J. Atteberry, How welding works

W. Peters and W. Ranson, Digital Imaging Techniques In Experimental Stress Analysis, Optical Engineering, vol.21, issue.3, pp.427-458, 1982.
DOI : 10.1117/12.7972925

J. Chen, G. Xia, K. Zhou, and G. Xia, Two-step digital image correlation for micro-region measurement, Optics and Lasers in Engineering, vol.43, issue.8, pp.836-846, 2005.
DOI : 10.1016/j.optlaseng.2004.09.002

S. Hwang, J. Horn, and H. Wang, Strain measurement of SU-8 photoresist by a digital image correlation method with a hybrid genetic algorithm, Optics and Lasers in Engineering, vol.46, issue.3, pp.46-281, 2008.
DOI : 10.1016/j.optlaseng.2007.08.012

S. Roux, J. Réthoré, and F. Hild, Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks, Journal of Physics D: Applied Physics, vol.42, issue.21, pp.42-214004, 2009.
DOI : 10.1088/0022-3727/42/21/214004

URL : https://hal.archives-ouvertes.fr/hal-00381646

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, Applications of digital-image-correlation techniques to experimental mechanics, Experimental Mechanics, vol.1, issue.3, pp.232-244, 1985.
DOI : 10.1007/BF02325092

S. Mugil-touchal, F. Morestin, and M. Brunet, Various experimental applications of digital image correlation method, CMEM 97 (Computational Methods and Experiental Measurements VIII, 1997.

Z. Tang, J. Liang, Z. Xiao, and C. Guo, Large deformation measurement scheme for 3D digital image correlation method, Optics and Lasers in Engineering, vol.50, issue.2, pp.122-130, 2012.
DOI : 10.1016/j.optlaseng.2011.09.018

T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, Application of Correlation Techniques to Experimental Mechanics, Experimental Mechanics, pp.232-244, 1985.

J. Réthoré and F. Hild, Shear-band capturing using a multiscale extended digital image correlation technique, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.49-52, pp.5016-5030, 2007.
DOI : 10.1016/j.cma.2007.06.019

J. Chen, X. Zhang, N. Zhan, and X. Hu, Deformation measurement across crack using two-step extended digital image correlation method, Optics and Lasers in Engineering, vol.48, issue.11, pp.1126-1131, 2010.
DOI : 10.1016/j.optlaseng.2009.12.017

G. Besnard, F. Hild, and S. Roux, ???Finite-Element??? Displacement Fields Analysis from Digital Images: Application to Portevin???Le Ch??telier Bands, Experimental Mechanics, vol.404, issue.3, pp.789-803, 2006.
DOI : 10.1007/s11340-006-9824-8

J. Réthoré, F. Hild, and S. Roux, Extended digital image correlation with crack shape optimization, International Journal for Numerical Methods in Engineering, vol.47, issue.2, pp.248-72, 2008.
DOI : 10.1002/nme.2070

S. Roux and F. Hild, Digital Image Mechanical Identification (DIMI), Experimental Mechanics, vol.292, issue.4, pp.495-508, 2008.
DOI : 10.1007/s11340-007-9103-3

URL : https://hal.archives-ouvertes.fr/hal-00200974

T. Belytschko, N. Moes, S. Usui, and C. Parimi, Arbitrary discontinuities in finite elements, International Journal for Numerical Methods in Engineering, vol.8, issue.4, pp.993-1013, 2001.
DOI : 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

URL : https://hal.archives-ouvertes.fr/hal-01005275

N. Moes, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.133-150, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

URL : https://hal.archives-ouvertes.fr/hal-01004829

S. V. Lomov, . Ph, E. Boisse, F. Deluycker, K. Morestin et al., Willems, Full-field strain measurements in textile deformability studies, Composites: Part A, 2007.

J. Rethore, A. Gravouil, F. Morestin, and A. Combescure, Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral, International Journal of Fracture, vol.1, issue.3, pp.65-79, 2005.
DOI : 10.1007/s10704-004-8141-4

URL : https://hal.archives-ouvertes.fr/hal-00373821

T. Wu, Experiment and numerical simulation of welding induced damage of stainless steel 15-5PH, 2007.

H. H. Johnson, Calibrating the electric potential method for studying slow crack growth, Materials research & Standards, pp.442-445, 1965.

I. S. Hwang and R. G. Ballinger, A multi-frequency AC potential drop technique for the detection of small cracks, Measurement Science and Technology, vol.3, issue.1, pp.62-74, 1992.
DOI : 10.1088/0957-0233/3/1/009

I. Cerny, The use of DCPD method for measurement of growth of cracks in large components at normal and elevated temperatures, Engineering Fracture Mechanics, pp.71-837, 2004.

H. Nayeb-hashemi, D. Swet, and A. Vaziri, New electrical potential method for measuring crack growth in nonconductive materials, Measurement, pp.36-121, 2004.

Y. Sato, T. Atsumi, and T. Shoji, Application of induced current potential drop technique for measurements of cracks on internal wall of tube-shaped specimens, NDT & E International, vol.40, issue.7, pp.40-497, 2007.
DOI : 10.1016/j.ndteint.2007.04.004

Z. Cui and B. Liu, Metallurgy and heat treatment, pp.104-105, 1998.

B. L. Yi, Observation and analysis of the balance organization of steel alloy, 2006.

H. K. Bhadeshia, Interpretation of the Microstructure of Steels, POSTECH Graduate Institute of Ferrous Technology (GIFT), http://cml.postech.ac.kr, 2008.

T. Y. Hsu, Martensite transformation and martensite, pp.556-564, 1999.

N. Hamata, Modelisation du Couplage Entre L'elasto-viscoplasticité Anisotherme et la Transformation de Phase D'un Fontr G.S. Ferritique, Thèse de Doctorat de L'université Paris 6, 1992.

Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, Journal of Applied Physics, vol.33, issue.10, pp.3125-3131, 1962.
DOI : 10.1063/1.1728579

M. Coret, S. Calloch, and A. Combescure, Experimental study of the phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading, International Journal of Plasticity, vol.18, issue.12, pp.1707-1727, 2002.
DOI : 10.1016/S0749-6419(01)00067-5

URL : https://hal.archives-ouvertes.fr/hal-01006856

B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test Part I: experimental results, Engineering Fracture Mechanics, pp.72-121, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00142084

P. Hausild, C. Berdin, and P. Bompard, Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range, Materials Science and Engineering: A, vol.391, issue.1-2, pp.391188-197, 2005.
DOI : 10.1016/j.msea.2004.08.067

URL : https://hal.archives-ouvertes.fr/hal-00018919

H. Willschuetz, E. Altstadt, B. R. Sehgal, and F. Weiss, FEM-Calculation of Different Creep-Tests with French and German RPV-Steels, Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology, 2003.

M. Martinez, Jonction 16MND5-INCONEL 690-316LN par Soudage Diffusion Elaboration et Calcul des Contraintes résiduelles de procédé, ENSMP, 1999.

R. Honeycombe, Steels: Microstructure & Properties, 1981.

C. Smith and . Stanley, A History of Metallography Annexes, p.225, 1960.

D. Quidort and Y. J. Brechet, Isothermal growth kinetics of bainite in 0.5% C steels, 5% C Steels, pp.4161-4170, 2001.
DOI : 10.1016/S1359-6454(01)00316-0

Y. Ohmori and T. Maki, Bainitic Transformation in View of Displacive Mechanism, Materials Transactions, JIM, vol.32, issue.8, pp.32-631, 1991.
DOI : 10.2320/matertrans1989.32.631

M. Hillert, L. Höglund, and J. Ågren, Escape of carbon from ferrite plates in austenite, Acta Metallurgica et Materialia, vol.41, issue.7, pp.41-1951, 1993.
DOI : 10.1016/0956-7151(93)90365-Y

M. Hillert, The Nature of Bainite., ISIJ International, vol.35, issue.9, pp.35-1134, 1995.
DOI : 10.2355/isijinternational.35.1134

M. A. Yescas and H. K. Bhadeshia, Model for the maximum fraction of retained austenite in austempered ductile cast iron, Materials Science and Engineering: A, vol.333, issue.1-2, pp.60-66, 2002.
DOI : 10.1016/S0921-5093(01)01840-8

C. Garcia-mateo and H. K. Bhadeshia, Nucleation theory for high-carbon bainite, Materials Science and Engineering: A, vol.378, issue.1-2, pp.289-292, 2004.
DOI : 10.1016/j.msea.2003.10.355

R. P. Garrett, S. Xu, J. Lin, and T. A. Dean, A model for predicting austenite to bainite phase transformation in producing dual phase steels, International Journal of Machine Tools and Manufacture, vol.44, issue.7-8, pp.44-831, 2004.
DOI : 10.1016/j.ijmachtools.2004.01.004

G. Sidhu, S. D. Bhole, D. L. Chen, and E. Essadiqi, An improved model for bainite formation at isothermal temperatures, Scripta Materialia, vol.64, issue.1, pp.73-76, 2011.
DOI : 10.1016/j.scriptamat.2010.09.009

H. K. Bhadeshia and D. V. Edmonds, The mechanism of bainite formation in steels, Acta Metallurgica, vol.28, issue.9, p.1265, 1980.
DOI : 10.1016/0001-6160(80)90082-6

H. K. Bhadeshia and A. R. Waugh, Bainite: An atom-probe study of the incomplete reaction phenomenon, Acta Metallurgica, vol.30, issue.4, p.775, 1982.
DOI : 10.1016/0001-6160(82)90075-X

F. G. Caballero, C. Garcia-mateo, M. J. Santofimia, M. K. Miller, and C. Garcia-de-andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Materialia, vol.57, issue.1, pp.8-17, 2009.
DOI : 10.1016/j.actamat.2008.08.041

P. H. Shipway and H. K. Bhadeshia, The effect of small stresses on the kinetics of the bainite transformation, Materials Science and Engineering: A, vol.201, issue.1-2, pp.143-149, 1995.
DOI : 10.1016/0921-5093(95)09769-4

M. Takahashi, Recent progress: kinetics of the bainite transformation in steels, Current Opinion in Solid State and Materials Science, pp.213-217, 2004.

P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop et al., Bainite transformation of low carbon Mn???Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention, Materials Science and Engineering: A, vol.273, issue.275, pp.273-275, 1999.
DOI : 10.1016/S0921-5093(99)00331-7

D. Quidort and Y. Bréchet, The role of carbon on the kinetics of bainite transformation in steels, Scripta Materialia, vol.47, issue.3, pp.47-151, 2002.
DOI : 10.1016/S1359-6462(02)00121-5

L. C. Chang, Microstructures and reaction kinetics of bainite transformation in Si-rich steels, Materials Science and Engineering: A, vol.368, issue.1-2, pp.175-182, 2004.
DOI : 10.1016/j.msea.2003.10.297

R. Mahnken, A. Schneidt, S. Tschumak, and H. J. Maier, On the simulation of austenite to bainite phase transformation, Computational Materials Science, vol.50, issue.6, pp.1823-1829, 2011.
DOI : 10.1016/j.commatsci.2010.12.032

H. K. Bhadeshia, The bainite transformation: unresolved issues, Materials Science and Engineering: A, vol.273, issue.275, pp.273-275, 1999.
DOI : 10.1016/S0921-5093(99)00289-0

F. G. Caballero, M. K. Miller, and C. Garcia-mateo, Carbon supersaturation of ferrite in a nanocrystalline bainitic steel, Acta Materialia, vol.58, issue.7, pp.58-2338, 2010.
DOI : 10.1016/j.actamat.2009.12.020

M. Martinez, Jonction 16MND5-INCONEL 690-316LN par Soudage Diffusion Elaboration et Calcul des Contraintes résiduelles de procédé, 1999.

. Ndt-resouce and . Center, ndt-ed.org [70] gbtimes, Cracked axle renews railway safety fears

G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech, vol.24, pp.361-64, 1957.

J. D. Landes, Elastic-plastic fracture mechanics: where has it been? Where is it going? In: Fatigue and fracture mechanics, ASTM STP 1360 American Society for Testing and Materials, vol.30, pp.3-18, 2000.

X. Zhu, J. A. Joyceg, K. , J. , and C. , Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, CTOA) testing and standardization, pp.1-46, 2012.
DOI : 10.1016/j.engfracmech.2012.02.001

J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, vol.35, issue.2, pp.379-86, 1968.
DOI : 10.1115/1.3601206

G. W. Greenwood and R. H. Johnson, The Deformation of Metals Under Small Stresses During Phase Transformations, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.283, issue.1394, pp.403-422, 1965.
DOI : 10.1098/rspa.1965.0029

C. L. Magee, Transformation kinetics, microplasticity and ageing of martensite in Fe-3l- Ni, 1966.

J. P. Bressanelli and A. Moskowitz, Effects of Strain Rate, Temperature and Composition on Tensile Properties of Metastable Austenitic Stainless Steels, ASM Trans. Quart, vol.59, p.223, 1966.

V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, The Enhancement of Ductility in High- Strength Steels, Trans. ASM, vol.60, p.252, 1967.

W. W. Gerberich, P. B. Hemmings, V. F. Zackay, and E. R. Parker, Interactions Between Crack-Growth and Strain-Induced Transformation, Fracture, p.288, 1969.

S. D. Antolovich and B. Singh, On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metallurgical and Materials Transactions B, vol.381, issue.8, p.2135, 1971.
DOI : 10.1007/BF02917542

S. R. Pati and M. Cohen, Nucleation of the Isothermal Martensitic Transformation, Acta Met, p.189, 1969.

V. Raghavan and M. Cohen, Measurement and interpretation of isothermal martensitic kinetics, Metallurgical Transactions, vol.212, issue.no. 5, p.2409, 1971.
DOI : 10.1007/BF02814878

H. K. Bhadeshia and D. V. Edmonds, Bainite in silicon steels: a new composition property approach ?, Metal Sci, pp.17-411, 1983.

H. K. Bhadeshia and D. V. Edmonds, Bainite in silicon steels: a new composition property approach ?, Metal Sci, pp.17-420, 1983.

Q. Sun and K. Hwang, Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys???I. Derivation of general relations, Journal of the Mechanics and Physics of Solids, vol.41, issue.1, pp.1-33, 1993.
DOI : 10.1016/0022-5096(93)90060-S

R. H. Hannink, P. M. Kelly, and B. C. Muddle, Transformation toughening in zirconiacontaining ceramics, J. Am. Ceram. Soc, pp.83-86, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01221.x

S. Yi, S. Gao, and L. Shen, Fracture toughening mechanism of shape memory alloys under mixed-mode loading due to martensite transformation, International Journal of Solids and Structures, vol.38, issue.24-25, pp.38-4463, 2001.
DOI : 10.1016/S0020-7683(00)00283-3

W. Yan, C. H. Wang, X. P. Zhang, and Y. Mai, Effect of transformation volume contraction on the toughness of superelastic shape memory alloys, Smart Materials and Structures, vol.11, issue.6, pp.947-955, 2002.
DOI : 10.1088/0964-1726/11/6/316

P. Yan, O. E. Gungor, P. Thibaux, M. Liebeherr, and H. K. Bhadeshia, Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment, Materials Science and Engineering: A, vol.528, issue.29-30, pp.528-8492, 2011.
DOI : 10.1016/j.msea.2011.07.034

K. Susil and . Putatunda, Fracture toughness of a high carbon and high silicon steel, Materials Science and Engineering A, vol.297, pp.31-43, 2001.

T. Iwamoto and T. Tsuta, Computational simulation on deformation behavior of CT specimens of TRIP steel under mode I loading for evaluation of fracture toughness, International Journal of Plasticity, vol.18, issue.11, pp.1583-1606, 2002.
DOI : 10.1016/S0749-6419(02)00030-X

R. M. Mcmeeking and A. G. Evans, Mechanics of Transformation-Toughening in Brittle Materials, Journal of the American Ceramic Society, vol.5, issue.5, pp.242-246, 1982.
DOI : 10.1007/BF00808066

B. Budiansky, J. W. Hutchinson, and J. C. Lambropoulos, Continuum theory of dilatant transformation toughening in ceramics, International Journal of Solids and Structures, vol.19, issue.4, pp.337-355, 1983.
DOI : 10.1016/0020-7683(83)90031-8

R. G. Stringfellow, D. M. Parks, and G. B. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metallurgica et Materialia, vol.40, issue.7, pp.1703-1716, 1992.
DOI : 10.1016/0956-7151(92)90114-T

K. Hase, C. Garcia-mateo, and H. K. Bhadeshia, Bimodal size-distribution of bainite plates, Materials Science and Engineering: A, vol.438, issue.440, pp.438-440, 2006.
DOI : 10.1016/j.msea.2005.12.070

L. Ma, Fundamental formulation for transformation toughening, International Journal of Solids and Structures, vol.47, issue.22-23, pp.3214-3220, 2010.
DOI : 10.1016/j.ijsolstr.2010.08.002

J. C. Lambropoulos, Effect of Nucleation on Transformation Toughening, Journal of the American Ceramic Society, vol.6, issue.2, pp.218-222, 1986.
DOI : 10.1111/j.1151-2916.1986.tb07411.x

L. R. Rose, The Mechanics of Transformation Toughening, Proc. R. Soc. Lond. A. 412, pp.169-197, 1987.
DOI : 10.1098/rspa.1987.0084

H. Tsukamoto and A. Kotousov, Transformation Toughening in Zirconia-Enriched Composites: Micromechanical Modeling, International Journal of Fracture, vol.36, issue.4, pp.161-168, 2006.
DOI : 10.1007/s10704-006-8374-5

J. L. Jones, S. M. Motahari, M. Varlioglu, U. Lienert, J. V. Bernier et al., Crack tip process zone domain switching in a soft lead zirconate titanate ceramic, Acta Materialia, vol.55, issue.16, pp.5538-5548, 2007.
DOI : 10.1016/j.actamat.2007.06.012

J. Besson, Local Approach to Fracture: Ductile Rupture, 2011.

A. F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, 2005.

X. K. Zhu and S. K. Jang, J???R curves corrected by load-independent constraint parameter in ductile crack growth, Engineering Fracture Mechanics, vol.68, issue.3, pp.68-285, 2001.
DOI : 10.1016/S0013-7944(00)00100-4

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1920.
DOI : 10.1098/rsta.1921.0006

A. A. Griffith, The Theory of Rupture, Proceedings, First International Congress of Applied Mechanics, pp.55-63, 1924.

J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, vol.35, issue.2, 1968.
DOI : 10.1115/1.3601206

T. Stanley, J. M. Rolfe, and . Barsom, Fracture and Fatigue Control in Structures, Application of Fracture Mechanics, 1977.

H. Liebowitz, Fracture, An Advanced Treatise, 1968.

G. Irwin and R. Dewit, A summary of fracture mechanics concepts, J. Test Evaluat, vol.11, pp.56-65, 1983.

F. Erdogan, Fracture mechanics, International Journal of Solids and Structures, vol.37, issue.1-2, pp.171-183, 2000.
DOI : 10.1016/S0020-7683(99)00086-4

B. Cotterell, The past, present, and future of fracture mechanics, Engineering Fracture Mechanics, vol.69, issue.5, pp.533-53, 2002.
DOI : 10.1016/S0013-7944(01)00101-1

I. Milne, R. R. Karihaloo, and B. , Comprehensive structural integrity, vols 1-10 (print version, pp.1-11, 2003.

A. E1823-10a, Standard terminology relating to fatigue and fracture testing, American Society for Testing and Materials, 2011.

A. E399-09e2, Standard test method for linear-elastic plane strain fracture toughness K IC of metallic materials, American Society for Testing and Materials, 2011.

A. E561-10, Standard test method for K-R curve determination. American Society for Testing and Materials, 2011.

A. E1820-11, Standard test method for measurement of fracture toughness, American Society for Testing and Materials, 2011.

A. E1290-08e1, Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement, American Society for Testing and Materials, 2011.

A. E2472-06e1, Standard test method for determination of resistance to stable crack extension under low-constraint conditions, American Society for Testing and Materials, 2011.

A. E1921-11, Standard test method for determining of reference temperature T 0 for ferritic steels in the transition range, American Society for Testing and Materials, 2011.

R. Heyer, Crack Growth Resistance Curves (R-Curves)- Literature Review, American Society for Testing and Materials, pp.3-16, 1973.
DOI : 10.1520/STP34704S

J. M. Barsom, In: Fracture mechanics retrospective -early classic papers, 1913.

A. Rps1, American Society for Testing and Materials, 1987.

J. A. Joyce, Manual on elastic?plastic fracture: laboratory test procedures, ASTM Manual, p.27, 1996.
DOI : 10.1520/MNL27-EB

J. D. Landes, Elastic?plastic fracture mechanics: where has it been? Where is it going? In: Fatigue and fracture mechanics, ASTM STP 1360 American Society for Testing and Materials, vol.30, pp.3-18, 2000.

J. D. Landes, I. Milne, R. Ritchie, and B. Karihaloo, Fracture toughness testing and estimations, Comprehensive structural integrity, 2003.

K. Schwalbe, J. D. Landes, and J. Heerens, Classic fracture mechanics methods, Comprehensive structural integrity, 2007.

X. K. Zhu, J-integral resistance curve testing and evaluation, Journal of Zhejiang University-SCIENCE A, vol.10, issue.11, pp.1541-60, 2009.
DOI : 10.1631/jzus.A0930004

X. K. Zhu, Advances in Development of J-Integral Experimental Estimation, Testing and Standardization, ASME 2011 Pressure Vessels and Piping Conference: Volume 6, Parts A and B, 2011.
DOI : 10.1115/PVP2011-57174

K. Wallin, Fracture toughness of engineering materials-estimation and application, 2011.

A. E1820-05a, Standard test method for measurement of fracture toughness, American Society for Testing and Materials, 2005.

J. A. Joyce, On the mechanisms and mechanics of plastic flow and fracture, 1974.

O. L. Towers and S. J. Garwood, Maximum load toughness, International Journal of Fracture, vol.7, issue.2, pp.85-90, 1980.
DOI : 10.1007/BF00012629

V. Kumar, M. D. German, and C. F. Shih, An engineering approach for elastic?plastic fracture analysis, EPRI Topical report # NP-1931, Electric Power Research Institute, 1981.

A. Constantinescu, An introduction to finite elements based on examples with Cast3m

P. Destuynder, M. Djoua, and S. Lescure, Some remarks on elastic fracture mechanics, Journal de Mécanique Théorique et Appliquée, vol.2, pp.113-135, 1983.

X. Z. Suo and A. Combescure, Second variation of energy and an associated line independent integral in fracture mechanics, European Journal of Mechanics, A/Solids, vol.11, pp.609-624, 1992.

B. Jacques, Local approach to fracture, 2011.

P. Hausild, I. Nedbal, C. Berdin, and C. Prioul, The influence of ductile tearing on fracture energy in the ductile-to-brittle transition temperature range, Materials Science and Engineering: A, vol.335, issue.1-2, pp.335-164, 2002.
DOI : 10.1016/S0921-5093(01)01913-X

S. Renevey, Approches globale et locale de la rupture dans le domaine de transition fragile-ductile d'un acier faiblement allié, 1998.

S. K. Iskander, P. P. Milella, and A. Pini, Results of Crack-Arrest Tests on irradiated A508 Class 3 steel, 1998.

S. Chapuliot, M. H. Lacire, S. Marie, and M. Nédélec, Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I: description of tests, Engineering Fracture Mechanics, vol.72, issue.5, pp.72-661, 2005.
DOI : 10.1016/j.engfracmech.2004.07.005

R. H. Priest, W. P. Belcher, C. M. Mendes, and B. K. Neale, Irradiation surveillance data for an A508 forging and associated weld metal, International Journal of Pressure Vessels and Piping, vol.77, issue.10, pp.77-621, 2000.
DOI : 10.1016/S0308-0161(00)00035-1

F. G. Caballero, C. Garcia-mateo, M. J. Santofimia, M. K. Miller, and C. , Garcia de Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Materialia, pp.57-65, 2009.

H. Aaronson, The decomposition of austenite by diffusional processes, p.387, 1962.

H. I. Aaronson, The mechanism of phase transformations in crystalline solids. London: The Institute of Metals, p.270, 1969.

H. I. Aaronson, G. Spanos, R. Jr, and W. T. , A progress report on the definitions of bainite, Scripta Materialia, vol.47, issue.3, pp.139-144, 2002.
DOI : 10.1016/S1359-6462(02)00119-7

R. Jr, W. T. Li, F. Z. Shui, C. K. Aaronson, and H. I. , An investigation of the generality of incomplete transformation to bainite in Fe-C-X alloys, Metall. Trans, vol.21, p.1433, 1990.

H. K. Bhadeshia, Steels Microstructure and Properties, 2006.