)‖D((−A)s)

≤
c3

(
‖Au0‖L2(Ω) + ‖F (u0)‖L2(Ω)

)

1− s
e

c3(c0c1k1L|Ω|)1/2T1−s

1−s |t2 − t1|1−s
.

Hence, u is Hölder continuous of exponent 1− s in t.

It follows from D(A) ↪→ D((−A)s) and lemma 4.3.1.7 that we obtain the local existence of a classical
solution of the semilinear evolution problem (4.3.1).

Lemma 4.3.1.9 There exists a positive constant T such that the equivalent semilinear evolution
problem (4.3.1) has a unique classical solution u(t) ∈ C([0, T ], D((−A)s)) ∩ C1([0, T ], L2(Ω)) given by

u(t) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ

where S(t) is an analytic semigroup generated by A and u0 ∈ D(A).

Proof of theorem 4.2.1 The proof of theorem 4.2.1 then follows directly from proposition 4.3.1.1.

4.3.2 The proof of theorem 4.2.2

Let Tmax be the supremum of all T such that equivalent semilinear evolution problem (4.3.1) has
an unique mild u on [0, T ]. By modifying the proof of proposition 2.3.2.1, we have the following results.

Proposition 4.3.2.1 Let u0 ∈ D(A). If Tmax is finite, then ‖u(t)‖D((−A)s) is unbounded as t tends
to Tmax.

Proof. Suppose that there exists a positive constant M and a sequence {tn} such that

‖u(tn)‖D((−A)s) ≤ M as tn → Tmax.

Let us consider the following semilinear evolution problem

dv

dt
−Av(t) = F (v(t)) for t > 0 and v(0) = u(tn). (4.3.6)

We then have that by lemma 4.3.1.9, there exists a positive constant γ such that problem (4.3.6) has a
unique mild solution v on the interval [0, γ]. We choose n large enough with tn + γ > Tmax. We then
define the function ũ by

ũ(t) =
{

u(t) for 0 ≤ t ≤ tn,

v(t− tn) for tn ≤ t ≤ tn + γ.

57



We would like to show that ũ is a mild solution of the equivalent semilinear evolution problem (4.3.1) on
[0, tn + γ], that is, ũ satisfies that

ũ(t) = S(t)u0 +

t∫

0

S(t− τ)F (ũ(τ))dτ for t ∈ [0, tn + γ].

Clearly, ũ is a mild solution of the equivalent semilinear evolution problem (4.3.1) on [0, tn]. We thus
consider that for t ∈ [0, γ],

ũ(t + tn)

= v(t)

= S(t + tn)u0 +

tn∫

0

S(t + tn − τ)F (u(τ))dτ +

t∫

0

S(t− τ)F (v(τ))dτ

= S(t + tn)u0 +

tn∫

0

S(t + tn − τ)F (ũ(τ))dτ +

t+tn∫

tn

S(t + tn − τ)F (v(τ − tn))dτ

= S(t + tn)u0 +

tn∫

0

S(t + tn − τ)F (ũ(τ))dτ +

t+tn∫

tn

S(t + tn − τ)F (ũ(τ))dτ

= S(t + tn)u0 +

t+tn∫

0

S(t + tn − τ)F (ũ(τ))dτ.

Therefore, ũ is a mild solution of the equivalent semilinear evolution problem (4.3.1) on [tn, tn+γ]. Hence,
the proof is complete.

Proof of Theorem 4.2.2 Suppose that there is a positive constant M such that |u(b, t)| ≤ M for
t ∈ [0, Tmax). By lemma 4.3.1.9, we have that

u(t) = S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ for any t ∈ [0, Tmax).

Then, for any t ∈ [0, Tmax],

‖u(t)‖D((−A)s) =

∥∥∥∥∥∥
S(t)u0 +

t∫

0

S(t− τ)F (u(τ))dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖u0‖D((−A)s) +

∥∥∥∥∥∥

t∫

0

S(t− τ)f(u(b, τ))dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖u0‖D((−A)s) + f(M)

∥∥∥∥∥∥

t∫

0

S(t− τ) · 1dτ

∥∥∥∥∥∥
D((−A)s)

≤ ‖u0‖D((−A)s) + c3f(M)

t∫

0

‖1‖L2(Ω)

(t− τ)s
dτ

= ‖u0‖D((−A)s) + c3f(M)
t1−s

1− s
.
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Then, we have that ‖u(t)‖D((−A)s) is bounded as t → Tmax which contradict to proposition 4.3.2.1.

4.3.3 The proof of theorem 4.2.3

Before proving theorem 3.2.3, we need the following lemma.

Lemma 4.3.3.1 For any x ∈ I, there exists a positive real number c(x) depending on x such that

(S(t)1) (x) ≥ c(x) for any t ∈ [0, Tmax).

Proof. Let x0 be arbitrary in I and ϕ a C∞(RN ) function with support valued in the ball B(0, 1) and
such that ∫

RN

ϕ(x)dx = 1.

Let ϕε defined by

ϕε(x) = ε−Nϕ

(
x− x0

ε

)
.

The maximum principle yields that for any (x, t) ∈ Ω× [0,∞),

(S(t)1) (x) ≥ εN

|ϕ|∞
(S(t)ϕε) (x).

Moreover, for any (x, t) ∈ Ω× [0,∞),

(S(t)ϕε) (x) =
∞∑

n=1

e−λnt 〈ϕε, φn〉φn(x).

But
∣∣∣∣∣∣

∫

Ω

ϕεφndx− φn(x0)

∣∣∣∣∣∣
≤ sup {|φn(x)− φn(x0)| , x ∈ B(0, 1)}

≤ ε sup {∇φn(x), x ∈ B(0, 1)} .

Using the spectral theory and may be some additional properties of regularity for p and k we have a
suitable power of λn say (λn)rN (rN because it depends on N but not on n). Hence,

εN

|ϕ|∞
(S(t)ϕε) (x0) ≥ εN

|ϕ|∞

( ∞∑
n=1

e−λntφ2
n(x0)− ε

∞∑
n=1

e−λntλrN+sN
n

)

sN being such that |φn| ≤ cλsN
n (such relationship exists [see spectral theory] and suitable smooth

assumptions on Ω and p, k). The series
∞∑

n=1
e−λntλrN+sN

n converges because λn ∼ n
2
n , thus the results is

proven by choosing ε small enough.

Proof of Theorem 4.2.3 From theorem 3.2.2, that is, |u(b, t)| is unbounded as t tends to Tmax, it
means that there exists a t∗ with 0 < t∗ < Tmax such that |u(b, t)| ≥ M where M is a fixed positive
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constant for any t > t∗. Let us consider that

|u(b, t)| = |u(t)(b)|

≤ |(S(t)u0)(b)|+
t∫

0

|(S(t− τ)1)(b)| |f(u(b, τ))| dτ

= |(S(t)u0)(b)|+
t∗∫

0

|(S(t− τ)1)(b)| |f(u(b, τ))| dτ

+

t∫

t∗

|(S(t− τ)1)(b)| |f(u(b, τ))| dτ.

Locally Lipschitz continuity of f implies that there exists a positive constant L depending on M such
that

|f(u(b, t))| ≤ L |u(b, t)| for any t ≤ t∗

and then we have that

|u(b, t)| ≤ |(S(t)u0)(b)|+
t∗∫

0

|(S(t− τ)1)(b)| (L |u(b, t)|)dτ

+

t∫

t∗

|(S(t− τ)1)(b)| |f(u(b, τ))| dτ

≤ c4 + c5

t∫

t∗

|f(u(b, τ))| dτ,

where c4 and c5 are some positive constants. Then, it follows from theorem 4.2.2, we obtain that
t∫

t∗
|f(u(b, τ))| dτ is unbounded as t tends to Tmax. On the other hand, we consider that

u(x, t) = u(t)(x)

= (S(t)u0)(x) +

t∫

0

(S(t− τ)1)(x)f(u(b, τ))dτ

for any (x, t) ∈ Ω× (0, Tmax). From lemma 4.3.3.1, there exist two positive constant c6 and c7 such that

u(x, t) ≥ c6 + c7

t∫

0

f(u(b, τ))dτ.

Since non-negativity of u0 and positivity of f imply that u is nonnegative, we obtain that

t∫

t∗

f(u(b, τ))dτ is unbounded as t converges to t∗.

Hence, as t approaches to Tmax, the solution u of semilinear parabolic problem (4.1.1) will be blow-up at
every point x in Ω.
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Chapter 5

Complete blow-up for a degenerate

semilinear parabolic problem with a

localized nonlinear term

5.1 Introduction

Let α and β be constants with α ≥ 0, 0 ≤ β < 1 and α+β 6= 0 and let D = (0, 1), ΩT = D×(0, T )
and D, ΩT be the closure of D and ΩT , respectively. Let us consider the following degenerate parabolic
first initial-boundary value problem,

Lu(x, t) = f(u(x0, t)), for (x, t) ∈ ΩT ,

u(x, 0) = φ(x), for x ∈ D,

u(0, t) = 0 = u(1, t), for t ∈ (0, T ],



 (5.1.1)

where x0 ∈ D, Lu = xαut − (xβux)x and ut denotes the derivative of u with respect to t. We assume
throughout this chapter that

(A) f ∈ C2([0,∞)) is convex with f(0) = 0 and f(s) > 0 for s > 0.

(B) φ ∈ C2(D), φ is nontrivial and nonnegative, φ(0) = 0 = φ(1), and

(xβφ′(x))′ + f(φ(x0)) ≥ 0 for x ∈ D. (5.1.2)

Since the coefficients of ut, ux, and uxx may tend to 0 as x tends to 0, we can regard the equation as
degenerate.

This chapter is organized as follows: in section 4.2, we show properties of eigenvalues and their
corresponding eigenfunctions of (5.1.1); in section 4.3, we also give properties of the corresponding Green’s
function of (5.1.1) and show the existence and uniqueness of the solution of (5.1.1); in section 4.4, we
give a criteria for the solution of (5.1.1) to blow up in a finite time; in the last section, we prove that the
set of blow-up points is the whole interval D.
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5.2 Eigenvalues and eigenfunctions

Using separation of variables on the homogeneous problem corresponding to (5.1.1), we obtain
the following singular eigenvalue problem:

(xβg′(x))′ + λxαg(x) = 0, for x ∈ D and g(0) = 0 = g(1), (5.2.1)

We set g(x) = x
1−β

2 y(x). Then, we obtain that

dg

dx
=

d

dx

(
x

1−β
2 y(x)

)

=
1− β

2
x
−1−β

2 y(x) + x
1−β

2 y′(x)

and

d

dx

(
xβ dg

dx

)
=

d

dx

(
1− β

2
x

β−1
2 y(x) + x

β+1
2 y′(x)

)

= −
(

1− β

2

)2

x
β−3

2 y(x) + x
β−1

2 y′(x) + x
β+1
2 y′′(x).

Thus, equation (5.2.1) becomes

x2y′′(x) + xy′(x) +
[
λxα−β+2 − (1−β)2

4

]
y(x) = 0 for x ∈ D,

y(0) is finite and y(1) = 0.

}

Let x = z
2

α−β+2 . We then have

dy

dx
=

dy

dz

dz

dx
=

α− β + 2
2

z
α−β

α−β+2
dy

dz

and
d2y

dx2
=

(
α− β + 2

2

)2

z
2α−2β
α−β+2

d2y

dz2
+

(
α− β + 2

2

)2 (
α− β

α− β + 2

)
z

α−β−2
α−β+2

dy

dz
.

Thus, we get the following problem:

z2 d2y
dz2 + z dy

dz +
[

4λz2

(α−β+2)2
− (1−β)2

(α−β+2)2

]
y(z) = 0 for z ∈ I,

z(0) is finite and z(1) = 0.

}
(5.2.2)

Equation (5.2.2) is a Bessel equation. Its general solution is given by

y(z) = AJµ(ωz) + BJ−µ(ωz),

or
g(x) = x(1−β)/2

{
AJµ(ωx(α−β+2)/2) + BJ−µ(ωx(α−β+2)/2)

}
,

where µ = 1−β
α−β+2 , ω = 2λ1/2

α−β+2 , A and B are arbitrary constants, and Jµ denote the Bessel function of the
first kind of order µ (> 0). Turning to the boundary conditions, at z = 0 leads to B = 0. The boundary
condition at z = 1 gives the following equation

Jµ(ω) = 0. (5.2.3)

Consequently, the appropriate eigenfunctions of (5.2.1) are

gn(x) = Ax(1−β)/2Jµ(ωnx(α−β+2)/2),
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where ωn is the nth root of (5.2.3). We next use orthogonality of Bessel functions, that is,

b∫

0

xJp(knx)Jp(kmx)dx =
{

1
2b2J2

p+1(knb) if m = n,

0 if m 6= n,

to determine value of A and to obtain the orthonormal property of gn with the weight function xα,

1∫

0

xαgn(x)gm(x)dx =
{

1 if n = m,

0 if n 6= m.

To do so, let us consider the following:

1∫

0

xαg2
n(x)dx = A2

1∫

0

xα−β+1J2
µ(ωnx

α−β+2
2 )dx. (5.2.4)

Let y = x
α−β+2

2 . Then,

dy =
α− β + 2

2
x

α−β
2 dx.

Thus, we have that

1∫

0

xα−β+1J2
µ(ωnx

α−β+2
2 )dx =

2
α− β + 2

1∫

0

yJ2
µ(ωny)dy

=
1

α− β + 2
J2

µ+1(ωn).

From (5.2.4), we obtain that
1∫

0

xαg2
n(x)dx =

A2

α− β + 2
J2

µ+1(ωn). (5.2.5)

Since the right-hand side of (5.2.5) must equal to 1, the value of A is determined by

A =
(α− β + 2)1/2

|Jµ+1(ωn)| .

We then obtain

gn(x) =
(α− β + 2)1/2x(1−β)/2Jµ

(
ωnx(α−β+2)/2

)

|Jµ+1 (ωn)| .

We note that by [1], λn = O(n2) as n → ∞. For convenience, we state the following properties of
eigenfunctions.

Lemma 5.2.1 For some positive constant k0, |gn(x)| ≤ k0x
−(α+β)/4 for x ∈ (0, 1].

Proof. The asymptotic formula of Jµ(z) [2] is

Jµ(z) ∼
(

2
πz

)1/2

cos
(
z − µπ

2
− π

4

)

for z (> 0) sufficiently large. Thus for sufficiently large 2λ1/2
n

α−β+2x(α−β+2)/2, we have

Jµ

(
ωnx(α−β+2)/2

)
≤

(
α− β + 2

πλ
1/2
n x(α−β+2)/2

)1/2

.
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It follows from [8] that we get

1
|Jµ+1 (ωn)| ≤

(
πλ

1/2
n

α− β + 2

)1/2

k0. (5.2.6)

where k0 is some positive constant. Then we get the result.

Lemma 5.2.2 For some positive constant k1, |gn(x)| ≤ k1x
(1−β)/2λ

1/4
n for x ∈ D.

Proof. By the upper bounds [2], i.e.,
∣∣∣Jµ

(
ωnx(α−β+2)/2

)∣∣∣ ≤ 1, for any µ > 0.

and (5.2.6), we get that |gn(x)| ≤ k1x
(1−β)/2λ

1/4
n for some constant k1.

Lemma 5.2.3 For any x1 > 0 and for all x ∈ [x1, 1], there exists k2 depending on x1 such that
|g′n(x)| ≤ k2λ

1/4
n .

Proof. Since z = x(α−β+2)/2, we obtain

gn(z) = (α− β + 2)1/2zµJµ (ωnz)
/
|Jµ+1 (ωn)| .

By the property of Bessel functions

d

dy
(yνJν(y)) = yνJν−1(y),

we have

g′n(z) =
(α− β + 2)1/2

|Jµ+1 (ωn)|
d

dz
(zµJµ (ωnz))

=
(α− β + 2)1/2

|Jµ+1 (ωn)| ωnzµJµ−1 (ωnz) .

Since z = x(α−β+2)/2, ωn = 2λ
1/2
n /(α− β + 2), and µ = (1− β)/(α− β + 2), we have

g′n(x) = [(α− β + 2)λn]1/2
x(α−2β+1)/2Jµ−1

(
ωnx(α−β+2)/2

)/
|Jµ+1 (ωn)| . (5.2.7)

Since ∣∣∣Jµ−1

(
ωnx(α−β+2)/2

)∣∣∣ ≤
(

α− β + 2

πλ
1/2
n

)1/2

x−(α−β+2)/4.

From (5.2.6) and (5.2.7), for any x ∈ [x1, 1] with x1 > 0

|g′n(x)| ≤ k2λ
1/4
n ,

where k2 is some positive constant. Hence we get the result.

5.3 Existence and uniqueness

Green’s function G(x, t, ξ, τ) corresponding to (5.1.1) is determined by the following system for
each x and ξ in D, and t and τ in (0, T ],

LG(x, t, ξ, τ) = δ(x− ξ)δ(t− τ),
G(x, t, ξ, τ) = 0, for t < τ,

G(0, t, ξ, τ) = 0 = G(1, t, ξ, τ),



 (5.3.1)
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where δ(x) is the Dirac delta function. By the method of eigenfunction expansion,

G(x, t, ξ, τ) =
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] , for t > τ.

where λn and gn(x) are the eigenvalues and their corresponding eigenfunctions to (5.1.1).
We will give the following properties of G(x, t, ξ, τ).

Lemma 5.3.1 For any t > τ, G(x, t, ξ, τ) is continuous for (x, t, ξ) ∈ D × (τ, T ]× (0, 1].

Proof. By lemma 5.2.2,
∣∣∣∣∣
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)]

∣∣∣∣∣ ≤ k2
1x

(1−β)/2ξ(1−β)/2
∞∑

n=1

λ1/2
n exp [−λn(t− τ)]

≤ k2
1

∞∑
n=1

λ1/2
n exp [−λn(t− τ)] ,

which converges uniformly, G(x, t, ξ, τ) is continuous for (x, t, ξ, τ) ∈ (
D × (0, T ]

)× ((0, 1]× [0, T )).
Note that from lemma 5.3.1, the Green’s function exists.

Lemma 5.3.2 For each fixed (ξ, τ) ∈ D × [0, T ), Gt(x, t, ξ, τ) ∈ C(D × (τ, T ]).

Proof. By lemma 5.2.2,
∣∣∣∣∣
∞∑

n=1

∂

∂t
gn(x)gn(ξ) exp [−λn(t− τ)]

∣∣∣∣∣

≤
∞∑

n=1

|gn(x)| |gn(ξ)|λn exp [−λn(t− τ)]

≤ k2
1

∞∑
n=1

λ3/2
n exp [−λn(t− τ)] ,

which converges uniformly with respect to x ∈ D and t in any compact subset of (τ, T ]. This proves
lemma.

Lemma 5.3.3 For each fixed (ξ, τ) ∈ D×[0, T ), Gx(x, t, ξ, τ) and Gxx(x, t, ξ, τ) are in C((0, 1]×(τ, T ]).

Proof. By lemma 5.2.2 and 5.2.3,
∣∣∣∣∣
∞∑

n=1

g′n(x)gn(ξ) exp [−λn(t− τ)]

∣∣∣∣∣

≤
∞∑

n=1

|g′n(x)| |gn(ξ)| exp [−λn(t− τ)]

≤ k1k2

∞∑
n=1

λ1/2
n exp [−λn(t− τ)] ,

which converges uniformly with respect to x in any compact subset of (0, 1] and t in any compact subset
of (τ, T ]. Thus Gx(x, t, ξ, τ) is continuous.
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By equation (5.2.1) and lemma 5.2.3, we then have that for some positive constants k3 and k4,
∣∣∣∣∣
∞∑

n=1

g′′n(x)gn(ξ) exp[−λn(t− τ)]

∣∣∣∣∣

≤
∞∑

n=1

β

x
|g′n(x)| |gn(ξ)| exp[−λn(t− τ)]

+
∞∑

n=1

xα−βλn |gn(x)| |gn(ξ)| exp[−λn(t− τ)]

≤ k3

∞∑
n=1

λ1/2
n exp[−λn(t− τ)] + k4

∞∑
n=1

λ3/2
n exp[−λn(t− τ)],

which converges uniformly with respect to x in any compact subset of (0, 1] and t in any compact subset
of (τ, T ]. This lemma then is proved.

Lemma 5.3.4 If r(t) is a nonnegative, bounded, and continuous function on [0, T ], then
t∫
0

1∫
0

G(x, t, ξ, τ)r(τ)dξdτ

is continuous for x in any compact subset of (0, 1] and t ∈ [0, T ].

Proof. Let ε be any positive number such that t− ε > 0. For x in any compact subset of (0, 1], i.e., for
any x ∈ [x2, 1] with x2 > 0, and for τ ∈ [0, t−ε], by using lemma 5.2.1, 5.2.2 and letting r∞ = max

0≤τ≤T
r(τ),

we then obtain for t > τ,
∣∣∣∣∣
∞∑

n=1

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)

∣∣∣∣∣

≤ k0k1x
−(α+β)/4
2 ξ(1−β)/2r∞

∞∑
n=1

λ1/4
n exp [−λn(t− τ)]

which converges uniformly. Therefore we have

t−ε∫

0

1∫

0

G(x, t, ξ, τ)r(τ)dξdτ =
∞∑

n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ.

Let us consider that

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

≤ k0k1x
−(α+β)/4
2 r∞

∞∑
n=1

t−ε∫

0

1∫

0

λ1/4
n exp [−λn(t− τ)] dξdτ

≤ k0k1x
−(α+β)/4
2 r∞

∞∑
n=1

λ−3/4
n ,

which converges (uniformly with respect to x, t, and ε) since λn = O(n2) as n →∞. Then

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ
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converges uniformly with respect to x, t, and ε. Since the uniform convergence also holds for ε → 0, it
follows that

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

is a continuous function of x, t, and ε ≥ 0. Therefore

t∫

0

1∫

0

G(x, t, ξ, τ)r(τ)dξdτ = lim
ε→0

∞∑
n=1

t−ε∫

0

1∫

0

gn(x)gn(ξ) exp [−λn(t− τ)] r(τ)dξdτ

is a continuous function of x in any compact subset of (0, 1]and t ∈ [0, T ].
A proof similar to that of lemma 4.c of [7] gives the following additional property of the Green’s

function in the following lemma.

Lemma 5.3.5 In the set {(x, t, ξ, τ) : x and ξ are in D, 0 ≤ τ < t ≤ T}, G(x, t, ξ, τ) > 0.

To derive the integral equation of (5.1.1), let us consider the adjoint operator L∗, which is given by

L∗ = −xα ∂

∂t
− ∂

∂x

(
xβ ∂

∂x

)
.

Applying Green’s second formula, we finally obtain the representation formular of (5.1.1)

u(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

ξαG(x, t, ξ, 0)φ(ξ)dξ. (5.3.2)

We state an additional property of the Green’s function in the next lemma.

Lemma 5.3.6 For each fixed (ξ, τ) ∈ D × [0, T ), lim
t→τ+

xαG(x, t, ξ, τ) = δ(x− ξ).

Proof. Let us consider the problem,

Lw(x, t, ξ, τ) = 0 for x, ξ ∈ D, 0 < τ < t,

w(0, t, ξ, τ) = 0 = w(1, t, ξ, τ) for 0 < τ < t,

lim
t→τ+

xαw(x, t, ξ, τ) = δ(x− ξ).

From the representation formula (5.3.2),

w(x, t, ξ, τ) =

1∫

0

ζαG(x, t, ζ, τ)ζ−αδ(ζ − ξ)dζ

= G(x, t, ξ, τ) for t > τ.

It follows that lim
t→τ+

xαG(x, t, ξ, τ) = δ(x− ξ).

Next, we will give the blow-up results of the solution of (5.1.1)

Theorem 5.3.7 There exists some t1 > 0 such that the integral equation (5.3.2) has a unique non-
negative continuous solution u ≥ φ(x) for x in any compact subset of (0, 1] and 0 ≤ t ≤ t1, and u is a
nondecreasing function of t. Let tb be the supremum of such t1 that the integral equation (5.3.2) has a
unique nonnegative continuous solution u. If tb is finite, then u(x0, t) is unbounded as t → tb.

68



Proof. Construct a sequence {un} in ΩT by u0(x, t) = φ(x) for n = 0, 1, 2, ..., and consider the equation

Lun+1(x, t) = f(un(x0, t)), for (x, t) ∈ ΩT ,

un+1(x, 0) = φ(x), for x ∈ D,

un+1(0, t) = un+1(1, t) = 0, for 0 < t ≤ T.

Claim 1. un ≥ u0 for each positive n.

We will show by using the principle of mathematical induction. By (5.1.2), we have

L(u1 − u0)(x, t) = f(φ(x0)) + (xβφ′(x))′ ≥ 0, for (x, t) ∈ ΩT ,

(u1 − u0)(x, 0) = 0, for x ∈ D,

(u1 − u0)(0, t) = 0 = (u1 − u0)(1, t), for 0 < t ≤ T.

Maximum principle in [12] implies that u1 ≥ u0 in ΩT .

Next, we assume that for any positive n

φ ≤ u1 ≤ u2 ≤ ... ≤ un−1 ≤ un in ΩT .

Since f is increasing and un−1 ≤ un, we have

L(un+1 − un) = f(un(x0, t))− f(un−1(x0, t)) ≥ 0, for (x, t) ∈ ΩT ,

(un+1 − un)(x, 0) = 0, for x ∈ D,

(un+1 − un)(0, t) = 0 = (un+1 − un)(1, t), for 0 < t < T.

It follows from Maximum principle that un+1 ≥ un for all n. Therefore, we can conclude that, by the
principle of mathematical induction, un ≥ φ in ΩT for each positive n.

Claim 2. The sequence {un} is a nondecreasing function of t.

Let us define the sequence {wn} for n = 0, 1, 2, ... by

wn(x, t) = un(x, t + h)− un(x, t)

where h is any positive number such that 0 < t + h < T. Thus, we also have

w0(x, t) = u0(x, t + h)− u0(x, t) = 0.

Let us consider the equation

Lw1(x, t) = 0, for (x, t) ∈ ΩT−h,

w1(x, 0) ≥ 0, for x ∈ D

w1(0, t) = 0 = w1(1, t), for 0 < t < T − h.

Maximum principle yields that w1 ≥ 0 for ΩT−h.

Let us assume that for each positive number n, wn ≥ 0 for ΩT . By using the Mean Value Theorem,
we obtain

Lwn+1(x, t) = f ′(un(x0, t1))wn(x0, t) ≥ 0, in ΩT−h,

wn+1(x, 0) = un+1(x, h)− φ(x) ≥ 0, for x ∈ D,

wn+1(0, t) = wn+1(1, t) = 0, for 0 < t ≤ T − h.

for some t1 ∈ (t, t + h). By Maximum principle, we obtain that wn+1 ≥ 0 for ΩT−h. Therefore, we can
conclude that, by the principle of mathematical induction, wn ≥ 0 in ΩT for each positive n, i.e. un is a
nondecreasing function of t.

Claim 3. Before a blow-up occurs, the integral equation (5.3.2) has a unique continuous solution u.

69



Let us consider the following problem,

Lv(x, t) = 0, for (x, t) ∈ ΩT ,

v(x, 0) = φ(x), for x ∈ D,

v(0, t) = 0 = v(1, t), for 0 < t ≤ T.



 (5.3.3)

Then the solution of (5.3.3) is

v(x, t) =

1∫

0

xαG(x, t, ξ, 0)φ(ξ)dξ.

Since the functions G and φ are nonnegative, we have that v ≥ 0 in ΩT . By the maximum principle, we
know that v attains its maximum k = max

x∈D
φ(x) in D × {0}.

For a given positive constant M > k, let us consider

un(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ)f(un−1(x0, τ))dξdτ +

1∫

0

ξαG(x, t, ξ, 0)φ(ξ)dξ, (5.3.4)

as t → 0, we see that

lim
t→0

un(x, t) =

1∫

0

lim
t→0

ξαG(x, t, ξ, 0)φ(ξ)dξ = φ(x) < M.

This shows that there exists t1 such that un(x, t) ≤ M for 0 ≤ t ≤ t1 and n = 1, 2, ... In fact, t1 satisfies

f(M)

t1∫

0

1∫

0

G(x, t1, ξ, τ)dξdτ +

1∫

0

ξαG(x, t1, ξ, 0)φ(ξ)dξ ≤ M.

Next, we denote lim
n→∞

un by u.

Subclaim 3.1 The sequence {un} converges uniformly to u for x in any compact subset of (0, 1] and
0 ≤ t ≤ t1.

Let us consider that for each x in any compact subset of (0, 1], i.e., for each x ∈ [x2, 1] with x2 > 0
and from (5.3.4),

un+1(x, t)− un(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ) (f(un(x0, τ))− f(un−1(x0, τ))) dξdτ. (5.3.5)

Let Sn = max
(x,t)∈[x2,1]×[0,t1]

|un(x, t)− un−1(x, t)| . Using the Mean Value Theorem, we have

f(un(x0, τ))− f(un−1(x0, τ)) = f ′(µ)(un(x0, τ)− un−1(x0, τ)),

where µ is between un(x0, τ) and un−1(x0, τ). Since un ≤ M for all n and f ′′(s) > 0 for s > 0, we have

f(un(x0, τ))− f(un−1(x0, τ)) ≤ f ′(M)Sn.
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From (5.3.5), we obtain

Sn+1 ≤ f ′(M)Sn

t∫

0

1∫

0

∞∑

i=1

gi(x)gi(ξ) exp [−λi(t− τ)] dξdτ

≤ k0k1x
−(α+β)/4
2 f ′(M)Sn

t∫

0

1∫

0

∞∑

i=1

λ
1/4
i exp [−λi(t− τ)] dξdτ

≤ k0k1x
−(α+β)/4
2 f ′(M)Sn

∞∑

i=1

λ
−3/4
i (1− exp(−λit)).

Since
∞∑

i=1

λ
−3/4
i (1−exp(−λit)) converges uniformly because of λi = O(i2) as i →∞, we have lim

t→0

∞∑
i=1

λ
−3/4
i (1−

exp(−λit)) = 0. Hence, there exists some positive σ1 > 0 such that

k0k1x
−(α+β)/4
2 f ′(M)Sn

∞∑

i=1

λ
−3/4
i (1− exp(−λit)) < 1 for t ∈ [0, σ1]. (5.3.6)

Thus, Sn+1 < Sn and the sequence {ui} converges uniformly to u for x in any compact subset of (0, 1]
and 0 ≤ t ≤ σ1.

Similarly for σ1 ≤ t ≤ t1, we replace φ(ξ) in the integral equation (5.3.4) by u(ξ, σ1) to obtain

un(x, t) =

t∫

σ1

1∫

0

G(x, t, ξ, τ)f(un−1(x0, τ))dξdτ +

1∫

0

ξαG(x, t, ξ, 0)u(ξ, σ1)dξ.

Moreover, we also have

un+1(x, t)− un(x, t) =

t∫

σ1

1∫

0

G(x, t, ξ, τ) (f(un(x0, τ))− f(un−1(x0, τ))) dξdτ.

and

Sn+1 ≤ f ′(M)Sn

t∫

σ1

1∫

0

G(x, t, ξ, τ)dξdτ

≤ k0k1x
−(α+β)/4
2 f ′(M)Sn

[ ∞∑

i=1

λ
−3/4
i [1− exp(−λi(t− σ1))]

]
.

Thus there exists σ2 = min{σ1, t1 − σ1} > 0 such that for t ∈ [σ1, min{2σ1, t1}].

k0k1x
−(α+β)/4
2 f ′(M)

[ ∞∑

i=1

λ
−3/4
i [1− exp(−λi(t− σ1))]

]
< 1, (5.3.7)

Hence the sequence {un} converges uniformly to u for x in any compact subset of (0, 1] and t ∈
[σ1,min{2σ1, t1}]. By proceeding in this way the sequence {un} converges uniformly to u for x in any
compact subset of (0, 1] and 0 ≤ t ≤ t1. Therefore we can conclude that the integral equation (5.3.2) has
a continuous solution u for x in any compact subset of (0, 1] and 0 ≤ t ≤ t1.
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To prove claim 3, we suppose that the integral equation (5.3.2) has two distinct solution u and ũ for
x in any compact subset of (0, 1] and t ∈ [0, t1]. Let Φ = max

(x,t)∈[x2,1]×[0,t1]
|u− ũ| > 0. Since u and ũ are

the solution of (5.3.2),

u(x, t)− ũ(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ) [f(u(x0, τ))− f(ũ(x0, τ))] dξdτ.

Then

Φ ≤ k0k1x
−(α+β)/4
2 f ′(M)

[ ∞∑

i=1

λ
−3/4
i (1− exp(−λit))

]
Φ, for t ∈ [0, σ1],

which implies that

k0k1x
−(α+β)/4
2 f ′(M)

[ ∞∑

i=1

λ
−3/4
i (1− exp(−λit))

]
≥ 1, for t ∈ [0, σ1].

We have a contradiction to (5.3.6). Hence, the solution u is unique for x in any compact subset of (0, 1]
and 0 ≤ t ≤ σ1.

We can show in a similar fashion that solution u is unique for x in any compact subset of (0, 1] and
σ1 ≤ t ≤ min{2σ1, t1}. By proceeding in this way, the integral equation u is unique continuous for x in
any compact subset of (0, 1] and 0 ≤ t ≤ t1. Therefore we conclude that since un is a nondecreasing
function of t, u is a nondecreasing function of t.

Let tb be the supremum of such t1 that the integral equation (5.3.2) has a unique continuous solution
u. We would like to show that if tb is finite, then u(x0, t) is unbounded as t → tb.

Suppose that u(x0, t) is bounded in [0, tb).We consider the integral equation of the solution u for
[tb, T ) with the initial condition u(x, 0) replaced by u(x, tb),

u(x0, t) =

t∫

tb

1∫

0

G(x0, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

ξαG(x0, t, ξ, tb)u(ξ, tb)dξ.

For any positive constant N > u(x0, tb), an argument as before shows that there exists some positive t2
such that the integral equation (5.3.2) has the unique continuous solution u on [tb, t2]. This contradicts
to the definition of tb. Therefore If tb is finite, then u(x0, t) is unbounded in [0, tb).

The following theorem show that u is the solution of (5.1.1).

Theorem 5.3.8 Before blow-up occurs, the problem (5.1.1) has a unique solution u.
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Proof. By lemma 5.3.4, we have that for any x ∈ D and any t2 ∈ (0, t)

t∫

0

1∫

0

xαG(x, t, ξ, τ)f(u(x0, τ))dξdτ

=

t2∫

0

1∫

0

xαG(x, t2, ξ, τ)f(u(x0, τ))dξdτ

+ lim
n→∞

t∫

t2

∂

∂ζ

ζ−1/n∫

0

1∫

0

xαG(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t2∫

0

1∫

0

xαG(x, t2, ξ, τ)f(u(x0, τ))dξdτ

+ lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ +

t∫

t2

f(u(x0, ζ))dζ.

Let

gn(x, ζ) =

ζ−1/n∫

0

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτ.

Without loss of generality, let n > m, thus we have

gn(x, ζ)− gm(x, ζ) =

ζ−1/n∫

ζ−1/m

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτ.

Since xαGt(x, t, ξ, τ) ∈ C(D× (τ, T ]) and f(u(x0, τ)) is a monotone function of τ, it follows from Second
Mean Value Theorem for Integration and then we have that for any x and ξ ∈ D and any τ in any
compact subset [t3, t4] of (0, tb), there exists some real number υ such that ζ − ν ∈ (ζ − 1/m, ζ − 1/n)
and

gn(x, ζ)− gm(x, ζ) = f(u(x0, ζ − 1/m))

ζ−ν∫

ζ−1/m

1∫

0

xαGζ(x, ζ, ξ, τ)dξdτ

+f(u(x0, ζ − 1/n))

ζ−1/n∫

ζ−ν

1∫

0

xαGζ(x, ζ, ξ, τ)dξdτ.
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Since Gζ(x, ζ, ξ, τ) = −Gτ (x, ζ, ξ, τ), we have

gn(x, ζ)− gm(x, ζ)

= [f(u(x0, ζ − 1/n))− f(u(x0, ζ − 1/m))]

1∫

0

xαG(x, ζ, ξ, ζ − ν)dξ

+f(u(x0, ζ − 1/m))

1∫

0

xαG(x, ζ, ξ, ζ − 1/m)dξ

−f(u(x0, ζ − 1/n))

1∫

0

xαG(x, ζ, ξ, ζ − 1/n)dξ.

Since
1∫
0

xαG(x, ζ, ξ, ζ − ε)dξ = 1 as ε → 0, it follow that, the sequence {gn} is a Cauchy sequence, and

hence the sequence {gn} converges uniformly with respect to ζ in any compact subset [t3, t4] of (0, tb).
Then we obtain that

lim
n→∞

t∫

t2

ζ−1/n∫

0

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t∫

t2

lim
n→∞

ζ−1/n∫

0

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ

=

t∫

t2

ζ∫

0

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ.

Thus, we obtain that

∂

∂t

t∫

0

1∫

0

xαG(x, t, ξ, τ)f(u(x0, τ))dξdτ

=
∂

∂t




t2∫

0

1∫

0

xαG(x, t2, ξ, τ)f(u(x0, τ))dξdτ +

t∫

t2

f(u(x0, ζ))dζ

+

t∫

t2

ζ∫

0

1∫

0

xαGζ(x, ζ, ξ, τ)f(u(x0, τ))dξdτdζ




= f(u(x0, t)) +

t∫

0

1∫

0

xαGt(x, t, ξ, τ)f(u(x0, τ))dξdτ.

We would like to show that by using the Leibnitz rule, we have for any x ∈ D and t in any compact
subset [t3, t4] of (0, tb),
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∂

∂x

t−ε∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ =

t−ε∫

0

1∫

0

Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ,

∂

∂x

t−ε∫

0

1∫

0

xβGx(x, t, ξ, τ)f(u(x0, τ))dξdτ =

t−ε∫

0

1∫

0

(xβGx(x, t, ξ, τ))xf(u(x0, τ))dξdτ.

Let us consider that for any x1 ∈ D,

lim
ε→0

t−ε∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x1


 ∂

∂η

t−ε∫

0

1∫

0

G(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

+ lim
ε→0

t−ε∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x1

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ.

Claim that

lim
ε→0

x∫

x1

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

=

x∫

x1

t∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη. (5.3.8)

By using the Fubini Theorem

lim
ε→0

x∫

x1

t−ε∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

= lim
ε→0

t−ε∫

0




x∫

x1

1∫

0

Gη(η, t, ξ, τ)dξdη


 f(u(x0, τ))dτ

= lim
ε→0

t−ε∫

0




1∫

0

G(x, t, ξ, τ)dξ −
1∫

0

G(x1, t, ξ, τ)dξ


 f(u(x0, τ))dτ

=

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ −
t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ,

75



which exists because of lemma 5.3.4. Therefore we have

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ −
t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ

=

x∫

x1

∂

∂η




t∫

0

1∫

0

G(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

=

x∫

x1

t∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη.

Thus, we have (5.3.8). Therefore we also have

∂

∂x

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ

=
∂

∂x




x∫

x1

t∫

0

1∫

0

Gη(η, t, ξ, τ)f(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

G(x1, t, ξ, τ)f(u(x0, τ))dξdτ




=

t∫

0

1∫

0

Gx(x, t, ξ, τ)f(u(x0, τ))dξdτ.

Let us consider that for any x2 ∈ D,

lim
ε→0

t−ε∫

0

1∫

0

xβGx(x, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x2

∂

∂η




t−ε∫

0

1∫

0

ηβGη(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

+ lim
ε→0

t−ε∫

0

1∫

0

xβ
2Gη(x2, t, ξ, τ)f(u(x0, τ))dξdτ

= lim
ε→0

x∫

x2

t−ε∫

0

1∫

0

(ηβGη(η, t, ξ, τ))ηf(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

xβ
2Gη(x2, t, ξ, τ)f(u(x0, τ))dξdτ. (5.3.9)
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Claim that

lim
ε→0

x∫

x2

t−ε∫

0

1∫

0

(ηβGη(η, t, ξ, τ))ηf(u(x0, τ))dξdτdη

=

x∫

x2

t∫

0

1∫

0

(ηβGη(η, t, ξ, τ))ηf(u(x0, τ))dξdτdη. (5.3.10)

By using the Fubini Theorem

lim
ε→0

x∫

x2

t−ε∫

0

1∫

0

(ηβGη(η, t, ξ, τ))ηf(u(x0, τ))dξdτdη

= lim
ε→0

t−ε∫

0




x∫

x2

1∫

0

(ηβGη(η, t, ξ, τ))ηdξdη


 f(u(x0, τ))dτ

=

t∫

0

1∫

0

xβGx(x, t, ξ, τ)f(u(x0, τ))dξdτ −
1∫

0

xβ
2Gx(x2, t, ξ, τ)f(u(x0, τ))dξdτ,

which exists because of lemma 5.3.3. Therefore we have

t∫

0

1∫

0

xβGx(x, t, ξ, τ)f(u(x0, τ))dξdτ −
1∫

0

xβ
2Gx(x2, t, ξ, τ)f(u(x0, τ))dξdτ

=

x∫

x2

∂

∂η




t∫

0

1∫

0

ηβGη(η, t, ξ, τ)f(u(x0, τ))dξdτ


 dη

=

x∫

x2

t∫

0

1∫

0

(ηβGη(η, t, ξ, τ))ηf(u(x0, τ))dξdτdη.

Thus, we have (5.3.10). Therefore we also have

∂

∂x




t∫

0

1∫

0

xβGx(x, t, ξ, τ)f(u(x0, τ))dξdτ




=
∂

∂x




x∫

x2

t∫

0

1∫

0

(ηβGη(η, t, ξ, τ))ηf(u(x0, τ))dξdτdη

+

t∫

0

1∫

0

xβ
2Gx(x2, t, ξ, τ)f(u(x0, τ))dξdτ




=

t∫

0

1∫

0

(xβGx(x, t, ξ, τ))xf(u(x0, τ))dξdτ,

for any x in D and t in any compact subset [t3, t4] of (0, tb). By using the Leibnitz rule, we have that for
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any x in D and t in any compact subset [t3, t4] of (0, tb),

xα ∂

∂t

1∫

0

ξαG(x, t, ξ, 0)φ(ξ)dξ = xα

1∫

0

ξαGt(x, t, ξ, 0)φ(ξ)dξ,

∂

∂x

1∫

0

ξαG(x, t, ξ, 0)φ(ξ)dξ =

1∫

0

ξαGx(x, t, ξ, 0)φ(ξ)dξ,

∂

∂x

1∫

0

ξα
(
xβGx(x, t, ξ, 0)

)
φ(ξ)dξ =

1∫

0

ξα(xβGx(x, t, ξ, 0))xφ(ξ)dξ.

From the integral equation (5.3.2), for x ∈ D and 0 < t < T

Lu(x, t)

= f(u(x0, t)) +

1∫

0

ξα
[
xαGt(x, t, ξ, 0)− (xβGx(x, t, ξ, 0))x

]
φ(ξ)dξ

+

t∫

0

1∫

0

[
xαGt(x, t, ξ, τ)− (xβGx(x, t, ξ, τ))x

]
f(u(x0, τ))dξdτ

= f(u(x0, t)) + δ(t)

1∫

0

ξαδ(x− ξ)φ(ξ)dξ

+ lim
ε→0

t−ε∫

0

1∫

0

δ(x− ξ)δ(t− τ)f(u(x0, τ))dξdτ

= f(u(x0, t)),

and the initial condition of u can compute from for x ∈ D

lim
t→0

u(x, t) =

1∫

0

lim
t→0

ξαG(x, t, ξ, 0)φ(ξ)dξ = φ(x),

since G(0, t, ξ, τ) = 0 = G(1, t, ξ, τ), we can compute directly and obtain the boundary condition u(0, t) =
0 = u(1, t). Therefore u is a solution of the problem (5.1.1).

5.4 A sufficient condition to blow-up in finite time

In this section, we will give a blow-up criterion for the solution u to blow-up in a finite time.
Let us denoted by λ1 > 0 the principal (smallest) eigenvalue of the problem

(xβψ′1(x))′ = −λ1x
αψ1(x) for x ∈ D, and ψ1(0) = 0 = ψ1(1) (5.4.1)

and by ψ1(x) the corresponding (first) eigenfunction. Let ψ1(x) > 0 be normalized such that

‖ψ1‖ =

1∫

0

xαψ1(x)dx = 1.
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Since lim
s→∞

f(s)
s →∞, there is a z0 > 0 such that f(s)− λ1s > 0 for each s > z0.

Proposition 5.4.1 Suppose that
∞∫
z0

ds
f(s)−λ1s is finite. Let us consider the following initial-boundary

value problem,
Lu(x, t) = f(u), for (x, t) ∈ ΩT ,

u(x, 0) = u0(x) ≥ 0, for x ∈ D,

u(0, t) = 0 = u(1, t), for 0 < t ≤ T.



 (5.4.2)

If
1∫
0

xαu0(x)ψ1(x)dx ≥ z0, then the solution u of (5.4.2) blows up in finite time.

Proof. Assume that the solution u of problem (5.4.2) exists for all t. Construct the function E(t) by

E(t) =

1∫

0

xαu(x, t)ψ1(x)dx.

Then E(0) =
1∫
0

xαu0(x)ψ1(x)dx ≥ z0 which means that the initial condition u0(x) have to be sufficiently

large. Multiplying Lu(x, t) = f(u) by ψ1 and integrating from 0 to 1, we have

dE

dt
= −λ1E(t) +

1∫

0

f(u)ψ1(x)dx (5.4.3)

Applying Jensen’s inequality to the second term in the right hand side, we then obtain

1∫

0

f(u)ψ1(x)dx ≥
1∫

0

xαf(u)ψ1(x)dx ≥ f (E(t)) . (5.4.4)

From (5.4.3) and (5.4.4), we obtain that

dE

dt
≥ −λ1E(t) + f (E(t)) > 0.

Thus we obtain that

t ≤
E(t)∫

E(0)

ds

f(s)− λ1s
≤

E(t)∫

z0

ds

f(s)− λ1s
< ∞ (5.4.5)

which contradicts to assumption that the solution u of problem (5.4.2) exists for all t. Therefore, the
solution u(x, t) of (5.4.2) blows up in a finite time.

In order to obtain the sufficient condition to blow-up in finite time of (5.1.1), we need the following
lemma.

Lemma 5.4.2 Let u(x, t) be a classical solution of the following problem

Lu(x, t) ≥ b(x, t)u(x0, t), for (x, t) ∈ ΩT ,

u(x, 0) ≥ 0, for x ∈ D,

u(0, t) ≥ 0 and u(1, t) ≥ 0, for 0 < t ≤ T,

where b(x, t) is nonnegative and bounded on ΩT , then u(x, t) ≥ 0 in ΩT .
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Proof. If b(x, t) ≡ 0, then by the weak maximum principle u attains its minimum on the parabolic
boundary, i.e., u(x, t) ≥ 0 in ΩT .

For the case b(x, t) being nonnegative and nontrivial, let β′ ∈ (β, 1) be a positive constant and

v(x, t) = u(x, t) + η(1 + xβ′−β)ect,

where η > 0 is sufficiently small and c is a positive constant to be determined. Then v(x, t) > 0 on the
parabolic boundary ∂ΩT , and

Lv(x, t)− b(x, t)v(x0, t)

≥ xαcη(1 + xβ′−β)ect +
η(β′ − β)(1− β′)ect

x2−β′ − η(1 + xβ′−β
0 )ectb(x, t)

≥ ηect

[
cxα +

(β′ − β)(1− β′)
x2−β′ − (1 + xβ′−β

0 ) max
(x,t)∈ΩT

b(x, t)

]
. (5.4.6)

If max
(x,t)∈ΩT

b(x, t) ≤ (β′ − β)(1− β′)/(1 + xβ′−β
0 ), then from (5.4.6)

Lv(x, t)− b(x, t)v(x0, t)

> ηect

[
(β′ − β)(1− β′)

x2−β′ − (1 + xβ′−β
0 ) max

(x,t)∈ΩT

b(x, t)

]

≥ 0.

On the other hand, assume that max
(x,t)∈ΩT

b(x, t) > (β′ − β)(1− β′)/(1 + xβ′−β
0 ). Let s be the positive root

of the algebraic equation

(1 + xβ′−β
0 ) max

(x,t)∈ΩT

b(x, t) = (β′ − β)(1− β′)/x2−β′ ,

and let c > 0 be sufficiently large such that

c > (1 + xβ′−β
0 ) max

(x,t)∈ΩT

b(x, t)/sα.

Then if x ≤ s, then from (5.4.6)

Lv(x, t)− b(x, t)v(x0, t)

> ηect

[
(β′ − β)(1− β′)

x2−β′ − (1 + xβ′−β
0 ) max

(x,t)∈ΩT

b(x, t)

]

≥ ηect

[
(β′ − β)(1− β′)

s2−β′ − (1 + xβ′−β
0 ) max

(x,t)∈ΩT

b(x, t)

]

= 0.

On the other hand, if x > s, then from (5.4.6)

Lv(x, t)− b(x, t)v(x0, t)

> ηect

[
cxα − (1 + xβ′−β

0 ) max
(x,t)∈ΩT

b(x, t)

]

> ηect

[
(1 + xβ′−β

0 ) max
(x,t)∈ΩT

b(x, t)((x/s)α − 1)

]

≥ 0.
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Therefore we have
Lv(x, t)− b(x, t)v(x0, t) > 0 for (x, t) ∈ ΩT . (5.4.7)

We would like to show that v(x, t) > 0 in ΩT , Suppose not , i.e., v(x, t) ≤ 0 in ΩT . We define the set

A = {t : v(x, t) ≤ 0 for some x ∈ D} ,

is non-empty. Let t denote its infimum. Then there exists some x1 ∈ D such that v(x1, t) = 0, vt(x1, t) ≤ 0,

and vx(x1, t) = 0. Since t is the infimum of the set A, we have that v(x, t) > 0 for t < t and by using the
continuity of the function v we also have that v(x, t) ≥ 0 for all x. Since we have that v(x1, t) = 0, we
obtain that v(x1, t) is local minimum. This means that vxx(x1, t) ≥ 0. Therefore we have

0 ≥ xα
1 vt(x1, t) ≥ Lv(x1, t)− b(x1, t)v(x0, t) > 0,

which contradicts to (5.4.7). As η → 0+, u(x, t) ≥ 0 in ΩT .

The following theorem gives a sufficient condition for the solution u to blow-up in a finite time.

Theorem 5.4.3 If φ(x) is sufficiently large in a neighborhood of x0, then the solution of (5.1.1) blows
up in a finite time.

Proof. Let us consider the following problem,

Lv(x, t) = f(v), for (x, t) ∈ (x0 − δ, x0 + δ)× (0, T ],
v(x, 0) = v0(x) ≥ 0, for x ∈ [x0 − δ, x0 + δ],
v(x0 − δ, t) = v(x0 + δ, t) = 0, for 0 < t ≤ T,



 (5.4.8)

where v0(x) > 0 on (x0 − δ, x0 + δ), v0(x0 − δ) = 0 = v0(x0 + δ) and v0(x) is symmetric and attains its
maximum at the point x = x0. Since lim

s→∞
f(s)/s = ∞, there exists a positive constant k4 > z0 such that

f(s)
s

≥ 2
δ2

(
(x0 + δ)β +

δβ

(x0 − δ)1−β

)
, for s > k4. (5.4.9)

By proposition 5.4.1, the solution v of (5.4.8) blows up at the point x = x0 in a finite time, provided
that v0(x) is large enough. Since v0(x) is symmetric at the point x = x0, the solution v(x, t) have its
maximum at the point x0 and then we have

Lv(x, t) = f(v(x, t)) ≤ f(v(x0, t)) for (x, t) ∈ (x0 − δ, x0 + δ)× (0, T ].

Next, we can choose a positive constant k5 ≥ k4δ
−2 big enough such that

w0(x) = k5 [x− (x0 − δ)] [(x0 + δ)− x] ≥ v0(x), for x ∈ [x0 − δ, x0 + δ].

Consider for each x ∈ (x0 − δ, x0 + δ)

(xβw′0(x))′ + f(w0(x0))

= −2k5

[
xβ +

β

x1−β
(x− x0)

]
+ f(k5δ

2)

≥ −2k5

[
(x0 + δ)β +

δβ

(x0 − δ)1−β

]
+ f(k5δ

2)

≥ 0.

Then
(xβw′0(x))′ + f(w0(x0)) ≥ 0, for x ∈ (x0 − δ, x0 + δ).
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We consider the following problem

Lw(x, t) = f(w(x0, t)), for (x, t) ∈ (x0 − δ, x0 + δ)× (0, T ],
w(x, 0) = w0(x) ≥ 0, for x ∈ [x0 − δ, x0 + δ],
w(x0 − δ, t) = 0 = w(x0 + δ, t), for 0 < t ≤ T.



 (5.4.10)

Therefore, we have for (x, t) ∈ (x0 − δ, x0 + δ)× (0, T ],

L(w − v) = f(w(x0, t))− f(v(x, t))

≥ f(w(x0, t))− f(v(x0, t))

= f ′(η) [w(x0, t)− v(x0, t)] ,

where η lies between w(x0, t) and v(x0, t), and the initial and boundary conditions

w(x, 0)− v(x, 0) = w0(x)− v0(x) ≥ 0, for x ∈ [x0 − δ, x0 + δ],

w(x, t)− v(x, t) = 0, for (x, t) ∈ {x0 − δ, x0 + δ} × (0, T ].

Therefore, it follows from lemma 5.4.2 that w(x, t) ≥ v(x, t) in (x, t) ∈ [x0 − δ, x0 + δ]× [0, T ]. Therefore
the solution w of (5.4.10) blows up in a finite time. By the same way, we can choose that the function
φ(x) is sufficiently large such that φ(x) ≥ w0(x), for x ∈ [x0− δ, x0 + δ], so we conclude that the solution
u(x, t) blows up in a finite time.

5.5 The blow-up set

The next lemma give an additional property of Green’s function.

Lemma 5.5.1 Given any x ∈ D and any finite time T , there exist two positive numbers k6 and k7

such that

k6 <

1∫

0

G(x, t, ξ, 0)dξ < k7 for 0 ≤ t ≤ T.

Proof. Let us consider the following auxiliary problem

Lv(x, t) = 1, for (x, t) ∈ ΩT ,

v(x, 0) = 0, for x ∈ D,

v(0, t) = 0 = v(1, t), for 0 < t ≤ T.



 (5.5.1)

The solution of (5.5.1) is given by

v(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ)dξdτ =

t∫

0

1∫

0

G(x, τ, ξ, 0)dξdτ.

It follows that

vt(x, t) =

1∫

0

G(x, t, ξ, 0)dξ > 0.

Since for any x ∈ D

vt(x, 0) =

1∫

0

G(x, 0, ξ, 0)dξ =
1
xα

.
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there exists a positive k6 such that

k6 <

1∫

0

G(x, t, ξ, 0)dξ, for 0 ≤ t ≤ T.

Furthermore, since vt(x, t) is continuous in D × [0, T ], there exists a positive k7 such that

1∫

0

G(x, t, ξ, 0)dξ < k7 for 0 ≤ t ≤ T.

We finally show that the set of blow-up points of (5.1.1) is the whole interval [0, 1] in the following
theorem.

Theorem 5.5.2 If the solution u of (5.1.1) blows up in a finite time, then the set of blow-up points
of (5.1.1) is D.

Proof. The solution u of (5.1.1) is given by

u(x, t) =

t∫

0

1∫

0

G(x, t, ξ, τ)f(u(x0, τ))dξdτ +

1∫

0

ξαG(x, t, ξ, 0)φ(ξ)dξ. (5.5.2)

It follows from theorem 5.3.7 that u blows up at least at the point x = x0 as t → tb. From (5.5.2) and
lemma 5.5.1,

u(x0, t) =

t∫

0

1∫

0

G(x0, t, ξ, 0)f(u(x0, t− τ))dξdτ +

1∫

0

ξαG(x0, t, ξ, 0)φ(ξ)dξ

≤ k7

t∫

0

f(u(x0, t− τ))dτ + k7

(
max
x∈D

φ(x)
)

Since u(x0, t) →∞ as t → tb, we have

tb∫

0

f(u(x0, tb − τ))dτ = ∞.

On the other hand, let us consider that for any (x, t) ∈ ΩT ,

u(x, t) ≥ k6

t∫

0

f(u(x0, t− τ))dτ +

1∫

0

ξαG(x, t, ξ, 0)φ(ξ)dξ

≥ k6

t∫

0

f(u(x0, t− τ))dτ.

As t approaches t−b , it follows from
tb∫
0

f(u(x0, tb − τ))dτ →∞ that u(x, t) tends to infinity. Thus, the set

of blow-up points is D. For x̃ ∈ {0, 1}, we can find a sequence {(xn, tn)} such that (xn, tn) → (x̃, tb) and
lim

n→∞
u(xn, tn) →∞. Therefore, the set of blow-up points of (5.1.1) is D.
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Note that this chapter was the object of the article :
P. Sawangtong. B. Novaprateep and W. Jumpen. Blow-up solutions for a Degenerate Parabolic

Problems with a Localized Nonlinear Term, WSEAS Transactions on Heat and Mass Transfer, issue 3,
vol. 5, 2010, p. 178-189.
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Chapter 6

Complete blow-up for a generalized

degenerate semilinear parabolic

problem with a localized nonlinear

term

6.1 Introduction

Without loss of generality and for simplicity, we take the interval of x to be [0, 1]. Let I = (0, 1),
QT = I × (0, T ), I and QT be the closure of I and QT , respectively. We here study the following
degenerate semilinear parabolic problem with a localized nonlinear term:

Lu(x, t) = f(u(x0, t)) for (x, t) ∈ QT ,

u(0, t) = 0 = u(1, t) for t ∈ (0, T ),
u(x, 0) = u0(x) for x ∈ I,



 (6.1.1)

where x0 ∈ I, Lu(x, t) = ut − 1
k(x) (p(x)ux)x, and k, p, f and u0 are given functions.

The purpose of this chapter is to prove that before blow-up occurs, there exists a T1 such that problem
(6.1.1) has a unique nonnegative continuous solution u on the interval [0, T1] for any x ∈ I. Moreover, a
sufficient condition to blow-up in finite time and the blow-up set of such a solution u of problem (6.1.1)
are shown.

In order to obtain our results, we need the following assumptions.

(A) p ∈ C1(I), p(0) = 0, p is positive on (0, 1].

(B) k ∈ C(I), k(0) = 0, k is positive on (0, 1].

(C) f ∈ C2([0,∞)) is convex with f(0) = 0 and f(s) > 0 for s > 0.

(D) u0 ∈ C2(I), u0(0) = 0 = u0(1), u0 is nonnegative on I, u0(x0) > 0 and u0 satisfies

1
k(x)

d

dx

(
p(x)

du0(x)
dx

)
+ f(u0(x0)) ≥ ζu0(x) on I

for some positive constant ς.
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By separation of variables, we get the corresponding singular eigenvalue problem to (6.1.1) defined by

d
dx

(
p(x)dφ(x)

dx

)
+ λk(x)φ(x) = 0 on I,

φ(0) = 0 = φ(1).

}
(6.1.2)

We note that conditions (A) and (B) yield that the point x = 0 is a singular point of a singular eigenvalue
problem (6.1.2) and, by proposition 2.1 of [20], condition (C) implies that f is increasing and locally
Lipschitz on [0,∞). We rewrite a singular eigenvalue problem (6.1.2) in an equivalent form:

x2φ′′(x) + x
[
xp′(x)

p(x)

]
φ′(x) + λ

[
x2 k(x)

p(x)

]
φ(x) = 0 on I,

φ(0) = 0 = φ(1).

}
(6.1.3)

We have to add some conditions on functions p and k to make the point x = 0 a regular singular point,
that is,

(E) The limit of xp′(x)
p(x) and x2k(x)

p(x) are finite as x → 0 and xp′(x)
p(x) and x2k(x)

p(x) are analytic at x = 0.

We note that theorem 5.7.1 of [25] yields existence of eigenfunctions φn and their corresponding
eigenvalues λn of problem (6.1.3). By [25], completeness of eigenfunctions φn of problem (6.1.3) results
from next assumption.

(F)
1∫
0

1∫
0

H(x, ξ)2k(x)k(ξ)dξdx is finite where H is the corresponding Green’s function to problem (6.1.3).

In order to obtain the existence of the corresponding Green’s function defined by (6.2.2) to problem
(6.1.1), we have to assume additional conditions on eigenvalues λn and their associating eigenfunctions
φn.

(G) λn = O(ns) for some s > 1 as n → ∞ and there exists some positive constant K such that
|φn(x)| ≤ Kλd

n for d > 0 and for any x ∈ I.

6.2 Local existence and uniqueness

This section deals with the local existence and uniqueness of the nonnegative continuous solution
u of problem (6.1.1). Next lemma states the well-known properties of eigenfunctions φn and eigenvalues
λn of problem (6.1.2) referred to [25].

Lemma 6.2.1

1
1∫
0

k(x)φn(x)φm(x)dx =
{

1 for n = m,

0 for n 6= m.

2 All eigenvalues are real and positive.

3 Eigenfunctions are complete with the weight function k.

4 λ1 < λ2 < . . . and lim
n→∞

λn = ∞.

5
1∫
0

p(x)φ′n(x)φ′m(x)dx =
{

λn for n = m,

0 for n 6= m.

6 For any n ∈ N, φn ∈ C∞((0, 1]).
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Let us construct Green’s function G(x, t, ξ, τ) corresponding to problem (6.1.1). It is determined by
the following system: for x, ξ ∈ I and t, τ ∈ (0, T ),

LG(x, t, ξ, τ) = δ(x− ξ)δ(t− τ),
G(0, t, ξ, τ) = 0 = G(1, t, ξ, τ),

G(x, t, ξ, τ) = 0 for t < τ,



 (6.2.1)

where δ is the Dirac delta function. By eigenfunction expansion, the corresponding Green’ s function G

to problem (6.1.1) is defined by

G(x, t, ξ, τ) =
∞∑

n=1

φn(x)φn(ξ)e−λn(t−τ) for x, ξ ∈ I and 0 ≤ τ < t ≤ T. (6.2.2)

To derive the equivalent integral equation of problem (6.1.1 ), let us consider the adjoint operator L∗,
which is given by L∗u = −ut − 1

k(x) (p(x)ux)x. Using Green’s second identity, we obtain

u(x, t) =

1∫

0

k(ξ)G(x, t, ξ, 0)u0(ξ)dξ +

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ. (6.2.3)

The following lemma is due to properties of Green’s function G.

Lemma 6.2.2

1 G is continuous for x, ξ ∈ I and 0 ≤ τ < t ≤ T.

2 G is positive for x, ξ ∈ I and 0 ≤ τ < t ≤ T.

3 lim
t→τ+

k(x)G(x, t, ξ, τ) = δ(x− ξ).

4 For any fixed τ ∈ (0, T ), there exist a positive constant c0 such that

1∫

0

k(x)G(x, t, ξ, τ)dξ ≤ c0 for any (x, t) ∈ I × (τ, T ).

Proof. By modifying proof of lemma 4.a and 4.c [7], we obtain the proof of 1 and 2, respectively. For
proof of 3, let us consider the following problem:

Lw(x, t, ξ, τ) = 0 for x, ξ ∈ I and 0 < τ < t < T,

w(0, t, ξ, τ) = 0 = w(1, t, ξ, τ) for 0 < τ < t < T,

lim
t→τ+

k(x)w(x, t, ξ, τ) = δ(x− ξ).

By equation (6.2.3), we have that for any t > τ,

w(x, t, ξ, τ) =

1∫

0

k(η)G(x, t, η, τ)
1

k(η)
δ(η − ξ)dη = G(x, t, ξ, τ).

Hence, we get the proof of 3. We next prove 4. For any t > τ. Let us consider the series

∞∑
n=1

1∫

0

k(ξ)φn(x)φn(ξ)e−λn(t−τ)dξ.
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Since
∣∣∣∣

1∫
0

k(ξ)φn(x)φn(ξ)e−λn(t−τ)dξ

∣∣∣∣ ≤
(

max
x∈I

k(x)
)

K2λ2d
n e−λn(t−τ) and, by assumption, the series

∞∑
n=1

λ2d
n e−λn(t−τ)

converges,
∞∑

n=1

1∫
0

k(ξ)φn(x)φn(ξ)e−λn(t−τ)dξ converges uniformly for any (x, t, τ) ∈ I × (τ, T ) × (0, T ).

Hence, we obtain the proof of 4. Therefore, the proof of this lemma is complete.
Next theorem says to local existence of a solution u of the equivalent integral equation (6.2.3).

Theorem 6.2.3 There exists a T1 with 0 < T1 < T such that the equivalent integral equation (6.2.3)
has a unique continuous solution u on QT1

.

Proof. We will use the fixed point theorem to prove existence of a continuous solution u of the

equivalent integral equation (6.2.3). Since
1∫
0

k(ξ)G(x, t, ξ, 0)dξ ≤ K1 for some positive K1, we let M =

(K1 +1) max
x∈I

|u0(x)|+1. Locally Lipschitz property of f implies that there exists a positive constant LM

depending on M such that for any x, y ∈ (0,∞) with |x| ≤ M and |y| ≤ M,

|f(x)− f(y)| ≤ LM |x− y| .

We then choose

T1 < min
{

1
c0f(M)

,
1

c0LM

}
. (6.2.4)

Define a set E by

E =

{
u ∈ C(QT1

) such that max
(x,t)∈QT1

|u(x, t)| ≤ M.

}
(6.2.5)

Then, E is a Banach space equipped with the norm |u|E = max
(x,t)∈QT1

|u(x, t)| . Let

Λu(x, t) =

1∫

0

k(ξ)G(x, t, ξ, 0)u0(ξ)dξ

+

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ. (6.2.6)

for any u ∈ E. We next show that the operator Λ defined by (6.2.6) maps E into itself and that Λ is
contractive. Let u, v ∈ E. We then have that

|Λu(x, t)| ≤
∣∣∣∣∣∣

1∫

0

k(ξ)G(x, t, ξ, 0)u0(ξ)dξ

∣∣∣∣∣∣

+

∣∣∣∣∣∣

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ

∣∣∣∣∣∣
. (6.2.7)

From (6.2.7) and lemma 6.2.2.4,

|Λu(x, t)| ≤ K1 max
x∈I

|u0(x)|+ f(M)

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)dξdτ

≤ K1 max
x∈I

|u0(x)|+ f(M)c0T1.
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By definition of T1, Λu ∈ E for any u ∈ E. Since

|Λu(x, t)− Λv(x, t)| ≤
∣∣∣∣∣∣

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ) [f(u(x0, τ))− f(v(x0, τ))] dξdτ

∣∣∣∣∣∣

≤ LM

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ) |u(x0, τ)− v(x0, t)| dξdτ

≤ LM

t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)dξdτ |u− v|E

≤ c0LMT1 |u− v|E , (6.2.8)

definition of T1 and (6.2.8) yield that Λ is contractive. The fixed point then implies that there exists a
unique u ∈ E satisfying equation (6.2.3). Therefore, the proof of this theorem is complete.

Lemma 6.2.4 Let v be a classical solution of the following problem:

Lv(x, t) ≥ B(x, t)v(x0, t) for (x, t) ∈ QT ,

v(0, t) ≥ 0 and v(1, t) ≥ 0 for t ∈ (0, T ),
v(x, 0) = u0(x) for x ∈ I,



 (6.2.9)

where B is a nonnegative and bounded function on QT . Then v(x, t) ≥ 0 for any (x, t) ∈ QT .

Proof. By modifying the proof of proposition 2.3.4.1, we obtain the proof of this lemma.
Next lemma gives additional properties of a solution u of problem (6.1.1).

Lemma 6.2.5 Let u be a continuous solution of problem (6.1.1). Then u(x, t) ≥ u0(x) and ut(x, t) ≥ 0
for any (x, t) ∈ QT .

Proof. Let z(x, t) = u(x, t)− u0(x) on QT . Let us consider that for any (x, t) ∈ QT ,

Lz(x, t) = f(u(x0, t)) +
1

k(x)
d

dx

(
p(x)

du0(x)
dx

)
.

Condition (D) implies that

1
k(x)

d

dx

(
p(x)

du0(x)
dx

)
≥ −f(u0(x0)) on I

and then we obtain that, by the second mean value theorem, for any (x, t) ∈ QT ,

Lz(x, t) ≥ f(u(x0, t))− f(u0(x0)) = f ′(η1)z(x0, t)

where η1 is between u(x0, t) and u0(x0). Moreover, for any (x, t) ∈ {0, 1} × (0, T ) ∪ I × {0} , z(x, t) = 0.

Lemma 5.2.4 implies that z ≥ 0 on QT or u ≥ u0 on QT . Let h be any positive constant less than T and
w(x, t) = u(x, t + h) − u(x, t) on QT−h. We then have that, by the second mean value theorem, for any
(x, t) ∈ QT−h,

Lw(x, t) = f(u(x0, t + h))− f(u(x0, t)) = f ′(η2)w(x0, t)

where η2 is between u(x0, t + h) and u(x0, t). Furthermore, w = 0 on {0, 1} × (0, T − h) and w ≥ 0 on
I × {0} . It then follows from lemma 5.2.4 that w ≥ 0 on QT−h. This shows that ut ≥ 0 on QT .
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We note that before blow-up occurs, there exists a positive constant M such that |u(x, t)| ≤ M for all
(x, t) ∈ QT1

. Locally Lipschitz continuity of f implies that there exists a positive constant LM depending
on M such that

|f(u(x0, t))| ≤ LM |u(x0, t)| for any t ∈ [0, T1].

Lemma 6.2.6 If f ′(u0(x0)) ≥ LM , then ut(x, t) ≥ LMu(x, t) on QT1
.

Proof. Let z(x, t) = ut(x, t)− LMu(x, t) on QT1
. We then have that for (x, t) ∈ QT1 ,

Lz(x, t) = f ′(u(x0, t))ut(x0, t)− LMf(u(x0, t)).

Locally Lipschitz continuity of f implies that for (x, t) ∈ QT1 ,

Lz(x, t) ≥ f ′(u(x0, t))ut(x0, t)− L2
Mu(x0, t)

≥ f ′(u0(x0))ut(x0, t)− L2
Mu(x0, t)

≥ LMut(x0, t)− L2
Mu(x0, t)

= LMz(x0, t).

From lemma 6.2.5, z(0, t) = ut(0, t) = 0 and z(1, t) = ut(1, t) = 0 for t ∈ (0, T1). If, in condition (D), we
set ζ = LM , then condition (D) implies that for any x ∈ I,

z(x, 0) = lim
t→0

ut(x, t)− LMu0(x)

=
1

k(x)
d

dx

(
p(x)

du0(x)
dx

)
+ f(u0(x0))− LMu0(x)

≥ 0.

Therefore, by lemma 6.2.4, the proof of this lemma is complete.

Lemma 6.2.7 If u0(x0) ≥ u0(x) for all x ∈ I, then u(x0, t) ≥ u(x, t) for any (x, t) ∈ QT1
.

Proof. Let z(x, t) = u(x0, t) − u(x, t) on QT1
. We have that, on QT1

, lemma xx and locally Lipschitz
property of f yield that

Lz(x, t) = ut(x0, t)− f(u(x0, t))

≥ ut(x0, t)− LMu(x0, t)

≥ 0.

Since z(0, t) = u(x0, t) ≥ u0(x0) ≥ 0, z(1, t) = u(x0, t) ≥ u0(x0) ≥ 0 for t ∈ (0, T1) and z(x, 0) =
u0(x0)− u0(x) ≥ 0 for x ∈ I, by lemma 6.2.4, we get the proof of this lemma.

Theorem 6.2.8 Let Tmax be the supremum of all T1 such that a continuous solution u of an equivalent
integral equation (6.2.3) exists. If Tmax is finite, then u(x0, t) is unbounded as t tends to Tmax.

Proof. Suppose that u(x0, Tmax) is finite. Let N = u(x0, Tmax) + 1. By theorem xx and a fact that
u is nondecreasing in t, there exists a finite time T̃ (> Tmax) depending on N such that the equivalent
integral equation (6.2.3) has a unique continuous solution u on the time interval [0, T̃ ] for any x ∈ I. By
the definition of Tmax, we get a contradiction.
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6.3 A sufficient condition to blow-up in finite time

Let λ1 be the first eigenvalue of a singular eigenvalue problem (6.1.2) and let φ1 be its corre-
sponding eigenfunction. Without loss of generality, we assume that

1∫

0

k(x)φ1(x)dx = 1. (6.3.1)

We then define a function H by

H(t) =

1∫

0

k(x)φ1(x)u(x, t)dx. (6.3.2)

Theorem 6.3.1 Assume that

1 u0 attains its maximum at point x0.

2 f(s) ≥ bsp with b > 0 and p > 1.

3 H(0) >
(

λ1
b

) 1
p−1 .

Then a solution u of problem (6.1.1) blows up in finite time.

Proof. Multiplying equation (6.1.1) by k(x)φ1(x) and integrating equation (6.1.1) from 0 to 1 with
respect to x yield

dH(t)
dt

= −λ1H(t) +

1∫

0

k(x)f(u(x0, t))φ1(x)dx.

By lemma 6.2.7 and assumption 2, we have

dH(t)
dt

≥ −λ1H(t) +

1∫

0

k(x)f(u(x, t))φ1(x)dx

≥ −λ1H(t) + b

1∫

0

k(x)up(x, t)φ1(x)dx. (6.3.3)

Hölder inequality implies that

1∫

0

k(x)φ1(x)u(x, t)dx ≤



1∫

0

k(x)φ1(x)dx




p−1
p




1∫

0

k(x)φ1(x)up(x, t)dx




1
p

.

From (6.3.1), we get

1∫

0

k(x)φ1(x)up(x, t)dx ≥



1∫

0

k(x)φ1(x)u(x, t)dx




p

= Hp(t). (6.3.4)

From equation (6.3.3) and (6.3.4), we obtain

H ′(t) ≥ −λ1H(t) + bHp(t)
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or
Hp−1(t) ≥ 1

b
λ1

+
[
H1−p(0)− b

λ1

]
e−λ1(1−p)t

.

It then follows from assumption 3 that there exists a T̂ (> 0) such that H tends to infinity as t converges
to T̂ . By the definition of H (6.3.2), we find that

H(t) ≤



1∫

0

k(x)φ1(x)dx


u(x0, t) = u(x0, t).

Therefore, a solution u of problem (6.1.1) blows up at point x0 as t tends to T̂ .

6.4 The blow-up set

Theorem 6.4.1 The blow-up set of a solution u of problem (6.1.1) is I.

Proof. From (6.2.3), we have that for t ∈ (0, Tmax),

u(x0, t) =

1∫

0

k(ξ)G(x0, t, ξ, 0)u0(ξ)dξ

+

t∫

0

1∫

0

k(ξ)G(x0, t, ξ, τ)f(u(x0, τ))dξdτ

≤ max
x∈I

u0(x) + c0

t∫

0

f(u(x0, τ))dτ. (6.4.1)

By theorem 6.2.8, we obtain that as t tends to Tmax,

Tmax∫

0

f(u(x0, τ))dτ = ∞. (6.4.2)

On the other hand, by positivity of k, G and u0, we get that for any (x, t) ∈ QTmax ,

u(x, t) ≥
t∫

0

1∫

0

k(ξ)G(x, t, ξ, τ)f(u(x0, τ))dξdτ.

Since there exists a positive constant c1 such that
1∫
0

k(ξ)G(x, t, ξ, τ)dξ ≥ c1, we obtain that

u(x, t) ≥ c1

t∫

0

f(u(x0, τ))dτ for all (x, t) ∈ QTmax .

Hence, the solution u tends to infinity for all x ∈ I as t approaches to Tmax. Therefore the proof of this
theorem is complete.
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Note that this chapter was the object of the article :
P. Sawangtong. B. Novaprateep and W. Jumpen. Complete blow-up for a degenerate semilinear

parabolic problem with a localized nonlinear term, Proceeding of International Conference on Fluid
Mechanics and Heat and Mass Transfer, Corfu Island, Greece, 22-24 July 2010, p. 95-99.
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Chapter 7

Conclusions

The motivation of this thesis is that the author, major advisor and co-advisors have studied the
paper by Chan and Yang [9]. In [9] authors considered the semilinear parabolic problem with a localized
nonlinear term: let q be any positive real number: xqut− uxx = f(u(x0, t)) with nonhomogeneous initial
and Dirichlet boundary conditions and x0 is a fixed point in the domain of x. They proved that their
problem has a blow-up solution and the blow-up of such a blow-up solution is the whole domain of x.

They furthermore gave a condition to guarantee occurrence for blow-up in finite time of their problem.
Applications of this kind of problems are mentioned in the first chapter.

The purpose of this thesis is to generalize the results of Chan and Yang [9] to a more general form
and obtain the same results as in [9], that is, existence and uniqueness of a blow-up solution, blow-up set
of such a blow-up solution and the sufficient condition to blow-up in finite time. Our generalized problem
is k(x)ut − (p(x)ux)x = k(x)f(u(x0, t)) with nonhomogeneous initial and Dirichlet boundary conditions
and x0 is a fixed point in the domain of x.

This thesis is divided into six chapters as follows. The history of the study of blow-up problems is
given in the first chapter. Chapter 2 and 3 deal with our problem in 1-dimension of variable x in the
case that k and p are positive functions on the whole domain of x. The difference of chapters 2 and 3 is
that in chapter 2 existence of a blow-up solution is shown by the functional method, i.e., the semigroup
method, but in chapter 3 it is proven by a classical method, i.e., the Green’s function method. Chapter
4 is concerned with the extended problem of the previous problem to N dimensions in the variable x by
the using semigroup method. Before studying the case that k(0) = 0 = p(0) and k and p are positive on
the whole domain of x except for the point x = 0, we study the particular problem which results from
replacing function k with xα and function p with xβ in chapter 5. In the last chapter, we investigate a
blow-up solution of our problem in such a case by using the Green’s function method.

The advantage of the semigroup method is that before applying the semigroup method to our problem,
we have to transform our problem into the equivalent evolution problem and then since, in the semigroup
theory, there are many theorems on the existence of solutions of evolution problems, it is convenient to
use a suitable theorem in the semigroup theory to show existence of solutions to our problem. On the
other hand, the difficulty is that, in using such a suitable theorem, we have to make conditions in our
equivalent evolution problem satisfy assumptions of such a suitable theorem.

The advantage of the Green’s function method is that the Green’s function method is a fundamental
method in the topic of partial differential equations to find solutions of P.D.E. problems and furthermore
it is included in elementary courses at the undergraduate level. This is why the Green’s function method
is easy to understand and apply to our problem.

On the other hand, there are limitations to the application of semigroup method and Green’s function
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method to our problem. Firstly, we mention limitations in using the Green’s function method. Before
applying the Green’s function method to our problem, we have to find eigenvalues and eigenfunctions
of the corresponding eigenvalue problem in order to construct the Green’s function associated with our
problem. Different assumptions of k and p in chapters 3 and 6 allow us to obtain the regular eigenvalue
problem in chapter 3 and the singular eigenvalue problem in chapter 6. For chapter 3, since there are
many text books on Partial Differential Equations (P.D.E.) concerning the general regular eigenvalue
problem, we have the asymptotic property of eigenvalues, λn = O(n2) as n → ∞, and boundedness
of eigenfunctions. With these facts, we can obtain desired results in chapter 3. But chapter 6 deals
with the general singular eigenvalue problem. However, there are no books written on eigenvalues and
eigenfunctions of the general singular eigenvalue problem. This is the reason why we must construct
condition (G) in chapter 6.

As previously discussed, if we want to apply the semigroup method to our problem, we have to
transform our problem into the equivalent evolution problem. In order to show that the operator F is
Hölder continuous in chapter 2, we need proposition 2.3.1.3. Proposition 2.3.1.3 follows from the Rellich
theorem. The embedding of H1

0 into L2 is compact. In the case that k(0) = 0 = p(0) and k and p are
positive on the whole domain of x except for the point x = 0. We can define the spaces H1

0 and L2 similar
to those in section 2.3 of chapter 2. The limitation of applying semigroup method to our problem is that
we don’t know whether the embedding of H1

0 into L2 is compact in such a case.
In order to achieve our objective to apply the semigroup method to our problem in the case that

k(0) = 0 = p(0) and k and p are positive on the whole domain of x except for the point x = 0, we may
complete this problem completely in the future.
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[10]. Debnath L., Mikusiński P. Introduction to Hilbert spaces with Applic-
ations. Elsevier Academic Press; 2005.

[11]. Evans L.C. Partail Differential Equations. American Mathematical
Society;1998.

[12]. Friedman A. Partial Differential Equation of Parabolic Type. Prentice-Hall
,Englewood Cliffs, N.J.; 1964.

[13]. Friedman A. Remarks on nonlinear parabolic equations, in: Applications of
Nonlinear Partial Differential Equations in Mathematical Physics,
Amer. Math. Soc., Providence, RI, 1965, pp. 3–23.

98



[14]. Fujita H. On the blowing up of solutions to the Cauchy problem for
ut = 4u + u1+α. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.
1966;13: 109–124

[15]. Fujita H. On the nonlinear equations 4u + eu = 0 and vt = 4v + ev. Bull.
Amer. Math. Soc. 1969;75: 132–135.

[16]. Gel’fand I.M. Some problem in the theory of quasilinear equations (see
Section 15, due to G.I. Barenblatt). Amer. Math. Soc. Transl.
1963;29(2): 295–381.

[17]. Goldstein J.A. Semigroups of Linear Operators and Applications. Claren-
don Press; 1989.

[18]. Kaplan S. On the growth of solutions of quasilinear parabolic equations.
Comm. Pure Appl. Math. 1963;16:305–330.

[19]. Kurdyumov S.P. Nonlinear processes in dense plasma, in: Proc. 2nd In-
ternational Conference on Plasma Theory (Kiev 1974), Naukova
Dumka, Kiev, 1976, pp. 278–287.

[20]. Mueller C., Weissler F., Single Point Blow-up for a General Semilinear
Heat Equation. Indiana Univ. Math. J. 1985;34: 881–913.

[21]. Nuckolis I., Wood L., Thiessen A., Zimmerman G. Laser compression of
matter to super-high densities, VIII Inter. Quant. Electr. Conf.,
Montreal, May 1972; Nature 239, No. 5368 (1972), 139–142.

[22]. Osgood W.F. Bewis der Existenz einer Lösung der Differentialgleichung
dy/dx = f(x, y) ohne Hinzunahme der Cauchy-Lipschitzschen Be-
dingung. Monatshefte für Mathematik und Physik (Vienna)
1989;9:331–345.

[23]. Protter M.H., Weinberger H.F. Maximum Principles in Differential Equa-
tions. Springer, New York; 1984.

[24]. Taylor M.E. Partial Differential Equation I. Springer-Verlag, New York;
tions. 1996.

[25]. Weinberger H.F. A First Course in Partial Differential Equations. JOHN
WILEY & SONS, New York; 1965.

[26]. Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. The
Mathematical Theory of Combustion and Explosions, Consultants
Burean, New York; 1985.

[27]. Zheng S. Nonlinear Evolution Equation. Chapman & Hall/ CRC mono-
graphs and surveys in pure and applied mathematics ;2004.

99



Résumé de la thèse : On étudie l’existence de ‘blow-up’ et l’ensemble des points de ‘blow-up’ pour
une équation de type chaleur dégénérée ou non avec un terme source uniforme fonction non linéaire de la
température instantanée en un point fixé du domaine. L’étude est conduite par les méthodes d’analyse
classique (fonction de Green, développements en fonctions propres, principe du maximum) ou fonction-
nelle (semi-groupes d’opérateurs linéaires).

TITRE en anglais : COMPLETE BLOW-UP FOR A SEMI-LINEAR PARABOLIC PROBLEM
WITH A LOCALIZED NONLINEAR TERM.

ŔESUME en anglais : We study existence of blow-up and blow-up sets for a (degenerate or not)
Heat-like equation with a uniform source term nonlinear function of the instantaneous temperature at
a given point of the domain. The techniques are relevant from either classical analysis (Green function,
eigenfunction expansion, maximum principle) or function analysis (semi-group of linear operators).
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