
NO D’ORDRE ANNÉE 2012

THÈSE

LOCAL AND SOCIAL RECOMMENDATION
IN DECENTRALIZED ARCHITECTURES
RECOMMANDATION LOCALE ET SOCIALE DANS LES ARCHITECTURES
DÉCENTRALISÉES

Présentée devant :
L’Institut National des Sciences Appliquées de Lyon
Pour obtenir :
Le grade de docteur
Spécialité :
Informatique
Formation doctorale :
Informatique

École doctorale :
Informatique et Mathématiques
Par :
Simon MEYFFRET

SOUTENUE PUBLIQUEMENT LE 7 DÉCEMBRE 2012 DEVANT LE JURY COMPOSÉ DE :

Catherine BERRUT, Professeur des Universités, Polytech Grenoble . Examinatrice
Sylvie CALABRETTO, Professeur des Universités, INSA Lyon .Examinatrice
Max CHEVALIER, Maître de Conférences HDR, Université Paul Sabatier . Rapporteur
Frédérique LAFOREST, Professeur des Universités, Telecom Saint-EtienneDirectrice de thèse
Lionel MÉDINI, Maître de Conférences, Université Lyon 1 . Co-directeur de thèse
Daniele QUERCIA, Docteur, Yahoo ! Labs . Examinateur
François TAÏANI, Professeur des Universités, Université de Rennes 1 . Rapporteur

LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Success is the ability to go from failure to failure without losing your
enthusiasm.

— Winston Churchill

R E M E R C I E M E N T S

Cette thèse est le fruit de trois années de travail en collaboration
avec Frédérique Laforest et Lionel Médini. Je les remercie affectueuse-
ment, ils ont su m’apporter bien plus qu’un cadre scientifique quand
j’en avais besoin.

Je tiens à remercier mes rapporteurs – Max Chevalier et François
Taïani – ainsi que mes relecteurs – Stéphane Frénot, Christophe Gra-
vier et Julien Subercaze – pour leurs remarques constructives et perti-
nentes.

Merci au professeur Boualem Benatallah pour son accueil chaleu-
reux en Australie, ainsi qu’au LIRIS, à l’ED et à la région Rhône Alpes
pour leur financement. Ce séjour m’a enrichi sur un plan profession-
nel et personnel. J’y ai rencontré des gens qui me sont aujourd’hui
très proches.

Je remercie les membres de mon équipe de recherche DRIM qui
ont toujours su répondre à mes questions avec beaucoup d’efficacité,
et le personnel administratif du LIRIS, sans qui, il faut bien l’avouer,
j’aurais été perdu.

Ce doctorat n’aurait pas eu la même saveur sans mes collègues
et amis Arnaud et Benjamin, qui ont eu l’obligeance de m’apporter
des points de vues très intéressants et m’ont offert des discussions
passionnées et passionnantes. Je remercie Deming, Sabina et Usman
pour leur patience, ce fut un plaisir de partager votre bureau.

Je tiens à souligner la bonne humeur et l’optimisme (presque) tou-
jours requinquants d’Elise. Sans oublier Brice et Pierre-Nico, parte-
naires de pause café, et Julien, sans qui ma première année de docto-
rat aurait été bien morne.

Une pensée sincère pour Julie, qui m’a soutenu dans mes débuts
difficiles et qui a su avec beaucoup d’ingéniosité et de persévérance
détourner mes pensées négatives lors de la rédaction de ce manuscrit.

Je n’oublie pas ma famille, un soutien sans faille, et mes amis, tou-
jours là pour m’aider à décompresser.

Enfin je remercie mes éventuels lecteurs pour leur motivation !

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

A B S T R A C T

Recommender systems are widely used to achieve a constantly
growing variety of services. Alongside with social networks, recom-
mender systems that take into account friendship or trust between
users have emerged.

In this thesis, we propose an evolution of trust-based recommender
systems adapted to decentralized architectures that can be deployed
on top of existing social networks. Users profiles are stored locally
and are exchanged with a limited, user-defined, list of trusted users.

Our approach takes into account friends’ similarity and propagates
recommendation to direct friends in the social network in order to
prevent ratings from being globally known. Moreover, the computa-
tional complexity is reduced since calculations are performed on a
limited dataset, restricted to the user’s neighborhood.

On top of this propagation, our approach investigates several as-
pects. Our system computes and returns to the final user a confi-
dence on the recommendation. It allows the user to tune his/her
choice from the recommended products. Confidence takes into ac-
count friends’ recommendations variance, their number, similarity
and freshness of the recommendations.

We also propose several heuristics that take into account peer-to-
peer constraints, especially regarding network flooding. We show
that those heuristics decrease network resources consumption with-
out sacrificing accuracy and coverage.

We propose default scoring strategies that are compatible with our
constraints.

We have implemented and compared our approach with existing
ones, using multiple datasets, such as Epinions and Flixster. We show
that local information with default scoring strategies are sufficient to
cover more users than classical collaborative filtering and trust-based
recommender systems. Regarding accuracy, our approach performs
better than others, especially for cold start users, even if using less
information.

v

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

R É S U M É

Dans notre société de plus en plus numérique, les systèmes de
recommandation ont fait leur apparition dans le but de résoudre le
problème bien connu de surcharge d’information. L’adoption des
réseaux sociaux a permis l’émergence de systèmes intégrant les rela-
tions sociales dans leurs recommandations.

Dans cette thèse, nous proposons un système de recommandation
adapté aux architectures décentralisées pouvant être déployé sur des
réseaux sociaux existants. L’utilisateur conserve son profil en local
et ne communique qu’avec un ensemble restreint d’utilisateurs de
confiance, avec qui il accepte de partager ses données.

Nous prenons en compte le réseau social de l’utilisateur afin de con-
struire le réseau de pairs. La similarité des amis est prise en compte
pour pondérer les liens. Les recommandations sont propagées dans
le réseau, passant d’amis en amis jusqu’à atteindre l’utilisateur désiré.
Ainsi seuls les amis directs communiquent entre eux.

À partir de cette propagation, nous proposons plusieurs techniques.
Tout d’abord, nous délivrons à l’utilisateur final une confiance du
système dans la fiabilité de la recommandation. Ceci lui permet
de choisir parmi les produits sélectionnés, lesquels semblent effec-
tivement les plus pertinents pour lui. Cette confiance est calculée
sur plusieurs critères, tels que la variation des recommandations des
amis, leur nombre, la similarité et la fraîcheur de la recommandation.

Ensuite, nous définissons des heuristiques adaptant notre approche
aux systèmes pair-à-pair. Dans de telles architectures, le réseau est
une ressource critique et ne doit pas être constamment surchargé. Ces
heuristiques limitent la consommation réseau de notre approche tout
en fournissant des recommandations pertinentes à l’utilisateur.

Enfin, nous proposons plusieurs stratégies de score par défaut,
dans le cas où aucun score n’est calculable, prenant en compte les
contraintes en terme d’accès à l’information par le système.

Nous comparons notre approche avec des approches classiques de
recommandation, de filtrage collaboratif ou basées sur la confiance,
en utilisant plusieurs jeux de données existants, tels qu’Epinions et
Flixster, ainsi que deux jeux de données que nous avons construits
nous-même. Nous montrons qu’une approche purement locale, asso-
ciée à des stratégies de score par défaut, offre de meilleurs résultats
que la plupart des autres approches, notamment en ce qui concerne
les cold start users.

vi

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[1] Simon Meyffret, Lionel Médini, and Frédérique Laforest. Trust-
Based Local and Social Recommendation. In RecSys 2012 Work-
shop on Recommender Systems and the Social Web, pages 53–60,
September 2012.

[2] Simon Meyffret, Lionel Médini, and Frédérique Laforest. Recom-
mandation basée sur la confiance : une approche sociale et locale.
Document Numérique, pages 33–56, August 2012.

[3] Simon Meyffret, Lionel Médini, and Frédérique Laforest. User-
centric Trust-based Recommendation. In International Conference
on Information Technology-New Generations, pages 707–713, April
2012.

[4] Simon Meyffret, Lionel Médini, and Frédérique Laforest. Trust-
based recommendation with privacy. In INFORSID11, pages 369–
384, May 2011.

vii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

C O N T E N T S

i introduction 1

1 introduction 3

1.1 Context . 3

1.2 Motivations . 4

1.3 Contributions . 5

ii preamble 9

2 state of the art on recommender systems 11

2.1 Content-based recommender systems 12

2.1.1 Description of textual content 13

2.1.2 Description of other kind of content 14

2.1.3 User profile . 14

2.1.4 Conclusion . 15

2.2 Collaborative filtering recommender systems 16

2.2.1 Centralized version 17

2.2.2 Decentralized version 17

2.2.3 Conclusion . 18

2.3 Trust-based recommender systems 18

2.3.1 TidalTrust . 20

2.3.2 MoleTrust . 21

2.3.3 TrustWalker . 21

2.3.4 Conclusion . 23

2.4 Social-based recommender systems 23

2.4.1 SocialMF . 24

2.4.2 Hoens et al. [HBC10] 25

2.4.3 Conclusion . 25

2.5 Conclusion . 26

3 definitions / example 29

3.1 Graph theory definitions 30

3.1.1 Graphs . 30

3.1.2 Simple graphs . 31

3.1.3 Digraphs . 32

3.1.4 Bipartite graphs 32

3.1.5 Weighted graphs 33

3.1.6 Other graphs . 34

3.2 Vocabulary . 35

3.2.1 Social network 35

3.2.2 Trust network . 36

3.2.3 Similarity network 36

3.2.4 Ratings . 37

3.3 Example . 37

3.4 Conclusion . 38

ix

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

x contents

iii contributions 39

4 our approach : social scoring 41

4.1 Social scoring . 43

4.1.1 Score propagation 43

4.1.2 Trust . 45

4.1.3 Correlation . 46

4.2 Confidence . 47

4.2.1 Confidence coefficients 48

4.2.2 Confidence aggregation 52

4.2.3 Confidence propagation 53

4.3 Default Score . 55

4.3.1 Computation of a default score 55

4.3.2 Required knowledge for a default score 57

4.3.3 Confidence on a default score 58

4.4 CoTCoDepth Social Scoring 59

4.4.1 Definition . 59

4.4.2 Example . 59

4.5 Conclusion . 61

5 evaluation 63

5.1 Campaigns . 65

5.1.1 Training set . 65

5.1.2 Leave one out . 66

5.2 Dataset . 67

5.2.1 Epinions . 67

5.2.2 Flixster . 68

5.2.3 Appolicious . 69

5.3 Implementation . 70

5.3.1 CoTCoDepth Scorer 70

5.3.2 Evaluation . 71

5.3.3 Views . 71

5.3.4 Metrics . 72

5.4 Influence of k and connectivity degree 72

5.4.1 Epinions: Alchemy dataset 72

5.4.2 Appolicious . 75

5.4.3 Flixster . 76

5.4.4 Conclusion . 77

5.5 Comparison with existing approaches 78

5.5.1 Scorers characteristics 78

5.5.2 All actors . 79

5.5.3 Cold start users 80

5.6 Conclusion . 80

6 heuristics 83

6.1 Heuristics evaluation protocol 85

6.2 Extended similarity . 86

6.2.1 Definition . 86

6.2.2 Evaluation . 87

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

contents xi

6.3 Relative scoring . 87

6.3.1 Relative score propagation 88

6.3.2 Relative scoring evaluation 88

6.4 A New Hop . 89

6.4.1 Score propagation with hops 90

6.4.2 Hops evaluation 90

6.5 Friends selection . 91

6.5.1 Random friends selection 92

6.5.2 Random raters selection 93

6.5.3 Weight influence 96

6.5.4 Conclusion . 98

6.6 Expertise . 98

6.6.1 Friends expertise 98

6.6.2 Global expertise 99

6.6.3 Expertise evaluation 99

6.7 Conclusion . 100

iv conclusion 101

7 conclusion 103

7.1 Contributions . 103

7.2 Discussion . 106

7.3 Perspectives . 107

v appendix 111

a managing cycles 113

a.1 Cycles in score propagation 114

a.1.1 Ping-pong cycle 114

a.1.2 Loop . 114

a.1.3 Duplicate scores 115

a.2 Extended formula . 116

a.3 Evaluation of the extended formula 116

b datasets 119

b.1 Rich Epinions Dataset 120

b.1.1 Epinions dataset extraction 121

b.1.2 Dataset structure 122

b.1.3 Statistics . 122

b.1.4 Evaluation with this dataset 126

b.2 Appolicious dataset . 126

b.2.1 Appolicious dataset extraction 127

b.2.2 Dataset structure 127

b.2.3 Statistics . 128

b.3 Conclusion . 129

c prototypes 131

c.1 Scars prototype . 132

c.1.1 Usage . 132

c.1.2 Modules . 133

c.1.3 Scorer . 134

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

xii contents

c.1.4 Evaluation . 136

c.1.5 Conclusion . 137

c.2 P2P prototype . 138

c.2.1 Implementation 138

c.2.2 Results . 138

c.2.3 Conclusion . 139

bibliography 141

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

L I S T O F F I G U R E S

Figure 1 Graph example 30

Figure 2 Simple graph example 31

Figure 3 Digraph example 32

Figure 4 Bipartite graph example 33

Figure 5 Weighted graph example 34

Figure 6 Other examples 34

Figure 7 Social, trust and similarity networks and rat-
ings example . 38

Figure 8 k−Depth Social Scoring Example 45

Figure 9 Trust Example 45

Figure 10 Correlation Example 46

Figure 11 Size confidence depending on number of friends’
scores . 49

Figure 12 Freshness confidence depending on scores age
with different λ 51

Figure 13 Confidence Example 54

Figure 14 CoTCoDepth Example 60

Figure 15 Distribution on Alchemy 68

Figure 16 Distribution on Flixster 69

Figure 17 Distribution on Appolicious 70

Figure 18 Influence of training set size on coverage using
Alchemy . 73

Figure 19 Influence of connectivity degree on coverage
using Alchemy 74

Figure 20 Influence of connectivity degree on precision
using Alchemy 74

Figure 21 Influence of connectivity degree on coverage
using Appolicious 75

Figure 22 Influence of connectivity degree on precision
using Appolicious 76

Figure 23 Influence of connectivity degree on coverage
using Flixster . 77

Figure 24 Influence of connectivity degree on precision
using Flixster . 77

Figure 25 Influence of correlation on precision using Alchemy 87

Figure 26 Absolute vs. Relative scores on Alchemy . . . 89

Figure 27 k−Depth Social Scoring with Hops; Example
with α = 0.5 . 90

Figure 28 Influence of α on the RMSE, using hops 91

Figure 29 Random friends selection evaluation using Alchemy 93

Figure 30 Random friends selection evaluation using Flixster 94

xiii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Figure 31 Random raters selection evaluation using Alchemy 95

Figure 32 Random raters selection evaluation using Flixster 96

Figure 33 Weight influence compared to random raters
selection . 97

Figure 34 Cycle with 2 actors 114

Figure 35 Cycle with 3 actors 114

Figure 36 Cycle with 4 actors 116

Figure 37 Database schema of the dataset 123

Figure 38 Trust distribution 124

Figure 39 Ratings count distribution 124

Figure 40 Database schema of the anonymised dataset . 128

Figure 41 Following distribution 129

Figure 42 Ratings count distribution 129

L I S T O F TA B L E S

Table 1 State of the art on recommender systems . . . 27

Table 2 Results for all actors on Epinions 79

Table 3 Results for cold start users on Epinions 80

Table 4 RMSE with relative or absolute score depend-
ing on k . 89

Table 5 Results for expertise heuristics on Epinions . . 100

Table 6 Summary of recommender systems character-
istics . 107

Table 7 Parenting strategies evaluation 117

Table 8 Statistics depending on user characteristics . . 123

Table 9 Views distribution 125

xiv

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Part I

I N T R O D U C T I O N

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

1
I N T R O D U C T I O N

Computers are useless. They can only give you answers.
— Pablo Picasso

1.1 context

The Internet gives users easy and immediate access to a lot of re-
sources: web pages, video on demand, music streaming, services,
etc. Among this abundance of items, information overload is an ever
growing problem.

Recommender systems are one solution classically proposed to cope
with this problem [SKR99]. They offer a top-k list of items to the users
and reduce the number of possibilities in order to ease the user choice
process. Recommender systems are often classified in two types:
content-based and collaborative filtering recommender systems.

Content-based recommender systems compare items characteris-
tics in order to find similar items to the ones liked by users. They
build users’ preferences based on the items they liked or bought, as
on the Pandora 1 music website.

Collaborative filtering recommender systems rely on relations be-
tween users to predict items that could fit users’ interests based on
related users ratings. Those relations are often modeled as user-
user matrices or user-user graphs. They are usually similarity rela-
tions [AT05]. Collaborative filtering is notably used on Amazon 2.

Trust-based recommender systems are collaborative filtering sys-
tems built on user relations that express the trust users have on the
opinion of others [OS05, MA07a, MKL09]. A typical example is the
Epinions 3 website [RD02], where they recommend items liked by
trusted users. A trust link means that a user believes on the use-
fulness of the recommendation of a trusted user. The main problems
of these systems rely on the ratings sparsity and on the so-called cold
start users who have no or very few connections in the graph. To rem-
edy sparsity, trust-based recommender systems increase the number
of users relations by propagating trust relations based on some tran-
sitivity property.

Social-based recommender systems take into account social rela-
tions and social information in their predictions. In social network, re-

1. http://www.pandora.com

2. http://www.amazon.com

3. http://www.epinions.com

3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.pandora.com
http://www.amazon.com
http://www.epinions.com

4 introduction

lations are explicitly decided by end-users (even when recommended
by the system like in Facebook 4). In such a context , we believe rela-
tions cannot be implicitly propagated by the system. Recommender
systems should find other solutions to cope with sparsity.

Web 2.0 and social networks provide a lot of new content on the In-
ternet. Recommender systems take into account those new pieces of
information in their algorithms in order to provide more personalized
recommendations. They process users’ information such as reviews,
Facebook “Likes”, Google+ “+1”, tweets, etc. in order to infer users
preferences on items.

In this win-win scenario, users willingly share their profiles in or-
der to get relevant and accurate recommendations. Logging into a
website using a Facebook account allows the website to use the user’s
Facebook profile in order to infer user’s preferences. For example, in
Flixster, users can add their Facebook friends automatically; they also
rate movies and build their movies collections. In return they receive
movies recommendations.

1.2 motivations

Users usually know what they share or not with a system. Most
pieces of information are explicit: their profile, their Facebook friends,
etc. However, it is much harder to know what the system infers from
that knowledge. Some studies tend to show that inferences can be of
unexpected accuracy for private information.

For example, in psychology, the “Big Five” factors of personal-
ity are dimensions of personality that are used to describe human
personality. These factors are openness, conscientiousness, extraver-
sion, agreeableness and neuroticism [Gol90]. Although these fac-
tors should be private and confidential, recent studies have shown
that it is possible to infer them from Facebook [BKG+

12] or Twitter
[QKSC11] data. More important, [QKSC11] predicts personality with
a good accuracy using only public data available on Twitter.

To avoid this situation and for privacy concerns, the trend is to limit
the transmission of information on a user only to authorized related
users. Efforts are conducted to decentralize social networks infras-
tructures (e. g. Diaspora 5), so as to impede their owners to gather
all information on people. The FreedomBox 6 concept imagines that
each user will have his/her own node hosted in his/her own web
server. These new architectures intend to decentralize knowledge.

But many recommender systems rely on global knowledge to pre-
dict missing ratings: they use the whole user graph. For instance,

4. http://www.facebook.com

5. http://joindiaspora.com/

6. http://wiki.debian.org/FreedomBox

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.facebook.com
http://joindiaspora.com/
http://wiki.debian.org/FreedomBox

1.3 contributions 5

collaborative filtering systems predict ratings a priori using a costly
computational process that builds the whole users’ similarity graph
from all users’ profiles. Such a mechanism requires all ratings to be
fully known by the system and therefore cannot be used in architec-
tures that decentralize data. Moreover users have to share personal
data with the system in order to get recommendation.

On the other side, local approaches use knowledge limited to a
subpart of the users’ graph and profiles. Each rating calculation is
processed using the requesting user’s profile and the set of directly
linked users, the system does not require to know personal data from
all users. This constraint enhances privacy, requires lighter process-
ing and complexity is independent of the number of users. They are
also feasible on decentralized architectures. Local approaches do not
require a priori processing of predictions; they can predict ratings on
demand. Local approaches are in fine compatible with P2P architec-
tures and allow privacy strategies.

That is why we propose in this thesis a social-based recommender
system that relies on local knowledge in order to:

– enhance privacy by limiting knowledge disclosure,

– be implementable in P2P architectures with decentralized data
on low-resource peers,

– keep good results in terms of coverage and accuracy, especially
for cold start users.

1.3 contributions

Our system relies on the users social network without modifying it.
Users can explicitly define whom they want to communicate with. It
shares information only between authorized related users, therefore
it could be implemented as an additional service on top of existing
social networks such as Facebook, Diaspora or LastFM.

Besides, our local approach provides a P2P compatible architecture.
It respects the following decentralisation definition:

– Decentralized computation: computations are partially performed
on several nodes. We assume these nodes not to be powerful
machines.

– Decentralized data storage: data and preferences are distributed
throughout the network, typically on peers computers.

In chapter 4, we propose a recommender system that propagates
ratings locally in a users’ network without propagating relations:

– In order to predict ratings, users asks their friends their scores
on items. Friends propagate their scores in the network step
by step, until reaching the original requester with a maximum

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6 introduction

depth propagation (section 4.1). Scores are either a rating if a
user has one, or an aggregation of friends’ scores (section 4.1.1).
We weight relations by explicit trust (section 4.1.2) or correlation
(section 4.1.3).

– Our system associates confidence with each prediction during
the propagation (section 4.2). This coefficient integrates: links
weights, number of aggregated scores, variance of the aggre-
gated scores, users distance and score freshness. The higher the
confidence, the more accurate the prediction should be.

– We propose two default scoring strategies for sparse networks
adapted to our approach. They are based on classical default
rating approaches (section 4.3).

– We finally describe our recommender system, CoTCoDepth, in
section 4.4 that integrates all of the above.

We have used several datasets to evaluate our approach and com-
pare it with five collaborative filtering and trust-based recommender
systems in chapter 5:

– Section 5.1 defines the campaigns used in our evaluation.

– Section 5.2 describes the three evaluation datasets: Epinions
Alchemy, Flixster and Appolicious.

– Section 5.3 explains some implementation details of the eval-
uation, in particular the three metrics used: coverage, preci-
sion / RMSE and f-measure.

– Section 5.4 analyses our approach regarding the three datasets.
It focuses on precision and coverage, with or without default
scores.

– Section 5.5 compares our approach with the state of the art in
trust-based recommender systems and with classical collabora-
tive filtering algorithms.

We show that a well chosen limited vision of the ratings remains
efficient in ratings prediction, with sparse or dense datasets. Our
approach shows good results even when users are weakly connected
and/or when they did not rate many items, whereas they are usually
the hardest users to recommend.

Furthermore, we have defined several heuristics pluggable in our
system in chapter 6:

– Since friends and similar users are usually disjoint, we propose
an extended version of the correlation coefficient that computes
much more coefficients between friends.

– Relative scoring removes actors ratings bias before propagating
scores. Doing so, less information is shared in the network and
rating behaviour is taken into account (section 6.3).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

1.3 contributions 7

– Hopping propagation propagates more scores in the network, en-
hancing the accuracy and lowering ratings disclosure. However,
it also floods the network with more requests (section6.4).

– Section 6.5 adapts the score propagation to P2P architectures by
limiting the number of requests in the network.

– Finally, section 6.6 adds expertise in the friends selection.

Before describing our approach, we first propose in chapter 2 a
state of the art in recommender systems. Section 2.1 describes content-
based recommender systems whereas section 2.2 describes collabo-
rative filtering recommender systems. Section 2.3 focuses on trust-
based recommender systems since our approach is quite similar to
them. Finally, section 2.4 is about social-based recommender systems.

We then specify some definitions and vocabulary in chapter 3. Sec-
tion 3.1 gives graph theory definitions. Section 3.2 employs the latter
to define the vocabulary used to describe our approach. Finally, sec-
tion 3.3 describes our main example that illustrates our approach de-
fined in chapter 4, evaluated in chapter 5 and altered by heuristics in
chapter 6. After that we conclude and discuss our work in chapter 7.

We ultimately propose the following appendices:

– In appendix A, we explain how we manage cycles in our ap-
proach.

– In appendix B, we describe the two datasets that we have built
during this thesis.

– In appendix C, we portray the two prototypes we have imple-
mented to evaluate our approach.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Part II

P R E A M B L E

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2
S TAT E O F T H E A RT O N R E C O M M E N D E R S Y S T E M S

Every man wishes to be wise, and they who cannot be wise are almost
always cunning.

— Samuel Johnson

Contents
2.1 Content-based recommender systems 12

2.1.1 Description of textual content 13

2.1.2 Description of other kind of content 14

2.1.3 User profile 14

2.1.4 Conclusion 15

2.2 Collaborative filtering recommender systems . . . 16
2.2.1 Centralized version 17

2.2.2 Decentralized version 17

2.2.3 Conclusion 18

2.3 Trust-based recommender systems 18
2.3.1 TidalTrust 20

2.3.2 MoleTrust 21

2.3.3 TrustWalker 21

2.3.4 Conclusion 23

2.4 Social-based recommender systems 23
2.4.1 SocialMF . 24

2.4.2 Hoens et al. [HBC10] 25

2.4.3 Conclusion 25

2.5 Conclusion . 26

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

12 state of the art on recommender systems

The following state of the art details the two main recommender
systems categories: content-based and collaborative filtering recom-
mender systems as well as two specific kinds of collaborative filtering
namely trust-based and social-based recommender systems. Those
categories dispose of several kinds of data on users and / or items.

This chapter analyzes how those systems take into account privacy
and ratings disclosure. It also focuses on how those approaches can
be compatible with decentralized architectures, and particularly peer-
to-peer ones. Finally, we target their performance with cold start
users, since they usually are the hardest to recommend items to.

Section 2.1 explains how content-based approaches predict pre-
ferred items based on the inner features of the items.

Then section 2.2 depicts collaborative filtering recommender sys-
tems, which predict ratings based on the ratings made by other users,
especially similar users. Firstly, centralized versions are detailed in
section 2.2.1. They access a global knowledge and compute similar-
ity between all users. Secondly, section 2.2.2 introduces decentralized
collaborative filtering recommender systems. Here, data are decen-
tralized, meaning that no node knows all the ratings. Therefore the
similarity computation is not straightforward.

Section 2.3 focuses on trust-based recommender systems. Those
recommender systems specialize collaborative filtering ones, using
trust instead of similarity between users. In order to compare our
trust-based compatible approach, we detail three of the main trust-
based approaches: TidalTrust (section 2.3.1), MoleTrust (section 2.3.2)
and TrustWalker (section 2.3.3).

Finally, section 2.4 describes social-based recommender systems.
Similar to trust-based recommender systems, they rely on social rela-
tions to process recommendation. Section 2.4.1 introduces SocialMF,
a matrix factorisation technique that incorporates trust propagation.
Section 2.4.2 portrays Hoens et al. approach based on propagation of
encrypted ratings in a social network.

2.1 content-based recommender systems

Content-based recommender systems recommend items that are
similar to the ones that the user has liked in the past [RRSK11]. For
example in order to compute similarity between movies or musics,
multimedia content-based recommender systems compare items fea-
tures, such as movie or music genre, producer, artist, subject matter,
date, etc. Items can be products, multimedia content, documents,
people, company, etc.

Content-based approaches emerged from information retrieval and
information filtering researches [AT05, BC92]. Therefore, many sys-
tems focus on recommending items containing text, such as docu-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.1 content-based recommender systems 13

ments. The use of metadata also enhances integration of content-
based recommender systems with any kind of items.

Content-based approaches rely on user profiles containing informa-
tion about users’ tastes, preferences and needs. Those profiles are
explicitly defined by users and/or implicitly learned from their be-
haviour.

Items profiles contain information on items, representing their con-
tents. They can be defined explicitly by users or experts, or extracted
from items features.

We detail them in the following subsections. First, section 2.1.1
focuses on textual documents and how to extract profiles from them.
Then, section 2.1.2 enlarges it to build profiles for different kinds of
items. Finally, section 2.1.3 lists some approaches to build user profile
from items profiles, and then to recommend items to a user, based on
those profiles.

2.1.1 Description of textual content

Text-based recommender systems find the most important words in
a document and use them to construct the document profile. [BS97]
propose a system that represents textual document with the 100 most
important words.

The importance of words in a document can be determined by sev-
eral metrics [BYRN99]. Different models have been defined in the
literature. One can cite the boolean model, the probabilistic model
and the vectorial model [SM86]. We concentrate here on the vecto-
rial model. Commonly used in information retrieval works, the term
frequency / inverse document frequency (TF-IDF) defines a word impor-
tance based on its occurrence frequency in documents:

Definition 1: TFi,j. Let wi be a word, dj a document, fi,j the occurrence
frequency of wi in dj. The normalized term frequency of word wi in docu-
ment dj is defined as:

TFi,j =
fi,j

maxk fk,j

Where the maximum is computed regarding the frequencies fk,j of
all words wk in dj.

Definition 2: IDFi. Let N be the total number of documents and ni the
number of documents containing wi. The inverse document frequency of
word wi is defined as:

IDFi = log
N

ni

The TF-IDF weight of word wi in document dj is computed as:

ωi,j = TFi,j × IDFi

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

14 state of the art on recommender systems

The objective of TF/IDF is to identify important words, i. e. word
that are frequent (TF) but discriminating (IDF).

We then define documents’ profiles as vectors of words weights:

Definition 3: document profile. Let ωi,j the weight of word wi in doc-
ument dj. The profile(dj) of the document dj is defined as:

profile(dj) = (ω1,j, · · · ,ωk,j)

First approaches of content-based recommender systems focused
on text, they serve as a basis for the description of other kind of
content.

2.1.2 Description of other kind of content

Regarding other items than textual documents, some works focus
on metadata associated with the items [WL02]. These metadata can
be manually defined or automatically extracted from the items.

[PFW05] work on similarity computed between musics, based on
audio spectral measures and fluctuation patterns. They show that
this improves recommendation accuracy, however it is music specific
and cannot be applied on other fields.

In [DMO+
12], Di Noia et al. propose a semantic approach based

on linked data included in the datasets from the Linked Open Data
cloud [BHBL09]. Items profiles are build using semantic descriptions
of items.

We see that an item can be described by its metadata, features or
semantic descriptions. Either ways, that description is used to build
the item’s profile.

Items’ profiles are still represented by vectors, where the dimension
number is the number of metadata, features or concepts. For each
dimension, a weight is associated regarding the item description.

The profile profile(i) of the item i consists then of a vector of meta-
data / feature / concept weights, as in definition 3.

2.1.3 User profile

Let profile(i) be the profile of item i. It contains usually features
extracted from the item, represented as a vector. This profile is used
as a representation of the item in order to find items suitable for a
target user.

Let userProfile(u) be the profile of user u. It contains tastes and
preferences of the user. The user profile is built using items profiles
rated by the user. It is usually a vector of weighted features: the
higher the weight, the more the user likes the feature. The size of the
vector correspond to the number of features.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.1 content-based recommender systems 15

Several approaches exist in order to build the user profile from
items profiles. In [BS97], the authors compute the user profile as an
average vector from items profiles evaluated by the user.

To make recommendations to users, distance is computed between
users’ profiles and items’ profiles in order to find items that are more
likely to be preferred by users. The distance between user u and item
i, represented by their profiles ~pu and ~pi, is usually computed thanks
to the cosine similarity measure [BYRN99]:

distance(u, i) = 1− cos(~pu, ~pi) (1)

With:

cos(~u,~v) =
~u.~v

||~u||2 × ||~v||2
=

∑n
k=1 uk × vk√∑n

k=1 u
2
k

√∑n
k=1 v

2
k

(2)

Then, items with profiles close to a user profile will be recom-
mended to the user.

Items similarities are also computed using items profiles. In order
to compute similarity between items i and j, represented by their
profiles ~pi and ~pj, the cosine similarity measure is also used:

sim(i, j) = cos(~pi, ~pj) (3)

Then, items similar to an item liked by a user will be recommended
to the user.

2.1.4 Conclusion

Content-based recommender systems offer a way to recommend
items based on their features. Some approaches start to take into
account social tags in their models [CDHP11]. However they suffer
some drawbacks as described below.

Although it works well with text documents, extracting features
from items is not straightforward. Content-based approaches are
more likely to be deployed with specific items, such as movies or
musics. Moreover some kinds of items, such as poems or jokes, do
not contain enough words to extract discriminant profiles [PB07].

In addition, content-based approaches recommend items similar
to users tastes or preferences. Therefore they lack serendipity and
recommend the same kind of items [HKTR04].

Moreover, cold start users, who have not rated enough items to
construct a reliable profile, receive in general no accurate recommen-
dation or no recommendation at all.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

16 state of the art on recommender systems

Pilászy et al. show in [PT09] that even a few ratings are more
valuable than metadata. Content-based and collaborative filtering rec-
ommender systems work well together and hybrid systems perform
usually better.

Regarding privacy, items profiles are build without users data, there-
fore it discloses no information about users’ profiles. In order to build
a user profile, content-based recommender systems access items liked
by the user and aggregate their profiles. This could be done locally
on the user’s computer.

2.2 collaborative filtering recommender systems

Collaborative filtering systems try to predict items ratings for a par-
ticular user based on the items previously rated by other users [AT05].
They rely on two pieces of information: users’ profiles and a user
graph.

Users’ profiles contain ratings from users to items, purchased his-
tory, interest, etc. The user graph contains users as nodes and links
between them, i. e. relations between users. Typically, those links
are correlation (aka. similarity) coefficients computed using users rat-
ings [BHK98].

To recommend items to a specific user, the system uses the profiles
of similar users, i. e. users directly linked to the user in the user graph.

For example in a movie recommendation application, in order to
recommend movies to a target user, a collaborative filtering system
tries to find users that have similar tastes in movies. Then, the movies
liked by those users are recommended to the target user.

To predict a rating for a specific user, collaborative filtering rec-
ommender systems aggregate other users’ ratings with the following
functions [AT05]:

ra,i =

∑
a ′∈Ai ωa,a ′ × ra ′,i∑

a ′∈Ai ωa,a ′
(4)

ra,i = ra +

∑
a ′∈Ai ωa,a ′ × (ra ′,i − ra ′)∑

a ′∈Ai ωa,a ′
(5)

Where ra,i is the rating given by user a to item i, Ai is the set of
users having rated item i and ωa,a ′ is a weight between users a and
a ′, typically a similarity coefficient.

In equation 5, ra is the ratings mean of user a, it is considered as
a bias: some people have a high ratings mean, while others have a
low ratings mean. Which means that regarding a range of ratings in
J1, 5K, some users define 3 as a good evaluation whereas some others
define 3 as a bad evaluation. This equation tries to take into account
users’ rating subjectivity in predictions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.2 collaborative filtering recommender systems 17

2.2.1 Centralized version

In this document, we call UserBasedCF (respectively ItemBasedCF)
the collaborative filtering algorithm defined in eq.4 using the Pear-
son’s correlation coefficient ρ between two users’ ratings (resp. two
items’ ratings) as ω similarity coefficient [BHK98]. Lets consider r
and p two lists of N ratings, rn (resp. pn) is the nth rating of the list
r (resp. p), r̄ (resp. p̄) is the mean of the ratings contained in r (resp.
p). The Pearson’s correlation coefficient is computed as follow:

ρ =

∑N
n=1 (rn − r̄)(pn − p̄)√∑N

n=1 (rn − r̄)2 ×
√∑N

n=1 (pn − p̄)2
(6)

UserBasedCF (resp. ItemBasedCF) covers all users (resp. items)
and relies on global knowledge on their profiles in order to compute
similarities between them. It constructs a similarity graph and se-
lects similar users (resp. items) to predict missing ratings. Both ap-
proaches require ideal conditions where all ratings are known by the
systems and all users and items can be easily identifiable.

When two users have not enough ratings in common to compute
similarity, some default ratings may be introduced [BHK98]. Those
can be a neutral rating, the item mean rating or the user mean rating.
Default ratings allow the system to cope with sparsity.

Classical collaborative filtering recommender systems usually re-
quire centralized architectures in order to compute similarity between
items or users. However decentralized approaches have emerged in
order to provide recommendation in P2P architectures.

2.2.2 Decentralized version

In this section, we focus on decentralised user-based collaborative
filtering recommender systems, i. e. systems with decentralised data
storage and decentralized computation, as defined in section 1.3.

The first step in collaborative filtering is to assign neighborhood to
users. Reaching all users in order to compute neighborhood is not
efficiently achievable in a decentralized system.

In epidemic protocols (aka. gossip protocols), a peer accesses a lim-
ited view of the network. This view initially contains random users
and their profiles, selected by a Random Peer Sampling service (RPS)
[JVG+

07]. Similarity is computed between the peer and each user in
the view. Only the n more similar users are maintained in the view.

Using a clustering protocol, the view is updated continually in or-
der to get the most similar users in the view. A peer periodically
selects a gossip target from its view and exchanges view information

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

18 state of the art on recommender systems

with the target. The peer compares the new candidates with the exist-
ing ones and keeps only the n most similar users as a new version of
the view [JB06, KLMT10]. The RPS is still used in order to randomly
add new users in the view and lower the risk of network partitioning.

Finally, the view converges until finding locally an optimal neigh-
borhood, containing similar users. Afterward, recommendation fol-
lows collaborative filtering approaches, asking similar users their rat-
ings and computing a weighted mean.

Neighborhood views strongly depend on similarity metrics. Differ-
ent metrics will return different views. Therefore one single metric
could hardly optimize all users views: metrics selection should de-
pend on the users’ profiles. In [KT12], the authors show that selecting
the appropriate metric for each user increases recommendation recall
from 78 % to 85.2 %.

Decentralized user-based collaborative filtering recommender sys-
tems do not suffer from scalability issues as their centralized coun-
terpart, since each peer computes locally recommendations for its as-
sociated user. However similarity is locally optimized, missing some
similar users in the neighborhood computation. And peers commu-
nication can induce some overhead that should be evaluated.

2.2.3 Conclusion

Although collaborative filtering recommender systems are success-
fully used by most e-commerce websites.

They are not well-protected against malicious [MHN07] or pecu-
liar [SFHS07] users and hardly cope with cold start users (who rated
few or no items) or with the overall sparsity of existing ratings [LB09].
Finding similar users requires heavy computation, for both central-
ized and decentralized architectures. Finally, users share their pro-
files with either a server (in centralized systems) or unknown peers
(in decentralized systems), thus limiting privacy.

In order to cope with all those drawbacks, some systems focus on
trust instead of similarity to build user graphs.

2.3 trust-based recommender systems

Trust is a polysemic term for which [Wil93, Has10] propose several
definitions. One of the earlier notable definitions of trust is formu-
lated by the social psychologist Morton Deutsch [Deu62]. The defini-
tion states that when:

1. “the individual is confronted with an ambiguous path, a path
that can lead to an event perceived to be beneficial (Va+) or to
an event perceived to be harmful (Va−);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.3 trust-based recommender systems 19

2. he perceives that the occurrence of Va+ or Va− is contingent
on the behavior of another person; and

3. he perceives the strength of Va− to be greater than the strength
of Va+.

If he chooses to take an ambiguous path with such properties, I shall
say he makes a trusting choice; if he chooses not to take the path, he
makes a distrustful choice.”

When focusing on recommender systems, trust is generally inter-
preted as a belief of the usefulness of someone’s recommendation
[VCC11]. More precisely, global and local trust metrics exist.

For example, PageRank [PBMW99] is a global metric asserting the
usefulness of a document based on links going in or out this docu-
ment. In eBay, sellers reputation is an aggregation of votes providing
a global rate saying if a seller is trustworthy or not.

Epinions website is however providing users tools to build their
own web-of-trust, i. e. a set of trusted or distrusted users. In this
situation, local trust is defined from one user to another user.

In this thesis, trust is defined as the local belief of one user in the
usefulness of information provided by another user [LB09]. Trust can
theoretically be positive, null or negative. In real life systems, trust
with negative values are rarely used.

Trust-based recommender systems invite users to state that they
trust the ratings expressed by other users [OS05, MA07a, MKL09].

They address collaborative filtering recommender systems’ draw-
backs by using trust instead of similarity. Cold start users do not
need to rate items to start using the system, they need to trust other
users [MA07a, PK09]. Security against malicious users is improved
since trust relations imply that users know their direct relations.

Traditional trust-based recommender systems initially rely on trust
values to provide the ω weight defined in eq.4 and 5. The ratings
prediction equations become then [VCC11]:

ra,i =

∑
a ′∈Ta ta,a ′ × ra ′,i∑

a ′∈Ta ta,a ′
(7)

ra,i =ra +

∑
a ′∈Ta ta,a ′ × (ra ′,i − ra ′)∑

a ′∈Ta ta,a ′
(8)

With Ta the set of trusted user of a who evaluated i and for which
the trust value ta,a ′ exceeds a given threshold.

However, trust-based recommender systems have to deal with the
sparsity of trust networks: in Epinions [RD02], a user trusts in av-
erage 10 users. To do so, they usually propagate trust in the net-
work [Gol05]. Trust is thus considered as a transitive property, so

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

20 state of the art on recommender systems

that the graph can be automatically updated by propagating inferred
trust values from previous calculations [HWS09, MA07a]: if a trusts
b and b trusts c, a new trust value from a to c is defined and a new
link between users a and c is added in the graph. Several iterations
are performed in order to explore the graph up to a given depth.

2.3.1 TidalTrust

Golbeck et al. propose a recommender algorithm based on equa-
tion 7 in [Gol06]. The main novelty of this algorithm lies in the way
trust values are inferred with the trust metric TidalTrust.

In their paper, the authors define the following guidelines derived
from trust networks analysis:

1. for a fixed trust value, shorter paths have a lower error,

2. for a fixed path length, higher trust values have a lower error.

In order to satisfy the first observation, without sacrificing coverage
by using too short paths, they define a variable path length depend-
ing on users: the shortest path length that is needed to connect the
target user uwith a user v that has rated the item (aka. rater) becomes
the path depth of the algorithm for the user u.

To address the second observation, they define a trust threshold
that filters users participating in the prediction. They incorporate a
value that represents the path strength, i. e. the minimum trust value
on the path. They then compute the maximum path strength over all
paths leading to the raters. This maximum becomes the threshold.

The full algorithm for inferring trust of user u on user v is therefore:

tu,v =

∑
u ′∈T+

u

tu,u ′ × tu ′,v∑
u ′∈T+

u

tu,u ′
(9)

With T+u the set of trusted users for whom u’s trust value exceeds the
given threshold. TidalTrust is recursively computed for all users that
are the first link on the shortest path from u to v. This value is not
symmetric tu,v 6= tv,u

Golbeck et al. provide a modified breadth-first algorithm to com-
pute trust between a user u and a set of raters. As explained in
[GH06], the system first searches for raters that u knows directly. If
no direct connection exists from the user to any rater, the system
moves one step out to find connections from the user u to raters of
path length 2. This process is repeated until a path is found.

The ratings of all raters at that depth are considered, using equa-
tion 7, the trust values between them and the user u are computed
using equation 9.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.3 trust-based recommender systems 21

TidalTrust takes into account shortest paths with a modified breadth
first search in the trust network. Since it only uses information from
raters at the nearest distance, it may loose a lot of valuable ratings
from users a little further apart in the network.

It also requires an extended-local knowledge of the trust network,
since all paths surrounding users must be followed to compute the
final trust values. Moreover, the whole network is explored until
raters have been found, without limiting the propagation. Finally, it
requires a global orchestration when selecting the raters depth.

2.3.2 MoleTrust

Massa et al. propose a recommender algorithm based on equation 8

in [MA07a]. They incorporate a new trust metric, called MoleTrust.
Before computing trust, cycles in the trust network are removed, then
each user only needs to be visited once to obtain a trust prediction.

After removing cycles, the trust network becomes a directed acyclic
graph. Therefore the trust prediction tu,v can be obtained by perform-
ing a simple graph walk: first trust values of users at distance 1 are
computed, then trust values of users at distance 2, etc.

In order to compute a trust value between users u and v, MoleTrust
proceeds in a similar way as TidalTrust in equation 9, with a different
selection of users in T+u : MoleTrust considers all users connected to
u. In order to stop the trust propagation at some point, they define a
trust horizon, i. e. a maximum depth propagation k, being the maxi-
mum distance between u and v [MA07b]. Beyond that distance, trust
is not computed.

MoleTrust predicts the trust value of a source user to a target user
by gradually propagating trust in the user graph, up to a given depth
k. If more than one trust path links two users, the mean of all com-
putable trusts is used. This approach thus requires an extended-local
knowledge of the trust network, since all the paths surrounding those
users must be followed to compute the final trust value. Moreover,
the whole user graph is explored up to depth k in order to predict
ratings.

The authors use TrustAll as a baseline of their algorithm. TrustAll
is an algorithm taking into account all users ratings, as if the user
trusted every one else: it simply computes items’ ratings mean as
predictions.

2.3.3 TrustWalker

Jamali et al. propose TrustWalker, a random walk model combin-
ing trust-based and item-based recommendation in [JE09]. Unlike

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

22 state of the art on recommender systems

the previous trust-based approaches, TrustWalker performs random
walks in the trust network.

However they consider not only ratings of the target item, but also
those of similar items. The probability of using the rating of a similar
item instead of a rating for the target item increases with the length
of the walk.

The random walk performs the search in the trust network. To
recommend a rating for a source user u0 on target item i, they per-
form random walks on the trust network, each starting at u0 to find
a user having expressed rating for i or items similar to i. A random
walk consists of going from a trusted user to another trusted user,
until a rating is found. At each step, if no rating is found, only one
trusted user is randomly selected as the next step of the walk. Each
random walk returns a rating. The aggregation of ratings returned
by different random walks are considered as the predicted rating.

The probabilistic item selection is based on items similarities com-
puted using a Pearson correlation coefficient on items’ ratings, as
in [SKKR01]. They consider only positive similarity values. At each
step, if the current user does not have any rating on the target item
i, the probability to stop the walk and return the rating of a similar
item j is proportional to the similarity of i and j.

Therefore, at each step of the random walk, if the current user
has a rating on the target item, it is returned. Otherwise there is a
probability to select a similar item’s rating, c. f. below, or to select a
trusted user in order to go further into the walk. If no item is selected
at a maximum depth k, the walk stops and a similar item’s rating is
returned. In their paper, k = 6.

They perform several random walks to be able to get a more reli-
able prediction. In order to consider the prediction stable enough to
stop the random walks, they compute the variance in the results of
all the walks as follows:

σ2T =

∑T
i=1 (ri − r̄)

2

T
(10)

With ri the predicted rating of the ith random walk and r̄ the average
of the ratings returned by the T first random walks. T is the number
of random walks performed until now to compute the prediction.
Since the values of ratings are in the finite range [1, 5], they prove that
σ2T converges to a constant value. So they terminate TrustWalker if
|σ2i+1 − σ

2
i | 6 ε. In they paper, they define ε = 0.0001.

They also define a constant threshold of 10 000 for the maximum
number of unsuccessful random walks, i. e. the stop condition de-
scribed above is not reached, after that they consider the rating as
uncovered.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.4 social-based recommender systems 23

Finally, once the prediction is computed, they associate a confi-
dence value on the prediction. Most existing recommender systems
do not provide users a confidence on their predictions.

They use σ2T defined above in order to compute this confidence:

confidence = 1−
σ2T

maxσ2
(11)

Where maxσ2 is the maximum possible variance for the results.

With ratings being in a finite range Range: maxσ2 =
Range2

4 .

The use of item-based collaborative filtering during random walks
significantly improves coverage regarding classical trust-based ap-
proaches. In addition, since only one trusted user is selected at each
step of the walk, the complexity is not exponential with respect to the
maximum depth of the walks.

However, this requires a global knowledge on items ratings since
similarity computation is based on all items ratings. Moreover, the
stop condition is really strict with ε = 0.0001 and a maximum thresh-
old of 10 000. It requires a lot of random walks in order to provide an
accurate prediction.

The purely trust-based version of their approach is called Ran-
domWalk. In this version, no item similarity is used, which means
that only ratings of the target item are returned by random walks. It
relies only on local knowledge. This is actually the only purely local
trust-based approach we found in the literature.

2.3.4 Conclusion

Existing approaches offer recommendation to the cost of new re-
lations between users or global knowledge on users profiles. Trust
propagation augments the trust network a priori by predicting new
relations from existing ones. It is not purely local, as it knows every
path from a user to another. Therefore privacy cannot be ensured to
the users of the system.

Moreover, cold start users are also the ones providing few trust
relations, limiting trust propagation. TrustWalker proposes an inno-
vative way to deal with those users by returning similar items’ ratings
as default ratings. But this only works if similarity is computable and
if the users have rated similar items.

2.4 social-based recommender systems

Social recommender systems rely on commonly used social net-
works such as Facebook, Twitter or Linkedin [JE10]. They do not

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

24 state of the art on recommender systems

have to cope with the sparsity problem because of the numerous ex-
isting relations of these networks instead of trust ones (to this date: 1

billion active users on Facebook with 140 friends in average 1).
Some social-based recommender systems rely on the content of

the information produced by the users during their interactions with
their social networks (such as tweets, comments, likes, etc.) [MG11,
CDHP11], whereas some other directly rely on the network structure
(e. g. the graph of social relations) [JE10, HBC10, MZL+

11, HC10].
We focus on the latter category since they allow the hybridization

of trust and social approaches as we intend to. Social relations are
different from trust relations. When a user u likes a review issued
by another user v, u may add v to his/her list of trusted users. Trust
generation is unilateral and does not require validation from the other
side of the relation. This also indicates that user u does not need to
even know user v in the real life. Social relations refer to mutual
relations that surround us such as friends, classmates, colleagues, rel-
atives, etc.

We first present a matrix factorization approach in section 2.4.1.
Social-based matrix factorization approaches enhance the factoriza-
tion with social relations [JE10, MZL+

11].
We then describe a rating propagation approach in section 2.4.2.

Such approaches aggregate immediate friends ratings and friends of
friends ratings in the social network, similarly to trust based aggrega-
tion [HBC10, HC10].

2.4.1 SocialMF

Jamali et al. explore a model-based approach for recommendation
in social networks in [JE10]. They employ matrix factorisation with
trust propagation techniques on social relations.

Matrix factorisation techniques require global knowledge on the
ratings matrix and heavy computations. Based on a global training
set of ratings, this approach builds a predicting model. This model is
then enhanced by social relations between users.

This approach is particularly effective with centralized architec-
tures. Their evaluation shows that social information improves ac-
curacy.

However it is hardly compatible with decentralized architectures.
Moreover, since they use links propagation in the social networks,
they add implicitly new links between users, without the control of
the latter.

1. Facebook statistics can be found at http://newsroom.fb.com

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://newsroom.fb.com

2.4 social-based recommender systems 25

2.4.2 Hoens et al. [HBC10]

Hoens et al. provide a recommender system based on social net-
work that does not modify it in [HBC10]. Ratings are propagated and
aggregated through the social network up to a maximum depth, in a
similar way as what we do.

Their approach takes into account privacy by encrypting ratings
during the propagation. They use a semantically secure public-key
homomorphic encryption scheme, which allows some operations on
the underlying ratings. In particular, they use additively homomor-
phic encryption that has the following properties: given ratings r1,
r2 and encryption algorithm Enc, Enc(r1)× Enc(r2) = Enc(r1 + r2),
which also implies that Enc(r1)c = Enc(c× r1) for a positive integer
c.

Homomorphic encryption requires heavy computation resources
to aggregate ratings, on users sides. Moreover, the whole user tree
from the requester to the children up to the defined depth is used in
the computation. Therefore this approach is not deployable yet on
mobile or low resource devices.

Users propagate ratings in the network. Ratings’ weights are de-
fined by users, which requires a lot of manipulation and is seldom
made by average users. The cryptography prevent the system to com-
pute similarity between users.

In addition, no confidence on the results is provided to users.
Finally, their work is only adapted to social networks: the heavy

computation requirement limits the propagation to low depth, which
provides high coverage only with dense social networks, like Face-
book. With sparse networks, such as the trust network Epinions, this
usually does not cover enough ratings.

2.4.3 Conclusion

Existing social-based recommender systems integrate social infor-
mation in their algorithms. Social networks focus on social interac-
tions: relations denote “friendship”. It does not mean that friends’
opinions are necessarily valuable for recommendation. However, eval-
uations show that this information improves accuracy and coverage.

SocialMF [JE10] use links propagation techniques, similar to trust
propagation, to add new links in the network. It considers social net-
works as a kind of trust network. Resulting on the same drawbacks
as with trust-based systems regarding ratings disclosure and privacy.

Hoens et al. [HBC10] propagate ratings in the social network. They
propagate ratings through common friends instead of adding new
links between users and friends of friends.

Unlike classical trust-based systems, we believe social-based recom-
mender systems should not propagate social links since those rela-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

26 state of the art on recommender systems

tions are usually explicitly defined by users and have to be approved
by them. Few are the works that consider social networks as not
modifiable and that take into account users privacy.

2.5 conclusion

This chapter presents a state of the art on recommender systems.
Content-based systems extract items characteristics in order to com-

pare and recommend them. Although we have not proposed a content-
based approach, they are compatible with our constraints and with
our system.

Collaborative filtering systems provide recommendation based on
computed similarity between users (or items). This requires heavy
computations that distributed or decentralized architectures can scale
down.

Nonetheless, they suffer drawbacks that trust reduces, by letting
users define their own neighborhood. Trust-based approaches usu-
ally propagate trust in order to counter the trust network sparsity
problem.

Social-based systems suffer less from social network sparsity, usu-
ally denser than trust network. They consider social networks in or-
der to build user graphs. However most of them are global, therefore
not P2P compliant.

The table 1 sums up approaches in this state of the art. It is divided
in four parts, one per section from this chapter. We describe the
different approaches regarding four characteristics: the kind of graph
used by the system; the system knowledge on ratings, users or items;
the required computation loads; and the graph relations origin.

Items or users similarity graphs imply computed graphs (thus im-
plicit relations) using items’ or users’ profiles. Those profiles may
require local (items characteristics) or global (all ratings) knowledge.

Trust and social networks are imported from existing user defined
graphs (thus explicit relations). They may contain propagated rela-
tions using extended-local knowledge. That means that the system
knows neighborhood up to a certain depth in order to propagate trust
or social relations.

Similarity graphs require heavy computation since similarity is com-
puted between all possible pairs of users or items. Likewise, matrix
factorisation and homomorphic encryption require heavy computa-
tion resources.

Social networks contain social relations explicitly defined by users.
We claim for a new social-based approach that does not need so-
cial / trust propagation. New social relations are not inferred without
the users’ consent.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

2.5 conclusion 27

Approach Graph Knowledge Computation Relations

TextBasedCB items similarity local heavy implicit

UserBasedCF users similarity global heavy implicit

ItemBasedCF items similarity global heavy implicit

TidalTrust trust network extended-local light propagated

MoleTrust trust network extended-local light propagated

RandomWalk trust network local light explicit

TrustWalker trust & items similarity global heavy explicit

SocialMF social network global heavy propagated

Hoens et al. social network local heavy explicit

Table 1: State of the art on recommender systems

Moreover, ratings are critical information regarding users prefer-
ences and behaviour. In order to provide a privacy policy, they should
not be shared with anyone. Even when sharing data with trusted
users, we think these data should not be easily identifiable by other
users.

In this thesis, we introduce a recommender system propagating
locally ratings through social relations. Our approach does not cre-
ate new relations and shares data (i. e. ratings) only between direct
friends. As it uses ratings aggregation, a final user does not know
where ratings come from, following our privacy concern.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

3
D E F I N I T I O N S / E X A M P L E

Truth is not determined by majority vote.
— Doug Gwyn

Contents
3.1 Graph theory definitions 30

3.1.1 Graphs . 30

3.1.2 Simple graphs 31

3.1.3 Digraphs . 32

3.1.4 Bipartite graphs 32

3.1.5 Weighted graphs 33

3.1.6 Other graphs 34

3.2 Vocabulary . 35
3.2.1 Social network 35

3.2.2 Trust network 36

3.2.3 Similarity network 36

3.2.4 Ratings . 37

3.3 Example . 37
3.4 Conclusion . 38

Figures
Figure 1 Graph example 30

Figure 2 Simple graph example 31

Figure 3 Digraph example 32

Figure 4 Bipartite graph example 33

Figure 5 Weighted graph example 34

Figure 6 Other examples 34

(a) Weighted digraph example 34

(b) Bipartite digraph example 34

Figure 7 Social, trust and similarity networks and
ratings example 38

(a) Actors’ ratings on item i0 38

(b) Social network 38

(c) Trust network 38

(d) Similarity network 38

29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

30 definitions / example

This thesis is structured around several algorithms that need spe-
cific terminology. The section 3.1 provides some definitions needed
for a good understanding on graph theory. The specific vocabulary
used in this thesis is then described in section 3.2. This vocabulary
is illustrated with a simple yet adequate example, provided in sec-
tion 3.3. This example will be run with our algorithms in the entire
chapter 4.

3.1 graph theory definitions

A graph is composed of a set of vertices and a set of edges linking
the vertices. It is used to depict relationships (edges) between entities
(vertices or nodes). Graphs have been widely used to model data in
various situations. Different classes of graphs have been defined, for
example directed or undirected, weighted or unweighted.

In this thesis, we use graphs to model social networks and ratings.
We focus on undirected/directed, unweighted/weighted and bipar-
tite graphs.

3.1.1 Graphs

a

b c

Figure 1: Graph example

Definition 4: Graph. A graph G = (V, E) is an ordered pair formed by a
set of vertices V and a multiset of edges E depicting relationships between
the vertices, where an edge is represented by a multiset of two vertices in V .

Example 1. Figure 1 depicts a graph with:

– A = {a, b, c}

– E = {{a, a}, {a, b}, {a, c}, {b, c}, {b, c}, {b, c}}

Definition 5: Neighbourhood. The neighbourhood of a vertex v in a
graph G = (V, E), denoted ΓG(v), is the set of vertices directly connected to
v:

ΓG(v) = {v ′ ∈ V | {v, v ′} ∈ E}

Example 2. In figure 1:

– ΓG(a) = {a, b, c}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

3.1 graph theory definitions 31

– ΓG(b) = {a, c, c, c}

– ΓG(c) = {a, b, b, b}

Definition 6: Degree. The degree of a vertex v in a graph G is |ΓG(v)|.

Definition 7: Loop. A loop is an edge that connects a vertex to itself.

Example 3. In figure 1, there is a loop on the vertex a.

Definition 8: Cycle. A cycle is a closed path, i. e. a path started from one
vertex and ending on the same vertex, through other vertices.

Example 4. In figure 1, there are four cycles:

– ({a, b}, {b, c}, {a, c})

– ({b, c}, {b, c}), which appears 3 times

3.1.2 Simple graphs

As shown in figure 1, graphs may contains loops (an edge from a
node to the same node) and multiple edges (multiple edges from one
node to another node). A simple graph is a graph with constraints on
edges: no loop nor multiple edges are allowed. Simple graphs may
however contain cycles.

a

b c

d e f

Figure 2: Simple graph example

Definition 9: Simple graph. A simple graph G = (V, E) is a graph such
that E is a strict set and each edge in E is also a strict set, i. e. it starts from
one vertex and ends in another:

e = {v, v ′} ∈ E⇔ (v, v ′) ∈ A2 ∧ v 6= v ′ ∧ @e ′ ∈ E | e = e ′

Example 5. Figure 2 depicts a simple graph with the following set of vertices
V = {a, b, c, d, e, f}. The set {a, b} denotes an edge of the graph while {a, e}
does not.

Since simple graphs are graphs, the neighbourhood and degree
definitions described in section 3.1.1 are still valid.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

32 definitions / example

a b

d c

Figure 3: Digraph example

3.1.3 Digraphs

Directed graphs are called digraphs and consider directed relations
between vertices.

Definition 10: Digraph. A digraph D = (V,A) is an ordered pair formed
by a set of vertices V and a set of arcs A representing relationships between
the vertices, where an arc is an ordered pair of two different vertices in V .

Example 6. Figure 3 depicts a digraph with the set of vertices {a, b, c, d}.
The ordered pair (a, b) represents an arc of the graph from a to b, while
(b, a) does not.

Definition 11: Out-neighbourhood. The out-neighbourhood of a ver-
tex v in a digraph D = (V,A), denoted Γ→D (v), is the set of vertices directly
connected to v with an arc starting from v:

Γ→D (v) = {v ′ ∈ V | (v, v ′) ∈ A}

Definition 12: In-neighbourhood. The in-neighbourhood of a vertex
v in a digraph D = (V,A), denoted Γ←D (v), is the set of vertices directly
connected to v with an arc ending in v:

Γ←D (v) = {v ′ ∈ V | (v ′, v) ∈ A}

Example 7. In figure 3:

– Γ→D (a) = {b, c, d} and Γ←D (a) = ∅
– Γ→D (b) = {c} and Γ←D (b) = {a}

– Γ→D (c) = ∅ and Γ←D (c) = {a, b, d}

– Γ→D (d) = {c} and Γ←D (d) = {a}

3.1.4 Bipartite graphs

A bipartite graph is a graph whose vertices can be divided into two
disjoints sets U and V such that every edge connects a vertex from U

to one in V . U and V usually do not depict the same kind of entity.

Definition 13: Bipartite graph. A bipartite graph G = (U,V, E) is an
ordered tuple formed by two independent sets of vertices U and V and a set

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

3.1 graph theory definitions 33

u1

u2

v1

v2

u3

u4

v3

Figure 4: Bipartite graph example

of edges E representing relationships between vertices from U and vertices
from V , where an edge is represented by a set of a vertex in U and a vertex
in V .

Property 1. In a bipartite graph G = (U,V, E), nodes from the set U (re-
spectively V) are linked to nodes from the set V (respectively U):

∀u ∈ U, ΓG(u) ⊂ V

∀v ∈ V, ΓG(v) ⊂ U

Example 8. Figure 4 depicts a bipartite graph G = (U,V, E) with:

– U = {u1, u2, u3, u4}

– V = {v1, v2, v3}

– E = {{u1, v1}, {u1, v2}, {u3, v3}, {u4, v3}}

The neighbourhood and degree concepts defined in section 3.1.1
are valid with bipartite graphs.

3.1.5 Weighted graphs

A weighted graph is a graph whose edges are weighted, i. e. a
weight is associated with each edge.

Definition 14: Weighted graph. A graph G = (V, E) is weighted if and
only if each edge e ∈ E has a weight W(e) ∈ R.

Example 9. Figure 5 depicts a weighted graph G = (V, E) with:

– V = {a, b, c, d}

– E = {{a, b}, {a, c}, {a, d}, {b, c}, {c, d}}

– W({a, b}) = 1, W({a, c}) = 0.5, W({a, d}) = 0, W({b, c}) = 0.5,
W({c, d}) = 1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

34 definitions / example

a b
1

d

0

c

0.5 0.5

1

Figure 5: Weighted graph example

Definition 15: Positive neighbourhood. The positive neighbourhood
of a vertex v in a graph G = (V, E), denoted Γ+G (v), is the set of vertices
directly connected to v by an edge associated with a positive weight:

Γ+G (v) = {v ′ ∈ ΓG(v) |W({v, v ′}) > 0}

Example 10. In figure 5, ΓG(a) = {b, c, d} whereas Γ+G (a) = {b, c} since
W({a, d}) = 0.

Definition 16: Positive degree. The positive degree of a vertex v in a
graph G is |Γ+G (v)|.

3.1.6 Other graphs

We have seen several definitions of graphs in the previous sec-
tions. A graph can be simple or not, directed or not, bipartite or
not, weighted or not. However those definitions are not independent,
a graph can be a mix of those.

In order to illustrate this, we show a weighted digraph and a bipar-
tite digraph in figure 6.

a b
1

d

0

c

0.5 0.5

1

(a) Weighted digraph example

u1

u2

v1

v2

u3

u4

v3

(b) Bipartite digraph example

Figure 6: Other examples

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

3.2 vocabulary 35

Definition 17: Weighted digraph. A weighted digraph D = (V,A) is
denoted as a regular digraph with one exception, weights are included in the
arc triples. An arc is a triple associating two vertices from V and a weight.

Example 11. Figure 6a depicts a weighted digraph D = (V,A) with:

– V = {a, b, c, d}

– A = {(a, b, 1), (a, c, 0.5), (a, d, 0), (b, c, 0.5), (d, c, 1)}

Definition 18: Positive out-neighbourhood. In a weighted digraphD =

(V,A), the positive out-neighbourhood of a vertex v, denoted Γ+→D (v), is
the set of vertices directly connected to v with an outgoing arc associated
with a positive weight:

Γ+→D (v) = Γ→D (v)∩ Γ+D(v)

Example 12. In figure 6a, Γ+→D (a) = {b, c} since W({a, d}) = 0.

Definition 19: Bipartite digraph. A bipartite digraph D = (U,V,A) is
denoted as a regular bipartite graph with arcs instead of edges.

Example 13. Figure 6b depicts a bipartite digraph D = (U,V,A) with:

– U = {u1, u2, u3, u4}

– V = {v1, v2, v3}

– A = {(u1, v1), (u1, v2), (u3, v3), (u4, v3)}

3.2 vocabulary

Given the graph definitions in the previous section, we specify
some vocabulary used in this thesis that eases understanding. This
vocabulary is illustrated with some examples in this section and a
global example in section 3.3, figure 7, page 38.

3.2.1 Social network

A social network is a simple graph as defined in definition 9, sec-
tion 3.1.2.

Definition 20: Social network. A social network is a simple graph SG =

(A, F), with A a set of actors and F a set of social relations between them. A
social relation is an undirected link between two actors in the social network.
It is represented by a set of two actors {a, a ′}, with (a, a ′) ∈ A2.

Remark 1 (Social network). We limit our definition to social networks
having undirected links between actors, like Facebook. Social net-
works with directed links like Twitter are not considered.

Definition 21: Actor. An actor refers to any social entity in a social net-
work [WF94] a ∈ A.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

36 definitions / example

Remark 2 (Actor). An actor is not necessarily a user, it can also be any
virtual entity connected to the network, such as a group of users or a
company.

Definition 22: Friend. A friend f of an actor a is an actor directly con-
nected to a in the social network, i. e. a social relation exists between a and
f, i. e. f ∈ ΓSG

(a). The set Fa of friends of a is the neighbourhood of a:

Fa = ΓSG
(a)

Remark 3 (Friend). We do not consider only friendship relations, but
any kind of undirected links in a social network. However for clarity
reason we call “friends” actors connected in the social network. The
most important is that two “friends” accept to share their profiles.

3.2.2 Trust network

A trust network is a simple weighted digraph, c. f. definitions 9,
10 and 14. Trust relations are weighted and oriented relationships
between actors ranging from 0 (lowest trust) to 1 (full trust). The
greater the trust value from an actor a to an actor f, the more a trusts
f’s scoring, and then the more f’s preferred items are valuable for a.

The trust relation from an actor a to an actor f is noted ta,f. It is is
neither symmetric nor transitive. Zero or one trust value ta,f can be
associated with each (a, f) ∈ A2.

Definition 23: Trust network. A trust network is a simple weighted di-
graph TD = (A, TA), with A a set of actors and TA a set of trust relations
between them. A trust relation is an ordered triple of two actors and a trust
value between them: (a, f, ta,f), with (a, f) ∈ A2 and ta,f ∈ [0, 1].

3.2.3 Similarity network

A similarity network is a simple weighted graph, c. f. definitions 9

and 14. Similarity relations are weighted relationships between ac-
tors denoting a rating behaviour correlation between them. Weights
rank from 0 (uncorrelated) to 1 (high similarity). They are computed
through a correlation coefficient, as explained in section 2.2.1, eq.6,
page 17. This coefficient is symmetric, hence an undirected graph.
In this thesis we do not consider negative similarity between actors.
The greater the similarity value between actor a and actor a ′, the
more they tend to provide similar ratings.

The similarity relation between an actor a and an actor a ′ is noted
ρa,a ′ . This relation is symmetric but not transitive. Zero or one sim-
ilarity value ρa,a ′ can be associated with each (a, a ′) ∈ A2, with
ρa ′,a = ρa,a ′ . Let PA be the set of similarity tuples ({a, a ′}, ρa,a ′)

with (a, a ′) ∈ A2 and ρa,a ′ ∈ [0, 1].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

3.3 example 37

Definition 24: Similarity network. A similarity network is a simple
weighted graph PG = (A,PA), with A a set of actors and PA a set of
similarity relations between them. A similarity relation is a tuple of two
actors and a similarity value between them: ({a, a ′}, ρa,a ′), with (a, a ′) ∈
A2 and ρa,a ′ ∈ [0, 1].

Trust and similarity networks are similar kinds of graphs, repre-
senting different weights between actors: trust or similarity. However
the first one is oriented while the second is not.

3.2.4 Ratings

A ratings graph is a simple weighted bipartite digraph, c. f. defini-
tions 9, 10, 13 and 14. Ratings are set by actors on items. They are real
values between 0 (the actor does not like the item) and 1 (the actor
likes the item).

The rating given by an actor a to an item i is noted ra,i. Zero or
one rating ra,i can be associated with each (a, i) ∈ A× I.

Definition 25: Rating network. A rating network is a simple weighted
bipartite digraph RD = (A, I, RA) between actors and items, with A the set
of actors, I the set of items and RA the set of ratings triple. A rating triple is
composed of an actor, an item and a rating value between them: (a, i, ra,i)
with a ∈ A, i ∈ I and ra,i ∈ [0, 1].

Definition 26: Undefined rating. Rating ra,i is undefined and noted ⊥
if and only if actor a has not rated item i:

@(a, i) ∈ A× I | (a, i, ra,i) ∈ RA ⇔ ra,i =⊥

Definition 27: Raters. The set of raters Ai is the set of actors that have
rated the item i:

Ai = {a ∈ A | ∃(a, i, ra,i) ∈ RA}

Definition 28: Friends raters. The set of friends raters Fa,i of an actor a
and an item i is the set of a’s friends that have rated item i:

Fa,i = Fa ∩Ai

3.3 example

We illustrate these definitions with a simple, yet adequate, example
shown in figure 7. Let us consider ten actors {a0, a1, · · · , a9} and
only one item i0. The objective is to predict a rating from actor a0
on item i0, denoted X. For the sake of readability, we only show the
networks, social, trust and similarity, starting directly or indirectly
from our main actor a0. Figure 7a shows ratings by actors on item i0.
a1’s rating is 0.2, a2 and a3 have not rated item i0 yet, a4’s rating is
0.8, etc.

In our example:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

38 definitions / example

a0

X

a1

0.2

a2

⊥

a3

⊥

a4

0.8

a5

⊥

a6

0.6

a7

0.9

a8

0.5

a9

0.1

(a) Actors’ ratings on item i0

a6

a1

a7

a3

a8 a9

a5

a0

a2 a4

(b) Social network

a6

a1

1

a7

0

a3

0.5

a8

0.5

a9

a5

1

a0

1

a2

0.5 0.5

a4

0.5 1

(c) Trust network

a6

a1

0.9

a7

a3

0.8

a8

0.3

a9

a5

0.2

a0

0.5

a2

1 1

a4

0 1

(d) Similarity network

Figure 7: Social, trust and similarity networks and ratings example

– A = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9}

– I = {i0}

– TA = {(a0, a1, 1), (a0, a2, 0.5), · · · , (a5, a9, 1)}
– PA = {({a0, a1}, 0.5), ({a0, a2}, 1), · · · , ({a5, a9}, 0.2)}
– RA = {(a1, i0, 0.2), (a4, i0, 0.8), · · · , (a9, i0, 0.1)}
– Fa1 = {a0, a6, a7}, Fa5 = {a0, a9}, etc.

– Ai0 = {a1, a4, a6, a7, a8, a9}

– Fa0,i0 = {a1, a4}, Fa3,i0 = {a7, a8}, etc.

3.4 conclusion

In this chapter, we have introduced definitions needed in the fol-
lowing of this thesis, based on graph theory. Using those definitions,
we have defined some vocabulary such as social, trust, similarity and
ratings networks.

Finally, we have specified an example containing all previous defi-
nitions: a social network between ten actors, trust and similarity be-
tween them and ratings on one item. This example illustrates our
algorithms in chapter 4.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Part III

C O N T R I B U T I O N S

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4
O U R A P P R O A C H : S O C I A L S C O R I N G

I do not know what I may appear to the world; but to myself I seem to have
been only like a boy playing on the sea-shore, and diverting myself in now

and then finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me.

— Isaac Newton

Contents
4.1 Social scoring . 43

4.1.1 Score propagation 43

4.1.2 Trust . 45

4.1.3 Correlation 46

4.2 Confidence . 47
4.2.1 Confidence coefficients 48

4.2.2 Confidence aggregation 52

4.2.3 Confidence propagation 53

4.3 Default Score . 55
4.3.1 Computation of a default score 55

4.3.2 Required knowledge for a default score . . 57

4.3.3 Confidence on a default score 58

4.4 CoTCoDepth Social Scoring 59
4.4.1 Definition 59

4.4.2 Example . 59

4.5 Conclusion . 61

Figures
Figure 8 k−Depth Social Scoring Example 45

Figure 9 Trust Example 45

Figure 10 Correlation Example 46

Figure 11 Size confidence depending on number of
friends’ scores 49

Figure 12 Freshness confidence depending on scores
age with different λ 51

Figure 13 Confidence Example 54

Figure 14 CoTCoDepth Example 60

41

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

42 our approach : social scoring

In this thesis, we focus on a recommender system that propagates
rating predictions, compatible with peer to peer architectures. We
also consider users privacy by limiting profile disclosure.

The state of the art, chapter 2, shows that most trust-based recom-
mender systems propagate trust to counter sparsity. More generally,
collaborative filtering approaches use global knowledge on ratings in
order to compute similarity. Few systems offer data privacy to users
and distributed recommendation.

In the previous chapter, we have determined the vocabulary used
in this chapter to define our approach: social, trust and similarity
networks as well as ratings (section 3.2 page 35). Followed by our
main example (section 3.3 page 37).

Our privacy assumptions state that users should define whom they
want to share their data with. In the following, we estimate that users
want to share their data with their friends. We define a score as either
a rating if a user has one, or an aggregation of friends’ scores. Our so-
cial scorer propagates scores through users’ social network. It offers
users the possibility to define a friend as trustworthy or not 1. Respect-
ing privacy and unlike traditional approaches, we provide similarity
between friends using local knowledge. Peers, i. e. actors, host locally
their own private profiles and may share them on demand with their
direct neighbors, i. e. friends.

In order to provide accurate recommendation, we propose to take
into account the following criteria: neighborhood selection, neighbors
weight, scores weight and sparsity.

Actors neighborhood selection is the first step. We focus on social
relations in order to select neighbors and how to propagate scores
throughout them. However, actors should be allowed to explicitly
defined whom they want recommendation from, thanks to trust co-
efficients. This requires some efforts from end users, therefore the
system should provide automatic selection of similar neighbors us-
ing similarity coefficients.

In addition, scores returned by neighbors may also be considered
differently depending on how they ave been computed: some are
more reliable than others. Confidence on scores have to be consid-
ered.

Finally, it is essential to counter sparsity with decentralized archi-
tectures constraints. When classical prediction fails, we need to artifi-
cially return scores, aka. default scores.

In section 4.1, we present the score propagation in the actors’ social
network. We introduce two coefficients between actors aiming at im-
proving recommendation accuracy. Trust allows actors to explicitly

1. We remind that in this context, trust means that a user believes on the useful-
ness of the recommendation of a trusted user.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.1 social scoring 43

weight friends’ ratings and correlation modulates friends’ ratings by
computing similarity between friends.

Then, we introduce confidence in section 4.2, a coefficient from
the system on scores. Confidence values adjust scores importance
by highlighting which scores seem to be accurate. The confidence is
provided to the final user to indicate the system belief on the recom-
mendation result accuracy. Several factors impact on the confidence
computation, such as actors’ distance, actors’ weight and actors’ con-
fidence, number of friends, similarity of friends’ scores and freshness
of the recommendation.

Section 4.3 introduces default scoring strategies in order to remedy
sparsity problems. Those strategies use local knowledge or anony-
mous global knowledge in order to return a score even when friends
cannot help predict one. The purely local strategy is fully compatible
with our hypothesis and is based on actor’s ratings. The anonymous
one requires some global information on item’s ratings, but no indi-
cation on who made those ratings.

We finally present our CoTCoDepth scorer in section 4.4. CoT-
CoDepth stands for Correlative and Trust-based with Confidence k-
Depth social recommender system. It combines the different defini-
tions from this chapter to propose an accurate recommendation with
a valued confidence, solely based on actors’ social network.

4.1 social scoring

In this section, we introduce our generic formula called “k−depth
social scoring” (sk) that forms the basis of our social scoring. This
formula uses propagation and requests in the social network. It is
based on trust between friends as well as correlation between friends
profiles.

Our formula uses a coefficient ω that is defined in the following. It
can be based on trust (c. f. section 4.1.2), similarity (c. f. section 4.1.3)
or both.

4.1.1 Score propagation

In the following, we use a specific vocabulary to describe some
actions in the system.
asking Asking a score denotes sending a request from a peer (an

actor) to another peer (his/her friend) in order to get a score
relative to an item from this friend.

requester A requester is a peer asking for a score, at each step of
the propagation.

original requester The original requester is the peer asking for
a score on the first propagation, the one who receives the final
recommendation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

44 our approach : social scoring

k−depth social scoring gets actor’s rating if it exists. If not, it asks
the actor’s friends to provide their ratings (if any) or to predict their
scores, using their friends’ ratings and so on, to depth k. If no one
returns a score, the final score is unpredicted (⊥). If a score is un-
predicted, the system cannot provide any recommendation for this
specific item at this point.

The coefficient ωa,f between actors a and f weights the mean of
friend’s scores. It will be specified in the following sections. sk is the
score computed at the kth step of propagation.

Definition 29:. Let Fka,i,ω be the set of a’s friends f where sk(f, i) is de-
fined at step k and ωa,f is not null.

Fka,i,ω = {f ∈ Fa | sk(f, i) 6=⊥ ∧ ωa,f 6= 0} (12)

The k−depth social scoring is then defined as in eq. 13
2. This

formula is an adaptation to our constraints of the one described in
section 2.2, eq. 4, page 16.

sk(a, i) =


ra,i if ∃ra,i∑
f∈Fk−1a,i,ω

ωa,f × sk−1(f, i)∑
f∈Fk−1a,i,ω

ωa,f
if @ra,i ∧Fk−1a,i,ω 6= ∅

⊥ otherwise
(13)

By definition, s0(a, i) is the rating ra,i set by the actor a on item i

if exists, ⊥ otherwise:

s0(a, i) =

{
ra,i if ∃ra,i
⊥ otherwise

(14)

Figure 8 runs the motivating example with ωa,f = 1 and k = 2.
a0 asks all his/her friends their scores for the item. a1 has already
a rating and returns immediately 0.2 without asking a6’s score (sym-
bolized by a black rectangle). a2, having no rating nor friend, returns
⊥. a3 has no rating but two friends, a7 and a8. The former computes
a mean using the two latter ratings and returns it (0.7). a4’s rating
is transmitted and a5 returns a9’s rating. With this k−depth social
scoring, a3 and a5 help a0 to compute the score through their friends
and then participate in the score computation.

The k−depth social scoring propagates scores only between imme-
diate friends. Scores are aggregated before being transmitted to the
requester, then scores are propagated in the network without interfer-
ing with existing relations.

The following sections describe different coefficients ω used in our
approach.

2. For clarity, we use a simplified version of the formula. The complete version
is described in appendix A.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.1 social scoring 45

a6

0.6

a1

0.2

a7

0.9

a3

⊥

0.9

a8

0.5

0.5

a9

0.1

a5

⊥

0.1

a0

X=0.45

0.2

a2

⊥

⊥ 0.7

a4

0.8

0.8 0.1

Figure 8: k−Depth Social Scoring Example

4.1.2 Trust

Trust values are explicitly defined by actors between friends. As
defined in section 3.2.2, trust relations are weighted and oriented re-
lationships between friends ranging from 0 (lowest trust) to 1 (full
trust). This allows our approach to be compatible with both trust
networks and social networks.

If scores are propagated in a trust network or in a social network
containing trust values, trust values are considered to weight rela-
tions: ωa,f = ta,f in eq.13. If scores are propagated in a social net-
work that cannot manage trust values, we set trust to 1 between all
friends, cancelling trust coefficient: ωa,f = 1 in eq.13. If scores are
propagated in a social network containing some relations with trust
value and some other without, a default trust value specific to the
social network should be explicitly defined. Typically it can be 0 (no
one is considered but whitelisted trusted actors) or 1 (everyone is
considered but blacklisted untrusted actors).

a6

a1

1

a7

0

a3

0.5

a8

0.5

a9

a5

1

a0

1

a2

0.5 0.5

a4

0.5 1

(a) Trust network

a6

0.6

a1

0.2

a7

0.9

a3

⊥

0.9

a8

0.5

0.5

a9

0.1

a5

⊥

0.1

a0

X=0.35

0.2

a2

⊥

⊥ 0.7

a4

0.8

0.8 0.1

(b) Score propagation

Figure 9: Trust Example

Score propagation in figure 9 is the same as previously (c. f. fig-
ure 8), except that scores are weighted by trust. In our example, the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

46 our approach : social scoring

predicted score for a0 is then 0.35 since a0 trusts less a3 and a4 who
have high ratings for i0. Since actors define trust explicitly, this allows
them to refine the importance of some friends.

4.1.3 Correlation

Trust relations are explicitly defined by actors and therefore subjec-
tive. We want to detect automatically friends that are more likely to
provide accurate recommendations. We thereby use similarity, esti-
mated thanks to a correlation coefficient.

Unlike global approaches, correlation is not computed between all
actors to build a global graph, but only between direct friends. It
modulates the existing social graph without adding new links. This
coefficient is a classic Pearson’s correlation coefficient, as described in
section 2.2.1 (eq. 6 page 17), denoted by ρ.

a6

a1

0.9

a7

a3

0.8

a8

0.3

a9

a5

0.2

a0

0.5

a2

1 1

a4

0 1

(a) Similarity network

a6

0.6

a1

0.2

a7

0.9

a3

⊥

0.9

a8

0.5

0.5

a9

0.1

a5

⊥

0.1

a0

X=0.396

0.2

a2

⊥

⊥ 0.79

a4

0.8

0.8 0.1

(b) Score propagation

Figure 10: Correlation Example

As shown in figure 10, correlation changes the way actors deal
with scores. It varies how one friend infers in the score computa-
tion among other friends. a7 and a8 share their ratings as before, but
since a3 is more similar to a7, a7’s score has a higher weight. a0 does
not take into account a4’s score since they share no similarity.

Thanks to the correlation, the scorer takes into account similarity
between friends to compute scores, friends with similar tastes are
“promoted” during the recommendation.

To compute ωa,f = ρa,f between two friends a and f, only items
rated by both friends are used. However with sparse social networks,
such as datasets described in section 5.2 (page 67), friends and similar
actors are usually disjoint. In order to take into account this sparsity,
we define an extended version of our local similarity in section 6.2,
page 86.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.2 confidence 47

If two friends still have no item in common, a default value is re-
turned 3: 0.5, the average between no similarity (0) and full similarity
(1). This allows the system to get recommendation from all friends.

4.2 confidence

In the previous sections, actors are weighted by trust and/or sim-
ilarity but each score has the same weight. We think that all scores
should not be treated equally during the aggregation and propaga-
tion.

Indeed, the system cannot be as confident on a score computed
from only one rating given by one distant friend as on a score com-
puted from many friends giving the same recommendation.

Currently, an actor returns a score to his/her friend with his/her
own weight, even if this score has been computed using friends with
a completely different weight. In the previous example, a5 has only
one friend a9 and since the mean is normalized by the sum of all sim-
ilarities, the similarity between a5 and a9 does not change anything.
Then, a9’s rating is as important as a7’s and a8’s gathered through
a3, despite a smaller similarity.

We estimate conditions that should be followed to provide accurate
predictions. Indeed, a prediction should be more accurate when:

1. friends provide scores they are confident on (aka. friends’ confi-
dence),

2. scores come from highly trusted or similar friends (aka. friends’
weight),

3. an actor aggregates multiple friends’ scores instead of a few
(aka. scores set size),

4. friends’ scores are equal instead of being highly different (aka.
scores’ variance),

5. scores are recent (aka. scores’ freshness),

6. scores come from direct friends instead of friends of friends (aka.
distance).

A score confidence is the belief of the system on the accuracy of its
prediction. The higher the confidence, the higher the probability of
the recommendation to be accurate, according to the system.

In the following sections, we define confidence coefficients that take
into account these conditions, then aggregate those coefficients and
finally propagate the aggregation in the network along with the score
propagation.

3. We want to take into account all actor’s friends, with similar ones having more
impact than others. This default similarity has been validated empirically after tests
on different values.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

48 our approach : social scoring

4.2.1 Confidence coefficients

In order to favor scores respecting accuracy conditions, we have
introduced confidence from actors on scores: c ∈ [0, 1]. 0 means that
the score is likely to be not accurate at all, 1 means that the system
is confident on the score accuracy. This coefficient is associated and
transmitted with each score.

Confidence is computed from various coefficients in order to cope
with the conditions described above.

4.2.1.1 Friends confidence (cF)

This coefficient copes with condition 1 described above. It is the
mean of friends confidence on their scores, weighted by their ω coef-
ficients.

With a given depth k, the friends confidence from actor a to i’s
score is :

cFa,i =

∑
f∈Fka,i,ω

ωa,f × cf,i∑
f∈Fka,i,ω

ωa,f

The lower friends are confident on their scores, the lower cF. In the
meantime, friends with high coefficients are more likely to influence
this confidence.

However, if all friends have a high confidence on their scores but
all ω between them and the actor are low, friends confidence will still
be high.

4.2.1.2 Weight confidence (cω)

This coefficient corresponds to condition 2 described above and
cope with the friends confidence drawback describe previously. We
consider that if all friends that provide a score have a low ω coef-
ficient, the confidence should remain low. Therefore we define the
weight confidence as the maximum of friends’ weights ω. If at least
one friend’s weight is high, this coefficient will be high, otherwise it
will remain low.

With a given depth k and a given weight ω, the weight confidence
from actor a to i’s score is :

cωa,i = max
f∈Fka,i,ω

ωa,f

This coefficient takes into account cases where an actor has many
friends highly confident on their recommendations, but where the
links between the actor and his/her friends have low weights. If at
least one weight is high, the associated confidence will impact more
the friends confidence coefficient, which handles cases with mixed
high and low weights.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.2 confidence 49

4.2.1.3 Size confidence (csize)

This confidence takes into account the number of friends’ scores
(condition 3). The more friends’ scores, the higher the confidence on
the score.

We have chosen a logistic function (the sigmoid, c. f. éq.15) to model
that confidence: it is a monotonic increasing function, the initial
growth (for positive values) is approximately exponential, followed
by a slowing down until reaching the value 1 (c. f. figure 11).

sigmoid(x) =
1

1+ e−x
(15)

In order to adapt the logistic function to our case, we define some
properties:

– without score, this confidence has no sense,

– we set 0.5 as the lowest size confidence, i. e. the confidence if
there is only one friend’s score (flip-coin prediction),

– no need to have a lot of friends’ scores to have high confidence 4.

Therefore, with a given depth k, the size confidence of actor a on
i’s score is:

csize
a,i = sigmoid(|Fka,i,ω|− 1) (16)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

S
iz

e
co

nf
id

en
ce

Number of friends' scores

Figure 11: Size confidence depending on number of friends’ scores

This confidence goes from 0.5 with only one friend’s score to about
1 with 7 friends’ scores or more.

4. Our experimentations show that five friends are enough to provide good accu-
racy, therefore high confidence (c. f. section 6.5.2 page 93).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

50 our approach : social scoring

4.2.1.4 Variance confidence (cσ)

This confidence takes into account the variance of friends’ scores
(condition 4). The higher the variance, i. e. the more different the
friends’ scores, the lower the confidence on the score. [JE09] also
uses a variance computation in order to provide a confidence on the
computed score to the final user. But our approach uses a weighted
variance, taking into account scores’ weights, and uses this variance
during the score computation, not only at the end.

A weighted variance is computed on the friends’ scores. With a
given depth k, the variance confidence of actor a on i’s score is:

cσa,i = 1−
σ2a,i
σ2max

(17)

σ2a,i =

∑
f∈Fka,i,ω

ωa,f × (sk−1(f, i) − µ
∗)2∑

f∈Fka,i,ω
ωa,f

(18)

µ∗ is the actor’s friends’ scores weighted mean. σ2max is the maxi-
mum possible variance and is used to normalize the confidence. As

stated by [JE09], σ2max =
Range2

4 for a dataset with a finite rating range
denoted Range.

4.2.1.5 Freshness confidence (ct)

This confidence aims at taking into account obsolescence of one’s
ratings (condition 5). It is specific to explicit ratings and does not
consider computed scores. This coefficient is only considered when
ratings are timestamped, as explained in section 4.2.2.1.

The freshness is function of the age of the rating: the older the
less confident on a rating. We bound freshness to]0.5, 1] with the
following assumptions:

1. it starts from 1: the highest confidence is when the rating has
just been made,

2. it remains greater than 0.5: an old explicit rating is still an ex-
plicit rating made by the actor, thus a valid rating 5.

These assumptions are generic but the freshness should be specific
to items since some items ratings become obsolete faster than others.
Therefore we define two parameters allowing us to tune the freshness
according to the kind of recommended items:

– the half-life λ is the period of time after which the confidence
lost about half its amplitude, i. e. equals 0.75 or so,

– the time unit T, or scale, give the lifetime of a recommendation:
minutes, days, months, etc.

In order to model the freshness function, we have also chosen a lo-
gistic function based on the sigmoid function defined in eq.15 page 49

(t is in T unit).

5. A value lower than 0.5 would reduce the rating impact too much

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.2 confidence 51

fλ(t) = αλ × sigmoid(λ− t) +βλ

The freshness is function of the age of the rating and monotonically
decreasing. To satisfy the conditions 1 and 2, we need to define αλ
and βλ.

condition 2⇔ lim
t→∞ fλ(t) = 0.5

⇔ αλ × lim
t→∞ sigmoid(λ− t) +βλ = 0.5

⇔ βλ = 0.5

condition 1⇔ fλ(0) = 1

⇔ αλ × sigmoid(λ) + 0.5 = 1

⇔ αλ =
1

2× sigmoid(λ)

Therefore, ct is defined as:

cta,i =
sigmoid(λ− ta,i)
2× sigmoid(λ)

+ 0.5 (19)

The freshness confidence verifies all assumptions defined above. It
remains greater than 0.5 but in the infinite. In figure 12 are shown
some examples with different λ and a unit time T in months.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

Fr
es

hn
es

s
co

nf
id

en
ce

Ratings age in months

(a) λ = 1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

Fr
es

hn
es

s
co

nf
id

en
ce

Ratings age in months

(b) λ = 3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

Fr
es

hn
es

s
co

nf
id

en
ce

Ratings age in months

(c) λ = 5

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

Fr
es

hn
es

s
co

nf
id

en
ce

Ratings age in months

(d) λ = 8

Figure 12: Freshness confidence depending on scores age with different λ

Since λ and T are dependant on the kind of recommended items,
they should be defined either by the users or the items category. We
can assume that a tweet will have a low λ coefficient and a time unit
T in hours or days, whereas a movie will have higher λ and T.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

52 our approach : social scoring

4.2.1.6 Distance

In order to cope with condition 6, we choose not to define another
coefficient. At each score propagation, the actual distance between
a peer and the original requester is known neither by the original
requester nor by the peer. However the confidence should decrease
at each hop in order to promote direct recommendations, given by
direct friends, compared to indirect or distant recommendations.

This problem is solved by the confidence aggregation, described in
the following section, where the confidence tends to be lower at each
hop in the score propagation.

4.2.2 Confidence aggregation

Since only one coefficient is propagated in the network, each peer
aggregates the confidence coefficients before transmission. We con-
sider two different cases when an actor transmits a score with a con-
fidence: either it is an explicit rating; either it is a computed score.
Depending on the situation, the confidence is not computed in the
same way.

4.2.2.1 Rating confidence

If an actor has rated an item, he/she did not ask any recommen-
dation from his/her friends. Therefore most of the confidence coeffi-
cients are not computable (friends, weight, size, variance confidences).
Only the freshness confidence is available if the rating is associated
with a time.

Therefore if the rating time is available, actors’ confidence on their
own rating is the freshness confidence: ca,i = cta,i. Otherwise the
confidence is 1, as we assume actors to be confident on their own
ratings.

4.2.2.2 Score confidence

When an actor has not rated an item, the confidence on the cal-
culated score is computed using the other coefficients: size, friends,
weight and variance confidences.

If all coefficients are maximum (respectively minimum), then the
aggregated confidence should be maximum (respectively minimum).
But those coefficients are not independent from each others. The
more friends return scores, the more friends, weight and variance
confidences are reliable.

The size confidence should influence the aggregation specifically:
a high size confidence implies that the other coefficients are reliable,
so we should only use them; a low size confidence implies that the
overall confidence should be low, since the other coefficients are not
reliable.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.2 confidence 53

Therefore the aggregated confidence c is proportional to the size
confidence and to the mean of the friends, weight and variance confi-
dences:

ca,i = c
size
a,i ∗

cFa,i + c
ω
a,i + c

σ
a,i

3

With a high size confidence (near 1), the overall confidence is mainly
computed thanks to the friends, weight and variance confidence. With
a low size confidence (near 0.5), the overall confidence is low, no
matter the other coefficients. Then the size confidence is always the
maximum of the overall confidence.

4.2.2.3 Confidence formula

The complete formula to compute confidence is then:

ca,i =


cta,i if ∃ra,i

csize
a,i ∗

cFa,i + c
ω
a,i + c

σ
a,i

3
if @ra,i ∧Fk−1a,i,ω 6= ∅

⊥ otherwise

(20)

In order to have the highest confidence, i. e. 1, one needs ideal con-
ditions: a lot of identical recommendations coming from friends confi-
dent on their scores. Most of the time it will not be the case, therefore
the confidence is usually less than 1. This tends to lower confidence
at each propagation, the distance (condition 6) is processed at this
point: each hop in the network will lower step by step the confidence.
Scores coming from direct neighbours will have a higher confidence
than scores coming from indirect neighbours.

4.2.3 Confidence propagation

During the scores propagation, confidences are transmitted along
with scores. Score computation uses only ω, except for the original
requester. The original requester takes into account this confidence
coefficient in the new score computation. The final coefficient (noted
ω(c)), for a given item i, is then:

ω
(c)
a,f = ωa,f × cf,i

To illustrate, the coefficient ω is based on similarity in figure 13.
For clarity purposes, we only use friends confidence, defined in sec-
tion 4.2.1.1 and weight confidence, defined in section 4.2.1.2.

a1 and a4 are fully confident on their own ratings and return 1 as
scores confidence. a2 does not return any score nor confidence.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

54 our approach : social scoring

a6

a1

0.9

a7

a3

0.8

a8

0.3

a9

a5

0.2

a0

0.5

a2

1 1

a4

0 1

(a) Similarity network

a6

0.6

a1

0.2

a7

0.9

a3

⊥

(0.9,1)

a8

0.5

(0.5,1)

a9

0.1

a5

⊥

(0.1,1)

a0

X=0.50

(0.2,1)

a2

⊥

⊥
(0.79,0.8)

a4

0.8

(0.8,1) (0.1,0.2)

(b) Score propagation

Figure 13: Confidence Example

a5 computes a score using only one friend, therefore the friends
confidence is 1 and the weight confidence is his/her friend’s weight:
0.2. a5’s confidence is thus 0.2.
a3 computes a score using a7 and a8’s scores. Both a7 and a8

are fully confident on their own scores, so a3’s friends confidence is
1. a3’s weight confidence, being the maximum friends weight, is 0.8.
Finally a3’s score confidence is:

ca3,i0 = c
F
a3,i0

× cωa3,i0 = 1× 0.8 = 0.8

Scores are propagated with their confidences to a0, who takes them
into account on the final score computation:

s2(a0, i0) =

∑
f∈F1a0,i0,ω

ωa0,f × cf,i0 × s1(f, i0)∑
f∈F1a0,i0,ω

ωa0,f × cf,i0

=
(0.5× 1× 0.2) + (1× 0.8× 0.79) + (0× 1× 0.8) + (1× 0.2× 0.1)

(0.5× 1) + (1× 0.8) + (0× 1) + (1× 0.2)
= 0.50

Then a0 computes his/her final confidence on the score using friends
and weight confidence:

cFa0,i0 =
(0.5× 1) + (1× 0.8) + (0× 1) + (1× 0.2)

0.5+ 1+ 0+ 1
= 0.6

cωa0,i0 = max (0.5, 1, 0, 1) = 1

ca0,i0 = c
F
a0,i0

× cωa0,i0 = 0.6× 1 = 0.6

In this example, confidence reduces a9’s low rating impact on the
prediction, since the latter shares low similarity with a5.

Confidence locally reduces the weight of scores propagated from
friends of friends. The more friends are related (regarding trust or
similarity), the higher their confidence. In addition, confidence is
provided to the final user as an accuracy indicator about the recom-
mendation.

We have seen several techniques to propagate scores and enhanced
accuracy. The last proposition concerns the improvement of coverage.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.3 default score 55

4.3 default score

In classical collaborative filtering approaches as well as in trust-
based approaches, only ratings from the recommended item are used
to compute a score. That means that an item without rating cannot
be recommended. That also means that an item with few ratings
has few chances to be recommended, especially when the actors who
rated this item are not linked to many people in the actors graph. Due
to the usual sparsity of existing datasets, many item scores cannot be
computed since no friend has rated these items up to the given depth,
which leads to a limited coverage. This is a well known problem in
recommendation often named cold start problem.

Default scoring has been introduced to counter this problem, c. f.
section 2.2.3 page 18. However among trust-based recommender sys-
tems presented in the state of the art, only TrustWalker [JE09] uses
ratings from other items than the recommended one. TrustWalker
computes similarity between items and may return a rating from a
similar item as a default score when an actor in the trust network has
not rated the item to recommend. This requires a global knowledge
on items’ ratings and who made them.

Despite this approach, trust-based recommender systems tend to
propagate deeper in the network in order to counter this drawback,
implying heavier traffic, longer calculation time and more knowledge
disclosure thus lower privacy.

In this section, we propose default scores adapted to our decentral-
ized architecture and/or to our privacy objectives. In this approach,
an actor may return a default score if he/she has not be able to com-
pute a score in another way.

This approach increases coverage by providing a score for almost
every requester, without propagating deeper in the network.

In section 4.3.1, we first explain the default score computation and
the probability to return a default score. We then model and describe
required knowledge in our approaches and in [JE09]’s approach in
section 4.3.2. We finally adapt the confidence computation with de-
fault scores in section 4.3.3.

4.3.1 Computation of a default score

We choose not to always return a default score when a rating is not
computable. Section 4.3.1.1 defines the probability to return such a
default score for a given actor. We propose two strategies to compute
a score in section 4.3.1.2. The first one is purely local and the second
one is global but requires only anonymous data, thus not compatible
with decentralized architectures but respecting our privacy concerns.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

56 our approach : social scoring

4.3.1.1 Default score probability

We define Pdefault as the probability to return a default score if an
actor cannot compute a score. This adds randomness in the recom-
mendation, which is usually considered as a good thing in order to
recommend new items to a specific actor [AT05]. Limiting default
score propagation with that probability also reduces the computa-
tional burden by not always returning a score. Finally, it minimizes
noisy recommendations, i. e. recommendations not based on a spe-
cific item. For that purpose, this probability must remain low. 6

Therefore, equation 13 (page 44) becomes:

sk(a, i) =


ra,i if ∃ra,i∑
f∈Fk−1a,i,ω

ωa,f × sk−1(f, i)∑
f∈Fk−1a,i,ω

ωa,f
if @ra,i ∧Fk−1a,i,ω 6= ∅

default(a, i) otherwise
(21)

With default(a, i) defined with the following probabilities:

P(default(a, i) 6= ⊥) = Pdefault (22)

P(default(a, i) = ⊥) = (1− Pdefault)

Pdefault = 0.02means that 2 % of friends who cannot compute a score
will return the default score instead of ⊥. In our evaluation, lower
probability handicaps coverage and higher probability penalizes both
accuracy and prediction time.

4.3.1.2 Default score value

When default(a, i) 6=⊥, we define two different strategies to com-
pute this default score. The first one is local and uses the actor profile.
The second one is global but anonymous and uses the item profile.

The reader should note that computing items’ similarity as Trust-
Walker does is not possible without knowing the detail of all ratings
on items, thus requiring a global knowledge as explained in the fol-
lowing section.

actor’s mean is the local one. The actor returns his/her own
ratings mean as a default score. This allows the system to have an av-
erage of what this actor would have rated if he/she has known/used
this item. This does not require more data than the profile of the actor
returning the default score.

default(a, i) = ra (23)

6. In our evaluation, we have empirically set Pdefault = 0.02.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.3 default score 57

item’s mean is the global but anonymous one. The actor returns
the item’s ratings mean as a default score. This allows the system to
have a rating based on all actors on this item, therefore it is usually
more accurate than the previous one. This requires to know more
than just the actor’s profile: it requires to know all ratings on this
item and thus centralized architectures. However those ratings are
anonymous.

default(a, i) = ri (24)

4.3.2 Required knowledge for a default score

When an actor cannot compute a score for a specific item and needs
to return a default score, this default score is computed thanks to
ratings other than the rating from this actor on this item. We have
seen in the previous section that the two strategies actor’s mean and
item’s mean do not require to know the same kind of ratings.

We assume that actor a computes a default score on item i.

Definition 30: Ratings knowledge. We define the sets R, Ra and Ri
according to the following:

– R is the set of all ratings from actors on items: R = {ra ′,i ′ |a
′ ∈

A ∧ i ′ ∈ I}.
– Ri is the set of ratings from actors on item i: Ri = {ra ′,i|a

′ ∈ A}.
– Ra is the set of ratings from actor a on items: Ra = {ra,i ′ |i

′ ∈ I}.

By definition, Ra ⊂ R, Ri ⊂ R and Ra ∩ Ri = {ra,i}.
If a peer knows R, it has access to a global knowledge on all ratings

and who rated which items. For instance in order to compute simi-
larity between items or between actors, one needs to use all ratings
r ∈ R. This is the knowledge used by TrustWalker.

If a peer knows Ri, it has access to a global but anonymous knowl-
edge on all ratings on a specific item, but not who made them. For
instance in order to compute the ratings mean of an item i, one only
needs to use anonymously all ratings ra ′,i ∈ Ri of this specific item,
without knowing a ′.

If a peer knows Ra, where a is the actor associated with this peer,
it has access to a local knowledge on the ratings made by the actor a.
For instance in order to compute the ratings mean of an actor a, the
actor a only uses his/her own ratings ra,i ′ ∈ Ra.

In section 4.3.1, the actor’s mean requires to know Ra in eq.23 whereas
the item’s mean requires to know Ri in eq.24. TrustWalker requires to
know R in order to compute items similarities.

The calculation of the ratings mean of an item does not respect
our local assumption, however it respects our privacy objectives. It
requires an anonymous global knowledge on ratings.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

58 our approach : social scoring

4.3.3 Confidence on a default score

Since default scores are not computed as regular scores, their con-
fidence is computed specifically.

We compute default scores confidence based on the size and the
variance of this ratings set, similarly as the size confidence and vari-
ance confidence defined in section 4.2.1, conditions 3 and 4 (page 48).

Definition 31: Default score ratings. Let Rdefault = {r1, r2, . . . , rn} be
set of ratings used to compute the default score:

– Rdefault = Ra with the actor’s mean strategy (eq.23) or

– Rdefault = Ri with the item’s mean strategy (eq.24).

Depending on the default score strategy, Rdefault are the ratings from the actor
a or on the item i.

4.3.3.1 Size confidence on a default score

We use the sigmoid function defined in eq.15 in the same way as it
is used in section 4.2.1.3:

csdefault = sigmoid(|Rdefault|− 1) (25)

4.3.3.2 Variance confidence on a default score

We compute the variance on Rdefault similarly as section 4.2.1.4, but
without weight:

cσdefault = 1−
σ2default

σ2max
(26)

σ2default =

∑
r∈Rdefault

(r− µ)2

|Rdefault|
(27)

With µ the mean of ratings Rdefault and σmax the maximum possible
variance, c. f. section 4.2.1.4 Variance confidence (cσ).

4.3.3.3 Final confidence on a default score

The final confidence coefficient on a default score is then the aggre-
gation of the two coefficients:

c
default
a,i = csdefault × c

σ
default (28)

This coefficient remains low when few ratings are used or when
those ratings are heterogeneous.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.4 cotcodepth social scoring 59

4.4 cotcodepth social scoring

The previous coefficients are combined to bring our final scorer for
social recommendation. Our scorer is the aggregation of all previous
definitions: the Correlative and Trust with Confident k−Depth Social
Scorer, CoTCoDepth Scorer for short (or s∗k(a, i) in eq.29).

4.4.1 Definition

CoTCoDepth is defined as s∗k(a, i) in the following equation:

s∗k(a, i) =


ra,i if ∃ra,i∑
f∈Fk−1a,i,ω

ωa,f × s∗k−1(f, i)∑
f∈Fk−1a,i,ω

ωa,f
if @ra,i ∧Fk−1a,i,ω 6= ∅

default(a, i) otherwise
(29)

For a given item i, the weight ω for score propagation is defined
in eq.30 and the weight ω(c) for the original requester is defined in
eq.31.

ωa,f =ta,f × ρa,f (30)

ω
(c)
a,f =ta,f × ρa,f × cf,i (31)

With the confidence c defined as follow:

ca,i =


cta,i if ∃ra,i

csize
a,i ∗

cFa,i + c
ω
a,i + c

σ
a,i

3
if @ra,i ∧Fk−1a,i,ω 6= ∅

c
default
a,i otherwise

(32)

4.4.2 Example

Figure 14 runs our motivating example with CoTCoDepth, using
trust and similarity as well as confidence. For clarity purposes, we
only use friends confidence, defined in section 4.2.1.1 and weight con-
fidence, defined in section 4.2.1.2. Moreover we do not consider de-
fault scoring.

Results are similar to the ones in section 4.2.3, figure 13, except for
a3’s influence. Almost all other trust values equal 1, a neutral value.
Therefore we only detail computations for a3 and then a0.
a3 computes a score using a7 and a8’s scores. Both a7 and a8

are fully confident on their own scores, so a3’s friends confidence

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

60 our approach : social scoring

a6

a1

1

a7

0

a3

0.5

a8

0.5

a9

a5

1

a0

1

a2

0.5 0.5

a4

0.5 1

(a) Trust network

a6

a1

0.9

a7

a3

0.8

a8

0.3

a9

a5

0.2

a0

0.5

a2

1 1

a4

0 1

(b) Similarity network

a6

0.6

a1

0.2

a7

0.9

a3

⊥

(0.9,1)

a8

0.5

(0.5,1)

a9

0.1

a5

⊥

(0.1,1)

a0

X=0.31

(0.2,1)

a2

⊥

⊥
(0.79,0.4)

a4

0.8

(0.8,1) (0.1,0.2)

(c) Score propagation

Figure 14: CoTCoDepth Example

is 1. a3’s weight confidence, being the maximum friends weight, is
0.8× 0.5 = 0.4. a3’s score confidence is therefore:

ca3,i0 = c
F
a3,i0

× cωa3,i0 = 1× 0.4 = 0.4

Scores are propagated with their confidences to a0, who takes them
into account on the final score computation. Each weight contains
trust and similarity:

s∗2(a0, i0) =

∑
f∈F1a0,i0,ω

ωa0,f × cf,i0 × s∗1(f, i0)∑
f∈F1a0,i0,ω

ωa0,f × cf,i0

=
(0.5× 1× 0.2) + (0.5× 0.4× 0.79) + (0× 1× 0.8) + (1× 0.2× 0.1)

(0.5× 1) + (0.5× 0.4) + (0× 1) + (1× 0.2)
= 0.31

a0 finally computes his/her final confidence on the score using
friends and weight confidence:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

4.5 conclusion 61

cFa0,i0 =
(0.5× 1) + (0.5× 0.4) + (0× 1) + (1× 0.2)

0.5+ 0.5+ 0+ 1
= 0.45

cωa0,i0 = max (0.5, 0.5, 0, 1) = 1

ca0,i0 = c
F
a0,i0

× cωa0,i0 = 0.45× 1 = 0.45

CoTCoDepth predicts to a0 regarding the item i0 a rating of 0.31
with a confidence of 0.45.

4.5 conclusion

Our scorer uses a social network to recommend items. It is based
on local knowledge such as the immediate social relations and local
trust. We have then introduced firstly a local similarity based on
friendship relations in order to promote friends with the same tastes
and secondly a confidence on the scoring itself. In order to pre-
vent the usual sparsity problem in trust-based recommendation, we
propose a default score returned by actors. Our scorer propagates
scores and confidence locally in the social network without creating
new relations.

In the next chapter, we evaluate our system and compare it with
existing trust-based or collaborative filtering recommender systems.
We show that our local approach provides recommendations that are
as accurate as the ones given by existing systems and provides more
accurate recommendation for cold start users.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5
E VA L U AT I O N

Numbers are like people; torture them enough and they’ll tell you anything.
— Anonymous

Contents
5.1 Campaigns . 65

5.1.1 Training set 65

5.1.2 Leave one out 66

5.2 Dataset . 67
5.2.1 Epinions . 67

5.2.2 Flixster . 68

5.2.3 Appolicious 69

5.3 Implementation . 70
5.3.1 CoTCoDepth Scorer 70

5.3.2 Evaluation 71

5.3.3 Views . 71

5.3.4 Metrics . 72

5.4 Influence of k and connectivity degree 72
5.4.1 Epinions: Alchemy dataset 72

5.4.2 Appolicious 75

5.4.3 Flixster . 76

5.4.4 Conclusion 77

5.5 Comparison with existing approaches 78
5.5.1 Scorers characteristics 78

5.5.2 All actors . 79

5.5.3 Cold start users 80

5.6 Conclusion . 80

Figures
Figure 15 Distribution on Alchemy 68

(a) Ratings . 68

(b) Users’ ratings 68

(c) Items’ ratings 68

Figure 16 Distribution on Flixster 69

(a) Ratings . 69

(b) Users’ ratings 69

(c) Items’ ratings 69

Figure 17 Distribution on Appolicious 70

(a) Ratings . 70

(b) Users’ ratings 70

63

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

64 evaluation

(c) Items’ ratings 70

Figure 18 Influence of training set size on coverage
using Alchemy 73

Figure 19 Influence of connectivity degree on cov-
erage using Alchemy 74

Figure 20 Influence of connectivity degree on pre-
cision using Alchemy 74

Figure 21 Influence of connectivity degree on cov-
erage using Appolicious 75

Figure 22 Influence of connectivity degree on pre-
cision using Appolicious 76

Figure 23 Influence of connectivity degree on cov-
erage using Flixster 77

Figure 24 Influence of connectivity degree on pre-
cision using Flixster 77

Tables
Table 2 Results for all actors on Epinions 79

Table 3 Results for cold start users on Epinions . 80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.1 campaigns 65

In the previous chapter, we have defined our local social-based rec-
ommender system. This chapter evaluates our approach regarding
inner parameters, such as the depth propagation or the default scor-
ing. It also compares our approach with existing ones.

Section 5.1 depicts our evaluation protocol through two mains cam-
paigns: training set and leave-one-out. The training set campaign
evaluates only a part of the ratings and allows to evaluate an algo-
rithms in function of dataset sparsity. The leave-one-out campaign
evaluates the whole dataset and is reproducible.

Section 5.2 describes the datasets used in our evaluation. Three
different Epinions’ datasets: Alchemy [RD02], Trustlet [MA06] and
RED, c. f. section B.1. We have also used a Flixster dataset [JE10] and
a Appolicious dataset, c. f. section B.2.

Section 5.3 gives a brief description of the scorers implementations
we have made in order to run the evaluation.

Finally, we present and discuss our results in sections 5.4 and 5.5.
In section 5.4, we have run our scorers on three datasets (Alchemy,

Flixster and Appolicious) in order to compare the influence of depth
propagation, actors’ connectivity and dataset density on coverage and
precision. We have used the training set campaign on the Alchemy
dataset in order to measure the impact of the training set size on
coverage.

Section 5.5 provides a comparison between our approach and the
state of the art using the Alchemy dataset. We compare our scorers
with different configurations: pure trust-based without default score,
pure local with actors mean ratings default score and pure anony-
mous with items mean ratings default score.

5.1 campaigns

In order to evaluate our algorithms and compare them with the
state of the art, we have run two different kinds of evaluation cam-
paigns: the “training set” and the “leave one out”.

5.1.1 Training set

The training set evaluation campaign is a classical method. The
dataset is split into two datasets: the evaluation set and the training
set. The training set is used by the algorithms to predict the scores of
the evaluation set.

The difference between predicted scores and real ratings contained
in the evaluation dataset is used as an indicator of the quality of
the prediction algorithm using the evaluation metrics, described in
section 5.3.4. The training set is also called the context.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

66 evaluation

The split is based on ratings, not on actors nor items. The two sets
are disjoint.

This campaign is simple to implement since the training set is
clearly defined and does not change during the whole evaluation pro-
cess. Moreover, the evaluation set is smaller than the whole dataset
and therefore the evaluation is faster. However the split is randomly
made, therefore this campaign must be k−cross validated with k ran-
dom different splits and a mean computed on the evaluation metrics.

To process this campaign, we shuffle all the ratings of the different
datasets, then we split the ratings in two groups. We consider one
experience per shuffle. A k−cross validation implies k experiences.
Then for each experience, we randomly split the dataset into two
parts with different sizes: 20 %-80 %, 50 %-50 %, 80 %-20 % and 90 %-
10 %. The first group becomes the training set: we use these ratings
as a context known by the scorers to predict the ratings contained in
the evaluation set. The second group becomes the evaluation set: we
try to predict these ratings.

We then run this experience for each ratio. The smaller the training
set, the harder the predictions. The size of the training dataset gives
an indications on the robustness of the recommender system against
sparsity.

5.1.2 Leave one out

In this campaign, we use the whole dataset. For each rating, we
consider that rating as the evaluation set and the other ratings as the
training set. Once that rating is predicted, we do the same with the
next rating. That is, the training set contains all ratings, then for each
rating, we remove it from the training set, try to predict it and finally
put it back in the training set.

Once this is done for all ratings in the dataset, results are aggre-
gated and evaluated with the metrics defined in section 5.3.4, page 72.

There is no random selection so this campaign is reproducible. No
need for k−cross validation. However it is harder to implement since
the training set is not constant during the whole evaluation.

Since similarity is computed using ratings, it must be recomputed
for each removed rating in the dataset. Therefore, once a rating is
removed, similarity coefficients associated with the actor and/or the
item are recomputed.

We denote the “leave one out” campaign as the “100 %” training
set, where the training set contains all but one rating. Our evaluation
is therefore based on five training sets with respectively 20, 50, 80, 90

and 100 % of training ratings.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.2 dataset 67

5.2 dataset

5.2.1 Epinions

Epinions 1 is a website providing “unbiased reviews by real peo-
ple”. It gathers reviews from users on items. A review contains a rat-
ing, a description of the review and some other pieces of information.
Items are various kinds of items, from books to toys. They belong
to categories and can be bought directly from the website, through
well-known sellers (Amazon, Target, etc.). Users follow other users
in order to get recommendations from them. It forms a trust network
explicitly built by users.

To the best of our knowledge, Epinions datasets are the first datasets
that have been published containing both a trust network and ratings
on items. Therefore Epinions is well studied in trust-based recom-
mender systems and is often used in order to compare existing ap-
proaches together, which is the case in section 5.5, page 78.

In this thesis, we have used three different extractions of the Epin-
ions website:

– Alchemy: this dataset has been published in 2002 by [RD02],

– Trustlet: this dataset has been published in 2006 by [MA06],

– RED: as Rich Epinions Dataset, this dataset has been extracted
by ourselves in 2011 [MGML11].

The two first datasets contain only ratings from users on items and
trust values between users. The last dataset contains more data on
Epinions, such as item categories, item descriptions, user expertises,
etc., c. f. appendix B.1, page 120.

Since Alchemy is the most used dataset in trust-based recommender
systems evaluations, we use this one in this chapter in order to evalu-
ate our approach and compare it with existing systems.

This dataset contains 104k items including 54k items with only one
rating, which represents 10 % of all ratings. Classical collaborative
filtering approaches, including trust-based ones, cannot predict any
score for those items since no other actor has rated the item and once
the rating has been removed, with the leave one out campaign, no
similarity is computable. Those approaches can reach 90 % coverage
at maximum.

Figure 15 shows the ratings distribution of the Alchemy dataset.
The distribution is shown per rating (figure 15a), per users’ ratings
count (figure 15b), and per items’ ratings count (figure 15c). The two
other datasets have significantly the same distribution.

Alchemy and Trustlet are referenced in the literature. Neverthe-
less they have some drawbacks. Firstly, they are really sparse, both

1. http://www.epinions.com

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.epinions.com

68 evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1.0 2.0 3.0 4.0 5.0

P
er

ce
nt

Rating value

(a) Ratings

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

U
se

rs
 c

ou
nt

Ratings count

(b) Users’ ratings

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

Ite
m

s
co

un
t

Ratings count

(c) Items’ ratings

Figure 15: Distribution on Alchemy

in terms of ratings and trust values: between 10 and 15 ratings per
user and about 10 trust values per user in average, depending on
the dataset. Secondly, they only contain trust values, explicitly set
by users on other users that are likely to provide useful recommen-
dations. Trust values are directed and are not based on friendship
relations.

5.2.2 Flixster

Flixster 2 is a website focusing on “discovering, watching and col-
lecting movies”. It is a movie platform offering video on demand.

Users can search for movies in order to buy or build a collection of
movies. Movies receive ratings from users and reviews from critics.
Finally, recommended movies appear in the front page when the user
logs in the website. Since users can sign up with their Facebook
account, Flixster uses friends ratings in recommendations.

To the best of our knowledge, Flixster is the only dataset providing
ratings and friendship relations coming from Facebook. The dataset
released by [JE10] provides ratings and friendship relations. Ratings
are associated with timestamps. However no information is provided
on users nor movies.

The dataset contains 147 612 users, 48 794 movies, 8 196 077 ratings,
thus a 0.11 % density, and 5 897 094 friendship relations. It is our
densest dataset.

2. http://www.flixster.com

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.flixster.com

5.2 dataset 69

A user has rated in average 55.5 movies and has 40 friends. How-
ever, no matter how dense this dataset is, the similarity is only com-
putable on average for 1.5 friends of a user.

Figure 16 shows the ratings distribution on the Flixster dataset. Rat-
ings go from 0.5 to 5 by 0.5. The distribution is shown per rating (fig-
ure 16a), per users’ ratings count (figure 16b), and per items’ ratings
count (figure 16c).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

P
er

ce
nt

Rating value

(a) Ratings

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

U
se

rs
 c

ou
nt

Ratings count

(b) Users’ ratings

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Ite
m

s
co

un
t

Ratings count

(c) Items’ ratings

Figure 16: Distribution on Flixster

5.2.3 Appolicious

Appolicious 3 is a mobile applications catalog/seller, for iPhone,
iPad or Android mobile phones. It contains reviews made by users
and recommends applications based on the users profile.

Users browse the catalog and build a list of owned applications
and give reviews or ratings on them. They can follow other users of
the community. Anyone can follow or block another user. The web-
site provide a Facebook connection in order to import automatically
Facebook friends in the community and follow them. Unfortunately
the provided dataset does not distinguish Facebook friends from fol-
lowed users.

This dataset contains more information than the previous ones. It
is also smaller, with 4 058 users, 8 935 applications, 28 963 ratings and
20 815 following links. The density of this dataset is 0.08 %. For more
information on that dataset, refer to appendix B.2, page 126.

3. http://www.appolicious.com

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.appolicious.com

70 evaluation

Figure 17 shows the ratings distribution on the Appolicious dataset.
The distribution is shown per rating (figure 17a), per users’ ratings
count (figure 17b), and per items’ ratings count (figure 17c).

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.0 2.0 3.0 4.0 5.0
P

er
ce

nt
Rating value

(a) Ratings

 1

 10

 100

 1000

 1 10 100 1000 10000

U
se

rs
 c

ou
nt

Ratings count

(b) Users’ ratings

 1

 10

 100

 1000

 10000

 1 10 100 1000
Ite

m
s

co
un

t
Ratings count

(c) Items’ ratings

Figure 17: Distribution on Appolicious

5.3 implementation

This section focuses on the implementation details of the evalu-
ation. We describe in section 5.3.1 the CoTCoDepth versions that
we have implemented and evaluated. Section 5.3.2 specifies which
datasets were used in which evaluation and which approaches from
the state of the art were implemented and compared. In order to ob-
serve prediction effectiveness on specific kinds of actors, section 5.3.3
defines views that categorize actors depending on their ratings and
connectivity. Finally, the metrics we have used in our evaluation are
described in section 5.3.4.

5.3.1 CoTCoDepth Scorer

In order to evaluate the social approach, we have implemented dif-
ferent versions of our CoTCoDepth Scorer, as defined in chapter 4.

We have propagated scores up to k ∈ {1, 2, 3}, without default score
(Pdefault = 0) and with actor mean or item mean as default score
(Pdefault = 0.02):

– CoTCoD1 propagates to k = 1 without default score

– CoTCoD2 propagates to k = 2 without default score

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.3 implementation 71

– CoTCoD3 propagates to k = 3 without default score

– CoTCoD3a propagates to k = 3 using actor mean rating as de-
fault score, with Pdefault = 0.02

– CoTCoD3i propagates to k = 3 using item mean rating as de-
fault score, with Pdefault = 0.02

– CoTCoD3ia propagates to k = 3 using item mean rating as
default score or actor mean rating if the item mean is not com-
putable, with Pdefault = 0.02

5.3.2 Evaluation

We have then observed the influence of k and of the number of
friends (i. e. connectivity degree) on coverage and precision. We have
run our scorers on the three datasets – Alchemy, Flixster, Appoli-
cious – in order to see how dataset density and ratings distribution
may influence the coverage and the precision. As one can expect, the
denser, the less deep we need to propagate in the social network in
order to have a good coverage.

We have also compared our scorers with the approaches described
in sections 2.2.1 and 2.3 (pages 17 and 18): UserBasedCF, ItemBasedCF,
MoleTrust, RandomWalk, and TrustWalker. In order to provide a
fair comparison, we have used max − depth = 3 for MoleTrust, Ran-
domWalk and TrustWalker. We have used the Alchemy dataset of
Epinions for this comparison, since it is the most used in trust-based
recommender systems evaluation. Moreover, Flixster is so dense that
running all those algorithms requires too much computing resources
to provide results and Appolicious does not contain enough users to
provide statistically reliable results compared to the other datasets.

5.3.3 Views

The Alchemy dataset is presented in section 5.2. We have split the
dataset into views to observe the influence of the connectivity degree
in the social network, c. f. appendix B.1.3.4 (page 124):

– actors with at least one friend but with less than five friends are
“weakly connected” (47 % of actors with 22 % of ratings)

– actors with five to nine friends are “fairly connected” (11 % of
actors with 12 % of ratings)

– actors with ten friends or more are “highly connected” (18 % of
actors with 57 % of ratings)

23 % of actors with only 8 % of ratings do not have any relation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

72 evaluation

5.3.4 Metrics

In this chapter, we provide four statistical metrics: Coverage, Root
Mean Square Error (RMSE), Precision (based on RMSE) and F-Measure.

Let rn be the nth rating and N the total number of ratings. Let pn
be the predicted rating for the nth rating and N ′ the total number of
predicted ratings.

The coverage is the proportion of predicted ratings regarding all
ratings to predict. It does not indicate the quality of predictions but
shows how many predictions an algorithm can fulfill.

Coverage =
N ′

N
× 100 (33)

The RMSE represents the average error of the prediction. It is ba-
sically the error standard deviation without mean. The lower the
RMSE, the more accurate the prediction. However it is only com-
putable with predicted scores.

RMSE =

√∑N
n=1 (pn − rn)2

N
(34)

The precision is the counterpart of the RMSE inversing the result:
the higher the precision, the more accurate the prediction. Note that
range is the rating interval, i. e. the largest possible error. In Epinions,
range = 4:

Precision = 1−
RMSE
range

(35)

The F-Measure F1 combines coverage and precision [JE09]:

F1 =
2× Precision×Coverage

Precision + Coverage
(36)

5.4 influence of k and connectivity degree

We have run our scorers described in section 5.3.1 with the three
datasets listed in section 5.2: Alchemy (Epinions), Appolicious and
Flixster. We have run those evaluations using the five training sets
with respectively 20, 50, 80, 90 and 100 % of training ratings, in order
to see the impact of the dataset sparsity on the results.

5.4.1 Epinions: Alchemy dataset

We have run more evaluations with the Alchemy dataset and pro-
vide results with more details in this section.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.4 influence of k and connectivity degree 73

5.4.1.1 Coverage

Figure 18 shows coverage depending on the training set size and
the depth propagation. TrustAll is an algorithm taking into account
all actors ratings, as if the actor trusted every one else (c. f. sec-
tion 2.3.2): it indicates the highest coverage possible with pure trust-
based approaches. This figure only takes into account actors with at
least one trust relation.

Increasing the training set size improves coverage, since there are
more ratings to rely on. Depth propagation is also an important fac-
tor, there is an almost 40 % coverage gap between k = 1 and k = 2.
Obviously, immediate vicinity is not sufficient to predict scores. Prop-
agating scores in the social network offers an efficient solution to im-
prove coverage.

More important, with a depth propagation of 3, the coverage is
almost as high as with the TrustAll approach: 83.56 % of ratings made
by actors with at least one trust relation are covered by CoTCoD3,
whereas TrustAll covers 90.57 %. There are only 7 points of difference
despite the latter uses all actors in order to predict ratings.

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100

C
ov

er
ag

e

CoTCoD1
CoTCoD2
CoTCoD3

TrustAll

Figure 18: Influence of training set size on coverage using Alchemy

Figure 19 shows the details of the coverage depending on the actors
connectivity, with a 100 % training set. Increasing either k or the
number of friends improves coverage, as one would expect. The more
links in the social network, the higher the coverage.

The default score enhances the coverage as expected. Returning an
actor mean rating is even more covering than returning an item mean
rating. This is due to items with only one rating: since the only
available rating for the item is removed, no mean is computable. But
most actors still have other ratings to use to compute their mean,
enhancing the coverage. With this approach, nearly 100 % ratings are
predicted for fairly and highly connected actors.

Using a sparse trust network implies that we need to propagate
further in the graph in order to cover enough ratings. We can see

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

74 evaluation

 0

 20

 40

 60

 80

 100

weaklyConnected fairlyConnected highlyConnected

C
ov

er
ag

e

CoTCoD1
CoTCoD2

CoTCoD3
CoTCoD3a

CoTCoD3i
CoTCoD3ia

Figure 19: Influence of connectivity degree on coverage using Alchemy

that increasing k improves coverage, since it increases the number
of actors involved in the recommendation. To avoid the small world
effect [Mil67], we did not propagate scores further than k = 3. How-
ever, propagating to k = 3 with Pdefault = 0 covers more than 86 %
ratings made by actors trusting more than four actors, despite using
a sparse trust network. Moreover, introducing a low probability to
return a default score (Pdefault = 0.02) increases the coverage to reach
more than 90 % ratings, all actors included, and almost 100 % ratings
from actors trusting more than four actors.

5.4.1.2 Precision

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

weaklyConnected fairlyConnected highlyConnected

P
re

ci
si

on

CoTCoD1
CoTCoD2

CoTCoD3
CoTCoD3a

CoTCoD3i
CoTCoD3ia

Figure 20: Influence of connectivity degree on precision using Alchemy

Figure 20 shows that increasing the number of friends improves
the precision (c. f. eq.35 page 72), the more an actor is connected
the more accurate the recommendations, as one would expect. Being
highly connected implies having more recommendations, therefore
the aggregation returns a more reliable answer. The CoTCoD1 pre-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.4 influence of k and connectivity degree 75

cision is not significant since the coverage is too low, specially for
weakly connected users.

However propagating further in the network also improves the pre-
cision, which was less expected. Immediate friends should be more
likely to provide relevant recommendations. Here again, a deeper
propagation leads to more scores, which explains a better precision.

We saw in the previous section that item mean rating as default
score provides a lower coverage than actor mean rating. However
precision is higher, which is legitimate since it uses ratings on the
requested item. Therefore using anonymous aggregated data en-
hances significantly the precision of our approach. Moreover, return-
ing items mean ratings if available or actors mean ratings otherwise
(CoTCoD3ia) gets the coverage of CoTCoDa with a precision as high
as CoTCoDi: it is thus the best approach.

5.4.2 Appolicious

5.4.2.1 Coverage

 0

 20

 40

 60

 80

 100

weaklyConnected fairlyConnected highlyConnected

C
ov

er
ag

e

CoTCoD1
CoTCoD2

CoTCoD2a
CoTCoD2i

CoTCoD2ia

Figure 21: Influence of connectivity degree on coverage using Appolicious

Figure 21 shows that asking up to friends of friends (k = 2) is
enough to reach a high coverage. Since this dataset is denser than the
Epinions’ one, we do not need to propagate far in the social network
in order to predict scores.

The default score still enhances the coverage, but not as much as
previously, since our approach without default scoring covers enough
ratings. With actor mean rating default scoring, nearly 100 % ratings
are predicted for fairly and highly connected actors.

Surprisingly, highly connected actors have with k = 2 a lower cov-
erage than other actors, whereas the coverage increases with k = 1.
The missing delta may have disappeared because those actors are the
ones giving the most ratings, therefore they have rated many items
that have only one rating. Therefore when we remove that rating for

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

76 evaluation

the evaluation, no one can provide any score for that item. This is
supported by the fact that CoTCoD2 and CoTCoD2i have the same
coverage: the missing scores come from items with only one rating,
the one for which the mean is no longer computable.

With a dense enough dataset, propagating only to friends of friends
is enough to provide recommendation. The default score is here still
efficient, but not as useful as with Epinions.

5.4.2.2 Precision

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

weaklyConnected fairlyConnected highlyConnected

P
re

ci
si

on

CoTCoD1
CoTCoD2

CoTCoD2a
CoTCoD2i

CoTCoD2ia

Figure 22: Influence of connectivity degree on precision using Appolicious

Figure 22 shows that

– Increasing the number of friends improves precision (c. f. eq.35),
except for highly connected actors, as explained above.

– Propagating further in the network also improves precision.

– Unlike with the Epinions dataset, the default scoring using items
mean ratings does not improve precision that much.

– However, the actors mean ratings default scoring improves both
coverage and precision.

5.4.3 Flixster

5.4.3.1 Coverage

Figure 23 shows that with Flixster asking up to friends of friends
(k = 2) is enough to reach almost all actors. This dataset is the dens-
est one and actors have in average 40 friends. This explains why a
shallow propagation reaches a high coverage.

As with the Appolicious dataset, propagating only to friends of
friends with a dense dataset is enough to provide recommendation.

The default score does almost not impact the coverage. Without
default score, nearly 100 % ratings are predicted for fairly and highly
connected actors.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.4 influence of k and connectivity degree 77

 0

 20

 40

 60

 80

 100

weaklyConnected fairlyConnected highlyConnected

C
ov

er
ag

e

CoTCoD1 CoTCoD2 CoTCoD2a CoTCoD2ia

Figure 23: Influence of connectivity degree on coverage using Flixster

5.4.3.2 Precision

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

weaklyConnected fairlyConnected highlyConnected

P
re

ci
si

on

CoTCoD1 CoTCoD2 CoTCoD2a CoTCoD2ia

Figure 24: Influence of connectivity degree on precision using Flixster

In accordance with figure 24, we observe similar remarks with
Flixster and Appolicious datasets, c. f. section 5.4.2.2.

The main difference is regarding default scores. Both items mean
ratings and actors mean ratings do not really improve neither preci-
sion nor coverage. Since this dataset is the densest one, this confirm
that default scoring strategies are not adapted to dense datasets.

5.4.4 Conclusion

This section shows the influence of sparsity, connectivity and score
propagation.

Regarding a sparse dataset such as Alchemy, we only need to prop-
agate up to k = 3 in order to reach the suitable coverage and precision.
However this is not true for all actors: we provide good recommen-
dation for highly connected actors with k = 2. Moreover, default

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

78 evaluation

scoring increases both coverage and precision. It therefore reduces
the required propagation depth.

Regarding dense datasets, such as Appolicious and Flixster, a depth
propagation of k = 2 is sufficient for all actors. Obviously the use of
dense social networks instead of sparse trust networks enhances cov-
erage. Default scoring is not needed in that case.

Our approach is compatible with both trust and social networks.
Default scoring copes with trust networks sparsity whereas low depth
propagation is enough for dense social networks.

In the following section, we compare our approach with the state
of the art, using the commonly used Epinions Alchemy dataset.

5.5 comparison with existing approaches

In order to compare our approach with others, we have imple-
mented UserBasedCF, ItemBasedCF, MoleTrust3, RandomWalk3 and
TrustWalker3, using a trust propagation of 3 for the latter. We want
to minimize the trust propagation since we target decentralized archi-
tectures and this propagation is costly, 3 is the best trade-off between
cost, accuracy and coverage.

Since Epinions is the most used dataset for trust-based recommen-
dation evaluation, we have used the Alchemy dataset with all ap-
proaches. Section 5.5.1 describes the characteristics of the evaluated
scorers. Results on Epinions dataset are described in section 5.5.2 for
all actors and in section 5.5.3 for cold start users.

5.5.1 Scorers characteristics

We have implemented our approach both without (CoTCoD3) and
with (CoTCoD3a and CoTCoD3ia) default scoring in order to provide
honest comparison:

– UserBasedCF and ItemBasedCF are classical collaborative filter-
ing recommender systems, c. f. section 2.2.1 page 17.

– CoTCoD3, MoleTrust3 and RandomWalk3 are pure trust-based
approaches using only trust values in the Epinions trust net-
work. Only CoTCoD3 and RandomWalk3 are purely local.

– CoTCoD3a is a pure local approach, fully P2P compliant but
using a default scoring strategy, unlike CoTCoD3.

– CoTCoDia is a pure anonymous approach, using item mean
rating as default score, it need some anonymous knowledge on
items ratings.

– TrustWalker3 uses item-based similarity, thus comparable with
our default score where an actor still returns a rating when
he/she did not rate the considered item.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.5 comparison with existing approaches 79

5.5.2 All actors

Method RMSE Cov. F1 Knowledge

UserBasedCF 1.138 69.09 0.703 global

ItemBasedCF 1.364 65.64 0.658 global

MoleTrust3 1.100 77.25 0.748 extended-local

RandomWalk3 1.271 53.44 0.599 local

CoTCoD3 1.150 77.25 0.741 local

CoTCoD3a 1.105 90.50 0.804 local

CoTCoD3ia 1.078 90.56 0.809 anonymous

TrustWalker3 1.092 85.99 0.788 global

Table 2: Results for all actors on Epinions

Table 2 indicates the RMSE, the coverage and the f-measure of all
actors ratings prediction.

Regarding only pure local approaches, CoTCoD3a provides the
best results both in terms of precision and coverage. RandomWalk3

is not effective enough with a low propagation depth of 3. That kind
of approach usually propagates up to depth 6. MoleTrust3 offers
the same coverage than CoTCoD3 with a lower error but it relies on
extended-local knowledge. Moreover CoTCoD3a still has a higher f-
measure than MoleTrust3. CoTCoD3a helps improving coverage but
also accuracy. As stated by [MA07a], the Epinions dataset contains
mostly 5 as rating value which explains why returning an average
rating improves accuracy.

Regarding classical collaborative filtering approaches, both User-
BasedCF and ItemBasedCF are outperformed by the trust-based ap-
proaches, since similarity is seldom computable with sparse datasets
such as Epinions [JE09, MA07a].

Based on local and global knowledge, TrustWalker has the sec-
ond lowest error with 1.092. However it covers less ratings than
CoTCoD3a, based on local knowledge, and CoTCoD3ia, based on
local or anonymous knowledge 4.

CoTCoD3ia is the best system in our evaluation with the lowest
error and the highest coverage, therefore the highest f-measure. The
default score strategy alleviates coverage limitation and is compatible
with our architecture and privacy assumptions. It provides scores to

4. The accuracy of our TrustWalker implementation is coherent with [JE09], while
coverage is 10 % lower. We do not understand the coverage indicated in [JE09] since,
as stated in section 5.2.1, 90 % should be the maximum coverage with classical col-
laborative filtering approaches using a leave one out evaluation campaign and the
Epinions dataset.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

80 evaluation

items that cannot be recommended with classical collaborative filter-
ing and trust-based approaches.

Our approach is thus adapted for sparse networks such as Epinions,
where actors need to explicitly express that they trust other people in
order to connect with them, without propagating deeply in the net-
work and only based on local or local and anonymous information.

5.5.3 Cold start users

Method RMSE Cov. F1 Knowledge

UserBasedCF 1.248 15.13 0.248 global

ItemBasedCF 1.639 21.49 0.315 global

MoleTrust3 1.167 50.51 0.590 extended-local

RandomWalk3 1.288 37.74 0.485 local

CoTCoD3 1.196 50.51 0.587 local

CoTCoD3a 1.145 65.05 0.681 local

CoTCoD3ia 1.103 65.48 0.688 anonymous

TrustWalker3 1.287 67.50 0.677 global

Table 3: Results for cold start users on Epinions

Table 3 compares those approaches regarding only cold start users.
With those particular actors, who do not have enough ratings to

perform well with classical collaborative filtering, CoTCoDepth out-
performs all other local and global algorithms in terms of precision
and coverage, except for TrustWalker3 which covers 2 % more ratings.

RandomWalk3 and the global approaches do not cover enough rat-
ings to be significant. TrustWalker3 suffers a high error.

Here again CoTCoD3ia provides the best precision and coverage
for cold start users. The pure local algorithm CoTCoD3a provides
the second highest f-measure, just below CoTCoD3ia.

5.6 conclusion

In this chapter, we have evaluated different versions of our ap-
proach in order to measure the impacts of sparsity, connectivity and
score propagation on the results. As expected, the deeper we prop-
agate, the better the recommendation in terms of coverage and ac-
curacy, since actors aggregate more recommendations. Our default
scoring strategies also greatly improve coverage and accuracy with
sparse datasets like Epinions. With denser datasets, like Appolicious
and Flixster, this is not always the case.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

5.6 conclusion 81

The pure trust-based version of our approach, without default scor-
ing, does not cover all ratings with the Epinions dataset. But we have
shown that with an actual social network, e. g. Facebook with Flixster,
a score propagation to k = 2 covers more than 97 % users. With de-
fault scoring, almost 99.5 % ratings are predicted.

We have also compared our approach with the state of the art.
Clearly, classical collaborative filtering recommender systems do not
perform well with sparse datasets, especially for cold start users.
Trust-based recommender systems do better, even with a sparse trust
network. Additional features such as the item-based similarity for
TrustWalker or the default scoring for CoTCoDepth significantly im-
prove the results.

Regarding all approaches in this evaluation, CoTCoDia is the best
regarding coverage and accuracy. This scorer requires however some
anonymous knowledge on items ratings. When such knowledge is
not available, CoTCoD3a is the best alternative. It is purely local and
provides one of the best f-measure.

To sum up, regarding the kind of available data, we provide 3 ver-
sions of our CoTCoDepth scorer. The first one, CoTCoD3, is purely
local and trust-based. It is the best in this category. The second one,
CoTCoD3a, is purely local but not only trust-based, since it adds de-
fault scoring. It is one of the best scorers, especially regarding only
local ones. The third one, CoTCoD3ia, respects our assumptions on
privacy and provides the highest precision, coverage and f-measure
in our evaluation.

This chapter proposes a centralized evaluation in order to compare
our approach with the state of the art. Since CoTCoDepth is P2P
compatible, we propose in the following chapter heuristics that refine
our approach in particular regarding P2P architectures. Moreover,
some heuristics aim at improving network usage and therefore we
evaluate the impact of our approach on this criterion.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6
H E U R I S T I C S

It is the excitement of becoming - always becoming, trying, probing, falling,
resting, and trying again - but always trying and always gaining.

— Lyndon B. Johnson

Contents
6.1 Heuristics evaluation protocol 85
6.2 Extended similarity 86

6.2.1 Definition 86

6.2.2 Evaluation 87

6.3 Relative scoring . 87
6.3.1 Relative score propagation 88

6.3.2 Relative scoring evaluation 88

6.4 A New Hop . 89
6.4.1 Score propagation with hops 90

6.4.2 Hops evaluation 90

6.5 Friends selection . 91
6.5.1 Random friends selection 92

6.5.2 Random raters selection 93

6.5.3 Weight influence 96

6.5.4 Conclusion 98

6.6 Expertise . 98
6.6.1 Friends expertise 98

6.6.2 Global expertise 99

6.6.3 Expertise evaluation 99

6.7 Conclusion . 100

Figures
Figure 25 Influence of correlation on precision us-

ing Alchemy 87

Figure 26 Absolute vs. Relative scores on Alchemy 89

Figure 27 k−Depth Social Scoring with Hops; Ex-
ample with α = 0.5 90

Figure 28 Influence of α on the RMSE, using hops . 91

(a) k = 2 . 91

(b) k = 3 . 91

Figure 29 Random friends selection evaluation us-
ing Alchemy 93

(a) Coverage . 93

(b) RMSE . 93

(c) Execution time 93

83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

84 heuristics

Figure 30 Random friends selection evaluation us-
ing Flixster 94

(a) Coverage . 94

(b) RMSE . 94

(c) Execution time 94

Figure 31 Random raters selection evaluation using
Alchemy 95

(a) RMSE . 95

(b) Execution time 95

Figure 32 Random raters selection evaluation using
Flixster . 96

(a) RMSE . 96

(b) Execution time 96

Figure 33 Weight influence compared to random
raters selection 97

Tables
Table 4 RMSE with relative or absolute score de-

pending on k 89

Table 5 Results for expertise heuristics on Epinions 100

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.1 heuristics evaluation protocol 85

Chapter 4 describes our social recommendation algorithms based
on friends ratings. It introduces score propagation and some others
algorithms implemented on this propagation. Chapter 5 evaluates
our approach and compares it with existing systems.

In this chapter, we define heuristics that modify the score propa-
gation in some ways, in order to improve precision or coverage or in
order to reduce the network overload caused by propagation. Indeed,
although it is local-based and requires few processing resources, the
propagation in the social network can become quite heavy, especially
for actors with a lot of friends.

This chapter is organized as follows: each section introduces and
describes heuristics aiming at improving the system on one dimen-
sion. Then, each section contains an evaluation of those heuristics
providing accuracy, coverage or resources metrics.

Section 6.1 describes briefly our evaluation protocol for this chapter.
Section 6.4 proposes a new score propagation where all friends of
friends get reached by the request, even if intermediate friends have
ratings. Section 6.5 describes an heuristic where actors do not ask all
their friends, but only a subset of them. Section 6.6 proposes to take
into account expertise from actors to item categories, therefore not
treating all friends in the same way, depending on what kind of item
we are recommending.

6.1 heuristics evaluation protocol

In order to compare the proposed heuristics, we provide an evalu-
ation for each of them. Three metrics are used: coverage and RMSE,
as described in section 5.3.4 page 72 and the average duration of a
rating prediction.

The average duration of a rating prediction is simply the time for
a specific algorithm to predict all ratings divided by the number of
ratings to predict. Unpredicted ratings are also taken into account
since it requires times in our approach to detect that the rating will
not be predicted.

This metric is not used in the comparative evaluation, chapter 5,
since some algorithms are more optimized and/or more adapted to
the simulation architecture than others. Thus it is not fair to use time
to compare them. However, for a given algorithm, here CoTCoDepth,
it makes sense to compare heuristics applied on it based on the time
to predict ratings.

The evaluation has been made using a 90 % training set and a 10 %
evaluation set with the Alchemy dataset, described in section 5.2.1
(page 67). The training set campaign evaluation is explained in sec-
tion 5.1.1 (page 65).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

86 heuristics

6.2 extended similarity

We have seen in section 4.1.3, page 46, that our approach is com-
patible with local similarity, i. e. similarity computed between friends.
However, the intersection between similar actors and friends is usu-
ally small. In Alchemy, an actor has in average 11 friends and among
them, a correlation coefficient is computable in average for only 2 of
them. In Flixster, an actor has in average 48 friends with a correlation
computable with only 3 of them.

6.2.1 Definition

Obviously the similarity approach is not adapted and is solely
based on the default similarity coefficient that the system uses. How-
ever, in order to increase the number of friends for whom a similarity
is computable, we have introduced the extended similarity.

Similarity is based on a correlation coefficient computed between
common raters of items. In order to compute the similarity between
two actors, we take the intersection between the items rated by the
first one and the items rated by the second one. Then, we use the
ratings on those items to compute the Pearson correlation coefficient.
Since common raters and friends almost never overlap, this approach
is not effective enough.

Extended similarity is computed between friends and does not con-
sider common raters anymore. Then, the correlation coefficient is
computed using all items rated by either one or the other actor. How-
ever, for missing ratings, the rating is predicted thank to our social
approach. Basically when a rating is missing, we try to predict it us-
ing the friends of the actor, including the one we want to compute
similarity with.

Therefore the extended Pearson correlation coefficient ρ ′ becomes:

ρ ′ =

∑N ′
n=1 (r

′
n − r̄ ′)(p ′n − p̄ ′)√∑N ′

n=1 (r
′
n − r̄ ′)2 ×

√∑N ′
n=1 (p

′
n − p̄ ′)2

(37)

With N ′ the number of items rated by either one or the other actor,
r ′n the score of one actor and p ′n the score of the other. r̄ ′ and p̄ ′ are
the scores mean of respectively each actor.

The scores are computed using a score propagation up to depth
k = 1, i. e. the direct friends only.

Using the extended similarity in Epinions dataset, an actor has then
4 similarity computable out of 5 friends, i. e. about 4 times more
similarity computed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.3 relative scoring 87

6.2.2 Evaluation

In order to evaluate the extended similarity heuristic, we have run it
with a score propagation depth k ∈ {1, 2, 3} with the alchemy dataset,
without correlation (aka. “NoCorrelation”), with the classical Pear-
son correlation coefficient (aka. “Correlation”) and with the extended
Pearson correlation coefficient (aka. “ExtendedCorrelation”). Since
we use default similarity when the correlation is not computable, the
coverage is the same for all.

 0.69

 0.695

 0.7

 0.705

 0.71

 0.715

CoTCoD1 CoTCoD2 CoTCoD3

P
re

ci
si

on

NoCorrelation
Correlation

ExtendedCorrelation

Figure 25: Influence of correlation on precision using Alchemy

Figure 25 shows that extended correlation does not really influence
the precision on the prediction. However, actors manage to compute
similarity for most of their friends, reducing the use of a constant
as default similarity. Moreover this weight is used in other compu-
tations, such as confidence, c. f. section 4.2 page 47, or heuristics
based on weight, c. f. section 6.5.3 page 96. Section 6.5.3 shows that
extended similarity enhances weight influence on predictions preci-
sion.

6.3 relative scoring

The k−depth social scorer computes absolute scores, i. e. it returns
scores computed using actor or friends ratings. It does not take actors
rating behaviour into account.

The following heuristic computes relative scores i. e. the difference
between ratings and friends’ ratings mean. Friends relative scores
are aggregated and added to the actor’s ratings mean in order to
compute the final absolute score.

This approach has two main advantages. Firstly, it does not trans-
mit absolute scores, but only relative scores: this means less informa-
tion and therefore more privacy. Secondly, it takes into account actors

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

88 heuristics

rating behaviour as explained in section 2.2 eq.5, i. e. does an actor
rate an average item with a rather low or high rating in general.

But this approach has a main drawback: if an actor has rated no
item, no mean is available. In this case, 0.5 is used as a default mean.
More generally, we consider that approach ineffective for cold start
users, since they do not have enough ratings to provide a significant
mean thus a significant rating behaviour.

6.3.1 Relative score propagation

Equation 38 represents the score propagation using relative scores
instead of absolute scores. It only describes intermediate scores com-
putations, the final computation made by the original requester is
shown in equation 39.

No default scoring is considered here, but both approaches are
compatible.

δsk(a, i) =


ra,i − ra if ∃ra,i∑
f∈Fk−1a,i,ω

ωa,f × δsk−1(f, i)∑
f∈Fk−1a,i,ω

ωa,f
if @ra,i ∧Fk−1a,i,ω 6= ∅

⊥ otherwise
(38)

The original requester adds his/her ratings mean to the intermedi-
ate relative score in order to compute the absolute score:

∆sk(a, i) = δsk(a, i) + ra (39)

This propagation shares less information on friends ratings than
the one defined in section 4.1.1.

Friends only share the difference between their ratings and their
mean. They indicate that they relatively like an item because it has a
better rating than their mean.

6.3.2 Relative scoring evaluation

In order to evaluate the relative scoring heuristic, we have run our
scorer with k ∈ {1, 2, 3}, with or without relative scores.

We denote Absolutek scorers returning absolute scores, as defined
in section 4.1.1, equation 13, page 44. Relativek are scorers returning
relative scores, as defined above in equation 39.

Figure 26 shows side by side scorers with absolute or relative scores,
for cold stat users, medium raters and heavy raters.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.4 a new hop 89

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

coldStartUsers mediumRaters heavyRaters

P
re

ci
si

on

Absolute1
Relative1

Absolute2
Relative2

Absolute3
Relative3

Figure 26: Absolute vs. Relative scores on Alchemy

It appears that relative scores are much less accurate than absolute
ones for cold start users. This was expected since the rating behaviour
of cold start users, represented by their mean, is not significant.

Medium raters see their predictions almost as accurate with or
without relative scores. Relative scores has not impact on accuracy
for those actors.

However, relative scores increase accuracy for heavy raters. For
actors having more than 10 ratings, using relative scores is effective.

k = 1 k = 2 k = 3

Absolute 1.222 1.173 1.154

Relative 1.205 1.167 1.165

Table 4: RMSE with relative or absolute score depending on k

Table 4 summarizes the RMSE for all actors. For k ∈ {1, 2}, the
RMSE is lower with relative scores, therefore the precision is higher.
However, with k = 3, the RMSE is higher with relative scores.

Globally, relative score heuristics does not improve that much the
prediction accuracy. But it reduces the disclosure of information
shared between friends, therefore enhancing privacy.

6.4 a new hop

The score propagation described in chapter 4, section 4.1.1, page 43,
stops when an actor has a rating to return or when the maximum
depth propagation is reached.

This limits network flooding but also reduces the number of recom-
mendations returned to the original requester. Moreover it explicitly
returns an actor rating, thus revealing it. We introduce in this section
an heuristic where actors propagate the score request even when they

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

90 heuristics

have a rating for that item. We call such heuristic hopping or score
propagation with hops. Doing so, when an actor returns a rating, it is
mixed with other ratings, therefore harder to recover.

6.4.1 Score propagation with hops

When an actor has a rating for an item, instead of ending the score
propagation and returning his/her rating, the actor forwards the re-
quest. When his/her friends return scores, then the actor aggregates
those scores with his/her own rating and returns the result.

The aggregation between the actor’s rating and his/her friends’ is
made using a coefficient α, with α ∈ [0, 1].

Definition 32: Hop aggregation. Let sk(a, i) be the score predicted using
the scores from the friends of a on the item i. The hop aggregation is made
with ra,i and sFk(a, i) as follow:

sk(a, i) = α× ra,i + (1−α)× sFk(a, i)

Figure 27 shows the k−Depth Social Scoring example, as in sec-
tion 4.1.1 page 43, but with hops. Scores between actors a0, a1 and
a6 differ in this figure compared to figure 8.

a6

0.6

a1

0.2

0.6

a7

0.9

a3

⊥

0.9

a8

0.5

0.5

a9

0.1

a5

⊥

0.1

a0

X=0.5

0.4

a2

⊥

⊥ 0.7

a4

0.8

0.8 0.1

Figure 27: k−Depth Social Scoring with Hops; Example with α = 0.5

Without hop, a2 does not ask his/her friends since he/she has
a rating for the item. With hops however, a2 still asks for his/her
friends scores, in this case a6’s score. Then, a2 aggregates both scores:
his/her own score 0.2 and a6’s score 0.6. Since α = 0.5, the aggregate
score is 0.5× 0.2+ (1− 0.5)× 0.6 = 0.4. Therefore a2 returns 0.4 to a0
and the final predicted score is 0.5 instead of 0.45.

6.4.2 Hops evaluation

In order to evaluate the hopping heuristic, we have run our scorer
with k ∈ {2, 3}. k = 1 produces the same results with or without hops,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.5 friends selection 91

since the score propagation stops at the immediate friends. For each
k, we have run the evaluation with α ∈ [0, 1] in order to see if it is
better to strengthen the actor’s rating or his/her friends’ scores. The
greater α, the more important the actor’s rating in the aggregation.
α = 1 is equivalent to not using hop at all, since when an actor has a
rating, the friends’ scores are not taken into account at all (1−α = 0).

 1.168

 1.169

 1.17

 1.171

 1.172

 1.173

 0 0.2 0.4 0.6 0.8 1

R
M

S
E

α

(a) k = 2

 1.15

 1.151

 1.152

 1.153

 1.154

 1.155

 1.156

 0 0.2 0.4 0.6 0.8 1

R
M

S
E

α

(b) k = 3

Figure 28: Influence of α on the RMSE, using hops

Figure 28 shows the RMSE of CoTCoD2 and CoTCoD3 with hops,
depending on α. Since α = 1 represents CoTCoDepth without hop,
we can see that the hopping heuristic improves the precision in both
cases 1.

In addition, both graphs point out that α optimized the precision
around 0.5. Therefore doing a simple mean between an actor’s rating
and friends’ scores is a good combination. When recommending to a
friend, taking into account what we have been recommended by our
friends seems to improve the recommendation.

6.5 friends selection

In order to reduce the network overload caused by the multiplica-
tion of requests, this section introduces some heuristics that may be
used in situation where the system need a low resources allocation
on recommendation.

Since asking all friends is costly for an actor, in terms of time and
resources, the following heuristics propose to select a subset of the
actor’s friends and ask only that group of actors in order to predict a
score.

Indeed in our approach, actors ask all their friends in order to pre-
dict a rating for an item. In real life users do not wait for a recom-
mendation from all their friends to take a decision and select an item.
Usually they ask to a subset of their friends, based on acquaintance,
trust, similarity and/or expertise.

Section 6.5.1 describes an heuristic where friends are randomly cho-
sen before propagating the request to them, and only to them. Sec-

1. The RMSE difference between 1.150 in section 5.5.2 and 1.154 here comes from
the evaluation. In this section, we use a 90 % training set evaluation whereas in
section 5.5.2 we use a leave-one-out evaluation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

92 heuristics

tion 6.5.2 is an evolution of the previous selection, where friends are
still randomly chosen, but only friends with a score on the item count.
Section 6.5.3 shows an heuristic where actors ask the friends with the
highest weights in priority.

6.5.1 Random friends selection

This heuristic randomly selects a subset of size p of the friends Fa
for a given actor a and asks their scores. p, a positive integer, is a
parameter of the heuristic.

6.5.1.1 Selection

During the score propagation, an actor a randomly selects a set of
p actors among his/her friends. If he/she has less than p friends, all
friends are selected. Then the actor propagates the score request only
to them.

That is, the actor randomly selects a set S such than:

S =

{
S∗ | S∗ ⊆ Fa ∧ |S∗| = p if |Fa| > p

Fa otherwise

Once the selection is made, the actor propagates the request to all
friends in S. If no one returns a score, then the actor cannot predict a
score and returns ⊥, no new selection is made.

6.5.1.2 Evaluation

In order to evaluate this selection, we have run the heuristics with
p ∈ J1, 30K and with a score propagation depth k:

– k ∈ {1, 2, 3} using Alchemy in figure 29 and

– k ∈ {1, 2} using Flixster in figure 30.

Figures 29a and 30a show the coverage of the scores predicted de-
pending on the size of the friends sample selection. Figures 29b and
30b show the RMSE of the predicted scores depending on the size of
the friends sample selection. Figures 29c and 30c show the average
duration needed to predict a score with a given k depending on the
size of the friends sample selection.

As we can see in figures 29 and 30, the more friends an actor asks,
the higher coverage, precision and execution time.

Figures 29a and 30a outline that asking not enough friends will
result in an low coverage. Asking less than 10 friends produces a low
coverage preventing an adequate recommendation. Since friends are
randomly selected, small samples causes few chances to get a score.
From 20 friends, the coverage starts to increase less sharply, therefore
it seems to be an interesting trade-off for a good coverage.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.5 friends selection 93

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

C
ov

er
ag

e

Friends sample size

CoTCoD1
CoTCoD2
CoTCoD3

(a) Coverage

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20 25 30

R
M

S
E

Friends sample size

CoTCoD1
CoTCoD2
CoTCoD3

(b) RMSE

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

di
ct

io
n

du
ra

tio
n

(m
s)

Friends sample size

CoTCoD1
CoTCoD2
CoTCoD3

0.1

0.4

1.0
1.7

3.6

8.2
15.1

37.8

(c) Execution time

Figure 29: Random friends selection evaluation using Alchemy

Figures 29b and 30b also illustrate a significant correlation between
the size of the friends sample selection and the precision of the rec-
ommendation. With less than 10 friends, the coverage as shown in
figures 29a and 30a is not high enough to provide good precision
statistics. However the more friends selected, the lower the RMSE.
Here again, 20 friends seems to be a good trade-off for a low RMSE,
therefore a good precision.

Lastly, figures 29c and 30c illustrate the execution time of the eval-
uation depending on the friends sample size. The time scale is loga-
rithmic which shows an execution time almost exponentially propor-
tional to the size of the sample. Using Alchemy, the execution time
of CoTCoD3 evaluation per score prediction is 15 milliseconds with
20 friends and it is 38 milliseconds with 30 friends, 2.5 times more.

This heuristics provides a good trade-off balance by selecting 20

friends for each actors. It provides a good coverage and a good pre-
cision, and it radically decreases the execution time and therefore the
resources consumption.

6.5.2 Random raters selection

In the previous section, friends are randomly selected and therefore
the coverage suffers a lack of ratings since selected friends may or
may not have a score to return. This section provides an heuristic
verifying that the number of selected friends in the sample have all
rated or predicted a score for the recommended item.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

94 heuristics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

C
ov

er
ag

e

Friends sample size

CoTCoD1
CoTCoD2

(a) Coverage

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 5 10 15 20 25 30

R
M

S
E

Friends sample size

CoTCoD1
CoTCoD2

(b) RMSE

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

di
ct

io
n

du
ra

tio
n

(m
s)

Friends sample size

CoTCoD1
CoTCoD2

0.0

0.0
0.1

0.1
0.1

0.2 0.2
0.3

(c) Execution time

Figure 30: Random friends selection evaluation using Flixster

6.5.2.1 Selection

During the score propagation, an actor a selects randomly a first
friend f with a strictly positive weight ωa,f and asks his/her score.
If the returned score is defined then the actor a selects another friend
and starts this again. Until the number of defined scores is equal to
p or there is no friends any more. Then the sample selection is over
and the actor a may compute his/her own score using the returned
friends scores.

Since the selection is made by sending requests and waiting for
results, no more step is needed in this heuristic besides computing
the score. If no one returns a score, then the actor cannot predict
a score and returns ⊥, in the same way as without any heuristics.
However, one can see that since only friends with scores are selected,
the coverage is strictly the same with this heuristic than without any
heuristic, for any p > 0.

6.5.2.2 Evaluation

In order to evaluate the friends raters sample heuristic, we have
run it with p ∈ J1, 20K and with a score propagation depth k:

– k ∈ {1, 2, 3} using Alchemy dataset in figure 31 and

– k ∈ {1, 2} using Flixster dataset in figure 32.

Since the coverage is not impacted by this heuristic, as explained
above, no coverage figure is proposed. Figures 31a and 32a show the
RMSE of the predicted scores depending on the size of the friends

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.5 friends selection 95

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0 2 4 6 8 10 12 14 16 18 20

R
M

S
E

Friends sample size

CoTCoD1
CoTCoD2
CoTCoD3

(a) RMSE

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 p
re

di
ct

io
n

du
ra

tio
n

(m
s)

Friends sample size

CoTCoD1
CoTCoD2
CoTCoD3

22.4 26.9 32.8
51.9

106.3

(b) Execution time

Figure 31: Random raters selection evaluation using Alchemy

raters sample selection. Figures 31b and 32b show the average dura-
tion needed to predict a score with a given k depending on the size
of the friends raters sample selection.

As we can see in figures 31 and 32, the more friends an actor asks,
the better the precision and the lower the prediction time.

Figures 31a and 32a illustrate a significant RMSE decreasing be-
tween 1 and 5 friends raters. From 5 friends the error decreases
slowly. Since the coverage is always the same, for any p, this shows
that at least 5 scores are needed to provide an adequate recommen-
dation. Anyhow the more selected friends, the lower the RMSE. Be-
tween 5 and 10 friends seems to be a good trade-off for a low RMSE,
therefore a good precision.

Lastly, figures 31b and 32b depict the average duration needed to
predict a score depending on the friends raters sample size. The
time scale is logarithmic which shows a prediction time exponentially
proportional to the size of the sample. Using Alchemy, the execution
time of CoTCoD3 evaluation per score prediction is 33 milliseconds
with 5 friends and 106 milliseconds with 20 friends, almost 3 times
more.

This heuristics provides a good trade-off balance by selecting be-
tween 5 and 10 friends raters for each actors. It provides the best
coverage and a good precision, and it radically decreases the execu-
tion time and therefore the resources consumption.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

96 heuristics

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 2 4 6 8 10 12 14 16 18 20

R
M

S
E

Friends sample size

CoTCoD1
CoTCoD2

(a) RMSE

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 p
re

di
ct

io
n

du
ra

tio
n

(m
s)

Friends sample size

CoTCoD1
CoTCoD2

0.1

0.1
0.2

0.3

0.4

(b) Execution time

Figure 32: Random raters selection evaluation using Flixster

6.5.3 Weight influence

In the previous heuristics, the selection is made randomly, without
taking into account the weights of the friends. Here, this weight is
used to order friends and to select firstly the friends with the higher
weights. This heuristic does not change the average prediction time
compared to the previous one but try to improve accuracy for small
samples, when weight matters.

6.5.3.1 Selection

During the score propagation, an actor a first gets the weights be-
tween him/her and all his/her friends. Then the actor selects the
friend with the highest weight and asks his/her score. Then the ac-
tor a selects the second friend with the highest weight and starts this
again. That is, until the number of defined scores is equal to p or
there is no friend any more. At this point the sample selection is over
and the actor a may compute his/her own score using the returned
friends scores.

As in section 6.5.2.1, since the selection is made by sending requests
and waiting results, no more step is needed in this heuristic besides
computing the score. If no one returns a score, the actor cannot pre-
dict a score and returns ⊥, in the same way as without any heuristics.
However, one can see that since only friends with scores are counted,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.5 friends selection 97

the coverage is strictly the same with this heuristic than without any
heuristic, for any p > 0.

6.5.3.2 Evaluation

In order to evaluate the friends raters sample heuristic, we have
run it with p ∈ J1, 20K and with a score propagation depth k ∈ {1, 2}.

We first used this heuristic with local similarity, but it did not
change anything compared to the friends raters sample, defined in
section 6.5.2. This is mainly due to the fact that the trust is always 1

and the local similarity is barely computable in this dataset, since an
actor has an average of 8 friends and the intersection between com-
mon raters of an item and friends is almost always empty.

Therefore, this evaluation uses extended similarity in order to de-
fine a different weight for each friends. This also means that results
may differ from previous evaluations, where no similarity has been
used.

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0 2 4 6 8 10

R
M

S
E

Friends sample size

CoTCoD1-raters
CoTCoD1-weight
CoTCoD2-raters

CoTCoD2-weight
CoTCoD3-raters

CoTCoD3-weight

Figure 33: Weight influence compared to random raters selection

Figure 33 shows both random raters selection (CoTCoDk-raters)
and weight influence (CoTCoDk-weight) heuristics with k ∈ {1, 2}.
For low values of p, weight influences significantly the accuracy of
the approach. Selecting similar friends is efficient for small selec-
tions. However, the greater p, the less weight influences the pre-
diction. Randomly selecting friends without considering weight is
effective if there are enough friends in the selection. This erases the
disparity of the prediction and improve globally the accuracy.

This heuristic should be more efficient with disparate weights be-
tween friends, which will be more likely the case with wide social
network, such as the Facebook one, where users have an average of
300+ friends. Unfortunately we do not have such a dataset to confirm
that hypothesis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

98 heuristics

6.5.4 Conclusion

In this section, we have seen three heuristics aiming at accelerating
the prediction while maintaining an acceptable coverage and a good
precision.

The first one, random friends selection, selects randomly friends
for a given actor. It shows fast prediction but suffer a low coverage.

The second one, random raters selection, selects randomly friends
who return a score for the given item. It is slower than the previ-
ous one but produces the highest coverage possible. Moreover, the
precision is almost as good as without any heuristic, with a faster
prediction.

The last one, weight influence, selects friends taking into account
their weights. It is effective with small selections, i. e. less than five
friends. For bigger selections, the gain is minimized by the amount
of recommendation coming from selected friends.

In a peer-to-peer architecture, waiting the response from one peer
can be costly, therefore the second and third approaches, random
raters selection and weight influence, are not well suited. Indeed
those heuristics select the sample by asking friends one at a time,
waiting to see if the returned score is defined or not in order to take
into account that score in the prediction.

In order to counter this drawback, one can adapt these heuristics
with batches. An actor selects several friends instead of selecting only
one friend, he/she then asks those friends for their scores and waits
for an answer. If the number of computed scores is lower than p, then
the actor selects other friends, otherwise the selection is over. If the
number of scores is greater than p, the actor can use all of them, it
will enhanced the precision.

6.6 expertise

In this section, we propose two heuristics that take into account the
expertise of the actors during the score propagation.

In order to evaluate those heuristics, we need a dataset providing
expertise from actors to item categories. Unfortunately, Flixster and
Alchemy do not provide those data. But our own extraction of the
Epinions website provides those pieces of information. Therefore we
have used RED, described in appendix section B.1 page 120.

6.6.1 Friends expertise

The friends expertise heuristic takes into account the expertise of
an actor’s friends during the friends selection.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

6.6 expertise 99

The friends selection is processed as follow: an actor asks only
friends who are experts in the item category. If there is no expert, the
actor asks the other friends as usual.

Selecting only experts when available has two main advantages.
The first one is that an actor will not ask all his/her friends when
he/she knows an expert in the category, therefore limiting the net-
work resources consumption. The second one is that an expert who
happens to be trusted by the actor should return a relevant score,
therefore enhancing the accuracy.

Finally, this heuristic is compatible with the previous ones. If no
expert is selected, the actor may use the friends raters sample heuristic
to predict a score, for example.

6.6.2 Global expertise

The global expertise heuristic takes into account recommendation
from all experts, even the ones that are not friends. This heuristic
makes a strong assumption which is that experts let their profiles
public and accept to share their recommendations to anyone.

The “friends” selection is processed as follow: for a given item cat-
egory, an actor asks to all experts from this category and all his/her
friends.

This heuristic virtually create links between all actors and experts.
Therefore experts recommendations are taken into account by all ac-
tors.

Since there are more links in the network, this makes the whole al-
gorithm use more resources. But it should also improve the coverage.

6.6.3 Expertise evaluation

In order to evaluate the expertise heuristics, we have run them with
a score propagation depth k ∈ {1, 2, 3}.

Table 5 shows the RMSE, the coverage and the average duration in
milliseconds for a rating prediction with each heuristic (friends and
global expertise) and without any (none).

As expected, the coverage is a little bit lower with the friends exper-
tise, since an actor selects only experts if any among his/her friends,
and a little bit higher using global expertise, since an actor selects
experts in addition to friends. But the impact on the coverage is not
really significant.

However there is a slightly reducing on the average rating predic-
tion time with the friends expertise: the prediction is about 15 % faster
with that heuristic that without. All actors are not selected, which ex-
plains that improvement. Experts are few but they made a lot of
ratings and have many relations. It is enough to limit the score prop-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

100 heuristics

Depth Expertise RMSE Cov. Time (ms)

k = 1

None 1.119 40.92 0.44

Friends 1.122 36.52 0.90

Global 1.133 43.81 0.90

k = 2

None 1.148 59.69 3.9

Friends 1.147 53.52 3.2

Global 1.157 61.85 7.1

k = 3

None 1.151 65.03 503

Friends 1.150 58.50 425

Global 1.160 66.73 1025

Table 5: Results for expertise heuristics on Epinions

agation by asking them in priority, and not others friends, without
degrading accuracy.

The third column shows that none of the heuristics really improves
the precision. It is almost not impacted by the friends expertise heuris-
tic and the precision is worse with the global expertise than without
any. This confirms our main assumption that friends provide more
personalized recommendations than anonymous experts.

6.7 conclusion

This chapter introduces three main heuristics.
The first one uses hops in order to reach all actors in the social net-

work, up to depth k, in order to aggregate more ratings and improve
the final recommendation accuracy. It keeps the algorithm purely lo-
cal, unlike MoleTrust [MA07a], since no new relations are added in
the social network, and still manage to collect all ratings.

The second one selects only a subset of friends in order to speed
up the score prediction, without penalizing the accuracy of the re-
sult. It is perfectly suited to peer-to-peer architectures and focuses on
resources consumptions optimizations.

The last one takes into account actors expertise in the recommen-
dation. It shows no much interest for the recommendation with our
datasets. But it should be interesting to evaluate it with other datasets,
containing more data on expertise than our Epinions dataset.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Part IV

C O N C L U S I O N

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

7
C O N C L U S I O N

To the person who does not know where he wants to go there is no favorable
wind.

— Seneca

In this thesis, we propose a recommender system based on social re-
lations between users. Our system aims at using social networks with
trust-based techniques, but without propagating trust. We consider
social relations as predefined and therefore not inferable by comput-
ers. This means that users should communicate and share their pro-
files only with direct friends regarding a social network. We define
purely local versions of our approach (without default score or with
actor mean rating as default score) and a global version (with item
mean rating as default score) respecting our privacy concerns.

Based on those assumptions, we have presented a Correlative and
Trust-based with Confidence k-Depth social recommender system,
CoTCoDepth, using limited knowledge and based on explicitly user-
defined social relations.

It can be deployed on the users’ devices, does not need heavy off-
line preprocessing. Its complexity depends on the number of friends
of the user. Scores are propagated in a P2P manner. Each peer
has knowledge of the local user’s friends’ scores, but cannot access
friends-of-friends’ data.

7.1 contributions

In order to predict ratings, users ask their friends their scores on
items. Friends return their scores in the network step by step, until
reaching the original requester. Scores are either a rating if a user has
one, or an aggregation of friends’ scores.

Since we do not want to flood the whole network, we define a max-
imum depth propagation, depending on the density of the network.
With dense networks, such as Facebook, a maximum depth propaga-
tion of 2 offers good coverage and accuracy. With sparse networks,
such as Epinions, a maximum depth propagation of 3 is necessary.

Relations are weighted by an explicit local trust coefficient and
an implicit local similarity coefficient. Trust is explicitly defined
by users and represents the user belief on the usefulness of his/her
friends recommendations. Similarity is computed by the system in

103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

104 conclusion

order to promote recommendation coming from friends with simi-
lar rating behaviours, therefore similar tastes. Unlike traditional ap-
proaches, similarity is locally computed between friends, and not
between all users. Since similar users and friends are usually dis-
joint, we propose an extended version of the similarity computation
that is able to compute similarity for 80 % of friends in average in
our evaluation datasets. The 20 % remaining friends receive a default
coefficient in order to participate in the recommendation even so.

Confidence coefficients are associated with scores during the prop-
agation. Confidence represents the system belief on the accuracy of
the score. Users can use confidence as an indicator of the probable
usefulness of the recommendation.

Confidence integrates several aspects: links weights, number of
aggregated scores, variance of the aggregated scores, users distance
and score freshness. Confidence is aggregated at each step before
being forwarded to the next peer.

Experimentations show that our score propagation offers high cov-
erage with dense datasets, such as Flixster or Appolicious. However
sparse datasets, such as the Epinions ones, suffer a lack of trust rela-
tions. They usually require deeper propagation, which is not optimal
in P2P architectures. In order to provide recommendation without
propagating scores too deeply in those networks, we introduce de-
fault scoring. Default scoring is commonly used to deal with sparse
datasets. We have adapted it to our architecture.

When a rating is not predictable with our propagation, a peer can
either return nothing or return a default score. The probability of re-
turning a default score is low in order not to pollute genuine scores.
Default scores are propagated in the network as any other score but
with a lower confidence. This lower confidence allows the aggre-
gation to consider genuine scores with higher weight than default
scores.

A default score is either the user’s ratings mean or the item’s rat-
ings mean. The first strategy is purely local since a user only needs
his/her own ratings to compute the mean. The second strategy is
not purely local since a user needs to access the item’s ratings mean,
which requires centralized architecture. Nevertheless, that informa-
tion is anonymous and does not reveal information on users, there-
fore this strategy only requires anonymous knowledge. We also pro-
pose to combine the two strategies in order to return the item’s rat-
ings mean if possible, or the user’s ratings mean otherwise. Default
scoring enhances our score propagation with sparse datasets.

We have evaluated our approach with three datasets: Flixster, Ap-
policious and Epinions Alchemy datasets. A maximum depth prop-
agation of 2 provides high coverage with the dense datasets Flixster

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

7.1 contributions 105

and Appolicious (more than 95%). With sparse datasets, such as
Alchemy, we need to propagate up to depth 3 and use default scor-
ing in order to predict more than 95% ratings. Using the Alchemy
dataset, we have compared our approach with classical collabora-
tive filtering (UserBasedCF and ItemBasedCF) and trust-based ap-
proaches (MoleTrust, RandomWalk and TrustWalker) regarding three
metrics: coverage, precision and f-measure.

The results show that our approach has the highest f-measure for
all users and cold start users with this dataset. This is mainly due to
a high coverage, thanks to our default scoring strategies.

Our CoTCoDepth scorers have the best precision for cold start
users (i. e. users that have rated few items) and a high coverage even
for users that have few (less than five) connections with others. The
coverage results are 90 % ratings for all users and almost 100 % ratings
for users with more than four connections, despite a sparse dataset.
To sum up, our approach shows good results even for users that
are weakly connected and/or when they did not rate many items,
whereas they are usually the hardest users to recommend.

Furthermore, we have defined several heuristics pluggable in our
system. Some heuristics aim at improving accuracy, to the cost of
more requests on the network, others reduce the network consump-
tion by limiting requests propagation.

The hopping propagation allows users to ask their friends even
when they already have a defined rating. This heuristic propagates
scores from all friends up to the maximum depth propagation, thereby
increasing the number of requests on the network. However it also
increases the number of scores aggregated during the propagation
and improves predictions accuracy.

Relative scoring takes into account users’ rating behaviour by inte-
grating their ratings mean as a bias. It also limits ratings disclosure
since only relative ratings are propagated. Our evaluation shows that
this heuristic improves accuracy for heavy raters, i. e. users with 10 or
more ratings, has almost not impact on accuracy for medium raters,
i. e. users with more than 4 ratings and less than 10 ratings, and
reduces accuracy for cold start users, i. e. users with 4 ratings or less.

In order to adapt our approach to P2P architecture, we need to
limit the number of requests on the network. Therefore, we have also
focussed on friends pruning during the propagation. Here, a user
selects only a subset of all his/her friends in order to propagate a
request. This greatly reduces network overload and accelerates pre-
diction. We show that selecting enough friends still provides accurate
predictions. We first present a naive approach that selects randomly
friends. Then we propose to consider the n first friends that return a
score. Finally we take into account friends’ weights in order to select
the most similar friends first.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

106 conclusion

Our last heuristic concerns users’ expertise. It tries to improve ac-
curacy and to limit propagation by selecting in priority friends that
are experts in the item category. We have also proposed a global
heuristic, where users ask scores to experts known in the category,
even if they are not friends. This heuristics tries to improve cover-
age as well as accuracy. Unfortunately, our dataset does not contain
enough experts in order to measure the impact of this heuristic.

7.2 discussion

We have shown that a local vision of the ratings remains efficient
in ratings prediction, with sparse or dense datasets. It shows good
results even for weakly connected or cold start users, whereas they
are usually the hardest users to recommend.

Chapter 5 compares our approach with others using Alchemy, a
trust dataset. We have not implemented and evaluated TidalTrust
since it propagates trust using the same kind of knowledge as Mo-
leTrust but shows usually higher RMSE than MoleTrust [VCC11].

Compared to MoleTrust, our purely trust-based version CoTCoD3
suffers a lower precision with the same coverage. By definition, CoT-
CoDepth, MoleTrust and TidalTrust provide the same coverage. But
MoleTrust aggregates more ratings to compute a score, since it builds
extended users’ web-of-trust with an extended-local knowledge on
the network. This explains the small gain (less than 5 % lower error).
However, our approach is purely local, is deployable on P2P architec-
tures and does not add new relation in the network.

Trust-based approaches usually propagate up to depth 6 [MA07a,
JE09], improving coverage and accuracy. Regarding our decentraliza-
tion and privacy assumptions, we do not want to propagate that far
in the network. But our algorithms can handle such a propagation.
In centralized architectures, they could propagate scores up to depth
6. However our approach is the only one fully compatible with P2P
architectures.

In order to counterbalance lower coverage due to lower depth prop-
agation, we have introduced default scoring, adapted from classical
default rating. Our default scoring proposition is actually compatible
with existing trust-based approaches like MoleTrust or TidalTrust.

TrustWalker proposes to mix item-based collaborative filtering in
trust-based recommendation. We interpret this as an evolved default
scoring strategy. Instead of returning an item’s rating, it returns an-
other item’s rating. Their good results prove that this makes more
sense than returning for example the actor ratings mean as default
score. However in order to compute item similarity as they do, they
need a global access on all users ratings. This counters our assump-
tions on local knowledge and on privacy.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

7.3 perspectives 107

Some collaborative filtering systems also use default rating in order
to counter sparse datasets. However those approaches are not local,
which is why we have not implemented and evaluated them.

Nonetheless, our item mean rating default scoring strategy accesses
items’ ratings. This requires global knowledge. The main difference
between this approach and the collaborative filtering ones resides
in that to compute an item mean, we only need to access anony-
mous ratings and to aggregate them, without knowing who made
which rating. A centralized peer could offer such a service by return-
ing the mean without revealing ratings, using homomorphic encryp-
tion [HBC10].

The following table extends table 1 from section 2.5 by adding our
approaches:

Approach Graph Knowledge Computation Relations

TextBasedCB items similarity local heavy implicit

UserBasedCF users similarity global heavy implicit

ItemBasedCF items similarity global heavy implicit

TidalTrust trust network extended-local light propagated

MoleTrust trust network extended-local light propagated

RandomWalk trust network local light explicit

TrustWalker trust & items similarity global heavy explicit

SocialMF social network global heavy propagated

Hoens et al. social network local heavy explicit

CoTCoDepth social network local light explicit

CoTCoDeptha social/trust network local light explicit

CoTCoDepthia social/trust network anonymous light explicit

Table 6: Summary of recommender systems characteristics

With:

– CoTCoDepth: our main approach, without default score,

– CoTCoDeptha: our approach using actor mean rating as default
score,

– CoTCoDepthia: our approach using item mean rating or actor
mean rating as default score if the former is not computable.

7.3 perspectives

The pure local versions of CoTCoDepth are deployable on peer-
to-peer architectures. We have already implemented them in a P2P
simulator: PeerSim [MJ09], c. f. appendix C.2 page 138.

Our future work will focus on the evaluation of the network usage
implied by our approach and simulate some P2P and decentralized
constraints existing in such architectures (disconnection, dynamism,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

108 conclusion

timeout, etc.). We will also observe the influence of our friends prun-
ing heuristics.

During this work, we have defined magic constants such as the
maximum depth propagation, the default similarity or the default
scoring probability Pdefault. Those constants have been validated em-
pirically but are dataset specific. It could be interesting to transform
those constants into dynamic values.

Section 5.4 highlights that both maximum depth propagation and
default scoring probability should depend on the network density.
The more connections, the lower Pdefault in order not to flood the net-
work with default scores. Alongside, weakly connected users should
propagate deeper than heavy connected ones, since they are less
likely to reach a direct friend having a score to return.

In parallel, each user could use a default similarity based on his/her
other computed similarity values. Extended similarity explained in
section 6.2 reaches a 80 % success rate, therefore it makes sense to
compute default similarity as the mean or the median of existing sim-
ilarity values.

We have proposed a confidence coefficient in order to inform users
on the recommendation reliability. However we did not evaluate the
impact of this coefficient on recommendation. To do so, we could
compute the correlation between the confidence and the error of the
prediction. A correlation close to −1 indicates that a high confidence
implies a low error. Unfortunately this requires some major modifi-
cations in our prototype.

The following step will be try confidence on existing approaches,
such as classical collaborative filtering algorithms. Instead of using
friends to compute confidence, we could use similar users.

Since sparse datasets are a real problem in trust-based recommender
systems, we have integrated default scoring strategies. However de-
fault scoring is artificial. TrustWalker also proposes a default scoring
strategy, using similar items ratings when a user has no rating. Re-
garding our knowledge assumptions, we cannot compute item-based
similarity using correlation coefficients on ratings.

But our approach could integrate content-based items similarity.
Content-based similarity values are often locally computed, since they
depend on items themselves.

Our approach is compatible with some content-based systems pre-
sented in the state of the art, section 2.1, page 12. We could use
specific similarity measures like in [PFW05] or semantic descriptions
like in [DMO+

12].
When a user does not have any rating to return, instead of comput-

ing default scoring as defined in section 4.3 page 55, he/she could
return a similar item rating or the mean of similar items ratings.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

7.3 perspectives 109

Users would compute item similarity using items descriptions, such
as movie genre, producer, actors, synopsis. . . and apply content-
based approaches based on those descriptions, such as the TF-IDF
measure explained in section 2.1.1, page 13.

We have proposed a system where users share data with their
friends, and no one else. However since users propagate their scores
in the social network, malicious users can disclose information on
users ratings behaviours.

Social and trust relations assume that two friends would not attack
each others. This is a strong assumption and secure recommender
systems that take privacy into account should not rely only on it.

Hoens et al. well studied security concerns about social-based
recommendation in [HBC10]. Their system encrypts ratings before
transmitting them. Their approach requires heavy cryptographic al-
gorithms and our propagation slightly differs since we also propa-
gate confidence coefficients, therefore we cannot directly map their
approach to ours. However it would be an interesting research to
find a light cryptographic way to transmit and aggregate scores in
the social network without revealing them.

Finally, another way to deal with privacy is to make users not prop-
agating their own ratings. During the initialisation of this privacy
protocol, friends would share a part of their ratings. Then, users
would shuffle their ratings with their friends’ and select a subpart of
the result. This subpart would become their new profiles.

Once the initialisation finished, and for any score propagation, in-
stead of returning their ratings, users would return either one of their
ratings or one of their friends’.

This method would make tastes and preferences inferring much
more difficult since an attacker would not know if the score is either
the rating of the user, the rating of one of his/her friends, a genuine
score computing with his/her friends or a default score.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Part V

A P P E N D I X

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

A
M A N A G I N G C Y C L E S

When people agree with me I always feel that I must be wrong.
— Oscar Wilde

Contents
a.1 Cycles in score propagation 114

a.1.1 Ping-pong cycle 114

a.1.2 Loop . 114

a.1.3 Duplicate scores 115

a.2 Extended formula 116
a.3 Evaluation of the extended formula 116

Figures
Figure 34 Cycle with 2 actors 114

Figure 35 Cycle with 3 actors 114

Figure 36 Cycle with 4 actors 116

Tables
Table 7 Parenting strategies evaluation 117

113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

114 managing cycles

a.1 cycles in score propagation

By definition, cycles are present in any social network with at least
one relation: “I am the friend of my friend”. Indeed friendship is
not oriented in our definition, therefore any two friends are together
a cycle. But more complicated cycles occur in social networks: “the
friend of my friend could be my friend”.

Scores propagation must take cycles into consideration, in order to
avoid unnecessary computation and network overload. In figures 34,
35 and 36, three cycles examples are shown in order to illustrate our
approach.

a.1.1 Ping-pong cycle

a0 a1

Figure 34: Cycle with 2 actors

Figure 34 shows a basic cycle in social networks, a simple friend-
ship relation. If a0 asks a1’s score, the latter may ask back a0’s
score in order to compute his/her own score. This problem is sim-
ply avoided by not asking back the previous requester. This does not
require any more information on the system nor on the request.

a.1.2 Loop

a1 a2

a0

Figure 35: Cycle with 3 actors

Figure 35 shows a loop between three actors, each of them friends
with the two others. For a score propagation of depth k = 2, no cycle
will occur: a0 asks a1’s score, who then may ask a2’s score, but since
k = 2, a2 will not ask anybody’s score.

However, with k > 3, a2 may ask a0’s score, despite a0 being the
original requester. We propose three solutions in order to counter this
cycle.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

A.1 cycles in score propagation 115

a.1.2.1 Unique id

One way to solve this problem is to add an unique id to each re-
quest. When an actor receives a new request, he/she checks if it has
not been processed before. If so, the request is ignored, otherwise it
is processed and added to the request history.

There are two main drawbacks with this approach. The first one is
the computational burden added by the request id history manage-
ment. Actors must save request ids, but how long? When is a request
considered as forgettable? The second one is the information leak
risk. A malicious actor may broadcast requests in his/her network
and analyze the results in order to scan the social network.

a.1.2.2 Full requesters path

In order to avoid that kind of cycles, the full requesters path can
be added to the request. For example a2 get a request from a1 con-
taining the previous requesters {a0, a1}. There is no additional com-
putation with that approach since each peer does not have to mem-
orize anything. However there are even more pieces of information
revealed on the network, therefore it is not acceptable.

a.1.2.3 Let it happen

The last solution is to let cycles happen. Indeed the problem here
is that a0 will be asked for a score we know he/she does not have.
In order to reduce that kind of situations, we decide that k = 3 is
the maximum acceptable for a score propagation. With k = 2, no
loop can occur; with k = 3 the original requester may be asked to an-
swer his/her own request. But since he/she is the original requester,
he/she does not have any score to return.

The additional cost is not excessive and the result will be the same
anyway. Therefore we choose to let this scenario happen time to time
in order to reduce information on the social network and to limit
information leaks.

a.1.3 Duplicate scores

Figure 36 shows a situation where an actor answers several time for
the same request. a0 asks a score with k = 3. Let’s assume that both
a1 and a2 do not have a rating and have to ask their friends. Only a3
provides a rating.
a1 will ask a2 and a3 (not a0 since he/she is the requester). Then

a3 will provide his/her own rating and a2 will ask a0 and a3. So a1
will get a3’s score twice, directly and indirectly, through a2.

The same occurs when a0 asks a2’s score.
We choose here again to let it happen. Since a0 is friend with more

actors, we choose to take his/her recommendation into account for

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

116 managing cycles

a3

a1 a2

a0

Figure 36: Cycle with 4 actors

each friend. Therefore this recommendation is more weighted than a
usual one.

a.2 extended formula

Our global strategy is therefore to limit cycles by not asking the
requester and limit the depth propagation to 3. In other cases, we
let duplicate and limited loops happen. The computational cost is
not high (a few more requests), and actors with more connections are
more influent, without knowing any global information on the social
network. At no point an actor knows the original requester and/or
previous requester besides the one asking him/her directly a score.

Definition 33:. Let Fka,l,i,ω be the set of a’s friends f without the previous
requester l where sk(f, i) is defined and ωa,f is not null:

Fka,l,i,ω = {f ∈ Fa \ {l} | sk(f, i) 6=⊥ ∧ ωa,f 6= 0} (40)

Therefore, the extended version of our approach is defined as:

sk(a, l, i) =


ra,i if ∃ra,i∑
f∈Fk−1a,l,i,ω

ωa,f × sk−1(f, a, i)∑
f∈Fk−1a,l,i,ω

ωa,f
if @ra,i ∧Fk−1a,l,i,ω 6= ∅

⊥ otherwise
(41)

By definition, sk(a, i) = sk(a, a, i), for the original requester.

a.3 evaluation of the extended formula

We have seen in section A.1 two ways to deal with cycles by know-
ing the direct previous requester or all previous requesters. We add
another way which is not knowing anything and asking all our friends
without knowing the previous requester.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

A.3 evaluation of the extended formula 117

There are therefore three strategies regarding cycles. The question
is how much a requester knows about the previous requesters, aka.
his/her parents. We call parent(s) the previous requester(s) in the
score prediction.

orphan the orphan strategy deals with cycles by not knowing any
parent for a given actor

singleparent the single parent strategy deals with cycles by know-
ing the direct parent of the request, i. e. the strategy choose in
section A.1.2.3

ancestors the ancestors strategy deals with cycles by knowing all
previous parents of the request, from the original requester to
the direct previous requester

We have implemented and evaluated the three strategies described
above in order to deal with cycles. The coverage is not impacted by
the strategies. Only the knowledge on the system and possibly the
precision of the prediction. Finally, the number of involved actors is
also affected since an actor included in a cycle will be asked several
times for the same score.

Strategy RMSE

Orphan 1.174

Single parent 1.175

Ancestors 1.175

Table 7: Parenting strategies evaluation

Surprisingly, table 7 shows that the precision is almost not im-
pacted by the strategy. For a depth propagation of k = 3 with the
90 % training set, the RMSE equals 1.175 for the single parent and the
ancestors strategies. However, the RMSE equals 1.174 for the orphan
strategy. The difference is not significant therefore we cannot con-
clude anything on this.

However we can conclude that it is not necessary to know all an-
cestors to provide an accurate recommendation. Thus we can conceal
the knowledge on the network to the previous requester at maximum,
using the single parent strategy.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

B
D ATA S E T S

Some people go to priests others to poetry I to my friends.
— Oscar Wilde

Contents
b.1 Rich Epinions Dataset 120

b.1.1 Epinions dataset extraction 121

b.1.2 Dataset structure 122

b.1.3 Statistics . 122

b.1.4 Evaluation with this dataset 126

b.2 Appolicious dataset 126
b.2.1 Appolicious dataset extraction 127

b.2.2 Dataset structure 127

b.2.3 Statistics . 128

b.3 Conclusion . 129

Figures
Figure 37 Database schema of the dataset 123

Figure 38 Trust distribution 124

(a) Output trust count 124

(b) Input trust count 124

Figure 39 Ratings count distribution 124

(a) Users’ . 124

(b) Items’ . 124

Figure 40 Database schema of the anonymised dataset 128

Figure 41 Following distribution 129

(a) Output following count 129

(b) Input following count 129

Figure 42 Ratings count distribution 129

(a) Users’ . 129

(b) Applications’ 129

Tables
Table 8 Statistics depending on user characteristics 123

Table 9 Views distribution 125

119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

120 datasets

Recommender systems evaluation is a difficult problem. One of the
solution is given by offline evaluation, based on a dataset containing
ratings that the system will try to predict. Therefore, datasets are re-
ally important in order to test and evaluate a system. However, some
systems require information that is not always included in existing
datasets.

Trust-based recommender systems need a trust network in order to
provide recommendation. There is very few public datasets available.
The main ones are Epinions and Flixster datasets, c. f. section 5.2
page 67. Those datasets contain ratings from users to items and a
trust network. They are anonymised and no more information is
available.

In this chapter, we describe two datasets that we have extracted dur-
ing this thesis in order to provide datasets compatible with multiple
approaches, content-based or collaborative filtering ones.

Section B.1 describes our Epinions datasets extracted in 2011. This
dataset contains items description, categories and users description.
It is referred as RED: a Rich Epinions Dataset [MGML11].

Section B.2 describes our Appolicious datasets extracted in 2012.
Unlike the previous dataset, more textual information are provided
in the Appolicious dataset, such as items description and reviews
description. The social network included in Appolicious is based on
followers, however users can automatically import Facebook friends
into their network.

b.1 rich epinions dataset

The Epinions 1 website contains reviews made by users on items.
Items are any product or service. They have names and belong to
one unique category. In a given category, items may show a common
description structure. Categories are structured in a tree and may
contain any number of items or subcategories.

Users build their web of trust within the community. A web of trust
is a list of trusted or distrusted users. Anyone can trust or be trusted
by anyone. Trusted users’ reviews are promoted and distrusted users’
reviews are less likely encountered. The web of trust may or may not
be public, depending on the user settings.

A review contains a rating between 1 and 5 and a free text message.
It may also contain some specific characteristics depending on the
category (e. g. photo quality or shutter lag for cameras). Reviews can
be commented and/or rated. A review rating is either “Not Helpful”,
“Somewhat Helpful”, “Helpful”, “Very Helpful”, “Most Helpful” or
“Off Topic”. Express reviews are very short reviews that can only be
tagged with “Show” or “Don’t Show” whether they are valid or not.

1. http://www.epinions.com

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.epinions.com

B.1 rich epinions dataset 121

Epinions defines four kinds of users 2:

– Category leads ensure high-quality review coverage of key items
in their category and ensure that new reviews in their category
are rated by a category lead or an advisor (see below).

– Top reviewers write high-quality reviews in their category of ex-
pertise. Their reviews have received the highest ratings from
the Epinions community.

– Advisors rate reviews in their category.

– Regular users can review items, rate reviews and trust or block
other users.

Orthogonally, any user can be a popular author: they are deter-
mined by the number of total visits to their reviews. Popular review-
ers in specific categories are based on the users’ total number of visits
in that category. These users hold a top X rank (top 10, top 100. . .).

b.1.1 Epinions dataset extraction

Regarding the Epinions website structure, two strategies could have
been used to do the extraction:

– extract all items, then for each item extract the relative reviews
and the associated users

– extract all users, then for each user extract the relative reviews
and the associated items

For the first strategy, Epinions proposes an easy way to browse
items through items categories and subcategories. However there
is no standardization between categories and parsing categories is
not handy. Moreover, each category cannot show more than fifteen
hundred items. And finally, many items do not have review, they
are not useful regarding our purpose. We could also search all items
through the search field with a dictionary approach. But the result
list is also limited to fifteen hundred items.

We have then implemented the second strategy: search all users
through the “members search” facility with a dictionary based ap-
proach. The fifteen hundred users limitation applies also here, but we
have managed to extract a subsequent number of users with this ap-
proach: 240 000 users. Then, for each identified user, we have parsed
his/her profile, reviews and web of trust, adding new users if any.
This brought a total of about 307 000 users. For each users review, we
have parsed the associated item if new and its category.

This approach ensures that items in the dataset have been reviewed
at least once. However it does not ensure that each user has reviewed

2. http://www99.epinions.com/help/faq/?show=faq_recognition

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www99.epinions.com/help/faq/?show=faq_recognition

122 datasets

at least one item. We then cleaned the dataset by removing all un-
necessary users, i. e. users with no trust relation nor review. Those
users were found with the dictionary based approach and are cer-
tainly users who wanted to try Epinions or use a read only access.

This extraction took two plain days of crawling in June 2011 on an
Intel Core 2 Duo notebook with 3 Go of RAM.

We have encountered several problems during the dataset extrac-
tion. First of all, the Epinions website html structure is very particular,
using a lot of table tags and very few CSS classes. This made the use
of XPath very difficult. In addition, there are many exceptions in the
pages structures, some pieces of information were missing sometimes
whereas some others appeared not often. Moreover some special char-
acters in users names were problematic. Categories breadcrumbs are
not always consistent and made the category extraction pretty chaotic:
we had to correct it manually.

b.1.2 Dataset structure

As shown in figure 37, the dataset is a relational database with the
following tables:

– User: name (pseudo and profile url), location, top rank (may be
null) and profile visits count

– Item: name, category and profile url

– Category: name, parent category, description url, lineage (path
in the category tree) and depth (in the category tree)

– Review: a review associates a user with an item, it contains the
rating, between 1 and 5, the review rating (mean of all review
ratings associated with this review) and the review date

– Expertise: users who are experts in a category appear here with
the expertise (category lead, top reviewer, advisor) associated
with the considered category

– Trust: web of trust, i. e. a trust value (either -1 or 1) from one
user to another, only positive trust values appear in the dataset

– Similarity: we have computed the similarity between all user
pairs using the Pearson coefficient correlation [BHK98]. Since
this operation may be long and is used in classical collaborative
filtering, we provide it in order to ease recommendation; those
values do not belong to the Epinions website

b.1.3 Statistics

The dataset contains 131 228 users, 317 755 items and 1 127 673 re-
views, that is a 0.003 % density. 113 629 users have at least one rat-
ing. 47 522 users have at least one trust relation. 31 000 users have at

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

B.1 rich epinions dataset 123

Category
idcategory
name
relativeUrl
parent
lineage
depth

Item
iditem
name
idcategory
relativeUrl

Review
idreview
iduser
rating
review_rating
iditem
date

Similarity
iduser
idsimilar
similarity

Expertise
iduser
idcategory
expertise

Trust
iduser
idtrusted
trust

User
iduser
name
location
rank
visited

Figure 37: Database schema of the dataset

least one similarity computed toward another user. 21 910 users have
at least one review, one trust relation and one computed similarity.
4 287 users have neither reviews nor trust relation.

b.1.3.1 Users and Trust

Table 8 provides statistics on four users sets: all users, users with
at least one review, users with at least one review and one trust re-
lation and users with at least one review, one trust relation and one
computed similarity. We provide for each set its cardinality and the
average count of reviews, trust and similarity per user.

Users set count review trust similarity

all users 131 228 9 4 28

with review 113 629 10 4.5 32

with review and trust 34 410 25 15 95

with review, trust and similarity 21 910 38 20 149

Table 8: Statistics depending on user characteristics

In average, a user has less than one trusted user with a computable
similarity: intersection between trusted users and similar users is very
small. However, experts have an average of 41 trusted users with a
computable similarity.

The output and input trust are equally distributed and follow a
power law (fig.38). This is common to main social network datasets.
In average, users trust as many users as they are trusted.

b.1.3.2 Categories and Expertise

587 categories and sub-categories are provided. Among them, 21

root categories contain experts. 261 users are “experts”, i. e. category
leads, top reviewers or advisor in at least one category. Some of them
have several expertises: the dataset contains 556 expertises. Only
261 experts in 131 228 users seem very low, but those experts made
488 217 reviews, i. e. almost half reviews. If we take experts with trust

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

124 datasets

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

U
se

rs
 c

ou
nt

Output trust

(a) Output trust count

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

U
se

rs
 c

ou
nt

Input trust

(b) Input trust count

Figure 38: Trust distribution

(respectively trust and similarity), they are 245 (resp. 241) and have
made 463 991 (resp. 463 886) reviews.

b.1.3.3 Ratings

The ratings distribution is as follow: 7.2 % of 1, 7.4 % of 2, 12 % of
3, 30 % of 4 and 43.4 % of 5. We can see the particular distribution of
the dataset. It is similar to the Trustlet [MA06] and Alchemy [RD02]
datasets and seems to be the real distribution of the Epinions website.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

U
se

rs
 c

ou
nt

Users' ratings count

(a) Users’

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

P
ro

du
ct

s
co

un
t

Products' ratings count

(b) Items’

Figure 39: Ratings count distribution

The ratings count distribution follows a power law (fig.39), a few
users made a lot of ratings whereas most users made few ratings.
Similarly, a few items has been reviewed many times whereas most
items were reviewed a few times.

b.1.3.4 Views

In their evaluation, [MA07a] introduce views, i. e. parts of the
dataset grouping particular users or items, that point out the advan-
tages and drawbacks of the evaluated scorers regarding specific con-
texts. We have adapted them in table 9.

We define three categories of views for users and one category of
view for items. Each category defines disjoint partitions of the users
or items.

Users categories are not orthogonal: cold start users tend to be cold
trusters and heavy raters tend to be heavy trusters.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

B.1 rich epinions dataset 125

Category users/items % ratings %

Rateness

No raters 13.4 0

Cold start users 61.3 10.6

Medium raters 15 15

Heavy raters 10.3 74.4

Trustness

No trusters 62.6 17.8

Cold start trusters 24.3 16.3

Medium trusters 6.7 14

Heavy trusters 6.4 51.9

Sheepness
Sheep 30.6 37.7

Gray sheep 15.4 30

Black sheep 54 32.3

Controversy

Unanimous 72.1 23.9

Cold controversial 13.9 23.2

Medium controversial 7.1 25.2

Heavy controversial 6.9 27.7

Table 9: Views distribution

rateness The “rateness” category considers the number of rat-
ings given by users.

no raters provide no ratings.

cold start users provide between 1 and 4 ratings.

medium raters provide between 5 and 15 ratings.

heavy raters provide more than 15 ratings.

trustness The “trustness” category considers the number of trust
values given by users.

no trusters have no trust relations.

cold trusters have between 1 and 4 trust relations.

medium trusters have between 5 and 15 trust relations.

heavy trusters have more than 15 trust relations.

sheepness The “sheepness” category considers users’ rating be-
haviours, it denotes the ability to rate more or less differently from
the others: d is the average distance from users ratings to items mean
(for each rated item), the bigger d, the more the actor gives ratings
different from the majority.

sheep are users with d 6 0.5.

gray sheep are users with 0.5 < d 6 0.7.

black sheep are users with d > 0.7.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

126 datasets

controversial items The “controversy” category considers the
standard deviation σ of items ratings.

unanimous items have σ = 0, all users rate them the same.

cold controversial are items with 0 < σ 6 0.75.

medium controversial are items with 0.75 < σ 6 1.1. Heavy
controversial are items with 1.1 < σ.

We have balanced the two last categories regarding ratings ratio.

b.1.4 Evaluation with this dataset

As explained in section 5.1, the training set campaign splits the
dataset into two disjoint sets: the training set and the evaluation set.
Those sets need to be split randomly, which will influence the results.
This evaluation must be made several times and its results aggre-
gated, with the same training set size but with different shuffles.

In order to ease that evaluation, we have introduced the ReviewEval
table. This table contains five random values for each review. Those
five values orderField1 to orderField5 can be used to build five differ-
ent evaluation shuffles. In order to run evaluation number one, one
just needs to sort reviews with the first random value and to split
the result set into the training and the evaluation dataset. Here is a
sample SQL query in order to shuffle the dataset using the first ran-
dom coefficient. One can build the 20 % training and 80 % evaluation
dataset by appending “LIMIT 225534” for the training dataset and
“LIMIT 225534, 1127673” for the evaluation dataset:

SELECT Review.* FROM ReviewEval

INNER JOIN Review

ON (ReviewEval.idreview = Review.idreview)

ORDER BY orderField1;

b.2 appolicious dataset

The Appolicious 3 website contains reviews made by users on mo-
bile applications. They have names, descriptions, prices, versions,
sizes, publishers, compatible platforms and belong to one or more
categories. Categories are not structured in subcategories, except for
games categories which have a common parent category.

Users follow other users of the community. A user has follower
and is followed by others. Anyone can follow or block another user.

A review contains a rating between 1 and 5, a free text message and
a recommendation for some user categories. Reviews can be rated. A
review rating is either “Not Helpful” or “Helpful”.

3. http://www.appolicious.com

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.appolicious.com

B.2 appolicious dataset 127

Users have activity points, depending on their activity on the web-
site. Writing reviews, building applications lists and so on provide
activity points.

b.2.1 Appolicious dataset extraction

Regarding the Appolicious website structure, the same kind of
strategies than for Epinions could have been used. However we did
not want to build here an exhaustive dataset but we wanted to ex-
tracted a coherent subpart of the website, as connected as possible.

Therefore we have randomly chosen a user which was one of the
top reviewers at the time. Then we have extracted and analyzed all
her reviews, ratings and selected applications as well as her followers
and following. Then we did that again for her social network.

This approach ensures that applications in the dataset have been
reviewed at least once. However it does not ensure that each user
has reviewed at least one application. We then cleaned the dataset by
removing all unnecessary users, i. e. users with no following relation
nor review. Those users are the leaf of the social network tree cen-
tered around the original user, without follower in our extraction and
without review, therefore useless in recommendation.

This extraction took eight hours of crawling in February 2012 on an
Intel Core i5 notebook with 4 Go of RAM allowed for the extraction.

This dataset extraction was easier than the Epinions’ one. The
html wax not XML compliant but we used TagSoup in order to use
XPath. The structure of the source code then made the extraction
quite straightforward.

b.2.2 Dataset structure

Figure 40 shows an anonymised version of the dataset. The com-
plete dataset contains the following data:

– users: name, location, twitter account, personal website, date of
registration, activity points, applifes, devices

– applifes: categories of users (books reader, gamer, etc.)

– devices: name of the device (model of mobile phone or tablet)

– followers: following link between users

– applications: name, description, price, date, version, size, pub-
lisher, categories, platforms

– categories: application categories

– platforms: OS compatible with the application

– ratings: rater (user), application rated, rating, date

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

128 datasets

– reviews: reviewer (user), application reviewed, rating, date, re-
view description, helpful, recommended applifes according to
the reviewer

 application_categories

 id_application

 id_category

 applications

 id

 description

 applifes

 id

 name

 names

 categories

 id

 web_id

 followers

 id_follower

 id_followed

 ratings

 id

 id_user

 id_application

 rating

 date

 review_applifes

 id_review

 id_applife

 reviews

 id

 id_application

 id_user

 rating

 date

 description

 user_applifes

 id_user

 id_applife

 users

 id

Powered by TCPDF (www.tcpdf.org)

Figure 40: Database schema of the anonymised dataset

Applifes are some categories of users regarding their day to day
behaviour and tastes. A user may define in his/her profile which
applifes describe him/her the best. Then a reviewer may select which
kind of applifes should like an application.

The applifes defined in the Appolicious website are enumerated in
the following list:

– Animal Lover

– Book Reader

– Budget Hawk

– Career Person

– Film/TV Fan

– Foodie

– Gamer

– Music Fan

– News Junkie

– Outdoors
Enthusiast

– Parent

– Road Warrior

– Shopaholic

– Social Butterfly

– Sports Fan

– Student

– Tech/Social
Networking
Junkie

– Workout Junkie

b.2.3 Statistics

The dataset contains 4 058 users, 8 935 applications, 28 963 ratings
and 12 546 reviews, with 10 605 common ratings/reviews, that is a
0.08 % density. 1 007 users have at least one rating. All users follow
at least one other user.

b.2.3.1 Following

There are 20 815 following links, that is 5 following/follower per
user in average.

The output and input following links are equally distributed and
follow a power law (fig.41). This is common to main social network
datasets. In average, users follow as many users as they are followed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

B.3 conclusion 129

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

U
se

rs
 c

ou
nt

Following count

(a) Output following count

 1

 10

 100

 1000

 1 10 100 1000

U
se

rs
 c

ou
nt

Followed count

(b) Input following count

Figure 41: Following distribution

b.2.3.2 Ratings

The ratings distribution is as follow: 2.5 % of 1, 5.1 % of 2, 20 % of
3, 37 % of 4 and 35.4 % of 5. The dataset is more equally distributed
on the values 3, 4 and 5. However there are very few 1 and 2 ratings.

 1

 10

 100

 1000

 1 10 100 1000 10000

U
se

rs
 c

ou
nt

Users' ratings count

(a) Users’

 1

 10

 100

 1000

 10000

 1 10 100 1000

A
pp

lic
at

io
ns

 c
ou

nt

Applications' ratings count

(b) Applications’

Figure 42: Ratings count distribution

The ratings count distribution follows a power law (fig.42), a few
users made a lot of ratings whereas most users made few ratings.
Similarly, a few items has been reviewed many times whereas most
items were reviewed a few times.

b.3 conclusion

This chapter presents two datasets extracted from the Epinions and
the Appolicious website.

Existing datasets usually suffer a lack of cross-domain information.
Ratings provide classical collaborative filtering the base to compute
similarity coefficients. Trusts allow trust-based approaches to predict
ratings. Items features, such as names, descriptions and categories,
introduce content-based compliance. Moreover text reviews can be
analyzed in order to improve the recommendation. Finally, informa-
tion on users (applifes, location, twitter account) may be inferred to
enhance the social network.

The Appolicious dataset contains much fewer users than the Rich
Epinions Dataset, however it is also denser: 0.08% instead of 0.003%
for RED.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

130 datasets

Our datasets are therefore usable for the evaluation of many kinds
of recommender systems. It aims at providing enough information
for Content-Based, Collaborative Filtering and Trust-Based ones.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

C
P R O T O T Y P E S

The old believe everything, the middle-aged suspect everything, the young
know everything.

— Oscar Wilde

Contents
c.1 Scars prototype . 132

c.1.1 Usage . 132

c.1.2 Modules . 133

c.1.3 Scorer . 134

c.1.4 Evaluation 136

c.1.5 Conclusion 137

c.2 P2P prototype . 138
c.2.1 Implementation 138

c.2.2 Results . 138

c.2.3 Conclusion 139

131

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

132 prototypes

During this thesis, we have designed and implemented two differ-
ent prototypes:

– “Scars” is used to evaluate our approach and compare it with
algorithms of the literature (section C.1),

– the second prototype simulates our approach in a peer-to-peer
architecture (section C.2).

c.1 scars prototype

“Scars”, for Scala recommender systems, is a framework we have
implemented in order to evaluate recommender systems. There exist
several recommender system frameworks released on the Internet:

– Apache Mahoot 1 is a machine learning library. It contains im-
plementations of collaborative filtering, k−means clustering, sin-
gular value decomposition, etc.

– Twitter released recently its own framework Scalding 2. It eases
writing of MapReduce jobs in Hadoop 3 with natural code in
Scala.

– LensKit 4 proposes a framework to develop or evaluate recom-
mender systems.

– EasyRec 5 is an open-source recommendation engine to add rec-
ommendation in existing websites.

Some of them allow to build recommender systems whereas others
are also evaluation frameworks.

However we have developed our own framework because we wanted
a pure Scala framework:

– optimized to our multi core server,

– that can handle our specific datasets defined in appendix B,

– compatible with our approach and

– computing various statistics on results.

c.1.1 Usage

Our evaluation framework is command line only. We have written
a script in shell in order to run the framework through maven.

Listing 1 shows our framework usage. The four first parameters are
exclusive and select the evaluation dataset. epinions, appolicious
and flixster load the appropriate dataset from text files. database

is used to load RED, c. f. section B.1, from a database.

1. http://mahout.apache.org

2. https://github.com/twitter/scalding

3. http://hadoop.apache.org

4. http://lenskit.grouplens.org

5. http://www.easyrec.org

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://mahout.apache.org
https://github.com/twitter/scalding
http://hadoop.apache.org
http://lenskit.grouplens.org
http://www.easyrec.org

C.1 scars prototype 133

Listing 1: Scars usage

USAGE:

--epinions DATASET_PATH

--appolicious DATASET_PATH

--flixster DATASET_PATH

--database DATASET_URL

OPTIONS:

--save SAVE_DIR

--load LOAD_DIR

--reload

--view

--metrics LIST_OF_METRICS �
The save option lets the framework save all predicted ratings in a

text file in order to reuse the results. Since our approach implemen-
tation uses mixins traits in Scala, it is not yet possible to load the
evaluated scorers list from a file. This list must be hard-coded. How-
ever, the load option loads predictions from previously saved text
files instead of predicting ratings with scorers. The reload option
continues previously stopped evaluation by reloading intermediate
files in order not to compute again already predicted scores.

The view option computes and shows the metrics for each view
implemented in the system. Views are defined in section B.1.3.4,
page 124.

Finally, the metrics option selects which metrics we want to use to
evaluate the scorers. LIST_OF_METRICS represents a coma separated list
of metrics names, defined in section C.1.4.2.

c.1.2 Modules

Our framework contains the following modules:

1. Core: contains API and specific mathematics classes,

2. Scorer: contains recommender systems implementations, aka.
scorers,

3. Evaluation: handles the evaluation part and is runnable,

4. FileDataset: loads file datasets,

5. DBDataset: loads database datasets,

6. Utile: contains generic classes used by other modules.

We detail the most important parts in the following. The Core
module contains our framework API. The main interfaces (i. e. traits
in Scala) are:

– Actor: An actor represents a user or a peer. It contains a set of
reviews, a set of friends and a set of similar actors.

– Item: An item contains a set of reviews and a set of similar
items.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

134 prototypes

– Review: A review contains a rating from an actor to an item,
with optionally a date.

– Scorer: A scorer is a recommender algorithm that optionally
return a score for a tuple (actor, item).

– Score: A score contains a predicted rating and the confidence
associated with the prediction.

The complete module contains more pieces of information, depend-
ing on the dataset used for the evaluation: item’s description, item’s
category, actor’s expertise, actor’s rank and review’s helpfulness. The
Appolicious dataset contains even more data, that we have not imple-
mented yet.

c.1.3 Scorer

c.1.3.1 Interfaces

A scorer must implements one of the Scorer (listing 2), ActorScorer
(listing 3) or ItemScorer (listing 4) traits.

Listing 2: Scorer trait

trait Scorer {

abstract def score(actor: Actor, item: Item, without: Set[Review]):

Option[Score]

def rating(actor: Actor, item: Item, without: Set[Review]): Option[

Score] = {

for {

review <- actor.review(item) if !(without.contains(review))

} yield Score(review.rating)

}

} �
Scorer is the main trait. Recommender system algorithms imple-

ment the score function. This function tries to predict a rating from
the actor to the item.

By contract, it must not use reviews contained in the set without,
those reviews are the one removed depending on the evaluation cam-
paign, c. f. section 5.1, page 65. For example, the function rating

returns the rating from the actor to the item if and only if this rating
exists and is not contained in without.

Scorers that implement this trait predict ratings one by one, for
each tuple (actor, item). They return Option[Score] which may be:

– None if no score is predicted,

– Some(score) if score has been predicted.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

C.1 scars prototype 135

Listing 3: ActorScorer trait

trait ActorScorer extends Scorer {

abstract def scores(actor: Actor, reviews: Set[Review], without: Set[

Review]): Map[Review, Option[Score]]

} �
ActorScorer optimizes algorithms that can factorise processes per

actor, for example the ones that compute the extended web-of-trust
for each actor.

The scores function takes one actor but a set of reviews (and their
associated items). Algorithms must predict all ratings contained in
the input reviews. For each prediction, the without reviews and the
actual review must not be used.

Listing 4: ItemScorer trait

trait ItemScorer extends Scorer {

abstract def scores(item: Item, reviews: Set[Review], without: Set[

Review]): Map[Review, Option[Score]]

} �
ItemScorer is the counterpart of ActorScorer for scorers that can

optimize predictions for a given item with multiples actors.

c.1.3.2 Implementations

We have implemented several recommender systems during this
thesis. Some are self dependant, some other can be mixed in with
several traits 6.

Our main implementations are:

– FixedScorer: returns always the same rating, e. g. 4 is amaz-
ingly accurate on Epinions

– UserBasedCF: c. f. section 2.2.1

– ItemBasedCF: c. f. section 2.2.1

– TidalTrust: c. f. section 2.3.1

– MoleTrust: c. f. section 2.3.2

– RandomWalk: c. f. section 2.3.3

– TrustWalker: c. f. section 2.3.3

– TrustAll: c. f. section 5.4.1.1 page 73

– CoTCoDepth: our algorithm, c. f. chapter 4 page 41

6. This feature is Scala specific, more details on http://www.scala-lang.org/

node/117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

http://www.scala-lang.org/node/117
http://www.scala-lang.org/node/117

136 prototypes

We have also implemented some feature scorers, the followings
take a list of scorers in argument:

– CompositeScorer: returns the first predicted score using all scor-
ers one at a time

– FilterScorer: returns the last predicted score if all scorers have
predicted something, otherwise return None

Finally, since ratings are integers most of the time, we have also
implemented two classes that round the result of a given scorer:

– LeveledScorer: returns the nearest available rating, e. g. in Epin-
ions, if the input scorer computes 2.3, this scorer returns 2.

– SegmentedScorer: returns an available rating with equiproba-
bility for each rating. For example, in Epinions ratings are in
J1, 5K, the previous scorer returns 1 for each score in [1, 1.5[
and 2 for each score in [1.5, 2.5[: this is not equiprobable. The
SegmentedScorer segments ratings in equiprobable classes. For
Epinions, it returns 1 for each score in [1, 1.8[, 2 for each score
in [1.8, 2.6[, . . . and 5 for each score in [4.2, 5].

Those scorers artificially improve MAE (Mean Absolute Error), but
degrade RMSE, since medium errors become no errors (2.4 becomes
2) or larger errors (2.6 becomes 3).

c.1.4 Evaluation

c.1.4.1 Prediction

Evaluation greatly takes advantage of parallel collections in Scala.
Predictions are computed in parallel. To ease implementation, we
ensure one scorer instance per prediction.

Depending on the Scorer trait implemented by the scorer (Scorer,
ActorScorer or ItemScorer), the scorer tries to predict one score, one
actor’s scores or one item’s scores. The prediction duration is auto-
matically added to the score.

Once the scorers have predicted all scores, some statistics metrics
are computed on the results.

c.1.4.2 Metrics

We have implemented the following metrics that can be used with
the --metrics option (c. f. section 1):

– total: number of ratings to predict

– cov: coverage (in percent) of predicted ratings

– mae: Mean Absolute Error

– rmse: Root Mean Square Error

– rae: Relative Absolute Error

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

C.1 scars prototype 137

– rrse: Root Relative Square Error

– wae: Weighted Absolute Error

– rwse: Root Weighted Square Error

– pcc: Pearson Correlative Coefficient

– srcc: Spearman Rank Correlative Coefficient

Some additional metrics exist “per actor” that reduce heavy raters
importance compared to cold start users:

– atotal: number of actors that have a rating to predict

– acov: average coverage (in percent) of predicted ratings per ac-
tor

– amae: average Mean Absolute Error per actor

Most of these metrics are classical but wae and rwse. cov is defined
in eq. 33 and rmse is defined in eq.34, page 72.

We have defined wae and rwse in [MML11]. We use the same nota-
tion as in section 5.3.4, page 72:

WAE =

∑N
n=1 (|pn − rn|× |rn − ri|)

N
(42)

RWSE =

√∑N
n=1 ((pn − rn)× (rn − ri))2

N
(43)

With ri the mean of item i’s ratings. Those metrics reduce error
importance on ratings close to the items’ ratings mean, for a given
item. Those ratings are usually easy to predict, by computing a sim-
ple mean for example, thus less meaningful with respect to the eval-
uation.

c.1.5 Conclusion

The “Scars” prototype is a modular framework we have imple-
mented in order to try our algorithms and to compare them with
existing approaches. Scala, a high level language, allows to easily
and quickly add new implementations. Its compatibility with Java is
also advantage.

However this prototype does not take into account decentralization.
It provides no representation of the architecture. That is why we
have also implemented the next prototype in order to observe our
approach in P2P architectures.

We have not released the source code yet, but you are welcome to
send us an email for more information.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

138 prototypes

c.2 p2p prototype

We have implemented our second prototype in a P2P simulator:
PeerSim [MJ09], thanks to Emmanuel Guillot [GML11].

PeerSim takes care of the P2P architecture simulation, leaving al-
gorithmic details to the programmer. We have used the cycle-based
engine in order to simplify the development. But our approach is
compatible with the event driven engine.

PeerSim takes a configuration file that contains network informa-
tion: peers number, protocol, peer implementation class, neighbor-
hood, etc.

c.2.1 Implementation

The class Peer represents a peer in the network, associated with
one user. Each peer exchanges messages that can be a Query (for a
score) or a Reply (a computed score).

For computational reasons, we do not exchange all queries at each
cycle. We rather distribute all queries on several cycles in order to
process some queries at a time.

The simulation initialisation first creates peers, assigns them their
neighborhood and users’ profiles (i. e. ratings). Then queries are in-
stantiated and distributed on different cycles. There is one query per
rating to predict. The peers list comes from the RED database, c. f.
appendix B.1. The queries list comes from a text file.

Each cycles processes first the corresponding incoming queries. For
each query, a peer returns its score if it has one, otherwise it generates
new queries for its neighborhood. For each reply, if all neighborhood
of a peer has replied, the peer computes the score and returns it.
Otherwise it waits for the next replies. Then responses are returned.

The end occurs when all queries have been answered. At this point,
all results are stored in a file, similarly to the --save option in “Scars”.

c.2.2 Results

The dataset contains about 130 000 users for 1 100 100 ratings to
predict. Therefore we had some scalability challenges. Simulations
were run on Intel Core 2 Duo notebook with 1.5Go allocated memory.

The first evaluation took 9 minutes for a depth propagation of 1

with 500 cycles. But it did not handle a depth propagation of 2.
Therefore we have optimized our prototype by merging queries be-
tween peers: if a peer has to ask ten scores to the same peer, it sends
only one query with the ten items. The second evaluation took 28

minutes for a depth propagation of 2 with 2 000 cycles. We did not
try a depth propagation of 3.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

C.2 p2p prototype 139

The score predictions were the same as with “Scars”, validating our
prototypes.

c.2.3 Conclusion

This prototype evaluates our approach in P2P architectures. Its
implementation is not yet fully optimized but is functional.

We are planing to observe more criteria during the simulation, such
as:

– the number of exchanged messages per peer per prediction,

– the average waiting time (or number of cycles) per peer per
prediction,

– the network overload gain of our heuristics,

– the disconnections and reconnections impact on the prediction,

– etc.

Moreover we want to try and plug an existing phone as a peer
in the prototype. PeerSim will simulate the other peers while the
phone will ask scores to its friends. To do so, we have to implement
a separate node acting as a proxy for the phone.

We have not released the source code yet, but you are welcome to
send us an email for more information.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

B I B L I O G R A P H Y

[AT05] G. Adomavicius and A. Tuzhilin. Toward the next gen-
eration of recommender systems: A survey of the state-
of-the-art and possible extensions. IEEE transactions on
knowledge and data engineering, 17(6):734–749, 2005.

[BC92] N.J. Belkin and W.B. Croft. Information filtering and in-
formation retrieval: two sides of the same coin? Commu-
nications of the ACM, 35(12):29–38, December 1992.

[BHBL09] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The
Story So Far. International Journal on Semantic Web and
Information Systems, 5(3):1–22, 2009.

[BHK98] J.S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In
Proceedings of the 14th conference on Uncertainty in Artificial
Intelligence, pages 43–52. Madison: Morgan Kaufmann,
1998.

[BKG+
12] Y. Bachrach, M. Kosinski, T. Graepel, P. Kohli, and D. Still-

well. Personality and patterns of Facebook usage. Pro-
ceedings of the 3rd Annual ACM Web Science Conference on -
WebSci ’12, pages 24–32, 2012.

[BS97] M. Balabanović and Y. Shoham. Fab: content-based, col-
laborative recommendation. Communications of the ACM,
40(3):66–72, 1997.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern information
retrieval. ACM press New York, 1999.

[CDHP11] M. Chevalier, A. Dattolo, G. Hubert, and E. Pitassi. Infor-
mation Retrieval and Folksonomies together for Recom-
mender Systems. In Christian Huemer and Thomas Set-
zer, editors, ECommerce and Web Technologies, volume 85

of Lecture Notes in Business Information Processing, pages
172–183. Springer Berlin Heidelberg, 2011.

[Deu62] M. Deutsch. Cooperation and trust: Some theoretical
notes. In M. R. Jones, editor, Nebraska Symposium on Moti-
vation, pages 275–319. Nebraska University Press, 1962.

[DMO+
12] T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito, and

M. Zanker. Linked open data to support content-based
recommender systems. Proceedings of the 8th International
Conference on Semantic Systems, pages 1–8, 2012.

141

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

142 bibliography

[GH06] J. Golbeck and J. Hendler. FilmTrust: movie recommenda-
tions using trust in web-based social networks. In CCNC
2006. 2006 3rd IEEE Consumer Communications and Net-
working Conference, 2006., volume 1, pages 282–286. IEEE,
2006.

[GML11] E. Guillot, S. Meyffret, and F. Laforest. Recommandation
d’objets par relations de confiance dans les reseaux soci-
aux. Technical report, INSA de Lyon, Lyon, 2011.

[Gol90] L.R. Goldberg. An alternative “description of personal-
ity”: The Big-Five factor structure. Journal of Personality
and Social Psychology, 59(6):1216–1229, 1990.

[Gol05] J. Golbeck. Computing and applying trust in web-based social
networks. PhD thesis, University of Maryland at College
Park, 2005.

[Gol06] J. Golbeck. Combining provenance with trust in social
networks for semantic web content filtering. Provenance
and Annotation of Data, pages 101–108, 2006.

[Has10] O. Hasan. Privacy Preserving Reputation Systems for Decen-
tralized Environments. PhD thesis, Institut National des
Sciences Appliquées de Lyon, 2010.

[HBC10] T.R. Hoens, M. Blanton, and N. Chawla. A private and
reliable recommendation system using a social network.
In Proceedings of the 2010 IEEE Second International Confer-
ence on Social Computing, pages 816–825. IEEE Computer
Society, 2010.

[HC10] J. He and W.W. Chu. A Social Network-Based Recom-
mender System (SNRS). Data Mining for Social Network
Data, 12:47–74, 2010.

[HKTR04] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl.
Evaluating collaborative filtering recommender systems.
ACM Transactions on Information Systems (TOIS), 22(1):5–
53, 2004.

[HWS09] C.W. Hang, Y. Wang, and M.P. Singh. Operators for
propagating trust and their evaluation in social networks.
In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, pages
1025–1032. International Foundation for Autonomous
Agents and Multiagent Systems, 2009.

[JB06] M. Jelasity and O. Babaoglu. T-Man: Gossip-based over-
lay topology management. Engineering SelfOrganising Sys-
tems, 3910:1–15, 2006.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

bibliography 143

[JE09] M. Jamali and M. Ester. TrustWalker: a random walk
model for combining trust-based and item-based recom-
mendation. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining,
pages 397–406. ACM, 2009.

[JE10] M. Jamali and M. Ester. A matrix factorization technique
with trust propagation for recommendation in social net-
works. In Proceedings of the fourth ACM conference on Rec-
ommender systems, pages 135–142. ACM, 2010.

[JVG+
07] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec,

and M. van Steen. Gossip-based peer sampling. ACM
Transactions on Computer Systems, 25(3):1–36, August 2007.

[KLMT10] A.M. Kermarrec, V. Leroy, A. Moin, and C. Thraves. Ap-
plication of random walks to decentralized recommender
systems. In Mohamed Lu, Chenyang and Masuzawa,
Toshimitsu and Mosbah, editor, Principles of Distributed
Systems, pages 48–63. Springer Berlin / Heidelberg, 2010.

[KT12] A.M. Kermarrec and F. Taïani. Diverging towards the
common good. In Proceedings of the Fifth Workshop on So-
cial Network Systems, pages 1–6, New York, New York,
USA, 2012. ACM Press.

[LB09] D.H. Lee and P. Brusilovsky. Does Trust Influence Infor-
mation Similarity? In Proceedings of Workshop on Recom-
mender Systems & the Social Web, the 3rd ACM International
Conference on Recommender Systems, pages 3–6. Citeseer,
2009.

[MA06] P. Massa and P. Avesani. Trust-aware bootstrapping of
recommender systems. In Proceedings of the ECAI 2006
Workshop on Recommender Systems, pages 29–33, 2006.

[MA07a] P. Massa and P. Avesani. Trust-aware recommender sys-
tems. In Proceedings of the 2007 ACM conference on Recom-
mender systems, pages 17–24, New York, New York, USA,
2007. ACM.

[MA07b] P. Massa and P. Avesani. Trust metrics on controversial
users: balancing between tyranny of the majority and
echo chambers. International Journal on Semantic Web and
Information Systems, 3(1):39–64, 2007.

[MG11] Nicolas Marie and Fabien Gandon. Social Objects De-
scription and Recommendation in Multidimensional So-
cial Networks: OCSO Ontology and Semantic Spreading
Activation. In 2011 IEEE Third Int’l Conference on Privacy,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

144 bibliography

Security, Risk and Trust and 2011 IEEE Third Int’l Confer-
ence on Social Computing, pages 1415–1420. IEEE, October
2011.

[MGML11] S. Meyffret, E. Guillot, L. Médini, and F. Laforest. RED: a
Rich Epinions Dataset for Recommender Systems. Techni-
cal report, LIRIS UMR 5205 CNRS, INSA de Lyon, Lyon,
2011.

[MHN07] B. Mehta, T. Hofmann, and W. Nejdl. Robust collabora-
tive filtering. In Proceedings of the 2007 ACM conference on
Recommender systems - RecSys ’07, pages 49–56, New York,
USA, 2007. ACM Press.

[Mil67] S. Milgram. The small world problem. Psychology today,
2(1):60–67, 1967.

[MJ09] A. Montresor and M. Jelasity. PeerSim: A scalable P2P
simulator. In Proceeding of the 9th International Conference
on Peer-to-Peer (P2P’09), pages 99–100. IEEE, September
2009.

[MKL09] H. Ma, I. King, and M.R. Lyu. Learning to recommend
with social trust ensemble. In Proceedings of the 32nd inter-
national ACM SIGIR conference on Research and development
in information retrieval, pages 203–210, New York, New
York, USA, 2009. ACM.

[MML11] S. Meyffret, L. Médini, and F. Laforest. Trust-based rec-
ommendation with privacy. In Inforsid2, pages 369–384,
2011.

[MZL+
11] H. Ma, D. Zhou, C. Liu, M.R. Lyu, and I. King. Recom-

mender systems with social regularization. In Proceedings
of the fourth ACM international conference on Web search and
data mining, pages 287–296, New York, New York, USA,
2011. ACM Press.

[OS05] J. O’Donovan and B. Smyth. Trust in recommender sys-
tems. In Proceedings of the 10th international conference on
Intelligent user interfaces, pages 167–174, New York, USA,
2005. ACM.

[PB07] M. Pazzani and D. Billsus. Content-based recommenda-
tion systems. In Peter Brusilovsky, Alfred Kobsa, and
Wolfgang Nejdl, editors, The adaptive web, pages 325–341.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[PBMW99] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the Web.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

bibliography 145

Technical report, Stanford Digital Library Technologies
Project, 1999.

[PFW05] E. Pampalk, A. Flexer, and G. Widmer. Improvements of
audio-based music similarity and genre classification. In
Crawford and Sandler, volume 5, pages 628–633, 2005.

[PK09] G. Pitsilis and S.J. Knapskog. Social Trust as a solu-
tion to address sparsity-inherent problems of Recom-
mender systems. Recommender Systems & the Social Web,
826(October):33–40, 2009.

[PT09] I. Pilászy and D. Tikk. Recommending new movies: even
a few ratings are more valuable than metadata. Proceed-
ings of the third ACM conference on, pages 93–100, 2009.

[QKSC11] D. Quercia, M. Kosinski, D. Stillwell, and J. Crowcroft.
Our Twitter Profiles, Our Selves: Predicting Personality
with Twitter. 2011 IEEE Third Int’l Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third Int’l Conference
on Social Computing, pages 180–185, October 2011.

[RD02] M. Richardson and P. Domingos. Mining knowledge-
sharing sites for viral marketing. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 61–70, New York, New
York, USA, 2002. ACM.

[RRSK11] F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor, editors.
Recommender Systems Handbook. Springer US, Boston, MA,
2011.

[SFHS07] J.B. Schafer, D. Frankowski, J.L. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The adap-
tive web, pages 291–324. Springer-Verlag, 2007.

[SKKR01] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-
based collaborative filtering recommendation algorithms.
In ACM, editor, Proceedings of the tenth international confer-
ence on World Wide Web - WWW ’01, pages 285–295, New
York, New York, USA, 2001. ACM Press.

[SKR99] J.B. Schafer, J. Konstan, and J. Riedi. Recommender sys-
tems in e-commerce. Proceedings of the 1st ACM conference
on Electronic commerce - EC ’99, pages 158–166, 1999.

[SM86] G. Salton and M.J. Mcgill. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, Inc., New York, NY, USA,
1986.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

146 bibliography

[VCC11] P. Victor, M. Cock, and C. Cornelis. Trust and Recommen-
dations. In Recommender Systems Handbook, pages 645–675.
Springer, 2011.

[WF94] S. Wasserman and K. Faust. Social network analysis: Meth-
ods and applications. Cambridge Univ Pr, 1994.

[Wil93] O.E. Williamson. Calculativeness, Trust, and Economic
Organization. Journal of Law and Economics, 36(1):453–86,
1993.

[WL02] B. Whitman and S. Lawrence. Inferring descriptions and
similarity for music from community metadata. In Pro-
ceedings of the 2002 International Computer Music Confer-
ence, pages 591–598, 2002.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0127/these.pdf
© [S. Meyffret], [2012], INSA de Lyon, tous droits réservés

	Notice XML
	Page de titre
	Remerciements
	Abstract
	Résumé
	Publications
	Contents
	List of Figures
	List of Tables
	i Introduction
	1 Introduction
	1.1 Context
	1.2 Motivations
	1.3 Contributions

	ii Preamble
	2 State of the art on recommender systems
	2.1 Content-based recommender systems
	2.1.1 Description of textual content
	2.1.2 Description of other kind of content
	2.1.3 User profile
	2.1.4 Conclusion

	2.2 Collaborative filtering recommender systems
	2.2.1 Centralized version
	2.2.2 Decentralized version
	2.2.3 Conclusion

	2.3 Trust-based recommender systems
	2.3.1 TidalTrust
	2.3.2 MoleTrust
	2.3.3 TrustWalker
	2.3.4 Conclusion

	2.4 Social-based recommender systems
	2.4.1 SocialMF
	2.4.2 Hoens et al. Hoens2010
	2.4.3 Conclusion

	2.5 Conclusion

	3 Definitions/Example
	3.1 Graph theory definitions
	3.1.1 Graphs
	3.1.2 Simple graphs
	3.1.3 Digraphs
	3.1.4 Bipartite graphs
	3.1.5 Weighted graphs
	3.1.6 Other graphs

	3.2 Vocabulary
	3.2.1 Social network
	3.2.2 Trust network
	3.2.3 Similarity network
	3.2.4 Ratings

	3.3 Example
	3.4 Conclusion

	iii Contributions
	4 Our approach: social scoring
	4.1 Social scoring
	4.1.1 Score propagation
	4.1.2 Trust
	4.1.3 Correlation

	4.2 Confidence
	4.2.1 Confidence coefficients
	4.2.2 Confidence aggregation
	4.2.3 Confidence propagation

	4.3 Default Score
	4.3.1 Computation of a default score
	4.3.2 Required knowledge for a default score
	4.3.3 Confidence on a default score

	4.4 CoTCoDepth Social Scoring
	4.4.1 Definition
	4.4.2 Example

	4.5 Conclusion

	5 Evaluation
	5.1 Campaigns
	5.1.1 Training set
	5.1.2 Leave one out

	5.2 Dataset
	5.2.1 Epinions
	5.2.2 Flixster
	5.2.3 Appolicious

	5.3 Implementation
	5.3.1 CoTCoDepth Scorer
	5.3.2 Evaluation
	5.3.3 Views
	5.3.4 Metrics

	5.4 Influence of k and connectivity degree
	5.4.1 Epinions: Alchemy dataset
	5.4.2 Appolicious
	5.4.3 Flixster
	5.4.4 Conclusion

	5.5 Comparison with existing approaches
	5.5.1 Scorers characteristics
	5.5.2 All actors
	5.5.3 Cold start users

	5.6 Conclusion

	6 Heuristics
	6.1 Heuristics evaluation protocol
	6.2 Extended similarity
	6.2.1 Definition
	6.2.2 Evaluation

	6.3 Relative scoring
	6.3.1 Relative score propagation
	6.3.2 Relative scoring evaluation

	6.4 A New Hop
	6.4.1 Score propagation with hops
	6.4.2 Hops evaluation

	6.5 Friends selection
	6.5.1 Random friends selection
	6.5.2 Random raters selection
	6.5.3 Weight influence
	6.5.4 Conclusion

	6.6 Expertise
	6.6.1 Friends expertise
	6.6.2 Global expertise
	6.6.3 Expertise evaluation

	6.7 Conclusion

	iv Conclusion
	7 Conclusion
	7.1 Contributions
	7.2 Discussion
	7.3 Perspectives

	v Appendix
	A Managing cycles
	A.1 Cycles in score propagation
	A.1.1 Ping-pong cycle
	A.1.2 Loop
	A.1.3 Duplicate scores

	A.2 Extended formula
	A.3 Evaluation of the extended formula

	B Datasets
	B.1 Rich Epinions Dataset
	B.1.1 Epinions dataset extraction
	B.1.2 Dataset structure
	B.1.3 Statistics
	B.1.4 Evaluation with this dataset

	B.2 Appolicious dataset
	B.2.1 Appolicious dataset extraction
	B.2.2 Dataset structure
	B.2.3 Statistics

	B.3 Conclusion

	C Prototypes
	C.1 Scars prototype
	C.1.1 Usage
	C.1.2 Modules
	C.1.3 Scorer
	C.1.4 Evaluation
	C.1.5 Conclusion

	C.2 P2P prototype
	C.2.1 Implementation
	C.2.2 Results
	C.2.3 Conclusion

	Bibliography

